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Abstract

This dissertation develops several econometric techniques to address the unobserved
heterogeneity in nonstationary panels, namely identifying latent group structures in coin-
tegrated panels, studying nonstationary panels with both cross-sectional dependence and
latent group structures, and estimating panel error-correction model with unobserved dy-
namic common factors.

Chapter 1 considers a panel cointegration model with latent group structures that al-
lows for heterogeneous long-run relations across groups. We extend Su et al. (2013)
classifier-Lasso (C-Lasso) method to the nonstationary panels and allow for the presence
of endogeneity in both the stationary and nonstationary regressors in the model. In ad-
dition, we allow the dimension of the stationary regressors to diverge with the sample
size. We show that we can identify the individuals’ group membership and estimate the
group-specific long-run cointegrated relationships simultaneously. We demonstrate the
desirable property of uniform classification consistency and the oracle properties of both
the C-Lasso estimators and their post-Lasso versions. The special case of dynamic penal-
ized least squares is also studied. Simulations show superb finite sample performance in
both classification and estimation. In an empirical application, we study the potential het-
erogeneous behavior in testing the validity of long-run PPP hypothesis in the post-Bretton
Woods period from 1975-2014 covering 99 countries. We identify two groups in the pe-
riod 1975-1998 and three ones in the period 1999-2014. The results confirm that at least
some countries favor the long-run PPP hypothesis in the post-Bretton Woods period.

Chapter 2 proposes a novel approach, based on Lasso, to handle unobserved parameter
heterogeneity and cross-sectional dependence in nonstationary panel models. We propose
a penalized principal component method to jointly estimate group-specific long-run rela-
tionships, unobserved common factors and to identify unknown group membership. Our
Lasso-type estimators are consistent and efficient. We provide a bias-correction procedure
under which our estimators are centered around zero as both dimensions of the panel tend
to infinity. We establish a mixed normal asymptotic distribution for our estimators, which
permit inference using standard test statistics. Finally, we apply our approach to study

the international R&D spillovers model with unobserved group patterns. The results shed



new light on growth convergence puzzle though the channel of technology diffusions.
Chapter 3 proposes a novel econometric model that accounts for both long-run and
short-run co-movements in panel error correction models. By imposing latent group struc-
tures, we achieve efficient estimation for long-run cointegration vectors in the presence
of unobserved heterogeneity. The short-run co-movements are driven by unobserved dy-
namic common factors, which can be consistently estimated by principal components.
We propose a penalized generalized least squares method that jointly estimates long-run
cointegration vectors and infers unobserved group structures. We establish asymptotic
properties for two Lasso-type estimators. In an empirical application, we estimate long-
run cointegration relationships between bid and ask quotes in stock market. We introduce

a new measure for efficient price, which is weighted average of bid and ask quotes.
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1 Identifying Latent Grouped Patterns in Cointegrated

Panels

1.1 Introduction

Recently there has been a growing literature on large dimensional panel with latent
group structures; see Lin and Ng (2012), Bonhomme and Manresa (2015) (BM hereafter),
Sarafidis and Weber (2015), Ando and Bai (2016), Su et al. (2016) (SSP heterafter), Su
and Ju (2017), Su et al. (2017), Lu and Su (2017), among others. In comparison with other
approaches to model unobserved heterogeneity in panel data models, an important advan-
tage of the latent group structures is that it offers a flexible way to modeling unobserved
heterogeneity while maintaining certain degree of parsimony. Two popular methods have
been proposed to identify the unknown group structures. One is based on the celebrated
K-means clustering algorithm, and the other is based on the C-Lasso. For example, Lin
and Ng (2012) and Sarafidis and Weber (2015) consider a heterogeneous linear regression
panel data model where the slope coefficients exhibit an unknown group structure whereas
BM consider a homogeneous linear panel data model where the additive fixed effects ex-
hibit group structure. Both group of authors propose to apply the K-means clustering
algorithm to achieve classification. Ando and Bai (2016) extend BM’s approach to allow
for group structure among the interactive fixed effects. Motivated by the sparse feature
of the slope coefficients under latent group structures, SSP propose a novel variant of the
Lasso procedure, i.e., classifier Lasso (C-Lasso), to achieve classification and estimation
for both linear and nonlinear panel data models with or without endogeneity. Su and Ju
(2017) extend SSP’s C-Lasso to panel data models with interactive fixed effects; Su et al.
(2017) consider C-Lasso-based sieve estimation of time-varying panel data models with
latent structures; Lu and Su (2017) propose a sequential testing procedure to determine
the unknown number of groups.

In this paper, we consider identifying the latent group structures in nonstationary pan-
els where some regressors are generated from an integrated process. Despite the vast

and diverse literature on nonstationary panels, most studies focus on panel unit root or



cointegration tests with or without cross-sectional dependence and the literature on for-
mal cointegration analysis is relatively sparse. Depending on whether the cointegrating
relationship is allowed to be heterogeneous, one may consider either homogeneous or
heterogeneous cointegrating relations. For example, Phillips and Moon (1999) consider
general limit theory for both cases in large dimensional nonstationary panels; Groen and
Kleibergen (2003) consider likelihood-based cointegration analysis for heterogeneous and
homogeneous panel vector error-correction models; Kao and Chiang (2001) consider both
dynamic OLS (DOLS) and fully modified OLS (FMOLS) estimation and inference in
homogeneous cointegrated panels; Mark and Sul (2003) consider panel DOLS in homo-
geneous nonstationary panels; Bai et al. (2009) study homogeneous panel cointegration
with global stochastic trends; Pedroni (2001) considers FMOLS for heterogeneous coin-
tegrated panels. So the long-run cointegrating relationships can be assumed to be either
homogeneous or heterogeneous and we face a trade-off between assuming heterogeneous
long-run relationships, which is surely robust and perhaps also close to the reality, and
estimating a common or at least an average long-run relationship, which offers efficiency
in estimation and inference if the underlying homogeneous assumption is correct.
Despite the different treatments on the long-run relationships, the short-run dynamics,
the individual intercepts, or the individual time trends, if exist, are commonly assumed
to be heterogeneous across individuals. In this paper, we shall maintain the individual
heterogeneity assumption on the individual effects and short-run dynamics and take an
intermediate approach to model the long-run relationship. We propose a panel cointegra-
tion model with latent group structures where the long-run relationships are homogeneous
within a group and heterogeneous across different groups, and the short run dynamics
are allowed to be completely heterogeneous. The key issue is that the individual group
membership is unknown and has to be estimated from the data together with the other
parameters in the model. We extend SSP’s C-Lasso method to the nonstationary panel
framework. We consider the SSP’s C-Lasso method rather than the K-means clustering
algorithm for two reasons. First, the C-Lasso method has computational advantage over
the K-means clustering algorithm. As SSP argue, the C-Lasso problem can be trans-

formed into a sequence of convex problems to be solved easily while the K-means pro-



cedure is NP hard and tends to be much more computationally involved than the C-Lasso
method. Second, the asymptotic theory for the C-Lasso method is well understood for
stationary panels. It is natural to extend the theory to nonstationary panels. We will pro-
pose a C-Lasso-based penalized least squares (PLS) procedure to identify the unknown
group structures and estimate the other parameters in the model.

Nevertheless, the extension of the asymptotic theory from stationary panels to non-
stationary panels is technically challenging for several reasons. First, there is a lack of
certain uniform convergence results in the nonstationary panel literature. It is well known
that both the K-means clustering algorithm and the C-Lasso method enjoy certain ora-
cle properties, which means the resulting estimators are as asymptotically efficient as if
the latent group structures were known. But the establishment of such oracle properties
rely on the application of certain exponential inequalities that are available for weakly
dependent data as in stationary panels but not available for strongly dependent data as
in nonstationary panels. To achieve the extension, we first need to establish some uni-
form convergence results associated with the nonstationary I(1) variables. Second, we
allow for both stationary and nonstationary regressors in our cointegration models. Even
though the number of nonstationary regressors is assumed to be fixed, we allow the di-
mension of stationary regressors to grow with the sample size at a controllable rate. The
latter is very important for us to explore the idea of DOLS and develop a panel dynamic
PLS procedure. Even though the growing dimension of the stationary regressors does not
affect the convergence rate of the estimators of the long-run relationships, it complicates
the asymptotic analysis in several places.

We assume that the number of groups is known and study the asymptotic properties
of the PLS estimators. We first establish the preliminary rates of convergence for the co-
efficient estimators and show that, as expected, the long-run parameters can be estimated
consistently at a faster rate than the short-run parameters. Given these preliminary con-
sistency rates, we establish the uniform classification consistency of the C-Lasso method,
which essentially means that all parameters within a group can be classified into the same
group with probability approaching 1 (w.p.a.1) and all individuals that are classified into

the same group indeed belong to the same group w.p.a.1. Such a uniform classification



consistency lays down the foundation for the study of the asymptotic distributions of the
PLS estimators. We show that both the C-Lasso estimators of the long-run parameters and
their post-Lasso versions enjoy the asymptotic oracle properties and derive the asymptotic
distribution under the joint limit theory.! We show that such presence of endogeneity
in both nonstationary and stationary regressors does not cause the inconsistency of the
long-run parameter estimators but does yield asymptotic bias in the estimators of both the
short-run and long-run parameters. To remove the asymptotic bias in the estimation of the
long-run parameters, we explore the idea of DOLS in the time series framework and pro-
pose a C-Lasso-based dynamic PLS procedure. When the number of groups is unknown,
we propose an information criterion to determine the number of groups. Simulations
show superb finite sample performance of the information criterion and C-Lasso-based
PLS procedure.

As an empirical illustration, we apply our method to re-examine the validity of long-
run PPP in the post-Bretton Woods period from 1975-2014 for a panel of 99 countries.
Due to the establishment of the European Union in 1999, we divide the period into two
parts 1975-1998 and 1999-2014. Then we estimate the long-run group-specific relation-
ships by the dynamic PLS method. In general, we observe heterogeneous behavior on the
long-run relation between nominal exchange rate and aggregate price ratio. We find two
groups in the 1975-1999 subsample, with one group of countries in favor of the validity
of PPP and the other group against the PPP hypothesis. In the 1999-2014 subsample, we
identify three groups and significant evidence supporting the long-run PPP hypothesis in
one group. There are more countries in this group in favor of the validity of the long-run
PPP hypothesis in this period. We explain these results by the “Revived Bretton Woods
system” (also called as Bretton Woods II in the literature) from 2000, see Dooley et al.
(2004). These results confirm the belief that at least some selected group of countries
obey the long-run PPP rule in the post-Bretton Woods period.

The rest of this paper is organized as follows. We introduce the cointegrated panel data

model with latent group structures and propose a C-Lasso-based PLS estimation proce-

IMost asymptotic theories in the panel cointegration analysis have been established under the sequential

limit theory. A few exceptions include Phillips and Moon (1999), Sun (2004), and Bai and Ng (2010).



dure in Section 2. Section 3 introduces the main assumptions for our asymptotic analysis.
We study the asymptotic properties of the PLS estimators and propose an information
criterion to determine the number of groups in Section 4. Section 5 reports Monte Carlo
simulation results. Section 6 applies the dynamic PLS method to testing the long-run PPP
hypothesis. Section 7 concludes. We relegate the proofs of the main results to Appendix
A and those of technical lemmas to the online supplementary material.

NOTATION. For any real matrix A, we write the transpose A’, the Frobenius norm

||A||, the spectral norm ||A]|,, and the Moore-Penrose inverse as A™. When A is sym-

sp»
metric, we use Apax(A) and Ay (A) to denote its largest and smallest eigenvalues, re-
spectively. I, and 0, denote the a X a identity matrix and a X b matrices of zeros, and
) . ) P ) -
1{-} is the usual indicator function. The operator — denotes convergence in probability,

= weak convergence, a.s. almost surely, and plim probability limit. We use (N, T') — oo

to signify that N and 7" pass jointly to infinity.

1.2 Model and Estimation

In this section we introduce the panel cointegration model with latent group structures

and then propose a C-Lasso-based penalized least squares method to estimate the model.

1.2.1 Panel cointegration model with latent group structures

The dependent variable y;; is measured for individuals ¢ = 1,2, ..., NV over time ¢ =
1,2,...,T. We suppose that the nonstationary I(1) variables y;; and x; ;; are generated
according to the following heterogeneous panel cointegration model

Yit = Mi + 5{@351,# + ﬁé,ﬂz,it + Ut n

T1it = Tig—1 1 €1t
where 1i; is the unobserved individual fixed effect, z; ;; 1s a p; X 1 vector of nonstationary
regressors of order one (I(1)) process) for all 7, x5 ;; is a p, x 1 vector of stationary regres-
sors (I(0) process) for all ¢, u;; is the idiosyncratic error term with mean zero and finite
long-run variance, € ;; is also assumed to have zero mean and finite long-run variance,

and /3 ; and (3, ; are p; and p, dimensional slope coefficients, respectively.
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We assume that p, is fixed but allow p, to diverge to infinity at certain rate. The latter
is very important because we will extend our theory to the panel DOLS framework. In
this case, the first equation in (1) becomes

D2
Yie = ti + BT + Z Vi ;AT g+ UiTt, (2)
J=—D2

where Az ;4 = %1 — T1,44-1, T2 only contains the lags and leads of Az @ 294 =
(A2 it pys s AT i 15y)s Bai = (Vipys s Vig)s P2 = (2D2 + 1)p1, pa is divergent
with 7', and v;-ft is the new error term that typically contains some approximation errors.
In the literature on nonstationary panels, /3 ;, which stands for the long-run cointe-
grating relationship, can be either homogeneous or heterogeneous, whereas (3, ;, which
represents the short-run dynamics, is allowed to be heterogeneous across all individuals
in almost all studies. In this paper we maintain the heterogeneity assumption on [35;’s
but follow the lead of SSP and assume that 3, ;’s are heterogeneous across groups and
homogeneous within a group. We allow the true values of 3; ;, denoted as ﬁ?ﬂ-, to follow
a grouped pattern of the general form
ol ifieGY

By = : 3)

al ifi e GY%

where af # o} for any j # k, Uf_ G} = {1,2,... N}, and G) N GY = & for any
j # k. For now, we assume that the number of groups, K, is known and fixed. Let
a = (ag,...,akx), B1 = (fr1,---.01n), and B2 = (Ba21, ..., Pan). We denote their
true values as a°, 37, and 3, respectively. We also use 33; and o) to denote the true
coefficients of 3, ; and cy,. We will use N, = #G" to denote the cardinality of the set GY.

We are interested in identifying each individual’s group membership and estimating
the long-run cointegrating group-specific coefficients, ay, k = 1, ..., K.

Even though we focus only on the linear cointegrating model in this paper, the theory
that we are developing is quite different from that in SSP for three main reasons. First, the
presence of nonstationary regressors substantially complicates the asymptotic analysis. In
particular, we need to establish some uniform convergence rates that are not available in

the nonstationary panel literature. Second, the increasing dimension of the stationary
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regressors in the model also complicates the issue. Third, we allow for endogeneity in
both x; ;; and z3 ;. In the time series framework, it is well known that the endogeneity
of either the I(1) or 1(0) regressor does not cause the inconsistency of the OLS estimator
of the long-run relationship. We will show that similar phenomenon occurs in the panel

setup.

1.2.2 Penalized least squares estimation

Without imposing the latent group structures in (3), we can estimate 3;; and (s ;
in (1) by using the fixed effects estimator. In this case, we consider the within-group
transformation

Yit = 5172@1,@1 + 5&7@2,# + Uy, 4)

or in vector-matrix form
Ui = T13B1 + T2iB2: + Uy, (5)
where §i; = (Jit, .o Gir) s Jit = Yit — Ui Ui = = Doy Yit» and T1 g, Fo e, Uity T1 g, Tog, Ui,
Z1,, T2, and u,; are analogously defined. The FE estimators Bl,z‘ and 5272- are obtained as

the minimizers of the following least squares criterion function

N N
1 L N 2 1 ~ a2
Qnt (B, Bs) = NT? ; i — Z1,iB1,0 — ToiBoill” = T2 ; |g: — 2:B]|7,  (6)

where 3; = (81;,55;) and ¥; = (T1,,72;) has a typical row T}, = (T}, 75 ;). Let
B = (B, B5,). Then B; = (#i#;)~*(%,y;) for each i.

To explore the latent group structure of 3, ;’s in (3), we propose to estimate 31, B2,
and a by minimizing the following C-Lasso-based penalized least squares (PLS) criterion

function

, (D

)

N K
QﬁT,A(Bl;ﬁQ? a) = Qnr(B1, B,y) + % 2(51‘)2_K H HQu(ﬂu — o)
=1 k=1

where A\ = A(N,T) is a tuning parameter, 57 = >/ (i — 5i%:)?, and Qi =
% ZtT:l 71,17} ;- When &; and @u are replaced by 1 and I, , respectively, the penalty
term in (7) reduces to that in SSP. Here, we introduce these two terms into the penalty to

ensure the scale-invariant property of the penalized estimators.
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Minimizing the above objective function yields the C-Lasso-based PLS estimates ﬁl,
B27 and a. Let BM and &y, denote the i*" and k" columns of Bl and ¢, respectively, i.e.,
B, = (B, ... frn) and & = (@, ..., d). We will study the asymptotic properties of

the C-Lasso estimators below.

1.3 Notations and Assumptions

In this section, we spell out the main notations and assumptions that are needed for
the study of the asymptotic properties of our estimators.

Since we include the fixed effects 1; in (1) and assume covariance-stationarity of s ;.
We assume without loss of generality that x5 ;; has zero mean.? Let ¢;; = (Um 5’17“, 5’27“),

where ¢5 ; = %2 ;. The long-run covariance matrix of {¢; } is given by

0o Qoo Qo1,i Qo2
/
Q= E E(eijeq) = Qo i Qa2 |
J=ee Qoo Qo1 oo

where, e.g., Qoo = D50 Euijuiy), Qo = 272 Eluijel o), and Qoo = 3772 E(uijes g0)-
Following the literature on nonstationary panels, we will make the following decomposi-
tion

Q=%+ A+ A,

where ¥; = F (g;¢],) denotes the short-run variance of {e;;} and A; = > 72| E(ej5e],).

We partition ¥; and A; conformably with £;; and €); :

200, 201, 202, Aooi Aoii Moz
2 = 210,¢ 211,1‘ 212,1‘ and A; = Al(),i A11,z‘ A12,i
200, M1 222 Aooi Aor; Mooy

Let A; = 3; + A; denote the one-sided long-run covariance of {e;;} . Let p = 1+ p; + po
denote the dimension of €;;. Let Sy, S, and S, denote respectively the 1 X p, p; X p, and

p2 X p selection matrices such that Sye;; = u; and Spe; = €444 for £ = 1, 2.

2If E(wq,it) = va; # 0, we can rewrite the first equation in (1) as
* ! ! *
Yir = py + B1 @10 + BT + Wit
where x5 ;, = T3 it — v2; has zero mean and p1f = p; + By V2

8



Let max; = max;¢;<y and max; = max;<;<r unless otherwise stated. Define min;

and min,; analogously. We make the following assumptions.

Assumption A.1 (i) For each i, {¢;;,t > 0} is a linear process such that
Eit = Y (L) €it = Z %‘jez‘,t—j,
=0

where {e;;} is an independent process with zero mean and variance-covariance matrix
I,. Each element of e;; has finite 2 (¢ + €¢) moments that are bounded uniformly in (i, 1),
where ¢ > 4 and € is an arbitrarily small positive number.

(i) max; 27 52 [|Sti; || < oo for any selection matrix S' that selects any finite (non-
divergent) number of rows in ¢);;.

(iii) For each i, {e;;,t > 0} is a strong mixing process with mixing coefficients «; (¢)
satisfying max; a; (7) < ¢,p” for some ¢, < coand p € (0,1).

(iv) {eit,t > 0} are independent across i.

Assumption A.2 (i) There exists a constant ¢, such that lim inf7_, o, Apin (bT—TQ Zthl f:lﬂ-tf:’ut) >
¢;; > 0 almost surely (a.s.), where by diverges to infinity as 7" — oo slowly.

(ii) There exists a constant ¢q,, such that max; Amax (2114) < €q,, < 00

(iii) There exist constants ¢,, and ¢s such that 0 < ¢y < min; Ayin (X22,) <
Max; Amax (S22,) < Cag < 00.

(iv) Let 25,5, = Yoo — 20271‘22_2171-220,@‘. There exist constants ¢, and ¢y such that

0 < cop < min; Xg 5 ; < max; Xgo,; < Coo < 00.

Assumption A.3 (i) Foreachk = 1,..., K, Ny /N — 7, € (0,1) as N — .

(i) miny <pzj< i ||0f — a9 = ¢, for some fixed ¢, > 0.

(iii) As (N, T) — 0o, N/T? — ¢, € [0,00), T/N? = ¢, € [0, 00), and p3T " (log T)° —
¢z € [0, 00).

(iv) As (N, T) = 00, Abyloglog T — 0, A\TN b5 /10g T — 00, bEFINVAT-11og T —
0, bpN¥1T1/2/log T — 0, and bypy *NYaT=1/210g T = O (1) .

Assumption A.1(i)-(ii) imposes that the innovation process {¢;;} is a linear process
that exhibits certain moment and summability conditions. When ps is fixed, the selection

matrix S is not needed. In our asymptotic analysis, we will frequently call upon the
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Beveridge and Nelson (1981) BN decomposition:
et = Vi (1) ey + €41 — €, (®)

where ¥; (1) = Z;Zo Yij, € = Z;io szijei,t—ja and QZij = zzo:j+1 . Following
Phillips and Solo (1992) (p.989), Assumption A.1(i)-(ii) ensures that

maxm?XE S |I?? < oo
7

for any selection matrix S such that Se;; selects only a fixed number of elements in ¢;;. For
example, S = (S}, S;)’ selects the first 1 +p; elements & that corresponds to (uy, <} ) -
Assumption A.1(iii) assumes that {¢;;,t > 0} is a strong mixing process for the conve-
nience of using some Bernstein-type exponential inequality that is available for strong
mixing processes. Davidson (1994) (Chapter 14.4) provides some sufficient conditions to
verify that a linear process of the type in Assumption A.1(i) is strong mixing. The geomet-
ric mixing rate can be relaxed to being algebraic with a little bit more involved notation in
the proofs. Here we follow SSP and assume the geometric mixing rate condition for sim-
plicity. By White (2001) (Theorem 7.18), Assumption A.1(i)-(iii) is far more sufficient
to ensure the functional central limit theorem (FCLT) holds for {Se;;, ¢t > 0} for each i
provided its long-run variance-covariance matrix is positive definite. Assumption A.1(iv)
imposes cross-sectional independence, as was done in the early literature on panel cointe-
gration analyses (see, e.g., Phillips and Moon (1999); Kao and Chiang (2001); Mark and
Sul (2003)). We do not relax such an assumption in this paper because even under this
restrictive assumption, the rigorous asymptotic analysis is already extremely involved.
Assumption A.2(i) requires that Qh- = % Zle 'i.l,it'i.ll,it is well behaved uniformly

in 7. For each 7, we can readily apply the results in Park and Phillips (1988) and show that
A 1 ~ ~
Qli = / Bl,i (T‘) Bl,i (7‘)/ dr
0

where Bl,z’ =By, — fol By ; (r)dr, and By is a p;-dimensional Brownian motion with
covariance € ;. In this case, as long as {2y ; is positive definite, we can ensure that Qh- is
asymptotically nonsingular for each 7. For our asymptotic analysis, we require that both

the maximum and minimum eigenvalues of Qu are well behaved uniformly in ¢. For the
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maximum eigenvalue, we can call upon the usual law of iterated logarithm (LIL) and

show that
R 1
limsup Apax(@1:/(2loglog 7)) < (5 + e) Co,,Q.8.

T—oo

where € is an arbitrarily small positive number and cg,, is a constant defined in Assump-
tion A.2(ii). For the minimum eigenvalues, we conjecture that one can call upon the
“other” or Chung-type LIL (see, e.g., Donsker and Varadhan (1977)) and show that As-
sumption A.2(i) holds with by = loglogT'. But the rigorous justification is beyond the
scope of this paper. See Lai and Wei (1982), Phillips (1996) and Bai (2004) who apply
similar conditions in their asymptotic analyses. Assumption A.2(ii)-(iii) imposes some
conditions on the eigenvalues of nonstochastic square matrices. Assumption A.2(iv) is
imposed to ensure nondegenerate limiting distribution. Given Assumption A.2(iii), it
implicitly implies that 3, ;Y9 ; is bounded away from the infinity and thus restrict the
degree of endogeneity in the stationary regressors.

Assumption A.3(i)-(ii) is commonly assumed in the panel literature with latent group
structures; see, e.g., Bonhomme and Manresa (2015), Ando and Bai (2016), Su et al.
(2016), Lu and Su (2017), and Su and Ju (2017). In particular, Assumption A.3(ii) re-
quires the separability of the group-specific parameters. Assumption A.3(iii) imposes
conditions on N, T, and ps. Note that we do not require N = o(7") as in most studies on
nonstationary panels under the joint limit theory (see, e.g., Phillips and Moon (1999); Bai
and Ng (2010)). The last condition in Assumption A.3(iii) is analogous to the condition
p3T~! = 0(1) in the time series framework (e.g., Saikkonen (1991)). Assumption A.3(iv)
looks quite complicated but can be simplified in various cases. First, if NV and 7" pass to
infinity at the same rate, which appears plausible in most macro applications, it reduces

to:

Assumption A.3(iv¥) As (N, T) — oo, Abrloglog T — 0, AT 4675 /1og T — o0,
BEFIT e o T a2 Vs -
T gT — 0,brTa 2/logT — 0,and byp, T« 2logT = O (1).

Second, if Assumption A.2(i) is satisfied with b7 = loglogT’, a sufficient condition for
Assumption A.3(iv¥) to hold is as follows:

Assumption A.3(iv¥*) As (N, T) — oo, A (loglog T)* — 0, and )\TI*%/(Iog T)? — oo.

11



Here, we use the fact that ¢ > 4 so that the third through last conditions in Assumption
A.3(iv*) become redundant under Assumption A.3(iii). Then we can find a large range of

values for )\ satisfying Assumption A.3(iv**). It is sufficient to have
-1
Ao T fora e (o, q—) .
q

When ¢ is sufficiently large (e.g., the tails of the error terms decay exponentially fast),
the upper bound for « is arbitrarily close to 1. If we only require ¢ > 4, then it is fine to

choose \ oc T—3/4.

1.4 Asymptotic Properties

In this section, we first find the preliminary rates of convergence for the coefficient
estimators and prove classification consistency. Then we study the oracle properties of C-
Lasso estimators and their post-Lasso versions. The special case of panel dynamic PLS is
also considered and a BIC-type information criterion is proposed to determine the number

of groups.

1.4.1 Preliminary rates of consistency

Let 37 = (8. 85;)', where 35 ; = 334X, %20,;. The following theorem establishes

the preliminary rates of consistency for both Bz and &y.

Theorem 1 Suppose that Assumptions A.1-A.3 hold. Then
(i) 1151 = Bl = Op(T~" + ) and [[Ba; — B3l = Op(py* (T2 + X)) for
i=1,..,N,
(ii) 5 Sy |1Bri = BLIP = Op (VT 2) and 5 25, (1B — B3l = Op(poT ),
(iii) (G&qy, s Qi) — (A, .., a%) = Op(brT 1) where (éy, ..., Gk)) is a suitable

permutation of (&, ..., Q).

Theorems 1(i) and (ii) establish the point-wise and mean-square convergence of BZ =
(B, Bgz)’ , respectively; Theorem 1(iii) indicates that &, ..., &k, consistently estimate
the true group-specific coefficients, af, ..., a%, subject to suitable permutation. We sum-

marize some interesting findings. First, despite the presence of endogeneity in both the
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nonstationary and stationary regressors, we can estimate the true coefficients (5?71-) of
the nonstationary regressors consistently. Second, when X9 ; is nonzero, we cannot es-
timate the true coefficients (ﬁgvi) of the stationary regressors consistently. Instead, Bgvi
is consistent with the pseudo true value 53, = 39, + X35, 520,;, Where £5,,590; signi-
fies the endogeneity bias. Third, the effect of increasing dimension (py) appears in the
rates of convergence for Bgvi but not in those for Blz Apparently, ﬂAl,i’s converge to their
true values faster than Bg,i’s to their pseudo-true values. Fourth, as in SSP, the pointwise
convergence of Bl depends on \ while the mean square convergence of { Bl} and the con-
vergence of &y’s do not. As we have shown in the proof, the convergence of &y only
depends on the mean square convergence of { BU}

For notational simplicity, hereafter we will write &) as a;. We define the estimated
groups

Gr={ie{l,2,.,N}: B =} fork=1,.. K.

To study the classification consistency, we need to establish the uniform consistency of

Bu and Bgl This is reported in the next theorem.

Theorem 2 Suppose that Assumptions A.1-A.3 hold. Then for any fixed c > 0,
(i) P(maxi<icn ||Bri — BY| = cbrainr) = o (N7,
(ii) P(maxy<ien || B2 = B3l > ey *aznr) = o (N71),
where a;yy = TN (log T)(He)/2 for some arbitrarily small ¢ > 0, and aynt =

T2 (logT)>.

The uniform convergence rate of Bl,i is not affected by p, but is slower than the time
series convergence rate 7. The higher ¢ is (which means the higher order moments
the error terms exhibit), the closer a;y7 is to 7~!. When the error terms have exponen-
tially decaying tails as assumed in Bonhomme and Manresa (2015), we can make a;y71

arbitrarily close to 7'~! subject to the logarithm factor.
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1.4.2 Classification consistency

To study the classification consistency, we follow SSP and define the following two

sequences of events
Einrg ={i € Gpli € G} and  Fynr; = {i € GYlli € Gy}

wherei =1,..., Nand k = 1,...K. Let EkNT = UieékEkNTi and FkNT = UieGkaNTi'
Ejnr denotes the error event of not classifying an element of G into estimated group G
and F},y7 denotes the error event of classifying an element that does not belong to GY into
the estimated group Gr. Following SSP, we say that a classification method is individually
consistent if P(Eyn7;) — 0 and P(Fyy7;) — 0as (N,T) — oo for each i € G and
k =1,..., K, and it is uniformly consistent if P(UX_ Ejn7) — 0and P(UK_ Fynr) — 0

as (N, T) — oo.

The following theorem establishes the uniform classification consistency.

Theorem 3 Suppose that Assumptions A.1-A.3 hold. Then as (N, T) — oo
(i) P(nglEkNT) < Zszl P<EkNT) — 0,
(ll) P<UkK:1FkNT) < Zi{zl P(FkNT) — 0.

Theorem 3 implies that all individuals within certain group, say G, can be simul-
taneously correctly classified into the same group (denoted as Gr) w.p.a.1l. Conversely,
all individuals that are classified into the same group, say Gr, simultaneously correctly
belong to the same group (GY) w.p.a.1. The result implies that in large samples, we can
virtually take the estimated group as the true group. In particular, let Nj, = #Gk. One
can easily show that P(G), = G%) — 1 so that P(N, = N;,) — 1.

14



1.4.3 Oracle properties and post-Lasso estimators

To study the oracle property of the C-Lasso-based PLS estimators, we add some no-

tations:
1
Q(k) - NELnoo 6Nk Z Sl¢z (1) % (1) Sl NELHOO 6Nk Z Q11 )
zEGg zEGg
Benr = Bm N7 + Bay, NT7
IB1I€,NT = \/— Z Sl ZZ% s+rwz 5817
EGO r=0 s=0
—1 T—I— 1

B%,NT = Sﬂﬂz i Sz',

v I 12 0,5 — 1(95@59 VK,

= lim — —5,8):8 S S
(k) Ny—oo N, i€GY 6" ' 12 ' ’
el

VZ?,Z’ = (22721,1J1,i & JQ,i) Vio (J{,iEQQ{i ® Jéz) )

where S; = S(/) — SéEQ_;’iZQO7Z’7 Jl,i = (0p2><1, 0p2><p1a Ip2) R J27i = (1, 01><p1’ —Eéovizgg’i) ,
and V) = limg o, Var(T-Y2 31 vec(eyel, — %1)).

The following theorem reports the asymptotic properties of &y and BQZ

Theorem 4 Suppose that Assumptions A.1-A.3 hold. Let Sy denote an | X py selection
matrix such that Sy 3, ; selects only | elements in (3 ;, where | is a fixed integer that does
not grow with (N, T') . Then

(i) VNT (G — af) — Q I)Bk vt = N(0,Q, 1V(k Qg ) as (N,T) — oo for k =
1,.. K,

(ii) VTS, <BQZ — ﬁii) = N (0,S9V5y,;S)) as T — oo foreachi =1, ..., N.

To understand the above results, we consider the case where the group membership is

known. In this case, the oracle estimators of «;, and 3 ; are respectively given by

-1

~oracle __ ~/ ~ ~/ ~ _
(9% = E $1,iM2,i$1,i E ZELZ»MQ,Z'yZ‘ for k = ]_, ey K,
i€GY ieGY
horacle ~1 ~ - ~  ~oracle . 0
2, = (332,2‘5”2,1') s z(y Ty 0p°) fori € Gy,

S U . .
where My; = It — T (m’Q T2, Z) T 2.~ One can readily show that & shares the same

~ oracle

asymptotic bias and variance as &, and similarly, 3277; shares the same asymptotic bias
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and variance as ngfcle. In this case, we say that our C-Lasso estimators &y, and Bli are
asymptotically oracally efficient. As expected, &, may have asymptotic bias of order
O (T7') in the presence of endogeneity, but it converges to its true value at the usual
/N, T-rate after removing the bias term.

A close examination of the asymptotic bias of ¢y, indicates that B, y7 can be rewrit-
ten as the summation of two terms, B, y7 and Bog nyr. Bix y7 appears even without
the within-group transformation as in Phillips and Moon (1999); By, nr is simply due
to the time-demeaning operator. As mentioned above, we allow for both sources of en-
dogeneity. When ¥4, # 0, we have contemporaneous correlation between the station-
ary regressor r,;; and the error term w;, in the cointegrating regression model. When
S o Yoo i) Sy # 0 or Syt (1)1 (1) S) # 0, we allow the correlation of
u;; with some leads or current values of €; ;. When both types of correlations vanish,
Br. n7 = 0, so that there is no endogeneity bias in this special case.

Note that we specify a selection matrix Sy in Theorem 4(ii) that is not needed if p,
is fixed. When p, diverges to infinity, we cannot derive the asymptotic normality of
Bgﬂ- directly. Instead, we follow the literature on inferences with a diverging number of
parameters (e.g., Fan and Peng, 2004; Lam and Fan, 2008; Lu and Su, 2015; Qian and
Su, 2016a and 2016b) and prove the asymptotic normality for any arbitrary finite linear
combinations of elements of 321

Given the estimated groups, {Gk, k =1,..., K}, we can obtain the post-Lasso estima-

tors of ay, and 3, ; as

-1

Apost ~1 ~ ~/ ~ -

Q. = E I17iM27i$172‘ E xl,iMQ,iyi for k = 1, ey K,
iGék iEGk

Hpost ~!  ~ -1 ~ ~ ~ post . A

We show in the proof of Theorem 4 that the C-Lasso estimators & and 6272‘ are asymptot-
ically equivalent to their post-Lasso versions 4 and BAS?, respectively. The following

theorem reports the limiting distributions of 42" and 5%

Theorem 5 Suppose that Assumptions A.1-A.3 hold. Then
(O NeT (65" — of) — Q(_kl)Ek,NT = N(0, Q@%V(,{)Q(‘kl))for k=1,.. K,
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(ii) VTSo (35" — B5;) = N (0,S5Vsy,;S}) fori =1, ..., N,
where Q(ry, By N, V(r), and Vo ; are as defined before Theorem 4 and S, is as defined

in Theorem 4.

Given the asymptotic results in Theorems 4 and 5, one can make inference as if the
true group membership is known. Despite the asymptotic equivalence of the C-Lasso esti-
mators and their post-Lasso versions, it is well known that the post-Lasso estimators tend
to have smaller finite sample bias in simulations and are thus recommended for practical
uses. Despite this, in order to make inference on the long-run cointegrating relationship,
we have to remove the bias. In principle, one can consider either the panel DOLS or fully
modified OLS (FMOLS) method as in Kao and Chiang (2001) and Mark and Sul (2003)
based on the estimated groups. The procedure is standard and thus omitted. Alterna-
tively, we can consider the use of DOLS idea in the C-Lasso procedure, which yields the
C-Lasso-based dynamic PLS (DPLS) estimation procedure. See the next subsection for

details.

1.4.4 The case of dynamic PLS

In this subsection, we focus on the dynamic PLS estimation of the panel cointegration
model with latent group structures. We show that the results in Theorems 4 and 5 continue
to be valid with little modification.

For notational clarity, we now assume that {y;; x1; } are generated by

Yit = Mi + m,ﬂut + Uy
; )

T1it = T14—1 + E1,it
where 11;, u;:, and €, ;; are defined as before, and 3, ;’s exhibit the latent structures in (3).
To consider the panel DPLS estimation method, we follow Saikkonen (1991) and

Stock and Watson (1993) and make the following assumption.

Assumption A.4. (i) The process {u;} can be projected on to {&;,} as follows: u; =
o0 o0 . .
ijfoo Yij€1,it+j + Vit, Where ijfoo 174]] < o0, vy is error term with mean zero and

finite 2¢™ moment where ¢ > 4, and v;; and €1,; are uncorrelated for all lags and leads.
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(i) As (N, T) — oo, there exists a > 1/2such that T* 3. ||;;]] = 0, NI —
0, and N'/2p,T~* — 0.

Assumption A.4(i) ensures that E(eq;v1,) = 0 for k = 0,41, £2,... and As-
sumption A.4(ii) ensures that the values of £, ;; in the very remote past and future have
only negligible impact on u;;. Therefore we can truncate the leads and lags and run the
following DOLS regression model

P2
Yir = i + BT + Z Vi AT + vh, (10)
j=—D2
where u}t = v, + Vi, and v, = Z| 1> YijATy1 ;44 signifies the approximation/trun-
cation error. Let x5, denote a collection of the lags and leads of Az @ oy =
(A:p’17i7t_152, ey A:)j’17i7t+p2)/. Let B3, = (7{7_152, ...,%fpz)’ and py = (2p2 + 1)p;. After the

within-group transformation, we have the following model

D2

~ o !~ I A ~f
Y = BT+ Z Vij AT i1 + Uy
Jj=—D2
/= T ~t
= BTt + BoiTou + Uy, (11)
T e S R Vo g
where ¥;, = v;, — 0], 0] = 7=5=- >, ;%1 Uyy» and g and Z; are analogously defined.

As before, we can continue to consider the C-Lasso-based PLS regression and obtain
the Lasso estimators of 31 ;, 32, and c,. We denote these estimators as 31[,)1‘7 52[,)1‘7 and &P
where D abbreviates dynamic PLS (DPLS). Let G, denote the estimated group as before.
The corresponding post-Lasso estimators of a;, and 3, ; take the form

-1

~D,post ~/ ~ ~/ ~ _
ay = E «leiMQ,ifKu E .fL'17iM27Z'yi fork=1,..., K,
’ieék iEGk

~/ ~ ~ D, post . A
Ty, (yi — TG, ) fori € Gy,

AD,post ~!
2,i = (x2,ix2,i)

~ ~ ~ ! ~ ~
where Z1,; = (T1;py41s -, T14i7—po) » Ui and To; are analogously defined, and M,; =
-1
= =1 =1
Ir_9p, — T2 (xQ,iIZi) Lo -
. . . ~D t A»D t
The following theorem shows the asymptotic properties of &, """ and (3, ;" where

expressions for both V() and Vs, ; are greatly simplified.

18



Theorem 6 Suppose that Assumptions A.1, A.2(i)-(iii) and A.3-A.4 hold. Suppose that
there exists a constant cy, such that minj<;<y Xo,; = Coo > 0. Then

(VNI (607 — ) = N(0, QY Q) fork =1, K,

(ii) VTSo(By " — BY,) = N (0,S:Vao,;Sh) fori = 1,...,N,
where Qi) = limN,ﬁoo ﬁ Zze(;g D14, V&) = limy, o0 NL,C Ziecg £ %0, Qo =

-1 _ y—1 —1 . I —1/2 T
QOO,i_QOI,inLZ’QlO,i Cdem,i = Egg,iVm,ixgg,i with V22,z‘ = hmT—>oovar(T / thl $2,ituz‘t)-

Even though we have not stated in the above theorem, & and Bgz are asymptotically
equivalent to & " and Bf P respectively. Thus both C-Lasso-based DPLS estimators
and their post-Lasso versions have asymptotic normal distributions and are asymptotically
oracally efficient. One can readily construct the usual t-statistics and F-statistics to make
inference. For example, to make inference on the group-specific long-run cointegrating

relationship, we can estimate Q) and V) respectively by?

E ‘Tl 2]\42 1.%‘1@ andV : OOZQll iy

ZG k ZEGk

Quw = NkTQ

where {2y ; and €24, ; denote the HAC estimator of the long-run variance-covariance com-
t t
ponents Qqo; and 1, in ;. In practice, we recommend the use of &, D.post and ,62 PO

because the post-Lasso estimators typically outperform the C-lasso ones.

1.4.5 The case of incidental time trends

Our cointegrated panel model can be extended to models with both individual fixed

effects and incidental time trends,
Yie = Wi + pit + Bri®ri + BoiTos +uy, t=1,..,Nandt=1,.. T, (12)

where the incidental time trend p;t is introduced, the other variables are defined as above.
In the original case, we can eliminate the individual fixed effects y; in (2.1) via the within-
group transformation,

~ / ~ ~ ~
Uit = P11 + BoiT2e + Ui,

? Alternatively, we can consistently estimate Q) by Q(k) = ﬁ > ied, 1,8
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where y;; = yir — % Zthl Yit» Ti¢ and u;; are analogously defined. The asymptotic proper-
ties are built on the demeaned data. When incidental time trends are allowed, we consider
the detrended data on above model (4.4) to eliminate both individual fixed effects and

incidental time trends. Then we have
Yit = 611331% + Ba,iT2,it + Wi, (13)

where v;; = vy — Zstl ?/isgé (Zstl 9592) B g, gt = (Lt)/, and 71 4, T2, and u; are
analogously defined. Since Phillips and Hansen (1990) and Hansen (1992) (p.91) have
shown that the estimation of 3; ; is invariant to the presence of incidental time trends. Thus
we can simply apply the same estimation procedure in Section 2.2 with dotted variables.
And the asymptotic theorem can be modified with the detrended data. Given above model

(4.4), we note that the incidental time trends come from random walk with drift, such that

t
0
T = QG + T1—1 + €1 = ot + E €1,is = T1,0 + it + 25,

s=1
where z{ ;, = S €1 is purely random walk process. Define 7 = diag(1,7~") and
g(r) = (1,r)". Lett = [Tr], then as T — oo, krg: — g(r) uniformly in r € [0,1]. By

functional central limit theorem and continuous mapping theorem, we have

it 1 Ty it 1 d / B
Zﬁ T Z \/’TF&Tgt (? ; ﬁTQtQt”T) Krgr
> Bur) — [ B )glrdr < / g(r)g(r)') g(r) == BI(r)

where BJ;(r) is arandomly scaled detrended Brownian motion and are independent across
individual 7. Following the analysis in Section 4, we can show Theorem 4.1-Theorem
4.3 hold under detrended data. And the limiting distribution in Theorem 4.4-4.6 can be
modified under different asymptotic moments on QQ;, and V;, upon detrended Brownian

motion.
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1.5 Monte Carlo Simulation

In this section, we evaluate the finite-sample performance of both PLS-based and

DPLS-based C-lasso estimates and their post-Lasso versions.

1.5.1 Data generating processes

We consider three data generating processes (DGPs). The observations in DGP1-
DGP3 are drawn from three groups with NV; : Ny : N3 = 0.3 : 0.4 : 0.3. And that in
DGP4-DGP5 are drawn from the same group structures in empirical applications, where
DGP4 is drawn from two groups with V7 : Ny = 0.9 : 0.1 and DGPS5 is drawn from three
groups with Ny : Ny : N3 = 0.5 : 0.3 : 0.2 There are four combinations of the sample
sizes with N = 50, 100 and 7" = 40, 80.

DGP 1 (Strictly Exogenous Nonstationary Regressors) The observations (y;;, x},) are

generated from the following cointegrated panel,

_ 0/ _ 0/
Yit = i + 57 it + s = pi + 81140 + Uit
Tiit = T1i—1 + €14t

where 1; ~ IID N(0,1), zjy = 1, is a 2 x 1 vector, £ = (uj, €' )" follows a multi-

variate standard normal distribution, and 3¢ = B?’i exhibits the group-structure in (3) for

K =3 and
o o o[04 1 1.6
(a1, 03, 03) = 16/ ' \1/) \o4) |’

DGP 2 (Weakly Dependent Nonstationary Regressors) The observations (y;;, x},) are
generated via (5.1). Note that Soe;y = ui, S1€i = €1,4,and S, = pi,where Sy =
(1,0,0,0),5 = (0,1,1,0),and S, = (0,0,0, 1). &;; are generated from a linear process:
€4 = Z;; Vi€ir—;, where e are IID N (0, Iy) , ¢ = 0.5+ 5732 - Q}/Q, and Q}/Q is the

1 03 02 0
03 1 0.2 0.2

02 03 1 0.2

0 02 02 1
DGP 3 (Weakly Dependent Nonstationary and Stationary Regressors) The observa-

symmetric square root of )y =
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tions (y;, z},) are generated from the following cointegrated panel,

_ 07 _ or 0
Yit = i + By Tip + wip = p1; + 51,i131,¢t + B5;T2,it + Uit
Tl = T14t-1 + €1t

where y; ~ IID N(0,1), z14 is a 2 x 1 vector, 582- exhibits the group structures and
preserves the setting in DGP1 and x5, = &3, only contains one stationary regres-
sor. Note that Spe;y = wit, S1€it = €1, 5264 = €2,4,and Sye;1 = i, where S) =
(1,0,0,0,0),5; = (0,1,1,0,0), S; = (0,0,0,1,0) and S, = (0,0,0,0,1). &; are
generated from a linear process: ¢; = Z;’il Yije;—j, where ey are IID N (0, Ig),

iy =0.5-5735. 95/2, and Q;ﬂ is the symmetric square root of {2y =
1 03 02 02 O
03 1 02 0 0.2
0.2 02 1 0 0.2 |.The coefficients of the stationary regressors are het-
0.2 0 0 1 0.2

0 02 02 02 1
erogeneous across all ¢ such that 55 ; ~ IID N(c, 1) with ¢ = 0.5.

DGP 4 (Mimic Empirical Applications Table Panel A) The observations (y;;, x},) are
generated via (5.1), where z;; = x;; contains one nonstationary regressor. Note that
Sogit = Wi, S1€i = €1,and Sy = pg,where Sy = (1,0,0),5; = (0,1,0), and
S, = (0,0,1). € are generated from a linear process: ¢; = Zj’;l Yije;—j, where

ey are IID N (0, I3) , ¥;; = 0.5 573 91/2, and Q}/z is the symmetric square root of
1 03 0
Q=103 1 02 |.Andp = j}; exhibits the group-structure in (3) for K = 2

0 02 1
and has the similar estimates in Table Panel A (a¥, a9) = (0.9, —0.7) .

DGP 5 (Mimic Empirical Applications Table Panel B)The observations (y;;, 2,) are
generated via (5.1). The innovation processes are generated from via the same processes
in DGP4 and 3 = 69’2- exhibits the group-structure in (3) for A’ = 3 and has the similar
estimates in Table Panel B (o, a3, ad) = (0.9,0.2, —0.6) .

In all cases, the number of replications is 10000.
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1.5.2 Classification and estimation

We assume that the number of groups is known and examine the performance of clas-
sification and estimation. The results from Appendix show that the number of groups can
be nearly perfectly selected by the information criterion.

For classification, we consider the PLS-based C-Lasso classification results for DGPs
1,2,4 and 5, and both the PLS- and DPLS-based C-Lasso classification results for DGP 3.
For the DPLS-based classification in DGP 3, we introduce the lags and leads of z ;
in our penalized estimation by setting p, to be approximately [1"'/4]. More precisely,
we set po = 2 and 3 for 7' = 40 and 80, respectively. We follow Section 4.2 and
define two types of average classification errors: P(E) = ~ SN P(UE Epnr,) and
P(F) = * Zf;l P(UE_, Fynr.;) where P is the empirical mean over 500 replications.
Table 1 reports the classification errors for a variety of choices of the tuning parameter A
or equivalently c,. We summarize some important findings from Table 1. First, both types
of classification errors vary over cy. The smaller value of ¢, the smaller percentage of the
classification error. This means that a larger value of penalty term tends to lead to a higher
rate of misclassification. Second, as 7' increases, the percentage of classification errors
drops significantly. In fact, when 7' is 80, we have less than 1% individuals misclassified
across the board in all cases. Third, for DGP 3, the performance of the DPLS-based C-
Lasso classification is not as good as that of the PLS-based C-Lasso estimation. Despite
this fact, the former performance becomes acceptable when 7" = 80 for all choices of c).

For the estimation, we consider both the C-Lasso estimates and its post-Lasso ver-
sions. Specifically, for all DGPs we consider the PLS-based C-Lasso estimates, the OLS-
based post-Lasso estimates, the DOLS-based post-Lasso estimates, and the oracle esti-
mates which are obtained by using the true group structure. For DGP 3, we also consider
the DPLS-based C-Lasso estimates, its post-Lasso version, and the oracle estimates. For
all DOLS-based estimates, we set p, as above. We report the bias, root-mean-square er-
ror (RMSE), and coverage probability of the two-sided nominal 95% confidence interval
for the estimate 3, ; (1) of the first parameter (3 ; (1) in (3 ; for each DGP in Tables 2-4,
where all criteria are averaged over different groups and across 10,000 replications. For

example, we calculate the RMSE of 5’1,1‘ (1)’s as % £<:ol N RMSE(Gy, 1) with Gy, 1 denot-
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Table 1: Empirical classification errors in percentage

Cx 0.1 0.2
N T P(E) P(F) P(E) P(F)
DGP1 50 40 0212 0221 0515 0410
50 80 0.000 0.000 0.001 0.001
100 40 0218 0.226 0475 0.384
100 80 0.000 0.000 0.001 0.001
DGP2 50 40 0483 0.506 0.875 0.728
50 80 0.000 0.000 0.003  0.002
100 40 0.500 0.518 0.796 0.667
100 80 0.000 0.000 0.004 0.003
DGP3 50 40 0.535 0.563 0.799 0.684
(PLS) 50 80 0.001 0.001 0.005 0.004
100 40 0532 0562 0.745  0.640
100 80 0.000 0.000 0.003 0.002
DGP3 50 40 6.337 5.630 12255 9.700
(DPLS) 50 80 0.038 0.031 0.186 0.141
100 40 6.027 5432 11.453 9.138
100 80 0.033 0.026 0.157 0.120
DGP4 50 40 1.234 0.834 0821 0.543
50 80 0.014 0.008 0.004 0.002
100 40 1225 0.823 0.801 0.527
100 80 0.011 0.007 0.004 0.003
DGP5 50 40 0.000 0.000 0.040 0.004
50 80 0.000 0.000 0.000 0.000
100 40 0.000 0.000 0.032 0.004
100 80 0.000 0.000 0.001  0.000
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ing the first element in ¢y, for one replication and then average them across all replications
for each case.

Table 2 reports the estimation results for DGPs 1-2, Table 3 reports the estimation
results for DGP 3 based on both the PLS and DPLS methods, and Table 4 reports the esti-
mation results for DGPs 4-5. These tables reveal some general patterns. First, the bias and
RMSE of the C-Lasso estimates and their post-Lasso versions always decrease as either
N or T increases, and they decrease faster when 7T’ increases than when N increases. This
is as expected due to faster convergence rate of the estimates along the time dimension
than along the cross-sectional dimension. Second, when there is no endogeneity issue
in DGP1, the finite sample performance of the post-Lasso (OLS) estimates is close to
that of the oracle ones and dominates that of the DOLS-based post-Lasso estimates. This
indicates that the DOLS may hurt in finite samples when there is no endogeneity issue
in the model. Third, when endogeneity is present in DGPs 2-5, the post-Lasso (DOLS)
estimators are distinctly superior to the C-Lasso and post-Lasso (OLS) ones for all cases
and their performance is very close to that of the oracle one. Fourth, for DGP 3 the DPLS-
based C-Lasso estimates outperform the PLS-based C-Lasso estimates to a great margin,
but the post-Lasso estimates are not quite distinct from each other in terms of bias and
RMSE. Fifth, the coverage probabilities of the post-Lasso (DOLS-based) estimates are
generally quite close to the specified level (95%) in all cases (except for DGP 1 in the
absence of endogeneity). For DGP3 the coverage probabilities of DPLS-based C-Lasso
estimates are closer to the specified level compared to those of the PLS-based C-Lasso
estimates. These two facts suggest that DOLS bias-correction yields good coverage prob-
ability when endogeneity is present. Lastly, in general the post-Lasso DOLS estimates
outperform the C-Lasso estimates (except for DGP 1 in the absence of endogeneity) and

thus are recommended for practical use.

1.6 Application: Testing the PPP hypothesis

In this section we apply our method to reinvestigate the purchasing power parity (PPP)

hypothesis in international economics.
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Table 2: Correct specification, RMSEs, Biases and Coverage probabilities for various

estimates
c 0.1 0.2
(N,T) RMSE Bias Coverage % RMSE Bias Coverage %
DGP1  (PLS)
(50,40)  C-lasso 0.0180 0.0001 92.11 0.0174  0.0001 93.05

Post-lasso©™>  0.0173  0.0000 93.28 0.0173  0.0001 93.24
Post-lasso®OLS)  0.0226  0.0000 84.60 0.0226  0.0000 84.58
Oracle 0.0172  0.0001 93.30 0.0172  0.0001 93.30
(50,80)  C-lasso 0.0083  0.0001 93.09 0.0082  0.0001 93.51
Post-lasso©™>  0.0082 0.0001 93.55 0.0082 0.0001 93.55
Post-lasso®O)  0.0091  0.0001 90.27 0.0091 0.0001 90.27
Oracle 0.0082  0.0001 93.55 0.0082  0.0001 93.55
(100,40) C-lasso 0.0126  0.0001 92.70 0.0122  0.0001 93.75
Post-lasso©™>  0.0120 0.0001 94.04 0.0121  0.0001 94.01
Post-lasso®O)  0.0155  0.0001 85.75 0.0155 0.0001 85.75
Oracle 0.0120  0.0001 94.08 0.0120 0.0001 94.08
(100,80) C-lasso 0.0058  0.0001 93.82 0.0056  0.0000 94.42
Post-lasso©™>  0.0056 0.0000 94.42 0.0056  0.0000 94.42
Post-lasso®O)  0.0063  0.0001 91.57 0.0063  0.0001 91.57

Oracle 0.0056 0.0000 94.42 0.0056  0.0000 94.42
DGP2  (PLS)
(50,40)  C-lasso 0.0312  0.0247 81.20 0.0287 0.0223 85.67

Post-lasso®©™>  0.0276 0.0211 87.49 0.0276 0.0211 87.47
Post-lasso®O™S)  0.0215  0.0001 94.68 0.0215 0.0001 94.72
Oracle 0.0215  0.0000 94.73 0.0215  0.0000 94.73
(50,80)  C-lasso 0.0147 0.0117 71.52 0.0138 0.0107 75.74
Post-lasso®©™>  0.0135 0.0105 76.98 0.0135 0.0105 76.98
Post-lasso®OS)  0.0088  0.0000 94.15 0.0088  0.0000 94.15
Oracle 0.0088  0.0000 94.15 0.0088  0.0000 94.15
(100,40) C-lasso 0.0277 0.0243 65.88 0.0252 0.0218 73.51
Post-lasso®©™>  0.0240  0.0206 77.47 0.0240  0.0205 77.62
Post-lasso®OLS)  0.0148  0.0002 95.77 0.0148 0.0001 95.82
Oracle 0.0148 0.0001 95.85 0.0148 0.0001 95.85
(100,80) C-lasso 0.0131 0.0115 52.70 0.0120 0.0105 59.63
Post-lasso®©™>  0.0117 0.0101 62.01 0.0117 0.0101 62.00
Post-lasso®O)  0.0060 0.0001 95.27 0.0060 0.0001 95.26
Oracle 0.0060 0.0001 95.27 0.0060 0.0001 95.27
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Table 3: Correct specification, RMSEs, Biases and Coverage probabilities for various

estimates
o\ 0.1 0.2

(N,T) RMSE  Bias  Coverage % RMSE  Bias Coverage %

DGP3  (PLS)

(50,40)  C-lasso 0.0304 0.0234 83.31 0.0275  0.0206 88.14
Post-lasso©™>  0.0318  0.0193 81.70 0.0318 0.0193 81.74
Post-lasso®O™S)  0.0215  0.0000 94.95 0.0215  0.0000 94.90
Oracle 0.0214  0.0000 95.02 0.0214  0.0000 95.02

(50,80)  C-lasso 0.0134 0.0103 76.45 0.0126  0.0094 80.41
Post-lasso©™>  0.0156  0.0091 71.00 0.0156  0.0091 71.00
Post-lasso®O™S)  0.0086  0.0000 94.28 0.0086  0.0000 94.29
Oracle 0.0086  0.0000 94.29 0.0086  0.0000 94.29

(100,40) C-lasso 0.0265 0.0228 70.64 0.0237  0.0200 78.75
Post-lasso©™>  0.0254 0.0184 75.26 0.0254 0.0184 75.25
Post-lasso®OtS)  0.0148  0.0000 95.99 0.0148 -0.0001 96.02
Oracle 0.0147 -0.0001 96.11 0.0147 -0.0001 96.11

(100,80) C-lasso 0.0118 0.0101 60.45 0.0108  0.0091 67.20
Post-lasso©™>  0.0121  0.0088 63.49 0.0121  0.0088 63.49
Post-lasso®O™S)  0.0060  0.0000 95.01 0.0060  0.0000 95.01
Oracle 0.0060  0.0000 95.01 0.0060  0.0000 95.01

DGP3  (DPLS)

(50,40)  C-lasso 0.0234  0.0001 93.12 0.0232  0.0000 93.31
Post-lasso 0.0222  0.0000 94.39 0.0227  0.0000 9391
Oracle 0.0214  0.0000 95.02 0.0214  0.0000 95.02

(50,80)  C-lasso 0.0088  0.0000 93.63 0.0087  0.0000 94.24
Post-lasso 0.0086  0.0000 94.29 0.0086  0.0000 94.28
Oracle 0.0086  0.0000 94.29 0.0086  0.0000 94.29

(100,40) C-lasso 0.0166 -0.0002 94.28 0.0162  0.0000 94.67
Post-lasso 0.0156 -0.0005 95.53 0.0157 -0.0001 95.24
Oracle 0.0150 -0.0005 96.11 0.0150 -0.0005 96.11

(100,80) C-lasso 0.0061  0.0000 94.49 0.0060  0.0000 95.11
Post-lasso 0.0059  0.0000 95.16 0.0060  0.0000 95.11
Oracle 0.0059  0.0000 95.16 0.0059  0.0000 95.16
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Table 4: Correct specification, RMSEs, Biases and Coverage probabilities for various

estimates
cx 0.1 0.2

(N,T) RMSE  Bias Coverage % RMSE  Bias Coverage %

DGP4  (PLS)

(50,40)  C-lasso 0.0313  0.0256 68.18 0.0290 0.0233 73.88
Post-lasso(®™S)  0.0282  0.0221 76.03 0.0285 0.0226 76.03
Post-lassoPOLS)  0.0191 -0.0006 93.24 0.0188 -0.0001 93.57
Oracle 0.0188  0.0001 93.70 0.0188  0.0001 93.70

(50,80)  C-lasso 0.0148 0.0122 63.67 0.0140 0.0114 68.02
Post-lasso®™S)  0.0139  0.0112 68.76 0.0139 0.0112 68.76
Post-lasso(POLS)  0.0081  0.0000 94.05 0.0081  0.0000 94.06
Oracle 0.0081  0.0000 94.06 0.0081  0.0000 94.06

(100,40) C-lasso 0.0283  0.0253 45.97 0.0259  0.0229 53.83
Post-lasso(©-S)  0.0248  0.0216 58.16 0.0252 0.0221 58.16
Post-lassoPOLS)  0.0132  -0.0007 93.84 0.0130 -0.0002 94.22
Oracle 0.0130  0.0000 94.32 0.0130  0.0000 94.32

(100,80) C-lasso 0.0135 0.0121 40.06 0.0126 0.0113 46.00
Post-lasso®S)  0.0124  0.0110 47.67 0.0124 0.0110 47.67
Post-lassoPOLS)  0.0057  0.0000 94.48 0.0057  0.0000 94.49
Oracle 0.0057  0.0000 94.49 0.0057  0.0000 94.49

DGP5  (PLS)

(50,40)  C-lasso 0.0264  0.0228 51.59 0.0263  0.0226 52.22
Post-lasso(©™S)  0.0263  0.0226 52.19 0.0263  0.0226 52.21
Post-lasso(POLS)  0.0139  0.0001 94.18 0.0139  0.0001 94.18
Oracle 0.0139  0.0001 94.18 0.0139  0.0001 94.18

(50,80)  C-lasso 0.0128 0.0111 44.66 0.0128 0.0110 44.90
Post-lasso(©™S)  0.0128  0.0110 44.89 0.0128 0.0110 44.89
Post-lasso(POLS)  0.0061 -0.0001 94.31 0.0061 -0.0001 94.31
Oracle 0.0061 -0.0001 94.31 0.0061 -0.0001 94.31

(100,40) C-lasso 0.0244  0.0224 23.77 0.0242  0.0223 2431
Post-lasso(OS)  0.0243  0.0223 24.27 0.0243  0.0223 24.27
Post-lasso(POLS)  0.0097  0.0000 94.31 0.0097  0.0000 94.31
Oracle 0.0097  0.0000 94.31 0.0097  0.0000 94.31

(100,80) C-lasso 0.0119 0.0110 18.03 0.0119 0.0109 18.40
Post-lasso(©S)  0.0119  0.0109 18.40 0.0119 0.0109 18.40
Post-lasso(POLS)  0.0043  0.0000 94.45 0.0043  0.0000 94.45
Oracle 0.0043  0.0000 94.45 0.0043  0.0000 94.45
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1.6.1 PPP hypothesis

PPP assumes that in the absence of transaction costs and trade barriers, a basket of
identical goods will have the same price in different markets when the prices are expressed
in the same currency. Unlike the law of one price for one particular good, PPP is built
on a “basket of goods”, indicating that nominal exchange rate is adjusted by general
price index for the purpose of international comparison. The long-run equilibrium of PPP
was broadly accepted in the post-war period before the breakdown of the Bretton Woods
system in the early 1970s. In the post-Bretton Woods period, most applied work fails to
support the validity of the long-run PPP; see, e.g., Frenkel (1981) and Adler and Lehmann
(1983). Some researchers attribute this to the low power of time series unit root tests when
T is short and advocate the use of panel unit tests. Indeed, some panel unit root testing
results favor the PPP hypothesis in the post-Bretton Woods period; see, e.g., Oh (1996)
and Papell (1997). Even so, the empirical findings are still mixed. There remain two main
issues in testing the validity of PPP hypothesis by using panel data. One is the sample
selection issue and the other is the unobserved heterogeneity issue. Our cointegrated panel
model with latent group structures can provide a data-driven method to address these two

issues simultaneously and is expected to offer some new insight into the PPP hypothesis.

1.6.2 Model and data

The PPP hypothesis has two versions: strong and weak. We first consider the strong
PPP hypothesis. Denote the domestic price index as Py, the corresponding foreign price

index as Pj;, and £ as nominal exchange rate. If the strong PPP hypothesis holds, we

P;
Py

have the equation F;; = where we have suppress the dependence of E;; on 7 which is
typically fixed in panel studies. In the logarithmic form, we have e;; = p;; — pj;;, where
eir = log(Ey), pi = log(Py), and p;; = log(Pj;). Previous panel unit root tests are built
on the equation

eir = (Dit — Dje) + i, (14)

where u;; stands for real exchange rate. The rejection of the null hypothesis that the pro-

cesses {u;,t > 1} are all nonstationary is regarded as evidence in favor of the validity of
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the long-run PPP or mean-reversion of real exchange rate. The most important assump-
tion in the strong PPP hypothesis is that there exists a one-to-one relationship between the
nominal exchange rates and aggregate price ratios. In practice the movements may not be
directly proportional, leading to the cointegrating slopes deviating away from unity. Pe-
droni (2004) modifies (14) by allowing for heterogeneous coefficients across individuals

and estimating the following long-run PPP hypothesis in weak version
eir = i + Bi(pir — pjt) + wir = pi + BiApije + i, (15)

where ; is allowed to vary across countries and is expected to be positive, Ap;;; =
Bi(pi — pji), and p; is the unobserved fixed effect for country 1.

In our weak PPP model, we assume that ; exhibits the latent group structures stud-
ied in this paper. By pooling the slope coefficients within a group together, we can obtain
more efficient estimates than those obtained from a fully heterogeneous cointegrated panel
model. In addition, since our C-Lasso method is a data-driven method, we do not man-
ually assign different countries to different groups, which alleviates the sample selection
problem.

We obtain monthly and quarterly data of nominal exchange rate and consumer price
index (CPI) from Jan. 1975 to Jul. 2014 covering 99 countries from International Fi-
nancial Statistics. Here, we use CPI to represent the general price index. We choose the
time span from 1975 to 2014 to cover the post-Bretton Woods period. Given the fact that
Euro dollar was introduced to the global financial markets as an accounting currency on 1
January 1999, we consider two subsamples. We obtain a balanced panel with 67 countries
in the period 1975-1998 and another balanced panel with 99 countries in the period 1999-
2014. For the quarterly data, we have 91 time series periods in 1975Q.1-1998.Q4 and 55
times series periods in 1999.Q1-2014.Q2. For the monthly data, we have 283 time series
periods in period 1975.M1-1998.M12 and 172 times series periods in 1999.M1-2014.M7.

1.6.3 Group and estimation results

In this section, we present the classification and estimation results for the quarterly

data. The results for the monthly data are relegated to the online supplementary appendix.
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Table 5: The information criterion for different numbers of groups (quarterly data)

From 1975.Q1-1998.Q4 From 1999.Q1-2014.Q2
K/ex 0025 0.5 0.10 020  0.025 005 0.10 0.20
0.7503 -0.7503 -0.7503 -0.7503 -0.2074 -0.2074 -0.2074 -0.2074
11262 -1.1262  -1.1262 -1.0716 04719 -0.4730 -0.4902 -0.4836
-1.1622 07961 -1.0956 -0.7135 -0.5230 -0.5319 -0.5268 -0.4418
0.7719 -0.7507 -0.7507 -1.0596 -0.5037 -0.4994 -0.4958 -0.3815
0.7233  -0.7203 -0.6750 -0.6750 -0.4789 -0.4749 -0.3499 -0.2093
0.6946 -0.6405 -0.6005 -0.6844 -0.4454 -0.4358 -0.3566 -0.1720

AN N R W N -

We determine the number of groups by using the information criterion (IC) proposed in
Section 4.5. Table 5 reports the information criterion with different tuning parameter
values: A\ = ¢, x T~3/* where ¢, = 0.025, 0.05, 0.1, and 0.2. Obviously, IC is robust
to the choice of tuning parameters. Following the majority rule, we decide to select K =
2 groups for the period 1975.Q1-1998.Q4 and K = 3 groups for the period 1999.Q1-
2014.Q2. Note that the IC is minimized at ¢y = 0.1 and 0.05 for the first and second
subsamples respectively. We will choose ¢y = 0.1 and 0.05 for these two subsamples
respectively and report the estimation results.

Table 6 reports the DPLS estimation results for the subsamples 1975.Q1-1998.Q4 and
1999.Q1-2014.Q2 by using ¢, = 0.1 and 0.05, respectively. We summarize some impor-
tant findings from Table 6. First, the group-specific estimates vary a lot across groups,
which indicates strong unobserved heterogeneities in both subsamples. Second, both C-
Lasso estimate and its post-Lasso one for Group 1 are reasonably close to the unit in both
the first and second subsamples, which lends some positive support to the weak form long-
run PPP hypothesis. But the estimates in Group 2 in either subsamples suggest negative
long-run relationship between the price index difference and the exchange rate, which
contradicts the long-run PPP hypothesis. The estimate for Group 3 in the second subsam-
ple is positive and quite small in comparison with the unity, which suggests quite weak
proportional relation between the change in general price index and that of exchange rate.
Third, similar results are also observed for the monthly data, and the long-run relation

between nominal exchange rate and general price index presents similar patterns in either
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Table 6: Estimation results for the quarterly data

Panel A: From 1975.Q1-1998.Q4

Pool Group 1 Group 2
DOLS C-Lasso post-Lasso C-Lasso post-Lasso
B; 0.7465  0.8609  0.8608 -0.7007 -0.6992
(0.0207) (0.0190) (0.0190) (0.0857) (0.0857)
Panel B: From 1999.Q1-2014.Q2
Pool Group 1 Group 2 Group 3

DOLS C-Lasso post-Lasso C-Lasso post-Lasso C-Lasso post-Lasso

B; 03623  0.8667  0.8681 -0.5732  -0.5775 0.1986 0.1960
(0.0184) (0.0189) (0.0189) (0.0227) (0.0228) (0.0296) (0.0296)

subsample period. This indicates the robustness of our findings.

Table 7 summarizes the group classification results for the two subsamples; see also
Figure 1 for the classification results for the second subsample. Interestingly, we find that
the majority of the countries in the first subsample are classified into Group 1, which indi-
cates the long-run PPP holds for most countries in the period 1975.Q1-1998.Q4. During
this time span, we have only 68 countries in the dataset and some developing countries
like Argentina, Brazil, and Russia are excluded from our subsample due to the fact that
they have experienced hyperinflation. For the second subsample, we find even more in-
teresting results. Figure 1 suggests that those countries that support the long-run PPP
equilibrium are mainly located in Europe, Africa, middle East, and north American. The
members of Group 1 suggest a polarization of economic development. Further, we ob-
serve that most countries in Groups 2 and 3 are either fast-growing or middle-income
countries (e.g., South Korea, Singapore and Brazil) in the last decades in East-Asia and
South America. It confirms the Balassa-Samuelson effect, where the productivity differ-
entials are one of the most important factors behind the PPP deviation, see Balassa (1964)
and Samuelson (1964). In this case, countries with rapidly expanding economies should
tend to have more rapidly appreciating exchange rate. In general, our results suggest

heterogeneous behavior in the long-run PPP hypothesis.
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Table 7: Classification results for the quarterly data

Panel A: From 1975.Q1-1998.Q4

Group 1 (N1 = 62)

Algeria Australia Austria Bahrain Belgium
Bolivia Botswana Canada Colombia Costa Rica
Cyprus Denmark Dominican Egypt El Salvador
Finland France Ghana Greece Guatemala
Honduras Hungary Iceland India Indonesia
Iran Ireland Israel Italy Ivory Coast
Jamaica Japan Jordan Kenya South Korea
Luxembourg Malta Mauritius Mexico Morocco
Nepal Netherlands New Zealand Nigeria Norway
Pakistan Paraguay Philippines Portugal Singapore
South Africa Spain Sri Lanka Sudan Sweden
Switzerland Tanzania Thailand Trinidad and Tobago Turkey
Uruguay Venezuela

Group 2 (Ng = 5)

Ecuador Kuwait Malaysia Myanmar Saudi Arabia

Panel B: From 1999.Q1-2014.Q2

Group 1 (N1 = 49)

Angola Argentina Austria Bangladesh Belgium
Botswana Brunei Canada Costa Rica Denmark
Dominican Europe Finland France Germany
Ghana Honduras Iceland Iran Italy
Jamaica Japan Jordan Luxembourg Malawi
Mexico Mongolia Morocco Mozambique Netherlands
Nigeria Norway Pakistan Romania Saudi Arbia
Sri Lanka Sudan Sweden Switzerland Tanzania
Trinidad and Tobago Tunisia Turkey Uganda United Kingdom
Ukraine Venezuela Viet Nam Zambia

Group 2 (N2 = 23)
Albania Armenia Australia Bolivia Brazil
Bulgaria Colombia Congo Croatia El Salvador
Georgia Hungary Ireland Ivory Coast Kuwait
Latvia Macau Moldova New Zealand Peru
Philippines Spain Thailand

Group 3 (N3 = 27)
Algeria Cambodia Czech Republic Egypt Guatemala
Hong Kong India Indonesia Israel Kazakhstan
Kenya South Korea Kyrgyzstan Laos Lithuania
Macedonia Malaysia Mauritius Myanmar Nepal
Paraguay Poland Portugal Russia Singapore
South Africa Uruguay

Note: Countries in bold denote coincidences of the classification results based on the monthly and quarterly datasets.
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Figure 1: The geographic features of countries in the three groups in subsample 2 (1999-

2014)

1.7 Conclusion

In this paper we propose a C-Lasso-based PLS procedure to estimate a cointegrated
panel with latent group structures on the long-run cointegrating relationships. We al-
low for completely heterogeneous short-run dynamics but assume that long-run relation-
ships are homogeneous within a group and heterogeneous across different groups. Our
method can determine the individual’s group membership consistently and estimate the
parameters efficiently. To remove the asymptotic bias in the estimators of the long-run
parameters, we also consider the dynamic PLS procedure. Simulation results confirm the
asymptotic studies. An application to testing the validity of the long-run PPP hypothesis
suggests strong evidence of latent group structures.

There are several interesting topics for further research. First, we do not allow for
cross-sectional dependence in our model. In macro-econometrics, cross-sectional de-
pendence is frequently modelled via the multi-factor error structure (Pesaran, 2006) or
interactive fixed effects (Bai, 2009). Depending on whether we allow for unit-root be-
havior in the factors, different methods can be called upon (see, e.g., Bai and Ng, 2004;

Bai and Kao, 2006; Bai et al., 2009; Bai and Ng, 2010). But this certainly complicates
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the asymptotic analysis and deserves a separate treatment. Second, when the dimension
of the nonstationary variables is higher than 2, multiple cointegrating relationships may
exist. It is worthwhile to consider the panel vector error-correction model or likelihood-

based panel cointegration analysis in this case. We leave these topics for future research.
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2 Nonstationary Panel Models with Latent Group Struc-

tures and Cross-sectional Dependence

2.1 Introduction

Nonstationary panel models have been extensively used in empirical analyses. Their
asymptotic properties are well explored in classical settings, such as the assumptions of
common coefficients and independence across individuals. Although these assumptions
offer efficient estimation and simplify asymptotic theory, they are often hard to meet in
real-world economic problems. In one case, researchers often face the issue of unob-
served parameter heterogeneity that figures within models, including the “convergence
clubs” (Durlauf and Johnson (1995) and Quah (1997), the relation between income and
democracy (Acemoglu et al. (2008)), and the “resources curse” (Van der Ploeg (2011)).
In another case, globalization and international spillovers raise to a new challenge—cross-
sectional dependence. In general, these two features can substantially complicate asymp-
totic theory and statistical inference in nonstationary panels. The goal of this paper is to
simultaneously study the unobserved parameter heterogeneity and cross-sectional depen-
dence in nonstationary panel models. In the meanwhile, we seek to maintain simple and
efficient estimation.

In this paper, we consider a nonstationary panel model with latent group structures
and unobserved common factors. Specifically, we first assume that the long-run relation-
ships are heterogeneous across groups and homogeneous within a group. The unobserved
structures offer flexible parameter settings and remain efficiency from pooling within a
group. Moreover, there are economic intuitions for considering group patterns on the
long-run relationships. For example, the long-run equilibriums in growth regression share
some common features in subsamples, such as developing and developed countries, but
reveal distinct patterns across subsamples. Second, we employ factor structures to model
cross-sectional dependence. In our model, we typically consider both stationary and non-
stationary common factors. For example, an oil price shock and a global technology trend

both affect countries’ GDP level. A stock market shock and a macro-growth trend both
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affect security prices. In general, our framework allow us to fit more complex features to
the data in empirical applications.

A distinctive feature of our estimation is purely data-driven. We propose a penal-
ized principal component (PPC, hereafter) method, which can be regarded as iterative
procedures between penalized regression and principal component analysis. These esti-
mation procedures provide three Lasso-type estimators for long-run relationships, namely
C-Lasso, post-Lasso and Cup-Lasso (continuous-updated) estimators, and principal com-
ponent estimators for unobserved common factors. We take advantages of a growing
literature on Classifier-Lasso techniques (see Su et al. (2016), Qian and Su (2016) and
Su et al. (2017)) to build reliable computation algorithm in the presence of unobserved
common factors.

Our theoretical results are concerned with developing a limit theory for our Lasso-type
estimators. We first establish preliminary rates of convergence for the group-specific esti-
mators and unobserved common factors. Next, we show classification consistency, which
indicates that all individuals are classified into correct group with a probability approach-
ing one (w.p.a.1). Moreover, we find that our Lasso-type estimators have non-negligible
biases, which come from two sources. The first bias is commonly noted in nonstationary
panels due to weakly dependent error processes (see Phillips and Moon (1999)). The sec-
ond part comes from unobserved stationary common factors. We can further show that the
stationary common factors complicates both asymptotic biases and covariance structures
but don’t affect consistency of the long-run estimators. In post-Lasso and Cup-Lasso es-
timators, we employ a fully modified procedure for bias-correction, proposed by Phillips
and Hansen (1990). Therefore, our estimators are centered around zero and achieve the
usual v/NT consistency in homogeneous nonstationary panel models. Furthermore, we
show the oracle property for our estimators, which are asymptotically equivalent to the
corresponding infeasible estimators, obtained by knowing the exact individuals’ group
membership. Lastly, we establish a mixed normal asymptotic distribution for our estima-
tors. Thus, the usual t, Wald and F statistics can be used for inference.

In above analyses, we assume the number of groups and that of common factors are

known. In practice, we propose three information criteria to determine the number of
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groups, the number of stationary common factors and the number of nonstationary com-
mon factors, respectively. We demonstrate that these information criteria can select the
correct number of groups and common factors w.p.a.1. In terms of simulation, we show
good finite sample performance for estimation and classification.

We illustrate the use of our methods by studying the heterogeneous behavior in in-
ternational R&D spillover model. Similar to Coe and Helpman (1995), we regress the
total factor productivity (TFP, hereafter) on domestic R&D capital stock and foreign
R&D capital stock. In existing work, there are two limitations in econometric meth-
ods. First, an important assumption underlying the original work is that all countries
obey a common linear specification. However, cross-countries productivity behavior typ-
ically reaches multiple steady states. In addition, recent work suggests two types of R&D
spillovers—positive technology spillovers and negative market rivalry effects (see Bloom
et al. (2013)). Therefore, a natural solution is to allow the parameters vary across coun-
tries and to reveal different spillover patterns. Second, variables like TFP and R&D stocks
apparently share some common patterns, such as global technology trends and financial
crisis shocks. In such cases, their regressions are misspecified and lead to inconsistent
estimates. Therefore, our econometric method yields a direct solution for these two prob-
lems, first, to introduce the latent group structures in parameters of interests and, second,
to estimate unobserved common patterns directly from data.

In the empirical application, we first confirm positive technology spillovers in pooled
sample after considering one common trend. Moreover, the group-specific estimates iden-
tify heterogeneous spillover patterns across countries. These results first indicates the ex-
istence of two types R&D spillovers—positive technology spillovers and negative market
rivalry effects in country level. Based on the group patterns, countries are classified into
three groups—“‘Convergence”, “Divergence”, and “Balance”. The major sources of tech-
nology changes in “Convergence” group come from positive technology diffusions. As
a result, the catch-up effects through the channel of technology diffusion favor growth
convergence hypothesis. Conversely, when market rivalry effects dominate technology
spillovers, we observe an overall negative R&D spillovers. For these countries, their tech-

nology growth rely on domestic innovations and exhibit divergence behavior. As a result,
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we explain the growth convergence puzzle by heterogeneous behavior in R&D spillovers.

A key contribution of this paper is offering a practical approach that accommodates
the unobserved heterogeneity and cross-sectional dependence in nonstationary panels.
We provide consistent and efficient estimators to the group-specific long-run relationships
even when individuals’ membership were unknown. The estimation method is similar to
that proposed by Su et al. (2016) (SSP, hereafter), but simultaneously accounts for cross-
sectional dependence. Recently several papers account for the unobserved heterogeneity
in large dimensional panel models by clustering and grouping, such as grouped fixed ef-
fects (Bonhomme and Manresa (2015)), structure breaks (Qian and Su (2016)), grouped
factor models (Ando and Bai (2016)). Almost all methods focus on stationary panel
models. Although Huang et al. (2017) consider the latent group patterns in cointegrated
panels, they do not allow for cross-sectional dependence. Relative to existing work, we
establish formal conditions and asymptotic properties under which the Lasso-type esti-
mators perform well in the sense of consistent estimates, good classification results and
faster convergence rates.

Our theoretical results also contributes to two strands of literature on cointegrated
panels and factor models. It is noted that the average and common long-run estimators
permit a normal asymptotic distributions. But the heterogeneous long-run estimators have
nonstandard asymptotics (see Phillips and Moon (1999), Kao and Chiang (2001), and
Pedroni (2004)). In this context, we maintain the simplicity of normal distribution with
unobserved parameter heterogeneity. In addition, there is a growing literature using factor
models to capture cross-sectional dependence under large N and large 7' settings (see Bai
and Ng (2002), Bai (2004), Phillips and Sul (2003), Pesaran (2006), Bai (2009), and Moon
and Weidner (2017)). Compared to existing work, we formally study the presence of both
stationary and nonstationary common factors. In addition, an appealing feature of our
econometric theory is to build a linkage between time series asymptotics for integrated
processes and advanced panel techniques. In this sense, the asymptotic results allow for
more general forms of panel data features and time series properties both in dependent
variables and common factors.

Our empirical work speaks to a long literature on growth convergence, in particu-
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lar the analyses of global technology diffusions (see Barro and Sala-i Martin (1992),
Quah (1996), Eaton and Kortum (2002), and Griffith et al. (2004)). For example, Barro
and Sala-1 Martin (1997) theoretically confirm a uniform convergence behavior across
economies based on technology diffusions. However, Quah (1996) believes that eco-
nomic structures varies in many —explicable and inexplicable-ways across countries. In
addition, he argues the uniform convergence results may come from the misleading sta-
tistical implications of nonstationary time series. In this context, our empirical results
reconcile these two controversial arguments on growth convergence. We find that some
countries exhibit convergence but others fail, which is determined by the dominated ef-
fects in R&D spillovers.

This paper is structured as follows. Section 2 introduces a nonstationary panel model
with latent group structures and cross-sectional dependence and proposes a penalized
principal component method for estimation. Section 3 explains main assumptions and
establishes asymptotic properties of the three Lasso-type estimators. Section 4 reports
simulation results. Section 5 studies the heterogeneous behavior of international R&D
spillovers. Section 6 concludes. All proofs are relegated to the appendix.

NOTATION. Hereafter, we write the integral fol W (s)ds as [ W and define Q22 to
be any matrix such that Q = (Q'/2)(Q'/2)’, and BM (£2) to denote Brownian motion with
the covariance matrix 2. For any m x n real matrix A, we write the Frobenius norm
|| A||, the spectral norm || A||,,, the transpose A’. The operator 2> denotes convergence
in probability, = weak convergence, a.s. almost surely, and [z] the largest integer less
than or equal to x. When A is symmetric, we use fimax(A) and fimin(A) to denote its
largest and smallest eigenvalues, respectively. Let M/ < oo be a generic positive number,
not depending on 7" or N. We also define the matrix that projects onto orthogonal space
of Aas My = Iy — A(AA")"1A". Let 0,5, denote a p x 1 vector of zeros and 1{-}
the indicator function. We use “p.d.” and “p.s.d.” to abbreviate “positive definite” and
“positive semidefinite”, respectively. Unless indicated explicitly, we use (N,T) — oo to

stand for that /V and 7" pass jointly to infinity.
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2.2 Model and Estimation

In this section, we first introduce a nonstationary panel model with latent group struc-
tures and cross-sectional dependence. Then we propose a penalized principal component

method to estimate the model.

2.2.1 Nonstationary panel model with latent group structures and cross-sectional

dependence

The generating processes of (y;;, x;;) are as follows

Yit = @Q,%t + €t
(16)

Tit = Tijt—1 + Eit,
where y;; is a scalar, x;; is a p X 1 vector of nonstationary regressors of order one (I(1)
process) for all 4, e;; is an error term and assumed to be cross-sectionally dependent due
to unobserved common factors, &;; is assumed to have zero mean and finite variance, and
Y is a p x 1 vector of unknown long-run cointegration relationships. We assume that 3;
are heterogeneous across groups and homogeneous within a group. And we denote the

true values of 3; as BZQ, to follow the latent group structures, such that

;

ad  ifieGY
B =< S (17)

% ifie GY
\

where af # o for any j # k, UE,GY = {1,2,...N}, and GYNG) = & for any
J # k. Let Ny = #G), denote the cardinality of the set GY. For the moment, we assume
that the number of group K is known and fixed but each individual’s group membership
is unknown. We propose a information criterion to determine the number of groups in
Section 3.6.

Since e;; is cross-sectionally dependent, we impose a multi-factor structure on e;;.
That is,

Cit = )‘?/fto +uy = )‘?;f{)t + Ag;fgt + Ui,
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where f} is an r x 1 vector of unobserved common factors that contains an r; x 1 vector
of nonstationary factors f{)t of order one (I(1) process) and an r, X 1 vector of stationary
factors fzot (I(0) process), A; is an r x 1 vector of factor loadings and u;; is the idiosyn-
cratic component of e;; with zero mean and long-run variance, which is assumed to cross-
sectionally independent. We emphasize that cross-sectional dependence only comes from
common factors f; such that e;; and ej; are correlated due to common factors f; in the
form of E(eyejr) = NE(fif])\; # 0.

If f; only contains stationary factors, in some cases we can still obtain consistent
estimators of 3; by a penalized least squares (PLS, hereafter) method when ignoring cross-
sectional dependence (see Huang et al. (2017)). However, if there are serial correlations
between dependent variable x;; and unobserved common factors f;, ignoring those factors
f+ yields biased inference for ;. Furthermore, the unobserved nonstationary factors lead
to inconsistency due to a spurious regression. In general, we fail to obtain consistent
and unbiased group-specific estimators by the PLS-based method in nonstationary panel
models with cross-sectional dependence.

Now we incorporate the multi-factor error structure to the first equation of (16) as
follows

Yit = ﬁ?’xit + )\?/fto + Ut (18)

Our estimation procedures are performed on model (18) by the penalized principal com-

ponent method, proposed in Section 2.2. Let

o= (Oél, ...,OéKO)7 ,8 = (51, ‘”76N)7 A = ()\1, ...,)\N)/, and f = (fl, ...,fT),.

The true values of o, 3, A and f are denoted as o, 3°, A°, and f°, respectively. We also
use af, B2, A0 and f denote the true value of ay, 3;, A; and f;. Our interest is to infer
each individual’s group identity and obtain consistent estimators of both group-specific

long-run relationships a4, and unobserved common factors f;.

2.2.2 Penalized principal component estimation

In this section, we propose an iterative PPC-based procedure to jointly estimate the

long-run relationships 3;, unobserved common factors f; and to identify group member-
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ship. Here, we rewrite model (18) in vector form,
yi = z:8) + [ON +up = 8] + fIAY 4 foAy; + wi, (19)

where O = (2, f9), A2 = WYL N, v = (vir, - yir)s T, [, f5, and w; are anal-
ogously defined. As we discuss in Section 2.1, we can still obtain consistent estimates
of 5; when ignoring unobserved stationary common factors. The principal component

estimators of 3; and f are obtained from the following least objective function

N
SSR(ﬁm f1, A1) = Z(?Jz — i3 — fl)\li),(yz‘ — i — f1)\1z‘), (20)

i=1
subject to the constraint % = I,, and A A, being diagonal. Define the projection matrix

My, = Ip — Py, = Ip — f;;{. We can obtain the least squares estimator of J3; for each
given fi is

Bi = (xi My 2;) M y;, fori=1,..., N.

Given [3;, the variable e; = y; — x;8; = f\; + u; has a pure factor structure. Let e =
(e1,€9,...,en),aT x N matrix and A; = (A1, ..., \1n)" @ N X 1 matrix. We can obtain
the least squares objective function for f;, such that tr[(e — fiA})(e — fiA})']. By Bai

-1 _

(2009), we concentrate out A1 by its least square estimator, such that A; = € f1(f]f1)™' =

¢’ f1/T?. The objective function (20) becomes
tr(¢'Mye) =tr(e'e) — tr (flee' f1/T?).

The final least squares estimator (/3, f;) is the solution of the set of nonlinear equations,

b= (widyw) (M) @
flvl,NT = NlTQ i (?Ji - %Bz) (?Ji - %Bz)ll fb (22)
i=1

where M B= Ir — % fl f{, % f{ fl = I,,, and V| y7 1s a diagonal matrix consisting
of the r; largest eigenvalues of the matrix inside the brackets, arranged in decreasing
order. Based on (21) and (22), we can further show that _/A\’lf\l is a diagonal matrix with

descending diagonal elements as follows,

N

%A'lfh =T°f; <N1Tg Z <yi - 9515)1) <yi - xzﬁz)

i=1

[N

fl) = (T72f1f1> Vinte = Vinr.
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Given the initial estimates of 3; and f; obtained from (21) and (22), we propose a
penalized principal component method to estimate 3 and o , where 3 exhibits the latent

group structures. The PPC criterion function is given by

1 (B, . fi) = Qnr(B, i) + ZHH@ — o (23)
1=1 k=1
where QNT(B? fl) = ﬁ Zz]\il (yz - xzﬁz)/ Mf1 (yz - zﬁz) ) (N T) is the tunlng

parameter. Minimizing the PPC criterion function in (23) produces the Classifier-Lasso
(C-Lasso, hereafter) estimators of ; and «y, respectively. Then we update the estimates

of the nonstationary common factors f; as follows

fiVinr = NTZZZ — i) (yi — midy)' | fr. (24)

k=1 ZEGk

with the identification restrictions: %gf {f: 1 = I, and V} yr is a diagonal matrix with
descending diagonal elements. Since we allow for both stationary and nonstationary
common factors, we minimize the following equation to obtain consistent estimates of

stationary common factors f,

K

faVanr = % Z Z(yz — 2G5, — fidu) (i — midn, — fidn) | fo. (25)
k=1 ie@,

with the identification restrictions: %f éf 5 = I, and V5 nr is a diagonal matrix with de-

scending diagonal elements. After obtaining the estimates of f, we apply bias-correction

in post-Lasso estimators of 3 and . The biases emerge from the unobserved stationary

common factors, endogeneity, and serial correlation issues from weakly dependent error

terms.

Now we summarize the estimation procedures in the PPC-based estimation method.
We first obtain the prior estimates of Bl and f1 by solving equations (21) and (22). Sec-
ond, we minimize the above PPC criterion function (23), which produces the C-Lasso
estimates ﬁ and &. Third, with C-Lasso estimates of o, we update the estimates of non-
stationary common factor f; by (24) and estimate stationary common factors f; by (25).
Fourth, we apply bias-correction by a fully modified procedure in the post-Lasso estimator

of o, which is explained in Section 3.4. We iterate steps 2—4 until achieving convergence
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to obtain the Cup-Lasso estimators. Our estimators, which we refer to as “C-Lasso”,
“post-Lasso”, and “Cup-Lasso”, are based on the optimal group of cross-sectional indi-
viduals, according to the PPC criterion function. The triplet (B , fl) jointly minimizes
the objective function (23). Let BZ and &, denote the i** and k" columns of B and &,
respectively, i.e., B = (Bl, o BN) and & = (G, ..., a ). We study asymptotic properties

of the C-Lasso, post-Lasso and Cup-Lasso estimators below.

2.3 Asymptotic Theory
2.3.1 Main assumptions

In this subsection, we introduce main assumptions that are needed to study the asymp-

totic properties of our estimators B, & and fl.

Let szx(fl) = %x;MﬁIi, Ql(fl) :diag<Q1,xa:7 cey QN,xx)a and

1 ! 1 / 1 /
W$1Mfl.fl}1a11 W.ﬁlllell’galg cee leMflxNalN
1 ! 1 / 1 /

Q (f ) WxQMflxlaﬂ WZ‘QMfl.%‘QCLQQ v WI2Mf1.TNCL2N
2\J1) = . . )
ey M ey M Ay M

N2 INMpT1aN1T T yMpT20N2 N2 INMp{TNANN

where f; satisfies %zf{ﬁ = [,,. Note that Q5(f1) is an Np x Np matrix. Let w; =
(wit, &by AFY, f Y. and C = o (A, f) is the sigma algebra generated by factors and factor
loadings. Let M be a generic constant that can vary across lines.
We make the following assumptions on {w;} and {\;} .
Assumption 3.1 (i) For each i, {w;,t > 1} is a linear process: w; = ¢;(L)vy =
> oo PijVis—j» where vy = (v, v, ol oY is @ (14 p + 11 + 1ry) X 1 vector se-
quence of i.i.d. random variables over t with zero mean and variance matrix Iy, ,;
max; i<y F(||vi||?77¢) < M, where ¢ > 4 and ¢ is an arbitrarily small positive constant;
Vjt, Vs, v{ ', and v]* are mutually independent, and (v}, v5))" are independent across i.
(ii) maxi<icn oo 5¥||dijll < o0 and |¢i(1)] # 0 for some k > 2.

(iii) uy and ;4 are cross-sectionally independent conditional on C.

(iv) A; is independent of vj; for all i, j,and t.

Following Phillips and Solo (1992), we assume that {w;;} = {w;,t > 1} is a linear

process in Assumption 3.1(i). For latter reference, we partition ¢;(L) conformably with
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wy; as follows:

(L) or(L) o"(L) o (L)) [for(L) ér(L) ¢ (L)
o) = | 7 er(L) 6 (L) (L) | | e(D) eF(L) ¢M(L) 67 (L)
Z ¢i(L) ¢he(L) ¢hi(L) ¢ (L) 0 0 ¢hh(L) ¢"P(L)

¢f2u(L) ¢f2€(L) ¢f2f1(L) ¢f2f2(L) 0 0 ¢f2f1(L> ¢f2f2(L)

Since both nonstationary and stationary common factors do not depend on 7, we have
pI(L) = phe(L) = ¢P*(L) = ¢™5(L) = 0. Moreover, we assume that ¢!"/>(L) =
0. This assumption indicates that there exists no serial correlation or contemporaneous
correlation between the regression error u;; and unobserved stationary common factors
/3., and it ensures consistency for our initial estimators. The finite 2 + ¢ moments for
q > 4 ensure the validity of the law of large numbers (LLN) and functional central limit
theory (FCLT) for the weakly dependent linear process {w;;}. We frequently apply the

Beveridge and Nelson (BN) decomposition as follows
wi = ¢i(1)vip + Wig—1 — Wy,

where w;; = Z;io ngijvivt_j and qgij = ;41 Gis. Assumption 3.1(ii) gives the summa-
bility conditions on the coefficients matrix ¢;;. By Lemma (BN) in Phillips and Solo
(1992), we have » 77, J*eiillF < o0 — > im0 |4 ]IF < oo, which implies that by
has Wold decomposition and behaves like a stationary process. Specifically, we have
yr ¥

< oo under Y77, j'/?||¢]| < oo. The suitable choice of / ensures the
finite kth moment of w;. In our case, we need strong conditions to ensure the uniform

behavior across ¢. The second part of Assumption 3.1(ii) rules out potential cointegration
relationships among z;; and f7,. Assumption 3.1(iii) emphasizes that the cross-sectional
dependence only comes from the unobserved common factors. Assumption 3.1(iv) en-
sures that the factor loadings are independent of the generalization of the error processes
both over ¢ and across .

By Assumption 3.1, we have the multivariate invariance principle for the partial sum

process of w;;. That is,
1 .
— g wy = Bi(r) = BM;(€;) as T — oo for all i,
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where B; = (By;, BY;, B}, B}) isa (1+p+ry +1r3) x 1 vector of Brownian motions with
long-run covariance matrix §2;. We can also define the temporal variance 3; = E(w;ywy,)
and the one-sided long-run covariance matrix A; = Z;’;O E(wiwi;) = T + % of {w;t},
where (2; has the following partition

Qi Qg Qg Quay

Q; = Z E(wingo) = I‘; AT Y = 21, 22 23, o4,
Q31 Q32 33 O

j=—00 :

Q41 % Q42 % Q43 Q44

Let Sy, S, S, and S denote respectively the 1 X (14+p+7), px (1+p+7),r1 X (1+p+71)
and ro x (14 p+7), selection matrices such that Sjw;; = g, Sow;y; = €4, Sswy = AfY,

0
and S4wit = f%.

Assumption 3.2 (i) As N — 0o, +AYA" 5 5\ > 0. max; <y E||N?||* < M for some
q = 4and AYA) = Op (N'/?).

(ii) E| A2 < M and E|| 3|27 < M for some € > 0, q¢ > 4 and for all t.
AsT — 00, 75 SO fY A | BsBs and %Z?zl O 5 Sy > 0, where Bs is a
ri-vector of Brownian motions with long-run covariance matrix {233 > 0.

(iii) Let yn (s, t) = E(% Z@]L Uyuis) and &y = + Zfil uyuis — E(+ Z@]L Uiplis).-
Then max <, jc7 N? X E|€q|* < M and T2 5T lw(s, ) |12 < M.

(iv) There exists a constant pr, > 0 such that P (ming ;< y inff, prmin (Q1(f1) — 2Q2(f1)) = ¢pmin) =

1 — o(N~'), where the inf is taken respect to fi such that 2 f{ fi = I,.

Assumption 3.2(i)-(iii) imposes standard moment conditions in factor literature; see,
e.g., Bai and Ng (2002), Bai (2004). The last condition in Assumption 3.2(i) indicates that
the stationary factor loadings and the nonstationary factor loadings can be only weakly
correlated, which will greatly facilitate the derivation. Assumption 3.2(iii) imposes con-
ditions on error processes {u;; }, which are adapted from Bai (2003) and allow for weak
forms of cross-sectional and serial dependence in error processes. Assumption 3.2(iv)
assumes (1 (f1) — 2Q2(f1) is positive definite in the limit across ¢ when f; satisfies the
restriction %f 1 fi = I,.,. This assumption is the identification condition for 3;, which is
related to ASSUMPTION A in Bai (2009) (p.1241). Since f; is to be estimated, the identi-

fication condition for 3; is imposed on the set of f; satisfying the restriction % fifi=1,,.
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Assumption 3.3 (i) For each k = 1, ..., Ko, Ny/N — 7, € (0,1) as N — .
(1) ming <<k Hag — oz?H > ¢, for some fixed c, > 0.
(iii) As (N, T) — 0o, N/T?* = ¢; € [0,00), T/N* = ¢ € [0, 00).
(iv)As (N, T) — oo, Adp — 0, \TN~Y4d;2/ (log T)'* — o0, and d2N"9T~! (log T)' ™ —

Assumption 3.3(i)-(ii) are borrowed from SSP. Assumption 3.3(i) implies that each
group has an asymptotically non-negligible number of individuals as N — oo and As-
sumption 3.3(ii) requires the separability of group-specific parameters. Similar conditions
are assumed in panel literature with latent group patterns, e.g., Bonhomme and Manresa
(2015), Ando and Bai (2016), Su and Ju (2017). Assumption 3.3(iii)-(iv) imposes con-
ditions to control the relative rates at which N and 7' pass to infinity. Note that N can
pass to infinity at a faster or slower rate than 7". The involving of dr is due to the law of
iterated logarithm, such that d7 = O(loglogT'). One can verify that the range of values

for A to satisfy Assumption 3.3(iv) is A oc T~ for a € (0, Q;;).

2.3.2 Preliminary rates of convergence
. . <12
Let bz = ﬁz—ﬂ?, 6NT = min(\/ﬁ, T), CNT = min(\/ﬁ, ﬁ), 77]2VT = % Zf\il bz ,
and Hy = (FAYA) (&£ fr) x V| yr- We establish the consistency of f3; and f; by the

following theorem.

Theorem 7 Suppose that Assumptions 3.1-3.2 hold. Then
(i) % Zf\;l <B@ - 5?>/ %%Mfliﬂi <Bz - @?) = OP(1)>
(i) | Pr, = Pro| = or(1),

(iii) % iy 113 = B2 = op(1),
(iv) 51 fi = FPHA| = Op(nvr) + J20p(CRT).

Theorem 7(i) establishes the weighted mean square consistency of { BZ} Theorem?7(ii)
shows that the space spanned by the columns of f1 and f{ are asymptotically the same.
Given the weighted mean square consistency and Assumption 3.2(iv), we can further
establish the non-weighted mean square consistency of (3; in Theorem7(iii). As expected,

Theorem 7(iv) indicates that the true factor f can only be identified up to a nonsingular
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rotation matrix. Compared to Bai and Ng (2004) and Bai et al. (2009), our results allow
for both heterogeneous slope coefficients and unobserved stationary and nonstationary
common factors.

The following theorem establishes the rate of convergence for the individual and

group-specific estimators and the estimated factors as well.

Theorem 8 Suppose that Assumptions 3.1-3.2 hold. Then

(i) 3 2o 16: = P11 = Op(drT72),

(i) B; — 80 = Op(dy*T~* + \) fori =1,2,..., N,

(iii) (& 1y, .., Guiey)— (), ..., &%) = Op(drT 1) for some suitable permutation (éyy, ..., é r))
of (a1, ..., évic),

(iv) T-Y|fy — fOH, |2 = Op(N~' + d2T71).

Theorem 8(i)-(ii) establishes the mean-square and point-wise convergence of the slope
coefficients [3;, respectively. The usual super consistency of nonstationary estimators Bl is
preserved if A\ = O(T~1) despite the fact that we ignore unobserved stationary common
factors and allow for correlations between u;; and (x;, fft). Theorem 8(iii) indicates that
the group-specific parameters, o, ..., O‘?(m can be consistently estimated. Theorem 8(iv)
updates the convergence rate of the unobserved nonstationary factors in Theorem 7(iv).

For notational simplicity, hereafter we simply write ¢, for &y as the consistent esti-

mator of a’s. Let G = {i € {1,2,..,N}: B, = Gt fork =1,..., K. Let Gy denote

the group of individuals in {1,2, ..., N'} that are not classified into any of the K groups.

2.3.3 Classification consistency

In this subsection, we study the classification consistency. Define
EkNTz = {Z Q Gk’Z S G } and FkNTz = {Z g G0|Z € Gk}

wherei=1,..,Nandk = 1,..K°. Let Eyng = UiEGkEkNTi and Fjyr = UieékaNTi'
The events Ek N7 and Fk ~7 mimic Type I and Type II errors in statistical tests. Following
SSP, we say that a classification method is individual consistent if P(EkNT’Z») — 0 as

(N,T) — oo foreachi € GQand k = 1,..., K, and P(Fynr;) — 0as (N,T) — oo
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for each i € GY and k = 1,..., K. It is uniformly consistent if P(UX_ Fyyr) — 0 and

P(UE_ Finr) — 0as (N, T) — cc.

The following theorem establishes the uniform classification consistency.

Theorem 9 Suppose that Assumptions 3.1-3.3 hold. Then
(i) P(UKY, Eynr) < 000, P(Egnr) — 0 as (N, T) — oo,
(ii) P(UR2, Fint) < Sop2, P(Einr) — O as (N, T) — .

Theorem 9 implies the uniform classification consistency— all individuals within a

certain group, say GY, can be simultaneously correctly classified into the same group

(denoted G) w.p.a.1. Conversely, all individuals that are classified into the same group,

say Gr, simultaneously belong to the same group (GY) w.p.a.1.

2.3.4 Oracle properties, post-Lasso and Cup-Lasso estimators

In this subsection, we study oracle properties of PPC-based estimators. To proceed,

we add some notations. For £ = 1, ..., K, we define

N
1
UkNT ZZL’%MJ#O ( Ul“_fg)\g,b —_Z Uj+f2>\8] CLU> s
\/NkT N 2

<ZZ {t =5} — 2.1 {s < }]) Ao,

t=1 s=1

Binr = FT >

i€GY

Viwr = inkTiZ 5611 S0 (e (Vieut) — [1{t = s} — a1 {s <

e t=1 s=1
1 1
+ Z Ec(z))1{ie G)} — — Z aijEe () o Mpou;
VNIT & N

1
+ INT > i — Ee ()] Mo f25;,

: ~ 0
1eGy,

where 5, = g( 10/f?>_lfi)s7 s =1 {t - S} -, C=0 (A07 fo) , Ec ()

¢ (L) ¢ (L) ¢ (L)

t}] Lisp} 61(1)'S™

= Fc (-C),

ol (L) = ( 4" (L) ) - ( wt (L) o (L) ) 5% = (1,01xy), and 5% = (01, T,)
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Let

QN7 = diag NTQZwaow“... NKTQZ:UMfo:UZ ,

el i€GY
Q2NT,11 ce QQNT,lK
QQNT =
QQNT,KI e QQNT,KK

1 /
where QQNT’]C[ = N.NTZ ZiGGg ZjEG? SL’Z-Mf?JIj(IZ'j for k‘,l = ]., ey K. Let

Q1,1 - Q2,11 —Q2,12 ce —Q2,1K
—Qant21 Q12— Q222 .. Q22K
Ont = Qint—Qanr and Qp = . . . .
—Q2.K1 —Qz,m ces Q1NT,K - QQ,KK

where

Qlk—]\}gréo_ZEC</ Béz)a

zeGO

Qok1 = 11HC1>O NNk Z Z a;;Ec </ Bziéz,j) ;

i€Gy jeG?

-1
By =By, — / B, B} ( / Bng) Bs.

Letd - (dl, ...,dK). Let UNT - (Uv{]\/"]'v7 .o ”U;(NT)/’ BNT - (BiNT, . '7B}(NT)/7

Vvt = (Vings - -, Vienr) and Byt = Byt + Benro. The following theorem reports

the Bahadur-type representation and asymptotic distribution of vec(& — o).

Theorem 10 Suppose that assumptions 3.1-3.3 hold and N = o (T). Let éy, be ob-
tained by solving (23). Then
(i) VNTvec(&—a’) = VDyQrrUnr+op(1) = VDNQny (Ve + Byr)40p(1),
(ii) VNTvec(& — &) — VDyQrrByr = MN(0,limy_ 0 DnQy'Q0Qp") as
(N, T) = o0,
where Dy —dlclg( s g ) Qo = lim(n 1y—00 O, and Qnp =Var(Vyr|C) .

Theorem 10 indicates that Vyr and Byt are associated with the asymptotic variance
and bias of &;’s, respectively. Note that Bynyr = Binyr1 + Birnt2, Which indicates

two sources of biases. The appearance of Bjyr; results from the correlation between
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(2, f1r) and w;; and the serial correlation among the innovation process {w;}. Appar-
ently, the presence of unobserved nonstationary factors fY, complicates the formula for
By, through the term s¢,(= fY(fY )~ f1,). The second source of asymptotic bias
is due to unobserved stationary factors fgt so that Bynr2 = 0 if fgt is absent from the
model. In the special case where neither f{, nor fJ, is present in the model, we have
Bint = BinT1 = ﬁ ZieGg Ay ;. This is the usual bias term for panel cointegration
regression that is associated with the one-sided long-run covariance; see Phillips (1995)
and Phillips and Moon (1999). Note that the ¢th element of Vyr is independent across
i conditional on C and E¢ (Viyr) = 0. This makes it possible for us to derive a version
of conditional CLT for V7 and establish the limiting distribution of our estimators & in
10(ii).

As we show in the proof of Theorem 10, the asymptotic bias term By is of O(v/Ny,),
which implies T-consistency of the C-Lasso estimators ¢y,. In order to obtain they/NT'-
convergence rate, we call upon various procedures to remove the asymptotic bias by con-

structing consistent estimates of By .

The fully modified procedure

In this subsection, we first obtain the estimates of unobserved stationary factors [,
from (25). Then we employ a fully modified procedure of Phillips and Hansen (1990) and
Phillips (1995) to make bias-corrections for endogeneity and serial correlation. Below
we consider the three types of bias-corrected estimators: the bias-corrected post-Lasso

~be

estimator & G the fully-modified post-Lasso estimator dfém, and the fully-modified Cup-
k

Lasso estimator dgf .
Following Phillips (1995), we first construct consistent time series estimators of the
long-run covariance matrix €2; and the one-sided long-run covariance matrix A; by
T-1 . T-1 .
0, = j:zmw (%) [4(j), and A; = jzow (%) 1),
where w(-) is a kernel function, H is the bandwidth parameter, and I'; (j) = T ST iy 0
with Wy = (dy, Ay, Af],, f3,). We partition €; and A; conformably with €.

We make the following assumption on the kernel function and bandwidth.
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Assumption 3.4 (i) The kernel function w(-): R — [—1,1] is a twice continuously dif-
ferentiable symmetric function such that [~_w(x)?dz < oo, w(0) = 1, w(z) = 0 for
|z| > 1, and limz) 1 w(z) /(1 — |z|)? = ¢ > 0 for some q € (0, 00).

(ii) As (N,T) — oo, N/H?** — 0 and H/T — 0.

We modify the variable y;; with the follow transformation to correct the endogeneity
Ui = it — Ql2,iQ§g{iA$it- (27)

This would lead to the modified equation g;; = BYx; + AV fY, + A f9, + 4, where

At A AN—1
Uy = Ui — QIZ,iQQQiACCit- Define

AE,Z- = Avzi — Q2 Q55 A0, (28)

By Phillips (1995), (27) and (28) give correction for endogeneity and serial correlation,
respectively.
Therefore, we can obtain the bias-correction post-Lasso estimator a , fully modified

fm

post-Lasso estimator a , and the updated estimators of f1 and f2 by iteratively solving

(29)-(32), such that

vec (d& lg) = vec (&) \/_TV NQnr <BNT1 + BNTQ) (29)

dféT: = ZCB;MleL‘l Zl‘ Nk <BkNT1 +BkNT2> ,
iEGk ZEGk
(30)
flvl,NT = NT2 Z Z Ai - -73z‘@g:)/ ]El, (3D
k=1 ’LEGk
f2V2,NT = Z Z — A (@ — Ii@g: — fid) | f, (32)
k 1 ZEGk

where Bivri = 7= > icq, <Zt DI %ts> Aoris Binry = 787 Sictn <Zt DI %ts> A
BkNT,z FT > e, (Zt D %ts) A24z)\2z> s = 1{t = 8} —3a0,50, = f1,(Fif)  frs =

f{t fls /T? and AQZ = \oj — ¥ Z iz1 /\gjaij. We obtain the fully modified Cup-Lasso esti-

mators dgf by iteratively solving (23), and (30)-(32), where we update the group classi-

fication results in each iteration.
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afm o~ fm ~fm ACUp [ ACUpP ~cup . T
Let & = (Ozé1 , ...,aGK) and & " = <aé1 ""’O‘GK)' We establish the limiting

distribution of the bias-correction post-Lasso estimators 072?, the fully modified post-Lasso

estimators dfém and the Cup-Lasso estimators é&,” by the following theorem.

Theorem 11 Suppose that assumptions 3.1-3.4 hold. Let dl(’;f

solving (29), (31)-(32), dém be obtained by iteratively solving (30)-(32) and dcéup be
obtained by iteratively solving (23) and (30)-(32). As (N, T) — oo with /N = o (T), we

be obtained by iteratively

have
(i) VNTvec(&% — a) = MN(0, limy oo DnQp ' Q0Q51),
(ii) \/NTvec(észm —a’) = MN(0,limy_0 DnQy Q5 Q0 ),
(iii)V/ NTvec(&2% — o) = MN(0,limy 0o DnQy" Q5 Q5 ),

where Qf = limpy 100 Qb and Qi r :Var(V]\J{T\C).

All three types of estimators achieve v N1 consistency and have a mixed normal
asymptotic distribution. One can construct the asymptotic t-tests and Wald-tests as usual
provided one can obtain consistent estimates of )y and €. The procedure is standard

given the estimated group structure.

2.3.5 Estimating the number of unobserved factors

In the previous subsections, we assume that the numbers of nonstationary and station-
ary factors, 71 and r5, are known. In this subsection, we introduce two information criteria
to determine the number of unobserved factors before the PPC estimation procedure. Let
r1 denote a generic number of nonstationary factors. Let r denote a generic total number
of nonstationary and stationary factors. We now use r{ and " to denote their true values,
which are assumed to be bounded above by a finite integer 7 ,,y.

Bai et al. (2009) find that it is not necessary to distinguish I(0) and I(1) factors when
one tries to determine the total number of factors based on the first differenced model.

After the first differencing, (18) takes the form

Ayit = BQ,AZEit + )\?,Afto + Aul‘t, t= 2, ceesy T, (33)

(2

where e.g., Ay;y = yit — yit—1. Since the true dimension r% is unknown, we start with a

model with r unobservable common factors. We now write the factors and factor loadings
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respectively as f; and A\, where the superscript r highs the dimension of the underlying
factors or factor loadings. Let G" = A f" be a matrix of (7" — 1) x r unobserved differ-
enced factors with a typical row given by (G7)" = (Af7)’. We consider the minimization

problem

N T

{6} = arg in < > 57 (g — B — N'GP?

=1 t=2

s.t. G"G" /T = I, and A" A" is diagonal,

where G = (Gg’, vy Ggf)’, Ar = (5\’1”, vy 5\%)’, and /3;’s are obtained from the model
with 1 = 7. nonstationary factors. It is easy to show that Bi’s are I'-consistent, which
suffices for our purpose. It is well known that given G™, we can solve A" from the least
squares regression as a function of G". But we will suppress the dependence of A" on G
and define Vi (r,G") = <= SN ST (Ays — BiAx;, — N'GY)?. Following Bai and Ng

(2002), we consider the following information criterion
ICy(r) =log Vi(r,G") + rg1(N, T), (34)

where ¢;(N,T) is a penalty function. Let 7 = argmingc,<,,.. [C1(r). We add the

following assumption.

Assumption 3.5 As (N,T) — oo, gi(N,T) — 0 and C%;g1(N,T) — oo, where
Cnr = min(v/'N,V/T).

Assumption 3.5 is common in the literature. It requires that g, (/V,T’) pass to zero at
certain rate so that both over- and under-fitted models can be eliminated asymptotically.

The following theorem demonstrates that we can apply /(' () to consistently estimate

Theorem 12 Suppose that Assumptions 3.1-3.3 and 3.5 hold. Then P(7 = r°) — 1 as
(N, T) — oc.

Theorem 12 indicates that we can determine the total number of factors r° consistently
by minimizing /C, (7).

As we have discussed in Section 3.4, ignoring the unobserved stationary factors will

not affect the consistency of slope coefficient estimator, but generate a bias term that
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is asymptotically non-negligible. For this reason, it is important to distinguish between
nonstationary and stationary factors. Fortunately, it is possible to estimate the number of
unobserved nonstationary factors, 77, consistently based on the level data. Once we obtain
the consistent estimate of r{, we can also obtain the consistent estimate of the number of
unobserved stationary factors, rg, based on Theorem 12.

Let f{* be a matrix of 7" x 7, nonstationary factors and A}} be an r; x 1 vector of
nonstationary factor loadings. Given the preliminary 7'-consistent estimators B’s, we
consider the following minimization problem

N T
AT . 1 2 r1/ 7
{ A 1} = arg mm - Z@ Et:1:(yit — Biwi — NV 1),

AT1Lf, —

s.t. [V fir)T? = I, and A" A™ is diagonal.

Given f{* = (fiV,..., fi¥), we can solve A" = (A{,...,;A]%) as a function of f}*

through the least squares regression. But we suppress the dependence of A™ on ff ! and

define .
£ry 1 A 71/ pry
Va(ry, i) = NT ZZ(yit — Biwa = A1)

i=1 t=1
We consider the information criterion:

10y () = log Va(ry, 1) + 7192(N, T), (35)

where go(NV,T') is a penalty function. Let 71 = arg ming<,, <., {/C2(r1). We add the

Tmax

following condition.

Assumption 3.6 As (N, T) — 0o, go(N, T)'2267) _, 0 and g,(N,T) — oo.

Apparently, the conditions on go( N, T") are quite different from the conventional con-
ditions for the penalty function used in information criteria in the stationary framework
(e.g., g1(N,T) in Assumption 3.5). In particular, we now require that go(N, T') diverge
to infinity rather than converge to zero as in Assumption 3.5. The intuition is that the
mean squared residual, V3(r, f{ '), does not have a finite probability limit when the
number of nonstationary common factors is under-specified. In fact, we can show that
%Vg(ﬁ, /11 converges in probability to a positive constant when 0 < r1 < 7%, On

the other hand, we have V5 (r1, /1) — Vo (19, Af?) = Op(1) when r; > 9.
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The following theorem suggests that the use of /Cy(r1) helps to determine r{ consis-

tently.

Theorem 13 Suppose that Assumptions 3.1-3.3 and 3.6 hold. Then P(7, = r{) — 1 as
(N, T) — o0

In the simulations and applications below, we simply follow Bai and Ng (2002) and
Bai (2004) and set

N+T
g(N,T) = NT In (Cxr) and g2(N,T) = argi(N,T),
where ap = #. We first estimate the total number of unobserved factors by 7
og log(T)

based on the first-differenced model, and then estimate the number of unobserved non-

stationary factors by 7; based on the level model. The estimator of 9 is then given by

Py =7 — 7.

2.3.6 Determination of the number of groups

In this subsection, we propose a BIC-type information criterion to determine the num-
ber of groups, K. We assume that the true number of group, K, is bounded from above

by a finite integer K ... We now consider the PPC criterion function

QNra(B,a, i) = Qur(B, f1) + ZHH@ ol

i=1 k=1
where 1 < K < K. By minimizing the above criterion function, we obtain the
estimates (;(K, \), (K, \), Au(K,\) and fi,(K, ) of 32,2, X0 and f9,, where we
make by the f;, &y, Ai; and fi; on (K, \) explicit. Let Gk(K, AN ={ie{l,2,..,N}:
Bi(K,N) = au(K, N} fork =1, K,and G(K,\) = {G1(K, \),...,Gr(K,\)}. Let

~ cup

i 0
(K denote the Cup-Lasso estimate of o;. Define

K T
1 A CU < N 2
= N7 2 S o — a7 e = MK N FulE )

k=14eGy (K, =1

Following SSP and Lu and Su (2017), we consider the following information criterion
1Cs(K, A) = log V3(K) + pKgs(N,T), (36)
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where g3(N, T) is a penalty function. Let K ()\) = arg minjcx<x,. GIC(K,\).
Let G%) = (Gk ., ..., G ) be any K -partition of the set of individual index {1,2, ..., N}.
Define 67, = ﬁZkKﬂ D icGrn S [y — dg‘jj’kxn — Mi(K, A fi(K, N)J2, where

~ Cup . A cup . A .
Ag,, 18 analogously defined as & (K with G (K, \) being replaced by Gk . Let

: N T
‘73 =phim(n, 1)~ ﬁ > it zz‘eag > i1 Wit — @gxit - )‘?,ftO]Q- Define

(
(NT)~'/2 when there is no unobserved common factor,

VNT = { §5 when there are only unobserved nonstationary common factors,

C'yr when there are both unobserved nonstationary and stationary common factors.

vy indicates the effect of estimating the nonstationary panel on the use of /C3(K, \)
under different scenarios.
We add the following assumption.

2
g

(ii) As (N, T) — o0, g3(N,T) — 0 and g3(N, T)/V]ZVT — 00.

Assumption 3.7 (i) As (N, T) — oo, mini<x <k, infguoeg, Toi 5 o? > 02

Assumption 3.7(i) requires that all under-fitted models yield asymptotic mean square
errors larger than o2, which is delivered by the true model. Assumption 3.7(ii) imposes
the typical conditions on the penalty function g3(N,T') : it cannot shrink to zero either
too fast or too slowly.

The following theorem justifies the validity of using /C'3 to determine the number of

groups.

Theorem 14 Suppose that Assumption 3.1-3.4 and 3.7 hold. Then P(K(\) = Ky) — 1
as (N, T) — oo.

Theorem 14 indicates that as long as \ satisfies Assumption 3.3(iv) and g3(N,T)
satisfies Assumption 3.7(ii), we have infi<x<k, ... k2kx, JC5(K,A) > IC5(Ko, A) as
(N,T) — oo. Consequently, the minimizer of /C5(K, \) with respect to K equals K

w.p.a.l for a variety choices of \.

58



2.4 Monte Carlo Simulations

In this section, we evaluate the finite sample performance of the C-Lasso, bias-corrected
post-Lasso, fully-modified post-Lasso and Cup-Lasso estimators and that of the informa-

tion criteria for determining the number of groups and the number of common factors.

2.4.1 Data generating processes

We consider four data generating processes (DGPs) that cover the cases of both sta-
tionary and nonstationary unobserved common factors. Throughout these DGPs, the ob-
servations in each DGP are drawn from three groups with Ny : Ny : N3 =0.3: 0.4 : 0.3.
There are four combinations of the sample sizes with N = 50, 100 and T" = 40, 80.
DGP1 (Strictly exogenous nonstationary regressors and unobserved stationary common
factors) The observations (y;, «},) are generated from the following model,

Yir = Bixi + ca(Ny; for) + i
(37)

Tjg = Tijp—1 + Eit
where z;; = (14, T2i1) is @ 2 X 1 vector of nonstationary regressors, fo; is a 2 X 1 vector
of stationary common factors. Let wy; = (ui, €}, f5,) ~ iid. N(0,I;). The factor
loadings Ay; are i.i.d. N((1,1)",5) fori = 1,..., N. We use c to control the importance of
unobserved common factors and let ¢, = 0.5. The long-run slope coefficients 3; exhibits

the group-structure in (17) for K = 3 and the true values are

0 0 0\ _ 0.4 1 1.6
(a7, ag, a3) = ((1.6) ) (1) , (O.4>) .

DGP2 (Weakly dependent nonstationary regressors and unobserved nonstationary com-

mon factors) The observations (y;;, =%, f1,) are generated from the following model,

;

Yit = @leit + Cl(/\/ufl,t) T+ Uit

Tit = Tig—1 + i (38)

fie = fu-1+ 1
\

where x;; = (214, T2;¢)' is @ 2 X 1 vector of nonstationary regressors, fi; isa 2 x 1 vector

) . ) B , J
of nonstationary common factors. The idiosyncratic errors w;; = (ui,cl, Af],) are

59



generated from a linear process: w;; = Z;’io ;v —;, Where v, are i.d.d. N (0, I5), vy =
G735 % QY2 QY2 is the symmetric square root of €2, where €;,,, = 0.2 for I # m, Q; = 1
forl = 2,3,4,5 and €2;; = 0.25. Let ¢; = 1. The factor loadings of nonstationary
common factors are i.i.d. A\y; ~ N((1,1)’, I5). The true coefficients of /3; are the same in
DGP1.

DGP3 (Weakly dependent nonstationary regressors and mixed unobserved stationary and
nonstationary common factors) The observations (y;;, «;, f1,) are generated from the fol-

lowing model,
(

Vit = Bixi + c1(N; fie) + ca(Ny; far) + wir

Tit = Tijt—1 T Eqt (39)

\flt = fu—1+tw

where x;; = (%134, 22;) is @ 2 X 1 vector of nonstationary regressors, f1; is a 2 x 1
vector of nonstationary common factors, and f5; contains one stationary common factors.
The idiosyncratic errors wy = (ui, €hy, Afi,, f4,) are generated from a linear process:
Wit = Y1 o Yijvis—j where vy areiid. N(0, Ig), 4y = §7355QY2 O1/2 is the symmetric
square root of €2 where €2;,,, = 0.2 for [ # m, 21; = 0.25,and ; = 1 forl = 2, ..., 6. Let
¢; = 1l and ¢ = 0.5. The factor loadings A\; = (\};, \};) are i.i.d. Ay; ~ N((1,1,1), I3).
The true coefficients of 3; are the same in DGP1.

DGP4 (Weakly dependent nonstationary regressors and mixed unobserved stationary and
nonstationary common factors) The settings of DGP4 is the same with those of DGP3,
except for allowing weakly correlation among factor loadings \; ~ d.i.d. N((1,1,1), I3
Qs), where Oy, = 2/\/N for [ # m.

In all cases, the number of replications is 500.

2.4.2 Estimate number of unobserved factors

In this subsection, we assess the performance of two information criteria proposed
in Section 3.5 before determining the number of group and PPC-based estimation pro-
cedure. We choice the BIC-type penalty function g;(N,T) = ST log(min(N,T)) to

T

determine the total number of unobserved factors and g(N,T') = Tiogtogyy X 91V, T)
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Table 8: Frequency for selecting » = 1,2, ..., 5 total factors and vy = 0,1, ..., 4 nonsta-

tionary factors

Differenced Data Level Data
N T r=1 r=2 r=3 r=4 r=>5 ry =0 ry =1 ry =2 ry =3 ry =4
DGP1 50 40 0 1.000 0 0 0 1.000 0 0 0 0
50 80 0 1.000 0 0 0 1.000 0 0 0 0
100 40 0 1.000 0 0 0 0.998 0.002 0 0 0
100 80 0 1.000 0 0 0 1.000 0 0 0 0
DGP2 50 40 0 1.000 0 0 0 0 0.004 0.964 0.032 0
50 80 0 1.000 0 0 0 0.004 0.016 0.976 0.004 0
100 40 0 1.000 0 0 0 0 0.002 0.958 0.040 0
100 80 0 1.000 0 0 0 0 0.002 0.976 0.022 0
DGP3 50 40 0 0 1.000 0 0 0.018 0.088 0.894 0 0
50 80 0 0 1.000 0 0 0.006 0.026 0.968 0 0
100 40 0 0 1.000 0 0 0 0.008 0.972 0.020 0
100 80 0 0 1.000 0 0 0 0.012 0.988 0 0
DGP4 50 40 0 0 0.998 0.002 0 0.002 0.060 0.938 0
50 80 0 0 1.000 0 0 0.004 0.016 0.980 0 0
100 40 0 0 1.000 0 0 0 0.012 0.988 0 0
100 80 0 0 1.000 0 0 0 0.008 0.992 0 0

to determine the number of unobserved nonstationary factors. Based on 500 replications
for each DGP, Table 1 displays the probability that a particular factor size from O to 5
is selected according to the information criteria proposed for both differenced data and
level data. In differenced data, when 7' = 40, the probabilities are more than 99% in all
cases and tend to unit when 7" = 80 for selecting the total number of unobserved factors.
The information criterion for level data performs as good as that in difference data when
T = 80. When T=40, the probabilities are at least 90% in all cases. The simulation results
show that our two information criteria in both differenced data and level one works fairly

well.

2.4.3 Determine the number of groups

The results from previous subsection show that the information criteria are useful
even though we have no information of latent group structures. This section focuses on
the performance of the information criterion for determining the number of groups, where
we assume that the number of unobserved factors are known. Here the penalty function
p(N,T) = 3 xlog(min(N, T))/ min(N, T), which satisfies the two restrictions proposed
in Theorem 3.9. Due to space limitations, we report outcomes under the tuning parameter
A = ¢y x T7%*, where ¢y = 0.1. Based on 500 replications for each DGP, Table 2

displays the probability that a particular group size from 1 to 6 is selected according to
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Table 9: Frequency for selecting K=1,2,...,6 groups

N T 1 2 3 4 5 6
DGP1I 50 40 0 0 0.9860 0.0140 0 0
50 80 O 0 0.9940 0.0060 0 0
100 40 O O 0.9700 0.0280 0 0.0020
100 80 O 0O 1.0000 0 0 0
DGP2 50 40 0 O 1.0000 0 0 0
50 8 O 0O 1.0000 0 0 0
100 40 O O 1.0000 0 0 0
100 80 O 0O 1.0000 0 0 0
DGP3 50 40 0 0 0.9760 0.0180 0.0060 0
50 80 0O 0 0.9980 0.0020 0 0
100 40 0 O 0.9740 0.0240 0.0020 0
100 80 O O 1.0000 0 0 0
DGP4 50 40 0 O 0.9920 0.0060 0.0020 0
50 8 O 0 1.0000 0 0 0
100 40 0 O 0.9900 0.0100 0 0
100 80 O O 1.0000 0 0 0

the information criterion. The true number of group is 3. When N = 50 the probabilities

are more than 99% in all cases and tend to unit when T=80.

2.4.4 Classification and point estimation

In this subsection, we test the performance of classification and estimation when
we have prior knowledge of the number of groups and that of unobserved factors. Ta-
ble 3 and Table 4 report classification and point estimation results from 500 replica-
tions for each DGP. As shown in Table 3 and Table 4, we set the tuning parameter in
the objective function (23) A = ¢, x T~%/* and choose a sequence of increasing con-
stants of ¢, = (0.025,0.05,0.1,0.2)* to test the sensitivity of classification and estima-

tion performance. Here we only report the performance results for the first coefficient

“Due to space limitation, we only report the results when c) = (0.1,0.2). The rest results are available

upon request.
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ap = {alyk}szol in each model. In general, the outcomes are found robust over specified
range of constants. Column 4 and 7 report the percentage of correct classification of the
N units, calculated as + Z,[::Ol ica, B = o)}, averaged over the 500 replications.

Column 5-6 and 8-9 summarize the estimation performance, such as root-mean-squared

error (hereafter, RMSE), and bias. For simplicity we define weighted average RMSE

1 Ko

and bias, as N kel

Ni;RMSE(& ;) with ¢, the same as bias. The estimate of the
long-run covariance matrix is based on Fejer kernel with bandwidth set at 10. Results
of other kernels (quadratic spectral kernel and Parzen kernel) are not reported, there are
no essential differences for most cases. For comparison purpose, we report the results of
corresponding statistics of the C-Lasso, bias-corrected post-Lasso, fully-modified post-
Lasso, Cup-Lasso, and oracle estimators. The oracle estimator utilizes the exact group
identity GG, which is infeasible in practice.

For classification results, the correct classification percentage approaches 100% when
T increases. The results with different c,’s are quite similar, indicating the robustness of
our algorithm to the choice of tuning parameter. In particular, we iteratively minimize
the PPC objective function to obtain the Cup-Lasso estimators. The correct classifica-
tion percentage is higher than that of C-Lasso and post-Lasso estimators in all cases. For
estimation performance, the RMSE, bias, and coverage of post-Lasso and Cup-Lasso es-
timators approach that of oracle ones in DGP1. Since we only introduce stationary factors
and strictly exogenous nonstationary regressors, there is no asymptotic bias coming from
the endogeneity and serial correlation. The RMSE and coverage of C-Lasso estimators
are poor due to ignoring the unobserved stationary factors in PPC-based estimation pro-
cedure. In DGP2 and DGP3, the performance of C-Lasso estimator is poorer due to the
additional sources of non-negligible bias from the endogeneity and serial correlation. And
we show that the fully modified procedure work better compared to direct bias-correction
procedure. The performance of Cup-Lasso estimators is better than that of post-Lasso
ones due to updated group classification results. In general, the finite sample performance
of the Cup-Lasso estimators is close to that of the oracle ones, which empirically confirms
oracle efficiency of the Cup-Lasso estimators. In practice, we recommend Cup-Lasso es-

timators for estimation and inference.
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Table 10: Classification and point estimation of «; for DGP1 and DGP2

cx 0.1 0.2
N T % Correct RMSE Bias % Correct RMSE Bias
specification specification
DGP1
50 40 C-Lasso 99.68 0.0137 0.0049 99.70 0.0130 0.0047
50 40 post®©-Lasso 99.68 0.0130 0.0003 99.70 0.0129 0.0002
50 40 postfm -Lasso 99.68 0.0129 0.0004 99.70 0.0128 0.0003
50 40 Cup-Lasso 99.68 0.0126 -0.0002 99.70 0.0126 -0.0002
50 40 Oracle - 0.0126 -0.0002 - 0.0126 -0.0002
50 80 C-Lasso 100 0.0081 0.0031 100 0.0077 0.0028
50 80 pustbc—Lusso 100 0.0070 0.0003 100 0.0070 0.0003
50 80 postfm-Lasso 100 0.0069 0.0004 100 0.0069 0.0004
50 80 Cup-Lasso 100 0.0069 0.0004 100 0.0069 0.0004
50 80 Oracle - 0.0069 0.0001 - 0.0069 0.0001
100 40 C-Lasso 99.69 0.0109 0.0054 99.73 0.0101 0.0046
100 40 postbC-Lasso 99.69 0.0091 0.0007 99.73 0.0087 0.0004
100 40 postf ™ Lasso 99.69 0.0090 0.0007 99.73 0.0086 0.0004
100 40 Cup-Lasso 99.69 0.0090 0.0007 99.73 0.0086 0.0004
100 40 Oracle - 0.0087 -0.0001 - 0.0087 -0.0001
100 80 C-Lasso 100 0.0062 0.0032 99.99 0.0058 0.0029
100 80 post®©-Lasso 100 0.0046 0.0005 99.99 0.0046 0.0005
100 80 post/ ™ Lasso 100 0.0046 0.0005 99.99 0.0046 0.0005
100 80 Cup-Lasso 100 0.0046 0.0005 99.99 0.0046 0.0005
100 80 Oracle - 0.0046 0.0004 - 0.0046 0.0004
DGP2

50 40 C-Lasso 97.68 0.0654 0.0146 97.53 0.0743 0.0146
50 40 post®©-Lasso 97.68 0.0405 0.0048 97.53 0.0430 0.0048
50 40 post/ ™ Lasso 97.68 0.0405 0.0042 97.53 0.0430 0.0041
50 40 Cup-Lasso 100 0.0094 0.0004 100 0.0094 0.0004
50 40 Oracle - 0.0094 0.0004 - 0.0094 0.0004
50 80 C-Lasso 99.21 0.0233 0.0047 99.19 0.0254 0.0047
50 80 post®©-Lasso 99.21 0.0195 -0.0004 99.19 0.0195 -0.0007
50 80 post! ™ -Lasso 99.21 0.0194 -0.0005 99.19 0.0194 -0.0009
50 80 Cup-Lasso 100 0.0047 -0.0001 100 0.0047 -0.0001
50 80 Oracle - 0.0047 -0.0001 - 0.0047 -0.0001
100 40 C-Lasso 97.45 0.0500 0.0135 9737 0.0543 0.0119
100 40 post®©-Lasso 97.45 0.0601 -0.0011 9737 0.0584 -0.0010
100 40 postfm -Lasso 97.45 0.0601 -0.0016 97.37 0.0585 -0.0015
100 40 Cup-Lasso 100 0.0069 -0.0016 100 0.0069 -0.0016
100 40 Oracle - 0.0069 -0.0016 - 0.0069 -0.0016
100 80 C-Lasso 99.25 0.0181 0.0061 99.23 0.0194 0.0057
100 80 postb"'—Lasso 99.25 0.0172 0.0012 99.23 0.0170 0.0010
100 80 postfm-Lasso 99.25 0.0171 0.0010 99.23 0.0170 0.0010
100 80 Cup-Lasso 100 0.0032 -0.0001 100 0.0032 -0.0001
100 80 Oracle - 0.0032 -0.0001 - 0.0032 -0.0001

64



Table 11: Classification and point estimation of «; for DGP3 and DGP4

cy 0.1 0.2
N T % Correct RMSE Bias % Correct RMSE Bias
specification specification
DGP3
50 40 C-Lasso 96.97 0.0563 0.0118 96.87 0.0632 0.0101
50 40 post®©-Lasso 96.97 0.0522 0.0029 96.87 0.0516 0.0022
50 40 postfm -Lasso 96.97 0.0524 0.0023 96.87 0.0519 0.0016
50 40 Cup-Lasso 99.85 0.0145 0.0015 99.81 0.0146 0.0015
50 40 Oracle - 0.0150 0.0014 - 0.0150 0.0014
50 80 C-Lasso 99.15 0.0297 0.0056 99.11 0.0327 0.0047
50 80 poslbc—Lasso 99.15 0.0275 0.0015 99.11 0.0265 0.0013
50 80 poslfm-Lasso 99.15 0.0274 0.0015 99.11 0.0265 0.0013
50 80 Cup-Lasso 100 0.0073 0.0010 100 0.0073 0.0010
50 80 Oracle - 0.0073 0.0006 - 0.0073 0.0006
100 40 C-Lasso 98.65 0.0299 0.0119 98.43 0.0300 0.0110
100 40 poslbc-Lasso 98.65 0.0214 0.0028 98.43 0.0222 0.0035
100 40 postf ™ Lasso 98.65 0.0213 0.0023 98.43 0.0222 0.0031
100 40 Cup-Lasso 99.93 0.0108 0.0020 99.83 0.0110 0.0021
100 40 Oracle - 0.0109 0.0018 - 0.0109 0.0018
100 80 C-Lasso 99.05 0.0194 0.0060 99.01 0.0208 0.0053
100 80 post®©-Lasso 99.05 0.0181 0.0007 99.01 0.0183 0.0007
100 80 post/ ™ Lasso 99.05 0.0180 0.0006 99.01 0.0182 0.0005
100 80 Cup-Lasso 100 0.0054 -0.0002 100 0.0054 -0.0002
100 80 Oracle - 0.0054 -0.0003 - 0.0054 -0.0003
DGP4

50 40 C-Lasso 96.92 0.0566 0.0110 96.77 0.0634 0.0099
50 40 post®©-Lasso 96.92 0.0508 0.0018 96.77 0.0498 0.0008
50 40 post/ ™ Lasso 96.92 0.0511 0.0013 96.77 0.0501 0.0008
50 40 Cup-Lasso 99.91 0.0130 0.0014 99.87 0.0130 0.0015
50 40 Oracle - 0.0134 0.0014 - 0.0134 0.0014
50 80 C-Lasso 98.99 0.0299 0.0055 98.93 0.0331 0.0045
50 80 post®©-Lasso 98.99 0.0277 0.0009 98.93 0.0263 0.0013
50 80 post/ ™ Lasso 98.99 0.0277 0.0008 98.93 0.0263 0.0013
50 80 Cup-Lasso 100 0.0066 0.0010 100 0.0066 0.0010
50 80 Oracle - 0.0065 0.0007 - 0.0065 0.0007
100 40 C-Lasso 98.77 0.0291 0.0123 98.53 0.0295 0.0113
100 40 post®©-Lasso 98.77 0.0205 0.0032 98.53 0.0217 0.0037
100 40 postf"” -Lasso 98.77 0.0204 0.0027 98.53 0.0216 0.0032
100 40 Cup-Lasso 99.94 0.0102 0.0020 99.87 0.0103 0.0021
100 40 Oracle - 0.0103 0.0017 - 0.0103 0.0017
100 80 C-Lasso 99.04 0.0197 0.0059 99.02 0.0211 0.0053
100 80 posle—Lasso 99.04 0.0181 0.0009 99.02 0.0183 0.0008
100 80 poslfm-Lasso 99.04 0.0180 0.0007 99.02 0.0183 0.0007
100 80 Cup-Lasso 100 0.0050 -0.0002 100 0.0050 -0.0002
100 80 Oracle - 0.0050 -0.0002 - 0.0050 -0.0002
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2.5 Empirical Application: Growth Convergence Puzzle

Many researchers have explored the behavior of economic growth across multiple
countries. The main question in this literature is whether economies exhibit convergence.
Based on our method, we study the heterogeneous behavior of convergence through
the channel of technology diffusions. Our benchmark model is the international R&D
spillovers model by Coe and Helpman (1995). Their work empirically identifies the pos-
itive technology spillovers based on country level data. Since technology change is the
main source of economies’ growth, the positive R&D spillovers are some forces toward
growth convergence through the channel of technology catch-up effects. There are two
potential problems in their work. First, they fail to identify two distinct types “spillovers”
effects—positive technology spillovers and negative market rivalry effects, see Bloom et al.
(2013). In addition, they haven’t account for unobserved common patterns across coun-
tries, such as financial crisis shocks and technology trends.

Our PPC-based estimation method provides a purely data-driven approach to simulta-
neously identify the heterogeneous behavior in international R&D spillovers and consider
the unobserved global patterns. In particular, we impose the latent group structures on the
long-run relationships between technology changes, domestic R&D stock, and foreign
R&D stock. Moreover, the heterogeneous long-run estimates on foreign R&D stock em-
pirically indicate two directions of R&D spillovers—positive technology spillovers and
negative market rivalry effects, which explain the economic convergence puzzle through

the channel of technology growth.

2.5.1 International R&D spillover model

In the section, we introduce two linear specifications on the international R&D spillover
model. Following standard growth literature, we define TFP as the Solow residual, which

is often regarded as a measure of technology changes. That is,
log(TFP) =log(Y) — 0log(K) — (1 — 0)log(L), (40)

where Y is the final output, L is the labor force, K is the capital stock, and 6 is the share

of capital in GDP. On the one hand, domestic R&D investment is one of the main sources
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of technology changes by stimulating innovation. On the other hand, researchers believe
that international trade in intermediate goods enables a country to gain access to all inputs
available in the rest of the world. In this aspect, the foreign R&D stocks from a country’s
trading partners also affect this country’s TFP by enhancing R&D transfer. In Coe and
Helpman (1995), they empirically identify two sources of technology growth—innovation

and catch-up effects by regressing following equation
log(Fyy) = pu + 5%1og(sf,) + 57 log(s},) + wir,

where i is the country index, F' is the total factor productivity, s¢ is the real domestic
R&D capital stock, s/ is the real foreign R&D capital stock. We follow their specification
on the international R&D spillovers model and introduce unobserved common patterns,

such that
log(Fix) = B log(sh) + B log(s}) + N fi + ua, (Eql)

where f; may stand for unobserved technology trends. The fixed effects y; are captured by
the factor structure. Here we impose latent group structures on (3¢, ﬁif ). In particular, the
latent group structures on @f allow us to study the two types of spillover effects—positive
technology spillovers and negative market rivalry effects, respectively.

In addition, we consider logarithm of human capital (H) as an additional explanatory

variable, see (Eq2)
log(Fyy) = 7 log(s5) + 3] log(sh) + Bl log(h) + Nify + . (Eq2)

The human capital accounts for innovation outside the R&D sector and other aspects of
human capital not captured by formal R&D. Engelbrecht (1997) suggests that human
capital is found to affect TFP directly as a factor of production, and as a channel for
international technology diffusion associated with catch-up effects across countries.

We obtain Coe et al. (2009) (CH2009, hereafter) datasets from 1971-2004 for 24
OECD countries. The bilateral import weighted R&D S/~ from trading partners is
a measure of foreign R&D stock. Human capital is measured by year of schooling. See

Coe and Helpman’s appendix for detailed definitions and constructions of these variables.
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Table 12: The information criterion for K (Eql & Eq2)

Eql
K/cy  0.05 0.1 0.2 0.4 0.6
K=1 -46315 -4.6584 -4.6812 -4.6834 -4.6794
K= -4.8073 -4.8760 -4.7356 -4.8319 -4.8332
K =3 -50084 -5.0942 -5.2130 -5.2221 -5.0992
K= -4.8985 -4.9708 -5.0092 -4.6353 -4.9279
K = -4.8598 -4.8240 -4.4272 -49821 -4.8042
K=6 -44159 -42700 -3.6774 -4.8858 -4.6118

Eq2
K/ex  0.05 0.1 0.2 0.4 0.6
K= -4.6011 -4.6311 -4.6845 -4.6876 -4.6889
K= -4.5674 -4.8101 -4.8693 -4.8138 -4.8127
K= -379180 -4.2002 -4.7259 -4.7467 -4.7045
K= -2.8630  -3.5698 -4.0314 -4.2412 -4.2497

K =5 -22351 -4.0434 -19373 -3.5935 -4.0737
K=6 -27073 -3.6627 -3.1292 -3.7489 -2.6413

2.5.2 Estimation results

Before the PPC-based estimation procedure, we first employ information criteria in
Section 3.5 to estimate the number of unobserved factors. We set penalty function as
n(N,T) = 5 log(min(N, T)) and g>(N,T) = jliozs % g1(N,T). The results for
both differenced and level data indicate one unobserved nonstationary common factors.
We fix » = r; = 1 in the determination of number groups and the PPC-based estimation
procedure.

We set p(N, T') = 2xlog(min(N, T))/ min(N, T) and tuning variable A = ¢, x 7%/
where ¢, = (0.05,0.1,0.2,0.4,0.6). Table 5 reports the information criterion as a func-
tion of the number of groups under these tuning parameters. The information criterion
suggests three groups for (Eql) and two groups for (Eq2). In our estimation, we first set
the number of groups and then specify ¢, = 0.2, where the information criterion achieves
the minimal values.

Table 6 reports the main results of pooled FMOLS and Cup-Lasso estimates with one
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unobserved nonstationary common factors, where we compare our results to CH2009. In
(Eql), we have two explanatory variables (log(S%), log(S/~%")). First, we compare the
result of CH2009 with the pooled FMOLS after controlling cross-sectional dependence.
The coefficients of log(.S?) in CH2009 is qualitatively similar to our pooled FMOLS.
In addition, we observe the slope coefficient of foreign R&D stock decrease more than
half after incorporating one unobserved nonstationary common factors. Since the non-
stationary common factor may stand for the unobserved global trends, it is reasonable
that the direct spillovers effects decrease when the unobserved global technology patterns
are taken into consideration. Second, we identify quite difference behavior in the group-
specific Cup-Lasso estimates. The estimates of group 1 have the largest estimate on the
domestic R&D stock but negative one on foreign R&D. For group 2 and group 3, they
both have positive estimates on domestic R&D stock and foreign one. In particular, both
estimates in group 2 are larger than that of group 3.

We summarize the estimation results into three aspects. First, we observe the negative
market rivalry effects dominate technology spillovers for countries in group 1. There-
fore, the technology changes of those countries rely mainly on innovations from domestic
R&D stock. In addition, it implies that countries in group 1 don’t favor convergence
through the channel of technology changes. We call it as “Divergence”group. On the
contrary, technology changes of countries in group 2 have balanced sources—innovation
effects from domestic R&D stock and catch-up effects from technology spillovers. More-
over, the magnitudes of those estimates are similar. In this perspective, countries in group
2 favor growth convergence hypothesis. Here we refer it as “Balance”group. Lastly, the
technology changes in group 3 are mainly determined by foreign R&D stock. They are
classified as “Convergence”’group.

In (Eq2), we introduce an additional regressor—human capital, which is regarded as
a direct source of technology changes. Our results first confirm that human capital is
the one of the main sources of productivity growth. In general, similar heterogeneous
behavior preserves in (Eq2). First, we can still classify countries into two groups and
define them as “Balance ”and “Convergence . For group 1, the innovations and catch-

up effects have similar magnitudes. For group 2, referred as “Convergence ”, they have
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Table 13: PPC estimation results for (Eql) and (Eq2)

Eql
Slope coefficients Pooled Pooled Group 1 Group 2 Group 3
CH2009 FM-OLS Cup-Lasso Cup-Lasso Cup-Lasso
log(S%) 0.095%**  0.090*** 0.301***  0.107***  (0.051%**
(0.0053) (0.0134) (0.0295) (0.0248) (0.0144)
log(ST—biw) 0.213%#%  (.092%**  -0.124***  (0.193%**  (.148***
(0.0136)  (0.0222)  (0.0306) (0.0559) (0.0342)

Eq2

Slope coefficients Pooled

Pooled Group 1 Group 2

CH2009 FM-OLS Post-Lasso Post-Lasso
log(S%) 0.098%**  (0.049%**  (.071%** -0.098***
(0.0160) (0.0163) (0.0174) (0.0270)
log(Sf_biw) 0.035%**  (.132%*%*  (0.063** 0.323%**
(0.0111)  (0.0316) (0.0332) (0.0398)
log(h) 0.725%**  (0.644%**  (.638%** 0.680%**
(0.0870)  (0.1204) (0.1302) (0.1791)

Note: *** 1% significant; ** 5% significant; * 10% significant.
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Table 14: Group classification results of Eql and Eq2
Eql
Group 1 “Divergence” (N1 = 7)

Austria Denmark France Germany New Zealand
Norway United States
Group 2 “Balance” (N2 = 7)
Canada Ireland Israel South Korea Netherlands
Portugal United Kingdom
Group 3 “Convergence” (N3 = 10)
Australia Belgium Finland Greece Iceland
Italy Japan Spain Sweden Switzerland
Eq2
Group 1 “Balance ” (N1 = 18)
Austria Belgium Finland France Germany
Iceland Ireland Israel Italy Japan
South Korea Netherlands New Zealand Portugal Spain
Sweden Switzerland United States

Group 2 “Convergence” (N2 = 6)

Australia Canada Denmark Greece Norway
United Kingdom

significant positive estimates on foreign R&D stocks.

The PPC-based estimation procedure simultaneously determine the group identities
and estimate parameters. Table 7 reports the group classification results. We summarize
several interesting findings. First, there are typically two types of countries in “Diver-
gence” group—-‘Leader” and “Loser”. Countries like France, Germany, United States are
already at technology frontiers in global, which own 61.1% proportion of global R&D
stock. On the contrary, the rest countries in group 1 only accounts for 1.5% proportion of
global R&D stock. Second, we notice that most OECD countries are classified into group
2 and group 3. It confirms the recent work of KELLER (2004) that the major sources
of technical changes leading to productivity growth in OECD countries are not domes-
tic, instead, they lie aboard through the channel of international technology diffusions.
Furthermore, countries like Israel, South Korea and United Kingdom are classified into
“Balance” group. Productivity growth for them relies on both innovation and catch-up

effects.
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Overall, we re-estimate Coe and Helpman’s model by both pooled FMOLS and group-
specific PPC-based method with one unobserved global trend. Our pooled FMOLS con-
firms the international R&D spillovers in global after considering unobserved global
trend. In addition, our Cup-Lasso estimates show heterogeneous behavior in both in-
novations and catch-up effects. To the best of our knowledge, it is the first paper to
empirically identifies two types of spillovers—positive technology spillovers and negative
market rivalry effects in country level. Further, these facts empirically build a connection
between the “Club convergence” theory (Quah (1996), Quah (1997)) and the conditional
convergence model (Barro and Sala-i Martin (1997)). Consequently, economic growth

patterns do vary across countries— some exhibit convergence pattern but some fail.

2.6 Conclusion

The main contribution of this paper is to propose a novel approach that handle the
unobserved heterogeneity and cross-sectional dependence in nonstationary panel mod-
els. We assume that cross-sectional dependence is captured by unobserved common fac-
tors, which allow for stationary and nonstationary ones. In general, the penalized least
square estimators are inconsistent due to a spurious regression problem induced by un-
observed nonstationary factors. We propose a iterative penalized principal component
method, which provides consistent and efficient estimators for long-run cointegration re-
lationships under cross-sectional dependence. The Lasso-type estimators have a mixed
normal asymptotic distribution after bias-correction. This property facilitates the use of
usual t, Wald and F statistics for inference and hypothesis testing. In the empirical ap-
plication, we offer an explanation for growth convergence puzzle through heterogeneous

behavior in R&D spillovers.
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3 Panel Error Correction Models with Unobserved Het-

erogeneity and Dynamic Common Factors

3.1 Introduction

It is widely observed that macroeconomic and financial panel data exhibits two styl-
ized facts—co-movements and heterogeneity. The co-movements appear important enough
to account for long-run cointegration relationships among variables and to capture short-
run dynamics driven by unobserved stationary common factors. For example, monetary
policies are always built on a principal belief of the long-run equilibrium between GDP,
inflation and interest rate. In addition, central banks consider short-run impacts of com-
mon factors, such as oil price shocks or financial crises. Another challenge of panel
methodology is to control for the unobserved heterogeneity in incidental parameters and
structural parameters. This paper focuses on complications in the estimation of panel er-
ror correction models with both long-run and short-run co-movements. Besides, we allow
for unobserved heterogeneity in long-run cointegration vectors. Furthermore, our method
maintains several advantages of panel data, such as capturing the complexity of economic
behavior, simplifying statistic inference and improving estimation efficiency.

In this paper, we consider a panel error-correction model with unobserved station-
ary common factors. In particular, we impose latent group structures on the long-run
cointegration vectors. We first develop a novel econometric procedure that obtains effi-
cient estimators for long-run cointegration vectors in the presence of unobserved hetero-
geneity. Then, we propose two Lasso-type estimators for long-run cointegration vectors—
Classifier-Lasso and post-Lasso. Due to the stationary property of common factors, we
can still obtain consistent estimators for long-run cointegration vectors when ignoring
unobserved short-run co-movements. Afterward, we employ the principal components
method to estimate unobserved stationary common factors. The presence of unobserved
stationary common factors introduces a non-negligible bias in Lasso-type estimators and
affects covariance structures in limiting distributions. The C-Lasso estimators are based

on the minimization of a penalized generalized least squares (PGLS, hereafter) criterion
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function in which additive penalty terms (see Su et al. (2016), Li et al. (2016), and Qian
and Su (2016)) are involved in parameters of slope coefficients.

We employ the GLS objective function for the sake of three advantages. First, the GLS
estimator tends to be much more reliable than the maximum likelihood estimator (see
Johansen (1991)) in small samples. Second, the GLS objective function is constructed
on the triangular representation system with a prior identification condition 3; = [, b;]
(Phillips (1994)). This fact simplifies the statistic inference from a parametric approach.
Third, the PGLS-based Lasso-type estimators achieve efficiency, compared to maximum
likelihood ones. It reduces the number of long-run vectors from N x (J —r)J to K x
(J — r)J in which the number of groups K is much smaller than that of cross-sectional
units V.

Our theoretical results first show the Granger partial sum representation of nonsta-
tionary dependent vectors. Then we establish consistency for initial GLS estimators of
long-run cointegration vectors in the presence of unobserved common factors. In addi-
tion, we show that the estimator of short-run adjustment matrix is inconsistent due to
weak dependence in innovation processes. Furthermore, we can show that the spaces
spanned by F and F° are asymptotically the same by similar arguments in Bai (2009).
The initial results are obtained under large 7" asymptotics. In the asymptotic theory for
the Lasso-type estimators, we establish the point consistency and classification consis-
tency for the PGLS-based estimation. The latter property indicates that all individuals are
classified into correct groups with a probability approaching to one (w.p.a.1). Moreover,
we establish asymptotic normal distributions for our estimators. Throughout this paper,
we assume the number of factors and the number of groups are known. In real economic
applications, we can directly apply the information criteria proposed in Bai and Ng (2002)
and Huang et al. (2017) to determine the number of factors and the number of groups,
respectively. In terms of simulation, we show good finite sample performance for both
estimation and classification.

Based on our method, we study price discovery in market microstructure model. We
first propose a permanent-transitory (PT, hereafter) decomposition based on long-run

cointegration vectors. Our PT decomposition suggests that efficient price is weighted
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average of bid and ask quotes. Then we apply our method to estimate the long-run coin-
tegration relationships between bid and ask quotes by NYSE Trade and Quote (TAQ) data
in year 2006. In general, our results suggests that the long-run equilibrium between bid
and ask prices deviates from the one-to-one relationship, which is assumed by Hasbrouck
(1995). Further, we observe asymmetric contributions of bid and ask quotes to price dis-
covery in stock market. Consequently, the mid-point of bid and ask prices may not be a
good proxy for efficient price in some cases.

The main contribution of this paper is to obtain efficient and simple estimators of
long-run vectors with unobserved heterogeneity. Formally, we impose latent group struc-
tures on long-run cointegration vectors, where the long-run relationships are homoge-
neous within each group and heterogeneous across groups. The propensity to categorize
objects is an integral part of human nature. For example, economists tend to analyze
causal relationships among economic variables by subsamples, such as developing ver-
sus developed countries, and value versus growth stocks. These classifications are just
some of the possible dichotomies in social economic problems. In the meantime, there
are some unobserved patterns in economic data, which cannot be easily identified from
observed characteristics. Therefore, the latent group structures, proposed by Su et al.
(2016) allow the data speak freely to the unobserved heterogeneity in the parameters of
slope coefficients and maintain simple and efficient estimators.

Second, our paper speak to a long literature on error-correction model since the semi-
nal work by Engle and Granger (1987), such as Phillips’s triangular system representation
(Phillips (1991),Phillips (1994)) and Johansen’s maximum likelihood method (Johansen
(1988),Johansen (1991)). Recently, many work extends these two methods into panel
framework under different restrictions (see Larsson et al. (2001), Groen and Kleibergen
(2003), Larsson and Lyhagen (2007), Breitung (2005) and Briiggemann and Liitkepohl
(2005))). Apart from two main approaches, Pesaran et al. (2004) and Dees et al. (2007)
introduce a Global VAR model, which focuses on an individual-specific error correction
model and allows for interdependence among individuals. Their estimators are inefficient
and may be inconsistent under rank deficient case (see). In general, we obtain efficient

estimators of the long-run cointegration vectors under more general settings.
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Third, the detection of short-run co-movements sheds light on factor models. There is
a growing list of econometric models employing multifactor structures in dependent vari-
ables and error terms. The factor-augmented VAR model (see Stock and Watson (2002)
and Bernanke et al. (2005)) employs a small number of estimated factors to effectively
summarize large amounts of information about the economy. Their methods provide a
natural solution to the curse of dimensionality problem in VAR analyses and achieve bet-
ter predication performance. Banerjee et al. (2017), and Barigozzi and Luciani (2017)
extend the factor-augmented model by introducing error correction terms, which allow
for nonstationary data. Compared to existing work, our primary interest is the estimation
of long-run cointegration vectors under multifactor error structures. In the meanwhile, we
can consistently estimate unobserved common factors by principal components (see Bai
et al. (2009)).

This paper is structured as follows. Section 2 introduces a panel error correction
model with stationary common factors and latent group structures and proposes a pe-
nalized generalized least squares objective function for estimation. Section 3 explains
main assumptions and establishes asymptotic properties of the proposed regularized es-
timators. Section 4 reports simulation results. Section 5 studies efficient price in market

microstructure model. Section 6 concludes. All proofs are relegated to the appendix.

3.2 Model and Estimation
3.2.1 Heterogeneous panel error correction model with dynamic common factors

In this section, we describe the main features of our panel error correction model with
latent group structures and unobserved common factors. We consider a panel dataset
consisting of NV cross-section units (individuals) over 7" time periods. For each individual

t=1,...,N, the J—dimensional y;; is generated as follows
yir = sie + [ (4D)

where s;; is a J X 1 vector of unobserved idiosyncratic nonstationary component, fto 18

an m x 1 vector of unobserved stationary common factors, and ¢) is an m x J matrix

76



of factor loadings. For each individual 7 = 1, ..., NV, we assume that s;; satisfies an error
correction model, such that

p—1
Asy = agﬂzolsitfl + Z F?lASiH + €4, (42)

=1
where Y is a J x r matrix of long-run cointegration vectors, oY is a J x r matrix of
adjustment parameters, 7 is the cointegration rank, F?l is a J x J full rank matrix of
short-run dynamics parameters, €;; is the idiosyncratic error term with zero mean and
finite variance. If r = J, s;; is a full rank /(1) process. If » = 0, model (42) reduces to
stationary VAR (p — 1) models for differenced data As;;. Since our focus is on the reduced
rank case, it is appropriate to assume 1 < r < J.

Combine (41) and (42), the observed process y;; follows a heterogeneous panel error

correction model with unobserved dynamic common factors forallz = 1, ..., V,

p—l p
Ayi = o) 8" yir—1 + Z ToAY; - + Z G+ e (43)
=1 1=0
Define the static factor F = [f, f",, ..., f{’ ] andits factor loadings A} = [Afy, A, ..., AD)]".

Then model (43) can be re-written as follows

p—1

Ay = B ya—1 + > T9Aysu s+ AVF) + (44)
=1

where the dimension of static factor F; is M x 1 where m < M < m(p+1). In this panel
error correction model, 3; is a long-run cointegration matrix, which summarizes long-run
co-movements among variables, and F; is a vector of unobserved common factors, which
stands for short-run co-movements across individuals.

In order to maintain efficiency, we assume that the long-run cointegration matrices [3;
exhibit certain unobserved group patterns, where they are heterogeneous across groups
and homogeneous within a group. Our interests are to obtain efficient estimators for
long-run cointegration vectors, infer latent group identity and detect unobserved common
factors F;.

The estimation procedures are performed on model (44). Let

vec(a) = (vec(ay), ..., vec(ay)), vec(B) = (vec(Br),...,vec(Bn)), A = (A1, ..., An),
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and F' = (F}, ..., Fr)". The true values of «y, 3;, A;, and F; are denoted as o, 37, A? and
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F?, respectively.

3.2.2 Estimation

In this section, we propose two Lasso-type estimators for the long-run cointegration
matrix ;. We first obtain consistent initial estimators, which is briefly discussed in the

following section.

Initial estimation: Two-step GLS method
For simplicity, we assume that the number of lags p = 1 and the case when p > 1 can

be easily extended. Thus, model (44) becomes
Ay = ) B)yir—1 + AYF) + &4 (45)

where ¢;; is assumed to be cross-sectionally independent but allowed to be weakly de-
pendent over time, and F; contains dynamics of unobserved common factors, which is
also allowed to be weakly dependent. By Cheng and Phillips (2009), we note that the
Johansen’s maximum likelihood estimators have non-negligible biases in both long-run
cointegration matrix (3; and short-run adjustment matrix «; under weakly dependent in-
novation processes. But the consistency of ; still holds.

At the first stage, we obtain preliminary estimators from the Johansen’s optimization

problem as follows
BZ'ML = arg mﬁm ‘SOO,i — So1,ifi (52{511,@31‘)71 BiS104| fori=1,..., N,
GME = Sou B (B BYE)
subject to the normalization conditions which ensure the uniqueness of BZM L
BZ'ML/SHJBZ-ML = I, and B%Llslo,is(i)l,isougf\u = A7,

where A7 = diag (5\}, A2 5\;") and \! > --- > A7 > 0 are the first 7 ordered roots
of the determinantal equation ‘AQSH,i — Sw,iS&fiSou‘ = 0 for each i. The Sj;; are
moment matrices of Ay;; (h = 0) and y;;,—1 (! = 1), such as Sp;,; = %ZL Ayitlfi s

1 T /
and 511, = 7 D oie1 Yit—1Yi -1
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Then we consider the triangular system restriction, proposed by Phillips (1991). We
assume that the leading r x r sub-matrix of the cointegration matrix (3; is an identity
matrix, and takes the form (3; = (]r, bg)I. Let y;; = <yi(t1),7 yftz )/>/ where yi(tl) and yftz ) are
the r x 1 and (J — r) x 1 sub-matrix of y;; respectively. Due to a non-negligible bias in

«;, we define &; = a + Y 22 (see Theorem 3.1 for detail). The model (45) reduces

’U’U’l

to

Ay — ny t) L= <yz( t) L ® 041> vec(bY) + AYFP + e, (46)
where €}, = ;; — Euv’iE;}’i ﬁ?’ Y;1—1 1s weakly stationary process. We have the infeasible
LS and GLS estimators for the above model

T —1
7 ~)~\—1 ~
b = (@) d (Z (Ayn—azyft 1) il 1> (Zyzt N 1> :

t=1
~1 T -
bz'GLS/ = (@;iz_ldi> a; iz_l (Z (Ayzt azyz(t) 1) yzt 1) (Z yzt 13/5?1) :
t=1
The GLS estimator BiGLS is the same as the two-stage estimator proposed by Breitung
(2005), where he multiply (o' la?)_l %! on both sides of equation (46) under

i.i.d. assumption. Similarly, we multiply (d;i; ldi> &% on (46), such that

1 2 N/ o
Ayzt - yz(tzl = b?/yz(,t)—l + (A?%‘) Fto + € (47)

~ - -1
where Aj = YAy, 7 = X7 (d;E;ldi) , and &3, is analogously defined.

The feasible estimators of b; can be obtained from replacing ¢; and g; by its Johansen’s
estimates, such that 33; = * Z,:T:1 (Ayit — dﬁWLBZML’yi’t_O (Ayzt — GMLEMLY, t_1>
and & = aML. We can show that &; — &; = O,(T~?) and 3; — %; = O,(T~1/?).
Writing above model (47) in vector form with the estimated values, we have

AY =YD = Y2+ FOAD + ¢, (48)

~ ~ ~ -1
where AV = [AGH, . AGL AL = 48y 3 = 576 (@316;)  and £ =

%3 + AY; (3 — ;) . We can obtain the feasible GLS estimator of 55 as follows
~ —1
- (ver)” (v (ar -0 "

The unobserved stationary common factors will not affect the consistency of the GLS es-

timator. Then, we can estimate the unobserved stationary common factors after obtaining
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the GLS estimator BiGLS. By Bai and Ng (2002), we impose the usual normalization as
follows

F'F/T = I,; and vec(A°) vec(A®) being diagonal,
where vec(A%) = [vec(AVY, ..., vec(AY)]. These two conditions uniquely determine
the A° and F. Then we obtain the consistent estimators of F' by solving the following

eigenvalue decomposition problem,

(F ® L~> VNT =

% i vec (Af/ﬁ _ Yifi _ Yé?ﬁf“) vee (Ay;r _ Yifl_)l _ Yifi)lBiG’LS)/ (F 2 Ir) ’
- (50)

where V is a diagonal matrix consisting of the M xr largest eigenvalues of the matrix in-

side the brackets, arranged in decreasing order. Given b;, we have £; =vec (A}Aff — Y;-fi)l — Yifi)l b?) =

(F ® I,)vec(A;)+vec(£]) has a pure factor structure. Let § = (£1,&s,...,&n), aTr x N

matrix. We obtain the least squares estimators of vec(A) = %é’ <F ® Ir>.

PGLS-based estimation

In this subsection, we propose the penalized generalized least squares (PGLS, here-
after) method to estimate the long-run cointegration matrix b; and identify group member-
ship for model (48). We denote the true values of b; as b?, to follow latent group structures,

such that )

BY, i€ G
po— ¢ :

BY., ieGY%

where BY # B) for any j # k, Ur,GY = {1,2,... N}, and GLNGY = & for any
j # k. Let N, = #G), denote the cardinality of the set ;.. For the moment, we assume
that the number of groups K is known and fixed but each individual’s group membership
is unknown. Since b exhibits latent group structures, we propose the following PGLS

criterion function to estimate b and B

X X A\ N K
wr (b B) = Qur(0) + = D [ livee(t: — Bi)ll. (51)

=1 k=1
A A / A
where Qnr(b) = o= Do, Vec <AYi+ — Yii)l — Y;@lbi) vec <AY1-+ - Y;Ei)l — Yi@lbi>

is the GLS objective function, and A = A(N, T) is the tuning parameter. Minimizing the
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PGLS criterion function in (51) produces the Classifier-Lasso (C-Lasso, hereafter) esti-
mators of b; and By, respectively. Then we can update estimates of unobserved common
factors by the following equation with B, as follows
R 1 XK . . . o
(Fer)var= 7 2L D vee (av = v =¥ B vee (av - v -2 By) | (Fer).
k=1ie@,
(52)

where ['F/T = I, and V7 is a diagonal matrix consisting of the M * r largest eigen-
values of the matrix inside the brackets, arranged in decreasing order.

Now we summarize estimation procedures. First, we need to obtain prior estimates
of &;, Bl and F' from the two-step GLS method from (49)-(50). Second, we minimize the
above PGLS criterion function (51), which produces the corresponding C-Lasso estimates
band B. Third, we update the estimates of adjustment matrix &; = SOl,in (B,’CSHJEO B
and unobserved common factors F' by (52). Forth, we apply bias-correction in post-Lasso
estimator of Bj with group classification from C-Lasso estimators. At last, we iterate
procedures 3-4 to obtain the post-Lasso estimates until achieving convergence. Our esti-
mators, which we will refer to as “C-Lasso” and “post-Lasso” are based on the optimal
group of cross-sectional individuals, according to the PGLS criterion function. We study

asymptotic properties of the C-Lasso, and post-Lasso below.

3.3 Asymptotic Theory
3.3.1 Main Assumptions

In this subsection, we explain main assumptions needed in asymptotic properties.

Without loss of generality, we assume that F has zero mean. Let wy; = (¢}, F”')" and
C = o (F,A) is the sigma algebra generate by F" and A.
Assumption 3.1 (i) For each i, {wy}y° is a linear process and w;; = ¢;(L)e;; =
Z;io pijeir—j, where ey is a (J + M) x 1 vector sequence of i.i.d random variables
with zero mean and variance matrix Iy, and max;<;<n sup, E(||e;¢||*77) < oo, where
q > 4 and ¢ is an arbitrarily small positive constant. Define e; = (e5],el”). €, and el
are mutually independent.

(ii) maxycien Yoo 7¥|1 03] < 00 and |¢i(L)| # 0 for some k > 2.
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(iii) \; is independent of e, for all i, j, and t.

(iv) ;4 are cross-sectionally independent conditional on C.
Assumption 3.2 (i) The determinant equation |I; — (I; + o?3Y) L| = 0 has roots on or
outside the unit circle, i.e. |L| > 1.
(ii) The I; + oY BY where o; and 3; are J x r matrices of full column rank r, 0<r < J.

(iii) The matrix R; = I, + Y'Y has eigenvalues within the unit circle.

Assumption 3.3 (i) For each k = 1, ..., Ko, Ny /N — 7, € (0,1) as N — oc.
(i) ming <2< i HB,E — B?H > ¢, for some fixed c, > 0.
(iii) As (N, T) — oo, N/T? — ¢ € [0,00), T/N? — ¢ € [0, 00).
(iv)As (N, T) = 00, \ip — 0, \TN V4,22 / (log T)"" — 00, and 2NVIT~" (log T)"* —

Assumption 3.1 (i)-(ii) imposes that the innovation process {w; } is a linear process
that exhibits certain moment and summability conditions. Let S; = (I xs,0,%) and
Sy = (Oprxg, Lnaxar) be J x (J + M) and M x (J + M) selection matrices such that
Siwy = €4 and Sowy = FP. By Phillips and Solo (1992) and Phillips and Moon (1999),
the finite 2¢ 4+ € moments for ¢ > 4 ensure the validity of the law of large numbers (LLN)
and functional central limit theorem for partial sum processes of w;;. In our asymptotic
analysis, we will frequently call upon the Beveridge and Nelson (1981) BN decomposi-
tion:

Wi = ¢; (1) €3 + Wi g1 — Wi,
where w;; = Z;io ggijei,t_j and qgij = Zzi] +1 ®is- Assumption 3.1 (ii) indicates that
w;; has Wold decomposition and behaves like a stationary process. By Phillips and Solo
(1992, p973), we have > |s;]I> < oo under Z;’;ljwﬂiﬁijﬂ < oo. In our case, we
need stronger conditions to ensure the uniform behavior across 7. For latter reference, we
partition ¢;(L) conformably with w;; as follows:

(o) G | (6FL) Open
¢2(L) (beE(L) ¢FF(L)) <0ij ¢FF(L)>

Since stationary common factors do not dependent on i, we have ¢/¢(L) = 0. We set

gb;?F (L) = 0 to ensure that £; is cross-sectionally independent conditional on C. (iii)
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ensures that factor loadings are independent of the generation of innovation processes
both over time dimension and across cross-sectional units. (iv) emphasizes that the cross-
sectional dependence only comes from unobserved common factors.

Assumption 3.2 gives conditions that are standard in error correction model with re-
duced rank restriction. Assumption 3.2 (iii) ensures that the matrix 5/« has full rank
for each individual :. (see Johansen (1988), Johansen (1995) and Phillips (1995)). Let
a;, and (;; be orthogonal complements to «; and f3;, so that ;; and (;; are full rank
J x (J — r) matrices satisfying o}, o, = 0(j_p)x, and 3}, 5; = 0(j_r)x, respectively.
Without loss of generality, we assume (3, 8;1 = I;_, and o}, cv;; = ;.. Also, [, o ]
and [3;, B;1] are J x J non-singular matrices. The non-singularity of //c; implies the

non-singularity of o, 3;; . Note that y;; are generated from the following equation
yir = (I + o) B))yig—1 + AV FY + €.
Multiplying 3 and 2| on both sides of above equation, we have

Stationary components: 3y, = (I, + 8 a)Biyii1 + BY (A FY + i) = Ri(L) B3 ws
Nonstationary components: o yir = o' yii—1 + o (AYFY +e4) = Z o uis + o yio

where u;; = A)'FY + & and Ry(L) = 3222 R = > i (Ir + BYa%). Combing the
above two components and the fact that 59, (a% 59) ™" % + a? (8%a9) ' Y = I,, it

yields the following Granger partial sum representation
t
-1 -1
= 8 ) o () - 40) R0
s=1

!/
where rank(ﬁo (a2 807" a?i) =.J —r. Since f5; = (L« b;) , we have the sub-vector

yft) satisfies the following full rank partial sum process

t
-1 -1
yzt = b\ ( Qi1 zOJ_ ayl (Z Ujs + yiO) +ap; (5?/04?) Ri(L) B it
s=1

/!
where (b?L (a2 B0)" ?i) isa(J — r)x(J — r) full rank matrix and o = (04(1); oz%) :
Since yi(t ) is a full rank nonstationary process, we have the multivariate invariance princi-
ple for yff ), such that

%y = b7, (o ?L)_l u\/—<zuzs)+0‘2z (87 ay) \}T%tjb () zOJ_)_l
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where vy = R;(L)BYuss, Byi = SiBi, S; = S1 + AYS,y, and B;isa (J + M) x 1 vector
of Brownian motions with long-run covariance matrix €2;. Define the temporal variance
Y = E(ww),) and the one-sided long-run covariance matrix A; = Z;io E(wipwj;) =

[ + %; of {w;}, where ©; has the following partition

= Qi 0
MxJ 22,1

j=—o0

Assumption 3.3(i) implies that each group has an asymptotically non-negligible num-
ber of individuals as N — oo. Assumption 3.3(ii) is obtained from SSP, which requires
the separability of the group-specific parameters. Similar conditions are assumed in the
panel literature with latent group patterns (see Bonhomme and Manresa (2015) and Huang
et al. (2017)). Assumption 3.3(iii)-(iv) impose conditions to control the rate of N and T’
passing to infinity, which is important to the proof of uniform classification consistency.
In particular, we allow for N and 7' pass to infinity at the same rate. The involving of 1
is due to the law of iterated logarithm, such that .7 = O(loglogT"). Here we can show
that the range of values for \ satisfying Assumption 3.3(iv) is A oc 7~ for a € (0, %).

3.3.2 Point estimation and classification consistency

R 2
Let Onr = min(VN, VT), n3r = = 31| Hvec(bi —bY)|| ,and

H= (M) (LTF ® I,,> V2. The consistency of initial estimators &5 and

the estimated factor F' is ensured by the following theorem.

Theorem 15 Suppose that Assumptions 3.1-3.2 hold. Then for some . — o0,
(i) &; — &; = O,(T~Y/?), foreachi=1,...,N

(ii) BOLS — b, = O,(T), foreach i =1,..., N,

(iii) - H (Per)-(FeL) HH = 0,(Ch) + O, (VTernnr)

-1
v,

where &; = af + Yw,i

Remark: Theorem 3.1(i)-(ii) establish the point-wise consistency for estimators of short-
run adjustment matrix «; and long-run cointegration vector b;. We summarize some key
findings. First, the estimator of short-run adjustment matrix is inconsistent around the

true value a? when ¥,,,; # 0. Instead, &; is consistent with the pseudo true value &; =
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Oé? + Eumzfl

VU,1°

where Y., ; comes from the serial correlation and endogeneity in the
innovation processes of ¢;; and F. When we have the i.i.d. assumption, (i) reduce to
the case in Johansen (1991), where &; — a? = O,(T~/?). Second, despite the weakly
dependence, we can still obtain super-consistency for long-run cointegration vectors. This
GLS estimator is similar to the two-step parametric estimator in Breitung (2005), where
he focuses on the 1.1.d. case. Based on the convergence rate of ZAJZ.GLS , we can show that the
spaces spanned by the columns of F and F° are asymptotically the same.

Here we presents the preliminary rates of convergence for PGLS-based estimates b,

and ék.

Theorem 16 Suppose that Assumptions 3.1-3.2 hold. Then for some . — 0,
(i) vee(b; — 10) = Op(T" '+ N), fori=1,...,N.
(i) & S, [veeth — )| = 0,37 fori = 1,... N,
(iii) (vec(B)), -..,vec(Bx))) — (vec(BYyy), --vec(Bly)) = Op(erT ™)

where (vec(B?l)), e vec(B(OK))) is suitable permutation of (vec(BY), ...,vec(B%)).

Remark: Theorem 3.2(i)-(i1) establish the point-wise and mean-square consistency for
the long-run cointegration matrix b;. Theorem 3.2(iii) indicates that the estimator Vec(é %)
consistently estimate the true group-specific coefficient Vec(Bz). We note that the point-
wise convergence rate of b; depends on A but mean-square convergence rate of b; and the

convergence rate of By doesn’t.

For simplicity, we will write B(k) as Bk. Define the estimated group
G = {z € {1,2,..,N}: b = Bk} fork=1,.. K.

For rigorous statement of classification consistency, we define the following sequences of

events

Eyvri={i ¢ Gilie G} and  Fpnry = {i € GYi € Gy}
where 1 = 1, ,N and k£ = 1, ... K. Let EkNT = UieékEkNTi and FkNT = UieGkaNTi'
This definition is identical to that in Su et al. (2016). The events Ek N7 and F LNT mimic

Type I and Type II errors in statistical tests: Enr denotes the error event of not clas-

sifying an element of Gg into estimated group G s and Fk ~T denotes the error event of

85



classifying an element that does not belong to G into the estimated group Gr. We adopt

the following definition to investigate the asymptotic properties of classification.

Definition 3.1 (Uniform consistency of classification) We say that a classification method
is individual consistent if P(EA;,CNTJ) — 0as (N,T) — oo for eachi € G and k =
1,..., Ko, and P(FkNT,Z-) — 0as (N, T) — oo foreachi € GYand k = 1, ..., Ky. It is

uniformly consistent if P(UL", Eynr) — 0 and P(UK, Fint) — 0as (N, T) — oo.

Theorem 17 Suppose that Assumptions 3.1-3.3 hold. Then
(i) P(UE Exnr) < S0, P(Epnr) — O0as (N, T) — oo,
(ll) P(UszlpkNT) < 2521 P(FkNT) — 0as (N, T) — OQ.

Remark: Theorem 3.3 implies the uniform classification consistency— all individuals
within a certain group, say G can be simultaneously correctly classified into same group
(denoted G}, w.p.a.l. This theorem has also been established in Huang, Phillips, Su
(2017).

3.3.3 Asymptotic distribution and oracle property

In this subsection, we study the oracle properties of PGLS-based estimation method.
Given the estimated group {Gk, k = 1,.., K}, we can readily pool the observations
within each estimated group to obtain the post-Lasso estimator as follows

-1
A 1 1 ~
ost 2y (2 2)r (1
VeC(Bg N=|1L® N, T2 Z Yéf—lyif—a vec N.T? Z Y;,(—l (AY? - Yi,—)1i>

iEék 1€Gy,

for k = 1,..., K. When the group identity for each individual is known, we have the

oracle estimators
1
Horacle 1 2 2 1 2 A~ 1
vec(By ) = | I, ® N7 Z y;,f_)lfyif_)l vee | N7 Z y;,f_)l’ <AY;+ _ 1/;,(—)1>

’iéék ’iGG%

The oracle property indicates that the Lasso-type estimators are asymptotically equivalent
to the infeasible estimator Vec(BgT“Cle), which can be obtained only if one knows all
individuals’ group identity. In the following theorem, we establish the oracle property of

the PGLS-based C-Lasso estimators and their post-Lasso version.
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Theorem 18 Suppose that Assumptions 3.1-3.3 hold. Then fork =1, ..., K, as (N,T) —
0,

(i) VNGT (vec(By, = BY)) = Qi Bivr = N(0,Q, V@),

(ii) VN T (vec(BX** — BY)) — Qi ' Byt = N(0,Q; 'V, Q;h),

where Qi = limy_ oo Nik Ziecg CiEe ([ BuiB,;) Cti Vi = limy oo Vare (Vinr) =

-1
_ 10 07 20 0r
Qk, and C'h- = bi, (ai, i, ) OzL .

Given the limiting distribution in Theorem 3.4, one can make inference as if the true
group identity is known. Since there is a non-negligible bias Bj, 7, we can remove the
bias by panel DOLS or fully modified OLS method in the post-Lasso estimators (see Mark
and Sul (2003) and Phillips and Moon (1999)). Therefore, the post-Lasso estimators after

bias-correction are recommended for practical uses.

3.4 Monte Carlo Simulations

In this section, we evaluate the finite sample performance of the C-Lasso and post-
Lasso estimators under PGLS-based methods.

We consider three data generating processes that cover panel error correction models
with different specifications. Throughout these DGPs, the observations in each DGP
are drawn from two groups with the proportion N; : Ny = 0.4 : 0.6. We try four
combinations of the sample sizes with N = 40,80 and 7" = 50, 100.

DGP1 (Three-variate Panel ECM(1) with no common factors) The observations ¥;;
are generated according to

Ay = a?ﬁ?’yz-tfl + €it,

where ¢;; is i.i.d N(0, 1) and the cointegration rank r = 2, the true coefficients are o =

a®+0.2x N(0,1) and 8? = [I,.,b)] where

03 03
=03 —02 ,(B?,BQ):((—l/g —1),(—1 —1/3)),
02 03

and b = B) fori € G and k = 1,2.

87



DGP2 (Three-variate Panel ECM(1) with two common factors) The observations ¥,

are generated according to

_ ! £0
Yit = Sit + Ui fy
— 0120/
Asiyy = o 57" si -1 + €t

where the cointegration rank, «; and f3; are the same with DGP1. Let ¢); = (1y;, ¥;),
ft = (fit, for). The variables 1;; and f;; are all i.i.d. N(0,1) for j =1, 2.

DGP3 (Three-variate Panel ECM(1) with two common factors and endogeneity) The
observations y;; are generated from the same model in DGP2. The settings of r, o, [;
and v); are the same in DGP2. We introduce linear processes in idiosyncratic errors w;; =
(€, AfL)', such that wy = Y7°2 @i, ; where ey are iid. N(0,I5), ¢; = j~>° x Q2
QF O3x2

Q72 is the symmetric square root of {2 where () = p
O2x3 €2

), Q. =QF =0.2for

alll £mand Q5 = Qf = 1.

In all cases, the simulation results are based on 500 replications.

Table 1 show the finite sample performance of group classification and estimation.
Now we assume that the number of groups, the number of factors, and the cointegration
rank are known in assessing the estimation performance. We set A\ = ¢, 73/ where
¢y = 0.1 or 0.2. For classification, all DGPs achieve 95% correct specification rate for
different values of c). Moreover, as 7' increases, the percentage of correct specification
increases significantly and is almost close to the perfect rate 100%. The simulation results
confirm good classification performance.

For the estimation, we consider both the C-Lasso estimator and its post-Lasso ver-
sion. We report the bias and root-mean-square-error (RMSE) for the estimate b; (1), which
is the first parameter in b? for each DGP, where all criteria are averaged over different
groups and across 500 replications. For example, we calculate the RMSE of l;i(l)’s as
~ 15:01 NiRMSE(B; (1)) with By (1) denoting the first element in By, for one replica-
tion and then average them across all replications for each case.

In general, the estimation performance reveals some general patterns. First, the bias
and RMSE of the C-Lasso estimates and their post-Lasso versions always decreases as

either NV or 7' increases, and they decrease faster when 7" increases than when /N increases.
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Table 15: RMSEs and Biases for Lasso-types and oracle estimates under PGLS-based

method
A =o0.1 A =0.2
N T % Correct RMSE Bias % Correct RMSE Bias
specification specification
DGP1
40 50 C-Lasso 98.43 0.0626 0.0502 98.42 0.0624 0.0499
post-Lasso 98.43 0.0139 -0.0011 98.42 0.0139 -0.0011
Oracle - 0.0139 -0.0016 - 0.0139 -0.0016
40 100 C-Lasso 99.84 0.0289 0.0233 99.84 0.0289 0.0232
post-Lasso 99.84 0.0069 -0.0003 99.84 0.0069 -0.0003
Oracle - 0.0069 -0.0003 - 0.0069 -0.0003
80 50 C-Lasso 98.35 0.0566 0.0489 98.35 0.0560 0.0481
post-Lasso 98.35 0.0096 -0.0001 98.35 0.0096 -0.0001
Oracle - 0.0095 -0.0005 - 0.0095 -0.0005
80 100 C-Lasso 99.88 0.0284 0.0253 99.89 0.0254 0.0221
post-Lasso 99.88 0.0044 0.0001 99.89 0.0044 0.0001
Oracle - 0.0044 0.0000 - 0.0044 0.0000
DGP2
40 50 C-Lasso 95.59 0.1178 0.1022 95.58 0.1176 0.1018
post-Lasso 95.59 0.0230 0.0066 95.58 0.0231 0.0066
Oracle - 0.0189 -0.0042 - 0.0189 -0.0042
40 100 C-Lasso 99.10 0.0552 0.0486 99.15 0.0545 0.0478
post-Lasso 99.10 0.0091 0.0025 99.15 0.0091 0.0025
Oracle - 0.0079 -0.0011 - 0.0079 -0.0011
80 50 C-Lasso 95.49 0.1095 0.1017 95.48 0.1085 0.1005
post-Lasso 95.49 0.0167 0.0075 95.48 0.0167 0.0075
Oracle - 0.0113 -0.0022 - 0.0113 -0.0022
80 100 C-Lasso 99.03 0.0522 0.0490 99.03 0.0491 0.0457
post-Lasso 99.03 0.0063 0.0024 99.03 0.0063 0.0024
Oracle - 0.0048 -0.0004 - 0.0048 -0.0004
DGP3
40 50 C-Lasso 97.58 0.0786 0.0636 97.58 0.0782 0.0631
post-Lasso 97.58 0.0174 0.0058 97.58 0.0174 0.0058
Oracle - 0.0173 0.0005 - 0.0173 0.0005
40 100 C-Lasso 99.57 0.0374 0.0311 99.57 0.0365 0.0300
post-Lasso 99.57 0.0077 0.0020 99.57 0.0077 0.0020
Oracle - 0.0072 0.0001 - 0.0072 0.0001
80 50 C-Lasso 97.65 0.0717 0.0628 97.66 0.0708 0.0615
post-Lasso 97.65 0.0129 0.0058 97.66 0.0129 0.0058
Oracle - 0.0122 0.0002 - 0.0122 0.0002
80 100 C-Lasso 99.60 0.0358 0.0325 99.60 0.0321 0.0287
post-Lasso 99.60 0.0055 0.0020 99.60 0.0055 0.0021
Oracle - 0.0050 0.0003 - 0.0050 0.0003

It confirms that the estimates have faster convergence rate along the time dimension than
along the cross-sectional dimension. Second, the finite sample performance of the post-
Lasso estimates is close to that of the oracle ones and dominates the C-Lasso estimates
in DGP1 and DGP2. This is because we have iterated estimation procedure in post-
Lasso and oracle estimators. In addition, when endogeneity is introduced in DGP3, we
apply DOLS bias-correction in post-Lasso and oracle-estimators. The simulation results
suggest that DOLS bias-correction works fine in error correction model. Based on above
simulation results, we recommend the post-Lasso estimators with DOLS bias-correction

for practical uses.
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3.5 Efficient price in market microstructure model

There are two fundamental functions of market microstructure, viz., liquidity and
price discovery. Popular liquidity and price discovery measures, such as the bid-ask
spread, pricing error (Hasbrouck (1993)), information share (Hasbrouck (1995)), and
Common factor (Harris et al. (2002)), reflect the adverse selection costs and inventory
costs of market makers, and the mechanics of how new information impounding into se-
curity price. Therefore, understanding market microstructure is essential to asset pricing.
To economize on the number of issues, one of the central concepts is the “efficient price”,
which is economically meaningful for asset pricing but generally unobservable.

In the literature, the efficient price is either measured by transaction price or the mid-
point of bid-ask prices, see, e.g., Hasbrouck (1993), Hasbrouck (1995), and Hansen and
Lunde (2006). The underlying assumption obeys the law of one price, by which the bid
and ask quotes deviate from efficient price with transient errors. In this case, the bid-ask
spread can only have “second-order” effect on the level of stock price and it is hard to be
detected empirically. However, a number of studies identify the positive return-illiquidity
relationship across stocks (see Amihud and Mendelson (1986), and Amihud (2002)). It
implies potential deviations from the “absolute” version of the law of one price. Based
on this argument, we believe some patterns of unobserved heterogeneity in the long-run
equilibrium between bid and ask prices. This leads to the possibility that efficient price
lies between the bid and ask prices but not exactly on the mid-point. The asymmetric
contributions of bid and ask prices to efficient price have been identified in commodity
market and foreign exchange market, see Figuerola-Ferretti and Gonzalo (2010) and Chen
and Gau (2014).

In this paper, we suggest a new measure for implicit “efficient price”, which is the
weighted average of bid and ask prices. First, we summarize two existing methods for
price discovery that are advocated by Hasbrouck (1995) and Gonzalo and Granger (1995).
Second, we propose a permanent-transitory decomposition to derive efficient price and
show the linkage between the two existing methods. Third, we discuss several advantages
for our PT decomposition from economic intuition and econometric perspective. Fourth,

we apply our method to the NYSE Trade and Quote (TAQ) data in the sample year 2006
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and summarize some findings.

3.5.1 Permanent-Transitory decomposition

The basic belief in microstructure model is that pairs of prices for a single security
are cointegrated, and contain a permanent component. Therefore, there exists an error

correction model for the vector of the bid and ask prices, such that

p—1

Apy = aiﬁz{pi,tfl + Z LaApi—i + e,
=1

where p; = [bi, ay]’, by is the bid price, and a;; is the ask price. Most of microstructure
models assume 3; = [1,—1]" as a prior condition, for example Hasbrouck (1995) and
Hansen and Lunde (2006). The bid and ask prices can be summarized as the efficient

price plus a transitory component impounding various microstructure effects:
a b
@it = Mt + Sy, and by = my — s,

where m;; is the implicit “efficient price”, s% and s!, are pricing errors. From the above
set-up, the mid-point of bid-ask prices is a good measure for efficient price. By Hasbrouck

(2002), the efficient price follows a pure random walk
My = My 31 + Ui,

where u;; is uncorrelated over time, such that £ (u;u;s) = 0 for t # s. In addition, he
assumes the pricing error (s?t, si?t) is serially uncorrelated over time but may correlated
with e;;. Intuitively, the random-walk variance o2; can be recovered from the observed
price changes. The information share measure of price discovery comes from the different
variance contributions of price series.

As discussed earlier, much empirical work identifies “illiquidity premium” across
stocks over time. It indicates that the mis-priced issue may be fundamental, where the

bid and ask prices are cointegrated but they can deviate from the one-to-one long-run

equilibrium. Based on this belief, we have
i+ = I%my + 5%, and by, = I"my, — %
Ay = LAz + Sy, all it — mit Sit
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where I® # 1 or I® # 1 for some stocks. Naturally, the mid-point of bid and ask prices
may not be a good measure of the efficient price.

Gonzalo and Granger (1995) propose a permanent-transitory (PT) decomposition as

GG
Pit = Bsz + oy iSit

where mG¢ = (o, 1) " o pi and sG¢ = (Bla;) " Blpy. Based on this PT decompo-

sition, Harris et al. (2002) propose a new measure for price discovery, such that

GG decomposition: p;; = ¢4+ as gG,
oy al
Efficient price: m&¢ = —Lalt by
it b ’
afy +af, oy oy
where §; = [1, —1] is a prior condition. From the above equation, the “efficient price”

m§“ is a linear function of observed prices, which may not be the mid-point of bid and ask

prices. These weights are useful measures for the price discovery. However, there are two
fundamental problems by using this GG decomposition. First, the bid and ask prices still
obey the “absolute” version of the law of one price where /¢ = I® = 1 This implies that
the bid-ask spread only contains the transitory component and has no predictive power on
stock returns. Second, Hansen and Lunde (2006) summarize two important facts of the
market microstructure noise: (1). the noise is correlated with the efficient price, and (2)
the noise is time dependent. In the GG decomposition, the market microstructure noise is

a;s5¢. By Granger partial sum representation (p = 1), we have

;S zt = (B a2> Ri(L)Biei.

It is obvious that this market microstructure noise is time dependent but orthogonal to
the efficient price. Third, from the econometric perspective we show that the short-run
adjustment matrix «; cannot be consistently estimated under weakly dependent innovation
processes. In general, the GG decomposition fails to give an unbiased and consistent
estimator for the “efficient price” and may be contradicted to some empirical findings.

In this paper, we propose a new permanent-transitory decomposition method based on

consistent and efficient estimator of the long-run equilibrium vector 3;.5 Due to the fact

SKasa (1992), and Johansen (Corollary 4.4 p.53, 1995) discuss this PT decomposition.
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that Pg, | + Ps, = I, we can decompose p;; as follows
B — decomposition: p; = f; lmft + ﬂisft

where m? = (8/, ;1) B/, pi and si; = (8.3;)" Blpis. There are several advantages
of this decomposition. First, this decomposition satisfies the definition of permanent-
transitory decomposition proposed by Quah (1992). Second, the “efficient price” is also
the linear combination of observed prices. In the meanwhile, the accurate estimation of
m;; only depends on the consistency of the long-run equilibrium vector [3;. Therefore, we
can still obtain consistent measure for “efficient price” under weakly dependent innova-

tion processes. Third, we can replace p;; in the GG and 3—decompositions by its Granger

partial sum representation
¢ t
GG __ / -1 B8 / -1
my = (o Bi)  agy E €is |, and my = (g, Bi) agy E €is | T Eit
s=1 s=1

where e; = (8/,68;1) " B, a; (Bley) " Ry(L)Bley is transient. We observe that our ef-
ficient price measure mZ has exactly the same permanent component with m$“. When

B; = [1, —1], we have mﬁ lies in the mid-point of bid and ask prices, such that
ag = mh + sb, and by = m}, — .

Fourth, the market microstructure noise has two components—a permanent component

from the deviation of one-to-one relationship and transitory component, such that
it — i = [Bin — Uml, + Bishy,

where ¢ = [1,1]". When the long-run cointegration relationship 3; # [1, —1], the mi-
crostructure noise will be correlated with efficient price, which is consistent with the
empirical findings in Hansen and Lunde (2006). Further, when 3; = [1, —1], we only
have the orthogonal transitory component, which is uncorrelated with the efficient price.
This is consistent with the general settings in the continuous time model for realized vari-
ance (see Ait-Sahalia et al. (2005)). In general, our f—decomposition maintains the key
features in the Hasbrouck and GG decompositions. Also, the potential heterogeneity in
long-run cointegration relationships directly determines asymmetric contributions of bid

and ask prices to efficient price.
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3.5.2 Empirical results

We estimate the parameters in (ECM) for each of the days individually, with the num-
ber of lags, p = 1 and p = 5.° The key parameter in our analysis is 3;-, which shows
how the efficient price is constructed by the linear combinations of observed prices. We
normalize the long-run cointegration vector 3; = [1,b;]’. We impose latent group struc-
tures on the long-run cointegration relationship b;. In our empirical results, we set the
number of group K = 3, 4 and the elements of ;- correspond to bid and ask prices, such
as (Bipia» Bivask: ) fork =1,2,3 ork =1,2,3,4.

Table 2 and Table 3 report a summary of our empirical results, which are averages,
minimum, maximum and standard deviation of the daily estimates, b, and group per-
centages of the whole sample N, /N. We summarize some interesting findings. First, the
long-run cointegration relations [1, b;] deviate from the one-to-one relationship. Second,
on average 95% of our sample has negative estimates on b;, which indicates the efficient
price lies between bid and ask prices. Similar results preserve when K = 4. In addition,
we notice abnormal estimates in the Group 3 when K = 3 and Group 4 when K = 4,
where the efficient price is out of the bid-ask region. However, the proportion of these
stock is generally below 5% in our sample.

Figure 1 and Figure 2 show the contributions of bid and ask prices to efficient price
based on the group-specific estimates of by, for X' = 3 and K = 4. In general, there are
distinctive asymmetric patterns of the bid and ask prices to efficient price. The results
suggest some forms of information asymmetry at one of the quoted price to price discov-
ery. It empirically identifies that buyers and sellers respond differently to information and

face asymmetric trading costs in stock market.

Table 16: Summary estimates of the long-run cointegration relationships when K = 3

b Ny /N b Ny /N b3 N3 /N | Number of Observations
Average -1.220 0.400 | -0.658 0.554 | 0.256 0.046 932.35
Max -0.799 0977 | -0.063 0.830 | 0.678 0.132 1005
Min -1.664  0.109 | -0.906 0.017 § -0.314 0.000 850
Std. 0.144 0.174 | 0.126 0.176 © 0.221 0.024 29.830

The results of p = 5 are similar to those of p = 1 and available upon request.
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Table 17: Summary estimates of the long-run cointegration relationships when K = 4

by N1 /N ‘ Ny /N ‘ N3/N‘ Ny4/N ‘ Number of Observations
Average -1.774 0.112 | -0.936 0.661 | -0.312 0.168 | 0.493 0.060 933.72
Max -1.065 0.597 | -0.565 0.847 | 0.284 0.670 | 1.330 0.133 1005
Min -4.232  0.006 | -1.720 0.014 | -0.825 0.000 0.084 0.006 850
Std. 0.326 0.082 | 0.139 0.113 | 0.182 0.120 A 0.161 0.018 29.942

Figure 2: Weighted contribution of bid and ask price to efficient price when K = 3
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Figure 3: Weighted contribution of bid and ask price to efficient price when K = 4
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3.6 Conclusion

In this paper, we propose a panel error correction model, where the dependent variable
are generated from the combination of idiosyncratic nonstationary component and unob-
served stationary common factors. The central result is to obtain consistent and efficient
estimator for long-run cointegration vectors in the presence of unobserved heterogeneity.
In addition, unlike the usual i.i.d. assumption in error-correction model, we allow for
weak dependence in both error terms and unobserved stationary common factors. Fur-
thermore, the unobserved common factors introduce interdependence among individuals.
The estimation and group classification procedure is purely data-driven, based on the pe-
nalized generalized least squares method. We have proposed two Lasso-type estimators
for long-run cointegration vectors. The asymptotic properties are derived and discussed
in this paper.

In the empirical application, we employ our method on a large panel of TAQ data
from sample year 2006. We propose a permanent-transitory decomposition on the vector
of bid and ask prices. This decomposition yields a measure for “efficient price”, which
is weighted average of bid and ask prices. Compared to the mid-point assumption, we
discuss several advantages for our measure. There are a number of aspects of our model
that we have not fully developed in our empirical analysis and that are left for future
research. First, we can quantify the permanent and transitory part in the bid-ask spread. It
may explain contradicted views on the effects of bid-ask spread, Amihud and Mendelson
(1986), and Vayanos (1998). Second, it is interesting to analyze the realized variance

based on our estimates of efficient price.
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A Appendix to Chapter 1

In this appendix, we first state some technical lemmas that are used in the proofs of
Theorems 1-6 and then prove these main results. The proofs of the technical lemmas are

relegated to the online supplementary Appendix.

A.1 Proofs of the Main Results in Section 4

Let I(f,it = Z';:l €14. Noting that x1 ;4 = x1,0 + Zts:1 €14 and Tyip = Ty —
AT w = 2l — =30 @), the initial value 15 does not play a role in our
analysis. Without loss of generality, we assume that x; ;o = 0 and write x; ;; for ZZ=1 E1,it
hereafter. Recall that

1 T ~ ~/ 1 T - ~/ A e
A 77 21 Dty 77 D4 fcl,itfcz,it) _ (Qi,:zlzil Qzﬁclfcz>
S ‘ ,

1 T o~ I 1 T ~ ~/

T2 D ToatTy g 7 Dopey T2t g Qiioin  Qiinis
1 7T s~ - A

A B Tz thl T1itUit | Qi,:’ilﬁ

iia = 1 T - . = A )
T2 thl T2 itUit Qi,;iga

T ~ ~ N
Q. R J%thl xl,ituft) - ( Qi z i )
L,Tu* = ,

1 T ~ o~ A
T2 thl L2,itUgy Qi zoir

~ ~ ~ y—1 ~ ~ ~ / ~ . .
where u;‘t = Uit — x2it222,i220,i' Let T14 = (]3171'1, ---wrl,z'N) . Define T, Ui, and u;‘
analogously. Let M,; = Iy — &y (%) ,20;) @), for £ = 1,2, where Ir isa T x T
I, 0

0 VTI,

identity matrix. Recall that Dy = ) . We shall abbreviate lefl as Qli
frequently for notational simplicity.

To prove the main results in the paper, we need the following lemmas.

Lemma 1 Let S = (S;,Ss) be a selection matrix, where S and Sy are | X p; and | X po
matrices, respectively, and | is a fixed integer. Suppose that Assumptions A.1-A.3 hold.
Then for eachi =1, ..., N,

1 ~ ~
5 BB .
(1)SDy0, o Dag=ss [ Do Pribii 0 g
| 0 Suy

(ii) TQi,:ilﬂ*j fol Bl,idBé)ﬂ' + Ay — (fol BudBé,i + A12,i> 2272172-220,17
(iii) T%/*S5Q; zya-=S2 (J1; @ Joi) N (0,V0),
. SN | . -
(iv)T (51;& - 5?,,‘) = (fol Bl,iBLZ) [fol Bl,idB(/)J‘ + Ay — <f01 Bl,idBéﬂ‘ + Al?,i) 22_2171'22071} ;
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(v) VTS, <5~21 - 55%) =8 (853014 © Joi) N (0, V),
WhereBlz_Blz fO Blz d’f’ A101_2102+A102ajll:(0p2><170p2><p17[ )7 JZz_
(1, 01y, —Sho,B59) » and V2 = limyp o Var(T~Y2 30 vec(euel, — 55)).

Lemma 2 Suppose that Assumptions A.1-A.3 hold. Then for any fixed constant ¢ > 0,
(l) P (max1<i<N ’I% Hi‘ll zﬁ'zH > calNT) =0 (Nil) s
(ii) P (maX1<Z<N || Tl’g Ui — Y20 zH ch G2NT> =0 (N_l) )

(iii) P (maX1<i<N T2 ||I1 ZIQz‘H Cpg/ aint) =0 (N7,

(W) P <maX1<z<N H Zt 1 ZL‘Q thL‘2 it 222 i 2 CpoGoNT | = O (Nfl) ,
(v) P <maX1<z<N HQZ mar|| 2 cam:r) =o(N7),
(Vl) P <maX1<’L<N HTQz Tow* 2 Cpé/2a2NT> =0 (N_l) .

Lemma 3 Suppose that Assumptions A.1-A.3 hold. Then

(i) li;n_}sup)\maX (Wfl,@i,i) < (% + c) Cq,, a.S. for any fixed small constant
c >0,

(ii) P <min1<i<N /\min<TQi 5212) = ng/2> =1-o0 (N_1> )

(iii) P (m1n1<Z<N Amin(DrQi 25 Dr) > 011/(2bT)> =1-—0o(N1).

Lemma 4 Suppose that Assumptions A.1-A.3 hold. Then for any constant ¢ > 0,
(i) P (maxicien || 728, Maidin i — 72 @14 > cbp') = o (N7,
(ii) P (maxlgz‘gN H%fér]\ﬂ iToi — 2221“ > CP2G2NT) =o(N71),
(iii) P (maXKKN ||T2x1 Mo il H > calNT) =o(N71),

(iv) P (maX1<i<N fou]\/[l’iui H > ch/ aQNT> =o(N71).

Lemma S Suppose that Assumptions A.1-A.3 hold. Then for any ¢ > 0,
(i) P (maxlgigN ‘ Bl,i — /3?,1' >c bTalNT> =o(N™1),
(ii) P (maXlgigN 5272‘ = B3| > Cp§/2a2NT> =o(N7),
(iii) P (maxi<icn ||67 — 04| > €) =0 (N7,

where recall that 28272- = 200’2' — 202,1‘2272171-220’@'.

Lemma 6 Suppose that Assumptions A.1-A.3 hold. Then
(l)%Zz 1”7}2~/1z~2< _OP( )7
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2

(ii) 5 3o |72 .8
(iii) £ SN & #d]” = 0p (1)

(iv) & S | il|” = Op (02T 2)
) £ N |3 M| = Op (T72).

To study the asymptotic distributions of the post-Lasso estimators ak ,welet Qp 7 =

W ZieGg jl,i XMQJ‘IELZ‘ and Vk,NT = W ZzEGO xl ,LMQ Zul for k£ = 1, ,K We

make the following decomposition for Vi, y7 = W ZZEGQ T My st

1
Vi — E P (T — 9.5 Y004
L mT 2 a0 i o)
— E T, -—155' ;)
,/NkT e e e

. 1, .\
\/MT Z xlz 2,i 2221,1' - (ffmmh)

i€GY L i
Vikent + Vor,nt + Vg, vt + Vi, N

The following lemma studies the asymptotic properties of Qx n7, Vipnyr for ¢ = 1,2, 3,4,

and Vk,NT-

Lemma 7 Suppose that Assumptions A.1-A.3 hold. Then

(i) Qu.NT 4 Qs

(ii) Vient — Biovr = N (0, Vi) |
(iii) Var nT = 0p (1),

(iv) Var,nr = op (1)

(v) Varnr = op (1),

(vi) Venr — Byt = N (0, Vi) ,

where Qyy, By N1, and V 1y are as defined before Theorem 4.

T—p2 a
t=pa2+1 zt’

Ha

. . ~ ~ ~ /
a a a J—
['o consider the DOLS estimator. Let 0 = (vm52 150 U ﬁz) , Uiy = Vg — 75— ng >

where v, = Z‘ il>p2 i jAT1 ;¢ j signifies the approximation error. Adjust the definitions
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of Z1; and M> ; to use the time series observations zy; = (Tg syt1, s ToiT—ps) s L = 1,2,

— / / /
where recall that 255 = (A2}, 0vys o AT 000)"

Lemma 8 Let the conditions in Theorem 6 hold. Then ﬁ ZieGg Ty ;Mo ;07 = op (1).

Proof of Theorem 1 (i) First, noting that 35 ;’s do not enter the penalty term in the PLS
objective function in (7), we can concentrate them out to obtain the following objective

function

\
NTA(BP NZQNT@ Bri) + N; )*” KH | Qui(Brs—ow) |- (53)

k=1

where Q%7:(Bri) = 7= |Ma2i(§i — F1.:810)|I° - Let Qi (Buis ) = Q%ypy(Bri) +
)‘(01)2 Kch 1 HQu(ﬁu —ay)||. Then QNTA(IBDQ) =N Zz 1QNTM<51,%O‘)~ Let
bi; = 51,1‘—51,@- and by; = 52,1—5571'- Noting that My ; (§;—%1,:51,;) = May [ — Z1,(B1

we have

|| M5t

. 1 . 2 1

QNT,i(ﬁu) - QNT,i(B(l)i) = 79 M2z(uz - 351,ibl,i) -

: T2 T2

= b i Qi 1z, 01,0 — 267 Qi 215 (54)

where Qi7j1j1 = 7%5:’17iM27i5:17i and Q,xlu = %:T:’“Mglﬁl By the triangle and reverse

triangle inequalities, the fact that || Ab|| < || A||sp||b]| for conformable matrix A and vector

b, we have

K
HHQ (Blz_ak ”_HHQM Blz k‘)“‘
e
K

-1

< 1Q1:(Bri — ) I{11Qui(Brs — x| — 1| Qua (8L, — K)||}‘
+ | Qui(Bri — ) |1Qui(BY; — r) {1 Qui(Brs — axc 1) | = 1Qua(BY; — a1}
k=1
+ ...

K
+ T T1Qu(B; = an)lI{1Qui(Brs — )| = 1Qui(8Y, — al)ll}‘
k=2

<éinr(@)]|Qu(Bri — AL < éinvr ()| Quillspllorall, (55)
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where & vr(@) = T2 1Qui(Bri — a) |l + TS 1Qui(Br — an) [1Qui(BY; — aure) || +
o+ TL 191 (87 — )l = Op(1) as [|Quillsp = Op (1). Since f1,; minimize Q7 5,
we have Qﬁ;l \(Bri, @) — chz A(BY;6) < 0. Combining with (54)-(55), we have

by Qi bii < 261, Qi + MNG0) 2 i ()| Quillspl|basl.
Then
Qz‘@lilubl,iH HQszuH + )\( )2 Kéz NT( )HQMHSIH (56)

where ¢, ; ; = )\min(éz‘,a}ﬁal) = /\min(Qz’,ilil - T1/2Qi,5152 (TQAi,fziz)_lTl/zégiﬁah) 2
Amin(Qi3,,) — op (1) is bounded away from zero in probability by Lemma 1(i). In fact,
we can apply Lemmas 2(iii)-(iv) and Assumptions A.2(i), A.2(iii), and A.3(iii)-(iv) and
show that

P <m1n bre; .5, Q11/2> =1-0o(N7"). (57)

Then, by Lemmas 1(i), 2(iv), 5(iii), and Assumption A.2(iii),

ouill < 6y (2 Giziall + MG einr(@)|Qully) = Op(T 4 2),  (58)

because
Y 1
||Ql,51ﬁ|| = T2 Hxl 1M2ZulH - T2 Hxl ZM2Z ||
= “szla - Qi,:ﬁlig(Qi,i‘zfcg)ilQi,a}ld*
< Hszlu +7T HTQmQu H(T@,@@)_l =0Op (T_l) .

) A - A ~1
~ ~ ~ ~ ~ ~ o~ ~ o~
NOW, notlng that Yi — xl,iﬁl,’i = uf -+ x2,iﬁ;7i — xl,ibl,i and ﬁgﬂ' = ($27i$27i) x27i(yi —

. =1, .
T1iB1:) = Boi+ (xlmxh) P
b1 }

x’m(ul - fl,z‘i)l,z’), we have
= Op(1) {Op(p;/zT—l/z) +Op(py/ )OP(T— + A)} — Op( (T2 1 o5p)

~

b2,i X

Boi — B2,

{ [ zH+ [

1., .
sz,ﬂf?,i

as we can readily show that ||(£2% Z2,) ||y = Op (1) given Lemma 2(iv) and Assump-

= Op(py*T~/?) and § || #,314|| = Op(py®) as in the

tion A.2(iii), and that = Hx2 U

proof of Lemma 1(1)-(ii1).
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(ii) By the Minkowski’s inequality, as (IV,T') — oo we have

K-1
einvr(@) < TT {1QuitBrs — 801 + 1Qui(88, — o)}
k=1
K-2 A . A A K A
+ TT {1Qui(Brs = BN + 1Qui(80 — cu) I} Qa8 — ase) |+ + [T 1Qui(80 —
k=1 k=2
K-1 . . s .
1Qui (B = BN TT ansllQui(BY; = a1

s=0 k=1
K A A~ A~

< O nr(a Z 1(B1,i — B(l),i)HS<CK,NT(Q)(l+2||Q11‘Hsp||b1,iH)a (60)
s=0

where a;’s are finite integers and Cx yr (o) = max; max<s<k<i—1 | [pey Gks HQU(B?,i_
ap) K170 = maxiqex maxicoarer—1 [ Jioy arsl|Qui(af — ax) 717 = O(1) as K
is finite. Let O = Cknr(&). By Lemmas 3(i) and (iii) and Assumption A.3(iv) ,
2)\(:’;((5,;)2_K§;§1561||Q1i||52p = Op (AbrloglogT) = op (1) uniformly in i. Combining

(58) and (60) yields

21_931961 2—K
ol < 72222 {12Qumall + A0k 1Qull

where cyr = 2MCk max;(6;)2 K¢ mleQh“gp = op(1). Then by Lemmas 5(iii) and
6(v),

N

¢ 1
—z:HbuH2 ﬂ)QNZ[H?QmuHHCK( 5> M |Qull® = Op (W (T2+2%)),

=1

(61)

where ¢; ; = [min; ¢; ; 5, ] ' = Op (by) by (57).
To refine the result in (61), we shall prove that + > |[by,|[> = Op(B3T72). Let
O = (BY),... BVy) and B, = BY + byT'vy, where vy = (v]4,....v} ) and vy is

a pp-vector. We want to show that for any given €* > 0, there exists a large constant

L = L(€*) such that, for sufficiently large N and 7" we have

P inf N B+ T v,6) > Qura(B),a) ¢ > 1—€. (62)
N1 valP=L

This implies that w.p.a.1 there is a local minimum {/3,, &} such that % SV bal)? =
O, (b3T~?) regardless of the property of &. By (54), Lemma 3(iii), and the Cauchy-
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Schwarz inequality, with probability 1 — o (N ') we have
T2 [QNFA(BY +brT v, &) - Q%(ﬂ?, a?)|

N K
1 v \T? o A _ A
= > Vi Qimm Vi — Z brv} i Qigra + N Z @) F T IQu(BY; + brT v — éu)|
i=1 i=1 k=1

1 1 N 1 1/2 T2 1/2
> 2§11NZ|”7TV1,iHQ —2 <NZ\|5TV1¢HZ> ( ZHQz xluH2> ]
=1 =1

= Din7 — DanT, say.

By Lemma 6(v), T 31, [|Qizyall* = Op(1
large L. Thatis, T?[Qn., (8 +brT vy, &

). So D1 nr dominates Doy for sufficiently
o) — NT 2 (BY, a®)] > 0 for sufficiently large
L. Consequently, we must have N=' SN (161,12 = Op(b2T2).

Note that ||(£& ;22,) 7|

o = /\min<%i‘27ifi2’i)]_l and

miin Amin(_j,zzjé,i) 2 miin )\min(zggﬂ‘)—m?x

T

= 20— S| > % with probability 1—o (N")
(63)
by Lemma 2(iv) and Assumption A.2(iii). Then we have by (59), Lemmas 2(iii)-(iv) and

6(i1), and Assumptions A.2(iii) and A.3(iv) that

1., . -’ 1 Y o ~ 21|72 2
) | ol -]

sp

o 1, . 2 1 N 2
oAt et S

< 2max

(2

+maXT2 Hxha:“H Z

= Op (p2T7") + Op(p2ain7)Op(b7T7%) = Op (p2T7") .

(iii) Let Pyr(By, @) = = S0 T, 181 — ]| By (55) and (60), as (N, T') — oo,

N N
R 1 . 1 )
|Pyr(B,, @) — Pyr(BY, a)| < Crr(e) 5 > llbrall + 20k nr(0) 5 ; 161,41/

=1

N 1/2
1
< Cgnvr(a <N Z ’bl,i||2> + Op(b3T72) = Op(bpT™1).
(64)

By (64), and the fact that Py (3%, &) = 0 and that Py (3,, &) — Pyr(8;, a®) < 0, we
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have

O > PNT(A 1 A) PNT(BDQO) :PNT(/B?7&> _PNT<IB(1)7aO>+OP(bTT71)
1 N K
=5 Z H 182 = awll + Op(brT ™)
K K K
N ) N. . N B
= Wl H HOék - Oé?” + ﬁ H HOék - OzSH + .. W H \ak — a%” + OP(bTT 1)'

e
Il

1

(65)

By Assumption A.3(i), N./N — 7, € (0,1) for each & = 1,...K. So (90) implies
that Hszl ||dk - CE?H = Op(bTT_l) for j = 1, ..., K. It follows that (d(l), ...,d(K)) -
(@}, .., al) =Op(brT~1). W

Proof of Theorem 2. (i) By Lemma 3(i), limsup;_,

Qul| <
sp
>¢,/2) =1—0(N7'). By Lemma 5(iii) and

2¢q,, loglogT" a.s.

By Lemma 3(iii), P(mini<i<n br¢; 7,4,

Assumption A.2(iv), P (minj<;<y 67 > cop/2) = 1 — o (N ') . Noting that

2

9

Sp

o 2 N 2 N 2 . 2 R
HQz‘,ila <2HQ1‘,5:111* +2HQ1‘@15:2 ”TQi,iQa* H(TQi,gEQ:zQ)_l

we can readily apply Lemma 2(iii)-(v) and Assumptions A.2(iii) and A.3(iii)-(iv) and
Qi,jla > cajnt) = o(N71). Then by (56) and (60) we can show

that P(maxy<icy ||bri|| = chrainr) = o(N 7).

show that P(max;

(i1) By (59) and (63), Lemma 2(vi), the result in part (1), and Assumption A.3(iii)-(iv)

P(max b >CP;/2a2NT>
1., . o1 S o 1/2
< P mzax ?1’2’1-1'27@‘ f{Hxh i +H!L‘QZI1Z }20172 a2NT
1 ~f ~x ~1 7 1/2
< P m?XT H:L‘QZUZ AT ([0l ) = epy’ “aanTCan/2
: 1, .
+P mln)\ T T2:72 < /2
< P(max ||372z u; >CP§/2612NTQ22/4)

+P (max — || @1
7 T ’

= O(N_l),
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where we also use the fact max; % Hj/gijl,i H | |ZA)17Z‘| | =0 (TalNT) 0 (bTalNT) = 0(p;/2a2NT)

with probability 1 — o (N~1). l

Proof of Theorem 3. We fix k& € {1, ..., K'}. By the consistency of &;, and Bl,i, we have
51,1' - (341‘ #0

forall i € G and [ # k. Note that 7;; — 55’17#@1@ - 572,“5271‘ = Ul — 57’17%(;1 i — T4 thg i

Bri—a; — al —al £ 0foralli € GY and [ # k. It follows that w.p.a.1

Now, suppose that HB“ — dkH # 0 for some i € GY. Then the first order condition

(with respect to /31 ;) for the minimization problem in (7) implies that

anNT)\<Bl7 /827 )
aﬁlz

K
Quoy [T [|@utbis— )

I=1,1#]

||Mx

=27 Zml’“ﬁ (Gir — xlztﬁll $21t/62z)+T>\

tfl

T
2 /\ : 2—K 4 J
TT Zfl,z‘tﬁ;} + 12+ A<02 CLik
t=1 HQM(BIZ - Oék)

H Qli TQI@'(BI,@' - dk)

K
+ 2TQ1 wlesz + QTQM(O% - ak) + T)\ 2 K Z legzy H
J=Lj#k 1=1,l#j

@u(Bu - 541)“

A A

= —-DBj + Bia + Bz‘?, + Bm + Bi5> (66)

where @z‘j = le’(BM /Hle ﬁu - dj) Qu(@u - ‘ # 0 and ||ng||
otherwise, ¢y, = Hl LItk HQM ﬁu — H R Hl LIk HQM al —af H for
i € GY by Theorem 1, where a < b signifies that a and b are of the same probability

‘if

order.
By Theorem 2(ii), we can readily show that P (||ay, — oY)|| = cbrainr) = o(N 1)

for any fixed ¢ > 0. This, in conjunction with Lemma 3(i) and Theorem 2(i)-(ii), implies

that
Qu|| < 2cq,, loglog T and & (¢;, /br)* ™' < &1 < & (220, loglog T)* ! as.,
sp
(67)
where ¢ = [, 21 [l — al|l > 0 by Assumption A.3(ii). Then
P (max > CT ) (loglog T) bTalNT) =0 (N_l) (68)
i€GY
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for some large constant C' > 0. By Lemma 3(i) and Theorem 2(iii),

P (max > CbrTa;yrloglog T>
i€eGY
< P (max (G — ozk) H Cbraiyrloglog T, max HQM < 2¢q,, loglog T)
i€eGY
+P (max HQM > 2¢q,, loglog T)
iEGg sp
< P (Irelg%;: Hozk - akH C’bTalNT/(ZLEQH)) +0=0(N"") (69)

for any constant C' > (. By Lemma 2(iii) and Theorem 2(ii)

P (max

=0
ieGy,

2TQz zlxz

i€GY

> CTbTPQCHNTCLzNT) =P (max > CprzChNTazNT) =o(N7").
(70)

By Lemma 5(iii), Assumptions A.2(i) and A.2(iv), we have with probability 1 — o (IV _1)

A I . R 2- . A
(Qu(ﬁl,i — dk)> B = (Pi—ad)Qu 2+ @) e .k H Qi | TQvi(Br; — )

HQlZ Blz - O-/k)
A ~ A 0; 2= Kc 7 A A A N
> TAPri — Gg)'Qu A( )A I’Ak Q1:Q1i(Br; — )
Qli(ﬁl,i - Oék)

> TAb: Amin (bTle>( )2 e Au’(Bu _dk)H

> il 2e0) TN | QuilBui — )| (71)
Define
Tine = {c_:ncg/bT < min ¢y, < max Crik < ZCkCQH log log T}

i€eGY i€GY

< CT A (loglog T) bTauvT} N {maX
i€GY

M < max
1€G

M < max
ieGY

Then P (Tyn7) =1 — 0o (N7') by (67)-(95). Let I'{ - denote the complement of Ty

C’bTTalNT 10g 10g T}

< CTprzalNTGQNT} .
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Conditional on ' yr, we have, uniformly in i € GY,

N ~ / N N ~ ~
‘ (Qu(ﬁu - dk)) (Bi2 + Biz + Bis + Bi5>

> ‘ (le(ﬁu - dk))/ B

- ‘ (Qu(ﬁu - %))I (33 + By + Eif))

> R (2e00) T EPTAE — C | Thrpoaynrasnt + brTaiyr loglog T + T (loglog T)X bray vt
11%k T
X HQM(BI@ - dk)H

1 A A
> §gﬁcg(2600)1*K/2T)\b;K HQM(BM — dk)H for sufficiently large (N, T),

where the last equality follows because T'brpsai yrasnr+brT ainr loglog T+T A (log log T)K braint =
o (TAbz™) by Assumption A.3(iv). It follows that for all i € GY,

P(EkNT,i) = P <Z ¢ ék|l € GZ) =P <B’11 — By + Bis + B + 35)

< P (HQIZ(BM — &) B || > ||Qui(Bri — ) (Bﬂ + Bz + By + BzS) H)
< P <H@12(B11 - @k)Bi1 Z le(Blz — Q) (BQ + Bi?, + BM + Bm) H 7FkNT)
+P (I'inr)
< P ( Byl > %gﬁCZ(ZCOO)l_K/QT)\b}K> +o(N7)
= o(1),
where the last line follows by the fact that ||B;1|| = Op (1) by Lemma 1(ii) and that

T)\b;K — oo under Assumption A.3(iv).
In addition, by Lemma 2(v) and the fact that a;nr = o (Abz") under Assumption

A3@3v),

gﬁcg(Qéoo)ZKT)\bTK> +o0(1)

1<iKN

< N max P (HBM = Qﬁ62(2500)2KT/\bTK) + 0(1) = 0(1) .
(72)

We have completed the proof of Theorem 3(i).

Given (i), the proof of (ii) is similar to Theorem 4.2(ii) in SSP and thus omitted. Wl
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Proof of Theorem 4. We first write our mixed panel model in vector form: g; =
T1,:01,i + T2iP2 + Ui, where T1; = (T41, ..., il,iT)/ for [ = 1,2, and ¢; and 4; are simi-
larly defined. Recall that My ; = Ip — &9,(%5,Z2;) ' 25 ;. Then we rewrite the objective

function QY1 (81, By, ) as follows

A w Ko
QgT,,\(ﬁl, By, ) = Qnr (B, Bs) + N 2(51)2K kl_Il 1Q1i(Br — )]l (73)

where

Qnt(B1,By) = NT2 Z — 1P — Toif2:) (§i — T1.i015 — T2i2.4)- (74)

The first order conditions are

K K

-2 5 R PPN . )
0p1><1 TQ:E“( 9611511—%21521 +/\ Z zQij H ||Q1i(51,z‘—041)||VZ: 1,..., N,

j=1 I=1,l#j5
(75)

—2 - RN )

0p,x1 = 2 fEQZ(y 5101@511 Toif2:)Vi=1,..,N, and (76)
\ N K
0p,x1 = N 2(51‘)2_KQ11‘@¢1€ H |Qui(Pr; —a)|VE=1,.. K, (77)
i=1 1=1,l#k

where §;; is defined after (66). Let k € {1,..., K'} be fixed. We observe that (a) ||3;,; —
axl| = 0 for any ¢ € G’k by the definition of G’k, and (b) BAM —q > al —a? £ 0
for any i € Gy and [ # k. It follows that ||g;;|| < ||1|| for any i € Gy, and 9;; =
Qi — ;) /||Qri(é — é;)]| for any i € Gy and j # k. Let Gy denote the set of
unclassified individuals. Given Theorem 3, it is easy to show that P(#Gy > 0) = o (1).

Noting that H{il Q1 (éu — )| = 0 for any I, we have

K
Z Z 2 KQllQZ_] H [Q1i(Bri — &)l
i€Gy, J=1#k I=1,l#j
K AQ ~ N K
o (O, — Qs A R
S5 G A ) T 0, = a)l = Oyt (78)
i€Gy J=L5#k |Qqi(Gr — O‘j)H I=1,I#5
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It follows that by (77) and (78)

N K
Opx1 = Z(5i)2_KQliéik H |Q1i(Bri — u)|]
i=1 1=1, 14k
K K
= Z(5i)2_KQ1i@ik H |Qui(dr — au)|| + Z(&i)2_KQ1i@ik H |Q1i(Bri — )l
ieGy, I=1,l#k ieCo 1=1,1#£k
Qhld; —d) T
Gy, .
D CRLIN PN
j= 1]5£kZEG HQll(aJ ak)” 1=1,l#j
K K
= Z((}i)Z_KQliéik H |Qui(éu — &)l + Z(5i)2_KQ1¢@ik H |Qui(Bri — )l
ieGy, I=1,lI#k icCo 1=1,l#£k

(79)
Averaging both sides of (75) over ¢ € Gk and using (78) and (79), we have

K
N A KA AA
p1><1 NkT2 E 351, $1104k l’2zﬁ2z)+ﬁk E (Ui)z KQliQik H ”Qli(ﬁl,i_al)”'
’LEGk i€Go 1=1,l#k
(80)

Solving Bgﬂ; from (76) as a function of BM and replacing Blﬂ- by a; fori € @k yields

1., /-

Tt (Ui — T1,iCp). (81)

~ I
62,1‘ = (xQ’Z"TQ z)

Plugging (81) into (80) yields
~1
dk = NT2 Zl’legzl'lz NT2 Zx11M2zyz

ieGy, ieGy

_|_

A .
NkTZ Z $1,M2z$1z 2_Nk <Uz 2 Ke Cik H ||Q1z 51z —al)H

zGGk i€Go 1=1,l#k

= & + Ry, say.
Noting that Q1; ;% H{;#k ||Q1Z(B1Z —&)|l # Oonlyifi € G and by (72), we have that

for any € > 0

K
P(ieGolie GR) <D Y Pi¢ Gili€ GY) =o(1).

GO

Mx

P (VNT||Ryl| > €

k=1 iecG? k=1 icq

R‘
R‘
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That is, VNT||R|| = op (1) and Gy, is asymptotically equivalent to its post-Lasso esti-

mator ¢, . Similarly, given the fast convergence rate of &, , Bgi in (81) is also asymp-

1. ~
:L‘Q K (yl
~ ~ post

iy,,62°%) for each i € G. We formally study the asymptotic properties of 42" and ﬁp‘m

totically equivalent to its post-Lasso version Bg‘;“, where 6p0$t = (@h,T24)

in the proof of Theorem 5 below. B

Proof of Theorem 5. (i) Noting that §; = 71 ; 5?,1' + Toy 5& 1 @i;, we have

\% NkT(aiom ) Q V + QA(_kl)R(k%
where Q(k) = _Nle—Q > ice, T1iMa T, f/(k = ﬁzieék T} ; My ;t;, and Rk =
T 2oicey T1Ma2i XT1, (81, — of) - Noting that 1{i € Gey =1{i e GV} +1{i €
Ge\GY} —1{i € GO\Gk} we have

]_ ~/ ~ 1 ~/ ~
Quwy = NkTQ Z T ;Mo 2 N N.T? Z Ty, Ms T, — N2 Z 1, M2T
ieGY i€GE\GY i€GI\Gy,

Qr.NT + Q1(k) + Q2(k), say.

By Theorem 3 P(HQl(k)H > eN“V2T71) L P(FkNT) = o(1) and P(HQg(k)H >
eN-12T-1) < P(Epnr) = o(1) for any € > 0. It follows that Q(k) = QrnT +
op (N-1/271

) Similarly, we can show that f/(k) = VinT +0p (Nfl/szl) and R(k) =
op (N=V2T71) , where Vi, nr = ﬁ Ziecg 4 ;M ;0;. It follows that

VNI (6™ — o)) = Qg vy Vet +op (1)

Then the conclusion in (i) follows from Lemmas 7(i)-(vi).
(ii) Noting that ﬁpmt = (@, zfi2,i)71 T (Ui — T1i00 ") and §; = iy ,00 + To;05,; +uf

fori € GY, we have for i € GY and [ X p, selection matrix S,,

: 1 T, ! Tl
\/> (prost . /82,i> = S < $2 1952 z) ﬁxé’z : \/>Sg ( £U2 Zx2 z> Txé,ixl,iT

1 -1 .
= S < Ty i, 7,) ﬁxQ iu; +0p ( 1/2)
= (0, S2V227iS,2)

by (i) and Lemmas 1(i) and (iii). Here Vyy; = (35,,J1; ® Jo;) VI (J], 85, ® J5,;). B
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Proof of Theorem 6. (i) In vector form, we have the regression model:

Ui = T1,P1; + TP, + "5;[, (82)

~ =~ ~ I~ o 1 T—p2 / /
where 7y ; = ($2,z‘,ﬁ2+1; ---’xZ,i,T—ﬁg) L2t = L2t~ T_op5, Zt —pot1 L2,it> T2,it = (Axl,i,t_pza e Al‘l,m

A7 ;115,); and 71 ; and o are similarly defined. In particular, a typical element of @; is

~T T—p2 T a _ / ‘ol
given by o, = v}, — 2p2 Dol v}, where vf, = v%+v; and v = D ljisp VijAT1 4 signifies

the approximatlon error.

Assumption A4 ensures the approximation error term v;; is asymptotically negligible
in our asymptotic analysis. Following the proofs of Theorems 1-4, we can prove that the
C-Lasso estimator & of ay, is asymptotically equivalent to its post-Lasso version ész’pOSt,
where

AD,post ~/ ~
E $11M22$11 E $1,¢M2,iyz’-

ZEGk ieék
As in the proof Theorem 5, we can show that

VN T (6, P ) = Q];}VTVIC,NT +op (1),

where Qs N1 = 72 > iey &1 iMaZ; and Vinr = Vi > ieay & ;My,;0]. Lemma
7(i) continues to apply: Qr n7 = Q) + op (1) . Now
Vit = ﬁ Z T i My i0; + Z Ty ;Mo 07 = Vint + Vi nr, S3Y.
i€GY eGO

Lemma 7(ii)-(vi) continues to apply to V y7 (1) with little modification. Now, v;; plays
the role of v}, in the lemma. But since v;, is uncorrelated to all lags and leads of Ax; ;; =
€1it, 5; defined in Theorem 4 becomes s; = S|, — 552272171-22071 = 5|, as Xy, is now zero.
Then

IBgllc,NT = Nk Z 5122% s+rwz sS/ Z ZE €1 ztUZO 0

1€G0 r=0 s=0 zeGOt 0

-1 T+1 -1 T+1
B = T = 7 z e Lit U .
2k,NT \/Fk 2T ; S1¢ ) 0= m 2T ;}t_zoo 51 tUO =0

It follows that Vj, y7 = N <O, V%) , where V(ﬁc) = limy, o0 Nik Zz‘e(;g 5000, Q11,,and
Qo = Qo0 — Q01,21 Q10,- In addition, Vi - = op (1) by Lemma 8. Consequently,
VT (@™ — o) = N(0,Q Vi, Q)
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(ii) This follows from Theorem 5(ii) and the fact that iy ; = 0 so that 35, = 6371-. |

A.2 Practical estimation procedures

In this appendix, we describe details on the practical estimation procedure in the fol-

lowings steps

o Initial estimators: Obtain consistent initial estimates of Blﬂ- and BQZ For model

(2.4), we can employ the least square estimators as the initial estimators.

e Penalized Least Squares: Solve the PLS problem

QﬁT,)\(/BLﬁ%a) Qnr(Br,Bs) + %ﬁ: - KH Hle Bri — Oék)H

By Assumption A.3(iv), we set the tuning parameter A = c,7~%/%, where c, is a
constant. Given the tuning parameter A\(N, T"), we can obtain C-Lasso estimator &y,

and identify the unknown group structures.

e Post-Lasso estimator with bias-correction: Given the estimated groups, {G iy k=
1,..., K}, we can obtain the post-Lasso estimators of cy, and (5 ; as
~1

Apost ~/ ~ ~/ ~ -
ap = E :BMMQJ-:BM E a:MMg,iyi fork=1,.. K,
iEGk iEék

Hpost

D = (Thd0) T (5 — Tracf ™) fori € G

In addition, we apply the dynamic OLS method in post-Lasso estimator for remov-
ing the bias. After bias-correction, we compute the standard errors by the following

formulas

Z T ;Ms ;7 ; and V(k = Z QOOZAn,i,

ZEGk ZeGk

where QOO,i and Qll,i denote the HAC estimator of the long-run variance-covariance

components {2y ; and €2y, ; in €2;.
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e Determine the number of groups by BIC: In practice, K is typically unknown.

. K T . N _ ., post
Let Uék(K,,\) = ﬁ Zk:l Zieék(l{,)\) Zt:l[uit<k)]27 where 1, (k) = yit_xi,italgz([(,,\)_
b 1055 (Gr(K, N)) for i € Gi(K, X). We choose K to minimize the following in-

formation criterion:
IC(K,\) = ln[&ék(K,/\)} + pnrp1 K

By Assumption A.5(ii), we set tuning parameter pyp = %( NT)~13,
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B Appendix to Chapter 2

In this appendix, we prove the main results, namely, Theorems 7-14 in the paper. The
proofs of these results need some technical lemmas whose proofs are relegated to the

online supplementary Appendix.

B.1 Proofs of the Main Results in Section 3

To proceed, we define some notations.

(i) Let Hy = (LAYA?) (TA ffffl) Ving Hy = (SAYAY) (%fé”ﬁ) Vs vr and a;; =

ADAQL
Ap(ALA) 1y

(i) Let b = (by,...,bx) and b =vec(b), where b; = 3; — 32 fori = 1,...,N. Let
b= (by,...,by) and b =vec(b), where b; = (3; — 3°.

(iii) Let 3 = & 200, 15l odr = % Sy lax — a@ll*, Cnr = min(vN, VT),
Snr = min(v/N, T), and ¢y = NV9T " (log T)'*< for some € > 0.

(iv) Let me = %iU;-Mfll’i, sz = %%Mﬁ%, and sz(f?) = q%ﬂﬁnggmr

(v) Without loss of generality, we set z;o = 0 throughout the proof of the main results

and supplementary Appendix.

To prove Theorem 3.1, we need four lemmas.

Lemma A.1 Suppose that Assumptions 3.1 hold. Then for eachi =1, ..., N,
(i) zaiMpox; = [ ByBj,
(ii) %x;Mﬁ)ui = [(Ba; — mBs) dBy; + (Da1; — mAs1,),
where By; = By; — [ ByBy ([ BsBy) ™ Bsand m = ([ BsBy) ™' [ BsBy,.

Lemma A.2 Suppose that Assumptions 3.1-3.2 hold. Then for any fixed small constant

ce(0,1/2),

- W!W;
(i) im sup;_, o fhmax (W) < (1 + €)pmax @-S.,
(ii) lim infr_, o0 fhmin <dT¥£Wi) > CPmin A.5.,

/ )
1'%.Mf?zZ

(iii) im supg_, o fhmax (W) < (14 ¢)pmax a.s.,

. .. dTﬁ;MfOxi 1
(iv) iminfr o fmin | —22— | 2 [(1 4 €)pmax] " @.s.,

where W, = (a,, f1) and W; = (W1, Wi o, ..., Wi r)".
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Lemma A.3 Suppose that Assumptions 3.1-3.2 hold. Then

(i) ~ SN =T iMpou; || = Op(d%«T_2>,
(ii) £ S0 || Mfou = Op(d3T72?),
(iii) HWZ] L M poujai;|| = Op(drT™1),
(iv) SV 72 Mpox;|| = Op(dr),

where fi satisfies 7 f{ fi = I, and u} = u; + f9A9,.

Lemma A.4 Suppose that Assumptions 3.1-3.2 hold. Then

(i s, 50 s || s S M| = o (),
.. N _

(ii) supy, #Zz VAN My i || = op(dr?),

(iii) supy, || 5z Yoy 0 Prouf|| = op(dg®),

f1f1

where the sup is taken with respect to f such that =5 =

A3.

I,., and u} are defined in Lemma

Proof of Theorem 3.1. (i) Let Q;, nt(Bi, f1) = Tz (Z/z 151’)/Mf1 (yi—wf3;) and Qf(f\?\T(ﬁi, a, fi) =

QzNT(5“f1)+)‘Hk 1“52—%” Thean%(Bua fl) sz 1QZNT(51706 f1) Not-
ing that y; — z;8; = —x;b; + A\ fY + u}, we have

Qint(Bi, f1) — Qine (8, f2) = (b/x’Mﬁxlb + AG SV My, fONY; — 265 My, fPAY)

+ ﬁ(%%f?/MﬁUZ — 2byw; My u}) — %u (P, — Pro)us,
(83)
where u} = u;+ 9Ny, Let S; nr(Bi, f1) = 75 (D My aib; + A Y My, fYXY; — 205 My, fPAY,).
Then we have
Qur(B. f1) — Qur(8°, 1) =+ Z Sint(Bis f1)
N
+ 7 O (2N My — 26 Myyu; — ' (P, — Ppy)u)
1 & .
= 2 Sint(Bi, fr) + or(dy?), (84)
=1

where the last three terms on the right hand side of (84) are op(d;”) uniformly in {b;}
and f, such that 2t = 1, and L "V [[b;]|2 < M by Lemma A.4(i)-(iii) and the fact
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that > SN, w’ Prouf = op(dz”). Then we have

2|>~

N KO
ZH 18 —
i=1 k=1

>Snr(B, f1) + op(d7?). (85)

N
ﬁ?(/gaaafl)_ ﬁ’;(,@ , & 0 fl - ZQNTZ Blafl QNT@ ﬂszl

where Sy7(3, f1) = % ZZN:l Sint(Bi, f1). Then by (84) and (85) and the fact that

(B 6 fi) — Qua (B, @, f?) < 0, we have
. 1 L .
St(B, f1) = v 3. [ng;Mflxibi XY FOM G FON), — 20 M /\%} — op(d:?).
. (86)
Similarly, by (84), (85) and Lemma A.4(i)-(ii1), we have
N N Ko
08,6, 1) — QA" 00, ) =1 S Qw8 ) — Qur 80, F] + o ST 16— aud
i=1 i=1 k=1
- -~
> > [bixiMﬁxibi 2\ M, f! )\(1)2] +op(d7?).
(87)
This, in conjunction with the fact that Qﬁf\(é, &, fl) ﬁTA (B, a’, fl) < 0, implies
that
1 e .
e [béxéMﬁxibi — 2bal M, f{))\‘fi] < op(d7?). (88)
i=1

Combining (86) and (88) yields that

1
NT?

-3
op(dy”) = )\?; EI flo)‘(l)i =1r

VMR (MY | L (MR (A
T2 N = T2 /Lmln N .
VMg 7

It follows that tr< T ) = op(d;?®) as fimin (A%/VA?) is bounded away from zero in
probability by Assumption 3.2(1). As in Bai (2009, p.1265), this implies that

0rag. £0 ;op!
1Mf1f1 _ ff/f? P,fl J1 f10

_ -3

™ o o o orldn) (89)

and L 1T,§c L is asymptotically invertible by the fact that £ ?T,ﬁ is asymptotically invertible
f1

from Assumption 3.2(ii). (89) implies that — I, = op(d;?*), which further implies
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that || P;, — Py
(62),

2 f1/Pfof1 _3 . .
=2tr| [,, — —%— | = op(d;°). By Cauchy-Schwarz inequality and

T2

1/2 12
NT2 Zb’x’M zib; 2{NT2 > bl My b } {NTZ/\?; M f{)A?i} .
(90)
This result, in conjunction with (64), implies that ZZ 1 b;x;M z:b; = op(d7®). So

we have shown parts (i) and (i) in the theorem.

(iii) By the results in parts (i) and (ii) and Lemma A.2(i) and (iv), we have

N
L dr L& o RN
P Elgg}vﬂmin <T2xiMf{)37i) N E [04]]* — 112‘21\/ HPf1 leN E‘—1 4]
| N
-1 22
Z (¢pmin — op(dz")) N ;1: [:11°,

where the second inequality follows from the fact that minj<;<n ftmin (?F—Ex;M ﬁ)xi) >

Cpmin > 0 as. by Lemma A.2(iv), and max; << 12"

< maxXi<i<nN drfhmax (%) =
Op(dr) by Lemma A.2(i). Then we have & 3"V [|b;]|? = 0p(d7?) = op(1).

(iv) We want to establish the consistency of the estimated factor space fl, which ex-
tends the results of Bai and Ng (2004) and Bai (2009). Our model allows for the hetero-

geneous slope coefficients and unobserved stationary common factors. We estimate fl

from equation (24) in Section 2.2 as follows
T2 Z - 261 Yi — %Bz)/ fl = flVLNT- (C2Y)

Combining (91) and the fact that y;—x;3; = —2;b;+fON04u; = —a;b;+ fONY + FON. +us;,
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we have

N
£ _ 07 0/
fiVinT _NTzizlxb f1 NTQZﬂUzb)\ F —NTQ Z%bufl

N
1
—NWXy%%m,NWthﬁ,Npiyww
N

1 A 1 .
NT2 Z A+ NT?2 § :Uzugfl + NT2 § 290 o
i=1 =1

N N
! 0NO \U7 £O07 £ _1 040 07 0 £ 1 00 \O7 £OF £
T NT2 ;.fl)\li)\% 2 1+ NT? ;fQ/\%)\li 1 f1+—NT2;f1)‘li/\li o g

N
1 ~
=L+ ..+1In+ NT? ;:1 SN fr, say.

Itfollows that fiVi wr— 9 (55 ) (58 ) = nbr e et iy = (S54) (58) vindy

Then it is easy to see that H; = Op(1), it is asymptotically nonsingular, and

N —1
L fO/f AYAO -1
AHT = 0 =L+ ...+ 1] < ;21 3\[1

Note that

-1
o A
o R (AR ) *ﬂﬁ =)

It remains to analyze ||[;|| for l = 1,2, ..., 11. For I;, we have that by the result in (iii),

N
1 1 f1||
SN = = ! < =
S0l =~ Npii%bxﬁ N:
< max [EAI] H E Hb 1? = Op(drnfr) = op(nnr),
S <isn T2 N NT

where we use the fact that max;<;<n ” H2 = Op(dr) by Lemma A.2(i) and ”’;—1" < VT

For I,, we have

1 1
Tl =

_ Al ]| 1 0
ST BT Nsz/\/H

NT2 Z b )\O/f()/f

’ 1/2 /2
IR e R
S T2 1<1<N T Z 4] N ; Al = Op(\Vdrnnr),
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where we use the fact that ”f;—Qfl” = Op(1) and £ 3N |A?)|? = Op (1) by Assumption
3.2(1). For I3,

L= Ll S ] < ma 17 LSS
s =7 NT2Z;x’ Wil S max T T2Z“ il
A 1/2 N 1/2
A lzill [ 1 = 7 2 1= Jul?| dr
Syp T BT w2 v —orlyTm)

where + ZN: H“il = Op(1) by Assumption 3.1(i). For I,

1 f° wf
Ll = HNTQ > Al Z ” :

IPIIAL el [ 1 & Y2y 1/2
1 Li - 02 -
S T T 1<z<N T { Z } {N;H)‘zn} = Op(\/drnnr).

b/

where H’;)” < ”fT?”—i- LTH\];STH = Op(1). For I,
N
1 1 |:L‘ f1|| /
Pl = 7 | 7 Do whiath | < s 52 NTZH |
R 1/2 N 1/2
LA ll [Tl 1 dr
< i ) = il . — —
SUT T iSEN T N; T N;Hb’” Or (|-
For I,
_ 0004/ f 00, F
]l = NTQ)H H HNTQfA ule
1 1,
<— | = - 0 - AOI'LI, -0 T71/2N71/2,
W( ALY (11 < 4l = o )
where v = (u1, ..., un)" and we have used the fact that = ]AO’uH = Op(1) by Assump-

tion 3.2(jii). Analogously, we can show that =||I7|| = Op(T_l/zN /2. For I,
L
NT? Z i fi ﬁ

327N375f13 +QZ SZfstf1s
s=1

where vy (s,t) and &, are defined in Assumptlon 3.2(iii). For Ig(a),

2 2

1 1

uuf

1
ZTQHISHQ =T

T

<23 |7

t=1

2 ([s(a)ll + [s(O)]) ,

T T T
h@P <Y |r 3zwstfls < (T—sz) (T—lzznwuf)
t=1 = s=1 t=1 s=1
= O0p(T7?),
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where 771327 ™7 Jlyn(s, t)||> < M by Assumption 3.2(iii) (see also Lemma 1(i) in
Bai and Ng (2002)). For Ig(b),

|I8 Z 3Z£Stfls

s=1

= Op(T 2N,

fls

<T7N™ (TZ\ ) <T—2N;;H£stu2>

where we use the fact that £(||£,]|*) < N~2M under Assumption 3.2(iii). Then we have
LIs|| = Op(N=V2T =1 + T=3/2). For || Iy,

Lo LA A YA i

Hiol = 7 | raseagagsi]| < FLEEIALISR] o0,
1 1 . 1 fo fo |]?| |A01A0 -
Linal = 3 |sstaratsgi]| < A MHBUALINAL oy,

where 27 2 = Op(1) by Assumption 3.2(i). Analogously, we have % || I11 || = Op((NT)~'/2).

In sum, we have shown that
7|
T

Then (iv) follows. W

1
= Op(\drnnt) + —=O0p(Cy7)-

lel_l_f{) ﬁ

To prove Theorem 3.2, we need the following two lemmas.

Lemma A.5 Suppose that Assumptions 3.1-3.2 hold. Then

(i) 22 (fr — fYH1) = Op(T/drnnt + S37r),

(ii) %f{(fl — fYHy) = Op(T/drnnr + 57),

(iii) | Pj, — Pro|* = Op(Vdrnnr + T x7),

(iv) uj! <f1H_ — fl) = Op(/Tdrnnt + 05) foreach k = 1,.... N,
Lemma A.6 Suppose that Assumptions 3.1-3.2 hold. Let R1; = %x’-(Pfo — Pj)uj, Ry =
72 My [N — 5 Zjvzl M x]a,]b + 55 Z] y @My g, Ry = 5 Z] @i (Ppo—
P; Juj, and Ry = 7 M pous — e ijl aijx;Myou;. Then

(i) Ri; = Op(sinT) foreachi=1,...,N,and N~} ZZ]L |Ry||> = Op(Zyy),

(ii) Ry = Op(sont) foreachi =1,..., N, and N"*S°N || Ryil|> = Op(s3y7),
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(iii) R3; = Op(ssnr) foreachi=1,..., N, and N~} Ziil ”RBiH2 = Op(SEyr),

(iv) Ry; = Op(T~Y) for eachi =1, ..., N,and N~ SN | Ry* = Op(T~?),
where ciyr = T2y drnnt + dTﬂ?\/T + Tﬁlcﬁ%, ont = T drnnr + dT77]2VT +
T165h and csnr = T-V2d e + T 16552,

Proof of Theorem 3.2. (i) Based on the sub-differential calculus, a necessary condition
for Bl-, ay, and fl to minimize the objective function (2.8) is the foreach7 = 1, ..., IV, 0,1
belongs to the sub-differential of Qﬁﬂ (B, a, f1) with respect to [3; (resp. «y) evaluated
at {BZ}, {&x} and fi. Thatis, foreachi = 1,.... N and k = 1, ..., K, we have

2
0p><1 T2 z ( xzﬂz +/\Zez] H ||Bz Oél“ (92)

7=1 1=1,l#j

where é;; = H/; ol if ||3; — ;]| # 0 and ||é;]| < 1if ||3 — ;]| = 0. Noting that

yi = 260+ fFLHTIN, + w4 (F0 — fiHYAY, (92) implies that

. 1 1 Ko Ko
Qi = iy uf + i My, [IN); — Zéij IT 16 —al.  ©3)
j:l 1=1,1£j
which can be rewritten as
| X
Qi,:pxbi = > Z .T;Mf xjaijbj + Ri, (94)
NT = 1

where R; = Ri;+ Ro; — Rs; + Ry; — Rs;, Ry, Ro;, Rs; and Ry; are defined in the statement
of Lemma A.6, and R5; = % ZJK:1 €ij H{iu;&j ||5Az — ¢&y||. By Lemma A.6(i)-(iv), we have
that 3o, % SO0, | Rull? = Op(T 7 dy *nnr + Bl + T2CRf + T 2055 +T72) =
Op(T~dY*nnr + d2ni, + T-2). In addition, we can show that - LS IRs|)? =
Op (A?). It follows that & 3"V || R;||> = Op(T Ty + d2ghp + T2 + A2).

Let Ql = dz‘ag(@lvm, ey Q Nzz) and QQ as an Np x Np matrix with typical blocks

¥ M xja;j, such that

T2$1M 1011 T2$1M Toa19 T2£L'1M INAIN
Q NT2x2M T1G91 NT2x2M Toloy - NTQ:L’QM TNAaN
2:
L' M; L' M; L' M;
N INMpT1aN1 Xy Mp T2aN2 . yrEdyMpTNANN
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Let R = (R}, ..., R)y)'. Then (94) implies that (Q; — Q)b = R. It follows that
A " A n . . A\ 12
IRIP = tr(®(Q1 = Q2)'(Q1 = Q2)B) > 1B [t (@1 — Q)]

By Assumption 3.2(v), we have that fiyi, <Q1 — Q2> > pmin/2 > 0 w.p.a.l. Then we
have + ||| < pm”’ YR? = Op(T ' dy *nvr+ Bnp+T72402) = Op (dr T2 + N2).

Consequently, we prove the means square convergence rate of C-Lasso estimators that
¥ i B2 = Op (drT=2 4+ 22).

Next, we want to strengthen the last result to a stronger one: SV bi||2 = Op(drT2).
Let 3 = B + drT~'v, where v = (vy,...,uy) is a p x N matrix. Let v =vec(v). We
wan to show that for any given €* > 0, there exists a large constant L = L(e*) such that

for sufficiently large N and 7" we have

~

P { inf MEB+ dPT 6 f) > QNE(B°, o, fl)} >1— ¢,

& i llvil?=L
Regardless the property of fl and @, this implies that w.p.a.1 there is a local minimum

B = (Bi, ..., Bw) such that - ZZ |2 = Op(drT2). Note that

~

72 [ QN5 (B+ di*T 0.6, 1) — QNE (8", . )

%IPN 1/2// 2, 0 ¢ 0 2,
Z —UCL’ M ziv; — TUZxZM (fi — [iH)N; — Tvzszfluz
dp <= 1
:Ni 1T2 v; ZM T;0;
1 2 N N
/ TR "M 1 ' M us
2 T a: s TZ% b; NTZG“”:EZ' At
j=1

= Dint — 2Danr, say.

1 .77, £010 7 1 N N~ s
where Rgi = ,ITQJTZMflfl )\17; NT2 ZJ 125 -Tjaijbj + NTZ Zj:l aijxiMflu] as de-

fined in Lemma A.6. By Assumption 3.2(v) and Lemma A.5(iii), Diy7 = dWTv’le >
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dr fmin <Q1> N7 [v|* = dppuin N ||v]|* /2 w.p.a.1. By Lemmas A.6(i)-(ii) and A.5(iii),

< 2 T 27 2 2,4 252
drN Z [ Rasl|” = EOP(T_ driyr + dpine + T 0y7) = op(1),
i=1
N N 2 N 2
1 , 112 272 1, 2 1,
INT? ; [ESIRTM S DN ; ’ﬁxz(Mfl — Mpo)ui|| + N ; TriMpu;
T? 15 2 2 4 —2 42 1
= d_OP(T drnyr + dpnyr + T Cx7) + d_OP (1) = op(1).
T T
Next, we have
2

: 2 A
T O My aibilP < o S5l o100
i=1 j=1

i=1 j=1
T2 AW AO —2 1
<7 L (5] s g Vel g 1
1 al 0 112 2 1 = 2 |12
w7 o Il g 5 2

— TWQOP (1)Op (1) op (Nl/q) Op (1) Op (dTT_2 4 /\2) —op(1).

where we use the fact that max; < j<n dT% ||a:J||2 = Op (1) by Lemma A .2(i), maxi<jey H/\(l)jH2 _

op (N'/7) by Assumption 3.2(i) and Markov inequality, and = S0, [|A%]) || ]|* =

.12
Op (1) by Markov inequality and 2511 bjll = Op (drT—2 4+ X\?). Similarly, we have
by Lemma A.5(iii),
1 N N
dr N3T? Z Z llazj; My g
i=1 j=1
N N
1 1 2
< g 2 2 sl widd
i=1 j=1
1 A(l)/A(lJ -2 9 N N o2 o2 ) )
S dr {'umin < N )} N3T?2 ZZ 2% H)‘le {‘ (M, = Myo)u || + ‘ x; Miou, }
i=1 j=1

1
= 0r (N‘leT(\/dTnNT o) + 1) = op(1).
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It follows that

1 N 1/2 T2 N ) 1/2 1/2

|Dant| < dT{N;H%HQ} (dT_N;HR%HQ) + (d NTQZH?C AU z|\2>
! : 1/2 1/2

(d o ZZII% f13j||2) - (d 7 ZZH% uj||2>

=1 j=1 =1 j=1

drN~"2Jv] op (1).

~

Then D,y dominates Dy for sufficiently large L. Thatis 72| ﬁ}?(ﬁ—ir le/ 2T‘lfv, &, f1)—
V(8% al, f1)] > 0 for sufficiently large L. Consequently, the result in (i) follows.
(i) We study the probability bound for each term on the right hand side of (??). For

the first term, we have by Lemma A.6(i)

1 . 1 1 i
Hﬁx; U HT2 sz + Hﬁx;(i\/[h — Myo)u;
= Op(T™Y) 4+ Op(T™V2\/drnnr + denp + T 1Oxk) = Op(drT™H).

(95)

For the second term, we can readily apply Lemmas A.6(i1), A.5(iii) and A.3(iii), and

Theorem 8(i) to obtain

fl )‘(1)1

1
| et ) < I +

N N
1 , . 1 ,
NT2 E miMflijjaij W E ZL‘iMfIUjaij
Jj=1 Jj=1

=Op(T ' dpnny + drnfer + T7105T) 4+ Op(nyt) + Op(drT™Y) = Op(drT ™).
(96)

The third term is Op () . By Lemma A.5(iii), fmin <T2x ]\/[ T ) = flmin (%x;Mﬁnxl) +

-1

(A
-1
op (1) . Noting that < oM f?xi> is the principal p x p submatrix of (HW/W;) ",

™
[hmin (%x;M 0T > > [hmin (I%Wz’ VVZ) , and the last object is bounded away from zero
w.p.a.1. It follows that b; = Op(dy T~ + \) fori = 1,2, ..., N.

(iii) Let Pyr(B,a) = 5 20y [Ty 18 — axll and éivr(a) = TS [16: — anll +
T2 18—l x| 80 —ak ||+ AT T, || 39—cv]|. By SSP, we have that as (N, T') — oo,
\HH [ = | = T, 182 = anll| < éinr(@) 13— 301, where éivr(a) < Crevr(a)(1+

2)|8; — BY||) and Cxyr(e) = maxicey maxicseper—1 | Loy chsl|B) — ap]| K175 =

134



Max) << MaX1<scheko—1 | Loy Cksl|) — || 7175 = O(1) with ¢4, being finite inte-

gers. It follows that as (N, 7)) — oo

|Pyr(B, @) = Pyr(8°, @) < Cenr(a }:Hbﬂ'+2CkNT §:H5H2

N 1/2
1 22 -2 1/2—1
AT 1 - T .
<cKNT<a>{Nzub-n}  On(drT) = Opa*T )
i=1
97

By (97) and the fact that Py7(8°, a®) = 0 and that Py (3, &) — Pyr(8,a°) < 0. we

have

A

0> Pyr(B, &) — Pyr(B,a’) = Pyp(8°, &) — Pyr(B°, @) + Op(di/*T ™)

K
H 182 — || + Op(dy/*T™Y)

k=

—

=| = ZIH

= M=

K K
~ N2 ~ NK ~ 1/2—
e — ol + =2 TT lew — a8l + .+ = Tl — alell + Op(@i>T )
k=1 k=1

k=1

(98)

By Assumption 3.3(i), Nx,/N — 7, € (0,1) for each & = 1,...K. So (98) implies
that T[], [lar — a?|| = Op(di*T=1) for | = 1,...K. It follows that (s - Qi) —
(@2, ...,a%) = Op(dy*TY).

(iv) By Theorem 7(iv) and Theorem 8(i), we have || f, — fYHy||> = Op(Tdrn3y +
Cy3) =Op(d2T-'+ N~1). 1

To prove Theorem 3.3, we need the following two lemmas.

Lemma A.7 Suppose that Assumptions 3.1-3.3 hold. Then for any c > 0,
) =o(N7),

> CdTwNT> = O(N_l).

(i) P (maX1<i<N ||%x;uf

(ll) P (maxKKN ‘

T M f?u;‘
Lemma A.8 Suppose that Assumptions 3.1-3.3 hold. Then for any c > 0,

(i) P (max1<Z<N |Ryl| > ¢ (dTnNT +T- 1/Qall/2 ) (Vv + T2 (log T)? )> =
o(N71),
(ii) P <maX1<z<N ||R2z|| > Cd1/2N 1/2q)§2NT> = O(N_l),
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(lll) P (maXlgigN ||R31H > Cd;/2N(1/2q)§2NT> = O(Nil),
(iv) P (maxlgigN ||R4l” > C(dT + N(1/2Q))wNT) = O(N_l),
Bi — BY|| > ¢ (NO20ynp + Mlog T)6/2)> = o(N71) forany e >

(V) P <1’118JX1<Z<N

0,

i

o (452,

(vii) P <max1<i<N

> cd%@b?w) = o(N™') for any e > 0,

My, FONG | > NV (dpnr + T 232 054)) = o(N )
Proof of Theorem 3.3. (i) Fix k£ € {1, ..., K'}. By the consistency of &;, and Bi, we have
Bi—d B al —al £ 0foralli € GY and [ # k. Now, suppose that ||3; — dy|| # 0 for
some ¢ € Gg. Then the first order condition (with respect to (3;) for the minimization of
the objective function (2.8) implies that

2
fl /\(l)z Tgsz Li T( 2)

T
2 M ACri AT - R .
T 2t L + W p | T(Bi — du) + Z €ij H |B; — aul|

J=Lij#k  1=11#j

2
Opx1 = — ma;Mpou; + —xi (Mg — M Jui — T T

=—-A, + A2z A3z + A4z + A5z + Aﬁza say,

where ¢é;; are defined in the proof of Theorem 3.2(i), ¢x; = H{il 14k ||Bz —ql B =
151 llaf — af|| > 0fori € G} by Assumption 3.3(ii). Let Uz = NV@0qyp 4
A(log T)</2. Let ¢ denote a generic constant that may vary across lines. By Lemma A.8(v)-

(vi), we have

2
=B\ > cdivir | =o(N 7).

(99)

P (max Bz —ﬁio

~ 0
ieGy,

> c\IJNT) =o(N')and P (

This, in conjunction with the proof of Theorem 3.2(i)-(iii), implies that

P(|lax — ol > edronr) = o(N1), and P( (max ki — cp| = ch/2) = o(N 7). (100)

i€GY

By (99)-(100) and the fact that max;co i M 7,0 < Cdppmax AS.,

we have P (maxiegg Ayl > cd%TwNT) =o(N~!)and P (maxieag Ag;

> C)\T\IJNT) =
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o(N~1). By Lemma A.7(ii) and Lemma A.8(i),(iii), we can directly claim that
;«%gw%u>amww)—dN1%
P <max | Agi|| > ¢ (TdTnNT + Tl/le/2 NT> (Ynr + T2 (log T)? )) o(N~1), and
i (HQ?;%( [ Asill > eN'(Tdrnr + Tl/zd%r/QCK/lT)) =o(N7).

i€Gy,

For As;, we have

N — ACri 5.
(Bi — ) Asi = (Bi — an)’ IMfl i T %Ip T(Bi — cu)
15; — dull
> 2Qis N5 — dnll® + TAG1B; — Gl = eTARB: — -
Combing above results together, it follows that P(Z; x7) = 1 — o( N 1), where
=Nt {max |Aull < e (Tdrnr + T2 *CRy) (wnr + 77108 T)°) }
N {max | Asi|| < eNY2(Tdpnnr + Tl/Qd;/QC’]QIT)} N {max ki — | < 02/2}
ieGY, i€GY
N {max
ieG)

Then conditional on =y, we have that uniformly in i € GY,

< chTTQ/JNT} N {maﬁi < c)\T\IfNT} .

i€q?

(Bz - d/k)/(AQi + A3i + /Lu‘ + 12151‘ + AG@')
= ‘(Bz — dk)/Am —

5 (o - e (N (T + PRPCR) + Tl 4 3T0n) b~

(Bz - dk)/(/i% + A&z + 12141' + A()‘i)

>TAG5i = | /2,

where the last inequality follows by the fact that N'*/24 (Td%p/ iy + TV2dY 20&%) +
Td%nt + AXTV N = o(T\) for sufficiently large (N,T) by Assumption 3.3(iv). It
follows that
P(EkNT,i) =P(i ¢ Gk|l eEG) = P(Au — Ay + Agi + Ay + As; + AG@')
P (|(Bz — &) Ayl > |(Bz — y)' Asi — (Bz — ) (Agi + Agy + Ay + A6i)>
P(||[Aull = ¢TAS /4, Znr) +o(NH) =0 as (N, T) — o
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where the last inequality follows because that T'A > Tbriyyr by Assumption 3.3(iv).
Consequently, we can conclude that w.p.a.1 3; — d;, must be in position where || 8; — oy
is not differentiable with respect to ; for any i € G9. Thatis P(||3; — ay|| = 0]i € G9) =
1—o(N"')as (N, T) — o

For uniform consistency, we have that

P (EkNT,i)

Mx

K
P(U Ervr) <) P(Bgr) <
k=1 k=1 ieGY

kol

< N max P(||Aq|l = ¢TAD/4) +0(1) =0 as (N, T) — oo

1<i<N

This completes the proof of (1). Then the proof of (ii) directly follows SSP and thus

omitted. W

To prove Theorem 3.4, we need the following two lemmas.

Lemma A.9 Suppose that Assumptions 3.1-3.3 hold and VN = o (T'). Then for any
k=1 .. K,

) e Yiec, UME SN = i L, & i TiMy wi0ibi— it Y, w 2o @i M -
ﬁ Zz‘eék % Z;V—I aijx/'MA f3 Agj +op(N~ V2T b,

(ii) 7= Diec, TiMj, T = xo 2 ieqy TiMppwi +op(1),

(iii) W > ice, T, (Uf -~ Zjvzl U;%) = Upnr + 0p(1),

(V) 3oz Doicy & 2ojecn TiM 7 %005 = 5 Dien v Dojecy TiMpoTjai; + op(1).
Lemma A.10 Suppose that Assumptions 3.1-3.3 hold and \/N = o (T) . Then

(i) Qur < Qo,

(ii) Usnt = Vine + Binr + op(1),

(iii) Vnr AN (0,£2) conditional on C,

where )y = limpy 700 QN

Proof of Theorem 3.4. (i) To study of the oracle property of the C-Lasso estimator,
we invoke the sub-differential calculus. A necessary and sufficient condition for {f;}
and {&y} to minimize the objective function in (23) is that for each i = 1, ..., N (resp.
kE=1,...,K), 0,5 belongs to the sub-differential of QﬁT’ \(B, o, fl) with respect to [3;
(resp. ;) evaluated at {/3;} and {d}. Thatis, foreachi = 1,....Nand k = 1,..., K, we
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have

5 \ K K
Ot = = 7y, (vi — 2:f) + Z IT 15 —al,  aon
J=1 I=10#j
Opx1 = Zezk H 18 — éull, (102)
I=1,1#k
where é;; = HBZ r H if |3; — a|| # 0and ||é;]| < 1if ||3; — &]| = 0. First we observe

that ||3; — éu|| = 0 for any i € G}, by the definition of G, then §; — &; — al —af £ 0
for any i € G, and [ # k by Assumption 3.3(ii). It follows that ||é;,]| < 1 for any i € Gy,

and é;; = =% — 9%y w.p.a.l forany i € Gy and j # k. This further implies that
T 1Bi=ayll ll e =]
w.p.a.1
K K K
Yoo e I 1B —al=)] Z & || IT lléw = aull = 0y,
i€y, i=Li#k =114 icGy, J= lﬁék T I=1,1#5
and

N K
Op1 = > & [[ 115 —all

i=1  1=1l#k

K K K K
=> en I law—al+> e [T IBi—all+ > > éw [ lla;—al

ieC, =Lk icCy  I=Li#k J=li#kic,;  I=li#k
K K R
= > ew [ lNaw—al+> e [ 18 -al. (103)

G, I=11#k icGo  1=Ll#k

Then by (101), (102) and (103) we have
A S
Nsz > wiMy (yi = widn) + = > e [ 18— dull = 0y (104)
ieGy, i€Gy  I=LIFk

Noting that 1{i € Gy} = 1{i € GO} +1{i € G, \ G%} —1{i € GY\ G}} and

y; = zia) + YA + uf when i € GY, we have

TQZ% f1yz_ T2Zx Zﬁ? TszM AN+ T2z:‘r fili

’LEGk ZGGk lEGk ZGGk
0
Nsz Z ;M xlak N, T2 Z o M;j x5 — N, T2 Z x; M T v
el zeGk\GO i€GY\Gy
0,0 0
NT2 Zx My, frd + NT2 chMluﬁfﬁ‘zz)
’LGGk 74€Gk
(105)
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Combining (104) and (105) yields

NT2Z$M zi(Gp — af) = NTZZ;E fl)\(fl NTQZle ul—i-fg)\gl)

’LEGk ZEGk ZEGk

+ Cip — Cop, + Oy, (106)

where Cy; = ﬁ Zieék\Gg ngflmZﬂ?, Cop = ﬁ Zz‘eGg\ék x;Mflxiag, and Csj, =

oo e @ X 11100 18 — Gull. By Theorem 3.3 and Lemmas S1.11-S1.12 in SSP,

we have P(N'2T||C1x|| = €) < P(Finr) — 0, P(NY2T||Cos|| = €) < P(Epnt) — 0,

and P(N'2T|Cop]| > €) < 3y Yieqe Pli € Goli € GR) < 4y e P(Einty) =

o(1). It follows that ||Cz — Coy, + Cii|| = 0p(N~Y2T-1). By Lemma A.9 (i), we have
VN

as *— — 0
040 _
N, T2 Z ; f1f1 Al = N, T2 Z Zx :Eja” NkTQ Z Za”x M u;
’LEGk ZGGk Jj=1 ZGGk Jj=1
-5 T2 Z Z%x M; f9X); + op(NV2T7H. (107)
k
lEGk Jj=1

In addition,

Nsz Z Zx !L“]angg NkTQ Z Z Z x, M xja” a?)+0p(N_1/2T_1)

ieGy, Jj=1 ieGy, =1 jeg
(108)

by Theorem 3.3. Let Q17 :diag<ﬁ D icd, TiMp i ﬁ D il a:QMfle)
and QQNT isa Kp x Kp matrix with typical blocks m Zieék Zjeél aijx;]\/[fl x; such

that
1 . a o N s e 1 . . e e
NN T2 ZieGl Zjecl a”xi]\/[flmj, ot NNT? Ez’ecl ZjEGK awxiMfl Zj
1 / 1 /
A _ | NNu12 D iecs ZjeGl agiMp x5, .. TRy > iecs ZjeGK aijri My 5,
Qaont = : ) .
1 / 1 /
NN T2 ZieG’K ZjEGl agr; My x5, - FRe ZiEGK ZjeGK aij i M 2

Combining (106)-(108), we have
\/NTVGC(d —a’) = (QlNT — QQNT)_l\/ DnUnp + op(1)

where the kth element of U NT 1S

~

|
Upnt = \/MT Z ;M ( w; + fa ;) — N ;azj (u; + nggj))

ZGGk
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and Dy :diag(Nﬁl, o %) By Lemma A.9(ii)-(iv), we have that Q1n7 — Qony =
Qnt + op(1), Unr = Unt + op(1), where U7 and @ yr are defined in Theorem 3.4.
Then we have v/ NTvec(&—a) = Qutv/DyUnr+0p(1). By Lemma A.10(ii), we have
Uent — Benta — Bint2 = Vinr + op (1), where Vinr and Byyr = Byt + Brnro

are defined in Theorem 3.4. Thus,
VNTvec(é — a°) = Qyr/Dy (Var + Byr) + op(1), (109)

where V1 = (VinT, ..., Vknr) and Byt = (Binr, ..., Bgyt). This completes the proof
of Theorem 3.4.
(i) By Lemma A.10 (i) and (iii), we have

Qnr % Qo and Viyr % N(0, Q) conditional C. (110)
Combining (109) and (110), we have

VNTvec(é& — a°) = /DxQy'pByr 5 MN(0, lim DyQg'Qy").

To prove Theorem 3.5, we need the following lemma.

Lemma A.11 Suppose that Assumptions 3.1-3.3 hold and /N = o (T). Thenas (N,T) —
o0,

(i) 2l fidii = FOAG = Op(VdrTnnr) + Op(Cyp),

(ii) Sz f2 = fHs|| = Op(CyY)

(i) 7 Yice, (Moi = H'23,) = op(1).

(iv) = fohoi = 123 = Op(Cyp),

(v) \/LNT Zieék(Am,i — Aoy ;) = op(1),

(V) Y 300 Do (B — 5 L{s < £} = 0p(1),

(vii) ﬁ Eiegg(Aﬂ,ij\Zi - A24,i5\gi) = 0P(1),

(Vi) S Sieay Soit Yoy [l {s < 1} Agaidas = 2451 {5 < 1} 8012 | = 0p(1).

YO _ O 1 N 0 ,..
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Proof of Theorem 3.5. (i) We first consider the bias-correction post-Lasso estimators

Vec(dlg). By construction and Theorem 3.4, we have

V' NTvec (dch — ao) = VNTvec ( — a) + V' NTvec (a — ao)
= DNQX/TVNT + v Dy [va}[ (Bn11 + Bnr2) — QX/IT (BNT,I + BNT,2)]
+Op(1).

It suffices to show the v NTvec(&% — a®) = vDyQy4Var + op(1) by (i1) Qinr —
Qant = Qnr + 0p(1), (12) Byry = Byra + 0p(1), and (i3) Byra = Byra + op(1).
(i1) holds by Lemma A.9 (i) and (iv). For (i2), it suffices to show that Bk NT,1 — Brnr1 =
op (1) for k = 1,..., K. By Theorem 3.3 and using arguments as used in the proof of

Lemma A.9(ii), we can readily show that BkNTl = BkNTl + op(1), where BkNT,l =

ﬁ > ieay Agri — FT > ieco ST ST 501 {s <t} Ay Tt follows that

Binty — Bint,

T T
1
Vi Z Azu — Aoy ) — — Z Z [%tsl {s <t} A21z s {s <t} Aoy
EGO NkT ieGg t=1 s=1
+op(1)
1 T T
Ale —?Zzﬁml{k’? ZA211_A212
eGO t=1 s=1 eGO
\/N
Tkzz s — M) 1{s < ZAQU +op(1)
t=1 s=1 zGGO

=Bint1 (1) + Benra (2) + Binra (3) +op(1), say,

We can prove BkNTl = Bynr1 + op(1) by showing that Byn71 (I) = op (1) for I =

1,2,3. Noting that | £ 37 ST 55,1 {s < t}‘ <EHESL ST ‘ fis|| = 0p (1)
and Nik Zz‘e(;g Agy; = Op (1), these results would follow by Lemma A.11(v)-(vi). To

show (i3), we first observe that

1
BinT2 :m Z E (3]C) Mf{’fg ()‘(2]1' Z Azy“m)

i€GY
30
\/_T %E 25| C) faNy; — \/_T GXG:O]E 27|C) Pyo f3 A3 = Brnr21 — Benrz, say,
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where 3, = Ay~ & S0 Maiy. Let s = (5 (L), 625(L), 657 = (67 (L), 657 (L)) =
(¢*11 (L), ¢ (L)), and vf1f2 = (vf", v]""Y. Note that e;, = w, = ¢5* (L) v+ (L) v5,+

¢=I (L) vf* + ¢=> (L) v/>. By the BN decomposition and the independence of {v%<} and

{v/172}, we have

fo, =Sywy = P (L]t + o7 (Lf* = ™07 (L]
=¢ NP2 (1)l 4+ Sy 1 — Syt

Ee (zi) =Ec <S2 Z wim) = Z (qﬁiﬁ (L) v + be (L) Uﬁf) = o™ (L) V;tflfQ

m=1

:¢Z§,f1f2 (1) Vthfz + SQEC (U~)i0 i wﬁ/) .

where V12 = (VY VY = (30 _ ol S vl')" wy and 10y are defined in As-
sumption 3.1. Let Biyra1 = 7= D ie0 S2 Yoo 2oico Gi4r®, 1 S4AY;. It follows that

*
Bint21 — BkNT 21

\/_ Z Z(f D2 (L) il gl fife (L3O \/_ 38, ZZ@ Lr @SN,

ego t=1 i€G)  r=0 1=0

Z Z(bs f1f2 Vflfz fifer )¢f2,f1f2(1)/5\(2)i

zGGD

T-1 00
\/— > 5 { (EC (Wit41) W Z Pi16; z) Sihg; — Z D104
=0

i€GY t=1

1 B -
_ T Z (Ec (wi0> U{1f2/¢f27f1f2(1)/ _ @70@( S/> )\gz ZEC f1f2 ¢f2 flfz( ) )\m
t=1

T
1 5 - 1 5 -
—?Ec (;Zl wz’t) WSy + fEc (wi) wgosjl)‘gi}

= 2 U+ 203 So{RI, + Rlz, + Rizy + R+ R+ RE} 8108,
where we use the fact that ¢>/% (1) ¢2/12(1) = Sy¢; (1) ¢; (1)’ S} by construction and
that 3777 0 32720 Giredhy = i (1) i (1)) = 22720 Guaa ¢l + i,00:(1)". Following the
proof of Lemma A.7 in Huang et al. (2017), we can show that—= 3,0 SyRE SN, =
op(1) forl = 1,2, ....6 and = 3", E(Q[2) = 0. It follows that Bynr21 = Biiyrar +
op(l) = \/;NT Zieeg Asy;:A%+0p(1). Analogously, we have Byyr2 = Bjyrastop (1),
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where BkNT 22 = \/m EzGGO T Zt 1 Zs L #sL{s <thxSy Z:io Z?ZO ¢i:l+T¢;,lSA,15‘(2)i'

Let BZNTz = BkNT 21 BZNT,22' Then

T T 0o 00
Bixra = 30 7 9090 (s =1} =l {5 <18 30D duredl 513

k iGGg =1 s—1 r=0 [=0
T t oo 00
“7 3w 33 (Gl + oitol™) e S
T t=1 s=1 r=0 |= EGO
1 T t 1
1 e 3 Au,
T tzl 821 My \/m ZEZGI% 24 /\21

By Theorem 3.3 and using arguments as used in the proof of Lemma A.9(i1), we can read-
ily show that BkNT,Q = Bk;NTQ"‘OP(].) where BkNTQ = F ZzeGO T Zt ) ZS L %tsA24 Z/\2Z
Thus we can prove that BNT,Q = Bnr2 + op(1) by showing BkNT,z = Binta2 + op(1)

fork =1,..., K. Note that

D, *
BkNT,2 - BkNT,2

3 30
= \ﬁ Z (Aggidai — Aoy i)y;) —
i€GY R ieqy t=1 s=1

= op(1) —op(1) = 0op(1)

by Lemma A.11(vii)-(viii). Consequently, B, ~NT2 — Binr2 = op(1).

In sum, we have \/WTvec(c”\cléf — ao) = \/DNvalTVNT +op(1).

(i1) For the fully-modified post-Lasso estimators olém, we first consider the asymptotic
distribution for the infeasible version of fully modified post-Lasso estimator aG Noting

that y;” = ;09 + PN + fIN9, + u;, by (106) and (107) and Theorem 3.3, we have

1

0 0 / 040

NkTQ XG::(; smi(al —af) = NkTQ EEGOle ul + f3N) + N E@ M, fON,
1€GY, i 1€Gy

1

1
— WB;NTJ — mBkNT,Q + OP(N_I/QT_I)-

(111)
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Combing (108), (111) and Lemma A.9(i) yields

NkT2 Z i M 7T aGk ) — NkT2 Z Zx xjazj

ZEGk ZEGk Jj=1
0
s X ity (= ) + s 3ttt (13
i€GY i€G?

- WBJNTJ - WBW +op(NVPT)

By (108) and Lemma A.10 (i)-(ii1), we have

\/NTVCC(dém — ao) = (QINT — QQNT)_l\/ DN ((U}\Lf—; + U]{[QT> — B]TfT,l — BNT,Z) + Op(l)

=V DnQuypVar +op(1)
where
R
Unr = \/_T GEG:(]J? Mg ( TN < aij“f) =

T T
VkNTl Z SE¢T )Z Z { Vzgg Vs +/) [1{t =5} —,1{s < [1+p} ¢T 'S,

eGo t=1 s=1

V;:]_VTQ \/_Z |C 1{Z€G ZCLUT ’ Mf?uf,
=1

]EGO

and Uy = Uiy + Ulyr and Vilip = Vilipy + Vilvro + Vi are the kth block-
element of U}, and V., respectively. We have a new error process w;i = (uj;, Az}, Afi,, for,)
whose partial sum satisfies the multivariate invariance principle:\% ZETl wi = Bf =
BM (2}). Following the proof of Lemma A.10(iii) (see also Theorem 9 in Phillips and
Moon), we can show that Vi, % N(0, Q) condition on C where € = limy 1,00 1

and Q} =Var(V{;|C) . Then we have
VNTvec(a&l™ — a®) % MN(0, lim D@y Qg ).

Next, we show that & is asymptotically equivalent to &2 by showing that v NT (& —
al™) = op (1) . Note that

VNT(&§"~a¢") = /Dy |:(Q1NT — Qany)”! (UJJGT + By + BNT@) — Qnr <UJJ\?T + BNy + BNTQ)] :
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Then it suffices to show (iil) quT — QQNT = Qnr + op(1), (ii2) BzJ\rrm = B]tm +
op(1),(ii3) Uxp = Ufip + op(1), and (ii4) Byra = Bra + op(1). In the proof of
bias-correction post-Lasso estimators, we have already prove (iil) and (i14). For (ii2),

we can apply analogous arguments as used in the proof of Lemma A.11(v) to prove
that Ec Hﬁ Sice, (i — Q)| = Op(& + 25%) = op(1). Since A}, = Ay, —

H?24q Im,i
Qs LA i, this implies that (

op (1) . The latter fur-

. 2
ﬁ Zieék (A5L1,z' - A;l,i) =
ther implies that BJJ\FIT,l = B]JQTJ + op(1). For (ii3) we can apply Theorem 3 to show

that
4 +
Uent — Ugnr

__rru+ Fru4 rru+ u+
=Upnt = Upnr + Upnr — Ugnr

N
1 . 1 .
:mTngMfl (U:FN aijuj) FTZle (uZ g aiju )—i—oP (1)
- i—1

1€Gy 1€Gy

\/7T Z x; M —uf) — \/7NT Z Zx M, ( j) a;j +op(1)

i€GY ieGY j=1

:\/NLkT Z i Aw; (9121922@ Quo 19221,) FT Z T P; Az (ng Qs — 01 1922lz>

\/71]\[ Z Zl‘ M Al‘] (912 ](222] ng JQQ2J> a;; + OP( )

ZGGO Jj=1

=UU, +UUy, +UUs +0p(1),

where Uyl = \/NLkT ZieGg i My, (Uz N Zg 1 it > and U} —Uyny = op(1) by
Lemma A.9(iii). Following the proof of Lemma A.11(v), we can show that UU; = op(1)
for [ = 1, 2, 3. The (ii3) follows. This completes the proof of (ii).

(iii) The proof is analogous to that of (ii) and thus omitted. H
To prove Theorems 3.6-3.7, we need the following two lemmas.

Lemma A.12 Suppose that Assumptions 3.1-3.3 and 3.5 hold. Then
(i) Forany 1 < r < 1%, Vi(r, G") — Vi(r, G'H") = Op(CyL),
(ii) For each r with 0 < r < 1°, there exist a positive number c,
such that plimy 7)o inf (Vi (r, G H") — V1 (1%, G)) = ¢,
(iii) For any fixed r, with 1% < 1 < roay, Vi(r, G7) = Vi(1°,G™") = Op(Cy2),
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where Vi (r, G°H") is defined analogously to Vi (r, G*) with G" replaced by G°H", H™ =
(NTTAYANT1GYG"), and GO = AfO.
Lemma A.13 Suppose that Assumptions 3.1-3.3 and 3.6 hold. Then

(i) For any 1 < ry <19, Va(ri, ") = Va(ry, fYHT') = Op(VT),

(it) Forany 1 < r1 < 1, we have plimy )00 Inf dp T [Va(ry, fYHY)—Va(r1, )] =
d,, for some d,, > 0,

(iii) For any 9 < r1 < Tmax Vg(rl,f”) — Va(r?, fr?) = 0p(1),
where Vy(ry, fOHI) is defined analogously to Vy(ry, 1) with fI* replaced by fOHT,
and H{* = (NTAYA®) x (T2 frv).

Proof of Theorem 3.6. Noting that IC' (r) — ICy(r) = Vi(r, G") = VA(r°, G™) — (0 —
g1 (N, T), it suffices to show that P (Vl(r, GrY = Vi(r,G"°) < (0 — r)gu(N, T)) =
0as (N,T) — oo when r # r°. We consider the under- and over-fitted models, respec-

tively. When 0 < r < Y, we make the following decomposition:

Vi(r,G") = VA(r°, G7°) =[Vi(r, G") = V(r, G H")] + [Vi(r, G°H") — Vi (1°, G°H™")]
+ [Vi(r*, G°H™") = Vi(r°, G™)].

Lemma A.12(i) implies that the first and third terms on the right hand side of the last
displayed equation are both Op(C'yL). Noting that V;(r% GOH™) = Vi(r°, G°), the
second term has a positive probability limit ¢,, when r < r% by Lemma A.12(ii). It follows
that P(IC(r) < ICy(r°)) — 0as g;(N,T) — 0as (N,T) — oo under Assumption 3.5.

Now, we consider the case where r° < r < 7., Note that C%- <V1 (r,G") — Vi (r°, GTO)> =
Op(1) and C%4(r — r"g1(N,T) > C%7g1(N,T) — oo by Lemma A.12(iii) and As-
sumption 3.5, we have P(IC,(r) < IC,(r°)) = P(Vi(r,G") — Vi(+°,G"") < (r® —
r)g1(N,T)) — 0as (N,T) — co. B

Proof of Theorem 3.7. Noting that ICy (ry) — IC5(r0) = Va(r1, f) = Va(r9, f11) — (r0 —
r1)g2(N, T), it suffices to show that P (vg(rl, Yy = Va(r, 7y < (19 — 1) ga(NV, T)) =
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0as (N,T) — oo when r # r°. First, when r; < r{, we consider the decomposition:

Valra, f1) = VoGS, 1) = [Valro, ) = Vo, SOHT) | + [Valrn, SRHT) = Valod, SOHT)
+ (vt ety - v, £
=DDy + DDy + DDs, say.

By Lemma A.13), DD; = Op(T*/?), DD, is of exact probability order Op(T/ loglog T),
and DD3 = Op (1). It follows that

P(ICy(n) < 1C(9)) = P (Valra, fi') = Valrd, fif) < (08 = 1)a(N. ) = 0

as go(N,T)loglog T /T — 0 under Assumption 3.6.
Next, for 1 > 70, we have V (ry, fI*) — V (19, Alr(l)) = Op(1) for r; > r{ by Lemma

A.13(iii), and (r; — %) g2(N,T) — oo by Assumption 3.6. This implies that
PICy(r1) = 1C3(r) < 0) = P(Va(rs, f) = Va(r%, /i) < (1 = r1)ga(N, 7)) — 0.
as N, T — oo. R
To prove Theorem 3.8, we need the following lemma.
Lemma A.14 Suppose that Assumptions 3.1-3.3 and 3.7 hold. Then
max &é(}w) s = Op(vay)

Ko<K<Kmax G(K()’A)

A K T ~cu 3 ¢
where Uéuﬂ) = % Y et Zieék(K)\) Do Yit— OZGAE(/KM\)%% —Au( K, N) fu(K, N)]? and

vnt is defined in Section 3.6.
Proof of Theorem 3.8. First, we can show that

[Cg(KQ, )\) = hl[‘/é(Ko)] +pK093(N7 T)

T
ln ~T Z Z Z [yzt AZZIKO N )\11(K0, )/flt(Km A)]Q + o(1) 5 In(

k 1Z€Gk(K0 )t 1
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We consider the cases of under- and over-fitted models separately. When 1 < K < K,

we have
1 K T 9

. ~ fmu N 1 F

K) =5p 20 30 0 [ — G m = M) )]
k=1 ey (Ko,) =1
R R 2
/
> 1<r£1<nK0 G(fglefG NT Z Z Z [yzt raTit — A (KGN fu(K, )\)]

k=1iceGk t=1

= min inf c}é(K).
1IKK<Ko GK)eGg

By Assumption 3.7 and Slutsky’s Lemma, we can demonstrate

min  JC3(K,\) > min_inf In(6%4) +pKgs(N,T) 5 In(c?) > In(op).

1<K <Ko 1SK<Ko GK)eG g

It follows that P(min1<K<K0 ICg(K )\) > ICg(Ko, )\)) — 1.

When Ky < K < Kpa, we can show that NT[%(K/\) — 6é(Ko A)] = Op(1)

when there is no unobserved common factor and no endogeneity in z;;, 0% [Efé KN

&é (Ko | = Op(1) when there are only unobserved nonstationary common factors and
C% [ SN Aé (Ko) ] = Op(1) when there are both nonstationary and stationary com-

mon factors. Then by Lemma 14,
P I1C3(K, \) > IC5(Ko, A
((min, 7Ca(,3) > 1Cu(Ku )

=P (KHE%L vyyIn <Aé(K,)\)/a—é(K0,)\)> +vyrgs(N, T)(K — Ko) > O)

~P <Krr€1g1+ et (A? Sy~ &g(m)) (680 T Vrgs(N, T)(K — Ko) > o)

—1 as (N,T) —oco.
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C Appendix to Chapter 3

This appendix provides proofs for main theorems and ancillary results in the above paper.
The proof relies on some technical lemmas whose proofs are given in the Supplemental

Appendix.

-1

~

NOTATIONS: (i) 4 = ¥4 (@;2;%%) T and = $0a (dgi;ldi>
(1) uyy = AYF? + g4, and vy = R;(L) Y usy
(i) 6; = b; — 1, and &; = b; — bP.
(i) Let n% = + SV Hvec(iyi - b?) ,Cn7 = min (\/_ \/_) tr = O (loglogT),
and Y = NV (log T)'** for some € > 0.

(iv) Without loss of generality, we assume that ;o = 0 in all proofs.

C.1 Proofs of the Main Results in Section 3

Lemma B.1 Suppose that Assumptions 3.1-3.2 hold. Then for each i =1,..., N,
() 22 Sty Y = 00, (¥ 80,) ™ ([ BuBly) i (5108)” L
(ii) 7 T Zt:l ?Jﬁ)—l (€it + A?/Fto) = b?,J_ (a?,/L i,J_) ai,L (f BidB,,; + Fuu,i)+agi ( 10/04?)_1 Lovuis
(iii) & Y00y yhir (e = S vie)’
=00, (a¥ 80) 7 e, { [ BuidB, (I I+ Sl (BYa0) 6?’) + Do + DXy zu} :
(iv) & 0y A = 00, (a2800) ™ a2 (f BudBla (15— 62 (¥89) a%) + T + D)
+a9; (BYa9) ™ (Syui + Lowia?) . where Ty s = SiTuS! and Ay = S50 0 B (wirv)y, ) -

7

Lemma B.2 Suppose that Assumptions 3.1-3.2 hold. Then for any fixed small constant

c >0,
Y_(2)’Y_(2)

R H i, —1" 4,
(l) lim SUP7_s 60 Hmax LT—T12> < CPmax A.S.,

(2)7y(2)
tr Y; 174,—1

(”) lim infT~>oo Mmin (T) 2 CPmin 4A.S.

Proof for Theorem 3.1. (i) By Lemma 3.2 in Cheng and Phillips (2009), the Johansen’s

maximum likelihood procedure still provides consistent estimator for the long-run coin-
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tegration vector 3; and f; — 3% = O, (T ). It follows that

. . N -1
G =Sovi6 (B )
1 d ! 0
= T Z Ayl 1155
t=1
1 T
= (f Z Ayit?J;,t—lﬂ?)
t=1
T T -1
=a? + lZuitv{ lZvit,lv{ +0,(T 52 +3,,.5 1 =a;
7 T it—1 T it—1 P VU,

T T -1
) (53 omates (- 9)) b (53 At
t=1 t=1
( 1

T -1
T Z B?Iyi,tlyg,t—lﬁz'[)) + Op(Til)

where % ZtT:l Vi1Vl 5 F (vit_lvgtfl) = Z;}lﬂ-,and % Zthl UiVl 5 E (Uz‘tvz{tq) =
Yuvi # 0 due to weak dependence in innovation processes w;. Similarly, we have

ii = :lr ZtT:1 (Ayit - &iﬁzolyi,tfl) (Ayit - diﬁ?,yi,tfl)/ + Op<T_1/2) 2 ii- (1) directly

follows.

(ii) For b&"5, we have
S,
oS — (Z Vi 1%?/1) (Z yi(?_l (Ayit - diyz%)—l)/'%>
t=1
1 1l ’
:w+<ﬁ§jﬁgﬁh> {ﬁEFﬁﬁﬂw—Ewﬁﬁﬂfﬁ%+m*m_%»}
t=1 t=1

N N -1 _ - —1
By part (i) and Lemma B.1(iv), we have 4,—%; = 54, (Vzﬂ ; ) —¥ G, <~<2;1di> —
Op(T~Y/2). and £ 571,y | Ayl = O,(1). Tt follows that £ Y, 4% Ay, [ — 7] =
O,(T~1/?). Then by Lemma B.1 (i)-(iii), we have

T
% 29521?/52&/1 = b?,L (Oég,l ?,l)*l Ofu (/ B.iB, ) QG 1 ( ?la?L) bu,and
t=1
L @ 1 /
T Z Vit (Uit — v, Sy Vie—1)
t=1
:>b?,l (O‘?,/i ZQ,L)il a/?,/L {/ Bu’tqulu (IJ + Zuv,iE;vl,i ( ?/a?)_l zQ,>/ +I uu,g + Auv ZEW szuz} )

Combining above two results, it directly yields 7' (ZA)Z»GLS — b?) = 0,(1).
(iii)) Combine (2.10) and the fact that

AV =Y YO h = Y5+ FOA + &,

i i,
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where & = &9, + AY; (% — %) €5 = €it — Suv.iSy Vis—1 and o; = b; — 0. Note that

VU,

g7 1s weakly dependent stationary process. We have

(Fo1) o
1 e S\ iiy (v L5 ) (v E
= N7 Z(Y;f_)l ® I,.)vec(d;)vec(d;)’ (Yi’(_)lF ® [r) ~NT Zvec(éf)vec(&)’ (YQE—)lF‘ ® L“)
i=1 =1
N N
_ % Z (F° @ I,)) vec(A?)vec(d;)’ (Y;(E){F ® Ir) - % Z (}/;(3)1/ ® Ir) vec(d;)vee(})’ (F ® I’"j
i=1 =
N N
B % Z (Y(Q)/ 1 ) VCC((§ )VeC(AOI) (F0/F® I ) + %ZVCC Yvec(é ) (F® I >
i=1
N N
+ % ;vec(é;‘)vec(]\?)/ (FO/F ® L«) % ; FO ® I ) vec( AO)VCC( i) (F ®1 )
N
+ % > (F*@1,.) vec(AY)vec(AY) (FO’F ® Ir)

=1

N
1 0 A0 A0y/ 0 1+
=h+ Lt I+ Zl (F° @ I,) vec(A?)vec(A?) <F Fe Ir> , say.
It follows that

. | A . jada
(F ® ]r) Vir=(F @ 1) [ 1 Y vee(Avee(A) | | = @ I, | = Lt Lo+ .
i=1

Define H = (% SV Vec([\?)vec(f\?)’) (FgF ® L«) Vit = O,(1) and H is asymptoti-

cally nonsingular. Note that

fH(F@”) (F°®L~)(<%(|

- -1 _ N1
where G = (FOTF ® ]T> <% SN VeC(A?)vec(A?)’> = 0,(1). It remains to show
the properties of || [;|| for [ = 1,2, ..., 8. For I,

e g L]
T lIA < T max T Z [vects)

o |

(Ll sl 4 4 (s 1G]

= (TLTT}}ZVT)

where max; ¢;<n

||Fu < 7. For I,

< Hmax (%2 Zthl yl(zt),lyZ(QtL) = O,(¢r) by Lemma B.2(i) and

F

N 1/2
1 : 1 [|vec(&7) 2 1
— < /7o il W Al S A 1 il

2
} = Op(vVTvrnnr)



where = " HWC(& I = O,(1) due to stationarity of £}. For I3,
‘ 1/2 | o 1/2
N Z Hvec(éz)
i=1

1,—1 H

\/_ \/T 1<z<N { Z Hvec
= Op(VTvrnnT)

Analogously, we can show that \/LT | 14]] = O,(V/TirnnT) and —= 77 115l = Op(VTtrnn).

The rest of three terms are directly obtained from Bai and Ng (2002) such that \% ||| =

O,(Cyr) forl = 6,7, 8. Thus, we directly have

— ||
VAL

FoL)H '~ (F )

% H( ‘ = Op(V/Turnnr) + Op(Cyp).

A A / A
Proof of Theorem 3.2. Let Qv (bi) = - vec (AY;+ v - nfﬂb‘) vec <AY.+ o n@lbi),

Qir (b, Br) = Qi (b)) A [Ty [Ivee (b — By)|l.and Q7 (b, B) = % S, Qi (i, By).
Note that

Qint(bi) — Qinr (1))

1 2 o - o
= —vec(d) (1 @ V2V, ) vee(d) — vee(d:)'vee (V2] ((FOAY + ) 5 + AY: (3 — 7))

(A.1)

where € = (¢f},...,el]) and e, = g;y — EumE V; 1—1. By the triangle, reverse triangle

VU,

inequalities Su et al. (2016) ((A.6), p.2246), we have

‘HHvec b —Bk>H—HHvec (b) — By)

where ¢; vr(B) = [T15 Ivee (b — By ) | + TT15, lvee (b — By ) llivee(s) — Brc) | +
AT, [vec(b? — By) || = O,(1). Based on the fact that Q 3 (b;, Br) < Qe (19, BY),

1 N/ - R -
vee <ﬁ Z yz(gt)—l <(A?,Ft0 +e) F+ Ayl (i — %‘)))
t=1
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< c;inr(B) [|vee (6)] (A2)

we have the basic inequality

wee (3) <1 W ) e (3)
<alpee 3) |

+ )\C@NT(]AB)> .



Note that

vec ( ) <I ® — Zyﬁ) 1%% '1) vec (&)

AVE L~ @ o
> HVCC <5> Hmin T2 Yiz—1Yit—1 | -
t=1
2y

Define p; min = [4min (T2 Zt " yZ t 1Yiie ) is bounded away from zero in probability by

Lemma B.1 (i) and Lemma B.2(i1). Then by Assumption 3.2 and Lemma B.2(ii1),

T
~ o 1 .
Hvec ((Z) ’ <Pi,§nn (2 vec <T2 Zyz(t 1 ((AO/FO + Ezt) ¥i + Ay, (3 %))>

=0,(T™' + ), (A.3)

+ )\Ci,NT(B))

since 2 S, yzt ((AYFY +€3)' %) = O,(T™') by Lemma B.1(iii) and 4; — 4, =
O,(T~1/%) by Theorem 3.1(i).
(ii) By the Minkowski’s inequality, as (IV,T") — oo we have

K—
cinr(B) < TT {liveetb — o)1l + vecs! — By}

—_

kil
N =

K
o+ TT {livect — )11 + lIvee(d — By} llvee(®? — Bi)| + .. + [ livec(®? - Bl
k=2

1

B
Il

K-1
[vec(b; — bY)|° HaksHvec B0 — By |1
s=0 k=1
< Crenr(B) Y llvec(bi — b))|I* < Crenr(B)(1 + 2| vec(d:)1) (A4)

where a;’s are finite integers and
Crnr(B) = maxi <oy maxicseper—1 [ [ axs [vee(Bf — BY)|* 7~ = 0(1) b

Assumption 3.3(ii) as K is finite. Let C = CK,NT(B). Combining (A.3) and (A.4)

-1 T
P; ,min ’
= (1 _ CNT) { vee < Z; ( (AVFY +3) 3+ Ayl (3 %)))

where cyr = 20Ok maxicic N p;,;nn = Op(Atr) = 0,(1) by Assumption 3.3(iii) and

yields

Hvec(S )

+ AC*K}

154



Pmin = MiNy<;<n Pimin = Op(tr) by Lemma B.2(ii). Then we have

% i Hvec(&) i

N 2
< <1 imclrjlw> Z ( vec <T2 nyi) 1 ( AVFY + 82})’% + Ay (i — %))) + ACK)
=1
=0, (T2 +2%)). (A.5)

2 .
Now we show that + > = 0,(13T?). Let vec(b;) =vec(b)) + trT ',

vec(5;)
where v = (vq,...,vy) is a (J — r)r x N matrix. We want to show that for any given
€* > 0, there exists a large constant L. = L(e*) such that, for sufficiently large N and T
we have
P{ Jinf Qg (vee(t’) + 1rT My, B) > Qyp (Vec(bo),BO)} >1— ¢,
~ 2ica Ilvill?=L

This implies that w.p.a.1 there is a local minimum {b, B} such that ~ SV Ivec(d:)|)? =
O, (13T ~?) regardless of the property of B. By (A.1) and the Cauchy-Schwarz inequality,

with probability approach to 1 — o( N~!) we have

T° [ K(vec(t®) + 1T, B) — (VeC(bO) BO)}
1 & 1 1
:N Z L%y/ <T2 1 ® Ir> v, — — LTVZ{VCC (ﬁ}/zg)ll (}70A;J + &Tj) ’%)
i=1
27 1 AT SN &
N LTV, vec (TQY(Q)/AYi (F: — ’NYz)) N Z H vec (bo Bk> + 0Ty,
i=1 i=1 k=1

S 1 N 9 //TY;@{ Yz’,(z)l
A% N Z_; ||Vz” 1I<Tll<l}v Hmin T

N 1/2 N
() (e (FHE o+
N p N T2 2,—1 7 7

=1

) N 1/2 T2 N 1
— i (ﬁ Z ||yz||2> (W Z vec (EYZ@{AYE (% — %))
=1

=1

=vr(Dint — Dant — Danr), say.

2
By Lemma B.1(iii) and Lemma B.2(ii), we have L~ ZZ ) Hvec <T2Y L (FOAY + & )%> ‘

Y @y

Op(1) and mini<;<n fmin <%) = 0,(1). Note that T2 S°N |

vec ( AY (95
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0,(1) since (3; — %;) = O,(T~'/?). Then we have D3yr = 0,(Danr). S0 Din7 domi-
nates (Donr + D3yr) for sufficiently large L. That is,

T? [ K(vec(t®) + 17T~ ', B) — QK (vec(1°), B°)| > 0 for sufficiently large L.
Consequently, we must have & 3"V [|vec(3;)||? = O,(:3T2).

(iii) Let Py7(b,B) = + SV UTLE, IIvec(b; — By)|l- By (A.2) and (A.4), we have
that as (N, T) — oo

|Pyr(b, B) — Pyr(b”, B)| < Crnr(B Z Ivec(8:)|| + 2Ck (B Z lvee(d:)|?
N 1/2
2 2 =2\ __ -1
< Cgnr(B { Z lvec(d;)|| } + O, (1777%) = Op(erT ™).

(A.6)

By (A.6) and the fact that Py (b° B®) = 0 and that Py7(b, B) — Pyr(b, BO) < 0. we

have
0 > Pyr(b,B) — Pyr(b,B") = Pyr(b’,B) — Pyr(b%, B%) + O, (1T

1 N K

= = S TT Ivee®? — Bl + Oy
=1 k=1

N, & Ny &

= T Ivee(Be = B+ o+ SE ] Ivee(By — Bl + 0y T (A7)

k=1 k=1

By Assumption 3.3(i), Ny,/N — 7 € (0,1) foreach k = 1,...K. So (A.7) implies that
[T, Ivec(By—BY)|| = O,(txT~") forl = 1, ... K. Tt follows that (vec(B, ), ...,vec(By))—
(vec(BY), ...,vec(BY)) = O,(trT71). A

Lemma B.3 Suppose that Assumptions 3.1-3.3 hold. Then
(i) P (maxlggN ‘ vec (%2 Zthl yﬁ)_l (AYFD + 5;;)') ’ > C¢NT> =o(N71).
(ii) P (maXlgigN ‘VGC (5, - b?) ) =o(NY
where U = (trynr + N)(InT))<.

Proof of Theorem 3.3. We fix k£ € {1, ..., K'}. By the consistency of B, and b;, we have
vec(b; — By) —vec(B? — BY) # 0 forall i € GO and k # . It follows that w.p.a.1
Hvec( — B) H #0foralli € GYand ! # k. And &, = [[~ ik Hvec — By)
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A = H{il,l# |[vec(BY — B))|| = &' > 0 for i € GY by Assumption 3.3(ii). Now
suppose that Hvec(l;i — Ek) H # 0 for some i € GY. Then the first-order condition (with

respect to b;) for the minimization problem in (2.11) yields that

anNT<b’L7 Bk)

O(Jfr)rxl =T b,
5 K K
2)1 3 1 2) 7 . 5
=-7 (Ir ® YZ-E_)1> vec <AY;+ — Yif_)l — Y;f_)lbl) +TA JZ €ij li[l Hfuec(bl —
— vec ( Zyz(Qt) 1 ( (AYFY +€5,) 4 + Ay (3 — %)))
(f o &Yl ) e (5 1)
@) Aik s A
] ®_Zyzt lyzt 1 ~ ~ TVCC(bZ‘—Bk>
Hvec(bi - Bk)H
K K
+ X Z éij H HVGC(bi — Bk)H = —AM + AQZ‘ + Agi + A47;, say.
J=lj#k  I=11#j
where é;; = szz(z—gn if Hvec (b; — B,)|| # 0, ||é;| < 1if Hvec(& — B)) ‘ = 0. Let

c denote a generic constant that may vary across lines. By Theorem 3.3(ii) and Lemma

B.3(i), we can readily show

P <max

€GO

vec (Bk - Bk) H > CLT1/JNT) )

By Lemma B.2(1) and the matrix norm of Kronecker product, we have

2) (@2
T2 Zyz(t) lyzt 1

This, in conjunction with Lemma B.3(ii), yields

< CPmax!T, A.S.

sp

ngyz yzt 1®[

sp

P (maﬁi Ao, CLTTwNT> =o(N')and P (ma%< Ayl > cT)\\IJNT> =o(N7).
i€G i€Gy
By lemma B.3(i), we directly have that P (max,ego Ay CLTT¢NT> = o(N~1). For
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As;,
A A , A
vec <bi _ Bk> As;

T
(2 A AN
=T'vec (bz — Bk) <ﬁ Z yz(i)_lyﬁ)_/l ® Ir + - Cik ; vec <bz - Bk)
t=1 HVCC(bi — Bk)”

2
+ XT'¢y,

T
2 fa al ~ A
> (ﬁ Zyz(zt)—1yz(2t)—/1 @ [r> HVeC(bi — By) ‘Vec(bi — Bk)H
t=1

2)\Télk ‘VCC(I;i — ék)H

Combing above results together, it follows that P(Z,y7) = 1 — o(N™!), where

Epnt = qmax || Ay < et Ty NS max || Ayl < cTAY yr N4 max ‘ém — cg‘ <c}/2
i€GY i€GY i€G)

Then conditional on =57, we have that uniformly in i € GY,

vec (Ez — Bk>/ (Agi + Az + Ay)

> ||vec (B, — Bk>, Asi |l = ||vec (BZ - Bk>l (Agl + /ALM)

>c {)\Tcg/2 — ETYnr — T)\\I/NT} Hvec <ZA7Z — Bk) H

>c\T'c) Hvec (32 — Bk> H /4, for sufficient large (N, T'),

where the last inequality follows by the fact that (12T N7 — TAUNr) = o(AT) by As-

sumption 3.3(iv). It follows that
P(EAkNT’Z‘) = P(Z ¢ ék|l - Gg) = P(Ah = AQi + Agi + A4z)
R AN T A N .
<r( vee (b= )’ [fu = (i + A

(s

A A / A~
vece (bz — Bk> Ali 2

> (TAL /4, EkNT> +o(N7Y) =0, as (N, T) — oo,

where the last inequality follows because that T)\cg > 1T N7 and that T/\cg — 00
by Assumption 3.3(iv). Consequently, we can conclude that w.p.a.1 b; — Bj, must be in
position where ||vec(b; — By)|| is not differentiable with respect to b; for any i € GY. That

is P (szec(éi - Bk)H — 0]i Gg) —1—o(N"Yas (N, T) - oo.
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For uniform consistency, we have that

K K
P (U,ff:lEkNT> < Z P (EkNT> < Z Z P <EkNT,i>
=1

1 -0
k=1ieGY

< N max P (HAM

1<i<N

> cT/\c2/4> +o(1) = 0as (N, T) — oo

where the last inequality follows by Lemma B.3(i). This completes the proof of (i). Then
the proof of (ii) directly follows SSP and thus omitted. l

Lemma B.4 Suppose that Assumptions 3.1-3.3 hold. Then

(i) Qrar = Qp,

(ii) Vi,nT — BNt = N(0,Vy),
where Q, = limpy_o0 Nl ZieGO CiiEe ([ BuB,;) Cii Vi = limy_oVare (Vinr) =
Q, and C'; = b?,J_ ( ?’L 0 )_ ?’l

Proof of Theorem 3.4 A necessary and sufficient conditions for l;Z and Bk to minimize
the objective function in (2.11) is that foreach i = 1,..., N (resp. k = 1, ..., K), O(j—r)rx1
belongs to the sub-differential of QﬁTA (b, B) with respect to b; (resp. By) evaluated at b,

and Bk The first order conditions are

K K
2 i A o
0t = = 5073 (Ir ® nf?{) vee (AYﬁ ) A b> + 5> ] Hvec(bi - BZ)H ,

J=1  I=Ll#j
K
A
J r)rxl — NE ezk H VCC )

i=1  I=1l#k

where ¢;; is defined in Theorem 3.3. First, we observe that Hvec(l;i — Bk) H = 0 for any

1 € G’k by the definition of G’k.And 131- — B- LN Bk — Bl # (0 forany ¢ € G’k and [ # k

by Assumption 3.3(ii). It follows that ||é;,|| < 1 for any i € G}, and é;; = —HVZZEZZ_?;H =
Vi i —Dj
VCC(kaBl)

"Vec(Bk—El)l‘

2 2 K
S Y o 1 [vec — 5] = 3 vee(By ‘Bﬂ‘ TT [veetBi — B0 = 00—y

icCy i=Litk  I=Li#j icCy i= 19# HVeC (Br — Bj)|| 1=t

w.p.a.l for any ¢ € Gy, and [ = k. This further implies that w.p.a.1
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and

O(J—r)rxl

K
= ik H Hvec By — Bl H + Z ezk H Hvec H + Z Z Eik H Hvec )H
iEék 1=1,l#k ieGo j=1,j#k zEG’ I=1,l#k
K
= Eik H Hvec By — Bl H + Z éik H Hvec H
€@,  =LIFk icCy  I=Ll#k

Combining above results, we have

2 !
N.T2 Z (I ®Y 2 ) vec (AY+ Y Y(2 Bk) Z Eik H Hvec (b; — Bz H = 0(J—r)rx1
e i, I=lizk

It yields that the C-Lasso estimators follow

-1

N +_y®
vec(By) = NkT2 Z Y vec NkTQ Z Y (AY .71>
’LEGk ’LEGk
—1
1 . .
(2)y-(2)
+ IT®W ZY; 1Y; 1 2Nk Zelk H HVGC(bi—BZ)H
i€Gy, ieGo I=1,l#k

= vec(BP*") 4+ Ryng, say.

. -1 .
where vec(BY*) = <ﬁ D ict, Y(Q) Y@l ® Ir) vee (ﬁ D iet, Yz‘@ll (AYz+ - 5@91))-
By Theorem 3.3, we readily show that

K
P <\/MT||7élNk|| > e) <Y Y PlieGlica) <Y Pli¢Gilie Gl =o(1)

k=1icq9 k=1 i3GY

=

??‘

It follows that
NiTvec(By — BY) = \/NyTvec(B*" — BY) + 0,(1)

This implies that By, is asymptotically equivalent to its post-Lasso estimator B***. Then
we formally study the asymptotic distribution of Eim in the proof of Theorem (ii) below.

(i1) Note that
Ni.Tvec (350“ — Bg) =Q;" (Vk + Ronk + 7€3Nk>
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A 1 @32 ) 7 1 @)/ (0 A0 -
— 2 (Lo, Vi - (V2 (FAY +¢) 7).
Qk NkTQ - < ® i,—1%4,—1 k \/MT Z vec i,—1 ( i + 81) 7
1€Gy 1€Gy,
. 1 o
Raonk :\/VkT Z vec (YZ@{AE‘ (% — %)) ;
ieék
A 1
Rank N2 Z <[r ® Y;(E){Yl(i)l) vec (b — By) .
ZEGk

It follows that

R 1 2)1xA(2) 1 (2)y-(2)
Qk :—Nsz Z ([r @ }/;’_11/;7_1) + NkT2 Z (Ir ® Y;’_IY;’_I)

i€GY i€GL\GY

1 2)3,-(2)
w2 (bevv?)
iEGg\Gk

=QrnNT + Qlk - @2k, say.

by the fact that 1{i € Gy} = 1{i € G} + 1{i € Gx\GY} — 1{i € G\G.}. By
Theorem 3.3, we can show that P (HQ%H > eN*1/2T4> < P(Eynt) = o(N7') and
P (”Qlk” > eN—1/2T—1) < P(Funr) = o(N) for any ¢ > 0. It follows that Q) =
Q.1 + 0,(N"Y2T~1), Analogously, we can show that P (WTHﬁJNkH > e) =o(1)
forj=1,2and V}, = Vint + 0,(N~Y2T~1) by Theorem 3.3. Thus we have

NyTvec(BX* — BY) = QunrVint + 0p(1)

where Vi vt = o35 DieqpVec (1@@1’ (FOA? + &%) 7) By Lemma B.4(i)-(ii), it follows
that Vi n7 — Benr = N(0, Vi) and Qp nr RS Qy. By Slutsky’s theorem, we directly
have /N Tvee(B{*™ ~ BY) = Q' Bryr = N(0,Q; 'V, Q") M
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