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Sequential Recommendation: From Representation
Learning to Reasoning

Lei Wang

Abstract

The recommender system is a crucial component of today’s online services. It helps

users navigate through an overwhelmingly large number of items and discovering

those that interest them. Unlike general recommender systems, which recommend

items based on the user’s overall preferences, sequential recommender systems

consider the order of user-item interactions. Sequential recommendations aim to

predict the next item a user will interact with, given a sequence of previously

interacted items, while considering the short-term and long-term dependencies

among items.

In this thesis, we focus on sequential recommendation methods: from repre-

sentation learning to large language model (LLM)-based reasoning. On the one

hand, representation learning-based sequential recommendation methods usually

feed ID embeddings of interacted items into models, such as deep neural networks,

to generate user representation vectors. They then rank candidate items to create

a recommendation list based on the similarity between user representation vectors

and candidate item vectors. On the other hand, the LLM-based reasoning approach

mainly depends on the LLM’s strong reasoning ability and rich world knowledge.

LLM-based reasoners require carefully designed prompts and/or demonstration

examples considering the task complexity and prompt length constraint.

This thesis consists of three parts. In the first part, we aim to improve represen-

tation learning for sequential recommendation and present our efforts in building

an explanation-guided contrastive learning sequential recommendation model. In

particular, we first present the data sparsity issue in the sequential recommendation

and the false positive problem in contrastive learning. Next, we demonstrate how to



utilize explanation methods for explanation-guided augmentation to enhance posi-

tive and negative views for contrastive learning-based sequential recommendation,

thereby improving the learned representations.

Most sequential recommendation methods primarily focus on improving the

quality of user representation. However, representation learning-based methods still

suffer from several issues: 1) data sparsity; 2) difficulty adapting to unseen tasks;

and 3) lack of world knowledge; 4) lack of human-style reasoning for generating

explanations. To address these issues, the second part of this thesis investigates how

we can build sequential recommendation models based on large language models.

In particular, we introduce two new research directions for LLM-based sequential

recommendation: 1) zero-shot LLM-based reasoning of recommended items and

2) few-shot LLM-based reasoning of recommended items. For zero-shot LLM-

based reasoning of recommended items, we use an external module for generating

candidate items to reduce the recommendation space and a 3-step prompting method

for capturing user preferences and making ranked recommendations. For few-shot

LLM-based reasoning of recommended items, we study what makes in-context

learning work for sequential recommendation and propose incorporating multiple

demonstrations into one aggregated demonstration to avoid the long input problem

and improve recommendation accuracy. Both directions offers new and exciting

research possibilities for using LLMs in recommender systems.

LLMs are generally capable of human-style reasoning which could be used

to generate explanations for a large set of tasks. Therefore, the final part of the

thesis addresses the explanation generation task and the evaluation of explanation

for sequential recommendation results using LLMs. Specifically, we introduce a

framework for LLM-based explanation to support automatic evaluation of an LLM’s

ability to generate plausible post-hoc explanations from the content filtering and col-

laborative filtering perspectives. Using our created benchmark data, the experiment

results show that ChatGPT with appropriate prompting can be a promising explainer

for recommendation tasks.
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Chapter 1

Introduction

1.1 Background

The recommender system is a crucial component of today’s online services [27, 43].

It helps users navigate through a potentially very large set of items (e.g., products,

songs, movies, articles, places of interest, and others) and discover the interesting

ones for subsequent interactions (e.g., purchase, consumption, visit, and others). In

non-sequential recommendation, items are recommended based on a user’s overall

preferences, without considering the sequential order of user-item interactions [113].

Specifically, the past item interactions of the user are modelled as a set. Nevertheless

in many real world applications, users interact with items in sequential order. To

learn the patterns within a user-item interaction sequence for predicting the next item

a user wants to interact with, different sequential recommendation models has been

developed [80, 30, 111].

Consider the user-item interaction sequence example in Figure 1.1(a). In this

interaction sequence, the user has purchased five items in the past from a purple

shirt and to a carton of milk. The sequential recommendation task is to predict

the next item (denoted by a question mark) given the above input sequence. Both

the short-term and long-term dependencies among items are to be learned from the

many observed user-item sequences in order to perform sequential recommendation
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Figure 1.1: A sample user-item interaction sequence.

Figure 1.2: Representation Learning Approach versus Large Language Model-based
Reasoning Approach.

effectively.

1.2 Motivation

As shown in Figure 1.2, we broadly categorize the existing sequential recommenda-

tion methods under the representation learning and large language model (LLM)-

based reasoning approaches. Before the era of LLMs, sequential recommendation

models primarily relied on representation learning. This includes both machine

learning and deep learning-based methods. In representation learning, a user’s

item sequence is input into a sequence encoder, which generates a corresponding

representation vector. Item vectors from the item pool are then used to compute
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similarity with this representation vector. Items from the item pool are ranked based

on these calculated similarities. The higher an item ranks, the more likely it is to be

recommended to the user.

These sequential recommendation models have certain drawbacks. Firstly, these

methods are unable to capture the rich textual world knowledge that could enhance

user preference modeling and the quality of recommendations. Secondly, many

of these methods are designed for a specific domain and struggle to adapt to new

recommendation domains. For example, the item IDs in movie recommendation data

are unrelated to the item IDs in book recommendation data, making it difficult for

representation learning based on ID embedding to generalize. Thirdly, these methods

lack a human-understandable explanation as to why an item is recommended for

a specific user. Such explanations can help improve the recommender system and

enhance the user experience.

Unlike methods based on representation learning, LLM-based methods mainly

focus on using prompt-based reasoners for sequential recommendations. These

methods rely heavily on LLM like ChatGPT, which have demonstrated remarkable

performance in numerous natural language processing (NLP) tasks and strong capa-

bilities to solve these NLP tasks through task-specific prompts in a zero-shot setting

or in a few-shot setting, without requiring any examples for further fine-tuning. As

shown in Figure 1.2, this thesis primarily focuses on representation learning and

LLM-based reasoning for sequential recommendations. In representation learning, a

sequence encoder inputs the user sequence to generate a user representation, followed

by a next-item predictor that predicts recommended items. Explanation methods,

such as template-based text generation, can then create explanations for these recom-

mended items. For LLM-based reasoning in sequential recommendations, prompts

are crafted to utilize LLMs for item recommendations. The LLMs’ textual output

contains information about recommended items. Then, an answer extractor is used

to extract the recommended items. A prompt-based explanation generator can be

used to produce an high-quality textual explanation for these recommended items.
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When using LLM-based reasoners, it is crucial to carefully design prompts or prepare

demonstration examples for specific tasks, such as sequential recommendation in

the movie domain or explanation generation for sequential recommendations. After

obtaining these prompts or examples, we feed them into the LLM to obtain a textual

output. This output is then processed by a post-processing module to provide the

desired answer.

For sequential recommendation tasks, incorporating LLMs offers at least the

following benefits. Firstly, their strong performance in complex reasoning tasks indi-

cates an excellent inference ability. This can help to predict the next recommendation

with explicit explanations, enhancing transparency and improving user experience.

Secondly, LLMs contain extensive world knowledge which effectively compensates

for the limited local knowledge of traditional sequential recommendation models.

This provides additional information and helps to model more complex patterns,

going beyond only sequence pattern modeling. Therefore, in this thesis, we will also

focus on developing LLM-based sequential recommendation models.

1.3 Overview of Dissertation Works

In the following, we summarize the dissertation works into two parts and describe

the key research ideas in each part.

1.3.1 Explanation Guided Representation Learning of Item Se-

quences

Compared to user representations derived from all interacted items in the user se-

quence, the representation derived from important items is more effective in capturing

the dependencies between interacted items and the next item. For instance, in Fig-

ure 1.1(b), the dumbbell set and basketball from the user sequence are considered

significant in predicting the next item, a basketball shirt. Meanwhile, the remaining
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items like lipstick and milk contribute less. In this thesis, we introduce the idea

of modeling user representations considering important items. This requires the

detection of important items using explanation methods and the leverage of these

items to learn improved user representation vectors.

We propose to use contrastive learning to enhance user representations. The

reasons for choosing contrastive learning include: (1) sequential recommendation

models often suffer from data sparsity, making it challenging to learn high-quality

user representations. Secondly, contrastive learning allows for the consideration of

both important and unimportant items, which can further improve user representation

when crafting positive and negative views. Specifically, we propose explanation-

guided augmentations to infer the important items of a given user sequence using

explanation methods and consider item importance in augmentation operations. This

way, better positive views and negative views can be derived for contrastive learning.

We also propose the explanation-guided contrastive learning for sequential recom-

mendation framework to utilize the positive and negative views for self-supervised

and supervised learning of user sequence representations, in addition to the standard

recommendation loss function.

1.3.2 LLM-reasoning based Sequential Recommendation and

Explanation

Zero and Few-Shot LLM-based Reasoning of Recommended Items

In the zero-shot LLM-based method, we must carefully design prompts to better

utilize the rich world knowledge from LLMs and elicit their reasoning abilities for

more effective next-item recommendations. There are two major challenges that

need to be considered: (1) the recommendation space can be extremely large, but

LLMs without training cannot easily limit the recommendation space; (2) LLMs

are inherently unfamiliar with the user preferences required for recommendations.

To address these issues, we first limit the recommendation space for a user to items
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within a candidate item set by using user or item filtering techniques. Then, we

introduce a zero-shot prompt-based reasoner for sequential recommendation via

a 3-step prompting method: (i) capturing user preferences (Step 1), (ii) selecting

representative items from the user’s interacted items (Step 2), and (iii) recommending

a ranked list of items (Step 3).

As LLMs increase in model parameters and training corpus size, they gain an

emergent ability known as in-context learning (ICL), allowing them to reason based

on a few demonstration examples within a given context. In this thesis, we also

explore the use of in-context learning for sequential recommendation. We study how

in-context learning can enhance sequential recommendation via a preliminary empir-

ical study. Specifically, we investigate the impact of four aspects of demonstrations,

including the wording of prompts, task consistency between demonstrations and

test instances, selection of demonstrations, and number of demonstrations. Through

the preliminary study, we discover that increasing the number of demonstrations

in ICL reduces recommendation accuracy. To cope with limited prompt length

while introducing demonstration(s), we propose a method that incorporates multiple

demonstration users into one aggregated demonstration.

LLM-based Post-Hoc Explanation

For improved user experience and system accountability, sequential recommendation

models should support transparency and explainability in their recommendation

results. This allows users to understand the reasons behind recommended items. As

depicted in Figure 1.1(c), a basketball shirt recommendation can be explained by the

presence of a dumbbell and a basketball in the user sequence.

Post-hoc explanations for representation learning-based sequential recommenda-

tions can use post-hoc explanation methods such as: 1) proxy models like LIME[114],

2) attention weights [15], 3) template-based textual explanation generation [71], and

4) cosine similarity over item representations drawn from the model itself [98]. These

methods can help identify items in the user sequence and provide insight into why
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the recommendation models recommend a particular item. In this thesis, we mainly

focus on developing prompt-based post-hoc explanation. The reason is that LLMs,

like ChatGPT, have demonstrated exceptional ability in providing explanations for

general tasks. This indicates their significant potential for generating high-quality and

human readable explanations for sequential recommendations. Unlike the evaluation

of recommendation accuracy, assessing the ability of LLMs to explain recommenda-

tion results comes with several challenges. Firstly, it is difficult to solicit explanations

from the LLMs that allow us to evaluate their performance, as many LLMs do not

provide detailed nor structured explanations. Secondly, and more importantly, it is

difficult to obtain golden ground truth reasons for evaluating the explanations of

each recommended item. Therefore, in this thesis, we aim to develop LLM-based

methods that generate explanations for sequential recommendation results, and how

to develop an automatic evaluation system for evaluating LLMs’ ability to explain

accuracy.

1.4 Dissertation Structure

We first discuss related works that are connected to the topics of this thesis in

Chapter 2. The rest of this thesis consists of two parts — Part I: Representation

Learning of Item Sequences and Part II: LLM-based Reasoning and Explanation of

Recommended Items.

Part I contains Chapter 3, focusing on representation learning of item sequences,

with an emphasis on building better user representation that allows sequential rec-

ommendation models to make better next-item recommendations. In Chapter 3, we

first discuss the data sparsity problem in the sequential recommendation task and

the false positive problem caused by the data augmentation of existing contrastive

learning-based methods. We then formulate the problem and give readers a better

sense of how the proposed method fundamentally differs from two strong contrastive

learning for sequential recommendation baselines. Next, we introduce the proposed
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EC4SRec on how to utilize explanation methods to perform Explanation Guided

Augmentations (EGA) to aid contrastive learning-based sequential recommendation.

We present experimental results on four representative sequential recommendation

datasets and in-depth analyses of the proposed model to understand better why

explanation methods can help obtain more accurate recommendation performance.

This chapter is based on our work [139].

Part II, which includes Chapters 4, 5, and 6, focuses on leveraging LLMs’ strong

reasoning capabilities for making next-item recommendations. It also covers the use

of LLMs for generating and automatically evaluating explanations.

In Chapter 4, we explore how to leverage the rich world knowledge and strong

reasoning abilities of LLMs to make next-item recommendations. We present our

proposed Zero-Shot Next-Item Recommendation (NIR) strategy. This strategy uses

an external module for generating candidate items and a 3-step prompting method for

capturing user preferences and making ranked recommendations. Finally, we present

a comprehensive evaluation of the proposed NIR on two widely used benchmarks.

NIR competes well with strong sequential recommendation models, offering new

and exciting research possibilities for using LLMs in recommender systems.

In Chapter 5, we explore how to develop sequential recommendation models us-

ing in-context learning. We first conduct a preliminary empirical study to investigate

the role of four aspects of demonstrations, including the wording of prompts, task

consistency between demonstrations and test instances, selection of demonstrations,

and number of demonstrations. Then, we introduce our proposed method called

LLMSRec-Syn, which incorporates multiple demonstration users into one aggre-

gated demonstration. We also conduct a comprehensive evaluation of the proposed

LLMSRec-Syn on three recommendation datasets.

In Chapter 6, we study LLM’s ability to explain recommended items in sequential

recommendation tasks. Specifically, we introduce our proposed Framework for

LLM-based EXplanation of Next-Item Recommendation (FLEX). We create two

benchmark datasets for both CTF and CLF explanations using a subset of MovieLens
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dataset. Finally, we present an evaluation of the ability of LLM-based explanation

using the FLEX framework on our benchmark datasets.

Finally, in Chapter 7, we summarize the thesis’s contributions and suggest poten-

tial future directions.

1.5 Contributions

The technical contributions of this thesis are summarized as follows:

• We improve the state-of-the-art representation learning of user-item interaction

sequences by exploiting explanation methods to determine the importance

of items in the sequences when augmenting the sequences for contrastive

learning. We incorporate this idea into our proposed EC4SRec model which

demonstrates superior performance over existing sequential recommendation

methods across multiple benchmark datasets.

• We propose one of the early zero-shot sequential recommendation methods

using the LLM-based reasoning approach. To address the lack of item universe

and user knowledge in LLMs, our method incorporates an external candidate

item generation module and a 3-step prompting strategy to capture user prefer-

ences. We evaluate the proposed approach on both the MovieLens 100K and

LastFM 2K datasets, and obtain promising accuracy results. This shows the

potential of using LLMs in zero-shot recommendations.

• We explore in-context learning for sequential recommendation by systemati-

cally investigating the effect of instruction format, task consistency, demon-

stration selection, and number of demonstrations. We also propose a novel

one-shot sequential recommendation method called LLMSRec-Syn which

leverages on in-context learning and the novel concept of aggregated demon-

stration. The key idea behind aggregated demonstration is to incorporates

multiple demonstration users into one aggregated demonstration to conserve
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prompt length while taking advantage of the multiple demonstration users for

better in-context learning outcome.

• Finally, we tackle the explanation generation task and the evaluation of explana-

tion results for sequential recommendation results. We proposed a Framework

for LLM-based EXplanation of Next-Item Recommendation (FLEX) that sup-

ports an automatic evaluation of a LLM’s ability to generate plausible post-hoc

explanations, focusing on two prevalent perspectives: content filtering and

collaborative filtering. The results on the introduced dataset show that LLM

can achieve promising explanation performance, suggesting the potential to

develop effective LLM-based explainers for a wide range of recommendation

models across different domains.
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Chapter 2

Related Work

In this chapter, we aim to present previous works related to this thesis. Following

the research framework adopted in this dissertation work (see Section 1.2), we will

divide them under representation learning approach, LLM-based reasoning approach,

and LLM-based explanation approach. All sequential recommendation works using

the representation learning approach focus on learning high-quality user and item

representations for predicting the next-items by matching the user and next-items

in the learned representation space. In this chapter, we will cover both the machine

learning and deep learning methods for learning the representations of user-item

interaction sequences and items (see Sections 2.1 and 2.2). Lately, researchers

have turned to exploring the reasoning ability of LLMs in the development of next-

generation recommender systems. We will thus report some latest works in this line

of research in Section 2.3. Lastly, we review research on explanation methods for

sequential recommendations (Section 2.4).

2.1 Machine Learning-based Sequential Recommen-

dation

The popular machine learning methods for sequential recommendation encompass

the following categories: markov chains and factorization-based methods.
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Markov Chains (MC). MC models focus on modeling low-order transition

relationships between user interactions. The first-order MC models [47] consider only

the most recent item, while the low-order MC models [46] consider dependencies

among the last few interacted items. The representation vectors in these MC methods

can be derived by learnable matrices [47]. Although these MC models consider

low-order dependencies among items, they struggle to capture complex relationships

among items when the user-item interaction sequence is relatively long.

Factorization-based Methods. Matrix factorization (MF) methods model the

user-item interaction sequences as a user-item matrix that is subsequently decom-

posed into two lower-rank matrices, one capturing the representation vectors of

users and another capturing the representation vectors of items. BPR-MF [113]

optimizes the two decomposed matrices using a pairwise ranking objective function.

The MF-based sequential recommendation model [134], simplified from Factoriza-

tion Machines [112], involves considering the dependencies between items that are

not far apart and a candidate item for predicting recommendations. FPMC [111]

combines MF and MC to learn the general preference of a user by factorizing the

user-item matrix and to learn a transition graph over items based on the user’s recent

actions. FISM [57] performs matrix factorization on an item-item matrix, instead of

learning explicit user representations. To overcome the sparsity problems prevalent

in real-world datasets, Fossil [46] combines similarity-based methods with Markov

Chains to make personalized sequential recommendations.

While these machine learning-based sequential recommendation methods have

demonstrated promising results, they do not provide an effective strategy for model-

ing high-order and complex dependencies among items.
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2.2 Deep Learning-based Sequential Recommenda-

tion

Due to recent advances in neural networks and their ability to model complex

information, deep neural networks have been used to model complex sequential

dependencies in sequential recommendations. In this section, we categorize the

deep learning-based sequential recommendation methods into multi-layer perceptron

methods, recurrent neural network methods, convolutional neural network methods,

attention methods, and graph neural network methods. In representation learning

methods using deep neural networks, a user’s item sequence is fed into a sequence

encoder based on a deep neural network. This encoder then generates a corresponding

representation vector. The similarity between this vector and item vectors from the

item pool is computed. Items are ranked based on these computed similarities. The

higher an item’s ranking, the more likely it is to be recommended to the user.

Multi-layer Perceptron (MLP) methods. MLPs, or feed-forward neural net-

works with multiple hidden layers, are good at learning the nonlinear relationships

between input and output through nonlinear activation functions. This makes MLP-

based sequential recommendation models highly capable of capturing complex and

nonlinear relationships among items. For example, FMLP-Rec [185] employs an

embedding layer to obtain item embedding and uses multiple stacked learnable filter-

enhanced blocks, which consist of filter layers and feed-forward layers, to derive

user representations.

Recurrent Neural Network (RNN) methods. The effectiveness of RNNs in

sequence modeling has been widely demonstrated in the field of natural language

processing (NLP). RNN-based methods typically use RNN and its variants to derive

user representation from a given sequence of items for a user. To model long

dependent relationships among user-item interactions, RNNs such as the Gated

Recurrent Unit (GRU) [26] have been adapted for sequential recommendations to

model user interactions [50, 129, 49]. For example, GRU4Rec [50] incorporates
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GRU to model sequence-level patterns. This is further improved by replacing the

GRU with a hierarchical RNN [107]. The main limitation of RNN-based sequential

recommendation methods is that they could not cope with global dependencies for

extremely long user-item sequences, and their training is costly, especially for lengthy

sequences.

Convolutional Neural Network (CNN) methods. Originally developed for

image processing, a typical CNN structure includes convolution layers, pooling

layers, and fully connected feed-forward layers. The strength of CNN is its ability to

effectively capture dependent relationships across local information, such as pixel

correlations in specific regions of an image. In sequential recommendations, CNN-

based models [130, 133] usually generate user representations by applying a CNN

with sliding windows over the given user sequence and identify local features within

a short user-item sequence. For instance, the model Caser [130] is proposed to use

CNNs for modeling complex item-item relationships within the local regions of an

user-item interaction sequence.

Attention based methods. The attention mechanism, inspired by human visual

attention, has been widely used in computer vision [95, 159] and natural language

processing tasks [5, 91]. The core concept of the attention mechanism in sequential

recommendation models is to assess the importance of various segments of an input

user sequence on the recommended item. These methods generate user represen-

tations either through a neural network like RNN, followed by an attention layer,

or through a transformer encoder. Li et al. [66] propose a hybrid encoder, which

combines RNN with an attention mechanism, to model the user’s sequential behavior

and capture the user’s main purpose. Attention has also been incorporated into

memory networks for sequential recommendation tasks, and they achieve excellent

performance. The memory network is developed to store and update attribute-level

preference information explicitly [52]. Due to the recent success of Transformers

using self-attention to model global and long-term relationships in natural language

text [135, 32], they have been used to model temporal patterns in sequential recom-

16



mendation. For instance, SASRec [58] uses a self-attention layer to learn which items

are most influential in the history sequences to characterize complex correlations

between item transitions over time. Based on BERT [32], BERT4Rec [125] employs

a bidirectional Transformer layer to model user-item interaction sequences. To sup-

port efficient model learning, LightSANs [34] introduces a low-rank decomposed

self-attention to model the context of the items in user-item sequences. LSSA [158]

includes a long- and short-term self-attention network that takes into account both

long-term preferences and short-term sequential dynamics.

Graph Neural Networks (GNNs). GNNs in sequential recommendation meth-

ods are designed to learn representations of items by collectively aggregating neigh-

boring node information based on the graph structure. GNN-based models have also

been proposed to capture more complex patterns than sequential ones by combining

them with self-attention networks [13, 151, 157]. For example, Wu et al. [151] uses

GNNs for session-based recommendation, capturing more complex relationships

between items in a sequence. In this model, each session is represented as a com-

position of long-term preference and short-term interests within a session, using an

attention network.

While the above deep learning-based methods have contributed to improved

recommendation accuracy through sequence representation learning, they face sev-

eral drawbacks. These include (1) sole reliance on knowledge in the training data,

without considering the open-world knowledge, (2) inability to cope with unbal-

anced user-item interactions and prevalent long-tailed items, and (3) poor prediction

performance for cold-start users.
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2.3 Large Language Model-based Sequential Recom-

mendation

Recently, Large Language Models (LLMs) have astounded the world with their

impressive performance across a wide range of NLP tasks [11, 105]. LLMs, such as

ChatGPT [99], GPT-4 [100], LLaMa [132], and PaLM [24], are typically very large

transformers with billions of parameters, are trained on enormous textual corpora.

They display emergent skills such as chain-of-thought reasoning [145], instruction

following [25], and in-context learning [11]. They also show strong abilities in

dealing with complex scenarios [145, 62, 140]. Inspired by the success of LLMs

in various domains, the recommender system community also begins to propose

LLM-based recommendation methods [51, 138, 82, 150, 160, 9]. LLM-based

recommender systems can be categorized into (a) LLM-augmented recommender

systems [38, 154], and (b) LLM-only recommender systems [51, 29, 6, 171]. LLM-

augmented recommender systems leverage LLM’s reasoning and world knowledge

to improve existing recommendation models, while LLM-only recommender sys-

tems directly treat LLMs as recommendation models. Since this section primarily

focuses on LLM-based recommender systems that focus on reasoning, prompting,

in-context learning, and LLM knowledge for sequential recommendation, it will

leave out instruction tuning, parameter-efficient fine-tuning, and foundation models

for recommendation.

LLM-Augmented Recommender Systems. This category of methods primarily

uses the reasoning ability and world knowledge of LLMs to enhance the perfor-

mance of existing recommendation models. Chat-REC [38] is an LLM-augmented

recommender system with a conversational chat interface. The supervised learning

recommender system generates a set of candidate items for recommendations. LLM

then reranks these items and selects the top-k items as the final recommendations.

Furthermore, Chat-REC can also provide explanations for these recommended items.

Using prompting or in-context learning strategies, LLMs can generate auxiliary
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textual information for enhancing recommendations. For example, Du et al. [33]

proposed to use LLMs to summarize user information and job requirements to en-

hance job recommendation accuracy. KAR [154] uses LLMs to obtain two types of

external knowledge: user preference reasoning and item factual knowledge. KAR

then converts them into augmented vectors, which can be directly used to improve the

performance of any recommendation model. LLMRG [144] designs four modules

powered by LLMs to construct personalized reasoning graphs: 1) a chain module

for causal reasoning, 2) an expansion module based on user interests, 3) a verifica-

tion module for reasoning procedures, and 4) a self-improvement module to store

validated reasoning chains. The resulting reasoning graph is then encoded using

graph neural networks, which serve as an additional input to improve conventional

recommender systems.

LLM-Only Recommender Systems. These methods directly treat LLMs as

recommender systems, requiring LLMs to generate recommended items, either

from candidate item lists included in prompts or based on the general knowledge

of LLMs. GenRec [56] leverages the context comprehension capabilities of LLMs

to transform interaction histories into structured prompts for generating the next

item, instead of computing a ranking score for each candidate item individually to

determine which to recommend. GPT4Rec [69] starts by generating hypothetical

“search queries” (user representation vectors) using a language model (GPT-2). This

model uses the titles of items from a user’s history, along with a generation prompt,

as inputs. Then, GPT4Rec employs the BM25 algorithm to find the item most similar

to these “search queries” from the entire list of items. Dai et al. [29] conducted

an empirical analysis on ChatGPT’s recommendation abilities. Hou et al. [51]

explores LLMs (e.g., GPT-4) as ranking models in recommender systems, revealing

promising zero-shot abilities. Liu et al. [82] introduced a one-shot in-context learning

method that utilizes the previous user-item interactions of the target user as one

demonstration example. Compared to the existing prompting methods using LLMs

for sequential recommendation, which only use prompts with historical or given
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candidate items, our method detailed in Chapter 4.3 of this thesis employs user-

filtering and item-filtering to derive a candidate item set and incorporates the set

into a 3-step prompting strategy to leverage LLMs. Furthermore, we are the first to

conduct a comprehensive empirical study on what makes in-context learning effective

for sequential recommendation. We additionally propose a new demonstration

construction strategy, i.e., demonstration aggregation.

2.4 Explanation Methods

Among the studies on explanation methods for recommendation tasks [39, 131,

177, 110], most focus on explaining why a recommendation algorithm recommends

certain item for an input user’s past interacted item sequence. Our thesis, on the

other hand, focuses on the use of general local explanations to enhance the accuracy

of sequential recommendation and the evaluation of LLM-based explanation for

sequential recommendation. We thus review two types of related work: local

explanation methods and evaluation of LLM-based explanations. Note that, in

this section, most of the related work pertains to explanation, and may not be directly

relevant to sequential recommendation.

Local Explanation Methods. Local explanation methods aim to elucidate

how a model generates specific prediction for a given input. In other words, local

explanation methods are originally designed to identify input features that can explain

the prediction results, which is a subset of post-hoc explanation methods that are used

to interpret and understand the decisions of models after they have been trained. The

method detailed in Chapter 3 primarily uses local explanation methods to identify

important items from a user’s item sequence. Saliency [121], Gradient & Input

(GI) [61, 3], Guided Backpropagation [124], and Integrated Gradient [126], are

gradient methods that have been applied to a number of models in various fields.

Saliency [121] derives an input feature’s attribution score by returning the gradient

with respect to the input feature. Integrated Gradient [126] takes derivatives of
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the value for the predicted label with respect to the input features. It outperforms

Saliency but is less efficient. Attention can be used to understand or visualize

the prediction of the model by extracting the attention heads from the attention

module [5, 135]. However, attention as explanation is known to be unreliable [53,

147, 118] since different attention distributions can make the same prediction. In

addition to using raw attention weights directly, more elaborate attention explanation

mechanisms, such as Attention Rollout, have been proposed [1]. Unlike the raw

attention weights, which show the importance given to different parts of the input for

a single layer, Attention Rollout aggregates attention weights across all layers of the

model. Originally developed for explaining image classification [4], the layer-wise

relevance propagation (LRP) method has been applied to explaining predictions for

NLP models [153]. Occlusion [170] is a perturbation based explanation method

which computes input features’ attribution scores by the difference between outputs

of the original and perturbed input features. Beyond occlusion, perturbation-based

methods can also be used to identify the most important parts of the input by

observing changes in model confidence and Shapley values [89, 3] by using input

reductions [36]. LIME [114] is a surrogate-based explanation method that first

samples points around the input and uses the model’s evaluations concerning these

sampled points to train a surrogate model, such as logistic regression, to explain the

important features. Apart from post-hoc explanation methods, multiple select-then-

predict methods have been developed [65, 7, 55]. For example, FRESH [55] predicts

binary importance labels over snippet inputs and then uses these highlighted snippets

to make a final prediction.

LLM-based Explanation. LLMs such as GPT-4 have demonstrated impressive

abilities to generate natural language explanations for their predictions [145, 74, 141].

However, it remains unclear whether these explanations truly assist humans in un-

derstanding the model’s reasoning. Therefore, well-designed evaluation methods

are needed to better assess the performance of explanation methods. Ideally, human

annotators would label explanations as good or bad, but this is costly. A common
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method to evaluate the plausibility of an explanation involves removing a certain

percentage (k%) of the most important or unimportant tokens, then observing the

changes in the output [14, 96]. Recently, it is recommended to have evaluation

datasets for specific purposes to assess factual editing in LLMs [181, 90]. Addition-

ally, GPT-judge [79] use the GPT-3 model to measure whether a language model

is truthful in generating answers. The above LLM-generated explanations are not

directly relevant to explanations for sequential recommendation models. To the

best of our knowledge, there is no previous work about LLM-based explanation

for sequential recommendation. The work detailed in Chapter 6 explores how to

leverage LLM to generate explanations for sequential recommendation and how to

evaluate explanations for sequential recommendation.
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Chapter 3

Explanation Guided Contrastive

Learning for Sequential

Recommendation

In this chapter, we cover the work Explanation Guided Contrastive Learning for

Sequential Recommendation (EC4SRec) on how to utilize explanation methods

to perform Explanation Guided Augmentations (EGA) to aid contrastive learning-

based sequential recommendation. The key idea behind EGA is to use explanation

method(s) to determine items’ importance in a user sequence and derive the positive

and negative sequences accordingly. EC4SRec then combines both self-supervised

and supervised contrastive learning over the positive and negative sequences gen-

erated by EGA operations to improve sequence representation learning for more

accurate recommendation results. Extensive experiments on four real-world bench-

mark datasets demonstrate that EC4SRec outperforms the state-of-the-art sequential

recommendation methods and two recent contrastive learning-based sequential rec-

ommendation methods, CL4SRec and DuoRec. Our experiments also show that

EC4SRec can be easily adapted for different sequence encoder backbones (e.g.,

GRU4Rec and Caser), and improve their recommendation performance.1

1Code is available at https://github.com/demoleiwang/EC4SRec.
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Figure 3.1: Motivation example: (a) A given user sequence with seven items and a
red hair-dryer as the next item; (b) Two positive views generated by random mask
operations on the given sequence and a negative view which is the sequence of
another user. [M] represents a masked item.

The chapter is organised as follows. We first present the objective in Section 3.1.

Then we review the existing works, including sequential recommendation models,

contrastive learning methods, and explanation methods, in Section 3.2. In Section 3.3,

we formulate the problem and give readers a better sense of how the proposed

method differs fundamentally from two strong contrastive learning for sequential

recommendation baselines. In Section 3.4, we present the proposed EC4SRec

followed by the experiment Section 3.5. Finally, we conclude this chapter with a

summary.

3.1 Objective

Background. Recommender systems have played an important role in today’s online

services [27, 43] to help users navigate the overwhelming amount of information and

discover interesting items. Since sequential patterns of user-item interactions change

with time, researchers thus [50, 129, 130, 58] pay much attention to sequential
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recommendation which focuses on short-term and long-term dependencies among

items in user sequences to predict next user-item interaction(s).

For a sequential recommendation method to yield accurate results, it has to

learn a high-quality user representation from the user’s historical sequence and

match the user representation against candidate items. Traditional methods model

low-order dependencies between users and items via Markov Chain and Matrix

Factorization [111, 46]. Recently, researchers have developed deep learning-based

sequential recommendation methods using deep neural networks (such as recurrent

neural networks [50], convolutional neural networks [130], transformer [58], and

graph neural networks [13]) which learn higher-order dependencies to predict the

next items. However, data sparsity is still a major challenge due to limited data about

users and items in the long tail. The former refers to many users having very short

item sequences. The latter refers to many items having very few user interactions.

To cope with these challenges, contrastive learning-based (CL-based) sequential

recommendation works [156, 184, 87] incorporate positive and negative views of

original user sequences by augmentations and sampling so as to learn more robust

user sequence representations, thus more accurately matching candidate items to

improve recommendation performance.

Motivating Example. Figure 3.1 shows an example of the contrastive learn-

ing approach to sequential recommendation. From a given user sequence shown

in Figure 3.1(a), we obtain two positive views of the user sequence using some

augmentation operator(s), and select the sequence of another user as a negative view.

For the positive views, we randomly mask as few items in the given user sequence as

shown in Figure 3.1(b). To learn user sequence representations, contrastive loss(es)

is introduced to make the representations of positive views to be close to each other,

but far from that of the negative view [156, 184, 87].

Note that even as CL approach has been shown to improve sequential recom-

mendation performance, its user sequence augmentation and sampling methods are

performed with randomness (e.g., random crop, random mask, and random reorder)
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and is thus prone to produce for a given user sequence positive views that look very

different or negative views that look quite similar. As a result, the learned sequence

representations are non-ideal which subsequently affects the recommendation accu-

racy. For example, if we were to know that the red hair dryer is the next item, the hair

care items in the original sequence will be considered more relevant (or important).

The positive view 2 in Figure 3.1(b) will look more different from the original user

sequence, while positive view 1 without any masked hair care items will look more

similar. Attracting the representations of positive views 1 and 2 to be closer to each

other is therefore inappropriate and may degrade the recommendation performance.

By the same reasoning, the negative view may be inappropriately sampled if it shares

many hair care items with the two positive views.

Proposed idea. The above motivating example suggests that we need to carefully

choose positive and negative views in order to learn good high-quality user sequence

representations. To begin this research, we thus conduct a small experiment to show

that items important to the next-item of the predicted sequence should be treated

differently from non-important items for CL-based sequential recommendation to

achieve high accuracy. While this result is interesting, it is infeasible to know which

items are important in a user sequence as the next-item is not given during model

training. To determine the elusive “important items”, we propose explanation

guided augmentations (EGA) to infer the important items of a given user sequence

using explanation methods and consider item importance in augmentation operations.

This way, better positive views and negative views can be derived for contrastive

learning. We also propose the Explanation Guided Contrastive Learning for

Sequential Recommendation (EC4SRec) framework to utilise the positive and

negative views for self-supervised and supervised learning of user sequence repre-

sentations, combined with recommendation loss function. EGA and EC4SRec are

also designed to accommodate different sequential recommendation backbones. In

other words, they can be readily applied to existing self-supervised and supervised

CL methods to improve their recommendation performance.
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Our contributions. In summary, our contribution is three-fold:

• We propose a model-agnostic Explanation Guided Contrastive Learning for Se-

quential Recommendation (EC4SRec) framework that incorporates explanation

methods into user sequence augmentations for generating positive and negative user

sequences for both self-supervised and supervised contrastive learning. EC4SRec

can be seen as an integration of CL4SRec and DuoRec, with an additional sampling

of negative views for contrastive learning to more effectively separate the repre-

sentations of positive views from that of the negative views. To our knowledge,

EC4SRec is also the first that utilizes explanation methods to improve sequential

recommendation.

• We propose several explanation guided augmentation operations to generate both

positive and negative user sequences using importance score derived from explana-

tion methods. With these operations, EC4SRec can effectively utilize augmented

positive and negative user sequences in contrastive learning to obtain better se-

quence representations for recommendation.

• We evaluate the proposed augmentation method over two types of contrastive

learning frameworks, with three different baseline sequential recommendation

models, on four real-world datasets. Our experiment results show that EC4SRec

significantly outperforms the vanilla CL4SRec and DuoRec, and other state-of-the-

art sequential recommendation methods. We also demonstrate the generalizability

of EC4SRec using different sequence encoders and combinations of explanation

methods with consistent performance improvement by 4.2% to 23.0%.
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3.2 Existing Methods

3.2.1 Sequential Recommendation

Sequential recommendation aims to learn high-quality user and item representations

to predict the next item of a given user sequence. Early works focused on modeling

low-order transition relationships between items via Markov Chains as item-item

features to be used for recommendation [111, 46, 157]. With the advances in

neural networks, researchers turn to using neural networks [50, 66, 130, 58, 174,

127, 172, 88, 137, 67], such as RNN [50], CNN [130], Transformer [58], and

GNN [13] to model high-order sequential dependencies hidden in historical user-item

interactions. GRU4Rec [50], for example, incorporates GRU to model sequence-level

patterns. This is further improved by replacing GRU by hierarchical RNN [107].

Caser [130] on the other hand uses CNN to model high-order item-item relationships.

Inspired by the effectiveness of self-attention in NLP communities [148], Kang, et

al. [58] applied self-attention in sequential recommendation named SASRec. GNN

based models [87, 151] are also proposed to capture more complex patterns than

sequential patterns. To improve sequential recommendation by both performance and

interpretability, various works [52, 169, 20] began to determine items contributing

to the next-item prediction. Explanation methods, such as attention weights [148],

gradient-based methods [170, 126], and Occlusion [121] have been designed to

determine features that explain the prediction labels. In our research, we explore the

use of explanation methods to determine specific earlier items in the user sequence

that explain the predicted next-item and in turn improve sequential recommendation

accuracy under the EC4SRec framework.

3.2.2 Contrastive Learning

Contrastive learning has recently achieved great successes in various research do-

mains including computer vision [18, 45, 41, 102], NLP [35, 37], recommenda-
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tion [184, 156, 23, 149, 23, 183, 86, 166, 149, 136, 78], etc.. It aims to obtain high-

quality representations by pulling positive views of the same instance closer while

pushing the positive views and their negative views apart in the representation space.

S3Rec [184] pre-trains sequential recommendation by contrastive learning with four

self-supervised tasks defined on historical items and their attributes. CL4SRec [156]

combines recommendation loss with contrastive loss of self-supervised tasks to

optimize the sequential recommendation model. CoSeRec [87] introduces two new

augmentation operations, insert and replace, to train robust sequence representations.

DuoRec [106] retrieves the positive view of a given user sequence by finding an-

other user’s sequence which shares the same next-item in its proposed supervised

contrastive learning. In the following section, we will further elaborate CL4SRec

and DuoRec. The above contrastive learning-based sequential recommendation

methods, nevertheless, suffer the same pitfalls mentioned in our motivating example.

In this research, we therefore seek to address these pitfalls by explanation-guided

augmentations and explanation-guided contrastive learning framework.

3.2.3 Explanation Methods

While there are several works on explainable recommendation [39, 131, 177], they

are designed to explain why an item is predicted by the recommendation algorithm.

This work mainly focuses on general explanation methods [121, 170, 126] originally

designed to determine features that explain the prediction results. By applying

these methods to sequential recommendation methods, we can determine historical

items in a user sequence that explain the predicted next-item, and assign importance

scores to these historical items. For example, Saliency [170] derives an input feature’s

attribution score by returning the gradient with respect to the input feature. Integrated

Gradient [126] takes derivatives of the value for the predicted label with respect to

the input features. It outperforms Saliency but is less efficient. Occlusion [121] is a

perturbation-based explanation method which computes input features’ attribution
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scores by the difference between outputs of the original and perturbed input features.

Prediction models incorporating attention mechanism compute attention weights as

the relative importance of items. However, using attention weights as explanation is

controversial [54, 148] since different attention distributions can produce the same

model predictions.

3.3 Preliminaries

3.3.1 Problem Formulation

Suppose that we have a set of users U and items V . For the sequential recommen-

dation task, each user u ∈ U has a sequence of items the user has interacted with

in the past. We denote this sequence by su = [vu1 , v
u
2 , . . . , v

u
|su|] where vui ∈ V and

|su| denotes the sequence length. The items in the sequence are ordered by time.

The goal of sequential recommendation is to predict the next item at time step,

i.e., vu∗ , using the observed historical sequence su. Suppose P (v|s) is a model that

returns the probability of v being the next item given a sequence s. The sequential

recommendation task can be formulated as:

vu∗ = argmaxv∈V P
(
vu|su|+1 = v | su

)
.

3.3.2 Contrastive Learning for Sequential Recommendation

In this section, we describe a set of basic augmentation operations to determine

positive views of a given user sequence.

Basic Augmentation Operations. There are four basic augmentation opera-

tions [184, 156, 106] to generate positive views from an original user sequence,

su = [vu1 , v
u
2 , . . . , v

u
|su|].

• Random Crop (crop): It randomly selects a continuous sub-sequence from posi-

tions i to i+ lc from su and removes it. lc is defined by lc = i+ ⌊µc · |su|⌋ where
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µc (0 < µc ≤ 1) is a hyper-parameter. The cropped sequence is defined by:

scu = [vui , v
u
i+1, . . . , v

u
i+lc ] (3.1)

• Random Mask (mask): It randomly selects a proportion µm of items from su

to be masked. Let gm(1), gm(2), · · · , gm(nm
u ) be the indexes of the items to be

masked where nm
u = ⌊µm · |su|⌋ and gm(x) ∈ [1, |su|]. An item vi is replaced with

the mask item [m] if selected to be masked. The masked sequence is thus:

smask
u = [vu1 , · · · , vugm(1)−1, [m], vugm(1)+1, · · · ,

vugm(nm
u )−1, [m], vugm(nm

u )+1, . . . , v
u
|su|]. (3.2)

• Random Reorder (rord): It first randomly selects a continuous sub-sequence

[vui , v
u
i+1, . . . , v

u
i+lr

] of length lr = ⌊µr ∗ |su|⌋ (0 ≤ µr ≤ 1). It then randomly

shuffles the items in the sub-sequence. Suppose the reordered items, sorted by new

positions, are [ṽui , . . . , ṽ
u
i+lr

]. The reordered sequence is thus:

srordu = [vu1 , · · · , vui−1, ṽ
u
i , ṽ

u
i+1, · · · , ṽui+lr , v

u
i+lr+1, · · · vu|su|]. (3.3)

• Random Retrieval (rtrl): This operation randomly selects another user sequence

su′ that shares the same target (or next) item as the input sequence su, i.e., vu∗ = vu
′

∗ .

The retrieved sequence is thus:

srtrlu = su′ , s.t. vu∗ = vu
′

∗ (3.4)

CL4SRec Method. Consider a set of users in a batch UB = {u1, u2, . . . , u|UB |}. The

loss function of CL4SRec is:

LCL4SRec =
∑
u∈UB

Lrec(su) + λLcl(s
ai
u , s

aj
u ). (3.5)

31



where Lrec(su) and Lcl(s
ai
u , s

aj
u ) are the recommendation loss and self-supervised

contrastive loss respectively. saiu and s
aj
u are positive views of original user sequence

su after applying augmentations ai and aj respectively. ai and aj are sampled from

{crop,mask, rord}. We denote the positive view pairs for the users in the batch B

as SB = {sa1u1
, sa2u1

, sa1u2
, sa2u2

, · · · , sa1u|B|
, sa2u|B|

}. Thus, the recommendation loss for the

user u can be formulated as:

Lrec (su) = − log
exp

(
sim

(
hu, hvu∗

))
exp

(
sim

(
hu, hvu∗

))
+
∑

v−∈V − exp (sim (hu, hv−))
(3.6)

where V − = V − {vu∗}, and hv− are the representations of the sequence su, the next

item v∗u, and a negative item v− respectively. The contrastive loss is:

Lcl (s
ai
u , s

aj
u ) = − log

exp
(
sim

(
hai
u , h

aj
u

))
exp

(
sim

(
hai
u , h

aj
u

))
+
∑

s−∈S−
u
exp (sim (hai

u , h−))
, (3.7)

where hai
u and h

aj
u are the representations of su after augmentations ai and aj respec-

tively. S−
u denotes a set of negative sequences defined by S−

u = SB − {sa1u , sa2u }.

s−and h− denote a sequence that does not belong to u in the batch B and its

representation respectively.

DuoRec Method. Given a user sequence su, we randomly sample a retrieved-

positive view from other users’ sequences that share the same next item vu∗ . We

denote all user sequences and their corresponding retrieved-positive views by S =

{su1 , s
rtrl
u1

, su2 , s
rtrl
u2

, · · · , su|B| , s
rtrl
u|U|

}. In DuoRec, the representations of each user

sequence su and its retrieved-positive view srtrlu are learned to be close to each other

but far from other user sequences and their retrieved-positive views denoted by

S−
u = S − {su, srtrlu }.

The loss function of DuoRec consists of both recommendation loss and super-

vised contrastive loss functions:

LDuoRec =
∑
u∈UB

Lrec(su) + λLsl(su) (3.8)
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Lsl (su) = −

(
log

exp
(
sim

(
hu, h

rtrl
u

)
/τ
)

exp (sim (hu, hrtrl
u ) /τ) +

∑
s−∈S−

u
exp (sim (hu, h−) /τ)

+

log
exp

(
sim

(
hrtrl
u , hu

)
/τ
)

exp (sim (hrrrl
u , hu) /τ) +

∑
s−∈S−

u
exp (sim (hrtrl

u , h−) /τ)

)
(3.9)

where τ is the temperature ratio.

3.3.3 Experiment for Important Item Evaluation

As shown in Figure 3.1, random augmentation is prone to generate false positive

pairs that possibly degrade the quality of learned representations. To evaluate this

claim, we conduct an experiment comparing CL4SRec using the vanilla random

augmentation operations and augmentation operations that are aware of important

items. Our goal is to evaluate if the latter can contribute to better recommendation

performance, suggesting that the item importance-aware approach generates higher

quality representations.

To verify this assumption empirically, we construct a synthetic dataset2, which

provides ground truth of important items in every user sequence. Specifically,

the dataset consists of 500 user sequences each with 10 historical items and 3

additional items at the end serving as the next-items. Among the historical items are

3 important items shared by the 3 next-items to be used for training, validation and

test respectively.

We then experiment CL4SRec on this synthetic dataset with two types of mask

operations to generate positive views. Each of them masks 4 historical items as

follows: (i) random masking that randomly masks 4 historical items (4 is empirically

chosen); and (ii) oracle based masking that masks only unimportant items of the user

sequence.

As shown in Table 3.1, CL4SRec using oracle-based masking substantially

2Details of the synthetic data is available at https://github.com/demoleiwang/EC4
SRec.
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Table 3.1: Results of CL4SRec on synthetic dataset with ground truth important
items.

Masking Op. Random Oracle-based

HR@3 0.3560 0.5180
NDCG@3 0.2573 0.3645

outperforms that using random masking by both HitRate@3 and NDCG@3. The

former achieves more than 40% higher NDCG@3 than the latter. This motivates us

to determine important items for effective augmentation and contrastive learning in

sequential recommendation.

3.4 Explanation-Guided Contrastive Learning Frame-

work for Sequential Recommendation

Our proposed Explanation guided Contrastive Learning Framework for

Sequential Recommendation (EC4SRec), as shown in Figure 3.2, consists of

a sequence encoder to represent a given user’s sequence of historical items su into a

vector representation hu which is in turn matched with items from a common pool

by a next-item predictor which returns the next recommended item.

Unlike the existing contrastive learning methods to sequential recommendation

(e.g., CL4SRec, DuoRec), EC4SRec utilizes an explanation method at scheduled

epoch(es) to determine the importance of each su’s items for an input user sequence

with next-item returned by the sequence encoder and next-item predictor. Next,

the explanation guided augmentation will utilize the item importance scores

to generate positive and negative views of user sequences for further training the

sequence encoder and next-item predictor. The right of Figure 3.2 shows the different

loss and recommendation loss functions that are used to train the models under

different explanation-guided contrastive learning methods.
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3.4.1 Explanation Guided Importance Scores

The schedule of explanation method updating the item importance scores, also known

as update schedule, is controlled by a hyperparameter p. For a model training with a

total of N epoches, we schedule the updates to be at epoch l · ⌊ N
p+1

⌋ for 1 ≤ l ≤ p.

For example, for p = 3 and N = 100, updates will scheduled at epochs 25, 50,

and 75. At each scheduled epoch for updating explanation methods, we will use

local explanation methods to derive importance scores for user sequences. These

importance scores will be used to derive explanation augmented positive or negative

views for each user sequence. For epochs before the first scheduled update (i.e., 1 to

⌊ N
p+1

⌋ − 1), EC4SRec can adopt any reasonably good sequential recommendation

model (e.g., CL4SRec or DuoRec) to train the initial sequence encoder and next-item

predictor. In our experiments, we combine the losses of CL4SRec and DuoRec, i.e.,∑
u∈U Lrec(su) + λLcl(su) + λLsl(su), to train the initial model. During inference,

we only need to feed the input user sequence to the sequence encoder which generates

the sequence representation for next-item predictor to recommend the next-item.

The most important items in the sequential recommendation models are those

that contribute the most to the prediction. General explanation methods, such as

Saliency Maps [121], Integrated Gradient [126], and Occlusion [170], are agnostic

to sequential recommendation algorithms, such as GRU4Rec [50], Caser [130], and

SASRec [58]. To obtain explanation-guided importance scores for each item in

the user sequence, we feed the input user sequence su = [vu1 , v
u
2 , · · · , vu|su|], the

sequential encoder SeqRec, and its prediction probability for any next item yu into

any model-agnostic explanation method Expl(·), which determine the importance

scores of items in su as score(su) = Expl(yu, su, SeqRec), where score(su) =

[score(vu1 ), score(v
u
2 ), . . . , score(v

u
|su|)] and score(vui ) denotes the importance score

of item vui .

Each explanation method employs a different strategy to identify these important

items. Each method computes the importance score, score (vui ), for each item vui to
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Figure 3.2: Proposed EC4SRec Framework.

help find the important items that contribute to a model’s prediction.

Importance Score using Saliency Map. Saliency maps are used to determine which

parts of the input sequence a model focuses on when making a decision. The basic

idea is to compute the gradient of the output category with respect to the input

sequence. This shows how much each item in the input sequence contributes to

the final decision. The importance score of each item can be represented by the
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following formula:

score (vui ) =

∥∥∥∥∂vu|su|+1

∂evui

∥∥∥∥ . (3.10)

where:

• vu|su|+1 is the output of the model and su is the input sequence.

• evui is the embedding vector of item vui .

•
∂vu|su|+1

∂evu
i

is the gradient of the output with respect to the item vui .

Importance Score using Occlusion. Occlusion involves systematically blocking

different items of the input sequence and observing the impact on the model’s output.

This method helps to understand which items of the input sequence are crucial for

the model’s prediction by noting how the prediction changes when items of the input

are obscured. The impact can be quantified by the change in output score. This

method typically involves:

• Occluding item of the input sequence using a patch.

• Calculating the output of the model with the occluded item sequence.

• Observing the change in the output.

This can be summarized by:

score(vui ) = O(su,i) = y(su)− y (su,i) . (3.11)

Where:

• O(su,i) is the occlusion score.

• y(su) is the output score with the full input sequence.

• y (su,i) is the output score with part of the input sequence occluded by patch i.
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Importance Score using Attention Mechanisms. Attention mechanisms, often

used in sequence modeling tasks (like language processing), allow the model to

weigh different items of the input sequence differently, focusing more on items

deemed more important. The typical formula for a simple attention mechanism can

be:

score(vui ) = Attention(vu|su|, v
u
i ) =

hvu|su|
hvui∑|su|

j hvu|su|
hvuj

. (3.12)

Where:

• vu|su| and vui are the last item (query) and a specific item (key), respectively.

• hvu|su|
and hvui

are the latent vectors of last item (query) and a specific item

(key), respectively.

• hvu|su|
hvui

computes the alignment score between query and key.

score(vui ) returns a value in [0, 1] indicating how important is vui in the sequence

su for a specific given sequential recommendation algorithm. As
∑

i score(v
u
i ) = 1,

the importance score is relative and comparable only among items of the same

sequence.

3.4.2 Explanation Guided Augmentation

We propose five explanation guided augmentation operations, three for generating

positive views and two for generating negative views. While some of these operations

are extensions of random augmentation, the operations for generating negative

views (that is, ecrop− and emask−) are unique to EC4SRec as both CL4SRec and

DuoRec consider augmentations for positive views only. Our experiment results

in Section 3.5.3 also show that these negative views can substantially improve

recommendation accuracy.
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• Explanation Guided Crop for Positive and Negative View (ecrop+, ecrop−):

To perform ecrop+ (or ecrop−) on su, we select the k (or |su| − k) items with the

lowest (or highest) by importance score to be removed to generate the positive (or

negative) view. k is defined by ⌊µe · |su|⌋ where µe (0 < µe ≤ 1). Let [vui1 , · · · , v
u
ik
]

denote the sub-sequence of k items in su with the lowest importance scores. The

explanation guided cropped positive and negative views are defined as:

secrop+u = su − [vui1 , · · · , v
u
ik
], secrop−u = [vui1 , · · · , v

u
ik
]. (3.13)

• Explanation Guided Mask for Positive or Negative View (emask+,emask−):

To perform emask+ on su, we select the k items with the lowest importance scores

to be masked. Let [vui1 , · · · , v
u
ik
] denote the sub-sequence of k items in su with the

lowest importance scores. The explanation guided masked positive view is then

defined as:

semask+
u = [vu1 , · · · , vui1−1, [m], vui1+1, · · · , vuik−1, [m], vuik+1, · · · , vu|su|] (3.14)

The explanation guided masked negative view semask−
u is defined in a similar way

except that the k items to be masked are those with highest importance scores.

• Explanation Guided Reorder for Positive View (erord+): Let [vui1 , · · · , v
u
ik
]

denote the sub-sequence of k items in su with the lowest importance scores

(i1 < i2 < · · · < ik). We randomly reorder these items. Suppose the reordered

items, sorted by new positions, are [ṽui1 , · · · , ṽ
u
ik
]. The reordered positive view can

be formulated as:

serord+u = [vu1 , · · · , vui1−1, ṽ
u
i1
, vui1+1, · · · , vuik−1ṽ

u
ik
, vuik+1, · · · , vu|su|]. (3.15)

We leave out explanation guided reorder operation for negative views as it is not

likely to generate discriminative negative views.
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• Explanation Guided Retrieval for Positive View (ertrl+): Like random retrieval,

we first define the candidate sequences that share the same target (or next) item

as the original user sequence su as: Sc
u = {su1 , su2 , . . . , su|Sc

u|}. That is, vuk
∗ = vu∗ ,

suk
∈ |Sc

u|, and uk ̸= u. Next, we compute the probability for each sequence in Sc
u

using importance scores:

P (suk
) =

util(suk
)∑

suj∈Sc
u
util(suj

)
. (3.16)

where

util(suk
) =

|su ∩ suk
|

|su ∪ suk
|
∑

v∈su∩suk

score(v) (3.17)

We then sample the explanation guided retrieved sequence user sequence sertrl+u

from Sc
u with the probability distribution.

3.4.3 Explanation Guided Contrastive Learning

Based on the EC4SRec framework, we can derive different proposed models depend-

ing the type of explanation guided contrastive learning used for model training. In

the following, we introduce three proposed models based on explanation guided self-

supervised contrastive learning, explanation guided supervised contrastive learning,

and combined explanation guided contrastive learning.

• Explanation Guided Self-Supervised Learning.

This model can be seen as an extension of CL4SRec with explanation guided aug-

mentation operations generating both positive and negative views for contrastive

learning. The loss function consists of three components: (i) recommendation loss,

(ii) contrastive loss for explanation guided positive views, and (iii) contrastive loss
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for explanation guided negative views:

LEC4SRec(SSL) =
∑
u∈UB

Lrec(su) + (λcl+Lcl+(su) + λcl−Lcl−(su)). (3.18)

The Lrec(su) here has been defined earlier in Equation 3.6. Let A+ = {aecrop+,

aemask+, aerord+} and A− = {aecrop−, aemask−}. To obtain Lcl+(su), we generate

two positive views saiu and s
aj
u by sampling ai and aj (ai ̸= aj) from A+ and

applying them on su. We repeat this for all other users and obtain a set of a set

of positive views from all users denoted as S+. Let S+
u be {saiu , s

aj
u }. To get the

representations of saiu and s
aj
u closer to each other but farther away from other

users’ positive views, we define:

Lcl+ (su) = − log
exp

(
sim

(
hai
u , h

aj
u

))
exp

(
sim

(
hai
u , h

aj
u

))
+
∑

sa
u′∈S

+−S+
u
exp (sim (hai

u , ha
u′))

.

(3.19)

To obtain Lcl−(su), we generate a negative view sa−u by applying an augmentation

operator a−, sampled from A−, on su. Here, we would like this negative view to be

closer to other users’ negative views (as we do not need distinctive representations

for these negative views) and farther away from the all users’ positive views,

borrowing a similar idea from [59]. Let S− denote the set of negative views after

repeating the above on all users. We define:

Lcl− (su) = − 1

|S−| − 1

∑
sa
u′∈S

−−{sa−u }
log

exp (sim (ha−
u , ha

u′))∑
s∈S+∪{sau′} exp (sim (ha−

u , h))
,

(3.20)

where h is the representation of the sequence s. By setting β = 0, we can obtain a

model variant that considers positive views only.

• Explanation Guided Supervised Contrastive Learning.
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This model extends DuoRec to use explanation guided augmentation. The loss

function is:

LEC4SRec(SL) =
∑
u∈UB

Lrec(su) + λLsl+(su), (3.21)

where

Lsl+ (su) =

−

(
log

exp
(
sim

(
hu, h

ertrl +
u

)
/τ
)

exp (sim (hu, hertrl +
u ) /τ) +

∑
s−∈S−

u
exp (sim (hu, h−) /τ)

+

log
exp

(
sim

(
hertrl +
u , hu

)
/τ
)

exp (sim (hertrl +
u , hu) /τ) +

∑
s−∈S−

u
exp (sim (hertrl +

u , h−) /τ)

)
.

(3.22)

hertrl+
u is the representation of the augmented sequence for the user u generated by

explanation guided retrieval operation, i.e., ertrl+.

• Combined Explanation Guided Contrastive Learning.

To leverage both self-supervised contrastive learning and supervised contrastive

learning, we combine the two types of contrastive learning losses as:

LEC4SRec =
∑
u∈UB

Lrec(su) + λcl+Lcl+(su) + λcl−Lcl−(su) + λsl+Lsl+(su).

(3.23)

3.5 Experiment

3.5.1 Experimental Settings

Datasets and Data Preprocessing. We conduct experiments on four widely used

real-world datasets, i.e., Beauty, Clothing, Sports, and ML-1M (Movielens 1M).

The first three are from Amazon3 [93], and ML-1M4 [43] is a very large benchmark

dataset for movie recommendation. Following the previous works [58, 184, 156,

3http://jmcauley.ucsd.edu/data/amazon/
4https://grouplens.org/datasets/movielens/1m/
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Table 3.2: Dataset Statistics After Preprocessing.

Dataset Beauty Clothing Sports ML-1M

Users 22,363 39,387 35,598 6,041
Items 12,101 23,033 18,357 3,417
User-item Interactions 198,502 278,677 296,337 999,611
Avg Sequence Length 8.9 7.1 8.3 165.5
Sparsity 99.93% 99.97% 99.95% 95.16%

Table 3.3: Performance comparison with sequential recommendation methods with-
out contrastive learning. (The best and second best results are boldfaced and under-
lined.

Dataset Metric BPR-MF GRU4Rec Caser SASRec BERT4Rec S3RecMIP EC4SRec

Beauty

HR@5 0.0120 0.0164 0.0191 0.0365 0.0193 0.0327 0.0569
HR@10 0.0299 0.0365 0.0335 0.0627 0.0401 0.0591 0.0862
NDCG@5 0.0065 0.0086 0.0114 0.0236 0.0187 0.0175 0.0364
NDCG@10 0.0122 0.0142 0.0160 0.0281 0.0254 0.0268 0.0458

Clothing

HR@5 0.0067 0.0095 0.0049 0.0168 0.0125 0.0163 0.0209
HR@10 0.0094 0.0165 0.0092 0.0272 0.0208 0.0237 0.0320
NDCG@5 0.0052 0.0061 0.0029 0.0091 0.0075 0.0101 0.0119
NDCG@10 0.0069 0.0083 0.0043 0.0124 0.0102 0.0132 0.0155

Sports

HR@5 0.0092 0.0137 0.0121 0.0218 0.0176 0.0157 0.0331
HR@10 0.0188 0.0274 0.0204 0.0336 0.0326 0.0265 0.0514
NDCG@5 0.0053 0.0096 0.0076 0.0127 0.0105 0.0098 0.0203
NDCG@10 0.0085 0.0137 0.0103 0.0169 0.0153 0.0135 0.0262

ML-1M

HR@5 0.0164 0.0763 0.0816 0.1087 0.0733 0.1078 0.1672
HR@10 0.0354 0.1658 0.1593 0.1904 0.1323 0.1952 0.2533
NDCG@5 0.0097 0.0385 0.0372 0.0638 0.0432 0.0616 0.1102
NDCG@10 0.0158 0.0671 0.0624 0.0910 0.0619 0.0917 0.1380

106], we remove repeated items, and preprocess the four datasets with the 5-core

strategy (i.e., removing users and items with fewer than 5 interactions). The dataset

statistics are summarized in Table 3.2. The datasets are very sparse as their sparsity

indices (defined by 1− num. of interactions
num. of users·num. of items) are very high.

Evaluation Protocols. Following [156, 106], we use the last interacted item of each

user sequence for test, the second last item for validation, and all the earlier items

for training. The predicted next-item come from the pool of all items without any

candidate filter. We employ two performance metrics, Hit Ratio at k (HR@k) and

Normalized Discounted Cumulative Gain at k (NDCG@k), which are widely used in

previous work [58, 184, 156, 106]. We report the average of results with running 3

times with 3 random seeds.
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Table 3.4: Performance comparison with sequential recommendation methods with
contrastive learning. (The best and second best results are boldfaced and underlined.
*: significant improvement of EC4SRec(SSL) over CL4SRec with p-value= 0.05.
**: significant improvement of EC4SRec(SL) over DuoRec with p-value= 0.01.)

Dataset Metric CL4SRec EC4SRec(SSL)** DuoRec EC4SRec(SL)* EC4SRec

Beauty

HR@5 0.0495 0.0569 0.0548 0.0585 0.0569
HR@10 0.0810 0.0853 0.0832 0.0867 0.0862
NDCG@5 0.0299 0.0358 0.0345 0.0361 0.0364
NDCG@10 0.0401 0.0450 0.0436 0.0455 0.0458

Clothing

HR@5 0.0187 0.0201 0.0196 0.0205 0.0209
HR@10 0.0305 0.0314 0.0296 0.0311 0.0320
NDCG@5 0.0104 0.0113 0.0112 0.0115 0.0119
NDCG@10 0.0142 0.0149 0.0144 0.0149 0.0155

Sports

HR@5 0.0277 0.0323 0.0310 0.0317 0.0331
HR@10 0.0455 0.0497 0.0480 0.0491 0.0514
NDCG@5 0.0167 0.0201 0.0191 0.0194 0.0203
NDCG@10 0.0224 0.0256 0.0246 0.0249 0.0262

ML-1M

HR@5 0.1583 0.1699 0.1672 0.1682 0.1672
HR@10 0.2423 0.2543 0.2507 0.2526 0.2533
NDCG@5 0.0996 0.1095 0.1076 0.1104 0.1102
NDCG@10 0.1267 0.1368 0.1345 0.1375 0.1380

Baselines. We compare EC4SRec(SSL), EC4SRec(SL) and EC4SRec with the

following three groups of baseline methods:

• Non-sequential recommendation method: We use BRP-MF [113], a popular

matrix factorization model.

• Sequential recommendation methods without contrastive learning: These

methods include GRU4rec [50], a RNN-based method; Caser [130], a CNN-based

method; two self-attention based methods SASRec [58] and BERT4Rec [125]; and

a self-supervised learning method S3RecMIP [184].

• Sequential recommendation methods with contrasitve learning: These include

CL4SRec [156] and DuoRec [106].

Implementation Details. For BPR-MF and S3RecMIP, we use results reported in

the CL4SRec paper. We implemented the baselines GRU4Rec, Caser, SASRec, and

BERT4Rec using the RecBole library 5 [182]. For CL4SRec and DuoRec, we made

5https://github.com/RUCAIBox/RecBole

44

https://github.com/RUCAIBox/RecBole


Table 3.5: Results of EC4SRec with different Sequential Recommendation Back-
bones.

Beauty Clothing Sports
Backbone NDCG@5 NDCG@10 NDCG@5 NDCG@10 NDCG@5 NDCG@10

GRU4Rec

CL4SRec 0.0270 0.0341 0.0065 0.0089 0.0154 0.0200
EC4SRec(SSL) 0.0314 0.0382 0.0082 0.0109 0.0167 0.0213
DuoRec 0.0318 0.0388 0.0078 0.0102 0.0163 0.0207
EC4SRec(SL) 0.0327 0.0401 0.0086 0.0108 0.0173 0.0218

EC4SRec 0.0332 0.0412 0.0089 0.0115 0.0182 0.0233

Caser

CL4SRec 0.0108 0.0157 0.0036 0.0049 0.0071 0.0096
EC4SRec(SSL) 0.0137 0.0189 0.0039 0.0055 0.0088 0.0121
DuoRec 0.0129 0.0183 0.0031 0.0046 0.0082 0.0110
EC4SRec(SL) 0.0161 0.0218 0.0039 0.0056 0.0097 0.0127
EC4SRec 0.0172 0.0232 0.0041 0.0060 0.0105 0.0139

some changes to the codes provided by the authors of DuoRec to mainly correct some

bugs. Our CL4SRec and DuoRec results are generally similar to that reported in the

original works. For each baseline, we set the embedding dimension to be 64 and

keep all other hyper-parameter settings the same as those reported in their original

papers. For EC4SRec and its variants, we use SASRec and Occlusion as the default

backbone sequential recommendation method and explanation method respectively.

The hyper-parameter settings, such as batch size, embedding dimension, number of

layers, number of attention heads, follow those reported in CL4SRec. We tune µe, a

hyperparameter to control the proportion of important items in augmentation from

0.1 to 0.9 with step size = 0.1. We also tune the temperature τ within [0.5, 1.0, 1.5],

and the coefficients λcl+, λcl−, and λsl+ within [0.1, 0.2, 0.3, 0.4, 0.5].

3.5.2 Overall Results

EC4SRec versus Baselines. As shown in Table 3.3 and Table 3.4, the overall

experiment results show that:

• Our proposed EC4SRec and its variants consistently outperform the state-of-the-art

methods, including the latest contrastive learning-based models CL4SRec and

DuoRec, for all datasets by all metrics. Specifically, EC4SRec achieves 12.4%

(4.9%) improvement over CL4SRec (DuoRec) on average across all datasets
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by all metrics. EC4SRec generally performs better than EC4SRec(SSL) and

EC4SRec(SL). The above findings as well as the significant improvement of

EC4SRec(SSL) over CL4SRec and EC4SRec(SL) over DuoRec demonstrate that

self-supervised and supervised contrastive learning benefit substantially from ex-

planation guided augmentation. Higher-quality positive views and negative views

for contrastive leaning have clearly resulted in better user sequence representations.

• Among the baselines, non-sequential recommendation recommendation methods

(i.e., BPR-MF) unexpectedly yield the worst performance. It indicates that the se-

quential patterns are important in this task. Among the sequential recommendation

methods, SASRec and BERT4Rec consistently outperform GRU4Rec and Caser.

It shows that self attention can model more complex patterns than left-to-right

patterns.

• Consistent with earlier results in [156, 106], contrastive learning methods CL4SRec

and DuoRec outperform S3RecMIP and SASRec. Our experiment also shows that

the former also outperform BERT4Rec. The above demonstrates the the strength of

contrastive learning. With supervised contrastive learning, DuoRec performs better

than CL4SRec but the gap is reduced between EC4SRec(SL) and EC4SRec(SSL).

This could be explained by the additional loss Lcl− added to EC4SRec(SSL).

EC4SRec with Different Backbone Sequential Recommendation Methods. In-

stead of using the default self-attention based backbone SASRec, we evaluate

EC4SRec, its variants, CL4SRec and DuoRec using other backbones, namely RNN-

based GRU4Rec and CNN-based Caser to study the impact of explanation guided

augmentation and contrastive learning. Due to space constraint, we only show the

result on three datasets. As shown in Table 3.5, the relative performance ranking

between EC4SRec, EC4SRec(SSL), EC4SRec(SL), CL4SRec and DuoRec remains

unchanged when using GRU4Rec and Caser backbones. EC4SRec still achieves

the best performance using different backbones. EC4SRec(SSL) and EC4SRec(SL)
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Figure 3.3: Changes of NDCG@5 for EC4SRec using different update schedules
over 150 training epoches (p: number of importance score updates in training)

outperforms CL4SRec and DuoRec respectively. These encouraging results indicate

the generalizability of the effectiveness of explanation guided approach.

3.5.3 Detailed Analysis

In this section, we conduct detailed analysis of EC4SRec and its variants. We show

the results on Beauty and Clothing datasets only due to space constraint.

Effect of Update Schedule of Important Scores. As mentioned in Section 3.4, the

parameter p controls the number of item importance updates scheduled during the

training of EC4SRec and its variants. First, we want to study how the updates affect

the performance of these models during the training epoches. For illustration, we

plot the NDCG@5 of EC4SRec only on validation data in Figure 3.3. With 150

training epoches, the update occurs only at epoch 75 for p = 1, at epoches 50 and

100 for p = 2, and at epoches 25, 50, 75, 100 and 125 for p = 5. The figure shows

that EC4SRec experiences drops of NDCG@5 at the first update. This is because

EC4SRec switches from random augmentation and a loss function combining that of

CL4SRec and DuoRec to explanation guided augmentation and explanation guided

contrastive loss at the first update. EC4SRec however recovers quickly and continues

to improve until it converges. Interestingly, the drop in performance is not noticeable

for subsequent scheduled updates.
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Figure 3.4: NDCG@5 Results with different update schedule settings (p: number of
updates in model training).

We also show the effect of update schedule on the trained EC4SRec and variants

when evaluated against test data in Figure 3.4. Generally, the NDCG@5 performance

does not change much for different p settings. p = 5 and = 9 yield best results for

Beauty and Clothing respectively. As every update incurs additional overheads, there

is clearly a trade-off between performance and efficiency when choosing the update

schedule which we shall leave to future research.

Ablation of Loss Functions. We study the effect of different contrastive losses

on EC4SRec performance by evaluating the model using different combinations of

losses as shown in Figure 3.5. The figure shows the NDCG@5 of EC4SRec using

recommendation loss Lrec and seven combinations of the three contrastive losses,

Lcl+, Lcl− and Lsl+. For illustration, we conduct this ablation study on Beauty and

include CL4SRec and DuoRec for comparison.

Figure 3.5 shows that EC4SRec with Lcl+ and EC4SRec with Lcl− outperform

CL4SRec. EC4SRec with Lsl+ also outperforms DuoRec. These indicate that each

of the 3 explanation guided contrastive losses can effectively improve performance.

Moreover, combining them together can yield even higher performance with the

exception of Lsl++Lcl+ which could be explained by having only Lcl+ without Lcl−

does not help to improve representations much and may conflict with the supervised

contrastive learning loss using retrieved positive views.

Influence of Different Augmentation. Our approach consists of four explana-
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Figure 3.5: Ablation study of EC4SRec with different combinations of loss functions
on Beauty dataset. (EC4SRec results are shown in yellow bars. As Lrec is included
by default, EC4SRec(SSL) = EC4SRec with Lcl++Lcl−; EC4SRec(SL) = EC4SRec
with Lsl+, and EC4SRec = one with all three losses.)

Table 3.6: NDCG@5 Results of EC4SRec(SSL), abbreviated by E(SSL), with the
removal of augmentation operation on Beauty, Clothing and Sports.

Beauty Clothing Sports
CL4SRec E(SSL) CL4SRec E(SSL) CL4SRec E(SSL)

None 0.0299 0.0358 0.0104 0.0113 0.0167 0.0201
−rord 0.0307 0.0344 0.0103 0.0110 0.0169 0.0181
−mask 0.0311 0.0350 0.0101 0.0116 0.0169 0.0200
−crop 0.0282 0.0353 0.0086 0.0116 0.0147 0.0200

tion guided augmentations: ecrop, emask, erord, and ertrl. We earlier show that

EC4SRec(SL) using explanation guided retrieval (i.e., ertrl) significantly outperforms

DuoRec as shown in Table 3.4. In this section, we evaluate how EC4SRec performs

when not using one of the three augmentation operations to investigate the effect of

each augmentation operation.

As shown in Table 3.6, the recommendation accuracy drops substantially when

any one of augmentations is removed. Besides, EC4SRec(SSL) consistently achieves

better performance than CL4SRec even with one augmentation operation removed.

It indicates the effectiveness of each proposed operation. Interestingly, for Cloth-

ing dataset, the removal of some augmentation operation can slightly improve the

EC4SRec(SSL) performance.
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Figure 3.6: NDCG@5 of EC4SRec with different µe settings.

Study of Hyper-Parameter µe. The hyper-parameter µe determines the number

of items with highest scores would be augmented for positive views and negative

views under explanation guided augmentation. In this study, we vary µe from 0.1

to 0.9 and show the NDCG@5 of EC4SRec and EC4SRec(SSL) on Beauty and

Clothing datasets as shown in Figure 3.6. We observe that µe substantially affects the

performance of EC4SRec and EC4SRec(SSL). For Beauty dataset, the NDCG@5 of

EC4SRec changes from 0.0364 when µe = 0.5 to 0.0355 when µe = 0.9. Second,

EC4SRec and EC4SRec(SSL) perform best on Beauty when µe = 0.5 and µe = 0.3

respectively. For Clothing dataset, the NDCG@5 of EC4SRec changes from 0.0119

when µe = 0.2 to 0.0112 when µe = 0.9. And both EC4SRec and EC4SRec(SSL)

perform best on Clothing when µe = 0.2. These findings indicate that EC4Srec

and its variants have different optimal value µe on different datasets. Besides, even

EC4SRec with the worst performing µe still outperforms DuoRec.

Effect of Different Explanation Methods. In our earlier results, we use Occlusion

as the default explanation method. In this experiment, we evaluate EC4SRec and

its variants using other explanation methods for comparison. Figure 3.7 shows the

NDCG@5 results of the above models using Saliency, Occlusion, and Attention

based explanation methods on Beauty and Clothing datasets. The NDCG@5 of

CL4SRec and DuoRec are also shown as reference.

Figure 3.7 shows that Occlusion performs well in most cases. The three expla-
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Figure 3.7: NDCG@5 using different explanation methods.

nation methods generally help EC4SRec and variants outperform CL4SRec and

DuoRec except Attention which could not help EC4SRec(SSL) outperforms DuoRec.

Considering robustness, performance, and efficiency, we prefer to use occlusion as

the explanation method to get better views for contrastive learning.

3.6 Summary

In this chapter, we study how to utilize explanation methods to produce high-quality

views for contrastive learning in sequential recommendation task. We propose a

model-agnostic Explanation Guided Contrastive Learning for Sequential Recommen-

dation (EC4SRec) framework. We introduce several proposed explanation-guided

augmentations to generate positive and negative views of given user sequences and

propose both self-supervised and supervised contrastive learning. Our extensive

experiments on four real-world benchmark datasets demonstrate the effectiveness,

generality, and flexibility of our proposed explanation guided approach. Our re-

sults also outperform the state-of-the-art contrastive learning based models. To our

knowledge, this work represents the first that combines sequential recommendation

with explanation methods. For our future research, we will conduct more extensive

analysis of the importance score functions and training efficiency. Explanation

guided supervised contrastive learning in particular could be inefficient as it involves

selection of retrieved positive views using importance score function. One future
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research direction is thus to address such overheads by developing appropriate in-

dexing or hashing techniques. One another direction is to meet the challenge of

designing augmentations for very long sequences in sequential recommendations.

Some users may have very long sequences as they have interacted with many items

over a long period. Some useful information or sequence patterns may be hidden in

old items in the sequences. Nevertheless, the current neural network-based sequential

recommendation models do not directly process very long sequences. Moreover,

long sequence modeling is computational cost. It is thus important to address these

challenges for long user sequences.
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Chapter 4

Zero-Shot Next-Item

Recommendation using Large

Pretrained Language Models

In this chapter, we explore how to leverage the rich world knowledge and strong

reasoning abilities of Large Language Models (LLMs) to make next-item recommen-

dations in the zero-shot setting. LLMs have demonstrated impressive performance

in various natural language processing tasks when given appropriate input prompts,

without requiring fine-tuning on specific training data. However, their application

in next-item recommendation remains under-explored. Two major challenges need

to be addressed for LLMs to act effectively as recommenders. Firstly, the recom-

mendation space can be unknown to LLMs (e.g., books that can be found at a small

brick-and-mortar bookstore) or extremely large to LLMs (e.g., all books that have

been published). Secondly, LLMs are inherently unfamiliar with the user preferences

required for recommendations. Some strategies are required to ensure that they can

derive a good set of candidate items and infer user preferences for making recom-

mendations. In this chapter, we propose a strategy that uses an external module

for generating candidate items and a 3-step prompting method for capturing user

preferences and making ranked recommendations.
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This chapter is structured as follows. We first present the objective in Sec-

tion 4.1. In Section 4.2, we review the existing Large Language Model-based (LLM)

sequential recommendation methods. Next, in Section 4.3, we introduce our pro-

posed Zero-Shot Next-Item Recommendation (NIR) strategy. Finally, we present a

comprehensive evaluation of the proposed NIR on two widely used benchmarks in

Section 4.4. The NIR competes well with strong sequential recommendation models,

offering new and exciting research possibilities for using LLMs in recommender

systems.

4.1 Objective

Large language models (LLMs) [11, 173, 24], such as GPT-3 [11], have demonstrated

impressive results in various natural language processing (NLP) tasks. Nevertheless,

the state-of-the-art LLMs are usually very large and often accessible only via some

API services. Hence, they cannot be fine-tuned like the earlier pre-trained language

models (PTMs) [32, 108]. Many works have also demonstrated that LLMs are

capable of solving many known NLP problems through task-specific prompts under

the zero-shot setting, i.e., without any examples or further fine-tuning [11, 24].

Nevertheless, using LLMs to perform next-item recommendations is still a relatively

new research topic which awaits investigation.

Unlike NLP tasks that rely on the inherent textual knowledge of LLMs, rec-

ommendation tasks require LLMs to utilize a user’s past item interactions to make

item recommendations. Direct methods, such as the Simple Prompting method in

Section 4.4, yield poor recommendations [178]. Moreover, LLMs struggle to con-

tribute to recommendations without prior knowledge of the items. In this research,

we assume that recommended items should be included in the pre-training data of

LLMs (e.g., reviews, Wikipedia pages, etc.). Examples of such items include movies,

artists, songs, etc.. For illustration and evaluation, we focus on movie and artist

recommendations using GPT-3.5.
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In this paper, we introduce an approach for next-item recommendation called

Next-Item Recommendation (NIR) prompting. It first limits the recommendation

space for a user to a candidate item set using user or item filtering techniques.

Secondly, NIR recommends items using a 3-step prompting method: (i) captur-

ing user preferences (Step 1), (ii) selecting representative items from the user’s

interacted items (Step 2), and (iii) recommending a ranked list of items (Step 3).

Finally, we use a formatting technique in Step 3 to ensure easier extraction of recom-

mended items. Our experiments on MovieLens 100K and LastFM 2k with GPT-3.5

(text-davinci-003) indicate that NIR prompting is competitive compared to

strong supervised learning baselines.

4.2 Related LLM-based Recommendation Research

Among the early efforts in pre-trained language model (PTM) based recommenda-

tion [73, 178, 120, 28, 40, 152], Zhang et al. [178] proposed to use GPT-2 [108] or

BERT [32] as the backbone recommender, making the next-movie prediction based

on five previously watched movies by the target user. However, the unknown or

huge recommendation space as well as inadequate user preference modeling make

the PTMs perform poorly. With newer LLMs such as GPT-3 [11], OPT [173], and

PaLM [24] which have shown significantly improved results in various NLP tasks,

our work chooses GPT-3 to be the LLM for developing more effective zero/few-shot

recommendation methods.

The existing LLM-based recommendation research can be categorized into (a)

LLM-augmented recommender systems [38, 154], and (b) LLM-only recommender

systems [51, 29, 6, 171]. KAR [154] leverages LLMs for open-world knowledge

and improving recommendation accuracy and versatility. Chat-REC is a LLM-based

recommender system with conversational chat interface [38]. It utilizes a supervised

learning recommender system to select a small set of candidate items and uses

LLMs to rerank them for the target user. Chat-REC also provides explanation to the
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Figure 4.1: Zero-Shot NIR prompts. The ground truth movie in this example is
The Rock .

recommended items. Hence, Chat-REC still requires fully supervised learning which

could incur significant overhead. For LLM-only recommender systems, Dai et al.

[29] conduct an empirical analysis on ChatGPT’s recommendation abilities in three

ranking policies. Hou et al. [51] explore LLMs (e.g., GPT-4) as ranking models in

recommender systems, revealing the promising zero-shot abilities of LLMs. Instead

of designing the prompting strategy from scratch, our proposed NIR prompting

strategy incorporates user-filtering and item-filtering to derive a candidate item

set. This way, it mimics well-known recommendation techniques and leverages its
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item knowledge and reasoning capability to deliver more accurate recommendation

results.

4.3 Zero-Shot NIR Prompting Strategy

This section presents our proposed zero-shot NIR prompting strategy. As shown in

Figure 4.1, the proposed method has three main components:

Candidate set construction: This component performs user-filtering or item-

filtering to create a candidate item set for the target user using the training data,

which effectively narrows down the recommendation space. These candidate items

are then used in the three-step prompting.

Three-step prompting: This component involves three instruction prompts cor-

responding to three subtasks. In the first subtask (user preference subtask), we design

a user preference prompt (Step 1 prompt) to summarize the target user’s preferences

based on the previously interacted items. In the second subtask (representative

items subtask), we then define the Step 2 prompt to combine the user preference

prompt and its answer to request the LLM to list representative items based on user

preference. In the third subtask (item recommendation subtask), we direct the LLM

to recommend k items similar to the representative ones.

Answer extraction: This component extracts the recommended items from the

textual results of the three-step GPT-3.5 prompting using a simple extraction rule.

4.3.1 Candidate Set Construction

In Section 4.1, we highlight the challenge of unknown or large recommendation

space for LLM-based recommendation. Due to the prompt length limit, and not all

items can be fed to the LLM. For instance, 1,683 movies from the MovieLens 100K

are too large to be fed into a prompt. Thus, in our approach, we build a candidate

item set for the user based on the relevance to the user. Specifically, we employ user

filtering and item filtering to determine these candidate items.
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User-Filtering. This principle assumes that the candidate items should also be

liked by other users similar to the target user. Hence, we first represent every user by

a multi-hot vector of their watched items. Users similar to the target user are then

derived by cosine similarity between the target user’s vector and vectors of other

users. Next, we select the m most similar users and the candidate item set of size ns

is constructed by selecting the most popular items among the interacted items by the

similar users.

Item-Filtering. Similar to user filtering, we represent each item by a multi-hot

vector based on its interacted users. Using cosine similarity between two items, we

select the nm most similar items for each item in the target user’s interaction history.

We then generate a candidate item set of size ns based on the “popularity” of these

similar items among items in the target user’s interaction history.

The constructed candidate item set is then incorporated into the prompts for

recommendation using the prompt phrase: “Candidate Set (candidate items):” as

shown in Figure 4.1. Following the candidate set, the prompts also include the list of

target user’s previously interacted items.

4.3.2 Three-Step Prompting

Step 1: User Preference Prompting. To capture the user’s preferences, we include

the sentence “Step 1: What features are most important to me when selecting items

(summarize my preferences briefly)?” into the first prompt. As shown in Figure 4.1,

the answer returned by LLM summarizes the target user preference (highlighted in

pink ).

Step 2: Representative Item Selection Prompting. As the second step, this prompt

includes the previous prompt text appended with the answer of Step 1, followed by

the prompt phrase: “Step 2: You will select the items ... that appeal to me the most

... presented in descending order of preference (...)” to determine the previously

interacted items that best reflect the target user’s preferences. Figure 4.1 shows the
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Method
MovieLens 100K LastFM 2K

HR NDCG HR NDCG

POP 0.0519 0.0216 0.0755 0.0458
FPMC 0.1018 0.0463 0.0872 0.0449
GRU4Rec 0.1230 0.0559 0.0890 0.0480
SASRec 0.1241 0.0573 0.1101 0.0539

Simple Prompting 0.0297 0.0097 0.1032 0.0410
CS-Random-IF 0.0805 0.0352 0.0851 0.0440
CS-Random-UF 0.0954 0.0457 0.0869 0.0378
NIR-Single-IF 0.0975 0.0501 0.1198 0.0624
NIR-Single-UF 0.1135 0.0529 0.1140 0.0621
NIR-Multi-IF 0.1028 0.0505 0.1013 0.0512
NIR-Multi-UF 0.1187 0.0546 0.0936 0.0492

Table 4.1: HR@10 (HR) and NDCG@10 (NDCG) on the test sets of MovieLens
100K and LastFM. (Best results in each group of methods are boldfaced and overall
best results are underlined.

LLM’s answers highlighted in purple.

Step 3: Recommendation Prompting. Again, this prompt includes the previous

text appended with the answers of Step 2, followed by the prompt phrase “Step 3:

Can you recommend 10 items from the Candidate Set similar to ...”. This prompt

explicitly instructs LLM to generate 10 recommended items from the candidate set

as highlighted in blue.

4.4 Experiments and Results

4.4.1 Experiment Setup

We empirically investigate the performance of the zero-shot NIR strategy against

fully trained and zero-shot baselines using the MovieLens 100K dataset [43] (943

users and 1,682 movies) and Last.FM 2k dataset [12] (1,143 users and 11,854 artists)

for movie and artist recommendations, respectively. We also experiment on GPT-3.5,

the state-of-the-art LLM.

We evaluate our proposed NIR-based methods including: (i) Zero-Shot NIR-

Single-IF/NIR-Single-UF (that combines the 3 steps into a single prompt leav-
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CSet UPref RItem ML100K LastFM2K Average

– – – 0.0297 0.1032 0.0664
✓ – – 0.1019 0.1093 0.1056
✓ ✓ – 0.1081 0.1112 0.1096
✓ – ✓ 0.1060 0.1102 0.1081
✓ ✓ ✓ 0.1135 0.1140 0.1137

Table 4.2: Ablation study of the impact of Candidate Set (CSet), User Preference
(UPref), and Representative Items (RItem) in the proposed NIR-Single-UF prompting
on MovieLens100K (ML100K) and LastFM datasets. HR@10 is adopted for this
evaluation.

ing out the intermediate answers, and prompts GPT-3.5 only once to generate n

recommended items from IF/UF-based candidate set.); (ii) Zero-Shot NIR-Multi-

IF/NIR-Multi-UF (that uses three separate prompts to guide GPT-3.5 step-by-step

and incorporates intermediate answers to the subsequent prompts with the IF/UF-

based candidate set.). NIR-Single can save some prompting cost compared with

NIR-Multi.

The strong next-item recommendation baselines to be compared include: (i)

POP (that recommends most popular items), (ii) FPMC [111] (that combines matrix

factorization and Markov chains), (iii) GRU4Rec [50] (a GRU-based sequential

recommendation model), and SASRec [58] (a sequential recommendation model

based on self-attention). As FPMC and GRU4Rec are fully trained models, they

are expected to outperform zero-shot methods. The zero-shot baseline methods to

be compared include: (i) Simple Prompting (that prompts LLMs to recommend n

items directly), (ii) CS-Random-IF (that randomly selects n items from the item

filtering-based candidate set), and (iii) CS-Random-UF (that randomly selects n

items from the UF-based candidate set).

We utilize the GPT-3.5 text-davinci-003 (175B) with public APIs1, setting

the temperature to 0 for consistent results. For ∗-UF’s, default values are: most

similar users (m) as 12, and candidate items (ns) as 19. For ∗-IF’s, we use: most

similar items (nm) as 10 and candidate items (ns) as 19. We apply a leave-one-out

1https://beta.openai.com/docs/models/gpt-3
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strategy for performance measurement: the last item in each user sequence is test

data, the penultimate is validation, and others form the training set. Evaluation

metrics include Hit Ratio (HR) at 10 and Normalized Discounted Cumulative Gain

(NDCG) at 10, following the same set of metrics used in [58].

4.4.2 Experiment Results

Main results. Table 4.1 reveals that our zero-shot NIR-based methods significantly

outperform POP. Interestingly, Zero-Shot NIR-Single-UF, NIR-Multi-IF, and NIR-

Multi-UF even outperform the fully trained FPMC. Although the three Zero-Shot

NIR-based methods perform slightly worse than the strong sequential recommen-

dation model SASRec, they still compete strongly with SASRec. Among zero-shot

methods, CS-Random-UF(IF) surpasses Simple Prompting, demonstrating that candi-

date sets enhance recommendation performance. Our NIR-based prompts outperform

Simple Prompting and CS-Random-IF/UF, indicating that combining user prefer-

ences and other strategies enrich LLM recommendations. Moreover, Multi-IF(UF)

yield better results than Single-IF(UF) on MovieLens 100K, but not LastFM 2K.

Simple prompting leads in HR@10 on LastFM but in NDCG@10. UF-based NIR

prompts generally perform better than IF-based ones, although IF-based methods

deliver better results in the zero-shot setting on LastFM 2K.

Effects of NIR Prompt Components. Our proposed methods, NIR-Single-UF/IF

and NIR-Multi-UF/IF, involve candidate set construction and a three-step prompting

process. We evaluate the effectiveness of these components on MovieLens 100K

and LastFM 2K datasets with HR@10. The results in Table 4.2 reveal that each

step contributes to better recommendation accuracy. The Simple Prompting method,

which employs a candidate set, generally performed better than the one without it

(HR@10=0.1056 vs. HR@10=0.0664), highlighting the importance of the candidate

set. Our findings show that integrating candidate sets and specific prompting steps

further improve performance, suggesting that a narrowed recommendation space and
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Figure 4.2: HR@10 of Full-Trained SASRec, FPMC and NIR-Single-UF prompting
with varying number of candidate movies ns on MovieLens 100K.

clear guidelines improve GPT-3.5’s output.

Impact of Candidate Set Size ns. In this study, we examine how the candidate

set size affects the performance of NIR-based methods on the MovieLens 100K

dataset. We tested the NIR-Single-UF method with candidate set sizes ranging from

17 to 21. The results, depicted in Figure 4.2, show that an optimal candidate set

size is around 20; both smaller and larger sizes diminish performance, though it

remains between the levels of SASRec and FPMC. Moreover, we observe the oracle’s

performance continues to improve with larger candidate set (ns = 21). Nevertheless,

NIR-Single-UF could not exploit this for performance improvement. Furthermore,

while an oracle model, which returns the true item when present in the candidate set,

improves its performance with a larger candidate set, NIR-Single-UF does not. This

indicates potential for further enhancements in the zero-shot NIR approach. We thus

believe there are ample room for the zero-shot NIR approach to further improve.

Impact of Backbone LLMs. In this study, we investigate the impact of LLM

model size and capability on NIR-based prompting methods for recommenda-

tions using various models, such as different versions of GPT-3.5, accessed via

OpenAI API on MovieLens 100K. Figure 4.3 ranks these models by capabil-

ity, from GPT-3 ada (lowest) to ChatGPT (highest). Testing on a subset of
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Figure 4.3: HR@10 of NIR-Single-UF prompting using backbone LLMs with
different sizes. 0.3B: GPT-3 ada, 1.3B: GPT-3 babbage, 6.7B: GPT-3 curie,
175B: GPT-3 davinci, X: Instruct GPT-3 text-davince-001, XL: Instruct
GPT-3 text-davinci-002, 003: GPT-3.5 text-davinci-003.

200 examples from the MovieLens 100K dataset shows an improvement in per-

formance from ada to text-davinci-003. However, ChatGPT underper-

forms text-davinci-003, possibly due to ChatGPT’s flexible generation nature.

These results indicate that more capable LLMs typically yield better recommendation

results.

4.5 Summary

In this paper, we propose a three-step prompting strategy called Next-Item Rec-

ommendation (NIR) for LLM to make next-item recommendation for user-item

interaction sequences. We evaluate our approach using GPT-3.5 as the LLM on

both Movielen 100K and LastFM 2K datasets, and obtain promising accuracy. Our

results show the potential of using LLMs in zero-shot recommendation and call

for further exploration of using LLMs in recommendation tasks. This work can be

extended in several directions, including the few-shot approach (instead of zero-shot),

choice of LLMs, recommendation of proprietary items, and explainable LLM-based
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recommendations. Our proposed prompting method partially relies on handcrafted

prompts when writing the prompting questions. However, handcrafted prompts are

usually based on the personal knowledge and experience of the exports, which can

introduce subjective biases.

64



Chapter 5

The Whole is Better than the Sum:

Using Aggregated Demonstrations in

In-Context Learning for Sequential

Recommendation

As LLMs grow in model parameters and training corpus size, they gain emergent

abilities by appropriate prompting as covered in Chapter 4. LLMs can further

leverage in-context learning (ICL) to perform novel tasks by reasoning based on one

or more demonstration example within a given context. In this chapter, we thus focus

on developing sequential recommendation models using in-context learning.

This chapter is organized as follows. We first present the objective in Section 5.1,

followed by introducing ICL and existing LLM-based sequential recommendation

methods (Section 5.2). In Section 5.3, we discuss the important factors to be consid-

ered when introducing in-context learning to improve sequential recommendation.

We conduct a preliminary empirical study to investigate the role of four aspects

of demonstrations. The factors include the wording of prompts, task consistency

between demonstrations and test instances, selection of demonstrations, and number

of demonstrations. Subsequently, we propose a novel method called LLMSRec-Syn
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(Section 5.4). This method incorporates multiple demonstration users into one ag-

gregated demonstration. It is motivated by a finding that increasing the number of

demonstrations in ICL does not improve accuracy despite using a long prompt. Next,

we present a comprehensive evaluation of the proposed LLMSRec-Syn on three

recommendation datasets in Section 5.5.

5.1 Objective

Motivation. Large language models (LLMs) are known to perform well as a zero-

shot solution for many natural language processing tasks [10, 24, 99, 105]. Recently,

there are some works that focus on using LLMs to perform recommendation with

promising accuracy results [51, 138, 82, 6, 38] and to provide explanations [162, 141].

Most of these works developed LLM prompts for zero-shot sequential recommenda-

tion.

To investigate whether LLM can serve as a strong zero-shot sequential recom-

mender, Hou et al. [51] devised a prompt that is filled with historical items in

chronological order, candidate items, and instruction to rank the candidate items.

In Chapter 4.3, we proposed a three-step prompting method, where LLMs first

summarizes the user preference based on the user’s past interacted items [138]. It

then identifies representative items from the past interacted items that capture the

user preference, and finally recommends items among the candidate items which

are aligned with the representative items. Among the very few one-shot sequential

recommendation works, Liu et al. [82] and Hou et al. [51] explored in-context learn-

ing using the test user’s second last item as the ground truth next-item and all earlier

interacted items as input to create self-demonstrations. Nevertheless, previous exper-

iments have shown that in-context learning (ICL) based sequential recommendation

methods perform poorly compared with the supervised learning-based methods (e.g.,

SASRec) due to the complex recommendation task definition [82, 51, 138]. The

illustrative comparison of these two methods is shown in Figure 5.1.
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Figure 5.1: The illustrative comparison of (a) supervised sequential recommendation
method and (b) in-context learning based sequential recommendation method.

To develop an effective in-context learning approach for LLMs to perform se-

quential recommendation, we first define the sequential recommendation problem as

follows.

Problem definition for LLM-based sequential recommendation. We denote each

user input instance u as a (su, v
u
∗ ) tuple, where su represents the sequence of past

interacted items (excluding the ground truth next-item vu∗ ) by u. The objective of the

sequential recommendation method is to predict vu∗ based on the given su. In the

setting of our LLM-based sequential recommendation method, we denote cu as the

candidate items to be recommended (|cu| = M ), and vu∗ ∈ cu represents the ground

truth next-item included in cu. The LLM-based sequential recommendation in this

chapter is required to assign a rank rank(d) ∈ [1,M ] to each item d in cut for a test
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Figure 5.2: The overall framework of zero-shot, few-shot, and aggregated one-shot
LLM-based sequential recommender systems.

user ut. Our objective is to ensure that the rank of vut
∗ , i.e., rank(vut

∗ ), can be as high

as possible for all users ut’s.

The above problem definition, also adopted in Hou et al. [51], includes cu as

input as it is usually infeasible for LLMs to take all items as input due to limited

prompt length. Moreover, if cu is randomly selected, it would not introduce bias that

favors any methods in the evaluation. We also assume a training dataset consisting

of user-item interaction sequences from which we can construct demonstrations for

ICL. Finally, as LLMs are too large and costly for pretraining or finetuning, we will

focus solely on ICL only.

Overview of our study. Past works has shown that the effectiveness of ICL in

adapting LLMs to new tasks heavily depends on the instruction wording [92, 162],

label design [167, 146], selection of demonstrations [81, 119, 179], and number of

demonstrations [17, 180]. Our study thus begins by systematically investigating how

the instruction format, task consistency (between test and demonstration), demon-

stration selection, and the number of demonstrations affect ICL-based sequential

recommendation. Through our preliminary experiments, we obtain four findings

including the one that observes degradation of recommendation accuracy when the

number of demonstrations increases. As each demonstration takes up significant

length, it is also easy for multiple demonstrations to exceed the prompt limit of
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LLMs. Moreover, as LLMs are known to miss out relevant information in a long

input prompt [84], we thus embark on a follow-up study on designing a more efficient

ICL scheme based on aggregated demonstration.

Figure 5.2 shows a comparison of the frameworks for zero-shot, few-shot, and

aggregated one-shot LLM-based sequential recommender systems. The key idea in

aggregated demonstration is to combine multiple training users into one demonstra-

tion. This reduces the repetition of instruction text in the ICL prompt. It also seeks to

summarize multiple training users relevant to the test instance in a compact manner.

We also develop a novel ICL method using aggregated demonstration for sequential

recommendation known as LLMSRec-Syn. The length of LLMSRec-Syn prompt

increases only gradually with number of demonstration users, LLMSRec-Syn can

cope with more relevant information from the demonstration users within a concise

input context. We finally show LLMSRec-Syn outperforms other zero-shot and

one-shot ICL methods in an extensive set of experiments.

Contribution. Our contributions can be summarized as follows: (1) We system-

atically explore the ICL approach to sequential recommendation by investigating the

effect of instruction format, task consistency, demonstration selection, and number of

demonstrations to recommendation results; (2) We propose a new in-context learning

method for sequential recommendation called LLMSRec-Syn which leverages on

a novel concept of aggregated demonstration; (3) We experiment on three popu-

lar recommendation datasets and show that LLMSRec-Syn outperforms previous

LLM-based sequential recommendation methods.

5.2 Works on In-Context Learning

Several works show that LLMs can effectively adapt to different NLP and multi-

modal tasks, including machine translation [2], visual question answering [164], and

foreground segmentation [179]. The adaptation is achieved by learning from a few

task-relevant demonstrations, commonly known as in-context learning (ICL) [10].
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Table 5.1: Dataset statistics after removing duplicate interactions and users or items
with fewer than 5 interactions.

Datasets ML-1M LastFM-2K Games

# Users 6,040 1,143 50,547
# Items 3,706 11,854 16,859
# User-item Interactions 1,000,209 68,436 389,718
Avg. interacted items per user 165.59 59.92 7.71
Avg. interacted users per item 269.88 5.77 23.11

Despite the above successes, ICL’s performance is still significantly affected by

the wording of instructions [92, 162], label design [167, 146], demonstration selec-

tion [81, 119, 179], and number of demonstrations Chen et al. [17], Zhao et al. [180].

To the best of our knowledge, ICL has not yet been studied in LLM-based sequential

recommendation. As sequential recommendation is distinct from the pretraining

tasks of LLMs and also different from the above-mentioned tasks, new designs of

demonstration(s) and ICL prompt is necessary.

5.3 What Makes In-Context Learning Work for Se-

quential Recommendation

In this section, we conduct a preliminary empirical study to investigate the role of

various aspects of demonstrations. These aspects include the wording of prompts,

task consistency between demonstrations and test instances, selection of demonstra-

tions, and number of demonstrations. While previous studies have explored the use

of LLM as sequential recommenders in a zero-shot manner [51, 138], this is the first

study to comprehensively discuss how in-context learning can improve sequential

recommendation.
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5.3.1 Experiment Setup

We implement zero-shot, one-shot, and few-shot methods in this study, using three

widely used recommendation datasets: the movie rating dataset MovieLens-1M (ML-

1M) dataset, the category of Games from the Amazon Review dataset [93], and the

music artist listening dataset LastFM-2K [12]. The data statistics are summarized

in Table 5.1. Taking into account cost-effectiveness of LLMs, we select 50 data

examples from each of the three datasets to carry out all experiments for analysis in

Section 3. Following the previous works [51, 138], we use a leave-one-out strategy

for evaluation, i.e., predicting the last interacted item of each user sequence and

using the earlier interacted items as input. For each user sequence, we hide the

last item, keeping it for testing. The rest of the sequence is used for training and

validation. To evaluate the ranking results for each user ui over a set of candidate

items ci, we adopt the widely used NDCG@N (N = 10, 20) as the evaluation metric.

For MovieLens-1M and Games, we directly use the candidate sets utilized in an

earlier work [51]. For LastFM, we follow [51] and randomly select candidate items

from the item universal set for each user sequence. We then insert the ground truth

next item into the candidate item set.

We use ChatGPT (GPT-3.5-Turbo) as the default LLM due to its excellent

performance and cost-effectiveness. To ensure the reliability of findings, we repeat

each experiment 9 times and report the average results. Without exception, we use

ML-1M as an example for discussion.

5.3.2 In-Context Learning for Sequential Recommendation

In ICL for sequential recommendation, one or a few training users are used as

demonstrations that are included in the LLM prompt. Each demonstration includes a

training user ui’s historical item interactions sui
, a set of candidates cui

, and ground

truth next-item vui
∗ . We denote the prompt capturing the demonstration user u by

T (xui
, cui

, yui
). The following shows the concatenation of n demonstrations C which
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Figure 5.3: Instruction Format options with mention components shown in different
colors: (A) Full, (B) w/o preference alignment, (C) w/o watched movie focus, (D)
w/o rank result format.

is appended by the instruction prompt for the test user T (xut , cut) for prediction.

C = T (x1, cu1 , v
u1
∗ )⊕ · · · ⊕ T (xun , cun , v

un
∗ ) (5.1)

vut ∼ PLLM (· | C ⊕ T (xut , cut , ·)) (5.2)

5.3.3 Wording of Instructions

LLMs have been found to be sensitive to wording of the prompt [92, 162]. For

example, prompts (or instructions) that are semantically similar may yield signif-

icantly different results [62, 186, 140, 175]. To examine the impact of instruction

wording and exclude the influence of other factors such as demonstration labels and

selection, we employ LLM as a zero-shot solver for sequential recommendation.
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This concern is also mentioned in works on prompt optimization [162, 31, 104].

However, determining the optimal prompt wording typically requires feedback (such

as validation set results [162]), carefully designed reward function [31], or textual

feedback from large language models to iteratively update the initial prompt [104].

Instead of a direct application of prompt optimization, this paper focuses on intro-

ducing a reasonably well-designed prompt for studying the strategies to determine

good demonstrations for sequential recommendation.

We discuss four different options for the instruction format to investigate the

sensitivity of the LLM to the wording of the instruction. Considering the prompts

used in earlier LLM-based zero-shot recommendation models [51, 138], we derive

instructions with four possible mention components (coded with colors consistent

with those in Figure 5.3): (a) candidate item ranking, (b) user preference alignment,

(c) historical interacted items, and (d) ranked result format. As recommendation

is formulated as a ranking task, component (b) is mandatory. The full instruction

covers all the four components. To explore better instructions, we derive other

instruction options by leaving out one of the remaining components. We thus have

four instruction options: (A) full instruction T A, (B) full instruction without (b) T B,

(C) full instruction without (c) T C, and (D) full instruction with (d) replaced by

textual result table description T D as shown in Figure 5.3.

As shown in the boxplots at the top of Figure 5.3, we observe that ChatGPT’s

performance degrades when the instruction does not make reference to interacted

items or user preferences across three datasets. This suggests that explicit inclusion

of watched movies or user preferences can improve its ability to leverage the user’s

historical items effectively. While Instruction (A) shows similar average performance

as Instruction (D) on ML-1M and LastFM, the former enjoys a smaller variance and

outperforms the latter on LastFm. This suggests that LLM prefers explicit output

formats over textual description of output format.
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Figure 5.4: Impact of task consistency between demonstrations and test instances.
CIR: Candidate Inclusion Ratio of Demonstration Templates: (T1) Next-Item option;
(T2) Contrasting Item Pair option; (T3) Ranked Items option.

Finding 1. For sequential recommendation, ChatGPT prefers explicit men-

tions of instructions and explicit mentions of interacted items, user preference

alignment and ranked result format.

5.3.4 Task Consistency

LLMs are capable of learning new tasks at test time by understanding the relationship

between the input of a demonstration and its corresponding output label [167, 146].

In sequential recommendation, LLM is required to rank the ground truth target

item at the top followed by other candidate items. However, in a demonstration

example from the training set, we observe only one labeled next item but not the

ranking of other candidate items. Hence, when constructing demonstrations for

in-context learning, we have to answer the important questions: How to prepare the
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Table 5.2: Further comparison of different tasks with candidates. We have developed
two methods with the same information as T3: (1) T1 w/ Candidate (adding candidate
items in the T1 prompt) and (2) T2 w/ Candidate (adding candidate items in the T2
prompt). We evaluate these methods on the ML-1M dataset.

Methods T1 T1 w/ Candidate T2 T2 w/ Candidate T3

NDCG@10 0.3640 0.3766 0.3776 0.3972 0.4584
NDCG@20 0.4193 0.4420 0.4384 0.4510 0.5077

input-label correspondence for a demonstration to be consistent with the sequential

recommendation task? To eliminate other factors that may influence the results,

such as the number of demonstrations and instructions, we employ instruction (A)

as it has proven to be the most effective and robust across three datasets in our

previous experiments. We randomly select only one demonstration example for all

experiments in this study.

In traditional sequential recommendation, next-item prediction [123, 103], posi-

tive and negative item comparison [113, 58, 156], and reranking [161] are commonly

utilized objectives to train models. Hence, we develop three different prediction

tasks for demonstrations for in-context learning. These tasks include: (T1) predicting

the next item, (T2) contrasting item pairs, and (T3) ranking candidate items. The

prompts corresponding to these prediction tasks are shown in Figure 5.4. T1 uses

the ground truth next-item directly in the demonstration. T2 uses the ground truth

next item and another randomly selected item as the positive and negative items

respectively. T3 ranks the ground truth next item at the first position and randomly

shuffles the remaining candidate items to fill the other positions. Among the task

prediction task options, T3 is the only one that aligns closely with the instruction for

the test user, i.e., (A).

Figure 5.4 shows the results of these three tasks across three datasets. T3 consis-

tently outperforms T1 and T2 on all three datasets, suggesting that task consistency

between demonstration and test user benefits in-context learning for sequential rec-

ommendation. Moreover, as the recommended items may not be found among the

provided candidates, we also report candidate inclusion ratio (CIR) which measures
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Figure 5.5: Demonstration selection: (1) random selection; (2) overlapping interacted
items; (3) cosine similarity between the SBERT embeddings of interacted item
sequences; (4) cosine similarity between the LLM embeddings of interacted item
sequences; (5) cosine similarity using CL embeddings of interacted item sequences.

the proportion of the candidate items that appear in the ranked item results. As shown

in Figure 5.4, we observe that the CIR generally correlates with the NDCG results.

The inconsistent demonstration task options (e.g., T1 and T2 coupled with test in-

struction option (A)) are more likely to cause the LLM to generate non-candidate

items in the results. As shown in Table 5.2, We observed that T1 with candidate

items (T1 w/ candidate) in the prompt performs better than T1. The same obser-

vation applies to T2 w/ candidate and T2. These results show that including more

information in the prompt will enhance the performance. However, even with this

consideration, T3 still outperforms T1 with candidate items in the prompt and T2

with candidate items in the prompt. T3 thus achieves the overall best performance.

Finding 2. Maintaining task consistency between demonstrations and test

users is beneficial for in-context learning in sequential recommendation.

5.3.5 Selection of Demonstrations

In this work, we evaluate five different demonstration selection methods to determine

their impact to in-context learning for sequential recommendation. These methods

include: (1) random selection; (2) overlapping historical items of demonstration

user and test user; (3) text similarity scores using Sentence-BERT embedding [109]
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(SBERT); (4) text similarity scores using OpenAI embedding1 (LLM); and (5) trained

retriever using contrastive learning [156, 75] (CL). Other than random selection,

the other four options are also called the retrieval-based methods. In Option (5),

positive examples are obtained by data augmentation applied to the anchor user

sequence, while negative examples are randomly selected user-item interaction

sequences [156]. It has been observed that the performance of in-context learning

greatly depends on selecting suitable demonstrations [81]. Utilizing examples that

are semantically similar to the test sample can provide more informative and task-

relevant knowledge to LLMs. Following Liu et al. [81], there are several follow-up

works [117, 119, 179, 75] to develop methods for selecting better demonstrations. In

this work, we evaluate five different demonstration selection methods to determine

their impact to in-context learning for sequential recommendation. These methods

include: (1) random selection; (2) overlapping historical items of demonstration

user and test user; (3) text similarity scores using Sentence-BERT embedding [109]

(SBERT); (4) text similarity scores using OpenAI embedding2 (LLM); and (5)

trained retriever using contrastive learning [156, 75] (CL). In Option (5), positive

examples are obtained by data augmentation applied to the anchor user sequence,

while negative examples are randomly selected user-item interaction sequences [156].

Figure 5.5 compares the five selection methods on ML-1M and LastFM as they

are used in one-shot sequential recommendation. The results show that selection

methods (4) and (5) generally outperform the rest. As method (4) appears to be more

robust than (5) and it does not require additional training, we thus use that as the

default retriever model in the subsequent experiments.

Finding 3. Retrieval-based methods are better than random selection, and

stronger LLMs can serve as stronger retrievers without any training.

1text-embedding-ada-002 (https://platform.openai.com/docs/models/moderation)
2text-embedding-ada-002 (https://platform.openai.com/docs/models/moderation)

77



Figure 5.6: Varying number of demonstrations.

5.3.6 Number of Demonstrations

When training a model, having more training data examples usually leads to better

model performance. However, it is interesting to note that Zhao et al. [180] dis-

cover that increasing the number of demonstrations for in-context learning does not

necessarily result in improved performance. Chen et al. [17] also show that using

only one demonstration may not perform worse than using more demonstrations. In

our case, we evaluate the impact of the number of demonstrations on ML-1M and

LastFM using random selection, LLM, and CL demonstration selection methods.

We conduct experiments by varying the number of demonstrations from 1 to 4,

as exceeding 4 demonstrations would exceed the prompt length limit of ChatGPT

(GPT-3.5-Turbo). Figure 5.6 shows a clear decreasing trend of performance as

we increase the number of demonstrations.

Finding 4. Increasing demonstrations of in-context learning for sequential

recommendation would result in performance degradation and potentially

breach the length limit of LLMs.

78



Figure 5.7: Aggregated demonstration construction for sequential recommendation.

5.4 In-Context Learning with Aggregated Demonstra-

tions

Finding 4 suggests LLMs have difficulties coping with multiple demonstrations

in sequential recommendation. A similar finding by Liu et al. [84] also suggests

that the current language models often struggle to utilize information in long input

contexts. In particular, their performance tends to significantly degrade when the

relevant information is located in the middle of long contexts, also known as the

“lost in the middle” phenomenon. The in-context learning prompts for sequential

recommendation can easily exceed the prompt length limit of LLM when more than

4 demonstrations are to be accommodated. Such prompts not only suffer from “lost

in the Middle”, but also incur additional costs of calling LLM APIs.

To address the above challenge, we propose aggregated demonstration which

combines K (K > 1) demonstration users into one for in-context learning. This

simple yet effective in-context learning method for sequential recommendation is

called LLMSRec-Syn. As the prompt length of aggregated demonstration only

increases marginally when we increase K, LLMSRec-Syn can accommodate more

member demonstration users.

Based on Finding 3, LLMSRec-Syn begins with selecting K demonstration users

that are similar to the test user. We use similarity between the LLM embeddings
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of demonstration and test users. We also follow Finding 1 and adopt instruction

template (A) for the test user. Based on Finding 2, we also adopt demonstrate

template (T3) for the aggregated demonstration to maintain consistency with the

task for test user. Next, we construct the aggregated demonstration’s historical

item-interactions, candidate items, and the desired ranking of the candidate items

from its member demonstrations, as shown in Figure 5.7. We will also elaborate

these components as follows.

Historical item-interactions. Let H denote the historical item-interactions and H is

empty initially. We first rank the K selected demonstration users by similarity score.

We then add the most recent interacted item from the most similar demonstration to

H . We repeat the same step for the remaining demonstrations in their similarity order.

When we run out of most recent interacted items from K selected demonstrations,

we continue to add the next recent interacted items of these demonstrations to H

until the number of historical items reaches MAXH .

Candidate Items. Let C denote the candidate items of the aggregated demonstration

and C is empty initially. We first gather all the ground truth next items from the K

selected demonstrations and add them to C. Next, we randomly add other items

from the item pool to C so as to meet the required number of candidate items.

Ranking of Candidate Items. To rank the candidate items in C, we place the

ground truth next item of the most similar demonstration at rank 1, followed by that

of next similar demonstration until we run out of the ground truth next items of all K

selected demonstrations. Next, we assign random ranks to the remaining items in C.

Once the aggregated demonstration is constructed, it is added to the prompt the

same way a training user is added as a demonstration. we add it to the corresponding

test user and use them as input for the LLM.

Cagg = T A (AggT3 (xσ1 , cσ1 , yσ1 , · · · , xσn , cσn , yσn)
)
, (5.3)

ytest ∼ PLLM

(
· | Cagg ⊕ T A (xtest , ctest )

)
, (5.4)

where σi represents the ith ranked selected users returned by the retrieval model.

80



Finally, the LLM generates a ranked list of candidate items as the recommendation

result.

There are several advantages of the proposed LLMSRec-Syn. They are:

• Unlike the standard demonstration which has one ground truth next-item in the

ranked list of recommended items, the aggregated demonstration of LLMSRec-

Syn includes more ground truth next-items at topmost positions in the ranked

list of recommended items. This approach can avoid sparse signals and provide

more guidance to LLMs for recommending to the test user;

• LLMSRec-Syn is less sensitive to the number of demonstrations;

• Cost of LLMSRec-Syn does not increase much with the number of demonstra-

tions; and

• LLMSRec-Syn keeps to the prompt length limit of LLMs.

5.5 Experiments and Results

5.5.1 Methods for Comparison

To evaluate the performance of LLMSRec-Syn, we conduct an extensive set of

experiments on ML-1M, Games, and LastFM-2K datasets. Following the experiment

setup of Hou et al. [51], we select 200 data examples from each of the three datasets

to carry out all experiments. We use an experiment setup similar to that mentioned in

Section 5.3.1 except that we now uses more LLMs and reports the NDCG@N results

where N=5,10, and 20. We compare LLMSRec-Syn with 10 methods categorized

into 3 types:

Supervised methods: Most Popular (Recommending items based on their overall

popularity among all users in the training data), GRU4Rec [50] (using GRUs to model

user’s item sequences), and SASRec [58] (employing a self-attention mechanism to

learn user preferences from their item sequences).
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Zero-shot methods: BM25 [116] (ranking candidate items based on their

textual similarity with the test user’s interacted items), LLMSeqSim [44]

(ranking candidate items by semantically similarity using OpenAI embeddings

(text-embedding-ada-002)), LLMRank-Seq [51] (using ChatGPT to rank

candidate items with crafted prompts), and LLMSRec (a zero-shot version of the

proposed LLMSRec-Syn using the instruction prompt T A).

One-shot methods: These include LLMRank-His [51] (using historical items of the

test user to form a demonstration), and two variants of LLMSRec-Syn, LLMSRec-

Fixed and LLMSRec-Nearest. LLMSRec-Fixed uses a randomly selected demon-

stration for all test users, while LLMSRec-Nearest finds the most similar training

user as the demonstration.

As Section 5.3.6 shows that more than one demonstration in in-context learning

for sequential recommendation does not yield better performance, we do not include

few-shot methods in this set of experiments. We however will study how many

member demonstrations K is ideal for aggregated demonstration (see Section 5.5.2).

We implement LLMSRec-Syn using three different LLMs, LLaMa2 [132], Chat-

GPT [99] (LLMSRec-Syn), and GPT-4 [100] (LLMSRec-Syn-4). For the LLMSRec-

Syn-4 experiment, which is shown in the last row of Table 5.3 to Table 5.5, we use

GPT-4 as the base LLM. For all other experiments, including preliminary studies,

in-depth analysis, and method comparisons presented in Table 5.3 to Table 5.5,

we use the same ChatGPT (GPT-3.5-Turbo). To ensure the reliability of our

findings, each experiment is conducted 9 times, and the average results are reported.

However, we found LLaMa2 unable to follow recommendation instructions and

is prone to generating historical interacted items or in-context examples. Hence, we

exclude the LLaMa2 results from the evaluation results. In LLMSRec-Syn, we set

the number of member users in the aggregated demonstration as {1,2,3,4,5,6,7} and

conduct a brute force search to determine the optimal number for each dataset. We

set the number of historical items MAXH = 50 and number of candidate items to

20. Other than reporting the NDCG@N results, we also analyse specific test cases of
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LLMSRec-Syn-4 in Section 5.5.5.

5.5.2 Main Results

Table 5.3: Main results. We report NDCG@5, NDCG@10 and NDCG@20 on the
ML-1M dataset. (Best results in each group of methods are boldfaced and overall
best results are underlined).

Setting Method NDCG@5 NDCG@10 NDCG@20

Supervised
Most Popular 0.3673 0.4623 0.4748
GRU4Rec 0.7205 0.7494 0.7610
SASRec 0.7322 0.7595 0.7702

Zero-shot

BM25 0.1314 0.2053 0.3370
LLMSeqSim 0.3250 0.4037 0.4723
LLMRank-Seq 0.3344 0.3882 0.4612
LLMSRec 0.3339 0.4087 0.4723

One-shot

LLMRank-His 0.3919 0.4444 0.5074
LLMSRec-Fixed 0.3590 0.4193 0.4793
LLMSRec-Nearest 0.3842 0.4382 0.5017
LLMSRec-Syn 0.4267 0.4813 0.5334
LLMSRec-Syn-4 0.5112 0.5685 0.5936

Table 5.4: Main results. We report NDCG@5, NDCG@10 and NDCG@20 on the
LastFM-2K dataset. (Best results in each group of methods are boldfaced and overall
best results are underlined).

Setting Method NDCG@5 NDCG@10 NDCG@20

Supervised
Most Popular 0.4055 0.4205 0.4803
GRU4Rec 0.3382 0.3971 0.4784
SASRec 0.4081 0.4680 0.5303

Zero-shot

BM25 0.1215 0.1393 0.3354
LLMSeqSim 0.4090 0.4662 0.5293
LLMRank-Seq 0.5084 0.5545 0.6070
LLMSRec 0.5126 0.5602 0.6057

One-shot

LLMRank-His 0.5318 0.5725 0.6212
LLMSRec-Fixed 0.4961 0.5425 0.5984
LLMSRec-Nearest 0.5249 0.5697 0.6197
LLMSRec-Syn 0.5554 0.5918 0.6371
LLMSRec-Syn-4 0.6544 0.6799 0.7017

The main experiment results are shown in Table 5.3 to Table 5.5. From the results

table, we obtain the following findings:
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Table 5.5: Main results. We report NDCG@5, NDCG@10 and NDCG@20 on the
Games dataset. (Best results in each group of methods are boldfaced and overall
best results are underlined).

Setting Method NDCG@5 NDCG@10 NDCG@20

Supervised
Most Popular 0.2746 0.3905 0.4496
GRU4Rec 0.6747 0.7002 0.7278
SASRec 0.6828 0.7189 0.7311

Zero-shot

BM25 0.2285 0.3108 0.4055
LLMSeqSim 0.4269 0.4830 0.5360
LLMRank-Seq 0.3063 0.3607 0.4074
LLMSRec 0.4070 0.4555 0.5103

One-shot

LLMRank-His 0.4191 0.4667 0.5206
LLMSRec-Fixed 0.3744 0.4400 0.4899
LLMSRec-Nearest 0.3975 0.4388 0.4994
LLMSRec-Syn 0.4989 0.5334 0.5869
LLMSRec-Syn-4 0.5647 0.6019 0.6277

ICL one-shot methods with appropriate demonstrations out-perform zero-shot

methods. As shown in Table 5.3 to Table 5.5, the one-shot LLMSRec-Syn out-

perform the NDCG@5, NDCG@10, and NDCG@20 of the zero-shot LLMSRec

by 19.5%, 13.5%, and 11.0% respectively, when averaged across three benchmark

datasets. It is significantly better than the strong zero-shot baseline such as LLMRank-

Seq by 33.2% , 26.2%, and 21.6% respectively, averaged across all benchmark

datasets. Furthermore, LLMRank-His, LLMSRec-Fixed, and LLMSRec-Nearest

using one training user as demonstration outperform LLMRank-Seq on three datasets,

except for LLMSRec-Fixed which performs slightly worse than LLMRank-Seq on

LastFM-2K. This result suggests that ICL can enhance the LLM’s ability to perform

a complex task such as sequential recommendation.

Aggregated demonstration, combining multiple member users, allows LLM to

effectively gather useful task specific information about the test user within a

concise context. Compared to other ICL baselines (i.e., LLMRank-His, LLMSRec-

Fixed, and LLMSRec-Nearest), LLMSRec-Syn achieves the superior one-shot per-

formance across all datasets as shown in Table 5.3 to Table 5.5. For example, the

one-shot LLMSRec-Syn outperforms the NDCG@5, NDCG@10, and NDCG@20
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scores of the strongest baseline, LLMRank-His, by 10.8%, 8.6%, and 6.8% respec-

tively, when averaged across three benchmark datasets. While Figure 5.6 shows

that having more demonstrations may hurt ICL for sequential recommendation, the

idea of incorporating multiple demonstration users into an aggregated demonstration

enhances the performance of LLMSRec-Syn. These results illustrate the advantage

of aggregated demonstration in accommodating multiple training users within a

limited prompt length.

LLMSRec-Syn is competitive against supervised methods when the amount of

training data is limited. LLMSRec-Syn easily outperforms the simple supervised

baseline, Most Popular. While it does not outperform GRU4Rec and SASRec on ML-

1M and Games, LLMSRec-Syn surprisingly outperforms all supervised baselines on

LastFM-2K. One possible reason is that LastFM-2K has sparse information about

items after removing duplicate user-item interactions and users/items with less than

5 interactions, making it challenging to train a good supervised model.

LLMSRec-Syn using more powerful LLMs may outperform supervised methods

in the future. With rapid advancement of LLM research, LLMSRec-Syn can be

further enhanced when more powerful LLM is used. Our results in Table 5.3 to

Table 5.5 shows that LLMSRec-Syn-4 significantly outperforms the NDCG@5,

NDCG@10, and NDCG@20 scores of LLMSRec-Syn on all the 3 datasets by

16.9%, 15.2%, 9.4% respectively.

5.5.3 Analysis of Aggregated Demonstrations

In this section, we study the recommendation performance when varying the set-

tings of aggregated demonstrations. Analysis of ordering of users and label in the

aggregated demonstration can be found in the Section 5.5.4.

Impact of number of users in the aggregated demonstration. We evaluate the

impact of K (the number of member users) in the aggregated demonstration on

LLMSRec-Syn’s performance. We empirically vary K from 2 to 7. As shown
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Figure 5.8: Varying number of users (K) in aggregated demonstration.

in Figure 5.8, an approximate inverted U-shaped relationship exists between K

and NDCG@10/20 performance. Initially, as K increases, there is a noticeable

performance increase, suggesting that LLMSRec-Syn benefits from aggregated

demonstration. However, beyond some K value, more member users in aggregated

demonstration leads to lower performance. This can be explained by more irrelevant

training users being incorporated into the aggregated demonstration.

Impact of number of aggregated demonstrations. We evaluate the impact of

the number of aggregated demonstrations to LLMSRec-Syn by varying the number

of aggregated demonstrations from 1 to 4 such that each demonstration involves

2 users (see Figure 5.9(a)) or 3 users (see Figure 5.9(b)). For the Games dataset,

experimentation with 3 aggregated demonstrations was not possible due to GPT-

3.5-Turbo’s input limit. The results show that a single aggregated demonstration

outperforms multiple ones, except in the LastFM-2K dataset, where two aggregated

demonstrations slightly excel.

5.5.4 More In-Depth Analysis

Impact of user order in aggregated demonstrations. We experiment with 3

possible orders of member users: (i) Random (randomly selects historical items and

next-items from the selected users to construct the aggregated demonstration), (ii)
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Figure 5.9: Varying number of aggregated demonstrations each with: (a) 2 member
users, and (b) 3 member users.

Figure 5.10: (a) Ordering of member users in the aggregated demonstration. (b)
Ground truth vs random next-items in aggregated demonstrations.

Right2Left (the reverse order of demonstration users in constructing an aggregated

demonstration in LLMSRec-Syn in Section 5.4), and (iii) Left2Right (the user order

used in the LLMSRec-Syn). Figure 5.10(a) illustrates that Left2Right and Right2Left

are the most and least ideal orders respectively. The performance of Random is

naturally sandwiched in between.

Impact of labeled next-items in the aggregated demonstration. According to Min

et al. [94], ground truth labels are not important for in-context learning. To investigate

this claim for ICL-based sequential recommendation, we compare LLMSRec-Syn

using ground truth next-items in the aggregated demonstration (referred to as “Gold

Labels”) with that using randomly chosen non-ground truth next-items (referred to

as “Random Labels”). Our results in Figure 5.10(b) clearly indicate that ground
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Table 5.6: Results of fine-tuned LLaMa2 with LoRA for in-context sequential recom-
mendation. Regular means LLaMa2-LoRA-Regular. Aggregated means LLaMa2-
LoRA-Aggregated.

ML-1M Regular Aggregated LLMSRec-Syn

NDCG@10 0.3640 0.3766 0.3776
NDCG@20 0.4193 0.4420 0.4384

truth next-items are required to yield better performance contradicting the claim by

Min et al. [94]. This could possibly be explained by the complexity of sequential

recommendation task.

Could fine-tuned LLaMa2 improve the performance of in-context sequential

recommendation? We initially used a training dataset of 150 data examples to train

LLaMa2 with LoRA, which we referred to as LLaMa2-LoRA-Regular. For each

training data example in this training dataset, the target output is the ranking of the

candidate items for a training user. The input consists of a regular demonstration

example, as well as historical items and candidate items from the training user. After

training, we evaluated the performance of LLaMa2-LoRA-Regular using the same

50 test users as ChatGPT-based LLMSRec-Syn (0.5283 NDCG@10).

As shown in Table 5.6, the results showed that LLaMa2-LoRA-Regular achieved

a NDCG@10 score of 0.2344. To investigate whether aggregated demonstration

helps to train a better model compared to regular demonstrations, we prepared a

training dataset using aggregated demonstrations instead of regular demonstrations.

We trained LLaMa2 with LoRA using this dataset, which we call LLaMa2-LoRA-

Aggregated. LLaMa2-LoRA-Aggregated achieved a NDCG@10 score of 0.3432 on

the same test set. Although the initial study indicates that LLaMa-LoRA performs

worse than ChatGPT, the fine-tuned LLaMa2-LoRA appears to have the potential

to enable in-context learning-based sequential recommendation and aggregated

demonstration can help to train a better model.
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5.5.5 Case Study Examples

In this section, we provide comparative examples of one-shot LLMSRec-Syn (Ta-

ble 5.7), one-shot LLMSRec-Nearest (Table 5.8), one-shot LLMSRec-Fixed (Ta-

ble 5.9), and zero-shot LLMSRec (Table 5.10). Observations show that LLMSRec-

Syn ranks the ground truth movie higher than the other methods. Compared to

Nearest and Fixed demonstrations, the aggregated demonstration allows the LLM to

better identify a user’s interests and align the ranking with those interests. Without

demonstration, zero-shot LLMSRec relies solely on the LLM’s knowledge and per-

forms poorly. This suggests that LLMs can learn from demonstrations to improve in

areas where they might not originally be good at.
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Table 5.7: Example of the one-shot LLMSRec-Syn on the ML-1M dataset. Ground
truth recommendation is highlighted in Maroon.

Aggregated Demonstration Example:

The User’s Movie Profile:
- Watched Movies: [‘0. Caddyshack’, ‘1. Glory’, ‘2. A
Bug’s Life’, ‘3. Star Trek VI: The Undiscovered Country’, ‘4.
Indiana Jones and the Last Crusade’, ‘5. The Color of Money’,
‘6. Raging Bull’, ‘7. Edward Scissorhands’, ‘8. Kramer Vs.
Kramer’, ‘9. Roger & Me’, ‘10. Romancing the Stone’, ‘11.
Full Metal Jacket’, ‘12. The Shining’, ‘13. Easy Rider’,
‘14. Glory’, ‘15. The Color Purple’, ‘16. Die Hard’, ‘17.
Who Framed Roger Rabbit?’, ‘18. Ghostbusters’, ‘19. The
Right Stuff’, ‘20. No Way Out’, ‘21. The Breakfast Club’,
‘22. Dead Poets Society’, ‘23. One True Thing’, ‘24. Full
Metal Jacket’, ‘25. U2: Rattle and Hum’, ‘26. Caddyshack’,
‘27. Jaws’, ‘28. Get Shorty’, ‘29. A Fish Called Wanda’,
‘30. Star Trek IV: The Voyage Home’, ‘31. Brazil’, ‘32. The
Fugitive’, ‘33. Willy Wonka and the Chocolate Factory’, ‘34.
Ghostbusters’, ‘35. The Blues Brothers’, ‘36. Stripes’, ‘37.
Stand by Me’, ‘38. Pleasantville’, ‘39. Bull Durham’, ‘40.
Risky Business’, ‘41. Indiana Jones and the Last Crusade’, ‘42.
Star Wars: Episode VI - Return of the Jedi’, ‘43. Witness’,
‘44. Brazil’, ‘45. Predator’, ‘46. The Terminator’, ‘47.
Grosse Pointe Blank’, ‘48. Contact’, ‘49. The Princess
Bride’]
The User’s Potential Matches:
- Candidate Movies: [‘0. Excalibur’, ‘1. The Fox and the
Hound’, ‘2. The Cable Guy’, ‘3. Cat on a Hot Tin Roof’, ‘4.
Slingshot, The (Kådisbellan )’, ‘5. Institute Benjamenta,
or This Dream People Call Human Life’, ‘6. Prefontaine’, ‘7.
Star Wars: Episode IV - A New Hope’, ‘8. 8 Seconds’, ‘9. Two
Family House’, ‘10. American Graffiti’, ‘11. Seven Days in
May’, ‘12. The English Patient’, ‘13. Jurassic Park’, ‘14.
Meet the Parents’, ‘15. Weekend at Bernie"s’, ‘16. Kurt &
Courtney’, ‘17. Children of a Lesser God’, ‘18. The Haunting’,
‘19. Love and Basketball’]
Based on the user’s watched movies, please rank the candidate
movies that align closely with the user’s preferences.
- You ONLY rank the given Candidate Movies.
- You DO NOT generate movies from Watched Movies.
Present your response in the format below:
1. [Top Recommendation (Candidate Movie)]
2. [2nd Recommendation (Candidate Movie)]
...
20. [20th Recommendation (Candidate Movie)]
Answer:
1. Children of a Lesser God
2. Excalibur
3. Jurassic Park
4. American Graffiti
5. Meet the Parents
6. The Haunting
7. Institute Benjamenta, or This Dream People Call Human Life
8. Cat on a Hot Tin Roof
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9. Slingshot, The (Kådisbellan )
10. Prefontaine
11. The English Patient
12. Love and Basketball
13. The Fox and the Hound
14. The Cable Guy
15. Two Family House
16. Star Wars: Episode IV - A New Hope
17. Weekend at Bernie"s
18. Seven Days in May
19. 8 Seconds
20. Kurt & Courtney

Test User:

Learn from the above demonstration examples to solve the
following test example.
The User’s Movie Profile:
- Watched Movies: [‘0. Nikita (La Femme Nikita)’, ‘1.
Wallace & Gromit: The Best of Aardman Animation’, ‘2.
Unforgiven’, ‘3. Batman: Mask of the Phantasm’, ‘4. The
Fugitive’, ‘5. Out of Sight’, ‘6. Twelve Monkeys’, ‘7.
GoodFellas’, ‘8. Fight Club’, ‘9. Groundhog Day’, ‘10. A
Bug"s Life’, ‘11. Tombstone’, ‘12. Aladdin’, ‘13. Beauty
and the Beast’, ‘14. Grosse Pointe Blank’, ‘15. Election’,
‘16. Leaving Las Vegas’, ‘17. Total Recall’, ‘18. A Few
Good Men’, ‘19. Pleasantville’, ‘20. Jerry Maguire’, ‘21.
Pretty Woman’, ‘22. Contact’, ‘23. True Lies’, ‘24. Waking
Ned Devine’, ‘25. Romeo Must Die’, ‘26. Mission: Impossible
2’, ‘27. Mission to Mars’, ‘28. Killer, The (Die xue shuang
xiong)’, ‘29. Blade Runner’, ‘30. The Princess Bride’, ‘31.
Brazil’, ‘32. Henry V’, ‘33. Amadeus’, ‘34. The Right Stuff’,
‘35. The Terminator’, ‘36. Stand by Me’, ‘37. Back to the
Future’, ‘38. This Is Spinal Tap’, ‘39. Gandhi’, ‘40. Star
Trek: The Wrath of Khan’, ‘41. Ghostbusters’, ‘42. Mad Max
2 (a.k.a. The Road Warrior)’, ‘43. A Fish Called Wanda’, ‘44.
Trading Places’, ‘45. Chariots of Fire’, ‘46. Time Bandits’,
‘47. Who Framed Roger Rabbit?’, ‘48. Indiana Jones and the
Last Crusade’, ‘49. Die Hard’]
The User’s Potential Matches:
- Candidate Movies: [‘0. Sorority House Massacre’, ‘1.
Arguing the World’, ‘2. Cop Land’, ‘3. The Inkwell’, ‘4.
Lovers of the Arctic Circle, The (Los Amantes del Cı́rculo
Polar)’, ‘5. Airplane!’, ‘6. Pokémon the Movie 2000’,
‘7. Johnny 100 Pesos’, ‘8. Happy, Texas’, ‘9. Arlington
Road’, ‘10. The Prophecy II’, ‘11. Prom Night’, ‘12. The
Commitments’, ‘13. Federal Hill’, ‘14. Another Stakeout’,
‘15. The Postman Always Rings Twice’, ‘16. The Crow’, ‘17.
Shanghai Surprise’, ‘18. Patriot Games’, ‘19. Modulations’]
Based on the user’s watched movies, please rank the candidate
movies that align closely with John’s preferences.
- You ONLY rank the given Candidate Movies.
- You DO NOT generate movies from Watched Movies.
Present your response in the format below: 1. [Top
Recommendation (Candidate Movie)] 2. [2nd Recommendation
(Candidate Movie)] ... 20. [20th Recommendation (Candidate
Movie)]
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Answer:
1. The Commitments
2. Cop Land
3. Airplane!
4. The Crow
5. Patriot Games
6. The Postman Always Rings Twice
7. Shanghai Surprise
8. Arlington Road
9. Happy, Texas
10. Another Stakeout
11. The Inkwell
12. Modulations
13. Johnny 100 Pesos
14. Sorority House Massacre
15. Pokémon the Movie 2000
16. Lovers of the Arctic Circle, The (Los Amantes del Cı́rculo
Polar)
17. The Prophecy II
18. Federal Hill
19. Prom Night
20. Arguing the World
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Table 5.8: Example of the one-shot LLMSRec-Nearest on the ML-1M dataset.

Nearest Demonstration Example:

The User’s Movie Profile:
- Watched Movies: [‘E.T. the Extra-Terrestrial’, ‘Gladiator’,
‘Raiders of the Lost Ark’, ‘Brazil’, ‘Aliens’, ‘Full Metal
Jacket’, ‘The Right Stuff’, ‘The Terminator’, ‘Down by Law’,
‘Blade Runner’, ‘The Princess Bride’, ‘Mystery Train’, ‘Stand
by Me’, ‘Dangerous Liaisons’, ‘Year of Living Dangerously’,
‘Poltergeist’, ‘Crimes and Misdemeanors’, ‘Never Cry Wolf’, ‘Mad
Max 2 (a.k.a. The Road Warrior)’, ‘Women on the Verge of a
Nervous Breakdown’, "Ferris Bueller’s Day Off", ‘Who Framed
Roger Rabbit?’, ‘Koyaanisqatsi’, ‘Ghostbusters’, ‘A Fish Called
Wanda’, ‘The Gods Must Be Crazy’, ‘Chariots of Fire’, ‘The
Hidden’, ‘Diva’, ‘Gandhi’, ‘F/X’, ‘Sex, Lies, and Videotape’,
‘Reds’, ‘Back to the Future’, ‘Driving Miss Daisy’, ‘Body Heat’,
‘Indiana Jones and the Last Crusade’, ‘When Harry Met Sally...’,
‘Batman’, ‘The Untouchables’, ‘Predator’, ‘Risky Business’, ‘The
Blues Brothers’, ‘Star Trek IV: The Voyage Home’, ‘U2: Rattle
and Hum’, ‘No Way Out’, ‘The Color Purple’, ‘Romancing the
Stone’, ‘The Color of Money’, ‘Caddyshack’]
The User’s Potential Matches:
- Candidate Movies: [‘Children of a Lesser God’, ‘Kicking and
Screaming’, ‘Harlem’, ‘The Good Mother’, ‘Oscar and Lucinda
(a.k.a. Oscar & Lucinda)’, ‘Meet Me in St. Louis’, ‘Sinbad
and the Eye of the Tiger’, ‘Gremlins’, "Freddy’s Dead: The
Final Nightmare", ‘One Magic Christmas’, ‘The Scarlet Letter’,
‘Alaska’, ‘Red Firecracker, Green Firecracker’, ‘Bulletproof’,
‘The Crimson Pirate’, ‘Clockers’, ‘The Stepford Wives’, ‘Twelve
Monkeys’, ‘Bitter Moon’, ‘Friday the 13th: The Final Chapter’]
Based on the user’s watched movies, please rank the candidate
movies that align closely with the user’s preferences.
- You ONLY rank the given Candidate Movies.
- You DO NOT generate movies from Watched Movies.
Present your response in the format below:
1. [Top Recommendation (Candidate Movie)]
2. [2nd Recommendation (Candidate Movie)]
...
20. [20th Recommendation (Candidate Movie)]
Answer:
1. Children of a Lesser God
2. One Magic Christmas
3. Alaska
4. Gremlins
5. The Good Mother
6. Bitter Moon
7. Bulletproof
8. Freddy’s Dead: The Final Nightmare
9. Red Firecracker, Green Firecracker
10. The Scarlet Letter
11. Sinbad and the Eye of the Tiger
12. Kicking and Screaming
13. Meet Me in St. Louis
14. Oscar and Lucinda (a.k.a. Oscar & Lucinda)
15. Twelve Monkeys
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16. Clockers
17. Harlem
18. The Stepford Wives
19. The Crimson Pirate
20. Friday the 13th: The Final Chapter

Test User:

Learn from the above demonstration examples to solve the
following test example.
The User’s Movie Profile:
- Watched Movies: [‘0. Nikita (La Femme Nikita)’, ‘1.
Wallace & Gromit: The Best of Aardman Animation’, ‘2.
Unforgiven’, ‘3. Batman: Mask of the Phantasm’, ‘4. The
Fugitive’, ‘5. Out of Sight’, ‘6. Twelve Monkeys’, ‘7.
GoodFellas’, ‘8. Fight Club’, ‘9. Groundhog Day’, ‘10. A
Bug"s Life’, ‘11. Tombstone’, ‘12. Aladdin’, ‘13. Beauty
and the Beast’, ‘14. Grosse Pointe Blank’, ‘15. Election’,
‘16. Leaving Las Vegas’, ‘17. Total Recall’, ‘18. A Few
Good Men’, ‘19. Pleasantville’, ‘20. Jerry Maguire’, ‘21.
Pretty Woman’, ‘22. Contact’, ‘23. True Lies’, ‘24. Waking
Ned Devine’, ‘25. Romeo Must Die’, ‘26. Mission: Impossible
2’, ‘27. Mission to Mars’, ‘28. Killer, The (Die xue shuang
xiong)’, ‘29. Blade Runner’, ‘30. The Princess Bride’, ‘31.
Brazil’, ‘32. Henry V’, ‘33. Amadeus’, ‘34. The Right Stuff’,
‘35. The Terminator’, ‘36. Stand by Me’, ‘37. Back to the
Future’, ‘38. This Is Spinal Tap’, ‘39. Gandhi’, ‘40. Star
Trek: The Wrath of Khan’, ‘41. Ghostbusters’, ‘42. Mad Max
2 (a.k.a. The Road Warrior)’, ‘43. A Fish Called Wanda’, ‘44.
Trading Places’, ‘45. Chariots of Fire’, ‘46. Time Bandits’,
‘47. Who Framed Roger Rabbit?’, ‘48. Indiana Jones and the
Last Crusade’, ‘49. Die Hard’]
The User’s Potential Matches:
- Candidate Movies: [‘0. Sorority House Massacre’, ‘1.
Arguing the World’, ‘2. Cop Land’, ‘3. The Inkwell’, ‘4.
Lovers of the Arctic Circle, The (Los Amantes del Cı́rculo
Polar)’, ‘5. Airplane!’, ‘6. Pokémon the Movie 2000’,
‘7. Johnny 100 Pesos’, ‘8. Happy, Texas’, ‘9. Arlington
Road’, ‘10. The Prophecy II’, ‘11. Prom Night’, ‘12. The
Commitments’, ‘13. Federal Hill’, ‘14. Another Stakeout’,
‘15. The Postman Always Rings Twice’, ‘16. The Crow’, ‘17.
Shanghai Surprise’, ‘18. Patriot Games’, ‘19. Modulations’]
Based on the user’s watched movies, please rank the candidate
movies that align closely with John’s preferences.
- You ONLY rank the given Candidate Movies.
- You DO NOT generate movies from Watched Movies.
Present your response in the format below: 1. [Top
Recommendation (Candidate Movie)] 2. [2nd Recommendation
(Candidate Movie)] ... 20. [20th Recommendation (Candidate
Movie)]
Answer:
1. Arlington Road
2. Cop Land
3. The Crow
4. Patriot Games
5. The Postman Always Rings Twice
6. The Commitments
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7. Airplane!
8. Another Stakeout
9. Lovers of the Arctic Circle, The (Los Amantes del Cı́rculo
Polar)
10. Shanghai Surprise
11. Happy, Texas
12. Modulations
13. The Inkwell
14. Johnny 100 Pesos
15. Sorority House Massacre
16. Arguing the World
17. Prom Night
18. Federal Hill
19. Pokémon the Movie 2000
20. The Prophecy II
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Table 5.9: Example of the one-shot LLMSRec-Fixed on the ML-1M dataset.

Fixed Demonstration Example:

The User’s Movie Profile:
- Watched Movies: [‘Total Recall’, ‘Aliens’, ‘Star Wars:
Episode VI - Return of the Jedi’, ‘E.T. the Extra-Terrestrial’,
‘Forbidden Planet’, ‘Brazil’, ‘Star Trek: First Contact’,
‘Star Trek: The Wrath of Khan’, ‘Sneakers’, ‘Galaxy Quest’,
‘Contact’, ‘Village of the Damned’, ‘Being John Malkovich’,
‘Waiting for Guffman’, ‘Clerks’, ‘American Beauty’, ‘Toy
Story 2’, ‘Shakespeare in Love’, ‘Toy Story’, ‘Flirting With
Disaster’, ‘Smoke Signals’, ‘Pulp Fiction’, ‘Erin Brockovich’,
‘Chicken Run’, ‘Shanghai Noon’, ‘Gladiator’, ‘The Wizard of Oz’,
‘The Producers’, "Singin’ in the Rain", ‘The Sound of Music’,
‘Snow White and the Seven Dwarfs’, ‘Fantasia’, ‘Sleeping
Beauty’, ‘West Side Story’, ‘Cinderella’, ‘The Little Mermaid’,
‘Holiday Inn’, ‘James and the Giant Peach’, ‘Dumbo’, ‘The Lion
King’, ‘The Nightmare Before Christmas’, ‘The Rocky Horror
Picture Show’, ‘Oliver!’, ‘Pocahontas’, ‘Everyone Says I Love
You’, ‘South Pacific’, ‘Victor/Victoria’, ‘Tank Girl’, ‘His
Girl Friday’, ‘The Maltese Falcon’]
The User’s Potential Matches:
- Candidate Movies: [‘The Shop Around the Corner’,‘Kicking and
Screaming’,‘Harlem’,‘The Good Mother’,‘Oscar and Lucinda (a.k.a.
Oscar & Lucinda)’,‘Roman Holiday’,‘Sinbad and the Eye of the
Tiger’,‘Gremlins’, "Freddy’s Dead: The Final Nightmare",‘One
Magic Christmas’,‘The Scarlet Letter’,‘Alaska’,‘Red
Firecracker, Green Firecracker’,‘Bulletproof’,‘The Crimson
Pirate’,‘Clockers’,‘The Stepford Wives’,‘The Crow’,‘Bitter
Moon’,‘Friday the 13th: The Final Chapter’]
Based on the user’s watched movies, please rank the candidate
movies that align closely with the user’s preferences.
- You ONLY rank the given Candidate Movies.
- You DO NOT generate movies from Watched Movies.
Present your response in the format below:
1. [Top Recommendation (Candidate Movie)]
2. [2nd Recommendation (Candidate Movie)]
...
20. [20th Recommendation (Candidate Movie)]
Answer:
1. The Shop Around the Corner
2. One Magic Christmas
3. Alaska
4. Gremlins
5. The Good Mother
6. Bitter Moon
7. Bulletproof
8. Freddy’s Dead: The Final Nightmare
9. Red Firecracker, Green Firecracker
10. The Scarlet Letter
11. Sinbad and the Eye of the Tiger
12. Kicking and Screaming
13. Roman Holiday
14. Oscar and Lucinda (a.k.a. Oscar & Lucinda)
15. The Crow
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16. Clockers
17. Harlem
18. The Stepford Wives
19. The Crimson Pirate
20. Friday the 13th: The Final Chapter

Test User:

Learn from the above demonstration examples to solve the
following test example.
The User’s Movie Profile:
- Watched Movies: [‘0. Nikita (La Femme Nikita)’, ‘1.
Wallace & Gromit: The Best of Aardman Animation’, ‘2.
Unforgiven’, ‘3. Batman: Mask of the Phantasm’, ‘4. The
Fugitive’, ‘5. Out of Sight’, ‘6. Twelve Monkeys’, ‘7.
GoodFellas’, ‘8. Fight Club’, ‘9. Groundhog Day’, ‘10. A
Bug"s Life’, ‘11. Tombstone’, ‘12. Aladdin’, ‘13. Beauty
and the Beast’, ‘14. Grosse Pointe Blank’, ‘15. Election’,
‘16. Leaving Las Vegas’, ‘17. Total Recall’, ‘18. A Few
Good Men’, ‘19. Pleasantville’, ‘20. Jerry Maguire’, ‘21.
Pretty Woman’, ‘22. Contact’, ‘23. True Lies’, ‘24. Waking
Ned Devine’, ‘25. Romeo Must Die’, ‘26. Mission: Impossible
2’, ‘27. Mission to Mars’, ‘28. Killer, The (Die xue shuang
xiong)’, ‘29. Blade Runner’, ‘30. The Princess Bride’, ‘31.
Brazil’, ‘32. Henry V’, ‘33. Amadeus’, ‘34. The Right Stuff’,
‘35. The Terminator’, ‘36. Stand by Me’, ‘37. Back to the
Future’, ‘38. This Is Spinal Tap’, ‘39. Gandhi’, ‘40. Star
Trek: The Wrath of Khan’, ‘41. Ghostbusters’, ‘42. Mad Max
2 (a.k.a. The Road Warrior)’, ‘43. A Fish Called Wanda’, ‘44.
Trading Places’, ‘45. Chariots of Fire’, ‘46. Time Bandits’,
‘47. Who Framed Roger Rabbit?’, ‘48. Indiana Jones and the
Last Crusade’, ‘49. Die Hard’]
The User’s Potential Matches:
- Candidate Movies: [‘0. Sorority House Massacre’, ‘1.
Arguing the World’, ‘2. Cop Land’, ‘3. The Inkwell’, ‘4.
Lovers of the Arctic Circle, The (Los Amantes del Cı́rculo
Polar)’, ‘5. Airplane!’, ‘6. Pokémon the Movie 2000’,
‘7. Johnny 100 Pesos’, ‘8. Happy, Texas’, ‘9. Arlington
Road’, ‘10. The Prophecy II’, ‘11. Prom Night’, ‘12. The
Commitments’, ‘13. Federal Hill’, ‘14. Another Stakeout’,
‘15. The Postman Always Rings Twice’, ‘16. The Crow’, ‘17.
Shanghai Surprise’, ‘18. Patriot Games’, ‘19. Modulations’]
Based on the user’s watched movies, please rank the candidate
movies that align closely with John’s preferences.
- You ONLY rank the given Candidate Movies.
- You DO NOT generate movies from Watched Movies.
Present your response in the format below: 1. [Top
Recommendation (Candidate Movie)] 2. [2nd Recommendation
(Candidate Movie)] ... 20. [20th Recommendation (Candidate
Movie)]
Answer:
1. The Crow
2. Shanghai Surprise
3. The Commitments
4. Arlington Road
5. The Postman Always Rings Twice
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6. Lovers of the Arctic Circle, The (Los Amantes del Cı́rculo
Polar)
7. Cop Land
8. Happy, Texas
9. Another Stakeout
10. Airplane!
11. Federal Hill
12. Johnny 100 Pesos
13. The Prophecy II
14. Modulations
15. Patriot Games
16. Pokémon the Movie 2000
17. Sorority House Massacre
18. Prom Night
19. Arguing the World
20. The Inkwell
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Table 5.10: Example of the zero-shot LLMSRec on the ML-1M dataset.

Test User:

Learn from the above demonstration examples to solve the
following test example.
The User’s Movie Profile:
- Watched Movies: [‘0. Nikita (La Femme Nikita)’, ‘1.
Wallace & Gromit: The Best of Aardman Animation’, ‘2.
Unforgiven’, ‘3. Batman: Mask of the Phantasm’, ‘4. The
Fugitive’, ‘5. Out of Sight’, ‘6. Twelve Monkeys’, ‘7.
GoodFellas’, ‘8. Fight Club’, ‘9. Groundhog Day’, ‘10. A
Bug"s Life’, ‘11. Tombstone’, ‘12. Aladdin’, ‘13. Beauty
and the Beast’, ‘14. Grosse Pointe Blank’, ‘15. Election’,
‘16. Leaving Las Vegas’, ‘17. Total Recall’, ‘18. A Few
Good Men’, ‘19. Pleasantville’, ‘20. Jerry Maguire’, ‘21.
Pretty Woman’, ‘22. Contact’, ‘23. True Lies’, ‘24. Waking
Ned Devine’, ‘25. Romeo Must Die’, ‘26. Mission: Impossible
2’, ‘27. Mission to Mars’, ‘28. Killer, The (Die xue shuang
xiong)’, ‘29. Blade Runner’, ‘30. The Princess Bride’, ‘31.
Brazil’, ‘32. Henry V’, ‘33. Amadeus’, ‘34. The Right Stuff’,
‘35. The Terminator’, ‘36. Stand by Me’, ‘37. Back to the
Future’, ‘38. This Is Spinal Tap’, ‘39. Gandhi’, ‘40. Star
Trek: The Wrath of Khan’, ‘41. Ghostbusters’, ‘42. Mad Max
2 (a.k.a. The Road Warrior)’, ‘43. A Fish Called Wanda’, ‘44.
Trading Places’, ‘45. Chariots of Fire’, ‘46. Time Bandits’,
‘47. Who Framed Roger Rabbit?’, ‘48. Indiana Jones and the
Last Crusade’, ‘49. Die Hard’]
The User’s Potential Matches:
- Candidate Movies: [‘0. Sorority House Massacre’, ‘1.
Arguing the World’, ‘2. Cop Land’, ‘3. The Inkwell’, ‘4.
Lovers of the Arctic Circle, The (Los Amantes del Cı́rculo
Polar)’, ‘5. Airplane!’, ‘6. Pokémon the Movie 2000’,
‘7. Johnny 100 Pesos’, ‘8. Happy, Texas’, ‘9. Arlington
Road’, ‘10. The Prophecy II’, ‘11. Prom Night’, ‘12. The
Commitments’, ‘13. Federal Hill’, ‘14. Another Stakeout’,
‘15. The Postman Always Rings Twice’, ‘16. The Crow’, ‘17.
Shanghai Surprise’, ‘18. Patriot Games’, ‘19. Modulations’]
Based on the user’s watched movies, please rank the candidate
movies that align closely with John’s preferences.
- You ONLY rank the given Candidate Movies.
- You DO NOT generate movies from Watched Movies.
Present your response in the format below: 1. [Top
Recommendation (Candidate Movie)] 2. [2nd Recommendation
(Candidate Movie)] ... 20. [20th Recommendation (Candidate
Movie)]
Answer:
1. The Commitments
2. Patriot Games
3. Arlington Road
4. Cop Land
5. The Crow
6. The Postman Always Rings Twice
7. Shanghai Surprise
8. Another Stakeout
9. Modulations
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10. Pokémon the Movie 2000
11. The Inkwell
12. Happy, Texas
13. The Prophecy II
14. Johnny 100 Pesos
15. Lovers of the Arctic Circle, The (Los Amantes del Cı́rculo
Polar)
16. Arguing the World
17. Federal Hill
18. Prom Night
19. Sorority House Massacre
20. Airplane!
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5.6 Summary

This paper investigates in-context learning (ICL) for LLM-based sequential rec-

ommendation. Our study identifies key factors such as instruction format and

demonstration selection that influence ICL’s effectiveness. We further introduce

the LLMSRec-Syn method which utilizes our proposed aggregated demonstration

to efficiently incorporate relevant information from multiple training users. In our

experiments conducted on three datasets, LLMSRec-Syn consistently outperforms

existing LLM-based sequential recommendation methods.
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Chapter 6

Post-hoc Explanation of Next-Item

Recommendation with Large

Language Models

In this chapter, we explore the evaluation of LLM’s ability to explain recommended

items in sequential recommendation tasks. We first present the motivation of this

study as well as the objective (Section 6.1). After reviewing the existing approaches

(Section 6.2), we introduce our proposed Framework for LLM-based EXplanation

of Next-Item Recommendation (FLEX) (Section 6.3) which supports an automatic

evaluation of an LLM’s ability to generate plausible post-hoc explanations. FLEX

focuses on two prevalent perspectives of explanation: content filtering (CTF) and

collaborative filtering (CLF). In Section 6.4, we describe two benchmark datasets

created for both CTF and CLF explanations using MovieLens. Finally, we present

the evaluation of the proposed framework on our created benchmark datasets (Sec-

tion 6.5).
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6.1 Motivation and Objective

Explainability is an important feature of a recommender system that measures how

well the system elicits user satisfaction and appreciation of system transparency [181,

22]. Recently, various methods have been developed to provide recommendation

explanations. These include template-based explanation [176, 19], generation-

based natural language explanations [70, 72], significant information (such as

attributes [21, 77, 76] and important items [83], and important features [163]), and

knowledge graph reasoning methods [143, 155]. We shall elaborate these methods

in Section 6.2.

As Large Language Models (LLMs), such as ChatGPT and GPT-4, show remark-

able capabilities in NLP and reasoning tasks [105, 165], using LLMs to perform

recommender systems has become an important research topic [160]. There are at

least two advantages to using LLMs for recommendation. Firstly, we can tap on the

vast knowledge of LLMs to improve ID-based recommendation models [68, 97]. Sec-

ondly, the inference ability of LLMs can be exploited to infer the to-be-recommended

items [138, 51]. The LLM-based recommendation works focus on: (a) enhancing

existing recommendation models by incorporating semantic information from text

corpora [68], (b) using LLMs as recommenders [138, 51], and (c) utilizing LLMs as

agents to make decisions and interact with existing recommendation models [38].

While LLMs show promising recommendation performance[51, 138], very few

works have explored the use of LLMs to explain recommendation results. These

LLMs include existing general-purpose LLMs and specially pre-trained or fine-tuned

LLMs. Small LLMs are also trained to have strong explanatory abilities. For instance,

the CoT Collection [60] introduces a large instruction tuning dataset across over 1000

tasks. Each data example includes step-by-step rationales. This instruction tuning

dataset is used to train a smaller LLM that can generate rationales followed by an

answer. In this chapter, we do not cover the methods of training models to generate

post-hoc explanations as part of this dissertation. They will be explored in our future
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work. Unlike the evaluation of recommendation accuracy, the evaluation of LLM’s

ability to explain the recommended items comes with several challenges which we

will try to address in this chapter. Firstly, it is challenging to solicit explanations from

the LLMs that allow us to evaluate their performance. As many LLMs are not able

to return detailed enough and “structured” explanations, we will introduce specially

designed prompts to guide the LLMs to perform explanation in steps. Secondly and

more importantly, there is a lack of a single and clear ground truth for evaluating the

explanation of each recommendation. For example, a user A may be recommended

an action movie X due to A’s preference for action movies, or X having been watched

by several A’s friends recently, or X enjoying high review ratings. It may be the case

one of them is correct, some of them are correct, or none of them is correct.

Instead of focusing on a single ground truth explanation that approximates the

subjectivity and imagination of each human mind [22], we introduce a Framework

for LLM-based EXplanation of Next-Item Recommendation (FLEX) that supports

an automatic evaluation of a LLM’s ability to generate plausible post-hoc explana-

tions. We say a post-hoc explanation is plausible if it is based upon some known

recommendation principles. In this work, we adopt both content filtering (CTF)

and collaborative filtering (CLF) principles to determine if an explanation is plausi-

ble. Specifically, LLM-based content filtering explanation attempts to answer the

question: Can one explain whether the attributes of the interacted items could have

induced the user to choose the given next item? To explain from the collaborative

filtering perspective, LLMs need to answer the question: Can one explain whether

the similarity between the items user A has interacted with and the items user B

has interacted with could have induced user B’s to choose the given next item?

To explain next-item recommendation from the CTF perspective, we ask LLMs to

predict the genres that are common between the genres of the next movie and the

popular genres among the movies that the user has watched. To explain next-item

recommendation from the CLF perspective, we ask LLMs to determine if the user’s

next item can be adopted by another user through considering their common movies
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and common genres, and next item choices. To evaluate the explanation abilities of

LLMs, we create two benchmark datasets for both CTF and CLF explanations using

MovieLens. The preliminary results on our proposed benchmark dataset show that

LLMs yield promising explanation performance when they are guided to perform

CTF and CLF reasoning in FLEX prompting.

6.2 Existing Explanation Approaches

Among of the explainable recommendation works, most focus on improving the

recommendation accuracy by adding explanation component to the known recom-

mendation models. The methods include pre-defined templates [176, 19], natural

language generation [176, 19], knowledge graph paths [143, 155], item features or

attributes [21, 142, 77, 83], and reasoning rules [16, 187].

The Explicit Factor Model [176] extracts explicit product features (i.e., aspects)

and user opinions through phrase-level sentiment analysis on user reviews. It then

fills these features into a fixed template such as, “You might be interested in [feature],

on which this product performs well”, to generate an explanation. Li et al. [72]

presents a Personalized Transformer, which is trained to predict the natural language

explanation for the given user and item IDs. Cafe [155] generates user profiles as

coarse sketches of user behaviors and then subsequently guides a path-finding process

to derive reasoning paths for recommendations. Liu et al. [83] factorize input data

into several factors (e.g., attributes) and use a Graph Convolutional Network to derive

representation vectors. The model uses its weights to identify important factors for

providing explanations. NCR [16] utilizes a modularized reasoning architecture to

learn logical operations like AND, OR, and NOT as neural modules. These modules

assist with implication reasoning, enabling the recommendation to make informed

decisions.

In this chapter, our work focuses on generating explanations and evaluating them

using LLMs.
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Post-hoc explanation offers insights into predictions after a model has been

trained. The existing post-hoc techniques are not LLM-based and they include

methods that assess feature importance [115, 89], model visualizations [168, 8],

and interpretable distillation [128, 42]. For post-hoc explanations for sequential

recommendations, we can use post-hoc explanation methods such as 1) proxy models

like LIME[114], 2) attention weights [15], 3) template-based textual explanation

generation [71], or 4) cosine similarity over item representations drawn from the

model itself [98]. These methods can help identifying items in the user sequence and

provide insight into why the recommendation models recommend a particular item.

In this thesis, we mainly focus on developing prompt-based post-hoc explanation

using LLMs. LLMs provide an opportunity to treat post-hoc explanation as a text

generation task, as LLMs can generate human readable, knowledge-enriched, and

reasoning-based explanations [122]. Recently, chain-of-thought prompting method

is proposed to ask LLMs to generate its reasoning step-by-step before arriving at an

answer [145]. Research has shown that LLMs can generate post-hoc attributions of

important features by prompting [64, 63]. When combining in-context learning with

post-hoc explanations, LLMs are able to improve its performance in tasks that require

reasoning and language understanding [63]. Nevertheless, research on developing

LLM-based methods for post-hoc explanation of recommendation results is still

unexplored. In this work, we will focus on generating and evaluating explanations

using LLMs for next-item recommendation.

6.3 Proposed Framework

The FLEX framework consists of three steps, namely, (1) knowledge augmentation,

(2) explanation generation, and (3) evaluation. Each step can be perform by prompt-

ing the LLMs. As content filtering (CTF) and collaborative filtering (CLF) are the

two well-established recommendation principles, we focus on how FLEX can guide

LLMs to generate post-hoc explanations based on CTF and CLF principles. CTF and
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Figure 6.1: CTF in the proposed FLEX framework.

CLF in the FLEX framework are shown as Figure 6.1 ans Figure 6.2 respectively.

FLEX also evaluates the generated explanations against the ground truths that are

determined based on their plausibility. FLEX is also general enough to be extended

for other plausible post-hoc explanations.

For the rest of this chapter, we denote a test user ut by the (sut , v̂
ut) tuple where

sut denotes the sequence of past interacted items and v̂ut denotes the recommended

next-item. The objective of FLEX is to get a LLM to generate two explanations ectfi

and eclfi to state if v̂ut can be explained by CTF or CLF respectively. The overall

FLEX’s approach of post-hoc explanation by CLF and CTF is as follows.

Content filtering (CTF). The CTF principle requires the recommended next-item

v̂ut to be explained by its features matching the user preferred features observed

from the user history, i.e., sut . We denote the explanation for content filtering

by ectfut
= (Actf

ut
, rctfut

) where Actf
ut

denotes the set of item features relevant to the

explanation, followed by a natural language rationale rctfut
. Actf

ut
consists of features

of ŷut and the preferred features of user ut, i.e., features that are common among the

past interacted items of ut. In Step 1 (Knowledge Augmentation), the set of features
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Figure 6.2: CLF in the proposed FLEX framework.

are extracted for the historical user-item interactions and the recommended next-item.

In Step 2 (Explanation Generation), FLEX requires the two above sets of features to

be analysed for generating plausible explanation as the final list of relevant features

that supports the content filtering principle. In Step 3 (Evaluation), FLEX evaluates

the accuracy of the generated explanation, i.e., list of relevant features, against the

ground truth relevant features.

Collaborative filtering (CLF). The CLF principle assumes that the recommended

next-item of the test user ut should be among the ones that have been adopted by

other similar users. While there may be multiple users who are similar to ut and their

existence is clearly beyond the knowledge of LLMs, we introduce a reference user
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uj for LLMs to determine if uj can serve as a similar user and if CLF can explain

why v̂ut is recommended to ut. We denote uj by the (suj
, v

uj
∗ ) tuple. A post-hoc

explanation eclfut
is to be generated to answer the question: Is user uj similar to ut so

as to apply CLF to explain why v̂ut is recommended to ut? To answer this question,

we need to measure the similarity between ut and uj , and to determine if v̂ut is

also the next-item of uj (See Sect. 6.3.3). In Step 1 (Knowledge Augmentation),

FLEX extracts features of historical items of ut and uj . In Step 2 (Explanation

Generation), FLEX determines the similarity between ut and uj by the common

item(s) between their historical items or features of their historical items. FLEX

also seeks to determine if the test user’s recommended item is the same as that of

the reference user because of the similarity. In Step 3 (Evaluation), we evaluate

the accuracy of the generated explanation, i.e., common items, common features

between historical items, and common next-item.

In the following, we elaborate the prompt designs for these three steps in FLEX.

6.3.1 Step 1: Knowledge Augmentation

Content filtering (CTF). We devise the knowledge augmentation step to extract

features (e.g., genres) of test user’s historical item interactions sut and that of the

user’s recommended item v̂ut . We design the corresponding the following prompt to

perform the knowledge augmentation step for sut as follows1:

A user has recently watched the following 10 movies: ...

Identify the top 3 popular genres among these movies.

We design another similar prompt to perform the knowledge augmentation step

for v̂ut as follows:
1The “...” denotes a list of movie titles recently watched by the test user.
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A user has recently watched the movie: ...

Identify the genres of the next movie.

Collaborative filtering (CLF). In CLF, the prompt for knowledge augmentation

extracts features from the test or reference user’s history. It is shown as follows:

A user has recently watched the following 10 movies: ...

Identify the top 3 popular genres among these movies.

6.3.2 Step 2: Explanation Generation

Content filtering (CTF). We design the explanation prompt to feed the test user,

the recommended item, and the augmented knowledge to LLM, and ask the LLM to

provide its explanation as shown below:

A user has recently watched the following 10 movies: ...

The popular genres 3 among the watched movies are: ...

Based on these popular genres, the next movie the user will

watch is ...

The genres of the next movie are: ...

Could you explain the reasons behind the user’s choice of the

next movie according to the top 3 genres popular among the

watched movies and the genres of the next movie?

Collaborative filtering (CLF). The prompt to obtain explanation for CLF is:
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List of 10 recently watched movies and the next movie for the

Reference User.

- Watched movies: ...

- The next movie: ...

The popular genres among the watched movies are ...

List of 10 recently watched movies and the next movie for the

Test User.

- Watched movies: ...

- The next movie: ...

The popular genres among the watched movies are ...

Can the similarity between Reference User’s watched movies

and the Test User’s watched movies help to explain Test

User’s next movie?

6.3.3 Step 3: Evaluation

In the evaluation step, we extract labels from the explanation text and compare them

against the ground truths in the computation of explanation effectiveness measures.

Content Filtering (CTF). The predicted explanation text in CTF consists of a list of

features, which is to be matched with the ground truth feature labels. Therefore, we

can directly compute the F1 score over the predicted list of genres and the ground

truth list of genres, as illustrated in Step 3 of Figure 6.1.

Collaborative Filtering (CLF). To evaluate the ability of LLMs to perform CLF

correctly, we include four types of reference user uj . There are three conditions to

consider: whether the test user or reference user have the same target item, whether

there are overlapping items, and whether there are overlapping features. Each of

these conditions presents two options, creating eight possible types. However, we

only consider four of these types. The others, such as the type that includes different

target items, no overlapping items, and no overlapping features, are either simple to
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predict or can be subsumed within the four types we are considering.

1. uj has the next-item identical to the recommended next-item of ut (vuj = v̂ut),

and suj
is similar to sut due to overlapping interacted items.

2. uj has the next-item identical to the recommended next-item of ut (vuj = v̂ut),

and suj
is similar to uut due to overlapping features between their interacted

items but not overlapping interacted items.

3. uj has the next-item identical to the recommended next-item of ut (vuj = v̂ut),

and suj
is not similar to sut as they do not share common interacted items nor

common features between their interacted items.

4. uj does not have the next-item same as the recommended next-item of ut

(vuj ̸= v̂ut) and suj
do not share common interacted items as sut , but sut and

suj
share common features between their interacted items.

We also design the following evaluation prompts to extract CLF-relevant answer

labels from LLMs:

List the movies that are common between Reference User and

Test User.

List the genres that are common between the movies watched by

Reference User and Test User.

Answer ‘‘Yes’’ or ‘‘No’’ to the question: Does Test User

have the same next movie as Reference User?

The example of answer extraction is shown in Step 3 of Figure 6.2.
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6.4 Dataset Construction

To evaluate the post-hoc explanation ability of LLMs, we create two new benchmark

datasets with ground truth labels derived from the MovieLens Latest dataset2. To

evaluate the LLM-based explanation from the CTF perspective, we first construct a

CTF explanation test dataset. Specifically, we randomly select 500 test users such

that each user has a sequence of 10 interacted items as his/her history and the item

after these 10 items as the ground truth next-item. Using the genre features provided

by MovieLens, we determine each user’s preferred genres by determining the top K

popular movie genres in the user’s movie history or popular movie genres using some

threshold. In this work, we use the top 3 popular genres by default. By comparing

the popular genres with the genres of the recommended next movie of the user, we

derive the overlapping genres as the ground truth labels for this CTF explanation

dataset. The number of ground truth labels can be 0, 1, 2, and 3. Their proportions

are 15%, 46%, 27.8%, and 11.2% respectively.

To evaluate CLF explanations, we create another dataset using selected CTF test

users and another set of users from the original data as CTF training users. From the

latter, we select the reference users. For each test user, we construct four reference

users based on whether they have the same next-movie and have overlapping genres

or movies with the test user in their movie histories:

(1) A reference user with next-movie identical to the recommended next-movie

of the test user, and movie history having high genre similarity (> 0.6) and

acceptable movie similarity (>0.2) with that of the test user;

(2) A reference user with next-movie identical to the recommended next-movie of

the test user, and movie history having high genre similarity (>0.6) with that

of the test user;

(3) A reference user with next-movie identical to the recommended next-movie
2https://grouplens.org/datasets/movielens/latest/
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of the test user, and movie history having low genre similarity (<0.3) and no

overlapping movies; and

(4) A reference user with next-movie different from the recommended next-movie

of the test user.

Based on the above conditions, we collect reference users for each test user. To

balance the data, we exclude test users who do not have all 4 reference users. The

final CLF dataset consists of 80 test users and 80 × 4 = 320 (test user,reference user)

pairs.

We evaluate the following aspects of CLF explanation generated by the LLM:

• CLF applicability (CLF App): This refers to the ability of the generated

explanation to determine if the reference user is applicable (i.e., type (1)

or (2)), or not-applicable (i.e., type (3) or (4)) with respect to the test user.

To report the accuracy of this aspect of explanation, we introduce the F1

metric which is defined by the accuracy of determining if the reference user is

applicable or not-applicable (Yes or NO).

• Overlapping genres between movie histories of reference and test users

(Ov Movies): We report the F1 score that measures the accuracy of this

aspect of explanation.

• Overlapping watched movies between test and reference users (Ov Genres)

• Identical next movie between the test and reference users (Same Next)

For each of the above aspects, we report the corresponding F1 score.

6.5 Experiment

In this section, we evaluate the effectiveness of LLM-based post-hoc explanation for

next-item recommendation.
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Method
Movie

Recall F1

Random 0.0867 0.0636
POP 0.4846 0.3173
FLEX (Single-Step) 0.7182 0.5400
FLEX (Multi-Step) 0.7868 0.5707

Table 6.1: Recall and F1 results on the CTF test set (MovieLens)(Best results are
boldfaced.)

6.5.1 Experimental Setup

Baselines. For CTF, we employ two baseline models for comparison. The “Random”

model randomly selects three genres as the predicted common genres between

popular genres of the test user’s watched movies and genres of the next movie.

The “POP” model considers genres popular among ALL users’ watched movies,

identifying the top three for explanations. Our framework, FLEX, introduces a

multi-step prompting to generating explanations. We also offer a variant version

called “FLEX (Single-Step)” which uses single-step prompt to generate genre lists

and explanation text from LLMs, based on a user’s watched movies and the next

movie. The experiment is conducted on the CTF dataset.

For CLF, we evaluate CLF explanations on the CLF dataset using both single

and multi-step prompting as well.

Implementation Details. In the FLEX framework, we design in-context demon-

strations to guide LLMs in achieving our goals. Specifically, we manually create

three demonstration examples for the CTF explanation process and four demon-

stration examples for each step of the CLF explanation. For the LLM, our primary

experiments use ChatGPT (gpt-3.5-turbo-1106) with a default temperature setting of

T=0.
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Figure 6.3: F1 results of different prompting methods on the CTF test set (Movie-
Lens) with different overlap between the recommended movie’s genres and the
popular genres of watched movies controlled by: (a) number of overlapping genres;
or (b) relative popularity threshold that determines popular genres among watched
movies.

6.5.2 Results and Analysis

Results for CTF explanation. The results in Table 6.1 show that the FLEX (Multi-

Step) method significantly outperforms the other methods. Although the FLEX

(Single-Step) method is not as effective as the Multi-Step counterpart, it still signifi-

cantly outperforms the POP and Random baselines. These results highlight two main

insights: (a) LLMs generate more accurate explanations than the simple baselines,

and (b) a multi-step prompting approach, which incorporates open-world knowledge

into LLM inputs, improves their explanation capabilities beyond relying on their

built-in knowledge alone.

Impact of popular genres on constructing ground truth labels for CTF explana-

tion evaluation. In this study, we explore how varying the set size of popular genres

impacts the creation of ground truth labels for evaluating the CTF explanations. As

mentioned in Section 6.3, we demonstrate that ground truth labels can be adjusted

by either modifying the number of top popular genres or by setting a threshold to

determine genre popularity. We adjusted the number of popular genres K from

1 to 5 (Figure 6.3(a)) and varied the popularity threshold between 0.5, 0.1, and

0.15 (Figure 6.3(b)). Our findings show that changes in ground truth labels impact
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Figure 6.4: F1 results for CLF-applicability prediction for four types of reference
users, common movies between reference and test users, common genres between
movies watched by reference and test users, and same next-movie between reference
and test users on the CLF test set (MovieLens).

explanation evaluations. Specifically, increasing the number of labels simplifies

the evaluation process and enhances explanation performance, while decreasing

the popularity threshold broadens the range of genres considered as ground truth,

affecting evaluations.

Results for CLF explanation across four types of reference users. The results in

Figure 6.4 indicate that the performance of FLEX (Multi-Step) and FLEX (Single-

Step) varies across the four types of reference users. Specifically, ChatGPT accurately

predicts the applicability of explanations for the first two user types but struggles

with the third and fourth. The Multi-Step approach excels in identifying common

genres, aided by the knowledge augmentation prompting step. Although we expect

a strong correlation among the four prediction types, the results suggest a weak
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Figure 6.5: Error Analysis.

connection between explanation applicability, common movies, common genres,

and same targets. The results of FLEX (Multi-Step) and FLEX (Single-Step) are

inconsistent across different types of reference users. Further exploration will be

carried out in future work.

Error Analysis. Figure 6.5 illustrates error cases in CTF and CLF explanations. In

the CTF example, ChatGPT appears to replicate genres of the next movie rather than

identifying common ones. The first CLF example reveals that the response inaccu-

rately indicates a wrong prediction for the same target due to a lack of information

about the next movie in the generated explanation text.

In the second CLF case example, ChatGPT incorrectly predicts the same target,

influenced by numerous shared movies and genres, leading to an incorrect prediction

for CLF applicability.
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6.6 Summary

In this paper, we propose the novel FLEX framework that evaluates the use of

LLMs to explain post-hoc next-item recommendation results using the CTF and CLF

principles. FLEX includes a 3-step prompting strategy to guide LLMs to generate

features associated with items, explanation text as well as the answer labels extracted

from explanation text so as to evaluate them against the plausible ground truths.

The preliminary results on our proposed benchmark dataset show that ChatGPT

yields promising explanation performance when it is guided to perform CTF and

CLF reasoning in multi-step FLEX prompting. This findings points to the possibility

to develop effective LLM-based explainers for a wide range of recommendation

models developed for different domains. The extension of FLEX to incorporate other

recommendation principles is also another interesting direction for future research.
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Chapter 7

Conclusion and Future Work

7.1 Summary of Contributions

In this dissertation, we provide an overview of sequential recommendation, covering

topics from representation learning, reasoning, to explanation, as well as discuss our

contributions to the field, from before the era of large language models to the present.

In representation learning, we explore the use of explanation methods to gener-

ate high-quality views for contrastive learning in sequential recommendation tasks.

Initially, we find that existing contrastive learning-based methods suffer from false

positive and false negative issues, potentially leading to decreased recommendation

performance. Therefore, we introduce several explanation-guided augmentations

to generate positive and negative views, mitigating these problems. Additionally,

we propose an explanation-guided contrastive learning model for sequential recom-

mendations, based on these augmentations. Our experiments on four real-world

benchmark datasets demonstrate the effectiveness, generality, and flexibility of our

proposed explanation-guided approach.

For LLM-based reasoning, we investigate how LLM-based reasoners can effec-

tively operate in zero-shot and few-shot settings for sequential recommendations.

In the zero-shot setting, we concentrate on designing prompts that enhance recom-

mendations using LLMs. However, applying LLMs to sequential recommendation
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presents challenges such as task-specific recommendation space and user preference

modeling. To address these, we introduce a method that begins with an external

module for candidate item generation, followed by a 3-step prompting strategy

to capture user preferences and make ranked recommendations. Evaluations on

MovieLens 100K and LastFM datasets using LLMs reveal that the proposed method

competes well with powerful sequential recommendation models, opening up new

intriguing research opportunities to leverage LLMs as recommender systems. In

the few-shot setting, we investigate in-context learning for LLM-based sequential

recommendation. Our study identifies key factors, such as instruction format and

demonstration selection, that influence the effectiveness of in-context learning. We

further introduce the LLMSRec-Syn method, which utilizes our proposed aggregated

demonstration to efficiently incorporate relevant information from multiple training

users. Tested on three datasets, LLMSRec-Syn consistently outperforms existing

LLM-based sequential recommendation methods.

For LLM-based explanation, we propose the novel FLEX framework that evalu-

ates the use of LLMs to post-hoc explain next-item recommendation results using

the content filtering and collaborative filtering principles. FLEX includes a 3-step

prompting strategy to guide LLMs in generating features associated with items,

explanation text, and answer labels extracted from the explanation text to evaluate

them against plausible ground truths. Preliminary results on our proposed bench-

mark dataset show that ChatGPT yields promising explanation performance when

guided to perform content filtering and collaborative filtering reasoning in multi-step

FLEX prompting. These findings point to the possibility of developing effective

LLM-based explainers for a wide range of recommendation models developed for

different domains.

7.2 Future Work

Below, we also list four potential directions worth exploring in the future.
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The first potential area for future research is the integration of representation

learning and LLM-based reasoning. On the one hand, with representation learning,

we don’t have to worry about the size of the recommendation space or the candidate

item pool. We can calculate the similarity matrix between user representation

vectors and candidate item vectors and store them for future use. This allows us to

quickly generate a recommendation list based on the recalculated similarity matrix.

Furthermore, representation learning-based sequential recommendations primarily

focus on local knowledge for a specific domain or task. This type of information is

crucial for making accurate recommendations. On the other hand, LLM can provide

rich world knowledge and powerful reasoning abilities, which can compensate for

the drawbacks of representation learning-based methods.

The second future research direction is to leverage post-hoc explanations gener-

ated by LLMs to further improve recommendation accuracy. Recent research has

shown that chain-of-thought prompting [145] can outperform standard prompting

as it can elicit step-by-step reasoning in LLMs to derive the final answer more

accurately and confidently. Compared to standard prompting, which teach LLMs

to directly output an answer, chain-of-thought prompting includes demonstrations

that include human-annotated rationales which teach LLMs to generate rationales

followed by the final answer, thereby improving performance. For post-hoc explana-

tions generated by LLMs, we can consider them as one type of rationale derived from

LLMs instead of humans [63]. Then, we can leverage in-context learning including

post-hoc explanations to further improve recommendation accuracy.

The third future research direction is to leverage LLMs to help conversational rec-

ommendations. Unlike typical recommender systems, conversational recommender

systems must understand users’ natural language input and historical interactions.

They also need to provide natural language responses and suggested items. LLMs can

offer distinct advantages for such tasks, such as superb natural language understand-

ing, a wealth of general knowledge, excellent reasoning abilities, and outstanding

natural language generation. Recently, He et al. [48] explore the use of LLMs as
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zero-shot conversational recommenders. However, they find that LLM recommen-

dations are subject to popularity bias in conversational recommendation systems.

Moreover, the performance of LLMs varies across different geographical regions.

Thus, studying how to incorporate external knowledge and how to utilize in-context

learning to mitigate these issues should be intriguing topics.

The fourth future research direction involves integrating visual reasoning abilities

from large multimodal models like GPT-4V [101] into recommendation systems.

GPT-4, now equipped with vision capabilities, is a powerful and versatile large

multimodal model. It has garnered growing interest from the research community

for its robust ability to process and interpret both text and image inputs. On the

other hand, as multimodal data items increase their presence (e.g., short video, and

news), these multimodal models will be required for recommendations. Moreover,

multimodal features can help alleviate the issue of data sparsity in recommendation

systems [85]. Given GPT-4’s capabilities and the growing amount of multimodal

data, exploring how to integrate sequential recommender systems with GPT-4 or

other open-source large multimodal models should be an interesting direction.

There are still many open questions. We hope the above discussion about future

work can inspire further research on combining the advantages of recommendation

models and large language models as well as utilizing post-hoc explanations to assist

with recommendations.
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