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Abstract

Three Essays on Financial Econometrics

Liang Jiang

This dissertation develops several econometric techniques to address three issues

in financial economics, namely, constructing a real estate price index, estimating

structural break points, and estimating integrated variance in the presence of market

microstructure noise and the corresponding microstructure noise function.

Chapter 2 develops a new methodology for constructing a real estate price in-

dex that utilizes all transaction price information, encompassing both single-sales

and repeat-sales. The method is less susceptible to specification error than stan-

dard hedonic methods and is not subject to the sample selection bias involved in

indexes that rely only on repeat sales. The methodology employs a model design

that uses a sale pairing process based on the individual building level, rather than

the individual house level as is used in the repeat-sales method. The approach ex-

tends ideas from repeat-sales methodology in a way that accommodates much wider

datasets. In an empirical analysis of the methodology, we fit the model to the private

residential property market in Singapore between Q1 1995 and Q2 2014, covering

several periods of major price fluctuation and changes in government macropruden-

tial policy. The index is found to perform much better in out-of-sample prediction

exercises than either the S&P/Case-Shiller index or the index based on standard

hedonic methods. In a further empirical application, the recursive dating method

of Phillips, Shi and Yu (2015a, 2015b) is used to detect explosive behavior in the

Singapore real estate market. Explosive behavior in the new index is found to arise

two quarters earlier than in the other indices.



Chapter 3, based on the Girsanov theorem, obtains the exact finite sample dis-

tribution of the maximum likelihood estimator of structural break points in a con-

tinuous time model. The exact finite sample theory suggests that, in empirically

realistic situations, there is a strong finite sample bias in the estimator of struc-

tural break points. This property is shared by least squares estimator of both the

absolute structural break point and the fractional structural break point in discrete

time models. A simulation-based method based on the indirect estimation approach

is proposed to reduce the bias both in continuous time and discrete time models.

Monte Carlo studies show that the indirect estimation method achieves substantial

bias reductions. However, since the binding function has a slope less than one, the

variance of the indirect estimator is larger than that of the original estimator.

Chapter 4 develops a novel panel data approach to estimating integrated variance

and testing microstructure noise using high frequency data. Under weak conditions

on the underlying efficient price process and the nature of high frequency noise

contamination, we employ nonparametric kernel methods to estimate a model that

accommodates a very general formulation of the effects of microstructure noise.

The methodology pools information in the data across different days, leading to a

panel model form that enhances efficiency in estimation and produces a convenient

approach to testing the linear noise effect that is conventional in existing procedures.

Asymptotic theory is developed for the nonparametric estimates and test statistics.
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Chapter 1 Introduction

It has been widely accepted that financial markets are the indispensable pillars in the

modern economy. In this dissertation, several econometric techniques have been

developed to address three statistical issues in the analysis of time series data on

financial markets.

The first issue addressed in this dissertation concerns the construction of a suit-

able real estate price index. Real estate prices are one of the key indicators of

economic activity. Indices measuring changes in real estate prices help to inform

households about their asset wealth and to make a wide variety of economic deci-

sions that depend on wealth resources. Policy makers rely on the information pro-

vided by these indices when designing and formulating monetary and fiscal policies

at the aggregate level as well as macro-prudential policies directed at the financial

and banking sectors.

In Chapter 2, we propose a new methodology for constructing a real estate price

index from transaction data. In our method, all transaction price information, in-

cluding both single-sales and repeat-sales, is exploited. Meanwhile, our approach is

more robust to specification error than standard hedonic methods and is not subject

to the sample selection bias involved in indices that rely only on repeat sales. The

methodology creates sale pairs on the individual building level, rather than the indi-

vidual house level as is used in the repeat-sales method, therefore it accommodates

much wider datasets than the repeat-sales method. In this regard it is an extension of

the ideas of repeat-sales methods. In an empirical analysis of the methodology, we

apply the method to the private residential property market in Singapore between Q1

1995 and Q2 2014, covering several periods of major price fluctuation and changes
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in government macroprudential policy. The new index is found to perform much

better in out-of-sample prediction exercises than either the S&P/Case-Shiller index

or the index based on standard hedonic methods. In a further empirical application,

the recursive dating method of Phillips, Shi and Yu (2015a, 2015b) is used to detect

explosive behavior in the Singapore real estate market. Explosive behavior in the

new index is found to arise two quarters earlier than in the other indices.

The second issue addressed in this disseration deals with estimating structural

break points. Statistical inference of structural breaks has received a great deal of at-

tention in both econometrics and statistics literature over the last several decades. In

terms of estimating structure break points, the literature has developed asymptotic

theory for estimating the (fractional) structural break point (i.e. the (absolute) struc-

tural break point divided by the total sample size), including consistency, rates of

convergence, and limit distributions; see, for example, Yao (1987) and Bai (1994).

Interestingly and rather surprisingly, the finite sample theory for estimating structure

break points seems to have received little attention in the literature. However, there

are two pieces of conflicting evidence in simulations. Simulations in Yao (1987)

seem to suggest that the asymptotic distribution is not necessarily close to the finite

sample distribution, whereas simulations in Bai (1994) seem to suggest there is lit-

tle bias in the traditional estimator when the true break point is in the middle of the

sample.

In Chapter 3, we systematically investigate the finite sample properties and the

bias problem in the estimation of structural break points. we use the Girsanov the-

orem to obtain the exact finite sample distribution of the maximum likelihood esti-

mator of structural break points in a continuous time model. The exact finite sample

theory suggests that, that when the true break point is at the middle of the sam-

ple, the finite sample distribution is symmetric but can have tri-modality. However,

when the true break point occurs earlier (later) than the middle of the sample, the fi-

nite sample distribution is skewed to the right (left) and there is a positive (negative)

bias. We also establish its connection to the discrete time models considered in the
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literature. A simulation-based method based on the indirect estimation approach

is proposed to reduce the bias both in continuous time and discrete time models.

Monte Carlo studies show that the indirect estimation method achieves substantial

bias reductions. However, since the binding function has a slope less than one, the

variance of the indirect estimator is larger than that of the original estimator.

The third issue addressed in this disseration is on estimating integrated variance

in the presence of market microstructure noise and the corresponding microstructure

noise function. The last two decades have witnessed substantial progress in financial

assets using ultra high frequency data. Much of the research has concentrated on

measuring volatility of financial assets from high frequency data. The resulting

quantity is known as realized variance (RV) that estimates integrated variance (IV).

The method is nonparametric in nature because one does not need to impose any

parametric assumption to describe the dynamics of the true efficient price of the

underlying asset.

However, estimating IV at very high frequencies makes it necessary to take

into account the presence of market microstructure noise. New methods have been

proposed to estimate IV that deal with the microstructure noise; prominent exam-

ples are Zhang et al (2005), Bandi and Russell (2008) and Bardnorff-Nielsen et al

(2008). In the literature, specific parametric assumptions have been made about

the microstructure noise. For example, a commonly made assumption is the pure

noise which corresponds to the identical and independently distributed (IID) noise

that is independent of the true efficient price. As argued in many papers (such as

Hansen and Lunde, 2006), this assumption is too strong. For example, Phillips

and Yu (2006) showed that the pure noise assumption fails to produce the so-called

flat pricing phenomenon, an empirical regularity that is widely observed in data at

medium and ultra high frequencies.

In Chapter 4, we provide a new method to model, estimate and test the effect

of microstructure noise on estimating the integrated variance using high frequency

data. Different from the time series-based approaches adopted in the literature, we

4



develop a novel panel data approach to model the microstructure noise function

nonparametrically. Our method is therefore able to allow for a much wider class

of assumptions for microstructure noise and provides a convenient way to test the

noise specification and to estimate the integrated variance.

5



Chapter 2 New methodology for construct-

ing real estate price indices ap-

plied to the Singapore residential

market

2.1 Introduction

Real estate prices are one of the key indicators of economic activity. Indices measur-

ing changes in real estate prices help to inform households about their asset wealth

and to make a wide variety of economic decisions that depend on wealth resources.

Policy makers rely on the information provided by these indices in their design and

formulation of monetary and fiscal policies at the aggregate level as well as macro-

prudential policies directed at the financial and banking sectors. Though real estate

prices are widely accepted as highly important economic statistics,1 the construc-

tion of a suitable index that will reflect movements in the price of a typical house in

the economy presents many conceptual, practical, and theoretical challenges.

First, houses are distinctive, making it particularly difficult to characterize a

“typical” house for the development of an index. Different houses have varying

characteristics such as location, size, ownership, utilities and indoor/outdoor facil-

1The recent literature has witnessed an upsurge of interest in studying real estate markets from
perspectives of banking, financial and macroprudential policy. See, for example, the study of the
relationship between real estate prices and banking instability (Koetter and Poghosyan, 2010; Rein-
hart and Rogoff, 2013), the market linkage among different assets (Chan et al., 2011), the impact of
macro-prudential policy on housing prices (Shi et al., 2013; Mendicino and Punzi, 2014), the role of
housing markets for macroeconomy (Iacoviello, 2005; Musso et al., 2011).
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ities. These differences imply that averaging all market transaction prices with-

out controlling for house heterogeneity inevitably produces bias. Second, house

transactions are infrequent and sales data are unbalanced for several reasons. Most

houses on the market are single-sale houses. Houses that have been sold more than

once account for a small portion of the whole market in a typical dataset. Also,

houses sold in one period can be quite different from those sold in other periods.

These factors unbalance the pricing data and complicate econometric construction

of a price index due to problems of heterogeneous, missing, and unequally spaced

observations. Third, a typical presumption underlying construction of real estate

price indices is that the average quality of properties in the market remains constant

over time, whereas quality improvements in housing occurs continuously from ad-

vances in materials, design, utilities, and construction technologies. Meanwhile and

in spite of ongoing maintenance, older dwellings age with the holding period, lead-

ing to some depreciation in house value. These countervailing effects can produce

ambiguities regarding what movements in a real estate price index reflect: the un-

derlying market situation or quality changes in the properties that happen to be sold.

This problem is exacerbated in a fast growing real estate market where a substantial

proportion of sales are new sales released directly from developers.

Two main approaches dominate the literature on real estate price indices: the

hedonic regression method and repeat-sales method. The hedonic method assumes

that house values can be decomposed into bundles of utility-bearing attributes that

contribute to the observed heterogeneity in prices. Observed house prices may then

be regarded as the composite sum of elements that reflect implicit structural and

locational prices (Rosen, 1974). Hedonic methods for estimating a real estate price

index employ regression techniques to control for various sources of heterogeneity

in prices using observations on covariates and dummy variables that capture relevant

characteristics. However, the choice of the covariates in such hedonic regressions

is limited by data availability and involves subjective judgements by the researcher,

which may lead to model specification bias. Moreover, Shiller (2008) argued that
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the hedonic approach can lead to spurious regression effects in which the irrele-

vant hedonic variables are significant. A further complication is that the precise

relationship between hedonic information and sales prices is unknown, likely to be

complex, and may well be house dependent.

Unlike the hedonic approach, which uses all transaction prices to create an in-

dex, the repeat-sales method uses only properties that are sold multiple times in the

sample to track market trends. The technique was first introduced for building the

real estate price index by Bailey, Muth, and Nourse (1963) and then extended to

include time-dependent error variances in seminal and highly influential work by

Case and Shiller (1987, 1989). The repeat-sales method seeks to avoid the problem

of heterogeneity by looking at the difference in sale prices of the same house. No

hedonic variables are needed, so the approach avoids the difficulties of choosing he-

donic information and specifying functional forms. However, since the repeat-sales

method confines the analysis only to houses that have been sold multiple times, it is

natural to question whether repeat-sales are representative of the entire market and

whether there exists significant sample selection bias. Clapp et al. (1991) and Gat-

zlaff and Haurin (1997) argued that the properties that are sold more than once could

not represent the whole real estate market and the index estimated by the repeat-

sales method is most likely subject to some sample selection bias. Moreover, large

numbers of observations must be discarded because repeat-sales typically comprise

only a small subset of all sales. Not surprisingly, the repeat-sales method has been

criticized by researchers (e.g., Case et al., 1991; Nagaraja et al., 2010) for discard-

ing too much data. On the other hand, while repeat-sales themselves may not be

representative of the entire market, price changes in repeat-sales may still be repre-

sentative of the market. Moreover, as argued in Shiller (2008), “there are too many

possible hedonic variables that might be included, and if there are n possible hedo-

nic variables, then there are n! possible lists of independent variables in a hedonic

regression, often a very large number. One could strategically vary the list of in-

cluded variables until one found the results one wanted.” As a result, Shiller (2008)
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made the strong claim that “the repeat-sales method is the only way to go” and this

assertion has been influential. In the U.S., for instance, indices produced by the

repeat-sales method, such as the FHFA and S&P/Case-Shiller home price indices,

are now routinely reported in official government and industry statistics and they

regularly attract media attention.

A combined approach, called the hybrid model, has been introduced as an alter-

native method of constructing house price indices. In particular, Case and Quigley

(1991) proposed a hybrid model and applied generalized least squares (GLS) to

jointly estimate the hedonic and repeat-sales equations. In subsequent work, Quigley

(1995) and Englund et al. (1998) proposed to model explicitly the structure of the

error terms in their hybrid model to improve the estimated price index. Hill et al.

(1997) instead employed an AR(1) process to model the error dynamics of the hy-

brid model. Nagaraja, Brown and Zhao (2011) also relied on an underlying AR(1)

model to build the hybrid model. To answer the question why hybrid models are bet-

ter, Ghysels et al. (2012) explained that improved estimation in the hybrid model

is analogous to the better forecasts gained by forecast combinations. The hedo-

nic model has less sample selection bias but potentially greater specification bias,

whereas the repeat-sales model has less specification bias but more sample selection

bias. Ideally, some combination of the two might lead to an improved procedure of

delivering an index that reduces both sample selection and specification bias.

With this goal in mind, the present paper proposes a new methodology to con-

struct real estate price indices that addresses some of the criticisms of the hedonic

and repeat-sales methods. In our approach, the model is designed to control for

hedonic information in a general way and pair sale prices at the individual building

level, instead of the individual house level as is done in the repeat-sales method.

This novel design offers four main advantages. First, the method makes use of all

the real estate information in the sample, including both single-sale and repeat-sale

homes. This approach contrasts with the use of just a small fraction of the sample

that occurs in repeat-sales methods, thereby reducing both sample selection bias and

9



information loss. With this design, the new real estate price index offers robustness

against sample selection bias and gains in efficiency. Second, unlike standard hedo-

nic models, a number of fixed effects are included in the framework to control for

unobserved hedonic information and the functional form linking price and hedonic

information is left unspecified. Both these features make the new index less sus-

ceptible to specification error than standard hedonic models. Third, the new model

puts greater weight on pairs whose time gaps between sales are smaller, similar to

repeat-sales methods; but since our pairs are constructed at the building level, the

time gaps in our pairs are much smaller than those in pairs for repeat-sales meth-

ods. Consequently, pairs in our approach are typically more informative about price

changes than those in repeat-sales methods. Finally, our model involves a simple

and convenient GLS estimation procedure that is easy to implement and computa-

tionally efficient.

In triadic comparisons of out-of-sample predictions, the new index is found to

give superior performance in predicting both repeat-sale home prices and single-sale

home prices relative to the S&P/Case-Shiller index and the index constructed from a

standard hedonic model. In dyadic comparisons, we find that the S&P/Case-Shiller

index performs much better than the index from the hedonic model. These findings

indicate that the specification bias in the standard hedonic method has more serious

implications than the sample selection bias inherent in the S&P/Case-Shiller index,

at least as far as the Singapore residential property market is concerned. When we

test for explosive behavior in the three indices, we find evidence of earlier explosive

behavior in our index than in the other indices. This finding has some important

implications for macroprudential policy that are discussed in the paper.

The remainder of the paper is organized as follows. Section 2 develops the

model and the estimation method. In Section 3, the method is applied to build a

real estate price index for Singapore and out-of-sample performance of the alterna-

tive indices is compared. In Section 4 we test for explosive behavior in the index

and the alternative indices using the recursive method of bubble detection devel-
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oped recently in Phillips, Shi and Yu (2015a, 2015b). The results are discussed

in the context of policy measures conducted by the Singapore government to cool

the local real estate market. The Appendix 1 provides details of these policy cool-

ing measures. Section 5 concludes. Throughout the paper we use the terminology

‘house’ to refer to an independent dwelling (apartment, flat, condominium, terraced,

duplex, or free-standing) located within a specific building.

2.2 Model and estimation

Let the log price per square foot for the jth sale of the ith house in building p be

yi, j,p and t(i, j, p) be the time when the ith house in building p is sold for the jth

time. The model design given below in (2.2.1) seeks to explain yi, j,p in terms of con-

stituent components. In particular, we assume that the log price can be modeled as

the sum of a log price index component, an unknown function of building level he-

donic covariates, a location effect, an individual house effect, other individual house

hedonic covariates, plus a partial sum of intervening building specific shocks, and

a time-dependent error term. The log price index component is described by the

parameter βt(i, j,p), which captures the time specific effect of house prices and is the

primary parameter of interest. The building level hedonic information (whether ob-

served or not) is denoted as Zp; and an unknown function f (Zp) relates this building

level information to the individual house price, capturing both observed and unob-

served building level effects on price. The location effect is captured by a location

variable µp, which is assumed to be a fixed effect with respect to the location of

the building p, which may well be correlated with covariates. The individual house

effect is captured by hi,p, which is assumed to be independent over i with mean

zero and variance σ2
h . The building specific shocks at time t are described by the

random variables ut,p which have mean zero and variance σ2
u , and are assumed to

be independent of each other across all buildings and for all time periods.

Suppose the total number of time periods (in quarters, say) is T . Then, t(i, j, p)
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belongs to the set {1, . . . ,T}. When there is no confusion, we simply write t(i, j, p)

as t. Let L be the total number of buildings. Then the model is formulated as

yi, j,p = βt(i, j,p)+ f (Zp)+ γ
′Xi,p +µp +

t(i, j,p)

∑
k=t(1,1,p)+1

uk,p +hi,p + εi, j,p, (2.2.1)

where Xi,p is the vector of covariates for the ith house in building p, f is a non-

parametric function of Zp, and εi, j,p are idiosyncratic shocks that are assumed to be

iid(0,σ2
ε ). The covariates Xi,p capture the available house level hedonic information

(such as the floor number, the number of rooms, and so on) in the data.

The standard hedonic model (Ghysels et al., 2012) can be written as:

yi, j,z = µz +βt(i, j,z)+ γ
′Xi,z + εi, j,z, (2.2.2)

where yi, j,z is the log price per square foot for the jth sale of the ith house in area z

and t(i, j,z) is the time when the ith house in area z is sold for the jth time. There

are a few important differences between our model and the standard hedonic model

which we now discuss.

There are still two restrictions implicit in model (2.2.2). First, a parametric

form must be imposed to relate the observed building level covariates to the price.

In model (2.2.2), a linear specification is adopted. However, any parametric specifi-

cation is potentially invalid. Second, unobserved building level information cannot

be accommodated in model (2.2.2). In the new model (2.2.1), building level hedonic

information (Zp) is included nonparametrically (whether observed or not). Further-

more, individual house fixed effects are not included in the standard hedonic model

as they cannot be consistently estimated. In the new model, individual house fixed

effects, hi,p, are included.

Since (2.2.1) contains more detailed building-level information than (2.2.2) as

well as a semiparametric specification, the new model is less susceptible to specifi-

cation bias. To see this, note that housing heterogeneity arises both at the individual

building level and the individual house level. To capture heterogeneity at the build-
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ing level, it is necessary to include all the relevant hedonic information in (2.2.2).

Inevitably some covariates will be omitted in (2.2.2) due to data unavailability and

latent variable effects. These covariates are generally correlated with the observed

covariates and are absorbed into the error term, εi, j,z, in (2.2.2). As a result, εi, j,z

is correlated with Xi,z in (2.2.2). Whereas, in the new model, f is left unspecified

and Zp can include all relevant building level information, observed or unobserved,

that is related to the house price. Hence, (2.2.2) suffers potential specification bias

from missing heterogeneity at the building level and from the use of a particular

functional form.

Focusing on houses that have sold more than once, the repeat-sales method of

Case and Shiller (1987, 1989) is based on the following model

yi, j,z− yi, j−1,z = βt(i, j,z)−βt(i, j−1,z)+
t(i, j,z)

∑
k=t(i, j−1,z)+1

ui,z(k)+ εi, j,z− εi, j−1,z. (2.2.3)

where ui,z(k) ∼iid N(0,σ2
u ) is the interval error at time t(i, j− 1,z)+ k for house i

in area z. So the partial sum ∑
t(i, j,z)
k=t(i, j−1,z)+1 ui,z(k) is a Gaussian random walk and is

used to model the concatenation of pricing shocks to this house between its j−1th

and jth sale. Model (2.2.3) may be motivated from the specification

yi, j,z = βt(i, j,z)+ f (Xi,z)+µz +

at(i, j,z)

∑
k=0

ui,z(k)+ εi, j,z, (2.2.4)

where at(i, j,z) is house age at time t(i, j,z) for the ith house in area z. In this model,

the functional form that captures the impact of hedonic information (whether it is

observed or not) is f , which is left unspecified. For houses that have been sold mul-

tiple times in the sample, taking the difference of model (2.2.4) at two time stamps

gives model (2.2.3) as both the hedonic covariates (both observed and unobserved)

and the location effect are eliminated by differencing. Only houses that have been

sold multiple times in the sample are retained in model (2.2.3). The model was

estimated by Case and Shiller (1987, 1989) using a multi-stage method and led to
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the construction of the S&P/Case-Shiller real estate price index (S&P/Case-Shiller

methodology report, 2009).

To facilitate estimation of our model, we take the average of equation (2.2.1)

for all sales in the same building at each time period whenever there are sales. This

yields

ȳt,p = βt + f (Zp)+ γ
′X̄t,p +µz(p)+

t

∑
k=t1(p)+1

uk,p + h̄t,p + ε̄t,p, (2.2.5)

where ȳt,p is the average price of all transaction prices in building p at time t and

t1(p) is the time when the first sale in building p occurred. Similar to the Case-

Shiller method, if there is another time period t ′(> t) when the most recent trans-

actions occur in the same building p, we have model (2.2.5) at time t ′. Taking the

difference of model (2.2.5) at these two time periods, we obtain

ȳt ′,p− ȳt,p = βt ′−βt +γ
′ (X̄t ′,p− X̄t,p

)
+

t ′

∑
k=t+1

uk,p+ h̄t ′,p− h̄t,p+ ε̄t ′,p− ε̄t,p. (2.2.6)

It is clear from Equation (2.2.6) that we create “pairs” at the building level at periods

t and t ′, and then match the average building price at t ′ against that at t, after taking

account of the hedonic information at the individual house level and a building

specific random walk effect.

There are three advantages in our method relative to the repeat-sales method.

First, since the repeat-sales method only uses data on repeat-sales, it is assumed

that price change in repeat-sales are representative of the whole market. In our

model, the full sample is used to construct the index, including both single-sales

and repeat-sales. As a result, the approach does not suffer from sample selection

bias. Second, given that the full sample has been used, there are consequential

efficiency gains compared with the use of a subsample of data, as in the repeat-sales

model. Third, the time gap between t and t ′ in our approach is calculated on a
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building basis whereas the time gap in the repeat-sales method is based on houses.

As a result, the time gaps that appear in our approach are never bigger than and often

much smaller than those in the repeat-sales method. Indeed, for a high percentage of

cases, t ′− t = 1, as in the empirical application considered later in the paper. Since

both methods put more weights on pairs whose time gap is smaller, the pairs in our

method turn out to be more informative than those in the repeat-sales methods.

The specification used in our approach based on model (2.2.6) is more detailed

and complex than that of the repeat-sales model (2.2.3). But estimation of the new

model is accomplished in the same manner as the method of Case and Shiller (1987,

1989) and is therefore a simple procedure to implement. The details of the required

calculations are as follows.

1. Run an OLS regression of model (2.2.6) to obtain initial estimates of βt for

all t and γ.

2. Plug these initial estimates into (2.2.6) to calculate the regression residu-

als, denoted by êt ′,p, which are fitted values of the composite component

∑
t ′
k=t+1 uk,p + h̄t ′,p− h̄t,p + ε̄t ′,p− ε̄t,p. Note that

E

(
t ′

∑
k=t+1

uk,p + h̄t ′,p− h̄t,p + ε̄t ′,p− ε̄t,p

)
= 0,

and

Var

(
t ′

∑
k=t+1

uk,p + h̄t ′,p− h̄t,p + ε̄t ′,p− ε̄t,p

)
=(t ′− t)σ2

u

+

(
1

nt ′,p
+

1
nt,p

)
(σ2

h +σ
2
ε ),

(2.2.7)

because the building specific shocks, individual house effects and error terms

are all independent of each other. In (2.2.7) nt,p refers to the number of house
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sales transacted at time t in building p.

3. To calculate the weights to be used in GLS estimation, we run the following

regression

ê2
t ′,p = c+(t ′− t)σ2

u +

(
1

nt ′,p
+

1
nt,p

)
(σ2

h +σ
2
ε )+ vt ′,p, (2.2.8)

where E(vt ′,p) = 0. Then the weights are the reciprocals of the fitted values

from model (2.2.8). The diagonal matrix Ŵ with weights appearing in the

main diagonal is then the estimated weight matrix for GLS estimation.

4. Using Ŵ as the weight matrix, GLS regression of (2.2.6) gives the final es-

timates of βt for all t and γ . To be specific, we stack equation (2.2.6) into

matrix form as

Y = Qθ + e, (2.2.9)

where θ = [ β ′ γ ′ ]
′, β is a T -dimensional coefficient vector with elements

βt , Y is an N-dimensional vector with elements ȳt ′,p− ȳt,p, N is the number of

pairs in the building level, and Q =

[
D X

]
, where D is a selection matrix

designed to capture the differential components βt ′ − βt in the model. The

matrix D is constructed so that its nth row and tth column element has value

−1, corresponding to the house price average in the previous period in the

building level (viz., βt) used at time t, and value 1 for the house price average

in the current period in the building level (viz., βt′) used at time t ′, and value

0 otherwise. In the partition of Q, X is a matrix with each row corresponding

to elements of the form X̄t′,p− X̄t,p. GLS applied to (2.2.9) gives the estimate

θ̂ =
(

β̂
′, γ̂ ′
)′

= (Q′ŴQ)−1(Q′ŴY ),

whose components are used to extract the house price index.
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2.3 Empirical analysis

In this section, we apply the proposed model and the repeat-sales method to real

estate price data involving quarterly transactions of private non-landed residential

property sales in Singapore from Q1 1995 to Q2 2014. The period is of substan-

tial interest given the fluctuations and growth in property prices in Singapore over

this period and because of the extensive policy measures introduced by the govern-

ment to cool the real estate market whose effectiveness can be gauged by empirical

analysis of the real estate price indices.

There are mainly two residential property markets in Singapore: a private resi-

dential market and the public residential market that is managed by the Housing and

Development Board (HDB). HDB is the statutory board of the Ministry of National

Development and HDB flats are heavily subsidized by the Singapore government.

Not surprisingly, the HDB market is largely segmented from the private residential

market. Given its special nature and strong differentiation from the private market,

we have excluded HDB transactions in the construction of the property market price

index. The sample used for analysis therefore refers only to the private non-landed

property market.2

The data source for private house information is the Urban Redevelopment Au-

thority (URA),3 which is Singapore’s urban planning and management authority.

The URA property market dataset provides extensive records of information for all

transactions in the property market. The sale price (both the total price and the

price per square foot) and the transaction period are reported. The district, sector

and postal code of every transacted property are also recorded. Other characteris-

tics include floor and unit number, project number, size, sale type, property type,

completion year, leasehold tenure length, and location type.

During the sample period our data include some 315,000 transactions and the

2Non-landed residential property is the largest and most popular housing form in Singapore,
constituting more than 75% of private residential units in the market by Q2 2014.

3http://www.ura.gov.sg/
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Table 2.1: Summary Statistics of Single-Sale Houses in Singapore
Property Type No. Houses Mean Sd Min Max

Apartments 40,097 1177 620 154 5146
Condominiums 106,073 947 459 156 6393
99 years tenure 81,086 939 446 154 5000
999 years tenure 6864 884 375 233 2695

Freehold 58,220 1125 600 202 6393
All 146,170 1010 519 154 6393

Table 2.2: Summary Statistics of Repeat-Sales Houses in Singapore
Property Type No. Houses Mean Sd Min Max

Apartments 20,618 901 455 137 4700
Condominiums 49,715 850 404 94 4820
99 years tenure 33,554 864 366 94 4700
999 years tenure 4674 864 317 197 2491

Freehold 32,105 985 454 183 4820
All 70,333 865 420 94 4820

number of the dwellings involved is around 216,000.4 Among these, about 146,000

houses are single-sales and the remainder, about 70,000 houses, are ones that sold

more than once. The number of pairs for repeat-sales is around 97,000. So single-

sales dominate repeat-sales in the sample in terms of the number of houses. In

addition, the total number of buildings L is 48205, which leads to around 81,000

pairs at the building level.

There are two types of private non-landed residential properties in the Singa-

pore real estate market: apartments and condominiums. The main difference be-

tween them is that condominiums are equipped with facilities but apartments may

not be (Sing, 2001). The total number of condominium houses in our sample is

around 155,000 and apartments account for some 60,000. In addition, in terms of

ownership type, there are freehold, 999-year leasehold and 99-year leasehold. Most

private residential properties transacted in the sample are either freehold or 99-year

leasehold. Freehold houses are more expensive than 99-year leasehold houses. We

4We delete houses with incomplete information on characteristics. Sales that occur less than a
quarter after the previous sale of the same house are also excluded.

5We delete buildings in which only one transaction occurs during the whole sample period. The
number of buildings deleted is around 300, which implies only 300 single-sale houses are deleted.
The loss of information is negligible given that we have around 146,000 single-sale houses in the
dataset.
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have postal district information in our database which is used to identify house loca-

tion and zipcode information which is used to identify individual buildings.6 Table

2.1 and Table 2.2 provide summary statistic information on the sample.

The dataset is well-suited to compare our new method with the standard hedonic

method and the S&P/Case-Shiller repeat-sales method for index construction. First,

we have the complete record of all transactions and the sample size of total sales is

large, enabling us to estimate the proposed model accurately. With estimation error

being small, attention can focus on comparing the indices constructed by different

methods. Second, the hedonic information in the data is extensive so that many

variables and alternative specifications can be included on the right hand side of

models (2.2.2) and (2.2.1). Third, there are a very large number of repeat-sales in

the data, so that model (2.2.3) can also be estimated accurately. Consequently, we

can ignore estimation errors and focus on comparing the out-of-sample performance

of different methods. By doing so, we can evaluate the relative magnitude of the

price implications of implicit specification bias and sample selection bias in the

three methods.

It is worth noting that single-sale properties display different summary statistics

from repeat-sales properties. The mean price and the standard deviation for repeat-

sale houses is lower than single-sale houses across all categories. This observation

seems to support the argument that repeat-sale houses are not a representative ran-

dom sample of the entire market and may carry a sample selection bias. Further-

more, in spite of the long sample period, about 68% of houses in the sample that

have changed hands are single-sale houses. So the repeat-sale method is based on

only about 32% of the houses in the sample.

The scatter plot of all house prices per square foot over time is given in Figure

2.1. It is difficult to discern price trends from this scatter plot, especially for houses

at the low-end of the market because of the density of the data points. For high-end

6There are 27 postal districts and 69 postal sectors in the sample. In Singapore each building is
assigned a unique zip code. This location and zipcode information is directly retrievable from the
database.
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Figure 2.1: Scatter plots of house prices per square foot over January 1995 - June
2014

houses, at least, prices seem to be more stable between 2000 and 2006 than during

other periods.

To fit the model in equation (2.2.6), we take account of the following two prop-

erty characteristics: building zipcode and transaction period. Zipcode information

in our database is used to identify buildings. The real estate price index is given by

the parametric sequence {βt}, which delivers the quarterly index from Q1 1995 to

Q2 2014 (78 quarters in total). To keep our model as parsimonious as possible in

this application, we do not use other hedonic covariates in our empirical analysis

and hence the model has the form

ȳt ′,p− ȳt,p = βt ′−βt +
t ′

∑
k=t+1

uk,p + h̄t ′,p− h̄t,p + ε̄t ′,p− ε̄t,p. (2.3.1)

The model can be easily expanded to include additional hedonic information as

covariates. We have experimented with other covariates in our dataset and the main

empirical findings reported here are qualitatively unchanged. So, for simplicity, we

only report results obtained from the above specification.

We follow the estimation procedure described in Section 2 to obtain
{

β̂t

}
. Since

our purpose is to construct the house price index itself, rather than its logarithm, it

is convenient to use the parameterization in Nagaraja, Brown and Zhao (2011)

and calculate Ît = exp
(

β̂t

)
.7 Finally, we take the first quarter in our sample as the

7Although Ît is biased downward for It , the biased corrected estimator leads to virtually no change
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Figure 2.2: Four Real Estate Price Indices for Singapore: Q1 1995 – Q2 2014

reference point for which the price index is set to unity.

For comparison, we apply the hedonic method to all transaction prices and the

S&P/Case-Shiller method to repeat-sales prices to build the indices.8 We plot the

proposed index, the S&P/Case-Shiller index, the standard hedonic index and the

URA private non-landed residential property price index created by the Urban Re-

development Authority (URA) in Figure 2.2.9 As is apparent in the figure, there are

some substantial discrepancies among the four indices. In particular, the standard

hedonic index is more elevated and appears more volatile than the other indices and

seems to diverge from the other indices towards the end of the sample period. This

discrepancy may be due to the index’s greater susceptibility to specification bias, a

possibility that becomes clearer in the out-of-sample analysis below. Also, the URA

index has different turning points from the other three indices. For example, over

in our results since the estimation error (and hence the variance estimate that appears in the bias
calculation) is small.

8We employ the following four property characteristics in the hedonic model: location, transac-
tion periods, property type, and ownership type to construct the hedonic index which is displayed
in Figure 2.2. We have experimented with other covariates in our dataset and the main empirical
findings reported here are qualitatively unchanged when additional covariates are included.

9Since the exact methodology of URA is not sufficiently clear for reproduction, we cannot in-
clude the URA index in our out-of-sample exercise.
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the period of the global financial crisis, the turning point in the middle 2008 sug-

gested by the URA index is two quarters later than that implied by the other three

indices; and the turning point at the beginning of 2009 suggested by the URA index

is one quarter later than that implied by the other three indices. Interestingly, our

new index and the S&P/Case-Shiller index are very close to each other although our

index suggests a longer trough in prices following the outbreak of SARS.

To compare the new index, the standard hedonic index and the S&P/Case-Shiller

index and to examine the price implications of the specification bias and sample

selection bias, we investigate the out-of-sample predictive power of the three in-

dices.10 To do so, we divide the observations into training and testing datasets. The

testing set contains all the final sales of the houses sold three or more times in our

sample period. Among the houses sold twice, their second transactions are ran-

domly placed into the testing set with probability 0.04. We also randomly add the

single-sale houses into our testing set with probability 0.24, so that the testing set

contains the same number of single-sale houses and repeat-sale houses.11 All the

remaining houses are included in the training set. The resulting testing set contains

around 15% of sales in our sample, of which 50% are single-sale houses and the

rest are repeat-sales.

We first estimate all models based on the training set and then examine their

out-of-sample predictive power on the testing set. Before analyzing the findings,

we first explain how price predictions of the repeat-sale homes are obtained using

the alternative indices. To calculate the predicted prices of the repeat-sale homes

using the new method, we use

Ŷt ′,i,p =
Îbb
t ′

Îbb
t

Ȳt,p, (2.3.2)

10We evaluate the indices by their out-of-sample predictive power rather than their in-sample
fitting because out-of-sample perfermance is more important in the context of specification testing.
It is also well-known that that good in-sample fits often translate into poor out-of-sample predictions
(for a recent discussion, see e.g. Hansen, 2010).

11To compare the out-of-sample predictive power of three indices on single sale houses, the test
set does not include the single sale houses which are transacted as the first sales in their building.
So the single sale houses, which are sold in the same period as the first sale in the building, are
automatically included in the training set.
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where Ŷt ′,i,p is the price per square foot for house i in building p at time t ′, Îbb
t is the

estimated index from the new model at time t, t is the time period of the previous

sale in building p, and Ȳt,p is the average price per square foot for building p at time

t in the training set.

For the S&P/Case-Shiller model, given that all single-sales are deleted, we use

Ŷt ′,i =
Îcs
t ′

Îcs
t

Yt,i, (2.3.3)

where Yt,i is the price per square foot for house i at time t, t ′ > t and Îcs
t is the

estimated S&P/Case-Shiller index at time t, and t is the time period of the previous

sale for house i (which is typically much smaller than t in equation (2.3.2)).

It should be pointed out that the predictive equations (2.3.2) and (2.3.3) are im-

plied by models (2.3.1) and (2.2.3), respectively. From model (2.3.1), the predictive

value of the average log price for building p at time t ′ can be represented as

̂̄yt ′,p = ȳt,p + β̂t ′− β̂t .

When converting the log price to price, the predictive value of the average price for

building p at time t ′ is

̂̄Y t ′,p = exp
{̂̄yt ′,p

}
= exp

{
ȳt,p + β̂t ′− β̂t

}
=

exp
{

β̂t ′
}

exp
{

β̂t

} exp
{

ȳt,p
}
=

Îbb
t ′

Îbb
t

Ȳt,p

where Ȳt,p is the geometric mean price per square foot for building p at time t in the

training set. We take this predictive value ̂̄Y t ′,p as the predictive value for house i in

building p at time t ′, that is Ŷt ′,i,p. In a similar way, we can derive equation (2.3.3)

from (2.2.3).

For the standard hedonic model, we plug the estimated parameters into model

(2.2.2) to obtain
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ŷi, j,z = µ̂z + β̂t(i, j,z)+ γ̂
′Xi,z (2.3.4)

where ŷi, j,z is the predicted log price for the jth sale of house i in area z and µ̂z is the

estimated location dummy variable coefficient for area z. We then follow Nagaraja,

Brown and Zhao (2011) to convert the log price into price by means of the transform

Ŷi, j,z = exp
{

ŷi, j,z +
MSR

2

}
(2.3.5)

where MSR = 1
M ∑

M
i=1(yi, j,z− ŷi, j,z)

2, the mean square residuals and M is the total

number of transactions to fit the model.

All three predictive prices are matched against the actual prices observed in

the testing set. The root mean squared error (RMSE) and the mean absolute er-

ror (MAE) are reported in Table 2.3. Several important findings emerge. First,

the S&P/Case-Shiller index performs much better than the standard hedonic index.

In particular, compared with the standard hedonic method, the S&P/Case-Shiller

method reduces the RMSE by around 40% and reduces the MAE by about 45%.

In economic terms, the reduction in the MAE means that the repeat-sales method

leads to a reduction of nearly $100 (per square foot) in pricing error. This number

compares to, as reported in Table 2, the mean price of all repeat-sales homes of

$865. Clearly the improvement is economically highly significant. These findings

suggest that the sample selection bias present in the repeat-sales method is much

less serious than the specification bias in the standard hedonic method, at least as

far as house price prediction is concerned. Although we reported evidence that

repeat-sales houses are not a representative random sample of the entire market in

Singapore, the good out-of-sample performance of the S&P/Case-Shiller index sug-

gests that perhaps the price changes in repeat-sales homes reflects well the changes

that occur in single-sale homes.

Second and more importantly, the new model clearly has the best predictive

power for repeat-sale homes. In particular, compared with the S&P/Case-Shiller,
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Table 2.3: Testing set (with only repeat sales houses included): RMSE & MAE for
the Indices (SG dollars)

Loss Function new model S&P/C-S hedonic
RMSE 141 175 291
MAE 92 122 220

our model reduces the RMSE by around 19% and reduces the MAE by about

25%. Compared with the standard hedonic model, our model reduces the RMSE

by around 52% and reduces the MAE by about 58%. In economic terms, these

reductions in the MAE imply that the the new method leads to a pricing error reduc-

tion of $30 (per square foot) relative to the repeat-sale method and $128 (per square

foot) relative to the standard hedonic method. All these reductions are substantial.

At first glance, it may be surprising that the new model outperforms the repeat-sale

method for predicting repeat-sales homes because the two indices are close to each

other as shown in Figure 2.2. The superiority of the new method can be explained

as follows. When we predict prices of repeat-sale homes, based on the specifica-

tion of the new model, the average price of the most recent sales of all homes in

the same building are used. However, based on the specification of the S&P/Case-

Shiller model, one can only use the most recent sale price of the same home, which

because of time lags may not reflect the present market as well. Indeed, the time

gap in the latter case is usually much larger than the former case, making the most

recent sale price of the same home far less relevant for prediction than the average

price of the most recent sales of all homes in the same building.

Figures 2.3 and 2.4 plot the histograms for these two sets of time gaps and report

the mean, median and standard deviation of the gap time in each case. Apparently,

in the new method with probability of around 80% the gap time is 1 or 2 periods

with median of 1 period and standard deviation of 2.75. In the repeat-sale method,

the distribution of the gap time is much more dispersed with median of 15 periods

and standard deviation of 15.48. The average price of all sale prices in the same

buildings last quarter can be expected to be far more informative in predicting prices

in the current period than the price of the same house 15 periods ago.
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Figure 2.3: Histogram, mean, median and standard deviation of the time gap of
sales in the same building.

Figure 2.4: Histogram, mean, median and standard deviation of the time gap of
sales of the same house.
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Next we discuss how to predict prices of single-sale homes using the alternative

indices. Since the S&P/Case-Shiller method discards all single-sale information,

we cannot use this method to predict the price of single-sale homes. We therefore

compare the predictive power of the new model with the standard hedonic model in

this case. As before, we use equation (2.3.2) in our model and equation (2.3.4) and

(2.3.5) in the hedonic model. The RMSE and MAE are shown in Table 2.4. Again,

the new model performs much better in predicting prices of the single-sale homes

than the standard hedonic model. Our model reduces the RMSE by around 48% and

reduces the MAE by about 54%.

We can also compare the out-of-sample performance of our new model and the

standard hedonic model on all houses in the testing set. The RMSE and the MAE

are shown in Table 2.5. Our model reduces the RMSE by around 50% and reduces

the MAE by about 56%.

Table 2.4: Testing set (only single sale houses included) RMSE & MAE for the
Indices (SG dollars)

Loss Function new model hedonic
RMSE 156 297
MAE 86 188

Based on this out-of-sample analysis, it is clear that the standard hedonic model

suffers from serious specification bias. Two sources of specification bias are ex-

pected. First, the attributes of houses or the factors that influence the house price

are too many to be recorded in the data, leading to the problem of omission of

relevant variables. Second, when covariates are observed, their exact relationship

with the house price is almost always unknown and the use of a parametric form is

potentially misspecified.

Moreover, the out-of-sample analysis also tells us that discarding single-sale

houses from the analysis leads to a significant loss of information for prediction.

This is because past prices of single-sale houses in the same building carry useful

information. That explains why our new model increases the predictive power con-

siderably relative to the S&P/Case-Shiller even though the two indices appear not
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to differ so much. To further illustrate this point, we consider a hypothetical (and

infeasible) exercise, in which the single-sale houses are not eliminated from the pre-

diction exercise and we predict the price in the testing set with our method and the

repeat-sales method. With the repeat-sales method, we use the following fabricated

equation (2.3.6) to calculate the predictive price

Ŷt ′,i,p =
Îcs
t ′

Îcs
t

Ȳt,p, (2.3.6)

where Ŷt ′,i,p is the price per square foot for house i in building p at time t ′, Îcs
t is the

estimated S&P/Case-Shiller index at time t and t is the time period of the previous

sale in building p, and Ȳt,p is the average price per square foot in building p at time

t in the training set. There are two main differences between equation (2.3.6) and

(2.3.3). The first difference is that Ȳt,p is used to estimate Ŷt ′,i,p in (2.3.6) instead

of Yt,i in (2.3.3). This allows us to predict prices of all houses in the testing set.

Whereas (2.3.3) is only applicable to the repeat-sales houses. Secondly, t in (2.3.6)

is the time period of the previous sale in building p whereas t in (2.3.3) is the time

period of the previous sale of house i. As a result, for the same house i, the time

period of the previous sale in building p is potentially much closer to t ′ than that

of the previous sale of house i, even for repeat-sales homes. In our new model and

the Case-Shiller model, more recent sales are informative due to the random walk

component. Equation (2.3.6) is infeasible for prediction in the Case-Shiller model

because the single-sale data have been removed by the S&P/Case-Shiller method.

We do this hypothetical comparison only to explain the usefulness of the most recent

sales in the same building for prediction.

The RMSE and the MAE from the two models are reported in Table 2.6 when

we only predict prices of single-sale houses in the testing set. Tables 2.7, 2.8 give

the results when only repeat-sale houses are predicted and all houses are predicted,

respectively. By incorporating the information of the most recent sale prices in the

same building, both the RMSE and MAE generated by the S&P/Case-Shiller index

are substantially reduced. Consequently, although the predictive power of our new
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Figure 2.5: Four real estate price indices and the dates of ten rounds of successive
macroprudential cooling measures (indicated by vertical lines).

model is still slightly better than the S&P/Case-Shiller model, the outperformance

in this case (here evident in MAE) is only marginal because of the use of additional

information (infeasibly) in the S&P/Case-Shiller index.

The out-of-sample analysis suggests that our new model captures the overall

housing market situation in Singapore better than both the standard hedonic method

and the repeat-sales method. As demonstrated before, our new method utilizes all

the information, is robust to specification bias, and performs best in out-of-sample

analysis. Moreover, the procedure is very convenient to implement in practical

work.

2.4 Cooling measures and explosive behavior

Housing is a highly important sector of the economy and provides the largest form

of savings of household wealth in Singapore. Property prices play an important role

in consumer price inflation and can therefore have a serious impact on public policy.

The private housing sector, property prices and rents also impact measures of Singa-

pore’s competitiveness in the world economy. For these and other reasons, the Sin-
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Table 2.5: Testing set (all houses included) RMSE & MAE for the Indices (SG
dollars)

Loss Function new model hedonic
RMSE 149 294
MAE 89 204

Table 2.6: The hypothetical exercise – Testing set (only single sale houses included)
RMSE & MAE for the Indices (SG dollars)

Loss Function new model S&P/Case-Shiller
RMSE 156 156
MAE 86 87

Table 2.7: The hypothetical exercise – Testing set (only repeat sales houses in-
cluded) RMSE & MAE for the Indices (SG dollars)

Loss Function new model S&P/Case-Shiller
RMSE 141 141
MAE 92 93

Table 2.8: The hypothetical excercise – Testing set (all houses included) RMSE &
MAE for the Indices (SG dollars)

Loss Function new model S&P/Case-Shiller
RMSE 149 149
MAE 89 90
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Figure 2.6: Testing for Bubbles in Singapore Real Estate Prices: using the
S&P/Case-Shiller index, the BSADF statistic of PSY and the critical values.

gapore government has closely watched movements in housing prices over the last

decade and particularly since the house price bubble in the USA. Recently, Singa-

pore implemented ten successive rounds of macro-prudential measures intended to

cool down the housing market. These measures were undertaken between Septem-

ber 2009 and December 2013, the first eight of which were targeted directly at the

private residential market.

The Appendix 1 summarizes the dates and the nature of these macro-prudential

measures. As is evident, a variety of macro-prudential policies have been used

by the Singapore government. These include introducing a Seller’s Stamp Duty

(SSD), lowering the Loan-to-Value (LTV) limit, introducing an Additional Buyer’s

Stamp Duty (ABSD), and reducing the Total Debt Servicing Ratio (TDSR) and the

Mortgage Servicing Ratio (MSR). To visualize the impact of these cooling measures

on the dynamics of real estate price movements, Figure 2.5 plots the four price

indices for the period between Q1 2008 and Q2 2014, superimposed by vertical

lines indicating the introduction of these ten cooling measures.

The primary goal of the macro-prudential policies is to reduce or eliminate emer-

gent price bubbles in the real estate market and bring prices closer in line with fun-
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Figure 2.7: Testing for Bubbles in Singapore Real Estate Prices: using the index
from the hedonic model, the BSADF statistic of PSY and the critical values.

damental values. Shi et al. (2014) and Mendicino and Punzi (2014) examined the

impact of macro-prudential policies on real estate prices. Using the present value

model, Diba and Grossman (1988) showed the presence of a rational bubble solu-

tion that implies that an explosive behavior in the observed price. If fundamental

values are not explosive, then the explosive behavior in prices is a sufficient condi-

tion for the presence of bubble. Phillips, Wu and Yu (2011) and Phillips, Shi and Yu

(2015a,2015b, PSY hereafter) introduced recursive and rolling window econometric

methods to test for the presence of mildly explosive behavior or market exuberance

in financial asset prices. These methods also facilitated estimation of the origina-

tion and termination dates of explosive bubble behavior. The method of Phillips,

Wu and Yu (2011) is particularly effective when there is a single explosive episode

in the data while the method of PSY can identify multiple explosive episodes. In the

absence of prior knowledge concerning the number of explosive episodes, in what

follows we use the PSY method to assess evidence of bubbles in real estate prices.

Bubble behavior and market exuberance and collapse are subsample phenom-

ena. So, PSY proposed the use of rolling window recursive application of right

sided unit root tests (against explosive alternatives) using a fitted model for data
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{Xt}n
t=1 of the following form

∆Xt = α̂ + β̂Xt−1 +
K

∑
i=1

β̂i∆Xt−i + êt . (2.4.1)

Details of the procedure and its asymptotic properties are given in PSY. We provide

a synopsis here and refer readers to PSY for further information about the specifics

of implementation and the procedure properties. Briefly, the unit root test recursion

involves a sequence of moving windows of data in the overall sample that expands

backward from each observation t = bnrc of interest, where n is the sample size

and bnrc denotes the integer part of nr for r ∈ [0,1]. Let r1 and r2 denote the start

and end point fractions of the subsample regression. The resulting sequence of

calculated unit root test statistics are denoted as
{

ADFr2
r1

}
r1∈[0,r2−r0]

where r0 is the

minimum window size used in the recursion. and t = bTrc is the point in time for

which we intend to test for normal market behavior against exuberance. PSY define

the recursive statistic BSADFr = supr1∈[0,r2−r0],r2=r
{

ADFr2
r1

}
. The origination and

termination dates of an explosive period are then determined from the crossing times

r̂e = inf
r∈[r0,1]

{r : BSADFr > cv} and r̂ f = inf
r∈[r̂e,1]

{r : BSADFr < cv} , (2.4.2)

where the recursive statistic BSADF crosses its critical value cv. The quantity r̂e es-

timates the origination date of an explosive period and r̂ f estimates the termination

date of an explosive period. After the first explosive period is identified, the same

method may be used to identify origination and termination dates of subsequent

explosive episodes in the data.

To assess evidence for potential bubbles in the private real estate market in Sin-

gapore, we applied the PSY method first to both the S&P/Case-Shiller index and

the index built from the hedonic model with minimum rolling window size r0 = 8,

corresponding to two years. Figures 2.6 and 2.7 report the two indices, the corre-

sponding BSADF statistics and the 5% critical values, respectively. The (orange)

shaded area corresponds to the explosive period where the BSADF statistic exceeds
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Figure 2.8: Testing for Bubbles in Singapore Real Estate Prices: using the new
index, the BSADF statistic of PSY and the critical values.

the critical value. The PSY method identifies an explosive period, namely Q4 2006

to Q1 2008, in both the S&P/Case-Shiller index and the index built from the hedonic

model.

We also applied the PSY method to our new index with minimum rolling win-

dow size r0 = 8. Figure 2.8 reports the index, the test recursion, and the test 5%

critical values. PSY identifies an explosive period in the private real estate market

over Q2 2006 to Q1 2008. While the same conclusion date for the explosive period

is found for the three indices, our new index suggests that explosive behavior com-

menced two quarters earlier, a finding that can have important practical implications

for policy.

During the period 2006 - 2008, no cooling measures were introduced by the gov-

ernment. If the government had been alerted to the existence of exuberant market

conditions in real time during this period, the opportunity would have been available

for the implementation of cooling measures to affect the market. If the Case-Shiller

index had been used, the government may have been stimulated to introduce cool-

ing measures in Q4 2006, whereas if the new index were available and acted upon,

the government may have introduced cooling measures earlier in Q2 2006. More-
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over, although all three indices suggest that there were upward movements in price

following 2008, between 2009 and 2013, these movements are not determined to be

explosive and the PSY detector indicates little or no evidence of explosive behavior

after 2009. This tapering in real estate market exuberance coincides with the period

September 2009 through December 2013 during which macro-prudential cooling

measures were actually implemented by the government and therefore appear to

have been effective.

2.5 Conclusion

In order to exploit all available information in real estate markets, this paper pro-

vides a new methodology for the estimation of real estate price indices. The pro-

posed new model has some of the advantages of the standard hedonic method as it

uses both single-sales and repeat-sales data but it is less prone to specification bias

than the standard hedonic model. Moreover, it generalizes the attractive feature of

the repeat-sales method by creating sale pairs from within the individual building

level, thereby increasing the number of observations used in the index. The model

is also easy to estimate. Unlike the maximum likelihood methods of Hill, Knight

and Sirmans (1997) and Nagaraja, Brown and Zhao (2011), this approach uses GLS

estimation and is computationally efficient with large datasets. Other methods have

been suggested to construct sale pairs in the literature – see, for example, McMillen

(2012), and Guo et al (2014). Our matching rule is simpler to implement and has

the advantage of a semiparametric nature.

We apply our estimation procedure to the real estate market for private residen-

tial dwellings in Singapore and examine the model’s out-of-sample predictive per-

formance in comparison with indices produced using the repeat-sales methodology

of Case and Shiller (1987, 1989) and the standard hedonic method. The findings

reveal that, compared with these alternative methodologies, our method has supe-

rior performance out-of-sample. We expect our method is well suited to build real
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estate indices for high density cities where houses are mainly project-based. Each

project contains a number of buildings with many units. These units share essen-

tially the same location, facility, design, developer ownership, and utilities, among

other common features. In theory, our method can also be applied for single-family

homes as long as we can define suitable groups (such as estates) for single-family

homes and create sale pairs from the group level. Another useful idea is to use other

simple criteria to choose pairs – see Baltagi and Li (2015), for instance, for the use

of housing projects. These ideas will be investigated in the future work.

The recursive detection method of Phillips, Shi and Yu (2015a, 2015b) is applied

to each of the indices to locate episodes of real estate price exuberance in Singapore.

While for all three indices PSY identifies the same bubble, the bubble origination

date in the new index comes two quarters earlier than that in the other two indices.

Although all three indices grew during 2009 - 2013, the expansion is not explo-

sive, indicating that the ten recent rounds of cooling measure intervention in the

real estate market conducted by the Singapore government have been successful in

controlling prices.
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Chapter 3 On bias in the estimation of struc-

tural break points

3.1 Introduction

Statistical inference of structural breaks has received a great deal of attention in both

econometrics and statistics literature over the last several decades. Bhattacharya

(1994) provides a review of the statistics literature on the problem while Perron

(2006) gives a review of the econometrics literature on the same problem. There

are also several books devoted to this topic of research, including Csrgő and Horvth

(1997), Chen and Gupta (2011). Both strands of the literature have addressed the

problem in many aspects, from estimation, testing to computation, from frequen-

tist’s methods to Bayesian methods, from one structural break to multiple structural

breaks, from univariate settings to multivariate settings. In addition to its statistical

implications, the economic and financial implications of structural break problem

have also been extensively studied; see, for example Hansen (2001) and Andreou

and Ghysels (2009) for excellent reviews.

In terms of estimating structure break points, the literature has developed asymp-

totic theory for estimating the (fractional) structural break point (i.e. the (abso-

lute) structural break point divided by the total sample size), including consistency,

rates of convergence, and limit distributions; see, for example, Yao (1987) and Bai

(1994). Interestingly and rather surprisingly, the finite sample theory for estimating

structure break points seems to have received little attention in the literature. Is this

lack of attention due to the good approximation of the asymptotic distribution to the
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finite sample distribution in empirically realistic cases and hence there is no need

to study the finite sample theory? In particular, is there any bias in the traditional

estimator of structural break points? Simulations provided in Yao (1987) seem to

suggest that the asymptotic distribution is not necessarily close to the finite sample

distribution while simulations provided in Bai (1994) seem to suggest there is little

bias in the traditional estimator when the true break point is in the middle of the

sample. Or is the lack of attention due to the difficulty in studying the finite sample

theory and in approximating the bias, even in the first order?

This paper systematically investigates the finite sample properties and the bias

problem in the estimation of structural break points. To the best of our knowledge,

our study is the first systematic analysis of the finite sample issues in the literature.

We develop the finite sample distribution of the maximum likelihood (ML) estima-

tor of the structural break point in a continuous time model and relate the continuous

time model to the discrete time models studied in the literature. We also document

the bias both in the continuous time and the discrete time models, and propose an

indirect estimation procedure to alleviate the bias via simulations.

Our study makes several contributions to the literature on structural breaks.

First, we obtain the finite sample distribution of the ML and least squares (LS)

estimators in some simple models and then obtain the bias from the finite sample

distribution. It is shown that the bias can be substantial in the ML/LS estimators

of the fractional structural break point and the absolute structural break point. The

further the fractional structural break point is away from 50%, the more the bias.

When the fractional structural break point is smaller (bigger) than 50%, the bias is

positive (negative).

Second, we develop a novel approach to obtaining the finite sample distribution.

Since the likelihood function and the sum of squared residuals are not differentiable

with respect to break point in the discrete time models, the traditional approaches of

obtaining the finite sample theory are not feasible. By using the Girsanov theorem,

we obtain the likelihood function in a continuous time model with a structural break
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and then obtain the finite sample distribution of the ML estimator.

Third, we propose to do bias reduction using the indirect estimation procedure.

One standard method for bias reduction is to obtain an analytical form to approxi-

mate the bias and then bias-correct the original estimator via the analytic approach

as in Kendall (1954), Nickell (1981), Yu (2012) for various types of autoregressive

models. However, it is difficult to use the analytic approach in this context as the

bias formula is difficult to obtain. It is shown that the indirect estimation procedure,

without knowing the analytical form to approximate the bias, achieves substantial

bias reduction. However, since the binding function has a slope less than one, the

variance of the indirect estimator is larger than that of the original estimator. The

primary advantage of the indirect estimation procedure lies in its merit in calibrat-

ing the binding function via simulations and avoiding the need to obtain an analytic

expression for the bias function. Since it is easy to simulate the model and esti-

mate the break point parameter, the indirect estimation is a convenient method for

reducing the bias in the estimation of the structural break points.

The rest of the paper is organized as follows. In Section 2, we first briefly review

the literature and then develop a continuous time model with a structural break

and discuss the finite sample properties of the ML estimator of the structural break

point. Section 3 connects the continuous time model to the discrete time models

previously considered in the literature. Section 4 introduces the indirect estimation

technique and applies it to both the continuous time and the discrete time models

with structural break points. In Section 5, Monte Carlo experiments are designed to

obtain the bias of traditional estimators in models with structural breaks. We also

compare the finite sample performance of the indirect estimation estimate with that

of the traditional estimation methods. Sections 6 concludes.
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3.2 Bias in a continuous time model

3.2.1 A literature review and motivations

The literature on estimating structural break points is extensive. A partial list of

contributions in statistics include Chernoff and Zacks (1964), Hinkley (1969, 1970),

Bhattacharya and Brockwell (1976), Ibragimov and Has’minskii (1981), Hawkins

et al. (1986), Bhattacharya (1987), and Yao (1987). A key reference is Hinkley

(1970) that develops not only the ML method for estimating the absolute break

point but also its distributional behavior as the sample sizes before and after the

change-point tend to infinity. In econometrics, Jushan Bai and Pierre Perron have

made many contributions to the literature through their individual work as well as

their collaborative work; see for example, Perron (1989), Bai (1994, 1995, 1997a,

1997b, 2010), Bai and Perron (1998) and Bai et al. (1998). For example, Bai

(1994) extends the earlier literature by proposing the least squares (LS) method to

estimate the break point in linear processes and develop its large sample theory.

Bai and Perron (1998) uses the LS method to estimate linear models with multiple

structural breaks.

A simplified model considered in Hinkley (1970) is

Yt =


µ + εt if t ≤ k0

(µ +δ )+ εt if t > k0

, (3.2.1)

where t = 1, . . . ,T , εt is a sequence of independent and identically distributed (i.i.d.)

continuous random variables with zero mean, k0 is the true value of the absolute

structural break point k, constant µ measures the mean of Yt before break and δ

is the size of structural break. Let the probability density function (pdf) of Yt be

f (Yt ,µ) for t ≤ k0 and f (Yt ,µ + δ ) for t > k0. And denote τ0 the true value of

the fractional structural break point τ , i.e., τ0 = k0/T . Under the assumption that

the form of function f and parameters µ and δ are all known and at least one
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observation comes from each distribution, the ML estimator of k0 is defined as

k̂ML = arg max
k=1,...,T−1

{
k

∑
t=1

log f (Yt ,µ)+
T

∑
t=k+1

log f (Yt ,µ +δ )

}
. (3.2.2)

The corresponding estimator of τ is τ̂ML = k̂ML/T . Hinkley (1970) showed that

k̂ML− k0 converges in distribution as the sample sizes before and after the break

point tend to infinity. He also pointed out that the distribution of k̂∞− k0, where

k̂∞ denotes k̂ML with infinite sample, has no closed-form expression, and gave a

numerical method to compute the distribution. However, this numerical scheme is

difficult to handle for small δ since the distribution becomes rather dispersive when

δ is small. This difficulty motivates Yao (1987) to develop a limit theory as δ → 0.

Letting δ → 0, Yao (1987) derived a sequential limit distribution as

δ
2I (µ)

(
k̂∞− k0

)
d→ arg max

u∈(−∞,∞)

{
W (u)− 1

2
|u|
}

, (3.2.3)

where I (µ) is the Fisher information of the density function f (y,µ), W (u) is a two-

sided Brownian motion which will be defined below, and d→ denotes convergence in

distribution. Since I (µ) depends on the error’s distribution, no invariance principle

applies to the sequential limit distribution. Yao (1987) also derived the pdf of the

sequential limit distribution as

g(x) = 1.5e|x|Φ
(
−1.5|x|0.5

)
−0.5Φ

(
−0.5|x|0.5

)
,

and its cdf as

G(x) = 1+
√

x
2π

e−x/8− (x+5)Φ
(
−0.5

√
x
)
/2+1.5ex

Φ
(
−1.5

√
x
)
, for x > 0,

G(x) = 1−G(−x) if x ≤ 0, where Φ(x) is the cdf of the standard normal distribu-

tion.

For the same model as in Equation (3.2.1), Hawkins et al. (1986) and Bai (1994)
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studied the LS estimators of k and τ with unknown µ and δ . The LS estimator of k

takes the form of

k̂LS = arg min
k=1,...,T−1

S2
k = arg max

k=1,...,T−1
V 2

k , (3.2.4)

where S2
k =

k

∑
t=1

(
Yt−Y k

)2
+

T

∑
t=k+1

(
Yt−Y ∗k

)2
with Y k (Y ∗k) being the sample mean of

the first k (last T −k) observations and V 2
k = T (T−k)

T 2

(
Y ∗k−Y k

)2
. The corresponding

estimator of τ is τ̂LS = k̂LS/T . Hawkins et al. (1986) showed that T α (τ̂LS− τ0)
p→ 0

for any α < 1/2. Bai (1994) improved the rate of convergence by showing that

τ̂LS− τ0 = Op

(
1

T δ 2

)
. This convergence rate also applies to τ̂ML when εt is an i.i.d.

Gaussian sequence. Because, in the case where εt ∼ i.i.d.N(0,σ2), the LS estimator

is equivalent to the ML estimator with unknown µ and δ , whose limit theory, as

argued in Hinkley (1970), is the same as that of the ML estimator when µ and δ are

known as long as µ and δ can be consistently estimated. While τ̂LS is consistent,

k̂LS is inconsistent since k̂LS− k0 = Op

(
1

δ 2

)
.

To develop the limit distribution with an invariance principle, δ has to go to zero

as T →∞, as shown in Bai (1994). This kind of limit theory is particularly useful in

constructing confidence interval when the size of the break is small. Let δT be the

size of break that depends on T . Bai showed that if εt ∼i.i.d.(0,σ2), δT → 0 and
√

T δT√
logT → ∞ as T → ∞,

T (δT/σ)2 (τ̂LS− τ0)
d→ arg max

u∈(−∞,∞)

{
W (u)− 1

2
|u|
}
. (3.2.5)

When εt is normally distributed, the Fisher information I (µ) turns out to be σ−2.

Therefore, the simultaneous asymptotic distribution in Bai (1994) is the same as the

sequential asymptotic distribution in Yao (1987). Bai (1994) also derived the limit

distribution when εt is a short memory ARMA process, which is the same as shown

in Equation (3.2.5) by replacing σ2 with the long-run variance of εt . To obtain the

limit distribution, Bai (1994) examined the behavior of normalized objective func-

tion in the small neighborhood of the true break point k0 such that k = [k0+v(δT )
−2]
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where v varies in a bounded interval. This is equivalent to the local asymptotic the-

ory of Le Cam (1960).

A study which is closest to ours is Ibragimov and Has’minskii (1981). Ibragi-

mov and Has’minskii analyzed a simple continuous time model

dX(t) =
1
ε

S(t− τ0)dt +dB(t) (3.2.6)

where t ∈ [0,1], S(t−τ0) is a non-stochastic drift term with discontinuity at time τ0

(i.e. τ0 is the structural break point), and ε is a small parameter. Let limx→0+ S(x)−

limx→0− S(x) = δ denote the size of the break. Following the development of the

local asymptotic theory of Le Cam, Ibragimov and Has’minskii (1981), under the

assumption that a continuous record is available, examined the behavior of the nor-

malized likelihood ratio in the small neighborhood of the true break point τ0 such

that τ = τ0 + ε2u and showed that as ε → 0,

δ
2(τ̂ML− τ0)

d→ arg max
u∈(−∞,∞)

{
W (u)− 1

2
|u|
}
. (3.2.7)

Figure 3.1 plots the pdf of the limit distribution given in Yao (1987), Bai (1994),

and Ibragimov and Has’minskii (1981). For the purpose of comparison, we also

plot the pdf of the standard normal distribution. It can be seen that both distribu-

tions are symmetric, suggesting no bias in the limit distribution when estimating

the fractional break point using ML/LS. However, relative to the standard normal

distribution, the limit distribution has much fatter tails and a much higher peak. The

symmetrical property is a result of using the local asymptotic approach to develop

the limit distribution in all cases. This property does not help us to understand the

finite sample bias in estimating the break points.

The asymptotic arguments above do not take account of asymmetry in the sam-

ple before and after the break. To capture the influence of asymmetric information

before and after the break, a continuous time model is a natural choice. As long as

τ0 6= 1/2, the information contained by observations over the time interval [0,τ0] and
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Figure 3.1: The pdfs of arg max
u∈(−∞,∞)

{
W (u)− 1

2 |u|
}

and a standard norm distribution

those over the time interval [τ0,1] are different, even if the continuous records are

available and there are infinite number of observations before and after the break.

This is because in continuous time models the time span also conveys useful infor-

mation.

There is another motivation to consider a continuous time model. To study the

finite sample bias for traditional estimators, a typical approach is to consider the first

order condition to an extremum problem that defines the associated estimator; see

for example, Rilstone et al. (1996) and Bao and Ullah (2007). While this approach

covers many popular models, it is not applicable to the problem of estimating the

structural break point in discrete time models, regardless if ML or LS is used. This

is because the objective functions in (3.2.2) and (3.2.4) are not differentiable and

hence no first order condition is available for developing high order expansions.

Using continuous time models we can avoid this difficulty.

3.2.2 A continuous time model

The continuous time model considered in the paper is

dX(t) = S(t− τ0)dt +σdB(t), (3.2.8)
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with t ∈ [0,1], where S(t − τ0) is a non-stochastic drift term with discontinuity at

time τ0. Let limx→0+ S(x)− limx→0− S(x)= δ denote the size of the break. Different

from Model (3.2.6) studied in Ibragimov and Has’minskii (1981), we let ε = 1, not

ε → 0. In addition, we have σ in the diffusion function, capturing the noise level.

Hence the signal-to-noise ratio in our model is δ/σ , which is a constant, unlike

what was assumed in Ibragimov and Has’minskii (1981).

Furthermore, in order to establish a link to the discrete time model in Yao (1987)

and Bai (1994), we consider the case in which S(t− τ0) only takes two values such

that

S(t− τ0) =


µ i f t ≤ τ0

µ +δ i f t > τ0

, (3.2.9)

with t ∈ [0,1], where τ0 is the unknown true break point, and τ0 ∈ [α,β ] with 0 <

α < β < 1. Consequently Model (4.2.12) can be rewritten as

dX(t) = (µ +δ1[t>τ0])dt +σdB(t). (3.2.10)

Following Le Cam (1960) and Ibragimov and Has’minskii (1981), we obtain the

exact log-likelihood ratio of Model (3.2.10) via the Girsanov Theorem1

log
(

dPτ

dPτ0

)
=
∫ 1

0

δ

σ

(
1[t>τ]−1[t>τ0]

)
dB(t)− 1

2

∫ 1

0

δ 2

σ2

(
1[t>τ]−1[t>τ0]

)2 dt.

The ML estimator of τ0 is

τ̂ML = arg max
τ∈(0,1)

log
(

dPτ

dPτ0

)
.

1See also Phillips and Yu (2009) for a recent usage of the Girsanov Theorem in estimating con-
tinuous time models.
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When τ ≤ τ0, we have

log
(

dPτ

dPτ0

)
=

δ

σ

∫ 1

0
1[τ<t≤τ0]dB(t)− δ 2

2σ2

∫ 1

0
1[τ<t≤τ0]dt

=
δ

σ

∫
τ0

τ

dB(t)− δ 2

2σ2

∫
τ0

τ

dt

=
δ

σ
(B(τ0)−B(τ))− δ 2

2σ2 (τ0− τ).

When τ > τ0, we have

log
(

dPτ

dPτ0

)
=−δ

σ

∫ 1

0
1[τ0<t≤τ]dB(t)− δ 2

2σ2

∫ 1

0
1[τ0<t≤τ]dt

=−δ

σ

∫
τ

τ0

dB(t)− δ 2

2σ2

∫
τ

τ0

dt

=
δ

σ
(B(τ0)−B(τ))− δ 2

2σ2 (τ− τ0).

Thus, we can write the exact log-likelihood ratio as

log
(

dPτ

dPτ0

)
=

δ

σ
(B(τ0)−B(τ))− δ 2

2σ2 |τ− τ0|. (3.2.11)

This implies that the ML estimator of τ0 is

τ̂ML = arg max
τ∈(0,1)

{
δ

σ
(B(τ0)−B(τ))− δ 2

2σ2 |τ− τ0|
}
, (3.2.12)

which leads to

τ̂ML− τ0 = arg max
u∈(−τ0,1−τ0)

{
δ

σ
(B(τ0)−B(τ0 +u))− δ 2

2σ2 |u|
}
.

We now define a two-sided Brownian motion as

W (u) =


W1 (−u) = B(τ0)−B(τ0− (−u)) if u≤ 0

W2 (u) = B(τ0)−B(τ0 +u) if u > 0
, (3.2.13)

where W1 (s) = B(τ0)−B(τ0− s) and W2 (s) = B(τ0)−B(τ0 + s) are two indepen-
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dent Brownian motions as they are composed by increments of the Brownian motion

B(·) before and after the time τ0 respectively with W1 (0) = W2 (0) = 0.

We then have

τ̂ML− τ0 = arg max
u∈(−τ0,1−τ0)

{
δ

σ
W (u)− δ 2

2σ2 |u|
}

d
= arg max

u∈(−τ0,1−τ0)

{
W

(
u
(

δ

σ

)2
)
− 1

2

∣∣∣∣∣u
(

δ

σ

)2
∣∣∣∣∣
}

d
=

(
δ

σ

)−2

arg max
u∈
(
−τ0( δ

σ )
2
,(1−τ0)( δ

σ )
2)
{

W (u)− |u|
2

}
,

where d
= denotes equivalence in distribution. Consequently, we obtain

(
δ

σ

)2

(τ̂ML− τ0)
d
= arg max

u∈
(
−τ0( δ

σ )
2
,(1−τ0)( δ

σ )
2)
{

W (u)− 1
2
|u|
}
, (3.2.14)

the exact distribution of the ML estimator τ̂ML with a continuous record being avail-

able, which is also called in this paper the exact finite sample distribution of τ̂ML in

the sense that it is obtained with a finite time span before and after the break, which

is (0,τ0] and [τ0,1) respectively.

It seems that the finite sample distribution given in Equation (3.2.14) is sim-

ilar to the limit distributions given in Yao (1987), Bai (1994) and Ibragimov and

Has’minskii (1981) listed in (3.2.3), (3.2.5) and (3.2.7), respectively. However,

there is one critical difference between them. The limit distributions in (3.2.3),

(3.2.5) and (3.2.7) correspond to the location of the extremum of W (u)− 1
2 |u| over

the interval of (−∞,∞). Since the interval is symmetric about zero, the limit distri-

bution is symmetric about zero. However, the finite sample distribution in (3.2.14)

corresponds to the location of the extremum of W (u)− 1
2 |u| over the interval of[

−τ0

(
δ

σ

)2
,(1− τ0)

(
δ

σ

)2
]

, therefore depends on the true value of break point

τ0. Only when τ0 is 50%, that is the true break point is exactly at the middle,[
−τ0

(
δ

σ

)2
,(1− τ0)

(
δ

σ

)2
]

becomes
(

δ

σ

)2
[−50%,50%] and symmetric about zero.
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In this case the finite sample distribution will be symmetric about zero. If τ0 is not

50% (either smaller or bigger than 50%), the interval and hence the finite sample

distribution will be asymmetric. It is easy to see that the finite sample distribution

in (3.2.14) suggests upward bias when τ0 < 1/2 and downward bias when τ0 > 1/2,

and the further τ0 away from 1/2, the larger the bias.

Because of this difference in the interval to locate the extremum, we cannot

obtain the pdf or cdf of the finite sample distribution in closed-form. As a result, we

obtain the pdf by simulations as for the case of the Dickey-Fuller distributions.

Figure 3.2 plots the densities of τ̂ML given in Equation (3.2.14) when τ0 =

0.4,0.5,0.6 (the left, middle and right panel respectively) and the signal-to-noise

ratio (δ/σ ) is 1. Figure 3.3 - Figure 3.6 plots the densities of τ̂ML− τ0 when the

signal-to-noise ratio is 2, 4, 6, 8. There are several interesting observations from

these plots. First and most importantly, when τ0 = 50%, the densities of τ̂ML−τ0 is

always symmetric about zero, no matter what value the signal-to-noise ratio takes.

As a result, there is no finite sample bias in this case. However, when τ0 is not 50%,

the density is not symmetric any more. In particular, if τ0 is less (larger) than 50%,

the density is positively (negatively) skewed and there is a upward (downward) bias

in τ̂ML. The smaller the signal-to-noise ratio, the larger the bias. The further τ0

away from 50%, the larger the bias, although this feature does not show up in the

graphs.

Second, there are tri-modality in the finite sample distribution when the signal-

to-noise ratio is low (for example when δ/σ = 1,2,4). The true value is one of the

three modes while the two boundary points (0 and 1) are the other two modes. For

very small signal-to-noise ratio, for example δ/σ = 1, the highest mode is not the

true value, but the two boundary points when τ0 = 50%; it becomes the left (right)

boundary point if τ0 is smaller (larger) than 50%. However, the highest mode moves

to the true value when the signal-to-noise ratio increases in all cases with δ/σ ≥ 2.

It is also found that, the mode on the left boundary point is always larger (smaller)

than that on the right boundary point when τ0 is smaller (larger) than 50%. When
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Figure 3.2: The density of τ̂ML given in Equation (3.2.14) when τ0 = 0.4,0.5,0.6
(the left, middle and right panel respectively) and the signal-to-noise ratio (δ/σ ) is
1. In each panel, the verticle line represents the true value of τ0.
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Figure 3.3: The density of τ̂ML given in Equation (3.2.14) when τ0 = 0.4,0.5,0.6
(the left, middle and right panel respectively) and the signal-to-noise ratio (δ/σ ) is
2. In each panel, the verticle line represents the true value of τ0.

the signal-to-noise ratio is large enough, tri-modaility becomes unique modality.

In this case, the shape of the distribution is similar to that in Figure 1 but is more

peaked at the mode.

3.3 Bias in a discrete time model

As reviewed in Section 2, Hinkley (1970), Yao (1987) and Bai (1994) examined the

change-in-mean model in the discrete time context.2 Since the objective functions

are not differentiable with respect to k, it is very difficult to obtain the finite sam-

ple distribution in the discrete time model. Yao (1987) and Bai (1994) developed

2In Bai (1994), εt can be a linear process satisfying the summability condition. So Bai’s model
is more general than Hinkley (1970) and Yao (1987)
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Figure 3.4: The density of τ̂ML given in Equation (3.2.14) when τ0 = 0.4,0.5,0.6
(the left, middle and right panel respectively) and the signal-to-noise ratio (δ/σ ) is
4. In each panel, the verticle line represents the true value of τ0.
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Figure 3.5: The density of τ̂ML given in Equation (3.2.14) when τ0 = 0.4,0.5,0.6
(the left, middle and right panel respectively) and the signal-to-noise ratio (δ/σ ) is
6. In each panel, the verticle line represents the true value of τ0.
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Figure 3.6: The density of τ̂ML given in Equation (3.2.14) when τ0 = 0.4,0.5,0.6
(the left, middle and right panel respectively) and the signal-to-noise ratio (δ/σ ) is
8. In each panel, the verticle line represents the true value of τ0.

the large sample properties under the additional assumptions about the size of the

structural break δT . In this Section, we will study the finite sample properties and

the bias of τ̂ML and k̂ML in a discrete time model.

Let us start with the continuous time model specified in Equation (3.2.10). Split-

ting the interval [0,1] into 1/h subintervals so that each interval has a size of h, we

then get T = 1/h observations of the stochastic process X (·) at T equally spaced

points {th}T
t=1, and have the following exact discrete time representation:

Xth−X(t−1)h =


µh+

√
hεth if t = 1, · · · ,bτ0/hc ,

(µ +δ )h+
√

hεth if t = bτ0/hc+1, · · · ,T,
(3.3.1)

where εth ∼i.i.d.N(0,σ2), b·c is the integer-valued function. Considering that εth is

independent of h, we now write it as εt .

Letting Zt =
(
Xth−X(t−1)h

)
/
√

h, we obtain

Zt =


µ
√

h+ εt if t ≤ bτ0/hc ,

(µ +δ )
√

h+ εt if t > bτ0/hc .
(3.3.2)

Whenever h is fixed, the model in equation (3.3.2) is the same as the one in equation
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(3.2.1) with εt being assumed to follow N(0,σ2), k0 = bτ0/hc being the absolute

break point.

For the sequential limit distribution of Yao (1987) to be able to provide a good

approximation to the finite sample distribution, it is required that the sample size

T goes to infinity at a faster rate than that at which the squared structural break

size goes to zero. However, in Model (3.3.2), when h→ 0, the structural break

size δ
√

h goes to zero at the rate of 1/
√

T . Hence, the sample size T does not go

to infinity at a faster rate than that at which the squared structural break size goes

to zero. As a result, Yao’s limit distribution may not well approximate the finite

sample distribution in (3.3.2) when h is small.

The simultaneously double asymptotic distribution given in Bai (1994) is es-

sentially the same as the sequential limit distribution in Yao (1987). To derive the

double asymptotic distribution, Bai (1994) assumed that the magnitude of break

size goes to zero at a rate larger than
√

logT/
√

T . However in Model (3.3.2), when

h→ 0, δ
√

h = δ/
√

T = O
(
1/
√

T
)
. This may explain why Bai’s limit distribution

may not well approximate the finite sample distribution in (3.3.2) when h is small.

On the other hand, our exact finite sample distribution in Equation (3.2.14) can

be regarded as a good approximation to the finite sample distribution of the ML

estimator of the break point in model (3.3.1) when h is small. It is easy to find that

the ML estimator of the break point in model (3.3.1) is the same as the one in Model

(3.3.2). Therefore, the finite sample distribution in Equation (3.2.14) could well

approximate the finite sample distribution of τ̂ML in the discrete time model (3.3.2)

when h is small. In particular, we expect there is no bias in τ̂ML in the discrete time

model (3.3.2) when τ0 = 50%. However, we expect a upward (downward) bias in

τ̂ML in the discrete time model (3.3.2) when τ0 is smaller (larger) than 50%. Since

k̂ML = bτ̂MLTc, we expect the traditional estimator of the absolute break point k in

the discrete time model (3.3.2) is also asymmetric and has the bias in finite sample.

The bias in τ̂ML and k̂ML in the discrete time model will be discussed in detail in the

next section.
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Consider the special case when τ0 = 50%. Notice that the fraction of the sample

before and after the break is the same in this case. Also note that Equation (3.2.14)

can be written as

(
δ

σ

)2

(τ̂− τ0)
d
= arg max

u∈
[
− 1

2(
δ

σ )
2
, 1

2(
δ

σ )
2]W (u)− 1

2
|u|. (3.3.3)

This result is similar to the limit theory given by Equation (3.2.5). Given that δ

should be replaced by δ
√

h and T should be replaced by 1/h in (3.2.5), the left

hand side in the two equations are identical. The only difference is on the right

hand side. The finite sample theory in the continuous time model is the location of

the extremum over a finite interval which depends on the signal-to-noise ratio. The

limit distribution in the discrete time model is the location of the extremum over an

infinite interval. As a result, we expect the finite sample distribution be closer to

the limit distribution when the signal-to-noise ratio is large. This expectation can be

confirmed by the middle panels in Figure 3.2 - Figure 3.6.

3.4 Bias correction via indirect estimation

The indirect estimation is a simulation-based method, first introduced by Smith

(1993), Gourieroux et al. (1993), and Gallant and Tauchen (1996). This method

is particularly useful for estimating parameters of a model where the moments and

likelihood function of the model are difficult to calculate but the model is easy to

simulate. It uses an auxiliary model to capture aspects of the data upon which to

base the estimation. The parameters of the auxiliary model can be estimated using

either the observed data or data simulated from the true model. Indirect inference

chooses the parameters of the true model so that these two sets of parameter esti-

mates of the auxiliary model are as close as possible. Typically, one chooses the

auxiliary model that is amenable to estimate and approximate the true model well

at the same time.

Gourieroux et al. (1993) and Gallant and Tauchen (1996) established the asymp-
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totic properties of the indirect estimator, including consistency, asymptotic normal-

ity, and asymptotic efficiency. McKinnon and Smith (1997) and Gourieroux et al.

(2000) developed a particular indirect estimation procedure, where the auxiliary

model is chosen to be the true model in order to improve finite sample properties of

the original estimator. Arvanitis and Demos (2014) established primitive conditions

for finite sample properties of the indirect estimator and also introduced an iterative

procedure to further improve the performance of the indirect estimator. The indirect

estimation obtains the bias function by simulating from the true model and hence

the auxiliary model. In this section, we apply the indirect estimation procedure to

do bias correction in estimating τ and k, the fractional and the absolute structural

break point. It is important to obtain the bias function via simulations because, from

Equations (3.2.14) and (3.3.3), we know that the bias formula and the bias expan-

sion are too difficult to deal with explicitly. The same idea was used to estimate

continuous time models in Phillips and Yu (2009) and dynamic panel models in

Gourieroux et al. (2010).

The application of the indirect estimation procedure for estimating structural

break proceeds as follows. Given a parameter θ (either τ or k), we simulate data

ỹ(θ) = {ỹh
0, ỹ

h
1, . . . , ỹ

h
T} from the true model, such as, Equation (3.2.10) or (3.2.1),

where h = 1, ...,H, with H being the number of simulated paths. Note that T in

ỹ(θ) should be chosen as the same number of the actual data under analysis so that

the bias of the original estimator from the actual observations can be calibrated by

simulated data.

The indirect estimation method matches the estimator from the actual observa-

tions with the one estimated from the simulated data to obtain the indirect estima-

tor. To be specific, let QT (θ ;y) be the objective function of the original (biased)

estimation method applied to actual data (y) for estimating the parameter θ . The

corresponding extremum estimator θ̂ obtained is then denoted as

θ̂T = argmax
θ∈Θ

QT (θ ;y),
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and the corresponding estimator based on the hth simulated path for some fixed θ is

θ̃
h
T (θ) = argmax

θ∈Θ

QT (θ ;y(θ)),

where Θ is a compact parameter space.

The indirect estimator is then defined as

θ̂
IE
T,H = argmax

θ∈Θ

∥∥∥∥∥θ̂T −
1
H

H

∑
h=1

θ̃
h
T (θ)

∥∥∥∥∥ ,
for some distance measure ‖·‖. When H goes to infinity, it is expected that 1

H ∑
H
h=1 θ̃ h

T (θ)

p→ E(θ̃ h
T (θ)). Then the indirect estimator becomes

θ̂
IE
T = argmax

θ∈Θ

∥∥θ̂T −bT (θ)
∥∥

where bT (θ) = E(θ̃ h
T (θ) is the binding (or bias) function. If bT (θ) is invertible,

then the indirect estimator can be directly written as

θ̂
IE
T = b−1

T (θ̂T ).

To apply the indirect estimation to the observed data, we assume that the true

model is given either by the continuous time model given by (3.2.10) or the discrete

time model given by (3.2.1). At first, we employ the LS method of Bai (1994) or

the ML method to the actual data in order to obtain k̂T . Then the corresponding

estimator for the hth simulated path is k̃h
T (k) and the indirect estimation estimator is

k̂IE
T = argmax

k∈Θ

∥∥k̂T −bT (k)
∥∥ ,

where k̂T is the original estimator of k from the actual data that has T observations,

bT (k) is the binding function with the form

bT (k) = E(k̃h
T (k)),
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which, in practice, can be effectively replaced by 1
H ∑

H
h=1 k̃h

T (k) since H can be cho-

sen arbitrarily large. If the binding function is invertible, then

k̂IE
T = b−1

T
(
k̂T
)
. (3.4.1)

Based on k̂IE
T , we can define the indirect estimator of the fractional break point

as τ̂ IE
T = k̂IE

T /T . Let the corresponding binding function be bT (τ) = bT (k)/T . If

bT (k) is invertible, bT (τ) is also invertible. Hence,

τ̂
IE
T = b−1

T (τ̂T ) , (3.4.2)

where τ̂T is the original estimator of τ from the actual data.

Following the discussion of the finite sample property in Gourieroux et al. (2000)

and Phillips (2012), we impose the following assumption.

Assumption 1. The binding function bT (τ), mapping from (0,1) to bT (0,1), is

uniformly continuous and one-to-one.

Under Assumption 1, the binding function bT (·) is invertible. We have τ̂ IE
T is

“bT -mean-unbiased”, since

E
(
bT
(
τ̂

IE
T
))

= E (τ̂T ) = E(τ̃h
T (τ0)) = bT (τ0),

and

b−1
T
(
E
(
bT
(
τ̂

IE
T
)))

= τ0. (3.4.3)

By the same reason, k̂IE
T is also “bT -mean-unbiased”, i.e., b−1

T

(
E
(

bT

(
k̂IE

T

)))
=

k0.

Moreover, when bT (·) is linear, the indirect estimator of τ and k is exactly mean-

unbiased since, in (3.4.3), we have

b−1
T
(
E
(
bT (τ̂

IE
T )
))

= E
(
b−1

T
(
bT (τ̂

IE
T )
))

= E
(
τ̂

IE
T
)
= τ0,
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which is a especially appealing property in the practice when the binding function

is close to linear.

It is important to point out the indirect estimator shares the same consistency

property as the original estimator. Since only τ̂T is consistent, hence we can only

ensure the consistency of τ̂ IE
T but not k̂IE

T .

Regarding the efficiency, from Equation (3.4.2) and by the Delta method, we

have

Var(τ̂ IE
T )≈

(
∂bT (τ0)

∂τ

)−2

Var(τ̂T ). (3.4.4)

Hence, the efficiency loss (or gain) is measured by ∂bT (τ0)
∂τ

. If
∣∣∣∂bT (τ0)

∂τ

∣∣∣ < 1, τ̂ IE
T

has a bigger variance than τ̂T . However, if
∣∣∣∂bT (φ0)

∂φ

∣∣∣ > 1, τ̂ IE
T will have a small

variance than τ̂T . If the finite sample distribution developed in Section 2 suggests

that τ is over estimated when τ0 < 50% and is under estimated when τ0 > 50%,

the binding function is expected to be flatter than the 45 degrees line. As a result,

we expect some efficiency loss from the indirect estimation as the variance of the

indirect estimation will be larger than that of the original estimator.

3.5 Monte Carlo results

In this section, we design two Monte Carlo experiments to examine the bias in the

LS estimator of k in the discrete time model (3.2.1) and the ML estimator of τ in

the continuous time model (3.2.10), and to compare the finite sample performance

of the indirect estimator and the original estimators. When inverting the binding

function, following Phillips and Yu (2009), we choose a set of grid points for τ ,

namely, τ = [0.1,0.11, ...,0.89,0.9] and calculate bT (τ) for each τ via simulations.

We then use the standard linear interpolation and extrapolation methods to obtain

the binding functions in the domain [0,1].3

In the first experiment, data are generated from Model (3.2.10), with σ = 1,
3However, if the indirect estimator of τ takes a value outside of the interval [0,1] for one particular

replication, such a replication is discarded for both ML and the indirect estimation.
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Table 3.1: Monte Carlo comparison of the bias and RMSE of ML and Indirect
Estimates. The number of simulated path is set to be 10,000 for indirect estimation.
The number of replications is set at 10,000.

Case Bias Standard Error RMSE
δ

σ
τ0 ML IE ML IE ML IE

2 0.3 0.1337 0.0736 0.1408 0.2688 0.1942 0.2787
2 0.5 -0.0016 -0.0025 0.1268 0.2407 0.1268 0.2407
2 0.7 -0.1323 -0.0712 0.1400 0.2669 0.1926 0.2762
4 0.3 0.0518 0.0222 0.1543 0.1870 0.1628 0.1883
4 0.5 0.0021 0.0029 0.1511 0.1820 0.1511 0.1820
4 0.7 -0.0435 -0.0137 0.1479 0.1787 0.1542 0.1792
6 0.3 0.0118 0.0037 0.1100 0.1163 0.1106 0.1164
6 0.5 0.0004 -0.0003 0.1172 0.1228 0.1172 0.1228
6 0.7 -0.0104 -0.0027 0.1092 0.1156 0.1097 0.1156

δ = 2,4,6, τ0 = 30%,50%,70%, dB(t) ∼ iid N(0,h), where h = 1
1000 . For each

combination of δ and τ0, we obtain the ML estimator of τ from Equation (3.2.12)

and the indirect estimator. Our focus is to examine the finite sample properties of

τ̂ , so it is assumed that the structural break size δ and the standard deviation σ are

known during the simulation.

Table 3.1 reports the bias, the standard error, and the root mean squared errors

(RMSE) of the ML estimate and the indirect estimate of τ , obtained from 10,000

replications. Some observations can be obtained from the table. Firstly, when τ0 =

50%, the ML estimate does not have any noticeable bias in all cases. However,

when τ0 6= 50%, ML suffers from a bias problem. For example, when τ0 = 30%

and δ/σ = 2, the bias is 0.1337 and about 45% of the true value. This is very

substantial. In general, the bias becomes larger when τ0 is further away from 50%,

or when the signal-to-noise ratio gets smaller. To the best of our knowledge, such a

bias has not been discussed in the literature. Secondly, in all cases when τ0 6= 50%,

the indirect estimate substantially reduces the bias. For example, when δ

σ
= 2 and

τ0 = 70%, the indirect estimation method removes about half of the bias in ML.

Finally, the bias reduction by the indirect estimation method comes with a cost of

a higher variance, which causes the RMSE of the indirect estimate slightly higher

than its ML counterpart.
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In the second experiment, data are generated from Model (3.2.1), with σ = 1,

δ = 0.5,1, τ0 = 0.3,0.5,0.7, εt ∼ iid N(0,1), where we choose T = 50,80,100,120.

For each combination of δ , τ0 and T , we obtain the LS estimate of k based on

Equation (3.2.4) and the indirect estimate for each replication. As in the continuous

time model, it is assumed that the structural break size δ and the standard deviation

σ are known. The reason we focus on k is because k is a practically important

parameter to estimate.

Table 3.2 reports the bias, the standard error, and the root mean squared er-

rors (RMSE) of the ML estimate and the indirect estimator of k, obtained from

10,000 replications. We may draw the following conclusions from Table 3.2. First,

when τ0 = 50%, the LS estimate does not have any noticeable bias in all cases.

However, when τ0 6= 50%, LS suffers from a bias problem. For example, when

T = 50,τ0 = 30% and δ/σ = 0.5, the bias is nearly 9 while the true value of k is 15.

The bias is about 60% of the true value, which is very substantial. In general, the

bias becomes larger when τ0 is further away from 0.5 or when the signal-to-noise

ratio gets smaller. To the best of our knowledge, such a bias has not been discussed

in the literature. Secondly, in all cases when τ0 6= 50%, the indirect estimate sub-

stantially reduces the bias. For example, when T = 80, δ

σ
= 0.5 and τ0 = 30%,

the indirect estimation method removes more than half of the bias in ML. Finally,

the bias reduction by the indirect estimation method comes with a cost of a higher

variance, which causes the RMSE of the indirect estimate slightly higher than its

ML counterpart.

To understand why the indirect estimation increases the variance, we plot the

binding functions in these two models in Figure 3.7 and Figure 3.8, where we also

plot the 45 degrees line for the purpose of comparison. Figure 3.7 corresponds

to the continuous time model with δ = 2,4,6 and Figure 3.8 to the discrete time

model with T = 100, δ = 0.5,1. Several conclusions can be made. Firstly, the

binding functions always pass through the 45 degrees line at the middle point of τ ,

suggesting no bias when τ = 50% and that the bias becomes smaller when the true
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Table 3.2: Monte Carlo comparison of the bias and RMSE of LS and Indirect Es-
timates. The number of simulated path is set to be 10,000 for indirect estimation.
The number of replications is set at 10,000.

Case Bias Standard error RMSE
T δ

σ
τ0 k0 LS IE LS IE LS IE

50 0.5 0.3 15 8.9750 6.8050 3.7450 11.6250 9.7250 13.4703
50 0.5 0.5 25 0.0250 -0.0300 3.0950 9.3150 3.0951 9.3150
50 0.5 0.7 35 -8.8650 -6.4750 3.7400 12.0500 9.6216 13.6795
50 1 0.3 15 1.4150 -0.8200 5.0550 6.8500 5.2493 6.8989
50 1 0.5 25 -0.1050 -0.1500 4.5900 5.8700 4.5912 5.8719
50 1 0.7 35 -1.6450 0.4500 5.0950 6.9350 5.3540 6.9496
80 0.5 0.3 24 11.728 5.472 7.544 17.88 13.9448 18.6986
80 0.5 0.5 40 -0.016 -0.632 5.912 12.832 5.9120 12.8476
80 0.5 0.7 56 -12.088 -7.592 5.4432 18.256 13.2570 19.7717
80 1 0.3 24 0.936 -0.352 6.752 7.68 6.8166 7.6881
80 1 0.5 40 -0.008 -0.024 6.2 6.792 6.2000 6.7920
80 1 0.7 56 -0.944 0.208 6.976 7.976 7.0396 7.9787
100 0.5 0.3 30 12.83 4.36 10.66 23.20 16.6807 23.6061
100 0.5 0.5 50 0.35 0.26 8.02 15.13 8.0276 15.1322
100 0.5 0.7 70 -9.22 2.01 10.21 22.02 13.7569 22.1115
100 1 0.3 30 0.72 -0.11 7.28 7.79 7.3155 7.7908
100 1 0.5 50 0.06 0.02 6.49 6.80 6.4903 6.8000
100 1 0.7 70 -0.82 0.09 7.53 8.11 7.5745 8.1105
120 0.5 0.3 36 6.636 -4.724 14.724 24.3 16.1503 24.7549
120 0.5 0.5 60 -0.096 0.252 12.792 20.388 12.7924 20.3896
120 0.5 0.7 84 -6.936 3.816 14.82 24.66 16.3628 24.9535
120 1 0.3 36 0.588 -0.096 7.308 7.656 7.3316 7.6566
120 1 0.5 60 0 -0.024 6.756 6.984 6.7560 6.9840
120 1 0.7 84 -0.504 0.108 7.176 7.524 7.1937 7.5248
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Figure 3.7: Binding function of ML for the continuous time model when h = 0.001

Figure 3.8: Binding function of LS for the discrete time model when T = 100

break point gets close to the middle. Second, the binding functions monotonically

increase as τ or k increases, suggesting that the binding functions are invertible.

However, in all cases, the binding functions are flatter than the 45 degrees line,

explaining why the variance of the indirect estimate is larger than that of the ML

estimate. The smaller the signal-to-noise ratio, the flatter the binding function and

hence the bigger loss in efficiency. Third, the binding function is not exactly a

straight line. It is easy to see the nonlinearity near the two boundaries when δ =

0.5 in the discrete time model. Due to the presence of nonlinearity, the indirect

estimation procedure cannot completely remove the bias, although it is “bT -mean-

unbiased”.
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3.6 Conclusions

This paper is concerned about the finite sample properties in the estimation of struc-

tural break points. We find that the finite sample bias is substantial in many practi-

cally relevant situations. While the literature on structural break has focused the a

great deal of attention to develop asymptotic properties, the finite sample problem

has received no attention in this literature, to the best of our knowledge. We hope to

fill up this important gap in the literature.

In this paper we address the finite sample problem in several aspects. First we

derive the finite sample distribution of the structural break estimator in the con-

tinuous time model. We then establish its connection to the discrete time models

considered in the literature. It is shown that when the true break point is at the

middle of the sample, the finite sample distribution is symmetric but can have tri-

modality. However, when the true break point occurs earlier than the middle of the

sample, the finite sample distribution is skewed to the right and there is a positive

bias. When the true break point occurs later than the middle of the sample, the finite

sample distribution is skewed to the left and there is a negative bias.

To reduce the bias in finite sample, we obtain the binding functions via simula-

tions and then use the indirect estimation technique to estimate the break parameter.

Indirect estimation essentially inverts the binding function at the original estimator

obtained from the actual data. It inherits the asymptotic properties of the original

estimator but reduces the finite sample bias. Monte Carlo results show that the in-

direct estimation procedure is effective in reducing the bias of the traditional break

point estimators.

The models considered in this paper are very simply in nature. Also, the esti-

mators considered are based on the full sample. Real time (and hence subsample)

estimators tend to have more serious finite sample problems. Further studies on

developing the finite sample distribution for more realistic models and real time es-

timators are needed. How to extend the indirect estimation technique in a multiple
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parameter settings are also useful.
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Chapter 4 Panel kernel estimation of inte-

grated variance and the microstruc-

ture noise function

4.1 Introduction

The last two decades have witnessed substantial progress in the measurement of

price volatility in financial assets using ultra high frequency data. Much of the re-

search has concentrated on the empirical quadratic variation process, a quantity that

is now generally known as realized variance (RV) or volatitily. This empirical mea-

sure provides a natural estimate of the integrated variance (IV) of the underlying

stochastic price process. The method is nonparametric in nature because the quan-

tity is computed directly as the empirical quadratic variation of the data and it is

not necessary to impose any parametric assumptions on the dynamics of the true

efficient price process for the underlying asset.

A central difficulty in the estimation of IV using very high frequency observa-

tions is that such data are typically contaminated by the presence of market mi-

crostructure noise. Seeking to address this difficulty, many methods have been pro-

posed to estimate IV, taking account of the microstructure noise contamination. The

literature is now large and prominent examples are Zhang et al (2005, ZMA here-

after), Bandi and Russell (2008) and Bardnorff-Nielsen et al (2008, BHLS here-

after). Throughout this literature it has become common to employ specific para-

metric assumptions about the form of the microstructure noise. In most cases, the
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noise manifests in the form of a linear term involving the error variance, a form

that is justified in the case of pure noise contamination involving indepenendent

and identically distributed (IID) additive noise effects that are independent of the

true efficient price. It has been argued (e.g., Hansen and Lunde, 2006) that such

assumptions are too strong. By way of illustration, Phillips and Yu (2006) showed

that the pure noise assumption is incompatible with the so-called flat pricing phe-

nomenon, an empirical regularity that is widely observed in financial asset price

data at medium and ultra high frequencies.

The present paper explores a new mechanism for modeling, estimating and test-

ing the impact of microstructure noise contamination. The idea was originally sug-

gested in Phillips and Yu (2006), which provided some empirical evidence support-

ing the methodology. The approach relies on a functional panel model formulation

that represents noise effects through a fixed design nonparametric function, which

leads to a convenient and robust IV estimate and a procedure for testing linear and

other microstructure noise effects.

The paper contributes by extending the RV literature in several ways. First,

the approach leads to a new panel model formulation that pools data over differ-

ent trading days to enhance estimation of the microstructure process, while also

allowing for more general forms of noise contamination. The resulting estimate

is more efficient than time series estimates that only use data within a single trad-

ing day to adjust for noise. Second, the approach provides new machinery to test

the functional form of microstructure noise contamination. Such tests are useful in

assessing the nature and potential sources of this contamination because of their im-

plied functional form properties. Third, the paper contributes to the nonparametric

panel literature by estimating fixed design (trend) functions in the presence of het-

eroskedastic and serially correlated errors and by developing the asymptotic theory

for these nonparametric procedures.

The paper is organized as follows. Section 2 introduces the model framework

and proposes methods of estimation and inference. Section 3 develops the corre-
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sponding asymptotic theory for these estimators and tests. Section 4 concludes.

Proofs are given in the Appendix 2.

4.2 The framework and our approach

4.2.1 The model

Let p∗(t) be the logarithm of the true efficient price. Without loss of generality, we

assume p∗(t) follows a Brownian semimartingale,

d p∗(t) = σ(t)dB(t), (4.2.1)

where B(t) is a standard Brownian motion and σ(t) is a càdlàg volatility pro-

cess whose specification is nonparametric. We wish to estimate the quantity IV =∫ 1
0 σ2(t)dt, the IV of p∗(t) over a fixed time interval, say a single day. The quantity

IV is defined as the limit of the empirical quadratic variation

IV = plim∆→0

m

∑
i=1

[p∗i,m− p∗i−1,m]
2, (4.2.2)

where p∗i,m = p∗(ti,m), 0 = t0,m < t1,m < · · · < tm,m = 1 is a grid on [0,1], and ∆ =

supi |ti,m− ti−1,m| is the maximum grid size.

The observed sample component of (4.2.2) on the given grid is the empirical

quadratic variation and is called the realized variance, i.e.,

RV (m)(p∗) :=
m

∑
i=1

[p∗i,m− p∗i−1,m]
2.

It is known that as ∆→ 0 (and hence m→ ∞),

√
m
[
RV (m)(p∗)− IV

]
d→MN

(
0,2

∫ 1

0
σ

4(t)dt
)
, (4.2.3)

where MN represents mixed normality; see, for example, Barndorff-Nielsen and
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Shephard (2002).

Both the consistency and the asymptotic distribution of RV (m)(p∗) require that

p∗i,m be observed. At reasonably high frequencies, market microstructure creates

challenges for the immediate use of (4.2.2) and (4.2.3) in inference. To capture

market microstructure effects, it is frequently assumed that

p(t) = p∗(t)+u(t), (4.2.4)

where p(t) is the logarithm of the observed price and u(t) represents the influence

of microstructure noise.

Many studies assume that the noise process u(t) and the price process p∗(t) are

independent; and some research (e.g., Zhou, 1996, Bandi and Russell, 2008, ZMA,

2005) assumes a pure noise structure for u(t), so that u(t) is iid over discrete values

of t. Other studies (e.g. Hansen and Lunde, 2006 and Aı̈t-Sahalia, Mykland and

Zhang, 2005) assume that u(t) is covariance stationary.

A pure noise assumption substantially simplifies the estimation of IV. To see

this, suppose that u(t) iid∼ (0,ω2) over discrete t and u(t) is independent of p∗(t).

Then,

E
(

RV (m)(p)|{p∗(t)}1
0

)
= IV +2ω

2m, (4.2.5)

which leads to the following representation, with error εm,

RV (m)(p) = IV +2ω
2m+ εm. (4.2.6)

The second term in equation (4.2.5) clearly dominates as m→ ∞ and ∆→ 0. Thus,

in this model, RV (m)(p)/(2m)
p→ω2 and a consistent estimate of ω2 is RV (m)(p)/(2m).

Alternative time series techniques, such as the jackknife method of ZMA and the

realized kernel method of BHLS, have been proposed to estimate IV consistently.

The asymptotic distributions of these alternative estimates have also been obtained

under suitable regularity conditions.
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When there is no confusion, we simply write RVm = RV (m)(p). So Equation

(4.2.6) may be represented as

RVm = IV +2ω
2m+ εm. (4.2.7)

When u(t) is not iid or when u(t) and p∗(t) are dependent on each other, E
(

RVm|{p∗(t)}1
0

)
may not be a linear function in m. For instance, if u(ti) has long range depen-

dence with memory parameter 1+ d such that eit = (1−Li)
1+d u(ti) is stationary,

where Liu(ti) = u(ti−1), then ∑
m
i=1 [u(ti)−u(ti−1)]

2 = ∑
m
i=1

{
(1−Li)

−d eiti

}2
=

O
(
m1+d) . In such cases, it is useful to employ a more general functional rela-

tionship between RVm and m of the form

RVm = IV + f (m)+ εm, (4.2.8)

where the microstructure noise function f (m) may be linear or nonlinear. It is con-

venient in practical work to adopt an agnostic position about the source and nature

of the time series microstructure noise, leading the noise function f (m) nonpara-

metrically specified.

Following the suggestion in Phillips and Yu (2006), we pursue the idea of es-

timating IV and testing the microstructure noise function using equation (4.2.8).

Suppose RVm is available at m = n0, ...,nN . If f (m) is continuous and asymptot-

ically homogeneous of degree γ as m→ ∞, then we can represent (4.2.8) in the

form

RVm/nγ

N = IV/nγ

N + f (m/nN)+ εm/nγ

N ,m = n0, ...,nN . (4.2.9)

This model is closely related to the time-varying parameter model considered in

Robinson (1989),

yt = β
>(t/N)xt +σ(t/N)ut ,ut ∼ iid(0,1), t = 1, ...,N, (4.2.10a)

where the time varying design functions βt (:= β (t/N)) and σt (:= σ(t/N)) have
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support on [0,1]. Robinson proposed nonparametric estimators for βt and σt and

established consistency and asymptotic normality for the proposed estimators. He

also proposed a consistent estimator of the asymptotic covariance matrix of the

βt estimators. Model (4.2.9) has the additional complication that the scaled error

process εm/nγ

N will be serially correlated in general.

It may be reasonable to assume the random mechanism that generates the be-

havior of the microstructure noise has some stability over short time intervals, such

as a few days (say D). Accordingly, let d = 1, ...,D index these days and denote ydni

the RV calculated from a grid that contains ni intra-day returns for day d. Similarly,

let αd =
∫ 1

0 σ2
dtdt denote the IV for day d where σ2

dt is the diffusion function of the

true efficient price for day d. Since IV is a random variable it varies from day to

day.

Using the same setting as Phillips and Yu (2006), we formulate a nonparametric

noise function in the framework of a panel data model as

ydni = αd + f (ni)+ εdni,d = 1, ...,D, i = 1, ...,N, (4.2.11)

where αd is the fixed effect, and εdni is an induced error process that may be hetero-

geneous and serially correlated over ni. It is expected that both N→∞ and nN→∞,

so that dual asymptotics operate in the limit. Throughout the paper, we assume that

the maximum grid size goes to zero as nN → ∞.

The nonparametric panel data model (4.2.11) offers new opportunities for esti-

mating IV and testing the microstructure noise function. First, different from stan-

dard time series approaches, we pool together the information across different days,

leading to a more efficient estimate of IV when the microstructure noise function

is stable. Second, the new framework provides a simple but powerful way to test

the microstructure noise assumption. For example, a nonlinear microstructure noise

function f (m) is evidence against pure noise contamination of the efficient price.

The nonparametric panel model (4.2.11) is closely related to the panel data model
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considered Robinson (2012) and Zhang et al. (2012) where

ydi = αd + f (i/N)+ εdi, d = 1, ...,D, i = 1, ...,N,

and the εdi are unobservable zero-mean random variables, uncorrelated and ho-

moskedastic across i, but possibly correlated and heteroskedastic over d. Our model

has different features stemming from the panel construction, leading to an error pro-

cess may be heterogeneous and serially correlated over ni. Addressing these features

provides an extension of the nonparametric panel literature, giving a new estimate

for the trend function and developing the corresponding asymptotic theory.

It is reasonable to assume εdni has zero mean and its variance is O(ni). If f (ni)

is continuous and asymptotically homogeneous of degree γ as ni → ∞, The noise

function is then formulated in standardized form as

ydni

nγ

N
=

αd

nγ

N
+ f

(
ni

nN

)
+

εdni

nγ

N
, (4.2.12)

where the standardized errors εdni/nγ

N ∼ op(1) are heterogeneous and serially cor-

related over ni.

For the purpose of identification, it is assumed that

f
(

n0

nN

)
= 0, (4.2.13)

so that at some base level n0 for return calculations there is no microstructure noise

effect. Accordingly, Eq. (4.2.13) implies that the RV calculated under n0 observa-

tions yields an unbiased estimator because E
(
ydn0

)
= αd . Using Eq. (4.2.13), we

have
ydni− ydn0

nγ

N
= f

(
ni

nN

)
+

εdni− εdn0

nγ

N
. (4.2.14)

Averaging Eq. (4.2.14) across days leads to

ȳAni− ȳAn0

nγ

N
= f

(
ni

nN

)
+

ε̄Ani− ε̄An0

nγ

N
, (4.2.15)
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where

ȳAni =
1
D

D

∑
d=1

ydni, ε̄Ani =
1
D

D

∑
d=1

εdni.

Defining εdni/nγ

N =: σε

(
ni
nN

)
edni , Eq. (4.2.15) can be rewritten as

ȳAni− ȳAn0

nγ

N
= f

(
ni

nN

)
+σε

(
ni

nN

)
ēAni−σε(

n0

nN
)ēAn0. (4.2.16)

Denoting Yni =
ȳAni−ȳAn0

nγ

N
, σξ (

ni
nN
) = σε(

ni
nN
)/
√

D, and ξni =
√

DēAni =
1√
D ∑

D
d=1 edni ,

we have the following estimable model

Yni = f
(

ni

nN

)
+σξ

(
ni

nN

)
ξni, (4.2.17)

in which the term σε(
n0
nN
)ēAn0, which does not depend in ni, is absorbed into the

function f
(

ni
nN

)
.

4.2.2 A nonparametric estimator of the noise function

Let F(τ) = ( f (τ), f ′(τ))′ where f ′(τ) = ∂ f (τ)/∂τ. The local linear estimator of

F at τ is

F̂(τ) =
(

f̂ (τ), f̂ ′(τ)
)′
= argmax

a,b

N

∑
i=1

{
Yni−a−b

(
ni

nN
− τ

)}2

k

( ni
nN
− τ

h

)
.

(4.2.18)

where k(u) is a kernel function and h is a positive scalar bandwidth.

Let Wτ =diag
(

k
(

n1−τnN
nNh

)
, . . . ,k

(
nN−τnN

nNh

))
and

Y =


Yn1

...

YnN

 , Xτ =


1 n1

nN
− τ

...
...

1 nN
nN
− τ

 .

In the matrix form, F̂(τ) solves

min
F

(Y −XτF)′Wτ (Y −XτF) , (4.2.19)
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and the corresponding analytic form for f̂ (τ) is given by

f̂ (τ) = ι
′ (X ′τWτXτ

)−1 (X ′τWτY
)
, (4.2.20)

where ι = (1,0)′.

4.2.3 A new estimator of integrated variance

ZMA (2005) designed a jackknife method, based on two different time scales, to

estimate IV. Our proposed approach extends the jackknife method of ZMA allowing

for a wider class of microstructure noise and a nonparametric formulation of its

effects.

From Model (4.2.12), for the fast time scale, we have,

ydnN

nγ

N
=

αd

nγ

N
+ f (1)+

εdnN

nγ

N
. (4.2.21)

And for the slow time scale, we divide the whole sample into the K subsamples

and for each subsample, we have J (:= nN/K) observations. Therefore, for the kth

subsample, we have
yk

dJ
Jγ

=
αd

Jγ
+ f (1)+

εk
dJ

Jγ
, (4.2.22)

so that
1
K

K

∑
k=1

yk
dJ = αd + Jγ f (1)+

1
K

K

∑
k=1

ε
k
dJ.

So an estimator for IV is

α̂d =
1
K

K

∑
k=1

yk
dJ−

JγydnN

nγ

N

=

(
1− 1

Kγ

)
αd +

1
K

K

∑
k=1

ε
k
dJ−

JγεdnN

nγ

N

=

(
1− 1

Kγ

)
αd +

O(Jγ−δ )√
K

1√
K

K

∑
k=1

ek
dJ−

O(Jγ−δ )

Kδ
ednN

p→ αd.(4.2.23)

If J→ ∞, K → ∞, O(Jγ−δ )√
K

= o(1), O(Jγ−δ )

Kδ
= o(1), and 1√

K ∑
K
k=1 ek

dJ = Op(1). Un-
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der pure noise, we have γ = 1, δ = 1
2 so that O(Jγ−δ )√

K
= o(1), O(Jγ−δ )

Kδ
= o(1) and

1√
K ∑

K
k=1 ek

dJ = Op(1) when J
K → 0, which corresponds to ZMA (2005).

The above approach requires prior knowledge of γ . In practical applications,

we do not know γ unless parametric assumptions are made about the microstruc-

ture noise. We propose a feasible version to estimate αd without making a specific

assumption about the effect of microstructure noise. In particular, if f has the pa-

rameterized power function function form

f (x) = xγ f (1),

we have
Jγ

nγ

N
=

f ( J
nN
)

f (1)
,

so that a feasible estimate of IV is

α̂
f

d =
1
K

K

∑
k=1

yk
dJ−

f̂ ( J
nN
)ydnN

f̂ (1)
.

4.3 Asymptotic theory

Following Robinson (2012), we use the mean squared error (MSE) and mean inte-

grated error (MISE) to capture the goodness of fit of the nonparametric estimates.

Minimizing these measures leads to the optimal choice of bandwidth. Before devel-

oping the asymptotic theory, we make the following assumptions.

Assumption 1: The standardized microstructure noise function f (τ) is asymp-

totically homogeneous of degree γ > 1/2, twice continuously differentiable on [0,1]

and has bounded 3rd derivative on [0,1].

Assumption 2: The kernel functions, k(u) and k̃(u) have support on [−1,1], are

symmetric around zero, non-negative, continuously differentiable and satisfy

∫ 1

−1
k(u)du = 1,

∫ 1

−1
k̃(u)du = 1. (4.3.1)
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Assumption 3: As N→∞, h→ 0, h̃→ 0 and lim infn→∞ nNh4 > 0, lim infn→∞ nN h̃4 >

0 where h, h̃ are bandwidths used in the kernel function estimation.

Assumption 4: Assume

εdni

nγ

N
= σε

(
ni

nN

)
edni = σ

(
ni

nN

)
edni/nδ

N , (4.3.2)

where (1) δ > 0 and σ(τ) is nonnegative and twice continuously differentiable on

[0,1]; (2) E(edni)= 0, supiE|edni|β <∞ for some β > 2, E
(

e2
dni

)
= 1, E

(
eknieln j

)
=

0 for all i and j with k 6= l, and {edni}∞
i=1 is strictly stationary α-mixing with mixing

coefficients αm of size - β

β−2 , so that ∑
∞
m=1 α

1−2/β
m < ∞ for all d. By construction

and by Assumptions 3 and 4, we have (1) σξ (·) =
σ(·)

nδ
N
√

D
with δ > 0; (2) E(ξni) = 0,

supiE|ξni|β < ∞ for some β > 2, E(ξni)
2 = 1, and {ξni}∞

i=1 is strictly stationary

α−mixing with mixing coefficients αm of size - β

β−2 and ∑
∞
m=1 α

1−2/β
m < ∞.

Assumption 5: δ and h satisfy nδ−3/2
N h1/2D1/2 +nδ−1/2

N h5/2D1/2 = o(1).

Remark 1: Assumption 1 is needed to ensure Model (4.2.11) is compatible

upon transformation with Model (4.2.12) so that nonparametric estimation of f over

the interval [0,1] is consistent. In effect, the amount of local information about f

on [0,1] needs to increase at a suitable rate, so that variance and bias decrease to

achieve consistent estimation (c.f., Robinson, 1989).

Remark 2: To simplify the following development, we assume n0 < n1 < · · ·<

nN and that the associated grids are all equally spaced with ni+1−ni = g < ∞. The

assumption of equal spacing grids is not required for developing the consistency

and asymptotic normality of the estimated noise function. But it does facilitate

estimation of the covariances.

Theorem 1 Let f̂ (τ) be defined as in Equation (4.2.20). Under Assumptions 1,
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2, 3, 4, as N→ ∞, we have

MSE
{

f̂ (τ)
}
∼

h4 f ′′(τ)2
{∫ 1
−1 u2k(u)du

}2

4
+

σ2(τ)
∫ 1
−1 k2(u)du

n1+2δ

N hD

[
1+2

∞

∑
m=1

ρgm

]

+O
(

1
n2

N
+

h2

nN

)2

,

where ρgm = cov(eni,eni+gm).

Remark 3: The term O
(

1
n2

N
+ h2

n2
N

)2
arises from the nonparametric approxima-

tion error. The term is retained since the variance term has order of magnitude

O
(

1
n1+2δ

N h

)
, which may be smaller than the approximation error when δ is large.

As a result, to obtain asymptotic normality, we need the additional rate condition

on δ and h given in Assumption 5. Applying a central limit theorem for mixing

sequences, we obtain the asymptotic distribution for the nonparametric estimator

f̂ (τ) given in the following result.

Theorem 2 Under Assumptions 1, 2, 3, 4, 5 as N→ ∞, we have

n
1
2+δ

N h
1
2

[
f̂ (τ)− f (τ)−

h2 f ′′(τ)
∫ 1
−1 u2k(u)du
2

]
d→ N(0,V (τ)),

where

V (τ) =
σ2(τ)

∫ 1
−1 k2(u)du
D

[
1+2

∞

∑
m=1

ρgm

]
.

From Theorems 4.3 and 4.3 optimal bandwidth formulae are obtained as fol-

lows.

Theorem 3 Let Assumptions 1, 2, 3, 4, 5 hold. The optimal h that minimizes the

asymptotic MSE (AMSE) and MISE of f̂ is, respectively,

hAMSE(τ) =

σ2(τ)
∫ 1
−1 k2(u)du [1+2∑

∞
m=1 ρgm]

n1+2δ

N D f ′′(τ)2
{∫ 1
−1 u2k(u)du

}2


1
5

,
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hAMISE =


∫ 1

0 σ2(τ)dτ
∫ 1
−1 k2(u)du [1+2∑

∞
m=1 ρgm]

n1+2δ

N D
∫ 1

0 f ′′(τ)2dτ

{∫ 1
−1 u2k(u)du

}2


1
5

.

Hence, the optimal convergence rate of AMSE and AMISE is n
− 4

5 (1+2δ )
N , which

is faster than the usual nonparametric convergence rate n
− 4

5
N (see for example Cai,

2007).

To calculate confidence intervals, we need to find a consistent estimator for the

asymptotic variance of f̂ (τ), i.e., a consistent estimator for

Avar( f̂ (τ)) ∼
σ2(τ)

∫ 1
−1 k2(u)du

n1+2δ

N hD

[
1+2

∞

∑
m=1

ρgm

]

∼
σ2

ξ
(τ) [1+2∑

∞
m=1 ρgm]

∫ 1
−1 k2(u)du

nNh
. (4.3.3)

To do so, we first apply the method of Fan and Yao (1998) to estimate the variance

function σ2
ξ
(·) at the fixed point τ . Let Rni =

(
Yni− f ( ni

nN
)
)2

and E(Rni) = σ2
ξ
( ni

nN
).

Denote the squared residual by R̂ni =
(

Yni− f̂ ( ni
nN
)
)2

and let λ̂ , β̂ solve

argmax
λ ,β

N

∑
i=1

{
R̂ni−λ −β

(
ni

nN
− τ

)}2

k̃

( ni
nN
− τ

h̃

)
,

where k̃(·) is the kernel and h̃ is the relevant bandwidth. This leads to the local

linear estimator σ̂2
ξ
(τ) = λ̂ for σ2

ξ
(τ).

Theorem 4 Under assumptions 1, 2, 3, 4, 5 as N→ ∞

σ̂
2
ξ
(τ)−σ

2
ξ
(τ) = Op(

1

n1/2+2δ

N h̃1/2
+

h̃2

n2δ
N
)+op(

h2 + h̃2

nδ
N

).

To estimate ρgm, we apply the difference-based method proposed in Hart (1989,

1991). Define the centred second differences ∆ni = Yni+1 − 2Yni +Yni−1 , where i =

1, . . . ,N− 1. By assumption, f is twice continuously differentiable on a compact
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interval, so that

∆ni =
1

n2
N

f ′′(
ni

nN
){1+o(1)}+σξ (

ni

nN
)(ξni+1−2ξni +ξni−1)

+(σξ (
ni+1

nN
)−σξ (

ni

nN
))ξni+1 +(σξ (

ni−1

nN
)−σξ (

ni

nN
))ξni−11

= σξ (
ni

nN
)(ξni+1−2ξni +ξni−1)+Op

(
1

n1+δ

N

+
1

n2
N

)
,

which leads to

dni ≡ ξni+1−2ξni +ξni−1 =
∆ni

σξ (
ni
nN
)
+Op

(
1

nN
+

1

n2−δ

N

)
.

Let Sd and Sξ denote the spectra of the processes {dni} and {ξni}, respectively,

with i = 1, . . . ,N. Then Sd(ω) = |1− eigω |4Sξ (ω), where ω ∈ [−π,π]. Sξ can be

consistently estimated from dni , which, in turn, can be consistently estimated from

d̂ni =
∆ni

σ̂ξ (
ni
nN
)
,

where σ̂ξ (
ni
nN
) is the consistent estimator of σξ (

ni
nN
).

As in Hart (1989), we define the periodogram of a tapered d̂ni by

Îd(ω) =
1
Tn

∣∣∣∣∣N−1

∑
j=1

t(
n j

nN
)d̂n je

−iωg j

∣∣∣∣∣
2

,

where ω ∈ [−π,π], t(·) is a tapering function that vanishes at 0 and 1, and Tn =

2π ∑
N−1
j=1 t2(

n j
nN
). The estimator of ρgm is

ρ̂gm =
4π

N

bN
2 c

∑
j=bNκ

2π c
cos(ω jgm)|1− eigω j |−4Îd(ω j),

where κ is some small positive number and ω j =
2π j
N . When N → ∞, κ → 0, and

Nκ → ∞, Hart (1989) shows that ρ̂gm
p→ ρgm. With this consistent estimate of ρgm

we can employ a Newey-West type consistent estimator for σ2
ξ
(τ) [1+2∑

∞
m=1 ρgm],
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viz.,

σ̂
2
ξ
(τ)

[
1+2

M

∑
m=1

(
M−m

M

)
ρ̂gm

]
.

Remark 4: The reason for using a difference-based rather than residual-based

method is that from Theorem 1 f ( ni
nN
)− f̂ ( ni

nN
) = Op

(
h2 + 1

n
1
2+δ

N h
1
2

)
whereas the

order of σξ is 1
nδ

N
, which may lead to inconsistent estimation of ρgm. In particular, if

we use the residual-based method,

ξ̂ni =
Yni− f̂ ( ni

nN
)

σ̂ξ (
ni
nN
)

=
f ( ni

nN
)− f̂ ( ni

nN
)+σξ (

ni
nN
)ξni

σ̂ξ (
ni
nN
)

∼
f ( ni

nN
)− f̂ ( ni

nN
)

σξ (
ni
nN
)

+ξni

= Op

nδ
Nh2 +

1

n
1
2
Nh

1
2

+ξni.

The difference between ξ̂ni and ξni has order nδ
Nh2 +n

− 1
2

N h−
1
2 , which, depending on

δ and h, may not go to zero as N→ ∞.

Remark 5: In Hart (1989, 1991) only the stationary case is discussed. Our

application allows for a varying conditional variance.

As Altman (1990) and Hart (1991) illustrated, automated bandwidth selection

methods, such as cross validation, can perform poorly when dealing with posi-

tive correlated data. Following Rice (1984) and Hart (1991), we define the mean
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average-squared error (MASE) by

M(h) = E

[
1
N

N

∑
i=1

(
f̂ (

ni

nN
)− f (

ni

nN

)2
]

= E

[
1
N

N

∑
i=1

(
f̂ (

ni

nN
)−Yni +σξ (

ni

nN
)ξni

)2
]

= E

[
1
N

N

∑
i=1

(
f̂ (

ni

nN
)−Yni

)2
]
+

1
N

N

∑
i=1

σ
2
ξ
(

ni

nN
)

+
2
N

N

∑
i=1

E
[(

f̂ (
ni

nN
)−Yni

)
σξ (

ni

nN
)ξni

]
,

where the cross product term

E
[(

f̂ (
ni

nN
)−Yni

)
σξ (

ni

nN
)ξni

]
= E

[(
∑

N
j=1 ω j(

ni
nN
)
(
Yn j −Yni

)
σξ (

ni
nN
)ξni

∑
N
j=1 ω j(

ni
nN
)

)]

= E

∑
N
j=1 ω j(

ni
nN
)
(

σξ (
n j
nN
)ξn j −σξ (

ni
nN
)ξni

)
σξ (

ni
nN
)ξni

∑
N
j=1 ω j(

ni
nN
)


= E

[(
∑

N
j=1 ω j(

ni
nN
)σξ (

n j
nN
)σξ (

ni
nN
)ξn jξni

∑
N
j=1 ω j(

ni
nN
)

)]
−σ

2
ξ
(

ni

nN
)

=
∑

N
j=1 ω j(

ni
nN
)σξ (

n j
nN
)σξ (

ni
nN
)E
[
ξn jξni

]
∑

N
j=1 ω j(

ni
nN
)

−σ
2
ξ
(

ni

nN
)

=
∑

N
j=1 ω j(

ni
nN
)σξ (

n j
nN
)σξ (

ni
nN
)ρ|n j−ni|

∑
N
j=1 ω j(

ni
nN
)

−σ
2
ξ
(

ni

nN
).

As in the proof of Theorem 1, denote

ω j(
ni

nN
) = k(

n j−ni

nNh
)

(
S ni

nN
,2−S ni

nN
,1(

n j

nN
− ni

nN
)

)
,

and

S ni
nN

, j =
N

∑
i=1

k
(

n j−ni

nNh

)(
n j

nN
− ni

nN

) j

.
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Then,

M(h) = E

[
1
N

N

∑
i=1

(
f̂
(

ni

nN

)
−Yni

)2
]
− 1

N

N

∑
i=1

σ
2
ξ

(
ni

nN

)

+
2
N

N

∑
i=1

∑
N
j=1 ω j(

ni
nN
)σξ (

n j
nN
)σξ (

ni
nN
)ρ|n j−ni|

∑
N
j=1 ω j(

ni
nN
)

.

An unbiased estimator estimate of M(h) is therefore

1
N

N

∑
i=1

(
f̂
(

ni

nN

)
−Yni

)2

− 1
N

N

∑
i=1

σ
2
ξ

(
ni

nN

)
+

2
N

N

∑
i=1

∑
N
j=1 ω j(

ni
nN
)σξ (

n j
nN
)σξ (

ni
nN
)ρ|n j−ni|

∑
N
j=1 ω j(

ni
nN
)

,

which can be obtained by

M̂(h) =
1
N

RSS(h)− 1
N

N

∑
i=1

σ̂
2
ξ

(
ni

nN

)
+

2
N

N

∑
i=1

∑
N
j=1 ω j(

ni
nN
)σ̂ξ (

n j
nN
)σ̂ξ (

ni
nN
)ρ̂|n j−ni|

∑
N
j=1 ω j(

ni
nN
)

,

where

RSS(h) =
N

∑
i=1

(
f̂
(

ni

nN

)
−Yni

)2

.

The optimal h then minimizes the criterion M̂(h).

4.4 Conclusion

The presence of market microstructure noise imposes many challenges for the esti-

mation of integrated variance using high frequency financial data. Under pure noise,

the realized variance is a linear function of grid size, giving a linear microstructure

noise function that can be eliminated by suitable grid selection, thereby facilitating

the estimation of integrated variance. But when the pure noise assumption fails,

microstructure noise may produce nonlinear noise function effects on realized vari-

ance and different methods are needed to eliminate noise effects. To accommodate

such microstructure noise, this paper develops new methods that allow for a non-

parametric specification within a panel model context that utilizes daily information

over different trading days to assist the estimation of the microstructure noise im-
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pact, to test the form of the microstructure noise effects, and to estimate integrated

variance in the presence of general microstructure noise. The approach accommo-

dates nonparametric functional forms for the mean and the variance. Consistency

and asymptotic normality are established under strong mixing conditions and a data-

determined approach to bandwidth selection is suggested.
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Chapter 5 Summary of Conclusions

Chapter 2 provides a new methodology for constructing real estate price indices.

The proposed new model enjoys some advantages of the standard hedonic method

as it uses both single-sales and repeat-sales data but it is less prone to specification

bias than the standard hedonic model. Moreover, it generalizes the attractive feature

of the repeat-sales method by creating sale pairs within the individual building level,

thereby increasing the number of observations used in the index. The model is also

easy to estimate, since this approach uses GLS estimation and is computationally

efficient with large datasets. Other methods have been suggested to construct sale

pairs in the literature – see, for example, McMillen (2012), and Guo et al (2014).

Our matching rule is simpler to implement and has the advantage of a semiparamet-

ric nature.

We apply our estimation procedure to the real estate market for private residen-

tial dwellings in Singapore and examine the model’s out-of-sample predictive per-

formance in comparison with indices produced using the repeat-sales methodology

of Case and Shiller (1987, 1989) and the standard hedonic method. The findings re-

veal that, compared with these alternative methodologies, our method has superior

performance out-of-sample.

The recursive detection method of Phillips, Shi and Yu (2015a, 2015b) is applied

to each of the indices to locate episodes of real estate price exuberance in Singapore.

While for all three indices PSY identifies the same bubble, the bubble origination

date in the new index comes two quarters earlier than that in the other two indices.

Although all three indices grew during 2009 - 2013, the expansion is not explo-

sive, indicating that the ten recent rounds of cooling measure intervention in the
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real estate market conducted by the Singapore government have been successful in

controlling prices.

Chapter 3 investigates the finite sample problem in the estimation of structural

break points in several aspects. First we derive the finite sample distribution of

the structural break estimator in the continuous time model. We then establish its

connection to the discrete time models considered in the literature. It is shown

that when the true break point is at the middle of the sample, the finite sample

distribution is symmetric but can have tri-modality. However, when the true break

point occurs earlier than the middle of the sample, the finite sample distribution is

skewed to the right and there is a positive bias. When the true break point occurs

later than the middle of the sample, the finite sample distribution is skewed to the

left and there is a negative bias.

To reduce the bias in finite sample, we obtain the binding functions via simula-

tions and then use the indirect estimation technique to estimate the break parameter.

Monte Carlo results show that the indirect estimation procedure is effective in reduc-

ing the bias of the traditional break point estimators. But the variance of the indirect

estimator is larger than that of the original estimator, since the binding function has

a slope less than one.

Chapter 4 examines the estimation of integrated variance and the microstructure

noise function using high frequency data. The presence of market microstructure

noise imposes many challenges for the estimation of integrated variance using high

frequency financial data. Under pure noise, the realized variance is a linear function

of grid size, giving a linear microstructure noise function that can be eliminated

by suitable grid selection, thereby facilitating the estimation of integrated variance.

But when the pure noise assumption fails, microstructure noise may produce non-

linear noise function effects on realized variance and different methods are needed

to eliminate noise effects. To accommodate such microstructure noise, this chapter

develops new methods that allow for a nonparametric specification within a panel

model context that utilizes daily information over different trading days to assist the
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estimation of the microstructure noise impact, to test the form of the microstruc-

ture noise effects, and to estimate integrated variance in the presence of general

microstructure noise. The approach accommodates nonparametric functional forms

for the mean and the variance. Consistency and asymptotic normality are estab-

lished under strong mixing conditions and a data-determined approach to bandwidth

selection is suggested.
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Appendix

.1 Date and the content of recent real estate market

cooling measures introduced in Singapore

1. 2009/9/14

• Reinstatement of the confirmed list for the 1st half 2010 government

land sales programme.

• Removal of the interest absorption scheme and interest-only housing

loans.

• Non-extension of the January 2009 budget assistance measures for the

property market.

2. 2010/2/20

• Introduction of a Seller’s Stamp Duty (SSD) on all residential properties

and lands sold within one year of purchase.

• Loan-to-Value (LTV) limit lowered from 90% to 80% for all housing

loans.

3. 2010/8/30

• Holding period for imposition of SSD increased from one year to three

years.
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• Minimum cash payment increased from 5% to 10% and the LTV limit

decreased to 70% for buyers with one or more outstanding housing

loans.

• The extended SSD does not affect HDB lessees as the required Mini-

mum Occupation Period for HDB flats is at least 3 years.

4. 2011/1/14

• Increase the holding period for imposition of SSD from three years to

four years.

• Raise SSD rates to 16%, 12%, 8% and 4% for residential properties sold

in the first, second, third and fourth year of purchase respectively.

• Lower the LTV limit to 50% on housing loans for property purchasers

who are not individuals.

• Lower the LTV limit on housing loans from 70% to 60% for second

property.

5. 2011/12/8

• Introduction of an Additional Buyer’s Stamp Duty (ABSD).

• Developers purchasing more than four residential units and following

through on intention to develop residential properties for sale would be

waived ABSD.

6. 2012/10/6

• Mortgage tenures capped at a maximum of 35 years.

• For loans longer than 30 years or for loans that extend beyond retirement

age of 65 years: LTV lowered to 60% for first mortgage and to 40% for

second and subsequent mortgages.

• LTV for non-individuals lowered to 40.%
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7. 2013/1/12

• Higher ABSD rates.

• Decrease the LTV limit for second/third loan to 50/40% from 60%; non-

individuals’ LTV to 20% from 40.%

• Mortgage Servicing Ratio (MSR) for HDB loans now capped at 35%

of gross monthly income (from 40%); MSR for loans from financial

institutions capped at 30.%

8. 2013/6/28: Introduction of Total Debt Servicing Ratio (TDSR). The total

monthly repayments of debt obligations should not exceed 60% of gross

monthly income.

9. 2013/8/27

• Singapore Permanent Resident (SPR) Households need to wait three

years, before they can buy a resale HDB flat.

• Maximum tenure for HDB housing loans is reduced to 25 years. The

MSR limit is reduced to 30% of the borrower’s gross monthly income.

• Maximum tenure of new housing loans and re-financing facilities for

the purchase of HDB flats is reduced to 30 years. New loans with tenure

exceeding 25 years and up to 30 years will be subject to tighter LTV

limits.

10. 2013/12/9

• Reduction of cancellation fees From 20% to 5% for executive condo-

miniums.

• Resale levy for second-timer applicants.

• Revision of mortgage loan terms. Decrease MSR from 60% to 30% of

a borrower’s gross monthly income.
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.2 Proofs in chapter 4

.2.1 Proof of theorem 1
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where ζi is between ni
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2 ∼ 1
n2

Nh2

N

∑
i=1

N

∑
j=1

k
(

ni−nNτ

nNh

)
k
(

n j−nNτ

nNh

)
σ

(
ni

nN

)
σ

(
n j

nN

)
E(ξniξn j)

=
1

n2
Nh2

N

∑
i=1

N

∑
j=1

k
(

ni−nNτ

nNh

)
k
(

n j−nNτ

nNh

)
σ

2
(

ni

nN

)
E(ξniξn j)

+
1

n2
Nh2

N

∑
i=1

N

∑
j=1

{
k
(

ni−nNτ

nNh

)
k
(

n j−nNτ

nNh

)
σ

(
ni

nN

)

×
[

σ

(
ni

nN

)
−σ

(
ni

nN

)]
E(ξniξn j)

}
= A+H,

where

A =
1

n2
Nh2

N

∑
i=1

k
(

ni−nNτ

nNh

)2

σ
2
(

ni

nN

)
E(ξ 2

ni
)

+
2

n2
Nh2

N

∑
i=1

N

∑
j>i

k
(

ni−nNτ

nNh

)
k
(

n j−nNτ

nNh

)
σ

2
(

ni

nN

)
E(ξniξn j)

= A1 +A2.

Since E(ξ 2
ni
) = 1 by Assumption 4, we have

A1 =
1

n2
Nh2

N

∑
i=1

k(
ni−nNτ

nNh
)2

σ
2
(

ni

nN

)
∼ 1

nNh

∫ 1

−1
k2(u)σ2(τ +hu)du∼ σ2(τ)

nNh

∫ 1

−1
k2(u)du. (.2.11)

For A2, as in Robinson (1991) and Cai (2007), we define a sequence {bi}∞
i=1

such that bN → ∞ with bN
nNh → 0 as N→ ∞.
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Then,

A2 ∼
2

n2
Nh2

N−1

∑
i=1

∑
1≤ j−i≤bbN/gc

k
(

ni−nNτ

nNh

)
k
(

n j−nNτ

nNh

)
σ

2
(

ni

nN

)
E(ξniξn j)

+
2

n2
Nh2

N−1

∑
i=1

∑
j−i>bbN/gc

k
(

ni−nNτ

nNh

)
k
(

n j−nNτ

nNh

)
σ

2
(

ni

nN

)
E(ξniξn j)

= A21 +A22,

where, by the mixing inequality, |E(ξniξn j)| ≤Cα
1−2/β

|n j−ni| , we have

|A22| ≤
2

n2
Nh2

N−1

∑
i=1

∑
j−i>bbN/gc

k
(

ni−nNτ

nNh

)
k
(

n j−nNτ

nNh

)
σ

2
(

ni

nN

)
Cα

1−2/β

(n j−ni)

≤ 2C
n2

Nh2

N−1

∑
i=1

k
(

ni−nNτ

nNh

)
∑

m>bbN/gc
α

1−2/β

|m| ∼ o
(

1
nNh

)
,

where the last inequality is from the mixing condition that ∑
∞
m=1 α

1− 2
β

m < ∞ and the

boundness of k and σ .

Denote

A21 ∼
2

n2
Nh2

N−1

∑
i=1

∑
1≤ j−i≤bbN/gc

k2
(

ni−nNτ

nNh

)
σ

2
(

ni

nN

)
E(ξniξn j)

+
2

n2
Nh2

N−1

∑
i=1

∑
1≤ j−i≤bbN/gc

{
k
(

ni−nNτ

nNh

)
σ

2
(

ni

nN

)

×
[

k(
n j−nNτ

nNh
)− k(

ni−nNτ

nNh
)

]
E(ξniξn j)

}
= Aa

21 +Ab
21,
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where

|Ab
21| ≤

2
n2

Nh2

N−1

∑
i=1

∑
1≤ j−i≤bbN/gc

{
k
(

ni−nNτ

nNh

)
σ

2
(

ni

nN

)

×
∣∣∣∣k(n j−nNτ

nNh

)
− k
(

ni−nNτ

nNh

)∣∣∣∣ |E(ξniξn j)|

}

≤ C
n2

Nh2

N−1

∑
i=1

bbN/gc

∑
m=1

k
(

ni−nNτ

nNh

)
σ

2
(

ni

nN

)∣∣∣∣ m
nNh

∣∣∣∣α1−2/β
m

≤ C
n2

Nh2

N−1

∑
i=1

k
(

ni−nNτ

nNh

)
σ

2
(

ni

nN

) bbN/gc

∑
m=1

α
1−2/β
m

∣∣∣∣bbN/gc
nNh

∣∣∣∣
∼ C

nNh

∫ 1

−1
k(u)σ2(τ +uh)du

bbN/gc

∑
m=1

α
1−2/β
m

∣∣∣∣bbN/gc
nNh

∣∣∣∣∼ o(
1

nNh
),

since ∑
∞
m=1 α

1−2/β
m < ∞ and bbN/gc/(nNh)→ 0.

Meanwhile,

Aa
21 =

2
n2

Nh2

N−1

∑
i=1

∑
1≤ j−i≤bbN/gc

k2(
ni−nNτ

nNh
)σ2

(
ni

nN

)
E(ξniξn j)

=
2

n2
Nh2

N−1

∑
i=1

bbN/gc

∑
m=1

k2(
ni−nNτ

nNh
)σ2

(
ni

nN

)
ρgm

=
2

n2
Nh2

N−1

∑
i=1

k2(
ni−nNτ

nNh
)σ2

(
ni

nN

) bbN/gc

∑
m=1

ρgm

=
2

nNh

∫ 1

−1
k2(u)σ2(τ +uh)du

bbN/gc

∑
m=1

ρgm

∼
2σ2(τ)∑

∞
m=1 ρgm

∫ 1
−1 k2(u)du

nNh
+o
(

1
nNh

)
. (.2.12)

In sum, by (.2.11) and (.2.12),

A∼
σ2(τ)

∫ 1
−1 k2(u)du
nNh

[
1+2

∞

∑
m=1

ρgm

]
+o
(

1
nNh

)
.
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Furthermore,

|H| ≤ 1
n2

Nh2

N

∑
i=1

N

∑
j=1

k
(

ni−nNτ

nNh

){
k
(

n j−nNτ

nNh

)
σ

(
ni

nN

)

×
∣∣∣∣σ( n j

nN

)
−σ

(
ni

nN

)∣∣∣∣ |E(ξniξn j)|

}
(.2.13)

≤ C
n2

Nh2

N

∑
i=1

N

∑
j=1

k
(

ni−nNτ

nNh

)
k
(

n j−nNτ

nNh

)
σ

(
ni

nN

)∣∣∣∣ n j

nN
− ni

nN

∣∣∣∣α1−2/β

|n j−ni|

≤ C
n2

Nh2

N

∑
i=1

N

∑
j=1

k
(

ni−nNτ

nNh

){
k
(

n j−nNτ

nNh

)
σ

(
ni

nN

)

×
[∣∣∣∣ n j

nN
− τ

∣∣∣∣+ ∣∣∣∣ ni

nN
− τ

∣∣∣∣]α
1−2/β

|n j−ni|

}

≤ 2hC
n2

Nh2

N

∑
i=1

N

∑
j=1

k
(

ni−nNτ

nNh

)
k
(

n j−nNτ

nNh

)
σ

(
ni

nN

)
α

1−2/β

|n j−ni| (.2.14)

≤ 2hC
n2

Nh2

N

∑
i=1

N

∑
j=1

k
(

ni−nNτ

nNh

)
σ

(
ni

nN

)
α

1−2/β

|n j−ni| ∼ o
(

1
nNh

)
,

where the inequality (.2.14) is due to Assumption 2. To have non-zero kernel

weights, −1 ≤ ni−nNτ

nNh ≤ 1, which implies that
∣∣∣ ni

nN
− τ

∣∣∣ ≤ h. The last inequality

is from the boundness of k and σ .

Thus,

E(V1)
2 ∼

σ2(τ)
∫ 1
−1 k2(u)du

n1+2δ

N hD

[
1+2

∞

∑
m=1

ρgm

]
+o

(
1

n1+2δ

N h

)
. (.2.15)

Finally, by (.2.8), (.2.9) and (.2.15),

var

{
f̂ (τ)− f (τ)−

h2 f ′′(τ)
∫ 1
−1 u2k(u)du
2

}
∼

σ2(τ)
∫ 1
−1 k2(u)du

n1+2δ

N hD

[
1+2

∞

∑
m=1

ρgm

]
,

so that we have

MSE
{

f̂ (τ)
}

=
h4 f ′′(τ)2

{∫ 1
−1 u2k(u)du

}2

4
+

σ2(τ)
∫ 1
−1 k2(u)du

n1+2δ

N hD

[
1+2

∞

∑
m=1

ρgm

]

+O
(

1
n2

N
+

h2

nN

)2

.
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Q.E.D.

.2.2 Proof of theorem 2

From (.2.8), (.2.9), (.2.10) and (.2.15), we have

n
1
2+δ

N h
1
2

[
f̂ (τ)− f (τ)−

h2 f ′′(τ)
∫ 1
−1 u2k(u)du
2

]
∼ 1√

nNh

N

∑
i=1

k
(

ni−nNτ

nNh

)
σ

(
ni

nN

)
ξni.

Note that k has a compact support [−1,1] and I denotes the set of observations

with non-zero weights and #I = O(nNh), where #I represents the cardinality. So,

1√
nNh

N

∑
i=1

k
(

ni−nNτ

nNh

)
σ

(
ni

nN

)
ξni =

1√
nNh ∑

ni∈I
k
(

ni−nNτ

nNh

)
σ

(
ni

nN

)
ξni

=

√
#I√

nNh
1√
#I ∑

ni∈I
k
(

ni−nNτ

nNh

)
σ

(
ni

nN

)
ξni.

Denote Zni = k
(

ni−nNτ

nNh

)
σ

(
ni
nN

)
ξni , we have E(Zni) = 0 and

σ̄
2
N = var

[
1√
#I ∑

ni∈I
Zni

]

= var

[√
nNh√
#I

1√
nNh

N

∑
i=1

k
(

ni−nNτ

nNh

)
σ

(
ni

nN

)
ξni

]

=
nNh
#I

var

[
1√
nNh

N

∑
i=1

k
(

ni−nNτ

nNh

)
σ

(
ni

nN

)
ξni

]

∼
σ2(τ)

∫ 1
−1 k2(u)du
CD

[
1+2

∞

∑
m=1

ρgm

]
, (.2.16)

where C is the limit of #I
nNh and the last step is from the proof of Theorem 1.

Also, for some β > 2,

E|Zni|
β = E

∣∣∣∣k(ni−nNτ

nNh
)σ(

ni

nN
)ξni

∣∣∣∣β
≤ CE |ξni|

β ≤C sup
i
E |ξni|

β < ∞, (.2.17)

where the first inequality is from the boundness of k and σ and the last inequality is
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due to Assumption 4.

By Theorem 5.20 of White (2001), (.2.16) and (.2.17) lead to

1√
#I ∑

ni∈I
Zni

d→ N(0, σ̄2
N),

which implies

1√
nNh

N

∑
i=1

k
(

ni−nNτ

nNh

)
σ

(
ni

nN

)
ξni

d→
√

CN(0, σ̄2
N) = N(0,V (τ)),

where

V (τ) =
σ2(τ)

∫ 1
−1 k2(u)du
D

[
1+2

∞

∑
m=1

ρgm

]
.

Q.E.D.

.2.3 Proof of theorem 4

From the proof of Theorem 1, we know that

σ̂
2
ξ
(τ) =

∑
N
i=1 wiR̂ni

∑
N
i=1 wi

, (.2.18)

where

wi = k̃(
ni−nNτ

nN h̃
)

(
S̃τ,2− S̃τ,1(

ni

nN
− τ)

)
,

and

S̃τ, j =
N

∑
i=1

k̃
(

ni− τnN

nN h̃

)
(

ni

nN
− τ) j.
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From (.2.18),

σ̂
2
ξ
(τ)−σ

2
ξ
(τ) =

∑
N
i=1 wi

(
R̂ni−σ2

ξ
(τ)
)

∑
N
i=1 wi

=
∑

N
i=1 wi

(
(Rni−σ2

ξ
(τ))+(R̂ni−Rn)

)
∑

N
i=1 wi

=
∑

N
i=1 wi

[(
σ2

ξ
( ni

nN
)ξ 2

ni
−σ2

ξ
( ni

nN
)
)
+
(

σ2
ξ
( ni

nN
)−σ2

ξ
(τ)
)
+(R̂ni−Rn)

]
∑

N
i=1 wi

= I1 + I2 + I3,

where

I1 =
∑

N
i=1 wi

(
σ2

ξ
( ni

nN
)ξ 2

ni
−σ2

ξ
( ni

nN
)
)

∑
N
i=1 wi

,

I2 =
∑

N
i=1 wi

(
σ2

ξ
( ni

nN
)−σ2

ξ
(τ)
)

∑
N
i=1 wi

,

I3 =
∑

N
i=1 wi

(
R̂ni−Rni

)
∑

N
i=1 wi

.

Note that, from the proof of Theorem 1 and by Assumption 4

I1 =
∑

N
i=1 wi

(
σ2

ξ
( ni

nN
)
(
ξ 2

ni
−1
))

∑
N
i=1 wi

=
∑

N
i=1 k̃(ni−nNτ

nN h̃
)
(

S̃τ,2− S̃τ,1(
ni
nN
− τ)

)(
σ2

ξ
( ni

nN
)
(
ξ 2

ni
−1
))(

S̃τ,0S̃τ,2− S̃2
τ,1

)
∼ 1

nN h̃

N

∑
i=1

k̃(
ni−nNτ

nN h̃
)

(
σ

2
ξ
(

ni

nN
)
(
ξ

2
ni
−1
))

=

1√
nN h̃

1√
nN h̃

∑
N
i=1 k̃(ni−nNτ

nN h̃
)
(

σ2( ni
nN
)
(
ξ 2

ni
−1
))

n2δ
N

.

As in the proof of Theorem 2, denote Zni = k̃(ni−nNτ

nN h̃
)
(

σ2( ni
nN
)
(
ξ 2

ni
−1
))

, E(Zni)=

0. If Var
(

1√
nN h̃

∑
N
i=1 Zni

)
= 0, I1 = op(

1
n1/2+2δ

N h̃1/2
). If Var

(
1√
nN h̃

∑
N
i=1 Zni

)
> 0,

for some β > 2,
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E|Zni|
β = E

∣∣∣∣k̃(ni−nNτ

nN h̃
)

(
σ

2(
ni

nN
)
(
ξ

2
ni
−1
))∣∣∣∣β

≤ CE
∣∣ξ 2

ni
−1
∣∣β

≤ C2β−1(E
∣∣ξ 2

ni

∣∣β +1)

≤ C sup
i
E
∣∣ξ 2

ni

∣∣β
< ∞.

Thus, as in the proof of Theorem 2, by theorem 5.20 in White (2001), we have

I1 = Op(
1

n1/2+2δ

N h̃1/2
).

In sum, we have

I1 = Op(
1

n1/2+2δ

N h̃1/2
), (.2.19)
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and

I2 =
∑

N
i=1 wi

(
σ2

ξ
( ni

nN
)−σ2

ξ
(τ)
)

∑
N
i=1 wi

,

=
∑

N
i=1 wi

(
σ2( ni

nN
)−σ2(τ)

)
n2δ

N ∑
N
i=1 wi

=
∑

N
i=1 wi

(
σ2(τ)+2σ ′(τ)( ni

nN
− τ)+σ ′′(ηi)(

ni
nN
− τ)2−σ2(τ)

)
n2δ

N ∑
N
i=1 wi

(.2.20)

=
∑

N
i=1 wi

(
σ ′′(ηi)(

ni
nN
− τ)2

)
n2δ

N ∑
N
i=1 wi

(.2.21)

≤
C ∑

N
i=1 wi(

ni
nN
− τ)2

n2δ
N ∑

N
i=1 wi

(.2.22)

=
C ∑

N
i=1 k̃(ni−nNτ

nN h̃
)
(

S̃τ,2− S̃τ,1(
ni
nN
− τ)

)
( ni

nN
− τ)2

n2δ
N

(
S̃τ,0S̃τ,2− S̃2

τ,1

)
∼

C ∑
N
i=1 k̃(ni−nNτ

nN h̃
)( ni

nN
− τ)2S̃τ,2

n2δ
N

(
S̃τ,0S̃τ,2− S̃2

τ,1

)
= O(

h̃2

n2δ
N
), (.2.23)

where (.2.20) is obtained by the Taylor expansion, (.2.21) is from ∑
N
i=1 wi(

ni
nN
−τ) =

0 and (.2.22) is from the boundness of σ ′′(·).

Further, by the definition of R̂ni and Rni ,

I3 =

∑
N
i=1 wi

[
2
(

f ( ni
nN
)− f̂ ( ni

nN
)
)

σξ (
ni
nN
)ξni +

(
f ( ni

nN
)− f̂ ( ni

nN
)
)2
]

∑
N
i=1 wi

= I31 + I32,

where,
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I31 =
2∑

N
i=1 wi

(
f ( ni

nN
)− f̂ ( ni

nN
)
)

σξ (
ni
nN
)ξni

∑
N
i=1 wi

=
2∑

N
i=1 wi

(
f ( ni

nN
)− f̂ ( ni

nN
)
)

σ( ni
nN
)ξni

nδ
N ∑

N
i=1 wi

= op(
h2 + h̃2

nδ
N

), (.2.24)

where the last equality is from the proof of Theorem 1 in Fan and Yao (1998).

Similarly, from the proof of Theorem 1 in Fan and Yao (1998), we have

I32 = op

(
h2 + h̃2

nδ
N

)
. (.2.25)

Hence, from (.2.19), (.2.23), (.2.24) and (.2.25),

σ̂
2
ξ
(τ)−σ

2
ξ
(τ) = Op

(
1

n1/2+2δ

N h̃1/2
+

h̃2

n2δ
N

)
+op

(
h2 + h̃2

nδ
N

)
.

Q.E.D
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