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Abstract

In the first chapter of the dissertation, we study the impact of floods on mi-

crolevel firm performances in China for the period 2000-2009. Among the first in

the literature, we identify the flood exposure directly at the firm level by combin-

ing the high-resolution satellite-observed inundation areas with the geocoded firm

locations. We find that being hit by a flood is associated with an annual loss to

output and productivity of around 6% and 5%, respectively, which persists in the

long run. The impacts of floods extend to non-inundated firms in neighborhoods (of

4 kilometres in radius), but the negative effects are much smaller (2% on average)

and diminish after three years. Firms in the surrounding area but located beyond the

immediate neighborhood expand their output from the third year onwards, in con-

trast with the permanent shrinkage of the inundated firms. For inundated firms, the

aggregate output losses in the immediate year of and one year after the flood are es-

timated to be 165.5 billion RMB (0.12% of total GDP) and 200 billion RMB (0.15%

of GDP), respectively, across years 2000-2009. In the second chapter, we follow the

micro-to-macro approach of Fajgelbaum et al. (2020) to analyze the impacts of the

2018-2019 U.S.-China trade war on the Chinese economy. We use highly disaggre-

gated trade and tariff data with monthly frequency to identify the demand/supply

elasticities of Chinese imports/exports, combined with a general equilibrium model

for the Chinese economy (that takes into account input-output linkages, and regional

heterogeneity in employment and sector specialization) to quantify the partial and

general equilibrium effects of the tariff war. In the third chapter, we extend the

China-ROW setup discussed above to a China-U.S.-ROW framework that incorpo-

rates general equilibrium adjustments in both the Chinese and the US economies

in response to the trade war. We further explore the role of input-output linkage in

transmitting the impacts by conducting counterfactual analyses in which we allow
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the tariff policies to be implemented sector by sector. The aggregate loss to the

Chinese economy was estimated to be $54.5 billion (0.44% of 2017 GDP), which

is twice the loss experienced by the U.S. economy ($27.7 billion). In contrast to

the result that the U.S. consumers of imported goods took most of the losses, the

majority of the adverse impacts on the Chinese side was borne by its exporters: The

MFN tariff cuts implemented by the Chinese government helped cushion the nega-

tive impacts on its importers substantially, but at the cost of its producers, resulting

in an overall larger aggregate loss.
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Chapter 1

Using Satellite-observed Geospatial

Inundation Data to Identify the

Impacts of Flood on Firm-level

Performances: The Case of China

during 2000–2009

1.1 Introduction

The direct physical damage caused by a natural disaster can be learned soon

after the occurrence of the event, but the indirect effects following the immediate

impacts—including the time and resources to rebuild the productive capacities (cap-

ital stock, labor force and productivity)—are difficult to evaluate and measure. In

this paper, we conduct one of the first studies to combine high-resolution satellite-

observed inundation maps with geocoded firm-level data to identify the flood expo-

sure at the firm level, and provide evidence on how exposure to flood events affects

corporate performances in China for the period 2000–2009.

Floods are the most destructive and costly natural disaster in China, in terms

of the frequency of occurrence and the extent of damages. Figure 1.1 presents the

summary statistics of natural disasters that took place during the recent half cen-
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tury (1970–2021) in mainland China, based on the Emergency Events Database

(EM-DAT) of the Centre for Research on the Epidemiology of Disasters (CRED).1

Among all 900 hazard events that occurred during 1970–2021 in China, floods ac-

counted for approximately one third in terms of frequency and one half in terms

of total estimated damages in dollar value (adjusted for inflation). Each of these

flood events on average caused 240 deaths, 8.4 million people affected (injured or

homeless) and 2 billion US dollars of damages. These magnitudes are considerably

higher than the global average (which are correspondingly 86 deaths, 0.8 million

people affected, and 0.76 billion USD of damages). In addition, the frequency of

floods in China has witnessed a nearly 10 times growth in the recent five decades,

from 10 flood events during 1972–1981 to 98 during 2012–2021.2 This is consis-

tent with the report by the Intergovernmental Panel on Climate Change (Chaturvedi

et al. 2022) that rising temperature increases the likelihood of natural hazards. De-

spite flood’s catastrophic impacts and the prospect of its intensifying frequency in

the future due to climate change in China, there have been few studies that sys-

tematically evaluate the effects of floods on corporate performances. How are the

inundated firms affected in the aftermath of a flood event in terms of firms’ input,

output and productivity? How long does it take for these firms to restore normal-

ity? Which kind of firms are more vulnerable to floods and what are the factors

that determine this vulnerability? Are there spillover effects on non-inundated firms

in the neighboring areas? In this paper, we attempt to investigate these issues and

identify the effects of flood on the firm performance measures, by the time horizon

in the aftermath of the flood event, by the distance to the inundation area, and by

firm characteristics that might moderate firms’ responses and vulnerability to flood

hazards.

One of the main challenges in estimating the causal impact of floods on micro-

level firm performances is identifying the set of inundated firms in each flood event.

It requires precise information on the geographical location of the inundation area

of each flood event and the operating location of each firm. The actual inunda-

1From among the “Natural” disaster group defined in EM-DAT, we exclude 13 disaster events
that occurred during the period 1970–2021 in mainland China. These belong to “Biological" and
“Extra-terrestrial" subgroups, which are not directly related to climate change.

2According to EM-DAT, the number of flood events in each of the five recent decades during
1972–2021 in mainland China are 10, 35, 58, 91 and 98, respectively.
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tion maps and the geocoded firm locations are, however, not readily available. The

influence scope of a flood event reported by governments or news media is typ-

ically at the administrative level (in the case of China, at the county level at the

finest). This as we will document in the text is a poor proxy of the actual inundation

area. Guiteras, Jina and Mobarak (2015) suggest that self-reported exposure is also

not a reliable measure of true flood exposure. As such, we derive the data on the

geospatial flood inundation areas from the Global Flood Database (GFD) developed

by Tellman et al. (2021). In particular, the authors filtered high-frequency satellite

imagery repositories and applied water detection algorithms to identify the precise

inundation area. The database provides raster GeoTIFF images with a pixel resolu-

tion of 250 meters. For each raster, we use GIS software to extract the information

we need and transform the raster to a polygon shapefile. This is done for each flood

event taking place in China during the period studied. We then geocode the location

data of all the firms operating across China during the same period. By combining

these two sets of geographical data, we can identify the set of inundated firms in

each flood event, and compute the distances of all non-inundated firms to the inun-

dation areas (the latter to be useful in the analysis of spatial spillover effects). To

the best of our knowledge, this is one of the first such studies in the literature to

identify the flood exposure at the firm level, relying on satellite imagery data. We

document in further details the data we use in Section 1.2.

Being hit by a flood may cause immediate as well as long-lasting damages to

a firm’s production activities, depending on how severe the flood event is and how

long it takes to rebuild the production capacities and infrastructures. Firms located

nearby but not directly exposed to a flood event may also be negatively affected if

the transportation network in the area cannot be easily reorganized to eschew the

nodes in inundated areas. Alternatively, non-inundated firms might benefit instead

if market shares previously served by inundated firms are reallocated toward these

firms. We employ an integrated econometric strategy to accommodate these poten-

tial dynamic and spillover effects, while controlling for many potential confounders.

We find that for the period studied, floods in China have reduced firms’ pro-

duction capacity (in terms of outputs and employment) and productivity both in the

short and the long run, although capital stock can be recovered in the third year

3



after the flood. The annual losses in output and productivity are as large as 6%

and 5% (on average across horizons after the flood), respectively. Using concen-

tric ring analysis, we observe significant and differential spillover effects for the

non-inundated firms in the neighborhoods. Non-inundated Firms located within 4

kilometres from the inundated area are also negatively affected in their outputs, al-

though the effects are much smaller (at 2% on average) and the firms could recover

normality after three years. In contrast, firms that are located further away (between

4 and 18 kilometres from the inundated area) expand in their productions (from the

third year onwards). The latter positive spillover effects suggest that production

activities are reallocated geographically to surrounding neighborhoods, consistent

with the negative and permanent effects identified above for the inundated firms and

areas.

We further investigate factors that could moderate firms’ responses and vulner-

ability to flood hazards, including: firms’ asset tangibility, inventory management

practice, ownership structure, trade status, and sector of production, as well as the

characteristics of the county where firms are located. In addition to the effects at

the intensive margin addressed above, we also examine the effects of flood hazards

on firm entry and exit at the county level, hence providing evidence of potential

negative effects of floods at the extensive margin. The estimation results are docu-

mented in Section 2.4. In Section 1.4, we address potential threats to identification

(due to, e.g., firms’ endogenous relocation choice and past experiences with flood)

and verify the robustness of the baseline results to these concerns. Below we survey

the related literatures and highlight our contributions to these literatures.

1.1.1 Related Literatures

This paper is related to a number of studies that investigate the effects of nat-

ural disasters on micro-level entities. In most of these studies, while the research

subjects are individual households/workers (e.g., Yang and Choi 2007; Auffham-

mer and Aroonruengsawat 2011; Anttila-Hughes and Hsiang 2013; Somanathan

et al. 2021), plants/firms (e.g., Cachon, Gallino and Olivares 2012; Graff Zivin and

Neidell 2014; Chen and Yang 2019; Addoum, Ng and Ortiz-Bobea 2020; Hossain

2020), or products (e.g., Jones and Olken 2010), the treatment groups are usually
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defined by the administrative geographical unit, such as states, provinces, counties

or districts. This is because the spatial resolution of economic data and that of

weather/disaster data are usually not aligned. Either the individual entities’ loca-

tions cannot be geocoded, so that the weather/disaster data have to be aggregated

to an economically meaningful level that can be matched with the individual entity

data for analysis;3 or the geospatial data on the actual weather/disaster extents are

not readily available, so that scholars can only use the affected administrative geo-

graphical areas (reported by news or government agencies for floods, typhoons or

earthquakes) as proxies for the actual influence scope. Consequently, in both cases,

the matching of the weather/disaster data and the economic data is not exact, and

the implied allocation of treatment status to individual entities could be prone to

large measurement errors (Hsiang 2016).

In the case of flood, the disaster type of our interest in this paper, the second

issue discussed above applies. Specifically, when one administrative geographical

location is reported as being flooded but in fact only a small part of that location

is inundated, if one uses the reported administrative location as the inundation ex-

tent and matches it with geocoded firm-level data to allocate the treatment status

of a firm, all firms located in the administrative location but outside the small true

inundation area would be misclassified as inundated. If the number of misclassi-

fied firms makes up a large proportion, the estimation results is potentially severely

biased. We will see in the data section that this would be the case if one uses the

flood-affected regions or GIS polygons provided in the Emergency Events Database

(EM-DAT) or the Dartmouth Flood Observatory (DFO) as the measure for inunda-

tion areas. A key innovation of our study is thus the construction of a novel dataset

that merges high-resolution satellite-observed flood extent data with comprehen-

sive geocoded firm-level data. With the high spatial resolution of both disaster and

economic data, the classification of treatment status is no longer restricted to admin-

istrative geographical areas but defined by the close vicinity of the event, alleviating

3Almost all the literature listed above are of this type. This is very common for studies on tem-
perature and precipitation. For example, Somanathan et al. (2021) study the impact of temperature
on labor in India. The firm-level data they use only document the district where each firm is located
and do not contain geographical coordinate information; hence, they aggregate the temperature and
rainfall data to the district level and assign the weather data to the firms and workers according to
the district in which they are situated. See Dell, Jones and Olken (2014) for a discussion of the
aggregation of weather data and a comprehensive review of the climate-economy literature.
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the measurement error problem.

Leiter, Oberhofer and Raschky (2009) and Noth and Rehbein (2019) are two of

the few studies that evaluate the impacts of large-scale flood events on microlevel

firm outcomes. Leiter, Oberhofer and Raschky (2009) study the effects of a ma-

jor flood that occurred in 2000 in Europe on firms’ capital, employment and pro-

ductivity, by using a difference-in-difference (DID) approach. They emphasize the

heterogeneous flood impacts on firms with different asset structures: in particular,

companies with larger shares of intangible assets, e.g. patents and licenses, are less

affected by flood hazard. Noth and Rehbein (2019) also use the DID approach to

examine the effects of the 2013 Elbe flood on German firms’ turnover, tangible fixed

assets, leverage ratio and cash holdings. We deviate from these studies in two key

aspects. First, both of these studies look at a single (year’s) major flood event(s)

and use the DID method — dividing the study periods (6 years in both papers) into

the pre- and post-flood periods and comparing firms’ performances across the pe-

riods — to estimate the treatment effects. In contrast, we build a detailed panel of

geo-referenced data on flood extents and on firms at annual frequency from 2000 to

2009. This allows us to provide a comprehensive impact evaluation of flood haz-

ards for Chinese firms across years and locations. Second, and more importantly,

as highlighted above, instead of using large administrative geographical regions to

define a firm’s treatment status, we use high resolution satellite-observed flood ex-

tent data, associated with geocoded firm-level data, to identify whether a firm is

inundated or not. This classification greatly improves the measurement precision of

the treatment status upon those in the flood literature.

Yet two more closely related work are Hossain (2020) and Hu et al. (2019).

Hossain (2020) also uses the remote sensing data from satellites to produce the

inundation maps, and then combines them with the establishment-level data from

formal and informal sectors to study the impact of floods on manufacturing estab-

lishments and labor in India. The treatment group in the work, however, is defined

at the district rather than the establishment level. The key independent variable is

not the exposure of each individual establishment but the flood intensity of the dis-

trict which the establishment is located in, the reason being that the establishments

are only identifiable at the district level. Hu et al. (2019) also construct panel data

6



of inundation areas and geocoded firms to investigate the flood’s impacts on indi-

vidual companies in China over the period 2003–2010. In addition to differences

in estimation strategies, we improve upon their data in two aspects. First, the DFO

database they use are subject to the critique discussed above: it provides GIS poly-

gons for the geographic areas affected by flood events, which are determined based

on news reports or government announcements and are typically substantially larger

than the actual areas of inundation. Second, we use the Annual Surveys of Indus-

trial Firms (ASIF) data of China compiled by the National Bureau of Statistics of

China (NBS), which covers all industrial firms with sales above 5 million RMB and

is more comprehensive than the Orbis dataset used in their study.

Our study uses a unified specification to estimate the dynamic and spillover

effects of floods across time and space. We could first compare our findings with

the literature in terms of the former (the dynamic effect), which has been more

often studied by literature. Among others, Kocornik-Mina et al. (2020) study how

large urban floods affect the economic activities across and within cities on a global

scale. They find that a flooded city’s economic activity, as measured by the intensity

of night lights, declines by 2 to 8 percent in the year of the flood but typically fully

recovers immediately within the year of the flood event. Gandhi et al. (2022) also

use night light data as a proxy for economic activity to study the impact of floods on

cities around the world, but in a monthly frequency instead of yearly as in Kocornik-

Mina et al. (2020). They further assert that the economic activity in flooded cities is

restored to pre-disaster level in 1 to 2 months after the inundation (with the length

of period depending on the income status of the country where the city is located).

In contrast to these studies, we find that the aggregate economic effects at the city

level mask considerably differential effects of flood on inundated and non-inundated

firms within the city, and that floods have far longer-term or even permanent adverse

impacts on the inundated firms.

In relation to spillover effects, Carvalho et al. (2021) study the impact of the

Great East Japan Earthquake of 2011 and show that the supply chain linkages can

be an important transmission mechanism for the propagation and amplification of

the disaster impact. They document that the disruption to the disaster-area firms

caused by the earthquake also affects the direct and indirect suppliers and customers

7



through input-output linkages, with the effects decreasing by the supply chain dis-

tance from the disaster-area firms. In this paper, we explore the spillover effects

based on the geographical distances of firms to the inundation areas. We find that

nearby non-inundated firms are also negatively affected, but the effects are much

smaller and decrease with distance. On the other hand, firms that are located further

away (but within 18 kilometre radius) from the inundation area enjoy output gain,

from the third year onwards after a flood, suggesting that these non-treated firms

benefit from the disaster at the cost of the disaster-area firms and this kind of re-

source reallocation does not occur immediately after the disaster but takes time to

realize.

Gandhi et al. (2022) document that cities that are more vulnerable to floods

(measured by the frequency of severe flood events of a city) experience lower pop-

ulation growth. However, these cities suffer less, almost by half, from inundation

than cities that do not face recurrent floods. We find similar patterns for individual

firms: by aggregating firm data into the county level according to their locations, the

exit (entry) rate is significantly higher (lower) for counties that are prone to floods,

and the deterring effect is larger in counties with more severe floods. On the other

hand, the damaging effect on firms located in flood-prone counties is considerably

smaller than on firms located in less flood-prone counties.

1.2 Data

In this section, we document how we compile the satellite-observed geospatial

inundation data, the firm-level data, and the other variables used in the analysis.

1.2.1 Flood Data

The data on the geospatial flood inundation areas in China for the period stud-

ied are derived from the Global Flood Database (GFD) developed by Tellman et al.

(2021).4 Using the flood events catalogued by the Dartmouth Flood Observatory

(DFO) as the source for identifying dates and approximate locations, the authors

filtered (daily or twice-daily) satellite imagery repositories in these focused areas

and applied water detection algorithms to identify the precise inundation area. Care

4http://global-flood-database.cloudtostreet.ai/.
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is taken to reduce false detections or omissions. For example, areas are marked as

permanent water when the corresponding Landsat observations have water presence

throughout the period 1985–2016, and are differentiated from flood extents. Multi-

day composites of the images are used such that a pixel maintains a water classifi-

cation if at least half of the observations during the multiday period are detected as

water.

For each flood event they successfully mapped, the database provides a raster

GeoTIFF image in WGS 84 Geographic Coordinate system with a pixel resolution

of 250 meters. The GeoTIFF contains information for each pixel on: (1) whether

it is flooded or not; (2) the number of days inundated; (3) the number of cloud-free

days; and (4) the proportion of clear observations. We use information on (1) to infer

the inundation extent of each flood event. For each raster, we use GIS software to

extract the attribute we need and transform the raster to a polygon shapefile, which is

then matched with the geocoded firm-level data to identify whether a firm is located

in the inundation area or not. We are also able to compute the area of the flood

extent for each event through the GIS program.

As shown in Table 1.1, of the 137 flood events documented by DFO that oc-

curred in China during 2000–2009, GFD successfully mapped 39. Reasons for

failure of detection include persistent cloud cover, small or flash floods, inaccurate

catalogue locations, complex terrain, etc. For these 39 events, the total affected

area estimated by DFO is 20 times as large as the inundation area mapped by GFD

(8,844,619 km2 vs. 442,026 km2). The large difference in flood extents between

these two datasets suggests that the approximate affected areas provided by DFO

(compiled largely from government announcements or news reports) overstate the

actual inundated areas (based on satellite images). If we were to match the DFO

flood area with the geocoded firm-level data, the number of inundated firm-year

observations5 in these 39 flood events would be 47 times lager than based on GFD

(516,908 versus 10,658). On the other hand, precisely due to the high-resolution

mapping and the application of multiday composite classification, the areas of in-

undation detected in the GFD database tend to be small, fragmented and discrete.

By applying the original mapping, we may run the counter risk of incomplete cov-

5An observation is defined as a firm-year pair.
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erage of the flood events and underestimation of inundated firms. To mitigate these

concerns, we enlarge the fragmented inundation areas by including the neighbor-

hoods within 1 km distance from the inundation areas as detected by the GFD. By

doing this, the total number of inundated firm-year observations increases by nearly

sevenfold from 10,658 to 81,861.

Figure 1.2 illustrates the mapping of four flood events based on DFO and GFD

for year 2002. Panels (A) and (B) suggest that GFD provides a much more precise

mapping of the inundation areas of the four respective flood events. Panels (C) and

(D) provide a further look into the Hubei province, which was affected by two flood

events in 2002. Again, mapping based on DFO would significantly overstate the

extent of the inundation areas (where one flood event was shown to affect almost 2/3

of the province’s territory), while the GFD mapping matches the natural locations of

the water bodies and rivers. Given the inundation areas identified in Panels (A) and

(B) by DFO and GFD, respectively, Panels (E) and (F) illustrate the corresponding

firm observations that would fall within the inundation areas according to each of

the two mappings. We similarly observe a very large overstatement of the mass of

the inundated firms based on DFO relative to GFD. Last but not the least, Panel (G)

illustrates the geographical distribution of firms that fall within the GFD-identified

inundation areas and adjacent neighborhoods of 1 km distance. We see that the mass

and density of inundated firms increase as expected, and also extend in a natural

pattern from the original sparse distribution, matching the geographical locations of

the water bodies and rivers.

Some may argue that firms that are not directly exposed to inundation but located

near the flood area can still be taken as affected. We look into this issue below by

dividing the observations into 3 groups based on the locations of firms relative to

the vicinity of the floods: those located in the areas of inundation identified by the

GFD enlarged by 1km (the treatment group), those in non-inundated but adjacent

areas within some predetermined distance, and those in the other areas (the control

group), and estimate how flood hazards may affect nearby non-flooded firms in a

systematic manner.
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1.2.2 Firm-Level Data

The firm-level data we use in this study are the Annual Surveys of Industrial

Firms (ASIF) from the National Bureau of Statistics of China (NBS) for the period

2000–2009. As one of the most comprehensive firm-level datasets in China, ASIF is

widely used in the literature (e.g., Hsieh and Klenow 2009; Song, Storesletten and

Zilibotti 2011; Brandt, Van Biesebroeck and Zhang 2012). The surveys include all

Chinese state-owned enterprises (SOE), and non-SOE firms with annual sales above

5 million RMB (the “above-scale” firms), in the industrial sectors. Industrial sec-

tors in the dataset are defined to include mining, manufacturing and public utilities.

Manufacturing firms account for more than 90% of the observations in the sample.

For each firm-year observation, ASIF provides the basic information of the firm

(including company name, address, legal person, registration code, phone number,

etc) and a wide range of financial metrics (including total output value, value added,

employment, fixed asset, and accumulated depreciation, among others).

The information on firms’ addresses allows us to locate each of them on the

Chinese map. We use the Geocoding API of Amap6 to convert each firm’s address

into geographic coordinates, which are then merged with the geospatial inundation

maps constructed in Section 1.2.1 to identify the exposure status of each firm. More

importantly, with the coordinates of each firm and geographical information of the

inundation regions, we can compute the contemporary distance of each firm from all

the flooding areas year by year. This will enable us to explore the spillover effects

of floods on neighbouring non-inundated firms.

To construct a panel, we follow the method in Brandt, Van Biesebroeck and

Zhang (2012) to link firms across years. In the first step, firms are linked across

years by registration code. For remaining firms that are not successfully linked

across years in the first step or those with duplicate registration codes, additional

information such as corporate name and combinations of “legal person + county

code” are further used.7 We drop observations with missing values for key vari-

ables and/or with irregular financial entries according to accounting principles. In

6See https://lbs.amap.com/api/webservice/guide/api/georegeo for Amap’s devel-
oper documentation on Geocoding API.

7The combinations of information we use in this paper differ slightly from Brandt, Van Biese-
broeck and Zhang (2012), because some of the combinations they used cannot uniquely identify all
the firms. See Yang (2015), for example, for further discussions.
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particular, we drop observations for which the output or fixed asset is missing or

non-positive, or the number of employees is less than 8 (Jefferson, Rawski and

Zhang 2008; Nie, Jiang and Yang 2012). As a result, we have an unbalanced panel

of 2,543,542 firm-year observations spanning the period 2000–2009 with 634,141

unique firms.

To analyze how exposure to floods affects corporate productivity, we use the

method of Olley and Pakes (1996) to estimate firm-level productivity. We convert

the nominal values of output/value added and capital/investment into real values (in

1998 prices), using province-year specific industrial producer price indices (PPI)

and price indices of investment in fixed assets, respectively, according to firms’

locations (Lu and Lian 2012).8 We allow the production structure to vary across

sectors, and hence estimate the output elasticities of capital and labor sector by

sector, where sector is defined at the 2-digit level of the GB/T code, a standard

Chinese industry classification system. Due to data constraints (the value added

data or the material input data are not reported by ASIF for 2008 and 2009), we can

only obtain the firm-level productivity estimates for the period 2000–2007. Thus,

the analyses below that are based on productivity will have a shorter panel compared

with those based on firm-level output and capital/labor inputs.

1.2.3 Customs Data

In one set of analyses below in Section 2.4, we undertake to examine potential

heterogeneous effects across firms’ trade status, as well as potential impacts of flood

hazards on firm-level trade volumes. To do so, we combine the ASIF data with the

customs data, obtained from the Chinese Customs Trade Statistics (CCTS) main-

tained by the General Administration of Customs of China. Each observation in

CCTS is the export or import value of a firm-product-month during 2000–2007 and

of a firm-product-year during 2008–2009. We first aggregate the customs data to the

firm-year level, and then link the observation to the ASIF data using the firm name,

phone number and zip code. This provides the yearly export and import values, if

any, for the firms in ASIF. A firm is identified as an exporter/importer in a year if it

has non-zero export/import value in that year.

8Both price indices are also obtained from the NBS of China: http://www.stats.gov.cn/.
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1.3 Estimation Results

Floods cause damage to tangible assets and workers (inputs for production ac-

tivities) as well as disruptions to the operation (hence efficiency/productivity) of

firms. The impacts could extend beyond the current period if it takes time for firms

to rebuild the capital stock and labor force, and to restore productivity. As a start,

we explore the following preliminary specification, which accommodates potential

heterogenous impacts of inundation across time:

Yipst = β0R0i,t +β1R0i,t−1+β2R0i,t−2+β3R0i,{t−m,m≥3}+λXi,t−1+δi+δpt +δst +εipst ,

(1.1)

where Yipst is a performance measure for firm i located in province p of sector s in

year t. In particular, we will evaluate firm-level output (yipst), total factor produc-

tivity (tfpipst), capital (kipst), and employment (empipst) in logarithm.9 The treat-

ment status of each firm is indicated by R0i,t−k, for k ∈ {0,1,2}, which equals 1

if firm i was inundated in year (t− k). The coefficient βk captures the contempo-

raneous effect for k = 0, and the lagged k-year effect for k ∈ {1,2}. The indicator

R0i,{t−m,m≥3} equals 1 if firm i was ever inundated in periods (t−m) for m≥ 3; the

coefficient β3 therefore represents the long-run (3-year onwards) average effect of

floods on inundated firms.

We also include control variables that could affect a performance measure of

the firm, including its total asset, asset structure (Leiter, Oberhofer and Raschky

2009), and other performance measures. These controls, however, could be directly

affected by the inundation status of the firm or by confounders that simultaneously

interact with all performance measures. Hence, we use the lagged one-period val-

ues of these controls to reduce the endogeneity concern. Specifically, Xi,t−1 includes

lagged one-period total asset asseti,t−1, share of current asset scai,t−1, output yi,t−1

(or productivity t f pi,t−1 alternately conditional on the performance measure un-

der study), capital ki,t−1, and employment empi,t−1, in addition to the firm’s age

agei,t . A firm’s age is computed as the difference between the current period and

the founding year of the firm. Note that all the variables in the specification are in

logarithms.

9Note that all the nominal variables in value, such as output and capital stock, are deflated to the
1998 national price level in China, as documented in Section 1.2.
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We also include a list of fixed effects to control for potential observed/unobserved

confounders. For example, floods (especially river floods) usually have strong spa-

tial patterns. Firms located in regions near the main waterways are more prone to

floods. To account for these location heterogeneities across firms (that could influ-

ence the probabilities of treatment) as well as other time-invariant characteristics of

firms, we include individual firm fixed effects, δi, in the list of controls. We fur-

ther include sector-time fixed effects to control for sector-year specific shocks (e.g.,

due to structural changes across sectors during the sample period), and province-

year fixed effects to control for policy shocks or other weather/disaster events (e.g.,

temperature and rainfall) specific to the province-year. We use the dynamic panel

estimator of Arellano and Bond (1991) to estimate the specification in Equation 1.1,

and the other specifications below, with the panel unit at the firm level.

In the data, some firms might be subject to floods in multiple years. For example,

it may be flooded in the current period, so that R0i,t = 1, but it may also be flooded in

the previous year, so that R0i,t−1 = 1. With various trajectories of treatment history

for these multiple-treated firms, it is challenging if not impossible to disentangle

the contemporaneous effects of inundation from the lagged effects. Thus, for the

main analyses, we focus on single-treated firms (firms that were flooded only in

one year in the period studied) and estimate the effects of inundation relative to

untreated firm-year observations. In Section 1.4, we address the potential issue of

firms being subject to earlier treatments prior to the period studied and demonstrate

the robustness of the main findings to such concerns.

Table 1.2 reports the estimation results based on Equation 1.1 and its variations.

For each performance measure, we experiment with four dynamic specifications.

The first specification includes R0i,t only, and thus assumes away lagged effects of

floods. The second specification assumes the flood to have permanent effects post

treatment, akin to the conventional DID specification. The third specifications al-

lows the contemporaneous effect to differ from the average lagged effect, while the

fourth specification corresponds to Equation 1.1, which further allows the lagged

effects to differ across one, two, and subsequent years post treatment. Comparison

of the results across the four specifications suggests that the negative effects of in-

undation persist and are not homogeneous across periods post treatment. We hence
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adopt the more general dynamic specification in Equation 1.1 as the baseline for the

subsequent analyses.

The preliminary results based on Equation 1.1 suggest that the effects of inun-

dation on corporate output, productivity, capital and labor inputs are all negative

and extend beyond the period of treatment. The reductions in output, labor input

and productivity are in fact permanent, while capital input could be restored to pre-

disaster levels after two years. For output and productivity, the negative effects peak

in the second year post treatment (4.8 percent versus 7.2 percent in the current and

the second year post treatment for output; and 4.5 percent versus 5.2 percent for

productivity). The average lagged effects from the third year onwards are at 6.2%

and 4.3% for output and productivity, respectively. This suggests that being inun-

dated once could permanently reduce a firm’s production activity/capacity. This is

in stark contrast with the findings of Kocornik-Mina et al. (2020) and Gandhi et al.

(2022), as discussed in Section 1.1.1, who suggest that economic activities at the

city level (based on night lights as a proxy) typically recover within a year (or 1 to

2 months’ time) after the inundation.

1.3.1 Spillover Effects

We now generalize the specification in Equation 1.1 to take into account the

spillover effects of flood events on non-inundated firms. Such spillovers may take

place, for example, due to destruction of the local transportation network, which the

neighbouring non-inundated firms may depend upon to various extents (conditional

on alternative routes available). The negative spillover effect may also transmit via

the local input-output linkages if the regional production network is dense. On the

other hand, the spillover effect could also be manifested in reallocation of mar-

ket shares and sourcing strategies. For example, the downstream firms that used

to purchase intermediate inputs from the inundated firms might divert their sourc-

ing to non-inundated suppliers in the area if feasible (to reduce disruptions to their

own operations). This leads to a potential positive spillover effect on the untreated

neighboring firms.

To evaluate these potential geographic spillover effects, we measure the distance

of each firm to the inundation areas and conduct concentric ring analysis. Specif-
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ically, we adopt 2 kilometers as the bandwidth of a ring and classify the neigh-

borhood of a firm by the ring it is located in relative to the inundation area. The

specification is generalized to include these ring indicators as follows:

Yipst =
10

∑
k=0

(
β0,RkRki,t +β1,RkRki,t−1 +β2,RkRki,t−2 +β3,RkRki,{t−m,m≥3}

)
+λXi,t−1 +δi +δpt +δst + εipst ,

(1.2)

where R0i,t is defined the same as previously, and Rki,t for k > 0 is a dummy indicat-

ing whether firm i is located in the k-th ring (i.e., with a distance between 2(k−1)

and 2k kilometers) away from an inundation area in year t. This geographic spillover

specification is embedded in the dynamic specification of Equation 1.1, such that for

each contemporary and post-treatment period (lagged 1-year, 2-year, and 3-year on-

wards), a set of ground-zero and 10-ring neighborhood effects are estimated. The

list of additional controls and fixed effects remain the same as in Equation 1.1.

Table 1.3 reports the inundation effects based on Equation 1.2, in comparison

with the preliminary results based on Equation 1.1. The effects on inundated firms

(in particular, the contemporaneous effects) tend to be larger in magnitude when

the spillover effects are controlled for, although the differences are not statistically

significant.

Figure 1.3 plots the effects of floods across rings and time. Panel (A) illustrates

the pattern of spillover effects for the year of inundation. All the inundated firms

and non-inundated firms within 12 kilometres from the inundation area reduce their

capital inputs in the immediate year of floods. In contrast, the negative impacts

on output and productivity are limited to those located within 6 kilometres, and

the negative spillover effects are much smaller in magnitude than the direct effects

on inundated firms and decrease with distance. The negative spillover effects on

employment are furthermore limited in scope (4 kilometres) and in magnitude.

Panel (B) reports the spillover effects one year post the flood. The negative

spillover effects on output and employment tend to worsen in magnitude, although

the geographic scope of spillover is similar one year post the flood compared to the

year of flood. In contrast, firms in all rings of neighborhood recover their productiv-

ity one year post the flood, while firms outside the third ring restore their capital in-

puts one year post the flood. Panels (C) and (D) report the lagged 2-year and longer-
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run effects. Two years after the flood, while firms located in the first two rings of

neighborhood still sustain output losses, firms located further away restore their

normality in terms of outputs (ring 3 and ring 4) or even start to outperform their

counterparts in terms of outputs (rings 5–9) by around 2%. The positive spillover

effects on outputs of firms located in these neighborhoods are driven mostly by in-

creases in capital inputs and productivity, and less due to increases in employment.

In longer run, the spillover effects are not regular and cannot be precisely estimated

for capital inputs and productivity. There tend to be persistent positive spillover

effects in terms of outputs (and to a smaller extent in employment).

To sum up, the inundation effects spill over to non-inundated firms in the neigh-

borhoods that are not directly exposed to the flood. More importantly, the spillover

effects on firms in the neighborhoods are differential, depending on their distances

from the inundation area. Firms located close to the inundation area (within 4km)

are also negatively affected, although the effects sustained are much smaller in mag-

nitude than those sustained by inundated firms (2% vs. 6% in outputs) and tend to

dissipate in the long run. Firms that are further away (located between 4–18km

from the inundation area) start to experience positive spillover effects in outputs

from the third year onwards. These positive spillover effects are in contrast with

the long-run shrinkage of the inundated firms. In the short run, inundated firms are

mainly subject to the direct flood effects. In the longer run, these firms are addi-

tionally affected by the indirect effects: their market shares are partially taken over

by surrounding non-inundated firms such that their long-run outputs are below the

pre-disaster level.

It is also worthwhile to note that when we include the firms in the neighborhoods

in the concentric ring specification (and hence label them as geographically treated

firms and not as among the control group), the estimated effects of inundation for

the directly treated firms tend to be larger in magnitude for the current year and

one year after the flood, relative to the preliminary results based on Equation 1.1,

as seen in Table 1.3. This is a reinforcing evidence of spillover effects. As such,

in the estimations below, we adopt Equation 1.2 as our baseline specification and

explicitly control for potential spillover effects on firms in the neighborhoods within

20 kilometres (R1-10) of inundation areas.
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1.3.2 Moderating Factors

Given the average baseline effects identified above, we now explore factors that

could moderate or aggravate the impacts of inundation. We consider potential het-

erogeneous effects due to firm asset structures, inventory management, ownership

types, geographical locations, export/import status, and industrial sectors. These

firm-level characteristics are obtained from the ASIF and CCTS databases as docu-

mented in Section 1.2. All these analyses are conducted expanding on the baseline

specification of Equation 1.2.

1.3.2.1. Asset Structures

A firm’s asset structure could affect how vulnerable it is to floods. Tangible as-

sets (defined as the sum of fixed assets and inventory) are potentially more exposed

to physical destruction. Firms with a larger share of tangible assets thus may sustain

larger negative impacts from floods and also take longer time to recover. We test

this hypothesis by adding an interaction term of each treatment dummy with an as-

set tangibility indicator, Tangibilityi. In particular, we define firm i to be intensive

in tangible assets in year t if its share of tangible assets is above the 90 percentile of

all firms in year t. The indicator, Tangibilityi, is set equal to 1 if firm i is tangible-

asset-intensive in at least 50 percent of the time when the firm is observed in the

sample. For example, if firm i is observed in 6 years during the period of our study,

Tangibilityi is equal to 1 if the firm is tangible-asset-intensive in at least 3 years

(and 0 otherwise).

Table 1.4 reports the estimation results. We find that the coefficients of the inter-

action terms for output, capital and productivity are mostly negative. This implies

that firms intensive in tangible assets suffer more losses in capital (additional 3–12

percent) and also in productivity, which in turn aggravate the negative impacts on

their outputs relative to firms less intensive in tangible assets. The additional losses

in productivity and output of these firms tend not to be permanent. In contrast, these

firms suffer long-run reduction in the scale of capital inputs and do not restore it to

the pre-disaster level (as their counterparts would do).
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1.3.2.2. Inventory Management

Natural disasters are usually low-probability but high-impact events for individ-

ual firms, and could cause supply chain disruptions (Carvalho et al. 2021). Inventory

management can serve as a safety mechanism to build flexibility and resilience to

supply chain disruptions and to mitigate the effects of disaster shocks. Keeping ex-

cess inventory stocks provides a buffer in the event of supply chain or production

disruptions, although this needs to be balanced against the advantage of just-in-time

procurement and lean production (Gunessee, Subramanian and Ning 2018). In this

section, we analyze whether a firm’s inventory management policy affects its per-

formances when and after being flooded.

We use inventory turnover, a financial metric defined as the ratio of cost of

goods sold to inventory of a firm in a year, to measure how lean a firm’s inventory

stock is (relative to its size). Hence, a relatively low inventory turnover corresponds

to relatively more excess inventories, while a higher ratio indicates relatively lean

inventory stocks.

A firm is classified as having relatively more excess inventories in a year if its

inventory turnover is below the industry median in the year.10 The firm-specific in-

dicator, Sa f eInvi, is set equal to 1 if (1) firm i has relatively more excess inventories

in the year prior to the treatment year, provided that it is inundated; or (2) firm i has

relatively more excess inventories in at least one year, provided that it is never inun-

dated (during the period studied). We then divide the sample into two subsamples

based on this dummy Sa f eInvi. In other words, we dichotomize the firms based on

whether they tend to hold excess inventory stocks or not, and examine the role of

excess inventory in moderating the inundation effects (by comparing the inundation

effects between the two groups). The way we define Sa f eInvi also takes care of the

potential endogeneity concern that a firm may change its inventory strategy after

being hit by a flood.

The results are reported in Table 1.5. We find that firms with relatively higher in-

ventory stocks (prior to the inundation) can better buffer the negative consequences

of floods in output and productivity, but they are subject to much more severe and

longer-term damages in terms of physical assets. Their productivity is negatively

10Industry is defined at the 4-digit GB/T level, finer than the 2-digit sector definition.
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affected only in the immediate year and their output levels tend to recover from the

third year onwards post the floods. In contrast, firms practising lean inventory man-

agement sustain losses in outputs and productivity (of more than 10%) due to the

floods, and the effects persist in the long run. Employment losses are permanent in

both cases, although the inundation effects tend to be milder for firms with relatively

higher inventory stocks.

1.3.2.3. Ownership Types

It might be interesting to know whether state-owned enterprises (SOEs) in China

react differently to floods in comparison with private firms. On one hand, since

SOEs could have better access to external financial resources, they might be better

able to remedy/contain the direct impacts of floods (Pan and Qiu 2022). Post floods,

they might also be charged with social stability objectives (Bai, Lu and Tao 2006),

and required to maintain employment targets (instead of scaling down production

activities if need be). On the other hand, SOEs in China generally are more intensive

in tangible assets, and hence could be more negatively affected by floods given our

arguments in Section 1.3.2.1.

We classify a firm’s ownership type based on its entry in ASIF, and define the

SOE indicator, SOEi,t , at the firm-year level. The indicator is not time-invariant, as

it is possible for a firm to change its ownership type during the sample period. In

particular, China went through a trend of privatization after its accession in 2001

to WTO (Chen et al. 2021). Of all the 634,131 firms in our sample, 56,119 (8.8%)

were registered as SOEs for at least one year during the period of study (2000–

2009). Of this SOE group, 14,524 (25.9%) firms changed their ownership type.11

We append the specification of Equation 1.2 with the interaction terms of the treat-

ment dummies and the SOE indicator.

Table 1.6 summarizes the results. Consistent with the literature, the coefficient

estimate for the level indicator, SOEi,t , suggests that SOEs are generally larger in

terms of capital stocks and employment size, but less productive and produce less

11In particular, of the 56,119 SOEs, 12,444 (22.2%) firms changed from SOEs to non-SOEs, 5,005
(8.9%) firms changed from non-SOEs to SOEs. A total of 2,925 SOE firms changed their ownerships
more than once. If we exclude these firms, 9,519 firms changed from SOEs to non-SOE, and 2,080
firms changed from non-SOEs to SOEs (i.e., 14,524 = 9,519 + 2,080 + 2,925).
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output (conditional on inputs), relative to non-SOEs. In addition, the coefficient

estimates for the interaction terms are mostly negative and exhibit patterns similar

to those seen in Table 1.4 on asset tangibility. This suggests that the mechanism of

asset tangibility dominates in SOEs’ responses to floods. Nonetheless, the differ-

ential effect of floods on SOEs in terms of output tends to be larger in magnitude

than their counterparts in Table 1.4, and the negative additional impacts persist in

the long run. On the other hand, the differential effect of floods on SOEs in terms

of capital inputs tends to be milder than their counterparts in Table 1.4. Together,

this suggests that additional state support and resources that SOEs could potentially

fall back on help cushion the negative impacts of floods on their capital inputs, but

SOEs’ productivity and outputs suffer bigger losses, beyond the excess damage due

to asset tangibility, highlighting the inefficiencies of SOEs in production and weaker

incentives to recover in the aftermath of floods relative to non-SOEs.

1.3.2.4. Geographical Locations

Given the locations of the waterways and water bodies, different areas are sub-

ject to flood risks at various degrees. Local governments in flood-prone areas often

invest heavier in flood control/containment facilities to reduce the severity of the

flood impacts. Firms may also take more precautionary/adaptive measures if they

know they are subject to higher flood risks. Hence, we might expect firms located

in flood-prone areas to perform differently if inundated, in comparison with firms

located in less flood-prone areas but hit by floods.

Toward this, we define a county as flood prone and set ProneCountyc to 1 if

county c was hit by floods for more than 5 times during 2000–2014.12 We then

append the baseline specification in Equation 1.2 with interaction terms of the treat-

ment dummies R0 and ProneCountyc. Recall that the treated observations include

only single-treated firms; we have excluded from the sample firms that are subject

to floods in multiple years (whether they are located in flood-prone counties or not)

to avoid confounding mechanisms and interpretations.

12As shown in Figure 1.2, the areas of inundation are small, fragmented and spanning across
provinces. A county is identified as flooded in a flood event if parts of it are inundated by the flood
event. During 2000–2014, 785 counties were inundated at least once, among which 36 counties (5%)
encountered more than 5 floods. The maximum number of floods a county experienced during the
period is 11.
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As shown in Table 1.7, all of the coefficient estimates of the interaction terms are

positive and most of them are significant. Thus firms located in flood-prone counties

are considerably less affected by floods. In contrast with the permanent reduction

in output activities of inundated firms located in less flood-prone counties, firms

located in counties of higher flood risks do not sustain long-run negative effects.

This result also indicates that the baseline estimates in Table 1.3 mask important

heterogeneity across firms in terms of preparedness to floods.

1.3.2.5. Export/Import Status

Given the importance of trade to the Chinese economy, we examine whether

floods might affect firms of different trade status differentially. A firm-year observa-

tion in ASIF is identified as engaged in export/import activities if the firm in the year

has export/import records in the CCTS database. We include the interaction terms of

the treatment dummies and the exporter/importer indicator (Exporteri,t/Importeri,t)

to estimate the differential inundation effects on exporters/importers.13

The results are reported in Table 1.8. The coefficient estimates of Exporteri,t/Importeri,t

indicate that exporters/importers generally are more productive, and larger in terms

of capital stocks, employment size and outputs, in line with the literature à la

Melitz (2003). The impacts of floods on exporter/importers is not regular in the

initial years after the floods, but in the long run, exporters/importers reduce their

scales by more in terms of output and employment size relative to inundated non-

exporters/non-importers. The long-run losses of inundated exporters/importers is

consistent with the pattern in the baseline results: The market share of inundated

exporters/importers flows to neighbouring non-inundated firms in the long haul, but

the magnitudes of losses are larger than observed of inundated domestic firms. For

inundated exporters, they not only lose market shares in the domestic market, but

also in the international market. This is supported by the results in Table 1.9, where

we examine the inundation effects on the exports and imports of the firms. It shows

that the inundated firms’ exports tend to decrease in the long run, while neighboring

13There are 437,650 exporter-year observations and 328,627 importer-year observations in the
sample. A total of 269,003 observations have both indicators equal to one. If we define a firm as
an exporter if it has ever been an exporter for at least one year during the period studied, there are
130,321 exporters. Similarly defined, there are 102,350 importers in the sample. A total of 81,373
firms are both exporters and importers.
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non-inundated firms’ exports increase but only in the short run. This suggests that

overall, the Chinese firms’ exports decrease due to floods. In Tables 1.8–1.9, the

effects on import activities tend to mirror those on the export activities, suggesting

a strong correlation of the two activities at the firm level.

1.3.2.6. Industrial Sectors

We now examine potential heterogeneous effects of inundation across sectors,

whose natures of production might determine their vulnerability to flood risks. To-

ward this, we group the original 40 sectors (at 2-digit GB/T level) into 13 broad

sectors, with industries within each broad sector likely sharing similar production

structures. We run the baseline regression in Equation 1.2 sector by sector (dropping

the original sector-year fixed effect controls). The results are reported in Table 1.10,

with the sectors ranked in descending orders of the immediate inundation impacts

across columns.

For the majority of sectors, inundated firms suffer long-lasting negative im-

pacts in terms of outputs. The sectors that sustain stronger negative impacts from

floods tend to be those that are capital intensive (e.g., recycle and repair, automo-

biles/transport equipments, and machinery), or produce products that are sensitive

to humidity and sanitary conditions (such as paper/printing, and food products). In

contrast, the sector of computers/electronics does not exhibit systematic long-run

reduction in outputs post the flood, and a few sectors (which includes wood, utili-

ties, and mining) are less vulnerable to inundation.

1.3.3 Effects on Firm Entry/Exit

In the above analyses, we have examined the effects of floods on the intensive

margins of firm performances. We now investigate the effects of floods on the ex-

tensive margins of firm dynamics, in terms of firm entry and exit rates at the county

level. Gandhi et al. (2022) find that population growth is slower in cities that ex-

perience more frequent flood events. In similar spirits, floods may also affect the

locational choice of potential firm entrants and/or induce exits of firms negatively

affected by floods.

We first link each firm across years for the period 1998–2013. The entry and
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exit years of a firm are defined as the first and last year it exists in the sample.14

We assume that a firm is operating throughout the years in between (even when

a firm-year observation is missing in between the entry and exit years). We then

calculate the number of firm entrants and exits at the county-year level, and estimate

the impact of flood events on the firm entry and exit for the period 2000–2009. In

particular, we estimate the following specification:

Ycrt = ∑
j, j∈{0,1}

(
β0,b jR0_bin jc,t +β1,b jR0_bin jc,t−1 +β2,b jR0_bin jc,t−2

+β3,b jR0_bin jc,{t−m,m≥3}
)
+δc +δrt + εcrt ,

(1.3)

where the dependent variable is the exit/entry rate (or the logarithm of the number

of exit/entry firms) of county c in prefecture r in year t. We classify flooded counties

into bin 0 (where 1–20 firms are inundated in county c in year t) and bin 1 (where

more than 20 firms are inundated in county c in year t). In particular, the indicator

R0_bin0c,t is set equal to 1 if up to 20 firms are inundated in county c in year t.

In parallel, the indicator R0_bin1c,t equals 1 if more than 20 firms are inundated

in county c in year t. As in the baseline, we allow for the lagged 1-year, lagged

2-year, and long-run effects of floods on the entry/exit behaviour of the treated

counties. The county fixed effects δc are included to control for any time-invariant

county characteristics, and the prefecture-time fixed effects δrt to control for higher

administrative-level shocks that are common to the counties in a prefecture-year.

The results are reported in Table 1.11. We find that the exit rate of firms in a

county increases in the second year after the county is hit by a flood, and the entry

rate of firms decreases in the short run for the immediate year and the first year

post the flood. In addition, the coefficient estimates for bin 1 counties are larger

in magnitude than those for bin 0 counties. The exit effects are felt throughout the

immediate year to the second year post the flood, while the entry effects last till the

second year post the flood. This suggests that the magnitudes of the impact increase

with the severity of the inundation in a county. The patterns are similar if we look

at the exit and entry in terms of the absolute number of firms. This is partially due

to the fact that the county fixed effects included have helped control for the average

14Given the use of ASIF dataset, the entry and exit are defined as entry into and exit from the ASIF
database. These are limited to the “above-scale” firms, i.e., all SOEs and non-SOEs with annual sales
above 5 million RMB, as documented in Section 1.2.

24



number of firms in a county. The results are robust and similar if we further include

the number of firms in a county-year as an additional control. However, with this

more comprehensive set of controls, we find that floods now have permanent effects

on the exit rate (and the number of exit firms) and the entry rate as well, beyond the

short-run effects documented above.

1.4 Robustness Checks

We next conduct robustness checks to address potential threats to identification

of the inundation effects obtained based on the benchmark specification proposed

in Equation 1.2.

As suggested by the analysis in Section 1.3.3, firms may enter and exit from a

location across time. The endogenous choice of locations by firms could lead to

sample selection bias. To reduce the concern about this potential confounding ef-

fect, in the first robustness check, we restrict the set of firms to those that remain in

the same location (“non-mover”) during the sample period 2000–2009. In particu-

lar, we round up firms’ coordinates (latitudes and longitudes) to 2 decimal places

(which permits an error of 1.11 kilometres) and define a firm as a “non-mover” if

its coordinates are the same across years. Table 1.12 reports the results given the

restricted sample. In comparison with the baseline estimates (in the first column,

repeated from Table 1.3), the pattern of inundation effects remains similar: firms hit

by a flood suffer perpetual losses in outputs and employment size, and operate in a

smaller scale in the aftermath of the flood. The magnitudes of the effects on outputs

and employment size also tend to be larger than the baseline, although the differ-

ences are not statistically significant. For capital and productivity, the effects tend

to be shorter-lived and less persistent based on the “non-mover” sample relative to

the baseline.

In the next robustness checks, we further restrict the sample to firms that remain

in the same location and are not hit by a flood until being in a location for at least two

years (“non-mover & non-new”). This is to circumvent the potential concern that

a firm might have moved to the current location after being inundated somewhere

else before the sample period. These firms with recent inundation experiences may

behave and perform differently from the firms that have operated in a fixed location

25



for years before being hit by floods (and are not forced to liquidate or exit the market

after the flood). Alternatively, in the other robustness check, we restrict the sample

to firms that remain in the same locations and have an entry age older than 5 years

(“non-mover & old”), where the entry age is defined as the difference between the

year it first appears in the sample and its registered founding year. This excludes the

newly incorporated firms or new entrants, who may have fundamentally different

production/governance structures from the established/survival firms. Table 1.12

suggests that the negative impacts on outputs of inundated firms tend to strengthen

with the further restricted samples and continue to be persistent. The negative im-

pacts on capital stocks continue to be observed only in the short run. Depending

on which sample we focus on, the negative impacts on employment size based on

“non-mover & old” strengthens relative to those based on “non-mover & non-new”.

On the other hand, the negative impacts on productivity are more pronounced for

the “non-mover & non-new” sample than those for the “non-mover & old” sample.

Overall, these exercises suggest that our baseline findings of dynamic inundation

effects are robust to potential firm relocations.

1.5 Conclusion

A key challenge in identifying the causal effects of floods on individual firms is

to measure the actual incidence of floods at the firm level, which requires match-

ing the inundation area and firm location in high spatial resolution. The inundation

extent of a flood event can only be precisely measured from remote sensing instru-

ments, while firms’ operating addresses have to be geographically codable/coded,

so that the latter can be mapped with the identified inundation areas. This article

is among the first in the literature to identify the flood exposure directly at the dis-

aggregated firm level, by merging the satellite-observed inundation areas with the

GPS geocoded firm locations. We use this novel dataset to study the impacts of

floods on firm performance measures in China during the period 2000–2009.

We find that on average, a firm is subject to long-run reduction in production

capacity and productivity (by 6% and 5%, respectively) if hit by floods. The effects

also spill over to firms in the neighborhoods that are not directly exposed to floods,

but differently depending on their distances to the inundation area. Firms that are in
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close proximity (within 4 kilometres) to the inundation area are negatively affected

as the inundated firms, but at a much smaller magnitude, and could resume pre-

disaster production level in three years. Firms that are located further away (between

4 and 18 kilometres) from the inundation area are not significantly affected in the

first two years and increase their production scales thereafter. This suggests that

in addition to the direct impacts of floods in the short run, the inundated firms are

further subject to the negative effects in the long run, as market shares reallocate

toward non-inundated firms in the surrounding neighborhoods.

We also investigate factors that could moderate or aggravate the negative im-

pacts of inundation, including firm asset structures, inventory management prac-

tices, ownership types, geographical locations, export/import status, and industrial

sectors. Firms that are tangible-asset intensive, with relatively lean inventory stocks,

and state owned are found to be more negatively affected by floods. On the other

hand, firms located in flood-prone counties fare better and sustain losses that are

relatively minor and temporary, which suggests better preparedness and adaptation

by local governments and firms in counties anticipating higher flood hazards. In

addition to the intensive margin, we also investigate the effects of floods on the ex-

tensive margin. By aggregating the firm-level data to the county level, we find that

the exit rate in severely flooded counties is higher by 1.2–1.8 percent (while the en-

try rate is lower by 1.6–3.5 percent) in the immediate and following two years after

the flood.

Kocornik-Mina et al. (2020) and Gandhi et al. (2022) find that flooded cities can

recover economic activities to pre-disaster levels within a year. Our study, how-

ever, finds that inundated firms in non-flood-prone areas are subject to permanent

reduction in productivity and outputs. The stark contrast between the city-level and

the firm-level outcomes demonstrates that identifying the causal effects of floods in

large geographical scale could mask important micro-level heterogeneous impacts.

Lastly, we note that the estimates we have obtained could be considered conser-

vative, in the sense that the GFD only successfully maps one third of all the flood

events that took place during the period studied, and hence some inundated firms

may have been misclassified as among the control group, causing potential attenua-

tion bias as a result. Meanwhile, because the firm-level data are available only at the
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annual frequency, we have aggregated flood events within a year15 and used simply

binary variables to indicate flood exposures. These prevent us from identifying the

impacts of floods according to the intensity of the floods. We leave these further

refinements in measurement of flood intensity to future research.

15The aggregation of flood events in a year is by taking the union of the inundation areas within
a year. The distances between firms and the inundation area in a year are calculated based on the
aggregated inundation area so that they are well defined.
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Table 1.1: Flooding Area Data in DFO and GFD

DFO GFD
GFD vs. DFO

(For Events Doc. In GFD)
GFD + Neighboring Firms

Within 1km

Year # Firms # Floods
Inun. Area

(km2) # Inun. Firms # Floods
Inun. Area

(km2) # Inun. Firms
Inun. Area in DFO

(km2) # Inun. Firms in DFO # Inun. Firms

2000 153,906 8 446,864 20,572 2 5,027 65 107,763 3,090 894
2001 163,758 8 99,449 2,581 - - - - - -
2002 174,686 22 1,859,656 71,009 4 46,865 767 702,551 60,489 8,910
2003 190,783 14 3,248,970 71,879 5 113,429 1,704 2,359,691 69,221 14,806
2004 266,212 15 733,578 37,796 3 19,131 862 258,014 18,792 7,948
2005 267,176 18 3,289,300 129,895 9 103,850 3,888 1,152,691 78,542 16,670
2006 296,970 23 1,271,760 46,643 5 29,105 2,851 206,147 4,651 10,194
2007 332,714 11 3,343,944 197,364 7 86,028 415 3,041,902 189,929 14,777
2008 365,388 12 1,347,647 95,289 4 38,591 106 1,015,861 92,194 7,662
2009 331,949 6 1,139,055 55,129 - - - - - -
Total 2,543,542 137 16,780,222 728,157 39 442,026 10,658 8,844,619 516,908 81,861

Notes: The second column documents the number of firms in ASIF database from 2000 to 2009. The next three columns under "DFO" report the number of flood events, the total areas of
flooding-affected regions, and the number of firms located in these regions for each year during our sample period, based on the flood data provided in DFO. The next three columns under
"GFD" describe the corresponding statistics for the successfully mapped flood events in GFD, which use the flood events documented in DFO as mapping catalogue and then apply water
detection algorithm on satellite images to produce inundation maps. The next two columns under "GFD vs. DFO" report the total areas of inundation and the number of inundated firms for
the successfully mapped flood events in GFD if we use the data provided in DFO. For example, in 2002, GFD successfully mapped 2 flood events out of the total 8 events documented in DFO,
with the total inundation area being 5,027 km2 and the number of firms located in these area being 65; On the other hand, for the same 2 flood events, the flooding area provided in DFO is
107,763 km2 and the resulting number of inundated firms is 3,090. The last column reports the number of firms in every year when we include both the inundated firms, using the inundation
maps in GFD, and the neighbouring firms who are located within 1 kilometre from the inundation area.
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Table 1.2: Preliminary Specifications
y k emp tfp

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

R0i,t -0.0181*** -0.0475*** -0.0476*** -0.0065 -0.0123** -0.0122** -0.0057* -0.0159*** -0.0158*** -0.0342*** -0.0450*** -0.0454***
(0.0035) (0.0043) (0.0043) (0.0050) (0.0062) (0.0062) (0.0030) (0.0037) (0.0037) (0.0058) (0.0068) (0.0068)

R0i,t−1 -0.0572*** -0.0110 -0.0199*** -0.0257***
(0.0048) (0.0069) (0.0042) (0.0086)

R0i,t−2 -0.0721*** -0.0214*** -0.0175*** -0.0518***
(0.0053) (0.0076) (0.0046) (0.0096)

R0i,{t−m,m≥3} -0.0621*** -0.0069 -0.0136** -0.0428***
(0.0063) (0.0089) (0.0054) (0.0113)

R0i,{t−m,m≥0} -0.0487*** -0.0115* -0.0158*** -0.0450***
(0.0044) (0.0062) (0.0038) (0.0069)

R0i,{t−m,m≥1} -0.0577*** -0.0113 -0.0201*** -0.0242***
(0.0049) (0.0070) (0.0042) (0.0087)

Lagged y 0.2912*** 0.2911*** 0.2911*** 0.2914*** 0.0058 0.0058 0.0059 0.0062* 0.0052** 0.0052** 0.0052** 0.0053**
(0.0026) (0.0026) (0.0026) (0.0026) (0.0036) (0.0036) (0.0036) (0.0037) (0.0022) (0.0022) (0.0022) (0.0022)

Lagged k -0.0326*** -0.0325*** -0.0324*** -0.0324*** 0.3306*** 0.3307*** 0.3307*** 0.3307*** -0.0024* -0.0024* -0.0023* -0.0023* -0.0957*** -0.0955*** -0.0956*** -0.0954***
(0.0016) (0.0016) (0.0016) (0.0016) (0.0023) (0.0023) (0.0023) (0.0023) (0.0014) (0.0014) (0.0014) (0.0014) (0.0031) (0.0031) (0.0031) (0.0031)

Lagged emp 0.1104*** 0.1107*** 0.1108*** 0.1109*** 0.1065*** 0.1066*** 0.1066*** 0.1067*** 0.4836*** 0.4837*** 0.4837*** 0.4837*** -0.0053 -0.0049 -0.0051 -0.0046
(0.0027) (0.0027) (0.0027) (0.0027) (0.0039) (0.0039) (0.0039) (0.0039) (0.0024) (0.0024) (0.0024) (0.0024) (0.0059) (0.0059) (0.0059) (0.0059)

Lagged tfp 0.1178*** 0.1178*** 0.1178*** 0.1179***
(0.0022) (0.0022) (0.0022) (0.0022)

Lagged asset 0.2161*** 0.2158*** 0.2158*** 0.2159*** 0.2655*** 0.2655*** 0.2655*** 0.2657*** 0.0968*** 0.0967*** 0.0967*** 0.0968*** 0.1375*** 0.1375*** 0.1374*** 0.1377***
(0.0030) (0.0030) (0.0030) (0.0030) (0.0043) (0.0043) (0.0043) (0.0043) (0.0026) (0.0026) (0.0026) (0.0026) (0.0069) (0.0069) (0.0069) (0.0070)

Lagged sca 0.0445*** 0.0445*** 0.0445*** 0.0445*** -0.0410*** -0.0410*** -0.0410*** -0.0411*** 0.0232*** 0.0232*** 0.0232*** 0.0232*** 0.0737*** 0.0738*** 0.0737*** 0.0738***
(0.0019) (0.0019) (0.0019) (0.0019) (0.0028) (0.0028) (0.0028) (0.0028) (0.0017) (0.0017) (0.0017) (0.0017) (0.0038) (0.0038) (0.0038) (0.0038)

age -0.0140*** -0.0140*** -0.0140*** -0.0140*** 0.0050** 0.0050** 0.0050** 0.0050** 0.0060*** 0.0060*** 0.0060*** 0.0060*** -0.0003 -0.0003 -0.0003 -0.0003
(0.0014) (0.0014) (0.0014) (0.0014) (0.0020) (0.0020) (0.0020) (0.0020) (0.0012) (0.0012) (0.0012) (0.0012) (0.0025) (0.0025) (0.0025) (0.0025)

Observations 1,255,386 1,255,386 1,255,386 1,255,386 1,255,386 1,255,386 1,255,386 1,255,386 1,255,386 1,255,386 1,255,386 1,255,386 808,893 808,893 808,893 808,893
Number of Panel_id 350,444 350,444 350,444 350,444 350,444 350,444 350,444 350,444 350,444 350,444 350,444 350,444 270,569 270,569 270,569 270,569
Control for Spillovers (R1-10) NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO
Firm FE YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES
Sector×Year FE YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES
Province×Year FE YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES
Firms of Single Treatment YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES
Firms of Multiple Treatments NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO
Sample Period 2000-09 2000-09 2000-09 2000-09 2000-09 2000-09 2000-09 2000-09 2000-09 2000-09 2000-09 2000-09 2000-07 2000-07 2000-07 2000-07

Notes: The table reports the estimation results of four different specifications for each of the four dependent variables: output, capital, employment and TFP (all in logarithms). For each dependent variable, the first column reports the results
if we only use treatment dummies R0i,t , which are equal to 1 if firm i is inundated in year t. The second column uses a DID-like dummy R0i,{t−m,m≥0}, which equals 1 for inundated firm i in all post-treatment years. The third column divides
R0i,{t−m,m≥0} into R0i,t and R0i,{t−m,m≥1}, i.e., it divides the post-treatment periods into immediate year of treatment and later years. The last column further divides the post-treatment periods into 4 intervals: immediate year of treatment R0i,t ,
one year after R0i,t−1, two years after R0i,t−2, and later years R0i,{t−m,m≥3}. Variables below the key dummies are the controls that we use throughout this paper. We use Arellano-Bond method and include firm, sector-year and province-year
fixed effects in all the specifications. The sample we use excludes firms with multiple treatments. We can only compute firms’ TFP for the period 2000-2007 because of data availability, so the sample period for productivity is from 2000 to
2007. Standard errors are reported in parentheses under the estimates. Asterisks ***/**/* denote p < 0.01, p < 0.05, p < 0.1, respectively.
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Table 1.3: Concentric Ring Analysis: Inundation Effects
y k emp tfp

(1) (2) (3) (4) (5) (6) (7) (8)
Control for Spillovers NO YES NO YES NO YES NO YES

R0i,t -0.0476*** -0.0548*** -0.0122** -0.0260*** -0.0158*** -0.0176*** -0.0454*** -0.0562***
(0.0043) (0.0046) (0.0062) (0.0066) (0.0037) (0.0040) (0.0068) (0.0074)

R0i,t−1 -0.0572*** -0.0657*** -0.0110 -0.0166** -0.0199*** -0.0255*** -0.0257*** -0.0220**
(0.0048) (0.0051) (0.0069) (0.0072) (0.0042) (0.0044) (0.0086) (0.0090)

R0i,t−2 -0.0721*** -0.0733*** -0.0214*** -0.0173** -0.0175*** -0.0148*** -0.0518*** -0.0501***
(0.0053) (0.0054) (0.0076) (0.0077) (0.0046) (0.0047) (0.0096) (0.0098)

R0i,{t−m,m≥3} -0.0621*** -0.0565*** -0.0069 -0.0055 -0.0136** -0.0103* -0.0428*** -0.0444***
(0.0063) (0.0063) (0.0089) (0.0090) (0.0054) (0.0054) (0.0113) (0.0113)

Observations 1,255,386 1,255,386 1,255,386 1,255,386 1,255,386 1,255,386 808,893 808,893
Number of Panel_id 350,444 350,444 350,444 350,444 350,444 350,444 270,569 270,569
Firm FE YES YES YES YES YES YES YES YES
Sector×Year FE YES YES YES YES YES YES YES YES
Province×Year FE YES YES YES YES YES YES YES YES
Firms of Single Treatment YES YES YES YES YES YES YES YES
Firms of Multiple Treatments NO NO NO NO NO NO NO NO
Sample Period 2000-09 2000-09 2000-09 2000-09 2000-09 2000-09 2000-07 2000-07

Notes: The table compares the dynamic inundation effects when we explicitly control for surrounding firms within 20 kilometres with
the preliminary results in Table 1.2. For each dependent variable, the first column reports the estimates of the dynamic inundation effects
when we include the firms in the neighbouring 10 rings in the regression, while the second one reports the preliminary results when we
do not control for the neighbouring firms. R0i,g is equal to 1 if firm i is inundated in year g, thus the coefficients for R0i,t , R0i,t−1, R0i,t−2,
and R0i,{t−m,m≥3} can be interpreted as contemporaneous effect, 1-year lagged effect, 2-year lagged effect, and long-run (3-year onwards)
lagged effect of inundation, respectively. The coefficients for the neighbouring firms and control variables are omitted here. We use
Arellano-Bond method and include firm, sector-year and province-year fixed effects in all the specifications. We can only compute firms’
TFP for the period 2000-2007 because of data availability. Standard errors are reported in parentheses under the estimates. Asterisks
***/**/* denote p < 0.01, p < 0.05, p < 0.1, respectively.

35



Table 1.4: Heterogeneous Effects by Asset Structure

y k emp tfp

(1) (2) (3) (4)

R0i,t -0.0491*** -0.0228*** -0.0178*** -0.0453***
(0.0047) (0.0067) (0.0041) (0.0076)

R0i,t−1 -0.0604*** -0.0078 -0.0231*** -0.0156*
(0.0052) (0.0074) (0.0045) (0.0092)

R0i,t−2 -0.0704*** -0.0095 -0.0143*** -0.0498***
(0.0056) (0.0079) (0.0048) (0.0101)

R0i,{t−m,m≥3} -0.0578*** 0.0043 -0.0115** -0.0468***
(0.0065) (0.0092) (0.0056) (0.0116)

R0i,t ×Tangibilityi -0.0434*** -0.0341 0.0139 -0.0489**
(0.0153) (0.0218) (0.0132) (0.0239)

R0i,t−1×Tangibilityi -0.0530*** -0.0696*** -0.0159 -0.0575*
(0.0174) (0.0248) (0.0150) (0.0296)

R0i,t−2×Tangibilityi -0.0367* -0.0786*** 0.0028 0.0071
(0.0189) (0.0270) (0.0164) (0.0342)

R0i,{t−m,m≥3}×Tangibilityi -0.0228 -0.1238*** 0.0074 0.0324
(0.0214) (0.0306) (0.0185) (0.0415)

Observations 1,255,386 1,255,386 1,255,386 808,893
Number of Panel_id 350,444 350,444 350,444 270,569
Control for Spillovers (R1-10) YES YES YES YES
Firm FE YES YES YES YES
Sector×Year FE YES YES YES YES
Province×Year FE YES YES YES YES
Firms of Single Treatment YES YES YES YES
Firms of Multiple Treatments NO NO NO NO
Sample Period 2000-09 2000-09 2000-09 2000-07

Notes: The table reports the heterogeneous effects among firms with different inten-
sity of tangible assets. R0i,g is equal to 1 if firm i is inundated in year g, thus the
coefficients for R0i,t , R0i,t−1, R0i,t−2, and R0i,{t−m,m≥3} can be interpreted as con-
temporaneous effect, 1-year lagged effect, 2-year lagged effect, and long-run (3-year
onwards) lagged effect of inundation, respectively. Tangibilityi is equal to 1 if firm
i is tangible-intensive for at least half of the time for which it appears in the sample.
A firm i is said to be tangible-intensive in year t if its share of tangible assets in total
assets is above the 90 percentile across all firms in that year. Tangible assets refers
to the fixed assets and inventory. We explicitly include neighbouring non-inundated
firms within 20 kilometres from the inundation areas (R1-10) in all the regressions to
control for spillover effects. We use Arellano-Bond method and include firm, sector-
year and province-year fixed effects in all the specifications. We can only compute
firms’ TFP for the period 2000-2007 because of data availability. Standard errors
are reported in parentheses under the estimates. Asterisks ***/**/* denote p < 0.01,
p < 0.05, p < 0.1, respectively.
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Table 1.5: Heterogeneous Effects by Safety Inventory Stocks
y k emp tfp

(1) (2) (3) (4) (5) (6) (7) (8)
With Excess Inventory NO YES NO YES NO YES NO YES

R0i,t -0.0882*** -0.0317*** -0.0308*** -0.0390*** -0.0261*** -0.0188*** -0.0641*** -0.0346***
(0.0064) (0.0063) (0.0107) (0.0086) (0.0062) (0.0053) (0.0106) (0.0102)

R0i,t−1 -0.1230*** -0.0303*** -0.0069 -0.0513*** -0.0354*** -0.0346*** -0.0732*** 0.0200
(0.0071) (0.0070) (0.0119) (0.0096) (0.0069) (0.0059) (0.0129) (0.0127)

R0i,t−2 -0.1554*** -0.0367*** -0.0111 -0.0531*** -0.0225*** -0.0300*** -0.1342*** 0.0044
(0.0075) (0.0075) (0.0126) (0.0102) (0.0073) (0.0063) (0.0138) (0.0139)

R0i,{t−m,m≥3} -0.1591*** -0.0119 -0.0136 -0.0527*** -0.0394*** -0.0220*** -0.1635*** 0.0263
(0.0087) (0.0086) (0.0145) (0.0117) (0.0084) (0.0072) (0.0157) (0.0160)

Observations 311,943 956,195 311,943 956,195 311,943 956,195 196,402 619,069
Number of Panel_id 101,784 253,190 101,784 253,190 101,784 253,190 73,797 199,822
Control for Spillovers (R1-10) YES YES YES YES YES YES YES YES
Firm FE YES YES YES YES YES YES YES YES
Sector×Year FE YES YES YES YES YES YES YES YES
Province×Year FE YES YES YES YES YES YES YES YES
Firms of Single Treatment YES YES YES YES YES YES YES YES
Firms of Multiple Treatments NO NO NO NO NO NO NO NO
Sample Period 2000-09 2000-09 2000-09 2000-09 2000-09 2000-09 2000-07 2000-07

Notes: The table compares the dynamic inundation effects between firms with and without excess inventory. The definition for excess
inventory is as the text in Section 1.3.2.2. R0i,g is equal to 1 if firm i is inundated in year g, thus the coefficients for R0i,t , R0i,t−1,
R0i,t−2, and R0i,{t−m,m≥3} can be interpreted as contemporaneous effect, 1-year lagged effect, 2-year lagged effect, and long-run (3-year
onwards) lagged effect of inundation, respectively. We explicitly include neighbouring non-inundated firms within 20 kilometres from
the inundation areas (R1-10) in all the regressions to control for spillover effects. We use Arellano-Bond method and include firm, sector-
year and province-year fixed effects in all the specifications. We can only compute firms’ TFP for the period 2000-2007 because of data
availability. Standard errors are reported in parentheses under the estimates. Asterisks ***/**/* denote p < 0.01, p < 0.05, p < 0.1,
respectively.
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Table 1.6: Heterogeneous Effects by Ownership Structure

y k emp tfp

(1) (2) (3) (4)

R0i,t -0.0472*** -0.0221*** -0.0163*** -0.0457***
(0.0048) (0.0069) (0.0042) (0.0077)

R0i,t−1 -0.0584*** -0.0090 -0.0207*** -0.0145
(0.0053) (0.0075) (0.0046) (0.0094)

R0i,t−2 -0.0664*** -0.0106 -0.0113** -0.0423***
(0.0056) (0.0080) (0.0049) (0.0103)

R0i,{t−m,m≥3} -0.0510*** 0.0019 -0.0087 -0.0385***
(0.0065) (0.0093) (0.0056) (0.0118)

R0i,t ×SOE -0.0394*** -0.0252 -0.0034 -0.0269
(0.0118) (0.0168) (0.0102) (0.0188)

R0i,t−1×SOE -0.0520*** -0.0331 -0.0370*** -0.0509**
(0.0146) (0.0208) (0.0126) (0.0243)

R0i,t−2×SOE -0.0648*** -0.0432* -0.0250 -0.0757**
(0.0178) (0.0253) (0.0153) (0.0306)

R0i,{t−m,m≥3}×SOE -0.0872*** -0.0761*** -0.0183 -0.0614
(0.0204) (0.0291) (0.0176) (0.0381)

SOEi,t -0.0293*** 0.0651*** 0.0306*** -0.0634***
(0.0058) (0.0083) (0.0050) (0.0096)

Observations 1,255,386 1,255,386 1,255,386 808,893
Number of Panel_id 350,444 350,444 350,444 270,569
Control for Spillovers (R1-10) YES YES YES YES
Firm FE YES YES YES YES
Sector×Year FE YES YES YES YES
Province×Year FE YES YES YES YES
Firms of Single Treatment YES YES YES YES
Firms of Multiple Treatments NO NO NO NO
Sample Period 2000-09 2000-09 2000-09 2000-07

Notes: The table reports the heterogeneous effects among firms with different owner-
ship structure. R0i,g is equal to 1 if firm i is inundated in year g, thus the coefficients
for R0i,t , R0i,t−1, R0i,t−2, and R0i,{t−m,m≥3} can be interpreted as contemporaneous ef-
fect, 1-year lagged effect, 2-year lagged effect, and long-run (3-year onwards) lagged
effect of inundation, respectively. SOEi,t is equal to 1 if firm i is state-owned in pe-
riod t. We explicitly include neighbouring non-inundated firms within 20 kilometres
from the inundation areas (R1-10) in all the regressions to control for spillover ef-
fects. We use Arellano-Bond method and include firm, sector-year and province-year
fixed effects in all the specifications. We can only compute firms’ TFP for the period
2000-2007 because of data availability. Standard errors are reported in parentheses
under the estimates. Asterisks ***/**/* denote p < 0.01, p < 0.05, p < 0.1, respec-
tively.
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Table 1.7: Heterogeneous Effects by Locations

y k emp tfp

(1) (2) (3) (4)

R0i,t -0.0556*** -0.0303*** -0.0182*** -0.0521***
(0.0048) (0.0069) (0.0042) (0.0077)

R0i,t−1 -0.0696*** -0.0141* -0.0258*** -0.0331***
(0.0054) (0.0077) (0.0047) (0.0096)

R0i,t−2 -0.0850*** -0.0235*** -0.0162*** -0.0540***
(0.0058) (0.0083) (0.0050) (0.0106)

R0i,{t−m,m≥3} -0.0742*** -0.0109 -0.0154*** -0.0664***
(0.0068) (0.0097) (0.0059) (0.0126)

R0i,t ×ProneCountyc 0.0251** 0.0405** 0.0117 0.0165
(0.0120) (0.0171) (0.0103) (0.0187)

R0i,t−1×ProneCountyc 0.0346*** 0.0117 0.0117 0.0814***
(0.0134) (0.0191) (0.0116) (0.0229)

R0i,t−2×ProneCountyc 0.0743*** 0.0544*** 0.0150 0.0327
(0.0148) (0.0211) (0.0128) (0.0256)

R0i,{t−m,m≥3}×ProneCountyc 0.0884*** 0.0405* 0.0280** 0.1002***
(0.0164) (0.0235) (0.0142) (0.0274)

Observations 1,255,386 1,255,386 1,255,386 808,893
Number of Panel_id 350,444 350,444 350,444 270,569
Control for Spillovers (R1-10) YES YES YES YES
Firm FE YES YES YES YES
Sector×Year FE YES YES YES YES
Province×Year FE YES YES YES YES
Firms of Single Treatment YES YES YES YES
Firms of Multiple Treatments NO NO NO NO
Sample Period 2000-09 2000-09 2000-09 2000-07

Notes: The table reports the heterogeneous effects among firms with different loca-
tions. R0i,g is equal to 1 if firm i is inundated in year g, thus the coefficients for R0i,t ,
R0i,t−1, R0i,t−2, and R0i,{t−m,m≥3} can be interpreted as contemporaneous effect, 1-
year lagged effect, 2-year lagged effect, and long-run (3-year onwards) lagged effect
of inundation, respectively. ProneCountyc is a dummy equal to 1 if county c was hit
by floods for more than 5 times during 2000–2014 according to GFD. We explicitly
include neighbouring non-inundated firms within 20 kilometres from the inundation
areas (R1-10) in all the regressions to control for spillover effects. We use Arellano-
Bond method and include firm, sector-year and province-year fixed effects in all the
specifications. We can only compute firms’ TFP for the period 2000-2007 because
of data availability. Standard errors are reported in parentheses under the estimates.
Asterisks ***/**/* denote p < 0.01, p < 0.05, p < 0.1, respectively.
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Table 1.8: Heterogeneous Effects between Ex/Importers and Non-ex/importers
y k emp tfp

Exporter Importer Exporter Importer Exporter Importer Exporter Importer

R0i,t -0.0537*** -0.0548*** -0.0265*** -0.0283*** -0.0174*** -0.0189*** -0.0488*** -0.0484***
(0.0049) (0.0048) (0.0070) (0.0069) (0.0042) (0.0042) (0.0079) (0.0078)

R0i,t−1 -0.0677*** -0.0679*** -0.0105 -0.0129* -0.0227*** -0.0250*** -0.0258*** -0.0253***
(0.0054) (0.0053) (0.0077) (0.0076) (0.0047) (0.0046) (0.0095) (0.0094)

R0i,t−2 -0.0699*** -0.0696*** -0.0129 -0.0170** -0.0119** -0.0141*** -0.0515*** -0.0488***
(0.0058) (0.0057) (0.0083) (0.0081) (0.0050) (0.0049) (0.0105) (0.0103)

R0i,{t−m,m≥3} -0.0547*** -0.0546*** -0.0021 -0.0042 -0.0037 -0.0079 -0.0436*** -0.0393***
(0.0066) (0.0065) (0.0094) (0.0093) (0.0057) (0.0056) (0.0121) (0.0119)

R0i,t ×Ex/Importeri,t 0.0075 0.0167* 0.0061 0.0200 0.0039 0.0149* -0.0014 -0.0045
(0.0094) (0.0101) (0.0134) (0.0145) (0.0081) (0.0088) (0.0153) (0.0165)

R0i,t−1×Ex/Importeri,t 0.0176* 0.0243** -0.0126 0.0005 -0.0078 0.0051 0.0344* 0.0400**
(0.0099) (0.0107) (0.0141) (0.0152) (0.0086) (0.0092) (0.0181) (0.0196)

R0i,t−2×Ex/Importeri,t -0.0164 -0.0217* -0.0119 0.0117 -0.0096 0.0017 0.0115 -0.0017
(0.0107) (0.0115) (0.0153) (0.0165) (0.0093) (0.0100) (0.0195) (0.0210)

R0i,{t−m,m≥3}×Ex/Importeri,t -0.0246** -0.0318*** -0.0145 -0.0047 -0.0375*** -0.0192* -0.0029 -0.0302
(0.0108) (0.0116) (0.0154) (0.0166) (0.0093) (0.0101) (0.0203) (0.0223)

Ex/Importeri,t 0.0284*** 0.0275*** 0.0111*** 0.0208*** 0.0153*** 0.0134*** 0.0213*** 0.0120***
(0.0022) (0.0023) (0.0031) (0.0033) (0.0019) (0.0020) (0.0040) (0.0042)

Observations 1,255,386 1,255,386 1,255,386 1,255,386 1,255,386 1,255,386 808,893 808,893
Number of Panel_id 350,444 350,444 350,444 350,444 350,444 350,444 270,569 270,569
Control for Spillovers (R1-10) YES YES YES YES YES YES YES YES
Firm FE YES YES YES YES YES YES YES YES
Sector×Year FE YES YES YES YES YES YES YES YES
Province×Year FE YES YES YES YES YES YES YES YES
Firms of Single Treatment YES YES YES YES YES YES YES YES
Firms of Multiple Treatments NO NO NO NO NO NO NO NO
Sample Period 2000-09 2000-09 2000-09 2000-09 2000-09 2000-09 2000-07 2000-07

Notes: The table reports the heterogeneous effects between exporters/importers and non-exporters/-importers. R0i,g is equal to 1 if firm
i is inundated in year g, thus the coefficients for R0i,t , R0i,t−1, R0i,t−2, and R0i,{t−m,m≥3} can be interpreted as contemporaneous effect,
1-year lagged effect, 2-year lagged effect, and long-run (3-year onwards) lagged effect of inundation, respectively. Ex/Importeri,t is a
dummy equal to 1 if firm i has export/import records in the database of the Chinese Customs Trade Statistics in year t. We explicitly
include neighbouring non-inundated firms within 20 kilometres from the inundation areas (R1-10) in all the regressions to control for
spillover effects. We use Arellano-Bond method and include firm, sector-year and province-year fixed effects in all the specifications. We
can only compute firms’ TFP for the period 2000-2007 because of data availability. Standard errors are reported in parentheses under the
estimates. Asterisks ***/**/* denote p < 0.01, p < 0.05, p < 0.1, respectively.
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Table 1.9: Inundation Effects on Exports and Imports

export import

(1) (2)

R0i,t -0.0023 -0.0102
(0.0257) (0.0376)

R0i,t−1 -0.0009 -0.0687*
(0.0278) (0.0406)

R0i,t−2 -0.0320 -0.0329
(0.0296) (0.0434)

R0i,{t−m,m≥3} -0.0593* -0.1430***
(0.0356) (0.0526)

R1-10i,t -0.0058 0.0262
(0.0104) (0.0163)

R1-10i,t−1 0.0079 0.0156
(0.0103) (0.0161)

R1-10i,t−2 0.0210** 0.0504***
(0.0097) (0.0154)

R1-10i,{t−m,m≥3} 0.0157 -0.0185
(0.0111) (0.0176)

Observations 185,156 134,217
Number of Panel_id 56,069 39,317
Firm FE YES YES
Sector×Year FE YES YES
Province×Year FE YES YES
Firms of Single Treatment YES YES
Firms of Multiple Treatments NO NO
Sample Period 2000-09 2000-09

Notes: The table reports the inundation effects on firms’ exports and imports. R0i,g is
equal to 1 if firm i is inundated in year g, thus the coefficients for R0i,t , R0i,t−1, R0i,t−2,
and R0i,{t−m,m≥3} can be interpreted as contemporaneous effect, 1-year lagged effect,
2-year lagged effect, and long-run (3-year onwards) lagged effect of inundation, respec-
tively. R1-10i,g is a dummy equal to 1 if firm i is non-inundated but located within 20
kilometres from the flooding area in year g, and the coefficients for R1-10i,t , R1-10i,t−1,
R1-10i,t−2, and R1-10i,{t−m,m≥3} represent the corresponding dynamic effects on these
neighbouring non-inundated firms. We use Arellano-Bond method and include firm,
sector-year and province-year fixed effects in all the specifications. We can only com-
pute firms’ TFP for the period 2000-2007 because of data availability. Standard errors
are reported in parentheses under the estimates. Asterisks ***/**/* denote p < 0.01,
p < 0.05, p < 0.1, respectively.
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Table 1.10: Heterogeneous Effects on Output by Sectors
Recycle

and repair
Automobiles and

transport equipments
Paper, printing,
and art products

Food, beverages,
and tobacco Machinery Computers and

electronic equipments
Chemical, rubber,

and plastics products
Mineral and

metal products
Textile, apparel,
and foot wear Wood and furniture Other manufacture Gas, electricity,

and water mining

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

R0i,t -0.1104*** -0.0627*** -0.0582*** -0.0572*** -0.0547*** -0.0493*** -0.0468*** -0.0439*** -0.0437*** -0.0278 -0.0582 -0.0273 -0.0159
(0.0321) (0.0174) (0.0170) (0.0160) (0.0133) (0.0158) (0.0134) (0.0112) (0.0122) (0.0280) (0.0358) (0.0184) (0.0280)

R0i,t−1 -0.0867** -0.0521*** -0.0572*** -0.0670*** -0.0851*** -0.0409** -0.0706*** -0.0455*** -0.0767*** -0.0528* -0.0256 -0.0234 -0.0256
(0.0371) (0.0200) (0.0188) (0.0180) (0.0150) (0.0173) (0.0149) (0.0125) (0.0135) (0.0314) (0.0433) (0.0200) (0.0315)

R0i,t−2 -0.0799* -0.0711*** -0.0976*** -0.0874*** -0.0666*** -0.0506*** -0.0590*** -0.0676*** -0.0991*** -0.0401 -0.0377 -0.0079 -0.0334
(0.0408) (0.0215) (0.0200) (0.0195) (0.0159) (0.0182) (0.0161) (0.0135) (0.0144) (0.0339) (0.0462) (0.0219) (0.0340)

R0i,{t−m,m≥3} -0.1679*** -0.0650*** -0.0974*** -0.0755*** -0.0528*** -0.0204 -0.0647*** -0.0342** -0.0817*** -0.0259 0.0113 -0.0222 -0.0055
(0.0491) (0.0248) (0.0232) (0.0223) (0.0182) (0.0215) (0.0185) (0.0157) (0.0170) (0.0384) (0.0571) (0.0247) (0.0387)

Observations 27,916 98,111 74,167 109,638 159,809 111,611 140,166 195,655 192,043 37,723 19,024 42,747 46,776
Number of Panel_id 10,015 31,069 20,571 32,520 50,209 33,430 39,947 59,125 54,360 12,690 8,079 9,352 15,818
Control for Spillovers (R1-10) YES YES YES YES YES YES YES YES YES YES YES YES YES
Firm FE YES YES YES YES YES YES YES YES YES YES YES YES YES
Province×Year FE YES YES YES YES YES YES YES YES YES YES YES YES YES
Firms of Single Treatment YES YES YES YES YES YES YES YES YES YES YES YES YES
Firms of Multiple Treatments NO NO NO NO NO NO NO NO NO NO NO NO NO
Sample Period 2000-09 2000-09 2000-09 2000-09 2000-09 2000-09 2000-09 2000-09 2000-09 2000-09 2000-09 2000-09 2000-09

Notes: The table reports the inundation effects separately for each sector. We group the original 40 sectors (at 2-digit GB/T level) into 13 broad sectors, with industries within each broad sector likely sharing similar production structures. R0i,g is equal to 1 if firm i is inundated
in year g, thus the coefficients for R0i,t , R0i,t−1, R0i,t−2, and R0i,{t−m,m≥3} can be interpreted as contemporaneous effect, 1-year lagged effect, 2-year lagged effect, and long-run (3-year onwards) lagged effect of inundation, respectively. We explicitly include neighbouring
non-inundated firms within 20 kilometres from the inundation areas (R1-10) in all the regressions to control for spillover effects. We use Arellano-Bond method and include firm and province-year fixed effects in all the specifications. Standard errors are reported in parentheses
under the estimates. Asterisks ***/**/* denote p < 0.01, p < 0.05, p < 0.1, respectively.42



Table 1.11: Inundation Effects on Firm Entry/Exit
Rexit Rentry ln(#exit) ln(#entry)

(1) (2) (3) (4) (5) (6) (7) (8)

R0_bin0c,t 0.0039 0.0010 -0.0125*** -0.0068 0.0319 0.0066 -0.0023 -0.0018
(0.0034) (0.0033) (0.0046) (0.0043) (0.0209) (0.0181) (0.0218) (0.0218)

R0_bin0c,t−1 0.0044 0.0028 -0.0123*** -0.0091** -0.0049 -0.0187 -0.0434* -0.0432*
(0.0036) (0.0035) (0.0045) (0.0041) (0.0234) (0.0209) (0.0237) (0.0238)

R0_bin0c,t−2 0.0081** 0.0087** -0.0056 -0.0068 0.0540** 0.0519** 0.0221 0.0220
(0.0037) (0.0036) (0.0045) (0.0043) (0.0255) (0.0230) (0.0253) (0.0253)

R0_bin0c,{t−m,m≥3} -0.0005 -0.0007 -0.0050 -0.0045 0.0276 -0.0003 0.0207 0.0209
(0.0036) (0.0037) (0.0045) (0.0044) (0.0243) (0.0203) (0.0248) (0.0249)

R0_bin1c,t 0.0121*** 0.0005 -0.0339*** -0.0113* 0.1457*** 0.0228 -0.0123 -0.0101
(0.0046) (0.0044) (0.0067) (0.0060) (0.0343) (0.0285) (0.0345) (0.0346)

R0_bin1c,t−1 0.0119** 0.0080* -0.0354*** -0.0278*** 0.0531 0.0131 -0.0892** -0.0891**
(0.0048) (0.0047) (0.0067) (0.0060) (0.0355) (0.0314) (0.0374) (0.0374)

R0_bin1c,t−2 0.0180*** 0.0199*** -0.0162** -0.0198*** 0.1056*** 0.1187*** -0.0619* -0.0627*
(0.0048) (0.0048) (0.0063) (0.0060) (0.0381) (0.0342) (0.0375) (0.0377)

R0_bin1c,{t−m,m≥3} 0.0052 0.0128*** -0.0068 -0.0216*** -0.0155 0.0526* -0.1481*** -0.1495***
(0.0039) (0.0041) (0.0062) (0.0058) (0.0392) (0.0310) (0.0399) (0.0401)

ln(#firms) 0.0791*** -0.1540*** 0.9128*** -0.0170
(0.0034) (0.0042) (0.0154) (0.0178)

Observations 27,155 27,155 27,155 27,155 22,813 22,813 20,666 20,666
R2 0.5573 0.5783 0.5955 0.6455 0.8042 0.8431 0.8479 0.8479
County FE YES YES YES YES YES YES YES YES
Prefecture×Year FE YES YES YES YES YES YES YES YES
Sample Period 2000-09 2000-09 2000-09 2000-09 2000-09 2000-09 2000-09 2000-09

Notes: The table reports the inundation effects on firm entry and exit behaviour in county level. The dependent variables
Rexit , Rentry, ln(#exit), and ln(#entry) are exit rate, entry rate, the number of exit firms (in logarithms), and the number of
entrants (in logarithms), respectively. We divide counties into two bins according to the extent that the county is affected by
inundation. R0_bin0c,t is equal to 1 if county c has 1-20 firms that are exposed to inundation in year t. R0_bin1c,t is equal to
1 if county c has more than 20 firms that are exposed to inundation in year t and 0 otherwise. As in the models for firms, we
also investigate the dynamic effects of inundation on counties using the contemporaneous and lagged treatment dummies.
We include county, prefecture-year fixed effects in all the specifications. Standard errors are reported in parentheses under
the estimates. Asterisks ***/**/* denote p < 0.01, p < 0.05, p < 0.1, respectively.
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Table 1.12: Robustness Checks
y k emp tfp

Baseline Non-mover
Non-mover
& Non-new

Non-mover
& Old Baseline Non-mover

Non-mover
& Non-new

Non-mover
& Old Baseline Non-mover

Non-mover
& Non-new

Non-mover
& Old Baseline Non-mover

Non-mover
& Non-new

Non-mover
& Old

R0i,t -0.0548*** -0.0610*** -0.0614*** -0.0747*** -0.0260*** -0.0300** -0.0267** -0.0415** -0.0176*** -0.0221*** -0.0214*** -0.0400*** -0.0562*** -0.0486*** -0.0481*** -0.0285
(0.0046) (0.0086) (0.0086) (0.0142) (0.0066) (0.0121) (0.0121) (0.0183) (0.0040) (0.0075) (0.0075) (0.0112) (0.0074) (0.0138) (0.0138) (0.0221)

R0i,t−1 -0.0657*** -0.0703*** -0.0638*** -0.0948*** -0.0166** -0.0264** -0.0014 -0.0564*** -0.0255*** -0.0389*** -0.0297*** -0.0624*** -0.0220** -0.0032 -0.0156 0.0052
(0.0051) (0.0095) (0.0099) (0.0166) (0.0072) (0.0134) (0.0139) (0.0214) (0.0044) (0.0083) (0.0086) (0.0131) (0.0090) (0.0179) (0.0196) (0.0293)

R0i,t−2 -0.0733*** -0.0842*** -0.0787*** -0.0968*** -0.0173** -0.0172 -0.0033 -0.0297 -0.0148*** -0.0287*** -0.0178* -0.0442*** -0.0501*** -0.0466** -0.0613*** -0.0631*
(0.0054) (0.0100) (0.0108) (0.0179) (0.0077) (0.0141) (0.0153) (0.0230) (0.0047) (0.0087) (0.0095) (0.0141) (0.0098) (0.0194) (0.0227) (0.0328)

R0i,{t−m,m≥3} -0.0565*** -0.0569*** -0.0862*** -0.0903*** -0.0055 0.0000 0.0157 -0.0209 -0.0103* -0.0198* -0.0126 -0.0402** -0.0444*** -0.0348 -0.0661** -0.0592
(0.0063) (0.0117) (0.0142) (0.0213) (0.0090) (0.0165) (0.0200) (0.0275) (0.0054) (0.0102) (0.0124) (0.0168) (0.0113) (0.0224) (0.0275) (0.0384)

Observations 1,255,386 476,822 465,280 129,359 1,255,386 476,822 465,280 129,359 1,255,386 476,822 465,280 129,359 808,893 269,278 263,709 85,206
Number of Panel_id 350,444 157,210 152,662 42,824 350,444 157,210 152,662 42,824 350,444 157,210 152,662 42,824 270,569 107,921 105,006 33,887
Control for Spillovers (R1-10) YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES
Firm FE YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES
Sector×Year FE YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES
Province×Year FE YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES
Firms of Single Treatment YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES
Firms of Multiple Treatments NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO
Sample Period 2000-09 2000-09 2000-09 2000-09 2000-09 2000-09 2000-09 2000-09 2000-09 2000-09 2000-09 2000-09 2000-07 2000-07 2000-07 2000-07

Notes: The table reports the estimation results when we use different subsamples as robustness checks. For each dependent variable, the first column under “Baseline” is the baseline estimates when we use the whole sample, as the same as the
first columns under each dependent variable in Table 1.3. The second column under “Non-mover” is the estimates when we only include firms that do not change their locations during the sample period. The third column under “Non-mover
& Non-new” is the estimates when we further restrict the sample to those who have already existed in the sample for at least two years before their first treatments, conditional on fixed locations (“Non-mover” firms). The last column under
“Non-mover & Old” reports the estimates when we use the subsample in which firms do not change their locations during 2000–2009 and with entry ages, defined as the difference between the year that it first appears in the sample and the
founding year for each firm, older than 5 years. R0i,g is equal to 1 if firm i is inundated in year g, thus the coefficients for R0i,t , R0i,t−1, R0i,t−2, and R0i,{t−m,m≥3} can be interpreted as contemporaneous effect, 1-year lagged effect, 2-year
lagged effect, and long-run (3-year onwards) lagged effect of inundation, respectively. We explicitly include neighbouring non-inundated firms within 20 kilometres from the inundation areas (R1-10) in all the regressions to control for spillover
effects. We use Arellano-Bond method and include firm, sector-year and province-year fixed effects in all the specifications. We can only compute firms’ TFP for the period 2000-2007 because of data availability. Standard errors are reported in
parentheses under the estimates. Asterisks ***/**/* denote p < 0.01, p < 0.05, p < 0.1, respectively.
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Figure 1.1: Natural Disasters in China during 1970-2021
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Notes: The figure illustrates the percentage shares of each type of natural disaster in terms of
frequency (left panel) and economic damages caused (right panel) among all the disasters that
occurred in mainland China from 1970 to 2021.
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Figure 1.2: Inundation Areas and Inundated Firms: GFD vs. DFO in 2002

(A) DFO inundation areas in 2002 (B) GFD inundation areas in 2002

(C) DFO 2002: Zoom in to Hubei province (D) GFD 2002: Zoom in to Hubei province
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(E) DFO inundated firms in 2002 (F) GFD inundated firms in 2002

(G) GFD inundated+Adjacent 1km firms in
2002

Notes: The figures plot the inundation areas and the corresponding inundated firms on Chinese
map for the 4 successfully mapped flood events (from the satellite images) occurred in 2002.
Panels (A) and (B) are the inundation areas according to DFO and GFD, respectively. Each color
represents one flood event. Panels (C) and (D) show the same inundation polygons when we zoom
in to the map of Hubei province for better visualization. Panels (E) and (F) are the inundated firms
which are located in the above inundation areas in (A) and (B). Panel (G) illustrates the inundated
firms when we expand the inundation areas in GFD (Panel B) outward by 1 kilometer.
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Figure 1.3: Spillover Effects on Neighbouring Non-inundated Firms

(A) Contemporaneous Effects

-.08

-.06

-.04

-.02

0

.02

-.08

-.06

-.04

-.02

0

.02

R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

y tfp

k emp

(B) 1-year Lagged Effects
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(C) 2-year Lagged Effects
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(D) Long-run Effects
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Notes: The figure plots the estimates of the flooding effects on inundated firms (denoted as R0)
and neighbouring non-inundated firms that are located in the ten 2km-width rings surrounding the
inundation area (denoted as Rk for firms located in the k-th ring) with their 90 percent confidence
intervals, as modelled in Equation 1.2. Panels (A) – (D) represent the contemporaneous effects,
1-year lagged effects, 2-year lagged effects, and long-run (3-year onwards) lagged effect of the
floods, respectively. The sample we use in the estimation excludes firms with multiple treatments.
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Chapter 2

The Response of the Chinese

Economy to the U.S.-China Trade

War: 2018–2019

2.1 Introduction

During 2018–2019, in an unprecedented manner since the 1930s, the U.S. Trump

administration imposed seven rounds of tariff increases that affected Chinese ex-

ports. This includes the first round in February 2018, on solar panel and washing

machine imports, and the second, targeting iron, aluminum and steel products. They

were followed by three rounds of tariff hikes in 2018 and two in 2019, targeting

imports specifically from China. All told, these seven rounds of tariff increases af-

fected $325.1 billion (14.27%) of Chinese exports across 6428 HS-8 products (using

2017 pre-war trade values). The U.S. statutory tariff rate on these Chinese products

increased from 3.55% to 28.53% (simple average).

In return, China raised tariffs on U.S. products (four rounds in 2018 and two in

2019). All told, 5833 distinct HS-8 products imported from the U.S. were targeted

during the period 2018:1–2019:12. In 2017 trade values, these affected $109.3 bil-

lion (or 5.93%) of Chinese imports. The retaliation tariff rate increased from 6.46%

to 21.27% (simple average). As China raised its tariffs against U.S. products, it also

unilaterally lowered its Most-Favored-Nation (MFN) tariff rates on imports from
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non-U.S. sources where the MFN rate applied. This took place in four rounds dur-

ing 2018:5–11. All told, the lists covered 3054 products, with a pre-war trade value

of $145.7 billion (or 7.90% of Chinese imports in 2017). The tariff rate across these

products decreased from 9.89% to 6.82% (simple average).

In the literature, Amiti et al. (2019), Flaaen et al. (2020), Fajgelbaum et al.

(2020), and Cavallo et al. (2021) have evaluated the ex-post impacts on the U.S.

economy of the 2018–2019 trade war (in terms of prices, import/export quantities,

real wages, or welfare), given events up to 2018:12, 2019:1, 2019:4, and 2020:2,

respectively. These studies generally employed highly disaggregated product and

tariff line classifications, with a strong focus on identifying the U.S. demand and

supply structure at the micro product/variety level and their corresponding elastic-

ities. On the other hand, studies by Charbonneau and Landry (2018), Guo et al.

(2018) and Itakura (2020) conducted ex ante predictions of the trade-war effects

using, respectively, the quantitative models of Caliendo and Parro (2015) and the

GTAP CGE model (based on tariff changes imposed in the early phase of the trade

war and/or proposed tariff changes at the time of their studies). Given the nature of

their modeling frameworks, the trade and tariff changes are typically organized at

the sector level, with emphasis on general equilibrium adjustment across sectors and

countries. Li et al. (2020) similarly examined the welfare impacts of the trade war

based on the GTAP model, but with analysis incorporating the tariff revisions as of

2020:3 (after the Phase One Deal was reached between the U.S. and China on De-

cember 13, 2019). The trade elasticities used in these studies were often taken from

the literature based on sector-level trade analysis, or built-in parameters assumed by

the GTAP models.

In this paper, we follow the micro-to-macro approach of Fajgelbaum et al. (2020),

but with China now modeled as the local economy (given a detailed general equi-

librium structure), while each of its trading partners is modeled in reduced form.

Corresponding to the setup of Fajgelbaum et al. (2020) for the U.S. economy, the

demand system we estimate for the Chinese economy includes reallocations be-

tween the domestic bundle and the imported bundle within each sector (defined as a

2-digit GB/T code, a standard Chinese industry classification system), across prod-

ucts (defined as 8-digit HS product codes) within each sector’s imported bundle,
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and across varieties (defined as country-product pairs) within each imported prod-

uct. This demand system is interacted with foreign export supply at the variety level,

and their joint effects on prices and quantities are aggregated up the hierarchy of de-

mand to the product and sector levels. In contrast, the import demand and export

supply structures for each of China’s trading partners are specified/identified only

at the variety level.

To estimate this system, we compile data on China’s imports (exports) from (to)

each of its trading partners, in terms of both quantities and values at the 8-digit

HS level, with monthly frequency for the period 2017:1–2019:12. We similarly

compile the Chinese tariff rates on imports with respect to each trading partner (at

the HS-8 level), and the foreign tariff rates on China’s exports (at the HS-6 digit

level), with monthly frequency for the same period. These are constructed using

the baseline statutory tariff rates that were in place at the start of 2017, amended

with tariff changes announced by the Ministry of Finance, China, or the U.S. Trade

Representative during the period studied.

As suggested by Fajgelbaum et al. (2020) and Zoutman et al. (2018), the im-

port demand and foreign export supply elasticities can be identified simultaneously

using changes in tariffs as an instrument, provided that these changes are uncorre-

lated with demand and supply shocks. We conduct tests to verify the validity of

this condition from the Chinese economy’s perspective, based on tariff shocks as-

sociated with the trade war during the period 2018:1–2019:12. Tables 2.3 and 2.6

report the variety-level estimation results, and Tables 2.4–2.5 the product-level and

sector-level estimation results. Overall, the elasticities we estimate for the Chinese

economy are smaller in magnitude than the U.S. counterparts obtained by Fajgel-

baum et al. (2020). Table A.1 summarizes the partial (direct) impacts on Chinese

imports and exports, given the elasticity estimates and the tariff changes due to the

trade war. Chinese imports of U.S. products targeted by the Chinese import tar-

iff fell by 13.14% (weighted average). The MFN tariff cuts extended by China

cushioned the negative impacts substantially. Chinese imports from these non-U.S.

MFN sources of imports are estimated to have increased by 3.48% for targeted va-

rieties. With the opposing effects combined, the overall change in Chinese imports

of targeted varieties was muted at −3.64%. On the other hand, exports of Chinese
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products targeted by the U.S. tariffs fell by −24.48%. Thus, the major brunt of the

tariff war on the Chinese economy was borne by its exports in partial equilibrium.

We then simulate for the Chinese economy the general equilibrium effects of the

tariff shocks, given the elasticity parameters estimated above (at variety/product/sector

level), and a supply-side structure calibrated to the observed labor allocation across

Chinese sector-provinces, input-output structures across sectors, consumption al-

location across non-tradable and tradable sectors, capital/labor/intermediate cost

shares in sector-level production, and imports and exports across varieties. The sys-

tem is large in dimension, including endogenous prices for each variety, product,

and sector, wages for each sector-province, and final and intermediate expenditures

across sectors. Thus, as in Fajgelbaum et al. (2020), the system is solved as a first-

order linear approximation in log changes around the pre-war equilibrium in 2017,

given the China-U.S. tariff shocks during 2018:1–2019:12.

Table 2.8 summarizes the effects on producers/exporters (EV X ), consumers/buyers

of imports (EV M), and tariff revenue (∆R) in Columns (1)–(3) and the aggregate

impacts in Column (4). Our analysis suggests large negative consequences of the

trade war on both Chinese producers (−0.272% of China’s GDP) and consumers

(−0.057% of GDP), with the producers (exporters) suffering more than four times

the loss of the buyers of imports. Both components further dominate the positive

tariff revenue increase. As a result of the trade war, China sustained an aggregate

loss of $37.898 billion, or 0.312% of its GDP. Without counter-retaliation, its loss

would have been much larger, at $38.921 billion (0.321% of GDP), and would have

been largely borne by producers (exporters). The retaliation against the U.S. im-

ports shifted the burden to the Chinese buyers of imports. Further adjustment in

the MFN tariff rates on non-U.S. imports lessened the loss of Chinese buyers of

imports and shifted part of the burden back to the producers. Overall, the aggregate

loss is significant statistically. In comparison, Fajgelbaum et al. (2020) reported

much larger consumer loss (−0.27% of U.S. GDP), a positive effect on producers

(0.05% of U.S. GDP), and only slightly negative aggregate effect (−0.04% of U.S.

GDP) for the U.S. economy.

We then analyze the variation in exposure to the trade war across provinces in

China. For this purpose, we construct the province-level exposure of tradable sec-
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tors by first computing the trade-weighted tariff changes for each GB/T-2 sector

and then mapping them to provinces based on provincial employment structure.

Figure 2.3 suggests that China tended to: (A) retaliate against the U.S. in sectors

with a relatively high concentration in the outlying provinces such as Xinjiang,

Hainan, and Heilongjiang; and (B) reduce MFN tariffs on sectors concentrated in

provinces closer to the coast, such as Shanghai and Beijing. Overall, China’s tariff

increases tended to be biased toward inner provinces and turn negative in the East-

ern provinces. Added to the burden, Panel (D) suggests that these provinces also

faced higher tariff increase on their exports to the U.S.

Figure 2.4 summarizes the simulated effects of the trade war on real wage across

provinces in general equilibrium. Every province experienced a reduction in the

tradable real wage. Provinces with larger relative losses are concentrated in the

Southeast, whose employment structures were hit more strongly by the U.S. tariff

increase. The real wage losses would have been one level higher without the MFN

tariff cuts by China. This contrasts with the finding in Table 2.8, where the MFN

tariff cuts by China worsened the aggregate loss. This implies that the MFN tariff

cuts helped cushion the impacts on workers/consumers via lower import prices,

at the cost of producers (and the owners of capital and fixed structures), who faced

greater competition in the product market. Overall, on average across provinces, the

nominal wages for workers in tradable sectors decreased by 3.19%. These income

losses were, however, cushioned by a lower cost of living, as the CPI of tradable

goods decreased by 2.34% on average across sectors. As a result, real wages in the

tradable sector fell by 0.32%.

The remainder of the paper is structured as follows. Section 2.2 documents the

data used for the analysis and the timeline of the tariff events. Section 2.3 outlines

the economic structure used for the analysis. Section 2.4 presents the estimation

results of elasticities and partial equilibrium impacts on trade. Section 2.5 reports

the simulated general equilibrium effects at the aggregate, across Chinese provinces,

and across sources of imports and destination of exports. Section 2.6 concludes.

2.2 Data and Timeline
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2.2.1 Data

We obtained the Chinese baseline tariff rates from the UN TRAINS database and

its tariff rate changes from the Ministry of Finance, China. The former is available

at the 10-digit Harmonized System (HS) level and the data were aggregated and

matched to the latter, available at the HS-8 level. Starting with the baseline import

tariff rate in January 2017, we update the rates at monthly frequency, given the

official announcement by the Ministry of Finance, China, of any tariff changes.

Note, however, that only tariff changes announced in association with the tariff war

are used as sources of variations in the instrumental variable to identify the import

demand and export supply elasticities.

We similarly obtained the baseline tariff faced by Chinese exports from the UN

TRAINS database. These data are harmonized across countries up to the HS-6 digit

level. The information on the U.S. tariff increase associated with the trade war is

based on Fajgelbaum et al. (2019) (for tariff changes in 2018) and the Office of the

United States Trade Representative (USTR) (for tariff changes in 2019). The tariff

changes are aggregated from the HS-10 to the HS-6 level by simple averaging. The

estimations of trade elasticities for Chinese exports are nonetheless conducted at

the HS-8 level of trade (with the HS-6 tariffs assigned to all HS-8 products in the

category). Because we work with monthly data and the tariff changes could be

implemented anytime within a month, we scale the tariff changes by the number of

days of the month they were in effect.

We obtained China’s trade data with monthly frequency for the period 2017:1–

2019:12 from the General Administration of Customs, China. The data on Chinese

imports and exports are available at the HS-8 digit level (which we refer to as prod-

ucts) by the source of imports and the destination of exports. Country-product pairs

are referred to as varieties. For each variety, the customs data report the quantities of

imports and exports, the value of imports at the CIF price, and the value of exports

at the FOB price. The import and export values are reported in current US$ values.

We classify sectors using the China Industry Classification system (GB/T 4754),

which is widely used for reporting official statistics on companies and organizations

throughout Mainland China. The sector-level data at the GB/T 2-digit level (denoted

GB/T-2) were obtained from China’s National Bureau of Statistics. These include
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the producer price index for industrial products (PPI); the sectoral output in monthly

frequency; and the input-output (IO) tables for 2017. For the analysis in the paper,

we classify a GB/T-2 sector as tradable if it is matched to at least one HS-6 code of

the trade classification.

For the general equilibrium analysis, we collected the annual employment and

wage data at the sector and province level from the China Labor Statistical Year-

book of 2017. It records the employment and total wages of urban units by sector

and province. These are available for 31 provinces and 94 GB/T-2 sectors (covering

services, agriculture, mining and manufacturing). All 39 sectors identified as trad-

able are covered individually in both the IO tables and the labor statistics dataset.

We aggregate the remaining sectors as a single non-tradable sector, reconciling the

IO tables and the labor statistics dataset. More details about the data are provided

in Appendix 2.6.

2.2.2 Timeline

Table 2.1 reports the list of tariff events enacted by the U.S. (Panel A) and China

(Panel B1 and B2) during the period 2018:1–2019:12 of the trade war. For each

tariff event, we identify the number of HS-8 products targeted and the quantum

(and percentages) of Chinese exports and imports (in million US$) affected by the

U.S. and Chinese tariff changes, respectively, based on 2017 pre-war trade flows.

We summarize the extent of tariff changes in each event by the simple average

of tariff rates (in percentage points) across targeted products before and after the

implementation. Figure 2.1 illustrates the timing and the tariff changes.1

Panel A of Table 2.1 reports the seven waves of U.S. statutory tariff increases

that affected Chinese exports during the period. This includes the first wave of tariff

increases in February 2018 applied to solar panel and washing machine imports,

and the second wave of tariffs, which targeted iron, aluminum, and steel products.

They were followed by three tranches of tariff hikes in 2018 and two tranches in

2019, targeting imports specifically from China. In total, these seven rounds of
1In estimations and welfare analysis, the tariff changes applicable to a month are scaled by the

number of days the changes were in effect in a month. Refer to the Data Appendix for additional
details. For illustration purposes only, in Table 2.1 and Figure 2.1, the implementation month is
taken to be the current month if the implementation date is before the 15th of the month and the next
month otherwise. The ‘before’ and ‘after’ simple monthly average tariff rates correspond to those in
the month before and the month after the implementation month.

56



tariff increase covered $325.1 billion (14.27%) of total Chinese exports across 6428

HS-8 products (using 2017 pre-war trade flows). The average U.S. statutory tariff

rate on these Chinese products increased from 3.55% to 28.53%.

Panel B1 of Table 2.1 lists the seven rounds of China’s retaliatory tariffs on

U.S. products. All told, 5833 distinct HS-8 products imported from the U.S. were

targeted. In 2017 trade values, these affected $109.3 billion (or 5.93%) of Chinese

imports. The average retaliation tariff rate increased from 6.46% to 21.27%. The

first wave of tariff increases by China against imports from the U.S. was enacted on

April 2, 2018. China increased the tariff (by 15%–25%) on U.S. products (worth

about $3 billion), including fruit, wine, seamless steel pipes, pork and recycled

aluminum, in response to the U.S. steel and aluminum tariffs. In July and August

2018, China implemented two rounds of retaliatory tariff increases (by 25%) on U.S.

products, including agricultural products, automobiles and aquatic products (List

1), and commodities such as coal, copper scrap, fuel, buses and medical equipment

(List 2), respectively. In September 2018, China continued to respond to U.S. tariffs

and enacted another round of tariff increases on about $60 billion worth of U.S.

goods (List 3). In January 2019, China revised its lists and exempted U.S. autos

(from an extra 25% tariff) and certain U.S. auto parts (from an extra 5% tariff). But

as the tariff war escalated, in June and September 2019, China further increased

tariffs on more than $68 billion worth of products imported from the U.S.

As China raised its tariffs against the U.S. products, it also unilaterally low-

ered its MFN tariff rates on imports from non-U.S. sources where MFN rates apply.

Panel B2 of Table 2.1 summarizes four waves of China’s MFN tariff cuts in May to

November 2018. Products affected included pharmaceuticals (May), autos and ITA

products (July), a subset of consumer goods (July) and industrial goods (Novem-

ber). In total, the lists covered 3054 products, with a pre-war trade value of $145.7

billion (or 7.90% of Chinese imports in 2017). The average tariff rate across these

products decreased from 9.89% to 6.82%.

Table 2.2 reports the summary statistics for the extent of exposure to the tariff

war by GB/T-2 codes. For Chinese imports, we report the number of targeted HS-

8 products and varieties, and the means and standard deviations of tariff increases

across targeted varieties within GB/T-2 codes. The Chinese sectors that received the
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most protection from tariff increases on U.S. products were agricultural products,

chemicals, fuel, metals and waste resources. In contrast, the sectors of food, textiles,

articles for cultural activities, and automobiles are shown to have been subject to

MFN tariff cuts to a larger extent. On the export side, the table indicates that Chinese

sectors that faced the largest tariff increases by the U.S. were metals, electrical

equipment, machinery and computer products.

2.3 Economic Structure

In this section, we set up the economic structure à la Fajgelbaum et al. (2020).

Sections 2.3.1–2.3.2 describe the demand/supply structure that guides the estima-

tion in Section 2.4. Section 2.3.3 describes the full general equilibrium system that

forms the basis of the welfare analysis in Section 2.5.

2.3.1 The Demand System and Preferences

Suppose there are S tradable sectors indexed by s. Within each of these sec-

tors, aggregate demand (from producers and consumers) follows a three-tier CES

structure: in the first tier, goods are differentiated by domestic and imported bun-

dles (denoted as Ds and Ms respectively) in each sector; in the second tier, they are

differentiated by products (indexed by g) within the domestic or imported bundle;

and in the third tier, by varieties (indexed by ig), differentiated by country of origin i

within each imported product category.

In particular, in the first tier, the demand from consumers for consumption (Cs)

and the demand from producers for intermediate inputs (Is) follow a CES structure:

Cs + Is =

(
A

1
κ

DsD
κ−1

κ
s +A

1
κ

MsM
κ−1

κ
s

) κ

κ−1

, (2.1)

with an elasticity of substitution κ between the domestic and imported bundles, and

sector-level demand shifters (ADs and AMs) for the domestic and imported bundles,

respectively. This implies a sector-level price index: Ps =
(
ADsP1−κ

Ds +AMsP1−κ

Ms
) 1

1−κ ,

given the price indices of domestic and imported bundles (PDs and PMs) in sector s.

In the second tier, the domestic or imported bundle (Ds or Ms) is each a CES

aggregate of products within the sector (dg,mg), with an elasticity of substitution η
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and demand shifter (aDg and aMg, respectively) for g∈ Gs. This implies correspond-

ing price indices (PDs,PMs), which are CES aggregates of, respectively, the prices of

domestic and imported products (pDg and pMg) for g ∈ Gs.

Finally, in the third tier, each imported product (mg) is further a CES aggregate

of varieties (mig) differentiated by country of origin i, with an elasticity of substitu-

tion σ and demand shifter aig:

mg =

(
∑

i∈Ig

a
1
σ

igm
σ−1

σ

ig

) σ

σ−1

, (2.2)

and a corresponding price index: pMg =
(

∑i aig p1−σ

ig

) 1
1−σ , given the variety price

pig. The above demand system implies that the values of demand for domestic

goods and imported goods in sector s are:

PDsDs = EsADs

(
PDs

Ps

)1−κ

, (2.3)

PMsMs = EsAMs

(
PMs

Ps

)1−κ

, (2.4)

where Es is the aggregate expenditure on goods of sector s. In turn, the value of

imports for product g in sector s is:

pMgmg = PMsMsaMg

(
pMg

PMs

)1−η

, (2.5)

and the quantity imported of product g’s variety from country i is:

mig = mgaig

(
pig

pMg

)−σ

. (2.6)

Given the ad valorem tariff rate τig imposed on a variety and the variety’s CIF price

p∗ig before tariff, the consumer price of the variety is:

pig = (1+ τig) p∗ig. (2.7)

In the general equilibrium, to study the regional effects of tariffs, we divide

China into R regions (effectively provinces). Each region is indexed by r and the

set of regions is denoted by R. There is one non-tradable sector in addition to the

set of tradable sectors described above. Tradable sectors are freely traded within

China but subject to trade costs internationally. The representative consumer in

each region r is assumed to have a Cobb-Douglas preference for the non-tradable
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and tradable goods:

βNT lnCNT,r + ∑
s∈S

βs lnCsr, (2.8)

where CNT,r is the consumption of the homogeneous non-tradable good, Csr is the

consumption of the tradable goods of sector s, and the β ’s sum to one. Consumers

in a region r face the price of the non-tradable good PNT,r and the price index Ps for

each sector s.

2.3.2 The Foreign Counterpart

For each trading partner, its export supply to China and its import demand for

Chinese product at the variety level are specified as follows to fully characterize the

international markets. For a product from country i, China faces an inverse foreign

export-supply curve according to:

p∗ig = z∗igmω∗
ig , (2.9)

where z∗ig is a foreign export supply shifter, and ω∗ is the inverse foreign export

supply elasticity. The larger ω∗ is, the more China can extract a decrease in the

supply price from the exporter and hence a larger potential gain from imposing

import tariffs.

The foreign import demand for the variety from China of product g is assumed

to be similar to China’s import variety demand:

xig = a∗ig
((

1+ τ
∗
ig
)

pX
ig
)−σ∗

, (2.10)

where xig is country i’s demand for product g from China, a∗ig is a foreign import

demand shifter, τ∗ig is the ad valorem tariff set by country i on China’s exports of

product g, pX
ig is China’s export supply price of product g to market i, and σ∗ is the

corresponding foreign import demand elasticity.

2.3.3 The Supply-Side Structure

Production of tradable goods in each sector-region uses workers, intermediate

inputs, and a fixed factor (capital and structures). In the short run, the primary

factors of production (capital and labor) are assumed to be immobile across regions
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and sectors.2 In particular, the production of tradable goods in a sector-region is

assumed to be:

Qsr = Zsr

(
Isr

αIs

)αIs
(

Lsr

αLs

)αLs

, (2.11)

where Zsr is the productivity of sector s in region r, Isr is the use of intermediate in-

put bundle, Lsr is the labor input, and αIs and αLs are the cost shares of intermediate

goods and labor in total sales of sector s, respectively.

The intermediate input bundle used by sector s is assumed to be a Cobb-Douglas

aggregate of inputs from other sectors, with αs′
s representing the share of input s′

in total sales of sector s. This implies that the cost of the intermediate input bundle

used by sector s is:

φs ∝ ∏
s′∈S

P
αs′

s
αIs

s′ . (2.12)

The owners of the fixed factor choose inputs Isr and Lsr to minimize the cost of

production, given the cost of the intermediate input bundle φs; the wage rate wsr in

sector s and region r; and the production target Qsr. Given the producer price ps in

sector s, the fixed factor owners then choose the production level Qsr that maximizes

their profit:

Πsr ≡ max
Qsr

psQsr−φsIsr(Qsr)−wsrLsr(Qsr)

= max
Qsr

psQsr− (1−αKs)

(
φ

αIs
s wαLs

sr

Zsr
Qsr

) 1
1−αKs

, (2.13)

where αKs ≡ 1−αIs−αLs is the share of capital cost in total sales of sector s. This

implies an optimal output choice as a function of output and factor prices:

Qsr = Z
1

αKs
sr p

1−αKs
αKs

s φ
− αIs

αKs
s w

− αLs
αKs

sr , (2.14)

and the national production in sector s as:

Qs = ∑
r∈R

Qsr. (2.15)

The non-tradable sector is assumed to use only labor for production: QNT
r =ZNT

r LNT
r ,

where ZNT
r is the labor productivity of region r in the non-tradable sector, and LNT

r

is the employment in this sector in region r.

2Nonetheless, in deriving the system (in log changes), Appendix 2.6 also considers the scenario
of labor mobility across sectors.
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Output by sector Qs is assumed to be allocated across products qg at a constant

marginal rate of transformation according to:

∑
g∈Gs

qg

zg
= Qs, (2.16)

where zg is a product-level productivity shock. Assuming perfect competition, this

pins down the local price of the domestic variety of product g at pDg =
ps
zg

. The price

of the same variety when shipped to a foreign country i is pX
ig = δig pDg, given the

iceberg trade cost factor δig. The market-clearing condition for the local variety of

product g requires that:

qg = (aDgDs)

(
pDg

PDs

)−η

︸ ︷︷ ︸
dg

+ ∑
i∈I X

g

δig a∗ig
((

1+ τ
∗
ig
)

pX
ig
)−σ∗︸ ︷︷ ︸

xig

. (2.17)

Labor income and profits are assumed to be spent where they are generated.

Total tariff revenue R and national trade deficit D are assumed to be distributed

to each region in proportion to the population share br of the region. Thus, by

accounting identity, final expenditures in region r are:

Xr = wNT,rLNT,r + ∑
s∈S

wsrLsr + ∑
s∈S

Πsr +br (D+R)

= PNT,rQNT,r + ∑
s∈S

(1−αIs) psQsr +br (D+R) . (2.18)

Finally, the optimal output choice Qsr in (2.14) implies an (inverse) labor de-

mand function in sector s of region r:

wsr =

(
Zsr ps

(Lsr/αLs)αKsφ
αIs
s

) 1
1−αIs

, (2.19)

and an average wage for the tradable sectors in region r of:

wT
r =

∑s∈S wsrLsr

∑s∈S Lsr
. (2.20)

The wage in the non-tradable sector is then pinned down by the market-clearing

condition:

wNT
r =

βNT Xr

LNT
r

. (2.21)

A general equilibrium given tariffs consists of producer prices {ps}, import

prices {p∗ig}, price indices {pMg,PMs,PDs,Ps,φs}, tradable sector wages {wsr} and

non-tradable sector wages {wNT
r } such that (i) given these prices, consumers, pro-

ducers and workers optimize their choices; (ii) domestic markets for final goods
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and intermediate inputs clear, international markets for imports and exports of ev-

ery variety clear, and labor markets for every sector and region clear; and (iii) the

government budget is balanced.

2.4 Identification and Estimation

In this section, we estimate the 3-tier demand system using the variation of

import tariffs associated with the trade war as the instrument, and conduct pre-trend

tests to support the validity of the instrument in Section 2.4.5.

2.4.1 Chinese import demand and foreign export supply elasticities at variety
level (σ , ω∗)

We use variation in the Chinese import tariffs as the instrument to estimate the

Chinese import demand and foreign export supply elasticities at the variety level,

in the same spirit as the work of Fajgelbaum et al. (2020) for the U.S. economy

using the U.S. import tariffs. The approach is based on the argument (cf. Zoutman,

Gavrilova and Hopland 2018) that if the tariff variations are uncorrelated with the

unobserved import demand and export supply shocks, given the price received by

foreign suppliers, an increase in tariff shifts the import demand curve downward

and helps trace the foreign export supply curve. Similarly, given the price paid by

buyers of imports, a tariff increase shifts the foreign export supply curve upward,

which helps identify the import demand curve. Thus, one can identify the demand

and supply elasticities simultaneously with the variation in tariffs as an instrument.

To increase the validity of the instrument, we exclude Chinese tariff changes

that were due to free-trade agreements or due to regular adjustments (e.g., twice

yearly MFN tariff revisions). Accordingly, we use only the changes in Chinese

import tariffs against the U.S. products (and decreases in MFN tariffs against non-

U.S. products) that were announced in association with the U.S.-China trade war

during 2018:1–2019:12, as the variations in the instrument. Specifically, by adding

a time subscript (t) and taking the log-difference in import demand equation (2.6)

and foreign export supply equation (2.9), we may write their estimable equations
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as:

∆ lnmigt = ψ
m
ig +ψ

m
st −σ∆ ln pigt + ε

m
igt , (2.22)

∆ ln p∗igt = ψ
p∗
ig +ψ

p∗
st +ω

∗
∆ lnmigt + ε

p∗
igt , (2.23)

where ϖ = {p∗,m}, and ψϖ
ig and ψϖ

st are variety and sector-time fixed effects, εm
igt

and ε
p∗
igt are the respective import demand and export supply residuals, collecting

shocks to import demand ∆ lnaigt and export supply ∆ lnz∗igt , respectively, and other

unobservables not controlled for by the fixed effects. Note that in contrast to the

U.S., which slapped tariffs against multiple trading partners in selected sectors and

also against China in multiple products, China’s tariff changes were mainly targeted

at the U.S. or uniformly at non-U.S. MFN sources of imports of selected products.

This implies limited variations in Chinese tariffs across sources of imports by prod-

uct. Thus, we have modified the set of fixed effects (FE) controls used in Fajgel-

baum et al. (2020). In particular, we drop the product-time (gt) FE—as there are

limited variations left across i within gt in the case of Chinese import tariffs—and

replace the remaining set of FEs (is, it) with (ig, st). Thus, we rely on within-variety

time variations in tariffs as the source of identification, and use sector-time FEs to

control for systematic bias in the sectoral pattern of Chinese trade policies or trade

flows across time.

Following the identification strategy described above, we estimate the import

demand elasticity σ and the foreign (inverse) export supply elasticity ω∗ by in-

strumenting changes in the duty-inclusive price ∆ ln pigt and in the import quantity

∆ lnmigt with variations in the tariff ∆ ln(1+ τigt) in equations (2.22) and (2.23),

respectively. The estimation results are reported in Table 2.3. Columns (1) to (4)

report the reduced-form regressions of different trade outcomes (before-duty im-

port value, import quantity, before-duty unit value and duty-inclusive unit value)

on the tariff changes ∆ ln(1+ τigt) due to the trade war. Column (5) reports the IV

regression estimation of foreign (inverse) export supply elasticity ω̂∗ based on equa-

tion (2.23), with its first-stage estimation in Column (2). Column (6) reports the IV

regression estimation of import demand elasticity σ̂ based on equation (2.22), with

its first-stage estimation in Column (4).

Columns (1) and (2) show that the import value (before-duty) and quantity re-
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spond to tariff changes negatively in very similar magnitudes. The result in Column

(3) further indicates that the before-duty unit values do not respond to tariff changes,

suggesting a complete pass-through of tariffs to duty-inclusive prices. This is con-

sistent with the result in Column (4), where the duty-inclusive unit value responds

to tariffs with elasticity close to one.3

The IV estimate of ω∗ in Column (5) is statistically insignificant and numer-

ically negligible. This implies that we cannot reject a horizontal foreign export

supply curve, consistent with the finding of a complete pass-through of tariffs in the

reduced-form regressions. Column (6) reports the IV estimation of import demand

elasticity σ . It is statistically significant at σ̂ = 1.120 (std. err. = 0.3158). Given

these two elasticity estimates, we can calculate the partial (direct) impact on the

import value of the targeted varieties. The results are summarized in Table A.1.

Specifically, if we consider China’s retaliatory tariffs against the U.S. products, the

weighted average change in import value of the targeted U.S. products would be:

∆ ln
(

p∗igmig

)wa
≡ ∑

ig
−σ̂

1+ ω̂∗

1+ ω̂∗σ̂
∆ ln(1+ τig) ·

(
p∗igmig

)
/∑

ig

(
p∗igmig

)
≡ −σ̂

1+ ω̂∗

1+ ω̂∗σ̂︸ ︷︷ ︸
−1.121

∆ ln(1+ τig)
wa︸ ︷︷ ︸

11.72%

=−13.14%,

where the response ratio −σ̂
1+ω̂∗

1+ω̂∗σ̂ is implied by the variety-level import demand

and export supply equations (2.22) and (2.23). The calculations use the elasticity

estimates reported in Table 2.3, the pre-war duty-exclusive trade value of 2017 (as

weights) and the latest revised tariff change for each variety observed during the

period 2018:1–2019:12 (as the shock). Similar calculations suggest that the Chinese

MFN tariff cuts (−3.10% on average across targeted varieties) associated with the

tariff war imply a positive direct impact on import values of 3.48%. Together, these

imply a combined impact of−3.64% on Chinese import value in partial equilibrium,

based on the relative import values of China from the U.S. and from the non-U.S.

MFN sources in 2017. The MFN tariff cuts thus helped cushion the drop in Chinese

imports substantially.

3Since we measure the duty-inclusive price as the product of duty-exclusive price and the tariff
factor: pigt ≡ p∗igt(1+τigt), the estimate in Column (4), by construction, equals one plus the estimate
in Column (3), subject to sample attrition across the two estimations.
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2.4.2 Demand elasticity across products (η)

To estimate the demand elasticity η across products, we add the time subscript

and take the log-difference over time of equation (2.5) such that:

∆ lnsMgt = ψst +(1−η)∆ ln pMgt + εMgt , (2.24)

where sMgt ≡
pMgtmgt
PMstMst

denotes the import share of product g in sector s; ψst is a

sector-time fixed-effect term that helps control for the effect of sector-level import

price index−(1−η)∆ lnPMst , among other time-variant sector-level unobservables;

and the residual term εMgt absorbs the product-level import demand shock ∆ lnaMgt

and remaining unobservables.

Note that the import share of each product sMgt is observed in the data. The

product-level import price index is constructed by aggregating the variety-level

prices, and taking into account entry and exit of varieties, as in Feenstra (1994):

∆ ln pMgt =
1

1−σ
ln

(
∑

i∈Cgt

sigt e(1−σ)∆ ln(p∗igt(1+τigt))+∆ lnaigt

)
− 1

1−σ
ln
(

Sg,t (Cgt)

Sg,t−1 (Cgt)

)
,

(2.25)

where Cgt is the set of continuing imported varieties of product g between periods

t − 1 and t, sigt ≡
pigtmigt

∑i′∈Cgt pi′gtmi′gt
is the share of continuing imported varieties that

originate from country i in period t, and Sg,t(C ) ≡ ∑i′∈C pi′gtmi′gt
∑i′∈Igt pi′gtmi′gt

is the share of all

imported varieties Igt of good g at time t accounted for by the varieties in set C .

The first term in equation (2.25) corresponds to the conventional price index for the

set Cgt of continuing imported varieties. The second term adjusts the price index

for the effect of entry and exit of varieties.4 In the construction of the product-level

price index, we use the estimated σ and the corresponding residuals (which reflect

mean-zero demand shocks ∆ lnaigt) of equation (2.22) from Section 2.4.1.

Applying the same logic as in the estimation of variety-level elasticities σ and

ω∗, we use product-level tariff changes as the instrument for ∆ ln pMgt . We construct

the IV by the simple average (instead of import-value weighted average) of the tariff

4Equation (2.25) can be derived from the product-level import price index pMg =(
∑i aig p1−σ

ig

) 1
1−σ

and the variety demand equation (2.6).
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changes across the continuing imported varieties:5

∆ lnZMgt ≡ ln

(
1

Nc
gt

∑
i∈Cgt

e∆ ln(1+τigt)

)
, (2.26)

where Nc
gt is the number of continuing imported varieties of product g between t−1

and t.

Table 2.4 reports the estimation results of equation (2.24). Column (1) shows

the impact of the instrument on the product-level trade share: higher product-level

tariffs lower the import share of the targeted products. This implies that diversion

to non-U.S. varieties is less than sufficient to offset the decrease in imports from the

U.S. within the same product category. Column (2) provides the first-stage result

of the IV regression of (2.24): the sign of the coefficient is positive as expected,

since the product-level import price index is aggregated from duty-inclusive variety

prices. Column (3) reports the IV estimate of the coefficient of the product-level

import demand equation (2.24), which implies an elasticity estimate of η̂ = 1.087.

The bootstrapped confidence interval for η , which accounts for the variance of σ̂

and the demand shocks from the previous step in Section 2.4.1, is [1.041,1.131].

2.4.3 Demand elasticity across domestic and imported bundles (κ)

We further estimate the top-tier elasticity of substitution, κ , between the domes-

tic and imported bundles within a sector. Taking the ratio of the expenditures on the

imported bundle (2.4) and the domestic bundle (2.3), we have:

∆ ln
(

PMstMst

PDstDst

)
= ψs +ψt +(1−κ)∆ ln

(
PMst

PDst

)
+ εst , (2.27)

where ψs and ψt are sector and time fixed effects, used to help control for unob-

servables across sectors and time, respectively; while the residual εst absorbs the re-

maining relative demand shocks to imported and domestic bundles ∆ ln(AMst/ADst).

The monthly change in the expenditures on domestic goods of sector s, ∆ lnPDstDst ,

is not observable in the data. We use the difference between the changes in the

sectoral production and exports as its proxy. The change in domestic sectoral price

index, ∆ lnPDst , is measured by the change in producer price index (PPI), ∆ ln pst ,

as implied by the theoretical setup. The change in the sectoral import price index,

5As argued by Fajgelbaum et al. (2020), this avoids mechanical correlation of the instrument with
the product-level trade share.
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∆ lnPMst , is constructed from product-level import prices, ∆ ln pMgt , in a similar

manner as in equation (2.25):

∆ lnPMst =
1

1−η
ln

(
∑

g∈Cst

sgt e(1−η)∆ ln pMgt+∆ ln(aMgt)

)
− 1

1−η
ln
(

Ss,t (Cst)

Ss,t−1 (Cst)

)
,

(2.28)

where Cst is the set of continuing imported products in sector s between periods t−1

and t, sgt is product g’s share in the set of continuing imported products of sector s,

and Ss,t(C ) is the share of total import value of sector s at time t accounted for by

products in set C .6 The required inputs, η and ∆ lnaMgt , in (2.28) are based on their

counterparts from the product-level estimation of equation (2.24) in Section 2.4.2.

The change in relative price of imports ∆ ln PMst
PDst

is similarly instrumented by the

simple average of tariff changes across the continuing imported products in sector

s:

∆ lnZMst ≡ ln

(
1

Nc
st

∑
g∈Cst

e∆ lnZMgt

)
, (2.29)

where Nc
st is the number of continuing imported products in sector s between t− 1

and t, and ∆ lnZMgt is the instrument defined in (2.26).

The estimation results are summarized in Table 2.5. Column (1) reports the

estimated impact of the average sector-level import tariff changes on the sectoral

relative import expenditures. Columns (2) and (3) report the first and second stages

of the IV estimation of (2.27), respectively. The estimated coefficients of the two

reduced-form specifications in Columns (1) and (2) have the expected signs, but

are imprecisely estimated. The IV estimate in Column (3) implies a statistically

significant κ̂ = 1.173. The bootstrapped confidence interval for κ̂ , which takes into

account the errors in the estimates {σ̂ , η̂} and the demand shocks from the previous

stages, is [0.541,1.385].

2.4.4 Foreign import demand and Chinese export supply elasticities at variety
level (σ∗, ω)

The foreign import demand and Chinese export supply structures at the vari-

ety level are estimated based on the same concept as in Section 2.4.1. Taking log

6That is, sgt ≡
pMgt mgt

∑g′∈Cst
pMg′t mg′t

, and Ss,t(C ) ≡ ∑g′∈C pMg′t mg′t
∑g′∈Gst

pMg′t mg′t
, where Gst is the set of all products

available in sector s at time t.
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changes of the foreign import demand equation (2.10) across time, we have:

∆ lnxigt = ψ
x
ig +ψ

x
st−σ

∗
∆ ln

((
1+ τ

∗
igt
)

pX
igt
)
+ ε

x
igt , (2.30)

where we used ψx
ig and ψx

st to control for potentially unobserved product-destination

and sector-time FEs; while the residual εx
igt absorbs remaining shifts in the foreign

demand for Chinese products ∆ lna∗igt . Assume that the export supply of China has

a symmetric structure with the foreign export supply, that is, pX
ig = zigxω

ig, where

ω is the inverse export supply elasticity of China and zig is the product-destination

export supply shifter. This implies an estimable equation:

∆ ln pX
igt = ψ

pX

ig +ψ
pX

st +ω∆ lnxigt + ε
pX

igt , (2.31)

where we have included the same set of FE controls as in (2.30); with the residual

ε
pX

igt capturing remaining variations in the Chinese export supply shifters ∆ lnzigt ,

after controlling for the fixed effects. By analogous arguments as in Section 2.4.1,

we use the variation in foreign tariffs due to the trade war as the instrument for the

independent variables in equations (2.30)–(2.31) to identify σ∗ and ω . For this set

of estimations, we use only observations with ig corresponding to the U.S. desti-

nation, because the U.S. is the only trading partner that raised tariffs against China

in this trade war episode. This also limits the set of FEs we can include (product-

destination FEs reduced to product FEs) in this case, compared with Fajgelbaum

et al. (2020) for the U.S. economy.

Table 2.6 reports the estimation results. The pattern of these estimates is quite

similar to those of σ and ω∗ in Table 2.3: Columns (1) and (2) show that the export

value and quantity fell with tariff increases implemented by the U.S., and Columns

(3) and (4) imply that Chinese exporters did not change their supply price; the inci-

dence of the U.S. tariff increases was largely borne by the U.S. buyers of imports.

Column (5) reports the IV estimation of equation (2.31) with its first stage in Col-

umn (2). The estimate (ω̂ =−0.055) is statistically insignificant, consistent with the

reduced-form result that the U.S. faced a horizontal Chinese export supply curve.

Column (6) reports the IV estimation of equation (2.30) with its first stage in Col-

umn (4). The result implies that σ̂∗ = 1.012 (std. err. = 0.1786), with a bootstrapped

confidence interval of [0.161,1.302].

Given the elasticity estimates, we can calculate the partial (direct) impact on the
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Chinese export value of targeted products in similar ways as for Chinese imports.

In particular, the weighted average change in Chinese export values across targeted

products is:

∆ ln
(

pX
igxig

)wa
≡ ∑

ig
−σ̂
∗ 1+ ω̂

1+ ω̂σ̂∗
∆ ln

(
1+ τ

∗
ig
)
·
(

pX
igxig

)
/∑

ig

(
pX

igxig
)

≡ −σ̂
∗ 1+ ω̂

1+ ω̂σ̂∗︸ ︷︷ ︸
−1.0127

∆ ln
(

1+ τ∗ig

)wa

︸ ︷︷ ︸
24.18%

=−24.48%,

where the response ratio −σ̂∗ 1+ω̂

1+ω̂σ̂∗ is implied by the foreign import demand and

Chinese export supply equations (2.30) and (2.31). The calculations use the elastic-

ity estimates reported in Table 2.6, the pre-war duty-exclusive trade value of 2017

(as weights), and the latest revised tariff change for each variety observed during the

period 2018:1–2019:12 (as the shock). The results are summarized in Table A.1.

2.4.5 Pre-trend test

The identification of the import demand and export supply elasticities using tar-

iff changes as the instrument requires the tariff variation to be uncorrelated with

the demand and supply shocks. In this section, we conduct pre-trend tests to verify

the potential validity of this approach. We show that the tariff changes associated

with the trade war (the 18 events listed in Table 2.1) are not systematically corre-

lated with the pre-war trends of the import and export outcomes in terms of values,

quantities, before-duty prices and duty-inclusive prices.

Specifically, we compute the average monthly change of these outcome vari-

ables during 2017:1–2017:12, and regress them against the latest revised tariff change

for each variety during the period of 2018:1–2019:12:

∆ lnyig,2017 = FE +β∆ ln(1+ τig)+ εig. (2.32)

The test is conducted for each of the three sets of events—China’s retaliatory tariff

changes against the U.S., China’s tariff cuts on non-U.S. MFN sources of imports,

and the U.S. tariff increases against Chinese products. We include suitable sets of

fixed effects that are in line with the specifications used for the elasticity estimations

in Sections 2.4.1 and 2.4.4, but obviously have to drop the time dimension (st to s),

and also FEs with the country dimension (i) when the set of tariff events is targeted
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at the U.S. or China alone. The results are summarized in Table 2.7.

Panel A1 shows the pre-trend test where we consider China’s retaliatory tariff

increase against U.S. products. Since all targeted varieties are U.S. products, there

are no variations across origins in this case (ig being equivalent to g); thus, only

fixed effects along the sector (s) dimension are controlled for. The results indicate

that all pre-war Chinese import outcome variables (with respect to the U.S. as the

source of imports) are not systematically correlated with the subsequent tariff in-

crease China imposed against the U.S. products. Panel A2 reports the pre-trend

test for China’s tariff changes against non-U.S. sources of imports during the trade

war. Note that MFN tariff cuts do not apply to all non-U.S. sources of imports (e.g.,

they are not applicable to FTA trading partners of China). With the extra variations

in trade flows and tariffs across trading partners, we control for country-sector (is)

and product (g) fixed effects in this case. We do not observe statistically significant

correlations between pre-war Chinese imports from non-U.S. sources and China’s

subsequent MFN tariff cuts during the trade war. Finally, in Panel B, we conduct

the pre-trend test for the U.S. tariff increase against Chinese products. For the same

reason as in Panel A1, we include only sector (s) fixed effects. The estimated co-

efficients are insignificant statistically, suggesting that the pre-war export trends of

Chinese products are not systematically correlated with subsequent increases in the

U.S. tariff against China during the trade war.

2.4.6 Dynamic Specification Tests

In this section, we examine whether there exist anticipatory and delayed re-

sponses to changes in tariffs during the trade war. This would imply potential

downward bias in the elasticity estimates using regressions based on contempo-

raneous variations in tariffs and trade. To this end, we allow for leads and lags in

variety-level reduced-form regressions, controlling for the same set of FEs as in the

main estimations:

∆ lnyigt = ψig +ψst +
m=`

∑
m=−L

β
y
m[ln(1+ τig,t−m)− ln(1+ τig,t−m−1)]+ εigt , (2.33)

where L indicates the maximum leads and ` the maximum lags (in months) in the

response of trade outcome ∆ lnyigt to the tariff changes. In the following exercise,
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we set `= L = 6.

Figure 2.2(A) reports the cumulative estimated coefficients from regression of

(2.33) for before-duty import values, quantities, before-duty unit values, and duty-

inclusive unit values of Chinese imports at the variety level. There are no significant

anticipatory effects in the duty-inclusive unit value and the import quantity, the two

key variations used in estimations of σ in (2.22) and ω∗ in (2.23), respectively.

There also exist no significant delayed effects in the duty-inclusive unit value, as

its cumulative effects after the tariff changes remain steady and quantitatively very

similar to the contemporaneous effect. This supports the potential validity of the

import demand elasticity estimate (σ̂ ). Similarly, there exist no quantitatively large

delayed effects in the import quantity. Third, the before-duty price does not de-

cline before or after the tariff changes statistically, supporting the conclusion of a

complete pass-through at the variety level.

Figure 2.2(B) reports the results for Chinese exports (with respect to the U.S.

market, and the U.S. tariffs against Chinese products). The patterns are similar to

those for imports overall. We find no evidence of tariff anticipatory/delayed effects

on Chinese export quantities, the key variation used in the estimation of export sup-

ply elasticity ω in (2.31). The cumulative responses in the Chinese export quantity

mostly reflect its contemporaneous response in the month of tariff changes. On the

other hand, there appear to be some irregular anticipatory effects in the before-duty

unit value five months before tariff changes; however, instead of declining as the-

ory would suggest, it increases. Overall, there are no significant adjustments in the

before-duty unit value over the 12-month horizon. The duty-inclusive unit value,

by construct, is equivalent to the before-duty unit value before the month of tariff

changes and hence is subject to the same caveat discussed above. Other than that,

its cumulative responses upon tariff changes are similar to the contemporaneous im-

pact (in the month of tariff changes) and hence exhibit no delayed effects. Overall,

the pattern in the response of the duty-inclusive unit value does not invalidate the

use of contemporaneous variations in tariffs and duty-inclusive unit values for the

estimation of foreign demand elasticity σ∗ in (2.30). In view of the caveat observed

above, one may choose to adopt a more cautious approach and use the counterpart

estimate (2.53) of the U.S. import demand elasticity from the U.S. perspective re-
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ported in Fajgelbaum et al. (2020), in place of our estimate (1.012) of the foreign

import demand elasticity from the Chinese perspective. This would imply even

larger negative welfare effects on Chinese producers of exports (given larger de-

clines in export quantities, and as a result, larger downward adjustment in producer

prices in general equilibrium). Thus, we can consider the welfare effects we report

below in Section 2.5 (based on our estimate) as plausibly conservative figures.

2.5 Welfare Analysis

We now present the general-equilibrium impacts of the trade war on the Chi-

nese economy. Given the tariff shocks, the changes in the endogenous variables

are imputed based on first-order approximations of the economic structure set up

in Section 2.3 around the pre-war equilibrium in 2017. This choice of first-order

approximations (instead of exact hat algebras) is largely driven by the high dimen-

sionality of the current setup (as detailed below).

Specifically, denote x̂≡ d lnx. The system can be written in terms of the change

in each endogenous variable {ŵsr, ŵT
r , ŵ

NT
r , L̂T

r , p̂s, φ̂s, P̂s, P̂Ms, p̂Mg, p̂ig, R̂, Ês, X̂ ,Ŷ , P̂sIs, p̂sQs, X̂r},

given shocks to Chinese and foreign tariffs, {dτig,dτ∗ig}, as a result of first-order

approximations. The characterization of the system of equations is provided in Ap-

pendix 2.6. The numerical implementation is carried out by solving the linear sys-

tem (A.1)–(A.4), (A.7)–(A.11), (A.14), (A.18)–(A.23), and (A.24) in the reduced

form of x̂ = A−1y, where x̂ is a column vector consisting of changes in the endoge-

nous variables, y is a column vector with functions of the given tariff shocks, and

A collects the parameters of the economic structure. These include: i) demand-side

Cobb-Douglas allocation shares (βs,βNT ) for 39 tradable sectors and 1 non-tradable

sector, and CES demand elasticities (σ , η , κ) across varieties, products and do-

mestic/imported bundles; ii) supply-side Cobb-Douglas input shares (αLs,αIs,α
s′
s )

of labor and intermediates; iii) distributions of sales and employment across sectors

and 31 provinces; iv) imports and exports across varieties from and to 119 trading

partners; and v) variety-level foreign demand (σ∗) and supply (ω∗) elasticities.

We use the 2017 Chinese input-output (IO) tables, China Labor Statistical Year-

book of 2017, and the Chinese customs data for 2017, as documented in Appendix 2.6,

to parameterize the allocation shares. For the elasticities, we adopt their estimates
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from Section 2.4, and set them to zero for statistically insignificant estimates (i.e.,

ω∗ = 0). The shocks to the Chinese and U.S. tariffs, {dτig,dτ∗ig}, are measured by

the latest revised tariff change for each variety observed during the period 2018:1–

2019:12. As a result, we match the model to 2017 data on Chinese economic ac-

tivities for 31 provinces, 39 tradable sectors (at the level of GB/T-2 digit codes), 1

non-tradable sector, 119 trading partners, 5,362 imported HS-8 products, 122,482

imported varieties (unique product-country-origins), 5,432 exported products, and

374,213 unique product-export-destinations.7 In sum, the vector x̂ includes 663,248

endogenous variables, where 656,166 of them correspond to the variety prices p̂ig.8

Further details about the implementation are provided in Appendix 2.6.

2.5.1 Aggregate Effects

Given the tariff shocks to the pre-war equilibrium in 2017, and the changes in

the endogenous variables calculated from the system described above, the welfare

impact for each primary factor (capital and labor) can be measured as the change in

income at initial prices (before the tariff war) that would have left that factor indif-

ferent to the changes in tariffs that took place. Adding up the equivalent variations

across all primary factors (capital and labor in each province) gives the aggregate

equivalent variation EV , or change in aggregate real income. This term can be

rewritten as the change in income due to the cost difference in attaining the initial

utility level given the price changes (following Dixit and Norman 1980):

EV = ∑
s

∑
g∈Gs

∑
i∈Ig

xig∆pX
ig︸ ︷︷ ︸

EV X

−∑
s

∑
g∈Gs

∑
i∈Ig

mig∆pig︸ ︷︷ ︸
EV M

+∆R, (2.34)

where EV X is the increase in the value of the pre-war export basket, EV M is the drop

in income due to increase in the duty-inclusive cost of the pre-war import basket,

and ∆R is the change in tariff revenue.

Table 2.8 reports the decomposition by EV X , EV M, and tariff revenue (∆R) in

Columns (1)–(3) and the aggregate impacts in Column (4). The top panel reports

the effects from the 2018–2019 trade war. The bottom two panels study two alter-

7The count is based on observations with positive trade value before the trade war.
8The count is based on a balanced panel of country-by-product, considering all the trading part-

ners and products observed before and after the war in imports (and exports, respectively).
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native hypothetical scenarios, where China retaliated against the U.S. but did not

implement MFN tariff cuts, and where China did not retaliate against the U.S. or

implement MFN tariff cuts. Each panel reports the monetary equivalent on an an-

nual basis at 2017 prices in billions of US dollars, and the numbers relative to 2017

GDP of China.

The first column shows a decrease of EV X of $32.968 billion (0.272% of China’s

GDP) due to the trade war. This aggregate number equals a model-implied 2.510%

decrease in the export price index times a 10.821% observed share of exports of

agricultural and industrial sectors in GDP. This implies that the diversion of demand

away from China’s products (due to higher U.S. tariffs against China and due to

China’s lower MFN tariffs on non-U.S. sources of imports) dominates potential

reallocation toward Chinese products (in response to China’s higher tariffs against

U.S. products). The drop in the export price indices and the decrease of EV X would

have been less, at $29.899 billion (0.246% of GDP) if China had not lowered its

MFN tariffs on non-U.S. sources of imports during the trade war. On the other hand,

the decrease in the export price index would have been more severe if China had not

retaliated against the U.S. (and had not changed its MFN tariffs accordingly). This

scenario corresponds to a decrease of EV X of $37.254 billion (0.307% of GDP).

The next column shows that Chinese buyers of imports sustained an aggregate

loss of $6.906 billion (0.057% of GDP) because of the trade war. The loss would

have been larger at $11.002 billion (0.091% of GDP) if the Chinese government had

not lowered MFN tariffs on non-U.S. sources of imports when it increased tariffs

against U.S. products. The loss of buyers of imports, on the other hand, would have

been negligible and statistically insignificant at $0.000 billion (0.000% of GDP) if

China had not counter-responded to the U.S. tariff hike. This is consistent with a

horizontal foreign supply elasticity ω∗, so import price changes that consumers face

reflect mainly import tariff changes, which in the last scenario are nil.

The final component of the decomposition implies an increase in tariff revenue

of $1.976 billion (0.016% of GDP). The tariff revenue increase would have approx-

imately tripled at $5.728 (0.047% of GDP)—with the increase in tariffs against the

U.S.—if China had not also lowered MFN tariffs. In the third scenario, without

counter-retaliation by China, the tariff revenue is shown to decrease, reflecting a
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decrease in import volume due to general equilibrium effects of U.S. tariffs on the

Chinese economy.

In sum, these numbers imply large negative consequences of the trade war on

both Chinese producers and consumers, dominating the positive tariff revenue in-

crease. The loss of the producers (exporters) is more than four times the loss of

the buyers of imports. Column (4) suggests an aggregate loss of $37.898 billion, or

0.312% of China’s GDP, as a result of the trade war. Without the counter-retaliation,

the loss would have been much larger, at $38.921 billion (0.321% of GDP), and

mostly borne by producers (exporters). The retaliation against the U.S. imports

shifted the burden to the Chinese buyers of imports (as seen in the transition from

the third to the second scenario). With further adjustment in the MFN tariff rates

on non-U.S. sources of imports, this lessened the loss of Chinese buyers of imports

and shifted part of the burden back to the producers. Overall, the aggregate loss in

EV is significant statistically, except in the second scenario.

2.5.2 Regional Effects

We now report the distributional impacts of the trade war across Chinese provinces,

from workers’ versus all primary factors’ perspectives. Chinese import tariffs could

negatively affect primary factor owners as consumers of imports. They could also

lower the nominal return to primary factors, as the costs of intermediate inputs

increase with the import tariffs. The costs of intermediate inputs could increase

more in provinces whose production is more concentrated in sectors that use pro-

portionally more inputs targeted by Chinese tariff increases. Simultaneously, the

nominal return to primary factors could be negatively affected to larger extents in

regions whose production is more concentrated in sectors targeted by the U.S. tar-

iffs (through changes in the producer and export prices), less protected by China’s

retaliatory tariffs against the U.S., or subject to China’s MFN tariff reductions.

Figure 2.3 illustrates the variation in exposure to the trade war across provinces

in China: (A) due to China’s tariff increases on U.S. products; (B) due to China’s

MFN tariff cuts; (C) due to the combination of the first two; and (D) due to the

U.S. tariff increases on Chinese products. We construct the province-level exposure

to tariff shocks by: i) computing the trade-weighted tariff changes of each GB/T-2
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sector across varieties within the sector, using the 2017 trade shares; and ii) com-

puting the wage-bill-weighted tariff changes for each province given the province’s

employment structure across sectors.9

Figure 2.3 suggests that China tended to: (A) retaliate against the U.S. in sec-

tors with a relatively high concentration in the outlying provinces such as Xinjiang,

Hainan, and Heilongjiang; and (B) reduce MFN tariffs on sectors concentrated in

provinces closer to the coast such as Shanghai and Beijing. Overall, China’s tariff

increases tended to be biased toward inland provinces and turn negative in the East-

ern provinces. Added to the burden, Panel (D) suggests that these provinces also

faced higher tariff increases on their exports to the U.S.

Figure 2.4 shows the effects of the trade war on real wages across provinces. The

first map (A) shows the province-level reduction in real wages in tradable sectors

due to the trade war, and the second map (B) shows real wage losses in the hypothet-

ical scenario where China had not reduced MFN tariffs. Every province experienced

a reduction in the tradable real wage. Provinces with larger relative losses are con-

centrated in the Southeast, whose employment structures were hit more strongly

by the U.S. tariff increase. Map (B) suggests that the real wage losses would have

been one level higher without the MFN tariff cuts by China. This contrasts with the

finding in Table 2.8, where the MFN tariff cuts by China worsened the aggregate

loss. This implies that the MFN tariff cuts helped cushion the impacts on work-

ers/consumers via lower import prices, at the cost of producers (and the owners of

capital and fixed structures), who faced steeper competition in the product market.

Overall, on average across provinces, the nominal wages for workers in tradable

sectors decreased by 3.19% (std. dev. = 0.08%). These income losses were, how-

ever, cushioned by a reduced cost of living, as the CPI of tradable goods decreased

by 2.34% on average across sectors, reflecting an average 0.53% increase in import

prices and 2.69% decrease in prices of domestic goods. As a result, real wages in

the tradable sector fell by 0.32% (std. dev. = 0.04%).

Figure 2.5 sums up the total real expenditures of both capital owners and work-

9The exposure of region r to the Chinese import tariff changes is ∆τr =

∑s∈S

(
wsrLsr
wTrLT

r

)
∑g∈Gs ∑i∈Ig p∗igmig∆τig

∑g′∈Gs ∑i′∈Ig′
p∗

i′g′mi′g′
, and the exposure to the U.S. tariff changes is ∆τ∗r =

∑s∈S

(
wsrLsr
wTrLT

r

)
∑g∈Gs ∑i∈Ig pX

igxig∆τ∗ig
∑g′∈Gs ∑i′∈Ig′

pX
i′g′ xi′g′

, where wT
r LT

r are total tradable wages in province r.

77



ers (i.e., profits and wage incomes in addition to tariff revenue transfer) for each

province, and reports their simulated responses to the tariff war, with and without

the MFN tariff cuts. The impacts of the full trade war are similar in percentage

terms of real wages or real expenditures, as seen in Panel (A) of Figures 2.4 and

2.5. However, the large contrast between Panel (B) of Figure 2.4 and that of Fig-

ure 2.5 echoes the re-distributional effects of MFN tariff cuts from the producers of

exports (EV X ) to the buyers of imports (EV M), as highlighted in Section 2.5.1. The

losses in real expenditures across provinces are mitigated while the losses in real

wages are aggravated, without the MFN tariff cuts. Thus, the MFN tariff cuts in a

way are used by the Chinese government to redistribute real incomes from capital

owners to workers, at a greater cost to the aggregate welfare.

2.5.3 Trade Diversion Effects

In this section, we report the model-implied trade diversion effects of the trade

war. Formulas are provided in Appendix 2.6. Table 2.9 summarizes the diversion of

Chinese imports and exports due to the trade war. As China increased tariffs on U.S.

products and decreased MFN tariffs against the other trading partners, Chinese im-

ports were diverted from U.S. toward non-U.S. sources. The share of imports from

the U.S. dropped from 9.15% to 8.21%. Chinese imports were mainly diverted to-

ward countries in Europe and Asia, and in particular, Germany and Japan. Although

China reduced imports from all sources due to general-equilibrium effects, the drop

was proportionally less with respect to countries in Europe.

On the other hand, facing the U.S. tariff increase, China diverted its exports

toward other markets. The share of exports to the U.S. declined from 19.16%

to 16.16%. Meanwhile, its exports to destinations other than the U.S. generally

increased by around 0.03%. Thus, as a result of the trade war, China tilted its

sources of inputs toward countries in Europe and Asia (19.19% to 19.54%; 52.48%

to 52.93%), and also relied more on countries in Europe and Asia as its markets

(18.89% to 19.59%; 48.68% to 50.48%).
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2.6 Conclusion

The U.S.-China tariff war escalated in a short span of 24 months during 2018:1–

2019:12 before the Phase One Deal was reached in 2019:12. This paper provides an

ex post analysis of the micro and macro responses of the Chinese economy to the

tariff shocks of that period. This complements the studies by Amiti et al. (2019),

Flaaen et al. (2020), Fajgelbaum et al. (2020), and Cavallo et al. (2021) for the U.S.

economy.

In the first step, we use monthly variations during 2018:1–2019:12 in Chinese

imports and exports of HS-8 digit products by source and destination countries to

identify the elasticities of the Chinese economy’s import demand and export supply

at the product-country (i.e., variety) level. The identification relies on monthly vari-

ations in tariff rates that are uncorrelated with the unobserved demand and supply

shocks of the corresponding variety. The tariff shocks associated with the tariff war

are taken as the ideal instrument given its unprecedented and uncertain nature. The

validity of the instrument was verified with pre-trend and dynamic tests. The result-

ing elasticity estimates provide a first view of the direct effects of the tariff war on

Chinese imports and exports at the variety level.

In the second step, the estimated demand structure is embedded in a general

equilibrium model with a supply-side structure calibrated to the Chinese economy.

In particular, goods markets (for final demand and intermediate use) are integrated

across Chinese provinces but primary inputs (labor and fixed structures) are con-

fined to their current sector-province of employment in the short run. The effects

of the tariff shocks on the demand for Chinese and foreign varieties aggregate up

via the 3-tier demand system in China, and influence the Chinese producer prices

across sectors and the real wages across sector-provinces. The exposure of a sector-

province to the tariff war depends on a sector’s exposure to the tariff shocks and a

province’s production structure across sectors.

The tariff war imposed a large welfare loss on Chinese producers/exporters (US$

32.968 billion) and on buyers of imports (US$ 6.906 billion), with a net loss of ag-

gregate welfare (US$ 37.898 billion) after taking into account the higher tariff rev-

enue. The Chinese initiative to lower MFN tariffs as it raised tariffs against the U.S.
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products led to larger aggregate welfare losses at the cost of producers, but appeared

to be an effective redistributive policy to cushion the impacts on consumers/workers.

The loss of consumers/buyers of imports would have been higher (US$ 11.002 bil-

lion) and the average real wage in tradable sectors would have dropped by more

(0.38% vs. 0.32%) if not for the MFN tariff cuts. The analysis also indicates that

the provinces that are closer to the coast were hit harder (in terms of real wages

in tradable sectors or real expenditures) by the tariff war. This occurred not only

because these provinces were proportionally more specialized in products targeted

by the U.S. tariff hike, but also because the Chinese government tended to lower

MFN tariffs on products produced by these provinces. Finally, due to the tariff war,

the Chinese economy reduced its share of imports from the U.S. (from 9.15% to

8.21%). At the same time, the share of its exports to the U.S. market dropped from

19.16% to 16.16%. Trade tended to be diverted toward countries in Europe and

Asia (as sources of imports and as markets for exports).

Some comments are in order. First, similarly to Fajgelbaum et al. (2020), our es-

timates suggest horizontal foreign export supply and Chinese export supply curves

at the variety level. Hence, the incidence of import tariffs is borne entirely by the

importing country at the variety level (although foreign tariffs on Chinese exports

can still affect Chinese producer/export prices through general equilibrium adjust-

ments in the Chinese economy). This implies less policy room for China to retaliate

for terms-of-trade gains, and might help explain the moderate increase in Chinese

tariff rates for a majority of products included in its targeted list, and its move to

lower MFN tariffs. Second, a potential caveat to the above finding is the nature of

estimation specification, where sector-time fixed effects are controlled for. This is

likely to reduce the magnitude of elasticity estimates, if the sector-time fixed ef-

fects used to control for unobservables also absorb a significant source of variations

in variety-level imports/exports. Third, the general equilibrium structure used has

a high resolution with respect to modeling of product/labor markets for the local

economy and their supply response. The setup, however, has a very simple struc-

ture for the rest of the world (with only supply and demand responses specified at

the variety level), and cannot accommodate general equilibrium adjustments in for-

eign countries or across countries. For example, it cannot address the repercussion
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of the trade war on the regional or global value chain in which China plays a critical

role. Fourth, the model used is static in nature, and thus cannot address potential

impacts in the long run due to factor reallocations across regions within the country.

We leave these generalizations to future research.
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A Data Appendix

A.1 Definitions

Products, varieties and sectors are defined as follows in the analysis:

• Products are defined at the Harmonized System 8-digit level (denoted as HS-

8). For example, the HS 8-digit code 40131000 covers the product “inner

tubes of rubber used on motor cars.”

• Varieties are defined at the product-country level. For example, imports (ex-

ports) of “inner tubes of rubber used on motor cars” from (to) the U.S. are a

distinct variety.

• Sectors are defined according to the China Industry Classification system

(GB/T 4754) at the 2-digit level (denoted as GB/T-2). For example, the GB/T-

2 code 29 covers “manufacture of rubber and plastics products.”

A.2 Variety-level Data on Trade and Tariffs

A.2.1 Trade Data

We obtain China’s trade data in monthly frequency for the period 2017:1–2019:12

from the General Administration of Customs, China.10 We observe the Chinese im-

ports and exports at the HS-8 digit level by the source of imports and the destination

of exports (i.e., at the variety level). For each variety, the customs data report the

quantities of imports and exports, the value of imports at the CIF price, and the

value of exports at the FOB price. The import and export values are reported in

current US$ values.

A.2.2 Tariff Data

Our tariff data comprise two main components, the baseline tariff rates applied

to Chinese imports and exports, and tariff changes associated with the U.S.-China

trade war. For the Chinese baseline tariff rates, we downloaded the annual tariff

schedule of China from the UN TRAINS database via the World Integrated Trade

10http://www.customs.gov.cn/.
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Solution (WITS).11 Given the tariff rates available at the HS-10 level, we assume

that the most-favored-nation (MFN) rate is applied to imports from WTO members,

the preferential rate is applied to trading partners with which China has any prefer-

ential trade agreement (PTA) in place, and the general duty rate (GDR) is applied to

the rest of the world. We then take the simple average of the HS-10 level tariff rates

as the HS-8 level tariff rate. This aggregation is due to the fact that the tariff rate

changes (or tariff rates in general) published by the Chinese Ministry of Finance

are only available at the HS-8 level.12 We cross-check, correct and supplement the

missing values of the data obtained from TRAINS with the annual tariff schedules

released by the Ministry of Finance. After constructing the baseline import tariff

rate for January 2017, we then update the rates in monthly frequency, given the offi-

cial announcement by the Ministry of Finance of any tariff changes (tariff increases

against the U.S. or MFN tariff cuts against the other WTO members).13 These tariff

changes are specified at the HS-8 level.14

For tariffs faced by Chinese exports, we compile the annual tariff rates imposed

by Chinese trading partners from the UN TRAINS database.15 In particular, we

use the simple average of Effectively Applied (AHS) tariff rates by Chinese trad-

ing partners against China. These are available at the HS-6 digit level. For tariff

changes associated with the trade war, we obtain that part of information from Fa-

jgelbaum et al. (2019) (for tariff changes in 2018) and the Office of the United States

Trade Representative (USTR)16 (for tariff changes in 2019). The tariff changes are

aggregated from the HS-10 to the HS-6 level based on simple average. The use

of the HS-6 digit for tariffs faced by Chinese exports is because the HS codes are

11http://wits.worldbank.org/WITS/WITS/QuickQuery/Tariff-ViewAndExportRawData/
TariffViewAndExportRawData.aspx?Page=TariffViewAndExportRawData.

12http://gss.mof.gov.cn/zhengwuxinxi/zhengcefabu/index_3.html.
13http://gss.mof.gov.cn/zhengwuxinxi/zhengcefabu/index_3.html.
14Beside the tariff changes associated with the trade war, in constructing the applied tariff rates we

also record other tariff revisions. These include annual MFN rate adjustments (normally twice a year,
in January and July), tariff reductions resulting from longstanding treaty commitments, new PTAs
signed between China and its trading partners, or the removal of import tariff barriers for certain
products due to its 13th Five-Year Plan for National Economic and Social Development. These
other tariff revisions are used to construct a more precise measure of the applied tariff rate. Their
variations, however, are not used in the construction of the instrumental variables, i.e., not used as
the source of identification of the elasticities.

15http://wits.worldbank.org/WITS/WITS/AdvanceQuery/TariffAndTradeAnalysis/
AdvancedQueryDefinition.aspx?Page=TariffandTradeAnalysis.

16https://ustr.gov/.
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only harmonized across countries up to the level of HS-6 codes. The estimations of

trade elasticities for Chinese exports are nonetheless conducted at the HS-8 level of

trade (with the HS-6 tariffs assigned to all HS-8 products in the category). Thus, the

same caveat noted by Fajgelbaum et al. (2020) applies, that we may overestimate

the value of Chinese exports subject to tariffs and underestimate the foreign import

demand elasticity.

Following Fajgelbaum et al. (2020), we scale tariff increases by the number of

days of the month they were in effect. For example, a 15 p.p. tariff increase enacted

on the 20th day of a 30-day month is assigned a 5 p.p. tariff increase (15 * 10/30 =

5) in the initial month, and an additional 10 p.p. increase in the subsequent month.

A.3 Sector-level Data

We classify sectors using the China Industry Classification system (GB/T 4754),

which is widely used in the collection of official statistics on companies and organi-

zations throughout Mainland China. The sector-level data at the GB/T 2-digit level

(denoted GB/T-2) are obtained from China’s National Bureau of Statistics.17 The

classification includes 97 sectors in total, and 43 sectors in agriculture, mining and

manufacturing.

1. Measure of4 lnPDst : The change in the price index of domestically produced

goods is proxied by the change in the producer price index. The producer

price index for industrial products (PPI) is available with monthly frequency

for 40 industrial sectors.

2. Measure of 4 ln(PDstDst): The monthly change in expenditures on domes-

tically produced goods is measured as the difference between the changes in

sectoral production and exports. The data on the sectoral output (quantity) are

available with monthly frequency but only for major products in 27 manufac-

turing sectors. We normalize the output of each product relative to 2016:1,

and use the simple average across products within each sector as the sectoral

production index.18 The export quantity is constructed as the ratio of export

17http://www.stats.gov.cn/.
18The methodology of constructing the production index usually requires the industrial value-

added of each product to be used as the weight in calculating the index, but such data are not avail-
able. Thus, in our calculation, we take the weight to be equal across the major products.
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values and the producer price index. The estimations of the elasticity κ are

thus based on a subset of industrial sectors where the above data are available.

3. The input-output (IO) tables are compiled for 2017. These tables quantify

annual inputs and outputs of commodities by intermediate and final users in

2017, for 88 sectors.

For the analysis in the paper, we classify GB/T-2 sectors as tradable if they are

matched to an HS-6 code in the trade data. For the cross-walk between GB/T sectors

and HS products, we use the conversion table of Sheng (2002) (available for 36

industrial sectors), and the concordance tables from WITS (ISIC-HS)19 and from

China’s National Bureau of Statistics (ISIC-GB/T)20 (available for all economic

activities). Minor modifications are further made where a product is mapped to

more than one sector, using our interpretations of the official descriptions of the

products and sectors. There are a total of 39 tradable sectors.

A.4 Province-level Data

For the general equilibrium analysis, we collect the annual employment and

wage data at the sector and province level from the China Labor Statistical Year-

book of 2017. It records the employment and total wages of urban units by sector

and region. These are available for 31 provinces and 94 GB/T-2 sectors (covering

services, agriculture, mining and manufacturing sectors). All of the 39 tradable sec-

tors are covered individually in both the IO tables and the labor statistics dataset.

We aggregate the remaining sectors as a single non-tradable sector, thus reconciling

the IO tables and the labor statistics dataset.

19https://192.86.102.134/product_concordance.html.
20http://www.stats.gov.cn/tjsj/tjbz/hyflbz/201710/t20171012_1541679.html.
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B Appendix to Section 2.5 (Welfare Analysis)

The general-equilibrium (GE) system follows that of Fajgelbaum et al. (2020).

We provide its full derivations in Section 2.6 for ease of reference (correcting some

typos of the original paper along the way), and document its implementations in the

context of China in Section 2.6. Section 2.6 describes how we evaluate the trade

diversion impact given shocks to the system.

B.1 General Equilibrium System of Changes

The model solution is derived as a system of first-order approximations around

an initial equilibrium corresponding to the period before the trade war. Every

market-clearing condition is expressed in log-changes. The outcome depends on

endogenous variables, observed initial shares, elasticities and tariff shocks. Letting

x̂ ≡ d lnx, the system describes the log-change of each endogenous variable given

shocks to Chinese and foreign tariffs, {dτig,dτ∗ig}. Using market-clearing condi-

tions, the solution of the model can be expressed as a system for the changes in

wages per efficiency unit {ŵsr}, average wages in the tradable sectors {ŵT
r }, wages

in the non-tradable sector {ŵNT
r }, employment in the tradable sector {L̂T

r }, pro-

ducer prices {p̂s}, intermediate input prices {φ̂s}, sector price indices {P̂s}, sector-

level import price indices {P̂Ms}, product-level import price indices {p̂Mg}, duty-

inclusive prices of imported varieties {p̂ig}, tariff revenues R̂, sector-level expendi-

tures {Ês}, national final consumer expenditures X̂ , national value added Ŷ , national

intermediate expenditures by sector {P̂sIs}, national sales by sector {p̂sQs}, and fi-

nal consumer expenditures by region {X̂r}.

B.1.1 Wages, Producer Prices, Input Prices, and Tradable Employment

The first set of equations characterizes {ŵsr, ŵT
r , ŵ

NT
r , L̂T

r , p̂s, φ̂s}, given {X̂r, Ês, P̂s, τ̂
∗
ig}.

First, by (2.19), we have:

ŵsr =
1

1−αIs

(
p̂s−αIsφ̂s−αKsL̂sr

)
.
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Define χ I as an indicator that equals one if labor is immobile across sectors and

zero otherwise. In the case where χ I = 1, it follows that:

L̂sr = 0,

ŵsr =
1

1−αIs

(
p̂s−αIsφ̂s

)
,

ŵT
r ≡ dwT

r
wT

r
=

∑s∈S dwsrLsr

∑s∈S wsrLsr
= ∑

s∈S

wsrLsr

wT
r LT

r

dwsr

wsr
= ∑

s∈S

(
wsrLsr

wT
r LT

r

)
p̂s−αIsφ̂s

1−αIs
.

In the alternative case where χ I = 0, we have instead:

wsr = wT
r ,

ŵsr = ŵT
r =

1
1−αIs

(
p̂s−αIsφ̂s−αKsL̂sr

)
,

ŵT
r ≡ dwT

r
wT

r
= ∑

s∈S

wsrLsr

wT
r LT

r

(
dwsr

wsr
+

dLsr

Lsr
− dLT

r
LT

r

)
,

L̂T
r ≡ dLT

r
LT

r
=

∑s∈S dLsr

LT
r

= ∑
s∈S

Lsr

LT
r

dLsr

Lsr
.

Thus, it follows that:

ŵT
r = ∑

s∈S

wsrLsr

wT
r LT

r

(
ŵsr + L̂sr− L̂T

r
)

= ∑
s∈S

wsrLsr

wT
r LT

r
ŵsr +∑

s∈S

Lsr

LT
r

L̂sr− L̂T
r

= ∑
s∈S

wsrLsr

wT
r LT

r
ŵsr

∑
s∈S

(
wsrLsr

wT
r LT

r

)
1−αIs

αKs
ŵT

r = ∑
s∈S

(
wsrLsr

wT
r LT

r

)
1

αKs

(
p̂s−αIsφ̂s−αKsL̂sr

)
∑
s∈S

(
wsrLsr

wT
r LT

r

)
1−αIs

αKs
ŵT

r = ∑
s∈S

(
wsrLsr

wT
r LT

r

)
p̂s−αIsφ̂s

αKs
− L̂T

r .

In sum, we have:

ŵsr = χ
I p̂s−αIsφ̂s

1−αIs
+
(
1−χ

I) ŵT
r , (A.1)

ŵT
r = χ

I
∑

s∈S

(
wsrLsr

wT
r LT

r

)
p̂s−αIsφ̂s

1−αIs
+
(
1−χ

I)∑s∈S

(
wsrLsr
wT

r LT
r

)
p̂s−αIsφ̂s

αKs
− L̂T

r

∑s∈S

(
wsrLsr
wT

r LT
r

)
1−αIs

αKs

.(A.2)

Second, by the wage rate for non-tradable sectors (2.21), we have:

ŵNT
r = X̂r− L̂NT

r
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and by full employment in each region, it follows that:

L̂T
r =−LNT

r
LT

r
L̂NT

r .

Thus, in sum:

ŵNT
r = χ

IX̂r +
(
1−χ

I) ŵT
r , (A.3)

L̂T
r =

(
1−χ

I)(ŵT
r − X̂r

) LNT
r

LT
r
. (A.4)

Third, note that by the setup, pDg =
ps
zg

; pX
ig = δig pDg; and PDs =

(
∑g∈Gs aDg p1−η

Dg

) 1
1−η

holds. It follows that p̂Dg = p̂X
ig = P̂Ds = p̂s. By (2.16) and (2.17), we have:

Q̂s = ∑
g∈Gs

dg/zg

Qs
d̂g + ∑

g∈Gs

∑
i∈Ig

δigxig/zg

Qs
x̂ig,

= ∑
g∈Gs

pDgdg

psQs
d̂g + ∑

g∈Gs

∑
i∈Ig

pX
igxig

psQs
x̂ig.

Further, by equations (2.16)–(2.17), (2.3) and (2.10), we have:

d̂g = D̂s = Ês +(κ−1)P̂s−κ p̂s, ∀ g ∈ Gs

x̂ig = −σ
∗

(
dτ∗ig

1+ τ∗ig
+ p̂s

)
.

Given that ∑g∈Gs pDgdg = PDsDs, it follows that:

Q̂s =
PDsDs

psQs

(
Ês +(κ−1)P̂s−κ p̂s

)
− ∑

g∈Gs

∑
i∈Ig

pX
igxig

psQs
σ
∗

(
dτ∗ig

1+ τ∗ig
+ p̂s

)
. (A.5)

Further, by (2.15) and (2.14), we have:

Q̂s = ∑
r∈R

Qsr

Qs
Q̂sr

= ∑
r∈R

Qsr

Qs

(
1−αKs

αKs
p̂s−

αIs

αKs
φ̂s−

αLs

αKs
ŵsr

)
=

1−αKs

αKs
p̂s−

αIs

αKs
φ̂s− ∑

r∈R

psQsr

psQs

αLs

αKs
ŵsr. (A.6)

Finally, combining (A.5) and (A.6) yields:

p̂s =

PDsDs
psQs

(
Ês +(κ−1)P̂s

)
+ αIs

αKs
φ̂s +∑r∈R

psQsr
psQs

αLs
αKs

ŵsr−σ∗∑g∈Gs ∑i∈Ig

pX
igxig

psQs

dτ∗ig
1+τ∗ig

1−αKs
αKs

+ PDsDs
psQs

κ +
(

1− PDsDs
psQs

)
σ∗

,

(A.7)
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where by (2.12), the change in the price index of intermediates is:

φ̂s = ∑
s′∈S

αs′
s

αIs
P̂s′. (A.8)

B.1.2 Consumer Prices, Import Prices, and Tariff Revenue

The second set of equations characterizes {P̂s, P̂Ms, p̂Mg, p̂ig, R̂} given {Ês,dτig}.

First, given that Ps =
(
ADsP1−κ

Ds +AMsP1−κ

Ms
) 1

1−κ , the sector price index changes ac-

cording to a weighted average of producer prices and the import price index:

P̂s =
PDsDs

Es
p̂s +

(
1− PDsDs

Es

)
P̂Ms. (A.9)

Next, given that PMs =
(

∑g∈Gs aMg p1−η

Mg

) 1
1−η , the import price index in sector s

changes according to:

P̂Ms = ∑
g∈Gs

(
pMgmg

PMsMs

)
p̂Mg, (A.10)

and by pMg =
(

∑i aig p1−σ

ig

) 1
1−σ , the product-level import price index changes ac-

cording to:

p̂Mg = ∑
i∈Ig

(
pigmig

pMgmg

)
p̂ig. (A.11)

Further, from (2.6), (2.5), and (2.3), we have:

m̂ig = m̂g +σ p̂Mg−σ p̂ig

= M̂s +ηP̂Ms +(σ −η) p̂Mg−σ p̂ig

= Ês +(κ−1) P̂s +(η−κ) P̂Ms +(σ −η) p̂Mg−σ p̂ig. (A.12)

From the foreign export supply (2.9) and the price relationship (2.7), we also have:

m̂ig =
1

ω∗

(
p̂ig−

dτig

1+ τig

)
. (A.13)

Combining (A.12) and (A.13), it follows that:

p̂ig =
ω∗

1+ω∗σ

(
Ês +(κ−1)P̂s +(η−κ)P̂Ms +(σ −η)p̂Mg

)
+

1
1+ω∗σ

dτig

1+ τig
.

(A.14)

Lastly, recall the definition of tariff revenue,

R = ∑
s∈S

∑
g∈Gs

∑
i∈Ig

τig p∗igmig. (A.15)
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Taking the second-order total differentiation gives:

dR = ∑
s

∑
g

∑
i

(
p∗igmigdτig + τigmigd p∗ig + τig p∗igdmig

)
+

1
2 ∑

s
∑
g

∑
i

(
2migd p∗igdτig +2p∗igdmigdτig +2τigd p∗igdmig

)
= ∑

s
∑
g

∑
i

p∗igmigdτig +∑
s

∑
g

∑
i

τig p∗igmig
(

p̂∗ig + m̂ig
)
+∑

s
∑
g

∑
i

dτig p∗igmig
(

p̂∗ig + m̂ig
)

+
1
2 ∑

s
∑
g

∑
i

τigd2 (p∗igmig
)
. (A.16)

It follows that:

R̂=∑
s

∑
g∈Gs

∑
i

p∗igmig

R
dτig+∑

s
∑

g∈Gs

∑
i

p∗igmig

R
(τig +dτig)

(
p̂∗ig + m̂ig

)
+

1
2 ∑

s
∑

g∈Gs

∑
i

τig

R
d2 (p∗igmig

)
.

(A.17)

We set the last term τigd2
(

p∗igmig

)
to 0, provided that the initial tariffs τig are rea-

sonably small. Using the solutions for p̂ig and m̂ig from equations (A.14) and (A.13),

in addition to (2.7), we get:

R̂ = ∑
s

∑
g∈Gs

∑
i
(τig +dτig)

p∗igmig

R
1+ω∗

1+ω∗σ

(
Ês +(κ−1)P̂s +(η−κ)P̂Ms +(σ −η)p̂Mg

)
+ ∑

s
∑

g∈Gs

∑
i

(
1− τig

σ −1
1+ω∗σ

) p∗igmig

R
dτig

1+ τig

− ∑
s

∑
g∈Gs

∑
i

pigmig

R
σ

1+ω∗

1+ω∗σ

(
dτig

1+ τig

)2

. (A.18)

B.1.3 Sector and Region Demand Shifters

The third set of equations characterizes the sector and region level expenditure

shifters {Ês, X̂r} given {R̂, p̂s, φ̂s, ŵNT
r , ŵsr}. The expenditure in sector s is defined

as Es = PsCs+PsIs, and from (2.8) we have PsCs = βsX , where X is the total national

expenditure, defined as X =Y +R+D, where D is the trade deficit. We assume that

the national trade deficit is determined by factors outside the model and remains

unchanged. Thus, it follows that:

Ês ≡
PsCs

Es
X̂ +

(
1− PsCs

Es

)
P̂sIs, (A.19)

X̂ =
Y
X

Ŷ +
R
X

R̂. (A.20)

Since we assume that the non-tradable sectors use only labor as input, this implies

that the national income equals Y =∑r∈R PNT,rQNT,r+∑s∈S (1−αIs) psQs. Hence,
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Ŷ = ∑
r∈R

(
PNT,rQNT,r

Y

)
X̂r + ∑

s∈S
(1−αIs)

(
psQs

Y

)
∑

r∈R

(
psQsr

psQs

)(
p̂s + Q̂sr

)
.

(A.21)

The total demand for intermediates of sector s is defined as:

PsIs = ∑
s′∈S

α
s
s′ ps′Qs′,

so that

P̂sIs = ∑
s′∈S

α
s
s′ ∑

r∈R

ps′Qs′r

PsIs

(
p̂s′+ Q̂s′r

)
. (A.22)

Using (2.14) for Qsr, we have:

p̂s + Q̂sr =
1

αKs
p̂s−

αIs

αKs
φ̂s−

αLs

αKs
ŵsr. (A.23)

By (2.8), we have PNT,rQNT,r = βNT Xr. Thus, using (2.18), the change of expendi-

tures in region r can be expressed as:

X̂r =
∑s∈S

psQsr
Xr

(1−αIs)
(

p̂s + Q̂sr
)
+ brR

Xr
R̂

1− PNT,rQNT,r
Xr

. (A.24)

B.2 Implementation

We use the 2017 Chinese input-output (IO) tables, China Labor Statistical Year-

book of 2017, and the Chinese customs data for 2017, as documented in Appendix 2.6,

to parameterize the allocation shares. We basically follow the same steps as in Fa-

jgelbaum et al. (2020) to construct the shares. Differences in the Chinese context

are highlighted below. The share of expenditures on the non-tradable good is set

at βNT = 0.6, such that the model matches the observed 18% share of imports in

GDP. Implementing the system also requires information on labor income and em-

ployment shares by regions. We allocate the sectoral labor compensation (from the

IO tables) across Chinese provinces using the sector-province labor compensation

shares (from China Labor Statistical Yearbook of 2017). All 31 provinces have

positive employment in both tradable and non-tradable sectors. Finally, for infor-

mation on import and export flows by variety, we reconcile the sector-level trade

flows from the IO tables and the variety-level trade flows from the customs data,

by allocating the sector-level import and export flows (from the IO tables) across

varieties using the import and export shares at the variety level within each GB/T-2
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sector (observed in the Chinese customs data).

B.3 Trade Diversion Impacts

Note that the change in Chinese imports from a trading partner i across all prod-

ucts in sector s is:

∑̂
g∈Gs

p∗igmig = ∑
g∈Gs

(
p∗igmig

∑g∈Gs p∗igmg
(p̂∗ig + m̂ig)

)
, (A.25)

and across all tradable sectors is:

̂
∑

s∈S
∑

g∈Gs

p∗igmig = ∑
s∈S

∑
g∈Gs

(
p∗igmig

∑s∈S ∑g∈Gs p∗igmig
(p̂∗ig + m̂ig)

)
. (A.26)

By aggregating across trading partners within a set of countries i ∈Io, the cor-

responding expressions are:

̂
∑

i∈Io

∑
g∈Gs

p∗igmig = ∑
i∈Io

∑
g∈Gs

(
p∗igmig

∑i∈Io ∑g∈Gs p∗igmig
(p̂∗ig + m̂ig)

)
, (A.27)

̂
∑

s∈S
∑

i∈Io

∑
g∈Gs

p∗igmig = ∑
s∈S

∑
i∈Io

∑
g∈Gs

(
p∗igmig

∑s∈S ∑i∈Io ∑g∈Gs p∗igmig
(p̂∗ig + m̂ig)

)
.(A.28)

Next, using (2.10), we have:

x̂ig = −σ
∗ p̂X

ig =−σ
∗ p̂s, for i 6=US;

x̂ig = −σ
∗

(
dτ∗ig

1+ τ∗ig
+ p̂s

)
, for i =US.

Thus, for each s ∈ S and destination i 6=US, the change in Chinese exports is:

ÊX−US,s = ̂
∑

i 6=US
∑

g∈Gs

pX
igxig = ∑

i6=US
∑

g∈Gs

(
pX

igxig

∑i6=US ∑g∈Gs pX
igxig

(p̂X
ig + x̂ig)

)

= ∑
i 6=US

∑
g∈Gs

(
pX

igxig

∑i 6=US ∑g∈Gs pX
igxig

(1−σ
∗)p̂s

)
, (A.29)

and for i =US:

ÊXUS,s = ∑̂
g∈Gs

pX
igxig = ∑

g∈Gs

(
pX

igxig

∑g∈Gs pX
igxig

(p̂X
ig + x̂ig)

)

= ∑
g∈Gs

(
pX

igxig

∑g∈Gs pX
igxig

(
(1−σ

∗)p̂s−σ
∗ dτ∗ig

1+ τ∗ig

))
. (A.30)

The change in Chinese exports of all tradable sectors can be similarly aggregated

from the sector-level exports.
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Table 2.1: Trade War Events during 2018–2019

Event Effective Date Products Trade Value in 2017 Tariff (%)

(# HS-8) (million US$) (%) before after

Panel A. Tariff increase on Chinese products enacted by U.S.
1 February 7, 2018 12 983 0.04 1.11 31.11
2 March 27, 2018 248 2,868 0.13 7.17 22.99
3 July 6, 2018 957 59,890 2.63 1.38 26.91
4 August 23, 2018 345 19,810 0.87 15.39 34.60
5 September 24, 2018 3829 189,400 8.32 7.56 14.96
6 May 10, 2019 —”— —”— –”– 14.96 29.99
7 September 1, 2019 1859 131,400 5.77 12.59 22.60

Panel B1. China’s retaliatory tariffs on U.S. products
1 April 2, 2018 93 2,970 0.17 11.15 27.75
2 July 6, 2018 267 33,830 1.98 12.81 35.56
3 August 23, 2018 201 14,110 0.83 14.16 32.82
4 September 24, 2018 5190 58,160 3.41 9.91 16.43
5 January 1, 2019 120 14,250 0.83 24.39 13.53
6 June 1, 2019 4545 40,220 2.35 10.3 17.13
7 September 1, 2019 1153 28,670 1.68 9.63 18.47

Panel B2. China’s MFN tariff cuts
8 May 1, 2018 26 13,710 0.8 2.12 0
9 July 1, 2018 151 59,590 3.49 11.03 7.01
10 July 1, 2018 1376 36,030 2.11 13.69 7.01
11 November 1, 2018 1532 59,610 3.49 9.57 7.95
Note: The table reports tariff events implemented by the U.S. (Panel A) and China (Panel B), which are used as sources of
identification in the estimations of demand and supply elasticities in Section 2.4. In addition to the retaliation against U.S.
products (Panel B1), China also implemented MFN tariff cuts in response (Panel B2). The columns display: the number of HS-
8 products affected; the value of trade affected (in million US$); the corresponding shares (%) in 2017; and the simple monthly
average tariff rates (in percentage points) across targeted products in the month before and the month after the implementation
month (which is taken to be the current month if the implementation date is before the 15th of the month and the next month
otherwise). The denominator of trade share is the 2017 annual US$ value of total Chinese exports (imports) in Panel A (Panel
B), respectively. See the text for data sources. In Panel A, Event 6 applies to the same set of products as Event 5 but with an
upward revision of the tariff rates.
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Table 2.2: Sector-Level Tariff Variations

Imports (Chinese tariffs) Exports (U.S. tariffs)

∆ Tariffs ∆ Tariffs

Sector GB/T-2 # Products # Varieties Mean Std. dev. # Products # Varieties Mean Std. dev.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Agricultural Products 1-5 77 121 0.15 0.10 94 94 0.24 0.11
Mining 6-12 126 410 0.09 0.13 71 71 0.21 0.07
Processing of Food from Agricultural Products 13 448 1687 0.07 0.21 371 371 0.21 0.09
Manufacture of Foods 14 174 1564 -0.01 0.15 143 143 0.22 0.09
Manufacture of Liquor, Beverages 15 75 790 -0.03 0.19 74 74 0.13 0.08
Manufacture of Tobacco 16 8 43 0.10 0.14 6 6 0.19 0.13
Manufacture of Textiles 17 740 13225 -0.02 0.11 777 777 0.20 0.08
Manufacture of Wearing Apparel and Accessories 18 160 5334 -0.06 0.10 158 158 0.12 0.06
Manufacture of Leather Products and Footwear 19 138 3320 -0.04 0.10 139 139 0.16 0.09
Manufacture of Wood Products 20 126 788 0.04 0.12 128 128 0.21 0.09
Manufacture of Furniture 21 31 234 0.08 0.13 34 34 0.25 0.04
Manufacture of Paper and Paper Products 22 121 2412 0.03 0.09 120 120 0.24 0.05
Printing and Reproduction of Recording Media 23 35 796 0.03 0.09 36 36 0.13 0.06
Manufacture of Articles for Culture Activities 24 210 4146 -0.05 0.12 195 195 0.15 0.08
Processing of Petroleum, Coking 25 41 114 0.17 0.12 27 27 0.23 0.05
Manufacture of Raw Chemical Materials 26 903 4254 0.08 0.11 876 876 0.23 0.08
Manufacture of Medicines 27 151 458 0.07 0.11 55 55 0.24 0.07
Manufacture of Chemical Fibers 28 54 54 0.17 0.08 64 64 0.20 0.09
Manufacture of Rubber and Plastics Products 29 154 1329 0.06 0.11 156 156 0.24 0.06
Manufacture of Non-metallic Mineral Products 30 232 3212 0.02 0.11 240 240 0.23 0.06
Smelting and Pressing of Ferrous Metals 31 223 1053 0.13 0.13 239 239 0.31 0.07
Smelting and Pressing of Non-ferrous Metals 32 177 400 0.15 0.09 130 130 0.22 0.06
Manufacture of Metal Products 33 299 4844 0.02 0.12 293 293 0.23 0.07
Manufacture of General Purpose Machinery 34 470 4232 0.07 0.11 509 509 0.27 0.11
Manufacture of Special Purpose Machinery 35 406 2123 0.08 0.12 454 454 0.24 0.12
Manufacture of Automobiles 36 180 2624 -0.03 0.09 160 160 0.23 0.09
Manufacture of Transport Equipment 37 64 440 0.06 0.14 101 101 0.24 0.10
Manufacture of Electrical Machinery 38 302 4057 0.00 0.13 276 276 0.29 0.12
Manufacture of Computers / Electronic Equipment 39 228 656 0.06 0.15 227 227 0.26 0.16
Manufacture of Measuring Instruments/Machinery 40 176 1012 0.04 0.11 205 205 0.28 0.15
Other Manufactures 41 57 1229 -0.04 0.12 40 40 0.14 0.07
Utilization of Waste Resources 42 26 55 0.23 0.10 30 30 0.19 0.08
Note: The table shows the mean and standard deviation of tariff changes for Chinese imports and exports across 2-digit GB/T sectors. A tariff change of 0.10 indicates a 10 percentage point increase. For imports,
China implemented both retaliatory tariff increases against the U.S., and MFN tariff cuts on sources of imports where MFN rates apply. Sectors with the same number of targeted varieties and products in Columns
(3) and (4) reflect import tariff increase targeting U.S. products without accompanying decrease in MFN tariffs. For Chinese exports, which faced only U.S. tariff increases, the number of products targeted by
trading partners is equal to that of varieties targeted. Due to space constraints, we aggregate sectors of Agricultural products and of Mining.
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Table 2.3: Estimation of Variety-level Elasticities—Import Demand (σ ) and For-
eign Export Supply (ω∗)

∆ ln p∗igtmigt ∆ lnmigt ∆ ln p∗igt ∆ ln pigt ∆ ln p∗igt ∆ lnmigt

(1) (2) (3) (4) (5) (6)

∆ ln(1+ τigt) -1.133*** -1.121*** 0.009 1.004***
(0.2940) (0.2214) (0.1740) (0.1770)

∆ lnmigt -0.008
(0.1549)

∆ ln pigt -1.120***
(0.3158)

Country × Product FE Y Y Y Y Y Y
Sector × Time FE Y Y Y Y Y Y
1st-stage F 40.179 81.805
Bootstrap CI [-0.146,0.204] [0.853,1.432]
R2 0.038 0.027 0.035 0.027 0.012 0.192
N 2,207,210 2,129,628 2,129,660 2,129,138 2,129,628 2,129,138
Note: The table reports the variety-level import responses to import tariffs. Columns (1) to (4) report the reduced-form regression of different
trade outcomes (before-duty import value, import quantity, before-duty unit value and duty-inclusive unit value) on the tariff changes. Column
(5) reports the IV regression estimation of foreign (inverse) export supply elasticity ω̂∗ based on equation (2.23), with its first-stage estimation
in Column (2). Column (6) reports the IV regression estimation of import demand elasticity σ̂ based on equation (2.22), with its first-stage
estimation in Column (4). Robust standard errors (in parentheses) are clustered at the product and country level. 90% bootstrap confidence
intervals of (ω̂∗ and σ̂ ) were constructed from 1000 samples. The symbols ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5%, and 1%
level, respectively. Sample: monthly variety-level import data from 2017:1 to 2019:12.
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Table 2.4: Estimation of Product-level Elasticity

∆ lnsMgt ∆ ln pMgt ∆ lnsMgt
(1) (2) (3)

∆ lnZMgt -1.537** 17.639***
(0.6271) (6.2563)

∆ ln pMgt -0.087***
(0.0230)

Sector × Time FE Y Y Y
1st-stage F 19.187
η̂ (se[η̂]) 1.087 (0.0230)
Bootstrap CI [1.041,1.131]
R2 0.015 0.010 0.351
N 226,372 226,372 226,372
Note: The table reports product-level import responses to import tariffs. Column (1) reports the reduced-form regression of each
imported product’s share within sectoral imports, sMgt , on the product-level instrument, ZMgt . Column (2) reports the regression
of the product-level import price index pMgt on ZMgt . Column (3) reports the IV estimation of product-level elasticity based on
equation (2.24), with its first-stage estimation in Column (2). The product-level import price index is constructed using σ̂ from
Column (6) of Table 2.3 according to equation (2.25), and the instrument is constructed using equation (2.26). Robust standard errors
(in parentheses) are clustered at the product level. 90% bootstrap confidence intervals of η̂ were constructed from 1000 samples. The
symbols ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5%, and 1% level, respectively. Sample: monthly product-level
import data from 2017:1 to 2019:12.

Table 2.5: Estimation of Sector-level Elasticity

∆ ln PMstMst
PDstDst

∆ ln PMst
pst

∆ ln PMstMst
PDstDst

(1) (2) (3)

∆ lnZMst -15.055 86.888
(9.7353) (201.2985)

∆
PMst
pst

-0.173
(0.3208)

Sector FE Y Y Y
Time FE Y Y Y
1st-stage F 0.546
κ̂(se[κ̂]) 1.173 (0.3208)
Bootstrap CI [0.541,1.385]
R2 0.194 0.232 -
N 850 850 850
Note: The table reports sector-level import responses to import tariffs. Column (1) reports the reduced-form regression of the ratio of
the expenditure on foreign goods and domestic goods, PMst Mst

PDst Dst
, on the sector-level instrument, ZMst . Column (2) reports the regression

of the ratio of sector-level import price index and domestic price index PMst
pst

on ZMst . Column (3) reports the IV estimation of sector-
level elasticity based on equation (2.27), with its first-stage estimation in Column (2). The sector import price index is constructed
using σ̂ from Column (6) of Table 2.3, and η̂ from Column (3) of Table 2.4, according to equation (2.28), and the instrument is
constructed using equation (2.29). Robust standard errors (in parentheses) are clustered at the sector level. 90% bootstrap confidence
intervals of κ̂ were constructed from 1000 samples. The symbols ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5%, and
1% level, respectively. Sample: monthly sector-level data from 2017:1 to 2019:12.
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Table 2.6: Estimation of Variety-level Elasticities—Foreign Import Demand (σ∗)
and Chinese Export Supply (ω)

∆ ln pX
igtxigt ∆ lnxigt ∆ ln pX

igt ∆ ln pX
igt(1+ τ∗igt) ∆ ln pX

igt ∆ lnxigt

(1) (2) (3) (4) (5) (6)

∆ ln(1+ τ∗igt) -1.064*** -1.072*** 0.059 1.059***
(0.1920) (0.1901) (0.1495) (0.1495)

∆ lnxigt -0.055
(0.1358)

∆ ln pX
igt(1+ τ∗igt) -1.012***

(0.1786)

Product FE Y Y Y Y Y Y
Sector × Time FE Y Y Y Y Y Y
1st-stage F 24.120 58.295
Bootstrap CI [-0.270,0.260] [0.161,1.302]
R2 0.058 0.055 0.028 0.028 0.070 0.165
N 162,054 161,494 161,494 161,494 161,494 161,494
Note: The table reports the variety-level export responses to U.S. import tariffs. Columns (1)–(4) report reduced-form regressions of different export
outcomes (export values, quantities, before-duty unit values, and duty-inclusive unit values) on the tariff changes. Column (5) reports the IV estimation of
Chinese (inverse) export supply elasticity ω̂ based on equation (2.31), with its first-stage estimation in Column (2). Column (6) reports the IV estimation
of foreign import demand elasticity σ̂∗ based on equation (2.30), with its first-stage estimation in Column (4). Robust standard errors (in parentheses) are
clustered at the HS-6 level. 90% bootstrap confidence intervals of (ω̂ and σ̂∗) were constructed from 1000 samples. The symbols ∗, ∗∗, and ∗∗∗ indicate
statistical significance at the 10%, 5%, and 1% level, respectively. Sample: monthly variety-level export data from 2017:1 to 2019:12.
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Table 2.7: Pre-trend Tests for Chinese Imports and Exports

Panel A1: China’s retaliatory tariffs on U.S. products

∆ ln p∗igmig ∆ lnmig ∆ ln p∗ig ∆ ln pig

(1) (2) (3) (4)

∆ ln(1+ τig) 0.052 0.070 -0.029 -0.028
(0.1870) (0.2249) (0.1452) (0.1452)

Sector FE Y Y Y Y
R2 0.012 0.020 0.014 0.014
N 5,064 4,951 4,951 4,950

Panel A2: China’s MFN tariff cuts

∆ ln p∗igmig ∆ lnmig ∆ ln p∗ig ∆ ln pig

(1) (2) (3) (4)

∆ ln(1+ τig) 0.720 0.803 0.115 0.115
(0.6089) (0.6978) (0.4236) (0.4237)

Country × Sector FE Y Y Y Y
Product FE Y Y Y Y
R2 0.144 0.144 0.132 0.132
N 66,886 64,844 64,844 64,820

Panel B: U.S. tariff increases on Chinese exports

∆ ln pX
igxig ∆ lnxig ∆ ln pX

ig ∆ ln pX
ig(1+ τ∗ig)

(5) (6) (7) (8)

∆ ln(1+ τ∗ig) 0.037 0.073 -0.002 0.003
(0.1204) (0.1118) (0.0801) (0.0771)

Sector FE Y Y Y Y
R2 0.007 0.012 0.005 0.005
N 5,483 5,473 5,473 5,445
Note: The table reports pre-trend tests for Chinese imports (Panels A1 and A2) and exports (Panel B) at the variety level.
The dependent variables are the average monthly change of trade outcome variables during 2017:1–2017:12 in terms
of before-duty trade value, quantity, before-duty unit value and duty-inclusive unit value. Panels A1 and B regress the
pre-war trade outcomes of Chinese imports from (exports to) the U.S. on the (latest revised) tariff changes during the
trade war period 2018:1–2019:12. Panel A2 regresses the trade outcomes of Chinese imports from non-U.S. sources on
China’s tariff changes on non-U.S. sources of imports during the trade war. Robust standard errors (in parentheses) are
clustered at the product level (Panels A1 and B), and product and country level (Panel A2), respectively. The symbols
∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5%, and 1% level, respectively. Sample: monthly variety-level
import and export data from 2017:1–2017:12 for the pre-trend variables, and 2018:1–2019:12 for the tariff changes.
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Table 2.8: Aggregate Impacts

EV X EV M ∆R EV
(1) (2) (3) (4)

2018–2019 trade war
change ($ b) -32.968 -6.906 1.976 -37.898

[-45.159, 0.786] [-15.524, 0.874] [1.360, 3.708] [-52.282, -3.153]
change (% GDP) -0.272 -0.057 0.016 -0.312

[-0.372,0.006] [-0.128, 0.007] [0.011,0.031] [-0.431, -0.026]

2018–2019 trade war (w/o China’s MFN tariff cuts)
change ($ b) -29.899 -11.002 5.728 -35.173

[-41.841, 8.955] [-19.590, -3.472] [5.149, 7.977] [-49.934, 6.157]
change (% GDP) -0.246 -0.091 0.047 -0.290

[-0.345, 0.074] [-0.161, -0.029] [0.042, 0.066] [-0.411, 0.051]

2018–2019 trade war (w/o retaliation by China)
change ($ b) -37.254 0.000 -1.667 -38.921

[-49.834, -12.266] [-8.296, 7.719] [-1.756, -0.755] [-53.614, -13.211]
change (% GDP) -0.307 0.000 -0.014 -0.321

[-0.410, -0.101] [-0.068, 0.064] [-0.014, -0.006] [-0.442, -0.109]
Note: The table reports the aggregate impact in Column (4) and its decomposition into EV X , EV M , and tariff revenue (∆R) in Columns (1)–(3). The
top panel reports the effects from the 2018–2019 trade war. The bottom two panels simulate hypothetical scenarios, where China retaliated against
the U.S. but did not implement MFN tariff cuts, and where China neither retaliated against the U.S. nor implemented MFN tariff cuts. The first row
in each panel reports the overall impact of each term in billions of US$. The third row scales the value by 2017 GDP of China. These numbers are
computed using the model described in Section 2.3 and Appendix 2.6, with {σ̂ = 1.120, η̂ = 1.087, κ̂ = 1.173, ω̂∗ = 0, σ̂∗ = 1.012}. Bootstrapped
90% confidence intervals based on 1,000 simulations of the estimated parameters are reported in brackets.
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Table 2.9: Simulated Trade Diversion Impacts of the Trade War 2018–2019

∆ trade volume Trade share w/o war Trade share with war
(1) (2) (3)

Panel A. Imports
U.S. -13.97% 9.15% 8.21%

R.O.W. -3.21% 90.85% 91.79%

North America -12.11% 11.05% 10.13%
Canada -3.36% 1.20% 1.21%
Mexico -2.90% 0.70% 0.70%

Asia -3.37% 52.41% 52.86%
Japan -2.73% 9.80% 9.95%
Korea -3.53% 10.55% 10.62%
Taiwan -3.54% 9.24% 9.30%
ASEAN -3.52% 12.61% 12.70%

Europe -2.45% 19.13% 19.48%
France -2.94% 1.61% 1.63%
Germany -1.83% 5.73% 5.87%
The UK -0.43% 1.30% 1.35%

Panel B. Exports
U.S. -18.64% 19.20% 16.19%

R.O.W. 0.03% 80.80% 83.81%

North America -15.95% 22.21% 19.35%
Canada 0.03% 1.41% 1.46%
Mexico 0.03% 1.60% 1.66%

Asia 0.02% 48.70% 50.50%
Japan 0.03% 6.08% 6.30%
Korea 0.03% 4.58% 4.75%
Taiwan 0.00% 1.94 % 2.01%
ASEAN 0.02% 13.93% 14.45%

Europe 0.03% 18.93% 19.64%
France 0.03% 1.23% 1.28%
Germany 0.03% 3.16% 3.28%
The UK 0.03% 2.54% 2.63%

Note: The table reports the simulated changes in China’s imports from and exports to its trading partners due to the trade war, using the
2017 Chinese economy given the tariff changes of 2018:1–2019:12. Section 2.6 provides the formulas. Columns (2) and (3) report the
trade shares by regions/countries without the trade war and as a result of the trade war.
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Figure 2.1: Trade War Timeline

(A) U.S. tariffs on Chinese exports

2

3

5&6

7

1 4
0%

10
%

20
%

30
%

40
%

U
.S

. T
ar

iff
 R

at
e 

on
 C

hi
ne

se
 E

xp
or

ts
 (%

)

Jan Mar May Jul Sep Nov Jan Mar May Jul Sep Nov Jan
2018-2019

(B1) Chinese retaliatory tariffs (on imports from U.S.)
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(B2) Chinese MFN tariff cut
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Note: The figure shows the unweighted average tariff rate of targeted import and export varieties for each tariff wave
before and after they were targeted. The numbering of the events corresponds to those in Table 2.1. Refer to the
Data Appendix for additional details on the construction of tariff rates and the scaling of tariff increases when the
implementation date is not on the first day of the month. In drawing the above diagram, the implementation month
is taken to be the current month if the implementation date is before the 15th of the month and the next month
otherwise.
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Figure 2.2: Dynamic Specification Tests

(A) Tariffs on Chinese Imports
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(B) Tariffs on Chinese Exports
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Note: Figures plot cumulative sum of β coefficients from the regression (2.33). Standard errors are clustered
by country and HS-8 for imports; and by HS-6 for exports (with respect to the U.S. market). Error bands
show 95% confidence intervals. Sample: variety-level import and export data for 2017:1–2019:12. As
in Fajgelbaum et al. (2020), we replace missing leading and lagged tariff changes with zeros and include
indicators for those missing values.
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Figure 2.3: Regional Exposure to Tariff Increase of China and U.S.

(A) China’s Tariff Increase on U.S. Imports, 2018–2019
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(B) China’s MFN Tariff Decrease on Non-U.S. Imports, 2018–2019
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 Weighted by Variety-Level China Import Share and Province-Level 2017 Tradable Sector Employee Wage Bill
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(C) China’s Net Tariff Increase on Imports, 2018–2019
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(D) U.S. Tariff Increase on China’s Exports, 2018–2019
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Weighted by Variety-Level China Export Share and Province-Level 2017 Tradable Sector Employee Wage Bill

Note: The figure shows province-level exposure to China’s tariff increases on U.S. imports (Panel
A), China’s MFN tariff decreases on non-U.S. imports (Panel B), China’s net tariff increase (Panel
C), and U.S. tariff increase on China’s exports (Panel D), in relation to the trade war during 2018–
2019, weighted by 2017 variety-level China trade shares (constructed from customs data) and by
2017 province-level tradable sector employee wage bill (constructed from China Labor Statistical
Yearbook). Darker shades indicate exposure to larger tariff changes. Values indicate percentage
point tariff changes.
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Figure 2.4: Simulated Real Wage Impacts of the Trade War

(A) Tradable Real Wage Loss from Tariff Increases of China and U.S.
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Legend displays percent  wage loss. Mean loss = 0.32%, std = 0.04%.

(B) Tradable Real Wage Loss from Tariff Increases of China and
U.S. (w/o the MFN tariff adjustment by China)
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Legend displays percent  wage loss. Mean loss = 0.38%, std = 0.05%.

Note: The figure shows province-level mean tradable real wage losses as simulated from the model. Panel
A shows losses in the full trade war scenario. Panel B shows losses in the full trade war scenario but without
the MFN tariff cuts. Darker shades indicate greater losses. Values indicate percent real wage losses.
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Figure 2.5: Simulated Real Expenditure Impacts of the Trade War

(A) Real Expenditure Loss from Tariff Increases of China and U.S.
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Legend displays percent  wage loss. Mean loss = 0.32%, std = 0.03%.

(B) Real Expenditure Loss from Tariff Increases of China and U.S.
(w/o the MFN tariff adjustment by China)
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Legend displays percent  wage loss. Mean loss = 0.30%, std = 0.04%.

Note: The figure shows province-level mean real expenditure losses as simulated from the model. Panel A
shows losses in the full trade war scenario. Panel B shows losses in the full trade war scenario but without
the MFN tariff cuts. Darker shades indicate greater losses. Values indicate percent real expenditure losses.
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Table A.1: Effects of Tariff Wars on China’s Imports and Exports (Partial Effects)

China’s tariff increase against U.S. products MFN tariff cuts Combined

IMPORT ∆ tariff ∆ import values ∆ tariff ∆ import values ∆ tariff ∆ import values

Varieties 11.72% −13.14% −3.10% 3.48% 3.25% −3.64%

U.S. tariff increase against Chinese products

EXPORT ∆ tariff ∆ export values

Varieties 24.18% −24.48%
Note: The table reports the weighted average change in the tariff rates of targeted varieties, and the implied change in the trade values of the targeted varieties. The formulas used are: i)

∆ ln
(

p∗igmig

)wa
≡∑ig−σ̂

1+ω̂∗
1+ω̂∗σ̂ ∆ ln(1+ τig) ·

(
p∗igmig

)
/∑ig

(
p∗igmig

)
≡−σ̂

1+ω̂∗
1+ω̂∗σ̂ ∆ ln(1+ τig)

wa
for imports, where the response ratio−σ̂

1+ω̂∗
1+ω̂∗σ̂ is implied by the demand and supply equations

(2.22) and (2.23); and ii) ∆ ln
(

pX
igxig

)wa
≡ ∑ig−σ̂∗ 1+ω̂

1+ω̂σ̂∗ ∆ ln
(

1+ τ∗ig

)
·
(

pX
igxig

)
/∑ig

(
pX

igxig

)
≡−σ̂∗ 1+ω̂

1+ω̂σ̂∗ ∆ ln
(

1+ τ∗ig

)wa
for exports, where the response ratio −σ̂∗ 1+ω̂

1+ω̂σ̂∗ is implied by the
demand and supply equations (2.30) and (2.31). The calculations use the elasticity estimates reported in Tables 2.3 and 2.6, the pre-war duty-exclusive trade value of 2017 (as weights), and the
latest revised tariff change for each variety observed during the period 2018:1–2019:12 (as the shock).
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Chapter 3

Extension to Chang et al. (2021) with

a China-U.S.-ROW Model

3.1 Introduction

In Chapter 2, the model we used to analyze the impacts of the 2018-19 China-

U.S. trade war on the Chinese economy assumed a detailed general equilibrium

structure for the local economy (China), but had minimal setup for the foreign

countries. In other words, all the trading partners of China were grouped into one

economy, which did not have any general equilibrium interactions with China in re-

sponse to the tariff war. Instead, it acted only as an auxiliary that complemented the

economic structure of the Chinese economy and its response was totally governed

by a pair of import demand and export supply elasticities1. This kind of simplifi-

cation could potentially lead to underestimation about the impacts of the trade war

between the two economies. Since the United States is the most important trading

partner of China and the detailed data about the U.S. economy is readily available,

we extended the 2-economy model introduced in the second chapter (China and the

rest of the world - ROW) to a 3-economy framework, China-U.S.-ROW, in order

to simultaneously incorporate the general equilibrium (GE) adjustments in the two

largest economies in response to the trade war.

In the China-U.S.-ROW framework, the interaction between China and U.S. lies
1In Fajgelbaum et al. (2020), similarly, they conducted the analyses under U.S.-ROW framework.
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in the market clearing conditions for all tradeable products, with the modeling of the

domestic economic structure in the two countries remaining unchanged. In China,

the production of a tradeable variety is affected by the import demand from the

U.S., which is determined not only directly by the tariff policies but also indirectly

through the consumption and production reallocation effects. The same applies

vice versa for the U.S. Compared to the system constructed in Chapter 2 that only

contains parameters and endogenous variables in the local economy, now we need

to take into account the general equilibrium adjustments in both two economies and

solve the system simultaneously.

We first collect and compile the trade and tariff data on the U.S. side from Jan-

uary 2018 to December 2019 and re-estimate the import demand and export supply

elasticities from the U.S. perspective in a symmetric way, similar to what we did

on the China side. During this stage, the original HS10 products in the U.S. are

reconciled according to the HS8 classification system in China. This ensures that

the two economies have the same product-level dimension, which is the linkage be-

tween China and the U.S. in this 3-economy framework. Then we solve the system

based on first-order approximations around the pre-war equilibrium, as described in

Chapter 2.

We observe significant increases in the impacts of the trade war on both economies

when we consider the general equilibrium adjustments in the U.S. economy, as ex-

pected. The aggregate loss to the Chinese economy grows by nearly 50% from

$36.9 billion in the China-ROW setup to $54.5 billion in the China-U.S.-ROW

model. On the other hand, the increase on the U.S. side is relatively modest, at

12% from $24.8 billion to $27.7 billion.

While the aggregate loss to the U.S. is only half of that to China, the loss expe-

rienced by American buyers of imports is substantially larger than that of Chinese

importers ($44 billion versus $7 billion). We observe the same pattern regarding

the role of the most favored nation (MFN) tariff cut policy implemented by the

Chinese government in the 3-economy model as in the China-ROW setup. China’s

MFN tariff reductions on non-U.S. products help cushion the negative impacts on

its importers significantly, but this comes at the cost of its producers, resulting in an

overall larger aggregate loss.
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3.2 Model

We start from the market clearing condition for tradeable good g under the

China-U.S.-ROW framework:

qg = dg + ∑
i∈ROW g

δigxig +δUS,gxUS,g

Similar to the derivation of equation (A.5), we can get the following expression in

the new setup:

Q̂s = ∑
g∈Gs

pDgdg

psQs
d̂g + ∑

g∈Gs

∑
i∈ROW g

pX
igxig

psQs
x̂ig + ∑

g∈Gs

pX
US,gxUS,g

psQs
x̂US,g

=
PDsDs

psQs

(
Ês +(κ−1)P̂s−κ p̂s

)
−σ

∗ p̂s ∑
g∈Gs

∑
i∈ROW g

pX
igxig

psQs
+ ∑

g∈Gs

p∗US
CN,gmUS

CN,g

psQs
m̂US

CN,g,

(3.1)

where we use the fact that x̂ig = −σ∗
(

dτ∗ig
1+τ∗ig

+ p̂s

)
= −σ∗ p̂s for any i ∈ ROW g

since the ROW does not impose any tariff changes on Chinese products, i.e., dτ∗ig =

0. The superscript “US” means that Combining this equation with equation (A.6)

yields:

p̂s =

PDsDs
psQs

(
Ês +(κ−1)P̂s

)
+ αIs

αKs
φ̂s +∑r∈R

psQsr
psQs

αLs
αKs

ŵsr +∑g∈Gs

p∗US
CN,gmUS

CN,g
psQs

m̂US
CN,g

1−αKs
αKs

+ PDsDs
psQs

κ +σ∗∑g∈Gs ∑i∈ROW g

pX
igxig

psQs

,

(3.2)

where m̂US
CN,g has the same expression as in the China-ROW general equilibrium:

m̂US
CN,g =

1
1+ω∗USσUS

[
ÊUS

s +(κUS−1)P̂US
s +(ηUS−κ

US)P̂US
Ms +(σUS−η

US)p̂US
Mg

]
− σUS

1+ω∗USσUS

dτUS
CN,g

1+ τUS
CN,g

For the United States, everything is the same in deriving p̂US
s except that dτ∗US

ig 6=

0 for some i ∈ROW g because some countries retaliated against the U.S. Hence

Q̂US
s =

PUS
Ds DUS

s

pUS
s QUS

s

(
ÊUS

s +(κUS−1)P̂US
s −κ

US p̂US
s

)
−σ

∗US
∑

g∈G US
s

∑
i∈ROW g

pX ,US
ig xUS

ig

pUS
s QUS

s

(
dτ∗US

ig

1+ τ∗US
ig

+ p̂US
s

)
+ ∑

g∈G US
s

p∗US,gmUS,g

pUS
s QUS

s
m̂US,g

(3.3)
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and it follows that

p̂US
s =

PUS
Ds DUS

s
pUS

s QUS
s

(
ÊUS

s +(κUS−1)P̂US
s
)
+

αUS
Is

αUS
Ks

φ̂US
s +∑r∈RUS

pUS
s QUS

sr
pUS

s QUS
s

αUS
Ls

αUS
Ks

ŵUS
sr

−σ∗US
∑g∈G US

s
∑i∈ROW g

pX ,US
ig xUS

ig
pUS

s QUS
s

dτ∗US
ig

1+τ∗US
ig

+∑g∈G US
s

p∗US,gmUS,g

pUS
s QUS

s
m̂US,g

1−αUS
Ks

αUS
Ks

+
PUS

Ds DUS
s

pUS
s QUS

s
κUS +σ∗US ∑g∈G US

s
∑i∈ROW g

pX ,US
ig xUS

ig
pUS

s QUS
s

,

(3.4)

where m̂US,g is of a symmetric form with m̂US
CN,g:

m̂US,g =
1

1+ω∗σ

[
Ês +(κ−1)P̂s +(η−κ)P̂Ms +(σ −η)p̂Mg

]
− σ

1+ω∗σ

dτUS,g

1+ τUS,g

Now we can observe from equations (3.2) and (3.4) how the (indirect) GE ad-

justments in the other economy impact the production activities in the local econ-

omy. This interaction between the two major economies is absent in the 2-economy

setup discussed in the previous chapter.

The expressions for other endogenous variables and the numerical implementa-

tion remain the same as those presented in Chapter 2.

3.3 Welfare Analysis

Table 3.2 reports the aggregate impact of the trade war and its decomposition

into EV X , EV M, and tariff revenue (∆R) on China and the United States. The top

panel shows the effects under the China-U.S.-ROW framework, which takes into

account the interaction of the two largest economies. The bottom panel presents

the results under the 2-Economy setups, China-ROW and U.S.-ROW, sourced from

Chang et al. (2021) and Fajgelbaum et al. (2021), respectively. In addition to the

effects of the 2018-19 trade war, we also examine two alternative hypothetical sce-

narios: one where China retaliated against the U.S. but did not implement MFN

tariff cuts, and another where China neither retaliated nor implemented MFN tariff

cuts. Each panel reports the annual monetary equivalent at 2017 prices in billions

of US dollars and the figures relative to 2017 GDP of China/U.S. The model param-

eters used in this welfare analysis are listed in Table 3.1.

Compared to the impact on the Chinese economy analyzed in the previous chap-

ter under the China-ROW framework, the aggregate loss is much larger at $54.5

billion when we incorporate the interactions between the U.S. and China. This is
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mainly due to the term EV X , indicating a more severe drop in export price indices

and consequently a greater loss for Chinese exporters when considering the GE ad-

justments in the two economies. For the U.S. economy, the deterioration in the

aggregate loss from the 2-economy to the 3-economy model is relatively mild, go-

ing from $24.8 billion to $27.7 billion. While the situation improves significantly

for American buyers of imports (the loss decreases from $114 billion to $44 bil-

lion), the gains for producers and the tariff revenue surplus resulting from the U.S.

tariff hike decrease substantially.

The pattern regarding the role of the MFN tariff cut policy implemented by the

Chinese government remains the same in the China-U.S.-ROW model. The adjust-

ment in MFN tariff rates on non-U.S. sources of imports helped reduce the loss

for Chinese buyers of imports and shifted part of the burden back to the producers.

Overall, the aggregate loss in EV is slightly larger.

In conclusion, the general equilibrium adjustments in China and the U.S. are

crucial for evaluating the impacts of the trade war. Failing to account for the inter-

action between the two central economies in the model would lead to a significant

underestimation of the trade war’s effects. The trade war did not benefit either

producers or consumers in the United States, but it did significantly harm Chinese

exporters at the expense of its own consumers.

3.4 Conclusion

In this chapter, we expand upon the 2-economy models used in Chang et al.

(2021) and Fajgelbaum et al. (2020), which focus solely on the local economy,

by introducing a China-U.S.-ROW framework. This framework allows us to cap-

ture the general equilibrium interactions between the two largest economies in the

world and evaluate the impact of the 2018-19 trade war. As expected, neglecting the

general equilibrium adjustments in China and the U.S. could significantly underes-

timate the costs of the tariff war on both economies. Under the China-U.S.-ROW

framework, the aggregate welfare loss was found to be 50% larger for the Chinese

economy and 12% higher for the U.S. economy.

The estimated aggregate loss to the Chinese economy amounted to $54.5 billion

(0.44% of 2017 GDP), which is twice the loss experienced by the U.S. economy

115



($17.4 billion). In contrast to the result indicating that U.S. consumers of imported

goods bore the majority of the losses, the adverse impacts on the Chinese side were

primarily shouldered by its exporters. The MFN tariff cuts implemented by the

Chinese government helped alleviate the negative impacts on Chinese importers to

a significant extent. However, this came at the expense of its producers, resulting in

an overall larger aggregate loss.
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Table 3.1: Estimates of Elasticities: 3-Economy v.s 2-Economy

3-Economy

σ η κ σ∗ σUS ηUS κUS σ∗US

1.12 1.087 1.173 1.075 2.236 4.926 1.05 1.075

2-Economy: China 2-Economy: U.S.

σ η κ σ∗ σUS ηUS κUS σ∗US

1.12 1.087 1.173 1.012 2.53 1.53 1.19 1.04

Notes: The table shows the estimates of different elasticities. The above
panel presents the estimation results for the two economies under the
China-U.S.-ROW framework, while the bottom panel reports the results
for China and U.S. when we use China-ROW and U.S.-ROW models,
respectively. The estimation of σ∗US exploits the trade and tariff vari-
ations from non-China sources. We let σ∗ = σ∗US because σ∗US is
more reliable in the sense that there is no tariff variation across non-
U.S. countries from China’s perspective (only the U.S. imposed tariff
increases against China) while many countries retaliated against U.S.
products.
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Table 3.2: Aggregate Impacts: 2-Economy v.s 1-Economy

3-Economy

China U.S.

EV X EV M ∆R EV EV X EV M ∆R EV
(1) (2) (3) (4) (5) (6) (7) (8)

Full war
$ billion -48.53 -7.09 1.12 -54.50 -1.66 -44.17 18.14 -27.68

[-194.738,-5.160] [-28.113,12.163] [-4.405,2.949] [-210.342,-11.802] [-30.086,18.492] [-67.078,-41.862] [-5.705,48.655] [-95.317,25.047]
% GDP -0.39 -0.06 0.01 -0.44 -0.01 -0.23 0.09 -0.14

[-1.582 ,-0.042] [-0.228 ,0.099] [-0.036 ,0.024] [-1.709 ,-0.096] [-0.154 ,0.095] [-0.343 ,-0.214] [-0.029 ,0.249] [-0.488 ,0.128]

Retaliate against U.S. only, no MFN tariff cuts
$ billion -44.99 -11.24 4.86 -51.37 -1.34 -44.17 18.16 -27.35

[-191.210,-1.458] [-32.208,8.081] [-1.064,6.905] [-206.460,-8.568] [-29.743,19.171] [-66.923,-41.942] [-5.682,48.689] [-94.456,26.931]
% GDP -0.37 -0.09 0.04 -0.42 -0.01 -0.23 0.09 -0.14

[-1.553 ,-0.012] [-0.262 ,0.066] [-0.009 ,0.056] [-1.677 ,-0.070] [-0.152 ,0.098] [-0.342 ,-0.215] [-0.029 ,0.249] [-0.483 ,0.138]

No action
$ billion -51.16 0.00 -2.43 -53.59 6.53 -44.17 18.73 -18.91

[-192.260,-8.228] [-18.382,18.063] [-6.945,-1.112] [-196.871,-9.785] [-18.976,25.004] [-62.510,-42.156] [-4.931,49.376] [-80.364,31.470]
% GDP -0.42 0.00 -0.02 -0.44 0.03 -0.23 0.10 -0.10

[-1.562 ,-0.067] [-0.149 ,0.147] [-0.056 ,-0.009] [-1.599 ,-0.079] [-0.097 ,0.128] [-0.320 ,-0.216] [-0.025 ,0.253] [-0.411 ,0.161]

China: 2-Economy U.S: 2-Economy

Full war Full war
$ billion -31.90 -7.87 2.84 -36.93 24.3 -114.2 65 -24.8

[-43.898, 2.242] [-16.409, -0.110] [2.241, 4.619] [-41.047. -5.094] [15.4,35.2] [-121.8,-106.5] [59.0,70.2] [-39.4,-8.8]
% GDP -0.26 -0.06 0.02 -0.30 0.13 -0.61 0.35 -0.13

[-0.362,0.018] [-0.135, -0.001] [0.018.0.038] [-0.338, -0.042] [0.08,0.19] [-0.65,-0.57] [0.32,0.38] [-0.21,-0.05]

Retaliate against U.S. only, no MFN tariff cuts No retaliation at all
$ billion -29.18 -11.53 6.17 -34.54 31.8 -114.1 65.9 -16.4

[-41.047, 9.933] [-20.054, -4.032] [5.589, 8.435] [-49.029, 6.759] [24.8,40.1] [-119.8,-108.4] [59.9,71.1] [-28.5,-3.0]
% GDP -0.24 -0.10 0.05 -0.28 0.17 -0.61 0.35 -0.09

[-0.338, 0.082] [-0.165, -0.033] [0.046, 0.069] [-0.404, 0.056] [0.13,0.22] [-0.64,-0.58] [0.32,0.38] [-0.15,-0.02]

No action
$ billion -36.87 0.00 -1.59 -38.45

[-49.299, -12.088] [-8.294, 7.639] [-1.670, -0.716] [-52.986, -13.032]
% GDP -0.30 0.00 -0.01 -0.32

[-0.406, -0.100] [-0.068, 0.063] [-0.014, -0.006] [-0.436, -0.107]

Notes: The table reports the aggregate impact of the trade war and its decomposition into EV X , EV M, and tariff revenue (∆R) on China and the U.S. The top panel
reports the effects under the China-U.S.-ROW framework, while the bottom panel presents the results under China-ROW and U.S.-ROW setups respectively. In the
3-economy framework, except for the impact of the real trade war, we also simulate two hypothetical scenarios, where China retaliated against the U.S. but did not
implement MFN tariff cuts, and where China neither retaliated against the U.S. nor implemented MFN tariff cuts. The results for China and U.S. in the 2-economy
models are taken from Chang et al. (2021) and Fajgelbaum et al. (2021), respectively. For each scenario, the first row reports the impact of each term in billions of
US$. The third row scales the value by 2017 GDP of China/U.S. These numbers are computed using the estimated parameters in corresponding models as reported
in Table 3.1. Bootstrapped 90% confidence intervals based on 1,000 simulations of the estimated parameters are reported in brackets.
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