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Abstract

Graph-structured data are ubiquitous across numerous real-world contexts, en-

compassing social networks, commercial graphs, bibliographic networks, and bi-

ological systems. Delving into the analysis of these graphs can yield significant

understanding pertaining to their corresponding application fields.Graph repre-

sentation learning offers a potent solution to graph analytics challenges by trans-

forming a graph into a low-dimensional space while preserving its information to

the greatest extent possible. This conversion into low-dimensional vectors enables

the efficient computation of subsequent graph algorithms.

The majority of prior research has concentrated on deriving node repre-

sentations from a single, static graph. However, numerous real-world situations

demand rapid generation of representations for previously unencountered nodes,

novel edges, or entirely new graphs. This inductive capability is vital for high-

performance machine learning systems that operate on ever-changing graphs and

consistently encounter unfamiliar nodes.

The inductive graph representation presents considerable difficulty when

compared to the transductive setting, as it necessitates the alignment of new

subgraphs containing previously unseen nodes with an already trained neural net-

work. We further investigate inductive graph representation learning through

three distinct angles: (1) Generalizing Graph Neural Networks (GNNs) across

graphs, addressing semi-supervised node classification across multiple graphs; (2)

Generalizing GNNs across time, focusing on temporal link prediction; and (3)

Generalizing GNNs across tasks, tackling various low-resource text classification

tasks.
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Chapter 1

Introduction

1.1 Motivation

Graph-structured data is prevalent in a multitude of real-world contexts, encom-

passing social networks, commercial graphs, citation networks, and biological sys-

tems. Analyzing these graphs can yield valuable insights into their corresponding

application domains, with effective analytics bringing benefits to numerous appli-

cations, such as node classification, node recommendation, and link prediction.

For instance, an analysis of a social network graph (e.g., Facebook, Twitter, or

WeChat) can facilitate user classification, friend recommendations, and predic-

tions of potential interactions between users.

Meanwhile, graph representation learning offers an effective solution to the

graph analytics problem by learning low-dimensional embeddings of nodes in a

graph, which can be used to perform downstream tasks such as node classifica-

tion, link prediction, and graph clustering. Compared to manual feature engi-

neering, which involves manually designing and selecting features for a machine

learning model, graph representation learning has several advantages: (1) Scala-

bility: Graph representation learning can handle large-scale graphs with millions
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of nodes and edges, which would be challenging and time-consuming for manual

feature engineering; (2) Flexibility: Graph representation learning can capture

complex relationships between nodes in a graph, including both global and local

structural patterns, which may be difficult or impossible to capture with manual

feature engineering; (3) Generality: Graph representation learning can be applied

to a wide range of graph-based tasks, including social network analysis, recom-

mendation systems, and bioinformatics, among others. In contrast, the manual

feature engineering may be specific to a particular task or domain. (4) Transfer-

ability: Graph representation learning can learn embeddings that can be easily

transferred to new graphs or tasks, without the need for re-engineering features.

This can save significant time and effort in developing machine learning models.

Overall, graph representation learning offers a powerful and flexible approach to

graph-based machine learning tasks, with the potential to significantly outperform

manual feature engineering in terms of accuracy and efficiency.

However, the majority of prior research has concentrated on deriving node

representations from a single, static graph. In contrast, many real-world situations

demand rapid generation of representations for previously unencountered nodes,

novel edges, or entirely new graphs, i.e., inductive capability. This inductive

capability is vital for high-performance machine-learning systems that operate on

ever-changing graphs and consistently encounter unfamiliar nodes (e.g., Wikipedia

posts, Amazon users, and items). Moreover, an inductive approach can facilitate

generalization across graphs sharing similar feature forms, enabling the training

of a neural network on protein-protein interaction graphs derived from a model

organism and the subsequent generation of node representations for graphs from

new organisms using the trained model. The inductive graph representation prob-

lem presents considerable difficulty compared to the transductive setting, as it

necessitates aligning new subgraphs containing previously unseen nodes with an

already trained neural network.

2
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Figure 1.1: Generalizing GNNs across graphs, time, and tasks.

Within the multitude of graph analysis methodologies, Graph Neural Net-

works (GNNs) are presently the most popular algorithm. This is due to their

impressive performance across various tasks and their notable generalization ca-

pabilities. GNNs are parameterized by a weight matrix in each layer to map the

messages from the neighboring nodes, instead of directly learning the node embed-

ding vectors. In particular, the weight matrices give rise to the inherent inductive

power of GNNs, which can be applied to similarly map and aggregate messages in

new graphs given the same feature space.

In this dissertation, building upon the existing literature on inductive

Graph Neural Networks (GNNs) with robust generalizability, we put forth three

perspectives for enhancing the learning of inductive GNNs, as shown in Figure

1.1: (1) Generalizing Graph Neural Networks (GNNs) across graphs, addressing

semi-supervised node classification across multiple graphs; (2) Generalizing GNNs

across time, focusing on temporal link prediction; and (3) Generalizing GNNs

across tasks, tackling various node classification tasks.
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Generalizing GNNs across graphs. A key limitation of many GNNs is that

they are not easily generalized across different graphs. This means that a model

trained on one graph might perform poorly when applied to a different graph, even

if the two graphs are structurally similar. This is a significant problem because in

many real-world scenarios, we are interested in applying models to new, unseen

graphs.

Generalizing GNNs across graphs can address this issue, allowing for models

that are more robust and flexible. This has numerous practical applications:

• Drug Discovery: In the field of bioinformatics, molecules can be represented

as graphs, where each node represents an atom and each edge represents a

bond. A generalized GNN could be trained on a dataset of known molecules

and their properties, and then used to predict the properties of unknown

molecules, potentially identifying new drug candidates;

• Social Network Analysis: Social networks can also be represented as graphs,

where nodes represent individuals and edges represent relationships. A gen-

eralized GNN could be used to analyze different social networks, predicting

things like the spread of information or the likelihood of new connections

forming;

• Transportation and Logistics: In transportation and logistics, networks of

roads or shipping routes can be represented as graphs. A generalized GNN

could be used to optimize routes and schedules across different networks,

improving efficiency and reducing costs;

• Cybersecurity: Networks of computers or other digital assets can be repre-

sented as graphs, where nodes represent individual devices and edges repre-

sent connections between them. A generalized GNN could be used to detect

patterns indicative of cyber attacks or other security issues across different

networks;

4



• Recommendation Systems: In many recommendation systems, items and

users can be represented as a graph, where nodes represent users or items,

and edges represent user-item interactions. A generalized GNN can be

trained on such graphs and then used to provide recommendations in differ-

ent domains or for different user groups.

In all of these examples, the ability to generalize across graphs allows for models

that are more adaptable and capable of handling new, unseen data. This is crucial

for creating systems that can handle the complexity and variability of real-world

data. Thus, it motivates us to explore a novel framework that can capture the

inter-graph difference and customize a trained inductive model to each graph.

Generalizing GNNs across time. Temporal or dynamic graph data is common

in many real-world scenarios. Nodes may appear and disappear, edges may be

formed and broken, and node or edge attributes may evolve. For such dynamic

graphs, it’s important to have models that can not only capture the graph structure

but also how it changes over time. Generalizing Graph Neural Networks (GNNs)

across time, is often referred to as dynamic or temporal GNNs.

Here are some practical examples that highlight the significance of gener-

alizing GNNs across time:

• Social Network Analysis: Social networks are inherently dynamic: new con-

nections are made, old connections are lost, and the strength of connections

can change over time. A temporal GNN could track these changes and use

them to predict future network states, such as the formation of new connec-

tions or the spread of information or trends;

• Financial Fraud Detection: In financial networks, transactions between en-

tities form a dynamic graph. By generalizing GNNs across time, suspicious

patterns can be detected not only based on the current transaction graph
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but also based on how the graph has evolved over time, which could be

crucial for identifying complex fraud schemes;

• Traffic Prediction: In transportation networks, the flow and congestion levels

can be different at different times. A temporal GNN can learn these patterns

over time and make accurate predictions about future traffic conditions,

helping in effective route planning and congestion management;

• Epidemiology: The spread of diseases can be modeled as a dynamic graph,

where nodes represent individuals or regions, and edges represent the po-

tential transmission of the disease. Temporal GNNs could be used to model

and predict the spread of diseases, informing public health interventions;

• Dynamic Recommendation Systems: User-item interaction data in recom-

mendation systems is inherently temporal. Users’ preferences change over

time, and items may become more or less popular. Temporal GNNs can cap-

ture these dynamics to provide more accurate and timely recommendations;

• Cybersecurity: In computer networks, the patterns of normal and malicious

activities change over time. Temporal GNNs can be used to detect anoma-

lous behaviors based on the evolution of the network structure and activities,

potentially identifying cyber threats.

In all these examples, the ability to model and understand changes over

time can lead to more accurate and insightful predictions, which motivates us to

further explore the temporal GNNs.

Generalizing GNNs across tasks. Traditional GNNs are typically trained for

a specific node classification task and might not generalize well to other tasks.

This is particularly challenging when we have multiple related tasks, and we wish

to leverage the shared information between them.

Generalizing GNNs across node classification tasks could potentially im-
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prove model performance, transfer learning capabilities, and computational effi-

ciency. Here are a few practical examples to illustrate its significance:

• Social Network Analysis: Suppose we have tasks like predicting a person’s

occupation, their hobbies, their likelihood of purchasing a product, or their

political affiliations. A generalized GNN can leverage commonalities between

these tasks to improve prediction accuracy.

• Transportation Networks: We might want to predict various properties, like

traffic congestion levels, accident risk, or maintenance needs. A GNN that

can generalize across these tasks can make more accurate predictions by

learning shared features.

• Citation Networks: We might be interested in multiple node classification

tasks like predicting the paper’s field of study, its impact factor, or the con-

ference it might get accepted to. A generalized GNN could use the common

information across these tasks to enhance its performance.

In all these examples, a GNN that can generalize across node classification

tasks can improve the efficiency and effectiveness of the learning process. There-

fore, it motivates us to explore a kind of GNN that can identify and leverage

shared patterns, making better predictions by exploiting the common structure of

the tasks.

The integration of three techniques. Earlier, we separately discussed three

techniques for generalizing Graph Neural Networks (GNNs).

Beyond this, it is worth noting that these techniques can be effectively

combined, leading to the development of a more robust model capable of tackling

more complex real-world problems:

• Social Media Analytics: Social media platforms can also greatly benefit from

7



this generalized approach. Different tasks could include predicting user be-

haviors (such as likelihood to click on an ad, share a post, or purchase

a product), identifying fake accounts, or spotting harmful content. These

tasks could be performed on different social networks (Twitter, Facebook,

etc.) and at different times, allowing for a comprehensive analysis of the

social media landscape;

• Transportation Networks: Transportation networks can benefit significantly

from such a generalized model. For instance, traffic congestion levels, acci-

dent risks, and maintenance needs are different tasks that can be predicted

using the same transportation graph but at different times. The model can

be trained on data from one city (one graph) and then applied to other cities

(other graphs), allowing for efficient transfer of learned knowledge;

• Healthcare: In healthcare, patient similarity networks could be used to pre-

dict various outcomes like disease progression, medication response, and

readmission risk. These tasks could be performed across different hospi-

tals (graphs), across different times (as the patient’s health status evolves),

and across different tasks (disease prediction, medication response, etc.);

• Cybersecurity: In computer networks, tasks could include detecting various

types of cyber threats, predicting system failures, and identifying potential

network bottlenecks. These tasks could be performed across different net-

works (graphs), across different times (as network traffic evolves), and across

different tasks (threat detection, system failure prediction, etc.).

In all these cases, a GNN that can generalize across graphs, time, and tasks

would be able to handle the complexity and dynamism of real-world data, making

more accurate predictions and providing more insightful analysis.

8



1.2 Contributions

The contributions of this dissertation are as follows:

• Meta-Inductive Node Classification across Graphs. We study the prob-

lem of inductive node classification across graphs. Unlike existing one-model-

fits-all approaches, we propose a novel meta-inductive framework called MI-

GNN to customize the inductive model to each graph under a meta-learning

paradigm. That is, MI-GNN does not directly learn an inductive model; it

learns the general knowledge of how to train a model for semi-supervised node

classification on new graphs. To cope with the differences between graphs, MI-

GNN employs a dual adaptation mechanism at both the graph and the task

levels. More specifically, we learn a graph prior to adapting for the graph-level

differences, and a task prior to adapting for the task-level differences condi-

tioned on a graph. Extensive experiments on five real-world graph collections

demonstrate the effectiveness of our proposed model.

• TempoRal Event and Node Dynamics for Graph Representation Learn-

ing. We study the problem of temporal link prediction and propose TREND, a

novel framework for temporal graph representation learning, driven by TempoRal

Event and Node Dynamics and built upon a Hawkes process-based graph neural

network (GNN). TREND presents a few major advantages: (1) it is inductive

due to its GNN architecture; (2) it captures the exciting effects between events

by the adoption of the Hawkes process; (3) as our main novelty, it captures

the individual and collective characteristics of events by integrating both event

and node dynamics, driving a more precise modeling of the temporal process.

Extensive experiments on four real-world datasets demonstrate the effectiveness

of our proposed model.

• Augmenting Low-Resource Node Classification with Graph-Grounded

Pre-training and Prompting. We propose a novel model called Graph-

9



Grounded Pre-training and Prompting (G2P2) to address low-resource text

classification in a two-pronged approach. During pre-training, we propose three

graph interaction-based contrastive strategies to jointly pre-train a graph-text

model; during downstream classification, we explore prompting for the jointly

pre-trained model to achieve low-resource classification. Extensive experiments

on four real-world datasets demonstrate the strength of G2P2 in various zero-

and few-shot low-resource text classification tasks.

1.3 Dissertation Structure

The remaining part of this dissertation is as follows. We first review related

works in Chapter 2. Chapter 3 presents our work on generalizing GNNs across

new tasks. Chapter 4 describes our work on generalizing GNNs across new time.

Chapter 5 presents our work on generalizing GNNs to new tasks of low-resource

text classification. Finally, we summarize our works and describe future research

directions (Chapter 6).

10



Chapter 2

Related Work

In this chapter, we first review graph neural networks (GNNs) in general. Then

we emphasize related work about generalization approaches.

2.1 Graph neural networks

Graph Neural Networks (GNNs) [135] have emerged as a powerful class of deep

learning models for handling graph-structured data, addressing the limitations of

traditional neural networks in processing irregular data structures. GNNs leverage

the inherent relational information present in graphs to learn node and graph

representations, making them well-suited for a wide range of applications across

diverse domains. By capturing both local and global patterns within the graph,

GNNs can effectively tackle tasks such as node classification [46], link prediction

[45], graph classification [140], and graph generation [122].

The foundation of GNNs lies in the message-passing mechanism, wherein

nodes exchange and aggregate information from their local neighborhood to iter-

atively refine their representations [130]. The growing interest in GNNs has led

to the development of various architectures, such as Graph Convolutional Net-
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work (GCN) [46], GraphSAGE [31], Graph Attention Network (GAT) [116], and

Graph Isomorphism Network (GIN) [140]. These architectures explore diverse ap-

proaches to message-passing and representation learning, further expanding the

applicability and impact of GNNs in academia and industry alike.

The versatility of GNNs has led to numerous practical applications, includ-

ing:

• Social network analysis: GNNs are used to study user behavior [19], com-

munity detection [7], and information diffusion [10] in social networks;

• Recommender Systems: GNNs can model the complex relationships between

users and items to provide personalized recommendations [126, 123].

• Biological network analysis: GNNs are employed for protein function pre-

diction [25], drug-target interaction prediction [101], and analysis of gene

regulatory networks [124].

• Computer vision: GNNs help in scene understanding [141], object detection

[76], and point cloud semantic segmentation [54] by modeling the relation-

ships between objects in an image.

• Traffic prediction: GNNs can model the spatial-temporal dependencies in

traffic networks to forecast traffic conditions [13].

• Natural language processing: GNNs have also been leveraged to improve

text-based tasks through knowledge graphs [9] and heterogeneous graphs

[59], or multi-modality learning [66].

12



2.2 Generalization approaches

Inductive graph representation learning

Inductive Graph Representation Learning [31] refers to the process of learning to

generate graph embeddings that can generalize to unseen nodes or graphs. This

contrasts with transductive learning, which only learns representations for nodes

that are present during training.

Inductive learning is particularly useful in many real-world scenarios where

we need to handle dynamic graphs that evolve over time or apply models to entirely

new graphs. The learned model can generate embeddings for new nodes or graphs

based on their attributes and structural information, which can then be used for

various downstream tasks.

Here are a few examples of how inductive graph representation learning

can influence real-life problems:

• Social Network Analysis: Social networks are continually evolving, with new

users joining and forming new connections. An inductive graph learning

model can generate embeddings for new users based on their initial connec-

tions and activities, which can be used to predict their future behavior or

recommend friends or content [51];

• Recommendation Systems: In many recommendation systems, new users or

items are continually appearing. An inductive model can generate embed-

dings for these new users or items, allowing the system to make recommen-

dations even before they have substantial interaction history [146];

• Bioinformatics: In molecular biology, we often want to predict properties of

new molecules, which can be represented as graphs. An inductive model can

generate embeddings for these new molecules, enabling predictions about

13



their properties or behavior [31].

Recent inductive learning on graphs is mainly based on network embed-

ding and GNNs. For the former, some extend classical embedding approaches

(e.g., skip-gram) to handle new nodes on dynamic graphs [17, 81, 160], by exploit-

ing structural information from the graph such as co-occurrence between nodes;

others employ graph auto-encoders [27, 26] for dynamic graphs, by mining and

reconstructing the graph structures. In general, this category of approaches only

handle new nodes on the same graph, lacking the ability to extend to entirely

new graphs. In the latter category, most GNNs are inherently inductive, and

can be applied to new graphs in the same feature space after training [31, 137].

More recently, a few pre-training approaches have also been devised for GNNs

[118, 39, 70]. While they also learn some form of transferable knowledge on the

training graphs, they are trained in a self-supervised manner, and the main ob-

jective is to learn universally good initializations for different downstream tasks.

Thus, they address a problem setting that is different from that in Chapter 3.

Meta-learning

Meta-learning, often referred to as ”learning to learn,” is a subfield of machine

learning where models are designed to learn quickly when presented with new

tasks. The main idea is to train a model on a variety of learning tasks so that it

can learn a new task from a small number of examples in the future.

Meta-learning is particularly useful in scenarios where data is scarce [120],

or it is expensive to obtain large labeled datasets. It also has great potential

in multi-task learning scenarios where a model needs to generalize across multi-

ple tasks. Here are some examples of how meta-learning can influence real-life

problems:
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• Few-shot Image Classification: Meta learning algorithms enable rapid adap-

tation to new image classification tasks with a limited number of labeled

examples, improving generalization capabilities [22];

• Personalized Recommendations: Meta-learning can be used to personalize

recommendation systems [72] by treating the recommendation process for

each user as a separate task. This allows the system to adapt quickly to

each user’s preferences.

• Medical Diagnosis: In medicine, certain diseases are rare, and therefore,

there are few examples to learn from. A meta-learning model can be trained

on a variety of disease diagnosis tasks, allowing it to diagnose rare diseases

from a small number of examples [151].

Generally, some approaches resort to metric-based protonets [104] which

aim to learn a metric space for the class prototypes, and others apply optimization-

based techniques such as model-agnostic meta-learning (MAML) [22]. To further

enhance task adaptation, the transferable knowledge can be tailored to different

clusters of tasks, forming a hierarchical structure of adaptation [144]; feature-

specific memories can also guide the adapted model with a further bias [15];

domain-knowledge graphs can also be leveraged to provide task-specific customiza-

tion [108]. Another subtype of meta-learning called hypernetwork [29, 86] uses a

secondary neural network to generate the weights for the target neural network,

i.e., it learns to generate different weights conditioned on different input, instead

of freezing the weights for all input after training in traditional neural networks.

More recently, meta-learning has also been adopted on graphs for few-shot

learning, such as Meta-GNN [155], GFL [145], GPN [14], RALE [68] and meta-

tail2vec [69], which is distinct from inductive semi-supervised node classification

as further elaborated in Section 3.3. Hypernetwork-based approaches have also

emerged, such as LGNN [67] that adapts GNN weights to different local contexts,
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and GNN-FiLM [5] that adapts to different relations in a relational graph.

Temporal graph representation learning

To address real-world scenarios in which graphs continuously evolve in time, there

have been some efforts in temporal graph representation learning. Intuitively, a

temporal graph can be modeled as a series of snapshots. The general idea is to

learn node representations for each graph snapshot, and then capture both the

graph structures in each snapshot and the sequential effect across the snapshots.

The specific techniques vary in different works, such as matrix perturbation theory

[55, 158], skip-grams [17] and triadic closure process [157]. To effectively capture

the sequential effect, recurrent neural networks (RNNs) have been a popular tool

[103, 26, 49, 30], which leverage the chronological sequence of representations

across all snapshots. From a different perspective, instead of using RNNs to gen-

erate node representations, EvolveGCN [84] uses RNN to evolve GCN parameters.

Besides, rather than directly learning the representation, DynGEM [27] incremen-

tally builds the representations of a snapshot from those of the previous snapshot.

However, snapshots are approximations which discretize a continuously

evolving graph, inevitably suffering from a fair degree of information loss in the

temporal dynamics. To overcome this problem, another line of work aims to model

the continuous process of temporal graph evolution, usually by treating each event

(typically defined as the formation of a link that can occur continuously in time)

as an individual training instance. Among them, some employ temporal random

walks to capture the continuous-time network dynamics, including CTDNE [81]

based on time-respect random walks, and CAW-N [127] based on causal anony-

mous walks. Apart from random walks, GNN-based models have also emerged to

deal with continuous time, e.g., TGAT [137].

While these methods can deal with a continuously evolving graph, they fail
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to explicitly model the exciting effects between sequential events holistically on

the entire graph. In view of this, several network embedding methods [160, 71, 42]

incorporate temporal point processes such as Hawkes process into their models,

being capable of modeling the graph-wide formation process.

Moreover, DyREP [114] is an inductive GNN-based model that also exploits

the temporal point processes.

Note that, among existing methods for temporal graph representation learn-

ing, those employing an embedding lookup for node representations are usually

transductive [17, 157, 103, 81, 160, 71] and thus unable to directly make predictions

on new nodes at a future time. In contrast, GNN-based methods [84, 137, 114] are

naturally inductive, able to extend to new nodes in the same feature space. How-

ever, among them only DyREP [114] leverages temporal point processes, but it is

designed to capture association and communication events, which differs from our

problem setting to specifically deal with the link formation process. Furthermore,

none of existing methods integrates both event- and node-dynamics to capture the

individual and collective characteristics of events, respectively.

Pre-training and prompting

Pre-trained language models [32] have become the most popular backbone in NLP.

While earlier PLMs such as GPT [90], BERT [43], XLNet [143] and RoBERTa [65]

still have affordable model size, recent introductions such as T5 [91] and GPT-3 [6]

produce massive models with billions of parameters. To avoid the high fine-tuning

cost on these large models, prompting [62] starts to receive more attention in the

community. A prompt is a special template to pad the task input, with a goal

of extracting useful knowledge from PLMs to flexibly adapt to downstream tasks.

Fueled by the success of GPT-3, numerous prompting methods including discrete

natural language prompt [102, 98, 23] and continuous prompt [58, 52, 64, 88, 153]
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have emerged. The strength of prompting has been validated in a wide range

of NLP applications, including text classification [38, 79, 107, 150, 33], machine

translation [110] and relation extraction [12, 94]. More recently, prompting has

also been applied to GNNs for node classification [106].

Zero- or few-shot paradigms

Broadly speaking, our setting in Chapter 5 is also related to other learning paradigms.

For example, in semi-supervised learning [80, 136, 11], each class may only have

a few examples, but all classes must be seen in training and they cannot han-

dle any novel class during testing. Meta-learning [22, 147, 34, 2, 3, 155, 125] is

another popular paradigm that supports few-shot learning. However, large-scale

labeled data are still required in a so-called “meta-training” phase, to support

the few-shot learning of novel classes during “meta-testing”. In contrast, we only

need label-free data for pre-training, without requiring any meta-training phase

that would consume large-scale labeled data. Separately, there also exists joint

consideration of image and text data using a contrastive pre-training strategy for

zero- or few-shot classification [89]. In our work, graph data are significantly dif-

ferent from images, which provide various types of interaction between texts. On

graphs, zero-shot node classification has also been done [128]. It relies heavily

on the availability of Wikipedia pages or other side information to generate class

prototype embeddings. However, it is very labor-intensive to find and curate the

right side information, especially when there are a large number of classes and/or

novel classes emerge frequently.
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2.3 Summary

For generalizing GNNs across graphs, the previous works resort to meta-learning,

but they are designed for the few-shot node classification task. While appearing

similar, it is distinct from our problem of inductive semi-supervised node classifi-

cation [130]. As our contribution, we firstly attempt to leverage the meta-learning

paradigm for inductive semi-supervised node classification on graphs, which learns

to train an inductive model for new graphs. We propose a novel frame-work MI-

GNN, which employs a dual-adaptation mechanism to learn the general knowledge

of training an inductive model at both the task and graph levels.

For generalizing GNNs across time, most existing works resort to taking

discrete snapshots of the temporal graph, or are not inductive to deal with new

nodes, or do not model the exciting effects which is the ability of events to in-

fluence the occurrence of another event. As our contribution, for the first time

in temporal graph representation learning, we recognize the importance of model-

ing the events at an individual and collective scale, and formulate them as event

and node dynamics. We propose a novel framework called TREND [129] with

both event and node dynamics to more precisely model events under a Hawkes

process-based GNN. On one hand, the event dynamics learns an adaptable event

prior to capture the uniqueness of events individually. On the other hand, the

node dynamics regularizes the events at the node level to govern their occurrences

collectively.

For generalizing GNNs across low-resource node classification tasks, ex-

isting works may use pre-trained language models, or pre-trained GNNs. They

neither utilize the graph structual information, nor use fine-grained text informa-

tion. As our contribution, we firstly attempt to pre-train text and graph encoders

jointly for low-resource text classification. We propose a novel model called Graph-

Grounded Pre-training and Prompting (G2P2), with three graph interaction-based
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contrastive strategies in pre-training, and a prompting approach for the jointly

pre-trained graph-text model in downstream tasks.
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Chapter 3

Generalizing GNNs across

Graphs

In this chapter, we study the problem of inductive node classification across graphs.

Unlike existing one-model-fits-all approaches, we propose a novel meta-inductive

framework called MI-GNN to customize the inductive model to each graph under

a meta-learning paradigm. That is, MI-GNN does not directly learn an inductive

model; it learns the general knowledge of how to train a model for semi-supervised

node classification on new graphs. To cope with the differences across graphs,

MI-GNN employs a dual adaptation mechanism at both the graph and task levels.

This work is presented in:

• Zhihao Wen, Yuan Fang, Zemin Liu. Meta-Inductive Node Classification across

Graphs. In Proceedings of the 44th International ACM SIGIR Conference on

Research and Development in Information Retrieval (SIGIR ’21).
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3.1 Introduction

Graph-structured data widely exist in diverse real-world scenarios, such as social

networks, e-commerce graphs, citation graphs, and biological networks. Analysis

of these graphs can uncover valuable insights about their respective application

domain. In particular, semi-supervised node classification on graphs [4] is an

important task in information retrieval. For instance, on a content-sharing social

network such as Flickr, content classification enables topical filtering and tag-based

retrieval for multimedia items [99]; on a query graph for e-commerce, query intent

classification enhances the ranking of results by focusing on the intended product

category [21]. Such scenarios are semi-supervised, as only some of the nodes on

the graph are labeled with a category, whilst the remaining nodes are unlabeled.

The labeled nodes and the intrinsic structures between both labeled and unlabeled

nodes (i.e., the graph) can be used for training a model to classify the unlabeled

nodes.

Unfortunately, traditional manifold-based semi-supervised approaches on

graphs [4, 159, 154, 134, 20] mostly assume a transductive setting. That is, the

learned model only works on existing nodes in the same graph, and cannot be

applied to new nodes added to the existing graph or entirely new graphs even if

they are from the same domain. As Figure 3.1(a) shows, a transductive approach

directly trains a model θi on the labeled nodes of each graph Gi, and apply the

model to classify the unlabeled nodes in the same graph Gi. While some simple

inductive extensions exist through nearest neighbors or kernel regression [36], they

can only deal with new nodes in a limited manner by processing the local changes,

and often cannot generalize to handling new graph structures. The ability to

handle new graphs is important, as we often need to deal with a series of ego-

networks or subgraphs [149, 56, 16] when the full graph is too large to process or

impossible to obtain. Thus, it becomes imperative to equip semi-supervised node

classification with the inductive capability of generalizing across graphs.
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Figure 3.1: Illustrative comparison of transductive, inductive and our meta-
inductive approaches for semi-supervised node classification on subgraphs of an
image-sharing network. (Colored images: labeled nodes; black & white images:
unlabeled nodes.)

Problem setting. In this paper, we study the problem of inductive semi-

supervised node classification across graphs. Consider a set of training (existing)

graphs and a set of testing (new) graphs. In a training graph, some or all of the

nodes are labeled with a category; in a testing graph only some of the nodes are

labeled and the rest are unlabeled. The nodes in all graphs reside in the same

feature space and share a common set of categories. Our goal is to learn an induc-

tive model from the training graphs, which can be applied to the testing graphs

to classify their unlabeled nodes.
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Prior work. State-of-the-art node classification approaches hinge on graph repre-

sentation learning, which projects nodes to a latent, low-dimensional vector space.

There exist two main factions: network embedding [8] and graph neural networks

(GNNs) [135].

On one hand, network embedding methods directly parameterize node em-

bedding vectors and constrain them with various local structures, such as random

walks in DeepWalk [87] and node2vec [28], and first- and second-order proximity

in LINE [111]. Due to the direct parameterization, network embedding has lim-

ited inductive capability like the traditional manifold approaches. For instance,

the online version of DeepWalk handles new nodes by incrementally processing

the local random walks around them.

On the other hand, GNNs integrate node features and structures into rep-

resentation learning. They typically follow a message passing framework, in which

each node receives, maps and aggregates messages (i.e., features or embeddings)

from its neighboring nodes in multiple layers to generate its own embedding vec-

tor. The implication is that GNNs are parameterized by a weight matrix in each

layer to map the messages from the neighboring nodes, instead of directly learning

the node embedding vectors. In particular, the weight matrices give rise to the

inherent inductive power of GNNs, which can be applied to similarly map and

aggregate messages in a new graph given the same feature space. As Figure 3.1(b)

shows, we can train a GNN model θ on a collection of training graphs {G3, G4},

which are image co-occurrence subgraphs of an image-sharing network like Flickr

[148]. Specifically, in every subgraph, each node represents an image, and an

edge can be formed between two images if they have certain common properties

(e.g., submitted to the same gallery or taken by friends). The learned model θ

can be deployed to predict the unlabeled nodes on new testing graphs {G1, G2},

which are different subgraphs from the same image-sharing network. In particular,

nodes in all subgraphs share the same feature space and belong to a common set
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of categories.

Challenges and present work. While most GNNs can be inductive, ultimately

they only train a single inductive model to apply on all new graphs. These one-

model-fits-all approaches turn out to suffer from a major drawback, as they neglect

inter-graph differences that can be crucial to new graphs. Even graphs in the same

domain often exhibit a myriad of differences. For instance, social ego-networks for

different kind of ego-users (e.g., businesses, celebrities and regular users) show

dissimilar structural patterns; image co-occurrence subgraphs in different galleries

have varying distributions of node features and categories. To cope with such inter-

graph differences, it remains challenging to formulate an inductive approach that

not only becomes aware of but also customizes to the differences across graphs.

To be more specific, there are two open questions to address.

First, how do we dynamically adjust the inductive model? A näıve ap-

proach is to perform an additional fine-tuning step on the labeled nodes of the

new graph. However, such a fine-tuning on new graphs is decoupled from the

training step, which does not learn to deal with inter-graph differences. Thus,

the two-step approach cannot adequately customize to different graphs. Instead,

the training process must be made aware of inter-graph differences and further

adapt to the differences across training graphs. In this paper, we resort to the

meta-learning paradigm [96, 120], in which we do not directly train an inductive

model. Instead, we learn a form of general knowledge that can be quickly utilized

to produce a customized inductive model for each new graph. In other words, the

general knowledge encodes how to train a model for new graphs. While meta-

learning has been successfully adopted in various kinds of data including images

[61], texts [40] and graphs [155], these approaches mainly address the few-shot

learning problem, whereas our work is the first to leverage meta-learning for in-

ductive semi-supervised node classification on graphs.
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Second, more concretely, what form of general knowledge can empower

semi-supervised node classification on a new graph? On one hand, every semi-

supervised node classification task is different, which arises from different nodes

and labels across tasks. On the other hand, every graph is different, providing a

different context to the tasks on different graphs. Thus, the general knowledge

should encode how to deal with both task- and graph-level differences. As Fig-

ure 3.1(c) illustrates, for task-level differences, we learn a task prior θ that can be

eventually adapted to the semi-supervised node classification task in a new graph;

for graph-level differences, we learn a graph prior ϕ that can first transform θ into

θi conditioned on each graph Gi, before further adapting θi to θ′i for the classifica-

tion task on Gi. In other words, our general knowledge consists of the task prior

and graph prior, amounting to a dual adaptation mechanism on both tasks and

graphs. Intuitively, the graph-level adaptation exploits the intrinsic relationship

between graphs, whereas the task-level adaptation exploits the graph-conditioned

relationship between tasks. This is a significant departure from existing task-based

meta-learning approaches such as protonets [104] and MAML [22], which assumes

that tasks are i.i.d. sampled from a task distribution. In contrast, in our setting

tasks are non-i.i.d. as they are sampled from and thus conditioned on different

graphs.

Contributions. Given the above challenges and insights for inductive semi-

supervised node classification across graphs, we propose a novel Meta-Inductive

framework for Graph Neural Networks (MI-GNN). To summarize, we make the

following contributions. (1) This is the first attempt to leverage the meta-learning

paradigm for inductive semi-supervised node classification on graphs, which learns

to train an inductive model for new graphs. (2) We propose a novel framework

MI-GNN, which employs a dual-adaptation mechanism to learn the general knowl-

edge of training an inductive model at both the task and graph levels. (3) We

conduct extensive experiments on five real-world datasets, and demonstrate the
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Table 3.1: List of major notations.

Notation Description

G, V,E,X a graph, its node and edge set, and node feature matrix
C the set of node categories
ℓ the label mapping function V → C
Nv the set of neighbors of node v

G,Gtr,Gte the set of all graphs, training graphs and testing graphs
Gi, Si, Qi a graph Gi with support set Si and query set Qi

θ, ϕ general knowledge: task prior θ, graph prior ϕ
γi, βi scaling and shifting vectors for graph Gi

θi graph Gi-conditioned task prior
θ′i graph Gi-conditioned and task adapted model

superior inductive ability of the proposed MI-GNN.

3.2 Preliminaries

In this section, we first formalize the problem of inductive semi-supervised node

classification across multiple graphs. We then present a background on graph neu-

ral networks as the foundation of our approach. Major notations are summarized

in Table 3.1.

3.3 Problem formulation

Graphs. Our setting assumes a set of graphs G from the same domain. A graph

G ∈ G is a quintuple G = (V,E,X, C, ℓ) where (1) V denotes the set of nodes; (2)

E denotes the set of edges between nodes; (3) X ∈ R|V |×d is the feature matrix

such that xv is the d-dimensional feature vector of node v; (4) C is the set of

node categories; (5) ℓ is a label function that maps each node to its category, i.e.,

ℓ : V → C. Note that the node feature space and category set are the same across

all graphs.
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Inductive semi-supervised node classification. The graph set G comprises

two disjoint subsets, namely, training graphs Gtr and testing graphs Gte. In a

training graph, some or all of the nodes are labeled, i.e., the label mapping ℓ is

known for these nodes. In contrast, in a testing graph, only some of the nodes

are labeled and the remaining nodes are unlabeled, i.e., their label mapping is

unknown. Subsequently, given a set of training graphs Gtr and a testing graph

G ∈ Gte, our goal is to predict the categories of unlabeled nodes in G. This is

known as inductive node classification, as we attempt to distill the training graphs

to enable node classification in new testing graphs that have not been seen before.

Distinction from few-shot classification. While we address the semi-supervised

node classification problem, it is worth noting that many meta-learning works

[61, 145, 155] address the few-shot classification problem. Both problems contain

labeled and unlabeled nodes (respectively known as the support and query nodes

in the few-shot setting), and thus they may appear similar. However, there are

two significant differences. First, in few-shot classification, the query nodes belong

to the same category as at least one of the support nodes. This is often unrealistic

on a small graph where some categories only contain one node. In contrast, in

our setting, the labeled and unlabeled nodes can be randomly split on any graph.

Second, few-shot classification typically deals with novel categories on the same

graph, but our setting deals with novel graphs with the same set of categories.

Graph neural networks

Our approach is grounded on graph neural networks, which are inductive due to

the shared feature space and weights across graphs. We give a brief review of

GNNs in the following.

Modern GNNs generally follow a message passing scheme: each node in a

graph receives, maps, and aggregates messages from its neighbors recursively in

28



multiple layers. Specifically, in each layer,

hl+1
v =M(hl

v, {hl
u,∀u ∈ Nv};Wl), (3.1)

where hl
v ∈ Rdl is the message or the dl-dimensional embedding vector of node

v in the l-th layer, Nv is the set of neighboring nodes of v, Wl ∈ Rdl+1×dl is a

learnable weight matrix to map the node embeddings in the l-th layer, and M(·)

is the message aggregation function. The initial message of node v in the input

layer is simply the original node features, i.e., h1
v ≡ xv. For node classification,

the dimension of the output layer is set to the number of node categories and uses

a softmax activation.

The choice of the message aggregation functionM varies and characterizes

different GNN architectures, ranging from a simple mean pooling [46, 31, 132] to

more complex mechanisms [117, 31, 140]. Our proposed model is flexible in the

aggregation functions.

3.4 Methodology

In this section, we present a novel graph inductive framework called MI-GNN, a

meta-inductive model that learns to train a model for every new graph. In the

following, we start with an overview of the framework, before we introduce its

components in detail.

Overview of MI-GNN

The overarching philosophy of MI-GNN is to design an inductive approach that

can dynamically suit to each new graph, in order to cope with the inter-graph dif-

ferences. A straightforward approach is to train a model on the training graphs,
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Figure 3.2: Overall framework of MI-GNN, illustrating the pipeline on a training
graph Gi and a testing graph Gj.

and further perform a fine-tuning step on a new graph in the testing phase. How-

ever, since the training step is independent of the fine-tuning step, it does not

train the model to learn how to fine-tune on unseen graphs. In contrast, MI-

GNN, hinging on the meta-learning principle, learns a general training procedure

so that it knows how to dynamically generate a model suited to any new graph.

We set forth the overall framework of MI-GNN in Figure 3.2.

First of all, MI-GNN exploits each training graph to simulate the semi-

supervised node classification task in testing, as shown in Figure 3.2(a). Specif-

ically, we take a training graph and split its nodes with known labels into two

subsets: the support set and query set, following the task-based meta-learning

setup [22]. While in a training graph both the support and query nodes have

known category labels, we regard the support nodes as the only labeled nodes and

the query nodes as the unlabeled nodes to simulate the semi-supervised classifica-

tion process during training. On a testing graph, the labeled and unlabeled nodes

naturally form the support and query sets, respectively, where the ultimate goal

is to predict the unknown categories of the query nodes.
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Next, on the simulated tasks, we learn a task prior and a graph prior during

training. The task prior captures the general knowledge of classifying nodes in a

semi-supervised setting, whereas the graph prior captures the general knowledge

of transforming the task prior w.r.t. each graph. In other words, our general

knowledge allows for dual adaptations at both the graph and task levels. On one

hand, the graph prior captures and adapts for macro differences across graphs,

as illustrated in Figure 3.2(b). On the other hand, the task prior captures and

adapts for micro differences across tasks conditioned on a graph, as illustrated in

Figure 3.2(c).

Graphs and tasks

Training tasks. We refer to the upper half of Figure 3.2(a) for illustration. On

a training graph Gtr
i ∈ Gtr, we can sample a semi-supervised node classification

task by randomly splitting its nodes with known labels into the support set Str
i

and query set Qtr
i such that Str

i ∩Qtr
i = ∅. Specifically, without loss of generality,

for the node set with known labels {vi,k : 1 ≤ k ≤ m+n} on Gtr
i , the support and

query sets are given by

Str
i = {(vi,k, ℓ(vi,k)) : 1 ≤ k ≤ m}, (3.2)

Qtr
i = {(vi,m+k, ℓ(vi,m+k)) : 1 ≤ k ≤ n}, (3.3)

where m = |Str
i | and n = |Qtr

i | denotes the number of nodes in the support and

query sets, respectively. Note that for both support and query nodes, their label

mapping ℓ is known on training graphs. During training, we mimic the model

updating process on the support nodes w.r.t. their classification loss, and further

mimic the prediction process on the query nodes. In particular, the labels of the

query nodes are hidden from the model updating process on support nodes, but

are used to validate the predictions on the query nodes in order to optimize the
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general knowledge.

Testing tasks. On the other hand, suppose a testing graph Gte
j ∈ Gte has a node

set {vj,k : 1 ≤ k ≤ m + n} such that nodes are labeled for 1 ≤ k ≤ m only and

unlabeled for m + 1 ≤ k ≤ m + n. The support and query sets are then given by

Ste
j = {(vj,k, ℓ(vj,k)) : 1 ≤ k ≤ m}, (3.4)

Qte
j = {vj,m+k : 1 ≤ k ≤ n}. (3.5)

The main difference from the training setting is that, the support set contains all

the labeled nodes and the query set contains all the unlabeled nodes, as illustrated

in the lower half of Figure 3.2(a). While the labeled support nodes on a testing

graph are used in the same way as in training, the unlabeled query nodes are only

used for prediction and evaluation.

In the following, for brevity we will omit the superscripts tr and te that dis-

tinguishes training and testing counterparts (such as Gtr
i , S

tr
i , Q

tr
i and Gte

j , S
te
j , Q

te
j )

when there is no ambiguity or we are referring to any graph in general (i.e., re-

gardless of training or testing graphs).

Graph-level adaptation

We first formalize the general knowledge consisting of a task prior and a graph

prior, which are the foundation of the graph-level adaptation as illustrated in

Figure 3.2(b).

Task and graph priors. The task prior θ is designed for quick adaptation to a

new semi-supervised node classification task. Given that GNNs can learn powerful
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node representations, our task prior takes the form of a GNN model, i.e.,

θ = (W1,W2, ...), (3.6)

where each Wl is a learnable weight matrix to map the messages from the neigh-

bors in the l-th layer, as introduced in Section 3.3.

Different from most task-based meta learning [104, 22], our tasks are not

sampled from an i.i.d. distribution. Instead, tasks are sampled from different

graphs, and each task is contextualized and thus conditioned on a graph. We

employ a graph prior ϕ to condition the task prior, so that the task prior can be

transformed to suit each graph. The transformation model is given by

τ(θ,g;ϕ), (3.7)

which (1) is parameterized by the graph prior ϕ; (2) takes in the task prior θ,

and the graph-level representation g of an input graph G (which can be either a

training or testing graph); (3) outputs a transformed, graph G-conditioned task

prior. In other words, the graph prior does not directly specify the transformation,

but it encodes the rules of how to transform w.r.t. each graph. This is essentially

a form of hypernetwork [29, 86], where the task prior is adjusted by a secondary

network (parameterized by ϕ) in response to the changing input graph.

In the following, we discuss the concrete formulation of the graph-level

representation g, the transformation model τ and its parameters ϕ (i.e., the graph

prior).

Graph-conditioned transformation. To transform the task prior conditioned

on a given graph G, we need a graph-level representation g of the graph. A

straightforward approach is to perform a mean pooling of the features or em-

beddings of all nodes. Although simple, mean pooling does not differentiate the
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relative importance of each node to the global representation g. Thus, we adopt an

attention-based aggregation to compute our graph-level representation [1], which

assigns bigger weights to more significant nodes.

Consider a graph Gi (which can be either a training or testing graph) and its

graph-level representation vector gi. We perform feature-wise linear modulations

[86] on the task prior in order to adapt to Gi, by conditioning the transformations

on gi. This is more flexible than gating, which can only diminish an input as a

function of the same input, instead of a different conditioning input [86]. To be

more specific, we use MLPs to generate the scaling vector γi and shifting vector

βi given the input gi, which will be used to transform the task prior in order to

suit Gi. Specifically,

γi = MLPγ(gi;ϕγ), (3.8)

βi = MLPβ(gi;ϕβ), (3.9)

where ϕγ and ϕβ are the learnable parameters of the two MLPs, respectively.

Here γi ∈ Rdθ and βi ∈ Rdθ are dθ-dimensional vectors, where dθ is the number

of parameters in task prior θ. Note that θ contains all the GNN weight matrices,

and we flatten it into a dθ-dimensional vector in a slight abuse of notation.

Since γi and βi have the same dimension as θ, we can apply the transforma-

tion in an element-wise manner, to produce the graph Gi-conditioned task prior

as

θi = τ(θ,gi;ϕ) = (γi + 1)⊙ θ + βi, (3.10)

where ⊙ denotes element-wise multiplication, and 1 is a vector of ones to ensure

that the scaling factors are centered around one. The graph prior ϕ, which forms

the parameters of τ , consists of the parameters of the two MLPs, i.e.,

ϕ = {ϕγ, ϕβ}. (3.11)
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Note that τ is a function of gi as well, since γi and βi are functions of gi generated

by the two MLPs in Eqs. (3.8)–(3.9) in response to the changing input graph. In

particular, the two MLPs play the role of secondary networks in the hypernetwork

setting [29].

Task-level adaptation

Given any graph Gi (training or testing), the graph-conditioned task prior θi

serves as a good initialization of the GNN on Gi, which can be rapidly adapted

to different semi-supervised node classification tasks on Gi. Following MAML

[22], we perform a few gradient descent updates on the support nodes Si for rapid

adaptation, and finally obtain the dual-adapted model θ′i as shown in Figure 3.2(c).

Too many updates may cause overfitting to the support nodes and thus hurt the

generalization to query nodes, especially when the support set is small in the

semi-supervised setting.

The following Eq. (3.12) demonstrates one gradient update on the support

set Si w.r.t. the graph Gi-conditioned θi, and extension to multiple steps is

straightforward.

θ′i = θi − α
∂L(Si, θi)

∂θi
, (3.12)

where α ∈ R is the learning rate of the task-level adaptation, and L(Si, θi) is the

cross-entropy classification loss on the support Si using the GNN model parame-

terized by θi, as follows.

L(Si, θi) = −
∑

(vi,k,ℓ(vi,k))∈Si

∑
c∈C

I(ℓ(vi,k) = c) log f(vi,k; θi)[c], (3.13)

where I(∗) is an indicator function, f(∗; θi) ∈ R|C| is the output layer of the

GNN parameterized by θi with a softmax activation, and f(∗; θi)[c] denotes the
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probability of category c.

Overall algorithm

Finally, we present the algorithm for training and testing.

Training. Consider a training graph Gi ∈ Gtr with graph-level representation gi,

and a corresponding task (Si, Qi). The goal is to optimize the general knowledge

in terms of the task prior θ and graph prior ϕ via backpropagation w.r.t. the loss

on the query nodes after dual adaptions. Specifically, the optimal {θ, ϕ} is given

by

arg min
θ,ϕ

∑
Gi∈Gtr

L(Qi, θ
′
i) + λ(∥γi∥2 + ∥βi∥2), (3.14)

where (1) θ′i is the dual-adapted prior after performing one gradient update ac-

cording to Eq. (3.12) on the Gi-condidtioned prior θi = τ(θ,gi;ϕ), implying that

θ′i is a function of θ and ϕ; (2) L(Qi, ∗) is the task loss using the same cross-

entropy definition shown in Eq. (3.13), but computed on the query set Qi; (3)

the L2 regularization ∥γi∥2 + ∥βi∥2 ensures that the scaling is close to 1 and the

shifting is close to 0 to prevent overfitting to the training graphs, and λ > 0 is a

hyperparameter to control the regularizer. In our rigorous exploration of various

popular regularization techniques, we sought to enhance the performance of our

model. Extensive experimentation encompassed methodologies such as L1 and L2

regularization, dropout, and batch normalization. However, our empirical anal-

ysis revealed that directly regularizing the scaling and shifting factors emerged

as the most effective strategy. This finding suggests that imposing explicit con-

straints on these factors yields superior results in terms of model generalization

and mitigating overfitting. The empirical evidence substantiates the superiority of

directly regularizing the scaling and shifting factors, underscoring its significance
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Algorithm 1 TrainingProcedure

Require: training graph set Gtr.
Ensure: task prior θ, graph prior ϕ.
1: θ, ϕ← parameters initialization;
2: while not converged do
3: sample a batch of graphs from Gtr;
4: for each graph Gi in the batch do
5: sample support set Si, query set Qi from Gi;
6: calculate scaling and shifting factors γi, βi; ▷ Eqs. (3.8), (3.9)
7: θi ← graph-level adaptation on θ; ▷ Eq. (3.10)
8: calculate support loss L(Si, θi) and gradient; ▷ Eq. (3.13)
9: θ′i ← task-level adaptation on θi; ▷ Eq. (3.12)
10: calculate task (query) loss L(Qi, θ

′
i);

11: end for
12: θ, ϕ← backpropagation of total task loss ▷ Eq. (3.14)
13: end while
14: return θ, ϕ.

in achieving optimal performance in our study.

In practical implementation, the optimization is performed over batches of

training graphs using any gradient-based optimizer. The overall training procedure

is outlined in Algorithm 1.

Testing. During testing, we follow the same dual adaption mechanism on each

testing graph Gj ∈ Gte to generate the dual-adapted prior θ′j. The only difference

from training is that, the query nodes are used for prediction and evaluation, not

for backpropagation. That is, for any unlabeled node in the query set vj,k ∈ Qj,

we predict its label as arg maxc∈C f(vj,k; θ′j)[c].

3.5 Experiments

In this section, we conduct extensive experiments to evaluate MI-GNN. More

specifically, we compare MI-GNN with state-of-the-art baselines, study the effec-

tiveness of our dual adaptations, and further analyze hyperparameter sensitivity

and performance patterns.
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Table 3.2: Statistics of graph datasets.

Dataset Flickr Yelp Cuneiform COX2 DHFR

# Graphs 800 800 267 467 756
# Edges (avg.) 13.1 43.5 20.1 44.8 44.5
# Nodes (avg.) 12.5 6.9 21.3 41.2 42.4
# Node features 500 300 3 3 3
# Node classes 7 10 7 8 9

Multi-label? No Yes Yes No No

Experimental setup

Datasets. We conduct experiments on five public graph collections, as follows.

Their statistics are summarized in Table 3.2.

• Flickr [148] is a collection of 800 ego-networks sampled from an online image-

sharing network. Each node is an image, and each edge connects two images

that share some common properties (e.g., same geographic location or gallery).

Our task is to classify each image into one of the seven categories.

• Yelp [148] is a collection of 800 ego-networks sampled from an online review

network. Each node represents a user, and each edge represents the friendship

relations between users. Our task is to classify each user node according to the

types of business reviewed by the user in a multi-label setting.

• Cuneiform [48] is a collection of 267 cuneiform signs in the form of wedge-

shaped marks. Each node is a wedge, and each edge indicates the arrangement

of the wedges. Our task is to classify the visual appearance of the wedges in a

muli-label setting.

• COX2 and DHFR [109] are two collections of molecular structures. Specifically,

COX2 is a set of 467 cyclooxygenase-2 inhibitors; DHFR is a set of 756 dihydro-

folate reductase inhibitors. Each node is an atom and each edge is a chemical

bond between two atoms. Our task is to predict the node atomic type.
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Table 3.3: Performance of MI-GNN and baselines, in percent, with 95% confidence
intervals.

In each column, the best result is bolded and the runner-up is underlined. Improvement by

MI-GNN is calculated relative to the best baseline. ***/**/* denotes the difference between

MI-GNN and the best baseline is statistically significant at the 0.01/0.05/0.1 level under the

two-tail t-test.

Flickr Yelp Cuneiform COX2 DHFR

Accuracy Accuracy Accuracy Accuracy Accuracy

DeepWalk 39.88±2.42 63.27±2.73 74.61±0.60 37.68±0.73 33.14±0.18
Transduct-GNN 13.61±1.22 24.87±15.4 49.63±0.95 13.23±0.17 11.21±0.33

Planetoid 14.78±8.75 53.12±2.38 53.14±5.49 11.81±7.41 17.35±11.1
Induct-GNN 40.48±1.69 65.95±0.56 74.89±0.35 53.71±0.92 45.23±0.62

K-NN 34.11±1.76 61.70±0.90 70.36±0.27 33.16±0.95 36.32±0.89
AGF 40.58±1.61 65.96±0.54 74.89±0.37 53.97±0.79 44.85±0.56

GFL 30.24±0.68 61.62±0.97 63.72±0.37 29.25±0.73 30.24±0.68
Meta-GNN 39.66±0.92 66.24±0.84 75.12±0.33 53.24±0.77 45.61±0.65

MI-GNN 44.45±2.18 67.92±0.69 81.48±0.47 57.27±0.80 45.19±0.70
(improv.) (+9.53%) (+2.54%) (+8.47%) (+6.11%) (-0.92%)

** *** *** ***

Flickr Yelp Cuneiform COX2 DHFR

Micro-F1 Micro-F1 Micro-F1 Micro-F1 Micro-F1

DeepWalk 30.01±1.21 57.11±6.29 27.05±2.11 26.16±1.08 29.93±0.58
Transduct-GNN 10.71±1.20 23.85±14.6 34.00±1.15 9.73±0.22 8.65±0.22

Planetoid 8.72±3.07 46.29±3.55 30.22±5.83 10.58±8.79 9.62±9.63
Induct-GNN 29.67±1.77 56.61±1.81 18.03±0.93 41.56±1.90 29.38±6.07

K-NN 26.39±1.39 57.35±1.42 35.66±0.84 32.84±1.00 27.12±1.20
AGF 28.99±2.09 56.64±1.83 18.00±0.94 42.00±1.62 29.08±5.96

GFL 29.51±0.69 58.88±2.03 38.30±0.84 25.53±0.94 29.51±0.69
Meta-GNN 30.02±2.49 56.20±1.81 19.21±1.25 37.36±3.02 28.34±4.46

MI-GNN 33.79±1.87 60.20±2.23 43.32±1.49 44.66±2.01 49.93±1.62
(improv.) (+12.57%) (+2.23%) (+13.10%) (+6.34%) (+66.82%)

** *** *** * ***
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Table 3.4: Accuracy of MI-GNN and baselines using alternative GNN architec-
tures, in percent, with 95% confidence intervals.

GCN as the GNN Architecture

Flickr Yelp Cuneiform COX2 DHFR

Transduct-GNN 14.89±0.94 50.92±0.95 49.40±2.27 11.89±0.63 10.89±0.43
Induct-GNN 12.08±3.98 55.04±1.77 71.65±0.46 86.06±2.78 90.31±1.03

AGF 11.94±2.45 53.66±3.04 71.66±0.46 86.32±3.08 89.64±1.00
Meta-GNN 22.51±3.05 54.80±1.86 72.24±0.88 86.92±3.66 90.26±0.91
MI-GNN 29.91±6.85 57.22±1.79 75.36±2.07 86.97±2.94 91.39±0.51

GraphSAGE as the GNN Architecture

Flickr Yelp Cuneiform COX2 DHFR

Transduct-GNN 14.97±1.96 50.14±1.19 50.59±1.37 12.78±0.65 11.19±0.75
Induct-GNN 7.31±1.57 56.48±1.73 84.46±2.68 85.28±1.78 88.65±4.79

AGF 7.45±1.31 56.70±2.04 84.66±2.73 85.21±1.85 88.21±4.45
Meta-GNN 33.88±2.91 61.80±1.81 84.46±2.44 86.05±2.80 88.17±4.71
MI-GNN 42.37±3.87 69.23±1.18 91.09±2.51 93.24±0.80 93.89±0.83

Training and testing. For each graph collection, we randomly partition the

graphs into 60%, 20% and 20% subsets for training, validation and testing, re-

spectively. On each graph, we randomly split its nodes into two equal halves as

the support and query sets, respectively. Our goal is to evaluate the performance

of node classification on the unlabeled query nodes on the testing graphs, in terms

of accuracy and micro-F1. Note that on multi-label graphs with |C| categories,

we perform |C| binary classification tasks, one for each category. Each model is

trained with 10 random initializations, and we report the average accuracy and

micro-F1 over the 10 runs with 95% confidence intervals.

Settings of MI-GNN. First, our approach can work with different GNN ar-

chitectures. By default, we use simplifying graph convolutional networks (SGC)

[132] in all of our experiments, except in Section 3.5 where we also adopt GCN

[46] and GraphSAGE [31] to evaluate the flexibility of MI-GNN. For all GNNs, we

employ two layers with a hidden dimension of 16. For GraphSAGE, we use the

mean aggregator.

Next, for graph-level adaptations, in Eqs. (3.8) and (3.9) we adopt MLPs
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with one hidden layer using LeakyReLU as the activation function, and a linear

output layer. For task-level adaptations, we set the number of gradient descent

updates to two, and the learning rate of task adaptation α in Eq. (3.12) to 0.5

for Flickr, Yelp and Cuneiform or 0.005 for COX2 and DHFR. Lastly, for the

overall optimization in Eq. (3.14), we use the Adam optimizer with the learning

rate 0.01, and set the regularization co-efficient λ to 1 on Flickr and 0.001 on all

other datasets. The settings are tuned using the validation graphs.

Baselines and settings. We compare our proposed MI-GNN with a comprehen-

sive suite of competitive baselines from three categories.

(1) Transductive approaches, which do not utilize training graphs. Instead, they

directly train the model using the labeled nodes on each testing graph, and we

evaluate their classification performance on the unlabeled nodes in the same graph.

• DeepWalk [87]: an unsupervised network embedding method that learns node

representations based on the skip-gram model [78] to encode random walk se-

quences. After obtaining node representations on a testing graph, we further

train a logistic regression classifier using the labeled nodes.

• Transduct-GNN: applying a GNN in a transductive setting, where it is directly

trained on each testing graph.

(2) Inductive approaches, which utilize the training graphs to learn an inductive

model that can be applied to new testing graphs. In particular, a fixed inductive

model is trained with either no or limited adaptation to the testing graphs.

• Planetoid [142]: Planetoid is a semi-supervised graph embedding approach. We

use its inductive variant in our experiments.

• Induct-GNN: applying a GNN in an inductive setting, where it is trained on the

training graphs, followed by applying the trained model on each testing graph
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to generate the node representations. The labeled nodes on the testing graphs

are not utilized to adapt the trained model.

• K-NN [113]: a two-stage process, in which the first stage is the same as Inductive-

GNN, and the second stage subsequently employs a K-nearest-neighbor (K-NN)

classifier to classify each unlabeled node into the same category as the closest

labeled node in terms of their representations.

• AGF [113]: also a two-stage process similar to K-NN, except that in the second

stage the K-NN classifier is substituted by a fine-tuning step performed on the

labeled nodes.

(3) Meta-learning approaches, which “learns to learn” on the training graphs.

Instead of learning a fixed model, they learn different forms of general knowledge

that can be conveniently adapted to the semi-supervised task on the testing graphs.

• GFL [145]: a few-shot node classification method on graphs, based on pro-

tonets [104]. While there are major differences between the few-shot and semi-

supervised tasks, GFL can still be used in our setting although its performance

may not be ideal.

• Meta-GNN [155]: another few-shot node classification approach on graphs,

based on MAML [22].

All methods (except DeepWalk and Planetoid) use the same GNN archi-

tecture and corresponding settings in our model. For K-NN, we use the Euclidean

distance and set the number of nearest neighbors to 1. For AGF, GFL and Meta-

GNN, we use a learning rate of 0.01. For the fine-tuning step in AGF and the

task adaptation in Meta-GNN, we use the same setup as the task adaptation in

MI-GNN. For DeepWalk and Planetoid, we set their random walk sampling pa-

rameters, such as number of walks, walk length and window size according to their

recommended settings, respectively.
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Performance comparison to baselines

In Table 3.3, we report the performance comparison of our proposed MI-GNN and

the baselines. Generally, our method achieves consistently the best performance

among all methods, demonstrating its advantages in inductive semi-supervised

node classification. More specifically, we make the following observations.

First, in the transductive setting, Transduct-GNN performs worse than

DeepWalk, which is not surprising given that GNNs generally require a large train-

ing set to learn effective representations. However, in our setting, an individual

test graph may be small with a limited number of labeled nodes. In this regard,

the unsupervised representation learning in DeepWalk is more advantageous.

Second, the inductive approaches Induct-GNN and AGF generally outper-

form transductive approaches, as inductive methods can make use of the abundant

training graphs. While K-NN is extended from Induct-GNN with an additional

K-nearest neighbor step during testing, it actually performs worse than Induct-

GNN. Recall that in our problem setting, on a new graph some node categories

may not have labeled nodes (although they have some labeled examples in the

training graphs), which makes K-NN unable to classify any node into those cat-

egories. Another interesting observation is that, AGF with an additional fine-

tuning step on top of Inductive-GNN is only comparable to or marginally better

than Inductive-GNN. That means fine-tuning can be prone to overfitting espe-

cially when the labeled data are scarce, and a better solution is to learn adaptable

general knowledge through meta-learning.

Third, the meta-learning approaches achieve competitive results. GFL and

Meta-GNN are often better than inductive approaches, but largely trail behind

our approach MI-GNN, as they are designed for few-shot classification and lack

the dual-level adaptations. In particular, our proposed MI-GNN outperforms all

other methods with statistical significance in all but one case. The only excep-
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tion is on the highly imbalanced DHFR dataset, where MI-GNN achieves slightly

worse accuracy than Meta-GNN at low significance (p = 0.442) but significantly

better Micro-F1. Note that Micro-F1 is regarded as a more indicative metric than

accuracy on imbalanced classes.

Alternative GNN architectures

As MI-GNN is designed to work with different GNN architectures, we evaluate

its flexibility on two other GNN architectures, namely, GCN and GraphSAGE, in

addition to SGC as described in the experimental setup. For each architecture, we

compare with several representative baselines in Table 3.4. Similar to using SGC,

our approach consistently outperforms transductive, inductive and meta-learning

baselines alike. The results demonstrate the robustness of our approach across

different GNN architectures.

Effect of dual adaptations

The advantage of our approach MI-GNN stems from the dual adaptations at the

graph and task levels. To investigate the contribution from each level of adap-

tation, we perform an ablation study on MI-GNN, comparing with the following

variants. (1) Fine-tune only : A standard inductive GNN model without any

graph- or task-level adaptation, but there is still a simple fine-tuning step on the

testing graphs. This is equivalent to the AGF baseline. (2) Graph-level only : This

can be obtained by removing the task-level adaptation from MI-GNN. (3) Task-

level only : This can be obtained by removing the graph-level adaptation from

MI-GNN.

We present the comparison in Figure 3.3. First of all, MI-GNN outperforms

all the ablated models consistently, demonstrating the overall benefit of the dual
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Figure 3.3: Effect of dual adaptations.

adaptations. Among the ablated models, Fine-tune only achieves a surprisingly

competitive performance approaching the model with only task-level adaptation,

while graph-level adaptation performs rather poorly in majority of the cases. That

means in MI-GNN the two levels of adaptations are both crucial and they are well

integrated, as each adaptation alone may not give any significant benefit over a

simple fine-tuning step but together they work much better.

Hyperparameter sensitivity

We study the effect of regularization in graph-level adaptation, and the number

of gradient descent steps in task-level adaptation.

Regularization for graph-level adaptation. To prevent overfitting to the

training graphs, we constrain the graph-conditioned transformations to ensure

that the scaling is close to 1 and the shifting is close to 0. We study the effect of

the regularization in Figure 3.4(a), as controlled by the co-efficient λ in Eq. (3.14).

In general, the performance is stable for different values of λ, although smaller

values in the range [0.0001, 0.01] tends to perform better. Overly large values

will result in very little scaling and shifting, effectively removing the graph-level

adaptation and thus suffering from reduced performance.

45



0.0001 0.001 0.01 0.1 1
Scaling & Shifting Reg Coeff ( )

40
50
60
70
80
90

100
Ac

cu
ra

cy
 (%

)
Flickr
Yelp

Cuneiform
COX2

DHFR

(a) Regularization

1 2 3 4 5
# of Gradient Updates

40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Flickr
Yelp

Cuneiform
COX2

DHFR

(b) Gradient steps

Figure 3.4: Impact of regularization and gradient steps.

Number of gradient steps in task-level adaptation. As discussed in Sec-

tion 3.4, we achieve task-level adaptation by conducting a few steps of gradient

descent on the support set of each graph. To understand the impact of number

of steps, we conduct experiments using different number of steps. Results in Fig-

ure 3.4(b) reveal that the performance is not sensitive to the number of steps.

Thus, it is sufficient to perform just one or two steps for efficiency.

Performance case study

To understand more precisely when our proposed meta-inductive framework can be

effective, we conduct a case study on the performance patterns of transductive and

inductive methods. On one hand, the performance of inductive models on testing

graphs would directly correlate to the similarity between testing and training

graphs. Intuitively, the less similar they are, the less effectively knowledge can

be transferred from training to testing graphs. On the other hand, transductive

methods are not influenced by such similarity, as they do not learn from training

graphs at all.

We compute the similarity between two graphs based on the Euclidean dis-

tance of their graph-level representations generated by an attention-based model

[1]. The similarity between a testing graph and a set of training graphs is then

given by the average similarity between the testing graph and each of the training
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Figure 3.5: Performance w.r.t. similarity to training graphs.

graph. Subsequently, we split the testing graphs into three groups according to

their similarity to the training set, namely, high, medium and low similarity. We

report the performance of each group under three settings: transductive (using

DeepWalk), inductive (using Induct-GNN) and meta-inductive (using MI-GNN).

We present heatmap visualizations in Figure 3.5 on the Cuneiform dataset.

Although the inductive setting can leverage knowledge gained from the training

graphs and potentially transfer it to testing graphs, it is not always helpful and can

even be harmful when the training data are quite different from the testing data,

known as negative transfer [93]. Our heatmaps show that in the transductive

setting, the performance remains largely unchanged across the three groups, as

transductive methods do not rely on any knowledge transfer from training graphs.

In contrast, the conventional inductive setting can suffer from negative transfer,

as its performance drops considerably when the testing graphs become less similar

to the training graphs. Finally, our meta-inductive approach is generally robust

and the effect of negative transfer is much smaller than the conventional inductive

method. The underlying reason is that we only learn a form of general knowl-

edge from training graphs, which undergoes a further adaptation process to suit

each testing graph. The adaptation process makes our method more robust when

dealing with different graphs, which is also our key distinction from conventional

inductive methods.
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3.6 Conclusion

In this work, we studied the problem of inductive node classification across graphs.

Unlike existing one-model-fits-all approaches, we proposed a novel framework

called MI-GNN to customize the inductive model to each graph under a meta-

learning paradigm. To cope with the differences across graphs, we designed a dual

adaptation mechanism at both the graph and task levels. More specifically, we

learn a graph prior to adapt for the graph-level differences, and a task prior to

further adapt for the task-level differences conditioned on each graph. Extensive

experiments on five real-world graph collections demonstrate the effectiveness of

MI-GNN.

As for the limitation of MI-GNN, it is that MI-GNN requires a lot of labeled

data to do the training. However, in real-world, the acquisition of labeled data is

always time cost and labor cost. One possible solution is leveraging self-supervised

learning to extract more knowledge and provide a better model initialization. By

doing so, MI-GNN can reduce the reliance of labeled data.

3.7 Relation with the other two chapters

The chapter on generalizing Graph Neural Networks (GNNs) across graphs is

closely related and integrated with the subsequent chapters on generalizing GNNs

across time and generalizing GNNs across node classification tasks. Together,

these chapters form a comprehensive exploration of the broader goal of enhancing

the generalization capabilities of GNNs in various dimensions.

In the chapter on generalizing GNNs across graphs, the focus is on im-

proving the ability of GNNs to generalize across different graph structures. It

investigates techniques and approaches to adapt GNNs to diverse graph topolo-

gies, enabling effective learning and inference on unseen graphs. This chapter lays
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the foundation for extending the generalization capabilities of GNNs beyond their

initial training graph.

Building upon this foundation, the subsequent Chapter 4 on generaliz-

ing GNNs across time explores the temporal dimension in graph data. It delves

into methods that enable GNNs to capture temporal dependencies and changes

over time, facilitating dynamic graph analysis and prediction. By incorporating

temporal information, GNNs become more versatile in modeling dynamic graph

structures.

In the Chapter 5 on generalizing GNNs across node classification tasks,

the focus shifts to the generalization of GNNs across different node classification

problems. It investigates techniques that enhance the transferability and adap-

tation of GNNs to diverse node classification tasks, allowing models to leverage

knowledge gained from one task to improve performance on unseen tasks. This

chapter expands the applicability of GNNs across a broader range of classification

scenarios.

Together, these chapters present a cohesive progression of research, starting

with the generalization of GNNs across graph structures, extending to temporal

dynamics, and finally encompassing node classification tasks. The integration lies

in their shared objective of enhancing the generalization capabilities of GNNs,

enabling them to tackle diverse real-world scenarios and facilitating more effective

and adaptable graph-based learning systems.
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Chapter 4

Generalizing GNNs across Time

The previous chapter explores inductive semi-supervised node classification across

graphs where we generalize GNN across graphs. However, in practice, most graphs

are temporal and dynamic. In this chapter, we study the temporal graph represen-

tation learning and deal with the problem of temporal link prediction. We propose

TREND, a novel framework for temporal graph representation learning, driven by

TempoRal Event and Node Dynamics and built upon a Hawkes process-based

graph neural network (GNN). TREND presents a few major advantages: (1) it is

inductive due to its GNN architecture; (2) it captures the exciting effects between

events by the adoption of the Hawkes process; (3) as our main novelty, it captures

the individual and collective characteristics of events by integrating both event

and node dynamics, driving a more precise modeling of the temporal process.

This work is presented in:

• Zhihao Wen, Yuan Fang. TREND: TempoRal Event and Node Dynamics for

Graph Representation Learning. In Proceedings of the ACM Web Conference

2022 (WWW ’22).
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4.1 Introduction

Graph-structured data widely exist in real-world scenarios, e.g., social networks,

citation networks, e-commerce networks, and the World Wide Web. To discover in-

sights from these data, graph representation learning has emerged as a key enabler

which can encode graph structures into a low-dimensional latent space. The state

of the art has made important progress and many approaches are proposed, which

can be mainly divided into two categories: network embedding [8] and graph neural

networks (GNNs) [135]. Network embedding approaches are often transductive,

which directly learn node embedding vectors using various local structures, like

random walks in DeepWalk [87] and node2vec [28], and 1st- and 2nd-order proxim-

ity in LINE [111]. In contrast, GNNs do not directly learn node embedding vectors.

They instead learn an inductive aggregation function [46, 31, 119, 140, 132] which

can be generalized to unseen nodes or even new graphs in the same feature space.

Typical GNNs follow a message passing framework, where each node receives

and aggregates messages (i.e., node features or embeddings) from its neighboring

nodes recursively in multiple layers. In other words, GNNs are capable of not only

encoding graph structures, but also preserving node features.

Most of these graph representation methods focus on static graphs with

structures frozen in time. However, real-world graphs often present complex dy-

namics that evolve continuously in time. For instance, in social networks, burst

events often rapidly change the short-term social interaction pattern, while on an

e-commerce user-item graph, long-term user preferences may drift as new gener-

ations of product emerge. More precisely, in a temporal graph [53], the temporal

evolution arises from the chronological formation of links between nodes. As illus-

trated in Fig. 4.1, the toy graph evolving from time t1 through t3 can be described

by a series of triple {(A,B, t1), (B,C, t1), (C,D, t2), (C,E, t2), (B,C, t3), . . .}, where

each triple (i, j, t) denotes a link formed between nodes i and j at time t. Hence,

the prediction of future links depends heavily on the dynamics embodied in the
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historical link formation [97]. In this paper, we investigate the important problem

of temporal graph representation learning, in which we learn representations that

evolve with time on a graph. In particular, we treat the formation of a link at

a specific time as an event, and a graph evolves or grows continuously as more

events are accumulated [37].

Prior work. In general, the requirement for temporal graph representation learn-

ing is that the learned representations must not only preserve graph structures and

node features, but also reflect its topological evolution. However, this goal is non-

trivial, and it is not until recently that several works on this problem have emerged.

Among them, some [17, 57, 27, 157, 95, 84] discretize the temporal graph into a

sequence of static graph snapshots to simplify the model. As a consequence, they

cannot fully capture the continuously evolving dynamics, for the fine-grained link

formation events “in-between” the snapshots are inevitably lost. For continuous-

time methods, CTDNE [81] resort to temporal random walks that respect the

chronological sequence of the edges; TGAT [137] employs a GNN framework with

functional time encoding to map continuous time and self-attention to aggregate

temporal-topological neighborhood. However, these methods often fail to explic-

itly capture the exciting effects [160] between sequential events, particularly the

influence of historical events on the current events. Nonetheless, such effects can

be well captured by temporal point processes, most notably the Hawkes process

[35, 75], which assumes that historical events prior to time t can excite the process

in the sense that future events become more probable for some time after t. This

property is desirable for modeling the graph-wide link formation process, in which

each link formation is considered an event that can be excited by recent events.

For example, in social networks, a celebrity who has attracted a large crowd of

followers lately (e.g., due to winning a prestigious award) is likely to attract more

followers in the near future. However, for temporal graph representation learning,

existing Hawkes process-based network embedding methods [160, 71] are inher-
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ently transductive. While DyRep [114] presents an inductive framework based on

the temporal point process, it addresses a different problem setting of two-time

scale with both association and communication events. In our paper, we focus

on learning the dynamics of evolving topology, where each event represents the

formation of a link.

Challenges and present work. To effectively model the events of link formation

on a temporal graph, we propose a Hawkes process-based GNN framework to reap

the benefits of both worlds. Previous methods do not employ Hawkes or similar

point processes for modeling the exciting effects between events [137], or not use

message-passing GNNs for preserving the structures and features of nodes in an

inductive manner [160, 71], or neither [81]. More importantly, while the Hawkes

process is well suited for modeling the graph-wide link formation process, prior

methods fail to examine two open challenges on modeling the events (i.e., link

formation), as follows.

Challenge 1: How do we capture the uniqueness of the events on an

individual scale? Different links are often formed out of different contexts and

time periods, causing subtle differences among events. Taking the research col-

laboration network in Fig. 4.1 as an example, while links are all collaborations,

each collaboration can be unique in its own way. For instance, the collaboration

between researchers A and B, and that between F and G, could be formed due

to different backgrounds and reasons (e.g., they might simply be students of the

same advisor who devised the solution together, or they possess complementary

skills required in a large multi-disciplinary project). Multiple collaborations can

also be formed at different times, such as between B and C at t1 and t3, for po-

tentially different reasons. Conventional methods on temporal graphs train one

model to fit all events, where different events tend to pull the model in many

opposing directions. The resulting model would be overly diffuse with its center

of mass around the most frequent patterns among the events, whilst neglecting

53



many long-tailed patterns covering their individual characteristics. Hence, in this

paper, motivated by hypernetworks [29, 86, 130], we learn an event prior, which

only encodes the general knowledge of link formation. This event prior can be

further specialized in an event-wise manner to fit the individual characteristics of

events.

Challenge 2: How do we govern the occurrence of events on a collective

scale? While events exhibit individual characteristics, they are not formed in iso-

lation and related events often manifest collective characteristics. Events sharing

a common node can be ”constrained as a collection” due to the common influence

from their shared node. That is, the collection of events of each node should match

the arrival rate of the node, which we call node dynamics. Of course, for two dif-

ferent nodes, each would have its own event collection, and each collection should

match different arrival rates of the two nodes. As shown in Fig. 4.1, researchers A

and C have different tendency to form a collaboration with others at time t3, with

C being more active in seeking collaborations. Moreover, as the graph evolves from

time t1 to t3, researcher C’s tendency in collaborating with others also evolves to

become higher (e.g., due to C’s growing reputation). In other words, the events

stemming from a common node are collectively governed by the dynamics of the

node as a function of time. Hence, we formulate the notion of node dynamics to

model the collective characteristics of the events from the same node. Intuitively,

integrating the node dynamics provides a regularizing mechanism beyond individ-

ual events, to ensure that the events from a node, as a collection, conform to the

continuous evolution of the node. Despite the importance of node dynamics, it

has not been explored in temporal graph representation learning.

Contributions. We propose TREND, a novel framework for temporal graph

representation learning driven by TempoRal Event and Node Dynamics. TREND

is built upon a Hawkes process-based GNN, and presents a few major advantages.

Firstly, owning to its GNN architecture, it is inductive in nature, i.e., able to
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Figure 4.1: Toy temporal graph for research collaborations that evolves through
time t1, t2, t3, · · · . Each node is a researcher and each link is a collaboration
between researchers formed at a specific time.

handle new nodes at test time. Secondly, owning to the adoption of the Hawkes

process, it maps the graph-wide link formation process to capture a holistic view

of the temporal evolution. Thirdly, TREND integrates both the event and node

dynamics to respectively capture the individual and collective characteristics of

events, which drives a more precise modeling of the link formation process.

In summary, our work encompasses the following contributions. (1) For the

first time in temporal graph representation learning, we recognize the importance

of modeling the events at an individual and collective scale, and formulate them as

event and node dynamics. (2) We propose a novel framework called TREND with

both event and node dynamics to more precisely model events under a Hawkes

process-based GNN. On one hand, the event dynamics learns an adaptable event

prior to capture the uniqueness of events individually. On the other hand, the

node dynamics regularizes the events at the node level to govern their occurrences

collectively. (3) We conduct extensive experiments on four real-world datasets,

which demonstrate the advantages of TREND.

4.2 Preliminaries

In this section, we first present the problem of temporal graph representation

learning, and then introduce a brief background on the Hawkes process.
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Figure 4.2: Overall framework of TREND, which integrates event and node dy-
namics in a Hawkes process-based GNN.

Temporal Graph Representation Learning

A temporal graph G = (V , E , T ,X) is defined on a set of nodes V , a set of edges

E , a time domain T and an input feature matrix X ∈ R|V|×d0 . Each node has a

d0-dimensional input feature vector corresponding to one row in X. An event is

a triple (i, j, t) denoting the formation of an edge (i, j) ∈ E (also called a link)

between node i ∈ V and node j ∈ V at time t ∈ T . Alternatively, a temporal graph

can be defined as a chronological series of events I = {(i, j, t)m : m = 1, 2, . . . , |E|}.

Note that two nodes may form a link more than once at different times. Thus,

there may be two events (i, j, t1) and (i, j, t2) such that t1 ̸= t2. Besides, in this

work, we only consider the growth of temporal graph, and make deletions of node

and edge as future work.

We study the problem of inductive temporal graph representation learning.

Specifically, given G = (V , E , T ,X), we aim to learn a parametric model Φ(·; θ)

with parameters θ, such that Φ maps any node in the same feature space of X at

any time to a representation vector. That is, Φ : V ′ × T → Rd, where V ⊂ V ′.

The set difference V ′ \V consists of new nodes in the same feature space of X that

may appear at a future time. Such a model Φ is apparently inductive given the

ability to handle new nodes.
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Hawkes Process

A Hawkes process [35] is a stochastic process that can be understood as counting

the number of events up to time t. Its behavior is typically modeled by a condi-

tional intensity function λ(t), the rate of event occurring at time t given the past

events. A common formulation of the conditional intensity [160, 71] is given by

λ(t) = µ(t) +

∫ t

−∞
κ(t− s)dN(s), (4.1)

where µ(t) is the base intensity at time t, κ is a kernel function to model the

time decay effect of historical events on the current event (usually in the shape

of an exponential function), and N(t) is the number of events occurred until t.

Since the Hawkes process is able to model the exciting effects between events to

capture the influence of historical events holistically, it is well suited for modeling

the graph-wide link formation process in a temporal graph.

4.3 Proposed Approach

In this section, we present a novel framework for temporal graph representation

learning called TREND.

Overview of TREND

Building upon a Hawkes process-based GNN, the proposed TREND is able to

model the graph-wide link formation process in an inductive manner. More im-

portantly, it integrates event and node dynamics into the model to fully capture

the individual and collective characteristics of events.

The overall framework of TREND is shown in Fig. 4.2. First of all, in
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Fig. 4.2(a), an input temporal graph undergoes a temporal GNN aggregation

in multiple layers, whose output representations serve as the input for modeling

event and node dynamics. The GNN layer aggregates both the self-information

and historical neighbors’ information, which are building blocks to materialize

the conditional intensity in the Hawkes process. Next, we model event dynamics

to capture the individual characteristics of events, as shown in Fig. 4.2(b). We

perform an event-conditioned, learnable transformation to adapt the event prior

to the input event, resulting in an event-specific transfer function to generate the

conditional intensity in the Hawkes process. Moreover, we model node dynamics

to capture the collective characteristics of events at the node level, as shown in

Fig. 4.2(c). We build an estimator to predict the node dynamics across nodes

and times, which governs the behavior of events occurring on the same node. At

last, we integrate the event and node losses to jointly optimize event and node

dynamics.

Hawkes process-based GNN

We first introduce a Hawkes process-based GNN framework, which is to be further

integrated with event and node dynamics later.

Hawkes process on temporal graph. In the context of temporal graph, the

Hawkes process is able to model the graph-wide link formation process. Specifi-

cally, whether nodes i and j form a link at t, can be quantified by the conditional

intensity of the event,

λi,j(t) = µi,j(t) +
∑

(i,j′,t′)∈Hi(t)

γj′(t
′)κ(t− t′)

+
∑

(i′,j,t′)∈Hj(t)

γi′(t
′)κ(t− t′). (4.2)

In particular, µi,j(t) is the base rate of the event that i and j form a link at time t,
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which is not influenced by historical events on i or j. Hi(t) is the set of historical

events on i w.r.t. time t, i.e., Hi(t) = {(i, j′, t′) ∈ I : t′ < t}, and we call j′ a

historical neighbor of i. γj′(t
′) represents the amount of excitement induced by a

historical neighbor j′ at t′ on the current event. Note that we are treating each

link as undirected, and thus the current event is influenced by historical neighbors

of both nodes i and j. In the case of directed link, we can modify Eq. (4.2) by

keeping only one of the two summation terms. κ(·) is a kernel function to capture

the time decay effect w.r.t. t, defined in the form of an exponential function as

κ(t− t′) = exp(−δ(t− t′)), where δ > 0 is a learnable scalar to control the rate of

decay.

Next, temporal graph representations are used to materialize the condi-

tional intensity in Eq. (4.2). Given the temporal representations of nodes i, j at

time t, denoted ht
i,h

t
j respectively, the conditional intensity can be generated from

a transfer function f [114, 75], i.e.,

λi,j(t) = f(ht
i,h

t
j), (4.3)

which should meet the following criteria. (1) The input representations ht
i,h

t
j

should be derived from not only their inherent self-information, but also their

historical neighbors’ information. While the self-information is the basis of the

base intensity µi,j(t), historical neighbors are crucial to model the excitement

induced by historical events. (2) The output of the transfer function f must be

positive, since it represents an intensity. We will discuss the choice of the transfer

function in Sect. 4.3.

Temporal GNN layer. We materialize the temporal representations in Eq. (4.3)

using GNNs, owning to their inductive nature and superior performance. Based

on the message passing scheme, each node receives, aggregates and maps messages

(e.g., features or embeddings) from its neighboring nodes recursively, in multiple
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layers. Here we present a temporal formulation of GNN in consideration of the

representational criteria listed above, so that the learned temporal representations

can be used to materialize the conditional intensity. Formally, let ht,l
i ∈ Rdl be

the dl-dimensional embedding vector of node i at time t in the l-th layer, which is

computed by

ht,l
i = σ

(
ht,l−1
i Wl

self︸ ︷︷ ︸
self-

information

(for base

intensity)

+
∑

(i,j′,t′)∈Hi(t)

ht′,l−1
j′ Wl

histκ̃i(t− t′)

︸ ︷︷ ︸
historical neighbors’

information

(for excitement by historical

events)

)
, (4.4)

where σ is an activation function (e.g., ReLU), Wl
self ∈ Rdl−1×dl is a learnable

weight matrix to map the embedding of node i itself from the previous layer,

Wl
hist ∈ Rdl−1×dl is another learnable weight matrix to map the embeddings of

historical neighbors, and κ̃i(t − t′) captures the time decay effect based on the

time kernel with softmax, which is given by κ̃i(t− t′) = κ(t−t′)∑
(i,j′′,t′′)∈Hi(t)

κ(t−t′′)
.

In other words, the temporal representation of a node is derived by re-

ceiving and aggregating messages of itself and the historical neighbors from the

previous layer. The self-information is responsible for capturing the base intensity,

while the historical neighbors’ information is responsible for capturing the excite-

ment induced by historical events. To enhance the representational capacity, we

stack multiple temporal GNN layers. In the first layer, the node message can

be initialized by the input node features X; in the last layer, the output tempo-

ral representation is denoted as ht
i ∈ Rd for node i at time t. The collection of

parameters of all the layers is θg = {Wl
self,W

l
hist : l = 1, 2, . . .}.

Connection to conditional intensity. A well chosen transfer function f , taking

the temporal representations as input, is equivalent to the conditional intensity

of the Hawkes process in Eq. (4.2). We formally show the connection in Ap-
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pendix A.2.

Modeling Event Dynamics

The key to materialize the conditional intensity is to fit a transfer function f on

top of the temporal GNN layers. Previous studies on Hawkes process employ the

softplus function or its variant [75, 114] as the transfer function. To ensure that

f is well-fit to the conditional intensity, our first proposal is to instantiate f as a

learnable function. More specifically, we use a fully connected layer (FCL). That

is,

λi,j(t) = f(ht
i,h

t
j) = FCLe((h

t
i − ht

j)
◦2; θe), (4.5)

where θe denotes the parameters of the fully connected layer FCLe. Note that

the input to FCLe can be in various forms, such as the concatenation of ht
i and

ht
j, or the element-wise square (denoted by ◦2) of the difference between them.

We use the latter in our formulation, which tends to achieve better empirical

performance. A potential reason is that the differential representation is a good

predictor of whether an event occurs between the two nodes. Lastly, FCLe employs

a sigmoid activation, to ensure the transfer function is positive.

Meanwhile, we recognize that each event can be unique in its own way,

as different links are often formed out of different contexts and time periods. To

precisely capture the uniqueness of events on an individual scale (Challenge 1),

a global model in Eq. (4.5)—our first proposal—becomes inadequate. To be more

specific, in a conventional one-model-fits-all approach, given the diversity in events,

the learned model tends to converge around the most frequent patterns among

events, while leaving long-tailed patterns that reflect the individual characteristics

of events uncovered. On the other hand, training a large number of models for

different kinds of events can easily cause overfiting and scalability issues, not to
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mention that it is difficult to categorize events in the first place. Inspired by meta-

learning, particularly the line of work on hypernetworks [29, 86], we address the

dilemma by learning an event prior, which can be quickly adapted to a unique

model for each event, without the need to train a large number of models.

Event prior and adaptation. In our first proposal in Eq. (4.5), we learn a global

model for all events, i.e., the same θe parameterizes a global FCLe as the transfer

function for all events. To deal with the diversity of events, we propose to learn

an event prior θe that aims to encode the general knowledge of link formation,

such that it can be quickly specialized to fit the individual characteristics of each

event. In other words, θe does not directly parameterize FCLe used as the transfer

function; instead, it will be adapted to each event via a learnable transformation

model first, and the adapted parameters will instantiate an event-specific FCLe

as the transfer function for each event. This approach is a form of hypernetwork

[29], in which a secondary neural network is used to generate the parameters of the

primary network. This means the parameters of the primary network can flexibly

adapt to its input, as opposed to conventional models whose parameters are frozen

once training is completed. In our context, the primary network is FCLe for

the transfer function, and the secondary network is the learnable transformation

model.

Particularly, during the adaptation, the event prior θe will transform into

event (i, j, t)-specific parameters θ
(i,j,t)
e as follows.

θ(i,j,t)e = τ(θe,h
t
i∥ht

j; θτ ), (4.6)

which (1) is parameterized by θτ ; (2) is conditioned on event-specific temporal

representations of nodes i, j, namely, ht
i∥ht

j where ∥ is the concatenation operator;

(3) outputs adapted parameters θ
(i,j,t)
e by transforming the event prior θe condi-

tioned on ht
i∥ht

j. The transformed θ
(i,j,t)
e will further parameterize FCLe as the
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transfer function, and materialize the conditional intensity below.

λi,j(t) = FCLe((h
t
i − ht

j)
◦2; θ(i,j,t)e ). (4.7)

In the following, we will materialize the transformation model τ and its

parameters θτ in detail.

Learnable transformation. We consider Feature-wise Linear Modulation (FiLM)

[86], which employs affine transformations including scaling and shifting on the

event prior, conditioned on event-specific temporal representations. Compared

with gating [139] which can only adjust the parameters in a diminishing way,

FiLM is more flexible in adjusting the parameters and can be conditioned on arbi-

trary input. Specifically, we employ fully connected layers to generate the scaling

operator α(i,j,t) and shifting operator β(i,j,t), conditioned on the event-specific input

ht
i∥ht

j, as follows.

α(i,j,t) = σ
(
(ht

i∥ht
j)Wα + bα

)
, (4.8)

β(i,j,t) = σ
(
(ht

i∥ht
j)Wβ + bβ

)
, (4.9)

where Wα,Wβ ∈ R2d×dθe and bα,bβ ∈ Rdθe are learnable weight matrices and

bias vectors of the fully connected layers, in which d is the dimension of node

representation and dθe is the total number of parameters in the event prior θe.

The output α(i,j,t), β(i,j,t) ∈ Rdθe are both dθe-dimensional vectors, which represent

the scaling and shifting operations of the transformation model τ . They are used

to transform the event prior into event (i, j, t)-specific parameters by element-wise

scaling and shifting, given by

θ(i,j,t)e = τ(θe,h
t
i∥ht

j; θτ ) = (α(i,j,t) + 1)⊙ θe + β(i,j,t), (4.10)

where ⊙ stands for element-wise multiplication, and 1 is a vector of ones to ensure
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that the scaling factors are centered around one. Note that θe contains all the

weights and biases of FCLe, and we flatten it into a dθe-dimensional vector.

In summary, the learnable transformation model τ is parameterized by

θτ = {Wα,bα,Wβ,bβ}, i.e., the collection of parameters of the fully connected

layers that generate the scaling and shifting operators. Furthermore, τ is also a

function of the event condition ht
i∥ht

j, for α(i,j,t) and β(i,j,t) are functions of the

event condition.

Event loss. Given an event (i, j, t) ∈ I that has occurred on the graph, we

expect a higher conditional intensity λi,j(t). On the contrary, given an event

(i, j, t) /∈ I that does not happen, we expect a lower conditional intensity. Thus,

we formulate the event loss based on negative log-likelihood, the optimization of

which encourages the conditional intensity of an event to match its occurrence or

non-occurrence. Given any event (i, j, t) ∈ I that has occurred, its loss is defined

as

Le(i, j, t) = − log(λi,j(t))−Q · Ek∼Pn log(1− λi,k(t)), (4.11)

where we sample a negative node k according to the distribution Pn, so that

(i, k, t) /∈ I does not occur, and Q is the number of negative samples for each

positive event. As a common practice, Pn is defined on the node degrees, namely,

Pn(v) ∝ deg(v)
3
4 where deg(v) is the degree of node v.

Modeling Node Dynamics

Different from the event dynamics that captures the individual characteristics

of events, node dynamics aims to govern the collective characteristics of events.

While events can be individually different, they do not occur in isolation. Par-

ticularly, links are formed to connect nodes, which means their behaviors are
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collectively bounded by their common nodes. Thus, we propose to govern the col-

lective characteristics of nodes at the node level, to capture the “event tendency”

of nodes (Challenge 2)—different nodes have varying tendency to form new

links with others, and even the same node would manifest different tendency at

different times.

Estimator of node dynamics. More specifically, the node dynamics or the

event tendency of a node at time t can be quantified by the number of new events

occurring on the node at t, denoted ∆Ni(t). We build an estimator for node

dynamics with a fully connected layer, trying to fit the number of new events on

a given node:

∆N̂i(t) = FCLn(ht
i; θn), (4.12)

where the input is the temporal representation ht
i, the output ∆N̂i(t) is the pre-

dicted number of new events occurring on node i at time t, and θn contains the

parameters of FCLn.

Node loss. To ensure that the occurrence of events are consistent with the node

dynamics evolving continuously on a temporal graph, we formulate a node loss

such that the estimator ∆N̂i(t) can accurately reflect the groundtruth dynamics

∆Ni(t) across all nodes and times. In particular, we adopt the following smooth

L1 loss [24]:

Ln(i, t) =


0.5(∆N̂i(t)−∆Ni(t))

2, |∆N̂i(t)−∆Ni(t)| < 1

|∆N̂i(t)−∆Ni(t)| − 0.5. otherwise

(4.13)

The smooth L1 loss can be viewed as a combination of both L1 loss and L2 loss. It

is less sensitive to outliers than the L2 loss when the input is large, and it suffers

from less oscillations than the L1 loss when the input is small. In our scenario,
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there exist some nodes with a very large number of new links at certain times

(e.g., due to burst topics on social networks). To prevent the models from being

overly skewed to these nodes, and to simultaneously cater to nodes with only a

few links, the smooth L1 loss is an ideal choice.

Overall Model: TREND

Finally, we integrate both event and node dynamics into a Hawkes process-based

GNN model, resulting in our proposed model TREND. Consider the set of training

events Itr = {(i, j, t) ∈ I : t ≤ ttr}, i.e., all events on the graph up to time ttr.

(New events after time ttr can be reserved for testing.) We optimize all parameters

Θ = (θg, θe, θτ , θn) jointly, including those of the temporal GNN layers θg, the

event prior θe, the transformation model θτ and the estimator of node dynamics

θn, based on the following loss:

arg min
Θ

∑
(i,j,t)∈Itr

Le + η1Ln + η2(∥α(i,j,t)∥22 + ∥β(i,j,t)∥22), (4.14)

where (1) η1 > 0 is a hyper-parameter controlling the contribution of node dynam-

ics to our model TREND; (2) the L2 regularization on α(i,j,t) and β(i,j,t) constrains

the scaling and shifting operators, as it is preferred that the scaling is close to 1

and the shifting is close to zero, in order to avoid overfitting to individual events;

(3) η2 > 0 is a hyperparameter controlling the effect of the L2 regularizor.

For implementation, we perform optimization over batches of training events

using a gradient-based optimizer. The overall training procedure of TREND is

outlined in Appendix A.3. It can be seen that the training time complexity is

O(K|Itr|hlQ)), where K is the number of epochs, |Itr| is the number of training

events, h is the number of historical neighbors in temporal GNN aggregation, l is

the number of temporal GNN layers, and Q is the number of negative samples per

training event. Note that Q and l are small constants (typically 5 or less), and h
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Table 4.1: Statistics of datasets.

Dataset CollegeMsg cit-HepTh Wikipedia Taobao

# Events 59,835 51,315 157,474 4,294,000
# Nodes 1,899 7,577 8,227 1,818,851

# Node features − 128 172 128
Multi-edge? Yes No Yes Yes

New nodes in testing 22.79% 100% 7.26% 23.46%

can also be a constant when employing a commonly used neighborhood sampling

approach [31]. Hence, the complexity can be regarded as linear in the number of

events or temporal edges on the graph.

4.4 Experiments

We conduct extensive experiments to evaluate TREND, with comparison to state-

of-the-art baselines and in-depth model analysis.

Experimental Setup

Datasets. Four public temporal networks are used in our experiments, as sum-

marized in Tab. 4.1. Note that “new nodes in testing” refers to the ratio of testing

events containing at least one new node not seen during training. (1) CollegeMsg

[83]: an online social network in which an event is a user sending another user a

private message. (2) cit-HepTh [50]: a citation graph about high energy physics

theory in which an event is a paper citation. (3) Wikipedia [49]: a Wikipedia

graph in which an event is a user editing a page. (4) Taobao [18]: an e-commerce

platform in which an event is a user purchasing an item. More dataset details are

presented in Appendix A.4.

Prediction tasks. We adopt temporal link prediction as our main task. We
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Table 4.2: Performance of temporal link prediction by TREND and the baselines,
in percent, with 95% confidence intervals.

In each column, the best result is bolded and the runner-up is underlined. Improvement by

TREND is calculated relative to the best baseline. “-” indicates no result obtained due to out

of memory issue; ∗ indicates that our model significantly outperforms the best baseline based

on two-tail t-test (p < 0.05).

CollegeMsg cit-HepTh Wikipedia Taobao

Accuracy Accuracy Accuracy Accuracy

DeepWalk 66.54±5.36 51.55±0.90 65.12±0.94 53.59±0.18
Node2vec 65.82±4.12 65.68±1.90 75.52±0.58 52.74±0.33
VGAE 65.82±5.68 66.79±2.58 66.35±1.48 55.97±0.22
GAE 62.54±5.11 69.52±1.10 68.70±1.34 58.13±0.15

GraphSAGE 58.91±3.67 70.72±1.96 72.32±1.25 60.74±0.18

CTDNE 62.55±3.67 49.42±1.86 60.99±1.26 51.64±0.32
EvolveGCN 63.27±4.42 61.57±1.53 71.20±0.88 -

GraphSAGE+T 69.09±4.91 67.80±1.27 57.93±0.53 67.05±0.23
TGAT 58.18±4.78 78.02±1.93 76.45±0.91 70.07±0.59

HTNE 73.82±5.36 66.70±1.80 77.88±1.56 59.03±0.17
MMDNE 73.82±5.36 66.28±3.87 79.76±0.89 58.24±0.10

TREND 74.55±1.95 80.37∗±2.08 83.75∗±1.19 78.56∗±0.17
(improv.) (+0.99%) (+3.01%) (+5.00%) (+12.11%)

CollegeMsg cit-HepTh Wikipedia Taobao

F1 F1 F1 F1

DeepWalk 67.86±5.86 50.39±0.98 64.25±1.32 56.67±0.12
Node2vec 69.10±3.50 66.13±2.15 75.61±0.52 54.86±0.32
VGAE 68.73±4.49 67.27±2.84 68.04±1.18 59.80±0.16
GAE 66.97±3.22 70.28±1.33 69.74±1.43 61.40±0.07

GraphSAGE 60.45±4.22 71.27±2.41 73.39±1.25 61.61±0.20

CTDNE 65.56±2.34 44.23±3.92 62.71±1.49 43.99±0.38
EvolveGCN 65.44±4.72 62.42±1.54 73.43±0.51 -

GraphSAGE+T 69.41±5.45 69.12±1.12 63.41±0.91 67.69±0.17
TGAT 57.23±7.57 78.52±1.61 76.99±1.16 71.31±0.18

HTNE 74.24±5.36 67.47±1.16 78.09±1.40 60.34±0.19
MMDNE 74.10±3.70 66.70±3.39 79.87±0.95 59.04±0.16

TREND 75.64±2.09 81.13∗±1.92 83.86∗±1.24 80.67∗±0.15
(improv.) (+1.89%) (+3.32%) (+4.99%) (+13.12%)
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evaluate a model by predicting future links based on historical links [97]. Given

a temporal graph, we split the events into training and testing. Specifically, the

set of training events Itr = {(i, j, t) ∈ I : t ≤ ttr} consists of all events up to

time ttr. The remaining events after time ttr, denoted by the set Ite = I \ Itr,

is reserved for testing. Given a candidate triple (i, j, t) for some t > ttr, the

objective is to predict whether a link between nodes i and j is formed at the given

future time t, i.e., if (i, j, t) ∈ Ite. Note that our model can perform temporal

link prediction between all nodes, including new nodes not seen during training,

due to its inductive nature. Specifically, in testing, we first generate temporal

node representations based on the trained model, and feed them to a downstream

logistic regression classifier to predict if a candidate triple is positive or negative.

The classifier is trained using a 80%/20% train/test split on the testing events,

and repeated for five different splits. More details are given in Appendix A.5.

We further adopt a secondary task of temporal node dynamics prediction.

While the training and testing events follow the same setup of the main task,

we aim to predict the number of new neighbors of a node i at a specific future

time t > ttr. Similarly, the first step in testing is to generate temporal node

representations based on the trained model, which are then fed into a downstream

linear regression model. To train the regression model, we randomly split the

nodes of the testing events into 80%/20% train/test split.

Settings of TREND. For the temporal GNN, we employ two layers with a ReLU

activation. The hidden layer dimension is set to 16 on all datasets. The output

dimension is set to 32 on CollegeMsg, 16 on cit-HepTh and 128 on Wikipedia and

Taobao, based on the size and complexity of the graph. The transfer function

FCLe employs a sigmoid activation, the estimator of node dynamics FCLn uses

a ReLU activation, and α(i,j,t), β(i,j,t) both employ a LeakyReLU. The number of

negative samples per positive event is set to Q = 1. For the final loss function in

Eq. (4.14), the coefficient of node loss is set to η1 = 0.1 on Taobao and η1 = 0.01
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on other datasets, whereas the coefficient of L2 regularizer is set to η2 = 0.001 on

CollegeMsg and cit-HepTh, η2 = 0.01 on Taobao, and η2 = 1 on Wikipedia. Note

that we will present an analysis on the impact of the hyperparameters Q, η1 and

η2 in Sect. 4.4. Lastly, we use the Adam optimizer with the learning rate 0.001.

Baselines. We compare TREND with a competitive suit of baselines from three

categories. (1) Static approaches : DeepWalk [87], Node2vec [28], VGAE [45],

GAE [45] and GraphSAGE [31]. They train a model or node embedding vec-

tors on the static graph formed from the training events, without considering any

temporal information. (2) Temporal approaches : CTDNE [81], EvolveGCN [84],

GraphSAGE+T [31] and TGAT [137]. They train a model or node embedding

vectors on the temporal graph formed from the training events. Note that Graph-

SAGE+T is a temporal extension of GraphSAGE implemented by us, in which

the time decay effect is incorporated into the aggregation function. (3) Hawkes

process-based approaches : HTNE [160] and MMDNE [71]. They similarly train

node embedding vectors on the temporal graph formed from the training events.

However, they leverage the node representations to model the conditional inten-

sity of events based on the Hawkes process. More baseline descriptions are in

Appendix A.6.

Temporal Link Prediction

In Tab. 4.2, we compare the performance of TREND with the baselines on the main

task. In general, our method performs the best among all methods, demonstrating

the benefits of event and node dynamics. We make two further observations.

First, among static methods, we can see that GNN-based methods (VGAE,

GAE and GraphSAGE) tend to perform better, as they are inductive in nature,

and their message passing scheme is able to integrate both node features and graph

structures. On the other hand, DeepWalk and Node2vec are transductive, which
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Figure 4.3: Effect of main components.

cannot directly extend to new nodes in testing. In our experiments, the embedding

vector of new nodes are randomly initialized for tranductive methods, and thus

their performance can be poor when dealing with new nodes. One exception is on

the CollegeMsg dataset, where there is no node features and one-hot encoding of

node IDs are used instead. In this case, GNN-based methods lose the inductive

capability and do not outperform transductive methods.

Second, temporal approaches are generally superior to static approaches,

showing the importance of temporal information. Among the three GNN-based

approaches (EvolveGCN, GraphSAGE+T and TGAT), EvolveGCN often per-

forms the worst. The reason is that EvolveGCN is based on discrete snapshots,

which inevitably suffers from some loss in the temporal evolution. Moreover, the

Hawkes process-based approaches (HTNE and MMDNE) achieve strong perfor-

mance, demonstrating that the Hawkess process is ideal for modeling the temporal

evolution on graphs. Unfortunately, they are transductive and thus do not outper-

form GraphSAGE-T and TGAT on cit-HepTh and Taobao where there are a large

proportion of new nodes in testing. Besides, we can see that TREND performs

much better on Taobao than on other datasets. A potential reason is that Taobao

is the biggest graph having more “diversity” in events, such that the adaptation

of event prior becomes more crucial and can lead to larger performance gain.
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Figure 4.4: Hyperparameter sensitivity.

Ablation Study

To understand the contribution of each component in TREND, we study the

following ablated models on the task of temporal link prediction. (1) TGNN,

which only stacks two temporal GNN layers and optimizes the inner product of

node pairs; (2) TGNN+H, which adds the global transfer function for the Hawkess

process in Eq. (4.5) to TGNN ; (3) TGNN+H+E and TGNN+H+N, which further

model the event and node dynamics on top of TGNN+H, respectively. Note that

TGNN+H+E uses the event-specific transfer function in Eq. (4.7).

As shown in Fig. 4.3, the performance generally increases when we grad-

ually add more components to TGNN. This shows that every component is use-

ful for modeling temporal graphs. Note that TGNN+H+E typically outperforms

TGNN+H+N, since the event dynamics directly deals with individual events while

the node dynamics only works at the node level. Nevertheless, when integrating

both event and node dynamics, the full model TREND achieves the best per-

formance, showing that it is important to jointly model both event and node

dynamics.

Hyperparameter Study

Here we present a sensitivity analysis of the hyperparameters.
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Negative sampling size. As shown in Fig. 4.4(a), generally speaking, the perfor-

mance of TREND does not improve with more negative samples. On all datasets,

it is robust to choose just one negative sample for each positive event for efficiency.

Regularization on scaling and shifting. To prevent overfitting, the event-

conditioned transformations are regularized to prevent excessive scaling or shift-

ing. The regularization is controlled by the coefficient η2, and we study its effect

in Fig. 4.4(b). The performance is quite stable over different values of η2, al-

though smaller values in the range [0.0001, 0.01] tend to perform better. Worse

performance can be observed on larger values, which implies very little scaling and

shifting similar to removing the event-conditioned transformation.

Coefficient for node loss. We vary η1, which controls the weight of the node

loss, and study its impact in Fig. 4.4(c). We observe that the performance is

suboptimal if η1 is too small or large, and the performance of TREND is generally

robust when η1 is round 0.01. This shows that a well balanced node and event

loss can improve the stability and performance.

Temporal Node Dynamics Prediction

Finally, we evaluate the task of temporal node dynamics prediction.

We report the mean absolute error (MAE) between the predicted value

∆N̂i(t) and the groundtruth ∆Ni(t) in Tab. 4.3. The results show that TREND

consistently achieves the smallest MAE on all four datasets, which demonstrate

its versatility beyond temporal link prediction, and that the estimator of node

dynamics works well as intended.
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Table 4.3: Performance of node dynamics prediction.

Model CollegeMsg cit-HepTh Wikipedia Taobao

CTDNE 10.0636 3.0173 7.3265 0.5789
EvolveGCN 3.1964 2.5610 6.8651 -

GraphSAGE+T 21.9444 2.2421 5.9231 0.5505
TGAT 2.6903 2.8094 7.7737 0.5550
HTNE 12.3587 3.2781 6.8860 0.5749

MMDNE 8.0555 2.7456 6.9552 0.5643

TREND 2.3549 2.2066 5.9140 0.5491

4.5 Conclusion

In this work, we studied the problem of temporal graph representation learning.

Specifically, we proposed TREND, a novel framework for temporal graph repre-

sentation learning, driven by event and node dynamics on a Hawkes process-based

GNN. TREND is inductive and able to capture a holistic view of the link forma-

tion process. More importantly, it integrates both the event and node dynamics

to respectively capture the individual and collective characteristics of events, for

a more precise modeling of the temporal evolution. Finally, we conducted ex-

tensive experiments on four real-world datasets and demonstrated the superior

performance of TREND.

As for the limitation of TREND is that TREND only models the process

of new edge addition in the future, but ignores the process of edge deletion in

the future. However, it is common that there are edge deletions in the future, in

temporal graphs. One possible solution is to introduce one more transfer function

to models the process of edge deletion.
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Chapter 5

Generalizing GNNs across Tasks

The previous chapter studies temporal graph representation learning and solves

the temporal link prediction problem. In this chapter, we study the problem of

low-resource text classification, with no or few labeled samples, which presents

a serious concern for supervised learning. Besides, when there are lots of down-

stream tasks, developing parameter and time efficient tuning method holds signif-

icant practical implications. Motivated by this, we leverage self-supervised learn-

ing, which extracts informative knowledge through well-designed pretext tasks,

to jointly pre-train a graph-text model, augmenting the performance under the

low-resource setting. For downstream node (text) classification tasks, we resort to

parameter and time efficient prompting to achieve good performance on various

classification tasks. This work is presented in :

• Zhihao Wen, Yuan Fang. Augmenting Low-Resource Text Classification

with Graph-Grounded Pre-training and Prompting. Accepted by the 46th

International ACM SIGIR Conference on Research and Development in In-

formation Retrieval (SIGIR ’23).
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5.1 Introduction

Text classification is a fundamental research problem with many important ap-

plications in information retrieval. For example, predicting the topics of online

articles can help readers easily search and navigate within the website or por-

tal [74], and classifying the category of e-commerce product descriptions enables

businesses to structure their inventory efficiently and improve users’ search experi-

ence [138]. Recent advances in natural language processing (NLP) have achieved

remarkable success for text classification, especially when there are large-scale

and high-quality labeled data. However, data labeling is often costly and time-

consuming, making low-resource classification, in which no or few labeled samples

are available, an appealing alternative.

To address low-resource text classification, one approach is to utilize pre-

trained language models (PLM) [43, 90], many of which are based on the trans-

former architecture [115] due to its powerful ability of encoding texts. A PLM

can be adapted to different tasks by fine-tuning the model parameters to task-

specific objectives. While the “pre-train, fine-tune” paradigm requires fewer la-

beled data than traditional supervised learning, it suffers from two drawbacks.

Firstly, state-of-the-art PLMs typically have huge model size, e.g., GPT-3 has

175 billion parameters [6], which makes fine-tuning prohibitively expensive [58].

Secondly, fine-tuning still needs a reasonable amount of labeled data due to the

gap between pre-training and fine-tuning objectives, and thus struggles with low-

resource scenarios including zero- and few-shot classification.

To overcome the problem of pre-training and fine-tuning, prompting [6]

has been proposed. It uses a natural language instruction or “prompt” to give a

hint of the downstream task, whilst freezing the parameters of a large PLM. In

other words, no fine-tuning or additional training is required at all for a new task.

However, discrete natural language prompts can be difficult to design and may
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result in suboptimal performance compared to fine-tuning [52]. More recently,

prompt tuning [64, 52] formulates a continuous prompt as a learnable embedding,

which is optimized during task adaptation without updating the PLM.

Meanwhile, text data are often grounded on some network structure. For

instance, online articles are related through a hyperlink/citation network, and

e-commerce products are related through a user-item interaction graph. These

graph structures reveal rich relationships between article contents or product de-

scriptions, which can be used to augment low-resource text classification. While

existing PLMs and prompting do not exploit such relationships, graph neural

networks (GNNs) [135] have been effective in learning with graph data. Based

on a message-passing architecture, GNNs has shown powerful performance on

graphs owing to the ability to integrate both node features and topological struc-

tures. Nevertheless, traditional end-to-end training of GNNs heavily relies on

abundant task-specific labels, which motivates self-supervised GNNs [133] using

well-designed pretext tasks derived from a label-free graph in a contrastive [118]

or generative [39, 41] manner. However, the treatment of text features in GNNs

remains rudimentary. A simple bag-of-words representation [142] or aggregation

of shallow word embeddings [77] is fed into GNNs as the “initial message”, which

are further propagated along graph structures. Hence, the modeling of texts is

coarse-grained, unable to fully capture the subtle semantic differences and simi-

larities within texts.

Challenges and present work. To overcome the limitations of existing text-

and graph-based solutions, we must address two open questions.

Firstly, how do we capture fine-grained textual semantics, while leveraging

graph structure information jointly? A näıve approach is to use a language model

to generate features from raw texts as input, and then train a GNN. However, in

this way the texts and graph are only loosely coupled, lacking an explicit pairing
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to complement each other. In this paper, we propose graph-grounded contrastive

pre-training, to maximize the alignment between text and graph representations

based on three types of graph interaction, namely, text-node, text-summary, and

node-summary interactions.

Secondly, how do we augment low-resource text classification given a jointly

pre-trained graph-text model? Instead of following the traditional fine-tuning

paradigm, we try to “prompt” our jointly pre-trained graph-text model, from

which the most relevant structural and semantic information can be located to im-

prove low-resource classification. Without the need to update a large pre-trained

model, prompting is also more efficient than fine-tuning. Specifically, we employ

discrete prompts in zero-shot classification and continuous prompts in few-shot

settings. While discrete prompts are manually crafted in the absence of class la-

bels, continuous prompts can be automatically learned from the few-shot labels

through a prompt-tuning process. Prompt-tuning is both data- and computation-

efficient owing to the much fewer parameters in a continuous prompt than in the

pre-trained model. Furthermore, considering the graph structures between texts,

we propose a context-based initialization for prompt tuning, which could provide

a more informative starting point than random initialization.

Contributions. To summarize, we make the following contributions to low-

resource text classification.

• This is the first attempt to pre-train text and graph encoders jointly for low-

resource text classification.

• We propose a novel model G2P2, with three graph interaction-based contrastive

strategies in pre-training, and a prompting approach for the jointly pre-trained

graph-text model in downstream tasks.

• We conduct extensive experiments on four real-world datasets to demonstrate

the strength of G2P2 in zero- and few-shot text classification.
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5.2 Proposed Approach

In this section, we introduce our approach G2P2 for low-resource text classifica-

tion. We start with some preliminaries and an overview, and then present the

details of the proposed approach.

Preliminaries

Graph-grounded text corpus. Consider a set of documentsD, which is grounded

on a graph G = (D, E ,X) such that each document di ∈ D is a node vi in the

graph. The documents are linked via edges in E , which are formed based on the

application (e.g., if each document represents an article, the edges could be cita-

tions between articles). Each node vi is also associated with a feature vector xi,

given by the input feature matrix X. Finally, each document/node1 has a class

label (e.g., the topic of the article).

Low-resource classification. A low-resource task consists of a support set S

and a query set Q. The support set S contains N classes, and each class has K

labeled examples where K is a small number (e.g., 1 or 5), known as N -way K-shot

classification. The query set Q contains one or more unlabeled instances belonging

to the N classes in the support set. Our goal is to classify the instances in the

query set based on the labeled examples in the support set. Unlike episodic few-

shot meta-learning [22] which has both training tasks and testing tasks, we only

have testing tasks; in the training stage, we perform self-supervised pre-training

on label-free data only. As a special case, tasks with K = 0 are known as zero-shot

classification, which means that there is no labeled example at all and we can only

rely on class metadata (e.g., class label text).

1We will use “node” and “document” interchangeably given their one-one correspondence in
our context.
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Figure 5.1: Overall framework of G2P2. (a) During pre-training, it jointly trains
a text and a graph encoder through three contrastive strategies. (b) During test-
ing, it performs prompt-assisted zero- or few-shot classification (the figure only
shows prompt-tuning for few-shot classification, while zero-shot inference adopts
a simplified scheme).
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Overview of G2P2

As shown in Fig. 5.1, our model consists of two stages: (a) graph-grounded con-

trastive pre-training, and (b) graph-grounded prompt-tuning for low-resource clas-

sification.

During pre-training, we learn a dual-modal embedding space by jointly

training a text encoder and graph encoder in a self-supervised fashion, since a doc-

ument also exists as a node on the graph. More specifically, we use a transformer-

based text encoder and a GNN-based graph encoder. The transformer takes the

text on each node (i.e., document) as the input, and outputs a text embedding vec-

tor ti for node vi. On the other hand, the GNN takes the graph and node features

as input, and generates a node embedding vector zi for node vi. Subsequently, in

the dual-modal embedding space, we align the text and graph representations on

the same or related nodes through three contrastive strategies based on different

types of interaction on the graph.

In downstream testing, we employ prompting on our jointly pre-trained

graph-text model for zero- or few-shot classification. For zero-shot classification,

we use handcrafted discrete prompts together with the label text. For few-shot

classification, we use continuous prompts to pad the label text. In particular, for

prompt-tuning, we initialize the continuous prompt embeddings based on graph

contexts.

Graph-grounded contrastive pre-training

The graph-grounded pre-training learns a dual-modal embedding space by jointly

training a text encoder and a graph encoder, based on three types of interaction

on the underlying graph.
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Dual encoders. The text encoder is a transformer [115], which we denote ΦT .

Given a document di, the text encoder2 outputs the d-dimensional embedding

vector of di, denoted ti ∈ Rd:

ti = ΦT (di; θT ), (5.1)

where θT represents the parameter set of the transformer. Correspondingly, let

T ∈ R|D|×d represent the text embedding matrix for all documents.

At the same time, a document di is also a node vi in the graph. We choose a

classic GNN called graph convolutional network (GCN) [47] as the graph encoder,

denoted ΦZ . It similarly outputs an embedding vector zi ∈ Rd for a given node

vi:

zi = ΦZ(vi; θG), (5.2)

where θG represents the parameter set of the GCN. Likewise, let Z ∈ R|D|×d

represent the graph embedding matrix for all nodes.

Text-node interaction. Our graph-grounded texts naturally implies a bijection

between nodes and texts, where each document di corresponds to the node vi in

the graph. Inspired by the pairing of image and its caption text [89] and the

mapping of content and node sequences [60], we design a pre-training strategy to

predict which text document matches which node in the graph.

Specifically, given n documents and the corresponding n nodes, there are

n2 possible document-node pairs {(di, vj) | i, j = 1, . . . , n}. Among them, only n

pairs with i = j are true matching, whereas the remaining n2 − n pairs are false

matching. As our first contrastive strategy, we exploit the bijective interaction

between texts and nodes on the graph, to maximize the cosine similarity of the n

2Technically, the input to the text encoder is a sequence of continuous embeddings; the tokens
in a document are first converted to word embeddings.
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matching pairs, while minimizing the cosine similarity of the n2 − n unmatching

pairs. To compute the cosine similarity for the n2 pairs, we first perform a row-wise

L2 normalization on embedding matrices T and Z to obtain T̃ and Z̃, respectively.

We then compute a node-text similarity matrix Λ1 ∈ Rn×n to capture pairwise

cosine similarity, as follows.

Λ1 =
(
Z̃T̃⊤

)
· exp(τ), (5.3)

where τ ∈ R is a trainable temperature parameter to scale the similarity values

[89].

Remark. Although Λ1 ∈ Rn×n is a dense matrix, it is constructed batch-

wise for practical implementation. That is, n is not the total number of documents,

but the relatively small batch size, and thus the overhead is negligible. Λ2 and Λ3

will be introduced later following the same treatment.

To formulate the contrastive loss based on the text-node bijective inter-

action, we adapt the multi-class N-pair loss [105, 152], by considering both the

row-wise and column-wise cross entropy loss w.r.t. the row or column index. For

example, the i-th row of Λ1 represents the similarity scores between node vi and

every document, in which the row index i indicates the ground truth document di

that matches vi.

L1 = 1
2

(
CE(Λ1,y) + CE(Λ⊤

1 ,y)
)
, (5.4)

where y = (1, 2, . . . , n)⊤ is the label vector for contrastive training, and CE de-

notes the cross entropy loss applied to the input matrix Λ1 or Λ⊤
1 in a row-wise

manner.

Text-summary interaction. Apart from the bijective text-node interaction,

we further exploit higher-order interactions on the graph. In particular, each
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document has a set of neighboring documents defined by graph topology. The

neighboring documents can be understood as a summary of the target document

given the semantic relatedness between them. For example, on an e-commerce

network, the products purchased by a user naturally portray a summary of the

user and vice versa. Without loss of generality, we employ a simple mean pooling

to generate the summary embedding si ∈ Rd as follows.

si = 1
|Ni|

∑
j∈Ni

tj. (5.5)

For efficiency, we only sample a fixed number of neighboring documents to generate

the summary. Then, let S ∈ Rn×d denote the summary text embedding matrix

for all documents.

Hence, as our second contrastive strategy, we seek to align the text embed-

ding of each document and its corresponding summary text embedding, based

on the text-summary interaction derived from graph neighborhood. In other

words, we maximize the cosine similarity of the n matching pairs of document

and its neighborhood-based summary, while minimizing the cosine similarity of

the n2 − n unmatching pairs. Specifically, we first follow Eq. (5.3) to construct a

text-summary similarity matrix Λ2 ∈ Rn×n:

Λ2 =
(
T̃S̃⊤

)
· exp(τ). (5.6)

Subsequently, we apply the same contrastive loss following Eq. (5.4), as follows.

L2 = 1
2

(
CE(Λ2,y) + CE(Λ⊤

2 ,y)
)
, (5.7)

Node-summary interaction. The neighborhood-based summary for document

di also serves as a semantic description of node vi. Mirroring the text-summary

interaction, as our third contrastive strategy, we seek to align the node embed-
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ding and its neighborhood-based summary text embedding. In the following, we

similarly compute a node-summary similarity matrix Λ3 ∈ Rn×n, and formulate

the corresponding contrastive loss L3.

Λ3 =
(
Z̃S̃⊤

)
· exp(τ), (5.8)

L3 = 1
2

(
CE(Λ3,y) + CE(Λ⊤

3 ,y)
)
. (5.9)

Overall pre-training objective. Finally, we integrate the three contrastive

losses based on the text-node, text-summary and node-summary interactions. We

obtain a pre-trained model θ0 = (θ0T , θ
0
G) consisting of the parameters of the dual

encoders, given by

θ0 = arg min
θT ,θG

L1 + λ(L2 + L3), (5.10)

where λ ∈ R+ is a hyperparameter to balance the contribution from summary-

based interactions.

The pre-training procedure is outlined in Algorithm 2, which has the follow-

ing complexity per epoch. Let |D| be the number of documents, η be the number

of neighbors sampled to generate the summary embedding in Eq. (5.5), and β be

the batch size. First, the cost of generating the three types of embeddings (lines

5–8) per epoch is O(|D|η), given that calculating the summary embedding needs

go through η neighbors. Second, the cost of calculating the three similarity matri-

ces in each batch is O(β2), and the total cost per epoch is O
(

|D|
β
β2

)
= O(|D|β)

given |D|
β

batches in an epoch. Thus, the overall complexity is O(|D|(η+β)), which

is linear in the number of documents, since η and β are small constants. In our

implementation, we set η = 3 and β = 64.
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Algorithm 2 Pre-training Procedure of G2P2

Require: A graph-grounded text corpus G = (D, E ,X).
Ensure: Pre-trained weights of text encoder θ0T , graph encoder θ0G.
1: θ0T , θ

0
G ← parameters initialization;

2: while not converged do
3: sample batches of documents from D;
4: for each batch do
5: for each node vi/document di in the batch do
6: calculate di’s text embedding ti; ▷ Eq. (5.1)
7: calculate vi’s node embedding zi; ▷ Eq. (5.2)
8: calculate vi’s summary embedding si; ▷ Eq. (5.5)
9: end for
10: calculate the similatity matrices Λ1,Λ2,Λ3; ▷ Eqs. (5.3), (5.6), (5.8)
11: calculate the contrastive losses L1, L2, L3; ▷ Eqs. (5.4), (5.7), (5.9)
12: update the overall loss L; ▷ Eq. (5.10)
13: θ0T , θ

0
G ← update via backpropagation

14: end for
15: end while
16: return θ0T , θ

0
G.

Prompting joint graph-text model

After pre-training our graph-text model, it is non-trivial to apply it to low-resource

classification. To narrow the gap between pre-training and downstream tasks, the

traditional “pre-train, fine-tune” paradigm typically introduces a new projection

head for the downstream task, which will be fine-tuned together with the whole

pre-trained model. However, in a low-resource setting, it is neither effective nor

efficient to update the entire model with a huge number of parameters. Without

updating massive PLMs, prompting has recently emerged as a powerful alterna-

tive to fine-tuning in NLP [62]. However, prompting has not been explored for

graph-text models, where structural and textual information have been jointly

pre-trained. In the following, we elaborate on our prompting strategies for zero-

and few-shot classification.

Zero-shot classification. In the zero-shot setting, we can only use handcrafted

discrete prompts, as the absence of labeled data in zero-shot tasks cannot support

learnable prompts.
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Figure 5.2: Schematic diagram for zero-shot classification. The pre-trained models
θ0G and θ0T are obtained from Fig. 5.1(a).

In N -way zero-shot classification, out of N classes, we predict the class

which has the highest similarity to the given node. As illustrated by the diagram

in Fig. 5.2, the classification weights can be generated by the text encoder based

on the class label texts [121], without requiring any labeled sample for the classi-

fication task. Specifically, the weight vector wy for class y ∈ {1, 2, . . . , N} is the

output of the pre-trained text encoder, i.e.,

wy = ϕT (“prompt [CLASS]”; θ0T ). (5.11)

Here “prompt [CLASS]” is a prompt template, where [CLASS] refers to the label

text of the target class y (e.g., “NLP” for paper area classification), and prompt is

a manually engineered sequence of natural language tokens to signal the relevance

of the label text (e.g., “paper of NLP” helps focus on the topic of the paper). In

the simplest case, “prompt” can be an empty string so that we only rely on the

label text. Then, the class distribution given node representation zi is predicted

as

p(y | zi) =
exp (⟨zi,wy⟩)∑N
y=1 exp (⟨zi,wy⟩)

, (5.12)
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where ⟨·, ·⟩ is the cosine similarity.

Few-shot classification. The problem with discrete prompts is that they are

difficult to optimize, given that PLMs are intrinsically continuous. Substituting

discrete natural language prompts with learnable continuous prompts, prompt

tuning [52, 64, 63] can automate the optimization of prompts when some labeled

data are available. Hence, in the few-shot setting, we explore prompt tuning to cue

in the relevant structural and semantic information from our jointly pre-trained

graph-text model.

Specicifally, instead of a sequence of discrete tokens, we take a sequence of

continuous embeddings [h1, · · · ,hM ,hCLASS] as the prompt, where M is a hyperpa-

rameter indicating the number of context tokens, each hm (m ≤M) is a trainable

vector, and hCLASS is the word embedding sequence of the target class label. The

continuous prompt is fed as input to the text encoder to generate the classification

weights for each class y:

wy = ϕT ([h1, · · · ,hM ,hCLASS]; θ
0
T ), (5.13)

where each hm (m ≤ M) has the same dimension as the input word embeddings

to the text encoder.

Using the same softmax layer in Eq. (5.12), we further update the contin-

uous prompt embeddings using the labeled support set of the few-shot task by

minimizing a cross entropy loss, whilst freezing the parameters of the dual en-

coders. This prompt tuning process is both data- and computation-efficient, given

the small number of learnable parameters in the prompt.

Furthermore, existing prompt tuning methods either initialize the prompt

embeddings randomly [52, 63] or using the word embeddings of handcrafted dis-

crete prompts [156]. While random initialization is non-informative and more
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prone to local optimum, it is still difficult to pick the right discrete prompts for

initialization. Therefore, we take the advantage of graph structures to initialize

the prompt embeddings.

Specifically, given a node vi, we define its graph contexts as its neighbor set

{vj | j ∈ Ni}. Due to the underlying semantic relatedness, the graph contexts of

the few-shot examples carry strong signals about the task, which can be exploited

to improve the initialization. For each document/node vi in the task support set,

we sample η nodes from its graph contexts. For vi itself and each context node

sampled, we truncate its corresponding document to M words, and convert it to

a sequence of M word embedding vectors, each having the same dimension as the

vector hm (m ≤ M) in our continuous prompt. Hence, for each support node,

we would obtain η + 1 such sequences; in an N -way K-shot task, there is a total

of NK(η + 1) sequences. We take the average of these embedding sequences to

initialize the learnable prompt vectors h1, . . . ,hM , which is derived from graph

contexts and thus could provide a more informative starting point than random

initialization.

5.3 Experiments

We conduct extensive experiments to evaluate G2P2, with comparison to state-

of-the-art baselines and model analyses.

Experimental setup

Datasets. Four public graph-grounded text corpora are used, as summarized in

Tab. 5.1.

89



• Cora3 [73]: known as the “Cora Research Paper Classification” dataset, it is

a collection of research papers that are linked to each other through citations.

The abstract of a paper is deemed a text document. The papers are classified

into a topic hierarchy with 73 leaves. After removing papers with no content or

label, the resulting hierarchy has 70 leaf topics. Note that we are using a more

comprehensive version of the Cora dataset, which is larger and has more classes

than the version used elsewhere [47].

• Art, Industrial and Music Instruments (M.I.)4 are three Amazon review

datasets [82], respectively from three broad areas, namely, arts, crafts and

sewing (Art), industrial and scientific (Industrial), and musical instruments

(M.I.). The description of each product is deemed a text document, whereas the

review texts of a user are combined into a document to reflect his/her shopping

preferences. If a user has reviewed a product, a link is constructed between

them. The product subcategories within a broad area represent the classes,

which are fine-grained and can involves thousands of classes with subtle differ-

ences. The classification is only performed on product description documents,

whereas the user review documents only serve to enrich the text semantics in

relation to the products.

For all datasets, we employ the word2vec algorithm [77] to obtain the 128-

dimensional word embeddings of each word in the text documents. Then, for each

node, we average the word embedding vectors of all the words in its document,

and the averaged vector is used as the node’s input features for the GNN-based

methods.

Task construction. We perform zero- or few-shot text classification. We adopt

a 5-way setting, i.e., we sample five classes from all the classes to construct a

task. In each task, we construct a K-shot support set by further sampling K

3https://people.cs.umass.edu/~mccallum/data.html
4http://deepyeti.ucsd.edu/jianmo/amazon/index.html
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Table 5.1: Statistics of datasets.

Dataset Cora Art Industrial M.I.

# Documents 25,120 1,615,902 1,260,053 905,453
# Links 182,280 4,898,218 3,101,670 2,692,734
# Avg. doc length 141.26 54.23 52.15 84.66
# Avg. node deg 7.26 3.03 2.46 2.97
# Total classes 70 3,347 2,462 1,191

examples from each class for K ∈ {0, 1, . . . , 5}, and a validation set of the same

size as the support set. The remaining examples form the query set. Note that the

support set is labeled and serve as the task training data, whereas the query set

is unlabeled and used for evaluation. Note that in our experiment all the classes

are used—it is only that each task involves 5 classes, and we have multiple tasks

during testing to cover all the classes. This is a typical task setup [22], allowing

for a comprehensive evaluation under different class combinations. The reported

results are averaged over all the tasks on each dataset.

Baselines for few-shot classification. We consider competitive baselines from

four categories.

(1) End-to-end GNNs, which are graph neural networks trained in a super-

vised, end-to-end manner from random initialization.

• GCN [47]: an variant of convolutional neural network and operates on the graph

only.

• SAGEsup [31]: the supervised version of GraphSAGE, an inductive GNN which

generates node embeddings by sampling and aggregating features from a node’s

local neighborhood.

• TextGCN [145]: a GCN-based model on a text graph constructed from word co-

occurrence and document-word relations, which jointly learns the embeddings

of both words and documents.
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Table 5.2: Five-shot classification performance (percent) with 95% confidence
intervals.

In each column, the best result among all methods is bolded and the best among the baselines

is underlined. Improvement by G2P2 is calculated relative to the best baseline. ∗ indicates

that our model significantly outperforms the best baseline based on two-tail t-test (p < 0.05).

Cora Art Industrial M.I.

Accuracy Accuracy Accuracy Accuracy

GCN 41.15±2.41 22.47±1.78 21.08±0.45 22.54±0.82
SAGEsup 41.42±2.90 22.60±0.56 20.74±0.91 22.14±0.80
TextGCN 59.78±1.88 43.47±1.02 53.60±0.70 46.26±0.91

GPT-GNN 76.72±2.02 65.15±1.37 62.13±0.65 67.97±2.49
DGI 78.42±1.39 65.41±0.86 52.29±0.66 68.06±0.73

SAGEself 77.59±1.71 76.13±0.94 71.87±0.61 77.70±0.48

BERT 37.86±5.31 46.39±1.05 54.00±0.20 50.14±0.68
BERT∗ 27.22±1.22 45.31±0.96 49.60±0.27 40.19±0.74

RoBERTa 62.10±2.77 72.95±1.75 76.35±0.65 70.67±0.87
RoBERTa∗ 67.42±4.35 74.47±1.00 77.08±1.02 74.61±1.08

P-Tuning v2 71.00±2.03 76.86±0.59 79.65±0.38 72.08±0.51

G2P2-p 79.16±1.23 79.59±0.31 80.86±0.40 81.26±0.36
G2P2 80.08∗±1.33 81.03∗±0.43 82.46∗±0.29 82.77∗±0.32

(improv.) (+2.12%) (+5.43%) (+3.53%) (+6.53%)

Cora Art Industrial M.I.

F1 F1 F1 F1

GCN 34.50±2.23 15.45±1.14 15.23±0.29 16.26±0.72
SAGEsup 35.14±2.14 16.01±0.28 15.31±0.37 16.69±0.62
TextGCN 55.85±1.50 32.20±1.30 45.97±0.49 38.75±0.78

GPT-GNN 72.23±1.17 52.79±0.83 54.47±0.67 59.89±2.51
DGI 74.58±1.24 53.57±0.75 45.26±0.51 60.64±0.61

SAGEself 73.47±1.53 65.25±0.31 65.09±0.47 70.87±0.59

BERT 32.78±5.01 37.07± 0.68 47.57±0.50 42.96±1.02
BERT∗ 23.34±1.11 36.28±0.71 43.36±0.27 33.69±0.72

RoBERTa 57.21±2.51 62.25±1.33 70.49±0.59 63.50±1.11
RoBERTa∗ 62.72±3.02 63.35±1.09 71.44±0.87 67.78±0.95

P-Tuning v2 66.76±1.95 66.89±1.14 74.33±0.37 65.44±0.63

G2P2-p 74.99±1.35 68.26±0.43 74.44±0.29 74.82±0.45
G2P2 75.91∗±1.39 69.86∗±0.67 76.36∗±0.25 76.48∗±0.52

(improv.) (+1.78%) (+4.44%) (+2.7%) (+7.92%)
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(2) Pre-trained/self-supervised GNNs, these GNNs are pre-trained using pretext

tasks without labeled data, followed by fine-tuning or fitting a classification head

while freezing the model parameters.

• GPT-GNN [41]: a GNN pre-training approach by a self-supervised graph gener-

ation task, including node attribute generation and edge generation. It follows

the “pre-train, fine-tune” paradigm.

• DGI [118]: a GNN pre-training approach which maximizes the mutual infor-

mation between local- and global-level representations. As an unsupervised

method, it also freezes the model parameters and fits a simple logistic regres-

sion model for the downstream few-shot classification, after pre-training.

• SAGEself [31]: the self-supervised version of GraphSAGE, encouraging similar

embeddings for neighboring nodes and distinct embeddings for non-adjacent

nodes. After pre-training, it follows the same approach of DGI for the down-

stream classification.

(3) Pre-trained transformers, which are pre-trained using masked language mod-

eling, and then are fine-tuned together with a randomly initialized classification

head (e.g., a fully connected layer), for the downstream few-shot classification

task.

• BERT [43]: a pre-trained transformer which pre-trains the transformer using

masked language modeling, i.e., during training, output deep bidirectional rep-

resentations from unlabeled text by jointly conditioned on both left and right

context in all layers.

• RoBERTa [65]: a replicaition of BERT that carefully measures the impact of

many key hyperparameters and training data size during training.

• BERT∗ and RoBERTa∗: variants of BERT and RoBERTa, which are obtained

by fine-tuning the pre-trained BERT and RoBERTa, respectively, using masked

93



language modeling on our datasets, to mitigate the domain gap between our

datasets and the datasets used for pre-training BERT and RoBERTa.

(4) Prompt tuning : P-Tuning v2 [63], is a version of prefix-tuning [58] optimized

and adapted for natural language. It uses deep prompt tuning, which applies

continuous prompts for every layer of the pre-trained language model.

Note that our setting is distinct from few-shot learning under the meta-

learning paradigm [22], as there is no few-shot tasks for the meta-training phase.

Hence, we cannot use state-of-the-art meta-learning models for comparison. Be-

sides, two of the baselines we compared, DGI and SAGEself, have adopted a form

of linear probe which is known to be a strong few-shot learner [112].

Baselines for zero-shot classification. We only compare with PLMs, as all

the other methods require at least one shot to work. For each method, we use

the discrete prompt [CLASS] (i.e., the label text alone). We also evaluate hand-

crafted prompts “prompt [CLASS]”, where prompt is a sequence of tokens found

by prompt engineering, and annotate the model name with “+d”. Essentially,

we compute the similarity between the target document and the label text of

each class (with or without additional tokens), and predict the most similar class

following Fig. 5.2.

Settings of G2P2 and baselines. For G2P2, the text encoder is a transformer

[115]. Following CLIP [89], we use a 63M-parameter, 12-layer 512-wide model

with 8 attention heads. It operates on a lower-cased byte pair encoding (BPE)

representation of the texts with a 49,152 vocabulary size [100]. The max sequence

length is capped at 128. The graph encoder employs a GCN [47], using two layers

[31] with a LeakyReLU activation, each with 128 dimensions [87]. The pre-training

of our model starts from scratch without initializing the graph and text encoders

with previously pre-trained weights. λ in Eq. (5.10) is set to 0.1 on Cora, and

set to 10 on the three amazon review datasets, which were chosen from {0.01,

94



0.1, 1, 10, 100} according to the accuracy on validation data. The number of

learnable prompt tokens, M in Eq. (5.13), is set to 4, which was chosen from {2,

4, 8, 16, 32} according to the accuracy on validation data. We use the Adam

optimizer with the learning rate 2× 10−5 with 2 training epochs, and a batch size

of 64 in pre-training, referring to Hugging Face’s [131] example settings. The text

embedding size is 128, same to the output from the graph encoder. To generate

the summary embedding and the context-based prompt initialization, the number

of neighboring nodes sampled is 3. For prompt tuning, we set the learning rate as

0.01, which was chosen from {0.0001,0.001,0.01,0.1} according to the accuracy on

validation data.

For all the GNN methods, including the GNN component in G2P2, we

use the 128-dimensional word2vec embeddings [77] of raw texts as the input node

features. We use a two-layer architecture, and set the hidden dimension to be

128, except for GCN and SAGEsup whose hidden dimension is set to 32 [47] which

gives better empirical performance. For all GNN pre-training baselines, we use

0.01 as the learning rate. For BERT, RoBERTa and G2P2, we adopt 0.00002 as

the learning rate. Our implementations of BERT, RoBERTa and their masked

language modeling are based on Hugging Face’s transformers [131]. For both

BERT and RoBERTa, we use their base versions, given that our model G2P2 uses

just a small 63M-parameter model, following previous work [89]. For P-Tuning v2,

we use the original code on the RoBERTa backbone, and take the recommended

0.005 as the learning rate for prompt tuning. For G2P2, the learning rate for

prompt tuning is set to 0.01.

We conduct all experiments on a server with 4 units of GeForce RTX 3090

GPU. Pre-training G2P2 takes about 0.5/6/9/10 hours on Cora/M.I./Industrial/Art,

respectively, on a single GPU. The inference (with prompt tuning) is conducted

with five different splits generated from five random seeds {1, 2, 4, 8, 16}.
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Performance of low-resource classification

We evaluate the classification performance under various shots.

Five shots. In Tab. 5.2, we first compare the performance of G2P2 with baselines

under the 5-shot setting. G2P2 emerges as the winner consistently, outperforming

the best baseline by around 2–8% with statistical significance.

We also make a few more observations. Firstly, among the GNNs, pre-

trained/self-supervised models tend to perform better than the end-to-end ap-

proaches, since the latter heavily rely on labeled data. Among the former, DGI

and SAGEself perform better as they are a form of linear probe, known to be a

strong few-shot learner [112]. Note that, instead of using word2vec embeddings

[77] of raw texts as node features, we also tired using the pre-trained RoBERTa

[65] to generate the node features for DGI and SAGEself. However, doing so does

not bring any improvement, showing that it is ineffective to simply combine a lan-

guage model and GNN in a decoupled manner. In contrast, our proposed model

jointly learns the text and graph encoders through three graph-grounded con-

trastive strategies. Secondly, PLMs are generally superior to GNNs, illustrating

the importance of leveraging texts in a fine-grained way. Additionally, RoBERTa

outperforms BERT owing to an improved pre-training procedure [65]. However,

further training PLMs on our texts gives mixed results: RoBERTa∗ slightly out-

performs RoBERTa but BERT∗ is much worse than BERT. That means it is not

straightforward to mitigate the domain gap by simply continuing training on the

domain texts. Thirdly, the continuous prompt approach P-Tuning v2 achieves

competitive results compared to fine-tuning, while having the advantage of being

much cheaper than fine-tuning. Nevertheless, it is still significantly outperformed

by our model G2P2. Furthermore, G2P2-p without prompt tuning is inferior to

G2P2, showing the benefit of continuous prompts.
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Figure 5.3: Performance on different shots.

Fewer shots. In addition to the 5-shot setting, in Fig. 5.3 we also study the

impact of fewer shots on G2P2 and several representative baselines. G2P2 gener-

ally performs the best across different shots. In general, the performances of all

approaches degrade as fewer shots become available. However, the baselines suffer

significantly under extreme low-resource (e.g., 1- or 2-shot) settings. In contrast,

G2P2 remains robust, reporting a relatively small decrease in performance even

with just 1 or 2 shots.

The results demonstrate the practical value of our proposed model espe-

cially when labeled data are difficult or costly to obtain in time. On the other

hand, traditional approaches constantly face the challenge of the inability to keep

up with the rapid growth of emerging classes in dynamic and open environments

[128]. For example, labeling a large volume of texts for novel topics in online ar-

ticles, or new product categories in open-ended e-commerce platforms, can suffer

a substantial time lag.
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Zero shot. Finally, we report the zero-shot performance in Tab. 5.3, where our

models G2P2 and G2P2+d significantly outperforms the baselines. The results

particularly demonstrate the effectiveness of our graph-grounded contrastive pre-

training in the absence of labeled data, which is crucial to handling evolving classes

without any labeled sample in many real-world scenarios. Moreover, handcrafted

discrete prompts (i.e., BERT∗+d and G2P2+d) can be superior to using label

text only (i.e., BERT∗ and G2P2), showing the effectiveness of additional prompt

tokens.

However, finding the optimal discrete prompts often requires significant

engineering work. Specifically, for the three approaches with discrete prompts,

namely, RoBERTa∗+d, BERT∗+d and G2P2+d, we explored more than 10 hand-

crafted prompt templates on each dataset, which are typically relevant to the

corresponding dataset and require some domain knowledge to devise. While dis-

crete prompts are generally helpful to zero-shot classification, their effectiveness

varies. In Tab. 5.3, we simply report the performance of the best handcrafted

template for each approach and each dataset. Besides, it is worth noting that the

same prompt can sometimes generate opposite results on different models. For

instance, in Cora dataset, while “a model of [CLASS]” is the best prompt for

RoBERTa∗+d, it is a bad choice for G2P2+d. Moreover, some prompts without

any semantic meaning, like “a [CLASS]”, can be the best choice sometimes. The

observations imply that prompt engineering involves labor-intensive work, and

the outcomes contain much uncertainty on what would be the optimal discrete

prompt. Hence, using the label text only is still a reasonably good choice.

Model analyses

We conduct more in-depth studies on G2P2. Unless otherwise stated, we report

the classification accuracy under the 5-shot setting.
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Table 5.3: Zero-shot classification accuracy (percent).

(See Table 5.2 for explanations on entry styles.)

Cora Art Industrial M.I.

RoBERTa 30.46±2.01 42.80±0.94 42.89±0.97 36.40±1.20
RoBERTa∗ 39.58±1.26 34.77±0.65 37.78±0.32 32.17±0.68

RoBERTa∗+d 45.53±1.33 36.11±0.66 39.40±1.22 37.65±0.33
BERT 23.58±1.88 35.88±1.44 37.32±0.85 37.42±0.80
BERT∗ 23.38±1.96 54.27±1.85 56.02±1.22 50.19±0.72

BERT∗+d 26.65±1.71 56.61±1.76 55.93±0.96 52.13±0.88

G2P2 63.52±2.89 76.52±0.59 76.66±0.31 74.60±0.62
G2P2+d 65.28∗±3.12 76.99∗±0.60 77.43∗±0.27 75.86∗±0.69
(improv.) (+45.38%) (+36.00%) (+38.22%) (+45.52%)

Ablation study. We first evaluate the contribution from each of the three graph

interaction-based contrastive strategies, by employing different combinations of

the proposed loss terms L1,L2 and L3. As shown in Tab. 5.4, strategies with-

out L1 have performed quite poorly, demonstrating that the bijective text-node

interaction is the fundamental component of our pre-training. That being said,

when further adding L2 or L3 to L1, we still observe a noticeable performance

improvement, showing the benefit of incorporating additional graph-based inter-

actions for text data. Lastly, G2P2 with all three loss terms outperforms all 1- or

2-combinations of the losses, demonstrating that the three contrastive strategies

are all useful and they are well integrated. Overall, the results reveal that graph

information is vital to low-resource text classification, since graph structures reveal

rich relationships between documents.

Next, we evaluate the contribution from our prompt-tuning approach. Specif-

ically, we compare G2P2 with two ablated variants: using label text only with-

out trainable prompt vectors, and randomly initializing the prompt vectors. As

reported in Tab. 5.4, only using label text clearly degrades the classification per-

formance, implying the importance of learning continuous prompts via prompt

tuning. Furthermore, our approach G2P2 with context-based initialization for

prompt vectors shows a small but consistent advantage over random initializa-
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Table 5.4: Ablation study.

Cora Art Industrial M.I.

Only L3 74.66±1.80 52.56±1.09 45.97±0.81 49.05±0.54
Only L2 77.01±1.30 58.90±0.55 52.99±0.46 59.41±0.85
Only L1 79.50±1.19 77.37±0.72 78.10±0.34 79.70±0.56
L2+L3 70.04±2.89 49.91±1.57 50.07±0.50 56.14±1.01
L1+L3 79.73±0.89 78.60±0.40 79.97±0.43 80.42±0.45
L1+L2 79.42±1.04 80.55±0.52 81.06±0.33 82.39±0.41

Only label text 79.16±1.23 79.59±0.31 80.86±0.40 81.26±0.36
Random init. 80.03±0.99 80.85±0.43 82.43±0.33 82.64±0.21

G2P2 80.08±1.33 81.03±0.43 82.46±0.35 82.77±0.32
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Figure 5.4: Hyperparameter study.

tion, implying the usefulness of considering graph structures in prompt tuning.

Hyperparameter study. We first investigate the impact of the interaction co-

efficient λ in Fig. 5.4(a), which balances the high-order contrastive losses (L2,L3).

The performance is generally better and stable when λ is slightly bigger (e.g.,

≥ 10), indicating the significance of the high-order text-summary and node-

summary interactions. Next, we study the prompt length M in Fig. 5.4(b), which

refers to the number of trainable prompt vectors in Sect. 5.2. The performance is

relatively unaffected by the prompt length, and thus it is robust to choose a small

M (e.g., 4) for efficiency.

Efficiency of prompt tuning. In our work, the continuous prompts are opti-

mized by prompt tuning [63, 156] without updating the pre-trained model. In this
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Table 5.5: Tuning time and parameter size.

Tuning time per task (in seconds) Param.
Cora Art Industrial M.I. size

RoBERTa 45.47±2.38 64.22±3.62 43.46±2.99 44.99±2.58 123 M
RoBERTa∗ 39.38±2.01 59.56±3.55 35.10±2.75 38.84±2.39 123 M

BERT 32.23±1.71 51.77±2.00 31.72±1.77 33.55±2.39 110 M
BERT∗ 34.82±1.68 55.16±2.32 31.11±1.74 29.00±2.23 110 M

G2P2 2.42±0.41 22.03±1.39 14.63±1.26 12.72±1.17 2048

experiment, we investigate the prompt tuning efficiency of G2P2 in comparison to

the efficiency of traditional fine-tuning. As G2P2 has a transformer component,

we compare it with four transformer based models, all of which follow the classical

“pre-train, fine-tune” paradigm [43].

As shown in Tab. 5.5, “Tuning time per task” refers to the average time

required per task for prompt tuning by G2P2 or fine-tuning by the baselines,

while “Param. size” refers to the number of parameters that require updating.

The results demonstrate that prompt tuning in G2P2 is much more efficient than

fine-tuning in the baselines, achieving 2.1∼18.8x speedups. The reason is that

prompt tuning updates far fewer parameters. In G2P2, we used 4 trainable 512-

dimensional prompt vectors, totalling to 2048 parameters only, while fine-tuning

in the baselines needs to update the whole pre-trained model with more than 100M

parameters. Note that the speedup is not linear w.r.t. the parameter size, due to

overheads in the data loader and the optimizer. Overall, our prompt tuning is not

only effective under low-resource settings, but also parameter- and computation-

efficient.

Generalization study. Our previous experiments can be deemed “transductive”

as both the pre-training of text encoder and downstream text classification are

conducted on the whole corpus. To further evaluate the generalization ability of

our model, we adopt an “inductive” setting, whereby we pre-train the text encoder

only on a subset of the corpus and perform downstream classification on a disjoint
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Table 5.6: “Inductive” performance on text classification.

Art Industrial M.I.

BERT∗ 43.66±0.90 48.35±0.25 39.24±0.88
RoBERTa∗ 69.55±1.14 73.65±0.86 71.96±1.44

G2P2 79.81±0.22 81.29±0.32 81.85±0.33

subset. Particularly, in the three Amazon datasets, since user texts have no labels

and item texts have labels, it is natural for us to pre-train with only user texts and

classify only item texts downstream. We also employ masked language modeling

on only the user texts for BERT and RoBERTa, to get BERT∗ and RoBERTa∗.

As shown in Tab. 5.6, G2P2 still performs very well in the inductive setting,

illustrating the strong generalization ability of our pre-trained model.

5.4 Conclusion

In this paper, we studied the problem of low-resource text classification. Given

that many text documents are related through an underlying network, we proposed

a novel model called Graph-Grounded Pre-training and Prompting (G2P2). It con-

sists of three graph interaction-based contrastive strategies in pre-training, and a

prompting mechanism for the jointly pre-trained graph-text model in downstream

classification. We conducted extensive experiments and showed the advantages of

G2P2 in zero- and few-shot text classification.

A limitation of this work is the need of a graph to complement the texts.

Although graphs are ubiquitous in information retrieval applications, in the case

that an organic graph is unavailable, a potential solution is to construct synthetic

graphs based on word co-occurrences or other relations, e.g., linking up news

articles in close time periods and locations. We leave further explorations to

future work.
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Chapter 6

Conclusion and Future work

6.1 Conclusion

In this dissertation, we explore three distinct avenues for augmenting the learning

capabilities of inductive Graph Neural Networks (GNNs):

• To generalize GNNs across multiple graphs, we examined the issue of inductive

node classification spanning various graphs. In contrast to prevailing one-size-

fits-all methodologies, we introduced a pioneering framework called MI-GNN,

which adapts the inductive model to individual graphs within a meta-learning

paradigm. To address graph discrepancies, we devised a dual adaptation mech-

anism operating at both graph and task levels. Specifically, we employ a graph

prior for graph-level differences and a task prior to accommodate task-level

variations contingent on each graph.

• In the pursuit of generalizing GNNs across temporal dimensions, we investigated

temporal graph representation learning. We proposed TREND, an innovative

framework for temporal graph representation learning that relies on event and

node dynamics within a Hawkes process-based GNN. TREND’s inductive nature

captures a comprehensive perspective of the link formation process. Crucially,
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it integrates both event and node dynamics to accurately model the temporal

evolution by accounting for individual and collective event characteristics.

• Lastly, to generalize GNNs across tasks, we delved into the problem of low-

resource text classification. Given the interconnected nature of numerous text

documents through underlying networks, we put forth a novel model called

Graph-Grounded Pre-training and Prompting (G2P2). This model comprises

three graph interaction-based contrastive strategies during pre-training and a

prompting mechanism for the jointly pre-trained graph-text model in subsequent

classification tasks.

6.2 Future work

The three proposed techniques of generalizing Graph Neural Networks (GNNs)

across graphs, time, and node classification tasks offer promising avenues for their

application in real-world scenarios. To further advance the practical utility and

impact of these approaches, future work will focus on their application in specific

domains and real-world applications.

Several potential directions for future work include:

• Social Network Analysis: The generalization of GNNs across graphs can be

applied to real-world social network analysis scenarios. For example, apply-

ing these techniques to social media platforms can help identify influential

users, detect communities, and analyze information diffusion patterns. This

could aid in understanding social dynamics, predicting trends, and enhanc-

ing targeted marketing strategies;

• Financial Markets: The extension of GNNs across time presents opportuni-

ties for applications in financial markets. By capturing temporal dependen-

cies and patterns, these techniques can be employed to predict stock market
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trends, identify anomalies, and assist in portfolio management. This can en-

able investors to make more informed decisions, manage risks, and optimize

their investment strategies;

• Healthcare and Disease Progression: Applying the generalized GNNs across

time to healthcare data can facilitate the analysis of disease progression

and patient monitoring. By capturing temporal dynamics, these techniques

can be utilized for predicting disease progression, identifying risk factors,

and designing personalized treatment plans. This has the potential to en-

hance healthcare decision-making, improve patient outcomes, and optimize

resource allocation;

• Bioinformatics: The generalization of GNNs across node classification tasks

can be valuable in bioinformatics. For instance, these techniques can aid

in protein function prediction, gene expression analysis, and drug discovery.

By leveraging the rich graph structures inherent in biological data, these

approaches can improve our understanding of complex biological systems

and support advancements in personalized medicine;

• Recommendation Systems: The generalization of GNNs across graphs can be

applied to recommendation systems in various domains, such as e-commerce,

media streaming, and content platforms. By incorporating graph-based rep-

resentations and capturing temporal dynamics, these techniques can provide

more accurate and personalized recommendations, enhancing user experi-

ences and driving customer satisfaction.

Besides, in Chapter 3, our proposed MI-GNN primarily focuses on the

critical problem of node classification in graph learning. However, beyond node

classification, there are other intriguing problems that warrant exploration. For

instance, cross-graph link prediction and cross-graph clustering present additional

avenues for investigation.
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In addition, in Chapter 4, the TREND approach, as put forth in this study,

demonstrates its capability to effectively manage dynamic graphs that undergo al-

terations in their topologies, particularly with regard to the addition of nodes and

links. However, the issue of handling nodes and links deletion remains unad-

dressed in the present work, serving as a potential avenue for future research and

development.
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Appendix A

Appendices

A.1 Links to the three proposed models

The three proposed models are all open-sourced, and their links are as follows:

• MI-GNN: https://github.com/WenZhihao666/MI-GNN

• TREND: https://github.com/WenZhihao666/TREND

• G2P2: https://github.com/WenZhihao666/G2P2

A.2 Connection between transfer function and

conditional intensity of TREND

In the following, we show that a well chosen transfer function f , taking the tem-

poral representations as input, is equivalent to the conditional intensity of the

Hawkes process in Eq. (4.2). Suppose the temporal representations are generated

through stacking l temporal GNN layers. First, let us define the base intensity as
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a function of the self-information:

µi,j(t) = fµ(ht,l−1
i Wl

self,h
t,l−1
j Wl

self). (A.1)

Next, we define the amount of excitement induced by a historical neighbor

as a function of the historical neighbors’ information:

γj′(t
′) = fγ(ht′,l−1

j′ Wl
hist), γi′(t

′) = fγ(ht′,l−1
i′ Wl

hist). (A.2)

Given these building blocks, we rewrite the conditional intensity in Eq. (4.2)

as

λi,j(t) = fλ

(
ht,l−1
i Wl

self, {h
t′,l−1
j′ Wl

hist : (i, j′, t′) ∈ Hi(t)},

ht,l−1
j Wl

self, {h
t′,l−1
i′ Wl

hist : (i′, j, t′) ∈ Hj(t)}
)
, (A.3)

where fλ is a composite function of fµ, fγ and the summation. By choosing the

right transfer function f , we further rewrite fλ as the composition of f and the

temporal GNN layer fg given in Eq. (4.4), i.e., fλ = f ◦ fg. Subsequently, the

conditional intensity is given by

λi,j(t) = (f ◦ fg)
(
ht,l−1
i Wl

self, {h
t′,l−1
j′ Wl

hist : (i, j′, t′) ∈ Hi(t)},

ht,l−1
j Wl

self, {h
t′,l−1
i′ Wl

hist : (i′, j, t′) ∈ Hj(t)}
)

= f(ht
i,h

t
j). (A.4)

Thus, a well-fit transfer function f , such as a neural network, can approximate

the conditional intensity.
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A.3 Pseudocode of TREND

We outline the training procedure of TREND in Algorithm 3.

Algorithm 3 Training Procedure of TREND

Input: Training graph G = (V, E , T ,X), training events Itr.
Output: Temporal GNN θg, event prior θe, transformation model θτ , estimator of node

dynamics θn.
1: θg, θe, θτ , θn ← parameters initialization;
2: while not converged do
3: sample a batch of temporal events (i, j, t) from Itr;
4: for each event (i, j, t) in the batch do
5: calculate node representations ht

i, h
t
jfor nodes i,j; ▷ Eq. (4.4)

6: θ
(i,j,t)
e ← event-conditioned adaptation on θe; ▷ Eq. (4.10)

7: calculate event intensity λi,j(t); ▷ Eq. (4.7)
8: calculate the overall loss; ▷ Eqs. (4.11), (4.13), (4.14)
9: end for
10: θg, θe, θτ , θn ← backpropagation of overall loss ▷ Eq. (4.14)
11: end while
12: return θg, θe, θτ , θn.

A.4 Additional Description of Datasets of TREND

We include more details of the datasets below.

• CollegeMsg [83] is an online social network where private messages were sent

and received at the University of California, Irvine. If user i sent a private

message to user j at time t, there is a temporal edge (i, j, t). Since the nodes

have no feature, we use the one-hot encoding of the node ID as node features.

• cit-HepTh [50] is a citation graph about high energy physics theory from the

e-print arXiv, in the period from January 1993 to April 2003. A temporal edge

(i, j, t) here means a paper i cites paper j at time t. We use word2vec [78]

to convert the text of paper abstract (i.e., the raw node features) into node

embedding as the node feature.

• Wikipedia [49] is a graph in which temporal edges are interactions induced by
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users’ editing on the Wikipedia pages in one month. User edits consist of textual

features, which are converted into 172-dimensional LIWC [85] feature vectors.

The edit vectors of each user are added and normalized to serve as the node

feature.

• Taobao [18] is a quite large online purchase network on the e-commerce platform

taobao.com. If a user i purchased an item j at time t, there is a temporal edge

(i, j, t). Node features are preprocessed embeddings of textual features.

A.5 Details of Task Setup of TREND

We describe more details of our main task, namely, temporal link prediction.

For each temporal graph, node representations are learnt on the graph consisting

of events before time ttr, and we try to predict events on or after ttr. In our

experiments, we use all the events before the last time step for training, and test

on the events at the last time step. For instance, on the graph cit-HepTh, we

train the model only using events before the 78th time step, and we predict the

links formed at the 78th time step. At test time, a logistic regression classifier is

trained for the downstream task of temporal link prediction. While links formed

at the last time step are our positive examples, we further randomly sample an

equal number of negative examples (i.e., node pairs which do not form a link at

the last time step). We define the feature vector of a candidate triple (i, j, t) as

|ht
i − ht

j| [71].

A.6 Additional Description of Baselines of TREND

We include more details of the baselines below.

(1) Static approaches, in which models or node embedding vectors are
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trained on the static graph formed before the testing time, regardless of the tem-

poral information.

• DeepWalk [87]: a static network embedding method, which regards the ran-

dom walk sequences as sentences and leverages skip-grams [78] to learn node

embeddings.

• Node2vec [28]: another static network embedding method, which generalizes

DeepWalk with biased random walks.

• VGAE [45]: based on variational auto-encoder (VAE) [44, 92], it is a classi-

cal GNN-based link prediction model, using a GCN [46] encoder and an inner

product decoder.

• GAE [45]: a non-probabilistic variant of the VGAE model.

• GraphSAGE [31]: a GNN model on static graphs, which supports inductive

representation learning on large graphs.

(2) Temporal approaches, which train models or node embedding vectors

on the temporal graph formed before the testing time.

• CTDNE [81]: based on random walks, it is a network embedding method which

learns time-respecting embedding from continuous-time dynamic networks.

• EvolveGCN [84]: using RNN to evolve GCN parameters to capture the dynamic

information of sequences of static graph snapshots.

• GraphSAGE+T: our implementation based on GraphSAGE. Specifically, when

aggregating neighbors’ information, it will consider the time decay effect, i.e.,

earlier neighbors will get smaller weights while more recent neighbors will get

larger weights during aggregation.
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• TGAT [137]: it uses the self-attention mechanism to aggregate temporal-topological

neighborhood features. Besides, based on Bochner’s theorem, it encodes the

event time as part of the node embedding vector.

(3) Hawkes process-based approaches, which train node embedding vectors

using the temporal graph formed before the testing time, based on Hawkes process.

• HTNE [160]: a network embedding method which integrates the Hawkes process

into network embedding so as to capture the influence of historical neighbors

on the current neighbors.

• MMDNE [71]: a network embedding method with micro- and macro-dynamics.

Specifically, the micro-dynamics describe the link formation process, while the

macro-dynamics refer to the evolution pattern of the network scale.

For DeepWalk, Node2vec and CTDNE, we set their random walk sampling

parameters, such as number of walks, walk length and window size according to

their recommended settings, respectively. For all network embedding methods, the

node embedding dimension is 128, which tends to perform well empirically. For all

GNN-based methods, we set the number of layers, the node embedding dimensions

and the learning rates to the same with our model TREND. For HTNE, MMDNE

and EvolveGCN, we set their historical window size to 5 (i.e., only use the 5 most

recent neighbors), given the empirical performance and efficiency considerations.

For efficiency reasons, we perform random neighborhood sampling on GraphSAGE

and GraphSAGE+T, setting the sample size to 10 on CollegeMsg and cit-HepTh,

20 on Wikipedia, and 5 on Taobao (which is the most sparse graph), the same

with TREND; we use the same sample size on TGAT, but sample the more recent

neighbors with higher probability following its original design. For EvolveGCN,

we use the EvolveGCN-O version. For TGAT, we set the number of attention

heads to 3. Other hyperparameters are chosen empirically, following guidance

from literature.
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A.7 Scalability Study of TREND

On Taobao (with a total of more than 4 million events), we extract different ratios

(20%–100%) of training events to form 5 subgraphs, and record the training time

per epoch on each subgraph. In Fig. A.1, the training time grows linearly in the

number of training events, which is consistent with our complexity analysis, and

implies that the proposed model is scalable.
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Figure A.1: Time complexity.
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