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Abstract

This dissertation develops several econometric techniques to address the unobserved

heterogeneity in nonstationary panels, namely identifying latent group structures in coin-

tegrated panels, studying nonstationary panels with both cross-sectional dependence and

latent group structures, and estimating panel error-correction model with unobserved dy-

namic common factors.

Chapter 1 considers a panel cointegration model with latent group structures that al-

lows for heterogeneous long-run relations across groups. We extend Su et al. (2013)

classifier-Lasso (C-Lasso) method to the nonstationary panels and allow for the presence

of endogeneity in both the stationary and nonstationary regressors in the model. In ad-

dition, we allow the dimension of the stationary regressors to diverge with the sample

size. We show that we can identify the individuals’ group membership and estimate the

group-specific long-run cointegrated relationships simultaneously. We demonstrate the

desirable property of uniform classification consistency and the oracle properties of both

the C-Lasso estimators and their post-Lasso versions. The special case of dynamic penal-

ized least squares is also studied. Simulations show superb finite sample performance in

both classification and estimation. In an empirical application, we study the potential het-

erogeneous behavior in testing the validity of long-run PPP hypothesis in the post-Bretton

Woods period from 1975-2014 covering 99 countries. We identify two groups in the pe-

riod 1975-1998 and three ones in the period 1999-2014. The results confirm that at least

some countries favor the long-run PPP hypothesis in the post-Bretton Woods period.

Chapter 2 proposes a novel approach, based on Lasso, to handle unobserved parameter

heterogeneity and cross-sectional dependence in nonstationary panel models. We propose

a penalized principal component method to jointly estimate group-specific long-run rela-

tionships, unobserved common factors and to identify unknown group membership. Our

Lasso-type estimators are consistent and efficient. We provide a bias-correction procedure

under which our estimators are centered around zero as both dimensions of the panel tend

to infinity. We establish a mixed normal asymptotic distribution for our estimators, which

permit inference using standard test statistics. Finally, we apply our approach to study

the international R&D spillovers model with unobserved group patterns. The results shed
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new light on growth convergence puzzle though the channel of technology diffusions.

Chapter 3 proposes a novel econometric model that accounts for both long-run and

short-run co-movements in panel error correction models. By imposing latent group struc-

tures, we achieve efficient estimation for long-run cointegration vectors in the presence

of unobserved heterogeneity. The short-run co-movements are driven by unobserved dy-

namic common factors, which can be consistently estimated by principal components.

We propose a penalized generalized least squares method that jointly estimates long-run

cointegration vectors and infers unobserved group structures. We establish asymptotic

properties for two Lasso-type estimators. In an empirical application, we estimate long-

run cointegration relationships between bid and ask quotes in stock market. We introduce

a new measure for efficient price, which is weighted average of bid and ask quotes.
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1 Identifying Latent Grouped Patterns in Cointegrated

Panels

1.1 Introduction

Recently there has been a growing literature on large dimensional panel with latent

group structures; see Lin and Ng (2012), Bonhomme and Manresa (2015) (BM hereafter),

Sarafidis and Weber (2015), Ando and Bai (2016), Su et al. (2016) (SSP heterafter), Su

and Ju (2017), Su et al. (2017), Lu and Su (2017), among others. In comparison with other

approaches to model unobserved heterogeneity in panel data models, an important advan-

tage of the latent group structures is that it offers a flexible way to modeling unobserved

heterogeneity while maintaining certain degree of parsimony. Two popular methods have

been proposed to identify the unknown group structures. One is based on the celebrated

K-means clustering algorithm, and the other is based on the C-Lasso. For example, Lin

and Ng (2012) and Sarafidis and Weber (2015) consider a heterogeneous linear regression

panel data model where the slope coefficients exhibit an unknown group structure whereas

BM consider a homogeneous linear panel data model where the additive fixed effects ex-

hibit group structure. Both group of authors propose to apply the K-means clustering

algorithm to achieve classification. Ando and Bai (2016) extend BM’s approach to allow

for group structure among the interactive fixed effects. Motivated by the sparse feature

of the slope coefficients under latent group structures, SSP propose a novel variant of the

Lasso procedure, i.e., classifier Lasso (C-Lasso), to achieve classification and estimation

for both linear and nonlinear panel data models with or without endogeneity. Su and Ju

(2017) extend SSP’s C-Lasso to panel data models with interactive fixed effects; Su et al.

(2017) consider C-Lasso-based sieve estimation of time-varying panel data models with

latent structures; Lu and Su (2017) propose a sequential testing procedure to determine

the unknown number of groups.

In this paper, we consider identifying the latent group structures in nonstationary pan-

els where some regressors are generated from an integrated process. Despite the vast

and diverse literature on nonstationary panels, most studies focus on panel unit root or
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cointegration tests with or without cross-sectional dependence and the literature on for-

mal cointegration analysis is relatively sparse. Depending on whether the cointegrating

relationship is allowed to be heterogeneous, one may consider either homogeneous or

heterogeneous cointegrating relations. For example, Phillips and Moon (1999) consider

general limit theory for both cases in large dimensional nonstationary panels; Groen and

Kleibergen (2003) consider likelihood-based cointegration analysis for heterogeneous and

homogeneous panel vector error-correction models; Kao and Chiang (2001) consider both

dynamic OLS (DOLS) and fully modified OLS (FMOLS) estimation and inference in

homogeneous cointegrated panels; Mark and Sul (2003) consider panel DOLS in homo-

geneous nonstationary panels; Bai et al. (2009) study homogeneous panel cointegration

with global stochastic trends; Pedroni (2001) considers FMOLS for heterogeneous coin-

tegrated panels. So the long-run cointegrating relationships can be assumed to be either

homogeneous or heterogeneous and we face a trade-off between assuming heterogeneous

long-run relationships, which is surely robust and perhaps also close to the reality, and

estimating a common or at least an average long-run relationship, which offers efficiency

in estimation and inference if the underlying homogeneous assumption is correct.

Despite the different treatments on the long-run relationships, the short-run dynamics,

the individual intercepts, or the individual time trends, if exist, are commonly assumed

to be heterogeneous across individuals. In this paper, we shall maintain the individual

heterogeneity assumption on the individual effects and short-run dynamics and take an

intermediate approach to model the long-run relationship. We propose a panel cointegra-

tion model with latent group structures where the long-run relationships are homogeneous

within a group and heterogeneous across different groups, and the short run dynamics

are allowed to be completely heterogeneous. The key issue is that the individual group

membership is unknown and has to be estimated from the data together with the other

parameters in the model. We extend SSP’s C-Lasso method to the nonstationary panel

framework. We consider the SSP’s C-Lasso method rather than the K-means clustering

algorithm for two reasons. First, the C-Lasso method has computational advantage over

the K-means clustering algorithm. As SSP argue, the C-Lasso problem can be trans-

formed into a sequence of convex problems to be solved easily while the K-means pro-
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cedure is NP hard and tends to be much more computationally involved than the C-Lasso

method. Second, the asymptotic theory for the C-Lasso method is well understood for

stationary panels. It is natural to extend the theory to nonstationary panels. We will pro-

pose a C-Lasso-based penalized least squares (PLS) procedure to identify the unknown

group structures and estimate the other parameters in the model.

Nevertheless, the extension of the asymptotic theory from stationary panels to non-

stationary panels is technically challenging for several reasons. First, there is a lack of

certain uniform convergence results in the nonstationary panel literature. It is well known

that both the K-means clustering algorithm and the C-Lasso method enjoy certain ora-

cle properties, which means the resulting estimators are as asymptotically efficient as if

the latent group structures were known. But the establishment of such oracle properties

rely on the application of certain exponential inequalities that are available for weakly

dependent data as in stationary panels but not available for strongly dependent data as

in nonstationary panels. To achieve the extension, we first need to establish some uni-

form convergence results associated with the nonstationary I(1) variables. Second, we

allow for both stationary and nonstationary regressors in our cointegration models. Even

though the number of nonstationary regressors is assumed to be fixed, we allow the di-

mension of stationary regressors to grow with the sample size at a controllable rate. The

latter is very important for us to explore the idea of DOLS and develop a panel dynamic

PLS procedure. Even though the growing dimension of the stationary regressors does not

affect the convergence rate of the estimators of the long-run relationships, it complicates

the asymptotic analysis in several places.

We assume that the number of groups is known and study the asymptotic properties

of the PLS estimators. We first establish the preliminary rates of convergence for the co-

efficient estimators and show that, as expected, the long-run parameters can be estimated

consistently at a faster rate than the short-run parameters. Given these preliminary con-

sistency rates, we establish the uniform classification consistency of the C-Lasso method,

which essentially means that all parameters within a group can be classified into the same

group with probability approaching 1 (w.p.a.1) and all individuals that are classified into

the same group indeed belong to the same group w.p.a.1. Such a uniform classification

3



consistency lays down the foundation for the study of the asymptotic distributions of the

PLS estimators. We show that both the C-Lasso estimators of the long-run parameters and

their post-Lasso versions enjoy the asymptotic oracle properties and derive the asymptotic

distribution under the joint limit theory.1 We show that such presence of endogeneity

in both nonstationary and stationary regressors does not cause the inconsistency of the

long-run parameter estimators but does yield asymptotic bias in the estimators of both the

short-run and long-run parameters. To remove the asymptotic bias in the estimation of the

long-run parameters, we explore the idea of DOLS in the time series framework and pro-

pose a C-Lasso-based dynamic PLS procedure. When the number of groups is unknown,

we propose an information criterion to determine the number of groups. Simulations

show superb finite sample performance of the information criterion and C-Lasso-based

PLS procedure.

As an empirical illustration, we apply our method to re-examine the validity of long-

run PPP in the post-Bretton Woods period from 1975-2014 for a panel of 99 countries.

Due to the establishment of the European Union in 1999, we divide the period into two

parts 1975-1998 and 1999-2014. Then we estimate the long-run group-specific relation-

ships by the dynamic PLS method. In general, we observe heterogeneous behavior on the

long-run relation between nominal exchange rate and aggregate price ratio. We find two

groups in the 1975-1999 subsample, with one group of countries in favor of the validity

of PPP and the other group against the PPP hypothesis. In the 1999-2014 subsample, we

identify three groups and significant evidence supporting the long-run PPP hypothesis in

one group. There are more countries in this group in favor of the validity of the long-run

PPP hypothesis in this period. We explain these results by the “Revived Bretton Woods

system” (also called as Bretton Woods II in the literature) from 2000, see Dooley et al.

(2004). These results confirm the belief that at least some selected group of countries

obey the long-run PPP rule in the post-Bretton Woods period.

The rest of this paper is organized as follows. We introduce the cointegrated panel data

model with latent group structures and propose a C-Lasso-based PLS estimation proce-

1Most asymptotic theories in the panel cointegration analysis have been established under the sequential

limit theory. A few exceptions include Phillips and Moon (1999), Sun (2004), and Bai and Ng (2010).
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dure in Section 2. Section 3 introduces the main assumptions for our asymptotic analysis.

We study the asymptotic properties of the PLS estimators and propose an information

criterion to determine the number of groups in Section 4. Section 5 reports Monte Carlo

simulation results. Section 6 applies the dynamic PLS method to testing the long-run PPP

hypothesis. Section 7 concludes. We relegate the proofs of the main results to Appendix

A and those of technical lemmas to the online supplementary material.

NOTATION. For any real matrix A, we write the transpose A′, the Frobenius norm

||A||, the spectral norm ||A||sp, and the Moore-Penrose inverse as A+. When A is sym-

metric, we use λmax(A) and λmin(A) to denote its largest and smallest eigenvalues, re-

spectively. Ia and 0a×b denote the a× a identity matrix and a× b matrices of zeros, and

1{·} is the usual indicator function. The operator P→ denotes convergence in probability,

⇒ weak convergence, a.s. almost surely, and plim probability limit. We use (N, T )→∞

to signify that N and T pass jointly to infinity.

1.2 Model and Estimation

In this section we introduce the panel cointegration model with latent group structures

and then propose a C-Lasso-based penalized least squares method to estimate the model.

1.2.1 Panel cointegration model with latent group structures

The dependent variable yit is measured for individuals i = 1, 2, ..., N over time t =

1, 2, ..., T . We suppose that the nonstationary I(1) variables yit and x1,it are generated

according to the following heterogeneous panel cointegration modelyit = µi + β′1,ix1,it + β′2,ix2,it + uit

x1,it = x1,it−1 + ε1,it,

, (1)

where µi is the unobserved individual fixed effect, x1,it is a p1× 1 vector of nonstationary

regressors of order one (I(1)) process) for all i, x2,it is a p2×1 vector of stationary regres-

sors (I(0) process) for all i, uit is the idiosyncratic error term with mean zero and finite

long-run variance, ε1,it is also assumed to have zero mean and finite long-run variance,

and β1,i and β2,i are p1 and p2 dimensional slope coefficients, respectively.
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We assume that p1 is fixed but allow p2 to diverge to infinity at certain rate. The latter

is very important because we will extend our theory to the panel DOLS framework. In

this case, the first equation in (1) becomes

yit = µi + β′1,ix1,it +

p̄2∑
j=−p̄2

γ′i,j∆x1,i,t+j + v†it, (2)

where ∆x1,it = x1,it − x1,i,t−1, x2,it only contains the lags and leads of ∆x1,it : x2,it =

(∆x′1,i,t−p̄2 , ...,∆x
′
1,i,t+p̄2

)′, β2,i = (γ′i,−p̄2 , ..., γ
′
i,p̄2

)′, p2 = (2p̄2 + 1)p1, p̄2 is divergent

with T, and v†it is the new error term that typically contains some approximation errors.

In the literature on nonstationary panels, β1,i, which stands for the long-run cointe-

grating relationship, can be either homogeneous or heterogeneous, whereas β2,i, which

represents the short-run dynamics, is allowed to be heterogeneous across all individuals

in almost all studies. In this paper we maintain the heterogeneity assumption on β2,i’s

but follow the lead of SSP and assume that β1,i’s are heterogeneous across groups and

homogeneous within a group. We allow the true values of β1,i, denoted as β0
1,i, to follow

a grouped pattern of the general form

β0
1,i =


α0

1 if i ∈ G0
1

...
...

α0
K if i ∈ G0

K

, (3)

where α0
j 6= α0

k for any j 6= k, ∪Kk=1G
0
k = {1, 2, . . . N}, and G0

k ∩ G0
j = ∅ for any

j 6= k. For now, we assume that the number of groups, K, is known and fixed. Let

α ≡ (α1, . . . , αK), β1 ≡ (β1,1, . . . , β1,N), and β2 ≡ (β2,1, . . . , β2,N). We denote their

true values as α0, β0
1, and β0

2, respectively. We also use β0
2,i and α0

k to denote the true

coefficients of β2,i and αk. We will use Nk ≡ #G0
k to denote the cardinality of the set G0

k.

We are interested in identifying each individual’s group membership and estimating

the long-run cointegrating group-specific coefficients, αk, k = 1, ..., K.

Even though we focus only on the linear cointegrating model in this paper, the theory

that we are developing is quite different from that in SSP for three main reasons. First, the

presence of nonstationary regressors substantially complicates the asymptotic analysis. In

particular, we need to establish some uniform convergence rates that are not available in

the nonstationary panel literature. Second, the increasing dimension of the stationary
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regressors in the model also complicates the issue. Third, we allow for endogeneity in

both x1,it and x2,it. In the time series framework, it is well known that the endogeneity

of either the I(1) or I(0) regressor does not cause the inconsistency of the OLS estimator

of the long-run relationship. We will show that similar phenomenon occurs in the panel

setup.

1.2.2 Penalized least squares estimation

Without imposing the latent group structures in (3), we can estimate β1,i and β2,i

in (1) by using the fixed effects estimator. In this case, we consider the within-group

transformation

ỹit = β′1,ix̃1,it + β′2,ix̃2,it + ũit, (4)

or in vector-matrix form

ỹi = x̃1,iβ1,i + x̃2,iβ2,i + ũi, (5)

where ỹi = (ỹi1, ..., ỹiT )′ , ỹit = yit− ȳi, ȳi = 1
T

∑T
t=1 yit, and x̃1,it, x̃2,it, ũit, x̄1,i, x̄2,i, ūi,

x̃1,i, x̃2,i, and ũi are analogously defined. The FE estimators β̃1,i and β̃2,i are obtained as

the minimizers of the following least squares criterion function

QNT (β1,β2) =
1

NT 2

N∑
i=1

‖ỹi − x̃1,iβ1,i − x̃2,iβ2,i‖2 =
1

NT 2

N∑
i=1

‖ỹi − x̃iβi‖2 , (6)

where βi = (β′1,i, β
′
2,i)
′ and x̃i = (x̃1,i, x̃2,i) has a typical row x̃′it = (x̃′1,it, x̃

′
2,it). Let

β̃i = (β̃′1,i, β̃
′
2,i)
′. Then β̃i = (x̃′ix̃i)

−1(x̃′iỹi) for each i.

To explore the latent group structure of β1,i’s in (3), we propose to estimate β1, β2,

andα by minimizing the following C-Lasso-based penalized least squares (PLS) criterion

function

QK
NT,λ(β1,β2,α) = QNT (β1,β2) +

λ

N

N∑
i=1

(σ̃i)
2−K

K∏
k=1

∥∥∥Q̂1i(β1,i − αk)
∥∥∥ , (7)

where λ = λ(N, T ) is a tuning parameter, σ̃2
i = 1

T

∑T
t=1(ỹit − β̃′ix̃it)

2, and Q̂1i =

1
T 2

∑T
t=1 x̃1,itx̃

′
1,it. When σ̃i and Q̂1i are replaced by 1 and Ip1 , respectively, the penalty

term in (7) reduces to that in SSP. Here, we introduce these two terms into the penalty to

ensure the scale-invariant property of the penalized estimators.
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Minimizing the above objective function yields the C-Lasso-based PLS estimates β̂1,

β̂2, and α̂. Let β̂1,i and α̂k denote the ith and kth columns of β̂1 and α̂, respectively, i.e.,

β̂1 ≡ (β̂1,1, ..., β̂1,N) and α̂ ≡ (α̂1, ..., α̂K). We will study the asymptotic properties of

the C-Lasso estimators below.

1.3 Notations and Assumptions

In this section, we spell out the main notations and assumptions that are needed for

the study of the asymptotic properties of our estimators.

Since we include the fixed effects µi in (1) and assume covariance-stationarity of x2,it.

We assume without loss of generality that x2,it has zero mean.2 Let εit =
(
uit, ε

′
1,it, ε

′
2,it

)′
where ε2,it = x2,it. The long-run covariance matrix of {εit} is given by

Ωi =
∞∑

j=−∞

E(εijε
′
i0) =

 Ω00,i Ω01,i Ω02,i

Ω10,i Ω11,i Ω12,i

Ω20,i Ω21,i Ω22,i

 ,

where, e.g., Ω00,i =
∑∞

j=−∞E(uiju
′
i0),Ω01,i =

∑∞
j=−∞E(uijε

′
1,i0), and Ω02,i =

∑∞
j=−∞E(uijε

′
2,i0).

Following the literature on nonstationary panels, we will make the following decomposi-

tion

Ωi = Σi + Λi + Λ′i,

where Σi = E (εitε
′
it) denotes the short-run variance of {εit} and Λi =

∑∞
j=1 E(εijε

′
i0).

We partition Σi and Λi conformably with εit and Ωi :

Σi =

 Σ00,i Σ01,i Σ02,i

Σ10,i Σ11,i Σ12,i

Σ20,i Σ21,i Σ22,i

 and Λi =

 Λ00,i Λ01,i Λ02,i

Λ10,i Λ11,i Λ12,i

Λ20,i Λ21,i Λ22,i

 .

Let ∆i = Σi + Λi denote the one-sided long-run covariance of {εit} . Let p = 1 + p1 + p2

denote the dimension of εit. Let S0, S1, and S2 denote respectively the 1× p, p1 × p, and

p2 × p selection matrices such that S0εit = uit and S`εit = ε`,it for ` = 1, 2.

2If E(x2,it) = ν2i 6= 0, we can rewrite the first equation in (1) as

yit = µ∗i + β′1,ix1,it + β′2,ix
∗
2,it + uit,

where x∗2,it = x2,it − ν2i has zero mean and µ∗i = µi + β′2,iν2i.
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Let maxi = max16i6N and maxt = max16t6T unless otherwise stated. Define mini

and mint analogously. We make the following assumptions.

Assumption A.1 (i) For each i, {εit, t > 0} is a linear process such that

εit = ψi (L) eit =
∞∑
j=0

ψijei,t−j,

where {eit} is an independent process with zero mean and variance-covariance matrix

Ip. Each element of eit has finite 2 (q + ε) moments that are bounded uniformly in (i, t) ,

where q > 4 and ε is an arbitrarily small positive number.

(ii) maxi
∑∞

j=0 j
2 ‖Sψij‖ <∞ for any selection matrix S that selects any finite (non-

divergent) number of rows in ψij.

(iii) For each i, {εit, t > 0} is a strong mixing process with mixing coefficients αi (t)

satisfying maxi αi (τ) 6 cαρ
τ for some cα <∞ and ρ ∈ (0, 1) .

(iv) {εit, t > 0} are independent across i.

Assumption A.2 (i) There exists a constant c11 such that lim infT→∞ λmin

(
bT
T 2

∑T
t=1 x̃1,itx̃

′
1,it

)
>

c11 > 0 almost surely (a.s.), where bT diverges to infinity as T →∞ slowly.

(ii) There exists a constant c̄Ω11 such that maxi λmax (Ω11,i) 6 c̄Ω11 <∞

(iii) There exist constants c22 and c22 such that 0 < c22 6 mini λmin (Σ22,i) 6

maxi λmax (Σ22,i) 6 c22 <∞.

(iv) Let Σ∗0.2,i = Σ00,i − Σ02,iΣ
−1
22,iΣ20,i. There exist constants c00 and c00 such that

0 < c00 6 mini Σ
∗
0.2,i 6 maxi Σ00,i 6 c00 <∞.

Assumption A.3 (i) For each k = 1, ..., K, Nk/N → τk ∈ (0, 1) as N →∞.

(ii) min16k 6=j6K
∥∥α0

k − α0
j

∥∥ > cα for some fixed cα > 0.

(iii) As (N, T )→∞, N/T 2 → c1 ∈ [0,∞), T/N2 → c2 ∈ [0,∞), and p3
2T
−1 (log T )6 →

c2 ∈ [0,∞).

(iv) As (N, T )→∞, λbT log log T → 0, λTN−
1
q b
−(K+1)
T / log T →∞, bK+1

T N1/qT−1 log T →

0, bTN
2/qT−1/2/ log T → 0, and bTp

1/2
2 N1/qT−1/2 log T = O (1) .

Assumption A.1(i)-(ii) imposes that the innovation process {εit} is a linear process

that exhibits certain moment and summability conditions. When p2 is fixed, the selection

matrix S is not needed. In our asymptotic analysis, we will frequently call upon the
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Beveridge and Nelson (1981) BN decomposition:

εit = ψi (1) eit + ĕi,t−1 − ĕit, (8)

where ψi (1) =
∑∞

j=0 ψij, ĕit =
∑∞

j=0 ψ̆ijei,t−j, and ψ̆ij =
∑∞

k=j+1 ψik. Following

Phillips and Solo (1992) (p.989), Assumption A.1(i)-(ii) ensures that

max
i

max
t
E ‖Sĕit‖2q <∞

for any selection matrix S such that Sĕit selects only a fixed number of elements in ĕit. For

example, S = (S ′0, S
′
1)′ selects the first 1+p1 elements ĕit that corresponds to

(
uit, ε

′
1,it

)′
.

Assumption A.1(iii) assumes that {εit, t > 0} is a strong mixing process for the conve-

nience of using some Bernstein-type exponential inequality that is available for strong

mixing processes. Davidson (1994) (Chapter 14.4) provides some sufficient conditions to

verify that a linear process of the type in Assumption A.1(i) is strong mixing. The geomet-

ric mixing rate can be relaxed to being algebraic with a little bit more involved notation in

the proofs. Here we follow SSP and assume the geometric mixing rate condition for sim-

plicity. By White (2001) (Theorem 7.18), Assumption A.1(i)-(iii) is far more sufficient

to ensure the functional central limit theorem (FCLT) holds for {Sεit, t > 0} for each i

provided its long-run variance-covariance matrix is positive definite. Assumption A.1(iv)

imposes cross-sectional independence, as was done in the early literature on panel cointe-

gration analyses (see, e.g., Phillips and Moon (1999); Kao and Chiang (2001); Mark and

Sul (2003)). We do not relax such an assumption in this paper because even under this

restrictive assumption, the rigorous asymptotic analysis is already extremely involved.

Assumption A.2(i) requires that Q̂1i ≡ 1
T 2

∑T
t=1 x̃1,itx̃

′
1,it is well behaved uniformly

in i. For each i, we can readily apply the results in Park and Phillips (1988) and show that

Q̂1i ⇒
∫ 1

0

B̃1,i (r) B̃1,i (r)
′ dr

where B̃1,i = B1,i −
∫ 1

0
B1,i (r) dr, and B1,i is a p1-dimensional Brownian motion with

covariance Ω00,i. In this case, as long as Ω00,i is positive definite, we can ensure that Q̂1i is

asymptotically nonsingular for each i. For our asymptotic analysis, we require that both

the maximum and minimum eigenvalues of Q̂1i are well behaved uniformly in i. For the
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maximum eigenvalue, we can call upon the usual law of iterated logarithm (LIL) and

show that

limsup
T→∞

λmax(Q̂1i/(2 log log T )) <

(
1

2
+ ε

)
c̄Ω11a.s.

where ε is an arbitrarily small positive number and c̄Ω11 is a constant defined in Assump-

tion A.2(ii). For the minimum eigenvalues, we conjecture that one can call upon the

“other” or Chung-type LIL (see, e.g., Donsker and Varadhan (1977)) and show that As-

sumption A.2(i) holds with bT = log log T. But the rigorous justification is beyond the

scope of this paper. See Lai and Wei (1982), Phillips (1996) and Bai (2004) who apply

similar conditions in their asymptotic analyses. Assumption A.2(ii)-(iii) imposes some

conditions on the eigenvalues of nonstochastic square matrices. Assumption A.2(iv) is

imposed to ensure nondegenerate limiting distribution. Given Assumption A.2(iii), it

implicitly implies that Σ′20,iΣ20,i is bounded away from the infinity and thus restrict the

degree of endogeneity in the stationary regressors.

Assumption A.3(i)-(ii) is commonly assumed in the panel literature with latent group

structures; see, e.g., Bonhomme and Manresa (2015), Ando and Bai (2016), Su et al.

(2016), Lu and Su (2017), and Su and Ju (2017). In particular, Assumption A.3(ii) re-

quires the separability of the group-specific parameters. Assumption A.3(iii) imposes

conditions on N, T, and p2. Note that we do not require N = o(T ) as in most studies on

nonstationary panels under the joint limit theory (see, e.g., Phillips and Moon (1999); Bai

and Ng (2010)). The last condition in Assumption A.3(iii) is analogous to the condition

p3
2T
−1 = o (1) in the time series framework (e.g., Saikkonen (1991)). Assumption A.3(iv)

looks quite complicated but can be simplified in various cases. First, if N and T pass to

infinity at the same rate, which appears plausible in most macro applications, it reduces

to:

Assumption A.3(iv*) As (N, T )→∞, λbT log log T → 0, λT 1− 1
q b
−(K+1)
T / log T →∞,

bK+1
T T

1
q
−1 log T → 0, bTT

2
q
− 1

2/ log T → 0, and bTp
1/2
2 T

1
q
− 1

2 log T = O (1) .

Second, if Assumption A.2(i) is satisfied with bT = log log T, a sufficient condition for

Assumption A.3(iv*) to hold is as follows:

Assumption A.3(iv**) As (N, T )→∞, λ (log log T )2 → 0, and λT 1− 1
q /(log T )2 →∞.
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Here, we use the fact that q > 4 so that the third through last conditions in Assumption

A.3(iv*) become redundant under Assumption A.3(iii). Then we can find a large range of

values for λ satisfying Assumption A.3(iv**). It is sufficient to have

λ ∝ T−α for α ∈
(

0,
q − 1

q

)
.

When q is sufficiently large (e.g., the tails of the error terms decay exponentially fast),

the upper bound for α is arbitrarily close to 1. If we only require q > 4, then it is fine to

choose λ ∝ T−3/4.

1.4 Asymptotic Properties

In this section, we first find the preliminary rates of convergence for the coefficient

estimators and prove classification consistency. Then we study the oracle properties of C-

Lasso estimators and their post-Lasso versions. The special case of panel dynamic PLS is

also considered and a BIC-type information criterion is proposed to determine the number

of groups.

1.4.1 Preliminary rates of consistency

Let β∗i = (β0′
1,i, β

∗′
2,i)
′, where β∗2,i = β0

2,i+Σ−1
22,iΣ20,i. The following theorem establishes

the preliminary rates of consistency for both β̂i and α̂k.

Theorem 1 Suppose that Assumptions A.1-A.3 hold. Then

(i) ||β̂1,i − β0
1,i|| = OP (T−1 + λ) and ||β̂2,i − β∗2,i|| = OP (p

1/2
2 (T−1/2 + λ)) for

i = 1, ..., N,

(ii) 1
N

∑N
i=1 ||β̂1,i − β0

1,i||2 = OP (b2
TT
−2) and 1

N

∑N
i=1 ||β̂2,i − β∗2,i||2 = OP (p2T

−1),

(iii) (α̂(1), ..., α̂(K)) − (α0
1, ..., α

0
K) = OP (bTT

−1) where (α̂(1), ..., α̂(K)) is a suitable

permutation of (α̂1, ..., α̂K).

Theorems 1(i) and (ii) establish the point-wise and mean-square convergence of β̂i =

(β̂′1i, β̂
′
2,i)
′, respectively; Theorem 1(iii) indicates that α̂1, ..., α̂K , consistently estimate

the true group-specific coefficients, α0
1, ..., α

0
K , subject to suitable permutation. We sum-

marize some interesting findings. First, despite the presence of endogeneity in both the
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nonstationary and stationary regressors, we can estimate the true coefficients (β0
1,i) of

the nonstationary regressors consistently. Second, when Σ20,i is nonzero, we cannot es-

timate the true coefficients (β0
2,i) of the stationary regressors consistently. Instead, β̂2,i

is consistent with the pseudo true value β∗2,i = β0
2,i + Σ−1

22,iΣ20,i, where Σ−1
22,iΣ20,i signi-

fies the endogeneity bias. Third, the effect of increasing dimension (p2) appears in the

rates of convergence for β̂2,i but not in those for β̂1,i. Apparently, β̂1,i’s converge to their

true values faster than β̂2,i’s to their pseudo-true values. Fourth, as in SSP, the pointwise

convergence of β̂i depends on λ while the mean square convergence of {β̂i} and the con-

vergence of α̂k’s do not. As we have shown in the proof, the convergence of α̂k only

depends on the mean square convergence of {β̂1,i}.

For notational simplicity, hereafter we will write α̂(k) as α̂k. We define the estimated

groups

Ĝk = {i ∈ {1, 2, ..., N} : β̂1,i = α̂k} for k = 1, ..., K.

To study the classification consistency, we need to establish the uniform consistency of

β̂1,i and β̂2,i. This is reported in the next theorem.

Theorem 2 Suppose that Assumptions A.1-A.3 hold. Then for any fixed c > 0,

(i) P (max16i6N ||β̂1,i − β0
1,i|| > cbTa1NT ) = o (N−1) ,

(ii) P (max16i6N ||β̂2,i − β∗2,i|| > cp
1/2
2 a2NT ) = o (N−1) ,

where a1NT = T−1N1/q (log T )(1+ε)/2 for some arbitrarily small ε > 0, and a2NT =

T−1/2 (log T )3 .

The uniform convergence rate of β̂1,i is not affected by p2 but is slower than the time

series convergence rate T−1. The higher q is (which means the higher order moments

the error terms exhibit), the closer a1NT is to T−1. When the error terms have exponen-

tially decaying tails as assumed in Bonhomme and Manresa (2015), we can make a1NT

arbitrarily close to T−1 subject to the logarithm factor.
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1.4.2 Classification consistency

To study the classification consistency, we follow SSP and define the following two

sequences of events

ÊkNT,i = {i 6∈ Ĝk|i ∈ G0
k} and F̂kNT,i = {i 6∈ G0

k|i ∈ Ĝk}

where i = 1, ..., N and k = 1, ...K. Let ÊkNT = ∪i∈ĜkÊkNTi and F̂kNT = ∪i∈ĜkF̂kNTi.

ÊkNT denotes the error event of not classifying an element ofG0
k into estimated group Ĝk;

and F̂kNT denotes the error event of classifying an element that does not belong toG0
k into

the estimated group Ĝk. Following SSP, we say that a classification method is individually

consistent if P (ÊkNT,i) → 0 and P (F̂kNT,i) → 0 as (N, T ) → ∞ for each i ∈ G0
k and

k = 1, ..., K, and it is uniformly consistent if P (∪Kk=1ÊkNT )→ 0 and P (∪Kk=1F̂kNT )→ 0

as (N, T )→∞.

The following theorem establishes the uniform classification consistency.

Theorem 3 Suppose that Assumptions A.1-A.3 hold. Then as (N, T )→∞

(i) P (∪Kk=1ÊkNT ) 6
∑K

k=1 P (ÊkNT )→ 0,

(ii) P (∪Kk=1F̂kNT ) 6
∑K

k=1 P (F̂kNT )→ 0.

Theorem 3 implies that all individuals within certain group, say G0
k, can be simul-

taneously correctly classified into the same group (denoted as Ĝk) w.p.a.1. Conversely,

all individuals that are classified into the same group, say Ĝk, simultaneously correctly

belong to the same group (G0
k) w.p.a.1. The result implies that in large samples, we can

virtually take the estimated group as the true group. In particular, let N̂k = #Ĝk. One

can easily show that P (Ĝk = G0
k)→ 1 so that P (N̂k = Nk)→ 1.
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1.4.3 Oracle properties and post-Lasso estimators

To study the oracle property of the C-Lasso-based PLS estimators, we add some no-

tations:

Q(k) ≡ lim
Nk→∞

1

6Nk

∑
i∈G0

k

S1ψi (1)ψi (1)′ S ′1 = lim
Nk→∞

1

6Nk

∑
i∈G0

k

Ω11,i,

Bk,NT ≡ B1k,NT + B2k,NT ,

B1k,NT =
1√
Nk

∑
i∈G0

k

S1

∞∑
r=0

∞∑
s=0

ψi,s+rψ
′
i,ssi,

B2k,NT =
−1√
Nk

T + 1

2T

∑
i∈G0

k

S1ψi (1)ψi (1)′ si,

V(k) ≡ lim
Nk→∞

1

Nk

∑
i∈G0

k

(
1

6
siΩis

′
iS1ΩiS

′
1 −

1

12
(siΩiS

′
1 ⊗ S1Ωis

′
i)Kp,1

)
,

V22,i =
(
Σ−1

22,iJ1,i ⊗ J2,i

)
V 0
i

(
J ′1,iΣ

−1
22,i ⊗ J ′2,i

)
,

where si = S ′0 − S ′2Σ−1
22,iΣ20,i, J1,i = (0p2×1,0p2×p1 , Ip2) , J2,i =

(
1,01×p1 ,−Σ′20,iΣ

−1
22,i

)
,

and V 0
i = limT→∞Var(T−1/2

∑T
t=1vec(εitε

′
it − Σi)).

The following theorem reports the asymptotic properties of α̂k and β̂2,i.

Theorem 4 Suppose that Assumptions A.1-A.3 hold. Let S2 denote an l × p2 selection

matrix such that S2β2,i selects only l elements in β2,i, where l is a fixed integer that does

not grow with (N, T ) . Then

(i)
√
NkT (α̂k − α0

k) − Q−1
(k)Bk,NT ⇒ N(0,Q−1

(k)V(k)Q−1
(k)) as (N, T ) → ∞ for k =

1, ..., K,

(ii)
√
TS2

(
β̂2,i − β∗2,i

)
⇒ N (0,S2V22,iS′2) as T →∞ for each i = 1, ..., N.

To understand the above results, we consider the case where the group membership is

known. In this case, the oracle estimators of αk and β2,i are respectively given by

α̂oracle
k =

∑
i∈G0

k

x̃′1,iM2,ix̃1,i

−1 ∑
i∈G0

k

x̃′1,iM2,iỹi for k = 1, ..., K,

β̂oracle
2,i =

(
x̃′2,ix̃2,i

)−1
x̃′2,i(ỹi − x̃1,iα̂

oracle
k ) for i ∈ G0

k,

where M2,i = IT − x̃2,i

(
x̃′2,ix̃2,i

)−1
x̃′2,i. One can readily show that α̂k shares the same

asymptotic bias and variance as α̂oracle
k , and similarly, β̂2,i shares the same asymptotic bias
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and variance as β̂oracle
2,i . In this case, we say that our C-Lasso estimators α̂k and β̂2,i are

asymptotically oracally efficient. As expected, α̂k may have asymptotic bias of order

O (T−1) in the presence of endogeneity, but it converges to its true value at the usual
√
NkT -rate after removing the bias term.

A close examination of the asymptotic bias of α̂k indicates that Bk,NT can be rewrit-

ten as the summation of two terms, B1k,NT and B2k,NT . B1k,NT appears even without

the within-group transformation as in Phillips and Moon (1999); B2k,NT is simply due

to the time-demeaning operator. As mentioned above, we allow for both sources of en-

dogeneity. When Σ20,i 6= 0, we have contemporaneous correlation between the station-

ary regressor x2,it and the error term uit in the cointegrating regression model. When

S1

∑∞
r=0

∑∞
s=0 ψi,s+rψ

′
i,sS

′
0 6= 0 or S1ψi (1)ψi (1)′ S ′0 6= 0, we allow the correlation of

uit with some leads or current values of ε1,it. When both types of correlations vanish,

Bk,NT = 0, so that there is no endogeneity bias in this special case.

Note that we specify a selection matrix S2 in Theorem 4(ii) that is not needed if p2

is fixed. When p2 diverges to infinity, we cannot derive the asymptotic normality of

β̂2,i directly. Instead, we follow the literature on inferences with a diverging number of

parameters (e.g., Fan and Peng, 2004; Lam and Fan, 2008; Lu and Su, 2015; Qian and

Su, 2016a and 2016b) and prove the asymptotic normality for any arbitrary finite linear

combinations of elements of β̂2,i.

Given the estimated groups, {Ĝk, k = 1, ..., K}, we can obtain the post-Lasso estima-

tors of αk and β2,i as

α̂post
k =

∑
i∈Ĝk

x̃′1,iM2,ix̃1,i

−1 ∑
i∈Ĝk

x̃′1,iM2,iỹi for k = 1, ..., K,

β̂post
2,i =

(
x̃′2,ix̃2,i

)−1
x̃′2,i(ỹi − x̃1,iα̂

post
k ) for i ∈ Ĝk.

We show in the proof of Theorem 4 that the C-Lasso estimators α̂k and β̂2,i are asymptot-

ically equivalent to their post-Lasso versions α̂post
k and β̂post

2,i , respectively. The following

theorem reports the limiting distributions of α̂post
k and β̂post

2,i .

Theorem 5 Suppose that Assumptions A.1-A.3 hold. Then

(i)
√
NkT (α̂post

k − α0
k)−Q−1

(k)Bk,NT ⇒ N(0,Q−1
(k)V(k)Q−1

(k)) for k = 1, ..., K,
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(ii)
√
TS2(β̂post

2,i − β∗2,i)⇒ N (0, S2V22,iS′2) for i = 1, ..., N,

where Q(k), Bk,NT , V(k), and V22,i are as defined before Theorem 4 and S2 is as defined

in Theorem 4.

Given the asymptotic results in Theorems 4 and 5, one can make inference as if the

true group membership is known. Despite the asymptotic equivalence of the C-Lasso esti-

mators and their post-Lasso versions, it is well known that the post-Lasso estimators tend

to have smaller finite sample bias in simulations and are thus recommended for practical

uses. Despite this, in order to make inference on the long-run cointegrating relationship,

we have to remove the bias. In principle, one can consider either the panel DOLS or fully

modified OLS (FMOLS) method as in Kao and Chiang (2001) and Mark and Sul (2003)

based on the estimated groups. The procedure is standard and thus omitted. Alterna-

tively, we can consider the use of DOLS idea in the C-Lasso procedure, which yields the

C-Lasso-based dynamic PLS (DPLS) estimation procedure. See the next subsection for

details.

1.4.4 The case of dynamic PLS

In this subsection, we focus on the dynamic PLS estimation of the panel cointegration

model with latent group structures. We show that the results in Theorems 4 and 5 continue

to be valid with little modification.

For notational clarity, we now assume that {yit,x1it} are generated byyit = µi + β′1,ix1,it + uit

x1,it = x1,it−1 + ε1,it

, (9)

where µi, uit, and ε1,it are defined as before, and β1,i’s exhibit the latent structures in (3).

To consider the panel DPLS estimation method, we follow Saikkonen (1991) and

Stock and Watson (1993) and make the following assumption.

Assumption A.4. (i) The process {uit} can be projected on to {ε1,it} as follows: uit =∑∞
j=−∞ γijε1,i,t+j + vit, where

∑∞
j=−∞ ‖γij‖ < ∞, vit is error term with mean zero and

finite 2qth moment where q > 4, and vit and ε1,it are uncorrelated for all lags and leads.
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(ii) As (N, T )→∞, there exists a > 1/2 such that T a
∑
|j|>p̄2 ||γij|| → 0, N1/2T 1/2−a →

0, and N1/2p̄2T
−a → 0.

Assumption A.4(i) ensures that E(ε1,itvit+k) = 0 for k = 0,±1,±2, . . . and As-

sumption A.4(ii) ensures that the values of ε1,it in the very remote past and future have

only negligible impact on uit. Therefore we can truncate the leads and lags and run the

following DOLS regression model

yit = µi + β′1,ix1,it +

p̄2∑
j=−p̄2

γ′ij∆x1,i,t+j + v†it, (10)

where v†it = vait + vit, and vait =
∑
|j|>p̄2 γ

′
ij∆x1,i,t+j signifies the approximation/trun-

cation error. Let x2,it denote a collection of the lags and leads of ∆x1,it : x2,it =

(∆x′1,i,t−p̄2 , ...,∆x
′
1,i,t+p̄2

)′. Let β2,i = (γ′i,−p̄2 , ..., γ
′
ip̄2

)′ and p2 = (2p̄2 + 1)p1. After the

within-group transformation, we have the following model

ỹit = β′1,ix̃1,it +

p̄2∑
j=−p̄2

γ′ij∆̃x1,i,t+j + ṽ†it

= β′1,ix̃1,it + β′2,ix̃2,it + ṽ†it, (11)

where ṽ†it = v†it − v̄
†
i , v̄

†
i = 1

T−2p̄2

∑T−p̄2
t=p̄2+1 v

†
it, and ỹit and x̃2,i are analogously defined.

As before, we can continue to consider the C-Lasso-based PLS regression and obtain

the Lasso estimators of β1,i, β2,i, and αk. We denote these estimators as β̂D1,i, β̂
D
2,i, and α̂Dk ,

where D abbreviates dynamic PLS (DPLS). Let Ĝk denote the estimated group as before.

The corresponding post-Lasso estimators of αk and β2,i take the form

α̂D, post
k =

∑
i∈Ĝk

x̃′1,iM2,ix̃1,i

−1 ∑
i∈Ĝk

x̃′1,iM2,iỹi for k = 1, ..., K,

β̂D, post
2,i =

(
x̃′2,ix̃2,i

)−1
x̃′2,i

(
ỹi − x̃1,iα̂

D, post
k

)
for i ∈ Ĝk,

where x̃1,i = (x̃1,i,p̄2+1, ..., x̃1,i,T−p̄2)
′ , ỹi and x̃2,i are analogously defined, and M2,i =

IT−2p̄2 − x̃2,i

(
x̃′2,ix̃2,i

)−1
x̃′2,i.

The following theorem shows the asymptotic properties of α̂D, post
k and β̂D, post

2,i where

expressions for both V(k) and V22,i are greatly simplified.
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Theorem 6 Suppose that Assumptions A.1, A.2(i)-(iii) and A.3-A.4 hold. Suppose that

there exists a constant c00 such that min16i6N Σ00,i > c00 > 0. Then

(i)
√
NkT (α̂D,post

k − α0
k)⇒ N(0, Q−1

(k)V
+
(k)Q

−1
(k)) for k = 1, ..., K,

(ii)
√
TS2(β̂D,post

2,i − β0
2,i)⇒ N (0, S2V22,iS′2) for i = 1, ..., N,

where Q(k) ≡ limNk→∞
1

6Nk

∑
i∈G0

k
Ω11,i,V+

(k) ≡ limNk→∞
1
Nk

∑
i∈G0

k

1
6
Ω+

00,iΩ11,i,Ω
+
00,i =

Ω00,i−Ω01,iΩ
−1
11,iΩ10,i and V22,i = Σ−1

22,iV22,iΣ
−1
22,i with V22,i = limT→∞Var(T−1/2

∑T
t=1 x2,ituit).

Even though we have not stated in the above theorem, α̂Dk and β̂D2,i are asymptotically

equivalent to α̂D,post
k and β̂D,post

2,i , respectively. Thus both C-Lasso-based DPLS estimators

and their post-Lasso versions have asymptotic normal distributions and are asymptotically

oracally efficient. One can readily construct the usual t-statistics and F-statistics to make

inference. For example, to make inference on the group-specific long-run cointegrating

relationship, we can estimate Q(k) and V(k) respectively by3

Q̂(k) =
1

N̂kT 2

∑
i∈Ĝk

x̃′1,iM2,ix̃1,i and V̂+
(k) ≡

1

N̂k

∑
i∈Ĝk

1

6
Ω̂+

00,iΩ̂11,i,

where Ω̂00,i and Ω̂11,i denote the HAC estimator of the long-run variance-covariance com-

ponents Ω00,i and Ω11,i in Ωi. In practice, we recommend the use of α̂D,post
k and β̂D,post

2,i

because the post-Lasso estimators typically outperform the C-lasso ones.

1.4.5 The case of incidental time trends

Our cointegrated panel model can be extended to models with both individual fixed

effects and incidental time trends,

yit = µi + ρit+ β1,ix1,it + β2,ix2,it + uit, i = 1, ..., N and t = 1, ..., T, (12)

where the incidental time trend ρit is introduced, the other variables are defined as above.

In the original case, we can eliminate the individual fixed effects µi in (2.1) via the within-

group transformation,

ỹit = β′1,ix̃1,it + β2,ix̃2,it + ũit,

3Alternatively, we can consistently estimate Q(k) by Q̃(k) = 1
N̂kT 2

∑
i∈Ĝk x̃

′
1,ix̃1,i.

19



where ỹit = yit− 1
T

∑T
t=1 yit, x̃it and ũit are analogously defined. The asymptotic proper-

ties are built on the demeaned data. When incidental time trends are allowed, we consider

the detrended data on above model (4.4) to eliminate both individual fixed effects and

incidental time trends. Then we have

ẏit = β′1,iẋ1,it + β2,iẋ2,it + u̇it, (13)

where ẏit = yit −
∑T

s=1 yisg
′
s

(∑T
s=1 gsg

′
s

)−1

gt, gt = (1, t)′, and ẋ1,it, ẋ2,it and u̇it are

analogously defined. Since Phillips and Hansen (1990) and Hansen (1992) (p.91) have

shown that the estimation of β1,i is invariant to the presence of incidental time trends. Thus

we can simply apply the same estimation procedure in Section 2.2 with dotted variables.

And the asymptotic theorem can be modified with the detrended data. Given above model

(4.4), we note that the incidental time trends come from random walk with drift, such that

x1,it = αi + x1,it−1 + ε1,it = αit+
t∑

s=1

ε1,is = x1,i0 + αit+ x0
i,t

where x0
1,it =

∑t
s=1 ε1,is is purely random walk process. Define κT = diag(1, T−1) and

g(r) = (1, r)′. Let t = [Tr], then as T → ∞, κTgt → g(r) uniformly in r ∈ [0, 1]. By

functional central limit theorem and continuous mapping theorem, we have

1√
T
ẋ1,it =

1√
T

x1,it −
T∑
t=1

x1,itg
′
t

(
T∑
s=1

gsg
′
s

)−1

gt


=

1√
T

x0
1,it −

T∑
s=1

x0
1,itg

′
t

(
T∑
s=1

gsg
′
s

)−1

gt


=
x0

1,it√
T
− 1

T

T∑
t=1

x0
1,it√
T
κTgt

(
1

T

T∑
t=1

κTgtg
′
tκT

)−1

κTgT

⇒B1i(r)−
∫
Bε1i(r)g(r)′dr

(∫
g(r)g(r)′

)−1

g(r) := Bτ
1i(r)

whereBτ
1i(r) is a randomly scaled detrended Brownian motion and are independent across

individual i. Following the analysis in Section 4, we can show Theorem 4.1-Theorem

4.3 hold under detrended data. And the limiting distribution in Theorem 4.4-4.6 can be

modified under different asymptotic moments on Qk and Vk upon detrended Brownian

motion.
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1.5 Monte Carlo Simulation

In this section, we evaluate the finite-sample performance of both PLS-based and

DPLS-based C-lasso estimates and their post-Lasso versions.

1.5.1 Data generating processes

We consider three data generating processes (DGPs). The observations in DGP1-

DGP3 are drawn from three groups with N1 : N2 : N3 = 0.3 : 0.4 : 0.3. And that in

DGP4-DGP5 are drawn from the same group structures in empirical applications, where

DGP4 is drawn from two groups with N1 : N2 = 0.9 : 0.1 and DGP5 is drawn from three

groups with N1 : N2 : N3 = 0.5 : 0.3 : 0.2 There are four combinations of the sample

sizes with N = 50, 100 and T = 40, 80.

DGP 1 (Strictly Exogenous Nonstationary Regressors) The observations (yit, x
′
it) are

generated from the following cointegrated panel,yit = µi + β0′
i xit + uit = µi + β0′

1,ix1,it + uit

x1,it = x1,it−1 + ε1,it

where µi ∼ IID N(0, 1), xit = x1,it is a 2 × 1 vector, εit = (uit, ε
′
1,it)

′ follows a multi-

variate standard normal distribution, and β0
i = β0

1,i exhibits the group-structure in (3) for

K = 3 and

(α0
1, α

0
2, α

0
3) =

((
0.4

1.6

)
,

(
1

1

)
,

(
1.6

0.4

))
.

DGP 2 (Weakly Dependent Nonstationary Regressors) The observations (yit, x
′
it) are

generated via (5.1). Note that S0εit = uit, S1εit = ε1,it,and Sµεi1 = µi,where S0 =

(1, 0, 0, 0) , S1 = (0, 1, 1, 0), and Sµ = (0, 0, 0, 1). εit are generated from a linear process:

εit =
∑∞

j=1 ψijei,t−j, where eit are IID N (0, I4) , ψij = 0.5 · j−3.5 · Ω1/2
1 , and Ω

1/2
1 is the

symmetric square root of Ω1 ≡


1 0.3 0.2 0

0.3 1 0.2 0.2

0.2 0.3 1 0.2

0 0.2 0.2 1

 .

DGP 3 (Weakly Dependent Nonstationary and Stationary Regressors) The observa-
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tions (yit, x
′
it) are generated from the following cointegrated panel,yit = µi + β0′

i xit + uit = µi + β0′
1,ix1,it + β0

2ix2,it + uit

x1,it = x1,it−1 + ε1,it

where µi ∼ IID N(0, 1), x1,it is a 2 × 1 vector, β0
1,i exhibits the group structures and

preserves the setting in DGP1 and x2,it = ε2,it only contains one stationary regres-

sor. Note that S0εit = uit, S1εit = ε1,it, S2εit = ε2,it,and Sµεi1 = µi,where S0 =

(1, 0, 0, 0, 0) , S1 = (0, 1, 1, 0, 0), S2 = (0, 0, 0, 1, 0) and Sµ = (0, 0, 0, 0, 1) . εit are

generated from a linear process: εit =
∑∞

j=1 ψijei,t−j, where eit are IID N (0, I6) ,

ψij = 0.5 · j−3.5 · Ω1/2
2 , and Ω

1/2
2 is the symmetric square root of Ω2 ≡

1 0.3 0.2 0.2 0

0.3 1 0.2 0 0.2

0.2 0.2 1 0 0.2

0.2 0 0 1 0.2

0 0.2 0.2 0.2 1

 . The coefficients of the stationary regressors are het-

erogeneous across all i such that β2,i ∼ IID N(c, 1) with c = 0.5.

DGP 4 (Mimic Empirical Applications Table Panel A) The observations (yit, x
′
it) are

generated via (5.1), where xit = x1,it contains one nonstationary regressor. Note that

S0εit = uit, S1εit = ε1,it,and Sµεi1 = µi,where S0 = (1, 0, 0) , S1 = (0, 1, 0), and

Sµ = (0, 0, 1). εit are generated from a linear process: εit =
∑∞

j=1 ψijei,t−j, where

eit are IID N (0, I3) , ψij = 0.5 · j−3.5 · Ω1/2
1 , and Ω

1/2
1 is the symmetric square root of

Ω1 ≡

 1 0.3 0

0.3 1 0.2

0 0.2 1

 . And β0
i = β0

1,i exhibits the group-structure in (3) for K = 2

and has the similar estimates in Table Panel A (α0
1, α

0
2) = (0.9,−0.7) .

DGP 5 (Mimic Empirical Applications Table Panel B)The observations (yit, x
′
it) are

generated via (5.1). The innovation processes are generated from via the same processes

in DGP4 and β0
i = β0

1,i exhibits the group-structure in (3) for K = 3 and has the similar

estimates in Table Panel B (α0
1, α

0
2, α

0
3) = (0.9, 0.2,−0.6) .

In all cases, the number of replications is 10000.
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1.5.2 Classification and estimation

We assume that the number of groups is known and examine the performance of clas-

sification and estimation. The results from Appendix show that the number of groups can

be nearly perfectly selected by the information criterion.

For classification, we consider the PLS-based C-Lasso classification results for DGPs

1,2,4 and 5, and both the PLS- and DPLS-based C-Lasso classification results for DGP 3.

For the DPLS-based classification in DGP 3, we introduce the lags and leads of x1,it

in our penalized estimation by setting p̄2 to be approximately [T 1/4]. More precisely,

we set p̄2 = 2 and 3 for T = 40 and 80, respectively. We follow Section 4.2 and

define two types of average classification errors: P̄ (Ê) = 1
N

∑N
i=1 P̂ (∪Kk=1ÊkNT,i) and

P̄ (F̂ ) = 1
N

∑N
i=1 P̂ (∪Kk=1F̂kNT,i) where P̂ is the empirical mean over 500 replications.

Table 1 reports the classification errors for a variety of choices of the tuning parameter λ

or equivalently cλ.We summarize some important findings from Table 1. First, both types

of classification errors vary over cλ. The smaller value of cλ, the smaller percentage of the

classification error. This means that a larger value of penalty term tends to lead to a higher

rate of misclassification. Second, as T increases, the percentage of classification errors

drops significantly. In fact, when T is 80, we have less than 1% individuals misclassified

across the board in all cases. Third, for DGP 3, the performance of the DPLS-based C-

Lasso classification is not as good as that of the PLS-based C-Lasso estimation. Despite

this fact, the former performance becomes acceptable when T = 80 for all choices of cλ.

For the estimation, we consider both the C-Lasso estimates and its post-Lasso ver-

sions. Specifically, for all DGPs we consider the PLS-based C-Lasso estimates, the OLS-

based post-Lasso estimates, the DOLS-based post-Lasso estimates, and the oracle esti-

mates which are obtained by using the true group structure. For DGP 3, we also consider

the DPLS-based C-Lasso estimates, its post-Lasso version, and the oracle estimates. For

all DOLS-based estimates, we set p̄2 as above. We report the bias, root-mean-square er-

ror (RMSE), and coverage probability of the two-sided nominal 95% confidence interval

for the estimate β̂1,i (1) of the first parameter β1,i (1) in β1,i for each DGP in Tables 2-4,

where all criteria are averaged over different groups and across 10,000 replications. For

example, we calculate the RMSE of β̂1,i (1)’s as 1
N

∑K0

k=1NkRMSE(α̂k,1) with α̂k,1 denot-
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Table 1: Empirical classification errors in percentage

cλ 0.1 0.2
N T P̄ (Ê) P̄ (F̂ ) P̄ (Ê) P̄ (F̂ )

DGP1 50 40 0.212 0.221 0.515 0.410
50 80 0.000 0.000 0.001 0.001

100 40 0.218 0.226 0.475 0.384
100 80 0.000 0.000 0.001 0.001

DGP2 50 40 0.483 0.506 0.875 0.728
50 80 0.000 0.000 0.003 0.002

100 40 0.500 0.518 0.796 0.667
100 80 0.000 0.000 0.004 0.003

DGP3 50 40 0.535 0.563 0.799 0.684
(PLS) 50 80 0.001 0.001 0.005 0.004

100 40 0.532 0.562 0.745 0.640
100 80 0.000 0.000 0.003 0.002

DGP3 50 40 6.337 5.630 12.255 9.700
(DPLS) 50 80 0.038 0.031 0.186 0.141

100 40 6.027 5.432 11.453 9.138
100 80 0.033 0.026 0.157 0.120

DGP4 50 40 1.234 0.834 0.821 0.543
50 80 0.014 0.008 0.004 0.002

100 40 1.225 0.823 0.801 0.527
100 80 0.011 0.007 0.004 0.003

DGP5 50 40 0.000 0.000 0.040 0.004
50 80 0.000 0.000 0.000 0.000

100 40 0.000 0.000 0.032 0.004
100 80 0.000 0.000 0.001 0.000
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ing the first element in α̂k for one replication and then average them across all replications

for each case.

Table 2 reports the estimation results for DGPs 1-2, Table 3 reports the estimation

results for DGP 3 based on both the PLS and DPLS methods, and Table 4 reports the esti-

mation results for DGPs 4-5. These tables reveal some general patterns. First, the bias and

RMSE of the C-Lasso estimates and their post-Lasso versions always decrease as either

N or T increases, and they decrease faster when T increases than whenN increases. This

is as expected due to faster convergence rate of the estimates along the time dimension

than along the cross-sectional dimension. Second, when there is no endogeneity issue

in DGP1, the finite sample performance of the post-Lasso (OLS) estimates is close to

that of the oracle ones and dominates that of the DOLS-based post-Lasso estimates. This

indicates that the DOLS may hurt in finite samples when there is no endogeneity issue

in the model. Third, when endogeneity is present in DGPs 2-5, the post-Lasso (DOLS)

estimators are distinctly superior to the C-Lasso and post-Lasso (OLS) ones for all cases

and their performance is very close to that of the oracle one. Fourth, for DGP 3 the DPLS-

based C-Lasso estimates outperform the PLS-based C-Lasso estimates to a great margin,

but the post-Lasso estimates are not quite distinct from each other in terms of bias and

RMSE. Fifth, the coverage probabilities of the post-Lasso (DOLS-based) estimates are

generally quite close to the specified level (95%) in all cases (except for DGP 1 in the

absence of endogeneity). For DGP3 the coverage probabilities of DPLS-based C-Lasso

estimates are closer to the specified level compared to those of the PLS-based C-Lasso

estimates. These two facts suggest that DOLS bias-correction yields good coverage prob-

ability when endogeneity is present. Lastly, in general the post-Lasso DOLS estimates

outperform the C-Lasso estimates (except for DGP 1 in the absence of endogeneity) and

thus are recommended for practical use.

1.6 Application: Testing the PPP hypothesis

In this section we apply our method to reinvestigate the purchasing power parity (PPP)

hypothesis in international economics.
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Table 2: Correct specification, RMSEs, Biases and Coverage probabilities for various

estimates

cλ 0.1 0.2
(N,T) RMSE Bias Coverage % RMSE Bias Coverage %

DGP1 (PLS)
(50,40) C-lasso 0.0180 0.0001 92.11 0.0174 0.0001 93.05

Post-lasso(OLS) 0.0173 0.0000 93.28 0.0173 0.0001 93.24
Post-lasso(DOLS) 0.0226 0.0000 84.60 0.0226 0.0000 84.58
Oracle 0.0172 0.0001 93.30 0.0172 0.0001 93.30

(50,80) C-lasso 0.0083 0.0001 93.09 0.0082 0.0001 93.51
Post-lasso(OLS) 0.0082 0.0001 93.55 0.0082 0.0001 93.55
Post-lasso(DOLS) 0.0091 0.0001 90.27 0.0091 0.0001 90.27
Oracle 0.0082 0.0001 93.55 0.0082 0.0001 93.55

(100,40) C-lasso 0.0126 0.0001 92.70 0.0122 0.0001 93.75
Post-lasso(OLS) 0.0120 0.0001 94.04 0.0121 0.0001 94.01
Post-lasso(DOLS) 0.0155 0.0001 85.75 0.0155 0.0001 85.75
Oracle 0.0120 0.0001 94.08 0.0120 0.0001 94.08

(100,80) C-lasso 0.0058 0.0001 93.82 0.0056 0.0000 94.42
Post-lasso(OLS) 0.0056 0.0000 94.42 0.0056 0.0000 94.42
Post-lasso(DOLS) 0.0063 0.0001 91.57 0.0063 0.0001 91.57
Oracle 0.0056 0.0000 94.42 0.0056 0.0000 94.42

DGP2 (PLS)
(50,40) C-lasso 0.0312 0.0247 81.20 0.0287 0.0223 85.67

Post-lasso(OLS) 0.0276 0.0211 87.49 0.0276 0.0211 87.47
Post-lasso(DOLS) 0.0215 0.0001 94.68 0.0215 0.0001 94.72
Oracle 0.0215 0.0000 94.73 0.0215 0.0000 94.73

(50,80) C-lasso 0.0147 0.0117 71.52 0.0138 0.0107 75.74
Post-lasso(OLS) 0.0135 0.0105 76.98 0.0135 0.0105 76.98
Post-lasso(DOLS) 0.0088 0.0000 94.15 0.0088 0.0000 94.15
Oracle 0.0088 0.0000 94.15 0.0088 0.0000 94.15

(100,40) C-lasso 0.0277 0.0243 65.88 0.0252 0.0218 73.51
Post-lasso(OLS) 0.0240 0.0206 77.47 0.0240 0.0205 77.62
Post-lasso(DOLS) 0.0148 0.0002 95.77 0.0148 0.0001 95.82
Oracle 0.0148 0.0001 95.85 0.0148 0.0001 95.85

(100,80) C-lasso 0.0131 0.0115 52.70 0.0120 0.0105 59.63
Post-lasso(OLS) 0.0117 0.0101 62.01 0.0117 0.0101 62.00
Post-lasso(DOLS) 0.0060 0.0001 95.27 0.0060 0.0001 95.26
Oracle 0.0060 0.0001 95.27 0.0060 0.0001 95.27
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Table 3: Correct specification, RMSEs, Biases and Coverage probabilities for various

estimates

cλ 0.1 0.2
(N,T) RMSE Bias Coverage % RMSE Bias Coverage %

DGP3 (PLS)
(50,40) C-lasso 0.0304 0.0234 83.31 0.0275 0.0206 88.14

Post-lasso(OLS) 0.0318 0.0193 81.70 0.0318 0.0193 81.74
Post-lasso(DOLS) 0.0215 0.0000 94.95 0.0215 0.0000 94.90
Oracle 0.0214 0.0000 95.02 0.0214 0.0000 95.02

(50,80) C-lasso 0.0134 0.0103 76.45 0.0126 0.0094 80.41
Post-lasso(OLS) 0.0156 0.0091 71.00 0.0156 0.0091 71.00
Post-lasso(DOLS) 0.0086 0.0000 94.28 0.0086 0.0000 94.29
Oracle 0.0086 0.0000 94.29 0.0086 0.0000 94.29

(100,40) C-lasso 0.0265 0.0228 70.64 0.0237 0.0200 78.75
Post-lasso(OLS) 0.0254 0.0184 75.26 0.0254 0.0184 75.25
Post-lasso(DOLS) 0.0148 0.0000 95.99 0.0148 -0.0001 96.02
Oracle 0.0147 -0.0001 96.11 0.0147 -0.0001 96.11

(100,80) C-lasso 0.0118 0.0101 60.45 0.0108 0.0091 67.20
Post-lasso(OLS) 0.0121 0.0088 63.49 0.0121 0.0088 63.49
Post-lasso(DOLS) 0.0060 0.0000 95.01 0.0060 0.0000 95.01
Oracle 0.0060 0.0000 95.01 0.0060 0.0000 95.01

DGP3 (DPLS)
(50,40) C-lasso 0.0234 0.0001 93.12 0.0232 0.0000 93.31

Post-lasso 0.0222 0.0000 94.39 0.0227 0.0000 93.91
Oracle 0.0214 0.0000 95.02 0.0214 0.0000 95.02

(50,80) C-lasso 0.0088 0.0000 93.63 0.0087 0.0000 94.24
Post-lasso 0.0086 0.0000 94.29 0.0086 0.0000 94.28
Oracle 0.0086 0.0000 94.29 0.0086 0.0000 94.29

(100,40) C-lasso 0.0166 -0.0002 94.28 0.0162 0.0000 94.67
Post-lasso 0.0156 -0.0005 95.53 0.0157 -0.0001 95.24
Oracle 0.0150 -0.0005 96.11 0.0150 -0.0005 96.11

(100,80) C-lasso 0.0061 0.0000 94.49 0.0060 0.0000 95.11
Post-lasso 0.0059 0.0000 95.16 0.0060 0.0000 95.11
Oracle 0.0059 0.0000 95.16 0.0059 0.0000 95.16
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Table 4: Correct specification, RMSEs, Biases and Coverage probabilities for various

estimates

cλ 0.1 0.2
(N,T) RMSE Bias Coverage % RMSE Bias Coverage %

DGP4 (PLS)
(50,40) C-lasso 0.0313 0.0256 68.18 0.0290 0.0233 73.88

Post-lasso(OLS) 0.0282 0.0221 76.03 0.0285 0.0226 76.03
Post-lasso(DOLS) 0.0191 -0.0006 93.24 0.0188 -0.0001 93.57
Oracle 0.0188 0.0001 93.70 0.0188 0.0001 93.70

(50,80) C-lasso 0.0148 0.0122 63.67 0.0140 0.0114 68.02
Post-lasso(OLS) 0.0139 0.0112 68.76 0.0139 0.0112 68.76
Post-lasso(DOLS) 0.0081 0.0000 94.05 0.0081 0.0000 94.06
Oracle 0.0081 0.0000 94.06 0.0081 0.0000 94.06

(100,40) C-lasso 0.0283 0.0253 45.97 0.0259 0.0229 53.83
Post-lasso(OLS) 0.0248 0.0216 58.16 0.0252 0.0221 58.16
Post-lasso(DOLS) 0.0132 -0.0007 93.84 0.0130 -0.0002 94.22
Oracle 0.0130 0.0000 94.32 0.0130 0.0000 94.32

(100,80) C-lasso 0.0135 0.0121 40.06 0.0126 0.0113 46.00
Post-lasso(OLS) 0.0124 0.0110 47.67 0.0124 0.0110 47.67
Post-lasso(DOLS) 0.0057 0.0000 94.48 0.0057 0.0000 94.49
Oracle 0.0057 0.0000 94.49 0.0057 0.0000 94.49

DGP5 (PLS)
(50,40) C-lasso 0.0264 0.0228 51.59 0.0263 0.0226 52.22

Post-lasso(OLS) 0.0263 0.0226 52.19 0.0263 0.0226 52.21
Post-lasso(DOLS) 0.0139 0.0001 94.18 0.0139 0.0001 94.18
Oracle 0.0139 0.0001 94.18 0.0139 0.0001 94.18

(50,80) C-lasso 0.0128 0.0111 44.66 0.0128 0.0110 44.90
Post-lasso(OLS) 0.0128 0.0110 44.89 0.0128 0.0110 44.89
Post-lasso(DOLS) 0.0061 -0.0001 94.31 0.0061 -0.0001 94.31
Oracle 0.0061 -0.0001 94.31 0.0061 -0.0001 94.31

(100,40) C-lasso 0.0244 0.0224 23.77 0.0242 0.0223 24.31
Post-lasso(OLS) 0.0243 0.0223 24.27 0.0243 0.0223 24.27
Post-lasso(DOLS) 0.0097 0.0000 94.31 0.0097 0.0000 94.31
Oracle 0.0097 0.0000 94.31 0.0097 0.0000 94.31

(100,80) C-lasso 0.0119 0.0110 18.03 0.0119 0.0109 18.40
Post-lasso(OLS) 0.0119 0.0109 18.40 0.0119 0.0109 18.40
Post-lasso(DOLS) 0.0043 0.0000 94.45 0.0043 0.0000 94.45
Oracle 0.0043 0.0000 94.45 0.0043 0.0000 94.45
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1.6.1 PPP hypothesis

PPP assumes that in the absence of transaction costs and trade barriers, a basket of

identical goods will have the same price in different markets when the prices are expressed

in the same currency. Unlike the law of one price for one particular good, PPP is built

on a “basket of goods”, indicating that nominal exchange rate is adjusted by general

price index for the purpose of international comparison. The long-run equilibrium of PPP

was broadly accepted in the post-war period before the breakdown of the Bretton Woods

system in the early 1970s. In the post-Bretton Woods period, most applied work fails to

support the validity of the long-run PPP; see, e.g., Frenkel (1981) and Adler and Lehmann

(1983). Some researchers attribute this to the low power of time series unit root tests when

T is short and advocate the use of panel unit tests. Indeed, some panel unit root testing

results favor the PPP hypothesis in the post-Bretton Woods period; see, e.g., Oh (1996)

and Papell (1997). Even so, the empirical findings are still mixed. There remain two main

issues in testing the validity of PPP hypothesis by using panel data. One is the sample

selection issue and the other is the unobserved heterogeneity issue. Our cointegrated panel

model with latent group structures can provide a data-driven method to address these two

issues simultaneously and is expected to offer some new insight into the PPP hypothesis.

1.6.2 Model and data

The PPP hypothesis has two versions: strong and weak. We first consider the strong

PPP hypothesis. Denote the domestic price index as Pit, the corresponding foreign price

index as Pjt, and Eit as nominal exchange rate. If the strong PPP hypothesis holds, we

have the equation Eit = Pit
Pjt

where we have suppress the dependence of Eit on j which is

typically fixed in panel studies. In the logarithmic form, we have eit = pit − pjt, where

eit = log(Eit), pit = log(Pit), and pjt = log(Pjt). Previous panel unit root tests are built

on the equation

eit = (pit − pjt) + uit, (14)

where uit stands for real exchange rate. The rejection of the null hypothesis that the pro-

cesses {uit, t > 1} are all nonstationary is regarded as evidence in favor of the validity of
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the long-run PPP or mean-reversion of real exchange rate. The most important assump-

tion in the strong PPP hypothesis is that there exists a one-to-one relationship between the

nominal exchange rates and aggregate price ratios. In practice the movements may not be

directly proportional, leading to the cointegrating slopes deviating away from unity. Pe-

droni (2004) modifies (14) by allowing for heterogeneous coefficients across individuals

and estimating the following long-run PPP hypothesis in weak version

eit = µi + βi(pit − pjt) + uit = µi + βi∆pij,t + uit, (15)

where βi is allowed to vary across countries and is expected to be positive, ∆pij,t =

βi(pit − pjt), and µi is the unobserved fixed effect for country i.

In our weak PPP model, we assume that βi exhibits the latent group structures stud-

ied in this paper. By pooling the slope coefficients within a group together, we can obtain

more efficient estimates than those obtained from a fully heterogeneous cointegrated panel

model. In addition, since our C-Lasso method is a data-driven method, we do not man-

ually assign different countries to different groups, which alleviates the sample selection

problem.

We obtain monthly and quarterly data of nominal exchange rate and consumer price

index (CPI) from Jan. 1975 to Jul. 2014 covering 99 countries from International Fi-

nancial Statistics. Here, we use CPI to represent the general price index. We choose the

time span from 1975 to 2014 to cover the post-Bretton Woods period. Given the fact that

Euro dollar was introduced to the global financial markets as an accounting currency on 1

January 1999, we consider two subsamples. We obtain a balanced panel with 67 countries

in the period 1975-1998 and another balanced panel with 99 countries in the period 1999-

2014. For the quarterly data, we have 91 time series periods in 1975Q.1-1998.Q4 and 55

times series periods in 1999.Q1-2014.Q2. For the monthly data, we have 283 time series

periods in period 1975.M1-1998.M12 and 172 times series periods in 1999.M1-2014.M7.

1.6.3 Group and estimation results

In this section, we present the classification and estimation results for the quarterly

data. The results for the monthly data are relegated to the online supplementary appendix.
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Table 5: The information criterion for different numbers of groups (quarterly data)

From 1975.Q1-1998.Q4 From 1999.Q1-2014.Q2

K/cλ 0.025 0.05 0.10 0.20 0.025 0.05 0.10 0.20

1 -0.7503 -0.7503 -0.7503 -0.7503 -0.2074 -0.2074 -0.2074 -0.2074
2 -1.1262 -1.1262 -1.1262 -1.0716 -0.4719 -0.4730 -0.4902 -0.4836
3 -1.1622 -0.7961 -1.0956 -0.7135 -0.5230 -0.5319 -0.5268 -0.4418
4 -0.7719 -0.7507 -0.7507 -1.0596 -0.5037 -0.4994 -0.4958 -0.3815
5 -0.7233 -0.7203 -0.6750 -0.6750 -0.4789 -0.4749 -0.3499 -0.2093
6 -0.6946 -0.6405 -0.6005 -0.6844 -0.4454 -0.4358 -0.3566 -0.1720

We determine the number of groups by using the information criterion (IC) proposed in

Section 4.5. Table 5 reports the information criterion with different tuning parameter

values: λ = cλ × T−3/4 where cλ = 0.025, 0.05, 0.1, and 0.2. Obviously, IC is robust

to the choice of tuning parameters. Following the majority rule, we decide to select K =

2 groups for the period 1975.Q1-1998.Q4 and K = 3 groups for the period 1999.Q1-

2014.Q2. Note that the IC is minimized at cλ = 0.1 and 0.05 for the first and second

subsamples respectively. We will choose cλ = 0.1 and 0.05 for these two subsamples

respectively and report the estimation results.

Table 6 reports the DPLS estimation results for the subsamples 1975.Q1-1998.Q4 and

1999.Q1-2014.Q2 by using cλ = 0.1 and 0.05, respectively. We summarize some impor-

tant findings from Table 6. First, the group-specific estimates vary a lot across groups,

which indicates strong unobserved heterogeneities in both subsamples. Second, both C-

Lasso estimate and its post-Lasso one for Group 1 are reasonably close to the unit in both

the first and second subsamples, which lends some positive support to the weak form long-

run PPP hypothesis. But the estimates in Group 2 in either subsamples suggest negative

long-run relationship between the price index difference and the exchange rate, which

contradicts the long-run PPP hypothesis. The estimate for Group 3 in the second subsam-

ple is positive and quite small in comparison with the unity, which suggests quite weak

proportional relation between the change in general price index and that of exchange rate.

Third, similar results are also observed for the monthly data, and the long-run relation

between nominal exchange rate and general price index presents similar patterns in either
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Table 6: Estimation results for the quarterly data

Panel A: From 1975.Q1-1998.Q4
Pool Group 1 Group 2
DOLS C-Lasso post-Lasso C-Lasso post-Lasso

βi 0.7465 0.8609 0.8608 -0.7007 -0.6992
(0.0207) (0.0190) (0.0190) (0.0857) (0.0857)

Panel B: From 1999.Q1-2014.Q2
Pool Group 1 Group 2 Group 3
DOLS C-Lasso post-Lasso C-Lasso post-Lasso C-Lasso post-Lasso

βi 0.3623 0.8667 0.8681 -0.5732 -0.5775 0.1986 0.1960
(0.0184) (0.0189) (0.0189) (0.0227) (0.0228) (0.0296) (0.0296)

subsample period. This indicates the robustness of our findings.

Table 7 summarizes the group classification results for the two subsamples; see also

Figure 1 for the classification results for the second subsample. Interestingly, we find that

the majority of the countries in the first subsample are classified into Group 1, which indi-

cates the long-run PPP holds for most countries in the period 1975.Q1-1998.Q4. During

this time span, we have only 68 countries in the dataset and some developing countries

like Argentina, Brazil, and Russia are excluded from our subsample due to the fact that

they have experienced hyperinflation. For the second subsample, we find even more in-

teresting results. Figure 1 suggests that those countries that support the long-run PPP

equilibrium are mainly located in Europe, Africa, middle East, and north American. The

members of Group 1 suggest a polarization of economic development. Further, we ob-

serve that most countries in Groups 2 and 3 are either fast-growing or middle-income

countries (e.g., South Korea, Singapore and Brazil) in the last decades in East-Asia and

South America. It confirms the Balassa-Samuelson effect, where the productivity differ-

entials are one of the most important factors behind the PPP deviation, see Balassa (1964)

and Samuelson (1964). In this case, countries with rapidly expanding economies should

tend to have more rapidly appreciating exchange rate. In general, our results suggest

heterogeneous behavior in the long-run PPP hypothesis.
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Table 7: Classification results for the quarterly data

Panel A: From 1975.Q1-1998.Q4
Group 1 (N1 = 62)

Algeria Australia Austria Bahrain Belgium
Bolivia Botswana Canada Colombia Costa Rica
Cyprus Denmark Dominican Egypt El Salvador
Finland France Ghana Greece Guatemala
Honduras Hungary Iceland India Indonesia
Iran Ireland Israel Italy Ivory Coast
Jamaica Japan Jordan Kenya South Korea
Luxembourg Malta Mauritius Mexico Morocco
Nepal Netherlands New Zealand Nigeria Norway
Pakistan Paraguay Philippines Portugal Singapore
South Africa Spain Sri Lanka Sudan Sweden
Switzerland Tanzania Thailand Trinidad and Tobago Turkey
Uruguay Venezuela

Group 2 (N2 = 5)
Ecuador Kuwait Malaysia Myanmar Saudi Arabia

Panel B: From 1999.Q1-2014.Q2
Group 1 (N1 = 49)

Angola Argentina Austria Bangladesh Belgium
Botswana Brunei Canada Costa Rica Denmark
Dominican Europe Finland France Germany
Ghana Honduras Iceland Iran Italy
Jamaica Japan Jordan Luxembourg Malawi
Mexico Mongolia Morocco Mozambique Netherlands
Nigeria Norway Pakistan Romania Saudi Arbia
Sri Lanka Sudan Sweden Switzerland Tanzania
Trinidad and Tobago Tunisia Turkey Uganda United Kingdom
Ukraine Venezuela Viet Nam Zambia

Group 2 (N2 = 23)
Albania Armenia Australia Bolivia Brazil
Bulgaria Colombia Congo Croatia El Salvador
Georgia Hungary Ireland Ivory Coast Kuwait
Latvia Macau Moldova New Zealand Peru
Philippines Spain Thailand

Group 3 (N3 = 27)
Algeria Cambodia Czech Republic Egypt Guatemala
Hong Kong India Indonesia Israel Kazakhstan
Kenya South Korea Kyrgyzstan Laos Lithuania
Macedonia Malaysia Mauritius Myanmar Nepal
Paraguay Poland Portugal Russia Singapore
South Africa Uruguay

Note: Countries in bold denote coincidences of the classification results based on the monthly and quarterly datasets.
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Figure 1: The geographic features of countries in the three groups in subsample 2 (1999-

2014)

1.7 Conclusion

In this paper we propose a C-Lasso-based PLS procedure to estimate a cointegrated

panel with latent group structures on the long-run cointegrating relationships. We al-

low for completely heterogeneous short-run dynamics but assume that long-run relation-

ships are homogeneous within a group and heterogeneous across different groups. Our

method can determine the individual’s group membership consistently and estimate the

parameters efficiently. To remove the asymptotic bias in the estimators of the long-run

parameters, we also consider the dynamic PLS procedure. Simulation results confirm the

asymptotic studies. An application to testing the validity of the long-run PPP hypothesis

suggests strong evidence of latent group structures.

There are several interesting topics for further research. First, we do not allow for

cross-sectional dependence in our model. In macro-econometrics, cross-sectional de-

pendence is frequently modelled via the multi-factor error structure (Pesaran, 2006) or

interactive fixed effects (Bai, 2009). Depending on whether we allow for unit-root be-

havior in the factors, different methods can be called upon (see, e.g., Bai and Ng, 2004;

Bai and Kao, 2006; Bai et al., 2009; Bai and Ng, 2010). But this certainly complicates
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the asymptotic analysis and deserves a separate treatment. Second, when the dimension

of the nonstationary variables is higher than 2, multiple cointegrating relationships may

exist. It is worthwhile to consider the panel vector error-correction model or likelihood-

based panel cointegration analysis in this case. We leave these topics for future research.
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2 Nonstationary Panel Models with Latent Group Struc-

tures and Cross-sectional Dependence

2.1 Introduction

Nonstationary panel models have been extensively used in empirical analyses. Their

asymptotic properties are well explored in classical settings, such as the assumptions of

common coefficients and independence across individuals. Although these assumptions

offer efficient estimation and simplify asymptotic theory, they are often hard to meet in

real-world economic problems. In one case, researchers often face the issue of unob-

served parameter heterogeneity that figures within models, including the “convergence

clubs” (Durlauf and Johnson (1995) and Quah (1997), the relation between income and

democracy (Acemoglu et al. (2008)), and the “resources curse” (Van der Ploeg (2011)).

In another case, globalization and international spillovers raise to a new challenge–cross-

sectional dependence. In general, these two features can substantially complicate asymp-

totic theory and statistical inference in nonstationary panels. The goal of this paper is to

simultaneously study the unobserved parameter heterogeneity and cross-sectional depen-

dence in nonstationary panel models. In the meanwhile, we seek to maintain simple and

efficient estimation.

In this paper, we consider a nonstationary panel model with latent group structures

and unobserved common factors. Specifically, we first assume that the long-run relation-

ships are heterogeneous across groups and homogeneous within a group. The unobserved

structures offer flexible parameter settings and remain efficiency from pooling within a

group. Moreover, there are economic intuitions for considering group patterns on the

long-run relationships. For example, the long-run equilibriums in growth regression share

some common features in subsamples, such as developing and developed countries, but

reveal distinct patterns across subsamples. Second, we employ factor structures to model

cross-sectional dependence. In our model, we typically consider both stationary and non-

stationary common factors. For example, an oil price shock and a global technology trend

both affect countries’ GDP level. A stock market shock and a macro-growth trend both
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affect security prices. In general, our framework allow us to fit more complex features to

the data in empirical applications.

A distinctive feature of our estimation is purely data-driven. We propose a penal-

ized principal component (PPC, hereafter) method, which can be regarded as iterative

procedures between penalized regression and principal component analysis. These esti-

mation procedures provide three Lasso-type estimators for long-run relationships, namely

C-Lasso, post-Lasso and Cup-Lasso (continuous-updated) estimators, and principal com-

ponent estimators for unobserved common factors. We take advantages of a growing

literature on Classifier-Lasso techniques (see Su et al. (2016), Qian and Su (2016) and

Su et al. (2017)) to build reliable computation algorithm in the presence of unobserved

common factors.

Our theoretical results are concerned with developing a limit theory for our Lasso-type

estimators. We first establish preliminary rates of convergence for the group-specific esti-

mators and unobserved common factors. Next, we show classification consistency, which

indicates that all individuals are classified into correct group with a probability approach-

ing one (w.p.a.1). Moreover, we find that our Lasso-type estimators have non-negligible

biases, which come from two sources. The first bias is commonly noted in nonstationary

panels due to weakly dependent error processes (see Phillips and Moon (1999)). The sec-

ond part comes from unobserved stationary common factors. We can further show that the

stationary common factors complicates both asymptotic biases and covariance structures

but don’t affect consistency of the long-run estimators. In post-Lasso and Cup-Lasso es-

timators, we employ a fully modified procedure for bias-correction, proposed by Phillips

and Hansen (1990). Therefore, our estimators are centered around zero and achieve the

usual
√
NT consistency in homogeneous nonstationary panel models. Furthermore, we

show the oracle property for our estimators, which are asymptotically equivalent to the

corresponding infeasible estimators, obtained by knowing the exact individuals’ group

membership. Lastly, we establish a mixed normal asymptotic distribution for our estima-

tors. Thus, the usual t, Wald and F statistics can be used for inference.

In above analyses, we assume the number of groups and that of common factors are

known. In practice, we propose three information criteria to determine the number of
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groups, the number of stationary common factors and the number of nonstationary com-

mon factors, respectively. We demonstrate that these information criteria can select the

correct number of groups and common factors w.p.a.1. In terms of simulation, we show

good finite sample performance for estimation and classification.

We illustrate the use of our methods by studying the heterogeneous behavior in in-

ternational R&D spillover model. Similar to Coe and Helpman (1995), we regress the

total factor productivity (TFP, hereafter) on domestic R&D capital stock and foreign

R&D capital stock. In existing work, there are two limitations in econometric meth-

ods. First, an important assumption underlying the original work is that all countries

obey a common linear specification. However, cross-countries productivity behavior typ-

ically reaches multiple steady states. In addition, recent work suggests two types of R&D

spillovers–positive technology spillovers and negative market rivalry effects (see Bloom

et al. (2013)). Therefore, a natural solution is to allow the parameters vary across coun-

tries and to reveal different spillover patterns. Second, variables like TFP and R&D stocks

apparently share some common patterns, such as global technology trends and financial

crisis shocks. In such cases, their regressions are misspecified and lead to inconsistent

estimates. Therefore, our econometric method yields a direct solution for these two prob-

lems, first, to introduce the latent group structures in parameters of interests and, second,

to estimate unobserved common patterns directly from data.

In the empirical application, we first confirm positive technology spillovers in pooled

sample after considering one common trend. Moreover, the group-specific estimates iden-

tify heterogeneous spillover patterns across countries. These results first indicates the ex-

istence of two types R&D spillovers–positive technology spillovers and negative market

rivalry effects in country level. Based on the group patterns, countries are classified into

three groups–“Convergence”, “Divergence”, and “Balance”. The major sources of tech-

nology changes in “Convergence” group come from positive technology diffusions. As

a result, the catch-up effects through the channel of technology diffusion favor growth

convergence hypothesis. Conversely, when market rivalry effects dominate technology

spillovers, we observe an overall negative R&D spillovers. For these countries, their tech-

nology growth rely on domestic innovations and exhibit divergence behavior. As a result,
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we explain the growth convergence puzzle by heterogeneous behavior in R&D spillovers.

A key contribution of this paper is offering a practical approach that accommodates

the unobserved heterogeneity and cross-sectional dependence in nonstationary panels.

We provide consistent and efficient estimators to the group-specific long-run relationships

even when individuals’ membership were unknown. The estimation method is similar to

that proposed by Su et al. (2016) (SSP, hereafter), but simultaneously accounts for cross-

sectional dependence. Recently several papers account for the unobserved heterogeneity

in large dimensional panel models by clustering and grouping, such as grouped fixed ef-

fects (Bonhomme and Manresa (2015)), structure breaks (Qian and Su (2016)), grouped

factor models (Ando and Bai (2016)). Almost all methods focus on stationary panel

models. Although Huang et al. (2017) consider the latent group patterns in cointegrated

panels, they do not allow for cross-sectional dependence. Relative to existing work, we

establish formal conditions and asymptotic properties under which the Lasso-type esti-

mators perform well in the sense of consistent estimates, good classification results and

faster convergence rates.

Our theoretical results also contributes to two strands of literature on cointegrated

panels and factor models. It is noted that the average and common long-run estimators

permit a normal asymptotic distributions. But the heterogeneous long-run estimators have

nonstandard asymptotics (see Phillips and Moon (1999), Kao and Chiang (2001), and

Pedroni (2004)). In this context, we maintain the simplicity of normal distribution with

unobserved parameter heterogeneity. In addition, there is a growing literature using factor

models to capture cross-sectional dependence under large N and large T settings (see Bai

and Ng (2002), Bai (2004), Phillips and Sul (2003), Pesaran (2006), Bai (2009), and Moon

and Weidner (2017)). Compared to existing work, we formally study the presence of both

stationary and nonstationary common factors. In addition, an appealing feature of our

econometric theory is to build a linkage between time series asymptotics for integrated

processes and advanced panel techniques. In this sense, the asymptotic results allow for

more general forms of panel data features and time series properties both in dependent

variables and common factors.

Our empirical work speaks to a long literature on growth convergence, in particu-
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lar the analyses of global technology diffusions (see Barro and Sala-i Martin (1992),

Quah (1996), Eaton and Kortum (2002), and Griffith et al. (2004)). For example, Barro

and Sala-i Martin (1997) theoretically confirm a uniform convergence behavior across

economies based on technology diffusions. However, Quah (1996) believes that eco-

nomic structures varies in many –explicable and inexplicable–ways across countries. In

addition, he argues the uniform convergence results may come from the misleading sta-

tistical implications of nonstationary time series. In this context, our empirical results

reconcile these two controversial arguments on growth convergence. We find that some

countries exhibit convergence but others fail, which is determined by the dominated ef-

fects in R&D spillovers.

This paper is structured as follows. Section 2 introduces a nonstationary panel model

with latent group structures and cross-sectional dependence and proposes a penalized

principal component method for estimation. Section 3 explains main assumptions and

establishes asymptotic properties of the three Lasso-type estimators. Section 4 reports

simulation results. Section 5 studies the heterogeneous behavior of international R&D

spillovers. Section 6 concludes. All proofs are relegated to the appendix.

NOTATION. Hereafter, we write the integral
∫ 1

0
W (s)ds as

∫
W and define Ω1/2 to

be any matrix such that Ω = (Ω1/2)(Ω1/2)′, and BM(Ω) to denote Brownian motion with

the covariance matrix Ω. For any m × n real matrix A, we write the Frobenius norm

‖A‖, the spectral norm ‖A‖sp, the transpose A′. The operator
p→ denotes convergence

in probability, ⇒ weak convergence, a.s. almost surely, and [x] the largest integer less

than or equal to x. When A is symmetric, we use µmax(A) and µmin(A) to denote its

largest and smallest eigenvalues, respectively. Let M <∞ be a generic positive number,

not depending on T or N . We also define the matrix that projects onto orthogonal space

of A as MA = IT − A(AA′)−1A′. Let 0p×1 denote a p × 1 vector of zeros and 1{·}

the indicator function. We use “p.d.” and “p.s.d.” to abbreviate “positive definite” and

“positive semidefinite”, respectively. Unless indicated explicitly, we use (N, T ) → ∞ to

stand for that N and T pass jointly to infinity.
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2.2 Model and Estimation

In this section, we first introduce a nonstationary panel model with latent group struc-

tures and cross-sectional dependence. Then we propose a penalized principal component

method to estimate the model.

2.2.1 Nonstationary panel model with latent group structures and cross-sectional

dependence

The generating processes of (yit, xit) are as followsyit = β0′
i xit + eit

xit = xit−1 + εit,

(16)

where yit is a scalar, xit is a p × 1 vector of nonstationary regressors of order one (I(1)

process) for all i, eit is an error term and assumed to be cross-sectionally dependent due

to unobserved common factors, εit is assumed to have zero mean and finite variance, and

β0
i is a p × 1 vector of unknown long-run cointegration relationships. We assume that βi

are heterogeneous across groups and homogeneous within a group. And we denote the

true values of βi as β0
i , to follow the latent group structures, such that

β0
i =


α0

1 if i ∈ G0
1

...
...

α0
K if i ∈ G0

K

, (17)

where α0
j 6= α0

k for any j 6= k,
⋃K
k=1G

0
k = {1, 2, . . . N}, and G0

k

⋂
G0
j = ∅ for any

j 6= k. Let Nk = #Gk denote the cardinality of the set G0
k. For the moment, we assume

that the number of group K is known and fixed but each individual’s group membership

is unknown. We propose a information criterion to determine the number of groups in

Section 3.6.

Since eit is cross-sectionally dependent, we impose a multi-factor structure on eit.

That is,

eit = λ0′
i f

0
t + uit = λ0′

1if
0
1t + λ0′

2if
0
2t + uit,
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where f 0
t is an r × 1 vector of unobserved common factors that contains an r1 × 1 vector

of nonstationary factors f 0
1t of order one (I(1) process) and an r2 × 1 vector of stationary

factors f 0
2t (I(0) process), λi is an r × 1 vector of factor loadings and uit is the idiosyn-

cratic component of eit with zero mean and long-run variance, which is assumed to cross-

sectionally independent. We emphasize that cross-sectional dependence only comes from

common factors ft such that eit and ejt are correlated due to common factors ft in the

form of E(eitejt) = λ′iE(ftf
′
t)λj 6= 0.

If ft only contains stationary factors, in some cases we can still obtain consistent

estimators of βi by a penalized least squares (PLS, hereafter) method when ignoring cross-

sectional dependence (see Huang et al. (2017)). However, if there are serial correlations

between dependent variable xit and unobserved common factors ft, ignoring those factors

ft yields biased inference for βi. Furthermore, the unobserved nonstationary factors lead

to inconsistency due to a spurious regression. In general, we fail to obtain consistent

and unbiased group-specific estimators by the PLS-based method in nonstationary panel

models with cross-sectional dependence.

Now we incorporate the multi-factor error structure to the first equation of (16) as

follows

yit = β0′
i xit + λ0′

i f
0
t + uit. (18)

Our estimation procedures are performed on model (18) by the penalized principal com-

ponent method, proposed in Section 2.2. Let

α ≡ (α1, ..., αK0), β ≡ (β1, ..., βN), Λ = (λ1, ..., λN)′, and f = (f1, ..., fT )′.

The true values of α, β,Λ and f are denoted as α0,β0,Λ0, and f 0, respectively. We also

use α0
k, β

0
i , λ

0
i and f 0

t denote the true value of αk, βi, λi and ft. Our interest is to infer

each individual’s group identity and obtain consistent estimators of both group-specific

long-run relationships αk and unobserved common factors ft.

2.2.2 Penalized principal component estimation

In this section, we propose an iterative PPC-based procedure to jointly estimate the

long-run relationships βi, unobserved common factors ft and to identify group member-
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ship. Here, we rewrite model (18) in vector form,

yi = xiβ
0
i + f 0λ0

i + ui = xiβ
0
i + f 0

1λ
0
1i + f 0

2λ
0
2i + ui, (19)

where f 0 = (f 0
1 , f

0
2 ), λ0

i = (λ0′
1i, λ

0′
2i)
′, yi = (yi1, ..., yiT )′, xi, f 0

1 , f 0
2 , and ui are anal-

ogously defined. As we discuss in Section 2.1, we can still obtain consistent estimates

of βi when ignoring unobserved stationary common factors. The principal component

estimators of βi and f 0
1 are obtained from the following least objective function

SSR(βi, f1,Λ1) =
N∑
i=1

(yi − xiβi − f1λ1i)
′(yi − xiβi − f1λ1i), (20)

subject to the constraint f
′
1f1
T 2 = Ir1 and Λ′1Λ1 being diagonal. Define the projection matrix

Mf1 = IT − Pf1 = IT − f1f ′1
T 2 . We can obtain the least squares estimator of βi for each

given f1 is

β̂i = (x′iMf1xi)
−1x′iMf1yi, for i = 1, ..., N.

Given βi, the variable ei = yi − xiβi = fλi + ui has a pure factor structure. Let e =

(e1, e2, ..., eN), a T ×N matrix and Λ1 = (λ11, ..., λ1N)′ a N × r1 matrix. We can obtain

the least squares objective function for f1, such that tr [(e− f1Λ′1)(e− f1Λ′1)′] . By Bai

(2009), we concentrate out Λ1 by its least square estimator, such that Λ1 = e′f1(f ′1f1)−1 =

e′f1/T
2. The objective function (20) becomes

tr (e′Mf1e) = tr(e′e)− tr
(
f ′1ee

′f1/T
2
)
.

The final least squares estimator (β̂, f̂1) is the solution of the set of nonlinear equations,

β̂i =
(
x′iMf̂1

xi

)−1 (
x′iMf̂1

yi

)
, (21)

f̂1V1,NT =

[
1

NT 2

N∑
i=1

(
yi − xiβ̂i

)(
yi − xiβ̂i

)′]
f̂1, (22)

where Mf̂1
= IT − 1

T 2 f̂1f̂
′
1, 1

T 2 f̂
′
1f̂1 = Ir1 , and V1,NT is a diagonal matrix consisting

of the r1 largest eigenvalues of the matrix inside the brackets, arranged in decreasing

order. Based on (21) and (22), we can further show that Λ̂′1Λ̂1 is a diagonal matrix with

descending diagonal elements as follows,

1

N
Λ̂′1Λ̂1 = T−2f̂ ′1

(
1

NT 2

N∑
i=1

(
yi − xiβ̂i

)(
yi − xiβ̂i

)′
f̂1

)
=
(
T−2f̂ ′1f̂1

)
V1,NT = V1,NT .
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Given the initial estimates of βi and f1 obtained from (21) and (22), we propose a

penalized principal component method to estimate β and α , where β exhibits the latent

group structures. The PPC criterion function is given by

Qλ,K
NT (β,α, f1) = QNT (β, f1) +

λ

N

N∑
i=1

K∏
k=1

‖βi − αk‖ (23)

where QNT (β, f1) = 1
NT 2

∑N
i=1 (yi − xiβi)′Mf1 (yi − xiβi) , λ = λ(N, T ) is the tuning

parameter. Minimizing the PPC criterion function in (23) produces the Classifier-Lasso

(C-Lasso, hereafter) estimators of βi and αk, respectively. Then we update the estimates

of the nonstationary common factors f1 as follows

f̂1V1,NT =

 1

NT 2

K∑
k=1

∑
i∈Ĝk

(yi − xiα̂k)(yi − xiα̂k)′
 f̂1. (24)

with the identification restrictions: 1
T 2 f̂

′
1f̂1 = Ir1 and V1,NT is a diagonal matrix with

descending diagonal elements. Since we allow for both stationary and nonstationary

common factors, we minimize the following equation to obtain consistent estimates of

stationary common factors f2,

f̂2V2,NT =

 1

NT

K∑
k=1

∑
i∈Ĝk

(yi − xiα̂k − f̂1λ̂1i)(yi − xiα̂k − f̂1λ̂1i)
′

 f̂2. (25)

with the identification restrictions: 1
T
f̂ ′2f̂2 = Ir2 and V2,NT is a diagonal matrix with de-

scending diagonal elements. After obtaining the estimates of f2, we apply bias-correction

in post-Lasso estimators of β and α. The biases emerge from the unobserved stationary

common factors, endogeneity, and serial correlation issues from weakly dependent error

terms.

Now we summarize the estimation procedures in the PPC-based estimation method.

We first obtain the prior estimates of β̂i and f̂1 by solving equations (21) and (22). Sec-

ond, we minimize the above PPC criterion function (23), which produces the C-Lasso

estimates β̂ and α̂. Third, with C-Lasso estimates of α, we update the estimates of non-

stationary common factor f1 by (24) and estimate stationary common factors f2 by (25).

Fourth, we apply bias-correction by a fully modified procedure in the post-Lasso estimator

of α, which is explained in Section 3.4. We iterate steps 2–4 until achieving convergence
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to obtain the Cup-Lasso estimators. Our estimators, which we refer to as “C-Lasso”,

“post-Lasso”, and “Cup-Lasso”, are based on the optimal group of cross-sectional indi-

viduals, according to the PPC criterion function. The triplet (β̂, α̂, f̂1) jointly minimizes

the objective function (23). Let β̂i and α̂k denote the ith and kth columns of β̂ and α̂,

respectively, i.e., β̂ ≡ (β̂1, ..., β̂N) and α̂ ≡ (α̂1, ..., α̂K). We study asymptotic properties

of the C-Lasso, post-Lasso and Cup-Lasso estimators below.

2.3 Asymptotic Theory

2.3.1 Main assumptions

In this subsection, we introduce main assumptions that are needed to study the asymp-

totic properties of our estimators β̂, α̂ and f̂1.

Let Qixx(f1) = 1
T 2x

′
iMf1xi, Q1(f1) =diag(Q1,xx, ..., QN,xx), and

Q2(f1) =


1

NT 2x
′
1Mf1x1a11

1
NT 2x

′
1Mf1x2a12 · · · 1

NT 2x
′
1Mf1xNa1N

1
NT 2x

′
2Mf1x1a21

1
NT 2x

′
2Mf1x2a22 · · · 1

NT 2x
′
2Mf1xNa2N

...
... . . . ...

1
NT 2x

′
NMf1x1aN1

1
NT 2x

′
NMf1x2aN2 · · · 1

NT 2x
′
NMf1xNaNN

 ,

where f1 satisfies 1
T 2f

′
1f1 = Ir1 . Note that Q2(f1) is an Np × Np matrix. Let wit =

(uit, ε
′
it,∆f

0′
1t , f

0′
2t , )

′. and C = σ(Λ, f) is the sigma algebra generated by factors and factor

loadings. Let M be a generic constant that can vary across lines.

We make the following assumptions on {wit} and {λi} .

Assumption 3.1 (i) For each i, {wit, t > 1} is a linear process: wit = φi(L)vit =∑∞
j=0 φijvi,t−j , where vit = (vuit, v

ε′
it , v

f1′
t , vf2′t )′ is a (1 + p + r1 + r2) × 1 vector se-

quence of i.i.d. random variables over t with zero mean and variance matrix I1+p+r;

max16i6N E(‖vit‖2q+ε) < M, where q > 4 and ε is an arbitrarily small positive constant;

vuit, v
ε
it, v

f1
t , and vf2t are mutually independent, and (vuit, v

ε′
it)
′ are independent across i.

(ii) max16i6N
∑∞

j=0 j
k‖φij‖ <∞ and |φi(1)| 6= 0 for some k > 2.

(iii) uit and εit are cross-sectionally independent conditional on C.

(iv) λi is independent of vjt for all i, j,and t.

Following Phillips and Solo (1992), we assume that {wit} = {wit, t > 1} is a linear

process in Assumption 3.1(i). For latter reference, we partition φi(L) conformably with
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wit as follows:

φi(L) =


φuui (L) φuεi (L) φuf1i (L) φuf2i (L)

φεui (L) φεεi (L) φεf1i (L) φεf2i (L)

φf1u(L) φf1ε(L) φf1f1(L) φ
f1f2 (L)

φf2u(L) φf2ε(L) φf2f1(L) φf2f2(L)

 =


φuui (L) φuεi (L) φuf1i (L) 0

φεui (L) φεεi (L) φεf1i (L) φεf2i (L)

0 0 φf1f1(L) φ
f1f2 (L)

0 0 φf2f1(L) φf2f2(L)

 .

(26)

Since both nonstationary and stationary common factors do not depend on i, we have

φf1u(L) = φf1ε(L) = φf2u(L) = φf2ε(L) = 0. Moreover, we assume that φuf2i (L) =

0. This assumption indicates that there exists no serial correlation or contemporaneous

correlation between the regression error uit and unobserved stationary common factors

f 0
2t, and it ensures consistency for our initial estimators. The finite 2q + ε moments for

q > 4 ensure the validity of the law of large numbers (LLN) and functional central limit

theory (FCLT) for the weakly dependent linear process {wit}. We frequently apply the

Beveridge and Nelson (BN) decomposition as follows

wit = φi(1)vit + w̃it−1 − w̃it,

where w̃it =
∑∞

j=0 φ̃ijvi,t−j and φ̃ij =
∑∞

s=j+1 φis. Assumption 3.1(ii) gives the summa-

bility conditions on the coefficients matrix φij . By Lemma (BN) in Phillips and Solo

(1992), we have
∑∞

j=1 j
k‖φij‖k < ∞ →

∑∞
j=0 ‖φ̃ij‖k < ∞, which implies that w̃it

has Wold decomposition and behaves like a stationary process. Specifically, we have∑∞
j=0

∥∥∥φ̃ij∥∥∥2

< ∞ under
∑∞

j=1 j
1/2‖φij‖ < ∞. The suitable choice of k ensures the

finite kth moment of w̃it. In our case, we need strong conditions to ensure the uniform

behavior across i. The second part of Assumption 3.1(ii) rules out potential cointegration

relationships among xit and f 0
1t. Assumption 3.1(iii) emphasizes that the cross-sectional

dependence only comes from the unobserved common factors. Assumption 3.1(iv) en-

sures that the factor loadings are independent of the generalization of the error processes

both over t and across i.

By Assumption 3.1, we have the multivariate invariance principle for the partial sum

process of wit. That is,

1√
T

[Tr]∑
t=1

wit ⇒ Bi(r) ≡ BMi(Ωi) as T →∞ for all i,
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where Bi = (B1i, B
′
2i, B

′
3, B

′
4)′ is a (1+p+ r1 + r2)×1 vector of Brownian motions with

long-run covariance matrix Ωi. We can also define the temporal variance Σi = E(wi0w
′
i0)

and the one-sided long-run covariance matrix ∆i =
∑∞

j=0 E(wi0w
′
ij) = Γi + Σi of {wit},

where Ωi has the following partition

Ωi =
∞∑

j=−∞

E(wijw
′
i0) = Γ′i + Γi + Σi =


Ω11,i Ω12,i Ω13,i Ω14,i

Ω21,i Ω22,i Ω23,i Ω24,i

Ω31,i Ω32,i Ω33 Ω34

Ω41,i Ω42,i Ω43 Ω44

 .

Let S1, S2, S3, and S4 denote respectively the 1×(1+p+r), p×(1+p+r), r1×(1+p+r)

and r2× (1 + p+ r), selection matrices such that S1wit = uit, S2wit = εit, S3wit = ∆f 0
1t,

and S4wit = f 0
2t.

Assumption 3.2 (i) As N →∞, 1
N

Λ0′Λ0 p→ Σλ > 0. max16i6N E‖λ0
i ‖2q 6 M for some

q > 4 and Λ0′
1 Λ0

2 = OP

(
N1/2

)
.

(ii) E‖∆f 0
1t‖2q+ε 6 M and E‖f 0

2t‖2q+ε 6 M for some ε > 0, q > 4 and for all t.

As T → ∞, 1
T 2

∑T
t=1 f

0
1tf

0′
1t

d→
∫
B3B3 and 1

T

∑T
t=1 f

0
2tf

0′
2t

p→ Σ44 > 0, where B3 is a

r1-vector of Brownian motions with long-run covariance matrix Ω33 > 0.

(iii) Let γN(s, t) = E( 1
N

∑N
i=1 uituis) and ξst = 1

N

∑N
i=1 uituis − E( 1

N

∑N
i=1 uituis).

Then max16s,t6T N
2 ×E|ξst|4 6M and T−1

∑T
s=1

∑T
t=1 ‖γN(s, t)‖2 6M.

(iv) There exists a constant ρmin > 0 such that P (min16i6N inff1 µmin (Q1(f1)− 2Q2(f1)) > cρmin) =

1− o(N−1), where the inf is taken respect to f1 such that 1
T 2f

′
1f1 = Ir1 .

Assumption 3.2(i)-(iii) imposes standard moment conditions in factor literature; see,

e.g., Bai and Ng (2002), Bai (2004). The last condition in Assumption 3.2(i) indicates that

the stationary factor loadings and the nonstationary factor loadings can be only weakly

correlated, which will greatly facilitate the derivation. Assumption 3.2(iii) imposes con-

ditions on error processes {uit}, which are adapted from Bai (2003) and allow for weak

forms of cross-sectional and serial dependence in error processes. Assumption 3.2(iv)

assumes Q1(f1) − 2Q2(f1) is positive definite in the limit across i when f1 satisfies the

restriction 1
T 2f

′
1f1 = Ir1 . This assumption is the identification condition for βi, which is

related to ASSUMPTION A in Bai (2009) (p.1241). Since f1 is to be estimated, the identi-

fication condition for βi is imposed on the set of f1 satisfying the restriction 1
T 2f

′
1f1 = Ir1 .
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Assumption 3.3 (i) For each k = 1, ..., K0, Nk/N → τk ∈ (0, 1) as N →∞.

(ii) min16k 6=j6K
∥∥α0

k − α0
j

∥∥ > cα for some fixed cα > 0.

(iii) As (N, T )→∞, N/T 2 → c1 ∈ [0,∞), T/N2 → c2 ∈ [0,∞).

(iv) As (N, T )→∞, λdT → 0, λTN−1/qd−2
T / (log T )1+ε →∞, and d2

TN
1/qT−1 (log T )1+ε →

0.

Assumption 3.3(i)-(ii) are borrowed from SSP. Assumption 3.3(i) implies that each

group has an asymptotically non-negligible number of individuals as N → ∞ and As-

sumption 3.3(ii) requires the separability of group-specific parameters. Similar conditions

are assumed in panel literature with latent group patterns, e.g., Bonhomme and Manresa

(2015), Ando and Bai (2016), Su and Ju (2017). Assumption 3.3(iii)-(iv) imposes con-

ditions to control the relative rates at which N and T pass to infinity. Note that N can

pass to infinity at a faster or slower rate than T . The involving of dT is due to the law of

iterated logarithm, such that dT = O(log log T ). One can verify that the range of values

for λ to satisfy Assumption 3.3(iv) is λ ∝ T−α for α ∈ (0, q−1
q

).

2.3.2 Preliminary rates of convergence

Let b̂i = β̂i−β0
i , δNT = min(

√
N, T ), CNT = min(

√
N,
√
T ), η2

NT = 1
N

∑N
i=1

∥∥∥b̂i∥∥∥2

,

and H1 = ( 1
N

Λ0′
1 Λ0

1)( 1
T 2f

0′
1 f̂1) ×V −1

1,NT . We establish the consistency of β̂i and f̂1 by the

following theorem.

Theorem 7 Suppose that Assumptions 3.1-3.2 hold. Then

(i) 1
N

∑N
i=1

(
β̂i − β0

i

)′
1
T 2x

′
iMf̂1

xi

(
β̂i − β0

i

)
= oP (1),

(ii)
∥∥∥Pf̂1 − Pf01∥∥∥ = oP (1),

(iii) 1
N

∑N
i=1 ‖β̂i − β0

i ‖2 = oP (1),

(iv) 1
T
‖f̂1 − f 0

1H1‖ = OP (ηNT ) + 1√
T
OP (C−1

NT ).

Theorem 7(i) establishes the weighted mean square consistency of {β̂i}. Theorem7(ii)

shows that the space spanned by the columns of f̂1 and f 0
1 are asymptotically the same.

Given the weighted mean square consistency and Assumption 3.2(iv), we can further

establish the non-weighted mean square consistency of βi in Theorem7(iii). As expected,

Theorem 7(iv) indicates that the true factor f 0
1 can only be identified up to a nonsingular
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rotation matrix. Compared to Bai and Ng (2004) and Bai et al. (2009), our results allow

for both heterogeneous slope coefficients and unobserved stationary and nonstationary

common factors.

The following theorem establishes the rate of convergence for the individual and

group-specific estimators and the estimated factors as well.

Theorem 8 Suppose that Assumptions 3.1-3.2 hold. Then

(i) 1
N

∑N
i=1 ‖β̂i − β0

i ‖2 = OP (dTT
−2),

(ii) β̂i − β0
i = OP (d

1/2
T T−1 + λ) for i = 1, 2, ..., N ,

(iii) (α̂(1), ..., α̂(K))−(α0
1, ..., α

0
K) = OP (dTT

−1) for some suitable permutation (α̂(1), ..., α̂(K))

of (α̂1, ..., α̂K),

(iv) T−1‖f̂1 − f 0
1H1‖2 = OP (N−1 + d2

TT
−1).

Theorem 8(i)-(ii) establishes the mean-square and point-wise convergence of the slope

coefficients βi, respectively. The usual super consistency of nonstationary estimators β̂i is

preserved if λ = O(T−1) despite the fact that we ignore unobserved stationary common

factors and allow for correlations between uit and (xit, f
0
1t). Theorem 8(iii) indicates that

the group-specific parameters, α0
1, ..., α

0
K0
, can be consistently estimated. Theorem 8(iv)

updates the convergence rate of the unobserved nonstationary factors in Theorem 7(iv).

For notational simplicity, hereafter we simply write α̂k for α̂(k) as the consistent esti-

mator of α0
k’s. Let Ĝk = {i ∈ {1, 2, ..., N} : β̂i = α̂k} for k = 1, ..., K. Let Ĝ0 denote

the group of individuals in {1, 2, ..., N} that are not classified into any of the K groups.

2.3.3 Classification consistency

In this subsection, we study the classification consistency. Define

ÊkNT,i = {i 6∈ Ĝk|i ∈ G0
k} and F̂kNT,i = {i 6∈ G0

k|i ∈ Ĝk},

where i = 1, ..., N and k = 1, ...K0. Let ÊkNT = ∪i∈ĜkÊkNTi and F̂kNT = ∪i∈ĜkF̂kNTi.

The events ÊkNT and F̂kNT mimic Type I and Type II errors in statistical tests. Following

SSP, we say that a classification method is individual consistent if P (ÊkNT,i) → 0 as

(N, T ) → ∞ for each i ∈ G0
k and k = 1, ..., K, and P (F̂kNT,i) → 0 as (N, T ) → ∞
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for each i ∈ G0
k and k = 1, ..., K. It is uniformly consistent if P (∪Kk=1ÊkNT ) → 0 and

P (∪Kk=1F̂kNT )→ 0 as (N, T )→∞.

The following theorem establishes the uniform classification consistency.

Theorem 9 Suppose that Assumptions 3.1-3.3 hold. Then

(i) P (∪K0
k=1ÊkNT ) 6

∑K0

k=1 P (ÊkNT )→ 0 as (N, T )→∞,

(ii) P (∪K0
k=1F̂kNT ) 6

∑K0

k=1 P (F̂kNT )→ 0 as (N, T )→∞.

Theorem 9 implies the uniform classification consistency– all individuals within a

certain group, say G0
k, can be simultaneously correctly classified into the same group

(denoted Ĝk) w.p.a.1. Conversely, all individuals that are classified into the same group,

say Ĝk, simultaneously belong to the same group (G0
k) w.p.a.1.

2.3.4 Oracle properties, post-Lasso and Cup-Lasso estimators

In this subsection, we study oracle properties of PPC-based estimators. To proceed,

we add some notations. For k = 1, ..., K, we define

UkNT =
1√
NkT

∑
i∈G0

k

xiMf01

((
ui + f 0

2λ
0
2i

)
− 1

N

N∑
j=1

(
uj + f 0

2λ
0
2j

)
aij

)
,

BkNT,1 =
1√
NkT

∑
i∈G0

k

(
T∑
t=1

T∑
s=1

[1 {t = s} − κts1 {s 6 t}]

)
∆21,i,

BkNT,2 =
1√
NkT

∑
i∈G0

k

EC (xi)
′Mf01

f 0
2

(
λ0

2i −
1

N

N∑
j=1

λ0
2jaij

)
,

VkNT =
1√
NkT

∑
i∈G0

k

Sεφ†i (1)
T∑
t=1

T∑
s=1

{κ̄ts (V uε
it v

uε′
is )− [1 {t = s} − κts1 {s 6 t}] I1+p}φ†i (1)′Su′

+
1√
NkT

N∑
i=1

EC (x′i)1
{
i ∈ G0

k

}
− 1

N

∑
j∈G0

k

aijEC(x
′
j)

Mf01
ui

+
1√
NkT

∑
i∈G0

k

[xi − EC (xi)]
′Mf01

f 0
2λ

0
2i,

where κts = f 0′
1t(f

0′
1 f

0
1 )−1f 0

1s, κ̄ts = 1 {t = s} − κts, C = σ (Λ0, f 0) , EC (·) = EC (·|C) ,

φ†i (L) =

(
φu†i (L)

φε†i (L)

)
=

(
φuui (L) φuεi (L)

φεui (L) φεεi (L)

)
, Su = (1, 01×p) , and Sε = (0p×1, Ip) .
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Let

Q1NT = diag

 1

N1T 2

∑
i∈G0

1

x′iMf01
xi, . . . ,

1

NKT 2

∑
i∈G0

K

x′iMf01
xi

 ,

Q2NT =

 Q2NT,11 · · · Q2NT,1K

... . . . ...
Q2NT,K1 · · · Q2NT,KK


where Q2NT,kl = 1

NkNT 2

∑
i∈G0

k

∑
j∈G0

l
x′iMf01

xjaij for k, l = 1, ..., K. Let

QNT = Q1NT−Q2NT and Q0 =


Q1,1 −Q2,11 −Q2,12 . . . −Q2,1K

−Q2NT,21 Q1,2 −Q2,22 . . . −Q2,2K

...
... . . . ...

−Q2,K1 −Q2,K2 . . . Q1NT,K −Q2,KK

 ,

where

Q1,k = lim
N→∞

1

Nk

∑
i∈G0

k

EC

(∫
B̃2iB̃

′
2i

)
,

Q2,kl = lim
N→∞

1

NNk

∑
i∈G0

k

∑
j∈G0

l

aijEC

(∫
B̃2,iB̃2,j

)
,

B̃2i =B2,i −
∫
B2,iB

′
3

(∫
B3B

′
3

)−1

B3.

Let α̂ = (α̂1, ..., α̂K). Let UNT = (U ′1NT , . . . , U
′
KNT )′ , BNT = (B′1NT , . . . , B

′
KNT )′ ,

VNT = (V ′1NT , . . . , V
′
KNT )′ andBkNT = BkNT,1 +BkNT,2. The following theorem reports

the Bahadur-type representation and asymptotic distribution of vec(α̂−α0).

Theorem 10 Suppose that assumptions 3.1-3.3 hold and
√
N = o (T ). Let α̂k be ob-

tained by solving (23). Then

(i)
√
NT vec(α̂−α0) =

√
DNQ

−1
NTUNT +oP (1) =

√
DNQ

−1
NT (VNT +BNT )+oP (1),

(ii)
√
NT vec(α̂ − α0) −

√
DNQ

−1
NTBNT ⇒ MN(0, limN→∞DNQ

−1
0 Ω0Q

−1
0 ) as

(N, T )→∞,

where DN =diag
(
N
N1
, ..., N

NK

)
, Ω0 = lim(N,T )→∞ΩNT , and ΩNT =Var(VNT |C) .

Theorem 10 indicates that VNT and BNT are associated with the asymptotic variance

and bias of α̂k’s, respectively. Note that BkNT = BkNT,1 + BkNT,2, which indicates

two sources of biases. The appearance of BkNT,1 results from the correlation between
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(xit, f1t) and uit and the serial correlation among the innovation process {wit}. Appar-

ently, the presence of unobserved nonstationary factors f 0
1t complicates the formula for

BkNT,1 through the term κts(= f 0′
1t(f

0′
1 f

0
1 )−1f 0

1s). The second source of asymptotic bias

is due to unobserved stationary factors f 0
2t so that BkNT,2 = 0 if f 0

2t is absent from the

model. In the special case where neither f 0
1t nor f 0

2t is present in the model, we have

BkNT = BkNT,1 = 1√
Nk

∑
i∈G0

k
∆21,i. This is the usual bias term for panel cointegration

regression that is associated with the one-sided long-run covariance; see Phillips (1995)

and Phillips and Moon (1999). Note that the ith element of VNT is independent across

i conditional on C and EC (VNT ) = 0. This makes it possible for us to derive a version

of conditional CLT for VNT and establish the limiting distribution of our estimators α̂ in

10(ii).

As we show in the proof of Theorem 10, the asymptotic bias term BNT is of O(
√
Nk),

which implies T -consistency of the C-Lasso estimators α̂k. In order to obtain the
√
NT -

convergence rate, we call upon various procedures to remove the asymptotic bias by con-

structing consistent estimates of BNT .

The fully modified procedure

In this subsection, we first obtain the estimates of unobserved stationary factors f 0
2t

from (25). Then we employ a fully modified procedure of Phillips and Hansen (1990) and

Phillips (1995) to make bias-corrections for endogeneity and serial correlation. Below

we consider the three types of bias-corrected estimators: the bias-corrected post-Lasso

estimator α̂bc
Ĝk

, the fully-modified post-Lasso estimator α̂fm
Ĝk
, and the fully-modified Cup-

Lasso estimator α̂cup
Ĝk

.

Following Phillips (1995), we first construct consistent time series estimators of the

long-run covariance matrix Ωi and the one-sided long-run covariance matrix ∆i by

Ω̂i =
T−1∑

j=−T+1

ω

(
j

H

)
Γ̂i(j), and ∆̂i =

T−1∑
j=0

ω

(
j

H

)
Γ̂i(j),

where ω(·) is a kernel function,H is the bandwidth parameter, and Γ̂i(j) = 1
T

∑T−j
t=1 ŵit+jŵ

′
it

with ŵit = (ûit,∆x
′
it,∆f̂

′
1t, f̂

′
2t)
′. We partition Ω̂i and ∆̂i conformably with Ωi.

We make the following assumption on the kernel function and bandwidth.
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Assumption 3.4 (i) The kernel function ω(·): R → [−1, 1] is a twice continuously dif-

ferentiable symmetric function such that
∫∞
−∞ ω(x)2dx 6 ∞, ω(0) = 1, ω(x) = 0 for

|x| > 1, and lim|x|→1 ω(x)/(1− |x|)q = c > 0 for some q ∈ (0,∞).

(ii) As (N, T )→∞, N/H2q → 0 and H/T → 0.

We modify the variable yit with the follow transformation to correct the endogeneity

ŷ+
it = yit − Ω̂12,iΩ̂

−1
22,i∆xit. (27)

This would lead to the modified equation ŷ+
it = β0′

i xit + λ0′
1if

0
1t + λ0′

2if
0
2t + û+

it , where

û+
it = uit − Ω̂12,iΩ̂

−1
22i∆xit. Define

∆̂+
12,i = ∆̂12,i − Ω̂12,iΩ̂

−1
22i∆̂22,i. (28)

By Phillips (1995), (27) and (28) give correction for endogeneity and serial correlation,

respectively.

Therefore, we can obtain the bias-correction post-Lasso estimator α̂bc
Ĝ
, fully modified

post-Lasso estimator α̂fm
Ĝk

, and the updated estimators of f̂1 and f̂2 by iteratively solving

(29)-(32), such that

vec
(
α̂bc
Ĝ

)
= vec (α̂)− 1√

NT

√
DNQ

−1
NT

(
B̂NT,1 + B̂NT,2

)
, (29)

α̂fm
Ĝk

=

∑
i∈Ĝk

x′iMf̂1
xi

−1∑
i∈Ĝk

x′iMf̂1
ŷ+
i − T

√
Nk

(
B̂+
kNT,1 + B̂kNT,2

) ,

(30)

f̂1V1,NT =

 1

NT 2

K∑
k=1

∑
i∈Ĝk

(ŷi − xiα̂fmĜk )(ŷi − xiα̂fmĜk )′

 f̂1, (31)

f̂2V2,NT =

 1

NT

K∑
k=1

∑
i∈Ĝk

(ŷi − xiα̂fmĜk − f̂1λ̂1i)(ŷi − xiα̂fmĜk − f̂1λ̂1i)
′

 f̂2, (32)

where B̂kNT,1 = 1√
NkT

∑
i∈Ĝk

(∑T
t=1

∑t
s=1

ˆ̄κts
)

∆̂21,i, B̂
+
kNT,1 = 1√

NkT

∑
i∈Ĝk

(∑T
t=1

∑t
s=1

ˆ̄κts
)

∆̂+
21,i,

B̂kNT,2 = 1√
NkT

∑
i∈Ĝk

(∑T
t=1

∑t
s=1

ˆ̄κts
)

∆̂24,i
ˆ̄λ2i, ˆ̄κts = 1 {t = s}−κ̂ts,κ̂ts = f̂ ′1t(f̂

′
1f̂1)−1f̂1s =

f̂ ′1tf̂1s/T
2 and ˆ̄λ2i = λ̂2i − 1

N

∑N
j=1 λ̂2j âij. We obtain the fully modified Cup-Lasso esti-

mators α̂cup
Ĝk

by iteratively solving (23), and (30)-(32), where we update the group classi-

fication results in each iteration.
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Let α̂fm
Ĝ

= (α̂fm
Ĝ1
, ..., α̂fm

ĜK
) and α̂cup

Ĝ
= (α̂cup

Ĝ1
, ..., α̂cup

ĜK
). We establish the limiting

distribution of the bias-correction post-Lasso estimators α̂bc
Ĝ
, the fully modified post-Lasso

estimators α̂fm
Ĝ

and the Cup-Lasso estimators α̂cup
Ĝ

by the following theorem.

Theorem 11 Suppose that assumptions 3.1-3.4 hold. Let α̂bc
Ĝ

be obtained by iteratively

solving (29), (31)-(32), α̂fm
Ĝ

be obtained by iteratively solving (30)-(32) and α̂cup
Ĝ

be

obtained by iteratively solving (23) and (30)-(32). As (N, T )→∞ with
√
N = o (T ), we

have

(i)
√
NT vec(α̂bc

Ĝ
−α0)⇒MN(0, limN→∞DNQ

−1
0 Ω0Q

−1
0 ),

(ii)
√
NT vec(α̂fm

Ĝ
−α0)⇒MN(0, limN→∞DNQ

−1
0 Ω+

0 Q
−1
0 ),

(iii)
√
NT vec(α̂cup

Ĝ
−α0)⇒MN(0, limN→∞DNQ

−1
0 Ω+

0 Q
−1
0 ),

where Ω+
0 = limN,T→∞Ω+

NT and Ω+
NT =Var

(
V +
NT |C

)
.

All three types of estimators achieve
√
NT consistency and have a mixed normal

asymptotic distribution. One can construct the asymptotic t-tests and Wald-tests as usual

provided one can obtain consistent estimates of Q0 and Ω+
0 . The procedure is standard

given the estimated group structure.

2.3.5 Estimating the number of unobserved factors

In the previous subsections, we assume that the numbers of nonstationary and station-

ary factors, r1 and r2, are known. In this subsection, we introduce two information criteria

to determine the number of unobserved factors before the PPC estimation procedure. Let

r1 denote a generic number of nonstationary factors. Let r denote a generic total number

of nonstationary and stationary factors. We now use r0
1 and r0 to denote their true values,

which are assumed to be bounded above by a finite integer rmax.

Bai et al. (2009) find that it is not necessary to distinguish I(0) and I(1) factors when

one tries to determine the total number of factors based on the first differenced model.

After the first differencing, (18) takes the form

∆yit = β0′
i ∆xit + λ0′

i ∆f 0
t + ∆uit, t = 2, ..., T, (33)

where e.g., ∆yit = yit − yi,t−1. Since the true dimension r0 is unknown, we start with a

model with r unobservable common factors. We now write the factors and factor loadings
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respectively as f rt and λri , where the superscript r highs the dimension of the underlying

factors or factor loadings. Let Gr ≡ ∆f r be a matrix of (T − 1)× r unobserved differ-

enced factors with a typical row given by (Gr
t )
′ ≡ (∆f rt )′. We consider the minimization

problem {
Ĝr, Λ̂r

}
= arg min

Λr,Gr

1

NT

N∑
i=1

T∑
t=2

(∆yit − β̂′i∆xit − λr′i Gr
t )

2,

s.t. Gr′Gr/T = Ir and Λr′Λr is diagonal,

where Ĝr = (Ĝr′
2 , ..., Ĝ

r′
T )′, Λ̂r = (λ̂r′1 , ..., λ̂

r′
N)′, and β̂i’s are obtained from the model

with r1 = rmax nonstationary factors. It is easy to show that β̂i’s are T -consistent, which

suffices for our purpose. It is well known that given Ĝr, we can solve Λ̂r from the least

squares regression as a function of Ĝr. But we will suppress the dependence of Λ̂r on Ĝr

and define V1(r, Ĝr) = 1
NT

∑N
i=1

∑T
t=2(∆yit − β̂′i∆xit − λ̂r′i Ĝr

t )
2. Following Bai and Ng

(2002), we consider the following information criterion

IC1(r) = log V1(r, Ĝr) + rg1(N, T ), (34)

where g1(N, T ) is a penalty function. Let r̂ = arg min06r6rmax IC1(r). We add the

following assumption.

Assumption 3.5 As (N, T ) → ∞, g1(N, T ) → 0 and C2
NTg1(N, T ) → ∞, where

CNT = min(
√
N,
√
T ).

Assumption 3.5 is common in the literature. It requires that g1(N, T ) pass to zero at

certain rate so that both over- and under-fitted models can be eliminated asymptotically.

The following theorem demonstrates that we can apply IC1(r) to consistently estimate

r0.

Theorem 12 Suppose that Assumptions 3.1-3.3 and 3.5 hold. Then P (r̂ = r0) → 1 as

(N, T )→∞.

Theorem 12 indicates that we can determine the total number of factors r0 consistently

by minimizing IC1(r).

As we have discussed in Section 3.4, ignoring the unobserved stationary factors will

not affect the consistency of slope coefficient estimator, but generate a bias term that
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is asymptotically non-negligible. For this reason, it is important to distinguish between

nonstationary and stationary factors. Fortunately, it is possible to estimate the number of

unobserved nonstationary factors, r0
1, consistently based on the level data. Once we obtain

the consistent estimate of r0
1, we can also obtain the consistent estimate of the number of

unobserved stationary factors, r0
2, based on Theorem 12.

Let f r11 be a matrix of T × r1 nonstationary factors and λr11i be an r1 × 1 vector of

nonstationary factor loadings. Given the preliminary T -consistent estimators β̂i’s, we

consider the following minimization problem{
f̂ r11 , Λ̂

r1
}

= arg min
Λr1 ,f

r1
t

1

NT

N∑
i=1

T∑
t=1

(yit − β̂′ixit − λ
r1′
i f

r1
1t )2,

s.t. f r1′1 f r11 /T
2 = Ir1 and Λr1′Λr1 is diagonal.

Given f̂ r11 = (f̂ r1′11 , ..., f̂
r1′
1T )′, we can solve Λ̂r1 = (λ̂r1′11 , ..., λ̂

r1′
1N)′ as a function of f̂ r11

through the least squares regression. But we suppress the dependence of Λ̂r1 on f̂ r11 and

define

V2(r1, f̂
r1
1 ) =

1

NT

N∑
i=1

T∑
t=1

(yit − β̂′ixit − λ̂
r1′
i f̂

r1
1t )2.

We consider the information criterion:

IC2(r1) = log V2(r1, f̂
r1
1 ) + r1g2(N, T ), (35)

where g2(N, T ) is a penalty function. Let r̂1 = arg min06r16rmax IC2(r1). We add the

following condition.

Assumption 3.6 As (N, T )→∞, g2(N, T ) log log(T )
T

→ 0 and g2(N, T )→∞.

Apparently, the conditions on g2(N, T ) are quite different from the conventional con-

ditions for the penalty function used in information criteria in the stationary framework

(e.g., g1(N, T ) in Assumption 3.5). In particular, we now require that g2(N, T ) diverge

to infinity rather than converge to zero as in Assumption 3.5. The intuition is that the

mean squared residual, V2(r1, f̂
r1
1 ), does not have a finite probability limit when the

number of nonstationary common factors is under-specified. In fact, we can show that
log log T

T
V2(r1, f̂

r1
1 ) converges in probability to a positive constant when 0 6 r1 < r0

1. On

the other hand, we have V2(r1, f̂
r1
1 )− V2(r0

1, f̂
r01
1 ) = OP (1) when r1 > r0

1.
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The following theorem suggests that the use of IC2(r1) helps to determine r0
1 consis-

tently.

Theorem 13 Suppose that Assumptions 3.1-3.3 and 3.6 hold. Then P (r̂1 = r0
1) → 1 as

(N, T )→∞.

In the simulations and applications below, we simply follow Bai and Ng (2002) and

Bai (2004) and set

g1(N, T ) =
N + T

NT
ln
(
C2
NT

)
and g2(N, T ) = αTg1(N, T ),

where αT = T
4 log log(T )

. We first estimate the total number of unobserved factors by r̂

based on the first-differenced model, and then estimate the number of unobserved non-

stationary factors by r̂1 based on the level model. The estimator of r0
2 is then given by

r̂2 ≡ r̂ − r̂1.

2.3.6 Determination of the number of groups

In this subsection, we propose a BIC-type information criterion to determine the num-

ber of groups, K. We assume that the true number of group, K0, is bounded from above

by a finite integer Kmax. We now consider the PPC criterion function

QK
NT,λ(β,α, f1) = QNT (β, f1) +

λ

N

N∑
i=1

K∏
k=1

‖βi − αk‖,

where 1 6 K 6 Kmax. By minimizing the above criterion function, we obtain the

estimates β̂i(K,λ), α̂k(K,λ), λ̂1i(K,λ) and f̂1t(K,λ) of β0
i , α

0
k, λ

0
i and f 0

1t, where we

make by the β̂i, α̂k, λ̂1i and f̂1t on (K,λ) explicit. Let Ĝk(K,λ) = {i ∈ {1, 2, ..., N} :

β̂i(K,λ) = α̂k(K,λ)} for k = 1, ..., K, and Ĝ(K,λ) = {Ĝ1(K,λ), ..., ĜK(K,λ)}. Let

α̂cup
Ĝk(K,λ)

denote the Cup-Lasso estimate of α0
k. Define

V3(K) =
1

NT

K∑
k=1

∑
i∈Ĝk(K,λ)

T∑
t=1

[
yit − α̂cup′Ĝk(K,λ)

xit − λ̂1i(K,λ)′f̂1t(K,λ)
]2

.

Following SSP and Lu and Su (2017), we consider the following information criterion

IC3(K,λ) = log V3(K) + pKg3(N, T ), (36)
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where g3(N, T ) is a penalty function. Let K̂(λ) = arg min16K6Kmax GIC(K,λ).

Let G(K) = (GK,1, ..., GK,K) be anyK-partition of the set of individual index {1, 2, ..., N}.

Define σ̂2
G(K) = 1

NT

∑K
k=1

∑
i∈ĜK,k

∑T
t=1[yit − α̂cup′

ĜK,k
xit − λ̂i(K,λ)′f̂t(K,λ)]2, where

α̂cup
ĜK,k

is analogously defined as α̂cup
Ĝk(K,λ)

with Ĝk(K,λ) being replaced by GK,k. Let

σ2
0 =plim(N,T )→∞

1
NT

∑N
i=1

∑
i∈G0

k

∑T
t=1[yit − α0′

k xit − λ0′
i f

0
t ]2. Define

νNT =


(NT )−1/2 when there is no unobserved common factor,

δ−1
NT when there are only unobserved nonstationary common factors,

C−1
NT when there are both unobserved nonstationary and stationary common factors.

νNT indicates the effect of estimating the nonstationary panel on the use of IC3(K,λ)

under different scenarios.

We add the following assumption.

Assumption 3.7 (i) As (N, T )→∞, min16K<K0 infG(K)∈GK σ̂
2
G(K)

p→ σ2 > σ2
0.

(ii) As (N, T )→∞, g3(N, T )→ 0 and g3(N, T )/ν2
NT →∞.

Assumption 3.7(i) requires that all under-fitted models yield asymptotic mean square

errors larger than σ2
0 , which is delivered by the true model. Assumption 3.7(ii) imposes

the typical conditions on the penalty function g3(N, T ) : it cannot shrink to zero either

too fast or too slowly.

The following theorem justifies the validity of using IC3 to determine the number of

groups.

Theorem 14 Suppose that Assumption 3.1-3.4 and 3.7 hold. Then P (K̂(λ) = K0) → 1

as (N, T )→∞.

Theorem 14 indicates that as long as λ satisfies Assumption 3.3(iv) and g3(N, T )

satisfies Assumption 3.7(ii), we have inf16K6Kmax,K 6=K0 IC3(K,λ) > IC3(K0, λ) as

(N, T ) → ∞. Consequently, the minimizer of IC3(K,λ) with respect to K equals K0

w.p.a.1 for a variety choices of λ.
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2.4 Monte Carlo Simulations

In this section, we evaluate the finite sample performance of the C-Lasso, bias-corrected

post-Lasso, fully-modified post-Lasso and Cup-Lasso estimators and that of the informa-

tion criteria for determining the number of groups and the number of common factors.

2.4.1 Data generating processes

We consider four data generating processes (DGPs) that cover the cases of both sta-

tionary and nonstationary unobserved common factors. Throughout these DGPs, the ob-

servations in each DGP are drawn from three groups with N1 : N2 : N3 = 0.3 : 0.4 : 0.3.

There are four combinations of the sample sizes with N = 50, 100 and T = 40, 80.

DGP1 (Strictly exogenous nonstationary regressors and unobserved stationary common

factors) The observations (yit, x
′
it) are generated from the following model,yit = β′ixit + c2(λ′2if2t) + uit

xit = xit−1 + εit

(37)

where xit = (x1it, x2it)
′ is a 2× 1 vector of nonstationary regressors, f2t is a 2× 1 vector

of stationary common factors. Let wit = (uit, ε
′
it, f

′
2t)
′ ∼ i.i.d. N(0, I5). The factor

loadings λ2i are i.i.d. N((1, 1)′, I2) for i = 1, ..., N . We use c to control the importance of

unobserved common factors and let c2 = 0.5. The long-run slope coefficients βi exhibits

the group-structure in (17) for K = 3 and the true values are

(α0
1, α

0
2, α

0
3) =

((
0.4

1.6

)
,

(
1

1

)
,

(
1.6

0.4

))
.

DGP2 (Weakly dependent nonstationary regressors and unobserved nonstationary com-

mon factors) The observations (yit, x
′
it, f

′
1t) are generated from the following model,

yit = β0′
i xit + c1(λ′1if1,t) + uit

xit = xit−1 + εit

f1t = f1t−1 + νt

(38)

where xit = (x1it, x2it)
′ is a 2× 1 vector of nonstationary regressors, f1t is a 2× 1 vector

of nonstationary common factors. The idiosyncratic errors wit = (uit, ε
′
it,∆f

′
1t)
′ are
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generated from a linear process: wit =
∑∞

j=0 ψijvi,t−j , where vit are i.i.d. N(0, I5), ψij =

j−3.5 ∗Ω1/2, Ω1/2 is the symmetric square root of Ω, where Ωlm = 0.2 for l 6= m, Ωll = 1

for l = 2, 3, 4, 5 and Ω11 = 0.25. Let c1 = 1. The factor loadings of nonstationary

common factors are i.i.d. λ1i ∼ N((1, 1)′, I2). The true coefficients of βi are the same in

DGP1.

DGP3 (Weakly dependent nonstationary regressors and mixed unobserved stationary and

nonstationary common factors) The observations (yit, x
′
it, f

′
1t) are generated from the fol-

lowing model, 
yit = β′ixit + c1(λ′1if1t) + c2(λ′2if2t) + uit

xit = xit−1 + εit

f1t = f1t−1 + νt

(39)

where xit = (x1it, x2it)
′ is a 2 × 1 vector of nonstationary regressors, f1t is a 2 × 1

vector of nonstationary common factors, and f2t contains one stationary common factors.

The idiosyncratic errors wit = (uit, ε
′
it,∆f

′
1t, f

′
2t)
′ are generated from a linear process:

wit =
∑∞

j=0 ψijvi,t−j where vit are i.i.d. N(0, I6), ψij = j−3.5∗Ω1/2, Ω1/2 is the symmetric

square root of Ω where Ωlm = 0.2 for l 6= m, Ω11 = 0.25, and Ωll = 1 for l = 2, ..., 6. Let

c1 = 1 and c2 = 0.5. The factor loadings λi = (λ′1i, λ
′
2i)
′ are i.i.d. λ1i ∼ N((1, 1, 1)′, I3).

The true coefficients of βi are the same in DGP1.

DGP4 (Weakly dependent nonstationary regressors and mixed unobserved stationary and

nonstationary common factors) The settings of DGP4 is the same with those of DGP3,

except for allowing weakly correlation among factor loadings λi ∼ i.i.d. N((1, 1, 1)′, I3 ∗

Ω2), where Ω2,lm = 2/
√
N for l 6= m.

In all cases, the number of replications is 500.

2.4.2 Estimate number of unobserved factors

In this subsection, we assess the performance of two information criteria proposed

in Section 3.5 before determining the number of group and PPC-based estimation pro-

cedure. We choice the BIC-type penalty function g1(N, T ) = N+T
NT

log(min(N, T )) to

determine the total number of unobserved factors and g2(N, T ) = T
4 log(log(T ))

× g1(N, T )
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Table 8: Frequency for selecting r = 1, 2, ..., 5 total factors and r1 = 0, 1, ..., 4 nonsta-

tionary factors

Differenced Data Level Data
N T r = 1 r = 2 r = 3 r = 4 r = 5 r1 = 0 r1 = 1 r1 = 2 r1 = 3 r1 = 4

DGP1 50 40 0 1.000 0 0 0 1.000 0 0 0 0
50 80 0 1.000 0 0 0 1.000 0 0 0 0

100 40 0 1.000 0 0 0 0.998 0.002 0 0 0
100 80 0 1.000 0 0 0 1.000 0 0 0 0

DGP2 50 40 0 1.000 0 0 0 0 0.004 0.964 0.032 0
50 80 0 1.000 0 0 0 0.004 0.016 0.976 0.004 0

100 40 0 1.000 0 0 0 0 0.002 0.958 0.040 0
100 80 0 1.000 0 0 0 0 0.002 0.976 0.022 0

DGP3 50 40 0 0 1.000 0 0 0.018 0.088 0.894 0 0
50 80 0 0 1.000 0 0 0.006 0.026 0.968 0 0

100 40 0 0 1.000 0 0 0 0.008 0.972 0.020 0
100 80 0 0 1.000 0 0 0 0.012 0.988 0 0

DGP4 50 40 0 0 0.998 0.002 0 0.002 0.060 0.938 0 0
50 80 0 0 1.000 0 0 0.004 0.016 0.980 0 0

100 40 0 0 1.000 0 0 0 0.012 0.988 0 0
100 80 0 0 1.000 0 0 0 0.008 0.992 0 0

to determine the number of unobserved nonstationary factors. Based on 500 replications

for each DGP, Table 1 displays the probability that a particular factor size from 0 to 5

is selected according to the information criteria proposed for both differenced data and

level data. In differenced data, when T = 40, the probabilities are more than 99% in all

cases and tend to unit when T = 80 for selecting the total number of unobserved factors.

The information criterion for level data performs as good as that in difference data when

T = 80. When T=40, the probabilities are at least 90% in all cases. The simulation results

show that our two information criteria in both differenced data and level one works fairly

well.

2.4.3 Determine the number of groups

The results from previous subsection show that the information criteria are useful

even though we have no information of latent group structures. This section focuses on

the performance of the information criterion for determining the number of groups, where

we assume that the number of unobserved factors are known. Here the penalty function

ρ(N, T ) = 1
3
× log(min(N, T ))/min(N, T ), which satisfies the two restrictions proposed

in Theorem 3.9. Due to space limitations, we report outcomes under the tuning parameter

λ = cλ × T−3/4, where cλ = 0.1. Based on 500 replications for each DGP, Table 2

displays the probability that a particular group size from 1 to 6 is selected according to
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Table 9: Frequency for selecting K=1,2,...,6 groups

N T 1 2 3 4 5 6
DGP1 50 40 0 0 0.9860 0.0140 0 0

50 80 0 0 0.9940 0.0060 0 0
100 40 0 0 0.9700 0.0280 0 0.0020
100 80 0 0 1.0000 0 0 0

DGP2 50 40 0 0 1.0000 0 0 0
50 80 0 0 1.0000 0 0 0

100 40 0 0 1.0000 0 0 0
100 80 0 0 1.0000 0 0 0

DGP3 50 40 0 0 0.9760 0.0180 0.0060 0
50 80 0 0 0.9980 0.0020 0 0

100 40 0 0 0.9740 0.0240 0.0020 0
100 80 0 0 1.0000 0 0 0

DGP4 50 40 0 0 0.9920 0.0060 0.0020 0
50 80 0 0 1.0000 0 0 0

100 40 0 0 0.9900 0.0100 0 0
100 80 0 0 1.0000 0 0 0

the information criterion. The true number of group is 3. When N = 50 the probabilities

are more than 99% in all cases and tend to unit when T=80.

2.4.4 Classification and point estimation

In this subsection, we test the performance of classification and estimation when

we have prior knowledge of the number of groups and that of unobserved factors. Ta-

ble 3 and Table 4 report classification and point estimation results from 500 replica-

tions for each DGP. As shown in Table 3 and Table 4, we set the tuning parameter in

the objective function (23) λ = cλ × T−3/4 and choose a sequence of increasing con-

stants of cλ = (0.025, 0.05, 0.1, 0.2)4 to test the sensitivity of classification and estima-

tion performance. Here we only report the performance results for the first coefficient

4Due to space limitation, we only report the results when cλ = (0.1, 0.2). The rest results are available

upon request.
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α1 = {α1,k}K0
k=1 in each model. In general, the outcomes are found robust over specified

range of constants. Column 4 and 7 report the percentage of correct classification of the

N units, calculated as 1
N

∑K0

k=1

∑
i∈Ĝk 1{β0

i = α0
k}, averaged over the 500 replications.

Column 5-6 and 8-9 summarize the estimation performance, such as root-mean-squared

error (hereafter, RMSE), and bias. For simplicity we define weighted average RMSE

and bias, as 1
N

∑K0

k=1 NkRMSE(α̂1,k) with α̂1,k the same as bias. The estimate of the

long-run covariance matrix is based on Fejer kernel with bandwidth set at 10. Results

of other kernels (quadratic spectral kernel and Parzen kernel) are not reported, there are

no essential differences for most cases. For comparison purpose, we report the results of

corresponding statistics of the C-Lasso, bias-corrected post-Lasso, fully-modified post-

Lasso, Cup-Lasso, and oracle estimators. The oracle estimator utilizes the exact group

identity G0
k, which is infeasible in practice.

For classification results, the correct classification percentage approaches 100% when

T increases. The results with different cλ’s are quite similar, indicating the robustness of

our algorithm to the choice of tuning parameter. In particular, we iteratively minimize

the PPC objective function to obtain the Cup-Lasso estimators. The correct classifica-

tion percentage is higher than that of C-Lasso and post-Lasso estimators in all cases. For

estimation performance, the RMSE, bias, and coverage of post-Lasso and Cup-Lasso es-

timators approach that of oracle ones in DGP1. Since we only introduce stationary factors

and strictly exogenous nonstationary regressors, there is no asymptotic bias coming from

the endogeneity and serial correlation. The RMSE and coverage of C-Lasso estimators

are poor due to ignoring the unobserved stationary factors in PPC-based estimation pro-

cedure. In DGP2 and DGP3, the performance of C-Lasso estimator is poorer due to the

additional sources of non-negligible bias from the endogeneity and serial correlation. And

we show that the fully modified procedure work better compared to direct bias-correction

procedure. The performance of Cup-Lasso estimators is better than that of post-Lasso

ones due to updated group classification results. In general, the finite sample performance

of the Cup-Lasso estimators is close to that of the oracle ones, which empirically confirms

oracle efficiency of the Cup-Lasso estimators. In practice, we recommend Cup-Lasso es-

timators for estimation and inference.
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Table 10: Classification and point estimation of α1 for DGP1 and DGP2

cλ 0.1 0.2
N T % Correct RMSE Bias % Correct RMSE Bias

specification specification
DGP1

50 40 C-Lasso 99.68 0.0137 0.0049 99.70 0.0130 0.0047
50 40 postbc-Lasso 99.68 0.0130 0.0003 99.70 0.0129 0.0002
50 40 postfm-Lasso 99.68 0.0129 0.0004 99.70 0.0128 0.0003
50 40 Cup-Lasso 99.68 0.0126 -0.0002 99.70 0.0126 -0.0002
50 40 Oracle - 0.0126 -0.0002 - 0.0126 -0.0002
50 80 C-Lasso 100 0.0081 0.0031 100 0.0077 0.0028
50 80 postbc-Lasso 100 0.0070 0.0003 100 0.0070 0.0003
50 80 postfm-Lasso 100 0.0069 0.0004 100 0.0069 0.0004
50 80 Cup-Lasso 100 0.0069 0.0004 100 0.0069 0.0004
50 80 Oracle - 0.0069 0.0001 - 0.0069 0.0001
100 40 C-Lasso 99.69 0.0109 0.0054 99.73 0.0101 0.0046
100 40 postbc-Lasso 99.69 0.0091 0.0007 99.73 0.0087 0.0004
100 40 postfm-Lasso 99.69 0.0090 0.0007 99.73 0.0086 0.0004
100 40 Cup-Lasso 99.69 0.0090 0.0007 99.73 0.0086 0.0004
100 40 Oracle - 0.0087 -0.0001 - 0.0087 -0.0001
100 80 C-Lasso 100 0.0062 0.0032 99.99 0.0058 0.0029
100 80 postbc-Lasso 100 0.0046 0.0005 99.99 0.0046 0.0005
100 80 postfm-Lasso 100 0.0046 0.0005 99.99 0.0046 0.0005
100 80 Cup-Lasso 100 0.0046 0.0005 99.99 0.0046 0.0005
100 80 Oracle - 0.0046 0.0004 - 0.0046 0.0004

DGP2
50 40 C-Lasso 97.68 0.0654 0.0146 97.53 0.0743 0.0146
50 40 postbc-Lasso 97.68 0.0405 0.0048 97.53 0.0430 0.0048
50 40 postfm-Lasso 97.68 0.0405 0.0042 97.53 0.0430 0.0041
50 40 Cup-Lasso 100 0.0094 0.0004 100 0.0094 0.0004
50 40 Oracle - 0.0094 0.0004 - 0.0094 0.0004
50 80 C-Lasso 99.21 0.0233 0.0047 99.19 0.0254 0.0047
50 80 postbc-Lasso 99.21 0.0195 -0.0004 99.19 0.0195 -0.0007
50 80 postfm-Lasso 99.21 0.0194 -0.0005 99.19 0.0194 -0.0009
50 80 Cup-Lasso 100 0.0047 -0.0001 100 0.0047 -0.0001
50 80 Oracle - 0.0047 -0.0001 - 0.0047 -0.0001
100 40 C-Lasso 97.45 0.0500 0.0135 97.37 0.0543 0.0119
100 40 postbc-Lasso 97.45 0.0601 -0.0011 97.37 0.0584 -0.0010
100 40 postfm-Lasso 97.45 0.0601 -0.0016 97.37 0.0585 -0.0015
100 40 Cup-Lasso 100 0.0069 -0.0016 100 0.0069 -0.0016
100 40 Oracle - 0.0069 -0.0016 - 0.0069 -0.0016
100 80 C-Lasso 99.25 0.0181 0.0061 99.23 0.0194 0.0057
100 80 postbc-Lasso 99.25 0.0172 0.0012 99.23 0.0170 0.0010
100 80 postfm-Lasso 99.25 0.0171 0.0010 99.23 0.0170 0.0010
100 80 Cup-Lasso 100 0.0032 -0.0001 100 0.0032 -0.0001
100 80 Oracle - 0.0032 -0.0001 - 0.0032 -0.0001
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Table 11: Classification and point estimation of α1 for DGP3 and DGP4

cλ 0.1 0.2
N T % Correct RMSE Bias % Correct RMSE Bias

specification specification
DGP3

50 40 C-Lasso 96.97 0.0563 0.0118 96.87 0.0632 0.0101
50 40 postbc-Lasso 96.97 0.0522 0.0029 96.87 0.0516 0.0022
50 40 postfm-Lasso 96.97 0.0524 0.0023 96.87 0.0519 0.0016
50 40 Cup-Lasso 99.85 0.0145 0.0015 99.81 0.0146 0.0015
50 40 Oracle - 0.0150 0.0014 - 0.0150 0.0014
50 80 C-Lasso 99.15 0.0297 0.0056 99.11 0.0327 0.0047
50 80 postbc-Lasso 99.15 0.0275 0.0015 99.11 0.0265 0.0013
50 80 postfm-Lasso 99.15 0.0274 0.0015 99.11 0.0265 0.0013
50 80 Cup-Lasso 100 0.0073 0.0010 100 0.0073 0.0010
50 80 Oracle - 0.0073 0.0006 - 0.0073 0.0006
100 40 C-Lasso 98.65 0.0299 0.0119 98.43 0.0300 0.0110
100 40 postbc-Lasso 98.65 0.0214 0.0028 98.43 0.0222 0.0035
100 40 postfm-Lasso 98.65 0.0213 0.0023 98.43 0.0222 0.0031
100 40 Cup-Lasso 99.93 0.0108 0.0020 99.83 0.0110 0.0021
100 40 Oracle - 0.0109 0.0018 - 0.0109 0.0018
100 80 C-Lasso 99.05 0.0194 0.0060 99.01 0.0208 0.0053
100 80 postbc-Lasso 99.05 0.0181 0.0007 99.01 0.0183 0.0007
100 80 postfm-Lasso 99.05 0.0180 0.0006 99.01 0.0182 0.0005
100 80 Cup-Lasso 100 0.0054 -0.0002 100 0.0054 -0.0002
100 80 Oracle - 0.0054 -0.0003 - 0.0054 -0.0003

DGP4
50 40 C-Lasso 96.92 0.0566 0.0110 96.77 0.0634 0.0099
50 40 postbc-Lasso 96.92 0.0508 0.0018 96.77 0.0498 0.0008
50 40 postfm-Lasso 96.92 0.0511 0.0013 96.77 0.0501 0.0008
50 40 Cup-Lasso 99.91 0.0130 0.0014 99.87 0.0130 0.0015
50 40 Oracle - 0.0134 0.0014 - 0.0134 0.0014
50 80 C-Lasso 98.99 0.0299 0.0055 98.93 0.0331 0.0045
50 80 postbc-Lasso 98.99 0.0277 0.0009 98.93 0.0263 0.0013
50 80 postfm-Lasso 98.99 0.0277 0.0008 98.93 0.0263 0.0013
50 80 Cup-Lasso 100 0.0066 0.0010 100 0.0066 0.0010
50 80 Oracle - 0.0065 0.0007 - 0.0065 0.0007
100 40 C-Lasso 98.77 0.0291 0.0123 98.53 0.0295 0.0113
100 40 postbc-Lasso 98.77 0.0205 0.0032 98.53 0.0217 0.0037
100 40 postfm-Lasso 98.77 0.0204 0.0027 98.53 0.0216 0.0032
100 40 Cup-Lasso 99.94 0.0102 0.0020 99.87 0.0103 0.0021
100 40 Oracle - 0.0103 0.0017 - 0.0103 0.0017
100 80 C-Lasso 99.04 0.0197 0.0059 99.02 0.0211 0.0053
100 80 postbc-Lasso 99.04 0.0181 0.0009 99.02 0.0183 0.0008
100 80 postfm-Lasso 99.04 0.0180 0.0007 99.02 0.0183 0.0007
100 80 Cup-Lasso 100 0.0050 -0.0002 100 0.0050 -0.0002
100 80 Oracle - 0.0050 -0.0002 - 0.0050 -0.0002
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2.5 Empirical Application: Growth Convergence Puzzle

Many researchers have explored the behavior of economic growth across multiple

countries. The main question in this literature is whether economies exhibit convergence.

Based on our method, we study the heterogeneous behavior of convergence through

the channel of technology diffusions. Our benchmark model is the international R&D

spillovers model by Coe and Helpman (1995). Their work empirically identifies the pos-

itive technology spillovers based on country level data. Since technology change is the

main source of economies’ growth, the positive R&D spillovers are some forces toward

growth convergence through the channel of technology catch-up effects. There are two

potential problems in their work. First, they fail to identify two distinct types “spillovers”

effects–positive technology spillovers and negative market rivalry effects, see Bloom et al.

(2013). In addition, they haven’t account for unobserved common patterns across coun-

tries, such as financial crisis shocks and technology trends.

Our PPC-based estimation method provides a purely data-driven approach to simulta-

neously identify the heterogeneous behavior in international R&D spillovers and consider

the unobserved global patterns. In particular, we impose the latent group structures on the

long-run relationships between technology changes, domestic R&D stock, and foreign

R&D stock. Moreover, the heterogeneous long-run estimates on foreign R&D stock em-

pirically indicate two directions of R&D spillovers–positive technology spillovers and

negative market rivalry effects, which explain the economic convergence puzzle through

the channel of technology growth.

2.5.1 International R&D spillover model

In the section, we introduce two linear specifications on the international R&D spillover

model. Following standard growth literature, we define TFP as the Solow residual, which

is often regarded as a measure of technology changes. That is,

log(TFP ) = log(Y )− θ log(K)− (1− θ) log(L), (40)

where Y is the final output, L is the labor force, K is the capital stock, and θ is the share

of capital in GDP. On the one hand, domestic R&D investment is one of the main sources
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of technology changes by stimulating innovation. On the other hand, researchers believe

that international trade in intermediate goods enables a country to gain access to all inputs

available in the rest of the world. In this aspect, the foreign R&D stocks from a country’s

trading partners also affect this country’s TFP by enhancing R&D transfer. In Coe and

Helpman (1995), they empirically identify two sources of technology growth–innovation

and catch-up effects by regressing following equation

log(Fit) = µi + βd log(sdit) + βf log(sfit) + uit,

where i is the country index, F is the total factor productivity, sd is the real domestic

R&D capital stock, sf is the real foreign R&D capital stock. We follow their specification

on the international R&D spillovers model and introduce unobserved common patterns,

such that

log(Fit) = βdi log(sdit) + βfi log(sfit) + λ′ift + uit, (Eq1)

where ft may stand for unobserved technology trends. The fixed effects µi are captured by

the factor structure. Here we impose latent group structures on (βdi , β
f
i ). In particular, the

latent group structures on βfi allow us to study the two types of spillover effects–positive

technology spillovers and negative market rivalry effects, respectively.

In addition, we consider logarithm of human capital (H) as an additional explanatory

variable, see (Eq2)

log(Fit) = βdi log(sdit) + βfi log(sfit) + βhi log(h) + λ′ift + uit. (Eq2)

The human capital accounts for innovation outside the R&D sector and other aspects of

human capital not captured by formal R&D. Engelbrecht (1997) suggests that human

capital is found to affect TFP directly as a factor of production, and as a channel for

international technology diffusion associated with catch-up effects across countries.

We obtain Coe et al. (2009) (CH2009, hereafter) datasets from 1971-2004 for 24

OECD countries. The bilateral import weighted R&D Sf−biw from trading partners is

a measure of foreign R&D stock. Human capital is measured by year of schooling. See

Coe and Helpman’s appendix for detailed definitions and constructions of these variables.
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Table 12: The information criterion for K0 (Eq1 & Eq2)

Eq1

K/cλ 0.05 0.1 0.2 0.4 0.6

K = 1 -4.6315 -4.6584 -4.6812 -4.6834 -4.6794
K = 2 -4.8073 -4.8760 -4.7356 -4.8319 -4.8332
K = 3 -5.0084 -5.0942 -5.2130 -5.2221 -5.0992
K = 4 -4.8985 -4.9708 -5.0092 -4.6353 -4.9279
K = 5 -4.8598 -4.8240 -4.4272 -4.9821 -4.8042
K = 6 -4.4159 -4.2700 -3.6774 -4.8858 -4.6118

Eq2

K/cλ 0.05 0.1 0.2 0.4 0.6

K = 1 -4.6011 -4.6311 -4.6845 -4.6876 -4.6889
K = 2 -4.5674 -4.8101 -4.8693 -4.8138 -4.8127
K = 3 -3?9180 -4.2002 -4.7259 -4.7467 -4.7045
K = 4 -2.8630 -3.5698 -4.0314 -4.2412 -4.2497
K = 5 -2.2351 -4.0434 -1.9373 -3.5935 -4.0737
K = 6 -2.7073 -3.6627 -3.1292 -3.7489 -2.6413

2.5.2 Estimation results

Before the PPC-based estimation procedure, we first employ information criteria in

Section 3.5 to estimate the number of unobserved factors. We set penalty function as

g1(N, T ) = N+T
NT

log(min(N, T )) and g2(N, T ) = T
4 log log T

× g1(N, T ). The results for

both differenced and level data indicate one unobserved nonstationary common factors.

We fix r = r1 = 1 in the determination of number groups and the PPC-based estimation

procedure.

We set ρ(N, T ) = 2
3
×log(min(N, T ))/min(N, T ) and tuning variable λ = cλ×T−3/4

where cλ = (0.05, 0.1, 0.2, 0.4, 0.6). Table 5 reports the information criterion as a func-

tion of the number of groups under these tuning parameters. The information criterion

suggests three groups for (Eq1) and two groups for (Eq2). In our estimation, we first set

the number of groups and then specify cλ = 0.2, where the information criterion achieves

the minimal values.

Table 6 reports the main results of pooled FMOLS and Cup-Lasso estimates with one
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unobserved nonstationary common factors, where we compare our results to CH2009. In

(Eq1), we have two explanatory variables (log(Sd), log(Sf−biw)). First, we compare the

result of CH2009 with the pooled FMOLS after controlling cross-sectional dependence.

The coefficients of log(Sd) in CH2009 is qualitatively similar to our pooled FMOLS.

In addition, we observe the slope coefficient of foreign R&D stock decrease more than

half after incorporating one unobserved nonstationary common factors. Since the non-

stationary common factor may stand for the unobserved global trends, it is reasonable

that the direct spillovers effects decrease when the unobserved global technology patterns

are taken into consideration. Second, we identify quite difference behavior in the group-

specific Cup-Lasso estimates. The estimates of group 1 have the largest estimate on the

domestic R&D stock but negative one on foreign R&D. For group 2 and group 3, they

both have positive estimates on domestic R&D stock and foreign one. In particular, both

estimates in group 2 are larger than that of group 3.

We summarize the estimation results into three aspects. First, we observe the negative

market rivalry effects dominate technology spillovers for countries in group 1. There-

fore, the technology changes of those countries rely mainly on innovations from domestic

R&D stock. In addition, it implies that countries in group 1 don’t favor convergence

through the channel of technology changes. We call it as “Divergence”group. On the

contrary, technology changes of countries in group 2 have balanced sources–innovation

effects from domestic R&D stock and catch-up effects from technology spillovers. More-

over, the magnitudes of those estimates are similar. In this perspective, countries in group

2 favor growth convergence hypothesis. Here we refer it as “Balance”group. Lastly, the

technology changes in group 3 are mainly determined by foreign R&D stock. They are

classified as “Convergence”group.

In (Eq2), we introduce an additional regressor–human capital, which is regarded as

a direct source of technology changes. Our results first confirm that human capital is

the one of the main sources of productivity growth. In general, similar heterogeneous

behavior preserves in (Eq2). First, we can still classify countries into two groups and

define them as “Balance ”and “Convergence ”. For group 1, the innovations and catch-

up effects have similar magnitudes. For group 2, referred as “Convergence ”, they have
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Table 13: PPC estimation results for (Eq1) and (Eq2)

Eq1

Slope coefficients Pooled Pooled Group 1 Group 2 Group 3
CH2009 FM-OLS Cup-Lasso Cup-Lasso Cup-Lasso

log(Sd) 0.095*** 0.090*** 0.301*** 0.107*** 0.051***
(0.0053) (0.0134) (0.0295) (0.0248) (0.0144)

log(Sf−biw) 0.213*** 0.092*** -0.124*** 0.193*** 0.148***
(0.0136) (0.0222) (0.0306) (0.0559) (0.0342)

Eq2

Slope coefficients Pooled Pooled Group 1 Group 2
CH2009 FM-OLS Post-Lasso Post-Lasso

log(Sd) 0.098*** 0.049*** 0.071*** -0.098***
(0.0160) (0.0163) (0.0174) (0.0270)

log(Sf−biw) 0.035*** 0.132*** 0.063** 0.323***
(0.0111) (0.0316) (0.0332) (0.0398)

log(h) 0.725*** 0.644*** 0.638*** 0.680***
(0.0870) (0.1204) (0.1302) (0.1791)

Note: *** 1% significant; ** 5% significant; * 10% significant.
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Table 14: Group classification results of Eq1 and Eq2
Eq1

Group 1 “Divergence” (N1 = 7)

Austria Denmark France Germany New Zealand
Norway United States

Group 2 “Balance” (N2 = 7)

Canada Ireland Israel South Korea Netherlands
Portugal United Kingdom

Group 3 “Convergence” (N3 = 10)

Australia Belgium Finland Greece Iceland
Italy Japan Spain Sweden Switzerland

Eq2

Group 1 “Balance ” (N1 = 18)

Austria Belgium Finland France Germany
Iceland Ireland Israel Italy Japan
South Korea Netherlands New Zealand Portugal Spain
Sweden Switzerland United States

Group 2 “Convergence” (N2 = 6)

Australia Canada Denmark Greece Norway
United Kingdom

significant positive estimates on foreign R&D stocks.

The PPC-based estimation procedure simultaneously determine the group identities

and estimate parameters. Table 7 reports the group classification results. We summarize

several interesting findings. First, there are typically two types of countries in “Diver-

gence” group–“Leader” and “Loser”. Countries like France, Germany, United States are

already at technology frontiers in global, which own 61.1% proportion of global R&D

stock. On the contrary, the rest countries in group 1 only accounts for 1.5% proportion of

global R&D stock. Second, we notice that most OECD countries are classified into group

2 and group 3. It confirms the recent work of KELLER (2004) that the major sources

of technical changes leading to productivity growth in OECD countries are not domes-

tic, instead, they lie aboard through the channel of international technology diffusions.

Furthermore, countries like Israel, South Korea and United Kingdom are classified into

“Balance” group. Productivity growth for them relies on both innovation and catch-up

effects.
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Overall, we re-estimate Coe and Helpman’s model by both pooled FMOLS and group-

specific PPC-based method with one unobserved global trend. Our pooled FMOLS con-

firms the international R&D spillovers in global after considering unobserved global

trend. In addition, our Cup-Lasso estimates show heterogeneous behavior in both in-

novations and catch-up effects. To the best of our knowledge, it is the first paper to

empirically identifies two types of spillovers–positive technology spillovers and negative

market rivalry effects in country level. Further, these facts empirically build a connection

between the “Club convergence” theory (Quah (1996), Quah (1997)) and the conditional

convergence model (Barro and Sala-i Martin (1997)). Consequently, economic growth

patterns do vary across countries– some exhibit convergence pattern but some fail.

2.6 Conclusion

The main contribution of this paper is to propose a novel approach that handle the

unobserved heterogeneity and cross-sectional dependence in nonstationary panel mod-

els. We assume that cross-sectional dependence is captured by unobserved common fac-

tors, which allow for stationary and nonstationary ones. In general, the penalized least

square estimators are inconsistent due to a spurious regression problem induced by un-

observed nonstationary factors. We propose a iterative penalized principal component

method, which provides consistent and efficient estimators for long-run cointegration re-

lationships under cross-sectional dependence. The Lasso-type estimators have a mixed

normal asymptotic distribution after bias-correction. This property facilitates the use of

usual t, Wald and F statistics for inference and hypothesis testing. In the empirical ap-

plication, we offer an explanation for growth convergence puzzle through heterogeneous

behavior in R&D spillovers.
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3 Panel Error Correction Models with Unobserved Het-

erogeneity and Dynamic Common Factors

3.1 Introduction

It is widely observed that macroeconomic and financial panel data exhibits two styl-

ized facts–co-movements and heterogeneity. The co-movements appear important enough

to account for long-run cointegration relationships among variables and to capture short-

run dynamics driven by unobserved stationary common factors. For example, monetary

policies are always built on a principal belief of the long-run equilibrium between GDP,

inflation and interest rate. In addition, central banks consider short-run impacts of com-

mon factors, such as oil price shocks or financial crises. Another challenge of panel

methodology is to control for the unobserved heterogeneity in incidental parameters and

structural parameters. This paper focuses on complications in the estimation of panel er-

ror correction models with both long-run and short-run co-movements. Besides, we allow

for unobserved heterogeneity in long-run cointegration vectors. Furthermore, our method

maintains several advantages of panel data, such as capturing the complexity of economic

behavior, simplifying statistic inference and improving estimation efficiency.

In this paper, we consider a panel error-correction model with unobserved station-

ary common factors. In particular, we impose latent group structures on the long-run

cointegration vectors. We first develop a novel econometric procedure that obtains effi-

cient estimators for long-run cointegration vectors in the presence of unobserved hetero-

geneity. Then, we propose two Lasso-type estimators for long-run cointegration vectors–

Classifier-Lasso and post-Lasso. Due to the stationary property of common factors, we

can still obtain consistent estimators for long-run cointegration vectors when ignoring

unobserved short-run co-movements. Afterward, we employ the principal components

method to estimate unobserved stationary common factors. The presence of unobserved

stationary common factors introduces a non-negligible bias in Lasso-type estimators and

affects covariance structures in limiting distributions. The C-Lasso estimators are based

on the minimization of a penalized generalized least squares (PGLS, hereafter) criterion
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function in which additive penalty terms (see Su et al. (2016), Li et al. (2016), and Qian

and Su (2016)) are involved in parameters of slope coefficients.

We employ the GLS objective function for the sake of three advantages. First, the GLS

estimator tends to be much more reliable than the maximum likelihood estimator (see

Johansen (1991)) in small samples. Second, the GLS objective function is constructed

on the triangular representation system with a prior identification condition βi = [Ir, bi]

(Phillips (1994)). This fact simplifies the statistic inference from a parametric approach.

Third, the PGLS-based Lasso-type estimators achieve efficiency, compared to maximum

likelihood ones. It reduces the number of long-run vectors from N × (J − r)J to K ×

(J − r)J in which the number of groups K is much smaller than that of cross-sectional

units N .

Our theoretical results first show the Granger partial sum representation of nonsta-

tionary dependent vectors. Then we establish consistency for initial GLS estimators of

long-run cointegration vectors in the presence of unobserved common factors. In addi-

tion, we show that the estimator of short-run adjustment matrix is inconsistent due to

weak dependence in innovation processes. Furthermore, we can show that the spaces

spanned by F̂ and F 0 are asymptotically the same by similar arguments in Bai (2009).

The initial results are obtained under large T asymptotics. In the asymptotic theory for

the Lasso-type estimators, we establish the point consistency and classification consis-

tency for the PGLS-based estimation. The latter property indicates that all individuals are

classified into correct groups with a probability approaching to one (w.p.a.1). Moreover,

we establish asymptotic normal distributions for our estimators. Throughout this paper,

we assume the number of factors and the number of groups are known. In real economic

applications, we can directly apply the information criteria proposed in Bai and Ng (2002)

and Huang et al. (2017) to determine the number of factors and the number of groups,

respectively. In terms of simulation, we show good finite sample performance for both

estimation and classification.

Based on our method, we study price discovery in market microstructure model. We

first propose a permanent-transitory (PT, hereafter) decomposition based on long-run

cointegration vectors. Our PT decomposition suggests that efficient price is weighted
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average of bid and ask quotes. Then we apply our method to estimate the long-run coin-

tegration relationships between bid and ask quotes by NYSE Trade and Quote (TAQ) data

in year 2006. In general, our results suggests that the long-run equilibrium between bid

and ask prices deviates from the one-to-one relationship, which is assumed by Hasbrouck

(1995). Further, we observe asymmetric contributions of bid and ask quotes to price dis-

covery in stock market. Consequently, the mid-point of bid and ask prices may not be a

good proxy for efficient price in some cases.

The main contribution of this paper is to obtain efficient and simple estimators of

long-run vectors with unobserved heterogeneity. Formally, we impose latent group struc-

tures on long-run cointegration vectors, where the long-run relationships are homoge-

neous within each group and heterogeneous across groups. The propensity to categorize

objects is an integral part of human nature. For example, economists tend to analyze

causal relationships among economic variables by subsamples, such as developing ver-

sus developed countries, and value versus growth stocks. These classifications are just

some of the possible dichotomies in social economic problems. In the meantime, there

are some unobserved patterns in economic data, which cannot be easily identified from

observed characteristics. Therefore, the latent group structures, proposed by Su et al.

(2016) allow the data speak freely to the unobserved heterogeneity in the parameters of

slope coefficients and maintain simple and efficient estimators.

Second, our paper speak to a long literature on error-correction model since the semi-

nal work by Engle and Granger (1987), such as Phillips’s triangular system representation

(Phillips (1991),Phillips (1994)) and Johansen’s maximum likelihood method (Johansen

(1988),Johansen (1991)). Recently, many work extends these two methods into panel

framework under different restrictions (see Larsson et al. (2001), Groen and Kleibergen

(2003), Larsson and Lyhagen (2007), Breitung (2005) and Brüggemann and Lütkepohl

(2005))). Apart from two main approaches, Pesaran et al. (2004) and Dees et al. (2007)

introduce a Global VAR model, which focuses on an individual-specific error correction

model and allows for interdependence among individuals. Their estimators are inefficient

and may be inconsistent under rank deficient case (see). In general, we obtain efficient

estimators of the long-run cointegration vectors under more general settings.
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Third, the detection of short-run co-movements sheds light on factor models. There is

a growing list of econometric models employing multifactor structures in dependent vari-

ables and error terms. The factor-augmented VAR model (see Stock and Watson (2002)

and Bernanke et al. (2005)) employs a small number of estimated factors to effectively

summarize large amounts of information about the economy. Their methods provide a

natural solution to the curse of dimensionality problem in VAR analyses and achieve bet-

ter predication performance. Banerjee et al. (2017), and Barigozzi and Luciani (2017)

extend the factor-augmented model by introducing error correction terms, which allow

for nonstationary data. Compared to existing work, our primary interest is the estimation

of long-run cointegration vectors under multifactor error structures. In the meanwhile, we

can consistently estimate unobserved common factors by principal components (see Bai

et al. (2009)).

This paper is structured as follows. Section 2 introduces a panel error correction

model with stationary common factors and latent group structures and proposes a pe-

nalized generalized least squares objective function for estimation. Section 3 explains

main assumptions and establishes asymptotic properties of the proposed regularized es-

timators. Section 4 reports simulation results. Section 5 studies efficient price in market

microstructure model. Section 6 concludes. All proofs are relegated to the appendix.

3.2 Model and Estimation

3.2.1 Heterogeneous panel error correction model with dynamic common factors

In this section, we describe the main features of our panel error correction model with

latent group structures and unobserved common factors. We consider a panel dataset

consisting of N cross-section units (individuals) over T time periods. For each individual

i = 1, ..., N , the J−dimensional yit is generated as follows

yit = sit + ψ0′
i f

0
t , (41)

where sit is a J × 1 vector of unobserved idiosyncratic nonstationary component, f 0
t is

an m × 1 vector of unobserved stationary common factors, and ψ0
i is an m × J matrix
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of factor loadings. For each individual i = 1, ..., N , we assume that sit satisfies an error

correction model, such that

∆sit = α0
iβ

0′
i sit−1 +

p−1∑
l=1

Γ0
il∆sit−l + εit, (42)

where β0
i is a J × r matrix of long-run cointegration vectors, α0

i is a J × r matrix of

adjustment parameters, r is the cointegration rank, Γ0
il is a J × J full rank matrix of

short-run dynamics parameters, εit is the idiosyncratic error term with zero mean and

finite variance. If r = J , sit is a full rank I(1) process. If r = 0, model (42) reduces to

stationary VAR(p−1) models for differenced data ∆sit. Since our focus is on the reduced

rank case, it is appropriate to assume 1 6 r < J .

Combine (41) and (42), the observed process yit follows a heterogeneous panel error

correction model with unobserved dynamic common factors for all i = 1, ..., N ,

∆yit = α0
iβi

0′yit−1 +

p−1∑
l=1

Γ0
il∆yi,t−l +

p∑
l=0

Λ0′
ilf

0
t−l + εit. (43)

Define the static factorF 0
t = [f 0′

t , f
0′
t−1, ..., f

0′
t−p]

′ and its factor loadings Λ0
i = [Λ0

i0,Λ
0
i1, ...,Λ

0
ip]
′.

Then model (43) can be re-written as follows

∆yit = α0
iβ

0′
i yit−1 +

p−1∑
l=1

Γ0
il∆yi,t−l + Λ0′

i F
0
t + εit (44)

where the dimension of static factor Ft is M×1 where m 6M 6 m(p+1). In this panel

error correction model, βi is a long-run cointegration matrix, which summarizes long-run

co-movements among variables, and Ft is a vector of unobserved common factors, which

stands for short-run co-movements across individuals.

In order to maintain efficiency, we assume that the long-run cointegration matrices βi

exhibit certain unobserved group patterns, where they are heterogeneous across groups

and homogeneous within a group. Our interests are to obtain efficient estimators for

long-run cointegration vectors, infer latent group identity and detect unobserved common

factors Ft.

The estimation procedures are performed on model (44). Let

vec(α) ≡ (vec(α1), ..., vec(αN)) , vec(β) ≡ (vec(β1), ..., vec(βN)) , Λ = (Λ1, ...,ΛN) ,
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and F = (F1, ..., FT )′ . The true values of αi, βi,Λi, and Ft are denoted as α0
i , β

0
i ,Λ

0
i and

F 0
t , respectively.

3.2.2 Estimation

In this section, we propose two Lasso-type estimators for the long-run cointegration

matrix βi. We first obtain consistent initial estimators, which is briefly discussed in the

following section.

Initial estimation: Two-step GLS method

For simplicity, we assume that the number of lags p = 1 and the case when p > 1 can

be easily extended. Thus, model (44) becomes

∆yit = α0
iβ

0′
i yi,t−1 + Λ0′

i F
0
t + εit (45)

where εit is assumed to be cross-sectionally independent but allowed to be weakly de-

pendent over time, and Ft contains dynamics of unobserved common factors, which is

also allowed to be weakly dependent. By Cheng and Phillips (2009), we note that the

Johansen’s maximum likelihood estimators have non-negligible biases in both long-run

cointegration matrix βi and short-run adjustment matrix αi under weakly dependent in-

novation processes. But the consistency of βi still holds.

At the first stage, we obtain preliminary estimators from the Johansen’s optimization

problem as follows

β̂ML
i = arg min

βi

∣∣∣S00,i − S01,iβi (β
′
iS11,iβi)

−1
β′iS10,i

∣∣∣ for i = 1, ..., N,

α̂ML
i = S01,iβ̂

ML
i

(
β̂ML′
i S11,iβ̂

ML
i

)−1

,

subject to the normalization conditions which ensure the uniqueness of β̂ML
i :

β̂ML′
i S11,iβ̂

ML
i = Ir and β̂ML′

i S10,iS
−1
00,iS01,iβ̂

ML
i = Λ̂r

i ,

where Λ̂r
i = diag

(
λ̂1
i , λ̂

2
i , ..., λ̂

r
i

)
and λ̂1

i > · · · > λ̂ri > 0 are the first r ordered roots

of the determinantal equation
∣∣Λr

iS11,i − S10,iS
−1
00,iS01,i

∣∣ = 0 for each i. The Shl,i are

moment matrices of ∆yit (h = 0) and yi,t−1 (l = 1), such as S01,i = 1
T

∑T
t=1 ∆yity

′
i,t−1

and S11,i = 1
T

∑T
t=1 yi,t−1y

′
i,t−1.
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Then we consider the triangular system restriction, proposed by Phillips (1991). We

assume that the leading r × r sub-matrix of the cointegration matrix βi is an identity

matrix, and takes the form βi =
(
Ir, b

′
i

)′
. Let yit =

(
y

(1)′
it , y

(2)′
it

)′
where y(1)

it and y(2)
it are

the r × 1 and (J − r) × 1 sub-matrix of yit respectively. Due to a non-negligible bias in

αi, we define α̃i = α0
i + Σuv,iΣ

−1
vv,i (see Theorem 3.1 for detail). The model (45) reduces

to

∆yit − α̃iy(1)
i,t−1 =

(
y

(2)′
i,t−1 ⊗ α̃i

)
vec(b0′

i ) + Λ0′
i F

0
t + ε∗it. (46)

where ε∗it = εit − Σuv,iΣ
−1
vv,iβ

0′
i yi,t−1 is weakly stationary process. We have the infeasible

LS and GLS estimators for the above model

b̃LS′i = (α̃′iα̃i)
−1
α̃′i

(
T∑
t=1

(
∆yit − α̃iy(1)

i,t−1

)
y

(2)′
i,t−1

)(
T∑
t=1

y
(2)
i,t−1y

(2)′
i,t−1

)−1

,

b̃GLS′i =
(
α̃′iΣ̃

−1
i α̃i

)−1

α̃′iΣ̃
−1
i

(
T∑
t=1

(
∆yit − α̃iy(1)

i,t−1

)
y

(2)′
i,t−1

)(
T∑
t=1

y
(2)
i,t−1y

(2)′
i,t−1

)−1

.

The GLS estimator b̃GLSi is the same as the two-stage estimator proposed by Breitung

(2005), where he multiply
(
α0′
i Σ−1

i α0
i

)−1
α0′
i Σ−1

i on both sides of equation (46) under

i.i.d. assumption. Similarly, we multiply
(
α̃′iΣ̃

−1
i α̃i

)−1

α̃′Σ̃−1
i on (46), such that

∆ỹ+
it − y

(1)
it−1 = b0′

i y
(2)
i,t−1 +

(
Λ0
i γ̃i
)′
F 0
t + ε̃∗it, (47)

where ∆ỹ+
it = γ̃′i∆yit, γ̃i = Σ̃−1

i α̃i

(
α̃′iΣ̃

−1
i α̃i

)−1

, and ε̃∗it is analogously defined.

The feasible estimators of bi can be obtained from replacing α̃i and σ̃i by its Johansen’s

estimates, such that Σ̂i = 1
T

∑T
t=1

(
∆yit − α̂ML

i β̂ML′
i yi,t−1

)′ (
∆yit − α̂ML

i β̂ML′
i yi,t−1

)
and α̂i = α̂ML

i . We can show that α̂i − α̃i = Op(T
−1/2) and Σ̂i − Σ̃i = Op(T

−1/2).

Writing above model (47) in vector form with the estimated values, we have

∆Ŷ +
i − Y

(1)
i,−1 = Y

(2)
i,−1b

0
i + F 0Λ̃0

i + ε̂∗i , (48)

where ∆Ŷ +
i = [∆ŷ+

i1, ...,∆ŷ
+
iT ]′, ∆ŷ+

it = γ̂′i∆yit, γ̂i = Σ̂−1
i α̂i

(
α̂′iΣ̂

−1
i α̂i

)−1

and ε̂∗i =

ε∗i γ̃i + ∆Yi (γ̂i − γ̃i) . We can obtain the feasible GLS estimator of b̂GLSi as follows

b̂GLSi =
(
Y

(2)′
i,−1Y

(2)
i,−1

)−1 (
Y

(2)′
i,−1

(
∆Ŷ +

i − Y
(1)
i,−1

))
. (49)

The unobserved stationary common factors will not affect the consistency of the GLS es-

timator. Then, we can estimate the unobserved stationary common factors after obtaining
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the GLS estimator b̂GLSi . By Bai and Ng (2002), we impose the usual normalization as

follows

F ′F/T = IM and vec(Λ̃0)′vec(Λ̃0) being diagonal,

where vec(Λ̃0) = [vec(Λ̃0
1)′, ..., vec(Λ̃0

N)′]′. These two conditions uniquely determine

the Λ̃0 and F . Then we obtain the consistent estimators of F by solving the following

eigenvalue decomposition problem,(
F̂ ⊗ Ir

)
VNT =

[
1

NT

N∑
i=1

vec
(

∆Ŷ +
i − Y

(1)
i,−1 − Y

(2)
i,−1b̂

GLS
i

)
vec
(

∆Ŷ +
i − Y

(1)
i,−1 − Y

(2)
i,−1b̂

GLS
i

)′](
F̂ ⊗ Ir

)
,

(50)

where VNT is a diagonal matrix consisting of theM∗r largest eigenvalues of the matrix in-

side the brackets, arranged in decreasing order. Given bi, we have ξi =vec
(

∆Ŷ +
i − Y

(1)
i,−1 − Y

(2)
i,−1b

0
i

)
=

(F ⊗ Ir)vec(Λ̃i)+vec(ε̂∗i ) has a pure factor structure. Let ξ = (ξ1, ξ2, ..., ξN), a Tr × N

matrix. We obtain the least squares estimators of vec(Λ̂) = 1
T
ξ̂′
(
F̂ ⊗ Ir

)
.

PGLS-based estimation

In this subsection, we propose the penalized generalized least squares (PGLS, here-

after) method to estimate the long-run cointegration matrix bi and identify group member-

ship for model (48). We denote the true values of bi as b0
i , to follow latent group structures,

such that

b0
i =


B0

1 , i ∈ G0
1

...
...

B0
K , i ∈ G0

K

,

where B0
j 6= B0

k for any j 6= k,
⋃K
k=1G

0
k = {1, 2, . . . N}, and G0

k

⋂
G0
j = ∅ for any

j 6= k. Let Nk = #Gk denote the cardinality of the set Gk. For the moment, we assume

that the number of groups K is known and fixed but each individual’s group membership

is unknown. Since b exhibits latent group structures, we propose the following PGLS

criterion function to estimate b and B

Q̂K,λ
NT (b, B) = Q̂NT (b) +

λ

N

N∑
i=1

K∏
k=1

‖vec(bi −Bk)‖ , (51)

where Q̂NT (b) = 1
NT 2

∑N
i=1 vec

(
∆Ŷ +

i − Y
(1)
i,−1 − Y

(2)
i,−1bi

)′
vec
(

∆Ŷ +
i − Y

(1)
i,−1 − Y

(2)
i,−1bi

)
is the GLS objective function, and λ = λ(N, T ) is the tuning parameter. Minimizing the
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PGLS criterion function in (51) produces the Classifier-Lasso (C-Lasso, hereafter) esti-

mators of bi and Bk, respectively. Then we can update estimates of unobserved common

factors by the following equation with B̂k as follows

(
F̂ ⊗ Ir

)
VNT =

 1

NT

K∑
k=1

∑
i∈Ĝk

vec
(

∆Ŷ +
i − Y

(1)
i,−1 − Y

(2)
i,−1B̂k

)
vec
(

∆Ŷ +
i − Y

(1)
i,−1 − Y

(2)
i,−1B̂k

)′(F̂ ⊗ Ir) .
(52)

where F ′F/T = IM and VNT is a diagonal matrix consisting of the M ∗ r largest eigen-

values of the matrix inside the brackets, arranged in decreasing order.

Now we summarize estimation procedures. First, we need to obtain prior estimates

of α̂i, β̂i and F̂ from the two-step GLS method from (49)-(50). Second, we minimize the

above PGLS criterion function (51), which produces the corresponding C-Lasso estimates

b̂ and B̂. Third, we update the estimates of adjustment matrix α̂i = S01,iB̂k

(
B̂′kS11,iB̂k

)−1

and unobserved common factors F by (52). Forth, we apply bias-correction in post-Lasso

estimator of Bk with group classification from C-Lasso estimators. At last, we iterate

procedures 3-4 to obtain the post-Lasso estimates until achieving convergence. Our esti-

mators, which we will refer to as “C-Lasso” and “post-Lasso” are based on the optimal

group of cross-sectional individuals, according to the PGLS criterion function. We study

asymptotic properties of the C-Lasso, and post-Lasso below.

3.3 Asymptotic Theory

3.3.1 Main Assumptions

In this subsection, we explain main assumptions needed in asymptotic properties.

Without loss of generality, we assume that F 0
t has zero mean. Let wit = (ε′it, F

0′
t )′ and

C = σ (F,Λ) is the sigma algebra generate by F and Λ.

Assumption 3.1 (i) For each i, {wit}∞0 is a linear process and wit = φi(L)ei,t =∑∞
j=0 φijei,t−j , where eit is a (J + M) × 1 vector sequence of i.i.d random variables

with zero mean and variance matrix IJ+M and max16i6N suptE(‖ei,t‖2q+ε) <∞, where

q > 4 and ε is an arbitrarily small positive constant. Define eit = (eε′it, e
F ′
t )′. eεit and eFt

are mutually independent.

(ii) max16i6N
∑∞

j=0 j
k‖φij‖ <∞ and |φi(L)| 6= 0 for some k > 2.
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(iii) Λi is independent of ejt for all i, j, and t.

(iv) εit are cross-sectionally independent conditional on C.

Assumption 3.2 (i) The determinant equation |IJ − (IJ + α0
iβ

0′
i )L| = 0 has roots on or

outside the unit circle, i.e. |L| > 1.

(ii) The IJ + α0
iβ

0′
i where αi and βi are J × r matrices of full column rank r, 0<r 6 J .

(iii) The matrix Ri = Ir + β0′
i α

0
i has eigenvalues within the unit circle.

Assumption 3.3 (i) For each k = 1, ..., K0, Nk/N → τk ∈ (0, 1) as N →∞.

(ii) min16k 6=j6K
∥∥B0

k −B0
j

∥∥ > cα for some fixed cα > 0.

(iii) As (N, T )→∞, N/T 2 → c ∈ [0,∞), T/N2 → c ∈ [0,∞).

(iv) As (N, T )→∞, λιT → 0, λTN−1/qι−2
T / (log T )1+ε →∞, and ι2TN

1/qT−1 (log T )1+ε →

0.

Assumption 3.1 (i)-(ii) imposes that the innovation process {wit} is a linear process

that exhibits certain moment and summability conditions. Let S1 = (IJ×J , 0J×M) and

S2 = (0M×J , IM×M) be J × (J + M) and M × (J + M) selection matrices such that

S1wit = εit and S2wit = F 0
t . By Phillips and Solo (1992) and Phillips and Moon (1999),

the finite 2q+ ε moments for q > 4 ensure the validity of the law of large numbers (LLN)

and functional central limit theorem for partial sum processes of wit. In our asymptotic

analysis, we will frequently call upon the Beveridge and Nelson (1981) BN decomposi-

tion:

wit = φi (1) eit + w̃i,t−1 − w̃it,

where w̃it =
∑∞

j=0 φ̃ijei,t−j and φ̃ij =
∑∞

s=j+1 φis. Assumption 3.1 (ii) indicates that

w̃it has Wold decomposition and behaves like a stationary process. By Phillips and Solo

(1992, p973), we have
∑∞

j=0 ‖φ̃ij‖2 < ∞ under
∑∞

j=1 j
1/2‖φ̃ij‖ < ∞. In our case, we

need stronger conditions to ensure the uniform behavior across i. For latter reference, we

partition φi(L) conformably with wit as follows:

φi(L) =

(
φεεi (L) φεFi (L)

φFεi (L) φFF (L)

)
=

(
φεεi (L) 0J×M

0M×J φFF (L)

)

Since stationary common factors do not dependent on i, we have φFεi (L) = 0. We set

φεFi (L) = 0 to ensure that εit is cross-sectionally independent conditional on C. (iii)
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ensures that factor loadings are independent of the generation of innovation processes

both over time dimension and across cross-sectional units. (iv) emphasizes that the cross-

sectional dependence only comes from unobserved common factors.

Assumption 3.2 gives conditions that are standard in error correction model with re-

duced rank restriction. Assumption 3.2 (iii) ensures that the matrix β′iαi has full rank

for each individual i. (see Johansen (1988), Johansen (1995) and Phillips (1995)). Let

αi⊥ and βi⊥ be orthogonal complements to αi and βi, so that αi⊥ and βi⊥ are full rank

J × (J − r) matrices satisfying α′i⊥αi = 0(J−r)×r and β′i⊥βi = 0(J−r)×r respectively.

Without loss of generality, we assume β′i⊥βi⊥ = IJ−r and α′i⊥αi⊥ = IJ−r. Also, [αi, αi⊥]

and [βi, βi⊥] are J × J non-singular matrices. The non-singularity of β′iαi implies the

non-singularity of α′i⊥βi⊥. Note that yit are generated from the following equation

yit = (IJ + α0′
i β

0
i )yi,t−1 + Λ0′

i F
0
t + εit.

Multiplying β0′
i and α0′

i⊥ on both sides of above equation, we have

Stationary components: β0′
i yit = (Ir + β0′

i α
0
i )β
′
iyi,t−1 + β0′

i (Λ0′
i F

0
t + εit) = Ri(L)β0′

i uit

Nonstationary components: α0′
i⊥yit = α0′

i⊥yi,t−1 + α0′
i⊥
(
Λ0′
i F

0
t + εit

)
=

t∑
s=1

α0′
i⊥uis + α0′

i⊥yi0

where uit = Λ0′
i F

0
t + εit and Ri(L) =

∑∞
j=0R

j
i =

∑∞
j=0 (Ir + β0′

i α
0
i )
j . Combing the

above two components and the fact that β0
i⊥ (α0′

i⊥β
0
i⊥)
−1
α0′
i⊥ + α0

i (β0′
i α

0
i )
−1
β0′
i = IJ , it

yields the following Granger partial sum representation

yit = β0
i⊥
(
α0′
i⊥β

0
i⊥
)−1

α0′
i⊥

(
t∑

s=1

uis + yi0

)
+ α0

i

(
β0′
i α

0
i

)−1
Ri(L)β0′

i uit,

where rank
(
β0
i⊥ (α0′

i⊥β
0
i⊥)
−1
α0′
i⊥

)
= J − r. Since βi =

(
Ir b′i

)′
, we have the sub-vector

y
(2)
it satisfies the following full rank partial sum process

y
(2)
it = b0

i⊥
(
α0′
i⊥β

0
i⊥
)−1

α0′
i⊥

(
t∑

s=1

uis + yi0

)
+ α0

2i

(
β0′
i α

0
i

)−1
Ri(L)β0′

i uit,

where
(
b0
i⊥ (α0′

i⊥β
0
i⊥)
−1
α0′
i⊥

)
is a (J − r)×(J − r) full rank matrix and α0

i =
(
α0′

1i α0′
2i

)′
.

Since y(2)
it is a full rank nonstationary process, we have the multivariate invariance princi-

ple for y(2)
it , such that

1√
T
y

(2)
it = b0

i⊥
(
α0′
i⊥β

0
i⊥
)−1

α0′
i⊥

1√
T

(
t∑

s=1

uis

)
+α0

2i

(
β0′
i α

0
i

)−1 1√
T
vit ⇒ b0

i⊥
(
α0′
i⊥β

0
i⊥
)−1

α0′
i⊥Bui,

83



where vit = Ri(L)β0′
i uit, Bui = SiBi, Si = S1 + Λ0′

i S2, and Bi is a (J +M)× 1 vector

of Brownian motions with long-run covariance matrix Ωi. Define the temporal variance

Σi = E(wi0w
′
i0) and the one-sided long-run covariance matrix ∆i =

∑∞
j=0E(wi0w

′
ij) =

Γi + Σi of {wit} , where Ωi has the following partition

Ωi =
∞∑

j=−∞

E(wi0w
′
ij) = Γ′i + Γi + Σi =

(
Ω11,i 0J×M

0M×J Ω22,i

)
.

Assumption 3.3(i) implies that each group has an asymptotically non-negligible num-

ber of individuals as N → ∞. Assumption 3.3(ii) is obtained from SSP, which requires

the separability of the group-specific parameters. Similar conditions are assumed in the

panel literature with latent group patterns (see Bonhomme and Manresa (2015) and Huang

et al. (2017)). Assumption 3.3(iii)-(iv) impose conditions to control the rate of N and T

passing to infinity, which is important to the proof of uniform classification consistency.

In particular, we allow for N and T pass to infinity at the same rate. The involving of ιT

is due to the law of iterated logarithm, such that ιT = O(log log T ). Here we can show

that the range of values for λ satisfying Assumption 3.3(iv) is λ ∝ T−α for α ∈ (0, q−1
q

).

3.3.2 Point estimation and classification consistency

Let CNT = min(
√
N,
√
T ), η2

NT = 1
N

∑N
i=1

∥∥∥vec(b̂i − b0
i )
∥∥∥2

, and

H =
(
vec(Λ0)vec(Λ0)′

N

)(
F ′F̂
T
⊗ Ir

)
V −1
NT . The consistency of initial estimators b̂GLSi and

the estimated factor F̂ is ensured by the following theorem.

Theorem 15 Suppose that Assumptions 3.1-3.2 hold. Then for some ιT →∞,

(i) α̂i − α̃i = Op(T
−1/2), for each i = 1, ..., N

(ii) b̂GLSi − bi = Op(T
−1), for each i = 1, ..., N ,

(iii) 1√
T

∥∥∥(F̂ ⊗ Ir)− (F 0 ⊗ Ir)H
∥∥∥ = Op(C

−1
NT ) +Op(

√
TιTηNT )

where α̃i = α0
i + Σuv,iΣ

−1
vv,i.

Remark: Theorem 3.1(i)-(ii) establish the point-wise consistency for estimators of short-

run adjustment matrix αi and long-run cointegration vector bi. We summarize some key

findings. First, the estimator of short-run adjustment matrix is inconsistent around the

true value α0
i when Σuv,i 6= 0. Instead, α̂i is consistent with the pseudo true value α̃i =
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α0
i + Σuv,iΣ

−1
vv,i, where Σuv,i comes from the serial correlation and endogeneity in the

innovation processes of εit and F 0
t . When we have the i.i.d. assumption, (i) reduce to

the case in Johansen (1991), where α̂i − α0
i = Op(T

−1/2). Second, despite the weakly

dependence, we can still obtain super-consistency for long-run cointegration vectors. This

GLS estimator is similar to the two-step parametric estimator in Breitung (2005), where

he focuses on the i.i.d. case. Based on the convergence rate of b̂GLSi , we can show that the

spaces spanned by the columns of F̂ and F 0 are asymptotically the same.

Here we presents the preliminary rates of convergence for PGLS-based estimates b̂i

and B̂k.

Theorem 16 Suppose that Assumptions 3.1-3.2 hold. Then for some ιT →∞,

(i) vec(b̂i − b0
i ) = Op(T

−1 + λ), for i = 1, ..., N .

(ii) 1
N

∑N
i=1

∥∥∥vec(b̂i − b0
i )
∥∥∥2

= Op(ι
2
TT
−2) for i = 1, ..., N .

(iii) (vec(B̂(1)), ...,vec(B̂(K)))− (vec(B0
(1)), ...,vec(B0

(K))) = Op(ιTT
−1)

where (vec(B0
(1)), ..., vec(B

0
(K))) is suitable permutation of (vec(B0

1), ...,vec(B0
K)).

Remark: Theorem 3.2(i)-(ii) establish the point-wise and mean-square consistency for

the long-run cointegration matrix bi.Theorem 3.2(iii) indicates that the estimator vec(B̂k)

consistently estimate the true group-specific coefficient vec(B0
k). We note that the point-

wise convergence rate of bi depends on λ but mean-square convergence rate of bi and the

convergence rate of B̂k doesn’t.

For simplicity, we will write B̂(k) as B̂k. Define the estimated group

Ĝk =
{
i ∈ {1, 2, ..., N} : b̂i = B̂k

}
for k = 1, ..., K.

For rigorous statement of classification consistency, we define the following sequences of

events

ÊkNT,i = {i 6∈ Ĝk|i ∈ G0
k} and F̂kNT,i = {i 6∈ G0

k|i ∈ Ĝk}

where i = 1, ..., N and k = 1, ...K. Let ÊkNT = ∪i∈ĜkÊkNTi and F̂kNT = ∪i∈ĜkF̂kNTi.

This definition is identical to that in Su et al. (2016). The events ÊkNT and F̂kNT mimic

Type I and Type II errors in statistical tests: ÊkNT denotes the error event of not clas-

sifying an element of G0
k into estimated group Ĝk; and F̂kNT denotes the error event of

85



classifying an element that does not belong to G0
k into the estimated group Ĝk. We adopt

the following definition to investigate the asymptotic properties of classification.

Definition 3.1 (Uniform consistency of classification) We say that a classification method

is individual consistent if P (ÊkNT,i) → 0 as (N, T ) → ∞ for each i ∈ G0
k and k =

1, ..., K0, and P (F̂kNT,i) → 0 as (N, T ) → ∞ for each i ∈ G0
k and k = 1, ..., K0. It is

uniformly consistent if P (∪K0
k=1ÊkNT )→ 0 and P (∪K0

k=1F̂kNT )→ 0 as (N, T )→∞.

Theorem 17 Suppose that Assumptions 3.1-3.3 hold. Then

(i) P (∪Kk=1ÊkNT ) 6
∑K

k=1 P (ÊkNT )→ 0 as (N, T )→∞,

(ii) P (∪Kk=1F̂kNT ) 6
∑K

k=1 P (F̂kNT )→ 0 as (N, T )→∞.

Remark: Theorem 3.3 implies the uniform classification consistency– all individuals

within a certain group, say G0
k can be simultaneously correctly classified into same group

(denoted Ĝk) w.p.a.1. This theorem has also been established in Huang, Phillips, Su

(2017).

3.3.3 Asymptotic distribution and oracle property

In this subsection, we study the oracle properties of PGLS-based estimation method.

Given the estimated group {Ĝk, k = 1, ..., K}, we can readily pool the observations

within each estimated group to obtain the post-Lasso estimator as follows

vec(B̂post
k ) =

Ir ⊗ 1

NkT 2

∑
i∈Ĝk

Y
(2)′
i,−1Y

(2)
i,−1

−1

vec

 1

NkT 2

∑
i∈Ĝk

Y
(2)′
i,−1

(
∆Ŷ +

i − Y
(1)
i,−1i

)
for k = 1, ..., K. When the group identity for each individual is known, we have the

oracle estimators

vec(B̂oracle
k ) =

Ir ⊗ 1

NkT 2

∑
i∈Ĝk

Y
(2)′
i,−1Y

(2)
i,−1

−1

vec

 1

NkT 2

∑
i∈G0

k

Y
(2)′
i,−1

(
∆Ŷ +

i − Y
(1)
i,−1

) .

The oracle property indicates that the Lasso-type estimators are asymptotically equivalent

to the infeasible estimator vec(B̂oracle
k ), which can be obtained only if one knows all

individuals’ group identity. In the following theorem, we establish the oracle property of

the PGLS-based C-Lasso estimators and their post-Lasso version.
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Theorem 18 Suppose that Assumptions 3.1-3.3 hold. Then for k = 1, ..., K, as (N, T )→

∞,

(i)
√
NkT (vec(B̂k −B0

k))−Q−1
k Bk,NT ⇒ N(0,Q−1

k VkQ−1
k ),

(ii)
√
NkT (vec(B̂post

k −B0
k))−Q−1

k Bk,NT ⇒ N(0,Q−1
k VkQ−1

k ),

where Qk = limN→∞
1
Nk

∑
i∈G0

k
C1iEC

(∫
BuiB

′
ui

)
C ′1i, Vk = limN→∞VarC (VkNT ) =

Ωk, and C1i = b0
i,⊥
(
α0′
i,⊥β

0
i,⊥
)−1

α0′
i,⊥.

Given the limiting distribution in Theorem 3.4, one can make inference as if the true

group identity is known. Since there is a non-negligible bias Bk,NT , we can remove the

bias by panel DOLS or fully modified OLS method in the post-Lasso estimators (see Mark

and Sul (2003) and Phillips and Moon (1999)). Therefore, the post-Lasso estimators after

bias-correction are recommended for practical uses.

3.4 Monte Carlo Simulations

In this section, we evaluate the finite sample performance of the C-Lasso and post-

Lasso estimators under PGLS-based methods.

We consider three data generating processes that cover panel error correction models

with different specifications. Throughout these DGPs, the observations in each DGP

are drawn from two groups with the proportion N1 : N2 = 0.4 : 0.6. We try four

combinations of the sample sizes with N = 40, 80 and T = 50, 100.

DGP1 (Three-variate Panel ECM(1) with no common factors) The observations yit

are generated according to

∆yit = α0
iβ

0′
i yit−1 + εit,

where εit is i.i.d N(0, 1) and the cointegration rank r = 2, the true coefficients are α0
i =

α0 + 0.2 ∗N(0, 1) and β0
i = [Ir, b

0′
i ]′ where

α0 =

−0.3 0.3

0.3 −0.2

0.2 0.3

 , (B0
1 , B

0
2) =

((
−1/3 −1

)
,
(
−1 −1/3

))
,

and b0
i = B0

k for i ∈ G0
k and k = 1, 2.
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DGP2 (Three-variate Panel ECM(1) with two common factors) The observations yit

are generated according to yit = sit + ψ′if
0
t

∆sit = α0
iβ

0′
i si,t−1 + εit

where the cointegration rank, αi and βi are the same with DGP1. Let ψi = (ψ1i, ψ2i),

ft = (f1t, f2t). The variables ψji and fjt are all i.i.d. N(0, 1) for j = 1, 2.

DGP3 (Three-variate Panel ECM(1) with two common factors and endogeneity) The

observations yit are generated from the same model in DGP2. The settings of r, αi, βi

and ψi are the same in DGP2. We introduce linear processes in idiosyncratic errors wit =

(ε′it,∆f
′
t)
′, such that wit =

∑∞
j=0 φjei,t−j where eit are i.i.d. N(0, I5), φj = j−3.5 ∗ Ω1/2,

Ω1/2 is the symmetric square root of Ω where Ω =

(
Ωε 03×2

02×3 ΩF

)
, Ωε

lm = ΩF
lm = 0.2 for

all l 6= m and Ωε
ll = ΩF

ll = 1.

In all cases, the simulation results are based on 500 replications.

Table 1 show the finite sample performance of group classification and estimation.

Now we assume that the number of groups, the number of factors, and the cointegration

rank are known in assessing the estimation performance. We set λ = cλT
−3/4 where

cλ = 0.1 or 0.2. For classification, all DGPs achieve 95% correct specification rate for

different values of cλ. Moreover, as T increases, the percentage of correct specification

increases significantly and is almost close to the perfect rate 100%. The simulation results

confirm good classification performance.

For the estimation, we consider both the C-Lasso estimator and its post-Lasso ver-

sion. We report the bias and root-mean-square-error (RMSE) for the estimate b̂i(1), which

is the first parameter in b0
i for each DGP, where all criteria are averaged over different

groups and across 500 replications. For example, we calculate the RMSE of b̂i(1)’s as
1
N

∑K0

k=1NkRMSE(B̂k(1)) with B̂k(1) denoting the first element in B̂k for one replica-

tion and then average them across all replications for each case.

In general, the estimation performance reveals some general patterns. First, the bias

and RMSE of the C-Lasso estimates and their post-Lasso versions always decreases as

eitherN or T increases, and they decrease faster when T increases than whenN increases.
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Table 15: RMSEs and Biases for Lasso-types and oracle estimates under PGLS-based

method

cλ = 0.1 cλ = 0.2

N T % Correct RMSE Bias % Correct RMSE Bias
specification specification

DGP1
40 50 C-Lasso 98.43 0.0626 0.0502 98.42 0.0624 0.0499

post-Lasso 98.43 0.0139 -0.0011 98.42 0.0139 -0.0011
Oracle - 0.0139 -0.0016 - 0.0139 -0.0016

40 100 C-Lasso 99.84 0.0289 0.0233 99.84 0.0289 0.0232
post-Lasso 99.84 0.0069 -0.0003 99.84 0.0069 -0.0003
Oracle - 0.0069 -0.0003 - 0.0069 -0.0003

80 50 C-Lasso 98.35 0.0566 0.0489 98.35 0.0560 0.0481
post-Lasso 98.35 0.0096 -0.0001 98.35 0.0096 -0.0001
Oracle - 0.0095 -0.0005 - 0.0095 -0.0005

80 100 C-Lasso 99.88 0.0284 0.0253 99.89 0.0254 0.0221
post-Lasso 99.88 0.0044 0.0001 99.89 0.0044 0.0001
Oracle - 0.0044 0.0000 - 0.0044 0.0000

DGP2
40 50 C-Lasso 95.59 0.1178 0.1022 95.58 0.1176 0.1018

post-Lasso 95.59 0.0230 0.0066 95.58 0.0231 0.0066
Oracle - 0.0189 -0.0042 - 0.0189 -0.0042

40 100 C-Lasso 99.10 0.0552 0.0486 99.15 0.0545 0.0478
post-Lasso 99.10 0.0091 0.0025 99.15 0.0091 0.0025
Oracle - 0.0079 -0.0011 - 0.0079 -0.0011

80 50 C-Lasso 95.49 0.1095 0.1017 95.48 0.1085 0.1005
post-Lasso 95.49 0.0167 0.0075 95.48 0.0167 0.0075
Oracle - 0.0113 -0.0022 - 0.0113 -0.0022

80 100 C-Lasso 99.03 0.0522 0.0490 99.03 0.0491 0.0457
post-Lasso 99.03 0.0063 0.0024 99.03 0.0063 0.0024
Oracle - 0.0048 -0.0004 - 0.0048 -0.0004

DGP3
40 50 C-Lasso 97.58 0.0786 0.0636 97.58 0.0782 0.0631

post-Lasso 97.58 0.0174 0.0058 97.58 0.0174 0.0058
Oracle - 0.0173 0.0005 - 0.0173 0.0005

40 100 C-Lasso 99.57 0.0374 0.0311 99.57 0.0365 0.0300
post-Lasso 99.57 0.0077 0.0020 99.57 0.0077 0.0020
Oracle - 0.0072 0.0001 - 0.0072 0.0001

80 50 C-Lasso 97.65 0.0717 0.0628 97.66 0.0708 0.0615
post-Lasso 97.65 0.0129 0.0058 97.66 0.0129 0.0058
Oracle - 0.0122 0.0002 - 0.0122 0.0002

80 100 C-Lasso 99.60 0.0358 0.0325 99.60 0.0321 0.0287
post-Lasso 99.60 0.0055 0.0020 99.60 0.0055 0.0021
Oracle - 0.0050 0.0003 - 0.0050 0.0003

It confirms that the estimates have faster convergence rate along the time dimension than

along the cross-sectional dimension. Second, the finite sample performance of the post-

Lasso estimates is close to that of the oracle ones and dominates the C-Lasso estimates

in DGP1 and DGP2. This is because we have iterated estimation procedure in post-

Lasso and oracle estimators. In addition, when endogeneity is introduced in DGP3, we

apply DOLS bias-correction in post-Lasso and oracle-estimators. The simulation results

suggest that DOLS bias-correction works fine in error correction model. Based on above

simulation results, we recommend the post-Lasso estimators with DOLS bias-correction

for practical uses.
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3.5 Efficient price in market microstructure model

There are two fundamental functions of market microstructure, viz., liquidity and

price discovery. Popular liquidity and price discovery measures, such as the bid-ask

spread, pricing error (Hasbrouck (1993)), information share (Hasbrouck (1995)), and

Common factor (Harris et al. (2002)), reflect the adverse selection costs and inventory

costs of market makers, and the mechanics of how new information impounding into se-

curity price. Therefore, understanding market microstructure is essential to asset pricing.

To economize on the number of issues, one of the central concepts is the “efficient price”,

which is economically meaningful for asset pricing but generally unobservable.

In the literature, the efficient price is either measured by transaction price or the mid-

point of bid-ask prices, see, e.g., Hasbrouck (1993), Hasbrouck (1995), and Hansen and

Lunde (2006). The underlying assumption obeys the law of one price, by which the bid

and ask quotes deviate from efficient price with transient errors. In this case, the bid-ask

spread can only have “second-order” effect on the level of stock price and it is hard to be

detected empirically. However, a number of studies identify the positive return-illiquidity

relationship across stocks (see Amihud and Mendelson (1986), and Amihud (2002)). It

implies potential deviations from the “absolute” version of the law of one price. Based

on this argument, we believe some patterns of unobserved heterogeneity in the long-run

equilibrium between bid and ask prices. This leads to the possibility that efficient price

lies between the bid and ask prices but not exactly on the mid-point. The asymmetric

contributions of bid and ask prices to efficient price have been identified in commodity

market and foreign exchange market, see Figuerola-Ferretti and Gonzalo (2010) and Chen

and Gau (2014).

In this paper, we suggest a new measure for implicit “efficient price”, which is the

weighted average of bid and ask prices. First, we summarize two existing methods for

price discovery that are advocated by Hasbrouck (1995) and Gonzalo and Granger (1995).

Second, we propose a permanent-transitory decomposition to derive efficient price and

show the linkage between the two existing methods. Third, we discuss several advantages

for our PT decomposition from economic intuition and econometric perspective. Fourth,

we apply our method to the NYSE Trade and Quote (TAQ) data in the sample year 2006
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and summarize some findings.

3.5.1 Permanent-Transitory decomposition

The basic belief in microstructure model is that pairs of prices for a single security

are cointegrated, and contain a permanent component. Therefore, there exists an error

correction model for the vector of the bid and ask prices, such that

∆pit = αiβ
′
ipi,t−1 +

p−1∑
l=1

Γil∆pi,t−l + eit,

where pit = [bit, ait]
′, bit is the bid price, and ait is the ask price. Most of microstructure

models assume βi = [1,−1]′ as a prior condition, for example Hasbrouck (1995) and

Hansen and Lunde (2006). The bid and ask prices can be summarized as the efficient

price plus a transitory component impounding various microstructure effects:

ait = mit + sait, and bit = mit − sbit

where mit is the implicit “efficient price”, sait and sbit are pricing errors. From the above

set-up, the mid-point of bid-ask prices is a good measure for efficient price. By Hasbrouck

(2002), the efficient price follows a pure random walk

mit = mi,t−1 + uit,

where uit is uncorrelated over time, such that E (uituis) = 0 for t 6= s. In addition, he

assumes the pricing error
(
sait, s

b
it

)
is serially uncorrelated over time but may correlated

with eit. Intuitively, the random-walk variance σ2
ui can be recovered from the observed

price changes. The information share measure of price discovery comes from the different

variance contributions of price series.

As discussed earlier, much empirical work identifies “illiquidity premium” across

stocks over time. It indicates that the mis-priced issue may be fundamental, where the

bid and ask prices are cointegrated but they can deviate from the one-to-one long-run

equilibrium. Based on this belief, we have

ait = Iamit + sait, and bit = Ibmit − sbit
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where Ia 6= 1 or Ib 6= 1 for some stocks. Naturally, the mid-point of bid and ask prices

may not be a good measure of the efficient price.

Gonzalo and Granger (1995) propose a permanent-transitory (PT) decomposition as

pit = βi⊥m
GG
it + αis

GG
it

where mGG
it = (α′i⊥βi⊥)−1 α′i⊥pit and sGGit = (β′iαi)

−1 β′ipit. Based on this PT decompo-

sition, Harris et al. (2002) propose a new measure for price discovery, such that

GG decomposition: pit = mGG
it + αis

GG
it ,

Efficient price: mGG
it =

αai⊥
αai⊥ + αbi⊥

ait +
αbi⊥

αai⊥ + αbi⊥
bit,

where βi = [1,−1] is a prior condition. From the above equation, the “efficient price”

mGG
it is a linear function of observed prices, which may not be the mid-point of bid and ask

prices. These weights are useful measures for the price discovery. However, there are two

fundamental problems by using this GG decomposition. First, the bid and ask prices still

obey the “absolute” version of the law of one price where Ia = Ib = 1 This implies that

the bid-ask spread only contains the transitory component and has no predictive power on

stock returns. Second, Hansen and Lunde (2006) summarize two important facts of the

market microstructure noise: (1). the noise is correlated with the efficient price, and (2)

the noise is time dependent. In the GG decomposition, the market microstructure noise is

αis
GG
it . By Granger partial sum representation (p = 1), we have

αis
GG
it = αi (β

′
iαi)

−1
Ri(L)β′ieit.

It is obvious that this market microstructure noise is time dependent but orthogonal to

the efficient price. Third, from the econometric perspective we show that the short-run

adjustment matrix αi cannot be consistently estimated under weakly dependent innovation

processes. In general, the GG decomposition fails to give an unbiased and consistent

estimator for the “efficient price” and may be contradicted to some empirical findings.

In this paper, we propose a new permanent-transitory decomposition method based on

consistent and efficient estimator of the long-run equilibrium vector βi.5 Due to the fact

5Kasa (1992), and Johansen (Corollary 4.4 p.53, 1995) discuss this PT decomposition.
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that Pβi⊥ + Pβi = I2, we can decompose pit as follows

β − decomposition: pit = βi⊥m
β
it + βis

β
it

where mβ
it = (β′i⊥βi⊥)−1 β′i⊥pit and sit = (β′iβi)

−1 β′ipit. There are several advantages

of this decomposition. First, this decomposition satisfies the definition of permanent-

transitory decomposition proposed by Quah (1992). Second, the “efficient price” is also

the linear combination of observed prices. In the meanwhile, the accurate estimation of

mit only depends on the consistency of the long-run equilibrium vector βi. Therefore, we

can still obtain consistent measure for “efficient price” under weakly dependent innova-

tion processes. Third, we can replace pit in the GG and β−decompositions by its Granger

partial sum representation

mGG
it = (α′i⊥βi⊥)

−1
α′i⊥

(
t∑

s=1

eis

)
, and mβ

it = (α′i⊥βi⊥)
−1
α′i⊥

(
t∑

s=1

eis

)
+ εit

where εit = (β′i⊥βi⊥)−1 β′i⊥αi (β
′
iαi)

−1Ri(L)β′ieit is transient. We observe that our ef-

ficient price measure mβ
it has exactly the same permanent component with mGG

it . When

βi = [1,−1], we have mβ
it lies in the mid-point of bid and ask prices, such that

ait = mβ
it + sβit, and bit = mβ

it − s
β
it.

Fourth, the market microstructure noise has two components–a permanent component

from the deviation of one-to-one relationship and transitory component, such that

pit −mit = [βi⊥ − ι]mβ
it + βis

β
it,

where ι = [1, 1]′. When the long-run cointegration relationship βi 6= [1,−1]′, the mi-

crostructure noise will be correlated with efficient price, which is consistent with the

empirical findings in Hansen and Lunde (2006). Further, when βi = [1,−1], we only

have the orthogonal transitory component, which is uncorrelated with the efficient price.

This is consistent with the general settings in the continuous time model for realized vari-

ance (see Aı̈t-Sahalia et al. (2005)). In general, our β−decomposition maintains the key

features in the Hasbrouck and GG decompositions. Also, the potential heterogeneity in

long-run cointegration relationships directly determines asymmetric contributions of bid

and ask prices to efficient price.
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3.5.2 Empirical results

We estimate the parameters in (ECM) for each of the days individually, with the num-

ber of lags, p = 1 and p = 5.6 The key parameter in our analysis is β⊥i , which shows

how the efficient price is constructed by the linear combinations of observed prices. We

normalize the long-run cointegration vector βi = [1, bi]
′. We impose latent group struc-

tures on the long-run cointegration relationship bi. In our empirical results, we set the

number of group K = 3, 4 and the elements of β⊥k correspond to bid and ask prices, such

as (β⊥k,bid, β
⊥
k,ask, ) for k = 1, 2, 3 or k = 1, 2, 3, 4.

Table 2 and Table 3 report a summary of our empirical results, which are averages,

minimum, maximum and standard deviation of the daily estimates, bk, and group per-

centages of the whole sample Nk/N . We summarize some interesting findings. First, the

long-run cointegration relations [1, bk] deviate from the one-to-one relationship. Second,

on average 95% of our sample has negative estimates on bi, which indicates the efficient

price lies between bid and ask prices. Similar results preserve when K = 4. In addition,

we notice abnormal estimates in the Group 3 when K = 3 and Group 4 when K = 4,

where the efficient price is out of the bid-ask region. However, the proportion of these

stock is generally below 5% in our sample.

Figure 1 and Figure 2 show the contributions of bid and ask prices to efficient price

based on the group-specific estimates of bk for K = 3 and K = 4. In general, there are

distinctive asymmetric patterns of the bid and ask prices to efficient price. The results

suggest some forms of information asymmetry at one of the quoted price to price discov-

ery. It empirically identifies that buyers and sellers respond differently to information and

face asymmetric trading costs in stock market.

Table 16: Summary estimates of the long-run cointegration relationships when K = 3

b1 N1/N b2 N2/N b3 N3/N Number of Observations

Average -1.220 0.400 -0.658 0.554 0.256 0.046 932.35
Max -0.799 0.977 -0.063 0.830 0.678 0.132 1005
Min -1.664 0.109 -0.906 0.017 -0.314 0.000 850
Std. 0.144 0.174 0.126 0.176 0.221 0.024 29.830

6The results of p = 5 are similar to those of p = 1 and available upon request.

94



Table 17: Summary estimates of the long-run cointegration relationships when K = 4

b1 N1/N b2 N2/N b3 N3/N b4 N4/N Number of Observations

Average -1.774 0.112 -0.936 0.661 -0.312 0.168 0.493 0.060 933.72
Max -1.065 0.597 -0.565 0.847 0.284 0.670 1.330 0.133 1005
Min -4.232 0.006 -1.720 0.014 -0.825 0.000 0.084 0.006 850
Std. 0.326 0.082 0.139 0.113 0.182 0.120 0.161 0.018 29.942

Figure 2: Weighted contribution of bid and ask price to efficient price when K = 3
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Figure 3: Weighted contribution of bid and ask price to efficient price when K = 4
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3.6 Conclusion

In this paper, we propose a panel error correction model, where the dependent variable

are generated from the combination of idiosyncratic nonstationary component and unob-

served stationary common factors. The central result is to obtain consistent and efficient

estimator for long-run cointegration vectors in the presence of unobserved heterogeneity.

In addition, unlike the usual i.i.d. assumption in error-correction model, we allow for

weak dependence in both error terms and unobserved stationary common factors. Fur-

thermore, the unobserved common factors introduce interdependence among individuals.

The estimation and group classification procedure is purely data-driven, based on the pe-

nalized generalized least squares method. We have proposed two Lasso-type estimators

for long-run cointegration vectors. The asymptotic properties are derived and discussed

in this paper.

In the empirical application, we employ our method on a large panel of TAQ data

from sample year 2006. We propose a permanent-transitory decomposition on the vector

of bid and ask prices. This decomposition yields a measure for “efficient price”, which

is weighted average of bid and ask prices. Compared to the mid-point assumption, we

discuss several advantages for our measure. There are a number of aspects of our model

that we have not fully developed in our empirical analysis and that are left for future

research. First, we can quantify the permanent and transitory part in the bid-ask spread. It

may explain contradicted views on the effects of bid-ask spread, Amihud and Mendelson

(1986), and Vayanos (1998). Second, it is interesting to analyze the realized variance

based on our estimates of efficient price.
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A Appendix to Chapter 1

In this appendix, we first state some technical lemmas that are used in the proofs of

Theorems 1-6 and then prove these main results. The proofs of the technical lemmas are

relegated to the online supplementary Appendix.

A.1 Proofs of the Main Results in Section 4

Let x0
1,it =

∑t
s=1 ε1,it. Noting that x1,it = x1,i0 +

∑t
s=1 ε1,it and x̃1i,t = x1,it −

1
T

∑T
s=1 x1,is = x0

1,it − 1
T

∑T
s=1 x

0
1,is, the initial value x1,i0 does not play a role in our

analysis. Without loss of generality, we assume that x1,i0 = 0 and write x1,it for
∑t

s=1 ε1,it

hereafter. Recall that

Q̂i,x̃x̃ =

(
1
T 2

∑T
t=1 x̃1,itx̃

′
1,it

1
T 2

∑T
t=1 x̃1,itx̃

′
2,it

1
T 2

∑T
t=1 x̃2,itx̃

′
1,it

1
T

∑T
t=1 x̃2,itx̃

′
2,it

)
=

(
Q̂i,x̃1x̃1 Q̂i,x̃1x̃2

Q̂i,x̃2x̃1 Q̂i,x̃2x̃2

)
,

Q̂i,x̃ũ =

(
1
T 2

∑T
t=1 x̃1,itũit

1
T 2

∑T
t=1 x̃2,itũit

)
=

(
Q̂i,x̃1ũ

Q̂i,x̃2ũ

)
,

Q̂i,x̃ũ∗ =

(
1
T 2

∑T
t=1 x̃1,itũ

∗
it

1
T 2

∑T
t=1 x̃2,itũ

∗
it

)
=

(
Q̂i,x̃1ũ∗

Q̂i,x̃2ũ∗

)
,

where ũ∗it = ũit − x̃′2itΣ
−1
22,iΣ20,i. Let x̃1,i = (x̃1,i1, ..., x̃1,iN)′ . Define x̃2,i, ũi, and ũ∗i

analogously. Let M`,i = IT − x̃`,i(x̃
′
`,ix̃`,i)

−1x̃′`,i for ` = 1, 2, where IT is a T × T

identity matrix. Recall that DT =

(
Ip1 0

0
√
TIp2

)
. We shall abbreviate Q̂i,x̃1x̃1 as Q̂1i

frequently for notational simplicity.

To prove the main results in the paper, we need the following lemmas.

Lemma 1 Let S = (S1,S2) be a selection matrix, where S1 and S2 are l × p1 and l × p2

matrices, respectively, and l is a fixed integer. Suppose that Assumptions A.1-A.3 hold.

Then for each i = 1, ..., N,

(i) SDT Q̂i,x̃x̃DTS′⇒S

( ∫ 1

0
B̃1,iB̃

′
1,i 0

0 Σ22,i

)
S′,

(ii) TQ̂i,x̃1ũ∗⇒
∫ 1

0
B̃1,idB

′
0,i + ∆10,i −

(∫ 1

0
B̃1,idB

′
2,i + ∆12,i

)
Σ−1

22,iΣ20,i,

(iii) T 3/2S2Q̂i,x̃2ũ∗⇒S2 (J1,i ⊗ J2,i)N (0, V 0
i ) ,

(iv) T
(
β̃1,i − β0

1,i

)
⇒
(∫ 1

0
B̃1,iB̃

′
1,i

)−1 [∫ 1

0
B̃1,idB

′
0,i + ∆10,i −

(∫ 1

0
B̃1,idB

′
2,i + ∆12,i

)
Σ−1

22,iΣ20,i

]
,
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(v)
√
TS2

(
β̃2,i − β∗2,i

)
⇒S2

(
Σ−1

22,iJ1,i ⊗ J2,i

)
N (0, V 0

i ) ,

where B̃1,i = B1,i−
∫ 1

0
B1,i(r)dr, ∆10,i = Σ10,i+Λ10,i, J1,i = (0p2×1,0p2×p1 , Ip2) , J2,i =(

1,01×p1 ,−Σ′20,iΣ
−1
22,i

)
, and V 0

i = limT→∞Var(T−1/2
∑T

t=1vec(εitε
′
it − Σi)).

Lemma 2 Suppose that Assumptions A.1-A.3 hold. Then for any fixed constant c > 0,

(i) P
(
max16i6N

1
T 2

∥∥x̃′1,iũi∥∥ > ca1NT

)
= o (N−1) ,

(ii) P
(

max16i6N

∥∥ 1
T
x̃′2,iũi − Σ20,i

∥∥ > cp
1/2
2 a2NT

)
= o (N−1) ,

(iii) P
(

max16i6N
1
T 2

∥∥x̃′1,ix̃2,i

∥∥ > cp
1/2
2 a1NT

)
= o (N−1) ,

(iv) P
(

max16i6N

∥∥∥ 1
T

∑T
t=1 x̃2,itx̃

′
2,it − Σ22,i

∥∥∥ > cp2a2NT

)
= o (N−1) ,

(v) P
(

max16i6N

∥∥∥Q̂i,x̃1ũ∗

∥∥∥ > ca1NT

)
= o (N−1) ,

(vi) P
(

max16i6N

∥∥∥TQ̂i,x̃2ũ∗

∥∥∥ > cp
1/2
2 a2NT

)
= o (N−1) .

Lemma 3 Suppose that Assumptions A.1-A.3 hold. Then

(i) lim sup
T→∞

λmax

(
1

2T 2 log log T
x̃1,ix̃

′
1,i

)
6
(

1
2

+ c
)
c̄Ω11 a.s. for any fixed small constant

c > 0,

(ii) P
(

min16i6N λmin(TQ̂i,x̃2x̃2) > c22/2
)

= 1− o (N−1) ,

(iii) P
(

min16i6N λmin(DT Q̂i,x̃x̃DT ) > c11/(2bT )
)

= 1− o (N−1) .

Lemma 4 Suppose that Assumptions A.1-A.3 hold. Then for any constant c > 0,

(i) P
(
max16i6N

∥∥ 1
T 2 x̃

′
1,iM2,ix̃1,i − 1

T 2 x̃
′
1,ix̃1,i

∥∥ > cb−1
T

)
= o (N−1) ,

(ii) P
(
max16i6N

∥∥ 1
T
x̃′2,iM1,ix̃2,i − Σ22,i

∥∥ > c p2a2NT

)
= o (N−1) ,

(iii) P
(
max16i6N

∥∥ 1
T 2 x̃

′
1,iM2,iũ

∗
i

∥∥ > ca1NT

)
= o (N−1) ,

(iv) P
(

max16i6N

∥∥ 1
T
x̃′2,iM1,iũ

∗
i

∥∥ > cp
1/2
2 a2NT

)
= o (N−1) .

Lemma 5 Suppose that Assumptions A.1-A.3 hold. Then for any ε > 0,

(i) P
(

max16i6N

∥∥∥β̃1,i − β0
1,i

∥∥∥ > c bTa1NT

)
= o (N−1) ,

(ii) P
(

max16i6N

∥∥∥β̃2,i − β∗2,i
∥∥∥ > cp

1/2
2 a2NT

)
= o (N−1) ,

(iii) P
(
max16i6N

∥∥σ̃2
i − Σ∗0.2,i

∥∥ > ε
)

= o (N−1) ,

where recall that Σ∗0.2,i = Σ00,i − Σ02,iΣ
−1
22,iΣ20,i.

Lemma 6 Suppose that Assumptions A.1-A.3 hold. Then

(i) 1
N

∑N
i=1

∥∥ 1
T 2 x̃

′
1,iũ
∗
i

∥∥2
= OP (T−2) ,
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(ii) 1
N

∑N
i=1

∥∥ 1
T 3/2 x̃

′
2,iũ
∗
i

∥∥2
= OP (p2T

−2) ,

(iii) 1
N

∑N
i=1

∥∥ 1
T 2 x̃

′
1,ix̃1,i

∥∥2
= OP (1) ,

(iv) 1
N

∑N
i=1

∥∥ 1
T 2 x̃

′
1,ix̃2,i

∥∥2
= OP (p2T

−2)

(v) 1
N

∑N
i=1

∥∥ 1
T 2 x̃

′
1,iM2,iũ

∗
i

∥∥2
= OP (T−2) .

To study the asymptotic distributions of the post-Lasso estimators α̂post
k ,we letQk,NT =

1
NkT 2

∑
i∈G0

k
x̃′1,i ×M2,ix̃1,i and Vk,NT = 1√

NkT

∑
i∈G0

k
x̃′1,iM2,iũi for k = 1, ..., K. We

make the following decomposition for Vk,NT = 1√
NkT

∑
i∈G0

k
x̃′1,iM2,iũi :

Vk,NT =
1√
NkT

∑
i∈G0

k

x̃′1,i
(
ũi − x̃2,iΣ

−1
22,iΣ20,i

)
+

1√
NkT

∑
i∈G0

k

x̃′1,ix̃2,iΣ
−1
22,i(Σ20,i −

1

T
x̃′2,iũi)

+
1√
NkT

∑
i∈G0

k

x̃′1,ix̃2,i

[
Σ−1

22,i −
(

1

T
x̃′2,ix̃2,i

)−1
]

Σ20,i

+
1√
NkT

∑
i∈G0

k

x̃′1,ix̃2,i

[
Σ−1

22,i −
(

1

T
x̃′2,ix̃2,i

)−1
](

1

T
x̃′2,iũi − Σ20,i

)
≡ V1k,NT + V2k,NT + V3k,NT + V4k,NT .

The following lemma studies the asymptotic properties ofQk,NT , V`k,NT for ` = 1, 2, 3, 4,

and Vk,NT .

Lemma 7 Suppose that Assumptions A.1-A.3 hold. Then

(i) Qk,NT
P→ Q(k),

(ii) V1k,NT − Bk,NT ⇒ N
(
0,V(k)

)
,

(iii) V2k,NT = oP (1) ,

(iv) V3k,NT = oP (1)

(v) V4k,NT = oP (1) ,

(vi) Vk,NT − Bk,NT ⇒ N
(
0,V(k)

)
,

where Q(k), Bk,NT , and V(k) are as defined before Theorem 4.

To consider the DOLS estimator. Let ṽai =
(
ṽai,p̄2+1, ..., ṽ

a
i,T−p̄2

)′
, ṽait = vait− 1

T−2p̄2

∑T−p̄2
t=p̄2+1 v

a
it,

where vait =
∑
|j|>p̄2 γ

′
i,j∆x1,i,t−j signifies the approximation error. Adjust the definitions
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of x̃1,i andM2,i to use the time series observations x`,i = (x`,i,p̄2+1, ..., x`,i,T−p̄2)
′, ` = 1, 2,

where recall that x2,it = (∆x′1,i,t−p̄2+1, ...,∆x
′
1,i,t+p̄2

)′.

Lemma 8 Let the conditions in Theorem 6 hold. Then 1√
NkT

∑
i∈G0

k
x̃′1,iM2,iṽ

a
i = oP (1).

Proof of Theorem 1 (i) First, noting that β2,i’s do not enter the penalty term in the PLS

objective function in (7), we can concentrate them out to obtain the following objective

function

QK,c
NT,λ(β1,α) =

1

N

N∑
i=1

Qc
NT,i(β1,i) +

λ

N

N∑
i=1

(σ̃i)
2−K

K∏
k=1

‖ Q̂1i(β1,i − αk) ‖ . (53)

where Qc
NT,i(β1,i) = 1

T 2 ‖M2,i(ỹi − x̃1,iβ1,i)‖2 . Let QK,c
NTi,λ(β1i,α) = Qc

NT,i(β1,i) +

λ(σ̃i)
2−K∏K

k=1 ||Q̂1i(β1,i −αk)||. Then QK,c
NT,λ(β1,α) = 1

N

∑N
i=1 Q

K,c
NTi,λ(β1,i, α). Let

b̂1,i = β̂1,i−β0
1,i and b̂2,i = β̂2,i−β∗2,i. Noting thatM2,i(ỹi−x̃1,iβ1,i) = M2,i

[
ũi − x̃1,i(β1,i − β0

1,i)
]
,

we have

QNT,i(β̂1,i)−QNT,i(β
0
1,i) =

1

T 2

∥∥∥M2,i(ũi − x̃1,ib̂1,i)
∥∥∥2

− 1

T 2
‖M2,iũi‖2

= b̂′1,iQ̆i,x̃1x̃1 b̂1,i − 2b̂′1,iQ̆i,x̃1ũ, (54)

where Q̆i,x̃1x̃1 = 1
T 2 x̃

′
1,iM2,ix̃1,i and Q̆i,x̃1ũ = 1

T 2 x̃
′
1,iM2,iũi. By the triangle and reverse

triangle inequalities, the fact that ‖Ab‖ 6 ‖A‖sp‖b‖ for conformable matrix A and vector

b, we have∣∣∣∣∣
K∏
k=1

‖Q̂1i(β̂1,i − αk)‖ −
K∏
k=1

‖Q̂1i(β
0
1,i − αk)‖

∣∣∣∣∣
6

∣∣∣∣∣
K−1∏
k=1

‖Q̂1i(β̂1,i − αk)‖{‖Q̂1i(β̂1,i − αK)‖ − ‖Q̂1i(β
0
1,i − αK)‖}

∣∣∣∣∣
+

∣∣∣∣∣
K−2∏
k=1

‖Q̂1i(β̂1,i − αk)‖‖Q̂1i(β
0
1,i − αK)‖{‖Q̂1i(β̂1,i − αK−1)‖ − ‖Q̂1i(β

0
1i − αK−1)‖}

∣∣∣∣∣
+ ...

+

∣∣∣∣∣
K∏
k=2

‖Q̂1i(β
0
1,i − αk)‖{‖Q̂1i(β̂1,i − α1)‖ − ‖Q̂1i(β

0
1,i − α1)‖}

∣∣∣∣∣
6ĉi,NT (α)‖Q̂1i(β̂1,i − β0

1,i)‖ 6 ĉi,NT (α)‖Q̂1i‖sp‖b̂1,i‖, (55)
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where ĉi,NT (α) =
∏K−1

k=1 ‖Q̂1i(β̂1,i−αk)‖+
∏K−2

k=1 ‖Q̂1i(β̂1,i−αk)‖‖Q̂1i(β
0
1,i−αK)‖+

...+ |
∏K

k=2 ‖Q̂1i(β
0
1,i−αk)‖ = Op(1) as ||Q̂1i||sp = OP (1). Since β̂1,i minimize QK,c

NTi,λ,

we have QK,c
NTi,λ(β̂1,i, α̂)−QK,c

NTi,λ(β
0
1,iα̂) 6 0. Combining with (54)-(55), we have

b̂′1,iQ̆i,x̃1x̃1 b̂1,i 6 2b̂′1,iQ̆i,x̃1ũ + λ(σ̃i)
2−K ĉi,NT (α)‖Q̂1i‖sp‖b̂1,i‖.

Then

ci,x̃1x̃1‖b̂1,i‖ 6 ‖2Q̌i,x̃1ũ‖+ λ(σ̃i)
2−K ĉi,NT (α̂)‖Q̂1i‖sp, (56)

where ci,x̃1x̃1 = λmin(Q̆i,x̃1x̃1) = λmin(Q̂i,x̃1x̃1 − T 1/2Q̂i,x̃1x̃2(TQ̂i,x̃2x̃2)
−1T 1/2Q̂i,x̃2x̃1) >

λmin(Q̂i,x̃1x̃1)− oP (1) is bounded away from zero in probability by Lemma 1(i). In fact,

we can apply Lemmas 2(iii)-(iv) and Assumptions A.2(i), A.2(iii), and A.3(iii)-(iv) and

show that

P
(

min
i
bT ci,x̃1x̃1 > c11/2

)
= 1− o

(
N−1

)
. (57)

Then, by Lemmas 1(i), 2(iv), 5(iii), and Assumption A.2(iii),

‖b̂1,i‖ 6 c−1
i,x̃1x̃1

(
2‖Q̆i,x̃1ũ‖+ λ(σ̃i)

2−K ĉi,NT (α̂)‖Q̂1i‖sp

)
= OP (T−1 + λ), (58)

because

‖Q̆i,x̃1ũ‖ =
1

T 2

∥∥x̃′1,iM2,iũi
∥∥ =

1

T 2

∥∥x̃′1,iM2,iũ
∗
i

∥∥
=

∥∥∥Q̂i,x̃1ũ∗ − Q̂i,x̃1x̃2(Q̂i,x̃2x̃2)
−1Q̂i,x̃1ũ∗

∥∥∥
6

∥∥∥Q̂i,x̃1ũ∗

∥∥∥+ T−1
∥∥∥TQ̂i,x̃1x̃2

∥∥∥∥∥∥TQ̂i,x̃2ũ∗

∥∥∥∥∥∥(TQ̂i,x̃2x̃2)
−1
∥∥∥ = OP

(
T−1

)
.

Now, noting that ỹi − x̃1,iβ̂1,i = ũ∗i + x̃2,iβ
∗
2,i − x̃1,ib̂1,i and β̂2,i =

(
x̃′2,ix̃2,i

)−1
x̃′2,i(ỹi −

x̃1,iβ̂1,i) = β∗2,i +
(
x̃′2,ix̃2,i

)−1
x̃′2,i(ũ

∗
i − x̃1,ib̂1,i), we have

∥∥∥b̂2,i

∥∥∥ =
∥∥∥β̂2,i − β∗2,i

∥∥∥ 6 ∥∥∥∥∥
(

1

T
x̃′2,ix̃2,i

)−1
∥∥∥∥∥

sp

{
1

T

∥∥x̃′2,iũ∗i∥∥+
1

T

∥∥x̃′2,ix̃1,i

∥∥∥∥∥b̂1,i

∥∥∥}
= OP (1)

{
OP (p

1/2
2 T−1/2) +OP (p

1/2
2 )OP (T−1 + λ)

}
= OP (p

1/2
2 (T−1/2 + λ)),(59)

as we can readily show that ||( 1
T
x̃′2,ix̃2,i)

−1||sp = OP (1) given Lemma 2(iv) and Assump-

tion A.2(iii), and that 1
T

∥∥x̃′2,iũ∗i∥∥ = OP (p
1/2
2 T−1/2) and 1

T

∥∥x̃′2,ix̃1,i

∥∥ = OP (p
1/2
2 ) as in the

proof of Lemma 1(i)-(iii).
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(ii) By the Minkowski’s inequality, as (N, T )→∞ we have

ĉi,NT (α) 6
K−1∏
k=1

{
‖Q̂1i(β̂1,i − β0

1,i)‖+ ‖Q̂1i(β
0
1,i − αk)‖

}
+
K−2∏
k=1

{
‖Q̂1i(β̂1,i − β0

1,i)‖+ ‖Q̂1i(β
0
1,i − αk)‖

}
‖Q̂1i(β

0
1,i − αK)‖+ ...+

K∏
k=2

‖Q̂1i(β
0
1,i − αk)‖

=

K−1∑
s=0

‖Q̂1i(β̂1,i − β0
1,i)‖s

s∏
k=1

aks‖Q̂1i(β
0
1,i − αk)‖K−1−s

6 CK,NT (α)
K−1∑
s=0

‖Q̂1i(β̂1,i − β0
1,i)‖s 6 CK,NT (α)(1 + 2‖Q̂1i‖sp‖b̂1,i‖), (60)

where aks’s are finite integers andCK,NT (α) = maxi max16s6k6K−1

∏s
k=1 aks‖Q̂1i(β

0
1,i−

αk)‖K−1−s = max16l6K max16s6k6K−1

∏s
k=1 aks‖Q̂1i(α

0
l − αk)‖K−1−s = O(1) as K

is finite. Let ĈK = CKNT (α̂). By Lemmas 3(i) and (iii) and Assumption A.3(iv) ,

2λĈK(σ̃i)
2−Kc−1

i,x̃1x̃1
‖Q̂1i‖2

sp = OP (λbT log log T ) = oP (1) uniformly in i. Combining

(58) and (60) yields

‖b̂1,i‖ 6
c−1
i,x̃1x̃1

1− cNT

{
‖2Q̆i,x̃1ũ‖+ λĈK(σ̃i)

2−K‖Q̂1i‖sp

}
,

where cNT = 2λĈK maxi(σ̃i)
2−Kc−1

i,x̃1x̃1
‖Q̂1i‖2

sp = oP (1). Then by Lemmas 5(iii) and

6(v),

1

N

N∑
i=1

‖b̂1,i‖2 6 (
ĉx̃1x̃1

1− cNT
)2 1

N

N∑
i=1

[‖2Q̆i,x̃1ũ‖+λĈK(σ̃i)
2−K‖Q̂1i‖]2 = OP (b2

T (T−2+λ2)),

(61)

where ĉx̃1x̃1 =
[
mini ci,x̃1x̃1

]−1
= OP (bT ) by (57).

To refine the result in (61), we shall prove that 1
N

∑N
i=1 ||b̂1,i||2 = OP (b2

TT
−2). Let

β0
1 =

(
β0′

1,1, ..., β
0′
1,N

)′ and β1 = β0
1 + bTT

−1ν1, where ν1 = (v′1,1, ..., v
′
1,N)′ and ν1,i is

a p1-vector. We want to show that for any given ε∗ > 0, there exists a large constant

L = L(ε∗) such that, for sufficiently large N and T we have

P

{
inf

N−1
∑N
i=1 ‖ν1,i‖2=L

QK,c
NT,λ(β

0
1 + bTT

−1ν1,α̂) > QK,c
NT,λ(β

0
1,α

0)

}
> 1− ε∗. (62)

This implies that w.p.a.1 there is a local minimum {β̂1, α̂} such that 1
N

∑N
i=1 ||b̂1,i||2 =

Op(b
2
TT
−2) regardless of the property of α̂. By (54), Lemma 3(iii), and the Cauchy-
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Schwarz inequality, with probability 1− o (N−1) we have

T 2
[
QK,cNT,λ(β0

1 + bTT
−1ν1, α̂)−QK,cNT,λ(β0

1,α
0)
]

=
1

N

N∑
i=1

b2T ν
′
1,iQ̆i,x̃1x̃1ν1,i −

2T

N

N∑
i=1

bT ν
′
1,iQ̆i,x̃1ũ +

λT 2

N

N∑
i=1

(σ̃i)
2−K

K∏
k=1

‖Q̂1i(β
0
1,i + bTT

−1ν1,i − α̂k)‖

>

1

2
c11

1

N

N∑
i=1

‖bT ν1,i‖2 − 2

(
1

N

N∑
i=1

‖bT ν1,i‖2
)1/2(

T 2

N

N∑
i=1

‖Q̆i,x̃1ũ‖2
)1/2


≡ D1NT −D2NT , say.

By Lemma 6(v), T
2

N

∑N
i=1 ‖Q̆i,x̃1ũ‖2 = OP (1). So D1NT dominates D2NT for sufficiently

large L. That is, T 2[QK,c
NT,λ(β

0
1 + bTT

−1ν1, α̂)−QK,c
NT,λ(β

0
1,α

0)] > 0 for sufficiently large

L. Consequently, we must have N−1
∑N

i=1 ‖b̂1,i‖2 = OP (b2
TT
−2).

Note that
∥∥( 1

T
x̃′2,ix̃2,i)

−1
∥∥

sp
= [λmin( 1

T
x̃′2,ix̃2,i)]

−1 and

min
i
λmin(

1

T
x̃′2,ix̃2,i) > min

i
λmin(Σ22,i)−max

i

∥∥∥∥ 1

T
x̃′2,ix̃2,i − Σ22,i

∥∥∥∥ > c22

2
with probability 1−o

(
N−1

)
(63)

by Lemma 2(iv) and Assumption A.2(iii). Then we have by (59), Lemmas 2(iii)-(iv) and

6(ii), and Assumptions A.2(iii) and A.3(iv) that

1

N

N∑
i=1

∥∥∥b̂2,i

∥∥∥2

6 2 max
i

∥∥∥∥∥
(

1

T
x̃′2,ix̃2,i

)−1
∥∥∥∥∥

2

sp

1

NT 2

N∑
i=1

{∥∥x̃′2,iũ∗i∥∥2
+
∥∥x̃′2,ix̃1,i

∥∥2
∥∥∥b̂1,i

∥∥∥2
}

6 OP (1)

{
1

NT 2

N∑
i=1

∥∥x̃′2,iũ∗i∥∥2
+ max

i

1

T 2

∥∥x̃′2,ix̃1,i

∥∥2 1

N

N∑
i=1

∥∥∥b̂1,i

∥∥∥2
}

= OP

(
p2T

−1
)

+OP (p2a
2
1NT )OP (b2

TT
−2) = OP

(
p2T

−1
)
.

(iii) Let PNT (β1,α) = 1
N

∑N
i=1

∏K
k=1 ‖β1,i−αk‖. By (55) and (60), as (N, T )→∞,

|PNT (β̂1,α)− PNT (β0
1,α)| 6 CK,NT (α)

1

N

N∑
i=1

‖b̂1,i‖+ 2CK,NT (α)
1

N

N∑
i=1

‖b̂1,i‖2

6 CK,NT (α)

(
1

N

N∑
i=1

‖b̂1,i‖2

)1/2

+OP (b2
TT
−2) = OP (bTT

−1).

(64)

By (64), and the fact that PNT (β0
1,α

0) = 0 and that PNT (β̂1, α̂)−PNT (β̂1,α
0) 6 0, we
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have

0 > PNT (β̂1, α̂)− PNT (β̂1,α
0) = PNT (β0

1, α̂)− PNT (β0
1,α

0) +OP (bTT
−1)

=
1

N

N∑
i=1

K∏
k=1

‖β0
1,i − α̂k‖+OP (bTT

−1)

=
N1

N

K∏
k=1

‖α̂k − α0
1‖+

N2

N

K∏
k=1

‖α̂k − α0
2‖+ ...+

NK

N

K∏
k=1

‖α̂k − α0
K‖+OP (bTT

−1).

(65)

By Assumption A.3(i), Nk/N → τk ∈ (0, 1) for each k = 1, ...K. So (90) implies

that
∏K

k=1 ‖α̂k − α0
j‖ = OP (bTT

−1) for j = 1, ..., K. It follows that (α̂(1), ..., α̂(K)) −

(α0
1, ..., α

0
K) = OP (bTT

−1). �

Proof of Theorem 2. (i) By Lemma 3(i), lim supT→∞

∥∥∥Q̂1i

∥∥∥
sp
6 2c̄Ω11 log log T a.s.

By Lemma 3(iii), P (min16i6N bT ci,x̃1x̃1 > c11/2) = 1 − o (N−1) . By Lemma 5(iii) and

Assumption A.2(iv), P (min16i6N σ̃
2
i > c00/2) = 1− o (N−1) . Noting that∥∥∥Q̆i,x̃1ũ

∥∥∥2

6 2
∥∥∥Q̂i,x̃1ũ∗

∥∥∥2

+ 2
∥∥∥Q̂i,x̃1x̃2

∥∥∥2 ∥∥∥TQ̂i,x̃2ũ∗

∥∥∥2 ∥∥∥(TQ̂i,x̃2x̃2)
−1
∥∥∥2

sp
,

we can readily apply Lemma 2(iii)-(v) and Assumptions A.2(iii) and A.3(iii)-(iv) and

show that P (maxi

∥∥∥Q̆i,x̃1ũ

∥∥∥ > ca1NT ) = o(N−1). Then by (56) and (60) we can show

that P (max16i6N ||b̂1,i|| > cbTa1NT ) = o(N−1).

(ii) By (59) and (63), Lemma 2(vi), the result in part (i), and Assumption A.3(iii)-(iv)

P
(

max
i

∥∥∥b̂2,i

∥∥∥ > cp
1/2
2 a2NT

)
6 P

max
i

∥∥∥∥∥
(

1

T
x̃′2,ix̃2,i

)−1
∥∥∥∥∥

sp

1

T

{∥∥x̃′2,iũ∗i∥∥+
∥∥x̃′2,ix̃1,i

∥∥∥∥∥b̂1,i

∥∥∥} > cp
1/2
2 a2NT


6 P

(
max
i

1

T

(∥∥x̃′2,iũ∗i∥∥+
∥∥x̃′2,ix̃1,i

∥∥∥∥∥b̂1,i

∥∥∥) > cp
1/2
2 a2NT c22/2

)
+P

(
min
i
λ

(
1

T
x̃′2,ix̃2,i

)
6 c22/2

)
6 P

(
max
i

1

T

∥∥x̃′2,iũ∗i∥∥ > cp
1/2
2 a2NT c22/4

)
+P

(
max
i

1

T

∥∥x̃′2,ix̃1,i

∥∥∥∥∥b̂1,i

∥∥∥ > cp
1/2
2 a2NT c22/4

)
+ o

(
N−1

)
= o

(
N−1

)
,
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where we also use the fact maxi
1
T

∥∥x̃′2,ix̃1,i

∥∥ ||b̂1,i|| = o (Ta1NT ) o (bTa1NT ) = o(p
1/2
2 a2NT )

with probability 1− o (N−1) . �

Proof of Theorem 3. We fix k ∈ {1, ..., K}. By the consistency of α̂k and β̂1,i, we have

β̂1,i− α̂l → α0
k −α0

l 6= 0 for all i ∈ G0
k and l 6= k. It follows that w.p.a.1

∥∥∥β̂1,i − α̂l
∥∥∥ 6= 0

for all i ∈ G0
k and l 6= k. Note that ỹit − x̃′1,itβ̂1,i − x̃′2,itβ̂2,i = ũ∗it − x̃′1,itb̂1,i − x̃′2,itb̂2,i.

Now, suppose that
∥∥∥β̂1,i − α̂k

∥∥∥ 6= 0 for some i ∈ G0
k. Then the first order condition

(with respect to β1,i) for the minimization problem in (7) implies that

0 = T
∂QK

iNT,λ(β̂1, β̂2, α̂)

∂β1,i

= −2
1

T

T∑
t=1

x̃1,it(ỹit − x̃′1,itβ̂1,i − x̃′2,itβ̂2,i) + Tλ(σ̃i)
2−K

K∑
j=1

Q̂1i%̂ij

K∏
l=1,l 6=j

∥∥∥Q̂1i(β̂1,i − α̂l)
∥∥∥

= − 2

T

T∑
t=1

x̃1,itũ
∗
it +

2 +
λ(σ̃i)

2−K ĉ1,ik∥∥∥Q̂1i(β̂1,i − α̂k)
∥∥∥Q̂1i

TQ̂1i(β̂1,i − α̂k)

+ 2TQ̂i,x1x2 b̂2,i + 2TQ̂1i(α̂k − α0
k) + Tλ(σ̃i)

2−K
K∑

j=1,j 6=k

Q̂1i%̂ij

K∏
l=1,l 6=j

∥∥∥Q̂1i(β̂1,i − α̂l)
∥∥∥

≡ −B̂i1 + B̂i2 + B̂i3 + B̂i4 + B̂i5, (66)

where %̂ij = Q̂1i(β̂1,i − α̂j)/
∥∥∥Q̂1i(β̂1,i − α̂j)

∥∥∥ if
∥∥∥Q̂1i(β̂1,i − α̂j)

∥∥∥ 6= 0 and ‖%̂ij‖ 6 1

otherwise, ĉ1,ik =
∏K

l=1,l 6=k

∥∥∥Q̂1i(β̂1,i − α̂l)
∥∥∥ � c0

1,ik ≡
∏K

l=1,l 6=k

∥∥∥Q̂1i(α
0
k − α0

l )
∥∥∥ for

i ∈ G0
k by Theorem 1, where a � b signifies that a and b are of the same probability

order.

By Theorem 2(ii), we can readily show that P (‖α̂k − α0
k‖ > cbTa1NT ) = o (N−1)

for any fixed c > 0. This, in conjunction with Lemma 3(i) and Theorem 2(i)-(ii), implies

that∥∥∥Q̂1i

∥∥∥
sp
6 2cΩ11 log log T and c0

k (c11/bT )K−1 6 ĉ1,ik 6 c0
k (2cΩ11 log log T )K−1 a.s.,

(67)

where c0
k ≡

∏K
l=1,l 6=k ‖α0

k − α0
l ‖ > 0 by Assumption A.3(ii). Then

P

(
max
i∈G0

k

∥∥∥B̂i5

∥∥∥ > CTλ (log log T )K bTa1NT

)
= o

(
N−1

)
(68)
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for some large constant C > 0. By Lemma 3(i) and Theorem 2(iii),

P

(
max
i∈G0

k

∥∥∥B̂i4

∥∥∥ > CbTTa1NT log log T

)
6 P

(
max
i∈G0

k

∥∥∥2Q̂1i(α̂k − α0
k)
∥∥∥ > CbTa1NT log log T, max

i∈G0
k

∥∥∥Q̂1i

∥∥∥
sp
6 2cΩ11 log log T

)
+P

(
max
i∈G0

k

∥∥∥Q̂1i

∥∥∥
sp
> 2cΩ11 log log T

)
6 P

(
max
i∈G0

k

∥∥α̂k − α0
k

∥∥ > CbTa1NT/(4cΩ11)

)
+ 0 = o

(
N−1

)
(69)

for any constant C > 0. By Lemma 2(iii) and Theorem 2(ii)

P

(
max
i∈G0

k

∥∥∥B̂i3

∥∥∥ > CTbTp2a1NTa2NT

)
= P

(
max
i∈G0

k

∥∥∥2TQ̂i,x1x2 b̂2,i

∥∥∥ > CbTp2a1NTa2NT

)
= o

(
N−1

)
.

(70)

By Lemma 5(iii), Assumptions A.2(i) and A.2(iv), we have with probability 1− o (N−1)

(
Q̂1i(β̂1,i − α̂k)

)′
B̂i2 = (β̂1,i − α̂k)′Q̂1i

2 +
λ(σ̃i)

2−K ĉ1,ik∥∥∥Q̂1i(β̂1,i − α̂k)
∥∥∥Q̂1i

TQ̂1i(β̂1,i − α̂k)

> Tλ(β̂1,i − α̂k)′Q̂1i
(σ̃i)

2−K ĉ1,ik∥∥∥Q̂1i(β̂1,i − α̂k)
∥∥∥Q̂1iQ̂1i(β̂1,i − α̂k)

> Tλb−1
T λmin

(
bT Q̂1i

)
(σ̃i)

2−K ĉ1,ik

∥∥∥Q̂1i(β̂1,i − α̂k)
∥∥∥

> cK11c
0
k(2c̄00)1−K/2Tλb−KT

∥∥∥Q̂1i(β̂1,i − α̂k)
∥∥∥ . (71)

Define

ΓkNT ≡
{
c11c

0
k/bT 6 min

i∈G0
k

ĉ1,ik 6 max
i∈G0

k

ĉ1,ik 6 2c0
kcΩ11 log log T

}
∩
{

max
i∈G0

k

∥∥∥B̂i5

∥∥∥ 6 CTλ (log log T )K bTa1NT

}
∩
{

max
i∈G0

k

∥∥∥B̂i4

∥∥∥ 6 CbTTa1NT log log T

}
∩
{

max
i∈G0

k

∥∥∥B̂i3

∥∥∥ 6 CTbTp2a1NTa2NT

}
.

Then P (ΓkNT ) = 1− o (N−1) by (67)-(95). Let ΓckNT denote the complement of ΓkNT .
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Conditional on ΓkNT , we have, uniformly in i ∈ G0
k,∣∣∣∣(Q̂1i(β̂1,i − α̂k)

)′ (
B̂i2 + B̂i3 + B̂i4 + B̂i5

)∣∣∣∣
>

∣∣∣∣(Q̂1i(β̂1,i − α̂k)
)′
B̂i2

∣∣∣∣− ∣∣∣∣(Q̂1i(β̂1,i − α̂k)
)′ (

B̂i3 + B̂i4 + B̂i5

)∣∣∣∣
>

{
cK11c

0
k(2c̄00)1−K/2Tλb−KT − C

[
TbT p2a1NTa2NT + bTTa1NT log log T + Tλ (log log T )K bTa1NT

]}
×
∥∥∥Q̂1i(β̂1,i − α̂k)

∥∥∥
>

1

2
cK11c

0
k(2c̄00)1−K/2Tλb−KT

∥∥∥Q̂1i(β̂1,i − α̂k)
∥∥∥ for sufficiently large (N,T ) ,

where the last equality follows because TbTp2a1NTa2NT+bTTa1NT log log T+Tλ (log log T )K bTa1NT =

o
(
Tλb−KT

)
by Assumption A.3(iv). It follows that for all i ∈ G0

k,

P (ÊkNT,i) = P
(
i /∈ Ĝk|i ∈ G0

k

)
= P

(
B̂i1 = B̂i2 + B̂i3 + B̂i4 + B̂i5

)
6 P

(∥∥∥Q̂1i(β̂1,i − α̂k)B̂i1

∥∥∥ > ∥∥∥Q̂1i(β̂1,i − α̂k)
(
B̂i2 + B̂i3 + B̂i4 + B̂i5

)∥∥∥)
6 P

(∥∥∥Q̂1i(β̂1,i − α̂k)B̂i1

∥∥∥ > ∥∥∥Q̂1i(β̂1,i − α̂k)
(
B̂i2 + B̂i3 + B̂i4 + B̂i5

)∥∥∥ ,ΓkNT)
+P (ΓckNT )

6 P

(∥∥∥B̂i1

∥∥∥ > 1

2
cK11c

0
k(2c̄00)1−K/2Tλb−KT

)
+ o

(
N−1

)
= o (1) ,

where the last line follows by the fact that ||B̂i1|| = OP (1) by Lemma 1(ii) and that

Tλb−KT →∞ under Assumption A.3(iv).

In addition, by Lemma 2(v) and the fact that a1NT = o
(
λb−KT

)
under Assumption

A.3(iv),

P (∪Kk=1ÊkNT ) 6
K∑
k=1

P (ÊkNT ) 6
K∑
k=1

∑
i∈Gk

P (ÊkNT,i)

6
K∑
k=1

∑
i∈Gk

P

(∥∥∥B̂i1

∥∥∥ > 1

2
cK11c

0
k(2c̄00)2−KTλb−KT

)
+ o (1)

6 N max
16i6N

P

(∥∥∥B̂i1

∥∥∥ > 1

2
cK11c

0
k(2c̄00)2−KTλb−KT

)
+ o(1) = o (1) .

(72)

We have completed the proof of Theorem 3(i).

Given (i), the proof of (ii) is similar to Theorem 4.2(ii) in SSP and thus omitted. �
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Proof of Theorem 4. We first write our mixed panel model in vector form: ỹi =

x̃1,iβ1,i + x̃2,iβ2,i + ũi, where x̃l,i = (x̃l,i1, ..., x̃l,iT )′ for l = 1, 2, and ỹi and ũi are simi-

larly defined. Recall that M2,i = IT − x̃2,i(x̃
′
2,ix̃2,i)

−1x̃′2,i. Then we rewrite the objective

function QK
NT,λ(β1,β2,α) as follows

QK
NT,λ(β1,β2,α) = QNT (β1,β2) +

λ

N

N∑
i=1

(σ̃i)
2−K

K∏
k=1

‖Q̂1i(β1,i − αk)‖, (73)

where

QNT (β1,β2) =
1

NT 2

N∑
i=1

(ỹi − x̃1,iβ1,i − x̃2,iβ2,i)
′(ỹi − x̃1,iβ1,i − x̃2,iβ2,i). (74)

The first order conditions are

0p1×1 =
−2

T 2
x̃′1,i(ỹi − x̃1,iβ̂1,i − x̃2,iβ̂2,i) + λ(σ̃i)

2−K
K∑
j=1

Q̂1i%̂ij

K∏
l=1,l 6=j

‖Q̂1i(β̂1,i − α̂l)‖ ∀ i = 1, ..., N,

(75)

0p2×1 =
−2

T 2
x̃′2,i(ỹi − x̃1,iβ̂1,i − x̃2,iβ̂2,i) ∀ i = 1, ..., N, and (76)

0p1×1 =
λ

N

N∑
i=1

(σ̃i)
2−KQ̂1i%̂ik

K∏
l=1,l 6=k

‖Q̂1i(β̂1,i − α̂l)‖ ∀ k = 1, ..., K, (77)

where %̂ij is defined after (66). Let k ∈ {1, ..., K} be fixed. We observe that (a) ‖β̂1,i −

α̂k‖ = 0 for any i ∈ Ĝk by the definition of Ĝk, and (b) β̂1,i − α̂l
p→ α0

k − α0
l 6= 0

for any i ∈ Ĝk and l 6= k. It follows that ‖%̂ij‖ 6 ‖1‖ for any i ∈ Ĝk and %̂ij =

Q̂1i(α̂k − α̂j)/‖Q̂1i(α̂k − α̂j)‖ for any i ∈ Ĝk and j 6= k. Let Ĝ0 denote the set of

unclassified individuals. Given Theorem 3, it is easy to show that P (#Ĝ0 > 0) = o (1) .

Noting that
∏K

l=1 ‖Q̂1i(α̂k − α̂l)|| = 0 for any l, we have

∑
i∈Ĝk

K∑
j=1,j 6=k

(σ̃i)
2−KQ̂1i%̂ij

K∏
l=1,l 6=j

‖Q̂1i(β̂1,i − α̂l)‖

=
∑
i∈Ĝk

K∑
j=1,j 6=k

(σ̃i)
2−K Q̂2

1i(α̂k − α̂j)
‖Q̂1i(α̂k − α̂j)‖

K∏
l=1,l 6=j

‖Q̂1i(α̂k − α̂l)‖ = 0p1×1. (78)
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It follows that by (77) and (78)

0p1×1 =
N∑
i=1

(σ̃i)
2−KQ̂1i%̂ik

K∏
l=1,l 6=k

‖Q̂1i(β̂1,i − α̂l)‖

=
∑
i∈Ĝk

(σ̃i)
2−KQ̂1i%̂ik

K∏
l=1,l 6=k

‖Q̂1i(α̂k − α̂l)‖+
∑
i∈Ĝ0

(σ̃i)
2−KQ̂1i%̂ik

K∏
l=1,l 6=k

‖Q̂1i(β̂1,i − α̂l)‖

+
K∑

j=1,j 6=k

∑
i∈Ĝj

(σ̃i)
2−K Q̂2

1i(α̂j − α̂k)
‖Q̂1i(α̂j − α̂k)‖

K∏
l=1,l 6=j

‖Q̂1i(α̂j − α̂l)‖

=
∑
i∈Ĝk

(σ̃i)
2−KQ̂1i%̂ik

K∏
l=1,l 6=k

‖Q̂1i(α̂k − α̂l)‖+
∑
i∈Ĝ0

(σ̃i)
2−KQ̂1i%̂ik

K∏
l=1,l 6=k

‖Q̂1i(β̂1,i − α̂l)‖.

(79)

Averaging both sides of (75) over i ∈ Ĝk and using (78) and (79), we have

0p1×1 =
2

NkT 2

∑
i∈Ĝk

x̃′1,i(ỹi−x̃1,iα̂k−x̃2,iβ̂2,i)+
λ

Nk

∑
i∈Ĝ0

(σ̃i)
2−KQ̂1i%̂ik

K∏
l=1,l 6=k

‖Q̂1i(β̂1,i−α̂l)‖.

(80)

Solving β̂2,i from (76) as a function of β̂1,i and replacing β̂1,i by α̂k for i ∈ Ĝk yields

β̂2,i =
(
x̃′2,ix̃2,i

)−1
x̃′2,i(ỹi − x̃1,iα̂k). (81)

Plugging (81) into (80) yields

α̂k =

 1

NkT 2

∑
i∈Ĝk

x̃′1,iM2,ix̃1,i

−1

1

NkT 2

∑
i∈Ĝk

x̃′1,iM2,iỹi

+

 1

NkT 2

∑
i∈Ĝk

x̃′1,iM2,ix̃1,i

−1

λ

2Nk

∑
i∈Ĝ0

(σ̃i)
2−K êik

K∏
l=1,l 6=k

‖Q̂1i(β̂1,i − α̂l)‖

≡ α̂post
k + R̂k, say.

Noting that Q̂1i%̂ik
∏K

l=1,l 6=k ‖Q̂1i(β̂1,i− α̂l)‖ 6= 0 only if i ∈ Ĝ0 and by (72), we have that

for any ε > 0

P
(√

NT ||R̂k|| > ε
)
6

K∑
k=1

∑
i∈G0

k

P (i ∈ Ĝ0|i ∈ G0
k) 6

K∑
k=1

∑
i∈G0

k

P (i /∈ Ĝk|i ∈ G0
k) = o(1).
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That is,
√
NT ||R̂k|| = oP (1) and α̂k is asymptotically equivalent to its post-Lasso esti-

mator α̂Ĝk . Similarly, given the fast convergence rate of α̂Ĝk , β̂2,i in (81) is also asymp-

totically equivalent to its post-Lasso version β̂post
2,i , where β̂post

2,i =
(
x̃′2,ix̃2,i

)−1
x̃′2,i(ỹi −

x̃1,iα̂
post
k ) for each i ∈ Ĝk. We formally study the asymptotic properties of α̂post

k and β̂post
2,i

in the proof of Theorem 5 below. �

Proof of Theorem 5. (i) Noting that ỹi = x̃1,iβ
0
1,i + x̃2,iβ

0
2,i + ũi, we have

√
NkT (α̂post

k − α0
k) = Q̂−1

(k)V̂(k) + Q̂−1
(k)R̂(k),

where Q̂(k) = 1
NkT 2

∑
i∈Ĝk x̃

′
1,iM2,ix̃1,i, V̂(k) = 1√

NkT

∑
i∈Ĝk x̃

′
1,iM2,iũi, and R̂(k) =

1√
NkT

∑
i∈Ĝk x̃

′
1,iM2,i ×x̃1,i

(
β0

1,i − α0
k

)
. Noting that 1{i ∈ Ĝk} = 1{i ∈ G0

k} + 1{i ∈

Ĝk\G0
k} − 1{i ∈ G0

k\Ĝk}, we have

Q̂(k) =
1

NkT 2

∑
i∈G0

k

x̃′1,iM2,ix̃1,i +
1

NkT 2

∑
i∈Ĝk\G0

k

x̃′1,iM2,ix̃1,i −
1

NkT 2

∑
i∈G0

k\Ĝk

x̃′1,iM2,ix̃1,i

≡ Qk,NT + Q̂1(k) + Q̂2(k), say.

By Theorem 3 P (||Q̂1(k)|| > εN−1/2T−1) 6 P (F̂kNT ) = o (1) and P (||Q̂2(k)|| >

εN−1/2T−1) 6 P (ÊkNT ) = o (1) for any ε > 0. It follows that Q̂(k) = Qk,NT +

oP
(
N−1/2T−1

)
. Similarly, we can show that V̂(k) = Vk,NT + oP

(
N−1/2T−1

)
and R̂(k) =

oP
(
N−1/2T−1

)
, where Vk,NT = 1√

NkT

∑
i∈G0

k
x̃′1,iM2,iũi. It follows that

√
NkT (α̂post

k − α0
k) = Q−1

k,NTVk,NT + oP (1) .

Then the conclusion in (i) follows from Lemmas 7(i)-(vi).

(ii) Noting that β̂post
2,i =

(
x̃′2,ix̃2,i

)−1
x̃′2,i(ỹi − x̃1,iα̂

post
k ) and ỹi = x̃1,iα

0
k + x̃2,iβ

∗
2,i + ũ∗i

for i ∈ G0
k, we have for i ∈ G0

k and l × p2 selection matrix S2,

√
TS2

(
β̂

post
2,i − β

∗
2,i

)
= S2

(
1

T
x̃′2,ix̃2,i

)−1 1√
T
x̃′2,iũ

∗
i +

1√
T
S2

(
1

T
x̃′2,ix̃2,i

)−1 1

T
x̃′2,ix̃1,iT

(
α0
k − α̂

post
k

)
= S2

(
1

T
x̃′2,ix̃2,i

)−1 1√
T
x̃′2,iũ

∗
i +OP

(
T−1/2

)
⇒ N

(
0,S2V22,iS′2

)
by (i) and Lemmas 1(i) and (iii). Here V22,i =

(
Σ−1

22,iJ1,i ⊗ J2,i

)
V 0
i

(
J ′1,iΣ

−1
22,i ⊗ J ′2,i

)
. �
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Proof of Theorem 6. (i) In vector form, we have the regression model:

ỹi = x̃1,iβ1,i + x̃2,iβ2,i + ṽ†i , (82)

where x̃2,i = (x̃2,i,p̄2+1, ..., x̃2,i,T−p̄2)
′ , x̃2,it = x2,it− 1

T−2p̄2

∑T−p̄2
t=p̄2+1 x2,it, x2,it = (∆x′1,i,t−p̄2 , ...,∆x

′
1,it, ...,

∆x′1,i,t+p̄2)
′, and x̃1,i and ṽ†i are similarly defined. In particular, a typical element of ṽi is

given by ṽ†it = v†it− 1
T−2p̄2

∑T−p̄2
t=p̄2+1 v

†
it,where v†it = vait+vit and vait =

∑
|j|>p̄2 γ

′
i,j∆x1,i,t−j signifies

the approximation error.

Assumption A4 ensures the approximation error term vait is asymptotically negligible

in our asymptotic analysis. Following the proofs of Theorems 1-4, we can prove that the

C-Lasso estimator α̂Dk of αk is asymptotically equivalent to its post-Lasso version α̂D,post
k ,

where

α̂D,post
k =

∑
i∈Ĝk

x̃′1,iM2,ix̃1,i

−1 ∑
i∈Ĝk

x̃′1,iM2,iỹi.

As in the proof Theorem 5, we can show that√
NkT (α̂post

k − α0
k) = Q−1

k,NTVk,NT + oP (1) ,

where Qk,NT = 1
NkT 2

∑
i∈G0

k
x̃′1,iM2,ix̃1,i and Vk,NT = 1√

NkT

∑
i∈G0

k
x̃′1,iM2,iṽ

†
i . Lemma

7(i) continues to apply: Qk,NT = Q(k) + oP (1) . Now

Vk,NT =
1√
NkT

∑
i∈G0

k

x̃′1,iM2,iṽi +
1√
NkT

∑
i∈G0

k

x̃′1,iM2,iṽ
a
i ≡ Vk,NT + Vak,NT , say.

Lemma 7(ii)-(vi) continues to apply to Vk,NT (1) with little modification. Now, vit plays

the role of u∗it in the lemma. But since vit is uncorrelated to all lags and leads of ∆x1,it =

ε1,it, si defined in Theorem 4 becomes si = S ′0 − S ′2Σ−1
22,iΣ20,i = S ′0 as Σ20,i is now zero.

Then

B1k,NT =
1√
Nk

∑
i∈G0

k

S1

∞∑
r=0

∞∑
s=0

ψi,s+rψ
′
i,sS

′
0 =

1√
Nk

∑
i∈G0

k

∞∑
t=0

E (ε1,itvi0) = 0,

B2k,NT =
−1√
Nk

T + 1

2T

∑
i∈G0

k

S1ψi (1)ψi (1)′ S0 =
−1√
Nk

T + 1

2T

∑
i∈G0

k

∞∑
t=−∞

E (ε1,itvi0) = 0.

It follows that Vk,NT ⇒ N
(

0,V+
(k)

)
, where V+

(k) ≡ limNk→∞
1
Nk

∑
i∈G0

k

1
6
Ω+

00,iΩ11,i,and

Ω+
00,i = Ω00,i − Ω01,iΩ

−1
11,iΩ10,i. In addition, Vak,NT = oP (1) by Lemma 8. Consequently,

√
NkT (α̂post

k − α0
k)⇒ N(0,Q−1

(k)V
+
(k)Q

−1
(k)).
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(ii) This follows from Theorem 5(ii) and the fact that Σ20,i = 0 so that β∗2,i = β0
2,i. �

A.2 Practical estimation procedures

In this appendix, we describe details on the practical estimation procedure in the fol-

lowings steps

• Initial estimators: Obtain consistent initial estimates of β̃1,i and β̃2,i. For model

(2.4), we can employ the least square estimators as the initial estimators.

• Penalized Least Squares: Solve the PLS problem

QK
NT,λ(β1,β2,α) = QNT (β1,β2) +

λ

N

N∑
i=1

(σ̃i)
2−K

K∏
k=1

∥∥∥Q̂1i(β1,i − αk)
∥∥∥ .

By Assumption A.3(iv), we set the tuning parameter λ = cλT
−3/4, where cλ is a

constant. Given the tuning parameter λ(N, T ), we can obtain C-Lasso estimator α̂k

and identify the unknown group structures.

• Post-Lasso estimator with bias-correction: Given the estimated groups, {Ĝk, k =

1, ..., K}, we can obtain the post-Lasso estimators of αk and β2,i as

α̂post
k =

∑
i∈Ĝk

x̃′1,iM2,ix̃1,i

−1 ∑
i∈Ĝk

x̃′1,iM2,iỹi for k = 1, ..., K,

β̂post
2,i =

(
x̃′2,ix̃2,i

)−1
x̃′2,i(ỹi − x̃1,iα̂

post
k ) for i ∈ Ĝk.

In addition, we apply the dynamic OLS method in post-Lasso estimator for remov-

ing the bias. After bias-correction, we compute the standard errors by the following

formulas

Q̂(k) =
1

N̂kT 2

∑
i∈Ĝk

x̃′1,iM2,ix̃1,i and V̂+
(k) ≡

1

N̂k

∑
i∈Ĝk

1

6
Ω̂+

00,iΩ̂11,i,

where Ω̂00,i and Ω̂11,i denote the HAC estimator of the long-run variance-covariance

components Ω00,i and Ω11,i in Ωi.
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• Determine the number of groups by BIC: In practice, K is typically unknown.

Let σ̂2
Ĝk(K,λ)

= 1
NT

∑K
k=1

∑
i∈Ĝk(K,λ)

∑T
t=1[ûit(k)]2,where ûit(k) = ỹit−x̃′1,itα̂

post
Ĝk(K,λ)

−

x̃′2,itβ̂
post
2,i (Ĝk(K,λ)) for i ∈ Ĝk(K,λ). We choose K̂ to minimize the following in-

formation criterion:

IC(K,λ) = ln[σ̂2
Ĝk(K,λ)

] + ρNTp1K

By Assumption A.5(ii), we set tuning parameter ρNT = 1
3
(NT )−1/3.

123



B Appendix to Chapter 2

In this appendix, we prove the main results, namely, Theorems 7-14 in the paper. The

proofs of these results need some technical lemmas whose proofs are relegated to the

online supplementary Appendix.

B.1 Proofs of the Main Results in Section 3

To proceed, we define some notations.

(i) Let H1 =
(

1
N

Λ0′
1 Λ0

1

) (
1
T 2f

0′
1 f̂1

)
V −1

1,NT , H2 =
(

1
N

Λ0′
2 Λ0

2

) (
1
T
f 0′

2 f̂2

)
V −1

2,NT and aij =

λ0′
1i(

Λ0′
1 Λ0

1

N
)−1λ0

1j .

(ii) Let b = (b1, ..., bN) and b =vec(b), where bi = βi − β0
i for i = 1, ..., N . Let

b̂ = (b̂1, ..., b̂N) and b̂ =vec(b̂), where b̂i = β̂i − β0
i .

(iii) Let η2
NT = 1

N

∑N
i=1 ‖b̂i‖2, %2

NT = 1
K

∑K
k=1 ‖α̂k − α0

k‖
2
, CNT = min(

√
N,
√
T ),

δNT = min(
√
N, T ), and ψNT = N1/qT−1(log T )1+ε for some ε > 0.

(iv) Let Q̂i,xx = 1
T 2x

′
iMf̂1

xi, Qi,xx = 1
T 2x

′
iMf1xi, and Qi,xx(f

0
1 ) = 1

T 2x
′
iMf01

xi.

(v) Without loss of generality, we set xi0 = 0 throughout the proof of the main results

and supplementary Appendix.

To prove Theorem 3.1, we need four lemmas.

Lemma A.1 Suppose that Assumptions 3.1 hold. Then for each i = 1, ..., N,

(i) 1
T 2x

′
iMf01

xi ⇒
∫
B̃2iB̃

′
2i,

(ii) 1
T
x′iMf01

ui ⇒
∫

(B2i − π′iB3) dB1i + (∆21,i − π′i∆31,i),

where B̃2i = B2i −
∫
B2iB

′
3

(∫
B3B

′
3

)−1
B3 and πi =

(∫
B3B

′
3

)−1 ∫
B3B

′
2i.

Lemma A.2 Suppose that Assumptions 3.1-3.2 hold. Then for any fixed small constant

c ∈ (0, 1/2),

(i) lim supT→∞ µmax

(
W ′iWi

dTT 2

)
6 (1 + c)ρmax a.s.,

(ii) lim infT→∞ µmin

(
dTW

′
iWi

T 2

)
> cρmin a.s.,

(iii) lim supT→∞ µmax

(
x′iMf01

xi

dTT 2

)
6 (1 + c)ρmax a.s.,

(iv) lim infT→∞ µmin

(
dT x

′
iMf01

xi

T 2

)
> [(1 + c)ρmax]−1 a.s.,

where Wit = (x′it, f
0′
1t)
′ and Wi = (Wi,1,Wi,2, ...,Wi,T )′.
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Lemma A.3 Suppose that Assumptions 3.1-3.2 hold. Then

(i) 1
N

∑N
i=1

∥∥∥ 1
T 2x

′
iMf01

ui

∥∥∥2

= OP (d2
TT
−2),

(ii) 1
N

∑N
i=1

∥∥∥ 1
T 2x

′
iMf01

u∗i

∥∥∥2

= OP (d2
TT
−2),

(iii)
∥∥∥ 1
NT 2

∑N
j=1 x

′
iMf01

ujaij

∥∥∥ = OP (dTT
−1),

(iv) 1
N

∑N
i=1

∥∥∥ 1
T 2x

′
iMf01

xi

∥∥∥ = OP (dT ),

where f1 satisfies 1
T 2f

′
1f1 = Ir1 and u∗i = ui + f 0

2λ
0
2i.

Lemma A.4 Suppose that Assumptions 3.1-3.2 hold. Then

(i) supf1 supN−1‖b‖26M

∥∥∥ 1
NT 2

∑N
i=1 b

′
ix
′
iMf1u

∗
i

∥∥∥ = oP (d−3
T ),

(ii) supf1

∥∥∥ 1
NT 2

∑N
i=1 λ

0′
1if

0′
1 Mf1u

∗
i

∥∥∥ = oP (d−3
T ),

(iii) supf1

∥∥∥ 1
NT 2

∑N
i=1 u

∗′
i Pf1u

∗
i

∥∥∥ = oP (d−3
T ),

where the sup is taken with respect to f1 such that f
′
1f1
T 2 = Ir1 and u∗i are defined in Lemma

A.3.

Proof of Theorem 3.1. (i) LetQi,NT (βi, f1) = 1
T 2 (yi−xiβi)′Mf1(yi−xiβi) andQK,λ

i,NT (βi, α, f1) =

Qi,NT (βi, f1)+λ
∏K

k=1 ‖βi−αk‖. ThenQK,λ
NT (β,α, f1) = 1

N

∑N
i=1Q

K,λ
i,NT (βi, α, f1). Not-

ing that yi − xiβi = −xibi + λ0′
1if

0′
1 + u∗i , we have

Qi,NT (βi, f1)−Qi,NT (β0
i , f

0
1 ) =

1

T 2
(b′ix

′
iMf1xibi + λ0′

1if
0′
1 Mf1f

0
1λ

0
1i − 2b′ix

′
iMf1f

0
1λ

0
1i)

+
1

T 2
(2λ0′

1if
0′
1 Mf1u

∗
i − 2b′ix

′
iMf1u

∗
i )−

1

T 2
u∗′i (Pf1 − Pf01 )u∗i ,

(83)

where u∗i = ui+f
0
2λ

0
2i. Let Si,NT (βi, f1) = 1

T 2 (b′ix
′
iMf1xibi + λ0′

1if
0′
1 Mf1f

0
1λ

0
1i − 2b′ix

′
iMf1f

0
1λ

0
1i).

Then we have

QNT (β, f1)−QNT (β0, f 0
1 ) =

1

N

N∑
i=1

Si,NT (βi, f1)

+
1

NT 2

N∑
i=1

(
2λ0′

1if
0′
1 Mf1u

∗
i − 2b′ix

′
iMf1u

∗
i − u∗′i (Pf1 − Pf01 )u∗i

)
=

1

N

N∑
i=1

Si,NT (βi, f1) + oP (d−3
T ), (84)

where the last three terms on the right hand side of (84) are oP (d−3
T ) uniformly in {bi}

and f1 such that f ′1f1
T 2 = Ir1 and 1

N

∑N
i=1 ‖bi‖2 6 M by Lemma A.4(i)-(iii) and the fact
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that 1
NT 2

∑N
i=1 u

∗′
i Pf01u

∗
i = oP (d−3

T ). Then we have

QK,λ
NT (β, α̂, f1)−QK,λ

NT (β0,α0, f 0
1 ) =

1

N

N∑
i=1

[QNT,i(βi, f1)−QNT,i(β
0
i , f

0
1 )] +

λ

N

N∑
i=1

K0∏
k=1

‖βi − α̂k‖

>SNT (β, f1) + oP (d−3
T ). (85)

where SNT (β, f1) = 1
N

∑N
i=1 Si,NT (βi, f1). Then by (84) and (85) and the fact that

QK,λ
NT (β̂, α̂, f̂1)−QK,λ

NT (β0,α0, f 0
1 ) 6 0, we have

SNT (β̂, f̂1) =
1

NT 2

N∑
i=1

[
b̂′ix
′
iMf̂1

xib̂i + λ0′
1if

0′
1 Mf̂1

f 0
1λ

0
1i − 2b̂′ix

′
iMf̂1

f 0
1λ

0
1i

]
= oP (d−3

T ).

(86)

Similarly, by (84), (85) and Lemma A.4(i)-(iii), we have

QK,λ
NT (β, α̂, f̂1)−QK,λ

NT (β0,α0, f̂1) =
1

N

N∑
i=1

[QNT,i(βi, f̂1)−QNT,i(β
0
i , f̂1)] +

λ

N

N∑
i=1

K0∏
k=1

‖βi − α̂k‖

>
1

NT 2

N∑
i=1

[
b′ix
′
iMf̂1

xibi − 2b′ix
′
iMf̂1

f 0
1λ

0
1i

]
+ oP (d−3

T ).

(87)

This, in conjunction with the fact that QK,λ
NT (β̂, α̂, f̂1) − QK,λ

NT (β0,α0, f̂1) 6 0, implies

that
1

NT 2

N∑
i=1

[
b̂′ix
′
iMf̂1

xib̂i − 2b̂′ix
′
iMf̂1

f 0
1λ

0
1i

]
6 oP (d−3

T ). (88)

Combining (86) and (88) yields that

oP (d−3
T ) =

1

NT 2
λ0′

1if
0′
1 Mf̂1

f 0
1λ

0
1i = tr

[(
f 0′

1 Mf̂1
f 0

1

T 2

)(
Λ0′

1 Λ0
1

N

)]
> tr

(
f 0′

1 Mf̂1
f 0

1

T 2

)
µmin

(
Λ0′

1 Λ0
1

N

)
.

It follows that tr
(
f0′1 Mf̂1

f01

T 2

)
= oP (d−3

T ) as µmin

(
Λ0′
1 Λ0

1

N

)
is bounded away from zero in

probability by Assumption 3.2(i). As in Bai (2009, p.1265), this implies that

f 0′
1 Mf̂1

f 0
1

T 2
=
f 0′

1 f
0
1

T 2
− f 0′

1 f̂1

T 2

f̂1

′
f 0

1

T 2
= oP (d−3

T ), (89)

and f0′1 f̂1
T 2 is asymptotically invertible by the fact that f0′1 f

0
1

T 2 is asymptotically invertible

from Assumption 3.2(ii). (89) implies that
f̂ ′1Pf01

f̂1

T 2 −Ir1 = oP (d−3
T ), which further implies
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that
∥∥∥Pf̂1 − Pf01∥∥∥2

= 2tr
(
Ir1 −

f̂1
′
P
f01
f̂1

T 2

)
= oP (d−3

T ). By Cauchy-Schwarz inequality and

(62),

oP (d−3
T ) >

1

NT 2

N∑
i=1

b̂′ix
′
iMf̂1

xib̂i−2

{
1

NT 2

N∑
i=1

b̂′ix
′
iMf̂1

xib̂i

}1/2{
1

NT 2
λ0′

1if
0′
1 Mf̂1

f 0
1λ

0
1i

}1/2

.

(90)

This result, in conjunction with (64), implies that 1
NT 2

∑N
i=1 b̂

′
ix
′
iMf̂1

xib̂i = oP (d−3
T ). So

we have shown parts (i) and (ii) in the theorem.

(iii) By the results in parts (i) and (ii) and Lemma A.2(i) and (iv), we have

oP (d−3
T ) =

1

N

N∑
i=1

b̂′i

(
1

T 2
x′iMf̂1

xi

)
b̂i

=
1

N

N∑
i=1

b̂′i

(
1

T 2
x′iMf01

xi

)
b̂i +

1

N

N∑
i=1

b̂′i

(
1

T 2
x′i(Mf̂1

−Mf01
)xi

)
b̂i

>
1

dT
min

16i6N
µmin

(
dT
T 2
x′iMf01

xi

)
1

N

N∑
i=1

‖b̂i‖2 − max
16i6N

‖xi‖2

T 2
‖Pf01 − Pf̂1‖

1

N

N∑
i=1

‖b̂i‖2

>
1

dT

(
cρmin − oP (d−1

T )
) 1

N

N∑
i=1

‖b̂i‖2,

where the second inequality follows from the fact that min16i6N µmin

(
dT
T 2x

′
iMf01

xi

)
>

cρmin > 0 a.s. by Lemma A.2(iv), and max16i6N
‖xi‖2
T 2 6 max16i6N dTµmax

(
x′ixi
dTT 2

)
=

OP (dT ) by Lemma A.2(i). Then we have 1
N

∑N
i=1 ‖b̂i‖2 = oP (d−2

T ) = oP (1).

(iv) We want to establish the consistency of the estimated factor space f̂1, which ex-

tends the results of Bai and Ng (2004) and Bai (2009). Our model allows for the hetero-

geneous slope coefficients and unobserved stationary common factors. We estimate f̂1

from equation (24) in Section 2.2 as follows[
1

NT 2

N∑
i=1

(yi − xiβ̂i)(yi − xiβ̂i)′
]
f̂1 = f̂1V1,NT . (91)

Combining (91) and the fact that yi−xiβ̂i = −xib̂i+f 0λ0
i+ui = −xib̂i+f 0

1λ
0
1i+f

0
2λ

0
2i+ui,
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we have

f̂1V1,NT =
1

NT 2

N∑
i=1

xib̂ib̂
′
ix
′
if̂1 −

1

NT 2

N∑
i=1

xib̂iλ
0′
i f

0′f̂1 −
1

NT 2

N∑
i=1

xib̂iu
′
if̂1

− 1

NT 2

N∑
i=1

f 0λ0
i b̂
′
ix
′
if̂1 −

1

NT 2

N∑
i=1

uib̂
′
ix
′
if̂1 +

1

NT 2

N∑
i=1

f 0λ0
iu
′
if̂1

+
1

NT 2

N∑
i=1

uiλ
0′
i f

0′f̂1 +
1

NT 2

N∑
i=1

uiu
′
if̂1 +

1

NT 2

N∑
i=1

f 0
2λ

0
2iλ

0′
2if

0′
2 f̂1

+
1

NT 2

N∑
i=1

f 0
1λ

0
1iλ

0′
2if

0′
2 f̂1 +

1

NT 2

N∑
i=1

f 0
2λ

0
2iλ

0′
1if

0′
1 f̂1 +

1

NT 2

N∑
i=1

f 0
1λ

0
1iλ

0′
1if

0′
1 f̂1

≡I1 + ...+ I11 +
1

NT 2

N∑
i=1

f 0
1λ

0
1iλ

0′
1if

0′
1 f̂1, say.

It follows that f̂1V1,NT−f 0
1

(
Λ0′
1 Λ0

1

N

)(
f0′1 f̂1
T 2

)
= I1+...+I11. LetH1 =

(
Λ0′
1 Λ0

1

N

)(
f0′1 f̂1
T 2

)
V −1

1,NT .

Then it is easy to see that H1 = OP (1), it is asymptotically nonsingular, and

f̂1H
−1
1 − f 0

1 = [I1 + ...+ I11]

(
f 0′

1 f̂1

T 2

)−1(
Λ0′

1 Λ0
1

N

)−1

.

Note that

1

T

∥∥∥f̂1H
−1 − f 0

1

∥∥∥ 6 1

T
(‖I1‖+ ...+ ‖I11‖)

∥∥∥∥∥∥
(
f 0′

1 f̂1

T 2

)−1
∥∥∥∥∥∥
∥∥∥∥∥
(

Λ0′
1 Λ0

1

N

)−1
∥∥∥∥∥ .

It remains to analyze ‖Il‖ for l = 1, 2, ..., 11. For I1, we have that by the result in (iii),

1

T
‖I1‖ =

1

T

∥∥∥∥∥ 1

NT 2

N∑
i=1

xib̂ib̂
′
ix
′
if̂1

∥∥∥∥∥ 6 1

N

N∑
i=1

‖xi‖
T
‖b̂i‖2‖x′if̂1‖

T 2

6 max
16i6N

‖xi‖2

T 2

‖f̂1‖
T

1

N

N∑
i=1

‖b̂i‖2 = OP (dTη
2
NT ) = oP (ηNT ),

where we use the fact that max16i6N
‖xi‖2
T 2 = OP (dT ) by Lemma A.2(i) and ‖f̂1‖

T
6
√
r1.

For I2, we have

1

T
‖I2‖ =

1

T

∥∥∥∥∥ 1

NT 2

N∑
i=1

xib̂iλ
0′
i f

0′f̂1

∥∥∥∥∥ 6 ‖f 0′ f̂1‖
T 2

max
16i6N

‖xi‖
T

1

N

N∑
i=1

‖b̂iλ0′
i ‖

6
‖f 0′ f̂1‖
T 2

max
16i6N

‖xi‖
T

{
1

N

N∑
i=1

‖b̂i‖2

}1/2{
1

N

N∑
i=1

‖λ0
i ‖2

}1/2

= OP (
√
dTηNT ),
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where we use the fact that ‖f
0′ f̂1‖
T 2 = OP (1) and 1

N

∑N
i=1 ‖λ0

i ‖2 = OP (1) by Assumption

3.2(i). For I3,

1

T
‖I3‖ =

1

T

∥∥∥∥∥ 1

NT 2

N∑
i=1

xibiu
′
if̂1

∥∥∥∥∥ 6 max
16i6N

‖xi‖
T

1

NT 2

N∑
i=1

‖b̂iu′if̂1‖

6
1√
T

‖f̂1‖
T

max
16i6N

‖xi‖
T

{
1

N

N∑
i=1

‖b̂i‖2

}1/2{
1

N

N∑
i=1

‖ui‖2

T

}1/2

= OP

(√
dT
T
ηNT

)
,

where 1
N

∑N
i=1

‖ui‖2
T

= OP (1) by Assumption 3.1(i). For I4,

1

T
‖I4‖ =

∥∥∥∥∥ 1

NT 2

N∑
i=1

f 0λ0
i b̂
′
ix
′
if̂1

∥∥∥∥∥ 6 1

N

N∑
i=1

‖f 0‖
T

∥∥∥λ0
i b̂
′
i

∥∥∥∥∥∥∥∥x′if̂1

T 2

∥∥∥∥∥
6
‖f 0‖
T

‖f̂1‖
T

max
16i6N

‖xi‖
T

{
1

N

N∑
i=1

‖b̂i‖2

}1/2{
1

N

N∑
i=1

‖λ0
i ‖2

}1/2

= OP (
√
dTηNT ).

where ‖f
0‖
T
6 ‖f01 ‖

T
+ 1√

T

‖f02 ‖√
T

= OP (1). For I5,

1

T
‖I5‖ =

1

T

∥∥∥∥∥ 1

NT 2

N∑
i=1

uib̂
′
ix
′
if̂1

∥∥∥∥∥ 6 max
16i6N

‖x′if̂1‖
T 2

1

NT

N∑
i=1

‖uib̂′i‖

6
1√
T

‖f̂1‖
T

max
16i6N

‖xi‖
T

{
1

N

N∑
i=1

‖ui‖2

T

}1/2{
1

N

N∑
i=1

‖b̂i‖

}1/2

= OP

(√
dT
T
ηNT

)
.

For I6,

1

T
‖I6‖ =

1

T

∥∥∥∥∥ 1

NT 2

N∑
i=1

f 0λ0
iu
′
if̂1

∥∥∥∥∥ =
1

T

∥∥∥∥ 1

NT 2
f 0Λ0′uf̂1

∥∥∥∥
6

1√
NT

(
1

T

∥∥∥f̂1

∥∥∥)( 1

T

∥∥f 0
∥∥) 1√

NT

∥∥Λ0′u
∥∥ = OP (T−1/2N−1/2),

where u = (u1, ..., uN)′ and we have used the fact that 1
NT
‖Λ0′u‖2

= OP (1) by Assump-

tion 3.2(iii). Analogously, we can show that 1
T
‖I7‖ = OP (T−1/2N−1/2). For I8,

1

T 2
‖I8‖2 =

1

T 2

∥∥∥∥∥ 1

NT 2

N∑
i=1

uiu
′
if̂1

∥∥∥∥∥
2

=
1

T 2

∥∥∥∥ 1

NT 2
u′uf̂1

∥∥∥∥2

6 2
T∑
t=1

∥∥∥∥∥T−3

T∑
s=1

γN(s, t)f̂ ′1s

∥∥∥∥∥
2

+ 2
T∑
t=1

∥∥∥∥∥T−3

T∑
s=1

ξstf̂
′
1s

∥∥∥∥∥
2

≡ 2 (‖I8(a)‖+ ‖I8(b)‖) ,

where γN(s, t) and ξst are defined in Assumption 3.2(iii). For I8(a),

‖I8(a)‖2 6
T∑
t=1

∥∥∥∥∥T−3

T∑
s=1

γN(s, t)f̂ ′1s

∥∥∥∥∥
2

6 T−3

(
T−2

T∑
s=1

‖f̂1s‖2

)(
T−1

T∑
t=1

T∑
s=1

‖γN(s, t)‖2

)
= OP (T−3),

129



where T−1
∑T

s=1

∑T
t=1 ‖γN(s, t)‖2 6 M by Assumption 3.2(iii) (see also Lemma 1(i) in

Bai and Ng (2002)). For I8(b),

‖I8(b)‖ =
T∑
t=1

∥∥∥∥∥T−3

T∑
s=1

ξstf̂
′
1s

∥∥∥∥∥
2

6 T−2N−1

(
T−2

T∑
s=1

∥∥∥f̂1s

∥∥∥2
)(

T−2N

T∑
t=1

T∑
s=1

‖ξst‖2

)
= OP (T−2N−1),

where we use the fact that E(‖ξst‖2) 6 N−2M under Assumption 3.2(iii). Then we have
1
T
‖I8‖ = OP (N−1/2T−1 + T−3/2). For ‖I9‖,

1

T
‖I9‖ =

1

T

∥∥∥∥ 1

NT 2
f 0

2 Λ0′
2 Λ0

2f
0′
2 f̂1

∥∥∥∥ 6 1

T

‖f 0
2‖2

T

‖f̂1‖
T

∥∥∥∥Λ0′
2 Λ0

2

N

∥∥∥∥ = OP (T−1).

For ‖I10‖,

1

T
‖I10‖ =

1

T

∥∥∥∥ 1

NT 2
f 0

1 Λ0′
1 Λ0

2f
0′
2 f̂1

∥∥∥∥ 6 1√
NT

‖f 0
1‖
T

‖f 0
2‖√
T

‖f̂1‖
T

‖Λ0′
1 Λ0

2‖√
N

= OP ((NT )−1/2),

where Λ0′
1 Λ0

2√
N

= OP (1) by Assumption 3.2(i). Analogously, we have 1
T
‖I11‖ = OP ((NT )−1/2).

In sum, we have shown that

1

T

∥∥∥f̂1H
−1
1 − f 0

1

∥∥∥ = OP (
√
dTηNT ) +

1√
T
OP (C−1

NT ).

Then (iv) follows. �

To prove Theorem 3.2, we need the following two lemmas.

Lemma A.5 Suppose that Assumptions 3.1-3.2 hold. Then

(i) 1
T
f 0′

1 (f̂1 − f 0
1H1) = OP (T

√
dTηNT + δ−1

NT ),

(ii) 1
T
f̂ ′1(f̂1 − f 0

1H1) = OP (T
√
dTηNT + δ−1

NT ),

(iii) ‖Pf̂1 − Pf01 ‖
2 = OP (

√
dTηNT + T−1δ−1

NT ),

(iv) 1
T
u∗′k

(
f̂1H

−1
1 − f 0

1

)
= OP (

√
TdTηNT + δ−1

NT ) for each k = 1, ..., N.

Lemma A.6 Suppose that Assumptions 3.1-3.2 hold. Let R1i = 1
T 2x

′
i(Pf01 −Pf̂1)u

∗
i , R2i =

1
T 2x

′
iMf̂1

f 0
1λ

0
1i− 1

NT 2

∑N
j=1 x

′
iMf̂1

xjaij b̂j+
1

NT 2

∑N
j=1 aijx

′
iMf̂1

uj, R3i = 1
NT 2

∑N
j=1 aijx

′
i(Pf01−

Pf̂1)uj, and R4i = 1
T 2x

′
iMf01

u∗i − 1
NT 2

∑N
j=1 aijx

′
iMf01

uj. Then

(i) R1i = OP (ς1NT ) for each i = 1, ..., N, and N−1
∑N

i=1 ‖R1i‖2 = OP (ς2
1NT ),

(ii) R2i = OP (ς2NT ) for each i = 1, ..., N, and N−1
∑N

i=1 ‖R2i‖2 = OP (ς2
2NT ),
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(iii) R3i = OP (ς3NT ) for each i = 1, ..., N, and N−1
∑N

i=1 ‖R3i‖2 = OP (ς2
3NT ),

(iv) R4i = OP (T−1) for each i = 1, ..., N, and N−1
∑N

i=1 ‖R4i‖2 = OP (T−2),

where ς1NT = T−1/2
√
dTηNT + dTη

2
NT + T−1C−1

NT , ς2NT = T−1
√
dTηNT + dTη

2
NT +

T−1δ−1
NT , and ς3NT = T−1/2d

1/4
T η

1/2
NT + T−1δ

−1/2
NT .

Proof of Theorem 3.2. (i) Based on the sub-differential calculus, a necessary condition

for β̂i, α̂k, and f̂1 to minimize the objective function (2.8) is the for each i = 1, ..., N , 0p×1

belongs to the sub-differential of QK
NT,λ(β, α, f1) with respect to βi (resp. αk) evaluated

at {β̂i}, {α̂k} and f̂1. That is, for each i = 1, ..., N and k = 1, ..., K, we have

0p×1 = − 2

T 2
x′iMf̂1

(yi − xiβ̂i) + λ

K∑
j=1

êij

K∏
l=1,l 6=j

‖β̂i − α̂l‖, (92)

where êij =
β̂i−α̂j
‖β̂i−α̂j‖

if ‖β̂i − α̂j‖ 6= 0 and ‖êij‖ 6 1 if ‖β̂i − α̂j‖ = 0. Noting that

yi = xiβ
0
i + f̂1H

−1
1 λ0

1i + u∗i + (f 0
1 − f̂1H

−1
1 )λ0

1i, (92) implies that

Q̂i,xxb̂i =
1

T 2
x′iMf̂1

u∗i +
1

T 2
x′iMf̂1

f 0
1λ

0
1i −

λ

2

K0∑
j=1

êij

K∏
l=1,l 6=j

‖β̂i − α̂l‖, (93)

which can be rewritten as

Q̂i,xxb̂i =
1

NT 2

N∑
j=1

x′iMf̂1
xjaij b̂j +Ri, (94)

whereRi = R1i+R2i−R3i+R4i−R5i,R1i, R2i, R3i andR4i are defined in the statement

of Lemma A.6, and R5i = λ
2

∑K
j=1 êij

∏K
l=1,l 6=j ‖β̂i− α̂l‖. By Lemma A.6(i)-(iv), we have

that
∑4

l=1
1
N

∑N
i=1 ‖Rli‖2 = OP (T−1d

1/2
T ηNT + d2

Tη
4
NT + T−2C−2

NT + T−2δ−1
NT + T−2) =

OP (T−1d
1/2
T ηNT + d2

Tη
4
NT + T−2). In addition, we can show that 1

N

∑N
i=1 ‖R5i‖2 =

OP (λ2) . It follows that 1
N

∑N
i=1 ‖Ri‖2 = OP (T−1d

1/2
T ηNT + d2

Tη
4
NT + T−2 + λ2).

Let Q̂1 = diag(Q̂1,xx, ..., Q̂N,xx) and Q̂2 as an Np × Np matrix with typical blocks
1

NT 2x
′
iMf̂1

xjaij , such that

Q̂2 =


1

NT 2x
′
1Mf̂1

x1a11
1

NT 2x
′
1Mf̂1

x2a12 · · · 1
NT 2x

′
1Mf̂1

xNa1N

1
NT 2x

′
2Mf̂1

x1a21
1

NT 2x
′
2Mf̂1

x2a22 · · · 1
NT 2x

′
2Mf̂1

xNa2N

...
... . . . ...

1
NT 2x

′
NMf̂1

x1aN1
1

NT 2x
′
NMf̂1

x2aN2 · · · 1
NT 2x

′
NMf̂1

xNaNN

 .
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Let R = (R′1, ..., R
′
N)′. Then (94) implies that (Q̂1 − Q̂2)b̂ = R. It follows that

‖R‖2 = tr(b̂
′
(Q̂1 − Q̂2)′(Q̂1 − Q̂2)b̂) > ‖b̂‖2

[
µmin

(
Q̂1 − Q̂2

)]2

.

By Assumption 3.2(v), we have that µmin

(
Q̂1 − Q̂2

)
> ρmin/2 > 0 w.p.a.1. Then we

have 1
N
‖b̂‖2 6 ρ2min

4N

∑N
i=1 ‖Ri‖2 = OP (T−1d

1/2
T ηNT+d2

Tη
4
NT+T−2+λ2) = OP (dTT

−2 + λ2).

Consequently, we prove the means square convergence rate of C-Lasso estimators that
1
N

∑N
i=1 ‖b̂i‖2 = OP (dTT

−2 + λ2).

Next, we want to strengthen the last result to a stronger one: 1
N

∑N
i=1 ‖b̂i‖2 = OP (dTT

−2).

Let β = β0 + dTT
−1v, where v = (v1, ..., vN) is a p × N matrix. Let v =vec(v) . We

wan to show that for any given ε∗ > 0, there exists a large constant L = L(ε∗) such that

for sufficiently large N and T we have

P

{
inf

1
N

∑N
i=1 ‖vi‖2=L

Qλ,K
NT (β + d

1/2
T T−1v, α̂, f̂1) > Qλ,K

NT (β0,α0, f̂1)

}
> 1− ε∗.

Regardless the property of f̂1 and α̂, this implies that w.p.a.1 there is a local minimum

β̂ = (β̂1, ..., β̂N) such that 1
N

∑N
i=1 ‖b̂i‖2 = OP (dTT

−2). Note that

T 2
[
Qλ,K
NT (β + d

1/2
T T−1v, α̂, f̂1)−Qλ,K

NT (β0,α0, f̂1)
]

>
d

1/2
T

N

N∑
i=1

(
d

1/2
T

T 2
v′ix
′
iMf̂1

xivi −
2

T
v′ix
′
iMf̂1

(f 0
1 − f̂1H1)λ0

1i −
2

T
v′ix
′
iMf̂1

u∗i

)

=
dT
N

N∑
i=1

1

T 2
v′ix
′
iMf̂1

xivi

− 2d
1/2
T

N

N∑
i=1

v′i

{
TR2i +

1

T
x′iMf̂1

u∗i +
1

NT

N∑
j=1

aijx
′
iMf̂1

xj b̂j −
1

NT

N∑
j=1

aijx
′
iMf̂1

uj

}

≡ D1NT − 2D2NT , say.

where R2i = 1
T 2x

′
iMf̂1

f 0
1λ

0
1i − 1

NT 2

∑N
j=1 x

′
iMf̂1

xjaij b̂j + 1
NT 2

∑N
j=1 aijx

′
iMf̂1

uj as de-

fined in Lemma A.6. By Assumption 3.2(v) and Lemma A.5(iii), D1NT = dT
N
v′Q̂1v >
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dTµmin

(
Q̂1

)
N−1 ‖v‖2 > dTρminN

−1 ‖v‖2 /2 w.p.a.1. By Lemmas A.6(i)-(ii) and A.5(iii),

T 2

dTN

N∑
i=1

‖R2i‖2 =
T 2

dT
OP (T−2dTη

2
NT + d2

Tη
4
NT + T−2δ−2

NT ) = oP (1),

1

dTNT 2

N∑
i=1

‖x′iMf̂1
u∗i ‖2 6

2T 2

dTN

N∑
i=1

∥∥∥∥ 1

T 2
x′i(Mf̂1

−Mf01
)u∗i

∥∥∥∥2

+
2

dTN

N∑
i=1

∥∥∥∥ 1

T
x′iMf01

u∗i

∥∥∥∥2

=
T 2

dT
OP (T−1dTη

2
NT + d2

Tη
4
NT + T−2C−2

NT ) +
1

dT
OP (1) = oP (1).

Next, we have

1

dTN3T 2

N∑
i=1

N∑
j=1

‖aijx′iMf̂1
xj b̂j‖2 6

1

dT

1

N3T 2

N∑
i=1

N∑
j=1

‖aij‖2
∥∥∥x′iMf̂1

xj b̂j

∥∥∥2

6
T 2

N

[
µmin

(
Λ0′

1 Λ0
1

N

)]−2{
max

16j6N

1

dTT 2
‖xj‖2

}
max

16j6N

∥∥λ0
1j

∥∥2

×

{
1

NT 2

N∑
i=1

∥∥λ0
1i

∥∥2 ‖xi‖2

}{
1

N

N∑
j=1

∥∥∥b̂j∥∥∥2
}

=
T 2

N
OP (1)OP (1) oP

(
N1/q

)
OP (1)OP

(
dTT

−2 + λ2
)

= oP (1) .

where we use the fact that max16j6N
1

dTT 2 ‖xj‖2 = OP (1) by Lemma A.2(i), max16j6N

∥∥λ0
1j

∥∥2
=

oP
(
N1/q

)
by Assumption 3.2(i) and Markov inequality, and 1

NT 2

∑N
i=1 ‖λ0

1i‖
2 ‖xi‖2 =

OP (1) by Markov inequality and 1
N

∑N
j=1

∥∥∥b̂j∥∥∥2

= OP (dTT
−2 + λ2) . Similarly, we have

by Lemma A.5(iii),

1

dTN3T 2

N∑
i=1

N∑
j=1

‖aijx′iMf̂1
uj‖2

6
1

dT

1

N3T 2

N∑
i=1

N∑
j=1

‖aij‖2
∥∥∥x′iMf̂1

uj

∥∥∥2

6
1

dT

[
µmin

(
Λ0′

1 Λ0
1

N

)]−2
2

N3T 2

N∑
i=1

N∑
j=1

∥∥λ0
1i

∥∥2 ∥∥λ0
1j

∥∥2
{∥∥∥x′i(Mf̂1

−Mf01
)uj

∥∥∥2

+
∥∥∥x′iMf01

uj

∥∥∥2
}

=
1

dT
OP

(
N−1TdT (

√
dTηNT + δ−1

NT ) + 1
)

= oP (1) .
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It follows that

|D2NT | 6 dT

{
1

N

N∑
i=1

‖vi‖2

}1/2

(

T 2

dTN

N∑
i=1

‖R̄2i‖2

)1/2

+

(
1

dTNT 2

N∑
i=1

‖x′iMf̂1
u∗i ‖2

)1/2

+

(
1

dTN3T 2

N∑
i=1

N∑
j=1

‖aijx′iMf̂1
b̂j‖2

)1/2

+

(
1

dTN3T 2

N∑
i=1

N∑
j=1

‖aijx′iMf̂1
uj‖2

)1/2


= dTN
−1/2 ‖v‖ oP (1) .

ThenD1NT dominatesD2NT for sufficiently largeL. That is T 2[Qλ,K
NT (β+ d

1/2
T T−1v, α̂, f̂1)−

Qλ,K
NT (β0,α0, f̂1)] > 0 for sufficiently large L. Consequently, the result in (i) follows.

(ii) We study the probability bound for each term on the right hand side of (??). For

the first term, we have by Lemma A.6(i)∥∥∥∥ 1

T 2
x′iMf̂1

u∗i

∥∥∥∥ 6 ∥∥∥∥ 1

T 2
x′iMf01

u∗i

∥∥∥∥+

∥∥∥∥ 1

T 2
x′i(Mf̂1

−Mf01
)u∗i

∥∥∥∥
= OP (T−1) +OP (T−1/2

√
dTηNT + dTη

2
NT + T−1C−1

NT ) = OP (dTT
−1).

(95)

For the second term, we can readily apply Lemmas A.6(ii), A.5(iii) and A.3(iii), and

Theorem 8(i) to obtain∥∥∥∥ 1

T 2
x′iMf̂1

f 0
1λ

0
1i

∥∥∥∥ 6 ‖R2i‖+

∥∥∥∥∥ 1

NT 2

N∑
j=1

x′iMf̂1
xj b̂jaij

∥∥∥∥∥+

∥∥∥∥∥ 1

NT 2

N∑
j=1

x′iMf̂1
ujaij

∥∥∥∥∥
=OP (T−1

√
dTηNT + dTη

2
NT + T−1δ−1

NT ) +OP (ηNT ) +OP (dTT
−1) = OP (dTT

−1).

(96)

The third term isOP (λ) .By Lemma A.5(iii), µmin

(
1
T 2x

′
iMf̂1

xi

)
= µmin

(
1
T 2x

′
iMf01

xi

)
+

oP (1) . Noting that
(

1
T 2x

′
iMf01

xi

)−1

is the principal p × p submatrix of
(

1
T 2W

′
iWi

)−1
,

µmin

(
1
T 2x

′
iMf01

xi

)
> µmin

(
1
T 2W

′
iWi

)
, and the last object is bounded away from zero

w.p.a.1. It follows that b̂i = OP (dTT
−1 + λ) for i = 1, 2, ..., N.

(iii) Let PNT (β,α) = 1
N

∑N
i=1

∏K
k=1 ‖βi − αk‖ and ĉiNT (α) =

∏K−1
k=1 ‖β̂i − αk‖ +∏K−2

k=1 ‖β̂i−αk‖×‖β0
i−αK‖+...+

∏K
k=2 ‖β0

i−αk‖. By SSP, we have that as (N, T )→∞,∣∣∣∏K
k=1

∥∥∥β̂i − αk∥∥∥−∏K
k=1 ‖β0

i − αk‖
∣∣∣ 6 ĉiNT (α)‖β̂i−β0

i ‖,where ĉiNT (α) 6 CKNT (α)(1+

2‖β̂i − β0
i ‖) and CKNT (α) = max16i6N max16s6k6K−1

∏s
k=1 cks‖β0

i − αk‖K−1−s =
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max16l6K max16s6k6K0−1

∏s
k=1 cks‖α0

l − αk‖K−1−s = O(1) with cks being finite inte-

gers. It follows that as (N, T )→∞

|PNT (β̂,α)− PNT (β0,α)| 6 CKNT (α)
1

N

N∑
i=1

‖b̂i‖+ 2CKNT (α)
1

N

N∑
i=1

‖b̂i‖2

6 CKNT (α)

{
1

N

N∑
i=1

‖b̂i‖2

}1/2

+OP (dTT
−2) = OP (d

1/2
T T−1).

(97)

By (97) and the fact that PNT (β0,α0) = 0 and that PNT (β̂, α̂) − PNT (β̂,α0) 6 0. we

have

0 > PNT (β̂, α̂)− PNT (β̂,α0) = PNT (β0, α̂)− PNT (β0,α0) +OP (d
1/2
T T−1)

=
1

N

N∑
i=1

K∏
k=1

‖β0
i − α̂k‖+OP (d

1/2
T T−1)

=
N1

N

K∏
k=1

‖α̂k − α0
1‖+

N2

N

K∏
k=1

‖α̂k − α0
2‖+ ...+

NK

N

K∏
k=1

‖α̂k − α0
K‖+OP (d

1/2
T T−1)

(98)

By Assumption 3.3(i), Nk/N → τk ∈ (0, 1) for each k = 1, ...K. So (98) implies

that
∏K

k=1 ‖α̂k − α0
l ‖ = OP (d

1/2
T T−1) for l = 1, ...K. It follows that (α̂(1), ..., α̂(K)) −

(α0
1, ..., α

0
K) = OP (d

1/2
T T−1).

(iv) By Theorem 7(iv) and Theorem 8(i), we have 1
T
‖f̂1 − f 0

1H1‖2 = OP (TdTη
2
NT +

C−2
NT ) = OP (d2

TT
−1 +N−1).�

To prove Theorem 3.3, we need the following two lemmas.

Lemma A.7 Suppose that Assumptions 3.1-3.3 hold. Then for any c > 0,

(i) P
(
max16i6N

∥∥ 1
T 2x

′
iu
∗
i

∥∥ > cψNT
)

= o(N−1),

(ii) P
(

max16i6N

∥∥∥ 1
T 2x

′
iM f01

u∗i

∥∥∥ > cdTψNT

)
= o(N−1).

Lemma A.8 Suppose that Assumptions 3.1-3.3 hold. Then for any c > 0,

(i) P
(

max16i6N ‖R1i‖ > c
(
dTηNT + T−1/2d

1/2
T C−1

NT

) (
ψNT + T−1/2(log T )3

))
=

o(N−1),

(ii) P
(

max16i6N ‖R2i‖ > cd
1/2
T N (1/2q)ς2NT

)
= o(N−1),
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(iii) P
(

max16i6N ‖R3i‖ > cd
1/2
T N (1/2q)ς2NT

)
= o(N−1),

(iv) P
(
max16i6N ‖R4i‖ > c(dT +N (1/2q))ψNT

)
= o(N−1),

(v) P
(

max16i6N

∥∥∥β̂i − β0
i

∥∥∥ > c
(
N (1/2q)ψNT + λ(log T )ε/2

))
= o(N−1) for any ε >

0,

(vi) P
(

1
N

∑N
i=1

∥∥∥β̂i − β0
i

∥∥∥2

> cd2
Tψ

2
NT

)
= o(N−1) for any ε > 0,

(vii) P
(

max16i6N

∥∥∥ 1
T 2x

′
iMf̂1

f 0
1λ

0
1i

∥∥∥ > cN1/2q(dTηNT + T−1/2d
1/2
T C−1

NT )
)

= o(N−1).

Proof of Theorem 3.3. (i) Fix k ∈ {1, ..., K}. By the consistency of α̂k and β̂i, we have

β̂i − α̂l
p→ α0

k − α0
l 6= 0 for all i ∈ G0

k and l 6= k. Now, suppose that ‖β̂i − α̂k‖ 6= 0 for

some i ∈ G0
k. Then the first order condition (with respect to βi) for the minimization of

the objective function (2.8) implies that

0p×1 =− 2

T
x′iMf01

u∗i +
2

T
x′i(Mf01

−Mf̂1
)u∗i −

2

T
x′iMf̂1

f 0
1λ

0
1i +

2

T 2
x′iMf̂1

xiT (α̂k − α0
k)

+

(
2

T 2
x′iMf̂1

xi +
λĉki

‖β̂i − α̂k‖
Ip

)
T (β̂i − α̂k) + Tλ

K∑
j=1,j 6=k

êij

K∏
l=1,l 6=j

‖β̂i − α̂l‖

≡ −Â1i + Â2i − Â3i + Â4i + Â5i + Â6i, say,

where êij are defined in the proof of Theorem 3.2(i), ĉki =
∏K

l=1,l 6=k ‖β̂i − α̂l‖
p→ c0

k ≡∏K
l=1,l 6=k ‖α0

k − α0
l ‖ > 0 for i ∈ G0

k by Assumption 3.3(ii). Let ΨNT = N1/(2q)ψNT +

λ(log T )ε/2. Let c denote a generic constant that may vary across lines. By Lemma A.8(v)-

(vi), we have

P

(
max
i∈G0

k

∥∥∥β̂i − β0
i

∥∥∥ > cΨNT

)
= o(N−1) and P

(
1

N

N∑
i=1

∥∥∥β̂i − β0
i

∥∥∥2

> cd2
Tψ

2
NT

)
= o(N−1).

(99)

This, in conjunction with the proof of Theorem 3.2(i)-(iii), implies that

P (‖α̂k − α0
k‖ > cdTψNT ) = o(N−1), and P (max

i∈G0
k

∣∣ĉki − c0
k

∣∣ > c0
k/2) = o(N−1). (100)

By (99)-(100) and the fact that maxi∈G0
k

1
T 2x

′
iMf̂1

xi 6 cdTρmax a.s.,

we have P
(

maxi∈G0
k

∥∥∥Â4i

∥∥∥ > cd2
TTψNT

)
= o(N−1) and P

(
maxi∈G0

k

∥∥∥Â6i

∥∥∥ > cλTΨNT

)
=
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o(N−1). By Lemma A.7(ii) and Lemma A.8(i),(iii), we can directly claim that

P

(
max
i∈G0

k

‖Â1i‖ > cTbTψNT

)
= o(N−1),

P

(
max
i∈G0

k

‖Â2i‖ > c
(
TdTηNT + T 1/2d

1/2
T C−1

NT

) (
ψNT + T−1/2(log T )3

))
= o(N−1), and

P

(
max
i∈G0

k

‖Â3i‖ > cN1/2q(TdTηNT + T 1/2d
1/2
T C−1

NT )

)
= o(N−1).

For Â5i, we have

(β̂i − α̂k)′Â5i = (β̂i − α̂k)′
(

2

T 2
x′iMf̂1

xi +
λĉki

‖β̂i − α̂k‖
Ip

)
T (β̂i − α̂k)

> 2Q̂i,xxT‖β̂i − α̂k‖2 + Tλĉki‖β̂i − α̂k‖ > cTλc0
k‖β̂i − α̂k‖.

Combing above results together, it follows that P (Ξk,NT ) = 1− o(N−1), where

Ξk,NT =

{
max
i∈G0

k

‖Â2i‖ < c
(
TdTηNT + T 1/2d

1/2
T C−1

NT

) (
ψNT + T−1/2(log T )3

)}
∩
{

max
i∈G0

k

‖Â3i‖ < cN1/2q(TdTηNT + T 1/2d
1/2
T C−1

NT )

}
∩
{

max
i∈G0

k

∣∣ĉki − c0
k

∣∣ < c0
k/2

}
∩
{

max
i∈G0

k

∥∥∥Â4i

∥∥∥ < cd2
TTψNT

}
∩
{

max
i∈G0

k

∥∥∥Â6i

∥∥∥ < cλTΨNT

}
.

Then conditional on ΞkNT , we have that uniformly in i ∈ G0
k,∣∣∣(β̂i − α̂k)′(Â2i + Â3i + Â4i + Â5i + Â6i)

∣∣∣
>
∣∣∣(β̂i − α̂k)′Â5i

∣∣∣− ∣∣∣(β̂i − α̂k)′(Â2i + Â3i + Â4i + Â6i)
∣∣∣

>
{
cTλc0

k − c
(
N1/2q

(
Td

1/2
T ηNT + T 1/2d

1/2
T C−1

NT

)
+ Td2

TψNT + λTΨNT

)}
‖β̂i − α̂k‖

>cTλc0
k‖β̂i − α̂k‖/2,

where the last inequality follows by the fact that N1/2q
(
Td

1/2
T ηNT + T 1/2d

1/2
T C−1

NT

)
+

Td2
TψNT + λTΨNT = o(Tλ) for sufficiently large (N, T ) by Assumption 3.3(iv). It

follows that

P (ÊkNT,i) = P (i /∈ Ĝk|i ∈ G0
k) = P (Â1i = Â2i + Â3i + Â4i + Â5i + Â6i)

6 P
(
|(β̂i − α̂k)′Â1i| > |(β̂i − α̂k)′Â5i − (β̂i − α̂k)′(Â2i + Â3i + Â4i + Â6i)

)
6 P (‖Âi1‖ > cTλc0

k/4,ΞkNT ) + o(N−1)→ 0 as (N, T )→∞,
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where the last inequality follows because that Tλ � TbTψNT by Assumption 3.3(iv).

Consequently, we can conclude that w.p.a.1 β̂i − α̂k must be in position where ‖βi − αk‖

is not differentiable with respect to βi for any i ∈ G0
k. That is P (‖β̂i− α̂k‖ = 0|i ∈ G0

k) =

1− o(N−1) as (N, T )→∞.

For uniform consistency, we have that

P (∪Kk=1ÊkNT ) 6
K∑
k=1

P (ÊkNT ) 6
K∑
k=1

∑
i∈G0

k

P (ÊkNT,i)

6 N max
16i6N

P (‖Âi1‖ > cTλc0
k/4) + o(1)→ 0 as (N, T )→∞.

This completes the proof of (i). Then the proof of (ii) directly follows SSP and thus

omitted. �

To prove Theorem 3.4, we need the following two lemmas.

Lemma A.9 Suppose that Assumptions 3.1-3.3 hold and
√
N = o (T ) . Then for any

k = 1, ..., K,

(i) 1
NkT 2

∑
i∈Ĝk x

′
iMf̂1

f 0
1λ

0
1i = 1

NkT 2

∑
i∈Ĝk

1
N

∑N
j=1 x

′
iMf̂1

xjaij b̂j− 1
NkT 2

∑
i∈Ĝk

1
N

∑N
j=1 aijx

′
iMf̂1

uj−
1

NkT 2

∑
i∈Ĝk

1
N

∑N
j=1 aijx

′
iMf̂1

f 0
2λ

0
2j + oP (N−1/2T−1),

(ii) 1
NkT 2

∑
i∈Ĝk x

′
iMf̂1

xi = 1
NkT 2

∑
i∈G0

k
x′iMf01

xi + oP (1),

(iii) 1√
NkT

∑
i∈Ĝk x

′
iMf̂1

(
u∗i − 1

N

∑N
j=1 u

∗
jaij

)
= UkNT + oP (1),

(iv) 1
NkT 2

∑
i∈Ĝk

1
N

∑
j∈Ĝl x

′
iMf̂1

xjaij = 1
NkT 2

∑
i∈G0

k

1
N

∑
j∈G0

l
x′iMf01

xjaij + oP (1).

Lemma A.10 Suppose that Assumptions 3.1-3.3 hold and
√
N = o (T ) . Then

(i) QNT
d→ Q0,

(ii) UkNT = VkNT +BkNT + oP (1),

(iii) VNT
d→ N (0,Ω0) conditional on C,

where Ω0 = limN,T→∞ΩNT .

Proof of Theorem 3.4. (i) To study of the oracle property of the C-Lasso estimator,

we invoke the sub-differential calculus. A necessary and sufficient condition for {β̂i}

and {α̂k} to minimize the objective function in (23) is that for each i = 1, ..., N (resp.

k = 1, ..., K), 0p×1 belongs to the sub-differential of QK
NT,λ(β, α, f̂1) with respect to βi

(resp. αk) evaluated at {β̂i} and {α̂k}. That is, for each i = 1, ..., N and k = 1, ..., K, we
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have

0p×1 = − 2

NT 2
x′iMf̂1

(yi − xiβ̂i) +
λ

N

K∑
j=1

êij

K∏
l=1,l 6=j

‖β̂i − α̂l‖, (101)

0p×1 =
λ

N

N∑
i=1

êik

K∏
l=1,l 6=k

‖β̂i − α̂l‖, (102)

where êij =
β̂i−α̂j
‖β̂i−α̂j‖

if ‖β̂i − α̂j‖ 6= 0 and ‖êij‖ 6 1 if ‖β̂i − α̂j‖ = 0. First we observe

that ‖β̂i − α̂k‖ = 0 for any i ∈ Ĝk by the definition of Ĝk, then β̂i − α̂l → α0
k − α0

l 6= 0

for any i ∈ Ĝk and l 6= k by Assumption 3.3(ii). It follows that ‖êik‖ 6 1 for any i ∈ Ĝk

and êij =
β̂i−α̂j
‖β̂i−α̂j‖

=
α̂k−α̂j
‖α̂k−α̂j‖

w.p.a.1 for any i ∈ Ĝk and j 6= k. This further implies that

w.p.a.1∑
i∈Ĝk

K∑
j=1,j 6=k

êij

K∏
l=1,l 6=j

‖β̂i − α̂l‖ =
∑
i∈Ĝk

K∑
j=1,j 6=k

α̂k − α̂j
‖α̂k − α̂j‖

K∏
l=1,l 6=j

‖α̂k − α̂l‖ = 0p×1,

and

0p×1 =
N∑
i=1

êik

K∏
l=1,l 6=k

‖β̂i − α̂l‖

=
∑
i∈Ĝk

êik

K∏
l=1,l 6=k

‖α̂k − α̂l‖+
∑
i∈Ĝ0

êik

K∏
l=1,l 6=k

‖β̂i − α̂l‖+
K∑

j=1,j 6=k

∑
i∈Ĝj

êik

K∏
l=1,l 6=k

‖α̂j − α̂l‖

=
∑
i∈Ĝk

êik

K∏
l=1,l 6=k

‖α̂k − α̂l‖+
∑
i∈Ĝ0

êik

K∏
l=1,l 6=k

‖β̂i − α̂l‖. (103)

Then by (101), (102) and (103) we have

2

NkT 2

∑
i∈Ĝk

x′iMf̂1
(yi − xiα̂k) +

λ

N

∑
i∈Ĝ0

êik

K∏
l=1,l 6=k

‖β̂i − α̂l‖ = 0p×1. (104)

Noting that 1{i ∈ Ĝk} = 1{i ∈ G0
k} + 1{i ∈ Ĝk \ G0

k} − 1{i ∈ G0
k \ Ĝk} and

yi = xiα
0
k + f 0

1λ
0
1i + u∗i when i ∈ G0

k, we have

1

NkT 2

∑
i∈Ĝk

xiMf̂1
yi =

1

NkT 2

∑
i∈Ĝk

x′iMf̂1
xiβ

0
i +

1

NkT 2

∑
i∈Ĝk

x′iMf̂1
f 0

1λ
0
1i +

1

NkT 2

∑
i∈Ĝk

x′iMf̂1
u∗i

=
1

NkT 2

∑
i∈G0

k

x′iMf̂1
xiα

0
k +

1

NkT 2

∑
i∈Ĝk\G0

k

x′iMf̂1
xiβ

0
i −

1

NkT 2

∑
i∈G0

k\Ĝk

x′iMf̂1
xiα

0
k

+
1

NkT 2

∑
i∈Ĝk

x′iMf̂1
f 0

1λ
0
1i +

1

NkT 2

∑
i∈Ĝk

x′iMf̂1
(ui + f 0

2λ
0
2i).

(105)
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Combining (104) and (105) yields

1

NkT 2

∑
i∈Ĝk

x′iMf̂1
xi(α̂k − α0

k) =
1

NkT 2

∑
i∈Ĝk

x′iMf̂1
f 0

1λ
0
1i +

1

NkT 2

∑
i∈Ĝk

x′iMf̂1

(
ui + f 0

2λ
0
2i

)
+ Ĉ1k − Ĉ2k + Ĉ3k, (106)

where Ĉ1k = 1
NkT 2

∑
i∈Ĝk\G0

k
x′iMf̂1

xiβ
0
i , Ĉ2k = 1

NkT 2

∑
i∈G0

k\Ĝk
x′iMf̂1

xiα
0
k, and Ĉ3k =

λ
2Nk

∑
i∈Ĝ0

êik ×
∏K

l=1,l 6=k ‖β̂i − α̂l‖. By Theorem 3.3 and Lemmas S1.11-S1.12 in SSP,

we have P (N1/2T‖Ĉ1k‖ > ε) 6 P (F̂kNT )→ 0, P (N1/2T‖Ĉ2k‖ > ε) 6 P (ÊkNT )→ 0,

and P (N1/2T‖Ĉ3k‖ > ε) 6
∑K

k=1

∑
i∈G0

k
P (i ∈ Ĝ0|i ∈ G0

k)6
∑K

k=1

∑
i∈G0

k
P (ÊkNT,i) =

o(1). It follows that ‖Ĉ1k − Ĉ2k + Ĉ3k‖ = oP (N−1/2T−1). By Lemma A.9 (i), we have

as
√
N
T
→ 0

1

NkT 2

∑
i∈Ĝk

x′iMf̂1
f 0

1λ
0
1i =

1

NkT 2

∑
i∈Ĝk

1

N

N∑
j=1

x′iMf̂1
xjaij b̂j −

1

NkT 2

∑
i∈Ĝk

1

N

N∑
j=1

aijx
′
iMf̂1

uj

− 1

NkT 2

∑
i∈Ĝk

1

N

N∑
j=1

aijx
′
iMf̂1

f 0
2λ

0
2j + oP (N−1/2T−1). (107)

In addition,

1

NkT 2

∑
i∈Ĝk

1

N

N∑
j=1

x′iMf̂1
xjaij b̂j =

1

NkT 2

∑
i∈Ĝk

1

N

K∑
l=1

∑
j∈Ĝl

x′iMf̂1
xjaij

(
α̂l − α0

l

)
+oP (N−1/2T−1)

(108)

by Theorem 3.3. Let Q̂1NT =diag
(

1
N1T 2

∑
i∈Ĝ1

x′iMf̂1
xi, . . . ,

1
NKT 2

∑
i∈ĜK x

′
iMf̂1

xi

)
and Q̂2NT is a Kp×Kp matrix with typical blocks 1

NNkT

∑
i∈Ĝk

∑
j∈Ĝl aijx

′
iMf̂1

xj such

that

Q̂2NT =


1

NN1T 2

∑
i∈Ĝ1

∑
j∈Ĝ1

aijx
′
iMf̂1

xj, . . . 1
NN1T 2

∑
i∈Ĝ1

∑
j∈ĜK aijx

′
iMf̂1

xj
1

NN2T 2

∑
i∈Ĝ2

∑
j∈Ĝ1

aijx
′
iMf̂1

xj, . . . 1
NN2T 2

∑
i∈Ĝ2

∑
j∈ĜK aijx

′
iMf̂1

xj,
... . . . ...

1
NNKT 2

∑
i∈ĜK

∑
j∈Ĝ1

aijx
′
iMf̂1

xj, · · · 1
NNKT 2

∑
i∈ĜK

∑
j∈ĜK aijx

′
iMf̂1

xj

 .

Combining (106)-(108), we have

√
NTvec(α̂−α0) = (Q̂1NT − Q̂2NT )−1

√
DN ÛNT + oP (1),

where the kth element of ÛNT is

ÛkNT =
1√
NkT

∑
i∈Ĝk

x′iMf̂1

((
ui + f 0

2λ
0
2i

)
− 1

N

N∑
j=1

aij
(
uj + f 0

2λ
0
2j

))
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and DN =diag( N
N1
, ..., N

NK
). By Lemma A.9(ii)-(iv), we have that Q̂1NT − Q̂2NT =

QNT + oP (1), ÛNT = UNT + oP (1), where UNT and QNT are defined in Theorem 3.4.

Then we have
√
NTvec(α̂−α0) = Q−1

NT

√
DNUNT+oP (1).By Lemma A.10(ii), we have

UkNT − BkNT,1 − BkNT,2 = VkNT + oP (1), where VkNT and BkNT = BkNT,1 + BkNT,2

are defined in Theorem 3.4. Thus,

√
NTvec(α̂−α0) = Q−1

NT

√
DN (VNT +BNT ) + oP (1), (109)

where VNT = (V1NT , ..., VKNT ) andBNT = (B1NT , ..., BKNT ). This completes the proof

of Theorem 3.4.

(ii) By Lemma A.10 (i) and (iii), we have

QNT
d→ Q0 and VNT

d→ N(0,Ω0) conditional C. (110)

Combining (109) and (110), we have

√
NTvec(α̂−α0)−

√
DNQ

−1
NTBNT

d→MN(0, lim
N→∞

DNQ
−1
0 Ω0Q

−1
0 ).

�

To prove Theorem 3.5, we need the following lemma.

Lemma A.11 Suppose that Assumptions 3.1-3.3 hold and
√
N = o (T ). Then as (N, T )→

∞,

(i) 1√
T
‖f̂1λ̂1i − f 0

1λ
0
1i‖ = OP (

√
dTTηNT ) +OP (C−1

NT ),

(ii) 1√
T
‖f̂2 − f 0

2H2‖ = OP (C−1
NT )

(iii) 1√
Nk

∑
i∈Ĝk

(
λ̂2i −H−1

2 λ0
2i

)
= oP (1),

(iv) 1√
T

∥∥∥f̂2λ̂2i − f 0
2λ

0
2i

∥∥∥ = OP (C−1
NT ),

(v) 1√
Nk

∑
i∈Ĝk(∆̂21,i −∆21,i) = oP (1),

(vi)
√
Nk
T

∑T
t=1

∑T
s=1 (κ̂ts − κts)1 {s 6 t} = oP (1),

(vii) 1√
Nk

∑
i∈G0

k
(∆̂24,i

ˆ̄λ2i −∆24,iλ̄
0
2i) = oP (1),

(viii) 1√
NkT

∑
i∈G0

k

∑T
t=1

∑T
s=1

[
κ̂ts1 {s 6 t} ∆̂24,i

ˆ̄λ2i − κts1 {s 6 t}∆24,iλ̄
0
2i

]
= oP (1).

where λ̄0
2i = λ0

2i − 1
N

∑N
j=1 λ

0
2jaij.
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Proof of Theorem 3.5. (i) We first consider the bias-correction post-Lasso estimators

vec(α̂bc
Ĝ

). By construction and Theorem 3.4, we have

√
NTvec

(
α̂bc
Ĝ
−α0

)
=
√
NTvec

(
α̂bc
Ĝ
− α̂

)
+
√
NTvec

(
α̂− α0

)
=

√
DNQ

−1
NTVNT +

√
DN

[
Q−1
NT (BNT,1 +BNT,2)− Q̂−1

NT

(
B̂NT,1 + B̂NT,2

)]
+oP (1).

It suffices to show the
√
NTvec

(
α̂bc
Ĝ
−α0

)
=
√
DNQ

−1
NTVNT + oP (1) by (i1) Q̂1NT −

Q̂2NT = QNT + oP (1), (i2) B̂NT,1 = BNT,1 + oP (1), and (i3) B̂NT,2 = BNT,2 + oP (1).

(i1) holds by Lemma A.9 (i) and (iv). For (i2), it suffices to show that B̂kNT,1−BkNT,1 =

oP (1) for k = 1, ..., K. By Theorem 3.3 and using arguments as used in the proof of

Lemma A.9(ii), we can readily show that B̂kNT,1 = B̃kNT,1 + oP (1), where B̃kNT,1 =

1√
Nk

∑
i∈G0

k
∆̂21,i − 1√

NkT

∑
i∈G0

k

∑T
t=1

∑T
s=1 κ̂ts1 {s 6 t} ∆̂21,i. It follows that

B̂kNT,1 −BkNT,1

=
1√
Nk

∑
i∈G0

k

(∆̂21,i −∆21,i)−
1√
NkT

∑
i∈G0

k

T∑
t=1

T∑
s=1

[
κ̂ts1 {s 6 t} ∆̂21,i − κts1 {s 6 t}∆21,i

]
+ oP (1)

=
1√
Nk

∑
i∈G0

k

(∆̂21,i −∆21,i)−
1

T

T∑
t=1

T∑
s=1

κ̂ts1 {s 6 t}

 1√
Nk

∑
i∈G0

k

(∆̂21,i −∆21,i)


−
√
Nk

T

T∑
t=1

T∑
s=1

(κ̂ts − κts)1 {s 6 t}

 1

Nk

∑
i∈G0

k

∆21,i

+ oP (1)

≡BkNT,1 (1) +BkNT,1 (2) +BkNT,1 (3) + oP (1), say,

We can prove B̂kNT,1 = BkNT,1 + oP (1) by showing that BkNT,1 (l) = oP (1) for l =

1, 2, 3. Noting that
∣∣∣ 1
T

∑T
t=1

∑T
s=1 κ̂ts1 {s 6 t}

∣∣∣ 6 1
T 3

∑T
t=1

∑T
s=1

∥∥∥f̂1t

∥∥∥∥∥∥f̂1s

∥∥∥ = OP (1)

and 1
Nk

∑
i∈G0

k
∆21,i = OP (1) , these results would follow by Lemma A.11(v)-(vi). To

show (i3), we first observe that

BkNT,2 =
1√
NkT

∑
i∈G0

k

E (x′i|C)Mf01
f 0

2

(
λ0

2i −
1

N

N∑
j=1

λ0
2jaij

)

=
1√
NkT

∑
i∈G0

k

E (x′i|C) f 0
2 λ̄

0
2i −

1√
NkT

∑
i∈G0

k

E (x′i|C)Pf01 f
0
2 λ̄

0
2i ≡ BkNT,21 −BkNT,22, say,
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where λ̄0
2i = λ0

2i− 1
N

∑N
j=1 λ

0
2jaij . Let φf2,f1f2 = (φf2f1(L), φf2f2(L)), φε,f1f2i = (φεf1i (L) , φεf2i (L)) =

(φεf1 (L) , φεf2 (L)), and vf1f2t = (vf1′t , vf1′t )′.Note that εit = wεit = φεui (L) vuit+φ
εε
i (L) vεit+

φεf1 (L) vf1t + φεf2 (L) vf2t . By the BN decomposition and the independence of {vuεit } and

{vf1f2s }, we have

f 0
2t =S4wit = φf2f1(L)vf1t + φf2f2(L)vf2t = φf2,f1f2(L)vf1f2t

=φf2,f1f2(1)vf1f2t + S4w̃it−1 − S4w̃it,

EC (xit) =EC

(
S2

t∑
m=1

wim

)
=

t∑
m=1

(
φεf1i (L) vf1m + φεf2i (L) vf2m

)
= φε,f1f2 (L)V f1f2

t

=φε,f1f2i (1)V f1f2
t + S2EC (w̃i0 − w̃it) .

where V f1f2
t = (V f1′

t , V f2′
t )′ =

(∑t
m=1 v

f1′
m ,
∑t

m=1 v
f2′
m

)′
, wit and w̃it are defined in As-

sumption 3.1. Let B∗kNT,21 = 1√
Nk

∑
i∈G0

k
S2

∑∞
r=0

∑∞
l=0 φi,l+rφ

′
i,lS
′
4λ̄

0
2i. It follows that

BkNT,21 −B∗kNT,21

=
1√
Nk

∑
i∈G0

k

1

T

T∑
t=1

φε,f1f2i (L)V f1f2
t vf1f2′t φf2,f1f2(L)′λ̄0

2i −
1√
Nk

∑
i∈G0

k

S2

∞∑
r=0

∞∑
l=0

φi,l+rφ
′
i,lS4λ̄

0
2i

=
1√
Nk

∑
i∈G0

k

1

T

T∑
t=1

φε,f1f2 (1) (V f1f2
t vf1f2′t − Ir)φf2,f1f2(1)′λ̄0

2i

+
1√
Nk

∑
i∈G0

k

S2

{
1

T

T−1∑
t=1

(
EC (wit+1) w̃′it −

∞∑
l=0

φi,l+1φ
′
i,l

)
S ′4λ̄

0
2i −

1

T

∞∑
l=0

φi,l+1φ
′
i,lS
′
4λ̄

0
2i

− 1

T

T∑
t=1

(
EC (w̃i0) vf1f2′t φf2,f1f2(1)′ − φ̃i,0φi(1)′S ′4

)
λ̄0

2i +
1

T

T∑
t=1

EC (w̃it) v
f1f2′
t φf2,f1f2(1)′λ̄0

2i

− 1

T
EC

(
T∑
t=1

wit

)
w̃′iTS

′
4λ̄

0
2i +

1

T
EC (wi1) w̃′i0S

′
4λ̄

0
2i

}
≡ 1√

Nk

∑
i∈G0

k

Qf2
iT +

1√
Nk

∑
i∈G0

k

S2

{
Rf2
iT,1 +Rf2

iT,2 +Rf2
iT,3 +Rf2

iT,4 +Rf2
iT,5 +Rf2

iT,6

}
S ′4λ̄

0
2i,

where we use the fact that φε,f1f2i (1)φf2,f1f2(1)′ = S2φi (1)φi (1)′ S ′4 by construction and

that
∑∞

r=0

∑∞
l=0 φi,l+rφ

′
i,l = φi (1)φi (1)′ −

∑∞
l=0 φi,l+1φ

′
i,l + φ̃i,0φi(1)′. Following the

proof of Lemma A.7 in Huang et al. (2017), we can show that 1√
Nk

∑
i∈G0

k
S2R

f2
iT,lS

′
4λ̄

0
2i =

oP (1) for l = 1, 2, ..., 6 and 1√
Nk

∑
i∈G0

k
E(Qf2

iT ) = 0. It follows that BkNT,21 = B∗kNT,21 +

oP (1) = 1√
Nk

∑
i∈G0

k
∆24,iλ̄

0
2i+oP (1).Analogously, we haveBkNT,22 = B∗kNT,22+oP (1) ,
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whereB∗kNT,22 = 1√
Nk

∑
i∈G0

k

1
T

∑T
t=1

∑T
s=1 κts1 {s 6 t}×S2

∑∞
r=0

∑∞
l=0 φi,l+rφ

′
i,lS
′
4λ̄

0
2i.

Let B∗kNT,2 = B∗kNT,21 −B∗kNT,22. Then

B∗kNT,2 =
1√
Nk

∑
i∈G0

k

1

T

T∑
t=1

T∑
s=1

(1{s = t} − κts1 {s 6 t})S2

∞∑
r=0

∞∑
l=0

φi,l+rφ
′
i,lS
′
4λ̄

0
2i

=
1

T

T∑
t=1

t∑
s=1

κ̄ts
∞∑
r=0

∞∑
l=0

(
φεf1l+rφ

f2f1
l + φεf2l+rφ

f2f2

l

) 1√
Nk

∑
i∈G0

k

λ̄0
2i

=
1

T

T∑
t=1

t∑
s=1

κ̄ts
1√
Nk

∑
i∈G0

k

∆24,iλ̄
0
2i.

By Theorem 3.3 and using arguments as used in the proof of Lemma A.9(ii), we can read-

ily show that B̂kNT,2 = B̃kNT,2+oP (1),where B̃kNT,2 = 1√
Nk

∑
i∈G0

k

1
T

∑T
t=1

∑t
s=1 κ̂ts∆̂24,i

ˆ̄λ2i.

Thus we can prove that B̂NT,2 = BNT,2 + oP (1) by showing B̃kNT,2 = B∗kNT,2 + oP (1)

for k = 1, ..., K. Note that

B̃kNT,2 −B∗kNT,2

=
1√
Nk

∑
i∈G0

k

(∆̂24,i
ˆ̄λ2i −∆24,iλ̄

0
2i)−

1√
NkT

∑
i∈G0

k

T∑
t=1

T∑
s=1

[
κ̂ts1 {s 6 t} ∆̂24,i

ˆ̄λ2i − κts1 {s 6 t}∆24,iλ̄
0
2i

]
= oP (1)− oP (1) = oP (1)

by Lemma A.11(vii)-(viii). Consequently, B̂kNT,2 −BkNT,2 = oP (1).

In sum, we have
√
NTvec

(
α̂bc
Ĝ
−α0

)
=
√
DNQ

−1
NTVNT + oP (1).

(ii) For the fully-modified post-Lasso estimators α̂fmGk , we first consider the asymptotic

distribution for the infeasible version of fully modified post-Lasso estimator α̃fmGk . Noting

that y+
i = xiα

0
k + f 0

1λ
0
1i + f 0

2λ
0
2i + u+

i , by (106) and (107) and Theorem 3.3, we have

1

NkT 2

∑
i∈Ĝk

x′iMf̂1
xi(α̃

fm
Gk
− α0

k) =
1

NkT 2

∑
i∈G0

k

x′iMf̂1

(
u+
i + f 0

2λ
0
2i

)
+

1

NkT 2

∑
i∈Ĝk

x′iMf̂1
f 0

1λ
0
1i

− 1√
NkT

B+
kNT,1 −

1√
NkT

BkNT,2 + oP (N−1/2T−1).

(111)
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Combing (108), (111) and Lemma A.9(i) yields

1

NkT 2

∑
i∈Ĝk

x′iMf̂1
xi(α̃

fm
Gk
− α0

k)−
1

NkT 2

∑
i∈Ĝk

1

N

N∑
j=1

x′iMf̂1
xjaij b̂j

=
1

NkT 2

∑
i∈G0

k

x′iMf01

(
u+
i −

1

N

N∑
j=1

u+
j aij

)
+

1

NkT 2

∑
i∈G0

k

x′iMf01
f 0

2

(
λ0

2i −
1

N

N∑
j=1

λ0
2jaij

)

− 1√
NkT

B+
kNT,1 −

1√
NkT

BkNT,2 + oP (N−1/2T−1)

By (108) and Lemma A.10 (i)-(iii), we have

√
NTvec(α̃fmG −α

0) = (Q̂1NT − Q̂2NT )−1
√
DN

((
Uu+
NT + U f2

NT

)
−B+

NT,1 −BNT,2

)
+ oP (1)

=
√
DNQ

−1
NTV

+
NT + oP (1)

where

Uu+
k,NT =

1√
NkT

∑
i∈G0

k

x′iMf01

(
u+
i −

1

N

N∑
j=1

aiju
+
j

)
,

V +
kNT,1 =

1√
NkT

∑
i∈G0

k

Sεφ†i (1)
T∑
t=1

T∑
s=1

{
κ̄ts
(
V uε
it v

uε,+′
is

)
− [1 {t = s} − κts1 {s 6 t}] I1+p

}
φ†i (1)′Su′,

V +
kNT,2 =

1√
Nk

N∑
i=1

 1

T
E (x′i|C)1

{
i ∈ G0

k

}
− 1

N

∑
j∈G0

k

aij
1

T
E(x′j|C)

Mf01
u+
i ,

and U+
k,NT = Uu+

k,NT + U f2
k,NT and V +

kNT = V +
kNT,1 + V +

kNT,2 + VkNT,3 are the kth block-

element ofU+
NT and V +

NT , respectively. We have a new error processw+
it = (u+

it ,∆x
′
it,∆f

′
1t, f

′
2t, )

′

whose partial sum satisfies the multivariate invariance principle: 1√
T

∑[T ·]
t=1w

+
it ⇒ B+

i =

BM(Ω+
i ). Following the proof of Lemma A.10(iii) (see also Theorem 9 in Phillips and

Moon), we can show that V +
NT

d→ N(0,Ω+
0 ) condition on C where Ω+

0 = limN,T→∞Ω+
NT

and Ω+
NT =Var

(
V +
NT |C

)
. Then we have

√
NTvec(α̃fmG −α

0)
d→MN(0, lim

N→∞
DNQ

−1
0 Ω+

0 Q
−1
0 ).

Next, we show that α̂fmG is asymptotically equivalent to α̃fmG by showing that
√
NT (α̂fmG −

α̃fmG ) = oP (1) . Note that

√
NT (α̂fmG −α̃

fm
G ) =

√
DN

[
(Q̂1NT − Q̂2NT )−1

(
Û+
NT + B̂+

NT,1 + B̂NT,2

)
−Q−1

NT

(
U+
NT +B+

NT,1 +BNT,2

)]
.
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Then it suffices to show (ii1) Q̂1NT − Q̂2NT = QNT + oP (1), (ii2) B̂+
NT,1 = B+

NT,1 +

oP (1),(ii3) Û+
NT = U+

NT + oP (1), and (ii4) B̂NT,2 = BNT,2 + oP (1). In the proof of

bias-correction post-Lasso estimators, we have already prove (ii1) and (ii4). For (ii2),

we can apply analogous arguments as used in the proof of Lemma A.11(v) to prove

that EC
∥∥∥ 1√

Nk

∑
i∈Ĝk(Ω̂i − Ωi)

∥∥∥ = OP (H
T

+ N
H2q ) = oP (1) . Since ∆+

lm,i = ∆lm,i −

Ωlm,iΩ
−1
mi∆m,i, this implies that

∥∥∥ 1√
Nk

∑
i∈Ĝk(∆̂

+
21,i −∆+

21,i)
∥∥∥2

= oP (1) . The latter fur-

ther implies that B̂+
NT,1 = B+

NT,1 + oP (1). For (ii3) we can apply Theorem 3 to show

that

Û+
kNT − U

+
kNT

=Ûu+
kNT − Ũ

u+
kNT + Ũu+

kNT − U
u+
kNT

=
1√
NkT

∑
i∈Ĝk

x′iMf̂1

û+
i −

1

N

N∑
j=1

aij û
+
j

− 1√
NkT

∑
i∈Ĝk

x′iMf̂1

u+
i −

1

N

N∑
j=1

aiju
+
j

+ oP (1)

=
1√
NkT

∑
i∈G0

k

x′iMf̂1

(
û+
i − u

+
i

)
− 1√

NkNT

∑
i∈G0

k

N∑
j=1

x′iMf̂1

(
û+
j − u

+
j

)
aij + oP (1)

=
1√
NkT

∑
i∈G0

k

x′i∆xi

(
Ω12,iΩ

−1
22i − Ω̂12,iΩ̂

−1
22i

)
− 1√

NkT

∑
i∈G0

k

x′iPf̂1∆xi

(
Ω12,iΩ

−1
22i − Ω̂12,iΩ̂

−1
22i

)

− 1√
NkNT

∑
i∈G0

k

N∑
j=1

x′iMf̂1
∆xj

(
Ω12,jΩ

−1
22j − Ω̂12,jΩ̂

−1
22j

)
aij + oP (1)

≡UU1 + UU2 + UU3 + oP (1),

where Ũu+
kNT = 1√

NkT

∑
i∈G0

k
x′iMf̂1

(
u+
i − 1

N

∑N
j=1 aiju

+
j

)
and Ũu+

kNT−U
u+
kNT = oP (1) by

Lemma A.9(iii). Following the proof of Lemma A.11(v), we can show that UUl = oP (1)

for l = 1, 2, 3. The (ii3) follows. This completes the proof of (ii).

(iii) The proof is analogous to that of (ii) and thus omitted. �

To prove Theorems 3.6-3.7, we need the following two lemmas.

Lemma A.12 Suppose that Assumptions 3.1-3.3 and 3.5 hold. Then

(i) For any 1 6 r 6 r0, V1(r, Ĝr)− V1(r,G0Hr) = OP (C−1
NT ),

(ii) For each r with 0 6 r < r0, there exist a positive number cr

such that plim(N,T )→∞ inf(V1(r,G0Hr)− V1(r0, G0)) = cr,

(iii) For any fixed r, with r0 6 r 6 rmax, V1(r, Ĝr)− V1(r0, Ĝr0) = OP (C−2
NT ),
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where V1(r,G0Hr) is defined analogously to V1(r, Ĝr) with Ĝr replaced by G0Hr, Hr =

(N−1Λ0′Λ0)(T−1G0′Ĝr), and G0 = ∆f 0.

Lemma A.13 Suppose that Assumptions 3.1-3.3 and 3.6 hold. Then

(i) For any 1 6 r1 6 r0
1, V2(r1, f̂

r1
1 )− V2(r1, f

0
1H

r1
1 ) = OP (

√
T ),

(ii) For any 1 6 r1 < r0
1, we have plim(N,T )→∞ inf dTT

−1[V2(r1, f
0
1H

r1
1 )−V2(r1, f

0
1 )] =

dr1 for some dr1 > 0,

(iii) For any r0
1 6 r1 6 rmax, V2(r1, f̂

r1)− V2(r0
1, f̂

r01) = OP (1),

where V2(r1, f
0
1H

r1
1 ) is defined analogously to V2(r1, f̂

r1
1 ) with f̂ r11 replaced by f 0

1H
r1
1 ,

and Hr1
1 = (N−1Λ0′Λ0) ×(T−2f 0′f̂ r1).

Proof of Theorem 3.6. Noting that IC1(r)− IC1(r0) = V1(r, Ĝr)− V1(r0, Ĝr0)− (r0−

r)g1(N, T ), it suffices to show that P
(
V1(r, Ĝr)− V1(r0, Ĝr0) < (r0 − r)g1(N, T )

)
→

0 as (N, T ) → ∞ when r 6= r0. We consider the under- and over-fitted models, respec-

tively. When 0 6 r < r0, we make the following decomposition:

V1(r, Ĝr)− V1(r0, Ĝr0) =[V1(r, Ĝr)− V (r,G0Hr)] + [V1(r,G0Hr)− V1(r0, G0Hr0)]

+ [V1(r0, G0Hr0)− V1(r0, Ĝr0)].

Lemma A.12(i) implies that the first and third terms on the right hand side of the last

displayed equation are both OP (C−1
NT ). Noting that V1(r0, G0Hr0) = V1(r0, G0), the

second term has a positive probability limit cr when r < r0 by Lemma A.12(ii). It follows

that P (IC1(r) < IC1(r0))→ 0 as g1(N, T )→ 0 as (N, T )→∞ under Assumption 3.5.

Now, we consider the case where r0 < r 6 rmax, Note thatC2
NT

(
V1(r, Ĝr)− V1(r0, Ĝr0)

)
=

OP (1) and C2
NT (r − r0)g1(N, T ) > C2

NTg1(N, T ) → ∞ by Lemma A.12(iii) and As-

sumption 3.5, we have P (IC1(r) < IC1(r0)) = P (V1(r, Ĝr) − V1(r0, Ĝr0) < (r0 −

r)g1(N, T ))→ 0 as (N, T )→∞. �

Proof of Theorem 3.7. Noting that IC2(r1)−IC2(r0
1) = V2(r1, f̂

r1
1 )−V2(r0

1, f̂
r01
1 )−(r0

1−

r1)g2(N, T ), it suffices to show that P
(
V2(r1, f̂

r1
1 )− V2(r0

1, f̂
r01
1 ) < (r0

1 − r1)g2(N, T )
)
→
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0 as (N, T )→∞ when r 6= r0. First, when r1 < r0
1, we consider the decomposition:

V2(r1, f̂
r1
1 )− V2(r0

1, f̂
r01
1 ) =

[
V2(r1, f̂

r1)− V2(r1, f
0
1H

r1
1 )
]

+
[
V2(r1, f

0
1H

r1
1 )− V2(r0

1, f
0
1H

r01
1 )
]

+
[
V (r0

1, f
0
1H

r01
1 )− V (r0

1, f̂
r01
1 )
]

≡DD1 +DD2 +DD3, say.

By Lemma A.13),DD1 = OP (T 1/2), DD2 is of exact probability orderOP (T/ log log T ),

and DD3 = OP (1). It follows that

P (IC2(r1) < IC2(r0
1)) = P

(
V2(r1, f̂

r1
1 )− V2(r0

1, f̂
r01
1 ) < (r0

1 − r1)g2(N, T )
)
→ 0

as g2(N, T ) log log T/T → 0 under Assumption 3.6.

Next, for r1 > r0
1, we have V (r1, f̂

r1
1 ) − V (r0

1, f̂
r01
1 ) = OP (1) for r1 > r0

1 by Lemma

A.13(iii), and (r1 − r0
1)g2(N, T )→∞ by Assumption 3.6. This implies that

P (IC2(r1)− IC2(r0
1) < 0) = P (V2(r1, f̂

r1
1 )− V2(r0

1, f̂
r01
1 ) < (r0

1 − r1)g2(N, T ))→ 0.

as N, T →∞. �

To prove Theorem 3.8, we need the following lemma.

Lemma A.14 Suppose that Assumptions 3.1-3.3 and 3.7 hold. Then

max
K06K6Kmax

∣∣∣σ̂2
G(K,λ)

− σ̂2
Ĝ(K0,λ)

∣∣∣ = OP (ν2
NT )

where σ̂2
G(K,λ)

= 1
NT

∑K
k=1

∑
i∈Ĝk(K,λ)

∑T
t=1[yit−α̂cup′Ĝk(K,λ)

xit− λ̂1i(K,λ)′f̂1t(K,λ)]2 and

νNT is defined in Section 3.6.

Proof of Theorem 3.8. First, we can show that

IC3(K0, λ) = ln[V3(K0)] + pK0g3(N, T )

= ln
1

NT

K0∑
k=1

∑
i∈Ĝk(K0,λ)

T∑
t=1

[
yit − α̂fm′Ĝk(K0,λ)

xit − λ̂1i(K0, λ)′f̂1t(K0, λ)
]2

+ o(1)
p→ ln(σ2

0).

148



We consider the cases of under- and over-fitted models separately. When 1 6 K < K0,

we have

V3(K) =
1

NT

K∑
k=1

∑
i∈Ĝk(K0,λ)

T∑
t=1

[
yit − α̂fm′Ĝk(K,λ)

xit − λ̂1i(K,λ)′f̂1t(K,λ)
]2

> min
16K<K0

inf
G(K)∈GK

1

NT

K∑
k=1

∑
i∈GK,k

T∑
t=1

[
yit − α̂fm′Ĝk(K,λ)

xit − λ̂1i(K,λ)′f̂1t(K,λ)
]2

= min
16K<K0

inf
G(K)∈GK

σ̂2
G(K) .

By Assumption 3.7 and Slutsky’s Lemma, we can demonstrate

min
16K<K0

IC3(K,λ) > min
16K<K0

inf
G(K)∈GK

ln(σ̂2
G(K)) + pKg3(N, T )

p→ ln(σ2) > ln(σ2
0).

It follows that P (min16K<K0 IC3(K,λ) > IC3(K0, λ))→ 1.

When K0 < K 6 Kmax, we can show that NT [σ̂2
Ĝ(K,λ)

− σ̂2
Ĝ(K0,λ)

] = OP (1)

when there is no unobserved common factor and no endogeneity in xit, δ2
NT [σ̂2

Ĝ(K,λ)
−

σ̂2
Ĝ(K0,λ)

] = OP (1) when there are only unobserved nonstationary common factors and

C2
NT [σ̂2

Ĝ(K,λ)
− σ̂2

Ĝ(K0,λ)
] = OP (1) when there are both nonstationary and stationary com-

mon factors. Then by Lemma 14,

P

(
min
K∈K+

IC3(K,λ) > IC3(K0, λ)

)
=P

(
min
K∈K+

ν−2
NT ln

(
σ̂2
Ĝ(K,λ)

/σ̂2
Ĝ(K0,λ)

)
+ ν−2

NTg3(N, T )(K −K0) > 0

)
≈P

(
min
K∈K+

ν−2
NT

(
σ̂2
Ĝ(K,λ)

− σ̂2
Ĝ(K0,λ)

)
/σ̂2

Ĝ(K0,λ)
+ ν−2

NTg3(N, T )(K −K0) > 0

)
→1 as (N, T )→∞. �
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C Appendix to Chapter 3

This appendix provides proofs for main theorems and ancillary results in the above paper.

The proof relies on some technical lemmas whose proofs are given in the Supplemental

Appendix.

NOTATIONS: (i) γ̂i = Σ̂−1
i α̂i

(
α̂′iΣ̂

−1
i α̂i

)−1

, and γ̃i = Σ̃−1
i α̃i

(
α̃′iΣ̃

−1
i α̃i

)−1

(ii) uit = Λ0′
i F

0
t + εit, and vit = Ri(L)β0′

i uit

(ii) δi = bi − b0
i , and δ̂i = b̂i − b0

i .

(iii) Let η2
NT = 1

N

∑N
i=1

∥∥∥vec(b̂i − b0
i )
∥∥∥2

, CNT = min
(√

N,
√
T
)
, ιT = O (log log T ) ,

and ψNT = N1/qT−1 (log T )1+ε for some ε > 0.

(iv) Without loss of generality, we assume that yi0 = 0 in all proofs.

C.1 Proofs of the Main Results in Section 3

Lemma B.1 Suppose that Assumptions 3.1-3.2 hold. Then for each i = 1, ..., N,

(i) 1
T 2

∑T
t=1 y

(2)
i,t−1y

(2)′
i,t−1 ⇒ b0

i,⊥
(
α0′
i,⊥β

0
i,⊥
)−1

α0′
i,⊥
(∫

BuiB
′
ui

)
α0
i,⊥
(
β0′
i,⊥α

0
i,⊥
)−1

b0′
i,⊥,

(ii) 1
T

∑T
t=1 y

(2)
i,t−1 (εit + Λ0′

i F
0
t )
′ ⇒ b0

i,⊥
(
α0′
i,⊥β

0
i,⊥
)−1

α0′
i,⊥
(∫

BuidB
′
ui + Γuu,i

)
+α0

2i (β
0′
i α

0
i )
−1

Σvu,i,

(iii) 1
T

∑T
t=1 y

(2)
i,t−1

(
uit − Σuv,iΣ

−1
vv,ivi,t−1

)′
⇒ b0

i,⊥
(
α0′
i,⊥β

0
i,⊥
)−1

α0′
i,⊥

{∫
BuidB

′
ui

(
IJ + Σuv,iΣ

−1
vv,i (β

0′
i α

0
i )
−1

β0′
i

)′
+ Γuu,i + ∆uv,iΣ

−1
vv,iΣvu,i

}
,

(iv) 1
T

∑T
t=1 y

(2)
i,t−1∆y′it ⇒ b0

i,⊥
(
α0′
i,⊥β

0
i,⊥
)−1

α0′
i,⊥

(∫
BuidB

′
ui

(
IJ − β0

i (α0′
i β

0
i )
−1

α0′
i

)
+ Γuu,i + ∆uv,i

)
+α0

2i (β
0′
i α

0
i )
−1

(Σvu,i + Σvv,iα
0′
i ) .where Γuu,i = SiΓiS

′
i and ∆uv,i =

∑∞
h=0 E

(
uitv

′
it+h

)
.

Lemma B.2 Suppose that Assumptions 3.1-3.2 hold. Then for any fixed small constant

c > 0,

(i) lim supT→∞ µmax

(
Y

(2)′
i,−1Y

(2)
i,−1

ιTT 2

)
6 cρmax a.s.,

(ii) lim infT→∞ µmin

(
ιTY

(2)′
i,−1Y

(2)
i,−1

T 2

)
> cρmin a.s.

Proof for Theorem 3.1. (i) By Lemma 3.2 in Cheng and Phillips (2009), the Johansen’s

maximum likelihood procedure still provides consistent estimator for the long-run coin-
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tegration vector βi and β̂i − β0
i = Op(T

−1). It follows that

α̂i =S01,iβ̂i

(
β̂′iS11,iβ̂i

)−1

=

{(
1

T

T∑
t=1

∆yity
′
i,t−1β

0
i

)
+

(
1

T

T∑
t=1

∆yity
′
i,t−1

(
β̂i − β0

i

))}( 1

T

T∑
t=1

β̂′iyi,t−1y
′
i,t−1β̂i

)−1

=

(
1

T

T∑
t=1

∆yity
′
i,t−1β

0
i

)(
1

T

T∑
t=1

β0′
i yi,t−1y

′
i,t−1β

0
i

)−1

+Op(T
−1)

=α0
i +

(
1

T

T∑
t=1

uitv
′
it−1

)(
1

T

T∑
t=1

vit−1v
′
it−1

)−1

+Op(T
−1)

p→ α0
i + Σuv,iΣ

−1
vv,i ≡ α̃i

where 1
T

∑T
t=1 vit−1v

′
it−1

p→ E
(
vit−1v

′
it−1

)
≡ Σ−1

vv,i,and 1
T

∑T
t=1 uitv

′
it−1

p→ E
(
uitv

′
it−1

)
≡

Σuv,i 6= 0 due to weak dependence in innovation processes wit. Similarly, we have

Σ̂i = 1
T

∑T
t=1 (∆yit − α̃iβ0′

i yi,t−1) (∆yit − α̃iβ0′
i yi,t−1)

′
+ Op(T

−1/2)
p→ Σ̃i. (i) directly

follows.

(ii) For b̂GLSi , we have

b̂GLSi =

(
T∑
t=1

y
(2)
i,t−1y

(2)′
i,t−1

)−1( T∑
t=1

y
(2)
i,t−1

(
∆yit − α̃iy(1)

i,t−1

)′
γ̂i

)

= b0
i +

(
1

T 2

T∑
t=1

y
(2)
i,t−1y

(2)′
i,t−1

)−1{
1

T 2

T∑
t=1

y
(2)
i,t−1

((
uit − Σuv,iΣ

−1
vv,ivi,t−1

)′
γ̃i + ∆y′it (γ̂i − γ̃i)

)}
.

By part (i) and Lemma B.1(iv), we have γ̂i−γ̃i = Σ̂−1
i α̂i

(
α̂′iΣ̂

−1
i α̂i

)−1

−Σ̃−1
i α̃i

(
α̃′iΣ̃

−1
i α̃i

)−1

=

Op(T
−1/2). and 1

T

∑T
t=1 y

(2)
i,t−1∆y′it = Op(1). It follows that 1

T

∑T
t=1 y

(2)
i,t−1∆y′it [γ̂i − γ̃i] =

Op(T
−1/2). Then by Lemma B.1 (i)-(iii), we have

1

T 2

T∑
t=1

y
(2)
i,t−1y

(2)′
i,t−1 ⇒ b0

i,⊥
(
α0′
i,⊥β

0
i,⊥
)−1

α0′
i,⊥

(∫
BuiB

′
ui

)
α0
i,⊥
(
β0′
i,⊥α

0
i,⊥
)−1

b0′
i,⊥, and

1

T

T∑
t=1

y
(2)
i,t−1

(
uit − Σuv,iΣ

−1
vv,ivi,t−1

)′
⇒b0

i,⊥
(
α0′
i,⊥β

0
i,⊥
)−1

α0′
i,⊥

{∫
BuidB

′
ui

(
IJ + Σuv,iΣ

−1
vv,i

(
β0′
i α

0
i

)−1

β0′
i

)′
+ Γuu,i + ∆uv,iΣ

−1
vv,iΣvu,i

}
,

Combining above two results, it directly yields T
(
b̂GLSi − b0

i

)
= Op(1).

(iii) Combine (2.10) and the fact that

∆Ŷ +
i − Y

(1)
i,−1 − Y

(2)
i,−1b̂i = −Y (2)

i,−1δ̂i + F 0Λ̃0
i + ε̂∗i ,
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where ε̂∗i = ε∗i γ̃i + ∆Yi (γ̂i − γ̃i), ε∗it = εit − Σuv,iΣ
−1
vv,ivi,t−1 and δ̂i = b̂i − b0

i . Note that

ε̂∗i is weakly dependent stationary process. We have(
F̂ ⊗ Ir

)
VNT

=
1

NT

N∑
i=1

(Y
(2)
i,−1 ⊗ Ir)vec(δ̂i)vec(δ̂i)

′
(
Y

(2)′
i,−1F̂ ⊗ Ir

)
− 1

NT

N∑
i=1

vec(ε̂∗i )vec(δ̂i)
′
(
Y

(2)′
i,−1F̂ ⊗ Ir

)
− 1

NT

N∑
i=1

(
F 0 ⊗ Ir

)
vec(Λ̃0

i )vec(δ̂i)
′
(
Y

(2)′
i,−1F̂ ⊗ Ir

)
− 1

NT

N∑
i=1

(
Y

(2)′
i,−1 ⊗ Ir

)
vec(δ̂i)vec(ε̂∗i )

′
(
F̂ ⊗ Ir

)
− 1

NT

N∑
i=1

(
Y

(2)′
i,−1 ⊗ Ir

)
vec(δ̂i)vec(Λ̃0′

i )
(
F 0′F̂ ⊗ Ir

)
+

1

NT

N∑
i=1

vec(ε̂∗i )vec(ε̂∗i )
′
(
F̂ ⊗ Ir

)
+

1

NT

N∑
i=1

vec(ε̂∗i )vec(Λ̃0
i )
′
(
F 0′F̂ ⊗ Ir

)
+

1

NT

N∑
i=1

(
F 0 ⊗ Ir

)
vec(Λ̃0

i )vec(ε̂∗i )
′
(
F̂ ⊗ Ir

)
+

1

NT

N∑
i=1

(
F 0 ⊗ Ir

)
vec(Λ̃0

i )vec(Λ̃0
i )
′
(
F 0′F̂ ⊗ Ir

)
≡I1 + I2 + ...+ I8 +

1

NT

N∑
i=1

(
F 0 ⊗ Ir

)
vec(Λ̃0

i )vec(Λ̃0
i )
′
(
F 0′F̂ ⊗ Ir

)
, say.

It follows that(
F̂ ⊗ Ir

)
VNT−

(
F 0 ⊗ Ir

)( 1

N

N∑
i=1

vec(Λ̃0
i )vec(Λ̃0

i )
′

)(
F 0′F̂

T
⊗ Ir

)
= I1+I2+...+I8.

Define H =
(

1
N

∑N
i=1 vec(Λ̃0

i )vec(Λ̃0
i )
′
)(

F 0′F̂
T
⊗ Ir

)
V −1
NT = Op(1) and H is asymptoti-

cally nonsingular. Note that

1√
T

∥∥∥(F̂ ⊗ Ir)H−1 −
(
F 0 ⊗ Ir

)∥∥∥ 6 1√
T

(‖I1‖+ ‖I2‖+ ...+ ‖I8‖) ‖G‖

where G =
(
F 0′F̂
T
⊗ Ir

)−1 (
1
N

∑N
i=1 vec(Λ̃0

i )vec(Λ̃0
i )
′
)−1

= Op(1). It remains to show

the properties of ‖Il‖ for l = 1, 2, ..., 8. For I1,

1√
T
‖I1‖ 6 T max

16i6N

∥∥∥Y (2)
i,−1

∥∥∥2

T 2

∥∥∥F̂∥∥∥
√
T

1

N

N∑
i=1

∥∥∥vec(δ̂i)
∥∥∥2

= Op(TιTη
2
NT )

where max16i6N

∥∥∥Y (2)
i,−1

∥∥∥2
T 2 6 µmax

(
1
T 2

∑T
t=1 y

(2)
i,t−1y

(2)′
i,t−1

)
= Op(ιT ) by Lemma B.2(i) and

‖F̂‖√
T
6
√
r. For I2,

1√
T
‖I2‖ 6

√
T

∥∥∥F̂∥∥∥
√
T

max
16i6N

∥∥∥Y (2)
i,−1

∥∥∥
T

{
1

N

N∑
i=1

‖vec(ε̂∗i )‖2

T

}1/2{
1

N

N∑
i=1

∥∥∥vec(δ̂i)
∥∥∥2
}1/2

= Op(
√
TιTηNT )
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where 1
N

∑N
i=1

‖vec(ε̂∗i )‖2
T

= Op(1) due to stationarity of ε̂∗i . For I3,

1√
T
‖I3‖ 6

√
T
‖F 0‖√
T

∥∥∥F̂∥∥∥
√
T

max
16i6N

∥∥∥Y (2)
i,−1

∥∥∥
T

{
1

N

N∑
i=1

∥∥∥vec(Λ̃0
i )
∥∥∥2
}1/2{

1

N

N∑
i=1

∥∥∥vec(δ̂i)
∥∥∥2
}1/2

= Op(
√
TιTηNT )

Analogously, we can show that 1√
T
‖I4‖ = Op(

√
TιTηNT ) and 1√

T
‖I5‖ = Op(

√
TιTηNT ).

The rest of three terms are directly obtained from Bai and Ng (2002) such that 1√
T
‖Il‖ =

Op(C
−1
NT ) for l = 6, 7, 8. Thus, we directly have

1√
T

∥∥∥(F̂ ⊗ Ir)H−1 −
(
F 0 ⊗ Ir

)∥∥∥ = Op(
√
TιTηNT ) +Op(C

−1
NT ).

�

Proof of Theorem 3.2. Let Q̂iNT (bi) = 1
T 2 vec

(
∆Ŷ +

i − Y
(1)
i,−1 − Y

(2)
i,−1bi

)′
vec
(

∆Ŷ +
i − Y

(1)
i,−1 − Y

(2)
i,−1bi

)
,

Q̂λ,K
iNT (bi, Bk) = Q̂iNT (bi)+λ

∏K
k=1 ‖vec (bi −Bk)‖, and Q̂λ,K

NT (b, B) = 1
N

∑N
i=1 Q̂

λ,K
iNT (bi, Bk).

Note that

Q̂iNT (bi)− Q̂iNT (b0
i )

=
1

T 2
vec(δi)

′
(
Ir ⊗ Y (2)′

i,−1Y
(2)
i,−1

)
vec(δi)−

2

T 2
vec(δi)

′vec
(
Y

(2)′
i,−1

((
F 0Λ0

i + ε∗i
)
γ̃i + ∆Yi (γ̂i − γ̃i)

))
(A.1)

where ε∗i = (ε∗′iT , ..., ε
∗′
i1)′ and ε∗it = εit − Σuv,iΣ

−1
vv,ivi,t−1. By the triangle, reverse triangle

inequalities Su et al. (2016) ((A.6), p.2246), we have∣∣∣∣∣
K∏
k=1

∥∥∥vec
(
b̂i −Bk

)∥∥∥− K∏
k=1

∥∥vec
(
b0
i −Bk

)∥∥∣∣∣∣∣ 6 ci,NT (B̂) ‖vec (δi)‖ (A.2)

where ci,NT (B̂) =
∏K−1

k=1 ‖vec
(
b̂i −Bk

)
‖+

∏K−2
k=1 ‖vec

(
b̂i −Bk

)
‖‖vec(b0

i −BK) ‖+

...+
∏K

k=2 ‖vec(b0
i −Bk) ‖ = Op(1). Based on the fact that Q̂λ,K

iNT (b̂i, B̂k) 6 Q̂λ,K
iNT (b0

i , B
0
k),

we have the basic inequality∥∥∥∥∥vec
(
δ̂i

)′(
Ir ⊗

2

T 2

T∑
t=1

y
(2)
i,t−1y

(2)′
i,t−1

)
vec
(
δ̂i

)∥∥∥∥∥
62
∥∥∥vec

(
δ̂i

)∥∥∥(∥∥∥∥∥vec

(
1

T 2

T∑
t=1

y
(2)
i,t−1

((
Λ0′
i F

0
t + ε∗it

)′
γ̃i + ∆y′it(γ̂i − γ̃i)

))∥∥∥∥∥+ λci,NT (B̂)

)
.

153



Note that∥∥∥∥∥vec
(
δ̂i

)′(
Ir ⊗

2

T 2

T∑
t=1

y
(2)
i,t−1y

(2)′
i,t−1

)
vec
(
δ̂i

)∥∥∥∥∥ > ∥∥∥vec
(
δ̂i

)∥∥∥2

µmin

(
1

T 2

T∑
t=1

y
(2)
i,t−1y

(2)′
i,t−1

)
.

Define ρi,min = µmin

(
1
T 2

∑T
t=1 y

(2)
i,t−1y

(2)′
i,t−1

)
is bounded away from zero in probability by

Lemma B.1 (i) and Lemma B.2(ii). Then by Assumption 3.2 and Lemma B.2(ii),

∥∥∥vec
(
δ̂i

)∥∥∥ 6ρ−1
i,min

(
2

∥∥∥∥∥vec

(
1

T 2

T∑
t=1

y
(2)
i,t−1

((
Λ0′
i F

0
t + ε∗it

)′
γ̃i + ∆y′it(γ̂i − γ̃i)

))∥∥∥∥∥+ λci,NT (B̂)

)
=Op(T

−1 + λ), (A.3)

since 1
T 2

∑T
t=1 y

(2)
i,t−1

(
(Λ0′

i F
0
t + ε∗it)

′
γ̃i
)

= Op(T
−1) by Lemma B.1(iii) and γ̂i − γ̃i =

Op(T
−1/2) by Theorem 3.1(i).

(ii) By the Minkowski’s inequality, as (N, T )→∞ we have

ci,NT (B̂) 6
K−1∏
k=1

{
‖vec(b̂i − b0

i )‖+ ‖vec(b0
i −Bk)‖

}
+

K−2∏
k=1

{
‖vec(b̂i − b0

i )‖+ ‖vec(b0
i −Bk)‖

}
‖vec(b0

i −BK)‖+ ...+
K∏
k=2

‖vec(b0
i −Bk)‖

=
K−1∑
s=0

‖vec(b̂i − b0
i )‖s

s∏
k=1

aks‖vec(b0
i −Bk)‖K−1−s

6 CK,NT (B̂)
K−1∑
s=0

‖vec(b̂i − b0
i )‖s 6 CK,NT (B)(1 + 2‖vec(δ̂i)‖) (A.4)

where aks’s are finite integers and

CK,NT (B̂) = max16i6N max16s6k6K−1

∏s
k=1 aks ‖vec(B0

l −B0
k)‖

K−1−s
= O(1) by

Assumption 3.3(ii) as K is finite. Let ĈK = CK,NT (B̂). Combining (A.3) and (A.4)

yields

∥∥∥vec(δ̂i)
∥∥∥ 6 ( ρ−1

i,min

1− cNT

){
2

∥∥∥∥∥vec

(
1

T 2

T∑
t=1

y
(2)
i,t−1

((
Λ0′
i F

0
t + ε∗it

)′
γ̃i + ∆y′it(γ̂i − γ̃i)

))∥∥∥∥∥+ λĈK

}

where cNT = 2λĈK max16i6N ρ
−1
i,min = Op(λιT ) = op(1) by Assumption 3.3(iii) and
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ρmin = min16i6N ρi,min = Op(ιT ) by Lemma B.2(ii). Then we have

1

N

N∑
i=1

∥∥∥vec(δ̂i)
∥∥∥2

6

(
ρ−1

min

1− cNT

)2
1

N

N∑
i=1

(
2

∥∥∥∥∥vec

(
1

T 2

T∑
t=1

y
(2)
i,t−1

((
Λ0′
i F

0
t + ε∗it

)′
γ̃i + ∆y′it(γ̂i − γ̃i)

))∥∥∥∥∥+ λĈK

)2

= Op

(
ι2T (T−2 + λ2)

)
. (A.5)

Now we show that 1
N

∑N
i=1

∥∥∥vec(δ̂i)
∥∥∥2

= Op(ι
2
TT
−2). Let vec(b̂i) =vec(b0

i ) + ιTT
−1νi,

where ν = (ν1, ..., νN) is a (J − r)r × N matrix. We want to show that for any given

ε∗ > 0, there exists a large constant L = L(ε∗) such that, for sufficiently large N and T

we have

P

{
inf

1
N

∑N
i=1 ‖νi‖2=L

Qλ,K
NT (vec(b0) + ιTT

−1ν, B̂) > Qλ,K
NT (vec(b0), B0)

}
> 1− ε∗.

This implies that w.p.a.1 there is a local minimum {b̂, B̂} such that 1
N

∑N
i=1 ‖vec(δ̂i)‖2 =

Op(ι
2
TT
−2) regardless of the property of B̂. By (A.1) and the Cauchy-Schwarz inequality,

with probability approach to 1− o(N−1) we have

T 2
[
Qλ,K
NT (vec(b0) + ιTT

−1ν, B̂)−Qλ,K
NT (vec(b0), B0)

]
=

1

N

N∑
i=1

ι2Tν
′
i

(
1

T 2
Y

(2)′
i,−1Y

(2)
i,−1 ⊗ Ir

)
νi −

2T

N

N∑
i=1

ιTν
′
ivec

(
1

T 2
Y

(2)′
i,−1

(
F 0Λ0

i + ε∗i
)
γ̃i

)

− 2T

N

N∑
i=1

ιTν
′
ivec

(
1

T 2
Y

(2)′
i,−1∆Yi (γ̂i − γ̃i)

)
+
λT 2

N

N∑
i=1

K∏
k=1

∥∥∥vec(b0
i − B̂k

)
+ ιTT

−1νi

∥∥∥
>ιT

(
1

N

N∑
i=1

‖νi‖2

)
min

16i6N
µmin

(
ιTY

(2)′
i,−1Y

(2)
i,−1

T 2

)

− ιT

(
1

N

N∑
i=1

‖νi‖2

)1/2(
T 2

N

N∑
i=1

∥∥∥∥vec
(

1

T 2
Y

(2)′
i,−1

(
F 0Λ0

i + ε∗i
)
γ̃i

)∥∥∥∥2
)1/2

− ιT

(
1

N

N∑
i=1

‖νi‖2

)1/2(
T 2

N

N∑
i=1

∥∥∥∥vec
(

1

T 2
Y

(2)′
i,−1∆Yi (γ̂i − γ̃i)

)∥∥∥∥2
)1/2

≡ιT (D1NT −D2NT −D3NT ), say.

By Lemma B.1(iii) and Lemma B.2(ii), we have T 2

N

∑N
i=1

∥∥∥vec
(

1
T 2Y

(2)′
i,−1 (F 0Λ0

i + ε∗i ) γ̃i

)∥∥∥2

=

Op(1) and min16i6N µmin

(
ιTY

(2)′
i,−1Y

(2)
i,−1

T 2

)
= Op(1). Note that T

2

N

∑N
i=1

∥∥∥vec( 1
T 2Y

(2)′
i,−1∆Yi (γ̂i − γ̃i)

)∥∥∥2

=
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op(1) since (γ̂i − γ̃i) = Op(T
−1/2). Then we have D3NT = op(D2NT ). So D1NT domi-

nates (D2NT +D3NT ) for sufficiently large L. That is,

T 2
[
Qλ,K
NT (vec(b0) + ιTT

−1ν, B̂)−Qλ,K
NT (vec(b0), B0)

]
> 0 for sufficiently large L.

Consequently, we must have 1
N

∑N
i=1 ‖vec(δ̂i)‖2 = Op(ι

2
TT
−2).

(iii) Let PNT (b,B) = 1
N

∑N
i=1

∏K
k=1 ‖vec(bi − Bk)‖. By (A.2) and (A.4), we have

that as (N, T )→∞,

|PNT (b̂,B)− PNT (b0,B)| 6 CKNT (B)
1

N

N∑
i=1

‖vec(δ̂i)‖+ 2CKNT (B)
1

N

N∑
i=1

‖vec(δ̂i)‖2

6 CKNT (B)

{
1

N

N∑
i=1

‖vec(δ̂i)‖2

}1/2

+Op(ι
2
TT
−2) = Op(ιTT

−1).

(A.6)

By (A.6) and the fact that PNT (b0,B0) = 0 and that PNT (b̂, B̂) − PNT (b̂,B
0
) 6 0. we

have

0 > PNT (b̂, B̂)− PNT (b̂,B
0
) = PNT (b0, B̂)− PNT (b0,B0) +Op(ιTT

−1)

=
1

N

N∑
i=1

K∏
k=1

‖vec(b0
i − B̂k)‖+Op(ιTT

−1)

=
N1

N

K∏
k=1

‖vec(B̂k −B0
1)‖+ ...+

NK

N

K∏
k=1

‖vec(B̂k −B0
K)‖+Op(ιTT

−1) (A.7)

By Assumption 3.3(i), Nk/N → τk ∈ (0, 1) for each k = 1, ...K. So (A.7) implies that∏K
k=1 ‖vec(B̂k−B0

l )‖ = Op(ιTT
−1) for l = 1, ...K. It follows that (vec(B̂1), ...,vec(B̂k))−

(vec(B0
1), ...,vec(B0

K)) = Op(ιTT
−1). �

Lemma B.3 Suppose that Assumptions 3.1-3.3 hold. Then

(i) P
(

max16i6N

∥∥∥vec
(

1
T 2

∑T
t=1 y

(2)
i,t−1 (Λ0′

i F
0
t + ε∗it)

′
)∥∥∥ > cψNT

)
= o(N−1).

(ii) P
(

max16i6N

∥∥∥vec
(
b̂i − b0

i

)∥∥∥ > cΨNT

)
= o(N−1)

where ΨNT = (ιTψNT + λ)(lnT )ε.

Proof of Theorem 3.3. We fix k ∈ {1, ..., K}. By the consistency of B̂k and b̂i, we have

vec(b̂i − B̂k) →vec(B0
k − B0

l ) 6= 0 for all i ∈ G0
k and k 6= l. It follows that w.p.a.1∥∥∥vec(b̂i − B̂l)

∥∥∥ 6= 0 for all i ∈ G0
k and l 6= k. And ĉki =

∏K
l=1,l 6=k

∥∥∥vec(b̂i − B̂k)
∥∥∥ p→
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c0
k ≡

∏K
l=1,l 6=k ‖vec(B0

k −B0
l )‖ > ck−1

B > 0 for i ∈ G0
k by Assumption 3.3(ii). Now

suppose that
∥∥∥vec(b̂i − B̂k)

∥∥∥ 6= 0 for some i ∈ G0
k. Then the first-order condition (with

respect to bi) for the minimization problem in (2.11) yields that

0(J−r)r×1 =T
∂Qλ,K

iNT (b̂i, B̂k)

∂bi

=− 2

T

(
Ir ⊗ Y (2)′

i,−1

)
vec
(

∆Ŷ +
i − Y

(1)
i,−1 − Y

(2)
i,−1b̂i

)
+ Tλ

K∑
j=1

êij

K∏
k=1

∥∥∥vec(b̂i − B̂k)
∥∥∥

=− vec

(
2

T

T∑
t=1

y
(2)
i,t−1

((
Λ0′
i F

0
t + ε∗it

)′
γ̃i + ∆y′it(γ̂i − γ̃i)

))

+

(
Ir ⊗

2

T 2

T∑
t=1

y
(2)
i,t−1y

(2)′
i,t−1

)
Tvec

(
B̂k −B0

k

)

+

(Ir ⊗ 2

T 2

T∑
t=1

y
(2)
i,t−1y

(2)′
i,t−1

)
+

λĉik∥∥∥vec(b̂i − B̂k)
∥∥∥
Tvec

(
b̂i − B̂k

)

+ Tλ
K∑

j=1,j 6=k

êij

K∏
l=1,l 6=j

∥∥∥vec(b̂i − B̂k)
∥∥∥ ≡ −Â1i + Â2i + Â3i + Â4i, say.

where êij =
vec(b̂i−B̂j)
‖vec(b̂i−B̂j)‖ if

∥∥∥vec(b̂i − B̂j)
∥∥∥ 6= 0, ‖êij‖ 6 1 if

∥∥∥vec(b̂i − B̂j)
∥∥∥ = 0. Let

c denote a generic constant that may vary across lines. By Theorem 3.3(ii) and Lemma

B.3(i), we can readily show

P

(
max
i∈G0

k

∥∥∥vec
(
B̂k −B0

k

)∥∥∥ > cιTψNT

)
.

By Lemma B.2(i) and the matrix norm of Kronecker product, we have∥∥∥∥∥ 1

T 2

T∑
t=1

y
(2)
i,t−1y

(2)′
i,t−1 ⊗ Ir

∥∥∥∥∥
sp

=

∥∥∥∥∥ 1

T 2

T∑
t=1

y
(2)
i,t−1y

(2)′
i,t−1

∥∥∥∥∥
sp

6 cρmaxιT , a.s.

This, in conjunction with Lemma B.3(ii), yields

P

(
max
i∈G0

k

∥∥∥Â2i

∥∥∥ > cι2TTψNT

)
= o(N−1) and P

(
max
i∈G0

k

∥∥∥Â4i

∥∥∥ > cTλΨNT

)
= o(N−1).

By lemma B.3(i), we directly have that P
(

maxi∈G0
k

∥∥∥Â1i

∥∥∥ > cιTTψNT

)
= o(N−1). For

157



Â3i,

vec
(
b̂i − B̂k

)′
Â3i

=Tvec
(
b̂i − B̂k

)′ ( 2

T 2

T∑
t=1

y
(2)
i,t−1y

(2)′
i,t−1 ⊗ Ir

)
+

λĉik∥∥∥vec(b̂i − B̂k)
∥∥∥
 vec

(
b̂i − B̂k

)′

>

(
2

T 2

T∑
t=1

y
(2)
i,t−1y

(2)′
i,t−1 ⊗ Ir

)∥∥∥vec(b̂i − B̂k)
∥∥∥2

+ λT ĉik

∥∥∥vec(b̂i − B̂k)
∥∥∥

>λT ĉik
∥∥∥vec(b̂i − B̂k)

∥∥∥
Combing above results together, it follows that P (ΞkNT ) = 1− o(N−1), where

ΞkNT =

{
max
i∈G0

k

‖A2i‖ < cι2TTψNT

}
∩
{

max
i∈G0

k

‖A4i‖ < cTλΨNT

}
∩
{

max
i∈G0

k

∣∣ĉki − c0
k

∣∣ < c0
k/2

}
Then conditional on ΞkNT , we have that uniformly in i ∈ G0

k,∥∥∥∥vec
(
b̂i − B̂k

)′
(Â2i + Â3i + Â4i)

∥∥∥∥
>

∥∥∥∥vec
(
b̂i − B̂k

)′
Â3i

∥∥∥∥− ∥∥∥∥vec
(
b̂i − B̂k

)′
(Â2i + Â4i)

∥∥∥∥
>c
{
λTc0

k/2− ι2TTψNT − TλΨNT

}∥∥∥vec(b̂i − B̂k

)∥∥∥
>cλTc0

k

∥∥∥vec(b̂i − B̂k

)∥∥∥ /4, for sufficient large (N, T ),

where the last inequality follows by the fact that (ι2TTψNT − TλΨNT ) = o(λT ) by As-

sumption 3.3(iv). It follows that

P (ÊkNT,i) = P (i /∈ Ĝk|i ∈ G0
k) = P (Â1i = Â2i + Â3i + Â4i)

6 P

(∥∥∥∥vec
(
b̂i − B̂k

)′
Â1i

∥∥∥∥ > ∥∥∥∥vec
(
b̂i − B̂k

)′ [
Â3i − (Â2i + Â4i)

]∥∥∥∥)
6 P

(∥∥∥Â1i

∥∥∥ > cTλc0
k/4,ΞkNT

)
+ o(N−1)→ 0, as (N, T )→∞,

where the last inequality follows because that Tλc0
k � ιTTψNT and that Tλc0

k → ∞

by Assumption 3.3(iv). Consequently, we can conclude that w.p.a.1 b̂i − B̂k must be in

position where ‖vec(bi −Bk)‖ is not differentiable with respect to bi for any i ∈ G0
k. That

is P
(∥∥∥vec(b̂i − B̂k)

∥∥∥ = 0|i ∈ G0
k

)
= 1− o(N−1) as (N, T )→∞.
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For uniform consistency, we have that

P
(
∪Kk=1ÊkNT

)
6

K∑
k=1

P
(
ÊkNT

)
6

K∑
k=1

∑
i∈G0

k

P
(
ÊkNT,i

)
6 N max

16i6N
P
(∥∥∥Â1i

∥∥∥ > cTλc0
k/4
)

+ o(1)→ 0 as (N, T )→∞,

where the last inequality follows by Lemma B.3(i). This completes the proof of (i). Then

the proof of (ii) directly follows SSP and thus omitted. �

Lemma B.4 Suppose that Assumptions 3.1-3.3 hold. Then

(i) Qk,NT
p→ Qk,

(ii) Vk,NT −Bk,NT ⇒ N(0,Vk),

where Qk = limN→∞
1
Nk

∑
i∈G0

k
C1iEC

(∫
BuiB

′
ui

)
C ′1i, Vk = limN→∞VarC (VkNT ) =

Ωk, and C1i = b0
i,⊥
(
α0′
i,⊥β

0
i,⊥
)−1

α0′
i,⊥.

Proof of Theorem 3.4 A necessary and sufficient conditions for b̂i and B̂k to minimize

the objective function in (2.11) is that for each i = 1, ..., N (resp. k = 1, ..., K), 0(J−r)r×1

belongs to the sub-differential of QK,λ
NT (b, B) with respect to bi (resp. Bk) evaluated at b̂i

and B̂k. The first order conditions are

0(J−r)r×1 = − 2

NT 2

(
Ir ⊗ Y (2)′

i,−1

)
vec
(

∆Ŷ +
i − Y

(1)
i,−1 − Y

(2)
i,−1b̂i

)
+
λ

N

K∑
j=1

êij

K∏
l=1,l 6=j

∥∥∥vec(b̂i − B̂l)
∥∥∥ ,

0(J−r)r×1 =
λ

N

N∑
i=1

êik

K∏
l=1,l 6=k

∥∥∥vec(b̂i − B̂l)
∥∥∥ ,

where êij is defined in Theorem 3.3. First, we observe that
∥∥∥vec(b̂i − B̂k)

∥∥∥ = 0 for any

i ∈ Ĝk by the definition of Ĝk.And b̂i − B̂j
p→ B̂k − B̂l 6= 0 for any i ∈ Ĝk and l 6= k

by Assumption 3.3(ii). It follows that ‖êik‖ 6 1 for any i ∈ Ĝk and êij =
vec(b̂i−B̂j)
‖vec(b̂i−B̂j)‖ =

vec(B̂k−B̂l)
‖vec(B̂k−B̂l)‖ w.p.a.1 for any i ∈ Ĝk and l 6= k. This further implies that w.p.a.1

∑
i∈Ĝk

K∑
j=1,j 6=k

êij

K∏
l=1,l 6=j

∥∥∥vec(b̂i − B̂l)
∥∥∥ =

∑
i∈Ĝk

K∑
j=1,j 6=k

vec(B̂k − B̂j)∥∥∥vec(B̂k − B̂j)
∥∥∥

K∏
l=1,l 6=j

∥∥∥vec(B̂k − B̂l)
∥∥∥ = 0(J−r)r×1,
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and

0(J−r)r×1

=

N∑
i=1

êik

K∏
l=1,l 6=k

∥∥∥vec(b̂i − B̂l)
∥∥∥

=
∑
i∈Ĝk

êik

K∏
l=1,l 6=k

∥∥∥vec(B̂k − B̂l)
∥∥∥+

∑
i∈Ĝ0

êik

K∏
l=1,l 6=k

∥∥∥vec(b̂i − B̂l)
∥∥∥+

K∑
j=1,j 6=k

∑
i∈Ĝj

êik

K∏
l=1,l 6=k

∥∥∥vec(B̂j − B̂l)
∥∥∥

=
∑
i∈Ĝk

êik

K∏
l=1,l 6=k

∥∥∥vec(B̂k − B̂l)
∥∥∥+

∑
i∈Ĝ0

êik

K∏
l=1,l 6=k

∥∥∥vec(b̂i − B̂l)
∥∥∥ .

Combining above results, we have

2

NkT 2

∑
i∈Ĝk

(
Ir ⊗ Y (2)′

i,−1

)
vec
(

∆Ŷ +
i − Y

(1)
i,−1 − Y

(2)
i,−1B̂k

)
+
λ

Nk

∑
i∈Ĝ0

êik

K∏
l=1,l 6=k

∥∥∥vec(b̂i − B̂l)
∥∥∥ = 0(J−r)r×1

It yields that the C-Lasso estimators follow

vec(B̂k) =

Ir ⊗ 1

NkT 2

∑
i∈Ĝk

Y
(2)′
i,−1Y

(2)
i,−1

−1

vec

 1

NkT 2

∑
i∈Ĝk

Y
(2)′
i,−1

(
∆Ŷ +

i − Y
(1)
i,−1

)
+

Ir ⊗ 1

NkT 2

∑
i∈Ĝk

Y
(2)′
i,−1Y

(2)
i,−1

−1

λ

2Nk

∑
i∈Ĝ0

êik

K∏
l=1,l 6=k

∥∥∥vec(b̂i − B̂l)
∥∥∥

≡ vec(B̂post
k ) + R̂1Nk, say.

where vec(B̂post
k ) =

(
1

NkT 2

∑
i∈Ĝk Y

(2)′
i,−1Y

(2)
i,−1 ⊗ Ir

)−1

vec
(

1
NkT 2

∑
i∈Ĝk Y

(2)′
i,−1

(
∆Ŷ +

i − Y
(1)
i,−1

))
.

By Theorem 3.3, we readily show that

P
(√

NkT‖R̂1Nk‖ > ε
)
6

K∑
k=1

∑
i∈G0

k

P (i ∈ Ĝ0|i ∈ G0
k) 6

K∑
k=1

∑
i3G0

k

P (i /∈ Ĝk|i ∈ G0
k) = o(1)

It follows that √
NkTvec(B̂k −B0

k) =
√
NkTvec(B̂post

k −B0
k) + op(1)

This implies that B̂k is asymptotically equivalent to its post-Lasso estimator B̂post
k . Then

we formally study the asymptotic distribution of B̂post
k in the proof of Theorem (ii) below.

(ii) Note that√
NkTvec

(
B̂post
k −B0

k

)
= Q̂−1

k

(
V̂k + R̂2Nk + R̂3Nk

)
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where

Q̂k =
1

NkT 2

∑
i∈Ĝk

(
Ir ⊗ Y (2)′

i,−1Y
(2)
i,−1

)
, V̂k =

1√
NkT

∑
i∈Ĝk

vec
(
Y

(2)′
i,−1

(
F 0Λ0

i + ε∗i
)
γ̃i

)
,

R̂2Nk =
1√
NkT

∑
i∈Ĝk

vec
(
Y

(2)′
i,−1∆Yi (γ̂i − γ̃i)

)
,

R̂3Nk =
1

NkT 2

∑
i∈Ĝk

(
Ir ⊗ Y (2)′

i,−1Y
(2)
i,−1

)
vec
(
b0
i −B0

k

)
.

It follows that

Q̂k =
1

NkT 2

∑
i∈G0

k

(
Ir ⊗ Y (2)′

i,−1Y
(2)
i,−1

)
+

1

NkT 2

∑
i∈Ĝk\G0

k

(
Ir ⊗ Y (2)′

i,−1Y
(2)
i,−1

)
− 1

NkT 2

∑
i∈G0

k\Ĝk

(
Ir ⊗ Y (2)′

i,−1Y
(2)
i,−1

)
≡Qk,NT + Q̂1k − Q̂2k, say.

by the fact that 1{i ∈ Ĝk} = 1{i ∈ G0
k} + 1{i ∈ Ĝk\G0

k} − 1{i ∈ G0
k\Ĝk}. By

Theorem 3.3, we can show that P
(
‖Q̂2k‖ > εN−1/2T−1

)
6 P (ÊkNT ) = o(N−1) and

P
(
‖Q̂1k‖ > εN−1/2T−1

)
6 P (F̂kNT ) = o(N) for any ε > 0. It follows that Q̂k =

Qk,NT + op(N
−1/2T−1). Analogously, we can show that P

(√
NT‖R̂jNk‖ > ε

)
= o(1)

for j = 1, 2 and V̂k = Vk,NT + op(N
−1/2T−1) by Theorem 3.3. Thus we have

√
NkTvec(B̂post

k −B0
k) = Q−1

k,NTVk,NT + op(1)

where Vk,NT = 1√
NkT

∑
i∈G0

k
vec
(
Y

(2)′
i,−1 (F 0Λ0

i + ε∗i ) γ̃i

)
. By Lemma B.4(i)-(ii), it follows

that Vk,NT − Bk,NT ⇒ N(0,Vk) and Qk,NT
p→ Qk. By Slutsky’s theorem, we directly

have
√
NkTvec(B̂post

k −B0
k)−Q−1

k Bk,NT ⇒ N(0,Q−1
k VkQ−1′

k ).�
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