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Abstract

This dissertation consists of two papers that contribute to the estimation and
inference theory of the panel data models with two-way slope heterogeneity. The
first paper considers the panel quantile regression model with slope heterogeneity
along both individuals and time. By modelling this two-way heterogeneity with the
low-rank slope matrix, the slope coefficient can be estimated via the nuclear norm
regularization followed by sample-splitting, row- and column-wise quantile regres-
sion, and debiasing. The inferential theory for the final slope estimator along with
its factor and factor loading is derived. Two specification tests are proposed: one
tests whether the slope coefficient is a constant over one dimension (individual or
time) without assuming the slope coefficient is homogeneous over the other dimen-
sion under the case that the true rank of the slope matrix equals one, and the other
tests whether the slope coefficient follows the additive structure under the case that
the true rank of slope matrix equals two. The second paper focuses on the estimation
and inference of the linear panel model with interactive fixed effects and two-way
slope heterogeneity. Specifically, individual coefficients are allowed to form by a
latent group structure cross-sectionally, and such a structure can change after an
unknown structural break. A multi-stage estimation algorithm is proposed, which
involves nuclear norm regularization, break detection, and a K-means procedure,
to estimate the break date, the number of groups, and the group structure. Under
some regularity conditions, the break date estimator, number of groups estimator,
and the group structure estimator can be shown to enjoy the oracle property. Monte
Carlo studies and empirical applications are conducted to illustrate the finite sample

performance of the proposed algorithms and estimators.
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Chapter 1

Introduction

In recent years, high-dimensional panel data model is one of the most active
and popular fields in modern econometrics research. Compared to the traditional
econometric models, high-dimensional panel data models allow for different kinds
of unobservable heterogeneity, which provides a more reliable and realistic inferen-
tial theory. However, technical difficulties arise with the rich heterogeneity arising
in the model.

In high-dimensional statistics, reduced rank regression is a classical method for
the estimation, which leads to the fast development for the study of the nuclear norm
regularization (NNR) in statistics and econometrics, see Koltchinskii et al. (2011),
Rohe et al. (2011), Negahban and Wainwright (2011), Fan et al. (2019), Moon and
Weidner (2018), Chernozhukov et al. (2019), Belloni et al. (2023), Alidaee et al.
(2020) among others. In this dissertation, we apply the NNR to study two important
questions in high-dimensional panel data models: two-way heterogeneity issue in
low-rank panel quantile models and time-varying latent group structure in the linear
panel model.

In the second chapter, we consider a class of low-rank panel quantile regres-
sion models which allow for unobserved slope heterogeneity over both individuals
and time. By modelling the two-way slope heterogeneity with the low-rank slope
matrix, we estimate the heterogeneous intercept and slope matrices via NNR fol-
lowed by sample splitting, row- and column-wise quantile regressions and debias-
ing. NNR is used as the first step to obtain the initial matrix estimators which are

shown to converge to their truth in terms of the Frobenius norm on average. We



then show that the estimators of the factors and factor loadings associated with the
final slope matrices are asymptotically normally distributed. In addition, we de-
velop two specification tests: one for the null hypothesis that the slope coefficient is
a constant over time and/or individuals under the case that true rank of slope matrix
equals one, and the other for the null hypothesis that the slope coefficient exhibits
an additive structure under the case that the true rank of slope matrix equals two.
We apply the estimation procedure to study the heterogeneity effect in the invest-
ment equation and the heterogeneous quantile effect of foreign direct investment on
unemployment.

In the third chapter, we consider a linear panel model with interactive fixed ef-
fects such that individual heterogeneity is captured by some latent group structures
and time heterogeneity is captured by an unknown structural break. We allow the
model to have different numbers of groups and/or different group memberships be-
fore and after the break. With the preliminary estimates by NNR followed by row-
and column-wise linear regressions, we estimate the break point based on the idea
of binary segmentation and the latent group structures together with the number
of groups before and after the break by sequential testing K-means algorithm si-
multaneously. We show that the break point, the number of groups and the group
membership can be estimated correctly with probability approaching one. Monte
Carlo simulations demonstrate excellent finite sample performance of the proposed
estimation algorithm. An application to the empirical to the real house price growth
across 377 Metropolitan Statistical Areas in the US from 1975 to 2014 suggests
both structural breaks and group membership changes.

Chapter four concludes and all technical results are provided in the appendix.



Chapter 2

Low-rank Panel Quantile
Regression: Estimation and

Inference

2.1 Introduction

Panel quantile regressions are widely used to estimate the conditional quantiles,
which can capture the heterogeneous effects that may vary across the distribution
of the outcomes. Such effects are usually assumed to be homogeneous across in-
dividuals and over time periods. However, in empirical analyses, it is usually un-
known whether the slope coefficients are homogeneous across individuals and/or
time. Mistakenly forcing slopes to be homogeneous across time and individuals
may lead to inconsistent estimation and misleading inferences. This prompts two
questions to be answered: how can we estimate the true model at different quantiles
when we allow for heterogeneous slopes across individuals and time at the same
time? How to conduct specification tests for homogeneous effects over individuals
or time and tests for the additive structure of the slope coefficients?

To answer the first question, we propose an estimation procedure for hetero-
geneous panel quantile regression models where we allow the fixed effects to be
either additive or interactive, and the slope coefficients to be heterogeneous over

both individuals and time. We impose a low-rank structure for both the intercept



and slope coefficient matrices and estimate them via nuclear norm regularization
(NNR) followed by the sample splitting, row- and column-wise quantile regres-
sions and debiasing steps. The estimation algorithm is inspired by Chernozhukov
et al. (2019), where the main difference is that we split the full sample into three
subsamples rather than two because we need certain uniform results which require
independence of regressors and regressand used in the debiasing step, and we do
not have the closed form for the quantile regression estimates. At last, we derive
the asymptotic distributions for the estimators of the factors and factor loadings
associated with slope coefficient matrices.

To answer the second question, under the case when the rank of slope coefficient
matrix equals one, we conduct sup-type specification tests for homogeneous effects
over individuals or time following the lead of Castagnetti et al. (2015) and Lu and Su
(2023). We show that our sup-test statistics follow the Gumbel distribution under the
null, and the tests have non-trivial power against certain classes of local alternatives.
Under the case when the rank of slope matrix equals two, our sup-type test statistic is
also shown to follow the Gumbel distribution under the null that the slope coefficient
exhibits an additive structure.

This paper relates to three bunches of literature. First, we contribute to the
large literature on panel quantile regressions (PQRs). Since Koenker (2004) stud-
ied the PQRs with individual fixed effects, there has been an increasing number
of papers on PQRs. Galvao and Montes-Rojas (2010), Kato et al. (2012), Galvao
and Wang (2015), Galvao and Kato (2016), Machado and Silva (2019), and Galvao
et al. (2020) study the asymptotics for PQRs with individual fixed effects. Chen
et al. (2021) study quantile factor models and Chen (2022) considers PQRs with
interactive fixed effects (IFEs). We complement the literature by allowing for unob-
served heterogeneity in the slope coefficients of PQRs.

Second, our paper also pertains to slope heterogeneity in panel data models.
Latent group structures across individuals and structural changes over time are two
common types of slope heterogeneity that have received vast attention in the liter-
ature. To recover the unobserved group structures, various methods have been pro-
posed. For example, Lin and Ng (2012), Bonhomme and Manresa (2015) and Ando
and Bai (2016) use the K-means algorithm; Su et al. (2016) propose the C-lasso al-



gorithm which is further studied and extended by Su and Ju (2018), Su et al. (2019)
and Wang et al. (2019); Wang et al. (2018) propose an clustering algorithm in re-
gression via data-driven segmentation called CARDS; Wang and Su (2021) propose
a sequential binary segmentation algorithm to identify the latent group structures
in nonlinear panels. Recent literature on the estimation with structural changes in
panel data models includes, but is not limited to, Chen (2015), Cheng et al. (2016),
Ma and Su (2018), Baltagi et al. (2021). In addition, Galvao et al. (2018) and
Zhang et al. (2019) consider individual heterogeneity in PQRs while they assume
homogeneity across time. To allow for both latent groups and structural breaks,
Okui and Wang (2021) study a linear panel data model with individual fixed effects
where each latent group has common breaks and the breaking points can be differ-
ent across different groups, and they propose a grouped adaptive group fused lasso
(GAGFL) approach to estimate slope coefficients. Lumsdaine et al. (2023) consider
a linear panel data model with a grouped pattern of heterogeneity where the latent
group membership structure and/or the values of slope coefficients can change at
a breaking point, and they propose a K-means-type estimation algorithm and es-
tablish the asymptotic properties of the resulting estimators. Compared with the
models studied above, our model combines both individual and time heterogeneity
and only requires certain low-rank structure in the slope coefficient matrix. So the
unobserved heterogeneity takes a more flexible form in our model than those in the
literature such as Okui and Wang (2021) and Lumsdaine et al. (2023).

Last, our paper also connects with the burgeoning literature on nuclear norm
regularization. Such a method has been widely adopted to study panel and network
models. See, Alidaee et al. (2020), Athey et al. (2021), Bai and Ng (2019), Belloni
et al. (2023), Chen et al. (2020), Chernozhukov et al. (2019), Feng (2019), Hong
et al. (2022), Miao et al. (2023), among others. In the least squares panel frame-
work, Moon and Weidner (2018) consider a homogeneous panel with IFEs by using
NNR-based estimator as an initial estimator to construct iterative estimators that
are asymptotically equivalent to the least squares estimators; Chernozhukov et al.
(2019) study a heterogenous panel where both the intercept and slope coefficient
matrices exhibit a low-rank structure and establish the asymptotic distribution the-

ory based on NNR. In the presence of endogeneity, Hong et al. (2022) proposes a



profile GMM method to estimate panel data models with IFEs. In the panel quantile
regression setting, Feng (2019) develops error bounds for the low-rank estimates in
terms of Frobenius norms under independence assumption; Belloni et al. (2023)
relaxes the independence assumption to the -mixing condition along the time di-
mension. Our paper extends Chernozhukov et al. (2019) from the least squares
framework to the PQR framework, derives the asymptotic distribution theory and
develops various specification tests under some strong mixing conditions along the
time dimension that is weaker than the S-mixing condition. We also rely on the
sequential symmetrization technique developed by Rakhlin et al. (2015) to obtain
the convergence rates of the nuclear norm regularized estimators.

The rest of the paper is organized as follows. We first introduce the low-rank
structure PQR model and the estimation algorithm in Section 2.2. We study the
asymptotic properties of our estimators in Section 2.3. In Section 2.4, we propose
two specification tests: one for the no-factor structure and one for the additive struc-
ture, and study the asymptotic properties of the test statistics. In Section 2.5, we
show the finite sample performance of our method via Monte Carlo simulations. In
Section 2.6, we apply our method to two datasets: one is to study how Tobin’s q and
cash flows affect corporate investment and whether firm’s external investment to its
internal financing exhibits heterogeneity structure, and the other is to study the rela-
tionship between economics growth, foreign direct investment and unemployment.
Section 2.7 concludes. All proofs are related to the online supplement.

Notation. |11 [llops IFlos I lmax Il 11+ 1111, denote the matrix norm in-
duced by 1-norms, the matrix norm induced by 2-norms, the matrix norm induced
by co-norms, the maximum norm, the Euclidean norm, the Frobenius norm and the
nuclear norm. © is the element-wise product. |-| and [-] denote the floor and ceil-
ing functions, respectively. a Vb and a A b return the max and the min of a and b,
respectively. The symbol < means “the left is bounded by a positive constant times
the right”. Let A = {Aj};c[n) se[7) be a matrix with its (i,7)-th entry denoted as Ay,
where [n] to denote the set {1,--- ,n} for any positive integer n. Let {A j}?zo denote
the collection of matrices A; for all j € {0,---,p}. When A is symmetric, Amax(A)
and Amin(A) denote its largest and smallest eigenvalues, respectively. The operators

~ and % denote convergence in distribution and in probability, respectively. Be-



sides, we use w.p.a.l and a.s. to abbreviate “with probability approaching 1~ and

“almost surely”, respectively.

2.2 Model and Estimation

In this section, we introduce the PQR model and estimation algorithm.

2.2.1 Model

Consider the PQR model

0
e@r (Yn {Xjai’}_je[p]Je[T] ) ®j,iz (T>}j€[p}u{0},t€m) = ®0 it + Z XJ zt®/ lf( )

=
(2.1)
where i € [N],t € [T], T € (0,1) is the quantile index, Y} is the dependent variable,

X ir is the j-th regressor for individual 7 at time ¢, {®?,iz} jelp) 18 the corresponding

slope coefficient, ®8 i 18 the intercept, and

2; (lt {XJ l’}Je |.t€[T]? {®J it }jé[p]U{O}JG[T])

denotes the conditional T-quantile of ¥;; given the regressors {X i, ,t}

jelpleelT }andthe

parameters {@O 1 Alternatively, we can rewrite the above model

J ’t< )}je[p]uo,ze[T]
as

Y=®&ﬂ+ixm@%ﬂ+dﬂ and

j=1
2 (elt

where €(7) is the idiosyncratic error matrix with the (i,7)-th entry being &;(7).

=0, 2.2)

it} jetpy ety { € (7) }EMMWNHN>

Similarly, X;, ®;(7), and Y are matrices with the (7,)-th entry being X; ;;, ®; ;: (7),
and Y}, respectively. In this model, we assume p, the number of regressors, is fixed
and both N and T pass to infinity. In Assumption 2.1 below, we characterize the
dependence of the data, under which (2.1) holds.

In the paper, we focus on the panel quantile regression for a fixed 7 and thus
suppress the dependence of @9(1’) and &(7) on 7 for notation simplicity. In addition,

we impose low-rank structures for the intercept and slope matrices, i.e., rank(@?) =

"'We will assume that both the intercept term @0 . and the slope coefficients {@" it} ielp) have
low-rank structures, and follow the convention in the panel data literature by treating the factors to
be random. Therefore, {@‘; it} jelplufo} are random as well.



K for some positive constant K; and for each j € {0,---, p}. By the singular value

decomposition (SVD), we have

Q) = VNT%PL) v =UVY" Vj=0,--p,

where %jo € RV*Kj, ”//jo e RTxKj, Z(} = diag(oq j,- - ’O-Ki:j>’ U]Q = \/ZTI@/J.OE? with
each row being ug’j, and VJQ =T ”I/J-O with each row being V?,/f

The low-rank structure assumption includes several popular cases. For the in-
tercept term, one commonly assumes that G)g’ i+ to take the forms al-o , ,uto , Or Ocl.o + ,ulo
in classical PQRs. Then the matrix @8 has rank 1, 1, and 2, respectively. It is also
possible to assume @871., to take an interactive form, say, @8,1., = l&’i f& ;» where both

l(g)l. and f(()) , are Ky-vectors. For the slope matrix 0 je [p], the early PQR models

0

frequently assume that ©; ,,

is a constant across (i,7) to yield a homogenous PQR
model. Obviously, such a model is very restrictive by assuming homogenous slope
coefficients. It is possible to allow the slope coefficients to change over either i, or

t, or both. See the following examples for different low-rank structures.

Example 1. When @9, = 0%, vr € [T], or 8}, =09, Vi [N], or 60, = @)
V(i,t) € [N] x [T], and this holds for all j € [p], we have the PQR models with
only individual heterogeneity, with only time heterogeneity, and with homogeneity,

respectively. We observe that K; = 1 for these three cases.

Example 2. When 09, = 17, + f7,, we notice that

@° VNN | (L i
J | : vT VT = A;B.
VNT B I I U /
1 M| Lvr VT
VN VN

1 1
Let Xy )= A;-A jand Xp ;= B’jB j. Let Z/i ; (resp. Z};’ ;) be the symmetric square
1
root of X4 ; (resp. Xp ;). By eigendecomposition, we have X; = P;j1S J~71Pj’-71
1
and 21237 I P;>S j72P]’-72. Besides, we apply singular value decomposition to matrix
Sj71PJ/~71Pj’2Sj721 Sj’1P}71Pj’25j72 = Qj,leQ/jg- Then it follows that
0
©;
VNT

1 1
—2 / —2n/
= AjBj = AJZ, [Pj1S)1F; P82 2y ;B

_1 _1
— A%, 2P 1Q)1R;Q) 1P} 5, 2 B, = ULV



where 02/ =AX, ]PJ,le,l, Z? =R; and “//jo = BjZ;éPLzQﬂ. Given Pj 1, Pj,
Q1 and Q; > are orthonormal matrices, it’s easy to that %jo and ”//jo are also or-
thonormal so that %0’%0 ”//O’”//O L. When j =0, {;t(()),i}i\’_l and {f&}f_l are
usually referred to as the individual and time fixed effects, res;ectively, SO th_at the

intercept term exhibits an additive fixed effects structure.

Example 3. Let ©° = Ykelk,,) % 1{i € Gjx}, where {G i} forms a partition

Jit

of [N] for each specific time ¢ and K, is the number of groups at time ¢. Moreover,

let
Oc](.’lk), for t=1,...,Tp,
Jokt = 2)
ay for t=1T,+1,...,T,
G, for 1=1,.. Tk=1,. k"

(
G =1 4 o
Gj’k7 for t=T,+1,...T,k= LK,
where Kj(-l) and K](.z) are the number of groups before and after the break point 7.
If KJ(.I) = K](.z), it is clear that rank(@)(j).) = 1. If the group structure does not change
after the break but O‘j(',lk) = caj(.’zk) for some constant ¢, we also have rank(@?) =1.
Except for these two cases, we can show that

(1) (1) 2) (2)
Y o /151G ¢, Y o /151G
) -k { J,k} kelKO)] -k { J>k}

y a;}gl{NeG;}g}, > aﬁ?,zl'{zvecﬁ?z}

where 17, is a 7j, x 1 vector of ones and 07, is a T}, X 1 vector of zeros. In this case,

we notice that rank(@?) =2.

Example 4. When @° . = QLO’ fO with 7LO and f]QJ being two K-vectors, we have

Jit
the IFEs structure. This is the most general example without further restrictions.

Like Chernozhukov et al. (2019), we assume that for each j € [p], X it €xhibits a
factor structure: X ;; = Wi +e€;j i = l] ; ] , +ejir, where wj , and l0 are the factors
and factor loadings of dimension r;.



2.2.2 Estimation Algorithm

In this subsection we provide the estimation algorithm by assuming that K; are
all known for all j. In the next subsection, we will introduce a rank estimation
method to estimate K; consistently.

Define the check function p;(u) = u (7 — 1{u < 0}). The estimation procedure

goes as follows:

Step 1: Sample Splitting and Nuclear Norm Regularization. Along the cross-
section span, randomly split the sample into three subsets denoted as Iy, I,
and I3, where Iy has Ny individuals such that N} &~ N, ~ N3 ~ N/3. Using
the data with (i,7) € I; x [T], we run the nuclear norm regularized quantile

regression (QR) and obtain {(:)(-1)}j6{0,...7p}, ie.,

{GE) j=0"—" argmln ZZPT it — Zlet®]tl ®Ozt +ZVjH®jH*,
{ ]} 16111‘
(2.3)

. . (1) _
where v; is a tuning parameter. For each j, conduct the SVD: \/T® =

?;j(l)ig-l ) ”/;j(] )/, where ig.l) is the diagonal matrix with the diagonal elements
being the descending singular values of (:)(-1). Let ”17 (1) consists the first
K; columns of 4/%-( ) Let V \/_”// and v( ) be the -th row of V( )

Vit € [T].

Step 2: Row- and Column-Wise Quantile Regression. Using the data with (i,7) €
I, x [T], we first run the row-wise QR of ¥; on (~t(]()), { ~(I)Xj lt}jG[p]) to
obtain {ul(lj) ?:0 for i € I, and then run the column-wise QR of Y;; on
(uﬁfo), {ul(lj)X j.it} je[p]) to obtain {vt(lj) I_ofort €[T]. Thatis,

P

{u(l) o= argmin Z Pr< it = Ui (,10)_
J

(1
ug,]vt(d) ]”) Vi€ D,
{ui.,j}je[p]u{o} t€[T] :

2.4)
1 :
{Vt.,j} je[p]u{()} 2 ich ;
(2.5)

Similarly, we run the row-wise QR of ¥;; on (vt( 10), {vt( 1].)X jit} je[p)) to obtain
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{ul(l]) Ioforieh,ie.,
(1) ; y
{u; ;}i_o= argmin Z P lovto 2 v

7]‘}[7] Jll‘> Vi 613
{ui7_i}_i6[p]u{0} te[T) j=1

Step 3: Debiasing.

Step 3.1: For each j € [p], we conduct the principle component analysis (PCA)
for X i with (i,t) € [N] x [T] to obtain the factor and factor loading
estimates as

N ) 1 2
{0} iepnypepry = argmin NT Y Y (X —lwie)”,

lj,iywjﬁt i€[N)<[T] iG[N}ZE[ ]

(2.6)

subject to the normalizations: }\,Z l,jll’] I, and L Zl Wi [w”

a diagonal matrix with descending diagonal elements. Then we define
A~ 7 A A A
fjie = 1L; W) and & = Xj i — ijir-

_ P
Step 3.2: For (i,t) € 3 x[T],letY; =Y;; — ): ﬁjvi,uﬁfj)’v‘f}j). We run the row-wise

QR of ¥;, on (vt(]o),{ I(J)ej it} jelp ) to obtain the final estimates 2\";",

i,j
ie.,
(1) 3
{ﬁi’j ‘;’ O:argmm— pr 10";0 Z”J'wel’f Viel.
{“z/}j 0 j=1
2.7)
Updating ¥; = Y, — Z] Bt 1(31 b vt( J), we run the column-wise QR

of ¥; on (i (3 b {u )eJ-’,-t}je[p}) to obtain ﬁt(?j’l), ie.,

{ﬁt(?j,l) O_argmmﬁ pr ( it — V} 0”10 Z o l]. ej_‘i,> WVt e[T).
{v,]} 0 3iel
(2.8)

hS|

In order to obtain the final estimators for the full sample, we propose to switch
the role of each subsample for the low-rank estimation, row- and column-wise QR
and debiasing, then repeat Steps 1-3 to obtain {ﬁgf’j’b)}é_o and { (Zb)} 0 for
a € (3] and b € 3]\ {a}. Here (a,b) denotes the final Je;timates for sub]sample
I, obtained from the first step NNR estimates with subsample ;. Table 2.1 shows

the final estimators we obtain by using different combination of subsamples.

Several remarks are in order. First, we randomly split the full sample into three

11



Table 2.1: Estimators using different subsamples at different steps in algorithm.

Step 1 (b) Step2 Step3 (a) estimators (a,b)
3

I L I at, oY
b I 2 a5
I L b a5
2 L b a0
b 2 I a5l
L A I ﬁ§1,3), ‘91(1,3)

subsamples, each playing a significant role in the algorithm. We use the first sub-
sample for the low-rank estimation to obtain the preliminary NNR estimators of
the submatrices of the intercept and slope matrices. But these estimators are only
consistent in terms of Frobenius norm, and one cannot derive the pointwise or uni-
form convergence rates for them. With the low-rank estimates, we use the second
subsample to do the row- and column-wise QRs and can now establish the uniform
convergence rates for each row of factor and factor loading estimators. Then we
use the remaining subsample to debias the second-stage estimator and to obtain the
final estimators that have the desirable asymptotic properties.

Second, to reduce the randomness of sample splitting, one can run the estima-
tion algorithm several times with different splittings in practice. Once one obtains
factor and factor loading estimates, one can construct estimators for @9. under differ-
ent splittings and then choose the one specific splitting which yields the minimum
quantile objective function.

Third, the bias in the second-stage estimator is inherent from the first-stage NNR
estimator. We follow the lead of Chernozhukov et al. (2019) to assume that X; ;;
has a factor structure with an additive idiosyncratic term, and remove the bias by
a QR with the demeaned X ;; as regressors. In the least squares panel regression
framework, the objective function is smooth and one has closed-form solutions in
the last stage so that Chernozhukov et al. (2019) only need to split the sample into
two subsamples. In contrast, in the PQR framework, the objective function is non-
smooth, we do not have closed-form solutions in any stage. In order to remove the

bias from the early stage estimation and to derive the distributional results, we need

12



to split the sample into three subsamples.
To save space, we relegate the detailed algorithm for the nuclear norm regular-

ization to the online supplement.

2.2.3 Rank Estimation

In this subsection we discuss how to estimate the ranks K; consistently. To
estimate the ranks, we consider the full sample NNR QR estimation:

{(:)j};7 0= argmln—ZZpT it — ijzt®]zt_®0n +ZVJH®JH (2.9)
j /O i=1t= j= j=0

For j € {0,---, p}, we estimate K by the popular singular value thresholding (SVT)

as follows
- 21{ ) =06 (NTv, 8], )/2}.

It is standard to show that P(K; = K;) — 1 as (N,T) — oo under some regularity
conditions given in the next section; see also Proposition D.1 in Chernozhukov
et al. (2019) and Theorem 2 in Hong et al. (2022). Since the ranks can be estimated

consistently, we assume that they are known in the asymptotic theory below.

2.3 Asymptotic Theory

In this section, we study the asymptotic properties of the estimators introduced

in the last section.

2.3.1 First Stage Estimator

Recall that

]ll‘ =MWjiitejii= l]l Jt+e]ll

for each j € [p]. Let Xy = (X1ir,-.-.Xpr) and ez = (e, ...,€p ) . Define & =
(&1, Sit)/ eji= (ej i, e, ,-T)/ WQ as the 7' x r; matrix with each row being

(])’t, and V0 as the T' x K; matrix with each row being v Further define a;; = 17—
1{g; <0} witha; = (a;1,--- ,a;7) anda = (ay,--- ,ay)’. Throughout the paper, we
treat the factors {vg i}ielr).jelplufoy and {Wg,z}ze[T], je[p) @s random and their loadings

{“gj}ie[N},je[p]U{o} and {l?,i}ie[N]Je[p} as deterministic.
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Table 2.2 defines several o-fields. We use Z to denote the minimal o-field gen-

erated by {VJQ} U {WJQ} ; the superscripts /1 and 11 Ul are associated
Jelpl{0} Jelp]

with the first subsample and the first two subsamples, respectively. For example,

.@5} denotes the minimal o-field generated by 2, {eit}re[T} and {€&;,ej};c nselr] -

Table 2.2: Definition of various o-fields

Notation o-fields generated by
7 {Vjo}je[p}u{o}U{WJQ}J'G[P]
D, ZUeir
De, 72U {eit}ze[T]
D, 7 {eit}ie[N] te(T)
ghih P UL &, €itticrun ey
‘@?eis}m D\ eists<t U{ €+, € }i*e]l te[T)

9611! 7U {eit}te[T] U{&ir, ei*l*}i*ell 4T
@e{}% 27U {eit}ze[T] U {8i*t* ) €ire* }i*eh Ub,t*€[T]
7" 9 U {eit}ie[N,}te[T} U{&, eil}iell Ul t€[T]

Let M denote a generic bounded constant that may vary across places. Let
%11 denote the minimal o-field generated by % U {es}i<i—1seir) U {e€isfs< U
{&sti<io1,seir) U {€ists<i—1. Let Fi () and f;(+) be the conditional cumulative dis-
tribution function (CDF) and probability density function (PDF) of €; given ¥;,_1,
respectively. Similarly, let §;(-) and f; () denote the conditional CDF and PDF of
gy given Z,,; Fy(-) and fi(-) denote the conditional CDF and PDF of g; given Z,.
Letf/ (), . (-), and f; () denotes the first derivative of the density f; (-), fi (-) , and
fir (), respectively.

We make the following assumptions.

Assumption 2.1. (i) {g;, eit}te[T] are conditionally independent across i given

2.
2.) =0

(iii) For each i, {€;y,t > 1} is strong mixing conditional on 9,,, and {(&y,ejr) ,t >

(ii) E <ait

1} is strong mixing conditional on 9. Both mixing coefficients are upper
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bounded by 0;(-) such that max;cy @i(z) < Mo for some constant o € (0, 1).

. 3 4
(iv) maxieiy] 7 Leepr) [1Xall <M a.s., maxyer) a7 Lien, | Xulls <M as,

2
]<Mas maxleN]\/ ZtE[T]{ (2@ )1

@{em}sq) <M a.s.

IN

3
max; e [n)x[r] E {sz‘tuz
M a.s., and

max ; e x[r] E (HXit 13

(v) For j € [p], there exists a positive sequence &y such that max ; e (n)x 7] |Xj7,-,‘ <

é’N a.s.
(Vi) min(i’t)e[N]X[T] f,‘; (0) > f > 0 and max(,-7,)e[N]X[T] Supg |fllt (8)| < F/.
(vii) min; e« (r) fir(0) > > 0 and max; ey [r) Supe | (€)] < F-

(viii) ming e vy (r) fir(0) = f > 0 and max; ey« (1] Supe |f5 (€)] < f".

1/2 5+0
(ix) ““’g%)”” o(1) and P (tog(V v 1) 7 = o(1) for any
(NAT)FF
U > 0.

Assumptions 2.1(1) imposes conditional independence of the error terms and
covariates X ; given the fixed effects. Assumptions 2.1(i1) imposes the moment
condition for QR. Assumptions 2.1(iii) imposes the weak dependence assumption
along the time dimension via the use of the notion of conditional strong mixing. See
Prakasa Rao (2009) for the definition of conditional strong mixing and Su and Chen
(2013a) for an application in the panel setup. Assumptions 2.1(iv)-(v) essentially
imposes some conditions on the moments and tail behavior of the both covariates
and errors. Note that we allow X; ;; to have an infinite support. Assumptions 2.1(vi)-
(viil), which are used in the proofs of Theorems 2.1, 2.2 and 2.3, respectively, spec-
ify conditions on the conditional density of €; given different o-fields. Assumption
2.1(ix) imposes some restrictions on N, T and &y in order to obtain the error bound
of NNR estimators and to achieve the unbiasedness. It allows not only the case that
N and T diverge to infinity at the the same rate, but also the case that N diverges to

infinity not too faster than 7', and vice versa.

Assumption 2.2. @ is the fixed effect matrix with fixed rank Ky and H@O H

max -

M. For each j € [p], @Q is the slope matrix of regressor j with rank being K; such

that max ;¢ H@, H <M and max jc[, Kj < K for some fixed finite K.

max
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Assumption 2.2 is the low-rank assumption for the intercept and slope matrices,
which is the key assumption for the NNR. The uniform boundedness of elements of
these matrices facilitates the asymptotic analysis, but can be relaxed at the cost of

more lengthy argument. See Ma et al. (2020) for a similar condition.

Assumption 2.3. There exist some constants Cs and cg such that

> Cq > limsup max o7 ; >liminf min ok, ;> ce > 0.
N,T j€lp]U{0} N.T je[plu{o}

Assumption 2.3 imposes some conditions on the singular values of the coeffi-
cient matrices. It implies that we only allow pervasive factors when these matrices
are written as a factor structure. Such an assumption is common in the literature;
see, e.g., Assumption 3 in Ma et al. (2020).

To introduce the next assumption, we need some notation. Let @9 =R;X jS} be
the SVD for ®(J).. Further decompose R; = (R iR j,o) with R; , being the singular
vectors corresponding to the nonzero singular values, R; o being the singular vectors
corresponding to the zero singular values. Decompose S; = (S S j70) with §; , and

S o defined analogously. For any matrix W € RV*T | we define

P (W) =RjoR; WSS9, P;(W)=W—25 (W),

where &7; (W) and & JL (W) are the linear projection of matrix W onto the low-rank
space and its orthogonal space, respectively. Let Ag, = 0O — @9 for any ©;. With

some positive constants C; and C, we define the following cone-like restricted set:

%(CDCZ)

= {({A@),}fo) : i})”‘@fm@j)

Assumption 2.4. Let C, > 0 be a sufficiently large but fixed constant. There are

)4 )4
< ¥ 700 X 02 > va}.
=0 =0

constants C3,Cy, such that, uniformly over ({A@j}?zo) € #(3,Cy), we have

2
P
>C1 Y [|8e,|[; —CoaN+T) wp.al.

p
A@O + Z A@j @Xj
. - =0

J=1

The same condition holds when ('*)(; is replaced by {('4)971-,},-e Lae[r) fora=1,2,3.

Assumption 2.4 parallels the restricted strong convexity (RSC) condition in As-
sumption 3.1 of Chernozhukov et al. (2019) who also provide some sufficient prim-

itive conditions.
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) ~ ~ ~(1 ~ (1 0,(1
For any j € {0,---, p}, define Ag, = ®j—®(; and Aé)j) = @5- ) —®j( ), where
0,(1) _ { 0 }
®. =< Y.
J IS ien relT)
of the NNR estimators of the coefficient matrices.

. The following theorem establishes the convergence rates

Theorem 2.1. If Assumptions 2.1-2.4 hold, forVj € {0,---, p}, we have

log(NVT
P Op ( ogl\(l/\T )51%7)’

@ iz l18e, =0, (V557284 ). 7 36

) ) 1
(i) maXge [k |k, — Ok j| = O ( 0%5%”%),

~ (1
s o) | =00 ().

(iii) \/LT HVJQ —VjOjHF =0, ( lo%le) 5}%)
=700, -0 (V).

1 . . .
where O and 05- ) are some orthogonal rotation matrices defined in the proof.

Remark 1. Theorem 2.1(i) reports the “rough” convergence rates of the NNR
estimators of the coefficient matrices in terms of Frobenius norm for both the full-
sample and sub-sample estimators. Unlike the traditional (N A T)_l/ Z_rate in the
least squares framework, NNR estimators’ convergence rates in the PQR framework
usually have an additional \/W term due to the use of some exponential in-
equalities. The extra term 51%, in our rate is due to the upper bound of |X; ;|, and it
disappears in case X ;’s are uniformly bounded. Theorem 2.1(ii)-(iii) report the
convergence rates for the estimators of the factors and factor loadings of ®’, which
are inherited from those in Theorem 2.1(i). To derive these results, we establish the
symmetrization inequality and contraction principle for the sequential symmetriza-
tion developed by Rakhlin et al. (2015). See Lemmas A.8 and A.9 in the online

supplement for more detail.

2.3.2 Second Stage Estimator

To study the asymptotic properties of the second-stage estimators, we add some

notation. Define

1 T
0= ) PGPy and W = - ) VW,
=1

i€l

1
N,
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where CI>2 = (W0 tO’vt 1X1 i ,vg’l,Xm,)’ and ‘Pg = (u ?’0, "X, U pX +). Let
K= Z?:o K;. Note that ®; and ¥; are K x K matrices. We add the following two

assumptions.

Assumption 2.5. There exist constants Cy and cy such that a.s.

oo > Cy > limsupmax A, ¥,) > liminf min ¥,) > >0,
1 . Ptem max( t) T e A'mln( t) Cy

00 > Cy > limsupmax Amax (P;) > hmmfmlnﬁmm( i) >cy > 0.
N i€l N i€l

Assumption 2.5 is similar to Assumption 8 in Ma et al. (2020). To introduce

Theorem 2.2, we define

1 (1 !
O = (,(0)/, t(l) Xty ,Vt(,p)/Xth) ,

/ / / /
ZZ).i(t) - ((O(()I)VSO) ’<0§1)V?,1> Xtjis (0571)‘/?,17) XPJI) )

0_ (0 oy’ A A1) 0 . o
wp = (g, uip)  Arj=0;"0 0 —vij Ay =(Alg AL

: A1) 0 ; (AL VARY
Aij =051 ) =iy, Aiw=(Ajg, AL,

1z |y
Df=721fir( Moo Dy:le[f—l{&'zéo}]@?,
t= 1=
1 T

3 ({Adiem) = + X (e <0} —1{e <&, ¥}}] @f

t=1

Theorem 2.2 below gives the uniform convergence rate and linear expansion of the

factor loading estimators from second stage estimation.

Theorem 2.2. Suppose Assumptions 2.1-2.5 hold. Then for each j € {0,--- ,p},

we have
i (1) Mo |l — log(NVT) £2
(i) ig}fd%s Uij — 0] u; ’2 =0p ( NAT 5]\]),
s (1) (1) log(NVT
iy max o) - 008 |, = 0, (/5050

(iii) A, = [DI} [Dlu—i—u]]i <{Afv"}te[T})] +o, <(N\/T)71/2> uniformly overi €
L.

Remark 2. Theorem 2.2(i) reports the uniform convergence rate for the factor
loading estimators of @9 for i € I U I3; Theorem 2.2(ii) reports the uniform con-

vergence rate for the factor estimators of @9 for ¢ € [T]; Theorem 2.2(iii) reports
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the linear expansion for the factor loading estimators of G)? for i € ;. However, the
Ji <{A,7v} ; G[T]> term is not mean-zero and represents the bias induced by the first
stage NNR. In the third stage below, we aim to remove such a bias from the linear

expansion.

2.3.3 Third Stage Estimator

In the debiasing stage, we first apply PCA to all independent variables X ;;, and
then run the row- and column-wise QRs to obtain the final estimators. Below we
give Assumptions 2.6-2.8 for the PCA procedure and establish the asymptotic linear
expansions of PCA estimates in the online supplement. Theorem 2.3 below gives

the asymptotic distribution of our final factor and factor loading estimates.

Assumption 2.6. For all j € [p), there exists a constant M > 0 such that
(i) E(ejiliji) =0,
(ii) E |:\/LN YL [ejiejis _E(ej,itej,is)]]z <M,
(iii) foralli € [N], + ¥ Y| |E(ejiejis)| <M,

/ 1 logNVT
i, = 0 ().

NAT
logNVT /
=0, ( AT ), where e ; = (ejJ-l,...,ej’iT) ,ejr =

(ej,lty---7ej,Nt>/ and E; = {e;, zt}ze

Assumption 2.7. Forall j € [p],

(i) recallthatL?z(l]], --,l]N> andWO ( 07 "'7W9,T
07170
ZLj>OandlimT_>oo jT i :ZWJ- >0,

(ii) the r; eigenvalues of X1, Xw; are distinct.
Assumption 2.8. For all j € [p), there exists a constant M > O such that

2
log(NVT

(i) maxtem E H \/LN Ziil l?7i€j7,';

2
) <M and max;cy) T iEj WO Op (lo%lxy))

. L vT 0
(ii) max;c;yE H T7 Li=1 W€t

Assumption 2.9. ForVj € [p),
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(i) E [fit(o)ej,it

7| -0

(ii) for each i € [N] and j € | {flt ,fir (0 ejﬂ-t} is stationary strong mixing

across t conditional on 9.

Assumptions 2.6-2.8 are stronger than those in Bai and Ng (2020) because we
strengthen their Assumptions Al(c) and A3 to hold uniformly. Assumption 2.9
imposes some moment and mixing conditions. Even though f;(-) (the PDF of g;

given Z,) is a function of {e I ,,} 7> W€ can show that Assumption 2.9

JE[pl,i€[N],re
holds under some reasonable conditions. For example, we consider the location
scale model:

Yy =Boi+ Y, XjiBji+ (Yo,imL ) Xj./it?’j’it) wi, with Xy =] +eji,

Jelp] JElp]

where u; is independent of {W(J)-J,e jiit} jelp)re(r) and l?,i and B, ;; are nonrandom.
In this case, @?’it =B+ 72 (wir), € = ('}’O,it +Ljclpl ij,-,ym) [uir — P (uir)],
where 2:(uj;) is the t-quantile of u;. It is clear that f;(-) is the function of
{e J}it}j elplic V] relT] and all factors. However, if u;; is independent of sequence
{e;, it}j clplacir Ve observe that f;(0) is the PDF of u; — 2;(u;) evaluated at

zero point, which is independent of {e j, ,,} Therefore, Assumption 2.9(1)

JElple[T)
holds under mild conditions that u;; is independent of the sequence {eit}te[T] and

E (ex|2) =0.
Define

1 ¢ 0.0

. , .

V“N'_T [flf jlt}@] Ve, jVijs Vupi = V‘
=1

Q. r|— e-'vO (t—1{g; <0

Uj,l \/thl ] [71 { 1t } ]

) 1
0t = 5 L SO0l Vi, =E (0]

QS)_T 1—17)— ZE jltuo 0’
31613

Vi) "o, (v - oV w0, =

Let %, ; = 0\, 10, v, 10" 2&3):0(.1><

J J
ej, ,tv j(t—1{& <0}) and &Y. =e;. ,,u j(t—1{€; < 0}). The following theorem

J,it
establishes the asymptotic properties of the third-stage estimators.

Theorem 2.3. Suppose that Assumptions 2.1-2.9 hold. Suppose that Assump-
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tion A.1 in Appendix B.3 of the online supplement hold. Let 051]) be the bounded
(1)

matrix defined in the appendix that is related to rotation matrix O I Then we have

thatVj € [p],
(i) u(il) OE:])'”?,J V_1 1 Zt 1b(J)lt+%’J and
VT (a3~ 0ljul j> ~N(0,5,,) Vieh,

~1 a1
(i) 55"~ (0L)) 99, =0 (W5)) " 3k Lier, €% + 1, and

t,] u,j Vijs !

Vs (75 - ol!) ,]) ~N(0,2)) vre 7]
%’J =0, ((N\/T) 1/> max, e[z ‘%tv

where max;cy,

=0, <(N\/T) >

Remark 3. Theorem 2.3 reports the linear expansions for the factor and factor
loading estimators for each slope matrix obtained in Step 3. Compared with Cher-
nozhukov et al. (2019), Theorem 2.3 obtains the uniform convergence rate rather
than the point-wise result for the reminder terms %lj , and %t’ ,- In addition, since
the regressors in the debiasing step are obtained from Step 2 instead of Step 1, we
don’t have independence between the regressors and error terms, which makes the
proof more complex than that in Chernozhukov et al. (2019). See the proof in the
appendix on how to handle the dependence. Assumption A.1 in the online supple-
ment is a regularity condition on the density of &;.

Following Theorem 2.3 and estimators defined in Table 2.1, we have that V;j
[p], Vi € [N] and Vt € [T],

~(a,b) b) o _
;7 =0y jui; = Zvub] it T %]

(a,b p)r\ ! b)
ff] )_ <0£{3J)/> vgj - 05 ( vja ) NG Zu ]ll—i_%i]V?

al 1

where V") = i ey, fu(0)e2 ud u, a € [3] and b € [3]\ {a}.
Given the above estimates for the factors and factor loadings, we can estimate
@Y by

Jit

Oja=3 Y, ¥ {alse,
ac3]be3]\{a}

where 1;, = 1{i € I} fori € [N]. Let 20 = 1, Zuj,,vt j +y3

1 0/ ya 0
Jyit th lmu Z ,

a=1 N, i,j*

The following proposition studies the asymptotic properties of © it~
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Proposition 2.1. Under Assumptions 2.1-2.9 and Assumption A.1, ¥ j € [p] we

have

(l) A_]'i[ Za 1 IJ(A(a2> N Zl *el, g]l*l‘lla—i_v()/vu]llzl*—lb t*+
1= o, <(N\/T) 1/2),

J
_ logNVT
- 017 ( NAT )’

i’
i) < M)l/z <(:)j7if_®97il> ~ N(0,1).

(ii) max;c (N re(7] ‘éj,it - ®?,il

Remark 4. Proposition 2.1 establishes the distribution theory for the slope es-
timators. Recall that we remove the principle component from the independent
variables X ;; which is the key point in the debiasing step and why we don’t have
the distribution theory result for the intercept estimates C:)oﬁ in the current frame-
work. However, once we have the distribution theory for the slope estimates, we can
follow Chen et al. (2021) and obtain a new estimator for ®o ;; from the smoothed
quantile regression and establish its distribution theory. We leave this for the further
research.

To make inference for ul N , j»and @9 i+» one needs to estimate their asymptotic
variances X, ;, X, and =0 7. consistently. Let k(-) be a PDF-type kernel function and
K(-) be its survival function such that [k(u)du =1 and K (u) := [, k(v)dv. Let hy
be the bandwidth such that iy — 0 with N — co. Define Kj, () = K (7). kny () =
ﬁk(m)- Let & =Yy — O0it — ¥ jc () X7t O its V1.5, = & Lae3) Loe[3]\ {a) V(,ajb)v(f;b)/,
and 0 ; = %zaem Lo fay 5”8”1, Define

:_ Z Z khN &ir) jltvlwv Avj :_ Z Z khN &) Jl[ull,ju

ze [N]te[T] ze[N Jte(T]
R T-T) t+T,
'Q‘Mj NT Z Z T ]ltVll‘j+ Z Z Sjll‘Y+ Z Z Sjlts
i€[N] \r€[T] =1 s=t+1 t=1+4Ty s=t—T,
A 1—1' NN $ A 1A A
Q,, = Z Y &ty £, =V10,0 0 8, =V, VL
i€[N]t€[T]

where S; s = €i1€}isVr 5, [T K (ZG)} [T—K (h—yﬂ We further define
1

N
~ Alab)re A(ab)
N, iall; ; Zvjuid. .

1

A

-~
oo

—

it
J 2

_ﬁ(a,b)/ [(a.,b)

Y Vi

t,Jj uj

1
+
ac[3]be3]\{a} (T
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Let Fjss(-,-) and f; (-, -) denote the joint CDF and PDF of (&, €;) given Z,, respec-
tively. To justify the consistency of the variance estimators, we add the following
assumption.
Assumption 2.10. (i) ["Zk(u)du=1, [T k(u)uldu=0for je{1,--- ,m—
1} and 72 k(u)u™du # 0 for m > 1.

1/4
(it) = 0 and (5D ) H 0

log(NVT) §NT1

NAT — 0.

(iii) Ty — oo and

(iv) fit(c) is m times continuously differentiable with respect to ¢ and fis(c1,c2)

is m times continuously differentiable with respect to (c1,c3).

(v) Vi € [N], Vi = Vi, and Q5 = Q.

J

(Vl) vae[ ]’ x Z[:}E[fll( ) Jzt ?/ ?lj] +0P(1> and
N
a 1
Q¥ :%E%V]E(egl ud %) +0p(1).

Assumption 2.10(i)-(iv) are standard for consistent estimation of the asymptotic
variance matrix; see, e.g., Chen (2022) and Galvao and Kato (2016). Assumption
2.10(v) imposes the homogeneity moment condition across individuals, and As-
sumption 2.10(vi) assumes the moments calculated from subsamples are close to
those from the full sample given the random splitting. Under Assumption 2.10,
following the idea of Chen (2022), we establish in Lemma A.33 of the online sup-
plement the consistency of £, ; and 3, ;- Similar conclusions hold for the other

estimates.

2.4 Specification Tests

In this section, we consider two specification tests under different rank condi-

tions.

2.4.1 Testing for Homogeneity across Individuals or Time

When K; = 1 for some j € [p], it is interesting to test whether the matrix (H)? is

homogeneous across individuals (i.e., row-wise) or across time (i.e., column-wise).
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For these two cases, we can write factors and factor loadings as

0

o _ u _
ui"—ll]—i‘ci’j and vl‘,j_

i vj+c j, respectively,
where u; =+ YN 4% andv;= LY. 0. For the homogeneity across individuals
J T N&i=14j = T 2=1"41,j- g y ]

the null and alternative hypotheses can be written as
H - cij=0 Vie[N] vs. H' - ci j # 0 for some i € [N]. (2.10)

Similarly, for the homogeneity across time, the null and alternative hypotheses can

be written as
HY ¢, ;=0 Vte[T] vs. HIT ¢/ j # 0 for some ¢ € [T]. (2.11)

Note that we aim to test the two null hypotheses separately. That is, we can test
for homogeneous slope across individuals while allowing for heterogeneous slopes
across time and vice versa. This is different from the majority of the literature which
either tests for slope homogeneity across individuals while assuming the slopes are
homogeneous across time or tests for structural breaks across time while assuming
the slopes are homogeneous across individuals.

We first consider testing Hé . Following the lead of Castagnetti et al. (2015), we

define?

b ~(a,b 2(a,b)\r&a—1 7 Alab 2(a,b
Sb) — Iirée};cT(ul(flj Py 1@ — i) and
S,,, = max (Sg’”,sﬁ,fﬁ),sﬁé’z)) , 2.12)
where ﬁg.a’b) = ]%a Yiel, ﬁg?j’b). Similarly, to test for H, I we construct
Sy, = max (857,837,811,
where
b ab)  alab)vre—1,Aab)  alab sab) 1 (ab
S&j’ ) = }E%N(sz ) vg-a ))’Zvj (vffj ) —vE.“ N, Sﬁf ) = ESS? ) —b(T),
ﬁﬁa’b) = %ZLI ﬁt(flj"b), and b(n) = logn — %loglogn —logF(%) forne€ {N,T,NT}.
To proceed, we introduce some notation. Recall that b?',ir =ejivy j(t—1{&; <0})
2Altematively, we can also define S‘u’j = max (55372),51%.1)755}73» . It is easy to show that this

statistic shares the same asymptotic null distribution as S,;. But due to the unknown dependence
structure between the two, we cannot take the maximum or the other continuous function of Su,. and
S;]_ as a new test statistic.
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and 50 =ej ,,u i(t—1{& < 0}). Define
(1) 0 @ _ (o0 o (O _ (p® @ _ (o) ! go
bjﬂl‘ uj b] it? bj,it_ <ij'7t> éj,ita bj,it_ (ij7t) 51 it and b] it (VVj,t> &j,it'

Let‘B(f = (b(-t'))/ ,bg I)W) for ¢ € [4]. Define

Jit J,1t
m _ 1y (1) g (1)7 2 _ 1 @) @)
Z%J_T;;E@N%M)’ 2. = N31613E(% %],),
¢ _ 1 (3) 2 (3)/ _ b
2%’j_N2iezzE<%j’i%j’i>’ and =) = §E< ).

We add the following two assumptions.

Assumption 2.11. Vj € [p], we assume

7L>Amax( )>Afm1n( )Z&>07 7L>A'max( ) A'mm( )Z&>O
()

Assumption 2.12. (i) There exists a high dimensional Gaussian vector Zg,

N (o,zg?j) such that H%zf:l Bl Z%)’ = o,(1).

(ii) There exists high dimensional Gaussian vectors Zg) ~ N (0,2(“? j) for 1 =
2,3,4 such that (Z(%),Zg),Zg)) are independent,

ZSB”—

l€[2

=0p(1), and

Z%jl B :017(1)7 |

1613 max

\/]le%jl_ :017(1)'

S max

Assumption 2.11 implies that both X, and X,; are well behaved. Assumption
()

2.12 imposes that we can approximate high dimensional vectors \%Zzem B ITE

2 3 4
\/LN? Yicn ‘B}i)’ ﬁ Yicl, 535',1') and ﬁ Yier, 535',1')

by four Gaussian vectors. Similar
conditions have been imposed in the literature; see, e.g., Assumption SA3 Lu and
Su (2023).

The following theorem reports the asymptotic properties of S,; and S,; under

the respective null and alternative hypotheses.

Theorem 2.4. Suppose that Assumptions 2.1-2.12 and Assumptions A.l in the
online supplement hold and (N,T) — oo. Then

(i) Under Hé, we have P (%Suj <x+ b(N)) — e ¢ and under Hé’, we have

P (Svj < x) —y e 3

—X
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2
.. . T .
(ii) Under H, if Togh MaX;e|y] C?,j ) — oo, we have P (Suj > cml.N) — 1 with

ca,1.N = 2b(N) —log|log (1 — o)|? and o is the significance level. Under

2
‘2 — oo, we have P (S,,j > cayz) — 1 with cqp =

I . N v
HY', if fogr MaXee(r) ||Cf

—log (—%log(l —a)).

Remark 5. Theorem 2.4 implies that our test statistics follow the Gumbel dis-
tributions asymptotically under the null, are consistent under the global alternatives,

and have non-trivial power against the local alternatives. The power function of S,

2
¢t ‘2 diverges to infinity as (N,T) — oo.

approaches 1 as long as @ max;e|

2.4.2 Test for an Additive Structure

When K; = 2 for some j € [p], it is interesting to test whether G)%it exhibits the
additive structure which is widely assumed in a two-way fixed effects model. That

is, one may test the following null hypothesis
HY' 0% = Aji+ fia, ¥ (i,0) € N] x [T], 2.13)

The alternative hypothesis H/!! is the negation of H!.

Let O, = %Z,em it ®[ Na Yier, 9 jir» and ®I N T Licl, LielT] @
for a € [3]. Define

_®O

*
0; Jsit

= =1, =1, . .
Gt ®j7i.—®j7,l+®j, Viel,t€l[T],je€|p]

Note that ©% ;, =0V (i,) € [N] x [T] under H}'". So we can propose a test for H!

J,it

based on estimates of @}‘ ;- Define

1 R
=2 ¥ O .,.:—Z@)mand@’ T L L O

te[T a4 icl, Na i€l te(T)

for a € [3]. Then, we can define the sample analogue of (:)}57” as

A

O = C:)j,it _®j,i~ —Ci)j-‘j,t —f—é);“, Viel,te [T],j S [p]

Jyit —

Its corresponding asymptotic variance can be estimated by £ . defined as

J,it
- 1 U (@b) _ b)) (ab)  (ab)
yr. = — — a7 —u,’ a7 =y 1;
Jiit vj J ia
2 GeBlpefilfa) Mo (@ ) & )

i,
SELT ) ()

ac[3]be3)\{a} r

[Nold
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where ﬁ&a’b) N Yier, l(c; ) and § =7 Z,G ) . Then, the final test statistic

is

SNt = g
NT le[gf}é[ﬂ( jzt) / Joit*

The following theorem studies the asymptotic properties of Syr under the null

and alternatives.

Theorem 2.5. Suppose that Assumptions 2.1-2.12 and Assumptions A.1 in the
online supplement hold and (N,T) — 0. Under H}",

1 —x
P (ESNT <x+ b(NT)) —e ¢

2
— oo, then we have P (Syt > cq 3.87) — 1

under Hlm’ iflé\;ANTT max;e (] re[T] ’@)}it
with co 387 = 2b(NT) —log [log (1 — o) |*.
Similar remark after Theorem 2.4 holds here. In particular, Sy7 has the desired

asymptotic Gumbel distribution under the null and is consistent under the global

alternative.

2.5 Monte Carlo Simulations

In this section, we conduct a set of Monte Carlo simulations to show the finite
sample performance of our low-rank quantile regression estimates and specification

tests.

2.5.1 Data Generating Processes
Below we will consider the following data generating process (DGP):
Yy = ®O,it ‘|‘Xi/;®iz + (1 + 0-1X1,it +0-1X2,it)uiz,

where Xi; = (X1.ir,X2,it)", O = (O1,i£,02¢)", Op ¢ is the intercept term which will
be specified via the IFEs.

First, we consider four DGPs where the rank of each slope matrix is 1:

DGP 1: Constant slope with i.i.d. error. Let g ; = A;f;, where A;, f; ~ N(2,5).

Then let @1 ;; = @ =2 V(i,t) € [N] x [T], and X ;s = l]lw]t—f—U(O 1)

for j € {1,2} with 19,19, ), and w3, ~ U (0,1). u; "~ 3.
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DGP 2: Factor slope with rank 1 and i.i.d. error. Same as DGP 1 except that
the slope coefficients follow the factor structure with one factor rather than
homogeneous across both individuals and time, i.e., O ;; = aj ;g1 ;, O2 ;s =
a g2, wWhere ayj, g1y, az; and g», ~ N(0,2). Except these, all other

settings remain the same as in DGP 1.

DGP 3: Constant slope with serial correlation. Same as DGP 1 except that we set

j.i.d ) )
uip = 0.2u;; 1 + €, &; T % and all other settings remain the same.

DGP 4: Factor slope with rank 1 and serial correlation. Same as DGP 2 except
that we set u; = 0.2u;;_1 + &, & Hd % and all other settings remain the

same.

For the case that the rank of the slope matrix is 2, we consider two DGPs which
have the additive structure for the slope coefficient of one regressor and the factor

structure with two factors for the slope coefficient of another regressor. Specifically,

DGP 5: Additive and factor slopes with i.i.d. error. @y ; = A4;f;, ©1; = a1 ; +
g1 and @y = aj ;g2 such that az; = (a2,1,a2,2)"s 820 = (824,1,82:2)s
Ai, fi,a1.i,81i ~ N(2,5) and a3 ;1,a2:2,82i1,82i2 ~ N(0,5). Moreover,
Xy = l?’iw(l)’t +U(0,4), X0t = lg’iwg’t + Beta(2,5) with l(l)’l.,w(l)vt ~U(0,4)
id 1(3)

and 9, w3, ~ Beta(2,5). u; *' 151,

DGP 6: Additive and factor slopes with serial correlation. Same as DGP 5 except

that the error u;; follows AR(1) process like in DGPs 3 and 4.

2.5.2 Estimation Results

For ® € RV*T | define RMSE (®) = ﬁ |®— ®0||F. Table 2.3 shows the RM-
SEs of the full-sample low rank matrix estimates under different quantiles for each
DGP. As Theorem 2.1(i) predicts, the RMSEs decrease as both N and T increase.
Given the fact that N AT = T in the simulations, the decrease of the RMSEs is
largely driven by the increase of 7.

Table 2.4 reports the frequency of correct rank estimation by the singular value

thresholding (SVT) approach based on 1000 replications. Note that the true ranks

of the intercept and slope matrices in DGPs 1-4 and 5-6 are 1 and 2, respectively.
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The results show that the SVT can accurately determine the correct rank of the

coefficient matrices in all DGPs for all three quantile indices under investigation.

Table 2.3: RMSEs of low rank estimates in the full sample

7=0.25 7=20.50 7=0.75

bGP N T 5" &6, & 6 6 6, 06, 0, 6

35 0922 0324 0329 1242 0288 0297 1.839 0.609 0.658

570 0707 0280 0275 0819 0220 0203 1266 0519 0.523

1 35 1.012 0337 0340 1.099 0258 0262 1932 0661 0.623
15070 0745 0272 0265 0825 0205 0206 1324 0522 0.504

35 0.871 0.521 0505 0.881 0.704 0.680 1.278 1.055 0.970

570 0692 0401 0373 0.672 0553 0537 1.057 0744 0.768

2 35 0.877 0507 0480 1.022 0.790 0.815 1.334 1.018 1.040
150 70 0.703 0.374 0373 0.689 0.531 0.538 1.059 0.829 0.787

35 0945 0334 0329 1.115 0280 0265 1.876 0.630 0.627
7570 0682 028 0279 0809 0230 0214 1244 0486 0492
3 35 0973 0334 0331 1211 0287 0291 1771 0590 0.612
1500 70 0757 0274 0272 0801 0208 0.195 1360 0494 0.527

35 0.885 0515 0519 0915 0693 0723 1382 1.125 1.037

7570 0669 0393 0384 0652 0511 0520 1.053 0812 0774

4 35 0.889 0513 0483 0905 0761 0686 1409 1.118 1.133
150 90 0725 0376 0377 0717 0547 0565 1.058 0724 0.775

35 0218 0.268 0.450 0.307 0.308 0.606 0.844 0.466 0.936

3 70 0.174 0.226 0414 0.213 0.200 0.493 0.610 0.388 0.838

5 35 0236 0245 0458 0.299 0.291 0.634 1299 0.863 1.778
150 70 0.174 0.214 0423 0.216 0.203 0450 0.629 0.377 0.679

35 0253 0267 0293 0382 0227 0421 1293 0.609 0.892

7570 0207 0239 0278 0261 0.192 0366 0576 0287 0415

6 35 0225 0254 0269 0363 0225 0422 1486 0.695 0992
15070 0193 0254 0263 0254 0171 0379 0797 0391 0.551

2.5.3 Test Results

In Section 4, we define S,; and S,; as the sup-type test statistics. Table 2.5
reports the empirical size and power at the 5% nominal level for the null hypothesis
that the slope coefficient is homogeneous across either i or z. The results in DGPs 1
and 3 give the empirical size, and those in DGPs 2 and 4 give the empirical power.
As the results in Table 2.5 indicate, our tests have reasonable size despite the fact
that they are slightly conservative like most extreme-value based sup-tests in the
literature. In terms of power, out tests have superb power in both DGPs across all

three quantile indices.
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Table 2.4: Frequency of correct rank estimation via the SVT approach

7=0.25 7=0.50 T=0.75
beP N kR kK kK kK K kR Kk &k &k
75 35 1.00 0996 0.996 1.00 0.999 1.00 1.00 0.999 0.999

70 100 0994 0996 1.00 1.00 1.00 100 100 1.00
1 35 1.00 0994 0995 100 1.00 0999 100 1.00 0.999
150 70 100 0995 0996 1.00 0999 1.00 1.00 0999 1.00

35 1.00 0993 0999 1.00 0999 1.00 100 1.00 1.00

570 100 0997 0998 1.00 1.00 1.00 100 1.00 1.00

2 35 1.00 0995 0996 1.00 0998 1.00 1.00 1.00 1.00
15090 100 100 100 1.00 1.00 0998 1.00 1.00 1.00

35 1.00 0990 0997 1.00 0997 0997 1.00 0.999 0.999
570 1.00 0994 0994 1.00 0999 0999 1.00 0999 0.998
3 35 100 0999 0992 100 1.00 100 100 100 1.00
150 70 1.00 0996 0994 1.00 0998 1.00 1.00 1.00 1.00

35 1.00 0992 0991 1.00 0999 0.999 1.00 0999 1.00

7 70 1.00 0995 0995 1.00 0999 0999 1.00 1.00 1.00

4 35 1.00 0996 0.997 1.00 0999 1.00 1.00 1.00 1.00
150 70 1.00 0997 0999 1.00 0999 1.00 1.00 1.00 1.00

35 100 100 100 100 100 100 100 100 1.00
5 70 100 100 100 100 100 100 100 1.00 1.00
5 35 100 100 100 100 100 100 100 1.00 1.00
15090 100 100 100 100 100 100 100 1.00 1.00

35 100 100 100 100 1.00 100 100 100 1.00

5 70 100 100 100 100 100 100 100 100 1.00

6 35 100 1.00 0999 1.00 1.00 1.00 100 1.00 1.00
15090 100 100 100 1.00 100 100 1.00 1.00 1.00

Table 2.6 shows the empirical size and power of our test for DGPs 5 and 6.
The findings are similar to those in Table 2.5. In particular, our tests are a bit

conservative under the null. The empirical power tends to 1 quickly as T increases.

2.6 Empirical Study

In this section we consider two empirical applications: the heterogeneous invest-
ment equation and the heterogeneous quantile effect of foreign direct investment on
unemployment.

2.6.1 Investment Equation

In this subsection, we revisit the investment equation. Fazzari et al. (1988) point

out that investment may show sensitivity to movements in cash flow when firms
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Table 2.5: Empirical size and power of testing slope homogeneity across either i or ¢
(nominal level: 0.05)

7=0.25 7=05 =075

DGP N T
up Vi u V2 up Vi u %) uj Vi up 12

35 0.040 0.051 0.049 0.032 0.024 0.054 0.034 0.054 0.036 0.047 0.036 0.048

7570 0040 0055 0050 0044 0020 0056 0017 0068 0025 0037 0029 0029

DGP 1 35 0.028 0.036 0.058 0.048 0.065 0.054 0.052 0.055 0.074 0.030 0.076 0.024
150 70 0034 0025 0030 0023 0035 0048 0028 0040 0035 0025 0039 0025

35 100 1.00 1.00 1.00 1.00 1.00 100 100 100 100 1.00  1.00

7570 100 100 100 100 100 1.00 100 1.00 1.00 100  1.00  1.00

DGP 2 35 1.00 1.00 100 100 1.00 1.00 1.00 100 100 100 1.00 1.00
150 70 100 100 100 100 100 1.00 100 100 1.00 100 1.00  1.00

35 0.045 0057 0.050 0.041 0.022 0.050 0.038 0.089 0.054 0.047 0.049 0.047

7570 0048 0031 0031 0033 0028 0086 0023 0069 0041 0046 0032 0038

DGP 3 35 0.065 0.054 0.058 0.034 0.064 0.051 0.068 0.045 0.084 0.018 0.089 0.023
150 70 0046 0030 0044 0025 0022 0037 0037 0030 0046 0022 0048 0015

35 100 1.00 1.00 1.00 1.00 100 100 100 100 1.00 1.00  1.00

7570 100 100 100 100 1.00 100 100 100 100 100 1.00  1.00

DGP 4 35 1.00 1.00 100 100 1.00  1.00 1.00 1.00 1.00 1.00 1.00 1.00
150 70 100 100 100 100 100 100 100 100 100 100 100  1.00

Table 2.6: Empirical size and power for testing additive slopes (nomial level: 0.05)

7=0.25 7=0.50 7=0.75

DGP N T . . .
size power Size power Size  power

35 0.027 0807 0.034 1.00 0.026 0.979

570 0065 100 0061 1.00 0034 1.00

DGP 5 35 0018 1.00 0026 1.00 0011 1.00
15070 0012 1.00 0029 1.00 0010 1.00

35 0039 0796 0058 100 0045 0979

570 0024 100 006 100 0032 1.00

DGP 6 35 0019 1.00 0025 1.00 0.022 1.00
15090 001 100 0022 100 0014 1.00

face constraints for external finance. Since Fazzari et al. (1988), there has been a
large literature on the effect of cash flow on the corporate investment; see Devereux
and Schiantarelli (1990), Gilchrist and Himmelberg (1995), Kaplan and Zingales
(1995), Cleary (1999), Rauh (2006), and Almeida and Campello (2007), among
others. Using the panel dataset, we consider the scaled version of the investment

equation as follows:

L CF;
Kl;t_l = ®O,it + @1,11‘?:1‘1 + ®2,iIQi,t—1 _|_ ui[7

where [ is the corporate investment, CF is the cash flow, g is the Tobin’s q, K is
the capital stock and u is the innovation. @y ; refers to the fixed effects (FEs).
Rather than the mean estimation, Galvao and Wang (2015) estimate the effects of

the firm’s cash flow and Tobin’s q on investment at different quantiles. By using the
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panel quantile regression with individual FEs, they show that the slope estimates
change across 7. However, they do not allow the slope coefficients, ®; and ©;,
to change either over i or ¢. Inspired by Galvao and Wang (2015), we estimate the

following model

2; <1Kit} {CFKit:Qi,tfl}te[T] ) {®j7it}t€[T},je{0,l,2}>

= ®0,it(T) + ®1,it(f)CFKit + ®2,it(T)Qi,z—la (2.14)

where IK;; = % and CFK;; = KC i’l . Here we don’t restrict the specific structure

on the FEs and they can be either additive or interactive.

The data are taken from the China Stock Market & Accounting Research (CS-
MAR) Database. We use quarterly data for 195 manufacturing firms in China
from 2003 to 2020. Based on the model (2.14), we define corporate investment
as Iy = LIy — LI;; |, where LI is the total value of long-term corporate investment
as the sum of long-term equity investment, long-term bound investment, fixed assets
and immaterial assets. The investment measures the change of firm’s total invest-
ment compared to the last period. All these four variables can be easily obtained
from the balance sheet. We directly use Tobin’s q from the CSMAR database, where
by definition g = A% and MV is the market value of the firm. We obtain a balanced
panel dataset with 195 firms and 72 time periods. The units of corporate investment,
capital and cash flow are measured by billions of Chinese RMB.

By using the SVT approach, we obtain the estimates of the ranks of ®; and O, :
7| = 7 =1 for each T = {0.25,0.5,0.75}. Consequently, we can consider the test
that whether ©; ;; is constant over i or constant over 7 for both j = 1,2. Specifically,
we want to test whether the effect of cash flow and Tobin’s q on the firm’s investment
is homogeneous over i or across ¢ with market imperfection. That is, for j € {1,2},

we shall test

e Hy: ©;; is a constant over i,

. Hé’ : ©; ;; 1s a constant over £.

Figure 2.1 shows the estimation results for the factor and factor loadings of two
slope coefficient matrices under different quantiles. In each sub-figure, the first and

second rows report the results for @ and @, respectively. Specifically, the first row
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Figure 2.1: Factor loading and factor estimates under different quantiles

of Figure 2.1(a) gives the plot of {#; }ie[N} as a catenation of {ﬁ(172)7ﬁ5273)7ﬁ§371)}
at the left and as a cantenation of {ﬁl(lls) , ﬁl(’z]’l), 1(3 2)} at the right in the first row, and
similarly the plot of {ﬁiﬂ}i €[N in the second row. Similarly, the first row of Figure
2.1(d) shows {1?5’01’1’)},6”] for a € [3], b € [3]\ {a} in the first row and {v },e
fora € [3], b € [3]\ {a} in the second row.

Table 2.7 reports the test statistics, critical values, and p-values. Tobin’s q can
measure a firm’s investment demand. After controlling the Tobin’s q and the in-
tercept FEs, the coefficient of cash flow captures a firm’s potential for external in-
vestment with the variation of internal finance. It is clear that we can reject the
homogeneous hypotheses for both i and ¢ at the 1% significance level for each
7 € {0.25,0.5,0.75}. This indicates that with high probability, the slope coefficient
of both CFK and Tobin’s q follow the factor structure with one factor.

The above study shows strong evidence that under imperfect market, the sen-
sitivity of corporate investment to cash flow exhibits both individual heterogeneity
and time heterogeneity across quantiles. It implies that neither the usual homoge-
nous panel QR model nor the panel QR model with either cross-section or time
heterogeneity alone in the slope coefficients fails to fully capture the unobserved

heterogeneity in the investment equation.
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Table 2.7: Test results under different quantiles for the investment equation

! Test § CVa=001 CVa=0.05 CVa=0.1 p-value
ucrx  1.28 x 103 0.00
u 4.16 x 10* 16.94 13.68 12.24 0.00
q . ‘
0.25 VCFK 13.85 A 0.00
Vg 870.85 5.70 .07 3.35 0.00
UCFK 148.28 0.00
L loawies 1694 1368 1224 oo
q . .
0.50 VCFK 49.57 0.00
Vg 138.83 5.70 4.07 3.35 0.00
UCFK 313.21 0.00
U 2.03 x 10* 16.94 13.68 12.24 0.00
q . .
0.75 VCFK 31.50 0.00
v 58.29 5.70 4.07 3.35 0.00
q . ‘

Notes: S is the test statistics for the factor or factor loadings under
different quantiles, Hj(CFK) and H{(q) refer to the hypotheses
that the slope of CFK and Tobin’q is homogeneous across i, re-
spectively. HY(CFK) and HE(q) refer to the the hypotheses that
the slope of CFK and Tobin’q is homogeneous across ¢, respec-
tively. cvg—, is the critical value under the significance level a
where a=0.1, 0.05, and 0.01.

2.6.2 Foreign Direct Investment and Unemployment

Investment is one of the major driving forces for economic growth and em-
ployment. Among the investment, foreign direct investment (FDI) is an important
contributor to the employment. See Craigwell (2006), Aktar et al. (2009), Karlsson
et al. (2009), Mucuk and Demirsel (2013), and Strat et al. (2015), among others.
Controversially, Mucuk and Demirsel (2013) argue that FDI may have both positive
and negative effects on employment. On the one hand, FDI adds to the net capital
and creates jobs through forward and backward linkages and multiplier effects in lo-
cal economy. On the other hand, acquisitions may rely on imports or displacement
of existing firms which may result in job loss.

To study the relationship of FDI, economic growth rate and unemployment at

the country level, we consider the following panel quantile regression model,

QT <Uit| {Gi,lthDIl't}te[T} ) {®jvil}l€[T},j€{O,l,2}>

= ®0,it(77) + ®1,it(f) Gis1+ @27,-[(T)FDI,';,

where Uj; is the unemployment rate of country i at year f, G;;_ is the economic
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growth measured by the growth of real GDP. ® ;; is the FEs of country i and year ¢,
©,,;; is the elasticity of the economic growth in the previous year to the unemploy-
ment this year, and O, ; is the elasticity of FDI to the unemployment.

We draw the data for 126 countries from 1992-2019. The data for the unem-
ployment rate are taken from International Labor Organization (ILO) and GDP
growth and FDI are from the World Bank Development Indicators (WDI) histor-
ical database. The rank estimation procedure shows that 7y =2 and 7, = 1. Con-
sequently, we can test whether the elasticity of FDI to the unemployment rate is
homogeneous across individual countries and over years 1992-2019, and whether

the elasticity of growth rate to unemployment follows the additive structure, i.e.,
* Hj: O =01, + 0Oy,
. Hg : Oy ; is a constant over i,

* H§: Oy is a constant over .

Table 2.8 reports the test results under quantiles 0.25, 0.5 and 0.75 for the above
three null hypotheses. Figure 2.2 gives the estimation results for the factor and factor
loading estimates of the slope coefficient ®;. As Table 2.8 suggests, we can reject
all the above three null hypotheses safely at the conventional 5% significance level.
This means that the effect of FDI on the unemployment rate is different across both
countries and time even though the estimated rank of ®; is one, and the effect of
economic growth rate on the unemployment is heterogeneous across both countries

and time and it does not exhibit an additive structure.

Table 2.8: Test results under different quantiles

Test T S V=001 CVq=005 CVa=0.10 p-value

0.25 38.92 35.55 32.29 30.85 0.00
H 0.50 80.84 22.29 19.03 17.59 0.00
0.75 66.24 35.55 32.29 30.85 0.00

0.25 1.41x10° 0.00
H¢ 050 639x10° 1615 1289 1145  0.00
0.75 3.07 x 107 0.00
0.25 36.36 0.00
H(f)z 0.50 164.03 5.70 4.07 3.35 0.00
0.75 5.44 0.013
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(a) factor loading estimates (c) factor loading estimates

(d) factor estimates under (e) factor estimates under (f) factor estimates under
7=0.25 7=0.5 t=0.75

Figure 2.2: Factor loading and factor estimates of ®; under different quantiles

2.7 Conclusion

This paper considers panel QR model with heterogeneous slopes over both i
and 7. Compared to Chernozhukov et al. (2019), to remove the bias from the nu-
clear norm regularization, we split the full sample into three subsamples. We then
use the first subsample to compute initial estimators via NNR, the second sample to
refine the convergence rate of the initial estimator, and the last subsample to debias
the refined estimator. Our asymptotic theory shows that the factor estimates, factor
loading estimates and the slope estimates all follow the normal distributions asymp-
totically. By constructing the consistent estimator for the asymptotic variance, we
also conduct two specification tests: (1) the slope coefficient is constant over time or
individuals under the case that true rank of slope matrix equals one and (2) the slope
coefficient exhibits the additive structure under the case that true rank of the slope
coefficient matrix equals two. Our test statistics are shown to follow the Gumbel
distribution asymptotically under the null, consistent under the global alternative
and have non-trivial power against local alternatives. Monte Carlo simulation and
empirical studies illustrate the finite sample performance of our algorithm and test

statistics.
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Chapter 3

Panel Data Models with
Time-Varying Latent Group

Structures

3.1 Introduction

Heterogeneous panel data models have been widely used in empirical research
in economics because they can capture a rich degree of unobserved heterogeneity.
But models with complete heterogeneity along either the cross section or time di-
mension tend to possess too many parameters to be identified, which results in slow
convergence and inefficient estimates. For this reason, more and more researchers
advocate the use of panel data models with certain structures imposed along either
the cross section or time dimension. On the one hand, the recent burgeoning on pan-
els with latent group structures can be motivated from the observation that different
groups of individuals may respond differently to an exogenous shock. For instance,
Durlauf and Johnson (1995), Berthelemy and Varoudakis (1996), and Ben-David
(1998) show economies in different groups of income per capita and/or education
level may converge to different steady state equilibria. Klapper and Love (2011),
Chu (2012), and Zhang and Cheng (2019) show an exogenous shock like policy im-
plementation has different impacts on different individuals, and Long et al. (2012)

argue that the influence of 2008 financial crisis on the economic growth is different
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for emerging and developed economies. On the other hand, the recent popularity
of panels with structural changes can be motivated from the occurrence of financial
crises, technological progress, and economic transitions, etc, during the time peri-
ods covered by the data. See Qian and Su (2016) for a survey on panel data models
that consider the estimation and tests of structural changes.

Even though there exists a large literature on the study of individual or time
heterogeneity alone in the slope coefficients of a panel data model, few of them
consider both types of heterogeneity simultaneously. Exceptions include Keane and
Neal (2020) and Lu and Su (2023) who consider linear panel data models with two-
dimensional unobserved heterogeneity in the slope coefficients that are modelled
via the usual additive structure, and Chernozhukov et al. (2019) and Wang et al.
(2022) who model the slope coefficients via the use of low-rank matrices for con-
ditional mean and quantile regressions, respectively. In addition, Okui and Wang
(2021) and Lumsdaine et al. (2023) consider both individual heterogeneity and time
heterogeneity by modeling them as a grouped pattern and structural breaks, respec-
tively. Specifically, Okui and Wang (2021) develop a new panel data model with la-
tent groups where the number of groups and the group memberships do not change
over time but the coefficients within each group can change over time and they may
have different breaking dates; Lumsdaine et al. (2023) consider the panels with a
grouped pattern of heterogeneity when the latent group membership structure and/or
the values of slope coefficients change at a break point. Both papers provide algo-
rithms to recover the latent group structure based on linear panel models with or
without individual fixed effects, but cannot allow for the presence of more compli-
cated fixed effects such as the interactive fixed effects (IFEs) to capture the strong
cross-sectional dependence in the data.

In this paper, we propose a linear panel data model with IFEs such that the slope
coefficients exhibit two-way heterogeneity. Following the lead of Okui and Wang
(2021) and Lumsdaine et al. (2023) and to encourage the parameter parsimony, we
use a latent group structure to capture the individual heterogeneity and an unknown
structural break to capture the time heterogeneity. As for the latent group structure,
we allow the model to have different group numbers and different group member-

ship before and after the break. Given the complicated structure of the model, we
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propose to estimate the break point, the number of groups before and after the break,
the group membership before and after the break, and the group-specific parameters
in multiple steps. Our key insight is that for each of the p regressors, their slope co-
efficients, when allowed to vary across both the cross section and time dimensions,
can be written as a factor structure with a fixed number of factors so that they can
be stacked into a low-rank matrix.

In the first step, we explore the low-rank nature of the slope matrices and pro-
pose to obtain their initial estimates by the nuclear norm regularization (NNR), a
popular machine learning technique in computer sciences. Such initial matrix esti-
mates are consistent in terms of Frobenius norm but do not have the pointwise or
uniform convergence for their elements. Despite this, by applying singular value
decomposition (SVD) to these estimates, we can obtain estimates of the associated
factors and factor loadings that are also consistent in terms of Frobenius norm. In
the second step, we use the first-step initial estimates of the factors and factor load-
ings to run the row- and column-wise linear regressions to update the estimates of
the factors and factor loadings which now possess pointwise and uniform consis-
tency and can be used for subsequent analyses. In the third step, we estimate the
break point by using the celebrated idea of binary segmentation as commonly used
for break point estimation in the time series literature. Once the break point is es-
timated, the full-sample is naturally split into two subsamples. In the fourth step,
we follow the lead of Lin and Ng (2012) and Jin et al. (2022) to focus on each sub-
sample before and after the estimated break point and propose a sequential testing
K-means algorithm to recover the latent group structure and obtain the number of
groups simultaneously. In the last step, we use the estimated group structure to esti-
mate the group-specific parameters. Asymptotic analyses show that the break point,
the number of groups and the group memberships can be consistently estimated in
Steps 3-4, so that the final step estimates for the group-specific coefficients can en-
joy the oracle property. This means they have the same asymptotic distributions as
the ones obtained by knowing the break point and the latent group structures before
and after the break points.

This paper relates to two branches of literature. First, our paper contributes

to the panel data literature on one-way heterogeneity, especially with either latent
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group structures or structural breaks. As for the latent group structures, there are
several popular ways to recover the latent groups. The first approach is K-means
algorithm. Lin and Ng (2012) apply the K-means algorithm to linear panel data
models with grouped slope coefficients and propose an information criterion and a
sequential testing approach to estimate the true number of groups. Sarafidis and We-
ber (2015) analyze the unknown grouped slopes in the large N and fixed 7 frame-
work, and Zhang et al. (2019) provide an iterative algorithm based on K-means
clustering for panel quantile regression model. Bonhomme and Manresa (2015)
and Ando and Bai (2016) consider panels with grouped fixed effects. The second
approach is the Classifier-Lasso (C-Lasso) that has become a popular clustering
method since Su et al. (2016). This method is extended by Lu and Su (2017), Su and
Ju (2018), Su et al. (2019), Wang et al. (2019), and Huang et al. (2020) to various
contexts. In addition, both clustering algorithm in regression via data-driven seg-
mentation (CARDS) approach and binary segmentation are also considered in Ke
et al. (2015), Wang et al. (2018), Ke et al. (2016) and Wang and Su (2021), among
others. As for the panel data models with structural breaks, binary segmentation has
become a common approach to estimate the break point. See Bai (2010), Lin and
Hsu (2011), Kim (2011), Kim (2014) and Baltagi et al. (2017), among others. These
papers focus on the case of one break point in the model. In contrast, Qian and Su
(2016) and Li et al. (2016) allow for multiple breaks in linear panel data models
with either the classical fixed effects or the IFEs, and propose the adaptive grouped
fused lasso (AGFL) approach to estimate the break points. Compared to existing
panel literature on one-way heterogeneity, we allow for two-way heterogeneity in
our model. In particular, we allow not only different membership structures in dif-
ferent time blocks but also the change of number of groups over time. As a result,
our model is more flexible than the vast existing models that allow for only latent
group structures or structural breaks, but not both.

Second, this paper contributes to the recent burgeoning literature that models
two-way heterogeneity in the slope coefficients of a panel data model. As men-
tioned above, there are two approaches to model the two-way heterogeneity in the
slope coefficients. One is to model them as an additive structure so that both the

individual and time effects enter the slope coefficients additively, as in Keane and
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Neal (2020) and Lu and Su (2023). The other is to impose certain low-rank struc-
tures on the slope coefficient matrices in which case one models each slope coeffi-
cient via the use of IFEs as used to model the strong cross sectional dependence in
the panels. In view of the low-rank structures, we can resort to the NNR that has
attracted increasing attentions recently in panel data analyses. NNR has been used
in recent researches in econometrics, see Bai and Ng (2019), Moon and Weidner
(2018), Chernozhukov et al. (2019), Belloni et al. (2023), Miao et al. (2023), Feng
(2019), and Hong et al. (2023), among others. But none of these papers impose
any latent group structures in the slope coefficients. With latent group structures
and structural breaks imposed, Okui and Wang (2021) allow the slope coefficients
within each group to have common breaks and the break points to vary across dif-
ferent groups, and they propose to estimate the latent group structures, the structural
breaks, and the group-specific regression parameters by the grouped adaptive group
fused lasso (GAGFL). Note that neither the number of groups nor the group mem-
berships is allowed to change over time in Okui and Wang (2021). In a companion
paper, Lumsdaine et al. (2023) allow the latent group membership structure and/or
the values of slope coefficients to change at a break point, and propose an estima-
tion algorithm similar to the K-means of Bonhomme and Manresa (2015). Note
that both Okui and Wang (2021) and Lumsdaine et al. (2023) allow for at most one-
way heterogeneity (individual fixed effects) in the intercept and neither allows for
IFEs to capture strong cross section dependence. In contrast, this paper proposes
the algorithm to detect the unknown break point and to recover the group structure
based on linear panel model with IFEs, which leads to a more general model. In
addition, Lumsdaine et al. (2023) first assume the number of groups is known in the
estimation algorithm and then estimate the number of groups via an information cri-
terion but they do not establish the consistency result for such an estimate. Instead,
we estimate the number of groups and group membership simultaneously by the
sequential testing K-means algorithm and establish the consistency of the number
of groups estimator.

The rest of the paper is organized as follows. We first introduce the linear panel
model with time-varying latent group structures in Section 3.2 and provide the es-

timation algorithm in Section 3.3. The asymptotic properties are given in Section
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3.4. In Section 3.5, we propose an alternative approach to detect the break point,
provide the test statistics for the null that the slope coefficients exhibit no struc-
ture change against the alternative with one break point, and discuss the estimation
for the model with multiple breaks. In Sections 3.6 and 3.7, we show the finite
sample performance of our method by Monte Carlo simulations and an empirical
application, respectively. Section 3.8 concludes. All proofs are related to the online
appendix.

Notation. Let ||-||

max I'llop» [I]l; and |[-[|,, denote the (elementwise) maximum
norm, operator norm, Frobenius norm, and nuclear norm, respectively. Let © de-
note the element-wise Hadamard product. |-] and [-]| denote the floor and ceiling
functions, respectively. Let a\V b = max (a,b) and a Ab = min(a,b). a, < b, means
an/by = 0, (1) and a, > b, means bpa; ' =o(1). Let A = {A;} be a matrix with its
(i,1)-th entry denoted as A;. Let denote {A;} jc(pufoy be the collection of matrices
Aj, j€{0,1,-- p}. Foraspecific A € R™*" with rank n, let Py = A(A’A)~'A’ and
My =I,, — Py. When A is symmetric, Amax(A), Amin(A) and A4,,(A) denote its largest,
smallest and n-th largest eigenvalues, respectively. The operators ~~ and 2 denote
convergence in distribution and in probability, respectively. Let [n] = {1,--- ,n} for

any positive integer n. Let 1{-} be the usual indicator function. Besides, w.p.a.l and

a.s. abbreviate “with probability approaching 1” and “almost surely”, respectively.

3.2 Model Setup

In this paper, we consider the following linear panel model with IFEs:
Yir = ©f ; + X0 +eir, 3.1

where i € [N], 1 € [T], Yy is the dependent variable, X;; = (X} i, -+, Xpir) isapx 1
vector of regressors, ®) = (®(1),iz7 e ,@%it)’ is a p x 1 vector of slope coefficients,
@831-[ = QLI-O’ f,o is an intercept term that exhibits a factor structure with r( factors, and
e 1s the error term. Here, we assume ry is a fixed integer that does not change
as (N,T) — oo. Let A = (A0,--- A9)" and FO = (f0,--- f9). LetY = {¥,},

X;={Xju},0)={09,} and E = {e;}, all of which are N x T matrices. Then
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we can rewrite (3.1) in terms of matrices as follows:
P
Y=0)+) X;00)+E. (3.2)
j=1
We assume that the slope coefficients follow time-varying latent group structures,

Viz.,

@)= Y aul{ie Gyl
ke[Ki]

where {Gy };c, forms a partition of [N] for each specific time ¢ with K; being the
number of groups at time . Moreover, we assume that the group-specific slope

coefficients oy, or the memberships change at an unknown time point 77, i.e.,

OCIEI), for t=1,...,711,

OC,EZ), for t=T+1,...,T,

O =

Gl(c1)7 for l‘:l,...,Tl7 k:17_._7K(1)7
Gu =
GI(<2), for t:T]—I—l,...,T,k:lj_“,K(z),

with K1) and K being the number of latent groups before and after the break

point, respectively. Let g(I) and g@

i . respectively denote the individual group indices

before and after the break:

gl(l): Z kl{iEG,El)} and g,@: Z kl{ieG/(<2)}'
kek () kek®)

Let r; be the rank of @9 for j € [p]U{0}. It is easy to see that (9(; exhibits a
low-rank for all j. By the SVD, we have

= VNT%L7Y =UWY, e [plufo},

where az/,O € RV, ”//-O € RT*7j, ZQ = diag(o1,j,"+*, 07, j)s U(-) = \/]V%jOZ(} with
each row being u?’j, and V0 VT ”// Y with each row being v
Note that we allow {®it}i:1 to exhibit latent group structures before and after

the break. For a particular j € [p], the N x T matrix @9 may have no group structure
before or after the break, or no break, or more or fewer groups after the break. Let

KJ(.I) and Kj(-z) denote the number of groups before and after the break, respectively,

for {@?Jr}?’: Let Cf {G : G(< }, £ =1,2, denote the associated latent

117'
KY.j

(0)

N,
¥ |Gk ]| and 7515? —* for £ = 1,2, where |A| denotes

the cardinality of set A. Further define 77 := T' We show that ®9 has a low-rank

group structures. Define N,E
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structure in all of the following cases:

Case 1: @? exhibits neither structural break nor group structure.
: 1 2 . .
In this case, Kj(. ) = K](- ) =1, and @97” = a; V(i,t) € [N] x [T]. Without loss
of generality, assume that ¢¢; > 0. Then by the SVD, we have

1 1
OZ/j: —=I1N GRNXI, Zj: o, 7/]': —=I1r ERTXI,

VN VT

Uj =0l € RNXI, Vj =1y € RTXl,

where 1; = (1,---,1)" € R*! for any natural number d. Obviously, ri=1

under Case 1.

Case 2: @9 exhibits no structural break but a group structure.
: (1) _ 2(2) _ (1) _ ~2) _ (1) _ @ _ (1 _
In this case, Kj —Kj =Kj, Gk,j = Gk,j = Gy, j» Nk,j —N,w. = Ni,j» T ;=

n}gz]) =m; Vk € [K;],and 9, = )[: A] oy j1{i € Gy ;} fort € [T]. Therefore,

Jiit T
we have '
Yreik O, 111 € Gy j 1
%j’l’ _ kE[Kj] k,J { ka}’ Zj _ Z 7rk7j (ak7j)2, % _ ﬁlT,
\/ Yielk;) Ni,j (Otk, j) ke[K;]
ujj= Z (Xk’jl{l‘GGkJ‘}, Vj:lT,

ke[K;]

where % ; is the i-th element in %;. Obviously, r; = 1 under this case.

Case 3: @)(; exhibits both a structural break and a group structure.

(i) K](.l) #K (-2), where we have different numbers of groups before and after the

break;

) K" =K” = K;and G|} # G,

i where we have the same number of groups

before and after the break, but the group memberships change after the break

point;
Gi) K\ =KV = K. G!) = G') = Gy, for Vk € [K]. and o) # o”) for at

least one k € [K;], where even though neither the number of groups nor group
membership changes after the break, there exists at least one group whose

slope coefficients change.
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For any positive integer d, we use 0; to denote a d x 1 vector of zeros. The
following lemma lays down the foundation for the detection of break point in our

model.

Lemma 3.1. Forany j € [p| such that @? lies in Case 3 above, we have rank(@?)

2. When rank(@)?) =2, we have

(i) ) = U2;V] = UV] where Uj = U%;/VT, Vi = VT¥; = DR}, Dj =
LlT 0T

Ve ! and R'R; = by;
| 077y ﬁlﬁn

1%

S o

0
Vv .
%,
0
Vo .
%,

=2 foranyt <T; andt* > Tj.

f=1

J
il

By Lemma 3.1 for Case 3 and the above analyses for Cases 1 and 2, we conclude

v

~

(ii) ‘

that ®(; is a low-rank matrix with rank equal to or less than 2. In view of the
low-rank structure of the slope matrices, we propose to adopt the NNR to obtain
the preliminary estimates below. Moreover, under Case 3, Lemma 3.1(i1) indicates
that singular vectors of the slope matrix with rank 2 contain the structural break

information.

3.3 Estimation

In this section we provide the estimation algorithm. We first assume that the
ranks r; for j € [p] U{0} are known, and then propose a singular value thresholding
(SVT) procedure to estimate them. After we recover the break point and the latent

group structures, we propose consistent estimates of the group-specific parameters.

3.3.1 Estimation Algorithm

Given r;j, Vj € [p] U {0}, we propose the following four-step procedure to esti-
mate the break point and to recover the latent group structures before and after the

break.

Step 1: Nuclear Norm Regularization (NNR). We run the nuclear norm regular-
ized regression and obtain the preliminary estimates as follows:
2

® 1
{®j}je[p}u{()} = argn}m—
{e;},

P
Y — ZXJ@@j—@O
=1

)4
+Y vi[e)],, 33)
=0
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where v; is the tuning parameter for j € [p] U{0}. For each j, conduct the
SVD: ﬁ@ = 022%//%’ . where £ j 1s a diagonal matrix with the diagonal
elements being the descending singular values of ® j. Let ”/7J consist of the
first r; columns of “I}j, and Vj =T ”/7J Let \7;7 j denote the ¢-th row of Vj for

te[T].

Step 2: Row- and Column-Wise Regressions. First run the row-wise regressions
of Y;x on (1,0, {91, Xj.ir } je[y]) to obtain {it; j} je(puiop for i € [N]. Then run the
column-wise regressions of ¥;; on (0, {tti jXjit} je[p]) to obtain {vr ;} e rpufo}
fort € [T]. Let ©;; = t; vy j for (i,¢) € [N] x [T] and j € [p] U{0}. Specifi-
cally, the row- and column-wise regressions are given by

2
. .1 . 2 . }
{ui7j}j€[p]u{0} = argmin 7 Z (Yi, — ug,ovh() — Z u§7jv,7ij7i,) i € [N],

{uij}jeipugoy © te[T)

2
: .1 . oo
{v’af}je[p}U{O} = argmin ~ Z (Y,t — v;’ouw — Z V;7j1/li,ij7it> te[T].

{Vt,j}je[p]u{o} i€[N] J=1
3.5)

Step 3: Break Point Estimation. We estimate the break point as follows:
A 1 S . IS‘ ) 2
Ty = argmin NT Z Z Z<®J” ” ) + Z < Joit — ) )
se{2, 71} PVL scplieln) t=s+1
(3.6)
where 6! = 1ys ®;; and Q) = A yT 0
i T s =1 i T T—s mt=s+1>)5u"

Step 4: Sequential Testing K-means (STK). In this step, we estimate the num-
ber of groups and the group membership before and after the break by us-
ing the STK algorithm. For each j € [p], define @5-711-) = (®ji1,,0;,7),

O = ©p1m Ojir) B = (01, 6,)), and also 7 =

ﬁ(@f?l, e ,@;272/)’ . Let z¢ be some predetermined value which will be

specified in the next subsection. Given the subsample before and after the

estimated break point, initialize m = 1 and classify each subsample into m

(0 ._

groups by K-means algorithm with group membership obtained as ¥,

r~(0)

{G,(f;} ke[m)- Next, we construct test statistic 17,’, compare it to z¢, set m =
(0)

m+ 1 and go to the next iteration if I}’ > z¢ and stop the STK algorithm
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otherwise. At last, define K (©) = m and G0 = g?n(f)_ In the next subsection,

we will present each step of the STK algorithm in detail.

m=m+1

Yes

K-means
m=1 }~—) classification __bg;zz;irgcg‘(tee}st ho
with m groups m

Figure 3.1: The flow chart of STK algorithm

Several remarks are in order. First, we assume the ranks of the intercept and
slope matrices are known in Step 1 but will propose consistent estimates for them
by the SVT below. Second, we obtain the preliminary estimates by NNR based
on the low-rank structure of the intercept and slope matrices in the model. These
estimates are consistent in terms of Frobenius norm but we cannot establish the
pointwise or uniform convergence for their elements. Despite this, we can conduct
SVD to obtain preliminary estimates of the factors and factor loadings to be used
subsequently. Third, we conduct the row- and column-wise linear regressions to
obtain updated estimates of the factors and factor loadings where we can establish
their pointwise and uniform convergence rates. Fourth, with the consistent estimates
obtained in the second step, we can estimate the break point in Step 3 consistently
by following the idea of binary segmentation. Fifth, the STK algorithm in Step 4
will yield the estimated number of groups and group memberships at the same time.

In the latent group literature, it is standard and popular to assume the number of
groups in the K-means algorithm is known and then estimate the number of groups
by using certain information criteria. In this case, one needs to consider not only
under- and just-fitting cases, but also over-fitting cases. It is well known that the
major difficulty with this approach is to show that the over-fitting case occurs with
probability approaching zero. As for the STK algorithm, it ensures us to focus on
under-and just-fitting cases, which helps to avoid the theoretical difficulty caused
by K-means classification with a larger than the true number of groups. Besides,
although we adopt this sequential algorithm, the error from the previous iteration
will not accumulate in the following iterations owing to fact that the classification

in each iteration is new and not based on the K-means result in previous iterations.
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3.3.2 The STK algorithm

In this subsection, we describe the K-means algorithm and the construction of
test statistics I in the STK algorithm for £ € {1,2}.

First, we define the objective function for the K-means algorithm with m clusters
at each iteration. Let a,(f,)n be a pT} x 1 and p(T — Tl) x 1 vector for £ = 1,2, respec-
tively. We obtain the group membership with m groups by solving the following

minimization problem:

(0) - .1 .
o = prprin 3 B o)
€[m]

a
{k"" k

which yields the membership estimates for each individual at the m-th iteration as

By>_agLH2, 3.7)

A(0) .
8; , = argmin
' ke|[m]

30— vie . (3.8)

Let Gy') = {i € [N]: g\') = k}.

Second, we discuss the construction of the test statistic based on the idea of
homogeneity test for several subsamples. At iteration m, we have m potential sub-
groups (Gg{)n, e (A?,(,f)m) after the K-means classification for £ = 1 and 2. Let 9} =
(1], % = [TN\[T1). J1,-1 = T\{T1}, S5 = BT}, J1y={1+j,---, T},
and %J = {Ty+1+j,---,T} for some specific j € %7_1. Based on these esti-
mated subgroups, we can obtain the estimates of the coefficients, factors and factor
loadings for each subgroup in regime ¢ as follows:

() A a0 : / 1 p\2
({ei,k,m}ieé(f) ’Ak,m’Fk,m) - N kargmln Z Z (Yl’ _Xifei _A’if[) )
k,m { i l7ft} 7 lEG ZE%

A

where /A\,(( ) = {ll(km} i, andF {ft km}tey Foralli € [N]andz € [T], define

the residuals
2
A A0 5 (¢ U 7
eir = 2 (Yil _ft(,k),;ﬂi(,k?m — X ei(,k?m) Hr e 75

Let X'V = (X, . X;7.) . X = (X, 7.1, Xir)',and T, = T —7}. Define

50 1 50 L a0 ploy
kom = A0 Z i,k,m? MF(‘) ]Tz 5 k.,ka,m )
‘Gk,m’ ieé,gm
o) _ Lo, 20 40 _ 30 (160 FIRORO Y50
Sikom = 7,51 My X, %M—%WQ@M MW%Q A0



Let z( )/ being the z-th row of M />X ) For each subgroup G( ) with k € [m], we
follow the lead of Pesaran and Yamagata (2008) and Ando and Bai (2015) and define

f,(ﬂ as follows:

1 &(0)
0 L0 Sifm — P
O — /169 il Ti€Gkm
k,m k,m \/E
where
20\’
&) _aal) a0 val) (/O 180 ) A7) ik
Si,k,m_ f(ei,k,m_ k,m>/Sii,k,m(Qi,k,m) Szi,k,m(ei.,k Y% )| - lé(é)’ ’
N{ 1 A (0) A(0)1 Ora 4
Qz(k),m -7 Z Zl(t) l(t zt+ 7 Z k(j/St) Z [Zzt)zz(z)ﬂelfel f+J+Zz(z) jzz(t)lei,l—jei,l]v
e Je% | te€ gy

k(-) is a kernel function and St is a bandwidth/truncation parameter. Noted that the
above expression for Ql( k) ,, 18 the traditional HAC estimator. Let ff,f ) = MaXpc ] (IA“,(({)“)2
We will show that 1“,(") is asymptotically distributed as the maximum of m inde-
pendent x2(1) random variables under the null hypothesis that the slope coefficients
in each of the m subsamples is homogeneous, while it diverges to infinity under the
alternative. Let z¢ denote be the critical value at significance level ¢, which is cal-
culated from the maximum of m independent x> (1) random variables. We reject the

r~(0)

null of m subgroups in favor of more groups at level ¢ if I';;” > z.

3.3.3 Rank Estimation

To obtain the rank estimator, we use the low-rank estimators from (3.3) and

estimate r; by the singular value thresholding (SVT):

A :Ng‘;l{m (6,) =05 (ij@)jHo,,)l/z} vje {0}Ulp),

where o; (A) denotes the i-th largest singular value of A and NAT = min(N,T). By
arguments as used in the proof of Proposition D.1 in Chernozhukov et al. (2019)
and that of Theorem 3.2 in Hong et al. (2023), we can show that P(#; =r;) — 1 for

each jas (N,T) — oo.

3.3.4 Parameters Estimation

Once we obtain the estimated break point, the number of groups and the group

membership before and after the estimated break point, we can estimate the group-
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specific slope coefficients {Oc,g)} ke[RO)] along with the factors and factor loadings

as follows:

AO pO gl — : (£)
(A JF ,{ . }ke[IW)}) = argminlL (A,F,{ak }ke[k(@]) 3.9

where L. A, F,{a" — vk oy (-2 X1a")  Here

Uk Srego)) T NI =R icGl) Fae gy \Tit T Mt S ) ’
we ignore the fact that the prior- and post-break regimes share the same set of factor
loadings and estimate the group-specific parameters separately for the two regimes
at the cost of sacrificing some efficiency for the factor loading estimates. Alter-
natively, we can pool the observations before and after the break to estimate the

parameters as follows:

where

L (A’ E {al(cl)}ke[le(lﬂ ’ {a’?)}ke[k@)])
=L (A, F, {“’E])}ke[mw]) +L (A,F, {a’(‘z)}ke[k@ﬂ) , (3.10)

In either case, as one can imagine, due to the presence of group structures, the
establishment of the asymptotic properties of the post-classification estimators of
the group-specific slope coefficients becomes much more involved than that in Bai
(2009) and Moon and Weidner (2017). For this reason, we will focus on the esti-

mates defined in (3.9).

3.4 Asymptotic Theory

In this section, we study the asymptotic properties of the estimators introduced

in the last section.

3.4.1 Basic Assumptions

Define e = (6i1,~ e ,eiT)/ and Xj,i = (Xj7,'1,~ e ,Xj’l'T)l. Let V]Q beaT % rj ma-

(V]

trix with its z-th row being v; IL

and U]Q be the N X r; matrix with its i-th row being

ug’j. Throughout the paper, we treat the factors {V]Q} jelplufoy as random and their
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loadings {U]Q} jelplufo) as deterministic. Let 7 := G({V]Q} jelplufoy) denote the min-

imum o-field generated by {VJO} jelplufoy- Similarly, let

G 1= 0(Z {Xistie) s<iv1 0 {€is ey s<t)-

Let max; = max;c[y], max, = max;c[r] and max;, = max;c[y]c[r] - Let M and C be

generic bounded positive constants which may vary across lines.

Assumption 3.1. (i) {ei,,Xi,}te[T] are conditionally independent across i given

7
(ll) E(eit|X[[, .@) =0.

(iii) For each i, {(ej,Xi),t > 1} is strong mixing conditional on & with the mix-

ing coefficient 0;(-) satisfying max; o;(z) < Mo for some constant o, € (0, 1).

(iv) There exists a constant C > 0 such that maxi%z,em 1Ex|I> < C a.s. and

max; 3 Yic[v] 1ExI1* < C as. for & = ey, Xir and Xyeyr.

(v) max; E[||&|| |.@] <M a.s. and max, ;= ; E[|| Xirei¢ || ’.@] <M a.s. for some
q > 8and &; = e, Xy and Xjrej.

(vi) As (N,T) — oo, v/N(logN)>T~! — 0 and T (logN)>N—3/2 — 0.

Assumption 3.1%. (i), (iv) and (v) are same as Assumption 3.1(i), (iv) and (v).

Besides,

(ii) E(eq|%—1) =0V(i,t) € [N] x [T], and max;; E(e}|%,—1) <M a.s..
(iii) {eit}iG[N] is conditionally independent across t given 9.

Assumption 3.1(i) imposes conditional independence on {eihXit}re[T] across the
cross sectional units. Assumption 3.1(ii) imposes the moment condition. Assump-
tion 3.1(i11) imposes conditional strong mixing conditions along the time dimension.
See Prakasa Rao (2009) for the definition of conditional strong mixing and Su and
Chen (2013b) for an application in the panel setup. Assumption 3.1(iv)-(v) imposes
some conditions which restricts the tail behavior of &;. Note that we don’t restrict
either the regressors or error terms to be bounded. Assumption 3.1(vi) imposes

some restrictions on N and 7" but does not restrict N and 7" diverge to infinity at the

51



the same rate. It is possible to allow N to diverge to infinity faster but not too faster
than 7', and vice versa.

Assumption 3.1% is for the study of dynamic panel data models. To be specific,
Assumption 3.1%(ii) requires that the error sequence {e;,t > 1} be a martingale
difference sequence (m.d.s.) with respect to the filter &;, which allows for lagged
dependent variables in Xj;. Assumption 3.1%(iii) imposes the conditional indepen-
dence of error term across t. The presence of serially correlated errors in dynamic
panels typically cause the endogeneity issue, which invalidates the least-squares-

based PCA estimation.

Assumption 3.2. rank(@?) =r; < T for j € [p]U{0} and some fixed 7, and

max e pjufo} || lmax < M.

Assumption 3.2 imposes the low-rank conditions on the coefficient matrices,
which facilitates the use of NNR to obtain the preliminary estimates in the first
step. As discussed in the previous section, we see that the low-rank assumption for
the slope matrices is satisfied for the model in Section 3.2. Moreover, we follow
Ma et al. (2020) and assume the elements of the coefficient matrices are uniformly
bounded to simplify the proofs. The boundedness of the slope coefficients is rea-
sonable given that their cardinality does not grow with the sample size. The bound-
edness assumption for the intercept coefficient can be relaxed at the cost of more

lengthy arguments.

Assumption 3.3. Let 0; ; denote the I-th largest singular values of (E*)?- for j e

[p] U{0}. There exist some constants Cs and cs such that

©>Cs >1lim sup maxop;>lim inf min Cy;,j = Co > 0.
(N,T)—o0 J€[P] (N,T)—e jE[p]

Assumption 3.3 imposes some conditions on the singular values of the coeffi-
cient matrices. It implies that we only allow pervasive factors when these matrices
are written as a factor structure. This condition can be easily verified given the latent
group structures of the slope coefficients.

Consider the SVD for @9: G)? = ULV Vj € [p]U{0}. Decompose %; =
(%,rﬂ%jﬁ) and 7 = (7/j7r,7/j70) with (%N, 7/],) being the singular vectors cor-

responding to nonzero singular values and (%70, “//j70) being the singular vectors
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corresponding to zero singular values. Hence, for any matrix W € RV*T | we define

P W) =U U W50V, Pi(W)=W— P (W),

where &2 (W) can be seen as the linear projection of matrix W into the low-rank
space with @JL (W) being its orthogonal space. Let Ap;, = 0; — @9 for any ©;.
Based on the spaces constructed above, with some positive constants C; and C,, we

define the restricted set for full-sample parameters as follows:

AL { o) T [Ze)| < T |20l
jelpI{o} jelplofo}
y H@)juzzcz\/NT}. 3.11)
JElPI{o}

Lemma A.4 in the online appendix shows that our nuclear norm estimators are in
a restricted set larger than (3.11), which deprives of the restriction on the Frobenius
norm in the definition of % (C;,C,). Intuitively, the first restriction in 3.11 means
the projection onto the orthogonal low-rank space of the estimator error can be
controlled by its projection onto the low-rank space. Theorem 3.1 below will greatly

rely on this property.

Assumption 3.4. For any C, > 0, there are constants C3 and Cy such that for

any ({Ae; } je[pju{0}) € #(3,C2), we have
2

>C Y, HA@sz—C4(N+T) w.p.a.l.
Jelplu{o}

Assumption 3.4 imposes the restricted strong convexity (RSC) condition, which

p
A@O —+ Z AQ;’ @Xj
j=1

is similar to Assumption 3.1 in Chernozhukov et al. (2019). The latter authors also
provide some sufficient conditions to verify such an assumption.
Let r =} jcpJufo} 'j- Define the following r X r matrices:
1 d 040/ 0,,0r
—TZ‘Pit i Vi€ [N]and ¥, = Z‘Vzt‘l’zt vt € [T,
=1 zE V]
where ¢i(t) = (v 0sz 1X1 ity v"%axpﬁ)/» and v} = (i 107”1 1X1 ity 7”2/[]Xp,it)/-

Assumption 3.5. There exist constants Cy and cy such that

oo > Cy > limsupmax A, ¥Y,) > liminf min Y,) >cy >0,
) . Ptem max( t) X IG[T}A'mm( t) Co

oo > Cy > limsupmax A, > liminf min A, (®;) > ¢y > 0.
¢ N pze[N] max (i) = N ie[N]lmm( )2 ¢

53



Assumption 3.5 is similar to Assumption 8 in Ma et al. (2020) and it imposes

some rank conditions.

3.4.2 Asymptotic Properties of the NNR Estimators and Singular Vector Es-
timators
Tog T log(NVT
Letnn,1 = \/]% and Ny 2 = %
singular value of ®; for j € [p] U{0}. Our first main result is about the consistency

(NT)'/4. Let 6; j denotes the k-th largest

of the first-stage NNR estimators and the second-stage singular vector estimators.

Theorem 3.1. Suppose that Assumptions 3.1-3.4 hold. Then ¥ j € [p]|U{0}, we

have

(i) ﬁl@j — 09| = 0p(nn.1), maxye)|Gij — Okl = Op(My1), and ||V -
V0| = OP(\/TT[NJ) where O is an orthogonal matrix defined in the proof.

If in addition Assumption 3.5 is also satisfied, then we have

.o VL . 0 _ (O . 0 _
(i) max i — O | = Op(2), ma v — 02, |, = 01w,

(ifi)  max T}|®j,it_®9’it| = O0p(Nn2)-

i€[N],re]

Theorem 3.1(i) reports the error bounds for @ j» Ok, j, and Vj. The log T term in
the numerator of 1y, is due to the use of some exponential inequality for (condi-
tional) strong mixing processes. Theorem 3.1(ii)—(iii) reports the uniform conver-
gence rate of the factor and factor loading estimators. The extra (NT) 1/4 term in the
definition of Ny > is due to the nonboundedness of X ;; in Assumption 3.1(v), and it

disappears when X ;; is assumed to be uniformly bounded.

3.4.3 Consistency of the Break Point Estimate

Recall that g(l) and g(z) denote the true group individual i belongs to before and

i i
after the break, respectively. To estimate the break point consistently, we add the

following condition.

Assumption 3.6. (i) \/% Zie[N] H(Xg@) — OCg(z) | ‘2 =Cs5Cnr, where Cs is a pos-

itive constant and Cnt > N 2.

(ii) Tr =1 —1€(0,1)as T — oo.
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Assumption 3.6(1) imposes conditions on the break size in order to identify the

break point. Note that we allow the average break size to shrink to zero at the rate

log(NVT)

N~ (NT) /4. This rate is of much bigger magnitude than the op-

slower than
timal (N T)fl/ 2_rate that can be detected in the panel threshold regressions (PTRs)
for several reasons. First, in PTRs, the slope coefficients are usually assumed to
be homogeneous so that each individual is subject to the same change in the slope
coefficients and one can use the cross-sectional information effectively. In contrast,
we allow for heterogeneous slope coefficients here and the change can occur only
for a subset of cross section units but not all. In addition, in the presence of latent
group structures, we not only allow the slope coefficients of some specific groups to
change with group membership fixed, but also allow the slope coefficient to remain
the same for some groups while the group memberships change after the break.
Second, our break point estimation relies on the binary segmentation idea borrowed
from the time series literature where one can allow break sizes of bigger magnitude
than 7-1/2 in order to identify the break ratio consistently but not the break point
consistently. As we can see, even though we require bigger break sizes, we can es-
timate the break date consistently by using information from both the cross section
and time dimensions. Third, as mentioned above, the additional term log(N V T) in
the above rate is mainly due to the use of some exponential inequality and the term
(NT) 1/4 is due to the fact that we only assume the existence of ¢-th order moments
for some random variables.

The following theorem indicates that we can estimate the break date 77 consis-

tently.

Theorem 3.2. Suppose Assumptions 3.1-3.6 hold, with the true break point
being Ty and the estimator defined in (3.6). Then P(Ty = T;) — 1 as (N,T) — oo,

Theorem 3.2 shows that we can estimate the true break date consistently w.p.a.1

despite the fact that we allow the break size to shrink to zero at a certain rate.

3.4.4 Consistency of the Estimates of the Number of Groups and the Latent
Group Structures

To study the asymptotic properties of the estimates of the number of groups and

the recovery of the latent group structures, we first add the following definition.
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Definition 3.1. Fix K0 > 1 and m < K. The estimated group structure gfn(f)

satisfies the non-splitting property (NSP) if for any pair of individuals in the same

true group, the estimated group labels are the same.

Definition 3.1 describes the non-splitting property introduced by Jin et al. (2022).
The latter authors show that the STK algorithm yields the estimated group structures
enjoying the NSP.

To proceed, we add following assumptions.

Assumption 3.7. (i) Let kg and kg be different group indices. Assume that

(X,Ef) — Ot,EfBHZ > Cs for £ € {1,2}.

miny < k. <k(®

(ii) Let N,EZ) be the number of individuals in group k for k € [K (f)]. Define 71?,5[) =
(0)
%for 0 =1,2. Assume K9 is fixed and

o > C > limsup sup ﬂlgé) > liminf inf nlgg) >c>0,0=1,2.

N ke[K(] N ke[K®)]
(iii) For any combination of the collection of n true groups with n > 2, we have

2
Y (o —a)|| /(ogN)! /2 oo =12,
s*€[n],s*#£s

Ty - (¢

wEN

Remark 3. Assumption 3.7(i)—(ii) is the standard assumption for K-means al-

gorithm, which is comparable to Assumption 4 in Su et al. (2020) and greatly fa-

cilitates the subsequent analyses. Assumption 3.7(i) assumes that the minimum

distance of two distinct groups is bounded away from 0, and Assumption 3.7(i1)

imposes that each group has asymptotically non-negligible number of units. For

Assumption 3.7(iii), it can be shown to hold under mild conditions. Below we ex-

plain this assumption in detail. When n = 2, it’s clear that

Y (o))

s*en),s*#s

L l
oo

2

0

2 ¢ ¢ ¢
+N,£2)Hoc,§1)—(x,£)

2

)

by Assumptions 3.6(ii) and 3.7(1)—(i1). When n > 2, we consider a special case such

) = O(TVN)

that Sy =: ||Zs*e[n},s*7és(a/§? - ag))H = 0 for some specific s = sg € [n]. Then it is

easy to see Sy is non-zero for all s € [n]\{so} under Assumption 3.7(i). Hence, if
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we assume Sy is lower bounded by a constant ¢ for any s € [n]\{so}, Assumption

3.7(iii1) will holds naturally. Similar arguments hold for the other general cases.
Assumption 3.8. Let 7 = [T1| and 7 = [T\ [T1].

0) (0)

() 3 e SR L2 > 0as T = oo, AN Lo 20> 0as N —
k

oo, where Ag’w) is a stack of A for all individuals in group k and k € [K 0,

(ii) There exists a constant C > 0 such that max; TL/ Yiez |16 H2 <Ca.s.for&; =

eir, Xir and Xjrej.

Assumption 3.8(i) imposes some standard assumptions on the factors and factor
loadings. Assumption 3.8(ii) is similar as Assumption 3.1(iv), which strengthen the
Assumption 3.1(iv) to hold for two time regimes.

The next theorem reports the asymptotic properties of the STK estimators.

Theorem 3.3. Fix ¢ = gy € (0,1). Suppose that Assumption 3.1* and Assump-
tions 3.2-3.8 hold. Then for ¢ € {1,2}, we have

(i) ifm=K",

(a) max 1{g§2w + gl@} =0w.p.a.l,

(b) 1"5{() is asymptotically distributed as the maximum of K (0 independent

x2%(1) random variables,

(c) P(RY <KW)>1-¢+o(1),
(ii) ifm < K, f,(f) — cowp.a.l. Thus P(RY) # K1) < ¢ +0(1).

Theorem 3.3 studies the asymptotic properties of the STK algorithm. Since
we allow ¢ = gy to shrink to zero at rate N~ ¢, the critical value z. diverges to
infinity at rate logN as N — oo by the tail properties of y?(1) random variables. At
( )

iteration m such that m < K, w. p.a.1, the test statistics 1,” diverges to infinity,
which means the iteration will continue at the (m + 1)-th iteration. At iteration m
with m = KO, if we set v — 0 as N — oo, by the joint distribution function for
K independent y*(1) random variables, we can easily find that z¢ — o while

the test statistics f,(,f) is stochastically bounded. As a result, the iteration stops
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w.p.a.1 and we have P(R(Y) = K(©) — 1 provided that ¢ = ¢y — 0 as N — co. As
aforementioned, Theorem 3.3 ensures the application of K-means algorithm only
for the under-fitting and just-fitting cases and it avoids the theoretical challenge in
handling the over-fitting case in the classification.

For dynamic panels, we can focus on Assumption 3.1%, where the error term is a
martingale difference sequence (m.d.s.). Under this assumption, the HAC estimator

fll(gk)m e, él(f )égf )/él-zt. For static panel, we typically allow for

degenerates to %Z
serially correlated errors and employ the HAC estimator, and the results in Theorem
3.3 continue to hold with Assumption 3.1* replaced by Assumption 3.1. For the
kernel function and bandwidth, we can follow Andrews (1991) and let & (-) belongs

to the following class of kernels:
H = {k() R [—1,1] | k(0) =1, k(u) = k(—u), /|k(u)|du < oo,
k(-) is continuous at 0 and at all but a finite number of other points}.

See, e.g., Andrews (1991) and White (2014) for details.

3.4.5 Distribution Theory for the Group-specific Slope Estimators

For ¢ € {1,2}, let {& (é)}ke k(v be the oracle estimators of the group-specific
slope coefficients before and after the break point by using the true break and mem-
bership information for all individuals. To study the asymptotic distribution theory
for {d,gg)} rex®s £ € {1,2}, we only need to show that for the oracle estimators
{&Z (Z)} wck( based on Theorems 3.2 and 3.3 by extending the result of Bai (2009)
and Moon and Weidner (2017).

To proceed, we add some notation. For ¢ € {1,2}, we first define the ma-

2) _

trix notation for each subgroup. For j € [p], let X](}i) = (Xji, 7Xj7iTl)/’ x!

Ji
! 1 2 /
(Xjimnys - Xjr)'s e = (e em) and i) = (e 1), eir). Then

(0) (0)
we use Xﬂ e RN <1t and E,EE) € RN Tt to denote the regressor and error ma-

trix for subgroup k € [K()] with each row being X ](1'? l@

(0)
X .(i) =M Aoﬁu)X%)(MFo’(z) € RN Tt with the (i,t)th entry given by ,%”j(?it. Let
) k ) vy

and e; ’, respectively. Let

J

L L L
(%”k(’it) = (f%”l(ik)’it, e ’%p(,k),it)/' Further define

1
]Bl(\f%?l?j,k = WU’ |:PF0*(€)]E <E]E£)/X§?<‘9>:| 5
k
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‘ 1 0) (¢ ‘ —Lr o000\ 0
B, = i [E (EOE)2) MAg=<f>X§,;)< RO (FO0rEO0) T (AMOARO) A >/] 7
9

) 1 () A0,0) (A0, 0.0\ ™1 ( 0.(0) 120,(0) " 10,(¢
Byrs jx = ()”[E< | ) 0.0 X 1A (Ak Ay ) (F O g ()) F ()/},
k
VA ¢ /
IB%1(\’%',m,k <B](V; mLk " ’BZ(V%",m,mk) ’ Vm € {17273}7

¢ 1 0) - (0)
Ql(c) ) Z Z eizt ‘%c(,iz) ‘%}c(,it) :
N Tt ieglore

Let Wl(\f)T , be a p x p matrix with (ji, j2)-th entry being

! ( (e) (o) >
tr| Mpo X" M 0 X .
N}EK)TE F Ji1k J2.k
Then we define the overall bias term for each subgroup as

¢ 0 (£ 0 (£
BI(V)T,k = _PIE )BJ(V)T,l,k - (P( )) IBJ(V)TZk P/E )BI(V)T,3,k

(6)
/N . o . .
where plgé) = %{ To state the main result in this subsection, we add the following

assumption.

Assumption 3.9. (i) As (N,T) — oo, T(logT)N~*/3 = 0.

(ii) plim(NJ)_m ZiEG,(f) Zte%XiIXi/t >0forte{1,2} andk € [K(Z)]

1

N,
(iii) For (e {1,2} and k € [K\Y)), separate the p regressors of each subgroups into
“low-rank regressors" X(z such that rank(X( )) =1,Vje{l,-,p1},

and “high-rank regressors"X( ,){such that rank(X( )) >1,Vje{pi+1,---,p}.

Let pr := p — p1. These two types of regressors satisfy:

(iii.a) Consider the linear combinations b - X%()gh L= J S— Ly XU kfor high-
rank regressors with py-vectors b such that ||b||, =1 and b= (bp, 1, - ,bp)/.

There exists a positive constant Cy, such that

3 1 (€) (0) ’]
min M | = (D-X), b-X;. >C, wpal.
{b|2—1}n_2r§pl_‘_1 " |:NTg ( hgh,k) ( hgh,k)

© (Z,l y,)(/ with N,EZ)—vectors W;g) and Ty-vectors

(iii.b) For j € [p1], write X} =w; v
( ) Let w,(C ) = (wgfl)c, : ,wg{k) RNV*P1 () = <VE€)7 e ,v%)) c RTxp1
-1
M =10 _W/(f)( /(< )/W/(f) w,(f)’an dM, =1, 0 (V(e)/v(e)> NG3
k k

There exists a positive constant Cg such that (N, ,Eg) ) _1A2’(£)/Mw(z) Ag’w) >
k

Cgl,, and T[IFO’(Z)’MW@)FO’(@ > Cgly, wp.a.l.
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(iv) ForVj € [p], £ € {1,2}, and k € K'Y,

1 3 N
Z Y Y Y Y [CoviewXji,eisXis)| =0

N( ) (1) ieGlNETNET 1€T, 92ET;
where Xj i = Xj i —E (X;u|2).

Assumption 3.9 imposes some conditions to derive the asymptotic distribution
theory for the panel model with IFEs which allows for dynamics. Assumption
3.9(1) strengthens Assumption 3.1(vi) a bit. Assumption 3.9(ii) is the standard
non-collinearity condition for regressors, which is analogous to Assumption 4(i)
in Moon and Weidner (2017). Assumption 3.9(iii) is the identification assumption
which is comparable to Assumption 4 in Moon and Weidner (2017). With the con-
ditional strong mixing condition in Assumption 3.1(iii), we can verify Assumption
3.93v).

The following theorem establishes the asymptotic distribution of {d,gg)} kek©

Theorem 3.4. Suppose that Assumption 3.1 or 3.1% and Assumptions 3.2-3.9
hold. For ¢ € {1,2}, the estimators {&lgg)}ke k(0 are asymptotically equivalent to

the oracle estimators {0, (é)} rex(0» and we have
W%%D}VT : ~Bj)~N(0,00),

such that ]D)NT =diag < Tg, VNI(f( T£>, WNT =diag (WEV)T IR 7W1(\2~’K(Z))’

4 L . L 4
BI(V)T =diag (BI(V)T,I o ]B%](V)TK[)> and QY = diag (Qg ), e ,Qg((%).

Theorem 3.4 establishes the asymptotic distribution for the estimators of the
group-specific slope coefficients before and after the break. It shows that the pa-
rameter estimators from our algorithm enjoy the oracle property given the results in
Theorems 3.2 and 3.3. The proof of the above theorem can be done by following

Moon and Weidner (2017) and Lu and Su (2016).

3.5 Alternatives and Extensions

In this section we first consider an alternative method to estimate the break point

and then discuss several possible extensions.

60



3.5.1 Alternative for Break Point Detection

The algorithm proposed in Section 3.3 uses low-rank estimates of @? to find
the break point estimates. However, by Lemma 3.1(ii), we observe that the right
singular vector matrix of @9, 1.e., VJQ, contains the structural break information when
rj = 2. For this reason, we can propose an alternative way to estimate the break point
under the case where the maximum rank of the slope matrix in the model is 2. Let

Py / oW,
k. V1, koo [ o : : R J'tj
V= T and v/ 1= (vhl, ,v,7p> ; with the true values being v ; : ot T

!/
and v} 1= (vj:’l, e ,vfj’p> , respectively. Then Step 3 can be replaced by Step 3*

below:

Step 3*: Break Point Estimation by Singular Vectors. We estimate the break

2
}, (3.12)

The following two theorems state the consistency of v and T, respectively.

point as follows:

B 1 N
T = in —
1 argmin - {Z

sef2- -1 1 | /3

v;k B \3*(1)S V;k . ‘3*(2)s

T
2+Z‘

t=s+1

x(l)s — Lys o “x(2)s — _1 T %
where v*(1) =<Y,—1V and v 2) = 75 Yi=st1 Vs -

Theorem 3.5. Suppose that Assumptions 3.1-3.5 hold. Then max, ||V} —v;|| =
Op (1 ,2)-

Theorem 3.6. Suppose that Assumptions 3.1-3.6 hold. Then P(Ty = T;) — 1
as (N,T) — oo.

Since the singular vectors of the slope matrices contain the structural change in-
formation, Theorem 3.5 indicates that we can consistently estimate the break point
by using the factor estimates instead of the slope matrix estimates in (3.6). Given
Theorem 3.5 and Lemma 3.1(ii1), we can prove Theorem 3.6 with arguments anal-

ogous to those used in the proof of Theorem 3.2.

3.5.2 Test for the Presence of a Structural Break

In Section 3.2, we consider time-varying latent group structures with one break
point. In this subsection, we propose a test for the null that the slope coefficients are
time-invariant against the alternative that there’s one structural break as assumed in

Section 3.2.
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Since various scenarios can occur once we allow for the presence of a structural
break in the latent group structures, and the number of group may and may not
change under the alternative and so do some of the group-specific coefficients. As
a first try, one may ignore the information on the latent group structures and test
for the possible time-varying feature of the slope coefficients. In this case, we can
rewrite ®2 as follows:

0 0
®it = ®i =+ cir,

where @0 T ):te[T G) Then we specify the null and alternative hypothesis re-

spectively as

Hy : c¢iy=0 forallie [N], and

Hy : ci #0 forsomei € [N]. (3.13)

To construct the test statistics, we can follow the idea of Bai and Perron (1998)
and consider a sup-F test. Let T :={T1 : €T <T < (1—¢€)T}, where € >0isa
tuning parameter that avoids breaks at the end of the sample. Define
Fyr(1]|0) := max sup F;(Ty),
i€V 1€ 7,
where

T -2 ~ ~ ~

25052 ) [Sir) " [BY ) -5 (m).

F(T) =

31'(1) (T1) and 3i(2) (Ty) are the PCA slope estimators of ®) in the linear panels with
IFEs for each individual i with the prior-break observations {(i,7) : i € [N],t € [T]}
and post-break observations {(i,t) : i € [N],t € [T]\[T]}, respectively,! and £;(T )
is the consistent estimator for the asymptotic variance of Bl-(l)(Tl) - ﬁi(z) (T1). Fol-
lowing Bai and Perron (1998), we conjecture that the asymptotic distribution for
sup F;(Ty) is associated with the p-vector of Wiener processes on [0, 1], based on
\Txlltelfh one can derive the corresponding distribution of Fy7(1]0).

Alternatively, we can estimate the model with latent group structures by assum-
ing the presence of a break point at 77. Then we obtain the estimates of the group-

specific parameters {OCJ(-I) (T1)} ;e prior to the potential break point 7; and those

of the group-specific parameters {aj(z) (T1)} ;e after the potential break point 77 .

ISee Section B.3 in the appendix for the detail of the PCA estimation in linear panels with IFEs.
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It is possible to construct a test statistic based on the contrast of these two sets
of estimates or the corresponding residual sum of squares (RSS) and then take the
supremum over 77 € 7. As one can imagine, this approach is also quite involved as
one has to determine the number of groups before and after the break, K (M) and KM,
at each 77. It is not clear how the estimation errors from these estimates and those
of the factors and factor loadings with slow convergence rates affect the asymptotic
properties of the estimators of the group-specific parameters.

Last, it is also possible to estimate the model with latent group structures under
the case of no structural change to obtain the restricted residuals. If there exists
a structural change in the latent group structure, it should be reflected into the re-
stricted residuals obtained under the null. Then we can consider the regression of
the restricted residuals on the regressors and construct an LM-type test statistic to
check the goodness of fit for such an auxiliary regression model as in Su and Chen

(2013b) and Su and Wang (2020). We leave this for future research.

3.5.3 The Case of Multiple Breaks

In Section 3.2, we only consider a one-time structural break in the latent group
structures. In practice it is possible to have multiple breaks especially if 7 is large.
Here we generalize the model in Section 3.2 to allow for multiple breaks. In this

case, we have
( (1)

op *, for r=1,....T,
OC]EZ), for t=T1+1,...,15,
Oy =

\oc,fbﬂ), for t=T,+1,...,T,

where b > 1 denotes the number of breaks.

To estimate the number of breaks and the break points 77, - - - , Tp, in principle we
can follow the sequential method proposed by Bai and Perron (1998). First, using
the full-sample data, we can construct Fy7(1]0) defined in the previous subsection
and estimate the break point as in (3.6). Second, for each regime before and after
the estimated break point, we test the hypothesis in (3.13) and estimate the break
point for each regime separately. At last, we repeat this sequential method until we

can not reject the null for all subsamples. At the end, we can obtain the break point
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estimates {7} aclh] where b is the estimated number of breaks. We conjecture that
we can establish the consistency of b and {7,}.
After we obtain the estimated number of breaks and break points, for each sub-

sample

{(i,t) i€ [Nt e{T,_1+1,-- ,Ta}},

ac [13 + 1] with Ty := 0 and Ti) 41 =T, we can continue Step 4 in the estimation

algorithm in Section 3.3 to obtain the estimated group structure for each subsample.

3.6 Monte Carlo Simulations

In this section, we show the simulation results for the low-rank estimates, break
point estimates, group membership estimates and the group number estimates with
1000 replications, and we choose the tuning parameter V; by the similar procedure
described in Chernozhukov et al. (2019). We will focus on the linear panel model

Yi = Al fi + X[, 0 + ejr, where Xi; = (X1 1, X2) and @y = (O 44,02;)".

3.6.1 Data Generating Process (DGP)
We focus on the following four main DGPs:

DGP 1: [Static panel with homoskedasticity] X; ;; ~i.i.d. U(—2,2), Xa;; ~ i.i.d.
U(—2,2), error term e;; ~ i.i.d. N(0,1). For ®;, we randomly choose the
break point 77 from 0.47 to 0.6T.

DGP 2: [Static panel with heteroscedasticity] Compared to the DGP 1, error term
eir ~ i.i.d. N(0,02) such that 67 ~ i.i.d. U(0.5,1). The settings for the re-

gressors and break point are the same as those in DGP 1.

DGP 3: [Serially correlated error] Compared to the DGP 2, error term e;; =
0.2¢; -1+ Mir, Where n;; ~ i.i.d. N(0, 1) and all other settings are the same as
in DGP 2.

DGP 4: [Dynamic panel] In this case, X; ; =Y;;—1 withY; o ~i.i.d. N(0,1). X3 j ~
i.id.U(=2,2), and ey ~ i.i.d. N(0,0.5).

For each DGP above, A; and f; are each i.i.d. N(0, 1) and mutually independent.

We define the slope coefficient based on three subcases below.
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DGP X.1: In this case, the group membership and the number of groups don’t
change after the break point and only the value of the slope coefficient changes.
We set the number of groups to be 2, the ratio of individuals among the two
groups is N1 : N = 0.5: 0.5, and the group membership G is obtained by a

random draw from [N] without replacement. For DGPs 1.1, 2.1, and 3.1,
4
0.1, ieGy,red{l,---,T1},

09, i€Gyte{l,---,Ti},
O =0y =

0.05, ieGy,te{l1+1,---,T},

045, i€Gyte{lh+1,---,T}.
For DGP 4.1, O, ;; is same as other DGPs X.1 for Xe {1,2,3}, and
0.1, i€eGy,re{l,--- 71},
0.7, i€Gyte{l,--- ,T1},

005, i€Gy, te{Ti+1,- T},

(0.35, i€ Gy, te{l1+1,---,T}.

DGP X.2: Compared to DGP X.1, the values of the slope coefficients for differ-
ent groups do not change after the break point, but the group membership
changes. The number of groups is 2, the ratio of individuals among the group
groups is still Ny : N; = 0.5 : 0.5. Nevertheless, {Ggl),Ggl)} is different from
{G(lz),Géz) } so that elements in both Ggl) and ng) are independent draws
from [N] without replacement. In addition, for DGPs 1.2, 2.2, and 3.2,

(0.1, iecV ref1,, 1},

09, iec Gé'), te{l,---,T1},

®l,it = ®27it = 2)
01, ieG”, te{l1+1,---,T},

. 2
09, ieGY re{Ti+1,-,T}.
For DGP 4.2, O, ;; is defined same as other DGPs X.2 for X € {1,2,3}, and
(0.1, ieG\V ref1,- 1},
0.7, ieGgl),te{l,---,Tl},

0.1, ieGP re{Ti+1,---,T},

07, i€GY re{Ti+1,-,T}.
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DGP X.3: Under this scenario, the number of groups changes after the breaking.
We set Nl(l) : Nz(l) =0.5:0.5and N1(2) : N2(2) :N3(2) =0.4:0.3:0.3 before and
after the break, respectively. Specifically, for DGPs 1.3, 2.3, and 3.3, we have

(0.1, ie6W, req1,-, 1},

09, ie Gé'), te{l,---,T1},

@i =02;=201, icG? re{f+1,- T}

05, icGY te{T+1,-- T},

0.9, ieng),te{T1+1,---,T}.
\

For DGP 4.3, O, ;; is defined as in DGP X.3 for Xe {1,2,3}, and
( .= )

0.1, ieG,’, te{l,---,T1},

0.7, ieGV ref1,--- .1},
@i =401, icGY te{T+1, .. T}

04, icGY te{T+1,-- T},

0.7, eGP te{T+1,---.T}.

3.6.2 Results

Table 3.1 reports the proportion of correct rank estimation for the intercept (IFE)
and slope matrices based on the SVT in Section 3.3. Note that ry denotes the true
rank of the intercept matrix and | and r, denote that of the two slope matrices. From
Table 3.1, we notice that the true ranks of both the intercept and slope matrices can
be almost perfectly estimated for the sample sizes under investigation.

Table 3.2 reports the results for the break point estimation in Step 3 based on
different (N, T) combinations. We summarize some important findings from Table
3.2. First, when the group membership and the number of groups do not change
as in DGP X.1 for X€ [3], the frequency of correct break point estimation may not
be 1 especially if N is not large. This suggests that the binary segmentation does
not work perfectly in such a scenario. Second, the change of group membership or
the number of groups help to identify the break point as reflected in the simulation
results for DGP X.2 and X.3 for X€ [4]. In general, the binary segmentation works

well in our setting.
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Table 3.3 reports the results for the group membership estimation when the
number of groups are either known (infeasible in practice) or estimated from the
data (feasible). With known number of groups, the STK algorithm degenerates to
the traditional K-means algorithm. The “Infeasible” part of Table 3.3 reports the
frequency of correct group membership estimation before and after the estimated
break point, Gp and G4, based on the known true number of groups and K-means
algorithm. Obviously, the K-means classification exhibits excellent performance in
this case. Nevertheless, without prior information on the true number of groups,
STK algorithm is able to estimate the group membership and the number of groups
simultaneously. In this case, the frequency of correct estimation of the group mem-
bership and that the number of groups are shown in the “Feasible” part in Table 3.3
and in Table 3.4, respectively. As expected, the performance of the STK algorithm
is slightly worse than that of the K-means algorithm with true number of groups.
But the performance improves when both N and T increase. Table 3.4 suggests that
the number of groups can be nearly perfectly estimated in DGPs 1.1, 1.2, 1.3 and
2.1. For the more complicated DGPs (e.g., the dynamic case in DGPs 4.1, 4.2, and
4.3 or the static panel with serially correlated errors in DGPs 3.1, 3.2, and 3.3), the
performance is not as good as that in the simple DGPs.

Table 3.5 presents more detailed results for the estimation of the number of
groups. For DGPs 1.X and DGP 2.X where we have static panels with independent
errors, the results show that the group membership and the number of groups can be
well estimated with nearly 100% correct rate under different (N,7) combinations.
For DGPs 3.X and 4.X where we have static panels with serially correlated errors
and dynamic panels, respectively, the frequency of correct estimation of the group
membership and the number of groups estimation are not great when 7 is small, but
they are gradually approaching 1 as 7" increases. One reason for this is that we need
to use HAC estimates of certain long-run variance object in the STK algorithm and
it is well known that a relatively large value of T is required in order for the HAC
estimates to be reasonably well behaved in finite samples.

Table 3.6 shows the result for the post-classification estimator for the first slope
coefficient. We follow Su et al. (2016) to define the evaluation criteria as bias and

coverage. Specifically, we define the bias to be the weighted versions of bias for
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slope estimator from all estimated groups, i.e. Bias = Zf:l) Bias((xgl) ) for € {1,2}.
Similarly, we define the weighted version of coverage ratio of the 95% confidence
interval estimators. The “Infeasible” panel shows the result assuming the number
of groups information is known, and the “Feasible" panel shows the result without
knowing the number of groups information by STK algorithm. From Table 3.6,
we notice that the coverage ratio for DGP 1 and 2 is close to 95% under different
combination of N and T for both the “Infeasible" and “Feasible" panels, which is
owing to the higher correct classification ratio. For DGP 3 and 4, by using the STK
algorithm, although the coverage ratio is a bit lower when 7" equals 100, which is
due to inaccuracy of the number of groups and group membership estimator, the

coverage ratio becomes better with 7' approaching 100.

3.7 Empirical Study

In this section, we apply the proposed estimation methods to analyze the time-
varying latent group structure of real house price changes at Metropolitan Statistical
Areas (MSAs) in the United States. The studies of the U.S. house price changes are
plentiful in the literature. Malpezzi (1999), Capozza et al. (2002), Gallin (2006),
and Ortalo-Magne and Rady (2006) show that the house price changes are closely
correlated with the real income in the long run. Su et al. (2023) consider a heteroge-
nous spatial panel and show that real income growth affects the U.S. house prices
in different ways for different MSAs. In this application, we examine whether there
exist latent group structures for the real income growth elasticity of house price

changes and whether they change over the time dimension.

3.7.1 Model

We consider the panel model with IFEs and two-way slope heterogeneity as in
(3.14):
i = Aj fi + O1 igincis + @ jrginci; 1 + eir, (3.14)

where the dependent variable 7; measures the percentage of real house price growth
for MSA i at time period 7. A; and f; are the individual fixed effects and time

fixed effects, respectively, the covariate ginc;; denotes the percentage of income
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Table 3.1: Frequency of correct rank estimation

100 200 N 100 200
T 100 200 100 200 T 100 200 100 200
rp=1 100 100 1.00 1.00 rp=1 100 1.00 1.00 1.00
DGP11 r=1 100 100 100 100 pgp3y rn=1 100 100 1.00 1.00
rn=1 1.00 1.00 1.00 1.00 rn=1 100 1.00 1.00 1.00
rp=1 100 1.00 1.00 1.00 rp=1 100 1.00 1.00 1.00
DGP12 "n=2 100 1.00 1.00 1.00 pgp32 "= 1.00 1.00 1.00 1.00
rnp=2 100 100 1.00 1.00 rn=2 100 100 1.00 1.00
rn=1 1.00 1.00 1.00 1.00 rn=1 100 1.00 1.00 1.00
DGP13 r=2 100 100 100 100 pgp33 n=2 100 100 1.00 1.00
rnp=2 100 1.00 1.00 1.00 rp=2 0998 1.00 1.00 1.00
ro= 1.00 1.00 1.00 1.00 rp=1 100 1.00 1.00 1.00
DGP2.1 rn=1 100 100 1.00 100 pgpgy; n=1 100 100 100 1.00
rn=1 100 1.00 1.00 1.00 rn=1 100 100 1.00 1.00
ro=1 1.00 1.00 1.00 1.00 ro=1 1.00 1.00 1.00 1.00
DGP?22 "= 1.00 1.00 1.00 1.00 pgpgo n=1 1.00 1.00 1.00 1.00
rnp=2 100 100 1.00 1.00 rn=2 100 1.00 1.00 1.00
rp=1 100 100 1.00 1.00 rp=1 100 1.00 1.00 1.00
DGP23 i 100 1.00 100 1.00 pgp43 n=1 100 100 1.00 1.00
=2 100 100 100 1.00 =2 100 100 100 1.00
Table 3.2: Frequency of correct break point estimation
N 100 200 N 100 200
T 100 200 100 200 T 100 200 100 200
DGP1.1 0980 0993 1.00 1.00 DGP3.1 0985 0972 1.00 0.999
DGP1.2 0999 1.00 100 1.00 DGP32 100 1.00 100 1.00
DGP1.3 100 1.00 1.00 1.00 DGP33 1.00 1.00 1.00 1.00
DGP2.1 0998 0999 1.00 1.00 DGP4.1 1.00 1.00 1.00 1.00
DGP22 1.00 1.00 1.00 1.00 DGP4.2 1.00 1.00 1.00 1.00
DGP23 1.00 1.00 1.00 1.00 DGP4.3 1.00 1.00  1.00 1.00
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Table 3.3: Frequency of correct group membership estimation

N 100 200 100 200
T 100 200 100 200 T 100 200 100 200
Gy 100 100 100  1.00 Gy 100 100 100  1.00
DGPLL G 100 100 100 1.00 DGPLL G 100 100 100 1.00
Gy 100 100 100  1.00 Gy 100 100 100  1.00
DGPLZ G0 100 100 100  1.00 DGPLZ G0 100 100 100  1.00
Gy 100 100 100  1.00 Gy 100 100 100  1.00
DGP13 G, 0989 0999 0978 0999 DGP13 G, 0989 0999 0978 0999
Gy 100 100 100  1.00 Gy 100 100 100  1.00
DGP21 G, 100 100 100 1.00 DGP21 G, 100 100 100 1.00
Gy 100 100 100  1.00 Gy 0989 0999 0992  0.999
DGP22 60 100 100 100  1.00 DGP22 G0 0992 0999 0977 0998
nfeasibl Gy 100 100 100 100 Gy 0992 0999 0961 0.999
nfeasible  DGP23 5 (998 100 0999 100 Feasible DGP23 5 go9g9 0999 0992 0.999
Gp 1.00 1.00 1.00 1.00 Gp 0.981 0.999 0.949 0.999
DGP3.1 G 100 100 100 1.00 DGP3.1 G, 0981 0993 0979 0.996
Gp 1.00 1.00 1.00 1.00 Gp 0.985 0.996 0.962 0.993
DGP32 G, 100 100 100 100 DGP32 G, 0985 0994 0973 0998
Gp 1.00 1.00 1.00 1.00 Gp 0.985 0.998 0.973 0.995
DGP33 G, 0981 0997 0982 0999 DGP33 G, 0971 0994 0968 0998
Gy 100 100 100  1.00 Gy 0975 0999 0984 0.999
DGP41 G 100 100 100 1.00 DGP41 G, 0985 0998 0949 0997
Gy 100 100 100  1.00 Gs 0994 0998 0952 0.997
DGP 4.2 Ga 1.00 1.00 1.00 1.00 DGP 4.2 Ga 0.977 0.999 0.985 0.999
Gy 100 100 100  1.00 Gs 0983 0998 0948 0.999
DGP43 G, 100 100 100 1.00 DGP43 G, 0982 0998 0983 0998
Table 3.4: Frequency of correct estimation of the number of groups
100 200 100 200
100 200 100 200 100 200 100 200
KD=2 100 1.00 0999 1.00 KD=2 0880 0993 0.675 0985
DGPLL  p@_5 100 100 100 100 POP31 x@_5 (890 0960 0873 0971
(1) = (1) =
bgpia K ! 2100 100 100 100 .o K ! 2 0868 0985 0759 0.940
kK@ =2 100 100 100 0999 K@ =2 0897 0971 0829 0.987
KD=2 0999 1.00 100  1.00 3 K1=2 0889 0988 0.802 0965
DGPL3 x> _3 100 0999 100 100 POP33 x> _3 0032 0977 0907 0988
K=2 100 100 100 100 K1 =2 0807 0981 0.825 0982
DGP21 x> _2 100 100 100 100 POPAL g2 _5 0919 0988 0714 0980
KUD=2 0919 0995 0940 0.994 KU=2 0933 0988 0.630 0975
DGP 2.2 DGP 4.2
K@ =2 0930 0993 0.809 0982 K@ =2 0758 0988 0.870 0.989
KU=2 0940 0989 0724 0.990 KU =2 0877 0991 0657 0991
DGP23  x@_3 oo46 0995 0952 0992 POP43  x@_3 (o000 0987 0874 0980
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Table 3.5: Determination of the number of groups

20 2
DGP N T 2 3 4 >5 2 3 4 >5
100 1.00 0 0 0 100 0 0 0
100 500 100 0 0 0 100 0 0 0
DGP 1.1 200 100 0999 0001 0O 0 100 0 0 0
200 1.00 0 0 0 100 0 0 0
oo 100 100 000 000 000 100 000 000 0.00
bGP 12 200 1.00 000 000 000 1.00 000 000 0.00
200 100 100 000 000 000 100 000 000 000
200 1.00 000 000 000 1.00 000 000 0.00
oo 100 0999 0001 000 000 000 100 000 000
200 1.00 000 000 000 000 0999 0001 0.00
DGP 1.3 100 1.00 000 000 000 000 100 000 0.00
2000 500 1.00 000 000 000 000 1.00 000 0.00
100 0933 0058 0009 000 0936 0060 0003 0.001
100 500 0.990 0010 000 000 0987 0013 000 0.00
DGP 2.1 200 100 0864 0126 0010 000 0901 009 0.009 0.00
200 0989 0011 000 000 0990 0010 0.000 0.00
0o 100 0919 0074 0007 000 0930 0067 0003 0.00
bGP 2.2 200 0995 0003 000 0002 0993 0006 000 0.001
200 100 0940 0056 0004 000 0.809 0164 0027 000
200 0994 0006 000 000 0982 0018 000 0.00
oo 100 0.940 0055 0005 000 000 0946 0039 0015
200 0989 0011 000 000 000 0995 0002 0.003
DGP2.3 100 0724 0230 0046 000 000 0952 0031 0017
2000 200 0.990 0.010 000 000 000 0992 0006 0.002
100 0.880 0.097 0022 0001 0.890 0062 0031 0017
100 500 0.993 0007 0 0 0960 0019 0012 0.009
DGP 3.1 200 100 0.675 0224 0099 0002 0873 0081 0.041 0005
200 0985 0015 0 0 0971 0023 0005 0.001
oo 100 0868 0109 0023 000 0897 009 0004 0.00
bGP 32 200 0985 0008 0.003 0004 0971 0021 0.006 0.002
200 100 0759 0198 0042 0001 0.829 0147 0024 000
200 0940 0055 0.005 000 0987 0013 0.000 0.00
0o 100 0889 0100 0011 000 000 0932 0055 0013
200 0988 0.009 0.003 000 000 0977 0013 0.010
DGP 3.3 100 0.802 0.175 0023 000 000 0907 0073 0.020
2000 500 0.965 0.035 0.000 0000 0000 0.988 0.010 0.002
100 0.807 0084 0089 002 0919 0041 0019 0.021
100 700 0.981 0013 0004 0002 0988 0004 0.005 0.003
DGP 4.1 200 100 0825 0107 0061 0007 0714 0118 0084 0084
200 0982 0011 0.006 0001 098 0010 0.004 0.006
oo 100 0933 0051 0012 0004 0758 0141 0089 0012
bGP 42 200 0988 0006 0.004 0002 0988 0005 0.006 0.001
200 100 0630 0158 0196 0016 0.870 0080 0.048 0.002
200 0975 0013 0.012 0000 0989 0009 0.002 0.000
oo 100 0877 0076 0042 0005 0000 0900 0055 0045
200 0991 0006 0.002 0001 0000 0987 0010 0.003
DGP 4.3 100 0.657 0.191 0.129 0.023 0000 0.874 0072 0.054
2000 500 0.991 0.005 0.004 0.000 0000 0.980 0012 0.008

71



. L 1 2
Table 3.6: Point estimation of O‘~(1) and O‘~(1)
Infeasible Feasible
DGP N T Before the break After the break Before the break After the break
Bias(x107%) Coverage Bias(x107%) Coverage Bias(x107%) Coverage Bias(x107%) Coverage

100 2585 0.951 -2.869 0.946 2.585 0.951 2.869 0.946
100 50 -1.944 0.944 -8.920 0.945 -1.958 0.944 -8.920 0.945
11 100 | -1.09 0.943 1.407 0.947 -1.096 0.943 1.407 0.947
200 509 -1.910 0.945 0.960 0.947 -1.910 0.945 0.960 0.947
100 | -1.050 0.949 -27.398 0.941 -1.050 0.949 27.398 0.941
100° 500 -5.449 0.930 7.616 0.953 -5.449 0.930 7.655 0.953
12 100 4770 0.949 1.866 0.951 4770 0.949 1.866 0.951
200 599 1.317 0.941 1.874 0.945 1317 0.941 1.874 0.945
100 | -0.961 0.943 11.417 0.944 -1.050 0.949 27.398 0.941
100 599 4213 0.951 -5.002 0.941 -5.449 0.930 7.655 0.953
13 100 | -1.571 0.938 3.756 0.938 4770 0.949 1.866 0.951
200 509 0.403 0.941 4.159 0.945 1317 0.941 1.874 0.945
100 | 14.840 0.944 9.410 0.950 14.816 0.943 9.406 0.950
100 50 7222 0.951 1.795 0.951 7222 0.951 1.795 0.951
2.1 100 0916 0.940 3.575 0.948 0916 0.940 3.575 0.948
200 509 0.452 0.948 0.797 0.947 0.452 0.948 0.797 0.947
100 | -21.379 0.946 0.234 0.937 21.379 0.946 0.234 0.937
100 599 0.264 0.942 -15.542 0.953 0.264 0.942 -15.542 0.953
22 100 | -1.379 0.945 -1.489 0.951 -1.379 0.944 -1.489 0.951
200 599 -1.101 0.950 1.127 0.949 -1.101 0.950 1.127 0.949
100 | -8610 0.945 5.254 0.952 -8.610 0.945 5.261 0.952
100 599 0.927 0.949 5.840 0.949 0.927 0.949 5.840 0.949
23 100 | -1.560 0.943 2.569 0.941 -1.560 0.943 22.569 0.941
2000 509 -0.775 0.947 4.408 0.947 0.775 0.947 4386 0.947
100 | -20.928 0.955 -73.947 0.945 -26.250 0.927 77.613 0.920
100 599 3.066 0.949 -12.443 0.937 2.884 0.940 -13.116 0.934
3.1 100 | -2.663 0.951 -8.742 0.944 3.517 0.857 7730 0.888
200 509 3747 0.949 2.107 0.945 3.642 0.939 -1.971 0.938
100 | -55.980 0.952 -10.846 0.943 -58.714 0.926 -15.109 0.863
100 599 2774 0.950 4.690 0.946 3218 0.945 4913 0.942
32 100 6.979 0.951 8.879 0.945 6.287 0.858 6.894 0.848
2000 909 -1.704 0.947 0.438 0.945 2122 0.928 0381 0.940
100 | -25.340 0.950 37.639 0.907 -29.905 0.924 37.016 0.890
100 599 2.042 0.947 -6.431 0.960 1.667 0.940 -6.245 0.960
33 100 | 2391 0.946 14.364 0.892 2735 0.891 13.680 0.840
2000 509 4339 0.943 4.890 0.942 4.493 0.932 5.113 0.938
100 | 800.620 0.930 -466.590 0.929 777.650 0.928 -454.980 0.924
100 200 | 126.760 0.931 550.210 0.942 126.220 0.942 548.160 0.943
4.1 100 | -224.960 0.931 -339.020 0.939 -214.900 0.904 -313.430 0.876
2000 500 | 417.320 0.938 412.500 0.947 415.110 0.941 410.700 0.944
100 | 1246.000 0.921 726.940 0.943 1205.600 0918 709.260 0.903
1000 700 | -440.880 0.943 83.433 0.944 -436.670 0.943 81.585 0.951
42 100 | -1600.500  0.930 1937.500 0927 | -1538300  0.901 1781.600 0.819
2000 500 | 1513300 0950 272500 0946 | -1502.000  0.935 271.420 0.953
100 | -2067.900  0.931 -505.100 0940 | -1951.700  0.866 -491.200 0.929
100 500 | 317.360 0.946 411.770 0.945 316.550 0.951 407.820 0.935
43 100 | 1279.900 0.930 3660.100 0.888 1246.900 0.906 3355.100 0.874
2000 500 | -772.380 0.940 -335.250 0.948 -768.870 0.932 -334.190 0.940
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growth for MSA i at time period ¢, and ginc; ;1 is the lagged value of ginc;;. Unlike
Aquaro et al. (2021) and Su et al. (2023) who consider individual fixed effects and
additive two-way fixed effects, respectively, we allow the model to have IFEs. In
the above model, we allow the slope parameters (@1 ;,®, ;) to be exhibit latent
group structures along the cross-sectional dimension and an unknown break along

the time dimension.

3.7.2 Data

The data we use is obtained from Aquaro et al. (2021), which is the quarterly
data for 377 MSAs over 1975 to 2014. To construct the growth rate and the lagged
term, we lose two periods of observations, which yields 7 = 158. Similarly to Su
et al. (2023), we deseasonalize the growth rate of real house price and real income.
We don’t defactor the variables since our model contains the IFEs to control the

common shocks.

3.7.3 Empirical Results

We first apply the singular value thresholding to estimate the ranks of ®y =
{A/fi}, ©® = {0} and ®; = {®,;}. The estimates are: 7y =1, 7/; = 2, and
7o = 2. Before applying the proposed estimation algorithm in Section 3.3, we first
test the presence of the structural break showing in Section 3.5.2. As provided
in Bai and Perron (2003), for each individual i, the critical value of test statis-
tic supy,c g, Fi(T1) is 15.37. We then construct the sup-F test statistic for each
MSA. Results show that m;rjl supr, ¢ 7, Fi(T1) = 0.0195 and the final test statistic
is Fyr(1|0) = fg% SupTle;[Fi](Tl) = 2161.65. Based on this, we reject the null that
there is no structural break for slope coefficient @y ; and O, ;; at 1% significance
level.

With the presence of a structural break, we apply the proposed multi-stage esti-
mation result in Section 3.3 to estimate the break date and numbers of groups before
and after the break. The estimated break date is given by 7] = 51, which suggests
that the structural break happens at the first quarter in 1988. We conjecture that
this is owing to the catastrophic stock market crash that occurred on October 1987,

which is known to be the first contemporary global financial crisis.
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By setting ¢y = N2 for the STK algorithm as in the simulations, we obtain the
estimated prior- and post-break numbers of groups given by K () =6 and K® =2,
respectively. As for the group structure, Figures 3.2 and 3.3 use six and two colors
to show the classification results for the 377 MSAs during 1975Q3 to 1987Q4 and
1988Q1 to 2014Q4, respectively. Table 3.7 reports the pooled regression results for
the full sample in column (1), the subsample before the estimated break point in
column (2), and the subsample after the estimated break point in column (3). All
the slope estimators are bias-corrected. The pooled regression results in Table 3.7
show that the real income growth has positive and significant effect on the house
price. Comparing the two subsamples before and after the estimated break, we
observe that, with 1 percentage increase for the real income growth rate, the real
house price growth rate will increase 0.09 percentage before year 1988, which is
0.02 percentage higher than that after year 1988. Besides, we notice that the slope

estimates for the lagged term are similar for the two subsamples.

Table 3.7: Results for the pooled regressions

Pooled (full sample) Pooled (197503 —198704) Pooled (198803 —201404)
(1) (2) (3)

ginciy 0.1021" 0.0904** 0.0702"**
(0.0067) (0.0119) (0.0065)
ginci; 1 0.0590** 0.0392+* 0.0401%**
(0.0067) 0.0117) (0.0066)

#individuals 377 377 377

Note: Column (1) reports the pooled regression results for the full sample. Columns (2) and (3)
report the pooled regression results for the subsamples before and after the estimated break point,
respectively. Slope estimators are all bias-corrected. Values in parentheses are standard errors
and *** indicates significance at 1% level.

To examine the difference for each of the 6 estimated groups before the break,
Table 3.8 reports the post-classification regression results for each estimated group
before the estimated break. Even though the effects of the real income growth are
positive for all estimated groups, they differ vastly across groups. The effect of
the real income growth for Group 2 is the highest, followed by Groups 5 and 3,
and the effects of real income growth on the real house price in all of these three
groups are higher than 0.15 percentage. In contrast, the effects of the real income
growth for the remaining three groups, viz., Groups 1, 4, and 6, are less than 0.07
percentage. Similarly, Table 3.9 reports the post-classification regression results for

each estimated group after the estimated break. The estimated slope coefficient for
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both groups are statistically significant. Especially, during 1988Q1-2014Q1, the
slope estimator for the lagged term in the first group is much higher than that for the
second group.

We also apply the C-Lasso algorithm in Su et al. (2016) to estimate the group
structure before and after the estimated break point. The C-Lasso approach together
with the IC detects 2 groups both before and after the break. With the six groups
shown by our algorithm, we conjecture that it may due to the smaller time periods

before the break.

Table 3.8: Results for the post-classification regressions

Group 1 Group 2 Group3  Group4  Group 5 Group 6
(1) (2) (3) (4) (5) (6)
gincis 0.0301 0.3169***  0.1522***  0.0168  0.1877** 0.0661***
(0.0345)  (0.0292)  (0.0408) (0.0561) (0.0775) (0.0153)
ginci; 0.1217***  —0.0191  —0.0089 —0.0298 —0.1269* 0.0331***

(0.0348)  (0.0288)  (0.0407)  (0.0560)  (0.0754) (0.0151)
#individuals 60 92 35 12 36 142

Note: Each column reports the regression results for each estimated group during 1977Q3-

1987Q4. Slope estimators are all bias-corrected. Values in parentheses are standard errors.

% and * indicate significance at 1% level, 5% level, 10% level, respectively.

Table 3.9: Results for the post-classification regressions after the break

Group 1 Group 2

(1) (2)
ginci 0.0670*** 0.0714**
(0.0130) (0.0079)
ginci 1 0.0870*** 0.0275***
(0.0135) (0.0079)

#individuals 103 274

Note: Each column reports the regression results for each
estimated group during 1988Q1-2014Q4. Slope estima-
tors are all bias-corrected. Values in parentheses are stan-
dard errors. *** indicates significance at 1% level.

3.8 Conclusion

This paper considers the linear panel model with IFEs and two-way hetero-
geneity such that the heterogeneity across individuals is captured by latent group
structures and the heterogeneity across time is captured by an unknown structural

break. We allow the model to have different group numbers, or different group
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memberships, or just changes in the slope coefficients for some specific groups be-
fore and after the break. To estimate the unknown structural break, the number of
groups and group memberships before and after the break point, we propose an esti-
mation algorithm with initial nuclear-norm-regularized estimates, followed by row-
and column-wise linear regressions. Then, the break point estimator is obtained by
binary segmentation and the group structure together with the number of groups are
estimated simultaneously by sequential testing K-means algorithm. We show that
the structural break estimator, the group number estimators, and the group mem-
bership estimators before and after the break point are all consistent, and the final
post-classification slope coefficient estimators enjoy the oracle property.

There are several interesting topics for further research. First, even though we
discuss a possible test for the existence of a break in the panel data models with
latent group structures, we have not fully worked out the asymptotic theory. Second,
we assume the presence of a single break in the data and it is interesting to extend
our theory to allow for multiple breaks. Third, our theory rules out both unit-root-
type nonstationarity and nonstochastic trending nonstationarity and it is interesting
to extend our theory to allow for nonstationarity. We will pursue these topics in

future research.

76



Group 1
I Group2
Group 3
I Group 4
[ Group 5
I Group 6

[ Group1
B Group 2

Figure 3.3: Group classification result before the break
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Chapter 4

Conclusion

This study contributes to the estimation and inference of the high-dimensional
panel models with two-way slope heterogeneity. We have considered the hetero-
geneity in two models: (1) two-way heterogeneity modeling as low-rank slope ma-
trix in panel quantile model, (2) time-varying latent group structure in linear panel
model. In the first model, the asymptotic theory for the debaised slope estimators
is established, and we propose two specification tests for the slope coefficient un-
der different rank conditions. In the second model, we recover the unknown break
point, the number of groups, and the latent group structure before and after the un-
known break point and show that proposed estimators enjoy the oracle property.
Monte Carlo experiments are done to show the good performance of the proposed
estimators and tests. In empirical applications, estimation algorithms are employed
to study several problems in microeconomics and macroeconomics.

In the future research, it is interesting to extend models and estimation pro-
cedures in several directions. First, the inference theory for the low-rank panel
quantile regressions is obtained by sample-splitting. One can try to change the
sample-splitting approach to the full sample estimation, which obtains more stable
estimates. Second, one can also generalize the time-varying latent group structure
with multiple breaks by using the potential sequential testing approach. Third, one

can also extend our model to the non-stationary and nonlinear framework.
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Appendix A

Technical Results for Chapter 2

A.1 Proofs of the Main Results

A.1.1 Proof of Theorem 2.1

We focus on the full sample estimators A@j, Gy, j» and Vj in the proof. The results
for their subsample counterparts can be established in the same manner, and we omit
the detail for brevity.

Proof of Statement (i)

Recall that
p 4
R(C1.Co) = {({A@_,}g;(» Y |7t @e)] < X [ 250l
, 2 J= J=
3 186, = VAT .
j=0

Define Z(C) := {{A@j}?zo D A HQZJ-L(A@].)H* <GYl “Qj(A@j)‘}*}. By Lemma
A4, P{{Ae;(1)}_y € #(3)} — 1. When {Ae;}"_; € Z(C1) and {Ae;}"_, ¢
%(3,C,), we have Y/_ ||Ao, |2 < Cov/NT, which implies

ol =0n (AT ). e piugon

It suffices to consider the case that {A@j }?:0 € #(3,C).
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Qr <{®j}?:0> -

=
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I
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I
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Pe <Yiz — 0o — ) Xj7it®j,it> , and

Jj=1
gi,t—l] ’
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Pz (Yiz —0Op,ir — Z Xj,it®j,iz>
~ p ~
02 Qx ({0 +A0,}]_y ) ~ Qe ({00 ,) + X v (1€ +3o)|. - . )
J=

= {0 ({00 +30,}7_y) ~ Qe ({09)7,) ~ [0¢ ({85 +A0,}], ) — 0 ({€5)],) ] |

+ 0 ({89 +30,}_,) — 0 ({&9)) | + z vi ([1€9+e,l, - 6%, ).

1

QT({GJ}f:O) - E

3~ 3[-
=
M=

N
I
_

=
I

1

where % ;_1 is defined in Assumption 2.1. Then we have

(A.1)
where the first inequality holds by the definition of the estimator. Noted that
~ ~ p ~
V|15 + e[|, ~ [O91L,| < villAe, |, <csv, Lldel, a2
=

where the first inequality is due to triangle inequality and the second inequality
holds by Lemma A.7 with positive constant cg defined in the lemma.

Define
P

Pit ({A®j,iluxj,it}§:078it> =Pz (&'z —Aoir — ZXj,itA(Bj,it) — Pz (&), (A.3)
=1
gi,l‘l] )

Pir ({A@)j,iz,Xj,ir}f:O,Eir) = it ({A@)J-,iz,xj,it}f:o,«?n) — Pir <{A®j,iZan,it}§):0>8iz> )

Pit ({A(Bj,itaxj,it}?:oagit) =E

p
ol (&'t —Aoi— ) Xj,itA('Dj,it) — pe(&ir)

j=1

(A4)
1L yvN vT 5 P
‘W i1 Xi—1 Pir <{A®j,it7Xj,it}j:078it>
JZ{1 = sup Zp HA H S CSCINT s
{A@j}jzoe%(s,cz) 7=0 1126,
with ayr = ( 12/})g( ) for some positive constant Cs, and <7/* as the comple-
ment of 7] .

On o7}, following (A.1), we have w.p.a.1

0> [0: ({8)+36,})_,) - 0: ({03} ,)]
~[@e ({05 +30 o) —@r ({&5}].o) — [r ({8 +a o) —0e ({85}) ]
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CsYf o ||Ae; ||, V(INVT)log(NVT)
N NT

where the first inequality is by triangle inequality, the second inequality holds by
(A.2) and Lemmas A.6 and A.11. It follows that

Gy &« 2 es(p+1)co/NV(TlogT)+Csy/(NVT)log(NVT) & i«
TG 3 | | - Do DGy § o,
Jj=

which implies

1 - V1og(NVT)ER
HA H _ g( )éN
NT '"llF VNAT
under the event .7} .

By Lemma A.11, for any é > 0, we can choose a sufficiently large Cs such that
P{e} < 8. This implies

1 ~ log(NVT)ER ,
10l =0, (YEETR) v m

Proof of Statement (ii)

With the statement (i), the second statement holds by the Weyl’s inequality. Bl

Proof of Statement (iii)

ForVje{0,---,p},letD;= 5= [
”/jOZ(} 7V, Define the event .o (M) = {
with ny = Y¥——=-"~ 10g WvT) 5” . On event .o/ (M

Qi=7j ”// /, and recall that DY = =000 =

0, @HSMmMmﬂ%wM}

for some positive constant Cg,
15— D[ < Conw.

By Lemma C.1 of Su et al. (2020) and Davis-Kahan sin® theorem in Yu et al.

(2015), there exists an orthogonal rotation matrix O; such that

V2Ceny g\/_ V2Ceny

< Kioo———
2%1 Cenn — CeNy

ot < vt
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<.,/K 6nN < CgT[N,

for Cg = \[C“f The second last inequality holds with some positive constant Cy
and the fact that Ny is sufficiently small.

Then HVJQ —VjOjHF < Cgv/Tny by the definition of V; and V,. Let <5 (M)
be the complement of event . (M). Combining the fact that P {5’ (M)} — 0, it
implies HVJQ —VjOjHF =0, (\/TT[N) .

A.1.2 Proof of Theorem 2.2

Proof of Statement (i)
We prove that max; oWl 0|l =0 (ny) and
ieh || O Ui — i), = OpUIN
1) (1
max o ull) —ul|| = 0p(n)

can be derived in the same manner once statement (ii) is satisfied. Define

<{u”f}16 p]u{o}) pr( ”_” Z i,j tj J”>’

b

0_ 1,0 or 1/ A A (D) 0 '
i = [, ud)s Aig=07"w) —uly A= (Mg A
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1=
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=g —u?(® — o)),
and for i € I, recall that 96{,‘ is the o-field generated by

{Si*hei*t}i*ell JE[T] U {eir}ze[T} U {Vjo}je[p}u{o} U {Wjo}je[p]

By construction, we have
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where the first inequality holds by the definition of the estimator and the second

equality holds by Knight’s identity in Knight (1998) which states that

Vv
pelu—v) = pe(w) =v(z—1{u< O+ [ (1{u < s}~ 1{u < 0})ds
0
After simple manipulation, we have

|Ag

=Ay4,; <

—A1i—Ay;i—A3;—As;—Ag; —A7;
< |A17i‘ + ‘A27i’ + ’A37i| + |A5,i‘ + ‘Ae,i{ + ’Au} .
Define, for some constant M, an event set

ot3(M) = {max(|Am,|/HA,uH)§MnN, m:1,2,3,5,6,7}

i€l
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and

(A.6)

Then, under <3(M ), we have

My [[Aiull, > |Aa,l

(T comavicn [} (b1 eli) sl masis [
- 12 9 6\/§ 9

(A7)

where ¢1; < min( f,f ,1) and the second inequality holds by Lemma A.15. In addi-

tion, note that

3/2
1 ~||? (1) 2
1 | = 1 ‘ )y,
?&X Z H ri%%?Tt;”]( V1,0 2+J.€Z[;7] Vi i
13/2
1 2M\ 2
SmaX—Z <—> <1+Z ,t> < (9, as.
ich Ttem[ Co )

with Cg being a positive constant, where the first inequality holds by Lemma A.13(i1)
and the second inequality is by Assumption 2.1(iv). Then we have by Lemma A.14

. 13 [zmm( )f/ " i, [t (911) ] ol
i ’ ‘ = T ’3 Co ’

2
which implies

(31— chF) yema maxicn A,
6v/2

as Cj is defined to be the positive constant and 1y = o(1). Combining this with

(A.7), we have

>C101}g;(HAi,uH2nN;

max 05.1)’u§71j) ij ‘

ich

HAI u” < M/nN

for some constant M’ which may depends on M. In addition, for an arbitrary con-
stant e > 0, we can find a sufficiently large constant M such that P(.a%(M)) <e,

(1 (1)
o) —ul,| = o0pny). ™

which implies max;¢y,
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Proof of Statement (ii)

Differently from the proof in the previous subsection, owing to the dependence

(1)

ofu’]

and g;, we can not directly use conditional exponential inequality. In this
subsection, we will show how to handle this dependence in detail. Recall that %,

is the o-field generated by {e; i } je[,] U {VO} (o) {WJQ} . and define
plU JEIp

Qrt,v ({ ,]}Je p]U{O} Zpr ( Vt Oulo Z V,] lj ]zt> 9

/
V? (VE)/O7 ’ v?/p) ’ At,j j t( v2j7 At,v :( t,00 """ 7A;7p) )
- (1 D (! 1) .(1 1 .(1 aK
pib) {(0(())%(70)) ,<0§)u§’1>xl7,-t) ,...,(0§,>u§’;Xp7i,>} :
. 1
‘Pt(l) _ q;( )‘P( )
N2 i€l

Asin (A.5), we have

0> Qe <{ t(lj)} el }u{0}> ~Quy ({ El)v ’J}je[P]U{O})

)4

Ly e (Yo 0 - 3580 0

N, ich j=1

1
_]\TZpT <Yn,‘ Z ?IJOJ jlt>

i€l

1 i (1) 4 1 TEII),AW

“%E [ A (2= 1wz <0})] +172,-§2 /0 (1{ws; <5} —1{wsy <0})ds

_ 1 y [\yg/Aw(r— 1{g; <0})] + ]% ) {(\Pft ) —‘I‘E)t)/A;,v (t—1{g; < 0})}

N, ich 2 el

1 . .
+—Y [\PE,“’AW (1{e <0} ~1{ws; <0})]

N, i€l

Z/ {l{en<s} 1{g; <0})ds

1612

ezt:|
1

WA,
A Y {/ [(1 {en <s}—1{g; <0})—E ((1 {e4 <s}—1{e; <0})ds

i€l

I

)}

Z/ (1 {ws0 < s} —1{e; <s})ds

1612

Z/ 1{gl,<0} 1{W3lt<0})

1612
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— s T [a (e <0+ T | (9 - 98) B (- e <0)

ﬁzie]z 2 ieh
2 . .
+ Y [lpl(tl)/Az,v (1{ex <0} —1{ws; < 0})}
2 iclh

N T

I { i o (e <0}~ 1{e <0) B (1 (e <5} 1 0D, ) ds}
WA, ,

+172,-§,2/0 (1{W37it§~9}_1{€it§5})ds

=Y By, (A8)

W3 = Yir — VzOO() 1(0) Z ?/105) l(j) Xjit = Yir — v?’\P()_e,t Ol(‘P() ‘PE);)
=

the last equality is by the fact that the third and the last terms after the second
equality are identical. Then we obtain |B47,| < Yontd |Bys|. By Lemma A.16 and

similar arguments for Theorem 2.2(i), we obtain that

max H 0
te[T)

_VIJ‘ < [|Acul[, = Op(mv).

’

Proof of Statement (iii)

In this proof we derive the linear expansion of {ul(l])} jelplufoy for each i € L.

Recall that Vi € I3,

{'(1)} — argmin ! ET Y,
u. : = — i V
v jelplufo} v Tt:1pT T lo to

{uis} jelplu{oy

Zul] l‘J Jlf>'

je

/
Deﬁne d;i[ = (\}EIO)I,X]’it\')El])/, e ,Xp,itvlg’lg/> and

1=

Hi ({ui,} jepugoy) = [T —1{&r < gir({uij} jeppiuioy) }] B

N
I
—_

Nl— N

~
—

1=

E { [ —1{en < gi({uij}jepufoy) }] @i

% ({Mi,j}je[p]U{O}) = @eI}UIZ} :

{17 =it (gir({ui} jeipugor))] @i}

N
Il
—_

I
Nl -
-1~
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' (1) T (1) ; (1), 0
Wi <{u,-, J }jemu{O}) = H; <{”i,j }jemu{O}) —H; (‘{0,- Mu}je[p}um})
2 (1) / (1), 0
- {% <{“i,j }jG[P]U{0}> — <{0j ”i,j}je[p}u{0}> }’
where .@5{} Y% being the o-field generated by

{ei*h ei*z}i*ellulz,te[T] U {eil}tG[T] U {V]Q}je[p]u{o} U {ij}je[p] )

and

.(1 (1
gll({ul7j}]€[[)]U{0}) = u;,Ovz(,O) + Z u;,jv[(J)Xjﬂf Ov[ 0 Z ul Jv[ Jj ] it
Jelp] Jjelpl

Then we have

Q) 2 (1,1
({M, i Yielp U{O}) ({0, ?,j}je[p]u{()}) + <{u,~7j }je[;a]U{O})
(1) - (1)
A ({Oj ”io,j}je[p]u{O}) +W; <{M,~,J~ }je[p]u{0}> . (A9)
By Assumptions 2.1(v) and 2.2 and Theorem 2.2(ii), we have max;cy, sc(r |||, <

C11&y a.s.. By the first order condition of the quantile regression, we have

. |
() seonn )|, = 00 (7 max1ul) =0,(34). a0

T icnyte[T]

W; <{”i,j }je[p]U{0}> H2 =0p ((N\/ T)71/2>- No-

max
ielz

Next, we show that max;ey,

tice that
L ({uglj}je[,, o)
T T Z o (1{en < 810l seppgop) =1 { & < gul{l)}jcpopo) })

1 .
-7 . Wy [Siz <g({0§'1)“2j}je[p]u{0})> — S (giz({u,%)}je[p]u{O})ﬂ
te
= W! —wi ({u,, }ielp) u{0}> (A1D)

where W/ = L¥T | ' W! with
Wi = dfiz{ (1 {81'; < 8it({0§'1)”2j}je[p]U{0})} — e < 0}>
— [ (800} Y jeppiogo)) =5 (0)]

and

. 1 &
Wi <{u§,1j)}j€[p]u{0}> =7 Zi wiz{ (1 {&'t < git({ug,lj)}jdp]u{O})} —1{g; < 0}>
=
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— [Sit (git({ug,lj')}je[P]U{o})> —3,-;(0)] }

Noting that

Ly (0(.1)%.’].)/ (V_t(l_) B 0(_1)v2j> X i
J€lp)

and max;¢ hye[T

] 8it({0§1)”?,j}.fe[p]u{0})( = 0 (Enmw), we have, maxic e pr) ||[Wh ||, =

Op(&n), E <W{[ _@guh) =0, and for some positive constants Ci,
max ||Var (W{t _@eI;UIz)
i€l te[T] i P
< ES oy (1{e < g({0Vul } N 1e <0)) | ghue
< max i@y (14 & < g({0; 1} jeppiufoy it < 4 .

< max (a3 (1{0 < Jal < Jo((0 i} cipio) |

@é}Uh) = Op(élfj\’]nN)’

iel teT)
and
T
max Cov (W,’,,W’ _@11U12>
ieltelT] (S0 F
T e bz

< mix Y [ (HW 12+ @gwh)} [ (HW 12+ @g;wz)] a(t— )]0
i€l re[T) (T '

2

29 2
@!}Ulz)} max Z ot —s)] "2 as.

< max e (|3 ma
s=t+1

i€l te]

62”5;9 Pr
_ ix =
=0y Ny ;

for any ¥ > 0, where the first inequality holds by Davydov’s inequality for condi-

tional strong mixing processes, and the last equality holds by the fact that

(HW [ -@53%) — 0, (&)

following the similar argument as in (A.10). Combining (A.10) and (A.11) yields

6429 2

e {”V‘”’ (W)l + 2 cov anW’wF} ~o, (&5 i),

For any constant Cj, > 0, define

6429 2

i) = e Ivar (), 2 o (3 ) < ot
s>t
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max
i€l te[T|

o75(Cr2) = {

{HVar<w;>HF+zzucOv<w;,w;
s>t

6420

< C125 2+19

i} o)

For any e > 0, we can find a sufficiently large constants Ci, such that P(#(C12)) <

e. Therefore, we have

log(NVT
W C 2+19
{1355( Z | > Crsby < NAT
1 & 320 og(NVT)
<P — Y w! C13E2°
= {rir?}gx Tl; ”2> 136w ( NAT
1 & 39 log(NVT)
S,EIP{ ?ZW” > Coon " | TNAT
IS &} t=1 2
1 & 50 (log(NVT)
<Y Pz ) Wi >C1352“9(
i€l { Tl‘Zl l 2 N/\T
T
_ Z - égjg (logN\/T
1613 t=1 N/\T
+e,

))49219 log(NVT)}

lo N\/T
) \— log(N'VT) %Clz}

lo NVT
) \— g %Clz}

/1 N\/T
) Og JZ%SICIZ }+€

) /logN\/T

-@IIUIZ} {5 ,(Cr2)}

(A.12)

where the second inequality is by the union bound, the third inequality is by .25 (Cy2) C

275 i(C12), and the last equality is owing to the fact that .27 ;(C2) is @e[}ub measur-

able. Given 711”2, the randomness in W/ only comes from {&it}ieimy

, which are

strong mixing given @eI} Y Therefore, on 275 i(C12), Lemma A.12(ii) implies

1
1 & 30 (og(NVT)\*2 [log(NVT)
P W >cppe2 (2222 | 7"
(s ] et ()
L 510 (log(NVT)\ %
- W >ciég™ <M> VTlog(NVT)| 7,10
& NAT '
( L 10420
< c12CLT (“’%’X;”)” £ log(NVT) i
€X — ) :
= CXp D1+ Dr+ D ( )
with
1
log(NVT)\?2? _19+20
n=car (M) 6 amchigh and
1
7420 (og(NV T)\ 729
= C11Ci3/Tlog(NVT)EZT™ (%) (logT)?,
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which further implies

max Z Wlt
i€l

As e is arbitrary, by Assumption 2.1(ix), we obtain that

1
340 (log(NVT)\*2% [log(NVT
A e G ey

1
59 (log(NVT)\ 42 [log(NVT
> 52“9 (—%\(TAT )) —g(T )}:0(1)+e.

NAT T

~o, ((NVT)*I/Z).

For W <{ul(lj)} Jelplu {0}>, we observe that

(1)
git({ lj}je[pU{O}) z( & t,0 + Z ulj tj)X] it lOVIO Z uljvt] Jsit

Jj€lp] J€lp]
/ /
= (”z( J- 081)“?@) o+ (081)“?,0> <‘>£,10) - 0(()1)V9,0>
+ ) ( ”2]')/95,1]'))(1‘#: + ) (0§1)”31>/ (vt(lj) - Oﬁl)vgj) Xjit
J€lp] J€lp]
- A: uq)z(t ) +A; v\P?ta

»TLp

with A, ;= 0{""v!) 20

ol [(0(() )/Vz(,g>l» <0(11)/V£’11)X1,it>/7"' : <0§,I>’v',(1,3Xp ,,)T, and

0 _ 0/ !
lPit - ( Uiop, U 1X1 it - i,pXPJf) :

. . . . . . /
where A;, = <A§70,--- Al > with A”:O() ()—u({. A, = (A;’O’... A;p)

Unlike the analysis for W{,, to handle the dependence between &;; and Aiju, for any
constant C14 > 0, we first define an event set 7% (C14) = {max;er, || Ai H2 < Cunn}
with P(o7£(C14)) < e for any e > 0 by Theorem 2.2(i), then we have

1
40 (log(NVT)\*2 [log(NVT
P(?ée}f WH(‘{"J bielp U{0}>H > C1a gw( ]\(l/\T )) <T )>

1
(D 399 (log(NVT)\*+2 [log(NVT)
<P<€%%i‘ Wi (e )|, > usi (S ) T (G
+e
1
=11 350 (og(NVT)\*2® [log(NVT)
<P W, C 249 [ oV T 7/ ey 7/
: (igg% ol > ensi® (507 T )t
(A.14)
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with S = {s e R(Zjcipuo Ki)x1 . [s]l, < Cwm} and
—II . .
2 w,t{ (1{en <56+ 4,99} ~1{e, <0}) -

[gi, <s’<i>§}) +A;7vlp?,) - &(0)} }
Similarly as in (A.95), we sketch the proof. Divide S into S,, with center s,, for

m=1,---,ngif s €Sy, then ||s —s,[|, < % and ng TLicrvi0} X Then, Vs € Sy,

we have
7 @l < [ ]+ [ =T A
with
I
max  sup HW - W; (sm)H
ich,meng| s¢§,, 2
1

< max sup (D,-t (1 {8,1 < s’d'Dgtl) +A;7V\P?I} -1 {el-t < s;nd)l(tl) +A§7V‘Pg}>

B i€I3,m€[Il§] SES, T

2
1

? o [Sit <S/(i>§tl) —}—A;?V‘P?J Sir < )—I-A LPS‘)]

+ max sup
i€137m6[nS} SGS

max 0]
_1613,m€[n§] Z H lt||2 ( {

te[T)

l MN} T Mq

2

5 (1)
)| < e||D;, |2 LUL
=T e

¢ max supr ¥ (@l 0 b ls—sal,  (A16)

i€ly,me[ng] scS,, te[T]
- T

— T e,-l *

b(1)
, . E||P; €
max Z ||y ||, E (1{\sit—A;,vq!?,—s;1q>ﬁ} < M} ‘95;“2) =0p()

iclh ,me[ng] te[T]

A/ 0 14 (1
i — A Wiy — 5, Py

+ max

111 ‘
iGIz,mE[I’ZS}

Wi (m)

such that WHI( ) = %Zte[T} W{t”(m) and

W (m) = [l {(1{

0
it

A/ 0 !
Eit — Al7VlPil — qu)

(1)
it

& — A S — ’<i>

because A[ SPY + qu)z(t) and ||d; || are measurable in Z“" and the conditional

.@I' Y2 i bounded. Also we have

€
max sup — o, CID s—s = max— o, <I> <—
max sup tezmn il 1642 s = 5l = 7 ma Ttezmn il 1941 =0, (5

density of &; given
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In addition, we note that

3
. —III UL Ene
Wi, =0 , Var | W,, 2,21 =0, =),
iel3,mrél[2§},te[T] H UHZ p(éN) iel3,mrél[3;(],te[ﬂ ar( ( ) ! ) b ( T )
T _ 2/3
max Cov (WHI(m),WfSH(m) @el,‘ub) ‘ =0, ( 1?,/3 (£> ) )
ielzmeng)re[T] (574 ! T

and for any positive constant Cy5 and Cj¢, define event set

BN
max {Var (Wm(m) 92“2) +22S 1 |Cov (WI”(’”%WZ{SH(’”) —@elz!wz) } <Cis §8/3 (%)2/3
i€l;,m€(ng),t€(T)
and max H(D,;Hz < Cisén
iehte
BN
s [var (| 24 ) 21 o (W o 2 | ) | < sl ()
meng|,te

and max ||@||, < Cisén
te(T]
with P <%C N) < e for any positive e. Then we have

W' ()| > Caga'™

1
5+9 4429
P( . (log(N\/ T)) 75 [log(NV T)>
i€ly,me|ng)

NAT T
1
111 350 (log(NVT)\*#2® [log(NVT)

or W )| > Cragh (BTN flogVT)
- <ielgil1?ex[ng] i (m) N NAT T SN | Te

5+9 /] NvVT 4+219 1 NVT
B (o () T ).
i€[l],me[ng]

5+0 /] N\/T 4+2z9 1 N\/T
-y EP(‘W > gZW(Og ) \/Og ‘@5}”2) v}
i€[l3],me|ng] NAT
+e
=o(1)+e, (A.17)

where the last line is by Bernstein’s inequality similar to (A.13). As e is arbitrary,

we have
1
i W H _o, gig (log(N\/ T)) #20  [log(NVT) ’
i€I3,m€[nS} NAT T

which implies that

1
— 30 (log(NVT)\*2 [log(NVT
max sup le” (S) _Wi S H — 0 2+13 (M) & .
i€l ,me(ng] scs,, NAT T
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Following the same argument in (A.17), we can show that

W (s H _o, ( L (log(N\/T))‘lel‘f‘ log(N\/T))
i \Sm)|| = ’

max
i€ly,me|ng)

NAT T
which, combined with (A.14) and (A.15), implies that
max

max || W1 ({6} etpunoy) |

549 4420
_0<2MC%an>+ kgﬁzg:%gwﬂywy and thus,

NAT T

max
i€l

Wi (Y sepoir) |, = o (VD) 772)). (A.18)
Next, we observe that
A (10 ¥ o) = A (1)1

1
T
1

€1

i fir (A7, 97) B @ Ai+ O, (max | Ai| )

z; 1 | o .

== ,Z{ fir (A;’V‘P?,) 0y A+ 0, ((N\/ T)™ / ) uniformly over i € I3,
(A.19)

where the first equality holds by Taylor expansion and Lemma A.17 and the second

equality is by Assumption 2.1(ix). Combining (A.9), (A.10), (A.18) and (A.19), we

have shown that
Ay = [DI] - D +o, ((N\/ T)_1/2> uniformly over i € 5, (A.20)
where DI := 2 Y\ i (A W) @3 @), and DI:=1¥[ [t—1{e; <A W) }] ty.
Recall that a')'.O = ((0(()1)‘,90)/, (021)\,[ 1) Xt (0%1)\/2[,)/)(17,,';)/, Dl( = TZI:I fir (0 )653653’,
and D/ = L YT | [t —1{g; < 0}]@). Noting that
[D!]7' D = [Df] ' Dff+ [D) 1 (D =Dl + [(BF) '~ (D}) | DI
+ ()~ = (o))" (of - DI,
we have by (A.20) and Lemma A.18, uniformly

11 T .
Y e <0h -1 {e < 4,90} @

t=1

Avu=[DI]” DI+ [D]]
+o, ((Nv T)‘1/2>

uniformly over i € I5, where we use the fact that |/ 227 NVT Levny =o ( (NvT)"Y 2)
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by Assumption 2.1(ix). B

A.1.3 Proof of Theorem 2.3

In this section, we extend the distribution theory of the least squares framework
in Chernozhukov et al. (2019) to the quantile regression framework and obtain the
uniform error bound. We assume the model has only one regressor in this section

for notation simplicity.

Proof of Statement (i)

For Vi € Iz, recall from (2.7) that

(3,1 (1 (1) A
{ul(] )}je[p] = argmin — pr ( it — z,OVt(,O) —u§71v£71)617it) . (A.21)
{”11}16
5 A (. (1) A ﬁﬁ)’l) - 08””90 , Vz(o)
where Yiy = Yir — [y 18, | v, |- Let Ajy = (’3 D ) 0’ and @; = (1)’
u;y - — 0y ug, V; { €1
With generic (u;0,u;1,0;,1), define
H; (ui0,ui1,051) Z T—1{& <ty (uip,ui1,vi1), }| @y and
1 0.0 1 0.0 A (1 0r .0
Ur (3,0, Ui 1,0:,1) = zOvz(O) —UY; /OVzo+I~Ll ik, 1";( 1) ul,ilui,/lvt,l "‘el,it”;,l";,f —el,iz”i,/l"z,l-
(A.22)
We can see that
T
- (1 1 1 1 .
H; (uno,ui,huﬁf) =7 Z [T 1{ it — U, oV,(o) —u; 1Vt( 1)61 it < 0}] om
=1
is the first order subgradient of (A.21). In addition, we define
. 1 UL
I (ui0,ui 1,07 1) T E{ T—1{&; < (1 (i, ui1,0i1)) }]| 0| 2 2}
1 T
T Z T— th llt Ui 0, Ui 1,4 1))] 6'.-)it;
=1

L

W (gl ) = B (il ) — 8 (05 udo. 0y Y
—{ A (a5 il)) = A (06 o, 0 i) )
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where 211V is the o-field generated by

{eit}iell UbL t€[T) U {eif}ie[N} 2€[T] U {Vjp}je[p]u{o} U {Wjo}je[p} .

Then it is clear that
~ (A(3,1) A(3,1) .(1 A 1 1 A1)
H; <“z(,o )7“1(1 )7“5,1)> =H; <0(() )”20705 )“91a ()>)+%< GRRNT )7“5,1)>
_‘%%<O(()l)”?,070(1) ?17 ()>+W ( A3, )7 1(73171)71/11(711)).

(A.23)

/
For specific u; o and u; 1, let u; = <u; 0 u; 1) . Following similar arguments as used
in the proof of Lemma A.17, the second order partial derivative of the function
A (+) with respect to u; at the true value can be shown to be bounded in probability.

By Taylor expansion, it yields

2 ( A(3,1 3,1) .(1 s 1 1 .(1
% <M§’0 )aul(’ )7 5’1)> _% <0(() )ME),O’OS )u?,l’ul(,l)>
1

1
5 1 .
ooyl i)
N u,

iutRi, (A.24)

where max;cy, |R;| < max;ep, HAluH; and

94 (0, Ot i)

L1701
Ju,
(1).(1) (1).(1)
1 & M o A1) o0 -(1) VioVio  CLitVioVy F
= —= ) fu |t (Op 0,0} 'uiy ity Ty | =Di-
rE ety il
Combing (A.23) and (A.24), we have
~ Ly —1 | A 1 1 3,1) A(3,1) .(1
A= (Df) {Hi <0(())”?,070§ )“?17 U) +W; ( Al )7“5,1 )7“5,1)>
- (i)
=) {8 (0 f ) + a3
+o, ((Nv T)_l/z) } (A.25)

uniformly over i € I3, where the second line is due to the fact that

()] -0 (5) e

max
icelz
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ma | Bual 2= 0, () =0, (VVT) 1)

i€l
following similar arguments as in (A.9) and the proof of Theorem 2.2.

Next, we analyze the term ]ﬁI (Oé )40 Uj o 0(”u91,ufl ) in (A.24), which can be

written as
f (0(()) 107051)”017”511))
Z W <T 1 {Szt < 1 <0(()1)u20,0§1)u21,ﬂ£11)> }>

Wi (T -1 {81'1 < 0})

’ﬂ

Il
N =
MHT

N
I
—_

_|._
N =
Mﬂ

N
I
_

@ (1 {ex <0} -1 {&-z <l (051)“?,07 051)“?71’”!(711» }>

1 [ (1.0 510 (1)
= T Z it [T — l{git < 0}) + T Z Wit {Fiz(0> —Fy |:lit (0() ”570701 Wi1,U 4 )} }
=1 t=1
1 T
+T Z lt(l{glt < O} th( )]
=1
1 &
S oo (o o M)} o (o )]}
=1
(A.26)
For the second term after the last equality, we notice that
—Z“’”{ i [l” (Oé) 107051)”217”5711))]}
(1), 0
1 . . R Oy "u;
= —7 Z (Ditfit (lit) [(Vt(,l()) - 0(()1)\/20)/ (617it\)t(711) - 617#051)\/21)/] (1> (;
=1 Oy u;
- = Z 0y fir (Tir) (.Ul ltul( 1) V(l) ul,itugll‘/gl)
rs=
(1) 0 T
|10y 'u; 1 . - A ()
D{ ?1) [ Z @i fir (L) (.ul,it”?,/l V?,l - :ul,itul(ll)lvt(ll)) ) (A.27)
0;ud = C
1 "l
1,0 om0 .0
where |T;| lies between 0 and |1;; ( O, 10701 u; ;| )| and
/ !/
1 g | () (e,
P == it (Lit ! !
/= élji,vl(’ll) (Oél)vgo —vff(,)) él,itvt(h) <e1,i10g1)v21 —é1,izvt(7ll))

The first equality above is due to the mean-value theorem and the definition for
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tr (040,01 ¢ if}) ) in (A.22). Inserting (A.27) into (A.26), we obtain that

A 1 1 1
H; <0(())”?,070( ) ?p 1(1)>

0(()1)“ 0
051)u

T

%Z @ [t —1{ex <0})

1 t:1

0

N i
=D

0

i

+ Z ml[f‘ll ll[) <,LL1 ltul IV[ 1 ‘LLI llul( 1) V(11)>
=1

i { [ {e: <0} -1 {Siz <1 (O(()l)”go’

T
(R0 -A w00 ra)]) |

(1)
o ”?,0

— D’
(.0
Oy u;

1

141+ 13

Combining (A.25) and (A.28), we obtain that
1) 0

(

N o1 |, 1Oy U

Ai,u:(Df) {Dl] ? H0 +H11+]121+]131+W<
1

01)0

Ui

+o, ((N\/T)_l/2> }

E)

0%1) 0

i)}

i

(A.28)

(A.29)

where the o, ( (NV T)_l/ 2) term holds uniformly over i € I3. To prove Theorem

2.3(1), we analyze each term in (A.29) step by step.

Step 1: Uniform Convergence for DI and D/.

Define

(.0 0o AL
1L o, v v O 0
=1 iU ViiVia
(1) (A1) my’
V0 (00 VO,O Vz,O)
0 eiﬁO(ll)v

D] = l ifiz(o)
l I

Lemmas A.22 and A.23 show that

max||Df —Dj ||r = Op(ny) and  max||D; —Dj||r =
i€l ich

with . \/log (NVT) §N.

Step 2: Umform Convergence for ]AIL i
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1 (0(11)"

p\TlN

0
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Op(nz%z)

5(1)
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0 0 Vi0
Let 0, = 1 o ’ . Then we can see that
01 v 1€t
T
]Ill:—Za)lt T—1{& <0})+ Z Wjr — (1—1{& <0}).
z:

Noting that

Vz(,ll)él it — 0} ly 16(1),1';
_ 0 —0p
a _<\>t(711) — Oél)vgl) (é1i—eri)+eri (v[(,ll) — O(()l) ) +O( (1 )(el it —€lit) ’
(A.30)
we have
max— Z || — @], = Op (1) (A31)

ich T
In addition, max;ey, H%Zthl ((j)i, — a)l-?) (t—1{g < O})H2 =0, (771%1) by Lemma
A.24. Tt follows that

(t—1{e; <0})+0,(n), (A.32)

Mﬂ

I;=

t=
uniformly over i € L.

Step 3: Uniform Convergence for ]A127,-.

Note that
. 1 & (1.
Hz’l’ = T Z @t fir (lzt) (.ul,itu?,/l V?,l - :ul,it”l(,ll)/vt(,ll)>
=1
1 & (1)
=7 @) f(0) (.ul,itug/l Vgl - Nl,it”z(,ll)/"z(,ll))
=1
LG ovie (e 00 ()
+ T Z (wit - a),-t) [fir (Tir) — fir (0)] <.u'17itui,lvt7l — Huiclt; | Ve o )
=1
1L 0 o0 A (D)7 (1)
+ T Z ((Dit - 00,';) fi(0) <.u1,itui7lvt,l — Huielty ¢ Ve g >
=1
1 I 0 ~ 0.0 ~ (1) .(1)
+ Y o [fir (i) — f(0)] (.ul,it”i,lvt,l — Hyielty 1 vy o ) (A.33)

N
I
—
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where

1 & B L (.1
flfgllsx T Z (COit - (Dg) [fir (Tir) — fiz (0)] (Hl,izugllv?,l - Nl,iz”,(,1)/"z(,1)> = Op(rlz%/)a
=1 2
1 & (1.
max | 7 3 (o — ap) (0 ) (o2 — il 1Y) 2:019(’71%7%
1 & N . (.
max || — Y @ [fir (Tu) — fir(0)] (lil,iru?,ll"?,l —Nl,it“l(ll)/"z( 1)> = 0,(n3)-
ieh || T =1 ’ ’ 5

To see why these three equalities hold, we focus on the third one. By Cauchy’s

inequality, Theorem 2.2, and Lemma A.21, we have

max
iclz

Zw [fir (Tie) — £ir (0)] (Hl tl”?lv?l ﬂl,itu§7l1)lvt(,]1)>

2
— — (1) .(1)
V@y znwmmth I st~

For the first term on the right hand side (RHS) of the second equality of (A.33), we
have by Lemma A.25

’2 =0p (771%!) :

Ly ol A (1) (1
ieh TZO(() )v?’Ofit(O) (“1”"”2/1"21 _ul,itug,l)lvt(,l)> = 0p(1n),
’ =1 :
1 I (1.0 o0 A (D) )
x| 7 2 ern O a0 (”l’it”ilvtl_f”‘hit”il Vt1> =0y (1)
1613 Tt:] ’ ? ? s , 2
5 o0
and thus max;cy, HHZ,il|z _ p(nlz) .
Op(ny) 5
Step 4: Uniform Convergence for 3 ;.
Note that
T
1 (1
= p Lo [ <001 e < (0 o0 )}

— (Fu©) — Fi [ (0§ uly, 00l )] ) }
- e <1 o )}
F;(0) — F; [ln <Oé) 107051)”gl’u§’11)>}> }

+ % i (@3 — @) { [ {ex <0} —1 {&t <1 (0(() ), 0 ,0,0§1)u21,u§711)> }]

=1

S
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(R0~ i [ (0, 00 a)) } (A3
By (A.132), we can show that
Li (0(() o, 000, ff) <R, (|| +|era]) + R, with
= 0p(NN)- (A.35)

max ‘R”t} O,(Ny), max ‘Rz?-
ieh,te[T) ieh,te[T)

For the second term on the RHS of the second equality in (A.34), we notice that

1 T

FE (o) { [ <001 {e < (0 00"}
~ (Fu) ~ i [ (05 uo. 0V i) |) }

i (0((,1;20, ofu,al)) |}

o (o8t 018, ) - 0]

Lit (0(()1)”?,07 Ogl)ugl’ul(vll)) ‘}

+0p(nR) (A.36)

max
ielz

< max_z @i — 0,1 {0 < Jeu| <
i€l t

+r{g;x—[ZHwn il

< max—Z @i — ||, 1{0 < el <
i€l t

where the last line is by (A.30), (A.35) and Assumption 2.1(iv).

Define the event

o (M) 3:{ max |l (0(81)”20’0§1)”?17 ()>‘<M"7N || + |evie| +1) }

i€l te[T|

with P { .« (M)} < e for any e > 0. Then for a large enough constant Cy7, we have

%(M)) +e

(maxz [ @ — 3 ]|,1{0 < Jeu| < M (|| + el + 1)} > C17le%/> te

iclzy; T
5 1 UL
1UhL
91 )

- C
E{ maX—Zle, g\\2[1,»,_1it]>”2”fv

i€l
" LUI Ciiny
+ESP maX—ZE || @i — 3 ||, 10 < [€] < M1y (|urie| + ler i + 1)} |20 > | te

i€l

Lis (0(()1)”207051)”317”5,11)> ’} > C17771%/>

i€l

(maXZHO)” },’Hzl{oéleﬂ <

L (O(()l)ugo,Ogl)ugl,dl(’ll)) ‘} > C17n]%l

<]P’<maXZH(D,t gHzl{OS\SﬁIS

lelg

—o(1)+ (A37)
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where

L — 1 :=1{0 < |&;| <Mmy (|uri| + e +1) }

-5(1

the last line holds by the fact that

o).

max & ZE{II% 10 < el < My (] +feval +1)} | 7% | = 0,

lEI’;
@1] U12>

<o - Ty )=o)
TEINZ +TniénlogT loglogT

by Bernstein’s inequality in Lemma A.12(i). Combining (A.36) and (A.37), we

and

iel

<maX_Zlef ,,H2 i — L] > Ci7 I

have shown the second term on the RHS of the second equality in (A.34) is 01,(1‘[1%,)
uniformly over i € 3. This result, in conjunction with Lemma A.25, (A.34) and
1] = o, ((N\/ T) 2

Step 5: Uniform Convergence for W; ( (3 1),121(731’1),115711)).

(a3, a5 )

= 1% o0 (1o < (0o 0 i) } 1 fo < (a5 .al)) )
1 (5[ (0t 00 )] o (a3

— 7 X (0 o) (1o < (0o 0 af)) } -1 e < (a1} })
1 X o) (5[ (00 0 i (65737

ey g ot (1o < (o o0 )} 1 fe < 4375 1)))

S

Fi |:lit (0(()l)u?,07Ogl)ugl’u§7ll)>] — Fi [lil <ﬁ§?dl)’ﬁ§i7l)’u§7ll))}> }

— L (o) (1{ew < 1 (00, 0 alD) 1 {e <, (45,30 })

101



1 &, 1 1 (1 L(3,1) A(3,1) .(1
T Z (a)it - (Ul(t)) (Fiz [liz (0(() )u?,o,OE )ugl,uil))} — Fy [lit (uio ),”,(71’ )7”571))]>
=1
+W11'_W1Uv

where we define

T
F ot 1< (ot o i)} 10 <o)
— < Fy |:lil (0(()1)”?,0’0(11)”21”"‘,(711))} —Fit(o)}} and

{1{8# <0}-1 {811 <l (ﬁz(?dl)’ﬁzelJ)’uEll)) }

N
-1~
RS
SO

We first observe that
o (0,0 1)y (a5, 51 )
= (45— o) ol +
= (a3 ) s+ (VA 48, ) e + 0yt

=R, jeru+R (A.38)

4
R ;

such that max;c, ;¢(r] R%’it = Op(Nn) and max;cy, re(r] = O0,(nN). As in

Step 4, we can show that
1 T

T Z (d)it — (Dg) (1 {Eit <1 (0(()1)u20, Ogl)ugl,u£1])> }

t=1

Ctfer < (450450 a)) H —0,(n})

max
ielz

and

max
i€l

%t_il (Ci)iz — (Ol(,)) <Et |:lit (Oél)ugo,Ogl)ugl,ngl))]
(3,1)

—F, [lit (ﬁfo’l),ﬁm 75!5,11))] )

Then by Lemma A.26, Lemma A.27 and Assumption 2.1(ix), we obtain that

= 019(’71%/)-

max
i€l

Ao ) |, = on (00v 7).

A

Step 6: Distribution Theory for A; ,
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Combining the above results, we have that uniformly over i € I3,

A(3,1) (1) 0 (1) 0

i; O, 'u; i —1 | . u o N

Al(’301) - (()1) 80 +(Df) {D’J (()1) 80 Fhithi+hy
Ui 0, Uiy 0, Uiy

(1,0 (1) 0

-1 Oy 'u -1 .. 1 0, 'u;

= [tyss + ) ' 0l] |70 150 [(0f) ot = (0f) ] |8
0] ull 0] Mll

+(DF) i+t o, ((Nv T)*%> . (A.39)
Owing to the fact that
1 L log(NVT)

by similar arguments as (A.116) using Bernstein’s inequality in Lemma A.12(ii)

and Lemma A.22, we notice that

max | | (DF) "= (0F) | Ly ol (e—1{e <0})|| =o, (vvr)72).
ich T /= 5
Next, we define
oF _ o) 7L E {fit(o)’@} V?,ovglo 0 ol
0 %ZtT:IE {einﬁt(o)'@} V?,]"?,’l
_1 ) -
D’ = diag TEE {ﬁ,(O)'@} iy (040 —v13) -

1 & '
051)7 ZE |:e%7itfit(0)‘@:| V?J (09)"?’1 _vf(vll)> )’
=1

where OV = diag <Ogl),0§l)> . Here D' and D’ do not depend on i owing to
stationary assumption of sequence { fir, fir(0)e j,it}j el conditional on all factors
in Assumption 2.9(iii). By Bernstein’s inequality conditional on all factors simi-
larly as in (A.116), we can show that max;c/, HDIF —DFHF =0, w&v).

Analogously, by Bernstein’s inequality conditional on 2/1Y2, we can show that
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maxicy, || D] —Dj|| . = O, ( gV §N> Then it follows that

(0f) "Dl = (D7) ' D|| = 0p(nf).

max
S E

In addition, uniformly over i € I,
(of) ' —(Df) ' D!
=)= )| -} +0f [(6F) = (o) | + () (D] - D]
= (DF)™' [} - DI+ 0,(n})

Op (771%7) Op(1n)

Op(ny) Op(ny)

where the upper right block is dominated by % ZtT: 1 fie (O)O D ?Ov?’l O( y (er,ie—e1ir)

in the analysis of lej in (A.121).

O,0o O _
D’ = 0,(412 =" , 0,(413 = 0u,00(()1), and 0,(412 =

I I

Let Ix,+k, + (D¥) ™

' 0 01471

Ou1 031). Combining the above arguments, we obtain that

(3.1 1 |
”5,1’ )_01(4,%”?,1 = 05 Y v, 0w 7 Zel ey (T—1{&; <O})+ 4}, (A.41)
=1
(3.1 D o
g = Ollgily = 00 iy i tho T 1{e; <0})
(1)g—11 4 o0
+ 0y Vug,if an(())v, oVi,14i1 (61 it — él,it)
=1
Wo—11 v 0 o0 (Y, 0
+00 Vuo.,if Zflt<0)vt 0 <,u1,itui7lvt 1 .ul ztu, 1 vt,l > +‘@i,u
=1

(A.42)

such that

max’%lu‘—op((N\/T) )max’%ilu‘:o L),
3

i€l P

N l r . 0 O o 1 L - 2 0 .0/

Vg = T ZE [fl;(())}@] VoV, and Viy = ZE [f”(melvif‘@} VeVl
=1

From (A.41), owing to the fact that Vul is bounded a.s. and

0, ( log(N Vv T))
) T

max
i€l

1 T
T Y erin? (t—1{e <0})
=1
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by Bernstein’s inequality in Lemma A.12(i1), we obtain that

(3,1 1 log(NVT)
max a3~ 0}l :0P< )
max a5 — 0{uo|| = 0p(mw). (A43)
e 10 wUEY

Last, noting that Ogl) is a rotation matrix and the normal distribution is invariant

to rotation, for each i € I3, we have

\/T <ﬁ(3,1) . 05:%”31) ~ N(O;Zul,i)7

l71 )

1 _ _ 1
where Z”lvi = Og )Vm lQ“lVMI 105 )/’ Vi i = %Zthl E <flf( )e% itV ?lv?,1> ; and

1 T
Quhi = Var [ﬁl_zlel’itv?’l (T— 1{8[[ S 0})

Proof of Statement (ii)

Steps for the proof for statement (ii) are the same as those in the proof of state-

ment (i). Hence, we only sketch the proof. Recall from (2.8) that Vr € [T,

"(331) / "(371) / ’\(371) 5
{vw. }je[p} argmin — Z pr (Y —violiy " — vl et ) s
Vi ]}]e[p] 3 i€elz

5 3,1)
where Y; = Y; — [l ;1 ,(1 ) ,(1) Let
(3.1) M\ o (3,1
~ 0 <0u70> Vi, “1(0 )
At.y = (3 0 (1) -1 and W = R ’
Vil — (0,4,1) V?J U; 1 "€l

For generic (u;0,u;1,vi0,Vi1), define
A 1 N
St (ui0,ui1,vi0,vi1) = N Y [v—1{ei < pi (i, uir,vio,vin) }] @,
i€l

with

/ 0.0 N ro.(1) 0.0 | Ao o 0
Pir (i,0,Ui,1,i0,Vi,1) = Ui V1.0 —UioVeo T HLici 1V, | — Bl 1 Ve €1l 1 Vel — €1irli Ve g -

We also define
(i 0,31, vi0:vi1) = — Z E{ T—1{ & < (pir (ui0,ui,1,vi0,vi1)) }] @it'@e[‘%}
1613
= ]7 Z T—F; (pzt (ul()?ul 1,Vi0,Vi, l))] Wit
3 S L
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where
R 1 1—1 -1
F_ ~(3,1) ~(3,1) (1) 0 (1) 0
Dy _szﬁ't Pir \ dig iy 5\ Oupo ) Vi (Out)  Vir | |-
icl
"(371) "(331)/ 5 ’\(371) "(371)/
Uio Uio Clitllio U
A ABD) G o AB)ABI) ]|
Clitll; 1 Ujg €lilin Uiy
NER NGV I IENER AN B (0 A1) 0 5 B
B — 1 Zf' (B4) Uig Oy ottio — ;g Uig | eriO, iy —€inll;
TN A s B (o) 0 ABDY s G (0 o0 s AGDN|C
1el3 Lir%; 1 u,0%i,0 i,0 Lit%; | Lit™y 141 Lit%
Iy = — Z o [t —1{g; <0}),
i€elz
A 1
_ ~ ~ 0.0 A ABDr.(1)
5, = E Z @it fir (Pir) <I’L1,ilui,lvt,1 — Myl " Veq )
i€l

A 1 . ) 3. 1—1 1—1
3 ek
1—1 1 —1
(o))}

- <fn(0) — fir {Pit <1/A‘£3()71)7”A‘§,3171)7 (0:(4}())
1—1
) vgl) ‘

L(3,1) A(3,1 )/ ! 1
pu (a3 (0113) 8 (01
Then, we derive the linear expansion for ALV by analyzing each term in (A.44).

and |p;| lies between 0 and
Define
1 01(4 ())”20”%0,(41())/ 0

N3 ' 2 HWM) o o H1)
3ieh 0 el,iZOM,luiJui,lOu 1

)

1

/ Y
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:_Zfzt

: |

Eh 0 e@pﬂ@&%%&—@?U
such that

2
o
max”D DfHF O,(ny) and maXHDJ DJHF P (n’;’) P(m;)
te[T] 1€[T] 0,(n%) 0,(n3) i
%”?,0

by Lemma A.28. Let o} = . We can show that

1
el,itoz(l 1)”?1
My, = ﬁ Y o [t—1{¢; <0}]+0, (ny)
3 S E
uniformly over ¢ € [T] by analogous analysis as in Step 2 in the previous subsection.
With Lemma A.29 and by similar arguments as in Step 3 in the previous subsection,

we obtain

max 1., = , H
N\/T 2

uniformly over ¢ € [T].

Next, for ]AI67,, From (A.146), we first note that
~(3.1) A(3.1 =1 1 .
Pir (ul(o )7“1(1 %(0%) vgo,( ,(4%) v,l) <Rp n(|l~‘1 ,,|—|—|ell,|) plt with

max ‘Rl

| =0 ,  max ‘Rz
il te[T) poit p(TIN)

ieh te[T| poit

Op(N)- (A.45)

We then observe that, uniformly over 7 € [T],

1—1 1—1
— Z (th{ |:1 {gzt < 0} 1 {8” < plt < (3()1)7 1(31 1); <0$())> V207 (0£11)> vgl) }:|

lEh
N 1 -1 1 /-1
-(l, b o (a3 (0) "t (o) "))
1—1 1—1
oi [nte =011 s < (a3 002) (o) ")}
‘1613
1 -1 1 /-1
-(l, l,[pl,(,o A0 (oh) s (001) val)})}
1

N3 i€elh

3,1) A(3,1 )/t n\/1
(Ao - [pl,(fo 20 (o) vso,(oﬁ,,f) val)})}

O‘-"
—
=

>
~~
W
—
=
/N
=Q/\
—
oz
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1 . L(3,1) (3,1 0\’ ! n\/~!
= E _ wit{ [1 {e: <0} -1 {8it < Pir <“§70 )71”57] )7 (0,(47())) V?,Ov (01(471)) V?,l) }]
31) A(3,1 /! 0\’ ! _1
~ (B0 o (a57.05". (o) s (0l8) )] ) }+0,, (wvr)?)
)
)

where the third equality holds by (A.45) and similar arguments as used in (A.36)
and (A.37), and the last equality holds by Lemma A.30.
Similarly, combining Lemma A.30 and Lemma A.31, it yields

NERDENCRDIINCRIIN Op(1n)
Uig Uiy 7;0 7":1 = 1

max
’ (Nv )2

te[T]

3 2 .0 0
Let Vv1 = N3 Zzelg fll( )el it 1Y /1’ and

S CR GO RS WACE R CR R

1613
Combining arguments above from (A.44), we have

(3,1 1 1 -1 1
vt(~,1 ) o O‘El?tv?,l - <Olg,zl> (Vv31 l‘ N3 Z €1 ”ul 1 (T l{glt < 0}> +‘%tlv7
i€l

such that max;¢(r] ‘%}N‘ =0, <(N Y T)7%> . This, in conjunction with the result in
1 AN
0\(’1,)1 - (01(4,2 >
F

(3,1 /! LI |
R () v9,1=(0£,,2) (75" B cvans (v= 1 < 0D +-2)
S

Lemma A.32, i.e., max;c[7 =0, ((N\/ T)_%>, implies that

Z €1,iz”?,1 (T -1 {git < 0}) +<%)t1,v-

i€z

(A.46)

where the second line holds by the fact that HOS% — 051) H 0,(nw),V, , is uni-
’ F

( log(N V T))
O N
2

by similar arguments as in (A.40). Further define

formly bounded and that

max
te[T)

Z e th, | (t—1{g; <0})

3 i€l

y,— _1 (1 1
RS 05 )Vv1 1Qu1Vu1 105 )/7 Vo = E E (fll( )61 ltulolu?/l) and
i€l
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Then we have

B3 Ao || _ log(NVT)
?Elf‘;}( N R O R A ‘2— p( — N | and
(1) ADo0 |
max] |75~ Ol ‘2_0,,(nN), (A47)

where the second line holds by Bernstein’s inequality with independent data and is

similar to (A.43). &

A.1.4 Proof of Proposition 2.1
Proof of Statement (i)

Focusing on the slope estimators for i € I3, we notice that

It follows that

0
®j it ®j it

= (0~ 0l ) (550~ 0l )+ (ot Y (55"~ 0t
!/

+ (" - 0(1).u2_i>'0(1).v2j} + 1{ ) — o ud,) (357 = o2p))

i, u,j u,j ) i 1,
2 "7 .32 2 32 2 NG
+(02u;) (557 = 0200;) + (a5 — 0l)ul; ) ol }
-1 1
=y (V57) 3 L esandy (11 <0})
316]’;

R :
+v2’jVuj1T Zej#-tv??j (t—1{g; < O})—F(@ijt

0. Y O (/ 1
u,lj("ﬁ) _Zgﬂf 7/J'VM ijlt+ it

zel

such that max;cy, ;er

((N\/T)fl/z) by Theorem 2.3 and the second
equality above combines Theorem 2.3 and the fact that HO (11) HF = 0,(Nn).
With similar results hold for slope estimators for subsamples /; and /5, and then we

obtain the statement ().
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Proof of Statement (ii)

Combining (A.43), (A.47) and Lemma A.13(1), it’s clear that

log(NVT) ,
0:,-0%]=0 ———— | Vje d
e, 05— O ( NAT ) jelpl an

max_ @ — 07 ;| = 0,(1v). (A.48)

ieh,te[T]

Proof of Statement (iii)

For i € I, and a € [3], with the distribution theory defined in Theorem 2.3, we

notice that

~1/2
1 0 0 1 07 = 0 e 0
(Tvt/j Zuy,ivj T N, ul/j f)ljul J (®j»if - ®j7it) ~N(0,1),

which leads to the proof. ll
A.1.5 Proof of Theorem 2.4
Proof of Statement (i)

The proof is analogous to that in Castagnetti et al. (2015) and Lu and Su (2023).
Recall that S,,, = max(S{"”), %, S0V). For a € [3] and b € [3]\ {a}, Theorem

2.3 shows that

b b j .
u(f;) O,(w).uo =0; ijlt+%i{uVl€Ia,

((N\/ T)71/2>. Recall that ﬁg) N Yier, l(J Y) Under

where max¢j,

1.0
Ho-”zpj

i — 0l lu; =0 ZZ ,,+—Z =op((NVT) 7).
el t
(A.49)

=uj,Vi € [N], we have

where the last equality holds by a simple application of Bernstein’s inequality. Note

that

)
W= 0u;) (£a) " (85" 0 u;)
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Y <ﬁ§3,b) — 01(41,7,)'” j>/ (L)) - (ﬁyhb) - Og:/)' “j )

= Ill-j+12,-j—213,~j. (A.50)
For b;;, we have

~(a,b b) | -1
rirg}f|12"j|§r,%e}fTHM§a7)_0£>J)'u-i)’2{)'mi“<2”f)+0”(l)} =o0,(1) (AS5])

by Lemma A.33, Assumption 2.11 and (A.49). For I3;;, we have
Lii| <T
max || < (max

sab) b))
ity || _O”Jusz)(

~T0, < w> op ((NVT) ™) = 0,(1) (A.52)

ﬁga’b) B Ol(fj)'uj H2> [Amin (Zu;) +o0p(1)]

by (A.43) and (A.49). It suffices to study /;;; below.
/

Now, let Z4y) = (2}, 2y ), where 2, ~ N (0,01',,0{" ) fori € 1,

73 ~ N (0, o'z, 05.3)) fori € I and Zy, ~ N (0, o'z, 05.2)) fori € I;. Note

,1

that
I = <0§b)Z%?i+op(l) +%gu>’ZL1 (0519)2%1.—#01,(1) —h%lju)
o (4 - 0l [£,) x| (44" — 0 uy)

—1
=7y (oﬁb)/zuA()(,b)) Zy),+0p(1) uniformly overi € [N].  (A.53)

It follows that

D [ A (2)r N .
74 (OS)Euj0§)> Zy)+0,(1), Viel,
~1
S =max 2 (02, 0Y) 2y +op(). Vien,  (ASd
1) 1) N La .
\Z(%?,- <0§)zuj0§,>> Zy)+op(1), Yiek,

-1 -1

with 2 (07'5,,0) 2, = 22(1) foreach i 1y 2y} (02,08 ) 2 —
1

22(1) for each i € b, and 2y} (017'5,,01) 2, - 22(1) for each i € I5. As

in Castagnetti et al. (2015), we can conclude that

1 g
P (ES”-’ <x+ b(N)) —e ¢ as (N,T) — co. (A.55)

.. 1 .. (2) . (2) o 2) !
For the test statistic for Hy', the proof is similar. Let Zy," = ( Zgy'), s Zeg'r )

where Zg)t ~ N (O, OE.WZV]. 05”). As in (A.54), we can show that

(3,1) (2)
Svj = maXZ%J (

Dy AW\ 1)
max 25y} (0 £,0") 2§ +op(1).

J Vi
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By the strong mixing condition in Assumption 2.1(iii), we have

maxcov (6363

’mlog(t—s) — o(1)

as t —s — oo by Davydov’s inequality. Then by Theorem 3.5.1 in Leadbetter and

Rootzen (1988), we have that
1 -1 —X
(5 (a2 (0f"5,0") 28] ) <xrbir) ) e,

which 1mphes that
P —1 S(3’1) < b T e N T)
v X+ ( ) — e as ( s —

12) &(23)

Recall that S&j‘"’) = %S&?’b) —b(T) and Sy, = max(S( §£} ,5&?’1) ). Noting that Sy,

is asymptotically distributed as the maximum of three independent Gumbel random

variables under H(!, we have P(Sy; <x) — e 3 as (N, T) —
Proof of Statement (ii)
Under H{, we have that Vi € I,

@b _glab) - (u(a b _o®)y0 > + o) (u(-) P — uj) — (ﬁ(.a’b) — O(b).uj>

L,J J 2y u,j=LJj u,j \"t,J J u,j
= (”z(ib) - Oftb;”?J) +O0jctj~ (ﬁﬁ'a’b) - 0%‘”/’) :

Then

7 (a5~ ) (£) 7 (4" - )

_ (Al(fl]:b) o ,-)li;jl (u(l]) —0u ,~> 4T (ﬁﬁ.l) —0u ,-)li;jl (ﬁﬁ“’b) ~0u;
—2r (a5 ~ o ,-)li;jl (" = 0lu;) +21 (OF)ct j>/i;j1 (5"~ 0)u))
1 (o) E5t0let 21 (o) 55 (i - o)

= g;?i,l + Sb(s?z + Sg;?is + Sb(tb)l,4 + SIS??I',S + L(j;)i 6
where maxicr, S, ; 1| = O, (10gN) by (A.53) and (A.55), |\ 2( =0, (1) by (A.51),
maxier, [S\ ;3| =0, (1) by (A.52). Next,

max SS;?LS‘ :Il%é[lj(T (0%0,7]) X, 10 cf {140,(1)}

-1
z@mmmemm

1€lq

VTmach

n el
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which diverges to infinity at the rate faster than log N by condition in statement (i1).

By Cauchy-Schwarz inequality, we obtain that

(b) ®) 2 (k) V2 (b)

max Suid <:523f»(S¢Nu1) (Suﬁns) = 0p | max Suyis| | and
b | < ( A )1/2( (b) )1/2_ (b)

I}g}f Suj,i.,é Nflrg}x Sujin Suj,i.,s =0p r}g}f Su,,i,s -

It follows that P {S,; > can | — 1 as cqn < logN, and the final result follows.

The power of the test statistic Sy; can be analyzed analogously. W

A.1.6 Proof of Theorem 2.5

@*

We first derive the linear expansion of ©* it

Gt for i € I3, and similar results
hold for i € I; UL. Let #° V= TZIE[T] Vt,j and uj ¢i= ﬁazl‘ela u?J. By Proposition

2.1, we obtain that uniformly in i € I,

(i)j - :_Z ]lt jzt

te[T
1 0
:T ui7/]<v,,> _Zgzt_F th] u/TZblt+ Z
te[T] ai*el, te[T]
-1 1 o —1/2
=900, = Y b+, ((NVT) ) (A.56)
=1
where the third equality holds by the fact that
max = ¥ (W) 5 X & =max | B Xl (002)
i€l | T te[T] Na *€ly a | NaT *€lgre[T)

=0y ( 1°gN5N) =0, (NVT)17?).

by conditional Bernstein’s inequality given &, in Lemma A.12(i), Assumption 2.1(i)-

(ii) and Assumption 2.1(ix). Similarly, uniformly in ¢ € [T], we have

5 - 1 A
8.8~ L (-6l

aijely
=—Z 5 (0 ) —Zéﬁ V! Tme =Y %
aze[ aze aijel, azEI
= (0) 5 X Etop (W) ), (A57)
‘1161
and
2 _ 1 a
I, I,
O -0 = Z Z (®jlt (")91;)
N,T !
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R

le
lelal‘E

=0, ((N\/T

~—

*1/2) . (A.58)

Combining (A.56)-(A.58), we obtain that Vi € I, and ¢ € [T,

: * ° e Al Qyla Ala Ala
®Jlt G)Jlt ®j’t ®9ll <®j,l_®J,l)_<®—®>—|—(®—®>
0 _0,1, —O
:<ulj uj ) ( V”) _Z§11t+ vfl_v] V ijlt+ its

aijel,
such that max;

N(0,X* ) with

y =it
. RO ®) -0\’ (®) 0 (b) -0
Xiw= z N, (Oj i ;—O; uj) Ly <0j ul] 0; uj> 1,

ac[3]
(b) 50
o 0] vl) ’

((N\/T)_l/2>. It follows that @;‘ i — Ofy

[ORON () 0) () 0
-|—T<Oj vw-—Oj vj> Zuj<0. y

and ¥,; and X, are as defined in Theorem 2.3. The reason why X% ;, is not indexed

it
with b is owing to the fact that 0(. ) shown in the right side of the equality can be
absorbed by O( ) not shown inX, and X,

Define Zj = QZb j_‘it * with

7~ . [ (), (6 )

B3]
U @b)  aab)\'¢ (o aab)
7 (057 =) 2 (8- |
where uia b N%l Yiel, ﬁl(flj’b) and ﬁga’b) T Zte[T] v( b) . By Theorem 2.3 and Lemma
A.33, we have
max ’27711—21”} :Op(1>

JelplieN]t€[T]
By arguments as used in the proof of Theorem 2.3, we have that as (N,T) — oo,
P (lSNT <x+ b(NT)) e ¢ under Hé”, and P (Syr > cq3.47) — 1 under HII”

— . A

provided LeNT gNT MaX;c |y re[T] ‘@l i
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A.2 Some Technical Lemmas

In this section we state and prove some technical lemmas that are used in the

proofs of the main results in the paper.

A.2.1 Lemmas for the Proof of Theorem 2.1

Lemma A.1. Consider a matrix sequence {A;,i =1,--- N} whose values are

symmetric matrices with dimension d,

(i) suppose {A;,i=1,--- N} is independent with E(A;) = 0 and ||A,~H0p <M

a.s. Let 6% = H):ie[N] E (Alz) . Then for all t > 0, we have

P(I|Y Al >1]<d { £/ }
i <d-expy——F = (-
i |l o> +Mt/3
(ii) suppose {A;,i=1,--- N} is sequence of martingale difference matrices with

Ei—1(Ai) = 0 and [|Ail,, <M a.s., where E;_ denotes E(-|.%;_), where

{Zi i < N} denotes the filtration that is clear from the context. Further let

HZie[N] E,_q (Alz) Hop < o2 Then for all t > 0, we have
1?/2
P ZAi >t §d-exp{——2 }
™l o> +Mt/3

Proof Lemma A.1(i) and (ii) are Matrix Bernstein inequality and Matrix Freed-
man inequality, which are respectively stated in Theorem 1.3 and Corollary 4.2 in

Tropp (2011). [

Lemma A.2. Consider a specific matrix A € RN*T whose rows (denoted as
A; where A; € RT) are independent random vectors in RT with EA; = 0 and ¥; =
E (AiA}). Suppose maxicy [|Aill, < v/m a.s. and maxcpy |Zill,, < M for some
positive constant M. Then for every t > 0, with probability 1 — 2T exp (—cltz), we

have

I1A]l,, < VNM +13/m+M,

where c| is an absolute constant.
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Proof The proof follows similar arguments as used in the proof of Theorem
5.41 in Vershynin (2010). Define Z; := 4, (A4;A} — £;) € RT*T. We notice that {Z;}
is an independent sequence with E (Z;) = 0. To use the matrix Bernstein inequality,
we analyze [|Z;||,,,, and HZie[N] E (X7?) ||0p as follows. First, note that uniformly over
L

1 ’ 1 2 m+M
1Zillp < 5 (14471, + 1%l < 5 (HAdB+1Zil,,) <55, as. (AS59)

Next, noting that E [(AiA;)Z} — E[|A;],A4]) < mE; and 72 = L [(AA)? — AALL;
—YA;Al+X2], we have

& ()], = 55 [ [ (4 - 53]

1 2
< 3= { [E[ny?]], +12,

1 M+ M?
< e (mHZiH0p+ ”Zi’|§p> < % uniformly in i.

op

It follows that

mM + M>
< N max @), <—F— (A.60)

Y E(Z)

i€[N]

op
Let € = max (\/A_45, 52) with 6 =1¢ W By (A.59)-(A.60) and the matrix Bern-

stein inequality in Lemma A.1(i), we have

1
—|AA-) 2i>
N ( =y

P >egry=P

op

ZZ,‘ > €

i€[N] op

_ g2 3
S 2T6Xp —Cc1min W7H’H-_M
N N
. (& N
<2Texpy —cymin| —,€
M m+M

5°N
< 2Texp{—c1+M} = 2Texp{—c1t2},
m

for some positive constant ¢, where the third inequality is due to the fact that

. (€ .
min <M78) = min (max (52,54/M) ,max <\/M5,5>>
54
- 2 _s2 2

m1n<5 ,\/M5>—5, if o Z_M’

54

o4 2y _ 2 2
m1n(5 /M,5)—5, if o <M.
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That is,
1 1
—AA - — Z X

2
5 z < max (ma, 5 ) (A61)

op

with probability 1 —exp (—cltz). Combining the fact that ||¥;|| < M uniformly over
i and (A.61), we show that

1 2 1 /
RV P

1 1
+ NA’A—— Y %

i€[N]

1
< NZZi

i€[N]

op

op op

< max ]\Zi\\op+\/l\_45+52
i€[N]

2
M M M
§M+mtw/m; +t2m; < <\/A7I+t %) .

It follows that [|A[|,, < VNM +t/m+M. n

Lemma A.3. Recall a; = ©—1{g; <0} and a = {ay} € RN*T. Under As-
sumption 2.1, we have HXJ@CIHOP =0, (VN+/TlogT) Vj € [p] and lall,, =
Op (VN +/TlogT).

Proof We focus on ||X;® a||0p as the result for ||a||,, can be derived in the same
manner. We first note that, conditional on &, the i-th row of X; © a only depends
on {ej, £,~,}t€m, which are independent across i. Therefore X; © a has independent
rows, denoted as A; = X;; ©® a;, given &, where X;; and a; being the i-th row of

matrix X; and a, respectively. In addition, for the -th element of A;, we have

@1 =E {Xjﬂ'tE |:a,', @} =0,

where the second equality holds by Assumption 2.1(ii) and the fact that given Z,

E {X it Qi

%]

X i is known. Therefore, In order to apply Lemma A.1, conditionally on 2, we

@}

First, under Assumption 2.1(iv), we have %Ztem (X J-7,~,ai,)2 < %Ztem ij,iz <

only need to upper bound ||4;||, and E [A,-Ag

¢y a.s. for some positive constant cp, which implies
1Aill2 = | X @ai|l, < 2VT  as. (A.62)
Second, let ¥; = E{ [(Xﬂ@a,-) (XLZ-@a,-)/] ‘@} with (r,5)"™ element being

E (Xj7,~,Xj7isai,aiS 2 ). Recall that ||-||; and |[|-||., are matrix norms induced by 1-
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and co—norms, i.e.,

||E||1—mfﬂlX )

te [T]

Y ||°<,—maX )

SE[T

7) 7)|

By Davydov’s inequality for conditional strong mixing sequence, we can show that

)
)

Cov < Js ltaltaxj,isais
1/q 1/q
< max Z {E [’Xj,itaiz{q ‘@] } {]E [‘Xj7isais}’q ‘.@] } x a(t —s)(qu)/q

SG[T

< max ‘
T €N te[T { {]U

<cza.s.,

( j, ti] isAitAis ( i, llX] isAitdis

max
NS [T} te%w]

= max Z

SE[T] te[T]

E (X it X isQir Qs

2
]} /qmax Y o(t—s)a72/a

s€[T) t€[T]

where c3 is a positive constant which does not depend on i and the last line is by As-
sumption 2.1(ii1) and 2.1(iv). Similarly, we have max;c (7 ZSG[T] E (X it X isQir Qs

o)<
c3 a.s. Then by Corollary 2.3.2 in Golub and Van Loan (1996), we have

max (5l < 1B B <es s (A63)

Combining (A.59), (A.60), and Lemma A.1 with t = /log T, we obtain the desired

result. n

Recall that Ag; = ©; — @? for any ©; and define

(e = {1201 £ | #5000 <01 17001}

Lemma A.4. Suppose Assumptions 2.1-2.3 hold. Then {A@j }?:0 eEZ(3)wp.a.l.

Proof Define @T <{®J}f=0) NT Z IZt 1Pt ( @() it — Zi'):l Xj,it(")j,it) for

generic {G) J'}?:O' By the definition of the nuclear norm estimator in (2.9), we have

Q- ({e9)7,) ~ e ({0,)7) + é v (102, - [6,m).] 2 0. a6

In addition, we have

@ ({6 _) 0 ({6,)7,)
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e Ea ] S S

i=1t=1 j=1

A@Q it +Z] 1 X] ztA®

_l’_
S~

"1{g <s}—1{g < O}ds}

5
™=
™~

I
_
-
I
—_

IN

~ P ~
Ait (A@)o.,-, +) X,-,,-tA@,,,.,>

j=1

-
™=
M'ﬂ

N
I
—_

-
I

1 N
+ 57 &

i=1t

INA
M~
=

allXj UAG) aitA@o,it

Jit

1

~.
|
—_

LA | - 1 .
= ¥ 57| (B, (0a)] |+ 57 br Fora)
<Y oI, X0l + = 3o, . al
=t ©) NT I7@0ll 1%llop

\/_VVTlog ) |lo, |, wpal, (A.65)

I/\
H Mm

where the first equahty holds by Knight’s identity in Knight (1998) which states that

pr(u—v)—p(u) =v(t—1{u<0})+ /OV ({u<s}—1{u<0})ds, (A.66)

the first inequality is due to the fact that the second term in the bracket of the second
line is non-negative, the second inequality holds by triangle inequality, the third
inequality is by the fact that t7(AB) < ||Al|,p||B||«, and the last inequality holds by
Lemma A.3.

Combining (A.64) and (A.65), w.p.a.1, we have

0zes ¥ { RN o v, (1001, 0,1.) ) s

Besides, we can show that

1©5]. = |30, + @), = H@Mﬂﬁmm-@@»

> |09+ 2} (o))

o). =118 +]| 2 (Be,

D,

(A.68)
where the second equality holds by Lemma D.2(i) in Chernozhukov et al. (2019),
the first inequality holds by triangle inequality, and the last equality is by the con-
struction of the linear space @JL and &;. Then combining (A.67) and (A.68), we

119



Aoy,

P o
to)),} <y VT 13

]:

&.
O

_642 \/_\/\/Tlog {H‘@ A@) H _'_H A@)J

’ } w.p.a.l.

By setting v; = 2C4(\/N]\\//TV TloeT) e obtain Yo H P (Ao,

)| <3501 (36 |

w.p.a.l. [ |

*

Recall &, is the o-field generated by {Vjo}je[p}u{o}, {ij}je[p}, {eisti<ioiselm)s
{eists<ts {&sbi<i—1,5e[r]> and {&is }s<;—1 and F(+) and f;(-) are the conditional CDF
and PDF of ¢;; given %; ,_1, respectively. Specifically, we note that ({X; ;; } jelpl» {@?’it} jelplu {0})

are measurable w.r.t. ¢ ,_1.

Lemma A.5. Forall uj,uy € R and all cs € (0,1], we have
(i) fo? (M{uy <z} —1{u; <0})dz> [>*? (1 {uys <z} —1{u; <0})dz>0,

(ii) f(lfz {F,‘t (u1 —I—Z) —F; (ul)}dz > focsuz {Fi, (u1 —|—Z) —F; (Lt])}dZ > 0.

Proof Statement (i) is just Feng (2019, Lemma A2). To prove statement (ii),
notice that if up > 0, then z > 0 and Fj, (u; +z) — Fi (u1) > 0 for all z € [0,us],
which leads to the existence of the second inequality naturally:

up Cc5up
/O {Fit (u1 —|—Z) —F; (ul)}dz—/o {Fit (u1 —|—Z) —F; (ul)}dz

u3

= {Fir (1 +z) —Fit (u1)}dz>0.

C5U2

On the other hand, if u» < 0, we have
up C5Up
| ) = Futa)ydz= [ P +2) = )y oz

= O{Fir(ul)—Fit(M1+Z)}d2— ’ {Fir (u1) —Fit (w1 +2) } dz

C5Up

quuz
= / {Fir (1) 5Fi (1 +2)}dz = 0,
up
where the last inequality holds as the same reason for u, > 0 case. ™

Lemma A.6. Under Assumptions 2.1-2.4, for any {A@j}?zo € #(3,C,) such

that ||Ae;||max < M for some constant M > 0, we have

c1C3 & c7C.
Q1 ({®?+A®j}?:) <{®0} ) N;;z ZH 9, ”F N7T5V (N+T) wp.al,
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where Qr({®j}f: =L Y E [Pr ( —Op,ir — Z§:1Xj,it®j,it) gi,t—l}» 7=
2
f% with cg being a positive constant between 0 and 1.
Proof We can choose a sufficiently large constant M such that cg := Wflﬂy) €

(0, 1]. Then we have
0: ({®°~+A®»}’7_ ) -0 ({e9)7.)
T p
Z ) E{ (Yit —Opi— ) Xj,iz®j,it>
=1

zzlt:I
Ozt ZXJIIG)Jzt) %711}

E (A@O i + Z X] lfA@] ”> (T 1 {8” < 0})

{
E{
{
U

~.
=

M=
(gl

it— 1}

i (1{e; <s}—1{e; <0})ds|¥

it— 1}
%’,z—l}
gi,tl}

N
Il
-
-
I
_

Ayt Z; 1 Xjiho;

M=
M~

S—

N
I
_
-
I
_

B /A®0”+Z] 1X111A®

0 & <s 18,-,§O) ds

N
I
_
-
I
_

E C6§N AG)0 ”+ZJ IX] ”A(aj n‘>

1=
1=

vV
5~ 3- 3- 3- 3- 3-
M=
M~

(18iz§5 - 1€it§0) ds

N
I
—
-
I
_

™=
1~

coly ' (Bop, +EI Xjiho
/6N B >[Fit(5)—Fir(0)]dS

i=11=170

N T ool A@01+Z Xjihe. ,z> §2

Y'Y / C 3 [sfi, (0)+5f;, (5)} ds

i=1t=170
2 L 3

fe g“T A +Z A feg iiA +ix A

> — Q0. LitRO; ;| — O, ,itR0
2NT§]%/ lzltzl 0,it J ! ot 6NT€]§[ l:1[:1 0” ]:1 Jl i

2
fc2
4NT6§2 Z Z <A®o it Z Xjiihe,, )

=
T
I
n
N

A®0 it + Z XJ ltA@j it
=1

2 _
1 Y& )i i 2¢6f
+ NT&Z Z Z T A®O,iz + Z XjaitA®j.it 1— 31:5

J=1

)

2
fc2
= 4NT6§2 Z )y {A% ot ZX, ildo;, }

N i=1t=
2
fc3 :
2 O + Z XJ ®A®]
ANTER = .
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‘F 2

> C A —C4(N+T p-a.l
_4NT§N 32” @HF 4 ( ) w.p

c7C3 2 c7Cy
— (N+T A.69

NT&N]Z 0,11z - nreg V) (A.69)
where the second equality is by (A.66), the first inequality is by Lemma A.5 and
the fact that ¢q/Ey < 1, the fifth equality is by the mean-value theorem, the third

inequality is by the fact that

206f

> 26‘61_:/
3fEy

— 3féy

and the fourth inequality holds under Assumption 2.4. This concludes the proof. =

1 A®Ozt + ZX] ltA@j it

j=1

Lemma A.7. Under Assumptions 2.1-2.4, for any {A@j}?zo € Z(3,C,), we
have HAQ/‘H* < CSZ';’:O }|A@_i||F Vje{0,---,p} where cg = 42K,

Proof ForV;e€ {0, ---,p}, we obtain that

l6,l, = 2580, + | 2} (86))

<1280, +3 % | #0)).

p p
<4) ||Zi(he))]|, <4 Z(,)\/ 2K || 2 (o)) ||
=

Jj=0
— p p
< 4¢_21<ZO|¢A®jny — cg z()¢yA@j!!F,
j= =

where the first equality is by Chernozhukov et al. (2019, Lemma D.2(i)), the first
inequality is by the definition of Z(C},C,), and the last two inequalities follow the
facts that ||A||, < /rank(A) ||A|| for any matrix A € RV*T and rank (2, (Ae;)) <
2K ;, which hold by Chernozhukov et al. (2019, Lemma D.2.(ii1)). |

Let 2 be a separable metric space, {Z;,---,Z,} be a sequence of random
variables in 2 adapted to the filtration {F},cjy, F = {f: 2 — R} be a set
of bounded real valued functions on R, and uq,---,u, be i.i.d. Rademacher ran-
dom variables. Here we allow the dependence of sequence {Z,---,Z,}. Sim-

ilarly as in Rakhlin et al. (2015), we define a 2 -valued tree z of depth n with

the sequence (zi,---,z,) such that z, : {u,---,u,_1} — 2. For simplicity, we
denote as z (u) = 2 (uy,--- ,u—1) and E;[-] = E [-|.%] for short. Also, denote
ury := (uy,--- ,u;) and similarly for Z.,.
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Lemma A.8. Let % be a class of functions. For any o > 0, it holds that

sup a p <2suplP < sup Zu,f z (u
fesz z fesz

4" Var( f(Z;)| % —
where Bn > 1—Supf€y t=1 ar( ( t)‘ t 1)

nZo2
all & -valued tree of depth n.!

-MQ

Y (f(Z) B [f(2))] >

t=1

S| =

I’l

} |

and the outer supremum is taken over

Proof Let Zj., be a decoupled sequence tangent to Z;.,. For the sequence of
random variables {Z; : t € [n|} adapted to the filtration {.% : t € [n]}, the sequence
Z., =1{Z;,t € [n]} is said to be a decoupled sequence tangent to {Z : ¢ € [n]} if
for each 7 € [n], Z; is generated from the conditional distribution of Z; given .%_
and independent of everything else. This means the sequence Z]., is conditionally

independent given .%#, and for any measurable function f of Z;,

E(f(Z)Fn) =E(f(Z))|.F1-1) as. (A.70)

fZ* IE1t1f( )]

> oc/2‘Jn>

.}
)

For Vf € .%, with Chebyshev’s inequality, we have
E {<2f_1f<z:> B [F(Z)
no?

4y, E{(f(Z?‘) CEL @)

n2o?
_AY) Var (f(Z)|Fi-1)
N n2o2

<

b

where the first equality holds by the fact that, given .%,, {Z; }te[n} are independent

and the last equality holds by (A.70). This implies

B, ;:figf@l?( i —E1[f(Z))] <a/2'/n>
t=1
=1—supﬂ»<1 if(Zi‘)—Ez_l[f(Z?)] >a/z\%>
feF 3

51— sup 45" 1Var(2 2Zt B 1)
feF n“o

Let function f* be the function that maximizes 1 [Y7_ [£(Z/) —E,_ (f (Z}))]| con-

I'This means the supremum is taken over all z = {2:(:) e
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dition on .%,, and define the event A| = {supfey Liyn £ (Z) =B (£ (2)]] > -

Then we obtain that
1
B, <P (—
n

where the inequality follows by the definition of 8, and the fact that E,_; [f* (Z))] =
E—1[f*(Z)]. As A € %, we have
m)

-

It follows that

n

Y f(Z) — B [ (2)]

t=1

S a/z‘yn>7

<a/2

>a}

< a/Z‘Al) P(A])
Y £ (Z) —E [ (Z)

ga/z}Um)
ZWQ

Y f(z) -1z > a/Z), (A71)

" t=1

S| =

iﬁ@%ﬂqW@ﬂ

LY (@) B ()

Y £ 2) - (Z)

where the second inequality holds by the implication rule. Let ¢ (-) =1{- > no./2}.
By Lemma 18 in Rakhlin et al. (2015), we have

> a/2>

f(Z) - f(Z) 206/2}

<supE,, ---supE,,1 { sup iut [f (z) = F(Z))]| =

n

1
P — sup
(”feﬁ Z

t=1

f(Z)—-f(Z)

n

1
=[E1< — sup
{nfeﬁ Z

t=1

2172/1 Znazé fecgz =1

<supE,, ---supE, 1

21,2} ZnyZn

sup [ Y urf (zr)| >

fEF |1=1
2noc/4}

Zna/4}

+supE,, ---supE, 1 { sup

21,2 ZnsZy

z": urf (z1)

t=1

=2supE,, ---supE,,1 { sup

21 ,le Zn-,Z;q feg
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= 2sup]P’{ sup

z fez

> 9} , (A72)

1 n
n r;l uf (z; (u)) 4

where the standard text z; and Z are % -valued, the bold text z; = z,(u) is the z-th
root of a tree z(-) (i.e., a function of uy,_1), and the outer supremum in the last line
is taken over all % -valued tree of depth n. Combining (A.71) and (A.72), we can

conclude that
BaPq sup
feF

The next lemma is an extension of the contraction principle, i.e., Ledoux and

n

LN (f@) B r @)

n=

Z u f (2 (u

n

> p <2supP< sup
z fez

Talagrand (1991, Theorem 4.12), to the case with sequential symmetrization.

Lemma A.9. Let function F : R, — R be convex and increasing and ¢; : R —
R be contractions such that ¢ (0) = 0, z, is the t-th root of a tree (z) which depends

on {uy, - ,u;_1}. Then we have
1
EF < —sup |} wd (f(z(u))| ¢ <EF{ sup
{2feﬂ Z 1 O

fEF |t
Proof We first consider the statement without the absolute value. Let function

]

Zuzf z;(u ))‘}

G : R — R be convex and increasing. We observe that

EG{ sup Z”f¢f (2 (u )))} :E{E {?gg_zuzﬁbz )))}

feF 1=
ul:n—l)}

n—1
_ E{G (sup Y w0 (F 2 (1))) + 10 (F (20(0)

fEeF =1
Ul:n—1 } )

ul:n—l) }
=K {G ( sup (ki +upfp (kZ))>
ki ke

where ky = YL u ¢y (f (z(n))), ko = f (2a(u)), and # = {(k1,k2) : f € F} C R2.

We also note that k; and k; only depend on u;.,—1 and is independent of u,. The

and

fEF 1=

E{ (SUP Zutq)t )))

proof in Ledoux and Talagrand (1989, Theorem 4.12) shows

EG{ sup k1+u2¢2(k2)}§EG{ sup k1+u2k2},

ki ,kpe X ki ko€t
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which implies

E{ Gwzw@ (1))

feF ¢

)

n—1
<E {G (sup Y wd (f (2 (w)) + unf (2a(u))

feF 1=1

Z'ﬂ:nl) } .
Taking expectation on both sides, we have

n—1
E{ (;gp Y wdi (f )))) } <E {G (;21; ; @y (f (2: () + unf (Zn(u))> } :

Next, letk; = )::’:_12 ur @y (f (2, (u))), ko = f(zp—1(u)) and k3 (uy—1) = unf(zn(ut)).
We emphasize that k| and k; only depend on u;.,_» and u, while k3 also depends on
u,—1. The dependence of (ki,k2,k3(+)) on f is made implicit for notation simplicity.
Furthermore, given the fact that u,, | only takes values {-1,1}, we have

k3(1)+k3(—1) u 1k3(1) —k3(—1)
2 " 2 ‘

up—1+1
2

I —uyy

2

k3(un_1): k3(1)+ k3(—1):

Given these notation and conditioning on (u;.,—7,u,), we have

Bu, { (SUP Y uir (f (2 (u))) +unf(zn(u))> }

fEF 1=

=E,, , |G| sup ki +up_19,—1(k2) +k3(”nl))]
fesz

=E,, , |G| sup (k1+k3(1)_2k3(_1)) +upq <¢n1(k2)+k3(1)_2k3(_1>)>]

fesz

=K

(hy,hp,h3)et

w1 |G sup  hy Uy (¢n1(h2)+h3)>

where E, , means the expectation is taken conditionally on (u1.,—2,us), hi =

n 2 ut¢t (f( ( ))) + Mn(f(zn(ulznfk1));‘f(zn(”1:n727_1))) , h2 — kz’ h3 _ un(f(zn(ulznf%l));f(zn(ulznf%_1)))

and 2 = ((h1,ha,h3) : f € F) € R®. Suppose (hl,h3,15) € A and (hl,h},h}) €

¢ achieve the supremum of
hy + (@n—1(h2) +h3) and  hy—(@u—1(h2) +h3), respectively.
Then, we have

E,
n—1
hi,hy,h3)eH

G(( sup h1+un1(¢n1(h2)+h3)>]

= GG A3)+ a1 (15)) + 3 GU(h] — L) — 901 (A)))
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1 * * * 1 T
< SG(h +13) +13) + S G((h] — 3) — )
<E., |G sup  hy+uy—1 (ha+h3)
(hy,hy,h3) e

where the first inequality is by the fact proved in the proof of Ledoux and Talagrand

(1991, Theorem 4.12) that for any #1,s1,2,52,

%G(tl +@u—1(2)) + %G(Sl —Pu_1(s52)) < %G(ll +h)+ %G(Sl —52).
Plugging back the definition of hy, h;,h3, we have

E., + Ot nJ \Zn
: { (;gg;w () +unf (= (@))}

<E,,_, { (SUP Z ur ¢y (f (2:(u))) + Z ”tf(zt(”))> }

feT = t=n—1
Taking expectation on both sides, we have
E{ (sup ) wd (f )))+unf(zn(u))>}
fEF =
SE{ <sup Y wér (f () + Y utf(Zz(u))>}-
fEF = t=n—1

We can repeat a similar argument by taking conditional expectations given (i1, Uz y1:)

and removing ¢ forallt =n—2,---,2. This leads to the result that

E{ <;252ut¢t ))))}SE{ (;SEZMJ 7 (u >} (A.73)

Next, we come back to the case with the absolute value. Note that

EF ) sup Zut¢t (f (2:(u))) ]
FEF |1=1
- , 4+ - " —
< % {IEF sup (Z ur @ (f (2:(u))) +EF | sup (Z us @y (f(lz(”)))> ] }
feZ \i=1 ] | feF \u=1
I A N . ]
= E{EF sup <Z ury (f (z:(u))) | | +EF | sup (Z u; ¢ (f(Zz*(u*)))> }
€7 \i=1 i | fe7 \u=1 ]
1 i L " _ L ]
= 5 {EF (SUP Z”t¢t (f (z:(u))) +EF <SUP Z”M’t (f(zf(”*)))> }
| \f€ZF =1 i | \feZ =1 1
1 [ i " i "
<5 {EF <sup Y u (f(z,(u)))) +EF <sup Zui‘f(z?(u*))) ] }
| \feZ =1 feEF =1
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| =

; 4 - . +
{EF sup (Z ) +EF ;up (Z uff(zf(u*))) ] }
e \t=1 i I €7 \i=1

+— ~ —

1 n n

— < EF | sup Z u))) +EF | sup Z ur f (z,(u))

"2 | feF \i=1 ] | feF \u=1
< EF | sup Z uf (z:(u))| |, (A.74)

fEF |t

where uf = —uy, z(u) = z,(—u), the first inequality is by the convexity of F, the
first and second equalities are by the fact that (v)~ = (—v)™ for any v, and the

second inequality is by (A.73) and the fact that F((-)") is convex and increasing.

This leads to the desired result. [ ]
Define Rademacher sequence u = (uyy,- -+ , Ui, - ,UN1," " ,UNT ) = (u(l), “ee ,u(NT)) €
RNT1In the matrix notation, let U = {u; } € RV*T. By vectorization, for a se-

quence of independent variables X ;;, we define

(Xjt,, Xjar - Xjn, o XiNT) = (Xj7(1):"' an7(NT))a
(€11, €175+ EN1, - ENT) = (E1), - > EvT)) »

Vj € [p]. Using the binary tree representation, let x i) be (1) root of the tree
which takes values in the support of X; ;). i.e., x7 (1)U s =&y, Ey] for ul 7! =
2

(ucry, -+ s ug—1)) such that max;e v Yrer) (xj l-,) <MT and max,c(7) Lic|n] <x, n)
MN for some fixed constant M < oo and ¢ = 1,2. Similar notation follows for e( )=
SE"Z) (ul_l). In the matrix notation, let x; = {xiit} € RV*T guch that x;it =X; ()
withi=[£]andt=1—(i—1)T.

Lemma A.10. Under Assumption 2.1, for j € |p|, there exists an absolute con-

stant C that is independent of the trees (x*,€") such that when log(NV T) > 2,

HU@x}f

o 11
P V(NVT)log(NVT)

4 <C.
VINVT)log(NVT) | ~

)SC and [Eexp

Proof The proof here follows similarly as Lemma A.2 except that we have mar-
tingale difference matrices rather than independent matrices. For a specific j, let
A = U @x}( = (A] g 714]\/)/ e RNXT, ,% be the G'ﬁeld generated by {ui*t}i*giJe[T},
Ei(-) =E(|.%), L =Ei_1 (AiA]) and Z; = § (AiA] — £;), with 3 (A’A — Liepw %) =
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ZiG[N] Z;. Note that E;_ (Z,)

2
max||A ||2—rnax Z (x*. 7u,~,> = max [ VMT a.s., (A.75)
i\ &N i€[N] te[T] i
. 2
max ||X;|| = max ||dia < )T, )H < A.76
le[}\ﬁ” l||op ie[]\ﬁ 1ag ('x],ll) (]zT gNaS ( )
and for £ = 1,2,
Y | = dlElg(Z )" Y () ) <MN a.s.. (A7)
i€[N] op i€[N] i€[N] op
Combining (A.75) and (A.76) yields
max ||Z; <ma—<AA +E )
IG[I\ﬁH l||0p — 16[1\ﬁ H H ” l||op
1 2 MT + &
< — [ max||A;||5 + max ||X; < —2" A.78
< & (maxlamaxizil, ) <5 as )
In addition,
Y Eii(Z Z]Ell{ [AA) zﬂ}
i€[N] op i€[N] op
1
<a7 | L B (laidan) |+ ¥ =
_ie[N] i€[N] op
1 2
SEMTI LT +||[LE
N i€[N] op i€[N] op
MT )M
< MT+1) (A79)

STV
where the last inequality holds by (A.75) and (A.77).
Combining (A.78) and (A.79), by matrix Bernstein’s inequality in Lemma A.1(ii),

for some sufficiently large constant ¢ that depends on M, we have

T
Y z >5<Nv )log(N\/T)
i€[N] op N
2
%62<(N1\\;T)> (log(NvT))2 z
<Texp{ — =exp|(—(=—1]log((NVT)) |,
(MT+1)M MTfN 7 log(NVT) 2
N T 3

which implies that with probability greater than 1 —exp(—(¢/2—1)log(NVT)),

A (VD)
N( A— lgv]2> Opg ( v log(N\/T)),
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1
v

i€[N]

<

1
s

(NVT)
N N

e

op

log(NV T)) ,

op

A'A— X
o N( zezz:w )

IAll,, = HU@xjHOP </ (1+&)(NVT)log(NVT).

Consequently, when log(N VvV T') > 2, we have

|lves

V(NVT) log((l)\l;\/ T)

Eexp

HU@x}f

op
= xp(u >u | du
/0 P VINVT)log(NVT) —

(/ +/ )exp HU@X}H >”\/(N\/T)10g<N\/T)>du
_/O exp(u du+/ exp(u exp( (u22—3)10g(N\/T))du

2 - 1> 13
S/ exp(u)du+/ exp| —(u—=| +— |du
0 2 2 4

1
<exp(2) — 1+ V2mwexp (73) =C,

where the first inequality is by the fact that

HU@xj-

\/(N\/T)log((;:;\/T)Z e SCXP(_(§_1>log((NVT)))

and by letting u = /1 + ¢ > 2 for large ¢. Similarly, we can show that when log(N V

1U1l,,
T)>2,Eexp ( \/(N\/T)log(N\/T)> < C for some absolute constant C. [ ]

Recall that ({A@j’i,,xjﬂ,,}f:o,e,-t) is defined in (A.4) and %, is defined in

Assumption 2.1.
Lemma A.11. If Assumptions 2.1-2.4 hold, then we have

’NTZ 1Zt 1Pzt<{A®,,m ]zt} 0,&;)
I (Vo [

sup
{A@j }jzoe%(s,cz)

= OP (aNT) )

NVT)log(NVT
where anT = ( ]ijg( ).

Proof Let n = NT and for [ € [n], Z) = ({Xj it} je[p], €ir) With i = [%1 and t =
I—(i—1)T, and #; = 9. Then, Z, is adapted to the filtration {.7; };c[,. Lemma
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A.8 implies

i i Pir ({A('Dj,ityxjjt}fzoasit)
NT =5 Z?:o HA@%HF

BnrP sup > Csant

{A@j }f 2B,

p
Uit Pit {A X } el
1 N it Pi ( it it j:()’ it Csant

2supP sup ) ,

x*,e* {A@j }j:oe‘%)(3’C2) i=11=1 Z?:o HA®j HF

(A.80)
for some positive constant Cs, where the outer supremum on the RHS of the above
display is taken over [—&y, En]P x R-valued trees with depth n and

4 Pir ({AG)j,ian,it}fzoagit>
Fvrea . X Var 7
C5 (NT)” ayr (in)e[N]x[1] R/ | VYR

Bvr=1-— sup
P
{A@j }jzoe%’(l@)

it—1

We first note

Pir ({AG)j,iz?Xj,it}?:O ; 8ir>

Var it—1
o 0 o R
2
. SRV
< Z B Pit <{A(1_,~,ztaxj7zt}j0781t> %’[71
(i) €[N X[T] Y7o llAe,l -

<y Z <A®O7it+2?lxj,it®j,it>2

C (i)eNIX(T) Y7o llAe,]l -

T YD (Xjihe,i)
1

Siz

1=

2
+A%O’il < 61051%7
270146, 7 N

with some positive constant c1g, where the first inequality holds by Jensen inequal-
ity, the second inequality is by |pz(u) — p¢(v)| < 2|u — v|, and the last line holds by
2
. . p B p 2
Assumption 2.1(iv) and the fact that (Z i=0 HA@j H F) =0 (Z =0 HA@j H F> There-

fore, we have

Pir ({AG)j,itan,it}?:O;git)

4
ﬁNT Z 1 - Sllp —2 Z ar 5
{A@j}fzoe%@,cz) CZ(NT) a3y (i)W x (1] Y7o llAe; |
>1- sup 40105[\2’
= 2
{A@.}[? cR(3.C) C5 (N\/ T)lOg (N\/ T)
JJ j=0
21-0 o — 1 (A.81)
- (NVT)log(NVT) ’
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where the last line is by Assumption 2.1(ix).

Define
1 Nz MIZAG it
%: sup R _wTvot ,
(o) e VT BB T o T
i
1 N ui,x*-A@i,
o = sup — _ TR . Yielpl,
’ VTR E T s, TV

{A@)j }j:oe'%(3’C2)

1 N T
NT Z,‘:l Zz:l Uit ¢it (AG)O,it + 2?21 x}(‘JZ’A@j,i[)

«pr+1 = sup

p )
{A@j}'f [E2B.C) LiollAe; -
j=
where ¢ (u) = (€5 —u)~ — (€};)" . Notice that
) P P
Pit ({A(aj,iz,x}f,i;}jzo,siﬂ =17 | Ag,ir + Z X ileyir | + it | Ay + Z X ileir |
=1 =1

we obtain that

p
Uit Pit {A@ it X } &;
lpl ( Y it 1:0? it CSCZNT

1 T
sup P sup — Z Z 7 >
T e} o000 M E= Lioll2e]- *
P Csant Csant
< sup]P’{’L’;zf->—}+supIP’{;zf 1>—}. (A.82)
g%ﬁ T a(p+2) ) Tee U7 T 4(pt2)

We first bound <7} for j € [p]. We have

= sup f:Tﬁﬁﬁﬂﬁg
I NT {A®j}1-): €R(3,Cy) I1=11=1 Z?:O HA@)]. ‘F
B 46, (vox)]|
M (o)) caney  Ti-ollbolle
j=0
1 26,
< yr vl sup s
NT Jllop {AG)j}. 06%(37C2) Zﬁ‘):() HA@jHF
i
¢ *
< N_ST U @xj'Hop, (A83)

where the first inequality holds by ¢r(AB) < [|A]|,,[|B]|, and the second inequality
holds by Lemma A.7. Then

Csant }
supPL 1el; > ————
g ¢ { 17 4(p+2)
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HU @X; CS
<supP >
v | VINVT)og(NVT) ~ 4csT(p+2)

CS HU@)C;f
< sup{ exp (——)E exp
X 4csT(p+2) V(INVT)log(NVT)
Cs
<C —_ A.84
= e"p( 4c8”c(p—|-2)) (A.54)

for some absolute constant C that independent of (x*, €*), where the last inequality

holds by Lemma A.10. Similarly, we can establish

Csant } ( Cs )
supPtey> ——=p <Cexp| —F——= | . (A.85)
iy { 4(p+2) P\ st (p+2)
Next, we turn to 7, 1. We have
Csant }
sup P o) > ——
oy { T 4(p+2)
<exp (— G ) sup E < exp NT Ty .
- 4eg(p+1)(P+2) ) v e cs(p+1)/(NVT)log(NVT)
(A.86)
Because ¢ (-) is a contraction, Lemma A.9 implies
NT )1
E< exp
cs(p+1)y/(NVT)(log(NVT))
1 YIRS SRR (A@)O,n +):‘;-7:1 x;,-tAej,n>
=E< exp Sup
cs(p+ 1)\/(N\/T) (log(NVT)) {Ae-}p cRB.C) ;’:0 ’ Ao, .
L J ) j=0 )
N Ty (Aeyi + X X e,
<E{exp : sup Yy tilBoui +Ej-1 Xjule, i)
cs(p+1)3/(NVT)(log(NVT)) {20} ca.cy 1i=] i HA@j .
im0

- (|U||Up+):,~e[p] HU ox; 0,,)
(p+1)\/(NVT) (log(NVT))

exp

- (HU” ) 1/(1+p) (HU@x* > 1/(1+p)
o J o
exp P ey |ES exp b
) VI

VINVT)(log(NVT NVT)(log(NVT))

IA
&=
—— ——— —/—

(A.87)

for some absolute constant C, where the first inequality is by Lemma A.9, the sec-

ond inequality is by (A.83), the third inequality is due to the fact that, for random
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variables {A;};c(p+1],
E(Mie(pr1fAil) < Hie[ﬁ+1][E’At’Hle/(Hp)’

and the final inequality is by Lemma A.10 with an absolute constant C that is inde-
pendent of (x*,€%).
Combining (A.86) and (A.87), we have

Csant Cs
suplP< o) 1 > ——-p <Cexp| — ,
oy { P! 4<p+2>}— p( 4cs<p+1)<P+2>)

which, combined with (A.80), (A.82), (A.84), and (A.85), further implies that

Pit ({A®j,it7Xj,it}1;:0>8it)

1 N T
P sup e Z Z > CsanTt
o) aacoTEE Tl
=
( 0 ( A N p .
| N T Uit Pir { ®j7it7xj7i;} =0’ i;) Csant
< 2Byt sup P sup — J >
T VR T e, i

X" ,E" {A@A}'f c%(3.05) i
(-0

<C(140(1)) :(p+1)exp (—4685%) +exp (—468(p+C15) (p+2))] .

The RHS of the last inequality converges to zero as C5 — oo, which implies that

1 N T 3 p
’]W Z,‘:l thl Pit ({A(aj,it;Xj,it}j:O ’ 8it>

sup 5 = O (anT).
{A@j}',’ [ERBC) LiollAe, -
=
[
A.2.2 Lemmas for the Proof of Theorem 2.2
Lemma A.12. Let {Y;,t = 1,---,T} be a zero-mean strong mixing process, not

necessarily stationary, with the mixing coefficients satisfying a(z) < cqp* for some
coa >0andp € (0,1). If supy ;<7 |X:| < My, then there exist a constant cy depend-

ing on cq and p such that for any T > 2 and d > 0,

. T cod®
(i) P { ‘Zl:l T’| > d} < exp {_M%T—i—dMT(l(g)gT)(loglogT) }

.o dz
(i) P{|X Y| > d} <exp {_ ngJrM%ingT(logT)z }

with 1)3 = SUPse(T) [Var(Yt) + 22s>t |C0V(YI7YS)”'
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Proof The proof is the same as that of Theorems 1 and 2 in Merlevede et al.
(2009)) with the condition assumed o (a) < exp{—2ca} for some ¢ > 0 changed

with cq = 1 and p = exp{—2c} in our lemma instead. L]

Lemma A.13. Suppose Assumptions 2.1-2.4 hold. Then, for j € {0,--- p}, we

have

0
Ui j

‘2 <M and max;cr) ||v

(i) maxicqy)|

(it) max,e(r) || 047

1
(iii) maXier, 7 Zze[T]

Proof (i) Recall that TG)O % OZO”I/ o UO \/]V?/jo)lg and V; = \/T”/J

Then we have

1 00 00 0 1 0/ 0 0,0/ 04,0/
79 =VN%x)=U) and T @) =TI =Y. (A.88)

Hence, it’s natural to see that

|u ICHZIR

1
il =] < ledl,<m
where the first inequality is due to the fact that ¥} is the unitary matrix and the last
inequality holds by Assumption 2.2. Since the upper bound M is not dependent on

i, this result holds uniformly in i. Analogously,

I _
20, < s’ [T,

(i1) As in (A.88), we have

It follows that
2M

N 1 __ . _ -
HO/jthHZS_GK-I')’[%!®1} 2<ﬁ Kj,jH[®j],tH2§ o’

VN

where the last inequality holds due to the fact that max;¢x ) ‘Gk ; Eljjl.’ < ZI}; ;

w.p.a.1. and the bounded parameter space where © ; lies in by Assumption 2.2 and
ADMM algorithm proposed in the last section. The upper bound of max; ¢z H 05.1 )/ﬁt( 1].) H2

follows the same argument as above.
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(i11) We observe that

max— Z H(ID

ich T re[T]

i€eh .

4M2 4M?pC
< +

— 2 2
Co Co

w.p.a.l,

where the last inequality holds by Lemma A.13(ii) and Assumption 2.1(iv).

Lemma A.14. Under Assumptions 2.1-2.5, we have

(i) mmﬁ,mm< ) > < — max?tmax( ! )> <2Cy wp.a.l,

(ii) For Vj € [p], maX%Zte[T} |:X_]2il‘_E (ijzz
i€l ’

Op(n]%l)’

2 (1 2
(iii) rirggx%zte[r]H@g)_@g ;= p(nj%l).

Proof (i) Recall that

0 40/ 0 / (V4 /
ZCI)U@,, with @, = (vtO,leX]’,-t,...,v,7po7it), and

1

=1
050y, Wy \'1]
0 Vt() ? vt,lxlvit> »T T <0P Vt,po7it) :

Uniformly over i € b, it is clear that

I‘
1 & &
:72 t with

-,

<4M - oW1 0 4aM & & o) _ 0 X,

~ CG—thl 0 Vz,O _Vl‘7() 2+C‘G_szltzi ] vl,j _Vt,j 2‘ ],ll|
AL () oH AMP &1 | (ye() oo

< oWy _yoll 2 —Ho. v VH
CO' \/_ 0 0 0 F - J_;\/T Jj

_OP(nN>7

] e o o} et W

.@ﬂm}m)} HOE‘I)/~(1)—

te[T

)1/2

where the third line holds by Lemma A.13(i) and Assumption 2.1(iv). It follows

that

min Anpin [ . } > mm?me (@] — O (nn) > C—(P, w.p.a.l
i€l 2

and

i€l i€h
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(i) Letl;; := & Zte I; i such that

2
2 2 1 ~( 0
Ly = [XJ W—E (XJ . @{'ew}mﬂ Ho w00, ‘2
Then for a constant ¢, we have
P (max Z i >cTnN> < ZIP’( Z Iii >cTn]%,>
b e i€h t€[T)
— ZEP( Z Ij,il‘ > CTT’N g?ezs} T)
ich te(T] =
2(cTng)?
<2 Z exp{ — 17
el
ieh Zte {2§N s (,) V?J ‘21
2eT 2\2
<2expq — (cT1y) R 5 +logN 5 =o(1),
2 2 ~ ~
4€N |:M L aM ] ZIE 7] 0( ) V(]) V?’] ‘2

where the first inequality combines the fact that /;;; is the martingale difference
sequence, Assumption 2.1(v) and the Azuma-Hoeffding inequality in Wainwright
(2019, Corollary 2.20). The last inequality is by Lemma A.13(i) and A.13(ii), and
the finial result is by the definition of ny.

(ii1) Note that

1 < (1 2
max — Z Hd)( )—fbg )

ieh Tlem i
Sl Y 0(()1)/17,(1 - 20 ‘z-l-p_ max Z |X],t‘ HO '_Vt ‘2
T & ’ 2 ieh,jeln) T &y 2
! A1) o |2
— T 0y VtO_Vt,O‘
Tte[T] 7 2
! 2 2 | h ey o |12
+pleg?§[p] T[%] |:Xj it E (X] it g{e”}s<t HO./ th Vt7j ‘2
! 2 | gn Sy (1) o |2
+le$?g[p]_l§1]E (Xj it @{el3}3<t> HO vt7j _vt7j 2
< l Z 0(1)/~ 1) _VOO ‘2+0 (TIN) —f—pMmaXl ’6(-1)/\7(1) v?. 2
=~ Tte[T] 0 "0 L0, p ielpl T £ j ot 71|,
:l oWy _y0 + 0 D _y0 +0( 2)
T 0’0 0 p?’elap] T i || b Ny
= 0,(n3);
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where the the second inequality holds by Assumption 2.1(iv) and Lemma A.14(ii),
and the last equality holds by the Theorem 2.1(ii). [

Lemma A.15. Recall {Ay;, - ,A7;}icr, and q! defined in (A.5) and (A.6),
respectively. Suppose Assumptions 2.1-2.5 hold. Then for any constant ci; <

min(?—,i7 1), we have

max(|An,l/ |[Aiul|,) = Op (M), Ym € {1,2,3,5,6,7} and
2

|A4.;| > min ((30%&_6?1;/) € HAWH; (Betif =i f) VCod! HAi,uHZ

) ,\V/IGI,W .a.l.
12 6v2 > 2, W.p

Proof Recall that wy ;; = &; —uY’ (CIJ( ) @2) .Letwy;; = CT)EtI)IA,-M. For some

positive constant ¢;; € (0, 1], we observe that

Am——;/ (u&s@—u@smké)h

1 Wit 611W2n
:72/0 [Sir(s) —8ir(0)]ds > — Z/ — Fa(0)]ds
=1
1 L e 2, :
SF X[ 0+ o
Lo [an(alan) alaa
=7 L > - (A.89)

where § € (0,s). Here, due to Assumption 2.1(i), the conditional CDF of g; given

.@5} is the same as that given the o-field generated by

{{eit}te[ﬂ U {Vjo}jg[p]U{O} U {Wfo}je[p] }

, which leads to the second equality of the above display by Assumption 2.1(vii);
the first inequality holds by Lemma A.5(ii) for any ¢ € (0, 1]. Here, we choose ¢y

such that ¢y < i,

7 and the last inequality holds by Assumption 2.1(vii).

o]

7 Lrepr]

[\S[O8]

A

1
o . 2]2
Let qu = {% YiclT] (@gtl)/Ahu) } and recall that q{ = iI&f

IYRVNE . 0%
q{zqf’,wenoticethat%ztem‘cpl(})’A‘ <(q{1)2andA47,~26”i(2q{) _Cllfgl) -
1

2 ¢ 3% 212
XL (g2, 1f ¢! < g/, we have {Tz,g ( V' a; ) } — gl with A, =
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41A; .
ZL72 Define the function

i

/ *50l6) - 300

Note that the second-order derivative of function F (A) is no less than zero, which
implies F (A) is convex. Therefore, we have
I A 12,2 3¢
; ;A q g enf—cnf 1 = (1 2
F()=F (D) > Bop (a7,) > 7Ly (@)
q; ql 4; re[T]

_ (3ctf—elif) aial’
< .

Combining these two cases, we have

3C2 —03 i 3C2 _C3 1 11
A47,-2min< llf6 1f (61,”)2,( 11f nf)qqu

6

. (30%1f_c?1?) C¢||Ai7uH§ (30%1f_c?11?) \/qq{||A,-7uH2
2m1n< 2 , 6v2 , (A.90)

where the second inequality holds by Lemma A.14(1).

As for ‘Ahi ,
max (Avi] / |Asal],)
b el (et fa <t () - at) }) |24 } o
— max N
i€h [ Aiul[,
P8 A (78 [ (97 -2} )|
= max
i€h Al
121,‘ 1CD Alu [flt(stt) (Ci)z(t])_q)gﬂ‘
— max
i€ HAiqu
<1}g;<— Z HCP | ],
0
Slg}?\/ teZ[T H Z HCD il
0, (1), (A.91)

where the second and third equalities hold by Assumption 2.1(vii) and mean-value

i (&, - )

1

) , the second inequality holds by

theorem with some |s;| € (O,

Cauchy-Schwarz inequality, and the third inequality holds by Lemmas A.13(i),
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A.13(ii1) and A.14(i1).

For A3 ;, note that

:_Z/ l{gl,<s} 1{g; <0})— {E(l{s,-tgs}—l{sﬁ_

te[T)

/ { te T]
/
— |:]E <1 {8,'[ < &)EII)IA,'7MS*} -1 {8,'[ < O} ‘@g)] } Awds*

< suplJAL, 6, sl (A92)
seR

@e’;)}ds

1 {sit < CTDI(;)/AWS*} —1{g; < O})

by change of variables with s* = ﬁ, Aé’i(s) = %Zze[T] Aéﬁ(s) and

it 1,u

AL (s) = Y [(1{8,1 <s}—1{g <0})—E (1{eit <s}—1{e; <

@g;)}.

Below, we aim to show SUP,¢ (oo, +00) MAXic

AL ), = 0p ().
When [s| > T1/4, we notice that

sup max HA3 i

is|>T1/4 (€l )H2

< sup max
|s|>T1/4 i€h

Z 3! [1{81-, gs}—E<1{£,-t <s}

ze [T]

)

2

+ max ||~ y o 1{8,-t§0}—IE<1{8,~,_ %’})]

ich te[T) L 5
<rnax— y ch ‘ 1{e >T1/“}+maxl Y |[&" ’ E(l{ei, >T1/4}’@§;)

ich T t€[T] i€l TZG[T] 2
+ max 1 ) Cfbl(tl) 1{&1 <0}—-E (l{sit < .@Q)H

i€l TtE[T] L 5
< 2r.naxl (1 {Si, > T1/4} @eI})

i€l TIG[T]
. /4l _ . 1/4 I

+I}§}f T 4 z ) { {e,t>T } ]E(l{e,,>T }‘@eiﬂ‘

4 max |— ch
ieh te%,

) { (e SO}—E(I{si, <

92)] ,

where the first and third inequalities hold by triangle inequality. Besides, we observe
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max— Z H(ID

ich T re[T]

( {Sit > T1/4} ‘%Il]>

(e > Tl/4

E (83 %I})

1 = (1)
1) <max= Y || L~
) Ilré%;( TI‘G[T] u ‘2 \/_1

2.)| =0, (r17).

(A.93)

—max— Z HCID

1612 te[T]

<T71/2 ch
< m\/ 2

1
— E( &2
e TtZ][ (¢

elr

where the last equality holds by Lemma A.13(iii) and Assumption 2.1(iv). For a

positive constant ¢y,

‘2 [1{8,-1>T1/4}—IE<1{&,>T1/4}‘92>} >
<l§m(‘ [ o) - (1 fers e} )] >

<Yexp! - coc?,TEZ1og(NVT) —o(1)
el 16TM2 (1 +p&3) + 4M§'2 V14 pEnVTEN+/Tog(NV T)log T (loglog T)

1 <
T Z q)z(tl)

P (max
ieh te[T]

Eny/log(NVT)
ClzT

c éN\/ log(NVT) ‘@11
12—ﬁ e;

where the first inequality holds by the union bound and Assumption 2.1(i), and the
second inequality holds by Assumption 2.1(iii) and the conditional Bernstein’s in-

1) 2M
< E 1

equality in Lemma A.12(i) with the fact that max;cy, ;c(7] Hci)l(t

w.p.a.l. Here, we can apply the conditional Bernstein’s inequality because CTDitl and

E (1 {85, > Tl 4} @Q) are deterministic given {QKI}} el so that the only
1€lh,te

randomness comes from {&; };c (7). Furthermore, the joint distribution of {&; },¢[r)

given .@ell' is the same as that given the o-field generated by &, due to the inde-
pendence structure assumed in Assumption 2.1(i). Last, given the o-field generated
by De;> {€it }1e[r) 1s strong mixing with mixing coefficient o;(-) as assumed by As-

sumption 2.1(iii). Similarly, we obtain that

’ { (&4 SO}—E(I{&, SO}‘%})H:% (@%),

max
i€l

P L

which 1mphes

sup max |A};(s)| = Op(nw). (A.94)
|s|>T1/4 i€h
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For |s| < T4 letS = [-TV/*,T'/4] and divide S into S, form =1, --

- ,ns such
that [s — 5] < £ for s and § € S, and ng =< T3/*. Let s, € Sy, For any s € S, we
have

1 1 I
TZA ZA?’U Sm TZ[A3U() A3tl(sm)} ’
te(T) 2 te[T B te[T] 2
(A.95)
such that
1
Cmax  sup || Y [A (s) — A% (sm)]
16127”’!6 [l’lg} SESm ZG[T] 2

= max sup
ich,melng] scS,,

LT <) 100 <)
3l [E (1{% < s} —1{ei < s} %13)} :
T o 5 (1{8,., € [sn—gm+7] ] ‘93 )
P L L[ e 71
e (1 e et £} [24)]
)2E<l{g,., € [sn—gmm+ 7]} |24
b mas|A%(m)

. (A.96)
i€l ,me|ng)
For the first term in (A.96), we notice that

N O L)

~ max
iEIQ,mE[Vlg] T

+ max
ich,me|ng)

B!

i

2
= max — Z
iEIz,mE[nS] tE[T]

l_g%ng};m”@ﬁ;w (Sitom+ ) = Filom— =)
<mpz T o], 7

oM
< 21¢ (1+/pC) w.pal, (A.97)
ceT

where the first inequality is by mean-value theorem, and the second inequality is
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due to the fact that

max— Z HCID ) <max— Z (1+pmax‘Xj,,| )
1612 tE[T 1612 l‘E[T]
2M 1
<max —— 1+ max |X;; )
ich Co Tte[T}( \/ﬁ]e[p]| JJI‘
2M (1 C
< ( +\/l_7 ) w.p.a.l.
Co

For A (m), let AY(m) = 4 LAY, (m) with

e oo 713) -2 (1 e [ Fosm 71}

We first observe that

_@e’g)}.
(v [ ]} t)

‘2 2¢ 5N8

3zt _‘

74 ) < o H@

ich te[T|

max HVar( 3”( )

i€ly,meng) te[T

<
zelz te T]

, w.p.a.l,

where the first inequality is by Var(x) < E(x?) for any random variable x and the

second inequality is by the mean-value theorem and Assumption 2.1(v). Similarly,

we have
T
Cov (A P!
. max oy 3;;( ) 315( )
ieh,me(ng)te(T) s=t+1

/
@e’;)l late— )

1/3
Y gh AY
i€lh,me(ng)te[T] s +1 el) (‘ > ls ‘

2/3
< max ({A3 it ‘3 .@2) < ER <£>2/3, w.p.a.l.

™ icl,me[ng) te[T) ~ T

COV(A3lr( ), A3 (m )"@IIN}

and max;c, mefng] se(7] ‘Aé’lt(m)’ < C13&Ey w.p.a.1 for positive constants c13 and cy4.

T
< max Z <|A3 i

It follows that

Var | A N ) +2
maXtE[T]{ ar(”() )+ Z

i€eh,melng|, s=1+1

e\2/3
§C13§1%’<T> , w.p.a.l.

Denote the events

Cov (At .44, )

‘f’,(»,w ‘2 <cuéy

I
maXier, me(ng),te[T) {Var (Agl,it (m) 263) +2ZST:1+1

and maXi€12J€[T] ’

92) ‘} <ciaéy (%)2/3

N =
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o maxme[ns]’tem {Var( 3, zt( ) @él) “!‘22; t+1 Cov (Agl,it (m)7AgI,is(m)
3N, = .
and  max;c[r) @l(,l) 5 <cuaby
Then, we have P(# ) — 0 and
]P’( max ‘A ‘ > Clan)
i€h,mE[ng]
<P ( max ]A \ > C12MN, A3, N) +P( )
1612,m€ ns '
< Z P(max |A J(m )] >61271N,eQ73,N) +P<%C,N>
iclb)] me|ng]
< Z P(max !A m)| > C12TIN,£73N1) +P(y)
16[12] mE[}’IS
= Z ]EIP’(max ‘A ‘ > cpnn| Y, )1{«5273N1}+P(=Q{3N>
16[12] mE[l’lg

2 2.2
cocir T
Y exp <_ 2 (123 29212 . 2> +o(l)
ich melng] ci3TER (%)™ + 1 &f + crociaTnnén 1 (logT)
:0(1)7

IA

where second inequality is by the union bound, the first inequality is by @3y C
273 N i, the equality is by the fact that @4 y ; is .@6{1‘ measurable, and the last inequality
is by Lemma A.12(ii), the definition of .25 y ;, and the fact that {8it}te[T} is strong
mixing given .@é} This implies

1 I I
= ) (A5 (5) =A% ()]

te[T)

max _sup
i€h,me(ng| ses,,

= O,(NN).
2

Last, we turn to the first term of (A.95). Denote Ag]f(sm) as the k' element

of Aé’l‘ (sm) and the event set @ y; = {max,¢[r] H&)E;)

‘2 < c14éy}. Similarly, we

have P(Niep, 7y ;) = P(maxicy, e HdD ) =o(1). Following the same

argument as above, we have

P ( max
i€ly,m€ng)

< ¥ EP(]Agg’xsm)]>%m‘@£})1{mm}+o<1>

I

Ag7l§(sm)’ > C12T[N>

mejng),i€l
< exp | — o(1)=0(1),
melnelich e} TEX +crpc1aTnnén logT (loglogT) /2

(A.98)
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where the second inequality combines Lemma A.12(i). Combining (A.92), (A.94)
and (A.98), we have
43,

T A, )
We now turn to A; ;. Let
AL, = (t—1{wiy <0}) B! E((f 1w <0}) 3! _@h)

/ .
Then A, ; = %Z;T:1 (Aé it) A; .. By conditional Bernstein’s inequality and similarly
as (A.98), we can show that

max
icelh

ZAZ it

> C1277N} =o(1),

which implies max;¢y, ”’2 ||| O, () - By similar arguments for A3 ;, we can also
show that max;ey, H|A ‘|‘ O, (nn) . For Ag ;, we note that
(i)('l)/Aiu
‘A6 | %Zthl L ™E (1 {WLit < s} —1{e; <s} @elll) ds
l
max = max .
ieh [[Ail], ek 4]l
é(l)lAiu < (1
FEL o (S (u (@] @) 4-s) ()| s
= max .
ieh Al
ci)(l)/Aiu = (1
FIL L (B — @) fuls)ds
< max
ieh 14l

o (a]) 1)
< max
ich I Al u

< fmax H
i€l tE

—Op(TIN)7

Hz

llz

T]

where the first inequality is by mean-value theorem and the other inequalities holds
by similar reasons as those in (A.91).

Last, for A7 ;, we have

_Z[q> A ( {eitso}—l{wmﬁo})}

te[T

— T Y E [cb,., "Aj (1{gn <0} = 1{w1 4 <0}) ‘@é}]
te[T)
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+= Z {[cp "Avu 1{s,,<0}—1{w17,,§0})}

ze [T]
@e’%} }

Then, following the same analyses of A; ; and A3 ;, we have

_E {égﬁ’A,,u (1{es <0} =1 {w1 <0})

I
:A7,i+A7n

4 4
A, T M g,
which implies max;ey, ﬁ = 0,(NN). [
Recall that event o7y = {maxielz 05.1)/%(71]-) — ugj ‘ (nw),Vj € [p]u{0}
3
where we define q’” infu {N% H <lp§t1)/A> j 2
8 Tien, | A

Lemma A.16. . Suppose Assumptions 2.1-2.5 hold. Then for {B1, -+ ,Be }se[r]

defined in (A.8), for any constant 0 < c11 < min(?—,f, 1), we have

max

=0 Vme {1,2,3,5,6},
reiT] HAtv P(nN) m { }

I
3283 ¢ A 232_3'/ | A
|B4,| > min <( e f Clllfz) CWH th27 ( ey f Cnf6>\/\/;_wa H WHz) . wrelT).

Proof We first deal with By,. Let wy;; = ‘PE,I)/AW. Following the same argu-
ments as used to derive the lower bound for A4 ; in the proof of Lemma A.15 by
replacing wa i With wy j;, we can show that, for r € [T] and any constants ¢ <

A Gehi—ehP) ew [Aslly Gehii—ehT) veval A,
|B4,l’ me( 12 s 6\/5 .

For By ;, we have

BM:( Y ¥ (t— 1{el~,§0})> Ary ;:( Y B ,,) Ay

lEIz ZEIZ

Conditional on the fixed effects {VJQ} and {Wjo} _, the randomness in
J€lp

Jjelplu{o}

B is from {git}ielz,ze[T] and {ej7,~,}j€[p]’i€127t€m, which are independent across i.
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Owing to this, by conditional Hoeftfding’s inequality, we can show that

{max— ZBI Al >cisnn 9} < Z ]P’{ ZBII:IEI > c15NaNNy @}
ielh 2 IG[T] icelh 2
c N2n2
<2 Y exp (—”—M) =o(1), (A.99)
&7 AM2EZN,

with Bq’kt being the k" element in B{ it» €15 is a positive constant, where the second

inequality is by Hoeffding’s inequality with the fact that max;cs, ;¢(7 ‘B <Méy

1,it

a.s. by Assumption 2.1(v) and Lemma A.13(i). It follows that max; ¢ (7] H‘ t|
l v

O, (nn) . If we use the conditional Bernstein’s inequality for the 1ndependent se-

Ik

quence rather than the Hoeffding’s inequality above, we can show that max,¢| Yicr, By it

T] N2 5

Oy (1 / W) , but here we only need to show the uniform convergence rate to be
TN.
Let X ;; = 1. As for By, note that

|B2.|
maX

71| Ayl

I
[Nz Yicn (‘y() \PO) (t—1{ex §0})} Ay
= max n
rElr] 41l
< max|| - ¥ (1[/.(1) —lP(.;) (t—1{&x <0})
E N2i612 " ' - )
1

<?el[aTX_l§Hq] 2_t€[T]N2l€I ZHOO u’f ‘2 Jit

1/2
=0,(nw), (A.100)

() _ 0.
Srlréaizxjégjﬁﬁo} (HOO U j ul,]||2> [ Z Z J,it

2 el j=
where the first inequality is by Cauchy’s inequality, the second inequality is by
Jensen’s inequality, and the last equality is by Theorem 2.2(i) and Assumption
2.1(31v).

Next, we deal with B3;. Following similar arguments as used in (A.100), we

obtain that
N2 Yich <\P( ) lPO) At,v [1 {ex <0} -1 {W3,iz < OH
: =0 :
g T o
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which implies
B3|

max ————
t€[T) ZHAWHz

/ .
{ Yien, ¥ [ {ex <0} -1 {W3 it < 0}]} Ay
:?Elf% HAf,VHz OP(TIN)
< max Z ) [1{ex <0} —1{ws; < 0}] 0, (NN)
lEIz 2
<mwf—zuwnz{mmz £l 0p o
i€l j€lplu{o}
=EnT +0p,(NN).-

(1 1
Now define the event set Zy 1 (M) = {max;cy, je(pufo} ||”z(]) — 05. )ung < Mny}.
Then, Theorem 2.2(1) implies, for any e > 0, there is a sufficiently large M such that
P(#5 (M)) < e. Recall that Z,, is the o-field generated by e;; U {VO} U
: J€lplu{o}

{W]Q} . Then, we have
J€lp]

P(Enr > Cnn) <P(Enr > Cny, Bn1) +

( ZH‘P I,1 {|8it|§M77N Y vasz}ZCnN>+e

2 ich J€[p]u{0}
(?618%)?33” > CnN+maxB3t) +e, (A.101)
where
1
e [ (A M EN T
2ieh j€lplufo}
ey (CIR IR M FH N ER Y
i€h J€[plu{0}
(e feisim £l ).
i€h Jelp]u{0}

and the second equality for Bg’ . holds by Assumption 2.1(i). Following this, we

show that

;161%33 '

e T [ (e T L) s (e T )|
te[T] N2 jf) j€lplu{o} JelplU{0}
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22(1 4 p)M?

< max— + max X —_—
1o N l;z P [ Xt o ULy
2(1+p)*M>*C
L2 MC s (A.102)
Co

where §(-) is the conditional CDF of €; given %, who also has bounded PDF
by Assumption 2.1(vii), the first inequality is by mean-value theorem and facts that
H‘Pg H; < M? (1 + pmax e, ’X“-t ‘2> together with Lemma A.13(i), and the second
inequality is due to Assumption 2.1(iv). In addition, given {Z,, }icr,. {€i }ic1, are
still independent across i. Therefore, by Hoeffding’s inequality and similar argu-

ments for term Bj ; in (A.99), we can show that

P(maXHB3,H2 >c12nN> < Z IP’<HB3IH2 > C12T[N)
te([T]

{@ei,},-eh) =o(1). (A.103)

— ZmEP (HBQ,HZ > ciaMy
te

th|

Combining (A.101)-(A.103), we obtain that max; [z HlA—H =0,(NN).
AP

For Bs;, we observe that

)]}

/qn(f_l)’Az»' [(1{8,‘, <s}—1{g <0})-E ((1 {ex <s} —1{e; <0} ’ "’)} ds}

WYA,

= 1 {/O\P,,A,v l( {ex <s} —1{€; <0})— <(1 {e; <s}—1{g; <0})

+1722{

ieh
o pl 11
= Bs5,+ Bs,

Following similar arguments for A3 ; with Bernstein’s inequality replacing by Ho-

B, |

effding’s inequality, we can show that max;cz ”lA—’H = 0,(nn). Besides, we ob-
v||o

tain that
B, 0
max < max — H‘P — Wil =0,(nN)
e, < e 4 ¥l = 0ncnw
which implies max,¢(7) H‘A ’||| O, (Nn)-
For Bg s, we first note that
P'A, ,
1\% Yich f‘PE’?A,,VI‘ [1{ei <s}—1{ws3; <s}] ‘
max .
relr] [T
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<max— H‘P @0l =
re(T] N2 Z P

Op(1N),

and this implies

(1)
‘BG ‘ N2 ZlEIz OlP B ( {W37i; < s} —1{g < S}) ds
max 21— max :
elr] || Ay,  relr] [T
N2 21612 (;P Ao ( {W3’,’, SS}—I{S# SS}) ds‘ o ( )
= m - '
£y . a

In addition, for the first term on the RHS of the last equality, we have

N 21612 (;P sz( {W3,it < S} —1{g < 5}) ds‘
max n
te[T] HAtv
1211 M1 Al (1) A0
SmaXNLZZiebfo 2( {’&t_ : g ‘2 iy — 05 Hj ‘2}>ds
rel7] 1Al
. )_ (1,0 ‘
— max — Wl 1 U I|A < O uj |l ¢d
S T ALY (R LN N AN VA R
sup ZWPM{MP“S Y ‘”qﬁ%fﬁ'
s>0 L€[T) V2 jep, J€[plu{o}

Following the same argument for B3 ;, we only need to upper bound the RHS of the

last display by sup~ ¢ (r] BéJ(s) on By 1(M) for some sufficiently large but fixed

constant M, where

ZWPM{mﬁﬂéMm y w&m}

N2 i, Jelp]u{o}
Let
By (s) = E(Bg () {Ze }ie,)
6,t 6,t it Jiel,
1
L] (CISTE R S TR PR ]

2ieh Jelpluf{o}
We note that sup> ,cr] B t( s) = Op(nn). Similar to the arguments in (A.102), to
show max;¢ 7 H|A ’||‘ O,(nn), it suffices to show

P ( sup ‘Béyt(s) —Bgt(s)‘ > clan> =o(1). (A.104)

§s>0,1€(T]
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Further denote

LRI R YRS

2ieh J€lplu{o}
FEIlL sz £ L.
N2 i, J€lplu{o}
Then, we have Bg[(s) = Bgf(s) - Bg;(s) and thus,

sup }Bé,t(s) —Bg; (S)|

s>TU4 re[T]

<  sup !BHI() E (B o |{96n}l€[2)’
s>TV/4 1T

L oap )BgY,(s)—E(Bg,Vt(s)\{@ei,}iezz)

s>T/4 re[T]

< maXBI”(Tl/4) —|—maxE <BI”(T1/4) ‘ {9«6”}1612)
t€[T) 61 t€[T]

1/4 IV (/4
—i—m[aT)}iB V(T )+¥I€1?T)§E<B (T )‘{@elt},eb>

< max | BY(T/4) B (BEHTV4) {22, i,
te[T] ! 7 ’

+2maE (Béff(Tl/“)l{@ei,}ieIz)

+2maxE (B T1/4)‘{.@ei,}ielz> ;

+maX‘B T1/4)— (BIV Tl/4 ‘{‘@f?lt}l€12> e[7]

where the second inequality holds because both B/ (s) and B, (s) are non-decreasing

in s. Further note that

ol {e ooy %L} [l acs i £ L)
Jelp)u{0} Jelp|U{0}

are independent across i € I, given {Z,, }ic1,- Therefore, following the same argu-

ment in the analysis of Ag; with the Bernstein’s inequality replaced by the Hoeffd-

ing’s inequality, we have

max [BEI(1'14) ~ & (BE(T )] Ze,dier, ) | = Op(aw),
t€[T) ’

max E (BT [{ e, Yier, ) = 0p(nw)

te[T] ’

max ’Bévt(Tl/4) -E (Bé‘/t(Tl/4)‘{.@eit}i612> = 0p(1¥),
te[T] ’

max [E <Bg7/t(T1/4)|{.@e[,}ielz> = O0p(nn),

te(T)

which implies

Sup }Bé,t(s) _Bgt(s)| = 0,(Nn).
s>T/A4 te[T]
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In addition, following the same analysis in (A.95) and (A.96), we have

sup | B, (s) — BE,(5)| = 0,(nw),
s€[0,TV/4) ¢e[T)

which leads to the desired result that max;cr] H|A6 t‘|| Op (M) ]

Recall fori € I, J# <{ui7j}j€[p]U{0}> =+ X { [t =3 (i ({ui} jeppiugoy)) ] @i }
where
) D _ 0 (D) / .‘(I)X-‘
gll({uld}jE[[J]U{O}) =UioVro + Z Wi jVy,jAjit — zOVZO Z uz jvl] Jsits
Jj€lp] J€lp]
/
and @,‘t = (VZ(B/,XL,'ZV(])/ ,Xp j V(l)/> .

171 ) ’lt t7p

Lemma A.17. Under Assumptions 2.1-2.5, the second-order derivative of ({u,~7 j }§:0>
is bounded in probability.

Proof Noted that

({”w}] o)

il Z fzt( zo"zo —U; 0Vr0+X1 itlhj, 1";( 1) Xi zt”z v 1> @y 0.
l

For notation simplicity, we focus on the case with p = 1 and denote u; = (u; 0> Ui 1

Further denote %’jk ({Mi,j}?:0> as the k' element in % ({ui7j}§:0> and v‘t(ﬂ.)k as

the k" element in \3[(13. For k € [Kp|, we have

9 A ({i}0)

(1) (1) 0.0 )5 &
du; Z fu(zo"zo_”zo"zoJFXln”letl Xllf”tl"tl Vr04@i  and
1
5
. AP T
du:ou’ - Z zOvto_ulOvt0+ 1lluzlvt1 ll’ullv” vaovk =it
ioU; =1

Therefore, we have

32%'?7,{ ({uiJ}f:O)

du;ou,

F

t=1
< cf o;
< cf [{2% } Z,II 3
_ 1
< cf {;g%Hvzo 2} {f’é‘f‘}‘ ”H } <1+TIEZ[T,]X1,U> 0,(1),
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where we use the fact that max; ¢z

A.13(1).

v‘ffo) H2 = 0,(1) by Theorem 2.2(ii) and Lemma

Fork € [Ky+1,---,Ko+ K], we have

dHi ({’/h’,j}?:o)
8ul~
Iy 1) 1) 0\ () :
- T Z flt ( zOVt 0 - ”z Ovt ,0 +Xi ztul 1V; 1 —Xi th, lvt 1) v,717k_K0X17l~,03,~, and

82%,k ({Mi,j}j:0>

du;du!

_ (1) r (1) o0\ (1) et
== Z —Fir ( tj ¥ 0 —upoVio + Xt 1V, — X itV 1) Vi 1 ki X1,it Wi W
Therefore, we have

a{%”j’k <{u,-7j}f:0>

du;du!
F
- (1) 1 & )
< |max |vig],| 7 X2 il el
= (1) I IOIE
= f[{gf‘TX V0 HJ {?61[%?‘ H2+ VmHz) t;Xm = 0p(1).
|
Recall that
: 1y (1 (1 !
= (5 X %)
!/
1 ! 1
wi(l) ((0(() )v20> a<0§ )V[ 1> Xl Sty " 7( é)vt7p> X‘DJI) ’
v 1y 1 O /. o I @O
D; .zfzif i (A7 W) 00y, D) Z T—1{g; <A Wy }] 0,
o 0 =0/ LR 5 0
an jopay, D=7 Ll e <0)]a].
Lemma A.18. Under Assumptions 2.1-2.5, we have
: 1
(i) maxier, | D[] = O ( M@V)’
(ii) maxjeer, |[Df —DY||, = Op(ny),
. . _1
(iii) maxicer, |[DYf =D — ¥ [1{ex <0} —1{e; <A} ¥} }]| @7, =0, ((N\/T) 2
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Proof Throughout the proof, we assume there is only one regressor p = 1 for
notation simplicity.

(i) We notice that E (DlU

@) = 0. By conditional Bernstein’s inequality, for a

positive constant cjg, we have

P | max
ielz

Y [r—1{ex <0} 0" x4
te(T)

> Cl16\/ T10g<N\/ T)éN 9
2

<Yew|- coc3 TERlog(NV T)
= %Téj\z,jtmf—;mé[%\/Tlog(N\/ T)logTloglogT
where the inequality follows from Lemma A.12(i), Assumption 2.1(ii), Assumption

M
< 2o 6vas.

=o(1),

2.1(v), and the fact that max;cy, re[r) H [t—1{g; <0}] 0(11)v21X17,~t

Similar arguments hold for the upper block of D!, This concludes the proof of (i).
(i1) Notice that

1
DDl = 1 fir (A; vlp?t) zo tO — it (0) ?0"?’0 fir (A; vlp?t)v o)V A XL — fir (0)v ?OV?,1X1~if]
i Vi == ’

(
t,
1
T | fa (A7, ¥7) t(l) tOXl it — fir (0)v tl"z,oXLit fir (A7, 7)) Vz( 1)" 1X1 i — it (0) ?IV?,IXLit

To show the upper bound of D{ — Dll- , we take the lower block for instance and all

other three blocks follow the same pattern. Noted that

1 A (1) (1)
R\t > [f"t (A7, ¥3) Vt(,l)vt(,l) Xlz,ir—fiz(O)V?lv?’lXut}
; te[T] .
1 A 1) .(1)
<max|/ 7 B [f (8,98) ~ful0)] [ = | XE
te[T) .
+rln€2}§( T Z f” A/ \PO — i (0 )} Vi lv?llxlz,it
; ze [T] -
+max || — Z (0 [v(l MO vO'}X
icly i 1,1 71,1 1,1Ve 1| At
; ze [T -

where the equality is by the fact that

icl te[T] ich1e(T]
(1) 0
max mH b, = 0p(1),
1 2
r,réaj;( T Z 1,it = )

154



(D) ()0 o
vtlvtl —ViaVea

) )

max
te[T)

‘ < max( %
F i€z

" ‘2+HV21H2) i v

)

2

and

max
i€l

1 .
= X [ (A, 99) =5 0] |05 =00 | X2,

te[T)

F

e X 198l il = 0p ()

(M1 0 o
ViVl —Veivia

< max fHsz”
i€l (T

(i11) Note that

. Iy o} o
pf - pfl = 2 ¥ [Her <0}~ 1 e < 4,9} @
=1

|:1 {81‘[ S 0} — 1 {81‘[ S A;’vlpg :| (G)i[ - a’l(;)

[
~| =
01~

N
Il
_

[T~ 1{ex < 0}] (0 — @)

+
71~

H
Il
_

1=~

{[l{e,-tgo}—l{e,-,gA’ 0] (@ — )

@II ubh }

~
—_

_l’_
S| -

I

[1{ex <0} —1{ex < &, ¥0}] (&3 — @)

@11U12:| }

—— =

[1{ex <0} —1{e; <A, ¥] (@ — @)

|
=

[r —1{ex <0}] (&0 — @)

_|_
'ﬂ p—
™~

=81,i+8,+S83,,
where
I,Iéa}XHS“HZ<IlI§X Z | @i — @], [3ir (A7, ¥5) — Fir (0)]
1
S max . Z Xl max([dva [ = 0, (nf).

te[T],j€[p]

As for S»; and S3;, we first recall, for any e > 0, there exists a sufficiently large

constant M such that for

oW1

Vo uj ‘<MnN,maxHO

te[T]

i€l

M(M):{max ‘ <Mnn,Vj€lp ]U{O}}

we have P(7f(M)) < e. In addition, let

m,w):{uoyw 0

|, < w05 <0 | SMnN,vJ‘e[p]U{O}}.
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Then, we have

P (max HSlin > 0171]]%,) <P (rlr&x HSZJHZ > cl7n1%,,£f7(M)> +e

i€z

< ZP(HSzJ'Hz > 017771%/,&77(1‘4)) te

i€l
< Y P([IS2]l, > 1, #4i(M)) +e
ielh
= ) EP (HSz,iHQ > ey 953“”) HAri(m)} +e
ic€lz
2 724
cocy,T
< Y- - te=o(l)+e
ich c1sTNFER +cr7eis TnyénlogTloglogT

with a positive constant c;7 and the inequality above is by Lemma A.12(1) with the

fact that, under % ;(M),

max [1{e; <0} —1{e; <A, ¥} (&, — @Y)
2

_E [[1 {er <0} —1{e; <A W9} (B — @Y) %’}U’Z] < c18Mwéw-
2

As e is arbitrary, we have max;ey, HS;in = 0,(n%). Following a similar argument,
we have max;cy, HS3J'H2 = OP(nI%,). By Assumption 2.1(ix), we note that Op(rh%,) =
op ((NVT)*I/Z). .

A.2.3 Lemmas for the Proof Theorem 2.3

0 -1
J

o 1
Lemma A.19. Define Hij = (Lij ) and HY; = WJQ’WJ- <WJ’WJ> . Under

Assumptions 2.6-2.8, we have
(i) Hy ;= H;+0p (557,

2
=0y (ﬁ)

.o 1 2 0
(i) NHLj—L.HW ‘F

JUx,j

2

=0y (ﬁ)
F

(iii) +

A -1
Wy —w; (HL)

Proof The proof can be found in Bai and Ng (2020, Lemma 3 and Proposition
1). [ |

Lemma A.20. Under Assumptions 2.6-2.8, we have

o 1gor (7 0 _ 1
(i) yLj (LJ—LJHXJ> = 0p (37),



. -1
(i) %W]Q/ (Wj — WJQ (Hi&) ) =0, (ﬁ)’
log(NVT)

(iii) max;c(r ]1, <L L9Hx ,) €jr = Op( NAT )

(iv) max;py) & <Wj W} (Hifj> ) eji=Op (10%5%”)-

Proof Statements (i) and (ii) are the same as Lemma 4(i) and (ii) in Bai and Ng
(2020). Statements (iii) and (iv) are the uniform version of Lemma 4(iii) and (iv)
in Bai and Ng (2020). Below we focus on part (iv) as the proof of part (iii) follows
analogously.

: 37/ l - 07 17/ E§L3 07 17/
Noting that W; — <Hx,j> W' = gLiXj— = W;" = fLiE;j, we have

[ 0 (gt )" , 1 L 0 1 ! 0
T (WJ’_WJ () ) enim p€iiBils = yme ELH 4+ el i (L — LOHL)

For the first term on the right side,

! . 1 0 log(NVT)
mﬁNTeﬂEJLJH;VJNm% I€iEiL], = 0 <W 7

by Assumption 2.8(1). For the second term on the right side, we have

! : |2z,
w ?
a1 (L L9 |, < max ), 1

log(NVT) 1
- Op Iy — Op )
VNAT VNAT
by Assumption 2.6(iv) and Lemma A.19(ii). Combining the above results completes
the proof of part (iv). [
Lemma A.21. Under Assumption 2.1 and Assumptions 2.6-2.8, we have ¥ j €

[p),

—1
(i) Wi = (HL;) 0, = B Sicw e+

—1
WOWo _
(ii) [:i—HYO = s H! 1—1 ET wl e+ %
Ji x,j Jid T X,j T 2a=1W;€j,it 1i>

01170

1
w:
o s (Wi W LT 0 . 01 0.
(iii) ;u“j,ll‘_.u“],ll_e],lt_e],lt_WjJ< T ) TZ;:]WjJe],zt‘f’lj’l-NZie[N]ljJe],zz‘f‘

J.its
such that
loe(NVT log(NVT
max | %y, | = 0, w , max ‘9?1, 0, & ,
te(T] ’ NAT i€[N NAT
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max | %] =0, (M) ,

ic[N]t€[T],je[p] NAT
—1 R
max |w;, — (H ) wl. |l =0 ; max lii—H. || . =0 ,
max 20— (FL) | = 0n(m), ma s~ #5101 = O(my
max ‘ej,it —éj,iz| = max |/.L] i — i7it‘ =0,(ny),

JE[pl,i€[N]t€[T]

with nw \/log (NVT) é:N

Jelplie[N]1elT

Proof Recall that X;;; = U; i +eji = v +eji and X; = LOWO’ +Ej in

Jsi ]t

matrix form, where L € RY*"J is the factor loading and W) € R7*"/ is the factor
matrix. Following Bai and Ng (2002), Bai (2003) and Bai and Ng (2020), if we

impose the normalization restrictions that
L wowo

< L —J. and —L—L isa diagonal matrix with descending diagonal elements,
N J
we have the principal components estimators:
Ly =X;W; (W) ™" and W = (£0L,) 7 1X; = ~L'X;. (A.106)

Let H)i = ( NL;L?) . Premultiplying NL’ on both sides of X LOWO’ +E; yields

It follows that

A -1 1,
/ l 0r 0r
Wi= (i) W+ SLYE,

-1 1 / 1 /
(#,)) W'+ (L) LYE;+ 5 L—19H],) B

We then show the expansion for each factor, i.e.,

» P\ I 0 /
Wit — <Hx,j> Jit HX]N Z l] i€j,it + = |:L L]Hx ]] €jt- (A107)

For equation (A.107), we have the uniform bound for the second term, i.e.,

log(N V T))

1 ot ]
max — {L —L:H ] ejr=0p
’ NAT

re[T) J

by Lemma A.20(ii1). With ¢ 9 being a positive constant and max;c yj se[7] ‘l?}ie it

IN

c19€n a.s., we show that

log(NVT)

>c —_—
i 20 N (‘::N

max
te(T)

Z lJ i€jit
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SoNERlog(NVT
< max?2exp (—C20 S Ozg( 5 )) =o(1) (A.108)
te[T) N4c]9§N

~1
for a positive constant coo by Hoeffding’s inequality. It follows that w; ; — (H fc j) W(J)' =

H)i’”%, YicIv] l?7iej,i, + Pz, such that

max
te[T]

-1
~ l 0
W-jJ B (Hx7]> ijt
F

_0, ( —log(l\; v T)J;N> , (A.109)

and max,c(r] |%w:| = Op (10%\(71%“)‘

|
Similarly, if we premultiply W; (W}Wj) to both sides of X; = L?W]Q/ +E;, it

yields

|
X;W; (Wiw))

A

Oy 0rd7 . (viriviy \ —1 &ar \ —1
= LiW)'W; (Wiw;) " +E;W; (WiW;)
It follows that
A A A Ay —1
Lj=LHY +E;W; (WW))
-1

—1 -1
0 0 (gl srivar 1 2 0 ( zl/ SIAT)
=LjH:;+EjW; <Hx7j> (WjW;)  +E; <Wj —W; (Hm') ) (Wiw;)

-]
where the fist line is due to (A.106) and the definition that H, ; = W]Q’ W; (W}W,-) )

Then we obtain the expansion for the factor loading

Ay A —1
WIW; 11 I
7 0 J 1 0
lj,i—H%lj,i:< = ) (Hw‘) T Wik
=1

Note that
1\
R 7. w9 I i A
o, (0w ) ) )
T T T
1\’
2 0 ( gl 2 0 ( zylr
<WJ_WJ (Hw') ) < i—W; <HX7J> > 0
= A1l
- (A.110)
2 o(gi )" / o\ !
i—W; (HXJ) W; (Hw)
+ T
-1
! 0 1
(HX’J> i (WJ M <Hx:j ) ) (H)lf /) WJ‘.)’W]Q (H)il)
* T T
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/ —1
[ 0. 1
B (12, wow, (a,) co (1 A1)
- T PANAT )’ '

where the last equality holds by Lemma A.19(iii). Note that

l I -1\’ . log(N\/T)
?Q%T<W W(H> >e’_0”< NAT

by Lemma A.20(iv), and we can show that

wleisl =0 Mé\z (A.112)
J:t% ] p
2

max
T
as in (A.108) by conditional Bernstein’s inequality in Lemma A.12(1) given {W]Q}

jelpl

-1
n wowo -1
It follows that £;; — H}/19, = (%> (H; J) 7 X1 w9 e+, such that

10g(N\/T)) ‘

— 0,y and max |1,| = 0, ( VY

ma £ — HG

Then, it’s natural to obtain that

Hijir — Hjir

_q W 07
_ZL lJl Jit

= (15— () z;{,.)' (30 () o) (B (1 j)’z;{i)' (L) W,
+10H] (w = (HL)) - w‘}7,)

= (13- (1) z;{,.)' (1t,) ottt (s, () o, )+, (D))
=wY, <w> ! ZT:w],eJ ,,+l?’,N Y Dieji+ i

i€[N]

where the second equality holds by statements (i) and (ii), and the last equality holds

with max;e v sc[7] }% jﬁ’ =0, (10%\%}”)) - By Assumption 2.1(iv), max;¢|z] HW?J
J€[p)i€[N]L€[T) mj,iz - .Uj,ir‘ =
Op ( LY ) Op(1). .

Lemma A.22. Under Assumptions 2.1-2.9, for matrices DiF and DlE defined
I =Df || = Op(nw) with ny =

M a.s. and max;c|y; HlQi

Vi9og(NWT)E}
VNAT )
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Proof Recall that

(1) (1) o e itV(]())V(]l)/
oY A 0o . 1,0 Vt, 1,0Vt
bi = _Zf” L (00 o, O ) )| |00 | and
€LitVi1Veo  €1iVel Vel
(1) (1)
o ifz 0, VOOV%OO 0
1 l
=1 0 e%.,itog ) ?1"?/10( /
with max;e, ||DF||, = O(1) a.s..
Let i;; denote 1; (0(()1)u90,0(11)u01, 1(1)) for short. We have
Df —pf
(D) .(1 (1) (1) 4 1
| ool e -0 tiol e
T i (D) (1) 4 (D) .(1 1
= vt(.,l)vt(,())/elvif 0(1) ?1"?’00(())6’1 it e% n"f 1)Vt( 1)/_6%,#0(1) ?1"9’105 /
1 & 0 0 0(()) 90"9’10( )el,iz
LD MLICN SRR
=1 01 [’lvt7000 617” O
(D) .(1 (1) (1) 4
Ly o | Hene o ens
Z(flt (ltt) flt( )) (])(1) " ~ '(1)'(1),
U= ViaVeo €Lit €1tV Ve

=hit+Fi+F;

1 2
Fri Ff;

We define F{" form = {1,2,3,4} as fourth clockwise blocks in Fj ; :=
7 F 14,1' F,
Define F}’; and F3'; similarly. We aim to show the uniform bound for each block.

First, we observe that

T &t ol
= %téfzt(o) [ (V,(}O) — O(()])v20> (vt(lo) — O(()])v?())/ + 0(()1)\290 <vt(’10) — Oél)vt 0>/
+ (o) 0™ (0648 |

= 0, (M) + 0p(1) = O0p (M) (A.113)

uniformly over i € I3. For F 1% i» we have by Theorem 2.2 and Lemma A.21,

it — 0(() ) ?0"9’1 0( / el,it)

>
N =
1~
=
=
Yy
=)
N—
VN
<
~
=R}
<
~
o=
o
“H

N
I
—_

I
Nl -
1~

it (0) {V}(,g‘}z(,ll)/ (é1,ir —er,ir) + (Vt( lo)V}(,ll)/ - 0(() ho ov?'10(11)/> el,it}

N
I
—_
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= O0,(nn) uniformly in i € L. (A.114)

The same order holds for max;¢y, Fl3i . as Fl3i = Flzﬁ-. Next, we study Fﬁ ;- Noting
that
1 — et al = [(2ri+er) (ri —ern)
( ’el it — l,iz‘) ( max ‘el it —€l,i )7
i€l3 t€[T] i€l3,1€[T]
we have
4
maXHFl,iHF
. 2 1 2
Zf” ( €lit — 0(1) ?1 9/10() €1, )
F
1) (1) .o 0
<r}§}§‘_2ﬁf H (‘el it — )+max—2f,t t(l)vt(,l) _OE )Vz,lvt,llo
= max v(ll)Hz max_ |éy i — ey it max Zf,, )et il
te[T] L il te[T)
-l-max‘ V(II)HZ max_|é]; —ej n| max Zflt
te[T) L2 ieh,te[T|
(D) A1) 0 Jor (1) —
"‘{2%‘ Ve ivif =01 Vv O ’F%%f(T Y (0 )elzt> = Op(1).

(A.115)

Combining (A.113)-(A.115), we conclude maxier, ||F1.i||, = O,(1).
For FZZJ, we note that E (ﬁ,(O)v20v2’1e17it ‘ @) = 0 by Assumption 2.9 and

< 6‘22&\] a.s.

max Hf,,
ieh,te(T)

by Assumption 2.1(iv) and Lemma A.13(i). Then, by conditional Bernstein’s in-
equality in Lemma A.12(1) and Assumption 2.9(ii1), we can show that, with positive

constants ¢»1 and ¢,

lo N\/T
max Z SO oviera| > e &l )~§N
i€z I‘G[T .
<Y exp (- c12c21T§Nlog(NVT) (1)
- ich 3, TEZ +ca1ca0\/Tlog(NV T)EZlog T loglog T ’

(A.116)

which yields maxicy, ||F2,i|| - = Op(1w).
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As for F3;, we show the bound for the first block and all other three blocks

follow the same argument. Recall that

(1) _ o (1)7.(1) 0.0 | 4 0 ~1).(1) 0.0
llt—uzOO Vio Ui thoJrHl ity Ve ) — Mty Ve @1 1017V, | — e vy g

)

- {(0(()1)”?,0>/ (Vz(,()) - 0(()1)"?,0)} + <ﬂ1,itu§711)/\",(711) - .Ul,itu?,/l V?J)

(1) (1) 0/ .0
+ (61 itU;, 101 Vt 1 —€LiUi1Ved

= ij+ i) +if", (A.117)

; i! (1) 0 ! [
with the fact that |lit‘ < HOO ui70H2 =R} ; suchthat max;e;, ;e R ;=

:
O,(nn). In addition, we have

~ L(1)r.(1 L(1)r.(1
= max ‘(ulail_ulail)uz(,l)/vz(,l)+“1»it (”5,1)/%(71) vy, 1)‘

11
| ieh,te[T|

max |l~
i€l te[T]

< R{;y + R |, (A.118)

where max;cy, seir) [RY;| = Op(1v) and max;ey, se(r) |RY ;| = Op(ny). Similarly,

we have

()()

11 0.0
ll‘ul 10 Vil — €Ll Ve

i

< (@1 —ersr) (0§l)u21)/ (v'f}l) _ 0§”v21> + (bry — et (05%21)'0%21
€Ll (051)“?.,1)/ (V'z(,ll) - 0§1)V9,1>

=R+ R ey il (A.119)

+

where max;cy, /e[r] |RIIIII,| = Op(nn) and max;e, ;¢(7] |R§I{t| = O,(nn). Therefore,
we have

Fl
r}g}Xll 5l

e ‘2
t,0 2

T
Z, | fir (iir) — fir(0)

1
< max '(1)‘ max (R}, +RI +RY, + R 4+ RITY— L+ e ] + |1
~ relT] V0 2i€137t€[T]< 1,it Lit 2,it L,it 2,zt) T t;{ﬂ( ’el,zt| ‘.ul,zt )
= O0p (M), (A.120)
Combining all results above, we obtain that max;ey, ||Df — D ||r = 0,(n). ]

Lemma A.23. Under Assumptions 2.1-2.9, for matrices D{ and D{ defined in
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the proof of Theorem 2.3, we have

M (.0 _ OV
;1L Vi0 (00 Vz7o_"z,o> 0
D=7 Lful0) 0 2 oWy (om0 _ ;Y
= €11 Vi1 \Y1 Vi1Vt
We have
b/ D!
/
1 XT:f 0) VE,QV?./10<11)I(31,ir elzt)+vt(o) (0(11)"?1 _Vt(11)) (Crir —evir)
I it /
= (éLit—el,it)Vz(,l]) (Og)])vgo_"’i,lo)) v ?/10(1)/31 it (el,it—el,it)—V;(ll)"z(ll)/ (31 it e%,n)
e 1
el 0 o3 (o7 v
T it (1 1 0y’ (1 | (1))
U= Vz(,l) <O(<) )Vg),o Vgo)) €1t (Vz(,l) _05 )V?,1) (05 ) ? _V§,1)> e%,ir
/ /
1 L _ Y 10) O () v vt(lo)) vflo) (el ,tO( )v?l él,i,v,(}]))
o 2 (@) = fi(0 W (o0 DY 5 0,0 g Y
=1 é itVy | (00 Vto_"t,o) el-,ifvt,l (el L NaY el7i,vt71>

=i+t Js
As in the proof of the last lemma, we define J{" i Jy' and J5', form = 1,2,3,4 as four

clockwise blocks in Jy ;, J» ; and J3 ;, respectively

First, we study J; ;. For J12 ;» we notice that

(1) or 1) N
t(,())vt 05) (e1,i —€1,ir)

N
[

/
D (05%21 _ V'f,ll)) (érie — 1)

+
N =
1~
-

S

=

o

N
I
—_

£ 0050 00 (€140 — 1)

I
N -
o1~

N
I
—_

1L , R
+ T Z fit(0) (Vr(,lo) = O(()l)vg()) v?f]Ogl)/ (erit—érir) + 0, (771%7)
=1
I v (1.0 0 A1) 5 2 2
= TZf (0)0y Vv Oy (€1 — 1) +0p (M) +Op (M)
=1
=0,(nn) uniformly overi € L. (A.121)

Noted that the leading term in 7, is + Y7, £i:(0)0yv0v?, 0" (1 1 — &1.12). which
will remain as the bias term of u(301).
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Furthermore, it is clear that
1 & '
=T Z Ju(0) (€1, —e1it) V,(}l) (Ogl)vgo — \'/Z(B) =0, (nj%,) uniformly over i € I3.
=1
Next, we obtain that

D) .(1) A2 2
——Zfzt Vt1V;10 )6’1 it (€1, —evit —_tht 1(,1) t(,1) (el,it_el,it)
=1

1 & X
Zf” Wervereti (i —evi) 051)/ T )y ﬁf(o)vt(,ll)vt(,ll)/ (ri—eri)
=1
- ? Z it (O)V,(,]l)v,(}l)/el,it (81 —eri) +0p(Mf)
Zfzt V; 1Vt 161 it (81,ir — 6171‘:) 051)/ + 01)(771%/), (A.122)

where the first and second equalities hold by Theorem 2.2(ii) and Lemma A.21.
We deal with the first term in the second equality of (A.122) by inserting the linear

expansion of €1 ; — ey ;; in Lemma A.21(iii), 1.e.,

_Zfzt Vt1Vt1€1n(€1 lt_elll‘>
1L wowoy '
=-7 ) {ﬁr(o)vgﬂ’%elit [W(l)/z < lT 1 )

1=

1
{fzt Vz1Vz1 [el ltllzN Z 11 €Lt
1

i*€[N]

T
Zwl 1€1,it
t=1

T
log (NVT)
A.123
}+0P NAT ) ( )

e

’ﬂl*—*
1~

t

uniformly over i € I3. For the first term in the nght side of (A.123), we notice that

T 070 T
W'W,
max Z it ( Vt lvt 1el it Wl it ZW(I)teL,it
i€z =1 T t=l ’ P
1 T WO/WO 711 T
= max 72 ﬁr(O)V%V%el,n Z W(l),t,k ( 1T 1) TZW(I),teIJt
i€l =1 ke[r] =1 k F
-1 T 1 WO/WO 711 T
< max || | = Y £ (002 v e max < 1 1) — Y wi e
kez[;l] iel; _TZ’ t 1t 1"tk lt— er[r1]7i€13 T T; 1,6€ 1t i
_1 4 0o .0 0 ]
= Z max —Zft(O)Vr,lvt,lwl,z,kel,it Op(NN)
i€l T -
kelr] = 1lF
2
- OP(nN)a

where wy ; is the fact of X j;, ry is the dimension of wy ;, and wy ; 4 is the kth element

of wy i, the second equality holds by the results in (A.110) and (A.112), and the last
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equality is by the fact that

<Hg}x [ Zflt thvtlwlzkellt]
ich

following analogous analysis as (A.116) with a positive constant ¢;3.

log(NVT
> 23 g( )éN

F

) =o(1)

For the second term on the RHS of equation (A.123), we notice that

1 T
- flt( )V 1Vt1 €l ztll Z l1 i €1,i%t
T _l{ - lNz *eN !
1
N_ Z Zfll V,1V,1l1111,*6’1 it€1,i%t
i*e[N]te[T]
1
T Z fir (0 V?l"?’l 111 1n+ Z Z fir (0 V?lv?ll l?,i*el,itel,i*t
N &l NT irti
ltE
(A.124)
with
1
0 O/
max f[ V 1V 1 ll el S — max l maX( Vi 1 )
[ X Ottt < s s (15 1 02) 7 2

o (§)

where the equality holds by Assumption 2.1(iv), Lemma A.13(i) and Theorem
2.2(i1). For the second term in (A.124), by Assumption 2.1(iii), e; ;; is strong mixing
across t and independent given fixed effect. We define E}*‘ = (&} |,--+,&}; 1,€] ;11,7 €] 5)'
with &1 = (er1e1,1,- - ,e1rer,r) for i* #i. We can see E'*“ will also be a

strong mixing sequence, conditional on &, which implies

P | max NT Z Z fit(0 l lo,i*el,izehi*t >Cz3771%1
il P*#ite[T) F
< ZEP NT Z Z flz )l ll i €1ir€l,itt >6‘23771%/ 9 :0(1)7
i€l; i*#ite[T] F

where the equality holds by Lemma A.12(i). This implies

1

I}é&}x Zfzt V; 1V; e (eri—e1i) 0(1 )

’ F
= max Zflt Vt 1Vz 161 it (el it — el,iz)

icelz

F
2

= Op(Ny)-
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Therefore, we conclude that max;er, ||} ; =0 (n%). Then
0 Op(nw)
max |1 - = , A
0p (%) Op (M3) F

Next, for Jzzi and JS ;» conditioning on 9hh gnd following Bernstein’s inequal-

ity in Lemma A.12(i), we have

I

I}éE}X”JZIHF_Ii%a}gx _Zfll "z(lg( lv?l_vt(,11)> erirl| =0y (M%),

1 .
s 8 = x| X 0Ly (018 evs| =0, ()

which can be obtained by the similar arguments as Lemma A.24(i). These results,

in conjunction with the fact that

o\, M0 _ MY 2
Il%z}xHle _max tht ( - Vz71> <01 Vz,l_vt,1> €Lt .
< max liflt(())e% i | Mmax V(l)—O(l)V?l‘ —Op (771%/),
i€l t€[T) = ] el ol b

imply that max;ey, HJ;,MF =0,(n%).

For J3 ;, we have

1 & 3 (1 (1Y
%whm=%$7£W“”%@W8@Mrﬁ@F

(1 (1 (Y

< max o3, |45 (0o - 519) zfg;f—t; fi (i) — f(0)]
1

< _ 7
< Op(nv) max 7 ZGZ[T] [T
—0,(n2), (A.125)

where the third line is by Lipschitz continuity of the density function, Theorem
2.2(ii), Assumption 2.2, and the fact that |;| lies between 0 and |i;|, and the last
line is by the fact that max;c/, %ZIE[T} |T:] = O, () by (A.118) and (A.119). The
bounds for other three blocks in J3 ; can be established in the same manner. Hence,
Op(N3)-

Combining all results above yields the desired result. [

we have maxie, |

Lemma A.24. Under Assumptions 2.1-2.9, we have
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(i) maxier, || 7 X, <Vz(,lg - 08”"?0) (7—1{&: <0}) HF =0, (n§).

)

(i) maxiep, ||7 X/ 1( V| —0(() )V?l) (1 —eru) (T—1{& SO})HFZOP (%),

I

(iii) maxi€13 %ZIT:I 6171'; ( ( ) 08 ) l 1) (T— 1{81'[ S O})HF = Op (T[]%/),

(iv) maxiey, ||+ XL, OF 1 (Crie—eri) (T—1{er < 0})”F =0y (n3)-

Proof (i) We notice that E [(vt(lg — 0(()1) z00> (t—1{e; <0}) ‘@huhl =0 by

s, e

with P (.e70(M)¢) < e for any e > 0 by Theorem 2.2(ii). With some positive constant

(1
o — 0

Assumption 2.1(ii). Define event .27jo(M) = {maxtem

Co4, 1t follows that

2
> C24nN)
F

1 T
<P (rréa}x T Z (\}t(’lg — 0(()])\’20) (T— 1{8,'[ < 0}) > 62411]%,,52710(M)> +e
<3 =1 F
1
<)} P ( =X (10 —0f) (r—1{e <o0p)| > cmnfv,mow)) te
i€l =1 F
T
<yEP(|[LY (V(l)—O(l)vo )(r e <OV > coun?| 21V | 1{etio(M)} +e
ich T /= w0 0o l F !
012024T277N
< —
- i;; exp{ M2Tn3 +c24MTn]%,logT10glogT} e
=o(1)+e. (A.126)

Since e can be made arbitrarily small, this completes the proof of statement (i).

(i1) It’s clear that

1 & .
max | Y (4 = 00", ) (21— e1) (r =1 {en < 0})
i€l lel ’ ’ F
.(1) 0 ‘ _ 2
< -0 =0 ;
legfeX[T o t€[T] Yt %0 Vel p(Mv)

where the equality holds by Lemma A.21(ii1) and Theorem 2.2(ii).
(ii1) Noting that

E {ew (vf}l) - 05”%) (t—1{gy <0} ‘@Wz] —0

by law of iterated expectation and Assumption 2.1(ii), we can obtain the desired

result as in (A.126).
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(iv) Note that

1 A
Z V?,l (é1i—eri)(t—1{g <0})

r te[T]
WO/WO
Z Z vt (t—1{& < 0}) ( T > w?ysejﬂ's
se[T]te[T
+ 57 Y Y i (r—1{e; <ONIL ejms+ Rj - (A.127)
mée[N]te[T]
For the first term on the RHS of (A.127), we have
wowo !
0
Ilréz}z( SGZ’[T]IEZ’ v,l T—1{g; < 0}) %) W ejis
2

~1
1 wowo
< max Z Vz (t—1{e; < ()}) T ( jT J Wg’sejjs
ieh ze[T] Fll- sElr] )
=0y (771%/)

For the second term on RHS of (A.127), by Assumption 2.9(ii), Bernstein’s inequal-

ity in Lemma A.12(i) conditional on factors, we have

=0, (771%7)
2

max
i€z

7 L L Ve (v= e SON I e m
me[N]t€[T]

Then statement (iv) follows. [ |

Lemma A.25. Under Assumptions 2.1-2.9, we have

~ (1) .(1
(i) maxier, ||+ X7 e1401v0, £ir(0 )(Hutu?flv?,l—Ml,itug,l)lvz(,l)wzz()p (n%),

th 100 tofzt( )(.uln”?1 Vil .Ulztul(llvtl)H _0 ().

(i) max;ey,

Proof (i) Recall from (A.118), we have
N (1) .(1
“17#”1(71)/‘}1(,1) - ﬂl,it”g/lvgl
N .(1 1 1
= (.t _.ul,it)u?,/jvgj + e (”,(,1) - Og )”21) 05 )Vgl
/
+ Uy it <0§ )0 u; 1) <\>t(11) — 0(1)vt 1) +0, (n ) uniformly over i € I3t € [T].
Then

4 (1) (1)
Z 11t01 Vt 1fzt 0) <‘u17itu?fl"?1 f, ltuz 1 Vt 1 )

~

Z llt01 Vt 1fzt )”;,Vz](ﬂlzt lJLit)
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(1 1 N
er. l,OI Vt ]flt )‘LLL” (ul(]) _OE )”?,l) 0(1 )V?,]

!/
150 0, fi ()i (01l ) (W = 010 ) +0, (m3) . (A128)

L
L

N |

First, note that E (el,i,vglfi,(O)um <0§1)u?71>, (\;t(’ll) _ 0%1)1;?71) ‘@Ilub) — 0 by
Assumption 2.9(i). Following similar arguments used in the proof of Lemma A.21(i),
we can show that the third term on the RHS of (A.128) is O, (nl%,) By analogous
arguments in (A.123) with the fact that f1; ; — U1 ;; = ey i — €1 i, we obtain that the
first term on the RHS of (A.128) is O, (1% ). In addition

1L 00\ A0).0
Tzel,itvz,lﬁ't(o)“l,it <”i,1 -0 ”i,l) 07 i1
=1

max
i€z )
(1 1)
Sfifg}XH“E,R _0( llHZmaX Zflt evitiviver| = 0p(MN),
3
F
(A.129)

where the equality holds by the fact that
log(NVT
(max > €25 og( >‘§N ) =o(1)
i€l F

as in (A.116). Noted that Assumption 2.1(iv) implies factor and factor loading of

(V]
an Jei JitH1 th; 1,1

X ir is uniformly bounded for Vj € [p], which indicates that ; ; is also uniformly
bounded a.s.. This completes the proof statement (i).

(ii). Note that uniformly over i € I3, we have
0 /.(1
Vz Dofir (0 (Nl,it”ifl ver— zt”l( 1) Vz(,1)>

0(()1)‘,?70]‘1-,(0) (i — ,,)uljvtj + = Z 00 v, Oflt.ul u ( (1) 0&””?,1) Ogl)vgl

1=

1
/

Z 00 v o itk it (05 u i,l) (Vt(}l) - 0&”"21) +0, (nf)

=1

= 0,(nw). (A.130)

This term will remain as the bias term in the linear expansion of ﬁl@O’l). [

S

= |~ HMﬂ

+

yﬂ

Lemma A.26. Under Assumptions 2.1-2.9, we have

(i) max;er,

Iyl el,iIOEI)vgl{ (e <0} —1{eq <1 (0l OV, il ) }]
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D=

: =0, ((N\/T)_

)
%):thl O(()l)vgO [1 {&: <0} —1 {81'1‘ <1 (OBI)MQO, 0§I)u?71,u§711)> }]

z)_

Proof (i) We still assume K| = 1 for notation simplicity. Let o) = diag (Oél) , 051)> .

— (Fa(0) = F |1 (0, 01"l ]) }

(ii) maxi€13

- <Fiz(0) Fy [lzt (0(()) lovogl)ugl’u’(vll)ﬂ) }

—o, ((Nv T)"
2

Recall from Theorem 2.2(iii) that with

0 0 .0
m 1 ZT:f't(O) Viovio VeoVea X oV
L 9
U= V?,]"?,/oxl,iz t]vt 1X12n
1 T VO()
Dl = O(I)T Y [t—1{e <0}]| "
: )Ly i V20
3 ({8}, n) = OV L Y (e <0) 1 {ey <&, 90}] | "0,
r= Vi X1t
uniformly over i € I3, we have
Ai,u
-1 . _1
= |:Dllj| |:D{1+Jl ({AI’V}IG[T]>i| +0p <(N\/T) 2>
-1
11 I W W 0y 1 I WO
= (0(1)/) _Zfit(o) 1,0"1,0 1,07, 14 Lit Z [t—1{gy <0}] 1,0
T - 0 O/X . X T - 0 X, :
=1 Vi, 1Ve, 00 it Vi, lvt 14t =1 Vi 1ALt
1 ¢ ) "?0 -1
+—Z[ {en <0} —1{e; <A WO} | 0 | |40, ((WVT)72)
r= W\ X

/
Let [ = (O’KO, I’Kl) with Og, being a Ky x 1 vector of zeros and 1, a K; x 1 vector

of ones. Let
ht = Uh;. (A.131)

Then we have

1

051)/515.11) — ugl =hi+o, <(N\/ T)_f) uniformly over i € I,

and max;er, ||1f]|2 = Op(n).
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Combining (A.117)-(A.119), uniformly in i € Is and ¢ € [T]| we have
Lir (0(()1)u?07 0(1)u817u§,11))

= [(0uta) (58 = 00| = (@na ) — st

+ (61 zzu,102 )V( — it”%"?l)
= (0" (48~ 06"00) + (813~ ) (01" ) 0f"0y
+ Ui ir ( — gl)u 71>/0§1)v, 1+ Mt ( (1) ?,1) ( ) — 051)‘}21)

(0]
+ (e, —e1ir) (051)14?1),0(11)‘}21
.t(711) DN ]> +o0, ((Nv T)—%)
() = 0 ) 0ty + (o) (384 o
+ <0g])ugl>/ (vt(}l) — 0&”\}?1) X it top <(N\/ T)*%>
)u?

=i+ (04 (13- 0e) + (o) (1Y - 0118, v

o
—_
—
=
=]
(es]
—

+=%l,it
= WiV h] R (Ary) + R (A.132)
= Rll,it (}.uhit} + |el7it|) +R%7i;

Rl

Lit| —

O,(nn) and

O,(nn), where we use the fact that fiy ;; — Uy + €1 —e1 i =

1
such that max;cy, ;¢ (7) | ic| = o) <(Nv T) 2), MaX;cr, re[r]
R2

MaX;cp re[T] (1N i | =

. . /
0,and A/ (A,,) = WYA, , with ¥, = <ogl)ugo)/, (oﬁl)uglxl,it)’) Let

ﬁg it — €1,itVy 1{ [ {glt < 0} 1 {glt < i, th hl‘f'h,]tl (At v) H
— (Fu(0) = Fie [ iovy'yhf +hi{ (Ar)]) }
Iy =e sz?l{ (1 {1 < V)b + 0l (Ary) + P} — 1 €0 < i) b+ 0l (Ary) ]

- ( it [.Ul itVt, 1hl+h (Al,v) ‘H%)uiz} —Fy [.ul itVe, 1hl‘|'h (Anv)]) }

=0, (nl%])
2

We first show that max;ep, ||+ Zt | ]I3 it

For some sufficiently large constant M, define event .71 (M) = {max;ey, || ! H2 <Mny}.

We have P (szfl (M )) < e for any e > 0. For some positive large enough constant
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C26, We have

max
iclh

max
i€l

<P <max sup

S L E€E

Z]I3 it

T

Z

=1

1
50 (log(NVT)\ 2 [log(NVT
R

1
240 (log(NVT)\ 420 [log(NVT
et R ),%(M>>+e

NAT T

£

- égig (log(N\/ T))4+w log(N V T)) Y

(A.133)

with Z! : {g e R(Ko+K1)x H§H2<MnN} and
H3ll(€)_elllvtl{ [ {81t<0} 1{81t<.u1 ltv ‘S‘i_thtI(Atv)H
- [Fiz(o) — Fy (.Ul,itV?,/]é ‘i‘hlltl (At,v))] }

Divide Z! into sub classes Z! for s = 1,...,nz1 such that H& 5” <EforvE, Ee

E! and ng) =< TX0+K1 | With analogous arguments from (A.14)-(A.17), for V& € E!,

we have
1 R
Z ]I3 Jit Z ]I3 it T Z D%Jt(é) 3zt(§s)]
te[T ) ze [T] ) te[T) )
with
1 . R
— L. ig
o Sup leZm [15,:(8) — 15 4 (&)] 2
1 .
<y T E [Hel,,,vgluz1{ye,., (B < AR @wz]
+max}lﬂ”’||2+ngx— Y lleviveally [l [[vi HZT
l‘ET
< max |4, + 0(%) as. (A.134)
where ]I”  Xrem 1Y {1 and

07 €
t,le?}

- E {1{‘81';—}1{1[ (At,v)‘ < |,LL1,i;| ||v ||2 T} ‘glluh} }

B = Jlerantl, {l{w ~ it (Aua)| <
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Similarly to (A.17), we can show that

1
log(NVT)\*% [log(NVT
P(maXHH3”H2>c 52“’ (w) M) =o(l), and

NAT T
(A.135)

1

log(NVT)\#2 [log(NVT)
P i > A A = 7] =o(1).
T R e R B
(A.136)
Combining (A.133)-(A.135), we have
_1
rl%a}Sx ZHM :op(N\/T) 2).

Next, we notice that

1 T
—y ¥
max T t; 3,it

icelh

2

<maX_Z Hel itV 1H21{‘1u’1 ltv hl hlItI Al‘v | < ’81t| < |,LL1 sz hl h{tl (Atv)‘+|f%1 1t|}

i€elz

+max—ZHe1 i1 ||y | B [ aov? i+ Bl (A ) + %] — F [y hl -+ il] (A)] |

i€l

<max—ZHel ltvtluzl{‘.ul ltv hl+hlIzI Atv)| <le&r| < |,u1 ltV hl+h (At,v)‘+|%l,it|}

i€elz t

—|—max— Z Hel ltvt 1 Hz "@l ll‘

i€l l

— max — Z]I3 o, ((NVT) ) (A.137)

lEIg —1

where the first inequality is by triangle inequality, the second inequality is by mean

value theorem and the last line is by the uniform convergence rate for %, ;; with

31t_ ||el tlvt lel{}nu'l llv hl hlIzI (Atv)’ < ’€1t| < ‘.ul ltV hl hllzl (At v)}"“t@l 1t|}

Define the event .<71,(M) := {maxlE Bt€lT]

12 )}S

e for any e > 0. Then for a large enough constant c,¢, similarly as (A.37), we have

2
<1;Ig;3x 2 ,113 i|| > cwm) (rlrgg 2 ,H3 i
<P — Z 1i(
<rlrg}3x ) it(h) > 026771\/) +e

> czﬁm%,mzw)) +e
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IN

P | max sup

i€l éev—l

<P < sup Z 1;(&) > Czs’”l;%) +2e

ich,E€E =i T
S 026771%]
2

_ 2
i,t(§>‘ > C262nN> +2e

N -
Mﬂ
=t
=
—
(A
~—
|
‘L—Kll
=
~—
e
-

[
N

+ P | max sup
i€elz ge—l

N~
||Mﬂ

1 & s z 6% |
=K max sup _Zliz(é)_lit(é) > D,
i€l gev—-l Tl‘:] 2
+P [ max su lii (&) > M) o, (A.138)
i€l fée_pl Tt:1 it 2 .
where T () := jer?, ‘ 1{‘ wr O+ b (A )| < Jeal < ‘ L+ Bl (B, + MR |

I U
961 2

and i,-t(h{. )=E {lit(h{ ) . By analogous arguments for the first term on the

RHS of inequality (A.133), we can show that

E|P (rlrg;}ésgpl %ti 1:(8) - iit(é)‘ > % @?%)] =o(1).
Besides, we observe that
T =
max Sup | 7 Z 1;(8)

< rlrg}x Sup - Z ”el itVy 1H ‘Et H.ul sz 5 +hz[t1 (At v>| +MnN} Fi H.ul,itvgllg +thtI (AU’) H ‘
3 EeE

< Y flevand |k

which yields

P (max sup

€l Ecxl

_ii L clly —o(1) (A.139)
T~ 2 ) '

Combining (A.137)-(A.139) yields maxcy, || 7 Zt 1]I3 i

by Assumption 2.1(ix). This concludes the proof of statement (1).

(i1) The proof is analogous to that of part (i) and thus omitted. [

Lemma A.27. Under Assumptions 2.1-2.9, uniformly in i € I, we can show

that

(i) max;cr,

Z €] zt0§ )V {l{glt <0} — l{glt < 1 < (% )7 A,(?]’l)»u,(,l]))}
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[

Proof Asin (A.132), we can show that

ln( G a3, 5711>)

= s+ [ (i~ 0f ) Oy +ena (4" ogwugl)’onggl}

[y (o M)m( ) (-]
(i fi-ol')

) Oé )V,Q‘i‘elzz( 1

+ 1l (Ary) + %y e, (A.140)

I
= H1,itVy, lh

where max;cr, /¢(r] ‘%i ,-,‘ =0, ((N\/ T)_%) As in the proof of Theorem 2.2, we

a3~ 0w || =0, (ny) for vj € [p]U{0}. Then by

can show that max;ey,

changing the event set o7 (M) to

(1) o
0} uj j

l/llJ

{rlrézllx ||h ||2 < MT]N,II’IE}X

<Mnyvy,

<um)

we can repeat the analysis in Lemma A.26 and obtain the desired results for state-

ment (i). With some obvious adjustment, statement (ii) can be proved. [ |
Lemma A.28. Under Assumptions 2.1-2.9, for block matrices DF, DF, D! and

D/ defined in Appendix A, we have

) > Op(ny)  Op(nw)
maTXHDf_DfHF:OP(nN)’a”dmf%HDtJ—DtJHF: » ( 1;/) p

€l i€ 0p(M) 0p(mMd)] |,

Proof By analogous arguments as used in the proofs of Lemmas A.22 and A.23,

we can prove the lemma. [

Lemma A.29. Under Assumptions 2.1-2.9, we have

. 1)
1%321‘613 Ofu())”?,ofit(o) (“17if”2/1"?1 f th,(1 "y f(1>H = Op(w).

(i) max;¢|[7] ‘

.. 1 3,1)
(ll) rnaxtem HI\%Ziek 61’i10£7%u21ﬁt(0) <,Ll1 ltu?] t 1 I,Ll ””1(1 ) v[(71)> H2 ((N\/ T)
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Proof (i) Note that

~(3,1)7 (1) o0
o irh; 1 vt — M1itl; 1Vz 1

= (A — ) (a3 - 0l ) ( 4 —oi)
(R — e ( u1”11>/(‘/t(711 0, vt1>
+(/:l1,it_lil lt)( l( ! 0;%”21)/0( )vll+('u1 it~ ‘ul’it) (Oi}%uglyogl)vgl

1
!/ !/
+ Uit <ﬁ§,3171)_0£l%”91> (V;(,]l)_o(])"r 1) + zt( e 053”9,1) Ogl)"gl

) I

/

+.u“1 it < IS])M 1 (V 71] l Vt 1) +,uvl,il‘V?7/10gl)/ <
N 3,1 1 NG

= (fir — Muie) zl"z1+ﬂl zt< A 054,%”9,1) 0(1 )Vgl

/
s (O1) (18— 040, ) + o0 (018~ 0l +.0, 1)

L

(1) " 1 NG
+ Ui <0 U ,1) (Vz(,l Vl,l) + Hiir (01(42”?1) 0(1 )"?,1 — [}y
(1 (3,1 1 "
= (Q it — M1 it (0 ,1)M?,1) 1 V;1+N1 it (“l(,l )_01(4,1)“?,1) 02 )V?,1
) (
t

= 0p(Nn), (A.141)

uniformly over i € I3 and t € [T], where the last equality holds by the fact that
HOS% — 051) HF = 0,(ny). It follows that

max ) - Oil())”?ofiz(o) (ﬁl,itﬁﬁl)/‘}t(ll) - lil,it”?/ﬂ?l) = O,(NN).
te[T] || N3 e, ’ ' b )
(i1) Observe that
1) A(3,1)7.(1
Na Z €l tt0u 1”z o1/t (0) ( 1( 2”1(1 ),Vt( 1) _n“l,if”gll"?,l>
N3 1613 ’ '
ulN 261 ltul lf” )(ﬂul tz ‘u’lvit> ugllv?vl
lE]3
/
+ 01(49 Z €l llul lflt ).ul it ( l(’ D 0,921421) Ogl)vgl
1613 /
/
Z €l lluz lflt ).ul it (05 ) u; 1> (Vt(}l) - 051)V21>
ZEI
+ON =Y el Ol 0 (0] - 0V) il 0, (1F) . (A142)
1613

By similar arguments as used in (A.123), we can show that the first term on the RHS

of (A.142) is op ((N Vv T)_%> uniformly over . For the second term, by inserting
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~(3 71)

l7

/
—26’1 it zlflt 0)u zz( z( 71)_0511%”9,1) Ogl)v?,l

b
lEI

the linear expansion for i; OI(HM?I in (A.41), we notice that

1
Y Y enufi (0) it v Vi terie v 1 (T—1{&n- <0}) +op ((NVT) 2)-

N3T i€lte[T]

By arguments as used in (A.124), we can show the leading term in the last equality is
log(NVT)
NT

51%,) . Then the second term on the RHS of (A.142) is 0, ((N \Y% T)7%> .
For the third and the fourth terms on the RHS of (A.142), by conditional on Z/1V%2,
we notice that — Z,€,3e1 ity 1flt( Y1 it <0(11)u21>/ (Vt(,l1) — OEI)V?’I) and
— Z et} 1 fir (0) ey ool < 1(41% - 05”) ty)
N3 i,
are both mean zero and the randomness depends only on {e; ; fi;(0)}. By condi-

tional Hoeffding’s inequality, we can show that both these two terms are o), ((N vT) _%> :

Jir (At v) = [1{311 <0}-1 {Slt <A lpo}]

t,v it

0

Vt,O
Vglxl,it

0 0.0

A iE £1(0) VooVio VooV X ‘@

i T it ,

! =! vglvgl()xlvit vl‘ IV?,IXIQU

12

= LB (5

LUIL
9h 2>7

1 ¢
hif = V?,/ovuo,lif Y ot —1{&r <O} + Xy V' 0T Z erivp 1 (T—1{gy <0})
=1 t*=1

o1l v o (oW oo Vi
- vt,OVuo,i? Zl Ve o fire 0)p, lt*vt 1 [ ( ) (hi’ ) T Zl [t —1{g <0}] ¥
= = t 1 1, ll

T _ _
—(v%m;Z o0 | i (0)| 21| )r/ (o) () a2

= Bp iy +X10 %1, (A.143)

with max;ep; reT] "%Z,it

E[ﬁt(o)‘@].

Assumption A.1. Let F;(-) and f;, hm( ) be the conditional CDF and PDF of

= O0,(nw) for a € {1,2}. Note that E [ﬁt(o)‘gllub} —
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111
it "

€ given 9, and h
(i) The derivative of the density fit| Hi is uniformly bounded in absolute value.

(if) MaX;e(n) (7]

C>0.

Jul hfr”(o) — h{,”:O(O)) <C |hl[,H | for some Lipschitz constant

Lemma A.30. Under Assumptions 2.1-2.9 and Assumption A.1, we have

(i) maX;c(r)

3

- (0 o (s (012) " (002) " 2)]) | = (v )
2

1—1 1—1
;\}SZiehO%M?o{[1{8izS0}—1{8izSPiz (ﬁﬁi;”,ﬁﬁ?”,(OE,f%) o (01) V?.I)H
A(3.1) A(3.1 )/ ! )/ ~!
—OM%@%@%Wﬂﬂ%)ﬁM%DVMD}

Proof (i) Recall from (A.131) that

-1 1—1
]\gziehel’i,Ofﬂugl{[1{8,-,<0}—1{8i,<pi[ <ﬁ§§d1>,ﬁ§i,1>,(0i10>) W, (ofj}) v;{l)H

(i) max,c[r)

= Op(1v).
2

—1
0 .0/ .
Vt,ovt,IXth

0 .0/ . 0 .0/ yv2
Vt7lvt7OX1,ll Vt,lvt71X1,iz

1 T VOO 1 T . VOO

Y lr-1{eg <0} | " |+-Y [{e<0}—1{e; <A WO} | "

T &~ WX - ’ 0 X,
= 1,18 Lt =1 Vi, 1441t

By Bernstein’s inequality in Lemma A.12, we can show that

T 0 ./ 0 .0/ )
1 Z { £:(0) V1,0V1,0 VioVi XLt
T 173

0.0y . 0 .0 yv2
=1 ViVeoXtie Ve Ve Xii

max
i€l

0 ./ 0 .0/
V. oV v, oV X1
£,0"t,0 1,07, 141
—E /i) 0,0 0,0/ y2 ’@ }
ViVeoXtie Vv X

log(NVT
:0p<1/—0g( v )51%,>,and
T
1t
1 Wo log(NVT)
— —1{g, < : — \ =y |
rlréa}sx T[;[’L' 1{g; < 0}] . 0, T v

VX ] ],

F

Besides, we observe that

max ||Var | J; (Aw) ghvh
ieh (T F
0 ./ 0 .0/
. V.oV VoV 1X1,it
< max |E|[1{ex <0} —1{e: <A, ¥} | 010 Lol g
16137IG[T} Vglvgl()XLﬁ V21V2/1X127it F
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0 ./ 0 .0y, .
Vi,0Vt,0 Vz,OVz,IXL”

. ' ' L/ 0 IlUIz
= max E [th (O) —F (At,v\Pit)] 0 .0 0 .0/ v2 ‘@

i€l 1€[T] ViVeoXtie VeV Xi F

0 ./ 0 ,,0r
. vy v v, vy X1
~ 0 1,0"t,0 1,0V, 14 L LU

= max [|Ar ||, max | fi(Si) ¥ 0 0 0 0 x2 ‘@1 2

te[T] i€l te(T] ViVioXLit  ViViaXia F
—0,(nw), (A.144)

where the first equality holds by law of iterated expectations, the second equality is

0

by mean-value theorem for |§;| lies between 0 and !ALV‘PI.,‘ and the last line is by

Theorem 2.2(ii) and Assumption 2.1(iv). Similarly, for any % > 0, we also have

@I]UIZ) . — OP (n}\zl‘zﬂ) .

By similar arguments as used in (A.12) and (A.13), we have

T

max
i€l telT] 57

Cov (J (Arv) Tis ()’

1 L , . _
max | - )" {J,, (Ary) —E (J,, (Ars) .@Wz) } ~0, ((Nv T) 1/2) . (A.145)
1C13 =1 2
Together with the fact that max;er, ||J; (A, H2 = O,(nn), uniformly over ¢ € [T},
we have
I N\ DG o
hi:[’(Ol ) (h) ~Y [e—1{g <0} | "
! T 0
=1 Vt’1X17it

D\ LT e “1/2
+1 (o) (RY) Ao, (W) ).
By Assumption 2.1(iv) and Lemma A.13, we have max;cy,

12

h; H2 = 0p (1)

Similarly as (A.141), uniformly in i € I5 and ¢ € [T] we have
A(3,1) A(31 D)/ ! D)/ !
pu (a3 (00) o (0) 1)

~1
_ MY 0 o0 L n A3 (1) 0 0
=Uio <Ou0 Vio ~UigVeo T Huiclly " Ve — Hiti Ve

-1
(MY 0 o0
<Ou,1> Vi1 — €Ll 1V

hl{’l HF =0(1) a.s..

Like (A.144), we can show that max;c,

(98]
—
~—
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+H1,iz<0(11)”zl> Vt(,ll) Ogl)v21>

+ i 0 (0} = o) 4o, (N V)2, (A.146)
where the last line is by the fact that HO% - O(()]) HF =0,(ny) and HOS% - 0(1]) HF =
O,(nn). Combining (A.41), (A.42) and Theorem 2.2(iii), we have

L(3,1) A(3,1 )/ ! D)/ 1
pu (0. (0) o (012) 1)

o1l v o
= Vz,ovu;,if Y vio(t—1{ep <0})
=1
1).(1
uotT Z Vi, ofzt* (Nl zt*” 1":*1 l~‘1( 12* ( : z(*)1>
=1
tO uolT Zflt* Vt* Ovt* 1”?1 (er,ir — €1i*)
+X]7ilvt 1 Z €1 l[*vt* 1{8”* < 0})
T =
!/
" (os”u?,l) <v'5}3—ogl>m)+m 0 (00— o)
+o, ((Nv T)_1/2>
o1l v o
= Vt,ovu;,if Y vio(t—1{ep <0})
=1
+X; ,,v u1 T Z el ,,*v,* —1{&+ <0})
=1
- (1 1 "
IOV 11 Z Vi, ofzt* )M i <”§,1) _Og )”?,1> 0& )V?*,1
T =
- Vt 0 uo i T Z Ve 0fiee (0) (i — M iee) ”?,llv?*,l
1 1 "r.a 1
ro uollT Z Vi, ofzt* UL+ <0g )”?,1> (Vz(*,)l _0(1 )V?*,l)
tO uolT Z fll* Vz* Ovz* 1”?1 (61 ir* él,it*)
t*=1
1 "r.a 1
+ Huir (05 )u?,l> Vﬁ,l) _05 )V?,l)
1 1 1 _
a0 (08— o)ty +op (V) 1/2)
1 L
= V?,/Ovuo,]if Z 9 (t—1{g» <0})+X; ,,v u1 T Z el l,*vt* —1{&+ <0})
t*=1 t*=1
1 &
_vgl()vuo,]i? Z Vi OE [flt*( )’@[1&2} M1 lt*Vz* 1h1+hzt +0P ((N\/T) 1/2>
=1
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/
tO uo,l T Z Vi< 0 <flt* —E {flt* (O)'@IIUIZ]) Wi it <0§1)u21> <Vt(*l7)1 — Ogl)v%])

=1

Z‘O UO i T Z Vt* (fl[* —-E |:flt* (0)'@11U12:|) .ul7it*V9*/71hzl‘

t*_

=Y+ Ry (4147

such that max;cy, ;er }%p it! = OP(TI]%,), where the first equality is by inserting the

linear expansion for u(%l) — O%M?O in (A.41) and 12531’1) — O(I)I/t?_l in (A.42), the

u,l

(1)

second equality is by inserting the linear expansion for g — O%u?o, the third
equality is by the fact that f1; ; — i1 ;; = ey i — €1 i which leads to the cancelling of
the fourth and sixth terms in the second equality, the last equality is by the definition
in (A.143) and

A_ ! .
Y =—vo uolz Z Vi o {fzt*( )‘Qlluh} it <0§1)u21> (v,(*l,)l—Ogl)v?ﬁl)

+ Hiir <0§1)”?,1>/ (Vz(,]l) - 0<11)Vr 1) + lluzl (1)/ (054]% - 0(11)) "?,1

3 4
=Rjy i+ M,u% i

with max;ey, re(7 ‘%gﬁ O,(ny) for a € {3,4}, and the last equality holds by the

fact that

max

1 ! 1
e Z Vi< .0 (fzt* —E [fir* (0)‘91‘%}) M ir <0§ )u81> (v,(*7)1 — OE )V?M)

=0, ((N\/ T)_1/2>

2

and

1 T

max

i€l )

< max | — Z Vis 0 (fzt* —E {fit*(o)‘@h%}) ty v | | max |[A]]]
ich l‘* 1 ’ icly

—o, ((Nv T)*1/2>
by conditional Bernstein’s inequality given 2“2 and similar arguments as used in
(A.145).
We notice that

_Zelztu”{{ {8lt<0} 1{8zt<Pzt( (

i€elz

om
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=
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(o (5827, o) ) 2)]) )

:—Zelnull{l{sﬁ<0} ey <hf'+nlY}] — (Fu(0) = Fy [W" + 1))}

1613

+ — Z €1 lﬂ/tl 1 { {8” hIII hlv} 1 {glt hll] hlv +'@P lt}:|

lEI’;

)R )

1
= ]73 Z 617”“?_‘1 { |:1 {81‘; S 0} - 1 {git S hlIZII‘i‘h{tV j| - [%[(0) - e%[ (hlltll‘i_h{tv)}}
i€elz

Y e { e < T4 HYY 1 {e < WY 42 0)]

1613

~ [0 (4 HY) = i O+ Y+ 85,0 }

; evinttyy { [Zi(0) = Fir (Wif" + 1)) ] = [Fie(0) = Fie (i + 1y )] }
3 i,
+ ]73 ,;13 evaugy [Fi (W + 1Y) = F (W + 1Y + %p i)
1\;3 iekel,nu?,l [F (i{" 4+ 1) — Fi (Hi{" + Y+ P i)
=T+ T, T 1+ 0, (VY T)2) (A.148)

I . 1y 1 I ._ 1 v 11 111 111 IV v
such that Iy, := N Yierlg i Ig, = N Yier I ;- Io, =N Zzels L > I, =N 21613 Iz

with
T = evine)y { [1{e <0} —1{ew <hif" + i} }] = [F(0) = Fis (" + 1))},

116”_e1,,u,1{[ {ew <hf'+ 1)} —1{ex <hf'+hY +%p i }]
— [Fu (W' + ) — i (" + h’V+9?pn)]}, (A.149)

T = evantiy [Fi(0) — Fy (b + 1y )],

Ig = e}y [Fiu(0) — Fi (W + 1Y) .

The last line in (A.148) is due to the fact that the last two terms in the second equality
is op ((N V T)_%) by mean-value theorem, Assumption (2.1)(iv), and Assumption

(2.1)(viii) and the union bound for %, j;.

For ]Iét and I[g ;» conditional on .@11 Y and hlIt” , the randomness is from &;;, and
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we observe that ]Ié.l.t and ]Ig ;s are independent over i by conditioning on 2192 and

hif!. Therefore, we obtain that max, H]Ié,t =0 ((N Y% T)_%> and max,7| H]Ig .

op ((N \/T)f%> by conditional Bernstein’s inequality for independent sequence
given 24" and nil".

For Hé’{ , we notice that

111 Z €1, lt”z 1 Fi(0) — Fy (h{tn‘f’h{rv)}
l€[3
= ]7 Y evi) fu(sie) (H 1))
3 i€l

1
= e fu O) (R4 HY) - X v Ui — )] (4 1Y)
3 ieh 3 ieh

1
:]7261 a1 £ (0) (W + L) + o, <(N\/T)_7> uniformly,  (A.150)
lEI3

where the second line is by mean-value theorem with |s;| lies between 0 and ]h{,’ Ty nly

and the last line is by Assumption 2.1(viii). By inserting 2}/' and h!, we have

—Zemullfn (0) (A" +hi")
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+ ﬁ ) el JitU;, D1 fir (0) i (051)”&) <‘>t(,11) - Ogl)vto.,l)

lEI’;

+ — Z el,itl;, 1fzt 0)u, itU, 10( ) (05,12 - 021)) V?,l

b
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=y g (A.151)

me(7]
Hgf 1, ]Igf 2, ]Igf 3 can be analyzed in the same manner, and we take I[gf ! for instance.
Noticed that
111 1_
Z Z €l lluz Iﬁl vt 0 up, lvl‘* (T —1 {Sit* < O}) ,

1613 t*=1
it is clear that conditioning on %, Hélf’l is mean zero by Assumption 2.1(ii) and the

randomness is from &; which is strong mixing. With the similar arguments as the

1111 log(NVT
’2_01 < Ogg\ll\/ )51\’),
and by Assumptlon 2.1(1X), it follows that

‘ —op (V1))

111 4 and H”I 3 in the same manner. Take ]Igf 4 for instance.

second term in (A.124), we obtain that max, ¢z H]I

max

11,1
&
te[T)

We can also analyze ]I
Note that

1114
_Hm N T Z Z €1,itl;, lflt (0) (Vzo uo, lvt OE {fn*( )’911&2} Hl,it*V?*/J) :

icht*=l1

4 <0§ )> (h;m)_ nb?

which is mean zero by conditioning on 2/1Y2 owing to Assumption 2.9(i) and the

fact that hl{’l and hll are fixed given 211Y2. Then by similar arguments for ]I””

above, we have

maxH]Im4 ‘ ~o, ((Nv T)" ‘/2) (A.152)
For Hgfﬁ and ]Igfj, we have
1116 o (1) (1) 0
max ||I ‘ < max || — itl;, ;|| Ma -0 ‘
te] ]2? H 2 te[T)i l;;el i lflt )‘uL ) 216[72? ul G 2
<max||— Z el,itl;, 1flt )Hl.,itu?ll Op (1)
te[T] 1613 ' 5
log(NVT _
<0, ( %@\,) 0,(My) =0, ((N\/ T) 1/2) . (A.153)
1117 (1) (1)
max || ‘ <ma i ; ma HO -0 H
IG[T)? 6 |, _te[ﬁ A l; elitlt;, D1 0) 1, tuzl Jie XH"H” 1 g

IN

0p< log(N\/T)éN> (nN)zop((N\/T)Aﬂ), (A.154)
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where the second inequality is by Theorem 2.2(ii) and the third inequality is by
Hoeftding’s inequality conditional on & and the last line combines Lemma A.13(i)
and the fact that [ 0[] - 0{" HF = 0, (). Combining (A.150)-(A.153), we have
max;¢r] H]Igjt , =% <(N\/ T)_1/2>.

Last, we analyze Hg‘;. Like (A.150), we have

1
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= — Z elitlt; 1fzt|h’”(s”) (h,l-,H —l—hll-tv)
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1 _1
+ ]73 Y ev it WY E (£ ()| 2072 ) +0, (NVT)2)
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1613
LUl
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1
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i€l
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i€l
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N3 ieh

1 _1
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where all the o), ( (NV T)_%) terms hold uniformly overt € [T] and o), ( (NV T)_%)
term in the fourth equality is by mean-value theorem, Assumption A.1(i) and the
fact that |s;| lies between O and |hf/" + nlY|.

For I"', with Assumption A.1(ii), (A.143) and the fact that

max E(hl-” .@I'U12>
i€h,te(T) d ¢
T -1 -1

= max|E ( Z PoE {fn ’@’1“’2] m w?ﬁ)l (o) (") i %"Ub]
_ LUl / (1) -1 1,1 -1 12
_ie}?,tan[T] (VIO Mol ZVIOE |:flt )‘@ :|.u1 it V¢ 1) [ (0 ) (hl ) hi
_OP(T]N)7
we have

IV,1 111 111 1| o1 UL

a1, s 3 vty 127 (1 + 2 (1| 22 )
= 0,(N3)- (A.156)

V2 o I e .
For ]Iévt , ]16‘/[3 and ]Iﬁvt , conditioning on .@IIUIZ, the randomness is only from

V2 oIV3 s :
R, which is independent across i, and Tg, > Ig,” and Ig,” are zero mean by condi-

tioning on Z¢'2. Similar to the arguments for I  and T in (A.149), we have

max

I
te[T]

’ ~0, ((NVT)*%),me{m,S}. (A.157)

For HQ;A, by inserting [£ <hl[l1 !

@51 Ulz) and the fact that E <fit|h1.” (0) |@£1 UIz) =

fir(0), it yields
IV4 WO -1 Iy LUbL o
= Zel it fir (0 Vi0 uo,TZ zOE fi(0)|2 MiiVey |-
1613 =1
1 _
s <w>
=157 =0, (Wv7) ™) uniformy, (A.158)

where the last equality is by (A.152).

For Hévl6, we notice that

Hg,/tb - ]7 Zel irl; lhzt E( zt\h’”( ) Ze 1U12>
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Z €1,izﬁz(0)“21hlltv = Z Hé’f?’" =0, ((N\/ T)_1/2> uniformly.

1
Ns i, me{5,6,7}

(A.159)

Combining (A.155)-(A.159) yields max,c 7 Hﬂg{{,

, =0 ((N\/ T)71/2> , which leads
to the desired result in statement (1).
(i1) As in (A.148), we have

1 1 (3,1) A(3,1 1 )/ !
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ez ) e )
ielh

B (R ) — F (Y 8y )] }

1
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i€lz
1
N )y [T (W + 1) — T (W + 1Y+ R )]
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1
A wiy [Fu (BT + ) = F (R + B+ Fp i) ]
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1
= 3 L i { [ < 0} e < il 13 Y] = [0 (0) = Za (" + 1)}
i€l
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icelh
O ) - 0 )
1

3 L A [Z(0) = Fie (i + 1i)] = [Fa(0) — Fi (" + 1id )]}
i€l

+o, ((Nv T)_1/2>,

where the last equality holds by similar arguments as used in the last line in (A.148).
We can show the first and second terms are o, <(N V T)_l/ 2) by similar arguments
for ]Ié,t and ]Ig .- The third term is O,(ny) by mean-value theorem and Assumption

2.1(viii). Compared with ]Igg and ]IéVt in the proof of statement (i), the third term
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here is not mean zero, and converges to zero at the rate ny. [

Lemma A.31. Under Assumptions 2.1-2.9 and Assumption A.1, we have

(i) max;c(r) ;
—(E;(O) F, [plt( 3D B 30 ﬁt{a{l))D}H — o, ((N\/T)’%>,

2
N3 Yier, 1(4())”[0{1{8” <0} — 1{&; <Pn< 1(73071)7ﬁl(?’fl)?\gl(?dl),ﬁt(?fl))}

(- o (250 Y om0
2

(if) maxe|r)

Proof To handle the correlation between {€;,¢;, } and { 1(0 ), l( 1) }, we follow

similar arguments as used in the proof of Lemma A.27 by putting { A3 1(31’1)} in
a parameter set. Then by similar arguments as used in the proof of Lemma A.30,

we can obtain the desired results. [

Lemma A.32. Under Assumptions 2.1-2.9 and Assumption A.1, we have
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=0, ((N\/ T)_%> uniformly over ¢ € [T],

where the second equality is by uniform convergence rate of %}7“ and the last line
follows by similar arguments as in (A.124) by Bernstein’s inequality conditional on
Z,. Then the result follows by noting that O, 1 is bounded and V 1 ; 1s bounded

uniformly over ¢ € [T]. L]

A.2.4 Lemmas for the Consistent Estimation of the Asymptotic Variances

Recall that

¥ 1
= 3T Z Z khN glt ]l[Vtt,ju Vj = N_ Z Z khN Slt Jltul i,js
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Lemma A.33. Under Assumptions 2.1-2.10 and Assumption A.l, fluj =%+

op(1) and £,, =X, +0,(1).

Proof First, we show that ¥, ;= Oﬁl)Vu j 051)/ +o0,(1). Note that
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1 8'[ 1
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1613,te[T}| i (i) = Kin ”)’ hy ieh te[T] ( ) (hN) h2 1613,te[T}| i = €l
=R+ max |X;u|Ri;, (A.160)
’ i€l te[T],j€[p] ’
log NV'T
where max;cy, 7] Rél‘, = O0p(NN), Maxep, 7| %it :0P<O]%J/\T ) MaXier,re(T] ’Rli.,it -

= Op(lol%]X¥Th ) by (A.48) and Assumption
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similarly as above, we have max;c|7] se[r]
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+ﬁ Z Z [kny (&ir) — kny (&it)] (é%,it_eiit) V?,uj
i€[N]t€[T)

+_ Yo X Ty (&) —hny ()] (&5 — €Gie) (920 = Vir))
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i€|N|te|T

NT ;] Z[}khzv Eir) jltth]+0P(l) (A.161)
Njte|T

where the last two lines combines (A.47), (A.160), Assumption 2.10(ii) and facts
2 R .
that &5, —e3 ;= (i —eji) +eji (8 —ejir) = Op(Ng) +¢j,iOp(My) uniformly

by Lemma A.21 and max;cy, re[r] |kny (€i1)| = O(hy'). By Bernstein’s inequality, we
logN &
=0, 2N
NT hy
F

_o, ( logT§N>
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(A.162)

obtain that
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Besides, by Assumption 2.10(i), we observe that
E [k (€r)| Ze] = fi(0) + O(}), (A.163)
together with Assumption 2.10(v), and it gives

— Z Y E (kny (€i)e5 4| 2) ) v ?’J— Y E[fi(0)e5;|2]v) v+ O(hy).
ze[N Jte(T] te[T
(A.164)

Combining (A.161)-(A.164) and Assumption 2.10(ii), we obtain that

£ 1 1)
¥, = 01,0 +0,(1).

J

(1)

By analogous analysis and Assumption 2.10(v), we can also show that V, ' =
0 v, 0 1 0,(1).

Next, we show the consistency of Q. ;- With the restriction for 77 in Assumption
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2.10(iii), we first note that

1 T
Quj = Var ﬁ Z €j7l‘tV?7j(T -1 {81'1‘ < O})

0 40)
T(1-17)— Z JltVtJVtJ

1T Ti I+Tl
+ = Y Y Elejaejivy Y (t—1{ex <0})(r—1{g;s <0})]
t=1 s=t+1
1 T
+= Y Z E [ejiejisv? V) (t—1{e; <0})(t—1{g; <0})] +0(a™)
t=14T; s=t—T1
1 T ) () 0 1 T-T t+T; 0
/
t(1-1)= T E (ejivviy) + Z Y Elejiesisvi 75 (Fus(0,0) — 7°)]
t=1 t=1 s=t+1
T -1 .
+7 ;T ZT E e] t€j.isVy, jV S]( F;15(0,0) — )} +o(1),
t 1 s=t—11

where the second equality is by Assumption 2.1(iii), the third equality is by As-
sumption 2.1(vii) and Assumption 2.10(iii). Compared to Quj, what remains to

show are

T
Z Z & iV = ZE(eii,v?J’j)Jrop(l), (A.165)
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For (A.165), like (A.161), we notice that

1
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iENtET
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||M~z

where the first equahty is by Lemma A.21 and (A.47), and the second equality is by

Bernstein’s inequality and Assumption 2.10(v).
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For (A.166), we observe that
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such that
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where the first equality is by the similar arguments as (A.161) and the last line com-
bines Assumption 2.10(ii1) and the fact that the second term in the second equality
can be shown to be 0, (1) by Bernstein’s inequality. Furthermore, with the fact that
MaXicp re[T) ‘K (%) —K (%)‘ S ﬁmaxie@,te[ﬂ & — €| = Op (nNthl> and by
the analogous arguments as above, we can show that
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T-T t+T)

Z Y Y Elejuejisvis;] +op(1), (A.171)

t=1 s=t+1

where the first equahty is similar as (A.161), the second equality is by addition and
subtracting and Assumption 2.10(iii), the third equality is by the fact that E [K (Z—:}) ‘@e] =
T+ O(h};) by the calculation of nonparametric kernel estimator which can be found
in Galvao and Kato (2016). The last equality is similar as the second equality and
combines Assumption 2.10(i) and Assumption 2.10(ii).

Moreover, similarly as (A.170), with the fact that E |K [ <h—’> (8“) |.@ }
F;5(0,0) 4+ O(hY}), we can show that
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Combining (A.169)-(A.172), we complete the proof for (A.166). By the anal-

ogous arguments, we can show the proof for (A.167), which yields Quj =Q; +

op(1). |

A.3 Algorithm for Low-rank Estimation

In this section, we provide the algorithm for the case of low-rank estimation with
two regressors, the case of more than two regressors is self-evident. To solve the
regularized quantile regression, let the optimization problem with two regressors be

as

1=

N
@()7@'1’@2 NT Zi Pt ir —O0.ir —x1,i®1,ir —Xx2.492.it) + Vo ||Oo|| . + V1 [|O1]| .+ V2 [|O2]]., -

i=1t=1

As in Belloni et al. (2023), the above minimization problem is equivalent to the
following one:

1

0,0 ®2VWZ® 2o, 2o NTZZPT i +VOH®OH VI HZ@'“ +VZHZ®2H
b) b b 0’ 17 2

i=1lt=

st. V=W, W=Y-X 00, -X,00, ~Zg,,

— @) =0, Zo, —0, =0, Zg, — O = 0.
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As our theoretical results show, v, v; and v, converge to zero at rate

augmented Lagrangian is

g(v W ®O;Z®07®l Z@]7®27Z®27UV7UW3U®03U®17U®2)
1
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V—-W+U,
2NTH + HF

INT HZ®0 ®0+U®0HF

5177 10, — @2+ U, 7,

2NT

2

2N T
where p > 0 is the penalty parameter.

By ADMM algorithm, similarly as Belloni et al. (2023), updates are as follows:

el i HV Wk Uk A173
<—argénln{ ZZPT i +2NT - ( )

®k+1 ®k+1) . k k k 2
(@77,0," "/ < argmin< (W —Y+X1001+X©0;+Zg, + Uy . (A.174)

01,0,
2 }

vNT
e 1©. } (A.175)

2 k k
L+ |76, — 02+ U,

+ |28, - e+,

k+1 k k 2
®O+ <—argm1n{ HZ®0—®0+U®0

2 VINT
k : k k 1
Z®T1<_argm1n{§H®l+l_U®]—Z®1HF+ ; HZ®1H*}

Zo,
V2NT
1Zo,l. }

1 2
Zg“ <—argmin{—H®l§+1 —Uéf)z—Z@2 +
2 Zo, 2 F

(Z(’f;gl,Wk“) — argmln{ HVIﬁLl W—l—Uk -
Zg,,W

+HW—Y+X1@@’;+I+Xz@®’;“+z@o+Ué‘VHi+HZ@O—®’5“+U(’§O i}
URH  yRL kg

Uyt W —y 1 x 00T + X 005 + 25 1+ Uy

USH  Zt — 6" + U,

Up: '+ Zg ' — O +Ug,

U 75— ekt Uk,

For (A.173), by Ali et al. (2016),

T 1—7
vt p, (W"—Uj‘— EWIT) +P_ (Wk—ka— ( 5 )lNl/T> .
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where 1y is the N x 1 all-ones vector, and same for 17. For (A.174), first order
condition gives
2

k1 (1 +x2,ir> (Zgl,it +Ué:)1.it _Aitxl,it> = X1,itX2,it (Z]cf)z,iz +Uéf)2,it _Aitxlit)
O = ’

1,it 2 2

Ly, +x3,

(13 ) (28,0 + Ul — Avvni) = 1o (Zh, o+ U o — Aicci i

> p
L+xy, +x5,

Y

k+1
0 =

where
A=Wr4Z6 +Upy —Y.
To solve (A.175), by singular value thresholding estimations, the update for @’5“ is
@’64-1 — PODO,V‘,# 00,
where Zg, + U, = RiDoQ, and Dy v ; = max(Do,; — ,0). Similarly for Zgt!
and Zg“;l,
Z’g}-l V. P1D17VIP£Q/1,
Z5 hD, T 05,
where ®}"! ~US, = PiDI0}, 4" Uk, = P1D105. D, ;= max (Dri—%,0),
and D2,%2,ii = max (Dz,ii — %,O>.
Finally, let A := —Y 4+ X @G)]f’l +X ®®l§+1 +UNT, Bi= -V _yk €=
—@0k+1 + Uéf)o, then
~A-2C+B
3 )
W —A—C 275t
0

k+1
Z@)O —
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Appendix B

Technical Results for Chapter 3

B.1 Proofs of the Main Results

B.1.1 Proof of Lemma 3.1

(i) Recall that E?j(é) = {Ggé}, fe ’G%z) j}. For the special case when Eéj(l) = %].(2)
and OCIS j) = ;,Loc,gj) such that u is a constant, the group structure does not change, the
relative break size is the same for all groups, and r; = 1. Except for this case, below

we will show that r; = 2.

14 Oy ‘ ) (2
LetAY) =¥ o 1{ie G}, A= (A AR)y and A = (A}, Ajw) €
1
RN*2 " Define the 2 x 2 symmetric matrix B = A;-A j- Let BJZ. be the symmetric
VALY 0

1
square root of B;. By the singular value decomposition (SVD), BJZ.
0 V1= T

= L;S;R’;, where L'L; = R'R; = I, and S; is diagonal. Then

A}ll)l/n AE’,zl)lé"le !
Q(;: . . Y iy 07,
T B
:
= A;B;"*L;SR; v 0 w0
0 = Or_7, 17-71
o |

1
1 —=1
—ABLSR, |V
J . 1
077 ﬁlT—Tl
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1
-1 1 Iy, 07,
- (Aij 2L,-) (VTS;)§ —=R; [V ! =Sy,
VT Or_7, \/1+7TT1T—T1
-3 2 1 \/lﬂc*lTl 07,
where %j:Aij 2LjeRNX LY== T

R; € RT*2 and
VT 1o 1 i€ ’
T-T MlT—Tl

Y;=+/TS; € R¥2 Itis easy to verify that
_1 _1 1 1
UU = L,B;*AJA;B;>L;j=LB;>B;B;’Lj=LjLij=1h and
ViV; = RRj=h.

Now, let U; = %,;%;/V/T and V; = /T ¥;. We have @9- = UJ-VjT and

%ln 07,

V= | VT 1 Rj=D;R;.

Or_7 T -

This proves (i).
(i) Given R; is an orthonormal matrix, this follows from (i) automatically. ll

B.1.2 Proof of Theorem 3.1

Proof of Statement (i).

Let

%(co::{{A@,.},-e[p]u{o}eRM: Y |7iee)| <a ¥ ||@j<A@j>I|*}-
Jj€lplu{0} J€lplu{0}

By Lemma B.4, we notice that

P{{B0,} 0y €20V} = 1

Recall from (3.11) that

< (i Z H‘-@J(A@j)”*’

*

«@(CbCz)i:{({A@)j}je[p}u{()})i Y Hc@f(A(a,)

Jelplu{0} Jelp]{0}
Y ez caviT .
Jjelp]u{0}

< < )
When {Ae,} je [0y € #(3) and {Ae  } je(pio) & #(3,Ca), we have ¥ 0y || Ao, || <
C>VNT, which gives
1 - (653
—|lAe|| < ,
o el < 7T

So it suffices to focus on the case that {Aﬁ)j}je[p]u{o} €% (3,C).

vj € [plu{0}.
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Define the event
A N(c3) = {||E||op < c3(VNV/TlogT), ||X; ©E||,, < es(VNV\/TlogT),Vj € [P]}

for some positive constant 3. By Lemma B.3, we have P’(«/y(c3)) < € for any

€ > 0. By the definition of {éj}jé[p]U{O} in (3.3), we have

Y vi(lledll.~le.)

J€lplu{0}
| 2 2
= = 0 0
Jj€lpl J€lp]
1 ? 2 2
A X 2/ 2!
=7 [[Bey +jez[p] o, OX;|| —mtr(Ae,E) - ﬁjgzmtr [Ap, (EOX;)].

Then conditioning on the event .<7] y(c3), we have

2
N7 [Be0t L Ao, ©X;
J€lp]

2 2 - <
Sﬁtr(AgOE)+ﬁZtr[AbO(EGXJ)H Y VJ<H®9||*—||@J'H*>
J€(p] Jj€lp]u{o}

VNV /TlogT - . N
<2, WYVEEL v k)l v ¥ w258, - |2 o))
Jj€lp]u{o} Jj€lp)u{o}
VNV /TlogT < <
=20 =t Y (24 + |21 (Be))])
Jj€lp]u{0}
VNV /TlogT < ~
j€lpluio}
VNV /TlogT <
=6 VTOEL Y 1y,
J€lplu{o}
NV \/TlogT .
—203\/_ NT O Z y}(AGJ)
Jelplufo} ’
NV \/TlogT .
§6C3\/_ NT Y 243, (B.1)
j€lpluio}

where the second inequality holds by the definition of event <7 (c3), the fact that
tr (AB)| < [|A|l.||B]|,, , and (B.31), the first equality holds by the fact that HA@]. H* =
H ,@j(A@j) ||* + QZ]L (Agj) (see, e.g., Lemma D.2(i) in Chernozhukov et al. (2019))

4C3(\/N\/\/Tlog T)
NT

. It follows that

and that v; =

<2
G ), Ao
Jjelplu{o}
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2

<||Agy+ Y Ao, OXj| +C4(N+T)

J€lp]

<6es (VNV(TlogT) ¥ ||#5(de,)]|. +Ci(N+T)
J€lp]uf{o}

<12r03(\/_\/\/T10g) Z |2i(Be,)|| +Cs (N +T)

€lplufo)

§12fc3<\/ﬁv\/7TlogT) Y Ao, +Cs(N+T)
jelplufo}

<127¢ (VNV VTlogT) Vp+1 | Y [[Ae,|*+Ca(N+T),

Jelplu{0}

where the first inequality holds by Assumption 3.4, the second inequality is by (B.1),
« < rank(‘@j(g(aj)) H @]’(AGJ')‘
with rank(Z% j(ﬁ@j)) < 27 by Lemma D.2(ii) in Chernozhukov et al. (2019), the
fourth inequality is by the fact that |Ag, || = || 2;(e,) | + H 2 (Ae,)

the third inequality is by the fact that || P, (A@j)

Lemma D.2(ii) in Chernozhukov et al. (2019)), and the last inequality holds by
Jensen inequality. Consequently, we can conclude that
2
Y, |Ae,||"=0,(NV(TlogT)).
Jjelpl {0}

In addition, max;¢|, | ‘6;{7 j— O, j| = O0,(nn,1) by the Weyl’s inequality with ny,| =

v1ogT
NA

:

Now, we show the convergence rate for the singular vector estimates. For Vj €

(:)j = ”/%i]”l/ and DO ®O’®0 ”I/OZO”//O’ Define the

%,N(M)={—H® — 09| <Mny,, Vje{o,- ,p}}

for a large enough constant M. By the above analyses, we have P <,;272‘N(M )) <e

for any € > 0. On the event,@sz(M),we observe that
1D, =Djll < 57 (H®1H+H®°H)H® — 6] <2mny..

With Lemma C.1 of Su et al. (2020) and Davis-Kahan sin® theorem in Yu et al.

(2015), we are ready to show that for some orthogonal matrix O,

<\/_ 2\/_M277N1
_2M277N1

|72= 70,
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2v2M* 1y, 2\/_M271N1
_\/_Tan Viji— 5 — Cec <Gy, (B.2)

for C7 = 2\[M VM , where the second inequality in line two is due to the fact that

Nn,1 18 sufﬁ01ently small and Cq 1s some positive constant.

Then HV V 0, H < CVT T'ny, by the definition of V and V;. Together with
the fact that P(«7y y(M)) — 0 by Theorem 3.1(i), it implies \F HV —V;0; H =
Op(TnN,1)-

Proof of Statement (ii).

Define
] = [, suppl's Aij= Oty =l A= (Ao, ALY
O = [(06\7;,0)’, (0'1\7t71X1,”)/7_ (0/ U pX)p, l,) ] , and ®;=— Z ¢l¢i/t'

Let ¥ i= Y — (Oouly ) Po— X0y (0juf ) 7 jX;.. By the definition of {z; ;} in
(3.4), we have

2
1 1 ~
02?2 (zt_ulovto Zuljvt/ ]zt) _TZYUZ

te[T]

1 -
1 ¥ (B (o= 0uy) 5o X (- 0) 7, w) —T LU
te[T] Jelpl te[T
1 VRV
== ) |(8ufi)” —2(A0, ) (Y —u'Gu) |
Tte[T] [ t t l | }

which implies

. 1 o~ 2 -
HALuH;Amin <T ZT} ¢it¢i/z> <= Z u¢zt S T Z M(Plt u?'q)it)

€[T] €[T]

== Z Al u(]),t €ir — 0/ (@t_‘pit)]

te[T

1 _ "
{ Z (Pztezt} iut 2 {T t%} (‘Pit - (Pz(t)) eit} Ai,u

— 7 Y & A [ (6 — )]
te(T)
:=2G; 1Aiu+2Gi2 —2G;3. (B.3)

We first deal with Gy ;. Conditional on &, the randomness in G ; comes from
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{eihXit}zg[T]’ which is the (conditional) strong mixing sequence by Assumption

#(d ’)

by Lemma B.7(ii) and Assumption 3.1(v). Following similar arguments, we have

3.1(iii). Besides, we observe that

max ||Var (¢lte,,|.@) | < max =0(1)as

i ,1€[T]

>+ ZE( i

J€lp]

max Z HCOV (pltelh(pzse”“@) ||

s=t+1

<smax Y [E ([lo%eullt]2)] " [ (0lelit]2)] " ae —s1) 2

s=t+1

=0(1) a.s,

where the first inequality is by the conditional Davydov’s inequality that says

S

(Covla(x).a(x)|2) < 8[E[la@)||” 2] [Ellla(x)]?|2])7 (e —5)

for any conditional strong mixing sequence (x;,¢ € [T']) with mixing coefficient ct(-)
and 5 + ¢ + 1 = 1. See Lemma A.4 in Su and Chen (2013b).

Following this, for some constant Cg, we have

s=t+1

max [HVar((l)”e,t‘@ H—I—2 Z HCov (])lte,,,(plse,s‘@)”] < (g,

and max; H d)l-?ei, Hmax < Cg (NT)I/‘I by Lemma B.7(i) and Assumption 3.1(iv). De-
fine @4 y(M) = {max;, Hq)i?e,-tH < M(NT)I/‘I} and .23 y (M) = {max, H(pgeitH <

M(NT)'/4} for a large enough constant M. For a positive constant Co, it yields that

1 logN 1
P(m?x? Z(Di?eit > Co\ / T (NT)4>

te[T]
1 logN 1 ¢
<P max Y 0dei|| > Co T (NT)4,25n(M) | +P (o5 y(M))

! te[T)

<)yP (‘ z[‘,]%?eit > Co loiN(NT)‘l’»%,N(M)>+P(%C7N(M))
telT

i€[N]
0 logN 1 .
<Y P|= Z%eiz > Cop| == (NT)?, H3 n,i(M) +P (s (M))
i€[N] te(T)
<Y ex c4C3T1ogN(NT)?/9 0
LS\ Ty + CENT )4+ GoCo(NT) 2/ TlogN (log T2
=o(1)
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where the last inequality holds by Bernstein’s inequality in Lemma B.6(i1) and the

fact that P (75, (M) ) = o(1). It follows that

ml_axHiA—.Hém?xHG,-JH:OP( (logN)/T(NT)#). (B.4)
iu
For G; >, we notice that
1 g 0 ! A
. ¥ Eeeir) (8= 09) ea}' A i
g 2] _ [ e B =0 B LY oo en
1Y Az PN )
1
<maX Z H% .(t)HgmaX T Z ]ei,|2:0p(nN71(NT)l/q),
te [T] ! te[T]
(B.5)

where the second inequality holds by Cauchy’s inequality and the last equality is by
Lemma B.7(iv) and Assumption 3.1(iv)

For G; 3, we have

A |Gisl _ max |7 Lreir) OnAia [} (i — 67)]|
N T 1A
1 ~
<o [1 3 [P ol 7 =l
! TIE[T] ! o
= 0p(Mw1(NT)'/9), (B.6)

where the inequality holds by Cauchy’s inequality and the last line is by Lemma
B.7(1) and (iv).
Combining (B.3)-(B.6) and Lemma B.8 yields

A logNVvT
( )ugj ‘ < ml;lx”Ai7u|| =0, (%(NT)UC,) _

. 1
u,-jj—O

i,J

max ’
l

The union bound of v, ; can be obtained in the same manner and we sketch the

proof here. Define
0 _ 1.0 07 s A 0 A TA! A1
ve = [0 Vepl s Ay =00 —v i A=A, AT

/ .
Vi = [(065!1‘,0) 7(0/1b'ti,1X1,it)/,"',(OLHi,po,iz)/} , and W¥;= Z Vi Wi
ze[N

Following the steps to derive (B.3), we can also obtain

, 1
A0 Amin (ﬁ )3 %uf{t>

i€[N]
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/
:2{N Z ‘l/lzezt} Atv‘I'N Z Il/lt ‘l/,,; Atve,, Z lllztAtv ll/ll‘ ll’z?)} ‘

i€[N] i€[N]
(B.7)
By the fact that
oy T 1l =mgsy & ([l T ol )
i€[N] 16 JEp]

< maxiol [+ _max i

Z maxﬁ Z ijl, =0,(1),

J€lP i€[N]

max - ¥ (v — 81 < max faso — o+ max [l — | Y maxy ¥ X

tON N ‘€N, j€lp jer b N iem

= 0p(Nn.2),

where Ny 2 = 4/ 101%,]/\\’¥T (NT)'/4 and the first inequality holds by Lemma B.7(i), we

obtain that

‘{zleie[N} ‘/’geit}/AfaV logT 1
o S =)

‘IL\IZie[N} li/i/tAlaV [v?’ (‘Vlt - wz(t)” ‘

ma - =0 , and
3 ] )
‘;leie[N} (llfzt - II/,'(;))IAt,veit)
max Op(1n2),

’ 147
where the first line is by conditional Bernstein’s inequality for i.i.d. sequence and

the last two lines are by the analogous arguments in (B.5) and (B.6). It follows that
logNVvT
X 0 1
mtalev,J—Ojv,JH =0, <”—N/\T (NT) /q> . N

Proof of Statement (iii).

ForVj € [p]U{0}, i € [N] and ¢ € [T], we can show that

or_ 0

o 0o _ .7 .
®j7if —0; it = Wi jVe,j — U jVyj

Jii
. 0 . 0 /.- 0
= (t1,j — Ojud ;) (Ve — O V) ;) + Ojul; (v j — Ov) ;) + O Y (i j — O ),
which implies
o 0
max |©;r —©) 4|

<maXHu” 0;j M,]HmaXHVtJ 0; VwH
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+max |0 || max v, j — 07| +max [ j — O ;|| max [0
- 0P<nN,2)7

where the last equality combines results from Theorem 3.1(ii) and Lemma B.7(1).

B.1.3 Proof of Theorem 3.2

To prove P(T) = T;) — 1, it suffices to show: (i) P(T} < T;) — 0 and (i) P(7} >
Tl) — 0.

First, we focus on (i). Let Ay (j) = G)j i — G)(; s Dsi(f) = IZt (® it — G)(J) i)
and A, ;(j) = 72X . 1(©;;—0%,). When s < T}, we have

Jit
R S _
®§'7i€) = 5 Z zt +(® Joit — 69 lt)} = O‘g(( )) i +Asi(J),
t: : i
= (25) 1 i . 1 & " . 0 ]
®;; = Ojir = 0 +(0)i—0;;
]71 T—s t=s+1 T—s t=s+1 a o
hi-s o T-T (2 |« :
T T g§1)7j+ T—s agi2>7j+AS+’i(])’
with Oc(l) and a(z) being the j-th element of Oc(l) and a(z) respectively. It yields

gl(l)’j gl( ) g J gl(l) gl(z)’ p y- ity

O — éﬁff) =0 — OC(<11)> = Ai() =M (j) = Asi(j), t<s, and

. =(2s) h—s -1 (2 - )
Ojir =05 =Ojiu = 70—y %o~ i)

i

— 1 2 . Y . .
7;1_7;1 (a((% j - O‘(G)) ) +Ait(]) _As+,i(]) ifs+1<r< I
J— 3 2[{ ) 11 7 ' ‘ .
?_5(06(@)) _—OC(<1)) )+A(j) = A () T 4+1<t<T

J 8

i i 0]

Then, we have

t=1 t=1
and
T - 2
- 2

Y (05467

t=s+1
0O [T-T _ 2
(1) (2) . .

= oy, —o Ait(J) — As, i

t:sz~|»1 |: T_S ( gl(l)vj g52)7J)+ lt(]) S+7l(]):|

Ly [T‘_s aly) —a'l) >+Ai,<j>—&+i<j>r
=t LT —s RN LN ’
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2T060) 6 ) Y (M) - Aena()]
T—s g gl)jts-‘rl "
(T-T)(Ni-5° @ _ 0 2, v X 2
% - + A, —As, i
(T—s)2 ( o2 j KEI)J) t—%:ﬂ[ +(J) + (J)]
T

hi—s, (2 (1) Yy
+2 T_s (O‘gfz) i aggl)’j)[—§+l [Alt(]) AM,,(])}

(i —s)(T-T1), () 2) d N a2
- T—5s (ag,(-”J a a&(z),i)z +z_§1 [Ait(]) - AS”(])}

hi—s, @2 d Yy
LR e CAE O‘gﬁ”.,j),_%l [4i () = As, i(4)] (B.8)

Define L(s) = 747 ¥ je () Lie {Ei—1 [0 — O P+ XL, 1[0 — 012} Then

we have

1 Ty —s)(T—T
L(s) = —=F z T)Es ) (o) —a'f) )
PR jeliem s s
1 s - w12
+ NT Z [Azt(]) A + NT Z Z Z As*’i(J)}
D j€[plie|N]t=1 PN JG[P i€[N]t=s+1
2 T-Ti, () 2 | o A
- (a - ) [Alt(])_AT l(])}
PNT ;e T = o e ’_;rl +
2 Ti—s, ) (1) v X
- (o - ) [Azt(]) A t(])]
PNT J€lpliE[N] T—s g™ g t—§+1 .
5
=Y Li(s). (B.9)
=1
Obviously,

L(Th) = L(T1) + L3(Th). (B.10)

Note that the event T; < T implies that there exists an s < T; such that L(s) —L(T}) <
0, which means we can prove (i) by showing that P (3s < 71, L(s) — L(T;) < 0) — 0.
By (B.9) and (B.10), we observe that

L(s) = L(T) = Li(s) + [La(s) — Lo(T1)] + [L3(s) — L3(Th)] + La(s) 4 Ls(s)

Z=A1(S) +Ap (S)—|—A3 (S) + Ay (S) +Ajs (S) (B.11)
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Recall that Ny, = IOI%IX¥T(NT)1/ 4, Let =% = K, and note that 0 <7 <K<

T‘T =< 1. We analyze the five terms in (B. 11) in turn.

For Aj (s), we have

(i =s)(T=T1) , (1) ) |2
p Z Z T — (ag(l)j_ag@ j)
j€[p]i€[N] i i
T —s 5
= (- Y ¥ (a 2 )
T_S p ]G[P ZG[N] g, 7] gi 7]
hi—s 1 n @
= 1—7p)— o —o
1_
:Ks(l_i)DN(x—Ks (CI%’T)? (B.12)
T

2
1 2
O‘(u)) - O‘(a))
8 8

i i

and the last equality holds by Assumption

where Dyg := I,LN YieN)
3.6.
For A5 (s), noting that

_ . /) 1 T 1 T T
AT]J(J) = ZAlt ZAII(J)_ Z Ait(])
=1 t=s+1
s—T O 1 &
= ZAH + Z All
Tis =1 S =511

we have

T Ky T
(Ty —5) A7, ; () + [Ar i () + Asi())] [ ZIAU(J)— h ZIAn(J)]
r=s+ t=

1 s ‘ _ T
Ar (S) = W {Z [Alt(.]) _As,i(])}z_ Z [Alt(.]) ATI l(])]z}
p Jj€lplie[N] =1 =1
1 s _ d
= — A () — sA3; () A; ()+T1Arl()}
PNTJe[pwe[N]{zZl t | tzl 1
1 { Y A2()+ T8 () — A ( >}
S - i 1 T1,i
PNT e L o2t |
e Y Y Y R LY YR
— T hsT T N 7 ST 7 11,1
PN (Ti=$) jGh &t N jehiem
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Z Z ATll +A9l( )} TI—S

je[p i€[N] t=s+1
1 & _
Z Z Tll +ASl( )}TZAH(‘D
Je[p i€[N] L=l
= K0, (TIN,Z) = KSOP(CNT)a (B.13)

where the second last equality holds by the fact that

()] =0 B.14
iG[NLfg[aT)ije[p]l (/)] » (M 2) ( )

from Theorem 3.1(iii) and

— 15
max |Ag;(j)| = max —) Ay(j)|<  max )| =
fe[N]»f'e[Pl‘ i) i€[N].j€lp) st; ) e[}ze[T],JEH| < (.2)
10
M = e Ty &) = : (B.15)
[N]JG[P‘ it ])} i€[N],jelp] T]z:ZI 1(J) (v .2)

Similarly, noting that

Ar, i (j) = A, ()

: i
- A zt

r-T r=T\+1 S 1=s+1

: i : i >
( Ait(j) - Azt (])
T—T T—s =T+ 5 =T +1 t=s+1

Tl—S ! 1 4l

Air ()

(T ) (T — TZ CT— st;r] '

and
(T—T)A, ()= (T—9)A7 ,;(j)
=(S—T1)A2r1+ (J)+(T =) [AZTH () — A7, ()]

=(s— Tl)A%1+ )+ (T —s) [An, i G)+As ()] [Ar, i (G) — Asy i(J)]

s I T
= (S_ TI)A%HJ (J) + [ATHJ (]) +As+,i(j)} [ fi Z Ait(j) - Z A’Z(J)] )

T-Ti,

=Ti+1 t=s+1
we have
1 L = 12 4 2
A3 (S) = NT Z [Azt (]) - As+,i<])} - Z [A,; (]) AT1+ (])]
PYE jep)iev) Li=st1 =Tr1

T T
—% Z Z { Y, M) - (T=5)A (D~ Y, A (D+(T=T)Ag. i ())
JE[p)i€[N]

s+1 t=T1+1
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T
oYY { y A,%(j)+(T—T1)A2TH,(J')—(T—S)Aw‘(f)}

L jehiem =
1 _
_ A2 Az, ()
Tl_s Z} Z]rél PN %}ie%] o
1 T
Z Z ATl+ J)+As, i )}T—T Z Air(J)
]6 Ji€[N] V=141
1 &
[Ay i (j)+ A Aw(j
N Z}zez;'w e i) Tl_st;l )

= K,0) (T'INQ) = KSOp(CNT)a (B.16)

where the second last equality holds by (B.14) and the fact that

T
max |Ay, i(j)| = max Ax(j)| =0 2),
iG[NLje[p]‘ ) i<IN].jelp) T—st;l )| = Op(v2)
T
R AT U= R Ai()| =0p(v2).  (B.IT)
[N]JG[P‘ i) ie[N],jelp) | T —Th f=;1:+1 (/) p (v 2)

Last, we notice that

Ay (s) +As (s)
2 m _ @ JT-T § YA (i
- (o) —a'y ) (A (j) = Asi(J)]
PNT 0 & g | T t—él "
Ti—s <& N % .
—,I}_s Z [Ait(])_AAu,i(])]}
t=T1+1
T-T1 & Ty —s
- Ai(j) — A;
GZ’ Z g,“)J g,- J) [ T—s t_zg:'r] ) T_st—TZ+1 Z(J)]

_TT ) 1 A (7
Z Z gl ) gi >7j)T1_St_sZ+1 it (J)

J€lplie[N
T

Y (« ) Y A

g, LT~ I, Ti+1

_TT

€[N]
1
p
1
_ S uN
T pN JE[p]i€[N]

B g, J
m o |! :
m o ]! 1 3 Nk
+2Ksﬁ\l Niez[]:v] * o agfz) J Nie%\/] p(T—Th) jez[}n} z:;ﬂAit(J)]

(B.18)

1—7
TCNTO (Mnp2) = KSOP(CI\ZIT)y

:Ksl_
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where the first inequality holds by Cauchy-Schwarz inequality.
Combining (B.11), (B.12), (B.13), (B.16), (B.18) and Assumption 3.6(i) yields
that

L(s) = L(T1) = &g (11__ s )DNa + KsOp(CNT)
T

Then for any s < T1,
1 1— rT 1

plimy 7
I KsCyr CNT

where Dy, ::plim( NT) ﬁwC%DNa > 0 by Assumption 3.6(i). This implies that
NT
P(Ty <T) <P3s<Ti,L(s)— L(Ty) < 0) — 0. (B.19)

By analogous arguments, we prove (ii) in the following part. When s > 77, we

have
: Iy 1¢ 0 h iy ,s—Th 2 | + ,.
s ; s ; yirct (O =) | = FRrLy M ag,(z),jJrAs’i(J)’
s _ 1§ 0 @ <,
ji = T — Z Jiit = Z tt+ Jll ®] lt)] =0Qa .+As+,i(J)-
St:s—H S= s+1 8 5]

It follows that

: = (1s) = (O‘(<11)> .—a(f)) )+HAR(j) —Agi(j) if1<t<T
®j7it_®j,i = T (2)81 J (1)& W and
Flos) —a g )+An( )—Asi(j) T +1<r<s

As in (B.8), we obtain that
s . = (1 2
Z 0, ®§.j)]

B ) 2
—Z {S 1 (o _a@) >+A,-,<j)—As,i<j)}
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T > N
"‘2_1(05;(22))]. O‘((ll)) ) Z [Ail(J)_As,i(])}

§ §i v =T +1
=TT, 1) __@ 2.y N A ()]
p ( gSI)J gEz)J) l; |: lt(]) S,l(])]
Ti(s—Th | 2 1
+2—( )(O‘(m)) _O‘(<)> )7 Air(] Z Ai(J
s TR0V R Y B I § P s h, T

and
T = (25)12 ! N £12
Z 0 —0;;]" = Z (20 (1) = As ()]
t=s+1 t=s+1

It follows that

L(s) — L(T1)
T1 (S— T]) 1 (1) (2
T N & ||% T %e
i€[N] i i
T {i[A(‘) A2 Y (M) & (‘)}2}
e it\J s,i\J - it\J T,i\J
PNT Ty L= = 1
1 L . \12 L < 2
+ NT Z [Alf(f) AS+J(])} - Z [Alt(]) AT1+71 (])]
PNE elpiev) Li=s+1 =Ty 41
Ti(s—Tp) 1 (1) (2) [ 1 & 1 ! .
+2 Y (OC L ) e tt(]) - Ait(])
sT PN JEZ[;] i€[N] g’(l)’] g’@’] I, ;1 s—T t=T+1

where By (s) parallels A4 (s) +As (s) in (B.11). Let &5 = T1 € [% 1— rﬂ . Fol-

lowing the analyses of Ay (s)’s, we can readily show that

B (s)= ks??DN(X = K0 (CNT) By (s) = K0y (771%7,2) = ’_Csop(CI%fT) for£=2,3,

and By (s) = K0, (NMn28nT) = K0,(E3 7). Tt follows that for any s > T,

1 . T 1
plimy. T)ez 72 0 [L(s) —L(Th)] = plimy 1) o7 Ts O ——Dng > Do > 0.
KsonT NT
This implies that
P(Ty > T1) <P(3s > T1,L(s) — L(T}) < 0) — 0. (B.20)

Combining (B.19) and (B.20), we conclude that P(7; = 7;) — 1. W

212



B.1.4 Proof of Theorem 3.3

By Theorem 3.2, P(T; = T;) — 1. It follows that we can prove Theorem 3.3 by
conditioning on the event that {7} = T;}. Below we prove the theorem under the
event that {7} = T1}.

First, we define G)?:l.(l) =01, ,0,1), @?:l.(z) =(0,i1+1,,0jr), Bl.o’(l) =
ﬁ(@?:gl)/, e ,@2’751)/)’, and Bl.o’(z) = \/I—TG(G)(I)ZEZ)/, o ,@g’ﬁ-z)/)’. Noted that in the
definitions of Bl-o’(l) and Bio,(z) we use the true break date 77 rather than the esti-

mated one compared to Bi(l) and Bl-(z) defined in Step 4. As in (3.7) and (3.8), we

further define
.0,(¢) 1 g0 @]?
agm = argmin — min (|5, —a , (B.21)
{ k, }ke[m] {a(%} NzEZ[]:V] ke[m) ) B k ‘
kS kepm)
gl :argmin( B}“—ai;ﬁ?”, Vi € [N]. (B.22)

kem]

(i) Under the case with m = K (é), Theorem 3.3(i.a) is from the combination of

Lemma B.9 for the consistency of the membership estimates via K-means algorithm
and Theorem 3.2 for the consistency of the break point estimator.

Next, we show (i.c). Recall that z¢ is the critical value at significance level ¢

calculated from the maximum of m independent y?(1) random variables. By the

definition of the STK algorithm, we observe that

P (RO <k®) > (F) <z).

which leads to the fact that (i.c) holds as long as we can show (i.b). This is because,

under (i.b), we have

~ (¢
P(f), <z) = 1-g+o(1).

Now, we focus on (i.b). Notice that f“l(f;(

result, i.e., the estimated group membership (A;](f;{m for k € [K (f)]_ From Theorem
’ (0

3.3(1.1), we notice that we can change the estimated group membership GAk7 X

the true group membership G,(f), and this replacement has only asymptotically neg-

ligible effect. Recall that .7] = [T1] and % = [T|\[T1]. Define 71 1 = ZA1\{T1}.
S1=5\T} S j={1+j,---,Ti}and Z;={T1 +1+j,---, T} for some

(y depends on the K-means classification
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specific j € .7 _;. Let

AO7(£) } A 07(‘6) { A07(£) } ) _ ! ! 2
6. .t A S f argmin E E Yi — X0, — A 1),
({ ik KO f el kKO \ikk® e 7 o {ff}te% =5, ( it ifi)
k

~0,(1) _ (2 2 £0,2) _ AD 30
Fk,K(l) = (f17k71<(1)a T va17k7K(1))/ﬂ FkK (fT1+1 kKD ’kaK )/ Ak71<(€) - {Ahk,]{(f)}ie(;](f)’
and (22’(6) )’ denote the 7-th row of M £0.0) Xi( ). Further define
&k
o) _ 1 0,(0) 0.0 _ 1 @y ()
Ok = 91 w0 Sipxo =7, &) Mo X;
|G \ e ¢ kKO

200 _ 1w 0000, 1 . 0.0 0,00 5 0,(0) 0,(0)
QikK(l) =T Z Sip %y et T Z k(j,L) Z 24 t+j Cit€i, a+j T2 it 81— jéitl,
” Lieg tjedi €7,

-1
0,0 _ 50y [N GIANG) 5 (0)
ik KO = A KK ( Gl ) |Ak <G )Ak K(@) ;Li,k,K(@'

Then Vk € [K (¢ )], we can define
! 20.(0)
Y. 0. =P
0 =y/[6] G| “ieGy) Vikk)
eV Ner

20,00 _ 7 A0:(0) (0 a0 A0 180,00 40.(0) <> 2
Si, '_Té(esz( ekK(Z)Suk7K(‘>(Qi7k,K()) Sukldé)(ezkl( 9 )<1_ zsz<f/|G ’)'

By Lemma B.20, we notice that fg:g()@ ~+N(0, 1) owing to the fact that the slope co-

efficient OC,EE) is homogeneous across i € G,(f) Vk € [K'9)]. Furthermore, { 0,(¢ ) ke K\ )]}

are asymptotically independent under Assumption 3.1(i). It follows that

A

~0 (£) 2 . ~0,(0) 2
KO kg[l12<1<)§>] <Fk7K(")> ;?é?x] (Fk K >> +op(1) ~ Z,

where 2 is the maximum of m independent y? (1) random variables. Then Theo-
rem 3.3(i.b) follows.

(i1)) When m < K (Z) Theorem 3.3(i.1) does not hold and we can not change

the estimated group membership ¢ (<Z to the true group membership & 0. To get

around of this issue, we define the “pseudo groups”. For m < K 0, Tet G,(qf) =

{G Gm m} such that [N] = Gy Gf,?m, which indicates one possible

1m7“ 1I,m

partition of the set [N]. We further define %Sf) to be the collection of all possible
Gy,
By Theorem 3.3(i.c), we can conclude that P ( ) £ KU > < ¢+o(1) provided

we can show that F,(n) — cowhenm < K, By Lemma B.10, we notice that g?n(f) S
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G,Sf) w.p.a.1. Conditioning on the event {gﬁn(f) € G,(qf)} N{T} = T;}, we have

A A

A 2
) > min £59"):= min {ma" 106l }

g0 egd g eg® Lkelm L Fm
where 20,0
’ (14> Y, G Si.}c m P
G 1€ km
f‘O,(Z)(G(Z) ) — G([) kym i
k,m k,m k,m \/E ’
and S ( ) is defined similarly to S ( ) ¢ 1n the proof of (i).
meg to the fact that ]G ] =mK 5) which is a constant since K*) is a con-

(£)

stant, we can show that Fm

()

realization ¥,

— oo by showing that fS;“) (%,(f)) — oo for any possible

. Under the case when m < K¥), there exists at least one k € [m]

(6)

such that the slope coefficient is not homogeneous across i € G, . Assume that

k,m

ki # -+ # k,. Then fori € G,(”)n we have

G,(f) contains n true groups, i.e., G\ = G,(:f) U---uU G,(C? forky, -k, € [K(g)] and

S (O ¢ I & n—1 ¢ 1 ¢ . ¢
=Y oc,gv)l{z € G,(Q)} =~ ) oc,gs*) +) ( - oc,gs) - )y oc,g)) 1{i e G,(CS)}
s=1 s*=1 s=1 s*€[n],s*#s
IS 0 w1 ¢ ¢ ¢ ~0,(¢ ¢
;Z s+ZZ (OC]EX) OCIE))l{lEG]({)}: r(z)()+Cl()
=1 s=1"" s*e[n],s*#£s
such that
T 0] 1/2
— logN
W,E%HC | /t10g)
() 2
Tr & Ny o 12
— 3 o’ —o logN
\/stl n s*e[%*;ﬁs( ks ks*) /( )
T Yyl s O 2
-t (O) || Zsielnls s The O]/ 12 o
\/NnS:ZINk" — o || /(logN)"/= —

by Assumption 3.7(iii). Then ]f,(z,(f)(G,(fr)nﬂ /(logN)'/? — oo for some k € [m] by
Lemma B.21. By the definition of [%;" (?ﬁ(@) we have [9" (?ﬁ(tz))/(logN)l/2 —
oo, which yields I, /logN—>oowpa1form<K()andIP’( )£ KO <c+o(l)
as z¢ diverges to infinity at rate logN as ¢ = gy— 0 at some rate N~ ¢ for some

c>0. N
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B.1.5 Proof of Theorem 3.4

To show Theorem 3.4, we can directly derive the asymptotic distribution for the

*(0)

oracle estimator &, ' by combining Theorems 3.2 and 3.3.

The asymptotic distribution theory for the linear panel model with IFEs has
already been studied in the literature; see Bai (2009), Moon and Weidner (2017)
and Lu and Su (2016) for instance. However, Bai (2009) rules out dynamic panels.
Moon and Weidner (2017) allow dynamic panels and assume the independence over
both i and ¢ for the error term. Under Assumptions 3.1* and 3.2-3.9, which is for
the dynamic linear panel model, Theorem 3.4 extends Theorem 4.3 in Moon and
Weidner (2017) to allow for multiple groups.

Below, we follow the arguments in Moon and Weidner (2017) and sketch the
proof to allow the serial correlation of error terms in non-dynamic panels.' To pro-

ceed, let (C](\f)T . be the p-vector with j-th entry being Cz(\f)T K= Cy (Ag’w) FO0), Xg.gl)c, E,Eg)) +

Cy (Ag’(g) L FO0) Xﬂ? E ,Eg)), where
1
Ci (Ag(z),FO’(Z),X%){,E’E@) = Tl‘l’ (MF‘W)E/EE),MAQ-(@X%/)() , and
Ny

Co (A0, F ()X% EO)

-1 -1
( Mo B M0 XSFO (FOOFOO) (AR A%“)’)

1
-

< i)X MFO (0 E(Z)/AI?’(Z) (Agv(@’/\%wv B

By Lemma B.11, we have N,Ee)Tg(éc,Ee) - a}ge)) W%)T;IC%)TJ{ +o,(1).

In Moon and Weidner (2017), the asymptotic distribution is derived mainly rely-
ing on their Lemmas B.1 and B.2. Lemma B.2 is the standard central limit theorem,
which also holds under our Assumption 3.1. For Lemma B.1, we need to extend it to
allow for serially correlated errors in non-dynamic panels in Lemma B.12. Hence,
by Lemma B.12 and following the analogous arguments in the proof of Theorem

4.3 (Moon and Weidner (2017)), for a specific £ € {1,2} and k € [K(Z)], we can

't is well known that one cannot allow for serially correlated errors in dynamic panels in general
to avoid the endogeneity issue.
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readily show that

¢ 0 Al ¢ ¢ ¢
WV N T8 — o) =By~ 4 (0.9),

which yields the final distributional results in Theorem 3.4 by stacking all subgroups

of parameter estimators into a large vector and resorting to the Cramer-Wold device.

B.1.6 Proof of Theorem 3.5

- / oW,
Recall that v; ; := H:x V= (v-;jl, S ) = Hojf:?ju and vi = (v;,/b. v
With the fact that
iy Opby 00t~ )
[Peil ot Il 004,
(V't,j - Ojv?,j> HOJV?,_; ’ +0p; <H01‘V9,j ’ B ||V't7j||>
- )
Jsvsl o2,
It follows that
; 0
Ve,j = Ojvy ‘
T Op(nN,2)7

s ok
mtava, vt||§Pj€[I;ﬁ’é[T}HVt,j Vt,ngzpde;}l?)é[T] ||\>t,j||

where the last line is by Lemma B.7(i) and Theorem 3.1(ii).

B.2 Technical Lemmas

Lemma B.1. Consider a matrix sequence {A;,i € [N]} whose elements are sym-
metric matrices with dimension d. Suppose {A;,i € [N|} is independent with E (A;) =
0and ||Aill,, <M a.s.. Let o’ = HZiG[N} E (A?) Hop. Then for all t > 0, we have

t2/2
>t gd-exp{——/}.

P
02+ Mt/3

Y A
Il

i€[N

Proof Lemma B.1 states a matrix Bernstein inequality; see Theorem 1.3 in

Tropp (2011). [

Lemma B.2. Consider a specific matrix A € RN*T whose rows (denoted as A))
are independent random vectors in RT with EA; =0 and ¥; = E (AiAl). Suppose

max; [|A;|| < +/m almost surely and max; [|£;|,,, < M for some positive constant M.
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Then for every t > 0, with probability 1 — 2T exp (—clt2), we have

I1A]l,, < VNM +tv/m+M,

where c| is an absolute constant.

Proof The proof follows the arguments as used in the proof of Theorem 5.41 in
Vershynin (2010). Define Z; := ]%] (AAI—X;) € R”*T and we notice that (Z;,--- ,Zy)
is an independent sequence with [E (Z;) = 0. To use the matrix Bernstein’s inequal-

ity, we analyze ||Z[,,, and HZie[N} E(X?)|| asfollows:

Hop

1 / 1 2 m+M
12 < 5 (4], + il ) < (43 +1Zil,, ) < o as. (B23)

uniformly over i. Moreover, note that
2
E [(A,A;) ] = E[[|A],AA}] < mE,
and
1
Z == [(A,-A;) 2 AT - SAAL 2,.2} .

1

‘We then obtain that

= @), = o { 5 [y ~27] }

1 n2 2
< { el -

op
1 5 mM + M?
< =z (mlI=illp+I12:03,) < ==5—  as.
uniformly over i, and
M+ M?

Y EZ)| <Nmax|E(Z)|, <™ a5 (B24)
1 . 1 op N

i€[N] !

op
Define £ = max(v/M3§,8%) with § =1 % Combining (B.23) and (B.24), by

matrix Bernstein’s inequality, we have

L[
N(AA—.Z 2,-) .Z Z;
i€[N] op i€[N] op

2 2
. € € . (€ N
< 2Texp{—cm1n (W’m> } < 2Texp{—cm1n (M,&‘) m+—M}

N N
C62N 2
m—i—M} =2Texp{—cit°},

P >ep =P >¢€

< 2Texp{—
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for some positive constant ¢, where the third inequality is due to the fact that

. (€ .
min (M,e) = min (max (52,54/M) ,max (\/1716,5))
54

(2 2 24 9
m1n<5,\/1\7[5)—6, it 87>

4

min (8*/M,8%) = 8%, if 52<%

It implies that

Toa_lys >
SAA NieZ[I:V]Zl < max (\/Mﬁ,(s ) (B.25)

op

with probability 1 —exp (—ct?). Combining the fact that IZill,, <M uniformly
over i and (B.25), we show that

Tya L Y %

N i€[N]

1 2 1 /
IAlE, = |4

1
_Zzi

i€[N]

<
op

_|_

op

M M
< max | %], + VM + 82 <M+ \/Mt\/m; el
1

N
i 2
< (\/M—l-t mt ) ,

op

N

and the result follows: [|Al|,,, < VNM +t/m+M. L]

Lemma B.3. Recall that X; = {ijt} and E = {e;;}. Under Assumption 3.1,

= 0,(VN++/TlogT) and ||E|,,, = 0,(V/N+/TTogT).

Vj € [p], we have ||X; @EHUP

Proof We focus on ||X;©E ||0p as the result for ||E[|,, can be derived in the

same manner. We first note that, conditional on {VJO} , therows of X; O E
Jjelplu{o}
are independent across i. Denote the i-th row of X; © E as A} = X} ; © E}, where
X J’l and E! being the i-th row of matrix X; and E, respectively. Recall that & is the
minimum o-field generated by {V]Q} . In addition, for the 7-th element of
Jelplu{0}

A;, we have

E [Xj7,-teit|9] =K {Xj,itE[eit|9;Xit}] |.@} = O,

where the second equality holds by Assumption 3.1(ii). Therefore, to apply Lemma
B.2 conditionally on 2, we only need to upper bound [|A;|| and ||E[A4;A!| Z]||,p.

First, under Assumption 3.1, we have %ZtE[T] (X j7,~,e,-t) 2 < C a.s. by Assumption
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3.1(@1v), which implies
Al = || X O Ei|| < CVT as. (B.26)

Second, letX; = E{ [( ¥ @E) (Xj,i @E,-)/} |@} with (,s) element being E (Xj7,~,Xj7ise,~,e,-s’.@) .
Let ||-||; and ||-||., denote the norms induced by the 1-norms and eo-norms, respec-
tively: ,

1%, = max Z ‘IE J,tXJ ,Sel,els‘@)‘ and [|X; Hoo—max Z !E XX, ,Se,,e,S’@)|
s€[T] t€[T] s€(T]
By Davydov’s inequality for conditional strong mixing sequence (e.g., Lemma 4.3

in Su and Chen (2013b)), we can show that

?;?T)iez]UE ],,XJ,Se,,e,s‘@ﬂ—irel?;ﬁt;m‘Cov Xjireir, X iseis| 2)|

<max Y {E[|X;ea|?| 2]}/ {E X e} || 2]} x a(e —s) 12

s€lT] te[T]

< max {IE HX

]}/qmaxz (t—9)]92<cra.,
SE[T]ZE[T]

where ¢, is a positive constant which does not depend on i. Similarly, we have
max Z |]E (Xj,ith,iseizeis!@)} <ca.s.
s€[T]

Therefore, by Corollary 2.3.2 in Golub and Van Loan (1996), we have

max [, < /Il 2] < ez aus (B.27)

Combining (B.26)-(B.27) and using Lemma B.2 with t = /logT, we obtain the

desired result. n
Recall that
mco::{{mf},-dpwm}ERN*”“’*“ |71 o) <c ¥ H%(A@»H*}-
Je[p]U{O} Jjelplu{o}

Lemma B.4. Suppose Assumptions 3.1-3.3 hold. Then {A@j} jelplufoy € Z(3)
w.p.a.l.

Proof Let A€ denote the complement of A. Define event

An(c3) = {||E||0p < e3(VNV /Tlog?),||X; 0 E|, < e3(VN'V \/TlogT),¥j € [p]}.
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Then exists a positive constant c3 such that P(«/y(c3)) < € for any € > 0 by

Lemma B.3. Under event 7] y(c3), by the definition of ® ; in (3.3), we notice

that
| 2 | 2
0< — @0 ZXJ'@@Q - — Y—C:)Q— ZXj@@j
NT =7 AT jlp)
+ ¥ vi(lledl, - leil.) (B.28)
Jj€lplu{o}
and
2 2
Llly—eg- ¥ x;000 —-Lllv—6- Y x,00,
NT 07 & NIl TNT 07 & A
J€[P] J€[p]
2
Z Z eizt— ezt_<A®o,il+ ZXjJtA@j,it)
ze[N te([T] JEIP]
) 2
:ﬁtr(E Aey) +1§}ﬁtr((E®X ) Z Z (A@)0”+ )3 XJ”A(%'J’)
2 _ y
< e lor(ERe)) |+ ¥ o lir (B X)) o, )
J€[p]
2 3
< 7 Ellop ey ||, + X N—HE®X op 18,
Jj€lp]
NV /TI 3
<2y YNVVTIRT ) 329
Jj€lplu{0}

where the second inequality holds by the fact that r7(AB) < ||A||op||B||«, and the
last inequality is by the definition of event .7} y.
Combining (B.28) and (B.29), we have

os ¥ [PONATOED g | 4y, ().~ [@)].) } wra

Jj€lplu{o}
(B.30)
Besides, we can show that
165, = |3, + 05, = €} + 2} (Be,) + 2i(de,)|
> |09+ 2} (Bo,)| ~[|2i(Be,)],
= [[09], + |2} (3| ~112i(@s,), (B.31)

where the second equality holds by Lemma D.2(i) in Chernozhukov et al. (2019),

the first inequality is by triangle inequality and the last equality is by the construc-
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tion of the spaces 3”% and &2;. Then combining (B.30) and (B.31), w.p.a.1, we

have

Y vlelc ¥ {ij®?!|*+263 y MH@H}

JelpIOfo) jelpIofo) ey N
and
vi{l|7} (Be)| - 112 (3]}
Jelplu{o}
(VNV/TIogT) | «
SZCS Z NT ||A JH*
J€lplu{0}
VvT1
2y, NIRRT 1 3|+ 22 (o) ).
j€lplo{o} '
If we set v; = 463(‘FVVTl°g ) we obtain the ﬁnalresulthe[p]U{o}Ha@f@@j) <
3 jetriuio) [|25(Be;) H*- .

Lemma B.5. Consider a sequence of random variables {B;,i € |n|}.

(i) Suppose B, i € [n], are independent with E (B;) = 0 and max;c|, |Bi| <M a.s.
Let 0% = Yicm E (B?). Then for all t >0, we have

2/2
IP’( ZBi >t> Sexp{—#émm}.

i€[n]
(ii) Suppose {Bj,i € [n]} is an m.d.s. with E;_ (B;) = 0 and max;c, |Bi| <M

a.s., where E;_ denotes E (-|.%;_1), where {.Z; : i < n} denotes the filtration

that is clear from the context. Let ‘Zie[n] Ei 1 (Blz) ‘ < &2. Then for all t > 0,

IP( >t>§exp{—#§;t/3}.

Proof Lemma B.5(i) and (ii) are Bernstein inequality for the partial sum of

we have

y 5

i€[n]

an independent sequence and the Freedman inequality for the partial sum of an
m.d.s., which are respectively stated in Lemma 2.2.9 Vaart and Wellner (1996) and
Theorem 1.1 Tropp (2011). [

Lemma B.6. Let {Y;,t =1,--- T} be a zero-mean strong mixing process, not
necessarily stationary, with the mixing coefficients satisfying a(z) < cq¥* for some
ca>0andy € (0,1). If sup;cir) |X:| < Mr, then there exists a constant cy depending

on cq and 7y such that for any T > 2 and € > 0,

222



. T cs€?
(i) P{|L Y| > €} <exp {_M%T—O—EMT(I?)gT)(loglogT) }

(ii) P{|L Yo > €} éexp{— }

V3T+M3+eMr(logT)

where vg = SUp¢7 [Var(Y;) +2 Y |Cov(Y7, Xs)]].

Proof The proof is the same as that of Theorems 1 and 2 in Merlevede et al.
(2009) with the condition o¢(a) < exp{—2ca} for some ¢ > 0. Here we can set

c=—logyifcyg > 1and c = —log(y/cq) otherwise. [

Lemma B.7. Suppose Assumptions 3.1-3.4 hold, for j € {0,--- , p}, we have

(i) max; ) < M and max; ‘ <5 - < M
Kj,J ¢s’
(ii) max;, 0;.\7,71- ’ < 621?’1 < 2CM w.p.a.l,
jiJ 9

(iii) maxi 4 Leeqr [[6]” < 2 (14 pC) wp.a.l,

(iv) max; L e || — @9\\2 = 0,(n} (NT)*4).

Proof (i) Recall that f@)o LNV, UY = VNUPE) and V; = VT ).

Let [A];. and [A].; denote the i-th row and 7-th column of A, respectively. Note that

1 1
\/_@)97/0 VN%PL) =U}, and ﬁﬂz/ﬁ’@? =VTEyY =3v).  (B.32)

Hence, it’s easy to see that

H 0 @0%0

Bl === —=les.<

where the first inequality is due to the fact that ”//J is the unitary matrix and the last
inequality holds by Assumption 3.2. Since the upper bound M is not dependent on

i, this result holds uniformly. Analogously, we see that

0 ~1 0720 | 0
v Jll<ﬁ HW/ Ojl.| = Jco H[®ﬂz =
(i1) As in (B.32), we have
1 -y~ ~(1) ~ ~ (1)~
and
. 1 1 (1)1 ~ 1 1 ~ 2M
ol < o=y I[77@1] | < o 1@l < 5
Kj,] Kj,j



where the last inequality holds due to the constrained optimization in (3.3) and the
~—1 -1 ~1
fact that maxc (x| |Gk7j — 0 | < Ok, W-p-a.l.

(ii1) Note that

maX—ZH%H < maX{ ZIIOoon +) 7 = X 05l X
tE[T JElP] tG[T
r~ 2
<ol e £ Y
< 4L (14 pC)
where the last inequality holds by Lemma B.7(i1).
(iv) Note that
max— Y [ga—ofl
tE[T
2
teZ[T HOO 10— Vto‘ +pt€[rTr]1ej>é ] v;J v?J‘
1 - 2
<_ HO )+ (NT)*¥ max — 0(.)~,_0.‘
teZ[T o Vt0— vto p(NT) 'I}Ié?ﬁTte[T] jo Vi T Ve

=_ HOOVO —V(?H +P(NT)2/qmaX— |0;V;— Vjon = 0,(nf (NT)?4),
T jen T

where the second inequality is by Assumption 3.1(v) and the last equality holds by
Theorem 3.1(ii). u

Lemma B.8. Under Assumptions 3.1-3.5, we have mine |y, Amin (@) > F w.p.a.l,
and min, ¢ 7] Amin () > %‘” w.p.a.l.
Proof Recall that ®; = 1Y | 9292 and &; = £ Y| ¢4}, where
~ /
oy = [, 0Vt U X1, 7V2/17Xp,it]/ and ¢; = [(06\7z,0)/, (0/1\7z,1X1,it)/ v (0,7 pX), n)/} .
Uniformly over i € [N], it is clear that

|- s 2 Z 10670 =il +

™=
™~

05 =ve | X

ng notl (L pef)

te[T]

)

)



where the last equality holds by Lemma B.7(1) and Assumption 3.1(iv). It follows

that
c
min Ain(Bi) > min Amin(®1) = O (y.1) > 2 wpal.
i€[N i€[N] 2
Analogously, we can establish the lower bound of lmin(‘i’,). [ |

Lemma B.9. Under Assumptions 3.1-3.7, we have maxll{ /) # gl }
Owp.a.l, where g 8 x (  is defined in (B.21).

Proof The above lemma holds by Theorem 2.3 in Su et al. (2020) provided we

can verify the conditions in their Assumption 4. Let OCIEZ) = (algél) , oc,E ;) Then
we have
o0 _ 1 0 (0
B =—= Y o @il{g’ =k}
VT ke[K©)]
and
max LOC,@@IT[ = max L ng 2<\/_ max |Ock | <\/PM,
kelkO] |V Te | VT S kelk (] je

(B.33)

where the last inequality is due to Assumption 3.2.
/
Second, with ©} = (€0, 09 m) and )% = (@9, 71,097 ).,

we notice that

max ‘

1 1

_ o0 = ! 3 (02
H maXHG) CX H—ﬁmax Z% t ]lt

- Ojir = @jul < pal, B.34
= VP, [P],g%,zem‘ it m‘ S CsMNy w.p.a ( )

with ¢5 being some positive large enough constant, and the last inequality holds by
Theorem 3.1(iii).

Third, we also observe that

14 14
min ” O‘IES) 1, — OC,ES*) 1,

P
: (0) () \2
min o ’.— ) > Cs
1<ky<kg *<K 0 Z< ks, J (XN 9

1<ks <k <K \| =] N

(B.35)

where the last inequality holds by Assumption 3.7(1).
Combining (B.33), (B.34) and (B.35), we obtain that P (maxi 1{ g%@) £y = o) —
1 once we can ensure Assumption 4.3 in Su et al. (2020) holds v;lith cin = Cs,

con=csNn2, K=K (1) and with their c1 and M being replaced by ¢ and and /pM
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here. Under Assumption 3.7, Assumption 4.3 in Su et al. (2020) holds. This com-
pletes the proof of the lemma. [

To study the NSP property of our group structure estimator, we introduce some
notation in the following definition.

Definition B.1. Fix K) > 1 and 1 < m < KO. Define a K x p matrix o'V =

(al(é), fe ,Ocl(f))'. Let dy ) () be the minimum pairwise distance of all KO rows

and algg) and al(e) be the pair that satisfies HOC,EK) - al(e) || = dyo (D) (if this holds
for multiple pairs, pick the first pair in the lexicographical order). Remove row [
from matrix a¥) and let dK(g)il(Oc(f)) be the minimum pairwise distance for the

remaining (K\©) — 1) rows. Repeat this step and define dK(z)_z((X(f)), o do(al)

recursively.

Lemma B.10. Recall that %}f’ is the estimated group structure from K-means
algorithm with m groups. Under Assumptions 3.1-3.7 and the event {TI =T},
w.p.a.l, foreach 1 <m < K ), gﬁn(f) enjoys the NSP defined in Definition 3.1.

Proof By Theorem 4.1 in Jin et al. (2022), Lemma B.10 is proved if we ensure
all conditions in their Theorem 4.1 hold. We now apply their Theorem 4.1 with X; =
Bio’(g), X = BZ.O’(L;) and u = \/Lﬁag) @1z, for k € [K\))]. By the definition of d,, a(4)>

in Definition B.1, we notice that d,, (Oc(é)> > dy) <oc(é)> such that d) (a(£)> >
Cs by Assumption 3.7(i). With (B.34) shown above and Assumption 3.2, we have

max (g <M, max & —x]l = Op(nv2).
ke[KO)] i

which satisfy the Theorem 4.1 in Jin et al. (2022), i.e., max;c o ||| < (a(@)
and max; ||%; — x;|| < d (a(g)). Consequently, it leads to the NSP of 4" for 1 <

m< KO w.p.a.1 under the event {Tl =T} [

Lemma B.11. Under Assumptions 3.1, 3.6(ii), 3.7(ii), 3.8 and 3.9(i)-(iii), for

(1.2} and k€ K, e have 6" L o and
Or ¢ ¢ 0)—1 (¢
NOTe = o) = W e+ op(1).
Proof The result in the lemma combines those in Theorem 4.1 and Corollary

4.2 in Moon and Weidner (2017) under their Assumptions 1-4. Hence, we only need

to verify the conditions in their Assumptions 2 and 3 since our Assumptions 3.8 and
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3.9(11)-(ii1) are the same as their Assumptions 1 and 4.
Notice that the Assumption 2 in Moon and Weidner (2017) holds if we can show

that

1
Y Xjuen 250, Vke K], € {1,2}.

N( )Tz ieG 1€

Fix a specific k and £. We can show that
2

Z Z XJ ireit| 7

N Tf eG OHteTy

= A N2 Z Z Z Z E XJWIXJ 12t2611t161212|9)

NETE) 11€Gk lGG OneTned)

o — Z E (XJ‘Jthj,itzeit] €ir, ‘9)
(N Y'k) IIE%IZG%

Z - 2 Z ZE ttelt|@

o N2 Z E (Xj7if1Xj7il‘2€it1 Ciry |9>
<N(£)71€ lGG Ot e %t26%7l2>11

k
M 16 2 _
< 0 + 5 Max max E|X],,e,,| /a Z Z Z [a(tz—tl)]l 2/q
Ne Ty (N,E‘J)TO ieGy 1€ 7L iGN ETE Trin>
1
=0\ o7 B.36
(NT) ? ( )

where the second equality holds by Assumption 3.1(i) with the conditional indepen-
dence sequence for i| # iy, the first inequality combines Assumption 3.1(ii), (iii),
(v), and the Davydov’s inequality for strong mixing sequence in Lemma 4.3, Su
and Chen (2013b), and the last equality is by Assumption 3.1(iii), (v), Assumption
3.6(ii) and Assumption 3.7(i1). Following this, it yields that

ij,teu_ ((NT)™'/?).
N Tg te,%

By similar arguments as used in the proof of Lemma B.3, we can show that

HE,EE)HOP:OP(\/N—I- J/TlogT), (B.37)

which, in conjunction with Assumption 3.9(i), implies that Assumption 3* in Moon
and Weidner (2017) is satisfied. [ |

: 1 2
For j € [p], recall that XJ(J,) = (Xj i1, 7Xj7iT1)/, XJ(,i) = (Xj,i(T1+l)v e ’ijiT)/’
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1 2 & .
ez( = (eir, -+ 7eiT1)/’ ez( = (ei(TH-])’”' ’eiT),’ Xjir = Xjir —E (X]Eil“@)' Besides,

(6) (6)
let Xﬂ € RN %1t and E,EZ) € RN <1t denote the regressor and error matrix for
subgroup k € [K(¥)] with a typical row being X J(? and el@

{1,2} and k € [K"Y)], we also define

, respectively. For ¢ €

<O _ g x
X\ =Ex)

A0 _ 50 _g(0 40 _ < () < (0)
7), X =Xju=Xjpo Xju=Mo0X;iMpowo +X;

with X' ’,)C being each entry of %( ). Further let L{,(fl.)t = (%ggl)c P ,}.‘Ef;{ o)

Lemma B.12. Under Assumptions 3.1, 3.2, 3.6(ii), 3.7(ii), 3.8 and 3.9, for j €
), € € {1,2} and k € [K\D], we have

. 14 (0
0 T (P o By 0-<Z>X§‘JZ> =op(1):
J4

k

N

. [ -1 -1

(iv) —d—tr E,gﬁpFo,mE,g@/Mwng,gFow (Porpo)  (aA0) Ag"(“ﬂ =0,(1),
K 1 L

[ ) y A\ —1 —1
(v) —ptr E,E“VPA%(@E,E“MFWng,i’/\gv“) (A ap0) " (potrpo0) FOW] =0,(1),

. [ s\ L 71 A 71
(vi) Nl([)T . E/E@/MAQMX;Q Mo EL A0 ( A Ag(/)) (Fa(zy Fo,u)) Fo,(zy} —o,(1),
\V N e L

.. -1 -1
(vii) =t { 5B -E(EE|2)|M A0 X0 (PO poO) (AP AN) A(W)’} =
A

op(1),

-1 —1
(viii) N]([)T o { [E,EM E,E[) E ( E,Eé)' E,y) | @)} MA? )Xﬂ/ Ag(z) ( A2,<é)/ Ag(z)) ( FO.(0) Fo,(z)) Fo,(z)/} _
k1 ¢

op(1),

L L
(i) Ty g0 Teear [ X020 B (d25212) | = 0,0),

I)T

4
(x) Wziecl(f)zm'%eizt (:{l(czt /(<z>t %t%/)zol,(l).
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Proof (i) We first show that HF 0,()1 E,EWA%(Z) H = 0,(V/NT). Note that

2

=

9

- LBl ¥ ¥ esa?

0,(0)r

Jreere s\ | 1
(0)
Nka ieG,(f)te‘%

N,Eg)Tg
1
- Z Z Z Z E(eilfleiztzyg)fz?/loﬂv()/ftz

N( )TZ 11€G l EG( Y teTpheTy

< maXWHzmaxHﬁ Hz Y ) ) [E(emen|?)
zeGk teg

Ty eG(f) HeTheT,

Z Z |Var e,;\.@ N Z Z Z |C0v(eitlaeit2"@)|

N T( eG 0te; T(g eG()tle%tze,%,tptl
=0(1) a.s.,

where the fourth line is by Lemma B.7(i) and the last line combines Assumption
3.1(v) and Davydov’s inequality for conditional strong mixing sequences, similarly

as (B.36). It follows that

)1
PFoA,a)E,E p A0

<HFO HHFO )V gO.(¢ HHFO HH @)_]HHA%W
- O(Tl/z)Op(T_l)Op(\/W)Op(N‘ )0<N1/2) = 0p(1), (B.38)

where the first equality holds by Assumptions 3.2 and 3.8.

Moreover, we have

2= [ ARO[ A AR R = oty 20,0, (VNT) = 0p(T12),

(¢
|y

(B.39)
where the first equality holds by Assumptions 3.2 and 3.8(i) and the fact that
2
0,015 (0) ||2 .
E(HAk( "% \.@) “ Y YE|| ¥ 2% |2
r=1te.7,; ic G(/)

=ri L L L A ER7)
r=1 e'%tGG( )l EG (6)
r() .

=) % Zb (A2)’E[(X;)%| 2] = O,(NT).
r=lre [ZEG
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Then we are ready to show that

1 0y (¢

Tl‘}" (PF07(4)E]E )PAg'(DX;])‘)
N 7Ty

k

1 oy X\
— 4r PF0~<4’>E1£ ) PAo,(wP AO,(€)X5',I)<
NOT, Lo
k

! < (0)
: VOT Froob"h Proo®i
k
1 .
= ———0,(1)0,(T"?) = ON""%) = 0,(1)
NI,

-1
ro 1 o0y, 0 1
_ Z _gAk()/Ak() —— Z Z Z )Ln W1 lz,Jzellt J(l)zl
0 NG

jria NOT 1675660 e

0 | — -1/2
Sy e & L X A e =0,
PR NGNS T 169 66 ipeg)

where the last line holds by the fact that

1 )
e X

E (8)— NG Z Z Z ll 1 12 72 jiint
Nk N DIE%HGG]E)QGG](
- Z Z Z Z Z Z ;Ln Ji 12712 Aimy Jllr(')@z 2 (elle(z)zzemls Js mzs|‘@>

3
¢
(N,E )> Ty 1€715€ Ty el izeG“>mleG<>m2eG 0

2 ~(0)
= N3 Z Z Z Z 117]1 12 Jz) ]E(eilteilsxj(ﬁ)ztxfgs“@>

<N££)> Ty 1€7is€ 7, e\ ipecl!
7)

B 2
= M3 Z Z Z l1 j1 A, Jz)z]E (eizlt <X1(21>
- 3 11 i €i1t€is jlzl j712S
Z Z Z Z ]1 2]2) E<.f€.x |‘@)

3
¢
(NIE )> Ty %6l el
N(@ 3T te Ty s€ Ty s>t (0
k V4 ’ llEG lEGk

9

where the second equality is by Assumption 3.1(i) and the last line holds by As-

sumption 3.1(ii1) and (v), and Davydov’s inequality.
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— ;XY

zts : Jis

(iii) Define Z; —E(e ti ‘.@ ). As above, we have

J,is

2
1
E T\/—i Z Z Z f‘t(l),jlﬁ(z),jzcjgi)llllz

N(E)Tgi eG(é) HETheT,

9

Z Z Z Z Z Zﬁ1J1ﬁ27]2f315]1f52J2 (le)llllzcj(ﬁlslsz“@}

3
T N i €G\ )l 6G( NHET th €Ty s1€ETysrETy

L L L YL L L feor(endneadll?)|

3
TZN ZIGG >l GG()11€<%IZE<%SIE<%52€<%

L LY LY [eo(adfhante)| <o)

tGG OHETheETys1€ETysr€T;

T3N

where the last equality holds by Assumption 3.9(iv). It follows that

———tr{ o [E" R B (£ %))

NOT,
¢ (L oo
- Z (TZF F ) () Z Z Z flhhftzjz ]111‘11‘2
Jp=l i TN/ N T iyeG! €T e
= 0,(T'/?).

(iv) As in Moon and Weidner (2017), it is clear that

-1 -1

1 tr |:E]£€)PF0 E( )M () X(_QFQ,(Z) (FO,(E)/FO»(Z)) <A27(ﬁ)//\27(ﬁ)) A27(£)/1
NOT, "

kL

-1 -1
L P E P FOO (PO0rpo) (AR ) AR
NSO, T
Kk L
1

= ————0,(1)0, (VN +/TlogT ) 0,((NT)"2)0,((NT)™1/%) = 0, (1),

NOT,

where the last line combines (B.37),(B.38), the fact that ||X§€,)<|| = 0,((NT)'/?) by
Assumption 3.8(ii), and | |FO-() (FO-(07 FO.L0) =1 (AMO AX N1 A0 — o (NT)=1/2)
by Assumptions 3.2 and 3.8(i).

(v) The proof of (v) is analogous to that of (iv) and omitted for brevity.

’)

(vi) First, we note that

e (s
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o
= Z Z Z Z )yl?Jlejlthj,m[l .@

jl:lmeGl@ lEG( neg

4]
Z Z Z Z Z Z 11J1)ng1 (eilflxﬁmlleiztzxjmtz|@)

J1= ]m€G< )zleG“)z eG( NHETptheTy

Z Z Z Z Z il ]1)2E(eilllxj,mfleiltzxj,mtz|9)

= m€G< )i eG( NneT ey

Y L YE(@Xul?)

meG ijeG 1€

+2 Z Z Z Z ‘COV (ei1t1Xj7mt17ei1t2Xj,mt2|9)}

mEG](f) i EG](f) HETythE Ty 1y >1
- OP (NzT)a
which leads to the result that

P />E HA H H 6))—1H HAg,(e)/ElEe)X(@/

Jik

= O(N_l/z)Op(N\/T) = 0,(V/NT).

As in the proof of part (iv), it yields that

-1 -1
n tr [E v AL X%MFQ( 9 E}EE)/ A%(é) < A%(é)/ Agﬂ)) < FO.(0) Fo,(@) FOU)’}
Ny

<F

1 —1
tr E;Ee M0 XED P A (R OA) T (PO E0 ) FOv(Z)’]

J A,
-1 ~1
S P EZIZPFO E( ) P O Ag ,(0) (A%(Z)’AZ?(Z)) <F07(€)/FO,(€)> FO,(Z)/:|
< HE )2 E(K)X(Z), AO,(Z) <A07(£)’A07(£)> - (FO,(E)/F(),(@) -1 FO,(E)/
~ k AOEE Sk k k k
\/N“)T ¢
r 1
1 ¢ 0 (0,0, 0,00 ! -1 ¢
n HEIE ) j7kH ) (Ak( )/Ak( )) (Fo,(e)/Fo,(4)> FO.(07 PAO!(Z)E/E )PF&(@
N(Z)T k
\/ Vi 44

=o0,(1).

(vii) For this statement, we sketch the proof because Lu and Su (2016) have
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already proved a similar result.

-1 -1
——r BB B (EE|2)] M5, 50F0O (OO RO0) T (ANOANO) Agw}
L1 0 (¢ ¢

S Ak“'n BB B E|2)] Mg = oy0),

()
where the last equality holds by the fact that

-3/2 1

(M) E{' AQWE VB -E(EVE"2)| M Xy @} —0,(1)

which follows by similar arguments as used in the proof of Lemma D.3(vi) in Lu
and Su (2016).

(viii) Analogously to the previous statement, we have

(n)‘”E{

by similar arguments as used in the proof of Lemma D.4(iii) in Lu and Su (2016).

1 ¢
FO(0r L [E/E )!

o (5B B (B0 7) [

@} = 0p(1)

Then we are ready to show that

l \/NITT ird [EVED —E(BVE|12) | Moo XA (A7) (FOOF0) Fo,(@,}
k 1L
& (T€)73/2 FOM)/NI(E) [EIEZ)/EIEK) -k ( ‘@)] M A2 X%l)c, =o0,(1).
k

(ix) This statement can be proved owing to the fact that the second moment of
the term on the left side of the equality conditioning on Z is O,(N _1). See the
proof of Lemma B.1(i) for detail.

(x) Similarly to (B.39), we can also show that ||X 0] = 0,(N'/?). Then,
following the same arguments as used in the proof of Lemma B.1(j) in Moon and

Weidner (2017), we can finish the proof. [ |

B.3 Estimation of Panels with IFEs and Heterogeneous Slopes

ForVie A :={ny,---,n,} and t € [T}, consider the model
A0+ x000 fey e {1, T},

Yy = o (B.40)
A4 x10" P 4y te{Ti+1,--- T},
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Here ./ is a subset of [N] and n < N. To distinguish from the notation A in the

...’;L,?n)’.

1 2 1 2
LetXl.( ) = (Xit, -+ >XiT1)/,X,-( ) = (X,-(T1+1),"' ,Xir)’,e§ ) = (eir, -+ eir;)'s e =

i
/ !/
(eir+1) ceir) s FOW) = <f?,'” ,f%) ,and FO2) = (f]QH_]a"' Jg) . To esti-
mate 01.0’((), 7Li0 and f,O , we follow the lead of Bai (2009) and consider the PCA for

paper, we define AY) := (4

nyo

heterogeneous panels. For V/ € {1,2}, let

<{ éi(f) }ie . j(@) — . 3{% ;I;TM nLTg :Z; (YZ_(Z) _x® 9i> /MF(Z) (Y@ _x® 9i> 7

(B.41)
where Ty =7 —Ti, W) = (Wi, Wiy}, W = (Wiggy ).+, Wir) for W; de-
notes Y; or X;, I (©) is any 1y X ro matrix such that E ([)T,/F O _ Iy, and M) = I, —

0) (L . . . .
%IZW. Note that we consider the concentrated objective function here by concen-

trating out the factor loadings. The solutions to the minimization problem in (B.41)

solve the following nonlinear system of equations:

N —1

61 = (XM x") XM, (B.42)
1 0 _ 030\ (v _ O30\ | 20 _ 2000

nng (= x81) (v -x8) | FO = POV, B43)

where VA(,ZT) is a diagonal matrix that contains the r( largest eigenvalues of the matrix

in the square brackets in (B.43). Let /Al.(é) = %I:" @y (Yi(@ —Xi(g) éi(€)> , which are

1
~1
o A a ~ A (014 (0) o
estimates of 7Li0. Let A,(f) = (/'L,gf), . ,/1,55))’ , and c?l(f ) .= li(g)/ <%) /li(g).
Let Oio’(z) =6%0) +cl@ , where §%(0) = %Zie V% 91-07(6). Here, we consider testing
the slope homogeneity for i € .#". The null and alternative hypotheses are respec-

tively given by
Hozcl@ =0Vie A and H, :cl@ = 0 for some i € A".

Following Pesaran and Yamagata (2008) and Ando and Bai (2016), we define

A Iy a8
r“):\/ﬁ‘”zg{‘\/’zﬁ’ P (B.44)
14

80 =16~ 6YSP (@) S0B —8O) 1 -l w2, 60 =1 Y 4,
n.

eV
F\'(f)ﬁ(ﬁ)—l— . X“)/MA X! /)
Mpw = I, — 7 Sff) = %, (fl(f))/ is the -th row of MF(E)XI.(E)



1 . RORGIEEN A0 A0, A
__Z lt lt zt+7 Z k(j/St) Z [xl(t)xl(.,l)—ll—jeiteiﬁ‘f'j+2:1(,l)—j2:l(l)/€i:t_jeit

= L jei 1€
andrecallthat 71 = [T1], 2 = [T\[T1), 71 -1 = A\{Th }, -1 = A\{T} T =
{1+j,---,Ti},and % ;= {T1 +1+j,--- ,T} for some specific j € 7 ;.
;)

In the next section, we study the asymptotic distribution of 6; ", the uniform
convergence rates for the estimators of factors and factor loadings, and the asymp-

totic behavior for ') under Hy and H;, respectively.

B.4 Lemmas for Panel IFEs Model with Heterogeneous Slope

Below we derive the asymptotic distribution for the slope estimators in our het-
erogeneous panel models which allow for dynamics. To allow the dynamic panel,
we focus on the Assumption 3.1* where the error process is an m.d.s.. If we focus
on Assumption 3.1, we can obtain similar results by using Davydov’s inequality
for strong mixing errors. Here we skip the analyses for static panels with seri-

ally correlated errors for brevity. Let M be a generic large positive constant and
F0) .— {Fw) c RT=70 - %!FW _ 1,0}_

Lemma B.13. Under Assumptions 3.1%, 3.2 and 3.8, we have

)
Zz =ny ez( )PFW)ei ‘:Op(l)»

(ii) supg(

" ) 14
n;} er'lzn] ez( )PF(Z)ez( )‘ :Op(l)’

J4
nTé Y - A0 O )/MF(e)el( )’ =0,(1),

1

(iii) SUPp()c.z )

Znn (9 9 ())X MF(f)ei

1=n

(1Y) SUP {imax; |0 <h1} F (O € 70

Proof (i) We notice that

-1
L& ol _ 1 [1a | FOO o)
_T e )/PF()(/ () <T _Z - ftell 7
n Ci=n, e\n; ni Tg teJ, ¢
1 [1 1 ?
0
S 7\ n ; _Tg fr eir
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Recall that & denotes the minimum o-fields generated by {VJQ} . Further-

Jj€lp)u{0}
more, we observe that

1 n

E{-Y |7 Z flei
n,= =n te%
1 &

< L ¥ L EGan2)]

i=n1t€.7; €T
1 &

<=2 X Y AR NIANE (eeis|2)]
Ei—nltE%SE%
p

Z Y E(e;|2) <Mas., (B.45)

Ci=nite7,
where the fourth line holds by the boundedness of factors shown in Lemma B.7(i)

and the conditional independence of e;; under Assumption 3.1%(i) and (iii). It fol-

n (L 0 _
lows that 157, [|J=Yre 7, fleul 2= 0,(1) and | - i VP el | =0,(T ).

=ny 1

-1
(ii) Noting that Py, = F(* (F(f)’F(@) FO = 71 pOFW) for pO) ¢ ()

)
1 Ny (E)/ 1 v

we have supgc z() |7 Lity, € Proe \ <SUPL ez 3 Lo, |17 T Lied, freil|*.

Next,

1 &

‘Sllp Z Z

FOezn =

Z ftezz

te%

1 & 1

= sup tr( Y 5 ) thfé@t@s)

FOeF® i=m 17 1€z 57,
= sup tr{ 5 ) Zf;fs Z eneis—E(eireis\@)}}

FOez () Té te T s€ 9, ni=n,

Ny

+ sup tr{ Z Z ftfs ZE e,,e,s|.@)} (B.46)

roezo I ez nis,

For the first term to the right the second equality of (B.46), we have max; | Yy

[
1=n|
E(eireis|] 2)]| = O,(y/(logT)/N) by conditional Bernstein’s inequality for indepen-

dent sequence combining the fact that e; e;; is independent across i given & by As-

sumption 3.1*(i). Then

SuP()tr{TZ Z Z fffs Z elteis_E(eitEis}@)]}

FOez( 0 teTyse Ty L
= Op(\/(logT)/N) sup ( Y ||ft||> (logT)/N).  (B.47)
Fez®) \ ey
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For the second term on the second line of (B.46), we have

sup tr{ 5 ) thfs ZIE (eireis|2) }
Focze | T,

14 te%se% n= n
<

< Jw T2 Z Y. Y IANIAIE (eieis| 2)

L i=n1teT;s€Ty

WZEHEAQF ),

! i= nltE%

(B.48)

where the first inequality is by Cauchy’s inequality, the third line is by the definition

of Z () and similar arguments as in (B.45).

Combining (B.46)-(B.48), we have shown that sup

Ty 4 4
F () ’n%} Zi:nl 61( )/PF(Aelg )| =
Op(y/(logT)/N).

(ii1) Note that
up | 3 AVFOOM el < | 3 ATFO Y
; / <
Foezo M S l nTy i=n,

p

(0)
+ sup |— Y AYFOOp et
Fez | i—Zn] ’ e

We show the convergence rate for the two terms on the right side of above inequality.

For the first term, we note that £ (Aio’ f,Oe,-, ‘ .@) = 0 and e¢;; is independent across i

and strong mixing across ¢ given 2. Then we have

1 & 1
AIO/FO,(E)/e(Z) — )VO/ e; NT —]/2
o I—X;’l : o lzn‘,lt;z fleu| = 0p((NT)™1/?)

by Lemma B.6(ii). For the second term, we note that

Ny
- 07 -0,(€)/ (0)
sup A F P, 0e;
FOcgz@ |1 Ei—zn'l l e
LS 00,00 2 (0) (O ()
sup —Z/liF’ F <F F ) theit
Foezo | T S e
2
) R
S R LIRS o 5 W
FOe Ly m— \F“) z(0 =y te%
FOEON | o0 g
sup —_— —_—
PO T T,
2
1/4
<\ s |2 X fed| =0,l(ogT) /M) = 0,(1),
Flhez(0) fte%

where the third line is by Cauchy’s inequality and the last line is by arguments in
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(B.47) and (B.48). Combining the above results completes the proof.

(iv) We first observe that

1 i 1 N 2
E Z Z thezt =- Z Z Xireir

n= ny Z ey n i=n; 16%

1 & 1 &

< LY Y Rt = 5 T )]

i=nte T seTy i=ni1te9;

<Ma.s., (B.49)

where the second equality is by Assumption 3.1%(ii) and the law of iterated expec-

tations, and the last inequality is by Assumption 3.1*(v). It follows that

. ey ()
sup ! i (9 6; U)'Xi Mpwe;
(6] <) FO700 || 55 I
1 ny ,X/ ( )
< sup Z <9 6; ()>
{maleO ||max<M} ni T
l
+ sup l < ) VP <f>ez()
{max |61y <MEF O 7O |1 i=my &
1 1 & 1 ¢ 1 2\ 2
< sup = —= ) Xiei
{max,|6||max<M}\/_< Z ) an}’ll \/sz;%
1 xFO |1 FOFO\™
+ sup — |l |7 1€it —
{max; || ;| jux <M}, F O e F () " i=n, Ty e T
1/2 1/2
1/2 1o | xOF0| / 1 g || 1 2\
SOp(T %)+ sup —— sup =) |l ) fiew
P FOe.z () nl;;l T FOez® ni;:‘l szez% l

= 0,(T7'2)+0,[((10gT)/N)/*] = 0,(1),

where the second inequality is by Cauchy’s inequality, the sixth line holds by the
0,

fact that both 6; and 6; () are bounded and ! Sy - ||\/LEZ,E%Xi,e,-tH2 =0,(1) by

(B.49), and the last line is due to (B.46) and the fact that

1/2
Lo [ x O @ /
sup | = Y [|[F=— <max— Y Xl = 0,(1).
Focgo \ S0 T it 1o, &7,
by Assumption 3.8(ii). [

Lemma B.14. Under Assumptions 3.1%, 3.2 and 3.8, we have éi(z) — 91.0’(6) 250

p
Pgo|| — 0.
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Proof Let

SnT ({Gi},F(@) =— Z M (Y(e)— Z e; é

ln1 nglnl

Recall from (B.41) that ({6 6)},15‘(5)) is the minimizer of Syr ({9,-} ,F(e)). By
(B.40) and Lemma B.13, we have

Snr({6:},F )

:§NT({9[}Vi, + Z 6 9 T i
l =n 14
+i§lO’FO’(£)’M Ze we 1’ __Ze e (J
I’ng = i FO€; nT e F 15 F
=Svr({6:},F9) +0p(1),
where
Snr({6:},FY)
n (()/ (é) n,
n M \ n
1 S NCES Oyt Meoei” g g0y, Ly 000y, F000
n= =ny Ty nD i=ny
x (O (0)
Mewe;” 0.0),0
—F (D0,
+= Z (6;— 6 7 A

ln1

Following Song (2013) and Bai (2009), we can show that Syr ({6}, F () is
uniquely minimized at ({91.0’(@ },FOOHO) where HY) is a rotation matrix. Hence,
we conclude that éi(é) — 01.0"(() 250. Following the proof of Proposition 1 of Bai
(2009), we can show that ||Ppx() — Pro.|| 25 0. ]

Let By denote the uniform convergence rate for éi(f). That is, max;c_y Héi(l) —
L

V= 0,(Bw).

Lemma B.15. Under Assumptions 3.1%, 3.2 and 3.8, we have L

VT HM ~Fo O H _
Ol where H'") := (AO’A°> ( FOa(/f)’F(f)> v -1 !

1
By + Jamr) " 7 )Vt

Proof Recall that V]\(,? is the diagonal matrix that contains the eigenvalues of
n_ng Z:’an (Yi(f) — Xl@ 6;)’ (Yim — Xl.(f) 6;) along its diagonal line. By inserting (B.40)
into (B.43), we obtain that

. 0/ A0 0,(0)1 £ (£)
POV — 0O (Ann"n> (F TF ) ij, (B.50)
¢

me|8]
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where

0_ 1 (0) (00 _ p(0)y 000

‘]1 nTgl_nl i (el i )(ez

10— Ly 50900 _ 030 g0y
I’ng i=n,

A0 = LyE x0g00 g0y, pi0)
=t

0 L Ny F0.(0) 3.0 0.(6) A.(E) /X.(K)IF(K)

‘]4 nTg igl A’z (91 6; ) i

IO = 1§ 0900 _ g0y Orp
nTy i

(0 _ 1 ¥ p0.0)20,00 p(0)

Je T ,'—Z,:'I Ae; ,

(0 _ 1§ 0,050,000

J; e izn"l e; A , and

S0 _ L xh 0,000

8 I’ng = i i :

We show the convergence rate for J,Sf ) ¥m e [8] in the following.

For J 1(6), we notice that

v

_max‘
ieN

i

I 7

HnTg i=m,

(g)Hz - OP(B]2V>7

(B.51)

where the equality holds by Assumption 3.8(ii) and normalization of the factor vec-

tor. Similarly, we have

s- 8- 5 3-

where the third line is by the fact that . ¥rc

a1

Ty =

=ni

8- o)

) m, 3

Al (¢
ff.gﬁ’; i()—QQ()‘{gE;’;H/lO||z JT, VT,
< max 60— 607 | \/
iceN nTy /= —
. ’ Fom) ﬁ(ﬁ)‘ :
< — — e
7 vn v \Tk|v Z i
Pl g
0 (o _ “1)2
< T an zglei e; —OP((N/\T) ),
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~0, <N‘1/2>

‘ = Op(Bv),

= O, (1) by similar



arguments as in (B.45) and the last line is due to the fact that

2
LR SIORGY \
Ell|l— e; e E (ejejeirep< | D
nT, = (T, 212;,1 ﬁ;ltél*;% ( it€ir+€j*1 €t )
Ny
i T L EEA19) s 8 T T E e 2)E (o] 9)
i=n|tct*c.J,; i=ny i*£ite Jt*e€ T
Ny
e Y Y () + wp L L Y E(6l2)E(e|2)
i=njreJ i=n1teJpt*€ Ty t*#t
E(e|2)E (e3,|2
nTg 2 lzn’1 lgé’ltez‘é/ ' ' )
=0 ((N)'+(1)7") as. (B.52)

by Assumption 3.1*(i), (i), (iif), and (v). Besides, we have 7, /||\)|| = 0, (Bw),

_1/2||J )| = O0,(By), and T_1/2||Jy)|| = 0,(N~'/2) by similar analyses as used
for Jé ), J3(£) and J* ), respectively.

Combining the above arguments, premultiplying both sides of (B.50) by £ (©y

and using the fact that FOEWO) — Ty1., we have

110 AYAO FO,(Z)/F(()
= ||[FOVAR — FO0 22 = 0,(BN) +0,(NAT)"'/?),  (B53)
v n I
and
(0 _ FOOFD AV FOUIED EOE, g )

%
NTTenTex/_\/_

FO,(E)/F(@) AV A0 FO,(()/F( )
= LA +op(1).
T n T

Then VA(,ET) is invertible and ||VA(,ZT)H = 0,(1). By the definition of H" and (B.53),
we have \/LEHF(K) —Fov(f)H(f)H = 0,(By+ (N A T)fl/z)_ .

Lemma B.16. Under Assumptions 3.1%, 3.2 and 3.8, we have

0y (0) 0y (
XM, X! x'm
. i O 4 Jall ([) i*
(i) T = T +0, (BN—I— \/IW) uniformly in i,i* € N,
oy © oy )
XM el XM g e
oA 0% A F0.(0) € 2 logN logN .

formlyinie N,

R 2
VPO =0, (B + yhr),

1 n
(i) 2 T,

. 4
(lv) maX;c gy HT%XI'( )/Mﬁ(g)FO’(e)H = Op <BN+ —/71\}/\T>’
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2
nT2 Y P, l(g)/egf) = 0, (10%1\’) uniformly ini € N,
(W) nD i= n1 l 1 H_ ( +N +F>
14 L 1
(vit) maxic || T X My el 2 ( Bty )
n ¢ /1 VIogN
(viii) max;c_y H P Z'i_nl l( M e ol * H = (BlszLBN OEN + N(/)\gTN).

Proof (i) Let 8\ := (7,7 FW F(O) =1 — (7,1 FO-0 FO.0) =1 angd 81 .= 7,7 1/2 (£ (0 —
F 0,(¢ )/H( )) Notlng that Mﬁ(z) = ITZ — F(Z) (ﬁ-(ﬂ)/ﬁ([))flﬁ(é)/ and MF07(4> = IT(’, —
FOO (RO 0,(0) =1 0.6 \ye can show that

Moo — Mg
2O (porp@\ " g g0 [ poorpo\ ! poey
VT Ty VT VT T; VT

FO.O g0\’ FO.0 g0 !
=886 551 <— +o0 | ——] &

VT T
-1 /
N FO(0) g (6) 50507 4 50 FO:(0) 0,() FO.(€) g (0)
NV T; VT
I -1
N FO.(0) gr(0) 50 FO.(0) g (0) N FO.(O) g [ F0,(6) £0,(£) 50 B.54)
N VT, VT T 2 '
By Lemma B.15, Assumption 3.8, the normalization for the factor space, and the
fact that
jpo-sumoff o |
7] <
! T
= O0p(By+(NAT)™'/?),
(B.55)
we can readily show that
|Mpoy — Mpo|| = Op(By+ (NAT) ™). (B.56)

(e 0 oy
XM X, XM o X,
i Ohivia i 0,(6) %

Then max; j«c_y i — FTé

2
(Z)H [Mpoe) —Mp || =

< maxieﬂ% ‘ X

O,(By+ (NAT)™1/2), where recall that A := {ny,--- ,n,}.
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(i1) By (B.54), we notice that

X M0 X Mpone”
eV \/Tg \/TZ
S
= D?gif/( \/ITZ \/ITEOP [(BN+(N/\T)—1/2)3+(BN+(NAT)_I/Z)z}
HX(@ (E)H FO.(0/ 0.(0) ~1 H(FOM)H(@)/Q@)
L Vi ( Te ) T
x| Jroom] ’(FOM)H(@)/el(E)
i i

= VT, [0 (B + (NAT) ™) + 0p By + (N AT) ™20, (/(logN)/T) |

where the last line holds by combining Assumption 3.8(ii), (B.55), Lemma B.15

and the fact that
( FO.(0) H(Z)) ! el@)
< logN)/T
?elii)/( 7 flelé};/( fteZ’%ft eir (logN)/T).

We will show the last equality by using the Bernstein’s inequality in Lemma B.5(i).
Note that

max HVar(el,ft‘.@)H— max HE(Z,‘.@)f, /H:0p(1) and

ieN €Ty ieN €Ty
ma = NT 1/‘1> , B.57
ieN, t)e(ﬁ Heltft ” <( ) ( )

where the second line is by Assumption 3.1%(v) and the last line is by Assump-
tion 3.1*(v). Define events 7 (M) = {maxie%te% |eis?| < M(NT)I/‘?} and
Ay n,i(M) = {maxte__% |ewf?]| < M(NT)l/q} for a large enough constant M. Then

for some large positive constants cg and c7, we have P (%C NM )) — 0 and

( logN)
max
ieN T

te%
logN ¢
<P | max Z eifO| > co T L yn(M) | +P (A y(M))
eV te%
np logN c
<Yp - Z eifO| > co T LN (M) | +P (A y(M))
i=n EZ‘E%
Ny IOgN
<Y P Ze,tf, > co\| —— ani(M) | +P (A y(M))
i=n| Téte% r




< ZEP< > ¢/ loiN‘9> {yni(M)}+P (M)

csc2T1logN/2 }
< e — +o(1
_l-_zn’l xp{ c7T + ceM+/TTogN(NT)V4(log T)?/3 o(l)

= o(1), (B.58)

where the last inequality holds by Lemma B.5(i), (B.57), and the definition of event
<74 N i, and the last line holds by Assumption 3.1%(vi) and the fact that g > 8.

(iii) By the fact that
LS Lorsol|?
nT/zl.:Zn’] € F H
LS Lo golF LS L0 (pe 0|
<o L [P0 e 3 e (7 )l
Lo ool LS L@ ? L g _ o0 o)
Sani:Z’;] e F H +nTgi:Zn’] ‘ei F FH H
< % nZ EZ)'FO’(@HZvLOp(B?\mL(N/\ 7))
nT’E 1=n
= 0,(BY +(NAT)™), (B.59)

where the last inequality holds by Assumption 3.8(ii) and Lemma B.15, and last
equality holds by the fact that

1 &

1|1 & _
?Z ()FO H2 2 Z Z ltf[o :T _Z Zeltﬁ ZOP(T l)
nlyi—p, E i=ny ||t€T; 2 e |n i=ny t@%
by (B.45).
(iv) Noting that M F(@F () = 0, we have
1
max —Xi(g)/Mﬁ(g)FO’(g)
eV
1 -
= max | X bp (FOO - FORO) ‘
ien || Ty
L ~1/2 ~1/)2

< —=X""Mzu||O,(B NAT =0,(B NAT

s max | X Meo p(BN+(NAT)™/%) = Op(Bn+ (NAT) ™),
where the last inequality is by Lemma B.15 and the last equality is by the fact that

x(© Loy
ma Mp || < max [|—=X; =0,(1 B.60
16/1)/(\/_1 F _iGJ‘)/(\/Tgl p() ( )
by Assumption 3.8(ii).
g 2
(v) Note that - Y77, xVeld|| =Ly Ik Yies Xuers A Yie 7 Xuer
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Under Assumptions 3.1" and Assumption 3.8(ii)

max || Xyej|| = 0,((NT)'/9),
Li*eN te€T
max E(X, X, |4, _ < maer*% max Xitl|© < cgT a.s.
it N [;% (XiuXieiv |%-1) e (€54l %-1) JVZGZ%H il < es

Define events 2% (M) = {max,; jc_y sc 7, | Xirei¢|| < M(NT) 1/} and o5 ;i (M) =
{max,c 7 || Xirei|| < M(NT)'/9} for a large enough constant M such that P <4575CN(M)) —

0. Then we have

logN
P| ma Xi >
<P| max ZXe* >c logN% (M) | +P (o5 y(M))
> e ntey 1€t 6 T ’ 5,N 5N

Ny log N
<) Z — Z Xieit|| > ce L,%,N(M) +P (5 (M)
i=ny i*=ny Ty teJ, r 7
Ny IOgN c
< Z Z — Z thel*t > C6 7%,N7i,i* (M) +P (JMS N(M))
i=ny i*=ny Ty teg, r 7
n TlogN/2
< +o(1
z Z P et v e R
(1), (B.61)

where the last inequality holds by Lemma B.5(ii) and the last line is by Assumption
3.1%(vi).
(vi) Noted that

()FO()

2
‘ Z Z Y Y EQ A eieinr|2)

H v 51 = nTZz nyi*=n te 7 t*€.J,

< max 2 max |21 ¥ Y X X [Benere|)

Ci=ny i*=n, te g€,

1 &
< ST Z Z ’E(e?,|@)| =0(1) a.s.,
Ci=n te;

where the last line holds by Lemma B.7(i) and Assumption 3.1*. Similarly as above,

2
00V ’_@} = 0,(1). Then

l

we can also show that E M T Zl 2 ,

=0,(1) and 0,(1).

1
A'O

él}’ll
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Furthermore, we have

nl S
L1 £ _ p0,(0) H Z Z 7LO (o)
= VAT vod z P

“0r(Jx ) 0 (ﬁ) o (?i e )

(vii) We first notice that
[log N
NT

Z X AO/
(B.62)

nT| Z *=ny
by similar arguments as used to obtain (B.61). This result, in conjunction with

max
ieN

— max
ie N

Z Z X,te,*tl*

l*—nl teJ;

Lemma B.16(vi), implies that

max X MA l
ien || nT; fz*;z
. m o POF
< max ||— X.() l(*) A2 || + max | — Z i(ﬁ)/ (€) 5 0r
ie ||nTy Pl icH ¢ =, Ty
01
1 N po) 1w
<max||— Xl@/ Ef)llgl + max S L F (E)’e(f)ligl
ie ||nTy Pl iceV Ty T, ||nTy P

logN By 1 1 By 1 logN
—0, (/- |40, X+—+——]=0, —=2 .
”( NT)jL p(\/]T/+N+\/NT> (\/_ NV NT

(viii) By (B.61) and Lemma B.16(iii), we have

max Z X MA @e( )e(f) £
eV ||n e i=n,
! (0) () & F@ﬁ“ © (0 pe
<max || —— ZX e e ol +max | — Z ——ep e FO
ieN nTg =, ieN nT[ =,
< max Ly Z Z Xuem H
ieN nz*—n tey niy = n

max ’

it VT VT

Y e

Etn)

I )
o ()

Vg
B + B2 + — !
N \/ AT NTNAT

loeN +/logN
ZOP<BIZV+BN\/ i +NAgT
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Define
o) 14 0) Y 1
50 (Z) _ Xl( ) MFow(//) el SO,(Z) Xl MFO‘(/")Xi(* ) A{O/ AOIAO AO
1 - ; i , 2,
Ty T )

GO( )= =S; *( >a” , and Q?’(g) = Var(gio’(@).

121

Lemma B.17. Under Assumptions 3.1%, 3.2 and 3.8, we have

(i) B2012)(8 — >y (1— %) = 2O 4 5219 such that maxe_y |1%2"|| =

1

0,(logN/(NAT)),
(i) vTH@)) PRy 12)(61 - 67 (1 - %) ~ N0, 1),

(iii) maxic v |16 — 6| = 0,(/(logN)/T).

Proof (i) Noting from (B.42) that 8\ = (8)) 17,1 X\ M, ¥ with 8 =
T, Xl.( )Mp(/,)Xi( ), we have
R ) 1
610 _ g0 — (501 [TZXI(Z),MFM)Q(Z) Lo, 00 ,Llo}
(&) (0)
Ag_Xl MA((/)el NN 1 o)
= 8 ) X Mg
0,(0) (¢ 07 A0 —1
EOO-1_ Z Juo (F (0 g ( )> (An/An 20
me|8] I n
Otyr (0) 0,(6)1 £ (0) 07 A0
s(0\—1%i  Mpue, (A0 _1l ) o F F AN 0
_( il ) H (Dl ) n 1 MF(K) Z Jm D n A’zv
me|8]
(B.63)

where the second equality is from (B.50). Note that

1 )/F() AYAO
~ x! J n_n A0
il “Z(nﬂn)z

me|8]
=t ) Iy,

me(8]

1
Ly Oy 0

< Z max 7

mejg) €

by Lemmas B.7(i) and B.15, and the normalization of the factor and factor loadings.
Hence, it suffices to show the uniform convergence rate I1,, for m € [8]\{2}. The

term associated with /1, needs to be kept.

For I1, we have I1; < max;c_y H ﬁx}’”’ (0 H —0,(B%) by (B.51) and (B.60).
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Next, noting that

I,
B 1
T

N =1 .

Lo, L3 0 (0000 A0 qorpoenpe [ FOYEY AYA, 0

= XMy Y X (62— 0) arpotrp n =

07 A0\ 1
g (S8 5

n

we have max;c s HHZJH = O0,(Bn), and this term will be kept in the linear expan-

sion for éi(f). For 115, we have
1y JOAROIC
I3 = max || —=X. — ( 9-*) O
3 ieN T( l O Z*Zl’l] el
L ey 0
<max || —=X; max H H * ¢ H
Tien ||V ! 16/1/ nTg *;1 TEZ I*Z,’, ‘i

= 0,(By+By(NAT)™'/?)
by (B.60), Assumption 3.8(ii) and Lemma B.16(iii). For 114, we have

1 0.( 0.0 _ g0 x g
11 = max ?X Mw— 3 O30 (62— 61) x'p

z*n

jall
L ()(
< max —X‘()
e ||T; !

Mg FO.(0)

7

-4 £ e

max Hlio || max
ieN et l* n

= 0,(By+(NAT)"'/?)0,(By) = 0,(BY +By(NAT)™'/?),

where the last line holds by Lemma B.16(iv), the normalization of factors and

n 2 .
the fact that —Z? " ||X H =1lym o */TLZZIGZ | Xi||” = Op(1) by Assumption

3.8(ii). For II5, we have

_ Loy LS 00000 a0\ 0 a0
115—%151); Tin M 0T *_Enlel-* (9,-* — 6, ) Xp F
L o0 (0 (200 A0\ (0
< Y X e (6,7 — 6, .
{2131)/( nTg\/Tg i*:nIXl el* <el* 9[* ) Xl*
Le@aw_ 1 ¥ L a@n,© (600 _ g0 w0
max| X, " rl*zn e (l i ) i

< max ‘ é H — HX *
e \/nT2 # Z €
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-+ max
eV

‘ 2

o~ 4.

1 1

max 'HFg’\/l H\/
2ier Ty T - nTy /=

= 0,(BN)0,(v/(10gN)/T) + 0, (By)Op (By + (N A T)*1/2>

= 0,(By+ B/ (logN) /(N AT)),

where the last two lines hold by Lemma B.16(ii1), B.16(v) and the fact that — nT Zl*:nl | |Xl-(f) 12 =
O,(1) under Assumption 3.8(ii). Next,

1
116:?6131)/( —eX.(g)/M [)_é Z FO l*e(*) 20/

< max —X,(Z)/MF(@FO’(@
ie/ || Ty

= 0,((BN+(NAT)"Y%)0,(ByN~'2+ N1+ (NT)~1/?)

by Lemma B.16(iv) and B.16(vi). By Lemma B.16(vii),

Loy 1 ¢ 00 O
I = max | — X" May — 22 OO E(O)
<max|— Y x! (20 (B N2 L N~ 4 (NT /logN *1/2>.
ie v |InT, 41*;;1 ¢ N- ( / g )

(B.64)

By Lemma B.16(viii),

L vy L& 0, a0 > O
g =max | =X\"Myi— Y. el FO|| =0, (B} + By /(logN)/T +\/logN(NAT) ™).
8 ?elfa/t)/( T, ! F(”nTg,; €ix € p \ By + N\/(Og )/ +\/0g ( )

In sum, by (B.63) and the above analyses, we have

(O ()
N . XY "Maone
91'(6)_91'07(6):(51(5))_1 i TF([)el
V4
(0) () A0 —1
-1 & Xi T MpoXi” a0y 0.0 4o ((An A 0
logN  +/logN
0,| B3 +B B.65
+p<N+NN/\T N/\T) (B.65)

uniformly in i € .#". Then by (B.63) and Lemma B.16(i)-(ii), we have

L 14
(0 _ 00 _ ( Som)l X My oe)”
T

i om O (0) 07 A0
0.0\ 'L §5 Xi Mpo X (500 00,0\ yor [ DuBn 0
+(si) : i*;“ . (61— 6) 20 7Ll~
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logN  /logN
0,| B3 +B .
+ ”<N+ NNNAT T NAT

where recall that S?i;(@ = T[le.(e)'M Fo,(g)Xl.(f). Let Ig,(z) be the ¢-th row of matrix
MFQ([)XI.(E) and note that zcg’(f) is strong mixing across ¢ and independent across i

conditional on & by Assumption 3.1%(i), (iii). Then we can show that

T,

‘ ‘ 1 ) 0,(¢ ) 0,(¢ _
S?i’*( ) —E(S?l-’*( )’@) _ 7 Z [}:27( )x%t( )’_]E(x?ta( )x?*,t( )ll-@)] —-0, ((T/logN) 1/2)
teJ;

uniformly over i,i* € .4 by similar arguments in (B.58). Then by the fact that

o X~(€)/FO’(€)

~0, ((T/logN)’l/z)
by (B.58) and (B.61), we obtain that
@l(ﬁ) _ 9i0,(4)
- [E (S?;“H@)}IQW) + [E(s12)] %i*ZnI]E (6i712) (81— 62")
+0, (B]z\, +By ]lvoi]; W) . (B.66)
For the second term on the right side of (B.66), we observe that
B(819)) "} £ B(et19) (00 -o2)
= [E(s512)] E(c))2) % 01— 6)")
+[B(s20)2)] %iéinz (6i"2) (81 - 62)
~ (g0 g00) 1 [£(2)2)] L ¥ e (6010)9) (80— 60).

By (B.66), it’s clear that

% Y E(6i)7) (60 - 62)

£
L EE(@ ) )] g
LB (19) [(ok19)] ) £ n(c19) 00

250



logN \/10 N
+0,,<B%V+BN g g )

NA T NAT

where the second term on the right side of the above equality gives the recursive
form and shrinks to zero quickly owing to the 7 term, and we only need to show
the rate of the first term, i.e.,

LE (1) (g

*#l

)"
% T n(19) o (4

-1
)} Lixt€ix
i*#£ite Ty

log N
=0, (U (])\;gT ) uniformly overi € .4/,

similarly to the result in (B.62). This yields

(0) 50 _ g0\ _ 2 logh  vlogh
o 3 Z 2(619) (89 -02)| =0, (o055 - 87

and further gives

(6 -67) (1 - %?’) - [E (sg»“)\@)]” 1o, <BIZ\,+BN ;’/g\]; W)

with By = max;c_y Héi(é) — G-O’M)H = 0,(+/(logN)/T). Finally, we obtain that

1

E(s]2) (81 - 629 (1 _ %) _ 00 4 0

such that max;c_y H‘@z@ H2 = OP (}3/5;\1}')

(i1) Given the definition of Q?’(Z) and by the central limit theorem for m.d.s., we
can easily obtain (ii).

(iii) The proof has already been done in the proof of (i). [

Lemma B.18. Under Assumptions 3.1%, 3.2 and 3.8, we have

(i) |0 = Fom| =0p( ?3%?),

(ii) HMpw) — Mo, H =0 ( }3%];)’

(iv) max,

Al
ft( ) _H(é)l ;
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Proof (i) We obtain the result by combining Lemma B.15 and Lemma B.17(iii).
(i) We obtain the result by combining (B.56) and Lemma B.17(iii).
(ii1) Recall that

n 1 l

1. R
_ PO [0 90 4 (0 _ (O (5(6) _ g0.(€)

ok [F 20+l —x (9, 0 )]
— lﬁ(ﬁ)/ (Foy(f’)_ﬁ(l’)H(f’)—1>,10+lﬁ(f)/ﬁ((’)[_]((’)—110+ 115(@/6(5)

Ty T LT, !
_ L pwyyg ey <é,<e> _ 997@))

D 1 l l

1 R 1.

_g(O-190_ LA (0.0 _ pO) g(0-1) 40 L A1)

HOTA 4 3 F (F FOH >7L,+TEF e

1. R
L ary 0r (50 _ g0.(0)

DF Xl <91 01 )

JAGL A0

where the second and fifth equalities are by the normalization that T

follows that

— Lpw (FO’(K) —F0 H(fH) A0 4 Lpwy, 0 _ 1 pwger (9,(4) _ Gp,w))

1 . . 1 /A !
— _pOr (o0 _ pOg@-1)30 L = (p@O) _ po.0 g0 0
7ng (F FYH >ll + T (F F\YH ) e;
1 1 . N
+H(€)/EFO7(£)61@ _ EF(E)/Xi(f)’ (9}4) _ 6i07(£)> - Il_(ﬁ) +Ii(é) +Ii(,? _Ii(,fl)'

First, by Lemmas B.18(i) and B.7(i1) and Assumption 3.8(ii),

. 0.0) _ ployg(n-1
o o I - 5235‘|W||—0p<v§’%]v)aand
()
fg*}’é‘]z(?H < \/% A(e)_Fo,(e)H(zz)‘ Hj@”%( zl\?iN)

Similarly max;c_y ||Il.(?|\ = 0,(+/(logN)/T) by (B.58). Now,

(0) FO ‘ i(é) H 50 _ g0:(0) [logN
. < . .7
max by H T VT max 0, ) H O, ,

by Lemma B.17(iii). Combining the above results yields max;c 4 ||4; — HO 14|
— 0,(+/(logN)[(NAT)).
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(iv) Recall from (B.50) that 0 — H(O/F" = VI\(fT)flzme[g] ],Sf)/, where J,,,”, m €
[8], are defined in the proof of Lemma B.15. Let J,(,ﬁ )t be the z-th column of V]\(,KT)_]J,(,i ),
for m € [8]. We observe that f; — H( f0 is the r-th column of £ — HO'F' 1t
remains to show the convergence rate for J,&fi Z,m € [8].

For J 1(? , we notice that

g0 O-1a000 | 1 . (@( 0,(4) A(@)( 0,(4) A(@)'
max max V F — X167 —0. 6.7 —06; X
e, lt €, NT NT, igl i i i i i i
) il B
A0 _ 00.0]]? : L&
< | a0 - 60O e ma D 3 il
2
< max |81~ 670" = 0, ((10gN)/T),
eV
by Lemma B.17(ii1) and Assumption 3.8(ii). Similarly, by Lemma B.7(i),
) (O—1 2 (0)1 10,(¢ 0 A0
JO| = max || v~ g0 RO, (67 -81) x,
gga;;H 2. || = max | Vyr Z ‘
< = (logN
g}; H V/(logN)/T),
(0] _ O-1p@y | 1§ 0 (5000 _ 50
max |73, || = max ||V ' F (0 n_TEZ O (687 -01) X
5()
Smax | 6 H = 0p(V/ (logN)/T)
<€)H _ O-1p00 | L ¥ w)( 0,(0) (z)> or| 40
J = v F — X6 S A
?Ela}jH 4.t ?’éﬂ}f( NT I’ng = i i i i fl
A _ 0O _
<f231’/( 6, -6, Hz—op( (logN)/T),
0] _ (O-1p@r | L (0 (5000 _ 50
?éa% s 2—2% VNt Fr n_TN_Zn:lX,- <9i — Y >eil]
AW _ 00| _
< max |0 67| = 0,(/(logN)/T)
Next,
max ||J%9|| = max ||V{) £ L %6(5)10' 1P < L ﬁe@lm O,(N™
= 6,t =Y NT I’ng = i i t Nn\/Té = i p
by the fact that
1 o ? 1
- D201 |2 | =E /10 = 0,(1
nTy i—znl ¢ A Zy \/— Z €ir P( )
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with the same manner as (B.45). Similarly,

< max
~ e,

= max

O—14(0)1 0,(
v O~ g0y po,
e, || NT

- Z A‘Oenj

lnl

max ‘ ‘J7(€)
€9

i ]

= 0p(v/(10gT)/N),

by using the Bernstein’s inequality for the independent sequence in Lemma B.5(1).

For Jéé), we have

0)

1
/| S —=max

(
J,
8 \/ﬁ e

max
teJ;

mze

2
1 1
—_ = max — elsel[
Va\ e T SGZ[‘T’Z] ( IZ"’1 )
1 1 1 &

2
—a | = — eislir | = _1/2,
< ZZ(WZM) 0,(N~'7?)

ey =)
where the last equality holds by the fact that E[TLZ Yic 7, YselTy] (ﬁ Y, eisei)’] =
O(1) by (B.52). In sum, we have max, || f; — H"' f2|| = 0,(\/(1ogNV T)/(N AT)).

Lemma B.19. Under Assumptions 3.1%, 3.2 and 3.8, we have

o5 2(8°12) -0 (BT ) and -] -y

Oy 5O

X X A XM X,
Proof Recall that S?l.’(g) = % and ng [ e/ Ly Combining

(B.64), Lemma B.16(i) and Lemma B.17(iii), we have

- 2(5112) | -0, ("5

Recall that zc@/ is the #-th row of My« i(e) and let f:@/ be the 7-th row of

i it
0 _ (f) (0 52

Mg X; ® , respectively. Under Assumption 3.1%(iii), we haveQ nzte% PO St

and Q; 0.0 — ﬁZte,% (zclg )zclg) e2). It remains to show

1 (020
oy [Fl(t)r,(t) & — By ry zz)}HZOP(l). (B.67)
lieg,

max
eV

By the definitions of ;(Z) and f:(g) we notice that z:l(f ) = X — %@Xi(@/F 0,(6) f,O and

it i’

fcl(f ) = Xip — = 7Xi o fo which gives

. 1 A (PN A
ZCl(f) _ ZCl(f) _ 7@ Xi(f)/( £ fto _ FO.0) ft0>' (B.63)
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Note that

?éag’»‘\/— [P Fog

£ _ g0 g0 ’ H FO.(0 g(0) H

ft(f) _ gy to

26 1y () L0
< \/Tg mtax f H p +—\/T£ mlax
H 2O _ FO.(0 g0 ‘
)
+ T maxHH fi

_0o logNVT
— P\ NAT )

by Lemma B.18(i) and (iv) and Lemma B.7(i). Then by (B.68) and Assumption

1 logNVvVT logNVT
n“ il ”(\/ NAT > ”<\/ NAT >

(B.69)

3.8(ii), we have

(6) _ a6)

;ll ?lt

max
ieN ey

Next, for i € A,t € 7, note that

éir =Yy —

+ (i.(ﬁ) _H(é)—l}LlQ) V0 4 ( 1lo> (ﬁ(f) _H(z)/fzo) ] .

1

Then
. [logN [logNVT
‘e,’t —e,'t| = Op ( i (NT)I/q> +0P ( %) , and

max

ieN ey
2 2 5. NV — o X 'R LR B.70
—€; —elt(elt elt)+(ell_ell) = €jtA;; 1,ll‘+ 2,it (B.70)

&
logN [logNVT
s.t. max HRI ,~,||2 =0, % ,  max =0, 0NV
€N 1€ ’ T i€[N]te T, NAT

by Lemmas B.17(iii), B.18(iii), and B.18(iv). It follows that

_Z ll lt lt

ze%
_ 1 .2, 1 O O\ (O O\ (2 2
= T tezy,;iz L et T, té (xit L ) (FU Lir ) (e” elt)
1 O A0\ (O 0\ 2, 1 O (0 O\ 2 2
+ Tgté (?zt Ly > (xiz Ly ) e+ Tété?it (Z:iz L ) (eit eit)
() A\ (O 2 2 (0) _ A0 (O 2
+ Tgt;é[( it L >§zt ( it elt) + T, teZ’,% (F,; L )Iit €t
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I :
+72x5f)(r§f)—x§f)) g L' (@ -e)

Lie g, =

logN VT
— Z Ol (,/%) uniformly overi € .4,  (B.71)
te%

where the last line holds by (B.69), (B.70), and Assumptions 3.8(ii) and 3.1%(iv).

Using similar arguments as used to derive (B.61) by the Bernstein’s inequality for
m.d.s., for a positive constant cg, we have
1 (0,07, (0), (0
P {fgﬁf} T Z [?u Lit tt —E (3:11 L, ¢ ztﬂ

> coy/ lOgN} —o(1). (B72)
e, r

Combining (B.71) and (B.72), we obtain (B.67). |

Lemma B.20. Under Assumptions 3.1%, 3.2 and 3.8, we have T¥) ~ N(0,1)

under Hy.

Proof Under the null that GiO’(e) = 0% for Vi € 4, we use Lemma B.17(i) to

obtain that

(0 _ g0.) :%ig/ [E (S%(é)}@)] 1§(£)
i LA )] (60 -0) o (7).
(B.73)
such that
i T =0 < Lol |- =0 ()

O(1). For the first term on

with Lemma B.17(iii) and the fact that max;c 4 ‘au‘ =

the right side of (B.73), we have

1 [ 0,(0) o 1 0,(0) -1 1
Sy [k (S @)} [ [E <S 9)] tiei = Op(——
0 ECE) S =g B R BOT1)] e =0
by the central limit theorem for m.d.s., which yields that
2 logN
0.(0) _ g0.() H _ . B.74
| % (Nnr 74
Ny lZA /VS(/)
Recall from (B.44) that ['() = - 2EEL 2 TP guch that

2p
,@)_1 2 ( 0 _ §(£)> (1 _&lgf)/n)z
)

o) 0
1 (67— 600) 5 (") 50 (8- 040 (1 -4 )’
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Below we show that \/Lﬁ Yier Sz(lz) and \/Lﬁ Yier Sl(g) are smaller terms and \/iﬁ Yier Sgﬁ) ~

H(0,1).

First, noted that

28,2 < ity 80— 00 ma ( (Qw)‘lﬁgp)n;%(l_an )’
0 (o0 ) mas 81 e 4 (1)’
=i (357 ) mms 6 s s 0t n)

=op(1),

where the first equality is by (B.74), the second equality is by Lemma B.19 and
the fact that max;c_y |d§f ) a%| = 0,(1) owing to Lemma B.18(iii), and the last
equality holds by the fact that max;c_y ||S?i’(£)|| = 0(1), max;ec_y ||Q?’(€)|| =0(1),
and max;c_y ]au | = O(1) and Assumption 3.1%(vi).
Second, by analogous arguments as used above, we have
Z S
ze/V

< 2\/_T5f22},’5 H 6 900 H H 50 _ g0.(0) ?Elgﬁ;/lmax (SAl(if)(Ql(g))—lgl(f)) {23,’5(1 — a0 /n)?

= VnT,0, (@) Op (}5%) = op(1).

At last for S(? , it’s clear that

Z Sy Z 76" — 0° st ()18 (81 — 0% (1 - al) /n)?
16/1/ IGJV

ZZ +o0,(1

le/V

where %(f) _ Méi(f) _ 90,(5))/52,(6) (997(4))—152,(6)(91_(5) — %) (1— a?i/n)z‘

1

(f )_
Then by the central limit theorem, we have ['(*) \[ Yier N P 40,(1)~N(0,1).
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Lemma B.21. Under Assumptions 3.1%, 3.2 and 3.8, we have |f‘(€)| — oo under

Hy if T Fie NP —

Proof Noting that 91.0’([) =000 4 cl@), we have

éi(ﬁ) _p0) — (éi(f) _ 99,(6)) —( o) _ éo,(e)) 4 91_07(6) _ g0

Then

m=4
In the proof of Lemma B.20, we have already shown that
8§
Z ’4 " _.N(0,1) and ‘ Y 801 =0,(1), m=5,6.
16/1/ 16/1/
As for Sl(7) , we can show that
L ya_ T (07 8(0) () ~18(6) (0
— Sy = ) S
\/ﬁ[GZJV i,7 \/ﬁle,Z/VCl i ( i ) ( 11 /n)
_ T (07 0.(6) (0.0 ~1¢0.(8) (O) (| _ ton(l
\/ﬁie/ i ii ( i ) i € ( (lu/l’l) OP( ):|
T, _
> TE Y D512 OO || (1 atym) +op(1>}
iEJV
Y \ H Hﬂz-”)H ,,
0]?
Ty G )2
— -t 1
\/ﬁig’V ‘S?l(e)_l ‘2“9?7( H op(1)
1 T; [ 0)||?
> 5 — Z ¢ H +0p(1)] — oo at a rate faster than (log.
max;c_y 71” HQ?’(Z)H v & ’ 2
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O & and a9, the fifth

where the second line is by the uniform convergence of §;;”, € i

0
line 1s by the fact that max;c_s |% | = 0,(1) and the last line draws from the assump-
tion that % Yier Hclw |12/(1ogN)'/2 — co. Following this, by Cauchy’s inequality,

we also observe that

14

1 A(
\/ﬁiez,/’if "

=

1 a0 |1 &(0) 1 &(0)
<2,/— S; — S: =o0,| — S,
— \/\/EIGZJV lA\/\/ﬁiezjy i,7 14 \/ﬁzezjl/ i,7
1

&) 1 a0y |1 a(0) 1 a(0)
Sl <2, /=Y 82, [—= Y §Y =0, — ¥ 8.
V& » \/\/ﬁie/ . \/ﬁiez/i/ T (ﬁl;V ’7>

Combining arguments above, we obtain that [[©)] /(log N)!/? — oo, (]

g

B.S5 Algorithm for Nuclear Norm Regularization

To solve the optimization problem in (3.3), there are different algorithms in
the literature such as the Alternating Direction Method of Multipliers (ADMM)
algorithm and the singular value thresholding (SVT) procedure. Wang et al. (2022)
provide the ADMM algorithm based on the quantile regression framework, which
can be easily extended to the linear conditional mean regression framework. In this
section, we focus on the SVT procedure for the case of low-rank estimation with
two regressors. The case of more than two regressors is self-evident.

We can iteratively use SVT estimation to obtain the nuclear norm regularized

regression estimates. Specifically, given ®; and ®,, we solve for @ with

@0(@1,@2) = arg@min ||Y X100 X000, — ®0||F + VvoNT ||@0H>)< .
0
Given ®g and ©,, we solve for ®; with
0 (@0,@2) = arg@min HY —B)—X, 00, —X]©06, HF + v INT ”®1 H* .
1
Given ®g and ®;, we solve for ®; with
@2(@0,@1) = arg@min ||Y —B0)—X100;—-X,0 ®2||F +WNT ||®2||* .
2
Specifically, the algorithm goes as follows:
Step 1: initialize @9, ©; and @ to be O}, ®{ and ®} and set k = 1.

Step 2: let

®](§+1 :Sw (Y—X] @@I]C—XQG)@S),
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O = Sy ur (@’; X (Xl o0k —y + ekt +X2®®§>) ,
2
@)S_H = SNt (@S —1X® (Xz@@é —Y+®]6+1 + X ®®If+l)) ,
—3
k=k+1,

where 7 is the step size, and S) (M) is the singular value operator for any matrix
M and fixed parameter A. By SVD, we have M = UyDyV,;. Define Dy, ; by
replacing the diagonal entry Dy ;; of Dy by max(Dyy ;i —A,0), and then let Sy (M) =
UnDy 3 V.
Step 3: repeat step 2 until convergence.

We can follow Chernozhukov et al. (2019), which gives the expression to pin
down 7. Besides, Proposition 2.1 in Chernozhukov et al. (2019) also shows the

convergence for the above algorithm.
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