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LING Jiajing 

 

 

Abstract 

 

 

Reinforcement learning is a widely used approach to tackle problems in 

sequential decision making where an agent learns from rewards or penalties. 

However, in decision-making problems that involve safety or limited resources, 

the agent's exploration is often limited by constraints. To model such problems, 

constrained Markov decision processes and constrained decentralized partially 

observable Markov decision processes have been proposed for single-agent 

and multi-agent settings, respectively. A significant challenge in solving 

constrained Dec-POMDP is determining the contribution of each agent to the 

primary objective and constraint violations. To address this issue, we propose 

a fictitious play-based method that uses Lagrangian Relaxation to perform 

credit assignment for both primary objectives and constraints in large-scale 

multi-agent systems. Another major challenge in solving both CMDP and 

constrained Dec-POMDP is the sample inefficiency issue, mainly resulting 

from finding valid actions that satisfy all constraints, which becomes even 

more difficult in large state and action spaces. Recent works in RL have 

attempted to incorporate domain knowledge from experts into the learning 



 
 

process through neuro-symbolic methods to address the sample inefficiency 

issue. We propose a knowledge compilation framework using decision 

diagrams by treating constraints as domain knowledge and introducing neuro-

symbolic methods to support effective learning in constrained RL. Firstly, we 

propose a zone-based multi-agent pathfinding (ZBPF) framework that is 

motivated by drone delivery applications. We propose a neuro-symbolic 

method to efficiently solve the ZBPF problem with several domain constraints, 

such as simple path constraint and landmark constraint in ZBPF. Secondly, we 

propose another neuro-symbolic method to solve action constrained RL where 

the action space is discrete and combinatorial. Empirical results show that our 

proposed approaches achieve better performance than standard constrained RL 

algorithms in several real-world applications. 
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Chapter 1
Introduction

In modern artificial intelligence, sequential decision making which refers to the process

of making decisions in a sequential manner is an important and active research field,

and is widely used in AI applications such as robotics [37, 62], Atari games [65, 97],

and autonomous systems [89]. In sequential decision making, since the outcome of each

decision affects the available options of the subsequent decisions, one common approach

to solving it is reinforcement learning (RL) [103]. In RL, an agent interacts with an

environment to receive positive feedback (rewards) or negative feedback (penalties),

which reflect the quality of the agent’s decisions. A policy is learned using the feedback,

and agent is able to make better decisions over time. RL problems can be formalized

using a mathematical framework known as a Markov decision process (MDP) [103]. An

MDP consists of a set of states, a set of actions that can be taken in each state, a reward

function that describes the goodness of each action taken in each state, and a transition

function that describes the probability of transitioning to a new state when an action is

taken in the current state [7]. Mathematically, the goal of the RL agent is to learn a

policy that maximizes the cumulative reward over time. This goal motivates the agent

to explore as many states and actions as possible in the environment.

However, in many safety-critical or resource-related decision making problems, the agent’s

exploration in the environment is typically restricted by constraints. For example, to

ensure robots safety when they are conducting tasks, robots’ motion must be restricted in

a certain range [29, 84], and their energy level cannot drop below a specified level [62]. An-

other example is resource allocation in supply-demand matching [11, 99]. The allocation

of resources must satisfy some constraints (e.g., total assigned resources should be within

1



Chapter 1. Introduction

a limit). To tackle sequential decision making problems with constraints, researchers

have proposed constrained Markov decision processes (CMDP) [2] as an essential model.

CMDPs can potentially be solved using constrained reinforcement learning (RL). In this

paradigm, the objective of the agent is to find a policy that maximizes the expected

cumulative reward while adhering to constraints defined in the CMDP.

One of the primary challenges in solving a CMDP using RL is finding actions that satisfy

all constraints through trial and error. Therefore, this method can suffer from severe

sample inefficiency due to the constraints, especially in large state and action spaces [35].

Sample inefficiency is also a significant challenge in standard RL. To address this problem,

several recent works have attempted to incorporate domain knowledge from experts into

the learning process [57, 72, 118]. These approaches, called neuro-symbolic methods,

combine the complementary strengths of neural and symbolic approaches. The neural

side provides trainability from data and function approximation capabilities, while the

symbolic side provides knowledge representation and reasoning abilities. By combining

these strengths, neuro-symbolic methods show great potential for overcoming the sample

inefficiency issue in RL. Notably, the neuro-symbolic methods offer a promising new

direction for solving constrained RL, as the constraints defined in a CMDP can be treated

as domain knowledge.

In this thesis, we study how to address sequential decision making problem with con-

straints in both single-agent and multi-agent settings using RL, and introduce novel

neuro-symbolic methods to support effective learning in constrained RL. In fact, we show

that neuro-symbolic methods for constrained RL can achieve better performance than

standard constrained RL algorithms and is a promising research direction.

The introduction is structured as follows. Firstly, in Section 1.1, we provide several

examples that motivate the problem we aim to tackle in this thesis. Following this, in

Section 1.2, we introduce two formulations for the modelling of the sequential decision

making problem with constraints in single-agent and multi-agent settings respectively.

In Section 1.3, we present related works that have been published on constrained RL

and neural-symbolic methods for RL. Our contributions to this field are outlined in

2



Chapter 1. Introduction

Section 1.4. Finally, we provide a roadmap for the rest of the thesis in Section 1.5, and a

list of all publications that contribute to this thesis in Section 1.6.

1.1 Motivating examples

The sequential decision making problem with constraints arises in numerous real-world

applications, ranging from single-agent to multi-agent settings. In the following section,

we provide several examples of such applications.

Drone Delivery The logistics industry has witnessed a promising potential in air-

delivery by drones, as demonstrated in Figure 1.1 [81]. In this example, the airspace

is divided into multiple blocks, and there are hundreds of drones navigating different

air blocks to deliver items from respective sources to destinations. This delivery system

has three constraints to consider. The first constraint is the capacity of each air block,

ensuring the safety of the vehicles and avoiding congestion within the air block. The

second constraint is the landmark constraint, requiring drones to visit a set of specific

delivery locations to accomplish the delivery task. The last constraint is the simple path

constraint, prohibiting loops in the planned path for each drone during the delivery task.

The decision making problem is to find a policy to coordinate the movements of the

drones so that the delivery task can be finished as quickly as possible while satisfying

these constraints.

Figure 1.1: Drone Delivery

3



Chapter 1. Introduction

Emergency response system In Figure 1.2(a), we can see the emergency response

system proposed in [122] that aims to solve the decision making problem of allocating

ambulances to different stations in the city to provide better medical services for those with

unplanned urgent and life-threatening health conditions. The allocation of ambulances

depends on various factors, such as the daily demand for emergency services, the current

allocation of ambulances to different stations, the time of the day, and even unexpected

catastrophic accidents, such as a chemical plant explosion. However, due to the limited

number of available ambulances, the allocation process must adhere to three types of

resource constraints: global sum, local min and max, and group min and max. The global

sum constraint dictates that the total number of ambulances assigned to all stations must

be equal to the total number of available ambulances. The local min and max constraint,

on the other hand, specifies the minimum and maximum number of ambulances that can

be assigned to a single station. Lastly, in the group min and max constraint, stations

are grouped together based on their locations to form larger bases, and the total number

of ambulances assigned to stations belonging to the same group should be bounded. By

taking these constraints into account, the emergency response system can make optimal

decisions regarding ambulance allocation to ensure the efficient provision of medical

services.

(a) (b)

Figure 1.2: (a) Emergency response system; (b) 2D bipedal robot AMBER and 3D
bipedal robot NAO
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Chapter 1. Introduction

Bipedal walking robots Figure 1.2(b) displays the bipedal walking robots, AMBER

and NAO, which were developed by the Mechanical Engineering Department at Texas

A&M University [3]. The walking robots, which are inspired by the simplicity and

elegance of human locomotion, are designed to aid in discovery and rescue missions, such

as exploring polar ice caps or navigating through craters. The robot has three joints

on each leg, which are hip joint, knee joint, and ankle joint. Each joint has a range of

motion of restricted degrees. To ensure the stable and safe locomotion of walking robots,

constraints on the robot’s joint motion must be imposed. For instance, the range of

motion for each joint must be limited to prevent the robot from taking steps that could

lead to damage or falls. Additionally, the physical mechanism must also be followed to

ensure that the movements of all joints are in sync. The decision making problem in this

scenario is to control the motion of each joint so that the robot can traverse uneven or

unknown terrains in a safe and stable manner.

1.2 Formulation

This section provides an introduction to two models that can be used to model sequential

decision making problems with constraints in different settings. The first model is the

constrained Markov decision process (CMDP), which is used to model sequential decision

making problems with constraints in the single-agent setting. The second model is the

constrained decentralized partially observable Markov decision process (Dec-POMDP),

which is used for the multi-agent setting. For large-scale multi-agent systems, sequential

decision making problems with constraints can be modelled using a constrained collective

Dec-POMDP formulation, which will be presented in Chapter 2. We also introduce

different types of constrains that used in both CMDPs and constrained Dec-POMDPs.

1.2.1 Constrained Markov decision process

A Markov decision process (MDP) model is defined using tuple (S,A, P,R, γ, b0). An

agent can be in one of the states st ∈ S at time t. It takes an action at ∈ A, receives

a reward R(st, at), and the world transitions stochastically to a new state st+1 with

probability P (st+1|st, at). For the infinite-horizon setting, future rewards are discounted

5



Chapter 1. Introduction

using a factor 0 < γ < 1. The initial state distribution is denoted by b0(s). Let π(θ)

denote a stochastic policy parameterized by θ. It is a mapping from state space (S)

to action space (A). π(at|st) is the probability of taking actions a in state s at time t.

The goal of an MDP is to compute a stochastic policy π that maximizes the discounted

cumulative reward Jπθ
R as:

Jπθ
R = Eπθ

[
∞∑
t=0

γtR(st, at)] (1.1)

A constrained Markov decision process (CMDP) is defined as a tuple (S,A, T,R, {Ck}Kk=1, γ, b0),

where S,A, T,R, γ, and b0 have the same definitions as those in a standard MDP. In

addition, the tuple contains an extra component, namely Ck(st, at), which represents

the kth cost function. This cost function specifies the immediate cost incurred after

taking action a in state s at time t. Constraints in a CMDP can be formulated either

explicitly or implicitly via cost functions. We will discuss different types of constraints

in Section 1.2.3. Let ΠC denote the set of feasible policies that satisfy all the necessary

constraints specified in the CMDP. In this context, the objective of a CMDP is to

compute a stochastic policy π that maximizes the cumulative reward while satisfying all

constraints. Formally, we have

max
θ

Jπθ
R = Eπθ

[
∞∑
t=0

γtR(st, at)]

s.t. πθ ∈ ΠC

(1.2)

1.2.2 Constrained Dec-POMDP

A constrained Dec-POMDP, which extends the definition of traditional Dec-POMDP [8],

is defined using the tuple ⟨S,A, P,O, Z,R, {Ck}Kk=1, N, γ, b0⟩. There are N agents in the

environment (indexed using i= 1 :N). The environment can be in one of the states

s ∈ S. At each time step, agent i chooses an action ai ∈ A, resulting in the joint action

a ∈ A ≡ AN . As a result of the joint action, the environment transitions to a new state

s′ with probability P (s′|s,a). The joint reward to the agent team is given as R(s,a).

The joint kth cost incurred for executing action a in state s at time t is given as Ck(st,at).

The reward discount factor is 0 < γ < 1, and b0 is the initial state distribution.

6



Chapter 1. Introduction

We assume a partially observable setting in which agent i observes its own component

zi ∈ Z with observation probability O(zi|a, s′) where the last joint action taken was a,

and the resulting state was s′. For simplicity, we have assumed the observation function

is the same for all agents. As a result, different agents can receive different observations

from the environment.

An agent’s policy is a mapping from its action-observation history τ i ∈ (Z × A)∗ to

actions or πθi(ai|τ i), where θi parameterizes the policy. Let the discounted cumulative

reward be denoted by Gt=
∑∞

t=0 γ
tR(st,at). Let ΠC denote the set of feasible policies

that satisfy all the necessary constraints specified in the constrained Dec-POMDP. The

goal in the constrained Dec-POMDP is to find the best joint policy π to maximize

the expectation of the discounted cumulative reward while satisfying all constraints.

Formally, we have,

max
θ

Jπθ
R = Eπθ

[

∞∑
t=0

γtR(st,at)]

s.t. πθ ∈ ΠC

(1.3)

1.2.3 Types of constraint

Both CMDPs and Dec-POMDPs incorporate two distinct types of constraints: cumula-

tive constraints and instantaneous constraints. Furthermore, these two categories can be

subdivided into two more categories: explicit constraints and implicit constraints. Fig-

ure 1.3 provides an overview of the common constraint categories utilized in constrained

RL [70]. In this section, we focus on the different types of constraints present in CMDPs,

which can also be defined similarly in Dec-POMDPs.

Constraints
Cumulative

Explicit

Implicit ൞
Expected ቊ

Discounted
Mean valued

Probabilistic

Instantaneous ൜
Explicit
Implicit

Figure 1.3: Types of constraint
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Cumulative constraint

The cumulative constraint applies to the entire trajectory τ = (s0, a0, s1, a1, . . .) of the

CMDP. This constraint can be specified either explicitly or implicitly, with the latter

being done using cost functions. Explicit cumulative constraints impose direct restrictions

on all states jointly or all actions jointly in the trajectory, either through an analytical

or Boolean function. In the air-delivery example, the landmark constraint and simple

path constraint for an agent are examples of explicit cumulative constraints. we will

provide a detailed discussion on how to model the landmark constraint and simple path

constraint in Chapter 5. On the other hand, the implicit cumulative constraints use

the cost function to define the restrictions on the trajectory. We can classify implicit

cumulative constraints into three types, as follows.

• Discounted cumulative. This constraint requires that the sum of the discounted

cost remains within a specified threshold, and it can be expressed in the form of

Jπθ
Ck

= Eπθ
[
∞∑
t=0

γtCk(st, at)] ≤ ck, k = 1, . . . ,K (1.4)

where ck, k = 1, . . . ,K is the constraint threshold for the kth constraint.

• Mean valued. This constraint ensures that the mean of the total costs remains

below a specified threshold within a finite time horizon, and it can be represented

as

Jπθ
Ck

= Eπθ
[
1

T

T−1∑
t=0

Ck(st, at)] ≤ ck, k = 1, . . . ,K (1.5)

where T is the total number of time steps in the horizon.

• Probabilistic. This constraint ensures that the probability of the cumulative cost

violating a constraint remains within a specified bound, and it can be formulated

as

Jπθ
Ck

= P (

T−1∑
t=0

Ck(st, at) ≥ ϵk) ≤ ck, k = 1, . . . ,K (1.6)

where ϵk, k = 1, . . . ,K is the threshold for the cumulative cost, and ck ∈ (0, 1) is

the probability.

8



Chapter 1. Introduction

Instantaneous constraint

The instantaneous constraint, also known as an action constraint, applies to each

action independently in a trajectory, restricting the agent’s actions in every RL step.

This constraint type can be specified explicitly or implicitly, similar to the cumulative

constraint.

For certain instantaneous constraints, the restrictions on an action can be described

explicitly using an analytical form. As an example, consider an emergency response

system where 32 ambulances must be allocated to 25 stations at each decision making

step. Here, an action with 25 dimensions can represent the allocation, with each action

dimension ai, i = 1, . . . , 25 indicating the number of ambulances allocated to station i.

In this case, the action constraint can be formulated as
∑25

i=1 ai = 32. However, for some

instantaneous constraints, an analytical form to describe the constraint does not exist.

In such cases, using an immediate cost of taking action a in state s can provide a way to

implicitly formulate the instantaneous constraint. Formally, we have,

Ck(st, at) ≤ ck, k = 1, . . . ,K, ∀t (1.7)

where ck, k = 1, . . . ,K is the constraint threshold for the kth constraint.

1.3 Related works

In this section, we will begin by discussing relevant literature on solving single-agent

constrained RL problems that involve both cumulative and instantaneous constraints.

Then we introduce a few approaches for constrained multi-agent RL. Finally, we will

discuss several recently proposed neuro-symbolic methods for RL. Table 1.1 provides an

overview of representative works in single-agent constrained RL, multi-agent constrained

RL, and neuro-symbolic.

9
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Research Area Setting Method Reference

Single-agent

Constrained RL

Cumulative

Lagrangian [2, 27, 106]

IPO [69]

CPO & PCPO [1, 119]

Others [28, 45, 114, 116]

Instantaneous

Lagrangian [14]

Safety Layer [4, 84]

NFWPO [66]

Multi-agent

Constrained RL
Cumulative

Lagrangian [31]

CMIX [68]

Neuro-symbolic

RL

PEORL & SDRL [72, 118]

SORL [57]

PROLONETS [96]

Non-RL
DL2 [39]

MultiplexNet [52]

Table 1.1: Overview of representative approaches in constrained RL and neuro-symbolic

1.3.1 Constrained single-agent reinforcement learning

Cumulative constraint

Implicit cumulative constraints are considered in most of the time. To address the

CMDP with implicit cumulative constraints, various approaches have been proposed.

Among these, Lagrangian Relaxation (LR) [2, 27, 106], interior-point policy optimization

(IPO) [69], and trust region-based approaches, such as constrained policy optimization

(CPO) [1] and projection-based constrained policy optimization (PCPO) [119], have

gained significant attention.

The most popular approach is Lagrangian relaxation, which relaxes the original con-

strained problem to an unconstrained one by adding a Lagrange multiplier for each

constraint. Policy and Lagrange multipliers are then iteratively updated using the gradi-

ent descent-ascent (GDA) approach on different time-scales. Theoretical proofs showing

the convergence to the optimal solution under mild assumptions are provided in [82].

While LR is effective in penalizing constraint violations with Lagrange multipliers, it

10
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does have some limitations. Policy learning is sensitive to these multipliers. Learning

the Lagrange multipliers is also sensitive to their initial values and learning rates. Fur-

thermore, there is no guarantee that constraints will always be satisfied during training

and execution. Other approaches, such as IPO and trust region-based approaches, have

been proposed to address these limitations.

IPO, an approach inspired by the interior-point method, offers an alternative to La-

grangian Relaxation. It uses a differentiable logarithmic barrier function as the penalty

function for constraint violations instead of Lagrange multipliers. The penalty function

adds zero penalty to the objective if there is no constraint violation; otherwise, a penalty

that approaches negative infinity is added to the objective. While IPO does require a

hyperparameter related to the logarithmic barrier function to be tuned, this is generally

easier than learning Lagrange multipliers. However, it is important to note that this

approach does not provide theoretical guarantees for finding the optimal policy.

CPO and PCPO offer alternative approaches for solving CMDPs with cumulative con-

straints that do not rely on Lagrange multipliers or logarithmic barrier functions to

penalize constraint violations. Instead, these methods extend trust region methods such

as TRPO [88]. Practically, CPO updates policy parameters by solving an approximate

quadratic constrained optimization problem, which can be efficiently solved using duality.

PCPO, on the other hand, learns a policy in two steps. First, the policy is updated to

maximize the cumulative reward using TRPO without considering constraints. Second,

the intermediate policy is projected back to the constraint set. Both CPO and PCPO

provide theoretical analysis of bounds for return improvement and constraint violation

without requiring penalties for constraint violation. However, these methods are compu-

tationally expensive, as they rely on approximating the Fisher information matrix in

solving the quadratic constrained program.

In addition to the above approaches, other approaches have also been proposed to

solve CMDPs with implicit cumulative constraint. Constructing Lyapunov functions to

guarantee constraint satisfaction via a set of local linear constraints is studied in [28].

Forming a max-min problem by constructing a lower bound for the objective is used

11
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in [45]. Choosing the objective and constraints randomly to optimize is proposed in [116].

Solving probabilistic constraints by converting them to cumulative constraints via state

augmentation is proposed in [114]

Instantaneous constraint

LR has also been attempted to solve CMDPs with implicit instantaneous constraints,

as seen in the work of Bohez et al. [14]. In this approach, the reward in each RL step

is augmented with the sum of penalties for each instantaneous constraint violation.

The penalty for each violation is determined by the Lagrange multiplier associated

with the corresponding instantaneous constraint. However, optimizing these Lagrange

multipliers in each RL step becomes challenging and intractable. Moreover, while

Lagrange multipliers can penalize constraint violations, this approach cannot guarantee

zero constraint violation during training and policy execution.

There are some recently proposed approaches aiming to solve explicit instantaneous

constraint and aiming to achieve zero constraint violation. One natural approach is to add

a differentiable projection layer at the end of the policy network to satisfy instantaneous

constraints [4, 84]. The projection layer projects actions from the unconstrained policy

onto the feasible action space by solving a Quadratic Program (QP). However, this

approach has two primary limitations. First, its scalability is limited, especially for

problems with large action spaces, due to the computational cost of solving a QP at each

RL step. Second, there is a potential issue of zero-gradient, which could arise during the

end-to-end training of the policy network. This issue could undermine the effectiveness

of the projection layer approach, as has been noted in recent studies [66]. To tackle the

zero-gradient issue, a learning algorithm called NFWPO that decouples policy gradients

from the projection layer is proposed in [66], where policy parameters are updated by

leveraging the Frank-Wolf method [42]. Unfortunately, this approach does not scale up

well as it still requires solving a QP during RL training.
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1.3.2 Constrained multi-agent reinforcement learning

Most of works in constrained reinforcement learning focus on single-agent setting. Al-

though these approaches can solve the single agent constrained RL, extending them such

as LR to multi-agent constrained RL directly is not trivial. There are few works aiming

to solve multi-agent constrained RL.

In [31], the authors apply the LR method to solve the constrained multi-agent RL

problem. To solve the relaxed problem, they employed a multi-agent actor-critic approach.

Specifically, a centralized policy critic was trained using the modified reward, which

includes the sum of costs weighted by the Lagrange multipliers. Additionally, they

learned a centralized penalty critic for each constraint. The update of policy parameters

and Lagrangian multipliers are guided by the policy critic and penalty critics respectively.

However, centralized critics can be noisy since contributions from each individual agent

are not clear. [71] also proposed LR but in a setting where agents are allowed to

communicate over a pre-defined communication network.

As discussed in [82], the convergence to a neighborhood of the optimal solution in

single-agent constrained RL relies on two crucial factors: (1) the error introduced by

the parametrization of the policy and (2) the goodness of the solution obtained through

maximizing the Lagrangian using RL algorithms like actor-critic. The theoretical analysis

on convergence in single-agent constrained RL can be extended to the multi-agent setting,

provided that these two factors are carefully addressed. However, in the multi-agent

setting, encountering a policy parameterization with minimal error and designing an

actor-critic RL algorithm that performs well are challenging tasks due to the large state

and action spaces involved, as well as the difficulties of multi-agent credit assignment.

A recent work called CMIX [68] proposes a novel approach to combining the multi-

objective programming and Q-mix framework [40] to address the constrained multi-agent

problem. The approach involves converting the constrained problem into an equivalent

max-min optimization problem by setting a lower bound on the objective. The resulting

problem is then solved using the value function factorization technique, namely Q-

mix. However, a major challenge of this approach is scalability, as it requires different

13
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Q-function approximators for each constraint and each agent.

1.3.3 Neuro-symbolic for RL

Neuro-symbolic methods combine the strengths of both neural and symbolic approaches.

There are six major ways to integrate them, each with its unique advantages and AI

application fields, such as NLP and CV [60]. In this section, we will focus on two

integration modes, which have been used in the field of RL.

The first integration forms a hybrid system where neural and symbolic parts work on

different but complementary tasks to solve a problem collaboratively. The interaction

between neural and symbolic method provided a way to solve the problem more efficiently.

The PEORL framework combines symbolic planning utilizing the action language BC

with hierarchical R-learning to tackle decision making problems with uncertainties [118].

This approach generates a symbolic plan, using the CLINGCON planner [5], based on an

initial state, a goal, and a specific set of causal laws. The symbolic plan is then mapped

into a sequence of stochastic options. Hierarchical R-learning tries to maximize the

average of cumulative reward (termed as gain reward) based on the stochastic options.

This gain reward can be used to generate a symbolic plan of improved quality via

CLINGCON. This iterative process continues until the highest quality symbolic plan

is obtained. Further improvements to the PEORL framework were made in the SDRL

approach proposed by Lyu et al. (2019) [72], which introduced intrinsic goals that

measure plan quality based on an internal utility function. A meta-controller was then

introduced to connect between deep RL algorithms and the symbolic planner, allowing

for even greater generality and flexibility in addressing decision making problems. In

PEORL and SDRL, action models are typically defined manually by domain experts.

However, this process can be challenging, particularly in complex domains. To address

this issue, SORL has been proposed to learn high-level action and option models from

collected trajectories obtained from the low level with minimal human knowledge [57].

A symbolic planner at the high level generates a plan using the learned action models,

while the lower level learns a policy to achieve the specified options in the plan and sends

the collected trajectories back to the high level.
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The second integration compiles the symbolic knowledge into the weights of the neural

network. The output of the neural network will satisfy constraints implied by the

symbolic knowledge. PROLONETS is one representative recent work that utilizes this

integration mode to address a reinforcement learning problem [96]. The approach begins

by expressing a high-level hierarchical policy provided by human experts as a decision

tree. Next, the decision nodes in the tree are translated into weights and biases, which

are used to create linear layers in a neural network. This process enables an intelligent

initialization of the neural network’s weights and architecture based on the available

domain knowledge. By incorporating symbolic knowledge into the neural network’s

design, PROLONETS can effectively leverage the strengths of both symbolic and neural

approaches to solve a RL problem.

In addition to solving a RL problem, there are also other neuro-symbolic methods that

tackle constraint-related problems. To ensure domain constraints are met, one widely

used approach is to create a loss function that quantifies the degree of deviation between

the output of a neural network and the closest feasible solution. DL2 [39] and the

semantic loss [115] are two notable works in this area. DL2 converts logical constraints

into a non-negative loss using fuzzy logic, which is differentiable almost everywhere and

can be optimized using projected gradient descent. In contrast, the semantic loss involves

a function that uses a sentence in propositional logic and probabilities over a set of

Boolean variables. This function assesses the likelihood that a sample from the network

output satisfies a Boolean constraint formulation.

MultiplexNet is a novel approach that differs from the conventional approach of using loss

terms to enforce domain constraints [52]. Instead, it incorporates domain constraints that

are represented using a logical formula in a disjunctive normal form (DNF) directly into

a parameterized neural network. This method guarantees that the output of the neural

network adheres to the constraints represented in DNF form. To learn the parameters of

the model, the variational lower bound (ELBO) is maximized by introducing a categorical

latent variable, which is used to select different terms in DNF.
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1.4 Our contributions

In this thesis, we explored a wide range of settings in sequential decision making with

constraints, including single-agent and multi-agent settings, cumulative and instantaneous

constraints, as well as soft and hard constraints. We have developed various approaches

tailored to different combinations of settings. Our thesis presents several significant

contributions. Firstly, we address the problem of large-scale constrained multi-agent

reinforcement learning by proposing a method that tackles a constrained collective Dec-

POMDP model. To do this, we introduce a fictitious play based approach to perform

credit assignment for both the primary objective and the constraints. Secondly, we

propose a zone-based multi-agent pathfinding (ZBPF) framework that is motivated by

the drone delivery application. We identify and consider several types of challenging

constraints in this framework and propose a neuro-symbolic method to efficiently solve

the sequential decision making problem with hard constraints in ZBPF. Lastly, we tackle

the problem of constrained RL with discrete and combinatorial action spaces, and present

another neuro-symbolic method that can solve the problem with hard constraints in a

general sense. We summarize our contributions in details from four different aspects as

follows.

1.4.1 Constrained collective multi-agent reinforcement learning

Solving constrained multi-agent reinforcement learning (MARL) is a challenging task, as

credit assignment for both primary objectives and constraints must be performed jointly.

The accurate deduction of each agent’s role in optimizing the primary objective and

minimizing constraint violations becomes increasingly difficult when there are hundreds

of agents involved.

In our thesis, we focus on the constrained collective MARL problem, where agent in-

teractions are governed by the aggregate count and types of agents using the collective

Dec-POMDP framework [76] augmented with constraints. To address the credit assign-

ment challenge, we propose a fictitious play based constrained MARL method that uses

Lagrangian relaxation. We test our method on both real-world and synthetic datasets for
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the maritime traffic management problem [100] and the network routing problem [68],

and we show that it significantly outperforms the standard LR method for MARL in

satisfying constraints. Moreover, our approach achieves lower average and peak constraint

violations than CMIX [68] while using significantly fewer samples to achieve a similar

global objective.

1.4.2 Zone-based multi-agent pathfinding

We propose a novel framework named zone-based pathfinding (ZBPF) for solving the

multi-agent sequential decision-making problem with constraints encountered in the

drone delivery application. Our framework is inspired by the air blocks in the delivery

application and based on the concept of zones. Agents move among zones from their

respective resources to destinations, with zones having different capacities for accom-

modating multiple agents and variable navigation times. We also consider uncertain

navigation times due to environmental factors such as weather conditions.

To model the problem, we use a variant of the constrained Dec-POMDP and a highly

expressive class of exponential family distributions to model the uncertain duration of

agents’ movements. We use multi-agent reinforcement learning (MARL) to solve this

problem, and instead of penalizing the violation of the zone capacity constraint using

Lagrange multipliers, we design a cost function that assigns a congestion penalty to each

agent in a zone if the total number of agents exceeds the zone’s capacity. We then deduct

the cost from the reward for each agent to reduce the negative impact of constraint

violations, converting the constrained problem into an unconstrained one. To address

the policy optimization problem, we present a novel difference-of-convex functions (DC)

programming [67] based formulation, which allows us to solve a sequence of optimization

problems using samples from the domain simulator. Additionally, we develop value

function factorization techniques for faster convergence [22, 41].

To validate our approach, we also develop a highly expressive simulator for ZBPF in

the ml-agents platform of the Unity3D game engine, which can represent both 2D

and 3D maps, providing a clean interface from the simulation environment to learning

algorithms [58].
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1.4.3 Neuro-symbolic for zone-based multi-agent pathfinding

The zone-based multi-agent pathfinding problem is challenging due to the difficulty

in finding a policy that satisfies zone capacity constraints and the time-consuming

nature of finding a route for a single agent due to the lack of explicit exploitation of

graph connectivity by model-free RL. Additionally, agents may move in cycles, leading

to inefficient sampling, and the problem becomes more complex when agents must

satisfy additional constraints such as visiting some landmark nodes before reaching the

destination, or coverage constraints such as visiting some locations at least once every k

time steps.

To overcome these challenges, we propose a neural-symbolic approach to ZBPF. We

compile connectivity of the underlying graph where agents move on and other domain

hard constraints such as landmark constraint, coverage constraint using propositional

logic based sentential decision diagrams (sdd) [30]. An sdd is a succinct and tractable

representation of a Boolean formula, and generalizes an ordered binary decision diagram

(OBDD) [18]. The benefit of using SDDs is that any satisfiable instantiation of the

SDD is a valid simple path between the source and destination that satisfies all domain

constraints, which prunes the search space and generates high-quality training samples

for the learning algorithm.

We integrate the compiled knowledge represented by an SDD with various MARL

algorithms, including policy gradient and Q-learning, and we have developed an efficient

inference method for SDDs with linear worst-case complexity in the size of the SDD

representation. This allows for fast interaction between the symbolic method and MARL

algorithms during training. Our neuro-symbolic approach outperforms the original ZBPF

algorithm in terms of sample complexity and solution quality in multiple instances. We

also compare the efficiency of our inference algorithm with specialized graph heuristics

and find our approach to be significantly faster in several settings.
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1.4.4 Neuro-symbolic for constrained combinatorial action space

In Section 1.3.1, we explored several recent methods for addressing CMDPs with instan-

taneous constraints on continuous actions in a single-agent setting. However, when the

action space is discrete, and combinatorial, there are few effective algorithms available

for this setting. While some methods exist for specific types of action constraints, such as

resource allocation, they are not easily extendable to a general constrained combinatorial

action space. To address this gap, we present a general neuro-symbolic approach for

hard action constrains in discrete and combinatorial action spaces.

Our method represents an action using a set of propositional variables, and action

constraints using Boolean formulas. We use probabilistic sentential decision diagrams

(psdds) [61], a parameterized sdd that encodes a probability distribution over the set of

all valid actions satisfying action constraints. One key benefit of using psdds is that they

can represent a combinatorial, constrained action space compactly.

Our neuro-symbolic method reformulates the task of optimizing a policy over a constrained

combinatorial action space as optimizing the parameters of the underlying psdd, which

is significantly smaller than the action space, and thus computationally tractable. We

show how to encode psdd parameters using deep neural networks, and optimize them

using a deep Q-learning based algorithm for factored actions [108]. We develop new

techniques to integrate the optimization of psdd parameters with deep RL algorithms.

Our approach is designed to guarantee the output of a feasible action in each RL step

without involving computationally expensive projection steps over the constraint space.

As a result, our approach can achieve zero constraint violation during both training and

execution.

We also demonstrate how to encode practical resource allocation constraints, such as

those in emergency response systems, using a psdd, and prove that the compiled psdd

has a polynomial size in the number of resources and entities. We evaluate our approach

empirically with two previous ACRL methods [12, 66] and demonstrate that our method

can achieve zero constraint violation, is scalable, and provides better solution quality in

several instances.
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1.5 Roadmap

The thesis is divided into six main chapters. In Chapter 2, we consider constrained

collective multi-agent RL and develop a credit assignment scheme for both primary objec-

tive and constraints. In Chapter 3, we introduce the zone based pathfinding framework

for multiple agents with capacity constraints. Chapter 4 provides an introduction to

decision diagrams and their use in compiling various types of constraints in a symbolic

manner. In Chapter 5, we propose a neuro-symbolic approach to effectively solve the

zone-based pathfinding (ZBPF) problem while considering other domain constraints, such

as landmark and coverage constraints, in addition to capacity constraints. In Chapter 6,

we introduce another neuro-symbolic method to solve general action constraints problem

with discrete and combinatorial action spaces. Chapter 7 concludes the thesis and

introduces two promising future directions in the field of constrained RL.

1.6 Publications

We list the publications that contribute to this thesis as follows:

[1] Ling, Jiajing, Arambam James Singh, Nguyen Duc Thien, and Akshat Kumar. "Constrained

Multiagent Reinforcement Learning for Large Agent Population." In Machine Learning and

Knowledge Discovery in Databases: European Conference, pp. 183-199, 2023. (Chapter 2)

[2] Ling, Jiajing, Tarun Gupta, and Akshat Kumar. "Reinforcement Learning for Zone Based

Multiagent Pathfinding under Uncertainty." In Proceedings of the International Conference on

Automated Planning and Scheduling, pp. 551-559, 2020. (Chapter 3)

[3] Ling, Jiajing, Kushagra Chandak, and Akshat Kumar. "Integrating knowledge compilation

with reinforcement learning for routes." In Proceedings of the International Conference on

Automated Planning and Scheduling, pp. 542-550, 2021. (Chapter 5)

[4] Ling, Jiajing, Moritz Lukas Schuler, Akshat Kumar and Pradeep Varakantham. "Knowledge

Compilation for Constrained Combinatorial Action Spaces in Reinforcement Learning." In

Proceedings of the International Conference on Autonomous Agents and Multiagent Systems,

2023. (Chapter 6)
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Chapter 2
Constrained Collective Multi-agent

Reinforcement Learning

Learning control policies for a large number of agents in a decentralized setting poses

several challenges due to partial observability, environmental uncertainty, and scalability

issues. Despite the existence of scalable multi-agent reinforcement learning (MARL)

methods, few approaches exist for addressing large-scale constrained MARL settings.

This chapter aims to solve the problem of constrained large-scale MARL with cumulative

constraints. We start by presenting a formulation for the constrained MARL problem

in a collective multi-agent setting in Section 2.1. We then introduce a proposition

regarding individual value representation in Section 2.2, which forms the basis of our

proposed method. In Section 2.3, we develop a fictitious play based MARL method

that uses Lagrangian relaxation to address the challenge of credit assignment for both

primary objectives and constraints. Finally, we evaluate our approach on two real-world

applications, namely, maritime traffic management and vehicular network routing, in

Section 2.4.

2.1 Constrained collective Dec-POMDP

The collective Dec-POMDP (CDec-POMDP) is a widely used framework for modeling

sequential decision-making problems in large-scale multi-agent systems. This framework

has numerous real-world applications, such as traffic control, transport management,

or resource allocation [76, 100, 112]. In the CDec-POMDP, the transition and reward

of each agent depend on the count values of agents in various local states. In this
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work, we extend the CDec-POMDP model to incorporate constraints in multi-agent

decision making scenarios, and introduce a constrained CDec-POMDP. A constrained

CDec-POMDP is defined as a tuple ⟨S,A, {nt}Tt=1, P,O, {Rm}Mm=1, {Ck}Kk=1, N, γ, b0, T ⟩,

where

• N is the total number of agents in the system.

• T is the horizon of the problem.

• S is a finite set of states, which is the same for all agents. An agent i ∈ {1, . . . , N}

can be in one of the states, i.e., si ∈ S. The joint state is s ∈ SN . We denote a

single state as s ∈ S.

• A is a finite set of actions. An agent i chooses an action ai ∈ A, resulting in the

joint action a ∈ AN . We denote an individual action as a ∈ A.

• nt = (ns
t,n

sa
t ,n

sas
t ) is a combined vector of count tables at time step t where ns

t =

(nt(s) ∀s ∈ S) is the state count table, nsa
t = (nt(s, a) ∀s ∈ S, a ∈ A) is the state-

action count table, and nsas
t = (nt(s, a, s

′) ∀s, s′ ∈ S, a ∈ A) is the transition count

table. Given a complete joint state-action trajectory τ = (s1,a1, s2 . . . , sT ,aT ),

we define the counts nt(s, a, s
′), nt(s, a) and nt(s) as follows.

– nt(s, a, s
′) =

∑N
i=1 I(sit = s, ait = a, sit+1 = s′) ∀s, s′ ∈ S, a ∈ A

– nt(s, a) =
∑N

i=1 I(sit = s, ait = a) ∀s ∈ S, a ∈ A

– nt(s) =
∑N

i=1 I(sit = s) ∀s ∈ S

where sit and ait denote the state and action of agent i at time t respectively. The

individual indicator function I(sit = s, ait = a) ∈ {0, 1} indicates whether the agent

i is in local state s and taking action a at time step t. Other indicator functions

are defined similarly. For a given subset S′ ⊆ S, we define a count table for agents

in S′ as nt[S
′] = (nt(s, a, s

′) ∀s ∈ S′, a ∈ A, s′ ∈ S).

• P is a local transition function, which is the same for all agents. Given a local

state sit and action ait taken by agent i at time step t, the probability of reaching

the next local state sit+1 is P (sit+1|sit, ait,nsa
t ). Note that it is also affected by nsa

t ,
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Figure 2.1: Dynamic Bayes Net (DBN) for T-step reward and cost for constrained
CDec-POMDP (assuming each agent has a full observation of the count table)

which depends on the collective behavior of the agent population.

• O is the observation function. For simplicity, we assume the observation function

is the same for all agents. The observation of agent i is given by O(i,ns
t).

• Rm is the mth reward function, which depends on the combined count tables nt.

• Ck is the kth cost function, which depends on the combined count tables nt too.

• γ < 1 is the discount factor for reward.

• b0 is the initial state distribution.

For simplicity, we assume each agent is able to fully observe the whole count table. Let

policy πθi(a|s,ns
t) denote the probability of agent i taking action a given its local state

s and the count table ns
t, where θi parameterizes the policy. When agents have the

same policy, we can ignore the index and denote the common policy as πθ. Figure 2.1

describes graphically how different agents interact with each other using a dynamic

Bayes net (and plate notation) in the constrained CDec-POMDP model. The goal in a

constrained CDec-POMDP is to find a policy (assuming the same for all agents) to solve

the constrained program as follows.

max
θ

Jπθ
R = En1:T [

T∑
t=1

γt
M∑

m=1

Rm(nt)|πθ] (2.1a)

s.t. Jπθ
Ck

= En1:T [
T∑
t=1

γtCk(nt)|πθ] ≤ ck, ∀k (2.1b)
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where ck, k = 1, . . . ,K is the constraint threshold for the kth constraint.

Agents with types We can also associate different types with different agents to

distinguish them (e.g., 4-seater taxi, 6-seater taxi). This can be done using a type-

augmented state space as S = S × T , where T is the set of possible agent types. The

main benefit of the collective modeling is that we can exploit the aggregate nature of

interactions among agents when the number of types is much smaller than the number

of agents

Simulator for MARL In the MARL setting, we do not have access to the transition and

reward function. As shown in [77], a count based simulator provides the experience tuple

for the centralized learner as (ns
t,n

sa
t ,n

sas
t , Rm(nt), Ck(nt)). In other words, simulation

and learning in the collective setting can be done at the abstraction of counts. This

avoids the need to keep track of individual agents’ state-action trajectories and increases

computational scalability for a large number of agents.

2.2 Individual value representation

Solving Problem(2.1) is difficult because the constraints are globally coupled with the

joint counts n1:T . In many domains in practice, the reward and cost functions only involve

the count variables over a subset of states S. For example, in congestion domain, we have

the penalty cost defined for a specific area/zone. We consider a general framework where

we can define the subset Sk ⊆ S that affects constraint k, and the subset Sm ⊆ S that

affects reward Rm. In extreme case where a function is non-decomposable, Sk can be set

to S. Let nt[Sm] denote the count table that summarizes the distribution of agents in

Sm (as defined in Section 2.1). Let |nt[Sm]| denote the number of agents in Sm. We can

re-write (2.1) as follows:

max
θ

Jπθ
R = En1:T [

T∑
t=1

γt
M∑

m=1

Rm(nt[Sm])|πθ] (2.2a)

s.t. Jπθ
Ck

= En1:T [

T∑
t=1

γtCk(nt[Sk])|πθ] ≤ ck, ∀k (2.2b)
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Furthermore, we show that we can re-write the global constrained program in the form

of an individual agent’s constrained program. For a specific function fg, which can be

either cost fg = Cg(nt[Sg]) or reward function fg = Rg(nt[Sg]), we define an auxiliary

individual function:

f ig(s
i
t, a

i
t,nt[Sg]) =


fg(nt[Sg ])
|nt[Sg ]| if sit ∈ Sg

0 otherwise

We use si1:T ,a
i
1:T to denote the state-action trajectory with length T of agent i, and use

s1:T ,a1:T to denote the join state-action trajectory of all N agents in our system.

Proposition 1. Consider any reward/cost component fg. The global expected value of

fg is equal to a factor of individual value function:

En1:T [

T∑
t=1

γtfg(nt[Sg])|πθ] = N × Es1:T ,a1:T [

T∑
t=1

γtf ig(s
i
t, a

i
t,nt[Sg])] (2.3)

where N is the total number of agents in the system.

Proof. By applying the exchangeability theorem from [76], we can derive the individual

function for reward/cost component fg as:

Es1:T ,a1:T [
T∑
t=1

γtf ig(s
i
t, a

i
t,nt[Sg])]

=
T∑
t=1

γtEs1:T ,a1:T [f
i
g(s

i
t, a

i
t,nt[Sg])] (2.4)

We replace the joint probability P (s1:T ,a1:T ) with P (si1:t,a
i
1:t,n1:t).

=
T∑
t=1

γt
∑

si1:t,a
i
1:t,n1:t

P (si1:t,a
i
1:t,n1:t)f

i
g(s

i
t, a

i
t,nt[Sg]) (2.5)

=

T∑
t=1

γt
∑

si1:t,a
i
1:t,n1:t

P (si1:t,a
i
1:t,n1:t)

∑
s′∈Sg

I(sit = s′)
fg(nt[Sg])

|nt[Sg]|
(2.6)
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We now apply the exchangeability of agents with respect to the count variables n [76]:

=

T∑
t=1

γt
∑
n1:t

P (n1:t)
∑
s′∈Sg

nt(s
′)

N

fg(nt[Sg])

|nt[Sg]|
(2.7)

=
1

N
En1:T [

T∑
t=1

γtfg(nt[Sg])|πθ] (2.8)

2.3 Fictitious play based constrained optimization

By applying Proposition 1 to the global reward and cost functions in (2.2), we will get

individual reward and cost functions. Therefore, we can define an individual constrained

RL problem for each agent, and we have the following lemma.

Lemma 1. Solving a collective constrained reinforcement learning problem defined in (2.1)

is equivalent to solving the individual constrained reinforcement learning problems defined

as follows:

max
θ

Es1:T ,a1:T [

T∑
t=1

γt
M∑

m=1

Ri
m(sit, a

i
t,nt[Sm])|πθ] (2.9a)

s.t. Es1:T ,a1:T [
T∑
t=1

γtCi
k(s

i
t, a

i
t,nt[Sk])|πθ] ≤

ck
N
, ∀k (2.9b)

To solve Prolem (2.9), we apply fictitious-play [75] based constrained optimization

(FICO) in which at each iteration, agent tries to optimize its own policy given the joint

state-action samples and ignore the effect of its policy change on other agents. We also

highlight that Problem (2.9) is the key to performing the credit assignment for primary

objective and constraints. This problem clearly separates out the contribution of each

agent i to the value function (or V i) and each constraint k (or Ci
k). Therefore, the FICO

method enables effective credit assignment for both primary objective and constraints.

Amongst popular methods to solve constrained RL, we apply the Lagrangian relaxation
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method to solve FICO (2.9). The Lagrange dual problem is given as follows.

min
λ≥0

max
θ

Es1:T ,a1:T [
T∑
t=1

γt
( M∑
m=1

Ri
m(sit, a

i
t,nt[Sm])−

K∑
k=1

λkC
i
k(s

i
t, a

i
t,nt[Sk])

)
+

K∑
k=1

λk
ck
N
|πθ]

(2.10)

To solve this dual Problem (2.10), we apply stochastic gradient ascent-descent to alter-

natively update parameters θ of the policy and the Lagrange multiplier λ following the

two-time scale approximation [106].

Individual policy update To optimize πθ, we first compute the modified reward as

follows.

R′(sit, a
i
t,nt) =

M∑
m=1

Ri
m(sit, a

i
t,nt[Sm])−

K∑
k=1

λkC
i
k(s

i
t, a

i
t,nt[Sk])

Given the fixed Lagrange multipliers, parameters θ are optimized by solving the following

problem,

max
θ

Es1:T ,a1:T [

T∑
t=1

R′(sit, a
i
t,nt)|πθ] (2.11)

The benefit of the above representation is that now we can apply various techniques

developed for collective Dec-POMDPs to optimize (2.11) using stochastic gradient ascent.

To optimize (2.11), we consider a fictitious play based approach to compute policy

gradient for policy πθ of agent i over all possible local state s and individual action a.

Using the standard policy gradient [103] with respect to an individual agent i, we can

perform the update for θ as follows:

θ′ =θ + αθ

T∑
t=1

∑
s,a,nt

Est:T ,at:T [I(s
i
t = s, ait = a)I(nt ∼ st,at, st+1)

×
T∑

t′=t

R′(sit′ , a
i
t′ ,nt′)|πθ]∇θ log πθ(a|s,nt) (2.12)

where I(nt ∼ st,at, st+1) is an indicator function for whether the count table of the

joint transition st,at, st+1 is identical to nt. Applying results from [76] for collective

Dec-POMDPs, we can sample the counts (using the current policy) and use these counts

27



Chapter 2. Constrained Collective Multi-agent Reinforcement Learning

to compute the gradient term in (2.12) as:

Est:T ,at:T [I(s
i
t = s, ait = a)I(nt ∼ st,at, st+1)

T∑
t′=t

R′(sit′ , a
i
t′ ,nt′)|πθ]

=
∑
n′
1:T

P (n′
1:T )I(n′

t = nt)
n′
t(s, a)

N

T∑
t′=t

∑
si
t′ ,a

i
t′

n′
t(s

i
t′ , a

i
t′)

N
R′(sit′ , a

i
t′ ,n

′
t′) (2.13)

The above expected value can be estimated by a Monte-Carlo approximation Q̂i
t(s, a,nt)

with samples ξ = 1, . . . ,K of counts [76]. For a given count sample nξ
1:T :

V ξ
T (s, a) = R′

T (s, a,n
ξ
T (s)) (2.14)

V ξ
t (s, a) = R′

t(s, a,n
ξ
t (s)) +

∑
a′

nξ
t (s, a

′, s′)

nξ
t (s)

V ξ
t+1(s

′, a′) (2.15)

Qξ
t (s, a) =

nξ
t (s, a)

N
× V ξ

t (s, a) (2.16)

Q̂i
t(s, a,nt) =

1

K

∑
ξ|nξ

t=nt

Qξ
t (s, a) (2.17)

Continuous actions We highlight that even though we have formulated FICO for

discrete action spaces, our method works for continuous action space also as long as the

policy gradient analogue of (2.12) is available for continuous actions. Empirically, we do

test on the maritime traffic control problem where action space is continuous, and policy

gradient is derived in [100].

Lagrange multiplier update Given a fixed policy πθ, the Lagrange multiplier λk for

each constraint k is optimized by solving the following problem.

min
λk≥0

Es1:T ,a1:T [λk(
ck
N
−

T∑
t=1

Ci
k(s

i
t, a

i
t,nt[Sk]))|πθ] (2.18)

28



Chapter 2. Constrained Collective Multi-agent Reinforcement Learning

Algorithm 2.1: FICO

1 Initialize policy network parameters θ and Lagrange multipliers λk = 0,∀k
2 Set learning rates αk,∀k and αθ with αk < αθ.
3 repeat
4 Sample count statistics nt=1:T

5 for agent i = 1 to N do
6 Compute individual value for agent i using Eq. 2.14–Eq. 2.17
7 Update policy parameters θ using Eq. 2.12
8 Update λk,∀k using Eq. 2.20

9 end

10 until convergence
11 return θ

We re-write the objective in the collective way as follows.

=λk(
ck
N
−
∑
s′∈Sk

T∑
t=1

∑
si1:t,a

i
1:t,n1:t

I(sit = s′)P (si1:t,a
i
1:t,n1:t)

Ck(nt[Sk])

|nt[Sk]|
)

=λk(
ck
N
− 1

N
En1:T [

T∑
t=1

Ck(nt[Sk])|πθ])

=
λk
N

(ck − En1:T [

T∑
t=1

Ck(nt[Sk])|πθ]) (2.19)

By applying gradient descent, we have.

λ′k = max
(
λk − αk

1

N
(ck − En1:T [

T∑
t=1

Ck(nt[Sk])|πθ]), 0
)

(2.20)

where αk is the learning rate for the update of λk.

The pseudocode for our approach FICO is provided in Algorithm 2.1.

2.4 Experiments

In the section, we evaluate our proposed approach FICO on two real-world tasks:

Maritime traffic management (MTM) and vehicular network routing problem with a
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large scale of agent population. For MTM problem, we compare FICO with two baseline

approaches LR-MACPO and LR-MACPO+. LR-MACPO is a Lagrangian based approach

without any credit assignment. The policy in this case is trained with global reward and

global cost signal, similar to RCPO algorithm [106]. LR-MACPO+ is also a standard

Lagrangian based approach with credit assignment only for the reward signal but not

for the cost function in constraint. The detailed problem formulations for LR-MACPO

and LR-MACPO+ are as follows. We compare FICO with CMIX [68] in the vehicular

network routing problem. Since CMIX only deals with discrete action space, we did not

evaluate CMIX in the MTM problem where the action space is continuous.

2.4.1 Formulation for LR-MACPO and LR-MACPO+

In LR-MACPO , there is no credit assignment technique. Hence, the constrained

optimization problem is given as follows,

max
θ

En1:T [
T∑
t=1

M∑
m=1

Rm(nt)|πθ] (2.21a)

s.t. En1:T [
T∑
t=1

Ck(nt)|πθ] ≤ ck, ∀k (2.21b)

The Lagrangian is,

L(πθ, λ) = En1:T [
T∑
t=1

M∑
m=1

Rm(nt)|πθ]−
K∑
k=1

λk(En1:T [
T∑
t=1

Ck(nt)|πθ]− ck) (2.22)

where λk ≥ 0,∀k. The update for θ and λk are as follows,

θ′ = θ + αθ∇θL(πθ, λ) (2.23)

λ′k = max
(
λk − αk∇λk

L(πθ, λ), 0
)

∀k (2.24)

where αθ and αk are the learning rates for updating of θ and λk respectively.

LR-MACPO+ performs credit assignment only to reward signal but not cost signal. The
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constrained optimization problem is given as follow,

max
θ

N∑
i=1

Es1:T ,a1:T [
T∑
t=1

M∑
m=1

Ri
m(sit, a

i
t,nt[Sm])|πθ] (2.25a)

s.t. En1:T [
T∑
t=1

Ck(nt)|πθ] ≤ ck, ∀k (2.25b)

The Lagrangian is,

L(πθ, λ) =
N∑
i=1

Es1:T ,a1:T [
T∑
t=1

M∑
m=1

Ri
m(sit, a

i
t,nt[Sm])|πθ]−

K∑
k=1

λk(En1:T [
T∑
t=1

Ck(nt)|πθ]−ck)

(2.26)

where λk ≥ 0, ∀k. The update for θ and λk are as follows,

θ′ = θ + αθ∇θL(πθ, λ) (2.27)

λ′k = max
(
λk − αk∇λk

L(πθ, λ), 0
)

∀k (2.28)

where αθ and αk are the learning rates for updating of θ and λk respectively.

2.4.2 Maritime traffic management

The main objective in the MTM problem is to minimize the travel delay incurred by

vessels while transiting busy port waters and also to reduce the congestion developed due

to uncoordinated movement of vessels. The previous formulations of the MTM problem

in [99, 100] involved unconstrained policy optimization—the objective is a weighted

combination of the delay and congestion costs. This requires an additional tuning of

the weight parameters in the objective. We propose a new MTM formulation using

constrained CDec-POMDP as in (2.1). In our formulation, we introduce constraints that

the cumulative congestion cost should be within a threshold for each zone and minimize

the travel delay as the main objective. The new formulation with constraint is more

interpretable, and avoids the intensive search over weight parameters to formulate a single

objective as in previous models [100]. We evaluate our constrained based approach of the

MTM problem in both synthetic and real-data instances. In synthetic data experiments

we test the scalability and robustness of our proposed algorithm. Real-data instances
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are used to measure the effectiveness of the approach in a real-world problem.

MTM formulation Let Z denote the set of all zones. We penalize each vessel for not

reaching its destination zone at time step t with a penalty 1, i.e., Ri
t = −1. Let nt denote

the count statistics at time t. The reward at time step t is then defined as,

R(nt) =
∑
z∈Z

Rz(nt) =
∑
z∈Z
−ntott (z) (2.29)

where ntott (z) denotes the total number of vessels in zone z at time t.

We consider that each zone z has a capacity cz. The cost for zone z at time step t is

defined as,

Cz(nt) = max(ntott (z)− cz, 0) (2.30)

The cost function reflects the resource violation at time t. The constraint for zone z is

defined as the cumulative resource violation over time horizons is within a predefined

threshold βz. Formally, we have,

Es1:T ,a1:T

[ T∑
t=1

Cz(nt)|n1:T ∼ (s1:T ,a1:T ), πθ

]
≤ βz (2.31)

The MTM problem is formulated as:

max
θ

Es1:T ,a1:T

[ T∑
t=1

R(nt)|n1:T ∼ (s1:T ,a1:T ), πθ] (2.32a)

s.t. Es1:T ,a1:T [
H∑
t=1

Cz(nt)|n1:T ∼ (s1:T ,a1:T ), πθ] ≤ βz, ∀z (2.32b)

The individual constrained problem is defined for each zone z as follows,

max
θ

Es1:T ,a1:T [

T∑
t=1

−ntott (z)|n1:T ∼ (s1:T ,a1:T ), πθ] (2.33a)

s.t. Es1:T ,a1:T [

T∑
t=1

max(0, ntott (z)− cz)|n1:T ∼ (s1:T ,a1:T ), πθ] ≤ βz (2.33b)

Synthetic data instances For synthetic data experiments, we first randomly generate
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Figure 2.2: Synthetic instance map with 23 zones
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Figure 2.3: Results on the map with 23 zones and different agent population. The
lower is the better for both metrics.

directed graphs similar to the procedure described in [99]. Figure 2.2 shows a generated

directed graph with total 23 zones. The edge of the graph represents a zone, vessels move

from left to right through the zones. Each zone has some capacity i.e the maximum

number of vessels the zone can accomodate at any time. Each zone is also associated

with a minimun and maximum travel time to cross the zone. Vessels arrive at the source

zone following an arrival distribution, and its next heading zone is sampled from a

pre-determined distribution.

Over all experiments, the maximum capacity of each zone is uniformly sampled between

[5,10]. The arrival time for vessels at source zones is also uniformly sampled between

[1,20]. Minimum and maximum travel time for source zones are 1 and 30. Minimum

travel time for planning zones is 1, and maximum travel time is randomly sample between

[5, 10]. The total time horizon is 100 time steps.

We first evaluate the scalability of our approach with varying agent population size

from 60 agents to 420 agents on the map with 23 zones. We show the results on total

delay and total constraint violation respectively as in Figure 2.3(a) and Figure 2.3(b).
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Figure 2.4: Results on agent population 300 and different maps

Delay is computed as the difference between actual travel time and minimum travel

time in the zone. Total violation computes the total constraint violations over all zones.

X-axis denotes the agent population size in both the subfigures, and y-axis denotes

the total delay and total constraint violation in (a) and (b) respectively. We observe

that LR-MACPO baseline performs poorly than other approaches in terms both the

metric of delay and violation. This is because LR-MACPO is trained with global system

reward and global cost function, which is without any credit assignment technique.

LR-MACPO+’s performance on delay metric is superior than our approach FICO, but

it suffers severely on violation metric in Figure 2.3(b). This is an expected result because

in LR-MACPO+ credit assignment is provided only for the reward signal not for the cost

signal. This makes each agent’s credit for the cost component to be noisy resulting in

ineffective handling of the constraints. Also, low delay benefits from the high constraint

violation in LR-MACPO+.

We next evaluate the robustness of our approach with different maps with varying number

of zones (from 20 zones to 80 zones). As in Figure 2.4, x-axis denotes different maps with

varying number of zones in both the subfigures, and y-axis denoted the total delay and

total constraint violation in (a) and (b) respectively. In this experiment the complexity

of the problem increases with the increasing number of zones. We observe that our

approach FICO is able to reduce the violation consistently for all the settings as shown

in Figure 2.4(b). In settings with less than 80 zones, LR-MACPO+ beats our approach

in terms of total delay. However, it fails to satisfy the constraints poorly. We see that at

the most difficult setting with 80 zones, our approach performs better than LR-MACPO+
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Figure 2.5: Results on agent population 420 and 23 zones with different constraint
threshold

in terms of both total delay and constraint violation.

Finally, we evaluate the robustness of our approach with different constraint thresholds

on the map with 23 zones and 420 agents. The constraint threshold specifies the upper

bound of cumulative resource violation over the horizons. The constraint threshold is

defined as a percentage of the total resource violations over the horizons when agents

are moving with the fastest speed. As shown in Figure 2.5, x-axis denotes different

constraint thresholds in both the subfigures, and y-axis denotes the total delay and total

constraint violation in (a) and (b) respectively. We observe that FICO performs better

than LR-MACPO baseline in terms of both the metric of delay and constraint violation.

In Figure 2.5(b), we see that FICO performs better than other baselines consistently

over different constraint thresholds. With the increase of constraint threshold, the total

constraint violation is decreasing. FICO is almost able to make the constraint satisfied

with the loosest constraint threshold (30%). The constraint violation comes from the

zone in the middle of the map which is the busiest zone.

Real data instances We also evaluated our proposed approach on real-world data

instances from Singapore strait. The strait is considered to be one of the busiest in

the world. It connects the maritime traffic of South China Sea and Indian Ocean. We

use 6 months (2017-July - 2017-December) of historical AIS data of vessel movement

in Singapore strait. Each AIS record consists of vital navigation information such as

lat-long, speed over ground, heading etc, and is logged every 15 seconds. In our evaluation

we mainly focus on tankers and cargo vessel types because majority of traffic belongs to
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these two types.

Figure 2.8(a) shows the electronic navigation chart of Singapore strait. Vessels enter and

leave the strait through one-way sea lanes called traffic separation scheme (TSS). It is

created for easy transit of vessels in the strait and helps in minimizing any collision risks.

TSS is further sub-divided into smaller zones for better management of the traffic. From

the total datasets of 6 months (180 days), 150 days are used for training and 30 days for

testing.

Training From the historical data, we first estimate the problem instance parameters

such as capacity of each zones, minimum and maximum travel time in each zone. The

simulator that we use is the same as in [100], and is publicly available at [98].

The capacity of a zone is computed as 60% of the maximum number of vessels present

at any time in the zone overall all days. Each zone can have a different capacity value.

We treat the physical sea space in a zone as a resource. Each vessel occupies 1 unit

of resource of that zone. The constraint for each zone is expressed as the cumulative

resource violation over time should be within a threshold. There are also other problem

parameters which are specific to a particular day such as vessels’ arrival time on the

strait and initial count distribution of vessels present at the strait in beginning of the day.

For each training day we estimate the two parameters. Our constrained based policy

FICO is trained on varying scenarios of training days. From historical data we observe

that there are peak hour periods of traffic intensity during 3rd - 7th hour of the day.

Therefore, in our evaluation we focus on optimizing the peak hour periods.

Testing We test our trained policy on separate 30 testing days. Figure 2.6(a) shows the

results of average travel time of vessels crossing the strait averaged over 30 test days.

We observe that all the three baselines achieve better travel time than the historical

data baseline Hist-Data. LR-MACPO performs poorly among the three. This is because

LR-MACPO is trained with the system reward and cost signals which are without any

credit assignment techniques. We also observe that LR-MACPO+ baseline is able to

further reduce the travel time slightly better than our approach FICO but at the expense

of higher resource violation as seen in Figure 2.6(b).
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Figure 2.6: Results on maritime real-data over 30 testing days. (lower is better for
both metrics)

.

Figure 2.7: (a) Average travel time(lower is better) (b-f) Resource violation for peak
hours 3rd-7th (lower is better)

Results in Figure 2.6(b) show the average violation of resource over 30 testing days.

X-axis denotes the peak hour periods. During the peak hour period, FICO achieves

reduced violation of resource among all the baselines. Since LR-MACPO+ lacks the

credit assignment signal on the cost function it performs sub-optimally than FICO. The

results in Figure 2.6 validate the benefit of providing efficient credit assignment technique

to both reward and cost function.

In Figure 2.7 we show the results of top 5 busiest testing days. Figure 2.7(a) shows the

results for travel time, x-axis denotes days and y-axis denotes average travel time for

crossing the strait. Figure 2.7(b-f) show the results of resource violation during peak

hour periods (3rd-7th hour), x-axis denotes the days and y-axis denotes the resource
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Figure 2.8: (a) Electronic navigation chart(ENC) of Singapore Strait; (b)Vehicular
network model (adapted from [59])

violation. In all 5 days and during the peak hour periods, our approach achieves an

improved reduction in violation of resource while also reducing the travel time better

than other baselines.

2.4.3 Vehicular network routing problem

We compare our approach with CMIX [68] in their cooperative vehicular networking

problem, which is their largest tested domain. Figure 2.8(b) shows a network model

with three cells and six clusters. There are two types of cluster - inter cluster (between

two cells) and intra cluster. Each cluster contains well connected vehicles that can

communicate with high throughput via V2V (Vehicle-to-Vehicle) links. The base station

(BS) cell is shared by other mobile user equipments (UEs) and can communicate with

vehicles via the direct V2I (Vehicle-to-Infrastructure) links. In this paper, we consider

the problem of downlink data transmission where the data are transmitted from BSs to

vehicles in the clusters. The objective for all vehicles/agents here is to find the network

routes such that the total throughput is maximized (i.e., delivering high volumes of data

to destination vehicles), while satisfying both the peak and average latency constraints.

Peak constraint means that the latency due to the execution of an agent’s action at any

time step should be bounded. In CMIX, each agent requires an individual policy to

perform action selection. In contrast, agents that belong to the same cluster share the
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Figure 2.9: Convergence results over time steps with total 30 ∼ 60 agents

same policy in our collective method. Time limit is set to 180 mins.

We first follow the same experimental settings as in the CMIX paper to evaluate the

performance. There are total three cells and six clusters that are randomly distributed

over cells. The number of vehicles in each cluster is randomly generated between a range

[5, 10] so that there will be total 30 ∼ 60 vehicles. The throughput and latency of these

V2V and V2I links are also randomly generated. Figure 2.9 shows the learning curves

of global reward, peak violation and latency over time steps. The average latency over

time steps in one episode is bounded by 60. The threshold for peak constraint is also 60.

From Figure 2.9(c), we can see that the average constraint is satisfied when convergence

occurs in both approaches. However, our approach converged much faster and is more

sample efficient than the CMIX. In Figure 2.9(b), the peak constraint is almost satisfied

in our approach. Only one agent’s latency is greater than 60 in average. The reason is

that we use shared policy for agents in the same cluster. And it is challenging for the

policy to consider each agent’s peak constraint. In Figure 2.9(a), the global rewards in

both approaches are increasing (higher is better), and converged to almost the same

values (530 in our approach v.s. 535 in CMIX). It shows that our approach is also able

to maximize the delivered volumes of data.

We next evaluate the scalability of our approach. We increase agents in each cluster to

[5, 10]; total number of agents are between 150 and 180. CMIX is only able to train

around 100K steps within the limit and our approach can finish 400K steps. Therefore,

we show the learning process over 100K steps. Figures 2.10(b) and (c) show that peak
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Figure 2.10: Convergence results over time steps with total 150 ∼ 180 agents

violation and average latency are decreasing in both two approaches. However, the

average latency and peak violation in FICO are decreasing with a much faster speed

than CMIX. Also, our approach is able to find a policy to satisfy the latency constraint

within 100K steps, confirming the effectiveness of our method for large scale problems.

The average latency in CMIX is still greater than the threshold 60. The global rewards

over time steps are almost unchanged in CMIX, and decreased slightly from 1970 to 1940

in our approach as our approach results in lower constraint violations versus CMIX.
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Zone-based Multi-agent Pathfinding

The chapter introduces a framework called Zone-Based Multi-Agent Pathfinding (ZBPF),

which addresses the multi-agent sequential decision making problem with constraints,

specifically motivated by the drone delivery application. The ZBPF framework extends

the standard Multi-Agent Pathfinding (MAPF) model, which has practical applications

in various domains such as game character movements [73], warehouse logistics [113],

robotics [121], and vessel routing in maritime traffic [105]. In the previous chapter, we

presented the Constrained Collective Dec-POMDP model for large-scale multi-agent

systems. In this chapter, our focus is on a variant of the standard Dec-POMDP model

that is well-suited for the ZBPF framework. The standard multi-agent pathfinding

(MAPF) model is first introduced in Section 3.1, and its three key limitations are

identified. The ZBPF model is presented in Section 3.2, which features zones with

capacities where agents move and uncertain travel times. The chapter then presents

a novel difference-of-convex functions (DC) programming approach in Section 3.3 to

solve the policy optimization problem in ZBPF. The goal is to minimize travel time for

agents from their respective sources to destinations while satisfying the zone capacity

constraints. A multi-agent credit assignment scheme is also proposed to speed up the

learning approach’s convergence. Finally, the chapter evaluates the effectiveness of the

approach in reducing constraint violations in zones while ensuring agents reach their

final destinations through 2D and 3D instances in Section 3.4.
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3.1 Relation to standard multi-agent pathfinding

The problem of standard multi-agent pathfinding (MAPF) entails multiple agents finding

collision free paths in a collaborative fashion from their respective sources to destination

nodes in a graph [38, 73]. Agents can only choose to stay at the current node or move

to one of the adjacent nodes. Collision free means that two (or more) agents cannot be

present in a node at the same time. There are multiple objectives possible in MAPF

including minimizing sum of arrival time of all the agents at their destination nodes,

or the makespan, which is the arrival time of the agent that reaches its destination

last. Both these variants are known to be NP-hard [121]. Various solution approaches

(both approximate and optimal) have been developed for MAPF. Reduction based

approaches translate MAPF to other well known problems such as SAT [101, 102],

integer programming [121], and constraint satisfaction [111] among others. There are

several approaches that take a search based perspective of MAPF and develop multi-agent

search algorithms such as conflict based search [92, 91] and its variant [16]. Reinforcement

learning based approaches are also developed for MAPF [86].

In the standard MAPF formulation, there are three key assumptions: (1) each graph

node can only accommodate at most one agent at a time; (2) agents move at a fixed

uniform speed; (3) there is no movement uncertainty. However, these assumptions

do not hold any more in real-world applications e.g., drone delivery. Several recent

attempts aim to generalize standard MAPF to realistic settings. Based on resource

constrained activity scheduling, the MAPF problem has been extended to incorporate

nodes/edges with higher capacity more than one agent, and non-uniform travel time for

different edges [6, 102]. However, this problem setting is still deterministic as there is no

uncertainty in the movement of agents.

To handle movement uncertainty and imperfect plan execution by agents, delay probabil-

ities are introduced in [74] in which an agent’s movement to the next node succeeds with

probability p, and with 1−p probability agent stays at its current node. Such agent move-

ment essentially follows a geometric distribution, which may not be general enough for

several practical problems. Their solution strategy relies on modifying the plan execution
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during run time to avoid collisions, rather than using a full multi-agent planning model

such as a decentralized partially observable MDP (Dec-POMDP). Another limitation is

that their approach considers capacity of each node as one agent. Another robust plan

execution strategy is presented in [53]. Their approach post-processes the output of a

MAPF solver to create a schedule that can be executed safely (i.e., collision-free) by

(robotic) agents. Their approach considers minimum and maximum time needed by an

agent to move along a graph edge, and ensures that the post-processed output is safe

for all agent movements within the allowed range. Their approach also considers nodes

having the capacity of one agent. A velocity planner is developed in [100]. Their approach

addresses uncertainty in movement, but is limited to optimizing only the temporal aspect

of movement (not the spatial movement of agents), and assumes that all the agents are

homogeneous.

To summarize, there are generalizations of MAPF that consider graph nodes and edges

having capacity of more than one agent, but may not model uncertainty in agents’

movement, and there are other generalizations that model movement uncertainty, but

assume nodes and edges have a capacity of one agent. Our zone based multi-agent

pathfinding framework addresses the three key limitations of the standard MAPF by

allowing for nodes (or zones) with capacity of more than one agent, model uncertainty

(by using the highly expressive class of exponential family distributions to model variable

duration movements of agents), and partial observability wherein agents take decisions

based on their local observations.

3.2 Zone based pathfinding model

We next present a model for ZBPF by using a variant of the constrained Dec-POMDP

model, which is a popular framework for multi-agent sequential decision making under

uncertainty and partial observability. The set of all zones z is Z. Given a directed graph

G = (V,E), each node is a zone, and edges represent connections between neighboring

zones. We assume that each zone has a capacity cz and a constraint that the maximum

number of agents present in the zone at a time cannot exceed its capacity. If more agents
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Figure 3.1: Dynamic Bayes Net (DBN) for T-step reward and cost

are present in a zone than its capacity, it creates congestion affecting safety of movement.

Crossing a zone z to a neighboring zone z′ requires a minimum and maximum travel

time–tmin, tmax. Our approach can also handle the case when each agent has a unique

tmin, tmax for each zone intersection, but for simplicity, we assume all zone movements

have the same lower/upper limits. We also assume time is discretized, and horizon is T .

Agents’ decision model We now describe how an agent’s decision making evolves in

ZBPF. Instead of describing a specific formulation applied only to ZBPF, we develop

a more general decision theoretic model (in Figure 3.1) of which ZBPF is a specific

instance. Figure 3.1 describes graphically how different agents interact with each other

using a dynamic Bayes net (and plate notation). The arrows in the dynamic Bayes net

represent how the state transition, observation, reward, and cost functions of an agent

are influenced by both the global and local state, as well as the agent’s previous action.

Detailed descriptions of these parameters follow next. Similar to MAPF, an agent i has

a starting zone zio, and a goal zone zig (multiple agents are allowed to share their start

and goal zones).

States We model the behavior of each agent as follows. Let sit denote the state of agent

i at time t. Consider an agent i currently inside a zone z. Since the navigation between

zones has a variable duration (as described later), this agent can be categorized as newly

arrived at some zone z at time t or in-transit through z at time t.

• [In-Transit] The state of an agent i is defined as a tuple sit = ⟨z, z′, τ⟩, where z
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denotes the current zone of agent i at time t; z′ denotes the next zone agent is

heading to; and τ is the remaining time to reach z′.

• [Newly Arrived] When an agent i newly arrives at zone z, its next zone z′ and the

time-to-reach z′ (say τ) are not yet determined (which will be determined by the

agent’s action sampled from the policy). The state sit is denoted as ⟨z,Φ,Φ⟩.

Actions The action set of an agent is A={⟨z, ν⟩ ∀z ∈ V, ν ∈ ℜd} ∪ {noop}. In a given

state sit, only some of the actions are valid.

• If agent is in-transit, sit=⟨z, z′, τ⟩, only valid action is noop.

• If agent is newly arrived at a non-goal zone z ∈ Z \{zig}, or sit=⟨z,Φ,Φ⟩, then valid

action set is A={⟨z, ν⟩ ∀z ∈ Nb(z), ν ∈ ℜd}, where Nb(z) is the set of neighbor

zones of z where agent can move to. There are additional conditions on possible

parameter ν as explained in the transition function.

• If agent is at the start of a goal zone, or sit=⟨zig,Φ,Φ⟩, then the only valid action

is noop.

Intuitively, for an agent at the start of a non-goal zone z, two action components are

needed–⟨z′, ν⟩. First, the agent decides its next destination z′ ∈ Nb(z) to move to.

Second, the agent must decide the speed at which it wants to move. To avoid modeling

the control dynamics of agents, we assume that the agent decides the time to take to move

to z′. This temporal movement part is controlled by the continuous action component ν

(transition function shows a more precise definition). Thus, the model we present contains

both discrete and continuous actions, which represents a more challenging setting than

standard planning or RL.

Transition function We assume that the movement uncertainty is captured by the

transition function. Instead of assuming a specific movement model such as geometric

distribution [74], we chose to model travel time uncertainty using a widely applicable yet

tractable class of exponential family distributions. Give parameter(s) η, the exponential

family of probability distributions is defined as those distributions whose pdf or pmf
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have the following general form [13, Chapter 2]:

p(x|η) = h(x) exp{ηTT (x)−A(η)} (3.1)

The function T (x) is the sufficient statistic, η is the canonical parameter, and A(η) is

the partition function (to make sure probabilities normalize to 1). Using this form, we

now frame the transition function of the model in Figure 3.1 as:

p(s′i|si, ai, νi) = f(si, ai, s′i) exp{νiϕ(si, s′i)−A(νi)} (3.2)

where f is non-negative (plays the role of h(x)); ϕ(si, s′i) is the sufficient statistic that

summarizes the transition information. ai is the discrete action (analogous to the

direction decision in ZBPF), and νi is the canonical parameter of the exponential family

distribution that governs the transition function of each agent i.

The above representation of the transition function is quite general; it can represent

standard categorical distribution (which are widely used as transition function for

MDPs), as well as distributions such as Gaussian. The exponential family distributions

are also useful to model travel times because they are the maximum-entropy distribution

consistent with given constraints (or prior information) about the underlying random

variables. As per the principle of maximum entropy, among the distributions that satisfy

given constraints, the least informative one must be chosen [56]. E.g., given that we

have fixed time limits tmin and tmax on the movement of an agent between zones, an

agent may decide to move in α time steps. The maximum entropy discrete distribution

with a given mean (say α) and bounded support (between tmin and tmax) is the binomial

distribution [51], which models the uncertainty in agent movement. In this case, the

success probability of the binomial distribution can be computed using ν. We can also

similarly interpret the geometric distribution used by [74]. In their approach, an agent’s

move action succeeds with (a given) probability p. In other words, the average time to

cross an edge is α=1/p. The maximum entropy distribution with a given mean is indeed
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the geometric distribution1. Similarly, if time is continuous, then the agent’s action ν

can be interpreted as the mean of the Gaussian distribution which models the travel

duration (we can assume that the agent cannot control the variance, which is known).

To summarize, given an action ⟨z′, ν⟩, the first action component denotes the direction

decision (the zone z′) where agent wants to go next, and ν is the canonical parameter of

the transition function (assuming the transition function is from the exponential family).

Specific transition function for ZBPF is given as:

• For a newly arrived agent i, let sit= ⟨z,Φ,Φ⟩, action taken ⟨z′, ν⟩ (which implies

agent has decided to go to zone z′), then the time taken to move to z′ is sampled from

the distribution τ ∼ pidur(·; ν, z′), where pidur is an exponential family distribution

with finite support between tmin and tmax (that is, τ ∈ {tmin, . . . , tmax}). If τ = 1

(i.e., only one time step to-go), then the next state is ⟨z′,Φ,Φ⟩ (or agent reaches the

next zone z′ at time t+ 1), therefore, pi(⟨z′,Φ,Φ⟩|⟨z,Φ,Φ⟩, ⟨z′, ν⟩)=pidur(τ ; ν, z
′).

If τ > 1, the next state is ⟨z, z′, τ − 1⟩, and pi(⟨z, z′, τ − 1⟩|⟨z,Φ,Φ⟩, ⟨z′, ν⟩) =

pidur(τ ; ν, z
′).

• For in-transit agent i, let sit= ⟨z, z′, τ⟩, then the only action allowed is noop. If

τ=1, then the state deterministically transitions to ⟨z′,Φ,Φ⟩. If τ > 1, then the

state deterministically transitions to ⟨z, z′, τ − 1⟩. That is, the agent has not yet

completed its movement action, and is still in zone z en-route to z′.

We treat an agent’s goal zone as an absorbing state without any outgoing transitions.

For simplicity, we assume well-formed infrastructures where an agent occupying its goal

zone does not obstruct other agents from finding their paths [21].

Observation function Each agent i observes yit based on its local state sit, and the

global state of all agents st. For simplicity, we assume a deterministic observation

function, which can include observation about all agents present in the same zone as

agent i and in neighboring zones.

Reward function There is a negative reward wd < 0 given to each agent for every time

1https://en.wikipedia.org/wiki/Exponential_family
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step the agent is not at its goal location. When the agent reaches its goal zone for the

first time, a positive reward wg is given. Total system reward R is sum of rewards for all

the agents (or Rt=
∑N

i=1R
i
t).

Cost function In a global state s, if the total number of agents in a zone z are more

than its capacity cz, then each agent in zone z receives a cost of wc > 0 for constraint

violation. Total system cost C is sum of costs for all the agents (or Ct=
∑N

i=1C
i
t).

Policy representation Many practical applications of reinforcement learning require

agents to select actions from discrete-continuous hybrid spaces [43, 63]. In our ZBPF, we

also consider that an agent i has a hybrid policy. First, the policy πi(ait|sit, yit) provides

a distribution over discrete actions a (discrete actions are analogous to the direction

decisions in ZBPF). Thus πi is a stochastic policy. We also have a deterministic policy µi

which provides the (often continuous) action component νit=µi(sit, yit, ait). These policies

can also be parameterized using parameters θ.

3.3 Objective function and DC programming

We first go over the difference-of-convex functions (DC) programming framework [123, 67].

Our goal would be to reformulate the objective function as an instance of DC programming.

The DC programming and concave-convex procedure (CCCP) [123] are a popular approach

to optimize a general non-convex function expressed as a difference of two convex functions.

We describe it here briefly. Consider the optimization problem:

min{g(x) : x ∈ Ω} (3.3)

where g(x) = u(x)− v(x) is an arbitrary function with u , v being real-valued convex

functions and Ω being a convex set. The CCCP method provides an iterative procedure

that generates a sequence of points xk by solving the following convex program:

xk+1 = argmin{u(x)− xT∇v(xk) : x ∈ Ω} (3.4)
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Each iteration of CCCP decreases the objective g(x) and is guaranteed to converge to a

local optimum [67]. The above formulation is derived by linearizing the convex function

v at the point xk as: v̂(x)=v(xk) +∇v(xk)T (x− xk), and exploiting the property that

linearizing a convex function results in a global (valid over the entire domain of function)

lower bound on v. The key benefit of CCCP is that Problem (3.4) is often much easier

to solve than the original Problem (3.3) as the objective in (3.4) is convex (first term is

convex, and second term is linear in x).

We now show how to exploit the DC for our ZBPF problem. Consider the DBN in Fig-

ure 3.1. A joint trajectory is denoted as τ=s0,y0, (a0,ν0), (R0,C0), s1,y1, (a1,ν1), (R1,C1), . . .

where subscripts denote time. For deriving the DC formulation, we start by considering

policy πi for each agent is tabular, and µi is a deterministic function. Let π and µ denote

the joint-policy. We also assume deterministic observations (as highlighted earlier).

The objective to optimize is:

J(π, µ) =
∞∑

T=0

∑
τ0:T

γTR(sT )b0(s0)π(a0|s0,y0)
T∏
t=1

(
p(st|st−1,at−1, µ(st−1,yt−1,at−1))π(at|st,yt)

)
(3.5)

where we assumed that the reward is discounted using γ, b0 denotes the initial state

distribution.

The zone capacity constraints to satisfy during optimizing the above objective are as

follows.
N∑
i=1

I(sit = ⟨z, ·, ·⟩) ≤ cz, ∀z, t (3.6)

where I(sit = ⟨z, ·, ·⟩) is an indicator function. Its value is 1 when agent i is present in

zone z at time step t; otherwise, the value is 0.

When considering movement uncertainty, it becomes impractical to find a path for

agents that guarantees no collisions. In MAPF, this constraint is required to be satisfied

completely, leading to very conservative solutions and high sum of arrival times for all

agents. Therefore, in our work, we treat the zone capacity constraints as soft constraints,

aiming to reduce constraint violations as much as possible. Instead of using Lagrange

multipliers, which are difficult to learn, to penalize constraint violations, we use a fixed
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cost wc > 0 to penalize constraint violations and to encourage coordination among agents.

To achieve this, we modify the original reward Ri
t for each agent i by deducting the cost

Ci
t , i.e., R′i

t = Ri
t − Ci

t , ∀i, t. This modification allows us to reduce the negative impact

of constraint violations while still considering them during the optimization process.

Without loss of generality, we also assume modified rewards are non-negative (if they are

not, we can use R′ −R′
min instead of R′). Exploiting the DBN structure in Figure 3.1,

we can factorize the joint transition function and modified reward function to get J(π, µ)

as:

J(π, µ) =

∞∑
T=0

∑
τ0:T

γTR′(sT )
( N∏
i=1

bi0(s
i
0)
)( N∏

i=1

πi(ai0|si0, yi0)
) T∏

t=1

(( N∏
i=1

pi(sit|sit−1, a
i
t−1, µ

i(sit−1, y
i
t−1, a

i
t−1))

)( N∏
i=1

πi(ait|sit, yit)
))

(3.7)

The Equation (3.7) is our objective to maximize by optimizing joint-policies (π, µ). The

above objective is non-convex. It is also not expressed in the DC form. To reformulate

the above objective into a DC form, we first make a number of variable substitutions as

below.

First, we substitute πi(ai|si, yi) with exp
(
λi(ai, si, yi)

)
in J(π, µ). This can always be

done without affecting the optimality. Similarly, we use the the exponential family

structure of the transition function (3.2) to get J(λ, µ) as:

J(λ, µ) =
∞∑

T=0

∑
τ0:T

γTR′(sT )
( N∏
i=1

bi0(s
i
0)
)( T∏

t=1

N∏
i=1

f(sit−1, a
i
t−1, s

i
t)
)

exp

[
N∑
i=1

(( T∑
t=0

λi(ait, s
i
t, y

i
t)
)
+

T∑
t=1

(
µi(sit−1, y

i
t−1, a

i
t−1)× ϕ(sit−1, s

i
t)−A(µi(sit−1, y

i
t−1, a

i
t−1))

))]
(3.8)

Above expression has non-negative combination of exp(·) functions (as all rewards, initial

beliefs, and functions f are non-negative). The exp function is convex in λ, but not

convex in µ. Reason is that for exponential family distributions, the partition function

A(νi=µi(·)) is a convex function of canonical parameters ν. However, the exponential

function has the term −A(νi), which is concave in νi. To circumvent this problem,

we use another substitution as ξi(si, yi, ai)=A(µi(si, yi, ai)). We will also include this

constraint as part of our constraint set Ω when writing the final DC formulation. Using
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these substitutions, our final expression for J(λ, µ, ξ) is:

J(λ, µ, ξ) =

∞∑
T=0

∑
τ0:T

γTR′(sT )
( N∏
i=1

bi0(s
i
0)
)( T∏

t=1

N∏
i=1

f(sit−1, a
i
t−1, s

i
t)
)

exp

[
N∑
i=1

(( T∑
t=0

λi(ait, s
i
t, y

i
t)
)
+

T∑
t=1

(
µi(sit−1, y

i
t−1, a

i
t−1)× ϕ(sit−1, s

i
t)− ξi(sit−1, y

i
t−1, a

i
t−1)
))]

(3.9)

Now each exp term in the above expression is convex in each of λ, µ, ξ, and non-negative

combination of convex functions is also convex. We can now reformulation policy

optimization in the DC programming framework as:

min
λ,µ,ξ

0− J(λ, µ, ξ) (3.10)∑
ai

eλ
i(ai,si,yi) = 1 ∀si, yi,∀i=1 : N (3.11)

ξi(si, yi, ai) = A(µi(si, yi, ai)) ∀si, yi, ai, ∀i=1 : N (3.12)

The objective (3.10) is a difference of two convex function, and is therefore a DC function.

Notice that the constraints (3.11) and (3.12) are non-convex. However, the DC iteration

is still applicable because as highlighted earlier, the DC objective uses linearization of

the function v (which is J(λ, µ, ξ) in our case), and linearization based bounds are valid

over the entire domain of the function.

DC Iteration for ZBPF The optimization Problem (3.10) is no easier to solve than the

original problem (3.7). However, as (3.10) is a DC program, we can solve it iteratively

analogous to (3.4). Let the current estimate of parameters be (λk, µk, ξk). To find the

improved estimates (λ, µ, ξ), we need to solve the below problem:

max
λ,µ,ξ

∑
i,ai,si,yi

∇λi(ai,si,yi)J(λk, µk, ξk)λ
i(ai, si, yi)

+
∑

i,ai,si,yi

∇µi(ai,si,yi)J(λk, µk, ξk)µ
i(ai, si, yi)

+
∑

i,ai,si,yi

∇ξi(ai,si,yi)J(λk, µk, ξk)ξ
i(ai, si, yi) (3.13)

subject to constraints (3.11) and (3.12) on variables λ, µ, ξ
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We can further simplify the above optimization problem by eliminating constraints

as follows. We can replace back λi(ai, si, yi) = lnπi(ai|si, yi), and substitute back

ξi(ai, si, yi)=A(µi(ai, si, yi)) to get the following optimization problem:

max
π,µ

∑
i,ai,si,yi

∇λi(ai,si,yi)J(λk, µk, ξk) log π
i(ai|si, yi)

+
∑

i,ai,si,yi

∇µi(ai,si,yi)J(λk, µk, ξk)µ
i(ai, si, yi)

+
∑

i,ai,si,yi

∇ξi(ai,si,yi)J(λk, µk, ξk)A(µi(ai, si, yi)) (3.14)

∑
ai

πi(ai|si, yi) = 1, πi(ai|si, yi) ≥ 0; ∀si, yi,∀i (3.15)

Problem (3.14) is much easier to solve than original Problem (3.7). This is because the

most computationally intensive step is to compute different gradients ∇J , which are

with respect to old parameters (λk, µk, ξk), and we show that a closed form expression

can be derived for them. An agent i’s state, observation and action are denoted

using (si, yi, ai), and (s−i, y−i, a−i) denote the same for all other agents except i. Let

dk(si, yi, ai, s−i, y−i, a−i) denote the occupancy measure or the total discounted amount

of time the system was in the joint setting (si, yi, ai, s−i, y−i, a−i) (note that action ν is

deterministic given the joint-state, therefore not included in dk). Expression for measure

dk(·) is as:

∞∑
t=0

γtP (sit = si, s−i
t = s−i, yit = yi, y−i

t = y−i, ait = ai, a−i
t = a−i)

We also denote the total discounted reward from a given joint state, action (s,a,ν) as

Qk(s,a,ν). Both dk and Qk are computed as per the old policy πk and µk. Using dk,

Qk, different gradients are as:

∇λi(ai,si,yi)J(λk, µk, ξk) =
∑

s−i,y−i,a−i

dk(si, yi, ai, s−i, y−i, a−i)Qk(si, yi, ai, s−i, y−i, a−i, νi, ν−i)

∇µi(ai,si,yi)J(λk, µk, ξk) = γ
∑

s−i,y−i,a−i

dk(si, yi, ai, s−i, y−i, a−i)×
∑

s′,y′,a′

ϕ(si, s′i)P (s′,y′,a′|si, s−i, ai, a−i, νi, ν−i)Qk(s′,a′,ν ′)

∇ξi(ai,si,yi)J(λk, µk, ξk) = −
∑

s−i,y−i,a−i

dk(si, yi, ai, s−i, y−i, a−i)×
(
Qk(si, s−i, ai, a−i, νi, ν−i)− r(si, s−i)

)

52



Chapter 3. Zone-based Multi-agent Pathfinding

We can substitute back the gradients to our DC iteration (3.14), and get the following

optimization problem:

max
π,µ

Es,a,ν

[
Qk(s,a,ν)

( N∑
i=1

log πi(ai|si, yi)
)]

+ γE s,a,ν,
s′,a′,ν′

[
Qk(s′,a′,ν ′)

(( N∑
i=1

ϕ(si, s′i)µi(ai, si, yi)
)
−
( N∑

i=1

A(µi(ai, si, yi))
)]

(3.16)

∑
ai

πi(ai|si, yi) = 1;πi(ai|si, yi) ≥ 0 ∀si, yi,∀i (3.17)

In the above problem, we have introduced only policy normalization constraints. There

may be additional constraints on µ variables for the particular exponential family

distribution used. The expectation over variables (s′,a′,ν ′) is as per the joint transition

probability of states and actions P (·|s,a,ν). The expectation over variables (s,a,ν) is

as per the corresponding occupancy measure dk.

Planning The optimization (3.16) is solvable when the policy of each agent has a

convenient form (such as a tabular policy), and transition/observation function are

known. Using model parameters and the old policy πk, µk we can get a better policy

πk+1, µk+1. Note that, it is not required to solve Problem (3.16) exactly. E.g., we can use

general purpose nonlinear program solver such as SNOPT [47] to approximately optimize

it. Such a process is also guaranteed to monotonically increase the original objective J

until convergence to a local optima. In situations, when the exact planning model is

not available, or state-space is too large, we next present a gradient based approach to

approximately optimize (3.16).

Learning The form of Problem (3.16) is also highly convenient for reinforcement learning.

We assume that policy πθ and µθ are parameterized using θ. We can compute the gradient
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of the DC iteration objective J ′ (3.16) as:

∇θJ
′ = Es,a,ν

[
Qk(s,a,ν)

( N∑
i=1

∇θ log π
i
θ(a

i|si, yi)
)]

+ γE s,a,ν,
s′,a′,ν′

[
Qk(s′,a′,ν ′)

(( N∑
i=1

ϕ(si, s′i)∇θµ
i
θ(a

i, si, yi)
)
−
( N∑

i=1

∇θA(µiθ(ai, si, yi))
))]

(3.18)

We can use properties of exponential families to further simplify gradient ∇θA(νi =

µiθ(a
i, si, yi)) as ∇νA(νi)∇θν

i. The derivative ∇νA(νi) is nothing but the expectation

of the sufficient statistic ϕ in the transition function expression (3.2)2, which can also be

estimated using sampling if a closed form expression is not known. The Equation (3.18)

provides a basis for computing gradients using sampling to approximately optimize (3.16).

Once a new estimate θk+1 is known, we can iteratively improve it again until convergence.

Multi-agent credit assignment Performing vanilla gradient ascent based on (3.18)

generally suffers from poor convergence, primarily due to the high variance in the

policy gradient estimator caused by the involvement of multiple agents. In multi-agent

settings, the randomness in the policy gradient arises not only from an individual

agent’s interactions with the environment but also from the explorations of other agents.

Consequently, it becomes challenging to determine the contribution of an agent’s action

to the global reward since the decisions made by multiple agents collectively influence

the team reward. This challenge is commonly referred to as the problem of multi-agent

credit assignment [22, 41]. We next show how to extract a clearer signal from empirical

returns that performs effective credit assignment. We assume that the joint Q-function

(for a fixed policy) is approximated as follows:

Q(s,a,ν) ≈
N∑
i=1

hiw(s
i, ai, νi, yi(s)) (3.19)

where hiw is an individual value function approximator parameterized by w for agent i.

2https://people.eecs.berkeley.edu/~jordan/courses/260-spring10/other-readings/
chapter8.pdf
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We focus on an agent i’s contribution to the gradient expression (3.18). Considering first

terms depending on ∇θπ
i, using Q function approximation (3.19), we get:

Es,a,ν

[
Qk(s,a,ν)∇θ log π

i
θ(a

i|si, yi)
]
≈ Es,a,ν

[{ N∑
m=1

hmw (sm, am, νm, ym)
}
∇θ log π

i
θ(a

i|si, yi)
]

(3.20)

We can show that:

Es

[
Ea,ν|s

[{∑
m̸=i

hmw (sm, am, νm, ym)
}
∇θ log π

i
θ(a

i|si, yi)
]]

= 0 (3.21)

Therefore, (3.20) simplifies to:

Es,a,ν

[
Qk(s,a,ν)∇θ log π

i
θ(a

i|si, yi)
]
≈ Es

[
Eai,νi|s

[
hiw(s

i, ai, νi, yi)∇θ log π
i
θ(a

i|si, yi)
]]

(3.22)

The above expression has much lower variance than estimating gradients using (3.20).

Let us now consider terms depending on deterministic policy gradient ∇θµ
i:

E
[
Qk(s′,a′,ν ′)

(
ϕ(si, s′i)∇θµ

i
θ(a

i, si, yi)−∇θA(µiθ(ai, si, yi))
)]

≈ E
[{ N∑

m=1

hmw (sm, am, νm, ym)
}(
ϕ(si, s′i)∇θµ

i
θ(a

i, si, yi)−∇θA(µiθ(ai, si, yi))
)]
(3.23)

Empirically, the above expression also resulted in poor quality credit assignment because

the gradient term ∇θµ
i
θ is affected by the value accumulated by all the agents m. We

therefore used an approximation where we only add the contributions from those agents

which are in the immediate neighborhood of agent i given the joint-state s, denoted

using Nb(i, s). The expression becomes:

E
[{ ∑

m∈Nb(i,s)

hmw (sm, am, νm, ym)
}(
ϕ(si, s′i)∇θµ

i
θ(a

i, si, yi)−∇θA(µiθ(ai, si, yi))
)]

(3.24)

Using the above credit assignment techniques, our approach worked significantly better

than the vanilla gradient based learning. To estimate hiw(si, ai, νi, yi), we used empirical
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returns. That is, for a given joint-trajectory of all the agents from the simulator, the

total discounted reward obtained by an agent i given its current state-action-observation

being (si, ai, νi, yi) is treated as the target for hiw(si, ai, νi, yi).

Practical considerations: As number of agents can become quite large in practical

ZBPF scenarios, optimizing a unique policy for each agent would require far too many

samples to learn within a reasonable time. Therefore, we use policy sharing among agents.

We have one set of parameters for each zone or θ={θz ∀z ∈ Z}. Our approach resembles

a traffic management system where traffic through a zone z is controlled using πθz , µθz .

To differentiate among agents, we also provide agent id as part of the observation to the

agent. This approach is suited for settings where number of start and goal zones are

relatively fewer than the number of agents. This is a reasonable assumption, for example,

in drone delivery, where most drones takeoff and land at few specialized high-rise and

safe locations in the city. If each agent has a unique start-goal zone, then the problem

becomes highly combinatorial, and policy sharing among agents may not be effective.

3.4 Experiments

We evaluate our approach on several 2D grid maps and 3D maps. Our ZBPF simulator is

constructed in the cross platform Unity3D engine which provides ml-agents framework for

training intelligent agents, and a simple Python API to access simulation state. We vary

several parameters including grid size, number of agents, start and goal zones. We compare

our learning approach with credit assignment (‘DCRL’) against the vanilla gradient based

approach (‘VPG’) in (3.18) where Q values are estimated by total discounted global

modified rewards, and multi-agent Q-learning based approach for discrete-continuous

hybrid action spaces (‘MAPQN’) [43]. We have adapted the ‘MAPQN’ approach for

the ZBPF setting. We optimize the sum of arrival time of all agents (SOAT) while

minimizing the constraint violations (i.e., reducing congestion). For comparison, we

also show SOAT when all the agents follow their shortest path (‘SP’). This value is the

lowest SOAT any approach can achieve; but it also results in high congestion. All our

experiments are run on a Linux machine with 3GHz CPU and 64 GB RAM. Maximum
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runtime allowed was 10 hours for any approach.

3.4.1 Simulator

Figure 3.2 shows different 2D and 3D Unity maps generated by our simulator. In Unity, we

can build complex environments without additional overheads such as developing physics

libraries. In our simulator, we use spheres to represent intersection zones where agents

are required to decide where to go and use cylinders to represent 1-way normal zones.

Agents are represented by orange cubes. If agents have reached their destinations, they

will be highlighted in color. In Figure 3.2(a), highlighted spheres represent landmarks

which agents are required to visit (landmark constraints are discussed in Chapter 5). In

Figure 3.2(c), zones are highlighted in color to indicate congestion.

3.4.2 2D open grids

Figure 3.3 shows the SOAT comparisons among DCRL, VPG and MAPQN. For each

grid, starting and goal locations were the top and bottom rows. For each agent, we

randomly selected its start and goal zones from the top and bottom rows. As a result,

multiple agents had the same start and/or goal zones. This setting is also challenging for

our approach—if multiple agents are in the same start zone, the zone based policy has

to properly assign different route/travel time to them. If agents follow each other on the

shortest path to the goal zone, it creates high congestion. The capacity of each zone was

sampled uniformly from [1, 2] for 4x4 grid, [1, 3] for 8x8 grid, and [1, 4] for 10x10 grid.

The tmin, tmax for each zone were 1, 5 respectively. The travel time distribution used

(a) 10x10 grid (b) SmallCube (c) TwoFloor

Figure 3.2: Different Unity maps generated by our simulator
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Figure 3.3: SOAT comparisons among DCRL, VPG and MAPQN (log-scale, lower is
better). N# denotes number of agents.

was the binomial distribution, which is the maximum entropy distribution with a given

support and mean. Each training episode was cutoff after 500 time steps or after 10

hours. We varied both grid sizes and number of agents ranging from 4x4 grid, 2 agents

to 10x10 grid 30 agents. For each setting, we generated 5 instances, and the average

SOAT (along with standard deviation) is shown in Figure 3.3. This figure clearly shows

that as the problem becomes more complex (increasing grid size, number of agents), our

approach DCRL provides significantly better solution quality than VPG and MAPQN.

This is because DCRL performs credit assignment much more effectively than the VPG,

and MAPQN attempts to learn Q-values over joint state and action, which may be

inaccurate for large number of agents. For larger grids (e.g., 10x10) and larger density of

agents (e.g., 10x10, 30 agents), several agents did not reach their goal zone when using

VPG based policy and Q-learning based policy. To provide an estimate of best possible

SOAT, we also show the SOAT when all agents move as fast as possible (using tmin

time) on their shortest path to goal (denoted using ‘SP’). DCRL is worse than SP (as

expected), however, not by a large margin. This is expected as DCRL make agents take

a longer route or take more time traveling between zones to minimize congestion. For

the ZBPF problems we have generated as above, standard MAPF solvers including based

on RL (such as by [86]) are not applicable in a straightforward fashion. In our instances,

multiple agents can have the same start zone, which is not allowed in standard MAPF,

and they also do not incorporate uncertainty in travel time and higher capacity nodes.
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Setting
Congestion Stranded agents

DCRL VPG MAPQN DCRL VPG MAPQN

4x4 N2 0 0 0 0 0 0

4x4 N4 0.11 0.02 0.17 0 0 0

4x4 N6 0.12 0.04 0.29 0 0 0

8x8 N6 0.06 0.18 0.11 0 0.40 2.08

8x8 N12 0.50 0.67 31.62 0 2.21 6.20

8x8 N20 1.74 4.15 114.70 0 11.45 10.71

10x10 N10 0.44 0.07 0.68 0 6.81 2.83

10x10 N20 0.97 3.21 130.29 0 17.25 14.18

10x10 N30 2.12 35.12 273.16 0 27.33 18.38

Table 3.1: Average congestion level and stranded agents comparisons
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Figure 3.4: Learning curve (showing congestion level) of DCRL, VPG and MAPQN on
a 10x10 grid, 30 agents instance

Table 3.1 shows the results comparing congestion level between our approach, VPG and

MAPQN . For each time step, if number of agents in a zone z (say Nz) are more than

its capacity Cz, than Nz − Cz is added to the congestion level. We also show, on an

average, how many agents were unable to reach destination in these three approaches

(or ‘stranded agents’). These results clearly show that our approach is able to effectively

minimize congestion over VPG and MAPQN , and for all tested instances, agents were

able to reach their destinations. The standard deviation in congestion metric was low for

DCRL (less than 1 for all problems).

Figure 3.4 shows the learning curve for DCRL, VPG and MAPQN for the largest grid
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Metric Instance
Average

DCRL VPG MAPQN

SOAT
SmallCube 155.29 312.00 775.98

TwoFloor 532.35 1300.73 6346.09

Stranded
agents

SmallCube 0 0 0.33

TwoFloor 0 0.2 8.66

Congestion
SmallCube 3.66 4.37 10.61

TwoFloor 5.09 7.24 112.49

Table 3.2: Average SOAT, stranded agents, and congestion level comparisons (over 5
instances).

with most number of agents (10x10, 30 agents). This figure clearly shows that with

credit assignment, our approach was quite stable during learning and converged much

faster and to a better quality than VPG. For this large setting, MAPQN was unable to

reduce the congestion level to an acceptable low level.

3.4.3 3D maps

We also evaluated our approach on two generated 3D maps–‘SmallCube’ and ‘TwoFloor’

as shown in Figure 3.2 . SmallCube map and TwoFloor map have 30 zones and 142 zones

respectively. Total number of agents were 10 and 20 for these two maps respectively.

Capacity of each zone was uniformly sampled from [1, 3] and [1,4]. Agents moved from

bottom left 5 zones (which were start zones) to top right 5 zones (which were goal zones)

for SmallCube, and moved from bottom front zones to bottom back zones for TwoFloor

map. Rest of the settings were same as for grid graphs. For such maps also, our approach

DCRL worked much better than VPG and MAPQN as expected. Table 3.2 shows the

SOAT, stranded agents and congestion level results. For SmallCube map, all agents were

able to reach their goals in both DCRL and VPG approaches. But compared with DCRL,

VPG gives higher SOAT (lower SOAT is better) and marginally greater congestion level.

MAPQN performed slightly worse in terms of stranded agents (which is 0.33), but also

gives worst SOAT and congestion level. For TwoFloor map, VPG gives reasonably higher

SOAT of 1300.73 versus 532.35 by DCRL. This is because there are slightly more average
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stranded agents (0.2) versus zero stranded agents by DCRL. Compared with DCRL

and VPG, MAPQN gives the worst SOAT (6346.09), and it cannot work well for either

making all agents reach goal zones or minimizing the congestion.
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Chapter 4
Decision Diagrams for Constraint Compilation

In both single-agent and multi-agent constrained RL, one of the main difficulties is

identifying all the valid actions that comply with the constraints specified in a CMDP

or constrained Dec-POMDP. In fact, since the constraint are known to us, they can be

treated as domain knowledge. In this chapter, we present two general decision diagrams

that have been recently proposed for compiling domain knowledge. First, in Section 4.1,

we introduce the boolean representation of constraints in RL by providing two practical

examples. Then, in Section 4.2, we introduce sentential decision diagrams (sdds) that

provide a compact representation of a Boolean formula. Finally, in Section 4.3, we

present probabilistic sentential decision diagrams (psdds), which are parameterized sdds

that can represent a probability distribution over all valid instantiations encoded by the

underlying sdd. Compiling constraints using decision diagrams is the symbolic side, which

is integrated with neural side in the next two chapters to provide efficient neuro-symbolic

methods to solve constrained RL problems.

4.1 Boolean representation for constraint in RL

Let XS = {β1, . . . , βn} denote the set of n propositional variables defining a state; each

βi ∈ {0, 1}. Let XA = {α1, . . . , αm} denote the set of m propositional variables defining

an action; each αi ∈ {0, 1}. Any state is denoted by an assignment of truth values, sβ,

to variables in XS ; any action is similarly defined using aα. Such propositional logic

based model representation has also been used for planning in discrete factored state

and action spaces [87].
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Assume there are K constraints. Each constraint k is defined as a Boolean function fk

over variables sets XS and XA. Let fk|sβ represent the reduced Boolean subfunction

f over variables XA where variables in XS are set to their respective instantiation

according to the state sβ . Given a state sβ , the set of actions that satisfy all constraints

(valid actions), C(sβ), is defined as:

C(sβ) =
{
aα

∣∣∣ K∧
k=1

fk|sβ(aα) = 1
}

(4.1)

We next give some examples showing how to represent constraints using Boolean functions

in a variety of practical problems such as resource allocation and path planning.

Example 4.1.1 (Resource allocation constraints).

Consider a resource allocation setting where we need to allocate P resources to Q entities,

assuming a 0/1 allocation setting. For simplicity, we assume that there are more entities

than resources and each entity can only have at most one resource(this is not a limitation;

in Chapter 6, we can allocate any number of resources to an entity in our tested domain).

We encode the set of all valid allocations using pseudo-Boolean (PB) constraints (linear

constraints over Boolean variables) [36]. A PB-constraint is an inequality C0p0 + C1p1 +

. . .+ Cn−1pn−1 ≥ Cn, where each pi is a literal and Ci is an integer coefficient. A true

literal is denoted as 1 and false as 0. Note that it is easy to incorporate ≤ and = both

as PB-constraints [36].

We create a Boolean variable Xpq denoting whether a resource p is assigned to entity q.

The set of PB constraints encoding a valid assignment is denoted as:

Q∑
q=1

P∑
p=1

Xpq = P ;

Q∑
q=1

Xpq = 1 ∀p = 1 : P

P∑
p=1

Xpq ≤ 1 ∀q = 1 : Q (4.2)

It is shown in [36] how PB-constraints can be translated into Boolean formulas which

evaluate to true only if any given literal assignment satisfies the PB-Constraints. Further-

more, it is possible to represent the resulting Boolean functions using popular compact

data structures such as binary decision diagrams (BDDs) [17]. We can also have a single
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Figure 4.1: (a) An undirected graph; A,B,C,D,E represent the edge variables. A
simple path from s = n1 to d = n5 is highlighted in red and can be written as a
propositional sentence A∧C ∧E ∧¬B ∧¬D; (b) An sdd encoded all simple paths in the
graph where the encircled node represents a decision node (D,E), (¬D,⊥) (c) a vtree
for the sdd

BDD representing the conjunction of BDDs for their respective PB-constraints, which

encodes the set of all the valid resource allocations.

Example 4.1.2 (Multistep path planning).

Consider a multistep path planning problem in a grid introduced in [33]. In their

environment, the agent receives a fixed-size square window surrounding its current

position as the observation. Consider the action set to be the set of all possible simple

paths (no loops) in the agent’s observation, or all possible simple paths of a fixed length.

As shown in [26], a path p in a graph G = (V,E) can be represented as a Boolean formula

as follows. We create a Boolean variable Xij ∀(i, j) ∈ E. If an edge (i, j) occurs in path

p, we set Xij = 1, otherwise 0. Therefore, the conjunctions of all such literals denotes the

formula for path p, and Boolean formula for all the paths in a graph is obtained by the

disjunction of formulas for all the valid paths in G [26]. To account for blocked cell in the

agent’s observation window, we set all Xij = 0 for any edge (i, j) that is incident to the

blocked cell. This is analogous to reducing the Boolean formula for all the paths by using

the instantiation of variables that are set according to the agent’s current observation.
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4.2 Sentential decision diagrams

In resource allocation problems, the number of valid assignments can be combinatorial,

as there are m indistinguishable resources that must be assigned to n entities, resulting

in |A| =
(
m+n−1
n−1

)
. Similarly, the set of all simple paths in a graph is also combinatorial.

Due to this, a compact representation of the Boolean formula representing resource

allocations or paths is necessary. To accomplish this, we use a general data structure called

a sentential decision diagram (sdd) [30]. An sdd is a succinct and tractable representation

of a Boolean formula that generalizes the well-known ordered binary decision diagrams

(OBDDs) [17]. Succinctness refers to the size of the compiled knowledge representation,

and tractability implies that operations such as conjunction (or conjoin) are polytime

operations in the size of sdds [94]. It has also been shown that sdds can be exponentially

more succinct than OBDDs [15].

An sdd represents a Boolean function f(A,B) on some non-overlapping variable sets A

and B [30]. The function f is represented as f = (p1(A)∧s1(B))∨ . . .∨ (pk(A)∧sk(B)),

with each element (pi, si), i = 1 . . . k of the decomposition composed of a prime pi and a

sub si, which themselves are sdds. An sdd represented as a decision diagram describes

members of a combinatorial space (e.g., resource allocations, paths in a graph) using

propositional logic in a tractable manner. Each model of an sdd is a valid assignment of

Boolean variables. It has two kinds of nodes:

- terminal node, which can be a literal (X or ¬X), always true (⊤) or always false

(⊥).

- decision node having k branches. Decision node represents (p1 ∧ s1)∨ . . .∨ (pk ∧ sk)

where all (pi, si) are recursively sdds. The primes for a decision node are always

consistent, mutually exclusive and exhaustive [30].

An sdd is characterized by a full binary tree, called a vtree, which induces a total order

on the variables X = A ∪B from a left-right traversal of the vtree. Given a fixed vtree,

the sdd is unique. An sdd node n is normalized (or associated with) for a vtree node v

as follows:
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Figure 4.2: (a) Resource allocation constraints and Boolean formula; (b) An sdd
encoded all valid resource allocations; (c) a vtree for the sdd.

- If n is a terminal node, then v is a leaf vtree node containing the variable of n (if

any).

- If n is a decision node, then n’s primes (subs) are normalized for the left (right)

child of v.

- If n is the root node, then v is the root vtree node.

Intuitively, a decision node n being normalized for vtree node v implies that the Boolean

formula encoded by n contains only those variables contained in the sub-tree rooted at v.

The Boolean formula encoding the domain knowledge can be compiled into a decision

diagram using the sdd compiler [80]. The resulting sdd may not be exponential in size

even though it represents an exponential number of objects.

Figure 4.1(b) shows an sdd representing for the Boolean formula that encodes all simple

path from n1 to n5 in a graph as shown in Figure 4.1(a). Figure 4.1(c) shows the vtree

for the sdd where the variable order is (A,B,C,D,E). The encircled node is a decision

node with two elements (D,E) and (¬D,⊥). The primes are D and ¬D and subs are E

and ⊥. The Boolean formula representing this sdd node is (D ∧ E) ∨ (¬D ∧ ⊥). The

Boolean formula encoded by the whole sdd is given by the sdd root node.

Figure 4.2 shows how the constraints in resource allocation are represented using an

sdd. We assume there is one resource and four entities, and we create four Boolean
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Figure 4.3: (a) A psdd with underlying sdd shown in Figure 4.1(b); (b) A psdd with
underlying sdd shown in Figure 4.2(b).

variables X11, X12, X13, X14 denoting whether the resource should be assigned to entity

q, q = 1, . . . , 4 or not. To have better viewing of the sdd graph, we rename these four

Boolean variables as A,B,C,D respectively. The resource constraints and corresponding

Boolean formula are shown in Figure 4.2(a). Given the Boolean formula, Figure 4.2(b)

shows the constructed sdd, Figure 4.2(c) is the vtree for the sdd. In this example, one

model for the sdd is (¬A,¬B,C,¬D), which means the resource is assigned to the third

entity. A model can be obtained by traversing the sdd from top to bottom. For each

decision node, we select a branch whose sub is not false to visit. Traversal terminates

after we have the instantiation for all the variables.

4.3 Probabilistic sentential decision diagrams

An sdd encodes all instantiations that satisfy the constrains represented in Boolean

formula. If we parameterize each decision node of the sdd, such that the local pa-

rameters form a distribution, the resulting probabilistic structure is called a psdd or

a probabilistic sdd [61]. psdds are probabilistic extensions of sdds. A psdd induces a

probability distribution over the models of the underlying sdd. That is, a psdd assigns a

strictly positive probability to an instantiation that satisfies the Boolean formula for the
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Instantiation Probability

A ¬B ¬C ¬D 0.3

¬A B ¬C ¬D 0.56

¬A ¬B C ¬D 0.056

¬A ¬B ¬C D 0.084

Table 4.1: Probability distribution encoded by the psdd of Figure 4.1(b)

underlying sdd; and zero probability to instantiations that do not satisfy the underlying

sdd. The structure of a psdd normalized for an sdd is described as follows.

- For each decision node (p1, s1), . . . , (pk, sk), there are non negative parameters θi

such that
∑k

i=1 θi = 1 and θi = 0 iff si = ⊥.

- For each terminal node ⊤, there is a parameter 0 < θ < 1.

Parameters θi, i = 1, . . . , k are also called the local distribution associated with a decision

node. psdds are tractable structures of probability distributions as several probabilistic

queries can be performed in poly-time such as computing marginal probabilities, con-

ditional probabilities, and sampling from the distribution Pr(X) represented by the

psdd.

Figure 4.3(a) and (b) show psdds with underlying sdds shown in Figure 4.1(b) and

Figure 4.2(b) respectively. Table 4.1 shows the probability distribution Pr(X) represented

by the psdd shown in Figure 4.1(b). The distribution is defined over four Boolean variables,

resulting in a total of 24 = 16 variable instantiations. However, only four instantiations

have non-zero probabilities due to the constraints imposed on the space. These four

instantiations are models of the underlying sdd. In other words, Pr(x) = 0 for all other

instantiations. The probability over all valid instantiations is defined inductively, as

described in the work by Kisa [61]. The distribution induced by a terminal node is first

defined, followed by the distribution of a decision node, which is defined in terms of the

distribution induced by its primes and subs. To be more specific, let Prn denote the

distribution represented by node n over the variables of vtree v. This distribution is

determined according to the following rules.
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- If n is a terminal node, and v contains variables X, we have

n Prn(X) Prn(¬X)

X : θ θ 1− θ

⊥ 0 0

X 1 0

¬X 0 1

- If n is a decision node (p1, s1, θ1), . . . , (pn, sn, θn), and v contains left variables X

and right variables Y , then we have,

Prn(xy)
def
= Prpi(x) · Prsi(y) · θi for i where x |= pi

Applying this definition to the psdd of Figure 4.3(b) leads to the distribution in Table 4.1

for its root node.

To summarize, sdd and psdd are compact knowledge compilation frameworks for Boolean

constraints. sdd represents all valid models/actions, while psdd encodes a probability

distribution over these valid actions. One key advantage of these encodings is their

tractability, which refers to the succinctness in terms of the number of nodes in an sdd and

the number of parameters in a psdd. This tractability allows for efficient representation

and manipulation of complex constraints. In Chapter 5, We will demonstrate how to

compile various constraints, such as coverage constraint and landmark constraint in

ZBPF, using sdds. Additionally, we will discuss methods to improve the sample efficiency

of RL algorithms employed in ZBPF by integrating sdds. In Chapter 6, we will illustrate

how psdds can be employed to encode the distribution of all valid actions that satisfy

complex resource allocation constraints. Furthermore, we will demonstrate how RL

algorithms can be leveraged to learn the parameters of the psdd, thereby effectively

tackling action-constrained RL problems.
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Chapter 5
Neuro-symbolic for Zone-based Multi-agent

Pathfinding

In Chapter 3, we presented a zone-based multi-agent pathfinding problem with zone

capacity constraints and proposed a MARL algorithm to solve it. However, finding the

best policies for agents is a challenging task. One of the significant challenges in ZBPF

is the poor quality of samples collected from agents at the initial training stage. For

instance, a single agent’s path may not be complete, as shown in Figure 5.1(b), where

an agent moves towards a deadend. Additionally, agents can move in cycles, as shown in

Figure 5.1(a) when an agent loops back to one of its earlier vertices. The poor quality of

samples leads to a highly sample inefficient learning approach. To address this issue, in

this chapter, we propose a neuro-symbolic method to incorporate a domain constraint

on all agents to ensure that the agent’s path is complete and simple, with no loops. We

refer to this domain constraint as the simple path constraint. Furthermore, we consider

two practical domain constraints: the landmark constraint, which requires the agent to

visit specific landmark nodes before reaching the destination, as shown in Figure 5.1(c),

and the coverage constraint, which requires the agent to visit some nodes at least once

every k time steps. We note that the domain constraints mentioned above are explicit

cumulative constraints that do not take a form as the expectation of total discount

costs being less than a threshold. Furthermore, we consider these constraints as hard

constraints, meaning that each path generated through sampling must adhere to these

constraints.

The rest of this section is structured as follows. In Section 5.1, we introduce how to
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Figure 5.1: (a) Path with a loop; (b) Path to a deadend; (c) Path with landmarks;
Dark nodes are blocked. Landmark nodes are flagged.

incorporate valid actions into different RL algorithms at each step when given all valid

actions that satisfy domain constraints. In Section 5.2, we explain how to model different

domain constraints in ZBPF using propositional logic and compile them in a symbolic

manner using sentential decision diagrams (sdds), as introduced in Chapter 4. We also

show how to query the set of valid actions efficiently from an sdd. In Section 5.3, we

demonstrate the effectiveness of our symbolic knowledge compilation framework in ZBPF

and how it improves the performance of MARL algorithms by integrating the compiled

knowledge. We show the compilation framework’s succinctness, efficiency, and modularity

as well.

5.1 Incorporating valid actions in RL

Given an undirected graph G = (V,E) in ZBPF, the set V denotes the nodes (zones)

where agents can move, and edges E connect different nodes. An agent i has a start

vertex si and final goal vertex gi. At any time step, an agent can be located at a vertex

v ∈ V , or in-transit on an edge (u, v) (i.e., moving from vertex u to v). To better capture

the domain constraints in ZBPF, we simplify the action set defined in ZBPF by ignoring

the continuous action component since it does not control the change of location. We

assume that an agent’s action set is denoted by A = Amov ∪ Aoa. Intuitively, Amov

denotes actions that intend to change the location of the agent from the current vertex to

a neighboring directly connected vertex in the graph (e.g., move up, right, down, left in a

grid graph). The set Aoa denotes other actions that do not intend to change the location
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of the agent (e.g., noop that intends to make the agent stay at the current vertex).

Let pit denote the path taken by an agent i until time t (or the sequence of vertices

visited by an agent starting from source si). We also assume that it does not contain

any cycle. This information can be extracted from agent’s history τ it . Let a∈Amov be a

movement action towards vertex av. To handle the hard domain constraints in ZBPF,

we assume the exists a function validActions that takes an agent’s current path pit as

input and returns a set of valid actions that satisfy all domain constraints at each RL

step. Formally, we have,

{a∈Amov s.t. [pit, av]⇝di} = validActions(pt; si, di) (5.1)

where [pit, av] ⇝ di implies there exists at least one simple path from source si to

destination di that includes the path segment [pit, av], and satisfies all domain constraints.

Therefore, starting with p0 = [si], the RL approach would only sample simple paths

that are guaranteed to satisfy the constraints and reach the agent’s destination, thereby

significantly pruning the search space, and resulting in high reward trajectories. Given

the set of valid actions, we next present simple and easy-to-implement modifications to a

variety of deep multiagent RL algorithms which can be used in ZBPF.

5.1.1 Policy gradient based MARL

We first provide a brief background of policy gradient approaches for single agent

case [104]. An agent’s policy πθ is parameterized using θ. The policy is optimized using

gradient ascent on the total expected discounted reward Jπθ = Eπθ
[
∑∞

t=0 γ
tR(st, at).

The gradient is given as:

∇θJ
πθ = Eπθ

[Qπ(s, a)∇θ log πθ(a|s)] (5.2)

The above gradient expression is also extendible to the multi-agent case in an analogous

manner [83, 41]. The input to policy are some features of the agent’s observation history

or ϕ(τ i). The function ϕ can be either hard-coded (e.g., only last two observations), or

can be learned using recurrent neural networks.
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For using the function validActions, the only change we require is in the structure of an

agent’s policy π (we omit superscript i for brevity). The main challenge is addressing the

variable sized output of the policy in a differentiable fashion. Assuming a deep neural

network based policy π, given the discrete action space A, the last layer of the policy

has |A| outputs using the Softmax. However, when using validActions, the probability

of actions not in validActions needs to be zero. Also, the set returned by validActions

changes as the observation history τ of the agent is updated. However, there is an easy fix

similar to proposed in [19]. We use π̃ to denote the standard way policy π is constructed

with last layer having fixed |A| outputs. The policy π is re-defined as:

π(a|τ)=


0 if a /∈validActions(p(τ); s, d)

else
exp
(
π̃(a|ϕ(τ))

)
∑

a′∈validActions(p(τ);s,d) exp
(
π̃(a′|ϕ(τ))

) (5.3)

where p(τ) denotes the path taken by the agent so far, and s, d are its source and desti-

nation. Sampling from π guarantees that invalid actions are not sampled. Furthermore,

π is differentiable even when validActions gives different length outputs at different time

steps. The above operation can be easily implemented in autodiff libraries without

requiring a major change in the policy structure π.

5.1.2 Q-learning based MARL

Deep Q-learning for the single agent case [110] has also been extended to the multiagent

setting [85]. In the QMIX approach [85], the joint action-value function Qtot(τ ,a;ψ)

is factorized as (non-linear) combination of action-value functions Qi(τ
i, ai; θi) of each

agent i. A key operation when training different parameters θi and ψ involves maximizing

maxaQtot(τ ,a;ϕ) (for details we refer to [85]). This operation is intractable in general,

however, under certain conditions, it can be approximated by maximizing individual Q

functions maxa∈AQi(τ
i, ai) in QMIX. We require two simple changes to incorporate the

validActions function in QMIX. First, instead of maximizing over all the actions, we max-

imize only over valid actions of an agent as maxa∈validActions(p(τ i);si,di)Qi(τ
i, a). Second,

in Q-learning, typically a replay buffer is also used which stores samples from the environ-
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ment as (τ ,a, τ ′, r). In our case, we also store additionally the set of valid actions for the

next observation history τ ′i for each agent i as validActions(p(τ ′i); si, di) along with the

tuple (τ ,a, τ ′, r). The reason is when this tuple is replayed, we have to maximize Qi(τ ′i, a)

over a ∈ validActions(p(τ ′i); si, di), and storing the set validActions(p(τ ′i); si, di) would

reduce computation.

5.2 Implementing validActions using decision diagrams

In this section, we will explain how to implement the validActions function by leveraging

sdds as introduced in Chapter 4. To start with, we describe how to model the domain

constraints in ZBPF as Boolean formulas and compile them into sdds. To compile a

variety of complex constraints on routes, sdd multiplication operation provides a simple

and modular way. This makes the framework flexible and general purpose for modeling

real world applications. We also present how to query from a compiled sdd to get valid

actions in this section.

5.2.1 Modelling and compiling domain constraints

We now present how to use Boolean formulas to model three domain constraints in ZBPF.

Given an undirected graph G = (V,E), we associate each edge (i, j) ∈ E with a Boolean

random variable Xi,j . Let bold upper case letter (X) denote a set of Boolean variables

and its lower case counterpart (x) denote the instantiations.

Simple path constraint

A simple path is defined as a path that connects a source and a destination in a graph

without any loops. To represent a path in a graph G, we can assign true or false values

to each Boolean variable Xi,j for each edge (i, j) in G. If an edge (i, j) occurs in the

path, then Xi,j is set to true; otherwise, it is set to false. By taking the conjunction

of these literals, we can represent a specific path. To represent all possible paths, we

disjoin the Boolean formulas for all paths [26]. Let us consider the graph shown in

Figure 5.3(a). We assign Boolean variables A,B,C,D and E to represent the edges

(n1, n2), (n2, n3), (n2, n4), (n3, n4) and (n4, n5), respectively. By using the conjunction
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and disjunction operations, we can construct a Boolean formula that represents all simple

paths connecting the source node n1 and the destination node n5 as follows.

(A ∧ C ∧ E ∧ ¬B ∧ ¬D) ∨ (A ∧ ¬C ∧ E ∧B ∧D)

Since the number of simple paths between two nodes can be exponential, we use sdd as

introduced in Chapter 4 as a compact representation of the Boolean formula representing

paths. To construct an sdd encoding all simple paths, we use the GRAPHILLION [55]

package to first construct a ZDD and then convert it to an sdd [78, 79]. We also note

that a modified depth-first search algorithm [90] is also able to find out all simple paths.

However, using sdds, we can model much richer constraints in a tractable manner, and

for these constraints, there may not be a straightforward graph heuristic such as shortest

path.

Hierarchical clustering for large graphs To increase the scalability of our framework,

we take motivation from [24, 95]. These previous results show that by suitably partitioning

the graph G among clusters in a hierarchical way, we can keep the size of the sdd tractable

even for very large graphs. Such partitioning does result in the loss of expressiveness

as the sdd for the partitioned graph may omit some simple paths, but empirically, we

found that this approach worked well.

To partition a map represented as an undirected graph G = (V,E), we divide the nodes

V into clusters or regions c1, . . . , cm. Each cluster ci consists of both internal edges

within the cluster and external edges that cross into the cluster. We create a graph Gp by

considering these clusters as nodes. To enforce constraints on the variable X, we utilize

both G and Gp such that paths that are simple in Gp remain simple with respect to G.

Specifically, the paths cannot enter a region more than once, and they also cannot visit

any nodes within the clusters multiple times. We represent all the simple paths within

the clusters c1, . . . , cm and across the clusters using sdds. This hierarchical representation

captures the paths in a structured manner, employing two levels of hierarchy: one for

paths across the clusters and another for paths within the clusters.

Figure 5.2(a) illustrates the partitioning of a 4x4 grid map into clusters c1, . . . , c4, where
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Figure 5.2: (a)A 4x4 grid map partitioned into regions (or clusters) c1, ..., c4. c1, ..., c4
form a 2x2 grid map Gp (b) Inside of a cluster, e.g., c1. The black edges are the inernal
edges and the red edges are the external edges.

the resulting graph Gp is constructed using these clusters as nodes. In Figure 5.2(b), we

zoom in on the interior of a cluster c1 where m1 corresponds to node 1 in the original

map, m2 corresponds to node 2, and so on. Similarly, edge (m2,m7) corresponds to

edge (2, 3) in the original map, (m4,m8) corresponds to (6, 7), and so forth. The black

edges represent internal edges within the cluster, while the red edges represent external

edges connecting the cluster with other clusters. For each cluster, we construct an sdd

to represent all simple paths between the red nodes within the cluster. Additionally, an

sdd is constructed to represent all simple paths between nodes in graph Gp.

Visiting landmarks constraint

In Figure 5.1(c), let us consider a scenario where an agent needs to navigate along

a simple path from a source to a destination while also visiting certain landmarks.

Assume that there are N landmark nodes denoted as 1, . . . , N . We define inc(k) as

the set of variables corresponding to the edges incident on landmark k, represented as

inc(k) = Xi,k | (i, k) ∈ E. To ensure that the agent visits landmark k, we need to ensure

that at least one variable in inc(k) is set to true. This constraint can be expressed

as visit(k) =
∨

X∈inc(k)X. To guarantee the visitation of all landmarks, we can take

the conjunction of such constraints for each landmark, resulting in a conjunction of
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constraints over all landmarks.

visit = ∧Nk=1 visit(k) (5.4)

The visit Boolean formula can be represented using an sdd, denoted as sdd1. However,

sdd1 does not incorporate any information about routes or paths. To address this, we

introduce another sdd, sdd2, representing the simple path constraints from the source to

the destination. We can combine these two sdds so that the resulting sdd has models

(satisfiable instantiations) from both the sdds. This can be achieved by the conjoin

operation on sdds, and it also has polytime complexity in the size of component sdds [94].

This problem has applications in settings such as taxi pick-up and drop-off [32] and

logistics [64].

Coverage constraint

Consider the simple graph shown in Figure 5.3(b), where the agent’s task is to visit

node 3 at least once every k time steps over a horizon T . To model this problem, we

construct a time-indexed graph based on the given graph. In this time-indexed graph,

the agent chooses one edge at each time step t. For example, if the agent selects edge

(i, j) between time t and t+ 1, it signifies a movement from node i to node j. If i = j, it

means the agent stays at node i. The graph is designed to only allow movement from

left to right, aligning with the flow of time. To represent this constraint, we focus on the

edges between time steps t and t+ 1, which are represented by the variables in the set

E(t, t+ 1). Each of these edges can be taken exactly once so that the agent does not

move backward in time. For each variable Xi ∈ E(t, t+1), we make sure that only one of

them is true using the formula only(Xi) = Xi ∧j ̸=i ¬Xj . The time constraint between

time steps t and t+1 is given by:

tc(t, t+1) = ∨X∈E(t,t+1) only(X) (5.5)
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Figure 5.3: (a) An undirected graph A; (a) An undirected graph B; (b) Time-indexed
graph for graph B

The time constraint over all the time steps is given as follows.

∧T−1t=0 tc(t, t+1) (5.6)

To model constraints for visiting node 3 every k time steps, we can adopt a similar

strategy to the landmarks constraint visit but apply it between consecutive time steps t

and t+ k. By taking the conjunction of all these constraints over the time horizon T , we

obtain the final Boolean formula. This problem can be easily generalized to visit N nodes

at least once every k time steps. In literature, this is called the coverage problem [120]

and can be leveraged for applications like patrolling [49, 50]. We can compile separate

sdds for all such constraints including an sdd for the simple path constraints, and conjoin

them (as in the landmark constraint) to get one sdd that represents all the constraints.

In this fashion, we can represent complex constraints in a simple and modular fashion.

5.2.2 Querying decision diagrams for valid actions

Assuming that the agent’s current sampled path is denoted by p, in the context of sdd,

we can assume that p is a set of edges in the graph G that the agent has traversed from

the source node s, with Xp representing the variables for the edges in p. It’s worth

noting that the compiled sdd encodes all paths that satisfy the domain constraints, rather

than all valid actions given p, as described in Eq. 4.1 in Chapter 4. Let vp denote the

current vertex of the agent in G (assuming vp is not the destination). We can use Nb(vp)
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to represent all direct neighbors of vp in G. Given the current p, the set of paths that

satisfy all domain constraints after visiting v′ is given as follows.

C(ep′) =
{
a
∣∣∣ fr|ep′(a) = 1

}
(5.7)

where fr denote the Boolean function represented by the sdd root node r and ep
′
=

xp ∪ {Xvp,v′ = true} and v′ ∈ Nb(vp). fr|ep
′ is a subfunction resulting from setting

variables of fr to their values in ep
′ . If this set is not empty, it means that there exists

at least one path that leads to the destination while satisfying all constraints after the

edge (vp, v
′). Formally, we have,

validActions(p) = {v′ | v′ ∈ Nb(vp), (vp, v′) /∈ p, C(ep′) ̸= ∅} (5.8)

It is important to note that the number of paths in C(ep′) could potentially be exponential.

In larger graphs, it can be particularly challenging to enumerate all of these paths.

However, in fact, it is unnecessary to find all possible paths. The main goal is to

determine whether fr|ep
′ is satisfiable or not. We define a function SAT(fn|ev) as

follows.

SAT(fn|ev) =


true if fn|ev is satisfiable,

false otherwise
(5.9)

And the function validActions is revised as:

validActions(p) = {v′ | v′ ∈ Nb(vp), (vp, v′) /∈ p, SAT(fr|ep
′
) = true} (5.10)

If SAT(fr|ep
′
) is false, then v′ can be pruned from the action set, as it implies that there

is no simple path to destination d that takes the edge (vp, v
′) after taking the partial

path p while also satisfying domain constraints.

The above query, as such, can be easily performed for an sdd. We do not require a
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general purpose Boolean satisfiability solver. The sdd package 1 is equipped with a

model counting routine that can also take into account the evidence set. This routine

has polytime complexity in the number of sdd nodes. If model count is zero, then we

can prune v′, otherwise it is valid. However, this method was still slow with RL, as a

query is made to the sdd at each step of episode sampling. To address this, we present

a fast algorithm that performs inference in the sdd in a top-down search fashion, and

empirically, is much faster than the standard model counting approach. We also highlight

that the inference method we present is general purpose and is not limited to sdds that

represent paths or any specific constraint.

Algorithms to check sdd satisfiability Algorithm 5.1 describes a way to compute

SAT(fr|e), and is motivated by the sdd model counting approach. Table 5.1 shows

SAT(fn|ev) for a terminal sdd node n that is normalized for vtree node v (assume v has

the variable X). In this case, ev is either a literal (X or ¬X) or an empty instantiation

∅ (which means the variable X is not in the evidence e). Entries in this table can be

justified using standard Boolean logic. If X is not in e, then we can set X to either true

or false.

n SAT(fn|X) SAT(fn|¬X) SAT(fn|∅)

⊤ true true true

⊥ false false false

X true false true

¬X false true true

Table 5.1: SAT(fn|ev) for a terminal node given evidence

When n is a decision node with k elements, SAT(fn|ev) is computed as
∨k

i=1

(
SAT(fpi |el)∧

SAT(fsi |er)
)
, where el and er denote the subsets of evidence e that pertain to the vari-

ables of the left and right subtree of v respectively. We prove the correctness of Algorithm

5.1 by induction.

Proof. Base Case: n is a terminal node. If n is a terminal node, then SAT(·|·) is given

1https://github.com/wannesm/PySDD
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Algorithm 5.1: BU-SAT: bottom-up method

1 Input: SDD r and evidence e

2 // visit children before parents

3 for node n in the SDD do

4 if n is a terminal node then

5 n.value← SAT(fn|ev)
6 else

7 n.value←
∨k

i=1 pi.value ∧ si.value
8 // (pi, si) is the ith element of node n

9 end

10 end

11 return r.value

by Table 5.1.

Inductive Step: n is a decision node. Assume it has k elements, and is denoted as

(p1 ∧ s1)∨ ... ∨ (pk ∧ sk). Let X and Y denote variables in the left and the right subtree

of v respectively. Notation ∨x|=e implies disjunction over all instantiations x that are

consistent with evidence e.

SAT(fn|ev)=
∨
x|=el

∨
y|=er

SAT(fn|xy)

=

k∨
i=1

( ∨
x|=el

∨
y|=er

(
SAT(fpi |x)

∧
SAT(fsi |y)

))
(5.11)

=
k∨

i=1

( ∨
x|=el

SAT(fpi |x)
)∧( ∨

y|=er

SAT(fsi |y)
)

(5.12)

=

k∨
i=1

(
SAT(fpi |el) ∧ SAT(fsi |er)

)
(5.13)

Equation (5.11) holds because of the decomposability property of sdd, i.e., variables in

prime pi and sub si are disjoint.

The time complexity of Algorithm 5.1 is linear in the size of sdd as every node n is visited
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only once. However, in RL, the inference for validActions needs to be done at each time

step for each training episode. We observed empirically that this method was slow, and

difficult to scale. We next develop our inference method that implements the same logic

as in Algorithm 5.1, but in a top-down fashion. Our approach does not always need to

visit each sdd node, which makes it faster.

In Algorithm 5.2, for a decision node n (which has elements (pi, si)), we recursively

check if SAT(fpi |el)=true and if SAT(fsi |er)=true for all i. As we only need to answer

whether the formula fn|ev is satisfiable or not, we can terminate the procedure once

we have found that both the conditions are true. We note that we check whether fsi |y

is satisfiable only if fpi |x is satisfiable. We also store values of terminal and decision

nodes that we have already visited and reuse them during the recursion. Each edge

in sdd will be visited at most once. Hence, Algorithm 5.2 has linear complexity in the

worst case. This simple approach gives us significant improvement in inference speed

as compared to Algorithm 5.1. We also optimize this approach over an episode. That

is, assume that the edge (vp, v
′) is selected at time step t, we can reuse the values of

visited nodes during computing SAT(fr|ep
′
) for checking validActions at time step t+ 1

(details omitted). These optimizations are not easily integrable in the bottom-up or

model counting approach.

5.3 Experiments

We first present results to show the succinctness, efficiency and modularity of our symbolic

knowledge compilation framework. Then we show how our knowledge compilation

framework works in ZBPF when integrated with previous multi-agent deep-RL methods

based on policy gradient(e.g., DCRL) and Q-learning (e.g., MAPQN) on a number

of different maps and with different number of agents. We also show this knowledge

compilation framework can be integrated with another MARL algorithm (PRIMAL) for

solving stand MAPF problem.
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Algorithm 5.2: TD-SAT: top-down search

1 Input: sdd node n and evidence ev

2 if n.visited is false then

3 if n is a terminal node then

4 n.value← SAT(fn|ev)
5 else

6 n.value← false

7 for element(pi,si) of node n do

8 if TD-SAT(pi, el) is true then

9 if TD-SAT(si, er) is true then

10 n.value← true

11 Break

12 end

13 end

14 end

15 end

16 n.visited← true

17 end

18 return n.value

5.3.1 Statistics of our symbolic compilation method

Number of paths encoded

Table 5.2 shows that an sdd can encode an exponential number of paths demonstrating

its succinctness. For large maps (e.g., 10x10, 20x20), we use hierarchical clustering as

noted in Section 5.2. The table shows the number of paths encoded in maps of sizes

10x10 and 20x20 and with landmark constraints. The largest sdd contained 127K nodes

(for 20x20, open grid). We were able to compile sdd with very large number of landmarks

(80 landmarks in 20x20 grid), the resulting sdd has ∼22K nodes, and is thus tractable

to represent and reason with.
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Size Open grid 5 Landmarks

10x10 1.08E+13 2.25E+12

20x20 4.59E+51 1.21E+50

Table 5.2: Number of paths encoded

Simulation Speed

We compare the sampling speeds of TD-SAT, BU-SAT with the speed of two graph-

heuristics based inference approaches on open grid maps (5x5, 10x10, and 20x20) and

maps with five landmarks. For grid maps, the graph heuristic (GH1) uses Dijkstra’s

algorithm to determine whether the agent can take the edge next (vp, v
′) by checking if

there exists a path between v′ and the destination d. For maps with landmark constraints,

we use an approximation algorithm (GH2) [109] to check if there exists a simple path from

the next possible node v′ to destination d while going through unvisited landmark(s).

We randomly generated 10K paths given the source (top right node) and destination

(bottom left node) using each approach for both open grid maps and maps with 5

landmarks. We run the simulation for each approach on all instances 5 times. We report

the average simulation speed (for a total of 10K paths). Table 5.3 shows that our inference

approach is faster by an order of magnitude than the model counting based approach

BU-SAT. The graph heuristic on open grid maps performs well as checking whether the

edge (vp, v
′) can be taken by Dijkstra’s algorithm runs in time Θ((|V | + |E|) log |V |).

However, we can use hierarchical clustering to divide 10x10 and 20x20 into smaller graphs

so that the simulation speed of our approach is comparable to the graph heuristic. For

landmarks, Table 5.4 shows that our approach is the fastest among all approaches. GH2

runs extremely slow on large maps (even with 5 landmarks), and cannot be scaled up to

the high density setting.

In Table 5.5, we show the simulation speeds of BU-SAT and TD-SAT for the coverage

problem on a straight line graph with 7 nodes with number of landmarks to visit as N=3.

The agent needs to visit all the landmarks every K=15 time steps. The simulations are
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Approach 5x5 10x10 20x20

BU-SAT 979.7 38873.6 730031.1

TD-SAT 153.1 1313.0 26915.3

GH1 6.9 42.9 473.4

Table 5.3: Simulation speed on open grid maps (in sec)

Approach 5x5 10x10 20x20

BU-SAT 4513.6 49135.6 1282995.0

TD-SAT 201.9 2061.9 43619.2

GH2 1461.0 85142.9 494469.9

Table 5.4: Simulation speed on maps with 5 landmarks (in sec)

done for time horizons T =30, 60, 90. We run each simulation 10,000 times and report the

average time. Clearly, TD-SAT performs much faster than BU-SAT in all the instances.

5.3.2 Results of incorporating compiled constraints in RL

Simple path constraint

We next evaluate the integration of our knowledge-compiled framework (KCO) with

DCRL and Q-learning based approach MAPQN [44], which are introduced in Chapter 3,

on several open grid maps with varying number of agents. For these experiments, we

use the simple path constraints using an sdd. We follow the same ZBPF model and

experimental settings as in Chapter 3. The total objective is to minimize sum of arrival

time of all agent (SOAT) combined with penalties for congestion. We report the average

total objective over all agents vs the average cumulative sample count over all instances

on each map.

Open grids We evaluate KCO, GH1 with DCRL and MAPQN on open grid maps.

Figure 5.4 clearly shows that both KCO and GH1 make the training process faster and

more sample efficient. We note that the difference of the solution quality between KCO

and GH1 is not distinct. Moreover, the solution quality is not affected by hierarchical
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Approach T = 30 T = 60 T = 90

BU-SAT 25764.9 54841.6 80584.0

TD-SAT 2636.6 5483.8 8272.3

Table 5.5: Simulation speed for coverage problem (in sec)
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Figure 5.4: Sample efficiency results on open grids (N# denotes number of agents)

clustering (10x10 case). Based on this observation, we do not show results on the

integration of GH1 with RL approaches on maps with obstacles. As noted in Chapter 3,

MAPQN cannot work well on large maps with a large number of agents due to the huge

state space. Therefore, we do not run MAPQN on grid sizes more than 5x5.

Obstacles We evaluate KCO with DCRL and MAPQN on a 10x10 map with randomly

generated obstacles (density 0.35). Figure 5.6 clearly shows that DCRL and MAPQN

can converge much faster with the integration of KCO. Specifically for MAPQN, several

agents did not reach their destinations (8.8 agents on average, for N10 case), whereas

in MAPQN+KCO, all agents reached destination, which explains much better solution

quality by MAPQN+KCO.

Simple path + landmark constraints

In the setting with landmark constraints, to encourage agents to visit all landmarks, we

give a higher positive reward if the agent visits a landmark for the first time. Similarly,

the agent receive a higher reward if it reaches the destination after visiting a set of

landmark nodes in any order via a simple path.
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Figure 5.5: Sample efficiency results on maps with landmarks (L# denotes number of
landmarks)

0 2 4 6 8
Average Sample Count 1e4

1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

Av
er

ag
e 

To
ta

l O
bj

ec
tiv

e

1e3

DCRL (N5)
DCRL+KCO (N5)
DCRL (N10)
DCRL+KCO (N10)

(a) DCRL+KCO

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Average Sample Count 1e5

1.50
1.25
1.00
0.75
0.50
0.25
0.00

Av
er

ag
e 

To
ta

l O
bj

ec
tiv

e

1e3

MAPQN (N5)
MAPQN+KCO (N5)
MAPQN (N10)
MAPQN+KCO (N10)

(b) MAPQN+KCO

Figure 5.6: Efficiency–10x10 grid with obstacles

We evaluate KCO and GH2 based inference approaches with DCRL and MAPQN

algorithms on maps with randomly generated landmarks. GH2 with RL on large maps

runs extremely slow, so we omit those results as well. Figure 5.5 shows that DCRL

and MAPQN converge using much less samples when integrated with KCO and GH2.

The results also confirm that an agent needs many exploration to find a path that goes

through all the landmarks when there is no integration of compiled knowledge. We also

show the results of the setting where there is a large number of agents. This setting

is very challenging as all the agents need to visit the same set of landmarks while also

avoiding congestion.

Additional experiments in standard MAPF domain

we also evaluated the effectiveness of integrating our proposed knowledge compilation

framework KCO with PRIMAL, a RL approach used to solve standard MAPF problems.
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Figure 5.7: Efficiency–10x10 grid with obstacles (PRIMAL)

It has been noted in previous research that high obstacle density can pose a challenge for

PRIMAL. In our experiments, as shown in Figure 5.7, we observed that PRIMAL+KCO

outperformed PRIMAL in terms of sample efficiency. However, we noticed that the

average sum of costs (SOC) was initially high for both PRIMAL and PRIMAL+KCO,

particularly in the N4 case, as agents took actions to avoid congestion.
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Chapter 6
Neuro-symbolic for Action Constrained RL

Learning a policy in constrained combinatorial action spaces can be quite challenging as

the agent must explore the action space through trial and error to find feasible actions.

One possible approach is to solve a Mixed Integer Quadratic Program (MIQP) in the

projection step to obtain feasible actions. However, this is intractable in RL as feasible

actions must be computed in each time step, and MIQP can be NP-hard. To address

this, an approach using QP with integer rounding as action projection has been proposed.

While this can obtain an approximate solution, rounding to the nearest integers can

cause constraint violations. In Chapter 5, we addressed a constrained RL problem by

using an sdd to represent all paths that satisfy the domain constraints and query valid

actions through paths. However, we did not handle the general setting of constrained

RL with combinatorial action spaces, although the number of paths encoded by sdd is

combinatorial, the action space is not.

This chapter introduces a novel neuro-symbolic method for solving constrained RL

problems with discrete and combinatorial action spaces. The approach guarantees

never to violate any constraint and does not require any costly projection step over the

constraint space. Section 6.1 presents the advantages of using probabilistic sentential

decision diagrams (psdd) to represent the probability distribution over all valid actions and

how to integrate psdd with a policy network in RL. The following section, Section 6.2,

details the optimization of psdd parameters using a Q-learning-based approach for

factored action spaces. In Section 6.3, we apply the sdd structure, underlying the psdd,

to compile various resource constraints efficiently. Finally, in Section 6.4, we compare the

performance of our approach with previous methods for action constrained RL, which
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often violate constraints and are not scalable, demonstrating the superior performance

and scalability of our approach.

6.1 Probability distribution over valid actions using deci-

sion diagrams

In Chapter 4, we introduced a propositional logic-based framework for defining states,

actions, and constraints in RL. Specifically, we assume that a state and an action

can be defined using sets of propositional variables denoted as XS = β1, . . . , βn and

XA = α1, . . . , αm, respectively. Additionally, we assume that there are K constraints,

with each constraint represented as a Boolean function fk(XS ,XA). Given a state sβ,

which is an instantiation of the variables in XS , we define the set of actions that satisfy

all constraints, denoted as C(sβ), as follows:

C(sβ) =
{
aα

∣∣∣ K∧
k=1

fk|sβ(aα) = 1
}

(6.1)

where fk|sβ is a subfunction resulting from setting variables of fk to their values in sβ.

We represent a Boolean action constraint fk(XS ,XA) using a general data structure

sdds as introduced in Chapter 4. An sdd is a succinct and tractable representation

of a Boolean formula. More importantly, we can construct a separate sdd for each

fk ∀k = 1 : K. Then we can conjoin all such sdds to represent the single Boolean

function (in an sdd form) that represents the set of all valid actions. Such an approach is

useful as it allows splitting complex constraints into multiple simpler ones, which can be

compactly represented using sdds. Once we conjoin the sdds for all the action constraints

fk ∀k=1:K, we get the final sdd S for the Boolean formula over (XS , XA) encoding all

the action constraints. By parameterizing the sdd S, we obtain a Probabilistic sentential

decision diagram (psdd) as introduced in Chapter 4, which represents a probability

distribution over the models of the underlying sdd. Given a world state sβ, we can set

variables XS as per β as evidence e. To obtain the distribution ∆C(sβ), we need to

compute the probability of evidence for every node in the psdd [61], and renormalize the
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psdd parameters based on the probability of evidence.

Theorem 1. Consider a decision node n = (p1, s1, θ1), . . . , (pk, sk, θk) that is normalized

for vtree node v, with left child l and right child r. Given evidence e, the renormalized

parameters θ′i are given as follows.

θ′i =
Prpi(el) · Prsi(er) · θi∑k

j=1 Prpj (el) · Prsj (er) · θj
(6.2)

where Prpi(el) and Prsi(er) denote the probability of evidence for node pi and node si

respectively.

Proof. Given evidence e, the renormalized parameter θ′i is defined as conditional proba-

bility Pr([pi]|ev) (from Theorem 2 in [61]), which can be written as follows.

θ′i = Prn([pi]|ev) =
Prn(ev|[pi]) · Prn([pi])

Prn(ev)
(6.3)

Let X denote the variables of the left vtree l, and Y denote the variables of right vtree

r. We have,

Prn(ev|[pi]) · Prn([pi])

=
( ∑

x|=el

∑
y|=er

Prn(xy|[pi])
)
· θi

=
( ∑

x|=[pi]∧el

∑
y|=er

Prn(x|[pi]) · Prn(y|[pi])
)
· θi By Proposition 2 in [61]

=
( ∑

x|=[pi]∧el

∑
y|=er

Prpi(x) · Prsi(y)
)
· θi By Proposition 1 in [61]

=
( ∑

x|=[pi]∧el

Prpi(x)
)
·
( ∑

y|=er

Prsi(y)
)
· θi

= Prpi(el) · Prsi(er) · θi

From Theorem 6 in [61], we have

Prn(ev) =
k∑

i=1

Prpi(el) · Prsi(er) · θi
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Therefore, we have the renormalized parameter θ′i as follows,

θ′i =
Prn(ev|[pi]) · Prn([pi])

Prn(ev)
=

Prpi(el) · Prsi(er) · θi∑k
j=1 Prpj (el) · Prsj (er) · θj

6.1.1 Benefits of psdd representation in RL

There are several significant benefits of using a psdd for constrained, combinatorial

action spaces in RL. First, we can decompose complex constraints over valid actions into

multiple simpler constraints. We can construct an sdd independently for each constraint,

and later conjoin such sdds in a tractable manner to get the final sdd representing all the

action constraints [94]. Second, we can sample from the distribution ∆C over valid actions

by following a simple top-down procedure in the psdd S that has complexity linear in

the depth of the psdd [61], which is crucial for fast simulation in an RL environment.

Third, each generated action sample is guaranteed to satisfy all the action constraints

by design. This is a major benefit over previous ACRL methods [12, 66] where there

is no guarantee that sampled actions will always satisfy constraints, and guaranteeing

action constraint satisfaction requires solving expensive mixed-integer math programs

for each RL step. Finally, the number of parameters in a psdd is linear in the number

of edges in the psdd [61]. Thus, for compact psdds, we can represent the distribution

over an exponentially large number of models it encodes using a tractable number of

parameters. Therefore, psdd parameters can also be optimized relatively easily using RL

algorithms compared with directly optimizing over the space of combinatorial actions.

We also note that the whole sdd-based knowledge compilation can be done offline before

the training of the RL agent starts. Thus, during training, there is no overhead involving

manipulation of psdds other than updating its parameters manipulation of psdds other

than updating its parameters using the RL algorithm and sampling actions from it. We

also show in Section 6.3 that sdd for common types of resource constraints remains

tractable, which shows the usefulness of this method for practical applications.
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Figure 6.1: (a) Resource allocation constraints and Boolean formula; (b) Parameterized
psdd. Red arrows denote a sampled action from this psdd. We associate a unique id for
each decision node (D1–D5).

6.1.2 Integrating psdd in policy network

The parameters of a psdd compactly encode the distribution over all the valid actions.

Our key insight is that, as optimizing directly over all valid actions is intractable, we

optimize parameters of the psdd for action constraints, which is tractable given that

number of parameters in a psdd is linear in the number of psdd edges [61]. For this

purpose, we embed psdd parameters in a deep neural network, which can be later

optimized using RL.

We reconsider the resource allocation example (assigning one resource to four entities)

as introduced in Chapter 4. The constraints and Boolean formula are describe in

Figure 6.1(a). Figure 6.1(b) shows the psdd encoding a probability distribution over all

valid actions. We use this psdd as an example to show how psdd parameters can be

embeded in a deep neural network.

Figure 6.2 shows the neural network policy which has integrated the parameters. The

policy network takes the state as input. The input is followed by two fully connected

layers with ReLU activation function. Here, we consider fully connected layers for

simplicity, in practice, any other kind (and number) of hidden layers can be used. At
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the end of the policy network, we create different heads for different psdd decision nodes.

Each head has a fully connected layer with Softmax activation function, and it outputs

the parameters of its corresponding decision node. For example, D1 (in Figure 6.1(d))

has two branches, as per psdd semantics, there are two parameters of D1, and the

Softmax layer for D1 has 2 units in policy network. Each policy network head must

output a valid probability distribution since the parameters of a decision node are non

negative and sum to 1, and determine a distribution (as noted in Chapter 4). Here, each

head is also independent of others given the fact that each decision node has its separate

local probability distribution (as noted in Chapter 4). In this example, there are three

heads for D1, D2, and D4 respectively in Figure 6.2. D3 and D5 only have 2 branches,

and the sub of their second branch is false (in Figure 6.1(d)). Therefore, the parameter

for their second branch is always zero, and we do not have to create a Softmax layer for

D3 and D5.

6.1.3 Sampling valid action from psdd distribution

Sampling a valid action from the probability distribution encoded by the psdd can be

done using a fast and top-down procedure, which is critical for fast simulation in RL.

We take the psdd for resource allocation constraints and its parameters as shown in

Figure 6.1(d) as a running example. We follow the below process for action sampling [61].

We start from the psdd root node i.e., D1. Since D1 is a decision node, we sample one

of its branches according to its local distribution (0.7, 0.3). Suppose we have selected

the first branch, then we get ¬A (which is a terminal node) and decision node D2.

We conduct the same sampling process for D2. Assume we have selected the first

branch of D2 with probability 0.2, we get ¬B and decision node D4. We continue

the sampling process for D4. Assume that we sample the first branch of D4 with

probability 0.4, and get C and ¬D. We have now completed the sampling process

since we have obtained a model (assignment for all the literals). In this example, the

sampled model is (¬A,¬B,C,¬D). To compute the probability of this model, we just

need to multiply all parameters that we have encountered during sampling, and we have

Pr(¬A,¬B,C,¬D) = 0.7× 0.2× 0.4 = 0.056. The complexity of the sampling is linear
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Figure 6.2: psdd integrated Policy Network. Each softmax output head is a distribution
over different branches of the corresponding psdd decision node

in the depth of the psdd [61], which is significantly cheaper than sampling naively from

a tabular distribution over the combinatorial action space.

Proposition 2. Let the sampled decision branches for all decision nodes from the policy

network be denoted using apsdd. There exists a unique environment action a corresponding

to apsdd which satisfies all the action constraints encoded by the underlying psdd.

Proof. The sampled action apsdd tells which branch to follow for each decision node in

the psdd. Consider the sampling process in Section 6.1.3. Starting from the root node of

the psdd, we choose the branch as denoted in apsdd. This gives us a unique path from

root to a leaf node in the psdd. All the literals encountered on this path constitute the

unique environment action a corresponding to apsdd. We also know that Pr(a) > 0 (i.e.,

the action a satisfies all the constraints), as probability of action a is the multiplication

of the local probabilities of the chosen branches in apsdd (as noted earlier, details in [61]),

which are non-zero by definition (as they are the output of a Softmax layer).

6.2 Putting it all together: factored action Q-learning

We have shown that the policy network outputs the parameters for each decision node in

a psdd and that sampling decision branch of each decision node gives us a psdd action

apsdd. Technically, this action cannot be accepted by the RL simulator. However, based

on Proposition 2, psdd action apsdd can be mapped into a unique environment action
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a. Environment actions are the actions that can be fed into RL simulator. At each

step, given the current state s, we can obtain the parameters of the psdd from the

policy network. Then we sample the psdd action apsdd and get the uniquely mapped

environment action a. We pass a to the RL simulator and receive a reward r. The

environment transitions to a new state s′. The transition sample (s, a, r, s′) can be stored

in an experience replay buffer, and used to train a critic i.e., the Q function. The critic

will guide the update of psdd parameters using the policy network as in Figure 6.2.

Policy update Next, we show how to update the psdd parameters using a recently

proposed Q-learning based approach for factored action spaces (named AQL) [108]. The

high-level idea is as follows. Given a state s, we first search for the psdd action apsdd

with the highest Q-value approximately [108], where the Q-value is computed using

apsdd’s corresponding environment action a. As the action space is combinatorial, the

AQL algorithm uses two heuristics to sample actions:

• Sample actions apsdd using the current policy network.

• Sample actions uniformly from the action space. This is challenging as the action

space is both constrained and combinatorial. However, this can be addressed easily

using the underlying sdd. The open source library 1 provides functionality to

sample variables (environment actions in our case) uniformly from a given sdd,

which is fast and tractable in the size of the sdd.

From the action samples collected as above, we can get the best action a∗psdd that has the

highest Q-value. We then update the psdd parameters by maximizing the probability of

getting the best action a∗psdd. To prevent the output distribution of each decision node

from becoming deterministic, we also add an entropy regularization. Assume the policy

network π which outputs the psdd parameters is parameterized by θ. The loss function

for training the policy is given as follows.

L(πθ; s) = − log π(a∗psdd|s, θ)− λH(π(·|s, θ)) (6.4)

1https://github.com/art-ai/pypsdd
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The first term in the above loss function is the negative log-likelihood with a∗psdd as the

target (similar to the cross-entropy for classification task). By minimizing it, it is more

likely to sample a psdd action from the policy network with the highest Q-value. The

second term is the regularization term which makes the policy network output more

diverse distributions for decision nodes. λ is a hyperparameter for the regularization

term.

Critic update As we mentioned, the Q-value is computed using the environment

action a instead of apsdd due to the deterministic mapping shown in Proposition 2. We

use function g to denote the mapping i.e., a = g(apsdd). Assume the Q function is

parameterized by ϕ, and we have the loss function for updating the Q function as:

L(ϕQ) = Eπ

[(
(rt + γQ(st+1, a

∗
t+1))−Q(st, at;ϕ

Q)
)2] (6.5)

where a∗t+1 = g(a∗psdd,t+1) and at = g(apsdd,t).

The original AQL algorithm is designed for large action spaces. However, it is not

specialized to handle combinatorial action spaces with complex logical constraints. A

key benefit of our combination of AQL with psdd is that we can address rich constrained

and combinatorial action spaces. Key insights that have helped are to re-interpret psdd

parameters as actions to be optimized by AQL, use Proposition 2 to extract the unique

environment action, and modify the policy and critic loss functions appropriately. Finally,

we emphasize that AQL algorithm is not the only algorithm that can be used to train the

policy network in our case. Most RL algorithms designed for factored action spaces can

be applied as the sampled action apsdd maps deterministically to an environment action

a. It also shows the generality of our developed techniques to optimize psdd parameters.

6.3 Compact sdd encoding of resource constraints

In this section, we describe different resource constraints on integer variables. We also

introduce how to translate integer variables to Boolean variables, and constraints to

Pseudo-Boolean constraints in a scalable fashion.
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Types of resource constraints Three types of resource constraints we consider in this

paper are global, regional, and local constraints, as introduced by [12]. Global constraints

are also known as equality constraints. They ensure that all available resources m are

allocated to the n entities:
∑n

d=1 ad = m where d ∈ D is one of the entities and ad ∈ Z≥0

represents the number of resources allocated to it. Regional constraints require a grouping

of entities G, so that constraints can be enforced on each group Gj ∈ G. E.g., the case of

a regional minimum bound Gmin
j :

∑
d∈Gj

ad ≥ Gmin
j . Local constraints limit the number

of resources that can be allocated to a single entity. E.g., an entity has a maximum

capacity dmax: ad ≤ dmax. For both local and regional constraints, maximum, minimum,

and equality constraints are possible. Other sensible constraints do also exist, such as

resource flow constraints. They are not presented here, even though it is possible to

represent them using an sdd.

Resource constraints as Boolean constraints We translate the action representation

from an integer vector a to a Boolean representation XA by creating a Boolean variable

bdi for every integer i ∈ {1, ..., ud}, where ud is the highest value ad can take. We do this

for all entities d ∈ D. If we consider a global constraint for m resources and n entities,

this will lead to O(m× n) Boolean variables bdi where d ∈ {1, ..., n} and i ∈ {1, ...,m},

as ud = m, ∀d. A corresponding less than or equal to constraint is
∑

d,i bdi ≤ m. Local

and regional constraints can be constructed in a similar fashion using analogous Boolean

variables.

Translating Boolean constraints into decision diagrams We show a scalable

method to compile these Boolean constraints into a compact sdd. Translating these

constraints into Boolean formulas and then compiling these into sdds using standard

packages [23, 93] did not scale; The resulting sdd was extremely large in size. Instead,

we developed a way to create sdds for these Boolean constraints which is inspired by

pseudo-Boolean constraints [36]: First, we create a table that represents the Boolean

constraint. In the case of a less than or equal to constraint, it has m + 2 rows and

m ∗n−m+1 columns. An example for m = 3 (total resources) and n = 2 (total entities)

is shown in Table 6.1.
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b11 b12 b13 ⊤

b12 b13 b21 ⊤

b13 b21 b22 ⊤

b21 b22 b23 ⊤

⊥ ⊥ ⊥

Table 6.1: Table for Boolean constraint for the setting with total 3 resources and 2
entities. Each entity can get 0-3 resources.

In order to check whether an instantiation of all Boolean variables is valid from this

table, we start in the top left corner. If we want to set the variable in the current cell to

⊤ (true) (i.e., one unit of resource is consumed), we move one cell downwards. If we want

to set it to ⊥ (false) (i.e., no resource is consumed), we move to the right. This process

is repeated until we reach a cell with ⊤ (true) or ⊥ (false), which tells us whether the

variable assignment we tested is valid. We encode this logic into an sdd structure.

This table representation allows us to efficiently compute the information needed to

construct an sdd. The total number of decision nodes in this sdd is (m+1)∗(n∗m−m)−1.

With this sdd, we can encode
∑n∗m−m

i=0

(
n∗m
m+i

)
models. Thus, in a polynomial-sized sdd

(in the number of resources and entities), we can represent combinatorial number of valid

resource allocations. For all the constraints, we create sdds in this fashion. We then

conjoin (or multiply) all such sdds (which is also a poly-time operation as noted earlier)

to encode all the constraints into a single sdd. We parameterize the resulting sdd to

obtain the psdd, which is incorporated into our algorithm.

6.4 Experiments

We evaluate our approach on two developed simulation environments for resource allo-

cation: an emergency response system (ERS) [10] and a bike sharing system (BSS) [9].

These environments are used in evaluating the previous proposed resource allocation

approaches in [12, 66]. Our code is publicly available in GitHub repository 2.

2https://github.com/lingkaching/kcac
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Emergency response system This system was originally proposed in [122]. The task

here is to provide a target allocation of ambulances to stations in a day. The allocation

of ambulances depends on the observation of emergency request demand, the current

allocation of ambulances to stations, and the time of the day. This environment also

considers adding Gaussian noise (called surge) to the demand request, occurring at a

random zone (which a station belongs to) and random time once per day.

Bike sharing system The bike sharing system was originally introduced in [46]. The

task is to provide a target allocation of bicycles to stations to minimize the lost customer

demand (no bicycle or no empty parking spot at the station) in a day.

Baselines We compare our proposed framework KCAC against two previous approaches:

DDPG with projection using Quadratic Programming [12] and NFWPO [66] where

MIQP is used to enforce constraints on resource allocations. The implementations for

both approaches are publicly available. There are two other methods developed in [12]:

DDPG with constrained Softmax and DDPG approximate OptLayer. However, these

two approaches are restricted in the types of resource constraints they can handle (i.e.,

they cannot be easily extended to more complicated regional constraints). Therefore, we

compare against the most general DDPG with QP-based projection.

6.4.1 Emergency response system

In ERS, we consider total 32 ambulances and 25 stations as in [12]. We consider three

types of resource constraints as follows.

• Global sum: This constraint says the total resource assigned to all stations must

be equal to total available resources.

• Local min and max: This constraint specifies the lower bound and upper bound

for the resources assigned to a station.

• Group min and max: In this constraint, several stations are grouped together

(which is common in reality), and total resource assigned to stations belonging to

the same group should be bounded.
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Figure 6.3: The number of average constraint violations in DDPG-QP

In our experiments, the local min is always 0, and local max is 2 or 4 in different instances

for all stations. We also generate different group minimal values in a systematic way as

follows. We start with assuming all ambulances are uniformly allocated over all stations

so that each station will be assigned 1.28 (32/25) ambulances. Then we modify this

average assignment with different percentages e.g., 50%, 75%, and 100%, and we get

the group min by multiplying the modified average assignment with total number of

stations in the group. Intuitively, the higher the percentage is, the tighter the group

min constraint is. In the experiments, we do not consider the group max since we

assume a group is able to accommodate a large number of ambulances. Considering the

combination of these local max and group min constraints, we have total 6 instances e.g,

2-50%, 4-50% etc. For each instance, we first generate different psdds to encode different

constraints separately as described in Section 6.3. And we multiply all generated psdds

to obtain a single psdd which encodes the actions that satisfy all constraints. In the

experiments, we keep the neural network architecture of our policy network and critic

network the same as the architecture in DDPG-QP except for the last layer in the policy

network for our approach (as noted in Figure 6.2). For NFWPO, we use their default

neural network architecture (we changed their architecture to the one used in DDPG-QP,

however, it performed worst). We also tune the learning rates for all approaches using

grid search over {10−2, 10−3, 10−4}.

We evaluate all approaches on two ERS scenarios: non-surge and surge, and we run

each approach on all instances with 5 different random seeds and report the average. In
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Figure 6.4: Learning process w.r.t run time on ERS with surge
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Figure 6.5: Learning process w.r.t iteration on ERS with surge

each run, there are 10k iterations. Figure 6.3 shows the number of average constraint

violations per iteration during testing using the final trained policy in DDPG-QP. In

both Figure 6.3(a) and (b), x-axis denotes the local maximum resource threshold, y-axis

denotes the number of constraint violations, and different bars denote different group

min threshold values (50%, 75%, 100%). We can see that there are constraint violations

in all instances. The number of constraint violations is getting higher when the group

min constraints are becoming tighter. When the percentage for group min is 100%, we

see the most constraint violations (except for the non-surge, ‘2’ as local max case). The

constraint violations are caused by the rounding procedure after solving a QP in each

RL step, and it is very hard to control the rounding given the combinatorial action space.

In KCAC and NFWPO, there are zero constraint violations during testing. However,

zero constraint violation is achieved via different methods. In our approach KCAC, the

action is sampled from the psdd which encodes all valid actions, and it will never violate

constraints. However, in NFWPO, MIQP is used to project the action from the policy

network to a valid action. Solving a MIQP is NP-hard and is computationally expensive.
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Figure 6.6: Learning process w.r.t iteration on BSS

Therefore, it takes more time in NFWPO to obtain the same solution quality compared

with our approach. In Figure 6.4, we show the learning process of all approaches on the

most difficult environments for DDPG-QP (surge, and 100% used in computing group

min). In both Figure 6.4(a) and (b), x-axis denotes the relative time elapsed during

training w.r.t the starting time, and y-axis denotes the return. We can see that it takes 5

times longer for NFWPO to finish the whole 10k iterations compared with our approach

KCAC (∼40hrs v.s. ∼8hrs). To achieve the same solution quality, NFWPO will take

more time as well. In other instances for both surge and non-surge cases, NFWPO was

4-5 times slower on average than our method KCAC. Finally, we show the learning

process w.r.t. the iteration for all approaches on the surge environment in Figure 6.5. The

results on the non-surge environment are very similar to the results on surge environment.

As we can see in Figure 6.5, our approach KCAC and DDPG-QP can achieve very close

average returns when convergence occurs. However, there are many constraint violations

during testing using the final policy in NFWPO. When compared with NFWPO, our

approach achieves better solution quality and runs much faster.

6.4.2 Bike sharing system

In BSS experiments, we use the same number of bike stations as in [66] i.e, 5 stations,

but we vary the number of bikes e.g, 100, 150 and 200. We consider the global sum

constraint and local max constraint in BSS environment. The local max is 23, 35 and

47 for the instance with 100 bikes, 150 bikes and 200 bikes respectively. We evaluate

the final trained policy of all three approaches for 1K episodes. In testing, all three
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approaches can achieve zero constraint violation since the constraints are not complex .

However, our approach KCAC performs better in terms of average return. Figure 6.6

shows the learning process by different methods. Our method provides the best return

over both DDPG-QP and NFWPO.
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Conclusion and Future Work

7.1 Conclusion

The field of sequential decision making with constraints is an active area of research with

numerous real-world applications, including air-delivery by drone and resource allocation.

In this thesis, we focused on studying the challenges associated with sequential decision-

making under various types of constraints in both single-agent and multi-agent settings.

To address these challenges, we examined the use of constrained Markov decision processes

(CMDP) and constrained decentralized partially observable Markov decision processes

(Dec-POMDP) for modeling such problems. However, a major challenge in solving

CMDP and constrained Dec-POMDP using RL is finding valid actions that satisfy the

constraints. This is especially difficult in large state and action spaces, where trial

and error exploration is not efficient, leading to the problem of sample inefficiency. In

multi-agent systems, learning control policies even without constraints in a decentralized

setting is challenging due to partial observability, uncertainty, and scalability issues.

While several scalable multi-agent RL methods have been proposed, few approaches

have been developed for large-scale constrained MARL settings since they require credit

assignment for both the primary objective and constraints.

The thesis proposes an innovative approach to tackle large-scale multi-agent constrained

reinforcement learning (RL) in a collective setting. In addition, a neuro-symbolic method

is introduced to address the sample-inefficiency problem resulting from the difficulty in

identifying valid actions in each RL step. The contributions of the research are divided

into three parts.

105



Chapter 7. Conclusion and Future Work

• Firstly, the thesis considers a constrained collective Dec-POMDP model and

presents a fictitious play based approach, coupled with Lagrangian Relaxation to

assign credit to both the primary objective and the constraints.

• Secondly, a zone-based multi-agent pathfinding (ZBPF) framework, which takes

inspiration from the drone delivery application, is proposed. The framework

is designed to handle a variety of constraints, including capacity, simple path,

landmark, and coverage. The thesis proposes a neuro-symbolic method that treats

constraints as domain knowledge, which is compiled using a sentential decision

diagram (sdd). The compiled knowledge is then integrated with RL algorithms to

ensure that agents only select valid actions at each RL step.

• Thirdly, the thesis tackles the problem of action constrained RL with discrete and

combinatorial action spaces. Another neuro-symbolic method is presented that

uses a probabilistic sentential decision diagram (psdd) to encode a probability

distribution over valid actions for any given state. A neural network policy of an

agent is learned by optimizing the psdd parameters.

The methods proposed in this thesis provide a significant contribution to solving the

challenging problem of large-scale multi-agent constrained RL and address the issue of

sample inefficiency when finding valid actions. However, there are still areas where further

research could be conducted. The first direction is to extend the current knowledge com-

pilation framework, which utilizes probabilistic sentential decision diagrams, to settings

with continuous action spaces. Additionally, we propose an alternative neuro-symbolic

integration method that can speed up the policy learning process. The second direction

is to tackle infeasible constrained RL problems that arise from the misspecification of

constraint thresholds. These future research directions have the potential to significantly

enhance the effectiveness and practicality of solving sequential decision making problems

using RL.
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7.2 Future work

7.2.1 Action constrained RL with continuous action space

In Chapter 6, we proposed a neuro-symbolic method for solving constrained RL problems

with discrete and combinatorial action spaces. However, in many real-world applications,

constraints are imposed on continuous actions. An example of such an application is the

Bipedal walking robots, as mentioned in 1, where the movements of all joints must be

synchronized to ensure stable and safe locomotion.

In the Mujoco environments [107], a similar task called Walker2D is presented. The

walker is a two-dimensional two-legged figure composed of four main body parts: a single

torso at the top, two thighs in the middle, two legs in the bottom, and two feet attached

to the legs. The objective is to coordinate the movements of both sets of feet, legs, and

thighs to move in the forward (right) direction by applying torques on the six joints that

connect the body parts. In this example, we consider state-dependent action constraints,

which are expressed as follows:
6∑

i=1

|viwi| ≤ 20 (7.1)

where vi, i = 1, . . . , 6 is the ith dimension of an action and denotes torque applied on the

ith joint. wi denotes the angular velocity of the ith joint and is part of the state.

Since the constraint is defined over continuous variables and is non-linear. The sdd

compilation framework for resource allocation constraints, based on pseudo-Boolean

constrains, cannot be applied directly. In our future work, we propose a new sdd

compilation framework for general actions constraints in continuous action space. The

proposed framework consists of four steps. Firstly, we generate data from the action

space, which may or may not satisfy the constraint. Next, we binarize the generated

data and associate each data point with a label of either 0 or 1 based on whether it

satisfies the constraint. Thirdly, we train a neural network using the generated binarized

data and labels with binary inputs and step activation functions. Finally, we compile

the trained Impneural network into an sdd using the methodology described in [25].
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Figure 7.1: The integration of psdd and neural network

7.2.2 Improving the neuro-symbolic integration

In Chapter 6, we presented a factored action Q-learning approach for updating the psdd

parameters. However, this method requires sampling a large number of actions from

the policy network and uniformly from the action space at each RL step, which can be

time-consuming. Additionally, the more actions we sample, the higher the probability

that the action with the highest Q-value has already been sampled at least once, leading

to a trade-off between simulation speed and algorithm optimality.

To address this limitation, we propose a new approach for integrating psdd and deep

neural networks. Let πpsdd(a|s) denote the probability of taking an action a in a state s,

which is encoded by the psdd. The proposed framework, depicted in Figure 7.1, involves

learning another policy πθ parameterized by θ through three steps. First, we collect

transition samples by interacting with the environment using policy πpsdd, and we store

the samples in a replay buffer. Second, we leverage SAC algorithm to train an offline

agent with policy πθ using the samples in the replay buffer. Finally, we update the psdd

parameters by minimizing the KL divergence between πθ and πpsdd, while freezing θ.

This process is repeated until convergence. By integrating the strengths of both psdd and

deep neural networks, this approach offers a more efficient and effective way of leaning a

policy.
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7.2.3 Meta-Gradient for infeasible constrained optimization

When applying constrained reinforcement learning to real-world applications, setting

constraint thresholds can be difficult due to environmental complexity or the lack of

offline verification methods such as simulators. This can result in solutions where all

constraints specified in a CMDP cannot be satisfied. However, in some applications,

violating constraints is acceptable if the violated behavior is not catastrophic, highlighting

the need for soft-constrained RL approaches [34].

Meta reinforcement learning is an active area in the RL community, focusing on learning

different meta-parameters to improve RL algorithm performance. These parameters

include hyperparameters [117], loss functions [54], exploration strategies [48], and etc.

Cross-validation is commonly used to optimize the meta-objective, which can include

the expected return or critic loss.

In [20], a meta-gradient approach is proposed to address cases where a constrained

RL problem is unsolvable due to misspecified constraint thresholds. When solving

a constrained RL problem using Lagrangian Relaxation, they suggest using a meta-

parameter to scale the learning rate used in Lagrange multiplier updates. If the problem

is unsolvable, the meta-parameter reduces the scaled learning rate to zero, so Lagrangian

multipliers are no longer updated. The meta-parameter is learned by optimizing a meta-

objective defined in the form of a critic function. However, learning a critic function in

RL can be challenging due to the instability problem of using function approximation. It

becomes more difficult in multi-agent setting since credit assignment must be performed.

To address this issue, our ongoing work proposes the use of the expected return as the

meta-objective for learning the meta-parameter that controls the update of Lagrange

multipliers. In this section, we will provide a high-level idea of deriving the meta-gradient

for the meta-parameter. Specifically, we consider an unsolvable constrained policy
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optimization problem as follows.

max
πθ

Jπθ
R = Eπθ

[

∞∑
t=0

γtR(st, at)]

s.t. Jπθ
C = Eπθ

[
∞∑
t=0

γtC(st, at)] ≤ c
(7.2)

where c is the misspecified constraint threshold. We note that there does not exist a

policy that satisfies the constraint. A modified Lagrangian of Problem 7.2 is given as

follows,

L(πθ, λ, η) = Eπθ
[

∞∑
t=0

γtR(st, at)]− exp(η)λ(Eπθ

[ ∞∑
t=0

γtC(st, at)]− c) (7.3)

where η is the meta-parameter. λ is scaled by an exponential term exp(η). The above

Lagrangian is a function of three parameters, namely θ, λ, and η. We first perform inner

Lagrangian optimization to update the policy parameters θ and Lagrange multiplier λ

using gradient based approaches. After we have performed inner optimization. We then

proceed with outer optimization to update the meta-parameter η, where the goal is to

maximize a meta-objective J(τ ′, θ′, λ′, η̄) while keeping the meta-parameter η̄ fixed as a

reference value. The meta-objective is defined as follows.

J(τ ′, θ′, λ′, η̄) = Eτ ′∼πθ′
[

∞∑
t=0

γt(Rt(st, at)− exp(η̄)λ′Ct(st, at))] (7.4)

where τ ′ = (s0, a0, s1, a1, . . .) is the trajectory sampled from the new policy πθ′ , and λ′ is

the updated Lagrange multiplier. The meta-gradient of J(τ ′, θ′, λ′, η̄) w.r.t η is computed

using the chain-rule as follows,

∂J(τ ′, θ′, λ′, η̄)

∂η
=
(
∇θ′J(τ

′, θ′, λ′, η̄)
)T∇λ′θ′

∂λ′

∂η
+
∂J(τ ′, θ′, λ′, η̄)

∂λ′
∂λ′

∂η

We note that computing ∂J(τ ′,θ′,λ′,η̄)
∂λ′ and ∇θ′J(τ

′, θ′, λ′, η̄) is straightforward and can be

done directly. However, computing ∂λ′

∂η and ∇λ′θ′ requires the use of gradients used in

updating θ and λ.
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