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Document Graph Representation Learning

Ce Zhang

Abstract

Much of the data on the Web can be represented in a graph structure, ranging from social and

biological to academic and Web page graphs, etc. Graph analysis recently attracts escalating

research attention due to its importance and wide applicability. Diverse problems could be for-

mulated as graph tasks, such as text classification and information retrieval. As the primary

information is the inherent structure of the graph itself, one promising direction known as the

graph representation learning problem is to learn the representation of each node, which could

in turn fuel tasks such as node classification, node clustering, and link prediction.

As a specific graph data, documents are usually connected in a graph structure. For example,

Google Web pages hyperlink to other related pages, academic papers cite other papers, Face-

book user profiles are connected as a social network, news articles with similar tags are linked

together, etc. We call such data document graph or document network. To better make sense of

the meaning within these text documents, researchers develop neural topic models. By modeling

both textual content within documents and connectivity across documents, we can discover more

interpretable topics to understand the corpus and better fulfill real-world applications, such as

Web page searching, news article classification, academic paper indexing, and friend recommen-

dation based on user profiles, etc. However, traditional topic models explore the content only,

ignoring the connectivity. In this dissertation, we aim to develop models for document graph

representation learning.

First, we investigate the extension of Auto-Encoders, a family of shallow topic models. In-

tuitively, connected documents tend to share similar latent topics. Thus, we allow Auto-Encoder

to extract topics of the input document and reconstruct its adjacent neighbors. This allows doc-
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uments in a network to collaboratively learn from one another, such that close neighbors would

have similar representations in the topic space. Extensive experiments verify the effectiveness of

our proposed model against both graphical and neural baselines.

Second, we focus on dynamic modeling of document networks. In many real-world scenar-

ios, documents are published in a sequence and are associated with timestamps. For example,

academic papers published over the years exhibit the development of research topics. To incor-

porate such temporal information, we introduce a neural topic model aimed at learning unified

topic distributions that incorporate both document dynamics and network structure.

Third, we discover that documents are usually associated with authors. For example, news

reports have journalists specializing in writing certain type of events, academic papers have au-

thors with expertise in certain research topics, etc. Modeling authorship information could ben-

efit topic modeling, since documents by the same authors tend to reveal similar semantics. This

observation also holds for documents published on the same venues. We propose a Variational

Graph Author Topic Model for documents to integrate both topic modeling and authorship and

venue modeling into a unified framework.

Fourth, most previous topic models treat documents of different lengths uniformly, assuming

that each document is sufficiently informative. However, shorter documents may have only a few

word co-occurrences, resulting in inferior topic quality. Some other previous works assume that

all documents are short, and leverage external auxiliary data, e.g., pretrained word embeddings

and document connectivity. Orthogonal to existing works, we remedy this problem within the

corpus itself by meta-learning and proposing a Meta-Complement Topic Model, which improves

topic quality of short texts by transferring the semantic knowledge learned on long documents to

complement semantically limited short texts.

Fifth, we explore the modeling of short texts on the graph. Text embedding models usually

rely on word co-occurrences within the documents to learn effective representations. However,

short texts with only a few words may influence the learning process. To accurately discover the

main topics of these short documents, we propose a new statistical concept, i.e., optimal transport
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barycenter, to incorporate external knowledge, such as pre-trained word embedding on a large

corpus, to improve topic modeling. The proposed model shows state-of-the-art performance.
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T a set of timestamps used in Chapter 4, T = {ti}Nt=1.

zi topic distribution of document i used in all chapters, zi ∈ RK .

K number of topics used in all chapters.

aij attention value between document i and j used in all chapters.

ht time embedding of timestamp t used in Chapter 4, ht ∈ R2K .

C cost matrix of time-aware OT used in Chapter 4, C ∈ RT×K×|V|

P transport plan of time-aware OT used in Chapter 4

gtk topic embedding of topic k at timestamp t used in Chapter 4
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ew word embedding of word w used in Chapter 4 and 7

A a set of authors used in Chapter 5.

V a set of publication venues used in Chapter 5.

X edge connections among documents used in Chapter 5.

G a hierarchical multi-layered document graph based on corpus C used in Chapter 5.

U a set of vertices of G used in Chapter 5, we have U = D ∪W ∪A ∪ V .

E a set of edges of G used in Chapter 5, we have X ⊆ E .

O a set of vertex types used in Chapter 5.

T a set of edge types used in Chapter 5.

q(zi) variational posterior distribution of vertex i used in Chapter 5.

log p(·|·) log-likelihood of generation, or reconstruction term used in Chapter 5.

p(z) predefined prior distribution used in Chapter 5.

R divergence metric used in Chapter 5.

ld length of document d used in Chapter 6.

H a set of pretrained word embeddings used in Chapter 6.

hw pretrained word embedding of word w used in Chapter 6.

Dlong the subset of long documents in corpus D used in Chapter 6.

Dshort the subset of short documents in corpus D used in Chapter 6.

Td the task of document d used in Chapter 6, i.e., generating observed words of d

Sd a set of support words of document d used in Chapter 6.

Qd a set of query words of document d used in Chapter 6.

θ a collection of parameters of encoder fθ used in Chapter 6.

md missing semantics of document d used in Chapter 6.

µ a collection of parameters of semantics prediction function gµ used in Chapter 6.

SN (d) a set of support neighbors of document d used in Chapter 6.

QN (d) a set of query neighbors of document d used in Chapter 6.
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tk topic embedding of topic k used in Chapter 7.

εi adjacency vector or neighbor distribution of document i used in Chapter 7, εi ∈ RN

si structure embedding of document i used in Chapter 7.

Table 1: Notations.
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Chapter 1

Introduction

1.1 Document Networks

Graph refers to a data type with vertices and links connecting them. Much of the data on the

Web can be represented in a graph structure, ranging from social and biological to academic

and Web page graphs, etc. By analyzing the structural topology of graph connectivity and the

attributes within vertices, we are able to apply graph analysis in many real-world scenarios, text

classification and information retrieval. To achieve these goals, one promising direction of recent

deep learning techniques is called graph representation learning, i.e., learning the representation

of each node by preserving its graph structure and attributes, which could in turn fuel tasks such

as node classification, node clustering, and link prediction.

As a specific type of graph, text documents are usually interconnected in a graph structure.

For example, Google Web pages are connected in a hyperlink network, academic papers consti-

tute a citation network, Facebook user profiles are connected in a social network, news articles

with similar tags are linked in a tag sharing network, etc. We call such data document graph

or document network. Accurately understanding the main topics within documents can help in

efficiently organizing the explosion of documents we encounter every day, such as Web page

searching, academic paper indexing, friend recommendation based on user profiles, news arti-
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cle classification, etc. Document embedding is a popular deep learning method to achieve this

goal. We encode documents from high-dimensional vocabulary space into a low-dimensional

embedding space and preserve their semantic similarity, so that documents describing similar

content are embedded closely, while distinct documents are separated. As one important cat-

egory of document embedding method, neural topic modeling represents each document as a

low-dimensional topic distribution, and each topic is interpreted by a group of keywords.

Intuitively, two linked documents on the graph are likely to share similar topics, e.g., cited

papers tend to discuss similar research problems. Graph connectivity reveals such document

similarities, and modeling it could uncover meaningful insights. However, most previous topic

models deal with the plain text within each document only, without considering graph connec-

tivity among documents. To this end, we are motivated to propose neural topic models for

networked documents to derive topic distributions for documents that preserve both text content

and graph structure. By modeling both information, such unified representations would lead to

more interpretable topics and better fulfill real-world applications, such as document searching,

indexing, recommendation, and classification.

The first challenge is to model both textual content and graph connectivity. We will present

the technical details of how to extend Auto-Encoders to achieve this goal at Chapter 3. In many

real-world scenarios, documents are always associated with timestamps representing their cre-

ation time, e.g., academic papers have publication time, Web pages contain released time, etc.

Modeling such temporal document networks would reveal how topics of documents evolve over

the time and help us better understand the dynamic process of the corpus. We will explain the

details of modeling time information at Chapter 4. We also observe that a document is usually

associated with authors. For example, news reports have journalists specializing in writing a cer-

tain category of events; scientific papers have authors with expertise in certain research topics.

Modeling authors could benefit the quality of document representations and the interpretability

of a topic model, since documents by the same authors reveal similar semantics, and author-
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ship could connect these documents and jointly infer their topics. This observation also holds

for venues, e.g., papers from the same journal exhibit similar research areas. We will present

the details of authorship modeling at Chapter 5. As another scenario, sometimes documents are

quite short and contain only a few words, e.g., the titles of academic papers and news articles

are sometimes the only observed content. It is challenging to accurately learn topics of those

short texts on the graph due to limited text information. To alleviate such a problem, we respec-

tively explore the effectiveness of meta-learning and pre-trained word embeddings for short text

modeling on document networks at Chapter 6 and 7. Below we detail the challenges and the

approaches we propose.

1.2 Challenges, Approaches, and Contributions

In this section, we point out the challenges of existing works, briefly describe the approaches we

will adopt to improve current methods, and state the contributions of this dissertation. See Fig.

1.1 for an overview of this dissertation.

Auto-Encoder for Document Network Modeling

Since documents are connected in a network structure, the foremost research problem is to derive

a neural topic model and preserve both textual content and network connectivity.

Challenges. We point out two challenges of existing works. First, most methods, such as

PLSA [30] and LDA [6], focus on plain text but ignore the adjacency structure, which reveals

the relationship across documents. Modeling the latter would uncover meaningful insight into

latent semantics. Second, although there do exist topic models for networked documents, graph-

ical models [10, 59] typically require a manual design of parameter estimation algorithms (e.g.,

variational inference and EM algorithm [4]), which limits the model flexibility.

Approaches. We are thus motivated to develop a neural topic model for networked doc-
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Plain Text Topic Modeling
(LDA, NVDM, GATON, etc.)

Relational Topic Modeling
Chapter 3

Topic Modeling

Author Topic Modeling
Chapter 5

Dynamic Topic Modeling
Chapter 4

Short Text Topic Modeling
Chapter 6 and 7

Figure 1.1: Overview of dissertation.

uments. We propose an approach called Adjacent-Encoder, whose key distinction is to also

reconstruct the neighbors of the input document, in addition to the document itself. Hypothet-

ically, this allows documents in a network to collaboratively learn from one another, such that

close neighbors would have similar representations in the topic space. The realization of this

principle leads to novel structures within the Adjacent-Encoder architecture.

Contributions. Correspondingly, for this document network modeling problem, we make

the following contributions. First, we propose two novel architectures, Adjacent-Encoder and

Adjacent-Encoder-X, as unsupervised topic models for document networks. Second, we system-

atically incorporate network structure in two ways, neighbor competition for topic propagation

and neighbor reconstruction for semantic capture. Moreover, Adjacent-Encoder-X also inves-

tigates reconstruction of textual content and network structure. Third, we compare our models

quantitatively and qualitatively against baselines of neural and graphical varieties on several eval-

uation metrics. Fourth, beyond showing improvements over comparable baselines, we investi-

gate the complementarity and improved effectiveness of neighbor competition and reconstruction

when combined with other architectural extensions such as denoising, contractive, and sparsity.
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Our approaches and contributions lead to the following publication:

Topic Modeling on Document Networks with Adjacent-Encoder

Ce Zhang and Hady W. Lauw

Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI-20)

Dynamic Topic Models for Temporal Document Networks

Where a document is associated with a timestamp representing its ‘creation’ time, the themes in

a corpus may evolve over time. For examples, academic papers published over the years exhibit

the development of research topics, chronologically released news articles present the change

of storyline or events, etc. Capturing the dynamics in a sequentially organized corpus helps us

better understand the evolution of topics. Dynamic topic model [5] is one such early attempt.

In many cases, text documents also link to one another in a network structure, e.g., newly

published papers contain citations to existing papers, recent news articles hyperlink to older

news. Modeling time could better preserve text semantics and network topology. Moreover,

time also reveals the possibility of connection. Indicatively, newly published documents are

likely to connect to recent neighbors rather than previous ones. However, existing topic models

for document networks, e.g., RTM [10], focus on the static scenario and do not seek to preserve

temporal evolution. As a result, it may predict a past link using links established in future time.

Challenges. We point out two challenges to existing methods in modeling dynamic docu-

ment networks. First, models for networked documents [10] mainly focus on static networks

without considering chronological events. Dynamic process showcases topic evolution and net-

work generation over the time. By modeling it, we may better preserve text semantics and

network topology. Second, most topic models [2, 10] preserve network structure by modeling

its first-order neighborhood only, which could not make full use of network adjacency. The

establishment of a link between two documents may be influenced by their common historical

neighbors, which represent higher-order proximity. To tackle these challenges, we propose a
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neural topic model for dynamic document networks that jointly preserves document dynamics

and network adjacency.

Approaches. Optimal Transport (OT) [14] measures the distance between two probability

distributions and has been successfully adopted by topic modeling in significantly improving

topic coherence [33, 98, 118], but none has explored OT in a dynamic setting. In this work,

we incorporate temporal information into OT and propose two neural topic models, NetDTM

and NetDTM++, for Dynamic Topic Modeling on Networked documents. Specifically, for Net-

DTM, in addition to the topic and word dimension, we add one more time dimension to OT

and develop a Time-Aware Optimal Transport, which measures the probability of a link between

two differently timestamped documents using their semantic distance. OT benefits our model by

incorporating semantically related word embeddings in cost matrix. Besides the semantic-level

modeling by NetDTM, we discover that the generation of a link is also influenced by the evolving

topological structure of network. While NetDTM accounts for semantic modeling, we further

propose NetDTM++ for network-level modeling, which designs a Temporal Point Process to

capture the impact of network structure on the current link.

Contributions. We make the following contributions. First, we propose NetDTM and Net-

DTM++, which learn unified topic distributions to jointly preserve both document dynamics and

network connectivity. Second, for NetDTM, by adding one more time dimension to optimal

transport, we propose Time-Aware Optimal Transport to measure the distance between two dif-

ferently timestamped documents for semantic modeling. Third, to model the effect of historical

neighbors at the network level, for NetDTM++, we further encapsulate OT into a Temporal Point

Process. Fourth, extensive experiments demonstrate the advantage of our models over baselines.

We formulate above approaches and contributions into the following publication:

Dynamic Topic Models on Temporal Document Networks

Delvin Ce Zhang and Hady W. Lauw

Proceedings of the 39th International Conference on Machine Learning (ICML-22)
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Graph Neural Networks for Authors Topic Modeling

We observe that a document is usually associated with authors. For example, news reports have

journalists specializing in writing a certain category of events; scientific papers have authors

with expertise in certain research topics. Modeling authors could benefit the quality of document

representations and the interpretability of a topic model, since documents by the same authors

reveal similar semantics, and authorship could connect these documents and jointly infer their

topics. This observation also holds for venues, e.g., papers from the same journal exhibit similar

research areas. However, traditional topic models, e.g., LDA [6], infer topics based on plain text

only, without auxiliary authorship or venues.

Challenges. Most existing graph neural networks for text embedding, e.g., TextGCN [103],

lack topic modeling, leading to uninterpretable representations. Although there exist a few stud-

ies [20, 91] modeling the concept of topics, topics are learned in advance by existing models

to construct the graph, independently from graph convolution. In contrast, our proposed model

integrates both VGAE and topic modeling into a unified architecture where the learned topic

proportions of documents enjoy semantic interpretability.

Some works recognize the value of topic modeling. However, models, e.g., LDA [6] and

the recent GATON [100], ignore authorship and venues of documents. Authorship and venues

indicate semantic similarities, and modeling them could uncover meaningful topics.

Author topic models, e.g., ATM [73] and ACT [78], consider authorship and venues. How-

ever, they mainly infer topics for authors and fail to also learn topics for documents. As a result,

automatically organizing documents, e.g., classification, remains unsolved.

Approach. Motivated by above challenges, we design Variational Graph Author Topic

Model (VGATM) to achieve both semantic interpretability and authorship (venue) modeling.

Specifically, we extend VGAE and unify it with topic modeling. For authorship and venue mod-

eling, we design a document layer, an author layer, and a venue layer, and construct a hierarchical

multi-layered document graph as the corpus. For semantic interpretability, we model three word
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relations (contextual, syntactic, and semantic) as three word sub-layers. Topics are propagated

both within each layer to capture graph structure and across different layers for semantic learning.

In addition, we also investigate the variational divergence term in our model, which acts as

the prior. We propose three alternatives: i) Gaussian prior with KL divergence; ii) Dirichlet prior

with KL divergence; and iii) Gaussian prior with Wasserstein distance.

Contributions. First, we propose VGATM unifying VGAE and topic model to jointly

achieve semantic interpretability and authorship modeling. Our model also accommodates pub-

lication venues of documents. For semantic interpretability, we construct a three word sub-layers

to describe contextual, syntactic, and semantic word relations. Second, to model authorship and

venues, we design a hierarchical multi-layered document graph, and simulate intra- and cross-

layer topic propagation to integrate auxiliary data into documents’ topic proportions. Third, we

propose three design alternatives for variation divergence to improve topic modeling. The pro-

posed method leads to the following publication:

Variational Graph Author Topic Modeling

Delvin Ce Zhang and Hady W. Lauw

Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining

(KDD-22)

Meta-Learning for Short Text Topic Modeling

The quality of topic distribution of each document depends on sufficient word co-occurrences.

However, many real-world corpora contain documents of variable lengths. Academic papers

vary from journal manuscripts to conference papers to extended abstracts. News articles could

be headlines, short or full articles, or detailed commentaries. Despite variable lengths (with

different degrees of sufficiency of word co-occurrences), existing works, e.g., ProdLDA [76] and

GATON [100], treat documents uniformly, resulting in inferior topic quality for short texts.

Challenges. Most existing topic models optimize the learning process by averaging the gen-
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erative losses of different documents, without paying special attention to semantically limited

short texts. A few studies, e.g., OTLDA [33], take weighted summation of losses based on doc-

ument lengths, they compute the weights by dividing the length of each document by the length

of the whole corpus, which further deemphasizes the importance of short text modeling. Thus,

we seek to improve short text topic modeling within a variable-length corpus, without hurting

topic quality of long documents.

To mitigate the scarcity of word co-occurrences in short texts, some works leverage auxiliary

knowledge to enhance topic modeling. ETM [19] exploits pretrained word embeddings [61,

68] to capture word similarities. RTM [10] constructs a document network, e.g., paper citation

network, to aggregate topics of connected documents. However, they rely on the availability of

auxiliary data.

Approach. We propose Meta-Complement Topic Model (MCTM). Since a corpus contains

variable lengths of documents, we are motivated to learn the transferable semantic knowledge on

long documents, and complement the semantics-scarce short texts and enhance the latter’s topic

distributions. Since meta-learning [23] is emerging to improve model performance with few

labeled observations, but no one explores its design in topic modeling. We are thus motivated to

integrate it and optimize the proposed MCTM by a meta-learning objective.

Orthogonal to existing works relying on auxiliary data, our framework is self-contained,

assuming only in-corpus information, which offers a new direction to improve short text topic

modeling. When auxiliary data are available, our framework can be further improved by flexibly

incorporating them. In particular, when incorporating document network structure, we discover

that document degrees also exhibit a similar long-tail distribution, i.e., some structure-abundant

documents link to sufficient neighbors as auxiliary, while others contain scarce links.

Contributions. Our contributions are as follows. First, we propose MCTM, which learns

how to complement textual semantics by semantic knowledge transfer. Second, we derive two

alternatives to implement missing semantics prediction function to capture document similari-
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ties. Third, although agnostic to auxiliary data, MCTM can also flexibly integrate them to further

improve the performance. We demonstrate our adaptability by modeling pretrained word embed-

dings and document networks. For the latter, we extend MCTM to further complement structural

semantics. Fourth, extensive experiments verify the effectiveness of MCTM. We organize the

proposed research idea into the following publication:

Meta-Complementing the Semantics of Short Texts in Neural Topic Models

Delvin Ce Zhang and Hady W. Lauw

Proceedings of the 36th Conference on Neural Information Processing Systems (NeurIPS-22)

Optimal Transport Barycenter for Short Text Topic Modeling

Topic modeling replies on word co-occurrences within documents to learn effective topic dis-

tributions. Words that frequently co-occur with each other tend to reveal consistent topics, and

different topics represent distinct word co-occurrence patterns. However, when documents are

quite short with only a few words, accurately discovering latent topics becomes extremely chal-

lenging. For example, the title of Google Web pages and news articles usually contains less than

20 words; the abstract of academic papers usually has less than 100 words.

Therefore, the challenge of existing works is that models for networked documents (e.g.,

NRTM [2]) tend to deteriorate for shorter documents with fewer word co-occurrences, resulting

in less interpretable topics and worse task performances.

Approaches. Pre-trained word embeddings, such as word2vec [61] and GloVe [68], on

an external large corpus (Wikipedia and Google pages) preserve semantic similarity and word

co-occurrence patterns. Words that frequently co-occur or present similar context are embed-

ded closely. Even though two words do not co-occur within the same document, their similar

word embeddings would allow one topic to activate both of them simultaneously. Thus, the co-

occurrence pattern is still captured by external knowledge, and topic quality can be improved.

By incorporating pre-trained word embeddings as auxiliary information into topic modeling, we
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are able to alleviate the short text problem.

Recently, Optimal Transport (OT) [14] has been employed on machine learning problems and

achieved promising performance, including generative [33] and neural topic modeling [118]. But

no existing such method explores the modeling of document connectivity. Therefore, for network

structure modeling, we are motivated to develop neural topic model built on the theory of Op-

timal Transport Barycenter [15]. Unlike conventional topic models that leverage a document’s

topic distribution to generate its own observed content, OT barycenter naturally allows the topic

distribution of a document to generate the content of not only itself, but also its linked neigh-

bors. Such mechanism matches the intuition that if two linked documents share similar topics,

it is possible to use topic distribution of one document to generate the content of the other, even

though their observed texts are different.

For semantic interpretability, we extend the cost matrix of optimal transport and incorporate

pre-trained word embeddings, which lead to interpretable topics even when text documents are

short with a few word co-occurrences. Since Dirichlet prior distribution in LDA [6] successfully

improves topic quality, we are also motivated to investigate Dirichlet as an optimal transport

prior distribution to further boost topic interpretability.

In this chapter, we extend Variational Graph Auto-Encoder (VGAE) [40], a specific vari-

ant of GNNs, and integrate these modeling approaches into a unified framework, named DBN

for Dirichlet Optimal Transport Barycenter for Document Networks, which captures document

network connectivity, and the learned topic distributions enjoy semantic interpretability.

Contributions. Our contributions are as follows. First, we propose DBN, a VGAE topic

model that unifies document network modeling and semantic interpretability into a joint graph

neural network framework. Second, to model network structure, we propose Optimal Transport

Barycenter, which induces barycentric topic distributions of documents by generating observed

content of network neighbors. Third, for semantic interpretability, we extend the cost matrix of

optimal transport by incorporating pre-trained semantically related word embeddings. We further
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propose Dirichlet distribution as an optimal transport prior to boost topic quality. We organize

the above approaches and contributions into the following submission:

Topic Modeling on Document Networks with Dirichlet Optimal Transport Barycenter

Delvin Ce Zhang and Hady W. Lauw

Being reviewed
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Chapter 2

Related Work

2.1 Graph Representation Learning

Homogeneous Graphs. Homogeneous networks are those with one single type of vertices and

links. DeepWalk [69] generates random walk on the network as corpus and applies skip-gram

model to train the nodes. Node2vec [27] extends DeepWalk by simulating biased random walk

to explore diverse neighborhoods. LINE [77] learns node representations by preserving first- and

second-order proximities. GraRep [9] generalizes LINE to incorporate higher-order proximities,

but may not scale efficiently to very large networks. There are also some methods focusing on

temporal graph embedding [54, 123].

Meanwhile, graph neural networks represent an important class of models for graph-structured

data. GCN [39] extends CNN [43] and leverages convolution operation on graphs to aggregate

neighboring information to learn node embeddings. GAT [83]) designs multi-head attention

mechanism to evaluate different importance of neighbors. GraphSAGE [29] proposes several

aggregators to support inductive node representation learning. Recent works exploit more struc-

tural information on graphs, such as graph isomorphism [99] and node positions [105]. Varia-

tional Graph Auto-Encoder (VGAE) [40] extends VAE [38] where Graph Convolutional Network

(GCN) [39] is the vertex encoder. ARVGA [65] improves VGAE by adversarial training. DG-
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VAE [49] replaces Gaussian prior with Dirichlet. Graphite [28] extends the decoder of VGAE

by an iterative graph refinement strategy. CGVAE [51] investigates the application in chem-

istry. MLHNE [110] constructs a multi-layered graph. TGAT [16] models dynamic process of a

temporal graph.

Graph neural networks (GNNs) learning text embeddings are also proposed. TextGCN [103]

designs a document-word graph and applies GCN to learn text embeddings for text classification.

It is further extended by TensorGCN [39] to incorporate sequential, syntactic, and semantic

word relationships. TextING [116] and HyperGAT [20] support inductive text embedding by

designing graph for each individual document. There are also GNNs designed for topic modeling

on graphs. GATON [100] applies GCN on a bipartite graph for topic modeling. GraphBTM

[121] improves biterm topic model using graphs. GTNN [94] extends GATON for a two-layered

network. TVGAE [95] extends VGAE [40] for topic modeling. Similar works also include

DHTG [91], GRTM [93], LANTM [90], GNCTM [96], MCTM [109], etc.

Heterogeneous Graphs. Some heterogeneous network models leverage meta-path-based

random walks to capture network semantics, such as Metapath2vec [21] and HIN2vec [25]. The

applications of meta-path-based models (e.g., recommender systems) are also widely studied

[74]. Some of them simulate meta-paths of specified schemes on each network to preserve

complex semantics. There also exist some methods that do not require specific meta-paths, such

as HeGAN [31], which utilizes GAN [26] to generate fake nodes to train discriminator. More

recently, Graph Neural Networks have been successfully applied to attributed heterogeneous

networks with satisfactory results [89].

Multi-layered networks, as a set of interdependent network layers, are a another category

of heterogeneous networks. They appear in real-world scenarios including recommender and

academic systems, cross-platform social networks, etc. Previous works focus on cross-layer

links inference [11, 12] and network ranking [64]. MANE [48] studies representation learning on

multi-layered networks by seeking low-dimensional node embeddings by modeling each intra-
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and cross-layer links. MLHNE [110] extends MANE by modeling higher-order proximities.

2.2 Neural Topic Modeling

Auto-Encoders. There are architectural variants to Auto-Encoder that have been shown to im-

prove the performance of topic modeling. Denoising Auto-Encoder (DAE) [84] adds random

noise to the input document and reconstructs its original content to learn useful patterns while

avoiding overfitting. Contractive Auto-Encoder (CAE) [72] introduces the Frobenius norm of

Jacobian matrix to the loss function for regularization. K-Sparse Auto-Encoder (KSAE) [55]

and K-Competitive Auto-Encoder (KATE) [13] force topics to be sparse by keeping the values

of only k hidden neurons and zeroing others. Variational Auto-Encoder (VAE) [38] makes use of

variational inference to learn topics in a generative approach. Motivated by the powerful frame-

work of VAE, subsequent research is conducted for the development of neural topic modeling.

ProdLDA [76] uses product of experts to generate words in contrast to LDA’s mixture assump-

tion. DVAE [8] proposes to use Dirichlet distribution as prior to increase topic sparsity, WHAI

[115] applies Gamma distribution, and NVDM [60] adopts Gaussian distribution. GTM [119]

explores higher-order word co-occurrences for topic modeling.

Word Embedding Based Topic Models. Short documents or short texts generally have

fewer words than long documents. This makes topic modeling more challenging, since the given

texts are too limited to infer high-quality topics. To alleviate the sparsity in short documents,

some topic models incorporate pre-trained word embeddings, such as word2vec [61] and GloVe

[68], to improve semantic learning. Previously, such methods are mainly the extensions of LDA

[6]. They use word embeddings and topic embeddings to define topic-word distribution. GLDA

[17] generates each word using a Gaussian distribution defined by topic and word embeddings.

LCTM [32] reveals topics by the co-occurrence of latent concepts. GPUMM [47] improves the

modeling by a Dirichlet Multinomial Mixture model. MetaLDA [117] converts word embeddings

to binary encoding format and treats them as a general meta information. In addition to the
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graphical generative models, neural models based on VAE are also developed. The recent neural

model ETM [19] injects word embeddings into the decoding of VAE.

Optimal Transport Based Topic Models. There are only a few works that develop genera-

tive and neural topic models on optimal transport [14]. To our knowledge, the recently proposed

NSTM [118] is the only neural model, which minimizes topic distribution and word distribution

by OT distance. Again, it does not model document adjacency. DWL [98] and OTLDA [33] are

generative models. DWL is mainly designed to embed codes of international classification of

diseases, while our models are for general topic modeling. Both DWL and OTLDA apply OT in

the word space only, while ours integrate OT in topic, word, and structure spaces. Other models

[63, 66, 80] leverage OT to measure the distance between the generated distribution and the true

distribution. All above methods model plain text only.

Dynamic Topic Models. For documents with timestamps representing their publication time,

dynamic models leverage time information to improve topic modeling. The pioneering method

is DTM [5], which uses a Markov chain [4] to capture semantic evolution. cDTM [88] improves

DTM by Brownian motion for continuous time modeling. DETM [18] is a neural model that

injects word embeddings into the decoding process. MDTM [34] allows online update of its

dynamic parameters. Others [3, 35] speed up the inference process by sampling methods. While

these models incorporate time information for dynamic modeling, they ignore the network ad-

jacency across documents. NetDTM [113] is the first to incorporate both document network

connectivity and time information for topic modeling.

Author Topic Models. Author Topic Model (ATM) [73] derives topics for authors. ACT

[78] improves ATM by modeling venues. CAT [81] further models paper citations. They do not

infer topics for documents. CNTM [50] infers topics for both documents and authors, but fails

to consider venues. VGATM [114] is the first to model authors and venues, and meanwhile learn

topic distributions for documents.

Supervised Topic Models. Supervised and semi-supervised topic models are those methods
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that embed both textual content and document labels and produce label-dependent topic distribu-

tions. sLDA [57] is designed with a regression component and supervised by numerical values.

Other models, such as DiscLDA [41], modify topic distributions for categorical label supervi-

sion. LabeledLDA [70] is proposed for multi-label documents, while PLDA [71] is for partially

labeled documents. MedLDA [120] integrates the max-margin concept into supervised topic

models. These mentioned methods are based on graphical models. SemiVAE [37] and MVAE

[92] are based on Auto-Encoder, a neural topic model.

Document Network Models. There are some models for networked documents. NetPLSA

[59], RTM [10], and PLANE [42] are graphical models. They use topic distributions of two

documents to generate the link between them. NRTM [2] is a neural model that applies VAE to

encode documents and multi-layer perceptron [4] to predict the links. Adjacent-Encoder [107]

captures network structure by neighbor reconstruction. They model the effect of network, but

ignore the dynamic process of network generation. SemiVN [111] explores supervised learning

on document networks.

Others. Some topic models discover topics of documents based on document comparison.

CompareLDA [79] is designed for single-aspect pairwise document comparisons, while MALIC

[112] is for multi-aspect listwise document comparisons. Some other models [67, 106] aim

at discovering common topics across multiple collections of documents and collection-specific

topics.

Meta-Learning. Here, we also briefly review meta-learning works. One category is metric-

based, e.g., ProtoNet [75] and MatchingNet [86], which learn a metric function over tasks.

Gradient-based meta-learning works optimize model parameters for quick adaptation to new

tasks [23, 24, 44, 87, 101, 102, 104].
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Chapter 3

Auto-Encoder for Document Network

Modeling

3.1 Introduction

In this chapter, we investigate neural topic models not for plain-text documents per se, but for

networked documents. In addition to textual content, oftentimes documents link to one another

in a network structure. For example, academic papers form a citation network, Web pages form

a hyperlink network. Many previous works on topic modeling focus on textual content of docu-

ments; some do incorporate the network structure to jointly learn representations, such as RTM

[10]. To this end, novel approaches to unsupervised topic modeling for document networks are

germane, because of their importance and wide applicability.

Definition 3.1.1 (Document Network). Let G = (D, E) be a given document network. D =

{di}Ni=1 is a corpus of documents, where each document di ∈ R|V | is a vector in the vocabulary

space V . N is the total number of documents in the corpus. In turn, the adjacency matrix

E ∈ RN×N is a 0-1 matrix where εij = 1 indicates document i links to j, and εij = 0 otherwise.

Here we model an undirected network, i.e., εij = εji and E = E⊤, though the proposed models

could generalize to directed networks as well. We would use edge and link interchangeably. For
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a document i, its neighbors are those directly linked to i. For simplicity, we use N (i) to denote

i’s neighbor set. The definition of neighborhood here is reflexive, i.e., we also regard i as its own

neighbor, i ∈ N (i) and εii = 1.

Given G as input, our aim is to embed documents in G to low-dimensional topic distributions,

which preserve both textual content D and network structure E . Recent neural topic models are

based on the traditional Auto-Encoder family, which naturally embodies the notion of a topic

model, by learning the association between documents and topics (hidden neurons), as well

as topics and words. However, in seeking to reconstruct the input document, it would model

each document independently and disregard the network structure in G. To deal with networked

documents, we propose an approach called Adjacent-Encoder, whose key distinction is to also

reconstruct the neighbors of the input document, in addition to the document itself.

• Neighbor Competition: Neighbors contribute information differentially. In the encoding

phase, we evaluate attentions between the target document and its neighbors. In turn,

neighbors propagate topics to the target document.

• Neighbor Reconstruction: In the decoding phase, the target document reconstructs the

contents of its adjacent neighbors. This increases the robustness and invariance of topic

representations with respect to output documents, while also incorporating the neighbor-

hood structure without additional parameters over those of Auto-Encoders.

Beyond reconstructing the content of neighbors, it is feasible to reconstruct their neighborhood

structure as well. This factors in higher-order proximities by modeling the adjacency matrix

explicitly. We realize this in an extension Adjacent-Encoder-X, which jointly embeds content

and network structure in a unified manner.
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Figure 3.1: Comparison among Auto-Encoder, Adjacent-Encoder, and Adjacent-Encoder-X.

3.2 Background

We briefly review Auto-Encoder to make our contrast clear. With activation function f , we learn

hidden representation zi for the input document i at the encoder: zi = f(Wdi + b). The decoder

reconstructs the original content of the input document by d̂i = f ′(W′zi + c). Here b ∈ RK

and c ∈ R|V| are biases, W ∈ RK×|V| and W′ ∈ R|V|×K are encoder and decoder parameters.

Typically we use weight tying (W′ = W⊤) as regularization. V is vocabulary, and K is the

number of hidden neurons, or the number of topics. By minimizing the reconstruction error, we

obtain zi as topic representations.

3.3 Model Architecture and Analysis

In this section, we describe the technical details of our proposed models, Adjacent-Encoder and

Adjacent-Encoder-X.

3.3.1 Adjacent-Encoder

Fig. 3.1 contrasts our proposed models Adjacent-Encoder (Fig. 3.1(b)) and Adjacent-Encoder-X

(Fig. 3.1(c)) with traditional Auto-Encoder (Fig. 3.1(a)). Here we describe Adjacent-Encoder by
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Figure 3.2: Illustration of neighbor competition, topic propagation, and neighbor reconstruction.

highlighting its constituent structures, and defer Adjacent-Encoder-X to the next section.

As a running example, we assume a toy network of 5 documents {A,B,C,D,E} as in

Fig. 3.1(b). The key principle behind Adjacent-Encoder is to have a target document, say A,

reconstruct itself and its adjacent neighbors, say B and D. This manifests via the mechanisms

illustrated in Fig. 3.2.

Neighbor Competition. The first is to allow competition among documents to assess relative

importance among neighbors. As in [13], we represent each input document as a log-normalized

word count vector d ∈ R|V|, i.e., each dimension is dw = log(1+nw)
maxw∈V log(1+nw)

where nw is the count

of word w in d. For a target document i, we learn its hidden vector zi at the feedforward phase

by zi = tanh(Wdi + b). The attention coefficients between i’s neighbors and itself are aij as

shown in Fig. 3.2(b).

ãij = z⊤i zj, aij =
exp(ãij)∑

j′∈N (i) exp(ãij′)
. (3.1)

j ∈ N (i) is a neighbor of i. The attention measures relative importance among i’s neighbors.

Links among documents indicate a shared relationship. Thus we propagate the topics of

neighbors to the target document i, which, in turn, is also a neighbor of other documents, thereby

propagating topics even further. We allow topics to flow through neighbors across the network, so

that documents collaboratively learn from one another. This procedure is driven by the following
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transformation, which is also illustrated by Fig. 3.2(c).

z̃i =
∑

j∈N (i)

aijzj. (3.2)

Neighbor Reconstruction. The content of a document is the observed reflection of its in-

ternal topics. Since we know linked documents are likely to share similar topics, we could use

topic representation z̃i of a target document to reconstruct the contents of its adjacent neigh-

bors in a “1-to-N” reconstruction manner. We adopt sigmoid as the output activation function

σ(x) = 1
1+exp(−x)

, and weight tying is used for regularization.

d̂i = σ(WT z̃i + c) (3.3)

where d̂i is the reconstruction document. We use binary cross-entropy as the loss function.

l(dj, d̂i) = −
∑
w∈V

[dj,w log(d̂i,w) + (1− dj,w) log(1− d̂i,w)]. (3.4)

Again, j ∈ N (i) is one of the adjacent neighbors. We have each target document i reconstruct

each of its neighbors, as illustrated in Fig. 3.2(d). Each document in the network takes turn as

the target document. We repeat the learning process for unsupervised training until convergence.

Reconstructing adjacent neighbors is somewhat related to Denoising Auto-Encoder (DAE),

which reconstructs a document from a noisy version of itself. Instead of noise at the input layer,

our models have a target document reconstruct adjacent neighbors, which in a way serves as

“noise” at the output layer. In our case, the “noise” is naturally introduced by the network,

instead of being a random and artificial addition to documents. The reconstruction of neighbors

allows our models to capture the case where two documents are different in observed content,

but consistent in terms of the internal topics, thus the learned topics can preserve document

semantics well. Furthermore, it also increases the robustness and invariance of the learned topics
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w.r.t. output documents.

Inference. Once our models have been trained, we simply encode each testing document

d′ by z′ = tanh(Wd′ + b). Here z′ is the topic representation of the testing document, which

preserves information of both text and network structure.

3.3.2 Adjacent-Encoder-X

The previously described Adjacent-Encoder models network structure implicitly. In this section

we propose an improved framework, Adjacent-Encoder-X, which models network structure ex-

plicitly. The distinction of these two is illustrated in Fig. 3.1. The name is inspired by the ‘X’

structure of dual observations of textual content and adjacency vector.

Neighbor Competition. Adjacency matrix E represents the network structure. The ith row

(or column) εi represents the neighborhood relationship of ith document. If two documents

have many common neighbors, their corresponding adjacency vectors are similar. Intuitively,

the more common neighbors two documents have, the more likely they share similar topics. Two

academic papers may share similar topics if both cite many of the same papers. Web pages may

be of the same category if they link to common Web pages.

Hence, we treat the adjacency vector εi as another input in addition to the textual content di.

The hidden vector of the feedforward phase can be computed by zi = tanh(W1di + W2εi + b).

Here W1 ∈ RK×|V| and W2 ∈ RK×N are parameters for textual content and adjacency vector

respectively. b ∈ RK is bias. N is the total number of documents.

The remaining process of neighbor competition for Adjacent-Encoder-X is similar to Adjacent-

Encoder. Thereafter, we obtain the aggregate hidden vector z̃i.

Neighbor Reconstruction. We still have each target document reconstruct its adjacent neigh-

bors, but now in terms of both textual content and adjacency vector.

d̂i = σ(W⊤
1 z̃i + c1), ε̂i = σ(W⊤

2 z̃i + c2) (3.5)
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Model #Parameters

Adjacent-Encoder K|V|+K + |V|
Adjacent-Encoder-X K|V|+KN +K + |V|+N
AE, DAE, CAE, KSAE, KATE K|V|+K + |V|
VAE 3K|V|+ 2K + |V|

Table 3.1: Number of parameters.

Name #Labels #Documents #Links Vocabulary

DS 9 570 1,336 3,085
HA 6 223 515 2,073
ML 7 1,980 5,748 4,431
PL 9 1,553 4,851 41,05

Table 3.2: Dataset statistics.

where weight tying is used, and c1 ∈ R|V| and c2 ∈ RN are biases. The loss function for textual

content is given by (Eq. 3.4), and the loss function for adjacency vector is given below.

l(εj, ε̂i) = −
N∑

n=1

[εj,n log(ε̂i,n) + (1− εj,n) log(1− ε̂i,n)]. (3.6)

εj represents the adjacency vector of i’s neighbors. Each target document reconstructs its neigh-

bors in these two aspects, generating the total loss function l = l(dj, d̂i) + l(εj, ε̂i).

Inference. Upon convergence we encode a testing document d′ by z′ = tanh(W1d′+W2ε
′+

b). z′ is the topic representation encompassing text content and network structure.

3.3.3 Complexity Analysis

Model Complexity. Table 3.1 lists the parameter counts for our models and the Auto-Encoder

family. For Adjacent-Encoder, we set W′ = W⊤ of dimensionality K|V|. The only other

parameters are biases of size K and |V|. Note that compared to other Auto-Encoder models (AE,

DAE, CAE, KSAE, KATE), Adjacent-Encoder does not add extra parameters as it models the

network structure implicitly. For Adjacent-Encoder-X, because the adjacency matrix is another
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input in addition to the content, the number of parameters is now K|V|+KN +N +K + |V|.

Computational Complexity. We use F to denote the number of input features (|V| and

|V| + N respectively for Adjacent-Encoder and Adjacent-Encoder-X). The feedforward com-

plexity for each target document is O(KF ). For neighbor competition and topic propagation,

let degmax denote the maximum number of neighbors in the network. The complexity of each

target document is O(K degmax). For neighbor reconstruction, we reconstruct all adjacent neigh-

bors, thus we have O(KF degmax). Putting all three components together, for each target docu-

ment, we obtain O(KF +K degmax +KF degmax) for the overall model. In comparison, Auto-

Encoders usually have O(KF ) complexity. Although our models bring additional complexity,

we are able to further incorporate document network structure to improve the performance. Fi-

nally, since the main emphasis of this work is model effectiveness, but not running efficiency, we

consider speeding up the training process as a future work.

3.4 Experiments

Our experimental objective is to validate the quality of topics learned by our models on evaluative

tasks such as document classification, document clustering, link prediction, etc.

3.4.1 Setup

Datasets. Cora [58] is a public collection of papers and their citations. Each document is an

abstract. Two documents are linked by an undirected edge if one cites the other. Following

[122], we extract four independent datasets: Data Structure (DS), Hardware and Architecture

(HA), Machine Learning (ML), and Programming Language (PL). Each dataset is organized

into categories, which we treat as class labels (not used in learning, only evaluation). Table 3.2

presents their statistics.

Baselines. We compare our models against several categories of baseline models below.
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• Auto-Encoders: Since our models are encoders, the most appropriate baselines are of the

Auto-Encoder family, i.e., AE, DAE [84], CAE [72], VAE [38], KSAE [55], and the state-

of-the-art topic model KATE [13]. As they encode only the document content, through

this comparison we validate the efficacy of jointly learning content and network structure.

• Generative topic models: Another family of topic models are based on the generative

approach. We compare to those that incorporate document content and network structure

concurrently, such as RTM [10], PLANE [42], and the recent NRTM [2]. We also include

ProdLDA [76], a recent topic model that still encodes each document independently.

• Graph embedding: Recently there are some models making use of Auto-Encoder for

unsupervised graph representation learning. Strictly speaking, they are not topic models,

nor baseline. For completeness, we include a comparison to VGAE [40].

Training Details. Following [2, 13], the activation functions for AE, DAE, CAE, KSAE, and

NRTM are sigmoid, while those for VAE and KATE are tanh (hidden) and sigmoid (output)

respectively. We use validation set to choose the best hyperparameters. DAE with Gaussian

noise of 0.25 std.dev. outperforms other kinds of noise. We choose 2 and 0.01 as Dirichlet

hyperparameter for RTM and PLANE. For KSAE and KATE, we set the number of nonzero

hidden neurons, k, to 4, 8, 16, 32, and 52 when the number of topics is 16, 32, 64, 128, and 256,

respectively. Each result is an average of 10 independent runs.

Transductive vs. Inductive Learning. There are two scenarios in which we can apply the

models. In the transductive setting, the objective is to derive topic representations of the docu-

ments already in the corpus. In this case, all documents in the corpus are present during training.

Conversely, in the inductive setting, the objective is to generalize beyond the training corpus to

unseen data, which we simulate by keeping a random subset of 80% documents for training (out

of which we further randomly split 10% documents for validation) and the remaining 20% for

testing. As both are feasible scenarios, we discuss our experiments under each setting.
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Transductive Learning

Model Document Classification Document Clustering Link Prediction
DS HA ML PL DS HA ML PL DS HA ML PL

Adjacent-Encoder 0.739 0.842 0.864 0.772 0.470 0.540 0.564 0.388 0.396 0.331 0.226 0.237
Adjacent-Encoder-X 0.744 0.846 0.857 0.780 0.445 0.548 0.571 0.392 0.374 0.326 0.251 0.271
AE 0.558 0.688 0.739 0.616 0.250 0.315 0.368 0.230 0.144 0.195 0.107 0.102
DAE 0.656 0.799 0.790 0.694 0.372 0.409 0.441 0.278 0.204 0.296 0.121 0.147
CAE 0.558 0.685 0.741 0.620 0.261 0.309 0.371 0.228 0.145 0.188 0.108 0.103
VAE 0.652 0.789 0.796 0.679 0.356 0.394 0.447 0.286 0.193 0.283 0.122 0.135
KSAE 0.537 0.672 0.710 0.581 0.245 0.295 0.345 0.222 0.136 0.182 0.092 0.088
KATE 0.628 0.808 0.762 0.651 0.325 0.378 0.342 0.267 0.174 0.267 0.095 0.114
ProdLDA 0.637 0.780 0.764 0.631 0.374 0.460 0.423 0.289 0.162 0.324 0.080 0.095
RTM 0.543 0.637 0.663 0.574 0.082 0.094 0.126 0.127 0.117 0.194 0.072 0.075
PLANE 0.690 0.799 0.750 0.648 0.417 0.406 0.439 0.288 0.284 0.226 0.107 0.160
NRTM 0.591 0.816 0.549 0.503 0.313 0.404 0.137 0.190 0.149 0.221 0.036 0.049
VGAE 0.671 0.827 0.807 0.718 0.335 0.362 0.495 0.308 0.285 0.265 0.132 0.171

Table 3.3: Transductive results on document classification (left), clustering (middle), and link
prediction (right) at K = 64.

3.4.2 Transductive Learning

For validating the derived document representations, we rely on three evaluative tasks. The first

two are document classification and clustering, evaluated via class labels (these are never part of

any learning). The last is link prediction.

Document Classification. Intuitively, topic representations may align with categorizations

of documents, i.e., documents within a class may share similar topics. Since our goal is high-

quality topic representations, we use simple k-Nearest Neighbors (kNN) as the classifier at the

testing phase. For each document, we hide its actual label, and predict its label as the majority

label of its k-nearest neighbors based on the Euclidean distance in the low-dimensional topic

space. Classification accuracy is used as the metric. The accuracies at K = 64 and 10NN are

summarized in Table 3.3 (left).

Indeed, our models outperform the baselines significantly across all four datasets. Except

for ML dataset, Adjacent-Encoder-X generally achieves higher results than Adjacent-Encoder,

because the former captures higher-order proximity in having common neighbors in addition to

being direct neighbors. Among the baselines, DAE, VAE, KATE, and VGAE tend to be better,
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(a) Transductive on DS (b) Transductive on HA (c) Transductive on ML (d) Transductive on PL

(e) Inductive on DS (f) Inductive on HA (g) Inductive on ML (h) Inductive on PL
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Figure 3.3: Transductive and inductive classification accuracy at 10NN when varying the num-
ber of topics K.

but none achieves a consistent outperformance over others. The top panel of Fig. 3.3 and 3.4

presents the results when varying the number of topics K and neighbors k, respectively. Our

models still outperform baseline models most of the time. The only exception is HA, on which

our models are competitive with KATE and VGAE. However, the best result of our models as

well as baselines is achieved at 10NN where both our models outperform all the baselines.

Document Clustering. We can also use the representations for clustering documents, inves-

tigating if documents in a cluster tend to share the same class. Class labels are used only for in-

vestigating normalized mutual information (NMI) for evaluation. The clustering result at K = 64

is shown in Table 3.3 (middle columns). Overall, our models outperform all the baselines signif-

icantly. Except for DS, Adjacent-Encoder-X achieves better clustering than Adjacent-Encoder.

Among the baselines, ProdLDA, PLANE, and VGAE tend to perform better than others.

Link Prediction. Given two documents, we could use their topics to predict the link between

them. Following [42], the link generation probability is given by P (εij = 1|zi, zj) ∝ exp(−||zi−

28



(a) Transductive on DS (b) Transductive on HA (c) Transductive on ML (d) Transductive on PL

(e) Inductive on DS (f) Inductive on HA (g) Inductive on ML (h) Inductive on PL

0.4

0.5

0.6

0.7

0.8

10 20 30 40 50

A
cc

u
ra

cy

Number of neighbors K

0.1

0.2

0.3

0.4

0.5

0.6

0.7

10 20 30 40 50

A
cc

u
ra

cy

Number of neighbors K

0.4

0.5

0.6

0.7

0.8

0.9

10 20 30 40 50

A
cc

u
ra

cy

Number of neighbors K

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10 20 30 40 50

A
cc

u
ra

cy

Number of neighbors K

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

10 20 30 40 50

A
cc

u
ra

cy

Number of neighbors K

0.4

0.5

0.6

0.7

0.8

10 20 30 40 50

A
cc

u
ra

cy

Number of neighbors K

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

10 20 30 40 50

A
cc

u
ra

cy

Number of neighbors K

0.5

0.6

0.7

0.8

0.9

10 20 30 40 50

A
cc

u
ra

cy

Number of neighbors K

Figure 3.4: Transductive and inductive classification accuracy at m = 64 when varying the
number neighbors K.

zj||2). One measure is to examine whether models provide a high generation probability to actual

links. We use Mean Average Precision (MAP) as evaluation metric. Following [42], we randomly

hide one link for those documents with at least three neighbors (excluding itself) and keep the

remaining network connected. The remaining network is present for training. After convergence,

we use the topics to predict the held-out links.

Table 3.3 (rightmost) presents the results for K = 64 topics. Adjacent-Encoder and Adjacent-

Encoder-X outperform the baselines significantly across four datasets. By comparing our models

with AE-based models, we see that considering network structure helps to embed neighbors more

closely, thereby achieving a high MAP. Our models rank links higher than others that factor in

the network structure (RTM, PLANE, NRTM, VGAE), supporting our outperformance on jointly

learning content and network structure.
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Inductive Learning

Model Document Classification Document Clustering Link Prediction
DS HA ML PL DS HA ML PL DS HA ML PL

Adjacent-Encoder 0.588 0.830 0.761 0.654 0.417 0.551 0.477 0.328 0.421 0.462 0.285 0.218
Adjacent-Encoder-X 0.640 0.845 0.836 0.724 0.416 0.489 0.522 0.363 0.400 0.427 0.363 0.322
AE 0.405 0.580 0.632 0.509 0.213 0.337 0.340 0.248 0.185 0.233 0.181 0.129
DAE 0.516 0.749 0.732 0.595 0.375 0.436 0.415 0.299 0.347 0.286 0.259 0.198
CAE 0.400 0.573 0.644 0.519 0.212 0.279 0.362 0.253 0.192 0.232 0.185 0.132
VAE 0.491 0.785 0.738 0.594 0.373 0.361 0.404 0.300 0.391 0.346 0.243 0.192
KSAE 0.390 0.569 0.614 0.491 0.269 0.319 0.334 0.232 0.188 0.238 0.148 0.111
KATE 0.484 0.800 0.712 0.573 0.321 0.440 0.354 0.290 0.277 0.336 0.205 0.178
ProdLDA 0.202 0.401 0.184 0.158 0.302 0.292 0.399 0.306 0.220 0.297 0.192 0.140
RTM 0.327 0.498 0.652 0.564 0.000 0.046 0.091 0.048 0.260 0.276 0.210 0.149
PLANE 0.282 0.544 0.275 0.218 0.162 0.192 0.000 0.000 0.306 0.345 0.176 0.134
NRTM 0.456 0.811 0.482 0.408 0.339 0.398 0.167 0.207 0.076 0.097 0.020 0.049
VGAE 0.509 0.748 0.736 0.607 0.280 0.185 0.442 0.291 0.315 0.309 0.237 0.274

Table 3.4: Inductive results on document classification (left), clustering (middle), and link pre-
diction (right) at K = 64.

3.4.3 Inductive Learning

For the inductive setting, we evaluate model performance for out-of-sample documents. Thus, we

take care not to involve the testing documents during training our encoder models. For training,

we observe links only within the training set. For testing, we observe links connecting one

testing and one training document, but not links with two testing documents. Once the models

are trained, we use their parameters to derive the document representations for test documents

and apply the same three evaluative tasks as before.

Table 3.4 shows the results for the inductive setting. The effects of number of topics and

neighbors on inductive document classification is shown by Fig. 3.3 and 3.4 (bottom panel).

Evidently, similar conclusion as with transductive learning can be drawn that our models are

consistently better than baselines. For classification and clustering, PLANE presents satisfying

results on transductive, but deteriorates on inductive learning. Among baselines, DAE, VAE, and

VGAE tend to outperform others. For link prediction, Adjacent-Encoder ranks links higher on

DS and HA, while Adjacent-Encoder-X performs better on ML and PL.
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Model PMI

DS HA ML PL
Adjacent-Encoder 2.360 2.054 2.180 2.499
Adjacent-Encoder-X 1.872 1.887 2.337 2.321
AE 0.294 0.446 0.665 0.969
DAE 1.170 1.125 1.203 1.553
CAE 0.348 0.558 0.526 0.684
VAE 0.685 0.793 1.831 1.132
KSAE 0.547 0.285 0.770 0.759
KATE 1.312 1.755 1.619 2.003
ProdLDA 1.638 1.315 1.837 2.088
RTM 1.279 1.678 1.199 1.615
PLANE 1.585 1.847 1.756 2.099
NRTM 1.533 2.041 1.328 1.632

Table 3.5: Topic Coherence PMI when K = 64.

Topic Adjacent-Encoder
1 maze, markov, mdp, observable, minute, intractable, severe, markovian, pomdp, analog
2 move, 0-1, image, nearest, promoter, neighbor, grid, k-nearest, analogy, sketch
3 reward, influence, recurrent, credit, exploratory, max, reinforcement, net, reactive, policy
4 inference, hmm, graphical, practitioner, translation, defense, methodological, causal, probable, assist
5 pair, net, coordination, backpropagation, stronger, broad, network, classic, pendulum, multiclass

Topic Adjacent-Encoder-X
1 mdp, policy, clarify, identical, pomdp, observable, tradeoff, consequence, noisy, larger
2 cart, selective, exploratory, estimator, phoneme, categorization, stability, multiclass, terminate, axis-parallel
3 parent, graph, substructure, overlap, graphical, load, emulate, integration, fashion, generalisation
4 ica, toronto, detector, blind, maximization, derivation, facial, pca, nonparametric, expansion
5 sigmoidal, shift, logistic, treatment, loop, testing, net, quantify, razor, adversarial

Table 3.6: Top 10 words of 5 randomly selected topics.

3.4.4 Topic Analysis

For better understanding of topic-word association learned by a topic model, we conduct experi-

ments on topic analysis. VGAE is not a topic model, and is not included in this analysis.

Topic Coherence. Our topic-word association is given by W for Adjacent-Encoder, and W1

for Adjacent-Encoder-X. We use PMI [7], defined as PMI(wi, wj) = log
p(wi,wj)

p(wi)p(wj)
, to evaluate

the coherence of predicted words. Using Google Web 1T 5-gram Version 1 [22], p(wi) is eval-

uated from 1-gram corpus, and p(wi, wj) from 5-gram corpus. For each topic, we average the
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Query Word Adjacent-Encoder
solution call, application, problem, solve, provide
neighbor nearest, k-nearest, paper, describe, artificial
modeling general, framework, provide, model, knowledge
supervised learning, task, computational, include, general
speech recognition, introduce, call, include, paper

Query Word Adjacent-Encoder-X
dna protein, produce, attach, promoter, examination
production unpredictable, manufacture, inventory, discrete-event, key
binary bit, general, term, include, paper
encode intelligent, describe, version, representation, form
easily associate, problem, solve, consider, provide

Table 3.7: Top 5 words of 5 randomly selected query words.

pairwise PMI of its top 10 words. For each model, we average PMI of its topics.

Table 3.5 shows that network-based models tend to perform well, benefitting from docu-

ment relatedness in addition to text content. Adjacent-Encoder has higher topic coherence than

Adjacent-Encoder-X except for ML, presumably in modeling the adjacency vector explicitly the

latter may reduce the reconstruction precision of text content. Nevertheless, our models still

outperform baselines in most cases.

Topic Interpretability. To gain a semantic sense of topics, we qualitatively present top 10

words of 5 randomly selected topics (Table 3.6). Adjacent-Encoder’s topic 2 seems to discuss

k-nearest neighbor. Topic 3 discusses reinforcement learning. For Adjacent-Encoder-X, topic 1

captures Markov decision problem, while topic 2 seems decision trees.

Each column of topic-word matrix corresponds to a word representation over topics. Thus

we check whether similar words are embedded closely. Table 3.7 presents 5 nearest neighbors

for each of 5 query words in the word representation space. Both of our models can find relevant

words. For example, Adjacent-Encoder provides “nearest” and “k-nearest” for the query word

neighbor, Adjacent-Encoder-X presents “protein” and “promoter” for the query word dna.
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(a) Adjacent-Encoder (b) Adjacent-Encoder-X (c) KATE (d) NRTM

Figure 3.5: t-SNE visualization on ML dataset. (best seen in color)

3.4.5 Visualization

As exploratory analysis, visualization provides an intuitive sense of how topic models embed

documents. One may expect a good model to embed documents of a category closely. We apply

t-SNE [82] to project 64-dimensional topic space into 2-dimensional visualization space. As a

sampler, Fig. 3.5 shows four of the methods on ML dataset. Adjacent-Encoder and Adjacent-

Encoder-X produce good separation between categories.

3.4.6 Extensions and Variants

We investigate the complementarity and potential extensibility of our models by combining pro-

posed architecture with other concepts previously used to enhance AE. For denoising variant,

we add Gaussian noise of 0.25 std.dev. to input documents. For our contractive variant, we add

Frobenius norm of Jacobian matrix to loss function of our models. For K-sparse variant, as in

KSAE and KATE, we keep the values of k
2

top positive and k
2

top negative hidden neurons and

zero others after neighbor competition and before reconstruction.

We test these variants for document classification on ML dataset. We set K = 64 and

10NN . Table 3.8 shows some enhancements tend to produce positive outcomes. Further adding

denoising to original models shows the value of denoising. The regularization on loss function

by the contractive enhancement provides better results. Indeed K-Sparse Adjacent-Encoder(-X)

learn competitive representations with original models in terms of classification.

33



Model Transductive Inductive

Adjacent-Encoder 0.864 0.761
Denoising Adjacent-Encoder 0.855 0.780
Contractive Adjacent-Encoder 0.856 0.780
K-Sparse Adjacent-Encoder 0.847 0.765

Adjacent-Encoder-X 0.857 0.836
Denoising Adjacent-Encoder-X 0.865 0.839
Contractive Adjacent-Encoder-X 0.872 0.844
K-Sparse Adjacent-Encoder-X 0.866 0.823

Table 3.8: Classification accuracy of model variants on ML dataset when K = 64 and 10NN .

3.5 Discussion

We propose Adjacent-Encoder and Adjacent-Encoder-X, neural topic models that learn unified

representations for networked documents. Adjacent-Encoder incorporates the network structure

implicitly, with similar number of parameters as Auto-Encoder family, yet outperforms the latter.

Adjacent-Encoder-X that models the network structure explicitly performs even better. Empirical

analysis on public datasets support these findings, showcasing the effectiveness of factoring net-

work structure for neural topic modeling. The model extensions, such as denoising, contractive,

and sparsity, further improve the performance. We identify two limitations. First, Adjacent-

Encoder-X has difficulty dealing with large-scale networks, since the dimension of their adjacent

vectors becomes quite high, leading to a huge number of parameters. One possible solution is

to replace adjacent vectors with low-dimensional vertex embeddings learned by DeepWalk [69].

Second, the proposed models are unsupervised and separate from downstream tasks, e.g., docu-

ment classification. We need an external classifier to categorize these documents. This two-stage

process may influence classification accuracy, since our models and the external classifier have

different optimization objectives. To build a model that jointly learns topic representations for

documents and also classifies them, we could add a multi-layer perceptron [4] as classifier and

jointly optimize both topic modeling and classification losses. We solve this problem in Chapter

5 where our models have both supervised and unsupervised version.
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Chapter 4

Dynamic Topic Modeling for Temporal

Document Networks

4.1 Introduction

A document network does not emerge suddenly in its entirety. Rather, it is an accumulation of

documents created over time. The latent themes in a corpus may also evolve over time, e.g., aca-

demic papers track the development of research across years, news articles track the chronology

of events. Early attempts to capture document dynamics (DTM [5]) ignore the network aspect.

We postulate that the temporal nature relates not only to when a document is created, but

also to how documents created at different times may form linkages. Fig. 4.1 illustrates the

formation of a temporal document network. Initially at time ti−1, the network contains four

documents (A, B, C, and D) and links among them. At time ti, two new documents, E and

F , are published, and bring links to documents B and D, respectively. We use red documents

and links to denote the newly appearing data. Moving to time ti+1, document G is published

and connected to documents D and F . As time goes by, we observe the growth in terms of

both corpus size and network connectivity. Modeling time could better preserve text semantics

and network topology. Moreover, time also reveals the possibility of connection. Indicatively,
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Figure 4.1: Illustration of a temporal document network.

newly published documents are likely to connect to recent neighbors rather than previous ones.

Existing topic models for document networks, e.g., RTM [10], focus on the static network. As a

result, it may predict a past link using documents published in future time.

Our strategy to better model topics in temporal document networks is a confluence of three

factors. First, most dynamic topic models [5] deal with the plain text within documents and

ignore the network connectivity across documents. However, links constitute additional infor-

mation on documents’ similarities, and modeling them could reveal insightful semantics. Second,

models for networked documents [10] mainly focus on static networks without considering time.

Dynamic process showcases topic evolution and network generation over the time. By modeling

it, we may better preserve text semantics and network topology. Third, most topic models [2, 10]

preserve network structure by modeling first-order neighborhood only, a limited use of network

adjacency. The generation of a link between two documents may be influenced by their common

historical neighbors, which is higher-order proximity.

Definition 4.1.1 (Temporal Document Network). Let a temporal document network G be a tuple

{D, E , T }. D = {di}Ni=1 contains documents. Each document di ∈ R|V| is a vector in the

vocabulary space V . E = {Et}Tt=1 is a set of adjacency matrices. Et ∈ RN×N is the adjacency

matrix at timestamp t, where eijt = 1 if there is a link between document i and j at timestamp

t, eijt = 0 otherwise. T is the maximum timestamp. In this chapter, we consider an undirected

network, eijt = ejit. For a document i, its cumulative neighbors observed at timestamp t are
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those directly linked to i from the initial timestamp to t, denoted as Nt(i). We consider i as

its own neighbor, i ∈ Nt(i). T = {ti}Ni=1 contains timestamps, ti is the publication time of

document i. If i and j are published at the same time, ti = tj .

Given G as input, we propose a neural topic model and derive topic distributions that preserve

document semantics D, evolved network structure E , and dynamics T .

4.2 Background

In this work, we use Optimal Transport (OT) for semantic modeling, and Temporal Point Process

for dynamic modeling. We first introduce Optimal Transport and Temporal Point Process as

preliminary background, after which we discuss the technical details of our proposed models.

Definition 4.2.1 (Optimal Transport). Optimal transport measures the distance between two

probabilities. Given r ∈ RDr and q ∈ RDq , where their respective dimension Dr and Dq may

not be the same, their OT distance is

dC(r, q) = min
P∈U(r,q)

< P,C >= min
P∈U(r,q)

Dr∑
u=1

Dq∑
v=1

puvcuv. (4.1)

C ∈ RDr×Dq

≥0 is cost matrix, each element cuv measures the cost of transport between ru and qv.

P ∈ RDr×Dq

>0 is transport plan. U(r, q) = {P ∈ RDr×Dq

>0 |P1Dq = r,P⊤1Dr = q} is the transport

polytope with r and q as marginals. 1D is a D-dimensional vector with ones. Thus, each element

puv ∈ P is the probability of transport between ru and qv. Given a cost matrix C, OT distance

between r and q is to find the optimal plan P∗ and obtain dC(r, q) =< P∗,C >.

We will extend OT to incorporate time and use it to measure the semantic distance between

two differently timestamped documents i and j as the probability of the link eijt.

Definition 4.2.2 (Temporal Point Process). Temporal point process models the discrete sequen-

tial events. It measures the conditional probability λϵ(t)∆t of an event ϵ happening in a tiny

window [t, t+∆t) by assuming that historical events before timestamp t can influence the occur-
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Figure 4.2: Illustration of modeling process.

rence of the current event. Here, λϵ(t) is conditional intensity function of event ϵ at timestamp t.

Hawkes process is a typical temporal point process. Given historical events {ϵh|th < t} before

timestamp t, its conditional intensity function models the arrival rate of the current event ϵ at

timestamp t.

λϵ(t) = µϵ(t) +
∑

ϵh:th<t

βϵh,ϵκ(t− th), (4.2)

µϵ(t) is base intensity (the spontaneous arrival rate of the current event ϵ at timestamp t). βϵh,ϵ

is the influence of the historical event ϵh on the current ϵ. κ(t− th) is time decay.

We will use Hawkes process to capture the influence of historical neighbors on the current

link formation eijt.

4.3 Model Architecture and Analysis

4.3.1 NetDTM for Semantic-Level Modeling

We first present the details of NetDTM for semantic-level modeling, and defer the modeling of

NetDTM++ to the next subsection.

Each document d ∈ R|V| is a distribution in the word space, where each element dw =

nw∑
w′∈V nw′

is normalized by the length of the document. Here, nw is the word count of w in the
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document. Given document i with its content di on the network, as in [8], we encode it into a

K-dimensional topic distribution by zi = θ(di), i.e.,

zi := dropout(ReLU(W1di + b1)),

zi :=softmax(batch norm(W2zi + b2)).

(4.3)

W1 ∈ R200×|V|, W2 ∈ RK×200, b1 ∈ R200, b2 ∈ RK are parameters. We follow [8] to choose

200 as intermediate dimension. ReLU(x) = max(0, x) and softmax(x) = exp(xk)∑K
k′=1 exp(xk′ )

are

activation functions of encoder.

Time-Aware Attention. We seek an attention mechanism to evaluate the importance weights

of neighbors. On the one hand, neighbors presenting similar semantics should be assigned high

attention values. On the other hand, as mentioned in Section 4.1, since the content of corpus

evolves over the time, two linked documents with close publication timestamps are more likely

to share similar topics, and should preserve higher attention values. Taking both information

into account, we design a time-aware attention mechanism with both semantic similarity and

timestamp difference.

ãij = tanh([Watt(zi||hti)]
⊤[Watt(zj||htj)]), (4.4)

aij =
exp(ãij)∑

j′∈Nt(i)
exp(ãij′)

. (4.5)

(·||·) is the concatenation operation, and Watt ∈ RK×3K is parameter. Attention values are

jointly determined by two variables, topic distribution z at Eq. 4.3 and time embedding ht to be

discussed shortly. Thus, two documents i and j present a high attention value if their topics are

similar, and their publication timestamps are close.

We now define time embedding. Usually, the relative difference between two timestamps,

rather than the absolute value of any timestamp, reveals attention values, since the relative times-

pan informs how close two documents are. Furthermore, the attention at Eq. 4.4 involves the
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product of two time embeddings of ti and tj . A desirable time embedding should capture times-

tamp difference when taking product. Inspired by [16], we define

ht =

√
1

K
[cos(ω1t), sin(ω1t), ..., cos(ωKt), sin(ωKt)]

⊤. (4.6)

Here, {ωk}Kk=1 are parameters. The reason behind such design is

h⊤
ti

htj =
1

K
[cos(ω1ti) cos(ω1tj) + sin(ω1ti) sin(ω1tj) + ...

+cos(ωKti) cos(ωKtj) + sin(ωKti) sin(ωKtj)]

=
1

K
[cos(ω1(ti − tj)) + ...+ cos(ωK(ti − tj))]

≈ Eω[cos(ω(ti − tj))].

(4.7)

Thus, the product of two time embeddings is transformed into the timestamp difference, which

aligns with our requirement.

Linked documents tend to share similar topics, e.g., cited papers discuss similar research

problems. We aggregate topics of document i’s neighbors to itself and obtain

z̃i =
∑

j∈Nt(i)

aijzj. (4.8)

At Fig. 4.2(a), document G is published at time tj . We model link eDGtj as an illustration.

Above time-aware attention is shown by Fig. 4.2(b) where we aggregate topics of neighbors to

document D.

Time-Aware Optimal Transport. We base the semantic modeling on Optimal Transport

(OT), because it has achieved promising results in neural topic modeling [118]. Here, we are

motivated to incorporate time into OT. A document i is usually represented by two distributions,

latent topic distribution z̃i and observed content di. They should consistently reflect the same

document. We thus seek to minimize the OT semantic distance between latent topic distribution
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z̃i and word distribution di, i.e., min dC(z̃i,di).

Since we are interested in network modeling, and links indicate a similar latent semantics of

two documents, we now allow OT to push topic distribution z̃i also to document i’s neighbors

j ∈ Nt(i), i.e., min dC(z̃i,dj). Since documents are sequentially organized, and the recently

published documents link to previous ones, the publication timestamps ti and tj may not be the

same. However, original optimal transport at Eq. 4.1 does not preserve such time information. To

model document dynamics, we now propose Time-Aware Optimal Transport, which also takes

timestamps as inputs.

min dC(z̃i,dj, ti, tj), (4.9)

where j ∈ Nt(i) is document i’s neighbors at timestamp t.

Definition 4.3.1 (Time-Aware Optimal Transport). Given z̃i ∈ RK and dj ∈ R|V|, z̃i with times-

tamp ti, and dj with timestamp tj (without loss of generality, tj ≥ ti), the time-aware OT distance

is

dC(z̃i, dj, ti, tj) = min
P∈U (̃zi,dj ,ti,tj)

tj∑
t=ti

K∑
k=1

|V|∑
w=1

ptkwctkw. (4.10)

Here, C ∈ R(tj−ti+1)×K×|V|
≥0 is cost matrix, and each element ctkw measures the cost of trans-

port between topic k and word w at timestamp t. P ∈ R(tj−ti+1)×K×|V|
>0 is transport plan.

U(z̃i, dj, ti, tj) = {P ∈ R(tj−ti+1)×K×|V|
>0 |1(tj−ti+1)P1|V| = z̃i, (1(tj−ti+1)P)⊤1K = dj} is the

transport polytope with z̃i and dj as marginals. 1D is a D-dimensional vector with ones. Thus,

each element ptkw ∈ P measures the probability of transport between topic k and word w at

timestamp t. Given a cost matrix C, time-aware OT distance between z̃i and dj is to find the

optimal plan P∗ and obtain dC(z̃i, dj, ti, tj) =< P∗,C >.

Comparing Eq. 4.10 with original OT at Eq. 4.1, in addition to the summation over topics and

words, we further add one more time dimension for summation across the timespan tj − ti + 1.

Thus, time-aware OT measures the semantic distance between topic distribution z̃i and word

distribution dj across the timespan. Original OT becomes a special case of time-aware OT when
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Algorithm 1 Time-Aware Sinkhorn Iteration
Input: Document i’s topic distribution z̃i, neighbor j’s word distribution dj (j ∈ Nt(i)),

timestamp ti and tj , cost matrix C, γ.
Output: OT plan P*, time-aware OT distance dC(z̃i,dj, ti, tj).

1: Initialize Ψ1 =
1K
K

, t =
1(tj−ti+1)

tj−ti+1
, and Φ = exp(−C

γ
).

2: while not converged do

3: Ψ2 =
dj

(tΦ)⊤Ψ1

, Ψ1 =
z̃i

(tΦ)Ψ2

.

4: end while
5: Obtain OT plan P∗ = diag(Ψ1)(tΦ)diag(Ψ2)
6: Obtain time-aware OT dC(z̃i,dj, ti, tj) = diag(Ψ1)(t(Φ⊗C))diag(Ψ2). Here ⊗ is element-

wise product.

document i and j are published at the same timestamp ti = tj with no timespan. Intuitively, two

documents that are semantically similar and published closely should present a low OT distance,

since they do not transport with much semantic cost across a long timespan, and vice versa.

Therefore, we are able to use time-aware OT to measure the probability of link eijt. Lower the

distance, higher the probability.

We now define the semantic cost matrix C. Each element ctkw represents the semantic dis-

similarity between topic k and word w at timestamp t. It can be cosine dissimilarity or Euclidean

distance. In this work, we choose the former and define ctkw = 1− cos(gtk, ew), where gtk is the

randomly initialized embedding for topic k at time t, and ew is the pre-trained word embedding,

such as GloVe [68] or word2vec [61]. Therefore, external knowledge is naturally incorporated

into our model and helps the semantic modeling.

Evaluating OT distance requires to obtain the optimal plan P∗, which can be calculated by

Sinkhorn iteration [14]. Since we extend the original OT to incorporate time information, we

correspondingly propose Time-Aware Sinkhorn Iteration at Algo. 1.

Decoding. Time-aware optimal transport at Eq. 4.9 pushes topic distribution z̃i to neighbor-

ing word distribution dj , which is similar to a generative decoding process. We further explicitly
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design a decoder below to generate the textual content of neighbors.

d̂j =
1

tj − ti + 1

tj∑
t=ti

softmax((2− Ct)
⊤z̃i). (4.11)

Here, Ct ∈ RK×|V| is the tth slice of semantic cost matrix C, which captures topic-word distribu-

tion and is used as decoding parameter. We average the output across the timespan tj − ti + 1 as

the generated content. We obtain log-likelihood, l(dj, d̂j) = d⊤
j log d̂j , of the generative process.

Finally, as in [118], combining log-likelihood and time-aware OT, we have the following loss

function.

µeijt = l(dj, d̂j)− ηOTdC(z̃i,dj, ti, tj),

LNetDTM =−
T∑
t=1

∑
eijt∈Et

µeijt + ηpLp.
(4.12)

Hyperparameter ηOT balances log-likelihood and time-aware OT, and µeijt measures the proba-

bility of link eijt. At Fig. 4.2(c), we generate the content of document G with time-aware OT

and log-likelihood as semantic modeling of link eDGtj .

Different timestamps have their own topic embeddings {gtk}Tt=1 and topic-word distribu-

tions {Ct}Tt=1. To associate the modeling process of different timestamps and capture topic

evolution across the whole time period, we seek to chronologically chain the topics. Follow-

ing [5, 18], we thus draw topic embeddings using a Markov chain with Gaussian distribution,

gtk ∼ p(gtk|gt−1,k) = N (gt−1,k, σ
2I) for t = 2, ..., T and k = 1, ..., K. Its log-likelihood is

log p(gtk|gt−1,k) ∝ − 1

2σ2
||gtk − gt−1,k||2 = ηp||gtk − gt−1,k||2. (4.13)

We set ηp = − 1
2σ2 . Summing all the timestamps and topics, we obtain ηpLp = ηp

∑T
t=2

∑K
k=1 ||gtk−

gt−1,k||2. Adding such a prior term to the loss function at Eq. 4.12 as a regularizer, we obtain

multiple topic embeddings {gtk}Tt=1, which capture topic evolution.
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4.3.2 NetDTM++ for Network-Level Modeling

The above process captures network connectivity by semantically generating textual content of

neighbors. Such a generative process measures the semantic similarity between two documents,

which is also the spontaneous probability of an event (the natural establishment of link eijt),

without considering the impact of historical events. However, in addition to the internal se-

mantics, we discover that the formation of link eijt is also externally influenced by the existing

network topological structure generated so far. For example, two academic papers with a lot of

common citations also likely cite each other, and such common citations enhance the possibility

of their similar research topics. While NetDTM captures semantic modeling, here we propose

an extended model, NetDTM++, to also incorporate the impact of network topology. Thus, we

model the impact of previous links on the current link.

Hawkes Process Modeling. For a document i, we apply the same encoding process at Eq.

4.3 to obtain its topic distribution zi = θ(di). After time-aware attention at Eq. 4.4–4.5 and Eq.

4.8, we obtain its aggregated topic distribution z̃i. To model the effect of previously generated

links {eth}th≤t on the establishment of the current link eijt, we design a Hawkes Process, i.e.,

λeijt = µeijt + ηHP

∑
eth :th≤t

βeth ,eijt
κ(t− th). (4.14)

µeijt is base intensity obtained at Eq. 4.12, containing time-aware OT and log-likelihood. The

second term models the impact of previously established links, where βeth ,eijt
is the influence of

a previous link eth on the current eijt, and κ(t − th) is time decay term. Hyperparameter ηHP

balances the semantic and network modeling. NetDTM becomes a special case of NetDTM++

when ηHP = 0.

However, the second term requires the summation over the entire link set generated so far,

which is inefficient in computation. Moreover, usually neighbors of document i influence the

formation of eijt the most; links multiple hops away from eijt almost have no impact, but likely
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bring noisy information. Thus, we modify Eq. 4.14 to only consider links between i and its

neighbors, but not all the links. This process models the second-order proximity at Fig. 4.2(d).

λeijt = µeijt︸︷︷︸
semantic modeling

+ηHP

∑
p∈Nt(i)

βpjaip︸ ︷︷ ︸
network modeling

. (4.15)

βpj models the influence of second-order proximity p, which represents the surrounding network

context between i and j. As mentioned, two documents sharing similar contextual vertices should

preserve a high semantic similarity. At Fig. 4.2(d), document F is a common context of D and G.

Such network structure forms a triangle, which tightens the link between D and G and enhances

their semantic similarity. Following LINE [77], to model second-order proximity, we introduce

a context embedding wp ∈ RK and define

βpj = log σ(w⊤
p z̃j) +

M∑
m=1

Ed∼Prn(d)[log σ(−w⊤
d z̃j)]. (4.16)

σ(x) = 1
1+exp(−x)

is sigmoid, M is the number of negative samples, Prn(d) is a noise distribution

over documents. A high value of βpj increases λeijt , the log-likelihood of the link. At Fig. 4.2(d),

in addition to the semantic decoding, document D’s neighbors also influence G by adding context

β·,G. Higher-order proximity is modeled.

Time-aware attention aip at Eq. 4.15 measures the importance of neighbors, including se-

mantic similarity and timestamp difference. Since aip already contains time difference, we do

not design an extra time decay term. Finally, the loss function of NetDTM++ is

LNetDTM++ = −
T∑
t=1

∑
eijt∈Et

λeijt + ηpLp. (4.17)

We use minibatch gradient descent with Adam [36] optimizer to minimize loss functions. After

training convergence, we infer the topic distribution of a previously unseen document d′ by
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z′ = θ(d′).

Complexity Analysis. Encoding is O(200(|V| + K)). Time-aware attention has O(K2 +

degmax K) where degmax is the maximum degree of a document on the network. Time-aware OT

is O(WK|V|T ). W is the dimension of word embeddings. Decoding is O(K|V|T ). Hawkes

process is O(K2 + KN). Putting all components together, we have O(200(|V| + K) + K2 +

WK|V|T ) for NetDTM, and O(200(|V|+K) +K2 +WK|V|T +KN) for NetDTM++.

4.4 Experiments

The goal of experiments is to evaluate the topics learned by our models against baseline models

by evaluation tasks, such as document classification, link prediction, topic analysis, etc.

Datasets. Cora [58] is a citation network with abstracts as content and citations as links. Each

paper has a publication year. Following [122], we create two independent datasets, Machine

Learning (ML) and Programming Language (PL). ML papers are published between 1989 and

1998, and PL between 1987 and 1999. HEP-TH [46] is another citation network of Physics

papers published from January 1993 to April 2003. Timestamp can be defined by season, half

year, or year, resulting in 46, 23, or 12 timestamps, respectively. Web [45] is a Web page

hyperlink network. Each page contains frequent phrases of a news article between August and

December 2008. Timestamp can be defined by semimonthly or monthly, resulting in 10 or 5

timestamps. For the following experiments, we use yearly timestamp for ML, PL, and HEP-

TH, since academic conferences are usually held annually. For Web, we use semimonthly as

timestamp, due to the transience of news articles. We will investigate the effect of timestamp

granularity. Table 4.1 shows the statistics.

Baselines. We compare against four categories of baselines. i) Static topic models without

networks, including ProdLDA [76], WLDA [63], and NSTM [118]. WLDA applies Wesserstein

distance for topic modeling, and NSTM is a neural model with optimal transport. These models

do not incorporate document dynamics or network connectivity. ii) Dynamic topic models,
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Name #Documents #Links Vocabulary #Labels #Timestamps

ML 1,489 3,474 3,302 7 10
PL 1,424 3,955 3,062 9 13

HEP-TH 27,770 352,285 3,027 N.A. 12
Web 188,741 207,963 5,000 N.A. 10

Table 4.1: Dataset statistics.

including DTM [5] and DETM [18]. DTM extends LDA [6] in a dynamic setting. DETM

extends VAE [38] and leverages pre-trained word embeddings for dynamic modeling. They

indeed incorporate time, but ignore the document adjacency. Thus by comparing to them, we

highlight the advantage of jointly modeling dynamics and network structure. iii) Topic models

for document networks, such as graphical model RTM [10], and neural models NRTM [2]

and Adjacent-Encoder [108]. They consider textual content and network structure for modeling,

but no one models dynamic process of documents. By comparison, we show the effectiveness

of dynamic modeling. iv) Temporal graph embedding learns node embeddings on temporal

graphs in an unsupervised way. Strictly speaking, they are not topic models, nor baselines. For

completeness, we still compare to M2DNE [54].

Implementation Details. Hyperparameters are set based on the result on validation set (see

below document classification on how to split it). We set 2 as Dirichlet prior for RTM. For

models with word embeddings (NSTM, DETM, and ours), we use 300D GloVe. For our models,

ηOT = ηHP = ηp = 1 after searching in [0.5, 1, 2, 4, 10]. We set dropout rate to 0.75, γ = 20,

and M = 5. Each result is obtained by 5 independent runs. We report both average and std.dev.

4.4.1 Quantitative Evaluation

Document Classification. Documents from the same category should preserve similar topics. A

good topic model should learn similar topics to group such documents and separate different cat-

egories. Following LDA [6], we conduct document classification to evaluate topic quality. Since

we observe the dynamic process of network evolution, we split the datasets using timestamps.

47



0.2

0.3

0.4

0.5

0.6

93 94 95 96 97

Ac
cu

ra
cy

Year t (1990s)

0.2

0.4

0.6

0.8

93 94 95 96 97

Ac
cu

ra
cy

Year (1990s)

0.2

0.3

0.4

0.5

16 32 64 128 256

Ac
cu

ra
cy

Number of topics K

0.3
0.4
0.5
0.6
0.7
0.8

16 32 64 128 256

Ac
cu

ra
cy

Number of topics K
(a) Number of topics on ML (b) Number of topics on PL (c) Different years (1990s) on ML (d) Different years (1990s) on PL

Figure 4.3: Classification accuracy w.r.t. (a-b) different number of topics, (c-d) different years.

Specifically, we split documents published before timestamp T (inclusive) for training (among

which 10% are reserved for validation) where T is the maximum timestamp in the training set.

We observe training documents and links among them during training process. Labels are never

involved for training. After convergence, we infer topic distributions of test documents published

after timestamp T (exclusive). We apply kNN classifier [4] for document classification where

we input topic distributions of training documents to train the classifier, and predict the labels of

test documents.

We first vary the number of topics K from 16 to 256, and report classification accuracy with

5NN on ML and PL dataset at Fig. 4.3(a-b). Here, we train the models using documents and links

generated before year T = 1996 (inclusive), and predict the labels of documents after T = 1996

(exclusive). Such timestamp provides around 80/20 split. For clarity, we show std.dev. of our

models and best baselines only. Overall, our models perform stably across different number

of topics. Our models, Adjacent-Encoder, and M2DNE show better results than others, since

network connectivity indicates similarities among documents. Ours and M2NDE are generally

better than Adjacent-Encoder. We attribute this outperformance to the modeling of dynamic

process. Our models show 3-4% improvement over the best baseline, M2DNE. Since most

models present an increasing performance before 64 topics, after which some keep flat, while

others deteriorate, we keep K = 64 for the following experiments.

We then vary the observed timestamps T from 1993 to 1997, and present the accuracy with

48



5NN and 64 topics at Fig. 4.3(c-d) for ML and PL, respectively. Horizontal axis corresponds

to different years T . The goal is to investigate how models perform when we observe different

number of timestamps. As time goes by, the network becomes larger and we observe more

timestamps for training, thus the accuracy of most models presents an increasing trend. At T =

1993 where only a few timestamps are observed, our models show a competitive performance

with Adjacent-Encoder, a static document network model, since our models can not make full use

of the dynamic information. After moving to recent years, we discover a significant improvement

of our models over Adjacent-Encoder, due to the benefit of document dynamics. NetDTM++

generally classifies documents more accurately than NetDTM, due to Hawkes process, which

also models the influence of historical events.

Link Prediction. A topic model should well preserve network structure and encode poten-

tially linked documents closely. Following RTM [10], we predict the links on the network. We

split the datasets the same as classification. We observe training documents and links within

them for training. We infer topics of test documents and predict the links among them. As in

[42], the probability of a link is p(eij|zi, zj) ∝ exp(−||zi−zj||2). We use mean average precision

(MAP) [108] as metric to compare the predicted probability and ground-truth connectivity. As

in classification, we also vary the number of observed timestamps. Since different datasets have

different timespan, some cross many years, while others cross a few months, for consistency pur-

pose across four datasets, we vary the percentage of total timestamps from 40% to 80%. Here,

40% means we observe documents and links generated in previous 40% timestamps, and predict

links among documents in the future.

Table 4.2 shows that as the percentage of timestamps increases, most models improve their

results, because they observe more documents and links for training. Again, when we observe

only 40% timestamps, our models are competitive with Adjacent-Encoder on HEP-TH. When the

observed timestamps accumulate to 80%, our models present a significant improvement. This

enhances the benefit of dynamics in our models as compared to static network models. Compared
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Model
ML PL

40% 60% 80% 40% 60% 80%
ProdLDA 6.5±0.4 10.8±0.3 20.1±1.1 6.9±0.3 11.7±0.8 19.3±1.2
WLDA 3.2±0.5 3.4±0.3 7.0±1.0 2.9±0.2 4.3±0.5 7.0±2.1
NSTM 3.6±0.4 5.7±0.4 10.1±2.2 3.9±0.1 7.2±0.4 12.1±0.7
DTM 6.9±0.3 7.9±0.6 13.8±2.9 7.1±0.2 10.2±0.8 13.5±1.5

DETM 1.7±0.0 9.6±0.4 15.6±2.8 4.5±0.4 6.9±1.5 8.0±1.7
RTM 10.4±0.2 15.0±0.4 24.3±0.7 9.5±0.2 15.1±0.5 21.3±0.8

NRTM 6.2±0.4 7.0±0.6 10.6±1.6 6.2±0.5 8.3±0.6 9.0±0.3
Adjacent-Encoder 10.3±0.4 16.3±0.6 26.3±0.7 7.8±0.5 18.9±0.4 22.2±0.4

M2DNE 3.1±0.0 7.2±0.0 16.4±0.2 3.5±0.0 12.2±0.0 16.1±0.2
NetDTM 12.2±0.4 17.3±0.8 25.8±0.7 11.2±0.4 17.8±0.5 24.0±0.4

NetDTM++ 12.0±0.3 18.0±0.2 28.3±1.0 11.5±0.3 19.9±0.3 26.8±0.8

Model
HEP-TH Web

40% 60% 80% 40% 60% 80%
ProdLDA 0.4±0.0 0.5±0.0 1.3±0.2 10.7±0.3 10.7±0.3 10.7±0.3
WLDA 0.5±0.0 0.7±0.1 2.1±0.2 7.0±0.0 9.6±0.1 11.7±0.2
NSTM 0.6±0.0 0.8±0.0 1.7±0.1 1.1±0.1 1.3±0.1 1.7±0.0
DTM 2.1±0.0 3.3±0.0 6.5±0.3 3.7±0.0 4.1±0.0 4.4±0.0

DETM 2.7±0.0 3.2±0.0 5.3±0.2 13.5±0.0 14.7±0.0 16.1±0.0
RTM 3.3±0.1 4.1±0.1 7.0±0.2 11.1±0.1 12.4±0.0 13.8±0.0

NRTM 0.6±0.0 0.6±0.0 1.2±0.0 0.5±0.0 0.5±0.0 1.0±0.3
Adjacent-Encoder 6.1±0.1 7.9±0.2 13.3±0.2 13.5±0.0 14.5±0.0 14.8±0.1

M2DNE 4.3±0.0 5.6±0.0 10.1±0.0 0.5±0.0 0.7±0.0 1.0±0.0
NetDTM 4.8±0.1 6.2±0.1 11.4±0.1 13.5±0.0 14.9±0.0 16.7±0.1

NetDTM++ 5.7±0.0 7.3±0.1 14.0±0.3 13.5±0.0 15.0±0.0 16.7±0.1

Table 4.2: Link prediction MAP at K = 64 (results are in percentage) when varying the percent-
age of total timestamps.

to models without network structure, we emphasize that incorporating network can bring useful

information.

4.4.2 Topic Analysis

Perplexity. Following LDA [6] and DTM [5], we conduct perplexity experiment to evaluate

topic quality. For dynamic topic models, i.e., DTM, DETM, and ours, we obtain a series of

topic-word distributions {2 − Ct}Tt=1, which capture topic evolution over the time. The latest
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Model
ML PL

40% 60% 80% 40% 60% 80%
ProdLDA 8.16±0.00 8.07±0.00 8.07±0.00 8.15±0.00 8.03±0.00 8.02±0.00
WLDA 8.63±0.10 8.60±0.14 8.12±0.99 8.62±0.16 8.34±0.03 8.49±0.44
NSTM 8.05±0.00 7.99±0.00 7.97±0.00 7.97±0.00 7.90±0.00 7.89±0.00
DTM 8.10±0.00 8.10±0.00 8.10±0.00 8.02±0.00 8.02±0.00 8.02±0.00

DETM 11.66±0.18 11.63±0.25 9.63±0.16 8.78±0.09 8.20±0.07 8.06±0.05
RTM 7.99±0.02 7.97±0.01 7.90±0.02 7.84±0.03 7.72±0.05 7.65±0.02

NRTM 33.10±0.44 28.99±0.13 22.72±0.27 38.61±2.32 33.43±0.16 30.19±0.14
Adjacent-Encoder 7.94±0.01 7.99±0.02 8.07±0.03 7.82±0.08 7.76±0.09 7.97±0.04

NetDTM 7.90±0.02 7.89±0.05 7.89±0.04 7.78±0.01 7.81±0.03 7.89±0.05
NetDTM++ 7.90±0.02 7.80±0.02 7.79±0.02 7.72±0.01 7.69±0.02 7.72±0.03

Model
HEP-TH Web

40% 60% 80% 40% 60% 80%
ProdLDA 8.58±0.05 8.60±0.00 8.71±0.00 8.52±0.00 8.52±0.00 8.52±0.00
WLDA 44.30±0.24 44.50±0.33 42.98±0.07 44.43±0.02 43.73±0.04 44.09±0.06
NSTM 7.93±0.00 7.93±0.00 7.93±0.00 8.28±0.00 8.27±0.00 8.28±0.00
DTM 8.01±0.00 8.01±0.00 8.01±0.00 11.61±0.07 11.59±0.07 11.61±0.10

DETM 8.28±0.09 8.09±0.05 7.91±0.06 10.39±0.19 9.46±0.05 8.84±0.14
RTM 7.81±0.00 7.81±0.00 7.81±0.00 20.68±1.51 18.73±0.95 9.87±0.12

NRTM 22.17±0.12 21.32±0.13 21.21±0.34 33.56±0.76 33.56±0.76 38.43±1.33
Adjacent-Encoder 7.86±0.03 7.86±0.03 7.89±0.07 8.72±0.09 8.72±0.09 8.72±0.09

NetDTM 7.79±0.06 7.81±0.06 7.96±0.19 8.79±0.22 8.79±0.06 8.69±0.05
NetDTM++ 7.77±0.02 7.79±0.02 7.77±0.01 8.13±0.11 7.92±0.08 8.11±0.21

Table 4.3: Perplexity experiment at K = 64 when varying the percentage of total timestamps.
Lower is better.

distribution 2−CT can best represent the current topic-word distribution. To generalize to future

documents published after timestamp T , we should use 2 − CT . This is consistent with [5].

Because perplexity, exp{− log Pr(Dtest)∑
d′∈Dtest

Nd′
}, is exponential and varies w.r.t. its power, we show the

power, − log Pr(Dtest)∑
d′∈Dtest

Nd′
. Lower is better. Again, we vary the percentage of timestamps from 40%

to 80% and show the results at Table 4.3. M2DNE is not a topic model, thus cannot evaluate

perplexity. Network models (RTM and Adjacent-Encoder) perform the best among baselines.

Network structure can capture the case where two documents are different in observed content,

but consistent in latent semantics, thus incorporating network can help semantic learning and

improve topic modeling. Due to dynamic modeling, DTM provides decent results. By combining

both network effect and dynamics, our models outperform baselines significantly. NetDTM++ is
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generally better than NetDTM, since Hawkes process with the influence of historical events can

better encode semantically similar document closely.

Topic Coherence. Decoding parameter 2 − Ct ∈ RK×|V | captures the keywords of each

topic. Each row is the distribution of a topic over the vocabulary. The keywords of that topic are

those with the highest values on that row. Following ProdLDA [76], we evaluate the coherence of

top-10 keywords of each topic and report NPMI. We use Google Web 1T 5-gram Version 1 [22]

as external corpus. Table 4.4 shows the results. M2DNE is not a topic model and is excluded.

Benefiting from optimal transport, NSTM is the best model among baselines. By comparing to

it, our models extend OT to incorporate dynamic information, and improve the performance.

Topic Evolution. To intuitively understand how our models capture topic evolution, Fig.

4.4 shows the plot of our models on ML dataset. Horizontal axis represents different years, and

vertical axis is the word probability in {2 − Ct}1998t=1989. Four lines represent randomly selected

keywords of the same topic. For NetDTM, “algorithm and compression” remained a popular

research over the years. But researchers gradually shifted their focus away from “text indexing”,

potentially because topic models (PLSA [30]) was proposed, and traditional indexing method be-

came inefficient and less attractive. For NetDTM++, “probabilistic bayesian inference” attracted

much attention over the years, while “regression model” fluctuated and gradually decayed, which

is possibly because neural network started to present its ability as a universal approximator, and

traditional regression models became less interesting.

4.4.3 Model Analysis

To better understand our models, we conduct ablation analysis here.

Effect of Network Structure. We randomly remove a proportion of links on the network.

We vary the percentage of remaining observed links and report the classification accuracy on ML

dataset at Fig. 4.5(a). As we observe more links, the performance tends to increase. Compared

to the case with no observed links, adding a small proportion of links can significantly boost the
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Model ML PL HEP-TH Web
ProdLDA 8.4±0.4 10.2±0.3 11.2±1.0 0.6±0.6
WLDA 9.4±0.2 11.0±0.5 14.6±0.4 24.2±0.7
NSTM 16.8±0.9 18.5±0.4 18.3±0.7 24.8±1.5
DTM 10.2±0.3 12.5±0.3 14.2±0.1 13.7±0.4

DETM 8.3±0.5 8.4±0.4 11.4±0.3 21.1±0.3
RTM 7.1±0.6 8.9±0.3 6.9±0.3 20.1±0.8

NRTM 6.9±0.4 9.2±0.4 11.6±0.4 19.9±1.7
Adjacent-Encoder 11.8±0.8 13.4±0.6 17.6±0.0 1.4±0.0

NetDTM 18.9±0.6 19.4±0.5 17.3±0.5 29.3±0.9
NetDTM++ 16.6±0.6 19.4±0.6 17.8±0.3 29.0±1.2

Table 4.4: Topic coherence NPMI (results are in percentage).
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Figure 4.4: Topic evolution on ML dataset.
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results, which verifies that network indeed reveals document similarities, and modeling it can

improve semantic learning.

Effect of Time. We set the timestamps of all the documents to be the same, i.e., we observe

the whole static document network without any evolution process. We present the classification

accuracy with and without time at Fig. 4.5(b). Both NetDTM and NetDTM++ increase accuracy

when considering time. NetDTM does not improve too much, since it mainly models semantics

without the effect of historical events. NetDTM++ shows a significant improvement, since pre-

viously established links reveals network evolution, and disregarding time leads to worse result.

Effect of Optimal Transport. To investigate the effectiveness of optimal transport, we vary

the value of ηOT at Eq. 4.12. For document classification at Fig. 4.5(c), as ηOT increases, the

accuracy keeps flat or even becomes higher at the beginning, after which both models decrease

the results. Moving to topic coherence at Fig. 4.5(d), we observe that OT can significantly

enhance the coherence. Combining Fig. 4.5(c) and (d), we conclude that compared to the case

with no OT ηOT = 0, an appropriate value of ηOT can maintain or even boost the result, while

an overly high value hurts some evaluation tasks. Taking the trade-off between classification and

topic coherence, we set ηOT = 1 to combine both OT and log-likelihood.

Effect of Timestamp Granularity. Thus far, we set annually and semimonthly as one times-

tamp period for HEP-TH and Web, respectively. Here, we use different periods to investigate the

effect of timestamp granularity. Table 4.5 shows the result of link prediction. For HEP-TH, a

short period of timestamp (quarterly and semiannually) may not observe a significant change of

research topics, but brings more parameters. Thus, overfitting problem may happen and decrease

the results. For Web, due to the short effective period of news articles, a long timestamp period,

i.e., monthly, contains too much change of news development. A long period cannot capture the

transient topic evolution, thus the results decrease.

Brief Report on Running Time. Our focus is effectiveness, not efficiency. We just briefly

report running time. On the largest data Web, NetDTM takes 100 min to converge, NetDTM++
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Model
HEP-TH Web

Quarterly Semianually Annually Semimonthly Monthly
NetDTM 9.55±0.09 9.06±0.11 11.42±0.15 16.72±0.06 16.70±0.06

NetDTM++ 11.51±0.25 10.81±0.09 13.96±0.33 16.73±0.11 16.66±0.04

Table 4.5: Time granularity on link prediction (in percentage).

takes 124 min. Experiments were done on a Tesla K80 GPU with 11441MiB.

4.5 Discussion

In this work, we propose two neural topic models for dynamic document networks, which are

notable in jointly preserving dynamicity and network adjacency. By designing a time-aware

optimal transport, NetDTM models each link by semantically generating content of neighbors.

NetDTM++ further extends NetDTM to incorporate the effect of historical links by a Hawkes

process. Experiments on several dynamic document networks covering academic literature and

Web documents show the effectiveness of our models against baselines.
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Chapter 5

Variational Graph Author Topic Modeling

5.1 Introduction

Due to the explosion of documents, there is a need to automatically organize overwhelmed cor-

pus. One effective method is to infer low-dimensional document representations, which could

fulfill real-world tasks, e.g., document classification [103]. Recently, Variational Graph Auto-

Encoder (VGAE) [40] has presented promising ability to learn effective document representa-

tions. However, when modeling documents, we usually assume a latent topic structure [6]. Each

document is represented by a topic distribution, each topic is interpreted by its key words. Such

topic structure offers semantic interpretability and allows us to better understand the main theme

of the corpus. However, most VGAE methods do not model the notion of topics, leading to

uninterpretable representations.

As an important statistical tool for exploratory analysis of text corpora, topic model allows

us to explore latent topics within documents. Moreover, a document is usually associated with

authors. For example, news reports have journalists specializing in writing a certain category of

events; scientific papers have authors with expertise in certain research topics. Modeling authors

could benefit topic model, since documents by the same authors reveal similar semantics, and

authorship could connect these documents and jointly infer their topics. This observation also
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holds for venues, e.g., papers from the same journal exhibit similar research areas. However,

traditional topic models, e.g., LDA [6], infer topics based on plain text only, without auxiliary

authorship or venues. Recently, Author Topic Models [73] are proposed for authorship and venue

modeling.

Definition 5.1.1 (Documents with Authors and Venues). We are given a corpus of documents

C = {D,A,V ,X} with authors and venues. D = {di} is a set of documents. Each document d

contains Nd words in the vocabulary W , i.e., d = {wd,n}Nd
n=1 ⊆ W . Document d has a sequence

of Ad authors ad = {ad,n}Ad
n=1 ⊆ A and a venue vd ∈ V . Besides, we also observe edges X

connecting documents, such as citations between papers. xdi,dj = 1 if there is an edge between

di and dj , otherwise xdi,dj = 0. We model undirected edges, xdi,dj = xdj ,di . We will use edge and

link interchangeably. As in [90], when no edges X are observed, we induce κNN edges using

documents’ content similarity. We include X because we will use it to construct a document

graph for author topic modeling.

Given C, a corpus of documents with auxiliary authors and venues, as input, our goal is to

output topic proportions for |D| documents to preserve textual content D, authorship A, and

venues V where we use edge connections X as assisted graph structure.

5.2 Background

Definition 5.2.1 (Variational Graph Auto-Encoder (VGAE)). Given documents D and a graph

structure X as inputs, VGAE learns a mapping function q to project documents to K-dimensional

embedding space by q(Z|D,X ) ∈ R|D|×K , preserving content D and graph structure X . VGAE

aims to maximize the following objective.

L = Eq(Z|D,X ) log p(X|Z)−R[q(Z|D,X )||p(Z)]. (5.1)

57



Encoder q(Z|D,X ) is variational posterior parameterized by a Graph Convolutional Network

[39]. Decoder is log-likelihood log p(X|Z) reconstructing the graph structure. Divergence R

pushes variational posterior to a predefined prior p(Z). VGAE uses KL divergence as R.

In this chapter, we will extend VGAE as a topic model and incorporate auxiliary authorship

A and publication venues V .

Definition 5.2.2 (Wasserstein Distance). Wasserstein distance is a metric to measure the distance

between two probability distributions. Let P(RK) be the set of Borel probability measures on

K-dimensional space RK . For ρ ≥ 1, and two K-dimensional probability measures u and v in

P(RK), their ρ-Wasserstein distance is

Wρ(u, v) =
(

inf
π∈Π(u,v)

∫
RK×RK

||x− y||ρdπ(x, y)
)1/ρ

. (5.2)

Here, Π(u, v) is the set of all probability measures on RK × RK with u and v as marginal

distributions.

We will investigate the effect of Wasserstein distance as the alternative of KL divergence for

prior regularization in our model.

5.3 Hierarchical Multi-Layered Graph

Given C, to design graph convolution to obtain topic proportions of documents, we need to

construct a document graph using C. Below we first define a multi-layered graph. Then we

extend it to a hierarchical multi-layered structure. See Fig. 5.1(a) for an overview.

5.3.1 Multi-Layered Document Graph

Considering author and document as vertices, we connect authors and documents with author-

ship edges. Similarly, for documents’ words and venues, edges are contents and publications,

respectively. Formally, a multi-layered document graph G = {U , E ,O, T } consists of a ver-
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tex set U and an edge set E , and is associated with two mapping functions θ and ϑ. The ver-

tex mapping function θ : U → O projects each vertex i ∈ U to a specific type o ∈ O =

{document, word, author, venue}. Each type o corresponds to a graph layer containing vertices

of the same type. The edge mapping function ϑ : E → T projects edge eij between vertices i

and j to an edge type t ∈ T ={document-word, document-author, document-venue}. These three

types are cross-layer edges.

We further construct four types of intra-layer edges: document-document, author-author,

venue-venue, and word-word. Edges between documents X defined above can be citations be-

tween academic papers, hyperlinks between Web pages, or κNN edges based on documents’

content similarity. Author-author edges are collaboration co-authorship. We do not discover ap-

propriate methods for venue-venue edges, we simply add self-loop edges for venues. We will

define word-word edges shortly. Thus, there are |O| = 4 graph layers. U = D ∪ W ∪ A ∪ V

and X ⊆ E . Fig. 5.1(a) contains 4 graph layers, black and green edges are intra- and cross-layer

edges.

5.3.2 Three Word Sub-Layers

We now define word-word edges. As shown by topic model literature [17], word co-occurrence

has a significant impact on topic interpretability. In our model, word-word edges depict the co-

occurred connections. Thus, to improve topic quality, we build word-word edges using three

word relations, i.e., contextual, syntactic, and semantic, which extend the word layer above to be

three sub-layers.

Contextual word sub-layer describes the local co-occurrence of words within the corpus.

Following [103], we use point-wise mutual information (PMI) to capture contextual relation with

a fixed-size sliding window strategy. We slide the window on a sequence of words within the

corpus to obtain contextual co-occurrence relation, after which, for each pair of words (wi, wj),
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we calculate PMI score.

Sctx(wi, wj) = log
p(wi, wj)

p(wi)p(wj)
. (5.3)

p(wi, wj) is the probability of word pair (wi, wj) co-occurring in the same sliding window, and

p(wi) and p(wj) represent the probability of respective word occurring in a sliding window.

We estimate p(wi, wj) =
Nctx(wi,wj)

Nctx
and p(wi) = Nctx(wi)

Nctx
. Nctx(wi, wj) is the number of co-

occurrences of word pair (wi, wj) across all sliding windows, and Nctx(wi) and Nctx(wj) are

similarly defined for a single word wi and wj , respectively. Nctx is the total number of sliding

windows. After calculating PMI scores for all pairs of words, for each word, we select its top-5

PMI scores as its neighboring words and construct edges as contextual co-occurrence relation.

Syntactic word sub-layer represents the syntactic dependency relation between words. Fol-

lowing [52], we use Stanford CoreNLP parser [56] to extract dependency between words. For

each pair of words (wi, wj), we calculate syntactic co-occurrence score by

Ssyn =
Nsyn(wi, wj)

Nco-occur(wi, wj)
. (5.4)

Nsyn(wi, wj) is the number of times that word pair (wi, wj) presents syntactic dependency, which

is normalized by Nco-occur(wi, wj), the number of total co-occurrences of (wi, wj). For each

word, its top-5 syntactic scores denote its syntactic co-occurrence neighbors.

Semantic word sub-layer connects words with similar semantic meaning, captured by pre-

trained word embeddings [68]. For each pair (wi, wj), we calculate semantic co-occurrence

score.

Ssem = cos(g(wi), g(wj)). (5.5)

g(wi) and g(wj) respectively denotes the word embedding of wi and wj . cos(·, ·) is cosine sim-

ilarity. Again, for each word, the top-5 semantically related words are its neighbors as semantic

relation.

In Fig. 5.1(a), three sub-layers of words share the same set of vertices, i.e., words, but the
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Figure 5.1: Model architecture. (a) Given a corpus with auxiliary authors and venues, we con-
struct a hierarchical multi-layered document graph with three word relations. (b) For the first
L− 1 convolution steps, we simulate intra-layer propagation within each graph layer. (c) For the
L-th convolution, we first average three word relations by mean pooling. (d) We then aggregate
auxiliary data across layers to documents. (e) Finally, we use learned topic proportions of docu-
ments to reconstruct the corpus.

edge connections are different, since different co-occurrence relations link different words as

neighbors. Encapsulating three sub-layers of words into above multi-layered document graph,

we obtain a hierarchical multi-layered structure.

5.4 Model Architecture and Analysis

We introduce Variational Graph Author Topic Model (VGATM), extending VGAE as a topic

model with auxiliary authors and venues.

5.4.1 Generative Process

As an overview, we describe the generative process of VGATM. Following LDA, given a corpus

C, we generate observations: content D, authors A, venues V , and edges between documents X .

1. For each word w ∈ W , author a ∈ A, and venue v ∈ V:

(a) Draw K-dimensional topic proportion zw ∼ p(zw), za ∼ p(za), and zv ∼ p(zv).

2. For each document d ∈ D:

(a) Draw K-dimensional topic proportion zd ∼ p(zd).
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(b) Draw each word wd,n ∼ p(wd,n|zd, zwd,n
), n = 1, 2, ..., Nd.

(c) Draw each author ad,n ∼ p(ad,n|zd, zad,n), n = 1, 2, ..., Ad.

(d) Draw a venue vd ∼ p(vd|zd, zvd).

(e) If d’s label yd exists, draw a label yd ∼ p(yd|zd).

3. For each pair of documents di and dj where di, dj ∈ D:

(a) Draw an edge indicator xdi,dj ∼ p(xdi,dj |zdi , zdj).

Maximizing log-likelihood L(C) is intractable, as in VGAE [40], we instead maximize its

evidence lower bound below.

L = Eq(ZD,ZW ,ZA,ZV )

(∑
d∈D

[log p(d|zd,ZW) + log p(ad|zd,ZA)

+ log p(vd|zd,ZV) + λlabel log p(yd|zd)] +
∑

di,dj∈D

log p(xdi,dj |zdi , zdj)
)

− λprior(R[q(ZD)||p(Z)] +R[q(ZW)||p(Z)] +R[q(ZA)||p(Z)]

+R[q(ZV)||p(Z)]).

(5.6)

We use upper letter ZD ∈ R|D|×K as a collection of latent topics of all the documents, and

ditto for ZW , ZA, ZV . K is the number of topics. d and ad are the content and authors of d,

respectively. λlabel controls label supervision. When labels are not observed, λlabel = 0 for

unsupervised learning. λprior controls prior regularizer.

q(·) = q(·|D,A,V ,X ) is variational posterior where we omit its conditions to avoid clutter.

We also make structured mean-field assumption, q(ZD,ZW ,ZA,ZV) = q(ZD)q(ZW)q(ZA)q(ZV) =∏
d∈D q(zd)

∏
w∈W q(zw)

∏
a∈A q(za)

∏
v∈V q(zv). The first two rows at Eq. 5.6 concern data re-

construction, and the next two rows are divergences R that push variational posteriors to prede-

fined priors as regularization. Eq. 5.6 is our objective function for maximization.

Variational posteriors q(·) are probabilistic encoders parameterized by graph convolutional

networks in our model, and log-likelihood, log p(·|·), in the first two rows are decoders. Below
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we design the technical details of encoders, decoders, and divergences using the constructed

hierarchical multi-layered document graph.

5.4.2 Graph Convolutional Encoder

We seek a graph convolutional encoder that derives topic proportions for documents preserving

both graph structure and corpus semantics. Thus, we propose intra-layer and cross-layer topic

propagation for structure modeling and semantic learning, respectively.

Intra-Layer Topic Propagation.

Each graph layer contains one type of vertices and edges. We simulate intra-layer propagation to

capture topology of each layer. Due to the heterogeneity of vertices, different types of vertices

preserve different feature spaces. To unify heterogeneous vertices, we design a type-specific

transformation to project feature spaces of different types to the same low-dimensional space.

For a vertex i ∈ U with type o ∈ O,

z̃(l)i = W(l)
o z(l−1)

i . (5.7)

l is the l-th convolutional step. Previous works [39] call it the l-th convolutional layer, but to

distinguish it from our multi-layered graph, we call it convolutional step. z(l−1)
i is the output

of previous step, and z(l=0)
i is the input feature. W(l)

o is type-specific parameter. Three word

sub-layers share the same W(l)
o due to the same type.

Neighbors of vertex i share semantics with it to different degrees, e.g., some citations discuss

similar research, while others are coincidence. We design a type-specific attention within each

layer.

αij = softmax
(

LeakyReLU(b(l)⊤
o [z̃(l)i ||z̃(l)j ])

)
, j ∈ No(i). (5.8)

No(i) is the set of i’s homogeneous neighbors sharing the same type o with vertex i, [·||·] is
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concatenation operation, and b(l)⊤
o ∈ R2kl is learnable parameter. Finally, we aggregate topics of

i’s neighbors.

z(l)i = tanh
(1
2
(z̃(l)i +

∑
j∈No(i)

αij z̃
(l)
j )
)
. (5.9)

z(l)i contains latent topics of both itself and its homogeneous neighbors, and graph structure is

captured. We repeat above intra-layer topic propagation until the (L − 1)-th convolutional step

where L is the total number of steps in the encoder network. To summarize,

z(l)i = f
(

z(l−1)
i , {z(l−1)

j |j ∈ No(i)}
)
, where l = 1, 2, ..., L− 1. (5.10)

We obtain z(L−1)
w,ctx , z(L−1)

w,syn , z(L−1)
w,sem for three sub-layers of words; z(L−1)

d , z(L−1)
a , z(L−1)

v for docu-

ments, authors, and venues, respectively. This process is illustrated by Fig. 5.1(b) where orange

arrows denote the direction of intra-layer propagation within each layer.

Cross-Layer Topic Propagation.

We now define the L-th convolutional step. As in previous works [95], as a topic model, our

main goal is to use auxiliary information, i.e., authors and venues, to infer topics of documents.

We thus focus on document modeling first, after which, we introduce the design of other vertices.

Each document d now has four sets of neighbors, words {wd,n}Nd
n=1, authors {ad,n}Ad

n=1, venue

{vd}, and homogeneous neighbors Ndoc(d) connected by X . Since different sets represent dif-

ferent types, we should distinguish them to preserve corpus heterogeneity. We thus evaluate

attention between d and neighbors within each set.

Hierarchical Propagation. We use d’s words {wd,n}Nd
n=1 for illustration. Since we model

three word relations and obtain z(L−1)
w,ctx , z(L−1)

w,syn , and z(L−1)
w,sem at Eq. 5.10 for the same word w, we

first unify them by a cross-word-layer mean pooling, illustrated by Fig. 5.1(c).

z(L−1)
w = mean(z(L−1)

w,ctx , z(L−1)
w,syn , z(L−1)

w,sem), (5.11)
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which is then input to the L-th step. After linear transformation at Eq. 5.7, we have z̃(L)d and

z̃(L)w for document d and word w, respectively. We evaluate attention between document d and its

words.

αd,w = softmax
(

LeakyReLU(b⊤[z̃(L)d ||z̃(L)w ])
)

(5.12)

where w ∈ {wd,n}Nd
n=1, and b⊤ ∈ R2kl is parameter for cross-layer attention. Based on the

attention, we aggregate words by

h̃(L)

w =
∑
w

αd,wz̃(L)w , (5.13)

representing the aggregated topics of d’s whole content, containing three co-occurrence relations.

We use h to denote the whole neighbors. This process is hierarchical, since each word is first

averaged across three word sub-layers, then aggregated with d’s other words.

Above we use d’s words for illustration. For other types of neighbors, we repeat Eq. 5.12–

5.13 and obtain h̃(L)

d , h̃(L)

a , and h̃(L)

v , representing d’s whole homogeneous neighbors, authors,

and venues.

Sequence of Authors. When authors are not listed alphabetically, they usually present a

sequence of contribution, e.g., academic publications, which reveals the strength of edge con-

nection between these authors and the document. As an author topic model, we aim to incorpo-

rate such information and propose a sequence-aware attention. Specifically, when we evaluate

attention between document d and its authors a ∈ {ad,n}Ad
n=1, we extend Eq. 5.12,

αd,a = softmax
(
δ(d, a)× LeakyReLU(b⊤[z̃(L)d ||z̃(L)a ])

)
. (5.14)

We add a decay term δ(d, a), whose value should decrease when the sequence of author a in-

creases. In this chapter, we define

δ(d, a) = (1/2)s(d,a)−1. (5.15)
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s(d, a) is the sequence of a in d. s(d, a) = 1 if a is the first author. Two authors ai and aj with

equal contribution have s(d, ai) = s(d, aj). Here, the value of 1/2 is chosen, mainly because it

performs well on our datasets. Others values are possible, depending on the datasets. Although

more complicated attentions are also possible, for simplicity, we design Eq. 5.15 and leave others

as future work.

Reparameterization. Having obtained {h̃(L)

d , h̃(L)

w , h̃(L)

a , h̃(L)

v } for four graph layers, we

propagate them across layers to document d (Fig. 5.1(d)). η controls the importance of cross-

layer propagation.

µd = (1− η)× 1

2
(z̃(L)d + h̃(L)

d ) + η × mean(h̃(L)

w , h̃(L)

a , h̃(L)

v ) (5.16)

Since we aim to output both mean and covariance from the final convolutional step, we repeat

Eq. 5.11–5.16 twice and obtain µd and Σd for each document d. Assuming isotropic Gaussian

with zero mean is the prior, we sample topic proportion zd = z(L)d ∈ RK by reparameterization

trick [38]. For clarity, we omit superscript (L).

zd = z(L)d = µd + (Σd)
1/2ϵ, where ϵ ∼ N (0, I). (5.17)

We will analyze the alternatives of Gaussian at Sec. 5.4.3. Here zd is the output of the L-

th convolutional step. It contains graph topological structure within each layer by intra-layer

propagation, and preserves latent semantics from three relations of words, authors, and venues

by cross-layer propagation. To summarize, zd ∼ q(zd) where q(zd) is parameterized by our graph

convolutional encoder.

We now introduce other vertices. For the final convolution of words, we use Eq. 5.11 for

cross-word-layer mean pooling and obtain z(L−1)
w , which is then input to an intra-layer convolu-
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tion at Eq. 5.10.

µw = fµ

(
z(L−1)
w , {z(L−1)

w′ |w′ ∈ Nword(w)}
)

Σw = fΣ

(
z(L−1)
w , {z(L−1)

w′ |w′ ∈ Nword(w)}
)
.

(5.18)

Finally, we apply Eq. 5.17 and obtain zw for every word. For authors and venues, we simply

repeat intra-layer convolutional step at Eq. 5.18 and reparameterization at Eq. 5.17 and output

za and zv.

5.4.3 Variational Divergence

Having defined graph convolutional encoder as variational posterior q(zi), we now turn to the

design of the variational divergence term at Eq. 5.6, which pushes q(zi) to a predefined prior

p(z) using R as regularization. Here, we design three modeling alternatives.

KL Divergence with Gaussian Prior.

Following VGAE [40], the first design is KL divergence as R and isotropic Gaussian with zero

mean as prior p(z). Above reparameterization at Eq. 5.17 follows this Gaussian prior. The

corresponding KL divergence is

KL[q(zi)||p(z)] =
1

2
(tr(Σi) + µ⊤

i µi − log |Σi| −K). (5.19)

Vertex i ∈ U . q(zi) is our graph encoder, which outputs µi and Σi as Gaussian variational

posterior. tr(·) is the trace of a matrix.

KL Divergence with Dirichlet Prior.

Inspired by the success of Dirichlet prior in LDA [6], which improves topic quality, we analyze

Dirichlet prior as an alternative of Gaussian. We follow [76] and evaluate Dirichlet posterior
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q(zi) by Laplace approximation.

q(zi) = softmax(µi +Σ
1/2
i ϵ), where ϵ ∼ N (0, I). (5.20)

Having defined posterior, we approximate predefined Dirichlet prior p(z) = Dir(α). We calculate

its mean µ and covariance Σ by

µk = logαk −
1

K

∑
k′

logαk′ , Σkk =
1

αk

(1− 2

K
) +

1

K2

∑
k′

1

αk′
(5.21)

where Σ is a diagonal matrix. After obtaining µ and Σ, we use Eq. 5.20 to get approximated

Dirichlet prior p(z). KL divergence is

KL[q(zi)||p(z)] = 1
2

(
tr(Σ−1Σi) + (µ− µi)

⊤Σ−1(µ− µi) + log |Σ|
|Σi| −K

)
.

(5.22)

Wasserstein Distance with Gaussian Prior.

Variational divergence consists of three components, i.e., variational posterior q(zi) defined by

our graph convolutional encoder, predefined prior p(z) investigated above, and divergence metric

R. One drawback of KL is that it is not symmetric and does not obey triangle inequality, which

influences the measure of distributions in Euclidean space. We thus analyze R and seek an al-

ternative of KL. Inspired by WLDA [63], which uses Wasserstein distance in the word space and

achieves improvement, we analyze Wasserstein distance in the topic space. Convolutional en-

coder outputs µi and Σi as Gaussian variational posterior. We measure its distance with Gaussian

prior.

Theorem 1. Let p(z) = N (µ,Σ) and q(zi) = N (µi,Σi) be two Gaussian distributions. Their
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2-Wasserstein distance is [97]

W2[p(z), q(zi)] = ||µ− µi||22 + tr(Σ+Σi − 2(Σ
1
2ΣiΣ

1
2 )

1
2 ). (5.23)

Wasserstein distance between two Gaussians has an analytical solution. Specifically, in our

model the covariance of Gaussian prior and variational posterior is diagonal, Σ = diag(σ2) and

Σi = diag(σ2
i ), Eq. 5.23 can be simplified as a symmetric form

W2[p(z), q(zi)] = ||µ− µi||22 + ||σ2 − σ2
i ||22. (5.24)

We will examine the effect of these three modeling alternatives.

5.4.4 Probabilistic Decoder

We now design a decoder to generate the observed data, which is the log-likelihood reconstruc-

tion log p(·|·) at objective Eq. 5.6.

Specifically, we use textual content generation for illustration. For a document d ∈ D,

log p(d|zd,ZW) at Eq. 5.6 is the log-likelihood of content generation where zd = z(L)d and

ZW = [z(L)w1 ; z(L)w2 ; ...]
⊤ ∈ R|W|×K are the outputs of the graph convolutional encoder. We define

log p(d|zd,ZW) =
∑

w∈d log[ϕ(ZWzd)dw(1 − ϕ(ZWzd))1−dw ], where dw = 1 if word w appears

in document d, otherwise dw = 0. ϕ(x) = 1
1+exp(−x)

is sigmoid. We use inner product of docu-

ment’s and words’ topic proportions to predict each word. However, above equation inefficiently

requires summation over the entire vocabulary. Empirically, we use negative sampling [61] to

replace it. ∑
w:dw=1

[log ϕ(z⊤d zw) +
M∑

m=1

Ew′∼pn(w) log ϕ(−z⊤d zw′)] (5.25)

M is the number of negative samples, pn(w) is a noise distribution. Above we use content

generation for illustration. For authors, venues, and connected documents, the reconstruction
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terms (Eq. 5.25) are similarly defined by replacing zw with za, zv, and zd, respectively. This

decoding process is shown by Fig. 5.1(e) by red arrows.

If document d’s label exists, we define label generation by

ŷd = softmax(fMLP(zd)), log p(yd|zd) =
∑
n

yd,n log ŷd,n. (5.26)

fMLP(·) is a multi-layer perceptron, yd is a one-hot label encoding.

Up to now, we have elaborated all three modeling components. Graph convolutional en-

coder simulates intra- and cross-layer topic propagation on a hierarchical multi-layered docu-

ment graph to capture graph structure and latent semantics. Variational divergence analyzes pre-

defined prior and divergence metric. Decoder generates the observations with both supervised

and unsupervised version. We optimize objective function Eq. 5.6 until convergence.

5.5 Experiments

The main objective is to evaluate the quality of documents’ topics learned from a corpus with

auxiliary authorship and venues.

Datasets. We use six datasets at Table 5.1. Cora [58] is a corpus of papers with abstract as

content and citations as doc-doc edges. Each paper has a sequence of authors. We extracted two

independent datasets, Machine Learning (ML) and Programming Language (PL). Besides, we

used two more datasets, HEP-TH [46] and Aminer [78] as Physics and CS paper corpus, both

with authors and venues. COVID is a Coronavirus news corpus1. Each article has an editor and

published on a platform. Since no doc-doc edges are observed, we generate κNN edges using

Bag-of-Words similarity (κ = 5). Web [45] is a Web page hyperlink network. Each page is a

news article and associated with an author.

Baselines. We consider 5 categories of baselines. i) Topic models for plain text, ProdLDA

1https://aylien.com/blog/free-coronavirus-news-dataset
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Table 5.1: Dataset statistics.
Name #Documents #Authors #Venues #Doc-Doc Edges Vocabulary #Labels

ML 2,947 2,814 N.A. 8,146 5,814 7
PL 2,449 2,778 N.A. 7,274 5,066 9

COVID 1,500 880 169 5,706 5,083 5
HEP-TH 20,151 10,432 343 234,193 5,001 N.A.
Aminer 114,741 143,534 50 265,345 10,018 10

Web 445,657 36,405 N.A. 565,502 10,015 N.A.
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Figure 5.2: Supervised document classification when varying the number of topics K from 16 to
256.

[76], WLDA [63], NSTM [118], and DVAE [8]. ProdLDA and DVAE use Dirichlet as predefined

prior. WLDA uses Wasserstein distance in the word space. These unsupervised models are not

proposed for author or venue modeling. To allow them to model authors and venues, we consider

each author and venue as a document, and the content is the aggregation of associated documents.

ii) Author topic models deal with corpus with authors, we compare to ATM [73] where topics of

a document are the average of its authors’. iii) Topic models for document graphs, RTM [10],

Adjacent-Encoder [107], and LANTM [90]. They construct a document graph and learn topic

proportions in an unsupervised way. We extend them to consider authorship by running on our

constructed multi-layered graph. iv) Text classification models learn text embeddings with label

supervision for classification. We mainly compare to graph models, TextGCN [103], HyperGAT

[20], TVGAE [95]. TextGCN and HyperGAT are not topic models, since text embeddings are not

interpretable topics. TVGAE integrates topic model into VGAE. We allow them to model authors

and venues by converting authors and venues as documents. v) Graph embedding models are
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not topic models, either. For completeness, we consider HAN [89] as supervised and VGAE [40]

as unsupervised method, both with authors and venues.

We set two convolutional steps for our model. We present three variants, VGATM-G, VGATM-

D, and VGATM-W, for Gaussian prior, Dirichlet prior, and Wasserstein distance, respectively.

λprior = 0.01, η = 0.1, and M = 5. For our supervised version, λlabel = 1 . For VGATM-D,

α = 1 for Dirichlet prior. For HAN, the combination of metapaths {DAD, DWD, DVD, DD}

performs the best. Each result is obtained by 5 independent runs. We report mean and std.dev.

5.5.1 Quantitative Evaluation

Document Classification. Following LDA [6], to evaluate topic quality, we rely on document

classification. Given a corpus, we split 80% documents for training, among which 10% are for

validation. We also observe authors, venues, graph edges, and labels associated with training

documents. During test, we infer topics of test documents and classify them. Since we have both

supervised and unsupervised version, we conduct two classification tasks.

Supervised Training. Labels are involved for supervised training. We compare to all base-

lines. Supervised baselines output predicted labels for documents, which are then compared with

ground-truth labels. For completeness, we also compare to unsupervised baselines, which output

topic proportions without label prediction. We follow [107] and train an external kNN classi-

fier (k = 5) using the output topics of training documents and predict labels of test documents.

Fig. 5.2 shows classification accuracy with different number of topics. We exclude LANTM

and TextGCN on large dataset Aminer, since they cannot run even on a machine with 256GB

memory.

Unsupervised Training. We set λlabel = 0 and do not observe labels for training. For a fair

comparison, we compare against unsupervised baselines only. We use kNN as external classifier

for both our models and baselines. Table 5.2 shows the accuracy at 64 topics.

Analysis. For both classification tasks, the best baselines are Adjacent-Encoder, LANTM,
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Table 5.2: Unsupervised classification (in percentage) at K = 64.
Model ML PL COVID Aminer

ProdLDA 69.3±0.7 53.1±2.5 73.9±1.6 64.0±0.2
WLDA 31.8±3.5 33.2±1.8 65.6±2.5 65.5±0.2
NSTM 45.2±2.6 41.3±3.2 69.0±2.1 44.6±0.3
DVAE 70.8±1.3 58.7±1.5 77.8±2.1 67.4±0.3
ATM 52.0±1.3 43.8±3.0 72.4±1.7 64.1±0.8
RTM 61.6±2.4 53.3±1.4 70.5±3.2 58.8±0.5

Adjacent-Encoder 80.5±0.6 72.2±0.9 83.7±1.0 49.6±0.3
LANTM 73.5±1.6 61.8±0.9 78.2±1.6 N.A.
VGAE 67.7±1.9 55.0±2.3 56.4±4.6 63.6±0.6

VGATM-G 81.5±0.4 73.7±0.5 83.2±1.1 98.0±0.1
VGATM-D 82.5±0.7 73.1±0.7 83.6±0.6 98.9±0.2
VGATM-W 84.4±0.3 74.8±1.2 84.7±1.3 97.7±0.4
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Figure 5.3: Ablation analysis of our models.

and HAN, which model document graph but ignore three word relations. In contrast, we consider

contextual, syntactic, and semantic relations, and improve the result. VGATM-W is the best one

among our variants at Table 5.2, which verifies that Wasserstein is a promising alternative of

KL. Dirichlet prior performs better than Gaussian. As verified by previous work [8], Dirichlet

encourages topics to be sparser than Gaussian and achieves a lower reconstruction error, thus

improving topic quality.

Link Prediction. Edges reveal semantic similarity between documents. As in RTM [10],

we conduct link prediction to evaluate topic quality. As in [107], the first task is doc-doc link

prediction. Besides, as an author topic model, we also predict authors given a document, i.e.,

doc-author link prediction in our document graph.
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Table 5.3: Link prediction AUC (in percentage) with doc-doc link prediction (left) and doc-
author link prediction (right) at K = 64.

Category Model
Doc-Doc Link Prediction

ML PL COVID HEP-TH Aminer Web

Models for plain text

ProdLDA 81.8±0.8 74.9±0.6 75.5±1.0 64.2±2.2 80.2±0.4 82.4±0.0
WLDA 52.4±0.8 54.7±1.0 67.1±1.3 62.8±0.4 79.7±0.7 79.3±0.5
NSTM 63.2±1.7 62.4±0.7 66.3±1.4 58.3±0.3 58.8±0.6 67.0±0.8
DVAE 79.9±0.8 73.1±0.4 73.4±0.2 82.0±0.1 89.8±0.3 88.3±0.0

Author topic models ATM 71.1±1.6 69.2±1.2 61.0±0.2 66.8±0.3 64.4±0.4 87.6±0.0

Models with document graph
RTM 71.0±1.0 68.1±0.5 70.5±0.3 69.7±0.8 77.5±0.7 78.4±0.1

Adjacent-Encoder 84.7±0.9 84.9±1.9 94.7±0.4 75.0±0.6 71.8±0.7 73.2±0.0
LANTM 80.6±1.2 75.4±0.7 84.9±1.1 86.1±0.3 N.A. N.A.

Text classification models TextGCN 81.3±0.3 75.4±0.4 81.1±0.1 N.A. N.A. N.A.
(they are supervised and cannot run on HyperGAT 83.1±0.5 79.7±0.5 87.1±0.3 N.A. 90.0±0.0 N.A.

HEP-TH and Web with no observed labels) TVGAE 79.1±0.7 74.7±1.0 88.2±1.0 N.A. 85.3±0.6 N.A.
Graph embedding models HAN 77.0±0.7 73.1±0.4 84.7±1.0 N.A. 93.2±0.1 N.A.

(HAN is supervised, cannot run without labels) VGAE 72.5±0.5 80.4±0.2 84.1±2.8 72.7±1.7 91.9±0.6 87.4±0.2

Our proposed models
VGATM-G 91.3±0.7 91.1±0.5 91.1±0.5 86.3±0.5 94.5±0.4 93.0±0.1
VGATM-D 91.7±1.2 90.6±0.2 91.3±0.3 87.1±0.1 94.4±0.4 93.0±0.2
VGATM-W 93.4±0.4 92.1±0.2 95.4±0.3 91.7±0.2 95.5±1.0 93.5±0.4

Category Model
Doc-Author Link Prediction

ML PL COVID HEP-TH Aminer Web

Models for plain text

ProdLDA 65.3±0.0 67.1±0.0 26.8±1.5 45.0±1.5 54.3±0.2 60.5±0.0
WLDA 31.9±0.6 31.1±0.4 33.0±1.3 33.0±0.3 47.4±0.5 35.6±1.2
NSTM 51.2±1.3 49.9±0.5 44.9±2.8 44.1±0.3 47.2±0.2 59.5±0.0
DVAE 64.8±0.3 62.9±0.8 49.4±0.7 66.7±0.3 66.3±0.2 71.7±0.0

Author topic models ATM 40.6±2.5 37.7±1.6 29.6±4.0 57.7±0.6 70.1±0.5 59.6±2.1

Models with document graph
RTM 32.1±0.4 32.7±0.1 32.2±0.4 30.2±0.0 25.8±0.1 34.9±0.1

Adjacent-Encoder 90.2±0.6 89.7±0.2 73.6±1.2 75.3±0.7 37.9±0.0 36.2±0.0
LANTM 86.1±0.9 87.8±0.8 71.0±1.5 85.7±0.3 N.A. N.A.

Text classification models TextGCN 56.8±0.7 50.4±1.6 47.7±5.2 N.A. N.A. N.A.
(they are supervised and cannot run on HyperGAT 50.0±0.8 49.6±0.7 61.8±3.1 N.A. 49.1±0.2 N.A.

HEP-TH and Web with no observed labels) TVGAE 65.0±0.9 65.4±0.9 72.8±1.5 N.A. 70.6±0.7 N.A.
Graph embedding models HAN 73.0±1.4 72.2±2.2 79.2±1.1 N.A. 71.3±1.1 N.A.

(HAN is supervised, cannot run without labels) VGAE 82.3±2.3 86.3±1.2 63.8±3.2 77.7±3.3 64.9±0.9 73.8±1.9

Our proposed models
VGATM-G 92.0±0.3 93.1±0.1 73.7±2.0 90.0±0.3 72.9±0.9 76.1±1.0
VGATM-D 92.3±0.3 93.2±0.4 74.9±0.6 90.3±0.3 74.0±1.0 76.2±0.4
VGATM-W 93.0±0.3 93.8±0.5 79.5±1.2 91.2±0.3 74.1±0.3 77.3±0.0

Doc-Doc Link Prediction. During training, we observe 80% training documents and links

within them. During test, we predict links within 20% test documents. As in [107], the prob-

ability of a link is p(xdi,dj |zdi , zdj) ∝ exp(−||zdi − zdj ||22). We compare the predicted prob-

ability against the ground-truth adjacency by AUC [90]. Table 5.3 (upper) shows the results.

LANTM and TextGCN cannot run on large datasets and do not have results. Supervised mod-

els (TextGCN, HyperGAT, TVGAE, and HAN) require labels for training, thus cannot run on

HEP-TH and Web with no labels.

Doc-Author Link Prediction. We then predict authors given a document. For authors with
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Table 5.4: Topic coherence NPMI at K = 64.

Category Model
Topic Coherence NPMI

ML PL COVID HEP-TH Aminer Web

Models for plain text

ProdLDA 10.0±0.7 9.4±0.5 12.0±0.7 10.3±0.6 9.3±0.5 21.2±0.2
WLDA 9.7±0.2 11.6±0.1 12.5±0.5 13.7±0.4 17.9±0.5 23.9±0.8
NSTM 16.0±1.0 18.6±0.6 22.0±0.6 18.2±0.5 15.5±0.3 24.0±0.3
DVAE 14.7±0.0 15.2±0.1 15.8±0.1 14.8±0.1 15.5±0.1 17.6±0.2

Author topic models ATM 10.2±0.4 12.0±0.5 9.8±0.2 10.2±0.3 15.0±0.2 23.2±0.7
Models with document graph RTM 7.3±0.2 8.9±0.5 16.2±0.5 6.6±0.3 10.8±0.3 20.9±0.4

(LANTM cannot run on large dataset Adjacent-Encoder 12.4±0.9 12.5±0.7 13.8±0.4 13.4±0.4 11.4±0.2 15.2±0.1
Aminer and Web even on 256GB machine) LANTM 9.9±1.2 9.8±0.7 8.6±0.3 10.4±1.5 N.A. N.A.

Text classification (cannot run with no labels) TVGAE 3.3±0.5 3.8±0.5 5.2±0.5 N.A. 2.6±0.3 N.A.

Our proposed models
VGATM-G 13.2±0.7 19.6±1.9 19.7±0.9 15.5±1.0 21.5±0.7 19.6±0.6
VGATM-D 13.0±0.8 19.3±2.8 22.9±1.8 15.8±0.8 20.9±0.3 26.4±2.8
VGATM-W 13.6±1.1 20.5±1.0 19.4±1.8 19.0±0.0 21.7±1.1 23.7±1.7

Table 5.5: Perplexity at K = 64.
Category Model

Perplexity
ML PL COVID HEP-TH Aminer Web

Models for plain text

ProdLDA 7.19±0.00 7.21±0.00 7.82±0.00 7.72±0.00 8.18±0.00 8.34±0.00
WLDA 18.90±0.73 19.57±0.30 28.56±1.09 44.31±0.18 44.67±0.10 45.22±0.00
NSTM 8.46±0.00 8.34±0.00 8.38±0.00 8.39±0.00 9.00±0.00 8.93±0.00
DVAE 17.74±0.14 18.96±0.08 17.16±0.26 23.67±0.11 40.50±0.04 43.32±0.00

Author topic models ATM 6.63±0.01 6.45±0.01 7.33±0.04 7.05±0.00 7.65±0.01 7.21±0.00
Models with document graph RTM 8.07±0.01 7.93±0.01 8.98±0.04 8.04±0.00 8.89±0.01 10.28±0.19

(LANTM cannot run on large dataset Adjacent-Encoder 7.41±0.01 7.34±0.13 6.96±0.00 7.45±0.19 8.71±0.02 8.26±0.01
Aminer and Web even on 256GB machine) LANTM 8.63±0.00 8.48±0.00 8.48±0.00 8.50±0.00 N.A. N.A.

Text classification (cannot run with no labels) TVGAE 10.53±0.27 10.13±0.53 11.30±0.47 N.A. 10.24±0.17 N.A.

Our proposed models
VGATM-G 5.50±0.24 5.64±0.26 6.95±0.09 5.06±0.05 5.78±0.13 5.29±0.14
VGATM-D 5.36±0.12 5.62±0.24 6.80±0.16 5.04±0.09 5.94±0.24 6.40±0.33
VGATM-W 5.23±0.15 5.13±0.30 6.55±0.20 4.94±0.06 5.75±0.28 5.60±0.41

at least three documents, we randomly remove one document as the test doc-author links. We

input the remaining corpus to train the model. After convergence, we predict the held-out links.

Table 5.3 (lower) summarizes the results.

Analysis. For both scenarios, our models predict links more accurately than baselines. Com-

pared to models with plain text, we show the advantage of constructing document graph using

auxiliary authors and venues. Compared to models with graph structure, we verify the benefit of

modeling three word co-occurrence relations.

5.5.2 Topic Analysis

Topic Coherence. One advantage of topic models is semantic interpretability: each topic is

interpreted by its key words. ZW ∈ R|W|×K is topic-word distribution. Each column is the
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Table 5.6: Top-5 words of 2 randomly selected topics of VGATM.
Model Topic Key words

VGATM-G
1 hospital, nurse, children, died, clinic
2 manufacturing, import, affected, slowdown, agricultural

VGATM-D
1 employee, employees, retirees, worker, insurance
2 rugby, club, illness, match, championship

VGATM-W
1 classwork, loved, classmates, no-one, at-home
2 cases, patients, disease, diseases, deaths

distribution of a topic over the words, and the highest values on that column are the key words

of that topic. As in ProdLDA [76], we evaluate the coherence of key words by an external cor-

pus, Google Web 1T 5-gram Version 1 [22], with NPMI as metric. Table 5.4 shows the results.

We exclude TextGCN, HyperGAT, HAN, VGAE, since they are not topic models. TVGAE is a

supervised topic model, thus cannot run on HEP-TH and Web with no labels. Our models out-

perform baselines except one case: NSTM learns more coherent topics on ML, possibly because

it models pretrained word embeddings. VGATM-D is better than VGATM-G, since Dirichlet

prior achieves low reconstruction error, producing more coherent topics.

Perplexity. Following LDA [6], we evaluate perplexity to analyze topic quality. We evalu-

ate perplexity for 20% test documents. Perplexity, exp{− log p(Dtest)∑
d∈Dtest

Nd
}, is exponential and varies

much w.r.t. its power, we thus present its power − log p(Dtest)∑
d∈Dtest

Nd
for clarity (smaller is better).

Table 5.5 shows that our models consistently outperform baselines. Benefiting from document

graph with authors and venues, Adjacent-Encoder presents the lowest perplexity among base-

lines. Compared to it, our models further consider three word relations, improving ours over

Adjacent-Encoder.

Interpretability. To understand what topics our models capture, we randomly select two top-

ics for each variant and present top-5 words on COVID at Table 5.6. VGATM-G captures chil-

dren’s health and manufacture depression. VGATM-D reveals retirement and sports. VGATM-

W shows studying at home and confirmed cases.
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5.5.3 Model Analysis

Effect of Authors and Venues. We test the effect of authors and venues. We respectively remove

authors and venues, and use the remaining corpus for training. Fig. 5.3(a) presents doc-doc link

prediction results on HEP-TH. Our models with both information perform the best, showing the

advantage of authors and venues. We conclude that venues are more informative on HEP-TH,

since the result drops more when removing venues than removing authors.

Number of Convolutional Steps. We analyze the performance of different convolutional

steps L at Fig. 5.3(b), doc-doc link prediction on ML dataset. When L = 1, we cannot fully

capture high-order neighbors, leading to inferior results. When L = 2, we observe an increasing

trend. However, an overly high value of L hurts the result, since further neighbors with noise are

modeled.

Three Word Co-occurrence Relations. Here we test the effectiveness of three word rela-

tions by removing each one from the complete models. Fig. 5.3(c) shows classification accuracy

on ML. Models with all three relations outperform other versions, verifying that we indeed cap-

ture every word relation to improve topic modeling. Semantic relation plays the most important

role, since disregarding it leads to the worst accuracy. Syntactic relation is less informative, since

removing it does not hurt the result much.

Effect of Cross-Layer Topic Propagation. Cross-layer topic propagation integrates auxil-

iary information into topic proportions of documents. To test its usefulness, we remove it by

setting η = 0 at Eq. 5.16 and maintain intra-layer propagation only. Fig. 5.3(d) summarizes

classification accuracy on ML dataset. We conclude that cross-layer topic propagation allows

topics of documents to better capture auxiliary information and improves topic quality.
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5.6 Discussion

We propose Variational Graph Author Topic Model, which flexibly works under supervised and

unsupervised settings. To model authors, venues, and three word relations, we design a hierar-

chical multi-layered document graph and propose three alternatives of divergence. Experiments

verify the effectiveness of various components of our models ablatively, as well as the holistic

model’s outperformance over baselines.
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Chapter 6

Meta-Complementing the Semantics of

Short Texts in Neural Topic Models

6.1 Introduction

Much of the data on the Web can be represented as text documents. Topic models help to un-

derstand the main themes within documents, i.e., each document is represented by a topic dis-

tribution, and each topic is interpreted by its key words. The quality of topic distribution of

each document depends on sufficient word co-occurrences. However, many real-world corpora

contain documents of variable lengths. Academic papers vary from journal manuscripts to con-

ference papers to extended abstracts. News articles could be headlines, short or full articles, or

detailed commentaries. Fig. 6.1(a) illustrates an academic paper corpus where the distribution

of document lengths exhibits a long-tail distribution. Despite variable lengths (with different

degrees of sufficiency of word co-occurrences), existing works, e.g., ProdLDA [76] and GATON

[100], treat documents uniformly, resulting in inferior topic quality for short texts. Evidentially,

Fig. 6.1(b) presents document classification accuracy on four subsets of corpus with descending

lengths. Accuracies gradually drop as the length decreases. The inferior topic quality of short

texts limits the overall performance of a topic model.
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Figure 6.1: Illustration of (a) a paper corpus with various-length documents, (b) classification
accuracy on four subsets of the corpus by descending length, and (c) semantic transfer and com-
plement.

Problem. We are given a corpus of N documents D = {di}Ni=1. Each document d ∈ R|V|

is a vector in the vocabulary space V . ld =
∑

w∈V dw is the length of document d where dw

is the word count of w in d. When word embeddings are available, we have H = {hw}w∈V

where hw is the embedding of word w. Documents may link to others in a document network

G = {D, E}, with documents D and network connectivity E = {eij}Ni,j=1. If document d links to

d′, ed,d′ = 1, otherwise ed,d′ = 0. N (d) is the set of neighbors of d. We consider an undirected

network, ed,d′ = ed′,d. Corpus D contains documents of variable lengths {li}Ni=1. We introduce a

hyperparameter L as the threshold where short documents are those with fewer observed words,

Dshort = {di|li < L }, and long documents are defined symmetrically, Dlong = {di|li ≥ L }. We

consider L as a predefined hyperparameter and leave other designs as future work.

Given a variable-length corpus D (as well as word embeddings H and network E if observed)

as input, we aim to output topic distributions for documents where the topic quality of short

documents is improved, without hurting long documents. Note that our goal is not to allow short

texts to reach the performance of long documents, but to improve short text topic modeling as

much as possible.
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6.2 Background

Meta-Learning. Meta-learning [23] optimizes globally shared parameters, a.k.a. prior knowl-

edge, over meta-training tasks, so as to rapidly adapt the model to previously unseen meta-testing

tasks with only a few observed data. Since topic models generally learn topics by a content gen-

erative process, here we consider generating observed words for a document d as a task Td. A

meta-training task Td corresponds to a training document d and consists of a support set and a

query set, Td = {Sd,Qd}. Each set contains randomly sampled words from document d, such

that support words and query words are mutually exclusive, Sd ∩ Qd = ∅ and Sd ∪ Qd = d.

Meta-training has two steps:

1. Local update. Given a topic model fθ with parameter θ, fθ is first updated from the globally

shared parameter θ to document-specific local parameter θd w.r.t. loss on d’s support words Sd.

θd = θ − α∇θL(θ,Sd) where Td = {Sd,Qd} ∈ Ttr. (6.1)

α is meta-learning rate, ∇ is gradient, L is loss function, Ttr is a set of meta-training tasks

(documents).

2. Global update. After obtaining θd for each document d, we compute the loss on query

words L(θd,Qd). Together with other training tasks, we optimize the globally shared parameter

θ.

θ∗ = min
θ

∑
Td∈Ttr

L(θd,Qd) = min
θ

∑
Td∈Ttr

L(θ − α∇θL(θ,Sd),Qd). (6.2)

θ∗ is the new globally shared parameter and will replace θ at Eq. 6.1–6.2 for the next iteration.

After convergence, the final global parameter θ∗ can easily be adapted to meta-testing tasks.

Meta-testing tasks Tte are unseen test documents. All the observed words are support words,

Td = Sd = d. During meta-testing, topic model fθ∗ with optimized global parameter θ∗ is

updated w.r.t. Sd by Eq. 6.1 and obtain θ∗d. The topic distribution of testing document is inferred

by zd = fθ∗d(d).
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Figure 6.2: Model architecture of Meta-Complementing Topic Model, MCTM.

6.3 Model Architecture and Analysis

We introduce Meta-Complement Topic-Model (MCTM) at Fig. 6.2. Below we elaborate three

components, graph convolutional encoder, missing semantics prediction, and meta-learning op-

timization.

6.3.1 Graph Convolutional Topic Encoding

We follow GATON [100] and first present a graph convolutional encoder fθ (Fig. 6.2(a)), which

projects documents to K-dimensional topic distributions. We defer the discussion on short text

modeling to the following subsections. Given a corpus D, considering documents and words as

vertices, we construct a bipartite graph, the links represent word occurrences in the documents.

Since documents and words preserve heterogeneous feature spaces, we project them to the same

topic space by learnable matrix,

z̃(l+1)
d = W(l+1)

1 z(l)d , z̃(l+1)
w = W(l+1)

2 z(l)w , where d ∈ D, w ∈ V . (6.3)

l is the l-th convolutional layer. z(0)d and z(0)w are inputs, i.e., Bag-of-Words and one-hot, respec-

tively.

To differentiate the importance of words, we evaluate attention between document d and its
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observed support words at Eq. 6.4 and aggregate words at Eq. 6.5 where [·||·] is concatenation.

ad,w = softmax
(

tanh(b(l+1)⊤
1 [z̃(l+1)

d ||z̃(l+1)
w ])

)
where w ∈ Sd (6.4)

z(l+1)
d = tanh

(1
2
(z̃(l+1)

d +
∑
w∈Sd

ad,wz̃(l+1)
w )

)
. (6.5)

Symmetrically, we modify Eq. 6.4 and obtain aw,d, i.e., the attention between word w and

documents it appears in. After symmetric aggregation at Eq. 6.5, we obtain z(l+1)
w for word w.

So far, we complete the convolution from l-th to (l + 1)-th layer. For simplicity, we summarize

aggregation at Eq. 6.3–6.5 by

z(l+1)
d = AGG(W(l+1)

1 z(l)d ,W(l+1)
2 z(l)w |w ∈ Sd), z(l+1)

w = AGG(W(l+1)
2 z(l)w ,W(l+1)

1 z(l)d |∀d : w ∈ Sd).

(6.6)

We repeat Eq. 6.6 for maximum L layers and obtain K-dimensional topics zd = z(L)d for docu-

ment d and zw = z(L)w for word w. The complete encoder is Eq. 6.7. θ is the set of all encoding

parameters.

zd, zw = fθ(z
(l=0)
d , z(l=0)

w |d ∈ D, w ∈ V). (6.7)

6.3.2 Missing Semantics Prediction with Contrastive Learning

A short document with few words leaves some content poorly described, resulting in incomplete

topic distribution zd. As a toy example, document B at Fig. 6.1(c) contains limited words,

e.g., gene and clone, and leaves other contents, e.g., protein and cell, uncovered. We aim to

complement the topics of short documents. For a document d, regardless of long or short, we

complement its semantics by

z∗d = zd + md. (6.8)

We name md ∈ RK missing semantics of document d. If d is a long document with complete

semantics, md is a zero vector. A function gµ predicts missing semantics at Eq. 6.9 with topic
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distributions of d and its support words as inputs. We will elaborate the design of function gµ

shortly.

md = gµ(zd, zw|w ∈ Sd). (6.9)

Contrastive Learning. Long documents contain relatively more sufficient word co-occurrences

than short documents. Thus, we learn missing semantics prediction function gµ on long docu-

ments, and then transfer the learned semantic knowledge to complement short documents. On

one hand, a long document d with enough content does not need semantic complement. Thus we

have below constraint

md → 0 where d ∈ Dlong. (6.10)

On the other hand, although we aim to transfer the semantic knowledge from long to short

documents, there does not exist a one-to-one correspondence in corpus D. As a result, we may

transfer semantics of a long document (e.g., machine learning concepts) to a short one describing

completely distinct content (e.g., biology). To overcome this limitation, we introduce another

constraint with contrastive objective. For a long document d with support words Sd, we randomly

hide a proportion of words to mimic a short document, denoted as d′ with remaining observed

words Sd′ ⊂ Sd and length ld′ < L . For both long text d and its short version d′, we predict their

missing semantics by Eq. 6.9, and obtain md and md′ , respectively. md′ should complement the

previously hidden semantics, i.e., Sd − Sd′ ,

zd′ + md′ → zd + md ⇒ z∗d′ → z∗d where d ∈ Dlong. (6.11)

Together with above Eq. 6.10, which forces z∗d = zd + md to approach zd, Eq. 6.11 actually has

zd′ + md′ → zd ⇒ md′ → zd − zd′ where d ∈ Dlong. (6.12)
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To summarize, we arrive at the following constraint loss.

Lcon(d) = − log σ(cos(md′ , zd − zd′)) where d ∈ Dlong. (6.13)

σ(x) = 1
1+exp(−x)

is sigmoid function, and cos(·, ·) is cosine similarity. We here use cosine sim-

ilarity, mainly due to its superior performance on our datasets. Besides cosine, other similarity

metrics, such as inner product and Euclidean distance, are also possible, depending on different

datasets.

Missing Semantics Prediction. We now define the function of missing semantics prediction

gµ. Given topic distributions of a document and its observed support words as input, a desirable

function should aggregate them and output a single missing semantics vector. We propose two

alternatives.

1. GNN function. The first is to implement gµ using a graph neural network, see Fig. 6.2(b).

md = gµ(zd, zw|w ∈ Sd) = AGG(U1zd,U2zw|w ∈ Sd). (6.14)

A corpus D contains documents with diverse themes. For example, some documents discuss

machine learning, while others describe biology. However, the assumption of corpus-level shared

parameter U1 and U2 is not flexible to model diverse documents for missing semantics prediction,

since different documents may have distinct optimal parameters, which are sometimes even in

opposing direction. As a result, the predicted missing semantics md centers its mass around

the most frequent topics and leaves other distinct topics uncovered. We seek to personalize U1

and U2 for each document d to recover the distinct missing semantics. Formally, we introduce

a function ϕ, which transforms U1 and U2 to document-specific parameters Ud,1 and Ud,2 by

scaling and shifting. Taking U1 as example,

Ud,1 = ϕ(U1, zd, zw|w ∈ Sd) = U1 ⊙
[
(γd + 1)×K

]
+
[
(βd)×K

]
. (6.15)
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γd and βd are document-specific vectors for scaling and shifting shared parameter U1. ⊙ is

element-wise product. [(x)×K ] is a matrix with K identical column vector x. 1 is a vector of ones,

ensuring the scaling matrix centers around one. Ud,2 is similarly defined. Eq. 6.15 allows each

document d to have its own parameters, while all documents still share the common knowledge.

Similar documents scale and shift U1 and U2 to similar directions. Different documents push

them to distinct directions.

We define scaling γd and shifting βd, parameterized by topics of document d and its support

words.

γd = tanh(Wγzd + W′
γ z̄Sd

), βd = tanh(Wβzd + W′
β z̄Sd

). (6.16)

z̄Sd
= 1

|Sd|
∑

w∈Sd
zw is the average of d’s words. In summary, we use Eq. 6.14 to predict d’s

missing semantics, except that shared parameters U1 and U2 are replaced by d-specific ones, Ud,1

and Ud,2.

2. Clustering function. We propose an alternative method by semantic clustering to recover

distinct missing semantics, Fig. 6.2(c). Documents with similar content fall into related clusters,

while unique documents belong to different ones. If we assign each cluster a set of parameters

for missing semantics prediction, similar documents would recover their own distinct topics.

Specifically, we introduce R centroids {cr}Rr=1, each corresponding to one cluster. Given topic

distributions of document d and its support words, we first evaluate the assignment probability

between document d and each cluster by

Pr(r) = softmax(−1

2
||h0 − cr||22) =

exp(−1
2
||h0 − cr||22)∑R

r′=1 exp(−
1
2
||h0 − cr′||22)

. (6.17)

h0 = [zd||z̄Sd
] is the concatenation of zd and z̄Sd

. We then assign parameters to each cluster,

md = h1 =
R∑

r=1

Pr(r)× ReLU(Wrh0 + br). (6.18)

Therefore, related documents obtain similar clustering probabilities and missing semantics.
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Above process is a flat clustering. Our function can be extended to multiple clustering layers.

Each layer s consists of R(s) centroids. After obtaining the output from previous layer, hs−1, we

repeat Eq. 6.17–6.18 by replacing h0 with hs−1, and obtain the output of the current layer s, i.e.,

hs. For maximum S layers, we get md = hS . We leave adaptive learning of number of clusters

R as future work.

6.3.3 Probabilistic Decoding with Meta-Learning Optimization

After semantic complement, we obtain {z∗d}d∈D at Sec. 6.3.2. We use ZV =
[
zw1 ; zw2 ; ...; zw|V|

]
∈

RK×|V| to represent topic-word distribution, each column zw is topic distribution of a word w, and

each row is to the distribution of a topic over the vocabulary. As in previous topic models [6, 76],

we generate the observed support words Sd by d̂Sd
= σ(ZVz∗d). Compared to the ground-truth

support words dSd
, we follow [100] and obtain generative loss Lgen = ||dSd

− d̂Sd
||22. However,

this loss requires inefficient computation over the whole vocabulary. We instead use negative

sampling [61].

Lgen(d) =
∑
w∈Sd

[
(dw − d̂w)

2 +
M∑

m=1

Ew′∼Prn(w)(dw′ − d̂w′)2
]
. (6.19)

M is the number of negative samples, and Prn(w) is a noise distribution over vocabulary. d̂w =

σ(z∗⊤d zw). dw = 1 if w ∈ Sd, otherwise dw = 0. In addition, if d is a long document d ∈ Dlong,

we also created its corresponding pruned short version d′ with a subset of support words Sd′ ⊂ Sd

at Sec. 6.3.2. Although we do not observe the complete support words for d′, its complete topic

distribution z∗d′ after semantic complement at Eq. 6.8 should be able to generate the complete

support words Sd. Therefore, together with semantic complement constraint at Eq. 6.13, we
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arrive at the complete loss.

L(d) = Lgen(d) + Lcon(d) + λregLreg(θ)

where Lgen(d) = Lgen(d) + I(d ∈ Dlong)λgenLgen(d
′), Lcon(d) = I(d ∈ Dlong)Lcon(d).

(6.20)

Lgen(d) is generative loss, consisting of document d in the corpus d ∈ D = Dlong ∪Dshort and the

corresponding pruned short version d′ (if d ∈ Dlong). I(d ∈ Dlong) = 1 if d ∈ Dlong, otherwise 0.

Lreg(θ) is L2 regularizer for encoding parameters θ. λgen and λreg are hyperparameters.

Optimization. Finally, with the objective of meta-learning at Sec. 6.2, we reach the opti-

mization:

1. Local update. Given topic encoder fθ defined at Sec. 6.3.1, we optimize encoding param-

eter θ w.r.t. the generative loss Lgen(d) on support words Sd by Eq. 6.1 and obtain θd for each

document.

2. Global update. With encoding parameter θd, we compute the overall loss L(d) on query

words Qd and optimize all parameters Φ = {θ, µ}, including encoder parameters θ and parame-

ters µ of missing semantics prediction function gµ. α1 and α2 are local and global learning rate,

respectively.

Φ∗ = minΦ

∑
d∈D L({θd, µ},Qd) ⇒ Φ∗ = Φ− α2∇Φ

∑
d∈D L(θ − α1∇θLgen({θ, µ},Sd),Qd).

(6.21)

With new parameter Φ∗ = {θ∗, µ∗}, we substitute it for Φ for the next iteration. In contrast

to previous topic models that generate the content of given documents only, we further create

the short version of long documents for semantic complement, and jointly optimize them. See

supplementary materials for learning algorithm.
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6.3.4 Extensions with Auxiliary Data

MCTM with Pretrained Word Embeddings. Pretrained word embeddings [61, 68] encode

word similarity. As in previous works [17, 118], we incorporate them into topic-word distribution

ZV = [zk,w] to improve topic modeling. We introduce topic embedding {tk}Kk=1 and evaluate

cosine similarity between topic k and word w by cos(tk,hw). We then combine it with topic-

word distribution by z′k,w = 1
2
(zk,w + cos(tk,hw)) and obtain a new topic-word distribution

Z′
V = [z′k,w] for decoding.

MCTM with Document Network. A document network (e.g., citation network) reveals

semantic similarities between connected documents (cited papers discuss related research). A

document’s degree or number of links exhibits a long-tail distribution. Some link to many neigh-

bors, others to a few. Previously focus was on textual semantic complement. We extend MCTM

to model structural semantic complement for link-scarce documents. We consider generating

both observed words and neighbors as a task Td. As for words, we split the neighbors N (d) of a

document d into support and query neighbors Td = {Sd,SN (d),Qd,QN (d)}, Sd and SN (d) denote

support words and neighbors, respectively, and ditto for query sets. We correspondingly extend

three modeling components.

1. Encoding. Previously, we inferred topic distribution zd of document d by its textual words

at Eq. 6.6. Here, we extend this process by designing a structural convolutional module.

κ
(l+1)
d = AGG(W(l+1)

3 κ
(l)
d ,W(l+1)

3 κ
(l)
d′ |d

′ ∈ SN (d)). (6.22)

The topic distribution from encoder fθ is zd := 1
2
(zd + κd), with both texts Sd and structure

SN (d).

2. Semantics complement. For a long document d, in addition to randomly hiding some

words, we also drop some neighbors and create a pruned version d′. Now the missing semantics

md should contain both textual and structural information. For GNN function gµ, we extend Eq.
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Table 6.1: Dataset statistics.

Name #Documents #Links Vocabulary #Labels
Avg.

#words/doc
Std.Dev. of
#words/doc

ML 2,947 8,146 5,814 7 66.7 34.0
PL 2,449 7,274 5,066 9 66.0 36.9

HEP-TH 20,151 234,193 5,001 N.A. 48.4 22.9
Web 116,544 309,499 5,021 N.A. 34.1 70.0

6.14 by

md = gµ(zd, zw, zd′|w ∈ Sd, d
′ ∈ SN (d)) = AGG(Ud,1zd,Ud,2zw,Ud,3zd′|w ∈ Sd, d

′ ∈ SN (d)).

(6.23)

Scaling has extra input, γd = tanh(Wγzd + W′
γ z̄Sd

+ W′′
γ z̄SN (d)

), ditto for shifting. z̄SN (d)
=

1
|SN (d)|

∑
d′∈SN (d)

zd′ . For Clustering gµ, we extend input by h0 = [zd||z̄Sd
||z̄SN (d)

].

3. Decoding with meta-learning. In addition to generating support words using comple-

mented z∗d, we also generate support neighbors. The generative loss is similar to Eq. 6.19 except

that i) we replace dw with ed,d′ , the ground-truth link between d and d′; ii) êd,d′ = σ(z∗⊤d z∗d′).

Finally, meta-learning learns how to accurately predict missing semantics md for both textual

and structural complement.

6.4 Experiments

The goal of experiments is to evaluate if our model MCTM can improve short text topic modeling

through evaluative tasks, e.g., document classification, link prediction, topic analysis.

Datasets. Since our model is flexible to incorporate auxiliary data, we rely on four datasets

with textual documents, auxiliary word embeddings, and auxiliary network links for experiments.

Cora [58] is corpus of academic papers with citations as links. We created two independent

datasets, Machine Learning (ML) and Programming Language (PL). In addition, HEP-TH [46]

is a corpus of Physics papers with their citations. Web [45] is a Web page hyperlink network
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Table 6.2: Classification accuracy (in percentage) on four subsets of test set with descending
length. Best baselines are underlined. We show improvement of MCTM (G) over GATON and
best baseline.

Category Model
ML

Overall 0-25% 25%-50% 50%-75% 75%-100%
ProdLDA 58.5±3.2 69.7±1.0 59.1±4.6 55.8±5.0 48.7±4.6

Models WLDA 31.3±0.7 30.9±2.9 31.6±2.2 34.3±1.2 28.2±2.2
with GATON 60.3±2.0 69.3±2.7 62.8±2.5 57.4±1.8 50.8±6.6

plain text MCTM (G) 67.1±2.1 73.7±3.6 68.7±4.3 66.4±3.0 60.1±1.9
MCTM (C) 66.9±1.4 73.6±1.5 68.3±2.0 65.2±1.9 58.9±1.8

improvement 11.4%* 11.4%* 6.3%* 5.7%* 9.4%* 9.4%* 15.7%* 15.7%* 18.3%* 18.3%*

ETM 50.6±2.2 60.4±3.3 52.9±2.5 48.8±2.1 39.4±3.0
Models NSTM 45.2±2.6 53.6±1.9 42.4±7.5 43.0±2.3 41.1±4.7

with GATON+WE 63.8±1.5 72.4±2.3 67.0±3.2 60.5±2.2 54.8±2.3
word MCTM+WE (G) 66.8±2.0 72.9±5.1 67.7±2.4 65.3±3.8 61.6±4.9

embeddings MCTM+WE (C) 66.0±1.4 70.9±1.9 67.1±3.1 67.1±2.8 58.3±2.7
improvement 4.6%* 4.6%* 0.7% 0.7% 1.0% 1.0% 7.9%* 7.9%* 12.3%* 12.3%*

RTM 64.2±2.3 72.9±3.6 71.0±1.7 61.5±4.0 50.6±3.4
Adj-Enc 71.0±0.4 78.9±0.7 74.6±1.9 72.4±2.1 57.8±1.4

Models LANTM 72.1±1.6 74.9±3.1 77.2±1.3 71.6±2.2 64.5±4.5
with GATON+DN 67.7±1.2 74.7±3.3 71.5±3.1 67.8±4.2 58.2±4.7

document meta-tail2vec 58.7±1.6 65.8±4.5 62.0±2.9 59.0±3.7 47.2±4.0
networks MCTM+DN (G) 83.3±1.7 86.2±2.9 82.7±2.1 81.9±2.6 82.1±2.4

MCTM+DN (C) 83.0±1.2 85.9±0.7 82.0±1.3 81.2±1.1 82.8±3.9
improvement 22.9%* 15.4%* 15.3%* 9.2%* 15.6%* 7.1%* 20.9%* 13.1%* 41.1%* 27.3%*

Category Model
PL

Overall 0-25% 25%-50% 50%-75% 75%-100%
ProdLDA 45.0±2.1 51.4±6.0 48.7±3.6 41.6±2.3 40.1±3.9

Models WLDA 33.2±1.8 37.4±1.5 40.0±5.3 28.1±3.9 23.8±1.8
with GATON 47.6±1.5 53.8±3.1 52.4±3.9 44.5±4.9 39.0±3.4

plain text MCTM (G) 53.5±0.8 59.8±3.5 57.3±2.8 52.9±5.7 45.5±2.0
MCTM (C) 53.4±0.9 60.6±3.1 56.3±1.6 52.5±2.0 42.9±1.3

improvement 12.3%* 12.3%* 11.2%* 11.2%* 9.3%* 9.3%* 18.8%* 18.8%* 16.8%* 13.6%*

ETM 43.8±2.0 48.5±2.8 47.9±2.7 42.4±1.9 35.9±4.1
Models NSTM 41.3±3.2 47.2±5.3 45.0±5.1 39.8±4.6 33.1±2.4

with GATON+WE 50.2±1.5 57.4±2.3 53.7±3.3 48.7±2.7 40.2±3.1
word MCTM+WE (G) 52.7±1.7 60.7±6.1 53.9±3.1 51.8±1.6 43.8±2.6

embeddings MCTM+WE (C) 52.1±1.5 60.7±2.7 53.1±2.8 50.5±4.8 43.6±3.6
improvement 5.0%* 5.0%* 5.7%* 5.7%* 0.3% 0.3% 6.3%* 16.3%* 9.0%* 9.0%*

RTM 53.3±1.1 58.7±3.5 58.9±3.0 52.4±3.4 42.6±2.0
Adj-Enc 60.4±1.1 63.6±1.9 63.8±1.5 62.6±2.1 52.1±3.7

Models LANTM 60.8±0.9 66.5±3.1 61.4±1.5 62.4±1.7 52.4±3.7
with GATON+DN 58.5±2.0 65.4±2.0 62.2±3.1 61.0±1.7 44.3±3.8

document meta-tail2vec 44.9±3.0 51.9±2.6 48.7±3.1 46.6±4.1 31.4±6.8
networks MCTM+DN (G) 72.9±1.0 77.2±4.3 73.9±3.8 71.9±3.9 68.1±2.8

MCTM+DN (C) 71.9±0.7 73.7±3.3 72.9±3.0 71.0±2.1 70.0±2.5
improvement 24.6%* 19.8%* 18.2%* 16.1%* 18.7%* 15.7%* 18.0%* 14.9%* 53.7%* 29.9%*
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where each page is a news article, and the hyperlinks connect related articles. See Table 6.1 for

details.

Baselines. Since our model has three variants, i.e., MCTM with plain texts, with auxiliary

word embeddings, and with auxiliary document networks, we correspondingly compare to three

categories of baselines. i) Topic models with plain texts, ProdLDA [76], WLDA [63], and

GATON [100]. They model all documents uniformly without dealing with short texts. We

compare to them and show the advantage of MCTM on improving short texts. ii) Topic models

with word embeddings, ETM [19] and NSTM [118]. Since our model is built on top of GATON,

we also compare to GATON with word embeddings, denoted as GATON+WE. By comparing

to them, we verify the effectiveness of semantic complement meta-learning to further improve

topic quality. iii) Topic models with document networks, RTM [10], Adjacent-Encoder [107],

LANTM [90], and GATON+DN, which is the extension of GATON with document networks.

For document network scenario, we include a graph embedding model, meta-tail2vec [53], which

uses meta-learning to improve nodes with low degrees, but is not a topic model and ignores

variable lengths of node attributes, i.e., texts.

We set L = 2 convolutional layers. λgen = 2 and λreg = 0.05. Number of negative samples

M = 5 and number of semantic clusters R = 5. L is the median length of the corpus. Local

and global learning rates are α1 = 0.001 and α2 = 0.0005. We use 300D Glove embeddings. We

experiment with 5 independent runs, report mean and std.dev. All the experiments were done on

Linux server with a Tesla K80 GPU with 11441MiB.

6.4.1 Quantitative Evaluation

Document Classification. Documents from the same category discuss related topics. As in LDA

[6], we conduct classification to evaluate topic quality. We split 80% documents for training

(10% are for validation). Labels are not involved during training. After convergence, we train a

kNN classifier (k = 5) [4] with training documents and predict the labels of test documents. We
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Table 6.3: Topic coherence NPMI (left, in percentage) and perplexity (right) at K = 64.
Category Model

Topic Coherence NPMI Perplexity
ML PL HEP-TH Web ML PL HEP-TH Web

ProdLDA 6.3±0.2 9.4±0.5 10.3±0.6 16.2±1.4 7.19±0.00 7.21±0.00 7.72±0.00 8.34±0.00
Models WLDA 9.7±0.2 11.6±0.1 13.7±0.4 23.9±0.8 18.90±0.73 19.57±0.30 44.31±0.18 45.22±0.00

with GATON 9.9±0.9 8.4±1.5 8.9±1.5 4.8±1.1 9.64±0.27 9.17±0.10 8.79±0.57 8.52±0.12
plain text MCTM (G) 10.0±1.4 12.1±1.2* 13.7±1.7 13.5±2.5 3.81±0.24 3.60±0.51* 3.98±0.29* 3.27±0.41

MCTM (C) 9.9±2.0 12.0±1.8 13.2±2.1 16.1±1.1 3.76±0.17* 3.63±0.20 4.12±0.30 3.13±0.13*

ETM 5.5±0.1 7.7±0.2 7.2±0.4 16.4±0.7 8.67±0.00 8.52±0.00 8.51±0.00 8.52±0.00
Models with NSTM 16.0±1.0 18.6±0.6 18.2±0.5 27.9±0.6 8.46±0.00 8.34±0.00 8.39±0.00 8.30±0.00

word GATON+WE 16.1±1.4 12.9±1.5 16.9±1.1 12.4±1.1 5.50±0.21 5.56±0.48 8.36±0.02 7.98±0.02
embeddings MCTM+WE (G) 17.6±1.2* 19.1±2.8 18.2±1.3 23.6±0.4 4.43±0.17* 4.23±0.56* 3.36±0.10* 3.18±0.12

MCTM+WE (C) 16.8±1.1 20.3±1.5* 18.7±0.9 23.8±1.0 4.62±0.16 4.62±0.24 3.50±0.17 3.04±0.12*

RTM 7.3±0.2 8.9±0.5 6.6±0.3 18.0±0.4 8.07±0.01 7.93±0.01 8.04±0.00 8.96±0.13
Models Adj-Enc 8.4±0.4 10.5±0.1 6.4±0.4 7.2±0.5 7.41±0.01 7.34±0.13 7.45±0.19 7.65±0.00

with LANTM 9.9±1.2 9.8±0.7 10.4±1.5 N.A. 8.63±0.00 8.48±0.00 8.50±0.00 N.A.
document GATON+DN 10.3±0.7 10.7±1.1 9.7±0.8 7.7±2.0 8.58±0.02 8.43±0.00 8.33±0.01 8.13±0.02
networks MCTM+DN (G) 11.9±2.0* 11.1±2.0* 10.6±1.7 15.5±1.1 4.07±0.27 4.12±0.31 3.99±0.40* 3.21±0.25*

MCTM+DN (C) 11.6±1.5 10.3±1.4 10.4±1.5 17.0±1.1 3.41±0.36* 3.63±0.46* 4.13±0.23 3.75±0.43

set 64 topics. We compare our models within each category of baselines and report classification

accuracy at Table 6.2. We split the test set into four subsets with descending document length and

report the result of both overall test and each subset. 0-25% at Table 6.2 means the subset with

the longest 25% test documents. MCTM (G) and MCTM (C) denote our model with GNN and

Clustering function, respectively. We use “*” to represent statistically significant improvement

with paired t-test at 0.05 significance level.

Our models significantly outperform baselines within each category. We outperform GATON,

the best baseline in the plain text and word embedding category, since textual semantic comple-

ment improves short texts, and the overall test set is also improved. MCTM (G) performs slightly

better than MCTM (C), potentially because GNN recognizes importance of words with attention,

while the Clustering function takes simple average. To show our models indeed improve short

text quality, we present the improvement of MCTM (G) over both GATON and the best baseline.

Our performance generally improves more as the length decreases, which verifies the advantage

of semantic complement.

Topic Coherence. Each row of topic-word distribution ZV ∈ RK×|V| is the distribution of

one topic over the vocabulary, and the key words of this topic correspond to the highest values

on this row. As in ProdLDA [76], we evaluate the coherence of key words by Google Web 1T
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Table 6.4: Topic interpretability.
Topic Key words of MCTM (G)

1 variance, probability, generalize, covariance, approximation
2 non-genetic, rnn, stimulus-response, epistasis, mismatch

Topic Key words of MCTM (C)
1 scalability, multiprocessor, obviate, compute, algorithm
2 sphere, tangent, three-dimensional, vector, geometrical

5-gram Version 1 [22], with NPMI as metric. Table 6.3 (left) summarizes the results. Topic-word

distribution ZV is model parameter and is separate from document length, thus we can not report

results of different lengths. LANTM cannot run on large dataset Web. Meta-tail2vec is not a

topic model, thus is excluded. Overall, our models outperform baselines on ML and PL and

are competitive with the best baseline on HEP-TH and Web. This indicates that our models at

least do not hurt topic coherence, but can significantly improve other tasks, e.g., classification.

Compared to GATON, our models significantly improve it, verifying the advantage of semantic

complement. To understand what topics our models capture, we randomly present two topics

with top-5 key words at Table 6.4. MCTM (G) captures statistics and computational genetics,

while MCTM (C) reveals scalability and geometric learning.

Perplexity. Topic model should generalize to unseen documents. Following [6], we evaluate

perplexity. Since perplexity is exponential and varies much w.r.t. its power, we report its power,

− log Pr(Dtest)∑
d∈Dtest

ld
(lower is better). Table 6.3 (right) reveals that our models generate high likelihood

to unseen documents, which we attribute to semantic complement meta-learning module.

Link Prediction. A good model should infer similar topics for potentially linked documents.

Since we model document network as auxiliary data, we follow RTM [10] and predict links. As

in [107], the probability of a link is p(ed,d′) ∝ exp(−||z∗d − z∗d′||22). We predict the links within

test documents and compare with the ground-truth links with AUC as metric. Since only the

third category (network models) incorporate links, we mainly compare the MCTM+DN version

to these network baselines. Table 6.5 indicates that our models predict links more accurately than
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Table 6.5: Link prediction (in percentage) on overall test set and the shorter half of the test set.
Best baselines are underlined. We show the improvement of MCTM (G) over GATON and best
baseline.

Model
ML PL HEP-TH Web

Overall Short Overall Short Overall Short Overall Short
RTM 71.4±0.9 67.0±0.6 68.2±0.4 62.2±0.3 69.7±0.8 65.1±0.6 69.9±0.1 75.3±0.1

Adj-Enc 88.1±0.2 86.2±0.3 79.6±0.3 73.8±0.2 88.9±0.1 88.4±0.1 82.7±0.1 78.5±0.2
LANTM 76.5±1.2 76.1±1.6 73.9±0.9 70.5±1.1 86.6±0.0 85.2±0.0 N.A. N.A.

GATON+DN 74.2±0.4 71.6±0.9 71.6±0.8 65.8±0.6 90.1±0.2 89.1±1.2 74.3±0.2 71.7±0.3
meta-tail2vec 69.7±2.3 66.5±1.5 68.7±1.7 64.3±1.5 N.A. N.A. N.A. N.A.

MCTM+DN (G) 94.0±0.5 91.9±1.4 91.5±0.1 90.6±0.8 93.9±0.2 93.9±0.1 83.4±0.1 80.5±0.1
MCTM+DN (C) 93.4±0.5 92.7±0.7 91.2±0.8 90.2±0.9 92.5±0.3 92.4±0.4 80.6±0.2 77.5±0.2

improvement 26.6%* 6.7%* 28.4%* 6.6%* 27.9%* 15.0%* 37.7%* 22.8%* 4.2%* 4.2%* 5.4%* 5.4%* 12.2%* 0.8%* 12.3%* 2.5%*

Table 6.6: Effect of semantic complement and meta-learning on document classification on ML.

Model
Effect of Semantic Complement Effect of Meta-Learning Effect of both

Overall test set Short subset Overall test set Short subset Test Short
with without with without with without with without without without

MCTM (G) 67.1±2.1 58.2±2.4 60.1±1.9 50.8±3.8 67.1±2.1 65.9±1.3 60.1±1.9 57.0±3.5 52.1±4.1 44.5±5.5
(decline) (13.3%*) (15.5%*) (1.8%) (5.2%*) (22.4%*) (26.0%*)

MCTM (C) 66.9±1.4 56.7±3.1 58.9±1.8 49.4±2.9 66.9±1.4 65.6±1.0 58.9±1.8 56.1±2.4 52.5±2.4 46.9±4.8
(decline) (15.2%*) (16.1%*) (1.9%) (4.8%*) (21.5%*) (20.4%*)

baselines. The comparison to network baselines demonstrates the effectiveness of both textual

and structural semantic complement.

6.4.2 Model Analysis

To better understand our model, we conduct model analysis here.

Effect of Semantic Complement. To see if semantic complement helps short texts, we

remove it from the complete model and present classification accuracy at Table 6.6 (left). We

show the plain text results, and put the auxiliary data version in supplementary. Models do better

with semantic complement than without. The accuracy on short subset declines more than the

overall test set, which reveals that semantic complement improves short texts, and removing it

hurts short documents more.

Effect of Meta-Learning. To analyze if meta-learning benefits the optimization with a few

observed words, we replace it with the commonly used stochastic gradient descend. Table 6.6

(middle) shows that result drops more on short subset than on the overall test set, which verifies

that meta-learning is good at optimization with only a few observed words and improves short
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Table 6.7: Effect of scaling-and-shifting and clustering.

Model
Scaling and Shifting Effect of Clustering

with without with without
MCTM 67.1±2.1 65.7±2.9 66.9±1.4* 62.7±1.6

MCTM+WE 66.8±2.0 65.9±1.0 66.0±1.4* 62.4±1.9
MCTM+DN 83.3±1.7 82.4±1.4 83.0±1.2* 81.0±1.3

text modeling. We further remove both semantic complement and meta-learning, and report the

result at Table 6.6 (right), which presents the worst accuracy. This observation further verifies

that both components are important.

Effect of Scaling and Shifting. The GNN version of our model uses scaling-and-shifting

method to recover distinct topics. To test its usefulness, we disregard it and summarize clas-

sification accuracy on ML at Table 6.7 (left). Removing scaling and shifting leads to worse

performance, since we can not personalize shared parameters to each document to recover its

distinct missing topics for complement.

Effect of Clustering. We set the number of clusters R to 1, all documents share the same

parameters for missing semantics prediction with no clustering. Table 6.7(right) concludes that

clustering is helpful to share common semantics for related documents and distinguish docu-

ments of different clusters.

6.5 Discussion

We improve short text topic modeling with semantic complement meta-learning. We comple-

ment the semantics for short documents by contrastive learning and design two alternatives for

missing semantics prediction. Meta-learning helps to optimize and predict the missing seman-

tics. Experiments on document classification, topic coherence, perplexity, and link prediction

verify the effectiveness of our model. One limitation is to assume a variable-length corpus with

both long and short documents for semantic transfer. We also assume the content is truthful. If

the corpus is infiltrated by fake news, those may appear in some topics.
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Chapter 7

Topic Modeling on Document Networks

with Dirichlet Optimal Transport

Barycenter

7.1 Introduction

While text documents are primarily expressed by words, in many cases they are also intercon-

nected in a network structure. For example, academic papers constitute a citation network, Web

pages present a hyperlink network, user profiles are connected in a social network. Graph Neural

Networks (GNNs) [40] are powerful tools to derive effective low-dimensional embeddings for

such networked documents, which could fulfill downstream tasks, such as document classifica-

tion and link prediction. However, when dealing with text documents, we usually model a latent

topic structure [6] where each document is represented by a low-dimensional topic distribution,

and each topic is characterized by a group of understandable key words. Most previous GNNs

ignore such topic structure, resulting in uninterpretable embeddings.

Topic modeling provides an appealing method to uncover latent, semantically interpretable

topics that occur in a text corpus. However, many existing topic modeling works, e.g., LDA [6],
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deal with the plain text within each document only, without considering network connectivity

across documents. Intuitively, two connected documents are likely to share similar topics, e.g.,

two hyperlinked news articles tend to report similar events. Modeling document network struc-

ture in addition to the textual content could discover meaningful semantics and improve topic

quality.

In this chapter, we investigate the design of Optimal Transport Barycenter for short text mod-

eling on document networks. Different from Chapter 6, which uses meta-learning to transfer the

semantic knowledge within the corpus, without auxiliary information needed, this chapter lever-

ages external knowledge, pre-trained word embeddings, to approach short text topic modeling.

Problem. Let G = {D, E} be a document network. D = {di}Ni=1 is a corpus of N documents.

Each document d ∈ R|V| is a vector in the vocabulary space V where each element dw is the word

count of word w ∈ V in document d. E ∈ RN×N is adjacency matrix, where eij = 1 if there

is an edge between document i and j. In this chapter, we model an undirected network, i.e.,

eij = eji. We will use terms edge and link interchangeably. For a document i, its neighbors are

those directly linked to i, denoted as a neighbor set N (i). We also consider i as its own neighbor,

i ∈ N (i).

We input G to our models and output interpretable topic distributions for documents that

preserve both text content D within documents and network structure E across documents.

7.2 Background

This work is built on top of Optimal Transport Barycenter. Optimal Transport (OT) has been

introduced at Sec. 4.2. Here we introduce OT Barycenter, as well as rejection sampling to be

used.

Definition 7.2.1 (Optimal Transport Barycenter). Given a set of distributions {qi}
Q
i=1, and weights
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of measures {ai}Qi=1 where ai > 0 and
∑Q

i=1 ai = 1, OT barycenter is defined as

argmin
p

Q∑
i=1

aidC(p, qi). (7.1)

Barycenter p is a notion of Fréchet mean of the set {qi}
Q
i=1.

We will use OT barycenter to capture network connectivity across documents. To alleviate

word sparsity problem, we will incorporate pre-trained word embeddings into cost matrix C.

Definition 7.2.2 (Rejection Sampling). Rejection sampling allows to sample data points from a

relatively complex distribution, e.g., Dirichlet distribution, to enable reparameterization. Specif-

ically, since directly sampling from a target distribution p(z) is difficult, we instead seek another

proposal function f(z), which may not be a probability distribution, such that f(z) ≥ p(z) and

sampling from f(z) is possible. Rejection sampling contains three steps:

1. Sample data point zi from proposal function zi ∼ f(z);

2. Sample ui from uniform distribution ui ∼ U(0, f(zi));

3. If ui > p(zi), then zi is rejected as an invalid sample, otherwise zi is retained as a sample

from target p(z).

After repeating rejection sampling M times, we obtain M samples, z1, z2, ..., zM , some of which

are rejected. Without loss of generality, we assume the first M ′ ≤ M samples are accepted.

These accepted samples z1, z2, ..., zM ′ are considered as the samples from target distribution p(z)

with acceptance rate M ′

M
. If acceptance rate is high enough, we usually accept all M samples for

simplicity, though a trivial proportion should be rejected.

Since Dirichlet distribution is not a location scale family and hinders reparameterization, we

will investigate rejection sampling to approximate Dirichlet and enable reparameterization.
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7.3 Model Architecture and Analysis

Our work is built on Variational Graph Auto-Encoder [40]. We first use a graph convolutional

encoder to project documents into low-dimensional topic space. For a document i,

h̃(l)

i = W(l)h(l−1)
i . (7.2)

l is the l-th convolutional layer, W(l) is learnable parameter. h(l−1)
i is the output from previous

layer, and h(l=0)
i is the input feature.

Neighbors contribute information differently, e.g., some hyperlinked news articles report sim-

ilar events, while others are coincidence. Thus, we design attention to distinguish i’s neighbors.

aij = softmax
(

sigmoid(b(l)⊤[h̃(l)

i ||h̃(l)

j ])
)

where j ∈ N (i). (7.3)

N (i) is the neighbor set, [·||·] is concatenation, b(l) is learnable parameter. Finally, we propagate

topics of i’s neighbors to i by

h(l)
i = fact

(1
2
(h̃(l)

i +
∑

j∈N (i)

aijh̃
(l)

j )
)
. (7.4)

fact(·) is activation. We set it to identity function fact(x) = x only for the final convolutional

layer and tanh(x) = ex−e−x

ex+e−x for other layers. We obtain h(l)
i as the output from the l-th layer,

containing both text content and i’s neighborhood. We repeat convolutional process at Eq. 7.2–

7.4 for maximum L layers, and obtain hi = h(L)
i ∈ RK as the output from the encoder. K is the

number of topics.

We aim to use hi as concentration parameter of Dirichlet distribution to draw document i’s

topic distribution, i.e., zi ∼ Dir(hi). However, Dirichlet’s concentration parameter should be

positive, while hi from Eq. 7.4 is obtained by identity function with both positive and negative
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values. To solve this problem, we have

αi = max(10−12, softplus(hi)). (7.5)

softplus(x) = log(1 + exp(x)) outputs positive values. Threshold 10−12 avoids extremely small

values. αi now is a positive vector. In the next subsection, we will consider αi as concentration

parameter to draw i’s topic distribution, zi ∼ Dir(αi).

7.3.1 Dirichlet Reparameterization

Since Dirichlet prior in LDA [6] has shown promise in improving topic quality, we are motivated

to use Dirichlet as a prior for topic distribution to enhance topic quality, zi ∼ Dir(αi). However,

Dirichlet is not location scale family, thus it is difficult to directly sample topic distributions from

it, which hinders reparameterization. To solve this problem, we use rejection sampling [4].

Dirichlet Dir(αi) can be simulated by Gamma distributed random variables. If zi,k ∼ Γ(αi,k)

where Γ(·) is Gamma, then

zi =

[
zi,k∑K

k′=1 zi,k′
, ...,

zi,K∑K
k′=1 zi,k′

]
∼ Dir(αi). (7.6)

As long as we can sample topics from Gamma Γ(αi,k), we can approximate Dirichlet by the

normalization at Eq. 7.6. Now the problem is how to sample topics from Gamma, i.e., zi,k ∼

Γ(αi,k).

Fortunately, there exits a proposal function for Gamma distribution Γ(αi,k) below [8], such

that f(αi,k) ≥ Γ(αi,k).

zi,k = f(αi,k) = (αi,k −
1

3
)(1 +

ϵ√
9αi,k − 3

)3, ϵ ∼ N (0, 1). (7.7)

Sampling from proposal function f(αi,k) is possible by first sampling a variable ϵ from a Gaus-
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sian N (0, 1), then putting into Eq. 7.7 to obtain the sampled topics zi,k. However, sampled

topics zi,k from this proposal function do not strictly obey the target Gamma distribution, since

some samples should be rejected. Lower the concentration parameter αi,k, lower the acceptance

rate [8]. If the acceptance rate is overly low, we need multiple repetitions of rejection sampling

to obtain one valid sample. To this end, we aim to increase the acceptance rate by increasing

concentration parameter αi,k. Fortunately, [62] suggests the following solution: since we seek to

sample topics zi,k from Gamma distribution by zi,k ∼ Γ(αi,k), we can equivalently rewrite this

sampling by

zi,k = z̄i,k

C∏
c=1

u
1

αi,k+c−1

c where z̄i,k ∼ Γ(αi,k + C). (7.8)

Positive integer C is a hyperparameter to boost concentration parameter αi,k, so that sampling

process z̄i,k ∼ Γ(αi,k + C) has a higher concentration parameter αi,k + C now, which leads

to a higher acceptance rate by rejection sampling at Eq. 7.7. As in [62], C = 10 provides an

acceptance rate higher than 0.99, thus we set C = 10 and accept all samples for simplicity. After

obtaining z̄i,k as a valid sample at Eq. 7.7, we use Eq. 7.8 to calculate zi,k. Above, we use one

topic zi,k for illustration. We repeat this process for K (the number of topics) times, and obtain

K valid sampled topics {zi,k}Kk=1 from Gamma. Finally, we use Eq. 7.6 to normalize them and

obtain K-dimensional topic distribution zi. To summarize, zi ∼ Dir(αi) = q(zi). Variational

posterior q(zi) contains both graph convolutional encoder and Dirichlet reparameterization.

KL Divergence. We now turn to the formulation of KL divergence between variational

posterior q(zi) and the predefined Dirichlet prior p(z) = Dir(α0), which has an analytical form.

KL[q(zi)||p(z)] = log Γ(
K∑
k=1

αi,k)− log Γ(
K∑
k=1

α0
k) +

K∑
k=1

log Γ(α0
k)

−
K∑
k=1

log Γ(αi,k) +
K∑
k=1

(αi,k − α0
k)(Ψ(αi,k)−Ψ(

K∑
k=1

αi,k))

(7.9)

where Ψ(·) is digamma function [8].
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7.3.2 Barycentric Decoding (DBN)

Since a document i is usually represented by two distributions, latent topics zi and observed

words di, they consistently reflect the same document. We thus aim to push topic distribution zi

to word distribution di. Though their dimensions are different, K ̸= |V|, OT solves the problem.

We seek to optimize min dC(zi,di).

Traditional models use topic distribution to generate its own content. We discover that two

linked documents likely share similar topics, though their texts are different. Motivated by this

intuition, we define barycentric topic modeling using optimal transport to push topics of one

document to its neighbors.

min
∑

j∈N (i)

aijdC(zi,dj). (7.10)

aij is defined at Eq. 7.3. By moving topic zi to i’s neighbors N (i), zi becomes the barycenter of

N (i). Network structure is captured.

We now define the cost matrix at Eq. 7.10. Each element ckw in C ∈ RK×|V| specifies

the dissimilarity between topic k and word w. We set ckw = 1 − cos(tk, ew) where tk is the

randomly initialized topic embedding, and ew is pre-trained word embedding [61, 68]. External

knowledge is naturally incorporated by cost matrix, and helps alleviate word sparsity problem of

short documents.

Decoding. Eq. 7.10 pushes topic distribution zi towards the word distribution of i’s neigh-

bors, which is similar to a decoder. We explicitly design another decoder d̂i = ϕ(zi) = softmax((2−

C)⊤zi) to generate the content of neighboring documents. 2 − C is decoding parameter, since

cost matrix C captures topic-word distribution. C is defined by ckw = 1 − cos(tk, ew), where

cosine similarity has range [−1, 1], thus ckw has range [0, 2]. As in [6, 60], decoding parameter

is a positive matrix where each element is the probability of a word belonging to a certain topic.

We define 2− C to make our decoding parameter positive.

The log-likelihood is
∑

j∈N (i) aijd
⊤
j log d̂i =

∑
j∈N (i) aijl(zi,dj). Weights aij are Eq. 7.3.
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We generate content of neighbors in a 1-to-N process. Loss function is

JDBN =
∑

j∈N (i)

Ezi∼q(zi)[aij(−l(zi,dj) + λOTdC(zi,dj))]

+ λKLKL[q(zi)||p(z)].

(7.11)

q(zi) contains both graph convolutional encoder and Dirichlet reparameterization. Hyperparam-

eter λOT balances log-likelihood and optimal transport barycenter, and λKL controls KL diver-

gence.

Compared to previous topic models with OT, e.g., NSTM [118], we point out two main exten-

sions. First, NSTM models each document individually and does not have document network,

while we design a graph convolutional encoder to model both text and network connectivity.

Second, motivated by the success of Dirichlet prior in LDA [6], we design a Dirichlet optimal

transport prior with rejection sampling to improve topic quality. In contrast, NSTM does not

impose any prior, likely suffering over-fitting and worse topic interpretability.

Compared to VGAE, whose embeddings do not enjoy semantic interpretability, the decoding

term of our model at Eq. 7.11 contains one more component, optimal transport barycenter, which

incorporates pre-trained word embeddings to define cost matrix C for topic modeling. Decoding

parameter 2−C ∈ RK×|V| corresponds to topic-word distribution. Each row is the distribution of

a topic over the vocabulary, and the key words of that correspond to the highest values on that row.

Thus the learned topic distributions are semantically interpretable by topic-word distribution.

For better understanding the connection between 1-to-N and 1-to-1 content generation, we

have the below theorem.

Theorem 2. Given C, |V| ≥ 8, and aij, let zj = argminzj dC(zj, dj) be the best solution of its

individual optimal transport without barycenter, zi = argminzi
∑

j∈N (i) aijdC(zi, dj) be the best
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Figure 7.1: Geometric interpretation of DBN and D2BN.

solution of optimal transport barycenter Eq. 7.10, we have

−
∑

j∈N (i)

aijl(zi, dj) ≥
∑

j∈N (i)

aijdC(zi, dj)

≥
∑

j∈N (i)

aijdC(zj, dj).

(7.12)

The first inequality is similar to [118], OT barycentric distance
∑

j∈N (i) aijdC(zi,dj) is the

lower bound of the negative log-likelihood −
∑

j∈N (i) aijl(zi,dj). Thus, OT barycentric distance

at Eq. 7.11 is a regularizer to avoid negative log-likelihood becoming overly low and resulting

in over-fitting. Here, the constraint of vocabulary size, |V| > 8, is required at one step in the

proof to make sure the inequality is satisfied (Eq. 7.20). Almost all the real-world corpora have

hundreds or thousands of words in vocabulary, thus |V| > 8 is not a strict constraint, i.e., the

first inequality is satisfied most of the time. The second inequality reveals that 1-to-N content

generation by optimizing barycenter
∑

j∈N (i) aijdC(zi,dj) is the upper bound of traditional 1-to-

1 content generation without network structure, and provides a tighter regularizer. See Appendix

for complete proofs.
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Algorithm 2 Learning Algorithm of DBN and D2BN
Input: Document network G = (D, E), pre-trained word embeddings {ew}w∈V , and

structure embeddings {xi}Ni=1 for D2BN, number of topics K, λOT, λKL, λs, γ.
Output: Encoder q(·), topic embeddings {tk}Kk=1.

1: Initialize all parameters.
2: while not converged do
3: Sample a batch of documents {db}Bb=1.
4: Encode {db}Bb=1 and neighbors {N (b)}Bb=1 by q(·).
5: Generate neighboring content by ϕ(·), and neighboring adjacency vector by σ(·) for

D2BN.
6: Obtain optimal transport plan T∗

ij for DBN, and T′∗
ij for D2BN, by solving OT dC(zi,dj)

and dC′(zi, εj) using Sinkhorn Iteration at Algo. 3, for each document i and each of its
neighbors j ∈ N (i).

7: Loss function Eq. 7.11 for DBN, Eq. 7.15 for D2BN.
8: Update parameters by Adam optimizer.
9: end while

7.3.3 Double Barycentric Decoding (D2BN)

DBN implicitly captures network by generating neighbor content. We design an extended model

D2BN, for Dirichlet Optimal Transport Double Barycenter for Document Networks, which ex-

plicitly models network by inducing a double OT barycenter.

We encode a document i into K-dimensional topic distribution by zi ∼ q(zi). Intuitively,

two documents sharing common neighbors likely share similar topics, even when not directly

connected, e.g., two news articles with common hyperlinked related articles tend to report sim-

ilar events; papers with common citations likely discuss similar research. Adjacency matrix E

preserves neighborhood information. Each row is the connectivity of a document. We represent

the neighbor distribution of document i by εi with each element εij =
eij

|N (i)| . eij = 1 if there is

a link between i and j, eij = 0 otherwise. We also design an OT barycentric modeling between

topic and structure spaces for 1-to-N generation.

∑
j∈N (i)

Ezi∼q(zi)[aij(−l(zi, εj) + λOTdC′(zi, εj))]. (7.13)
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Algorithm 3 Sinkhorn Iteration of DBN and D2BN
Input: Document i’s topic distribution zi, neighbor j’s word distribution dj where

j ∈ N (i), neighbor j’s adjacency vector εj for D2BN, cost matrix C for DBN and C′ for D2BN,
γ.

Output: OT plan T∗ and OT distance dC(zi,dj) for DBN, OT plan T′∗ and OT distance
dC′(zi, εj) for D2BN

1: Initialize π = 1K
K

and Φ = exp(−C
γ
) for DBN, π′ = 1K

K
and Φ′ = exp(−C′

γ
) for D2BN.

2: while not converged do

3: β =
dj

Φ⊤π
for BDN, β′ =

εj
Φ′⊤π′ for D2BN

4: π =
zi
Φβ

for DBN, π′ =
zi

Φ′β′ for D2BN

5: end while
6: Obtain OT plan T∗ = diag(π)Φdiag(β) for DBN, T′∗ = diag(π′)Φ′diag(β′) for D2BN
7: Obtain OT distance dC(zi,dj) =< T∗,C > for DBN, dC′(zi, εj) =< T′∗,C′ > for D2BN

Besides text content, we allow i’s topics zi to also generate the adjacency vector εj of its neigh-

bors. Two similar adjacency vectors of two corresponding documents force their topics to be

similar. Topics are thus enhanced by network structure explicitly.

We first define cost matrix C′ ∈ RK×N of dC′(zi, εj) at Eq. 7.13. Each element c′ki preserves

structural information between topic k and document i. N = |D| is the total number of docu-

ments. To keep consistent with C above, we similarly define c′ki = 1− cos(tk, si). tk is the same

topic embedding as above, and si is the structure embedding of document i.

si = f(Wsxi + bs). (7.14)

Consistently with pre-trained word embeddings, xi is pre-trained structure embedding. Different

from xi, si is the projected structure embedding and is derived by one-layer neural network. We

feed xi by pre-trained structure embeddings, e.g., DeepWalk [69]. Ws and bs are parameters

that project xi to the same topic embedding space. The structure decoder is ε̂i = σ(zi) =

softmax((2− C′)⊤zi), log-likelihood at Eq. 7.13 is l(z̃i, εj) = ε⊤j log ε̂i.

Finally, integrating both content and structure modeling, we have loss function for double
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barycentric topic modeling D2BN.

JD2BN =
∑

j∈N (i)

Ezi∼q(zi)

[
aij

(
− l(zi,dj) + λOTdC(zi,dj)

+λs(−l(zi, εj) + λOTdC′(zi, εj))
)]

+ λKLKL[q(zi)||p(z)].

(7.15)

λs controls content and structure modeling. This joint decoding pushes topics zi to be the double

OT barycenter of both content and structure space. DBN is a special case of D2BN if λs = 0.

7.3.4 Optimization and Analysis

Geometric interpretation. For DBN at Fig. 7.1(a), the black dot is document A’s topic distribu-

tion, which is also the topic barycenter of A and its neighbors B and C. We minimize weighted

OT distance between zA and not only dA, but also dB and dC . For D2BN at Fig. 7.1(b), struc-

ture space contains adjacency vectors, which regularize topic distributions. Although D contains

different content from A in semantic space, they share common neighbors in structure space.

A’s topic distribution is also pushed to D. Such a double barycenter enjoys both semantic and

structure information.

Optimization. We summarize the learning process in Algo. 2. Here we apply minibatch

optimization. Line 6 calculates optimal transport plan T∗ and T′∗ by Sinkhorn iteration [14]

at Algo. 3. After training convergence, we infer the topic distribution of a previously unseen

document d′ simply by the encoder z′ ∼ q(z′).

Complexity. To better understand our models, we provide computational complexity here.

Encoding has O(degLmax(WK +degmaxK)). degmax is the maximum number of neighbors, and

W is the dimension of word embeddings. Dirichlet reparameterization and KL divergence has

O(CK + α0K +K2). Here, α0 = [α0
1, ..., α

0
K ] is the concentration parameter of Dirichlet prior

where α0
1 = ... = α0

K = α0. Decoder is O(K|V|) for DBN and O(K(|V| +N)) for D2BN. OT

optimization is O(WK|V|) for DBN and O(WK(|V|+N)) for D2BN. Putting all components
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Table 7.1: Dataset statistics.
Name #Documents #Links Vocabulary #Labels #Words/doc

DS 1,703 3,234 3,134 9 58.0
ML 3,087 8,573 3,040 7 64.2
PL 2,597 7,754 3,106 9 64.0

Aminer 42,564 40,269 4,094 10 6.5
Web 445,657 565,502 10,015 N.A. 79.8

together and removing trivial terms, we have O(degLmax(WK +degmax K) +K2 +WK|V|) for

DBN and O(degLmax(WK + degmaxK) +K2 +WK(|V|+N)) for D2BN.

Short comment on running time. Our focus in this chapter is model effectiveness, not run-

ning efficiency. But for completeness, we still briefly report running time. On the largest dataset

Web, DBN took 30 min to converge, and D2BN took 90 min, since double barycenter brings

additional complexity. All the experiments were done on a Tesla K80 GPU with 11441MiB. We

consider speeding up the training with online learning as future work.

7.4 Experiments

The goal of experiments is to evaluate the quality of learned topics by our models on evaluation

tasks, including document classification, clustering, link prediction, topic analysis, etc.

Datasets. Cora [58] is a corpus of academic papers with abstract as content and citations as

links. We create three independent datasets, Data Structure (DS), Machine Learning (ML), and

Programming Language (PL). Aminer [78] is another citation network with titles as the only

content. We further create a Web page hyperlink network [45]. Each page is a news article.

Hyperlinks point to relevant pages. Table 7.1 shows statistics.

Baselines. We consider three categories of baselines models.

1. Topic models without network structure, ProdLDA [76], Dirichlet VAE [8], ETM [19],

WLDA [63], NSTM [118], and GTM [119]. ProdLDA and DVAE use Dirichlet as prior.

ETM is a neural model with pre-trained word embeddings, WLDA applies Wasserstein
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Figure 7.2: Document classification with Micro F1 score when varying number of topics (a-d)
and number of nearest neighbors κ for κNN (e-h).

distance, and NSTM uses optimal transport. GTM is designed with graph neural networks.

They do not incorporate network structure. By comparison, we show the advantage of

jointly modeling text and network connectivity.

2. Topic models for document networks, RTM [10], NRTM [2], Adjacent-Encoder [107],

LANTM [90], GTNN [94], GRTM [93], GNCTM [96], and NetDTM [113]. NRTM and

Adjacent-Encoder are built on Auto-Encoders. LANTM, GTNN, GRTM, and GNCTM

are designed with graph neural networks. They consider both text and links, but no one

models pre-trained word embeddings. The comparison to them validates the effect of pre-

trained word embeddings. LANTM extends VGAE with Gaussian prior. The comparison

to LANTM shows the utility of Dirichlet prior. NetDTM is designed with pre-trained word

embeddings, but not OT barycenter.

3. Graph embedding. There are models that learn node embeddings on attributed graphs

in an unsupervised way. Strictly speaking, they are not topic models, nor baselines. For

completeness, we still compare to VGAE [40].
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Table 7.2: Document classification with Micro F1 (left) and Macro F1 (right) at K = 64. Results
are in percentage. LANTM cannot run on Aminer even on a machine with 256GB. Web dataset
does not have ground-truth labels, thus can not evaluate document classification.

Category Model
Micro F1 score Macro F1 score

DS ML PL Aminer DS ML PL Aminer

Topic models
w/o network structure

ProdLDA 51.4±1.1 67.0±0.6 51.8±0.6 40.5±0.0 40.1±4.3 67.1±0.7 48.5±1.2 14.6±0.9
DVAE 54.7±2.2 68.9±0.6 55.7±1.3 66.1±0.5 45.8±1.2 65.5±1.4 49.3±1.5 44.6±1.6
ETM 42.2±2.4 53.9±1.8 45.0±2.1 53.2±0.7 31.1±3.4 50.4±1.7 40.3±1.3 25.7±0.8

WLDA 34.0±3.6 32.4±1.1 30.5±3.1 47.8±2.1 24.7±3.0 30.5±1.0 24.3±3.8 18.6±1.9
NSTM 42.5±1.8 46.3±1.8 42.0±1.6 48.4±0.3 34.9±3.3 42.9±1.8 34.6±0.7 20.0±0.6
GTM 39.1±1.6 45.9±1.4 40.8±1.6 65.2±0.2 29.6±1.3 42.1±1.7 34.4±2.0 43.3±0.7

Topic models
for document networks

(LANTM cannot run
on large dataset Aminer)

RTM 50.1±2.3 63.7±0.9 52.3±0.7 53.0±0.7 41.3±2.2 58.6±1.6 44.4±0.7 25.1±0.7
NRTM 38.2±1.2 45.5±1.2 39.2±1.5 47.7±3.9 32.3±1.6 41.7±1.4 34.1±0.9 13.5±3.2

Adjacent-Encoder 58.8±1.2 72.8±0.6 60.0±1.7 59.5±0.2 54.6±1.5 72.8±0.8 55.3±1.6 46.9±0.5
LANTM 56.8±2.4 71.8±1.0 62.6±1.3 N.A. 54.7±0.8 70.0±1.3 55.6±1.9 N.A.
GTNN 52.9±1.4 68.6±1.1 59.5±2.3 65.5±0.4 42.8±3.3 67.8±1.1 59.4±1.5 41.8±0.5
GRTM 56.5±1.9 51.7±2.3 45.2±1.0 70.7±0.2 50.2±2.0 48.3±1.9 37.5±2.1 48.8±0.5

GNCTM 63.7±1.4 77.8±1.1 65.5±3.8 69.3±1.2 59.6±2.0 75.9±2.8 60.1±4.0 47.6±2.6
NetDTM 62.3±1.0 74.8±1.0 63.0±1.1 68.1±0.1 58.0±1.4 73.1±1.1 57.2±1.2 46.6±0.7

Graph embedding VGAE 39.8±2.0 56.6±1.7 47.6±3.4 64.7±0.5 40.3±3.5 61.5±2.3 50.0±1.5 45.0±1.4

Our proposed models DBN 66.2±1.4 78.4±0.8 67.3±0.5 71.2±0.4 62.7±1.6 77.3±0.6 61.2±0.4 50.9±1.0
D2BN 65.8±1.6 81.1±1.2 71.3±0.7 72.3±0.3 62.5±2.0 79.8±1.3 64.7±1.1 51.8±0.2

Hyperparameters are set based on validation set (see below classification on how we split

validation set). For ProdLDA, DVAE, and our models, we set 1 as concentration parameter

for Dirichlet prior. For models with word embeddings, including ours, we use 300D GloVe.

Structure embeddings xi are pre-trained by DeepWalk [69]. We set L = 3 convolutional layers.

Dropout rate is 0.6. λOT = 2 and λs = 1 after searching in [0.5, 1, 2, 4, 10]. λKL = 0.001 for KL

divergence. γ = 20 for OT. Each result is obtained by 5 independent runs. We report both mean

and std.dev.

7.4.1 Quantitative Evaluation

Document Classification. Documents within the same category share similar topics. As in

LDA [6], we do document classification. We randomly split 80% documents for training (among

which 10% are for validation), 20% for testing. During training, we observe training documents

and links within them. Labels are never involved when training. After convergence, we infer

topics of test documents and classify them with κNN [4]. We input topic distributions of training

documents to κNN and predict the labels of test documents.
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Table 7.3: Document clustering NMI (left) and Link prediction AUC (right) at K = 64. Results
are in percentage. LANTM cannot run on Aminer and Web even on a machine with 256GB. Web
dataset does not have ground-truth labels, thus can not evaluate document clustering.

Category Model
Document Clustering NMI Link Prediction AUC

DS ML PL Aminer DS ML PL Aminer Web

Topic models
w/o network structure

ProdLDA 29.9±2.2 38.4±1.2 26.4±2.0 8.7±0.8 76.8±0.5 80.7±0.6 75.3±0.3 64.2±0.9 82.4±0.0
DVAE 28.2±1.1 35.0±0.3 24.8±0.5 25.8±0.4 74.0±1.1 77.6±0.5 75.0±0.3 86.8±0.1 88.3±0.0
ETM 19.3±1.7 21.5±2.1 19.8±1.1 10.4±1.9 71.0±1.3 68.7±1.8 69.3±0.6 68.8±0.7 72.3±0.2

WLDA 11.0±0.0 8.7±0.0 9.2±0.0 9.9±0.0 60.3±0.5 55.0±2.5 57.1±1.0 70.4±2.2 79.3±0.5
NSTM 8.0±0.7 7.8±1.3 9.1±0.8 3.0±0.7 62.1±1.4 63.6±1.3 63.7±0.6 62.4±0.4 67.0±0.8
GTM 16.8±2.3 17.8±1.7 15.8±0.8 19.5±0.5 63.8±1.5 61.5±2.1 65.9±2.1 77.1±0.3 80.8±0.1

Topic models
for document networks

(LANTM cannot run
on large dataset

Aminer and Web)

RTM 6.3±3.2 14.7±2.4 9.3±2.2 8.7±0.8 70.6±0.6 71.6±1.9 69.4±0.5 74.4±0.5 78.4±0.1
NRTM 17.6±0.9 12.7±0.7 15.2±0.9 15.0±1.5 71.0±2.1 64.8±0.9 67.6±0.7 66.3±1.3 62.1±0.7

Adjacent-Encoder 31.8±0.9 43.6±1.0 28.4±1.2 27.6±0.2 81.7±0.4 84.7±0.2 83.2±0.1 88.3±0.1 73.2±0.0
LANTM 24.0±1.6 19.7±2.7 20.7±1.4 N.A. 78.4±0.6 78.7±0.9 78.7±1.2 N.A. N.A.
GTNN 19.5±2.1 28.6±1.8 22.1±1.2 21.0±0.9 71.5±1.1 74.5±0.4 72.4±0.1 82.0±0.6 74.3±0.2
GRTM 30.4±3.3 22.5±1.4 18.6±1.7 27.4±0.3 79.3±0.5 71.7±0.4 67.7±0.8 86.9±0.2 85.4±1.4

GNCTM 28.0±3.4 32.5±1.6 21.4±3.8 18.5±1.4 86.2±1.1 84.5±1.9 86.0±2.2 85.5±1.1 87.8±0.4
NetDTM 29.7±0.8 33.3±1.2 24.9±1.0 23.2±0.4 84.2±0.7 81.1±0.6 82.2±0.3 82.9±0.2 87.5±0.0

Graph embedding VGAE 16.9±1.6 21.7±0.5 18.0±1.5 18.6±1.4 63.4±2.0 64.8±2.0 65.3±0.7 78.3±1.1 87.4±0.2

Our proposed models DBN 33.0±0.9 33.8±0.4 28.0±0.6 22.7±0.2 89.6±0.5 86.2±0.9 88.1±0.4 89.2±0.2 89.7±0.0
D2BN 38.9±1.7 45.3±0.4 37.9±1.0 28.9±1.0 90.1±0.7 91.4±0.4 92.7±0.3 92.0±0.1 88.2±0.1

We first vary the number of topics K and report micro f1 score with 5NN at Fig. 7.2(a-d).

LANTM cannot run on large dataset Aminer even on a machine with 256GB, thus is excluded.

Overall, document network models generally perform better than models with content only, since

network structure indicates topic similarity among documents, and modeling it can bring similar

documents closer, thus achieving better results. The improvement of our models over network

baselines, especially on Aminer with short texts, verifies the advantage of pre-trained word em-

beddings to alleviate word sparsity. Both our models perform stably across different number of

topics. D2BN generally achieves better results than DBN, since double barycenter regularizes

topic distributions by explicitly modeling network. Since most models begin to plateau at 64

topics, we keep K = 64 for subsequent experiments.

We then vary the number of nearest neighbors κ for κNN classifier. Fig. 7.2(e-h) shows the

results at K = 64 topics. Overall, both our models outperform baselines across different number

of nearest neighbors. Most models present a stable performance. GNCTM jointly models text

and network structure, and is the best-performing baseline. It is competitive with DBN on ML

dataset, but is still worse than D2BN. LANTM extends VGAE as a topic model with Gaussian

prior. The comparison to LANTM verifies the advantage of Dirichlet prior. As shown by previous
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Table 7.4: Topic coherence NPMI (left, in percentage) and perplexity (right, lower is better) at
K = 64. LANTM cannot run on Aminer and Web even on a machine with 256GB. VGAE is not
a topic model and cannot evaluate topic coherence and perplexity.

Category Model
Topic Coherence NPMI Perplexity

DS ML PL Aminer Web DS ML PL Aminer Web

Topic models
w/o network structure

ProdLDA 10.5±0.3 10.9±0.7 12.1±0.7 8.9±0.0 21.2±0.2 7.97±0.00 7.99±0.00 7.92±0.00 7.60±0.06 8.34±0.00
DVAE 15.5±0.2 14.7±0.1 15.0±0.1 13.7±0.1 17.6±0.2 14.64±0.15 16.41±0.10 17.52±0.22 20.42±0.25 43.32±0.00
ETM 7.3±0.2 7.1±0.2 8.7±0.1 5.4±0.3 16.4±0.6 7.92±0.00 7.96±0.00 7.94±0.00 8.31±0.00 8.52±0.00

WLDA 8.7±0.3 9.8±0.3 11.7±0.4 14.0±1.6 23.9±0.8 17.98±1.88 20.58±0.51 20.60±0.65 14.39±0.25 45.22±0.00
NSTM 19.0±1.0 17.2±0.7 19.2±0.7 24.0±0.3 27.9±0.5 7.80±0.00 7.83±0.00 7.80±0.00 8.26±0.00 8.93±0.00
GTM 13.0±0.3 18.0±0.5 17.5±0.7 15.2±0.1 21.2±0.9 6.92±0.01 6.97±0.01 6.90±0.00 6.69±0.00 7.84±0.00

Topic models
for document networks

(LANTM cannot run
on large dataset

Aminer and Web)

RTM 7.6±0.3 7.1±0.3 9.3±0.2 4.7±0.3 20.9±0.4 7.40±0.03 7.46±0.05 7.52±0.05 7.80±0.00 10.28±0.19
NRTM 8.2±0.5 9.4±0.1 10.9±0.5 6.1±0.8 26.1±0.3 17.29±0.16 16.94±0.09 16.94±0.07 14.79±0.06 15.09±0.02

Adjacent-Encoder 12.0±0.2 9.9±0.9 11.3±0.9 3.5±0.5 15.2±0.1 8.06±0.02 7.65±0.05 7.62±0.04 7.17±0.23 8.26±0.01
LANTM 6.4±0.5 5.4±0.3 7.2±0.8 N.A. N.A. 8.06±0.02 7.65±0.05 7.62±0.04 N.A. N.A.
GTNN 9.9±1.5 7.2±0.6 5.8±0.6 7.6±0.6 7.7±1.7 7.77±0.04 7.75±0.02 7.73±0.01 7.42±0.04 8.13±0.02
GRTM 13.4±0.7 12.1±0.5 12.6±0.8 14.7±0.2 16.0±1.0 6.82±0.01 6.93±0.00 6.88±0.01 6.85±0.00 7.84±0.00

GNCTM 15.2±0.4 13.2±0.8 13.7±0.5 16.1±0.3 18.8±0.5 7.02±0.16 7.12±0.18 7.11±0.37 7.79±0.48 8.22±0.07
NetDTM 20.8±0.6 21.1±0.8 19.6±0.3 22.4±0.9 27.4±0.5 7.50±0.03 7.67±0.06 7.65±0.03 6.62±0.01 8.53±0.04

Our proposed models DBN 22.7±0.4 21.5±0.6 20.9±0.5 23.6±0.4 28.5±0.2 6.85±0.00 6.88±0.00 6.82±0.00 6.49±0.00 7.71±0.00
D2BN 22.2±0.5 21.2±0.7 20.0±0.3 23.3±0.2 29.1±0.4 6.88±0.01 6.91±0.00 6.84±0.00 6.58±0.00 7.89±0.00

works [8], Dirichlet forces topics to be sparser than Gaussian and achieves lower reconstruction

error, thus improving classification. Table 7.2 summarizes both micro and macro f1 scores at

K = 64.

Document Clustering. As in [107], we evaluate topic quality by document clustering. After

training, we use K-Means [4] to cluster test documents. Labels are involved only for evaluating

the clustering quality by Normalized Mutual Information (NMI) [85]. Table 7.3(left) shows

the results. Benefiting from both text and network structure, Adjacent-Encoder presents the

best results among baselines. Though DBN is competitive with Adjacent-Encoder, the advanced

D2BN still significantly outperforms the latter, since double barycenter enhances topic quality by

both semantic and structure generation. The comparison to NRTM, LANTM, and VGAE verifies

the advantage of Dirichlet prior, which improves topic quality by forcing topic distributions to

be sparser than Gaussian.

Link Prediction. A good model should derive similar topics for potentially linked docu-

ments. As in RTM [10], given two documents, we use their topic distributions to predict if there

is a link between them. We split the dataset the same as classification. We observe only train-

ing documents and links within them for training. After convergence, we infer topics of test

documents, and predict links that connect two test documents. As in [107], the probability of
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Table 7.5: Topic diversity TD (in percentage) at K = 64. LANTM cannot run on Aminer and
Web even on a machine with 256GB.

Model
Topic Diversity TD

DS ML PL Aminer Web
ProdLDA 81.1±1.1 79.9±1.9 77.9±1.8 86.3±1.2 58.2±0.7

DVAE 47.5±1.0 51.5±0.8 48.1±0.3 74.1±1.5 59.4±0.3
ETM 78.5±1.1 68.4±2.5 75.4±1.0 79.3±0.8 82.7±0.7

WLDA 20.3±0.0 14.8±0.0 17.0±0.0 17.2±0.0 36.6±0.0
NSTM 52.4±1.4 48.6±1.8 50.2±0.8 93.9±0.2 79.0±1.7
GTM 83.6±0.5 83.8±1.0 82.8±0.7 93.2±0.9 82.2±0.5
RTM 78.3±0.7 83.6±1.0 82.9±0.9 93.5±0.5 85.1±0.6

NRTM 15.7±0.3 10.8±0.3 10.9±0.6 20.6±2.5 12.0±1.7
Adjacent-Encoder 73.1±1.3 85.1±1.1 83.9±1.3 91.2±1.0 76.0±0.9

LANTM 73.3±3.0 73.4±1.3 72.2±2.3 N.A. N.A.
GTNN 51.4±1.6 56.1±1.1 51.8±3.1 68.1±0.7 64.1±1.3
GRTM 81.5±1.1 83.9±1.0 81.8±0.6 92.9±1.0 84.2±2.2

GNCTM 77.8±0.7 83.5±1.1 81.3±1.0 90.5±3.3 81.7±1.3
NetDTM 81.6±1.2 88.1±1.5 83.5±1.5 94.0±0.6 82.8±0.9

DBN 85.6±0.7 89.8±0.4 85.8±1.0 95.2±0.3 85.8±0.2
D2BN 81.8±0.8 83.3±0.6 77.7±1.4 94.1±1.1 81.3±1.1

a link is p(eij = 1|i, j) ∝ exp(−||zi − zj||2). As in [90], we use AUC as evaluation metric.

Table 7.3(right) presents the results at 64 topics.LANTM cannot run on large datasets Aminer

and Web, thus is excluded. Overall, our models predict links more accurately than baselines.

Compared to document network models, we highlight that modeling barycenter with auxiliary

knowledge can encode similar documents closely. Compared to models without networks, we

verify that network indeed brings useful information.

(a) DVAE (b) Adjacent-Encoder (c) DBN (d) D²BN

Figure 7.3: T-SNE topic visualization on ML dataset.
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Table 7.6: Top-10 key words of 5 randomly selected topics on ML dataset.
Topic Top-10 key words of DBN

1 optimization, algorithm, trade-off, constraint, scalability, optimal, tradeoff, optimisation, iterative, minimization
2 methodology, theoretical, mathematical, empirical, theory, computational, analysis, modeling, analytical, conceptual
3 multivariate, stochastic, regression, bayesian, nonlinear, parameter, dynamic, gaussian, generalization, inverse
4 generalization, inference, causality, empirical, probabilistic, completeness, causal, causation, first-order, predicate
5 visual, color, image, pattern, subtle, object, eye, contrast, characteristic, optical

Topic Top-10 key words of D2BN
1 finite, topological, symmetric, algebraic, orthogonal, invariant, generalization, topology, subset, discrete
2 feed-forward, multi-layer, feedforward, connectionism, connectionist, two-layer, self-organizing, kohonen, self-organization, network-based
3 processor, microprocessor, parallelism, simd, interface, functionality, hardware, instruction, server, workstation
4 document, copy, text, detailed, instance, specific, read, publication, book, publish
5 genetic, mutation, organism, phenotype, evolution, gene, molecular, evolutionary, trait, protein

7.4.2 Topic Analysis

Topic Coherence. An important property of topic model is semantic interpretability, i.e., each

document is represented by a topic distribution, and each topic is interpreted by a group of key

words. To evaluate semantic interpretability, we use topic coherence to test if the key words of a

topic coherently reflect the same semantic meaning. Our decoding parameter 2− C ∈ RK×|V| is

topic-word distribution. Each row is the distribution of a topic over the words, the key words of

that topic are the highest values on that row. As in ProdLDA [76], we use NPMI to evaluate the

coherence of top-10 key words of each topic. We use Google Web 1T 5-gram Version 1 [22] for

evaluation. VGAE is not a topic model and cannot evaluate coherence.

Table 7.4(left) shows that benefiting from OT, NSTM produces the most coherent topics

among baselines. Compared to it, we design OT barycenters to model network structure, thus

significantly improve NPMI by 2.1 on average. This is because network helps to capture the

situation where two linked documents present different content but consistent semantics. DBN

generally performs better than D2BN, since D2BN pays some optimization effort to the recon-

struction of adjacency vector, which reduces the precision of content generation. But D2BN is

still better than most baselines.

Perplexity. A model should generalize well to unseen documents. After training, as in LDA

[6], we evaluate perplexity, exp{− log Pr(Dtest)∑
d′∈Dtest

Nd′
}, of 20% test documents. Since perplexity is

exponential and varies a lot w.r.t. its power, we instead report its power, − log Pr(Dtest)∑
d′∈Dtest

Nd′
. Lower

115



is better. Table 7.4(right) shows that our models consistently provide higher likelihood to test

documents than baselines, since network helps aggregate text of different documents to alleviate

sparsity. Compared to LANTM, we attribute the improvement to Dirichlet prior, which achieves

lower reconstruction error than Gaussian, thus providing a better generation to test documents.

Topic Diversity. It is important to evaluate if the discovered K different topics are diverse

and not repetitive. Another commonly used metric is topic diversity [1, 63, 118], i.e., TD =

Nunique

Ntotal
, the percentage of unique key words in the top-10 key words of K topics. TD close to

1 reveals semantically diverse topics. TD close to 0 indicates a large proportion of redundant

topics, and other semantically meaningful topics are unexplored, which results in inferior topic

discovery.

Table 7.5 summarizes the results. RTM and Adjacent-Encoder discover the most diverse top-

ics among baselines. Network structure connects similar documents and separates disconnected

ones. Modeling network forces topic distributions to focus on each subgroup of connected doc-

uments. Different local topology of the network helps improve topic diversity. Compared to

RTM and Adjacent-Encoder, we derive more diverse topics, since we use pre-trained embed-

dings as external knowledge, which capture more diverse and robust semantic meaning. The

outperformance over LANTM verifies the advantage of Dirichlet prior.

Topic Interpretability. To intuitively understand what topics our models capture, we ran-

domly select 5 topics and show top-10 key words on ML dataset at Table 7.6. Most key words

coherently reflect the consistent topic. For example, DBN’s topic 1 reveals Constrained Opti-

mization, and its topic 3 discusses Multivariate Regression. For D2BN, topic 2 reflects Feed-

Forward Neural Network, topic 3 seems Parallel Processing, and topic 5 shows Computational

Biology.

Topic Visualization. To visually understand how topic distributions are learned, we apply

t-SNE [82] to project 64-dimensional topic distributions to 2-dimensional visual space, and color

documents with their labels. Fig. 7.3 shows the results on ML. Compared to other three plots,
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Figure 7.4: Model analysis on ML dataset.

DVAE does not model network structure, thus mixes more documents from different categories.

Benefiting from document adjacency, Adjacent-Encoder and DBN present almost similar sepa-

ration among categories based on visual observation. D2BN produces clearer boundaries, due to

double barycentric modeling.

7.4.3 Model Analysis

Effect of Network Structure. To further verify network structure indeed helps topic model-

ing, we conduct two experiments. i) We randomly connect documents but keep the number of

neighbors each document has. The new network contains wrongly connected neighbors. Fig.

7.4(a) shows that a random network brings noisy information on neighborhood and deteriorates

the results. This observation enhances the advantage of a correctly connected network. ii) We

randomly remove a proportion of observed links and conduct document classification using the

remaining links. Fig. 7.4(b) shows classification results with different percentage of observed

links. Compared to the case with no links, more links are observed, better the performance.

Links indeed bring useful information on document similarity, and modeling them improves the

quality of learned topic distributions.
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Effect of OT Barycenter. An important component is optimal transport barycenter, which

captures document network and incorporates pre-trained embeddings. To test its effect, we re-

move it from our models and report topic diversity at Fig. 7.4(c). Both models significantly

drop topic diversity without OT barycenter. One potential reason is that OT is good at measur-

ing semantic distance. Given a topic distribution zi and word distribution di, OT aims to find

the optimal plan between them with less transport cost. Since we define cost matrix using topic

and word embeddings, and every topic involves a certain amount of cost, the minimization of

OT barycenter uses as few topics as possible to achieve the transportation between topic zi and

word di. As a result, OT barycenter pushes each topic to focus on its distinct semantics, so that

a few diverse topics can still achieve a low-cost transportation. Different topics discuss distinct

semantics. The minimization of OT thus produces diverse topics.

Effect of Dirichlet Prior. Previous models with optimal transport, e.g., NSTM [118], do

not impose any prior on topic distribution. Motivated by LDA [6], we use rejection sampling to

introduce Dirichlet as an OT prior. We conduct two experiments to evaluate its usefulness. i)

We first remove Dirichlet prior and do not impose any prior for topics. ii) Since another widely

used prior is Gaussian, adopted by our baselines ETM [19], NRTM [2], and LANTM [90], we

replace Dirichlet with Gaussian. Fig. 7.4(d) illustrates that Dirichlet prior is indeed useful to

discover more diverse topics than the models without prior or with Gaussian. This is because

Dirichlet is able to derive sparse topic distributions, as verified by previous works [8]. The

sparsity of topic distributions allows each document to focus on only a subset of distinct topics

for content generation. These subset of topics gradually become specialized in certain semantics,

and different subsets of topics preserve unique features. Such process finally produces diverse

topics. From Fig. 7.4(d), we also conclude that having a prior is better than not having it, since

the models with Gaussian prior still improve topic diversity compared to the case with no prior.

Gaussian prior has zero mean, which forces topics to zero vectors. In contrast, models with no

prior do not have this regularization, leading to overlapping topics.
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Different Number of Convolutional Layers. We vary the number of convolutional layers L

for our encoder, and summarize classification result at Fig. 7.4(e). When there is only one layer

L = 1, our model cannot capture higher-order network connectivity, resulting in a low accuracy.

After we gradually increase L to 2 and 3, we observe a significant improvement, since structural

information is well encoded into document topic distributions. However, an overly high number

of convlutional layer influences the result, since more noisy neighbors are encoded.

Dimension of Word Embeddings. We used 300D word embeddings for all above experi-

ments. To investigate the effect of different dimensions, we conduct document classification and

show the results at Fig. 7.4(f). Overall, when we increase the dimension of word embeddings,

both models present an improving trend, since a high dimension of word embeddings can capture

more semantic information, thereby boosting the results. D2BN performs more stably than DBN,

because the generation of adjacency vector constitutes another information and helps dilute the

effect of word embedding dimensions.

Effect of Attention. Neighboring weights help to differentiate neighbors for barycentric

modeling and decoding. To test its effect, we replace the weights with uniform values, and

neighbors are equally important. We show the comparison at Fig. 7.4(g). We discover that

removing weights leads to worse results, which verifies the importance of its design. DBN drops

more than D2BN without attention, since adjacency vector in D2BN represents additional useful

information to offset the influence of uniform attention.

Effect of Pre-trained Word Embeddings. To test the effect of pre-trained word embed-

dings, we conduct two experiments. i) We replace pre-trained word embeddings with randomly

initialized ones, and train word embeddings together with other parameters. ii) To test if our

models can handle our-of-vocabulary (OOV) words, we randomly remove 20% words. The new

vocabulary contains 80% words only. Thus, training documents may contain removed words

(OOV words). For OOV words, we check training documents and obtain their contextual words,

and take the average of contextual word embeddings as the embedding of OOV words. Fig.
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7.4(h) shows that the models with randomly initialized word embeddings drop the performance,

since models do not capture auxiliary knowledge. If the corpus contains OOV words, the per-

formance improves over the models with randomly initialized embeddings, since models still

leverage partial auxiliary knowledge. The models with OOV words drop the result compared

to the models with non-OOV words, since the inferred embeddings of OOV words may not be

optimal. But overall, the performance of models with OOV words is decent, verifying that we

can infer OOV word embeddings for training.

7.5 Discussion

We propose GNN topic models for networked documents based on Optimal Transport Barycen-

ter. For DBN, we incorporate network structure implicitly by designing a topic barycenter. D2BN

enhances DBN by explicitly pushing topics to the double barycenters of both semantic and struc-

ture spaces. We inject pre-trained word embeddings into the cost matrix of optimal transport to

alleviate word sparsity problem of short documents. To impose Dirichlet as an optimal transport

prior, we use rejection sampling. Extensive experiments verify the effectiveness of our models.

Appendix

Proof. (i) We here prove the first inequality, −
∑

j∈N (i) aijl(zi,dj) ≥
∑

j∈N (i) aijdC(zi,dj). Its

proof is similar to [118]. As a self-contained paper, we provide the details.

Recall that the content decoder is ϕ(zi) = softmax((2− C)⊤zi). Its denominator is

ϕ̂ =
∑
w∈V

exp(
K∑
k=1

zik(2− ckw)) = e2
∑
w∈V

exp(−
k∑

k=1

zikckw). (7.16)
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The log-likelihood of content generation between document i and its neighbors j ∈ N (i) is

∑
j∈N (i)

aijl(zi,dj) =
∑

j∈N (i)

aij∑
w′∈V nj,w′

∑
w∈V

nj,w log ϕ(zi)w

=
∑

j∈N (i)

aij∑
w′∈V nj,w′

∑
w∈V

nj,w(
K∑
k=1

zik(2− ckw)− log ϕ̂)

=
∑

j∈N (i)

aij

(
2− log ϕ̂− 1∑

w′∈V nj,w′

∑
w∈V

nj,w

K∑
k=1

zikckw

) (7.17)

Since transport plan T ∈ U(zi,dj) = {T ∈ RK×|V|
+ |T1|V| = zi,T⊤1K = dj} has zi and

dj as maginals, we define tkw = pkwdjw. Here we introduce another conditional transport plan

P ∈ U ′(zi,dj) = {P ∈ RK×|V|
+ |

∑
w∈V pkwdjw = zik,

∑K
k=1 pkw = 1}. djw =

njw∑
w′∈V njw′

is the

normalized word count of word w in document j. With these definitions, we have

∑
j∈N (i)

aijdC(zi,dj) =
∑

j∈N (i)

aij min
P∈U ′(zi,dj)

∑
w∈V

K∑
k=1

pkwdjwckw

=
∑

j∈N (i)

aij∑
w′∈V njw′

min
P∈U ′(zi,dj)

∑
w∈V

njw

K∑
k=1

pkwckw.

(7.18)

If we set pkw = zik, we discover that P satisfies the requirement of U ′(zi,dj). Since pkw = zik

may not be the optimal solution, we have

∑
j∈N (i)

aijdC(zi,dj) ≤
∑

j∈N (i)

aij∑
w′∈V njw′

∑
w∈V

njw

K∑
k=1

zikckw. (7.19)
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Taking Eq. 7.17 and 7.19 together, given |V| ≥ 8, we have

−
∑

j∈N (i)

aijl(zi,dj) = −
∑

j∈N (i)

aij

(
2− log ϕ̂

− 1∑
w′∈V nj,w′

∑
w∈V

nj,w

K∑
k=1

zikckw

)
≥ −2 + log ϕ̂+

∑
j∈N (i)

aijdC(zi,dj)

= log
∑
w∈V

exp(−
k∑

k=1

zikckw) +
∑

j∈N (i)

aijdC(zi,dj)

≥ log(|V|)− 2 +
∑

j∈N (i)

aijdC(zi,dj)

≥
∑

j∈N (i)

aijdC(zi,dj).

(7.20)

(ii) We here prove the second inequality,
∑

j∈N (i) aijdC(zi,dj) ≥
∑

j∈N (i) aijdC(zj,dj).

We apply the proof by contradiction. Given C and aij , we assume
∑

j∈N (i) aijdC(zi,dj) <∑
j∈N (i) aijdC(zj,dj) is correct, which tells us that the solution Eq. 7.21 is better than Eq. 7.22.

Here we use z∗j to represent the best solution of OT dC(·,dj).

z∗1 = z∗2 = ... = z∗|N (i)| = zi (7.21)

z∗1 = z1, z∗2 = z2, ..., z∗|N (i)| = z|N (i)| (7.22)

Eq. 7.21 shows that all the best solutions are the same, while Eq. 7.22 shows that each individual

OT has its own solution and different OTs may produce different solutions. However, given

that zj = argminzj dC(zj,dj) is already the best solution of its individual OT, other solutions,

such as z∗j = zi, may not produce the minimum OT distance. Equivalently, the assumption of∑
j∈N (i) aijdC(zi,dj) <

∑
j∈N (i) aijdC(zj,dj) contradicts the given information.
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Based on the analysis above, we have

dC(zi,dj) ≥ dC(zj,dj). (7.23)

Since cost matrix C and weights aij are given, taking all the neighbors j ∈ N (i) together, we

have ∑
j∈N (i)

aijdC(zi,dj) ≥
∑

j∈N (i)

aijdC(zj,dj). (7.24)
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Chapter 8

Conclusion and Future Work

In this dissertation, we explore the document graph representation learning problem. We seek to

develop topic models that can incorporate both textual content and network connectivity. Based

on the observation of the temporally growing document network, we model topic evolution to

capture dynamic process of the corpus. In order to model associated authors and venues of a

document, we extend Variational Graph Auto-Encoder and design a hierarchical multi-layered

document graph to incorporate auxiliary authors and venues. We also alleviate the problem

of short documents by designing a meta-learning method and optimal transport barycenter to

incorporate pre-trained word embeddings, respectively.

In Chapter 3, we propose Adjacent-Encoder and Adjacent-Encoder-X, neural topic models

that learn unified representations for networked documents. Adjacent-Encoder incorporates the

network structure implicitly, with similar number of parameters as Auto-Encoder family, yet out-

performs the latter. Adjacent-Encoder-X that models the network structure explicitly performs

even better. Empirical analysis on public datasets support these findings, showcasing the effec-

tiveness of factoring network structure for neural topic modeling. The model extensions, such as

denoising, contractive, and sparsity, further improve the performance.

To model dynamic process of a growing document network, in Chapter 4, we propose two

neural topic models for dynamic document networks, which are notable in jointly preserving dy-
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namicity and network adjacency. By designing a time-aware optimal transport, NetDTM models

each link by semantically generating content of neighbors. NetDTM++ further extends Net-

DTM to incorporate the effect of historical links by a Hawkes process. Experiments on several

dynamic document networks covering academic literature and Web documents show the effec-

tiveness of our models against baselines on various aspects, including deriving latent document

representations more amenable to classification and link prediction metrics as well as modeling

the evolution of topics.

Authors and venues represent auxiliary information associated with documents, which reveal

the similarity of documents through author and venue connectivity. We extend Variational Graph

Auto-Encoder and design a hierarchical multi-layered document graph at Chapter 5 for author-

ship and venue modeling. In order to achieve a promising topic modeling quality, we design

three word relations (contextual, syntactic, and semantic) for word layers. We also investigate

three alternatives of variational divergence term.

Short text topic modeling is an important research direction in topic modeling, since scarce

word co-occurrences influence the accurate topic discovery process. Chapter 6 solves this prob-

lem by introducing meta-learning into topic modeling to transfer semantic knowledge learned on

long documents to complement the word scarcity of short texts in a self-contained manner, so

that no additional auxiliary information is needed.

Chapter 7 approaches short text topic modeling from another perspective. We propose two

neural topic models for networked documents based on the concept of Optimal Transport Barycen-

ter, which benefits our models by naturally incorporating pre-trained word embeddings to allevi-

ate short text problem. We incorporate network structure implicitly by designing a topic barycen-

ter for DBN. D2BN enhances DBN by explicitly pushing topics to the dual barycenter of both

semantic and structure spaces.

Future Work. My research focuses on text mining and graph representation learning. For

my future research directions, I will continue focusing on these related areas and involve multiple
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different real-world scenarios.

One potential research direction is to use pre-trained large language models for text-based

recommender systems. On the one hand, pre-trained large language models have achieved

promising performance for text modeling, but its design in recommender systems is still unex-

plored. Recommender systems, on the other hand, usually involve a user-item interaction graph

structure, where the links between users and items sometimes couple with textual reviews, which

are written by the user for the corresponding item. We can convert such an e-commerce scenario

to a type of document graph. It is possible to integrate pre-trained large language model and

graph representation learning techniques into a unified model to build recommender systems.

Another research direction is to explore the scenario of chemical topic modeling area. In

chemical research, learning molecule embedding is always an important research direction, since

the learned embeddings may produce undiscovered chemical reactions based on the similar-

ity between relevant molecules. Furthermore, each molecule is a graph structure where atoms,

representing nodes on the graph, are connected through chemical keys, corresponding to graph

links. Existing research mainly focuses on how to leverage molecule graph structure and chem-

ical reactions to improve molecule representations. However, if a molecule does not have a

strongly connected graph structure or if it lacks sufficient observed chemical reactions, the em-

bedding quality may be influenced due to scarce observed information. We discover that textual

description of molecules can be used as additional information to improve molecule representa-

tions, since molecules with similar chemical properties should have overlapping textual content.

Therefore, a promising future research direction is to unify text with molecule to improve repre-

sentation quality, meanwhile predicting chemical property of a new molecule using the power of

generative topic modeling.
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