
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Dissertations and Theses Collection (Open
Access) Dissertations and Theses

12-2023

Towards securing smart contracts systematically Towards securing smart contracts systematically

Duy Tai NGUYEN
Singapore Management University, dtnguyen.2019@phdcs.smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/etd_coll

 Part of the Software Engineering Commons

Citation Citation
NGUYEN, Duy Tai. Towards securing smart contracts systematically. (2023). 1-209.
Available at:Available at: https://ink.library.smu.edu.sg/etd_coll/546

This PhD Dissertation is brought to you for free and open access by the Dissertations and Theses at Institutional
Knowledge at Singapore Management University. It has been accepted for inclusion in Dissertations and Theses
Collection (Open Access) by an authorized administrator of Institutional Knowledge at Singapore Management
University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd
https://ink.library.smu.edu.sg/etd_coll?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F546&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F546&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Towards Securing Smart Contracts
Systematically

TAI D. Nguyen

SINGAPORE MANAGEMENT UNIVERSITY
2023

Towards Securing Smart Contracts
Systematically

TAI D. Nguyen

Submitted to School of Computing & Information Systems in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy in Computer Science

Dissertation Committee
SUN Jun (Supervisor/Chair)
Professor of Computer Science
Singapore Management University

David LO
Professor of Computer Science
Singapore Management University

JIANG Lingxiao
Associate Professor of Computer Science
Singapore Management University

Yi Li
Assistant Professor
Nanyang Technological University

SINGAPORE MANAGEMENT UNIVERSITY
2023

Declaration of Authorship
I hereby declare that this dissertation is my original work and it has been writ-

ten by me in its entirety.

I have duly acknowledged all the sources of information which have been used

in this dissertation.

This dissertation has also not been submitted for any degree in any university

previously.

Signed:

Date:

user
Typewriter
28/12/2023

Abstract
Smart contracts are a groundbreaking technique that allows users to program-

matically modify the state of the blockchain. They are essentially self-enforcing

programs that are deployed and executed on top of the blockchain. In recent

years, we have witnessed various smart contract incidents that led to substan-

tial financial losses and even business closures. These incidents mainly arise

from design flaws in Solidity, a dominant programming language for writing

smart contracts, which complicates the process of detecting and repairing vul-

nerabilities. Furthermore, there is a growing interest in attacking smart con-

tracts by the attackers. This thesis is dedicated to developing effective meth-

ods to ensure the safety and correctness of smart contracts systematically. Our

methods have two parts: vulnerability detection and smart contract repair. While

the goal of vulnerability detection is to aggressively uncover bugs, smart con-

tract repair eliminates detected bugs by adding safety constraints.

In the first part of the thesis, we primarily concentrate on vulnerability de-

tection. We start by building a grey-box fuzzing engine for detecting common

vulnerabilities like reentrancy and arithmetic vulnerabilities. The main contri-

bution is an algorithm, inspired by search-based software testing (SBST), to im-

prove the quality of the test suite. Subsequently, we design a formal verification

framework to guarantee the correctness of smart contracts. The framework pro-

vides an expressive verification language and a functional verification engine

that aims to eliminate global analysis and reduce false positives.

In the second part of the thesis, we propose repair algorithms to system-

atically eliminate detected vulnerabilities in smart contracts. We first design

a novel approach to patch vulnerable implementations by analyzing control

and data dependencies in their bytecode. Each vulnerability is defined in the

form of dependencies and is patched using the corresponding templates. The

patched contracts are proven to be free of vulnerabilities and incur low gas

overhead. After that, we develop an algorithm to repair bugs in user-developed

specifications in the form of a precondition/post-condition for each function.

The algorithm is inspired by abductive inference and constraint-solving. It first

automatically discovers inconsistencies between the specification and the im-

plementation and then generates recommendations for repairing specifications.

With vulnerability detection and contract repair, this thesis paves the way for

achieving smart contract security systematically.

Contents

1 Introduction 1

1.1 Smart Contracts . 1

1.2 Vulnerabilities . 4

1.3 Problem Definition . 5

1.4 Research Questions . 7

1.5 Contributions . 9

1.6 Outline . 12

2 Preliminaries 15

2.1 Ethereum . 15

2.1.1 Consensus . 16

2.1.2 Accounts . 18

2.1.3 Transactions . 19

2.1.4 Blocks . 21

2.2 Smart contracts . 22

2.2.1 Solidity . 22

2.2.2 Bytecode . 24

2.2.3 Ethereum Virtual Machine 25

2.3 Vulnerabilities . 27

I Smart Contract Vulnerability Detection 33

3 sFuzz: An Efficient Adaptive Fuzzer for Solidity Smart Contracts 35

3.1 Introduction . 36

3.2 Illustrative Examples . 38

3.3 Fuzzing Smart Contracts . 42

3.3.1 Problem Definition . 42

3.3.2 Feedback-Guided Adaptive Fuzzing 45

3.3.3 Crossover and Mutation . 53

3.4 Implementation . 55

3.5 Experiments and Evaluation . 58

3.5.1 Efficiency . 59

3.5.2 Effectiveness . 61

3.5.3 Adaptiveness . 66

3.6 Related Work and Conclusion . 68

4 iContract: An Idealist’s Approach for Smart Contract Correctness 70

4.1 Introduction . 71

4.2 Overview . 73

4.2.1 Vulnerability and Correctness 73

4.2.2 An Illustrative Example . 74

4.3 Specification Language . 77

4.3.1 High-level Overview . 77

4.3.2 Formalization . 80

4.4 Verification . 85

4.4.1 Function validation . 85

4.4.2 Generating Proof Obligations 86

4.5 Implementation and Evaluation . 88

4.5.1 Implementation . 88

4.5.2 Experimental Evaluation 89

4.6 Related Work and Conclusion . 93

II Smart Contract Vulnerability Repair 96

5 sGuard: Towards Fixing Vulnerable Smart Contracts Automatically 98

5.1 Introduction . 99

5.2 Background and Overview . 101

5.2.1 Vulnerabilities . 101

5.2.2 Patching Smart Contracts 104

5.3 Problem Definition . 107

5.3.1 Concrete Semantics . 107

5.3.2 Symbolic Semantics . 108

5.3.3 Problem Definition . 112

5.4 Detailed Approach . 117

5.4.1 Enumerating Symbolic Traces 119

5.4.2 Dependency Analysis . 123

5.4.3 Fixing the Smart Contract 126

5.5 Implementation and Evaluation . 128

5.5.1 Implementation . 129

5.5.2 Evaluation . 131

5.6 Related Work . 138

5.7 Conclusion . 140

6 SPAIR: Towards Repairing Smart Contract Specification 141

6.1 Introduction . 142

6.2 Specification Language . 145

6.3 Motivation Example . 146

6.4 Detailed Approach . 151

6.4.1 High-level Algorithm . 151

6.4.2 Function Verification . 152

6.4.3 Patch Generation . 154

6.4.4 Patch Ranking . 160

6.5 Implementation . 162

6.6 Evaluation . 164

6.7 Related work . 173

6.8 Conclusion . 174

7 Conclusion and Future Work 176

7.1 Conclusion . 176

7.2 Future Work . 178

Bibliography 180

List of Figures

1.1 An example of a blockchain . 2

1.2 A simple smart contract excerpted from SWC [6] 3

2.1 Ethereum can be viewed as a transaction-based state machine . . 16

2.2 Decentralised nodes constitute Ethereum P2P network 16

2.3 An account is a mapping between addresses and account states . 18

2.4 Gas is refunded if it is not used . 20

2.5 An example of a basic wallet. 22

2.6 The layout of deployment bytecode 24

2.7 EVM architecture . 25

2.8 A taxonomy of vulnerabilities . 27

3.1 An example with single objective function 39

3.2 An example with multiple objective functions 42

3.3 A generated test case . 47

3.4 A control flow graph . 53

3.5 Efficiency comparison between sFuzz, Oyente, and ContractFuzzer 61

3.6 Coverage comparison between sFuzz and ContractFuzzer 62

3.7 Coverage comparison between sFuzz and Oyente 62

3.8 Oyente visits infeasible branches 63

3.9 Percentage of test cases due to adaptive strategy 65

3.10 Effective of adaptive strategy over time 66

4.1 A sample contract . 75

4.2 Small-step operational semantics of the smart contract language,

given by the binary relation⇝ over Stacks×Heaps 82

4.3 Specification formula semantic where dom(f) returns the domain

of function f , size(v) the range of index of the array v. 83

4.4 Encoding rules (where finv(p, q) is ensures(p, q) or call_inv(p, q)) 86

4.5 An example illustrating the effectiveness of reverts_if() in identi-

fying incorrect require statements 92

5.1 CVE-2018-10376 patched by SGUARD 102

5.2 MasBurn patched by sGuard . 106

5.3 Operational semantics of Ethereum opcodes. pop, push, and get

are self-explanatory stack operations. m[p ← v] denote an oper-

ations which returns the same stack/mapping as m except that

the value of position/key p is changed to v. Rule UNARY-OP

(BINARY-OP, TERNARY-OP) applies to all unary (binary, ternary)

operations; rule DUP-I, applies to all duplicate operations; and

rule SWAP-I applies to all swap operations. 109

5.4 An example of control and data dependency 111

5.5 A non-reentrant case captured by NW 114

5.6 An example of cross-function reentrancy vulnerability 115

5.7 An example of dangerous tx.origin vulnerability 115

5.8 An example on how the bound(n) is computed 121

5.9 Loop bounds computed by sGuard 131

5.10 Memory and storage address transformations 133

5.11 Overhead of fixed contracts . 135

5.12 sGuard execution time . 136

6.1 A function with a missing precondition. The specification is fixed

by adding a precondition (line 2) such that the postcondition is

satisfied . 147

6.2 A bug in contract TetherToken at lines 20-23. It is fixed by

simply deleting vulnerable codes at lines 20-23 149

6.3 Connected components and patching orders 155

6.4 Rules to compute p′′ . 157

6.5 An example of GED . 162

6.6 Results of patching specification for 10 projects 168

List of Tables

2.1 Common fields of an Ethereum account 19

2.2 Common fields in an Ethereum transaction 20

2.3 Common fields in an Ethereum block header 21

2.4 A list of Solidity-supported external function calls 24

3.1 Mutations for fix-length values . 54

3.2 Vulnerabilities . 64

4.1 Core features of Solidity . 80

4.2 Statistics on verified contracts . 90

4.3 Comparison against Solc-verify . 93

5.1 The opcodes according to each rule 110

5.2 Variables and their symbolic values of Figure 5.4 113

5.3 Total number of bound checks . 136

5.4 Fixing results on the high profile contracts 137

6.1 Patches generated by SPAIR to repair the specifications in Fig-

ure 6.1. We use T2 and ER to refer to contract TetherToken and

its direct parent ERC20Upgradeable. The precondition and post-

condition of F-patch are separated by a semicolon 148

6.2 Statistics of 10 high-profile projects. For each project, the table

shows the number of contracts (#Cont), functions (#Func), condi-

tional statements (#Cond), specification statements (#Spec), line

of codes (#Line), and transactions (#Tran) 165

6.3 Results of SPAIR on inferring missing conditions. For each project,

the table shows the number of functions (#Function), precondi-

tions (#Pre), postconditions (#Post), and the execution time (Time).

The column #Pre (or #Post) is formatted as X/Y/Z where X, Y,

and Z represent the number of inferred conditions that are weaker,

stronger, and identical to the original conditions respectively . . 166

6.4 Results of SPAIR on inferring specifications from call sites. For

each project, the table shows the number of internal calls (#In-

ternal), successfully inferred specifications (#Success), precondi-

tions (#Pre), post-conditions (#Post), and the execution time (Time).169

6.5 Result of SPAIR on more complicated test subjects. For each

project, the table shows the number of functions (#Function) such

that their specifications are patched, the execution time (Time) in

seconds, and the maximum call stack depth (Depth) 172

Acknowledgements
Four years of pursuing a Ph.D. is a long journey. I have experienced both the

most rewarding and challenging moments of my life. I have been lucky to meet

and work with talented people and have greatly appreciated their support and

encouragement.

First and foremost, I would like to express my deepest gratitude to my su-

pervisor, Professor SUN Jun, not only for his guidance and support, but also

for giving me an opportunity to explore my research interests. He guided me

through the very first day when I was completely inexperienced in research. As

of now, I have some achievements. Thank you for being patient with me during

the time I was deeply demotivated.

I would like to thank my senior, Dr. Pham Hong Long, who worked closely

with me. He acted as my secondary supervisor, gave me invaluable advice, and

encouraged me to make me a better researcher.

I am also very grateful to the members of the defense committee, Professor

David Lo, Associate Professor JIANG Lingxiao, and Assistant Professor Yi Li,

for their valuable time and effort spent on reviewing my thesis and for provid-

ing me with insightful feedback. I also want to thank my collaborators, Tran

Minh Quang, Yun Lin, Le Quang Loc, and Fu Song for their contributions to

discussions, writing efforts, and valuable suggestions.

It would not have been possible without sharing the best moments with

my friends at SMU and SUTD: Lyly Tran, Minh Nguyen, Sinh Huynh, Quang

Pham, James, Vu Tran, Thu Tran, Kien Nguyen, Phuc Nguyen, Hoang Le, Hieu

Do, Viet Tran, Gao Bo, Shi Ling, Becky, Raven. I want to especially thank Minh

Nguyen for various topic discussions during the COVID pandemic. I had the

delightful experience of hiking and solving puzzles with Quang Pham, and

playing snooker with Tuan Tran and Kien Nguyen.

Last but not least, I would like to thank my family, especially my mom and

dad for their endless support. I am deeply thankful to Giang Tran. Thanks for

being with me during the toughest time, loving me, and being so patient with

me. The last person is my beloved, Cam. You are the greatest motivation for

me to become better.

Chapter 1

Introduction

In this chapter, we first introduce the concepts of blockchain and smart con-

tracts. Subsequently, we present our research questions and their correspond-

ing solutions. Lastly, we summarize the contributions of this thesis.

1.1 Smart Contracts

On September 15th, 2008, the fourth-largest investment bank Lehman Brothers

filed for bankruptcy. It was the largest bankruptcy in U.S. history at that time

with 25,000 employees worldwide affected. The collapse cost an estimated $10

trillion in lost economic output. It was among the most significant events of the

financial crisis of 2007–08. After the collapse, many people started to question

the trustworthiness of the centralized financial institutions. They sought for

alternatives that offer them transparency.

In 2008, an anonymous person/group known as Satoshi Nakamoto created

Bitcoin, a fully decentralized cash system. This makes Bitcoin the first cryp-

tocurrency to solve the double-spending problem [1] without the need for a

third party such as governments or financial institutions. Bitcoin operates on

Chapter 1. Introduction

PrevHash Nonce

TX TX TX TX

PrevHash Nonce

TX TX TX TX

PrevHash Nonce

TX TX TX TX

FIGURE 1.1: An example of a blockchain

a peer-to-peer network and ensures the transparency by cryptographic tech-

niques. The underlying technology of Bitcoin is blockchain. Initially, Bitcoin had

no value and was not traded. In 2010, Laszlo Hanyecz made the first real-world

purchase – swapping 10,000 Bitcoin for two pizzas [2]. This remarkable event

is celebrated annually as "Bitcoin Pizza Day". After that, Bitcoin continued to

gain popularity and recognition, it hit its all-time high of over $68,500 in 2021.

Nowadays, Bitcoin becomes the most valuable digital asset with a daily trading

volume of more than 21 billion USD and a market capitalization worth almost

569 billion USD [3].

A blockchain is a shared, immutable, and decentralized ledger that stores

all transactions conducted in a peer-to-peer network. It contains a growing list

of records, known as blocks, that are securely linked together via cryptographic

hashes [4] as shown in Figure 1.1. A block typically consists of transactions, a

block link, and a nonce. It is connected to the ones before and after it to form a

chain of blocks. A block link is a cryptographic hash of the previous block. It

prevents any block from being altered, tampered or inserted between two exist-

ing blocks. A nonce is a random number that can be used in conjunction with

data in the block to create a unique block link. Once a blockchain is formed, it

is immutable and irreversible.

Bitcoin is powered by blockchain technology. However, it is primarily re-

stricted to decentralized payments. A pioneering breakthrough occurred in

2013 when Vitalik Buterin introduced Ethereum and demonstrated that Ethereum

2

1.1. Smart Contracts

1 pragma solidity 0.4.24;
2
3 contract SimpleDAO {
4 mapping (address => uint) public credit;
5 function donate(address to) payable public{
6 credit[to] += msg.value;
7 }
8 function withdraw(uint amount) public{
9 if (credit[msg.sender]>= amount) {

10 require(msg.sender.call.value(amount)());
11 credit[msg.sender]-=amount;
12 }
13 }
14 function queryCredit(address to) view public returns(uint){
15 return credit[to];
16 }
17 }

FIGURE 1.2: A simple smart contract excerpted from SWC [6]

could be used for multiple purposes e.g., real estate, supply chains, and in-

surance. Ethereum is different from Bitcoin in various aspects. However, the

primary aspect that sets them apart is the ability to execute so-called smart

contracts. Smart contracts are essentially self-enforcing programs that are de-

ployed on Ethereum blockchain and executed within Ethereum runtime envi-

ronment, namely Ethereum Virtual Machine (EVM). An EVM is a stack-based

machine that operates on a large set of instructions [5] to compute the state of

the blockchain.

Despite a large variety of programming languages (e.g., Solidity [7], Vyper [8],

and Bamboo [9]), Solidity is the most dominant language for implementing

smart contracts in Ethereum. It is a statically-typed curly-braces programming

language. A Solidity smart contract is similar to a class in object-oriented pro-

gramming languages such as Java or C#. It contains persistent data such as

state variables and functions that can modify these variables. Figure 1.2 shows

a simple smart contract implemented in Solidity. The contract SimpleDAO has

3 public functions including donate, withdraw, and queryCredit. It works

3

Chapter 1. Introduction

as a bank service where a user can call the function donate to transfer their

ethers (i.e., the native cryptocurrency of Ethereum) to another user (lines 6-8),

call the function withdraw to get their own ethers back (lines 10-15), and call

the function queryCredit to query the deposited balance of any user (lines

17-19). Several global features are used including variables msg.value (i.e.,

the number of wei 1 sent by the caller), msg.sender (i.e., the address of the

caller), and function <receiver>.call.value (i.e., transferring ethers from

the caller to the receiver). With the capabilities of smart contracts, Ethereum

has risen to become the second-largest cryptocurrency in the world in terms of

market capitalization, standing just right behind Bitcoin [10]. Thus, any smart

contract mistakes could potentially result in huge financial losses.

1.2 Vulnerabilities

Like traditional programs, smart contracts are subjected to code-based vulner-

abilities. Unlike traditional programs, they are immutable, meaning that smart

contracts cannot be amended once deployed. Any vulnerabilities on Ethereum

become permanent and cannot be rectified. There have been various smart con-

tracts attacks in the past. We highlight three incidents that caused great finan-

cial loss and resulted in controversial decisions from Ethereum Foundation.

The DAO is a decentralized autonomous organization that allows partici-

pants to vote for various proposals and decisions. All votes and activities are

managed by smart contracts and posted on Ethereum. The DAO launched in

late April 2016 and raised more than $150 million after a month of selling to-

kens. By May 2016, it held around 14% of the issued ether, which is the largest

11 ether = 1e18 wei

4

1.3. Problem Definition

crowdfunding of all time. In June 2016, The DAO [11] was subjected to a so-

called reentrancy attack. The attackers gained access to 3.6M ethers (≈$50M). To

recover the funds, Ethereum Foundation made a controversial decision [12]–

[14]. That is, they released a hard fork to revert the attack. This led to the cre-

ation of two separate blockchains: Ethereum and Ethereum Classic.

A multi-signature (multi-sig) wallet is a set of contracts that manages ether.

It requires two or more private keys to move funds out of the wallet. In July

2017, an attacker exploited an insecure delegatecall statement to steal 150k ethers

(≈$30M) from the Parity wallet in two transactions. In the first transaction [15],

the attacker called a flawed constructor initWallet to obtain ownership of

the wallet. In the second transaction [16], the function execute was invoked

to transfer all funds to the attacker’s account.

A few months later, the Parity wallet suffered from the second attack. This

time, an attacker devops199 executed an unrestricted selfdestruct statement

to destroy access to 514k ethers (≈$267M). First, the attacker called the function

initWallet to become the owner [17]. Then, the attacker attempted to drain

funds by executing the function kill [18]. However, all funds were locked.

Approximately 30 minutes later, the attacker created a Github issue #6995 [19]

and announced the failed attack.

1.3 Problem Definition

These aforementioned incidents raised serious concerns regarding the security

problems of smart contracts. Furthermore, many new smart contract-specific

vulnerabilities have been discovered and exploited during the development of

Ethereum [20]–[22]. This motivates us to develop tools and theories to ensure

5

Chapter 1. Introduction

the safety and correctness of smart contracts systematically. The overarching

problem is defined as follows.

Problem statement: Given a smart contract and its specifications, our objective is

to develop automated tools that aim to ensure that the given smart contract satisfies its

specifications.

To tackle the problem, a well-known approach is to reduce or even eliminate

vulnerabilities present in smart contracts. There exist many solutions to the

above problem, such as Oyente [23], Securify [24], and ILF [25]. We constraint

the solution space by focusing on two main research directions: vulnerability

detection and program repair.

• Vulnerability detection: aims to aggressively uncover bugs. Vulnerabil-

ity detection tools are developed to search for concrete inputs that violate

specifications. It is noted that the specifications could be a set of generic

requirements, such as free of overflow and free of re-entrancy or manually

specified requirements.

• Program repair: aims to eliminate all detected bugs without breaking the

functionality of the smart contract. Program repair tools are designed to

modify a contract or its specifications to ensure that the given contract

satisfies its specifications. It is noted that specifications can be modified

by assuming the implementation is correct.

6

1.4. Research Questions

1.4 Research Questions

For each of the two approaches that we focus on, we first conduct a literature re-

view to gain a comprehensive understanding of the existing approaches. After

that, we formulate research questions to address the limitations of the existing

approaches or explore new ideas. By providing well-founded answers to the re-

search questions, we make meaningful contributions to the respective research

domain.

A literature review at the time of the study shows that there are a few works

such as Oyente [23], ContractFuzzer [26], teEther [27], MAIAN [28], Osiris [29]

that aim to discover vulnerabilities. Oyente [23] is the first symbolic execu-

tion tool. It analyzes bytecode to identify four different types of bugs includ-

ing re-entrancy, transaction ordering dependency, timestamp dependency, and missed

handle exceptions. Although Oyente is capable of finding thousands of bugs

on Ethereum, it is neither sound nor complete. Subsequent works formulate

vulnerabilities in many different ways and rely on these formulas to improve

their detecting accuracy. In 2018, Krupp and Rossow presented teEther [27],

which searches for certain critical paths (i.e., contain ether transfer) and gener-

ates exploits for them. The exploit is generated by solving symbolic constraints

constructed from critical paths. In the same year, Nikolic et al proposed MA-

IAN [28]. MAIAN detects vulnerabilities across a long sequence of invocations

of a contract. Its vulnerable contracts are categorized into greedy contracts (lock

funds indefinitely), prodigal contracts (leak funds to arbitrary users), and sui-

cidal contracts (be susceptible to be killed by any user). Later on, Torres et al.

presented Osiris [29], which combines symbolic execution and taint analysis to

discover various types of integer bugs. Among them, ContractFuzzer [26] is the

only fuzzing work. Although it is able to detect seven kinds of vulnerabilities

7

Chapter 1. Introduction

by injecting code into EVM to analyze behaviors of smart contracts regardless

of the inputs, it does not incorporate feedback to improve the quality of the test

suite, which is considered the most important part of a fuzzer. This leads to our

first research question.

Research Question 1 (RQ1): How to develop a fuzzing engine that can improve the

quality of the test suite, increase code coverage, and discover more vulnerabilities?

Existing approaches for detecting vulnerabilities of smart contracts focus

on a collection of generic bugs (e.g., reentrancy, overflow or underflow, fron-

trunning, and frozen funds). While these approaches are undoubtedly useful,

they are incapable of pinpointing contract-specific bugs or showing their ab-

sence. Built upon the idea that different contract has different correctness spec-

ification, several recent approaches, such as VerX [30], SmartPulse [31], Solc-

verify [32] have been developed to support the falsification or verification of

manually specified correctness specifications. VerX [30] focuses on temporal

properties of Ethereum contracts. It reduces the temporal safety verification to

reachability verification and applies the state-of-the-art reachability checking.

SmartPulse [31] relies on counter example-guided abstraction refinement algo-

rithm (CEGAR), but exploits domain-specific knowledge about smart contracts

to make verification more efficient. Solc-verify [32] translates Solidity contracts

into the Boogie intermediate language and relies on the Boogie system for ver-

ification. It supports contract invariant, loop invariant, and pre-/post condi-

tions. Although the above-mentioned verification works are useful, they suffer

from shortcomings such as a specification language with limited expressiveness

and high false alarm rates. This leads to our second research question.

8

1.5. Contributions

Research Question 2 (RQ2) How to build a compositional verifier that supports a

user-friendly and expressive specification language and ensures the correctness of func-

tional specifications?

While vulnerability detection is essential for identifying security weaknesses,

it does not remove the vulnerabilities. Program repair is a complementary ap-

proach, which mitigates the detected vulnerabilities. Existing works such as

SmartShield [33], Elysium [34], and EVM-patch [35] patch vulnerable smart

contracts in different ways. Elysium [34] uses an outsourced bug localization to

determine vulnerable code. Then, it infers context information from bytecode to

generate a template-based patch. EVMPatch [35] features a bytecode rewriting

engine and leverages a template-based approach to patch integer overflow and

access control bugs. SmartShield [33] extracts control and data dependencies

from bytecode and source-code, then uses extracted semantics to fix insecure

control flows and data operations. Although the mentioned works are able to

repair vulnerable smart contracts, none of them guarantee the safety and cor-

rectness of patched smart contracts. This led to our third research question.

Research Question 3 (RQ3) How to patch a smart contract or its specifications in

a way that the patched contract is guaranteed to satisfy its specifications?

1.5 Contributions

To effectively tackle the aforementioned research questions, this thesis makes

several contributions. First, we propose four different approaches, varying

from dynamic analysis to static analysis, to ensure the safety and correctness

of smart contracts. Second, we implement our approaches as self-containing

9

Chapter 1. Introduction

tools including sFuzz, sGuard, iContract, SPAIR and make them publicly avail-

able [36]. Lastly, for each tool, we thoroughly evaluate its efficiency through

various experiments and report detailed results. The main contribution of each

work is summarized as follows.

We develop sFuzz, a feedback-guided fuzzing engine for smart contracts

running on Ethereum. It is inspired by AFL [37], a well-known fuzzer for C

programs. Although AFL-based fuzzing is often effective, it has limitations as

well. For example, AFL is often expensive in covering branches guarded with

strict conditions. To tackle the problem, sFuzz integrates AFL-based fuzzing

with an efficient lightweight adaptive strategy for selecting seeds. Although in-

spired by search-based software testing [38], [39], the latter distinguishes itself

by having a lightweight objective function (designed considering characteris-

tics of Solidity programs) as well as a novel multi-objective optimization strat-

egy. sFuzz has been applied to more than 4 thousand smart contracts and the

experimental results show that (1) sFuzz is efficient, e.g., two orders of magni-

tude faster than state-of-the-art tools; (2) sFuzz is effective in achieving high

code coverage and discovering vulnerabilities; and (3) the different fuzzing

strategies in sFuzz complement each other.

We present iContract, a fully compositional verification system for verifying

and enforcing the correctness of smart contracts. Existing approaches, such as

Solc-verify [32], VerX [30], SmartPulse [31], may have less expressive specifica-

tion language, high false alarms, and do not provide a way to enforce the spec-

ification. Therefore, we design a static verification system with a specification

language that supports fully compositional verification with the help of func-

tion invariants, contract invariants, loop invariants, and call invariants. Our

approach automatically proves the correctness of a smart contract statically or

10

1.5. Contributions

checks the unverified part of the specification during runtime. Using iContract,

we have verified 10 high-profile smart contracts against manually developed

detailed specifications, many of which are beyond the capacity of existing ver-

ifiers. In particular, we have uncovered two ERC20 violations in the BNB and

QNT contracts.

We propose sGuard, which automatically fixes potentially vulnerable smart

contracts. It is inspired by program fixing techniques for traditional programs

such as C or Java. Existing fixing approaches, such as GenFrog [40], PAR [41],

Sapfix [42], often suffer from the problem of weak specifications, i.e., a test suite

is taken as the correctness specification. A fix driven by such weak correctness

criteria may over-fit the given test suites and does not provide a correctness

guarantee in all cases. Furthermore, fixes for smart contracts may suffer from

not only time overhead but also gas overhead (i.e., extra fees for running the

additional code). Therefore, we develop an approach that automatically trans-

forms smart contracts so that they are provably free of four common kinds of

vulnerabilities. The key idea is to apply run-time verification in an efficient

and provably correct manner. Experiment results with 5000 smart contracts

show that our approach incurs minor run-time overhead in terms of time (i.e.,

14.79%) and gas (i.e., 0.79%).

We propose SPAIR, the first approach that automatically discovers incon-

sistency between the specifications and the implementation, and generates rec-

ommendations for repairing the specifications. Given a smart contract with

potentially buggy specifications (in the form of a precondition/postcondition

for each function), SPAIR works in three steps. Initially, it creates a call graph

from the smart contract, in which each node is a function and there is a directed

edge from the caller to the callee. The graph is then divided into connected

11

Chapter 1. Introduction

components. Subsequently, SPAIR patches the specifications in a bottom-up

manner by identifying connected components containing functions associated

with incorrect specifications. Lastly, SPAIR ranks all generated patches and

selects the best one for each function. Experiments on 10 high-profile smart

contracts show that SPAIR is able to recommend all the desired specifications.

The repairing process is not limited to specifications that contain a single bug

but also handles specifications with multiple bugs efficiently within a minute

in most cases.

1.6 Outline

This thesis consists of two main parts. The first part includes two chapters

that propose approaches to detect vulnerabilities and verify the correctness of

smart contracts automatically. This part is based on two works [43], [44], which

are joint works with Long H. Pham, Jun Sun, Yun Lin, Quang Tran Minh, and

Quang Loc Le. The second part contains another two chapters that focus on

repairing buggy implementations and specifications. This part is based on two

works [45], [46], which are joint works with Long H. Pham, Jun Sun, Yan Wan,

and Fu Song.

Each chapter focuses on one work, except Chapters 1-2 and Chapter 7. It

aims to offer self-contained information. However, the readers are advised to

first read the background in Chapter 2 before delving into the subsequent chap-

ters. The detailed outline of this thesis is as follows.

Chapter 2: lays the foundation necessary for comprehending our works.

This chapter presents Ethereum, a groundbreaking blockchain, as well as

the fundamental concepts of smart contracts.

12

1.6. Outline

Part I: Smart Contract Vulnerability Detection

Chapter 3: addresses the RQ1 by presenting sFuzz that relies on

branch coverage and branch distance to improve the quality of the

test suite. sFuzz is able to detect nine distinct types of vulnerabilities

in smart contracts. This chapter is based on the paper:

* Nguyen, T. D., Pham, L. H., Sun, J., Lin, Y., & Minh, Q. T. (2020,

June). sFuzz: An efficient adaptive fuzzer for solidity smart con-

tracts. In Proceedings of the ACM/IEEE 42nd International Confer-

ence on Software Engineering (pp. 778-788).

Chapter 4: addresses the RQ2 by proposing iContract for verify-

ing and enforcing the correctness of smart contracts. This chapter

is based on the paper:

* Nguyen, T. D., Pham, L. H., Sun, J., & Quang, L. L. (2023, Au-

gust). iContract: An Idealist’s Approach for Smart Contract Cor-

rectness. In Proceedings of The 24th International Conference on For-

mal Engineering Methods.

Part II: Smart Contract Vulnerability Repair

Chapter 5: addresses the RQ3 by proposing sGuard that can identify

vulnerabilities at the bytecode level and patch vulnerable code at the

source code level. The patched code has low gas overhead. More-

over, it is proven to be free of four distinct types of vulnerabilities.

This chapter is based on the paper:

* Nguyen, T. D., Pham, L. H., & Sun, J. (2021, May). sGuard: To-

wards Fixing Vulnerable Smart Contracts Automatically. In 2021

IEEE Symposium on Security and Privacy (pp. 1215-1229).

13

Chapter 1. Introduction

Chapter 6: addresses the RQ3 by proposing SPAIR that repairs buggy

specifications. We assume that specifications written by humans can

be buggy. Rather than repairing the implementation, as discussed

in Chapter 5, we repair specifications using abductive inference and

constraint solving. The results are the set of verified specifications.

This chapter is based on the paper:

* Nguyen, T. D., Pham, L. H., Sun, J., Wan, Y., Song F. SPAIR: To-

wards Repairing Smart Contract Specification. Submitted to ICSE

in 2023 August.

Chapter 7: concludes this thesis by summarizing results and discussing

limitations and future works.

14

Chapter 2

Preliminaries

In this chapter, we provide the background knowledge necessary to understand

the works in this thesis. We briefly introduce Ethereum, smart contracts, and

their vulnerabilities.

2.1 Ethereum

Ethereum is a global, open-source blockchain technology for building decen-

tralized applications (DApps). It is powered by smart contracts and embedded

with a native digital currency, ether (ETH). It was created in 2015 by Vitalik

Buterin to expand upon the primary function of Bitcoin. Figure 2.1 shows an

Ethereum chain that is viewed as a transaction-based state machine. The ma-

chine executes all transactions in a block and transitions from the current state

to a new state. Ethereum starts a genesis state and ends in the current state.

A wide range of applications can be built on top of Ethereum such as fi-

nance, games, and metaverse. Among them, decentralized finances are the

most widely used applications. They focus on providing financial services us-

ing cryptocurrencies (e.g., token USDT [47], BNB [48]). Decentralized finances

offer the likes of lending, borrowing, earning interest, and private payments.

Chapter 2. Preliminaries

State N - 2 State N - 1

Transaction T1

Transaction T2

Transaction TN

Block B - 1

Transaction T1

Transaction T2

Transaction TN

Block B

State N

FIGURE 2.1: Ethereum can be viewed as a transaction-based state
machine

State N

State N

State N

State N

Peer to Peer Network

FIGURE 2.2: Decentralised nodes constitute Ethereum P2P net-
work

For example, lending and borrowing protocols such as Aave [49] and Com-

pound [50] allow participants to lend tokens and earn interest. Exchange proto-

cols such as Uniswap [51], and Sushiswap [52] allow users to exchange a token

for another token and pay exchange fees.

2.1.1 Consensus

Ethereum is built on top of a peer-to-peer network (see Figure 2.2) where partic-

ipants (i.e., nodes) rely on a consensus protocol, named Proof-of-Work (PoW),

to validate a new block and append it to the blockchain. PoW was introduced

by Bitcoin’s creator. It requires so-called miners to run a power-consuming

hashing algorithm to find the nonce for a new block. Only new blocks with

16

2.1. Ethereum

a valid nonce are added to the chain. The chain with the newly appended block

is subsequently shared with other nodes to ensure consensus. The PoW re-

quires a large amount of energy to keep the chain safe. As a node can propose

new blocks, there exists a situation where many new blocks simultaneously link

to a block. This creates a tree, which contains multiple valid chains. Only the

branch of the tree with the most cumulative computational effort or difficulty is

considered the official chain. This is known as heaviest subtree rule [53]. Blocks

that are valid but not in the official chain are ommer blocks.

In 2022, Ethereum officially switched from PoW to Proof-of-Stake (PoS) to

solve the energy problem. PoS shares the same goal with PoW. However, val-

idators (i.e., miners in PoW) have to stake ether to have the ability to append

the new block to the chain. A validator is randomly selected by the algorithm.

If 2/3 validators agree on the new block, the selected validator is awarded [54].

Otherwise, the selected validator loses its entire stake.

Ethereum offers secure and decentralized transaction capabilities, but it faces

scalability limitations. Ethereum can process around 15 transactions per sec-

ond (TPS) [55], which is much lower than other competitors like Solana [56],

which has 710,000 TPS. This limited TPS capability in Ethereum leads to longer

transaction confirmation time. Moreover, the cost of each transaction increases

significantly during the network congestion. For example, in December 2017,

transactions generated by Cryptokitty [57] caused network congestion by ac-

counting for 12% of all transactions and the gas fees were anywhere from $100

to $200 transactions.

Layer 2 (L2) is a collection of scaling solutions that aim to increase transac-

tion throughput without sacrificing decentralization or security. This is achieved

by processing the transactions off the layer-1 blockchain (e.g., Ethereum), while

17

Chapter 2. Preliminaries

Address 1 Account
State 1 Address 2 Account

State 2

Address K Account
State K

State N

FIGURE 2.3: An account is a mapping between addresses and ac-
count states

still relying on its security. There are several types of L2, but the two most

dominant types are:

• Optimistic rollups: such as Arbitrum One [58], which executes multiple

transactions outside of Ethereum, bundle post-transaction data into a sin-

gle batch, and submit them as a single transaction to Mainnet. They are

optimistic in the sense that off-chain transactions are assumed to be valid

and no proofs of validity are published.

• Zero-knowledge rollups: such as zkSync Era [59], which is similar to op-

timistic rollups, but they rely on a cryptographic technique called ZK-

SNARK to publish the proofs of validity for off-chain transactions.

2.1.2 Accounts

An account is a mapping between addresses and account states (see Figure 2.3.

It is mainly used to store balances and create transactions. In the Ethereum

platform, there are two types of accounts:

• Externally-owned accounts (EOAs): which are controlled by anyone with

the corresponding private keys.

• Contract accounts: which are smart contracts deployed to the network,

controlled by code.

18

2.1. Ethereum

Field Description

Nonce An incremental counter that indicates the number of trans-
actions associated with this account. It is introduced to pro-
tect transactions from relay attacks where the signed trans-
actions are duplicated and broadcasted by attackers.

Balance The number of wei owned by this account. Wei is a denom-
ination of Eth, i.e., 1 Eth = 1e18 wei.

CodeHash The hash of the EVM code of this account. This code is ex-
ecuted if this account receives a message call. For exter-
nally owned accounts, the CodeHash field is the hash of an
empty string.

StorageRoot A 256-bit hash of the root node of a Merkle Patricia trie that
encodes the storage contents of the account. It is empty by
default and is updated when data is written to the storage.

TABLE 2.1: Common fields of an Ethereum account

While both types of accounts have the ability to receive, hold, send ether,

and interact with deployed smart contracts, they are different in some aspects.

First, externally-owned accounts are created without any fees. In contrast, con-

tract accounts require code execution and thus creating them has a cost. Second,

externally-owned accounts can initiate transactions. Conversely, contract ac-

counts can only respond to transactions. Last, transactions between externally-

owned accounts do not trigger any code executions, whereas, transactions be-

tween smart contracts always trigger code execution. An account is identified

by a 160-bit unique address. Its state consists of four different fields as shown

in Table 2.1.

2.1.3 Transactions

Transactions are cryptographically signed instructions from EOAs to update

the state of the Ethereum network. The sender of a transaction cannot be a

contract. There are two types of transactions: message calls and contract creations.

19

Chapter 2. Preliminaries

Externally Owned
Account Contract Account

EVM code

Gas Supply

Gas Refund

Message

FIGURE 2.4: Gas is refunded if it is not used

Field Description

From A 160-bit address of the sender, which will be signing the trans-
action.

Recipient A 160-bit address of the recipient, which will receive that trans-
action. If the recipient is a contract account, then its code is exe-
cuted. Otherwise, the transaction transfers ether.

Signature A 65-byte value is generated when the sender signs that transac-
tion. It is used to verify the sender of the transaction.

Nonce An incremental counter that indicates the number of transactions
associated with the sender.

Value The amount of ether to transfer from sender to recipient.
Input data An optional field that includes arbitrary data. This is often used

to store inputs for a message call.
GasLimit A maximum amount of gas units that can be consumed by the

transaction. This number is set before the transaction is pro-
cessed.

TABLE 2.2: Common fields in an Ethereum transaction

A message call has a recipient (i.e., account address). A contract creation has an

empty recipient. Table 2.2 shows common fields of a submitted transaction. It

is noted that gas is a reference to the computational price required to process

the transaction by a miner. To avoid denial-of-service (DoS) attacks, as well as

reward miners, users have to pay a fee for this computation (see Figure 2.4).

20

2.1. Ethereum

TABLE 2.3: Common fields in an Ethereum block header

Field Description

ParentHash A 256-bit hash of the parent block’s header
UncleHash A 256-bit hash of the uncle block headers
beneficiary A 160-bit address of the miner who mined the block
StateRoot A 256-bit root hash of the Ethereum Merkle Patricia trie. It

is computed after all transactions are executed
TransactionRoot A 256-bit root hash of the transaction trie
ReceiptsRoot A 256-bit root hash of the receipts trie
Difficulty A scalar value corresponding to the difficulty level for min-

ing
GasLimit A scalar value that equal to the maximum gas allowed for

transactions in the block
GasUsed A scalar value that equal to the total gas used by all trans-

actions in the block
Timestamp A scalar value that equal to the unix timestamp of block

creation
ExtraData The additional data, often used for block metadata
MixHash A 256-bit hash used in proof-of-work verification
Nonce A 64-bit value which is the random number used in proof-

of-work

2.1.4 Blocks

Blocks are batches of transactions with a link, which is the cryptographic hash

of the previous block in the chain. Because the link contains the cryptographic

hash, it prevents the chain of blocks from being tampered. That is, any change

in a block would invalidate the links of all subsequent blocks. A block consists

of a block header, together with information corresponding to the comprised

transactions, and a set of block headers of ommers. The common fields in an

Ethereum block header are shown in Table 2.3.

21

Chapter 2. Preliminaries

1 // SPDX-License-Identifier: MIT
2 pragma solidity ^ 0.8 .0;
3
4 contract Bank {
5 mapping(address => uint) private balances;
6
7 function deposit() public payable returns(uint) {
8 balances[msg.sender] += msg.value;
9 return balances[msg.sender];

10 }
11
12 function withdraw(uint withdrawAmount) public returns(uint) {
13 if (withdrawAmount <= balances[msg.sender]) {
14 balances[msg.sender] -= withdrawAmount;
15 payable(msg.sender).transfer(withdrawAmount);
16 }
17 return balances[msg.sender];
18 }
19 }

FIGURE 2.5: An example of a basic wallet.

2.2 Smart contracts

The concept of smart contracts was first proposed by Nick Szabo in 1997 [60].

It became a reality after the creation of Ethereum [61] in 2015. An Ethereum

smart contract implements a set of rules that aim to manage digital assets in

Ethereum accounts. Despite a large variety of contract programming languages

(e.g., Solidity [62], Vyper [8], and Bamboo [9]), Solidity is the most dominant

one for implementing smart contracts. In this section, we introduce Solidity

and bytecode.

2.2.1 Solidity

Solidity is an object-oriented, statically typed, and high-level programming lan-

guage. Each contract (i.e., class) can contain declarations of state variables, func-

tions. State variables are variables whose values are permanently stored in con-

tract storage. Functions contain a set of statements, which can be defined either

22

2.2. Smart contracts

inside or outside of contracts. There are two special functions: constructor and

fallback. The constructor is used to initialize state variables when the contract is

deployed. The fallback is executed if the function call does not match with any

function in the contract. The entire structure of smart contracts is defined in the

solidity website [62].

Solidity offers several elementary types such as uintN, intN, address, bytes,

bytesN where N is the data size. These types can be used to form complex types

such as array, struct, mapping. Among them, mapping is the most used type to

keep track of balances. A mapping is a hashtable, where a key is associated

with a value. It is stored in a storage and has no property to keep track of the

number of elements. For example, mapping(address=>unit) balances

is used to store the balance for a user, which is identified by an address. The

expression balances[msg.sender] accesses the balance of the caller.

External function calls set Solidity apart from traditional programs. A call

requires a receiver address, some ethers, and arguments to be invoked. It can

transfer ether and execute remote code. External function calls facilitate the

interaction between multiple smart contracts. With millions of deployed smart

contracts, they may create complicated call chains that are error-prone. Table 2.4

shows a list of function calls where functions send, transfer are commonly

used to transfer ether without code execution. The rest are low-level, powerful,

and high-risk external calls.

Figure 2.5 shows an example of a basic bank implemented in Solidity. The

contract declares a mapping (line 5) and two functions deposit (line 7) and

withdraw (line 12). Participants invoke the function deposit to store ether

and the function withdraw to get it back. It is noted that the check at line 13

is important to prevent potential underflow at line 14, where attackers try to

23

Chapter 2. Preliminaries

External call Description

addr.send(y) sends a given amount of ether y to address addr and
returns false on failure

addr.transfer(y) sends a given amount of ether y to address addr and
throws on failure

addr.call(y) executes the function located at address addr and
specified in y

addr.staticcall(y) executes the function located at address addr and
specified in y. The called code is prohibited from mod-
ifying storage

addr.delegatecall(y) executes the function located at address addr and
specified in y. The called function is executed within
the calling context i.e., storage, balance of calling con-
tract

selfdestruct(addr) remove the called contract from the blockchain and
clear its storage. The remaining ether is transferred
to the address addr

TABLE 2.4: A list of Solidity-supported external function calls

Constructor Functions Metadata Constructor
Arguments

Runtime

Creation
0x6080604052348015600f57600080fd5b5060878061001e6000396

FIGURE 2.6: The layout of deployment bytecode

withdraw more than their deposited ether.

2.2.2 Bytecode

EVM bytecode is a sequence of bytes. Each byte is either an instruction or a sin-

gle byte of data. There are two distinct types of bytecode: creation and run-time

bytecode. The creation bytecode is used to create a new contract. The contract

creation first creates a contract account, then executes the bytecode of the con-

structor, and last stores the run-time bytecode to the created contract account.

24

2.2. Smart contracts

EVM Code

Gas Available

Program
Counter Operations Stack

Memory

Storage

Instruction

push/pop ...

message call

FIGURE 2.7: EVM architecture

While deployment bytecode is run once, run-time bytecode is executed when-

ever a transaction is sent to the contract.

Figure 2.6 shows the layout of a deployment bytecode. Besides run-time

bytecode, the deployment bytecode also contains metadata and arguments of

the constructor. Some compilers will append non-executable metadata to the

end of run-time bytecode. This is to provide additional data to analysis tools or

EVM.

2.2.3 Ethereum Virtual Machine

The Ethereum virtual machine (EVM) is a sandboxed run-time environment

for running bytecode compiled from a high-level language such as Solidity and

Vyper. It has a simple stack-based architecture, whose word size is 256 bits

(i.e., size of stack items). The formal definition of the EVM is specified in the

Ethereum Yellow Paper [61].

EVM supports more than 140 instructions. An instruction is represented by

a one-byte opcode and its operands. For example, 0x01 is ADD. This opcode

removes two items from the top of the stack and pushes the result i.e., the sum

25

Chapter 2. Preliminaries

of two stack items. The number of operands is defined by the instruction. It

operates on a stack and can access data on memory (i.e., volatile storage) and

storage (i.e., non-volatile storage). Each instruction is associated with a gas

cost. This cost is either dynamic or fixed. For example, an ADD instruction

costs 3 gas. In contrast, SSTORE instruction costs 20,000 gas to store data in

unallocated storage and costs 5000 to update allocated storage. It is important

to understand how gas cost is computed to build gas-friendly contracts.

A stack is a temporary data store that is mainly used to store arguments

and results of instructions during contract execution. It is a fixed array of 1024

items. A contract can add, remove, and change the order of items on the stack

using instructions like PUSH (push data on top of the stack), POP (pop the top

item on the stack), SWAP1 (swap the top item with the second item on the stack).

A stack operation is inexpensive in terms of gas costs.

A memory is a data store that is mainly used to handle complex data struc-

tures during contract execution. It is a dynamic array of 32 bytes and is ini-

tialized with zeros. A contract can read or write data to any location in the

memory using instructions like MLOAD (load data) and MSTORE (store data). A

memory operation is typically inexpensive in terms of gas costs compared to a

storage operation. In general, memory could be divided into two regions: re-

verse and data. The reserve region is the place to store data for specific tasks such

as storing the highest address of allocated data. The data region is the place for

storing data for complex data variables such as an array of unsigned integers

or a string.

A storage is a persistent data store that is used to store state variables. It is

a hashing table of 32 bytes and is initialized with zeros. A contract can read

or write data to any location in the storage using instructions like SLOAD (load

26

2.3. Vulnerabilities

Vulnerability

Reentrancy
Single-Function

Cross-Function
Access Control

Arithmetic
Integer Overflow

Integer Underflow
Unhandled Exception

Denial-of-Service
Unexpected Throw

Block Gas Limit
Frontrunning

Time Manipulation

FIGURE 2.8: A taxonomy of vulnerabilities

data) and SSTORE (store data). A storage operation is expensive and typically

is associated with dynamic gas cost.

2.3 Vulnerabilities

Like traditional programs, smart contracts are subjected to code-based vulner-

abilities. Unlike traditional programs, they are immutable, meaning that smart

contracts can not be amended once deployed. Any vulnerabilities on Ethereum

become permanent and can not be rectified. As many infamous attacks oc-

curred throughout the existence of Ethereum, Consensys [63] released a list of

well-known attacks. This intends to provide a baseline knowledge of security

considerations. However, the list is short. In 2019, a comprehensive list of vul-

nerabilities so-called Smart Contract Weakness Classification Registry (SWC) was

published. SWC assigns an ID to a type of vulnerability and provides a descrip-

tion, as well as, sample codes. Since SWC aims to cover a full list of vulnerabil-

ities, it contains many syntax-related and duplicated entries. In the following,

we define eight different types of vulnerabilities as shown in Figure 2.8. It is

27

Chapter 2. Preliminaries

noted that real-world vulnerabilities are not limited to our taxonomy, we at-

tempt to provide a list of common and well-studied vulnerabilities.

Reentrancy: A reentrancy attack occurs when a function makes an external

call to another function, and the called function calls back the original contract

in the same transaction before finishing the original invocation. This vulnera-

bility allows attackers to control the execution flow and illegally manipulate the

storage state of the original contract. Many infamous incidents in the past are

the result of exploiting reentrancy vulnerabilities. In June 2016, the notorious

The DAO reentrancy attack led to a financial loss of $50M. To reverse the attack

and return the stolen funds to the rightful owners but advocate the motto "code

is law", the Ethereum Foundation was forced to perform a hard fork. This led

to the creation of two separate Ethereum chains.

Reentrancy vulnerability can be categorized into two distinct types in terms

of attacking flow: single-function and cross-function reentrancy. A single-function

reentrancy attack targets a single vulnerable function, while a cross-function re-

entrancy attack targets multiple vulnerable functions. Besides the two main cat-

egories, the advanced work on reentrancy detection by Rodler et al. [64] defines

additional types such as delegated reentrancy (i.e., related to DELEGATECALL in-

struction) and created-based reentrancy (i.e., related to CREATE instruction) to

formulate a better detection algorithm. Despite the fact that reentrancy is a

well-studied vulnerability, its detection is challenging as it requires multiple in-

teractions between vulnerable contracts and attackers before the vulnerability

is detected. To protect smart contracts from reentrancy attacks, developers are

recommended to use methods send or transfer instead of call. Moreover,

a mutex [65] could be added to prevent successive calls to the same contracts.

28

2.3. Vulnerabilities

Access control: An access control attack occurs when attackers execute the

code that is designed to be executed exclusively by authorized users. This kind

of vulnerability occurs mainly due to the lack of standard access control. Devel-

opers implement access control in an ad-hoc manner, potentially leading to in-

consistencies and vulnerabilities in smart contracts. For example, tx.origin

returns the address of the person that originates the transaction. However,

a bad access control implementation uses tx.origin to check whether the

sender is authorized to perform sensible function calls such as transferring

funds. Remember that a contract can interact with other contracts through ex-

ternal calls. An attacker can perform a man-in-the-middle attack by first con-

vincing a victim to make a transaction to a contract controlled by the attacker.

After that, the controlled code makes an external call to redirect the transaction

to the target, which contains vulnerable tx.origin check. This step aims to

impersonate the victim. If the vulnerable check is bypassed, then the attacker

is able to steal the funds of the victim stored in the target contract. Developers

are recommended to use msg.sender instead of tx.origin for user authen-

tication purposes.

Another example of access control is that the function selfdestruct is

manipulated by an attacker, which is due to the absence of a proper access

control check. Parity designed a multi-signature wallet that interacts with its

libraries through an external function call. The library can be destroyed by the

owner. Unfortunately, it has a critical security flaw i.e., any user could call

the function initWallet to gain ownership. In 2017, an attacker namely de-

vops199 exploited this vulnerability by calling initWallet to own the library,

then invoked function selfdestruct to destroy it. This rendered the library

inaccessible from the main wallet, and thus about $300M was frozen and lost

29

Chapter 2. Preliminaries

forever.

Arithmetic: An arithmetic vulnerability, including integer overflow and inte-

ger underflow, occurs when the result of an arithmetic operation goes beyond

the range of values that can be represented. For example, considering the data

type uint256, an overflow occurs when adding one to the maximum value

(i.e., 2256 − 1), causing the returned value wraps to become the minimum value

0. In contrast, an underflow occurs when subtracting one from the minimum

value (i.e., 0), causing the returned value wraps to become the maximum value

2256 − 1. Arithmetic is an inherent vulnerability, but its consequences are ex-

aggerated in smart contracts. For instance, in April 2018, an attacker exploited

an integer overflow vulnerability in a smart contract named SmartMesh and

stole a massive amount of tokens (i.e., digital currency). Numerous vulnerable

smart contracts were identified this way. VeriSmart [66] provided a list of 60

CVEs associated with arithmetic vulnerability.

Unhandled Exception: This vulnerability exists because Solidity lacks unifor-

mity in handling run-time exceptions. When an external function call encoun-

ters an exception and fails, the mechanism for handling this exception is deter-

mined based on the method used to make the external call. While transfer

propagates exception back to the caller, other methods such as send, call, and

delegate return either true or false. Because of this inconsistent behaviour,

developers often make an assumption that exceptions are properly handled and

decide to disregard the returned value of external function calls. An attacker

can create a contract that intentionally throws an exception to exploit flawed

code or perform a denial-of-service attack. For example, in 2016, a ponzi game

King of the Ether Throne (KotET) was deployed. Players send the contract an

30

2.3. Vulnerabilities

amount of ether to take "the throne". Upon taking the throne, a reward in ether

is sent to the former king. After 24 hours, the current king will receive all the

ether in the KoET contract. However, an attacker exploited the unhandled ex-

ception vulnerability to prevent other users from becoming a king. That is,

the attacker creates a contract that throws an exception in its fallback function.

Consequently, every payment transaction sent to the contract will fail and the

attacker is the last king of the game to receive all the rewards.

Denial-of-Service: Denial-of-Service (DoS) is a vulnerability that prevents the

contract from providing normal services for a while or forever. There are two

common ways to launch a DoS attack against smart contracts: unexpected revert

and block gas limit. To perform an unexpected revert DoS, an attacker manipulates

the external function call of the target contract to ensure that it always throws

an exception regardless of users. As a result, the function becomes useless.

Another type of DoS attacker is block gas limit DoS. A block has an upper gas

limit. A transaction is blocked if the cost of the current execution reaches the

limit. Therefore, a smart contract itself may suffer from block gas limit even

without an attacker. More seriously, if an attacker deliberately manipulates the

cost of gas so that the gas limit is always reached, the transaction is terminated

in failure.

Frontrunning: This vulnerability is also known as Transaction order dependency

(TOD). The vulnerability refers to the situation that the outcome of transactions

varies depending on the orders in which the transactions are executed. Attack-

ers attempt to manipulate transaction orders to gain advantages. This vulner-

ability often occurs in decentralized exchanges. That is, an attacker listens to

transactions containing large buy orders and attempts to front-running current

31

Chapter 2. Preliminaries

transactions to raise the token price. For example, in 2022, a user attempted

to swap $1.85M worth of Compound cUSDC for USDC on Uniswap but only

received $500 [67]. This is because a bot 0xbad 1 front-run the trade and made

$1.02M.

Time Manipulation: In Solidity, developers make use of block.timestamp

or its alias now to get the current timestamp. Smart contracts commonly rely on

the timestamp to construct constraints such as locking token sales and unlock-

ing funds. However, miners can deliberately manipulate the timestamp to their

advantage. As such, it is advisable for developers to not rely on timestamp to

construct critical constraints.

Other Vulnerabilities: Besides the mentioned vulnerabilities, the rapid de-

velopment of decentralized finance (DeFi) introduces many new vulnerabili-

ties [20] such as price oracle manipulation, sandwich attack, and maximum extract

value. The DeFi-related vulnerability detection/repair remains an unsolved

problem.

The wide variety of current vulnerabilities and potentially future vulnera-

bilities have a negative impact on the development of Ethereum, as well as,

its ecosystem. We need systematic ways of improving the correctness of smart

contracts.

10xbadc0defafcf6d4239bdf0b66da4d7bd36fcf05a

32

Part I

Smart Contract Vulnerability

Detection

Chapter 3

sFuzz: An Efficient Adaptive Fuzzer

for Solidity Smart Contracts

Smart contracts are Turing-complete programs that execute on the infrastruc-

ture of the blockchain, which often manage valuable digital assets. Solidity is

one of the most popular programming languages for writing smart contracts on

the Ethereum platform. Like traditional programs, smart contracts may contain

vulnerabilities. Unlike traditional programs, smart contracts cannot be easily

patched once they are deployed. It is thus important that smart contracts are

tested thoroughly before deployment. In this work, we present an adaptive

fuzzer for smart contracts on the Ethereum platform called sFuzz. Compared

to existing Solidity fuzzers, sFuzz combines the strategy in the AFL fuzzer and

an efficient lightweight multi-objective adaptive strategy targeting those hard-

to-cover branches. sFuzz has been applied to more than 4 thousand smart con-

tracts and the experimental results show that (1) sFuzz is efficient, e.g., two

orders of magnitude faster than state-of-the-art tools; (2) sFuzz is effective in

achieving high code coverage and discovering vulnerabilities; and (3) the dif-

ferent fuzzing strategies in sFuzz complement each other.

Chapter 3. sFuzz: An Efficient Adaptive Fuzzer for Solidity Smart Contracts

3.1 Introduction

Nowadays, smart contracts [60], [68] are implemented as Turing-complete pro-

grams that execute on the infrastructure of the block-chain [69]. It provides a

framework that potentially allows any program (equivalently, contract) to be

executed in an autonomous, distributed, and trusted way. Smart contracts

thus have the potential to revolutionize many industries. Popular applica-

tions of smart contracts include crowd fundraising, online gambling and so on.

Ethereum [70], [71] is the first to introduce the functionality of smart contracts.

Based on the Ethereum platform, Solidity is the most popular programming

language for smart contracts [62].

Like traditional C or Java programs, smart contracts may contain vulnera-

bilities. Unlike traditional programs, smart contracts cannot be modified easily

once they are deployed on the blockchain [72]. As a result, a vulnerability ren-

ders the smart contract forever vulnerable, which significantly magnifies the

problem. In recent years, there has been an increasing number of news reports

on attacks which exploit security vulnerabilities in Ethereum smart contracts.

One particularly noticeable example is the DAO attack [73], i.e., an attacker

stole more than 3.5 million Ether (which is equivalent to about $45 million USD

at the time) exploiting a vulnerability in the DAO contract. To fix the vulnera-

bility, a hard fork was launched which was not only expensive but also caused

much controversy [73].

It is thus desirable to develop tools for validating smart contracts to identify

vulnerabilities, ideally before they are deployed. Among the range of com-

plementary techniques for validating smart contracts, we focus on automatic

testing of smart contracts in this work as testing is often the least expensive and

thus the most applicable. To automatically test smart contracts, we must solve

36

3.1. Introduction

the following three problems:

• the test automation problem (i.e., how to run test cases),

• the test generation problem (i.e., what to test),

• and the oracle problem (i.e., what are vulnerabilities).

In the literature, several approaches have been developed for automatic test-

ing smart contracts, each of which answers these three problems in slightly

different ways. For instance, ContractFuzzer [26] builds a network with pre-

deployed contracts and generates transactions to run smart contracts, generates

test cases based on a set of predefined parameter values and targets a set of ora-

cles specific for smart contracts. Oyente [23] runs smart contracts symbolically

through symbolic execution, generates test cases for covering different program

paths in single functions through constraint solving, and supports multiple ora-

cles to identify 4 kinds of vulnerabilities. teEther [27] similarly applies symbolic

execution to generate test cases covering program paths, and focuses on oracles

which are related to financial transactions.

In this work, we propose a fully automatic testing engine for smart contracts

running on Ethereum called sFuzz. sFuzz is inspired by AFL [37], a well-known

fuzzer for C programs, i.e., sFuzz is a feedback-guided fuzzing engine and is

inexpensive to apply. sFuzz complements existing testing engines based on

symbolic execution like Oyente and teEther, as it is known that fuzzing and

symbolic execution are complementary [74], [75]. While AFL-based fuzzing

is often effective, it has its limitation as well, i.e., it is often expensive in cov-

ering branches guarded with strict conditions. To tackle the problem, sFuzz

integrates AFL-based fuzzing with an efficient lightweight adaptive strategy

for selecting seeds. Although inspired by search-based software testing [38],

37

Chapter 3. sFuzz: An Efficient Adaptive Fuzzer for Solidity Smart Contracts

[39], the latter distinguishes itself by having a lightweight objective function

(designed considering characteristics of Solidity programs) as well as a novel

multi-objective optimization strategy.

sFuzz is built based on Aleth [76] (i.e., an Ethereum VM written in C++),

has a system architecture similar to AFL, and is extensible to different Ethereum

VMs and oracles as well as fuzzing strategies. sFuzz has been systematically ap-

plied to a set of more than 4 thousand smart contracts. The experimental results

show that sFuzz is on average more than two orders of magnitudes faster than

ContractFuzzer, covers more branches and reveals many more vulnerabilities.

A comparison between sFuzz and Oyente shows that they are complementary.

Furthermore, experiments with prolonged fuzzing time show that the adap-

tive strategy improves code coverage. sFuzz is available online and has been

adopted by multiple companies.

The remainder of the chapter is organized as follows. Section 3.2 illustrates

how sFuzz works through examples. Section 3.3 presents the details of the ap-

proach. Section 3.4 shows implementation details of sFuzz. Section 3.5 reports

evaluation results. Section 3.6 reviews related work and concludes.

3.2 Illustrative Examples

In this section, we show how sFuzz works step-by-step through two illustra-

tive examples. Note that Solidity source codes for both examples are shown

for simplicity. sFuzz requires only the EVM (i.e., Ethereum Virtual Machine)

bytecode [70], [71] to fuzz smart contracts.

Given a smart contract, sFuzz automatically configures a block-chain net-

work, deploys the smart contract, and generates multiple transactions each of

which calls a function in the contract. The transactions are then executed with

38

3.2. Illustrative Examples

1 pragma solidity ^0.4.20;
2 contract opposite_game {
3 string public question;
4 address questionSender;
5 bytes32 responseHash;
6
7 function Try(
8 string _response) external payable {
9 if(responseHash == keccak256(_response) &&

10 msg.value == 100 finney) {
11 msg.sender.send(this.balance); } }
12
13 function start_quiz_game(
14 string _question, string _answer) public payable {
15 if(responseHash==0x0) {
16 responseHash = keccak256(_answer);
17 question = _question;
18 questionSender = msg.sender; } }
19
20 function() public payable {} }

FIGURE 3.1: An example with single objective function

an EVM enriched with a set of oracles for identifying vulnerabilities. sFuzz

monitors the execution of the transactions to collect certain feedback, e.g., whether

a certain branch has been covered and how far the branch is covered. When-

ever a vulnerability is revealed, the transactions and the network configuration

(i.e., a test case) are saved and reported to the user later on. Otherwise, some

of the test cases are selected as seeds based on feedback collected during the

transaction execution according to certain seed selection criteria. Afterwards,

the seeds are mutated to generate the next generation of test cases. This process

repeats until a time out occurs.

In the following, we describe how sFuzz works using the contract shown in

Figure 3.1. The contract implements a simple quiz game. The contract is based

on contract opposite_game1 with minor modification for simplicity. A quiz can

be created by calling function start_quiz_game. The response is hashed and

1address: 0x467532e79222670a2044c9b168bcbaa33b390ef5

39

Chapter 3. sFuzz: An Efficient Adaptive Fuzzer for Solidity Smart Contracts

then saved in the responseHash variable. The user then calls the try function

with their answer as the argument and pays a fee of 100 finney (which is a unit

of the token) for each try. If the answer is correct, a reward is sent to the user.

This contract suffers from a vulnerability known as Gasless Send when line

11 is executed and a costly fallback function is called. That is, when function

send() at line 11 is executed, if the receiver is a contract, its fallback function

is executed automatically. Because function send() only forwards 2300 units

of gas (i.e., price to pay for executing the function), an out-of-gas exception is

thrown if the fallback function is costly (e.g., costs more than 2300 units of gas).

In this case, the send() function simply returns false and because the returned

value is not checked and handled accordingly, the owners of the contract can

keep the reward for themselves.

To expose this vulnerability, first a network is configured with several ad-

dresses and associated balances. This contract is then deployed at one of the

addresses. In addition, an attacker contract with a costly fallback function

is deployed automatically. To expose the vulnerability, a test case (i.e., a se-

quence of transactions) with such a network configuration must first call func-

tion start_quiz_game and then function Try with parameters such that all 2

conditions in function Try at line 9 and 10 are satisfied. The condition at line

9 is satisfied with a test case that sets all the parameters and contract variables

to the default value of 0. Note that responseHash is set to keccak256(_answer)

at line 16 and is compared to keccak256(_response) at line 9. However, generat-

ing a test case which satisfies the second condition by randomly generated test

values is highly unlikely. The variable msg.value has a size of 32 bytes and thus

we have only 1
2256

probability to generate the value 100 (if we generate random

values with a uniform distribution among all possible values). Existing fuzzing

40

3.2. Illustrative Examples

strategy in AFL is ineffective in this case as well, i.e., AFL selects test cases that

cover new branches as seeds. Since all test cases generated through mutation

are unlikely to cover the then-branch at line 10, they are equally ‘bad’ according

to the AFL seed selection strategy.

sFuzz complements AFL’s seed selection strategy with an adaptive strategy

that prioritizes the seeds according to a quantitative measure (i.e., a distance) on

how far a seed is from covering any just-missed branch. For this example, the

distance for covering the just-missed branch (i.e., the then-branch) is computed

as: |msg.value − 100| + 1, based on the value of msg.value when the branch

at line 10 is reached in the test case. Intuitively, the smaller the distance is,

the closer the test case is to cover the branch (i.e., with a msg.value closer to

100). In particular, when msg.value is exactly 100, the distance value reaches

the minimum value of 1. Based on this measurement, sFuzz iteratively selects

seeds which gradually gets closer and closer to satisfying the condition at line

10. In our experiment, after 140 generations, sFuzz generates a test case which

covers the branch, and reveals the vulnerability.

The above example shows a simplistic situation where there is only one just-

missed branch. In general, there may be multiple just-missed branches and thus

sFuzz measures a distance for each pair of test case and just-missed branch, i.e.,

how far is the branch from being covered by the test case. Then for each just-

missed branch, sFuzz selects the test case with the minimum distance as the

seed. For instance, the contract in Figure 3.2 shows a function which performs

some basic arithmetic operations. There are two different branches, i.e., the con-

dition at line 5 for comparing y with 110 and the one at line 6 for comparing y

with 10010. Assume that both then-branches are yet to be covered. Given any

test case, sFuzz computes two distances, one for covering the first then-branch;

41

Chapter 3. sFuzz: An Efficient Adaptive Fuzzer for Solidity Smart Contracts

1 pragma solidity ^0.4.20;
2 contract multiple_objective_function {
3 function foo(int x) {
4 int y = x*x + 10;
5 if(y == 110) { ... }
6 if(y == 10010) { ... } } }

FIGURE 3.2: An example with multiple objective functions

and the other for covering the second then-branch. Given a set of test cases,

sFuzz selects, for each of these two branches, a test case which has minimum

distance as seed, to generate further test cases. After repeating the process mul-

tiple times, sFuzz generates two test cases that cover the two then-branches. We

remark that for this example, due to the non-linear computation at line 4, approaches

based on symbolic execution like Oyente [23] and teEther [27] are ineffective due to the

limitation of underlying constraint solvers.

3.3 Fuzzing Smart Contracts

In this section, we define our problem and then present our approach in detail

step-by-step.

3.3.1 Problem Definition

A smart contract S typically has a number of instance variables, a constructor

and multiple functions, some of which are public. It can be equivalently viewed

in the form of a control flow graph (CFG) S = (N, i, E) where N is a finite set

of control locations in the program; i ∈ N is the initial control location, i.e., the

start of the contract; and E ⊆ N ×C×N is a set of labeled edges, each of which

is of the form (n, c, n′) where c is either a condition (for conditional branches like

if-then-else or while-loops) or a command (i.e., an assignment). Note that for

42

3.3. Fuzzing Smart Contracts

simplicity, we define the smart contract as one single graph rather than defining

one graph for each function and then connecting them through a call graph. A

node in the graph is branching if and only if it has multiple child nodes and its

outgoing edges are labeled with conditions. We refer to an outgoing edge of a

branching node as a branch.

Test cases: A test case for S is a pair (σ0,Σ) where σ0 is a configuration of the

blockchain network and Σ is a sequence of transactions (i.e., function calls). The

configuration σ0 contains all information on the setup of the network which is

relevant to the execution of the smart contract. Formally, σ0 is a tuple (b, ts, SA, SB, v)

where b is the current block number, ts is the current block timestamp, SA is a

set of the addresses of the smart contracts (including the smart contract under

test as well as other invoked contracts), SB is a function which assigns an ini-

tial balance to each address and v is the initial valuation of the persistent state.

Σ = ⟨m0(
−→p0),m1(

−→p1), · · · ⟩ is a sequence of public function calls of the smart

contract under test, each of which has an optional sequence of concrete input

parameters −→pi . Note that m0 must be a call of the constructor.

The task of fuzzing a smart contract is thus to generate a set of test cases

(a.k.a. test suite) according to certain testing criteria. The execution of a test

case t traverses through a path in the CFG S, which visits a set of nodes and

edges. For simplicity, we assume that one test execution covers one unique

path (i.e., there is no non-determinism). Furthermore, a trace generated by t is

a sequence of pairs of the form ⟨(σ0, n0), (σ1, n1), · · · ⟩ where (n0, n1, · · ·) is the

sequence of nodes visited by t and σi is the configuration at the time of visiting

node ni for all i.

43

Chapter 3. sFuzz: An Efficient Adaptive Fuzzer for Solidity Smart Contracts

Code Coverage: Ideally, we aim to generate a test suite which reveals all vul-

nerabilities in the contract. However, as we do not know where the vulnerabil-

ities are, we must instead aim to achieve something more measurable. In this

work, our answer is to focus on code coverage, in particular, branch coverage.

We remark that our approach can be extended to support different coverage at

the cost of additional code instrumentation. A branch in S is covered by a test

suite if and only if there is a test case t in the suite that visits the edge at least

once. The branch coverage of a test suite is calculated as the percentage of the

covered branches over the total number of branches. Note that identifying the

total number of (feasible) branches statically in a smart contract is often infea-

sible for two reasons. First, some branches might be infeasible (i.e., there does

not exist any test case that visits the branch) and knowing whether a branch is

feasible or not is a hard problem. Second, EVM has a stack-based implementa-

tion which makes identifying all potentially feasible branches hard (as we will

explain in more detail in Section 3.4). Our problem is thus reduced to generate a test

suite which maximizes the number of covered branches.

To achieve maximum code coverage, one way is to generate a large test suite

(e.g., through random test generation). However, in practice, we often have

limited resources (in terms of time or the number of computer processes) and

thus our problem is refined as ‘to generate a test suite which maximizes the num-

ber of covered branches as efficiently as possible’. Our solution to the problem is

feedback-guided adaptive fuzzing.

Fuzzing is one of the most popular methods to create test cases [77]. A

feedback-guided fuzzing system (a.k.a. fuzzer) takes a program under test and

an initial test suite as input, monitors the execution of the test cases to obtain

44

3.3. Fuzzing Smart Contracts

certain feedback, generates new test cases based on the existing ones in cer-

tain ways and then repeats the process until a stopping criteria is satisfied.

We present details of our feedback-guided adaptive fuzzing process in Sec-

tion 3.3.2.

Oracles: The remaining problem is then how to tell whether a test case re-

veals a vulnerability. In this work, we adopt a set of oracles from previous

approaches [23], [26] including Gasless Send, Exception Disorder, Timestamp De-

pendency, Block Number Dependency, Dangerous DelegateCall, Reentrancy, Integer

Overflow/Underflow, and Freezing Ether. We refer the readers to Section 3.4 for

details.

3.3.2 Feedback-Guided Adaptive Fuzzing

The general idea of feedback-guided fuzzing is to transform the test generation

problem into an optimization problem and use some form of feedback as an

objective function in solving the optimization problem. Our fuzzing strategy is

adaptive as we change the objective function adaptively based on the feedback.

At the top level, sFuzz employs a genetic algorithm [78] which is inspired by the

well-known AFL fuzzer to evolve the test suite in order to iteratively improve

its branch coverage.

The overall workflow is shown in Algorithm 1. Variable suite is the test suite

to be generated. It is initially empty. Whenever a test case covers a new branch,

it is added into suite. Variable seeds is a set of seed test cases, based on which

new test cases are generated. First, we generate an initial test suite using func-

tion initPopulation(). The loop from line 3 to 6 then iteratively evolves the test

suite. In particular, we add those test cases in seeds which cover new branches

45

Chapter 3. sFuzz: An Efficient Adaptive Fuzzer for Solidity Smart Contracts

Algorithm 1: The test generation algorithm
1 let suite be an empty test suite;
2 let seeds := initPopulation();
3 while not time out do
4 add tests in seeds which covers new branches into suite;
5 let seeds := fitToSurvive(seeds);
6 let seeds = crossoverMutation(seeds);

7 return suites;

(i.e., any branch which is not covered by test cases in suite) into suite at line 4.

At line 5, we filter the test cases in seeds through function fitToSurvive() so as

to focus on those seeds which are more likely to lead to test cases covering new

branches later. At line 6, function crossoverMuatation() generates more test

cases based on the test cases in seeds. The loop continues until a pre-set time

out is triggered. While Algorithm 1 resembles the one in AFL, the differences

are in the details of each function. In the following, we present each function in

detail.

Generating Initial Population: Function initPopulation() generates an initial

population containing multiple test cases. As mentioned above, to generate a

test case, we need to generate an initial configuration σ0 as well as a sequence

of (public) function calls with concrete parameters. The initial configuration by

default is as follows (in hexadecimal): b = 0, ts = 0, SA = {0xf0}, SB =

{0xff00...} and v is set using the declared initial value for each variable

representing the persistent state. sFuzz additionally allows a user to customize

the initial configuration, i.e., the user is allowed to provide an initial set of test

cases.

Next, we generate multiple sequences of transactions, each of which is a

function call with concrete parameters. For a contract with n functions, we

46

3.3. Fuzzing Smart Contracts

FIGURE 3.3: A generated test case

generate n sequences. In each sequence, a different function is called once after

the constructor is called. This makes sure that each function is tested at least

once (i.e., function coverage is 100%).

For each function call, we generate a random value for each parameter based

on its type. Note that if the parameter type has a fixed-length, e.g., of type

uint256, this is straightforward. If the type does not have a fixed length (e.g.,

an array or a string), we first randomly generate a number (with a range from

0 to bound where bound is a bound on maximum length with a default value

of 255) representing the number of elements in the parameter (e.g., number of

characters) and then generate a corresponding number of element values.

Each test case is encoded in form of a bit vector. In the terminology of ge-

netic algorithms, such bit vectors can be naturally regarded as chromosomes. The

size of the bit vector equals to the number of bits for encoding the configuration

plus the number of bits encoding the function calls. Note that for each test case,

we keep a list of function calls (which always includes the constructor in the

contract) and then encode each parameter value. If the parameter value is of

variable-length, we use ⌈log bound⌉ (where bound is a bound on the maximum

length with a default value of 255) to encode the length of the parameter value.

For example, given the contract shown in Figure 3.1, (part of) the encoding of

a test case is shown in Figure 3.3 where each part of encoding is labeled in the

figure. It contains 192 bytes, of which the first 96 bytes are initial configuration

47

Chapter 3. sFuzz: An Efficient Adaptive Fuzzer for Solidity Smart Contracts

and the last 96 bytes are a sequence of two function calls and the corresponding

input parameters. As there are three string parameters, the first 3 bytes includ-

ing 0x05, 0x05 and 0x05 encode the length of _response, _question and

_answer respectively. The remaining 0x05 values are used when there are

more than 3 dynamic variables.

Before executing the test case, the bit vector is decoded to a test case accord-

ing to our internally defined protocol. Note that the bits in the bit vector may

be correlated with each other in multiple ways. For instance, the bits presenting

the length of a variable-length value must be equal to the ‘length’ of the value.

Fitness After executing the seeds at line 4 in Algorithm 1, function fitToSurvive()

is called to evaluate the fitness of the seeds according to a fitness function. Note

that the fitness function plays an extremely important role.

In sFuzz, we combine two complementary strategies. One is adopted from

AFL, which works as follows. While seeds are executed, sFuzz monitors the

execution and records the branches that each test case cover. A test case is

deemed ‘fit to survive’ if it covers a new branch in the contract, e.g., a branch

which is not covered by any test case in suite. This strategy has been shown

to be effective in many settings [37] and indeed our experimental results show

that it is effective in covering most of the branches (see Section 3.5).

Although the AFL strategy allows us to quickly cover most of the branches,

it often makes very slow progress in covering the remaining ones afterwards,

i.e., often those branches which are with strict conditions. The reason is that

most likely the randomly generated test cases would fail to satisfy the strict

condition. In such a case, the above fitness function offers little feedback and

guideline on how to generate new test cases. For instance, the probability of

48

3.3. Fuzzing Smart Contracts

satisfying the second condition at line 10 of Figure 3.1 is as low as 1
2256

(if we as-

sume that every value is equally likely to be generated). Intuitively, however, it

is clear that a test input with msg.value = 200 is ‘closer’ to satisfy the condition

than a test input with msg.value = 10000000. sFuzz thus integrates an adaptive

strategy which selects seeds based on a quantitative measure on how far a test

case is from covering any just-missed branch.

Let brn be a just-missed branch in S, i.e., an uncovered outgoing edge from a

branching node n in S and n has been covered. The idea is to define a function

distance(t, brn) where t is a test case to return a quantitative measure on how

far the branch brn is from being covered by t.

Assume that brn is labeled with a condition c. Note that c can be either true,

false, a == b, a != b, a >= b, a > b, a <= b, or a < b at the byte-code level where

a and b are variables or constants. In our setting, since brn is assumed to be a

just-missed branch, c must not be true (otherwise brn must be covered already).

Function distance(t, brn) is then defined as follows.

distance(t, brn) =



K if c is false

| a− b | + K if c is a == b

K if c is a != b

b− a+K if c is a >= b or a > b

a− b+K if c is a <= b or a < b

where K is a constant which represents the minimum distance. It is set to be 1

in sFuzz. Intuitively, distance(t, brn) is defined such that the closer the branch

is from being covered, the smaller the resultant value is.

With the above, function fitToSurvive(seeds) then selects the seeds as shown

in Algorithm 2. The loop from line 2 to 4 goes through every test case to select

49

Chapter 3. sFuzz: An Efficient Adaptive Fuzzer for Solidity Smart Contracts

Algorithm 2: Algorithm fitToSurvive(seeds)

1 let newSeeds be an empty set of test cases;
2 foreach seed in seeds do
3 if seed covers a new branch then
4 add seed into newSeeds;

5 foreach uncovered branches brn do
6 let min be +∞; let t be a dummy test case;
7 foreach seed in seeds do
8 if distance(t, brn) < min then
9 let min be dist(t, brn);

10 let t be seed;

11 add t into newSeeds;

12 return newSeeds;

those which cover a new branch. Afterwards, for each just-missed branch brn

in the smart contract, the loop from line 5 to line 11 selects a test case from seeds

which is the closest to cover the branch according to distance(t, brn). Note that

one seed is selected for each just-missed branch, which makes this algorithm a

lightweight multi-objective optimization approach. All selected seeds are then

used for crossover and mutation to generate more test cases in the next step.

We refer the readers to Section 3.2 for an example.

Remark: The above-described strategy is inspired by search-based software

testing (SBST) [38], [39] and yet it differs from SBST in several ways. The high-

level reason for the difference is that having an AFL-based approach for fuzzing

requires us to run test cases efficiently whereas existing SBST’s seed selection

strategy is time-consuming. Furthermore, due to the stack-based implemen-

tation of EVM, implementing existing the SBST strategy is infeasible. In the

following, we present the differences in detail.

First, existing state-of-the-art SBST techniques (i.e., the one in EvoSuite [38])

measures how far a test case t is from covering any uncovered branch (not only

50

3.3. Fuzzing Smart Contracts

those just-missed ones) in a more complicated way. That is, given CFG S =

(N, i, E), let the distance from a node n1 to node n2 to be the minimum number

of edges along any path from n1 to n2. Let brn be any uncovered branch and m

be a node covered by t which is the nearest node to n, i.e., m has a minimum

distance to n compared to any other node covered by t. SBST uses the following

function to measure how far t is from covering brn.

dist(t, brn) = appr_dist(t, brn) + norm(distance(t, brm))

where brm is an outgoing edge of m which is along the shortest path from m to

n. Note that if m is n (i.e., in case brn is just-missed), brm is simply brn. Func-

tion appr_dist(t, brn) is a measurement of how far branch brn is from being cov-

ered by test case t, i.e., the distance from m to n plus 1. For instance, given

a control flow graph as in Figure 3.4, if t covers only the edge A → B → E,

appr_dist(t, C) = 1 since there is one branch from B to reach C and there are

two branches from A to reach C via D. Similarly, appr_dist(t, F) = 2. Lastly,

function norm(x) is a normalization function which normalizes the results of

distance(t, brm) to a value between 0 and 1. One such function is norm(x) =

1− 1.001−|x| [38].

Applying the above strategy in fuzzing Solidity smart contracts is ineffi-

cient, if not infeasible, for multiple reasons. First, calculating appr_dist(t, brn)

would require us to construct the complete CFG. However, constructing the

CFG based on bytecode only is highly nontrivial. In EVM, branches are realized

with the opcode jumpi, with a value representing the target program counter

dynamically at runtime. The only way to know the target is to fully simulate

the stack, which is expensive. Second, even if we have the CFG, computing

appr_dist(t, brn) is still expensive. Given a CFG with K uncovered nodes. To

51

Chapter 3. sFuzz: An Efficient Adaptive Fuzzer for Solidity Smart Contracts

maintain a list of ‘best’ test cases for each uncovered node, we have to calculate

appr_dist(t, brn) for all K uncovered nodes, i.e., by building a table of the short-

est paths from all nodes to these K nodes. Furthermore, whenever a new node

is covered, appr_dist(t, brn) must be updated. The overhead is unreasonable

given that efficiency is key for AFL-based fuzzing. By focusing on just-missed

branches, sFuzz avoids both problems. That is, appr_dist(t, brn) is always 1

for any just-missed branch brn since node n must have been covered. Further-

more, because it is constant for any uncovered branch, we can simply skip it

in dist(t, brn) and so that dist(t, brn) is reduced to distance(t, brn), without even

the need to normalize. This further reduces the overhead.

Another key difference between sFuzz’s strategy and existing SBST’s is the

multi-objective searching strategy. The multi-objective search strategies in ex-

isting SBST consider each uncovered branch as an objective and select Pareto-

optimal seeds to evolve in next generation. Given a set of uncovered branch

{b1, b2, ..., bm}, a set of seeds {t1, t2, ..., tn}, we say ti is more Pareto-optimal than

tj if ∀k ∈ 0..m, distance(ti, bk) < distance(tj, bk). Otherwise, we say that ti and

tj are Pareto-equivalent. All Pareto-equivalent seeds form a Pareto frontier and

the seeds can fall into several Pareto frontiers. Existing SBST selects the most

Pareto-optimal seeds to evolve. A known problem for such a strategy [79] is

that the number of seeds in the same Pareto frontier soars with the increase of

the number of objectives (i.e., uncovered branches). For example, there could

be hundreds of seeds in the most Pareto-optimal frontier with only 3-5 objec-

tives, which makes it hard to select the most promising seeds and increases the

runtime overhead. In contrast, sFuzz keeps one best seed for each just-missed

branch (line 6–11 in Algorithm 2) and as a result, the number of seeds remains

52

3.3. Fuzzing Smart Contracts

FIGURE 3.4: A control flow graph

small (i.e., equivalent to the number of just-missed branches). Our experimen-

tal results show that such a strategy balances effectiveness in identifying good

seeds and efficiency well.

3.3.3 Crossover and Mutation

Function crossoverMutation() generates new test cases based on those in seeds

through crossover and mutation. sFuzz adopts all of the crossover strategies

from AFL and introduces news ones specific for smart contracts. Furthermore,

due to correlation between parameters of a test case, sFuzz additionally makes

sure the generated test cases are valid. For instance, sFuzz (1) randomly chooses

two test cases from seeds; (2) breaks the two test cases into two pieces at a

selected position; and (3) swaps the second pieces to form two new test cases.

Note that due to correlations between the bits representing a test case, there

is no guarantee that the resultant test cases are valid and thus sFuzz always

checks for validity and discard those invalid ones.

Mutation is another way of generating new test cases. Given a seed encoded

in the form of a bit vector, sFuzz supports a set of mutation operators to gener-

ate new test cases. All mutation operators are shown in Table 3.1.

Recall that a test case is in the form of an initial configuration and a sequence

of function calls with concrete parameters. The first three mutation operators

53

Chapter 3. sFuzz: An Efficient Adaptive Fuzzer for Solidity Smart Contracts

TABLE 3.1: Mutations for fix-length values

Name

pruneMethodCall (new)
addMethodCall (new)
swapMethodCall (new)

singleWalkingBit, twoWalkingBit, fourWalkingBit, 1/2/4 consecutive bits
singleWalkingByte, twoWalkingByte, fourWalkingByte
singleArith, twoArith, fourArith
singleInterest, twoInterest, fourInterest
overwriteWithDictionary
overwriteWithAddressDictionary

aim to alter the sequence of function calls, by pruning a function call, adding

a function call or swapping two function calls. When a function call is pruned

(or added or swapped), the corresponding concrete parameters are pruned (or

added or swapped) accordingly.

For those values in a test case other than those representing the called func-

tions, sFuzz categorizes them into two groups. The first group contains those

values which have fixed-length (e.g., a parameter of type uint256). sFuzz sys-

tematically applies the remaining mutation operators shown in Table 3.1 to gen-

erate new values, which are inspired by the mutation operators in AFL. Note

that account addresses (and balances) are handled slightly differently (refer to

the last row in the table) as there are special format requirements. Each ad-

dress has 32 bytes, in which the last 20 bytes contain the address value and

the first 12 bytes contain the balance of the address. For instance, the value

0xff00...00...00f0 represent an address 0xf0 with balance 0xff000000

0000000000000000.

The second group contains those values which have variable-length (e.g., a

parameter of type array). For such values, their lengths are encoded as part of

the test case as well. We thus first mutate the value representing the length in

54

3.4. Implementation

such a way that the result is a random value between 0 and 255 where 255 is an

upper bound. If the new length is less than the current one, the corresponding

value is shortened accordingly by pruning the additional bits. If the length is

more than the current one, random type-compatible values are padded accord-

ingly.

Note that we discard identical test cases generated through either crossover

or mutation. Furthermore, although we do not set a limit on the number of

mutations generated from a test case, we apply multiple heuristics adopted

from AFL to reduce the number of mutations. For instance, if applying the

WalkingByte mutation to a block of 32 bytes does not result in any test case

which covers a new branch, in the next stages sFuzz will not mutate that block.

We refer the readers to AFL for details on these heuristics [37].

3.4 Implementation

sFuzz is implemented in C++ with an estimated 4347 lines of code. It is pub-

lically available (https://sfuzz.github.io). It has 3 main components: runner,

libfuzzer and liboracles.

Runner: manages the execution of the test cases. sFuzz takes as input the

bytecode of a smart contract along with the ABI (i.e., application binary inter-

face, which can be generated automatically using existing tools) of the contract.

The runner then generates a bash script file which contains a list of commands

to analyze the ABI, and set options for the other two components.

The runner sets up a test network based on which smart contracts are de-

ployed and transactions are executed. To generate test cases for functions with

address-type parameters, sFuzz deploys a pool of externally owned accounts

55

Chapter 3. sFuzz: An Efficient Adaptive Fuzzer for Solidity Smart Contracts

in the test network with random balances. The pool size is less than or equal

to the number of address-type parameters because it is possible to set the same

address to multiple address-type parameters. The values for address-type pa-

rameters are then chosen randomly from this pool. In addition, sFuzz deploys

two special smart contracts as attackers, i.e., a normal attacker and a reentrancy

attacker. Each attacker is set as the owner of the contract under test in turn. The

normal attacker throws an exception whenever other contracts call its payable

fallback function. The reentrancy attacker calls back the function which makes a

call to its payable fallback function. If the attacker fails to call back, it acts as a

normal attacker. Note that the reentrancy attacker is only loaded to detect Reen-

trancy vulnerability. Otherwise, the normal attacker is loaded to avoid call loops

of Reentrancy Attacker which significantly reduces the speed of sFuzz.

Libfuzzer: solves the test generation problem, i.e., how to selectively gener-

ate test cases, by implementing the fuzzing strategy presented in the previous

sections. It is responsible for multiple tasks.

First, it constructs the CFG of the given smart contract on-the-fly. Ideally, we

would like to construct the CFG statically before fuzzing. However, construct-

ing the CFG based on bytecode only is highly nontrivial. In EVM, branches are

realized with the opcode jumpi, with a value representing the target program

counter dynamically at runtime. The only way to know the target is to fully

simulate the stack, which is expensive. Therefore, sFuzz constructs the CFG

on-the-fly while fuzzing. That is, whenever the opcode jumpi is executed, the

two destinations are recorded. If these two destinations are not part of the CFG

yet, two new nodes are created accordingly representing the two destinations

in the CFG.

56

3.4. Implementation

Second, component libfuzzer implements the fuzzing algorithm discussed

in Section 3.3. One optimization is that we identify view functions (i.e., those

which do not change any variables) and exclude them from test case generation.

The justification is that these view functions do not change the states and having

them does not additionally expose those vulnerabilities sFuzz targets at (see

below). Note that view functions are marked by view, pure or constant

keywords, sFuzz reads ABI file to recognize them.

Liboracles: solves the oracle problem, i.e., it monitors the execution of a test

case and checks whether there is a vulnerability according to an extensible

library of oracles used in sFuzz. sFuzz monitors the execution of test cases

through the hooking mechanism supported by EVM. Whenever EVM executes

an opcode, it creates an event containing read-only execution information, such

as the values of the stack, memory, program counter, and the current executed

opcode. sFuzz monitors these events for constructing the CFG and computing

distance(t, brn), as well as logs the events for vulnerability detection. To reduce

the execution overhead, vulnerability detection is conducted offline in batches

(i.e., once for every 500 test cases). This design allows sFuzz to easily support

different versions of Solidity, i.e., by simply replacing the EVM packed in sFuzz.

sFuzz has an extensible architecture which allows it to easily support differ-

ent oracles as well. Currently, sFuzz supports 8 oracles inspired by the previous

work [23], [26]. Since these oracles are not our main contribution, we refer the

readers to [23], [26] for details.

These oracles are checked based on the logs of test cases. For instance, to

check if a test case expose the Gasless Send vulnerability, we check that whether

test case executes a CALL instruction with some data greater than 0 when the

gas is equal to 2300. The test cases that expose vulnerabilities in the contract are

57

Chapter 3. sFuzz: An Efficient Adaptive Fuzzer for Solidity Smart Contracts

kept in a separate test suite and reported to the user together with the vulner-

abilities that they expose. Note that by design, sFuzz always reports true pos-

itives according to our definition of vulnerability except in the case of Freezing

Ether. However, in practice, a reported vulnerability might be a false positive

as it may be what the user intended (i.e., our definition of vulnerability is too

strict). In the case of Freezing Ether, the identified ‘warning’ might be a false

positive if there exist some test cases which call send() or transfer() but such

test cases are never generated. Technically, the problem of checking whether

there is Freezing Ether vulnerability can only be solved if we cover all feasible

opcode (which is often infeasible).

3.5 Experiments and Evaluation

In this section, we evaluate sFuzz through multiple experiments. The experi-

ments are designed to answer the following research questions (RQ).

• RQ1: How efficient is sFuzz?

• RQ2: Is sFuzz effective in finding smart contract vulnerabilities and obtaining

high code coverage?

• RQ3: Is the adaptive strategy useful?

Our test subjects include 4112 smart contracts which we collect from Ether-

Scan [80]. These contracts are implemented using Solidity 4.2.24, which is the

most popular version of Solidity. Moreover, the source code for these contracts

are available, which makes the evaluation more accurate. We note that sFuzz

can run with bytecode only. For a baseline comparison, we compare sFuzz

with a fuzzer named ContractFuzzer reported in [81] and a symbolic execution

58

3.5. Experiments and Evaluation

tool named Oyente reported in [23]. Other fuzzers for smart contracts have

been mentioned in [27]. However, we fail to find the reported tools online or

through the authors. We run the experiments 3 times and report the average as

the result. All experimental results reported below are obtained on an Ubuntu

18.04.1 LTS machine with Intel Core i7 and 16GB of memory. We use the default

initial configuration as presented in Section 3.3.2.

3.5.1 Efficiency

To answer RQ1, we systematically apply sFuzz, ContractFuzzer and Oyente

on all 4112 smart contracts. To save time, each contract is run for 2 minute in

this experiment. Note that in general the adaptive fuzzing strategy takes time

to show its effectiveness (as we will show later) and thus this setting gives an

edge to other tools.

We measure the efficiency of sFuzz by counting how many test cases are

generated and executed per second. Naturally, a test case for a more com-

plicated contract (e.g., with many loop iterations) takes more time to execute.

Thus, we show how efficiency varies for different contracts. Figure 3.5 summa-

rizes the result, where each bar represents 10% (about 400) of the fuzzed con-

tracts and the y-axis shows the number of test cases generated and executed per

second. The contracts are sorted according to how efficiently it can be fuzzed.

From the figure, we observe that the efficiency varies significantly over differ-

ent contracts, i.e., sFuzz generates and executes more than 989 test cases per

second on average for the top 10% of the contracts, and less than 14 test cases

for the bottom 20%. On average, sFuzz generates and executes more than 208

test cases per second.

59

Chapter 3. sFuzz: An Efficient Adaptive Fuzzer for Solidity Smart Contracts

Figure 3.5 also compares the efficiency of sFuzz with Oyente and Contract-

Fuzzer. From the results, we observe that sFuzz is significantly more efficient

than other tools. On average, ContractFuzzer and Oyente generate and exe-

cute 0.1 and 16 test cases per second respectively. There are multiple reasons

why sFuzz is much faster. First, ContractFuzzer simulates the whole network

and manages the blockchain (e.g., commit state changes to storage and append

new mined blocks to blockchain after function calls), whereas sFuzz simulates

only details of network or blockchain which are relevant to vulnerabilities in

smart contracts. Second, sFuzz has a highly optimized implementation in C++,

whereas ContractFuzzer is based on Node.js and Go language. In the case of

Oyente, because it is a symbolic execution tool, Oyente is expected to run slower

than a fuzzer like sFuzz.

We further conduct an experiment to measure the overhead of monitoring

the execution of a test case (using the hooking mechanism) and the overall over-

head of the fuzzing process (including the overall of monitoring the execution,

constructing the CFG, mutating the test cases and comparing them, etc.). We

apply sFuzz to a set of 60 randomly selected contracts and measure the time

spent on executing the test cases, monitoring the execution and other steps of

the fuzzing process. The results show that on average the monitoring consumes

about 10% of the total execution time and the overhead of the fuzzing process

(including monitoring) is about 14%. This is very efficient compared to the re-

ported overhead in other fuzzers [75].

60

3.5. Experiments and Evaluation

FIGURE 3.5: Efficiency comparison between sFuzz, Oyente, and
ContractFuzzer

3.5.2 Effectiveness

To answer RQ2, we aim to measure the branch coverage achieved by the test

suite generated for each smart contract, as well as count the number of vulner-

abilities identified. However, measuring branch coverage precisely is highly

non-trivial due to, for instance, the problem of infeasible branches. Thus, we

instead measure the number of distinct branches covered by the generated test

suite. Figure 3.6 summarizes a comparison between sFuzz and ContractFuzzer

in terms of the number of distinct branches covered. The y-axis is the number

of branches covered by sFuzz minus that of ContractFuzzer and each point on

the x-axis represents a smart contract. The contracts are sorted by their y-axis

value. Similarly, Figure 3.7 shows the comparison between sFuzz and Oyente.

For most of the smart contracts (i.e., 4077 of 4112 contracts) sFuzz covers

more branches than ContractFuzzer. To our surprise, ContractFuzzer managed

to cover more branches for 35 contracts. A closer investigation shows that the

number of branches covered by ContractFuzzer is inflated for the following

reasons. First, as sFuzz does not execute view functions (for efficiency rea-

sons), all branches in these functions are not counted. Because view functions

61

Chapter 3. sFuzz: An Efficient Adaptive Fuzzer for Solidity Smart Contracts

FIGURE 3.6: Coverage comparison between sFuzz and Contract-
Fuzzer

FIGURE 3.7: Coverage comparison between sFuzz and Oyente

do not modify the state of a smart contract, they are considered irrelevant to

vulnerabilities. Second, ContractFuzzer sometimes generates invalid test cases

which fail mandatory constraints and cover additional branches. Mandatory

constraints are generated by the compiler (i.e., the Solidity compiler) and are

embedded in the bytecode to assert the correctness logic of function calls or

data types. For example, ContractFuzzer invokes a fallback function of a non-

fallback contract or sends Ethereum to functions which are not marked with the

payable keyword. As a result, the mandatory constraints are failed which lead

to branches which signal an error in the test case being covered.

62

3.5. Experiments and Evaluation

1 contract A {
2 mapping(address => uint) balances;
3 uint id = 10;
4 function main(uint x, uint y) {
5 if (id == 9) {
6 if (balances[msg.sender] > 10) {
7 uint sum = x + y; } } } }

FIGURE 3.8: Oyente visits infeasible branches

In the case of Oyente, in 3402 contracts, Oyente covers more branches than

sFuzz. An investigation shows that Oyente analyzes every function separately

and thus has to assume that state variables can take arbitrary values (without

considering their initial values or constraints on how the values are updated).

As a result, Oyente can easily satisfy almost all conditions in smart contracts.

Given the sample contract A in Figure 3.8, Oyente covers 99.1% EVM code and

discovers an integer overflow vulnerability. It means that these conditions:

id == 9 and balances[msg.sender] > 10 are satisfied. However, it is impossi-

ble as there is no way to change values of id and balances[msg.sender]. Often,

a condition in smart contract is the comparison between local/parameter vari-

ables and state variables, e.g., balances[msg.sender] > value (whether sender

has enough Ethereum to deduce). In such cases, sFuzz must call the function

which sets certain values to the state variables before satisfying them whereas

Oyente assigns arbitrary values directly to state variables. It is apparent to us

that Oyente’s approach is flawed and would ‘cover’ many infeasible paths.

In the following, we summarize the number of vulnerable contracts discov-

ered by sFuzz in each category. The results are shown in Table 3.2. The first

column shows the type of vulnerability. The next three columns show the num-

ber of vulnerable contracts found by sFuzz, ContractFuzzer and Oyente respec-

tively. The sub-column # show the number of contracts that have the vulner-

ability according to each vulnerability type and the second sub-column is the

63

Chapter 3. sFuzz: An Efficient Adaptive Fuzzer for Solidity Smart Contracts

TABLE 3.2: Vulnerabilities

Vulnerability Type sFuzz ContractFuzzer Oyente
true posi. # true posi. # true posi.

Gasless Send 764 100% 14 100% 0 N.A.
Exception Disorder 36 100% 6 100% 0 N.A.
Reentrancy 29 100% 3 100% 52 60%
Timestamp Dependency 243 86% 28 86% 102 100%
Block Number Dependency 59 80% 16 95% 0 N.A.
Dangerous DelegateCall 17 100% 0 100% 0 N.A.
Integer Overflow 98 100% 0 N.A. 3350 60%
Integer Underflow 224 80% 0 N.A. 2246 60%
Freezing Ether 15 60% 0 N.A. 0 N.A.

percentage of true positives of the identified vulnerabilities. For all categories,

sFuzz finds more vulnerable contracts than ContractFuzzer. Note that Contract-

Fuzzer removes Freezing Ether from their source code and does not check Integer

Overflow/Underflow. In total, sFuzz finds vulnerabilities in 1113 contracts, i.e.,

24 times more than that of ContractFuzzer.

To evaluate the soundness of sFuzz, we manually examine the identified

vulnerable contracts to check whether they are true positives or not. However,

we are unable to manually check all the identified vulnerability for two rea-

sons. First, there is an overwhelming number of vulnerabilities. Instead, we

randomly sample 50 vulnerable contracts with source code in each category

and manually check whether the identified vulnerability is a true positive or

not. If there are fewer than 50 vulnerable contracts with source code in the

category, we check all of them.

For Gasless Send, Exception Disorder and Reentrancy vulnerability, all 50 sam-

pled vulnerable contracts are true positives. For Time-stamp Dependency, out

of the 50 sampled vulnerable contracts, 43 of them are true positives. In the

64

3.5. Experiments and Evaluation

FIGURE 3.9: Percentage of test cases due to adaptive strategy

remaining 7 contracts, although block.timestamp and/or now is used in a condi-

tion, they are irrelevant to the Ether sending part (i.e., no control/data depen-

dency). Rather their values are saved in global variables to record the creation

time of specific events. sFuzz mistakenly claims that such cases are vulnerable.

For Block Number Dependency, 40 out of the 50 sampled vulnerable contracts

are true positives. Similarly, the reason for the 10 false positives is the value

of block.number is assigned to global variables but they are irrelevant to Ether

sending process. For Dangerous DelegateCall, all 17 sampled contracts are in-

deed vulnerable. Similarly so for Integer Overflow. For Integer Underflow, 40 of

the 50 identified contracts are indeed vulnerable. The reason for the 10 false

positives is because it is non-trivial to identify the correct type of a variable

based on bytecode only (e.g., whether it is uint256 or uint128), sFuzz conser-

vatively assumes that all arithmetic operations returning a negative value may

be vulnerable. This can be improved by adopting the approach in [29] to infer

types based on EVM bytecode. Lastly, for Freezing Ether, 9 of the 15 identified

contracts are true positives. The reason for the 6 false positives is that although

there is a program path which allows the contract to send Ether, the program

path is not covered and sFuzz falsely assumes that there is no such program

path. This percentage of such false positives is expected to be reduced if sFuzz

is applied for a longer time (with more branches covered).

65

Chapter 3. sFuzz: An Efficient Adaptive Fuzzer for Solidity Smart Contracts

FIGURE 3.10: Effective of adaptive strategy over time

The last column in Table 3.2 shows the results of Oyente. The results should

be taken with a grain of salt since Oyente requires the source code. For instance,

it is trivial to know the type of variables with the source code, and thus Oyente

identifies many more problems with Integer Overflow/Underflow. For the remain-

ing vulnerabilities, Oyente does not support 5 of them; identifies a higher num-

ber of vulnerable contracts for Reentrancy but with a higher false positive rate;

and identifies much fewer vulnerable contracts for Timestamp Dependency.

3.5.3 Adaptiveness

To answer RQ3, we systematically analyze the test suite generated by sFuzz for

each smart contract. Note that each test case covers at least one branch which is

not covered by any other test cases. To measure how the two fuzzing strategies

implemented in sFuzz complement each other, we count how many test cases

in the resultant test suites are generated due to the AFL strategy and how many

are due to the adaptive strategy. Note that a test case is judged to be due to the

adaptive strategy if and only if it is generated based on a seed selected by line

11 at Algorithm 2.

The results are shown in Figure 3.9, where the y-axis is the percentage of

test cases generated by the strategy. Each bar represents 10% of the contracts.

We remark that the two strategies have different targets and thus whether they

66

3.5. Experiments and Evaluation

are effective largely depends on what branching conditions are in the smart

contracts. We thus sort the contracts according to the speed of sFuzz. The bar

on the rightmost thus represents the top 10% contracts. We observe that, as

expected, the AFL strategy easily covers most of the branches (since the con-

ditions for executing most branches are not strict). For about 80% of the smart

contracts, the adaptive strategy makes a noticeable contribution, i.e., contribut-

ing an average of 31% of the generated test cases. Given that sFuzz is applied

for each contract only for 2 minutes, the result is encouraging as we hypothe-

size that the effect of the adaptive strategy would be more apparent if sFuzz is

applied for a longer period of time.

To test our hypothesis, we record the percentage of test cases generated by

the adaptive strategy every 12 seconds. The results are shown in Figure 3.10,

where the x-axis is the fuzzing time and each bar shows the percentage after

certain number of seconds. We can observe that the percentage of generated

test cases by adaptive strategy increases with more fuzzing time. On average,

the percentage rises from 18% after 12 seconds fuzzing to 33% after 2 minutes

fuzzing. From the results, we conclude the adaptive strategy is useful in in-

creasing the coverage of the generated test suites.

Threat to validity: There are both internal threats and external threats to our

work. For external threats, it is probable that sFuzz’s performance will vary

with the choice of the initial population, as other researchers have noted [77].

For internal threats, the percentage of true positives in Table 3.2 may not be

accurate as they are approximated by a sample of 50 contracts for each type of

vulnerability. In addition, the exact intention of the author of the contract is not

always clear, even if we try our best to read the source code.

67

Chapter 3. sFuzz: An Efficient Adaptive Fuzzer for Solidity Smart Contracts

3.6 Related Work and Conclusion

sFuzz is closely related to existing fuzzers for smart contracts. ContractFuzzer [26]

is a fuzzer which can check 7 different types of vulnerabilities. Its approach,

however, does not use any feedback to improve the test suite. Echidna [82]

is another fuzzer that is reportedly capable of checking if the contract violates

some user-defined properties. However, we fail to find any publication about

it.

sFuzz is complementary to existing symbolic execution engines for smart

contracts. Luu et al. [23] presented an engine to find potential security bugs

in smart contracts. The tool, however, is neither sound nor complete. Krupp

and Rossow presented teEther [27], which is focused on financial transactions

and related vulnerabilities. Nikolic et al. presented a tool named MAIAN [28],

which can find 3 types of trace vulnerabilities. Torres et al. presented Osiris [29],

a tool that combines symbolic execution and taint analysis to discover 3 types

of integer bugs in smart contracts. Different from the above works, sFuzz is a

fuzzer and it can be combined with the above engines to form a hybrid fuzzing

engine.

sFuzz is related to work on formal verification of smart contracts. Zeus [83]

is a framework which verifies the correctness and fairness of smart contracts

based on LLVM. Bhargavan et al. proposed a framework to verify smart con-

tracts formally by transforming the source code and the bytecode to F*, a lan-

guage designed for verification [84]. Yoichi Hirai presented an attempt to verify

the Deed contract using Isabelle/HOL [85].

sFuzz is broadly related to work on analyzing smart contracts. Delmolino et

al. showed that writing a safe smart contract is not a trivial task [86]. Atzei et al.

68

3.6. Related Work and Conclusion

provided a taxonomy for common vulnerabilities in smart contracts with real-

world attacks [87]. M. Fröwis and R. Böhme performed a call graph analysis

and showed that only 40% of smart contracts are truthless as their control flows

are immutable [88]. Chen et al. presented 7 gas-cost programming patterns and

showed that most of the contracts suffer from these gas-cost patterns [89].

To conclude, in this work, we present sFuzz, an adaptive fuzzing engine

for EVM smart contracts. Experimental results show that sFuzz is significantly

more reliable, faster, and more effective than existing fuzzers. sFuzz is cur-

rently under rapid development and has already gained interest from multiple

companies and research organizations.

69

Chapter 4

iContract: An Idealist’s Approach

for Smart Contract Correctness

In this work, we experiment an idealistic approach for smart contract correct-

ness verification and enforcement, based on the assumption that developers

are either desired or required to provide a correctness specification due to the

importance of smart contracts and the fact that they are immutable after de-

ployment. We design a static verification system with a specification language

which supports fully compositional verification (with the help of function spec-

ifications, contract invariants, loop invariants and call invariants). Our ap-

proach has been implemented in a tool named iContract which automatically

proves the correctness of a smart contract statically or checks the unverified

part of the specification during runtime. Using iContract, we have verified

10 high-profile smart contracts against manually developed detailed specifica-

tions, many of which are beyond the capacity of existing verifiers. Specially, we

have uncovered two ERC20 violations in the BNB and QNT contracts.

4.1. Introduction

4.1 Introduction

“After this decade, programming could be regarded as a public, mathematics-

based activity of restructuring specifications into programs."

(Edsger W. Dijkstra, 1969)

And it did not happen. Worse yet, the idea of having a formal specification ei-

ther before or alongside with a program has become unimaginable for ordinary

programmers nowadays.

We however may not have the luxury NOT to have a correctness specifica-

tion when it comes to smart contracts. Smart contracts are programs that run on

top of blockchain. They are often used to implement financial applications and

increasingly other critical applications. A bug in a smart contract thus could

result in a massive loss of valuable digital assets, which has been demonstrated

time and time again [73], [90]. More importantly, due to the immutability of

blockchain (which is one of its fundamental properties), a smart contract can-

not be patched once it is deployed. In other words, once deployed, a bug in the

smart contract would make it forever vulnerable. We thus must make sure a

smart contract is correct before it is deployed.

Existing approaches on tackling the correctness of smart contracts can be

roughly categorized into two groups, i.e., those approaches which target com-

mon vulnerabilities and those which support (manually specified) full correct-

ness specification. The former includes an extensive list of approaches and tools

on static analysis (such as Mythril [91], Oyente [23] and Securify [24]), fuzzing

(such as sFuzz [43], Echidna [82], and ConFuzzius [92]), as well as runtime

monitoring (such as sGuard [45], Solythesis [93], and Elysium [34]). While the

approaches are different, what is common across these approaches is that they

71

Chapter 4. iContract: An Idealist’s Approach for Smart Contract Correctness

all focus on a collection of generic bugs (such as reentrancy, overflow or under-

flow, frontrunning and frozen funds). While these approaches are undoubtedly

useful, they are incapable of identifying contract-specific bugs or showing their

absence.

In this work, we propose iContract, a fully compositional verification system

for verifying and enforcing the correctness of smart contracts. iContract sup-

ports a rich specification language which allows developers to specify not only

the traditional loop invariants and function specifications but also contract in-

variants (for contract-level specification) and call invariants (for specification

of external function calls). We remark that designing a specification language

that is relatively easy to use (which is essential in practice), expressive, and

makes verification easy is nontrivial. For instance, a smart contract often in-

teracts with other contracts via interfaces. Mishandling such interfaces (e.g.,

assuming that no contract states are modified by such interfaces or contracts

states can be modified arbitrarily) would hinder the verification of contracts. In

this work, we annotate external function calls with call invariants (so that we

can quantify the behavior of the external function call using a correctness logic

formula as well as an incorrectness logic formula). These call invariants can be

validated at the runtime and relied upon as assumptions when we verify the

calling function.

To evaluate the effectiveness and applicability of iContract in practice, we

apply iContract to verify 10 real-world high-profile contracts. For each contract,

a full specification of its correctness is first developed manually, with a total of 1

PhD-month. iContract is then applied to verify each of the contracts. The results

show that iContract not only is scalable for verifying real-world contracts but

also uncovering contract-specific bugs. The results are encouraging as it shows

72

4.2. Overview

that developing a specification for critical but relatively simple programs such

as smart contracts is entirely feasible.

To sum up, our main contributions are as follows. First, we propose an

approach for the correctness specification of smart contracts which facilitate

completely compositional verification, including revert specification (i.e., spec-

ifications that capture explicit reverts) as well as call invariants for frame condi-

tions. Second, we develop an implementation of the compositional verification

approach for real-world Solidity smart contracts. Lastly, we conduct an evalu-

ation using 10 real-world high-profile smart contracts (with a full specification

of their correctness).

4.2 Overview

4.2.1 Vulnerability and Correctness

Same as traditional programs, smart contracts can have bugs. For instance, a

long list of common bugs have been identified [94], some of which have been

exploited and huge financial losses have occurred [73]. Making sure that a

smart contract does not repeat the same mistakes merely constitutes the first

step towards contract correctness.

An ideal approach for smart contract correctness verification must satisfy

the following requirements. First, it must support a rich notion of correctness.

This is because each contract is designed for a unique purpose and thus is ex-

pected to satisfy a contract-specific specification. Existing approaches that are

designed to verify smart contracts against common general vulnerabilities are

thus insufficient. Second, it must be fully compositional, i.e., given a contract,

73

Chapter 4. iContract: An Idealist’s Approach for Smart Contract Correctness

we should be able to establish its correctness without relying on external con-

tracts. Furthermore, each functional unit, such as a function or even a loop,

should have its own specification so that any kind of global reasoning (even at

the contract level) could be avoided. In so doing, the verification system could

achieve scalability. Third, it must be fully automatic once the specification is

provided. Lastly, it must guarantee that the smart contract satisfies its spec-

ification, either through static verification (ideally) or runtime verification (if

necessary).

We obviously must pay some price to achieve the above-mentioned goals.

Our approach is thus based on two assumptions. First, we make the strong as-

sumption that developers are either requested or required (by stakeholders or

certification boards) to provide a correctness specification. While it was sadly

proven too strong an assumption for ordinary programs, it may be justifiable

for smart contracts due to the reasons mentioned above. Second, we make the

assumption that developers are willing to pay some reasonable amount of ad-

ditional fee (i.e., for runtime checking) in order to guarantee that the smart con-

tract satisfies the specification.

4.2.2 An Illustrative Example

In the following, we illustrate how our goals are achieved by iContract through

an example. Figure 4.1 shows a token-issuing smart contract (written according

to the ERC20 standard [95]), which is a simplified version of a real-world smart

contract named HEALTH1. The contract includes global variables burnFee, devFee,

bFee, uniswapV 2, and balances. It supports (through a public function) transfer

1deployed at BNB chain address 0x32b166e082993af6598a89397e82e123ca44e74e

74

4.2. Overview

1 contract Health {
2 ...
3 /// reverts_if(_balances[from] < value)
4 /// ensures(to != uniswapV2 && value == 0 && _balances[from] >= value, _balances

[_burnAddress] == old(_balances[_burnAddress]))
5 function _transfer(address from, address to, uint value) private {
6 require(_balances[from] >= value);
7 // require(value > 0);
8 if (to == uniswapV2) {
9 UniswapRouter(uniswapV2).swapAndLiquify(numTokensSell);

10 /// call_inv(_balances[this] >= numTokensSell, _balances[this] == old(
_balances[this]) - numTokensSell && _balances[uniswapV2] == old(
_balances[uniswapV2]) + numTokensSell)

11 /// call_modifies(_balances[this], _balances[uniswapV2])
12 }
13 if (from != uniswapV2) {
14 uint burnValue = _balances[uniswapV2].mul(burnFee).div(1000);
15 _balances[uniswapV2] = _balances[uniswapV2].sub(burnValue);
16 _balances[_burnAddress] = _balances[_burnAddress].add(burnValue);
17 IPancakePair(uniswapV2).sync();
18 /// call_modifies()
19 }
20 uint devValue = value.mul(devFee).div(1000);
21 uint bValue = value.mul(bFee).div(1000);
22 uint newValue = value.sub(devValue).sub(bValue);
23 _balances[from] = _balances[from].sub(value);
24 _balances[to] = _balances[to].add(newValue);
25 _balances[address(this)] = _balances[address(this)].add(devValue);
26 _balances[_burnAddress] = _balances[_burnAddress].add(bValue);
27 }
28
29 function transfer(address to, uint value) public returns(bool) {
30 _transfer(msg.sender, to, value);
31 return true;
32 }
33 }

FIGURE 4.1: A sample contract

of HEALTH tokens (hereafter h-tokens) from account from (a.k.a. sender) to ac-

count to (a.k.a. receiver). Note that the sender is charged with some fee for the

transfer. Furthermore, in some cases, it burns (subtracts) an amount (propor-

tional to value) of the h-tokens hold by uniswapV 2, which is a service that swaps

h-tokens with BNB (i.e., a token which is often used for token exchange ser-

vices) or vice versa. Particularly, first, at lines 8–12 if the receiver is uniswapV 2,

the contract swaps numTokensSell h-tokens for BNB (line 9). Second, at lines

13–19, if the sender is not uniswapV 2, the contract burns some h-tokens from

uniswapV 2 (line 15). Lastly, at lines 20–26, the contract charges development fee

(line 25), burns token (line 26), and transfers the remaining (line 24) to receiver.

75

Chapter 4. iContract: An Idealist’s Approach for Smart Contract Correctness

To verify the contract, we start with developing a correctness specification.

For instance, lines 3–4, 10–11 and 18 constitute the correctness specification of

the function _transfer. The specification relies on a set of pre-defined functions,

such as reverts_if(p), modifies(x), ensures(p, q), call_modifies(x) and call_inv(p, q).

Intuitively, reverts_if(p) says that the transaction reverts if p is satisfied; modifies(x)

(respectively call_modifies(x)) says that the function (respectively the external

call) only modifies those variables in x; ensures(p, q) is equivalent to the Hoare

triple {p}s{q}where s is the function body; and call_inv(p, q) right after a func-

tion call is a call invariant, where p is a precondition of the call and q is ex-

pected to be satisfied after the call. We remark that modifies(x), call_modifies(x)

can be regarded as syntactic sugars of certain special cases of ensures(p, q) and

call_inv(p, q).

In particular, the specification at line 4 demands that when value = 0, no

token should be burned. This is important as burning h-tokens reduces the to-

tal supply and, thus, increases the price of h-tokens. If h-tokens can be burned

unintentionally (e.g., when value = 0), attackers could potentially use the func-

tion to manipulate the market price. According to the call_modifies(x) at line 11,

only variables _balances [this] and _balances [uniswapV2] are modified. The call

invariants at lines 10–11 state that the function call at line 9 transfers numTokensSell

h-tokens from address this to address uniswapV 2. In particular, the balances [this]

is reduced and balances [uniswapV2] is increased by the same amount. By de-

fault, all global variables could be modified in the called function. Line 18 spec-

ifies that no variables are modified by the external call.

Once the specification is given, iContract systematically verifies the contract

against the specification. It reports that the specification at line 4 is falsified with

a counterexample, i.e., if the sender is not uniswapV 2 and value is 0, h-tokens

76

4.3. Specification Language

are burned from uniswapV 2 on line 15. In other words, this contract could be

exploited by abusing the function _transfer to burn h-tokens and manipulate

its price, i.e., an attacker first buys some h-tokens, repeatedly calls _transfer as

described above, and sells his h-tokens at a higher price.

With the verification result, we can prevent the manipulation by adding one

statement require(value > 0) at line 7. Afterwards, iContract reports that the

specification is successfully verified. This is because if value = 0, the function

is reverted. Furthremore, if the user wish to verify the revert, he could annotate

another specification as reverts_if(value=0) and invoke iContract to verify it. In-

deed, our system could verify the revert scenario successfully. Alternatively, if

the user chooses to conduct runtime verification, iContract automatically trans-

lates the above-mentioned unverified specification into an assertion, which is

then validated every time the function is invoked. Note that in the latter case,

additional gas will be paid (for executing the assertion) for the correctness.

4.3 Specification Language

4.3.1 High-level Overview

In the following, we present our specification language which is designed to

support fully compositional verification of smart contracts at the function level.

At a high-level, our specification is composed of function specifications, loop

invariants, (external) call invariants and contract invariants.

Function specifications: Ideally, a user would be able to read the function

specification and be fully aware of what the function does. Given a function f , a

function specification takes the form of multiple ensures(p, q) statements (at the

77

Chapter 4. iContract: An Idealist’s Approach for Smart Contract Correctness

beginning of the function body), where p and q are predicates that we shall de-

fine shortly. Each ensures(p, q) statement represents a Hoare triple {p}f(x){q},

i.e., any reachable state at the end of the function (i.e., without reverting) from

a state satisfying p must satisfy q. In other words, q is an over-approximation of

the states reachable from p.

Loop invariants: It is well known that loops are difficult when they come to

program verification. While there are many existing approaches on synthesiz-

ing loop invariants [96], [97], for now, we make the assumption that loop in-

variants are provided as a part of the specification. A loop invariant takes the

form of multiple loop_inv(q) statements at the beginning of the loop. Given a

loop while b do s, loop_inv(q) at the beginning of the loop represents a Hoare

triple {b ∧ q}s{¬b ∧ q}.

Call invariants: Smart contracts often rely on other smart contracts through

external function calls. To avoid global analysis, we assume that each exter-

nal call is associated with a specification in the form of multiple call_inv(p, q)

statements and multiple achieves(p, q) statements. These help to ensure the

function call behaves expectedly, i.e., they serve as the minimal requirements

on the external contracts that are needed to guarantee the correctness of this

contract. Given a function call m(e), a statement call_inv(p, q) forms a triple

{p}m(e){q}. If p is satisfied before the call, q is always satisfied after the execu-

tion of the function call. Such statements can be used to prevent the well-known

reentrancy vulnerability. A statement achieves(p, q) forms a specification in the

incorrectness logic [98], which intuitively means that if p is satisfied, it is possi-

ble to satisfy q by making the external call.

78

4.3. Specification Language

Contract invariants: A contract invariant takes the form of multiple cinv(p)

statements at the top of the contract and is expected to be satisfied after execut-

ing the constructor and every public function in the contract. Although techni-

cally it can be captured using function specifications (for both the constructor

and every public function), it is typically used to capture contract-level behav-

iors that are expected to hold always regardless of the functionalities provided

in the contract.

In addition, iContract supports a number of syntactic sugars which ease the

writing of specification. For instance, for each function, loop, or external func-

tion call, we assume that all global variables may be modified unless a modifies(x)

statement is put in place (e.g., function definitions, function calls), which spec-

ifies that all except those variables in x remain unchanged. Additionally, when

variable x is a mapping, we allow users to write modifies(x[a]) where a is con-

stant value to state that only the value at location a of x is modified, while the

values at other locations are not.

In terms of specifying the expected behaviors of smart contracts, our spec-

ification language has mulitple advantages over existing approaches [30]–[32].

First, our specification language is designed to avoid global reasoning with the

help of call invariants. Second, the reverts_if(p) statements allow us to easily

capture explicit reverts which are very common in smart contracts in the form

of require, revert() and so on. Note that this feature is missed from approaches

such as Solc-verify and as a result, those respective tools often generate false

alarms, i.e., reporting violation of postcondition on transactions that ought to

be reverted. Last, our specification is mostly based on well-known and well-

founded concepts which makes it easy to adopt.

79

Chapter 4. iContract: An Idealist’s Approach for Smart Contract Correctness

TABLE 4.1: Core features of Solidity

Func m m(v) = s
Stmt s sA | s; s | if e then s else s | while e do s | require(p) |

assert(p) | skip
Atom sA v := e | v.m := e | v[e] := e
Expr e l | v | v.m | v[e] | e⊕ e | ⊙e | m(e)

4.3.2 Formalization

In the following, we provide the necessary formalization of our specification

language as well as smart contracts so that we can present precisely how our

approach works. Note that since all our verification effort (including static ver-

ification and runtime verification) takes place at the function-level, all we need

to formalize are smart contract functions and function-level specification.

Defining smart contracts: To ease the discussion hereafter, we model Solid-

ity’s core (function-level) features using the language presented in Table 4.1. A

function m includes parameters v, and a body statement s. A statement s is an

atomic statement sA, a conditional statement, a while loop, an assertion, revert

statement, and it also can be a sequence of statements (according to the defini-

tion shown in Table 1). An atomic statement sA is an assignment to a variable

(v := e), an assignment to member of a variable (v.m := e), or an assignment to

an array element (v[e] := e). An expression e is a literal l, a variable v, a member

access v.m, an index access v[e], a binary expression e ⊕ e, a unary expression

⊙ e, or a call v.m(e) of a local function (in the same contract) or an external

function (in a different contract). We use rev as a preserved variable for revert

condition: It is true if the contract has been reverted. Note that we can simply

transform other Solidity features into our core language features such as the

80

4.3. Specification Language

statement require(a) is equivalent to the statement i) assert(a ∧ ¬rev) in verify-

ing code against a function variant or ii) revert(¬a ∧ rev) in the verification of

reverts_if(...).

To define the semantics of smart contracts, we define a set V ar contains all

the variables in the contract, a set Mem contains all the members of the data

structures in the contract, a set of mapping for arrays A, and data structures

(where A ∩ V ar = ∅), a set Loc contains all the memory locations, a set V al

contains all non-memory values (i.e., V al = Int ∪ Float ∪ Bool ∪ Str, with Int,

Float, Bool, and Str are the sets containing integer, floating-point, boolean, and

string literals). We use two mapping functions S ∈ Stacks and H ∈ Heaps

to keep track of the execution environment. Consequently, a program state

σc ∈ States is defined by a pair of stack and heap, as follows.

S ∈ Stacks =def V ar → (V al ∪ Loc)

H ∈ Heaps =def Loc→ (Type→ (Mem ∪ Int)→ (V al ∪ Loc))

σc ∈ States =def Stacks×Heaps

where the set Type contains all the data structure types defined in the contract

as well as the array type.

We define a standard small-step operational semantics of smart contracts

(based on the semantics of Solidity). A configuration C is a pair (s, σc) where

s is a program and σc is a program state (i.e., the valuation of both S and H).

The semantics is given by a binary relation,⇝, on configurations. Its intended

interpretation is that (s, σc) ⇝ (s′, σ′
c) holds if the execution of the statement

in the configuration (s, σc) can result in the new program configuration (s′, σ′
c).

An execution (of s) is a possibly infinite sequence of configurations (Ci)i≥0 with

81

Chapter 4. iContract: An Idealist’s Approach for Smart Contract Correctness

C0 = (s, _) such that Ci ⇝ Ci+1 for all i ≥ 0. We define ⇝∗, the reflexive-

transitive closure of⇝, to capture finite executions (Ci)0≤i≤n. The details of the

small step semantics is present in Figure 4.2.

⟨S,H⟩ ⊢ l ⇓ l
CONST

S(v) = l H(l) = (type(v),m, k)

⟨S,H⟩ ⊢ v.m ⇓ k
ACCESS

⟨S,H⟩ ⊢ v ⇓ S(v)
VAR

S(v) = l S(e) = i H(l) = (type(v), i, k)

⟨S,H⟩ ⊢ v[e] ⇓ k
SELECT

⟨S,H⟩ ⊢ e1 ⇓ k1 ⟨S,H⟩ ⊢ e2 ⇓ k2
⟨S,H⟩ ⊢ e1 ⊕ e2 ⇓ k1 ⊕ k2

BINARY
⟨S,H⟩ ⊢ e ⇓ k1
⟨S,H⟩ ⊢ ⊙e ⇓ ⊙k1

UNARY

⟨S,H⟩, revert; s2 ⇝ ⟨S0, H0⟩, skip REVERT ⟨S,H⟩, skip; s2 ⇝ ⟨S,H⟩, s2
SKIP

⟨S,H⟩, s1 ⇝ ⟨S1, H1⟩, s1′
⟨S,H⟩, s1; s2 ⇝ ⟨S1, H1⟩, s1′ ; s2

SEQ
⟨S,H⟩, s1 ⇝ ⟨S1, H1⟩, abort
⟨S,H⟩, s1; s2 ⇝ ⟨S1, H1⟩, abort

SEQ-ERR

⟨S,H⟩ ⊢ e ⇓ k S1 = S[v ← k]

⟨S,H⟩, v := e⇝ ⟨S1, H⟩, skip ASSIGN-1
⟨S,H⟩ ⊢ v ⇓ k k ̸∈ dom(H)

⟨S,H⟩, v.m := e⇝ ⟨S,H⟩, abort ERR1

⟨S,H⟩ ⊢ v ⇓ k k ∈ dom(H) ⟨S,H⟩ ⊢ e ⇓ k1
H1 = H[(k, type(v),m)← k1]

⟨S,H⟩, v.m := e⇝ ⟨S,H1⟩, skip ASSIGN-2

⟨S,H⟩ ⊢ v ⇓ k ⟨S,H⟩ ⊢ e1 ⇓ k1 ⟨S,H⟩ ⊢ e2 ⇓ k2
H1 = H[(k,Array, k1)← k2]

⟨S,H⟩, v[e1] := e2 ⇝ ⟨S,H1⟩, skip ASSIGN-3

⟨S,H⟩ ⊢ v ⇓ k k ̸∈ dom(H)

⟨S,H⟩, v[e1] := e2 ⇝ ⟨S,H1⟩, abort ERR2
⟨S,H⟩ ⊢ e1 ⇓ k1 k1 ̸∈ size(v)

⟨S,H⟩, v[e1] := e2 ⇝ ⟨S,H1⟩, abort ERR3

⟨S,H⟩ ⊢ b ⇓ True

⟨S,H⟩, if b then s else s′ ⇝ ⟨S,H⟩, s IF-T
⟨S,H⟩ ⊢ b ⇓ False

⟨S,H⟩, if b then s else s′ ⇝ ⟨S,H⟩, s′ IF-F

⟨S,H⟩ ⊢ b ⇓ True

⟨S,H⟩,while b do s⇝ ⟨S,H⟩, s;while b do s
LOOP-T

⟨S,H⟩ ⊢ b ⇓ False

⟨S,H⟩,while b do s⇝ ⟨S,H⟩, skip LOOP-F

v.m(p) = s ⟨S,H⟩ ⊢ e ⇓ k S ′ = S[p← k]

⟨S,H⟩ ⊢ v.m(e)⇝ ⟨S ′, H⟩, s CALL

FIGURE 4.2: Small-step operational semantics of the smart con-
tract language, given by the binary relation⇝ over Stacks×Heaps

82

4.3. Specification Language

S,H |= Φ1 ∨ Φ2 iff (S,H |= Φ1) ∨ (S,H |= Φ2)
S,H |= Ψ1 ∧Ψ2 iff (S,H |= Ψ1) ∧ (S,H |= Ψ2)
S,H |= a1 ⊗ a2 iff (S,H |= a1 = k1) ∧ (S,H |= a2 = k2) ∧ (k1 ⊗ k2)
S,H |= a1 ⊕ a2 = k iff (S,H |= a1 = k1) ∧ (S,H |= a2 = k2) ∧ (k1 ⊕ k2 = k)
S,H |= ⊙a = k iff (S,H |= a = k1) ∧ (⊙k1 = k)
S,H |= l = l iff true
S,H |= v = k iff S(v) = k
S,H |= v[a] = k iff S(v) ∈ dom(H) ∧ 0 ≥ S(a) < size(v) ∧H(S(v)) = (Array, S(a), k)
S,H |= v.m = k iff S(v) ∈ dom(H) ∧H(S(v)) = (type(v),m, k)
S,H |= old(v) = k iff S0, H0 |= v = k

S,H |= sum(v) = k iff type(v) = Array ∧ S(v) ∈ dom(H) ∧
∑size(v)

i=0 {v[i]} = k

FIGURE 4.3: Specification formula semantic where dom(f) returns
the domain of function f , size(v) the range of index of the array v.

Defining the specification language: Our specification language is constituted

of predicates defined using the syntax below.

Φ, p, q := Ψ | Φ ∨ Φ Ψ := a⊗ a | Ψ ∧Ψ

a := e | a⊕ a | ⊙ a e := l | v | v[a] | v.m | old(v) | g(v)

In general, a predicate Φ is a disjunction with one or multiple conjunctions Ψ.

Each conjunct in Ψ is a relational predicate with ⊗ is a relational operator (i.e.,

>, ≥, =, ̸=, <, ≤). The left-hand side and right-hand side of a relational predi-

cate are arithmetic expressions. An arithmetic expression may have one atomic

expression or multiple of them connected by binary operators ⊕ (i.e., +, −, ∗,

/) or unary operators ⊙ (i.e., ¬, −). An atomic expressions includes a literal l, a

variable v, a member access v.m, and an index access v[a]. The expression v.m

accesses the value stored in the member m of a struct v, whereas the expres-

sion v[a] accesses the value at key a of a mapping v. In addition, we provide

a function old(v) which returns the value of variable v at the beginning of the

function (for function specifications) or the loop (for loop invariant) or before

an external function call (for call invariants). Moreover, we support a library

83

Chapter 4. iContract: An Idealist’s Approach for Smart Contract Correctness

of externally defined function g(v). One example is the sum function, which,

given a mapping v, computes the sum of all values stored in v.

The semantics is defined according to a satisfaction relation S,H |= Φ which

is defined in a common way, as shown in Figure 4.3. Next, we define the correct-

ness in our specification language. First, regarding contract invariants, given a

contract c associated with multiple cinv(p) statements, the contract is correct

if and only if each ensures(p, p) is satisfied by all the public functions includ-

ing the constructor. Second, regarding function specifications, given a function

m(v) = s associated with multiple ensures(p, q) and reverts_if(p’) statements,

the function is correct iff for each ensures(p, q) statement, the following is sat-

isfied.

∀σc, σ
′
c. σc |= p ∧ (s, σc)⇝

∗ (skip, σ′
c) =⇒ σ′

c |= q

Furthermore, for each reverts_if(p’) statement, the following is satisfied

∀σc, σ
′
c. σc |= p′ ∧ (s, σc)⇝

∗ (require(b), σ′
c) =⇒ σ′

c |= ¬b

Third, regarding loop invariants, given a loop while b do s associated with an

loop_inv(q) statement at the beginning, the following must be satisfied where

L is a function that filters states satisfying b.

∀σc, σ
′
c. σc |= q ∧ (s, L(σc, b))⇝

∗ (skip, σ′
c) =⇒ σ′

c |= q

Fourth, for each achieves(p, q), the following must be satisfied.

∀σ′
c.∃σc. σ

′
c |= q =⇒ σc |= p ∧ (s, σc)⇝

∗ (skip, σ′
c)

Lastly, regarding call invariants, given an external function call m(e) associated

84

4.4. Verification

with multiple call_inv(p, q), for any implementation s of m(e), the following

must be satisfied: ∀σc, σ
′
c. σc |= p ∧ (s, σc)⇝∗ (skip, σ′

c) =⇒ σ′
c |= q.

4.4 Verification

We present our compositional verification algorithm by first defining an en-

coding function post(σi, si) and illustrating how to utilize it to validate function

specification ensures(p, q) and revert specification reverts_if(p). We remark that

we abuse the notation σi to represent a symbolic state where its syntax is simi-

lar to our specification language. Furthermore, we provide encoding rules that

substitute loops and function calls with their specifications.

4.4.1 Function validation

We define an encoding function post(σi, si) that takes a pre-state σi and a state-

ment si as inputs, and procedure post-states σk as output. Given a function

m(v) = s which may contain loops as well as internal and external function

calls, our validations are defined as follows. A function specification ensures(p, q)

with implementation s is verified if post(p, s) returns σ such that σ ⇒ q. The exe-

cution post(p, s) indicates that the encoding process starts with pre-state p. After

processing the statement s, the validation formula σ ⇒ q means that if the func-

tion is not reverted then the encoding starts with p implies the post-condition

q. Similarly, a specification reverts_if(p) is verified if post(p, s) returns the post-

state σ ∧ rev at exits. Note that the procedure of verifying ensures(p, p) utilizes

the encoding rule REVERT-1. On the other hand, other REVERT rules, such as

REVERT-2 and REVERT-3, are employed for the verification of reverts_if(p).

85

Chapter 4. iContract: An Idealist’s Approach for Smart Contract Correctness

σ, s1 ⇝ q1 q1, s2 ⇝ σ2

σ, s1; s2 ⇝ σ2
SEQ

σ′ = ∃x. σ[x/v] ∧ v = e[x/v]

σ, v := e⇝ σ′ ASSIGN-1

u′ = u+ e− v[m] σ′ = ∃x. σ[x/v] ∧ v = x[m[x/v]→ e[x/v]]

σ ∧ sum(v) = u, v[m] := e⇝ σ′ ∧ sum(v) = u′ ASSIGN-2

σ ∧ rev, s⇝ σ ∧ rev REV-PROP
σ′ = ∃x. σ[x/v] ∧ v = x[m→ e[x/v]]

σ, v.m := e⇝ σ′ ASSIGN-3

σ ∧ b, s0 ⇝ σ1 σ ∧ ¬b, s1 ⇝ σ2

σ, if b then s0 else s1 ⇝ σ1 ∨ σ2
IF

σ ⇒ q

σ, assert(q)⇝ σ
ASSERT

σ′ = σ ∧ p

σ, require(p)⇝ σ′ REVERT-1
σ ⇒ ¬p

σ, require(p)⇝ σ ∧ rev
REVERT-2

σ ⇏ ¬p
σ, require(p)⇝ σ

REVERT-3

σ′ = ∃x. σ[x/v] ∧ p ∧ ¬b
σ,modifies(v); loop_inv(p);while b do s⇝ σ′ LOOP

reverts_if(p) ∈ SPEC(m(e)) σ, require(¬p);m(e)⇝ σ′

σ,m(e)⇝ σ′ REVERT-INTER

σ ⇒ p σ′ = ∃x. σ[x/v] ∧ q

σ,modifies(v); finv(p, q);m(e)⇝ σ′ CALL-SPEC

FIGURE 4.4: Encoding rules (where finv(p, q) is ensures(p, q) or
call_inv(p, q))

4.4.2 Generating Proof Obligations

We define encoding function post(σi, si) using encoding rules, each of which is

of the following form.
premise0 ... premisei

σi, si ⇝ σk

This transition rule means given a pre-state σi, a statement si, it executes premise0,

..., premisei to obtain the post-state σk. The encoding rules are shown in Fig-

ure 4.4. Note that the encoding transforms the code into the predicates sup-

ported by off-the-shelf SMT solver Z3. While most of the syntax is self-explanatory,

we use the notation v[a→ l] to represent an array with v[a→ l][a′] = v[a′] when

a′ ̸= a and v[a→ l][a] = l.

86

4.4. Verification

The rules are divided into three groups, i.e., rules for local operations, rules

for external function calls, and rules for revert. Rules for local operations in-

clude SEQ, ASSIGN-1, ASSIGN-2, ASSIGN-3, IF and LOOP. They are similar

to the traditional Hoare rules. In the ASSIGN-2 and ASSIGN-3, we substitute

v before the assignment with x, and set the current v as the result of update

value e[x/v] to the value located at index m[x/v] or property m. In the ASSIGN-

2, for each write operation to v[m], we compute sum(v) by adding the current

sum u to the difference between the new value e and the old value v[m], i.e,

u′ = u + e− v[m]. The LOOP substitutes the loop with its invariant and exiting

condition (i.e., ¬b).

Rules for revert include REVERT-1 (the non-revert condition is part of the

pre-condition), REVERT-2 (the revert condition met) and REVERT-3 (the revert

condition is not met). The idea is that the function is reverted if any of the

condition leading to revert is satisfied. If the revert condition is satisfied, the

value of rev is set, and after that our system skips all the remaining statements

by using rule REV-PROP.

Rules for external function calls include CALL-SPEC, which replaces func-

tion calls using either function specifications (if it calls for a local function)

or call invariants (if it calls for an external function). This rule updates mod-

ified variables v through the substitutions σ[x/v]. Note that, to propagate the

reverts_if(p) back to the caller, via rule REVERT-INTER, we simply convert it to

require(¬p) before the function call is encoded. Moreover, each ensures(p, q)

is lifted to the context of the current function by substituting free variables ap-

pearing on parameters with their corresponding arguments.

Note that the correctness specification may be over-approximating and thus

87

Chapter 4. iContract: An Idealist’s Approach for Smart Contract Correctness

our verification may lead to false alarms and spurious counterexamples. In-

stead of running test cases with extra costs, the incorrectness specification as-

sociated with external function calls is used to construct counterexamples. Ac-

cording to the concrete values from counterexamples, we first determine an ex-

ecution path leading to the violation, and then use the achieves(p, q) statements

associated with the involved external function calls to check whether the coun-

terexample is real. We develop another predicate postU(p, s) to compute under-

approximating post-states for the implementation s, then our system confirms

the bug described in the spec if q ⇒ σ. In term of encoding for postU , dropping

execution paths is allowed in incorrectness logic. Therefore, the number of loop

iterations can be freely chosen. Only the true-branch or the false-branch is se-

lected while encoding an if-statement. If there is an execution path that satisfies

the incorrectness specification then the counterexample is determined to be a

real violation. Finally, to handle function call m(e);modifies(v); achieves(p’, q’)

at the calling states σ, it first tests p′ ⇒ σ. If this test succeeds, it produces

σ[x/v] ∧ q′ as the post-states. Otherwise, if v ∩ FREEVARS(σ) = ∅, it checks

SAT(p′ ∧ σ). If it is satisfied, it produces σ[x/v] ∧ q′ as the post-states. The

soundness of the former comes from CONSEQUENCE rule and the later is from

CONSTANCY rule in incorrectness logic.

4.5 Implementation and Evaluation

4.5.1 Implementation

iContract is implemented with around 1K lines of Python code. It supports

most features of Solidity version 0.5.1 including inheritance and important built-

in functions (e.g., send, and call). iContract uses a locally installed Solidity

88

4.5. Implementation and Evaluation

compiler to compile a user-provided Solidity file into a JSON file containing

the typed abstract syntax tree (AST). Then, iContract analyzes the AST to en-

code contracts into predicates using the Z3 library. We leverage NatSpec [99]

format to define our own specifications.

The encoding is mostly straightforward except some relevant details that we

discuss below. We use SMT Integer to model int/unsigned and int/address and

so on2. To support contract inheritance, we implement a symbol table which al-

lows us to query global variables and functions of parent contracts using inheri-

tance tree provided by the Solidity compiler. We also take into account function

overriding and variable hiding.

Our current implementation has several limitations. First, it does not sup-

port low-level API calls including inline assembly, Application Binary Inter-

face functions, and bitwise operations. Second, iContract does not compute

gas consumption to determine out-of-gas exceptions. Last, iContract analyzes

contracts without the presence of aliasing. Note that although Solidity allows

two variables reference to the same data location (i.e., aliasing), it is not very

common in Solidity and we leave it to future work.

4.5.2 Experimental Evaluation

In the following, we design and conduct multiple experiments to answer the

following research questions (RQ).

• RQ1: Can iContract verify real-world smart contracts?

• RQ2: How does iContract compare with Solc-verify [32], a state-of-the-art tool

for verifying function-level properties?

2Note that runtime checking for arithmetic overflow has been introduced since Solidity 0.8
and thus no longer an issue.

89

Chapter 4. iContract: An Idealist’s Approach for Smart Contract Correctness

TABLE 4.2: Statistics on verified contracts

Project #Contracts #Functions #Ifs #Specifications LOC #Transactions (mil)

BAT 4 16 20 17 179 3.97
BNB 2 13 22 25 150 1.00
HT 4 13 4 2 127 0.67

HOT 3 22 29 28 279 0.95
IOTX 8 32 28 35 500 0.28
QNT 5 24 13 16 239 1.21

MANA 11 28 21 70 282 2.50
ZIL 9 35 42 70 353 0.44

NXM 3 37 36 40 448 0.12
SHIB 4 33 12 33 448 9.5

RQ1 aims to evaluate whether iContract is useful for some practical smart con-

tracts. RQ2 aims to evaluate whether iContract’s approach (in particular, its

specification language) can achieve its goals better than existing approaches.

In the following, we present the evaluation results and answer the questions.

All our experiments are conducted on a single processor running an Ubuntu

16.04.6 LTS machine with Intel(R) Core(TM) i9-9900 CPU @ 3.10GHz and 64GB

of memory. The timeout is set to be 5 minutes for verifying the specification.

Our implementation and the verified contracts are available online [100].

RQ1: To answer this question, we identify a set of 10 high-profile projects

from EtherScan [80]. The relevant statistic of these contracts is shown in Ta-

ble 4.2. The table shows the name of each project. For each project, it shows

the number of contracts (#Contracts), the number of functions (#Functions), the

number of if-statements (#Ifs), the number of specification statements (#Speci-

fications), line of codes (LOC), and the number of transactions (#Transactions)

in millions. Most of them have over 200 lines of code and 20 functions. Each

project is associated with a Solidity file, which typically contains multiple con-

tracts including a main one as well as library or parent contracts. Since not all

smart contracts are written in the same Solidity versions, we have to convert

90

4.5. Implementation and Evaluation

them to a fixed version (i.e., 0.5.1). This is necessary to ensure the consistency

of our verification results. All specifications are manually written by the au-

thors and directly injected into the Solidity files. The specifications are written

in such a way that they describe the logic of each function as precise as possible.

There are 124 reverts_if(), 2 contract invariants, 4 call invariants, 206 function

specifications.

The verification results for each project is shown in Table 4.3 under column

iContract. The column #V shows the number of specifications that were suc-

cessfully verified. The column #F shows the number of falsified specifications.

The column Time shows the average verification time in seconds. Since we

group our specifications into a single specification to compare with Solc-verify,

the column #Sp is less than the one shown in Table 4.2. Most of the projects

are verified within 5 seconds. Among 336 specification statements, 3 of them

are falsified. After manually investigating them, we confirm that iContract ex-

poses contract invariant violations in HOT, QNT and BNB. First, BNB stores the

frozen tokens in a mapping called freezeOf . When tokens are frozen, they are

not subtracted from totalSupply. As a result, sum(balances) ̸= totalSupply . Sec-

ond, the totalSupply of QNT remains unchanged even when refresh QNT is cre-

ated by calling the function mint. Again, sum(balances) ̸= totalSupply . Third,

as shown in Figure 4.5, HOT has the following require statement at line 4 which

is meant to prevent overflow according to the documentation. However, it also

prevents non-overflow cases such as when _amount = 0 .

RQ2: To answer RQ2, we compare iContract against Solc-verify, a state-of-

the-art tool for verifying function-level properties of smart contracts [32]. Solc-

verify is selected as it shares much similarity with iContract, i.e., it supports

contract, function and loop invariants. Other verifiers either do not support

91

Chapter 4. iContract: An Idealist’s Approach for Smart Contract Correctness

1 /// reverts_if(_amount == 0);
2 function mint(address _to, uint256 _amount) private {
3 // Guard against overflow
4 require(balances[_to] + _amount > balances[_to]);
5 balances[_to] = balances[_to].add(_amount);
6 }

FIGURE 4.5: An example illustrating the effectiveness of
reverts_if() in identifying incorrect require statements

user-defined specification (such as VeriSmart [66]), or restrict their specification

in specific forms (e.g., linear temporal logic such as in VerX [30] and Smart-

Pulse [31]), which are not expressive enough to capture the specification re-

quired to verify the correctness of the contracts used in our experiments. We

first translate all specifications written in our language to the ones supported

by Solc-verify. The translation is not straightforward due to the fact that Solc-

verify does not support reverts_if(p) and call invariants. We thus remove the

call invariants, reverts_if(p) and convert our ensures(p, q) statements into Solc-

verify’s specifications. The results are summarized in Table 4.3 under the col-

umn Solc-verify. While Solc-verify does verify most of the contracts, results in-

consistent with ours are reported for 3 contracts, as shown in column #Con-

sistent. All of them are falsified by Solc but are verified by iContract. Our

investigation shows that the reason is the missing specifications for external

function calls, i.e., the call invariants. In the ZIL project, the external func-

tion call token.transfer (owner, amount) transfers tokens to the owner. Solc-

verify assumes that all global variables are modified after the call and thus

sum(balances) = totalSupply is falsified. In contrast, our call invariants indi-

cate that the variable balances is unchanged and the specification sum(balances)

= totalSupply is preserved. In the BAT and BNB projects, well-known exter-

nal functions call such as send() and transfer() are not properly handled in

Solc-verify. We remark that besides supporting specification features such as

92

4.6. Related Work and Conclusion

TABLE 4.3: Comparison against Solc-verify

Project # Sp iContract Solc-Verify

#V #F Time (s) #V #F Consistent Time (s)

BAT 13 13 0 4.93 12 1 × 4.51
BNB 15 14 1 7.20 13 2 × 4.00
HT 2 2 0 1.10 2 0 ✓ 2.77

HOT 17 17 0 1.41 17 0 ✓ 4.38
IOTX 23 23 0 2.09 23 0 ✓ 4.26
QNT 11 10 1 1.33 10 1 ✓ 4.69

MANA 42 42 0 3.94 42 0 ✓ 6.63
ZIL 40 40 0 4.61 39 1 × 7.13

NXM 22 22 0 2.24 22 0 ✓ 6.31
SHIB 23 23 0 1.76 23 0 ✓ 5.95

reverts_if(p) and call invariants, iContract works on Solidity code directly with-

out converting it to another language for verification. This makes verification of

the falsified specification statements straightforward in iContract, i.e., by trans-

forming the respective undefined functions into assertions.

4.6 Related Work and Conclusion

The verification for smart contracts has been the interests of multiple researchers.

The systems that are closely related to ours are Solc-verify [32] and MVP [101].

Solc-verify translates Solidity contracts into the Boogie intermediate language,

and relies on the Boogie system for verification. It supports contract invariant,

loop invariant, and pre-/post conditions. In particular, Solc-verify assertion

language targets the safety of low-level properties (e.g., the absence of over-

flows) and high-level contract invariants (e.g., the sum of user balances equates

to the total supply). Similarly, Dill et al. recently proposed MVP, a static verifier

based on the Boogie verifier, for smart contracts in the Move language [101].

MVP supports both contract invariants and functional invariants via pre/post

93

Chapter 4. iContract: An Idealist’s Approach for Smart Contract Correctness

conditions. It also generates global invariants for runtime checking. MVP en-

ables an alias-free memory model through reference elimination which relies

on borrow semantics. MVP was deployed for continuous verification on Move

code and Diem blockchain. iContract supports all the features supported by

Solc-verify and MVP, and additionally supports features like revert and call in-

variants that are designed to handle dynamic dispatching on unknown function

calls.

There are several other verification systems for smart contracts developed

in the last few years, e.g., VeriSmart [66], SmartACE [102], and VerX [30]. VeriS-

mart [66] focuses on intra-procedural analysis for verifying arithmetic (over-

and under-flows) safety. The main contribution of their work is an algorithm

that could refine transaction invariants of arbitrary transactions. These invari-

ants boost the precision of such verification. However, VeriSmart lacks inter-

procedural reasoning. SmartACE [102] is a framework that can verify user-

annotated assertions by running multiple independent analysers. It models

smart contract library and transforms the verification problem into off-the-self

analysers like constrained Horn clause solving (e.g., SeaHorn) for correctness

verification. In contrast, iContract presents a built-in static analyser for a rich

specification. Finally, VerX [30] focuses on temporal properties of Ethereum

contracts. It reduces the temporal safety verification to reachability verification

and applies the state-of-the-art reachability checking technique. While tempo-

ral logic based specification is useful for specifying global properties, we believe

that our specification language is better for supporting the motto of “specifica-

tion is law” and has its advantage on compositional verification.

94

4.6. Related Work and Conclusion

To conclude, in this work, we design a static verification system with a spec-

ification language which supports fully compositional verification. Using iCon-

tract, we have verified 10 high-profile smart contracts against manually devel-

oped detailed specifications, many of which are beyond the capacity of existing

verifiers. In the future, we intend to improve the performance of iContract fur-

ther with optimization techniques.

95

Part II

Smart Contract Vulnerability Repair

Chapter 5

sGuard: Towards Fixing Vulnerable

Smart Contracts Automatically

Smart contracts are distributed, self-enforcing programs executing on top of

blockchain networks. They have the potential to revolutionize many industries

such as financial institutes and supply chains. However, smart contracts are

subject to code-based vulnerabilities, which casts a shadow on its applications.

As smart contracts are unpatchable (due to the immutability of blockchain),

it is essential that smart contracts are guaranteed to be free of vulnerabilities.

Unfortunately, smart contract languages such as Solidity are Turing-complete,

which implies that verifying them statically is infeasible. Thus, alternative ap-

proaches must be developed to provide the guarantee. In this work, we de-

velop an approach which automatically transforms smart contracts so that they

are provably free of 4 common kinds of vulnerabilities. The key idea is to apply

run-time verification in an efficient and provably correct manner. Experiment

results with 5000 smart contracts show that our approach incurs minor run-time

overhead in terms of time (i.e., 14.79%) and gas (i.e., 0.79%).

5.1. Introduction

5.1 Introduction

Blockchain is a public list of records which are linked together. Thanks to

the underlying cryptography mechanism, the records in the blockchain can

resist against modification. Ethereum is a platform which allows program-

mers to write distributed, self-enforcing programs (a.k.a smart contracts) ex-

ecuting on top of the blockchain network. Smart contracts, once deployed on

the blockchain network, become an unchangeable commitment between the in-

volving parties. Because of that, they have the potential to revolutionize many

industries such as financial institutes and supply chains. However, like tra-

ditional programs, smart contracts are subject to code-based vulnerabilities,

which may cause huge financial loss and hinder its applications. The prob-

lem is even worse considering that smart contracts are unpatchable once they

are deployed on the network. In other words, it is essential that smart contracts

are guaranteed to be free of vulnerabilities before they are deployed.

In recent years, researchers have proposed multiple approaches to ensure

smart contracts are vulnerability-free. These approaches can be roughly classi-

fied into two groups, i.e., verification and testing. However, existing efforts do

not provide the required guarantee. Verification of smart contracts is often in-

feasible since smart contracts are written in Turing-complete programming lan-

guages (such as Solidity which is the most popular smart contract language),

whereas it is known that testing (of smart contracts or otherwise) only shows

the presence not the absence of vulnerabilities.

In this work, we propose an approach and a tool, called sGuard, which au-

tomatically fixes potentially vulnerable smart contracts. sGuard is inspired by

program fixing techniques for traditional programs such as C or Java, and yet

99

Chapter 5. sGuard: Towards Fixing Vulnerable Smart Contracts Automatically

are designed specifically for smart contracts. First, sGuard is designed to guar-

antee the correctness of the fixes. Existing program fixing approaches (e.g.,

GenFrog [40], PAR [41], Sapfix [42]) often suffer from the problem of weak spec-

ifications, i.e., a test suite is taken as the correctness specification. A fix driven

by such a weak correctness criteria may over-fit the given test suites and does

not provide correctness guarantee in all cases. Furthermore, fixes for smart con-

tracts may suffer from not only time overhead but also gas overhead (i.e., extra

fees for running the additional code) and sGuard is designed to minimize the

run-time overhead in terms of time and gas introduced by the fixes.

Given a smart contract, at the high level, sGuard works in two steps. In the

first step, sGuard first collects a finite set of symbolic execution traces of the

smart contract and then performs static analysis on the collected traces to iden-

tify potential vulnerabilities. As of now, sGuard supports 4 types of common

vulnerabilities. Note that our static analysis engine is built from scratch as ex-

tending existing static analysis engines for smart contracts (e.g., Securify [24]

and Ethainter [103]) for our purpose is infeasible. For instance, their sets of se-

mantic rules are incomplete and sometimes produce conflicting results (i.e. a

contract both complies and violates a security rule). In addition, they perform

abstract interpretation locally (i.e., context/path-insensitive analysis) and thus

suffer from many false positives. A contract fixed based on the analysis results

from these tools may introduce unnecessary overhead.

In the second step, sGuard applies a specific fixing pattern for each type of

vulnerability on the source code to guarantee that the smart contract is free of

those vulnerabilities. Our approach is proved to be sound and complete on

termination for the vulnerabilities that sGuard supports.

To summarize, our contribution in this work is as follows.

100

5.2. Background and Overview

• We propose an approach to fix 4 types of vulnerabilities in smart contracts

automatically.

• We prove that our approach is sound and complete for the considered

vulnerabilities.

• We implement our approach as a self-contained tool, which is then evalu-

ated with 5000 smart contracts. The experiment results show that sGuard

fixes 1605 smart contracts. Furthermore, the fixes incur minor run-time

overhead in terms of time (i.e., 14.79% on average) and gas (i.e., 0.79%).

The remainder of the chapter is organized as follows. In Section 5.2, we pro-

vide some background about smart contracts and illustrate how our approach

works through examples. The problem is then defined formally in Section 5.3.

In Section 5.4, we present the details of our approach. The experiment results

are presented in Section 5.5. We discuss related work in Section 5.6 and con-

clude in Section 5.7.

5.2 Background and Overview

In this section, we introduce relevant background on smart contracts and illus-

trate how our approach addresses the problem of smart contract vulnerabilities

through examples.

5.2.1 Vulnerabilities

Just like traditional programs, smart contracts are subject to code-based vulner-

abilities. A variety of vulnerabilities have been identified in real-world smart

101

Chapter 5. sGuard: Towards Fixing Vulnerable Smart Contracts Automatically

1 function transferProxy(address from, address to, uint value, uint
fee) public {

2 if (balances[from] < fee + value) revert();
3 uint nonce = nonces[from];
4 if (balances[to] + value < balances[to]) revert();
5 if (balances[msg.sender] + fee < balances[msg.sender]) revert();
6 balances[to] += value;
7 balances[msg.sender] += fee;
8 balances[from] -= value + fee;
9 nonces[from] = nonce + 1;

10 }

(a) Before

1 function transferProxy(address from, address to, uint value, uint
fee) public {

2 if (balances[from] < add_uint256(fee, value)) revert();
3 uint nonce = nonces[from];
4 if (add_uint256(balances[to], value) < balances[to]) revert();
5 if (add_uint256(balances[msg.sender], fee) < balances[msg.sender

]) revert();
6 balances[to] = add_uint256(balances[to], value);
7 balances[msg.sender] = add_uint256(balances[msg.sender], fee);
8 balances[from] = sub_uint256(balances[from], add_uint256(_value,

fee))
9 nonces[from] = nonce + 1;

10 }

(b) After

FIGURE 5.1: CVE-2018-10376 patched by SGUARD

contracts, some of which have been exploited by attackers and have caused sig-

nificant financial losses (e.g., [104], [105]). In the following, we introduce two

kinds of vulnerabilities through examples.

Example 5.2.1. One category of vulnerabilities is arithmetic vulnerability, e.g.,

overflow. For instance, in April 2018, an attacker exploited an integer over-

flow bug in a smart contract named SmartMesh and stole a massive amount

of tokens (i.e., digital currency). The same bug affected 9 tradable tokens at

that time and was named as ProxyOverflow. Figure 5.1(a) shows the (sim-

plified) function transferProxy in the SmartMesh contract which contains

the bug. The function is designed for transferring tokens from one account

102

5.2. Background and Overview

to another, while paying certain fee to the sender (see lines 6 and 7). The de-

veloper was apparently aware of potential overflow and introduced relevant

checks at lines 2, 4 and 5. Unfortunately, one subtle bug is missed by the

checks. That is, if fee+value is 0 (due to overflow) and balances[from]=0,

the attacker is able to bypass the check at line 2 and subsequently increase the

balance of msg.sender and to (see lines 6 and 7) by an amount more than

balances[from]. During the attack, this bug was exploited to create tokens

out of air. This example highlights that manually-written checks could be error-prone.

Example 5.2.2. Reentrancy vulnerability is arguably the most infamous vul-

nerability for smart contracts. It happens when a smart contract C invokes a

function of another contract D and subsequently a call back (e.g., through the

fallback function in contract D) to contract C is made while it is in an inconsis-

tent state, e.g., the balance of contract C is not updated. Figure 5.2(a) shows a

part of a smart contract named MasBurn which contains a cross-function reen-

trancy vulnerability. MasBurn implements a Midas protocol token, i.e., a trad-

able ERC20 token. It allows token holders to burn their owned tokens by send-

ing tokens to a specific BURN_ADDRESS, as shown at line 17. The total amount

of burned tokens within one week can not exceed weeklyLimit (see line 16),

which is a variable that limits the amount of tokens to be burned weekly. How-

ever, the problem is that the returned value of the function getThisWeekBurn

AmountLeft (see line 16) has a data dependency on variable numOfBurns,

and would be wrongly calculated in the case of a reentrancy call at line 17. That

is, if the fallback function of the contract at BURN_ADDRESS contains a call back

to the function burn, the function getThisWeekBurnAmountLeft is called

with an outdated value of numOfBurns. As a result, the amount of burned

tokens would exceed what is allowed. Although no Ether is lost (or created

103

Chapter 5. sGuard: Towards Fixing Vulnerable Smart Contracts Automatically

from air) in such an attack, the (implicit) specification of MasBurn is violated in

such a scenario. This example also shows the difficulty in handling reentrancy

vulnerability, i.e., whether a reentrancy is a vulnerability may depend on the

specification of the contract.

5.2.2 Patching Smart Contracts

In the following, we illustrate how SGUARD patches smart contracts through

the two examples mentioned above. The technical details are presented in Sec-

tion 5.4. We remark that SGUARD identifies vulnerabilities based on bytecode

while patches them based on the corresponding source code. This is because

analysis based on the bytecode is more precise than analysis based on the source

code (as the former is not affected by bugs or optimizations in the Solidity com-

piler), whereas patching at the source code is transparent to the users.

Example 5.2.3. The result of patching the function shown in Figure 5.1(a) using

SGUARD is shown in Figure 5.1(b). Almost all arithmetic operations (in state-

ments or expressions) are replaced with function calls that perform the corre-

sponding operations safely (i.e., with proper checks for arithmetic overflow or

underflow). This effectively prevents the vulnerability as the function reverts

immediately if fee+value overflows at line 2. Note that the addition at line

9 is not patched as the variable nonces is not deemed critical itself or is de-

pended on by some critical variables.

One might argue that some of the modifications are not necessary, e.g., the

one at line 4. This is true for this smart contract, if the goal is to prevent this

particular vulnerability. In general, whether a modification is necessary or not

can only be answered when the specification of the smart contract is present.

SGUARD does not require the specification from the user as that would limit

104

5.2. Background and Overview

its applicability in practice. SGUARD thus always conservatively assumes all

arithmetic overflow that may lead to vulnerability are problematic. Although

this patch is not minimal, we guarantee that the patched transferProxy is

free of arithmetic vulnerability.

Example 5.2.4. The result of applying SGUARD to the contract shown in Fig-

ure 5.2(a) is shown in Figure 5.2(b). SGUARD identifies line 17 as an external

call, which is critical as an external call invokes a function of another contract

which might be under the control of an attacker. SGUARD systematically identi-

fies variables that the external call at line 17 depends on (either through control

dependency or data dependency). Afterwards, SGUARD patches these vari-

ables and operations accordingly. In particular, this external call has control

dependency on the if-statement at line 5 and is followed by a storage update

(++numOfBurns at line 18).

• The subtractions at lines 4, 5, 6, 12 are replaced with calls of function

sub_uint256, which checks underflow.

• The additions at lines 6, 18 are replaced with calls of function add_uint256

to avoid overflow.

• Function burn is patched to prevent reentrancy. That is, we introduce

the modifier nonReentrant at line 15. This modifier is derived from

OpenZeppelin [106], a library for secure smart contract development.

The resultant smart contract is free of arithmetic vulnerability and reentrancy

vulnerability.

105

Chapter 5. sGuard: Towards Fixing Vulnerable Smart Contracts Automatically

1 function getThisWeekBurnedAmount() public view returns(uint) {
2 uint thisWeekStartTime = getThisWeekStartTime();
3 uint total = 0;
4 for (uint i = numOfBurns; i >= 1; i--) {
5 if (burnTimestampArr[i - 1] < thisWeekStartTime) break;
6 total += burnAmountArr[i - 1];
7 }
8 return total;
9 }

10
11 function getThisWeekBurnAmountLeft() public view returns(uint) {
12 return weeklyLimit - getThisWeekBurnedAmount();
13 }
14
15 function burn(uint amount) external payable {
16 require(amount <= getThisWeekBurnAmountLeft());
17 require(IERC20(tokenAddress).transferFrom(msg.sender,

BURN_ADDRESS, amount));
18 ++numOfBurns;
19 }

(a) Before

1 function getThisWeekBurnedAmount() public view returns(uint) {
2 uint thisWeekStartTime = getThisWeekStartTime();
3 uint total = 0;
4 for (uint i = numOfBurns; i >= 1; (i = sub_uint256(i, 1))) {
5 if (burnTimestampArr[sub_uint256(i, 1)] < thisWeekStartTime)

break;
6 total = add_uint256(total, burnAmountArr[sub_uint256(i, 1)]);
7 }
8 return total;
9 }

10
11 function getThisWeekBurnAmountLeft() public view returns(uint) {
12 return sub_uint256(weeklyLimit, getThisWeekBurnedAmount());
13 }
14
15 function burn(uint amount) external payable nonReentrant {
16 require(amount <= getThisWeekBurnAmountLeft());
17 require(IERC20(tokenAddress).transferFrom(msg.sender,

BURN_ADDRESS, amount));
18 (numOfBurns = add_uint256(numOfBurns, 1));
19 }

(b) After

FIGURE 5.2: MasBurn patched by sGuard

106

5.3. Problem Definition

5.3 Problem Definition

In the following, we first present the semantics for Solidity smart contracts, and

then define our problem.

5.3.1 Concrete Semantics

A smart contract S can be viewed as a finite state machine S = (V ar, init, N, i, E)

where V ar is a set of variables; init is the initial valuation of the variables; N is

a finite set of control locations; i ∈ N is the initial control location, i.e., the start

of the contract; and E ⊆ N × C × N is a set of labeled edges, each of which

is of the form (n, c, n′) where c is an opcode. There are a total of 78 opcodes in

Solidity (as of version 0.5.3), as summarized in Table 5.1. Note that each opcode

is statically assigned with a unique program counter, i.e., each opcode can be

uniquely identified based on the program counter.

Note that V ar includes stack variables, memory variables, and storage vari-

ables. Stack variables are mostly used to store primitive values and memory

variables are used to store array-like values (declared explicitly with keyword

memory). Both stack and memory variables are volatile, i.e., they are cleared af-

ter each transaction. In contrast, storage variables are non-volatile, i.e., they are

persistent on the blockchain. Together, the variables’ values identify the state of

the smart contract at a specific point of time. At the Solidity source code level,

stack and memory variables can be considered as local variables in a specific

function; and storage variables can be considered as contract-level variables.

A concrete trace of the smart contract is an alternating sequence of states and

opcodes ⟨s0, op0, s1, op1, · · · ⟩ such that each state si is of the form (pci, Si,Mi, Ri)

where pci ∈ N is the program counter; Si is the valuation of the stack variables;

107

Chapter 5. sGuard: Towards Fixing Vulnerable Smart Contracts Automatically

Mi is the valuation of the memory variables; and Ri is the valuation of the

storage variables. Note that the initial state s0 is (0, S0,M0, R0) where S0, M0 and

R0 are the initial valuation of the variables defined by init. Furthermore, for all

i, (pci+1, Si+1,Mi+1, Ri+1) is the result of executing opcode opi given the state

(pci, Si,Mi, Ri) according to the semantic of opi. The semantics of opcodes are

shown in Figure 5.3 in the form of execution rules, each of which is associated

with a specific opcode. Each rule is composed of multiple conditions above the

line and a state change below the line. The state change is read from left to right,

i.e., the state on the left changes to the state on the right if the conditions above

the line are satisfied. Note that this formal semantics is based on the recent

effort on formalizing Etherum [107].

Most of the rules are self-explanatory and thus we skip the details and refer

the readers to [107]. It is worth mentioning how external calls are abstracted in

our semantic model. Given an external function call (i.e., opcode CALL), the

execution temporarily switches to an execution of the invoked contract. The

result of the external call, abstracted as res, is pushed to the stack.

5.3.2 Symbolic Semantics

In order to define our problem, we must define the kinds of vulnerabilities that

we focus on. Intuitively, we say that a smart contract suffers from certain vul-

nerability if there exists an execution of the smart contract that satisfies certain

constraints. In the following, we extend the concrete traces to define symbolic

traces of a smart contract so that we can define whether a symbolic trace suffers

from certain vulnerability.

To define symbolic traces, we first extend the concrete values to symbolic

values. Formally, a symbolic value has the form of op(operand0, · · · , operandn)

108

5.3. Problem Definition

(pc, S,M,R)⇝ □
STOP

S1, x = S.pop()

(pc, S,M,R)⇝ (pc+ 1, S1,M,R)
POP

S1, x = S.pop() z = op(x) S2 = S1.push(z)

(pc, S,M,R)⇝ (pc+ 1, S2,M,R)
UNARY-OP

S1, x = S.pop() S2, y = S1.pop()
z = op(x, y) S3 = S2.push(z)

(pc, S,M,R, pc)⇝ (pc+ 1, S3,M,R, pc+ 1)
BINARY-OP

S1, x = S.pop() S2, y = S1.pop() S3,m = S2.pop()
z = op(x, y,m) S4 = S3.push(z)

(pc, S,M,R)⇝ (pc+ 1, S4,M,R)
TERNARY-OP

S1, p = S.pop() v = M [p] S2 = S1.push(v)

(pc, S,M,R)⇝ (pc+ 1, S2,M,R)
MLOAD

S1, p = S.pop() S2, v = S1.pop()M1 = M [p← v]

(pc, S,M,R)⇝ (pc+ 1, S2,M1, R)
MSTORE

S1, p = S.pop() v = R[p] S2 = S1.push(v)

(pc, S,M,R)⇝ (pc+ 1, S2,M,R)
SLOAD

S1, p = S.pop() S2, v = S1.pop() R1 = R[p← v]

(pc, S,M,R)⇝ (pc+ 1, S2,M,R1)
SSTORE

v = S.get(i) S1 = S.push(v)

(pc, S,M,R)⇝ (pc+ 1, S1,M,R)
DUP-I

v0 = S.get(0) vi = S.get(i) S1 = S[0← vi] S2 = S1[i← v0]

(pc, S,M,R)⇝ (pc+ 1, S2,M,R)
SWAP-I

S1, lbl = S.pop() S2, c = S1.pop() c ̸= 0

(pc, S,M,R)⇝ (lbl, S2,M,R)
JUMPI-T

S1, lbl = S.pop() S2, c = S1.pop() c = 0

(pc, S,M,R)⇝ (pc+ 1, S2,M,R)
JUMPI-F

S1, lbl = S.pop()

(pc, S,M,R)⇝ (lbl, S1,M,R)
JUMP

res = call() S1 = S.push(res)

(pc, S,M,R)⇝ (pc+ 1, S1,M,R)
CALL

S1, p = S.pop() S2, n = S1.pop() v = sha3(M [p, p+ n]) S3 = S2.push(v)

(pc, S,M,R)⇝ (pc+ 1, S3,M,R)
SHA3

FIGURE 5.3: Operational semantics of Ethereum opcodes. pop,
push, and get are self-explanatory stack operations. m[p ← v]
denote an operations which returns the same stack/mapping as
m except that the value of position/key p is changed to v. Rule
UNARY-OP (BINARY-OP, TERNARY-OP) applies to all unary
(binary, ternary) operations; rule DUP-I, applies to all duplicate

operations; and rule SWAP-I applies to all swap operations.

109

Chapter 5. sGuard: Towards Fixing Vulnerable Smart Contracts Automatically

Rule Opcodes

STOP SELFDESTRUCT, REVERT, INVALID, RETURN, STOP
POP POP
UNARY-op NOT, ISZERO, CALLDATALOAD, EXTCODESIZE, BLOCKHASH, BALANCE,

EXTCODEHASH
BINARY-op ADD, MUL, SUB, DIV, SDIV, MOD, SMOD, EXP, SIGNEXTEND, LT, GT, SLT,

SGT, EQ, AND, OR, XOR, BYTE, SHL, SHR, SAR
TERNARY-op ADDMOD, MULMOD, CALLDATACOPY, CODECOPY, RETURNDATACOPY
MLOAD MLOAD
SHA3 SHA3
MSTORE MSTORE, MSTORE8
SLOAD SLOAD
SSTORE SSTORE
DUP-I DUP1· · ·DUP16
SWAP-I SWAP1· · ·SWAP16
JUMPI-T/JUMPI-F JUMPI
JUMP JUMP
CALL STATICCALL, CALL, CALLCODE, CREATE, CREATE2, DELEGATECALL,

SELFDESTRUCT

TABLE 5.1: The opcodes according to each rule

where op is an opcode and operand0, · · · , operandn are the operands. Each operand

may be a concrete value (e.g., an integer number or an address) or a symbolic

value. Note that if all operands of an opcode are concrete values, the sym-

bolic value is a concrete value as well, i.e., the result of applying op to the con-

crete operands. For instance, ADD(5,6) is 11. Otherwise, the value is sym-

bolic. One exception is that if op is MLOAD or SLOAD, the result is symbolic

even if the operands are concrete, as it is not trivial to maintain the concrete

content of the memory or storage. For instance, loading a value from address

0x00 from the storage results in the symbolic value SLOAD(0x00) and in-

creasing the value at storage address 0x00 by 6 results in a symbolic value

ADD(SLOAD(0x00),0x06). For another instance, the result of symbolically

executing SHA3(n,p) is SHA3(MLOAD(n,p)), i.e., the SHA3 hash of the value

located from address n to n+ p in the memory.

With the above, a symbolic trace is an alternating sequence of states and

110

5.3. Problem Definition

function transfer(address _to, uint _value) public {
if (_value <= 0) revert();
if (balances[msg.sender] < _value) revert();
if (balances[_to] + _value < balances[_to]) revert();
balances[msg.sender] = balances[msg.sender] - _value;
balances[_to] = balances[_to] + _value;

}

𝐺𝑇!(_value,0)

𝐼𝑆𝑍𝐸𝑅𝑂"(LT(SLOAD(balances[msg.sender]),_value))

𝑆𝑇𝑂𝑃𝐼𝑆𝑍𝐸𝑅𝑂'(LT(ADD(SLOAD(balances[_to]),_value),SLOAD(balances[_to])))

𝑆𝑆𝑇𝑂𝑅𝐸((balances[msg.sender],SUB(SLOAD(balances[msg.sender]),_value))

𝑆𝑆𝑇𝑂𝑅𝐸)(balances[_to],ADD(SLOAD(balances[_to]),_value))

𝑆𝑇𝐴𝑅𝑇

False
True

True

True

False

False

FIGURE 5.4: An example of control and data dependency

opcodes ⟨s0, op0, s1, op1, · · · ⟩ such that each state si is of the form (pci, S
s
i ,M

s
i , R

s
i)

where pci is the program counter; Ss
i , M s

i and Rs
i are the valuations of stack,

memory and storage respectively. Note that Ss
i , M s

i and Rs
i may hold symbolic

values as well as concrete ones. For all i, (pci+1, S
s
i+1,M

s
i+1, R

s
i+1) is the result of

executing opcode opi symbolically given the state (pci, S
s
i ,M

s
i , R

s
i).

A symbolic execution engine is one which systematically generate the sym-

bolic traces of a smart contract. Note that different from concrete execution, a

symbolic execution would generate two traces given an if-statement, one vis-

its the then-branch and the other visits the else-branch. Furthermore, in the case

of an external call (i.e., CALL), instead of switching the current execution con-

text to another smart contract, we can simply use a symbolic value to represent

the returned value of the external call.

111

Chapter 5. sGuard: Towards Fixing Vulnerable Smart Contracts Automatically

5.3.3 Problem Definition

Intuitively, a vulnerability occurs when there are dependencies from certain

critical instructions (e.g., CALL and DELEGATECALL) to a set of specific instruc-

tions (e.g., ADD, SUB and SSTORE). Therefore, to define our problem, we first

define (control and data) dependency, based on which we define the vulnera-

bilities.

Definition 1 (Control dependency). An opcode opj is said to be control-dependent

on opi if there exists an execution from opi to opj such that opj post-dominates

all opk in the path from opi to opj (excluding opi) but does not post-dominates

opi. An opcode opj is said to post-dominate an opcode opi if all traces starting

from opi must go through opj .

Figure 5.4 illustrates an example of control dependency. The source code

is shown on the top and the corresponding control flow graph is shown on

the bottom. All variables and their symbolic values are summarized in Ta-

ble 5.2. The source code presents secure steps to transfer _value tokens from

msg.sender account to _to account. There are 3 then-branches followed by 2

storage updates. According to the definition, both SSTORE3 and SSTORE4 are

control-dependent on ISZERO1, ISZERO2 and GT0.

Definition 2 (Data dependency). An opcode opj is said to be data-dependent

on opi if there exists a trace which executes opi and subsequently opj such that

W (opi) ∩ R(opj) ̸= ∅ where R(opj) is a set of locations read by opj ; W (opi) is a

set of locations written by opi.

Figure 5.4 also illustrates an example of data dependency. Opcode ISZERO1

and ISZERO2 are data-dependent on SSTORE3 and SSTORE4. It has 2 traces, i.e.,

112

5.3. Problem Definition

Variable Symbolic Value

_to CALLDATALOAD(0x04)
_value CALLDATALOAD(0x24)
balances[msg.sender] SHA3(MLOAD(0x00,0x40))
balances[_to] SHA3(MLOAD(0x00,0x40))

TABLE 5.2: Variables and their symbolic values of Figure 5.4

one trace loads data from storage address SHA3(MLOAD(0x00,0x40)) which

is written by SSTORE1 and SSTORE2 in another trace.

We say an opcode opj is dependent on opcode opi if opj is control or data de-

pendent on opi or opj is dependent on an opcode opk such that opk is dependent

on opi.

Vulnerabilities: In the following, we define the 4 kinds of vulnerabilities that

we focus on, i.e., intra-function and cross-function reentrancy, dangerous tx.origin

and arithmetic overflow. We remark that while we can certainly detect more

kinds of vulnerabilities, it is not always clear how to fix them, i.e., it may not

be feasible to know the intended behavior. For example, in the case of fixing

an accessible selfdestruct vulnerability (i.e., a smart contract suffers from this vul-

nerability if it may be destructed by anyone [103]), we would not know for sure

who should have the privilege to access selfdestruct.

Let C be a set of critical opcodes which contains CALL, CALLCODE, DELEGATE

CALL, SELFDESTRUCT, CREATE and CREATE2, i.e., the set of all opcode asso-

ciated with external calls except STATICCALL. The reason that STATICCALL is

excluded from C is that STATICCALL can not update storage variables of the

called smart contract and thus is considered to be safe.

Definition 3 (Intra-function reentrancy vulnerability). A symbolic trace suffers

from intra-function reentrancy vulnerability if it executes an opcode opc ∈ C

113

Chapter 5. sGuard: Towards Fixing Vulnerable Smart Contracts Automatically

1 uint numWithdraw = 0;
2 function withdraw() external {
3 uint256 amount = balances[msg.sender];
4 balances[msg.sender] = 0;
5 (bool ret,) = msg.sender.call.value(amount)("");
6 require(ret);
7 numWithdraw ++;
8 }

FIGURE 5.5: A non-reentrant case captured by NW

and subsequently executes an opcode ops in the same function such that ops is

SSTORE, and opc depends on ops.

A smart contract suffers from intra-function reentrancy vulnerability if and

only if at least one of its symbolic traces suffers from intra-function reentrancy

vulnerability. The above definition is inspired from the no writes after call (NW)

property [24]. It is however more accurate than NW, as it avoids violations

of NW which are not considered as reentrancy vulnerability. For instance, the

function shown in Figure 5.5 violates NW, although it is not subject to reen-

trancy vulnerability. It is because the external call msg.sender.call has no

dependency on numWithdraw. In other words, there does not exist a depen-

dency from opc to ops.

Definition 4 (Cross-function reentrancy vulnerability). A symbolic trace tr suf-

fers from cross-function reentrancy vulnerability if it executes an opcode ops

where ops is SSTORE and there exists a symbolic trace tr′ subject to intra-function

reentrancy vulnerability such that the opcode opc of tr′ depends on ops, and they

belong to different functions.

A smart contract suffers from cross-function reentrancy vulnerability if and

only if at least one of its symbolic traces suffers from cross-function reentrancy

vulnerability. This vulnerability differs from intra-function reentrancy as the

114

5.3. Problem Definition

1 function transfer(address to, uint amount) external {
2 if (balances[msg.sender] >= amount) {
3 balances[to] += amount;
4 balances[msg.sender] -= amount;
5 }
6 }
7
8 function withdraw() external nonReentrant {
9 uint256 amount = balances[msg.sender];

10 (bool ret,) = msg.sender.call.value(amount)("");
11 require(ret);
12 balances[msg.sender] = 0;
13 }

FIGURE 5.6: An example of cross-function reentrancy vulnerabil-
ity

1 function sendTo(address receiver, uint amount) public {
2 require(tx.origin == owner);
3 receiver.transfer(amount);
4 }

FIGURE 5.7: An example of dangerous tx.origin vulnerability

attacker launches an attack through two different functions, which makes it

harder to detect. Figure 5.6 shows an example of cross-function reentrancy. The

developer is apparently aware of intra-function reentrancy and thus add the

modifier nonReentrant to the function withdraw for preventing reentrancy.

However, reentrancy is still possible through function transfer, in which case

the attacker is able to double his Ether. That is, the attacker receives Ether at line

10 and illegally transfers it to another account at line 3. Although cross-function

reentrancy vulnerabilities were described in Sereum [64] and Consensys [108],

our work is the first work to define it formally.

Definition 5 (Dangerous tx.origin vulnerability). A symbolic trace suffers from

dangerous tx.origin vulnerability if it executes an opcode opc ∈ C which de-

pends on an opcode ORIGIN.

A smart contract suffers from dangerous tx.origin vulnerability if and

115

Chapter 5. sGuard: Towards Fixing Vulnerable Smart Contracts Automatically

only if at least one of its symbolic traces suffer from dangerous tx.origin vul-

nerability. This vulnerability happens due to an incorrect usage of the global

variable tx.origin to authorize a user. An attack happens when a user U

sends a transaction to a malicious contract A, which intentionally forwards this

transaction to a contract B that relies on a vulnerable authorization check (e.g.,

require(tx.origin == owner)). Since tx.origin returns the address

of U , contract A successfully impersonates U . Figure 5.7 presents an example

suffering from dangerous tx.orgin vulnerability, i.e., a malicious contract may

impersonate the owner to withdraw all Ethers.

Definition 6 (Arithmetic vulnerability). A symbolic trace suffers from arith-

metic vulnerability if it executes an opcode opc in C and opc depends on an

opcode opa which is ADD, SUB, MUL or DIV.

A smart contract suffers from arithmetic vulnerability if and only if at least

one of its symbolic traces suffer from arithmetic vulnerability. Intuitively, this

vulnerability occurs when an external call data-depends on an arithmetic oper-

ation (e.g., addition, subtraction, or multiplication). For instance, the example

in the Figure 5.2 is vulnerable due to the presence of data dependency between

the external call at line 17 and the expression weeklyLimit - getThisWeek

BurnedAmount() at line 12. Arithmetic vulnerabilities are the target of multi-

ple tools designed for vulnerability detection. In general, arithmetic vulnerabil-

ity detection using static analysis often results in high false positive. Therefore,

tools such as Securify [24] and Ethainter [103] do not support this vulnerability

in spite of its importance. In the above definition, we focus on only critical arith-

metic operations to reduce false positives. That is, an arithmetic operation is not

considered critical as long as the smart contract does not spread its wrong com-

putation to other smart contracts through external calls. For instance, wrong

116

5.4. Detailed Approach

ERC20 token transfer (e.g., CVE-2018-10376) is not critical because it can be re-

verted by the contract’s admin, whereas wrong Ether transfer is irreversible.

Problem definition: Our problem is then defined as follows. Given a smart

contract S, construct a smart contract T such that T satisfies the following.

• Soundness: T is free of any of the above vulnerabilities.

• Preciseness: For every symbolic trace tr of S, if tr does not suffer from any

of the vulnerabilities, there exists a symbolic trace tr′ in T which, given the

same inputs, produces the same outputs and states.

• Efficiency: T ’s execution speed and gas consumption are minimally dif-

ferent from those of S.

Note that the first two are about the correctness of construction, whereas the

last one is about the performance in terms of computation and gas overhead.

5.4 Detailed Approach

In this section, we present the details of our approach. The key challenge is to

precisely identify where vulnerabilities might arise and fix them accordingly.

Note that precisely identifying control/data-dependency is a prerequisite for

precisely identifying vulnerabilities. One approach to identify vulnerabilities is

through static analysis based on over-approximation. For instance, multiple ex-

isting tools (e.g., Securify [24] and Ethainter [103]) over-approximate Etherum

semantics using rewriting rules and leverage rewriting systems such as Datalog

to identify vulnerabilities through critical pattern matching. While useful (and

typically efficient) in detecting vulnerabilities, such approaches are not ideal

117

Chapter 5. sGuard: Towards Fixing Vulnerable Smart Contracts Automatically

Algorithm 3: sGuard

1 establish a bound for each loop;
2 enumerate symbolic traces Tr;
3 foreach trace tr in Tr do
4 let dp← dependency(tr);
5 fixReentrancy(tr, dp);
6 fixTxOriginAndArithemic(tr, dp);

for our purpose for multiple reasons. First, there are often many false alarms as

they perform abstract interpretation locally (i.e., context/path-insensitive anal-

ysis). In our setting, once a vulnerability is identified, we fix it by introducing

additional run-time checks. False alarms thus translate to runtime overhead in

terms of both time and gas. Second, existing approaches are often incomplete,

i.e., not all dependencies are captured. For instance, Securify ignores data de-

pendency through storage variables, i.e., the dependency due to SSTORE(c,b)

is lost if c is not a constant, whereas Ethainter ignores control dependency com-

pletely. Thirdly, rewriting systems such as Datalog may terminate without any

result, in which case the analysis result may not be sound. Therefore, in our

work, we propose an algorithm which covers all dependencies with high preci-

sion and always terminates with the correct result.

The details of our algorithm are shown in Algorithm 3. From a high-level

point of view, it works as follows. First, symbolic traces are systematically enu-

merated, up to certain threshold number of iterations for each loop. Second,

each symbolic trace is checked to see whether it is subject to certain vulnera-

bility according to our definitions. Lastly, the corresponding source code of the

vulnerability is identified based on the AST and fixed. In the following, we

present details of each step one-by-one.

118

5.4. Detailed Approach

5.4.1 Enumerating Symbolic Traces

Note that our definitions of vulnerabilities are based on symbolic traces. Thus,

in this first step, we set out to collect a set of symbolic traces Tr. As defined in

Section 5.3.2, a symbolic trace is a sequence of the form ⟨s0, op0, · · · , sn, opn, sn+1⟩.

In the following, we focus on symbolic traces that are maximum, i.e., the last

opcode opn is either REVERT, INVALID, SELFDESTRUCT, RETURN, or STOP.

Systematically generating the maximum symbolic traces is straightforward

in the absence of loops, i.e., we simply apply the symbolic semantic rules iter-

atively until it terminates. In the presence of loops, however, as the condition

to exit the loop is often symbolic, this procedure would not terminate. This is

a well-known problem for symbolic execution and the remedy is typically to

bound the number of iterations heuristically. Such an approach however does

not work in our setting, since we must identify all data/control dependency to

identify all potential vulnerabilities. In the following, we establish a bound on

the number of iterations on the loops which we prove is sufficient for identify-

ing the vulnerabilities that we focus on.

Given a smart contract S = (V ar, init, N, i, E), a loop is in general a strongly

connected component in S. Thanks to structural programming, we can always

identify the loop heads, i.e., the control location where a while-loop starts or

a recursive function is invoked. In the following, we associate each location

n ∈ N with a bound, denoted as bound(n). If n is a loop head, bound(n) intu-

itively means how many times n has to be visited in at least one of symbolic

traces we collect. If n is not part of any strongly connected component, we have

bound(n) = 1. Otherwise, bound(n) is defined as follows.

• If (n, opn, n′) ∈ E and n′ is the loop head, bound(n) = 0 if opn is not an

assignment; otherwise bound(n) = 1.

119

Chapter 5. sGuard: Towards Fixing Vulnerable Smart Contracts Automatically

• If (n, opn, n
′) ∈ E, n′ is not the loop head and there is no m such that

(n, opn,m) ∈ E, i.e., n is not branching, bound(n) = bound(n′) if opn is not

an assignment; otherwise bound(n) = bound(n′) + 1.

• If (n, opn,m0) ∈ E and (n, opn,m1) ∈ E, i.e., n is branching, bound(n) =

bound(m1) + bound(m2).

Intuitively, the bound of a loop head is computed based on the number of

branching statements and assignment statements inside the loop. That is, the

bound of a loop head n can be computed by traversing the CFG in the reverse

order, i.e., from the exiting nodes of the loop to n. Every execution path main-

tains a bound, which equals to the number of assignment statements in that

path. If two execution paths meet at a branching statement then the new bound

is set to the sum of their bounds. In our implementation, the bounds for ev-

ery node n ∈ N are statically computed using a fixed-point algorithm, with a

complexity of O((#N)2) where #N is the number of nodes. Once the bounds

are computed, we systematically enumerate all maximum symbolic traces such

that each loop head n is visited at most bound(n) times. It is straightforward to

see that this procedure always terminates and returns a finite set of symbolic

traces.

Example 5.4.1. In the following, we illustrate how bound(x < 100) is computed.

The example is shown in the Figure 5.8 where the graph on the right represents

the source code on the left (a.k.a. control flow graph which can be constructed

using existing approaches [43]). Assignment statements are highlighted in blue.

There is a total of 3 paths P1, P2, P3 in the while-loop, and they visit 5 assign-

ment statements. Since we follow both branches of an if-statement, there exists

a symbolic trace tr containing P1, P2, P3 regardless of the order. Trace tr is of

the form ⟨· · · , opi, · · · , opj, · · · , opk, · · · , op′i, · · · ⟩ where opi and op′i are executed

120

5.4. Detailed Approach

function transfer(
uint x, uint y,
uint z, uint m, uint n

) {
while (x < 100) {
x = y + 1;
if (y < 100) {
y = z + 1;
if (z < 100) {
z = m + 1;

} else {
m = n + 1;

}
} else {
n = x + 1;

}
}
msg.sender.send(x);

}

x < 100

x = y + 1

y < 100

y = z + 1

z < 100

z = m + 1 m = n + 1

n = x + 1

msg.sender.send(x)

P1

P2

P3

FIGURE 5.8: An example on how the bound(n) is computed

opcodes of the loop head x < 100; opj is mapped to y < 100 and opk is mapped

to z < 100.

There are 5 assignment statements between opi and op′i and the bound of the

loop head is 5. Note that the number of assignment statements in the example

is the number of SWAPs appeared in between opi and op′i.

The following establishes the soundness of our approach, i.e., using the

bounds, we are guaranteed to never miss any of the 4 kinds of vulnerabilities

that we focus on.

Lemma 1. Given a smart contract, if there exists a symbolic trace which suffers

from intra-function reentrancy vulnerability (or cross-function reentrancy, or

dangerous tx.origin, or arithmetic vulnerability), there must be one in Tr.

We sketch the proof in the following. All vulnerabilities in Section 5.3 are

defined based on control/data dependency between opcodes. That means we

always have a vulnerable trace, if there is, one as long as the set of symbolic

traces we collect exhibit all possible dependency between opcodes. To see that

121

Chapter 5. sGuard: Towards Fixing Vulnerable Smart Contracts Automatically

all dependencies are exhibited in the traces we collect, we distinguish two cases.

All control dependency between opcodes are identified as long as all possible

branches in the smart contract are executed. This condition is satisfied based

on the way we collect traces in Tr. This argument applies to data dependency

between opcodes which do not belong to any loop as well. Next, we consider

the data dependency between opcodes inside a loop. Note that with each loop

iteration, there are two possible cases: no new data dependency is identified

(i.e., the data dependency reaches fixed point) or at least 1 new dependency is

identified. If the loop contains n assignments, in the worst case, all of these

opcodes depend on each other and we need a trace with n iterations to identify

all of them. Based on how we compute the bound for the loop heads, the trace

is guaranteed to be in Tr. Thus, we establish that the above lemma is proved.

It is well-known that symbolic execution engines may suffer from the path

explosion problem. sGuard is not immune as well, i.e., the number of sym-

bolic paths explored by sGuard is in general exponential in the loop bounds.

Existing symbolic execution engines address the problem by allowing users to

configure a bound K which is the maximum number of times any loop is un-

rolled. In practice, it is highly non-trivial to know what K value should be used.

Given the impact of K, i.e., the number of paths are exponential in the value of

K, existing tools often set K to be a small number by default, such as 3 in sCom-

pile [109] and 5 in Manticore [110]; and it is unlikely that users would configure

it differently. While having a large K leads to the path explosion problem, hav-

ing a small K leads to false negatives. For instance, with K = 3, the overflow

vulnerabilities due to the two expressions m = n+1, n = x+1 in the Figure 5.8

would be missed as this bound is not sufficient to infer dependency from vari-

able x on m and n. In contrast, sGuard automatically identifies a loop bound for

122

5.4. Detailed Approach

Algorithm 4: build CFG
1 let edges← ∅;
2 foreach trace tr in Tr do
3 foreach opi, pci in tr do
4 if opi = JUMPI then
5 let edge← (pci, pci+1) ;
6 add edge to edges;

7 return edges;

each loop which guarantees that no vulnerabilities are missed. In Section 5.5,

we empirically evaluate whether the path explosion problem occurs often in

practice.

5.4.2 Dependency Analysis

Given the set of symbolic traces Tr, we then identify dependency between all

opcodes in every symbolic trace in Tr, with the aim to check whether the trace

suffers from any vulnerability. In the following, we present our approach to

capture dependency from symbolic traces.

Given a symbolic trace Tr, an opcode opi, we aim to identify a set of opcodes

dp in Tr such that: (soundness) for all opk in dp, opi depends on opk; and (com-

pleteness) for all opk in Tr, if opi depends on opk then opk ∈ dp. To identify dp,

we systematically identify all opcodes that opi is control-dependent on in Tr, all

opcodes that opi is data-dependent on in Tr and then compute their transitive

closure.

To systematically identify all control-dependency, we build a control flow

graph (CFG) from Tr (as shown in Algorithm 4). Afterwards, we build a post-

dominator tree based on the CFG using a workList algorithm [111]. The result is

a set PD(opi) which are the opcodes that post-dominate opi. The set of opcodes

123

Chapter 5. sGuard: Towards Fixing Vulnerable Smart Contracts Automatically

which opi control-depend on in the symbolic trace tr is then systematically iden-

tified as the following.

{ op | op ∈ tr;∃ (opm, opn) ∈ succs(op), opi ∈ PD(opm), opi /∈ PD(opn) }

where succs(op) returns successors of op according to CFG.

Identifying the set of opcodes which opi is data-dependent on is more com-

plicated. Data dependency arises from 3 data sources, i.e., stack, memory and

storage. In the following, we present our over-approximation based algorithm

which traces data-flow on these data sources in order to capture data depen-

dency. Although an opcode typically reads and writes data to the same data

source, an opcode may write data to a different data source in some cases. That

makes data-flow tracing complicated, i.e., data flows from stack to memory

through MSTORE, memory to stack through MLOAD, stack to storage through

SSTORE and storage to stack through SLOAD. Since only assignment opcodes

(i.e., SWAP, MSTORE, and SSTORE) create data dependency, we thus design an

algorithm to identify data-dependency based on the assignment opcodes in tr.

The details are presented in the Algorithm 5, which takes a symbolic trace tr

and opcode opi as input and returns a set of opcodes that opi is data-dependent

on.

Algorithm 5 systematically identifies those opcodes in tr which taint opi.

An opcode opj is said to taint another opcode opi if opi reads data from stack

indexes written by opj , or there exists an opcode opt such that opj taints opt and

opt taints opi. For each opj that taints opi, there are three possible dependency

cases.

124

5.4. Detailed Approach

Algorithm 5: fd(tr, opi)
1 let opcodes← ∅;
2 foreach opj that taints opi do
3 if opj is an assignment opcode then
4 add opj to opcodes ;

5 if opj reads data from memory which was written by an assignment opcode
opk then

6 add opk to opcodes ;
7 add fd(tr, opk) to opcodes;

8 if opj reads data from storage which was written by an assignment opcode
opk then

9 if opk is not visited then
10 add opk to opcodes;
11 foreach trace tr′ contains opk do
12 add fd(tr

′, opk) to opcodes;

13 return opcodes;

• Stack dependency: opi is data-dependent on opj if opj is an assignment

opcode (i.e., SWAP) (lines 3-4)

• Memory dependency: opj is data-dependent on opk if opj reads data from

memory which was written by the assignment opcode opk (i.e., MSTORE)

(lines 5-7)

• Storage dependency: opj is data-dependent on opk if opj reads data from

storage which was written by the assignment opcode opk (i.e., SSTORE)

(lines 8-12)

Note that the algorithm is recursive, i.e., if opk is added into the set of opcodes

to be returned, a recursive call is made to further identify those opcode that opk

is data-dependent on (lines 7 and 12). Further note that since storage is globally

accessible, the analysis may be cross different traces in Tr (line 11).

125

Chapter 5. sGuard: Towards Fixing Vulnerable Smart Contracts Automatically

Algorithm 5 in general over-approximates. For instance, because memory

and storage addresses are likely symbolic values, a reading address and a writ-

ing address are often incomparable, in which case we conservatively assume

that the addresses may be the same. In other words, R(opj)∩W (opk) ̸= ∅ is true

if either R(opj) or W (opk) is a symbolic address.

5.4.3 Fixing the Smart Contract

Once the dependencies are identified, we check whether each symbolic tr suf-

fers from any of the vulnerabilities defined in Section 5.3.3 and then fix the

smart contract accordingly. In general, a smart contract is fixed as follows.

Given a vulnerable trace tr, according to our definitions in Section 5.3.3, there

must be an external call opc ∈ C in tr. Furthermore, there must be some other

opcode op that opc depends on which together makes tr vulnerable (e.g., if op

is SSTORE, tr suffers from reentrancy vulnerability; if op is ADD, SUB, MUL or

DIV, tr suffers from arithmetic vulnerability). The idea is to introduce runtime

checks right before op so as to prevent the vulnerability. According to the type

of vulnerability, the runtime checks are injected as follows.

• To prevent intra-function reentrancy vulnerability, we add a modifier non

Reentrant to the function F containing op. Note that the nonReentrant

modifier works as a mutex which blocks an attacker from re-entering F .

To prevent cross-function reentrancy vulnerability, we add the modifier

nonReentrant to the function containing op. The details of the fixing

algorithm are presented in Algorithm 6 which takes a vulnerable trace tr

and the dependency relation dp as inputs.

126

5.4. Detailed Approach

• To fix dangerous tx.origin vulnerability, we replace op (i.e., ORIGIN) with

msg.sender which returns address of the immediate account that in-

vokes the function.

• To fix arithmetic vulnerability, we replace op (i.e., ADD, SUB, MUL, DIV, or

EXP) with a call to a safe math function which checks for overflow/un-

derflow before performing the arithmetic operation.

Note that in the case of reentrancy vulnerability and arithmetic vulnerabil-

ity, if a runtime check fails (e.g., assert(x > y) which is introduced before

x - y fails), the transaction reverts immediately and thus the vulnerability is

prevent, although the gas spent on executing the transaction so far would be

wasted. Further note while Algorithm 6 is applied to every vulnerable trace,

the same fix (e.g., introducing nonReentrant on the same function) is applied

once. We refer the readers to Section 5.2.2 for examples on how smart contracts

are fixed.

Algorithm 6: fixReentrancy(tr, dp)

1 let tr ← ⟨s0, op0, · · · , sn, opn, sn+1⟩;
2 foreach i in 0..n do
3 if opi ∈ C then
4 foreach j in i+ 1..n do
5 if opj is SSTORE and opi depends on opj according to dp then

/* Fix intra-function reentrancy */

6 add modifier nonReentrant to the function containing
opi;
/* Fix cross-function reentrancy */

7 foreach ops that opi depends on according to dp do
8 if ops is SSTORE then
9 add modifier nonReentrant to the function

containing ops;

The following establishes the soundness of our approach.

127

Chapter 5. sGuard: Towards Fixing Vulnerable Smart Contracts Automatically

Theorem 1. A smart contract fixed by Algorithm 3 is free of intra-function reen-

trancy vulnerability, cross-function reentrancy vulnerability, dangerous tx.origin

vulnerability, and arithmetic vulnerability.

The proof of the theorem is sketched as follows. According to the Lemma 1,

given a smart contract S, if there are vulnerable traces, at least one of them is

identified by sGuard. Given how sGuard fixes each kind of vulnerability, fixing

all vulnerable traces in Tr implies that all vulnerable traces are fixed in S.

We acknowledge that our approach does not achieve the preciseness as dis-

cussed in Section 5.3.3. That is, a trace which is not vulnerable may be affected

by the fixes if it shares some opcodes with the vulnerable traces. For instance, an

arithmetic opcode which is shared by a vulnerable trace and a non-vulnerable

trace may be replaced with a safe version that checks for overflow. The non-

vulnerable trace would revert in the case of an overflow even though the over-

flow might be benign. Such in-preciseness is an overhead to pay for security in

our setting, along with the time and gas overhead. In Section 5.5, we empiri-

cally evaluate that the overhead and show that they are negligible.

5.5 Implementation and Evaluation

In this section, we present implementation details of sGuard and then evaluate

it with multiple experiments.

128

5.5. Implementation and Evaluation

5.5.1 Implementation

sGuard is implemented with around 3K lines of Node.js code. It is publicly

available at GitHub1. It uses a locally installed compiler to compile a user-

provided contract into a JSON file containing the bytecode, source-map and

abstract syntax tree (AST). The bytecode is used for detecting vulnerability,

whereas the source-map and AST are used for fixing the smart contract at the

source code level. In general, a source-map links an opcode to a statement and

a statement to a node in an AST. Given a node in an AST, sGuard then has the

complete control on how to fix the smart contract.

In addition to what is discussed in previous sections, the actual implemen-

tation of sGuard has to deal with multiple complications. First, Solidity al-

lows developers to interleave their codes with inline-assembly (i.e., a language

using EVM machine opcodes). This allows fine-grained controls, as well as

opens a door for hard-to-discover vulnerabilities (e.g., arithmetic vulnerabili-

ties). We have considered fixing vulnerabilities with sGuard (which is possible

with efforts). However, it is not trivial for a developer to evaluate the correct-

ness of our fixes as sGuard would introduce opcodes into the inline-assembly.

We do believe that any modification of the source code should be transparent

to the users, and thus decide not to support fixing vulnerabilities inside inline-

assembly.

Second, sGuard employs multiple heuristics to avoid useless fixes. For in-

stance, given an arithmetic expression whose operands are concrete values (which

may be the case of the expression is independent of user-inputs), sGuard would

not replace it with a function from safe math even if it is a part of a vulnerable

trace. Furthermore, since the number of iterations to be unfolded for each loop

1https://github.com/reentrancy/sGuard

129

https://github.com/reentrancy/sGuard
https://github.com/reentrancy/sGuard

Chapter 5. sGuard: Towards Fixing Vulnerable Smart Contracts Automatically

depends on the number of assignment statements inside the loop, sGuard iden-

tifies a number of cases where certain assignments can be safely ignored with-

out sacrificing the soundness of our method. In particular, although we count

SSTORE, MSTORE or SWAP as assignment statements in general, they are not in

the following exceptional cases.

• A SWAP is not counted if it is not mapped to an assignment statement

according source-map;

• An assignment statement is not counted if its right-hand-side expression

is a constant;

• An assignment statement is not counted if its left-hand-side expression is

a storage variable (since dependency due to the storage variables is ana-

lyzed regardless of execution order).

In addition, sGuard implements a strategy to estimate the value of memory

pointers. A memory variable is always placed at a free memory pointer and

it is never freed. However, the free pointer is often a symbolic value. That

increases the complexity. To simplify the problem without missing dependency,

sGuard estimates the value of the free pointer ptr if it is originally a symbolic

value. That is, if the memory size of a variable is only known at run-time,

we assume that it occupies 10 memory slots. The free pointer is calculated as

ptrn+1 = 10 × 0x20 + ptrn where ptrn is the previous free pointer. If memory

overlap occurs due to this assumption, additional dependencies are introduced,

which may introduce false alarms, but never false negatives.

Lastly, sGuard allows user to provide additional guide to generate contract-

specific fixes. For instance, users are allowed to declare certain variables are

130

5.5. Implementation and Evaluation

0 1000 2000 3000 4000 5000
0

100

200

300

400

lo
op

 b
ou

nd

loop bound
80% cutoff

FIGURE 5.9: Loop bounds computed by sGuard

critical variables so that it will be protected even if there is no dependency be-

tween the variable and external calls.

5.5.2 Evaluation

In the following, we evaluate sGuard through multiple experiments to answer

the following research questions (RQ). Our test subjects include 5000 contracts

whose verified source code are collected from EtherScan [80]. This includes all

the contracts after we filter 5000 incompilable contracts which contain invalid

syntax or are implemented based on previous versions of Solidity (e.g., version

0.3.x). We systematically apply sGuard to each contract. The timeout is set

to be 5 minutes for each contract. Our experiments are conducted on with 10

concurrent processes and takes 6 hours to complete. All experiment results

reported below are obtained on an Ubuntu 16.04.6 LTS machine with Intel(R)

Core(TM) i9-9900 CPU @ 3.10GHz and 64GB of memory.

RQ1: How bad is the path explosion problem? Out of the 5000 contract,

sGuard times out on 1767 (i.e., 35.34%) contracts and successfully finish ana-

lyzing and fixing the remaining contracts within the time limit. Among them,

1590 contracts are deemed safe (i.e., they do not contain any external calls) and

131

Chapter 5. sGuard: Towards Fixing Vulnerable Smart Contracts Automatically

no fix is applied. The remaining 1643 contracts are fixed in one way or another.

We note that 38 of the fixed contracts are incompilable. There are two reasons.

First, the contract source-map may refer to invalid code locations if the corre-

sponding smart contract has special characters (e.g., copyright and heart emoji).

This turns out to be a bug of the Solidity compiler and has been reported. Sec-

ond, the formats of AST across many solidity versions are slightly different,

e.g., version 0.6.3 declares a function which is implemented with attribute im-

plemented while the attribute is absent in version 0.4.26. Note that the compiler

version declared by pragma keyword is not supported in the experiment setup

as sGuard uses a list of compilers provided by solc-select [112]. In the end, we

experiment with 1605 smart contracts and report the findings.

Recall that the number of paths explored largely depend on the loop bounds.

To understand why sGuard times out on 35.34% of the contracts, we record the

maximum loop bound for each of the 5000 smart contracts. Figure 5.9 summa-

rizes the distribution of the loop bounds. From the figure, we observe that for

80% of the contracts, the loop bounds are no more than 17. The loop bounds

of the remaining 20% contracts however vary quite a lot, e.g., with a maximum

of 390. The average loop bound is 15, which shows that the default bounds in

existing symbolic execution engines could be indeed insufficient.

RQ2: Is sGuard capable of pinpointing where fixes should be applied? This

question asks whether sGuard is capable of precisely identifying where the

fixes should be applied. Recall that sGuard determines where to apply the fix

based on the result of the dependency analysis, i.e., a precise dependency anal-

ysis would automatically imply that the fix will be applied at the right place.

Furthermore, control dependency is straightforward and thus the answer to

this question relies on the preciseness of the data dependency analysis. Data

132

5.5. Implementation and Evaluation

SLOAD MLOAD SSTORE MSTORE0

1

2

3

4

5

6

nu
m

be
r o

f t
ra

ns
fo

rm
at

io
ns

1e6

success
failure

FIGURE 5.10: Memory and storage address transformations

dependency analysis in Algorithm 5 may introduce impreciseness (i.e., over-

approximation) at lines 5 and 8 when checking the intersection of reading/writ-

ing addresses. In sGuard, the checking is implemented by transforming each

symbolic address to a range of concrete addresses using the base address and

the maximum offset. The over-approximation is only applied if at least one

symbolic address is failed to transform due to nonstandard access patterns. If

both symbolic addresses are successfully transformed, we can use the ranges

of concrete addresses to precisely check the intersection and there is no over-

approximation. Thus, we can measure the over-approximation of our analysis

by reporting the number of failed and successful address transformations.

Figure 5.10 summarizes our experiment results where each bar represents

the number of failed and successful address transformations regarding the mem-

ory (i.e., MLOAD, MSTORE) and storage (i.e., SLOAD, SSTORE) opcodes. From

the results, we observe that the percentage of successful transformations are

99.99%, 85.58%, 99.98%, and 98.43% for SLOAD, MLOAD, SSTORE, and MSTORE

respectively. MLOAD has the worst accuracy among the four opcodes. This is

mainly because some opcodes (e.g., CALL, and CALLCODE) may load different

sizes of data on the memory. In this case, the MLOAD may depend on multiple

MSTOREs, and it becomes even harder considering the size of loaded data is a

133

Chapter 5. sGuard: Towards Fixing Vulnerable Smart Contracts Automatically

symbolic value. Therefore, we simplify the analysis by returning true (hence

over-approximates) if the size of loaded data is not 0x20, a memory allocation

unit size.

RQ3: What is the runtime overhead of sGuard’s fixes? This question is de-

signed to measure the runtime overhead of sGuard’s fixes. Note that runtime

overhead is often considered as a determining factor on whether to adopt addi-

tional checks at runtime. For instance, the C programming language has been

refusing to introduce runtime overflow checks due to concerns on the runtime

overhead, although many argue that it would reduce a significant number of

vulnerabilities. The same question must thus be asked about sGuard. Further-

more, runtime checks in smart contracts introduce not only time overhead but

also gas overhead, i.e., gas must be paid for every additional check that is ex-

ecuted. Considering the huge number of transactions (e.g., 1.2 million daily

transactions are reported on the Ethereum network [55]), each additional check

may potential translate to large financial burden.

To answer the question, we measure additional gas and computational time

that users pay to deploy and execute the fixed contract in comparison with

the original contract. That is, we download transactions from the Ethereum

network and replicate them on our local network, and compare the gas/time

consumption of the transactions. Among the 1605 smart contracts, 23 contracts

are not considered as they are created internally. In the end, we replicate 6762

transactions of 1582 fixed contracts. We limit the number of transactions for

each contract to a maximum of 10 such that the results are not biased towards

those active contracts that have a huge number of transactions.

Since our local setup is unable to completely simulate the actual Ethereum

network (e.g., the block number and timestamps are different), a replicated

134

5.5. Implementation and Evaluation

FIGURE 5.11: Overhead of fixed contracts

transaction thus may end up being a revert. In our experiments, 3548 (52.47%)

transactions execute successfully and thus we report the results based on them.

A close investigation shows that the remaining transactions fail due to the dif-

ference between our private network and the Ethereum network except 1 trans-

action, which fails because the size of the bytecode of the fixed contract exceeds

the size limit [113].

Figure 5.11 summarizes our results. The x-axis and y-axis show the time

overhead and gas overhead of each transaction respectively. The data shows

that the highest gas overhead is 42% while the lowest gas overhead is 0%. On

average, users have to pay extra 0.79% gas to execute a transaction on the fixed

contract. The highest and lowest time overhead are 455% and 0% respectively.

On average, users have to wait extra 14.79% time on a transaction. Based on

the result, we believe that the overhead of fixing smart contracts using sGuard

is manageable, considering its security guarantee.

For arithmetic vulnerabilities, there is a simplistic fix, i.e., add a check to

every arithmetic operation. To see the difference between sGuard and such an

approach, we conduct an additional experiment on the set of smart contracts

that we successfully fixed (i.e., 1605 of them). We record the total number of

bound checks added to the 4 arithmetic instructions (i.e., ADD, SUB, MUL and

135

Chapter 5. sGuard: Towards Fixing Vulnerable Smart Contracts Automatically

Instruction sGuard BC BC/sGuard

ADD 576 2245 3.9×
SUB 394 2125 5.39×
MUL 198 1423 7.19×
DIV 179 1508 8.42×

TABLE 5.3: Total number of bound checks

0 200 400 600 800 1000 1200 1400 1600
0

50

100

150

200

250

300

se
co

nd
s

execution time
90% cutoff

FIGURE 5.12: sGuard execution time

DIV) by sGuard and the simplistic approach. The results are shown in Table

5.3, where column BC shows the number for the simplistic approach. We ob-

serve that on average sGuard introduces 5.42 times less bound checks than the

simplistic approach. Since each bound check costs gas and time when executing

a transaction, we consider such a reduction to be welcomed.

RQ4: How long does sGuard take to fix a smart contract? This question

asks about the efficiency of sGuard itself. We measure the execution time of

sGuard by recording time spending to fix each smart contract. Naturally, a more

complicated contract (e.g., with more symbolic traces) takes more time to fix.

Thus, we show how execution time varies for different contracts. Figure 5.12

summarizes our results, where each bar represents 10% of smart contracts and

y-axis shows the execution time in seconds. The contracts are sorted according

to the execution time. From the figure, we observe that 90% of contracts are

136

5.5. Implementation and Evaluation

No. Name #RE #AR #TX Symbolic traces

1 USDT ✗ ✗ ✗ 265
2 LINK ✗ ✗ ✗ 291
3 BNB ✗ ✗ ✗ 128
4 HT ✗ ✗ ✗ 0
5 BAT ✗ ✓ ✗ 128
6 CRO ✗ ✗ ✗ 401
7 LEND ✗ ✗ ✗ 281
8 KNC ✗ ✗ ✗ 443
9 ZRX ✗ ✗ ✗ 0
10 DAI ✗ ✗ ✗ 0

TABLE 5.4: Fixing results on the high profile contracts

fixed within 36 seconds. Among the different steps of sGuard, sGuard spends

most of the time to identify dependency (70.57%) and find vulnerabilities (20.08%).

On average, sGuard takes 15 seconds to analyze and fix a contract.

Manual inspection of results To check the quality of the fix, we run an ad-

ditional experiment on the top 10 ERC20 tokens in the market. That is, we

apply sGuard to analyze and fix the contracts and then manually inspect the

results to check whether the fixed contracts contain any of the vulnerabilities,

i.e., whether sGuard fails to prevent certain vulnerability or whether sGuard

introduce unnecessary runtime checks (which translates to considerable over-

head given the huge number of transactions on these contracts). The results

are reported in Table 5.4 where column RE (respectively AE and TX) shows

whether any reentrancy (respectively arithmetic, and tx.origin) vulnerability is

discovered and fixed respectively; and the symbol ✓ and ✗ denote yes and no

respectively. The last column shows the number of symoblic traces explored.

We observe that the number of symbolic traces explored for three tokens

HT, ZRX and DAI are 0. It is because these contracts contain no external calls

137

Chapter 5. sGuard: Towards Fixing Vulnerable Smart Contracts Automatically

and thus sGuard stops immediately after scanning the bytecode. Among the re-

maining 7 tokens, six of them (i.e., LINK, BNB, CRO, LEND, KNC, and USDT)

are found to be safe and thus no modification is made. One arithmetic vulner-

ability in the smart contracts BAT is reported and fixed by sGuard. We confirm

that a runtime check is added to prevent the discovered vulnerability. A close

investigation however reveals that this vulnerability is unexploitable although

it confirms to our definition. This is because the contract already has runtime

checks. We further measure the overhead of the fix by executing 10 transactions

obtained from the Ethereum network on the smart contract. The result shows

that sGuard introduces a gas overhead of 18%. Lastly, our manual investigation

confirms that all of the contracts are free of the vulnerabilities.

5.6 Related Work

To the best of our knowledge, sGuard is the first tool that aims to repair smart

contracts in a provably correct way.

sGuard is closely related to the many works on automated program repair,

which we highlight a few most relevant ones in the following. GenProg [40] ap-

plies evolutionary algorithm to search for program repairs. A candidate repair

patch is considered successful if the repaired program passes all test cases in

the test suite. Dongsun et al. presented PAR [41], which improves GenProg by

learning fix patterns from existing human-written patches to avoid nonsense

patches. Abadi et al. automatically rewrites binary code to enforce control flow

integrity (CFI) [114]. Jeff et al. presented ClearView [115], which learns invari-

ants from normal behavior of the application, generates patches and observes

the execution of patched applications to choose the best patch. While there are

138

5.6. Related Work

many other program repair works, none of them focus on fixing smart contracts

in a provably correct way.

sGuard is closely related to the many work on applying static analysis tech-

niques on smart contracts. Securify [24] and Ethainter [103] are approaches

which leverage a rewriting system (i.e., Datalog) to identify vulnerabilities through

pattern matching. In terms of symoblic execution, Luu et al. presented the

first engine to find potential security bugs in smart contracts [23]. Krupp and

Rossow presented teEther which finds vulnerabilities in smart contracts by fo-

cusing on financial transactions [27]. Nikolic et al. presented MAI-AN, which

focus on identifying trace-based vulnerabilities through a form of symoblic ex-

ecution [28]. Torres et al. presented Osiris which focuses on discovering integer

bugs [29]. Unlike these engines, sGuard not only detects vulnerabilities, but

also fixes them automatically.

sGuard is related to some work on verifying and analyzing smart contracts.

Zeus [83] is a framework which verifies the correctness and fairness of smart

contracts based on LLVM. Bhargavan et al. proposed a framework to verify

smart contracts by transforming the source code and the bytecode to an inter-

mediate language called F* [84]. Hirai Yoichi used Isabelle/HOL to verify the

Deed contract [116]. M. Fröwis and R. Böhme showed that only 40% of smart

contracts are trustworthy based on their call graph analysis [88]. Chen et al.

showed that most of the contracts suffer from some gas-cost programming pat-

terns [89].

Finally, sGuard is remotely related to approaches on testing smart contracts.

ContractFuzzer [26] is a fuzzing engine which checks 7 different types of vul-

nerabilities. sFuzz [43] is another fuzzer which extends ContractFuzzer by us-

ing feedback from test cases execution to generate new test cases.

139

Chapter 5. sGuard: Towards Fixing Vulnerable Smart Contracts Automatically

5.7 Conclusion

In this work, we propose an approach to fix smart contracts so that they are free

of 4 kinds of common vulnerabilities. Our approach uses run-time information

and is proved to be sound. The experiment results show the usefulness of our

approach, i.e., sGuard is capable of fixing contracts correctly while introducing

only minor overhead. In the future, we intend to improve the performance of

sGuard further with optimization techniques.

140

Chapter 6

SPAIR: Towards Repairing Smart

Contract Specification

Specifications are indispensable to formal verification of the functional correct-

ness of programs and are typically assumed correct. However, writing proper

specifications is time-consuming and error-prone, thus specifications written

by humans can be buggy. In this work, we propose a novel approach to repair

specifications for smart contracts by leveraging abductive inference and con-

straint solving. Our approach has been implemented in a tool, namely SPAIR,

which automatically discovers inconsistencies between the specification and

the implementation, and then generates recommendations for repairing spec-

ifications. Experiments on 10 high-profile smart contracts show that SPAIRis

able to recommend all the desired specifications. The repairing process is not

limited to specifications that contain a single bug but also handles specifications

with multiple bugs efficiently within a minute in most cases.

Chapter 6. SPAIR: Towards Repairing Smart Contract Specification

6.1 Introduction

Smart contracts are programs that run on top of blockchain. They are often used

to implement financial applications and increasingly other critical applications.

A bug in a smart contract thus could result in a massive loss of valuable dig-

ital assets, which has been demonstrated time and time again [73], [90]. More

importantly, due to the immutability of blockchain (which is one of its funda-

mental properties), a smart contract cannot be patched once it is deployed. In

other words, once deployed, a bug in the smart contract would make it for-

ever vulnerable. Thus, it is vital to guarantee the correctness of smart contracts

before they are deployed.

Built upon the idea that different contracts have different correctness specifi-

cations, recently, several approaches have been proposed to support the falsifi-

cation or verification of manually specified correctness specifications. VerX [30]

relies on predicate abstraction to verify temporal properties of smart contracts.

SmartPulse [31] transforms smart contracts containing temporal properties into

the intermediate representation of the Boogie verifier [117]. Solc-verify [32]

also leverages Boogie to verify its function-level specifications such as precon-

ditions, postconditions, and loop invariants. These existing approaches work

under a common assumption that specifications are perfect while the imple-

mentation may contain errors. Consequently, developers are responsible for

writing code that aligns with given specifications. In practice, since the speci-

fications are written by humans as well, a more likely scenario is that specifi-

cations could be buggy (at least initially) as well. A research question that has

been overlooked so far is thus: how to debug and repair a specification if it turns

out to be buggy? It is worth mentioning that maintaining correct specifications

is crucial for smart contracts as they not only help to discover implementation

142

6.1. Introduction

bugs but also play a key role in the correctness certification.

In this work, based on the assumption that specifications can be buggy as

well, we propose a novel approach to automatically repair them. Repairing a

specification is challenging as the specification of a function is dependent on

other functions (through function calls) and there may be many ways of re-

pairing the specification. We propose SPAIR, the first approach that automat-

ically discovers inconsistency between the specifications and the implementa-

tion, and generates recommendations for repairing the specifications. SPAIR

is useful in various scenarios. First, while writing specifications along with the

implementation, SPAIR can suggest absent conditions. For example, given an

implementation of a function and its postcondition, SPAIR can quickly gener-

ate a correct precondition, providing developers insights into the type of con-

ditions the function anticipates. That is, SPAIR often suggests the weakest pre-

condition, any condition that is logically stronger than our suggestion is con-

sidered valid. Second, when a hot-fix is introduced to address a vulnerability,

the specification needs to be updated accordingly. In this case, SPAIR can be

applied to patch the specifications of the affected functions. This automated

process saves developers significant time and effort that would be spent on

manually identifying and repairing the affected specifications.

Given a smart contract with potentially buggy specifications (in the form of

a precondition/postcondition for each function), SPAIR works in three steps.

Initially, it creates a call graph from the smart contract, in which each node is a

function and there is a directed edge from the caller to the callee. The graph is

then divided into connected components. Subsequently, SPAIR patches the

specifications in a bottom-up manner by identifying connected components

containing functions associated with incorrect specifications. Lastly, SPAIR

143

Chapter 6. SPAIR: Towards Repairing Smart Contract Specification

ranks all generated patches and selects the best one for each function. The

bottom-up approach guarantees that all the called functions are patched before

the caller function. It is adopted because SPAIR is built on top of a functional

verification engine, where the correctness of the caller function relies on the cor-

rectness of the called functions. By systematically patching the specifications in

a bottom-up manner, SPAIR ensures that the entire connected component is

properly verified and their dependencies are correctly maintained.

To summarize, we make the following main contributions:

• We propose a novel approach to identify buggy specifications and patch

them in a provably correct manner.

• We implement our approach as a self-contained tool SPAIR for patching

specifications of Solidity smart contracts.

• We thoroughly evaluate SPAIR on 10 high-profile smart contracts. The

experiment shows that SPAIR can effectively infer 100% missing precon-

ditions and postcondition within 7 seconds. Furthermore, it can patch

specifications with more than one bug efficiently (within 77 seconds) as

well.

Outline. In Sections 6.2 and 6.3, we provide some background about smart con-

tracts and illustrate how our approach works through examples. The problem

is then defined formally in Section 6.4. In Section 6.5, we present the details of

our approach. The experiment results are presented in Section 6.6. We discuss

related work in Section 6.7 and conclude this work in Section 6.8.

144

6.2. Specification Language

6.2 Specification Language

In view of diverse vulnerabilities that have been discovered in Solidity smart

contracts and the fact that it is insufficient to focus on specific bugs, several ap-

proaches [30], [31], [102] have been developed recently to support user-provided

correctness specification. There are many approaches that support different

smart contract specifications such as linear temporal logic in VerX [30] or prede-

fined properties in VeriSmart [66]. Without loss of generality, in this work, we

focus on a specification language based on the classical Floyd-Hoare precondi-

tions and postconditions, a widely used specification language [32], [117]. Note

that this work relies on iContract as its foundation. The detailed formalization

of our specification language is discussed in Section 4.3.2. In the following, we

present the necessary formalization of our specification language so that we can

explain precisely how our approach works.

Note that other forms of specification such as contract invariants [32] and

call invariants [118] can be naturally supported by our approach. Our specifi-

cation language is constituted of predicates defined using the syntax below.

Φ, p, q := Ψ | Φ ∨ Φ

Ψ := a⊗ a | Ψ ∧Ψ

a := e | a⊕ a | ⊙ a

e := l | v | v[a] | v.m | old(v) | g(v)

In general, a predicate Φ is a disjunction with one or multiple conjunctions Ψ.

Each conjunct in Ψ is a relational predicate using a relational operator⊗ (i.e., >,

≥, =, ̸=, <, ≤). The left-hand side and right-hand side of a relational predicate

are arithmetic expressions a. An arithmetic expression may have one atomic

expression or multiple of them connected by binary operators ⊕ (i.e., +, −, ∗,

145

Chapter 6. SPAIR: Towards Repairing Smart Contract Specification

/) or unary operators ⊙ (i.e., ¬, −). An atomic expression can be a literal l, a

variable v, a member access v.m, and an index access v[a]. The expression v.m

accesses the value stored in the member m of a struct v, whereas the expression

v[a] accesses the value at key a of a mapping v.

The semantics is defined according to a satisfaction relation S,H |= Φ which

is defined in the standard way, as shown in Section 4.3.2. Next, we define how

the constructs in our specification language are defined. Regarding function

invariants, given a function m(v) = s associated with multiple ensures(p, q)

statements, the function is correct iff for each ensures(p, q) statement, the fol-

lowing is satisfied:

∀σ, σ′. σ |= p ∧ (s, σ)⇝∗ (skip, σ′) =⇒ σ′ |= q.

Intuitively, for every state σ that satisfies the precondition p, the final state σ′

after executing the body statement s from the state σ should also satisfy the

postcondition q.

6.3 Motivation Example

In this section, we motivate our approach and illustrate its underlying idea

through two examples.

Example 6.3.1 (Suggesting missing conditions). During the process of develop-

ing a function specification, it is typical for developers to first write either the

precondition or postcondition and then proceed to the other. In this scenario,

we demonstrate how our approach can assist developers in writing a correct

146

6.3. Motivation Example

1 @ensures(
2 ...,
3 balances[msg.sender]==old(balances[msg.sender])-_value
4 && balances[_to]==old(balances[_to])+_value
5)
6 function transfer(address _to, uint256 _value)
7 returns(bool success) {
8 if (balances[msg.sender] >= _value && _value > 0) {
9 balances[msg.sender] -= _value;

10 balances[_to] += _value;
11 emit Transfer(msg.sender, _to, _value);
12 return true;
13 } else {
14 return false;
15 }
16 }

FIGURE 6.1: A function with a missing precondition. The spec-
ification is fixed by adding a precondition (line 2) such that the

postcondition is satisfied

and general specification. Figure 6.1 shows the underlying logic of the func-

tion transfer, which is extracted from the smart contract named BAT1. This

function allows token transferring between two users. The postcondition speci-

fies that the balance of the sender and receiver increases and decreases with the

same amount respectively. The question is: what is the precondition that can make

the specification correct? A common mistake is to have the following answer:

balances[msg.sender] >= _value && _value > 0.

This precondition ensures that only the true branch of the if-statement at line

8 is executed. Although the precondition may seem reasonable, it is incorrect.

Considering the case where sender and receiver are the same person (i.e.,

msg.sender == _to), the postcondition is violated when _value > 0. In

contrast, relying on abductive inference [119], our approach suggests a general

precondition as follows:

1https://etherscan.io/token/0x0d8775f648430679a709e98d2b0cb6250d2887ef

147

Chapter 6. SPAIR: Towards Repairing Smart Contract Specification

(balances[msg.sender] >= _value && msg.sender != _to)

|| (_value == 0)

Intuitively, we can split the precondition into two scenarios. The first sce-

nario indicates that if _value ̸= 0, the transfer should not be self-transfer,

meaning sender and receiver should be different (i.e., msg.sender!=_to).

The second scenario indicates that zero-value token transfer is allowed (i.e.,

_value==0). It is noted that zero-value token transfer with complicated trans-

fer fee or none-zero-value token self-transfer have been identified as the root

cause of various bugs, including price oracle manipulation [120], [121]. Thus,

such cases should be avoided. In summary, our approach can suggest general

and correct preconditions for functions.

Function Patch Type Correct

1 ER._transfer true P-patch ✗
2 ER.transferFrom true P-patch ✗
3 T2.transferFrom _amount < 1 P-patch ✓
4 ER._transfer old(balances[_sender]) > _amount

&& ...
Q-patch ✗

5 ER.transferFrom balances[_sender] ==
old(balances[_sender]) -
_amount && ...

Q-patch ✗

6 T2.transferFrom allowance[_sender][msg.sender] ==
old(allowance[_sender][msg.sender])
- _amount && ...

Q-patch ✓

7 ER._transfer _amount >= 0; true F-patch ✗
8 ER.transferFrom _amount >= 0 && _recipient != 0;

true
F-patch ✗

TABLE 6.1: Patches generated by SPAIR to repair the specifi-
cations in Figure 6.1. We use T2 and ER to refer to contract
TetherToken and its direct parent ERC20Upgradeable. The
precondition and postcondition of F-patch are separated by a

semicolon

Example 6.3.2 (Patching existing specifications). Figure 6.2 shows changes made

to address a bug in Tether Gold token (XAUt), which has the marketcap of

around 473 million USD. The bug was discovered by Blocksec on May 27th

148

6.3. Motivation Example

1 contract ERC20Upgradeable {
2 ...
3 @ensures(...)
4 function _transfer(...) {...}
5 @ensures(...)
6 function transferFrom(...) {...}
7 }
8 contract TetherToken is ERC20Upgradeable {
9 ...

10 @ensures(
11 isTrusted[_recipient] && _amount >= 0, // pre
12 old(allowance[_sender][msg.sender]) == allowance[_sender][msg.

sender] // post
13)
14 function transferFrom(
15 address _sender,
16 address _recipient,
17 uint256 _amount) public returns (bool)
18 {
19 ...
20 - if (isTrusted[_recipient]) {
21 - _transfer(_sender, _recipient, _amount);
22 - return true;
23 - }
24 return super.transferFrom(_sender, _recipient, _amount);
25 }
26 }

FIGURE 6.2: A bug in contract TetherToken at lines 20-23. It is
fixed by simply deleting vulnerable codes at lines 20-23

2023 [122]. It lies in the if-statement at lines 20-23. In particular, this statement

allows an attacker to transfer XAUt to a trusted recipient. Although it is not

possible to directly benefit from the bug, the attacker can transfer XAUt to ma-

nipulate the price of XAUt in the WETH-XAUt pool and make profit. The spec-

ification at lines 10-13 states that if the recipient is trusted then the allowance is

unchanged.

The bug is repaired by removing codes from line 20 to 23. However, this

results in an inconsistency between the repaired code and the existing specifica-

tion. Therefore, the specification must be updated accordingly. Instead of man-

ually modifying the specification, which is a time-consuming and error-prone

149

Chapter 6. SPAIR: Towards Repairing Smart Contract Specification

process, SPAIR is able to patch the specification in a provably correct manner.

Given the repaired code, Table 6.1 shows 8 patches produced by SPAIR. The

#Function column combines the contract name and function name to differenti-

ate between identical function names in various contracts. The Correct column

indicates that the patch is correct (i.e., ✓) or incorrect (i.e., ✗) where correct

patch means that all specifications are verified after applying the patch. The

table consists of 3 types of patches:

• Precondition (P-patch): replacing the precondition of a function with an

inferred precondition. For example, patch #3 replaces the precondition of

the function T2.transferFrom with an inferred condition _amount<1.

• Postcondition (Q-patch): replacing the postcondition of a function with

an inferred postcondition. For example, the patch #6 replaces the post-

condition of the function T2.transferFrom with the inferred condition

shown in Table 6.1.

• Function call (F-patch): replacing both the precondition and postcondition

of a function with new precondition and new postcondition, which are

inferred from the call site. For example, patch #7 replaces both precondi-

tion and postcondition of the function ER.transferFrom. This patch is

inferred from the function call at line 24 of Figure 6.2.

This example shows that there may be many ways of correctly patching the

specification. The high-level principles of SPAIR are that (1) it suggests cor-

rect specification repair that requires minimal change (based on Occam’s Razor

principle) and (2) it always keeps the programmer in the loop. For example, a

straightforward solution is to patch specifications one by one until all specifi-

cations become correct. However, it may not be practical as it could result in

150

6.4. Detailed Approach

significant changes to the existing specifications. We constraint the search space

by replacing precondition or postcondition of a function with an appropriate

inferred component (i.e., precondition or postcondition). As a result, a precon-

dition patch only replaces precondition of a function and a postcondition patch

only replaces the postcondition of a function.

Based on the above-mentioned principles, we thus rank the generated patches

according to a certain distance function which measures the magnitude of the

change and suggests top-ranked one to the programmer. SPAIR uses Graph

Edit Distance (GED) metric to select the best patch. Out of the 8 patches avail-

able, patch #3 is chosen because it has a minimal distance to the original speci-

fications and guarantees the correctness of all the specifications.

6.4 Detailed Approach

SPAIR works in three main phases including (1) function-level verification, (2)

patch generation, and (3) patch ranking. Given a smart contract with potentially

buggy specifications, the first phase identifies functions whose specifications

are buggy. In the second phase, SPAIR generates a limited number of patches.

Finally, in the third phase, the generated patches are ranked based on the GED

distance. In the following, we introduce a high-level overview of our approach

and then present details of each phase.

6.4.1 High-level Algorithm

The overview of our patching approach is shown in Algorithm 7. From a high-

level point of view, it works as follows. It first builds the call graph of the smart

151

Chapter 6. SPAIR: Towards Repairing Smart Contract Specification

constract which is then divided into connected components (line 3). Each con-

nected component is then topologically sorted (line 6) to determine the patch-

ing order. Second, SPAIR generates a top-ranked patch for each connected

component (lines 4-8). Subsequently, it merges all the top-ranked patches into

a final patch (line 7). We assume that there are no mutual recursive function

calls and thus the topological sort always has a solution. The assumption is

reasonable considering writing mutual recursive function calls is discouraged

in smart contracts to avoid denial of service (DoS) attacks [123].

In the update function (lines 10-24), if a function is selected (line 15), the al-

gorithm generates a P-patch (line 20) or Q-patch (line 21). For each function call

made by function m, it is possible to overwrite precondition and/or postcondi-

tion of the callee with an F-patch (line 22).

It is possible that SPAIR is unable to infer conditions due to the limitation

of the underlying patch generation engine. We always set a time limit for each

patch generation. To ensure the correctness of an F-patch, derived from a spe-

cific call site, we include a validation step to verify the F-patch against the code

of the invoked function.

6.4.2 Function Verification

SPAIR targets function-level correctness of smart contract. Each function is

encoded and verified separately. The correctness of a function is defined in

terms of function encoding as follows.

Definition 7 (Function-level correctness). The encoding function post(σi, si) takes

a pre-state σi and a statement si as inputs and produces post-state σk as output.

Given a function m with implementation s, a specification ensures(p, q) is cor-

rect if post(p, s) returns σ such that σ ⇒ q.

152

6.4. Detailed Approach

Algorithm 7: Patch Generation
/* Entry point */

1 def main(. . .):
2 let result← ∅ ;
3 let ccs← connected_components(call_graph);
4 for cc ∈ ccs do
5 global patches← ∅ ;
6 update(toposort(cc), ∅) ;
7 result← result ∪ top(patches) ;
8 end
9 return result ;
/* Update patch */

10 def update(methods, patch):
11 if methods is empty then
12 add patch to patches ;
13 return;
14 end
15 let m← methods.pop();

// No patch
16 if is_verified(m) then
17 update(methods, patch);
18 return;
19 end

// P-patch
20 update(methods, patch ∪ {P-patch(m, patch)});

// Q-patch
21 update(methods, patch ∪ {Q-patch(m, patch)});

// F-patch
22 for c ∈ m.internal_calls do
23 update(methods, patch ∪ {F-patch(c, patch)});
24 end

While encoding a function, we have a dedicated procedure to handle asser-

tion failures. That is, if an assertion is failed, the encoding process terminates

immediately. For example, when evaluating post(σi, assert(e)), an exception is

thrown if the condition σi ⇒ e is not satisfied. Conversely, if the condition is

satisfied, the output remains the same, i.e., the state σi. The encoding of the dif-

ferent statements in a smart contract is straightforward and will not be detailed.

153

Chapter 6. SPAIR: Towards Repairing Smart Contract Specification

However, the complicated rules revolve around describing the interaction be-

tween different functions. That is, if there exists an interaction (e.g., internal

calls and external calls) from the current function to other functions, we rely on

their specifications to produce the encoding. In such cases, these specifications

are assumed to be correct. Every interaction is encoded as follows.

Definition 8 (Modular Verification). Given a function m with a specification

ensures(p, q), then post(σi,m(e)) returns σi ∧ q if σi ⇒ p

The encoding process terminates if the precondition of a specification is not

satisfied by the current encoding context (i.e., σi ⇏ p). Additionally, we implic-

itly handle global variable modifications while invoking a function call. Given

a specification ensures(p, q) of a function call m(e), m modifies a global vari-

able g, but this modification is not included in the postcondition q. It is clear

that q is correct but insufficient, potentially leading to incorrect conclusions. To

address this problem, we analyze the body of m and record any modifications

made to global variables. Two variables gold and gnew are used to represent the

variable g where gold refers to g in the precondition, while gnew refers to g in the

postcondition.

6.4.3 Patch Generation

SPAIR generates specification repair candidates in a bottom-up manner. This

aims to identify the patching order in the way that a function is examined at

most once.

To derive the patching order, SPAIR creates a call graph from smart contract,

in which each node is a function and there is a directed edge from the caller to

the callee. Although the call graph is a directed graph, when determining con-

nected components, we treat the graph as an undirected one. To minimize the

154

6.4. Detailed Approach

transfer mint burn

add sub

approve withdraw

CC1 CC2 CC3

transfer mint burn

add sub

add à sub à transfer à mint à burn

withdraw

(a)

(b)

withdraw

FIGURE 6.3: Connected components and patching orders

overhead associated with patching irrelevant functions, SPAIR only patches

connected components that have functions associated with buggy specifica-

tions. By examining the call graph, we can identify zero or multiple connected

components. Generating a patch for a contract is equivalent to producing indi-

vidual patches for each connected component and subsequently merging them

together (refer to line 7 of Algorithm 7). For example, the graph in Figure 6.3

(a) has 3 connected components CC1, CC2, and CC3. Two functions, namely

add and withdraw, have buggy specifications. Because add belongs to CC1

and withdraw belongs to CC2, only specifications of functions in CC1 and

CC3 are patched. According to the directed graph in Figure 6.3(b), SPAIR per-

forms topological sort to determine the order of patching, as illustrated below

the graph.

As discussed before, to constraint the solution space, we focus on three types

of patches: precondition patch (P-patch), postcondition patch (Q-patch), and

function call patch (F-patch). These patches are inferred from the code. Our

inference process always follows the rule that all specifications except the one

we are trying to infer are correct. This is because, without this assumption, our

155

Chapter 6. SPAIR: Towards Repairing Smart Contract Specification

inference process may fall into a loop. The correctness of a patch is defined as

follows.

Definition 9 (Patch correctness). Given a set of original specifications I , a patch

R substitutes specifications Io ⊂ I with In and results in I ′ = In ∪ I \ Io. The

patch R is correct iff every function is correct with respect to its specification

after the substitution.

There is an infinite number of preconditions or postconditions that can be

used to construct a correct patch. For example, the condition x > 10 is seman-

tically equivalent to x > 10 ∨ x > 20 or ¬(x ≤ 10). Although various varia-

tions can be used to produce correct patches, they are less useful. Therefore,

whenever feasible, we aim to generate the weakest preconditions and strongest

postconditions to further reduce the number of less useful patches.

Definition 10 (P-patch). Given a function m associated with an ensures(p, q).

A P-patch substitutes p with the weakest precondition p′ to construct a correct

specification ensures(p’, q).

Finding the weakest precondition has been widely studied. In this work,

we combine abductive inference [119] with temporary variable elimination to

compute the weakest precondition q′. Formally,

p′ ≡ QE(∀Vp.post
∗(true, s)⇒ q) ∧ p′′

where s is the implementation of the function m; Vp includes variables that

are invisible to the precondition such as local variables, temporary variables;

p′′ is introduced to guarantee that all assertions are satisfied. The procedure

QE performs variable eliminations. The encoding post∗(true, q) implies that

we start the encoding process with an empty precondition (i.e. precondition is

156

6.4. Detailed Approach

true). The main difference between post and post∗ is that post performs assertion

validations, while post∗ does not. For example, given a statement assert(e), the

encoding function post terminates if σ ⇏ e, but post∗ skips the validation step.

Note that p′ always exists. In the worst-case scenario, p′ is false.

We employ the rules shown in Figure 6.4 to compute p′′. The default value

of p′′ is true. The purpose of introducing p′′ is to ensure that all the assertions

within the function are satisfied. Each encoding rule is of the form

premise0 . . . premisei
p′′i , si ⇝ p′′k

This transition rule means given a condition p′′i , a statement si, it executes premise0,

. . . , premisei to obtain the condition p′′k.

x = QE(∀Vp.σ ⇒ e)

p′′, assert(e)⇝ p′′ ∧ x
ASSERT

x = QE(∀Vp.σ ⇒ p)

p′′, ensures(p, q)⇝ p′′ ∧ x
MODULAR

p′′1, s1 ⇝ p′′1 p′′, s2 ⇝ p′′2
p′′, if b then s1 else s2 ⇝ p′′1 ∨ p′′2

IF
x = QE(∀Vp.post(σ ∧ e ∧ b, s)⇒ e)

p′′, linv(e);while b do s ⇝ p′′ ∧ x
LOOP

p′′, s1 ⇝ p′′1 p′′1, s2 ⇝ p′′2
p′′, s1; s2 ⇝ p′′2

SEQUENCE

FIGURE 6.4: Rules to compute p′′

Intuitively, rules ASSERT and MODULAR strengthen p′′ by adding a new con-

straint x. Rules IF and SEQUENCE show the process of accumulating p′′. Rule

LOOP generates a new constraint x for the loop invariant linv(e).

1 @ensures(true, z > 10)
2 function main(uint x) {
3 assert(x > 1);
4 uint v = x - 1;
5 z = v - z;
6 }

157

Chapter 6. SPAIR: Towards Repairing Smart Contract Specification

For example, the code above shows a public function main, which has a

global variable z, a parameter x, and a local variable v. The specification ensures(true, z > 10)

is falsified. The weakest precondition p′ is computed as follows,

p′ ≡ QE(∀t0, t1.(t0 = x− 1 ∧ t1 = t0 − z ⇒ t1 > 10)) ∧ x > 1

≡ x > 11 + z

Note that the encoding process undergoes a post-processing step to correctly

align variables to the context. For example, although the variable z is assigned

a new value in the given example, in the encoding, z refers to the variable that

is not assigned.

Definition 11 (Q-patch). Given a function m associated with an ensures(p, q).

A Q-patch substitutes q with the strongest postcondition q′ to construct a correct

specification ensures(p, q’).

Similar to P-patch, the process of finding the strongest postcondition also

depends on variable elimination. Formally,

q′ ≡ QE(∃Vq. post(p, s))

where Vq includes variables that are invisible to the postcondition such as local

variables, and temporary variables. Note that our specification supports a util-

ity function old(), where old(x) refers to the value of x at the beginning of the

function. If a variable v is updated, it has two versions old(v) and v, both old(v)

and v can be used to constitute the postcondition. Note that q′ may not exist

due to failed assertions.

158

6.4. Detailed Approach

1 @ensures(x + z >= 9, false)
2 function main(uint x) {
3 uint v = x - 1;
4 z = v - z;
5 }

For example, the code above shows the falsified specification ensures(x+ z ≥ 9, false).

The strongest postcondition q′ is computed as follows,

q′ ≡ QE(∃t0. (x+ old(z) ≥ 9 ∧ t0 = x− 1 ∧ z = t0 − old(z)))

≡ z = x− old(z)− 1

Definition 12 (F-patch). Given a function m associated with an ensures(p, q).

An F-patch substitutes the precondition p and the postcondition q with p′ and

q′ respectively, where the precondition p′ and the postcondition q′ are inferred

from its call site to construct a correct specification ensures(p’, q’)

To construct an F-patch for a function m, we first identify the location where

the call is made, and subsequently, we infer both precondition and postcon-

dition for m. Let us assume that a function f has the implementation s =

{s0;m(e); s1; }where m(e) is the invocation of m, s0 and s1 are statements. Given

the specification ensures(a, b) associated with f , we again rely on variable elim-

ination to infer the precondition p′ and the postcondition q′. Formally,

p′ ≡ QE(∃V0.post
∗(a, s0)) ∧ p′′; q′ ≡ QE(∀V1.post(a, s)⇒ b)

where V0 and V1 consist of variables that are invisible to p′ and q′ respectively.

Because we are inferring a specification for m, the specification of m is not

used as in Definition 2. We add auxiliary variables to represent parameters

and returned variables of m. For example, a function add has two parameters

159

Chapter 6. SPAIR: Towards Repairing Smart Contract Specification

x, y, and a return variable r. The encoding of a statement v = add(10, 20) is

c0 = 10 ∧ c1 = 20 ∧ c2 = v where c0, c1 and c2 are placeholders representing

x, y and r respectively. Through variable elimination, we derive c2 = c0 + c1.

Subsequently, we perform a substitution to obtain a valid specification r = x+y.

1 @ensures(true, z == x - old(z))
2 function main(uint x) public {
3 require(x > z);
4 z = subtract(x, z);
5 }
6
7 @ensures(true, c == a + b)
8 function subtract(uint a, uint b) public
9 returns(uint c) {

10 assert(a >= b);
11 c = a - b;
12 }

For example, the code above shows two functions including main and subtract,

where z is a global variable. By analyzing the function call at line 4, the precon-

dition p′ and postcondition q′ of subtract are computed as follows.

p′ ≡ QE(∃x.(a = x ∧ b = z ∧ x > z)) = (a > z ∧ b = z)

q′ ≡ QE(∀x.(a = x ∧ b = z ∧ x > z ∧ c = z ⇒ z = x− old(z)))

≡ (c = a− old(z))

After having p′ and q′, we re-verify them against the body of the function subtract

and confirm that they are correct.

6.4.4 Patch Ranking

Based on the assumption that a patched specification is likely syntactically close

to the original one [124], we propose an approach that measures the syntactic

160

6.4. Detailed Approach

distance between a candidate solution and the original specification. We mea-

sure the syntactic difference by looking at the difference between ASTs using

Graph Edit Distance (GED). The GED algorithm is chosen as it is well-suited

for comparing ASTs. In essence, GED measures the minimal number of actions

such as insertion, deletion, and substitution needed to transform the candidate

solution AST to the original specification AST. Given two expressions, we con-

vert them into symbolic expressions [125], which are then represented in a tree

data structure, in which each node is either an operator or an operand and there

is a directed edge from the operator to the operand. Next, we employ an exist-

ing GED implementation called Networkx [126] to compute the difference be-

tween them. For example, recall the precondition suggestions in Table 6.1, the

tree structure representations of #pre (original precondition), #sug1 (first sug-

gestion), and #sug2 (second suggestion) are shown in Figure 6.5. Their graph

edit distance, denoted by GED, are as follows,

• GED(#pre,#sug1) = 2. To obtain #pre from #sug1, we substitute nodes

isTrusted and select with 0 and ̸= respectively.

• GED(#pre,#sug2) = 8. To obtain #pre from #sug2, we need to add 4

edges and 4 nodes.

It is noted that each operation has a cost of 1. We prefer #sug1 over #sug2

because GED(#pre,#sug1) is smaller than GED(#pre,#sug2).

Since a patch may substitute more than one condition (i.e., precondition

and/or postcondition). The distance between a patched specification and the

original specification is determined by the sum of the distances of all substi-

tuted conditions. Formally, it is computed as follows.

161

Chapter 6. SPAIR: Towards Repairing Smart Contract Specification

𝑖𝑠𝑇𝑟𝑢𝑠𝑡𝑒𝑑[_𝑟𝑒𝑐𝑖𝑝𝑖𝑒𝑛𝑡]	&&	_𝑎𝑚𝑜𝑢𝑛𝑡	 ≥ 	0

and

select

isTrusted _recipient

≥

_amount 0

_𝑟𝑒𝑐𝑖𝑝𝑖𝑒𝑛𝑡	! = 	0	&&	_𝑎𝑚𝑜𝑢𝑛𝑡	 ≥ 	0

and

≠

0 _recipient

≥

_amount 0

_𝑎𝑚𝑜𝑢𝑛𝑡	 ≥ 	0

≥

_amount 0

#pre

#sug1 #sug2

FIGURE 6.5: An example of GED

Definition 13. Given a set of original (pre/post) conditions I , a patch R is a

map that maps a predicate i ∈ I with its substitution i′ then GED(R, I) =∑
(i,i′)∈R GED(i, i′).

We choose a top-ranked patch, which has the smallest distance, as the solu-

tion. In the example above, #sug1 is chosen.

6.5 Implementation

In this section, we elaborate on the implementation details of our tool. SPAIR con-

sists of more than 1k lines of Python code. It is built on top of Slither [127], a

popular static analysis tool for Solidity. SPAIR directly consumes SlithIR [127]

to produce the encoding of functions, as well as correctness specification as

shown in Section 6.2. Most of the Solidity features are supported in a straight-

forward way. We discuss some of the non-trivial implementation details here.

Tactic: Tactic is a procedure that guides the z3-solver [128] in attempting to

find a solution to a given problem. It can perform various operations, such as

162

6.5. Implementation

simplification, rewriting, splitting, etc. A tactic often provides a general solu-

tion to a problem. We have to chain multiple tactics together to achieve the

goal. Quantifier elimination is frequently used in SPAIR to produce repair can-

didates. However, it often returns overly complicated candidates that are not

human-friendly. For example, instead of returning balances[x] ≥ 0, the solver

may return store(balances, x, 0)[x] ≥ 0. Although the semantics is the same in

both cases, the second one is less readable. We apply different optimizations to

eagerly simplify repair candidates. For example, to obtain the simplified repair

candidate balances[x] ≥ 0 from the complicated one store(balances, x, 0)[x] ≥ 0,

we first eagerly replace all store(. . .)[. . .] term by an if-then-else term. After that,

we eliminate all if-then-else term using tactic elim-term-ite

Quantifier elimination is an important part of our work. It has some well-

known limitations. For instance, the quantifier engine is not optimized for

quantifiers over arrays, and it may occasionally fail to terminate. To address

this challenge, we make an effort to minimize the introduction of extra tempo-

rary variables. The reason is although introducing extra variables may enhance

the overall versatility of the implementation, it can potentially disrupt the quan-

tifier elimination process.

Variable: A Solidity function consists of three distinct variable types includ-

ing parameter variables P , local variables L, and state variables S. Formally,

V = P × L × S. Parameter variables refer to variables that are declared in the

parameters of the function. Local variables are temporary variables used within

the scope of the function. State variables encompass globally declared variables

and predefined variables such as msg.sender, msg.value, and now. A variable

v could be presented by multiple temporary variables c0, . . . , ck ∈ T . Given

163

Chapter 6. SPAIR: Towards Repairing Smart Contract Specification

an encoding σ, the variable v in σ is v that is evaluated at the end of the func-

tion. Whereas, the temporary variable c0 is v that is evaluated at the beginning

of the function. We identify variables to be eliminated differently in different

elimination processes. For example, Vp = L× T and Vq = L× T .

Recursion in F-patch: To compute an F-patch for the function call m(e) called

in f(v), the specifications of any other functions called in f(v) are required.

However, there exists a scenario such that another function call m(e′) occurs. In

this case, the specification of m cannot be used to represent m(e′). To solve this

problem, the encoding of m(e′) is used. For other function calls that are not m,

we employ their specifications.

Inline Assembly To provide developers flexibility in terms of optimizing the

implementation, assembly can be used in Solidity smart contracts. However,

it also opens doors to many complicated bugs [129]. All the verifiers (such as

VeriSmart [66], SmartPulse [31]) that work on the source code instead of byte-

code, are unable to precisely handle inline assembly. In our current implemen-

tation, we only print out warning messages and ignore inline assembly.

6.6 Evaluation

In this section, we evaluate SPAIR through multiple experiments. The experi-

ments are designed to answer the following key research questions (RQ). Each

RQ aligns with a particular scenario where SPAIR demonstrates its potential

usage.

RQ1 Is it possible for SPAIR to infer missing specifications?

164

6.6. Evaluation

Project #Cont #Func #Cond #Spec #Line #Tran (mil)

BAT 4 16 20 16 179 3.97
BNB 2 13 22 13 150 1.00
HT 4 13 4 13 127 0.67
HOT 3 22 29 22 279 0.95
IOTX 8 32 28 32 500 0.28
QNT 5 24 13 24 239 1.21
MANA 11 28 21 28 282 2.50
ZIL 9 35 42 35 353 0.44
NXM 3 37 36 37 448 0.12
SHIB 4 33 12 33 448 9.50

TABLE 6.2: Statistics of 10 high-profile projects. For each
project, the table shows the number of contracts (#Cont), functions
(#Func), conditional statements (#Cond), specification statements

(#Spec), line of codes (#Line), and transactions (#Tran)

RQ2 Can SPAIR derive a specification from a given call site?

RQ3 Does SPAIR have the ability to generate specification patches?

RQ4 Can SPAIR generate patches for specifications with multiple bugs?

Benchmarks: Our test subjects include 10 high-profile projects (i.e., high mar-

ket capitalization) from EtherScan [80], whose source codes are available. The

relevant statistics of these contracts are shown in Table 6.2. The prevalence of to-

kens in the benchmarks reflects that many of the real-world deployed Ethereum

contracts are of this type. We note that many verified contracts hold a signif-

icant amount of funds (> 200M worth of USD) with millions of transactions.

Most of the projects have over 250 lines of code and 20 functions. Each project

is associated with a Solidity file, which typically contains multiple contracts in-

cluding a main one as well as library or parent contracts. The specifications

of standard functions (e.g., transfer, transferFrom) are derived from the

prior works [95], [130]. For non-standard functions (e.g., finalize, freeze,

165

Chapter 6. SPAIR: Towards Repairing Smart Contract Specification

Precondition Postcondition

Project #Function Time (s) #Pre Time (s) #Post

BAT 12 2.00 5/0/7 0.65 0/10/2
BNB 13 2.80 7/0/6 0.74 0/12/1
HT 13 2.85 3/0/10 0.49 0/8/5
HOT 18 2.30 9/0/9 0.63 0/15/3
IOTX 22 3.57 10/0/12 0.92 0/19/3
QNT 14 2.35 4/0/10 0.59 0/12/ 2
MANA 19 2.23 11/0/8 0.64 0/16/3
ZIL 26 6.49 12/0/14 1.22 0/22/4
NXM 27 2.93 18/0/9 1.20 0/25/2
SHIB 23 2.45 5/0/18 0.82 0/21/2

TABLE 6.3: Results of SPAIR on inferring missing conditions. For
each project, the table shows the number of functions (#Function),
preconditions (#Pre), postconditions (#Post), and the execution
time (Time). The column #Pre (or #Post) is formatted as X/Y/Z
where X, Y, and Z represent the number of inferred conditions
that are weaker, stronger, and identical to the original conditions

respectively

unfreeze), we develop specifications by considering the implementations. We

systematically apply SPAIR to each contract and set timeout to be 5 minutes for

each contract. All the experiments are conducted on a macOS 13.3 machine with

2.6 GHz 6-Core Intel Core i7 and 16GB of memory.

RQ1: Performance on missing specifications (P-patch, Q-patch) RQ1 aims

to show that SPAIR can be used to recommend missing preconditions or post-

conditions. To answer this RQ, we systematically omit either precondition or

postcondition of each correct specification in the test subjects and apply SPAIR

to find the missing one. Every omitted condition has at most one suggested

condition. The suggested condition is always verified against the implemen-

tation to guarantee its correctness. We ignore functions that have empty im-

plementation. For example, given a function sub associated with the correct

166

6.6. Evaluation

specification ensures(a ≥ b, r == a - b), we infer the missing precondition for

ensures(. . . , r == a - b) and missing postcondition for ensures(a ≥ b, . . .). The

experimental results are reported in Table 6.3.

We can observe that SPAIR successfully infers a total of 374 missing con-

ditions including 187 preconditions and 187 postconditions, and leaves none

omitted conditions unaddressed. Among them, 84 inferred preconditions are

weaker than the original ones and 160 inferred postconditions are stronger than

the original ones. It takes a longer time for SPAIR to infer preconditions (3 sec-

onds) compared to postconditions (0.79 seconds). The reason for this discrep-

ancy is that inferring preconditions is more challenging than inferring postcon-

ditions. There are no stronger preconditions or weaker postconditions in the

results. This confirms the correctness of our inference algorithm.

RQ2: Performance on call sites (F-patch) The primary focus of RQ2 is to

demonstrate that SPAIR is able to recommend the specification of an invoked

function. To answer this RQ, we enumerate all internal function calls and per-

form specification inference. Each internal function call is associated with at

most one suggested specification. Since the suggested specification is inferred

from the call site, there is a possibility that it may not be correct. The correctness

is determined by verifying the suggested specification against the implementa-

tion. The experimental results are reported in Table 6.4.

We can observe that SPAIR is able to infer specifications for 114 out of 117

internal calls, accounting for 97%. The failures on 3 internal calls are attributed

to the following reasons. First, the presence of multiplication operators in the

encoding adversely affects the inference process. Second, eliminating vari-

ables that are keys of mappings (e.g., eliminating _from from the expression

balances[_from]) result in a timeout.

167

Chapter 6. SPAIR: Towards Repairing Smart Contract Specification

BAT BNB HT HOT IOTX QNT MANA ZIL NXM SHIB
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0 The average number of functions in a cc

(A) Connected
components

BAT BNB HT HOT IOTX QNT MANA ZIL NXM SHIB
0

10

20

30

40

50
precondition
postcondition
none

(B) Patch

(C) Duration

FIGURE 6.6: Results of patching specification for 10 projects

According to the experiment results, SPAIR takes the longest time, 10.85

seconds, to successfully generate 16 specifications for the internal calls in the

ZIL project. In contrast, the NXM project, which has 20 internal calls, only needs

5.79 seconds. The notable difference is due to the substantial time spent wait-

ing for a timeout (2 seconds) of two failed specifications in the ZIL project. A

similar issue is also observed in the BAT project, where the execution time is 6.7

seconds. Since the majority of the internal calls are library calls (e.g., sub, add),

we observe many identical post-conditions. By looking at the execution time

and the number of functions (or internal functions) in Table 6.3 and Table 6.4, it

is obvious that inferring specifications from the call sites is more expensive and

less efficient compared to inferring preconditions or postconditions.

168

6.6. Evaluation

Project #Internal Time (s) #Success #Pre #Post

BAT 3 6.70 2 0/2/0 0/0/1
BNB 11 7.64 11 0/11/0 0/0/11
HT 0 0.00 0 0/0/0 0/0/0
HOT 11 6.23 11 0/11/0 0/0/11
IOTX 12 3.67 12 0/12/0 5/0/7
QNT 8 3.52 8 0/8/0 0/0/8
MANA 12 4.80 12 0/11/1 4/0/8
ZIL 18 10.85 16 0/16/0 5/0/11
NXM 22 5.79 22 0/22/0 9/1/12
SHIB 20 3.62 20 0/20/0 14/0/6

TABLE 6.4: Results of SPAIR on inferring specifications from call
sites. For each project, the table shows the number of internal calls
(#Internal), successfully inferred specifications (#Success), precon-
ditions (#Pre), post-conditions (#Post), and the execution time

(Time).

RQ3: Performance on patching RQ3 aims to show that SPAIR is capable of

suggesting patches when a single buggy specification is presented in the speci-

fication. This RQ evaluates Algorithm 7 entirely, while RQ1 and RQ2 compute

P-patch (Definition 4), Q-patch (Definition 5), and F-patch (Definition 6) for

specified functions. To answer this RQ, we systematically set default values

to either precondition or post-condition of each correct specification in the test

subjects and apply SPAIR to patch the incorrect one. That is, the default val-

ues of the precondition and post-condition are true and false respectively. It

is noted that there are numerous cases where the specification remains correct

even if the precondition is set to true, and in such cases, no patch needs to be

generated. The experimental results are shown in Figure 6.6

In Algorithm 7, we group a set of related functions that have an impact on

the patch into a connected component, and we address each connected com-

ponent sequentially. The number of functions in each connected component

169

Chapter 6. SPAIR: Towards Repairing Smart Contract Specification

reflects the complexity of a generated patch. It is because all functions in a con-

nected component must be examined to generate a patch. Figure 6.6(a) shows

the average number of functions that SPAIR attempts to patch, with the filled

area representing the standard deviation. On average, across all projects, the

connected component size is 7.39. Among the projects, HT has the smallest con-

nected component size, while NXM has the largest connected component size.

This discrepancy is due to the design differences between the two projects. In

HT, each function is a leaf function that does not call any other functions. In

contrast, NXM employs an advanced design pattern where a public function

acts as an interface calling multiple private functions. Although the call depth

in the NXM project does not exceed 5, its large connected component size is

due to the presence of crucial functions like sub and div, which are used in

many functions.

Figure 6.6(b) shows the number of top-ranked patches generated by SPAIR.

The label precondition (#P) denotes the patch that patches the specification where

its precondition is set to true. The label postcondition (#Q) represents the patch

that patches the specification where its precondition is set to false. The label

none (#N) indicates that the specification remains correct even if we set its pre-

condition as true. We can observe that the total number of #N is 116, whereas

the total number of #P is 70. This suggests that the majority of functions ac-

cept the precondition true because the inputs have been sanitized by require

statements. Additionally, the total number of #Q is 186, which is 2x the num-

ber of #P. This is because setting the postcondition to false always leads to an

incorrect specification.

Figure 6.6(c) shows the average time (in seconds) to generate a patch where

170

6.6. Evaluation

the filled area represents the standard deviation. We can observe that the ex-

ecution time is directly related to the size of the connected component. For

patching a specification in HT, SPAIR requires approximately 22.86 seconds,

whereas it takes around 127.25 seconds for a patch in SHIB. On average, SPAIR

takes 64.92 seconds to generate a patch.

RQ4: Repairing specifications with multiple bugs RQ4 is designed to demon-

strate that SPAIR is able to generate patches when there are multiple falsified

specifications are presented. To answer this RQ, we measure the performance

of SPAIR on more complicated test subjects. Recall that RQ3 sequentially mod-

ifies preconditions or postconditions by setting them to the default values and

generating corresponding patches. Given a falsified specification, the correct-

ness of other functions may be affected through call chains. Since all specifi-

cations are originally correct and thus, a single patch like P-patch, Q-patch, or

F-patch can easily make all specifications become correct. This specific config-

uration could not demonstrate the robustness of our patching algorithm that

patches incorrect specifications in a bottom-up manner. To address this limita-

tion, we adopt an alternative configuration where we set the preconditions of

all functions to true and compute patches for each project. This setup greatly in-

creases the complexity of test subjects because an accepted patch has to modify

at most N functions in a project where N is the number of incorrect specifica-

tions. Additionally, SPAIR must follow the call chain in a bottom-up manner

to produce patches. The experimental results are shown in Table 6.5.

SPAIR effectively generates patches for all 10 projects. In the MANA and

ZIL projects, the generated patches modify the specifications of 8 functions,

while only one specification is modified in the SHIB project. The discrepancy

is because SHIB uses require statements to sanitize inputs, but other projects

171

Chapter 6. SPAIR: Towards Repairing Smart Contract Specification

Project # Function Time (s) Depth

BAT 4 17.22 2
BNB 5 36.68 2
HT 3 15.69 1
HOT 5 24.97 2
IOTX 6 35.87 3
QNT 4 21.28 2
MANA 8 11.07 3
ZIL 8 80.08 5
NXM 3 45.85 4
SHIB 1 8.93 3

TABLE 6.5: Result of SPAIR on more complicated test subjects.
For each project, the table shows the number of functions (#Func-
tion) such that their specifications are patched, the execution time

(Time) in seconds, and the maximum call stack depth (Depth)

employ assert statements. The usage of assert statements leads to compli-

cated preconditions. However, in practice, assert are require statements

that exhibit nearly indistinguishable behavior.

From the results, it can be observed that the average call depth is 2.7. Among

10 projects, ZIL has the highest call depth 5. It is the main reason that SPAIR

takes the longest time, 80.08 seconds, to complete. The strategy of SPAIR is

to fix specifications in a bottom-up manner and a higher call depth results

in a greater number of potential patches. Additionally, the execution time is

also influenced by the number of incorrect specifications. For example, SPAIR

only needs 8.93 seconds to patch the SHIB project, which has 1 incorrect spec-

ification. On average, SPAIR takes 29.76 seconds to produce a patch. Note

that SPAIR implements a heuristic to minimize the number of patches. That

is, SPAIR first generates a patch, computes the distance, and considers it as

a pivot. During the generation of P-patch, Q-patch, or F-patch, the distance

of an incomplete patch is computed, and if it exceeds the reference point, the

incomplete patch is discarded. This heuristic eliminates the need to compute

172

6.7. Related work

irrelevant patches and thus enhances the efficiency.

6.7 Related work

To the best of our knowledge, SPAIR is the first tool that is able patch specifi-

cations in a provably correct way.

SPAIR is closely related to many works on automated smart contract re-

pair. We discuss the most relevant ones in the following. Elysium [34] and

sGuard [45] combine template-based and semantic-based approaches to intro-

duce patches. Elysium uses an outsourced bug localization and repairs smart

contracts at bytecode level. While sGuard leverages its own bug localization

and repairs contracts at the source-code level. EVMPatch [35] features a byte-

code rewriting engine and leverages a template-based approach to patch in-

teger overflow and access control bugs. SmartShield [33] extracts control and

data dependencies from bytecode and source-code, then uses extracted seman-

tics to fix insecure control flows and data operations. While there are many

other program repair works, none of them focus on fixing specifications.

SPAIR is also related to smart contract verification approaches developed

in the last few years. VeriSmart [66] relies on intra-procedure analysis to ver-

ify arithmetic safety. SmartACE [102] is a framework that runs multiple in-

dependent analyzers to verify user-annotated assertions. It transforms smart

contracts into constrained Horn clauses for correctness verification. VerX [30]

reduces the temporal properties of smart contracts to reachability problems and

then applies state-of-the-art reachability checking.

SPAIR is broadly related to the many work on applying static analysis tech-

niques on smart contracts. Securify [24] and Ethainter [103] are approaches that

leverage a rewriting system (i.e., Datalog) to identify vulnerabilities through

173

Chapter 6. SPAIR: Towards Repairing Smart Contract Specification

pattern matching. In terms of symbolic execution, Luu et al. presented the

first engine to find potential security bugs in smart contracts [23]. Krupp and

Rossow presented teEther [27] which finds vulnerabilities in smart contracts by

focusing on financial transactions. Nikolic et al. presented MAIAN [28], which

focuses on identifying trace-based vulnerabilities through a form of symbolic

execution. Torres et al. presented Osiris [29] which focuses on discovering inte-

ger bugs.

SPAIR is remotely related to some works on invariant detection. Ernst et

al. developed Daikon [97], a tool for dynamic detection of likely invariants.

Daikon is capable of detecting invariants in C, C++, Java, and Perl programs.

It defines a set of invariant templates and selects suitable invariants by ana-

lyzing them against data traces. The inferred invariants contain preconditions,

post-conditions, and object invariants. Ye Liu et al. presented InvCon [131], an

extension of Daikon designed to automatically detect contract invariants from

transaction histories. It can be used to mitigate the absence of specifications for

Ethereum smart contracts. SPAIR is not exclusive to smart contracts. It can be

extended to infer specifications for programs implemented in other languages.

Finally, SPAIR is remotely related to approaches on testing smart contracts.

ContractFuzzer [26] is a fuzzing engine that checks 7 different types of vul-

nerabilities. sFuzz [43] is another fuzzer that extends ContractFuzzer by using

feedback from test case execution to generate new test cases.

6.8 Conclusion

In this work, we have proposed a novel approach to identify and patch buggy

specifications of smart contracts. Our approach automatically fixes incorrect

174

6.8. Conclusion

specifications in a bottom-up manner with provable correctness. We have im-

plemented our approach in a tool and thoroughly evaluated the tool on 10

high-profile smart contracts. The experiment results show the usefulness of

our approach, i.e., SPAIR is capable of inferring missing correct specifications,

and patching specifications correctly while introducing a minor difference from

original smart contracts. In the future, we intend to improve the performance

of SPAIR further on complicated smart contracts.

175

Chapter 7

Conclusion and Future Work

In this chapter, we summarize our work and discuss future direction.

7.1 Conclusion

Blockchain is a public database that stores data in blocks linked together via

cryptographic hashes. Once data is written to the blockchain, it is irreversible.

Blockchain has the potential to revolutionize many industries, especially with

the power of smart contracts. However, the flawed design, as well as, the com-

plexity of deployed smart contracts make them error-prone. Many security inci-

dents with substantial financial losses raise serious concerns about the security

problem of smart contracts. Although many relevant research works have been

conducted to mitigate the problems, they left many unsolved issues. In this the-

sis, we ensure the safety and correctness of smart contracts by proposing meth-

ods to automatically detect and eliminate vulnerabilities in smart contracts. We

presented our works in two separate parts: smart contract vulnerability detection

and smart contract repair where each part consists of two works.

In the first part, we rely on fuzzing to detect generic vulnerabilities and

compositional verification to detect specification violations. In Chapter 3, we

7.1. Conclusion

presented sFuzz, an adaptive fuzzing engine for smart contracts. It combines

the strategy in the AFL [37] and an efficient lightweight multi-objective adap-

tive algorithm to improve the quality of the test suite. That is, sFuzz relies on

coverage-guided fuzzing strategies of AFL to generate test inputs and execute

them against the main contract to record the execution behaviors such as a re-

entrancy attack from the attacker contract to the main contract. It keeps one

best seed (i.e., the seed with the smallest branch distance) for each just-missed

branch. This adds a small number of test inputs to the original test suite, but it

increases the chance of covering new branches. Subsequently, in Chapter 4, we

presented iContract, a compositional verification engine that verifies the cor-

rectness of smart contracts. It allows users to specify functional level properties

in the form of pre/post-conditions and verify them compositionally. As we

heavily rely on manually drafted specifications, iContract supports traditional

invariants such as loop invariants, and contract invariants. It further supports

writing contract invariants and revert specifications, which describe the behav-

iors of a function call and reverted execution flow respectively.

In the second part, we take different angles to repair contracts. We repair the

smart contract implementation and its specifications respectively. In Chapter 5,

we introduced an algorithm that repairs the implementation at the source code

level but identifies vulnerabilities at the bytecode level. sGuard locates vul-

nerabilities by leveraging a tainting algorithm that analyzes control and data

dependency in stack, memory, and storage. Each vulnerability is defined in

the form of dependencies and is patched using the corresponding templates.

The vulnerability definition is over-approximated to ensure that our repaired

code is always safe. It is noted that sGuard is able to prove the correctness of

the generated patch. Subsequently, in Chapter 6, we presented SPAIR, a tool

177

Chapter 7. Conclusion and Future Work

that relies on abductive inference and constraint solving to recommend correct

and minimal specifications. SPAIR relies on a compositional verification engine

to identify buggy specifications and generate patches for them. All generated

patches are ranked and only the best one is selected as the final result. It is

noted that SPAIR is the first tool that is able to patch specifications in a prov-

ably correct way.

In summary, this thesis provides multiple approaches to ensure the safety

and correctness of smart contracts. Given a contract, sFuzz fuzz it to detect vul-

nerabilities, iContract verifies it against its specifications. While sGuard patches

vulnerable code, SPAIR patches buggy specifications. Although our work is

undoubtedly useful, it may not be able to protect smart contracts from new

vulnerabilities and attack methods. Our results shed some light on smart con-

tract security and provide useful resources and background for future research

projects.

7.2 Future Work

Smart contracts are rapidly developing and so are new ways of attacking smart

contracts. One of our immediate future work is to extend our approaches to

handle multiple emerging vulnerabilities such as Maximum Extract Value (MEV)

attacks [132]–[134].

MEV refers to the situation where attackers attempt to include, exclude, or

change the order of transactions in a block to gain value that exceeds the stan-

dard block reward and gas fees. There are a few common types of MEVs as

follows.

178

7.2. Future Work

DEX arbitrage: This refers to the situation where two DEXes sell a token at

two different prices. An attacker buys and sells the token on a lower-price DEX

and a higher-price DEX respectively.

Liquidations: This is a well-known MEV opportunity in lending protocols.

Lending protocols allow anyone to liquidate the collateral of a borrower to re-

ceive a hefty liquidation fee if the borrowing amount exceeds the allowed (e.g.,

30% of the collateral). Because of this, an attacker can listen to the transaction

pool and determine which borrowers can be liquidated.

Sandwich trading: This refers to the situation where an attacker font-run a

large DEX trade to buy tokens at a lower price and sell tokens after the large

DEX trade at a higher price.

Another line of future work that we would like to pursue is the automatic

synthesis of smart contracts implementation with the help of large language

models (LLM). Implementing a smart contract from scratch is undeniably risky.

We would like to develop a tool that relies on trusted libraries such as Openzep-

pelin [106] to minimize the use of unsafe code. For example, we first synthesize

a contract that satisfies the given specifications. Then, we instruct a LLM to en-

hance its safety such as replacing the generated code with equivalent libraries,

adding a modifier nonReentrant to functions to avoid re-entrancy attack, or

adding interface Pausable for emergency stop capability.

179

Bibliography

[1] J. Frankenfield, “Understanding double-spending and how to prevent

attacks,” Investopedia, 2023.

[2] A. Hankin, “Bitcoin pizza day: Celebrating the $250 million pizza or-

der,” Investopedia, 2023.

[3] CoinMarketCap, Top 100 crypto coins by market capitalization, https://

coinmarketcap.com/coins/, 2023.

[4] J. Frankenfield, “Cryptographic hash functions: Definition and exam-

ples,” Investopedia, 2023.

[5] A. Lu, Opcodes for the evm, https://ethereum.org/en/developers/

docs/evm/opcodes/, 2023.

[6] D. Muhs, Reentrancy, https://swcregistry.io/docs/SWC-107/,

2023.

[7] T. S. Team, Solidity, https://soliditylang.org/, 2023.

[8] T. V. Team, Vyper documentation, https://docs.vyperlang.org/

en/stable/, 2023.

[9] Y. Hirai, Bamboo: A language for morphing smart contracts, https : / /

github.com/pirapira/bamboo, 2023.

[10] CoinMarketCap, Ethereum Price Today, https://coinmarketcap.

com/currencies/ethereum/, 2023.

https://coinmarketcap.com/coins/
https://coinmarketcap.com/coins/
https://ethereum.org/en/developers/docs/evm/opcodes/
https://ethereum.org/en/developers/docs/evm/opcodes/
https://swcregistry.io/docs/SWC-107/
https://soliditylang.org/
https://docs.vyperlang.org/en/stable/
https://docs.vyperlang.org/en/stable/
https://github.com/pirapira/bamboo
https://github.com/pirapira/bamboo
https://coinmarketcap.com/currencies/ethereum/
https://coinmarketcap.com/currencies/ethereum/

Bibliography

[11] Blockchains, Decentralized autonomous organization (dao) framework, https:

//github.com/blockchainsllc/DAO, 2023.

[12] E. Foundation, The history of ethereum, https://ethereum.org/en/

history/, 2023.

[13] V. Buterin, Hard fork completed, https : / / blog . ethereum . org /

2016/07/20/hard-fork-completed, 2016.

[14] M. E. Peck, “Hard Fork” Coming to Restore Ethereum Funds to Investors of

Hacked DAO, https://spectrum.ieee.org/hacked-blockchain-

fund-the-dao-chooses-a-hard-fork-to-redistribute-

funds, 2016.

[15] Etherscan, Ethereum transaction hash (txhash) details, https://tinyurl.

com/3h2k8uyx, 2017.

[16] Etherscan, Ethereum transaction hash (txhash) details, https://tinyurl.

com/4fbetkkv, 2017.

[17] Etherscan, Ethereum transaction hash (txhash) details, https://tinyurl.

com/nh9wpts, 2017.

[18] Etherscan, Ethereum transaction hash (txhash) details, https://tinyurl.

com/mn8bsczx, 2017.

[19] devops199, Anyone can kill your contract, https : / / github . com /

openethereum/parity-ethereum/issues/6995, 2017.

[20] DeFiHackLabs, Defi hacks reproduce - foundry, https://github.com/

SunWeb3Sec/DeFiHackLabs, 2023.

[21] Rekt, Rekt Leaderboard, https://rekt.news/leaderboard/, 2023.

[22] SlowMist, Slowmist hacked, https://hacked.slowmist.io/, 2023.

181

https://github.com/blockchainsllc/DAO
https://github.com/blockchainsllc/DAO
https://ethereum.org/en/history/
https://ethereum.org/en/history/
https://blog.ethereum.org/2016/07/20/hard-fork-completed
https://blog.ethereum.org/2016/07/20/hard-fork-completed
https://spectrum.ieee.org/hacked-blockchain-fund-the-dao-chooses-a-hard-fork-to-redistribute-funds
https://spectrum.ieee.org/hacked-blockchain-fund-the-dao-chooses-a-hard-fork-to-redistribute-funds
https://spectrum.ieee.org/hacked-blockchain-fund-the-dao-chooses-a-hard-fork-to-redistribute-funds
https://tinyurl.com/3h2k8uyx
https://tinyurl.com/3h2k8uyx
https://tinyurl.com/4fbetkkv
https://tinyurl.com/4fbetkkv
https://tinyurl.com/nh9wpts
https://tinyurl.com/nh9wpts
https://tinyurl.com/mn8bsczx
https://tinyurl.com/mn8bsczx
https://github.com/openethereum/parity-ethereum/issues/6995
https://github.com/openethereum/parity-ethereum/issues/6995
https://github.com/SunWeb3Sec/DeFiHackLabs
https://github.com/SunWeb3Sec/DeFiHackLabs
https://rekt.news/leaderboard/
https://hacked.slowmist.io/

Bibliography

[23] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart

contracts smarter,” in Proceedings of the 2016 ACM SIGSAC Conference on

Computer and Communications Security, 2016, pp. 254–269.

[24] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and M.

Vechev, “Securify: Practical security analysis of smart contracts,” in Pro-

ceedings of the 2018 ACM SIGSAC Conference on Computer and Communi-

cations Security, 2018, pp. 67–82.

[25] J. He, M. Balunović, N. Ambroladze, P. Tsankov, and M. Vechev, “Learn-

ing to fuzz from symbolic execution with application to smart contracts,”

in Proceedings of the 2019 ACM SIGSAC Conference on Computer and Com-

munications Security, 2019, pp. 531–548.

[26] B. Jiang, Y. Liu, and W. K. Chan, “ContractFuzzer: Fuzzing smart con-

tracts for vulnerability detection,” in Proceedings of the 33rd ACM/IEEE

International Conference on Automated Software Engineering, 2018, pp. 259–

269.

[27] J. Krupp and C. Rossow, “teEther: Gnawing at ethereum to automati-

cally exploit smart contracts,” in 27th USENIX Security Symposium, 2018,

pp. 1317–1333.

[28] I. Nikolić, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding the

greedy, prodigal, and suicidal contracts at scale,” in Proceedings of the

34th Annual Computer Security Applications Conference, 2018, pp. 653–663.

[29] C. F. Torres, J. Schütte, et al., “Osiris: Hunting for integer bugs in ethereum

smart contracts,” in Proceedings of the 34th Annual Computer Security Ap-

plications Conference, 2018, pp. 664–676.

182

Bibliography

[30] A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, and M. Vechev,

“VerX: Safety verification of smart contracts,” in 2020 IEEE Symposium on

Security and Privacy, 2020, pp. 1661–1677.

[31] J. Stephens, K. Ferles, B. Mariano, S. Lahiri, and I. Dillig, “SmartPulse:

Automated checking of temporal properties in smart contracts,” in 2021

IEEE Symposium on Security and Privacy, 2021, pp. 555–571.

[32] Á. Hajdu and D. Jovanović, “Solc-verify: A modular verifier for solidity

smart contracts,” in Verified Software. Theories, Tools, and Experiments: 11th

International Conference, 2020, pp. 161–179.

[33] Y. Zhang, S. Ma, J. Li, K. Li, S. Nepal, and D. Gu, “SmartShield: Auto-

matic smart contract protection made easy,” in 2020 IEEE 27th Interna-

tional Conference on Software Analysis, Evolution and Reengineering, 2020,

pp. 23–34.

[34] C. Ferreira Torres, H. Jonker, and R. State, “Elysium: Context-aware bytecode-

level patching to automatically heal vulnerable smart contracts,” in Pro-

ceedings of the 25th International Symposium on Research in Attacks, Intru-

sions and Defenses, 2022, pp. 115–128.

[35] M. Rodler, W. Li, G. O. Karame, and L. Davi, “EVMPatch: Timely and

automated patching of ethereum smart contracts,” in 30th USENIX Se-

curity Symposium, 2021, pp. 1289–1306.

[36] T. D. Nguyen, Toolkit, https://github.com/duytai/toolkit.

[37] M. Zalewski, Technical “whitepaper” for afl-fuzz, http : / / lcamtuf .

coredump.cx/afl/technical_details.txt, 2019.

183

https://github.com/duytai/toolkit
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt

Bibliography

[38] M. Harman and P. McMinn, “A theoretical and empirical study of search-

based testing: Local, global, and hybrid search,” IEEE Transactions on

Software Engineering, pp. 226–247, 2010.

[39] P. McMinn, “Search-based software test data generation: A survey,” Soft-

ware testing, Verification and reliability, pp. 105–156, 2004.

[40] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically find-

ing patches using genetic programming,” in Proceedings of the 31st Inter-

national Conference on Software Engineering, 2009, pp. 364–374.

[41] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation learned

from human-written patches,” in 2013 35th International Conference on

Software Engineering, 2013, pp. 802–811.

[42] A. Marginean, J. Bader, S. Chandra, et al., “Sapfix: Automated end-to-

end repair at scale,” in 2019 IEEE/ACM 41st International Conference on

Software Engineering: Software Engineering in Practice, 2019, pp. 269–278.

[43] T. D. Nguyen, L. H. Pham, J. Sun, Y. Lin, and Q. T. Minh, “sFuzz: An

efficient adaptive fuzzer for solidity smart contracts,” in Proceedings of

the 42nd International Conference on Software Engineering, 2020, pp. 778–

788.

[44] T. D. Nguyen, L. H. Pham, J. Sun, and Q. L. Le, “An idealist’s approach

for smart contract correctness,” in 24nd International Conference on Formal

Engineering Methods, 2023.

[45] T. D. Nguyen, L. H. Pham, and J. Sun, “sGuard: Towards fixing vulner-

able smart contracts automatically,” in 2021 IEEE Symposium on Security

and Privacy, 2021, pp. 1215–1229.

184

Bibliography

[46] T. D. Nguyen, L. H. Pham, J. Sun, Y. Wan, and F. Song, “SPAIR: Towards

repairing smart contract specification,” in Arxiv, 2023.

[47] Tether, Tether token, https://tether.to/en/, 2023.

[48] BNB, What is bnb? https://www.binance.com/en/bnb, 2023.

[49] AAVE, Aave liquidity protocol, https://aave.com/, 2023.

[50] Compound, Compound, https://compound.finance/, 2023.

[51] Uniswap, Uniswap protocol, https://uniswap.org/, 2023.

[52] SushiSwap, Sushiswap protocol, https://www.sushi.com/, 2023.

[53] V. Buterin, Ethereum whitepaper, https://ethereum.org/el/whitepaper/,

2023.

[54] Joshua, Proof-of-work (PoW), https://ethereum.org/fil/developers/

docs/consensus-mechanisms/pow/, 2023.

[55] M. Eth, Live Ethereum TPS data, https://ethtps.info/, 2023.

[56] S. Foundation, Web3 Infrastructure for Everyone, https://solana.

com/, 2023.

[57] CryptoKitties, Collect and breed digital cats! https://www.cryptokitties.

co/, 2023.

[58] L. research team, Arbitrum One, https://l2beat.com/scaling/

projects/arbitrum, 2023.

[59] L. research team, ZkSync Era, https://l2beat.com/scaling/

projects/zksync-era, 2023.

[60] N. Szabo, “Formalizing and securing relationships on public networks,”

First Monday, 1997.

185

https://tether.to/en/
https://www.binance.com/en/bnb
https://aave.com/
https://compound.finance/
https://uniswap.org/
https://www.sushi.com/
https://ethereum.org/el/whitepaper/
https://ethereum.org/fil/developers/docs/consensus-mechanisms/pow/
https://ethereum.org/fil/developers/docs/consensus-mechanisms/pow/
https://ethtps.info/
https://solana.com/
https://solana.com/
https://www.cryptokitties.co/
https://www.cryptokitties.co/
https://l2beat.com/scaling/projects/arbitrum
https://l2beat.com/scaling/projects/arbitrum
https://l2beat.com/scaling/projects/zksync-era
https://l2beat.com/scaling/projects/zksync-era

Bibliography

[61] G. Wood et al., “Ethereum: A secure decentralised generalised transac-

tion ledger,” Ethereum project yellow paper, pp. 1–32, 2014.

[62] T. S. Team, Solidity 0.8.21 documentation, https://docs.soliditylang.

org/en/v0.8.21/, 2023.

[63] C. Diligence, Ethereum Smart Contract Best Practices, https://consensys.

github.io/smart-contract-best-practices/, 2023.

[64] M. Rodler, W. Li, G. Karame, and L. Davi, “Sereum: Protecting existing

smart contracts against re-entrancy attacks,” in Proceedings of the Network

and Distributed System Security Symposium, 2019.

[65] OpenZeppelin, OpenZeppelin Docs, https://docs.openzeppelin.

com/contracts/4.x/api/security#ReentrancyGuard, 2023.

[66] S. So, M. Lee, J. Park, H. Lee, and H. Oh, “VeriSmart: A highly precise

safety verifier for ethereum smart contracts,” in 2020 IEEE Symposium on

Security and Privacy, 2020, pp. 1678–1694.

[67] September Hacks, https://www.insurace.io/blog/?p=3519, 2023.

[68] C. D. Clack, V. A. Bakshi, and L. Braine, “Smart contract templates: Foun-

dations, design landscape and research directions,” arXiv, 2016.

[69] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang, “Blockchain chal-

lenges and opportunities: A survey,” International Journal of Web and Grid

Services, 2017.

[70] V. Buterin et al., “A next-generation smart contract and decentralized

application platform,” white paper, pp. 2–1, 2014.

[71] G. Wood et al., “Ethereum: A secure decentralised generalised transac-

tion ledger,” Ethereum project yellow paper, pp. 1–32, 2014.

186

https://docs.soliditylang.org/en/v0.8.21/
https://docs.soliditylang.org/en/v0.8.21/
https://consensys.github.io/smart-contract-best-practices/
https://consensys.github.io/smart-contract-best-practices/
https://docs.openzeppelin.com/contracts/4.x/api/security#ReentrancyGuard
https://docs.openzeppelin.com/contracts/4.x/api/security#ReentrancyGuard
https://www.insurace.io/blog/?p=3519

Bibliography

[72] B. Marino and A. Juels, “Setting standards for altering and undoing

smart contracts,” in International Symposium on Rules and Rule Markup

Languages for the Semantic Web, 2016, pp. 151–166.

[73] P. Daian, Analysis of the DAO exploit, https://hackingdistributed.

com/2016/06/18/analysis-of-the-dao-exploit/, 2023.

[74] X. Wang, J. Sun, Z. Chen, P. Zhang, J. Wang, and Y. Lin, “Towards opti-

mal concolic testing,” in Proceedings of the 40th International Conference on

Software Engineering, 2018, pp. 291–302.

[75] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM: A practical concolic

execution engine tailored for hybrid fuzzing,” in 27th USENIX Security

Symposium, 2018, pp. 745–761.

[76] E. Foundation, Aleth: Ethereum C++ client, tools and libraries, https://

github.com/ethereum/aleth/, 2023.

[77] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating fuzz

testing,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer

and Communications Security, 2018, pp. 2123–2138.

[78] J. H. Holland, “Genetic algorithms,” Scientific american, pp. 66–73, 1992.

[79] A. Panichella, F. M. Kifetew, and P. Tonella, “Automated test case gener-

ation as a many-objective optimisation problem with dynamic selection

of the targets,” IEEE Transactions on Software Engineering, pp. 122–158,

2018.

[80] Etherscan, Etherscan, https://etherscan.io/, 2023.

[81] P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed automated ran-

dom testing,” in Proceedings of the 2005 ACM SIGPLAN conference on Pro-

gramming language design and implementation, 2005, pp. 213–223.

187

https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://github.com/ethereum/aleth/
https://github.com/ethereum/aleth/
https://etherscan.io/

Bibliography

[82] G. Grieco, W. Song, A. Cygan, J. Feist, and A. Groce, “Echidna: Effective,

usable, and fast fuzzing for smart contracts,” in Proceedings of the 29th

ACM SIGSOFT International Symposium on Software Testing and Analysis,

2020, pp. 557–560.

[83] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing safety of

smart contracts,” in 25th Annual Network and Distributed System Security

Symposium, 2018.

[84] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, et al., “Formal verifi-

cation of smart contracts: Short paper,” in Proceedings of the 2016 ACM

Workshop on Programming Languages and Analysis for Security, 2016, pp. 91–

96.

[85] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL: a proof assistant

for higher-order logic. 2002.

[86] K. Delmolino, M. Arnett, A. Kosba, A. Miller, and E. Shi, “Step by step

towards creating a safe smart contract: Lessons and insights from a cryp-

tocurrency lab,” in International Conference on Financial Cryptography and

Data Security, 2016, pp. 79–94.

[87] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum

smart contracts (sok),” in Principles of Security and Trust: 6th International

Conference, 2017, pp. 164–186.

[88] M. Fröwis and R. Böhme, “In code we trust?” In Data Privacy Manage-

ment, Cryptocurrencies and Blockchain Technology, 2017, pp. 357–372.

[89] T. Chen, X. Li, X. Luo, and X. Zhang, “Under-optimized smart contracts

devour your money,” in 2017 IEEE 24th International Conference on Soft-

ware Analysis, Evolution and Reengineering, 2017, pp. 442–446.

188

Bibliography

[90] S. Palladino, “The parity wallet hack explained,” OpenZeppelin blog, 2017.

[91] B. Mueller, “Smashing ethereum smart contracts for fun and real profit,”

HITB SECCONF Amsterdam, p. 54, 2018.

[92] C. F. Torres, A. K. Iannillo, A. Gervais, and R. State, “ConFuzzius: A

data dependency-aware hybrid fuzzer for smart contracts,” in 2021 IEEE

European Symposium on Security and Privacy, 2021, pp. 103–119.

[93] A. Li, J. A. Choi, and F. Long, “Securing smart contract with runtime

validation,” in Proceedings of the 41st ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, 2020, pp. 438–453.

[94] SmartContractSecurity, Smart Contract Weakness Classification, https:

//swcregistry.io/, 2023.

[95] F. Vogelsteller and V. Buterin, “Erc-20: Token standard,” Ethereum Im-

provement Proposals, 2015.

[96] B. Mariano, Y. Chen, Y. Feng, S. K. Lahiri, and I. Dillig, “Demystifying

loops in smart contracts,” in 35th IEEE/ACM International Conference on

Automated Software Engineering, 2020, pp. 262–274.

[97] M. D. Ernst, J. H. Perkins, P. J. Guo, et al., “The daikon system for dy-

namic detection of likely invariants,” Science of Computer Programming,

pp. 35–45, 2007.

[98] P. W. O’Hearn, “Incorrectness logic,” Proceedings of the ACM on Program-

ming Languages, pp. 1–32, 2019.

[99] E. Foundation, Natspec format, https://docs.soliditylang.org/

en/v0.8.17/natspec-format.html, 2023.

[100] T. D. Nguyen, Dataset, https://anonymous.4open.science/r/

zero1-0DEE/, 2023.

189

https://swcregistry.io/
https://swcregistry.io/
https://docs.soliditylang.org/en/v0.8.17/natspec-format.html
https://docs.soliditylang.org/en/v0.8.17/natspec-format.html
https://anonymous.4open.science/r/zero1-0DEE/
https://anonymous.4open.science/r/zero1-0DEE/

Bibliography

[101] D. Dill, W. Grieskamp, J. Park, S. Qadeer, M. Xu, and E. Zhong, “Fast and

reliable formal verification of smart contracts with the move prover,” in

International Conference on Tools and Algorithms for the Construction and

Analysis of Systems, 2022, pp. 183–200.

[102] S. Wesley, M. Christakis, J. A. Navas, R. Trefler, V. Wüstholz, and A.

Gurfinkel, “Verifying solidity smart contracts via communication ab-

straction in smartace,” in Verification, Model Checking, and Abstract Inter-

pretation: 23rd International Conference, 2022, pp. 425–449.

[103] L. Brent, N. Grech, S. Lagouvardos, B. Scholz, and Y. Smaragdakis, “Ethain-

ter: A smart contract security analyzer for composite vulnerabilities,” in

Proceedings of the 41st ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, 2020, pp. 454–469.

[104] P. Technologies, “A postmortem on the parity multi-sig library self-destruct,”

Parity Blog, 2017.

[105] V. Buterin, “Thinking About Smart Contract Security,” Ethereum Blog,

2016.

[106] OpenZeppelin. “Openzeppelin contracts is a library for secure smart

contract development.” (2023).

[107] J. Jiao, S. Kan, S. Lin, D. Sanan, Y. Liu, and J. Sun, “Semantic understand-

ing of smart contracts: Executable operational semantics of solidity,” in

2020 IEEE Symposium on Security and Privacy, May 2020, pp. 1695–1712.

[108] Consensys, Known Attacks, https://consensys.github.io/smart-

contract-best-practices/attacks/, 2023.

190

https://consensys.github.io/smart-contract-best-practices/attacks/
https://consensys.github.io/smart-contract-best-practices/attacks/

Bibliography

[109] J. Chang, B. Gao, H. Xiao, J. Sun, Y. Cai, and Z. Yang, “Scompile: Criti-

cal path identification and analysis for smart contracts,” in International

Conference on Formal Engineering Methods, Springer, 2019, pp. 286–304.

[110] M. Mossberg, F. Manzano, E. Hennenfent, et al., “Manticore: A user-

friendly symbolic execution framework for binaries and smart contracts,”

in 2019 34th IEEE/ACM International Conference on Automated Software En-

gineering, 2019, pp. 1186–1189.

[111] C. N. Fischer, A worklist algorithm for dominators, http://pages.cs.

wisc.edu/~fischer/cs701.f08/lectures/Lecture19.4up.

pdf, 2020.

[112] Crytic, Manage and switch between Solidity compiler versions, https://

github.com/crytic/solc-select, 2020.

[113] V. Buterin, “EIP-170: Contract code size limit,” Ethereum Improvement

Proposals, 2016.

[114] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, “Control-flow integrity

principles, implementations, and applications,” ACM Transactions on In-

formation and System Security, pp. 1–40, 2009.

[115] J. H. Perkins, S. Kim, S. Larsen, et al., “Automatically patching errors in

deployed software,” in Proceedings of the ACM SIGOPS 22nd symposium

on Operating systems principles, 2009, pp. 87–102.

[116] Y. Hirai, “Formal verification of deed contract in ethereum name ser-

vice,” 2016.

[117] K. R. M. Leino, “This is boogie 2,” manuscript KRML, p. 9, 2008.

[118] S. K. Lahiri and S. Qadeer, “Call invariants,” in NASA Formal Methods

Symposium, 2011, pp. 237–251.

191

http://pages.cs.wisc.edu/~fischer/cs701.f08/lectures/Lecture19.4up.pdf
http://pages.cs.wisc.edu/~fischer/cs701.f08/lectures/Lecture19.4up.pdf
http://pages.cs.wisc.edu/~fischer/cs701.f08/lectures/Lecture19.4up.pdf
https://github.com/crytic/solc-select
https://github.com/crytic/solc-select

Bibliography

[119] I. Dillig and T. Dillig, “Explain: A tool for performing abductive infer-

ence,” in Computer Aided Verification, 2013, pp. 684–689.

[120] S. Wu, D. Wang, J. He, et al., “Defiranger: Detecting price manipulation

attacks on defi applications,” arXiv, 2021.

[121] C. Diligence, “Oracle Manipulation,” Ethereum Smart Contract Best Prac-

tices, 2023.

[122] BlockSec, “Public transfer vulnerability of the Tether Gold smart con-

tract,” Blocksec Medium Blog, 2023.

[123] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smaragdakis,

“Madmax: Surviving out-of-gas conditions in ethereum smart contracts,”

Proceedings of the ACM on Programming Languages, pp. 1–27, 2018.

[124] X.-B. D. Le, D.-H. Chu, D. Lo, C. Le Goues, and W. Visser, “S3: Syntax-

and semantic-guided repair synthesis via programming by examples,”

in Proceedings of the 2017 11th Joint Meeting on Foundations of Software En-

gineering, 2017, pp. 593–604.

[125] J. McCarthy, “Recursive functions of symbolic expressions and their com-

putation by machine, part i,” Communications of the ACM, pp. 184–195,

1960.

[126] A. Hagberg, P. Swart, and D. S Chult, “Exploring network structure, dy-

namics, and function using networkx,” Tech. Rep., 2008.

[127] J. Feist, G. Grieco, and A. Groce, “Slither: A static analysis framework

for smart contracts,” in 2019 IEEE/ACM 2nd International Workshop on

Emerging Trends in Software Engineering for Blockchain, 2019, pp. 8–15.

192

Bibliography

[128] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Interna-

tional conference on Tools and Algorithms for the Construction and Analysis of

Systems, 2008, pp. 337–340.

[129] Z. Liao, S. Song, H. Zhu, et al., “Large-scale empirical study of inline

assembly on 7.6 million ethereum smart contracts,” IEEE Transactions on

Software Engineering, pp. 777–801, 2022.

[130] Z. V. Zhou, “Token minting and burning,” Ethereum Improvement Propos-

als, 2022.

[131] Y. Liu and Y. Li, “Invcon: A dynamic invariant detector for ethereum

smart contracts,” in Proceedings of the 37th IEEE/ACM International Con-

ference on Automated Software Engineering, 2022, pp. 1–4.

[132] L. Zhou, K. Qin, A. Cully, B. Livshits, and A. Gervais, “On the just-

in-time discovery of profit-generating transactions in defi protocols,” in

2021 IEEE Symposium on Security and Privacy, 2021, pp. 919–936.

[133] L. Zhou, X. Xiong, J. Ernstberger, et al., “Sok: Decentralized finance (defi)

attacks,” in 2023 IEEE Symposium on Security and Privacy, 2023, pp. 2444–

2461.

[134] K. Qin, L. Zhou, and A. Gervais, “Quantifying blockchain extractable

value: How dark is the forest?” In 2022 IEEE Symposium on Security and

Privacy, 2022, pp. 198–214.

193

	Towards securing smart contracts systematically
	Citation

	Introduction
	Smart Contracts
	Vulnerabilities
	Problem Definition
	Research Questions
	Contributions
	Outline

	Preliminaries
	Ethereum
	Consensus
	Accounts
	Transactions
	Blocks

	Smart contracts
	Solidity
	Bytecode
	Ethereum Virtual Machine

	Vulnerabilities

	I Smart Contract Vulnerability Detection
	sFuzz: An Efficient Adaptive Fuzzer for Solidity Smart Contracts
	Introduction
	Illustrative Examples
	Fuzzing Smart Contracts
	Problem Definition
	Feedback-Guided Adaptive Fuzzing
	Crossover and Mutation

	Implementation
	Experiments and Evaluation
	Efficiency
	Effectiveness
	Adaptiveness

	Related Work and Conclusion

	iContract: An Idealist's Approach for Smart Contract Correctness
	Introduction
	Overview
	Vulnerability and Correctness
	An Illustrative Example

	Specification Language
	High-level Overview
	Formalization

	Verification
	Function validation
	Generating Proof Obligations

	Implementation and Evaluation
	Implementation
	Experimental Evaluation

	Related Work and Conclusion

	II Smart Contract Vulnerability Repair
	sGuard: Towards Fixing Vulnerable Smart Contracts Automatically
	Introduction
	Background and Overview
	Vulnerabilities
	Patching Smart Contracts

	Problem Definition
	Concrete Semantics
	Symbolic Semantics
	Problem Definition

	Detailed Approach
	Enumerating Symbolic Traces
	Dependency Analysis
	Fixing the Smart Contract

	Implementation and Evaluation
	Implementation
	Evaluation

	Related Work
	Conclusion

	SPAIR: Towards Repairing Smart Contract Specification
	Introduction
	Specification Language
	Motivation Example
	Detailed Approach
	High-level Algorithm
	Function Verification
	Patch Generation
	Patch Ranking

	Implementation
	Evaluation
	Related work
	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

