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Using Pre-trained Models for
Vision-Language Understanding Tasks

Rui Cao

In recent years, remarkable progress has been made in Artificial Intelligence (AI),

with an increasing focus on integrating AI systems into people’s daily lives. In the

context of our diverse world, research attention has shifted towards applying AI to

multimodal understanding tasks. This thesis specifically addresses two key modal-

ities, namely, vision and language, and explores Vision-Language Understanding

(VLU).

In the past, addressing VLU tasks involved training distinct models from scratch

using task-specific data. However, limited by the amount of training data, models

may easily overfit the training data and fail to generalize. A recent breakthrough

is the development of Pre-trained Models (PTMs), which are trained on extensive

datasets to acquire universal representations. Leveraging these PTMs for VLU tasks

has become a prevalent approach.

The use of PTMs for VLU tasks can be divided into two paradigms: (1) fine-

tuning PTMs with downstream task data, and (2) zero-shot transfer or few-shot learn-

ing based on frozen PTMs. However, existing methods under these two paradigms

suffer from a few limitations: direct fine-tuning of PTMs may overlook the unique

characteristics of the downstream tasks; the zero-shot and few-shot performance of

PTMs on some tasks may be poor; and complex VLU tasks may require multiple

reasoning skills that a single PTM may not possess.

In the thesis, we aim to address the limitations above by optimizing the utilization

of PTMs for VLU tasks. Our work can be organized based on whether we leverage

fine-tuning or zero-shot / few-shot learning, and whether we adopt a single PTM or a

composition of PTMs. When tuning a single PTM, we explore how to incorporate

task-specific components to better cater to downstream tasks (Tuning-Single). For

VLU tasks where frozen PTMs are not ideal solutions due to poor performance, we

investigate using a single frozen PTM to facilitate sub-steps in these tasks (Frozen-



Single). On the other hand, we also study how to compose a set of tuned PTMs,

each capable of a reasoning skill, to improve the performance on these tasks in the

low-resource setting (Tuning-Composition). As VLU tasks may involve multiple

skills and multiple reasoning steps, we consider a composition of frozen PTMs

and assign reasoning tasks to proper frozen PTMs without requiring any adaptation

(Frozen-Composition).

Specifically, in this thesis, we narrow down our scope to two VLU tasks, Hateful

Meme Detection (HMD) and Visual Question Answering (VQA). HMD classifies a

given multimodal meme as either hateful or not hateful, while VQA aims to answer

questions related to a given image. The decision to focus on these two tasks stems

from their importance in real-world applications. Furthermore, both tasks present

non-trivial challenges that demand innovative solution approaches.

For the HMD task, most existing work has primarily focused on direct fine-tuning

of PTMs, treating HMD as a general multimodal classification task and overlooking

its unique characteristics. We address the limitation by integrating task-specific

components with PTMs and tuning them end-to-end. We proposed DisMultiHate,

which is based on a PTM but learns to disentangle representations of hate speech-

related target entities in memes to enhance hateful content classification. Additionally,

HMD often requires external background knowledge for meme comprehension, yet

there are no dedicated knowledge bases constructed for this purpose. In light of this,

we explore leveraging knowledge in Pre-trained Language Models (PT-LMs). We

propose PromptHate, which prompts PT-LMs and utilizes their implicit knowledge

for HMD. Since PT-LMs are inherently textual, PromptHate involves converting

images into textual captions with a frozen pre-trained vision-language model (PT-

VLM).

Though achieving good detection performance, PromptHate suffers from non-

informative captions. Generic image descriptions may lack crucial details, such as

race and gender information, vital for detecting hateful content. To address this, we

proposed Pro-Cap, which leverages a frozen PT-VLM to complement PromptHate.
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Specifically, we prompt a frozen PT-VLM with hateful content-related questions

and use the answers as image captions (termed Pro-Cap), ensuring that the captions

contain critical information for hateful content detection.

While these methods exhibit commendable performance, they heavily rely on

extensive supervised learning, demanding large volumes of annotated data. This

process is both costly and time-consuming. In response, we further introduce Mod-

HATE, which harnesses the power of a composition of tuned PTMs, each of which

possesses an essential reasoning capability for HMD. To the best of our knowledge,

Mod-HATE represents a pioneering exploration of hateful meme detection tailored

to the few-shot learning setting.

For VQA, we study it under the zero-shot transfer setting. Notably, previous

zero-shot VQA models overlooked the explicit consideration of multi-step reasoning

chains inherent in VQA. To address this oversight, We introduce a modularized

zero-shot network that explicitly decomposes questions into sub-reasoning steps,

converts sub-reasoning tasks to objectives suitable for PTMs, and assigns tasks to

appropriate PTMs without adaptation.

Expanding our investigation, we delve into a specific VQA scenario known as

knowledge-based VQA (K-VQA). In K-VQA, apart from an image, external knowl-

edge is indispensable for answering the given questions. Recent approaches have

utilized pre-trained large language models (LLMs) as both a knowledge source and

a zero-shot QA model for K-VQA. However, these recent methods lack explicit

demonstration of the knowledge needed to answer questions and thus lack inter-

pretability. To rectify this deficiency, we propose KGENVQA, which first generates

knowledge from a frozen LLM and subsequently leverages another frozen LLM for

question answering with the incorporation of the generated knowledge.

Finally, we conclude the thesis with a summary of our contributions and a

discussion of potential future directions regarding the application of PTMs to VLU.
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Chapter 1

Introduction

Disclaimer: This thesis contains violence and discriminatory content that may be

disturbing to some readers.

1.1 Vision-Language Understanding

A modality refers to the way in which something happens or is experienced [12]. For

instance, the connection between people and the physical world is established via

sensory modalities such as vision and touch, which represent the primary channels

of communication and sensation [12]. The complexity of human experience with

the physical world underscores the need to comprehend multimodal signals from the

outside world.

In recent years, Artificial Intelligence (AI) has witnessed significant progress,

powering intelligent systems such as Chat-GPT [134] and enhancing human life

through applications like face recognition and conversational assistants. However,

to fully harness AI’s potential in the context of our diverse world, which is inher-

ently multimodal, it becomes imperative to explore models capable of multimodal

understanding.

A prevalent example that demonstrates the importance of understanding mul-

timodal data in our daily lives is the fusion of vision and language. There is a

wide range of tasks and real-world applications that involve the integration of vision
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LOVE THE WAY

YOU SMELL TODAY

(b)(a)

Figure 1.1: Examples of the hateful meme detection task. (a) is an example of hateful
memes, while (b) is benign (i.e., non-hateful).

Question: What California national park 

are these known to be seen?

Answer: Yosemite

Question: What is the man to the left of the 

woman holding?​

Answer: Controller

(b)(a)

Figure 1.2: Examples of the visual question answering task.

and language modalities. Examples include the task of recommending products to

consumers where the conversation of recommendation involves both images and

texts (Recommendations with Images and Texts [148]), the task of providing a brief

textual description of an image (Image Captioning [107]) and the task of searching

for the most relevant video related to the semantics in a given sentence (Video-Text

Retrieval [189]).

Because vision and language are two key modalities in the world we live in, in

this thesis, we focus on the joint comprehension of these two modalities. We use the

term Vision-Language Understanding (VLU) to refer to this type of comprehension

task.
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VLU poses significant challenges in real-world applications. Firstly, it requires

not only the comprehension of individual modalities (vision and language) but

also an understanding of their interactions. For example, Multimodal Memes1,

often comprising images with short texts, pose an interesting VLU setting when

we consider the task of Hateful Meme Detection [85]. In hateful meme detection,

meme texts (e.g., “love the way you smell today”), when considered individually,

may seem harmless. However, when combined with different seemingly benign

images (e.g., an image of a skunk or an image of roses), they can lead to completely

different connotations, which make some to be considered hateful (e.g., Figure 1.1

(a)) while others are benign (e.g., Figure 1.1 (b))2. Another example of the challenge

of understanding the interactions between vision and language in VLU tasks is in the

context of Visual Question Answering [54] (VQA). A VQA system is expected to

accurately answer questions posed about an image, as depicted in Figure 1.2. Usually

with only unimodal information (either the image or the question), it is impossible to

provide a correct answer. It is only when a VQA system is able to jointly understand

both the visual and textual inputs and their relations can the system accurately answer

a question. As we can see, both hateful meme detection and VQA highlight the

importance of comprehending the joint interactions between vision and language

modalities in VLU.

Secondly, VLU tasks are oftentimes inherently complex, requiring a diverse

range of comprehension skills and often involving multiple reasoning steps. For

instance, the task of hateful meme detection demands an understanding of hate speech

definitions, visual metaphors in multimodal memes, and the underlying meanings

of memes. Similarly, VQA necessitates skills such as object recognition, spatial

reasoning, and relational reasoning. Consider the VQA question in Figure 1.2 (a) as

an example. We can see that here multi-step reasoning is required to reach the final

answer. Models need to initially locate the man in the image, then shift to the left

1In the rest of this thesis, to simplify the discussion, we will use memes to refer to multimodal
memes.

2The examples are for illustrative purpose only. They are not real memes in hateful meme
detection datasets, as showing real hateful memes at first may be distasteful.
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side, locate a woman, and finally identify the item she is holding.

Thirdly, VLU tasks often require external knowledge not explicitly provided. For

example, to determine if the memes in Figure 1.1 are hateful, one needs knowledge

about the smells associated with skunks and roses. Similarly, addressing the question

in Figure 1.2 (b) necessitates knowledge about animals in California’s national parks.

In summary, VLU poses significant challenges when we apply AI techniques

to address it. To address the three major challenges above, initially, researchers

designed various model architectures and supervised approaches using task-specific

data. To model the vision-language interactions, solutions have evolved from simple

fusion strategies (e.g., concatenation and element-wise addition) [214, 6] to sophisti-

cated multimodal fusion techniques (e.g., bilinear fusion) [45, 86] to generate more

expressive joint vision-language representations. Meanwhile, to deal with complex

VLU problems requiring multiple skills and multi-step reasoning, Neural Module

Networks were proposed. This framework incorporates different modules designed

for different reasoning tasks and the model trains these modules end-to-end with

VLU task data [69, 91, 5]. Finally, in response to the need of external knowledge,

previous work tried to retrieve and incorporate knowledge from existing knowledge

bases to handle the tasks [178, 122, 130].

However, these initial approaches involved neural network models trained from

scratch with task-specific data, which were prone to overfitting due to the scarcity

of training data for each downstream task. They struggled to generalize to real-

world applications. Recent research has shifted towards pre-training large models

that can be easily transferred to different tasks. By training models on extensive

datasets, pre-trained models (PTMs) acquire universal representations and show

good performance when adapting to downstream tasks. In the following sections,

we will first briefly introduce PTMs and then discuss how researchers have tried to

adapt them to VLU tasks.
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1.2 Pre-trained Models for Language Processing and

Vision-Language Understanding

Supervised learning with task-specific data is limited by the training data size.

Therefore, it leads to overfitting of models on training data and incapability of gen-

eralization [22, 7]. This overfitting issue prompts researchers to explore alternative

approaches. A successful approach is model pre-training. By training models on

large and diverse datasets spanning various domains, PTMs can learn universal

representations, enabling them to generalize across different sub-tasks. In the rest

of this section, I will give a brief review of recent progress in pre-trained language

models and pre-trained vision-language models.

A significant amount of research on pre-training focuses on pre-training language

models for natural language processing (NLP). Pre-trained language models (which

we refer to as PT-LMs) are typically trained to perform the task of masked language

modeling [169] (predicting masked words based on context), next sentence predic-

tion [36] (determining if two sentences follow each other in the original document)

and next token prediction [142] (predicting the next token given the previous input

tokens). Because these pre-training tasks do not require annotated text, PT-LMs

can be trained on plain texts easily accessible from a wide range of sources and

particularly from the Web. In terms of their model architecture, modern PT-LMs

are predominately based on the transformer architecture [175]. Under the general

transformer architecture, there are three types of language models: encoder-only

models (e.g., BERT [36] and RoBERTa [114]) can encode text and subsequently

perform classification tasks. The encoder-only models cannot be used directly for

text generation tasks; decoder-only models (e.g., GPT [15] and OPT [204]) exploit a

decoder for both processing inputs and generating outputs. These models are strong

at text generation, such as question answering and conversational chatting; finally,

there are also encoder-decoder models (e.g., BART [95] and T5 [144]), which have

an encoder for input encoding and a separate decoder for target output generation.

5



They are powerful at natural language understanding such as text summarization

and machine translation. Although traditionally PT-LMs were trained on only unan-

notated texts, recently, researchers have found that fine-tuning these models with

instructional data (i.e., pairs of texts where the first part is a human-written instruction

and the second part is the expected output from a language model) can significantly

enhance these models’ capabilities.

Similar to PT-LMs, for VLU tasks, it also helps to pre-train models on vision-

language data to increase generalizability and prevent overfitting. Therefore, in

recent years, researchers have started developing pre-trained vision-language models

(which we refer to as PT-VLMs). Aligned with PT-LMs, researchers have explored

unsupervised or weakly supervised vision-language tasks, such as vision-language

alignment prediction (predict whether an image and a sentence are paired) [117],

masked vision-language modelling (predict a masked tokens in a sentence according

to both contexts and image information) [117] and image-text contrastive learning

(predict the semantic similarity between an image and a sentence) [98]. To delve

deeper into sophisticated vision-language interactions, researchers [101, 117] have

also explored complex but supervised VLU tasks such as image captioning and VQA

during pre-training. In terms of pre-training data, while earlier work [101, 117, 168]

used small-scale, clean and annotated datasets such as MS COCO captions [107]

and Conceptual Captions [155], recent work [195, 99, 113, 111, 98, 143] all used

web-scale data. For model architecture, PT-VLMs predominantly rely on transformer

architecture [175]. They typically feature a vision-language encoding stage to

capture cross-modal interactions. Encoder-based PT-VLMs [98, 143] focus on pre-

training the encoder for expressive vision-language representations, excelling in

understanding-based tasks such as image-text retrieval. On the other hand, encoder-

decoder-based models [182, 29] demonstrate proficiency in visual-grounded text

generation tasks like image captioning. Additionally, decoder-only PT-VLMs [111,

195] leverage large language models, performing the vision-language encoding and

output decoding within a decoder, and excel in conversational applications involving
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both images and texts. Vision-language instructional data were also explored to

acquire better generalization to unseen data [111, 195]

We have reviewed recent progress with PT-LMs and PT-VLMs. We now briefly

review how PTMs are being used for downstream tasks. The ways PTMs are

applied for downstream tasks have evolved and can be roughly divided into two

paradigms. In the beginning, these models were fine-tuned on task-specific data [36,

101, 117]. With the scaling up of model sizes and pre-training data, PTMs have

become increasingly capable of being applied directly to downstream tasks in a

zero-shot or few-shot [2, 9, 96] manner, provided that tasks can be appropriately

converted to objectives similar to pre-training tasks.

However, these methods for applying PTMs to VLU tasks suffer from a few

limitations.

Firstly, direct fine-tuning of PTMs with task-specific VLU data regards the task

as a general VLU task and overlooks the unique characteristics of the task. Take the

task of hateful meme detection for instance. The comprehension of target entities is

of vital importance to hateful content detection [34], but direct fine-tuning cannot

give special treatment to the target entities embedded in the hateful memes.

Secondly, the zero-shot and few-shot performance of PTMs on some tasks may be

poor, which prohibits the direct application of frozen PTMs. For example, PT-VLMs

have near-random guess performance regarding the hateful meme detection task in

the low-resource setting.

Thirdly, the complexity of VLU tasks requires multiple skills that a single PTM

may not possess. Furthermore, they may require multi-step reasoning which most

PTMs lack. For instance, the task of VQA requires the capability of object detection,

spatial reasoning and relation reasoning as well as multiple reasoning steps before

reaching the final answer.
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1.3 Thesis Statement

To address the limitations identified earlier in applying PTMs for VLU tasks, in this

thesis, we propose and evaluate a few new approaches. Our work can be organized

based on whether we leverage fine-tuning or zero-shot/few-shot learning, and whether

we adopt a single PTM or a composition of PTMs. We summarize the four categories

of optimizing the utilization of PTMs to VLU tasks in our thesis as follows:

• Tuning-Single: It is the most natural way and has been extensively explored

in the past. This thesis aims to explore methods to better integrate PTMs with

task-specific components, thereby enhancing their effectiveness in addressing

the challenges in VLU tasks. Formally we define the model for the task as

M and M = fθ(MPTM,Mtsp), where MPTM denotes the PTM, Mtsp denotes

the task-specific part (note, Mtsp can be either neural networks or specifically

designed method for tuning PTMs), and fθ refers to the architectures con-

necting the PTM and the task-specific component. The parameters in Mtsp

(if neural networks) and fθ are learnt end-to-end with the update of MPTM.

Take the task of video question answering for instance. Existing PT-VLMs

trained with image-text data can only comprehend information within a frame,

whereas incapable of capturing temporal information (e.g., the transition of an

action) across frames. Thus, Mtsp can be specially designed for modelling the

frame-to-frame temporal relations and be combined with MPTM responsible

extracting information within a frame. The design of Mtsp and fθ to better

cater MPTM for a specific task is the main contribution in this category of

using PTMs.

• Frozen-Single: With the increasing size of model architectures and limited

accessibility to some models, using frozen PTMs becomes prevalent. However,

frozen PTMs may not be directly applicable to some VLU tasks or direct

applications of PTMs leads to poor performance. In the thesis, we study how

to facilitate sub-steps in VLU tasks with frozen PTMs. Formally, the model
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M can be represented with M = (Mfrozen
PTM ,Mtune). One widely used strategy

in this category is to use frozen CLIP [143] as a feature extractor to facilitate

visual and textual representations in VLU tasks [127, 89]. The key and the

contribution in this type is to identify the intermediate step that is in need of

improvement and convert the step to pre-training objectives of a PTM.

• Tuning-Composition: VLU tasks may be complex and have poor zero-shot /

few-shot performance. We seek to tune PTMs to acquire essential reasoning

skills for such tasks and compose the set of tuned PTMs for these tasks in the

low-resource setting. Specifically, we only have access to a few annotated

example, Dtrain for the task. Assume K essential skills are identified for the

task, we then tune PTMs to acquire these skills with auxiliary data and obtain

a set of tuned models {P tune
k }Kk=1. Based on Dtrain, a composer is learnt to

construct the model M for the task. One application of this strategy lies

in a setting where users require assistance for various VLU tasks, such as

navigation, multimodal recommendation and visual question answering. A

plausible strategy is to have tuned models for each VLU task and use the few

annotated examples from users (e.g., their instruction and desired feedback)

to train a composer, which learns to compose tuned models confronted with

different user instructions.

• Frozen-Composition: Different PTMs possess unique strengths and complex

down-stream tasks may require various capabilities that a single PTM may not

possess. This approach aims to make use of a composition of frozen PTMs

and assign sub-reasoning tasks in complex VLU tasks to proper PTMs without

requiring any adaption. Given a complicated task T , we can decompose it into

a sequence of sub-reasoning tasks: {t}N1
n=1, where N1 is the number of sub-

tasks and tn is the n-th reasoning task. We then convert each tn to objectives

similar to pre-training goals of PTMs, assign tn to a proper PTM, P frozen
n and

obtain a sequential outputs from PTMs. In other words, the set of composition

of PTMs ({P frozen
n }N2

n=1 is responsible for identified sub-reasoning tasks (Note,
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N1 may not be equal to N2). The sequential outputs will be organized to

generate the task prediction Otask. For instance, given a complex instruction

asking for converting the object in a given image to the other style, it involves

object recognition, style transfer and image generation. The three decomposed

tasks can then be assigned to an object detector, a style transferring model and

an image generator, respectively.

1.4 Task Definition

There is a wide range of tasks in need of VLU. This thesis narrows its focus to

two specific VLU tasks, namely, Hateful Meme Detection [85] (HMD)3 and Visual

Question Answering [54] (VQA), and makes use of PTMs to facilitate the two tasks.

The decision to concentrate on these tasks stems from their direct relevance to real-

world applications. Given memes, often comprising images with short texts, a HMD

system is expected to distinguish between hateful and non-hateful memes [85]. The

spread of online hateful memes may sow discord among individuals or communities

online and potentially result in violent hate crimes. HMD plays an important role in

combating online misbehavior and safeguarding individuals from harm. On the other

hand, a VQA system is expected to accurately respond to questions posed about an

image. Among its various applications, one of the most critical is to aid visually

impaired individuals. Additionally, VQA systems have potential applications in

autonomous driving, food recommendation, robot navigation, and numerous other

domains.

Furthermore, both tasks present non-trivial challenges that demand innovative

approaches. Firstly, both tasks requires comprehending vision-language interactions.

With only the meme image or the meme text, it is infeasible to decide whether

the multimodal meme is hateful or not, as discussed in Section 1.1. Similarly, in

VQA, both the question and the image are indispensable for answering a VQA ques-

3Though not a well-adopted acronym, we use HMD as an abbreviation for hateful meme detection
in the rest of the thesis.
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tion. Secondly, external knowledge such as commonsense and cultural background

knowledge, which may not be readily available in training data, necessitates for both

tasks. Specifically, hateful memes are often associated with historical events and

cultural backgrounds, while VQA questions are often asking about commonsense

related to entities in images. Thirdly, HMD and VQA are complex, as multiple

reasoning skills and multi-step reasoning are needed. HMD asks for the capabilities

of comprehension of the definition of “hateful”, understanding visual metaphors in

memes, decoding the underlying meaning, etc. VQA requires several skills, such as

object recognition, spatial reasoning and relational reasoning.

For these reasons, we believe these two tasks emphasize the importance as well

as challenges of VLU tasks.

Though there have been explorations in applying PTMs to the two VLU tasks,

they have several limitations. Regarding to using tuned PTMs, a prevalent method is

to directly fine-tune PTMs with task-specific data. Nonetheless, direct fine-tuning

of PTMs overlooks unique characteristics of different tasks (e.g., the recognition of

victims of hateful memes in HMD) and treats them as general VLU tasks. Meanwhile,

direct fine-tuning of PTMs on task-specific data requires large volumes of supervised

data, which is impractical in some real-world settings. For example, the dynamic

nature of hateful memes tied to evolving events poses significant hurdles in acquiring

and annotating sufficient training examples.

On the other hand, researchers have tried utilizing frozen PTMs by converting

downstream tasks into those similar to pre-training objectives of PTMs. However,

in some cases, frozen PTMs cannot be applied directly due to poor performance.

For instance, PT-VLMs have near-random performance on HMD. Besides, PTMs

may not possess or excel in all essential skills for complex tasks (e.g., VQA asks for

multiple reasoning skills) and multi-step reasoning in complex tasks is challenging

to PTMs.

In this thesis, we present methods for optimizing the utilization of PTMs for the

two VLU tasks.
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Task-specific Components 

over a PTM to Disentangle 

Target Entities

Prompting a PT-LM to 

Acquire External Knowledge

Frozen PT-VLMs with 

Probing-based Captioning 

for Hateful-content Related 

Descriptions

Using a Composition of 

Frozen PTMs to Explicitly 

Conduct Multi-step 

Reasoning

Explicit Generation and 

Incorporation of Knowledge 

with Frozen PT-LMs

Harnessing a Composition 

of Tuned PTMs with 

Essential Reasoning Skills 

for Few-shot HMD

FrozenTuning

Single

Composition

Figure 1.3: An overview of thesis contributions. We follow four strategies for
utilizing PTMs: Tuning-Single, Frozen-Single, Tuning-Composition and Frozen-
Composition, and design methods to better use PTMs to cater for HMD and VQA.
The green blocks are for the HMD task, the yellow blocks for VQA.

1.5 Overview of the Thesis

In this thesis, we aim to build systems to address the two challenging VLU tasks

introduced above, namely, HMD and VQA, with the exploitation of PTMs. To adapt

PTMs to the tasks, we try four strategies, Tuning-Single, Frozen-Single, Tuning-

Composition and Frozen-Composition, as discussed in Section 1.3. We made the

following contributions to support the thesis statement (as illustrated in Figure 1.3):

Task-specific Components over a PTM to Disentangle Target Entities: Instead

of direct fine-tuning PTMs for HMD, we design and incorporate a PTM into a novel

framework that disentangles target entities in memes and tunes the PTM with task-

specific components end-to-end. The method improves both the performance and

interpretability. However, the method suffers from the limitation that HMD requires

contextual background knowledge.

Prompting a PT-LM to Acquire External Knowledge: To address the lack of

contextual background knowledge, we leverage a PT-LM as an implicit knowledge

source via prompting. Since PT-LMs are inherently textual, the method involves a

12



frozen PT-VLM for converting meme images into textual captions. Then, the multi-

modal classification task can be transformed into a masked word modeling task. We

further add two demonstrations and prompt PT-LMs for the prediction. The proposed

method achieves the state-of-the-art performance on two benchmarks, whereas, the

method suffers from non-informative captions. Generic image descriptions may

lack crucial details, such as race and gender information, vital for detecting hateful

content.

Frozen PT-VLMs with Probing-based Captioning for Hateful-content Related

Descriptions: To address the limitation of non-informative captions, we proposed a

probing-based captioning approach to leverage a frozen PT-VLM to complement the

previous method. Specifically, we prompt a frozen PT-VLM with hateful content-

related questions and use the answers as image captions, ensuring that the captions

contain critical information for hateful content detection. By inserting the generated

captions into text-based meme detection models, significant improvements can

be achieved. While our proposed methods above demonstrate strong detection

performance, they demand large volumes of annotated data. The dynamic nature of

hateful memes tied to evolving events, nevertheless, makes it impractical to annotate

sufficient training examples.

Harnessing a Composition of Tuned PTMs with Essential Reasoning Skills for

Few-shot HMD: In response, we study HMD in the low-resource setting, where

only a few annotated examples are available. We propose a modularized networks,

which harnesses the power of a composition of tuned PTMs, each of which possesses

an essential reasoning capability for HMD. We use the few available annotated

samples to train a composer, which assigns weights over PTMs based on their

relevance to HMD. The composed modularized networks demonstrate superior few-

shot performance, as well as computational efficiency during inference compared to

traditional in-context learning.

Using a Composition of Frozen PTMs to Explicitly Conduct Multi-step Reason-

ing: The VQA task is complex as questions often require multi-step reasoning and
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most PTMs lack such capability. Secondly, the VQA task asks for different reasoning

skills, while a single PTM may not possess all these skills. Meanwhile, existing

zero-shot VQA models do not think about explicit reasoning chains inherent in VQA.

Considering these factors above, we design a modularized zero-shot VQA model.

It explicitly decomposes VQA questions into sub-reasoning tasks and assigns each

sub-task to proper frozen PTMs. The good performance on two VQA benchmarks

shows both the importance of question decomposition in VQA and the possibility of

applying such a system to real-world, while the model is highly interpretable.

Explicit Generation and Incorporation of Knowledge with Frozen PT-LMs:

Expanding our inquiry, we delved into a specific VQA scenario, K-VQA, where

external knowledge apart from images is indispensable to answer questions. Recent

zero-shot K-VQA models lack explicit demonstration of the knowledge used to

answer questions and thus lack interpretability. We propose to explicitly generate

and incorporate knowledge with frozen PT-LMs for K-VQA. The method improves

the K-VQA performance as well as interpretability.

In the rest of the thesis, we will first provide a literature review of PTMs and of

the two VLU tasks (HMD and VQA) in Chapter 2. We will elaborate on the origins

of the two tasks from hate speech detection and text-based question answering, their

extensions to multimodality and benchmarks used in the thesis. We then describe the

model which disentangles target entities to help with improving HMD in Chapter 3.

In Chapter 4, we show details of how to leverage language models as implicit

knowledge bases to facilitate HMD. As this model suffers from non-informative

captions, in Chapter 5, we introduce our probing-based captioning technique to

complement the model. In Chapter 6, we present our work for HMD in the low-

resource setting by embracing a composition of tuned PTMs.

Subsequently, we delve into our proposed models for VQA. In Chapter 7, we

elaborate on how to design a modularized neural networks, decompose questions,

assign PTMs to each sub-reasoning task and leverage frozen PTMs in a compositional

manner. The proposed method to generate and incorporate knowledge with frozen
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PT-LMs to facilitate K-VQA is presented in Chapter 8. Finally, in Chapter 9, we

conclude the thesis and give a few future research directions regarding the two

tasks.
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Chapter 2

Related Work

In this chapter, we will give a more thorough review of related work. Specifically,

we first present the research background of PTMs. Next, we go through related work

about two tasks we focus on in this thesis, namely, HMD and VQA.

2.1 Pre-trained Models

Relying on a small amount of in-domain task-specific data limits model performance,

causing models to easily overfit the training data, especially when the complexity of

the models (measured by the number of parameters, for example) is increased. In the

research field of computer vision, annotated datasets such as ImageNet are of large

scale so that models trained on these datasets (e.g., ResNet [62], Faster R-CNN [146])

usually can work well on a wide range of settings. However, training datasets for

downstream NLP tasks and VLU tasks are relatively smaller so model sizes and

performance are limited. To address this issue, researchers proposed to pre-train

models to facilitate downstream tasks. In the following sections, we will discuss

PTMs briefly and then provide more details on PT-VLMs, because vision-language

models are more closely associated with VLU tasks.
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2.1.1 Pre-trained Language Models

PT-LMs aim to learn a model capable of natural language understanding. As limited

by the annotated data, people adopted unsupervised learning and used a great amount

of web data, such as Wikipedia and online comments for training. For instance,

by randomly masking words in a sentence, models are trained to generate masked

words according to context. Most existing PT-LMs are based on the Transformer

architecture [175]. PT-LMs are usually classified into the following types according

to their model styles:

Encoder-only PT-LMs: These models can access all input tokens and generate

contextual representations for each word according to its context. The representative

PT-LMs in this folder are BERT [36] and RoBERTa [114]. They are pre-trained with

unsupervised tasks such as masked word prediction and next sentence prediction that

force models to learn contextualization. These PT-LMs are good at inducing word

or sentence representations and are usually used as text encoders and fine-tuned for

downstream tasks such as sentiment classification and natural language inference.

Decoder-only PT-LMs: This category of PT-LMs is designed to predict next tokens

based on previous tokens. The most representative models in this category are GPT-

3 [15], OPT [204] and LLaMA [172]. Due to the nature of their pre-training tasks,

such as next word prediction, these PT-LMs are good at generation tasks such as

story generation.

Encoder-decoder PT-LMs: PT-LMs under this type are hybrids of the two kinds

above. They can access all tokens during the encoding phase and the decoding phase,

they predict the next token based on all previous tokens. The representative models

are BART [95] and T5 [144]. These models are good at sequence-to-sequence tasks,

such as machine translation and text summarization.

Besides the standard pre-training data from Wikipedia, books or web-data, recent

studies exploited instruction data for model pre-training [31, 181]. Confronted with

different tasks, different instructions will be provided as inputs to models together

with the task inputs. These PT-LMs using instructions during pre-training show

17



Model Text Vision Objectives

PT-VLMs with In-domain Data
VisualBERT [101] BERT Faster R-CNN MLM, ITM
ViLBERT [117] BERT Faster R-CNN MLM, MRC
LXMERT [168] BERT Faster R-CNN MLM, ITM, MRC, MRFR, VQA
Uniter [210] BERT Faster R-CNN MLM, ITM, WRA, MRFR,

MRC
OSCAR [102] BERT Faster R-CNN MLM, ITM
VL-T5 [29] BART,

T5
Faster R-CNN MLM, ITM, VQA, VG, IC

ViLT [87] ViT Linear Projection MLM, ITM

PT-VLMs Incorporating Web Data
FLAVA [159] ViT ViT MLM, MMM, MIM, ITM, CL
VLMo [13] BERT ViT MLM, ITM, CL
ALBEF [98] BERT ViT MLM, ITM, CL
BLIP [99] BERT ViT ITM, IC

Flamingo Chinchilla NFNets CMLM
BLPT-2 OPT,

FlanT5
ViT ITM, CL, IC

PT-VLMs Incorporating Instruction Data
Mini-GPT-4 Vicuna ViT Ins.T
LLaVA LLaMA ViT IC, Ins.T
mPLUG-OWL LLaMA ViT IC, Ins.T
InstructBLIP FlanT5,

Vicuna
ViT ITM, CL, IC, Ins.T

Table 2.1: A summary of representative PT-VLMs regarding their text encoder,
visual encoder, pre-training objectives and pre-training data corpus. For pre-training
objective, we denote word-region alignment as WRA, visual grounding as VG, Image
Captioning as IC.

good performance when generalizing to unseen data, highlighting the importance of

instruction tuning.

2.1.2 Pre-trained Vison-Language Models

Impressed by the great improvements made by PT-LMs, PT-VLMs were introduced

to deal with VLU tasks. Mostly, they are based on existing PT-LMs and the high-

level idea of pre-training is to bridge the gap between the text encoder and the vision

encoder so that knowledge in PT-LMs can be distilled to multimodality.
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To better exploit pre-training data, besides using supervised learning during

pre-training, some unsupervised tasks are also used for PT-VLMs, similar to PT-LMs.

For instance, masked language modeling (MLM) learns to predict the masked word

according to both its contexts and the multimodal information (i.e., image informa-

tion). Image text matching (ITM) can be used for unsupervised learning on web data.

Masked region classification (MRC) and masked region feature regression (MRFR)

are applied to images so that the model classifies the masked region or generates the

features for the masked region according to both the image contexts and the language

information. To align the image representations with textual representations, multi-

modal contrastive learning (CL) has also been widely adopted as an unsupervised

goal. We divide PT-VLMs into three types according to different data they used in

model pre-training: in-domain data, which is mostly human annotated and clean,

web data, which is of larger scale and relatively noisy, and multimodal instruction

data, which provides different task instructions towards different tasks.

In-domain Data Pre-training

At first, vision-language models are pre-trained on in-domain data, where most

data comes from manually annotated clean datasets such as MS COCO [107] and

Visual Genome [88]. The in-domain are of relatively small scale and annotated

more related to VLU tasks. Some web data, such as Conceptual Captions [155] and

SBU Captions [135], which are of high quality and clean, can also be regarded as

in-domain data. We summarize representative PT-VLMs under this category in the

first block of Table 2.1. Based on the type of vision encoders they use, we divide

PT-VLMs under this category to two types: region-based and end-to-end PT-VLMs.

Region-based PT-VLMs pre-process image features with off-shelf visual encoders

which detect objects first and extract features within each detected region. Then

the extracted region-based image features will be fed into the model together with

input texts. Some of PT-VLMs (e.g., ViLBERT [117], LXMERT [168]) adopt a

two-stream architecture that visual features and textual features will be processed
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individually with some self-attention layers first and then conduct cross-attention.

Some PT-VLMs (e.g., VisualBERT [29, 101], Uniter [210], OSCAR [102]. VL-

T5 [29]), in contrast, adopt a single-stream model architecture that concatenates

textual and visual features, regard concatenation as one sequence and process the

concatenated sequence with a single transformer architecture. There is no general

agreement about which architecture works better for PT-VLMs. However, this line of

work needs pre-processing of images when using these PT-VLMs, which is laborious

and slow. Besides, they are also limited by the vision backbones as the object

detectors may generate duplicated detected regions of an object in an image, making

the visual inputs noisy.

Patch-based PT-VLMs, on the other hand, are motivated by the patch-based image

encoding in Computer Vision [40]. ViLT was the first to consider applying the

new visual encoding in PT-VLMs. Instead of two-stages of detection and feature

extraction, patch-based vision encoding [40] directly applies a pure transformer to

sequences of image patches. It is much faster and more flexible than PT-VLMs

using region-based features. Compared with region-based PT-VLMs, we notice that

when using in-domain data for pre-training, fewer works leverage end-to-end vision

encoding. A plausible reason is that in-domain data is of relatively smaller scale

and the region-based visual representations contain more semantic information. It is

easier to bridge the multimodal gap than when using the patch image features.

Web Data Pre-training

Inspired by CLIP [143], researchers have explored using larger scale but nosier web

data for pre-training. Though CLIP is powerful at several vision-related tasks, it fails

in VLU tasks as the modeling of multimodal interactions, by cosine similarity, is

shallow. To understand more complex multimodal interactions which are essential in

VLU tasks, based on CLIP, modules to catch complicated multimodal information are

added. Besides, more VLU-related pre-training objectives are added. We summarize

these PT-VLMs in the second block of Table 2.1.
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Most PT-VLMs leveraging noisy web data adopt the contrastive learning strategy

at first for bridging the multimodal gap. Specifically, the encoded image features

and the encoded text features will be forced to be in the same semantic space. After

contrastive learning, traditional unsupervised learning objectives, such as MLM

and ITM are also incorporated to learn more expressive multimodal representations.

PT-VLMs using BERT as the text encoder exploit pre-training objectives mentioned

above and are in need of fine-tuning when adapting to downstream tasks. We

denote this type of PT-VLMs as models pre-trained for representation learning.

Some PT-VLMs incorporate large PT-LMs which are powerful at conditional text

generation. These PT-VLMs also adopt cross-modal language modeling as a pre-

training objective. We regard these PT-VLMs are conducting encoder-decoder

pre-training. These PT-VLMs show good zero-shot capabilities in a few VLU tasks.

We provide more details about the two types of PT-VLMs below:

Representation Learning: Though web data is of larger scale, they are much nosier.

ALBEF [98] exploited momentum distillation to smooth the labels for contrastive

learning. BLIP [99] further enlarged the pre-training corpus by captioning and

filtering. It first fine-tuned a pre-trained image caption generator, generated synthetic

captions and filtered noisy generated captions. The remaining generated captions

will be used for further pre-training. FLAVA [159] on the other hand, targeted at a

foundation model also capable of computer vision-related tasks so that it included

MIM which asks for predicting masked image patches according to image contexts

only. VLoM [13] introduced mixture-of-modality-experts to encode inputs from

different modalities, making it more flexible to various downstream tasks.

Encoder-decoder Pre-training: PT-VLMs in this category contain larger PT-LMs

(with more than a billion model parameters). They aim to not only build PT-VLMs

good at multimodal representing, but also image conditional multimodal generation.

To achieve this goal, these PT-VLMs contain an encoder for encoding multimodal

contents. The capability of the encoder is to generate expressive multimodal repre-

sentations. The decoder is to generate texts according to the output from the encoder.
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To distill knowledge and language modeling capability in PT-LMs, their decoders

are based on frozen large language models, such as Chinchilla [65], FlanT5 [31] and

OPT [204]. The high-level idea of the pre-training objectives is to let the PT-LMs

understand the multimodal outputs from the encoder.

To bridge the multimodal gap, Flamingo [2] proposed a gated Xattn-dense layers.

Specifically, cross-attention layers are inserted between layers of frozen PT-LMs

while the keys and values are derived from visual features. The queries are generated

from text inputs. In this way, Flamingo can condition PT-LMs on vision information.

During pre-training, it adopts multimodal conditional language modeling as the

objective. Besides, it also manually constructed some in-context examples as pre-

training data so that Flamingo can be used in both zero-shot and few-shot multimodal

conditional text generation. BLIP-2 [100] added a Query-Transformer to bridge

the multimodal gap. In the first pre-training stage, it adopts traditional pre-training

objectives of PT-VLMs focused on representation learning (e.g., ITM, CL) so that

the Query-Transformer can learn to extract the visual representation that is most

informative of the text. In the second pre-training stage, BLIP-2 learns to conduct

multimodal conditional text generation. BLIP-2 can be directly applied for zero-shot

image captioning and zero-shot VQA.

Instructions Data in Pre-training

Inspired by the instruction tuning (Ins.T) of PT-LMs, researchers have considered

adding multimodal instruction data into the pre-training of VLMs. The goal in the

pre-training stage is to learn a visual representation that PT-LMs can comprehend

and conduct instruction tuning so that PT-VLMs can follow instructions.

To convert images into comprehensible inputs to PT-LMs, usually, these PT-

VLMs use a vision encoder (e.g., ViT [40]) to extract raw representations first and

then leverage an alignment network to map the raw representations to the semantic

space of PT-LMs. In Mini-GPT-4 [212], a simple linear projection layer is used

as the alignment network to map the visual features from a vision encoder. The
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simple alignment network may not be capable of capturing all visual information

so that the mapping may lose information. Meanwhile, they only adopted one kind

of multimodal instruction data (i.e., giving a detailed image description), which

was limited. LLaVA [111] considered a two-stage instruction tuning. Firstly, they

learned the alignment networks. Next, multimodal instruction data was applied to

tune the alignment network together with the language model. Besides, LLaVA

also contributed to a large multimodal instruction dataset, containing more diverse

instructions, such as multimodal conversation and complex multimodal reasoning.

Based on the larger scale multimodal instruction dataset, mPLUG-OWL [195] further

improved the alignment part by tuning the vision encoder together with the added

mapping layers. InstrucBLIP [113] converted existing datasets for VLU tasks into

instruction formats, used a more complicated alignment network, Query-Transformer,

and conducted instruction tuning. It shows great performance on several held-out

VLU datasets.

2.1.3 Applications of Pre-trained Vision-Language Models

Pre-trained with large data corpus, the goal of PTMs is to learn universal representa-

tions or solutions so that can facilitate downstream tasks. In this section, we review

how to apply PTMs to downstream tasks. To narrow down the scope, we focus on

the PT-VLMs in this section as the main topic in the thesis is about VLU. However,

the strategies to applying PTMs are also consistent with the categories described

below:

Tuning: During pre-training, models learn universal representations so that they

can be easily generalized to downstream tasks via direct fine-tuning. For instance,

PT-VLMs are able to generate expressive multimodal features considering both

image and text information. They can be tuned end-to-end with a classifier or a text

decoder for open-ended VQA [168, 117, 29, 210].

In some cases, the capability of PT-VLMs is not enough to perform a downstream

task. Researchers thus design additional architectures and combine PT-VLMs with
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these components. Considering some questions in VQA require external knowledge

beyond images, in [37], the authors leveraged both the PT-VLM, LXMERT [168]

and a knowledge extractor. It used the VLU capability of LXMERT for feature

extraction and conducted multimodal knowledge triplet extraction based on the

features. CLIP [143] has been trained with a great amount of multimodal web

data and demonstrates strong representation capabilities especially towards noisy

data. MOMENTA [140] considered incorporating CLIP for HMD for both meme

image and meme text encoding and designed unique architectures to facilitate meme

detection.

With the PT-VLMs getting larger, people considered more efficient tuning for

PT-VLMs, especially when there are only a few training examples. Instead of tuning

all parameters, they add a few additional tunable parameters to adapt PT-VLMs to

downstream. One line of works updates the prompts fed to PT-VLMs [208, 209].

The goal is to optimize prompts in the continuous space so that the input prompts

can be optimal to leverage the learned contents in PT-VLMs. The other line of

work considers parameter-efficient tuning, where either only tunes a few model

parameters [161] or adds adaptors that contain a few parameters [164].

Frozen: With the scaling of model sizes, PT-VLMs are able to be used in a

frozen manner. Flamingo [2] first increased PT-VLMs to billions of parameters.

It demonstrated strong zero-shot and few-shot performance on several VLU tasks,

such as VQA and image captioning. Recently, with more large scale open-source

PT-LMs, researchers considered distilling knowledge in PT-LMs and incorporating

frozen PT-LMs in VLMs and conducted pre-training. These PT-VLMs, such as

BLIP-2 [100] and InstructBLIP [113] also perform well in zero-shot VLU tasks.

Compositions: Though PT-VLMs are good at some VLU tasks, they are unable

to be directly applied to other VLU tasks. Noted, we review methods by the end

of 2022. At that time, no PT-VLMs could directly perform zero-shot VQA

or zero-shot reference expression. For instance, though CLIP is good at image

text matching (i.e., selecting the piece of text that matches best with the given
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image), it cannot be directly applied to the task of VQA. To leverage its image

text matching capability, TAP-C [161] converted questions into masked template,

generated candidate answers of the masked templates only according to textual

contexts by PT-LMs, filled candidate answers into the masked template to generate

prompts and match the prompts with the image. In this way, the VQA task becomes

the image-text retrieval problem so that can be solved by CLIP. However, CLIP alone

cannot achieve the goal and PT-LMs (e.g., T5 [144]) are used. Some questions in

VQA require external knowledge that cannot be obtained in images. PT-LMs are

pre-trained with large text corpus so that can be used as knowledge bases [138] to

facilitate these knowledge intensive questions. However, PT-LMs cannot understand

visual information in images. Consider the fact, a few works first converted images

into textual descriptions with an off-the-shelf image caption generator so that PT-LMs

could understand and transform VQA into a text-based QA problem and leveraged the

(implicit) knowledge in PT-LMs [193, 58, 70]. For the task of reference expression,

considering the limitation of PT-VLMs regarding compositional reasoning and spatial

reasoning [170], ReCLIP [163] applied CLIP only to extract noun chunks of the

expression and solved the spatial reasoning by manual heuristics. In conclusion, with

compositions of PTMs, we can solve tasks that cannot be directly solved by a single

PTM or we can make up limitations of PTMs by applying proper PTMs to suitable

decomposed tasks.

2.2 Hateful Meme Detection

The proliferation of social media has enabled users to share and spread ideas at a

prodigious rate. While the information exchanges in social media platforms may

improve an individual’s sense of connection with real and virtual communities, these

platforms are increasingly exploited for the propagation of toxic content such as

hate speeches [43, 152]. As stated in Chapter 1, hateful contents are expressing hate

towards an individual or a certain group. The proliferation of hateful content online
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will lead to disharmony in communities and may potentially result in hate crimes.

At first, most efforts and progress were made in the text-based hateful content

detection, automated hate speech detection. We provide a brief summarization of

related works about hate speech detection in Section 2.2.1. However, the other kind of

hateful content, multimodal hateful memes, makes it harder for detection as it involves

the comprehension of two modalities as well as their interactions. Meanwhile, uses

could re-post or share these hateful memes in multiple conversations and contexts.

Therefore, it is urgent but challenging for detecting hateful memes. We provide

existing works to HMD in Section 2.2.2, which is one of the main focus of our

proposal. In the last section of this chapter, Section 2.2.3, we elaborate benchmarks

for HMD.

2.2.1 Automated Hate Speech Detection

To combat online hate speech, various solutions are proposed. Based on how they

solve the problem, we categorize these methods into two types, classic machine

learning strategies and deep learning strategies.

Machine Learning Strategies: Traditional machine learning methods have been

applied to detect hate speech in social media [23, 34, 27, 133, 183, 184]. Typically,

these methods include an initial feature extraction phase, where features are extracted

from the raw textual content. The most commonly extracted features include Term

Frequency Inverse Document Frequency (TF-IDF) scores, Bag-of-Words vectors, and

other linguistic attributes. Xiang et al. [187] also explored the latent semantic features

extracted from tweets for hate speech detection by mining topics of the tweets.

Beyond the textual content, some studies have also utilized other meta-information

from the users’ profiles and network structures (i.e., followers, mentioned, etc.) [23,

137, 160]. The extracted features are subsequently used as input for classifiers such

as Logistic Regression, SVM, Random Forest, etc., to predict if the given tweet

contains hate speeches.

Deep Learning Strategies: Deep learning methods have achieved notable perfor-
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mance in many classification tasks. Unlike traditional machine learning methods,

deep learning methods are able to automatically learn latent representations of the

input data to perform classification. Such deep learning approaches have also been

applied to several NLP tasks, including text classification [52, 192]. The increasing

popularity of deep learning approaches also sees a number of recent studies adopt-

ing these methods to detect hate speech in social media [19, 18, 7, 11, 38, 46, 55].

With the development of PT-LMs, the application of tuned PT-LMs [147, 10] and

the zero-shot or few-shot application of frozen PT-LMs are used for hate speech

detection [3, 28].

2.2.2 Automated Hateful Meme Detection

Though great progress made in automated hate speech detection, HMD is more

challenging. Given a meme image with a short text on it, the system is required to

predict whether it is hateful. The task involves the comprehension of two modalities

and the complex reasoning between modalities. Fewer solutions, compared with

text-based hate speech detection, have been proposed for HMD.

Fine-tuning of Pre-trained Vision-Language Models As a multimodal task, the

most straightforward solution is to fine-tune PT-VLMs on HMD data to distill the

capability of VLU in PT-VLMs [213, 211, 108, 128, 176]. To further enhance the

capability of PT-VLMs, some works considered model ensemble, which fine-tuned

multiple PT-VLMs with the HMD data and conducted majority voting during the

inference time. It shows good performances compared with using a single PT-

VLM [176, 128, 108]. Consider the nature of the HMD task, during fine-tuning,

some works also included additional image tags (e.g., object labels, image entities

and races of people) to facilitate the PT-VLMs [213, 108, 211].

Incorporation of PTMs Direct application of PT-VLMs regards HMD as a down-

stream VLU task but ignores its unique characteristics. Considering this aspect,

some works design additional structures and incorporate them with PT-VLMs. For

instance, unlike other VLU tasks, the image and the meme text are sometimes not
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Datasets Train Val. Test
FHM 3,050 hateful, 5,450

non-hateful
250 hateful, 250
non-hateful

500 hateful, 500
non-hateful

MAMI 5,000 hateful, 5,000
non-hateful

— 500 hateful, 500
non-hateful

MultiOFF 187 offensive, 258
non-offensive

59 offensive, 90
non-offensive

59 offensive, 90
non-offensive

HarM 1,064 harmful,
1,949 harmless

61 harmful, 116
harmless

124 harmful, 230
harmless

Table 2.2: Statistical summary of datasets for HMD.

correlated. HMD often calls for external background knowledge beyond the image.

Besides, memes are noisy. Based on these considerations, MOMENTA [140] lever-

aged CLIP [143] to deal with the noise in data. However, CLIP only has shallow

multimodal interactions. MOMENTA further added several intra-modality attention

components to perform multi-level multimodal interactions. Hate-CLIPper [89]

continued using CLIP for text and image representations but considered more com-

plicated and expressive multimodal fusion.

Besides the works mentioned above focusing on correcting classifying hateful

memes and non-hateful memes, there are also a few works concentrating on explain-

ing hateful memes. In [124], the authors considered pointing out the vulnerable

targets of hateful memes and provided fine-grained annotated data where each hateful

meme was annotated with its hateful target. Similarly, in [140], harmful memes

are annotated with their targets and the authors proposed a neural network for both

detecting harmful memes and their targets. HatReD [64] provided the underlying

hateful contextual reasons, which further facilitated the understanding of hateful

memes. The authors in [63] used a post-hoc gradient-based explanation method

to analyze how PT-VLMs conduct HMD, further pointing out the importance of

explainability of models and the importance of eliminating bias in PT-VLMs.

2.2.3 Benchmarks

The task of HMD is a relatively new research area and has been formally formu-

lated in [85]. Besides, annotating hateful memes is complicated and may require
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linguistic knowledge. As a consequence, there are few datasets for HMD. In this

section, we briefly introduce widely used benchmarks for HMD and discuss about

relevant datasets used to validate models’ generalization to anti-social (e.g., harmful

or offensive) multimodal meme detection. We use these datasets to validate our

proposed models for HMD. We provide statistics of datasets in Table 2.2.

Hateful Memes Only Though several datasets have been proposed for text-based

hate speech detection [183, 184, 34], the first formal HMD dataset was proposed

in [85]. The Facebook Hateful Meme (HFM) dataset is a synthetic dataset that

contains synthetic memes with added confounders such that unimodal information

is insufficient for detection and deep multimodal reasoning is required. The FHM

dataset contains hateful memes targeting various vulnerable groups in categories

including Religion, Race, Gender, Nationality, and Disability. Besides FHM which

contains hateful memes targeting at diverse vulnerable groups, the other hateful

meme dataset, Multimedia Automatic Misogyny Identification (MAMI) dataset

focuses on a particular type of hateful memes, namely, those targeting women.

Performance on MAMI therefore reflects the capability of HMD methods for female

victims. Different from FHM, MAMI contains real memes from online social media

platforms and websites, making the data noisier.

Datasets for Generalization Due to the difficulty of hateful meme annotations,

there are few datasets for HMD. When considering a broader scope, there are also

relevant datasets for anti-social meme detection. We consider the datasets for either

offensive or harmful memes to be relevant datasets as hateful memes are always

offensive and harmful. These datasets can be used to evaluate models’ generalization

to more diverse anti-social memes. Multimodal Offensive Meme dataset (MultiOFF)

considered both hateful memes and other related anti-social memes about trolling or

cyberbullying, which are annotated as offensive. Memes on MultiOFF are related to

the 2016 U.S. Presidential Election and are collected from online social platforms

such as Reddit, Facebook, Twitter and Instagram. The goal of the dataset is to validate

whether models can distinguish offensive memes from non-offensive ones. To force
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models focusing on both modalities, models can only give correct predictions after

understanding both modalities and the underlying meaning of the whole meme. The

other relevant dataset is Harmful Meme Detection dataset (HarM), which contains

real-world memes about COVID-19. It annotates memes into harmful, partially

harmful and harmless. To unify it with other datasets which are binary classification

datasets, we merge harmful and partially harmful into one label, harmful.

2.3 Visual Question Answering

The capability of AI systems to answer questions in different scenarios has received

a lot of attention in recent years. Acquiring such capability, AI systems can be

applicable to various situations. For instance, systems able to answer text-based

questions can facilitate child education and search engines. When extending the

question answering (QA) capability to the multimodal situation, the AI systems

can further assist visually impaired persons and be applicable to online multimodal

product recommendations. In the past few years, the research field of QA has

attracted a lot of attention and witnessed great progress. In the following sections,

we will first give a review of research about question answering. Specifically, we

first briefly introduce text-based QA and shift to multimodal QA, image-based VQA

and video-based VQA. In the second section, we dive into recent proposed solutions

to the image-based VQA, which is the main focus of the proposal. If not stated

otherwise, we use VQA for image-based VQA in the section and the last section.

Finally, we discuss widely used benchmarks for model evaluation of the VQA task.

2.3.1 Question Answering and Extension to Multimodality

Question answering has been an important topic in the research field as it has many

application scenarios. Initially, people focused on unimodal QA, text-based QA.

Text-based Question Answering The goal of text-based QA is that QA systems

automatically provide a natural language answer to a question asked by human beings
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in natural language. To answer the question, the QA process can be divided into three

steps: 1) question comprehension, 2) retrieving and extracting relevant information

to the question and 3) answer generation [61, 94]. According to where the QA

systems’ relevant information comes from, text-based QA can be further divided

into three types: Machine Reading Comprehension (MRC), Knowledge-based QA

(KBQA) and Open-domain QA (OpenQA). MRC provides pieces of passages and

the relevant information has been included in these passages so that there is no step

for information retrieval. The systems are expected to extract a span as the answer

from the provided contexts. Instead, both KBQA and OpenQA call for information

retrieval first to retrieve relevant information to aid in answering questions. For

KBQA, the information comes from structured knowledge bases while OpenQA

needs to retrieve relevant unstructured texts from local files or from the web.

Extension to Multimodality: Images and Videos As mentioned previously, we live

in a multimodal world so real-world applications call for the capability of VLU. QA is

an important capability that people expect AI systems should have. Naturally, people

would like to see QA systems in multimodal settings. In the research aspect, the

text-based QA extends to multimodality, such as image-based QA (ImageQA) [6, 54]

and video-based QA (VideoQA) [104, 93]. For the task of ImageQA, the source

of information comes from both the text modality (i.e., question) and the visual

modality (i.e., image). Given an image and the corresponding question, the systems

are expected to provide an answer to the question. Similar to text-based QA, some

ImageQA questions are difficult so that models need to retrieve external knowledge

either from structured knowledge bases [179] or unstructured text corpus [122, 154]

Compared with ImageQA, VideoQA is more difficult to solve. Its visual modality

extends from one image to a long sequence of images and its questions can be

designed to examine the content in one frame or multiple frames. It requires not

only the visual comprehension within each image but also the temporal relationship

among multiple frames that have certain connections. We provide examples of the

two VQA tasks in Figure 2.1.
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(a) Open-ended (b) Multiple Choice

(c) VideoQA

Figure 2.1: Examples from ImageQA and VideoQA. The two examples in the first
row are from ImageQA where (a) is for open-ended QA while (b) for multiple choice
QA. The second row is an example from VideoQA.

2.3.2 Deep Learning Solutions to VQA

In this section, we provide a more detailed review of the ImageQA task. If not stated

otherwise, we use VQA to represent the ImageQA task. We review related works

of VQA regarding how they obtain the VQA models. Specifically, at the beginning,

researchers designed model architectures and trained them from scratch with VQA

data. With the development of PT-VLMs, fine-tuning or incorporating PT-VLMs

becomes a trend for VQA. With the scaling of model sizes, PT-VLMs demonstrate

zero-shot capabilities so that a few studies focus on zero-shot VQA. Besides direct

application of PT-VLMs, another line of work also tries compositions of PTMs for

VQA.

Train from Scratch Traditionally, people follow a two-stream framework to deal

with information from two modalities. Generally, the models contain 1) a text

encoder, 2) an image encoder, 3) a fusion component and 4) an answer decoder.
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The text encoder and the image encoder extract textual representations from the

question and visual representations from the image independently first and conduct

multimodal fusion to generate a fused representation considering the multimodal

interactions. The fused multimodal representation will be used for answer prediction.

The previous VQA models were mostly trained from scratch with VQA data with

the image encoder frozen.

For the image encoding, most works exploited an off-the-shelf pre-trained feature

extractor (e.g., GoogleNet [167], VGGNet [158] and ResNet [62]) to convert an

image into either a vector or grid-based features [121, 6, 48, 188, 45, 14]. However,

these features may not capture the semantic meanings of an image as one vector

representation may lose detailed information and grid-based features separate objects

into different regions ignoring the object-level semantics. With the development

of object detection models, people started using object detection models, such as

Faster R-CNN [146] for generating object-level representation to increase visual

semantics [4, 72, 86]. The image representations are pre-processed and the visual

encoders are frozen. For textual representation, people exploited LSTM [166] as

the question is a sequence of words [6, 45, 188, 121]. Also, motivated by the good

performance of convolution neural networks (CNN) in computer vision community,

researchers also considered applying CNN for text feature extraction in VQA [191,

119]. With the development of PT-LMs, such as BERT [36], people also use PT-LMs

as the text encoder [123, 51]. Usually, the text encoder will be tuned end-to-end with

the whole VQA model.

Besides the encoders, a very important component in VQA models is the mul-

timodal fusion component, which models the multimodal interactions. In the past

years, various solutions have been proposed in VQA focusing on generating more

expressive multimodal fused features. At first, people considered shallow multi-

modal interactions that conducted direct concatenation, element-wise addition or

element-wise multiplication between textual and visual representations [6]. To

guide modelsto focus on more relevant areas in images according to the question,
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an attention mechanism was applied. Initially, people used one-hop attention and

attention in the visual channel (i.e., text-to-image attention) [4]. Later, people ex-

plored multi-hop attention [191] and co-attention in both channels [132, 129]. some

works explored the bilinear fusion mechanism which allows every position of rep-

resentations from two modalities to interact and tried different strategies to apply

it to VQA [86, 45, 14]. Recently, inspired by the power of self-attention and cross-

attention in transformers [175], a few have tried to use the attention mechanism in

transformers for multimodal interactions [72, 49]. For more details about multimodal

fusion techniques, please refer to the survey for more details [202].

For answer decoding, different VQA tasks will have different types of decoders.

For multiple choice type of VQA, the task will be regarded as a classification task

so that the multimodal inputs (the text representation will be extracted from both

the question and candidate answers) will be fed to a classifier for prediction. For

open-ended VQA, some of them regard it as a classification task so that a classifier

will be applied over the multimodal representation [6, 14, 45]. Meanwhile, a few

works regard open-ended VQA as a generation task so that a text decoder will be

applied over the multimodal features [121, 48]

Fine-tuning Pre-trained Vision-Language Models The training data of each

VLU task is limited so that models are easily overfitting to training data. To solve

the issue, people adopted the pre-training strategies in PT-LMs and proposed several

PT-VLMs.

The pre-training strategies varied in three stages. Firstly, most PT-VLMs adopt

clean data for pre-training. Some of the data are manually annotated and some are

constructed with self-supervision [168, 117, 101, 102]. Motivated by CLIP [143]

which used a great amount of web data and trained models with contrastive objectives,

several PT-VLMs also adopted a similar pipeline [98, 99]. The works mentioned

above have focused on representation learning (i.e., learning good multimodal rep-

resentations) and need fine-tuning when applying to downstream VLU tasks. With

the larger and larger PT-LMs, researchers have tried to distill their knowledge into
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Dataset # Ques. # Img.

VQA-v1.0 [6] 614,163 204,721
VQA-v2.0 [54] 1,228,326 204,721

GQA [73] 22,000,000 113,000
Visual7W [214] 327,939 47,300

FVQA [179] 5,826 2,190
KB-VQA [178] 2,402 700
OKVQA [122] 14,055 14,031

A-OKVQA [154] 24,903 23,692
VCR [199] 290,000 99,904

Table 2.3: Statistical distributions of the VQA datasets. The first block contains
general VQA datasets and the second block contains knowledge-intensive VQA
datasets.

multimodal settings. Their main pre-training goal is to bridge the multimodal gap

so that the visual inputs can be understood by PT-LMs and the PT-LMs are usually

frozen so that the pre-training is parameter-efficient. These models can be directly

applied to downstream VLU tasks and also have superior performance when fine-

tuned for VLU tasks. Considering that PT-VLMs are getting larger, instead of tuning

all parameters, some works are conducting parameter-efficient tuning like prompt

tuning [208, 209], inserting adapters [164] or updating partial parameters [161].

Zero-shot VQA When PT-VLMs are not large enough so that they cannot do zero-

shot VQA directly, people designed networks with compositional PTMs to perform

zero-shot VQA. Most of them convert images into textual descriptions, converted

VQA into text-based QA and leveraged PT-LMs for answer generation [161, 58,

70, 171]. PICa [161] convert the images into textual descriptions with an off-the-

shelf image caption generator [127] and optionally added image tags. However,

the image captions may not always capture essential cues for answering questions.

PNP-VQA [171] uses gradient-based explanation tool to highlight regions related to

the question according to an image-text-matching model [99]. PromptCap [70], on

the other hand, fine-tune PT-VLMs to generate question-relevant image descriptions.

Img2LLM [70] considered automatically generating demonstrations when prompting

PT-LMs.
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2.3.3 Benchmarks

In this section, we discuss benchmarks for VQA. According to the information

source, we divide VQA into two types: 1) general VQA where all information

can be obtained within the image and 2) knowledge-intensive VQA where external

knowledge beyond the image is needed. We summarize statistics of datasets in

Table 2.3.

General VQA According to answer types, we further divide general VQA into

two types: 1) open-ended VQA (as shown in Figure 2.1 (a)) and 2) multiple choice

(MCR) VQA (as shown in Figure 2.1 (b)).

For open-ended VQA, the answers are open-ended words or phrases. At first, the

task was formulated as a generation problem in the DAQUAR [120] and COCO-QA

dataset [145]. Later, most works re-formulated VQA into a classification task. Given

a pre-defined vocabulary, the models are expected to select an answer from the

vocabulary [54, 6, 73, 79]. These datasets are designed to test different capabilities

of VQA models. For instance, the VQA-v1.0 [6] and VQA-v2.0 [54] datasets include

questions of diverse semantics as the questions are manually annotated. The questions

are of short reasoning chains (most of them require a single step reasoning) and aim

to test general VQA capabilities such as object localization, attribute recognition and

relational reasoning. The CLEVR dataset [79], on the other hand, is synthetically

generated. It aims to test the capability of compositional reasoning in VQA models

so that most questions involve more than one step reasoning. The images contain

simple objects with few attributes, which eliminates the difficulty in vision perception

and are usually used as an analysis dataset for evaluating the compositional reasoning

capability of VQA models. Besides, it is annotated with explicit reasoning chains

to reach the final answer. Similarly, the GQA dataset [73] also contains synthetic

questions in need of multi-step reasoning. However, the GQA dataset contains

real-world images so that the good performance on GQA reflects how good the

model’s compositional reasoning capability is towards real-world scenes. Besides
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these datasets, there are also datasets that are splitted from datasets mentioned above

but with specific goals. For instance, VQA-CP [1] origins from [54] while the images

and questions are specially selected so that models relying on linguistic bias will

fail. GQA-OOD [82] is proposed to test model performance on long-tail answers

so highlighting the importance of mitigating models’ bias towards frequent answers

over rare answers. One of the widely used VQA datasets is Visual7W [214], whereas

currently most datasets are about open-ended VQA.

Knowledge-intensive VQA In some cases, answering VQA questions requires

external knowledge beyond images. These questions are called knowledge-intensive

VQA questions. There are also datasets proposed for knowledge-intensive VQA [178,

179, 122, 154, 199]. At first, the knowledge-intensive questions are constructed based

on external knowledge bases [178, 179], such as DBpedia [8] and ConceptNet [110].

In other words, knowledge bases can provide all needed external information for

these questions. Recently, people proposed open-domain knowledge-intensive VQA

datasets [122, 154, 199] so that a few knowledge bases cannot cover all needed

knowledge for questions. Questions are designed to examine a wide range of world

knowledge, such as visual knowledge, commonsense knowledge about human social

behavior and physical knowledge, which are closer to real-world knowledge-intensive

VQA situations.
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Chapter 3

Task-specific Components over a

PTM to Disentangle Target Entities in

Memes

A system for HMD is expected to distinguish between hateful and non-hateful

memes. As stated in Section 2.2.3, HMD extends hateful content detection from the

text-only modality (i.e., hate speech) to multimodality (vision-language) and is more

challenging. It requires both the comprehension of vision and language modality and

the complex reasoning between two modalities.

With the development of PT-VLMs, fine-tuning PT-VLMs for HMD has been a

straightforward method to bridge the multimodal gap. Therefore, direct fine-tuning of

PT-VLMs has been adopted in most existing works [213, 211, 108, 128, 176]. They

treat HMD as a general downstream task in VLU and ignore the unique characteristics

of HMD. Nevertheless, these existing methods have limited explainability and cannot

reason the context embedded in the hateful memes.

Following the definition of hate speech in [34], hateful memes should be defined

as memes that are used to express hatred towards a targeted group or are intended to

be derogatory, to humiliate, or to insult the members of the group. In the extreme case,

a meme may be offensive (e.g., containing slurs) but not hateful as it is not targeting
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Figure 3.1: Example of hateful meme.

at any individuals or groups. Therefore, understanding the targets of memes is crucial

for HMD. For the example in Figure 3.1, the target entity of the hateful content would

be both gender and religion (i.e., female Muslim). Existing multimodal hateful meme

classification models are unable to capture such target entity contextual information.

Instead of direct fine-tuning PTMs, we tried to incorporate them into our designed

model which was aware of the specific characteristics of HMD and leveraged the

capability of PTMs.

This chapter aims to address the research gaps by proposing a novel framework,

DisMultiHate, which learns and disentangles the representations of hate speech-

related target entities, such as race and gender, in memes to improve the hateful

content classification. Our framework includes a novel self-supervising training task

that enables us to extract the target entities using disentangled latent representations.

The disentangled representations serve as contextual information to improve hateful

meme classification.

DisMultiHate aligns with the Tuning-Single strategy of utilizing PTMs in Sec-

tion 1.3. The model incorporates a PTM, MPTM and a task-specific component,

Mtsp, learning to disentangle target entities in memes, as well as architectures fθ,

bridging the two parts. The parameters in Mtsp and fθ are learnt end-to-end with

the tuning of MPTM. Our contributions lie in identifying the unique characteristic of

HMD (mining the target entities of memes), designing the task-specific component
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Figure 3.2: Architecture of our DisMultiHate model.

to cater for the characteristic and improving the application of PTMs to HMD.

In the rest of the chapter, we first introduce the high-level idea of the proposed

model, DisMultiHate and dive into model details in Section 3.1. We conduct

experiments to validate the effectiveness of DisMultiHate on two benchmarks (at

the time of submission) and provide experiment results in Section 3.2. Finally, we

present the conclusion of the chapter in Section 3.3.

3.1 DisMultiHate Model

Figure 3.2 illustrates the architectural framework of our proposed DisMultiHate

model. Broadly, DisMultiHate consists of three main modules: (a) data pre-

processing, (b) text representation learning, and (c) visual representation learn-

ing. We first provide a formal task definition for HMD. The details of the data

pre-processing module are discussed in Section 3.1.2. As mentioned above, un-

derstanding the target entities of memes is essential for HMD so that the goal of

representation learning is to learn both visual and textual representations aware of the

meme target. In other words, we can disentangle targets from both representations.

Therefore, the goal of the text representation learning module is to learn a disentan-

gled latent representation of the combined textual information output from the data

pre-processing module. To better capture the semantics in texts, we used a pre-trained

BERT [36] and tuned it end-to-end with other model components so that it can gener-

ate target-aware visual representations. The details of the text representation learning

module will be discussed in Section 3.1.3. The visual representation learning module
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aims to learn a disentangled latent representation based on the meme’s image. The

details of the visual representation learning module will be discussed in Section 3.1.4.

A core element in the two learning modules is the process of disentangling the target

information from the text and visual representations. Specifically, the latent text and

visual representations are projected into a disentangled latent space D, where each

latent unit of the disentangled representation represents a probability for a certain

category of hate (i.e., religion, gender and race, etc.). However, there is no direct

supervision about the meme target (at the time of submission).

For a multimodal meme, disentangled targets from the textual modality and the

visual modality should be consistent with each other. Therefore, we introduce a self-

supervised matching loss, which constrains the disentangled visual representation to

be similar to the disentangled text representation. Finally, the learned text and visual

representations will be fed into a regression layer (the binary classification task can

also be a regression task to predict hateful scores) to predict the likelihood of the

meme being hateful. The classification process will be discussed in Section 3.1.5.

3.1.1 Problem Definition

We define the problem of hateful memes multimodal classification as follows: Given

an image I and a piece of text O consisting of a sequence of words, a classification

model will predict the label of the multimodal meme (hateful or non-hateful). This

binary classification task can also be regarded as a regression task, where a model

predicts a confidence score y ∈ R ranging from zero to one, indicating the likelihood

of the meme being hateful. Specifically, the meme would be regarded as hateful if

the predicted score is above a threshold λ; otherwise, the meme is predicted to be

non-hateful.

3.1.2 Data Pre-processing

To improve our proposed method’s reproducibility, we also provide an overview

of the data pre-processing steps applied on the meme datasets. Specifically, the
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following steps were taken to pre-process the memes in the datasets:

• Image resizing: The datasets provided memes in all sizes. We resized the

images proportionally to a minimum of 140 pixels and a maximum of 850

pixels. This ensures consistency of the visual input into our proposed model

and baselines.

• Text extraction and removal: We extract and remove the text in the memes

using open-source Python packages EasyOCR1 and MMEditing2. The texts are

removed from the memes to facilitate better entity and demographic detection.

• Entity detection: To augment the memes with relevant external information,

we leverage Google Vision Web Entity Detection API3 to detect and caption

the entities in the cleaned image. The detected entities provide contextual

information on the memes.

• Demographic detection: Often, hate speeches are targeted at groups based

on demographic information such as race and gender, and such information

serves as important contextual information in hateful meme classification. To

augment the memes with demographic information, we utilized the FairFace

classifier [81] to detect and classify the faces in the images, then mapped the

label back to the person’s bounding box with the largest overlapped area with

the face. Note that the demographic information is only extracted when the

meme contains human entities.

The pre-processed datasets serve as input for the training of our proposed model

discussed in the next section.

3.1.3 Text Representation Learning

This module is designed to learn a disentangled latent representation of the textual

information extracted from a meme. The input of the module is the concatenation
1https://github.com/JaidedAI/EasyOCR
2https://github.com/open-mmlab/mmediting
3https://cloud.google.com/vision/docs/detecting-web
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of the text information output of the data pre-processing step. Specifically, we

concatenated the text extracted from the meme, detected entities, and demographic

information. Formally, we denote the concatenated text information as O = {oj}Mj=1,

where oj ∈ R|V| is the one-hot vector representation for the j-th word in the text’s

word sequence, M is the length of the text, and V is the vocabulary.

Text Encoder. The concatenated text information O is first fed into a text en-

coder to generate latent text representations. Since the input text involves words from

various domains such as religion, politics, or military, a powerful text encoder is

required to capture the semantics in textual information. Bidirectional Encoder Rep-

resentations from Transformers (BERT) [36], which has demonstrated its superiority

in various NLP tasks, is an ideal text encoder for our task. We initialize the BERT

with pre-trained weights and fine-tune it so that it generates textual representations

aware of target entities. Using the BERT text encoder, we generate the textual

representations as follows:

[s,C] = BERT([w[CLS],O]), (3.1)

where w[CLS] ∈ R|V| denotes the one-hot representations for the “[CLS]” token, [·, ·]

is the concatenation operation and C = {cj}Mj=1 is the set of textual representations,

and cj ∈ Ru is the representation for the j-th word in the input text O. Similar to

[36], we utilize the representation of the “[CLS]” token as the sentence representation

s ∈ Ru.

Text-target disentanglement. The latent text representation generated using

the BERT encoder captures rich information on the meme’s semantics. However,

for our hateful meme classification task, we are interested in contextual information

present in the latent text representation, specifically the targets of the hateful content.

For example, in Figure 3.2, we aim to identify “gender” as the target entity of the

hateful message. Therefore, we need to design a mechanism to disentangle the target

information in the latent text representation s.

We first transform the the sentence representation s into a latent space using a
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linear projection layer:

sp = Wss+ bs, (3.2)

where Ws ∈ R|D|×u and bs ∈ R|D| are parameters to be learnt.

The goal of latent space disentanglement is to minimize the overlap of information

among latent units in the vector. There are many methods that perform latent space

disentanglement using regularization terms to minimize the mutual information

between latent units [24, 16, 149]. For our task, we aim to disentangle the projected

text representation such that each unit in the latent vector represents a type of hateful

meme targets. Noted that we assume that each meme is likely to concentrate on

a certain category of hate (i.e., religion, gender, race, etc.) in most cases. To

achieve this objective, we adopt a similar approach to [118], where we maximize

the likelihood of the target present in the latent text representation while minimizing

the likelihood for the absent targets. Such a discontinuous argmax operation can be

fulfilled by applying Straight-Through Gumbel-Softmax (STGS) function [76] over sp.

Specifically, a continuous vector z ∈ R|D| is first sampled from the Gumbel-Softmax

distribution based on sp:

uk ∼ Uniform(0, 1), (3.3)

gk = −log(−log(uk)), (3.4)

zk =
exp(log(skp) + gk)/τ∑||D||

k=1 exp(log(sp)k + gk)/τ
, (3.5)

where skp is the k-th element in sp. In the forward pass, the STGS function then

transforms the continuous vector sampled from the Gumbel-Softmax distribution

into a one-hot vector [76]:

lks =

 1 k = argmin
m

zm

0 else
(3.6)

Finally, the exploitation of STGS to generate the disentangled text representation
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can be simplified as:

ls = Gumbel-Softmax(sp), (3.7)

where ls = {skp}
|D|
k=1 as generated by Equation 3.3. For example, in Figure 3.2,

the disentangled text representation would be a one-hot latent vector where 1 is

assigned to the latent unit that represents ‘woman’ (i.e., target). The disentangled

text representation ls will be used in the self-supervised matching with the visual

disentangled latent representation in section 3.1.4.

Via learning a disentangled text representation in the projected latent space, we

update the text representation s through the back-propagation process, thus fine-

tuning s to be more representative of the target information. We then use the updated

s for hateful meme classification, as discussed in Section 3.1.5.

3.1.4 Visual Representation Learning

After learning the text representation, we focus on learning the disentangled latent

representation in the visual modality. The input of this module is the image features

pre-processed using Faster R-CNN [146]. Formally, we define the set of image

features as V = {vi}Ni=1, where vi ∈ Rd is the feature for the i-th detected region

using Faster R-CNN [146] and N is the number of detected region.

Attention-Based Image Encoder To enable better interaction between visual

and textual modality, we adopted the multi-head attention proposed in [175] to learn

an attended latent visual representation of the meme. Specifically, we leverage the

textual representations C generated by BERT text encoder as guidance to attend the

feature map V and generate the attended visual representation using the attention-

based image encoder. The attended visual representation is computed as follow:
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Ft = softmax(
Wq,tC(Wk,tV)T

√
q

)Wv,tV (3.8)

F̃ = Concate({Ft}qt=1) (3.9)

G = Wf,1(Relu(Wf,2F̃) + bf,2) + bf,1 (3.10)

Ṽ = F̃+G (3.11)

vatt =
M∑

m=1

ṽm, (3.12)

where q denotes the number of times the dot-attention is computed in the multi-head

attention. Specifically, the t-th attended image feature Ft ∈ R
u
q
×M is generated

as shown in Equation 3.8, where Wc,t ∈ R
u
q
×u, Wk,t ∈ R

u
q
×d and Wv,t ∈ R

u
q
×d

are parameters involved in the t − th computation. The attended image features

in different aspects are concatenated in row and generate F̃ ∈ Ru×M . Similar to

[175], a residual connection is applied to the attended image features as illustrated

in Equation 3.10 and 3.11. Finally, weighted average pool over the attended image

features Ṽ results in the attended latent visual representation vatt.

Visual-Target Disentanglement Although the attended visual representation is

generated with an attention mechanism, there is no explicit guidance or supervision

signal that forces the model to focus on the image regions that are more relevant to

the contextual information (i.e., target entities of hateful memes). For instance, in

Figure 3.2, the visual representation should ideally focus on the image region with

the three women and to be aware that the focused region infers the “gender” as the

target of the hateful meme. To make the visual representation more “target-aware”,

we design a latent space matching mechanism, which aims to disentangle the target

information from the visual representation and constraint the disentangled visual

representation to be consistent with the disentangled latent text representation.

Similar to the text-target disentanglement, we first project the visual representa-

tion vatt into the latent space with a linear projection layer:

vp = Wavatt + ba, (3.13)
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where Wa ∈ R|D|×u and ba ∈ R|D| are parameters to be learnt.

To disentangle the target information in the visual representation, we introduce a

matching loss that constraints vp to be similar to the disentangled text representation

ls:

LMatch =

|D|∑
k=1

lks log(v
k
p ) + (1− lks )log(1− vkp ), (3.14)

where vkp is the k-th unit in the visual latent representation vp. The matching loss

serves as a supervision signal to disentangle the target information in the latent visual

representation. The underlying intuition is that the disentangled text representation

ls is trained to disentangle the target in the textual information, and constraining the

disentangled visual representation to be similar to the disentangled text representation

would enable the target latent unit to be maximized in disentangled visual represen-

tation. For example, in Figure 3.2, the matching loss will take guidance from the

disentangled text representation and enforce the disentangled visual representation

to maximize the latent unit representing “gender”.

Similarly to the text representation learning, the visual representation vatt would

be updated through the back-propagation process, fine-tuning vatt to be more repre-

sentative of the target information. The updated vatt would be used for the hateful

meme classification discussed in Section 3.1.5.

3.1.5 Classification

To perform hateful meme classification, we leverage a regression layer to generate

a hateful score. Specifically, if the hateful score is above a threshold, it will be

regarded as hateful, otherwise non-hate. By learning the disentangled textual and

visual representation and minimizing the matching loss between them in the latent

space, the sentence representation s and the attended image feature vatt are both fine-

tuned to be more representative of the target information. Finally, we concatenate s

and vatt, and feed the concatenated representation to a regression layer for the score
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prediction:

y = σ(wT
r [s,vatt] + br), (3.15)

where wr ∈ R2u and br ∈ R are parameters to be learnt. Following [85], we set the

threshold λ as 0.5: if the score y is above the threshold, it will be predicted as a

hateful meme, otherwise, non-hate.

Loss Function. We optimize the following loss when training our model using

mini-batch gradient descent:

Lθ = Lθ,Predict + µLθ,Match, (3.16)

where θ denotes parameters of the model, Lθ,Match is the matching loss in the dis-

entangled latent space, computed from the sum of matching loss over all training

samples (see Equation 3.14); and Lθ,Predict is the loss from prediction and µ is the

hyper-parameter balancing the relative importance of both loss types. The prediction

loss is defined as:

Lθ,Predict =

|T |∑
s=1

ŷslog(ys) + (1− ŷs)log(1− ys), (3.17)

where T is the training set and ŷs is the ground-truth label and ys is the predicted

score of the s-th training sample.

3.2 Experiment Results

In this section, we will first describe the settings of experiments conducted to evaluate

our DisMultiHate model. Next, we discuss the experiment results and evaluate how

DisMultiHate fares against other state-of-the-art baselines. We also conduct case

studies to qualitatively analyze DisMultiHate’s ability to identify the targets of

hateful memes. Finally, we perform error analysis and discuss the limitations of the
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Dataset train validation test

FHM hateful (3050),
non-hateful
(5450)

hateful (250),
non-hateful
(250)

hateful (500),
non-hateful
(500)

MultiOFF offensive
(187), non-
offensive (258)

offensive (58),
non-offensive
(91)

offensive (58),
non-offensive
(91)

Table 3.1: Distributions of FHM and MultiOFF datasets

DisMultiHate model.

3.2.1 Evaluation Setting

Dataset. We train and evaluate our proposed model on two popular and publicly-

available hateful datasets: Facebook hateful memes (FHM and MultiOff. Table 3.1

shows the distributions of the datasets.

Evaluation Metrics. We adopt the evaluation metrics proposed in the hateful

meme dataset papers [85, 165]. Specifically, for the evaluation on FHM dataset [85],

we use Area Under the Receiver Operating Characteristic curve (AUROC) and ac-

curacy score as the evaluation metrics. Suryawanshi et al. [165] had only reported

the F1, precision, and recall on the hateful class when they proposed the MultiOFF

dataset [165]. However, we noted that due to class imbalance in hate speech clas-

sification, most existing studies [44, 153] have preferred to use weight metrics to

evaluate the classification task. Thus, we adopt weighted F1, weighted precision,

and weighted recall as the evaluation metrics for the MultiOFF dataset.

Baselines. We benchmark DisMultiHate against the state-of-the-art multimodal

methods that were evaluated on the FHM and MultiOFF datasets. We have also

included an unimodal baseline for comparison. Specifically, we applied the pre-

trained BERT [36] to extract text features from the meme’s text and feed the extracted

text features to a fully connected layer for classification.
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Model Acc. AUROC
BERT (unimodal) 58.3 64.7

ViLBERT 62.2 71.1
VisualBERT 62.1 70.6

ViLBERT-CC 61.4 70.1
VisualBERT-COCO 65.1 74.0

ERNIE-VIL 69.0 78.7
UNITER 68.6 78.0
VILLNA 71.2 78.5
VL-BERT 71.4 78.8

DisMultiHate (w/o disentangle) 73.6 81.4
DisMultiHate 75.8 82.8

Table 3.2: Experimental results on FHM dataset.

3.2.2 Experimental Results

For FHM dataset, we compare with the four best performing multimodal models

reported in the original dataset paper [85], namely: ViLBERT [117], ViLBERT-

CC (i.e., ViLBERT pre-trained on Conceptual Captions [155]), VisualBERT [101],

and VisualBERT-COCO (i.e., VisualBERT pre-trained on COCO [26]). There

are many interesting solutions proposed by the Facebook hateful memes classifi-

cation challenge participants [213, 211, 108, 205, 128, 207]. For our evaluation,

we benchmark against the methods explored by the top-performing participant4.

Specifically, we benchmark against the methods proposed in Zhu’s exploration [213]:

ERNIE-Vil [197], UNITER [210], VILLNA [47], and VL-BERT [162]. We have

reproduced the model using the code5 released in [213]. We also adopt the same data

augmentation method proposed in [213] to enhance the models. Specifically, all the

reproduced models are augmented with entity tags retrieved using Google Vision

Web Entity Detection, and VL-BERT is also further enhanced with demographic

information extracted using FairFace [81].

For MultiOFF dataset, we compare with the multimodal methods reported in

the dataset paper [165], namely: StackedLSTM+VGG16, BiLSTM+VGG16, and

CNNText+VGG16. For these multimodal baselines, the researchers first extract the
4https://ai.facebook.com/blog/hateful-memes-challenge-winners/
5https://github.com/HimariO/HatefulMemesChallenge
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Model F1 Precision Recall
BERT (unimodal) 56.4 56.1 57.7

StackedLSTM+VGG16 46.3 37.3 61.1
BiLSTM+VGG16 48.0 48.6 58.4
CNNText+VGG16 46.3 37.3 61.1

ERNIE-VIL 53.1 54.3 63.7
UNITER 58.1 57.8 58.4
VILLNA 57.3 57.1 57.6
VL-BERT 58.9 59.5 58.5

DisMultiHate (w/o disentangle) 60.8 61.4 62.7
DisMultiHate 64.6 64.5 65.1

Table 3.3: Experimental results on MultiOFF dataset.

image features using VGG16 [158] pre-trained on the ImageNetdataset, and extract

text features using various text encoders (e.g., BiLSTM). Subsequently, the extracted

image and text features are concatenated before feeding into a classifier for hateful

meme classification. As the MultiOFF dataset is relatively new, few studies have

benchmarked on this dataset. Therefore, as additional baselines, we reproduced the

methods proposed by Zhu [213] on the MultiOFF dataset.

We have also included a variant of the DisMultiHate, which performed the hate-

ful meme classification without disentangling the target information. Interestingly,

we observe that even without the target disentanglement module, DisMultiHate had

outperformed the baselines, demonstrating the strength of our data pre-processing

approach on augmenting the model with entity and demographic information. Dis-

MultiHate without target disentanglement has also outperformed the VL-BERT

model, which was also augmented with entity and demographics. A possible reason

for the performance could be due to DisMultiHate’s ability to learn better textual

and visual representations for hateful meme classification. Specifically, the visual

representation was attended with the textual information, thereby enhancing the vi-

sual features with some form of contextual information. Nevertheless, we noted that

the performance of target disentanglement further improves the classification results,

suggesting the importance of target information in the hateful meme classification

task.

Table 3.2 and 3.3 show the experimental results on the FHM and MultiOFF
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datasets respectively. In both tables, the highest figures are highlighted in bold.

We observed that DisMultiHate outperformed the state-of-the-art baselines in both

datasets. DisMultiHate has significantly outperformed the baselines proposed in the

original dataset papers. For instance, DisMultiHate has outperformed VisualBERT-

COCO by more than 10% (Acc) on the FHM dataset and outperformed BiL-

STM+VGG16 by more than 16% (F1) on the MultiOFF dataset. DisMultiHate

has also outperformed the best baseline by 4% (Acc) and 5% (F1) on the FHM and

MultiOFF, respectively. We noted that the multimodal methods had outperformed

the BERT unimodal baselines in the FHM dataset. However, for the experiment on

MultiOFF dataset, we observe that the BERT unimodal baseline is able to achieve

competitive performance and outperformed the multimodal baselines proposed in the

dataset paper [165]. A possible explanation could be the caption and text information

in the MultiOFF memes already contain hateful content. Thus, the unimodal baseline

using textual features is able to achieve good performance.

Ablation Study. We also conduct an ablation study to examine the usefulness

of entity and demographic information augmented in our DisMultiHate method.

Table 3.4 and 3.5 show the results of the ablation study on FHM and MultiOFF

datasets, respectively. We observed that DisMultiHate model augmented with both

entity and demographic information had yielded the best performance.

More interestingly, for the FHM dataset, we observed that without augmenting

demographic information yields better performance than without augmenting entity

information. However, a different observation is made for DisMultiHate perfor-

mance on the MultiOFF dataset. Specifically, DisMultiHate not augmented with

entity information yields better performance than without augmenting demographic

information. The ablation study highlights that the model is highly amenable and

adapts to different datasets with varying characteristics.
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Model Acc. AUROC
DisMultiHate (w/o Entity) 60.6 68.2
DisMultiHate (w/o Demo) 72.8 80.8

DisMultiHate (w/o Entity+Demo) 62.0 70.3
DisMultiHate 75.8 82.8

Table 3.4: Ablation study on FHM dataset.

Model F1 Precision Recall
DisMultiHate (w/o Entity) 62.0 64.0 63.8
DisMultiHate (w/o Demo) 60.5 61.0 61.1

DisMultiHate (w/o Entity+Demo) 62.0 62.4 63.1
DisMultiHate 64.6 64.5 65.1

Table 3.5: Ablation study on MultiOFF dataset.

3.2.3 Case Study

The ability to disentangle target information in memes is a core contribution in our

DisMultiHate model, and we aim to evaluate this aspect of the model qualitatively.

Working towards this evaluation goal, we design an experiment to retrieve relevant

memes for a given target query. Specifically, for a given text query (e.g., “woman”),

we first generate its disentangled latent text representation, lq, using the process

described in Section 3.1.3. Next, we compute the cosine similarity between lq and

the disentangled latent visual representation vp of all memes in the FHM dataset.

Finally, we retrieved the top k memes with the highest similarity scores with the

given target query. Intuitively, if DisMultiHate model is able to disentangle the target

information in memes, we should be able to infer the query target from the retrieved

memes qualitatively. For example, given the text query “woman”, we should expect

the top k retrieved memes to include woman-related memes.

Table 3.6 shows the retrieved memes for a given target. Specifically, we retrieve

the two most relevant hateful and non-hateful memes for the given target query.

We can intuitively infer that the retrieved memes are relevant to the given query.

For example, the retrieved memes for the query “Muslim Woman” are observed

to contain Muslim women in hajib. Interestingly, for the query “Black Man”, we

observe that the second meme is retrieved even though the image is in black and
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Target Hateful Non-Hateful

Woman

Black
Man

Table 3.6: Retrieved memes from FHM dataset for a given target. The headers
indicate the correctly predicted labels of the retrieved memes.

Meme

Actual
Label

Non-Hateful Non-Hateful Hateful Hateful

Pred.
Label

Hateful Hateful Non-Hateful Non-Hateful

Dis.
Target

Woman Catholics Black Man Muslim Woman

Table 3.7: Error analysis of wrongly classified memes from FHM dataset. Dis. target
is for disentangled target.

white, and it is not obvious that there are African Americans in the image. However,

DisMultiHate is still able to disentangle the “Black Man” target in the meme by using

relevant textual information such as “dark” and “pick cotton” to infer contextual

information on the slavery of African American. A similar observation is observed

for the “Woman” target query, where the second meme does not contain any image of

a woman but an ape. However, the second meme is also relevant to the target query as

DisMultiHate disentangle the “Woman” target in the meme by using relevant textual

information such as “Michelle Obama” to infer contextual information on insulting

the individual’s physical appearance(i.e., a woman) with a picture of an ape. In

summary, the case studies presented in Table 3.6 has demonstrated DisMultiHate’s

ability to disentangle the target in memes using a combination of textual and visual

information captured in the memes. Similar observations were also made for other

potential hate speech target queries (e.g., Hispanic, Asian, transgender, etc.).
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3.2.4 Error Analysis

Besides analyzing DisMultiHate quantitatively performance over the state-of-the-art

baselines, we are also interested in examining the classification errors of DisMul-

tiHate. Table 3.7 illustrates four selected examples of DisMultiHate’s wrongly

classified memes. For example, DisMultiHate has classified the first meme to be

hateful when the actual label of the meme is non-hateful. A possible reason for this

error could be the mention of the keyword “black” and the disentangled target being

“woman”, which misled the model to make a wrong prediction.

Our error analysis also reveals some issues with the FHM dataset. For instance,

the second meme is annotated as non-hateful in the dataset. However, upon closer

examination of the meme, we could infer some form of discrimination towards the

Catholics and Priest, and our DisMultiHate has predicted the meme to be hateful.

Another issue of the FHM dataset is the potential noise in the dataset. For example,

DisMultiHate has wrongly classified the meme as non-hateful when the content is

obviously communicating otherwise. We have checked the FHM dataset and found

similar memes (i.e., a meme with a running black man) annotated as non-hateful.

DisMultiHate has also wrongly predicted the last meme to be non-hateful as

none of the textual keyword, or image features provided the context information that

it is hateful. Some form of advance reasoning would be required to understand the

hateful context presented in this meme. We could explore adding advanced reasoning

modules to classify such memes that require deeper reasoning for future work.

3.3 Conclusion

In this chapter, we proposed a novel framework, DisMultiHate, which learns and

disentangles the representations of hate speech-related target entities, such as race

and gender, in memes to improve the hateful content classification. We evaluated

DisMultiHate on two publicly available datasets, and our extensive experiments

have shown that DisMultiHate outperformed the state-of-the-art baselines. We
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have conducted case studies to empirically demonstrated DisMultiHate’s ability

to disentangle target information in the memes. We have also performed error

analysis and discussed some of the limitations of the DisMultiHate model. We will

incorporate a more advanced reasoning module in the model for future works and

test the model on more hateful meme datasets. Through applying DisMultiHate

to disentangle the target in hateful memes, we also hope to raise awareness of the

vulnerable groups targeted in hate speeches in real-world datasets.
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Chapter 4

Prompting a PT-LM to Acquire

External Knowledge

As summarized in the previous chapter, various solutions were proposed for HMD.

For instance, some studies have adopted pre-trained visual language models such as

VilBERT [117] and VisualBERT [101] and fine-tune these models with the hateful

meme classification task [108, 213, 211, 128, 176] (as illustrated in Figure 4.1(a)).

Some tried to incorporate PTMs into task-specific HMD models [140, 89, 92].

Nevertheless, existing approaches still have limitations as understanding hateful

memes may require additional contextual background knowledge. Consider the

hateful meme example in Figure 4.1. The background knowledge that the pig is

considered unclean by Muslims and is a sin to consume, is required to infer that the

meme is hateful.

Recent studies have attempted to prompt PT-LMs and yield good performance

for uni-modal NLP [150, 15, 151, 50]. Nevertheless, few works have attempted to

prompt PT-LMs for multimodal tasks [194, 200, 56]. [193] has explored prompting

GPT-3 model [15] for the visual question & answering task. However, the approach

has limitations as large models such as GPT-3 are expensive to tune. In this chapter,

we aim to address the research gaps and proposes a novel framework to leverage

the implicit and unstructured knowledge in PT-LMs [173, 138] to improve hateful
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Text

Image

Visual
Language

Model
Prediction

(a) Current Multimodal Hateful Meme Classification Approach
No leverage on
contextual
information
Supervised
training

Image PromptText

Image Caption

Language Model

Image to text

"best holiday gift
for muslims" "piglet" "This is [mask]"

Unstructured 

and Implicit
knowledge in
language model
Prompt-based
tuning

(b) Prompting Language Model for Hateful Meme Classification 

Hateful Meme
Example

"This is [hateful]"

Figure 4.1: Comparison between (a) fine-tuning visual language model approach
and (b) prompt-based approach.

meme classification. Figure 4.1 illustrates the comparison between the existing

multimodal hateful meme classification approach and our proposed prompt-based

approach. Specifically, in our prompt-based approach, we first convert images into

textual descriptions that a PT-LM can understand and design specific prompts to

adapt and leverage the implicit knowledge in the PT-LM. Subsequently, given a

meme and a prompt, the prompt-tuned PT-LM generates a textual output, indicating

the predicted label of the input meme. The underlying intuition for the prompt-based

approach is that PT-LMs will tap into the implicit and unstructured knowledge in

their large-scale pre-training data to generate the continuation of the prompt, i.e.,

from “this is ” to “this is hateful.”.

The strategy of using PTMs in the proposed model is the hybrids of Tuning-

Single and Frozen-Single as discussed in Section 1.3. Instead of directing tuning of

a PT-LM, we leverage a PT-LM (MPTM) with a prompting mechanism (Mtsp) for

its stored implicit knowledge. Compared with direct fine-tuning, prompting adds

no additional parameters, while is more similar to the pre-training objective (i.e.,

masked word prediction) of PT-LMs. Besides, to make images comprehensible to
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PT-LMs, we further exploit a frozen PT-VLM to generate textual descriptions of

images. Our contributions are: 1) identify a task-specific characteristic (i.e., need of

external knowledge in HMD); 2) utilize a task-specific strategy of leveraging PT-LMs

(i.e., prompting instead of direct fine-tuning); and 3) identify an intermediate step in

need of help and convert it to acceptable goals of PTMs (i.e., use a frozen PTM for

converting images to textual descriptions).

In the rest of the chapter, we first introduce the details of the proposed model in

Section 4.1 and the experimental results in Section 4.2. To further understand the

advantages and limitations of the proposed model, we provide a few visualization

cases in Section 4.3. In the last part of the chapter, Section 4.4, we provide a

conclusion of the work.

4.1 PromptHate Model

In order to prompt PT-LMs for HMD, we need to convert HMD into a masked

language modeling task and converting images into textual descriptions. Therefore,

firstly, we provide a formal definition about using masked language modeling for

HMD in Section 4.1.1. Next, we describe how to conduct the image conversion in

Section 4.1.2. In the rest section, we elaborate the work flow of PromptHate.

4.1.1 Problem Definition

We define the problem of multimodal hateful memes classification as follows: Given

a meme with image I and text O, a classification model will predict the label of the

multimodal meme (hateful or non-hateful). Traditionally, this binary classification

task requires models to predict a probability vector y ∈ R2 over the two classes.

Specifically, y0 denotes the predicted probability that the meme is non-hateful while

y1 is for the probability that the meme is hateful. If y1 > y0, the meme is predicted

as hateful, otherwise, non-hateful. In theframework, we transform the hateful meme

classification task into a Masked Language Modelling (MLM) problem. Specifically,
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a PLM is prompted to replace the [MASK] token that represents the label of the meme

(e.g., hateful or non-hateful). We discuss the prompting details in Section 4.1.3.

4.1.2 Image Captioning

To prompt PLMs for multimodal hateful meme classification, we first need to covert

the meme’s image into an acceptable textual input for PLMs. A common approach

to extract the image’s semantics and represent it with textual description is via image

captioning [193, 56]. We first extract the text in the memes using open-source Python

packages EasyOCR1, followed by in-painting with MMEditing2 to remove the text.

We then apply a pre-trained image captioning model, ClipCap [127]. ClipCap is able

to generate good quality captions for low-resolution web images. The generated

captions tend to describe the dominant objects or events in the meme’s image and

we use these captions as inputs into the PromptHate model.

Besides captioning the image, we also leveraged Google Vision Web Entity

Detection API3 and pre-trained FairFace classifier [81] to extract the entities in

the memes and the demographic information if the meme contains a person. The

extracted entities and demographic information are used as supplementary infor-

mation that will be combined with the image captions as input to the PLMs. Note

that although the extracted supplementary information may capture key information

about the meme, the contextual background knowledge is still absent in the image

caption and supplementary information. For instance, with the utilization of entity

information, we may identify a pig in the meme and extract the term “Muslim” from

the meme text. However, the contextual knowledge that Muslims do not eat pork is

absent in the supplementary information.

Figure 4.2 illustrates the architectural framework of our proposed PromptHate

model. A key step in the PromptHate is the construction of a prompt, which

consists of a positive demonstration (i.e., normal meme), a negative demonstration

1https://github.com/JaidedAI/EasyOCR
2https://github.com/open-mmlab/mmediting
3https://cloud.google.com/vision/docs/detecting-web
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Meme Text: my black boyfriend

Image Caption: a woman and a
monkey

Template: it was [MASK]

Meme Text: a fast sandwich maker

Image Caption: putting cheese on
bread

Template: it was good

Meme Text: best holiday gift for
muslims

Image Caption: pig on a white
background

Template: it was bad

Demonstration: Normal Demonstration: Hateful Inference Instance

RoBERTainput

good: 0.05

bad: 0.95


generated
output

ClipCap

Prompt

Figure 4.2: Overview of PromptHate Framework.

(i.e., hateful meme), and an inference instance (i.e., meme to be predicted). We

first convert the three memes into meme texts and image descriptions using the

data pre-processing steps described in Section 4.1.2. Subsequently, we construct

templates, which are natural sentences that include label words for the individual

memes. For instance, a normal demonstration meme will have a template “the meme

is good”, while the hateful demonstration meme uses the template “the meme is bad”.

The label word in template for the inference instance is replaced with a [MASK],

which the PLM (i.e., RoBERTa) is tasked to complete the sentence with “good”

or “bad”. Subsequent sections provide the technical details on prompting for the

multimodal hateful meme classification task.

4.1.3 Prompting Hateful Meme

To guide the PLM in inferring the label word, we also provide positive and nega-

tive demonstrations to the PLM. The positive demonstration Spos is generated as:

Spos
1 [SEP]Spos

2 [SEP]T (Wpos), where Spos
1 and Spos

2 are meme texts and image

descriptions respectively, [SEP] is the separation token in the language model L,

and T (Wpos) generates the positive label word Wpos into a sentence (e.g., “this is

good”). Similar approach is used for the generation of negative demonstration Sneg

and inference instance S infer by replacing Wpos with Wneg and [MASK], respectively.

Inspired by Gao et al. [50], we concatenate the demonstrations with the inference

instance:
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S = [START]S infer[SEP]Spos[SEP]Sneg[END] (4.1)

where, S serves as the prompt fed into L, and [START] and [END] are start and

end tokens in L.

4.1.4 Templates and Label Words

Recent studies have explored designing better prompts by developing automatic

template generation and label word selection methods [50]. As PromptHate is the

first study that adopted prompting for hateful meme classification, we adopt a simpler

approach of prompting with manually defined label words and templates.

Labels are required to be mapped into individual words for prompt-based models.

As shown in Figure 4.2, good is used as the label word for the positive class (non-

hateful), while bad for the negative class (hateful). We have also analysed sets of

other label words. The comparison of using different label words is discussed in

Section 4.2.

The template in prompts can be viewed as the function T , which maps the

label word into a sentence. In PromptHate, we manually define the function

T ([WORD]) → It was [WORD].. Specifically, if T receives Wpos as input, the

output sentence should be “It was Wpos.”. Conversely, if T receives Wneg as input,

the output sentence should be “It was Wneg.”.

4.1.5 Model Training and Prediction

For training, we feed the prompt S into L and obtain the probability of the masked

word, y ∈ R2 over label words:

y0 = P([MASK] = Wpos|S), (4.2)

y1 = P([MASK] = Wneg|S). (4.3)
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The training loss is based on cross-entropy loss with the ground-truth label ŷ:

Loss = y0log(ŷ0) + y1log(ŷ1), (4.4)

and the loss will be used for updating parameters θ in L. Differing from standard

fine-tuning PLMs by adding a task-specific classification head, prompt-based tuning

does not have additional parameters beyond those in the PLMs, and the MLM task

does not deviate from PLM’s pre-training objectives.

For model prediction, we obtain the probability of the masked word over label

words in the same manner. If y1 > y0, the meme will be predicted as hateful,

otherwise, non-hateful.

4.1.6 Multi-Query prompthate-ensemble

Demonstrations in the prompt provide additional cues for the inference instance.

Existing works carefully select demonstrations which are similar to the inference

instance [193, 50]. Nevertheless, memes that are similar in visual or textual modality

may be targeting different protected characteristics (e.g., race, religion, gender, etc.),

and understanding the target in the hateful meme is critical to the classification

task [92]. To address this concern, we adopt a multi-query prompthate-ensemble

strategy to predict the inference instance using multiple pairs of demonstrations.

Specifically, when we adopt a M -query ensemble, an inference instance will be

predicted using M pairs of demonstrations.

The multi-query prompthate-ensemble will result in a set of prediction scores

for the inference instance: {ym}Mm=1, where ym ∈ R2 is the predicted scores with

the m-th pair of demonstration. The final prediction will be the average over all

predicted scores:

yfinal =
1

M

M∑
m=1

ym. (4.5)
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Datasets Train Test
#Hate. #Non-hate. #Hate. #Non-hate.

FHM 3,050 5,450 250 250
HarM 1,064 1,949 124 230

Table 4.1: Statistical summary of FHM and HarM.

4.2 Experiment Results

In this section, we first provide a brief introduction to the datasets and evaluation

setting. Next, we present a set of experiments conducted to evaluate PromptHate’s

hateful meme classification performance. We also conduct studies to understand the

effects of various prompt settings, and discuss the limitations of our model via error

case studies.

4.2.1 Evaluation Settings

The HarM dataset was constructed with real COVID-19-related memes collected

from Twitter. The memes are labeled with three classes: very harmful, partially

harmful, and harmless. We combine the very harmful and partially harmful memes

into hateful memes and regard harmless memes as non-hateful memes. The good

performance on the HarM dataset also implies the generalization of the PromptHate

to other anti-social memes besides hateful ones.

Evaluation Metrics. We adopt the evaluation metrics commonly used in existing

hateful meme classification studies [85, 213, 211, 128, 176]: Area Under the Receiver

Operating Characteristic curve (AUROC) and Accuracy (Acc). In order to report

more reliable results, we measure the average performance of models under ten

random seeds. All models use the same set of random seeds.

Baselines. We benchmark PromptHate against the state-of-the-art hateful meme

classification models. Specifically, we compare with two types of baselines models:

(a) uni-modal models that only use information from one modality (i.e., the meme

text or the meme image); (b) multimodal models.

For uni-modal baselines, we consider a text-only model by fine-tuning pre-trained
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BERT on the meme text for classification (Text BERT). We also apply an image-only

model, which processes the meme image using Faster R-CNN [146] with ResNet-

152 [62] before feeding the image representation into a classifer for hateful meme

classification (Image-Region).

For multimodal baselines, we compare with the multimodal methods bench-

marked in the original FHM dataset paper [85], namely: Late Fusion, Concat

BERT, MMBT-Region [84], ViLBERT CC [117], Visual BERT COCO [101].

We also compare to the state-of-the-art hateful meme classification methods 4: CLIP

BERT, MOMENTA [140] and DisMultiHate [92]. CLIP BERT and MOMENTA

are models leveraging image features generated by the CLIP model [143]. CLIP is

pre-trained with web data, thus it is able to generalize well to HMD where images

and texts are noisy. CLIP BERT uses CLIP as the visual encoder and BERT as the

text encoder and feed the concatenation of features to a classifier for prediction. MO-

MENTA considers the global and local information in two modalities by modeling

the deep multi-modal interactions. DisMultiHate disentangles target information

from the meme to improve the hateful content classification.

As PromptHate prompts RoBERTa [114] for hateful meme classification, we

also benchmark PromptHate against fine-tuning RoBERTa (FT-RoBERTa). Specif-

ically, we concatenate the meme text and image descriptions as input to fine-tune

RoBERTa, and the output representation is fed into a MLP layer for classification.

4.2.2 Experiment Results

Table 4.2 and 4.3 show the experimental results on FHM and HarM datasets, re-

spectively. The standard deviations (±) of the ten runs are also reported, and the

best results are bold. PromptHate outperforms the state-of-the-art baselines in both

datasets. We have also computed the statistical differences between PromptHate

and the best-performing baseline (i.e., DisMultiHate on FHM and FT-RoBERTa

on HarM), and PromptHate’s improvement over the baseline is found to be sta-
4Note that we use the code published by the author and re-run the model for ten rounds with

different random seeds.
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Model AUC. Acc.
Text BERT 66.10±0.55 57.12±0.49

Image-Region 56.69±1.05 52.34±1.39

Late Fusion 66.34±1.54 59.14±0.91

Concat BERT 66.53±0.75 60.80±0.98

MMBT-Region 72.86±0.64 65.06±1.76

Visual BERT COCO 68.71±1.02 61.48±1.19

ViLBERT CC 73.05±0.62 64.70±1.12

CLIP BERT 66.97±0.34 58.28±0.63

MOMENTA 69.17±4.71 61.34±4.89

DisMultiHate 79.89±1.71 71.26±1.66

FT-RoBERTa 76.32±6.45 67.72±6.20

PromptHate 81.45±0.74 72.98±1.09

Table 4.2: Experimental results of models on FHM.

Model AUC. Acc.
Text BERT 81.39±0.91 75.68±1.59

Image-Region 76.46±0.47 73.05±1.80

Late Fusion 83.17±1.25 77.57±0.96

Concat BERT 83.21±1.37 77.82±1.09

MMBT-Region 85.48±0.75 79.83±2.00

Visual BERT COCO 80.46±1.04 75.31±1.44

ViLBERT CC 84.11±0.88 78.70±1.17

CLIP BERT 82.63±1.20 76.66±1.02

MOMENTA 86.32±3.83 80.48±1.95

DisMultiHate 86.39±1.17 81.24±1.04

FT-RoBERTa 89.26±1.04 82.32±1.60

PromptHate 90.96±0.62 84.47±1.75

Table 4.3: Experimental results of models on HarM.

tistically significant (p-value < 0.05). Consistent with the existing studies, the

multimodal approaches outperformed the unimodal baselines. More interestingly, we

noted PromptHate’s improvements over the multimodal baselines that fine-tuned

PLMs and FT-RoBERTa, demonstrating the strength of the prompting approach for

HMD . Specifically, the performance comparison of FT-RoBERTa and PromptHate

suggests that the prompting approach can better leverage the implicit knowledge

embedded in the PLM by adopting a masked language modeling training objective

for the hateful meme classification.

We also observe differences in PromptHate’s performance on the FHM and

HarM datasets; the model yields better performance on HarM. Similar observations

are made for the other models. We postulate that the performance differences are
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Model AUC. Acc.
DisMultiHate 79.89±1.71 71.26±1.66

PromptHate-RB 79.17±0.67 70.56±0.73

DisMultiHate-BL 79.97±1.19 71.62±1.15

DisMultiHate-RL 78.56±0.94 71.10±1.58

PromptHate 81.45±0.74 72.98±1.09

Table 4.4: Experimental results of models with different sizes on FHM.

Model AUC. Acc.
DisMultiHate 86.39±1.17 81.24±1.04

PromptHate-RB 89.20±0.72 83.70±1.99

DisMultiHate-BL 85.38±1.13 80.71±1.45

DisMultiHate-RL 88.39±0.74 82.18±1.13

PromptHate 90.96±0.62 84.47±1.75

Table 4.5: Experimental results of models with different sizes on HarM.

likely due to the difficulty of the dataset. FHM contains hateful memes on multiple

topics, while HarM mainly contains COVID-19-related hateful memes. Therefore,

the models would have to be able to generalize better to perform well on the FHM

dataset. We also highlight the high standard deviation in FT-RoBERTa’s performance

on FHM, suggesting FT-RoBERTa’s instability and difficulty in generalizing well on

the dataset.

As RoBERTa-large is regarded as a general LM for prompting [50, 151, 150],

PromptHate with RoBERTa-large is three times in the scale compared with BERT-

base related baselines. To further valid the effectiveness of prompting approach in

HMD, we conduct the following experiments: 1) we replace the RoBERTa-large

with RoBERTa-base in PromptHate (PromptHate-RB); 2) we replace the BERT-

base in the baseline models with either RoBERTa-large (-RL) or BERT-large (-BL).

Specifically, we choose the most powerful baseline, DisMultiHate, for analysis.

Experimental results on FHM and HarM are summarized in Table 4.4 and Table 4.5

respectively, where each block includes models of similar sizes.

Unsurprisingly, replacing the RoBERTa-large with RoBERTa-base worsens

PromptHate performance. However, we do observe that PromptHate-RB still

outperforms DisMultiHate on the HarM dataset. On the FHM dataset, PromptHate-

RB has performed slightly worse than DisMultiHate but depicted higher stability
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Setting FHM HarM
AUC. Acc. AUC. Acc.

PromptHate 81.45 72.98 90.96 84.47
w/o MLM 76.32 67.72 89.26 82.32
w/o Demo. 80.37 71.76 90.38 84.35

Table 4.6: Ablation study of PromptHate.

regarding the standard deviation. Interestingly, replacing the text encoder of Dis-

MultiHate with a larger pre-trained LM does not outperform PromptHate on both

datasets. From the experimental results, we observe that model size plays a critical

role in PromptHate performance. Nevertheless, the experimental results have also

demonstrated the effectiveness of our proposed prompting approach over state-of-

the-art baselines.

4.2.3 Ablation Study

Table 4.6 shows the ablation analysis of PromptHate. We notice removing the MLM

training objective decreases PromptHate’s performance significantly. The MLM

training objective is designed to align with the PLMs’ training objectives. This plays

a significant role in enabling PromptHate to better utilize the embedding implicit

knowledge in the PLMs for hateful meme classification. Interestingly, we observe

that PromptHate can perform well even without the demonstrations. Nevertheless,

the effects of demonstrations in prompt-based model remains an open research topic,

which requires further studies [125].

4.2.4 Prompt Engineering

Designing good prompts is essential to prompt-based models. In this section, we

discuss how varying the prompts affect PromptHate’s performance in hateful meme

classification.
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Engineering Label Words

Label words are individual words representing the labels used in prompt generation.

We investigate the effects of replacing the prompts in PromptHate with different

sets of label words. Specifically, we replace the label words in the prompt’s positive

and negative demonstrations in our experiments. Table 4.7 presents the results. For

example, in the first row in Table 4.7, we use “It was normal” for positive demon-

strations (i.e., non-hateful memes), and “It was hate” for negative demonstration

(i.e., hateful memes). Intuitively we aim to examine how the label word’s semantics

affect hateful meme classification. For a more extensive investigation, we conduct

the experiments on full training and few-shot setting, i.e., using only 10% of training

instances.

Table 4.7 shows that different prompts can lead to substantial differences in

performances. Specifically, label words aligned to the semantic classes are able

to achieve better performance compared to the reverse mapping (i.e., the last row

of each setting). Interestingly, the differences between the semantic class-aligned

prompts and the reverse mapping are more significant in the few-shot setting. A

possible reason could be in the few-shot setting, the PromptHate relies more on the

label words’ semantics to extract implicit knowledge for hateful meme classification.

Thus, the label words with the aligned semantic class will provide better context

in the prompt to improve hateful meme classification when there are insufficient

observations in training instances. Conversely, when PromptHate is trained with

enough instances, the representations of the label words are updated to be closer to

the hateful meme classification task.

Prompt with Hateful Target Information

Existing studies have found that modeling target information (i.g., the victim of the

hateful content) can help improve hateful meme classification [92]. Therefore, we

explore the effect of explicitly including the target information in prompts.

The FHM and HarM datasets are annotated with target information. For our ex-
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Setting Label Words FHM
Pos. Neg. AUC Acc

full

Normal Hate 81.21 71.74
Benign Offensive 81.58 72.70
Good Bad 81.45 72.98
Hate Normal 80.51 72.22

Few-Shot

Normal Hate 69.21 63.88
Benign Offensive 68.91 63.68
Good Bad 69.30 63.76
Hate Normal 62.17 57.56

Table 4.7: PromptHate with various label words.

Model FHM HarM
AUC. Acc. AUC. Acc.

w/o Target 81.45 72.98 90.96 84.47
w Target 81.10 71.44 89.00 82.97

Table 4.8: PromptHate without and with target.

perimental design, we change the prompt template: from “It was [MASK].” to “It was

[LABEL MASK] targeting at [TARGET MASK].”. For example, if it is a hateful

meme targeting nationality, the template will be “It was bad targeting at nationality.”

If the meme is non-hateful, the [TARGET MASK] will be replaced with nobody.

During model training, we model the loss from prediction of [LABEL MASK] in

the inference instance.

Table 4.8 shows the results of the PromptHate performance with and without

target information. We observe marginal differences in performance after modelling

target information in prompts. A possible reason may be that learning to extract

targets in memes adds auxiliary burden to the model. To better utilize target in-

formation, a more sophisticated strategy may be needed than the current simple

approach.

In Table 4.9, we visualize PromptHate’s prediction results on sample FHM

memes. Incorrect predictions are labelled in red while the pie chart presents the dis-

tributions of the predicted target (i.e., [TARGET MASK]) per meme. PromptHate

with target information is observed to correctly predict the targets in the hateful

meme even when it incorrectly classifies the memes (e.g third meme targeting reli-

gion). The right-most meme contains a racial slur ‘Kenyan skidmark’ and seems to
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have been annotated wrongly as non-hateful. Interestingly, PromptHate with target

information indicates it as hateful and targeting race.

The target distributions can improve PromptHate’s interpretability. However, the

incorrect class prediction also highlights the difficulty of hateful meme classification.

The task may require more than target comprehension to achieve good performance.

Meme

Target
Distribu-
tions
w Target. Hateful Hateful Non-Hateful Hateful
w/o Tar-
get

Non-hateful Non-hateful Hateful Non-hateful

Ground
Truth

Hateful (race) Hateful (sex) Hateful (religion) Non-Hateful?

Table 4.9: Example predictions of PromptHate with and without target information.
Incorrect prediction in red. Ground truth for the right-most meme is questionable.

.

4.3 Qualitative Analysis

Besides analyzing PromptHate’s quantitative performance, we also examine its

classification errors. Table 4.10 illustrates three selected PromptHate’s incorrect

predictions.

From the examples, we notice that the captions generally describe the contents of

images. However, it may ignore some essential attributes for HMD. For instance, the

captions are unable to capture important information such as “Jesus”. This missing

information is supplemented by the augmented image tags (i.e., the entities and

demographic of memes). Nevertheless, we also observed that even after augmenta-

tion with additional descriptions for the images, PromptHate still makes incorrect

predictions for these memes.

There could be multiple reasons for the incorrect predictions. Firstly, the pre-
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Meme

Ground Truth Hateful (religion) Hateful (race) Non-Hateful
Prediction

Non-hateful Non-hateful Hateful
Meme text the original scare-

crow
when you date an
asian boy and you
trynna get his family
to accept you

you either die a hero,
or live long enough
to become the villain

Captions builder crucified on
the cross

portrait of a young
woman with her pet
dog

a man dressed as a
rainbow holding a
flag and dancing in
the crowd

Entity Crucifix Life, Res-
urrection of Jesus,
Spiritual death, jesus
died in the cross

none Rainbow flag, Flag
bisexual, Transgen-
der flags, Bisexuality

Demographics None Black female Latino Hispanic
Male

Table 4.10: Error analysis of wrongly predicted memes. Incorrect prediction in red

sented information may still lack adequate context. For instance, in the second meme,

the “biting” or “eating” action is missing from the captions and the addition image

description. Thus, PromptHate lacks the context that the meme is ridiculing Asians’

“dog-eating” behaviour, and is hateful. Secondly, there could be biases learned by the

model. For instance, PromptHate may predict the right-most meme to be hateful

because of the rainbow flag, an icon for the LGBT community. This icon may be

heavily used by memes attacking the LGBT community. Lastly, even more advanced

reasoning may be required to understand the hateful context in certain meme. In

the first case, PromptHate is unable to reason that the meme implies that Jesus is

merely an object hung up to scare away birds, which leads to the hatefulness of the

meme. The detection of the hateful meme requires deep multi-modal reasoning.
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4.4 Conclusion

We have proposed PromptHate, a simple yet effective multimodal prompt-based

framework that prompts PT-LMs for hateful meme classification. Our evaluations on

two publicly available datasets have shown PromptHate to outperform state-of-the-

art baselines. We have conducted fine-grained analyses and case studies on various

prompt settings and demonstrated the effectiveness of the prompts on hateful meme

classification. We have also performed error analysis and discussed some limitations

of the PromptHate model. For future work, we will explore strategies for selecting

better demonstrations for PromptHate and add in reasoning modules to improve

PromptHate’s utilization of the implicit knowledge in the PLMs.
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Chapter 5

Frozen PT-VLMs with Probing-based

Captioning for Hateful-content

Related Descriptions

In the previous chapter, we introduced PromptHate, which leverages knowledge

in PT-LMs to facilitate HMD. As PT-LMs are inherently textual, it involves the

conversion for meme images to textual descriptions. By converting all input informa-

tion into texts, it can prompt a PT-LM along with two demonstrative examples to

predict whether or not the input is hateful by utilizing the rich background knowl-

edge in the PT-LM. Although PromptHate achieves state-of-the-art performance,

it is significantly affected by the quality of image captions, as shown in Table 5.1.

Image captions that are merely generic descriptions of images may omit crucial

details [92, 213], such as the race and gender of people, which are essential for

hateful content detection. But with additional image tags, such as entities found in

the images and demographic information about the people in the images, the same

model can be significantly improved, as shown in Table 5.1. However, generating

these additional image tags is laborious and costly. For instance, entity extraction is

usually conducted with the Google Vision Web Entity Detection API 1, which is a

1https://cloud.google.com/vision/docs/detecting-web
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Model Performance
AUC Acc.

PromptHate (w/o) 76.76 67.28
PromptHate 81.45 72.98

Table 5.1: Impact on detection performances on the FHM dataset [85] from image
captions. (w/o) denotes models without additional entity and demographic informa-
tion.

ImageText
Caption1Probe

Captioning Caption2
…

Image

Caption1
Caption2
…

PVLM
Q1
Q2
…

Text-based Meme Detection Model Answer

Figure 5.1: The proposed probe-captioning approach. We prompt frozen PT-VLMs
via visual question answering to generate hateful content-related image captions.

paid service. Ideally, we would like to find a more affordable way to obtain entity

and demographic information from the images that is critical for hateful content

detection.

PromptHate suffers from information loss during image conversion. The other

line of research harnesses the power of PT-VLMs such as VisualBERT [101] and

ViLBERT [117], without converting images to discrete text tokens. A common

approach is to fine-tune PT-VLMs with task-specific data [108, 213, 128, 176, 63].

However, it is less feasible to fine-tune the larger models such as BLIP-2 [100] and

Flamingo [2] on meme detection because there are billions of trainable parameters.

Therefore, computationally feasible solutions other than direct fine-tuning are needed

to leverage large PT-VLMs in facilitating HMD.

Both above-mentioned approaches have their pros and cons. In this chapter,

we combine the ideas from these two approaches and design a HMD method that

leverages the power of a frozen PT-VLM to complement the unimodal approach of
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PromptHate. Specifically, we use a set of “probing” questions to query a PT-VLM

(BLIP-2 [100] in our experiments) for information related to common vulnerable

targets in hateful content. The answers obtained from the probing questions will

be treated as image captions (denoted as Pro-Cap) and used as input to a trainable

HMD model. Figure 5.1 illustrates the overall workflow of the method. We refer

to the step of using probing questions to generate the captions as probing-based

captioning.

Our proposed method fills existing research gaps by: 1) Leverage a PT-VLM

without any adaptation or fine-tuning, thereby reducing computational cost; 2)

Instead of explicitly obtaining additional image tags with costly APIs, we utilize

the frozen PT-VLM to generate captions that contain information useful for HMD.

To the best of our knowledge, this is the first work that to leverage PT-VLMs in a

zero-shot manner through question answering to assist in HMD. To further validate

our method, we test the effect of the generated Pro-Cap on both PromptHate[20]

and a BERT-based[36] HMD model.

Based on the experimental results, we observe that PromptHate with Pro-Cap

(denoted as Pro-CapPromptHate) significantly surpasses the original PromptHate with-

out additional image tags (i.e., about 4, 6, and 3 percentage points of absolute

performance improvement on FHM [85], MAMI [42], and HarM [140] respectively).

Pro-CapPromptHate also achieves comparable results with PromptHate with additional

image tags, indicating that probing-based captioning can be a more affordable way of

obtaining image entities or demographic information. Case studies further show that

Pro-Cap offers essential image details for hateful content detection, enhancing the

explainability of models to some extent. Meanwhile, Pro-CapBERT clearly surpasses

multimodal BERT-based models of similar sizes (i.e., about 7 percentage points of

absolute improvement with VisualBERT on FHM [85]), proving the generalization

of the probing-based captioning method.

The Pro-Cap model falls under the category of Frozen-Single regarding the

utilization of PTMs, as mentioned in Section 1.3. Specifically, it identify a sub-
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step (the conversion of images to textual descriptions) in PromptHate in need of

improvement, as generic image captioning overlooks essential details for hateful

content detection. It converts the need to acceptable objectives of PT-VLMs with

a probing captioning technique so that frozen PT-VLMs (Mfrozen
PTM ) can be used for

generating hateful content-related descriptions without any adaptation. Later the

generated descriptions from Mfrozen
PTM will be incorporated with Mtune for supervised

training. The contributions are two-folds: identifying the step in need of improvement

and converting the step into pre-training objectives of PTMs.

In Section 5.1, we elaborate the details of the proposed method. The quantitative

and qualitative results are presented in Section 5.2 and Section 5.3, respectively.

Finally, we close the chapter with a conclusion.

5.1 Pro-Cap Model

5.1.1 Overview

Recall that the key idea of our method is to elicit image details that are critical for

hateful content detection, such as the gender and race of the people in the image.

Because these details are not always included in automatically generated image

captions, we propose relying on VQA to obtain such critical information, where the

questions are carefully curated to elicit demographic and other relevant information.

We opt to use zero-shot VQA with a frozen PT-VLM because (1) for the intended

type of questions, we do not have any VQA training data to train our own model,

and (2) recent work has demonstrated promising performance of zero-shot VQA.

Specifically, we prompt the PT-VLM with K probing questions and regard the

set of K answers from the PT-VLM as image captions, which we refer to as Pro-

Cap. We then combine the original text T with Pro-Cap as input to a HMD model.

We experiment with two alternative text-based HMD models: one based on BERT

encoding, and the other based on our previously proposed PromptHate.

In the rest of this section, we first present the details of how we design our VQA
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questions to elicit the most critical details of an image for HMD. We then explain

how the generated Pro-Cap is used by two alternative text-based HMD models.

Focus Questions

Content what is shown in the im-
age?

Race What is the race of the
person in the image?

Gender What is the gender of
the person in the image?

Religion What is the religion of
the person in the image?

Nationality Which country does the
person in the image
come from?

Disability Are there disabled peo-
ple in the image?

Animal What animal is in the
image?

Val Person Is there a person in the
image?

Val Animal Is there an animal in the
image?

Table 5.2: Details of questions prompting PT-VLMs. The first block of the question
asks about the content of the image; questions in the second block ask about com-
monly seen vulnerable targets in hateful contents; the last block questions validate
the existence of persons and animals.

5.1.2 Design of VQA Questions

We leverage PT-VLMs for zero-shot VQA to generate Pro-Cap as image captions.

We want Pro-Cap to provide not only a general description of the image but also

details critical for HMD. To obtain a general caption of the image, we design the

first probing question to inquire about the generic content of the image, as shown

in Table 5.2. However, such generic captions may be insufficient for HMD as

hateful content usually targets persons or groups with specific characteristics, such

as race, gender, or religion [42, 85]. Additionally, previous studies have shown that

augmenting image representations with entities found in the image or demographic
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Text: kick them out of country.

Image

Template: It was [MASK].

Probe
Captioning

PVLM

Q1: what content...
Q2: what is the religion...
...

Pro-Cap
A1: a group of people with their 
hands up in the air.
A2: the person is a Muslim.
...

Non-hateful Example Hateful Example

RoBERTa

Test Example

Text Pro-Cap Template

good: 0.05
bad: 0.9

Figure 5.2: An overview of the PromptHate model and how pro-cap is used in
PromptHate.

information of people in the image significantly aids HMD [213, 92]. Such details

may be missing in generic image captions. Therefore, we design additional questions

that aim to bring out information central to hateful content. This aligns the generated

image captions more closely with the goal of HMD. Specifically, the high-level idea

is to ask questions about common vulnerable targets of hateful content. Inspired

by [124], which categorizes the targets of hateful memes into Religion, Race, Gender,

Nationality, and Disability, we ask questions about these five types of targets. For

example, to generate image captions that indicate the race of the people in an image,

we can ask the following question: what is the race of persons in the image? We list

the five questions designed for these five types of targets in Table 5.2. Additionally,

we observe that some animals, such as pigs, are often depicted in hateful memes,

frequently as a means to annoy Muslims. With this consideration, we also design a

question asking about the presence of animals in the image.

In [33], the author claimed that PT-VLMs may hallucinate non-existent objects.

For example, even when there is nobody in an image, PT-VLMs may generate an

answer about race in response to the question what is the race of the person in the
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image?. To prevent such misleading information, we use two validation questions.

Specifically, we inquire about the existence of persons and animals. Only when the

PT-VLM responds that a person or an animal exists will we include in the Pro-Cap

the answers to those person-related or animal-related questions. For instance, if

the answer to the question validating the existence of people indicates that nobody

is present, we will ignore all answers from questions asking about religion, race,

gender, nationality, and disability.

We use C to represent the concatenation of the answers to the probing questions

that are finally included as part of the Pro-Cap based on the validation results. We

will then concatenate T and C together as input to a purely text-based hateful meme

classification model, as shown at the bottom of Figure 5.1.

5.1.3 BERT-based Detection Model

We now introduce the first of the two alternative hateful meme classification models,

which is based on BERT [36]. We first feed the concatenation of the meme text T

and the Pro-Cap C into the BERT model to generate a vector r ∈ Rd:

r = BERT([T , C]),

where [·, ·] represents concatenation. Next, we feed the sentence representation r

into a linear layer for hateful meme classification:

s = Sigmoid(WTr+ b),

where W ∈ Rd×2 and b2 are learnable parameters.

5.1.4 PromptHate for Hateful Meme Detection

Next, we briefly recall PromptHate [20], which employs a prompt-based method to

classify memes (More details in Chapter 4). PromptHate was developed to better
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leverage contextual background knowledge by prompting language models. Given

a test meme, PromptHate first uses an image captioning model to obtain generic

image captions. It then concatenates the meme text, the image captions, and a prompt

template into S: It was [MASK]., to prompt a language model (LM) to predict

whether the meme is hateful. Specifically, it compares the probability of the language

model predicting [MASK] to be a positive word (e.g., good) given the context, versus

the probability of predicting a negative word (e.g., bad). The approach also includes

one positive and one negative example in the context, and [MASK] will be replaced

by their respective label words. An overview of PromptHate is shown in Figure 5.2.

For further details, please refer to [20].

In [20], PromptHate utilizes ClipCap [127] to generate image captions. In

this work, we replace this with Pro-Cap C. We then represent every meme O

as O = [T , C,S]. With these inputs, the language models (LMs), for instance,

RoBERTa [114], generate confidence scores for the masked word over their vocabu-

lary space, V:

p = Sigmoid(LM([Otest,Onon-hate,Ohate])),

where p ∈ R|V|. We extract the score for the label words as the prediction:

s0 = pi, Vi = Wpos, (5.1)

s1 = pj, Vj = Wneg. (5.2)

5.1.5 Model Training and Prediction

We denote the ground-truth label of a meme as ŷ ∈ R2. If the meme is annotated

as non-hateful, ŷ0 will be 1 while ŷ1 will be 0, otherwise, ŷ = [0, 1]. The binary

cross-entropy loss is applied for model training:

Loss = −(ŷ0 ∗ log(s0) + ŷ1 ∗ log(s1)).

For model prediction, if s0 > s1, the meme will be predicted as non-hateful,
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otherwise, hateful.

5.2 Experiment Results

In this section, we first introduce our evaluation datasets, metrics and implementation

details. Next, we introduce the baselines for comparison. Finally, we conduct

qualitative analysis with case studies and error analysis to better understand the

advantages and limitations of our method.

5.2.1 Experiment Settings

Evaluation Datasets. We test our proposed method on benchmarks for HMD. We

evaluate our method on three datasets to better illustrate the generalization and

stability of our approach. Table 5.3 presents the statistics of these datasets.

The Facebook Hateful Meme dataset (FHM) [85] was constructed by Facebook.

It contains synthetic memes with added confounders such that unimodal information

is insufficient for detection and deep multimodal reasoning is required. The FHM

dataset contains hateful memes targeting various vulnerable groups in categories

including Religion, Race, Gender, Nationality, and Disability. As the labels of the

test split of FHM are not available, we performs evaluation on its dev-seen split.

Different from FHM, the Multimedia Automatic Misogyny Identifica-

tion (MAMI) [42] dataset focuses on a particular type of hateful memes, namely,

those targeting women. Performance on MAMI therefore reflects the capability of

HMD methods for female victims.

To test our method’s generalization capability, we also consider a harmful meme

detection dataset, HarM [139]. HarM contains memes related to COVID-19, which

are classified into three categories: harmless, partially harmful, and very harmful.

We merge partially harmful and harmful into one category. Because hateful content is

always regarded as harmful, we use this dataset to test the capability of generalization

of our proposed method from HMD to harmful meme detection.
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Datasets Train Test
#Hate. #Non-hate. #Hate. #Non-hate.

FHM 3,019 5,481 247 253
HarM 1,064 1,949 124 230
MAMI 5,004 4,995 500 495

Table 5.3: Statistical distributions of datasets used for evaluation.

Evaluation Metrics. HMD is a binary classification task. In addition to detection

accuracy, we also compute the Area Under the Receiver Operating Characteristics

curve (AUCROC) used in prior work [108, 213, 92, 20]. We conduct experiments

with ten random seeds and report the average performance and standard deviation.

All models use the same set of random seeds.

Implementation Details. Given a meme image, we first detect the meme text

with the open-source Easy-OCR tool 2 and then in-paint over the detected texts.

To generate the answers to VQA questions, we prompt BLIP-2 [100], specifically

the FlanT5XL version. We then insert the generated image captions into two text-

based HMD models, i.e., the BERT-based model and the PromptHate model. For

the BERT-based model, to avoid overfitting, we add a dropout rate of 0.4 to the

classification layer. We use a learning rate of 2e − 5 and a batch size of 64. For

PromptHate, we train the model with a batch size of 16 and empirically set the

learning rate to 1.3e − 5 on FHM and 1e − 5 on the other two datasets [50]. We

optimize both models with the AdamW optimizer [115] and implement them in

PyTorch. Due to space limit, we provide more details (i.e., computation costs and

model sizes) in Appendix B.4.

5.2.2 Baselines

We compare our method against both unimodal and multimodal models to demon-

strate the effectiveness of the proposed method, where we regard models receiving

information from one modality (i.e., the meme text or the meme image only) as

unimodal models. Note that because Pro-Cap already contains image information,

2https://github.com/JaidedAI/EasyOCR
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even if Pro-Cap is input into a unimodal BERT, the model is not considered to be

unimodal.

For the unimodal models, we consider a text-only and an image-only model.

For the text-only model, we fine-tune a pre-trained BERT model [36] based on the

meme text only for meme classification, which we represent as Text-BERT. For the

image-only model, we first extract object-level image features with an off-the-shelf

feature extractor, Faster-RCNN [146], which is trained for object detection. We then

perform average pooling over object features and feed the resulting vector into a

classification layer. We use Image-Region to denote the image-only model.

For multimodal models, we categorize them into two groups: 1) fine-tuning

generic multimodal models that are proposed to conduct different multimodal tasks;

2) models specifically designed for HMD. For the first type of multimodal models,

we firstly consider the MMBT-Region model [84], which is a widely used mul-

timodal baseline in hateful meem detection [85, 20, 140] and the model has not

been pre-trained with multimodal data. Secondly, we consider several multimodal

PTMs, such as VisualBERT [101] pre-trained on MS-COCO [107] (VisualBERT

COCO) and ViLBERT pre-trained on Conceptual Captions [155] (ViLBERT CC).

Some recently released powerful PTMs are also included such as the Align before

Fusion model [98] (ALBEF) and the Bootstrapping Language-Image Pre-training

model [99] (BLIP). For the second category of baselines which are designed for

the meme detection task, we consider the models listed below. The CLIP-BERT

model [140] leverages the CLIP model [143] to deal with noisy meme images, uses

pre-trained BERT [36] for representing meme text, and fuses them with concate-

nation. The MOMENTA model [140] designed both local and global multimodal

fusion mechanisms to exploit multimodal interactions for HMD. Note that the MO-

MENTA model is designed to leverage augmented image tags (the detected image

entities). DisMultiHate [92] disentangles target information from memes as targets

are essential for identifying hateful content. The PromptHate model [20] is what

we discussed in Chapter 4.
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Dataset FHM MAMI HarM
Model AUC. Acc. AUC. Acc. AUC. Acc.

Text BERT 66.10±0.55 57.12±0.49 74.48±0.60 67.37±0.57 81.39±0.91 75.68±1.59
Image-Region 56.69±1.05 52.34±1.39 70.20±0.63 64.18±0.81 76.46±0.47 73.05±1.80

VisualBERT COCO 68.71±1.02 61.48±1.19 78.71±0.59 71.06±0.94 80.46±1.04 75.31±1.44
ViLBERT CC 73.05±0.62 64.70±1.12 77.71±1.20 69.48±1.00 84.11±0.88 78.70±1.17

MMBT-Region 72.86±0.64 65.06±1.76 79.17±0.91 70.46±0.76 85.48±0.75 79.83±2.00
CLIP-BERT 66.97±0.34 58.28±0.63 77.66±0.64 68.44±1.07 82.63±3.83 80.48±1.95

DisMultiHate 69.11±0.84 62.42±0.72 78.21±0.61 70.58±1.13 83.69±1.33 78.05±0.73
PromptHate 76.76±0.95 67.82±1.23 76.21±1.05 68.08±0.58 87.51±0.74 79.38±1.72

BLIP 76.80±2.37 69.20±1.84 80.59±0.87 71.84±1.11 87.09±1.46 81.81±1.74
ALBEF 79.40±0.53 70.58±0.50 83.24±0.93 72.77±1.00 85.49±1.23 80.99±0.80

Pro-CapBERT 77.50±0.58 68.14±0.64 79.62±0.91 71.06±0.88 89.04±1.00 82.06±1.92
Pro-CapPromptHate 80.87±0.66 72.28±0.90 82.53±0.49 73.06±0.82 90.25±0.54 83.25±1.00

Table 5.4: Model comparison without any augmented image tags.

Dataset FHM MAMI HarM
Model AUC. Acc. AUC. Acc. AUC. Acc.

VisualBERT COCO 72.56±0.80 64.28±1.27 80.84±0.67 72.86±0.71 82.96±0.98 78.81±0.80
ViLBERT CC 75.72±0.91 68.24±0.44 80.33±1.01 71.75±1.14 84.79±1.23 81.39±1.62
MOMENTA 69.17±4.71 61.34±4.89 81.68±2.80 72.10±2.90 86.32±3.83 80.48±1.95
DisMultiHate 79.89±1.71 71.26±1.66 80.08±0.55 71.87±0.47 86.39±1.17 81.24±1.04
PromptHate 81.45±0.74 72.98±1.09 79.95±0.66 70.31±0.64 90.96±0.62 84.47±1.75

BLIP 76.40±1.49 69.29±1.44 80.63±1.05 70.62±1.48 86.88±1.15 82.66±1.13
ALBEF 80.77±0.81 71.70±0.98 82.45±0.85 72.45±0.96 86.91±0.72 81.78±1.20

Pro-CapBERT 79.75±1.15 71.28±0.91 81.20±0.69 71.80±1.42 89.75±1.49 82.71±1.60
Pro-CapPromptHate 83.58±0.60 75.10±0.97 83.77±0.75 73.63±0.75 91.03±1.51 85.03±1.51

Table 5.5: Model comparison with augmenting the image entities and demo-
graphic information.

5.2.3 Experiment Results

As discussed earlier, previous work has shown that additional image tags can enhance

HMD. We therefore consider two settings for comparison: 1) without any augmented

image tags; 2) with augmented image tags. We display the performance of models

without augmented image tags in Table 5.4 and with augmented image tags in

Table 5.5. The standard deviations (±) of ten random seed runs are also reported,

and the best results are highlighted in bold.

Without augmented image tags: We first compare Pro-CapBERT with unimodal and

multimodal models that also utilize BERT as the text encoder (i.e., VisualBERT,

ViLBERT, and MMBT-Region). Evidently, Text BERT, which utilizes only meme

text, is substantially outperformed by Pro-CapBERT. This suggests that 1) visual

signals are vital for HMD, and 2) the image captions obtained from the probing

questions are informative.

Experiment results from multimodal pre-trained BERT-based models are pre-

sented in the second block of Table 5.4. Interestingly, Pro-CapBERT still has better per-

formances in all three datasets, surpassing the most powerful multimodal pre-trained

BERT-base model, ViLBERT, by over 4% on FHM and surpassing MMBT-Region
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Ans. Length FHM MAMI HarM
No Centric 70.08±1.57 72.78±0.63 80.11±1.14

Penalty = 1 71.94±0.97 73.06±0.82 82.09±1.21

Penalty = 2 72.28±0.90 72.91±1.16 82.85±1.51

Penalty = 3 71.40±1.06 72.47±0.74 83.25±1.00

Pro-CapPromptHate 72.28±0.90 73.06±0.82 83.25±1.00

Table 5.6: Ablation study about the impact from the length of VQA answers.

by about 3% on HarM. This is despite the fact that BERT has less model parameters

compared with these multimodal models (e.g, ViLBERT has 252.1M parameters

while BERT only has about 110M parameters). Pro-CapBERT is still competitive

against models specifically designed for HMD (i.e., models in the third block of

Table 5.4). We provide experimental results of recently published multimodal pre-

trained models (i.e., BLIP and ALBEF) in the fourth block. By comparing the

simple Pro-CapBERT with these models, we observe that Pro-CapBERT gives compa-

rable results. While Pro-CapBERT does not out-perform ALBEF and BLIP all the

time, performance is reasonably good given that in terms of trainable parameters,

Pro-CapBERT is three times smaller than these two pre-trained models. Meanwhile,

Pro-CapBERT shows even better results than the two models on HarM. Notably, HarM

is a real-world dataset which is much noisier than FHM. HarM also focuses on a

relatively new topic (COVID-19), which may not have been observed a lot by the

two PTMs.

When comparing BLIP and ALBEF with PromptHate, which has a similar

model size, PromptHate with Pro-Cap demonstrates significant advantages over

the two models on three benchmarks, especially on the noisy HarM dataset. We

conjecture that a possible reason is that multimodal PTMs leverage pre-training data

that is relatively cleaner, on a smaller scale and primarily comprises of non-memes.

This leads to some difficulties when confronted with noisy real-world memes. In

contrast pure language models are pre-trained on larger and noisier data, which may

lead to some intrinsic robustness. If visual signals are reasonably converted to text,

pure textual models can be competitive for multimodal tasks such as HMD.

Reinforcing the point of proper visual signal conversion, the enhanced perfor-
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mance of Pro-CapPromptHate over PromptHate highlights the importance of our

probing-based captioning method, which provides essential cues for hateful con-

tent detection. With probe-based captioning, Pro-CapPromptHate is able to conduct

deep multimodal reasoning that require background knowledge (due to the good

performance on FHM), is stable towards noisy real-world meme data (according to

performance on HarM), and has great generalization in meme detection (according

to the good performance on all three benchmarks).

With augmented image tags: For a fair comparison with recent state-of-the-art

models, we consider testing our proposed probe-captioning method with the same

set of augmented image tags from baselines. To utilize the augmented image tags,

we simply pad these tags at the end of each textual meme representation in a similar

manner to [20]. With additional image information such as entities and demographic

information, most models have some improvements. An interesting thing is that

neither BLIP nor ALBEF benefits much from additional image tags. This is because

the additional tags are usually single words or short phrases, which may be noisy

or redundant, while BLIP and ALBEF may be less capable of dealing with noisy

inputs. Similar to the results in Table 5.4, when augmenting image information: 1)

the simple Pro-CapBERT still obviously surpasses multimodal pre-trained BERT-base

models such as VisualBERT or ViLBERT; 2) the Pro-CapBERT performs better than

models with similar sizes but specifically designed for HMD (i.e., MOMENTA

or DisMultiHate) in most cases; 3) the Pro-CapBERT achieves comparable results

compared with more powerful multimodal PTMs, which is about three times larger

and surpasses them on the HarM dataset, which is real-world and noisy; 4) Pro-

CapPromptHate surpasses the original PromptHate and achieves the best performance

on three benchmarks as well.

An interesting point is that comparing Pro-CapPromptHate without any augmented

tags and original PromptHate with augmented additional image information, they

achieve comparable performance on FHM and HarM and the former even surpasses

the latter on MAMI. However, extracting the additional image information is expen-
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sive and laborious, which can be replaced by probing-based captioning according

to the experimental results. The equally good performance on three benchmarks

highlights the stability and generalization of our proposed approach.

5.2.4 Ablation Study

In this section, we conduct ablation studies to better understand our Pro-Cap method.

Specifically, we consider the impact of asking different questions and the impact

of the length of answers to the probing questions. To eliminate other factors, we

consider Pro-CapPromptHate without any augmented image tags. For brevity, we only

show accuracy in this section. We present the full results in Appendix B.2.

The impact of asking hateful-content centric questions: We first conduct an

ablation study on the effect of prompting PT-VLMs with questions facilitating HMD.

According to Table 5.2, the first question asks about the image content while all

questions in the second block are for common vulnerable targets of hateful contents.

To better understand the impact of including image captions generated by these

target-specific questions, we experiment with a setting where captions from the

target-specific questions are removed and only the generic caption about image

content is used. The results are shown in the first block of Table 5.6. Compared

with the last block of the table, we observe that with captions generated by target-

specific probing questions, the model’s performance improved on all three datasets,

specifically with over 2% on FHM and over 3% on HarM. However, we notice minor

improvement on MAMI. We believe that this is because MAMI memes are all related

to woman and generic captions about meme images may already cover the gender

of persons in the image. However, the other two datasets involve memes with more

complexities and therefore asking a wide ragen of target-specific probing questions

is more helpful. It also implies that in real-world HMD, probing-based captioning

would be helpful.

The length of answers to probing questions: We apply BLIP-2 as a zero-shot

VQA model. Different from existing VQA benchmarks [73, 54], where answers
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are often single words or short phrases, we may want the answers used as image

captions to be longer and thus more informative. In this cases, we experiment with

answers of different length. To conduct the analysis, we set the length penalty in

BLIP-2’s text decoder for answer generation with different values (i.e., 1, 2 and

3). With increased length penalty, longer answers are encouraged. We show results

of model performance with different answer length in Table 5.6. The results show

that detection performance is robust and does not vary much with different answer

lengths. This indicates the stability of the Pro-Cap method. On the other hand, to

a very small extent, different datasets do favor answers of different lengths. For

instance, the HarM dataset prefers longer answers while the MAMI dataset prefers

shorter answers.

5.3 Qualitative Analysis

In this section, we conduct case studies to better understand the strengths and

limitations of our proposed method. We first compare Pro-CapPromptHate against

PromptHate with image captions and show examples in Table 5.7. From the three

examples, we observe that in most cases, generic captions about the image content

do not provide the key information for HMD, while asking questions about common

vulnerable targets helps. For instance, in the first example, the answer from asking

questions about race, country and religion all provide some key words such as islamic

or muslim; in the second example, answers to questions about country and religion

are important image captions and the answer to the race-related question is the most

important for HMD. In contrast, we observe that the basic captions in the original

PromptHate miss these crucial facts about the meme images.

Next, we conduct error analysis about our proposed probe-captioning in Table 5.8.

In the first example, all probe-captions generate sufficient image captions for HMD,

while the model still fails at prediction. This may be due to the current language

models performing poorly in further complex reasoning. We also note that the
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Meme

Ground
Truth

Hateful (religion) Hateful (religion) Hateful (race)

Basic
PromptHate Non-hateful Non-hateful Non-hateful

Pro-
CapPromptHate

Hateful Hateful Hateful

Meme text changing every sin-
gle country it touches

no that is not his
daughter that is his
wife yet the world is
silent

the definition of utter
disgust in plain black
and white

Basic cap-
tion

mughal structure is
one of the largest
mosques in the
world.

portrait of a father
hugging his daughter
while smiling at cam-
era in the living room
at home.

love is in the air!.

Pro-Cap (Content:) a black
cat sitting on a blue
and white tiled floor.
(Race:) a black per-
son is standing on
a blue and white
tiled floor in islamic.
(Gender:) a man in
a black shirt is stand-
ing on a blue and
white tiled floor with
a clock on top of his
head. (Country:) is-
lamic. (Religion:)
the person is a mus-
lim and he is wearing
a black t-shirt and a
black sleeveless.

(Content:) a man
and a woman hug-
ging on a couch.
(Race:) a white man
and a white woman
hugging on a white
couch. (Gender:) a
man and a woman
hugging on a white
couch. (Country:)
islamic. (Religion:)
an muslim man and
woman hugging on a
white couch.

(Content:) a black
and white photo of
a man and a woman.
(Race:) a black man
and a white woman
in a black and white
photo. (Gender:) a
man and a woman
in a black and white
photo. (Country:)
afghanistan. (Reli-
gion:) he is a chris-
tian.

Table 5.7: Comparison between Pro-CapPromptHate with basic PromptHate. The
image caption used by basic PromptHate is denoted as basic caption. Incorrect
prediction in red. The content in (·) of the ground-truth is the target of the hateful
meme.

small scale of hateful meme datasets may be inadequate for training a model to

perform complex reasoning. Recent studies about large language models pre-trained

with trillions of words [172] may facilitate hateful meme detection to some extent.

Besides, we observe minor errors in predicted answers from the zero-shot VQA

90



Meme

GT Hateful (gender) Non-hateful
Pred

Non-hateful Hateful
Meme
text

scientist are working hard to
cure them all

islam is a religion of peace stop
criticizing my religion

Pro-
Cap

(Content:) two women in wed-
ding dresses kissing each other.
(Race:) a white woman kiss-
ing a brunette woman in a wed-
ding dress. (Gender:) a woman
is kissing a man in a wedding
dress. (Country:) the person in
the image comes from a coun-
try in the philippines. (Reli-
gion:) the person in the image
is a christian.

(Content:) a man with a beard
laughing in the woods. (Race:)
a african man with a beard
and a red hat is smiling in the
woods. (Gender:) a man with a
beard and a red hat in front of a
wooded area. (Country:) egypt
is the country that the person in
the image comes from. (Reli-
gion:) he is a muslim man with
a beard and a red tiara on his
head.

Table 5.8: Error cases of Pro-CapPromptHate.

model (e.g., the wrong prediction of “a woman kissing a man” when asking about

gender). It highlights that with the development of better zero-shot VQA models, the

our strategy could potentially facilitate more for the two text-based HMD models.

The second example highlights a limitation of most hateful content detection models

in that they may be biased. During the training stage, there may be hateful contents

towards Muslims so that once models seen Muslims, they tend to predict the meme

as hateful. To alleviate the issue, debiasing techniques may be needed. Due to space

limitation, we omit visualization examples in the main pages and refer the reader to

examples in Appendix B.3.
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5.4 Conclusion

In this chapter, we attempt to leverage PT-VLMs in a low-computation-cost manner

to aid the task of HMD. Specifically, without any fine-tuning of PT-VLMs, we

probe them in a zero-shot VQA manner to generate hateful content-related image

captions. With the distilled knowledge from large PT-VLMs, we observe that a

simple language model, BERT, can surpass all multimodal pre-trained BERT models

of a similar scale. PromptHate with probe-captioning outperforms previous results

significantly and achieves the new state-of-the-art on three benchmarks.
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Chapter 6

Harnessing a Composition of Tuned

PTMs with Essential Reasoning Skills

for Few-shot HMD

In response to the proliferation of hateful memes, as we introduced in Section 2.2.3,

researchers have developed various detection methods. One strategy regards HMD

as a general multimodal classification task. It directly fine-tunes PT-VLMs to bridge

the multimodal gap [213, 176, 128, 108]. Alternatively, another approach integrates

these PTMs within specialized architectures specifically designed for detecting

hateful content [92, 89, 140, 20]. Nonetheless, both strategies predominantly rely

on extensive supervised learning, necessitating large volumes of annotated data —

a process that is both costly and time-consuming. Furthermore, the emergence of

hateful memes tied to evolving events poses a significant challenge: acquiring and

annotating sufficient training examples for each novel occurrence is often impractical.

We posit that existing studies lack adequate exploration in the low-resource setting,

where the detection systems must operate effectively with minimal labeled data.

To our knowledge, the niche of few-shot detection of hateful memes has yet to be

thoroughly explored in existing literature. One intuitive approach to addressing this

challenge is to harness the in-context learning potential of PT-VLMs [96, 9, 2]. This
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Demo. 1 Demo. 2 …… Demo. N Test Exp.
Pre-trained 

Model

(a) Standard In-context Learning

(b) Modularized Networks

Language Model

Image Text

Text Description

……

Module Composer Few-shot Examples

……Composed 
Module

Module 1 Module 2 Module N

Few-shot Examples

Test Exp.

Figure 6.1: Comparison of standard in-context learning and our proposed modular-
ized networks for few-shot HMD.

method would entail using a limited number of annotated examples as a guide for the

model. For instance, when evaluating an unknown sample, a set of these annotated

“demonstration” instances would be bundled with the test instance. This combined

input is then processed by the PT-VLM to predict whether the content is hateful (as

shown in Figure 6.1(a)). While this method shows promise in low-resource scenarios

for various multimodal tasks, it underperforms specifically in the domain of few-shot

HMD [9, 2]. Additionally, the process of repeatedly combining few-shot examples

with test instances incurs significant computational overhead during each inference

step, which may be prohibitive in practice.

PT-LMs, especially Large language models (LLMs) have recently achieved

impressive results in a range of NLP tasks. To leverage the power of LLM in

multimodal settings, a straightforward method is to convert images to captions and

then feed the captions together with other textual inputs into an LLM. Previous

work has adopted this method for VQA [171] and robot navigation [201]. In this

paper, we also leverage LLMs for multimodal HMD following this strategy. To

tailor LLMs to new tasks, researchers have introduced various parameter-efficient

tuning methods [67, 68, 57, 103] as alternatives to adjusting entire models, which
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often consist of billions of parameters. One such method, known as Low-rank

adaptation (LoRA) [68], strategically updates weights by decomposing them into

low-rank matrices, thus reducing the parameter space. However, LoRA is not

directly applicable in our few-shot setting, due to insufficient training data. Drawing

inspiration from LoraHub’s analysis of LoRA’s compositional abilities [71], our

approach involves composing tuned PTMs by composing their LoRA modules, each

of which has essential reasoning skills for HMD. The LoRA modules of PTMs are

built upon LLMs, such as the LLaMA model [172], and are supervised with related

tasks to HMD for the acquisition of essential skills. Then, they will be combined in

a modular fashion for the task of HMD. Instead of acquiring the core competencies

with a few limited examples, we transfer the learned skills from relevant tasks and

only need to learn to compose these skills for HMD.

For effective detection, we have pinpointed three core competencies required: (i)

Grasping the concept of hateful content; (ii) Decoding the message behind multi-

modal memes; (iii) Elucidating the rationale behind the hateful classification of a

meme. We tailor LoRA modules to these competencies by training them on three

specific tasks: (a) hate speech detection, (b) meme comprehension, and (c) hate-

ful meme explanation. Since meme comprehension and HMD require processing

multimodal data, we transform images into textual descriptions to accommodate

the text-centric nature of LLMs. Subsequently, we employ supervised data from

the three tasks, other than HMD, to train the corresponding LoRA modules using

the LLaMA model. With the few available examples for HMD, we train a module

composer assigning importance scores over the three modules. This composer has

a minimal number of parameters, equivalent to the number of modules, making it

suitable for a few-shot learning scenario. With the module composer, we transfer the

capabilities learned from related tasks to the task of HMD through composition of

LoRA modules. In other words, we learn to compose tuned PTMs to adapt to HMD.

By integrating the composed LoRA modules into LLaMA, we create a modular

network that embodies the essential detection skills. This network contrasts with
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traditional in-context learning methods, notably during inference: it is more efficient

as it bypasses the need to process few-shot examples with each inference step, using

them solely in the training phase of the module composer.

Our validation of the proposed HMD method involved comprehensive testing

across three established benchmarks. Our approach not only demonstrates greater

efficiency at the inference stage but also consistently outperforms established in-

context learning baselines across all test datasets. Notably, even with a limited

dataset of four examples (4-shot learning), our method outperforms the 32-shot

implementation of the Flamingo model [2], which requires the entire set of examples

to be processed for each evaluation instance.

Our approach uses the strategy of Tuning-Composition when applying PTMs, as

introduced in Section 1.3. We identify three essential skills for HMD and tuned PTMs

to acquire the three capabilities respectively. We then obtain a set of tuned models

{P tune
k }3k=1. Next, based on the few-shot available annotated examples, we train a

composer, learning to assign importance scores over each tuned model regarding

the HMD task. We then construct modularized networks for HMD by weighted

averaging tuned models. The contributions are identifying essential reasoning skills

for HMD and composing a set of tuned models, each of which capable of an essential

skill, for HMD.

In the following paragraphs, we will first discuss about the few-shot setting for

evaluation and provide a brief introduction for LoRA in Section 6.1. Details of

the proposed model are provided in Section 6.2. In Section 6.3 and Section 6.4,

we present experimental results and qualitative analysis. Finally, we provide a

conclusion of the chapter.
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6.1 Preliminary

6.1.1 Few-shot Hateful Meme Detection

Given a multimodal meme (i.e., the meme image I and superimposed text C), a HMD

model is required to decide whether the meme is hateful or non-hateful. Models

are first trained with labeled training data Dtrain = (In, Cn, ân)Nn=1, where ân is

the ground-truth label. Trained models are evaluated on the testing split Dtest. In

this work, we assume a low-resource setting where only a few labeled examples

are available. We follow the definition in [50, 208, 209] and assume K training

examples per class are available in the K-shot setting (i.e., N = 2 ∗K for our case).

Our goal is to optimize the models based on Dtrain so that they can generalize well

on the testing data Dtest.

6.1.2 Low-Rank Adaptation

LoRA [68] is a parameter-efficient tuning method, which decomposes the updates

of attention weights into combination of low-rank matrices, while keeping the

pre-trained weights (model parameters of LLMs) frozen. Formally, given the i-th

attention weight matrix Wi ∈ Rp×q and its accumulated gradient update ∆Wi,

LoRA approximates the update as follows:

Wi := Wi +∆Wi, (6.1)

:≈ Wi +AiBi, (6.2)

where Ai ∈ Rp×r and Bi ∈ Rr×q are the decomposed matrices with a low-rank r

(r ≪ p, r ≪ q).

LoRA largely reduces the number of trainable parameters compared with direct

fine-tuning. Additionally, it allows for the composition of an LLM with various

LoRA modules, each tailored to specific tasks. In this context, a LoRA module

learned from one task can be considered a module with specific capabilities.
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Figure 6.2: Overview of the proposed Mod-HATE model. It consists of three steps:
1) LoRA module learning from relevant tasks to obtain essential skills for hateful
meme detection; 2) training a module composer with few-shot training data to
learn importance scores assigned over each LoRA module; 3) the construction of
modularized networks by integrating the composition of learned LoRA modules with
frozen LLMs.

6.2 Mod-HATE Model

6.2.1 Overview

In this section, we introduce our innovative approach to few-shot HMD, known as

Modularized Networks for Hateful Meme Detection (Mod-HATE). The core concept

behind Mod-HATE is the acquisition of essential reasoning skills for detecting hateful

memes through the learning of specialized modules. These modules are acquired

from tasks closely aligned with HMD. Based on the few-shot training examples, we

train a module composer to assign importance scores to these modules. Subsequently,

we create a composed module by weighted averaging the learned modules. We then

construct modularized networks by integrating this composed module with LLMs.

The modularized networks are designed for the specific purpose of HMD. The

overview of Mod-HATE is illustrated in Figure 6.2.

Specifically, we employ LoRA based on LLMs to acquire LoRA modules with

reasoning capabilities from related tasks. Since some of these tasks, including

HMD, involve image information, and LLMs are inherently textual, we incorporate

a converter that transforms images into textual descriptions. The details of the

converter, the introduction of relevant tasks, and the training of LoRA modules

are elaborated in Section 6.2.2. In Section 6.2.3, we delve into the training of

a module composer, responsible for generating importance scores for individual

modules. Section 6.2.4 is dedicated to the construction of modularized networks
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(a) (b)

Figure 6.3: Examples of (a) meme comprehension and (b) hateful meme interpreta-
tion tasks.

by the integration of composed modules with LLMs. Lastly, we demonstrate the

application of modularized networks for HMD.

6.2.2 LoRA Module Learning

In this section, we discuss the learning of LoRA modules from closely related tasks

that cover essential reasoning skills for HMD.

Converter

As mentioned in Section 6.2.1, certain tasks may involve multimodal information

that is beyond the comprehension of LLMs. To address this, we employ a converter

(denoted as Converter) to translate images into textual descriptions. It’s important

to note that, in line with the approach taken by authors in [21], generic image captions

generated by image caption generators for meme images might overlook vital cues

necessary for the detection of hateful memes. Since our primary focus is not on

better utilization of PT-VLMs, we have opted for an image captioning model as our

converter for simplicity. We use the PT-VLM, BLIP-2, FlanT5XL [100] version as

the captioning model. Given an image I, Converter will transform it into textual

descriptions, T , of the image:

T = Converter(I).
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Relevant Tasks and Supervised Data

We identify three essential skills for HMD: 1) the understanding of what constitutes

hateful content; 2) the ability to decipher the concealed meaning in multimodal

memes and 3) the capability to interpret why a meme is hateful. To acquire LoRA

modules proficient in these reasoning skills, we leverage three distinct tasks, each

requiring one of these skills, as follows:

Hate Speech Detection: Given a piece of text, models are required to predict whether

the text is hateful or non-hateful. We transform the task into a text generation task

by asking the question: Please decide whether the sentence below is a hate speech.

Text: [TEXT], where [TEXT] is a placeholder for the input text. If the text is

annotated as hateful, the expected output is Yes, otherwise, No,. We aggregate three

hate speech datasets: DT [34], WZ [184] and Gab [141] as the training data. To

unify the datasets, we combine non-hateful and offensive tweets in DT dataset into

the class of non-hateful.

Meme Comprehension: Given a meme image I and the meme texts C, meme com-

prehension requires to decode the meaning of multimodal memes. For instance, the

meme in Figure 6.3(a) is trying to express the temptation of sweet food to the poster.

To make the image comprehensible to LLMs, we generate its textual description T

with the Converter. Based on the image description and the meme text, we train

a module for generating the meaning of the meme with the prompt: Please interpret

the meme according to its image caption and meme text. Image Caption: [CAP];

Meme text: [MEME TEXT]. The [CAP] and [MEME TEXT] are placeholders and

will be replaced by T and C respectively. We leverage the MEMECAP dataset [74],

which consists of multimodal memes with their corresponding meanings, as the

training dataset.

Hateful Meme Interpretation: The hateful meme interpretation task requires

models to give explanations as to why a meme is hateful. For instance, given the

meme (i.e., the meme image I and the meme text C) in Figure 6.3(b), the expected

output from models should be the reasoning that the meme is annotated as hateful:
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the meme dehumanizes the females as sexual objects as well as less capable beings

only good for dishwashing. Similarly, as the task contains multimodal information,

we leverage the Converter for the generation of textual image descriptions. Then

we prompt LLMs with the instruction and inputs: Please explain the reason that the

meme is hateful given the image caption and meme text. Image Caption: [CAP];

Meme text: [MEME TEXT]. The [CAP] and [MEME TEXT] will be replaced by

T and C respectively. To supervise the learning of modules, we use the annotated

interpretation of hateful memes in [64] as training data.

Training of LoRA Modules

As introduced in Section 6.2.2, we unify all relevant tasks as text generation. We

adopt the widely used cross entropy loss to optimize LLMs for text generation. We

use the open-source powerful language model, LLaMA (7B) [172] as our language

model. LLaMA is a decoder-only model but we only optimize for the expected

output tokens rather than both the inputs and outputs. The input tokens are masked

for loss computation. Instead of tuning all parameters of LLMs, we use the LoRA

parameter-efficient tuning method, introduced in Section 6.1.2 to tune the LLM.

After training, we regard the set of combinations of low-rank matrices AiBi as the

LoRA module. Therefore, we obtain a set of LoRA modules, {Lm}Mm=1 regarding

the considered relevant tasks, where Lm is the m-th LoRA module. In our case,

M = 3.

6.2.3 Module Composer

Once we obtain the list of LoRA modules, the module composer will learn how to

assign importance scores to these modules based on the few-shot training examples

for HMD. The optimization objective is to generate the expected outputs for few-shot

examples by composing the previously acquired LoRA modules. Specifically, given

the learned LoRA module set {Lm}Mm=1, our goal is to train the module composer to

generate a corresponding set of importance scores {sm}Mm=1. The composed module,
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Lcomp is computed as a weighted average over the LoRA modules:

Lcomp =
M∑

m=1

smLm.

Indeed the weighted-average of LoRA modules will be converted into the weighted-

average of their low-rank matrices:

Acomp,i =
M∑

m=1

smAi, (6.3)

Bcomp,i =
M∑

m=1

smBi, (6.4)

where Acomp,i and Bcomp,i are decomposed low-rank matrices for the i-th attention

weight matrix’s update in Lcomp. Next, we adapt the LLM with the composed module

Lcomp to construct the modularized networks. Based on the modularized networks, we

optimize the module composer with both the LLM and learned LoRA modules frozen

and update only the module composer with the few-shot hateful meme examples.

Similar to those multimodal tasks mentioned in Section 6.2.2 (i.e., meme com-

prehension and hateful meme interpretation), we use Converter to transform the

meme image into its textual description T . Given the meme text C and the meme im-

age description T , we ask the modularized networks the following question: Please

decide whether the meme is hateful given the image caption and meme text. Image

Caption: [CAP]; Meme text: [MEME TEXT]. The [CAP] and [MEME TEXT]

will be replaced by T and C respectively. If the few-shot example is non-hateful, the

expected output will be No; otherwise, Yes. The modularized networks are going to

optimize the importance scores (i.e., the module composer) to maximize the likeli-

hood of generating expected outputs. We denote the loss from language modeling as

Llm. Besides, to regularize generated importance scores, L1 normalization is added

to penalize extreme values. The final loss is:

L = Llm + λ
M∑

m=1

|sm|,
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where λ is a hyper-parameter adjusting the importance between the task loss and the

normalization of the scores. We adopt the same optimization strategy as introduced

in [71] and use a gradient-free optimization method, Covariance Matrix Adaptive

Evolution Strategies [60], to minimize the loss.

6.2.4 Modularized Networks

In this section, we describe the construction of modularized networks, which will

be used as the architecture for training the module composer as mentioned in Sec-

tion 6.2.3. The modularized networks consist of an LLM and the LoRA adapter,

which is the composition of LoRA modules for relevant tasks (i.e., Lcomp). The

attention weight matrices in the frozen LLM will be updated as:

Wi :≈ Wi +Acomp,iBcomp,i, (6.5)

:= Wi + (
M∑

m=1

smAi)(
M∑

m=1

smBi). (6.6)

The networks is modularized by changing the importance scores over LoRA mod-

ules so that the importance of modules will be adjusted, to adapt to new tasks or

datasets. Based on the modularized networks, we optimize the module composer and

determine the final importance scores assigned to the LoRA modules. Subsequently,

we apply these modularized networks to our primary task, which is the detection of

hateful memes.

6.2.5 Model Prediction

HMD can be conceptualized as a binary classification task. This task requires the

prediction of a probability for each potential class, which is crucial for certain

evaluation metrics, such as the Receiver Operating Characteristics (ROC) curve [85].

From our modular networks, we extract the output probabilities corresponding to the

first predicted token, denoted as o|V|, wherein V represents the vocabulary set utilized

by the LLM. For the binary outcomes of ‘non-hateful’ and ‘hateful’ memes, ‘No’
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Datasets Test
#Hate. #Non-hate.

FHM 247 253
MAMI 500 495
HarM 124 230

Table 6.1: Statistical distributions of test sets.

Dataset # shots FHM MAMI HarM
Model AUC. Acc. AUC. Acc. AUC. Acc.

OPT-13B 4 49.8±3.71 50.2±1.07 54.1±3.31 50.0±0.35 54.9±7.85 59.6±3.11
OPT-30B 4 50.9±3.00 50.0±1.68 54.2±4.39 50.5±1.05 59.3±9.19 62.3±5.13

OpenFlamingo-3B 4 51.3±1.63 49.2±0.00 43.7±0.51 50.3±0.00 57.2±1.66 35.0±0.00
OpenFlamingo-9B 4 59.4±0.33 52.1±0.72 59.8±2.11 50.4±0.90 63.6±3.15 65.2±0.22

Flamingo-3B 4 53.6 - - - - -
Flamingo-9B 4 62.7 - - - - -

OPT-13B 8 50.7±3.82 50.3±1.78 56.2±4.14 52.9±3.10 61.6±5.59 48.4±8.72
OPT-30B 8 53.5±2.61 51.5±1.90 54.0±5.56 50.7±1.84 64.2±4.88 61.9±6.40

OpenFlamingo-3B 8 49.1±0.44 49.2±0.00 42.1±1.85 50.3±0.00 59.1±2.21 35.0±0.00
OpenFlamingo-9B 8 58.7±0.94 51.6±0.52 59.1±2.86 50.0±0.15 62.9±2.69 65.1±0.23

Flamingo-3B 8 54.7 - - - - -
Flamingo-9B 8 63.9 - - - - -

Flamingo-3B 32 55.3 - - - - -
Flamingo-9B 32 63.5 - - - - -

Our Proposed Method
Mod-HATE 4 64.5±0.19 58.0±1.07 67.4±0.46 61.0±2.22 73.4±0.27 69.4±0.42

Mod-HATE 8 64.0±0.19 57.4±0.82 67.2±0.15 61.1±0.44 73.1±0.16 69.5±0.35

Table 6.2: Comparison with existing methods for few-shot HMD.

and ‘Yes’ are used as the expected outputs from the LLM, respectively. Therefore,

the probability of ‘No’ is used to gauge the probability of the meme being classified

as non-hateful. Conversely, the probability of ’Yes’ is indicative of the meme being

flagged as hateful. Finally, we obtain the probability of classification, a ∈ R2, where

a0 = oi, (Vi = No) and a1 = oj, (Vj = Yes).

6.3 Experiment Results

In this section, we first detail the evaluation framework, encompassing the datasets

used, the metrics applied for assessment, and the specifics of our implementation.

Subsequently, we introduce the baseline models for comparison and present our

experimental results, delineating the performance contrasts between these baselines

and our proposed model. Following this, we perform ablation studies to ascertain

the contribution of individual components within our method. Finally, we offer case

studies to elucidate the strengths of our approach, providing deeper insights into its

practical application.
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6.3.1 Evaluation Setting

Datasets: To assess the effectiveness of our proposed method, we conducted evalua-

tions using three benchmark datasets, which are commonly used in HMD studies.

The Facebook Hateful Meme dataset (FHM)[85] encompasses a diverse range of

synthetic memes, which are designed to include confounders that necessitate genuine

multimodal reasoning for accurate classification, and these memes often target vari-

ous vulnerable groups. The Multimedia Automatic Misogyny Identification dataset

(MAMI)[42], contains memes specifically derogatory towards women, reflecting the

common targets of online vitriol. These memes are sourced from actual content on

social platforms like Twitter and Reddit. Furthermore, considering hateful memes

are also harmful we also utilize the Harmful Meme dataset (HarM)[139] to test

the generalizability of our method. This dataset concentrates on COVID-19 related

memes and categorizes them into three levels of harm: harmless, partially harmful,

and very harmful. For our purposes, we have combined the latter two categories

under a single label: harmful. The statistical distributions for the original test splits

of these datasets are detailed in Table 6.1.

Evaluation Protocols: For evaluation metrics, we employ standard accuracy (Acc.)

and the Area Under the Receiver Operating Characteristics curve (AUCROC),

consistent with benchmarks used in existing studies [85, 20, 92, 108, 213]. In

the context of few-shot learning, evaluations can exhibit high variability due to

the selection of sample examples. To mitigate this, we align with the approach

proposed by [50], which suggests that generating multiple few-shot training sets

using different random seeds can lead to a more reliable performance evaluation.

We generate five sets of few-shot examples with five random seeds for each K-

shot setting. Consequently, we present the average accuracy and AUCROC scores

computed over the test set, following training on these various few-shot samples.

Implementation Details: To extract the meme texts on the image, we use the

open-source package EasyOCR 1 for meme text detection. Before captioning meme

1https://github.com/JaidedAI/EasyOCR
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images, in order to avoid the noise from the meme texts on the image, we fol-

low [213] to remove the meme texts on the image. For the optimization of the

module composer, we use Covariance Matrix Adaptive Evolution Strategies [60]

provided by Nevergrad 2, the gradient-free optimization platform. More details

about implementations (e.g., number of model parameters, package versions and

computation costs) are provided in Appendix C.1.

6.3.2 Baselines

In this section, we introduce baselines for few-shot HMD using in-context learning.

These baselines utilize a few training examples as demonstrations and prompt pre-

trained models with the concatenation of demonstrations and the testing example

for prediction. We examine baselines built on PT-VLMs, adept at processing com-

bined image and text sequences for multimodal in-context learning. For instance,

Flamingo, derived from the Chinchilla LLM [65], integrates additional parameters

for multimodal pre-training, showing proficiency in various few-shot multimodal

tasks. However, Flamingo is proprietary, limiting our performance evaluation to

the FHM dataset using reported outcomes for its models with 3 billion (3B) and

9 billion (9B) parameters. Alternatively, OpenFlamingo, an open-source version

modeled after Flamingo, uses the MPT LLM 3 as its foundation. We assessed Open-

Flamingo with both 3B and 9B configurations. For the latter, due to the absence of

multi-GPU support in OpenFlamingo, we employed Otter-9B [96], which is based

on OpenFlamingo but further optimized for instructional tasks.

Further, large LLMs such as GPT-3 [15] are also recognized for in-context

learning efficacy. As our approach translates visual content into textual form before

leveraging LLMs, for a fair comparison, we also consider in-context learning with

LLMs after the image conversion. Specifically, we employ the freely available

OPT model [204] for this purpose, a widely recognized stand-in for GPT-3. For

comprehensive details on the templates used to facilitate in-context learning with
2https://github.com/facebookresearch/nevergrad
3www.mosaicml.com/blog/mpt-7b
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Dataset FHM MAMI HarM
Model AUC. Acc. AUC. Acc. AUC. Acc.

Proposed Models with Individual Modules, Zero-shot
hate-speech 64.3 56.0 72.7 53.6 74.3 65.5
hate-interp 56.8 49.4 56.9 50.5 60.9 35.0

meme-captions 47.5 51.4 46.1 48.9 40.3 64.4

Proposed Models with Composition of Two Modules
meme-comp, hate-speech 63.3±0.17 54.2±0.20 69.4±0.36 52.0±0.50 70.9±0.49 65.9±0.27
meme-comp, hate-interp 59.5±0.07 49.4±0.00 55.3±0.05 50.3±0.00 56.9±0.05 35.3±0.00
hate-speech, hate-interp 64.1±0.40 56.3±1.44 67.7±0.38 58.4±1.94 72.9±0.31 69.2±0.55

Proposed Models with all Modules
Mod-HATE 64.5±0.19 58.0±1.07 67.4±0.46 61.0±2.22 73.4±0.27 69.4±0.42

Table 6.3: Ablation studies of different modules in the 4-shot setting. hate-speech
refers to the LoRA module for hate speech detection; hate-interp is the LoRA
module for hateful meme interpretation; meme-comp is the LoRA module for meme
comprehension.

# shots Dataset H-S H-I M-C

4-shots
FHM 0.4865 0.4561 -0.0013

MAMI 0.4210 0.4707 0.0024
HarM 0.4564 0.4532 0.0025

8-shots
FHM 0.4713 0.3921 0.0013

MAMI 0.4139 0.4453 0.0014
HarM 0.4127 0.4512 0.0010

Table 6.4: Weights of LoRA modules of our Mod-HATE model. H-S for the hate-
speech LoRA, H-I for the hate-interp LoRA module and M-C for the meme-comp
module.

these models, we direct the reader to Appendix C.3.

6.3.3 Experiment Results

Our experimental analysis was conducted under two few-shot learning scenarios:

with 4-shot and 8-shot examples. The findings, as summarized in Table 6.2, reveal

that our proposed model outperform all in-context learning baselines across all

three benchmarks. These results hold true in both few-shot configurations. Further-

more, our model also demonstrates superior performance compared to the Flamingo

model’s 32-shot results reported in a prior study [2].

Scaling up of models. Our findings suggest that increasing the size of model

parameters tends to enhance the performance of in-context learning methods. This

observation is in line with recent research findings [30], indicating a positive correla-

tion between model size and improved detection metrics. Consequently, substituting
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our current 7B-parameter language model, LLaMA-7B, with its larger counterparts,

such as the 13B or 65B versions, could potentially lead to further advancements in

performance. Such scalability suggests that our approach may be effectively adapted

to larger language models, providing robust HMD capabilities with few training

examples.

In-context learning with LLMs and PT-VLMs. Our study’s findings suggest a

marked preference for in-context learning using PT-VLMs, exemplified by Open-

Flamingo and Flamingo models, over traditional LLMs such as the OPT models in

the task of few-shot HMD. This difference could stem from the unique challenges that

meme text and visual content interplay present, which may be particularly divergent

from the data LLMs were trained on. With the limited exposure provided by few-shot

examples, LLMs struggle to develop the nuanced reasoning required to decode the

complex interplay of text and imagery in memes. In contrast, our method, which

also utilizes LLMs, introduces a substantial enhancement by incorporating LoRA

modules. These LoRA modules allow the model to master fundamental components

vital for identifying hateful memes. Once these foundational skills are established,

our model can adeptly adapt to the task of HMD by composing these pre-trained

modules, each performs a specific reasoning task correlated to the detection task.

Number of shots. Despite increasing the number of training examples, both

baseline models and our proposed method exhibit a plateau in performance, with

some configurations even showing a decline. For example, Flamingo-9B with 32

shots does not surpass its 8-shot counterpart, and similarly, OpenFlamingo-9B’s

performance does not improve when increasing from 4 to 8 shots. This suggests

that the task of HMD remains challenging within a few-shot framework, and simply

adding more examples does not necessarily equate to better model performance.

This phenomenon indicates that the complexity of understanding and detecting

nuances in hateful memes may not be adequately addressed through quantity alone.

Hence, there’s a clear need for more innovative approaches to effectively leverage

few-shot examples. Further research might explore alternative few-shot learning
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techniques, more advanced model architectures that can better capture the subtleties

of multimodal data, or novel data augmentation methods that enhance the model’s

exposure to varied examples within the constraints of few-shot learning.

6.3.4 Ablation Study

In our ablation study, focusing on the 4-shot setting due to space constraints, we

examine the contributions of different modules in our modularized networks. The

results, detailed in Table 6.3, reveal that the integration of all three modules surpasses

the performance of any two-module combination in terms of both accuracy and

AUCROC, affirming the value of each module.

A noteworthy observation is the isolated hate-speech module’s superior perfor-

mance on three datasets regarding AUCROC. We found all its predictions to be

non-hateful. This suggests the module learned with hate speech detection data is

biased. A plausible reason is that hate-speech module alone is incapable of un-

derstanding the interactions between meme image and meme texts (e.g., visual

metaphors). The results underscore the necessity of the additional modules for

complex multimodal understanding in broader applications.

We further visualize importance scores of modules, as shown in Table 6.4. The

scores do not reach the maximum due to our L1 normalization penalty that mitigates

instability by avoiding extreme values in importance scores. Interestingly, even

though the meme-comprehension module registers the lowest importance score, its

absence negatively impacts performance. This indicates a possible underdevelopment

of this module, likely due to the low resolution and noise in online-sourced memes.

Enhancing the meme-comprehension module’s capability through improved training

on challenging data could potentially increase its contribution and overall model

performance.
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Meme

Ground
Truth

Hateful (Religion) Non-hateful Hateful (Gender)

hate-
speech No

No
No

hate-
interp It mocks the muslims

for their violent nature.
It dehumanizes the fe-
males as less capable
humans that are only
good for dishwashing.

It insults the females
by suggesting that they
are only virgins be-
cause they are stupid.

meme-
comp Meme poster is trying

to convey that Islam is
a religion of violence.

Meme poster is try-
ing to convey that men
are supposed to do the
dishes while women
are supposed to do the
laundry.

Meme poster is trying
to convey that women
who claim to be virgins
are lying.

meme-
comp,
hate-
speech

No
No

No

meme-
comp,
hate-
interp

Yes, it is hateful.
True

True

hate-
speech,
hate-
interp

Yes No
No

Mod-
HATE

Yes No Yes

Table 6.5: Visualization of predictions from individual modules, the compositions of
two modules and from our modolarized networks. Incorrect prediction in red.

6.4 Qualitative Analysis

In this section, we conduct case studies to better understand the strengths and

limitations of our proposed method.

Case Study Table 6.5 shows the predictions from individual modules, the compo-

sition of two modules, and the full Mod-HATE model of three example memes.

The case studies shed light on the nuanced role that each module plays in both the
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identification and interpretability of hateful content within memes. It is noted that

the modules dedicated to hateful meme interpretation and meme comprehension

contribute significantly to the model’s accuracy. These components not only aid in

detection but also enhance the model’s explanatory power (e.g., the outputs from

hate-interp and meme-comp in the first example), offering a window into the model’s

decision-making process.

However, when these modules are used in isolation, their effectiveness dimin-

ishes, as they tend to provide descriptive explanations of the content rather than

clear-cut classifications. This aligns with their underperformance when they stand

alone, reinforcing the idea that the integration of modules is crucial for optimal

functioning. A particular bias is detected in the hate-interp module (e.g., the second

example), which has a propensity to incorrectly interpret content as hateful due to its

training on exclusively hateful examples. This issue is mitigated when the module

operates within the integrated framework of the Mod-HATE model, balancing out its

predispositions.

The example also points out a challenge in the hate-interp module’s ability to

generalize to the diverse and often visually complex memes encountered in real-

world scenarios, as shown in the third example. In contrast, the meme-comp module,

which is trained on actual social media data, displays a more refined understanding

of such content, including memes laced with visual metaphors. The hate-speech

module’s efficacy appears limited to situations where the cross-modal reasoning

required is straightforward, struggling otherwise with more intricate multimodal

interactions (e.g., the first and the third example).

In summary, the case study reveals that while individual modules possess their

own strengths and limitations, their amalgamation leads to a synergistic improve-

ment in the model’s performance. This composite approach not only bolsters the

model’s detection capabilities but also augments its interpretability, offering a more

comprehensive solution to the challenge of HMD.
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6.5 Conclusion

In this chapter, we study the problem of HMD in the few-shot setting, where only a

few labeled training examples are available. We propose a modularized networks

which train a set of PTMs capable of relevant tasks to HMD and learn a composition

of PTMs with the few-shot examples. Compared with standard in-context learning

for few-shot HMD, our proposed method is more efficient as the few-shot examples

will not serve as inputs during inference time which greatly reduces the computation

costs. Our proposed method also outperformed all previous in-context learning on

three benchmarks, demonstrating the effectiveness of the proposed method.
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Chapter 7

Using a Composition of Frozen PTMs

to Explicitly Conduct Multi-step

Reasoning

VQA, the task of answering textual queries based on information contained in an

image, is a multimodal task that requires comprehension and reasoning of both visual

and textual content [54, 73]. Most previous work on VQA either trains VQA models

from scratch (e.g., Fukui et al. [45], Anderson et al. [4]) or fine-tunes PT-VLMs for

VQA (e.g., Li et al. [101], Lu et al. [117]). Thus, they rely heavily on labeled VQA

data, which are expensive to obtain. VQA models based on supervised learning are

also hard to generalize to new domains or new datasets [190, 22, 203].

Recently, large-scale PTMs have demonstrated strong transferability to different

downstream tasks under zero-shot settings, i.e., without any training data for the

downstream tasks [15, 143]. With increased pre-training data size, these models

show strong zero-shot performance on various down-stream tasks, such as image

classification and face detection with the CLIP model [143] and sentiment analysis

and commonsense question answering with the GPT-3 model [15]. However, few

studies have focused on zero-shot VQA from PTMs.

Despite the power of these PTMs, it is not straightforward to directly apply them
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to VQA under zero-shot settings, because they are not pre-trained with the same

objective as VQA (noted the statement has been made by 2022). Some recent work

converts images to tokens that PT-LMs can understand so that VQA can be converted

to text-based QA [193, 171, 174, 77, 32]. However, this approach requires either a

strong pre-trained image captioning model that can capture sufficient visual details

or auxiliary training to obtain such a captioning model. Some other work converts

VQA into a multimodal matching problem so that PT-VLMs such as CLIP can be

used [161, 156]. However, complex VQA questions such as those found in the

GQA dataset [73] often require spatial reasoning and/or multi-step reasoning, which

PT-VLMs may not be strong at [163, 170].

VQA questions can be complicated and often require different reasoning steps

such as object detection and spatial reasoning, as the example question in Figure 7.1

illustrates. Previously, people proposed Neural Module Networks [5, 69], which are

modularized networks where each pre-defined module performs a specific reasoning

task. These pre-defined modules are trained end-to-end from labeled VQA data.

Motivated by the idea of modularization, in this chapter, we propose a modularized

zero-shot network for VQA (Mod-Zero-VQA) by decomposing questions into sub-

tasks and assigning appropriate sub-tasks to PTMs without any adaptation. Given

a question, we first parse the question into basic reasoning steps explicitly. These

reasoning steps will then be reconfigured and mapped to different PTMs based on a

set of rules we define. Specifically, we consider the following PTMs: OWL [126]

as the object detector, MDETR [80] for reference expression localization (including

several skills such as relational and spatial reasoning) and CLIP [143] as the answer

generator for open-ended questions. Considering the limited capabilities of current

PT-VLMs in spatial relation understanding [163], we also define simple and general

heuristics to aid spatial reasoning. Note that only when we decompose questions and

reasoning chains step by step can we insert human heuristics for spatial reasoning,

because we have the intermediate outputs such as objects’ bounding boxes from

previous steps.
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This method aligns with the Frozen-Composition strategy for using PTMs

as mentioned in Section 1.3. Specifically, here we consider the skills of object

detection, relational reasoning, spatial reasoning and object/attribute recognition in

VQA (N1 = 4). Next, we select three PTMs (N2 = 3) and design a mapping to

convert identified sub-tasks into acceptable objectives of PTMs. Given a complex

VQA question, we decompose the question into the reasoning chain of these sub-

reasoning tasks, map the chain of sub-tasks to a sequence utilization of PTMs and

leverage the sequential outputs from PTMs for the final answer prediction. The

novelty is to leverage a composition of frozen PTMs to explicitly conduct multi-step

reasoning in VQA, which has not been explored previously. Besides, the other

contribution is to identify essential reasoning skills, select appropriate PTMs and

design a mapping to sub-reasoning tasks to selected PTMs.

In the rest part of the chapter, we will first introduce background about the zero-

shot VQA task and existing works and their limitations in Section 7.1. Next, we

will describe the proposed model in Section 7.2. Then we evaluate the proposed

model on two VQA datasets and report the results in Section 7.3. Besides, qualitative

results about the visualization of explicit reasoning chains by Mod-Zero-VQA will

be provided in Section 7.4. Finally, we conclude this work in Section 7.5.

Question: The man 
holding controller is to 
the left or right of the 
woman?

Parser Find(controller) Relocate([1], holding) Filter([2], man) Choose([3], [4],[left, right])Find(woman)

Pre-trained Models

Traditional NMNs

Find

Relocate

Choose

Query

……
VQA Data

Model Function

OWL Object Detection

MDETR Modulated Detection

CLIP MM Matching

MDETR(man holding controller) OWL(woman) CLIP([1], [2], [left, right])

Layout Mapping

The man 
is to the
[ANS] of the 
woman

Right  0.25
……
Left  0.75
……

Ans. Voc.

Figure 7.1: An overview of our proposed method. Instead of training modules in
NMN, we propose a modularized zero-shot VQA method leveraging pre-trained
models to perform different reasoning tasks.
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7.1 Background

Task Definition. Given an image I and a question Q, a VQA system is expected

to return an answer a. Traditional fully supervised VQA relies on a training set

consisting of (image, question, answer) triplets. For zero-shot VQA, no such training

data is given. However, in this proposal we assume that we can use PTMs to help us

with zero-shot VQA.

Existing Zero-shot VQA Methods. Work on zero-shot VQA is very limited. We

can organize existing work into the following categories. One line of work leverages

the question answering capability in pre-trained language model (LMs). Some of

them adopt prefix language modeling with weakly-supervised data other than VQA

data (i.e., image-text pairs) to convert visual information into discrete tokens (prefix)

that LMs can understand. Frozen [174], VLKD [32] and FewVLM [77] fall under

this category. Some directly convert VQA images into textual descriptions so that

the task of VQA changes to text-based QA and LMs can be applied. Methods

in this category include PICa [193] and PnP-VQA [171]. Recent work [161, 156]

converts VQA to an image-text matching problem and prompts the CLIP model [143],

a large-scale vision-language model pre-trained on the image-text matching task.

The prompts can be either question irrelevant such as Quesion: [Ques]; Answer:

[MASK] (QIP by Shen et al. [156]) or question-related by converting questions into a

masked statement (TAC-P by Song et al. [161]).

However, a limitation with these methods is that several of them still require

training, although the training data is not in the form of VQA. Besides, converting

images to captions and leveraging text-based QA may lose important visual details

during the caption generation step. The two methods above using CLIP do not

address the issue that CLIP model lacks compositional and spatial reasoning abilities,

which has been observed in previous work [163, 170]. None of them considered

explicit multi-step reasoning in VQA.
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7.2 Mod-Zero-VQA Model

Our method is motivated by Neural Module Network (NMN) based VQA, which

decomposes questions into reasoning steps, where each module in the NMN is pre-

defined to perform a specific reasoning task. The idea allows us to select appropriate

PTMs to handle different reasoning tasks in a question. Specifically, in NMN-based

VQA, we first manually define a set of reasoning steps such as object detection

and spatial reasoning, each represented by a module. A question is then explicitly

decomposed and converted into a layout of modules, which is an executable program

showing the reasoning chain to reach the final answer. The top section of Figure 7.1

shows the layout corresponding to the sample question. To train an NMN-based

VQA system, usually a layout generator is separately built first, which either uses

hand-crafted rules over dependency parses of questions or is a trained seq2seq model.

Then, the parameters of the various VQA modules are learned from VQA training

data.

For our work, we do not want to use VQA data for training. But we observe that

many modules in NMN-based VQA can be supported by PTMs that have already

acquired the capabilities needed by these modules. The key component of our method

is therefore to map a layout of modules produced by traditional NMN-based VQA to

a simplified layout of zero-shot components that can be implemented directly using

PTMs.

7.2.1 Traditional VQA Modules

There is not any standard set of modules for VQA. We largely adopt the design of

modules introduced by Hu et al. [69] with some minor changes. We assume that

the image has been pre-processed and N bounding boxes have been detected, each

represented as an embedding vector, collectively denoted as V = (v1,v2, . . . ,vN).

An attention map α is defined to be a distribution over the N bounding boxes.

Table 7.1 lists the most important traditional VQA modules that we will replace
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with PTMs. The full list of modules can be found in Table D.1 in the appendices. It

is worth explaining that besides taking in V and α as either input or output, many

modules also take in the word embeddings of some text description extracted from

the question. These text embeddings are arguments to control the behaviors of the

modules. For example, the Find module’s objective is to locate an object among all

the bounding boxes given. The textual input gOBJ is therefore the word embedding

of the name of the object to be found. Similarly, gRELA ,gATTR and gQUERY are word

embeddings for the description of relation (e.g., to the left of ), attribute (e.g., red)

and aspect to query (e.g., querying name).

Module Inputs

Find V, gOBJ

Relocate α, V, gRELA

Filter α, V, gCONDI

Choose α1, α2, V, gRELA1 , gRELA2

Query α, V, gQUERY

Table 7.1: A subset of the modules in traditional NMN that we replace with pre-
trained models. Modules in the first block output an attention map and those in the
second block generate an answer.

Traditionally, the parameters of the modules in Table 7.1 need to be learned

from VQA training data. In other words, these modules’ underlying capabilities

such as object recognition and relational reasoning need to be acquired from VQA

data. However, we hypothesize that recently developed PTMs may already have

some of these capabilities and can therefore directly equip these modules with

such capabilities. For example, the Find module is mainly responsible for object

recognition, and previously the parameters of Find have to be learned from scratch

using VQA data. Now with a powerful pre-trained model such as OWL [126] that

can recognize a wide range of objects, we can presumably directly use a model like

OWL to replace the traditional Find module.
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7.2.2 Pre-trained Models

We utilize three PTMs that we believe are highly relevant to VQA.

OWL. The Vision Transformer for Open-World Localization (OWL) model [126]

is a model for open-vocabulary object detection. It is first pre-trained on large-scale

image-text pairs and then fine-tuned with added detection heads and medium-sized

detection data. Given the category name of an object and an image, the model is

able to locate bounding box(es) in the image containing the object together with a

confidence score for each box.

MDETR. The modulated DETER (DEtection TRansformer) model [80] is an end-

to-end detector that can detect an object in an image conditioned on a piece of textual

description of the object such as its attributes and its relation with another object

in the image. The model is pre-trained on image-text pairs with explicit alignment

between phrases in the text and bounding boxes of objects in the image. Given

an image and the description of an object, MDETR is able to locate the bounding

box(es) in the image containing the object satisfying the description. Note that

different from OWL, MDETR is able to understand textual descriptions that may

contain attribute information and/or complex visual relations. For example, given the

description a man holding a yellow cup is talking, MDETR will detect the bounding

box containing the man holding a yellow cup in the given image, whereas OWL is

not able to use the description and will only recognize all bounding boxes containing

a man. Note that we use the version of MDETR pre-trained on general modulated

detection without fine-tuning for any downstream tasks.

CLIP. CLIP is a well-known large-scale vision-language model by OpenAI. It is

pre-trained with 400M image-caption pairs through contrastive learning. Given an

(image, text) pair, CLIP uses its separate image encoder and text encoder to turn

the image and the text each into a vector, and the cosine similarity between the

two vectors directly measures the compatibility of the two. Recent work has shown
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that CLIP can be directly used for VQA in a zero-shot setting, if we can come up

with a set of candidate answers and transform each (question, answer) pair into a

statement [161].

7.2.3 Zero-shot NMN using Pre-trained Models

Based on the descriptions of the traditional VQA modules in Section 7.2.1 and of

the three PTMs we consider in Section 7.2.2, we can see that there are obvious

connections between the capabilities desired by the traditional modules and the

capabilities that these PTMs have already acquired.

However, the mapping between them is not trivial. First of all, there is no simple

one-to-one mapping from traditional VQA modules to the PTMs. For example, the

MDETR model can already perform multiple steps of reasoning to locate the desired

object, so it can be used to cover a sequence of modules in an NMN layout. Second,

there may be capabilities required when applying PTMs but not captured by modules

defined in NMN-based VQA. In particular, the MDETR model always assumes that

the object to be grounded exists in the given image, but for those questions asking

for the existence of a specified object, we cannot directly use MDETR.

To address these challenges, we carefully design a mapping mechanism that

can map an NMN-based module layout to a simplified layout consisting of a few

zero-shot modules. Three of these zero-shot modules (OWL, MDETR and CLIP)

correspond exactly to the three PTMs introduced earlier. The rest of the zero-shot

modules are defined by simple heuristic rules. We list these zero-shot modules in

Table 7.2.

We now give a high-level summary of the mapping mechanism below. We first

look at the last module in the NMN layout. If the last module is one of Choose,

Compare and Query, we know that the input to this last module is either a single

attention map or two attention maps, where each attention map essentially tries to

capture an object matching some textual descriptions. By tracing the path in the

layout leading to the attention map, we choose either the zero-shot OWL module
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Module Inputs Output

OWL I , OBJ B, s
MDETR I , SENT B, s
CLIP B, I , V Ans.

Count B Num.
Exist B, (ATTR/RELA) Yes/No
And Exist1, Exist2 Yes/No
Or Exist1, Exist2 Yes/No

Table 7.2: Zero-shot modules with either pre-trained models or heuristics. The I is
the VQA image, V is the answer vocabulary and B is the set of bounding boxes.

(when the path has a length of 1) or the zero-shot MDETR module (when the path is

longer than 1 hop). This is because when the path length equals to one, it involves

only object detection (corresponding to a single Find module in the NMN layout

for generation of the attention map). When the path length is more than one, it

indicates the generation of the attention map in the NMN layout involves other

modules such as Filter and Relocate, which calls for the other abilities than

object detection, such as language understanding, attribute recognition and relational

reasoning. Different from NMN modules which takes in image features and object

embeddings to generate an attention map, our zero-shot OWL and zero-shot MDETR

takes in the raw image and raw texts to locate (OBJ for OWL and SENT for MDETR)

to generate a set of detected bounding boxes B = {bn}Nn=1 together with their

confident scores s ∈ RN , where bn ∈ R4 represents the relative position and size of

the detected bounding box in the image. We keep only the bounding box from either

OWL or MDETR with the highest confident score and feed it to CLIP. We generate

an answer by leveraging the capability of multimodal matching of CLIP. Specifically,

given B, we generate an input image (which we refer to as I in) by either masking

regions not containing those detected boxes (|B| = 2) or cropping the image so

that only the part containing the box remains (|B| = 1). If the final NMN module

is Choose, we generate a masked template by question conversion as in [161];

otherwise the masked template will be a simple “[MASK]”. Then we match the image

I in with the template where the [MASK] token is replaced by each of the answer
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candidates in V . We then select the answer that, when placed inside the template,

best matches the image.

If the module is Exist, we trace back the path leading to Exist to determine

whether the module is asking for the existence of an object, an attribute or a relation.

For object existence (e.g., is there a car), we use the zero-shot OWL module. For

attribute existence and relation existence, we first verify whether all mentioned

nouns (objects) detected by a POS tagger in the question exist with the OWL module.

Once we detect an object that does not exist, the predicted answer will be no. If

all objects exist, then we generate corresponding bounding boxes leveraging either

OWL or MDETR following the method described in the paragraph above. For attribute

existence, we generate a pair of a positive and a negative descriptions: (ATTR, not

ATTR), e.g., (red, not red). We then find which description aligns better with the

cropped image according to b. If the image aligns better with the positive statement,

then the answer will be yes; otherwise, no. For relation existence, we generate the

masked image I in according to b1 and b2 (the bounding boxes of the two objects

whose relation is to be checked) and a pair of opposite statements regarding the

relation to be checked, following [161]. For example, if the question is to check

whether A is holding B, the two opposite statements will be A is holding B and A

is not holding B. For both attribute and relation existence, we use zero-shot CLIP

for the alignment between the input image and the statements. More details and the

work flows of existence-related questions are provided in Appendix D.3.

If the module is Count, we directly count the number of bounding boxes in

B returned either from OWL or MDETR. Finally, if the last module is a logical AND

or logical OR, we further trace to the inputs of this module, which should both

be an Exist module. We then use the same mechanism described above for

Exist to process the module. By receiving the outputs from the Exist modules,

logical operations will be applied to determine the output. The deterministic logical

operations can be found in Appendix D.2.
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7.2.4 Spatial Heuristics

As mentioned in [163], CLIP is less capable of spatial reasoning. Using CLIP for

answer generation may not be enough when it involves spatial relation understanding.

Following [163], we define simple and general heuristics to perform certain types of

spatial reasoning. Note that only when we decompose questions explicitly can we

insert the spatial heuristics into CLIP-based answer generation because we have the

intermediate outputs from previous reasoning steps.

First of all, given the coordinates and the size of a bounding box, we use manual

rules (named as SpD) to decide its position in the image as left, right, bottom, top.

Besides, we define heuristics, denoted as SpC, to solve spatial relations between two

bounding boxes (e.g., to the left of and to the right of ).

Details of the implementation of the spatial relation solvers can be found in

Appendix D.4.

7.3 Experiment Results

7.3.1 Dataset

We evaluate the proposed modularized zero-shot VQA method on two benchmarks:

GQA [73] and VQAv2 [54]. The GQA dataset consists of questions requiring

multi-step reasoning and various reasoning skills. Around 94% of the questions

require multiple reasoning steps. We regard it as the main dataset to demonstrate

the effectiveness of the proposed method compared with the baselines. Compared

with GQA, questions on the VQAv2 dataset require fewer reasoning steps and are of

diverse semantics. We use VQAv2 to show the validity of our method in real-world

VQA. We report standard accuracy for the GQA dataset while soft accuracy [54] for

VQAv2 dataset as there are multiple ground-truth answers. We report the statistics

of the datasets in Appendix D.5.
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Method GQA VQA

Frozen - 29.5
VLKDViT-L/14 - 42.6
FEWVLMbase 27.0 43.4
FEWVLMlarge 29.3 47.7
PNP-VQA6M 34.6 54.3
PNP-VQA11B 41.9 63.3

QIP 35.9 21.4
TAP-C 36.3 38.7
Mod-Zero-VQA 47.3 41.0

Table 7.3: Experimental results on the GQA and VQA datasets. The first block are
models using the text-based QA capability of LMs and the second blocks are models
incorporating CLIP.

7.3.2 Implementation Details

We conduct experiments on NVIDIA Tesla V100 GPU. The thresholds for the

OWL and the MDETR model to filter out detected bounding boxes of low confident

scores are set to be 0.2 and 0.7 respectively. We follow [161] for the generation

of the answer vocabulary V for open-ended questions. More details about answer

vocabulary generation can be found in Appendix D.7 and more information about

experiment settings can be found in Appendix D.7.

7.3.3 Main Results

Zero-shot VQA performance of the baselines mentioned in Section 7.1 and our

proposed method are summarized in Table 7.31.

First of all, we observe that the proposed Mod-Zero-VQA method is more

effective on the GQA dataset, which contains many multi-step reasoning questions.

Mod-Zero-VQA clearly surpasses all baselines on GQA. The results suggest that

it is effective under zero-shot settings to decompose questions when questions are

compositional and require several steps of reasoning to reach the answer. Such

decomposition allows us to take advantage of the capabilities of different PTMs. We

also test the validity of the proposed method on real-world VQAv2 dataset, where
1For FEWVLM and PNP-VQA model, we show their reported performances on GQA test-dev,

which should have similar distributions as the validation split of GQA.
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Detector Yes/No Qns Other Qns Overall

CLIP-FR 56.80 33.82 41.39
OWL 69.26 36.48 47.28
GT 76.48 38.06 50.72

Table 7.4: Performance of Mod-Zero-VQA with different object detectors on GQA.

questions require fewer reasoning steps and of diverse semantics. We can see that

our method still achieves the best performance among zero-shot methods that utilize

CLIP. Although better performance is achieved by several methods that utilize large

language models (as shown in the first block of Table 7.3), it is worth pointing out

that these methods often require caption generation as a pre-processing step, and this

step poses challenges. For example, PNP-VQA generates 100 captions per question,

which is laborious. There may also be redundancy because many captions are

irrelevant for question answering. Another advantage of our Mod-Zero-VQA method

over the other zero-shot baselines is that our method offers high interpretability

by showing the explicit multi-step reasoning chain, which has not been considered

by any previous work. With question decomposition, we can design modularized

networks and assign reasoning tasks to PTMs which are more capable of the tasks,

and with more powerful PTMs coming out, our method can be easily extended to

utilize newer and more effective PTMs. Meanwhile, it is easier to pinpoint the

weakest chain in a system and insert human heuristics to aid these modules.

7.3.4 Ablation Study

In our Mod-Zero-VQA method, PTMs play an important role. In this section,

we show the performance of Mod-Zero-VQA when we replace PTMs listed in

Section 7.2.2 with alternative models.

Replacing OWL: We tried replacing OWL with other object detectors. First, we

consider an object detector combining Faster-RCNN [146] and CLIP (CLIP-FR).

Specifically, Faster-RCNN is used to detect objects in an image and CLIP is applied

to classify each detected object. Second, we use the ground-truth object annotations
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Method PT-VLMs Overall

QIP
CLIPViT-B/16 35.93
CLIPRes50×16 35.11
ALBEF 34.75

TAP-C
CLIPViT-B/16 36.32
CLIPRes50×16 38.16
ALBEF 38.36

Mod-Zero-VQA
CLIPViT-B/16 47.28
CLIPRes50×16 46.49
ALBEF 48.68

Table 7.5: Performance of the Mod-Zero-VQA model with different PT-VLMs as
the zero-shot CLIP for answer generation on GQA.

from Visual Genome [88] to replace object detection results (GT), which serves

as an upper bound. Results of our zero-shot NMNs with different object detectors

are provided in Table 7.4. We divide the questions into Yes/No (bindary) questions

and other questions. We observe that the quality of object detection is important to

the performance of zero-shot NMNs. Our model with OWL surpasses the one with

CLIP-FR, which has poorer detection performance than OWL. We also observe more

substantial performance drop with binary questions. We believe that this is because

these questions are mostly about the existence of objects, so the object detection

results affect the VQA performance more. Using Mod-Zero-VQA with the ground-

truth object detection results would further improve the performance, as shown in

the last row of Table 7.4. This suggests that when more accurate object detection

models are developed, we can further improve the zero-shot VQA performance with

our approach.

Replacing CLIP: We show the performance of replacing zero-shot CLIP (which is

CLIPViT-B/16 by default in our experiments), with either CLIPRes50×16 or ALBEF [98],

in Table 7.5. Because QIP and TAC-P convert VQA to a multi-modal matching

task and both use PT-VLMs as the answer generator, we also replace the original

CLIPViT-B/16 in these two baselines with the other PTMs. We observe that Mod-Zero-

VQA gives stable performance regardless of the vision-language model used, and it

always outperforms the baselines substantially. This indicates that these PTMs can
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all be good substitutes for the zero-shot CLIP module. Compared with the two CLIP

models (i.e., with either ViT [40] or ResNet [62] as the visual backbone), we also

notice that using ALBEF [98] as the answer generator can enhance the performance.

To better understand the advantage of using ALBEF over CLIP, we provide more

detailed performance in Table D.3 in Appendix D.8. ALBEF mostly benefits the

proposed method in the Query type of questions, which usually ask about objects,

attributes and relations. Consistent with [206], end-to-end models (i.e., ALBEF

in this case) perform better than dual-encoder models (i.e., CLIP in this case) in

vision understanding tasks on average. A future direction may be to select the best

pre-trained model per question.

7.3.5 Out-of-Domain Generalization

Because our Mod-Zero-VQA method is not trained on any domain-specific VQA

data but rather utilizes PTMs that are supposedly trained on data from a wide range

of domains, we suspect that our Mod-Zero-VQA method is more robust across

different domains compared with VQA models trained on specific domains and

applied in cross-domain settings. We therefore also compare our Mod-Zero-VQA

with fully-supervised models in the Out-of-Domain Generalization (OOD) setting.

Specifically, we consider an OOD setting where test images are related to scenes not

observed during training. We first identify a set of scene-related objects and restrict

all training images to only those that do not contain these objects. For example, in

the Indoor OOD setting, none of the training images should contain sofa, bed or any

of the other objects that we have identified to be related to Indoor scenes. To build

fully-supervised VQA models for comparison, we consider (1) BUTD [4], a classic

two-stream VQA models, (2) traditional NMNs [5], and (3) finetuned PT-VLMs,

including VilBert [117], VisualBert [101] and ALBEF [98].

The results are shown in Table 7.6. We can see from the table that for those

supervised VQA models, when they are trained on images with different scenes,

their performance on the target domain is clearly lower than our Mod-Zero-VQA.
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Method Indoor Food Street

BUTD 39.27 32.28 35.96
NMNs 39.45 32.47 36.05
VilBert 39.87 32.12 36.68
VisualBert 41.14 33.47 38.51
ALBEF 45.55 38.87 41.60

Mod-Zero-VQA 48.86 47.80 49.54

Table 7.6: Comparison between our Mod-Zero-VQA method and fully-supervised
VQA models under the out-of-domain setting.

Question: Is the dog to the left or to the right of the person that holds the cup?

Reason: OWL(dog) -- MDETR(person holding cup) -- SpC([1], [2], [left,right])

Answer: Left QIP: Right TAC-P: Right
1

0.58

2

0.99

Question: Are there both trains and doors in the picture?

Reason: OWL(doors) -- Exist([1]) -- OWL(trains) -- Exist([1]) -- And([2], [4])

Answer: Yes QIP: No TAC-P: No

Yes

1 2 3

Yes

40.78

0.22

0.26

0.27

Figure 7.2: Visualization of intermediate outputs from reasoning steps of the Mod-
Zero-VQA model.

Furthermore, our Mod-Zero-VQA method achieves steady performance across dif-

ferent scenes, whereas the supervised VQA models give fluctuated performance in

different scenes. This demonstrates the robustness of our proposed method.

7.4 Qualitative Analysis

As a case study, we visualize the outputs of the reasoning steps from the proposed

method and compare the prediction of the proposed method with those of QIP and

TAC-P, which also leverage CLIP as the answer generator. We show two example

questions and the outputs in Figure 7.2. Both questions require multiple reasoning

steps.

We can see that our method gives the correct predictions while the two other

methods answer wrongly. We can also see that by decomposing the questions, our
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method assigns each sub reasoning task to a pre-trained model capable of the task (i.e.,

MDETR for reference expression localization and OWL for object detection). With

question decomposition, we can also better pinpoint the weaknesses of PTMs and

insert human knowledge by defining simple but general heuristics (e.g., adding

spatial heuristics to zero-shot CLIP and defining logical operations). More examples

with visualization are provided in Appendix D.7.

7.5 Conclusion

In this chapter, we propose a modularized zero-shot VQA method, motivated by

the idea of Neural Module Network (NMN). Instead of training modules in NMN

with VQA data, we decompose questions into reasoning tasks explicitly, leverage

PTMs and assign proper reasoning tasks to them. Experiments show that our model

is powerful on questions requiring multi-step reasoning and applicable for real-world

VQA. Besides, the proposed model is highly interpretable, which helps to pinpoint

weaknesses of a VQA system, making it easier to improve a system. Our model

highlights a future direction of leveraging PTMs for other complicated tasks requiring

multiple reasoning capabilities.
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Chapter 8

Explicit Generation and

Incorporation of Knowledge with

Frozen PT-LMs

In the previous chapter, we propose a zero-shot VQA model for generic VQA. In

this chapter, we delve into a special VQA setting, Knowledge-based VQA (which

we refer to as K-VQA in this chapter), where in addition to an image, external

knowledge is needed to answer the given question. For instance, to answer the

question in Figure 8.1, background knowledge about national parks in California is

needed.

Early methods for K-VQA follow a retrieve and answer paradigm (Figure 8.1(a)),

which first retrieve knowledge from external knowledge sources as additional input

and then train a VQA model through supervised learning [179, 130, 131, 97]. This

paradigm requires both a suitable external knowledge base and a large amount

of K-VQA training data, which may not be practical for real applications when

either of these resources is not available. Recently, with the fast advances of LLMs

that have demonstrated remarkable zero-shot transfer capabilities, several studies

applied LLMs for K-VQA under zero-shot or few-shot settings, leveraging both

the extensive knowledge implicitly contained in LLMs and their built-in question
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Question: What California 
national park are these known 
to be seen?

Image

ImageQuestion

Knowledge Base

Knowledge VQA Model

Question

Image Caption Generation

QA ModelText Description

(a) Retrieve and answer

(b) Directly answer

Knowledge Generation 
from LLM

(c) Generate and answer

Knowledge QA Model

Figure 8.1: Three approaches to K-VQA: retrieve and answer, directly answer, and
generate and answer.

answering capability [193, 70, 58, 100, 2]. Typically, these methods first convert

an image to text descriptions (i.e., captions) and then feed the captions and the

question into an LLM to directly obtain the answer, as illustrated as the directly

answer paradigm in Figure 8.1(b).

However, none of these zero-shot or few-shot methods explicitly states the knowl-

edge needed to answer a question. As we know, answering K-VQA questions usually

requires external knowledge not seen in the image. Even if the external knowledge is

implicitly contained in the LLM used for QA, it is not immediately clear whether

and how the LLM can use the relevant knowledge to answer a K-VQA question

through the directly answer paradigm. On the other hand, recent work has shown that

for text-based QA that requires multi-step reasoning, explicitly generating relevant

knowledge and including it as additional input improves QA performance [112, 198].

We suspect that this is also the case for K-VQA. Furthermore, explicitly generated

knowledge improves the explainability of the system. Another limitation of previous
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zero-shot and few-shot K-VQA methods is that some of them rely on task-specific

training such as the training of a question-specific caption generation model in

PromptCap [70], which still requires significant amount of training data.

In this chapter, we attempt to address these limitations of previous work. Inspired

by Liu et al. [112], which uses an LLM to generate explicit knowledge statements

to facilitate text-based commonsense QA, we propose a similar zero-shot K-VQA

method that uses an LLM (specifically GPT-3) to explicitly generate potentially

useful knowledge statements to facilitate K-VQA, as illustrated in Figure 8.1(c).

In addition to having explicit knowledge statements, our method is also free from

any additional training. To improve the diversity and coverage of the generated

knowledge, we further borrow the self-supervised knowledge diversification strategy

from [198]. We call our method KGENVQA. To the best of our knowledge, we are

the first to test the generate and answer approach on K-VQA.

KGENVQA is under the Frozen-Composition strategy for using PTMs as

mentioned in Section 1.3. Specifically, here we consider two sub-tasks in K-VQA:

relevant knowledge generation and knowledge incorporation for answer prediction

(N1 = 2). Then we leverage two PT-LMs for each task respectively (N2 = 2).

Furthermore, we design proper techniques for leveraging PT-LMs for each task. The

contribution of KGENVQA is first explicitly consider the K-VQA as two reasoning

steps, which has not be studied before. Besides, we design strategies to map two

reasoning steps to proper tasks for PTMs.

We evaluate KGENVQA on both OK-VQA [122] and A-OKVQA [154], two

benchmark datasets commonly used for K-VQA. The experiments demonstrate

that our generated knowledge statements are effective in improving the K-VQA

performance in terms of answer accuracy, when everything else being equal, and

our method can outperform SOTA zero-shot K-VQA methods that do not use extra

training. We also measure the usefulness of our generated knowledge and find that

the generated knowledge statements have high quality in terms of grammaticality,

relevance, factuality, helpfulness, and diversity, based on manual judgement. Our
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Question: What California 
national park are these known 
to be seen?

Image

Initial Knowledge Generation

Demo. 1
Demo. 2

Convertor

Self-supervised Knowledge Diversification

Context: a black bear walking 
by a tree filled forest; there is 
a black bear in front of trees…

Language 
Model

Demo. 6
……

Please generate … Initial Knowledge: 
Black bears are found 
throughout California, with the 
greatest concentrations in 
forested areas.

K-Means Clustering

CQKt 1
CQKt 2

….

…...

CQKt K
…….

While t<=T

Language 
Model

Knowledge t: 
Yosemite National 
Park … western 
Sierra Nevada of 
Central California

Knowledge Set

Knowledge 1
……

Knowledge t
..….

Question

Context

Knowledge 
Set

Language Model

yosemite

Figure 8.2: An overview of the proposed method. We first convert the image into
textual descriptions and prompt LLMs with the question and manual demonstrations
to obtain the initial knowledge pieces. In the second stage, we diversify knowledge
by selecting a diverse set of knowledge statements in the first step as demonstrations.
Lastly, we incorporate the generated knowledge for QA with a language model.

findings demonstrate that generate and answer is a feasible zero-shot approach to

K-VQA with the additional benefit of providing explanations through the explicitly

generated knowledge statements.

8.1 KGENVQA Model

8.2 Method

The high-level idea of our KGENVQA method is to leverage an LLM to generate

explicit knowledge statements given an image and a question. These knowledge

statements can then be combined with the image captions and the question to be

passed to the same or a different LLM for zero-shot text-based QA. In this section, we

first elaborate how we generate knowledge statements from an LLM using few-shot

in-context learning. We then present how the generated knowledge is integrated into

the question answering process.
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8.2.1 Knowledge Generation

Our knowledge generation process consists of two steps: An initial knowledge

generation step, in which we generate a single knowledge statement for each (image,

question) pair in the K-VQA test dataset, and a subsequent self-supervised knowledge

diversification step, in which we sample a diverse set of knowledge statements

generated during the first step as in-context demonstrations to perform a second

round of knowledge generation, in which we generate multiple knowledge statements

per (image, question) pair. The motivation is that with a diverse set of in-context

demonstrations, we expect the LLM to also generate knowledge statements covering

different aspects of the same (image, question) pair, which may increase the chance

of getting the correct answer.

Caption generation. In both knowledge generation steps, we regard an LLM

(GPT-3 in our experiments) as a knowledge base because the LLM has been trained

on a large amount of text covering a wide range of topics. Previous work has shown

that relevant knowledge statements can be generated from an LLM if appropriate

text prompts including both the contexts and some demonstrations are used [112].

However, different from text-based QA, for K-VQA, the context is an image, which

cannot be directly used as input to an LLM. To address this issue, we adopt a simple

solution that converts the image into one or more captions, using an off-the-shelf

image captioning model. However, instead of using a general-purpose captioning

model, we believe that question-aware captions, which focus on describing the parts

of the image that are more relevant to the question, can provide better contexts for

knowledge generation. Therefore, we adopt the question-aware caption generation

mechanism by Tiong et al. [171], which first highlights image regions that are

more relevant to the question and then generates question-aware captions with the

attention-weighted image. Following the practice of Tiong et al. [171], we use

multiple captions because this practice has been shown to be useful for subsequent

question answering. We concatenate the multiple captions into a single sequence of
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tokens, which we denote as C.

Prompt template for knowledge generation. In both the initial knowledge gen-

eration step and the knowledge diversification step, to generate a single piece of

knowledge, we use the following prompt template: Please generate related back-

ground knowledge to the question; Context: [C]; Question: [Q]; Knowledge:. The

LLM will complete the prompt above by generating a sentence, which we treat as a

knowledge statement. In order to better generate the relevant knowledge, we leverage

in-context learning by including a few demonstrations, i.e., a few examples each

containing a context (which are also image captions), a question, and the expected

knowledge statement to be generated. During the initial knowledge generation step

and the knowledge diversification step, we use different kinds of demonstrations.

Initial knowledge generation. During the initial knowledge generation step, we

use six manually crafted in-context demonstrations for knowledge generation. They

can be found in Appendix E.8. During this step, we generate a single knowledge

statement for each (image, question) pair in a K-VQA test dataset.

Self-supervised knowledge diversification. Previous work showed that proper

selection of demonstrations is of vital importance when prompting LLMs [193, 53].

We suspect that the manually crafted demonstrations may not always be proper

examples for all test instances. Besides, when answering knowledge-intensive

questions, oftentimes more than one piece of knowledge may be needed. For

instance, to answer the question in Figure 8.2, the knowledge 1) what national parks

are in California; 2) among national parks in California, which is famous for black

bears. To generate multiple knowledge statements per question, a straightforward

solution is to ask the LLM to return multiple pieces of knowledge. However, beam

search sampling, as mentioned in [66, 177], tends to generate dull and repetitive

outputs, and the improved top-k sampling [41] can only solve the issue to some

extent. On the other hand, with different prompts, an LLM may generate diverse
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outputs [106].

Therefore, we adopt a self-supervised knowledge diversification strategy by

[198] as follows. Let Kinit = {(Ci, Qi, Ki)}Ni=1 denote the set of (captions, question,

knowledge statement) triplets obtained during the initial knowledge generation step,

where Ki is the knowledge statement generated for (Ci, Qi). We treat each triplet

(Ci, Qi, Ki) as a “silver”-labeled demonstrating example. Slightly different from

[198], we hypothesize that if each time we sample a different set of the triplets from

Kinit as demonstrating examples for knowledge generation, and we repeat this T

times for a given (image, question) pair (I,Q), then we can obtain T diversified

knowledge statements for (I,Q). To further ensure that every time the demonstrating

examples themselves are diverse, we first use K-means clustering to cluster the

triplets in Kinit. Denote these K clusters as K1
init,K2

init, . . . ,KK
init. To generate T final

knowledge statements for a given (I,Q) pair during the knowledge diversification

step, we repeat the following process T times: (1) we randomly select one triplet

from each Kk
init, except the cluster the given (I,Q) pair belonging to, to form K − 1

demonstrating examples; (2) we use these K − 1 demonstrations as in-context

examples to generate a knowledge statement for (I,Q), using the prompt template

as described earlier. We call this strategy self-supervised knowledge diversification

because we do not require any human to annotate diversified demonstrating examples.

We will empirically compare this cluster-based strategy with a random demonstration

selection strategy in our experiments. Details of how K-means clustering is done

can be found in Appendix E.1.

8.2.2 Knowledge Integration for K-VQA

With the final set of T knowledge statements generated for each (image, question)

pair, we can combine them with the image captions and the question, and pass them

to a pre-trained text-based QA model for answer generation. In our experiments, we

use UnifiedQA [83], OPT [204] and GPT-3 [15].

136



8.3 Experiment Results

8.3.1 Datasets and Evaluation Metrics

To validate our proposed method, we choose two commonly used K-VQA benchmark

datasets, namely, OK-VQA [122] and A-OKVQA [154]. Questions in OK-VQA

need outside knowledge beyond the images to answer. A-OKVQA is an augmented

version of OK-VQA that requires additional types of world knowledge. Because

the ground-truth answers of the test-split of A-OKVQA are not available, we use its

val-split for evaluation. In the end, the OK-VQA and A-OKVQA datasets we use

contain 5, 046 and 1, 100 questions, respectively. We report the soft accuracy [54]

on both datasets as there are multiple ground-truth answers for a question. Due to

the limit of space, implementation details are provided in Appendix E.2.

8.3.2 Zero-shot Methods for Comparison

In this work, we focus on zero-shot K-VQA. There are models that need extra training

(with labeled data other than K-VQA data). There are also some few-shot K-VQA

methods where the few shots are dynamically selected from a large pool of training

examples, which means they still need much training data. For fair comparison, we

do not include these methods because they are not strictly zero-shot.

Below we briefly review three existing zero-shot K-VQA methods that we com-

pare with:

PICa [193] converts images into captions with an off-the-shelf caption generator,

CLIPCap [127]. The captions are regarded as contexts and fed to GPT-3 together

with the question for answer prediction.

PNP-VQA [171] uses improved caption generation by exploiting an image-text

matching model [99] to highlight image regions related to the question. The attended

images are then used for caption generation with BLIP [99] so that the captions are

question-aware. We adopt the same caption generation method in PNP-VQA in our

method. PNP-VQA uses UnifiedQA [83], a pre-trained question answering model,
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Model, Size Setting OK-VQA A-OKVQA

U.QA
0.7B

w/o KGen 32.3 29.0
w KGen 39.7 31.6

3B
w/o KGen 39.6 35.5
w KGen 44.5 36.5

11B
w/o KGen 43.7 38.9
w KGen 45.4 39.1

OPT
6.7B

w/o KGen 35.2 32.4
w KGen 39.2 35.9

13B
w/o KGen 37.3 35.1
w KGen 40.2 36.0

30B
w/o KGen 37.7 34.4
w KGen 42.2 38.1

Table 8.1: Performance comparison between using and not using generated knowl-
edge. KGen refers to knowledge generation. U.QA is short for UnifiedQA.

in a fusion-in-decoder (FiD) manner [75], for final answer prediction.

Img2LLM [58] follows the caption generation process in PNP-VQA. Based on the

captions, it generates synthetic QA pairs as demonstrating examples when prompting

the LLM for final answers. OPT [204] is used as the LLM for QA.

8.3.3 Main Results

In this section, we empirically evaluate our generate and answer approach in two

ways: (1) We test the usefulness of the generated knowledge for K-VQA by sys-

tematically comparing our K-VQA system with and without knowledge generation.

(2) We compare our generate and answer method with SOTA zero-shot K-VQA

baselines, which do not explicitly generate knowledge.

The effect of knowledge generation. We first conduct systematic experiments to

compare the generate and answer approach and the directly answer approach based

on our own implementation. To see whether knowledge generation can consistently

help K-VQA, we experiment with three different pre-trained QA models: UnifiedQA,

OPT, and GPT-3. We choose these models because they are used in previous zero-

shot K-VQA methods, namely, PNP-VQA, Img2LLM, and PICa, respectively. When
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LLM Num. Kn.

w/o Gen. Kn. 39.6
LLaMA7B 42.1
LLaMA13B 42.5
GPT-3 44.5

Table 8.2: Results on OK-VQA when using generated knowledge from different
models. w/o Gen. Kn. denotes without using any generate knowledge. The text-
based QA model is UnifiedQA3B.

using UnifiedQA, we follow Tiong et al. [171] and adopt the FiD strategy. When

using OPT, we follow Guo et al. [58] and add synthetic QA pairs as demonstrations.1

We first show the results of UnifiedQA and OPT on both datasets in Table 8.1.

We can see that under all settings (with different QA models and different model

sizes), using the generated knowledge consistently improved the final accuracy of

the answers. For GPT-3, due to the API cost, we only use the first 500 questions in

OK-VQA for performance comparison. We find that on these 500 test examples, the

answer accuracy increased from 27.4 to 34.1, after adding generated knowledge.

Recently, a few open-source LLMs such as LLaMA [172] have demonstrated

comparable performance to GPT-3. We have also considered LLaMA as an alter-

native choice to GPT-3 for knowledge generation. We incorporate the generated

knowledge into UnifiedQA3B for answer prediction. The results from using LLaMA

generated knowledge are provided in Table 8.2. According to the results, we can

conclude that incorporating generated knowledge from open-source LLMs also ben-

efits K-VQA. By increasing the size of the LLMs, the generated knowledge can

more effectively facilitate the model to arrive at the final prediction. In summary, the

results demonstrate that the generate and answer approach consistently outperforms

the directly answer approach on both benchmark datasets under different settings.

Although our main focus is the zero-shot setting, we also experiment with the

few-shot setting, and we find that there is consistent improvement of the generate

and answer approach over the directly answer approach in the few-shot setting,

1We used the authors’ code for synthetic QA pair generation. However, due to different imple-
mentation details and the different numbers of synthetic QA pairs used, the performance of our
re-implemented Img2LLM base model differs from the reported performance.
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Model Accuracy

Previous Zero-shot Models without Extra Training
PICazero,175B 17.7
PNP-VQA0.7B 27.1
PNP-VQA3B 34.1
PNP-VQA11B 35.9
Img2LLM6.7B 38.2
Img2LLM13B 39.9
Img2LLM30B 41.8

KGenVQA (Ours)
UnifiedQA3B 44.5
UnifiedQA11B 45.4
OPT30B 42.2

Zero-shot Models with Extra Training
BLIP-2(OPT)6.7B 36.4
BLIP-2(FlanT5XL)3B 40.7
BLIP-2(FlanT5XXL)11B 45.9
Flamingo3B 41.2
Flamingo9B 44.7

Few-shot Models (n=1)
PICafew,175B 40.8
PromptCap175B 48.7

Table 8.3: Comparison with SOTA on OK-VQA.

indicating the generalization of our method to few-shot settings. Details of our

few-shot experiments can be found in Appendix E.3.

Comparison with SOTA. Next, we compare our method with the state-of-the-art

models. Because we focus on zero-shot K-VQA without extra training, we only

compare with previous models of this nature. The comparison is shown in the top

half of Table 8.3 for OK-VQA and top half of Table 8.4 for A-OKVQA. We can

observe the following from the tables: (1) On both datasets, our KGenVQA performs

better than the zero-shot baselines when model sizes are comparable. For example,

on OK-VQA, our UnifiedQA 3B surpasses all previous zero-shot baselines, i.e.,

baselines shown in the first block of Table 8.3. On A-OKVQA, our UnifiedQA 3B

only loses out to Img2LLM 30B, but this is expected because of huge difference of

model size. Our method with larger model sizes (i.e., our UnifiedQA 11B and OPT

30B) outperform all zero-shot baselines without extra training.
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Model Accuracy

Zero-shot Models without Extra Training
Img2LLM6.7B 32.3
Img2LLM13B 33.3
Img2LLM30B 36.9

KGenVQA (Ours)
UnifiedQA3B 36.5
UnifiedQA11B 39.1
OPT30B 38.1

Few-shot Models (n=10, 32 respectively)
PICafew 18.1
PromptCap175B 56.3

Table 8.4: Comparison with SOTA on A-OKVQA.

We also show those zero-shot models with extra training (e.g., BLIP-2 [100],

Flamingo [2]) and few-shot learning models (e.g., PICafew [193] and Prompt-

Cap [70]). It is worth noting that strictly speaking, PICafew [193] and PromptCap [70]

do not use the same set of few shot examples (i.e., is not few-shot learning in the

traditional sense) because these two methods dynamically sample demonstrating

examples from the whole K-VQA training set for each test example. Because of

their benefits from either extra training or access to the entire training set, we place

these models in a different category, at the bottom half of Table 8.3 and Table 8.4.

Compared with these models, we can see that our KGenVQA models still surpass

some models with extra training, such as BLIP-2 (FlanT5XL) and the powerful 3B

Flamingo, and achieve comparable results with 9B Flamingo, demonstrating the

effectiveness of our model compared with state-of-the-art models. Even compar-

ing with few-shot models, we observe that our best performance is higher than

PICafew [193] and is comparable to PromptCap175B.

It may be worth noting that on OK-VQA, PICazero performs poorly probably

because it uses a single image caption. In order to make a fair comparison with

PICazero, we provide results of our method with a single image caption and without

image descriptions (i.e., with generated knowledge only) in Appendix E.4. The

results show steady improvements (about 16 percentage points in terms of absolute
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Case Num. Kn. OK-VQA

Manual 1 35.9
Random 10 41.8
CoT 1 37.5
KGen 10 44.8

Table 8.5: Comparison of different knowledge generation methods on OK-VQA.
“Num. Kn.” is the number of knowledge statements used.

accuracy) on OK-VQA.

8.3.4 Ablation Studies

Knowledge generation method. We first compare our cluster-based knowledge

diversification strategy with (1) using the manual prompt generated knowledge,

i.e., a single piece of knowledge (Manual); (2) randomly sampling K − 1 single

knowledge statement, instead of sampling from different clusters, from the initially

generated knowledge statements, Kinit for knowledge diversification in the second

stage (Random). Besides, we consider the idea of Chain-of-Thoughts (CoT) [185],

which generates explanations before the answer generation. In K-VQA, the needed

knowledge can also be regarded as a kind of explanations. Therefore, we test the

widely used CoT for knowledge generation, which is an alternative to our cluster-

based knowledge generation approach. We re-use the six manual demonstrations

as mentioned in Chapter 8.1 and manually add answers to the questions (i.e., each

demonstration consists of contexts of image descriptions, a question, a piece of

related knowledge and an answer). Together with these demonstrations, we prompt

GPT-3 [15] to first generate the relevant knowledge and then the answer (CoT). Due

to the cost of calling GPT APIs, we only apply CoT to a subset questions on OK-

VQA (200 questions). We show model performance, based on UnifiedQA3B, with

different ways of knowledge generation and show results in Table 8.5. We have a few

observations: (1) using initial generated knowledge with demonstrations offers im-

provements but no better than KGen. This may be that fixed manual demonstrations

fail to generate diverse knowledge. For a fair comparison, we also consider using a
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QA Model Num. OK-VQA

UnifiedQA (FiD)3B

0 39.6
5 44.5
10 44.5
20 42.7

OPT13B

0 37.3
5 40.2
10 37.2
20 37.2

GPT-3

0 27.4
5 34.1
10 32.4
20 31.7

Table 8.6: Performances with different numbers of knowledge statements.

single piece of knowledge from KGen, which achieves 38.8, indicating the need of

diverse prompts in knowledge generation. (2) Comparing using random selection

and cluster-based selection in the self-supervised knowledge diversification stage,

we find that using the cluster-based method clearly outperforms random selection,

which may not generate diverse knowledge. Overall, the cluster-based knowledge

generation method is better than the other methods for knowledge generation in term

of K-VQA performance; (3) When we compare the CoT knowledge generation with

cluster-based knowledge generation, the second method significantly wins CoT in

terms the benefit to K-VQA, probably because the cluster-based method has higher

chances of facilitating answer generation with diverse knowledge; Besides, we also

compare the direct CoT-generated answers from GPT-3 with answers generated when

prompting GPT-3 for QA incorporating our generated knowledge. Our generated

knowledge results in an accuracy of 32.0 while CoT-generated knowledge leads to

29.3.

Number of knowledge statements. Next, we test how the number of knowledge

statements affects the performance, using UnifiedQA3B (FiD), OPT13B and GPT-3.

Due to the API costs, we choose OK-VQA as the experiment dataset for this ablation

study. For GPT-3 as the QA model, we test the performance on the first 500 questions.

The results are reported in Table 8.6. Intuitively, we observe improvements after
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Case Gram. Rel. Fact. Help.

Oursmax 100.0 100.0 96.3 90.0
Oursavg 99.0 100.0 94.5 67.0

Table 8.7: Evaluation of our generated knowledge in terms of four evaluation metrics.

adding more generated knowledge at first and then decrement of performance. This

is probably because adding too many pieces of knowledge may potentially add noisy

or redundant knowledge, which harms the performance. Besides, we notice that

decoder-only models have smaller optimal number of knowledge statements than

encoder-decoder FiD model. This is probably because decoder-only models (i.e.,

OPT and GPT-3) may have difficulty in understanding the long concatenated sentence

while FiD is specifically designed for comprehension of multiple documents.

8.3.5 Evaluation of the Generated Knowledge

In this section, we conduct human evaluation to exam the quality of the generated

knowledge. We follow [112] and sample 40 cases from OK-VQA dataset where

the correctness of the answers would be changed (i.e., either from correct to wrong

or wrong to correct) after adding the generated knowledge. For each instance, we

sample 5 knowledge statements for evaluation. We ask two annotators to check the

quality of the generated knowledge in terms of the evaluation metrics below. To

ensure objectiveness, annotators will not know whether the predictions are changed

to become correct or wrong.

Evaluation metrics. Following [112, 157], we take four metrics for evaluating

generated knowledge: 1) Grammatically: whether it is grammatical 2) Relevance:

whether it is related to answering the question and the image; 3) Factuality: whether

it is factual; 4) Helpfulness: whether it is helpful so that it directly leads to the correct

answers or provides indirect but supportive information of the correct answers. For

helpfulness, we adopt three categories of evaluation: helpful (i.e., provides direct or

indirect supportive information to correct answers), harmful (i.e., negates correct

answers or support incorrect answers) or neutral (neither helpful or harmful). Besides
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the previously used metrics, we also consider Diversity as the fifth evaluation criteria,

indicating the coverage of generated knowledge. Details about the definitions can be

found in Appendix E.9 and the examples we provide to annotators regarding the four

evaluation metrics are included in the supplementary materials.

Results. The average agreement from two annotators over four evaluation metrics

is 0.67, in terms of Fleiss Kappa κ [90]. It indicates substantial agreement among

annotators. For each criterion, we report the average score over two annotators. We

consider two evaluation settings for generated knowledge: 1) average: taking the

average scores over five pieces or knowledge; 2) max: take the maximum score

over scores of five knowledge. The results are provided in Table 8.7. According to

the results, most knowledge is grammatical, relevant to questions and factual. One

interesting thing is that the generated knowledge may be relevant to questions but

harmful for final answers, as the average score in term of helpfulness is only around

70. From the comparison with average and max scores of human evaluation, we

further verify the need of knowledge diversification, which can raise the chance of

generating helpful knowledge, as indicated by the maximum score of helpfulness,

which means how likely the generated knowledge will lead to the correct answer. For

diversity, we compare the five pieces knowledge generated by cluster-based selection

against random selection. The average diversity of cluster-based select is 3.4, while

2.5 for random selection. It shows cluster-base selection results in more diverse

knowledge, which is more likely to cover information for answering questions. It is

in consistency with results in Table 8.5.

8.4 Qualitative Analysis

To better understand the advantage of our method, we compare our method with the

baseline, UnifiedQA3B (FiD), without generated knowledge. We analyze the first

20 cases, without cherry picking, where our method answers correctly while the

baseline gives wrong predictions. Among the 20 error cases of the baseline, 85%
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are due to the lack of external knowledge, highlighting the advantage of our method.

Due to the limitation of space, we provide the examples in Appendix E.7.

Besides, we conduct error analysis to better understand the limitations of our

method. We conduct an empirical analysis for the error cases by manual checking

40 error cases from UnifiedQA3B (FiD) after adding generated knowledge. Among

all error cases, we observe 20% are due to the undesired knowledge. Due to limi-

tation of space, we provide visualization of the error cases in Appendix E.6. The

main cause of generating misleading knowledge comes from the inaccurate image

descriptions which lack details for LLMs for knowledge generation. It implies with

the development of better image description generation tools, our method can be

potentially improved.

8.5 Conclusion

In this chapter, we propose to generate relevant knowledge from PT-LMs, specifi-

cally LLMs, for zero-shot K-VQA. We evaluate the effectiveness of the generated

knowledge by experimenting with different pre-trained QA models of varying model

sizes on two K-VQA benchmarks. The experiment results show that the generated

knowledge improves K-VQA performance, and our method can outperform SOTA

zero-shot K-VQA methods. We further conduct human evaluation to validate the

quality of the generated knowledge. The results demonstrate that the generated

knowledge statements are relevant and helpful to questions in K-VQA.
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Chapter 9

Conclusion and Future Directions

In this chapter, I will first summarize the contributions of the work presented in the

previous chapters. I will then present future directions to be explored to better utilize

PTMs for VLU tasks.

9.1 Summary of Contributions

This thesis attempts to design innovative approaches to optimize the use of PTMs for

VLU tasks, with a specific focus on HMD and VQA. We categorize our proposed

methods regarding whether we adopt the fine-tuning or zero-shot/few-shot learning

and whether we use a single PTM or a composition of PTMs. In other words,

we have explored four categories of using PTMs: Tuning-Single, Frozen-Single,

Tuning-Composition and Frozen-Composition, for HMD and VQA.

In Chapter 3, we proposed the DisMultiHate model with the Tuning-Single strat-

egy, by incorporating task-specific components. It leveraged the pre-trained BERT

model [36] and tuned it so that it learned target-aware textual representation that can

disentangle target entities. To achieve the goal, we used a self-supervised training

diagram. The learned target-aware textual and visual representations were used for

HMD. The good performance on two benchmarks demonstrated the effectiveness of

the model.

In Chapter 4, we seek to leverage implicit knowledge in PT-LMs to aid HMD,
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which frequently requires external background knowledge. Since PT-LMs are in-

herently textual, the method involves a frozen pre-trained vision-language model

(PT-VLM) for converting meme images into textual captions. Then the multimodal

classification task is converted to a masked language modeling task. We further give

two demonstrations to provide contextual information and prompt a PT-LM for the

prediction. This piece of work exploits both the Tuning-Single and Frozen-Single

strategy. The proposed model showed significant performance improvements over

baselines, highlighting the superiority of the proposed model.

However, the work in Chapter 4 suffers from non-informative captions during

image conversion to textual descriptions. Generic image descriptions may lack

crucial details, such as race and gender information, vital for detecting hateful

content. In Chapter 5, we proposed a probing-based captioning approach to leverage

a frozen PT-VLM for complementary. Specifically, we prompt a frozen PT-VLM with

hateful content-related questions and use the answers as image captions, ensuring that

the captions contain critical information for hateful content detection. The method

leverages a frozen PTM for the sub-step, hateful content-related image description

generation, in HMD, thus following the Frozen-Single strategy of using PTMs. When

incorporating the generated hateful content-related captions into text-based HMD

models, significant improvements can be achieved.

Though showing good detection performance, all methods above are fully super-

vised which heavily rely on large volumes of training data. The dynamic nature of

hateful memes tied to evolving events, nevertheless, makes it impractical to annotate

sufficient training examples. In response, we present, to the best of our knowledge, a

pioneering exploration of HMD tailored to the few-shot learning setting in Chapter 6.

We introduce a modularized network for HMD, by harnessing the power of a compo-

sition of tuned PTMs, each of which possesses an essential reasoning capability for

HMD. This piece of work falls in the category of Tuning-Composition when using

PTMs.

On the other hand, we consider the other complex VLU task, VQA. VQA
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questions often require multiple steps of reasoning, which is still a capability that

most PTMs lack. Besides, different steps in VQA reasoning chains require different

skills such as object detection and relational reasoning, but a single PTM may not

possess all these skills. Third, recent work on zero-shot VQA does not explicitly

consider multi-step reasoning chains, which makes them less interpretable compared

with a decomposition-based approach. To address the problem, we proposed a

modularized zero-shot network with the Frozen-Composition strategy of utilizing

PTMs. We explicitly decompose VQA questions, convert sub reasoning tasks to

acceptable objectives of PTMs and assign converted tasks to proper PTMs. The

experiments on two VQA benchmarks pointed out the effectiveness of the proposed

model, especially when questions involved multi-step reasoning.

Expanding our inquiry, in Chapter 8, we delved into a specific VQA scenario,

K-VQA, where external knowledge apart from images is indispensable to answer

questions. Recent zero-shot K-VQA models lack explicit demonstration of the

knowledge used to answer questions and thus lack interpretability. We propose to

explicitly generate and incorporate knowledge with frozen PT-LMs for K-VQA. The

method involves one PTM for knowledge generation and one PTM for question

answering with the incorporation of generated knowledge. It follows the method

of Frozen-Composition when using PTMs. The method improves the K-VQA

performance as well as interpretability.

9.2 Future Directions

In this section, I will provide a few future directions regarding the application of

PTMs to the research field of VLU.

Making Trustworthy and Reliable PT-VLMs Although PTMs, especially PT-

VLMs, largely facilitate the research of VLU, the drawbacks of PT-VLMs may also

pose hurdles to the research.

One type of limitation in PT-VLMs is that existing PT-VLMs tend to hallucinate
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about non-existent objects or non-existent attributes when answering questions about

images [105, 78, 196]. The hallucinations of PT-VLMs make them less trustworthy,

hindering their applications to real-world settings.

One line of research concentrates on introducing evaluation strategies, such as

evaluation datasets [105, 116] and evaluation metrics [105, 78] for better understand-

ing and quantifying of hallucinations in PT-VLMs. The other line of work tries to

mitigate hallucinations in PT-VLMs [196, 109]. Each line of research suffers from a

few limitations.

The proposed evaluation datasets and evaluation metrics focus on a narrow scope

of hallucinations (object hallucination and attribute hallucination) and overlook other

types of hallucinations such as the hallucination of non-existent relations [105, 116].

As for the mitigation of hallucinations, some works conducted further tuning of

PT-VLMs with instructional data [109, 116], which is expensive with the scaling of

model sizes. Moreover, the additional instructional data is limited and focuses only

on augmenting negative instructions.

To make PT-VLMs trustworthy and applicable in real-world scenarios, we should

consider all categories of hallucinations and propose interpretable mitigation methods.

A promising direction would be decomposing long responses from PT-VLMs into

atomic statements and leveraging a composition of PTMs as examiners. The high-

level idea is similar to our work in [17], whereas we decompose the models’ outputs

instead of questions in [17]. Specifically, given a complex response, we leverage a

parser to decompose it into atomic statements, each of which states an aspect of the

input image (e.g., the existence of an object, the relation between two objects, or the

attribute of an object). Then, for each aspect, we apply an appropriate and expertise

PTM for checking. For instance, an object detector will be used for checking the

existence of an object and a scene graph generator will be used for checking the

relation between two objects. With feedback from examiners, we update models’

responses if there are hallucinations.

Another obvious limitation in PTMs making them less reliable is their generation
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of toxic contents. One of our focused VLU task is HMD, for the detection of manually

created hateful content. However, we should also raise our awareness of the detection

of toxic contents generated by AI systems. Previous studies about PT-LMs showed

that they were likely to give toxic outputs with specific prompts [136, 186]. Recent

studies [180] have found a similar tendency in PT-VLMs in generating toxic content

given malicious images. Meanwhile, images can also be distractions to mislead PT-

VLMs to accept malicious instructions [113]. Besides, the generation of PT-VLMs

involves not only texts but potentially images. However, no existing studies have

explored analyzing multimodal generation from PT-VLMs. As for mitigation of

harms in PT-VLMs, there is limited work [180]. It is always important to guarantee

the safety of PT-VLMs before applying them in real-world scenarios.

General-Purpose VLU Systems In this thesis, we studied two specific VLU tasks,

HMD and VQA, whereas in the real-world setting, different VLU tasks may be

entangled. For instance, an online vision-language chat-bot may be expected to

both answering questions related to input images (performing the task of VQA) and

giving warnings if users input a hateful meme (performing the task of HMD).

One potential strategy for creating a general purpose VLU system is model

merging, namely leveraging a composition of PTMs, each capable of a VLU task.

Additionally, a PTM serves as the leader to assign tasks to appropriated models.

The assignment could be done implicitly by merging parameters in different

PTMs, each capable of a specific VLU task. The leader PTM learns to compose

these PTMs by evaluating their relevance to the task mentioned in the input texts

from users. This idea is similar to what we explored in Chapter 6, while calling for

more PTMs considering different VLU settings. Studies about model merging would

facilitate this way for constructing general purpose VLU systems.

Alternatively, the assignment could be done explicitly as well. The leader could

decompose a complex task into sub-tasks and choose proper PTMs for each sub-task.

This idea is similar to the piece of work in Chapter 7, however, in a more general

VLU setting, calling for a set of PTMs capable of different VLU tasks.
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Appendix A

Appendix for PromptHate

A.1 Experiment Settings

We train all models using Pytorch on an NVIDIA Tesla V100 GPU, with 32 GB

dedicated memory, CUDA-10.2. For PTMs (i.e., BERT, RoberTa, VisualBERT), we

use the package, transformers (version 4.19.2) from Huggingface1. Table A.1 lists

the parameter count for all models.

Method # Params (M)

Text BERT 109.9
Image Region 1.0
Late Fusion 110.9

Concat BERT 111.8
MMBT-Region 111.5

Visual BERT COCO 111.8
ViLBERT CC 252.1
CLIP BERT 111.7
MOMENTA 71.9
DisMultiHate 115.6
FT-RoBERTa 356.4
PromptHate 355.4

Table A.1: Number of parameters in HMD models.

The learning rates of models are set empirically. For BERT based models, the

learning rate is set to be 2× 10−5, the same as in [92]. For RoBERTa-large based

models (PromptHate and FT-RoBERTa), following [50], we tested learning rate
1https://huggingface.co/
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Model FHM HarM
AUC. Acc. AUC. Acc.

ClipCap+COCO 78.72 70.20 87.25 78.38
ClipCap+CC (UC) 80.38 70.08 88.56 81.94

ClipCap+CC 81.45 72.98 90.96 84.47

Table A.2: PromptHate with different image captions.

ranging from 10−5 to 1.5×10−5 and reported the best ones. Specifically, the learning

rate is set to be 1.3 × 10−5 and 10−5 on FHM and HarM datasets, respectively.

AdamW is used as the optimizer for all models. The mini-batch size is set at 16

during training. As mentioned in Section 4.1.6, we apply the multi-query ensemble

strategy. The number of querying times is set at 4 on both datasets. It takes one

GPU six minutes to train and validate PromptHate per epoch. It takes up 19 GB

dedicated memory for PromptHate training. We use 10 training epochs for both

PromptHate and baselines.

A.2 Analysis for Image Captions

A key data-preprocessing step in PromptHate is to covert the image into tex-

tual captions as input for PLMs. Therefore, the quality and expressiveness of the

image captions may affect the prompting and ultimately affect the hateful meme

classification performance. To investigate this effect, we experiment with image

captions generated with ClipCap [127] pre-trained on different datasets, namely, MS

COCO [107, 26] and Conceptual Caption (CC) [155].

Table A.2 shows PromptHate’s performance with image captions generated

using ClipCap pre-trained on COCO (ClipCap+COCO) and CC (ClipCap+CC).

We observe that the ClipCap pre-trained on CC performs better than that pre-trained

with COCO. A possible reason could be that the CC dataset is mainly images from

web pages and rather more similar to meme images. For instance, considering the

examples in Table A.3, we notice that ClipCap pre-trained on CC provided more

detailed descriptions (e.g., the relation of the man and the woman of the first meme

and the characteristic of the sign in the second meme) compared to COCO. On
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Meme

ClipCap
+COCO

a man and a woman are in a
kitchen.

a sign that is on the side of a
hill.

ClipCap
+CC (UC)

thank you for the dishes! a warning sign on a hillside.

ClipCap
+CC

young couple in love looking
at each other in kitchen.

warning sign at the entrance
to the quarry.

Table A.3: Example captions generated for meme images.

the other hand, we test the generated captions using the uncleaned (i.e., without

removing meme texts on images) meme images (ClipCap+CC (UC)). We notice

that when trained with Conceptual Captions, ClipCap+CC (UC) is still able to

generate some details (i.e., the characteristic of the sign in the second example).

It sometimes generates comments rather than captions that describe images. It is

because Conceptual Captions are from the web, and some of them are comments on

meme images. Without removing texts, models will link the image to meme images

and generate comments rather than captions. The difference in their performance

is also significant, suggesting the importance of good quality captions in applying

prompt-based models for hateful meme classification.
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Appendix B

Appendix for Pro-Cap

B.1 Details for Implementation

We implement all models under the PyTorch Library with the CUDA-11.2 version.

We use the Tesla V 100 GPU, each with a dedicated memory of 32GB. For models

specifically implemented for HMD, we take the codes published from the author

for re-implementation 1. For PTMs which can be found under the Huggingface

Library, we use the packages from Huggingface 2, specifically the BERT [36],

VisualBERT [101] and the BLIP model. For ViLBERT [117], we take the released

code from the authors 3. For ALBEF [98] and BLIP-2 [100], we use the packages

under the LAVIS Library4.

For each meme image, we constrain the total length of the meme text and the

generic image caption (either from the captioning model or by asking about the

content of the image) to be 65. For each additional questions, we restrict its length to

be shorter than 20. If the concatenation of the sentence exceeds the limited length,

the sentence will be truncated, otherwise, if the sentence is shorted than the limited

length, it will be padded. We set the number of training epochs to be 10 for all

models.
1CLIP-BERT/MOMENTA: https://github.com/LCS2-IIITD/MOMENTA;DisMultiHate:

https://gitlab.com/bottle shop/safe/dismultihate; PromptHate: https://gitlab.com/bottle shop/safe/prompthate
2https://huggingface.co/
3https://github.com/facebookresearch/vilbert-multi-task
4https://github.com/salesforce/LAVIS
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The number of model parameters are summarized in Table B.3.

B.2 Full Ablation Study Results

Due to the limitation of space, we only show results of accuracy in ablation studies

in Table 5.6. The full results including both the AUC and the accuracy are provided

in Table B.4.

B.3 Visualization Cases

In Section 5.3, we provide visualization of cases for comparing Pro-CapPromptHate

with the basic PromptHate. Due to space constraints, we omit examples from the

other two datasets. We provide more visualization cases in this part. The cases from

the HarM dataset are illustrated in Table B.1 and the cases from the MAMI dataset

are shown in Table B.2.

B.4 Results with Pro-Cap about One Target

In Section 5.2, we only report results when models use Pro-Cap from all probing

questions. In this part, we report results (with entities) when using the answers from

a single probing question in Table B.5.

According to the results, we observe models using answers to a single probing

question are all powerful and some even surpass heuristically asking all probing

questions (e.g., using the question asking about nationality on FHM is better than

using all probing questions). It points out using all probing captions may not be

the optimal solution and may generate irrelevant image descriptions. For instance,

confronted with a hateful meme targeting at black people, it is meaningless to ask the

religion of people in the image. Interestingly, on MAMI, when only using answers

to the probing question about gender reaches teh best performance. It is because

MAMI contains only hateful memes about woman. A promising direction would
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train the model to dynamically select probing questions essential for meme detection

for different memes.
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Table B.1: Comparison between Pro-CapPromptHate and basic PromptHate on HarM
dataset.

Meme

Ground
Truth

Hateful Hateful

Basic
Pred Non-hateful Non-hateful

Pro
Pred

Hateful Hateful

Meme
text

now that I have tested positive
for COVID-19. It’s time to take
this virus seriously.

Thank you reatDonald Trump
for giving your well thought
out suggestionfor keeping me
safe from COVID-19 atrump-
memes #Covid 19 Anti-covid-
19 smoothie

Basic
Cap-
tion

i’m going to get tested for a
virus!.

how to clean a kitchen sink
with vinegar and food coloring.

Pro-
Cap

(Generic:) trump in a suit and
tie with the caption now that
positive covid-19 it’s time to
take the virus seriously. (Race:)
he is a white man in a suit and
tie with a red tie and a white hat
with a red hat. (Gender: he is
a man in a suit and tie with a
caption that says now that pos-
itive covid-19 it’s time to take.
(Country): us of america. (Re-
ligion: he is a christian.

(Generic:) a picture of a
blender with cleaning products
on it.
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Meme

Ground
Truth

Hateful Hateful

Basic
Pred Non-hateful Non-hateful

Pro
Pred

Hateful Hateful

Meme
text

you say you want to be a premium
vendor until you know what I had
to go threw to get it.

wish list I would love to send her
under the Christmas eve.

Basic
Cap-
tion

wallpaper probably with a well
dressed person and a well dressed
person entitled person.

western christian holiday from all
of us!.

Pro-
Cap

(Generic): a woman is being
choked by a man. (Race): a black
woman is being choked by a man
in a t-shirt with a picture of a t-
shirt. (Gender): a woman is be-
ing choked by a man in the im-
age. (Country): afghanistan. (Re-
ligion): the person in the image is
a christian.

(Generic): a woman in a santa
claus hat posing in a bikini.
(Race): a white woman in a santa
claus hat posing in a sexy bikini.
(Gender): a woman wearing a
santa claus hat and a bikini. (Coun-
try): switzerland. (Religion):
santa claus is the religion of the
person in the image.

Table B.2: Comparison between Pro-CapPromptHate and basic PromptHate on MAMI
dataset.
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Method # Params (M)

Text BERT 109.9
Image Region 1.0

Visual BERT COCO 111.8
ViLBERT CC 252.1

MMBT-Region 111.5
CLIP BERT 111.7
MOMENTA 71.9
DisMultiHate 115.6

BLIP 385.0
ALBEF 209.5
BERT 109.9

PromptHate 355.4

Table B.3: Number of parameters in VQA models.

Ans. Length FHM MAMI HarM
Model AUC. Acc. AUC. Acc. AUC. Acc.

No Centric 79.08±0.94 70.08±1.57 82.26±0.71 72.78±0.63 87.04±0.89 80.11±1.14
Penalty = 1 80.76±1.06 71.94±0.97 82.53±0.49 73.06±0.82 88.34±0.77 82.09±1.21
Penalty = 2 80.87±0.66 72.28±0.90 82.27±0.57 72.91±1.16 90.25±0.72 82.85±1.51
Penalty = 3 79.62±0.93 71.40±1.06 82.36±0.97 72.47±0.74 90.25±0.54 83.25±1.00

Table B.4: Model comparison without any augmented image tags.

Dataset FHM MAMI HarM
Model AUC. Acc. AUC. Acc. AUC. Acc.

Race 83.63±0.26 74.28±1.34 84.00±0.57 73.51±1.10 90.43±0.70 82.26±1.96
Gender 83.91±0.97 76.08±1.47 84.34±1.06 74.21±0.64 91.05±0.57 83.16±1.79

Religion 84.85±0.87 75.52±1.45 83.90±0.78 73.95±0.84 90.86±0.39 82.15±1.15
Nationality 85.78±0.37 75.72±0.96 83.73±0.49 72.76±0.52 91.27±0.68 84.30±1.82
Disability 85.26±0.64 75.96±0.82 83.81±0.87 73.75±0.76 90.20±0.82 84.12±0.60
Animal 84.93±0.31 75.48±0.72 84.10±0.49 73.53±0.90 90.13±0.87 82.65±2.01

Pro-CapPromptHate 83.58±0.60 75.10±0.97 83.77±0.75 73.63±0.75 91.03±1.51 85.03±1.51

Table B.5: Model performance when only asking a single probing question.
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Appendix C

Appendix for Mod-HATE

C.1 Details of Implementation

Module Lr. Bz. Epochs

hate-speech 0.0005 16 1
meme-comp 0.0005 8 2
hate-interp 0.0005 8 2

Table C.1: Hyper-parameters for LoRA module learning. Lr. is for learning rate, Bz.
is for batch size and epoch is for the number of training epochs

We implement all models under the PyTorch Library with the CUDA-11.2

version. We use the NVIDIA A40 GPU, each with a dedicated memory of 48GB.

For the implementation of the OpenFlamingo model, we took the code released

by the authors [9] 1. For the implementation of LLaMA model, we leverage the

HuggingFace Library 2, with the yahma/llama-7b-hf checkpoint 3. The version of

Huggingface is 4.33.0. For the parameter-efficient tuning with LoRA, we adopt

implementation from the PEFT Library 4 of version 0.5.0. The training of LoRA

modules is optimized with the Huggingface trainer. The hyper-parameters for LoRA

module learning is provided in Table C.1. The ranks of all LoRA modules are set to

1https://github.com/mlfoundations/open flamingo
2https://huggingface.co/
3https://huggingface.co/yahma/llama-7b-hf
4https://huggingface.co/docs/peft/index
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be 16. We convert model parameters in LLaMA into binary float and it takes 21GB

dedicated GPU memory during the inference stage with our Mod-HATE. It takes

about 21GB dedicated GPU memory for training the module composer.

Model # Params (B)

OPT-13B 13
OPT-30B 30

OpenFlamingo-3B 3
OpenFlamingo-9B 9

Flamingo-3B 3.2
Flamingo-9B 9.3
Mod-HATE 7

Table C.2: Number of parameters in models.

For each meme image, we constrain the length of the meme text to be 25. If the

length exceeds, we will truncate the meme text. The number of model parameters

are summarized in Table C.2.

C.2 Error Cases

In this section, we provide visualization of two representative error cases of our

Mod-HATE in Table C.3. The first kind of error comes from inaccurate predictions

from some modules, as illustrated in the first example. Though hate-interp provides

good interpretation, the other modules may contribute more to the final prediction so

that the meme is predicted as non-hateful. For instance, the meme-comp module fails

to understand the multimodal meme. It calls for better construction of individual

modules as every module matters for the final prediction. The other common error

is because different memes may rely on different modules for prediction while

our module composer produces the same importance scores facing up to different

memes. For example, the second hateful meme can be detected correctly with a

hate-speech module as there is shallow multimodal understanding. Therefore, the

skills from other modules may be redundant. 2This finding has also been proven by

the results in Table 6.3 and better optimization methods for generating importance
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scores may be needed. A better solution is that the module composer can generate

instance-dependent importance scores over modules.

Meme

Ground
Truth

Hateful (Nationality) Hateful (Gender)

hate-
speech No

Yes

hate-
interp It dehumanizes the immi-

grants as lesser humans that
are not people.

It dehumanizes the females
as less capable humans that
are only good for cooking
and sex.

meme-
comp Meme poster is trying to con-

vey that the two children are
not people but are actually a
fence.

Meme poster is trying to con-
vey that women today can’t
cook like their mothers but
they can drink like their fa-
thers.

meme-
comp,hate-
speech

No No

meme-
comp,hate-
interp

The meme is hateful because
it dehumanizes the refugees.

It is hateful because it de-
grades women by suggesting
that they are not good cooks.

hate-
speech,hate-
interp

No No

Mod-
Hate No No

Table C.3: Error cases of Mod-Hate. Incorrect prediction in red.

C.3 Templates for In-context Learning

In this section, we provide the template we used for prompting PTMs (either PT-

VLMs or LLMs) in the in-context learning manner. When prompting OpenFlamingo,
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# shots Dataset H-S H-E M-C

4-shots
FHM 0.4865±0.0339 0.4561±0.0455 -0.0013±0.0042

MAMI 0.4210±0.0324 0.4707±0.0451 0.0024±0.0043

HarM 0.4564±0.0454 0.4532±0.0.0453 0.0025±0.0055

8-shots
FHM 0.4713±0.0269 0.3921±0.0425 0.0013±0.0013

MAMI 0.4139±0.0102 0.4453±0.0162 0.0014±0.0031

HarM 0.4127±0.0132 0.4512±0.0292 0.0010±0.0012

Table C.4: Weights of LoRA modules of our Mod-HATE model. H-S for the hate-
speech LoRA, H-E for the hate-exp LoRA module and M-C for the meme-captions
module.

we use the template: ¡image¿User:it is an image with: [MEME TEXT] written on

it. Is it hateful? GPT: ¡answer¿, where [MEME TEXT] is a placeholder and will

be replaced with the real meme text. When prompting Otter, we use the template:

¡image¿is an image with: [MEME TEXT] written on it. Is it hateful? Answer:.

When prompting OPT after converting meme images to textual descriptions (denoted

as CAP), the input will be: Please decide whether the meme is hateful according to its

image caption and meme text. Image Caption: [CAP]; Meme Text: [MEME TEXT]

Prediction:. The few-shot examples will be converted into similar format of prompts

and are positioned at the beginning of prompts.

C.4 Full Results of Importance Scores to LoRA Mod-

ules

We provide the full results of importance scores to LoRA modules in both 4-shot and

8-shot settings with the standard deviation in Table C.4.
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Appendix D

Appendix for Mod-Zero-VQA

D.1 Modules in VQA

We summarize all modules in traditional NMNs for VQA [69, 59, 25] in Table D.1.

D.2 Logical Operations

In this section we describe the logical modules And and Or. Both of them receive

outputs from two zero-shot Exist modules. For the And module, if both outputs

are yes, it outputs yes; otherwise, it outputs no. For the Or module, if both outputs are

no, it outputs no; otherwise, it outputs yes. The logical operators are deterministic.

D.3 Existence Questions

As mentioned briefly in Section 7.2.3, for questions verifying the existence of

something, according to the NMN layout, we classify these questions into three types:

verifying existence of objects, of attributes, and of relations. For the verification of

object existence, we directly apply the zero-shot OWL. For both attribute and relation

verification questions, we first make sure all objects mentioned in the question exist

with the help of OWL. If any mentioned objects do not exist, the predicted answer

will be No, as illustrated in Figure D.1. If the objects exist, we leverage either
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Module Output Functionality
Find(V, gOBJ) Att. Locate a certain object (OBJ) in

the image
Relocate(α,V,gRELA) Att. Transit attention from previous

attention map α according to the
relation (RELA)

Filter(α,V,gCONDI) Att. Highlight objects that are at-
tended by previous attention
map α and satisfy the condition
(CONDI)

Choose(α1,α2,V,gRELA1 ,gRELA2) Ans. Choose the relation from RELA1

and RELA2 between highlighted
regions of two attention maps

Query(α,V,gQUERY) Ans. Generate a final answer given the
attention map, image representa-
tion and item to query (QUERY)

Count(α) Ans. Outputs a number given the atten-
tion map of the image

Exist(α) Ans. Output a binary answer (yes/no)
given the attention map of the im-
age

And(α1,α2) Ans. Generate a binary answer
(yes/no) given the two attention
maps

Or(α1,α2) Ans. Generate a binary answer
(yes/no) given the two attention
maps

Table D.1: The full list of modules in traditional NMNs. g[·] is the word embedding
for the words in [·].

zero-shot OWL or MDETR to locate at objects of interests and verify the attributes

and relations, with the utilization of the CLIP module. Examples are provided in

Figure D.2 (for attribute verification) and Figure D.3 (for relation verification). We

use CLIP for binary matching to select whether the attribute/relation exists. When

multiple attributes/relations are to be verified, only when all attributes/relations exist

will the predicted answer be Yes; otherwise, the prediction is No. For instance, the

third example in Figure D.2 has a dark brown table, but the table is not glass, so the

third step outputs no. The final predicted answer to the question is therefore no.
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Question: Is the little dog catching a ball?

Reason: MDETR(little dog) – OWL(ball) -- CLIP([1], [2], 

[catching, not catching])

1

0.74

2

Question: Is the player wearing a hat?

Reason: OWL(player) – OWL(hat) -- CLIP([1], [2], 

[wearing, not wearing])

1 2

0.38

Figure D.1: Visualization of existence-related questions where mentioned objects in
the questions do not exist.

D.4 Detailed Implementation for Spatial Heuristics

In this section, we give the mathematical definitions of the spatial heuristics. The

input bounding box is denoted as b = (x, y, w, h), representing the relative position

and relative size of the object in the VQA image.

Spatial Determine (SpD) receives an object bounding box and determines

which position in the original image the object is at. The position candidates P are

generated according to the question. When the question is asking for the horizontal

position of the object, P = {left, right}; When the question is asking for the vertical
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Question: Does the purse look brown and old?

Reason: OWL(purse) -- CLIP([1], [brown, not brown])

-- CLIP([1], [old, not old])
1

0.46

Question: Does the freezer to the right of the utensils 

have blue color?

Reason: MDETR (freezer to the right of the utensils) 

-- CLIP([1], [blue, not blue])
1

0.88

Question: Is the table dark brown and glass?

Reason: OWL (table) -- CLIP([1], [dark brown, 

not dark brown]) -- CLIP([1], [glass, not glass])
1

2

Yes No

3

No

2

2

Yes No

3

Figure D.2: Visualization of questions asking about existence of attributes.

position of the object, P = {top, bottom}. The SpD module is implemented as:

SpD(b,P) =


left, if x < 0.5

right, else
(D.1)

when P = {left, right}. When P = {top, bottom}, the spatial heuristic is derived

as:

SpD(b,P) =


top, if y < 0.5

bottom, else
(D.2)
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Question: Is the wood table to the left of a couch?

Reason: MDETR(wood table) – OWL(couch) -- SpC([1], [2], [to the left of, 

not to the left of])

2

0.60

1

1.00

Question: Do you see knives in the full drawer?

Reason: OWL(knfie) – MDETR(full drawer) -- CLIP([1], [2], [in, not in])

1

0. 36

2

1.00

Figure D.3: Visualization of questions asking about the existence of relations.

The SpD heuristic will be used in the Query module when asking about either

horizontal or vertical position.

Spatial Chooser (SpC) receives two bounding boxes of objects b1,b2 and aims to

choose their spatial relations from the relation candidates in C (b1 is RELA b2). For

instance, when C = {to the left of, to the right of}:

SpC(b1,b2, C) =


left, if x1 < x2

right, else
(D.3)

When C = {above, beneath}:

SpC(b1,b2, C) =


above, if y1 < y2

beneath, else
(D.4)

The SpC rule will be applied to the Choose type of questions if the choices of
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Dataset Train Val
# Ques. # Img. # Ques. # Img.

GQA 943,000 72,140 132,062 10,234
VQA 443,757 82,783 214,354 40,504

Table D.2: Statistical distributions of the GQA and the VQA dataset.

relations fall into the sets below: [{to the left of},{to the right of}] and [{above, on

top of},{under, below, beneath, underneath}]

D.5 Dataset Statistics

In Table D.2, we provide statistics of the GQA and the VQA dataset. Following [161,

174], we use the validation split for testing. Specifically, we report soft vqa scores

as there may be multiple possible answers to a question similar to previous works.

[161, 174, 4, 45].

D.6 Layout Generation

The layout generation can be accomplished either with syntatic parser or a pre-trained

sequence-to-sequence layout generator. On the VQA dataset, we follow [5, 69] to

parse questions with Stanza1 and transform the parsed tree into reasoning graphs

where each node is a pre-defined module with rules most similar to [69]. The graphs

are converted to module sequences with the post-order traversal. The linearlized

module sequence is used as the layout. On GQA dataset, we leverage layouts

generated by the pre-trained sequence-to-sequence layout generator from [25]. The

generator adopts a coarse-to-fine two-stage generation paradigm as in [39] to encode

questions and decode the sequence of module names and module inputs in two

stages.

1https://github.com/stanfordnlp/stanza
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Backbone Yes/No Other
Verify Logical Choose Compare Query Overall

ViT-B/16 69.63 68.63 75.87 48.59 26.36 47.28
Res50× 16 68.51 68.71 75.78 41.84 25.69 46.49
ALBEF 68.08 69.99 75.93 48.40 29.38 48.68

Table D.3: Performance of the proposed model with different models for multimodal
matching regarding different question types.

Question: What appliance is behind

the blender?

Reason: MDETR(appliance 

behind blender) -- CLIP([1])

Answer: Coffee maker

QIP: Mixer CLF: Mixer

1

0.70

1

0.31

Question: Which side is the bag on?

Reason: OWL(bag) -- SpD([1], 

hposition)

Answer: Left

QIP: Right CLF: Right

0.29

1

Question: Which color do the shorts have?

Reason: OWL(shorts) -- CLIP([1], color)

Answer: Black

QIP: Green CLF: White

Question: What's the girl wearing?

Reason: MDETR(item girl 

wearing) -- CLIP([1])

Answer: Dress

QIP: Jump CLF: Jump

1

0.97

1

1.00

Question: What is the yellow animal?

Reason: MDETR(yellow animal) 

-- CLIP([1])

Answer: Cat

QIP: Lamp CLF: Lamp

Question: What is the woman using?

Reason: MDETR(woman using item) 

-- CLIP([1])

Answer: Laptop

QIP: Technology CLF: Screen

1

0.87

Figure D.4: Visualization of VQA examples with short reasoning chains.

D.7 Answer Filtering

Basically, we follow [161] to narrow down the set of possible answer candidates

with the language model T5 [144]. For the VQA dataset, we directly leverage the

published generated candidate answers for each question from the paper [161]. For

the GQA dataset, the Verify and Logical type questions have binary answers yes/no.

For the Compare and Choose, candidate answers are available in the generated

layouts. For the Query type of questions, we first convert questions into masked

templates with a rule-based converter [35]. T5 is applied to retrieve the masked word,

which filters out irrelevant answers in the answer vocabulary according to contexts.
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Question: Is the person to the right or to the left of the vehicle next to the sidewalk?

Reason: OWL(person) -- MDETR(vehicle next to sidewalk) -- SpC([1], [2], [left, right])

Answer: Left  QIP: Right CLF: Right

1

0.32

2

0.99

Question: Are there both sheep and geese in the image?

Reason: OWL(sheep) – Exist([1]) -- OWL(goose) – Exist([1]) – And ([2], [4])

Answer: No  QIP: Yes CLF: Yes
1

0.46 0.50

0.37
0.44

0.48
0.41

2 3 4

Yes No

Question: Does the door of the elevator appear to be open and metallic?

Reason: MDETR(door of elevator) – CLIP([1], [open, not open]) – CLIP ([1], [metal, not metal]

Answer: No  QIP: Yes CLF: Yes

1

0.97

2

No

Figure D.5: Visualization of VQA examples with long reasoning chains.

D.8 Detailed Results

We provide the detailed results for replacing CLIP with ALBEF (discussed in Sec-

tion 7.3) in Table D.3 considering different types of questions.

D.9 Visualization of Zero-shot NMNs

In this section, we provide more visualization examples which the zero-shot NMNs

answers correctly while the baselines (QIP and TAC-P) fail. In Figure D.4, we show

examples with short reasoning chain, specifically, only two-step in Mod-Zero-VQA.

According to the results, we observe that each intermediate step gives interpretable

outputs. By question decomposition and leveraging PTMs, our model can focus on

relevant regions of the image (e.g., the first and third example in the first row of

Figure D.4) so that eliminating noise from backgrounds. Without filtering irrelevant
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GQA Verify GQA Logical VQA Count

Figure D.6: Performances of the zero-shot VQA model regarding to different thresh-
olds of confident scores in the OWL model.

information in the image, baselines pay attention to dominant objects in the image,

leading to wrong predictions (e.g., the third example in the first row which QIP and

TAC-P seems to focus on the ground and the T-shirt when answering the question).

In Figure D.5, we visualize questions with relatively longer reasoning chains. These

compositional questions usually call several reasoning capabilities, making it hard

for pre-trained VL models to deal with [170]. With question decomposition, each

pre-trained model takes a sub reasoning task, easing the burden from answering a

complicated question.

According to the visualization, we also find a frequent error case resulting from

the wrongly-generated NMN layout. The coarse-to-fine two stage generation suffers

from the issue of early stopping that the generated arguments is incomplete. For

instance, the ground-truth step should be Find(coffee table) while the generated

result is Find(coffee).

D.10 Out-of-Distribution Setting Construction

We consider an Out-of-Domain Generalization (OOD) setting, where test images

are related to scenes (i.e., Indoor, Food and Street) not observed during training.

For the Indoor scene, we directly leverage the annotation from Visual Genome [88],

where images are classified as indoors and outdoors. For the other two settings,

we filter out training images containing those scene-specific objects and make sure

a certain protion of objects in the testing images are about those objects (in other

words, testing images are related to the scene). Below, we provide the lists of scene
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specific objects in the Food and Street scene.

Food: plate, banana, table, food, pizza, donut, fork, bowl, cheese, napkin, glass,

cake, tomato, bread, apple, carrot, knife, broccoli, vegetable, fruit, cup, sauce,

orange, spoon, meat, pepper, crust, onion, sandwich, home plate, topping, catcher,

tray, lettuce, container, dish, bottle, batter, umpire, frosting, hot dog, egg, chicken,

bat, box, mask, paper, mushroom, mug, pitcher, dispenser, liquid, label, bacon,

tablecloth, nut, leaf, utensil, salad, hand, crumb, lemon, basket, mound, card, helmet,

strawberry, lid, pan, seed, chair, menu, jar, player, sausage, icing, juice, shirt, spinach,

sprinkle, dugout, counter, bag, flower, berry, goat, sailboat, uniform, steering wheel,

glove, heel, pastry, bubble, finger, sugar, beer, oven, heart, dessert, herb

Street: car, sign, building, pole, letter, tree, tire, road, wheel, sidewalk, bus, train,

street, number, door, sky, bike, windshield, truck, street light, motorcycle, leaf, traffic

light, roof, ground, post, license plate, arrow, vehicle, fence, cloud, word, grass, wire,

van, bicycle, gravel, bush, platform, fire hydrant, house, seat, flag, bag, pavement,

step, graffiti, sticker, logo, paint, luggage, cone, chain, pipe, helmet, bridge, balcony,

parking lot, jacket, plant, stop sign, train car, umbrella, taxi, lamp, box, crosswalk,

flower, bench, brick, store, trash can, clock, gate, station, jean, grill, suv, driver, hook,

pant, trash, tower, city, stair, rock, coat, rose, chimney, trailer, american flag, entrance

D.11 Experiment Settings

In this section, we discuss the experiment settings regarding to the size of models,

method of choosing hyper-parameters and the used software packages and versions.

Model Size: We provide the number of parameters of different models in Table D.4.

Our model includes the OWL model, the MDETR model, the CLIPViT-B/16 and the

T5 model for answer filtering. It consists of 1, 521M parameters, of which the T5

model takes 770M parameters, the OWL model takes 583M parameters, the MDETR

model takes 170M parameters and the CLIP model takes 151M parameters. After

pre-processing object detection and answer filtering, it takes 6G GPU memory for
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inference.

Method # Params (M)

VL-T5no-vqa 288
FEWVLMbase 288
FEWVLMlarge 804
VLKDViT-L/14 713
BNP-VQA6M 669
BNP-VQA11B 1,576
Frozen 1,040
QIPViT-B/16 151
TAC-PViT-B/16 921
Zero-shot NMNs 1,521

Table D.4: Number of parameters in VQA models.

Hyper-parameters: As we focus on the zero-shot learning setting so that there is no

training process. Here we provide hyper-parameters used as thresholds. For the OWL

model [126], we set the threshold of confident score as 0.2, which is set empirically,

to filter out detected bounding boxes of which the confident scores are too long. We

show test the robustness of the proposed zero-shot VQA model regarding to the

hyper-parameter of the threshold and provide experimental results corresponding to

the threshold varying from 0.05, , 0.1, 0.15, 0.2, 0.15, 0.3 in Figure D.6. As proven

in Section 4.2, the detection result mostly affects binary questions which rely more

on object detection results, we here provide results for Verify and Logical type of

questions on GQA. Besides, Count type questions also heavily rely on the quality of

object detection. According to the results, we observe the zero-shot NMNs achieves

relatively stable performances regarding to different thresholds for confident scores

on Verify type questions, while less stable for the Logical and Count type questions.

The stability on Verify questions depicts the robustness of the detection model.

As Logical questions combines results from two Verify questions, the error may

propagate if one predicted answer of the Verify question is wrong. An interesting

finding is that the performance does not drop as the threshold increases. This may be

that answers are biased to no. With the increment of thresholds, the model is more

likely to answer no. Count questions are more sensitive to the threshold because
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lower thresholds lead to the case that uncertain regions to be detected while higher

thresholds are more harmful that correctly detected objects will be filtered out. In

conclusion, the threshold is important to the quality of detection and setting it from

0.2 to 0.25 gives good performances. For the MDETR model, we directly follow

their published code for detection and set the threshold as 0.72.

Package Version: We list the software packages used as well as the corresponding

versions in Table D.5.

Package Version)

PyTorch 1.9.0
Transformers 4.19.2

Stanza 1.4.0
NLTK 3.2.5

Table D.5: Versions of packages used in our experiments.

2https://colab.research.google.com/drive/11xz5IhwqAqHj9-XAIP17yVIuJsLqeYYJ?usp=sharing
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Appendix E

Appendix for KGenVQA

E.1 Details of K-Means Clustering

To divide testing instances into different clusters, we first convert each context-

question-knowledge triplet into vector representations. Specifically, the context, ques-

tion and the initial piece of knowledge will be concatenated and the textBERT [36]

to encode the concatenated sentence. Based on the encoded textual representation,

we used the K-Means clustering to divide all instances into K clusters. Given an

instance waiting for knowledge generation, which belongs to the cluster k, instances

from other clusters will serve as demonstrations. In other words, we randomly select

one demonstration from each cluster except the k-th cluster so that there are K − 1

demonstrations for the testing example. The set of demonstrations we denote as

PSEUDO DEMO. Then we prompt LLMs again with the self-supervised demonstra-

tions with an input. We will iteratively conduct the process mentioned above T times

where at the t-th time step we obtain a piece of knowledge ∥t and finally we have T

knowledge pieces.
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Model and Size # shots Setting OK-VQA

OPT 13B 32 w/o KGen 36.1
32 w KGen 39.6

30B 16 w/o KGen 36.7
16 w KGen 43.8

Table E.1: Performance comparison between using and not using generated knowl-
edge in the few-shot setting on OK-VQA dataset. KGen refers to knowledge genera-
tion.

Model Model Size
Zero-shot Models without Extra Training

PICazero 175B
PNP-VQA 1.2B, 3.4B, 11.8B
Img2LLM 6.7B, 13B, 30B, 66B, 175B

Zero-shot Models with Extra Training
VL-T5no-vqa 269M
Frozen 7.1B
VLKDViT-L/14 832M
FewVLM 785M
BLIP-2(OPT6.7B) 7.8B
BLIP-2(FlanT5XL) 4.1B
BLIP-2(FlanT5XXL) 12.1B
Flamingo 3B, 9B, 80B

Few-shot Models
ClipCap→Cap.→GPT 175B
ClipCap→Ratl.→GPT 175B
PICafew 175B
PromptCap 175B

Table E.2: Summarizing of models for K-VQA.

E.2 Experiment Settings

Experiment Details For knowledge generation, we use GPT-3.5 (text-davinci-0031)

as our LLM, with a suggested temperature of 0.7. For the K-means clustering in

knowledge diversification stage, we set the number of cluster to be 8 empirically.

For answer prediction, because exact match is adopted for evaluation, we en-

courage the pre-trained QA model to give short answers. For UnifiedQA, we set the

length penalty to be -1; for GPT-3.5, we add the following instruction: Generate

answers with as fewer words as possible. After answer prediction, we conduct an

1https://platform.openai.com/docs/models/gpt-3-5
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Model Acc.

Zero-shot Models without Extra Training
PICazero,175B 17.7
PNP-VQA0.7B 27.1
PNP-VQA3B 34.1
PNP-VQA11B 35.9
Img2LLM6.7B 38.2
Img2LLM13B 39.9
Img2LLM30B 41.8
Img2LLM66B 43.2
Img2LLM175B 45.6

Zero-shot Models with Extra Training
VL-T5no-vqa 5.8
Frozen 5.9
VLKDViT-L/14 13.3
FewVLM 16.5
BLIP-2(OPT)6.7B 36.4
BLIP-2(FlanT5XL)3B 40.7
BLIP-2(FlanT5XXL)3B 45.9
Flamingo3B 41.2
Flamingo9B 44.7
Flamingo80B 50.6

Few-shot Models
PICafew,175B (n=1) 40.8
PromptCap175B (n=1) 48.7

Table E.3: Model performancee on OK-VQA dataset. For models with different
model sizes, we show the model size with subscripts.

answer post-processing step as proposed in [9].

We implement our model on NVIDIA Tesla V100 GPUs with 32 GB of dedicated

memory. The system ran on CUDA version 11.1. For UnifiedQA, except 11B version,

we implemented with a single GPU. For UnifiedQA 11B model and OPT model

series, we implement with model parallel on four GPUs.

Package Version In this experiment, we rely on the PyTorch library, 1.13.1 ver-

sion. For the implementation of BLIP [99] (used for image caption generation), we

leverage the LAVIS package from Salesforce 2 (version 1.0.2), for OPT [204] and

UnifiedQA model [83] we use the transformers package from Huggingface 3 (version

4.29.2), and for GPT-3.5 model, we leverage the OpenAI API 4.
2https://github.com/salesforce/LAVIS/tree/main/lavis
3https://huggingface.co/
4https://platform.openai.com/overview
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Model Acc.

Zero-shot Models without Extra Training
Img2LLM6.7B 33.3
Img2LLM13B 33.3
Img2LLM30B 36.9
Img2LLM66B 38.7
Img2LLM175B 42.9

Few-shot Models
ClipCap→Cap→GPT175B (n=10) 16.6
ClipCap→Rel→GPT175B 18.1
PromptCap175B (n=32) 56.3

Table E.4: Model performancee on A-OKVQA dataset. For models with different
model sizes, we show the model size with subscripts.

Img.

Ques. Which type of leather is used
for making the sofa set shown
in this picture?

Where in the world is this lo-
cated?

GT. cow, fake, fine grain, suede seattle, san francisco, seattle
usa, boston massachusetts

Pred. black leather czech republic
Cap. two child a pizza pizza three

people child up pizza. a young
girl and a young girl with pizza
as food. a young girl eating
pizza while sitting in a booth

a sign outside of a market mar-
ket sign on a clear day. the sign
shows market square, with a lot
of people, and a large clock. a
group of people outside of a
building showing a clock.

Kn. The sofa set shown in this pic-
ture is likely made of faux
leather, which is a synthetic
material made to look and feel
like real leather.

This market square is located
in the city of Prague, Czech Re-
public.

Table E.5: Visualization of error cases. GT. is for ground-truth annotation, Pred. is
for predictions from models, Cap. is for the image captions and Kn. is for generated
knowledge.

Model Size: We show model size in Table E.2. If we one model has different

versions of model size, we separate them with comma.
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Image

Question What would happen if these items fall to
the ground?

What sates are these grown in? Name one famous person whom also has
a black and white one of these?

Ground
Truth

shatter, they would shatter, break, they
would break

florida california, california, florida taylor swift, russell brand, hillary clinton,
ernest hemingway

Base Predic-
tion nothing texas kate winslet

Generated
Knowledge

If a glass item falls to the floor, it will
break.

California and Florida are the leading pro-
ducers of oranges.

Taylor Swift is a famous singer and song-
writer who has a black and white cat
named Meredith.

Our Predic-
tion

they would break california taylor swift

Image

Question If it gets cold enough what will happen to
the area being stepped over?

What knocked the guy off his chair? What is the white cloud behind the jet
called?

Ground
Truth

freeze, frozen, it will freeze over, iced wave, water contrail, cloud, supersonic wave

Base Predic-
tion snow water splash halo

Generated
Knowledge

If it gets cold enough, the area being
stepped over will freeze, creating a layer
of ice on top of the snow.

The waves in the water knocked the man
off his chair.

The condensation trail, or contrail, is a vis-
ible trail of condensed water vapor created
by an aircraft engine or wingtip vortices
under certain atmospheric conditions.

Our Predic-
tion

frozen wave contrail

Table E.6: Visualization of error cases of the baseline without generated knowledge,
while our method answers correctly with the help with generated knowledge. Wrong
predictions are highlighted in red.

E.3 Few-shot Setting Results

We provide the results for our method in the few-shot setting on OK-VQA in the

section. Specifically, we leverage the OPT model [204] as the final QA model and

give a few demonstrations. Each demonstration consists of a question, an image

description as the context, an answer and optional related knowledge (in the w KGen

setting). The results are shown in Table E.1. According to the results, we observe

consistent improvements after adding generated knowledge, indicating our method

can generalize to the few-shot setting as well.

181



E.4 Fair Comparison with PICa

Considering PICazero,175B leverages only a single piece of image description while our

method uses multiple captions, following [171], improvements may potentially come

from more detailed image descriptions. To ablate the impact from image description

side, we use a single caption as the image description, similar to PICazero,175B. It

achieves 33.8 on OK-VQA, with about 16 absolute accuracy improvements over

PICazero,175B. Further more, we used only the generated knowledge as inputs to

text-based QA models (UnifiedQA3B). It achieves 33.5 on OK-VQA, highlighting

that generated knowledge itself contains information for question answering.

E.5 Model Performance

We only provide models in a fair comparison in Section 8.3.3. In this part, we provide

performance of models on K-VQA including zero-shot K-VQA models without extra

training but have larger model sizes, zero-shot K-VQA models with extra training

and few-shot K-VQA models. The results on OKVQA and A-OKVQA are shown in

Table E.3 and Table E.4 respectively.

E.6 Error Cases

In this section, we provide visualization of two error cases of which the generated

knowledge is inadequate. The reason of generating the harmful knowledge is because

of inaccurate image captions. A potential way of improving our method is to improve

the quality of image descriptions.

E.7 Comparison with the Baseline without Knowledge

In this section, we provide visualization of error cases of the baseline model without

knowledge and compare with our method. The visualized examples are shown in
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Num. Content

1 Context:The company in the image is Monsanto. There are two men selling
products. The logo behind two men is Monsanto. Question:What does company
in the image own? Knowledge:Monsanto is a multinational agrochemical
and agricultural biotechnology corporation. It is one of the world’s leading
producers of roundup, a glyphosate herbicide.

2 Context:The red vegetable is tomato. There is a sandwich with tomato and
lettuce. There is a sandwich on the table. Question:Where can this red vegetable
be found? Knowledge:tomatoes are usually planted in gardens.

3 Context:The man is playing tennis. The man is holding a tennis racket. A
man is in a competition of tennis. Question:What English city is famous for
a tournament for the sport this man is playing? Knowledge:The Wimbledon
Championships is the oldest tennis tournament in the world.

4 Context:a plate with ham, tomatoes, meat, and sliced peppers on top of it.
breakfast and bacon eggs scrambled toast. a breakfast sandwich, tomatoes,
bacon, and eggs Question:what food in the photo has a lot of c vitamin? Knowl-
edge:Tomatoes and tomato products are rich sources of folate, vitamin C, and
potassium. Eggs contain decent amounts of vitamin D, vitamin E, vitamin B6,
calcium and zinc. Bacon provides a good amount of B vitamins.

5 Context:a man sitting in front of a laptop computer smiling and posing for the
camera. a man wearing glasses sitting in front of a laptop. a man in glasses and
glasses at a desk with laptop. Question:what purpose do the glasses the man
is wearing serve? Knowledge:Glasses are typically used for vision correction,
such as with reading glasses and glasses used for nearsightedness.

6 Context:a bedroom with a bed, wall paper and lamp. a bed with storage un-
derneath it in a room. a bed in a small room with pillows and box drawers.
Question:what was the largest size of that platform that we have? Knowl-
edge:Single size is 91 cm x 190 cm. Super single size is 107 cm x 190 cm.
Queen size is 152 cm x 190 cm. King size is 182 cm x 190 cm.

Table E.7: Contents of manual prompts.

Table E.6. Noted, we do not perform cherry-picking. The visualized cases are the first

six error cases of the baseline model on OK-VQA while being correctly addressed

by our method. To keep the table tidy, we only present one piece of generated table.

According to the visualization, we observe our generated knowledge largely benefit

addressing these questions in need of external knowledge.

183



E.8 Manual Prompts

Here we provide a full list of six manual prompts in Table E.7. Before the demon-

strations, we also add an instruction: Please generate related background knowledge

to the question: in the front. Knowledge are collected from searching with Google.

E.9 Details for Human Evaluation

In this part, we provide more details about human evaluation about the knowledge

quality. We invite two annotators for evaluation of 40 questions with five pieces

of generated knowledge. Firstly, they will be given an instruction, indecating the

definition of the K-VQA task, an example of the K-VQA task and the goal of the

evaluation. Next, we describe what information (i.e., question, ground-truth answer,

generated knowledge, and image) will be provided to them and the denotations

of the information. Thirdly, we elaborate the definitions of four metrics. For the

metrics of Relevance, Factuality and Helpfulness, besides definitions, we provide a

few concrete examples in texts to make it easier for understanding. The definifions

and examples are provided in Table E.8. For the full information of the annotated

knowledge, please refer to the Supplementary file.

184



Attributes Definition Example

Grammaticality Whether the knowledge statement is
grammatical (e.g., whether a com-
plete and fluent sentence; whether
human can understand the sen-
tence).

None

Relevance Whether a knowledge statement is
relevant to the given question. A
statement is relevant if it covers the
same topic as the question or con-
tains a salient concept that is the
same as or similar to the one in the
question (provided indirect but re-
lated information).

[Image]: a bedroom with a bed
[Question]: what was the largest size of that platform that we have?
[Knowledge]: Single size is 91 cm x 190 cm. Super single size is 107 cm x 190 cm.
Queen size is 152 cm x 190 cm. King size is 182 cm x 190 cm.
[Judge]:Relevant. Because the information is related to the topic on bed size.

Factuality Whether a knowledge statement is
(mostly) factually correct or not. If
there are exceptions or corner cases,
it can still be considered factual if
they are rare or unlikely.

[Image]: a triangle in the image [Question]: what shape is the object in the image?
[Knowledge]: A rectangle is a shape with two equal sides
[Judge]: Not factual, because a rectangle has four sides

[Image]: a limousine; a car
[Question]: how many doors does the vehicle in the image have?
[Knowledge]: A limousine has four doors.
[Judge]: Factual.

[Image]: a human being
[Question]: how many fingers does this creature have?
[Knowledge]: A human hand has four fingers and a thumb.
[Judge]: Factual, despite that there are exceptions – people with disabilities may
have less or more fingers.

Helpfulness Whether a knowledge statement is
(mostly) factually correct or not. If
there are exceptions or corner cases,
it can still be considered factual if
they are rare or unlikely.

[Image]: a subway in the image
[Question]: How often you take this transportation back and forth to work per week?
[Knowledge]: You take the subway back and forth to work five days a week
[Judge]: Helpful. Because the statement directly supports the answer.

[Image]: a spider
[Question]: how many legs does the animal in the image have?
[Knowledge]: Arachnids have eight legs
[Judge]: Helpful. Although the statement does not directly refer to spiders, together
with the fact that ”spiders are a kind of arachnids” it completes a reasoning chain in
deriving the answer.

[Image]: two persons are playing chess
[Question]: what are the results of the game?
[Knowledge]: A game of chess has two outcomes
[Judge]: Harmful. Since the statement supports answering ”two outcomes” instead
of ”three outcomes”.

[Image]: a person in the white background.
[Question]: How many chromosomes does the creature have?
[Knowledge]: human beings are mammals.
[Judge]: Neutral. The knowledge does not provide information in favor or contrast
of answering the question.

Table E.8: Definitions and examples for evaluation metrics.
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[7] A. Arango, J. Pérez, and B. Poblete. Hate speech detection is not as easy as you may
think: A closer look at model validation. In Proceedings of the 42nd International
ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR, pages 45–54, 2019.

[8] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. G. Ives. Dbpedia:
A nucleus for a web of open data. In The Semantic Web, 6th International Semantic
Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007,
volume 4825, pages 722–735, 2007.

[9] A. Awadalla, I. Gao, J. Gardner, J. Hessel, Y. Hanafy, W. Zhu, K. Marathe, Y. Bitton,
S. Y. Gadre, S. Sagawa, J. Jitsev, S. Kornblith, P. W. Koh, G. Ilharco, M. Worts-
man, and L. Schmidt. Openflamingo: An open-source framework for training large
autoregressive vision-language models. CoRR, abs/2308.01390, 2023.

186



[10] M. R. Awal, R. Cao, R. K. Lee, and S. Mitrovic. Angrybert: Joint learning target and
emotion for hate speech detection. In Advances in Knowledge Discovery and Data
Mining - 25th Pacific-Asia Conference, PAKDD, volume 12712 of Lecture Notes in
Computer Science, pages 701–713, 2021.

[11] P. Badjatiya, S. Gupta, M. Gupta, and V. Varma. Deep learning for hate speech
detection in tweets. In Proceedings of the 26th International Conference on World
Wide Web Companion, pages 759–760, 2017.

[12] T. Baltrusaitis, C. Ahuja, and L. Morency. Multimodal machine learning: A survey
and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell., 41(2):423–443, 2019.

[13] H. Bao, W. Wang, L. Dong, Q. Liu, O. K. Mohammed, K. Aggarwal, S. Som, S. Piao,
and F. Wei. Vlmo: Unified vision-language pre-training with mixture-of-modality-
experts. In NeurIPS, 2022.

[14] H. Ben-Younes, R. Cadène, M. Cord, and N. Thome. MUTAN: multimodal tucker
fusion for visual question answering. In IEEE International Conference on Computer
Vision, ICCV, pages 2631–2639, 2017.

[15] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,
M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,
I. Sutskever, and D. Amodei. Language models are few-shot learners. In Advances in
Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS, 2020.

[16] C. P. Burgess, I. Higgins, A. Pal, L. Matthey, N. Watters, G. Desjardins, and A. Ler-
chner. Understanding disentangling in β-vae. arXiv preprint arXiv:1804.03599,
2018.

[17] R. Cao and J. Jiang. Modularized zero-shot VQA with pre-trained models. CoRR,
abs/2305.17369, 2023.

[18] R. Cao and R. K. Lee. Hategan: Adversarial generative-based data augmentation
for hate speech detection. In Proceedings of the 28th International Conference on
Computational Linguistics, COLING, pages 6327–6338, 2020.

[19] R. Cao, R. K. Lee, and T. Hoang. Deephate: Hate speech detection via multi-faceted
text representations. In WebSci ’20: 12th ACM Conference on Web Science, pages
11–20, 2020.

[20] R. Cao, R. K. Lee, W. Chong, and J. Jiang. Prompting for multimodal hateful meme
classification. In Proceedings of the 2022 Conference on Empirical Methods in
Natural Language Processing, EMNLP, pages 321–332, 2022.

[21] R. Cao, M. S. Hee, A. Kuek, W. Chong, R. K. Lee, and J. Jiang. Pro-cap: Leveraging
a frozen vision-language model for hateful meme detection. In Proceedings of the
31st ACM International Conference on Multimedia, MM, pages 5244–5252, 2023.

[22] W. Chao, H. Hu, and F. Sha. Cross-dataset adaptation for visual question answering.
In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pages
5716–5725, 2018.

187



[23] D. Chatzakou, N. Kourtellis, J. Blackburn, E. D. Cristofaro, G. Stringhini, and
A. Vakali. Mean birds: Detecting aggression and bullying on twitter. In Proceedings
of the 2017 ACM on Web Science Conference, WebSci, pages 13–22, 2017.

[24] R. T. Chen, X. Li, R. Grosse, and D. Duvenaud. Isolating sources of disentanglement
in vaes. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, pages 2615–2625, 2018.

[25] W. Chen, Z. Gan, L. Li, Y. Cheng, W. Y. Wang, and J. Liu. Meta module network
for compositional visual reasoning. In IEEE Winter Conference on Applications of
Computer Vision, WACV, pages 655–664. IEEE, 2021.

[26] X. Chen, H. Fang, T. Lin, R. Vedantam, S. Gupta, P. Dollár, and C. L. Zitnick.
Microsoft COCO captions: Data collection and evaluation server. CoRR, 2015.

[27] Y. Chen, Y. Zhou, S. Zhu, and H. Xu. Detecting offensive language in social media
to protect adolescent online safety. In 2012 International Conference on Privacy,
Security, Risk and Trust, PASSAT, pages 71–80, 2012.

[28] K. Chiu and R. Alexander. Detecting hate speech with GPT-3. CoRR, abs/2103.12407,
2021.

[29] J. Cho, J. Lei, H. Tan, and M. Bansal. Unifying vision-and-language tasks via text
generation. In Proceedings of the 38th International Conference on Machine Learning,
ICML, volume 139 of Proceedings of Machine Learning Research, pages 1931–1942,
2021.

[30] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham,
H. W. Chung, C. Sutton, S. Gehrmann, P. Schuh, K. Shi, S. Tsvyashchenko, J. Maynez,
A. Rao, P. Barnes, Y. Tay, N. Shazeer, V. Prabhakaran, E. Reif, N. Du, B. Hutchinson,
R. Pope, J. Bradbury, J. Austin, M. Isard, G. Gur-Ari, P. Yin, T. Duke, A. Levskaya,
S. Ghemawat, S. Dev, H. Michalewski, X. Garcia, V. Misra, K. Robinson, L. Fedus,
D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph, A. Spiridonov, R. Sepassi, D. Dohan,
S. Agrawal, M. Omernick, A. M. Dai, T. S. Pillai, M. Pellat, A. Lewkowycz, E. Mor-
eira, R. Child, O. Polozov, K. Lee, Z. Zhou, X. Wang, B. Saeta, M. Diaz, O. Firat,
M. Catasta, J. Wei, K. Meier-Hellstern, D. Eck, J. Dean, S. Petrov, and N. Fiedel.
Palm: Scaling language modeling with pathways. CoRR, abs/2204.02311, 2022.

[31] H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus, E. Li, X. Wang, M. De-
hghani, S. Brahma, A. Webson, S. S. Gu, Z. Dai, M. Suzgun, X. Chen, A. Chowdhery,
S. Narang, G. Mishra, A. Yu, V. Y. Zhao, Y. Huang, A. M. Dai, H. Yu, S. Petrov,
E. H. Chi, J. Dean, J. Devlin, A. Roberts, D. Zhou, Q. V. Le, and J. Wei. Scaling
instruction-finetuned language models. CoRR, abs/2210.11416, 2022.

[32] W. Dai, L. Hou, L. Shang, X. Jiang, Q. Liu, and P. Fung. Enabling multimodal
generation on CLIP via vision-language knowledge distillation. In Findings of the
Association for Computational Linguistics: ACL, pages 2383–2395, 2022.

[33] W. Dai, Z. Liu, Z. Ji, D. Su, and P. Fung. Plausible may not be faithful: Probing object
hallucination in vision-language pre-training. In Proceedings of the 17th Conference
of the European Chapter of the Association for Computational Linguistics EACL,
pages 2136–2148, 2023.

188



[34] T. Davidson, D. Warmsley, M. W. Macy, and I. Weber. Automated hate speech
detection and the problem of offensive language. In Proceedings of the Eleventh
International Conference on Web and Social Media, ICWSM, pages 512–515, 2017.

[35] D. Demszky, K. Guu, and P. Liang. Transforming question answering datasets into
natural language inference datasets. CoRR, abs/1809.02922, 2018.

[36] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-training of deep bidirec-
tional transformers for language understanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT, pages 4171–4186, 2019.

[37] Y. Ding, J. Yu, B. Liu, Y. Hu, M. Cui, and Q. Wu. Mukea: Multimodal knowledge
extraction and accumulation for knowledge-based visual question answering. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, pages
5079–5088, 2022.

[38] N. Djuric, J. Zhou, R. Morris, M. Grbovic, V. Radosavljevic, and N. Bhamidipati. Hate
speech detection with comment embeddings. In Proceedings of the 24th International
Conference on World Wide Web Companion, WWW, pages 29–30, 2015.

[39] L. Dong and M. Lapata. Coarse-to-fine decoding for neural semantic parsing. In Pro-
ceedings of the 56th Annual Meeting of the Association for Computational Linguistics,
ACL, pages 731–742, 2018.

[40] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An
image is worth 16x16 words: Transformers for image recognition at scale. In 9th
International Conference on Learning Representations, ICLR, 2021.

[41] A. Fan, M. Lewis, and Y. N. Dauphin. Hierarchical neural story generation. In Pro-
ceedings of the 56th Annual Meeting of the Association for Computational Linguistics,
ACL, pages 889–898, 2018.

[42] E. Fersini, F. Gasparini, G. Rizzi, A. Saibene, B. Chulvi, P. Rosso, A. Lees, and
J. Sorensen. Semeval-2022 task 5: Multimedia automatic misogyny identification.
In Proceedings of the 16th International Workshop on Semantic Evaluation, Se-
mEval@NAACL, pages 533–549, 2022.

[43] P. Fortuna and S. Nunes. A survey on automatic detection of hate speech in text. ACM
Comput. Surv., 51(4):85:1–85:30, 2018.

[44] P. Fortuna and S. Nunes. A survey on automatic detection of hate speech in text. ACM
Computing Surveys (CSUR), 51(4):1–30, 2018.

[45] A. Fukui, D. H. Park, D. Yang, A. Rohrbach, T. Darrell, and M. Rohrbach. Multimodal
compact bilinear pooling for visual question answering and visual grounding. In
Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing, EMNLP, pages 457–468, 2016.
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