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Data-Driven Optimization Approaches for Dynamic

Urban Logistics Operational Problems

Jingfeng Yang

Abstract

Given the rapid pace of urbanization, there is a pressing need to optimize urban logistics

delivery operations for enhanced capacity and efficiency. Over recent decades, a multitude

of optimization approaches have been put forth to address urban logistics challenges, en-

compassing routing and scheduling within both static and dynamic contexts. In light of

the rising computational capabilities and the widespread adoption of machine learning

in recent times, there is a growing body of research aimed at elucidating the seamless in-

tegration of data and machine learning within conventional urban logistics optimization

models. Additionally, the ubiquitous utilization of smartphones and internet innova-

tions presents novel research challenges in the realm of urban logistics, notably in the

domains of last-mile delivery collaboration and on-demand food delivery services.

The necessity of addressing these emerging challenges is what motivates my doctoral

research, with a focus on the investigation of data-driven optimization methodologies.

This thesis will encompass a comprehensive discussion of my research conducted in three

key domains: (1) collaborative urban delivery with alliances; (2) dynamic service area siz-

ing optimization for on-demand food delivery services; and (3) optimization of dynamic

matching time intervals for on-demand food delivery services. The specific details are

outlined as follows:

1. We study the pickup and delivery problem within a collaborative framework, fo-

cusing on multiple small Logistics Service Providers (LSPs) operating in an urban

setting. These LSPs establish trusted alliances, enabling the shared execution of

delivery tasks. Specifically, we address a prevalent challenge in urban logistics: the

daily operational tasks of LSPs involve collecting goods from one location and de-

livering them to another, with each request featuring a delivery time window. We
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formulate this problem as a Mixed-Integer Programming (MIP) model. To man-

age the substantial daily delivery volume effectively, we introduce a two-stage ap-

proach. First, we determine the allocation of LSP requests among alliances, fol-

lowed by vehicle routing optimization within each alliance. In the first stage, we

propose machine learning models to learn the values of delivery costs from past

delivery data, which serve as a surrogate for deciding how requests are assigned. In

the second stage, we introduce a tabu search heuristic. Experimental results on a

standard dataset show that our proposed learning-based optimization framework

is efficient and effective in outperforming the direct use of tabu search in most in-

stances. Using our approach, we demonstrate that substantial savings in costs and,

hence, improvement in sustainability can be achieved when these LSPs form al-

liances and requests are optimally assigned to these alliances.

2. We investigate the combined demand and supply management for on-demand food

delivery services by adjusting the radius of their customer service and driver dis-

patch areas. For each restaurant, the platform needs to decide the (1) customer ser-

vice area, i.e., the radius of the area within which the customers can see the restau-

rant’s information and order food from it; and (2) driver dispatch area, i.e., the

radius of the area within which the drivers can see the restaurant’s information

and deliver orders from it. Leveraging a real dataset from a food delivery platform,

we propose a data-driven optimization framework that combines machine learning

methods for order delivery time estimation and an MIP model for the optimization

of the two areas at the same time. The objective is to maximize the total number

of orders served with minimal impact on the average order delivery time. Exten-

sive experiments using real-world data demonstrate that the proposed framework

outperforms several benchmarks in current practice.

3. We focus on the optimization of order dispatching time for on-demand food de-

livery services by dynamically optimizing the time intervals for dispatching orders

on such on-demand food delivery platforms. This study is motivated by a practical
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challenge encountered by a food delivery platform, wherein customer orders need

to be allocated to couriers responsible for collecting food from designated centers

and delivering it to customers within specified time windows. This setting poses a

dynamic pickup and delivery problem where prompt delivery without delays is the

critical objective. Specifically, we address this challenge by formulating the problem

as a Markov decision process (MDP) and proposing a two-stage framework that

integrates a multi-agent reinforcement learning (RL) approach for order dispatch-

ing and a heuristic method for courier routing. The multi-agent reinforcement

algorithm determines the optimal timing for each order’s entry into the match-

ing pool, while the routing method incorporates orders into the couriers’ delivery

routes for pickups and deliveries. Extensive experiments were conducted, evaluat-

ing our approach using real-world data and a well-designed simulator. The results

demonstrate the superior performance of our proposed framework compared to

the currently practiced strategy.

In summary, this thesis addresses new research problems arising from on-demand de-

livery, drawing upon new methods in AI. Experiments conducted with real-world ur-

ban delivery data demonstrate that our proposed data-driven optimization approaches

can significantly enhance operational efficiency and reduce delivery costs. This thesis also

opens various opportunities for future research, as discussed in the concluding chapter.

Specifically, those emerging approaches that leverage machine learning and deep learn-

ing to develop optimization methods for vehicle routing problems from end to end for

real-world urban delivery scenarios.
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Chapter 1

Introduction

Urban logistics plays a pivotal role in maintaining the city’s functionality by ensuring

timely delivery of goods to both individuals and businesses. The rapid urbanization and

the surge in e-commerce have led to heightened research interest in addressing operational

challenges within urban logistics. These challenges include, but are not limited to, vehi-

cle routing in last-mile delivery, resource allocation at urban freight consolidation centers,

and order dispatch mechanisms for on-demand food delivery services. Researchers hail-

ing from diverse fields, including Operations Research (OR), Machine Learning (ML),

and economics, have collectively directed their focus toward these issues. To tackle these

challenges, scholars within the OR community have devised an array of optimization

techniques, all aimed at enhancing the operational efficiency of urban logistics systems.

Simultaneously, the availability of extensive data collections presents promising prospects

for ML researchers to formulate data-driven decisions through effective data mining tech-

niques for prediction tasks. Presently, there is a concerted effort to foster synergy be-

tween the fields of OR and ML, with a particular focus on advancing the integration of

data and machine learning techniques into conventional models for urban logistics opti-

mization. This thesis draws inspiration from the data-driven optimization frameworks,

such as predict-then-optimize framework introduced in [33], the integrated predictive-

and-prescriptive modeling framework in [10] and end-to-end optimization via deep Rein-

forcement Learning (RL) [112]. Our primary objective is to explore data-driven decision-
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making optimization strategies tailored to address the challenges of urban logistics within

dynamic and complex urban environments.

Thus, motivated by the growing enthusiasm for employing the aforementioned

frameworks to address the burgeoning challenges within urban delivery operations, this

thesis endeavors to devise novel methodologies that assimilate pertinent techniques, ul-

timately aiming to enhance operation efficiency for the delivery systems within the data-

driven framework context.

1.1 Motivations Problems and Contributions

Within the realm of modern urban logistics, this thesis finds its specific motivation in

addressing two real-world applications: collaborative urban delivery and on-demand food

delivery.

Collaborative urban delivery, involving multiple entities sharing resources and infras-

tructure, has gained immense importance as cities grapple with traffic congestion, pol-

lution, and the increasing demand for sustainable deliveries. The quest for optimal col-

laborative vehicle routing, and resource allocation within this complex framework calls

for intelligent, data-driven strategies capable of harnessing the power of real-world data

sources to unlock cost savings, minimize environmental impact, and enhance overall ser-

vice quality.

On the other hand, the surge in on-demand food delivery services has reshaped con-

sumer expectations, placing a premium on timely, accurate, and reliable deliveries. Meet-

ing these expectations necessitates dynamic decision-making that can adapt to different

supply and demand scenarios. The utilization of data-driven optimization methods can

have a significant impact on facilitating the intricate coordination between restaurants,

delivery drivers, and customers, ultimately resulting in the efficient administration of the

entire process and ensuring a smooth dining experience.

This thesis embarks on a journey to explore, develop, and apply data-driven ap-

proaches to address the multifaceted challenges within collaborative urban delivery and
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on-demand food delivery.

1.1.1 Collaboration in Urban Delivery

Collaboration within the logistics industry has been a recurring theme in urban logistics

research, typically realized through two distinct approaches: vertical and horizontal col-

laboration. Vertical collaboration often entails the participation of various stakeholders,

such as suppliers, logistics service providers, and customers, within the context of last-

mile delivery services. An exemplary form of vertical collaboration is the urban consolida-

tion center, facilitating the separation and consolidation of goods by suppliers and carri-

ers for subsequent delivery. In contrast, horizontal collaboration exclusively encompasses

logistics service providers (LSPs) operating at the same supply chain tier. As an illustra-

tion, there exist numerous small-scale LSPs offering pickup and delivery services with

constrained vehicle fleets within a highly competitive environment. LSPs execute their

daily operations, involving the pickup of goods from one location and their subsequent

delivery to another, all while adhering to specified delivery time windows. In the absence

of cooperation, each LSP independently devises route plans for their respective requests.

With the overarching goal of enhancing delivery efficiency and cost-effectiveness, we ex-

plore a collaborative approach involving the existence of multiple alliances in the market,

enabling LSPs within the same alliance to pool requests and collectively determine rout-

ing decisions. Nevertheless, as the number of participating LSPs and requests within an

alliance expands, the complexity of solving the joint routing problem escalates. Within

this thesis, we formulate the collaborative delivery challenge as a Multi-Alliance Multi-

Depot Pickup and Delivery Problem with Time Windows (MAD-PDPTW) problem

and introduce a novel learning-based optimization framework to address it.

1.1.2 On-Demand Food Delivery Service

On-demand food delivery platforms like Grab Food, Uber Eats, and Meituan have experi-

enced rapid growth in recent years, particularly during the COVID-19 pandemic. These
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platforms enable customers to order their preferred meals from restaurants using mo-

bile applications. According to the data from Meituan, the total daily orders placed by

customers are over 30 million. The food delivery service presents significant challenges,

primarily stemming from the complexity of orchestrating the supply of delivery resources

to align with fluctuating and unpredictable customer demand within exceptionally strin-

gent timeframes. For instance, the majority of restaurants are mandated to complete food

deliveries within a one-hour. Extensive literature review reveals that much of the research

in food delivery operations concentrates on the development of optimization algorithms

aimed at addressing order assignment and driver routing challenges. The objective is to ef-

ficiently allocate prepared orders to drivers and formulate optimal routes to ensure punc-

tual deliveries. Simultaneously, achieving a balance between supply and demand in the

context of food delivery has garnered considerable attention. n this thesis, our primary

focus centers on addressing two intricate operational challenges within the on-demand

food delivery service domain: (1) the problem of optimizing area sizing for effective supply

and demand management; and (2) the challenge of determining the optimal dispatching

time intervals for order assignment and driver routing.

Area Sizing Optimization

Typically, supply and demand management techniques rely on dynamic pricing strate-

gies, which entail modifying the delivery charges for specific restaurants. However, the

efficacy of this approach may be limited in practice due to the relatively low prices asso-

ciated with deliveries. Recently, alternative strategies have emerged to address the supply

and demand equilibrium in food delivery services by directly modifying a restaurant’s cus-

tomer service area. For instance, Meituan introduced an innovative mechanism to define

the delivery scope, represented as a spatial polygon serving as the customer service area,

for restaurants in [29]. In this thesis, we expand upon this approach by exploring inte-

grated demand and supply management strategies for on-demand food delivery services.

Our research encompasses modifications not only to the customer service area on the de-

mand side but also to the driver dispatch area on the supply side. Chapter 5 introduces a
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data-driven optimization framework that integrates machine learning techniques for es-

timating order delivery times and a Mixed-Integer Programming (MIP) model for simul-

taneous optimization of both the demand-side customer service area and the supply-side

driver dispatch area.

Dynamic Matching Time Interval Optimization

Conventional order dispatching strategies implemented in practical settings (e.g., [151])

typically involve fixed time intervals (e.g., every 10 minutes), within which the platform

accumulates all incoming orders and consolidates them into a matching pool. Subse-

quently, the orders are collectively assigned to couriers for simultaneous delivery. How-

ever, recent investigations in the realm of ridesourcing (e.g., [57, 140]) have revealed that

by extending the dispatching time interval, it is possible to optimize the allocation of

couriers to passengers, leading to reduced wait times for both parties involved. Draw-

ing inspiration from the efficacy of extended dispatching time intervals in ridesourcing,

our research concentrates on the dynamic optimization of order dispatching time inter-

vals for on-demand food delivery services. Specifically, our focus lies in determining the

opportune moment for orders to enter the matching pool to initiate the dispatching pro-

cess, given their arrival on the platform.

1.1.3 Contributions

This thesis presents two principal contributions. Firstly, we delineate and formalize the

novel and intricate operational challenges entailed in collaborative urban delivery and on-

demand food delivery services. Secondly, we introduce innovative data-driven optimiza-

tion approaches that intelligently integrate established frameworks to effectively address

these emerging problem variants, which, owing to their complexity and the dynamic na-

ture of urban environments, often pose challenges beyond the capabilities of traditional

optimization methods, such as heuristic approaches.
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1.2 Structure of the Thesis

This thesis is organized as follows:

• Chapter 2 delves into the foundational concepts and prior research related to the

general and dynamic aspects of pickup and delivery challenges. It also encompasses

a detailed examination of various data-driven optimization strategies that have been

investigated to tackle complex operational issues in urban logistics. These frame-

works are pivotal for enhancing efficiency and responding to the urban delivery

systems.

• In Chapter 3, we offer a comprehensive exposition of background information and

relevant research pertaining to both collaborative urban delivery and on-demand

food delivery service challenges. Additionally, we delve into optimization method-

ologies devised to address these operational intricacies. We furnish an in-depth elu-

cidation of these two problem domains, accompanied by an extensive examination

of pertinent research in these areas.

• Chapter 4 delves into the urban delivery challenge within alliance-based logistics,

cast as a collaborative pickup and delivery problem. We introduce an innovative

learning and optimization framework designed to resolve this complex issue. We

substantiate the importance of the introduced learning and optimization frame-

work, showcasing its ability to achieve reduced delivery costs while demanding

less computational time. Additionally, we extract valuable managerial insights rel-

evant to Logistics Service Providers (LSPs). Furthermore, this research has gar-

nered recognition, being accepted for presentation at the International Conference

on Computational Logistics 2021 and the 30th International Joint Conference on

Artificial Intelligence (IJCAI-21) workshop on Data Science meets Optimization.

• Chapter 5 centers on the area size optimization challenge within on-demand food

delivery services. Here, the platform dynamically orchestrates the equilibrium be-

tween supply and demand by flexibly adapting the radius of both its customer ser-
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vice and driver dispatch areas. We introduce a data-driven optimization framework

that amalgamates machine learning techniques for order delivery time estimation

with mathematical programming to concurrently optimize both the customer ser-

vice and driver dispatch areas. Furthermore, we subject our approach to rigorous

evaluation utilizing a real dataset obtained from a food delivery platform, affirming

the superior performance of the proposed framework when compared to several

existing benchmarks. The paper version is under review in journal Transportation

Research Part C: Emerging Technologies.

• In Chapter 6, we focus on the dynamically optimizing the time intervals of dis-

patching orders for on-demand food delivery platforms. Specifically, we address

this challenge by formulating the problem as a Markov decision process (MDP)

and proposing a two-stage framework that integrates a multi-agent reinforcement

learning (RL) approach for order dispatching and a heuristic method for courier

routing. The multi-agent reinforcement algorithm determines the optimal timing

for each order’s entry into the matching pool, while the routing method incorpo-

rates orders into the couriers’ delivery routes for pickups and deliveries. Extensive

experiments were conducted, evaluating our approach using real-world data and

a well-designed simulator. The results demonstrate the superior performance of

our proposed framework compared to the currently practiced strategy. The paper

version is under review in journal Transportation Research Part E: Logistics and

Transportation Review.

• In the final chapter, Chapter 7, we bring this thesis to a close by presenting our

concluding thoughts on its primary contributions and delving into prospective

avenues for future research that can arise from the endeavors undertaken in this

thesis.
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Figure 1.1: The organization of the dissertation.
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Chapter 2

Background

In this chapter, we commence by establishing essential terminology and notation, a foun-

dational step to enhance the readability and comprehension of this thesis. Subsequently,

we delve into the exposition of background information and related research within the

domain of urban logistic operational problems, along with the utilization of data-driven

approaches to address such challenges. Finally, we offer comprehensive insights into the

motivating problems and their associated scholarly contributions.

2.1 Terminologies

To enhance clarity and facilitate a deeper understanding of the content within this thesis,

we provide comprehensive definitions and discussions of key terminologies in the follow-

ing paragraphs.

Data-driven Optimization. In this thesis, we define data-driven optimization as

the branch of optimization methods that primarily uses data as a source of information

and knowledge to formulate and solve optimization problems. Data-driven optimiza-

tion approaches are pivotal in designing models, solving problems, and making decisions

to improve operational efficiency and effectiveness. In data-driven optimization, machine

learning and statistical methods are often integrated to discern patterns and insights from

data, refining the optimization models and enhancing predictive accuracy. The imple-
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mentation of these approaches is crucial for dealing with uncertainties and variability

in complex systems, providing a robust framework for informed decision-making and

enabling organizations to adapt to changing environments and achieve operational excel-

lence. In subsequent subsections, we shall furnish a detail introduction to the data-driven

optimization frameworks employed within this dissertation.

Dynamic. In the context of urban delivery services, the term “dynamic” signifies the

constant evolution and adaptability required to address the multifaceted challenges in-

herent to city logistics and operations. From an OR perspective, dynamic approaches are

essential to contend with the uncertainties and real-time variations prevalent in urban en-

vironments, such as fluctuating demand, traffic conditions, and route alterations. These

dynamic elements necessitate the development of advanced, data-driven optimization

models and algorithms that can rapidly adjust to changing inputs and constraints, pro-

viding real-time, optimal solutions for delivery routing and scheduling. Take the DPDP

as an example, the general structure of such dynamic problem is illustrate in Figure 2.1.

In a dynamic setting, some of the input data (e.g., orders locations, time windows) are

revealed or updated during the period of time in which operations take place (drivers are

delivery orders follow by the predetermined delivery plans). Contrary to a static PDP

where the planning horizon is predetermined, the planning horizon of a dynamic PDP

may potentially be unbounded. Consequently, resolving a dynamic problem does not

yield a static output. Instead, it necessitates the development of a optimization strategy

that, utilizing the information unveiled over time, delineates the requisite actions, which

is represented by the step 3 in Figure 2.1 to be executed as time progresses. Step 3 distinctly

signifies the central research focus of this dissertation, posing critical inquiries regarding:

the methodologies for employing real-world data resources to apprehend and forecast the

intricate dynamics inherent in urban logistic delivery services, and the strategies for imple-

menting pioneering data-driven optimization techniques, such as reinforcement learning,

with an aim to augment the overall operational efficiency of specified urban logistic systems.
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1. Drivers with pre-
determinated delivery plans 

2. Orders arriving
dynamiclly

New orders Optimizer

3. Re-optimiztion 4. Driver with updated
delivery plans

5. Repeat Steps 1 - 4

Figure 2.1: An illustration of the general structure of a dynamic pickup and delivery prob-
lem in urban delivery service.

2.2 Pickup and Delivery Problem

The Pickup and Delivery Problem (PDP) is a classic problem in the field of operations

research and urban logistics optimization. It involves determining the most efficient way

to transport goods or items between a set of pickup locations and their corresponding de-

livery locations, typically using a fleet of vehicles. The PDP can be defined as a variant or

extension of Vehicle Routing Problem (VRP). The VRP made its initial introduction in

the work by [23]. For an in-depth exploration of VRP, its various problem variants, and

solution methodologies, we direct interested readers to the comprehensive overview pro-

vided in [118]. The general PDP was first introduced in [108]. In the PDP, each pickup

location is paired with a corresponding delivery destination. The primary objective is to

determine optimal routes for a fleet of vehicles, facilitating the collection of items at their

designated pickup points and their subsequent delivery to corresponding destinations.

This optimization process aims to minimize specific objective functions, including total

distance traveled, total time, and total cost. Crucial attributes and factors to contemplate

in the context of the PDP encompass:

• Vehicle Capacities: Each vehicle possesses a finite carrying capacity, and it is im-

perative that the aggregate demand for items to be picked up remains within this

stipulated capacity.

• TimeWindows: Temporal limitations can be linked to the timing of pickups and

deliveries. For instance, a pickup point may have restricted accessibility within spe-

cific timeframes.

• Multiple Vehicles: Typically, multiple vehicles are available for utilization, and the
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challenge lies in determining the appropriate vehicle to allocate for each corre-

sponding pickup and delivery pair.

• Objective Function: The goal is to minimize a selected measure of cost, potentially

comprising the total distance traversed, the overall time consumed, or an amalga-

mation of assorted expenses, including vehicle operational costs and driver remu-

nerations.

The PDP boasts myriad applications within the realm of urban logistics, encompass-

ing E-commerce deliveries, on-demand food delivery services, and waste collection, to

name a few. A common refinement of the traditional PDP, in the aforementioned ap-

plication scenarios, is the dynamic PDP (DPDP), which accommodates the dynamic na-

ture inherent in real-world logistics operations. In such practical scenarios, new pickup

and delivery requests may emerge progressively, complicating the problem due to its dy-

namic essence. Unlike the traditional PDP, which necessitates predefined route planning,

the DPDP demands instantaneous decision-making to integrate emerging requests into

existing routes or to formulate new routes promptly. Additionally, uncertainties often

associated with the arrival times, locations, and attributes of new requests augment the

challenges in decision-making.

Attaining an optimal solution to the DPDP represents a significant computational

challenge, prompting researchers to develop an array of algorithms and heuristics in-

tended to uncover near-optimal solutions efficiently. These solutions contribute to en-

hanced efficiency, reduced transportation costs, and improved customer service in deliv-

ery operations. For a more comprehensive discussion on the DPDP, general issues, and

solution strategies, we direct readers to [8, 15].

2.3 Data-driven Optimization Frameworks

In OR, data-driven optimization frameworks refer to structured approaches that utilize

empirical data to inform, validate, and refine decision-making processes and optimiza-
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tion models. These frameworks leverage vast amounts of real-time and historical data

to uncover patterns, relationships, and insights, enabling the development of more ac-

curate, robust, and effective optimization models for solving complex operational prob-

lems. This thesis draws inspiration from the existing data-driven optimization frame-

works, such as predict-then-optimize framework [109, 85], the integrated predictive-

and-prescriptive modeling framework [10] and end-to-end optimization via deep Rein-

forcement Learning (RL) [112]. Our primary objective is to explore data-driven decision-

making optimization strategies tailored to address the challenges of urban logistics within

dynamic and complex urban environments. We provide a concise introduction to these

data-driven frameworks in following subsections.

2.3.1 Predict-then-optimize

The “predict-then-optimize” framework is a decision-making approach commonly used

in the field of operations research and optimization. It combines predictive modeling

with optimization techniques to make better decisions in situations where there is uncer-

tainty or variability in the underlying data. Typically, as described in [33], this framework

comprises two distinct phases: the prediction step and the optimization step. During

the prediction step, the framework estimates the unknown parameters related to an op-

timization problem, while the subsequent optimization step employs these predictions

to solve the underlying optimization problem. As an illustrative example, consider the

last-mile delivery problem within urban logistics, characterized by the recurrent occur-

rence of solving a vehicle routing problem with multiple daily resolutions. Initially, a

well-trained prediction (e.g., Machine Learning) model furnishes an estimate of travel

time. This estimate relies on current traffic conditions, weather, time, and other pertinent

factors. Subsequently, the routing algorithm employs the predicted travel time as input

to determine the most optimal delivery routes for drivers. We now describe the “Predict-

then-optimize” framework in practice in a mathematical optimization way. Consider an

optimization problem of interest with a linear objective function cTx, where the deci-
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sion variables x ∈ Rn are precisely defined and part of the cost parameters c ∈ Rn in

the objective function or part of the input parameters A ∈ Rm×n and b ∈ Rm are

unavailable.

min cTx (2.1)

s.t. Ax = b (2.2)

x ∈ Rn (2.3)

Typically, if the undetermined parameters (c,A,b) can be initially discerned from

historical data through the application of trained ML models, then resolving this op-

timization problem can be substantially facilitated. We describe the “predict-then-

optimize” framework in Figure 2.2.

Machine Learning
Models

Historical
Data

Learn unknown input parameters from the data

unknown parameters

Figure 2.2: An illustration of the “predict-then-optimize” framework.

Recently, [33] proposed a novel data-driven framework termed “Smart Predict-then-

Optimize” (SPO) aimed at aligning the objectives of prediction and optimization [33].

Differing from the standard “predict-then-optimize” framework, the SPO approach

specifically addresses the decision error resulting from inaccurate predictions by introduc-

ing a loss function that measures this discrepancy. To address computational challenges

in model training, they have developed a convex surrogate loss function. Complementing

this, El et al. [32] offer a range of generalization bounds for the SPO loss function. Ex-

tending the application of this framework, Mandi et al. [81] explored its utility in solving

discrete optimization problems more realistically. The SPO framework has been further

adapted to address real-world transportation problems, including ship maintenance plan-

ning [116], efficient ship inspection [136], and traffic signal control [139].
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2.3.2 Integrated predictive-and-prescriptive

The integrated predictive and prescriptive framework is a modeling paradigm that seam-

lessly integrates two crucial components: a prediction model and an optimization model

within a unified framework. This framework enables researchers and practitioners to

incorporate machine learning models into an optimization context. The primary in-

novation lies in offering modeling constructs that enable the explicit incorporation of

widely employed predictive models, along with their associated characteristics, as both

constraints and variables within the optimization model. The integration of ML tech-

niques and mathematical optimization has gained considerable scholarly interest, as evi-

denced by notable works like [83, 2]. Several software packages [10, 16] and the platform

introduced in [92] have been developed to facilitate a more profound integration between

predictive and prescriptive analytics. The integrated predictive-and-prescriptive model-

ing framework introduced by [10] aims to solve an optimization problem as follows:

max
x

n1∑
j=1

cjxj +

n2∑
k=1

dkyk (2.4)

s.t.

n1∑
j=1

aijxj ≤ bi, ∀i ∈ {1, · · · ,m} (2.5)

yk = gk(α
k
1, · · · , αk

pk
; θk), ∀k ∈ {1, · · · , n2} (2.6)

αk
l = ekl · x, ∀l ∈ {qk + 1, · · · , pk}, k ∈ {1, · · · , n2} (2.7)

xj ∈ Xj, j ∈ {1, · · · , n1}. (2.8)

The framework consider two set of decision variables: (1) regular variables x =

(x1, x2, · · · , xn1), and (2) predicted variables y = (y1, y2, · · · , yn2). Each variable

xj belongs to a finite or continuous set Xj and are constrained via linear inequalities.

The predicted variables yk are set by predictive (e.g., machine learning) models, each

predicted variable yk is associated with a pre-trained predictive model gk (e.g., linear

regression, decision tree or neural network) with trained parameters θk, input features
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αk = (αk
1, · · · , αk

pk
), where pk denotes the number of features for model gk. Note that

the features are divided into two parts, the first qk (1 ≤ qk ≤ pk) features are fixed and

given, and the remaining pk − qk features are regular variables determined by equation

(2.7). ekl is a n1-length binary unit-vector with a 1 in the position of the corresponding

regular variable and 0 elsewhere. Readers can refer to [10] for details. We illustrate the

“Integrated predictive-and-prescriptive” framework in Figure 2.3.

Machine Learning
Models

Historical
Data

Integrate the ML models into the optimization model as a
unified decision-making framework

Objective function

Constraints

Figure 2.3: An illustration of the “integrated predictive and prescriptive” framework.

2.3.3 Reinforcement Learning

In recent years, the application of Reinforcement Learning (RL) has emerged as a ground-

breaking approach to tackle complex end-to-end optimization problems across various

domains. The adaptability and capacity of RL to learn optimal strategies through in-

teraction with dynamic environments have made it particularly effective in data-driven

optimization scenarios for urban environments, such as traffic signal control [50], rail-

hailing marketplace [105], logistics and supply chain management [137]. RL is usually

used to solve sequential decision-making problems, which is the Markov decision process

(MDP). RL and MDP are pivotal in the realm of decision-making under uncertainty. RL,

symbolized by the interaction between an agent and an environment, revolves around

maximizing cumulative rewards E(Gt|St = s). The agent’s learning mechanism, de-

scribed through sequences of states s, actions a, and rewards r, is effectively modeled

using MDP. An MDP can be defined by a tuple (S,A, P,R). In this context, the agent

observes the current state s ∈ S, takes an action a ∈ A, transitions to a new state s′ ∈ S

based on the probabilistic p(s′|s, a), and receives a immediate reward r(s, a). The ob-
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jective is to determine a optimal policy π∗, which is a mapping from states to actions

(s, a), that maximizes the expected cumulative reward. RL is a robust method for ad-

dressing complex decision-making problems across various domains. We illustrate the

MDP framework in Figure 2.4 and summarize the common notation used in Table 2.1.

Environment

Agent

ActionState Reward 

Figure 2.4: An illustration of the MDP framework, adapted from [112].

In general, there are two main approaches to train our agent to find this optimal pol-

icyπ∗, value-based and policy-based approaches. In the value-based paradigm, algorithms

like Q-learning endeavor to compute a value function V (s) or action-value function

Q(s, a). These functions capture the expected cumulative reward starting from state s

or upon taking action a in state s, respectively. An optimal policy π∗(s) is subsequently

derived from these values. Conversely, policy-based methods, exemplified by techniques

like policy gradient, operate by directly optimizing the policy function π(s) without the

intermediary of a value function.

2.4 Problems Settings

In this section, we discuss the comprehensive descriptions of the motivating problems

and addressing potential data-driven optimization approaches to such problems.
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Table 2.1: Notation for MDP and RL.

Notation Description

S Set of states
A Set of actions
R Set of rewards
P Probability transition model
t Discrete time step in the planning time horizon
π Policy (decision making rule)
π∗ Optimal policy
π(s) Action taken in state s under a deterministic policy π
St State at time t
At Action at time t
Rt Reward at time t
vπ(s) Value of state s ∈ S under policy π
v∗(s) Value of state s ∈ S under policy π∗
qπ(s) Value of taking action a at state s ∈ S under policy π
q∗(s) Value of taking action a at state s ∈ S under policy π∗
Gt Reward following time t
p(s′|s, a) Probability of transition to state s′ from state s
r(s, a) Expected immediate reward from state s after take action a
V (s) Estimate of state-value function
Q(s, a) Estimate of action-value function

2.4.1 MAD-PDPTW

We consider a new variant of the collaborative urban delivery problem which is Multi-

Alliance Multi-Depot Pickup and Delivery Problem with Time Windows (MAD-

PDPTW). In the market, numerous small logistics service providers (LSPs) specialize in

providing urban pickup and delivery services. In pursuit of additional delivery cost re-

duction, these LSPs engage in collaborative efforts to establish various alliances. Within

an alliance, LSPs operate with a shared distribution center, commonly referred to as a de-

pot, and jointly utilize vehicles for their operations. Orders from LSPs belonging to the

same alliance are consolidated and delivered collectively. It is important to highlight that

an individual LSP may opt to participate in multiple alliances to realize more substantial

cost reductions. Starting from the perspective of a third-party platform that facilitates

these alliances, the primary objective is the minimization of the overall distribution cost,

which is equivalent to the total delivery distance. To provide a more comprehensive un-

18



derstanding of this matter, we illustrate this new in Figure 2.5. We propose a two-stage

learning and optimization approach which follows the predict-then-optimize framework

to solve this problem.

Alliance 1

Alliance 2

Alliance 3

Figure 2.5: An simple illustration of the MAD-PDPTW.

2.4.2 Restaurant Area Sizing Optimization

We introduce a new approach for balancing the supply and demand for on-demand food

delivery service. For each restaurant in a specified operating time horizon, considering

from the platform perspective, we need decide the (1) customer service area (CSA), the ra-

dius of the surrounding area within which customers can see the restaurant’s information

and order food from it; and (2) driver dispatch area (DDA), the radius of the surround-

ing area within which drivers can see the restaurant’s information and deliver orders from

it. We endeavor to mitigate the issue of supply-demand imbalance in the context of food

delivery for restaurants by dynamically adjusting both CSA and DDA simultaneously.

Our primary objective is to maximize the served order quantity, concurrently ensuring

that the average delivery time adheres to predetermined specifications. We named this

problem as Restaurant Area Sizing Optimization (RASO) problem, and give an illustra-

tion in Figure 2.6. We proposed a data-driven optimization approach with the integrated

predictive-and-prescriptive modeling framework to solve this problem.
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restaurant

customer

Customer Service Area

restaurant

driver

Driver Dispatch Area

Figure 2.6: A simple illustration of the restaurant’s CSA and DDA.

2.4.3 Dispatch Time Interval Optimization

We address the order dispatch challenge in on-demand food delivery services and intro-

duce a novel dispatching strategy through the dynamic optimization of order dispatching

time intervals. In this context, orders, accompanied by pickup and delivery locations and

stipulated delivery times (e.g., 45 minutes) set by the platform, arrive dynamically within

a planning horizon. We define the “matching pool” as a dynamic reservoir comprising

available orders placed by customers awaiting dispatch to drivers for pickup and deliv-

ery. Approaching the problem from the platform’s perspective, we aim to determine: (1)

the optimal timing for releasing orders into the matching pool, and (2) the most efficient

method to allocate orders in the matching pool to available drivers. Our primary goal

is to curtail the total delivery distance for drivers while maintaining a high service level

for processed orders and adhering to the order delivery times. To address this challenge,

we advocate a two-stage optimization framework utilizing reinforcement learning tech-

niques.
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Chapter 3

Literature Review

In this chapter, we commence by providing an introduction to the background informa-

tion and the existing body of research that addresses operational challenges within collab-

orative urban delivery and on-demand food delivery services. Subsequently, we conduct

a comprehensive review of the extant literature to pinpoint research gaps.

3.1 Collaborative Urban Delivery Problems

This section offers a concise overview of prior studies that center on logistics collaboration

and distance approximation within the context of vehicle routing problems (VRP). Lo-

gistics collaboration has been a prominent subject within urban logistics studies, typically

categorized into two forms: vertical and horizontal collaboration [107]. In this thesis, our

primary focus lies on horizontal collaboration, which entails the cooperation of logistics

service providers (LSPs) operating at the same supply chain tier. A comprehensive exam-

ination of the prospects and challenges associated with horizontal collaborative logistics

services was undertaken by [21]. They conducted a survey involving 1,537 logistics service

providers (LSPs) in Belgium, and the results indicated that the majority of LSPs hold the

belief that collaboration can lead to enhanced profitability and service quality.

Horizontal Collaboration: Numerous studies on horizontal collaboration within

logistics systems have been conducted in recent decades. Interested readers can find more
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comprehensive information in [38] and [123]. These studies can be broadly categorized

into two main themes: (1) the development of optimization models and mechanisms for

collaborative network planning and design, aimed at assisting Logistics Service Providers

(LSPs) in profit maximization and cost reduction; and (2) the introduction of cooperative

and non-cooperative game theory approaches for equitable cost/gain sharing, facilitat-

ing the establishment and sustainability of improved collaborations. Our study will pri-

marily concentrate on optimization models pertinent to collaborative multi-LSP delivery

problems, and the literature review will be conducted accordingly. [9] introduced a de-

centralized control and auction-based exchange mechanism aimed at maximizing overall

profits through collaborative efforts among individual carriers. [60] pursued a similar line

of research, focusing on centralized control with iterative auctions designed to minimize

the distance traveled with empty vehicles. [22] investigated a pickup and delivery vehi-

cle routing problem with time windows (PDVRPTW) with the objective of minimizing

the overall delivery cost. [63] examined the pickup and delivery problem with requests

exchange, aiming to maximize total profits. [95] addressed a multi-depot vehicle routing

problem with the objective of minimizing the total traveled distance, employing a local

search method. In contrast to request exchange or vehicle sharing, [37] introduced a novel

vehicle routing problem wherein customers can be served by multiple carriers. The objec-

tive is to minimize overall operational costs through such collaborative arrangements. For

a more extensive exploration of various vehicle routing problems within a collaborative

setting, interested readers can consult the survey conducted by [42].

Approximations of Routes: The Vehicle Routing Problem (VRP) has received

considerable attention over the past decade, resulting in the development of numerous

exact and heuristic algorithms aimed at achieving optimal solutions or reducing compu-

tational time. In contrast to optimization algorithms, which aim to obtain optimal or

high-quality solutions, Continuum Approximation (CA) models have emerged as tools

to approximate route distances without tackling the intricacies of solving the complex

routing problem. These CA models offer rapid and reasonably accurate estimates of route

distances, making them valuable in various applications, including terminal design prob-
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lems [93], supply chain distribution network design [68], and collaboration mechanism

design [41]. However, when confronted with large-scale complex problems, most CA ap-

proaches exhibit limited accuracy. Recently, a few studies [69, 91] have turned to machine

learning approaches to directly estimate the total travel distance of routes. In this thesis,

we introduce a machine learning approach designed to estimate the delivery cost for the

Pickup and Delivery Problem with Time Windows (PDPTW). Leveraging the learned

cost estimates, we can seamlessly integrate them into the request assignment procedure,

facilitating the allocation of orders to the appropriate alliances.

As previously discussed, the majority of studies have concentrated on optimizing col-

laborative planning and operational issues from the standpoint of an entire coalition,

where all Logistics Service Providers (LSPs) are part of a single coalition. [146] explored

the problem of decision-making in less-than-truckload collaboration for e-commerce lo-

gistics networks, with the objective of maximizing the total profit of the entire alliance.

To the best of our knowledge, [48] were the pioneers in addressing the coalition config-

uration problem, allowing companies to participate in multiple coalitions (in this thesis,

we prefer to use the term “alliance”) within collaborative transport. They developed an

optimization model to facilitate the identification of the optimal coalition configuration,

thus revealing research gaps through the examination of existing literature. In our thesis,

alliances are introduced as inputs in our model, enabling LSPs within one alliance to col-

laborate on requests and engage in centralized planning for urban delivery services. More

specifically, our focus centers on the optimization of collaborative urban delivery services,

where certain LSPs have the flexibility to engage in multiple alliances.

3.2 On-Demand Food Delivery Service

My thesis are closely related to four streams of literature: (1) supply and demand man-

agement, (2) order dispatching and driver routing, (3) delivery time prediction, and (4)

learning-based methods for on-demand platforms.

Supply and demand management. Customer demand and driver supply are two
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sides of on-demand platforms, which are usually unbalanced. Many scholars paid atten-

tion to supply and demand management in food delivery [125, 67] and ride-sourcing

markets [128], including service area management and dynamic pricing.

In the area of service area management, to the best of our knowledge, [143] are the

first to analyze how service area size impacts the profit of a delivery platform. The au-

thors derive a functional dependency between revenue and service area size and other

parameters, such as customer arrival rate, revenue per customer, compensation per deliv-

ery and miles traveled, and customer satisfaction. [82] also investigates how the service

area, which is called the “service outlet”, affects a store’s supply and demand. [120] study

the dynamic service area sizing problem in an urban delivery and model it as a Markov

decision process, and propose a value function approximation method to decide the ra-

dius of the customer service area. [4] study the customer service area problem and focus

on matching the levels of supply and demand. A mixed-integer programming model is

proposed to determine the optimal service radius that maximizes the number of orders

served. [29] study restaurant delivery scope problem for restaurant using machine learn-

ing algorithms to rank potential delivery scopes and then combinatorial optimization to

select delivery scope. In on-demand ride-sourcing market, [140] investigate the optimal

matching radius with an objective of enhancing system efficiency in terms of passenger

waiting time, vehicle utilization, and matching rate.

In the area of surge pricing, [117] study the dynamic pricing strategy for Online-to-

Offline (O2O) on-demand food service in China from both theoretical and empirical

perspectives. They demonstrate that platforms that employ dynamic pricing strategies

have much more demand than platforms that use static pricing systems. [80] provide

an empirical investigation of the adoption of a dynamic pricing algorithm in an environ-

ment with time-varying demand and firm capacity restrictions in restaurants. They find

that dynamic pricing can reduce demand volatility, which results in an increase in the

proportion of transactions during periods of low demand. [62] investigate the pricing

strategies of online food delivery platforms through the lens of demand-supply interac-

tion models. A mathematical model has been developed to ascertain the optimal service
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charge and wage rate aimed at maximizing profits. [152] adjust the actual supply and

demand through two-sided pricing and constructed a streamlined model to examine the

optimal pricing and compensation for a platform catering to customers sensitive to de-

lays and agents sensitive to income. [6] propose a pricing framework for an on-demand

service platform, and examine how various factors affect the optimal price, wage, and

commission with an objective of maximizing the platform’s profit or social welfare. Nu-

merous studies have investigated the implementation of pricing strategies to regulate sup-

ply and demand in ride-sourcing markets. [13] examine spatial pricing discrimination in

a ride-sharing platform, emphasizing the influence of demand patterns on pricing, prof-

its, and consumer surplus. [154] propose a Mean-field Markov decision process to depict

the dynamics in ride-sourcing systems with mixed agents for spatial-temporal subsidies

to solve the supply-demand imbalance issue. [71] investigates the impacts of the prevail-

ing threshold-based driver incentives on ride-sourcing drivers’ labor supply with extensive

ride-sourcing dataset. Extensive relevant research exists on the pricing and incentive chal-

lenges within the ride-sourcing market, spanning various perspectives, such as pricing for

pooling services [58, 144, 5, 56, 72]; pricing for platform’s regulations [65, 124]; driver

incentives and multi-homing [110, 3, 49]; and third-party platform-integration [153].

Order dispatching and driver routing. Order dispatching is important for on-

demand transportation services such as ride-hailing, ride-sharing, and food delivery. For

ride-hailing, the task is dispatching vehicles to serve passengers; for food delivery, the task

is dispatching drivers with recommendations of delivery routes to deliver food within a

promised time period. Readers who are interested in ride-hailing can refer to [145, 135,

99, 77, 76].

For relevant studies on food delivery services, the order dispatching and driver rout-

ing problem is formalized as meal delivery routing problem (MDRP) in [104], which is

a variant of dynamic pickup and delivery problem (DPDP) and has been studied in re-

cent decades [97]. In a recent study on MDRP, [142] formulate the problem assuming

that the platform has perfect information about order arrivals and solve it using a com-

bined column and row generation approach. [121] formulate the problem as a stochas-
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tic dynamic pickup and delivery problem using a route-based Markov decision process

(MDP). An anticipatory customer assignment policy is proposed to for order dispatch-

ing and vehicle routing. [133] aim to improve the working conditions of drivers by order

dispatching algorithm design. A queuing-model-based algorithm is proposed with the

objective of minimizing the waiting time of drivers while ensuring a good user experi-

ence. In addition, machine learning methods are commonly employed in food delivery

order dispatching and driver routing problem. On can refer to [14, 151, 44, 17, 149].

Delivery time prediction. Delivery time prediction is a variant of the ETA (Esti-

mated Time of Arrival) problem [131, 132, 127]. It estimates travel time between two

points, which is often approximated by analytical functions or predicted using machine

learning and deep learning models. Compared with the traditional ETA problem, de-

livery time prediction in on-demand food delivery services is more challenging since the

delivery time is endogenously affected by the demand and supply in the market. Only

limited works focus on order delivery time prediction in food delivery. [69] develop a

data-driven framework that integrates travel time prediction and order dispatching for a

single restaurant. [51] propose two methods: an offline method that predicts order ar-

rival time based on state features by means of gradient-boosted decision trees (GBDTs),

and an offline-online method that exploits an offline supervised learning approximation

with a deep neural network to perform detailed online simulations in real-time. [44] dis-

cuss a time prediction module that simultaneously predicts order pickup time from the

restaurants, driving time on the road, and delivery time to the customer’s location. In

the context of online retailing, [106] develop a data-driven framework to predict the dis-

tribution of order delivery time and set the delivery time promised to customers using

tree-based machine learning models.

Learning-based methods. We observe that more recent studies recognize the value

of integrating machine learning and reinforcement learning approaches in solving the

operational problems in urban logistics, such as vehicle routing problems and its variants

[88, 59, 55, 27, 31]; driver-passenger matching problem in ride-sourcing market [135,

114, 54, 150, 57, 100]; last-mile delivery [18, 64]; and pickup and delivery problems for
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on-demand food delivery services [155, 14, 73].

[19] solve a driver dispatching problem with a multi-agent reinforcement learning to

maximize the revenue of served requests. This work demonstrates the effectiveness of RL

in practical dispatch problems. [30] model the last-mile package delivery problem as a

MDP and develop a reinforcement learning model to learn order dispatching strategies

from massive passenger data and package data of a crowd-sourcing delivery system. [66]

develop a graph relational leaning approach for large-scale practical DPDP considering

many realistic constraints. Solving a similar problem, [78] present a hierarchical RL so-

lution framework that the upper-level agent dynamically partitions the DPDP into static

sub-problems, then a lower-level agent solves those sub-problems by local search. [35]

proposes a dynamic on-demand crowd-shipping solution based on deep reinforcement

learning. By embedding heuristic strategies and constraints into a double dueling deep

Q-network (DDQN), the optimization of vehicle routing is achieved to improve the ef-

ficiency and cost-effectiveness of crowd-shipping logistics. [70] develop an improved in-

verse reinforcement learning method for food delivery route planning with the consider-

ation of deliverymen’s preferences. To our best of knowledge, [14] is the first one who

study the order dispatching and driver routing by using DDQN to guide the driver to

pickup an order and deliver it to destination. Although the conducted experiments ex-

hibit a certain level of simplicity, they solely focus on the routing aspect of a singular

driver.

3.2.1 Area Sizing Optimization

In Table 3.1, we present an overview of the relevant literature that focuses on the area siz-

ing optimization problem for same-day delivery services (SDD) and food delivery services

(FD). The table delineates the specific characteristics and features explored in the Chap-

ter 5: “Objective” specifies the objective function employed in the optimization model;

“Decision” indicates the decision variables to be optimized; “Methodology” identifies the

modeling method used; “Approach” identifies the primary approaches employed to solve
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the model; “Instance” denotes whether the experiments conducted in the respective stud-

ies employed real-world datasets as instances for evaluation.

In chapter 5, we present the first work to jointly optimize the customer service area

and driver dispatch area, which requires demand estimation and order delivery time pre-

diction. This is a new lever for balancing supply and demand in food delivery services.

3.2.2 Dynamic Dispatching Time Interval

We summarize the most relevant literature that focuses on optimizing the dispatching

(matching) time of orders and drivers (vehicles). The majority of existing research on

optimizing matching time intervals primarily concentrates on the ride-sourcing sector.

[57] proposed a reinforcement learning model to determine the delay time for each or-

der, which aligns with our settings. However, their method uses fixed time intervals and

can only make matches at the end of each interval. [140] propose a spatial probability

model that characterizes the matching process between idle drivers and passengers await-

ing service in a ride-sourcing system. [98] also explore the issue of delayed matching in

ride-hailing services using reinforcement learning algorithms. They advocate for a suite

of policy-based methods, specifically Actor-Critic (AC) and ACER (Actor-Critic with

experience replay), to determine the optimal matching time interval. [126] have devel-

oped an innovative real-time driver-request assignment algorithm that takes into account

both the waiting time in matching decisions and the pickup distance in the assignment

process. However, their model operates under the assumption that drivers remain on the

platform until they are assigned a new request and the customer leaves with a predefined

quitting distribution.

Above studies are applicable only to ride-sourcing platforms, whereas the optimiza-

tion of matching time intervals has also garnered considerable attention outside the ride-

sourcing problems. [138] employ a policy-based approach to identify an optimal with-

holding strategy within the resource allocation problem, specifically aimed at improving

on-site service delivery in urban logistics. [1] study the allocation problem in remote tele-
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operation, they model the problem as online matching in bipartite graphs which allows

for delayed assignment. An LP-based online algorithm algorithm is proposed to solve

the problem with a competitive ratio of 0.5. [134] study the general online resource al-

location problem and have shown that a slight delay can be beneficial in the context of

real-time online decision-making.

In the context of on-demand food delivery services, [148] have developed real-time

matching algorithms. These algorithms strategically postpone the pairing of drivers with

orders to accommodate the variability in food preparation times. Their findings sug-

gest that this intentional delay contributes to a more robust marketplace, which, in turn,

enhances the availability of drivers and orders, thereby reducing the overall operational

costs. Additionally, [78] utilize reinforcement learning techniques to tackle the dynamic

pickup and delivery problem (DPDP), a foundational routing challenge in the sphere of

on-demand delivery services. They propose a hierarchical framework with an upper agent

that dynamically partitions the DPDP into a series of sub-problems to optimize vehicle

routing. Similar to our model, they also take into account soft time window constraints

and vehicle routing decisions. Our model specifically caters to the food delivery service,

considering stricter constraints on order delivery time and driver routing decisions. The

main difference lies in the fact that in our model, each order is treated as an independent

agent capable of deciding when to enter the matching pool, whereas they only permit the

release of all accumulated orders at once. Furthermore, by allowing order re-dispatch,

we have developed a novel heuristic-based driver routing algorithm for order pickups and

deliveries, while they employ a reinforcement learning-based neighborhood search algo-

rithm.
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Chapter 4

A Learning and Optimization

Framework for Collaborative Urban

Delivery Problems with Alliances

4.1 Motivation and Background

With the rapid pace of urbanization, it has become imperative to optimize urban delivery

systems for enhanced capacity and efficiency. The surging demand for deliveries not only

poses challenges for major Logistics Service Providers (LSPs) like Amazon and Cainiao

but also intensifies competition among small and medium-sized LSPs. Given the inherent

uncertainty in daily delivery demands and locations, LSPs encounter operational chal-

lenges spanning from excess idle capacity to shortages in vehicles and manpower.

To address these challenges, one approach is to foster collaboration among logistics

entities. As elucidated by Savelsbergh and Woensel in [107], collaboration or cooperation

is often recognized as a strategic avenue to consolidate freight volumes, ultimately lead-

ing to more efficient and optimal resource utilization. Alliances formed by two or more

companies create opportunities for shared information and resources, enabling the joint

handling of delivery tasks. The subject of collaboration within urban logistics systems

has garnered significant research attention in recent years.
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In this chapter, we study the pickup and delivery routing problem in a collaborative

setting. In particular, we consider the problem that frequently occurs in urban delivery:

LSPs perform their daily operations to pickup goods from one location and deliver to

another location, and each request has a delivery time window. In the absence of collab-

oration, each LSP independently devises route plans for their respective set of requests.

However, in the collaborative routing context, we assume the existence of multiple al-

liances within the market. LSPs belonging to the same alliance have the capacity to share

requests and collectively make routing decisions. For simplicity, we assume that LSPs

within a given alliance utilize a common depot as the base for their vehicle operations.

Additionally, an LSP may choose to participate in more than one alliance, potentially to

cater to different types of goods. Importantly, it is worth noting that this chapter does

not address the coalition structure generation problem, which concerns the partitioning

of agents into mutually exclusive coalitions to maximize the overall total reward over the

long term. Instead, we operate under the assumption that the structure of alliances, in-

cluding the composition of LSPs within each alliance, is predefined and serves as an input

parameter for our model. Our primary focus lies in addressing the operational challenge

of achieving efficient deliveries within an environment where an LSP may be affiliated

with multiple alliances.

From a sustainability perspective, the ideal scenario involves cooperative LSPs,

wherein the planning process optimally operates within an existing alliance structure,

aiming to maximize the overarching system-wide objective of minimizing the total travel

cost. We formulate this complex problem as the Multi-Alliance Multi-Depot Pickup and

Delivery Problem with Time Windows (MAD-PDPTW).

The primary contributions of this chapter can be succinctly summarized as follows:

(1) We introduce a Mixed-Integer Programming (MIP) model, which serves as a for-

mal representation for the MAD-PDPTW; (2) We develop an effective tabu search-based

heuristic method, designed to tackle the complexities of the problem, particularly when

dealing with large instances; (3) To enhance the efficiency of problem-solving, we em-

ploy a two-stage approach, following the predict-then-optimize framework introduced
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in Chapter 1, decomposing the MAD-PDPTW into a sequential process. First, we uti-

lize data to learn the delivery cost, followed by the optimization of request reassignment

and vehicle routing; (4) We highlights the significance of the proposed learning and op-

timization framework, showcasing its ability to achieve lower delivery costs with reduced

computational time. Furthermore, we provide valuable managerial insights for LSPs.

4.2 Problem Formulation

In this section, we present our collaborative urban logistics delivery problem within the

framework of multiple LSPs and multiple alliances. Given that each LSP may have its

specialization in handling various types of goods (e.g., groceries and electronics), which

may or may not be co-loaded within the same vehicle, and each LSP may also maintain

its set of trusted partners, it is plausible to have multiple alliances with participants that

overlap.

Figure 4.1: Multiple alliances with overlapping LSPs.

Figure 4.1 illustrates an example comprising 8 Logistics Service Providers (LSPs) and

3 alliances. Each node represents an LSP, and the presence of an edge between two nodes

signifies the ability of those two LSPs to share requests. In this context, an alliance is de-

fined as a complete sub-graph, where a unique edge connects every pair of distinct vertices.

Specifically, in this example, we have alliances denoted as [2, 3, 4], [1, 2, 5, 6], and [1, 7, 8].

The primary objective of this study is to evaluate the potential advantages of collabora-

tive routing among LSPs, involving the sharing of requests and coordinated planning.

This entails the operation of a centralized platform responsible for determining the opti-

mal assignment of requests within each alliance, with the crucial constraint that requests
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cannot be shared across different alliances.

If this problem is considered comprehensively, it necessitates concurrent decisions

regarding the distribution of LSPs’ requests across various alliances and the routing of as-

signed requests within each alliance. Notably, for even a modest-sized problem instance,

conventional meta-heuristic approaches like Tabu Search might not be computationally

efficient, and as our experimental data indicates, may not yield an effective solution. Be-

fore presenting our mathematical programming model, we first introduce the notation

in Table 4.1.

Table 4.1: Notation.

Notation Description

G A complete direct graph
N Set of all LSPs
A Set of all alliances as well as depots
K Set of vehicles
R Set of all requests, each request r has a pickup node and delivery node
P Set of pickup nodes
D Set of delivery nodes
V Set of all nodes in graph G
Ka Set of vehicles only belong to alliance a
da Depot node for alliance a
[ei, li] Time windows for node i, earliest pickup time and latest delivery time
si Service time at location i
qi Weight of goods to pickup or delivery at node i
cij Travel cost between node i and node j
tik Time node i served by vehicle k
wik Weight of vehicle k after visit node i
Q Vehicle capacity

yijk
Binary variable, 1 if the vehicle k visited node j directly after visited
node i, 0 otherwise

In light of the aforementioned notation, we formalize the MAD-PDPTW as outlined

below:
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min
∑
i∈V

∑
j∈V

∑
k∈K

cijyijk (4.1)

s.t.

∑
i∈V

∑
k∈K

yijk = 1 ∀j ∈ P ∪D (4.2)

∑
i∈V

yijk −
∑
i∈V

yjik = 0 ∀j ∈ P ∪D, ∀k ∈ K (4.3)

∑
i∈V

yidak =
∑

j∈P∪D

ydajk ≤ 1 ∀a ∈ A,∀k ∈ Ka (4.4)

∑
j∈P∪D

yijk −
∑

j∈P∪D

y(i+|R|)jk = 0 ∀i ∈ R, ∀k ∈ K (4.5)

tik + si + cij −M(1− yijk) ≤ tjk ∀i, j ∈ P ∪D (4.6)

ei ≤ tik ≤ li ∀i ∈ P ∪D, ∀k ∈ K (4.7)

tik ≤ t(i+|R|)k ∀i ∈ P (4.8)

tak = 0 ∀a ∈ A,∀k ∈ K (4.9)

wjk ≤ wik + qj +M(1− yijk) ∀i, j ∈ V, ∀k ∈ K (4.10)

wjk ≥ wik + qj −M(1− yijk) ∀i, j ∈ V, ∀k ∈ K (4.11)

wik ≤ Q ∀i ∈ V, ∀k ∈ K (4.12)

yijk = 0 ∀i /∈ Va,∀j /∈ Va,∀k ∈ Ka (4.13)

We categorize the constraints into four distinct groups. The first group focuses on

the flow in and out between each pickup and delivery node. Constraint (4.2) ensures

that each pickup or delivery node is visited exactly once. Constraint (4.3) stipulates that

the same vehicle k must serve each pickup or delivery node. Constraint (4.4) imposes

constraints on each depot and ensures that each vehicle k belongs to depot Kl will start

and back to depot d with at most once. Constraint (4.5) guarantees the pickup node i

and delivery node i+ |R| belonging to one request will be served within the same tour.

The second set of constraints pertains to the visiting precedence of pickup nodes,

delivery nodes, and time windows. Constraint (4.6) represents the Miller-Tucker-Zemlin
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(MTZ) sub-tour elimination constraint. If yijk = 1, then we have tik + si + cij ≤

tjk; otherwise, we establish a constraint with a right-hand side (RHS) set to a sufficiently

large positive value. Constraint (4.7) imposes time window restrictions, ensuring that the

delivery times for each request fall within the specified time window. Constraint (4.8)

enforces a precedence condition that ensures each request is serviced at its pickup node

before the delivery. Lastly, Constraint (4.9) signifies that the arrival time for each vehicle

at the depots is equal to 0.

The third set of constraints pertains to the capacity limitations. Constraints (4.10)

through (4.11) compute the vehicle’s weight after visiting each node. Furthermore, we

establish that qi = −qi+r for i ∈ Rp. Constraint (4.12) stipulates that for each vehi-

cle k, after serving node i, its load cannot surpass the predetermined capacity. The final

constraint concerns request assignment, ensuring that vehicles affiliated with one alliance

are restricted from delivering requests associated with another alliance. In essence, each

alliance assumes responsibility for its own requests.

4.3 Two-Stage Learning and Optimization Frame-

work

The preceding section presents a Mixed-Integer Programming (MIP) model aimed at de-

termining the optimal request assignment and routing for multiple alliances. Within this

MIP model, the decision variable yijk serves a dual purpose: it not only determines the

delivery sequence from node i to node j, but also plays a pivotal role in making decisions

for Logistics Service Providers (LSPs) participating in multiple alliances regarding request

assignment (namely, choosing the alliance for sharing requests). However, it is imperative

to note that the underlying problem is NP-hard, rendering it computationally intractable

for larger instances. To address this challenge, we propose a comprehensive learning and

optimization framework consisting of two distinct stages, encompassing request assign-

ment to vehicle routing.
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Specifically, the first stage focuses on resolving the assignment of requests to alliances

for LSPs participating in multiple alliances (as detailed in Section 4.3.1). Subsequently,

the second stage employs a tabu search-based heuristic algorithm to address the Pickup

and Delivery Problem with Time Windows (PDPTW) for each alliance, incorporating

the assigned requests (as outlined in Section 4.3.2). The entire framework is illustrated in

Figure 4.2.

Figure 4.2: A two-stage learning and optimization framework to solve the MAD-
PDPTW.

4.3.1 Delivery Cost Prediction and Request Assignment

In this subsection, we initially delve into the development of a predictive model for es-

timating the delivery cost associated with each alliance. Subsequently, we employ the

estimated delivery cost as input parameters for the request assignment process.
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Cost prediction: Previous research has introduced approximate analytical formu-

las for TSP and VRP across various application scenarios, as documented in the liter-

ature. However, analytical approaches tend to exhibit suboptimal performance when

confronted with larger problem instances or real-world complexities, such as the Capac-

ity Vehicle Routing Problem with Time Windows (CVRPTW). In light of these chal-

lenges, we turn to machine learning models to forecast the delivery cost in the context

of the Pickup and Delivery Problem with Time Windows (PDPTW). In this study, we

consider the delivery cost as the aggregate travel distance.

To initiate our cost prediction process, we first generate a set of promising features

that encapsulate factors impacting the total travel distance. These predictors can be cat-

egorized broadly based on factors such as the number of locations, the geographical area

covered, inter-node distances, node distribution, time windows, and route quantity. Ta-

ble 4.2 provides an exhaustive listing of all the features incorporated into our learning

model, comprising a total of 19 distinct attributes employed within our prediction model.

Table 4.2: Features for total travel distance prediction.

Features Definitions

f1 Number of locations need to be visited
f2, f3 Min/max distance between customers and depots
f4, f5 Min/max x distance between customers and depots
f6, f7 Min/max y distance between customers and depots
f8 Average distance between customers and depots
f9 Average x distance between customers and depots
f10 Average y distance between customers and depots
f11 Standard deviation of distance between customers (and depots)
f12 Area of the smallest rectangle covering customer locations
f13 Area of the smallest rectangle covering customer and depot locations
f14 Sum of the length of time windows
f15 Standard deviation of the length of time windows
f16 Sum of the length of overlap time windows
f17 Standard deviation of the length of overlap time windows
f18 Total demand/Vehicle capacity ratio
f19 Vehicle capacity/Average demand ratio

Upon extracting the pertinent features for the Pickup and Delivery Problem with

Time Windows (PDPTW), the subsequent step involves obtaining actual solutions for
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the given problem instances, which serve as labeled data. Given the NP-hard nature

of PDPTW, generating a substantial number of exact solutions for this purpose would

present formidable computational challenges. In this study, we circumvent this hurdle by

approximating the best solution using our tabu search algorithm, as expounded upon in

the upcoming section. Experimental results corroborate the efficacy of our algorithm, re-

vealing an average deviation of less than 5% when compared to the best-known solutions.

This lends credence to the accuracy and precision of the labeled data generated through

this approach.

The subsequent phase entails selecting an appropriate machine learning model

amenable to request assignment optimization. In our endeavor, we have explored a broad

spectrum of machine learning regression models, encompassing linear techniques such

as Ordinary Least Squares (OLS), LASSO, and Ridge Regression, as well as nonlinear

models, including Decision Trees and Random Forests. In summation, our aim is to

identify prediction models that strike a balance between exceptional performance and

interpretability. Detailed insights into our model selection process, guided by the afore-

mentioned criteria, are presented in the numerical experiments outlined in Section 5.

Figure 4.3: Illustration of the requests assignment.

Request assignment: It is important to note that in the context of the MAD-
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PDPTW, each request must be exclusively assigned to one alliance. Since requests be-

long to LSPs that may participate in more than one alliances (e.g., LSP 1 in Figure 4.1),

we need to assign each request to an alliance. As shown in Figure 4.3, assume there are

I = {1, 2, ..., |I|} requests to be assigned to the set of alliances A = {1, 2, ..., |A|}.

Assume each request must be served and there is no limit on how many requests each

alliance can have. The request assignment problem is to find a partition of the requests

with the minimum total cost, which can be modelled as the set partitioning problem. Let

the subset j of locations assigned to an alliance a ∈ A be associated with an estimated

delivery cost cj , whose value can be predicted by our machine learning models. Since

this predicted cost may contain errors, we handle the prediction uncertainly via adding

an error term ẽ which represents the prediction error. Consistent with the methodology

employed in [69], we leverage the empirical distribution of ẽ to generate scenarios within

our Sample Average Approximation (SAA) framework.

min Eξ

[∑
j∈Z

(cj + ẽj(ξ))vj
]

(4.14)

s.t.

∑
j∈Z

δijvj = 1 ∀i ∈ I (4.15)

∑
j∈J

vj = |A| (4.16)

vj ∈
{
0, 1

}
(4.17)

Z is the set of all possible partition of requests. Decision variable vj equals to 1 if sub-

set j is selected. δij equals to 1 if request i belongs to subset j, and 0 otherwise. Here, we

can convert the objective function into a mean value formulation 1
|ξ| ·

∑
ξ

∑
j∈Z(cj +

ẽj(ξ))vj . As stated in [25], the expected value (solution of the mean value problem) can

provide a robust solution to original stochastic problem. Constraints (4.15) ensure that

every request is assigned to an alliance and constraint (4.16) ensures the number of se-

lected subsets equal to the number of alliances |A|. The problem involves an exponential
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number of variables (columns) since the number of possible subsets grows exponentially

in the number of requests waiting for assignment. And predict the cost cj of all possible

partition of request is also very time-consuming. Instead of enumerating all the possible

partitions, we provide a simply greedy heuristic approach to solve the request assignment

iteratively. We randomly rank requests sequence of unassigned requests, and assign one

request to one alliance at each iteration. Here, cia denotes the cost for request i assigned to

alliance a, which equals to the predict expected cost: c̃j = 1
|ξ| ·

∑
ξ

∑
j∈Z(cj + ẽj(ξ))vj .

predicted by our machine learning models introduced in cost prediction. In this case,

the problem becomes a simple facility location problem and we can simply assign each

request i to the alliance awith lowest cost cia. Then the total cost equals to
∑

i∈I,j∈J cia.

4.3.2 Tabu Search Algorithm

In this subsection, we first develop an efficient tabu search algorithm to solve the PDPTW

for each alliance. Furthermore, we make minor adjustments by including constraint

(4.13) in the tabu search algorithm during Step 3 when performing insertion and removal

operations. This ensures that candidate requests can only be inserted or removed from

routes (denoted by k) that belong to the same alliances. We can use the adjusted tabu

search algorithm to directly solve the MAD-PDPTW as a baseline method in our numer-

ical experiments in Section 5.

Tabu search [46] is one of the well-known metaheuristics. It takes a potential solution

and searches its neighborhood iteratively to find improved solutions. It has been success-

fully applied to various routing problems [113, 20]. In what follows, we introduce the full

framework of our algorithm, including initial solution construction and the tabu search

algorithm. The procedure to construct an initial solution s0 is described here. We con-

struct the initial solution s0 where not all the constraints defined in PDPTW need to be

satisfied. Given the request setR, pickup node setP , delivery node setD, and available ve-

hiclesK as inputs, for each vehicle k ∈ K , we iteratively select request c from the pickup

set P and check whether it satisfies the earliest pickup time constraint ei ≤ ec ≤ ei+1. If
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yes, we add both the pickup node and delivery node of request c to vehicle k; otherwise,

we assign it to a new vehicle k + 1. When there are no requests in set P , we end up with

the initial solution s0.

Algorithm 1 Tabu search algorithm
Input: s0, best solution s∗ = s0, tabu listL= ∅
Output: Best solution s∗

1: procedureTabu
2: Let current solution sc = s0
3: while i ≤ Imax do

4: Do insertion and removal operation
5: Get the neighborhood solution Ns of sc
6: for si ∈ Ns do

7: Calculate fitness function f(si)
8: if si /∈L and f(si) ≤ f(sc) then
9: sc = s0

10: end if

11: end for

12: if f(sc) ≤ f(s∗) then
13: s∗ = sc
14: end if

15: if Size ofL≥ Lmin then

16: UpdateL
17: end if

18: end while

19: end procedure

Based on the initial solution found, the tabu search-based heuristic algorithm is de-

scribed in Algorithm 1. Here, the termination condition is that the maximum number

of iterations Imax is reached. The fitness function is described as f(s) = C(s) + α ·

Q(s) + β · T (s), where C(s) is the value of the objective function (1), Q(s) denotes

the total weight that exceeds the vehicle capacity, and T (s) represents the total units of

time that violate the time windows constraint. The fitness function consists of two parts:

the original objective function and the penalty cost. Parameters α and β are both pos-

itive penalty terms that make the solution s more likely to meet the capacity and time

windows constraints, respectively. To achieve this, we introduce a new parameter θ with

a small value (e.g., 0.1) as a step size to adjust the values of α and β. If either Q(s) or

T (s) is not equal to 0, we multiply it by (1+ θ) in the next iteration. Another important
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component is the tabu list, which represents a set of solutions that have been visited in

the recent past. Here, we define the maximum length of the tabu list as Lmax and use

it to memorize the insertion operations when we insert the pickup node i and delivery

node i+r into route k. To solve the MAD-PDPTW, we only need to add constraint (12)

before performing insert and remove operations, ensuring that nodes i and i+r can only

be added to or removed from route k ∈ Ka that belongs to the same alliance.

4.4 Numerical Experiments

This section presents the experimental setup for problem instance generation and deliv-

ery cost prediction. We also compare our learning and optimization framework against

tabu search in solving the MAD-PDPTW. Computational experiments are conducted

to validate the developed framework’s performance for multiple alliances under different

settings. All computational experiments are carried out on a desktop computer with an

Intel Core i5 2.3 GHz processor and 16GB RAM. The tabu search algorithm is imple-

mented in Java, while the machine learning models are coded in Python 3.7.

4.4.1 Problem Instance Generation

The dataset proposed by Li et al. [61] is a popular standard dataset in the study of

PDPTW and is used to generate sampled PDPTW instances in our work. We need to

construct two types of instances, which are synthesized from the PDPTW benchmark

dataset. The first type is used as a training and testing dataset for delivery cost prediction,

while the second type is prepared for running MAD-PDPTW. For the first type of in-

stances, we randomly sample instances with a total number of requests ranging from 100

to 200. The labeled data for each PDPTW instance is computed using the tabu search

algorithm described in Section 4.3. In total, we obtain 500 instances, of which 400 are

randomly selected as the training set, and the remaining 100 serve as the test set.

To set up the multiple alliance structures, we construct a second type of instance by

sampling from the original data and randomly reallocating the requests to LSPs and al-

43



Table 4.3: Instances generated from the PDPTW benchmark dataset.

Notation Description

x The x coordinate of the pickup/delivery locations
y The y coordinate of the pickup/delivery locations
qi Demand of node i
ei Earliest pickup/delivery time of node i
li Latest pickup/delivery time of node i
si Service time of node i
pi Pickup (index to sibling) of node i
di Delivery (index to sibling) of node i
Li LSP index of node i

liances. In comparison to the first type of instances, the second type includes an additional

column that provides request ownership information. Table 4.3 gives a brief description

of the second type of sampled instances. For detailed parameters and illustrations of the

alliance structures for all second-type test instances, please refer to Table 4.4 and Figure

4.4.

Table 4.4: Detail parameters setting for all test instances.

No. Structure Alliance LSPs Requests Size Request Configuration

1 1 2 3 9 small [3, 3, 3]
2 1 2 3 18 small [6, 6, 6]
3 1 2 3 20 small [7, 7, 6]
4 1 2 3 24 small [8, 8, 8]
5 3 3 6 30 small [5, 5, 5, 5, 5, 5]
6 1 2 3 65 medium [30, 10, 25]
7 1 2 3 65 medium [20, 15, 30]
8 1 2 3 65 medium [25, 5, 35]
9 2 2 6 60 medium [10, 10, 10, 10, 10, 10]

10 3 3 6 105 large [30, 10, 20, 10, 20, 15]
11 3 3 6 105 large [40, 5, 25, 10, 15, 10]
12 3 3 6 120 large [30, 15, 30, 20, 15, 10]
13 4 4 8 135 large [20, 10, 5, 30, 15, 10, 15, 30]
14 4 4 8 135 large [15, 15, 5, 20, 25, 15, 20, 20]
15 4 4 8 135 large [30, 5, 15, 25, 10, 20, 10, 20]
16 5 5 10 150 large [20, 10, 20, 5, 15, 10, 15, 15, 20, 20]
17 5 5 10 180 large [30, 15, 25, 20, 15, 30, 10, 10, 10, 15]
18 5 5 10 185 large [25, 5, 25, 30, 10, 20, 15, 20, 10, 25]
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Figure 4.4: Alliances structure setting for the case study.

4.4.2 Prediction Model Selection

We have tested five different machine learning models: linear regression, LASSO regres-

sion, ridge regression, elastic net, decision trees, and random forest. To achieve the best

performance, we implemented 5-fold cross-validation (5-CV) to select the best hyperpa-

rameters (e.g., coefficient value for the regularization term, maximum depth of the tree)

for all models. All the training and validation procedures were carried out in Python 3.7.

Table 4.5 summarizes the average cross-validation R2 value and the mean absolute per-

centage value (MAPE). The MAPE is defined as: 1
|S|

∑
t∈S

|ls−l̂s|
ls

, where ls denotes the

best solutions we obtained by tabu search, and l̂s denotes the predicted delivery cost for

a sample s in each fold S of the training set.

Based on the evaluation results, all the machine learning models mentioned above

have demonstrated reasonably good performance in delivery cost prediction. Notably,

the LASSO regression model stands out with the lowest test error and the highest R2

score. Additionally, LASSO produces sparse coefficients, which reduces the number of

features in the model and maintains good interpretability. Therefore, we have decided to

adopt the LASSO regression model as the prediction model in our framework.

Table 4.5: Performance evaluation of the machine learning models.

Model 5-CVR2
5-CV MAPE TestR2

Test MAPE

LR 0.969 0.067 0.904 0.140
LASSO 0.966 0.072 0.972 0.066

Ridge 0.967 0.071 0.953 0.095
Elastic Net 0.947 0.101 0.939 0.099
Decision Tree 0.937 0.089 0.961 0.085
Random Forest 0.965 0.068 0.966 0.069
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4.4.3 Performance Comparison

In this subsection, we compare the results of delivery costs obtained by four different ap-

proaches: (1) self-routing by LSPs without collaboration, (2) collaborative routing with

alliances solving by tabu search heuristic alone, (3) collaborative routing with alliances

solving by proposed learning-based optimization framework, and (4) collaborative rout-

ing with fully collaboration, which means each LSP can cooperate with each other and

exchange requests from both the computational and management perspectives. The ex-

perimental results for all instances are presented in Table 4.6 for small instances and Table

4.7 for medium and large instances.

Table 4.6: Experimental results for small size test instances.

No. Gurobi Tabu Learning Learning + Error

1 996 1026 996 996
2 1609 1609 1642 1621
3 1709 1715 1724 1715
4 1934 2035 2012 1987
5 2838 2972 2851 2851

Table 4.7: Experimental results for medium and large size test instances.

No. I F L Amin Amax S1 (%) Smin (%) Smax (%)

6 5699 4165 4660 4915 5096 18.23 5.18 8.50
7 5263 3958 4706 4587 4784 10.58 -2.59 1.63
8 5067 3855 4804 4747 4887 5.19 -0.64 1.67
9 5659 3705 4550 4678 4785 18.45 2.81 5.16

10 8990 5685 7337 7805 7935 18.39 5.99 7.17
11 8499 5711 7342 7613 7763 13.61 3.79 5.65
12 12857 8955 11058 11286 11886 13.99 2.02 6.96
13 14978 9472 12856 13434 13628 14.17 4.30 5.66
14 14969 10187 12711 13205 13676 15.08 3.74 7.06
15 14416 10536 12302 13313 13700 14.66 7.59 10.20
16 17060 10572 14005 14986 15241 17.91 6.55 8.11
17 21029 11375 16802 17512 20297 20.10 4.05 17.22

18 19850 13645 16550 17166 17576 16.62 3.58 5.83

We have observed that our Tabu search method and learning method, both with and

without error term estimation, for small-sized instances can obtain solutions with small

46



optimal gaps compared to Gurobi. As previously mentioned in Section 4.3.1, errors will

always exist in cost prediction. To provide a more comprehensive evaluation of the ben-

efits of our learning-based approach, we also investigated the influence of error cascades.

In Table 4.6, the last column displays the results of the learning method that incorporates

errors in request assignment. This indicates that the learning method, when considering

prediction errors, yields more accurate results.

For medium and large-sized instances, Gurobi fails to provide feasible solutions

within the 3600-second time limit, whereas both our tabu search and learning-based

framework can find good solutions in less than 1 minute. ColumnsI ,F andLdenote the

delivery costs obtained by self-routing without collaboration, collaborative routing with

fully collaboration (represents the upper bound of the cost savings via collaboration) and

collaborative routing with alliances solving by our learning-based approach, respectively.

ColumnsAmin,Amax denotes the minimal and maximal delivery cost obtained for col-

laborative routing with alliances after run the tabu search alone 5 times. Columns S1 is

the cost savings in percentage achieved by collaborative routing with alliance compare to

self-routing.

As shown in Table 4.7, we observe that both collaboration with alliances and full col-

laboration consistently result in lower delivery costs compared to self-routing. Column

Smin and Smax are the minimum and maximum savings that the learning framework

can achieve compare to the direct use heuristic method (tabu search) alone. For small-

sized instances (No.1 to No.5), our learning and optimization framework can obtain

solutions comparable to tabu search. For moderate or larger test instances with denser

alliance structures (No.6 to No.18), our learning framework outperforms the heuristic

method (tabu search) alone by approximately 2% to 10% and can achieve cost savings of

up to 17%. We also compare the running times of our proposed learning and optimiza-

tion framework and directly using heuristic method (tabu search), as shown in Figure

4.5. It illustrates that our new approach requires fewer computing resources, especially

in large-scale cases.
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Figure 4.5: Comparison of learning-based methods and Tabu search methods in terms of
algorithm running time.

4.5 Conclusion

This chapter addresses an emerging concept in collaborative urban delivery problems

involving multiple alliance structures. Our experiments demonstrate that compared to

individual optimal planning by LSPs themselves, centralized collaborative routing has

the potential to reduce the total operating cost by approximately 20%. Furthermore, in

comparison to centralized collaborative routing using a direct heuristic algorithm, our

learning-based optimization approach can achieve cost reductions of up to 17%, with the

added benefit of reduced computational time. Moreover, the learning-based approach

provides a methodological framework, allowing for the replacement of tabu search with

other heuristic methods to potentially enhance results. We have observed two key fac-

tors: (1) increased participation of LSPs in alliances generally leads to greater cost savings;

(2) the alliance structure significantly impacts cost savings, with denser alliance structures

resulting in more substantial savings. This suggests that overlapping alliance structures

can promote more sustainable logistics practices. These cost savings can potentially be
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translated into profit-sharing schemes among participating LSPs, thereby providing in-

centives for their involvement in such alliance structures. Profit-sharing mechanisms are

a topic worthy of future research, although they fall outside the scope of this chapter. In

the future, we also aim to provide a robust optimization model to handle errors in cost

prediction during the first stage of our framework.
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Chapter 5

Optimization of Customer Service

and Driver Dispatch Areas for

On-Demand Food Delivery

5.1 Motivation and Background

Advanced technologies such as smartphones and wireless communications are transform-

ing transportation-enabled urban services in many ways at a rapid pace. The emergence

and success of on-demand passenger and logistics service platforms is one of the most

notable innovations. As one of the key innovations, on-demand food delivery platforms

such as Uber Eats, DoorDash, Grab Food and Meituan that provide door-to-door food

delivery services have achieved great success in past few years, especially accelerated by the

COVID-19 pandemic. For example, Grab Food, Southeast Asia’s largest food delivery

service provider in 480 cities in 8 countries, has a GMV of $7.6 billion with a 29% an-

nual increase in 2021. Meituan, the largest on-demand food delivery platform in China,

serves more than 30 million orders daily and generates a profit of 4.71 billion rmb in

2020. According to a report by [84], the food delivery market has been doubled during

the COVID-19 pandemic with a market value of over $150 billion in the US.

As shown in Figure 5.1, there are three parties other than the platform in the on-
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demand food delivery market: customers, restaurants, and drivers. Customers choose

and order food from a restaurant nearby listed on the platform. Once an order is placed,

the platform notifies the restaurant to prepare food and broadcasts/dispatches the order

and delivery task information to drivers waiting nearby. A driver then picks up food from

the restaurant and delivers it to the customer.

Figure 5.1: Illustration of the on-demand food delivery service.

In a typical food delivery service, demand and supply are both time-dependent, er-

ratic, and uncertain. For example, using the real data from a crowd-sourcing food deliv-

ery platform, Figure 5.2 demonstrates the distributions of hourly orders from 09 : 00

to 24 : 00. We can see that the order volume increases greatly during the peak period at

noon and evening, resulting in a lack of drivers and longer delivery time. Customers still

have high expectations for the delivery time and may abandon the platform and seek for

alternatives if the delivery time is too long. For such platforms, it is very challenging and

requires great efforts to balance time-dependent supply and demand.

Figure 5.2: The distribution of (re-scaled) number of orders over hours.
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To coordinate the balance between supply and demand in on-demand platforms, a

common approach is dynamic pricing [115, 36, 141]. When a restaurant is busy with a

large number of orders, the platform could raise the delivery fee to discourage customers

from ordering from that restaurant and also encourage drivers to deliver orders for that

restaurant. Another approach is to adjust the restaurant’s customer service area [143,

120, 29]. If the number of orders is too high and the delivery time is too long (i.e., delivery

supply is less than demand), the platform could decrease the restaurant’s service area to

reduce demand; in contrast, if the number of orders is too low and the delivery time is

short, (i.e., delivery supply is more than demand), then the service area can be enlarged to

serve more customers.

Both of the aforementioned approaches only concentrate on the demand side—the

management of customer orders, and ignore the supply side (the drivers). In this chapter,

we propose and focus on a new approach to balance supply and demand—by adjusting

the customer service area and driver dispatch area simultaneously. Specifically, for each

restaurant in a specified operating time horizon, the platform decides the (1) customer ser-

vice area (CSA), i.e., the radius of the surrounding area within which customers can see

the restaurant’s information and order food from it; and (2) driver dispatch area (DDA),

i.e., the radius of the surrounding area within which drivers can see the restaurant’s in-

formation and deliver orders from it. Dynamic modifications to the driver dispatch area

(DDA) of a restaurant hold significant business importance. Long pickup distances ad-

versely impact both the order delivery time and driver utilization. In practical scenarios,

the restaurant’s order demand fluctuates dynamically, particularly during midday and

evening peak hours. Ensuring timely delivery necessitates the potential expansion of the

DDA, which could attract additional drivers to prevent delays and ensure timely deliver-

ies. On the contrary, during off-peak hours, the adjustment of a restaurant’s DDA allows

for effective regulation of the driver count allocated to serve that establishment. Assign-

ing orders to drivers within a limited DDA radius aids in controlling the distance covered

by drivers. When a driver is assigned a delivery significantly distant from their current lo-

cation, it may result in extended delivery times and heighten the prospect of order delays,
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ultimately casting a negative effect on customer experience.

This consideration motivates us to consider an optimization problem to coordinate

the supply and demand simultaneously, which we refer to in this study as the Restau-

rant Area Size Optimization (RASO) problem. We propose a data-driven optimization

framework that determines the optimal radius of the customer service area and driver dis-

patch area. The objective is to maximize the total number of orders served while ensuring

a service level requirement on order delivery time.

Finding the optimal radii of CSA and DDA is challenging. As shown in Figure 5.3,

while the radius of CSA affects the number of orders (i.e., demand side) and the radius

of DDA affects the number of potential delivery drivers (i.e., supply side) for each restau-

rant, the interactions of demand and supply will collectively affect the order delivery time

in a complicated way, owing to the large complexity in dynamic order dispatching and

driver routings. To address these challenges, we first study the relationship between the

radius of customer service area and the number of orders for each restaurant. Second,

we examine the number of drivers, which depends on the radius of the driver dispatch

area. Third and more importantly, we explore how various factors related to demand,

supply, and others, affect the order delivery time. Moreover, in practical scenarios, due

to the flexibility of drivers in delivering orders from various restaurants, those operating

within the driver dispatch area (DDA) of one restaurant may not exclusively serve that

restaurant, especially if they are also within the DDA area for other restaurants. This in-

troduces additional complexity to the problem. In the context of this research, our focus

is on treating restaurants within a geographical neighborhood as a cluster, each with a

common size for both CSA and DDA.

Demand
(Orders)

Supply
(Drivers)

Objectives: Number of orders served
Constraint: Order delivery time

CSA
(Radius)

DDA
(Radius)

Figure 5.3: RASO problem in on-demand food delivery service.
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In summary, the main contributions of this chapter are summarized as follows:

• We propose and solve an innovative operational problem, i.e., the Restaurant Area

Size Optimization problem (RASO) for on-demand food delivery services, which

determines the optimal radii of CSA and DDA for restaurants simultaneously to

balance supply and demand, with the objective of maximizing the number of or-

ders served.

• Specifically, we propose a data-driven optimization framework to solve the RASO

problem. On the demand side, a discrete choice model is developed to character-

ize the relationship between customer order behavior and customer-restaurant dis-

tance, and then estimate the number of orders for the restaurants. On the supply

side, several machine learning models are proposed to predict the order delivery

time with varying sizes of CSA and DDA.

• We following the integrated predictive-and-prescriptive modeling framework in-

troduced in Chapter 1, integrate a model tree prediction of order delivery time and

formulate the RASO problem as a Mixed Integer Quadratically Constrained Pro-

gram (MIQCP), which can be solved efficiently.

• We perform a set of extensive numerical experiments using a real-world dataset.

The computational study demonstrates that the proposed framework can signifi-

cantly improve the number of orders served and outperforms benchmark methods.

The reminder of the chapter is organized as follows. Section 5.2 describes the research

problem. Section 5.3 presents the data-driven framework for joint optimization of CSA

and DDA. Section 5.4 presents the real data, simulator, and the performance of order de-

livery time prediction. Section 5.5 presents experimental results of the proposed model

and other benchmark methods. Finally, we conclude and discuss future research in Sec-

tion 5.6.
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5.2 Problem Description

In this section, we present a formal description of the RASO problem for on-demand

food delivery service, then present a simple example for illustration.

5.2.1 Problem Statement

In the context of food delivery services, each restaurant is associated with a customer ser-

vice area (CSA), denoted as Ac, which represents the geographical region within which

customers can view the restaurant’s information and place food orders. Each restaurant

is also associated with a driver dispatch area (DDA), denoted as Ad, wherein drivers can

access the restaurant’s information and fulfill delivery orders. Both the CSA and DDA

are determined by the platform and can be adjusted dynamically. To begin, we con-

sider a food delivery system consisting of a cluster of restaurants R, wherein a fleet of

capacitated and homogeneous drivers D = {d1, d2, ..., dm, ...} delivers a set of orders

O = {o1, o2, ..., on, ...} that arrive starting from the initiation of the operating horizon

T .

Customer Orders: Each order o ∈ O can be described as a tuple (o+, o−, Lo),

where o+ denotes the pickup location (restaurant), o− represents the delivery location

(customer), and Lo indicates the promised delivery time (all orders have a uniform guar-

anteed delivery time, e.g., 45 minutes). We assume that the order preparation time varies

based on the restaurant and follows a Gamma distribution, a topic further discussed in

Section 5.4.2. Customers have the option to cancel their orders if they fail to secure a

driver within a specified time frame.

Drivers: The system comprises a total number of D homogeneous drivers. These

drivers are strategically positioned around the restaurants, and each individual driver d ∈

D possesses a service capacity denoted as p (representing the maximum number of orders

they can carry).

Operating Horizon, CSA and DDA: The initiation of the operating horizon T is

denoted by t = 1, and its conclusion, signifying the end of the operating, is indicated
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as t = |T |. At the commencement of each time period t ∈ T , the platform is required

to make three decisions: (1) determining the radius of the CSA, denoted as ρc, which

directly influences the demand for each restaurant; (2) specifying the radius of the DDA,

denoted as ρd, which significantly impacts the delivery supply for each restaurant; and

(3) establishing the method for dispatching orders to available drivers for delivery. For

each time period t ∈ T , the platform has the option to establish the radii ρc and ρd and

subsequently perform specific multiple order dispatching in batches.

The entire decision-making process in the Restaurant Area Size Optimization

(RASO) can be summarized as follows: At the initiation of each RASO decision time

t, the platform first determines the radius ρc for the CSA, represented as Ac, and the ra-

dius ρd for the DDA, denoted as Ad. During time period t, at each order dispatching

decision time, the platform receivesOt orders within Ac for each restaurant and observes

a set of driversDt within Ad for each restaurant. Subsequently, the platform makes de-

cisions regarding the dispatch of orders to drivers. These dispatched decisions lead each

driver d ∈ D to implement a delivery route RTd, defined as a sequence of visiting loca-

tions, based on their ongoing carrying orders Ωd and newly dispatched orders Od. In the

event that an order o ∈ O cannot find an available driver, it will be held until the next dis-

patching time unless it is cancelled by the customer. These decisions are made iteratively

until the end time |T | of the operating horizon T .

5.2.2 Example

The impact of the radius ρc of the CSA on demand, exemplified by the number of or-

ders received by a restaurant, and the influence of the radius ρd of the DDA on supply,

demonstrated by the number of available drivers for the restaurant, is illustrated in Fig-

ure 5.4. In Figure 5.4 (a), when the CSA radius is ρc, only 2 orders are expected to arrive

within the CSA (colored in grey), while 6drivers are available within the DDA (colored in

yellow). The estimated demand is considerably lower than the available service capacity,

suggesting a potential benefit in increasing the CSA radius to attract more orders for that
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restaurant, for instance, expanding it to ρ′c to accommodate 9 expected orders. In Fig-

ure 5.4 (b), when the DDA radius is ρd, 9 orders are expected within the CSA, but only

1 driver is available within the DDA. The service capacity is significantly lower than the

estimated demand, indicating the platform’s advantage in increasing the DDA radius to

attract more available drivers for that restaurant, for example, extending it toρ′d to include

6 drivers.

Customer Service Area

Driver Dispatch Area
Restaurant

(b)

Restaurant Customer Location

Driver Location

(a)

Figure 5.4: An example of a restaurant’s (a) customer service area and (b) driver dispatch
area.

5.3 Solution Method

This section presents the optimization framework for the RASO problem. We begin by

introducing the main steps and the master optimization model in Section 5.3.1. Subse-

quently, we delve into customer order estimation on the demand side in Section 5.3.2,

order dispatching algorithms, and service operation in Section 5.3.3, and order delivery

time prediction in Section 5.3.4. Lastly, we present a specific Mixed-integer Quadratically

Constrained Programming (MIQCP) model in Section 5.3.5, incorporating a model tree

prediction for order delivery time. The notation is summarized in Table 5.1.

5.3.1 Framework and Optimization Model

We present a data-driven optimization framework encompassing customer demand esti-

mation, order dispatching, order delivery time prediction, and optimization of customer

service and driver dispatch areas. The framework is depicted in Figure 5.5.
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Table 5.1: Notation for RASO problem.

Sets:

O Set of orders
D Set of drivers
T Planning horizon; T =

{
1, 2, ..., |T |

}
Input parameters:

Lo Promised delivery time for order o
ϵmax A threshold predetermined as upper bound for average order delay

ρmin
c , ρmax

c Minimum and maximum allowed radius of restaurant’s customer service
area (CSA)

ρmin
d , ρmax

d Minimum and maximum allowed radius of restaurant’s driver dispath
area (DDA)

Decision variables:

ρc Radius of customer service area (CSA) for a restaurant
ρd Radius of driver dispatch area (DDA) for a restaurant

Intermediate variables:

O(ρc) Function, the output is the number of prospective orders
O(ρc, ρd) Function, the output is the total number of orders served
L(ρc, ρd) Function, the output is the average delivery time for orders served

First, delivery time prediction is depicted on the right. Based on real-world data con-

cerning historical orders and deliveries, the key steps for delivery time prediction are as

follows: (1) generating instances with various CSA and DDA radii, (2) extracting relevant

features from instances to predict delivery times, (3) simulating order deliveries using a

predefined dispatch algorithm to obtain order delivery times as label data, and (4) training

supervised machine learning models for delivery time prediction.

Next, customer order estimation is presented on the left. Initially, we calculate the

distance between customers and restaurants, using it as an input feature to develop a cus-

tomer choice model. This model allows us to investigate the relationship between cus-

tomer order behavior and the distance to the restaurant. Subsequently, we compute the

probability of a customer placing an order and estimate the total number of prospective

orders for each restaurant.

The central illustration of the main optimization framework follows. At the begin-

ning of time period t, we initiate the process with the collection of essential information,

such as the locations of customers and drivers. Subsequently, we utilize our proposed

data-driven approaches to develop two models: one for estimating customer order de-
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Figure 5.5: Optimization framework of restaurant area size optimization problem.

mand and the other for predicting delivery times. Through the integration of the esti-

mation and prediction models with our proposed optimization model, we can effectively

solve the RASO problem. Consequently, we can determine the optimal radii of the CSA

and DDA for restaurants, thereby achieving a balance between supply and demand. The

dispatch decisions result in updated delivery routes for each driver, with each driver hav-

ing their designated route.

Specifically, we propose a master optimization formulation for the RASO problem.

To enhance manageability, the planning horizon is segmented into shorter periods (e.g.,

45 minutes), rather than planning for the entire duration at once. As each period con-

cludes and time progresses, we ’roll’ the planning window forward. At the onset of each

new period, and prior to addressing the RASO problem, it is crucial to consider the most

recent data, such as drivers’ current locations, existing delivery routes, and the estimated

incoming orders. This approach ensures access to accurate and current information, lead-

ing to more informed decision-making in subsequent segments. To facilitate this rolling

horizon framework works well in practice, we have designed a simulator to simulate the

order dispatching and driver routing process using real industrial data. Our formulation
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focuses on a single time period, and it can be easily extended to multiple time periods

using the proposed rolling horizon methodology. The primary goal from the platform’s

perspective, as expressed in objective function (5.1), is to maximize the number of served

orders while guaranteeing a satisfactory level of order delivery time. More precisely, the

platform aims to ensure that the order delivery delay for each restaurant in any time pe-

riod t ∈ T remains below a predetermined threshold ϵmax (which could be 0 by default),

as stipulated in constraint (5.2). The selection of the CSA and DDA radii occurs within

practically permissible ranges, as indicated by constraints (5.3)-(5.5).

[RASO] max
ρc,ρd

O(ρc, ρd), (5.1)

s.t. L(ρc, ρd)−
1

|O|

|O|∑
o=1

Lo ≤ ϵmax, (5.2)

ρmin
c ≤ ρc ≤ ρmax

c , (5.3)

ρmin
d ≤ ρd ≤ ρmax

d , (5.4)

ρc, ρd ∈ R+. (5.5)

In each time period t ∈ T , the decision variables ρc and ρd represent the radii of

the restaurant’s CSA and DDA, respectively. The functionO(ρc, ρd) quantifies the total

number of successfully delivered orders from restaurant r (the index r is omitted when

clear) and represents the count of served orders. The function L(ρc, ρd) calculates the

average delivery time for the served orders. The primary challenges in solving the RASO

problem are twofold: firstly, achieving accurate approximation of the objective function

O(ρc, ρd) through a closed-form formula, and secondly, accurately approximating the

delivery time L(ρc, ρd) and effectively integrating it into the optimization formulation.

In reality, both O(ρc, ρd) and L(ρc, ρd) are challenging to estimate or express mathe-

matically, as they depend on the complex interplay between supply and demand, and are

undoubtedly influenced by decisions ρc and ρd simultaneously. To address these chal-

lenges, we introduce a data-driven approach to approximate function O(ρc, ρd) based

on real-world data. Additionally, we utilize machine learning models to derive the opti-
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mal representation of function L(ρc, ρd). The details of our approach are elaborated in

the subsequent subsections.

5.3.2 Customer Order Demand Estimation

We begin by discussing the estimation of customer order demand. Customers are notably

sensitive to the restaurant’s proximity on the demand side. Longer distances from the

restaurant tend to lead to extended delivery times, thereby reducing customers’ willing-

ness to place orders. The objective is to understand the relationship between the number

of prospective orders O(ρc) and the radius of CSA ρc while taking into account cus-

tomers’ order behavior. In particular, we employ a multinomial logit (MNL) model to

investigate how the distance between a customer’s location and the restaurant influences

their order behavior.

Customer choice set: From a customer’s perspective, they have three choices: to order

from restaurant r, to order from any other restaurant, or not to order on the platform at

all. To represent this customer choice, we introduce a binary decision variable zi,r, which

signifies the order behavior for each restaurant:

zi,r =


1, if customer i place an order at restaurant r,

0, if customer i does not place an order at restaurant r.
(5.6)

The variableUi,r denotes the utility experienced by customer iwhen placing an order

at restaurant r. In real-world scenarios, Ui,r relies on several factors, including the restau-

rant’s cuisine style, meal price, delivery fee, rating, customer preferences, and the distance

between the customer and the restaurant. Here, we assumes the following expression for

Ui,r:

Ui,r = Vi,r + βr · xi,r + ϵi,r, (5.7)

where xi,r = (xi,r,1, xi,r,2, ..., xi,r,|M |) represents the factors that relative to the cus-
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tomer restaurant selection, βr = (βr1, βr2, ..., βr,|M |)
T are the restaurant choice param-

eters, the dimension is |M |. The value Vi,r is a constant representing the utility when

the distance xi,r = 0, while ϵi,r captures numerous unknown or unobservable factors

treated as random variables following the Gumbel distribution. Based on the latest in-

dustry study conducted by [89], 77% of surveyed customers identified delivery time as

the most crucial factor when selecting an online restaurant for delivery. The primary ob-

jective of this section is to examine how a restaurant’s CSA (radius) affects the volume of

restaurant orders (demand). Generally, the distance between a customer and a restaurant

plays a significant role in food delivery time and subsequently influences customer prefer-

ences for restaurant selection. To simplify the representation, we substitute the vector of

factorsxi,r andβr with variablexi,r representing the distance between the restaurant and

the customer, along with a corresponding constant βr, and a constant variable vi,r repre-

senting the location utility 1, to model this influence. Intuitively, the farther the customer

is from the restaurant and the longer the delivery time, the less inclined the customer will

be to place an order (i.e., βr < 0).

Then, the probability that customer i will place an order from restaurant r is

Pr(zi,r = 1) = Pr(Ui,r > Ui,r′ ,∀r′ ̸= r)

= Pr(Vi,r + βr · xi,r + vi,r + ϵi,r > Vi,r′ + βr · xi,r′ + vi,r′ + ϵi,r′)

= Pr(ϵi,r′ < βr · (xi,r − xi,r′) + Vi,r + vi,r + ϵi,r − Vi,r′ − vi,r′)

=
eβr·xi,r+Vi,r+vi,r

eβr·xi,r+Vi,r+vi,r +
∑

r′ e
vi,r′+Vi,r′+βr·xi,r′

.

(5.8)

The food delivery platform offers a vast number of restaurants, providing customers

with a wide range of choices. Additionally, the utility Ui,r is influenced by numerous un-

observable variables, making it challenging to precisely determine its value. In such cases

where explicitly computing the denominator for each individual and alternative combi-
1The city of Singapore is divided into five districts. In our analysis, we make the assumption that restau-

rants within the same district share the same location utility vi,r .
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nation is infeasible due to the large number of alternatives ([119]), a large constant value

can be employed to approximate the denominator. Consequently, we assume a reduced

form of the probability as follows:

Pr(zi,r = 1) ≈ αr · eβr·xi,r , (5.9)

where αr and βr are restaurant-specific parameters. In this context, the probability is

considered in its reduced form when other factors, such as price and ratings, remain un-

observable. With access to additional data, we could incorporate a greater number of

variables into both the utility function and the probability function. Assuming that the

number of customers per unit area (e.g.,km2) isnr, the number of orders from customers

at a distance x from restaurant r can be expressed as follows:

Or(x) = 2πnrαre
βrxx. (5.10)

Finally, defining α′
r = 2πnrαr, the number of prospective orders for restaurant r

can receive within its CSA (a certain with radius ρc) can be given as:

Or(ρc) =

∫
P (zi,r = 1) · nr · 2πxdx

=

∫
2πnrαr · eβrxxdx

=

∫
α′
r · eβrxxdx

(5.11)

5.3.3 Order Dispatching and Service Operation

While this study does not specifically focus on order-dispatching techniques, it acknowl-

edges the significance of dispatching decisions throughout the entire service process. This

subsection provides a brief description of the order-dispatching algorithm. The notation

for the order-dispatching algorithm is provided in Table 5.2.

The following dispatching rules and assumptions are applied:

• Dispatch fairness: If the number of orders carried by driver d is large/small (i.e.,

Ωd is large/small), s/he will be less/more likely dispatched new orders;
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Algorithm 2 Order Dispatching Algorithm

Input:O,D,R, θd, Ωd, ρd, p
Output: RT′

d

1: procedureDispatch(O,D)
2: for d ∈ D do

3: if Ωd ̸= ∅ then
4: Get driver d current location ld and delivery location o− for order o ∈ Ωd

5: Re-schedule the planned route RTd by solving a TSP problem with unvisited
locations for carried orders Ωd

6: Update the delivery route RTd

7: end if

8: end for

9: Initialize dispatched and being picked up ordersOpick = ∅
10: for d ∈ D do

11: if d is going to pick up order o ∈ O then

12: UpdateOpick ← Opick ∪ o
13: end if

14: end for

15: for o ∈ O do

16: if o ∈ Opick then

17: Continue

18: end if

19: Initialize the available drivers setDavail = ∅
20: for d ∈ D do

21: Calculate the distance co,d between order o pickup location o+ and driver d cur-
rent location ld

22: Calculate the remaining capacity premain
d for driver d

23: if co,d ≤ ρd and premain
d ≥ 1 then

24: Davail ← Davail ∪ d
25: end if

26: end for

27: Assign order o to driver d ∈ Davail with maximum premain
d

28: do greedy insertion

29: insert pickup nodeo+ and delivery nodeo− to routeRTd at positions with minimum
distance increased

30: update RTd ← RTd ∪ (o+, o−)
31: end for

32: return new delivery plan route RT′
d for d ∈ D

33: end procedure
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Table 5.2: Notation for order dispatch.

Sets and Variables

R Set of restaurants
ld Current location of driver d
Ωd Ongoing carrying orders by driver d

premain
d Remaining capacity for driver d
co,d Distance between pickup location o+ and driver’s current location ld
RTd Planned delivery route for driver d
Opick Orders that have been dispatched and are being picked up by the drivers
Davail Drivers with available capacity and in the restaurant’s DDA

• Order re-dispatch: Orders that have not been picked up within a specified time

frame (e.g., 10 minutes) but have been assigned a driver can be re-dispatched to a

new driver;

• Driver routing behavior: Following order dispatch, drivers deliver their carried

orders by solving an open Traveling Salesman Problem (TSP) to optimize their

route;

• Order cancellation: If a newly generated order cannot find an available driver

within a certain time (e.g., 15 minutes), it is assumed that the customer becomes

impatient and cancels the order.

The first rule is aimed at ensuring fairness in dispatching by preventing certain drivers

from being overloaded with a disproportionately large number of orders, while others

only receive a few. The second rule serves to enhance the flexibility of the dispatch algo-

rithm by allowing for order re-dispatch, which has the potential to reduce order pickup

time. Third, we assume that drivers always follow the shortest one-way delivery travel

route from the restaurant to one of the customer locations. This route is derived by solv-

ing an open TSP, where the driver does not return to the starting location. 2 Lastly,

customers have the option to cancel orders if the platform fails to find a driver within

a specific time period.
2It is important to note that in real-world scenarios, due to complexities such as left turns in intersec-

tions, the actual travel distance for order delivery tends to be equal to or greater than the travel distance
derived from the open TSP solution.
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To summarize, we present the rules for order dispatching and service operations us-

ing the pseudo-codes in Algorithm 2. Specifically, Lines 2 − 6 reconstruct each driver’s

delivery route based on the orders they are carrying. Lines 8− 10 list the orders that have

already been dispatched and are currently being picked up by the designated driver. Any

remaining orders are dispatched to drivers in the DDA with the largest available capacity,

as demonstrated in Lines 11 − 20. Additionally, Lines 21 − 23 implement a greedy in-

sertion approach to incorporate new orders into the driver’s current route with minimal

increase in distance. Notably, the value of DDA radius ρd significantly impacts the num-

ber of available drivers on the supply side, subsequently affecting order delivery times, as

evident from Lines 18 and 19 in Algorithm 2. An increase in the DDA radius ρd while

keeping the restaurant’s CSA unchanged results in more available drivers on the supply

side, potentially reducing order delivery times. However, a larger DDA may also lead to

longer pickup travel distances for orders, potentially increasing the overall delivery time.

The estimation of order delivery time will be discussed in the subsequent subsection.

5.3.4 Delivery time prediction

This subsection focuses on estimating the order delivery time. Specifically, given the radii

ρc and ρd of the CSA and DDA for a restaurant, our objective is to derive a mathematical

representation of L(ρc, ρd) that effectively approximates the average order delivery time

for served orders. To achieve this, we adopt a data-driven approach utilizing a customized

simulator and dataset (as detailed in Section 5.4). By employing various supervised ma-

chine learning models, we aim to obtain closed-form formulas for order delivery time,

which can then be integrated into the RASO formulation introduced in Section 5.3.1.

Feature generation

For each restaurant r, Table 5.3 presents the features that are considered for predicting

the average order delivery time.

For ensuring both interpretability and accuracy of the prediction model, we propose

five simple features. The CSA radius (ρc,r) and DDA radius (ρd,r) for each restaurant
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Table 5.3: Features in average delivery time prediction.

Features Definitions

ρc,r Radius of CSA of restaurant r
ρd,r Radius of DDA of restaurant r
Dr(ρd,r) Number of available drivers in DDA of restaurant r
Or(ρc,r) Number of prospective orders in CSA of restaurant r

r are considered. Dr(ρd,r) represents the platform’s supply, where a larger DDA allows

more available drivers for order dispatch, potentially reducing the order delivery time. On

the other hand, Or(ρc,r) represents the platform’s demand, where a larger CSA allows

more customers to place orders from the restaurant, which may increase the order delivery

times.

5.3.5 A Mixed-Integer Quadratically Constrained Programming

Model

After conducting feature engineering and building prediction models, the subsequent

step involves selecting an appropriate prediction model that aligns with the proposed

RASO model. In their study, [69] explored various machine learning models, encompass-

ing both linear and nonlinear (tree-based) models, for delivery time predictions. In this

section, we comprehensively evaluate several regression models, including ordinary least

squares (OLS), ridge regression (Ridge), linear support vector regression (SVR), model

tree ([130]), classification and regression trees ([74]), and XGBoost. The selection pro-

cess and experimental details are presented in the following section, specifically in Section

4.4.2.

Model Tree

In this subsection, we show how the RASO model proposed in Section 5.3.1 can embed a

trained machine learning model for delivery time prediction. We explore both linear and

nonlinear (tree-based) models and select one that exhibits both good prediction perfor-

mance and optimization compatibility. Specifically, based on our numerical experiments
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Figure 5.6: A model tree example with ridge regression functions in the leaf nodes.

with prediction models, presented in detail in Section 5.4, we choose the model tree as

the prediction model. Unlike linear models, which assume linear functional relationships

between ground truth labels and features (e.g., ordinary least squares and ridge regres-

sion), and some tree-based models that predict feature vector values through data feature

splitting based on decision rules (e.g., classification and regression trees), the model tree

combines linear regression models (e.g., ridge regression) for data feature splitting in a

tree structure. Unlike classification and regression trees, which usually predict the mean

or median value of labels in each leaf node, the model tree can fit any regression models in

the leaf nodes. Formally, the model tree offers good interpretability and can examine both

linear and nonlinear relationships in the data, making it a suitable choice with a limited

amount of training data [101, 39, 40, 96].

Linearization of Model Tree

Next, we demonstrate the integration of the model tree into the RASO formulation, re-

sulting in a mixed-integer quadratically constrained programming (MIQCP) model. The

updated model is efficiently solvable using commercial optimization solvers like Gurobi

and CPLEX within a reasonable timeframe.

Figure 5.6 depicts a model tree with ridge regression functions assigned to its leaves.
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The tree’s depth is 3, containing 7 branch nodes and 8 leaf nodes. The feature vector s

characterizes the status based on decision variables. At each branch node, a decision rule

based on the split feature’s value is applied. For instance, in node 1 (the root), if the rule is

true, the feature vector s is routed to the left; otherwise, it is routed to the right. Each leaf

node corresponds to a ridge regression function ℓj , where j represents the index of leaf

nodes. In this example, the feature vector s reaches leaf node 3 as the final destination.

Generally, a model tree is defined by (1) its tree structure, (2) decision rules at each

branch node, and (3) linear regression functions assigned to each leaf node. We can rep-

resent such a model tree as a mixed-integer linear program (MILP). In the following sec-

tions, we introduce additional notation, which can be found in Table 5.4.

Table 5.4: Notation for the MIQCP.

Sets:

B: branch nodes set;
F : leaf nodes set;

Bleft
j (s): for s, set of branch nodes where the left branch following leaf node j;

Bright
j (s): for s, set of branch nodes where the right branch following leaf node j;

Input parameters:

µ: a small constant value;
M : a large constant value;
s: a feature vector characterize the status based on decision variables;
ℓj : linear function at leaf node j, ∀j ∈ B;
sk: value of feature k in vector s;
vik: value of feature k if it is selected for splitting at the branch node i;

Decision variables:

bi(s): binary variable, 1 if s branches left at node i, ∀i ∈ B;
cj(s): binary variable, 1 if s is located to the leaf node j, ∀j ∈ B;
vj(s): prediction value of s at leaf node j, ∀j ∈ B;

Following the decision rule at branch node i ∈ B, we introduce the following set of

constraints relevant to the delivery time predictions:

sk ≥ vik + µ−Mbi(s), (5.12)

sk ≤ vik +M(1− bi(s)), (5.13)

bi(s) ∈ {0, 1}, (5.14)
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where bi(s) = 1 indicates sk less than vik, feature vector s will be routed to the left

branch, and bi(s) = 0 indicatessk greater than vik and will be routed to the right branch.

To locate the leaf node j where feature vector s belongs, we introduce two sets, Bleft
j (s)

and Bright
j (s), and we have:

B = Bleft
j (s) ∪ Bright

j (s), ∀j ∈ F . (5.15)

Accordingly, we establish the following constraints for each leaf node j ∈ F :

cj(s) ≤ bi(s), ∀j ∈ F , i ∈ Bleft
j , (5.16)

cj(s) ≤ 1− bi(s), ∀j ∈ F , i ∈ Bright
j , (5.17)∑

j∈F

cj(s) = 1, (5.18)

where cj(s) = 1 indicates that feature vector swill be routed to leaf node j. Constraints

(5.16)-(5.17) are responsible for enforcing the branch path, while constraint (5.18) ensures

that each feature vector s can be routed to only one leaf node. Ultimately, the predicted

value of the delivery time for feature vector s is given by:

vj(s) = ℓj(s)cj(s), ∀j ∈ F . (5.19)
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Revised RASOModel

Finally, the revised RASO with the embedded model tree predictor for delivery time is

formulated as follows:

[RASO-LT] max
ρc,r,ρd,r

∑
r∈R

Or(ρc,r), (5.20)

s.t. Constraints (5.3)− (5.5), (5.11)− (5.19),

Dr(ρd,r) = PWL(ρd,r), ∀r ∈ R, (5.21)

s = [ρc,r, ρd,r, Or(ρc,r), Dr(ρd,r)], ∀r ∈ R, (5.22)

Lr(ρc,r, ρd,r) =
∑
j∈F

vj(s), ∀r ∈ R, (5.23)

Lr(ρc,r, ρd,r)−
1

|O|

|O|∑
o=1

Lo ≤ ϵmax, ∀r ∈ R. (5.24)

The objective function (5.20) is designed to maximize the total number of prospec-

tive orders Or(ρc,r), which will be discussed in the following paragraph. Constraints

(5.3)-(5.5) restrict the feasible domains of the decision variables, and constraints (5.11)-

(5.19) show the integration of the order demand estimation and delivery time prediction

with the optimization tool. Constraint (5.22) represents s as a feature vector. In the

decision time, the platform can observe the drivers’ current locations and compute the

distance between the restaurant and them. In real-world scenarios, the total number of

driversDr(ρd,r) in the DDA for restaurant rwith radiusρr,d can be approximated using a

piecewise-linear function (Constraint (5.21)). This modeling approach is widely adopted

in practice and is supported by popular commercial optimization solvers like Gurobi and

CPLEX. Constraint (5.23) indicates that the average order delivery time equals the pre-

dicted value at the selected leaf node j. Constraint (5.24) is the delivery time constraint.

In the following, we provide a brief discussion on the prospective ordersOr(ρc,r) and

served orders Or(ρc,r, ρd,r). Suppose a customer place an order from a restaurant and

the platform accepts the order and proceeds to dispatch a driver for delivery. Each order

can result in two outcomes: (1) if an available driver is nearby, the order is successfully
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delivered and classified as “served”; (2) if the platform fails to locate an available driver

within a certain waiting time (e.g., 15 minutes), the customer cancels the order, and it

is marked as “expired.” In the extreme case where the DDA radius ρd,r = 0, all orders

will be expired as no drivers are available for the restaurant. From the perspective of the

platform, since the aim is to maximize the number of orders served, in other words, we

want each order can be delivered successfully within the promised delivery time and the

number of expired orders to be as low as possible (ideally zero). We have observed that

expired orders tend to occur when the service capacity is much smaller than the number of

prospective orders. For instance, this can happen when the CSA radius is extremely large

(e.g., 10 kilometers) and the DDA radius is very small (e.g., 1 kilometers). To address this

issue, we impose a penalty during data preparation for training machine learning models

used in delivery time prediction. This is achieved by setting a large delivery time ∆t for

expired orders. Consequently, in case expired orders occur during the solution of the

RASO problem, the corresponding predicted average delivery time will not satisfy the

time constraint (5.24). This approach ensures that when solving the RASO problem,

the primary focus is on maximizing the total number of orders that can be successfully

delivered, represented by the sum of Or(ρc,r) for all restaurants in the setR.

In the next two sections, we present experimental setups for the estimation of the

number of orders and prediction of the average order delivery time. We conduct compre-

hensive experiments to evaluate the performance of the proposed data-driven optimiza-

tion framework.

5.4 Simulator, Dataset, and Prediction Models

In this section, we first introduce the simulator we developed to simulate the process

of food delivery services in Section 5.4.1, including decisions on the radii of CSA and

DDA for restaurants, order generation, dispatching, pickup, and delivery. Then in Sec-

tion 5.4.2, we present a real-world delivery dataset from a crowd-sourcing food delivery

platform. The performance of customer demand estimation is discussed in Section 5.4.3,
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followed by a discussion on the performance of order delivery time prediction models in

Section 5.4.4.

5.4.1 Simulator for On-Demand Food Delivery Service

To better simulate the real-world environment in food delivery service and also to gener-

ate training samples for order delivery time prediction depicted in Figure 5.5, we develop

a simulator that is calibrated using real data. The simulator contains several components:

service area decisions, order generation, information collection, order dispatching algo-

rithm, and status updates of orders and drivers. In Algorithm 3, we show the entire sim-

ulation procedure. As can be seen, we solve the RASO problem for each time period

t ∈ T to get the optimal radius for CSA and DDA for each restaurant, then for each

order dispatching interval k ∈ [t, t + 1), we proceed the following steps: (1) generat-

ing new order requests for each restaurant within the CSA; (2) gathering information

about all dispatched and newly generated orders, drivers, and restaurants, such as each

order’s pickup and delivery locations, driver’s location, driver’s carried orders, restaurant

dispatch area, and so on; (3) implementing the order-dispatching algorithm to dispatch

orders to drivers who have available capacity in the DDA; (4) updating orders’ status for

orders that have been successfully dispatched, picked up and delivered, also for orders that

have been canceled by customers; and (5) updating the drivers’ planned delivery routes

based on newly dispatched orders.

We also account for the random ready time for orders in our simulations. In food

delivery services, the preparation time (which includes cooking the meal and making it

ready for pickup) for restaurants is often highly uncertain. Accurately estimating the food

preparation time for each order can yield significant benefits, both for delivery drivers and

the customers’ experience. In this study, we make the assumption that the food prepara-

tion time for each restaurant follows distinct gamma distributions, characterized by dif-

ferent shape parameters α and a scalar parameter β. This choice is motivated by the com-

mon use of gamma distributions for modeling waiting times in on-demand food delivery
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Algorithm 3 Simulation

Input: information of ordersO, driversD and restaurantsR
1: procedure Simulation(O,D,R)
2: for each area optimization time period t ∈ T do

3: Area optimization: Solve the RASO model and get the optimal customer service
area Ac,r and driver dispatch area Ad,r.

4: for each order dispatch time interval k ∈ tk do
5: Order generation: generate new order requests for each restaurant according to

the orders arrival rate within the customer service area Ac,r

6: Information collection: collect information of all dispatched and newly gener-
ated orders, drivers, and restaurants;

7: Order dispatch: dispatch remaining and newly generated orders to drivers in
the driver dispatch area who have available capacity using Algorithm 2;

8: Update orders’ status: update the status of orders that have been successfully
dispatched, picked up and delivered, also for orders that have been canceled by customers;

9: Update drivers’ status: update drivers’ planned delivery route based on newly
dispatched orders;

10: end for

11: end for

12: end for

13: end for

14: end procedure

platforms [121, 45].

5.4.2 Real-world Dataset

The dataset used in the numerical experiments is provided by a crowd-sourcing food de-

livery platform in Singapore. The data contains a sample of around 80, 000 order records

for over 2, 000 restaurants and over 30, 000 customers over 8 months (October 2020 to

May 2021). Each delivery record includes order and driver information, including order

pickup and delivery locations, delivery distance, order accept time, driver ID, and fee paid.

This study focuses on a cluster of restaurants known as “hawker centre” (or “food cen-

tre”), which represents an open-air complex commonly found in Singapore. The “hawker

centre” is a popular dining destination featuring various food stalls or vendors, offering a

wide variety of affordable and delicious local dishes. Figure 5.7 depicts customer locations

(i.e, order delivery locations) from four well-known hawker centres 3 in Singapore, one
3Due to space limitations, we will concentrate on presenting the results of four representative hawker

centres in this chapter. The remaining five hawker centres will be included in the appendix for reference to
ensure the readability.
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(a) (b)

(c) (d)

Figure 5.7: Geographical distribution of restaurants (a) Ghim Moh Market & Food Cen-
tre, (b) Maxwell Food Centre, (c) Bedok Interchange Hawker Centre, and (d) Old Air-
port Road Food Centre and order delivery locations (blue circle represents the CSA).
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Figure 5.8: (Re-scaled) Average number of orders for restaurants over time (each 45 min-
utes).

located in the central business district, and others in the residential area. Customer loca-

tions are depicted by red dots and hawker centre locations are depicted by blue markers.

After cleaning the data and removing some missing values, we choose the top 9 restau-

rants based on the number of orders in the dataset for further investigation. Figure 5.8

illustrates the average number of orders during various time periods throughout the day,

ranging from 6 : 00 to 21 : 45, for the four selected restaurants. The x-axis represents

the time period; and y-axis shows the (re-scaled) average number of orders. Notably, both

restaurants exhibit substantial peaks during the noon hours (9 : 45 to 12 : 00) and the

evening hours (16 : 30 to 18 : 00). The distributions of order preparation time are

visualized in Figure 5.9.

5.4.3 Results on Customer Demand Estimation

Using the real-world order data, we conduct numerical experiments to evaluate the pro-

posed estimation of customer order demand based on the discrete choice model proposed

in Section 5.3.2. Figure 5.10 displays histograms representing the total number of cus-
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Figure 5.9: Histogram of customer restaurants’ orders preparation time.

tomer orders in relation to the distance between the restaurant and the customer for se-

lected hawker centres. The x-axis indicates the customer’s distance (in kilometers) from

the restaurant, while the y-axis represents the number of orders placed for each restau-

rant. It shows that as the distance from the restaurant increases, the number of orders

exhibits a steep initial increase, followed by a gradual decrease. This observation aligns

with the number of orders described by the expression α′
re

βrxx = 2πnrαre
βrxx, which

is dependent on the distance x from the restaurant, as indicated in equation (5.10). No-

tably, a greater distance from the restaurant leads to an increase in the marginal service area

(represented by 2πxnr). However, it also results in a reduction in customers’ willingness

to place orders (demonstrated by αre
βrx with a negative βr). To estimate the prospec-

tive orders approximation function (5.11) for each restaurant, nonlinear least squares is

employed. The coefficient of determination (R2) is utilized as a performance metric to

determine the values of α′
r and βr for each restaurant:

ȳ =
1

n

n∑
i=1

yi, SSres =
n∑

i=1

(yi − ŷi)
2, SStot =

n∑
i=1

(yi − ȳ)2, R2 = 1− SSres

SStot
,

(5.25)
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where n is the total number of estimated values, and yi and ŷi are the actual value and its

estimate, respectively. If the fitted value is exactly the same as the actual value, R2 = 1.

The fitting function of each restaurant and its R2 value are displayed at the top right in

each subfigure. We observe that the estimation works well for all hawker centres, with

R2 value ranging from 0.827 (Ghim Moh Market & Food Centre) to 0.892 (Maxwell

Food Centre). This demonstrates the effectiveness of the customers’ choice model for

estimating the number of prospective orders with different service radii. In the appendix,

we show the estimation performance for all nine hawker centres.
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Figure 5.10: Histogram of customers orders in terms of customer-restaurant distance.

5.4.4 Model Selection for Delivery Time Prediction

For order delivery time prediction, we evaluate six machine learning models: ordinary

least squares (OLS), ridge regression (Ridge), linear support vector regression (SVR),

model tree, regression tree, and XGBoost (Gradient Boosting decision tree). We imple-

ment 5-fold cross-validation to select the best parameters (e.g., coefficient value for the

regulation term, maximum depth of the tree in tree-based models) for all models. In the

experiment, nine instances were generated for different restaurants (with differentα′
r and

βr) and different numbers of orders and drivers. The information on instances is shown

78



in Table 5.5. We simulate deliveries for each restaurant from 11 : 00 to 12 : 00—which

generates over 8, 000 data points for each instance—with 80% as the training set and 20%

as the test set. All training, validation, and testing are implemented in Python 3.9.

Table 5.5: Information of instances.

Instance Restaurant Orders Drivers α′
r βr

1 Ghim Moh Market & Food Centre [50, 80] [20, 30] 957.04623 −0.62405
2 Maxwell Food Centre [20, 50] [10, 20] 610.58451 −0.65582
3 Bedok Interchange Hawker Centre [15, 35] [5, 15] 282.61976 −0.51956
4 Old Airport Road Food Centre [20, 40] [5, 15] 428.82034 −0.62944
5 Kovan Food Centre [60, 90] [20, 30] 217.19399 −0.44593
6 Bukit Merah View Market & Food Centre [30, 60] [15, 25] 935.43501 −0.77316
7 Hong Lim Food Centre [25, 45] [5, 15] 499.51778 −0.6803
8 Bukit Timah Market & Food Centre [80, 100] [25, 45] 185.56244 −0.39559
9 Alexandra Village Food Centre [35, 55] [10, 20] 252.13369 −0.52519

We use the mean absolute percentage error (MAPE) and R2 score as performance

metrics for the prediction models:

MAPE =
1

n

n∑
i=1

|yi − ŷi|
yi

× 100%. (5.26)

The results of the machine learning (ML) models’ performance in predicting average

delivery time are presented in Table 5.6. Based on the R2 score, all tree-based ML mod-

els demonstrate commendable predictive capability for average delivery time. Conversely,

the linear models (i.e., OLS, Ridge, and SVR) exhibit significantly lower R2 scores and

higher MAPE values when compared to the tree-based models (i.e., model tree, regres-

sion tree, and XGBoost). Particularly noteworthy is the model tree, which consistently

achieves the lowest MAPE across all instances. Furthermore, the model tree outperforms

XGBoost, as well as all linear models and the regression tree, in bothR2 score and MAPE.

Considering prediction accuracy, compatibility, and computational performance, we opt

for the model tree as the delivery time prediction model and seamlessly integrate it into

the RASO-LT model using the linearization method introduced in Section 5.3.5.

5.5 Experiments and Discussion

In this section, we conduct a set of numerical experiments to evaluate the performance

of the RASO-LT model comparing it with several benchmarks in practice. Then, we
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Table 5.6: Performance of ML methods on average delivery time prediction.

(a) Ghim Moh Market & Food Centre

MLMethods R2R2R2
MAPE

Ordinal Least Square 0.578 0.567
Ridge Regression 0.577 0.566

Linear SVR 0.344 0.325
Regression Tree 0.900 0.161

Model Tree 0.9120.9120.912 0.1470.1470.147
XGBoost 0.893 0.176

(b) Maxwell Food Centre

MLMethods R2R2R2
MAPE

Ordinal Least Square 0.483 0.659
Ridge Regression 0.483 0.658

Linear SVR 0.198 0.351
Regression Tree 0.883 0.199

Model Tree 0.8880.8880.888 0.1760.1760.176
XGBoost 0.848 0.248

(c) Bedok Interchange Hawker Centre

MLMethods R2R2R2
MAPE

Ordinal Least Square 0.485 0.626
Ridge Regression 0.485 0.625

Linear SVR 0.251 0.345
Regression Tree 0.914 0.167

Model Tree 0.9220.9220.922 0.1540.1540.154
XGBoost 0.882 0.212

(d) Old Airport Road Food Centre

MLMethods R2R2R2
MAPE

Ordinal Least Square 0.489 0.699
Ridge Regression 0.489 0.698

Linear SVR 0.275 0.393
Regression Tree 0.903 0.170

Model Tree 0.9100.9100.910 0.1580.1580.158
XGBoost 0.834 0.264

discuss the impact of some important factors and variables on the performance of the

food delivery services, such as the threshold of order delay and temporal distribution of

customer order demand. We run the experiments in Python 3.9 using Gurobi 9.5.1, on

a 2.5GHz Xeon CPU.

Table 5.7: Growth rate of served orders for hawker centres.

Hawker Centre Ghim Moh Maxwell Bedok Interchange Old Airport Road

Growth Rate 17.0% 19.0% 29.6% 19.4%

5.5.1 Model performance.

We report the performance of the proposed RASO-LT model in terms of the following

four metrics: (1) growth rate of orders served; (2) average delivery time of served orders;

(3) average travel distance of each driver; and (4) on-time rate, which is the ratio of orders

delivered in promised time to total orders arriving in a specific period of time. We use

Fixed-CSA-DDA as a baseline, where both the restaurant’s CSA and DDA are fixed,

with radii set to 5 kilometers (commonly used choices by practitioners).

We conducted experiments during lunchtime (11 : 00 to 12 : 00), varying the num-

ber of drivers in the system from small to medium and larger scales. We record the metric

for results before and after the deployment of the RASO-LT as MFix and MRASO-LT, re-
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spectively, which were used to verify the effectiveness of our model. Then we define the

MRat as the changing ratio between MFix and MRASO-LT as follows:

MRat =
MRASO-LT −MFix

MFix
(5.27)

The results are presented in Table 5.7, demonstrating that the RASO-LT model’s

newly introduced restaurant’s CSA and DDA lead to significant improvements ranging

from 17.4% to 29.6% for the selected four prominent hawker centres when compared to

the conventional fixed CSA and DDA approach. Detailed experimental outcomes are de-

picted in Figure 5.11. Specifically, the average travel distance of drivers increased by 16.5%

to 20.3%, 11.1% to 26.0%, 15.1% to 27.0%, and 5.6% to 13.7% for the four hawker

centres, respectively. It is also evident that there was a decline in delivery efficiency to a

certain degree. The average order delivery time experienced increases of 2.4% to 6.3%,

6.0% to 9.7%, 4.3% to 27.7%, and 4.2% to 15.3% for the corresponding centres. These

findings indicate that the proposed method demonstrates superior performance with a

sufficient number of drivers (e.g., large instance), as the corresponding rise in the aver-

age order delivery time remains comparatively modest. As the number of orders served

grows, the on-time delivery rate is observed to decrease, with reductions of up to 2.5%,

7.6%, 6.9%, and 7.0%, respectively (Figure 5.11c). Full details of the evaluation results

are provided in Table 7.2 in the Appendix.

To comprehensively evaluate our proposed area sizing optimization strategy, we also

assess its performance against additional benchmark policies for longer service times,

ranging from 09 : 00 to 15 : 00. Those two new benchmarks are:

• Fixed-CSA: The restaurant’s CSA is fixed with a radius of 5 kilometers, while the

DDA is optimized.

• Fixed-DDA: The restaurant’s DDA is fixed with a radius of 5 kilometers, while

the CSA is optimized. 4

4The radius for a restaurant’s CSA is set to around 4 kilometers in [29]. However, in our work, we
set the fixed radius of restaurant’s CSA or DDA slightly higher to 5 kilometersto account for the higher
maximum delivery distance of 10 kilometers in our dataset compared to [29].
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Figure 5.11: Experiment results on four big food centres: (a) growth rate of average travel
distance, (b) growth rate of order average delivery time, and (c) on-time rate of served
orders.

We have selected Ghim Moh Market & Food Centre with learned parameter α′
r =

957.04723 and βr = −0.62405 to conduct a comprehensive and in-depth analysis. Ad-

ditionally, we also analyze the effects of different parameter settings, including the thresh-

old of delay and order arrival rate. Moreover, we set the promised delivery time for or-

ders to 50 minutes with the threshold for order delay ϵmax = 0, which is commensurate

with common customer expectations (e.g., [69]). Additionally, we assume the number

of drivers in the system equals to 15 for all time periods t ∈ T , and these drivers are

randomly distributed in the area. Each driver is assumed to have a service capacity of 10

orders (p = 10). The maximum and lowest radius for both restaurants’ CSA (ρmax
c , ρmin

c )

and DDA (ρmax
d , ρmin

d ) are set to be 2 kilometers and 10 kilometers, respectively.

Table 5.8 shows the number of orders served and the average order delivery time for

the proposed RASO-LT model over other benchmark policies. To compare the policies,

we calculate the relative improvement in terms of the number of orders served Mo
Rat, and

the actual average order delivery time for each time period t ∈ T . Compared with poli-
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ciesFixed-DDA,Fixed-CSA andFixed-CSA-DDA, we find that theRASO-LTmodel

serves the most orders with 16.9%, 19.2% and 19.2% improvements, and also leads to

the average delivery time increased by 5.7%, 8.0% and 8.9%, respectively. The results

indicate that adjusting the CSA and DDA simultaneously for restaurants can result in

substantial service improvements at the cost of slightly longer delivery times.

Table 5.8: Number of orders served and average order delivery time for different polices.

Policy RASO-LT Fixed-DDA Fixed-CSA Fixed-CSA-DDA

Number of Orders Served 802802802 686 673 673
Order Delivery Time (minute) 42.742.742.7 40.38 39.5 39.2

5.5.2 The impact of the threshold for order delay.

To understand the impact of the threshold for order delay on the performance, we cal-

culate the number of orders served with the varying values of ϵmax from −10 minutes

(orders are required to deliver within 40 minutes) to 10 minutes (orders are required to

deliver within 60 minutes) for all policies5. However, the delivery time constraint may

be violated when we have a negative value of ϵmax for Fixed-CSA-DDA, since the fixed

radius of CSA ρc = 5 kilometers and radius of DDA ρd = 5 kilometers are were specially

selected to allow orders to be delivered within 50 minutes. To be fair in comparison, we

decrease the radius of CSA ρc for Fixed-CSA-DDA from 5.0 kilometers to 4.5 and 4.0

kilometers when ϵmax = −10 and ϵmax = −5, respectively, to satisfy the delivery time

constraint (5.24).

As shown in Figure 5.12 (a), with ϵmax becomes larger, both RASO-LT and Fixed-

DDA can serve more orders. We also observe that the RASO-LT policy can provide the

best solution quality with the largest number of orders served. When ϵmax is set to−10,

−5, 0, 5, and 10 minutes, RASO-LT serves 3.1%, 13.4%, 19.2%, 20.6% and 20.6%

more orders comparing to Fixed-CSA, and serves 11.0%, 16.6%, 16.9%, 10.5% and
5In industry practice, the platforms usually require drivers an ETA which is different from the ETA

promised to the customers. This difference can be represented by the parameter ϵmax. From another per-
spective, the impact of ϵmax can also be interpreted as the impact of ETA (i.e., Lo) when ϵmax = 0.
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6.8%more orders comparing toFixed-DDA. Furthermore, compared with policies with

a fixed radius of CSA ρc, the relative improvement in the number of orders served by our

RASO-LT will gradually increase with longer allowed delays, until it reaches the max-

imum value 20.6% (ρc equals to 10 kilometers). This indicates that our RASO-LT is

more advantageous when customers are more patient with delivery times. Finally, for

RASO-LT, we see that the increased amount of orders served are 69, 39, 10, and 0 with

each 5 minutes increment in the value of ϵmax from−10 to 10. Those observations im-

ply that allowing more time for delivery does assist achieve more orders, while the benefits

progressively decrease.

Figure 5.12: Impact of the threshold for order delay (ϵmax) on (a) the number of orders
served and (b) the actual delivery time of orders.

We also calculate the actual order delivery time in each time period t ∈ T with differ-

ent ϵmax, as depicted as box plots in Figure 5.12 (b). As can be observed, for policies that

can optimize the radius of CSA ρc (i.e., RASO-LT and Fixed-DDA) to serve more or-

ders, the average order delivery time grows strictly as the number of orders served. For ex-

ample, we can find that the average order delivery time of RASO-LT is always larger than

Fixed-DDA across all ϵmax, since RASO-LT can always serve more orders than Fixed-

DDA. However, for Fixed-CSA that can only optimize the radius of DDA ρd, we also
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find that as the ϵmax increases, so does the actual average order delivery time. The expla-

nation for this is a larger ϵmax will make the policy to presume that customers are more

lenient with the order delivery time, resulting in a smaller radius of DDA with fewer avail-

able drivers and a longer actual delivery time.

Figure 5.13: Order delivery time comparisons with ϵmax equals to -5.

It is worth noting that Fixed-CSA-DDA serves fewer orders served at ϵmax equals to

−10 and −5, which are 528 and 638, respectively, than Fixed-CSA, which serves 673

orders. This happens because we decrease the radius of CSA ρc from 5 kilometers to 4

kilometers (ϵmax = −10) and 4.5 kilometers (ϵmax = −5) to ensure the delivery time

constraint (5.24) that the predicted average order delivery time Lr(ρc, ρd) must be less

than or equal to Lo + ϵmax (by default, the promised delivery time Lo = 50) minutes

in each time period t ∈ T . To better comprehend the importance of the delivery time

constraint, we compare Fixed-CSA-DDA and Fixed-DDA, the two policies with the

fewest served orders. We compare the actual order delivery time of Fixed-CSA-DDA,

Fixed-DDA and the predicted order delivery time of Fixed-CSA-DDAwith ϵmax values

−10 for t ∈ T from 09 : 00 to 15 : 00. The results can be found in Figure 5.13.

For Fixed-DDA, we observe that the predicted order delivery time is always less than 40

minutes (Lo + ϵmax), and the actual order delivery time only exceed 40 minutes slightly

in time period 10 : 30 to 11 : 15 due to the prediction errors. The actual delivery time of

Fixed-CSA-DDA never exceeds 40 minutes even in both 09 : 45 to 10 : 30 and 10 : 30

to 11 : 15 when the peak of orders occurs. We also find that the actual delivery time of

Fixed-DDA is greater than that of Fixed-CSA-DDA in every time period t. This is due
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to the fact that the more orders served the longer the average order delivery time will be,

and Fixed-DDA can serve more orders by adjusting ρc.

Figure 5.14: Radius over time for policy (a) RASO-LT, (b) Fixed-CSA, and (c) Fixed-
DDA.

5.5.3 Comparison of radius adjustments over time.

Next, we investigate how those policies generate the radii of the restaurant’s CSA ρc and

DDA ρd over time t ∈ T , except for Fixed-CSA-DDA. Figure 5.14 shows the radius

adjustments for the three policies. When only one of the areas can be adjusted, we find

that both policies Fixed-CSA and Fixed-DDA react to the peaks (from 09 : 45 to 12 :

00) by setting a smaller radius of CSA ρc and a larger radius of DDA ρd, respectively,

and to the off-peaks (from 09 : 00 to 09 : 45 and 12 : 00 to 15 : 00) by setting a

larger radius of CSA ρc and a smaller radius of DDA ρd, respectively. In addition, it is

interesting to observe that RASO-LT can adjust the CSA and DDA simultaneously by

setting the radius of DDA ρd to the maximum value and a relative moderate radius of
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CSA ρc during the peak periods. While in the off-peak periods, since the platform aims

to serve more orders, the radius of CSA ρc is set to the maximum value and the radius

of DDA ρd can be smaller to meet the demand. In general, we observe that it is always

beneficial to maintain a large radius of CSA ρc when the restaurant has sufficient service

capacity, which can bring more drivers to satisfy the order demand, and the radius of

CSA ρc will only be decreased to ensure orders will not be delayed when there are no

more drivers can be found (ρd reaches its maximum value, 10 kilometers).

Figure 5.15: Radius over time (RASO-LT) with customer orders arrival distribution.

5.5.4 Comparison with different customer order arrival rates.

Last, we analyze the radius adjustment decisions over time t ∈ T for different customer

order arrival rates. In an extreme peak scenario, where the customer order arrival rates are

more than twice that of off-peak periods, we illustrate the radius adjustment decisions us-

ingRASO-LT in Figure 5.15. The results demonstrate that the DDA radius adjustments

align with the changes in customer order arrival rates. Moreover, the CSA radius ρc only

decreases to around 7 kilometers during peak periods from 11 : 15 to 12 : 45, which

corresponds to the occurrence of the highest order peak.

By combining the results presented in Figures 5.14 and 5.15, we observe that our
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RASO-LT approach primarily adjusts the radius of the restaurant’s DDA ρd first and

subsequently adapts the CSA radius ρc to meet the order’s delivery time constraint. This

adjustment allows us to reduce the CSA when the restaurant encounters a shortage of

service capacity during peak periods.

5.6 Conclusion

This chapter introduces the restaurant area sizing optimization problem (RASO) as a

new operational problem for managing supply and demand in on-demand food deliv-

ery services. The main objective is to maximize the total number of orders served while

ensuring a required service level for order delivery time. Initially, we examine the rela-

tionship between the radius of the customer service area and the number of customer

orders received by the restaurant, focusing on the demand side. Subsequently, we ana-

lyze the number of drivers, which depends on the radius of the driver dispatch area, and

explore various factors to predict the average delivery time on the supply side. To model

the problem, we integrate closed-form formulations for order estimation based on a cus-

tomer choice model and delivery time prediction using a model tree model. The resulting

integrated model is formulated as an MIQCP (Mixed-Integer Quadratically Constrained

Program) and can be efficiently solved using Gurobi as the optimization solver.

We utilize a customized simulator capable of simulating order generation, placement,

and dispatch, along with real-world food delivery data provided by our industry partner,

to conduct extensive experiments. The objective is to evaluate the performance of our

proposed RASO-LT model and compare it with other benchmark area sizing policies.

The results show a significant performance improvement achieved by our approach, indi-

cating that simultaneous adjustments of the radii of the customer service area (CSA) and

driver dispatch area (DDA) can substantially increase the total number of orders served

within an acceptable delivery time. Furthermore, we investigate the impact of various fac-

tors related to demand, supply, and the threshold for order delay on the radius adjustment

decisions over time.
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Several future research directions can be explored. A natural avenue involves model-

ing the RASO problem as a Markov decision process and utilizing reinforcement learn-

ing approaches to learn a policy for sequential decision-making on CSA and DDA from

end to end. Another intriguing direction is to synergize our area sizing optimization with

other powerful tools, such as surge pricing. For instance, in scenarios with extreme under-

supply where increasing the DDA fails to bring sufficient supply to serve orders placed in

the CSA with a radius ρmin
c , an integrated optimization method combining area sizing

and surge pricing could prove valuable.
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Chapter 6

Learning Order-Level Dispatch for

On-Demand Food Delivery Service

6.1 Motivation and Background

One of the significant transformations witnessed in the logistics domain in recent years

pertains to the emergence and triumph of on-demand passenger and logistics service plat-

forms. Notably, on-demand food delivery platforms such as Uber Eats, DoorDash, Grab

Food, and Meituan have played a pivotal role by offering efficient door-to-door food de-

livery services. These platforms have achieved remarkable success, with the COVID-19

pandemic further catalyzing their growth. For example, Grab Food, operating in 480

cities across eight countries and serving as the largest food delivery service provider in

Southeast Asia, reported a substantial gross merchandise volume of $7.6 billion in 2021,

reflecting a remarkable 29% year-on-year increase. Similarly, Meituan, China’s largest on-

demand food delivery platform, handles over 30 million daily orders and achieved a profit

of 4.71 billion RMB in 2020. According to a report by [84], the food delivery market in

the United States experienced a twofold surge during the COVID-19 pandemic, with its

market value surpassing $150 billion.

Within the on-demand food delivery market, as the same illustrated in Figure 5.1,

the ecosystem comprises three principal entities: customers, restaurants, and drivers (or
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drivers), in addition to the platform itself. Customers utilize the platform to peruse and

select food options from nearby restaurants enlisted on the platform. Upon placing an

order, the platform promptly notifies the respective restaurant to commence food prepa-

ration and conveys comprehensive order details, including the delivery task, to drivers

located in proximity. Subsequently, the assigned driver collects the prepared food from

the restaurant and ensures its prompt delivery to the customer’s location. Throughout

this process, the paramount challenge lies in the effective dispatching of orders to drivers,

facilitating timely pickups from restaurants and subsequent deliveries to customers, all

within stringent promised delivery time constraints (e.g., 45 minutes).

Conventional order dispatching strategies implemented in practical settings (e.g.,

[151]) typically involve fixed time intervals (e.g., every 10minutes), within which the plat-

form accumulates all incoming orders and consolidates them into a matching pool. Sub-

sequently, the orders are collectively assigned to drivers for simultaneous delivery. How-

ever, recent investigations in the realm of ridesourcing (e.g., [57, 140]) have revealed that

by extending the dispatching time interval, it is possible to optimize the allocation of

drivers to passengers, leading to reduced wait times for both parties involved. Inspired by

the success of extended dispatching time intervals in ridesourcing, our research focuses on

optimizing the dispatch times for individual orders in on-demand food delivery services.

Specifically, our research aims to identify the optimal timing for each individual order to

enter the matching pool, thereby initiating the dispatching process, upon its arrival on

the platform.

Driver A

Driver B

Driver A
Driver B

Order 1

Order 2

Order 3

Driver A Driver B

Fixed matching time interval Dynamic matching time intervalFixed matching time interval

Figure 6.1: Delivery distance/time reduction with dynamic dispatching time interval.

Figure 6.1 provides an illustrative example that demonstrates the impact of optimizing

dispatch times at an order-level on both delivery distance and time. The figure highlights
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two distinct dispatching times, denoted as t and t+1. At t+1, three orders are received,

with orders 1 and 2 arriving prior to t, and order 3 arriving within the time interval (t, t+

1]. Initially, we consider dispatching using a fixed time interval approach, wherein all

orders arriving in the interval (t − 1, t] enter the matching pool and are dispatched to

drivers for delivery at time t. As per this strategy, orders 1 and 2 are assigned to drivers A

and B respectively at t, while order 3 is dispatched to driver A at t + 1, who is en route

to deliver order 1. The delivery routes are depicted by black dotted lines with arrows.

However, if we postpone the inclusion of order 1 in the matching pool until t+1, driver

A can conveniently pick up both order 1 and 3 for delivery. This adjustment results in a

reduced total travel distance, albeit at the expense of a lengthier waiting time for order 1.

Although implementing above postponement strategy at the order level can signifi-

cantly reduce the total travel distance and decrease delivery times, it is crucial to acknowl-

edge the potential trade-offs involved: the extended dispatching time may elicit impa-

tience among customers, prompting them to cancel their orders. Thus, understanding

the delicate balance between customer waiting time, driver travel distance, and order de-

livery time across various dispatching time intervals (or the number of intervals to wait be-

fore entering the matching pool) becomes crucial. Consequently, developing optimal dis-

patching strategies that yield superior system performance is of paramount importance.

A promising approach to this entails dynamically determining the dispatch time for each

customer order.

To address the aforementioned challenges, we propose a comprehensive model that

treats the dynamic order dispatching problem in on-demand food delivery services as a

multi-agent Markov decision process. In our model, each customer order is considered

as an independent agent with the ability to make decisions regarding its entry into the

matching pool for dispatch. Subsequently, the platform employs a driver routing algo-

rithm to optimize the insertion of orders into drivers’ delivery routes. In summary, our

study makes the following key contributions:

• We investigate the dynamic order dispatching problem in the context of on-
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demand food delivery services and formulate it as a Markov decision process.

Specifically, we focus on the setting where each order decides its entry into the

matching pool in the subsequent dispatching times, followed by the application

of the driver routing algorithm.

• We propose a two-stage optimization framework based on learning techniques to

address the dynamic order dispatching problem. In the first stage, we use an end-

to-end RL optimization approach. This involves crafting a centralized multi-agent

deep Q network that streamlines order dispatching, allowing orders to join the

matching pool for pickup and delivery. For the second stage, we leverage an effi-

cient driver routing algorithm that takes into account driver routing behavior and

supports the re-dispatch of orders.

• We conduct extensive numerical experiments using a real-world dataset to evaluate

the performance of the proposed framework. The computational study demon-

strates that our framework outperforms benchmark methods, indicating its effec-

tiveness in improving the efficiency of order dispatching in on-demand food deliv-

ery services.

In conclusion, our research provides a comprehensive model and a learning-based

optimization framework that significantly enhance the order dispatching process in on-

demand food delivery services, leading to improved operational efficiency and customer

satisfaction.

The reminder of this chapter is organized as follows. Section 6.2 describes the research

problem. Section 6.3 presents MDP model for the optimization of the dispatching time

at an order-level as well as the driver routing algorithm. Section 6.4 introduces the real

data and simulator. Section 6.5 presents experimental results of the proposed model and

other benchmark methods. Finally, we conclude and discuss future research in Section

6.6.

93



6.2 Problem Description

In this section, we present a formal description of the order-level dispatch time optimiza-

tion problem for a on-demand food delivery service platform, and present a simple exam-

ple for illustration.

...... ......

Matching Pool Matching Pool Matching Pool Matching Pool

 

Stage 1

Stage 2 Driver Routing 

Decision Time

Figure 6.2: A two stage optimization framework for on-demand food delivery service.

We are given a fleet of drivers D = {d1, d2, · · · , dm, · · · } to deliver a set of or-

ders O = {o1, o2, ..., on, ...} that arrive dynamically in the planning horizon T =

{1, 2, ..., T}. Each order o ∈ O can be represented as a tuple (ot, o+, o−, po) that con-

tains the arrival time, pickup and delivery locations and the promised delivery time. Each

driver d ∈ D has a service capacity cap (i.e., the maximum number of orders that can be

carried) and drivers are distributed around the entire area. The platform must make two

decisions: (1) when to release the orders to the matching pool; and (2) how to dispatch

the orders in the matching pool for available drivers for delivery. More specifically, at each

dispatch time t ∈ T , the platform could determine which orders with ot ≤ t can enter

the matching pool, followed by specific order dispatching in batches. Those decisions

are made sequentially over time until it reaches an ending time of T . An example of the

proposed two-stage framework is demonstrated in Figure 6.2. As shown in the figure, the

order dispatching decisions are made at time t−1, t, t+1 and t+2, e.g., every 5 minutes,

and between consecutive decision times, we have a matching pool to hold all orders are
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allowed to dispatch to available drivers for pickup and delivery. For example, before time

t− 1, there are three orders, o1, o2, o3 arrive in the platform and waiting for dispatching.

The platform decide order o1 and o3 can enter the matching pool, while order o2 should

waiting for the next decision time at t. And there are three new orders (o4, o5, o6) arriving

between t − 1 and t. Order o4 is delayed again for dispatch and only order o6 is allowed

to enter the matching pool. All orders including order o4 which arrive in the platform

before time t are allowed for dispatch at time t+ 2. In this case, a total of four orders are

delayed for dispatch, with orders o2, o5 and o7 waited for one more time interval, while

order o4 waited two time intervals. Following the determination of dispatchable orders,

the platform will allocates each order in the dispatch pool to available nearby drivers and

subsequently updates the driver’s route for pickup and delivery.

Here, we are interested in optimization from a platform’s perspective, i.e. we aim

to minimize the total cost with the delivery constraints. To be specific, as given in the

objective function below, the platform aims to minimize the total travel distance while

ensuring a service level of served orders as well as order delivery time.

min
∑
d∈D

cd + λ ·
∑
o∈O

max(0, f o − po) + µ ·
∑
o∈O

uo (6.1)

In this context, we use cd to denote the total travel distance of driver d within the en-

tire planning horizon T . Furthermore, we define variable f o to represent the time when

customer o receives their order, and uo as a binary variable with a value of 1 if order o

is cancelled by the customer, and 0 otherwise. The first component computes the total

travel distance for all drivers. We impose penalties for served orders with delays or orders

cancelled by customers through the assignment of large values to parameters λ and µ, re-

spectively. The entire mathematical programming model is given as follows. We minimize
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the total cost given by (6.1) above subject to the following constraints:

∑
d∈D

∑
j∈L1∪D

xijd = 1, ∀i ∈ L1 (6.2)

∑
i∈V

xijd −
∑
i∈V

xjid = 0, ∀j ∈ L1 ∪ L2, d ∈ D (6.3)

tid + si + dij −M(1− xijd) ≤ tjk, ∀i, j ∈ L1 ∪ L2, d ∈ D (6.4)

to+d ≤ to−d ∀o ∈ O, d ∈ D (6.5)

wjd ≤ wid + qj +M(1− xijd), ∀i, j ∈ L1 ∪ L2, d ∈ D (6.6)

wjd ≥ wid + qj −M(1− xijd), ∀i, j ∈ L1 ∪ L2, d ∈ D (6.7)

wid ≤ cap, ∀i ∈ L1 ∪ L2, d ∈ D (6.8)∑
d∈D

∑
j∈L1∪L2

xijddij = cd, ∀d ∈ D (6.9)

xijd ∈
{
0, 1

}
∀i, j ∈ L1 ∪ L2, d ∈ D (6.10)

The binary decision variable xijd indicates whether driver d travels from location i to

j. The continuous variable tid represents the arrival time of driver d at location i, while

variable wid denotes the number of orders handled by driver d upon departing from lo-

cation i. Parameters si and dij denote the service time at location i and the travel distance

between locations i and j, respectively. Constraint (6.2) ensures that both the pickup and

delivery nodes for each order are visited exactly once. Constraint (6.3) ensures that each

order o be served by a single driver d. Constraints (6.4) and (6.5) pertain to the timing

of location visits and ensure the practicability of order deliveries. More precisely, when

consecutive locations i and j are traversed in the route of driver d, the arrival time at loca-

tion j must exceed or equal the departure time from location i, accounting for the travel

time between these locations and the service duration at location i. Constraints (6.6) and

(6.7) compute the total weight carried by the driver after visiting each pickup or delivery

node. Additionally, we impose the condition qo+ = −qo− for every order o. Constraint

(6.8) ensures that the number of orders carried by each driver does not surpass the upper

capacity limit. We summarize the notation in Table 6.1.

96



Table 6.1: Notation.

Sets:

O Set of orders;
D Set of drivers;
T Planning horizon;
L1 Set of pickup locations;
L2 Set of delivery locations;
Input parameters:

si Service time at location i;
qi Number of orders to pickup or delivery at location i;

cap driver capacity;
cij Travel distance between location i and location j;
po The promised delivery time of order o;
λ Unit penalty of delays for served orders;
µ Unit penalty of unserved (cancelled) orders;

Decision variables:

xijd Binary variable, 1 if the driver d visit location j directly after location i, 0 other-
wise;

Intermediate variables:

tid Arrival time when driver d at location i;
wid Number of carrying orders when driver d departs location i;
f o The time when order o is delivered;
uo Binary variable, 1 if order o is cancelled by the customers, and 0 otherwise;
cd Total travel distance of driver d;

6.3 Model Formulation

This section is devoted to introducing our multi-agent MDP model, where each individ-

ual order serves as an agent.

In the context of our problem, it seems most logical to conceive of the platform as

the decision-maker. The platform, acting as a single centralized agent, determines which

orders are allowed to enter the matching pool. However, the nature of this modeling ap-

proach significantly complicates reinforcement learning tasks due to the dynamic nature

of action spaces. In on-demand food delivery service, the number of orders arriving in

each dispatching time interval (e.g., (t − 1, t]) changes over time. Correspondingly, we

need to maintain a dynamic action space, namesAt. However, representing a dynamic

action space in the agent’s learning algorithm can be challenging. Since standard RL al-

gorithms are typically designed for static action spaces, so modifications or entirely new
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approaches may be necessary to handle dynamic scenarios. Given the set of orders wait-

ing for entering the matching pool at time t is Ot = {ojt , o
j+1
t , · · · , oj+k

t }, for example,

as shown in the left side of the Figure 6.3, at the decision step t, an action of the agent is

to select a subset of orders at from all k orders. Accordingly, we define the action space

At = {at|at ∈ Ot}, which contains all possible order subsets. Note that the size of the

combinatorial space At is 2k, which grows exponentially with the number of accumu-

lated orders k in time interval (t − 1, t]. This limitation hinders the application of gen-

eral reinforcement learning algorithms to large-scale problems, as these algorithms neces-

sitate an explicit representation of all actions and exploration across a large action space.

To accommodate a large action space while maintaining tractable learning, we factorize

the combinatorial action spaceAt into elementary actions along each order dimension.

Specifically, as illustrated on the right side of Figure 6.3, we conceptualize each order as

an individual agent. The elementary action for order i at decision time t is denoted as ait.

This implies that order i has two options: either enter the matching pool for dispatching

a driver for delivery, or wait until the next decision time. Using this representation, any

subset of orders can be expressed as at = ∪i=j+k
i=j ait. Consequently, our task transforms

into learning policies for binary decisions corresponding to each order. This approach

allows for the exploration of a large action space through the traversal of binary action

spaces, which increase linearly with the number of orders.

We then present the details of our Multi-Agent Deep Q-Learning Network

(Dynamic-M-DQN) algorithm for dynamic order dispatching policy learning as well

as the driver routing (DR) algorithm.

6.3.1 MDP Model

Our multi-agent MDP model is represented by a tuple consisting of the agents, states,

state transitions, and rewards, defined as follows:

Agent. We consider each customer order as an individual agent, endowed with the

decision-making capability to opt for entry into the matching pool. The planning hori-
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Figure 6.3: Comparison of two different action representations: (a) platform as a single
centralized agent; and (2) each order as an agent.

zon, denoted as T , encompasses a total of T dispatch times and |N | agents. Agent acti-

vation occurs upon receiving a customer request from a restaurant and is randomly ini-

tiated by the environment, in accordance with the underlying demand distribution. The

lifecycle of an agent commences when a customer places a request on the platform and

concludes upon one of two events: (1) successful pick-up by a driver or (2) cancellation

by the customer during the queueing period, resulting in non-entry into the matching

pool. The count of agents in each time interval, represented as Nt for t ∈ T , varies

across different time intervals. Serving as a centralized meta-agent, the platform assumes

the responsibility of making matching decisions on behalf of all agents.

State. At each decision time t ∈ T , the state st is defined. we distinguish between

two types of states: the global states st,global which provide comprehensive demand and

supply information for the entire environment and are shared by all agents at dispatch

time t, and the local states st,local which are specific to each individual agent and vary

among them at the same dispatch time. Assuming the study area is divided into |M|

small hexagons, the global states in our model encapsulate four types of spatio-temporal

supply-demand features: (1) the count of pending orders in the matching pool within
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each hexagon; (2) the available service capacity in each hexagon; (3) the origin-destination

distribution of all pending orders within the study area; and (4) the pair of current and

destination hexagons for each driver operating within the study area. Consequently, the

dimension of the global state vector is |M|× (2|M|+ 2). The local states, on the other

hand, comprise three elements: (1) the origin (restaurant) and destination (customer’s lo-

cation) of each order; (2) the estimated increase in travel distance for dispatched drivers,

as calculated by the routing algorithm; and (3) the time elapsed since the customer placed

the order. It is evident that the local-view state varies among agents, each characterized by

a dimensionality of 2|M| + 2. Therefore, the state for agent i at the decision time t can

be expressed as sit = [st,global, st,local] ∈ R(|M|+1)×(2|M|+2). However, if the study area is

extensive (indicated by a large |M|), the dimension of the global states st,global could be

further reduced. In such cases, it may be advantageous to include only features (3) and (4)

in the global states. Consequently, the dimension of sit would be 2× |M|2+2|M|+2.

Additionally, given the typical structure of on-demand food delivery services, where each

order usually involves customer locations and restaurants in close proximity, a divide-and-

conquer strategy is feasible. This approach entails initially dividing the area into smaller

sub-areas based on restaurant service areas, and then applying our RL framework for or-

der dispatching within each sub-area.

Action. At each decision time t, every agent i possesses two feasible actions repre-

sented as ait = {0, 1}. Specifically, ait = 1 signifies that agent i opts to join the matching

pool, thereby becoming eligible for dispatch to a driver. Conversely, ait = 0 indicates that

agent i chooses not to participate in the matching pool and instead awaits the subsequent

matching time t+ 1.

Reward. The reward function is specifically designed to ensure alignment with the

established optimization objective function, which aims to balance the trade-offs among

driver travel distance, order delays, and the number of unserved orders. Let ei denote the

last dispatch time for agent i in the queue (i.e., orders that have not been picked up or

cancelled). The reward for agent i at time t is denoted as rit. The following conditions are

considered:
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• For t < ei, if agent i decides not to enter the matching pool, a constant penalty is

incurred: rit = −∆t. This penalty is imposed due to the existence of a promised

delivery time for each order, and customers generally prefer to receive their orders

promptly.

• If agent i is cancelled by the customer after a prolonged waiting time, the reward

is calculated as: rit = −∆t − rcancel. Here,−rcancel represents a constant negative

penalty reward assigned to cancelled orders.

• When t = ei, indicating that agent i enters the matching pool and is subsequently

picked up by a driver, the reward is determined as: rit = rmatch − di,j
v

. In this case,

rmatch represents a constant positive reward for successful matching, di,j denotes

the estimated increase in travel distance for the matched driver j during the order

pickup and delivery process, and v represents the driver speed.

Here, the values of rcancel and rmatch may vary based on the attributes of a customer

order, such as the restaurant, food value, and expected delivery time. However, to en-

sure fairness, all agents receive the same constant reward −rcancel or rmatch, if an order is

cancelled or dispatched. Intuitively, a large value of rmatch implies that the platform prior-

itizes immediate order dispatch to drivers, giving less importance to the potential increase

in driver travel distances and order delays. And a small−rcancel suggest that the platform

aims to fulfill as many orders as possible.

We further consider the trade-offs among driver travel distance, order delays, and the

number of unserved orders under two scenarios: (1) If an order is eligible for the matching

pool, the driver’s travel distance is still a crucial factor. To account for this, we set rit =

rmatch − di,j
v

. Here, if di,j is significantly large, the benefit of dispatching order i reduces,

potentially becoming negative. (2) If an order is postponed, meaning it does not enter the

matching pool, we consider the trade-off between postponement and cancellation. In this

scenario, we define rit = −∆t for postponement and rit = −∆t−rcancel for cancellation.

A large value of−rcancel/∆t suggests that the platform is striving to delay the allocation

101



of orders to maximize potential benefits on saving travel distance and order delays, while

also attempting to minimize the likelihood of orders being canceled by customers.

6.3.2 Reinforcement Learning Dispatch Algorithm

In the field of sequential decision-making, Reinforcement Learning (RL) has emerged as

a key framework, demonstrating significant proficiency in addressing complex challenges

in transportation research [34].

Background

In the context of RL, an agent engages with an environment, executing actions and

acquiring rewards, with the objective of maximizing the cumulative rewards Rt =∑T
k=t γ

k−trk over time. In this subsection, our focus centers on the design of a RL al-

gorithm for determining the incorporation of customer orders into the matching pool

across time periods t ∈ T . To accomplish this, we employ a deep RL methodology

to ascertain the optimal dispatching timing for individual customer orders, leveraging

real-world historical food delivery data. Our approach entails adopting a value-based,

model-free reinforcement learning technique, utilizing a deep Q network (DQN) with

experience replay to approximate the action-value function Q(s, a). For every dispatch

decision time t, the action-value function, denoted as Qπ(st, at), signifies the expected

reward associated with selecting action at within state st under a specified policy π. The

principal aim of an agent is to maximize the anticipated reward. More precisely, the agent

endeavors to ascertain the optimal action-value function, labeled as Q∗(st, at), that ful-

fills the condition:

Q∗(st, at) = max
π

Qπ(st, at) ∀st ∈ s, at ∈ a, (6.11)

for any policy π. Accordingly, the agent chooses the action at = argmaxQ∗(s, a), aim-

ing to optimize its decision-making process at each iteration.

Rather than training distinct DQN networks, each with separate experience replay

and target networks, for individual intelligent agents (orders), we introduce a centralized
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learning framework called Dynamic-M-DQN. This framework employs a single cen-

tralized DQN to make dispatch decisions at an order-level. There are two principal ra-

tionales for adopting a centralized training framework. Firstly, the variable number of

agents presents a substantial challenge when implementing decentralized approaches that

allocate an individual neural network to each agent. This challenge stems from the inher-

ent uncertainty in predefining the count of neural networks to be created. Secondly, a

centralized training framework streamlines the coordination and information exchange

among agents, enabling them to collaboratively learn and enhance their decision-making

procedures. Numerous precedent investigations, such as [87], [57], [103], and [90], have

delved into varied methodologies to expand single-agent RL algorithms into multi-agent

contexts. These methodologies encompass the inclusion of communication channels

among agents and the adaptation of reward functions to accommodate the actions of

fellow agents.

Simulation Environment

Couriers

Orders

Restaurant

Action Selection

Global
(Demand & Supply)

Local
(Origin & Destination,

Distance, Time)

Observe States for each agent i 

Deep Q Network

Enter the matching pool

Wait for next matching

Cancelled by customer

Collect Reward

Map

Figure 6.4: Dynamic-M-DQN algorithm for order dispatching with dynamic time inter-
vals.
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Algorithm 4 Dynamic Multi-agent Deep Q Learning Algorithm

1: procedure Dyamic-M-DQN

2: Initialize the agent specific replay buffer B = {B1,B2, · · · ,B|N |};
3: Initialize the Q network with weights θ;
4: for epoch = 1→ |E| do ▷ Start of an epoch
5: Initialize the environment with joint state s0;
6: Initialize the replay buffer Bi for each agent i;
7: for dispatch decision time t ∈ T do

8: Collect information for each agent i ∈ Nt that arrivals before time t;
9: for i = 1→ Nt do ▷ Choose an action

10: Observe the states sit for each agent i;
11: Take action ait according to the ϵ-greedy policy with Q(sit, a

i
t|θ);

12: end for

13: end for

14: Run the simulation with the inputs of joint states st = {s1t , s2t , · · · , s
Nt
t }

and actions at = {a1t , a2t , · · · , a
Nt
t }, observe the joint state rt =

{r1t , r2t , · · · , r
Nt
t } and new states st+1 = {s1t+1, s

2
t+1, · · · , s

Nt
t+1}. For

each agent i, we denote eit = 1 if it reaches the terminate state (picked up
or cancelled), 0 otherwise; ▷ State transition

15: for agent i = 1→ Nt do

16: Append (sit, a
i
t, r

i
t, s

i
t+1, d

i
t) to the replay buffer Bi of agent i;

17: Append Bi to B; ▷ Update replay buffer
18: end for

19: end for

20: end for

21: if size of the replay buffer |B| ≥ bmin then

22: Randomly sample M complete trajectories (sit, ait, rit, sit+1, e
i
t) for each

agent i from the replay buffer B from all agents;

23: Update the weights θ with the minimization of target lossL(θ):
24: θ ← θ − α · L(θ) · ∇θQ(sit, a

i
t|θ) ▷ Weight updates

25: end if

26: end for

27: end for

28: end for

29: end procedure

RL Algorithm

We initialize a neural network with parameter θ to approximate the action value func-

tion Q(s, a|θ). For every decision time t ∈ T , we gather the transitions (sit, ait, rit, sit+1)

for each agent i and store them within agent-specific replay buffers denoted as B =

{B1,B2, · · · ,B|N |}, where Bi signifies the replay buffer for agent i. The training pro-

cess aims to iteratively update the action-value function Q(s, a|θ) in order to find the

optimal action-value functionQ∗(s, a|θ∗) that maximize the expected long-term reward.
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Table 6.2: Notation for driver routing algorithm.

Sets and Variables:

R Set of restaurants
ld Current location of driver d
ωd Ongoing carrying orders by driver d
co,d Distance between pickup location o+ and driver’s current location ld
RTd Planned delivery route for driver d
Opick Orders that have been dispatched and are being picked up by the drivers

The update rule of action-value function of each agent i is defined as follows:

Q(sit, a
i
t|θ)← Q(sit, a

i
t|θ)+α ·

[
rit+γmax

a∈a
Q(sit+1, a|θ)−Q(sit, a

i
t|θ)

]
, (6.12)

here, α stands as the learning rate, dictating the magnitude of each update’s progression.

Furthermore, a target network is integrated to periodically adjust the Q values, fostering

greater stability in the training procedure by curbing transient fluctuations. The parame-

terθ undergoes updates via the minimization of a loss function, delineated as the disparity

between the anticipatedQ values and the projectedQ values. The formulation of the loss

functionLθ is as follows:

Lθ = E(sit,a
i
t,r

i
t,s

i
t+1)

[(
rit + γ ·max

ait+1

Q(sit+1, a
i
t+1|θ−)−Q(sit, a

i
t|θ)

)2
]
,(6.13)

where γ ∈ (0, 1] is a discount factor, and θ− denotes the network parameters of the

target network.

The complete Dynamic-M-DQN algorithm for order dispatching is depicted in Fig-

ure 6.4, with detailed steps summarized in Algorithm 4.

6.3.3 Driver Routing

This study primarily centers around order dispatching, yet routing decisions play a vital

role in the overall service process at a lower level. In recent years, there has been exten-

sive attention given to the problem of route optimization in food delivery. The routing

problem is first formalized as meal delivery routing problem in [104], which is a variant

of dynamic pickup and delivery problem and has been studied in recent decades [97].

Given the high demand for timely food delivery, exact solution methods [142] are often
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computationally intensive and impractical for addressing driver routing problems. Con-

sequently, conventional heuristic algorithms [151, 129] are typically employed in promi-

nent food delivery platforms (e.g., Meituan) as a means of swiftly obtaining approximate

solutions.

In this subsection, we present a comprehensive account of our driver routing algo-

rithm, as depicted in Algorithm 5. The symbols and terminology employed in this algo-

rithm are detailed in Table 6.2.

Dispatching rules and assumptions for service operations are as follows:

• Dispatch fairness: If the number of orders carried by driver d is large/small (i.e.,

Ωd is large/small), s/he will be less/more likely dispatched new orders;

• Order re-dispatch: Orders that have not been picked up within a specified time

frame (e.g., 10 minutes) but have been assigned a driver can be re-dispatched to a

new driver;

• Driver routing behavior: Following order dispatch, drivers deliver their carried

orders by solving an open Traveling Salesman Problem (TSP) to optimize their

route;

• Order cancellation: If a newly generated order cannot find an available driver

within a certain time (e.g., 15 minutes), it is assumed that the customer becomes

impatient and cancels the order.

The first rule is aimed at ensuring fairness in dispatching by preventing certain drivers

from being overloaded with a disproportionately large number of orders, while others

only receive a few. The second rule serves to enhance the flexibility of the dispatch algo-

rithm by allowing for order re-dispatch, which has the potential to reduce order pickup

time. Third, we assume that drivers always follow the shortest one-way delivery travel

route from the restaurant to one of the customer locations. This route is derived by

solving an open TSP, where the driver does not return to the starting location. 1 Lastly,
1It is important to note that in real-world scenarios, due to complexities such as left turns in intersec-
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customers have the option to cancel orders if the platform fails to find a driver within a

specific time period.

Algorithm 5 Driver Routing Algorithm

Input:Opool,D,R, ωd

Output: RT′
d

1: procedureRouting(Opool,D)
2: Initialize dispatched and being picked up ordersOpick = ∅ ▷ Update driver’s orders
3: for d ∈ D do

4: if c is going to pick up order o ∈ Opool then

5: UpdateOpick ← Opick ∪ o
6: end if

7: end for

8: for o ∈ Opool do ▷ Greedy insertion
9: if o ∈ Opick then

10: Continue

11: end if

12: Initialize the available drivers setDavail = ∅
13: for d ∈ D do

14: if |ωd| < cap (driver capacity, e.g., 10 orders) then
15: Davail ← Davail ∪ c
16: end if

17: end for

18: Assign order o to driver d ∈ Davail with maximum available capacity
19: do greedy insertion

20: Insert pickup node o+ and delivery node o− to route RTd at positions with
21: minimum distance increased
22: Update RTd ← RTd ∪ (o+, o−)
23: end for

24: for d ∈ D do ▷ Driver’s delivery route reconstruct
25: if ωd ̸= ∅ then
26: Get driver c current location ld and delivery location o− for order o ∈ ωd

27: Re-schedule the planned route RTd by solving a open TSP problem with
28: unvisited locations for carried orders ωd

29: Update the delivery route RTd

30: end if

31: end for

32: return new delivery plan route RT′
d for d ∈ D

33: end procedure

tions, the actual travel distance for order delivery tends to be equal to or greater than the travel distance
derived from the open TSP solution.
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6.4 Simulator and Dataset

In this section, we introduce our custom-designed simulator that simulates our process of

the food delivery service. Subsequently, we present a real-world delivery dataset obtained

from a crowd-sourcing food delivery platform in Singapore for training our Dynamic-M-

DQN algorithm.

Simulator. To facilitate the training of Dynamic-M-DQN (given in Algorithm 4)

and to generate representative samples that mimic real-world scenarios in food deliv-

ery service, we designed a simulator calibrated with real data. The simulator consists

of multiple modules, encompassing order generation, information collection, the or-

der dispatching algorithm, and updates for both order and driver statuses. Five distinct

states have been defined for each agent and order, specifically denoted as “Generated”,

“Dispatched”, “Ongoing”, “Completed”, and “Cancelled”. The state denoted as

“Generated” signifies that the customer has initiated an order placement, yet it remains

pending for dispatch to a driver for pickup. “Dispatched” indicates that the order

has entered the matching pool, though pickup by a driver has not transpired as of yet.

“Ongoing” signifies that a driver has collected the order and is presently in the process

of delivery. Ultimately, “Completed” denotes successful delivery to the customer, while

“Cancelled” denotes the customer’s decision to rescind the order. The comprehensive

simulation framework is depicted in Figure 6.5, comprising five key constituents: input

data, agent properties, platform operational procedures, optimization algorithms, and

output outcomes.

During each order dispatching interval (t, t+1], the subsequent procedures are con-

ducted: (a) novel order requests are generated for individual restaurants and categorized

as “Generated”; (b) the implementation of Dynamic-M-DQN is employed to ascertain

the eligibility of orders entering the matching pool, whereby those qualifying are desig-

nated as “Dispatched”; (c) execution of the driver routing algorithm takes place, with

orders collected designated as “Ongoing”; (d) orders successfully dispatched, collected,

and delivered are updated to ”Completed,” while customer-canceled orders are identi-
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Figure 6.5: Simulation Framework.

fied as “Cancelled”; and (e) the predetermined delivery routes for drivers are revised. It’s

noteworthy that the collective state, encompassing both global and local states, is initial-

ized before the execution of Dynamic-M-DQN in step (b).

Figure 6.6: Distribution of number of orders over hours.

Real-world Dataset. The dataset employed in the numerical experiments originates

from a crowd-sourced food delivery platform in Singapore 2. The dataset encompasses ap-

proximately 80, 000 order records and more than 30, 000 customers spanning 8 months

(October 2020 to May 2021). Each delivery record encompasses a wealth of order and

driver details, encompassing order pickup and delivery locations, delivery distance, order

acceptance time, driver identification, and the corresponding fee. Figure 6.6 illustrates

the hourly order distribution spanning from 09 : 00 to 24 : 00. Evidently, the order vol-

ume exhibits substantial augmentation during the peak intervals at 11 : 00 and 18 : 00.
2The dataset used in this study was contributed by an industry collaborator who has chosen to remain

anonymous.
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Table 6.3: Hyper-parameter settings for Dynamic-M-DQN.

Parameters Values Parameters Values

Learning rate 2e− 3 Hidden layer neurons 512, 256, 128
Discount γ 0.99 Number of epochs 100
Epsilon ϵ 0.1∼ 0.9 Dispatches in one episode 96
Buffer size |B| 500 Batch size 64
Target update 10 State dimension 2× |M|2 + 2|M|+ 2

For the purpose of enabling in-depth exploration, we have proactively provided access to

the tailored simulator and exemplar test data utilized within this research to the wider

community3.

6.5 Experiments

In this section, we present a set of experiments to evaluate the performance of our two-

stage learning-based optimization approach. We generate restaurants and customer or-

ders to be delivered following the patterns of our partner dataset. We also account for the

random ready time for orders in our simulations. We make the assumption that the food

preparation time for each restaurant follows distinct gamma distributions, characterized

by different shape parameters α and a scalar parameter β. This choice is motivated by

the common use of gamma distributions for modeling waiting times in on-demand food

delivery platforms [121, 45]. We set the promised delivery time to 45 minutes and the

velocity of the drivers is established at 20 km/h. The simulations are executed employing

Python version 3.9 and leveraging the PyTorch library [94].

Parameters Settings. Table 6.3 presents the hyper-parameter configurations for our

Dynamic-M-DQN algorithm. An epoch is delineated as the complete temporal span T ,

ranging from 6 : 00 AM to 10 : 00 PM. This epoch is partitioned into 96 dispatching

time intervals, each lasting 10 minutes, predicated on the order arrival rate within our

dataset.

Evaluation Metrics. Our experimental focus is on the minimization of a weighted

sum that encompasses the total travel distance of drivers, cumulative order delays, and
3https://anonymous.4open.science/r/Food-Delivery-Simulator-37DC/
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the count of customer-cancelled orders. To effectively portray delivery performance, we

employ three evaluation metrics: (1) total travel distance of drivers (Ctotal) in kilometers;

(2) cumulative order delays (Tdelay) in seconds; and (3) count of customer-initiated can-

cellations (Ncancel) stemming from extended waiting periods. The objective is defined as

follows:

Obj =
Dtotal

|D|
+

Tdelay

3600
· λ+Ncancel · µ (6.14)

Our research focuses on a multi-objective optimization challenge, aiming to achieve a

balance among three critical elements: the delivery cost for drivers, as measured by the av-

erage travel distance; the platforms’ revenue, reflected by the number of unserved orders;

and the user experience, demonstrated through the extent of order delays. Importantly,

platforms have the flexibility to select different values for λ and µ, allowing them to tailor

the evaluation of model performances based on their prioritization of these two objec-

tives.

Here, a penalty value ofλ = 100 is employed for delays, as customers frequently hold

elevated delivery time expectations. Extended delays may prompt customers to depart the

platform in search of alternatives. Furthermore, a significant penalty value of µ = 500

is administered to mitigate the concern of customer cancellations arising from extended

waiting durations for available drivers.

Main Results. Our investigation encompasses three datasets varying in scale: a

small dataset, comprising a single restaurant with more than 450 orders and 15 drivers;

a medium dataset, encompassing two restaurants with a total of over 700 orders and 40

drivers; and a large dataset, involving three restaurants and exceeding 1500 orders, with a

driver pool of 100. Figure 6.7 presents a visual representation of customer order locations

for each dataset. The degree of shading in the hexagonal areas corresponds to the number

of orders received, with darker shades indicating higher order volumes.

In this study, we analyze the performance of the proposed Dynamic-M-DQN cou-

pled with the DR algorithm. A comparative evaluation is conducted between this ap-

proach and the following commonly employed dispatch strategies and routing algo-
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(a) Small instance (450 orders, 15 drivers)

(b) Medium instance (700 orders, 40 drivers)

(c) Large instance (1500 orders, 100 drivers)

Figure 6.7: Density of customer orders for: (a) small, (b) medium, and (c) large instances.
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rithms:

• FIX: Dispatch strategy. In this approach, the order dispatching time interval re-

mains constant for all orders (e.g., 5 minutes), mirroring the default dispatching

mode found on numerous food delivery platforms like Meituan [151] and Grub-

hub [142];

• MGI: Routing algorithm. We adopt the Greedy heuristic ([86]), a well-regarded

routing algorithm for addressing the dynamic pickup and delivery problem preva-

lent in the industry. Specifically, our use of MGI refers to the modified greedy

insertion which is actively employed online by Meituan-Dianping ([151]), China’s

largest food delivery platform 4;

• H-RL: Dispatch strategy. This strategy employs a hierarchical reinforcement learn-

ing based optimization framework, as proposed by [78]. In this approach, the

upper-level agent dynamically decomposes the dynamic pickup and delivery prob-

lem (DPDP) into a sequence of sub-problems for optimization. Meanwhile, the

lower-level agent selects operators to enhance the resultant solution. We utilize the

term H-RL to represent the DQN model situated in the upper-level for the pur-

pose of order dispatch.

Order Buffer

New Orders New Orders New Orders 

DQN DQN DQN

release

not release

release

not release

release

not release

Figure 6.8: Illustration of the H-RL policy.

4Meituan-Dianping is a Chinese shopping platform in China for locally found consumer
products and retail services including entertainment, dining, delivery, travel and other services.
https://www.meituan.com/
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Order Buffer: Undispatched Orders 

New Orders 

Shared
DQN

Order 

enter

not enter

Figure 6.9: Illustration of our Dynamic-M-DQN policy.

To more clearly illustrate the differences betweenH-RL and ourDynamic-M-DQN,

we refer to the examples depicted in Figure 6.8 and Figure 6.9.

The H-RL algorithm necessitates maintaining an order buffer to store newly gen-

erated orders, which are then dispatched in batches at predetermined intervals. As de-

picted in Figure 6.8, orders received before the decision time t − 1 are labeled as Ot−1.

The trained agent with Deep Q-Network (DQN) is responsible for deciding whether to

release all these orders into the matching pool simultaneously or defer them to the next

decision point, t. In other words, all accumulated orders Ot−1 that arrive before t−1 are

either collectively released to the matching pool at t − 1 or uniformly postponed to the

subsequent decision time t based on the DQN agent’s decision. While in our Dynamic-

M-DQN approach, illustrated in Figure 6.9, each order is considered an individual agent.

These orders collectively utilize a centralized Deep Q-Network (DQN) to determine their

entry timing into the matching pool. It is important to highlight that our approach offers

enhanced flexibility compared toH-RL, as it facilitates decision-making at the individual

order level, in contrast to H-RL’s batch-order decision-making process.

Our comparative analysis includes our proposed approach Dynamic-M-DQN +

DR alongside the following policies: (1) H-RL + DR; (2) FIX + DR; and (3) FIX +

MGI.

As a baseline, we will employ the FIX + MGI approach. We quantify several metrics,

specifically the total travel distance Ctotal, cumulative delays Tdelay, and the count of can-

celed orders Ncancel, for each policy, correspondingly. These measurements are employed
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Table 6.4: Results summary of the three approaches on different sized datasets.

Instance Approach Ctotal Tdelay Ncancel MRat

Small Dynamic-M-DQN + DR 2,130.37 191 0 0.825
450 orders H-RL + DR 2,186.85 896 0 0.243
15 drivers FIX + DR 2228.31 1,113 0 0.064

FIX + MGI 2226.75 1,191 0 0

Instance Approach Ctotal Tdelay Ncancel MRat

Medium Dynamic-M-DQN + DR 3,091.55 562 0 0.758
700 orders H-RL + DR 3,036.23 1,221 0 0.474
40 drivers FIX + DR 3,107.87 1,783 0 0.231

FIX + MGI 3,118.85 2,320 0 0

Instance Approach Ctotal Tdelay Ncancel MRat

Large Dynamic-M-DQN + DR 6,666.08 10,645 5 0.153
1,500 orders H-RL + DR 6,682.91 11,016 6 0.123
100 drivers FIX + DR 6,692.72 11,136 6 0.114

FIX + MGI 6,752.39 12,581 6 0

to ascertain the effectiveness of our proposed model. The comprehensive experimental

results in Table 6.4 illustrate that employing the Dynamic-M-DQN + DR approach re-

sults in a substantial reduction in cumulative delays, along with a moderate decrease in

total travel distance for drivers. Interestingly, the weighted sum objective value, as com-

puted using equation (6.14), exhibited reductions of 82.5%, 24.3%, and 6.4% relative to

the baseline approach for Dynamic-M-DQN + DR, H-RL + DR, and FIX + DR, re-

spectively. In cases of both small and medium-sized instances, all customer orders can be

fulfilled without any cancellations. In the case of large-sized instances, our Dynamic-M-

DQN + DR approach stands out among all methods, demonstrating the lowest count

of canceled orders.

Next, we define Mapproach as the changing ratio for a given evaluation metric between

the selected approach and the baseline approach FIX + MGI as follows:

MRat =
Mapproach −MFIX + MGI

MFIX + MGI
(6.15)

Figure 6.10 illustrates the changing ratios of Ctotal and Tdelay across all three instances.

The results reveal the superiority of our Dynamic-M-DQN + DR approach over the

alternative approaches for all instances. Our approach resulted in a reduction in the rate
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Figure 6.10: Comparison of experiments results: (a) Changing ratio of total travel dis-
tance, (b) Changing ratio of total delays against the baseline, for small, medium and large
instances.

of total travel distance for drivers, with decreases ranging from 4.3% to 0.9% to 1.3%.

Additionally, substantial reductions of 84.0%, 75.8%, and 15.4% were observed in total

order delays for the small, medium, and large instances respectively. The findings suggest

that dynamic optimization of the dispatching time interval for order dispatch can yield

substantial enhancements in service. These enhancements manifest as noteworthy reduc-

tions in delays (up to 84.0%), accompanied by a slight decrease in delivery distances (up

to 4.3%).

Figure 6.11 depicts the convergence patterns of the regularized mean rewards attained

by our Dynamic-M-DQN model across datasets of varying sizes. Our observations sug-

gest that our approach can establish a high-quality policy within around 40 epochs across
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Figure 6.11: Reward convergence curves of Dynamic-M-DQN on different sized
datasets: (a) small, (b) medium, and (c) large instances.

all datasets, as substantiated by the converging training process. These outcomes under-

score both the effectiveness and efficiency of our policy for dynamic dispatching time in-

tervals, which effectively optimizes the order dispatching process within on-demand food

delivery services.

6.5.1 SensitivityAnalysis inTerms of theRewards and the FixDis-

patching Time

Next we present the main idea in reward design and look at the affects among different

objectives. In the objective function, we consider the trade-offs among driver travel dis-

tance, order delays, and the number of unserved orders under two scenarios: (1) If an

order is eligible for the matching pool, the driver’s travel distance is still a crucial factor.

To account for this, we set rit = rmatch− di,j
v

. Here, if di,j is significantly large, the benefit

of dispatching order i reduces, potentially becoming negative. (2) If an order is post-
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poned, meaning it does not enter the matching pool, we consider the trade-off between

postponement and cancellation. In this scenario, we define rit = −∆t for postponement

and rit = −∆t − rcancel for cancellation. A large value of −rcancel/∆t suggests that the

platform is striving to delay the allocation of orders to maximize potential benefits on

saving travel distance and order delays, while also attempting to minimize the likelihood

of orders being cancelled by customers.

Table 6.5: Evolution of the performance with different ρ.

∆t rcancel ρ Ctotal Tdelay Ncancel

1 -100 100 3,095.00 638 0
10 -100 10 3,091.55 562 0
20 -100 5 3,143.02 1,963 0
50 -100 2 3,135.33 2,859 0

In light of these findings, we conducted additional experiments to refine the design

of the reward function. Specifically, a sensitivity analysis was performed focusing on the

ratio ρ = −rcancel/∆t, which is pivotal in training our Dynamic-M-DQN method. Ac-

cording to the results presented in Table 6.5, our approach achieves the lowest total travel

distance (Ctotal) and delay times (Tdelays) when ρ = 10. Conversely, both the total travel

distance and delays increase with a smaller ρ (e.g., ρ = 5, 2). This trend can be attributed

to the fact that a lower ρ places greater emphasis on postponing rather than cancelling

orders. Consequently, with a lower ρ, orders tend to enter the matching pool sooner,

as postponement incurs a substantial negative reward, almost equivalent to cancellation.

However, a very high ρ value (such as ρ = 100) does not necessarily equate to better per-

formance. This is attributed to the tendency of orders to be excessively postponed with

a high ρ, potentially missing optimal entry times into the matching pool, which could

result in lower travel distances and delays. With a given λ and µ by the platform, if the

ratio µ/λ is large, it indicates that the platform prioritizes serving more orders over min-

imizing order delays. To align with this objective function, a larger ρ should be adopted

to discourage order cancellation.

Designing an optimal reward function for RL applications presents significant chal-

lenges, especially in the context of on-demand food delivery services where the environ-
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ment is dynamic and complex. This complexity makes it difficult to define a reward func-

tion that is consistently effective and efficient across various scenarios. Additionally, when

addressing multi-objective considerations, accurately reflecting the trade-offs among dif-

ferent objectives becomes an even more daunting task. For further insights into the di-

verse methodologies for designing reward functions in the successful application of RL

algorithms, readers are referred to [24, 28, 122, 52].

At last, we evaluated the performance of the DR algorithm using a newly assembled

dataset. This assessment encompassed various fixed time intervals between consecutive

dispatch decisions. The results of this comparative analysis are presented in Table 6.6.

Our observations suggest that extending the dispatching time interval correlates with an

increment in the cumulative delivery distance covered by the drivers. Conversely, this

adjustment leads to a substantial decrease in order delay times. Moreover, it is worth

noting that all orders can be fulfilled without any cancellations in all scenarios.

Table 6.6: Comparison with different dispatching time intervals.

700 orders & 60 drivers Metrics 2 mins 5 mins 10 mins 15 mins

DR

Dtotal 2,275.86 2,681.60 3,040.71 3,111.33
Tdelay 58,916 3,873 755 371
Ncancel 0 0 0 0

6.6 Conclusion

This chapter introduces a novel two-stage framework designed for the optimization of

order dispatching and driver routing within on-demand food delivery services. At the

higher level, we present a novel multi-agent reinforcement learning approach named

Dynamic-M-DQN. This method is employed to dynamically ascertain the optimal tim-

ing for including an order into the matching pool for pickup and delivery. At the lower

level, a new routing algorithm is devised. This algorithm, while straightforward, proves

to be highly efficient. It is responsible for strategically charting delivery routes for drivers,

factoring in considerations such as fairness, driver behavior, and order re-dispatch. An

in-depth evaluation of our proposed approach against benchmark systems is undertaken
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through the customized simulator. This simulator accurately replicates processes includ-

ing order generation, dispatch, and driver routing, alongside the utilization of real-world

food delivery data from our industry collaborator. Substantial experimentation con-

ducted within this simulator involves a thorough comparative analysis. Our approach

is compared against simulated approaches that adhere to fixed dispatching time intervals,

the prevalent MGI employed in driver routing, and hierarchical RL based approach. The

novel approach we propose yields enhancements in objective metrics ranging from15.3%

to 82.5%, demonstrated across datasets of various sizes. Evaluation outcomes affirm the

efficacy of our approach, showcasing a noteworthy reduction in average travel distance

and substantial alleviation of delivery delays. Future endeavors involve the utilization of

RL methodologies for the development of an end-to-end routing policy.
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Chapter 7

Conclusion and Future Works

7.1 Concluding Remarks

Data-driven optimization for urban delivery problems has been receiving more and more

attention in practice as well as in the research community. In this thesis, we discuss

three important and challenging operational problems in urban logistics delivery. One

concerns the collaborative vehicle routing problem in the urban last-mile delivery, while

the other two focus on supply-demand management and dynamic order dispatch in on-

demand food delivery service. Our research centers on the utilization of data-driven

methodologies to tackle these challenges.

In Chapter 4, we propose a two-stage learning and optimization framework in which

we study two practical problems arising in collaborative vehicle routing with multiple

overlapping alliances: the request assignment problem, which involves assigning each re-

quest to an alliance with the lowest predicted delivery cost, and the vehicle routing prob-

lem, which involves creating the delivery plan for vehicles in each alliance. Unlike tra-

ditional approaches to managing collaborative vehicle routing problems [43], which di-

rectly use heuristic algorithms (e.g., adaptive large neighborhood search) to solve the rout-

ing problem under a centralized framework, the learning step introduces a cost prediction

problem to reduce the computational complexity of the decisions in request assignment,

a major concern in collaborative routing. We identify a set of promising features for de-
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livery cost prediction and propose an efficient tabu search algorithm to solve the routing

problem for each alliance after request assignment. Computational studies demonstrate

the effectiveness of our learning and optimization framework in terms of both delivery

cost and computational time.

Chapter 5 focuses on the supply and demand management problem with dynamic

area size optimization. This chapter consists of designing a customer choice model for

order estimation on the demand side, developing a machine learning model for predict-

ing average order delivery times on the supply side, and integrating these two problems

into the master optimization RASO model. The integrated problem is formulated as a

Mixed-Integer Quadratically Constrained Programming (MIQCP) model, which can be

efficiently solved by commercial solvers such as Gurobi. Computational experiments con-

ducted with real-world data collected in Singapore have demonstrated that the proposed

data-driven optimization framework can significantly improve the number of served or-

ders and outperform benchmark methods commonly used in practice.

Chapter 6 deals with the order dispatch problem in on-demand food delivery ser-

vices. In contrast to the data-driven methods employed in the previous two works, in

this chapter, our aim is to optimize the dispatch time interval end-to-end with the objec-

tive of minimizing the weighted sum of the total travel distance and total delays using a

reinforcement learning approach. We formulate the problem as a Markov Decision Pro-

cess and propose a centralized multi-agent deep Q-network that streamlines the order

dispatching process, allowing orders to join the matching pool for pickup and delivery.

Computational studies demonstrate that our framework improves the efficiency of order

dispatching in on-demand food delivery services.

7.2 Future Research

One promising direction for future research is to consider uncertainty explicitly when

modeling and solving the proposed individual problems. In practice, urban deliveries are

highly dynamic, and the input information may not always be accurately predicted by
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machine learning models. Therefore, to enhance robustness, it is interesting to explore

data-driven approaches that work hand-in-hand with stochastic optimization (such as

[111]) and with robust optimization (such as [11, 26, 47]). For example, in robust opti-

mization, the choice of the uncertainty set is crucial, and should be based on the specific

problem, the nature of the data, and the available information about uncertainties. The

shape and size of the uncertainty set can heavily influence the nature of the robust so-

lution. A larger uncertainty set can lead to more conservative solutions, ensuring perfor-

mance across a broader range of scenarios but potentially sacrificing optimal performance

in nominal or expected scenarios. By utilizing the data-driven approaches, for instance,

we can explore to use machine learning or deep learning models to extract hidden features

from the historical data to design the uncertainty set for robust optimization.

Given the encouraging experimental outcomes in optimizing the customer service

and driver dispatch areas of restaurants, as well as optimizing the order dispatching time

interval, a deeper investigation into combining these strategies into a cohesive decision-

making framework is merited. For instance, the area sizing issue could be conceptualized

as a Markov decision process (MDP), facilitating its formulation within a dual-agent re-

inforcement learning (RL) framework. In this setup, Agent A1 would address the area

sizing challenge, while Agent A2 would tackle the order dispatching task. A shared re-

ward function and a transition kernel, influenced by their combined actions, enable these

agents to collaboratively resolve the issue, as illustrated in [102].

Another interesting topic deserving attention is the use of deep (reinforcement) learn-

ing methods to solve combinatorial optimization problems in the context of urban deliv-

ery, such as the dynamic pickup and delivery problem [79]. These kinds of Learning to

Optimize (L2Opt) approaches have shown great potential for finding near optimal so-

lutions more quickly, enabling real-time decision-making for vehicle routing problems

[59, 88, 75, 53, 147]. However, currently, L2Opt methods also have some limitations.

For example, L2Opt models usually require large amounts of training data to learn ef-

fective optimization strategies. Gathering and curating such data can be challenging and

expensive, especially for optimization problems in urban deliveries. Additionally, L2Opt
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models may struggle to generalize to unseen or significantly different problem instances

[12]. They are typically proficient at solving problems similar to those encountered dur-

ing training but may perform poorly on novel or rare scenarios. Addressing these data

dependency and generalization issues presents an interesting optimization problem that

remains to be explored.
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Figure 7.1: Histogram of Customer Restaurants’ Orders Preparation Time for All Nine
Hawker Centres.
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Figure 7.2: Histograms of Customer Orders Based on Customer-Restaurant Distance
Segments for All Nine Hawker Centres.

Table 7.1: Performance of ML Methods on Average Delivery Time Prediction.

(a) Kovan Food Centre

MLMethods R2R2R2
MAPE

Ordinal Least Square 0.598 0.507
Ridge Regression 0.598 0.506

Linear SVR 0.481 0.366
Regression Tree 0.902 0.153

Model Tree 0.9220.9220.922 0.1330.1330.133
XGBoost 0.851 0.182

(b) Bukit Merah View Market & Hawker Centre

MLMethods R2R2R2
MAPE

Ordinal Least Square 0.429 0.524
Ridge Regression 0.428 0.523

Linear SVR 0.117 0.244
Regression Tree 0.845 0.189

Model Tree 0.8560.8560.856 0.1690.1690.169
XGBoost 0.826 0.205

(c) Hong Lim Food Centre

MLMethods R2R2R2
MAPE

Ordinal Least Square 0.452 0.648
Ridge Regression 0.452 0.647

Linear SVR 0.263 0.356
Regression Tree 0.890 0.195

Model Tree 0.8950.8950.895 179179179
XGBoost 0.804 0.268

(d) Bukit Timah Market & Food Centre

MLMethods R2R2R2
MAPE

Ordinal Least Square 0.571 0.551
Ridge Regression 0.572 0.551

Linear SVR 0.450 0.373
Regression Tree 0.919 0.139

Model Tree 0.9390.9390.939 0.1130.1130.113
XGBoost 0.900 0.171

(e) Alexandra Village Food Centre

MLMethods R2R2R2
MAPE

Ordinal Least Square 0.487 0.565
Ridge Regression 0.487 0.564

Linear SVR 0.270 0.315
Regression Tree 0.891 0.183

Model Tree 0.9010.9010.901 0.1620.1620.162
XGBoost 0.842 0.219
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Table 7.2: Experimental Results for All Nine Hawker Centres.

(a) Ghim Moh Hawker & Food Centre
Method Drivers Distance (km) Avg Distance Delayed Orders Delay (s) Avg Delay On-Time Rate Avg Delivery Time

Fixed 20 311.52 15.58 0 0 0 0.945 1, 107
25 320.95 12.84 0 0 0 0.972 1, 044
30 329.77 10.99 0 0 0 1.000 1, 015

RASO-LT 20 362.97 18.15 7 3, 576 510.85 0.920 1, 177
25 386.36 15.45 4 781 195.25 0.955 1, 094
30 391.00 13.03 0 0 0 1.000 1, 039

(b) Maxwell Food Centre
Method Drivers Distance (km) Avg Distance Delayed Orders Delay (s) Avg Delay On-Time Rate Avg Delivery Time

Fixed 10 170.47 17.05 6 1, 930 321.66 0.857 1, 308.00
15 205.99 13.73 1 75 75 0.976 1, 142.00
20 194.77 9.74 0 0 0 1.000 1, 034.00

RASO-LT 10 208.03 20.80 9 4, 491 499 0.820 1, 428.00
15 228.93 15.26 5 1, 332 266.4 0.900 1, 210.00
20 245.41 12.27 2 1, 180 590 0.960 1, 134.00

(c) Bedok Interchange Hawker Centre
Method Drivers Distance (km) Avg Distance Delayed Orders Delay (s) Avg Delay On-Time Rate Avg Delivery Time

Fixed 5 107.06 21.41 10 3, 725 372.5 0.629 1, 567.00
10 135.82 13.58 2 272 136 0.926 1, 192.00
15 137.91 9.19 1 14 14 0.963 1095.00

RASO-LT 5 123.20 24.64 14 17, 920 1, 280 0.600 2, 001.00
10 160.00 16.00 5 1, 716 343.2 0.857 1, 320.00
15 175.00 11.67 0 0 0 1.000 1, 142.00

(d) Old Airport Road Food Centre
Method Drivers Distance (km) Avg Distance Delayed Orders Delay (s) Avg Delay On-Time Rate Avg Delivery Time

Fixed 5 113.77 22.75 10 7, 969 796.9 0.677 1, 554.00
10 133.05 13.31 2 80 40 0.935 1, 098.00
15 145.18 9.68 0 0 0 1.000 1, 031.00

RASO-LT 5 120.17 24.03 13 15, 627 1, 202.08 0.649 1, 791.00
10 147.16 14.72 5 2, 188 437.6 0.865 1, 205.00
15 165.13 11.01 0 0 0 1.000 1, 074.00

(e) Kovan Food Centre
Method Drivers Distance (km) Avg Distance Delayed Orders Delay (s) Avg Delay On-Time Rate Avg Delivery Time

Fixed 20 342.43 17.12 6 2, 448 408 0.907 1, 365.00
25 335.72 13.43 3 1, 367 455.67 0.953 1, 295.00
30 374.81 12.49 0 0 0 1.000 1240.00

RASO-LT 20 432.88 21.64 15 6, 051 403.4 0.840 1, 554.00
25 387.63 15.51 19 7, 266 382.42 0.797 1, 580.00
30 326.26 10.88 31 21, 111 681 0.670 1, 761.00

(f) Bukit Merah View Market & Hawker Centre
Method Drivers Distance (km) Avg Distance Delayed Orders Delay (s) Avg Delay On-Time Rate Avg Delivery Time

Fixed 15 208.17 13.88 0 0 0 1.000 954.00
20 220.93 11.05 0 0 0 1.000 925.00
25 208.02 8.32 0 0 0 1.000 881.00

RASO-LT 15 219.87 14.66 0 0 0 1.000 989.00
20 220.36 11.02 0 0 0 1.000 951.00
25 233.96 9.36 0 0 0 1.000 903.00
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(g) Hong Lim Food Centre
Method Drivers Distance (km) Avg Distance Delayed Orders Delay (s) Avg Delay On-Time Rate Avg Delivery Time

Fixed 5 106.10 21.22 13 7, 662 589.38 0.675 1, 762.00
10 156.67 15.67 1 75 75 0.975 1, 148.00
15 178.00 11.87 0 0 0 1.000 1, 089.00

RASO-LT 5 114.36 22.87 15 15, 273 1, 018.2 0.681 1, 848.00
10 182.06 18.21 1 458 458 0.978 1, 249.00
15 156.15 10.41 2 292 146 0.957 1, 180.00

(h) Bukit Timah Market & Food Centre
Method Drivers Distance (km) Avg Distance Delayed Orders Delay (s) Avg Delay On-Time Rate Avg Delivery Time

Fixed 25 378.47 15.14 3 1, 984 661.33 0.955 1, 369.00
30 397.74 13.26 1 797 797 0.985 1, 331.00
35 412.66 11.79 0 0 0 1.000 1, 311.00

RASO-LT 25 499.42 19.98 22 11, 642 529.18 0.788 1, 634.00
30 457.92 15.26 26 17, 869 687.26 0.750 1, 731.00
35 479.58 13.70 24 24, 015 1, 000.62 0.769 1, 751.00

(i) Alexandra Village Food Centre
Method Drivers Distance (km) Avg Distance Delayed Orders Delay (s) Avg Delay On-Time Rate Avg Delivery Time

Fixed 10 179.20 17.92 2 1, 547 773.5 0.952 1, 308.00
15 203.17 13.54 1 322 322 0.976 1, 208.00
20 227.35 11.37 0 0 0 1.000 1, 166.00

RASO-LT 10 223.19 22.32 15 7, 901 526.73 0.732 1, 678.00
15 255.57 17.04 2 526 263 0.964 1, 221.00
20 258.08 12.90 0 0 0 1.000 1, 183.00

139


	Data-driven optimization approaches for dynamic urban logistics operational problems
	Citation

	1 Introduction
	1.1 Motivations Problems and Contributions
	1.1.1 Collaboration in Urban Delivery
	1.1.2 On-Demand Food Delivery Service
	1.1.3 Contributions

	1.2 Structure of the Thesis

	2 Background
	2.1 Terminologies
	2.2 Pickup and Delivery Problem
	2.3 Data-driven Optimization Frameworks
	2.3.1 Predict-then-optimize
	2.3.2 Integrated predictive-and-prescriptive
	2.3.3 Reinforcement Learning

	2.4 Problems Settings
	2.4.1 MAD-PDPTW
	2.4.2 Restaurant Area Sizing Optimization
	2.4.3 Dispatch Time Interval Optimization


	3 Literature Review
	3.1 Collaborative Urban Delivery Problems
	3.2 On-Demand Food Delivery Service
	3.2.1 Area Sizing Optimization
	3.2.2 Dynamic Dispatching Time Interval


	4 A Learning and Optimization Framework for Collaborative Urban Delivery Problems with Alliances
	4.1 Motivation and Background
	4.2 Problem Formulation
	4.3 Two-Stage Learning and Optimization Framework
	4.3.1 Delivery Cost Prediction and Request Assignment
	4.3.2 Tabu Search Algorithm

	4.4 Numerical Experiments
	4.4.1 Problem Instance Generation
	4.4.2 Prediction Model Selection
	4.4.3 Performance Comparison

	4.5 Conclusion

	5 Optimization of Customer Service and Driver Dispatch Areas for On-Demand Food Delivery
	5.1 Motivation and Background
	5.2 Problem Description
	5.2.1 Problem Statement
	5.2.2 Example

	5.3 Solution Method
	5.3.1 Framework and Optimization Model
	5.3.2 Customer Order Demand Estimation
	5.3.3 Order Dispatching and Service Operation
	5.3.4 Delivery time prediction
	5.3.5 A Mixed-Integer Quadratically Constrained Programming Model

	5.4 Simulator, Dataset, and Prediction Models
	5.4.1 Simulator for On-Demand Food Delivery Service
	5.4.2 Real-world Dataset
	5.4.3 Results on Customer Demand Estimation
	5.4.4 Model Selection for Delivery Time Prediction

	5.5 Experiments and Discussion
	5.5.1 Model performance.
	5.5.2 The impact of the threshold for order delay.
	5.5.3 Comparison of radius adjustments over time.
	5.5.4 Comparison with different customer order arrival rates.

	5.6 Conclusion

	6 Learning Order-Level Dispatch for On-Demand Food Delivery Service
	6.1 Motivation and Background
	6.2 Problem Description
	6.3 Model Formulation
	6.3.1 MDP Model
	6.3.2 Reinforcement Learning Dispatch Algorithm
	6.3.3 Driver Routing

	6.4 Simulator and Dataset
	6.5 Experiments
	6.5.1 Sensitivity Analysis in Terms of the Rewards and the Fix Dispatching Time

	6.6 Conclusion

	7 Conclusion and Future Works
	7.1 Concluding Remarks
	7.2 Future Research


