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Toward Explainable Neural Network Fairness

Mengdi Zhang

Abstract

Neural networks are widely applied in solving many real-world problems. At

the same time, they are shown to be vulnerable to attacks, difficult to debug,

non-transparent and subject to fairness issues. Discrimination has been ob-

served in various machine learning models, including Large Language Models

(LLMs), which calls for systematic fairness evaluation (i.e., testing, verifica-

tion or even certification) before their deployment in ethic-relevant domains. If

a model is found to be discriminating, we must apply systematic measure to

improve its fairness. In the literature, multiple categories of fairness improv-

ing methods have been discussed, including pre-processing, in-processing and

post-processing. In this dissertation, we aim to develop methods which identity

fairness issues in neural networks and mitigate discrimination in a systematic

explainable way.

To achieving this goal, we start with developing a method of explaining how

a neural network makes decisions based on simple rules. One factor contributing

to fairness concerns is the inherent black-box nature of neural networks. This

makes it challenging to discern the rationale behind specific decisions, poten-

tially resulting in biased outcomes. So, in the first work, we focus on explaining

neural networks using rules which are not only accurate but also provide insights

into the underlying decision-making process. We provide two measurements for

neural network decision explainability, and develop automated evaluation algo-

rithms.

In the second research work, we apply the rule-based idea to identify fair-

ness issues that can be explained. We notice that group discrimination is mostly



hidden and less studied. Therefore, we propose TESTSGD, an interpretable

testing approach which systematically identifies and measures hidden group dis-

crimination of a neural network characterized by an interpretable rule set which

indicates conditions over combinations of the sensitive features. Specifically,

given a neural network, TESTSGD first automatically generates a rule set and

then provides an estimated group fairness score to measure the degree of the

identifies subtle group discrimination with theoretical error bounds.

In the third research work, we design an approach which explore the causes

of fairness issue and mitigate them systematically. Specifically, we first apply

and empirical study which shows that existing fairness improvement methods

are not always effective (e.g., they may improve fairness by paying the price

of huge accuracy drop) or even not helpful (e.g., they may even worsen both

fairness and accuracy). Then, we propose an approach which adaptively chooses

the fairness improving method based on causality analysis. That is, we choose

the method based on how the neurons and attributes responsible for unfairness

are distributed among the input attributes and the hidden neurons.

Lastly, we present a method which would allow us to extend our fairness

mitigation approach to Large Language Models. As existing bias mitigation re-

search typically do not apply in the era of LLMs, we propose a non-intrusive bias

mitigation approach which does not require accessing or modifying the internals

of LLMs. Specifically, we propose a parameter-efficient debias adapter that not

only improves fairness systematically but also provides a theoretical statistical

guarantee on the achieved fairness whenever feasible during debiasing.
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Chapter 1

Introduction

1.1 Motivation

Neural networks have found their way into a variety of systems, including many

which potentially have significant societal impact, such as personal credit rat-

ing [42], criminal sentencing [130, 10], face recognition [141] and resume short-

listing [129]. While these neural networks often have high accuracy, multiple

issues have been identified as well. For instance, it has been shown that neu-

ral networks are subject to adversarial attacks, i.e., a correctly classified sample

would be easily misclassified once some perturbation is applied [55]. For an-

other instance, a neural network model may be embedded with a backdoor to

predict differently in the presence of certain trigger [181] or may be discrim-

inative against certain groups [107]. Actually, more and more attention has

been paid to the fairness issues of these machine learning models [153, 9, 51,

176, 177, 130, 131, 23, 47] as discrimination has been discovered in many ap-

plications [52, 130, 150, 165]. That is, the predictions made by these neural

networks may be biased with regard to certain protected attributes such as race,

gender and religion. For instance, it has been shown [14] that a neural net-

work trained to predict people’s income level based on an individual’s personal

information (which can be used in applications such as bank loan approval)
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is much more likely to predict male individuals with high-income level. Fur-

ther analysis shows that for many individuals, changing only the gender or race

causes the output of the predictions to flip [47]. For another instance, it has been

shown [10] that a machine learning model used to predict the recidivism risk for

suspected criminals is more likely to mislabel black defendants as having a high

recidivism risk.

To minimize such ethical risks and achieve trust in neural networks, it is

desirable to develop approaches and software toolkits to systematically identify

and mitigate discrimination. In this thesis, we start with developing a method

for explaining AI decisions, which lays the foundation for subsequently re-

search on detecting, explaining and mitigating discrimination. In the context

of fairness, interpretability becomes an essential tool for scrutinizing the poten-

tial biases within a neural network. By gaining insights into the features and

patterns that the model relies on, we can identify any hidden biases that may

have been learned from the data. Additionally, a more interpretable model not

only facilitates fairness but also enhances the overall transparancy of the system,

ultimately benefiting broader domains.

Unlike traditional software, AI models, especially complex neural networks,

work like a black box. Traditional software operates through predefined rules

and instructions provided by human programmers, which can be easily inspected

and understood. In contrast, neural networks learn patterns and relations from

vast amounts of data. This inherent opacity due to the intricate web of intercon-

nected nodes and weights makes it challenging for humans to understand how

a specific conclusion is reached or why a wrong prediction arises. This lack

of transparency raises important concerns regarding accountability, as well as

ethical and legal considerations, particularly in critical applications like health-

care, finance, and autonomous systems. For example, when a neural network is

tasked with determining the approval or rejection of a bank loan application, it

becomes problematic if we are unable to explain the specific reasons behind the

2



rejection of one application while approving a similar one. In such instances,

stakeholders are keen to minimize the occurrence of inexplicable decisions. Par-

ticularly in the context of fairness, when a model is found to make its decisions

solely based on sensitive features or protected patterns, it can lead to serious

ethical dilemmas. This concern emphasizes the need for interpretability tech-

niques to bridge the gap between the internal workings of these models and

human comprehension, ensuring that their outputs are reliable and trustworthy.

To address these concerns, some significant regulatory frameworks such as the

General Data Protection Regulation (GDPR), Algorithmic Accountability Act

(US AAA), and the Artificial Intelligence Act (EU AIA) have been proposed

to address concerns related to data privacy, algorithmic accountability and the

ethical use of artificial intelligence.

In recent years, researchers have proposed multiple approaches to provide

hints on how neural networks work internally, such as local/global interpretabil-

ity analysis. Studies on local interpretability focus on investigating neural net-

work prediction on one or a specific set of samples [166, 146, 35, 179]. For

instance, they aim to provide hints on how a neural network makes certain de-

cisions through highlighting certain pixels of the input picture of certain words

of an input text. Studies on the global interpretability of neural networks aim

to come up with models that are simple enough to be human-understandable

and yet expressive enough to predict the predictions of the neural network (at

least in most cases). Such candidates include regression models [133], decision

trees [93], decision rules [87].

When delving into the domain of fairness testing, multiple efforts have also

been made in the testing community to first search for (and then guide the miti-

gating of) discrimination of machine learning models spanning from traditional

ones to neural networks [176, 177, 150, 165, 47]. Typically, discrimination

can be classified into two categories, e.g., individual discrimination, i.e., iden-

tifying or generating individual discriminatory instances of a machine learning
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model [176, 177, 150, 165, 47] and group discrimination, i.e., characterizing a

model’s discrimination against a certain group [47, 165, 148, 81]. For specific

cases of discrimination, group discrimination has been less analyzed so far, as

it imposes new challenges. First, it is highly non-trivial to effectively enumer-

ate all combinations of sensitive features (especially when the sensitive features

have multiple or even continuous values). Second, group discrimination can be

hidden, i.e., there might be ‘subtle’ group discrimination. Additionally, existing

fairness testing approaches seldom offer interpretable indications of discrimina-

tions.

Accordingly, many methods have been proposed to improve the fairness of

neural networks [71, 44, 27, 167]. Typically, they can be categorized into three

groups according to when they are applied, i.e., pre-processing, in-processing

and post-processing. For instance, the pre-processing method Reweighing as-

signs different weights to training samples in order to reduce the effect of data

biases [71]. In-processing methods modify the original model to reduce the dis-

crimination [29, 168, 73, 5, 6, 76]. Finally, post-processing methods modify the

prediction results instead of the inputs or the internals of the model [61, 123, 72].

In our work, we recognize that existing fairness improvement methods are not

always effective in mitigating discriminations and, in some cases, may even

yield adverse effects.

Then, with the emergence of transformer-based models, like GPT and BERT,

the evolution of Large Language Models (LLM) has taken impressive strides.

Meanwhile, some potential problems such as textual biases have been con-

cerned [15, 138, 2] as well. Various existing studies have demonstrated that

biases are present in different parts of LLMs, including word-level representa-

tion [102, 96, 26, 134], sentence encoders [105] and downstream tasks [138, 2].

Various works on mitigating bias in language models have been proposed. Com-

mon approaches include modifying the training data through data augmenta-

tion [84, 180], manipulating word embeddings or sentence representation [49,

4



120, 106, 158], causality-based bias repair [144] and other in-processing meth-

ods [63, 91]. However, as training LLMs is increasingly beyond the capacity

of ordinary users or small business owners, many of these methods become

impractical. Most in-processing methods relying on model retraining or fine-

tuning become too costly. Even pre-processing methods such as Counterfac-

tual Data Augmentation [96, 68] still need an additional phase of pre-training.

Moreover, due to the latent nature of biases embedded and propagated through

complex connections in language models, they often appear in various ways. It

is thus challenging to produce a LLM-based production that avoids biases (e.g.,

according to the regulatory requirements) when we only have API access to the

LLMs.

1.2 Problem Definition

The above-mentioned research has sparked serious concerns regarding fairness

issues in machine learning models, especially neural networks. Furthermore,

existing approaches regarding to fairness testing and bias mitigation have certain

limitations, especially when dealing with more complex and opaque models.

This motivates us to propose more comprehensive theories and develop more

comprehensive approaches to test fairness and mitigate discriminations. The

principal problem is defined as follows.

Problem statement: Given a machine learning model, we aim to develop

explainable tools to systematically detect the discriminations within a model’s

decision making process and mitigate such biases.

We mainly address this problem in three aspects: Interpretability Testing,

Fairness Testing and Bias Mitigation.

• Interpretability Testing: aims to evaluate and assess the degree to which a

model’s decisions can be understood and explained by humans. It aims to

provide insights into how a model make arrives at its predictions, making
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the inner workings of the model more transparent and interpretable. This

is crucial for gaining trust, ensuring accountability and most importantly

in this dissertation, providing insights on unfair decisions.

• Fairness Testing: aims to evaluate the model’s behavior to ensure the

model treats different groups or different individuals fairly and does not

privilege any particular group or individual based on sensitive attributes,

(also known as protected attributes), such as gender, race, religion, or

age. Furthermore, we aim to generate testing results with certain statisti-

cal confidence, e.g., the change of reporting non-existing discrimination

is low. It is also essential for building AI systems that align with ethical

regulations.

• Bias Mitigation: aims to reduce or eliminate discriminatory outcomes that

may arise from the model’s decisions. It aims to promote equity in the

deployment of machine learning models, particularly in contexts where

decisions have significant societal or ethical implications. The goal of

bias mitigation is to enhance the model’s fairness, while minimizing the

potential effects on model’s overall performance.

1.3 Research Contributions

To effectively address the aforementioned problem, this dissertation presents

several contributions. First, we introduce multiple tools encompassing inter-

pretability testing, discrimination detection, automatic fairness enhancement for

tabular data, and bias mitigation for textual data. Second, we develop open

source self-contained implementations of these approaches. Finally, we evalu-

ate the effectiveness of each tool through a series of comprehensive experiments,

providing detailed and insightful results. The major contributions are summa-

rized as follows.

We first propose multiple measurements on how easy it is to explain a user-
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provided neural network’s decisions. Intuitively, we define the measurements

based on how often the prediction results can be explained consistently using

a human-understandable model and how simple the model is. These measure-

ments allow us to compare different neural networks in terms of how explainable

their decisions are. Afterward, we develop multiple algorithms that allow us

to automatically evaluate and compare neural networks based on the measure-

ments. We remark that our approach can be regarded as a generalization of the

recent work on evaluating fairness [7, 176] (where fairness is defined in terms

of individual discrimination). This enables us not only to gain valuable insights

into potential fairness concerns but also to identify instances where model deci-

sions are highly related to sensitive features, prompting a closer examination of

fairness considerations.

We then propose tool TESTSGD, an effective method to systematically test

a given machine learning model against such hidden Subtle Group Discrimi-

nation. It consists of three main phases: 1) candidate rule set generation, 2)

group fairness identification, and 3) discrimination mitigation. In the first phase,

TESTSGD will automatically generate a candidate set of rules concerning mul-

tiple sensitive features. In the second phase, the rule set effectively partitions

the samples into two groups. The key intuition behind is to develop effective

criteria to automatically mine interpretable rules that are practical and relevant

in real-world applications. Then we measure if the model suffers from group

discrimination (against the groups partitioned by the rule set) by measuring the

group fairness score.

We then focus on fairness improvement and propose an approach to choose

the ‘right’ fairness improving method based on causality analysis. Formally,

we use causality analysis to evaluate the causes of unfairness and then use the

probability of high causal effects and Coefficient of Variation to characterize

the distribution of the causal effects. Depending on the result of the causality

analysis, we then choose the fairness improving method accordingly. Our ap-
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proach is designed based on the results of an empirical study which evaluates

9 fairness improving methods (i.e., 2 pre-processing methods, 4 in-processing

methods and 3 post-processing methods) on 4 different benchmark datasets with

respect to different fairness metrics. Our approach is systematically evaluated

with the same models. The results show that our selected processing approach is

the optimal choice to improve group fairness in all cases and the optimal choice

to reduce individual discrimination in most cases.

We propose a novel bias mitigation approach with regards to textual data,

which treats the language model as a black box. That is, we do not access or

modify the internals of a given model. Instead, we apply a debias adapter based

on the sequence representation output from language models, which aims to

mitigate bias in a parameter-efficient manner. In addition, our approach provides

statistical confidence in the achieved fairness during debias training, which is

essential for many applications that need to satisfy regulatory requirements on

fairness. Compared to bias mitigation through fine-tuning the whole model,

our approach is much more efficient. To evaluate our approach, we consider

biases based on a person’s identity and support both group bias mitigation and

individual bias mitigation. The results show that our approach is effective in

mitigating both the two biases across all models with negligible accuracy drops.

1.4 Dissertation Structure

This dissertation consists of four works. The first two works are on testing neu-

ral networks regarding to interpretability and fairness [174, 175]. These two

works are joint works with Jun Sun, Jingyi Wang and Bing Sun. The remain-

ing two works focus on fairness improvement and bias mitigation [172, 173],

which are joint works with Jun Sun. Each work is presented in one chapter from

Chapter 3 to Chapter 6 in a self-contained manner, i.e., across different chap-

ters, there may be some redundant content, particularly in the background and
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related work discussions. The detailed outline of this thesis is as follows.

Chapter 2 discusses the background for comprehending our works. It presents

the fundamental knowledge of machine learning models, especially neural net-

works, basic definitions of fairness, interpretability and existing works of fair-

ness testing, improvement as well as their limitations.

Chapter 3 presents an approach to evaluate and measure neural networks in-

terpretability. This chapter is based on the paper:

* Zhang, M., Sun, J., & Wang, J. (2022). Which neural network makes

more explainable decisions? An approach towards measuring explain-

ability. Automated Software Engineering, 29(2), 39.

Chapter 4 presents a toolkit named TESTSGD which automatically systemat-

ically tests a given machine learning model against such hidden subtle group

discrimination. This chapter is based on the paper:

* Zhang, M., Sun, J., Wang, J., & Sun, B. (2023). TestSGD: Interpretable

Testing of Neural Networks Against Subtle Group Discrimination. ACM

Transactions on Software Engineering and Methodology, 32(6): 1-24.

Chapter 5 presents an approach to choose the ’right’ fairness improvement

methods adaptively based on causality analysis. This chapter is based on the

paper:

* Zhang, M., & Sun, J. (2022). Adaptive fairness improvement based

on causality analysis. In Proceedings of the 30th ACM Joint European

Software Engineering Conference and Symposium on the Foundations of

Software Engineering (pp. 6-17).

Chapter 6 presents an efficient approach to mitigate bias for Large Language

Models with statistical confidence. This chapter is based on the paper:
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* Zhang, M., & Sun, J. Non-intrusive Mitigation of Biases in Language

Models with Statistical Confidence. (Under Review)

Chapter 7 summarizes the dissertation and outlines some potential future works.

10



Chapter 2

Background

In this chapter, we provide the background knowledge necessary to understand

the works in this dissertation. We briefly introduce the models we consider, in-

cluding neural networks and Large Language Models (LLMs), interpretability,

fairness as well as some notable existing research in this area and their limita-

tion.

2.1 Neural Networks

Neural networks, also known as artificial neural networks are one kind of ma-

chine learning models and are at the heart of deep learning algorithms. it is

inspired by the structure of the human brain, and aim to mimic the behavior

of biological neurons. They consist of layers of interconnected nodes, each

emulating a neuron, forming a complex network capable of learning intricate

patterns within data. Through training, neural networks adapt their internal pa-

rameters to minimize the difference between the predicted outcomes and the

ground-truth labels. This makes them capable of learning complicated relation-

ships for solving tasks such as image recognition, autonomous driving, natural

language processing and generating winning gaming strategy.

As the demand for natural language processing grows, LLMs are also grad-

ually emerging, especially after the transformer-based models are developed.
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The transformer architecture is the fundamental building block of all LLMs. Its

core idea is the “attention machanism”, which lets the model focus on different

part of the input sequence, enabling it to capture long-range dependencies effec-

tively [152]. LLMs are considered a specialized form of neural network for text

processing tasks. They have revolutionized the field of Natural Language Pro-

cessing by enabling machines to understand and generate human-like language

patterns. This makes them invaluable for applications like chatbots, content

generation, and various forms of automated text processing. For example, Ope-

nAI’s GPT models have demonstrated remarkable capability in tasks such as

text completion, translation, and even creative writing. Although these LLMs

vary widely in size, they all have high demands for space and computational

resources. For example, the original BERT models encompass 110 million pa-

rameters, while larger versions like BERT-large further escalate this figure to

340 million. The GPT models, developed by OpenAI, takes even more space.

GPT-2 has 1.5 billion parameters and GPT-3 has a staggering 175 billion pa-

rameters.

Meanwhile, researchers ahve identified multiple safety/security issues re-

garding neural networks. For example, Neural networks have been found to be

vulnerable to small, carefully crafted perturbations in input data, known as ad-

versarial attacks [83]. For another example, as neural network is trained on a

large volume of data, the quality of training data can effect the model predic-

tions and can pose privacy risks as the training data may contain some person-

ality information. Moreover, understanding how neural networks arrive at their

decisions can be challenging, especially for complex models like deep neural

networks.
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2.2 Interpretability Definitions and Testing

In this section, we introduce the background related to interpretability and its

evaluation as well as a brief summary of existing research on evaluating in-

terpretability, providing a fundation of key concepts. The term interpretabil-

ity refers to a the ability to understand and explain the decisions made by a

model. Various definitions of interpretability have been proposed in the lit-

erature [111, 108, 80]. These definitions can be broadly classified into two

cateogries, i.e., local interpretability and global interpretability. Local inter-

pretability focus on investigating neural network prediction on one or a specific

set of samples. It explores and measures certain metrics such as feature impor-

tance scores. Lundberg et al. proposed an approach named SHAP (i.e., Shapley

Addictive exPlanations) which assigns each feature an importance value and

explains a particular prediction based on the weighted sum of features [98]. In

terms of image classification, some methods try to explain predictions by ex-

ploring the contribution to the prediction score at pixel level [98] or the object

level [179]. However, while these local interpretations provide explanations for

specific inputs, they are less effective in offering a comprehensive understanding

of the neural network’s behavior as a whole.

Studies on global interpretability aim to come up with models that are simple

enough to be human-understandable and yet expressive enough to mimic the be-

haviors of neural networks (at least in most cases). The simple model can be re-

gression models, rule-based models and decision trees. For example, Lakkaraju

et al. proposed interpretable decision sets working as a high-accurate prediction

model and interpretable in the same time [87]. While these approaches share

the same idea of using simple models to mimic neural networks, they do not

provide ways of testing and measuring the degree of decision explainability.
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2.3 Fairness Definitions

For fairness evaluation, existing works provided various definitions and mea-

surements with respect to tabular data [41, 25, 44, 61, 84, 47, 76], textual

data [26, 105] and image data [23, 127, 48, 139].

With respect to tabular data, existing definitions can be broadly classified

into two categories, i.e., individual fairness and group fairness. Note that, in this

dissertation, we only consider classification tasks on tabular data and we leave

the studies on other forms of data (such as texts and images) for future work. For

individual fairness, the definition of Individual Discriminatory Instance (IDI) is

widely adopted. A sample is considered as an IDI if and only if its label changes

once its protected attribute(s) changes. This concept is widely used in fairness

testing [176, 150], such as works on searching or generating idi which can be

used to retrain the model so as to improve the individual fairness. The measure-

ment based on individual fairness typically involves calculating the percentage

of idi within a set, such as a test set. This metric is formally referred to as the

Causal Discrimination Score [47]. Another common definition is counterfactual

fairness, which is also an individual-level definition [84]. Counterfactual fair-

ness defines that a model achieves fairness if its predictions remain consistent

when applied to the actual group and a distinct demographic group generated

by introducing variations only to sensitive attributes. When evaluating model’s

individual fairness, it requires abundant validation cases. In reality, it is diffi-

cult to find cases that happen to share the same features but differ in the sen-

sitive attributes. Thus, the notion of counterfactual fairness is commonly used

to generate test cases for fairness evaluation [59, 99, 12] In terms of group fair-

ness, which is also known as statistical fairness, it focuses on sensitive groups

such as ethic minority. This definition of group fairness commonly divides the

whole input space into two groups, i.e., privileged group and unprivileged group.

Typically, the privileged group refers to populations with favored sensitive at-

tributes, such as ‘gender=male’ or ‘race=white’. The unprivileged group refers
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to the rest. There are multiple metrics for quantifying the level of group fairness.

One basic definition is Statistical Parity Difference [25]. It is based on positive

classification rate and measure the difference in the probability of positive out-

comes between privileged group and unprivileged group. Another kind of group

fairness definitions are based on true positive rate. For example, the definition

Equality of Opportunity requires that the true positive rate is the same for all

groups defined by sensitive attributes [70]. It ensures the model is equally ac-

curate at predicting positive label for all demographic groups, regardless of the

sensitive attributes. Another example is Equalized Odds, which extend the pre-

vious concept and requires the probability of correct prediction is the same [43].

In other words, the false positive rates and false negative rates should be equal

across different groups.

With respect to textual data, existing definitions can be broadly divided into

two popular categories, i.e., intrinsic bias and extrinsic bias. Intrinsic bias refers

to bias inherent in the representations, e.g., word embeddings [96, 63] and sen-

tence representation [105, 113]. For instance, the Word Embedding Association

Test (WEAT) measures the association between two sets of target concepts and

two sets of attributes [26]. The Sentence Encoder Association Test (SEAT)

extends WEAT to sentence contexts [105]. Extrinsic bias refers to bias in down-

stream tasks, e.g., provide some concrete examples of such tasks. So the group

fairness measurements for tabular data can also been used in a similar way to

measure the extrinsic bias for textual data, e.g., disparity in false positive rate

and equality of opportunity [142, 91, 68]. Due to the complexity of LLMs, mea-

suring intrinsic bias is not necessary to reflect bias in downstream tasks [53].

Moreover, the notion of fairness in machine learning is a multifaceted con-

cept that encompasses various definitions and assumptions. Fairness through

Unawareness and Fairness through Awareness represent two fundamental con-

cept in this context. Fairness through Awareness discusses conditions when

model acknowledges the presence of sensitive attributes and actively incorpo-
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rates them into the training and prediction process. Fairness through Unaware-

ness involves intentionally omitting sensitive attributes, aiming to prevent ex-

plicit discrimination. Dwork et al. defined an algorithm be fair as long as any

protected attributes are not used in the decision-making process [41]. However,

a notable limitation of this definition is that non-sensitive attributes may still

contain discriminatory information that is correlated with sensitive attributes.

2.4 Fairness Testing and Verification

Unlike traditional software systems that are based on logic, the lack of inter-

pretability of neural networks makes system testing difficult. The fairness test-

ing refers to any methodology designed to detect discriminations or bias.

In the context of fairness through Awareness and Unawareness, different

techniques are involved. Fairness through awareness acknowledges the pres-

ence of sensitive attributes and actively incorporates them into the model pre-

diction. Some techniques like reweighing and retraining with loss functions

are used to improve fairness through awareness setting [71, 29, 168]. How-

ever, for many real-word applications, it is difficult to obtain sensitive attributes

due to various reasons such as privacy or legal restrictions. Fairness through

unawareness, in contrary, ignores sensitive attribute during training and pre-

diction process. However, it has been shown that simply removing sensitive

features is not effective in mitigating biases. This is because biases can still

be present in the data, hidden in correlations between non-sensitive features,

and may be implicitly learned by the model [41]. Addressing fairness issues

without sensitive attributes is challenging. There are limited researches focus

on fairness problems without sensitive attributes. For example, Gupta et al [58]

constructed proxy groups using variables that are not sensitive but are likely cor-

related to sensitive attributes based on prior knowledge. For another example,

Lahoti et al. proposed adversarial reweighted learning that leverages the notion

16



of computationally-identifiable errors to achieve Max-Min fairness without sen-

sitive attributes [86]. Yan et al. proposed pre-processing approach to cluster the

data and used obtained groups as the proxy [161].

Moreover, during the process of machine learning model development, espe-

cially for neural networks, biases can introduce and propagate at multiple stages.

First, neural networks are trained using a large-scale dataset which might con-

tains biased data. This can occur due to the imbalances data, and as a result, the

model learns and potentially reinforces existing biases present in the training

data. Second, in the training stage, biases can be remembered by the complex

neuron connections and propagate through the prediction process. The fairness

testing can be applied from different aspects, e.g., data testing [21], model test-

ing [8, 47, 150, 160], framework testing [114, 156] and component testing [97].

In this dissertation, we focus on model fairness testing. It consider the model as

the testing component and reveal discrimination based on the prediction behav-

iors.

Additionally, the fairness testing with regards to model level can be per-

formed in white, gray and black box manners. In the setting of white-box test-

ing, we has full access to the model’s internal structure, including its architec-

ture and parameters. This allows for a detailed examination of how the internals

of the model contribute to discrimination. For example, the tool ADF utilizes

gradient information to generate individual discriminatory instances to test in-

dividual fairness [176]. It focuses on discriminatory instances near the decision

boundary and use gradient to search for more neighboring idis. In the setting of

gre-box testing, wehas particular knowledge of the model’s internals. Finally,

black box testing involves evaluating the model without any knowledge of its in-

ternal working. Testers can only access to the model’s inputs and outputs. This

level of testing is particularly relevant in real-world scenarios where access to

a model’s internal architecture may not be feasible. For example, Tramer et al.

proposed an unwarranted associations framework to detect unfair, discrimina-
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tory or offensive user treatment in data-driven applications [148] in a black-box

manner. Each of these testing offers unique insights into the fairness of neural

networks.

2.5 Fairness Improvement and Bias Mitigation

Once a model is found to be biased, a natural question is how to mitigate such

bias. The existing fairness improvement methods can be categorized into three

groups according to when they are applied, i.e., pre-processing, in-processing

and post-processing.

Pre-processing methods aim to reduce the discrimination and bias in the

training data so as to improve the fairness of the trained model. Among the many

pre-processing methods [71, 44, 27, 167], the first typical method is reweigh-

ing [71]. It works by assigning different weights to training samples in order

to reduce the effect of data biases. In particular, lower weights are assigned to

favored inputs which have a higher chance of being predicted with the favor-

able label and higher weights are assigned to deprived inputs. Another typical

method is Disparate Impact Remover [44]. It is based on the disparate impact

metric which compares the proportion of individuals that are predicted with the

favorable label for an unprivileged group and a privileged group. It modifies

the values of the non-protected attribute to remove the bias from the training

dataset.

In-processing methods modify the model in different ways to mitigate the

bias in the model predictions [29, 168, 73, 5, 6, 76]. For instance, Celis et al.

proposed a classification technique with fairness constraints which develops a

meta-algorithm that captures the desired metrics of group fairness using convex

fairness constraints (with strong theoretical guarantees) [29]. Then it uses the

constraints as an additional loss function for training the neural network. Zhang

et al. proposed adversarial debiasing method [168]. It modifies the original
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model by including backward feedback for predicting the protected attribute. It

maximizes the predictors’ ability for classification while minimizing the adver-

sary’s ability to predict the protected attribute to mitigate the bias.

The post-processing methods modify the prediction results instead of the

inputs or the model. For instance, Kamiran et al. proposed Reject Option Clas-

sification method [72]. It assigns favorable labels to unprivileged instances and

unfavorable labels to privileged instances around the decision boundary with the

highest uncertainty. The Equalized Odds method solves a linear program to find

probabilities with which to change the output labels, so as to optimize equalized

odds on protected attributes [61].

In terms of bias mitigation with respect to NLP models on textual data, com-

mon approaches include modifying the training data through data augmentation,

manipulating word or sentence representations and other in-processing methods.

Data Augmentation methods aim to mitigate biases by augmenting origi-

nal data by some specific techniques, e.g., counterfactual demographics gen-

eration or gender swapping [84, 180]. Other existing works focus on word

embeddings [49]. For example, Bolukbasi et al. mitigated gender bias in

Word2Vec [19]. Lastly, typical in-processing methods for bias mitigation in-

clude retraining or fine-tuning the given model with loss constraints, and modi-

fying the model structure or training process. For example, Guo et al. proposed

an automatic method to mitigate the bias for masked language models through

fine-tuning with distribution alignment loss on biased prompts [57]. Reinforce-

ment learning is also included to mitigate biases of LMs. Liu et al. proposed a

reinforcement learning framework for mitigating political biases without having

access to the training data or requiring the model to be retrained [91]. However,

with the language models become more and more complex and harder to access,

more black-box techniques are desired.
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Chapter 3

Interpretability Testing

3.1 Introduction

Neural networks are getting increasingly popular thanks to their exceptional per-

formance in solving many real-world problems, such as face recognition [149],

language translation [89] and self-driving cars [18]. At the same time, they

are shown to be vulnerable to attacks, difficult to debug and subject to fairness

issues [55, 181, 107].

In order to understand where fairness issues are coming from, we first need

some way of explaining neural networks’ decisions. For instance, in scenarios

where a neural network is employed to determine the approval or rejection of a

bank loan application, it becomes problematic if we cannot provide a clear ratio-

nale for why one application from a female applicant is rejected while a similar

application from a male applicant is approved. In such cases, stakeholders are

keen to minimize instances where contentious decisions cannot be adequately

explained. In other words, there is a need to test neural networks in terms of

the explainability of their decisions. In this chapter, we present an approach that

aim to not only generate simple models that are capable of accurately explain-

ing most of the decisions of a neural networks, but also allow us to compare

the explanability of two models. To the best of our knowledge, this is a testing
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problem which is yet to be addressed.

Since we aim to explain decisions from users’ perspectives, the need is

closely related yet different from existing studies on neural network interpretabil-

ity. It is based on recent studies on what are considered human-understandable.

These studies are typically conducted through human studies [95, 116, 85]. The

conclusion is that comparing different models for explanation, human under-

standing goes only as far as simple models such as decision trees and linear

functions. The consequence is that when we explain a neural network’s de-

cisions, we are limited to simple linear functions (e.g., “your loan is rejected

before your annual income is below 50K whereas hers is more than 50K”) or

simple decision trees (e.g., “your loan is rejected because your annual income is

below 50K and you have an existing loan, whereas although her annual income

is similar, she does not have an existing loan”). Note that this need (of providing

a human-understandable explanation of neural network decisions) is different

from the need addressed by works which aim to provide interpretation on the

inner working of neural networks [79, 87], such as the studies in [137, 164, 56]

which provide hints on how a neural network makes certain decision through

highlighting certain pixels of the input picture or certain words of an input text.

In this work, we develop an approach and a software toolkit to address the

problem. We first propose multiple measurements on how easy it is to explain

a user-provided neural network’s decisions based on the results of the above-

mentioned user studies [95, 94, 116, 85]. Intuitively, we define the measure-

ments based on how often the prediction results can be explained consistently

using a human-understandable model and how simple the model is. These mea-

surements allow us to compare different neural networks in terms of how ex-

plainable their decisions are. Afterwards, we develop multiple algorithms that

allow us to automatically evaluate and compare neural networks in terms of the

measurements. Given a neural network, our algorithms systematically explore

the input space and measure the percentage of inputs on which the prediction
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results can be consistently explained with a certain simple model. We remark

that our approach can be regarded as a generalization of the recent work on eval-

uating fairness [7, 176] (where fairness is defined in terms of individual discrim-

ination). That is, a fairness issue is a special case of a decision explainability

problem, i.e., the only possible explanation is based on the sensitive features.

Our approach has been implemented as a self-contained toolkit (open-source

at [171]). We conduct multiple experiments on neural network models trained

based on benchmark datasets to evaluate the relevance of our approach and the

effectiveness of our algorithms. Our experiment results show that, unsurpris-

ingly, the neural network models almost always have a low decision explain-

ability. One of the reasons seems to be the existence of adversarial samples.

We further perform experiments to check whether models obtained through ro-

bust training have improved decision explainability. The results suggest that it

is not always the case. Lastly, we check whether we can improve the decision

explainability of a model by retraining it using samples generated by our algo-

rithms without reducing accuracy significantly, and the results are affirmative.

This work is based on the published paper [174]. The remaining sections

of this chapter are organized as follows. In Section 3.2, we define our problem

and provide multiple measurements of the decision explainability of neural net-

works. In Section 3.3, we present our algorithms for evaluating neural networks

based on our measurements. In Section 3.4, we evaluate our approach through

multiple experiments. Lastly, we show related work in Section 3.5 and conclude

in Section 3.6.

3.2 Problem Definition

In this work, our goal is to develop systematic methods to measure how easy it

is to explain the decision of neural networks in a human-understandable way.

To define the problem properly, we must answer questions such as: what are
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considered human-understandable and what quantitative measurements do we

use? In the following, we first review existing related literature and then define

the problem.

3.2.1 What is human-understandable?

There are multiple human studies on what is considered human-understandable.

For example, it is observed that human beings prefer explanations that are both

simple and highly probable [95] and often develop simplified understanding of

complex systems by ignoring low-probabilistic cases [116]. One study com-

pares the effectiveness of different forms of explanations by measuring human

response time [85]. The result shows that simulation was the fastest, followed

by verification and then counterfactual reasoning. The counterfactual reasoning

task also has the lowest accuracy.

Recent studies [28] found that human-understandable models include linear

regression, logistic regression, and decision trees. The linearity of the learned

relationship makes human-understanding easy, especially for the model with

monotonous constraints [28].

Logistic regression is an extension of linear regression, typically for classi-

fication problems. Instead of fitting a straight line or a hyperplane, it outputs

the prediction probabilities between 0 and 1 for different classes. While lin-

ear regression and logical regression are limited to linear relationships, decision

trees can be used to represent non-linear relationships to some extent (i.e., some

Boolean combinations of them). A decision tree model splits the data multiple

times according to certain atomic propositions on the input features.

Figure 3.1 shows one sample model for each kind. The task is to classify the

blue and red dots. Given the task, a linear regression, shown in Figure 3.1(a), is

a best-fit straight line which aims to separate the dots based on predicted value; a

logistic regression, shown in Figure 3.1(b), takes the weighted sum of the inputs

and applies an activation function such as Sigmoid to generate classifications;
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(a) Linear regression (b) Logistic regression (c) Decision tree

Figure 3.1: Human-understandable models

and a decision tree, shown in Figure 3.1(c), separates the input space into multi-

ple regions and each of the regions is assigned with one predicted classification

label.

Intuitively, our idea of defining and measuring how easy it is to explain the

decisions of a neural network model is based on measuring how often the pre-

diction results can be “explained” consistently using a human-understandable

model. Existing user studies suggest that humans are capable of understanding

simple models such as the kind of decision trees that we focus on [22]. Thus, by

measuring how often the neural network’s decisions can be explained by such a

simple model, we get a measure on how often people can understand the neural

network’s decisions.

In this work, we focus on decision trees over linear regressions for the fol-

lowing reasons. First, as samples end up in distinct groups according to a de-

cision tree model, it is arguably easier to understand than points on lines or

multi-dimensional hyperplanes as in linear regression models. Secondly, the

tree structures of decision trees have a natural visualization and humans can

reason about its decision-making process following its hierarchical structure.

Thirdly, decision trees are reasonably expressive (e.g., they are more expressive

than linear regressions and they can capture certain non-linear relationships) and

often achieve more accurate prediction results on real-world tasks [179, 75].

3.2.2 Learning Decision Trees

Note that our approach is not approximating a given neural network using de-

cision tree, but quantitatively evaluating neural network explainability based
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on decision tree (or any other simple approximation model) which works as a

proxy. So our approach relies on methods for generating decision trees. In the

literature, there are well-studied algorithms for generating decision trees [140,

32, 75]. In this work, we adopt the existing method called the classification and

regression trees (CART [22]) to construct decision trees. CART relies on the

learning samples which are a set of historical data with assigned classes for all

observations to learn decision trees. It raises a sequence of yes/no questions,

each of which splits the learning samples into two partitions. In other words,

given a set of labeled feature vectors, the algorithm identifies one atomic propo-

sition each time for splitting the domain of each feature. The atomic proposition

is identified greedily by minimizing the Gini score, which is defined in [40]. In

the following, we provide a formal definition of decision trees and refer the

readers to the existing literature on how to learn decision trees.

Definition 1 (Decision trees) Given a set of atomic propositions y1,y2, · · · ,ym,

a decision tree is a binary tree where each node has two outgoing edges, one

labeled with a proposition yi and the other labeled with ¬yi. ⇤

A sample decision tree is shown in Figure 3.2. If a decision tree has height

n, there are a maximum of 2n leaf nodes. Each leaf node is associated with a

prediction. Given a sample, the prediction by the tree can be identified by nav-

igating from the root of the tree and following the edges according to the truth

value of the proposition associated with the node, until a leaf node is reached.

The above definition is parameterized with a set of propositions. The choice

of propositions would obviously be related to whether the decision tree is con-

sidered human-understandable. In this work, we restrict propositions to the

form f � d where f is a feature and d is a constant, e.g., income � 50K. We

choose Boolean proposition for linear relationship instead of continuous in the

range, e.g., income 2 [50K,60K], because the former proposition always splits

the space into two partitions which is easier for human reasoning and two such
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Algorithm 1 buildTree(LD,KF,K) where LD is a set of labeled data and KF
is a set of features

1: let node be a new node
2: if K = 0 or all samples in LD have the same label then
3: return node
4: else
5: identify a proposition y of the form f � d such that giniy is minimum

for all f 2 KF and d
6: let le f t be the samples in LD that violates y
7: let right be the samples in LD that satisfies y
8: let left child of node be buildTree(le f t,KF,K�1) and right child be

buildTree(right,KF,K�1)
9: end if

propositions work the same as continuous in the range. We leave it to future

work to consider propositions relating to multiple features.

The details of the decision tree building algorithm are shown in Algorithm 1.

We limit the height of the tree to be maximum K, which is an input parameter,

along with a set of labeled samples LD and features KF . Note that, instead of

letting CART algorithm do the feature selection, we use KF to define features

used to approximating the neural network. In this setting, we support evaluating

how easy it is to explain neural network’s decisions using any user-provided

feature set and also ignore the possible effect of sensitive features, e.g., gender

or race. In the base case, if K = 0, we simply return a new node, which will

be a leaf of the decision tree. Otherwise, we identify a proposition y at line 5

(by trying all feature f and constant d in f ’s domain). Afterwards, the set of

labeled samples is split into two, i.e., right contains those which satisfy y , and

le f t contains the rest. A perfect split is one that all samples in le f t have the

same label and all samples in right have the same label. In such a case, the Gini

score is 0. Since we exhaustively search for the y which has the minimum score

(assuming that there are finitely many d values) for each level of the decision

tree, the generated decision tree is guaranteed to have better accuracy on LD

than any other decision trees. This is stated in the following theorem.

Theorem 1 If Algorithm 1 returns a decision tree D with accuracy f , that does
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not exist a decision tree D with the same height and accuracy f 0 such that f 0 >

f [22] .

3.2.3 Defining Measurements

In the following, we define multiple measurements that can be used to quantify

how easy it is to explain the decisions of a neural network and also how easy it

is for human to understand neural network’s decisions. Note that we evaluate

on the predictions of the neural network instead of the ground truth labels.

Definition 2 (K-explainability) A model N’s decisions are K-explainable with

respect to a set of samples T iff there exists a decision tree D such that height(D)

 K and D(i) = N (i) for all i 2 T , where N (i) is the prediction on i by N and

D(i) is the prediction on i by D. ⇤

Intuitively, a model N’s decisions are K-explainable if and only if its deci-

sions can be consistently explained using a decision tree with a height no more

than K. In the above definition, the decision explainability is parameterized with

a limit on the height of the decision tree K. It is known [75] that the higher the

decision tree is, the less understandable it is. Thus, we must take the height of

the decision tree into account. Furthermore, the above is defined with respect

to a set of samples T , i.e., the set of samples on which we evaluate the model’s

decision explainability. In this work, we focus on two sets. One is the training

set, i.e., the decision explainability of a model is tested and measured against

those samples in the training set. The other is the entire input space, i.e., the

decision explainability of a model is tested against any sample, including those

that are yet to be seen. The latter is clearly more demanding than the former.

Given the above definition, our problem is to test whether a model N’s decisions

are K-explainable. We show an algorithm to solve the problem in Section 3.3.3.

In the following, we define K,f -explainability which is a slightly relaxed

notion of decision explainability. That is, instead of demanding that a neu-

ral network is completely consistent with a decision tree with a limited height
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(which is often unlikely in practice as we show in Section 6.5), we require that

the explaining model must reach a certain level of consistency with the neural

network model in terms of the decisions.

Definition 3 (K,f -explainability) Let f be a percentage. A model N’s deci-

sions are K,f -explainable with respect to a set of samples T if and only if there

exists a decision tree D such that height (D)  K and the fidelity of D with re-

spect to N is no less than f where fidelity is defined as follows.

Fidelity = Âi2T Sign(N (i) = D(i))
#T

(3.1)

where Sign(b) is a function which returns 1 if b is true.

Intuitively, a model N’s decisions are K,f -explainable if and only if its deci-

sions can be explained consistently using a decision tree with a height no more

than K in most of the cases (defined by f ). The value of f provides a quantifica-

tion of the explainability. Note that we similarly distinguish two cases based on

what T refers to. One is the training set and the other is the entire input space.

Note that in the latter case, since there may be infinitely many samples, mea-

suring the fidelity is non-trivial. To evaluate whether a model’s decisions are

K,f -explainable, we would like to have an algorithm which can systematically

measure the fidelity of the best decision tree with a height no more than K. We

present such an algorithm in Section 3.3.3.

With the above-defined measurements, we can then compare the decision

explainability of two neural network models N1 and N2. We say that N1 is more

explainable than N2 if N1’s decisions are K1-explainable, N2’s decisions are only

K2-explainable and K1 < K2; or N1’s decisions are K,f1-explainable, N2’s deci-

sions are only K,f2-explainable and f1 > f2.
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Algorithm 2 isExplainableTrainSet (K,T,N)

1: label T using N to obtain a labeled dataset LD
2: sets = all combinations of K features
3: for each set of features KF in sets do
4: D = buildTree(LD,KF,K)
5: if 8 x in LD, D(x) = N (x) then
6: return true,D
7: else
8: return f alse,None
9: end if

10: end for

3.3 Testing Decision Explainability

In this section, we answer the following question: how do we measure the de-

cision explainability of a user-provided neural network model? We present four

algorithms according to the two measurements defined in Section 3.2.3.

3.3.1 K-Explainability Testing against Training Set

In the following, we present algorithms for testing whether a neural network’s

decisions are K-explainable. We distinguish two cases. One is that the decision

explainability is defined with respect to the training set. The other is that it

is defined with respect to the entire input space. The former is solved using

Algorithm 2.

Intuitively, the goal of Algorithm 2 is to test whether there exists a decision

tree of height K which perfectly explains every prediction of the neural network.

It takes the neural network model N and the training set T as well as K as inputs.

At line 1, we label each feature vector in T with the corresponding prediction

of the neural network N. Note that our goal is to explain N’s decisions and thus

the ground truth labels of T are irrelevant here.

At line 2, we identify all combinations of K-features. Suppose each input

feature vector has a total of M features. Then there are CK
M different combi-

nations of K features. The loop from line 3 to 10 tries every combination one

by one. Note that this loop can be easily parallelized. For each combination,
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Figure 3.2: A sample decision tree on the Bank dataset

Algorithm 1 is applied to generate the ‘best’ decision tree using the given set of

features. If perfect accuracy is achieved, i.e., every feature vector is classified

with a label that is consistent with that of N, a decision tree satisfying Defini-

tion 2 with respect to the training set is identified and thus the neural network

model’s decisions are K-explainable. Furthermore, the generated decision tree

is reported as evidence of the model’s decision explainability. The complexity

of the testing is Q(CK
M), where M is the dimension of feature vectors and K is

the depth of decision trees. We remark that the complexity can be high when

M is large and we experiment heuristics in Section 6.5 which may significantly

reduce the complexity.

The following theorem states the soundness and completeness of the algo-

rithm, whose correctness can be easily established based on Theorem 1.

Theorem 2 A neural network N’s decisions are K- explainable with respect to

the training set if and only if Algorithm 2 returns true. ⇤

Example 3.3.1 We use the Bank [110] dataset to illustrate Algorithm 2. Each

sample in the dataset has 16 features. Assume K is 2 and there are C2
16 different

combinations of 2 features. Next, each combination is tested. Let us take the

combination of f12 (with domain 0� 99) and f16 (with domain 0� 3) as an

example. The decision tree generated at line 4 is shown in Figure 3.2.

Based on the decision tree, we have 3 propositions. y1 means f16 < 3, y2

means f12 < 90 and y3 means f12 � 14. We then travel through all samples

in the training set to see whether the decision tree is completely consistent with

the neural network. If we find a sample x such that the prediction of the neu-
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ral network and decision tree is different, the neural network is considered not

explainable according to this decision tree. That is, the decisions of the neural

network cannot be explained entirely based on the values of the feature f12 and

f16. The following is such an example, whose prediction according to the neural

network is 1 whereas its prediction according to the decision tree is 0.

x = [3,7,0,2,0,1,0,0,0,8,4,81,1,1,0,0]

3.3.2 K-Explainability Testing against All Inputs

It may be insufficient to explain a model’s decisions over the training set only, as

a future sample might not fit in the explanation. In the following, we present an

approach to test the explainability of a model N’s decisions against all possible

inputs including the unseen ones. In this setting, applying Algorithm 2, which

requires us to exhaustively enumerate all possible inputs, is infeasible due to the

enormous input space.

We use a best-effort approach to solve the problem. That is, we first sample

(uniformly in the entire input sample space) a certain number of feature vec-

tors and their corresponding labels (i.e., predictions made by N). Note that our

algorithms can be readily adopted to a prior distribution (such as a normal dis-

tribution) that is provided. We remark that it is hard to define the actual feature

distributions and we view the problem of identifying the actual feature distribu-

tion as a problem that is orthogonal to our problem. After sampling, we learn

a decision tree that is best consistent with the samples and then test whether

the decision tree is consistent throughout the sample space. The details of the

algorithm are shown in Algorithm 3.

It takes N as well as K as inputs. At line 1, we first generate a set of feature

vectors as X from the entire input space randomly. Note that our approach can

be easily modified to sample according to the data distribution of the training

set if it is provided (or extracted using existing approaches [136, 178]). Then

at line 2, we label all feature vectors in X with the prediction of N to obtain a
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set of labeled samples LD. Afterwards, the same as in Algorithm 2, we identify

all combinations of K-features at line 3. Then we test every combination in the

loop from line 4 to 9. For each combination, Algorithm 1 is applied to build the

‘best’ decision tree. If the decision tree fails to achieve 100% accuracy on LD,

we proceed to try the next combination. Otherwise, we further test whether the

decision tree is applicable to the entire input space using Algorithm 4.

Algorithm 4 is inspired by existing approaches on adversarial perturbation

[55, 83] with a different objective function. That is, the goal is to apply pertur-

bation to samples in LD so as to find a ‘counterexample’, i.e., one such that the

prediction of N and that of the decision tree are different. First, we cluster those

samples in LD using a standard clustering algorithm k-means at line 1, where

#c is the size of clusters [92]. Note that the reason for clustering is that we can

diversify the search for counterexamples. Afterwards, we obtain seed samples

from each cluster in a round-robin fashion at line 2. For each seed sample, we

apply a gradient-based algorithm to search for counterexamples iteratively (see

loop at line 4 to 11). The gradient is commonly used to generate adversarial

samples [119, 109]. The intuition is to perturb the original input according to

the direction of the gradient so that the prediction of the neural network has the

maximum change. During each iteration of the loop, we calculate the gradient

of the loss function on the input x as J(x) and calculate sign of the gradient as

sign(J(x)). Here, the sign function is used to extract the sign of the real gradi-

ent. Then we perturb the seed sample x with an amount step size⇤grad, where

step size is used to determine the perturbation degree in each time and grad is

the gradient.

Note that Algorithm 4 is a best-effort approach as we limit the number of

iterations at line 4. If we find a counterexample, the algorithm returns f alse;

otherwise, it returns true. Only if Algorithm 4 fails to find a counterexample,

Algorithm 3 reports true with D at line 7.

Example 3.3.2 We illustrate how Algorithm 3 works using the Bank dataset
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Algorithm 3 isExplainableAllInput (K,N)

1: generate sample set X from input space randomly
2: label X using N to obtain a labeled dataset LD
3: sets = all combinations of K features
4: for set KF in sets do
5: D = buildTree(KF,LD,K)
6: if 8 x in LD, D(x) = N (x) and attackFail (LD,D) then
7: return true,D
8: end if
9: end for

10: return f alse,None

Algorithm 4 attackFail (LD,D) where #c is constant
1: clusters = KMeans(LD, #c)
2: for i from 0 to p num do
3: Get seed x from clusters in a round-robin fashion
4: for iter from 0 to max iter do
5: grad = sign(J(x))
6: x0 = x + step size⇤grad
7: if x0 is valid and N (x0) 6= D(x) then
8: return f alse
9: end if

10: x = x0

11: end for
12: end for
13: return true

example based on the feature combination ( f12, f16). We first generate 5000

samples randomly and generate a decision tree D which is consistent with the

neural network predictions. We then apply Algorithm 4 to test whether D is

consistent throughout the input space. Assume that we take the following x as a

seed.

x : [5,10,1,1,0,19,1,0,0,5,4,81,1,1,0,0]

Intuitively, the goal is to perturb x such that its label changes and hopefully

becomes different from that of D. The perturbation is guided by the gradient (so

that the perturbation would cause a maximum change in the prediction). That

is, we calculate the sign of x’s gradient as follows.

grad : [1,1,1,�1,1,1,�1,1,1,�1,1,0,�1,�1,�1,0]
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Algorithm 5 explainabilityTrainSet (K,T,N,f)
1: label T using N to obtain a labeled dataset LD
2: sets = all combinations of K features
3: for each set of features KF in sets do
4: D = buildTree(LD,KF,K)
5: if accuracy of D is no less than f then
6: return true,D
7: end if
8: end for
9: return f alse,None

Next, we perturb x by updating each feature fi to be fi + step size ⇤ grad [i]

where step size is 1 in this example. The result is the following sample.

x0 : [6,11,2,0,1,20,0,1,1,4,5,81,1,0,0,0]

Note that a clipping function is applied to make sure the perturbed feature value

remains in its domain. The predictions of this sample by N and D are 0 and

1 respectively. As a result, D fails to be taken as an explanation of the neural

network N.

3.3.3 K,f -Explainability Testing

As discussed above, due to the gap between the expressiveness of decision trees

and neural networks, there is likely no decision tree (with a height limit such as

K) that can be used to perfectly explain the decisions of the neural network. It

is thus more useful to quantify the explainability by testing K,f -explainability

of the given neural network in practice. In the following, we similarly distin-

guish two cases, i.e., the training set and the entire input space. The former is

addressed using Algorithm 5. The latter is addressed using Algorithm 6.

Algorithm 5 is similar to Algorithm 2. The only difference is that once

Algorithm 1 is applied to generate the ‘best’ decision tree, the fidelity of the

decision tree is compared with the given threshold f . If a decision tree with a

fidelity no less than f is identified, the algorithm returns true together with the

decision tree. The following theorem states the soundness and completeness of
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the algorithm, whose correctness can be easily established based on Theorem 1.

Theorem 3 A neural network N’s decisions are K,f -explainable with respect

to the training set if and only if Algorithm 5 returns true. ⇤

Example 3.3.3 Assume that we are testing whether a neural network trained

on the Bank dataset is 2,90%-explainable. Further, assume that we are testing

the combination of f12 and f16. Applying Algorithm 1, we obtain the decision

tree shown in Figure 3.2, which has an accuracy of 94.92% (calculated based

on LD). As a result, Algorithm 5 returns true. That is, we can explain 90%

of the decisions of the neural network (over the training set) using a simple

explanation based on the decision tree.

Testing whether a model’s decision is K,f -explainable with respect to all

inputs is challenging as it is infeasible to exhaustively enumerate all inputs and

check whether there exists a decision tree with prediction accuracy more than

f . We thus take a best-effort approach similar to that of Algorithm 3. That

is, we uniformly sample a certain number of samples and build a candidate

decision tree. Afterwards, we evaluate whether this candidate has a fidelity of

f throughout the input space. We formulate the latter problem as a hypothesis

evaluation problem and solve it systematically using hypothesis testing (so that

we have a certain level of statistical confidence in the evaluation result [154]).

That is, given the candidate decision tree D and the threshold f , we formulate

two hypotheses. One is that the fidelity of D is no less than f and the other is

that it is less than f . We then keep sampling randomly (in an i.i.d. manner [33])

from the entire input space until one of the hypotheses reaches a certain level of

statistical confidence.

The details of the algorithm used to evaluate whether a candidate decision

tree achieves a fidelity of f against all inputs are shown in Algorithm 6. It is de-

signed based on the sequential probability ratio test (SPRT) algorithm proposed

in [155]. SPRT decides whether to accept a hypothesis after evaluating every
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Algorithm 6 explainabilityAllInput (K,N,f)
1: generate sample set X from input space randomly
2: label X using N to obtain a labeled dataset LD
3: sets = all combinations of K features
4: for set KF in sets do
5: D = buildTree(KF,LD,K)
6: if SPRT (N,D,f) then
7: return true,D
8: end if
9: end for

10: return f alse,None

Algorithm 7 SPRT (N,D,f)
1: p0 = f �s
2: p1 = max(0.99,f + s )
3: stop = False
4: while not stop do
5: generate sample x from input space randomly
6: n = size of totally detected samples X
7: s = size of x 2 X |N (x) = D(x)
8: sprt ratio = calculate sprt(s,n, p0, p1)
9: if sprt ratio� 1�b

a then
10: return accept
11: end if
12: if sprt ratio b

1�a then
13: return deny
14: end if
15: end while

new sample. The SPRT algorithm is parameterized by a , b and indifference

region s , which intuitively define the error bounds. According to f and s , we

calculate p0 and p1 in line 1 and 2. During the loop from line 4 to 15, we keep

generating new samples (i.e., by randomly generating values for each feature

from its domain). Then we detect whether labels predicted by N and D are the

same and update n and s respectively (see in line 6 and 7). Then we calculate

the SPRT probability ratio at line 8 using the following formula.

sprt ratio =
ps

1 (1� p1)
n�s

ps
0 (1� p0)

n�s (3.2)

From line 9 to 14, we compare the SPRT ratio with the acceptance/rejection

bounds. The test accepts the hypothesis if the SPRT ratio is larger than or equal
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to the acceptance bound or denies it if the SPRT ratio is less than or equal to

the rejection bound. The algorithm stops whenever a hypothesis is accepted at

line 10 or denied at line 13. Note that this algorithm is guaranteed to terminate

and the probability of accepting the wrong hypothesis is bounded [155].

Example 3.3.4 Let us use the Bank dataset and the feature combination of f12

and f16 as an example. The candidate decision tree is shown in Figure 3.2. To

check whether this decision tree is able to explain the decisions on 90% of the

inputs throughout the input space, we apply the above-mentioned algorithm. In

our experiments, we set a=b=0.05, s=0.05 and f=0.90. Then accept bound

and deny bound are 19.0 and 0.053 respectively. After detecting 28 samples,

all 28 samples have consistent prediction labels and the calculated sprt ratio is

22.52 by formula 3.2. Since pr � accpet bound, we accept the hypothesis that

the probability of consistency within the entire input space can reach 90%. ⇤

3.4 Implementation and Evaluation

Our approach has been implemented as a self-contained software toolkit based

on Tensorflow [1] and scikit-learn [118]. It is implemented with a total of about

4K lines of Python code. Our experiments are based on the following datasets

which have been used as evaluation subjects in multiple previous studies [7,

176].

• Adult Income [128]: The Adult Income dataset was published in 1996. The

prediction task is to determine whether the income of an adult is above $50,000

annually based on his/her personal information. The dataset contains 32561

samples, each of which has 13 features.

• Bank Marketing: The dataset came from a Portuguese banking institution and

is used to train models for predicting whether the client would subscribe a
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term deposit based on his/her information. The size of the dataset is more

than 45,000 and each record contains 16 attributes.

• German Credit [64]: This is a small dataset with 600 samples, each of which

has 20 features. The task is to assess an individual’s credit based on personal

and financial records.

For each dataset, we train a neural network using the exact same config-

uration as reported in the previous studies [66, 176]. The details are shown

in Table 3.1. All these neural networks contain six layers. Each hidden layer

contains 64, 32, 16, 8 and 4 units. The output layer contains 2 (number of

predict classes) units. ReLU is used as the active function. Lastly, the Soft-

max function is used to output prediction probabilities. Although we focus on

feedforward neural networks on classification tasks in our study, our algorithms

work for more complex neural networks such as convolutional neural networks

(CNNs) in general. Furthermore, we focus on neural networks trained on tab-

ular feature vectors instead of complex data such as images and texts. This is

because, in order to explain the decisions of neural networks trained on images

and texts, we must additionally address the challenge of identifying high-level

human-understandable features before we can learn the decision trees. Note

that high-level feature extraction for such complicated data is itself an active

research field [88, 37].

In the following, we report the evaluation results which are conducted to an-

swer multiple research questions (RQ). Note that Algorithm 4 and Algorithm 7

require multiple hyper-parameters, whose values are either determined empir-

ically (such as the number of clusters and the max number of iterations for

perturbation in Algorithm 4) or adopted from standard practice (such as a and

b for hypothesis testing). The details are shown in Table 3.2. Here p num is set

to be 1000 for Adult Income and Bank data and 600 for Credit data due to its

small size. All experiments are conducted on a laptop running macOS (10.15.6)

with 16 GB memory. Each experiment is set with a timeout of 1000 hours. All

38



Table 3.1: Dataset and Models of Experiments

Dataset Model Accuracy attributes

Adult Income Six-layer Fully-connected NN 86.13% 13
Bank Marketing Six-layer Fully-connected NN 91.62% 16
German Credit Six-layer Fully-connected NN 100% 20

Table 3.2: Parameters of the experiments

Parameter Value Description

c num 4 cluster count
max iter 10 max number of iterations for perturbation
step size 1 step size of perturbation
p num 1000,600 number of seed instances for perturbation
a,b 0.05 error probability bounds
s 0.05 indifference region

models and experiment details are available online at [171].

RQ1: Are our algorithms efficient on testing the models’ decision explainabil-

ity? This question is designed to evaluate the efficiency of our algorithms, par-

ticularly the effect of the design parameters such as K and f . To answer this

question, we systematically apply our algorithms to the above-mentioned mod-

els and measure the results including efficiency. That is, we test each model

against K-explainability for different K against the training set and the entire in-

put space; and test each model against K,f -explainability with different K and

f . The results of testing K-explainability are summarized in Table 3.3.

The third column shows the testing results and time taken for all three mod-

els with respect to different K on the training set. For all models, we can evaluate

the models’ K-explainability with a K value of 2 or 3. Note that in this setting,

the optimal decision tree on the training set is generated based on all instances

in the training set for each combination of K features, which is time-consuming.

As a result, we can test 4 or 5-explainability only on the model trained based on

the Credit dataset. In our experiments, more than 99% of the time is spent on

generating the decision trees. One way to reduce time consumption is to paral-
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Table 3.3: K-explainability testing results

Dataset K Testing training set Testing all inputs
Result Time (min) Result Time (min)

Adult Income

2 No 370.01 No 33.68
3 No 12485.24 No 223.27
4 No T/O No 685.57
5 No T/O No 2110.25

Bank

2 No 5538.1 No 45.6
3 No 51647.40 No 384.63
4 No T/O No 1980.77
5 No T/O No 6149.42

Credit

2 No 0.48 No 241.77
3 No 7.22 No 1470.45
4 No 33.12 No 6456.2
5 No 121.17 No 28250.87

lelize the generation of decision trees for different combinations of features.

The fourth column shows the testing results and time taken for all inputs.

We sample a threshold number of instances to build a candidate decision tree.

The results here are based on training candidate models with 5000 random in-

stances. Note that given the relatively small number of instances for building

the candidate tree, we can finish testing up to 5-explainability for all models

before timeout and the number of random instances may have an effect on the

quality of the candidate models. The number 5000 is determined empirically

based on the experiment results shown in Table 3.4. It shows the time taken of

generating one decision tree as well as the maximum accuracy f achieved by

the candidate model on the Adult Income dataset. It can be observed that the

accuracy achieved by the decision tree often maximizes when the number of

instances is 5000. Further increasing the number of instances increases the time

proportionally without increasing the accuracy. In multiple cases, the accuracy

even drops. Thus, we set the 5000 as a threshold to learn candidate decision

trees in testing against all inputs.

The results of testing K,f -explainability against different K and f as well as

the training set or all inputs are summarized in Table 3.5. f is set to be 5 values,

40



Table 3.4: Training time with different #instances

K #instances Tdt(s) max(f)

2
2000 4.2 93%
5000 25.74 93%
10000 112.11 93%

3
2000 9.06 95%
5000 46.66 96%
10000 133.21 95%

4
2000 15.17 95%
5000 57.34 97%
10000 140.94 95%

5
2000 21.32 96%
5000 98.15 97%
10000 202.06 97%

i.e., 70%, 80%, 90%, 95%, and 99%. In the third column, we show the testing

results and time taken for evaluating the fidelity of all decision trees against the

training set. Note that we can still measure prediction accuracy on decision trees

generated before timeout. The fourth column shows the results and time taken

on testing K,f -explainability against all inputs.

We note that the execution time is dominated by the time required for learn-

ing the decision trees. Since we consider all feature combinations with different

size K, the number of all possible feature sets would be large especially with re-

gards to some training set with high-dimensional feature vectors. In the case of

testing K,f -explainability against all inputs, it is strongly related to the number

of feature combinations and the number of samples we use to train the candidate

decision trees.

One practical way to reduce the complexity is thus to heuristically select a

subset of the features, i.e., those which are likely correlated to the neural net-

work’s decision. For example, SHapley Additive explanation uses Shapely val-

ues to compute the contributions of the features [98]. Based on the Shapely

values, we can focus on the features with high contribution to generate the de-

cision trees. In the following, we conduct experiments to evaluate this idea

by focusing on the top 6 contributing features based on Shapely value ranking.
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Table 3.5: K,f -explainability testing result

Dataset K
Testing against training set Testing against all inputs

70% 80% 90% 95% 99% 70% 80% 90% 95% 99%
Re. Time Re. Time Re. Time Re. Time Re. Time Re. Time Re. Time Re. Time Re. Time Re. Time

Adult Income

2 Yes 4.75 Yes 4.75 No 370.02 No 370.02 No 370.02 Yes 0.43 Yes 6.75 Yes 33.78 No 33.83 No 33.79
3 Yes 43.69 Yes 43.69 No 12485.33 No 12485.33 No 12485.33 Yes 1.75 Yes 44.70 Yes 223.42 Yes 223.42 No 223.38
4 Yes T/O Yes T/O Yes T/O No T/O No T/O Yes 0.96 Yes 137.14 Yes 411.43 Yes 480.02 No 685.69
5 Yes T/O Yes T/O Yes T/O No T/O No T/O Yes 1.64 Yes 422.08 Yes 1266.25 Yes 1582.82 No 2110.37

Bank

2 Yes 46.15 Yes 46.15 Yes 46.15 No 5538.14 No 5538.14 Yes 0.38 Yes 0.38 Yes 38.89 No 45.78 No 45.74
3 Yes 92.23 Yes 92.23 Yes 92.23 Yes 92.23 No 17523.23 Yes 0.69 Yes 1.67 Yes 192.39 Yes 373.27 No 384.78
4 Yes T/O Yes T/O Yes T/O Yes T/O No T/O Yes 1.09 Yes 1.09 Yes 990.47 Yes 1723.41 No 1980.91
5 Yes T/O Yes T/O Yes T/O Yes T/O No T/O Yes 1.41 Yes 1.41 Yes 3647.79 Yes 5780.61 No 6149.59

Credit

2 Yes 0.48 No 0.48 No 0.48 No 0.48 No 0.48 Yes 26.69 No 241.79 No 241.79 No 241.79 No 241.79
3 Yes 0.63 No 7.22 No 7.22 No 7.22 No 7.22 Yes 242.50 No 1470.48 No 1470.48 No 1470.48 No 1470.48
4 Yes 0.68 No 33.17 No 33.17 No 33.17 No 33.17 Yes 1700.34 No 6456.23 No 6456.23 No 6456.23 No 6456.22
5 Yes 0.78 No 121.30 No 121.30 No 121.30 No 121.30 Yes 8394.73 No 28250.90 No 28250.90 No 28250.90 No 28250.89

Table 3.6: K,f -explainability testing result based on Shapley values

Dataset K
Testing against training set

70% 80% 90% 95% 99%
Re. Time Re. Time Re. Time Re. Time Re. Time

Adult Income

2 Yes 5.04 Yes 5.04 No 37.24 No 37.24 No 37.24
3 Yes 5.34 Yes 5.34 No 41.86 No 41.86 No 41.86
4 Yes 6.87 Yes 6.87 Yes 33.55 No 70.87 No 70.87
5 Yes 5.11 Yes 5.11 Yes 5.11 No 29.25 No 29.25

Bank

2 Yes 4.16 Yes 4.16 Yes 41.82 No 41.82 No 41.82
3 Yes 5.31 Yes 5.31 Yes 46.05 Yes 46.05 No 46.05
4 Yes 5.94 Yes 5.94 Yes 29.63 Yes 44.31 No 44.31
5 Yes 6.24 Yes 6.24 Yes 6.24 Yes 27.11 No 27.11

Credit

2 Yes 1.53 No 19.06 No 19.06 No 19.06 No 19.06
3 Yes 5.45 No 15.77 No 15.77 No 15.77 No 15.77
4 Yes 2.96 No 20.28 No 20.28 No 20.28 No 20.28
5 Yes 4.03 No 11.22 No 11.22 No 11.22 No 11.22

That is, we only consider the decision trees with the selected features and test

each model against k,f -explainability against the training set and the entire in-

put space. The reason why we select 6 features is that the maximum K in our

experiments is 5. The testing results are summarized in Table 3.6.

We can observe that, although we focus on the top 6 features only, the test-

ing results (i.e., whether each model satisfies the corresponding explainability

metric) remain exactly the same as the results in Table 3.5. The time cost how-

ever decreases significantly, especially for the first two neural networks trained

on Adult Income dataset and Bank dataset. When K is set as 4 or 5, the time

cost reduces from T/O to no more than 71 minutes. Furthermore, the execution

time for most tests is far less than 1 hour. In general, our algorithms is efficient

on testing the neural networks’ explainability.

RQ2: Are existing models’ decisions explainable? This question aims to apply
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our approach to study decision explainability of neural network models. To

answer the question, we investigate the decision explainability of the models

using our approach based on the results shown in Table 3.3 and Table 3.5.

In terms of K-explainability, it can be observed that every model is found

to be un-explainable, whether considering only those in the training set or all

inputs. In other words, no matter what combination of K-features used to ex-

plain the decisions of the neural network, there are always counterexamples, i.e.,

instances which are predicted differently by the decision tree and the neural net-

work. In particular, the adversarial sampling approach adopted in Algorithm 4 is

proved to be effective in identifying such counterexamples. These results show

that indeed it is unlikely that we can always explain the decisions of a neural

network using a decision tree. Thus, the goal should perhaps be minimizing the

percentage of such un-explainable cases.

In terms of K,f -explainability test, the results shown in Table 3.5 are mixed.

We have several observations. First, comparing the results with different K val-

ues, the bigger the K is, the bigger a f can be achieved. This is intuitively

reasonable since it is easier to explain the prediction of a neural network with a

more complicated decision tree. Second, it is not necessarily easier to explain

the instances in the training set than to explain all input instances. Note that

there are instances where a model fails a K,f -explainability test on the train-

ing set but passes the test on the entire input space. For instance, the models

trained on Adult Income dataset pass the test with higher f against all inputs

than against the training set. In a close investigation, we discover that this train-

ing sets are highly imbalanced, e.g., samples with one label are significantly

more than samples within the other labels. Neural networks trained on such an

imbalanced dataset are known to produce imbalanced predictions, e.g., the ma-

jority of predictions on random samples are the same label. The majority of the

randomly generated samples of Adult Income dataset are predicted as label 1.

Such imbalanced predictions are much easier to explain, i.e., it can be explained
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with a simple decision tree which always generates the same prediction (e.g.,

“everyone’s application is rejected”). This is confirmed in our experiments,

most of the randomly generated samples are predicted with the same label. As

a result, even with a K value of 3, a f of 95% can be achieved. Furthermore, in

our experiments, we test K,f -explainability against all inputs using the SPRT

algorithms, since it is infeasible to enumerate all inputs. The SPRT algorithm

provides only statistically results with a bounded range of errors, which is more

“relaxed” compared to testing against all samples in the training set.

Lastly, it can be seen that the results vary across different models. For in-

stance, the neural network trained on the Credit dataset has the lowest decision

explainability. The fidelity of the learned decision trees with respect to the train-

ing set and all inputs is less than 80% no matter what K value is used. The

highest f achieved by the neural network against all inputs is only 70%. Our

interpretation of the result is as follows. Because this dataset is very small, the

model is less robust compared with the models trained on the other dataset. In

other words, its predictions on unseen instances are rather random and thus hard

to explain. In general, existing neural networks’ decisions have low explainabil-

ity.

RQ3: Are robust models’ decision more explainable? One of the observations in

the above experiments is that Algorithm 4 is often successful in finding instances

which are un-explainable by the decision tree with adversarial sampling. The

above experiment results seem to suggest that the lack of robustness often makes

a model’s decision un-explainable. This question is thus designed to test this

hypothesis, i.e., with the help of robust training, we aim to see whether more

robust models’ decisions are more explainable. That is, whether it becomes

harder to find ’counterexamples’ that have different predictions of the neural

network and the decision tree after retraining. Here, we use the technique called

FGSM [55] to compute adversarial perturbations and retrain the model. Note

that the label of the samples generated through adversarial perturbation is the
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same as the original sample.

To answer this question, we test the decision explainability of the retrained

models using our approach and check whether a higher f can be achieved. After

robust training, the level of f on the training set remains almost identical to that

without robust training. We thus focus on K,f -explainability testing against all

inputs. The results are shown in Table 3.7, where 7 values of f (i.e., 70%, 75%,

80%, 85%, 90%, 95% and 99%) are tested. We highlight improved results in

green and worsened results in red.

Compared to the corresponding entries in Table 3.5, we observe that among

the 12 cases (4 different K values on three models), 4 results show improve-

ment and 5 results show worse decision explainability after robust training. The

two models trained on the Adult Income and Bank dataset become less explain-

able. For instance, the model trained on Adult Income without robust training

is 2,90%-explainable against all inputs and it is only 2,85%-explainable after

training. Our hypothesis is that the two models trained on Adult Income and

Bank dataset are able to achieve high K,f -explainability because the model

makes simplified predictions as the result of imbalanced training data. After

robust training, the training data (i.e., the original data plus those generated

through adversarial perturbation) become relatively more balanced. As a result,

the neural network model makes more complicated predictions, and thus its

K,f -explainability decreases. On the contrarily, the model trained on the Credit

dataset becomes much more explainable after robust training. This can be ex-

plained by the fact that the Credit dataset, although small, is more balanced,

and in such a case, robust training actually improves decision explainability.

We acknowledge that this hypothesis needs to be evaluated with a large num-

ber of models to be conclusive. So, existing neural networks’ decisions are not

necessarily easier to explain after robust training.

RQ4: Can we improve model decision explainability using our testing results?

Many practical scenarios would prefer models whose decisions can be explained.
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Table 3.7: Results after robust training

Dataset K f in testing against all inputs
70% 75% 80% 85% 90% 95% 99%

Adult Income

2 Yes Yes Yes Yes No No No
3 Yes Yes Yes Yes Yes No No
4 Yes Yes Yes Yes Yes No No
5 Yes Yes Yes Yes Yes No No

Bank

2 Yes Yes Yes Yes Yes No No
3 Yes Yes Yes Yes Yes No No
4 Yes Yes Yes Yes Yes Yes No
5 Yes Yes Yes Yes Yes Yes No

Credit

2 Yes Yes Yes Yes No No No
3 Yes Yes Yes Yes No No No
4 Yes Yes Yes Yes No No No
5 Yes Yes Yes Yes No No No

This RQ thus aims to see whether our approach could help improve model de-

cision explainability. The idea is to check whether a neural network that fails to

reach a certain level of K,f -explainability can be improved through retraining

with un-explainable adversarial samples identified using our approach. That is,

we label those adversarial samples generated by Algorithm 4 with the labels of

corresponding seed instances (i.e., the labels of the samples in training set pre-

dicted by the neural network). Then we retrain the neural network with these

additional samples and apply our approach to test the decision explainability of

the retrained models. Note that the premise condition of Algorithm 4 is that all

samples x in the original labeled dataset LD satisfy D(x) = N(x) (as shown in

line 6 at Algorithm 3). That is, all seed instances x in Algorithm 4 have the same

predictions by the neural network and decision tree. Here, we assume the gener-

ated adversarial sample x0 has the same ground truth label with the original seed

instance x. The testing results as well as the accuracy of retrained models are

shown in Table 3.8. We highlight improved results in green as well. Note that

6 results show improvement after retraining and none shows worsened decision

explainability.

We observe that all three models’ decisions become more explainable after
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Table 3.8: Results after training with ‘counterexamples’

Dataset Accuracy K f in testing against all inputs
70% 75% 80% 85% 90% 95% 99%

Adult Income 84.91%

2 Yes Yes Yes Yes Yes Yes No
3 Yes Yes Yes Yes Yes Yes No
4 Yes Yes Yes Yes Yes Yes No
5 Yes Yes Yes Yes Yes Yes No

Bank 91.53%

2 Yes Yes Yes Yes Yes Yes No
3 Yes Yes Yes Yes Yes Yes No
4 Yes Yes Yes Yes Yes Yes No
5 Yes Yes Yes Yes Yes Yes No

Credit 90.3%

2 Yes Yes Yes Yes No No No
3 Yes Yes Yes Yes No No No
4 Yes Yes Yes Yes No No No
5 Yes Yes Yes Yes No No No

retraining. For instance, the models trained on Adult Income and Bank dataset

are both 2,90%-explainable against all inputs before retraining. After retraining,

both of the two models achieve 2,95%-explainable. The model trained on Credit

can achieve f as 85% for any given K after retraining. The results thus proof

that our testing algorithms could be potentially used to improve model decision

explainability, by paying a relatively small price in terms of accuracy. Although

the improvement in the model trained on Credit is more substantial, the accu-

racy drops mostly from 100% to 90.3% compared with the models trained on

Adult Income and Bank dataset. This result suggests that higher explainability

may come at the cost of prediction accuracy. More precise trade-offs between

the neural network’s explainability and accuracy need further experiments. In

nutshell, decisions of the neural networks retrained with samples generated by

our algorithms are easier to explain.

Threats to validity In the experiment, only 3 datasets are applied to evaluate the

effectiveness of our approach. This could be further improved with more models

and datasets as well as protected features. Furthermore, in the experiments, we

focus on feed-forward neural networks only. Our approach can be potentially

adopted for other neural network models. Lastly, the datasets are all tabular

data. For complicated models such as RNN for text, the task is likely more
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complicated.

3.5 Related Work

The term explainability or interpretability has been used to refer to multiple dif-

ferent things. For instance, Murdoch et al. attempted to define interpretability

in the context of machine learning and placed it as a part of the generic data

science life cycle [111]. They defined interpretable machine learning as the use

of machine learning models for the extraction of relevant knowledge in data.

Montavon et al. defined interpretation as the mapping of an abstract concept

into a domain that the human can make sense of. Examples of interpretable

domains are images or texts [108]. Models from domains with abstract vector

spaces are deemed to be un-interpretable. The notion of explainability or inter-

pretability in the above studies is informal and not measurable, i.e., there is no

way to quantitatively measure or compare models in terms of explainability or

interpretability.

The term interpretability is often associated with studies which aim to pro-

vide hints on how neural networks work internally, such as studies on local/global

interpretability of neural networks. Studies on local interpretability focus on in-

vestigating neural network prediction on one or a specific set of samples. One of

the popular methods is the saliency map approach [166]. The idea is to identify

specific parts of an input sample that contribute the most to the prediction of the

network [146, 35] or the activity of a specific layer in the network [179]. In the

case of image classifier interpretation, it is useful to know which parts of the in-

put activate certain filters for the prediction and how each part contributes to the

prediction score at the pixel level [98] or at the object level [179]. In [80], Kim et

al. proposed TCAV which quantitatively tests the contribution of user-defined

concepts. The difference between these approaches and ours is that these ap-

proaches focus on explaining prediction on one particular input, whereas we
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aim to provide a way of measuring neural networks’ decision explainability as

a whole.

Studies on the global interpretability of neural networks aim to come up with

models that are simple enough to be human-understandable and yet expressive

enough to predict the predictions of the neural network (at least in most of the

cases). Such candidates include regression models [133], decision trees [93],

decision rules [87]. In [87], Lakkaraju et al. proposed interpretable decision

sets, i.e., a framework for building high-accurate predictive models, yet also

interpretable. They capture the interpretability of a decision set by defining

four natural metrics: size, length, cover and overlap. They also set metrics to

measure the accuracy of each rule. While these approaches share the same idea

of using simple models to mimic neural networks, they do not provide ways of

testing and measuring the degree of decision explainability.

This work is also related to work on testing neural networks. Unlike tradi-

tional software systems that have clear and controllable logic, the lack of inter-

pretability of neural networks makes system testing difficult. In [119], Pei et

al. introduced the concept of neuron coverage for measuring testing coverage

of a neural network. They considered a neuron to be activated if its output is

higher than a threshold value and unactivated otherwise. They generated neu-

rons’ activation status and a set of test inputs based on the number of neurons

activated by the inputs and propose a number of alliterative coverage metrics.

In terms of fairness testing, Kusner et al. introduced a causal approach to ad-

dress fairness. They leveraged the causal framework to model the relationship

between protected attributes [84]. This work can work as an assisting tool to

fairness testing. It can analyze whether the model’s decisions are relevant to

sensitive features. If the explainable decision tree with high fidelity contains

propositions with certain sensitive attributes, the model is likely unfair. Once

this work helps understanding predictions and behaviors of neural networks, it

might help with further improvement as well. To the best of our knowledge, this
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is the first approach on testing neural networks’ decision explainability.

3.6 Summary

In this work, we propose multiple definitions of neural network interpretability

and develop algorithms to systematically test the decision explainability of neu-

ral networks. We define decision explainability based on measuring its fidelity

against decision trees with a height limit. We remark that this is an initial at-

tempt at testing model decision explainability and there is much to be done in

the future.
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Chapter 4

Subtle Group Discrimination

Identification

4.1 Introduction

Machine learning models, especially neural networks, are becoming ubiquitous

in various real-life applications. For example, they are used in medical diagno-

sis [82], self-driving cars [18] and criminal sentencing [10]. Meanwhile, dis-

crimination has been discovered in many applications [52, 130, 150, 165]. For

instance, machine learning models were used to predict recidivism risk for sus-

pected criminals by computing the likelihood of committing a future crime [10].

Analysis results show that the prediction model was more likely to mislabel

black defendants as high recidivism risk and mislabel white defendants as low

risk. To minimize such ethical risks, it is crucial to systematically test the fair-

ness of machine learning models, especially neural networks where such issues

are typically ‘hidden’ due to the lack of interpretability [119, 147].

In this work, we aim to develop a tool to systematically test the given ma-

chine learning models with regards to fairness and reveal the discrimination

with explainable way. Specifically, we develop an effective tool to systemat-

ically test a given machine learning model against such hidden subtle group
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Figure 4.1: An Overview of TESTSGD.

discrimination, namely TESTSGD. Here, we only consider group fairness which

is also know as group discrimination. Group discrimination, which character-

izes a model’s discrimination against a certain group (whose sensitive features1

satisfy certain conditions) has been widely studied [47, 165, 148, 81]. However,

compared to testing of individual discrimination which focuses on individual

discriminatory instances, testing a machine learning model against group dis-

crimination imposes new challenges. First, it is highly non-trivial to effectively

enumerate all combinations of sensitive features (especially when the sensitive

features have multiple or even continuous values). Second, group discrimina-

tion can be hidden, i.e., there might be ‘subtle’ group discrimination against

those groups whose sensitive features satisfy certain unknown conditions, e.g.,

male-white of certain age group. While a prior work [76] similarly addresses

discrimination against subgroups defined over conjunctions of protected fea-

tures in the learning phase, we propose an automatic testing approach to sys-

tematically identify such subgroups using interpretable rules and measure such

discrimination before model deployment.

An overview of TESTSGD is shown in Figure 4.1, which consists of three

main phases: 1) candidate rule set generation, 2) group fairness identification,
1we use “feature”/“attribute” interchangeably
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and 3) discrimination mitigation. In the first phase, TESTSGD will automat-

ically generate a candidate set of rules concerning multiple sensitive features.

Building on the insights gained from the interpretability testing work as shown

in Chapter 3, we aim to explain the conditions of group discrimination in a

human-understandable way. So we utilize rule sets to express the hidden group

discrimination here. Note that we only consider frequent rule set with sufficient

support (which characterize a sufficiently large group). In the second phase,

the rule set R effectively partitions the samples into two groups, i.e., samplesr

which satisfies the rules and samples¬r which does not. The key intuition behind

is to develop effective criteria to automatically mine interpretable rules which

are practical and relevant in the real-world applications. Then we measure if

the model suffers from group discrimination (against the groups partitioned by

the rule set) by measuring the group fairness score. Note that, solely relying on

the training samples might not be enough to accurately measure such a score.

We thus propose to apply a standard data augmentation method, i.e., imposing

minor perturbation on the available seed samples to generate new samples, and

obtain an accurate estimation of the group fairness score (with bounded errors).

The testing results of the first two phases are thus the identified subtle group

discrimination (characterized by the rules) and their corresponding group fair-

ness score (with bounded errors). For example, we test the model trained on the

Crime [125] dataset which predicts whether the violent crimes per population

in a specific community is high. The interpretable rule set found by TESTSGD

shows that it discriminates against communities in which the percentage of Cau-

casian population is lower than 80% and the percentage of females who are di-

vorced is higher than 40%, with a 60.7% group fairness score, i.e., it is 60.7%

more likely to predict high crime rate for such a community. In the last phase

(optional depending whether the identified discrimination is considered to be

harmful), TESTSGD leverages the testing results to mitigate the identified sub-

tle group discrimination. That is, to improve group fairness, we generate new
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samples according to the condition under which discrimination exists and retrain

the original model.

TESTSGD is implemented as an open-source software [175]. We evaluate

our TESTSGD on 8 models trained on widely adopted datasets including both

structured data and text data. The experimental results show TESTSGD is ef-

fective in identifying and measuring subtle group discrimination. The results

also show that subtle group discrimination does exist in all of these 8 models

and sometimes to a surprising level which has never been revealed before. For

instance, the model trained on the COMPAS [10] dataset is much less likely to

predict Hispanic males older than 40 years old as criminals with high recidivism

risk. Furthermore, our experiments show that the testing-guided discrimination

mitigation is useful. That is, we can mitigate identified subtle group discrimina-

tion for all models without sacrificing the accuracy.

In a nutshell, we summarize our main contributions as follows.

• We propose a method to automatically generate an interpretable rule set to

identify subtle group discrimination in neural networks, applicable for both

structured and text data;

• We develop a theoretical bound for accurately sampling and estimating the

group fairness score against two groups.

• We show that we can generate samples systematically based on the inter-

pretable rule set to mitigate subtle group discrimination.

This work is based on the published paper [175]. The remaining sections of

this work are organized as follows. In Section 4.2, we provide the input type

definition, fairness definitions and define our research problem. In Section 4.3,

we describe the details of our approach. In Section 4.4, we show our experiment

setting and evaluation results. Lastly, we show related works in Section 4.5 and

conclude in Section 4.6.
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4.2 Background

Our goal is to develop a black-box method to identify subtle group discrimi-

nation in a user-provided neural network model. Our method supports neural

networks trained on two different kinds of data, i.e., structure data and text data.

Our method does not require the inner details of the neural network. That is,

the neural network is viewed as a function M : Rp ! Rq which maps an input

x 2 Rp to an output y 2 Rq. Furthermore, we focus on deep feed-forward neural

networks and recurrent neural networks.

4.2.1 Input Type

First of all, we define two different data, i.e., structure data, text data, and their

corresponding sensitive features which are used to evaluate the discrimination

of the neural networks.

A sample of structured dataset is composed of a set of features, i.e., a fea-

ture vector. A feature can be categorical (i.e., with a fixed set of values) or

continuous (i.e., with a certain value range). We define the structure data and

the corresponding sensitive features as follows.

Definition 4 (Structured Data) A structured data x contains N features {x1,x2,

· · · ,xN}, where 8xi,xi 2 Li, where Li is a set of feature values. We write S =

{s1,s2, · · · ,sn} to denote the set of sensitive features in x, where n < N.

The text data is composed of a set of tokens. We define the sensitive feature

of text data based on the presence of sensitive terms. Note that there could be

different categories of sensitive terms, e.g., terms referring to race, religion, or

ethnicity. We define the text data and the corresponding sensitive features as

follows.

Definition 5 (Text Data) A text data x contains a sequence of tokens {x1,x2,

· · · ,xN}. We write S = {s1,s2, · · · ,sn} to denote a set of categories of sensitive
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terms, where n<N and T to denote a set of sensitive terms {t1, t2, · · · , tk}, where

t j 2 si for some i, for all j 2 [1,k] and t j 2 x .

4.2.2 Group Fairness Definitions

To define our problem, we define fairness and the concept of group fairness

score. There are multiple definitions of fairness [41, 69, 25, 47, 81, 165]. In this

work, we focus on group fairness for its relevance in many network applications.

Group fairness, also known as statistical fairness, focuses on sensitive groups

such as ethnic minority and the parity across different groups based on some sta-

tistical measurements [47, 81, 16, 165, 148]. A classifier satisfies this metric if

the samples in the sensitive group have a positive classification probability or

true positive probability that is similar with or equal to that of the insensitive

group.

In the following, we provide a formal definition of group fairness based on

positive classification rate measurement.

Definition 6 Let M be a neural network model; l be a (favorable) prediction;

and x be a positive constant. Let G be a group identified by certain condition f

on sensitive features S. G can be defined as a set of samples {x|x ✏ f}, where

x ✏ f means x satisfies condition f . We say M satisfies group fairness, with

respect to x and G, if and only if

|P(M(x) = l | x 2 G)�P(M(x) = l | x 62 G) |  x (4.1)

Note that, in some cases, the model may be fair overall but unfair under

some specific ‘subtle’ conditions. For example, the model is fair considering

gender attribute if it approves half of the loans from female or male applicants.

However, when we consider both gender and race, the model may show dis-

crimination. For example, it approves loans for far less a percentage of Hispanic

female individual, compared to the remaining group. In this setting, we say that

56



the model discriminates against Hispanic females (if we show that the testing

results have sufficient statistical confidence).

4.2.3 Problem Definition

Our problem is to develop a systematic method for identifying subtle group dis-

crimination. That is, given a neural network model M (as well as a constant

threshold x , we aim to generate a condition f such that M is unfair with respect

to the group identified by f . The condition f must satisfy the following con-

ditions. (1) It must be constituted by variables representing sensitive features.

(2) It must be human-interpretable, so that our analysis result can be presented

for human decision making. (3) It must identify a group of non-trivial size. In

addition, our method must support both structured data as well as text data. Fur-

thermore, we would like our method to generate results with certain correctness

guarantee, e.g., the chance of reporting non-existing discrimination is low.

Inspired by rule-based models, which are widely used to learn interpretable

models [87, 126], we generate f in the form of rules (a.k.a. constraints) which

are understandable by human beings and also concrete enough to show model

prediction differences between different groups. The rules are constituted by the

input features, without relying on any latent variables or representations. We

define f to be the conjunction of one or more rules, each of which is constituted

by only one sensitive feature. Furthermore, to limit the search space as well as to

make sure the generated rules are interpretable, we limit each rule on continuous

features to be of the form of a linear inequality, e.g., age� 30 is a possible rule

but age is multiples o f 7 is not.

In order to make sure that the discrimination that we discover is highly likely

in the actual system, we propose a sampling based approach to estimate the

probability of predicting certain label within a given group. Such a method al-

lows us to generate an estimation with certain level of statistical confidence, i.e.,

with a bound on the error. Note that it is not straightforward to adopt existing
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techniques such as hypothesis testing [154, 155]. This is because the group fair-

ness score is the difference between two estimations (i.e., one for the individual

in the group and the other for those not in the group). We solve this problem

by establishing a conservative error bound on the difference based on the error

bounds for the two estimations.

4.3 Methodology

In this section, we describe the details of our approach. There are two main

steps, i.e., learning a rule set and identifying group discrimination based on the

learned rule set. The inputs for our method include a machine learning model

M, its training set D, and a set of sensitive features S. The output is the subtle

group discrimination represented as a rule set characterizing the discriminated

group and the corresponding group fairness score.

4.3.1 Generating Frequent Rule Sets

To identify discrimination against certain group, we first need a way of charac-

terizing a group. In this work, we characterize the groups based on a set of rules,

each of which constrains one sensitive feature. In the following, we present how

we generate rules for sensitive features of both structured data and text data.

In terms of categorical features xi in structured data such as gender or race,

in general, a rule can be defined as a subset of the possible feature values Li.

For instance, given the sensitive feature of race which has five values, i.e., Cau-

casian, Black, Hispanic, Asian and other-race, a rule can be any set containing

one to four of these five values. In total, we have 30 rules. For continuous

features xi in structure data such as age or percentage, there may be too many

possible values to enumerate, i.e., the domain of Li is too large. Thus we apply

techniques such as binning to turn continuous features into categorical features.

Here, we divide the original value range into K intervals with equal width. Then
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Table 4.1: Identity Sensitive Terms

Sensitive Features Identity Terms

gender
lesbian, gay, bisexual, transgender, trans,
queer, lgbt, lgbtq, homosexual, straight,
heterosexual, male, female, nonbinary

race

african, african american, black, white,
european, hispanic, latino, latina, latinx,
mexican, canadian, american, asian, indian,
middle eastern, chinese, japanese

religion christian, muslim, jewish, buddhist, catholic,
protestant, sikh, taoist, atheist

age old, older, young, younger, teenage,
millennial, middle aged, elderly

we consider each interval as a single value and consider a set containing adja-

cent values as a rule. We set K as 10 in our experiments. For example, we divide

age attribute ranging from 0 to 100 into 10 equal intervals.

For textual dataset, defining rules is not that straightforward. In this work,

we define the rules based on the presence of sensitive terms T (refer to Defini-

tion 5). For each sensitive category s, we define a rule which intuitively means

that the text sample contains a term t, where t 2 s. In this work, we use a

set of 48 terms created in [38] as the sensitive terms which can be classified

into 4 categories, i.e., gender, race, religion and age. The sensitive terms are

shown in Table 4.1. For example, when we consider the gender feature for text

dataset, there are 14 sensitive terms and thus 14 rules are generated. Notably, for

simplicity, we consider both gender related terms such as ‘male’ and sexuality

related terms such as ‘lesbian’ in one category and named it as ‘gender’.

Once a set of rules are identified, we then characterize a group based on a

rule set. Each element of a rule set is a rule constraining one sensitive feature.

Intuitively, a rule set partitions the input space of M into two disjoint groups,

i.e., those who satisfy all the rules in the rule set and the rest. If these two

groups have a significant different probability of being predicted favorably by

the model M, we successfully identify a subtle discrimination.
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Note that a naive approach is to enumerate all possible rules based on one

sensitive feature and combine them arbitrarily. Such an approach is both in-

feasible and undesirable. First, there can be enormous combinations of the

rules. Second, not all rule sets are interesting. For instance, a rule set may be

{age � 100,gender = Male}. A discrimination found against the group iden-

tified by this rule set is likely to be due to the limited data. Furthermore, the

discrimination is perhaps not as concerning as discrimination against groups

that represent a sizable population.

We thus only consider frequent rule sets among all possible combinations of

rules. A frequent rule set is a set of rules that are satisfied by a group with a size

more than certain threshold. Formally, given a rule set R, the support for R is

the frequency of the number of samples that satisfy all rules in rule set R. Given

a support threshold q (i.e., a percentage), we say that R is frequent if its support

is no less than q . In the following, we present how to identify a set of frequent

rule sets for structured and text data.

For each sensitive feature s, let Rs be the set of rules concerning s. A rule

set R is composed of rules for each sensitive feature, i.e., R = {rs1 ,rs2 , ...,rsn}

where rsi 2 {Rsi [?} and R 6= ?. R is frequent if and only if support(R) � q

where support(R) is defined as follows.

support(R) =
#{d 2 D|8r 2 R. d ✏ r}

#D
(4.2)

where #X of a set X is the number of elements in X ; and d ✏ r means that d

satisfies r.

Example 4.3.1 Consider the structured dataset Adult Income [128]. It has

three sensitive features, i.e., gender, race, and age. Each feature has a set of

values. The following constitutes a rule set

{gender = Male,race =White,40 age < 60}
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Rule sets for text data are defined differently. Recall that each rule is a propo-

sition on whether the text contains certain sensitive term. Formally, given the

set of the categories of sensitive terms S, a rule set R is then a set of sensitive

terms {r1,r2, · · · ,rm}, where rk 2 si for some i, for all k 2 [1,m] and m n. The

support of R is defined as follows.

support(R) =
#{d 2 D|8r 2 R. contains(d,sr)}

#D
(4.3)

where sr is the sensitive category referring to r and contains(d,sr) is a propo-

sition which is true if and only if d contains at least one term in the category

sr.

Example 4.3.2 Consider the text dataset Wikipedia Talk Pages [159]. We have

two categories of sensitive terms, e.g., gender and race. For each category, we

have a set of corresponding sensitive terms as shown in Table 4.1. The following

constitutes a rule set

{“bisexual”,“Caucasian”}

Algorithm 8 shows the exact steps in generating all possible rule sets. At line 1,

we first initialize a dictionary single rules and an empty set rules sets. During

the loop from line 2 to 5, we generate all possible 1-feature rules for each sen-

sitive feature as discussed above. At line 6, we generate a set of all 1-feature

rules. Then, we generate all possible rule sets at line 7. Lastly, at line 8, we

only keep those rule sets that have a support value no less than q .

In general, given a dataset with K sensitive features, and at most N rules

for each sensitive feature, the number of rule sets is NK in the worse case. For

example, we have 2 gender-related single rules, 5 race-related 1-feature rules

and 10 age-related 1-feature rules, there are 17 rule sets when considering one

sensitive attribute, 80 rule sets when considering two sensitive attributes and
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Algorithm 8 FrequentRuleSets(D,S,sup thr) where D is the training set, S is
the sensitive attributes, q is the support threshold

1: single rules {}, rule sets ?
2: for each s in S do
3: rules {r1,r2, ...}
4: single rule[s] = rules
5: end for
6: all single rules {single rule[s][?} for all s 2 S
7: rule sets combinations(all single rules)
8: all rule sets {R f or R in rule sets i f support(D,R)� q}
9: return all rule sets

100 rule sets when considering all sensitive attributes. So in total, there are 197

possible rule sets.

4.3.2 Identifying Group Fairness

For each group identified by a rule set, we then measure the discrimination

against the group. That is, we aim to compute the probability of predicting

certain label by M on those samples in the group, and that on those samples

not in the group, and measure the difference. The score is the group fairness

score, which varies from 0 (i.e., no difference) to 1 (i.e., completely different).

Formally,

Definition 7 (Group fairness score) Let R be a rule set. Let l be a (favor-

able) label. The group fairness score with respect to R and l is |prob(R, l)�

prob(¬R, l)|, where prob(R, l) is the probability of predicting l given samples

satisfying R, ¬R identifies samples not satisfying R.

We remark that this definition is similar to the CV score [25] and multivariate

group discrimination score [47]. However, the former is limited to binary input

types and the latter is limited to categorical input types. In comparison, our

fairness score supports both structured data and text data.

Example 4.3.3 Take a model trained on the (structured) Adult Income dataset

as an example. The model predicts whether the income of an adult is above
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$50,000 annually, i.e., “True” means above the threshold and “False” means

otherwise. Assume the rule set is

{gender = Male,race =White,40 age < 60}

Assume that the model predicts 28% of individuals in this group with “True”,

and 10% of the remaining population with “True”. The model’s group fairness

score, with respect to the rule set and the prediction, is 18%.

Given a rule set, measuring the group fairness score requires us to measure

prob(R, l) and prob(¬R, l), which is non-trivial since exhaustively enumerating

all samples is infeasible due to the enormous input space. On the other hand,

measuring it based on a limited number of samples may yield inaccurate results.

In the following, we propose an approach to compute group fairness scores with

a statistical confidence guarantee. Formally, we would like to measure the group

fairness score f within a margin of error e under a certain confidence d , such

that prob(| f � f̂ |> e)< 1�d , where f̂ is the real group fairness score over all

possible samples.

Algorithm 9 shows how we measure the group fairness score. We main-

tain two sets of samples, i.e., samplesr which contains samples satisfying R

and samples¬r which contains samples not satisfying R. At line 1, we set both

samplesr and samples¬r to be empty, error margin e to be infinity and the num-

ber of generated samples as 0. During the loop from line 2 to 16, we keep

generating samples and calculating group fairness score until the error margin

e is no more than the given error threshold error thr. From line 3 to line 6, we

generate new samples for samplesr and samples¬r respectively using a function

Sample. We remark that the generated samples should follow the original data

distribution (i.e., that of the training dataset). We present details on how we

sample on structured and text dataset in the next subsection.

At line 7, we increase num by 1. After generating a sufficient number of
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Algorithm 9 GroupFairnessScore(D,M,R,sample thr,error thr) where D is
the training dataset; M is the machine learning model; R is a rule set, sample thr
is the number of generated inputs threshold; error thr is error margin threshold

1: samplesr ?, samples¬r ?, e  +•, num 0
2: while e > error thr do
3: x Sample(D,R)
4: x0  Sample(D,¬R)
5: samplesr samplesr[ x
6: samples¬r samples¬r[ x0

7: num num+1
8: if num > sample thr then
9: fr #{i 2 samplesr|M(i) = l}/num

10: f¬r #{i 2 samples¬r|M(i) = l}/num

11: e  z⇥
q

fr(1�fr)
num + z⇥

q
f¬r(1�f¬r)

num
12: if e  error thr then
13: break
14: end if
15: end if
16: end while
17: return f  |fr�f¬r|

samples, we check the error margin e from line 9 to 15. We first calculate the

probability of predicting l at line 9 and 10 for two sets of samples. Then at line

11, we calculate the error margin e on the group fairness score. We explain

why it is calculated this way below. If e is less than or equal to error thr, the

stopping criteria is satisfied (as in line 12 and 13). Lastly, at line 17, we return

the absolute difference between fr and f¬r as the group fairness score.

In the above algorithm, we estimate the error margin of the group fairness

score based on an estimation of prob(R, l) and prob(¬R, l). The complication

is that both prob(R, l) and prob(¬R, l) carry certain error margin, which may

magnify the error margin for the group fairness score. In the following, we

prove that line 11 in the above algorithm allows us to conservatively estimate

the error margin of the group fairness score.

Theorem 4 Assume that fr satisfies the following

prob(|fr� f̂r|> er)< 1�dr (4.4)

64



where er and dr are constants. Similarly, f¬r satisfies the following.

prob(|f¬r� f̂¬r|> e¬r)< 1�d¬r (4.5)

Then the following is satisfied.

prob(| f � f̂ |> er + e¬r)< 1�drd¬r (4.6)

Proof: Since prob(|fr� f̂r| > er) < 1� dr and prob(|f¬r� ˆf¬r| > e¬r) < 1�

d¬r, we have:

prob(|fr� f̂r| er)� dr

prob(|f¬r� f̂¬r| e¬r)� d¬r

Hence
prob(|(fr� f̂r)� (f¬r� f̂¬r)| er + e¬r)�

prob(|fr�f̂r|er) · prob(|f¬r�f̂¬r|e¬r)� drd¬r

and

prob(|(fr� f̂r)� (f¬r� ˆf¬r)|> er + e¬r)< 1�drd¬r

prob(|(fr�f¬r)� (f̂r� f̂¬r)|> er + e¬r)< 1�drd¬r

According to Definition 7, group fairness score f = fr�f¬r. Thus

prob(| f � f̂ |> er + e¬r)< 1�drd¬r

The above theorem provides a theoretical guarantee on the statistical confidence

for the group fairness score estimation. That is, based on the Equation 4.6, the

fairness level for fairness score f is drd¬r and the margin of error is the sum of
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two margin of errors as er + e¬r. Each e is calculated by:

e = z⇥
r

f(1�f)
num

(4.7)

where z is the value from the standard normal distribution for a certain confi-

dence level d (e.g., for a 95% confidence level, z = 1.96). So the final margin of

error for fairness score f is shown in line 11 of Algorithm 9. Based on the result,

we derive the stopping criteria, as shown in line 12 and 13 of Algorithm 9.

The above shows how we compute the group fairness score for one rule set.

Given multiple rule sets, we systematically compute the fairness score for each

rule set with Algorithm 9, and then rank the rule sets according to the resultant

group fairness score. If the group fairness score of certain rule set is more than

a given tolerable threshold, we report that discrimination is identified.

Example 4.3.4 Take a model trained on the (structured) Adult Income dataset

as an example. We fixed the confidence level to 95% and the corresponding z-

value is 1.96. We set the sampling threshold sample thr as 1000 and the error

of margin threshold error thr as 0.05. We are given a rule set

{gender = Male,race =White,40 age < 60}

First, we sample 1000 inputs as samplesr using Sample function that represents

white males who are older than 40 but younger than 60. Then we sample an-

other 1000 inputs as samples¬r using Sample function that represents the rest

individuals. We observe that 283 samples in samplesr are labeled as “True”,

while only 91 samples in samples¬r are labeled as “True”. So fr is 28.3% and

f¬r is 9.1%. According to Algorithm 9, er is 0.028 and e¬r is 0.018. So the

margin of error e for fairness score is 0.046. Since e is less than 0.05, we stop

sampling. Finally, the group fairness score is computed as 19.2% with 90.25%

confidence.
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4.3.3 Input Sampling

As discussed above, Algorithm 9 requires us to sample inputs with a distribution

which is similar to the data distribution of the training dataset. As shown in [54],

modern machine learning models mostly rely on the i.i.d. assumptions. That is,

the training and test set are assumed to be generated independently from an

identical distribution. It is more likely for machine learning models to predict

identically distributed data correctly.

While it is impossible to know the actual data distribution, we aim to gen-

erate additional samples from a distribution as close as possible to the distri-

bution of the training set. For structured data, instead of generating feature

vectors randomly, we generate new samples by adding tiny perturbations on

original samples uniformly. The perturbation is added to one randomly selected

non-sensitive attribute with randomly selected perturbation direction and the

perturbation size is 1 for integer variables or 0.01 for decimal variables. For-

mally, given the rule set R, we first search a seed instance from the dataset D

as seed = {x1,x2, · · · ,xN}, where 8r 2 R. seed ✏ r. Then we randomly select a

non-sensitive attribute xk, where xk /2 S. We perturb xk as x0k = xk +dir · s pert,

where dir 2 [�1,1] and s pert is the perturbation size.

For text data, we generate new samples by replacing sensitive terms with a

different term in the same sensitive term category. For example, when we test

the machine learning model trained on the Wikipedia Talk Pages dataset, given a

rule set {“gay”}, we need to generate additional comments containing the term

“gay”. First, we search all comments containing gender-related sensitive terms

such as “lesbian” and “bisexual”, as defined in Table 4.1. Then we replace these

terms in the original comments with the term “gay” to generate new comments.

That is, we can generate “I am a gay” from an original comment “I am a les-

bian”. The reason why we use text replacement instead of text perturbation, as

in the case of structured data, is that perturbing texts with synonyms (as pro-

posed in [132] for adversarial attacks) is ineffective to generate the texts in the
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desired group. Our text generation method also has the benefit of mitigating the

influence of data imbalance which may cause unintended bias [38]. Formally,

given the rule set R = {r1,r2, · · · ,rm}, we first search a seed instance from the

dataset D as seed = {x1,x2, · · · ,xN}, where 8r 2 R. contains(seed,sr), where sr

is the sensitive category referring to r and contains(d,sr) is a proposition which

is true if and only if d contains at least one term in the category sr. Then we

replace the term xi to term r j, for all r j 2 R and xi 2 sr j .

4.4 Implementation and Evaluation

We have implemented TESTSGD as a self-contained software toolkit based on

Tensorflow [1] with about 6K lines of Python code.

Experiment Subjects Our experiments are based on 8 models trained with the

following benchmark datasets. These datasets have been widely used as evalua-

tion subjects in multiple previous studies on fairness [176, 177, 47, 38, 130, 99].

Expect for the first three datasets which are mentioned in the previous work at

Chapter 3, we consider three more tabular datasets and two more textual datasets

in this work.

• Adult Income [128]: The dataset contains more than 30,000 samples and is

used to predict whether the income of an adult is above $50,000 annually. The

attributes gender, race and age are sensitive attributes.

• Bank Marketing [110]: The dataset contains 45,000+ samples and is used to

train models for predicting whether the client would subscribe a term deposit.

Its sensitive attribute is age.

• German Credit [64]: This is a small dataset with 600 samples. The task is to

assess an individual’s credit. The sensitive attributes are gender and age.

• COMPAS [10]: This dataset contains 7,000+ samples. The task is to pre-

dict whether the recidivism risk score for an individual is high. The sensitive
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attributes are gender, race and age.

• Crime [125]: This dataset contains almost 2,000 data for communities within

the US. The task is to predict whether the violent crimes per population in

a specific community is high. Since this dataset records population statistics,

their sensitive features are shown in multiple attributes with percentage values.

Here, we extract all gender/race/age related attributes to learn rule sets.

• Law School [11]: This dataset has more than 20,000 application records and

is used to predict whether a student passes the bar exam. The attributes, race

and gender are sensitive attributes.

• Wiki Talk Pages [159]: This is a textual dataset containing more than 100,000

Wikipedia TalkPage comments. The task is to predict whether a given com-

ment is toxic.

• IMDB [100]: IMDB dataset contains 50,000 movie reviews. The task is to

predict whether a given sentence is a positive review.

For the first six structured datasets, we train a six-layer feed-forward neural

network using the exact same configuration as reported in the previous stud-

ies [176, 177]. For the last two textual datasets, we train a convolutional neural

network (CNN) combined with long short-term memory (LSTM). The details

of trained models are shown in Table 4.3. The accuracy of the trained mod-

els is expectedly similar to what is reported in the previous studies. Table 4.2

shows the value of parameters used in our experiment to run TESTSGD. All

experiments are conducted on a server running Ubuntu 1804 with 1 Intel Core

3.10GHz CPU, 32GB memory and 2 NVIDIA GV102 GPU. To mitigate the

effect of randomness, all the results are the average of 3 runs.

We aim to answer multiple research questions as follows.

RQ1: Is our method effective in identifying subtle group discrimination of a

given machine learning model? To answer the question, we systematically ap-
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Table 4.2: Parameters of the Experiments

Parameters Value Discription

q 5% support threshold
sample thr 1000 sampling threshold

d 95% confidence level
error thr 0.05 error margin threshold

z 1.96 z value
s pert 1 perturbation size for integer variables
s pert 0.01 perturbation size for decimal variables

Table 4.3: Dataset and Models of Experiments

Dataset Model Accuracy

Adult Income Six-layer Fully-connected NN 86.13%
Bank Marketing Six-layer Fully-connected NN 91.62%
German Credit Six-layer Fully-connected NN 100%

COMPAS Six-layer Fully-connected NN 78.99%
Crime Six-layer Fully-connected NN 92.52%

Law School Six-layer Fully-connected NN 95.19%
Wikipedia Talk Pages CNN Long Short-term memory network 93.89%

IMDB CNN Long Short-term memory network 86.68%

ply our approach to the above-mentioned models and measure the results. The

results are summarized in Table 4.4. It shows results on the six models trained

on structured data and results on the two models trained on text data. These

four columns show datasets, rule sets, group fairness scores and model accu-

racies respectively. The favorable label is “True”, the meaning of which can

be found in the above introduction on the corresponding dataset. Note that for

each model, we rank the identified subtle discrimination according to the group

fairness score and we report the top 3 worst discrimination only.

We can observe that subtle discrimination does exist in these models, which

were never revealed in the previous studies [176, 177, 47, 38, 99]. For in-

stance, the model trained on the Bank Marketing dataset predicts only 3.3%

of the clients who are older than 10 but younger than 90 would subscribe a term

deposit, whilst predicting 41.5% of clients older than 90 would subscribe a term

deposit. All of the top 3 testing results all show the model discriminates against

young clients. We remark that although this is unfair according to the definition,
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Table 4.4: Rule Sets and Fairness Scores for Neural Networks

Dataset
top 1 top 2 top 3

Rule Set Fairness Score Rule Set Fairness Score Rule Set Fairness Score
(fr,f¬r) (fr,f¬r) (fr,f¬r)

gender=male, 40age<80, 20.2% gender=male, 40age<70, 19.4% gender=male, 40age<80, race=White, 18.4%Adult Income race=White or Asian-Pac-Islander (29.9%, 9.7%) race=White or Amer-Indian-Eskimo (28.9%, 9.5%) Asian-Pac-Islander or Amer-Indian-Eskimo (26.9%, 8.5%)
38.2% 22.8% 20.5%Bank Marketing 10  age <90 (3.3%, 41.5%) 10  age <70 (26.6%, 3.8%) 10  age <60 (4.7%, 25.2%)
21.9% 21.8% 15.5%German Credit gendre = female, 60age<70 (72.25%, 50.63%) gender = female, 60age<80 (70.5%, 48.7%) gender = male, 40age<80 (52.6%, 47.1%)

gender = male, age�40, 62.4% gender = male, 40age<60, 62.3% gender = male, 50age<60, 62.3%COMPAS race = Hispanic or other race (20.7%, 83.1%) race = Hispanic or other race (20.3%, 82.6%) race = Hispanic (19.5%, 81.8%)
13.4% 11.5% 10.5%Law School gender = male, race = Black (86.3%, 99.7%) gender = male, race = Asian or Black (88.4%, 99.9%) gender = female, race = Asian or Black (89.4%, 99.9%)
60.7% 59.6% 59.5%Crime pct(white)0.8, pct(female divorce)�0.4 (83.8%, 23.2%) pct(white)0.8, pct(female divorce)�0.5 (87.0%, 27.4%) pct(white)0.6, pct(female divorce)�0.5 (94.6%, 35.1%)
6.5% 5.4% 5.1%Wiki Talk Pages “gay”, “taoist” (13.0%, 6.5) “gay”, “protestant” (12.9%, 7.5%) “gay”, “african american” (12.5%, 7.4%)
6.6% 6.6% 6.5%IMDB “european”, “yong” (56.0%, 49.4%) “white”, “older” (59.1%, 52.6%) “lgbtq” (7.5%, 14.0%)

it may have its underlying reasons and it is still up to human experts to decide

whether it is actual discrimination.

For the models trained on the Adult Income dataset, German Credit dataset

and the Law School dataset, they show relatively mild discrimination. In con-

trast, the model trained on the COMPAS dataset shows severe discrimination,

with a fairness score of 62.4%. That is, for Hispanic or other race male individu-

als who are older than 40, the model is much less likely to predict the recidivism

risk as high. For the remaining individuals, the model predicts 83.1% of them

have high recidivism risk. Top 2 and top 3 test results also show severe dis-

crimination against older Hispanic or other race male individuals. Similarly, the

model trained on the Crime dataset also shows high discrimination. Different

from the first five structured datasets, samples in this dataset have 10 different

sensitive features, each of which is a decimal ranging from 0.0 to 1.0 represent-

ing the percentage of certain population. As shown in the top 1 testing result,

when the percentage of divorced females is above 40% and the percentage of

Caucasian is below 80%, the model is much more likely to predict that the vi-

olent crimes per population in this community is high. All testing results on

the model trained on Crime dataset suggest that the model discriminates against

communities with high percentage of divorced females and low percentage of

Caucasian.

In Table 4.4, the last two rows show the results on models trained on the

text data. In general, we observe that the models trained on text dataset show

less discrimination. The maximum fairness score for the model trained on the
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Wikipedia Talk Pages dataset is 6.5%. That is, the model predicts 13.0% of

comments containing both “gay” and “taoist” as toxic. For other comments (i.e.,

those without one of these two terms or both), the model predicts only 6.5% of

them as toxic. Top 2 and top 3 testing results show that the model discriminates

against comments containing both “gay” and “protestant” and comments con-

taining both “gay” and “african american” respectively. The model trained on

the IMDB dataset shows a similar level of discrimination. It is more likely to

predict reviewers containing “european” and “young” and reviews containing

“white” and “older” as positive. It also shows discrimination against reviews

containing “lgbtq”. Our conjecture on why the level of discrimination is con-

siderably lower on these models is that each sample in these text datasets often

has many features and as a result, the influence of each term (including sensitive

terms) is distributed.

RQ2: Is our method efficient? To answer this question, we measure the amount

of time required to identify the subtle discrimination for each model. The total

execution time and the numbers of tested rule sets are shown in Table 4.5. For

all models, the time required to identify the subtle discrimination is less than

20 hours. Furthermore, models trained on structured dataset take considerably

less time than those trained on text dataset. That is, models trained on the Adult

Income, Bank Marketing, German Credit, COMPAS and Law School take less

than 16 minutes. One exception is the model trained on the Crime dataset that

takes more than 8 hours. The main reason is that it has a large number of rule

sets, due to a large number of sensitive features (i.e., 10), all of which are con-

tinuous features. In contrast, both models trained on text dataset take more than

9 hours to finish. The main reason is that generating additional samples for such

dataset takes much more time in general. We remark that the sampling proce-

dure can be easily parallelized and thus we could significantly reduce the time

if it is an issue.

Note that the support threshold q is set to be 5% in all the above experiments.
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Table 4.5: Time Taken to Identify the subtle discrimination

Dataset Time (seconds) #rule set

Adult Income 869.35 880
Bank Marketing 141.52 34
German Credit 104.85 53

COMPAS 908.5 1590
Law School 18.46 17

Crime 29150.01 13282
Wiki Talk Pages 34982.28 732

IMDB 69125.16 876

Intuitively, it means that each rule must be relevant to 5% of the population

(although the rule set, which is a conjunction of multiple rules, may impact a

smaller population). This hyper-parameter largely determines how many rule

sets that we must examine and thus may have an impact on the execution time.

We thus conduct additional experiments with different q values, ranging from

1% to 50%, to evaluate the effect of q on the execution time and the results.

The results on two models, i.e., the model on Law School and the model on

COMPAS, are detailed in Table 4.6.

The table shows the execution time, the number of rule sets and the worst

group fairness score. We can observe that, the larger a q we set, the fewer rule

sets, the less execution time and the smaller group fairness score in general.

If the threshold q is too low, e.g., 1%, we spend a lot of time on testing a

huge number of rule sets, which may not be interesting (one such example is

{gender = Male,age � 100}). In contrast, if the threshold q is too high, e.g.,

20% or 50%, there may only exists few or even none rule set (as in the case of

the model trained on the COMPAS dataset).

We note that different q may result in different discrimination being iden-

tified. For the model trained on Law School, the rule set shows that the model

discriminates against black or Asian males the most when q is 5%. However,

when we set q to be 1%, the model is shown to discriminate against black male

individuals the most. For the model trained on the COMPAS dataset, the model
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Table 4.6: Effect of Different q

Time FairnessDataset q (seconds) #rule sets Rule set Score

gender=male,1% 46.71 59 race=Black 14.6%

gender=male,5% 18.46 17 race=Asian or Black 9.6%

gender=male,10% 17.83 16 race=Asian or White 1.0%

gender=male,20% 17.83 16 race=Asian or White 0.9%

gender=male,

Law School

50% 5.27 2 race=other race 0.3%

gender=male, age�401% 1175.79 2063 race=Hispanic or other race 57.7%

gender=male, age�405% 908.5 1590 race=Hispanic or other race 57.7%

gender=male, age�2010% 676.74 1180 race=Hispanic or other race 43.9%

20% 0 0 NULL NULL

COMPAS

50% 0 0 NULL NULL

discriminates against Hispanic or other race males who is older than 40 years old

most when we set q to be 5%. However, when we set q higher (i.e., 10%), the

age range is expanded to be over 20 years in the identified rule set. Such a result

is expected as a large q requires us to find discrimination against a large group.

What is considered to be a reasonable value for q is a complicated question,

which should probably be answered by lawmakers.

RQ3: Can we mitigate subtle discrimination using our testing results? To fur-

ther show the usefulness of our approach, we evaluate whether we can miti-

gate the identified subtle discrimination using our testing results. The idea is to

mitigate the discrimination by retraining. We remark that there are alternative

approaches for improving fairness as well [76, 131]. Note that we generate ad-

ditional instances satisfying the rule set with the sampling approach described

in Section 4.3.3. We only select those generated instances with the opposite

label. For example, the model trained on COMPAS is more likely to predict
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Table 4.7: Discrimination Mitigation for Neural Networks

Before After
Fairness Score Fairness ScoreDataset Rule Set accuracy (fr,f¬r)

accuracy (fr,f¬r)

gender=male, 40age<80, 20.20% 10.1%Adult Income race=White or Asian-Pac-Islander 86.1% (29.9%, 9.7%) 86.2% (18.9%, 8.8%)
38.2% 5.4%Bank Marketing 10  age <90 91.6% (3.3%, 41.5%) 90.6% (6.9%, 12.3%)
21.9% 7.3%German Credit gendre = female, 60age<70 100.0% (72.25%, 50.63%) 100.0% (45.9%, 53.2%)

gender = male, age�40, 62.4% 4.2%COMPAS race = Hispanic or other race 79.0% (20.7%, 83.1%) 78.5% (80.9%, 85.1%)
13.36% 7.5%Law School gender = male, race = Black 75.2% (86.3%, 99.7%) 95.1% (92.3%, 99.8%)
60.7% 51.4%Crime FemalePctDiv �0.4, racePctWhite0.8 93.9% (83.8%, 23.2%) 98.1% (90.6%, 39.2%)
6.50% 0.4%Wiki Talk Pages “gay”, “taoist” 93.9% (13.0%, 6.5) 95.5% (8.4%, 8.0%)
6.6% 3.3%IMDB “european”, “yong” 86.7% (56.0%, 49.4%) 84.0% (43.7%, 40.4%)

elderly males who are Hispanic or other race with “False” label. We can use the

Sample function to generate instances satisfying the condition that are labeled

as “True” according to the original model. Afterward, we retrain the original

model with these additional instances and testing the subtle discrimination with

respect to the same rule set to see the improvement. Note that we gradually

increase the number of additional instances from 50 to 10% of original dataset

size to achieve the lowest fairness score without decreasing the accuracy of the

retrained model.

We only consider the top 1 worst rule sets to mitigate the discrimination.

The results are shown in Table 4.7 for six models trained on additional structured

data and two models retrained on additional textual data. We can observe that all

models show reduced subtle discrimination and almost the same accuracy. The

fairness scores for retrained models on Adult Income, German Credit and Law

School decrease by about half. For the most improvement, the model retrained

on the COMPAS dataset shows much less subtle discrimination as the fairness

score decreases by more than 10 times, i.e., from 57.7% to 4.2%. The fairness

score of the model trained on the Crime dataset decreases from 60.7% to 51.4%.

Relatively, the fairness improvement is not obvious. We believe that it is due to

its many continuous sensitive features and the large number of features (i.e.,

each input contains more than 100 attributes). That is, it would require a lot
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more additional data to improve fairness. In terms of CNN models, the fairness

score decreases from from 6.5% to 0.4% for the model retrained on Wikipedia

Talk Pages and decreases from 6.6% to 3.3% for the model retrained on IMDB

dataset.

We proposed the data-augmentation approach in this work to improve the

fairness merely as an example to show the usefulness of our approach. There

are also methods which target reducing algorithmic bias as well which are often

referred to as in-processing methods. In face, our results can work with those

approaches as well, e.g., by training with additional loss functions based on the

rule sets identified using our method.

Comparison with Baselines We identify the following two baselines from liter-

ature which can potentially identify similar group discrimination as our work.

1) THEMIS [47] calculates group discrimination scores over combinations of

multiple features (subgroups) by measuring the difference between the maxi-

mum and minimum frequencies of two subgroups on randomly generated sam-

ples. Those subgroups can then be regarded as identified discrimination if the

score is higher than a threshold. 2) FairFictPlay [76] proposed an in-processing

algorithm aiming to improve subgroup fairness. The subgroups are identified

with user-provided constraints in the form of conjunctions of Boolean attributes,

linear threshold functions, or bounded degree polynomial threshold functions

over multiple protected features.

In Table 6.1, we show the identified group discrimination with TESTSGD,

Themis and FairFictPlay respectively, along with the fairness scores, on the

same models trained on structured data (similarly to Table 4.3). We set the

timeout as 24 hours. Note that FairFictPlay uses complex linear functions on

all the protected features (which are hard to interpret) to define discriminatory

subgroups, thus we do not show the exact concrete linear functions in the table.

We have the following observations. 1) Compared to FairFictPlay, TESTSGD

identifies discrimination with higher scores (more discriminating) while being
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Table 4.8: Comparisons Between TESTSGD , Themis and FairFictPlay. ‘-’
means timeout.

TESTSGD Themis FairFictPlayDataset Rule Set Fairness Score Sensitive Attributes’ values for Max/Min Proportion Fairness Score Subgroup Fairness Score

Gender=male, 40age<80, [gender=Female, 60age<60, race=Asian-pac islander] -Adult Income race=White or Asian-Pac islander 20.2% [gender=Male, 10age<20, race=White] 26.6% Linear Threshold Funciton 13.9%

Bank Markating 10age<90 38.2% [60age<70] - [10age<20] 8..4% Linear Threshold Funciton 7.6%

[gender=Female, 80age<90] -German Credit gender=feamle, 60age<70 21.9% [gender=Male, 10age<20] 17.1% Linear Threshold Funciton 7.0%

gender=male, age�40, [gender=Female, 10age<20, race=Native American] -COMPAS race=Hispanic or other race 62.4% [gender=Male, 60age<70, race=other race] 67.30% Linear Threshold Funciton 22.4%

[gender=Male, race=White] -Law School gender=male, race=Asian or Black 11.5% [gender=Female, race=Black] 13.5% Linear Threshold Funciton 3.7%

Crime FemalePctDiv�0.4, racePctWhite0.8 60.7% - - Linear Threshold Funciton 38.8%

interpretable. Moreover, TESTSGD automatically identifies the discriminated

subgroups without any prior knowledge. 2) Similar to TESTSGD, Themis is

able to identify discriminated subgroups automatically. However, Themis iden-

tifies two subgroups which are maximally different (in terms of being predicted

favorably) while TESTSGD identifies subgroups which are predicted different

from the rest. These two approaches thus produce results that are complemen-

tary to each other. Note that Themis does not support text data.

Threats to validity We mentioned that our error guarantees rely on the i.i.d. as-

sumption and it is challenging and still open question how to guarantee that the

assumption is satisfied in practice. In this work, we try to approximate the origi-

nal dataset’s distribution by adding perturbation on one attribute systematically,

which is the approach adopted in [176, 150] and many other machine learning

literature [132].

Our approach aims to explain why and under which conditions the discrim-

ination shows in a human-understandable way. In comparison with baselines,

THEMIS is not designed to test against subtle discrimination. To compare wich

our approach, we further show the discrimination conditions of THEMIS based

on the testing results. As for the baseline FairFictPlay, we omit the exact linear

threshold functions since they are complicated.
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4.5 Related Work

Many existing works attempted to test discrimination according to different fair-

ness definitions and measurements [41, 25]. In [44], Feldman et al. provide a

fairness definition which is measured according to demographic parity of model

predictions. It measures how well the sensitive class can be predicted based on

classification accuracy. In [61], Hardt et al. present an alternate definition of

fairness based on demographic parity. It requires a decision to be independent

of the sensitive attribute. In [84], Kusner et al. define counterfactual discrim-

ination which focuses on single decisions towards an individual. A prediction

is counterfactual fair if it is the same in the actual group and a different de-

mographic group. In [47], Galhotra et al. propose causal discrimination to

measure the fraction of inputs for which model causally discriminates. This

definition is similar to counterfactual fairness, but it takes instances of discrimi-

nation into account. In [76], Kearns et al. proposed an in-processing algorithm

aiming to improve the fairness of given subgroups, where subgroups are de-

fined as conjunctions of attributes, linear threshold functions, or bounded degree

polynomial threshold functions over multiple protected features. Most existing

works [47, 81, 16] use positive classification rate as fairness measurement.

Subsequently, many works focus on individual discrimination to generate

individual discriminatory instances [176, 177, 7, 66]. They tried to generated in-

stances which are classified differently after changing sensitive attributes. In [7],

Agarwal et al. present an automated testing approach to generate test inputs to

find individual discrimination. In [130], Ruoss et al. propose a fairness rep-

resentation framework to generalize individual fairness to multiple notions. It

learns a mapping from similar individuals to latent representations. However,

the testing on individual discrimination cannot provide a statistical measurement

of fairness.

Some other existing works attempted to test model discrimination with fair-

ness score measurements. In [148], Tramer et al. propose an unwarranted asso-
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ciations framework to detect unfair, discriminatory or offensive user treatment

in data-driven applications. It identifies discrimination according to multiple

metrics including the CV score, related ratio and associations between outputs

and sensitive attributes. In [81], Kleinberg et al. also test multiple discrimi-

nation scores and compare different fairness metrics. In [47], Galhotra et al.

propose a tool called THEMIS to measure software discrimination. It tests dis-

crimination with two fairness definitions, i.e., group discrimination score and

causal discrimination score. In [4], Adebayo et al. try to determine the relative

significance of a model’s inputs in determining the outcomes and use it to assess

the discriminatory extent of the model.

Some prior work has been done on fairness for text classification tasks as

well. In [17], Blodgett et al. discuss the impact of unfair natural language in

NLP and show how statistical discrimination arises in processing applications.

In [19], Bolukbasi et al. show gender bias in the world embedding and provide

a methodology for modifying an embedding to remove gender bias. In [38],

Dixon et al. measure discrimination using a set of common demographic iden-

tity terms and propose a method to mitigate the unintended bias by balancing

the training data.

Compared with all the above-mentioned existing works, we provide further

fairness testing. Instead of measuring the overall discrimination, our approach

systematically identifies and measures subtle discrimination. That is, we not

only measure statistical discrimination with a confidence guarantee but also of-

fer interpretable rule sets to represent subtle discrimination.

This work is remotely related to works on applying rule-based models for

model explanation. In [163], Yang et al. present an algorithm for building

probabilistic rule lists with logical IF-THEN structure. In [87], Lakkaraju et al.

propose interpretable decision sets to interpret model predictions with high ac-

curacy and high interpretation. Our work leverage such rule-based interpretable

structure to present subtle discrimination in models.
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4.6 Summary

In this work, we focus on testing neural network models against subtle group

discrimination and propose a framework to systematically identify interpretable

subtle group discrimination based on group fairness measurement with a certain

confidence. Our extensive evaluation demonstrates that subtle group discrimi-

nation in neural networks is common to a surprising level. We also show that

it is possible to mitigate such discrimination by utilizing our testing results to

generate more data for retraining.
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Chapter 5

Adaptive Fairness improvement

5.1 Introduction

While these neural networks often have high accuracy in these classification

tasks, some concerning fairness issues have been observed as well [130, 23,

30, 46, 16]. To address these fairness issues, many methods and tools have

been proposed to detect discrimination in neural networks systematically [47,

176, 9, 150, 99]), and more relevantly, to improve the fairness of neural net-

works [44, 71, 168, 73, 29, 5, 61, 72, 123, 175]. While various fairness im-

provement methods have been proposed and try to mitigate discrimination in

different aspects, e.g., data processing, model retraining or modifying predic-

tion scores, not all of them are effective in a certain task. In this work, we aim

to evaluate existing fairness improvement methods and propose a novel method

to choose the ‘right’ fairness improvement method based on causality analysis.

In general, existing fairness improving methods can be classified into three

categories according to when the method is applied, e.g., pre-processing, in-

processing and post-processing methods. Pre-processing methods [71, 44, 27,

167] aim to reduce the bias in the training data so as to reduce the bias of model

predictions; in-processing methods [29, 168, 73, 5, 6, 76] focus on the model

and the training process; and post-processing methods [61, 72, 123] modify the
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prediction results directly rather than the training data or the model.

However, fairness improving is a complicated task and it is not always clear

which method should be applied. As shown in Section 6.3.4, different fair-

ness improving methods perform significantly differently on different models

(which is consistent with the partial results reported in [16, 30, 46]). More

importantly, applying the ‘wrong’ method would not only lead to a huge loss

in accuracy (e.g., the accuracy of the model trained on the COMPAS dataset

drops by 35% after applying the Reject Option post-processing method), but

also lead to worsened fairness. For instance, out of 90 cases (i.e., combinations

of model, protected attribute and fairness improving method) that we examined

in Section 6.3.4, 20% of them result in worsened fairness. Furthermore, a fair-

ness improving method may be effective with respect to one protected attribute

whilst being harmful with respect to another protected attribute. For instance,

the fairness of the model trained on Adult Income dataset improves by around

4% with respect to the gender attribute after applying the Equalized Odds post-

processing method and worsens by 20% with respect to the race attribute. Given

that many of the fairness improving methods require significant effort and com-

puting resource, it is infeasible to try all of them and identify the best perform-

ing one. It is thus important to have a systematic way of identifying the ‘right’

method efficiently.

So then, we propose the method to choose the ‘right’ fairness improving

method based on causality analysis. Intuitively, the idea is to conduct causal-

ity analysis so as to understand the causes of the discrimination, i.e., whether

a certain number of input attributes or hidden neurons are highly responsible

for the unfairness. Formally, we use the probability of high causal effects and

Coefficient of Variation to characterize the distribution of the causal effects.

Depending on the result of the causality analysis, we then choose the fairness

improving method accordingly. For instance, if a small number of input at-

tributes bare most of the responsibility for unfairness, a pre-processing method
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such as [71, 44] would be the choice, whereas an in-processing method would

be the choice if some neurons are highly responsible. Our approach is designed

based on the results of an empirical study which evaluates 9 fairness improv-

ing methods (i.e., 2 pre-processing methods, 4 in-processing methods and 3

post-processing methods) on 4 different benchmark datasets with respect to dif-

ferent fairness metrics. Our approach is systematically evaluated with the same

models. The results show that our selected processing approach is the optimal

choice to improve group fairness in all cases and the optimal choice to reduce

individual discrimination in most cases.

This work is based on the published paper [172]. The remaining sections

of this work are organized as follows. In Section 5.2, we review relevant back-

ground. In Section 5.3, we present results from our empirical study which mo-

tivates our approach. In Section 5.4, we present our adaptive fairness improving

method. In Section 5.5, we evaluate our approach. Lastly we discuss related

works in Section 5.6 and conclude in Section 5.7.

5.2 Background

In the following, we review relevant background on fairness and existing fair-

ness improving methods.

5.2.1 Fairness Definitions

In the literature, there are multiple definitions of fairness [41, 69, 25, 47, 81,

165]. What is common across different definitions is that to define fairness,

we must first identify a set of protected attributes (a.k.a. sensitive attributes).

Commonly recognized protected attributes instance race, sex, age and religion.

Note that different models may have different protected attributes.

As in section 4.2.2, we focus on two popular definitions of fairness, i.e.,

group fairness and individual discrimination. In the following, we formally de-
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fine these two fairness categories as well as the corresponding fairness scores,

i.e., metrics that are used to quantify the degree of unfairness.

Group fairness, which is also known as statistical fairness, is the primary focus

of this work as well as many existing studies [170, 62, 77, 145, 14]. Clas-

sic measurements for group fairness include positive classification rate and true

positive rate. Given a model, we can calculate a model’s degree of unfairness

using a typical measurement, i.e., Statistical Parity Difference (SPD) [25]1. Re-

ferring to the basic definition of group fairness at Definition 6, we show the

formal definition of Statistical Parity Difference in the following.

Definition 8 (Statistical Parity Difference) Let Y be the predicted output of

the neural network N; l be a (favorable) prediction and F be a protected at-

tribute. Statistical Parity Difference is the difference in the probability of fa-

vorable outcomes between the unprivileged and privileged groups where the

unprivileged/privileged groups are defined based on the value of the protected

attribute.

|P(Y = l | F = 0)�P(Y = l | F = 1)| (5.1)

Note that the above definition only considers a single binary protected at-

tribute, which is sometimes insufficient. The following metric, called Group

Discrimination Score (GDS), extends SPD to measure fairness based on multi-

ple protected attributes.

Definition 9 (Group Discrimination Score) Let N be a neural network; Y be

the predicted output of the neural network; l be a (favorable) prediction, and F

be a set of (one or more) protected attributes. Let q (and q 0) be an arbitrary

valuation of the protected attributes F. Let Xq be the set of inputs whose F-

attribute values are q . Let Pq be P(N(x) = l | x 2 Xq ). The multivariate group

discrimination with respect to protected attributes F is the maximum difference

between any Pq and Pq 0 .
1There are also alternative similar measures such as Disparate Impact [165] that we omit in

this study.
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Example 5.2.1 Consider the structured dataset Adult Income [128]. It has two

protected attributes, i.e., gender, and race. Each attribute has a set of two val-

ues, i.e., Female or Male for gender, and White or non-White for race. As a

result, there are 4 possible q , i.e., (Male, White), (Female, White), (Male, non-

White) and (Female, non-White). The probabilities of an individual who is pre-

dicted to have a high-income level (i.e., more than 50K) with respect to these

four q is 14.4%, 39.6%, 9.0% and 28.5% respectively. The GDS of the model is

thus 30.6%.

Individual discrimination is another concept which is often applied in fairness

analysis. It focuses on specific pairs of individuals. Intuitively, individual dis-

crimination occurs when two individuals that differ by only certain protected at-

tribute(s) are predicted with different labels. An individual whose label changes

once its protected attribute(s) changes is referred to as an individual discrimi-

natory instance. This notion is widely used to search discriminatory instances

which differ only in those sensitive characteristics [176, 177, 150]. There are

also plenty of works on learning models which are more likely to avoid indi-

vidual discrimination [130]. The formal definition of individual discriminatory

instance is shown in the following.

Definition 10 (Individual Discriminatory Instance) Let F be a set of (one or

more) protected attributes; and N be a neural network. x is an individual dis-

criminatory instance if there exists an instance x0 such that the following condi-

tions are satisfied.

• 8q 62 F. xq = x0q

• N(x) 6= N(x0)

The above definition is often adopted in fairness testing, i.e., works on searching

or generating individual discriminatory instances [176, 150]. In addition, there

are proposals on learning models which are more likely to avoid individual dis-

criminatory [130].
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Given a model, we can measure its fairness according to individual discrim-

ination by measuring the percentage of individual discriminatory instances in a

set of instances (which can be the test set or a set generated to simulate unseen

samples), formally called Causal Discrimination Score (CDS).

Definition 11 (Causal Discrimination Score) Let N be a neural network; F

be a set of protected attributes. The causal discrimination score of N with re-

spect to protected attributes F, is the fraction of inputs which are individual

discrimination instances.

5.2.2 Fairness Improving Methods

Many methods have been proposed to improve the fairness of neural networks

[71, 44, 27, 167, 29, 168, 73, 5, 6, 76, 61, 123, 72]. They can be categorized

into three groups according to when they are applied, i.e., pre-processing, in-

processing and post-processing.

Pre-processing methods aim to reduce the discrimination and bias in the

training data so as to improve the fairness of the trained model. Among the

many pre-processing methods [71, 44, 27, 167], we focus on the following two

representatives in this work.

• Reweighing (RW) [71] works by assigning different weights to training sam-

ples in order to reduce the effect of data biases. In particular, lower weights

are assigned to favored inputs which have a higher chance of being predicted

with the favorable label and higher weights are assigned to deprived inputs.

• Disparate Impact Remover (DIR) [44] is based on the disparate impact met-

ric which compares the proportion of individuals that are predicted with the

favorable label for an unprivileged group and a privileged group. It modifies

the values of the non-protected attribute to remove the bias from the training

dataset.
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In-processing methods modify the model in different ways to mitigate the

bias in the model predictions [29, 168, 73, 5, 6, 76]. We focus on the following

representative in-processing methods in this work.

• Classification with fairness constraints (META) [29] develops a meta-algorithm

which captures the desired metrics of group fairness (e.g., GDS), using con-

vex fairness constraints (with strong theoretical guarantees) and then using

the constraints as an additional loss function for training the neural network.

• Adversarial debiasing (AD) [168] modifies the original model by including

backward feedback for predicting the protected attribute. It maximizes the

predictors’ ability for classification while minimizing the adversary’s ability

to predict the protected attribute to mitigate the bias.

• Prejudice remover regularizer (PR) [73] focuses on the indirect prejudge. It

uses regularizers to compute and restrict the effect of the protected attributes.

• Exponential gradient reduction (GR) [5] reduces the fair classification prob-

lem to a sequence of cost-sensitive classification problems, whose solutions

yield a randomized classifier with the lowest empirical error subject to the

desired constraints.

Post-processing methods modify the prediction results instead of the inputs

or the model. We consider three representative processing algorithms in this

work.

• Equalized Odds (EO) [61] solves a linear program to find probabilities with

which to change the output labels, so as to optimize equalized odds on pro-

tected attributes.

• Calibrated Equalized Odds (CEO) [123] optimizes over calibrated classifier

score outputs to find probabilities with which to change output labels with an

equalized odds objective.

87



• Reject Option Classification (RO) [72] assigns favorable labels to unprivi-

leged instances and unfavorable labels to privileged instances around the de-

cision boundary with the highest uncertainty.

5.3 An Empirical Study

In this section, we present an empirical study which aims to compare the per-

formance of different fairness improving methods on different models, different

protected attributes or attribute combinations.

5.3.1 Experimental Setup

Datasets Our experiments are based on 4 models trained with the following

benchmark datasets: Census Income [128], German Credit [64], Bank Market-

ing [110] and COMPAS [10]. These datasets have been used as the evaluation

subjects in multiple previous studies [176, 47, 38, 130, 99, 170].

• Adult Income: The prediction task of this dataset is to determine whether the

income of an adult is above $50,000 annually. The dataset contains more than

30,000 samples. The attributes gender, race are protected attributes.

• German Credit: This is a small dataset with 600 samples. The task is to assess

an individual’s credit based on personal and financial records. The attributes

gender and age are protected attributes.

• Bank Marketing: The dataset contains more than 45,000 samples and is used

to train models for predicting whether the client would subscribe a term de-

posit. Its only sensitive attribute is age.

• COMPAS: The dataset contains more than 7,000 samples and is used to pre-

dict whether the recidivism risk score for an individual is high. The attributes

gender, race are protected attributes.
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Table 5.1: Dataset Privileged Groups Definition

Dataset protected Attribute Privileged Group Favorable Class

Adult Income gender gender=Male income>50Krace race=Caucasian

German Credit gender gender=Male good creditage age>30

Bank Marketing age age>30 Yes

COMPAS gender gender=Female no recidivismrace race=Caucasian

In our experiment, we define privileged and unprivileged groups based on

the default setting in [14]. The details of the privileged group definitions and

favorable class are summarised at Table 5.1. Altogether, we have a total of 10

model-attribute combinations. Our implementation of the 9 fairness improving

methods is based on the AIF360 implementation [14]. Each implementation is

manually reviewed and tested through standard practice.

Model Training Our models are feed-forward neural networks, which are shown

to be highly accurate and efficient in these real-world classification problems [67,

169, 3]. All these neural networks contain five hidden layers, each of which con-

tains 64, 32, 16, 8 and 4 units. The output layer contains 2 (number of predict

classes) units. For each dataset, we split the data into 70% training data and 30%

test data. All experiments are conducted on a server running Ubuntu 1804 op-

erating system with 1 Intel Core 3.10GHz CPU, 32GB memory and 2 NVIDIA

GV102 GPU. To mitigate the effect of randomness, whenever relevant, we set

the same random seed for each test. The trained models reach standard state-of-

the-art accuracy. The trained results including the corresponding fairness scores

are shown in Table 5.2. Note that SPD is the probability difference between

the unprivileged and privileged groups which is defined on a single protected

attribute and thus it is irrelevant if multiple protected attributes are considered

simultaneously.
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Table 5.2: Neural Networks in Experiments

Dataset Protected Attribute SPD GDS CDS Accuracy

Adult Income
gender 0.249 0.249 0.103

81.7%race 0.119 0.119 0.117
gender+race - 0.306 0.179

German Credit
gender 0.031 0.031 0.078

63.3%age 0.095 0.095 0.15
gender+age - 0.133 0.172

Bank age 0.047 0.047 0.014 90.0%

COMPAS
gender 0.227 0.227 0.076

72.7%race 0.151 0.151 0.028
gender+race - 0.301 0.083
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Figure 5.1: Group Fairness Improvement of Models with respect to Different
Protected Attributes

5.3.2 Evaluation Results

In the following, we present the results of the empirical study, which aims to

answer the following research questions.

RQ1: Do the fairness improving methods always improve group fairness? To

answer the question, we systematically apply all fairness improving methods

on all the model-attribute combinations and measure the effectiveness of the

fairness improving methods. We measure the group fairness improvement as

follows. SPD is adopted if a single protected attribute is relevant and GDS is

adopted if multiple protected attributes are considered at the same time. Note

that GDS is the same as SPD with respect to a single protected attribute.
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Figure 5.2: Accuracy Changes of Models with respect to Different Protected
Attributes After Processing

The results are shown in Figure 5.1, where there is one bar for each model-

attribute combination and for each fairness improving method, i.e., a total of 9

bars for each model-attribute combination (e.g., Adult-gender) and 90 bars in

total. A positive value means improved fairness and a negative value means

worsened fairness. This bar is shown in 9 different colors for the nine different

methods.

First of all, to our surprise, the fairness improving methods are not always

helpful in terms of improving fairness. As shown in Figure 5.1, while many

methods have a positive effect in many cases, there are many instances where

applying fairness improving method results in worsened fairness, sometimes

quite significantly. This is shown as the colorful bar before the zero line, which

accounts for a total of 18 cases (i.e., 20%). Most of those cases are for in-

processing and post-processing methods.

Furthermore, the performance of the methods varies significantly across dif-

ferent models and protected attributes. Table 5.3 shows a summary on which

method achieves the most fairness improvement for each model-attribute com-

bination and it can be observed that different winners are there for different

model-attribute combinations. Further analysis shows the performance of the

fairness improving methods vary across many dimensions. First, the perfor-

mance of the same method varies significantly on different models. For in-
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Table 5.3: Best Method for Group Fairness Improvement

Dataset Protected Attribute Group Fairness Absolute Change

Adult Income
gender GR 0.248

race META 0.095
gender, race GR 0.272

German Credit
gender RW 0.023

age RW 0.101
gender, age RW 0.078

Bank age RW 0.041

COMPAS
gender RO 0.188

race RO 0.14
gender, race RO 0.222

stance, while the post-processing method CEO works effectively for the neural

network trained on Adult Income dataset, it is ineffective for the model trained

on German Credit dataset. Secondly, the performance of the methods varies

across different attributes in the same model. For instance, the post-processing

method EO improves the group fairness with respect to gender attribute effec-

tively but leads to worse group fairness with respect to race attribute for the

neural network trained on Adult Income dataset.

Moreover, even the processing methods in the same category behave dif-

ferently on the same model-attribute combination. In terms of in-processing

methods, RW is much more effective than DIR. All models’ group fairness can

be improved by RW, whereas DIR is ineffective with respect to Credit-gender

and COMPAS-race. For in-processing methods, GR is most effective in im-

proving group fairness for all model-attribute combinations except Credit-age.

The performance of Post-processing methods varies significantly. For example,

the post-processing method RO is much more effective in improving the group

fairness for the neural network trained on COMPAS dataset than CEO and EO.

We have some conjectures on why fairness improvement approaches may

have different effects on different models and different model-attribute combi-

nations. The main reason is that these methods improve fairness based on certain

metrics which may be subtly different from common notions of fairness such as
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SPG, GDS and CDS. For instance, CEO focuses on reducing False Positive Rate

difference in particular, which sometimes translates to fairness measured using

SPG/GDS/CDS (as for the Adult Income dataset) and sometimes not. For the

different performances on different model-attribute combinations, there may be

two reasons. The first is that the discrimination against different attributes in

the model may be very different (see in Table 5.2 and observed in [16]). The

second possible reason is that the reasons of the discrimination against different

attributes may be different, e.g., biased training data or biased models.

So, existing fairness improving methods are not always effective in improv-

ing group fairness and thus they must be applied with caution.

RQ2: What is the cost on accuracy when applying existing fairness improving

methods? The results are shown in Figure 5.2, where there is similarly one bar

for each model-attribute combination and for each fairness improving method.

A positive value indicates an increased accuracy and a negative value indicates

a decreased accuracy.

First of all, we observe that some of the fairness improving methods may

indeed incur a significant loss of accuracy. This is most observable on META,

PR, CEO, EO and RO. Especially for the neural network trained on the COM-

PAS dataset, the accuracy drops more than 40% after applying META, PR or

RO. The average loss of accuracy is around 13% after processing by META and

12% after processing by RO. To our surprise, some of the fairness improving

methods result in improved accuracy in some cases. This is most observable

in some in-processing methods. Especially for the neural network trained on

the German Credit dataset, the accuracy increases after applying all four in-

processing methods. It should be noted however most of these in-processing

methods have a less or harmful effect in terms of group fairness improvement

in these cases. For example, while the accuracy increases by 4% after applying

GR on Credit-age, the SPD fairness score worsens by 6%.

The accuracy reduction varies across not only different model-attribute com-
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Figure 5.3: Comparison between group fairness improvement and individual
discrimination reduction

binations, but also different methods across different categories. Compared fair-

ness improving methods from different categories, the pre-processing methods

have an overall mild impact on the model accuracy. In terms of the most effec-

tive pre-processing method RW, it is effective on group fairness improvement

with respect to all model-attribute combinations and scarifies little accuracy. In

terms of the most effective in-processing method GR, it is effective on group

fairness improvement with respect to all model-attribute combinations except

Credit-age (although sometimes with minimal fairness improvement). Among

them, 7 neural networks get lower accuracy after processing. But the accuracy

drops less than 1% in average. In terms of the post-processing method RO, it is

effective on group fairness improvement with respect to 7 model-attribute but 5

neural networks get lower accuracy after processing. Especially for the neural

network trained on COMPAS dataset, the accuracy drops more than 30%, which

is unacceptable.

In a nutshell, existing fairness improving methods may incur a significant

loss in accuracy.

RQ3: Do the fairness improving methods perform differently for improving

group fairness and reducing individual discrimination? Almost all existing fair-

ness improving methods focus on group fairness (whilst some fairness testing

approaches focus on individual discrimination for some reason). Thus we are
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curious about whether the existing fairness improving methods can reduce in-

dividual discrimination as well. To answer this question, we compare the CDS

change against the group fairness metric change achieved by the same method.

The idea is to check whether the changes are consistent, i.e., whether an im-

provement in group fairness leads to a reduction in individual discrimination

and vice versa. Note that, by the default setting in [14], the DIR pre-processing

method removes all protected attributes, which makes individual discrimination

irrelevant, and thus is not considered in this experiment.

The results are shown in Figure 5.3, where the CDS change is placed next to

the fairness metric change for each fairness improving method. First of all, the

group fairness improvement and individual discrimination reduction are incon-

sistent. A method improving the group fairness effectively might have none or

even harmful effect on individual fairness. This is most observable on RW and

RO. The pre-processing method RW is effective on group fairness improvement

for all models but lead to more individual discrimination for 8 model-attribute

combinations. After applying the post-processing method RO, the individual

discrimination worsens for all model-attribute combinations.

Furthermore, only the in-processing methods consistently reduce individ-

ual discrimination. In terms of META method, it increases the group fairness

and reduces the individual discrimination at the same time for 8 model-attribute

combinations. The method AD reduces the individual discrimination with re-

spect to all protected attributes in Adult Income dataset and German Credit

dataset. Especially for the neural network trained on Adult Income dataset, all

in-processing methods improve the individual fairness effectively. By contrary,

all post-processing methods have harmful effect on individual discrimination.

on average, the CDS worsens by around 19% after applying CEO, worsens by

24% after applying EO and worsens by more than 18% with RO.

So, existing methods are less effective in reducing individual discrimination.
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5.4 An Adaptive Approach

Our empirical study shows that the performance of fairness improving methods

varies significantly across different models, i.e., sometimes resulting in wors-

ened fairness and/or reduced accuracy. We thus need a systematic way of choos-

ing the right method. Our proposal is an adaptive approach based on causality

analysis. Intuitively, causality analysis measures the “responsibility” of each

neuron and input attributes towards the unfairness, and depending on whether

the most responsible neurons are in the hidden layers or at the input layer, as

well as whether a small number of them are significantly more responsible than

the rest. Then we choose the fairness improving method accordingly. In the

following, we present the details of our approach.

5.4.1 Causality Analysis

Causality analysis aims to identify the presence of causal relationships among

events. Furthermore, it can be used to quantify the causal influence of an event

on another event. To conduct causality analysis on neural networks, we first

adopt the approach in [31, 145], and treat neural networks as Structured Causal

Models (SCM). Formally,

Definition 12 (Structure Causal Model) A Structure Causal Model consists of

a set of endogenous variables X and a set of exogenous variables U connected

by a set of functions F that determine the values of the variables in X based on

the values of the variables in U. The neural network corresponding SCM can

be represented as a 4-tuple Model M(X ,U,F,PU), where PU is the probability

of distribution over U.

For the neural network, the endogenous variables V are observed variables, e.g.,

attributes or neurons. The exogenous variables are the unobserved random vari-

ables, e.g., noise, and PU is the possible distribution of the exogenous variables.

Trivially, an SCM can be represented by a directed graphical model G = (X ,E),
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where the nodes X is a set of endogenous variables and the edges E are the

causal mechanism. Specifically, each node of the graph correspond to a vari-

able. An edge from one node to another indicates a causal relationship between

the corresponding variables, where the tail of the arrow represents the case and

the head represents the effect.

Based on SCM, the causal effect of a certain event can be computed as the

difference between potential outcomes under different treatments. In this work,

we adopt the Average Causal Effect (ACE) as the measurement of the causal

effect [31, 145]2. The formal definitions of ACE are shown below (where it is

assumed that the input endogenous variables are not correlated to each other).

Definition 13 (Average Causal Effect) The ACE of a given endogenous vari-

able x with value a on output y can be measured as:

ACEy
do(x=a) = E [y | do(x = a)]�baselinex (5.2)

where E [y | do(xi = a)] represents the interventional expectation which is the

expected value of y when the random variable x is set to a; and baselinex is the

average ACE of x on y, i.e., Ex [Ey [y | do(x = a)]]3.

Following the recent work reported in [145], we apply ACE to capture the

causal influence on model fairness. That is, the y in Equation 5.2 should be a

measure of the model unfairness, i.e., SPR, GDS or CDS. For simplicity, we

denote it as y f air.

In order to analyze the causal effect on fairness, we analyze two possible

causal effects, i.e., the relationship between input attributes to unfairness, and

the relationship between the hidden neurons to unfairness. In this work, we

make use of the average interventional expectation to approximate the ACE of

variable x to y f air. Formally, ACEy f air
do(x=a) represents the ACE of variable x under

2There are alternative ones such as the gradient of causal attribution [121] which work
slightly differently.

3or alternatively it can be E [y | do(x = x̂)] where x̂ is the selected significant point.
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value a to the fairness property y f air. One complication is that each input at-

tribute or neuron has many possible values and we must consider all the possible

values in computing the ACE. Our remedy is to consider the average Interven-

tional Expectation (AIE).

Definition 14 (Average Interventional Expectation) Let x be the given endoge-

nous variable, y f air be the fairness property and val setx be a set of values of

variable x. The average interventional expectation is the mean of expected val-

ues of y f air when x is set to be each value a:

AIEy f air
x =

Âa2val setx E[y f air | do(x = a)]

#(val setx)
(5.3)

For the input features with categorical values, we intervene the feature with

every possible value based on the training dataset. For the hidden neurons with

continuous value, intervening it with every possible value might be consuming.

We thus intervene the neurons as follows which is adopted in [31] as well. That

is, we assume the “intervener” is equally likely to perturb variable x to any

value a within the input range, so that a ⇠ U(minx,maxx), where minx and

maxx are the minimum and maximum input values of x. In practice, minx and

maxx can be obtained by observing the value of the input attribute or neuron

given all the training samples and the val setx is generated by partitioning the

range [minx,maxx] uniformly into a fixed number of intervals. Note that if a

specific distribution of the interventions is given, it can be used to generate the

intervention values instead.

The details of causality analysis on the hidden neurons are shown in Al-

gorithm 10. Given a neural network N, a set of inputs D (i.e., the training

set), a hidden neuron n and the function for measuring the desired fairness

score f air metric, we systematically measure the AIE with neuron interven-

tion. At line 1 and line 2, we set min to the minimum output of n and max to

the maximum output of n. Then we generate a set of evenly spaced numbers
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Algorithm 10 CausalityNeuron(N,D,n, f air metric) where N is the neural net-
work, D is the dataset used to measure causal effect, n is a hidden neuron in N
and f air metric is the function measuring the fairness score based on the de-
sired fairness metric

1: min := minimum output of neuron n
2: max := maximum output of neuron n
3: val set = generate vals(min,max,num interval)
4: for a in val set do
5: ie {}
6: y f air = f air metric(N,D|do(n = a))
7: ie ie[ y f air
8: end for
9: return mean(ie)

Algorithm 11 CausalityAttribute(N,D, f , f air metric) where N is the neural
network, D is the dataset used to measure causal effect, f is an input attribute
and f air metric is the function of measuring the fairness score based on the
desired fairness metric

1: val set := the set of all possible values of attribute f
2: for a in val set do
3: ie {}
4: y f air = f air metric(N,D|do( f = a))
5: ie ie[ y f air
6: end for
7: return mean(ie)

within the domain of the neuron output [min,max] as val set through function

generate vals at line 3. The input parameter num interval decides how many

intervals are there. From line 4 to 8, we calculate the AIE with each perturbing

value a . In each round, we first set ie as an empty set at line 5 and then calculate

the fairness score y f air whilst fixing the value of neuron n as a . At line 9, we

return the mean of all Interventional Expectation as the AIE.

Algorithm 11 similarly conducts causality analysis on the input attributes.

The only difference is that we perform the intervention on the given attribute f

at line 4 with all possible values of the attribute.

5.4.2 Adaptive Fairness Improvement

Once we compute the causal effect of each neuron and each input attribute on

fairness (i.e., responsibility for unfairness), we can then adaptively select the
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fairness improving methods. For example, if the causal effects of input at-

tributes are relatively high, the unfairness is more likely to be related to the

input attributes and likely to be eliminated by pre-processing methods. Simi-

larly, if the interior neurons in the neural network have high causal effects on

the fairness property, in-processing methods might be a suitable choice for fair-

ness improvement.

Formally, to properly compare the casual effects of neurons and input at-

tributes, we first normalize it with respect to a baseline y f air, which is the fair-

ness score based on the desired fairness metric without any intervention. The

baseline y f air can be SPD, GDS and CDS as discussed previously.

We define the causal effects higher than the basic fairness property as high

causal effects and vice versa. In other words, only the variable with a causal

effect higher than the basic fairness property has the positive causality to un-

fairness. That is, we only consider those neurons and attributes with a causal

effect higher than y f air as responsible. Next, we measure the proposition of

input attributes and neurons that are considered responsible. Given the set of

causal effects of all attribute AIE f and the set of causal effects of all neurons

AIEn, we formally denote the proportion of high causality attributes as Pf and

the proportion of high causality neurons as Pn and define them as follows.

Pf = P(AIE > y f air | AIE 2 AIE f ) (5.4)

Pn = P(AIE > y f air | AIE 2 AIEn) (5.5)

Furthermore, we measure the distribution of the “responsibility” among the

input attributes and neurons, since it intuitively has an impact on which fairness

improving method should be chosen. For instance, if all input attributes have

similar responsibility for unfairness, it is likely hard to pre-process the inputs so

as to eliminate the discrimination. Similarly, if all neurons are equally respon-
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sible for unfairness, it is complex to improve the fairness by focusing on a few

neurons as in [145]. Formally, we use the Coefficient of Variation (CV) to cap-

ture the distribution of the causal effects. CV is used to measure the dispersion

of data points around the mean. It represents the ratio of the standard deviation

to the mean which indicates the degree of variation. In this setting, the larger

the CV, the more uneven the distribution of causal effects. We denote the CV of

attributes as CVf and the CV of neurons as CVn.

The details of how to select fairness improving methods are shown in Algo-

rithm 12. If both the proportion of responsible attributes and responsible neu-

rons is less than a proportion threshold P thres, few input attributes and neurons

are to be blamed for the unfairness. As a result, it is unlikely pre-processing

(which focuses on input attributes) or in-processing (which focuses on the hid-

den neurons) is effective, and thus we choose to apply the post-processing meth-

ods. In practice, we set the threshold P thres to be 10%. Otherwise, there are

sufficient number of input attributes or neurons that are responsible for unfair-

ness, we then select to apply a pre-processing method if CVf >CVn, i.e., the dis-

tribution of causal effects is more uneven in the input attributes which means that

some of the input attributes are more responsible. Otherwise, an in-processing

method is chosen. For pre-processing methods, RW is preferred over DIR, as

RW is also feasible to individual fairness metrics. For in-processing methods

and post-processing methods, we choose the method with the best improvement

and least accuracy cost.

Example 5.4.1 For the neural network trained on Adult Income dataset, as-

sume that the protected attribute is the “gender” attribute. According to the

above discussion, we use the group fairness metric SPD to calculate the causal

effects of attributes and neurons. The causality analysis result is shown in Fig-

ure 5.4, where each dot represents the AIE of either an input attribute or a

hidden neuron. We mark the causal effects of input attributes with black dots

and mark the causal effects of hidden neurons in different layers with different
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Algorithm 12 AdaptiveImprove(Pn,Pf ,CVn,CVf )

1: if Pf  P thres and Pn  P thres then
2: return post-processing methods
3: else
4: if CVf >CVn then
5: return pre-processing methods
6: else
7: return in-processing methods
8: end if
9: end if
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Figure 5.4: Causality analysis result of Adult-gender

colors. The dotted line marks the baseline y f air which is 0.249. There are 3 (i.e.,

25%) attributes with causal effects higher than the baseline and 33 (i.e., 26.6%)

neurons with causal effects higher than the baseline. As the proportion of re-

sponsible input attributes and neurons satisfy the threshold, we then calculate

the CV values of those responsible attributes and neurons. The CVf of these 3

attributes is 0.041 and the CVn of these 33 neurons is 0.152. Since CVn >CVf ,

we choose to apply in-processing methods so as to improve the model’s group

fairness.
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5.5 Implementation and Evaluation

In this section, we evaluate the performance of our adaptive approach system-

atically to answer multiple research questions. Note that the same datasets,

models, and the configuration from Section 6.3.4 are used in this section.

RQ1: How are the “responsibility” distributed among the neurons and input

attributes? To answer this question, we show the probability of high causal

effects and CV of these causal effects for both the hidden neurons and input

attributes in Table 5.4 and Table 5.5. The first column is the training dataset

and the second column shows the corresponding protected attribute(s) in each

dataset. Then we show the probability of attributes with high causal effects

Pf , the probability of neurons with high causal effects Pn, CV on highly causal

attributes CVf and CV on highly causal neurons CVn. It can be observed that the

distribution of responsibility varies significantly across different model-attribute

combinations, which potentially explains why only some fairness improving

methods are effective sometimes.

Table 5.4 shows the distribution of high causal effects based on group fair-

ness metrics, e.g., SPD for single protected attributes and GDS for multivari-

ate protected attributes. Based on algorithm 12, the selected processing cate-

gories are shown in the last column. For all attribute(s) in Adult Income dataset,

the probabilities of high causal effects are higher than 10% and CVn scores are

higher than CVf scores. So we decide to apply pre-processing methods to this

model to improve the group fairness for all attributes. For the neural network

trained on German Credit dataset with respect to all attributes, we conclude to

apply pre-processing methods. For example, with respect to age attribute, both

the proportion and the CV of high causal neurons are lower than the two of high

causal attributes. Similarly, based on the distribution of high causal effects, we

conclude to apply pre-processing to the neural network trained on Bank dataset

and the neural network trained on COMPAS dataset with respect to gender and
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Table 5.4: Distribution of high causal effects with Group Fairness

Dataset Protected Attribute Pf Pn CVf CVn Processing

Adult Income
gender 25.0% 26.6% 0.041 0.152 in-processing

race 16.6% 28.2% 0.104 0.215 in-processing
gender+race 27.3% 26.7% 0.095 0.163 in-processing

German Credit
gender 73.7% 46.0% 0.339 0.323 pre-processing

age 21.1% 9.6% 0.160 0.096 pre-processing
gender+age 77.8% 53.2% 0.269 0.235 pre-processing

Bank age 33.3% 37.9% 0.183 0.142 pre-processing

COMPAS
gender 63.6% 43.5% 0.052 0.045 pre-processing

race 36.4% 19.4% 0.056 0.034 pre-processing
gender+race 60.0% 86.3% 0.0018 0.002 in-processing

race attributes. With respect to gender+race attribute in COMPAS dataset, as

the CV of neurons is higher, we conclude to apply in-processing methods.

Table 5.5 show the distribution of high causal effects based on individual

fairness metrics, e.g., CDS. The selected processing categories are shown in the

last column. Similarly, Algorithm 12 decides to apply in-processing methods

for all model-attribute combinations, expect Credit-gender and Bank-age. We

can observe that the proportion of high causal effects of attributes might be

0% in some cases, e.g., COMPAS-gender and COMPAS-race, which means no

attribute is responsible for individual discrimination.

Note that, post-processing methods are selected only if both the propor-

tions of responsible neurons/attributes are low, as it often has a significant neg-

ative impact on model performance (so that it is impossible to improve fairness

through pre-processing or in-processing). In our experiments, however, all the

neural networks have sufficiently many responsible neurons/attributes, so no

post-processing method is adopted.

RQ2: Are we always able to identify the best performing fairness improvement

method? To answer this question, we compare our adaptive approach against

the best performing pre-processing, in-processing and post-processing method

in four ways.

• One is the group fairness improvement, which is shown in Figure 5.5(a).
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Table 5.5: Distribution of high causal effects with Individual Discrimination

Dataset Protected Attribute Pf Pn CVf CVn Processing

Adult Income
gender 75.0% 58.8% 0.033 0.058 in-processing

race 75.0% 38.7% 0.128 0.141 in-processing
gender+race 63.3% 46.8% 0.091 0.105 in-processing

German Credit
gender 94.7% 70.2% 0.114 0.096 pre-processing

age 63.2% 29.0% 0.041 0.053 in-processing
gender+age 83.3% 10.3% 0..061 0.066 in-processing

Bank age 40.0% 50.8% 0.076 0.047 pre-processing

COMPAS
gender 0% 15.3% - 0.026 in-processing

race 0% 21.0% - 0.133 in-processing
gender+race 30% 39.5% 0.075 0.1 in-processing

• One is the group fairness improvement minus the accuracy loss, which is

shown in Figure 5.5(b).

• One is the individual discrimination reduction, which is shown in Figure 5.6(a).

• One is the individual discrimination reduction minus the accuracy loss, which

is shown in Figure 5.6(b).

As shown in Figure 5.5(a), if we focus on group fairness improvement only,

our approach achieves the best performance for 7 out of 10 cases, e.g., e.g., all

attributes in Adult Income dataset, all attributes in German Credit dataset the

attribute in Bank dataset. Although for the neural network trained on Com-

pas dataset, our adaptive approach does not have the best fairness improvement.

If we consider at the same time the accuracy loss, as shown in Figure 5.5(b),

our approach performs the best in all of the cases. Note that while the post-

processing method RO often improves the group fairness significantly, the accu-

racy often drops significantly (e.g., more than 30% after processing with respect

to all protected attributes for the COMPAS dataset, which is clearly unaccept-

able). In fact, according to our experiments, post-processing should rarely be

the choice if we would be maintain high-accuracy. The results shown in Fig-

ure 5.5(b) clearly suggests that our approach is able to improve fairness effec-

tively whilst maintaining a high accuracy.

In Figure 5.6(a), we show the comparison between our approach and the
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existing approaches in terms of reducing individual discrimination. We can ob-

serve that only the in-processing methods can reduce the individual discrimina-

tion effectively. In fact, our Adaptive Processing Algorithm 12 almost always

selects to apply in-processing methods, except for Credit-gender and Bank-age.

After applying the in-processing method RW, the CDS remains almost the same

with respect to Credit-gender but worsens by around 2% with respect to Bank-

age. Taking accuracy loss into account at the same time, we show the individual

discrimination reduction minus the accuracy lost in Figure 5.6(b). Our approach

performs best in 8 out of 10 cases, except for the two cases where RW is selected

for Credit-gender and Bank-age. One potential reason why this is the case is that

existing pre-processing methods are not designed for reducing individual dis-

crimination and as a result, even if a small number of input attributes are indeed

responsible for the unfairness, existing pre-processing methods such as RW are

not able to remove biases in the training set effectively. This calls for research

into alternative pre-processing methods for reducing individual discrimination.

It is worth noting that with our approach, we always (10 out 10) achieve im-

proved group fairness and almost always (9 out 10) achieve reduced individual

discrimination, whist achieving a low accuracy loss.

RQ3: What are the time overhead for causality analysis? The time spent on

causality analysis is summarised in Table 5.6. Note that the time is the additional

time a user has to spend on applying our method before applying the selected

fairness improving method. The time required for causality analysis is always

less than 10 minutes.

Threats to Validity:

Limited model structures We currently support feed-forward neural networks

(for tabular data) and convolutional neural networks (for images). It is possi-

ble to extend our method to support deep learning architectures such as RNN

(for text data) by extending causality analysis to handle feedback loops. We fo-

cus on feed-forward NN as existing studies on fairness largely focus on tabular
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Figure 5.5: Our Approach vs SOTA on Group Fairness

data [176, 47, 38, 130, 99, 170].

Limited fairness metrics We only use SPD and GDS metrics for group fairness

and CDS metric for individual fairness. We focus on GPD and GDS as they are

the primary focuses of existing works [9, 14, 62, 77, 145, 170]. Given that GPD

and GDS are similar with other metrics which consider positive classification

rate like Disparate Impact, our method could work for other notions of fairness

as well.

Causal effect measurement ACE is commonly used to evaluate causality [31,

145]. According to [31], alternative measurements like integrated gradients and

gradients of causal effect [121] might suffer from sensitivity and induce causal

effects by other input features.

Distributional shift in the data Our approach might be affected by distributional
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Table 5.6: Time overhead for causality analysis

Dataset Protected Attribute Time(s)

Adult Income
gender 495.26

race 504.72
gender, race 553.42

German Credit
gender 107.79

age 116.56
gender, age 221.72

Bank age 550.52

COMPAS
gender 106.37

race 152.42
gender, race 162.19

shifts in the data. We evaluate the stability of our approach against slight dis-

tributional shifts on Adult Income dataset. Firstly, following [46], we randomly

split train/test set 10 times and then evaluate whther the method selected by our

approach is the best one for each of the 10 test sets. Secondly, following [150],

we evaluate our approach using data generated by perturbation. In both condi-

tions, the results confirm that is the case. It shows perhaps that our approach is

robust to such levels of distributional shift.

5.6 Related Work

This work is related to research on fairness improving methods, fairness testing

and fairness verification methods as well as broadly various studies on fairness.

Besides those mentioned in the previous sections, we summarize other related

works below.

Fairness Testing and Verification Some existing works attempted to test model

discrimination with fairness score measurements. In [148], Tramer et al. pro-

pose an unwarranted associations framework to detect unfair, discriminatory or

offensive user treatment in data-driven applications. It identifies discrimination

according to multiple metrics including the CV score, related ratio and associa-
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Figure 5.6: Our Approach vs SOTA on Individual Discrimination

tions between outputs and protected attributes. In [81], Kleinberg et al. also test

multiple discrimination scores and compare different fairness metrics. In [47],

Galhotra et al. propose a tool called THEMIS to measure software discrimina-

tion. It tests discrimination with two fairness definitions, i.e., group discrimi-

nation score and causal discrimination score. It measures these two scores for

different software instances with respect to race and gender separately. Their

approach generates additional testing samples by selecting random values from

the domain for all attributes. In [4], Adebayo et al. try to determine the rela-

tive significance of a model’s inputs in determining the outcomes and use it to

assess the discriminatory extent of the model. In [51], Ghosh et al. verify dif-

ferent fairness measures of the learning process with respect to underlying data

distribution.
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Empirical Studies of Fairness Chakraborty et al. empirically research on the

effectiveness and efficiency of existing fairness improvement methods based on

group fairness metrics [30]. Friedler et al. work on an empirical study to com-

pare the effects of different fairness improvement methods [46]. In [16], Biswas

et al. focus on an empirical evaluation of fairness and mitigation on 8 differ-

ent real-world machine learning models. They apply 7 mitigation techniques to

these models and analyzed the fairness, mitigation results, and impacts on per-

formance. They also present different trade-off choices of fairness mitigation

decisions. Zhang et al. discuss how key aspects of machine learning systems,

such as attribute set and training data, affect fairness in [170]. Kearns et al. test

the effectiveness and measure the trade-offs between rich subgroup fairness and

accuracy in [77]. In [39], Dodge et al. propose four types of programmatically

generated explanations to understand fairness in machine learning systems.

5.7 Summary

In this paper, we empirically evaluate 9 fairness improving methods on 4 real

world dataset and 90 model-attribute combinations with 3 fairness metric. Our

evaluation shows that existing fairness improving methods are not always effec-

tive in improving group fairness and are often not effective in reducing individ-

ual discrimination. Motivated by the empirical study, we propose a light weight

approach to choose the the optimal fairness improving method adaptively based

on causality analysis. That is, we identify on the distribution of “responsible”

attribute and neurons and choose the methods accordingly. The results show

that our approach is effective in choosing the optimal improvement method.
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Chapter 6

Non-Intrusive Bias Mitigation

6.1 Introduction

Since the emergence of transformer-based models, like GPT and BERT, the

evolution of Large Language Models (LLMs) has taken impressive strides. In

recent years, state-of-art LLMs, such as GPT-3.5 and GPT-4 have shown out-

standing performance from understanding complex textual context to a gener-

ating texts that emulate human speech. These LLMs have demonstrated their

potential across a broad range of fields, including healthcare, education, and

business decision-making [135, 74, 101]. In healthcare, for instance, LLMs are

used to decipher intricate medical literature and assist in disease diagnostics.

Meanwhile, within the domain of education, they serve as personalized tutors,

aiding in diverse subjects. Meanwhile, these LLMs may also exist some poten-

tial problems such as biases have been increasingly concerned [15, 138, 2]. In

this work, we extend our focus from fairness testing in deep neural networks

applied to tabular data to language models applied to textual data. We aim to

introduce a novel bias mitigation approach that does not require access to the

internal workings of language models, enabling debiasing from an external per-

spective.

As LLMs are trained on extensive data corpus, it is inevitable to encom-
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pass various forms of biases, e.g., gender, religion, race and politics biases.

Various existing studies have demonstrated that biases are present in different

parts of LLMs, including word-level representation [102, 96, 26, 134], sentence

encoders [105] and downstream tasks [138, 2]. For instance, public word em-

beddings have been found to exist a strong correlation between gender-related

words and career-related attributes [26]. Then, various works on mitigating bias

on language models have been proposed. Common approaches include modi-

fying the training data through data augmentation [84, 180], manipulating word

embeddings or sentence representation [49, 120, 106, 158], causality-based bias

repair [144] and other in-processing methods [63, 91]. However, as training

LLMs is increasingly beyond the capacity of ordinary users or small business

owners, many of these methods become impractical. Most in-processing meth-

ods replying on model retraining or fine-tuning become too costly. Even pre-

processing methods such as Counterfactual Data Augmentation [96, 68] still

need an additional phase of pre-training. Moreover, due to the latent nature

of biases embedded and propagated through complex connections in language

models, they often appear in various ways. It is thus challenging to produce

a LLM-based production that avoids biases (e.g., accordingly to the regulatory

requirements) when we only have API access to the LLMs.

To tackle the challenges, we propose a novel bias mitigation approach, which

treats the language model as a black box. That is, we do not access or modify

the internals of the given models. We propose a debias adapter based on the

the sequence representation output from language models, which aims to mit-

igate bias in a parameter-efficient manner. The adapter is a multi-layer feed-

forward neural network. Compared to bias mitigation through complete model

fine-tuning, our approach focuses only on fine-tuning a limited number of pa-

rameters in the adapter and downstream tasks. This makes our approach much

more efficient. For example, when debiasing a pre-trained ‘bert-base-cased’

model, our approach requires modifications to only 0.17% of the whole model’s
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parameters.

Moreover, our approach provides statistical confidence in the achieved fair-

ness during debias training. The ability to provide such statistical confidence

is essential for many applications that need satisfying regulatory requirements

on fairness (e.g., according to General Data Protection Regulation (GDPR), Al-

gorithmic Accountability Act (US AAA) and Artificial Intelligence Act (EU

AIA)). In details, we formulate the bias problem as a hypothesis evaluation

problem and calculate the loss function on bias using hypothesis testing results,

i.e., z-score. That is, given a bias threshold f , the null hypothesis is: model’s

bias is less than f . The alternative hypothesis is the opposite condition. The

z-score is used to evaluate the statistical likelihood of the null hypothesis being

true. If the calculate z-score is close to 0 or negative, it suggests the model’s

bias degree is not significantly different from the threshold f or is less than f .

Then, we assume the null hypothesis is true. As such, at each step of debiasing

process, the bias loss satisfies a certain level of statistical confidence.

For experimental evaluation, we focus on the hate speech classification prob-

lems and experiment on pre-trained BERT models. Note that, our approach

works for other downstream tasks and can be easily generalized to other LLMs,

such as GPT, ELMo, RoBERTa, DistilBERT and ALBERT due to its non-

intrusive character. We consider identity biases and support both group bias

mitigation and individual bias mitigation.

We evaluate our approach on 5 hate speech classification problems. The

results show that our approach is effective in mitigating both group bias and in-

dividual bias across all models. Furthermore, the accuracy drops for all models

are relatively negligible, i.e., under 3%. We compare our results with three state-

of-the-art baselines that apply in a similar setting, two for group bias mitigation

and one for individual bias mitigation. It shows that our approach consistently

achieves the most effective results while maintaining accuracy across all mod-

els.

113



In the remainder of this work, we initially delineate the definition of textual

data, bias definitions and our problem definition in Section 6.2. Then we in-

troduce our adapter construction and bias mitigation method in Section 6.3. We

show our experiment setup in Section 6.4 and analysis our results in Section 6.5.

Lastly, we discuss related works in Section 6.6 and conclude in Section 6.7.

6.2 Background

In this section, we present necessary background on textual data with identities

and bias definitions. Lastly, we define our research problem.

6.2.1 Textual Data

First of all, we define textual data and corresponding identity attributes.

As we focus on semantic classification in this work, the inputs of seman-

tic classification system are complete sentences, each is compoased of a set of

terms. As a growing number of studies have paid attention on the identity related

biases in natural language models [151, 38, 20], we consider identities as sensi-

tive attributes in this work. We define the sensitive attributes of text data based

on the presence of identity terms. Inspired by previous work [151], we classified

identity attributes into 8 categories, including male, female, homosexual (gay or

lesbian), christian, jewish, muslim, black and white. These identities are further

organized into three categories: Gender, Religion, and Race. Notably, for sim-

plicity, we also include sexual identity, such as homosexual within the Gender

category.

There exists dataset which is labled with identities by annotators manually.

For example, the dataset published by the Jiasaw Unintended Bias in Toxicity

Classification Challenge on Kaggle label the identity values based on the frac-

tion of annotators who believed a comment fit the identity mentioned. Based on

this dataset, we extract identity terms according to each identity category. Then,
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once a given comment exists certain identity terms, we believe the comment can

be labeled with the corresponding identity.

In this work, the define the text data based on the previous given Definition 5.

As we focus on identity bias, the sensitive terms should be identity terms and

the categories of sensitive terms should be identity attributes.

Formally, we define the text data x with identity s as follows.

Definition 15 (Text Data with Identity) A text data x contains a sequence of

terms {x1,x2, · · · ,xN}. We write S = {s1,s2, · · · ,sn} to denote a set of identity

attributes and write T to denote a set of identity terms {t1, t2, · · · , tk}, where

t j 2 si for some i, for all j 2 [1,k] and t j 2 x .

For example, if a comment x “I am a gay” exists the identity term t “gay”,

the comment can be labeled with identity attribute s homosexual, where s 2 S

and t 2 s. This comment can be further classified in the Gender category.

6.2.2 Bias Definition

Numerous definitions of bias exist within the scope of textual data for language

models. Existing definitions can be broadly divided into two popular categories,

i.e., intrinsic bias and extrinsic bias. Intrinsic bias refers to bias inherent in

the representations, e.g., word embeddings [96, 63, 26, 26] and sentence rep-

resentation [105, 112, 113]. Extrinsic bias refers to bias in downstream tasks,

e.g., demographic bias on prediction classes, disparity in false positive rate and

equality of opportunity [142, 91, 68]. Due to the complexity of LLMs, measur-

ing intrinsic bias is not necessary to reflect bias in downstream tasks [53]. In

this work, we focus on extrinsic bias. To be specific, we consider both group

bias and individual bias in this work.

Group bias: When considering group bias, we focus on the inputs which

are wrongly predicted as unprivileged labels. That is, we focus on the False

Negative Rate or False Positive Rate depending on the settings. For example,
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if the semantic classification is trained to predict whether the Twitter comments

are hate speech, the positive prediction is the unprivileged label ‘hate’ and the

negative prediction is the privileged label ‘non-hate’. Then, we only consider

False Positive Rate in this setting. In the following, we adopt the term “False

Unprivileged Rate (FUR)” to refer to the false prediction rate on unprivileged

labels. We calculate the group bias degree by computing the difference between

the overall FUR and FUR on specific identity across all groups (samples labeled

by different identities). The bias metric is based on average-violations [162] of

true positive/negative rate, which is also known as equality of opportunity [60,

143, 50]. Such defined bias is highly correlated to the regulations such as EU

AIA. The definitions are shown below.

Definition 16 (Group Bias Degree) Given the classification model M, an iden-

tity attribute s, the group bias degree of M with regards to identity s is:

d s = FURs�FUR (6.1)

where FURs is the FUR of samples labeled with identity s and FUR is the

overall demographic FUR. So the overall bias degree of M is :

dg =
1

#S Â
s2S

|d s| (6.2)

where S is the set of considering identity attributes and #S is the size of the

attribute set.

Informally, d s calculates the difference between FUR on inputs with identity

s and the overall FUR. A lower d s means less bias of M with regards to identity

s. For Equation 6.2, dg calculates d s across all groups labeled with identity

attribute s and compute the average. A lower dg means better consistency in

FUR with respect to different identities and less bias of M. We believe that

achieving higher consistency in FUR is essential for mitigating potential bias so
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as to improve fairness in language classification systems.

Individual Bias: According to Definition 15, we treat the identity attributes s

as sensitive attributes. So given the semantic classification model M and a set of

identity terms T as mentioned in Definition 15, x is an individual discriminatory

instance (idi) if there exists an instance x0 such that the following conditions are

satisfied.

• 8t /2 T.xt = x0t

• M(x) 6= M (x0)

That is, if there exists an instance x0 where the identity terms are changed, but

all other tokens remain the same as in x, and the prediction of model M changes,

then x and x0 are considered as a pair of individual discriminatory instances. The

above definition is similar with Definition 10 found in Section 5.2.1. However,

in this context, we specify idis with a focus on textual data. The operation

of modifying identity terms of original samples are similar with Counterfactual

Data Augmentation [96, 68], while the latter only considering two identities, i.e.,

female and male. More details of individual discriminatory instances generation

are discussed in Section 6.3.4. We quantify the individual bias degree with the

following definition, which is also similar with Causal Discrimination Score as

defined in Definition 11 found in Section 5.2.1. However, in this work, we use

symbol di to denote the bias degree.

Definition 17 (Individual Bias Degree) Given the classification model M, a

set of identity attributes S, the individual bias degree of M is:

di =
#idi

#samples
(6.3)

where #idi is the number of detected individual discriminatory instances (idis)

and #samples is the size of testing samples.

A lower di means less individual bias of M.
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6.2.3 Problem Definition

In the following, we define our research problem and briefly discuss how we

aim to solve the problem.

Our aim is to develop a systematic method for mitigating extrinsic bias with

regards to both group fairness and individual fairness. The proposed debiasing

method must operates under the following assumptions:

• Non-intrusive: it does not access or modify the internals of a given language

model.

• Fairness with statistical confidence: it can provide a theoretical guarantee at

all stages of the debiasing process.

• Maintaining accuracy: it improves fairness with little cost on accuracy.

6.3 Methodology

In this section, we describe how our debiasing method works. First, we provide

an overview of our debias strategy and describe the proposed debias adapter,

which is designed to mitigate bias from an external standpoint, eliminating the

need to access or modify the internals of language models. Then, we describe

how we design a general loss function that works for both group fairness and

individual fairness, as well as provides statistical confidence on the achieved

fairness.

6.3.1 Overview

The overview of our debias strategy is shown in Figure 6.1. First, inspired by

the idea of adapters for the transformer architecture [65, 122], we introduce

the debias adapter which aims to mitigate bias in a parameter-efficient way.

The debias adapter is added after the given language model and right before
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Figure 6.1: Overview of the Proposed Debias Strategy

the downstream task, i.e., hate speech classifier in this work. We adopt such

non-intrusive adapter for several reasons. Primarily, as state-of-the-art language

models grow increasingly complex, the process of debiasing through fine-tuning

or internal adapters becomes not only costly but also practically impossible, es-

pecially when the internal architecture is not accessible, e.g., for GPT-3.5 and

GPT-4. Hence, we aim to treat the whole encoding model, such as BERT, as

black-box encoder. In this setup, we can access only the sequence represen-

tation output, e.g., through an online API, and not any multi-head attention or

feed-forward layer within the transformer layers. Then, based on the prediction

output of the classifier, we first calculate the loss on accuracy as Lacc. Second,

we measure the bias degree, denoted as d , according to our definitions. Then,

we formulate the bias problem as a hypothesis evaluation problem, so we can

provide statistical confidence on the fairness in each step of training. The null

hypothesis and alternative hypothesis are defined based on a pre-defined bias

threshold f . According to the evaluation results, we calculate the loss on bias

degree as Lbias. Lastly, we combine Lacc and Lbias to train debias adapter and

classifier.

In detail, the overview of the debias adapter is shown in Figure 6.2. The

adapter is a multi-layer feed-forward neural network with two bottlenecks. We

limit the number of parameters at bottleneck to 8% of the parameters of the orig-

inal output. We employ skip-connection internally and nonlinearity connection,

i.e., GELU, between layers in the adapter module.
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Figure 6.2: Overview of Debias Adapter

6.3.2 Mitigating Bias with Statistical Confidence

In this section, we first discuss how we design the loss function to mitigate bias

without significantly compromising accuracy. Then, we discuss how to provide

statistical confidence during the debias training.

First, to avoid compromising accuracy in favor of fairness, we combine the

main task objective and the fairness constraint.

minimize L (M(x),y) s.t. Lbias  v

where L (M(x),y) is the loss of the main task for input x, i.e., classification loss,

Lbias is the loss on bias and v is a slack variable, which stands for the maximum

value of bias loss. A common approach to handle this constrained optimization

problem is using the Lagrangian function.

L = Lacc +lLbias (6.4)

where Lacc is the loss for the main classification task and l is the user-defined

weight on bias loss. The higher the weight, the more attention is paid to bias

mitigation. The loss on accuracy Lacc can be any existing loss function applied

to classification problems.

Second, to provide statistical confidence on the fairness of the model during

the debias training, we formulate the bias problem as a hypothesis evaluation
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problem and calculate the bias loss using hypothesis testing (thereby having

a certain level of statistical confidence on the loss value). Hypothesis testing

is a statistical procedure used to evaluate the validity of a claim or hypothe-

sis about a population based on observed samples. For example, we initially

set a null hypothesis (H0) and an alternative hypothesis (H1), along with a de-

fined significance level that outlines the decision-making criteria. Hypothesis

testing evaluates whether there is a substantial discrepancy between a sample

proportion and a hypothesized population proportion. This reference allows us

to gauge the likelihood of the null hypothesis being true. In machine learning, it

is commonly used to evaluate a model’s performance based on a sample of data.

Specifically, we apply Z-test to evaluate the null hypothesis. The Z-test is

a widely used hypothesis test when the sample size is large and the popula-

tion standard deviation is known or estimated. It is widely employed in various

fields, such as medicine, social sciences, and business, helping derive valuable

insights from data and facilitating informed decision-making. When implement-

ing a Z-test, we compute the test statistic, commonly referred to as the z-score.

Then we compare the calculated z-score to the critical z-value based on the

significance level. If z-score exceeds the critical value, the null hypothesis is

rejected. The smaller the z-score, the less likely to reject the null hypothesis.

The formula for calculating the z-score in a one-proportion Z-test is shown

below.

z-score =
p

n(p̂� p0)p
p0 (1� p0)

(6.5)

where p̂ is the sample proportion, p0 is the population proportion and n is the

sample size.

In this work, we aim to test whether the bias metric satisfies a given regula-

tion, e.g., d  f . Here, d is the bias score as defined in Section 6.2.2 and f is

self-defined threshold. So in z-score calculation, p̂ = d and p0 = f .

As the z-test we apply is one-tail test, the critical value is determined based
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on the tail of the distribution in which the alternative hypothesis is located.

Given a user-provided significance level, e.g., 0.05, we can systematically com-

pute the critical value, e.g., 1.64. Once the calculated z-score is larger than 1.64,

the null hypothesis is rejected with statistical significance.

Then, we scale the z-score to a range between 0 and 1 as Lbias. We apply

the typical normalization function with clipping as shown below.

Lbias = clipped ReLU(
z-score�Zmin

Zmax�Zmin
) (6.6)

where, Zmin = z-score(0) and Zmax = z-score(dorig + t) (t is a self-defined con-

stant which represents the offset added on the baseline bias degree).

Considering that we have defined the maximum value for the z-score to be

achieved when the bias degree reaches dorig + t , it is possible that higher bias

scores may push the normalized z-score beyond 1. To manage this potential is-

sue, we employ a clipped ReLU function [24] on the normalized z-score. This

function restricts the resulting value within the range (�•,1], effectively limit-

ing the normalization output between 0 and 1. This step is crucial to the accurate

calculation of the bias loss.

To ensure the bias loss satisfies a certain confidence level in each batch

during debias training, we further calculate the sample size it requires. Ide-

ally, we always have a confidential conclusion on each z-test score as well as

Lbias. To guarantee the z-score satisfies a certain confidence level, we use

a sample size calculation formula as shown in Equation 6.7 to fix the batch

size when considering two types of errors, i.e., Type I error a and Type II

error b . Given a null hypothesis H0, a represents the probability that a test

wrongly rejects a true null hypothesis, i.e., P(re ject H0 | H0 is True) and

b represents the probability that does not reject a false null hypothesis, i.e.,

P(do not re ject H0 | H0 is False). With Type II error b , Power can be defined

as 1�b which represents the probability that a test correctly rejects a false null

hypothesis, i.e., P(re ject H0 | H0 is False). The calculation of batch size which
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is also known as sample size is shown below.

n =

✓
za + z1�b

p̂� p0

◆2
p0 (1� p0) (6.7)

where Za and Z1�b are the critical values from the standard normal distribution

(Z-distribution) at significance level a and Power 1� b respectively. p̂� p0

is the desired level of precision (i.e. the margin of error) which control the

maximum deviation allowed.

In the following, we show how we derive the Equation 6.7 in detail.

Theorem 5 Given the null hypothesis H0 and the alternative hypothesis H1,

according to the definition of Type I error a , Power 1�b and the definition of

z-score, the following two equations are satisfied.

a = P

 p
n(p̂� p0)p
p0 (1� p0)

> za | H0

!

1�b = P

 p
n(p̂� p0)p
p0 (1� p0)

> z1�b | H1

!

So we get: p
n(p̂� p0)p
p0 (1� p0)

> za + z1�b

Hence,

p̂� p0 >
�
za + z1�b

�
r

p0 (1� p0

n

p
n >

�
za + z1�b

�
p

p0 (1� p0)

p̂� p0

Thus,

n =

✓
za + z1�b

p̂� p0

◆2
p0 (1� p0)

Similarly, we can also consider one type of error only, i.e., Type I error a .

If so, the sample size is calculated by the following equation.

n =

✓
za

p̂� p0

◆2
p0 (1� p0) (6.8)
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For example, we set the bias degree threshold f (i.e., p0) as 10%, the margin

of error p̂� p0 as 0.05, the significance level a as 95% (za is 1.65) and the power

1�b as 0.80 (z1�b is 0.84). According to Equation 6.7, the calculated sample

size n is 223. Similarly, if only Type I error is considered, the sample size n is

98, according to Equation 6.8.

6.3.3 Mitigating Group bias

In the following, we show how our method can be used to improve group

fairness based on a black-box LLM. Although the bias loss Lbias is differen-

tiable over d (i.e. p̂), the bias score dg involving indicator variables is non-

differentiable. This characteristic poses challenges to the direct application of

hypothesis testing discussed in Section 6.3.2.

The null hypothesis and the alternative hypothesis are shown below:

• H0 : dg < f

• H1 : dg � f

where f is the self-defined group bias threshold.

According to the Definition 16, dg is the average difference between FURs

and FUR, where FUR is a constant. In the following, we provide a differentiable

way of FURs and dg calculation.

Given a group of samples G, the classification model M, a set of identity

attributes S, a label set with all privileged labels L+ and a label set with all

unprivileged labels L�:

FURs =
Âxi2G+

s
S(q(L (M (xi) ,L+)�L (M (xi) ,L�)))

#G+
s

(6.9)

dg =
1

#S Â
s2S

|FURs�FUR| (6.10)
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where G+ denotes the subgroup of samples with group-truth privileged labels

from G and G+
s denotes samples which are labeled with identity s among G+.

q is a constant, S is the Sigmoid active function, xi is the i’th sample from

group G+
s , and L can be any loss function for classification problems. In our

experiments, we apply BCELoss by default.

In detail, L (M(xi),L+) calculates the loss between classification model’s

prediction and privileged labels and L (M(xi),L�) calculates the loss for un-

privileged labels. Once the loss for privileged labels is larger than it for un-

privileged labels, the prediction output of language model M on instance xi is

unprivileged label. So if L (M(xi),L+)�L (M(xi),L�) > 0, xi is a False Un-

privileged instance. Then, we use Sigmoid function to map positive values to 1

and negative values to 0. To streamline the following explanation, we introduce

the term i f FU to denote S(q(L (M (xi) ,L+)�L (M (xi) ,L�))). If i f FU is

1, the sample xi is a False Unprivileged instance. After traveling all samples in

G+
s , we calculate the sum of i f FU as the value of False Unprivileged (FU). We

compute FUR through dividing FU by the size of group G+
s as shown in Equa-

tion 6.9. Then we average the absolute difference between FURs and FUR for

different identity s as dg at Equation 6.10.

Overall, we utilize a one-tailed z-test with a significance level, e.g., 0.05.

Consequently, based on the bias loss Lbias calculated from the bias score dg,

it is able to determine with 95% confidence whether dg is truly less than the

threshold f . This gives us a statistically robust means to challenge the validity

of the null hypothesis.

6.3.4 Mitigating Individual bias

In the following, we show how our method can be used to improve individual

fairness of a black-box LLM. However, like the scenario with group fairness,

the straightforward application of hypothesis testing proves to be unfeasible due

to the inherent non-differentiable nature of the bias measurement.
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The null hypothesis and the alternative hypothesis are shown below:

• H0 : di  f

• H1 : di > f

where f is the self-defined individual bias threshold.

According to the definition of individual bias degree as Definition 17, we

provide a differentiable way of di calculation.

Given a group of samples as G, a classification model M, a set of identity

attributes S, a label set with all ‘True’ labels Ltrue and a label set with all ‘False’

labels L f alse:

di =
1

#G Â
xi2G

2(S(q(Â
s2S

ReLU(L (M (xs
i ) ,L

true)�

L (M (xs
i ) ,L

f alse))))�0.5)

(6.11)

where, q is a constant, S is the Sigmoid active function, xi is the original i’th

sample from group G, xs
i is perturbed sample with identity s based on xi, and

L is the loss function for classification problems. Note that Ltrue and L f alse is

the predicted labels on the original samples xi, i.e., Ltrue = M (xi) and L f alse =

1�M (xi).

In detail, the term L (M(xs
i ),L

true) represents the loss between model’s pre-

diction of perturbed sample xs
i and the predicted label of the original sam-

ple xi. The term L (M(xs
i ),L

f alse) represents the loss obtain between model’s

prediction on xs
i and the opposite predicted label. Once L (M(xs

i ),L
true)�

L (M(xs
i ), L f alse) > 0, the predicted label of xs

i differs from the original pre-

dicted label. Then we use ReLU function to clip negative values. To stream-

line the explanation, we introduce the term is di f f to denotes ReLU(L (M(xs
i )

,Ltrue)�L (M(xs
i ),L

f alse)). If is di f f is positive, sample xs
i and xi is a pair of

idis. Then we travel all perturbed samples xs
i and sum up is di f f . If ÂS

s=1 is di f f

is positive, the original sample xi is an idi. Then we use formula 2(S(q(ÂS
s=1

is di f f ))�0.5) to map the output into 1 and 0, e.g., 1 means xi is an idi and 0

126



means the opposite. After traversing through all the samples in G, we compute

the total count of idi. This sum is then divided by the total number of samples

#G, yielding the individual bias degree di.

When mitigating individual bias, we are required to generate idis. We search

for potential idis by data masking which is a mature technique on textual data,

especially for gender attributes [68, 68]. That is, we generate a new identity

version based on the original text by turning all included identity terms into

the terms of the new identity within the same category. For example, given

an original text with identity male, we need to generate additional instances

with other identities within Gender category, e.g., female and homosexual. In

detail, we turn all male related terms into male or homosexual related terms. For

instance, we generate the instance “I am a mother” from an original comment

“I am a father” when considering female identity. For gender-related terms (not

including sexuality terms), i.e., female, male, we use ‘ALL’ term set in previous

work [68] which contains 341 terms for male and female version respectively.

For other identities, we identify the term sets based on our identity term sets.

Note that, for text containing multiple identities, we only consider one iden-

tity at one time and we only turn terms within the same category. For instance,

given the comment “I am a mother and a Christian follower”, we can generate

the instance “I am a mother and a Muslim follower” considering Religion cat-

egory and generate the instance “I am a father and a Christian follower” when

considering Gender category.

Similar to the case for group bias mitigation, we utilize a one-tailed z-test

with a significance level, e.g., 0.05. This enables us to maintain 95% confidence

in the validity of the null hypothesis on individual bias.
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6.4 Experiment Setup

In this section, we conduct multiple experiments to evaluate the relevance of our

approach.

Dataset: Our experiments are based on 5 models trained with the following

benchmark datasets:

• Hate speech dataset from a white supremacist forum (WhiteForumHate) [36]

: A total number of 10,568 sentences have been extracted from Stormfront,

a white supremacist forum. Those sentences have been manually labelled

as containing hate speech or not, according to certain annotation guidelines.

Among them, 961 sentences are labeled as hate speech.

• Hate speech dataset from Twitter posts (TwitterHate) [36, 157] : We combine

these two datasets as one, as they both consider hate speech from Twitter in

the form of racist and sexist. It provides annotations for a publicly available

corpus for more than 16k tweets by amateur and expert annotators. According

to their given data with tweet IDs and labels at Github 1, there are 13,180

tweets in total. Among them, 4304 tweets are annotated as ”Sexism”, 2068

tweets are annotated as ”Racism” and 48 tweets are annotated as ”Both”.

• Hate speech dataset from Gab posts (GabHate) [124] : It is a large-scale hate

speech intervention dataset collected from Gab 2. All the posts are manually

labeled as hate or non-hate speech by Mechanical Turk workers, so they can

also be used for the hate speech detection task. It contains 31,914 posts in

total, containing 13,999 hate speech.

• Hate speech dataset from Reddit posts (RedditHate) [124] : All posts in this

dataset are collected from Reddit 3. Similar with hate speech dataset from

Gab, all posts are manually labeled as hate or non-hate speech. It contains

17,557 posts in total, containing 5,257 hate speech.
1https://github.com/zeeraktalat/hatespeech
2https://gab.com
3https://www.reddit.com
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Table 6.1: Metrics of Baseline BERT Models w.r.t. Overall Performance and
Individual Identity Categories

Gender Religion RaceBias Type Dataset Accuracy F1 d (d male, d f emale, d homosexual) (d christian, d muslim, d jewish) (d black, d white)

0.0448 0.1116 0.0651WhiteForumHate 91.22% 0.9506 0.0749 (0.0288, 0.0348, 0.0708) (-0.0403, 0.2097, 0.0847) (0.0887, 0.0416)
0.0671 0.6771 0.0514TwitterHate 91.88% 0.9155 0.2369 (0.0265, 0.1019, -0.0729) (0.4271, 0.9271, None) (-0.0329, 0.07)
0.1362 0.117 0.2143GabHate 87.34% 0.8585 0.1485 (0.0491, 0.1131, 0.2466) (0.1322, 0.2046, -0.0141) (0.3485, 0.0802)
0.0336 0.2063 0.064RedditHate 88.80% 0.8098 0.1060 (0.027, 0.0595, 0.0144) (0.0306, 0.5154, -0.0729) (0.0876, 0.0405)
0.0563 0.1067 0.1057

Group Bias

GabTwitterHate 77.93% 0.8264 0.0876 (-0.0281, -0.1072, -0.0336) (0.0097, 0.3062, -0.0043) (0.1179, -0.0936)

WhiteForumHate 91.22% 0.9506 0.1962 0.1369 0.2364 0.1599
TwitterHate 91.88% 0.9155 0.1414 0.1176 0.1096 0.1148

GabHate 87.34% 0.8585 0.3057 0.1051 0.1708 0.3718
RedditHate 88.80% 0.8098 0.1021 0.0336 0.2037 0.2319

Individual Bias

GabTwitterHate 77.93% 0.8264 0.2361 0.0903 0.2388 0.2072

• Hate and offensive speech from Twitter and Gab posts (TwitterGabHate) [104]

: This dataset is collected from previous studies on hate speech from Twit-

ter [45] and Gab [103]. It contains 20,148 posts in total, which includes

12,334 hate speech.

Models: We fine-tune BERT on downstream prediction tasks. 4 We ap-

ply BERT base cased (BERT-base-cased) pre-trained model from Pytorch li-

brary [78, 117]. BERT-base-cased models contain 12 attention layers, 768 hid-

den, 12 heads, 110M parameters and 30522 cased vocabulary size. The model

is trained on an NVIDIA-SMI 520.61.05. The hyper-parameters for fine-tuning

the pre-trained BERT models are inspired by previous work [68]. By default

setting, we set the dropout rate as 0.5, the maximum sequence length as 128,

batch size as 32 and learning rate as 2e-5. The model is optimised with Adam.

As BERT fine-tuning tends to overfit quickly, we set the epoch as 3.

The basic metrics on the baseline models are shown in Table 6.1. We present

the performance of model in terms of accuracy, F1 score. Additionally, we in-

clude dg and di in the fifth column, representing the degree of group bias and

individual bias respectively. Then, we proceed to further evaluate the bias de-

gree for each identity category, including Gender, Religion, and Race in the last

three columns. Concerning group bias, we present the group bias degree dg with
4Our approach works for other LLMs such as ChatGPT as well. We do not evaluate it

because (1) it is costly stlll, and (2) ChatGPT does not provide an API for downstream task
fine-tuning yet.
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Table 6.2: Metrics after Debiasing with Regards to Group Bias

Gender Religion RaceDataset Accuracy F1 dg (d male, d f emale, d homosexual) (d christian, d muslim, d jewish) (d black, d white)

0.0087 0.0355 0.0151WhiteForumHate 91.34% 0.9525 0.0203 (0.0035, 0.0098, -0.0127) (-0.0127, -0.0127, 0.081) (0.0088, 0.0214)
0.0512 0.2500 0.0871TwitterHate 89.10% 0.8839 0.1183 (0.0038, 0.0616 0.0884) (0.4217, -0.0783, None) (-0.0383, 0.136)
0.0282 0.0531 0.1794GabHate 87.61% 0.8553 0.0753 (0.0198, 0.0247, 0.0399) (-0.0364, 0.08 0.0429) (0.3403, 0.0186)
0.0244 0.0631 0.0176RedditHate 89.26% 0.8115 0.0372 (0.0095, 0.0021, 0.0616) (0.0129, 0.1204, -0.0561) (0.018, 0.0173)
0.0374 0.0840 0.0847GabTwitterHate 77.78% 0.8220 0.0667 (-0.0028, -0.0026, -0.1069) (0.0041, -0.0096, 0.2383) (0.0959, -0.0734)

respect to each identity category, as well as the corresponding d s for each indi-

vidual identity s. A positive d s means larger FUR compared with the baseline

FUR and vice versa. We can observe that, the group bias degree varies signifi-

cantly when considering different identity categories. In most cases, the group

bias degree on Religion category is the highest. Among total 40 identities s, 29

of them show positive d s. That is, when the textual sample contains identity

information, the model is more likely to wrongly predict it as hate speech. Con-

cerning individual bias, the bias degree di for each identity category represents

the percentage of idis observed when only perturbing the corresponding identity

terms. We can observe that, the bias degree varies significantly when consider-

ing different identity categories. Most of the models exhibit higher individual

bias on Religion and Race categories. For instance, in the case of model fine-

tuned on the GabHate dataset, di is notably high at 0.3718 when considering

Race category, but only 0.1051 when considering Gender category.

Other hyper-parameters: For z-test, we set Type I error a as 0.05 and Type II

error b as 0.2 by default setting. The margin of error p̂� p0 is set to 0.05. We

determined the bias threshold, denoted as f or p0, based on the bias degree ob-

served in the training data of the baseline model. By default, we set the bias

threshold at 10%. However, if the original bias degree is below 10%, indicat-

ing a relatively low level of bias, we adjust the threshold to 5%. Specifically,

for group bias mitigation, we set the threshold at 10% for the baseline model

fine-tuned on the TwitterHate and GabHate datasets, while for the remaining

datasets, the threshold is set at 5%. For individual bias mitigation, we set the
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threshold at 10% for all baseline models, except the model fine-tuned on the

RedditHate dataset. The weight l assigned to the bias loss in Equation 6.4

is determined empirically. Specifically, for individual bias mitigation, it falls

within the range of 0.1 to 1. For group bias mitigation, it is set between 1 and

1.5. During debiasing, we determined the batch size automatically based on the

guidelines outlined in Section 6.3.2 and the learning rate is set to 1e-3. We train

the debias adapter along with fine-tuning the downstream classifier within 20

epochs using the Adam optimizer.

6.5 Implementation and Evaluation

In this section, we evaluate the effectiveness of our debiasing approach sys-

tematically to answer multiple research questions. In our experiments, we only

consider debias adapters that yield significant mitigation on the bias degree,

with minimal impact on accuracy. For all models, we set an upper bound for an

acceptable decline in accuracy as 3%. Consequently, we present debiasing re-

sults that achieve the maximum reduction in bias degrees while simultaneously

preserving acceptable accuracy levels.

RQ1: How effective the debias adapter is to mitigate group bias? To answer

this question, we show the group bias degree as well as performance metrics

after debiasing in Table 6.2. In our experiments, we train the debias adapters

and downstream classifiers with Loss Function 6.4 and parameters shown in

Equation 6.9 and Equation 6.10.

In Table 6.2, the second and third columns show the model performance

metrics with respect to accuracy and F1-score. The fourth column presents the

debiased group bias degree, denoted as dg. Additionally, we evaluate this group

bias degree for each identity category, with details provided in the final three

columns. The group bias degree dg for each identity category is presented in the

first row of each dataset. Then, in the second row within brackets, we display
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Figure 6.3: Group Bias ‘dg’ Changes and Accuracy Changes

the bias degrees d s for individual identities s. A positive d s signifies a higher

FUR compared to the overall FUR and vice versa.

In general, the bias degree dg shows a reduction by more than 20% across all

models. In certain instances, the mitigation in group bias degree exceeds 70%.

For example, with the model fine-tuned on the WhiteForumHate dataset, the

group bias degree decreases from 0.0749 to 0.0203 after debiasing. Similarly,

for the model fine-tuned on the RedditHate dataset, dg reduces from 0.1060

to 0.0372 by 65% after debiasing. Across all models, accuracy and F1-score

remain relatively stable after debiasing, with three models even recording an

increase in accuracy. In a closer observation, the Religion and Race identity cat-

egories continue to exhibit a higher group bias compared to the Gender identity

category after debiasing. Out of a total of 40 identities, 27 d s values are positive,

suggesting that models have a tendency to misclassify samples associated with

these identities as hate speeches.

To provide an in-depth analysis, we visualize the changes in group bias de-

gree and accuracy compared to the baseline model in Figure 6.3. For each

model, we show the overall changes in group bias (i.e., dg changes), changes

in group bias for Gender, Religion, and Race identity categories, as well as ac-

curacy changes. A value above 0 signifies an improvement. That is, regarding
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Table 6.3: Debiasing with Regards to Individual Bias

Dataset Accuracy F1 di Gender Religion Race

WhiteForumHate 90.84% 0.9501 0.0827 0.0726 0.1273 0.0502
TwitterHate 91.50% 0.9121 0.1184 0.1126 0.0351 0.0492

GabHate 86.30% 0.8491 0.2239 0.0474 0.0841 0.3276
RedditHate 89.35% 0.8148 0.0812 0.0197 0.0926 0.2342

GabTwitterHate 76.44% 0.8252 0.2148 0.1153 0.2028 0.1585

biases, a bar above 0 denotes an improvement in group fairness (i.e., decreased

dg). For accuracy changes, a bar above 0 indicates increased accuracy and vice

versa. Generally, our approach successfully mitigates group bias for almost all

identity categories concurrently. Except for a minor increase in the group bias

for the Race category (by 0.03) for the model fine-tuned on TwitterHate dataset,

all bias degrees exhibit improvements. Particularly noteworthy is the signifi-

cant improvement on the Religion category across all models. Furthermore, the

accuracy drops for all models are almost negligible when compared with the

improvements in fairness.

RQ2: How effective the debias adapter is to mitigate individual bias? To

answer this question, we show the individual bias degree as well as perfor-

mance metrics after debiasing in Table 6.3. In our experiments, we train the

debias adapters and downstream classifier with Loss Function 6.4 and parame-

ters shown in Equation 6.11.

In Table 6.3, the second and third columns display the model performance

metrics with respect to accuracy and F1-score. The fourth column presents the

debiased individual bias degree di. Similar with RQ1, we evaluate the individual

bias degree for each identity category, with details provided in the final three

columns.

In general, the individual bias degree improves by more than 20% across all

models. Particularly, for the model fine-tuned on the WhiteForumHate dataset,

di decreases by 58% from 0.1962 to 0.0827. Notably, after debiasing, accuracy

and F1-scores stay consistent for all models, with the accuracy of one model
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Figure 6.4: Individual Bias ‘di’ and Accuracy Changes

even showing an increase. The individual bias di still varies across different

identity categories after debiasing. Most of the models exhibit higher individual

bias on Religion and Race categories.

In Figure 6.4, we visualize the changes in individual bias degree and ac-

curacy compared to the baseline model. For each model, we show the overall

changes in individual bias (i.e., di), changes in individual bias for Gender, Reli-

gion and Race identity categories, as well as accuracy changes. As in previous

discussion, a value above 0 denotes an improvement. The results demonstrate

successful mitigation of individual bias across nearly all identity categories con-

currently. Except for the Race category in RedditHate dataset and Gender cate-

gory in GabTwitterHate dataset, all individual bias di decrease after debiasing.

Specifically, for the model fine-tuned on the WhiteForumHate dataset, the in-

dividual bias for all categories decreases by more than 0.06. Remarkably, a

significant reduction in individual bias is observed within the Religion category

across all models. Furthermore, the accuracy drops for all models are relatively

minor, remaining under 2% after debiasing.

RQ3: How much weight we should place on fairness? To answer this question,

we analyze the changes in bias degree and accuracy after debiasing, while ad-

justing parameter l . The parameter l , as denoted in Equation 6.4, serves as the
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weighting factor determining the influence of bias loss. A larger value assigns

more weight to the bias loss. In our experiments, we adjust l to control the

balance between achieving bias reduction and maintaing accuracy.

During the process of mitigating group bias, we noticed that adjusting the

value of l did not yield an obvious trade-off between reducing group bias and

experiencing a decrease in accuracy. Consequently, we empirically determined

the optimal value of l , with the objective of minimizing dg while maintaining

an acceptable level of accuracy. This absence of significant trade-off might be

explained by the fact that the group bias degree is based on FUR and thus there

is a strong correlation between group bias loss and accuracy loss.

In the context of individual bias mitigation, we noted a clear trade-off be-

tween the reduction of bias and the drop in accuracy. As a result, determining the

optimum value of l for these convex curves becomes straightforward through

golden section search [115]. Figure 6.5 visualizes how the individual bias de-

gree di changes with the increase in l . As observed, di decreases as l increases

from 0 to 1.5. Notably, in certain scenarios where l is sufficiently large, di

drops to 0.

In Figure 6.6, we provide a more detailed visualization of the changes in

‘Improved di - Acc Drop’, which represents the improvement in individual bias

degree minus the accuracy drop, as we increase the value of l . Notably, the

value exhibits a steady increase initially, followed by a sudden drop when l

reaches a high value. One should note that, for the model fine-tuned on White-

ForumHate dataset, the data is highly unbalanced, with over 90% of the data

labeled as positive. This imbalance means that even if the debiased model in-

appropriately predicted all samples as positive, the accuracy could still achieve

88.0%. Consequently, the value ‘Improved di - Acc Drop’ hits its peak when l

equals 1.4.

RQ4: How effective is our approach compared with related works? To answer

this question, we compare the efficacy of our methods with that of other related
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works. As our approach is essentially a post-processing method, which does not

access or modify the internals of language models, we exclusively consider post-

processing debiasing techniques as related works. In other words, the compared

method cannot gain access to or modify the internals of baseline BERT models.

Overall, we take into account three post-hoc debiasing techniques as baselines,

two aimed at group bias mitigation and one targeting individual bias mitigation.

For group bias mitigation, we consider two well-established techniques. The

first one is ‘Calibrated Equalized Odds’ (CEO) [123], which mitigates biases by

optimizing calibrated classifier score outputs. It searches for probabilities with

which to change output labels with an equalized odds objective. The second
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baseline is ‘Reject Option Classification’ (ROC) [72], a method that assigns

favorable labels to unprivileged instances and unfavorable labels to privileged

instances around the decision boundary with the highest uncertainty. The im-

plementations of these bias mitigation techniques in our work are based on the

AIF360 framework [14]. As both methods mitigate bias through pre-defined

privileged and unprivileged groups based on tabular data, we extend the im-

plementation to textual data and define the unprivileged group according to the

baseline group bias d s for each individual identity s. Accordingly, samples asso-

ciated with identities exhibiting the highest d s are classified as the unprivileged

group. For example, in the WhiteForumHate dataset, the unprivileged group

comprises homosexual, muslim, black, while the privileged group includes the

remaining identities.

The group bias degree and accuracy changes are shown in Table 6.4. We

denote a decrease in value by the symbol ‘#’, hence, a positive dg # signifies

an improvement in group fairness. Conversely, the symbol ‘"’ denotes an in-

crease in value, so a positive ‘Acc "’ indicates an increase in fairness and vice

versa. We can observe that CEO and ROC methods do not consistently mitigate

group bias across all models. In some instances, these methods even negatively

affect group fairness. Moreover, almost all models exhibit a drop in accuracy

after debiasing. To evaluate the balance between debiasing effect and accuracy

compromise, we visualize the ‘improved dg - Acc Drop’ values in Figure 6.7.

Notably, our method shows the most effective group bias mitigation while main-

taining accuracy across all models.

For individual bias mitigation, we compare our results with models that have

been retrained using idis, which is commonly used to mitigate individual bias

in existing works [176, 7]. Note that, similar to our setting, the comparison

method cannot modify the baseline BERT models. Consequently, it only trains

on the debias adapter and classifier subsequent to the BERT encoder. In our

experiments, we generate idis from the training data and use these along with
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Table 6.4: Group Bias Degree Changes After Debiasing by Related Works and
Ours

Dataset CEO ROC Ours
dg # Acc" dg # Acc" dg # Acc"

WhiteForumHate 0.0005 0.03% 0.0713 -3.24% 0.0546 0.12%
TwitterHate -0.1011 -0.25% -0.0058 -23.59% 0.1186 -2.78%

GabHate 0.0399 -0.58% 0.0523 -0.45% 0.0732 0.27%
RedditHate 0.0458 -0.89% 0.0059 -2.20% 0.0687 0.46%

GabTwitterHate -0.0051 -0.51% 0.0139 -3.19% 0.0209 -0.15%
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-0.1

-0.05
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Figure 6.7: ‘Improved dg - Acc Drop’ Changes

the original training data to retrain debias adapters and classifiers.

We present the changes in individual bias degree and accuracy in Table 6.5.

We can observe that while retraining with idi improves individual fairness for

two models, it leads to an obvious decrease in accuracy for almost all models.

In Figure 6.8, we visualize the ‘improved di - Acc Drop’ values. In alignment

with the previous discussion, our method consistently displays the most effec-

tive mitigation on individual bias, while maintaining accuracy across all models.

6.6 Related Work

This work is related to research on fairness testing and verification, bias mitiga-

tion methods as well as broadly various studies on textual bias. Besides those

mentioned in the previous sections, we summarize other related works below.
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Table 6.5: Individual Bias Degree Changes After Debiasing by Related Works
and Ours

Dataset Train with idis Ours
di # Acc" di # Acc"

WhiteForumHate 0.0686 0.09% 0.1135 -0.37%
TwitterHate -0.0888 -1.24% 0.0230 -0.38%

GabHate -0.0041 -3.51% 0.0818 -1.04%
RedditHate -0.0632 -2.92% 0.0209 0.55%

GabTwitterHate 0.0224 -1.85% 0.0213 -1.49%

-0.15
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-0.05
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Figure 6.8: ‘Improved di - Acc Drop’ Changes

Fairness Testing and Verification There exist various works trying to detect

bias in NLP models in different angles. In the word embedding association

test (WEAT), various studies show the stereotypical biases in word level [102,

26, 134]. Lu et al. show that NLP systems exists more correlations on gen-

der/occupation stereotypes such as he/doctor [96] and Aylin et al. demon-

strate the tight association between gender-related words and career or family

attributes in GloVe and word2vec word embeddings [26]. Sheng et al. also

show that there are more negative associations of the black population for con-

text related to occupation [134]. Liang et al. demonstrate that certain harmful

tokens, such as ”terrorists” and ”murder,” are more likely to associate with spe-

cific classes, such as Muslims [90]. Then, May et al. extend WEAT to sentence

embedding association test (SEAT) and test social biases on sentence encoders,
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e.g., ELMo and BERT [105]. There are also works on testing pre-trained LLMs

to explore the extrinsic bias. Soares et al. study how group fairness varies

across different fine-tuned LMs for binary classification [138]. Marta et al. try

to explore whether language models’ architectures, when trained with the same

data, influence the level of gender bias [34]. They also propose interpretability

analysis to interpret gender bias in neural machine translation models. Abid et

al. focus on GPT-3 to investigate religious bias, i.e., anti-Muslim bias, in var-

ious tasks [2]. Jentzsch et al. analyze gender bias in BERT models trained on

sentiment rating dataset [68].

For fairness verification, we try to have a statistical confident conclusion in

every single batch. There also exist other works verifying fairness metrics. Bas-

tani et al. contribute a novel approach for probabilistic verification of fairness

properties in machine learning systems, leveraging concentration bounds and

logical specifications [13].

Bias Mitigation To mitigate LM biases, common approaches include mod-

ifying the training data through data augmentation, manipulating word or sen-

tence representations and other in-processing methods.

For Data Augmentation, Kusner et al. first propose counterfactual fair-

ness, which treated different samples equally in actual and counterfactual de-

mographics groups [84]. Zhao et al. mitigate gender bias by augmenting orig-

inal data with gender swapping and retrain the model [180]. Some existing

works focus on word embeddings [49]. Bolukbasi et al. mitigate gender bias

in Word2Vec [19]. Mikolov et al. propose an improved method called GN-

GLoVe, which separate the GloVe [120] embedding space into neutral and gen-

der dimensions [106]. Then they train the model with a modified loss function

to obtain gender-neutral embeddings. He et al. focus on gender biases and pro-

pose a bias mitigation technique that creates informative and fair contextualized

representations based on natural language reference data [63]. Lastly, typical

in-processing methods for bias mitigation include retraining or fine-tuning the
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given model with loss constraints, and modifying the model structure or training

process. Guo et al. focus on gender and racial bias and propose an automatic

method to mitigate the bias for masked language models through fine-tuning

with distribution alignment loss on biased prompts [57]. Zhang et al. use ad-

versarial networks to prevent the discriminator from identifying gender in an

analogy completion task [168]. Reinforcement learning is also included to mit-

igate biases of LMs. Liu et al. propose a reinforcement learning framework for

mitigating political biases without having access to the training data or requiring

the model to be retrained [91]. Subramanian et al. consider ‘gerrymandering’

groups and propose approaches to predict outputs without the influence of social

identities encoded in hidden representation. It focuses on equality of opportu-

nity [162], i.e., average-violations of true positive rate as bias metric.

6.7 Summary

In this work, we introduce a non-intrusive bias mitigation strategy that carries

three significant benefits. First, it does not access or modify the internals of

language models and debiasing in a parameter-efficient way. This method is

particularly valuable in the current context, where most LLMs are becoming

increasingly complex and are not intrinsically accessible. Second, it provides

a theoretical guarantee at each step during debiasing. Third, our approach im-

proves fairness at little cost of accuracy.
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Chapter 7

Conclusion and Future Work

In this chapter, we conclude the dissertation, first with some conclusions and

then with some ideas for intriguing future work.

7.1 Conclusions

At the beginning of this dissertation, we elaborated on the background of state-

of-the-art machine learning models, including neural networks and LLMs as

well as the potential issues arise. Then, we aimed to improve people’s trust in

machine learning models in two aspects: interpretability and fairness. Specifi-

cally, we proposed multiple approaches and toolkits to systematically test model’s

interpretability, fairness and also proposed novel methods to mitigate discrim-

ination with regard to both tabular data and textual data. The contributions of

this dissertation are as follows.

First of all, we advanced the field of neural network interpretability by

proposing multiple definitions and developing algorithms to systematically eval-

uate interpretability. Our approach hinged on measuring fidelity against decision

tree with a predefined height limit, providing a framework for assessing model

interpretability. The decision trees allowed us to provide reasonable expression

where humans can reason about the decision making process naturally. We also

evaluated the relationship between robustness and interpretability. lastly, we
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proposed a method to improve the decision explainability of a model through

retraining.

Second, we narrowed the interpretability problem into a specific case, i.e.,

fairness. We noticed that group discrimination can manifest in subtle ways,

where it may be hidden and not immediately apparent. This can occur when

certain groups, such as males of a specific age range or individuals with specific

combinations of sensitive features like race and gender, experience discrimina-

tion based on unknown and nuanced conditions. So, in the second work, we fo-

cused on testing neural networks for these subtle group discriminations. We in-

troduced a framework to systematically identify interpretable instances of such

discrimination. Specifically, the identified subtle discrimination comes with a

fairness score which is supported by a specified confidence level. Our exten-

sive evaluation uncovered the existence of subtle group discrimination in neural

networks, emphasizing the critical need for mitigation strategies. By leveraging

our testing results to augment training data, we demonstrated the potential for

mitigating these subtle discriminations.

Thirdly, we focused on fairness improvement methods and undertaked a

thorough empirical evaluation of nine fairness-improving methods across four

real-world datasets and a diverse set of model-attribute combinations, employ-

ing three distinct fairness metrics. Notably, our findings revealed that existing

methods do not consistently enhance group fairness and often fall short of reduc-

ing individual discrimination. Motivated by this empirical insight, we proposed

a lightweight, causality-based approach to dynamically select the most suitable

fairness improvement method. By evaluating the distribution of ”responsible”

attributes and neurons, we achieved notable success in optimizing fairness im-

provements.

Lastly, with the significant development of LLMs, we observed that it is

necessary to test and mitigate biases with regard to language models. Here, we

introduced a non-intrusive bias mitigation strategy, which operated without the
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need to access or modify the internal workings of language models. This advan-

tage presented a parameter-efficient and practical solution for increasingly com-

plex language models. It also provided theoretical guarantees at each debiasing

step, ensuring a principled approach to fairness enhancement. Additionally, our

method substantially improved fairness with minimal impact on accuracy, un-

derscoring its potential as a powerful tool in the pursuit of equitable AI systems.

7.2 Future Work

Our experimental results demonstrate that our proposed methods perform well

in terms of both effectiveness and efficiency. In future work, we want to inves-

tigate the following directions.

Fairness testing and bias mitigation on LLMs First, In our research work,

we focus on extrinsic bias, which is calculated according to downstream tasks.

However, it is necessary to develop a tool to systematically test both extrinsic

bias and intrinsic bias within the LLMs. Typically, extrinsic bias refers to biases

that are introduced into the model’s output and intrinsic bias refers to biases

that are inherent in the architecture or embedded in the tokens. Testing both

extrinsic and intrinsic biases provides a more comprehensive assessment of a

model’s behavior. It allows for a nuanced understanding of the sources of bias

and how they manifest. It is also essential for building AI systems that align

with ethical regulations. Additionally, like our third research work, where we

evaluate the reason of discrimination to select the optimal fairness improvement

method, different types of biases may require different mitigation approaches

within LLMs. Especially, when the LLMs become more complex and hard to

access for normal users, it is imperative to develop more technologies to reduce

different types of biases without accessing the internals of the model or the

training data.

Fairness testing for more applications Our research works primarily focus
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on tabular data in the context of deep neural networks and textual data in the

context of language models. However, our examination is limited to classifi-

cation problems, where fairness concerns have been widely defined. Fairness

problems, as a critical non-functional property, should be considered across a

wider array of systems, such as recommendation systems, speech recognition

systems, text generation systems, etc. For these diverse systems, it becomes

imperative to propose more comprehensive definitions of fairness and develop

tailored tools. It enables us to create a fairer and safer environment for the de-

velopment of machine learning technologies.
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