
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Dissertations and Theses Collection (Open
Access) Dissertations and Theses

5-2023

Connecting the dots for contextual information retrieval Connecting the dots for contextual information retrieval

Pei-Chi LO
Singapore Management University, pclo.2017@phdcs.smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/etd_coll

 Part of the Databases and Information Systems Commons, and the Data Storage Systems Commons

Citation Citation
LO, Pei-Chi. Connecting the dots for contextual information retrieval. (2023). 1-221.
Available at:Available at: https://ink.library.smu.edu.sg/etd_coll/494

This PhD Dissertation is brought to you for free and open access by the Dissertations and Theses at Institutional
Knowledge at Singapore Management University. It has been accepted for inclusion in Dissertations and Theses
Collection (Open Access) by an authorized administrator of Institutional Knowledge at Singapore Management
University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd
https://ink.library.smu.edu.sg/etd_coll?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F494&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F494&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/261?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F494&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

CONNECTING THE DOTS FOR CONTEXTUAL
INFORMATION RETRIEVAL

PEI-CHI LO

SINGAPORE MANAGEMENT UNIVERSITY
2023

Connecting The Dots for Contextual Information
Retrieval

Pei-Chi Lo

Submitted to School of Computing and Information Systems in partial

fulfillment of the requirements for the Degree of Doctor of Philosophy in

Computer Science

Dissertation Committee:

Ee-Peng Lim (Supervisor/Chair)
Professor of Computer Science

Singapore Management University

Yuan Fang
Assistant Professor of Computer Science

Singapore Management University

Jing Jiang
Professor of Computer Science

Singapore Management University

Aixin Sun
Associate Professor of Computer Science and Engineering

Nanyang Technological University

Singapore Management University
2023

Copyright (2023) Pei-Chi Lo

I hereby declare that this PhD dissertation is my original work and it has been

written by me in its entirety.

I have duly acknowledged all the sources of information which have been used

in this dissertation.

This PhD dissertation has also not been submitted for any degree in any

university previously.

Pei-Chi Lo

23 May 2023

Connecting The Dots for Contextual Information Retrieval

Pei-Chi Lo

Abstract

There are many information retrieval tasks that depend on knowledge graphs

to return contextually relevant result of the query. We call them Knowledge-

enrichedContextual InformationRetrieval (KCIR) tasks and these tasks come

in many different forms including query-based document retrieval, query an-

swering and others. These KCIR tasks often require the input query to contextu-

alized by additional facts from a knowledge graph, and using the context repre-

sentation to perform document or knowledge graph retrieval and prediction. In

this dissertation, we present a meta-framework that identifies Contextual Repre-

sentation Learning (CRL) and Contextual Information Retrieval (CIR) to be the

two key components in KCIR tasks.

We then address three research tasks related to the two KCIR components.

In the first research task, we propose a VAE-based contextual representa-

tion learning method using a co-embedding attributed network structure

that co-embeds knowledge and query context in the same vector space. The

model shows superior downstream prediction accuracy compared to other base-

line models using VAE with or without using external knowledge graph.

Next, we address the research task of solving a novel IR problem known as

Contextual Path Retrieval (CPR). In this task, a knowledge graph path rele-

vant to a given query and a pair of head and tail entities is to be retrieved from

the background knowledge graph. We develop a transformer-based model con-

sisting of context encoder and path encoder to solve the CPR task. Our proposed

models which include the proposed two encoders show promising ability to re-

trieve contextual paths.

Finally, we address the Contextual Path Generation (CPG) task which is

similar to CPR except that the knowledge graph path to be returned may require

inferred relation edges since most knowledge graphs are incomplete in their

coverage. For the CPG task, we propose both monotonic and non-monotonic

approaches to generate contextual paths. Our experiment results demonstrate

that the non-monotonic approach yields better-quality resultant knowledge graph

paths.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Research Objectives and Framework 3

1.3 Summary of Dissertation Contributions 5

1.4 Dissertation Structure . 6

2 Related Work 7

2.1 Text and Knowledge Graph Representation Learning 7

2.2 Contextual Retrieval of Knowledge 10

2.3 Contextual Retrieval of Text Documents 11

2.4 Contextual Item Recommendation 12

2.5 Contextual Question Answering 13

3 Co-Embedding Attributed Network Representation Learning 16

3.1 Research Objective . 17

3.2 Related Work . 18

3.2.1 HIN Embeddings . 18

3.2.2 Variational Auto-encoder Embeddings 19

3.3 Co-Embedding with External Knowledge 21

3.3.1 Framework Overview 21

3.3.2 Attribute-to-Attribute Association 22

3.3.3 Input Matrices Construction 24

3.3.4 Co-Embedding Learning 26

i

3.4 Co-embedding Learning Using VAE 26

3.4.1 CAN . 26

3.4.2 ECAN Models . 29

3.4.3 Mixed Model . 31

3.5 Experiments . 33

3.5.1 Datasets . 33

3.5.2 Baseline and Model Settings 35

3.5.3 Running Time . 37

3.6 Results . 37

3.6.1 Node Classification . 37

3.6.2 Link Prediction . 38

3.6.3 Choice of Dimension Size 39

3.7 Case Study . 40

3.7.1 Movie Profiling . 40

3.7.2 Error Analysis . 41

3.8 Summary . 43

4 Contextual Path Retrieval 45

4.1 Research Objectives . 46

4.2 Contextual Path Retrieval . 49

4.2.1 Definitions . 49

4.2.2 Proposed ECPR Framework 52

4.3 Context Encoder . 54

4.3.1 TF-IDF . 55

4.3.2 Averaged Embeddings 55

4.3.3 Context-fused Entity Embeddings 56

4.3.4 Contextualized Embedding Representation 61

4.4 Path Encoder . 62

4.5 Path Ranker . 64

4.5.1 Binary Classifier . 64

ii

4.5.2 Learning to Rank . 65

4.5.3 Training of Path Encoder and Ranker 66

4.6 Experiments . 66

4.6.1 Model Settings . 67

4.6.2 Evaluation Metrics . 70

4.7 Experiment Results on Wikinews Datasets 74

4.7.1 Path Embeddings with PathVAE 75

4.7.2 AVG Embedding Encoders 77

4.7.3 Context-fused Entity Context Encoder 77

4.7.4 Contextualized Embeddings 78

4.7.5 Results of Pank Rankers 79

4.7.6 Overall Results . 79

4.7.7 Model Efficiency . 81

4.7.8 Case Example Analysis 84

4.8 Analysis on Synthetic Datasets 89

4.8.1 Model Performance on Large-scale Dataset (Synthetic-L) 90

4.8.2 Similarity among Candidate Contextual Paths 90

4.8.3 Number of Candidate Paths 92

4.8.4 Length of Contextual Path 93

4.9 CPR And Other IR Tasks . 94

4.10 Summary . 95

5 Contextual Path Generation: A Monotonic Approach 98

5.1 Research Objective . 98

5.1.1 Problem Formulation 98

5.1.2 Challenges . 100

5.2 Proposed Architecture and Models 102

5.2.1 Overview of Model Architecture 102

5.2.2 Context Encoder . 104

5.2.3 Controlled Path Generation 107

iii

5.2.4 Penalization Scaling 111

5.2.5 Reward Scaling . 114

5.2.6 CPG Models . 117

5.3 Experiments on Real Datasets 119

5.3.1 Wikinews Dataset . 119

5.3.2 Evaluation Metrics . 120

5.3.3 Models for Comparison 123

5.3.4 Comparison of CPG Models 125

5.3.5 Effects of Penalization/Reward Scaling 128

5.3.6 Effects of Context Document Content Amount 129

5.3.7 Error Type Analysis 130

5.3.8 Inferring Relations in the Wiki-film Dataset 132

5.4 Experiment on a Synthetic Dataset 132

5.4.1 CPG Model Performance on the Synthetic-S Dataset . . 133

5.4.2 Coping with Incomplete Knowledge Graphs 134

5.5 Using a KGQA Model for CPG: A Model Adaptation Experiment135

5.5.1 Modified EmbedKGQA Model 136

5.5.2 Experiment and Results 138

5.6 Summary . 140

6 Contextual Path Generation: A Non-Monotonic Approach 143

6.1 Research Objective . 144

6.1.1 Problem Definition . 144

6.2 Proposed Framework and Contextual Path Generation Models . 145

6.2.1 Two-Stage Framework 145

6.2.2 Context Extractor . 147

6.2.3 Contextual Path Generator 152

6.2.4 Tree Serialization . 159

6.3 Experiment Results . 160

6.3.1 Dataset . 160

iv

6.3.2 Evaluation Metrics . 160

6.3.3 Effectiveness of Context Extractor Methods 161

6.3.4 Performance in Contextual Path Generation 164

6.3.5 Comparison betweenNon-monotonic andMonotonic Path

Generation . 167

6.4 Discussion . 169

6.5 Summary . 171

7 Conclusion 174

Appendices 179

A Construction of Real and Synthetic Data Collections 180

A.1 Wikinews Datasets . 181

A.1.1 P1: One-hop Path Annotation. 182

A.1.2 P2: Augmentation of Entity Network. 182

A.1.3 P2: Multi-hop Path Annotation 184

A.2 Synthetic Dataset . 185

A.2.1 Knowledge Graph Construction 185

A.2.2 Generation of Paths . 185

A.2.3 Generation of Context Documents 186

Bibliography 187

v

List of Figures

1.1 Meta-Framework of KCIR Tasks 2

3.1 Co-embedding Attributed Networks with External Knowledge . 22

3.2 CAN Model . 27

3.3 ECAN (Non-Mixed Model) . 29

3.4 ECAN (Mixed Model) . 32

4.1 Annotation Interface . 52

4.2 ECPR Framework . 53

4.3 Visualization of PathVAE Embedding Model 75

5.1 Contextual Path Generation Example 100

5.2 Proposed CPG Architecture . 103

5.3 Illustration of CPG-mixed Encoder and Decoder 106

5.4 Illustration of Relation and Entity Sampling Process 108

5.5 Reward Scaling . 111

6.1 The Two-stage Framework for Contextual Path Generation . . . 147

6.2 Context Extractors . 148

6.3 Pretraining and Fine-tuning Steps of Non-Monotonic Contex-

tual Path Generation with Pretrained Transformer (NMCPGT) . 153

vi

6.4 Binary Trees of Non-Monotonic Generation: (a) A terminal bi-

nary tree that shows the generation steps for a path (with gener-

ation order numbers and path order numbers shown in blue and

green respectively); (b) Two binary trees with the same gener-

ated sequence. 154

6.5 Illustration of Non-Monotonic Path Generation: (a) Serialize an

input tree with path traversal; (b) Generation of a Contextual Path158

A.1 Annotation Interface . 181

A.2 Star Network . 183

A.3 Network with an Inserted Entity 183

vii

List of Tables

3.1 Summary of Notations . 18

3.2 Summary of Related Work . 21

3.3 Dataset Statistics . 34

3.4 Running Time (Second) . 36

3.5 Node Classification Result (Macro-F1) 37

3.6 Link Prediction Result (AUC) 38

3.7 Node Classification Performance (Macro-F1) of Different Di-

mension Sizes . 39

3.8 Movie Node Profiling: The Godfather (words are underlined

and entities are not) . 41

3.9 Case Example Analysis . 41

4.1 Table of Notations . 50

4.2 Dataset Statistics . 67

4.3 PerformanceComparison amongAVGEmbedding Encoders (with

PathVAE and LTR, CW only) 77

4.4 Performance Comparison among Context-fused Entity Context

Encoders (with PathVAE and LTR) 78

4.5 Performance Comparison among Contextualized Word-Entity

Embeddings (with PathVAE and LTR, CW only) 79

4.6 Performance Comparison among Binary Classification Ranker

and LTR (with KEPLER and PathVAE, CW only) 79

viii

4.7 Result on Wiki-film (Best Performance Bolded, Runner-up Per-

formance Underlined) . 82

4.8 Result on Wiki-music (Best Performance Bolded, Runner-up

Performance Underlined) . 83

4.9 Result on Synthetic-L (Best Performance Bolded, Runner-up

Performance Underlined) . 90

4.10 Retrieval Performance of Query Sets with Different Similarity

Setting among Candidate Paths 91

4.11 Retrieval Performance of Query Sets with Different Number of

Candidate Contextual Paths (Numbers in brackets are improve-

ment over Random Guess) . 92

4.12 Retrieval Performance of Query Sets with Different Length of

Contextual Path . 93

5.1 Table of Notations . 102

5.2 Experiment Results (Best results are shown in boldface.) 126

5.3 Ablation of Penalization/Reward Scaling (Wiki-film) 127

5.4 Effects of Context Content Amount onWiki-filmwithM-Wiki2vec(EW)130

5.5 Error Type Analysis on Wiki-film dataset 131

5.6 Experiment Result: Synthetic-S Dataset 134

5.7 Experiment Result: CPG with Incomplete Knowledge Graphs

(Synthetic-S, M-Wiki2vec) . 135

5.8 Experiment Results: CPG with QA Model (Wiki-film) 139

6.1 Dataset Statistics . 161

6.2 Performance in Context Entity Extraction (Wiki-film) 164

6.3 PathGeneration Performance onWiki-Film andWiki-MusicDatasets165

6.4 Non-monotonic(Non-M) and Monotonic(M) Generation 167

A.1 Dataset Statistics . 188

ix

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Prof. Ee-Peng

Lim. Prof. Lim has always been extremely generous and encouraging. His

guidance and dedicated support have been invaluable in helping me overcome

various challenges throughout my PhD journey. His mentorship will continue to

inspire me in my future career.

I am also grateful to my dissertation committee members: Prof. Jing Jiang,

Prof. Yuan Fang, and Prof. Aixin Sun. I sincerely appreciate the time and

effort they have devoted to providing me with valuable insights to improve this

dissertation.

This endeavor would not have been possible without my former colleagues

at the Living Analytics Research Centre. I had the pleasure of collaborating with

Dr. Yang-Yin Lee, Dr. Meng-Fen Chiang, Amila Silva, Lee-Hsun Hsieh, Agus

Trisnajaya Kwee, and Hsien-Hao Chen, who offered unwavering support and

shared their experiences and knowledge. I would also like to acknowledge the

technical assistance rendered by the system administration teammembers: Soon

Keat Fong, Desmond Yap, and Adrian Mendoza Alfonso.

Furthermore, I would like to extend my sincere thanks to Chew Hong Ong,

Chui Ngoh Boo, Caroline Tan, and Pei Huan Seow for their assistance with ad-

ministrative matters.

Finally, I would be remiss in not mentioning my parents, my sister, and

friends. Your tremendous support and love throughout my PhD candidature

played a crucial role in both of my study and personal well-being. I hope I make

you proud. Special thanks to Lynn Chan for her companionship and comforting

presence during my final year of study. I would also like to express my deep

gratitude to my landladies, Ms. Kim and Ms. Ee, whose incredible kindness

and warm hospitality made me feel at home throughout this endeavor.

x

Publications

This dissertation covers the content of the following publications,

1. Lo, Pei-Chi, & Lim, Ee-Peng (2020). Co-Embedding Attributed Net-

works with External Knowledge. In 2020 IEEE International Conference

on Big Data (Big Data). IEEE, December 2020.

2. Lo, Pei-Chi, & Lim, Ee-Peng (2023). Contextual Path Retrieval: A Con-

textual Entity Relation Embedding-based Approach. ACM Transactions

on Information Systems (TOIS), Volume 41, Issue 1, January 2023, Arti-

cle No.: 1, pp 1–38.

3. Lo, Pei-Chi, & Lim, Ee-Peng (2023) (Accepted for Publication). A Trans-

former Framework forGeneratingContext-AwareKnowledgeGraph Paths.

Applied Intelligence.

4. Lo, Pei-Chi, & Lim, Ee-Peng (2023) (Accepted for Publication). Non-

Monotonic Generation of Knowledge Paths for Context Understanding.

ACM Transactions on Management Information Systems.

xi

Chapter 1

Introduction

1.1 Motivation

In recent years, information retrieval applications increasingly depend on knowl-

edge graph to return results relevant to query context which mention entities

found in the knowledge graph. The query context here can be a question, query

terms, text document, or even a multimedia file. The results can also be in differ-

ent forms, such as a selected set of documents from a text corpus, extracts from

a knowledge graph, or even generated text or knowledge structures. To distin-

guish the information retrieval tasks underlying the above applications from the

traditional text retrieval tasks, we call the former the Knowledge-enriched Con-

textual Information Retrieval (KCIR) tasks.

One example KCIR task is semantic search using knowledge graphs [124]

where the input query context is a piece of text (e.g., “show me NLP papers that

use dynamic programming algorithms to solve the word segmentation problem”)

that can be associated with knowledge graph entities (e.g., “NLP”, “dynamic

programming”, and “word segmentation”), and the search results are selected

documents from a large corpus. Another example KCIR task is query answering

using knowledge graphs [50, 139] where the context is a textual question (e.g.,

“who is the director of the Lord of the Ring movie?”) in which “Lord of the

1

CHAPTER 1. INTRODUCTION

Ring” is also an entity in the knowledge graph. The result of this question should

be a director entity extracted from the knowledge graph. Relation extractionwith

knowledge graphs can also be seen as another KCIR task that returns the relation

edges between entities mentioned in a query context in the form of an input text

document. The returned relation edges may or may not be observed in the given

knowledge graph.

While the different KCIR tasks have their own task definitions, they share

the common characteristics of having the input query context enriched by the

knowledge graph and using the query context representation to perform retrieval

and prediction. The end goal is to use the knowledge graph and query context

to look for information, or to return parts of the knowledge graph relevant to the

query context.

Figure 1.1: Meta-Framework of KCIR Tasks

Figure 1.1 depicts the meta-framework for conducting research on KCIR

tasks. It shows the knowledge graph and query context as input of KCIR. The

first component of this meta-framework is Knowledge Representation Learning,

which takes in knowledge in the form of knowledge graph and derives the vector

representations of knowledge graph entities and/or relation edges. The second

component, Contextual Information Retrieval, takes in a query context, in the

form of text or a set of knowledge graph entities, and the knowledge graph rep-

resentations as input, then returns the result matching the query context. The

knowledge graph may have entities connected by (i) relation edges constructed

for specific domain, or (ii) simple associations based on co-occurrences or some

similarity measures between entities. To leverage on the background knowl-

2

CHAPTER 1. INTRODUCTION

edge, the representation of query context should be enriched with the knowledge

graph’s semantics. The contextual information retrieval component can be de-

fined to return knowledge graph substructures as results or documents as results.

In this dissertation, we will focus on the former.

1.2 Research Objectives and Framework

In this dissertation, we adopt the meta-framework in Figure 1.1 to categorize

our research works.

• Under the knowledge representation learning component, we study the

knowledge representation learning methods for attributed networkswhich

can be viewed as a special form of knowledge graph. In an attributed net-

work, every entity has a textual attribute. Our research thus focuses on

developing new representation learning methods for the knowledge enti-

ties incorporating associations between entities and words in the attributed

network.

• We then study a KCIR task, also known as Contextual Path Retrieval

(CPR), which takes an input query context consisting of two entities and a

textual document so as to retrieve the path in the knowledge graph that ex-

plains the semantic connection between the two query entities within the

document. In this work, we focus on the contextual information retrieval

component of the meta-framework which encompasses the representation

of query context and retrieval of relevant knowledge path, also known as

the contextual path.

• The next KCIR task, known asContextual Path Generation (CPG), is sim-

ilar to contextual path retrieval except that the path returned can include

relation edges missing in the given knowledge graph.

In our knowledge representation learning work, we focus on developing a

3

CHAPTER 1. INTRODUCTION

novel variational autoencoder (VAE) architecture to combine entity and word

attributes with data from external knowledge sources in the representation learn-

ing method. The research poses several challenges, including the extraction of

the attributes’ semantics from external knowledge sources, and to incorporate

these different attribute semantics into both entity node and attribute embeddings

within the same encoder. As the entity’s attribute text contains both words and

entity mentions, integrating knowledge about them with network links among

context documents is thus important design consideration in the VAE architec-

ture.

The remaining two works, CPR and CPG, are novel and useful in many new

applications. They can be seen as a generalization of relation extraction which

returns only one relation edge to connect a pair of entities mentioned in an query

document context. CPR and CPG returns a path covering a set of relation edges

connecting a pair of query entities mentioned in a query document context. The

returned path explains the connections between the two query entities with the

aid of knowledge graph semantics.

For CPR, the key technical challenges include capturing semantics of the

input query context in the contextual representation, selecting candidate paths,

and matching the contextual representation against the candidate paths in order

to rank the latter. In the case of CPG, input query context representation learning

remains to be a key challenge. It also faces the common challenge of identifying

the relevant part of context for selecting or generating the correct relation edges

for the resultant paths. Another major challenge is to generate the resultant paths

between the two query entities using observed and newly inferred relation edges

in the knowledge graph such that they are relevant to the input query context

where the query entities are mentioned.

4

CHAPTER 1. INTRODUCTION

1.3 Summary of Dissertation Contributions

In this dissertation, we summarize our technical contributions as follows.

• For the first work, we study a network of entities with textual attributes

and they are connected with one another by semantic edges. We propose

a co-embedding attributed network (ECAN) structure that effectively co-

embeds both entity and word attributes of such attributed networks in the

same vector space. We demonstrate that our proposed co-embedding net-

work model can effectively learn the representations of inter-linked enti-

ties if they are to be used as a form of knowledge graph.

• For the second work on contextual path retrieval, we propose several mod-

els following our proposed solution framework. Each model consists of

one encoder for learning the representation of paths and another encoder

for learning the representation of query context (query document text and

its mentioned entities). We also propose different result ranking methods

to order the retrieved paths according to their semantic similarities against

the query context.

• For the third work on contextual path generation, we identify two dif-

ferent approaches to generate contextual paths, namely, monotonic and

non-monotonic CPG.We propose formonotonic CPG a transformer-based

encoder-decoder structure. The encoder jointly embeds the query docu-

ment and entities in the query context, while the decoder generates the

contextual path. To ensure that the generated paths can effectively connect

the two query entities with minimal redundancy, we propose two scaling

methods: penalization scaling and reward scaling. The former ensures

that the generated path do not have loops, and the latter facilitates the

model to generate complete paths that start and end with query entities.

• Under the CPG work, we further propose non-monotonic CPG models to

5

CHAPTER 1. INTRODUCTION

always generate a contextual path that connects the two query entities. Our

proposed idea is to pre-train a path generation model to generate knowl-

edge graph paths by unsupervised learning on a huge training path dataset.

We then fine-tune this pre-trainedmodel with query entities extracted from

the query context document.

As we develop models to address our research problems, we also show how

one could combine knowledge representation learning and contextual informa-

tion retrieval components of the meta-framework. This hopefully will lead to

more research on combining the two components to address new KCIR tasks.

We also contribute to research on CPR and CPG by specially constructed real

world datasets as well as algorithms to construct synthetic datasets. We estab-

lish a common set of performance metrics for evaluating the returned contextual

paths against the ground truths. These datasets and evaluation metrics will also

facilitate comparison against future research works as the KCIR research topic

continues to grow.

1.4 Dissertation Structure

The rest of this dissertation is organized as follows. We present a survey of re-

lated work in Chapter 2. Chapter 3 describes the how we learn an attributed

network embedding model that incorporates useful external knowledge. Chap-

ter 4 describes our works on the CPR task. Chapter 5 introduces the CPG task

and our proposed CPG methods which return the knowledge path monotoni-

cally. Chapter 6 addresses CPG task with a non-monotonic generation approach

that generates well-formed knowledge paths as results. Finally, we conclude our

research, and discuss future works in Chapter 7.

6

Chapter 2

Related Work

In this chapter, we survey previous works that are related to this dissertation

research. We group them under: (a) text and knowledge graph representation

learning, (b) contextual retrieval of knowledge, (c) contextual retrieval of text

documents, (d) contextual item recommendation, and (e) contextual question

answering. Topic (a) is related to the knowledge representation learning com-

ponent of our KCIR meta-framework. Other than works addressing the rep-

resentations of entities and relation edges of knowledge graphs, there are also

works that cover the representation of textual descriptions of knowledge graph

elements. Topics (b) to (e) cover different knowledge-enriched contextual infor-

mation retrieval tasks. Among them, Topic (b) is most related to our proposed

KCIR tasks: CPR and CPG.

2.1 Text andKnowledgeGraphRepresentationLearn-

ing

As knowledge representation learning can be decoupled from the contextual in-

formation retrieval, we can adopt an unsupervised learning approach to encode

a knowledge graph and its associated text data. In the following, we shall give

a brief survey of the existing text and knowledge representation learning tech-

7

CHAPTER 2. RELATED WORK

niques.

Text representation learning. The classical text representation has been

based on one-hot encoding or TF-IDF vectorization which suffers from spar-

sity. With recent breakthrough in text representation learning, many dense word

embeddings methods (e.g., GloVe [85], word2vec [80], and doc2vec [65]) have

been developed to overcome the sparsity of terms. These works learn the word

and document representations by ensuring that similar words will have similar

word representations and the same for documents representations.

In recent years, many state-of-the-art text representation learning works have

been introduced to derive representations using transformer structure [107]. For

example, BERT utilizes multiple layers of transformer encoders that are trained

to generate contextual word representations using large number of text sentences [29].

Different word representations are can be assigned to the same word when it ap-

pears in different sentences or different parts of a sentence.

Knowledge graph representation learning. There are several works on

knowledge representation learning that lead to different methods. Given a rela-

tion edge (eh, r, et) in a knowledge graph where eh and et are entities, and r is a

relation label, Translation-based methods such as TransE [12], TransR [72], and

TransH [118] learn entity and relation embeddings z∗’s that satisfy the translation

association zeh + zr → zet . On the other hand, multiplication-based methods

such as DISTMult [130] and ComplEx [105] represent a relation as a matrixWr

such that zTehWrzet = 1.

Hybrid text and knowledge graph representation learning. A hybrid rep-

resentation learning method jointly learns the word and entity representations

using a common vector space. For example, Wikipedia2vec jointly learns the

representations of entities and words in a common vector space using skip-gram

model [128]. There are works that extend contextualized word representation

learning to include contextualized entity representation learning. For example,

KG-BERT augments BERT with knowledge graph by fine-tuning a pre-trained

8

CHAPTER 2. RELATED WORK

BERT with triplet identification or relation prediction loss functions [134]. K-

bert [74] and KEPLER [117] further incorporates interaction between entity and

word into a knowledge graph and text documents mentioning its entities. K-

bert injects relation triplets extracted from the knowledge graph into a BERT-

transformer to encode both words and entities in the context. KEPLER jointly

optimizes knowledge graph loss (e.g., TransE) and masked language model loss

to incorporate knowledge into contextualized word representations. The entity

representation is then obtained by encoding the description from its Wikipedia

page.

Knowledge Graph Completion. Knowledge graph completion task is a

popular downstream task to evaluate knowledge graph representation methods.

It is a prediction task that determines the tail entities (e.g., politicians) associated

with a given head entity (e.g., USA) by a given relation label (e.g., president of).

One major stream of research is to project the knowledge graph entities in a

vector space such that the alignment between a pair of entities reflects a certain

relation [52, 72, 95, 104]. Some knowledge graph completion works focus on

modelling complex relations using reinforcement learning. For instance, Lin et

al. model multi-hop knowledge graph relation with specially designed reward

function that incorporates compositionality (i.e., eh + r → et) into the learned

entity and relation embeddings [71].

Knowledge graph completion differs from CPR and CPG in two aspects: (a)

it does not involve any input query context, (b) it returns inferred relation edges

instead of paths, and (c) the relation label for the relation edges to be predicted

is part of input while CPR and CPG do not require such input relation labels.

Relation/Link Prediction. Relation prediction or link prediction is another

downstream task which utilizes knowledge graph representations [12]. It aug-

ments the knowledge graphwith predicted relation edges in the knowledge graph

without any given head entity and relation label. Relation/link prediction can

be seen as a special type of knowledge graph reasoning that predicts missing

9

CHAPTER 2. RELATED WORK

relation edges [28, 82, 105, 130]. Some important works in this line of research

include translation-based methods which focus on representing relation as trans-

lation operation [12, 105, 130], and others which use CNN on the knowledge

graph structure to predict whether a relation edge exists between a pair of en-

tities [28, 82]. Compared with CPR and CPG, Relation/link prediction has two

major differences: (1) it does not involve any input query context, and (2) it

infers new relation edges using existing relation edges instead of a multi-edge

paths between the two input entities.

2.2 Contextual Retrieval of Knowledge

In this section, we review previous studies on contextual information retrieval.

Specifically, we focus on two streams of research that retrieve entities or relation

edges from knowledge graphs using the semantics found in the query context.

Contextual Knowledge Graph Completion. This type of tasks extends the

knowledge graph completion task, which we discuss in previous section, to in-

clude query context as input [122, 134]. For instance, West et al. first learn a

pre-trained knowledge graph embedding to solve question answering task. They

then augment the knowledge graph embedding with new relations that are in-

ferred from the question [120]. Malaviya et al. propose to complete a com-

monsense knowledge graph with local graph structure as well as an input query

text [76]. They infer the structural knowledge of ConceptNet using graph con-

volutional networks, and utilize BERT to model the semantic context of target

entity nodes. They conclude that as BERT is effective in capturing taxonomic

relations, the input query text provided by it significant boosts the performance

of knowledge graph completion. While contextual knowledge graph completion

shares many similarities with our CPG task, they differ in the following ways:

(1) Knowledge graph completion focuses on inferring new relations to augment

the knowledge graph, while CPG aims to retrieve existing knowledge graph rela-

10

CHAPTER 2. RELATED WORK

tions and infer new relations at the same time. (2) Knowledge graph completion

tasks predict whether a one-hop relation can be inferred from the query context,

while CPG generates a multi-hop knowledge graph path given the query context.

Relation extraction. Relation extraction (RE) aims to extract relation edges

from input query text. The task returns relation edges involving multiple entities

mentioned in the given text [36, 108, 137]. Unlike CPR and CPG, RE does not

return knowledge paths as result. Usually, RE also does not rely on any given

knowledge graph. In some recent RE works, researchers studied a “knowledge-

enriched” relation extraction task which involves a corpus of background text

and a knowledge graph to learn how entities are related to one another with

known relations and entities. From the given background text corpus, this task

automatically selects sentences for relation extraction [51].

2.3 Contextual Retrieval of Text Documents

Unlike knowledge retrieval, contextual retrieval of text documents is another

contextual information retrieval task which focuses on retrieving text documents

from a given text corpus. This type of tasks retrieves text documents with a set

of query entities and relations from a knowledge graph.

Passage retrieval. This task is defined to select relevant text passages to

explain some given parts of knowledge graph or answers involving knowledge

graph. For example, entity relation explanation answers why a relation edge

exists in a knowledge graph by retrieving the relevant text passages [2, 9, 87,

109, 110].

Entity support passage retrieval. This task aims to return supporting pas-

sages to explain of why an given entity is connected to a query [10, 20, 21, 55].

Both the above passage retrieval tasks are very different from CPR and CPG

as their results are text passages, not contextual paths. They also do not infer

new relation edges for the given knowledge graph.

11

CHAPTER 2. RELATED WORK

2.4 Contextual Item Recommendation

Given a knowledge graph and past user-item interactions as context, knowledge

graph-enriched contextual recommendation predicts items a user may like, and

provides explanation in the form of reasoning structure extracted from the given

knowledge graph [24, 71, 116, 123, 125, 138].

In this section, we focus on path-based recommendation methods. These

recommendation methods provide intuitive reasoning that is easy to comprehend

by human using connectivity patterns or meta-paths inferred from previous user-

item interaction history [22, 41, 45, 136, 141]. Some works also integrate both

user-item interaction and item knowledge graph to generate explainable recom-

mended items. For example, KPRN appends the user-item interaction to an item

knowledge graph [116] and utilizes the paths between a user and an item in the

“appended” knowledge graph as features to recommend items. It also returns

an importance weight for each path (from the user-item graph) to tell the user

which path is likely to explain the choice of a recommended item. KTUP utilizes

the knowledge graph as an auxiliary data to enhance the user-item interaction

modeling [17]. It augments the user-item data with knowledge graph relations,

to explain why two items have interaction with the same user. Finally, PGPR

performs a causal inference procedure using reinforcement learning to provide

explanations [123]. Each recommendation is based on a set of knowledge sub-

graphs.

Contextual recommendation works cannot be directly used to solve CPR nor

CPG as the prediction targets of the two problems are vastly differ. CPR and

CPG seek to identify a path in knowledge graph most relevant to the query con-

text covering the two input entities, while the recommendation works use the

knowledge graph paths as features to predict a user’s preference toward an item.

12

CHAPTER 2. RELATED WORK

2.5 Contextual Question Answering

Contextual question answering (QA) is an information retrieval task that de-

termines for a given question the important entities denoted by Eq, and tra-

verses the given knowledge graph from Eq to find possible answers. The ques-

tion itself is the context. There have been works on reasoning with knowledge

graphs based on logic rules [6, 62], bayesian models [111], distributed repre-

sentations [89, 103], neural networks [4, 26, 68, 70], and reinforcement learn-

ing [25,37,67,73]. Here, we focus on those QAworks which aim to find answers

from knowledge graphs, text, or the combination of the two.

Knowledge graph-based question answering. There are several methods

to performmulti-relation QAwhich reasons over multiple facts in the knowledge

graph so as to determine the answers. [126, 135, 143]. For example, MetaQA

traverses through a knowledge graph to retrieve the answer to a given ques-

tion [139]. Although the traversed path could be seen as an explanation of an-

swer’s connection with the question entities, but it is not returned along with

the answer, nor evaluated against the ground truth explanation path (which does

not exist for MetaQA). Here, the various paths connecting question entities to

answer are turned into answer features for relevance ranking [69, 113]. More-

over, the traversed paths are limited to involve the observed relation edges (not

inferred relation edges) of the knowledge graph. MHQA-GRN addresses read-

ing comprehension QA by constructing a directed acyclic graph from knowl-

edge graph for each passage in the query article and using its representation as

features to predict the answer [98]. It then summarizes the answers from all

passages and aggregates the final answer. Nevertheless, MHQA-GRN does not

generate a reasoning path for the query. Some works adopt reinforcement learn-

ing and propose to use policy-based agents to generate the most probable paths

on a knowledge graph so as to determine the answers [71, 125].

Text-based question answering. Text-based QA reasons over multiple doc-

13

CHAPTER 2. RELATED WORK

uments instead of knowledge graph to generate answers [88, 100, 119]. Finding

semantic connections between entities has been studied in QA research to cor-

rectly determine an answer (usually an entity) with an explanation of how it is

connected to the question. For example, HotpotQA conducts multi-hop reason-

ing over a given set of documents to find answers to questions [132]. Asai et.

al proposed another retriever-reader framework on HotpotQA dataset that rea-

sons over Wikipedia using graphical structure [5]. HotpotQA however does not

involve a knowledge graph and hence is unaware of the types of entities and re-

lations to construct the explanation. Instead, it relies on information from a set

of input documents [64].

Hybrid question answering. Finally, we review QA works that are based

on both text and knowledge graph. Collaborative Policy Learning (CPL) [34]

uses two different agents to extract facts from a bag of noisy sentences which

are turned into new relation edges for augmenting the given knowledge graph. A

collaborative mechanism between the two agents is then learned using reinforce-

ment learning. Unlike CPR and CPG, the knowledge graph reasoning works are

not given the tail entity during the reasoning process. Ren et al. proposes the

LEGO framework which alternates between expansion of query tree and rea-

soning in latent space to find entities which satisfy query tree conditions [92].

Starting from the initial set of entities in the question, LEGO determines a rele-

vant relation (if any) from the question and add it to the query tree. It then finds

entities from the latent space which satisfies the relation(s) in the query tree.

The process is repeated until no further changes can be made to the query tree.

Finally, a set of entities satisfying the query will be returned.

Recent studies in knowledge reasoning includes C-RNN [145], which com-

bines a convolutional neural network for feature extraction with a recurrent neu-

ral network to predict the answer entity given a query entity and a knowledge

graph which covers different paths from the query entity to candidate answer

entities. For the same reasoning task, CogKR utilizes a framework inspired by

14

CHAPTER 2. RELATED WORK

human cognition process to conduct multi-hop reasoning [31]. Specifically, it

iterates between an expansion module and a reasoning module to predict the an-

swer entity for a given query entity using a neighborhood knowledge subgraph.

Nevertheless, none of the above models considers context when predicting the

knowledge paths leading to the answer entities.

On the whole, all of the KGQA works we discuss above do not generate

knowledge graph paths as result. The QA tasks are different from CPR and

CPG due to their focus on answering questions rather than finding the correct

path for explanation. Path extraction/construction in QA with knowledge graph

essentially aims to weigh the different possible answers, which is similar to that

of contextual item recommendation.

15

Chapter 3

Co-Embedding Attributed Network

Representation Learning

In this chapter, we dive into the contextual representation learning component

in our meta-framework. The goal of the contextual representation learning is to

jointly embed the information from both text and knowledge, including the inter-

action between them so as to generate the embedding representations of objects

for downstream information retrieval tasks. Here, we consider node objects of

an attributed network which have words and entities as attribute values. This

chapter thus proposes a new contextual representation models for this attributed

network by incorporating the co-occurrence based association graphs of these

entities and words.

Network embedding has been an important research topic in recent years

due to the existence of massive amount of web and social network data as well

as many applications on these networks, e.g., link prediction, recommendation,

node classification, etc.. Many of these networks are attributed networks, a type

of networks consisting of both nodes and their attributes. For example, in a ci-

tation network, nodes are publications and node attributes include paper title,

author, and abstract. The node attributes themselves may also be semantically

associated with one another. E.g., two keywords (e.g., “AI” and “deep learning”)

16

CHAPTER 3. CO-EMBEDDING ATTRIBUTED NETWORK REPRESENTATION LEARNING

in abstract can be semantically related if one has the background research knowl-

edge. Conventional network embedding techniques (e.g., deepwalk, node2vec)

usually leave out node attributes in learning the node embeddings and this results

in sub-optimal performance in the downstream prediction tasks. There are sev-

eral efforts to incorporate node attributes into network embeddings such as [49]

and [78] but they have not considered external attribute semantics in their mod-

els.

Knowledge covered in this chapter are in the form of an entity-entity knowl-

edge graph or a word-word co-occurrence knowledge graph. These knowledge

provide additional semantics of the nodes and attributes in the network. Such at-

tribute semantics can be found in publicly available external knowledge sources.

Examples of such external knowledge sources include Wikipedia, text corpuses,

WordNet, etc.. From those sources, we can derive attribute semantics that come

in the form of associations between words and entities for learning better em-

bedding representations of the network nodes.

3.1 Research Objective

Consider an attributed network example with publications as nodes where v1

and v2 are two publication nodes with titles, “Mining Authority Nodes from Hy-

perlinks in WWW” and “The PageRank Citation Ranking: Bringing Order to

the Web”. The two publications share similar topic but they have little overlap

between their titles. We consider both entities and words in these publication

titles. With external knowledge, we can determine that the entities that “Web”

and “WWW” in the titles are highly similar, and another two entities “Author-

ity” and “Pagerank” are similar. At the word level, “hyperlinks” and “web” are

semantically similar. These semantic knowledge should bring the embeddings

of v1 and v2 closer to each other.

Here, we specifically study this for the variational autoencoder-based (VAE-

17

CHAPTER 3. CO-EMBEDDING ATTRIBUTED NETWORK REPRESENTATION LEARNING

Table 3.1: Summary of Notations

Symbol Description

G = {V ,A, E} Undirected attributed network
EV / EA Edges between nodes / between nodes

and attributes
N = |V| Number of nodes
F = |A| Number of attributes
i / a Index of nodes / attributes
D Dimension size of latent representation vector
ZV ∈ RN×D Latent representation of nodes
ZA ∈ RF×D Latent representation of attributes
A ∈ RN×N Adjacency matrix of nodes
X ∈ RN×F Attribute information matrix of nodes
S ∈ RF×F Attribute association matrix
pa1,a2 Proximity between two attributes a1 and a2
Â / X̂ / Ŝ Reconstructed matrix

based) models which has seen much development in recent research. One has to

overcome a few technical challenges in considering attribute knowledge, namely:

(a) extracting attribute semantics from external knowledge sources; (b) design-

ing newVAE architecture(s) to incorporate different attribute semantics into both

node and attribute embeddings; and (c) evaluation of the proposed VAE.

3.2 Related Work

3.2.1 HIN Embeddings

Heterogeneous Information Network (HINs) refers to networks with multiple

types of nodes. HIN embeddings aim to learn low-dimensional representations

of nodes that preserve the network structure. Although homogeneous network

embedding approaches such as node2vec and deepwalk [39, 86], HIN embed-

dings considers the distinctive semantics of nodes. The early HIN embeddings

works focus on how to fairly sample different types of nodes or combining the

semantics of node types. Tang et al. proposed LINE that traverses all edge types,

then samples one edge for each edge type at a time [101]. The more advanced

18

CHAPTER 3. CO-EMBEDDING ATTRIBUTED NETWORK REPRESENTATION LEARNING

HIN embeddings consider meta-paths [30]. Aspem, as an HIN embedding tech-

nique of using meta-paths, defines aspect to be a sub-graph consisting of only

some of the node types [96]. More recently, deep learning based HIN embed-

dings such as HNE and SDNE have been proposed [19, 112].

Beyond network structures, one can improve the quality of node embeddings

by considering node attributes, node labels and text content associated with the

nodes [48,49,114,131]. For example, TriDNR considers both node content and

node label in the learning of node embeddings [83]. It jointly optimizes a skip-

gram model for network structure, and a coupled neural network model which

maps the node content and node representation from skip-gram to the node la-

bel. ANRL utilizes an auto-encoder structure to learn node embedding that pre-

serves both the network structure and node attribute proximity [140]. Neverthe-

less, even when auxiliary node information (e.g., node label and attributes) are

modeled by the above embedding approaches, they have not considered: (1) the

uncertainty of node representation, and (2) attribute representations. These two

properties are important as the former avoids over-fitting and enables generative

process, while the latter provides a common representation to compare nodes

and attributes. In this paper, we utilize variational auto-encoder to address these

shortcomings.

3.2.2 Variational Auto-encoder Embeddings

Variational auto-encoder (VAEs) consists of two computational neural networks

(NN): the first NN fϕ works as an inference model that learns latent variables

from observations, and the second NN gθ works as a generative model that at-

tempts to reconstruct the original observations from the latent variables [58, 61,

97]. Unlike other approaches such as node2vec or DeepWalk, the latent vari-

ables of VAEs consist of mean and variance of some Gaussian distribution to

capture the uncertainty of each latent variable. This uncertainty could be very

helpful in modeling heterogeneous information networks as properties of differ-

19

CHAPTER 3. CO-EMBEDDING ATTRIBUTED NETWORK REPRESENTATION LEARNING

ent node types could be captured. For example, a popular attribute label that is

shared among many nodes should have larger variance so all associated nodes

could have generally low proximity to it.

VAE is a popular representation learning for text/image generation [38, 61,

129]. Previous works have shown that VAE embeddings outperforms several

other traditional network embedding approaches [61]. Semi-supervised VAEs

that incorporate partial label information [59, 79, 127], and VAEs that support

interpretability using disentangled representation [13, 32] are among the works

showing that VAE can be easy extended for different problem settings. The

learned VAE representations are often used in node classification or network

completion tasks [47,53,54,66]. For example, there are works that aim to learn

multi-modal network embedding using VAE as it can capture the correlation

between different data modalities [47, 53, 66].

To co-embed the nodes and the auxiliary attributes in the same representation

space, NetVAE employs a shared encoder to learn a unified representation for

a nodes and its attribute, and separate decoders to decode them separately [54].

Another work that utilizes VAE to learn embeddings for nodes and attributes

is CAN. It uses a double-VAE structure to jointly learn node and attribute rep-

resentations [78]. Both NetVAE and CAN, however, do not consider external

attribute semantics to improve node and attribute representations.

We compare six selected network embedding works in Table 3.2. VGAE

is a baseline model that learn the embedding based solely on node adjacency

matrix, whereas the others utilize attribute or label association in the learning

process. While TriDNR and ANRL learn the node representations with the help

of attributes, the attribute representations are not included in the learned embed-

ding models. On the contrary, CAN and NetVAE model both node and attribute

representations at the same time. Here, we aim to propose a model, ECAN,

which further considers attribute association and attribute semantics from exter-

nal knowledge sources.

20

CHAPTER 3. CO-EMBEDDING ATTRIBUTED NETWORK REPRESENTATION LEARNING

Table 3.2: Summary of Related Work

Model Method Modeling
of A

Encoding of

N
Adj

N-L
Assoc.

N-A
Assoc.

A
Adj

Ext. A
Semantics

TriDNR [83] Skip-gram ×
√ √ √

× ×
ANRL [140] Autoencoder ×

√
×

√
× ×

VGAE [61] VAE ×
√

× × × ×
CAN [78] VAE

√ √
×

√
× ×

NetVAE [54] VAE
√ √

×
√

× ×
ECAN (Our) VAE

√ √
×

√ √ √

N: Node. A: Attribute. L: Label.

3.3 Co-Embedding with External Knowledge

3.3.1 Framework Overview

To provide a common embedding solution approach, we propose aCo-embedding

Attributed Networks with External Knowledge (CANE) framework. As a

framework, CANE allows different methods to be used in each step to realise a

co-embedding attributed network model. As illustrated in Figure 3.1, the CANE

framework takes an attributed network G as input where each node is linked to

one or more attributes. From G, we extract useful information that serves as in-

put to the learning of co-embedding model. TheN×N adjacency matrixA, and

the N × F node attribute matrix X are derived from G directly, while attribute

association matrix S is extracted from some external text corpus or knowledge

graph.

Our proposed extraction of attribute associations from text corpora and knowl-

edge graphs will be described in Section 3.3.2. Here, we assume that the external

knowledge sources should be relevant to the given attributed network. With the

derived attribute-to-attribute associations, the framework constructs the input

matrices and learns the network and attribute embeddings as outlined in Sec-

21

CHAPTER 3. CO-EMBEDDING ATTRIBUTED NETWORK REPRESENTATION LEARNING

Figure 3.1: Co-embedding Attributed Networks with External Knowledge

tions 3.3.3 and 3.3.4. A complete summary of symbols used is given in Table 3.1.

3.3.2 Attribute-to-Attribute Association

Attribute Definition. The definition of attribute is important in our proposed

framework as it determines how we extract attribute-to-attribute associations.

Instead of defining attribute at the type-level, where different type of nodes are

treated separately, our framework adopts an instance-level attribute definition.

In other words, a node attribute is a concatenation of attribute type and attribute

label(s). Using citation network as an example, a paper node can have (author,

“John Smith”) as an attribute, (keyword, “search engine”), and (keyword, “data

mining”) as two other attributes.

Attributes can be of many types, and should be handled differently to derive

attribute-to-attribute associations. In this study, we categorize attributes into 4

main types: (a) numeric, (b) categorical, (c) set, and (d) multiset. The attribute-

attribute associations of numeric attributes (e.g., age, salary, etc.) can be directly

derived from their values. Hence, we focus on non-numeric attribute types in the

following discussion.

Categorical attribute is a singleton set, and set is a special case of multiset.

22

CHAPTER 3. CO-EMBEDDING ATTRIBUTED NETWORK REPRESENTATION LEARNING

Without loss of generality, we only consider multiset attribute, and a node with

multiset attribute is mapped to node-attribute associations, one for each value

of the multiset. For example, a paper node vi with this sentence in the abstract,

“Social networks have long tails.”, can be represented as a set of associations be-

tween vi and each of (abstract, “social”), (abstract, “networks”), · · · , (abstract,

“tails”). In the following, we present two kinds of attribute values: (a) word,

and (b) entity.

Word as Attribute. For attributes that are textual, it is intuitive to use words as

attribute values. As not all words are important, one can keep only the informa-

tive words and use them as attribute values. For example, we may select only

words with high TF-IDF values.

Entity as Attribute. When the attribute has a category label or multiset of la-

bels, each label can be viewed as an entity. Even when the attribute is textual,

it is possible to extract entities from the attribute text and generate entities as

attribute values. Such an approach will be illustrated in our experiment datasets

(see Section 3.5.1).

With word and entity attributes defined, we now define measures for the as-

sociation between two attributes. In this framework, we consider two types of

external knowledge sources, (a) text corpus, and (b) knowledge graph.

(a) Text Corpus as External Knowledge. A text corpus consists of many

text documents. The word-word associations can be derived from word co-

occurrences, say, the number of time one word appears with another word in

the same context. This is the same intuition behind popular word embedding

approaches such as Skip-gram.

(b) Knowledge Graph as External Knowledge. Knowledge graphs are net-

works of entities connected by one or more semantic relation. From a knowledge

graph, we could measure the association of two entities using the graph struc-

ture, the association between two words using their co-occurrences in knowl-

edge graph’s text data, and the association between a pair of entity and word

23

CHAPTER 3. CO-EMBEDDING ATTRIBUTED NETWORK REPRESENTATION LEARNING

using their co-occurrence. For instance, Milne and Witten propose to measure

the similarity of two entities by their in-link edges originating from same entities

[121]. If two entities share very similar set of in-links, they are highly associ-

ated. Knowledge graphs, in many cases, have text data describing their entities.

For example, Wikipedia has one article for each entity, and these entity articles

can serve as a text corpus to derive entity-to-entity associations.

3.3.3 Input Matrices Construction

The following arematrices to be constructed from network and associations from

external knowledge sources.

Node-to-Node Association Matrix (A). The Node-to-Node Association

Matrix captures the network structure of the attributed network using anN ×N

adjacency matrix. In the case of unweighted network, Aij = 1 if (Vi,Vj) ∈ EV ,

and 0 otherwise. If the attributed network is weighted, Aij will simply be the

weight of edge.

Node-to-Attribute Association Matrix (X). The Node-to-Attribute Asso-

ciation Matrix is constructed for an unweighted attributed network by setting

Xia = 1 if (Vi,Aa) ∈ EA, and 0 otherwise.

Attribute-to-Attribute Association Matrix (S). There are three possible

Attribute-to-Attribute Association Matrices, denoted by S(a), S(b), and S(c) as

shown in Figure 3.1.

(a) Word-to-word associations learned from text corpus (S(a)). In this

setting, we extract contextual closeness between two attributes which are words

from a text corpus D. The text corpus could be relevant to the attributed net-

work (e.g., the abstracts of the papers in a citation attributed network) or a text

collection that provides meaningful word co-occurrence information. We derive

the contextual closeness from distance between the two words ai and aj within a

24

CHAPTER 3. CO-EMBEDDING ATTRIBUTED NETWORK REPRESENTATION LEARNING

context window. For a window size w in a document d, the contextual closeness

of one occurrence between ai and aj is scxijd = w−dij where dij denotes the dis-

tance between ai and aj . This closeness score is symmetric. For example, given

a sentence “Discriminative learning for differing training and test distributions”

and a window size 4, the contextual closeness between the words “learning” and

“training” in this context window is 4−2 = 2. The closeness between “learning”

and “distribution” would be 0 as “distribution” does not appear within “learn-

ing”’s context window. For all pairs of words found in the attributed-network,

we construct a F × F matrix S(a) as S(a)ij =
∑

d∈D scxijdfor all pairs of words ai

and aj .

(b) Entity-to-entity associations learned from text corpus of knowledge

graph (S(b)). Similar to (a), from the text corpus D that covers entities in a

knowledge graph (e.g., Wikipedia pages), we construct aF×F matrix S(b) using

context closeness score scxij between two entities ai and aj . S
(b)
ij =

∑
d∈D scxijd

(c) Entity-to-entity associations learned from knowledge graph (S(c)).

The corresponding F × F matrix S(c) matrix has each entry measuring the re-

latedness between two entities. In this work, we define two entity relatedness

functions giving rise to two different matrices:

(c.1) In-link similarity from knowledge graph: We adopt theWikipedia Link-

based Measurement (WLM) proposed in [121] to measure entity relatedness.

Entities sharing similar in-link neighbors will have higher similarity, S(c1)ij .WLM

between two entities ai and aj is defined as follows,

S(c1)ij = 1−
logmax (|Cai |, |Caj |)− log (|Cai ∩ Caj |)

log |E| − logmin (|Cai |, |Caj |)

where E is the set of entities (attributes) in the attributed network, Cai is the set

of entities having a link to ai in the knowledge graph.

(c.2) Cosine similarity from pre-trained knowledge graph embeddings: This

leverages on knowledge graph embeddingmethods such asWikipedia2vec [128]

to determine entity relatedness. Such embedding methods align entities and

25

CHAPTER 3. CO-EMBEDDING ATTRIBUTED NETWORK REPRESENTATION LEARNING

words in the knowledge graph in the same vector space. The association be-

tween two entities is this the relatedness between their vector representation.

With a pre-trained knowledge graph embedding, we therefore define the asso-

ciation between entities ai and aj as S(c2)ij = cos(akgi , a
kg
j). where a

kg
i denotes

the vector representation of entity ai in the pre-trained knowledge graph embed-

dings, and cos(·) is the cosine similarity.

3.3.4 Co-Embedding Learning

The last step of our proposed framework is co-embedding learning. The co-

embedding algorithm learns low-dimensional representation of nodes and at-

tributes from the three aforementioned association matrices. After the embed-

ding model is learned, we then use it in the subsequent downstream tasks. Our

framework can accommodate any embedding learning algorithm that utilizes

the same set of input matrices (i.e., node-node matrix, node-attribute matrix and

attribute-attribute matrix) . In the remaining sections, we will use variational

auto-encoders (VAE) as the embedding algorithm as illustrated in Section 3.4.

3.4 Co-embedding Learning Using VAE

In this section, we introduceECAN (ExternalKnowledgeAwareCo-Embedding

Attributed Network) model, a multi-VAE structure that jointly model both

nodes and attributes in the same semantic space. We further borrow the idea of

mixed model to address the problem of imbalanced dimensions in multi-input

VAEs [47].

3.4.1 CAN

Before we present our proposed ECAN, we introduce CAN, a multi-VAE model

proposed in [78]. CAN however does not consider external knowledge in learn-

ing the embeddings, nor does it seeks to balance the dimension size of node and

26

CHAPTER 3. CO-EMBEDDING ATTRIBUTED NETWORK REPRESENTATION LEARNING

Figure 3.2: CAN Model

attribute representations. As shown in Figure 3.2, the first VAE of CAN en-

codes nodes using both A and X in a two-layer GCN [60]. The two-layer GCN

is defined as:

H
(1)
V = ReLU

(
ÃXW(0)

V

)
[µV , σ

2
V] = AH(1)

V W(1)
V

(3.1)

where Ã = D− 1
2AD− 1

2 is a symmetrically normalized adjacency matrix,

Dii =
∑

j Aij is G’s degree matrix with diagonal elements containing node

degrees and 0 for the remaining elements, and ReLU = max(0, ·) is a non-

linear activation function. This VAE outputs the mean µV and variance σ2
V as

the learned Gaussian embedding of nodes.

The encoding of attribute follows similar process except that it replaces the

two-layer GCN by two fully-connected layers. This encoder is defined as:

H
(1)
A = tanh

(
XTW(0)

A + b(0)
)

[µA, σ
2
A] = H

(1)
A W(1)

A + b(1)
(3.2)

where b is the bias of fully-connected layer and tanh is the non-linear activation

function. Likewise, this VAEoutputs themeanµA and variance σ2
A of the learned

27

CHAPTER 3. CO-EMBEDDING ATTRIBUTED NETWORK REPRESENTATION LEARNING

Gaussian embedding of attributes. We denote the parameters in both encoders

as ϕ = [ϕ1, ϕ2]. ϕ1 = [W(0)
V ,W(1)

V] and ϕ2 = [W(0)
A ,W(1)

A , b(0), b(1)] representing

the parameters in the node and attribute encoders respectively.

The representation of a node i and an attribute a could then be derived from

the latent variables:

ZV
i = µVi

+ σ2
Vi
⊙ ϵ, with ϵ ∼ N (0, I)

ZA
a = µAa + σ2

Aa
⊙ ϵ, with ϵ ∼ N (0, I)

(3.3)

The generation model in CAN is very straightforward. To reconstruct an

edge between two nodes i and j, we derive µEViVj
and σ2EViVj

from gθ1 ,

[µEViVj
, σ2EViVj

] = gθ1(ZV
i ,ZV

j)

where gθ1(ZV
i ,ZV

j) = sigmoid(ZVT
i ZV

j).

The edge between nodes i and j is then reconstructed by

pθ1(Aij|ZV
i ,ZV

j) = N (µEViVj
, σ2EViVj

I)

whereN (·) is a Gaussian distribution. The edge generated by Gaussian car-

ries a real-valued weight. In the case of binary edges, a Bernoulli distribution

taking µEViVj
as input could be used for the reconstruction. The reconstruction

of Xia follows the same procedure.

[µEViAa
, σ2EViAa] = gθ2(ZV

i ,ZA
a)

gθ2(ZV
i ,ZA

a) = sigmoid(ZVT
i ZA

a)

pθ2(Xia|ZV
i ,ZA

a) = N (µEViAa
, σ2EViAaI)

(3.4)

The loss function of VAEs aims to minimize (1) the reconstruction error and

(2) KL-divergence between approximated and true latent variables. The recon-

struction of A and X are covered in CAN, as well as KL-divergence between

28

CHAPTER 3. CO-EMBEDDING ATTRIBUTED NETWORK REPRESENTATION LEARNING

Figure 3.3: ECAN (Non-Mixed Model)

approximated and true prior qϕ(ZV |A,X), p(ZV) and qϕ(ZA|XT), p(ZA):

log p(A,X) ≥ Eqϕ

∑
(i,j)∈EV

log pθ(Aij | ZV
i ,ZV

j)

+ Eqϕ

∑
(i,a)∈EA

log pθ(Xia | ZV
i ,ZA

a)

− DKL

(
qϕ(ZV | A,X) ∥ p(ZV)

)
− DKL

(
qϕ(ZA | XT) ∥ p(ZA)

)
≜ L(θ, ϕ;A,X)

(3.5)

3.4.2 ECAN Models

Our proposed model External Knowledge-Aware Co-Embedding Attributes

Network (ECAN) extends CAN with multiple VAEs used to encode and de-

code network edges A, network attributes X and the new attribute semantics S.

This generalizes the two-VAE structure in CAN. As shown in Figure 3.3, be-

sides a VAE for encoding/decoding network structure and network attributes, a

new VAE is constructed to learn attribute information from attribute-to-attribute

29

CHAPTER 3. CO-EMBEDDING ATTRIBUTED NETWORK REPRESENTATION LEARNING

association matrix S. The nodes are encoded by a two-layer GCN defined as:

H
(1)
V = ReLU

(
ÃXSW(0)

V

)
[µV , σ

2
V] = ÃH(1)

V W(1)
V

(3.6)

where RELU(·) is the layer-1 non-linear mapping from ÃXS to a hidden

layer, and another layer of mapping to a set of distribution parameters µV and

σV . Ã represents the normalized version of A.

To encode the attributes, we encodes X and S separately in two VAEs, and

concatenate the learned latent variables µA and σA as attribute representation.

The dimension size of these two VAEs are set to be D
2
so as to ensure the node

and attribute representations could have the same length.

H
X(1)
A = tanh

(
XTWX(0)

A + bX(0)
)

H
S(1)
A = tanh

(
SWS(0)

A + bS(0)
)

[µX
A , σ

X
A

2
] = H

X(1)
A WX(1)

A + bX(1)

[µS
A, σ

S
A
2
] = H

S(1)
A WS(1)

A + bS(1)

µA = [µX
A , µ

S
A], σA

2 = [σX
A

2
, σS

A
2
]

(3.7)

In decoding, Aij is generated from the product of ZV
i and ZV

j . Attribute-

wise, the node i’s attribute a, Xia, is derived from the product of ZV
i and ZAX

a ,

and the association between attributes a and b, Sab, is derived from the product

of ZAS
a and ZAS

b . With three VAEs in our model, the loss function minimizes

the reconstruction errors of A, X, and S as well as KL-divergence of the three

approximated/true priors:

30

CHAPTER 3. CO-EMBEDDING ATTRIBUTED NETWORK REPRESENTATION LEARNING

logp(A,X, S) ≥ Eqϕ

∑
i,j∈V

logpθ(Aij | ZV
i , Z

V
j)

+ Eqϕ

∑
i∈V,a∈A

logpθ(Xia | ZV
i , Z

AX
a)

+ Eqϕ

∑
a,b∈A

logpθ(Sab | ZAS
a , ZAS

b)

− DKL

(
qϕ(Z

V |A,X) ∥ p(ZV)
)

− DKL

(
qϕ(Z

AX|X) ∥ p(ZAX)
)

− DKL

(
qϕ(Z

AC|S) ∥ p(ZAS)
)

≜ L(θ, ϕ;A,X, S)

(3.8)

where
ZV

i = µVi
+ σ2

Vi
⊙ ϵ, with ϵ ∼ N (0, I)

ZAX
a = µX

Aa
+ σX

Aa

2 ⊙ ϵ, with ϵ ∼ N (0, I)

ZAS
a = µS

Aa
+ σS

Aa

2 ⊙ ϵ, with ϵ ∼ N (0, I)

ZAS
b = µS

Ab
+ σS

Ab

2 ⊙ ϵ, with ϵ ∼ N (0, I)

(3.9)

The encoding process of ECAN makes use of both internal (network struc-

ture) and external (text corpuses/knowledge graph) knowledge. However, the

correlation between X and S is neglected in such VAE structure. Therefore, we

propose a mixed model inspired by AMVAE to cope with the joint encoding of

different sources [47].

3.4.3 Mixed Model

When there are multiple inputs to the joint learning of representations, one intu-

itive approach is to concatenate the two input matrices as one input to the VAE.

Nevertheless, when one of the input matrices (say, S) has much larger dimen-

sion size than another (say,X), the encoding process might be dominated by the

matrix with higher dimensions. To avoid this, the mixed model was proposed

to jointly learn embedding from multimodal sources providing input data with

different dimension sizes [47]. In the mixed mode, a two-encoder structure is

31

CHAPTER 3. CO-EMBEDDING ATTRIBUTED NETWORK REPRESENTATION LEARNING

Figure 3.4: ECAN (Mixed Model)

deployed to balance the impact from different input.

We adopt the mixed model in our ECAN, and obtain a new ECAN struc-

ture called ECAN(mixed) (see Figure 3.4) which has an additional second-layer

encoder that takes the concatenation of X and S’s representations from the first-

layer encoders as input. The second-layer encoder outputs the latent variables

[µX
Aa
, σX

Aa

2
] and [µS

Aa
, σS

Aa

2
]. Finally, we concatenate zX and zS derived from

the latent variables to be the final attribute representation. The loss function of

ECAN(mixed) is almost identical to ECAN except for the KL-divergence terms.

Since the encoding of ZAX and ZAS is through a shared encoder, the approxi-

mated prior qϕ for the two latent variables should be derived from both X and S.

That is, the last two terms of Eq. 3.8 should bemodified toDKL

(
qϕ(Z

AX|X,S) ∥ p(ZAX)
)

and DKL

(
qϕ(Z

AC|X,S) ∥ p(ZAC)
)
respectively. In this way, the correlation

among input matrices is kept, and the learning is no longer dominated by the

larger matrices.

32

CHAPTER 3. CO-EMBEDDING ATTRIBUTED NETWORK REPRESENTATION LEARNING

3.5 Experiments

We conduct experiments on three real-world datasets to evaluate the perfor-

mance of our proposed ECAN model against CAN. In the earlier paper [78],

CAN has been shown to outperform other state-of-the-art network embedding

models including AANE [48], ANRL [35] and GAE [61] in both link prediction

and node classification tasks on seven real datasets. In this section, we thus fo-

cus on evaluating ECAN against CAN in similar tasks. Our goal is to determine:

(a) if external knowledge about attribute semantics can improve the embedding

representations for achieving more accurate downstream task results (i.e., node

classification and link prediction); (b) if the mixed model can yield better perfor-

mance than non-mixed model; and (c) if there are evidence that better attribute

and node embeddings are learned with the help of external knowledge sources.

3.5.1 Datasets

Our experiments require attributed network datasets with words and entities

as attributes. Associated with these datasets are suitable external knowledge

sources covering associations between entities and between words. To the best

of our knowledge, such datasets are not available and we decided to construct

three new datasets specially for this research. While our models can handle mul-

tiple attributes, we keep the experiments simple and somewhat comparable to

results in previous works by considering only one type of attribute. The dataset

statistics are shown in Table 3.3. Note that the node labels are only used in node

classification task.

• Citation Network Dataset [102]. This is a subset of the citation network

dataset from ArnetMiner which has papers as nodes, and title combined

with abstract as an attribute type. Two papers are connected if one cites an-

other. The papers are classified into six domains based on the publication

venues: database, AI, hardware, system, theory, and programming lan-

33

CHAPTER 3. CO-EMBEDDING ATTRIBUTED NETWORK REPRESENTATION LEARNING

Table 3.3: Dataset Statistics

Datasets #Nodes #Edges #Attrib
(Words)

#Attrib
(Entities) #Labels L-M Ratio∗

Citation 2,010 7,465 4,319 1,003 6 1
O*NET 974 11,342 18,119 1,174 6 0.872
IMDB 7,313 21,939 50,323 3,127 10 0.831

L-M Ratio: the ratio of two labels with the least and most number of
instances. A balanced dataset has a L-M ratio of 1.

guages. Each domains consists of equal amount of papers in this dataset.

A text corpus is constructed as an external knowledge source by combin-

ing every paper’s title and abstract together to form a text document.

• O*NET Occupation Dataset. The Occupational Information Network

(O*NET) (www.onetonline.org) is a free online occupation network cre-

ated by the US government. Every occupation in O*NET is a node in

the attributed network. Each occupation node has word attributes derived

from its fields, namely: description, tasks and skills. An edge exists be-

tween two occupations in O*NET if they are related. In O*NET, every

occupation is assigned a career preference profile according to the Hol-

land Occupational Codes, also known as RIASEC [44]. There are six

different RIASEC labels: Realistic (R), Investigative (I), Artistic (A),

Social (S), Enterprising (E), and Conventional (C). Each occupation’s

profile consists of two to four of the above labels. A text corpus is con-

structed by combining the description, task and skill requirements of every

occupation into a document.

• IMDB Movie Dataset. We constructed an attributed network by extract-

ing a subset of movies from Internet Movie Database (IMDB). In this net-

work, each node represents a movie, and movies are linked to one another

by “related movies”. Attributes are extracted from the movie synopsis.

Every movie node is assigned one or more movie genre: adventure, ac-

tion, comedy, action, animation, family, fantasy, drama, sci-fi, romance,

34

CHAPTER 3. CO-EMBEDDING ATTRIBUTED NETWORK REPRESENTATION LEARNING

and mystery.

For each dataset, we construct both word attributes and entity attributes using

their associated text corpora as follows. We extract word attributes from the

text document associated with each network node (i.e., paper/occupation/movie

node). For Citation dataset, we keep only the top 20 words with highest TF-IDF

of each node as its word attributes. For both O*NET and IMDB datasets, we

keep the top 30 words by TF-IDF as the node’s word attributes.

We next use spaCy (spacy.io) to recognize entities in the text document asso-

ciatedwith a node andmatch themwithWikipedia entities usingWikipedia2Vec [128]

followed by manual judgement to exclude obviously false entity linkage. The

recognized entities include computing concepts and algorithm names for Ci-

tation dataset, and celebrity names and movie titles for IMDB dataset. For

O*NET dataset, we link the skill entities in the text data of each occupations

with Wikipedia entities by simple string matching. To select more important en-

tities as attributes, we remove entities that appear in the text data of≤ 10 nodes.

3.5.2 Baseline and Model Settings

We compare several variants of the ECANmodel using different attribute associ-

ations and mixed/non-mixed encoder model components, as enumerated below.

• CAN [78]: This double-VAE model learns the latent representations of

nodes and attributes using A and X without external knowledge. CAN

has been shown to outperform other state-of-the-art network embedding

models including AANE [48] and ANRL [35] in link prediction and node

classification tasks. Therefore, we use it as the baseline model for com-

parison.

• ECAN(a): This is ECAN using nodes, node adjacency matrix A, node

attributes which are words represented as X, and word-word association

S(a) based on contextual closeness described in Section 3.3.3.

35

CHAPTER 3. CO-EMBEDDING ATTRIBUTED NETWORK REPRESENTATION LEARNING

Table 3.4: Running Time (Second)

CAN ECAN (Non-Mixed Model)
(a) (b) (c1) (c2) (b+c)

Citation 55 68 71 66 75 76
O*NET 72 78 83 81 81 88
IMDB 153 203 227 198 248 240

ECAN (Mixed Model)
(a) (b) (c1) (c2) (b+c)

Citation 55 76 81 87 91 89
O*NET 72 81 85 79 94 95
IMDB 153 239 271 244 257 267

• ECAN(b): This is ECAN using nodes, node adjacency matrix A, node

attributes which are entities X, and entity-entity associations S(b) based

on contextual closeness described in Section 3.3.3.

• ECAN(c1): This is ECAN using nodes, node adjacencyA, node attributes

which are entities X, and entity-entity associations S(c1) based on in-link

similarities fromWikipedia knowledge graph as described in Section 3.3.3.

• ECAN(c2): This is ECAN using nodes, node adjacencyA, node attributes

which are entities X, and entity-entity associations S(c2) based on cosine

similarity from pre-trained knowledge graph embeddings.

• ECAN(b+c): This ECAN uses A, X, S(b), and S(c2). We use S(c2) in-

stead of S(c1) because ECAN(c2) shows slightly better performance than

ECAN(c1) (see Section 3.5).

We show the result using mixed model structure and non-mixed model struc-

ture for all ECANs. Our ECANs are implemented using Tensorflow [1]. Adam

optimizer is used for optimization with learning rate = 0.01 [57]. For the opti-

mization of VAEs, we use the same parameter settings as CAN to allow these

model to be comparable. D is set to be 32 for all datasets and all methods while

the dimension size for the hidden layers is 64.

36

CHAPTER 3. CO-EMBEDDING ATTRIBUTED NETWORK REPRESENTATION LEARNING

Table 3.5: Node Classification Result (Macro-F1)

CAN ECAN (Non-Mixed Model)
(a) (b) (c1) (c2) (b+c)

Citation 0.817 0.818 0.820 0.828 0.828 0.841
O*NET 0.801 0.813 0.832 0.839 0.841 0.851
IMDB 0.732 0.758 0.767 0.781 0.783 0.789

ECAN (Mixed Model)
(a) (b) (c1) (c2) (b+c)

Citation 0.817 0.821 0.820 0.833 0.837 0.849
O*NET 0.801 0.819 0.832 0.841 0.850 0.867
IMDB 0.732 0.766 0.770 0.785 0.785 0.804

3.5.3 Running Time

We show the time spent to learn the embedding model in Table 3.4. As running

time is proportional to number of entries in the input matrices, it takes most time

to learn the embeddings of IMDB dataset, followed by O*NET and Citation.

Among all baselines, CAN spends the least amount of time because it consists

of only two VAEs while the ECAN variants have three. Furthermore, due to the

additional encoder layer, it may take longer time for mixed model to converge

compared to non-mixed ECANs. We observe that the additional time required

varies from 1% to 31%. We also observe that ECAN(c2) and ECAN(b+c) are

the settings that consume most time for both the non-mixed and mixed models.

This might be due to a dense input matrix Sc2 derived by cosine similarity, while

other S’s are more sparse. For instance, the number of non-zero entries in Sc2

is about twice of that of Sc1 in IMDB dataset (i.e., 72,311 in Sc2 and 33,981 in

Sc1). In general, all ECAN models can converge quickly in few minutes.

3.6 Results

3.6.1 Node Classification

In this task, we train logistic regression models to predict node labels using the

node representation as input. We use OneVsRest classifier for Citation Network

37

CHAPTER 3. CO-EMBEDDING ATTRIBUTED NETWORK REPRESENTATION LEARNING

Table 3.6: Link Prediction Result (AUC)

CAN ECAN (Non-Mixed Model)
(a) (b) (c1) (c2) (b+c)

Citation 0.941 0.941 0.945 0.951 0.955 0.960
O*NET 0.897 0.903 0.911 0.915 0.916 0.923
IMDB 0.903 0.905 0.913 0.917 0.921 0.924

ECAN (Mixed Model)
(a) (b) (c1) (c2) (b+c)

Citation 0.941 0.941 0.947 0.953 0.961 0.964
O*NET 0.897 0.909 0.912 0.919 0.919 0.931
IMDB 0.903 0.905 0.918 0.925 0.930 0.937

Dataset as each node belongs to one class. For O*NET and IMDB datasets, we

train 6 and 10 binary classifiers respectively as each node could have more than

one class label. We report Macro-F1 using 10-fold cross validation following the

previous works [48,140]. As shown in Table 3.5, our ECANmodels outperform

CAN which does not consider external knowledge sources. Among the ECAN

models using different inputs, it is generally the case that (b+c) > (c2) ≥ (c1)

> (b) > (a). The result matches the intuition that (1) more attribute association

information results in better performance; and (2) more clearly defined associa-

tion (i.e., entity relatedness from knowledge graph) outperforms simple methods

(e.g., contextual closeness among words). Finally, mixed models mostly outper-

form non-mixed ones. In particular, ECAN (Non-MixedModel) can achieve 3%

to 7.8% better macro-F1 than CAN, while ECAN (Mixed Model) can achieve

4% to 10% better macro-F1 than CAN. These results highlight the importance of

learning the mixed model that balances the correlation among different inputs.

3.6.2 Link Prediction

Link prediction seeks to predict whether an edge exists between two given nodes.

For each dataset, we train a binary Logistic Regression model that takes the

Hadamard product of the two nodes’ embeddings as input. Following the same

procedure of positive/negative instances sampling as in the previous papers [60,

61, 78], we divide the existing node-node edges (i.e., positive instances) into

38

CHAPTER 3. CO-EMBEDDING ATTRIBUTED NETWORK REPRESENTATION LEARNING

Table 3.7: Node Classification Performance (Macro-F1) of Different Dimension
Sizes

Dataset / #dim 16 32 64 128

Citation 0.794 0.849 0.872 0.873
O*NET 0.8 0.867 0.87 0.871
IMDB 0.752 0.804 0.839 0.851

three subsets: training set (85%), validation set (5%), and testing set (10%).

We then randomly sample same amount of non-existed edges as the negative

instances. As shown in Table 3.6, we report the Area under ROC curve (AUC)

which has been used in most previous works. The result is consistent with that of

node classification. ECAN(c2) is the bestmodel amongECANmodels using one

type of attribute association. ECAN(b+c), again, outperforms all other ECAN

and CANmodels. In particular, ECAN(b+c) mixed model outperforms CAN by

2.4% to 3.8%.

3.6.3 Choice of Dimension Size

The dimension size, D, is an important parameter in VAEs as it could heavily

affect the performance of downstream tasks in some cases. Hence, we conduct

an experiment to examine how sensitive ECAN is toD. Here, we focus only on

node classification tasks with ECAN(b+c).

As shown in Table 3.7, among all three datasets, as D gets larger, the node

classification performance improves. We also observe that the improvement

quantum diminishes as the dimension size increases. However, the diminish-

ing improvement quantum varies with datasets. For instance, the improvement

quantum of Macro-F1 from D = 32 and D = 64 is significant for both Cita-

tion and IMDB, while the Macro-F1 only improves by 0.3% for O*NET. When

D reaches 128, the performance cannot improve further for both Citation and

O*NET datasets, but there is still a 1.2% increase inMacro-F1 for IMDB dataset.

Hence, one has to choose a suitable D setting for each dataset. O*NET dataset

consists of a small number of nodes, thus we could represent all nodes with rela-

39

CHAPTER 3. CO-EMBEDDING ATTRIBUTED NETWORK REPRESENTATION LEARNING

tively small size ofD (i.e.,D = 32) and achieve good performance. As Citation

and IMDB datasets are large, they need larger D values. In particular, IMDB

dataset has the largest sets of nodes, attributes, and node labels. Therefore, even

when the dimension size is large (i.e.,D = 128), the performance is yet to con-

verge. In other words, there is a room for ECAN(b+c) to achieve better node

classification accuracy if D is set to be larger.

3.7 Case Study

3.7.1 Movie Profiling

One important goal of node embedding models is to capture the association

among nodes. Hence, we expect a node’s representation should be close to

those of its attributes. Moreover, similar nodes should also be close to one an-

other in the embedding space. Therefore, we conduct a node profiling task on

IMDB dataset. Consider the movie node “The Godfather” in the IMDB network.

We return the top-5 attributes by cosine similarity between the node represen-

tation and the attribute representations obtained by different models. Ideally,

the top ranked attributes are closely associated with the node and are represen-

tative. As shown in Table 3.8, ECAN mixed models appear to be better than

the other models in returning associated attributes. The attributes returned by

CAN and ECAN(a) are words, and attributes returned for the remaining embed-

dings, ECAN(b), ECAN(c2), and ECAN(b+c) are entities. Generally speaking,

all the models return attributes that are closely related to the movie. However,

the top attributes from CAN are mostly words linked to the movie with high

frequency. We do not observe clear correlation among the attributes except for

they are all related to the movie. For ECAN (a), (b), and (b+c) that consider con-

textual closeness, the attributes are more closely associated with one another.

For example, ECAN(a) returns mike with last name corleone and he comes

from a mafia family that kills people. Although ECAN(c2) does not explicitly

40

CHAPTER 3. CO-EMBEDDING ATTRIBUTED NETWORK REPRESENTATION LEARNING

Table 3.8: Movie Node Profiling: The Godfather (words are underlined and
entities are not)

Model Nearest 5 Attributes

CAN michael; vito; corleone; don; kill

ECAN(a) mike; kill; corleone; mafia; family

ECAN(b) Michael_Corleone; Marlon_Brando;
The_Godfather; Sicilians; Francis_Ford_Coppola

ECAN(c2) Corleone_family; Michael_Corleone;
Francis_Ford_Coppola; The_Godfather; Al_Pacino

ECAN(b+c) The_Godfather; Sicilians; Marfia;
Michael_Corleone; Francis_Ford_Coppola

Table 3.9: Case Example Analysis

Node Classification - Genre Class Label
Example Genre Prediction Result

Movie Class Label CAN ECAN(a) ECAN(b+c)
Coco Animation × ×

√

Kimi no na wa1 Fantasy
√ √

×

Link Prediction
Example Link Prediction

Movie 1 Movie 2 CAN ECAN(a) ECAN(b+c)
Ring Ringu × ×

√

utilize context information as input, with the help from pre-trained knowledge

graph embeddings (i.e.,Wikipedia2vec), the attribute association from knowl-

edge graph is still captured. Finally, by using both ECAN (b) and (c), we could

extract attributes that are closely associated with each other both in context and

in knowledge graph, which is very useful in the downstream tasks such as the

genre classification task.

3.7.2 Error Analysis

In this analysis, we examine the erroneous cases returned by some of the evalu-

ated models. In this work, we focus on IMDB dataset. Two selected case exam-

ples from node classification results and another example from link prediction

41

CHAPTER 3. CO-EMBEDDING ATTRIBUTED NETWORK REPRESENTATION LEARNING

results are shown in Table 3.9. In Table 3.9, each row consists of an example,

its ground truth label, and whether the models give the ground truth as predic-

tion. If the prediction given by the model is consistent (or inconsistent) with the

ground truth, we put down a tick (or cross) in the column corresponding to the

model.

For node classification, the first mis-classified example is an animationmovie

“Coco”2. Coco tells the story of a young boy accidentally visited the land of

dead and met his dead ancestors. Unlike most animation movies using animals

as main characters, Coco has the young boy as its main character. Since the

movie node attributes are derived from the movie synopsis which is similar to

that of non-animation movies, the embedding models that only consider con-

textual word associations from external text corpus, i.e., CAN and ECAN(a),

fail to classify it correctly. On the other hand, when using entities as attributes

and extracting entity associations from knowledge graphs, we observe that Coco

movie is highly related to other animation films due to production company and

movie description inWikipedia. ECAN(b+c) thus learns the node representation

of Coco to be closer to other animation movie nodes. This allows ECAN(b+c)

to predict the correct genre label for Coco.

Our second example shows the limitation of our work. “Kimi no na wa”3 is

a Japanese animation fantasy movie about a boy traveling back to the past and

trying to save a village from exterminated. Both CAN and ECAN(a) are able

to predict correctly using contextual closeness between words. Nevertheless, as

the movie synopsis contains several Japanese names of people and locations, one

could hardly find entities in the movie synopsis. This explains why ECAN(b+c)

could not leverage on entity associations to predict the Fantasy genre label cor-

rectly.

Finally, we present the case example in link prediction results that involves
2https://www.imdb.com/title/tt2380307
3Japanese for “Your name”. https://www.imdb.com/title/tt5311514

42

CHAPTER 3. CO-EMBEDDING ATTRIBUTED NETWORK REPRESENTATION LEARNING

two movies, “Ring” and “Ringu”. “Ring”4 is a horror movie with a story based

on a urban legend in Japan which involves a ghost character called Sadako. The

legend of Sadako is also adopted by another Japanese horror movie “Ringu”5.

Due to this connection, the twomovies should be related, but this related link has

not been identified in IMDB. CAN and ECAN(a) predict the link to be unrelated

because Ringu does not follow the exact same story of Ring. instead, it is about

events happening after Sadako’s appearance. From the synopsis, we can hardly

tell this connection. Such link between the two movies however can be inferred

using a knowledge graph because the attributes (entities) of the twomovies share

many in-links reflecting their association. Hence, ECAN(b+c) managed to cor-

rectly predict Ring and Ringu are related.

3.8 Summary

In this chapter, we address the contextual representation learning research prob-

lem with ECAN. This study poses the following contributions,

• We propose a novel framework and several variants of External Knowledge-

AwareCo-EmbeddingAttributeNetwork (ECAN) embeddingmodels based

on the proposed framework to incorporate external attribute semantics

in the form of entity and word associations. We introduce two ways to

measure the strength of attribute associations, i.e., (i) contextual distance

between words in a text corpus, and (ii) similarity between entities in a

knowledge graph. As these simple attribute semantics can be found in

many attributed networks, ECAN can be easily applied to these networks.

• Our proposed ECANmodels learn both entity and attribute representations

in the same embedding space with a multi-VAE architecture. Specifically,

we introduce a mixed model variant to merge the encoding of attribute

semantics from different knowledge sources.
4https://www.imdb.com/title/tt0498381/
5https://www.imdb.com/title/tt0178868/

43

CHAPTER 3. CO-EMBEDDING ATTRIBUTED NETWORK REPRESENTATION LEARNING

• We conduct extensive experiments on three real-world datasets and show

that ECANmodels, especially themixedmodel variants, significantly out-

perform the state-of-the-art model. We also conduct case studies to illus-

trate the ability of ECAN to leverage on attribute semantics.

This work represents an early effort to incorporate external knowledge into

attributed network embedding. Other combinations of external knowledge sources

and attribute types can be considered in future work. One can explore alterna-

tive word embeddings (e.g., contextual word embeddings) and knowledge graph

embedding models (e.g., TransE, TransH, RotatE, etc.) to extract the associa-

tions among attributes. Semi-supervised co-embeddingmodels that can generate

attributes of a node with some given class labels can also be explored. Addition-

ally, it is worth considering encoding methods that take the graph structure into

consideration, such as GNNs. Finally, ECAN is based on variational autoen-

coders, which offer little interpretability. In other words, one cannot infer the

meaning of the dimensions of the learned latent space. We can also improve the

interpretability of ECAN by incorporating attention.

44

Chapter 4

Contextual Path Retrieval

In this chapter, we focus on a specific knowledge-enhanced context informa-

tion retrieval task, Contextual Path Retrieval (CPR). Contextual path retrieval is

motivated by the emergence of knowledge graphs covering many different top-

ical domains, as well as mentions of entities in documents which can be linked

to knowledge graphs. One can perform retrieval tasks on a knowledge graph in

several ways. For example, exploratory search can leverage knowledge graph to

explore documents containingmentions of knowledge graph entities or relations.

Knowledge graph completion task predicts entities connecting to a given query-

entity via a specific relation. Knowledge-based question answering is another

task that aims to answer factual questions by searching relations in a knowledge

graph connecting some question entity to the answer entities [72,120,126,135].

CPR can be seen as a special type of contextual information retrieval task

that returns relevant parts of the knowledge graph as answers or part of answers

to some “how” or “why” queries given some query context consisting of text

and entities. The derivation of CPR answers involves matching a query with

path structures in knowledge graph. How to effectively learn the contextual rep-

resentation of query incorporating the interaction between knowledge and text

thus become crucial. In this chapter, we propose and compare different context

encoders to learn contextual representation based on a common framework.

45

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

To the best of our knowledge, the CPR task has not yet been studied and it

represents an early attempt to mimic the human wisdom in establishing contex-

tual connections between two entities.

4.1 Research Objectives

Contextual path retrieval (CPR) is defined as the task of finding path(s) be-

tween a pair of query entities in a knowledge graph to explain the connection

between them when they appear together in a given context. In this definition,

the two query entities form the input query and the result path is invariant to

the query entity order. We define the context to be a document covering some

common topic or event. The knowledge graph contains the entities and relations

from which every result path is to be retrieved.

Example: Consider this query: “Why is Roger Moore related to Daniel Craig

in the context of a movie entertainment news article?” Roger Moore and Daniel

Craig are the two input query entities, and the movie entertainment news is the

context. Here, the background knowledge graph is assumed to be movie related

entities and relations extracted from DBpedia. For this pair of query entities, the

correct result is a path with two relations, Roger Moore Portrayer←−−−−− James Bond,

and James Bond Portrayer−−−−−→ Daniel Craig. In the example, there could be several

other paths connecting the input entities (e.g., Roger Moore Nationality−−−−−→ British,

andDaniel Craig Nationality−−−−−→ British) but they are not relevant to the context and

hence not included in the CPR result. In some cases, a query may have no paths

as results. It could be that the knowledge graph does not have a path between

the two query entities. Second, there may be path(s) but none is relevant to

the query context. While the former can be easily handled, the latter requires

relevant paths to be accurately determined.

For CPR to be interesting, the given knowledge graph should be rich in its

coverage of entities and relations. This ensures that relevant paths, if exist, can

46

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

be retrieved. Examples of rich knowledge graphs covering general domains in-

clude DBpedia and WordNet. There are also knowledge graphs covering spe-

cialized domains, e.g., Global Research Identifier Database (GRID) for educa-

tional and research entities1. In domains where knowledge graphs may not exist

or may be incomplete, researchers have looked into automated construction of

knowledge graphs from domain-relevant text [23,77] or pre-trained embedding

models [134].

CPR requires a querywith three components: the context document, the head

entity, and the tail entity. When only a partial query is provided, the CPR prob-

lem is simplified into other information retrieval (IR) problems. For example, if

the context document is omitted, CPR is reduced to non-contextual knowledge

graph retrieval, which returns all the existing knowledge graph paths between

the head and tail entities. Conversely, when only one entity and the context doc-

ument are provided, CPR retrieves all the knowledge graph paths related to the

context that start with the query entity. These paths capture the semantic interac-

tions between the query entity and all the other entities mentioned in the context

document. In the most extreme scenario, where only the context document is

provided, knowledge graph paths alone are insufficient to represent the complex

contextual information embedded in the context. Instead, it may be necessary to

retrieve a contextual graph composed of contextual paths between every pair of

entities found in the context document.

CPR is also related to knowledge graph-based explainable recommendation

which aims to discover user preference through investigating the underlying

knowledge graphs constructed for items and users [3]. For instance, KGAT

learns the importance of paths based on their abilities to predict the target items [115].

Another similar IR task is explainable question answering which extracts answer

to a question by traversing the knowledge graph. CPR differs from the two by

returning paths as results instead of items or entities. CPR is also different due
1https://www.grid.ac/

47

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

to the consideration of query context. This therefore rules out the possibility of

directly applying the solutions of the two tasks.

There are several technical challenges to be addressed in CPR. The first chal-

lenge is (a) the incorporation of query context in the query entity representation.

Query context representation is non-trivial because we want to capture sufficient

and accurate semantics of the query context, which contains limited amount of

textual content and possibly other entity mentions. The second challenge is (b)

the representation of paths in knowledge graph in an inductive manner. The

encoding of path should be inductive as we not only have to encode paths in

training phase, but we also need to handle new paths at query phase. The fi-

nal challenge is (c) matching paths against the query entities even when they

are in heterogeneous forms. Paths are formed by possibly multiple entities and

relations from a knowledge graph while the query context is textual. The com-

parison between the two is non-trivial unless (i) they can be represented in the

same space where some similarity measure in this space can be proposed to rank

them in an unsupervised manner; or (ii) they are represented in different spaces

and a separate model is trained to determine the relevance of path with respect to

query context. While option (i) provides easier comparison between paths and

contexts, it is difficult to jointly embed them in the same vector space. Option

(ii), on the other hand, is more flexible as we can train the path and context rep-

resentations separately. In this study, we choose the later and mimic the way

an intelligent human user would handle the CPR task. We formulate a CPR

framework based on learning embeddings for context representation and path

representation which in turn can be matched for returning the correct contextual

path(s) using a supervised learning approach. For example, in the context of a

movie awards ceremony news article, it is more semantically appropriate to re-

late an actor with a director through a movie production, than an award given

out by the director to the actor at a ceremony. The CPR task has to consider

both the context underlying the query entities and the path’s semantics so as to

48

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

determine the contextual relevance of the latter for result generation.

As the number of annotated paths is expected to be small, we want our mod-

els to be able to acquire the underlying semantics of paths by introducing path

representations based on the knowledge graph representations of entities and re-

lations. We also need to capture the semantics of the given context using a good

representation for matching with path representation.

Finally, this research requires datasets with ground truth paths and their as-

sociated context documents. This dataset construction requires annotators with

good domain knowledge and text comprehension abilities. We therefore have to

design smaller annotation steps and support them with user-friendly annotation

UI.

4.2 Contextual Path Retrieval

In this section, we formally define the CPR task. We will also describe our

proposed ECPR framework in both training and query phases. To ease reading,

we use italic font for entities (e.g., Apple Inc.), and boldface font for relations

(e.g., director). Table 4.1 shows the list of notations used in Sections 4.2-4.3.

4.2.1 Definitions

We formally define a knowledge graph G to be a tuple (E,L,R, F) where E

denotes a set of entities, L ⊆ E × E denotes a set of edges, R denotes a set of

relation labels, and for each l = (eh, et) ∈ L, F (l) → R, or simply eh
r−→ et

where r = F (l). For the purpose of establishing connections between entities,

we assume that a knowledge graph has both a set of relations (e.g., participateIn)

and their corresponding reverse relations (e.g., participateIn−1). For example,

in DBpedia, John Cena and Heath Slater are two person entities connected to

each other via a wrestling match denoted by x, i.e., eJohnCena
participatesIn−−−−−−−−→ ex,

and ex
participatesIn−1

−−−−−−−−→ eHeathSlater.

49

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

Table 4.1: Table of Notations

Symbol Definition

General Notations

G Knowledge graph
E/e Set of entities/Entity
L/l Set of relation edges/Relation edge
R/r Set of relation labels/Relation
F (l) Function to return relation label of a relation edge l
D/d Set of context documents/Document
Q/q Set of query triplets ⟨eh, et, d⟩/Query triplet
P/p Set of knowledge graph paths/Knowledge graph path
eh/et Head entity/Tail entity

P+
m/P−

m Set of positive contextual paths/Set of negative contextual paths for query qm
zcx/zpt Context representation/Path representation

Context-fused Entity Embeddings

ze Entity embedding of e
z′e Retrofitted entity embedding of e

ECW
d,e Set of entities that appear in the context window of e in d

ESD
d,e Set of entities that appear in d

ENC
d,e Set of entities that have relations with e but not present in d
k∗ Hyper-parameters in retrofitting cost function

Path Encoding

w An element in a path
qϕ/pθ VAE path encoder/VAE path decoder

Path Ranking

xm,k Input to the path ranker [zcx,m, zpt,mk]
ym,k Label for xm,k, 1: relevant, 0: irrelevant
Pm set of candidate paths for query qm
Ym Ground truth ranking of candidate paths
sm,k Cosine similarity score between representation of path pk and ground truth path for qm
Sm Cosine similarity score vector of all candidate paths for qm

50

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

Among the paths between two entities in the knowledge graph, only a few

carry useful contextual semantics that can best explain the connection between

the entities. We call these the contextual paths.

Definition 1. Contextual Path p: A path p = ⟨eh, r1, e2, · · · ,rL−1,et⟩ is con-

textual to a pair of entities eh and et and a piece of textual content d, when it is

composed of entities ei’s and relations rk’s of a knowledge graph that describe

the semantic connection between eh and et for the given context d.

In the above definition, we assume that the entities eh and et as well as other

entities/relations in the path are not only mentioned in d, but also found in the

knowledge graph G. This assumption is reasonable given the existence of sev-

eral large text corpora of documents with entity mentions linked to knowledge

graphs, e.g., Wikipedia, Freebase [11],and AIDA CoNLL-YAGO Dataset [43],

etc., and the increasingly more accurate NER and entity link methods capable of

linking entity mentioned in documents to knowledge graphs. We use |p| denote

the length of a path p.

Next, we formulate the Contextual Retrieval Problem (CPR) as follows.

Definition 2. Contextual Path Retrieval Problem (CPR): Given a knowledge

graph G, a query ⟨eh, et, d⟩ consists of a context document d ∈ D and two

entities eh and et mentioned in d, we want to retrieve from G the contextual

paths between eh and et.

For example, in Figure 4.1, Alfonso Cuarón and Children of Men are two

entities in a context document containing several sentences. The CPR problem

is to retrieve the contextual path(s) from knowledge graph that explains the con-

nection between Alfonso Cuarón and Children of Men. In the figure, the path

⟨Alfonso Cuaón, director, Children of Men⟩ is a candidate contextual path.

We divide the CPR task into two subtasks: (a) construction of candidate

paths connecting eh and et, and (b) determination of contextual paths among

the candidates. For subtask (a), we adopt a set of simple yet effective heuristics

51

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

Figure 4.1: Annotation Interface

to constrain the set of candidate paths. In this study, we focus on subtask (b)

which requires a new approach to context and path representations as well as

incorporating them into path ranking. We shall elaborate our solution framework

below.

4.2.2 Proposed ECPR Framework

Our proposed the Embedding-based Contextual Path Retrieval (ECPR) frame-

work, as shown in Figure 4.2, involves a knowledge graph G = (E,L,R, F)

covering entities and relations of some domain. We divide the framework into

two phases: training phase and query phase. During the training phase, ECPR

assumes that the training data includes a set of context documentsD of the same

domain, a set of query entity pairs Q, and their corresponding contextual paths

(positive paths) P+ and other non-contextual paths (negative paths) P−. Q is a

set of queries, i.e.,Q = {qm|1 ≤ m ≤ |Q|}. Each query qm is a triplet ⟨eh, et, d⟩,

eh, et ∈ E and d ∈ D. Both head and tail entities eh and et are mentioned in

the document d. Every query qm is associated with a set of candidate paths con-

necting eh with et which is denoted by Pm. Among the candidate paths in Pm,

one is the contextual path and the remaining ones are the non-contextual paths.

52

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

Figure 4.2: ECPR Framework

The sets of contextual and non-contextual candidate paths are denoted by P+
m

and P−
m respectively.

In the training phase, the context encoder is trained to return a context repre-

sentation formed by concatenating the representations zcx,mh and zcx,mt of entities

eh and et respectively for each query qm = ⟨eh, et, d⟩ ∈ Q. The context encoder

may combine the embeddings of other words and/or entities from the relevant

section of the context document as it generates zcx,mh and zcx,mt .

The second component path encoder returns a path representation for each

path found in G. In particular, it generates for query qm the representation

{zpt,mk } for each candidate path {pmk }. While paths are sequences of entities and

relations, path encoder turns them into vector representation forms that can be

matched against representation of the query context. During the training phase,

both context encoder and path encoder are learned from the queries with input

53

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

entity pairs and their labelled contextual P+
m and non-contextual paths P−

m .

The final component path ranker ranks a set of candidate paths against the

query context during the query time using their representations (i.e., context rep-

resentation and path representation). Path ranker is trained to differentiate the

positive candidate path P+
m from the negative ones P−

m . In this study, we use

binary classifier and learning to rank as our path ranker.

In the query phase, given a query qm′ = ⟨eh′ , et′ , d
′⟩, the trained context en-

coder and path encoder (context encoding and path encoding) obtain the context

representation zcx,m
′

h′ /zcx,m
′

t′ and the representations zpt,m
′

k ’s for candidate paths in

Pm′ . The path ranker will then return the ranking of candidate paths by compar-

ing the context representation with each candidate path representation. In this

work, we propose different options for context encoder, path encoder and path

ranker. We shall elaborate the detail of the three components in the framework

in Sections 4.3, 4.4, and 4.5 respectively.

4.3 Context Encoder

The context representation is the concatenation of the representations of eh and

et, denoted by zcx,mh and zcx,mt respectively. When encoding the context, we

need to consider the context range as the context can be as loose as the whole

context document d, also known as thewhole-context-document option (WD),

or as tight as within some context window covering eh and et in d, also known

as the context-window option (CW). In this section, we describe four different

methods for context encoding, namely (i) TF-IDF, (ii) average embeddings, (iii)

context-fused entity embeddings, and (iv) contextualized embedding. Among

them, the context-fused entity embedding and contextualized embedding incor-

porate context constraints and background knowledge respectively to embed

both local and global context information.

54

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

4.3.1 TF-IDF

TF-IDF determines the relevance of a word or an entity to a context in document

d by combining term frequency and inverse document frequency together. The

TF-IDF context representation of d is thus a TF-IDF vector where each element

is the TF-IDF score of a word in a vocabulary of words and entities. We learn

a TF-IDF vectorizer using our dataset. The vocabulary consists of all words

in entity surfaces plus the top 300 words ranked by IDF found in the context

document set D excluding stop-words. The selection of top 300 words is based

on grid search on settings that yield the best CPR result accuracy in MRR. We

subsequently use zcx,mh and zcx,mt to represent the TF-IDF vectors of eh and et’s

context respectively.

4.3.2 Averaged Embeddings

To address sparsity of words in the context which can be a problem for the TF-

IDF method, we propose to use dense embedding methods which include the

Averaged Embeddings method. Specifically, we encode the context using the

averaged embeddings of tokens in the context. There are three different average

embeddings methods, the entity-only, word-only, and word-entity embeddings.

• Entity-only embeddings: We can use any knowledge graph embeddings

for entity-only embeddings. In this study, we use TransE which has been

widely used in past research. TransE encodes entities and relations in a

common embedding space such that the translation operation of a pair of

entities corresponds to the relation’s embedding [12]. The context repre-

sentation parts zcx,mh and zcx,mt) are defined by the averaged TransE em-

beddings of all entities appeared in the context windows of eh and et re-

spectively. We train a TransE model with our knowledge graph G (see

Appendix A for details about how our knowledge graph is constructed in

our experiments).

55

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

• Word-only embeddings: In this method, the context representation com-

ponents zcx,mh and zcx,mt are the averaged Word2vec embeddings [80] of

all words appeared in eh and et’s context windows respectively.

• Word-Entity embeddings: The context of eh (or et), in this method,

is the averaged Wikipedia2vec embeddings of all words and entities ap-

peared in eh’s (or et’s) context window as denoted by zcx,mh (or zcx,mt).

Wikipedia2vec jointly embeds words and entities in a common vector

space [128]. It models word-to-word, word-to-entity, and entity-to-entity

interaction using skip-gram model.

4.3.3 Context-fused Entity Embeddings

By averaging the embeddings of words and/or entities in the context, the av-

eraged embeddings methods treat everything in the context equally instead of

differentiating the entities or words by their relevance to the context. For in-

stance, consider a query with (Daniel Craig, Casino Royale) as (eh, et) and the

context:

“British actor Daniel Craig has been confirmed... The next Bond

filmCasino Royale is due to film in Italy, the Bahamas, the Czech Republic

and Pinewood Studios”

All the location names in the context are irrelevant to the retrieval of contextual

path Daniel Craig starring←−−−− Casino Royale. These irrelevant information should

be treated as noise that should be excluded from the context representation.

Therefore, we propose the context-fused entity embedding method using

a retrofitting approach and its variant(s) to incorporate background knowl-

edge as constraints into context representations [33]. Retrofitting is originally

designed to refine pre-trained word representations with synonym information

from semantic lexicons, and assign synonymous words to have similar repre-

sentations. Counter-fitting, another form of retrofitting, repels representations of

56

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

antonymwords from each other [81]. At the beginning of retrofitting (or counter-

fitting), synonymousword pairs (e.g., good and nice) and antonymous ones (e.g.,

good and bad) are extracted from a thesaurus and used as constraints. The model

then updates a pre-trained word embedding model to satisfy all these constraints

while preserving the structure of the original embeddings. The retrofitted (or

counter-fitted) word embeddings not only carry all its own original attributes

and semantic alignment, but also the semantics in synonymous and antonym

constraints.

In context-fused entity embeddings, we use retrofitting and counterfitting

to augment the original word and entity embeddings with context constraints.

In other words, given the head (or tail) entity embedding zKG
h (or zKG

t) from a

knowledge graph embedding such as TransE, we retrofit it with constraints made

up of an entity setE∗ extracted from the context. The resultant entity embedding

zcx,mh and zcx,mt will then be concatenated as the context representation. For the

rest of this section, for simplicity, we overload the entity embedding notation of

an entity e by ze and the retrofitted representation of ze by z′e.

Constraints. Constraints tell us how entity embeddings should be updated. In

this section, we introduce all constraints used in the retrofitting cost function:

C(ze, z
′
e) = CNA+ SDA+NCR + V SP +RP

We omit the parameters for the constraint functions in this formula. To obtain a

context-fused entity embedding method that leverages knowledge from its con-

text, we propose two in-context constraints (CNA and SDA), one out-context

constraint (NCR), and two regularization terms (V SP and RP).

Firstly, the in-context constraints capture the co-occurrence(s) of an entity

e′ with a query entity e within some context range. With retrofitting, we adjust

the embeddings of e and e′, i.e., ze and ze′ , to incorporate their context similarity.

Through the retrofitting process, the entity will gradually move its representation

towards the in-context constraints in the vector space to obtain more semantic

57

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

similarity with them. We define two kinds of in-context constraints based on

how close the entities are to e in the context document.

• Close Neighbor Attract (CNA): ze is retrofitted with entity e′ ∈ ECW
d,e .

For a query entity e and context document d, we defined context window

entity set ECW
d,e to be the set of entities that appear in the context window

of e in d. For example, in the following context window of the query

entity Daniel Craig: “British actor Daniel Craig has been confirmed as

the man to follow Pierce Brosnan as the sixth James Bond.” CNA in-

cludes ECW
Daniel Craig = {Pierce Brosnan, James Bond}. Let d(·) be any kind

of distance measurement and τ(x) ≜ max(0, x), CNA thus derives the

new embeddings of e and e′, i.e., z′e and z′e′ respectively by minimizing

the cost function:

CNA(ze, z
′
e) =

∑
e′∈ECW

e

τ(d(z′e, z′e′)− γ)|z′e := ze

where z′e := ze says that z′e is initialized with ze at the beginning; and

γ is the ideal maximum distance between e and e′ ∈ ECW
e . Here we

empirically set γ = 0.

• Same Document Attract (SDA): ze is retrofitted with entity e′ ∈ ESD
d,e .

We defined same document entity set ESD
d,e to be the set of entities that

appear in the context document d of the query entity e and they do not

exist in ECW
d,e . Using the same example in CNA, towards ESD

Daniel Craig =

Ed − ECW
Daniel Craig. Here, Ed is the set of entities included in d. Similar to

CNA, SDA is designed to adjust the embeddings of e and e′ ∈ ESD
d,e by

minimizing the cost function

SDA(ze, z
′
e) =

∑
e′∈ECD

e

τ(d(z′e, z′e′)− γ), γ = 0|z′e := ze

The out-context constraints, on the other hand, are entities that we do not

58

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

want the target entity e to be close to in the vector space. In the case of context

encoding in CPR, such out-context constraints are negative context, that is, en-

tities which do not appear in the context of e. ze will learn to repel itself from

the these entities during the retrofitting(counter-fitting) process.

• Negative Context Repel (NCR): ze is counter-fitted with entity e† ∈

ENC
e , where ENC

e is the set of entities that have relation with e but do not

appear in the context document d containing e. From the previous exam-

ple, entityDaniel Craig’s negative context includesENC
Daniel Craig ={Knives

Out, Logan Lucky, ...}. Intending to push e away from e†s, NCR seeks to

minimize the following cost function,

NCR(ze, z
′
e) =

∑
e†∈ENC

e

τ(δ − d(z′e, z′e†))|z′e := ze

where δ is the ideal minimum distance between e and e† ∈ ENC
e . Here we

empirically set δ = 1.

Finally, the regularization terms make sure the adjusted embeddings after

retrofitting (counterfitting) should not differ too much from their original em-

beddings. For instance, in a TransE entity embedding model, the closer two en-

tities are in the vector space, the more semantic similarity they share with each

other. However, when trying to minimize the cost function from CNA, SDA,

and NCR, such property might be sacrificed. Thus, we introduce the following

two regularization terms:

• Vector Space Preservation (VSP):Given then neighboring vectorsN(e)

within a certain radius ρ around e in the original embedding model, the

difference between distance from ze to zē (ē ∈ N(e)), and that from z′e to

zē should be minimized. This is to maintain the semantic alignment of the

original embedding model. VSP minimizes the cost function

V SP (ze, z
′
e) =

∑
ē∈N(e)

τ(d(ze, zē)− d(z′e, zē))|z′e := ze

59

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

• Relation Preservation (RP): This regularization method randomly sam-

ples m edges (e, r̂, ê) ∈ KG to be L(e), and minimizes the distance be-

tween e + r̂ and ê. This is to maintain the translation property of the

entity embedding model e + r̂ → ê. If underlying entity embeddings

are not based on translation (e.g., DistMult [130], ComplEx [105], or Ro-

tatE [99]), this relation preservation should be modified accordingly. RP

follows the similar idea with VSP, and thus could be written as:

RP (ze, z
′
e) =

∑
(e,r̂,ê)∈L(e)

τ((ze + zr̂ − zê)− (z′e + zr̂ − z′ê))|z′e := ze

Retrofitting with Constraints. With the constraints/regularization discussed

previously, we retrofit all entities e ∈ Ed in a document d. Note that the con-

straints for two different mentions of the same entity in d might be different,

thus they will be retrofitted differently. Likewise, the two mentions of the same

entity in different context document will also be retrofitted differently. In this

work, we propose three different retrofitting methods each with a different con-

straint/regularization combination:

• Retrofit with In-context Constraints Only: We only retrofit ewith CNA

and SDA, plus the two regularization terms, VSP and RP:

Cd = krf1CNA+ krf2SDA+ krf3V SP + krf4RP,

4∑
i

krfi = 1

krf∗ is a hyper-parameter that controls the contribution from CNA, SDA,

VSP, and RP. Intuitively, we want CNA to be weighted more than SDA as

CNA entities are closer to the query entity in the context document, thus

we add a constraint krf1 > krf2 .

• Retrofit withBoth In-context andOut-contextConstraints: We retrofit

60

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

e with CNA, SDA, NCR, plus regularization:

Cd = kcf1NCR + kcf2CNA+ kcf3 SDA+ kcf4 V SP + kcf5RP,
5∑
i

kcfi = 1

Similarly, kcf∗ is a hyper-parameter that controls the contribution from each

term. We add a constraint kcf2 > kcf3 to ensure that CNA’s weight is higher

than that of SDA.

We optimize with SGD and Adam Optimizer until convergence. The best

k∗’s are determined using grid search for the best MRR.

4.3.4 Contextualized Embedding Representation

This method is similar to Averaged Embeddingmethod except for the use of con-

textualized representations for context encoding. Contextualized embeddings

are proven to perform better than traditional embedding models(e.g., word2vec)

in tasks such as document classification [29]. We propose two contextualized

embedding representation schemes:

• Contextualized Word Embeddings. BERT is the state-of-the-art repre-

sentation learningmethod, which utilizes transformer to learn a bi-directional

language model [29]. Each token is embedded with respect to the sur-

rounding tokens in the context. Thus, a word will have different repre-

sentations when it appears in different contexts. The context of eh (or et)

is encoded using BERT to be zcx,mh (or zcx,mt). We use the BERT-small

model 2 with 3 layers, and the dimension size of 512.

• KG Augmented Contextualized Word/Entity Embeddings. Beyond

contextualized word embeddings, we propose another context encoder

option using both contextualized entity and word embeddings. This al-

lows the query context to be more completely represented before match-

ing it against candidate paths. To incorporate the entity information in the
2https://github.com/google-research/bert

61

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

encoding process, we propose to use contextualized word/entity embed-

dings as one of our context encoders. These embeddings jointly embed

entities and words in a common vector space with respect to the context

they are within. The context of eh (or et) is encoded using contextual-

ized word/entity embeddings to be zcx,mh (or zcx,mt). In this study, we use

KG-BERT [134], k-bert [74], and KEPLER [117]. While all three of them

are contextualized word/entity embedding methods, KG-BERT only aug-

ments BERT with KG structural information while k-bert and KEPLER

further learns the entity-word interaction. k-bert learns such interaction

by injecting additional knowledge graph relations to the context. On the

other hand, KEPLER jointly learns knowledge graph structure and lan-

guage model. We train our own KG-BERT, k-bert, and KEPLER model

using our knowledge graph. All the three embeddings are based on the

BERT-small model with 3 layers, and the dimension size of 512.

4.4 Path Encoder

For path encoding, we propose PathVAE to encode paths into their latent rep-

resentations that preserved as much semantics as possible for reconstructing the

path. While many sequential embedding models exist, we choose to utilize a

variational autoencoder structure because (i) VAE is unsupervised, and the learn-

ing of PathVAE can be separately trained; (ii) PathVAE is inductive, so new paths

that are not covered in the training data can still be encoded. Unlike entities, path

is a sequence of entities and relations. It is essential to preserve the ordering of

the entities/relations as we generate the path representation. We first break up a

path pm = ⟨eh, r1, e2, r2, · · · , r|pm|−1, et⟩ into a sequence of elements and feed

each element to a Long Short-Term Memory (LSTM), one at a time [42]. One

could also choose to use other sequential encoding methods such as Bi-LSTM

or transformer to replace the LSTM layer.

62

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

As each element is a single entity or relation, PathVAE encoder qϕ takes

each entity or relation embedding generated by a base embedding model, and

obtains the overall path embedding after processing the entire sequence of path

elements using LSTM. In this work, we utilize TransE as the base embedding

which has been trained to generate embeddings of all entities and relations of the

knowledge graph. With the LSTM returned path embeddings, PathVAE encoder

generates a path representation Zpt
m consisting of µpt

m (mean) and σpt
m (covariance

matrix).

The PathVAEdecoder layer takesZpt
m and reconstructs a path p̂m = w1, · · · , w|p̂m|

using LSTM (where wi denotes the entity or relation of the ith element of the

path) by computing its probability as follows [8].

pθ(p̂m|Zpt
m) =

|p̂m|∏
i=1

pθ(wi | w1 : wi−1, Z
pt
m) (4.1)

The loss function for PathVAE is then,

Lpt ≥ Eqϕ

∑
pm∈P

logθ p(pm | Zpt
m) − DKL

(
qϕ(Z

pt
m |pm) ∥ p(Zpt

m)
)

(4.2)

where Xpm = {w1, · · · , w|pm|}(pm = ⟨w1, · · · , w|pm|⟩), and Zpt
m is the latent

representation of pm deriving from

Zpt
m = µptm + σptm

2 ⊙ ϵ, with ϵ ∼ N (0, I) (4.3)

pm and Zpt
m are the raw form and learned latent representation respectively of

path pm.

With PathVAE, the path encoder can generate path representation for any

paths in the knowledge graph even when they have not been included in model

training. As long as the entities and relations in the path sequence can be found

in the knowledge graph, PathVAE will always return its path representation. We

63

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

will later evaluate the efficacy of PathVAE in our experiments (See Section 4.7).

4.5 Path Ranker

The third component of ECPR is a path ranker that matches the context represen-

tation with candidate paths to determine the contextual path. Binary classifier

or learning to rank method can be used as path ranker as described below.

4.5.1 Binary Classifier

Our first path ranker is effectively a binary classifier that outputs the probability

of a path being a contextual path. We assume that only one path will be the

ground truth for each entity pair in a document. The path ranker is trained on

a set of data triples Q = {(qm, pk, ym,k)} where qm = (eh, et, d), pk and ym,k

denote the query, candidate path, and class label respectively. The class label

ym,k = 1 when pk ∈ P ∗
m, and 0 otherwise. With query context and candidate

path encoded as zcx,mh and zcx,mt respectively, a data triple corresponds to the

concatenation, i.e., xm,k = [zcx,m, zpt,mk] where zcx,m = [zcx,mh , zcx,mt]. For each

data triple (qm, pk, ym,k = 1) ∈ Q, we randomly sample at most five negative

paths from its candidate paths P−
m . We choose not to include all negative paths

to keep a more balanced dataset, and to avoid noises. We learn a classifier fBI

such that ŷ = fBI(x), and simply use binary cross entropy as the loss function,

LBI(ym,k, ŷm,k) =
∑

xm,k∈H

CrossEntropy(ym,k, ŷm,k) (4.4)

where ym,k are the ground truth labels of the candidate paths P+
m ∪ P−

m for

the (eh, et) pair and ŷm,k are the prediction labels of the same candidate paths

returned by the path ranker. We build the binary classifier as an two-layer infer-

ence neural networks in our experiments with 128-dimensional hidden layers.

64

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

4.5.2 Learning to Rank

While binary classifier provides a good method to rank the candidate paths, it

only learns to identify the most plausible contextual path. It ignores the fact that

learning to rank is a prediction task on list of options. Thus, our second path

ranker, is a listwise ranker which aims to recover the ground truth ranking. The

ranker is trained on a set of data triples Q = {(qm, pk, sm,k)} where qm and pk

are the queries and candidate path respectively. The element sm,k refers to the

similarity between the ground truth contextual path and the candidate path pk,

i.e., sm,k = CosineSimilarity(zpt,mk , zpt,mGT) for path pk. We use Pm to denote

the set of candidate paths (including the ground truth contextual path) for query

qm. The candidate paths are then ranked by their predicted scores s′m,k’s. The

path ranker then learns to minimize the difference between its predicted rank by

s′m,k values and ground truth rank by sm,k values. Each query consists of |Pm|

context representation is .

Popular learning to rank methods include LAMBDAMART [16] and list-

NET [18]. In this study, we utilize XENDCGMART [15] as our learning to rank

path ranker. XENDCGMART learns a scoring function such that fLTR : X → R

where X is the set of input data. Specifically, the scoring a candidate path pk

for the query (eh, et) in d can be represented as fLTR(xm,k) = s′m,k where

xm,k = [zcx,m, zpt,mk]. The loss function consists of a score distribution ρ and

a parameterized class of label distribution ϕ:

ρ(s′m,k) =
es

′
m,k∑|Pm|

n=1 e
s′m,n

, ϕ(sm,k; γ) =
2sm,k − γm,k∑|Pm|

n=1 2
sm,n − γm,n

(4.5)

where γ is a bounding parameter and γ ∈ [0, 1]|Pm|. The loss function is then the

cross entropy between the two distribution of all instances in the training set:

LLTR =
∑

xm,k∈H

CrossEntropy(ρ(s′m,k), ϕ(sm,k; γ)) (4.6)

65

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

We use the LightGBM package to implement this LTR ranker [56] 3.

4.5.3 Training of Path Encoder and Ranker

In the training of ECPR framework, we could either jointly optimize path en-

coder and path ranker together, i.e., L = λ2Lpt + λ3Lpr, Lpr ∈ {LBI,LLTR}.

This way, the error of path ranker will affect the alignment of path representa-

tions. It is however more complex to train the model unless a large set of training

data is available. We optimize the context encoder, path encoder, and path ranker

separately. While the training process involves less time, the trained model may

not guarantee good performance. We leave the discussion of joint optimization

to future works.

4.6 Experiments

To determine the effectiveness of different ECPR-based models, we design a

series of experiments to measure how accurate they retrieve the correct contex-

tual paths. Specifically, the models cover the four proposed context encoders

combined with pathVAE-based path encoder and the two path ranker options,

binary classification and learning-to-rank models. In addition, we include two

non ECPR-based models which do not use pathVAE-based path encoding as

baselines, and a shortest path heuristic method as another simple baseline. The

experiments are conducted on two real world datasets (Wiki-film and Wiki-

music) and another two synthetic datasets (Synthetic-S and Synthetic-L) spe-

cially constructed for CPR and other subsequent research with steps outlined in

Appendix A. Table 4.2 shows the statistics of the four datasets. The experiment

results on the real world datasets and synthetic datasets are given in Sections 4.7

and 4.8 respectively. In this work, four evaluation metrics are introduced to de-

termine the performance of each model including two ranking-based metrics and
3https://github.com/microsoft/LightGBM

66

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

Table 4.2: Dataset Statistics

Synthetic Wikinews
S L Wiki-film Wiki-music

Context Documents 2,000 80,000 40 40
Entity Pairs 5,000 200,000 1,396 1,237
Max Path Length (LMAX) 6 6 6 6

Entity in KG 59,173 91,364 59,173 44,886
Relation in KG 651 651 651 513

AVG GT Path Length 4 4 3.87 3.62
Distinct Entities in GT Path 19,173 33,142 563 471
Distinct Relations in GT Path 648 648 139 108

Avg # Candidate Paths per Entity Pair 8.76 7.93 7.69 5.53
AVG Candidate Path Length (including GT) 4.83 4.77 3.92 3.58
Distinct Entities in Candidate Paths (including GT) 53,382 72,163 7,264 5,994
Distinct Relations in Candidate Paths (including GT) 651 651 163 122

two semantic-based metrics.

4.6.1 Model Settings

We compare the ECPR-based models with different component settings. Other

than using PathVAE for path encoding, we experiment with two path ranker con-

figurations, namely, binary classification and learning-to-rank methods. We also

include four context encoder configurations mentioned in Section 4, namely:

• TF-IDF (ECPR-TF-IDF): The context representation is the concatena-

tion of TF-IDF vectors of the context of head and tail entities, i.e., [zcx(TF-IDF)h , z
cx(TF-IDF)
t].

• AVG Embeddings (ECPR-AVG Emb): The context representation is

the concatenation of head and tail entity’s averaged embedding. We in-

clude the following AVG embedding options in the experiments: (a) con-

text entity representations from entity-only embeddings (TransE) with di-

mension size of 64 ([zcx(avgTransE)h , z
cx(avgTransE)
t]), (b) context word repre-

sentations from pre-trained word-only embeddings (Word2vec) with di-

mension size of 300 ([zcx(avgWord2v)
h , z

cx(avgWord2v)
t]), and (c) context word

and entity representations from entity-word embeddings Wikipedia2vec

([zcx(avgWiki2v)
h , z

cx(avgWiki2v)
t]). We use the pre-trained enwiki_20180420_win10

67

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

model with parameter settings window=10, iteration=10, negative=15,

and dimension size=300 4.

• Context-fused Entity Embedding (ECPR-Cxt-fused): The context rep-

resentation options experimented are: (a) No Retrofit: The context repre-

sentation is the concatenation of head and tail entities’ TransE represen-

tations without retrofitting as denoted by [zh, zt], (b) Retrofit(I): The con-

text representation is the concatenation of head and tail entities’ TransE

representations that are retrofitted with in-context constraints only as de-

noted by [z
cx(cf)
h , z

cx(cf)
t], (c) Retrofit(I+O): The context representation is

the concatenation of head and tail entities’ TransE representations that are

retrofitted with in-context and out-context constraint ([zcx(cf)h , z
cx(cf)
t]). For

the hyper-parameters in the cost function for options (b) and (c) (see Sec-

tion 4.3.3), we search the best combination of hyper-parameters by grid

search to optimizeMRR. The hyper-parameters chosen for bothWiki-film

andWiki-music datasets are: krf1 = 0.45, krf2 = 0.1, krf3 = 0.25, krf4 = 0.2,

and kcf1 = 0.2, kcf2 = 0.3, kcf3 = 0.1, kcf4 = 0.2, kcf5 = 0.2. Cosine similar-

ity is used as the distance measurement d(·). When extracting CNA, the

context window size is empirically set to be 15.

• Contextualized Embedding (ECPR-Cxt Emb.): The context represen-

tation is the concatenation of head and tail entity’s context encoded by: (a)

BERT ([zcx(BERT)h , z
cx(BERT)
t]), (b) KG-BERT ([zcx(KG-BERT)h , z

cx(KG-BERT)
t]),

(c) k-bert ([zcx(k-bert)h , z
cx(k-bert)
t]), and (d)KEPLER ([zcx(KEPLER)h , z

cx(KEPLER)
t]).

For all context encoders except for the context-fused entity encoder, we con-

sider both context window (CW) and whole document (WD) context range op-

tions for context encoding. We experimented with different context window size

settings and empirically set it to be 15 as it yields good results. Recall that in

Section 4.3.3 the constraints are constructed using both context window and the
4https://wikipedia2vec.github.io/wikipedia2vec/

68

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

whole document.

To further compare the ECPR-based models with simpler retrieval methods,

we include two simple baselines that do not follow the ECPR framework. Both

of them do not use embedding-based path encoding. We elaborate them as fol-

lows:

• Baseline: TF-IDF. This baseline utilizes keywords in context and candi-

date path as TF-IDF features to retrieve the most relevant candidate path.

We first derive the inverse document frequencies (IDF) of keywords using

Wikipedia articles of entities in the knowledge graph. Then, we compute

the TF-IDF of context documents and paths. A path’s TF-IDF representa-

tion is defined by the weighted average αZe + (1−α)Zr, where Ze is the

average of TF-IDF vectors of the Wikipedia articles of entities on the path

normalized by article lengths, and Zr is the average of TF-IDF vectors of

names of relations appearing in the path. In this work, we arbitrarily set α

to be 0.5. Finally, we rank the candidate contextual paths of an entity pair

in a context article by (a) supervised method: a LTR model trained on

the training set which takes the dot product of TF-IDF vectors of context

document and candidate path as input to return the path with the highest

prediction probability; and (b) unsupervised method: a method to return

the candidate path with the higher cosine similarity between the TF-IDF

vector of path and that of context document.

• Baseline: AVG Embedding. This serves as another baseline that does

not use an embedding-based context encoder. We utilize a non-contextual

embedding model, wikipedia2vec, as the base representation [128]. Sim-

ilar to TF-IDF baseline, we represent the context document by averaging

the wikipedia2vec embeddings of its words and entities. Each candidate

path is a weighted average αZ ′
e+(1−α)Z ′

r, where Z ′
e and Z ′

r are defined

similar to the TF-IDF scheme except the use of wikipedia2vec vectors of

entities and relations in the candidate path. Again, we set α = 0.5. We

69

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

also include both supervised (using LTRmodel) and unsupervised (cosine

similarity) versions of this baseline method.

Finally, we include a random guess baseline which randomly select a can-

didate path as prediction, and a shortest path baseline which always predicts

the shortest path (randomly choose one when there are multiple shortest paths).

The performances of these two baselines serve as lower bound references for

the others. We report the performance of the six types of context encoders com-

bined with path encoder and the two path rankers (i.e., binary classifier and LTR

ranker).

To obtain base entity and relation embeddings using TransE in both path and

context encoders, We fix the embedding dimension size dbg = 64which has also

been used in previous works [12, 72]. We train the model for 500 epochs with

early stopping. Adam optimizer is used with initial learning rate of 10−3. All

deep network structures are constructed using Pytorch 5.

4.6.2 Evaluation Metrics

During the query phase, each ECPR-based model returns for an query entity pair

and context the probability of every candidate path being the contextual path. We

then rank the candidate paths by probability in decreasing order, and report the

Mean Reciprocal Rank (MRR) and hit@k. Both MRR and hit@k give high

(or low) performance score when the ground truth paths are ranked at the top (or

bottom) or near the top (or bottom). Instead of focusing solely on ground truth

path retrieval, we also want to measure performance based on how similar the

top ranked candidate path(s) is similar to the ground truth path. We therefore

introduce two path difference measures, NGEO and PED to compare how the

highest ranked path is similar to the ground truth path. As NGEO and PED are

error based measures, the smaller they are the better the model performs.
5https://pytorch.org/

70

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

Mean Reciprocal Rank (MRR)

MRRmeasures how highly ranked is the ground truth path among the candidate

paths returned by a model. It is widely used in ranking and recommendation

tasks. For each query triplet qm = ⟨eh, et, d⟩, let rank be the ranking of the

ground truth path pgt in the descending ranking list, we define the reciprocal

rank of pgt,m as 1
rank(pgt)

. The MRR of a set of test queries Q is thus defined by:

MRR =
1

|Q|
∑
qm∈Q

1

rank(pgt,m)
.

Hit@k

Hit@kmeasures if amodel ranks the ground truth path among the top k predicted

paths. For a set of test queries Q, we define Hit@k as:

Hit@k =
1

|Q|
∑
qm∈Q

fhit@k(rank(pgt,m))

where fhit@k(x) = 1 if x ≤ k, and 0 otherwise.

Normalized Graph Edit Distance (NGEO)

When the retrieved contextual path does not match the ground truth, the degree

of similarity between ground truth path and the retrieved one can be measured.

High degree of similarity suggests that the two match well and hence contribut-

ing positively to the result accuracy. We therefore introduce other similarity-

based performance metrics. Instead of using these new metrics to optimize

model training, we use them to compare two results which fail to rank ground

truth path at the top. The result with top path most similar to the ground truth

path should be more superior.

Our first similarity-based metric, the Graph Edit Distance (GEO), is origi-

nally designed to measure graph similarity by the number of operations needed

71

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

to transform one graph to another [142]. We adapt it to measure the similarity

between a top-ranked path p and the ground truth path pgt.

LetOP (p, pgt) be the shortest sequence of edit operations for converting the

former to the latter. The GEO is defined by:

GEO(p, pgt) =
∑

opj∈OP (p,pgt)

copj (4.7)

where copj is the cost of an edit operation opj .

There are six types of operations defined : semantic entity insertion, semantic

entity deletion, semantic entity substitution, semantic relation insertion, seman-

tic relation deletion, and semantic relation substitution. The cost of each edit

operation is defined by difference the operation makes to entity type or relation

label distance as determined by the ontology structure underlying the entities

and relation labels. Here, the ontology structure defines the subclass relation-

ships among entity types and relation labels from the knowledge graph. When

an entity type (or relation label) ev (or rv) is a subclass of another entity type (or

relation label) ew (or rw), we denote it by ew ↠ ev (or rw ↠ rv). For example, the

ontology of DBPedia defines the entity type of The Godfather to be dbo : Film.

dbo : Film is a subclass of dbo : Work, and dbo : Work is the highest level of

class in this ontology. To compare across all types of entities, we add a common

root to the ontology, which serves as the common parent class of all highest level

classes. For example, we denote the ontology path po for the entity The God-

father by root ↠ dbo : Work ↠ dbo : Film ↠ The Godfather. Let e (r) and

e′ (r′) be the inserted entity’s type (inserted relation label) and deleted entity’s

type (deleted relation label) respectively, and e0(r0) be the root in the knowl-

edge ontology. For each operation op performed on a path, the semantic cost cop

incurred is defined as follows:

72

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

Semantic Entity Insertion: cei(e) = dist(e, e0)

Semantic Entity Deletion: ced(e′) = dist(e′, e0)

Semantic Entity Substitution: ces(e, e′) = dist(e, e′)

Semantic Relation Insertion: cri(r) = dist(r, r0)

Semantic Relation Deletion: crd(r′) = dist(r′, r0)

Semantic Relation Substitution: crs(r, r′) = dist(r, r′)

(4.8)

where semantic distance is defined as the co-topic distance for e1 and e2 in

the ontology:

dist(e1, e2) =
|(poe1 ∪ poe2)− (poe1 ∩ poe2)|

|poe1 ∪ poe2 |
(4.9)

For instance, the semantic distance between The Godfather (with ontology

path: root ↠ dbo : Work ↠ dbo : Film ↠ The Godfather) and Yungblud

(with ontology path: root↠ dbo : Person↠ dbo : Artist↠ dbo : MusicalArtist

↠ Yungblud) is 7
8
. The GEO of a candidate path is then the summation over costs

of all semantic operation needed to convert the path into the ground truth path.

The above definitions of semantic distance and GEO apply to relations as well.

In this work, we report the normalized GEO:

NGEO(p, pgt) = min(
GEO(p, pgt)

|pgt|
, 1)

where |pgt| is the length of ground truth path. We normalize GEO so it does

not bias against long paths and limits the path distance from ground truth to

1. The path here could be defined as a full path (e1, r1, · · · , rL−1, eL), a en-

tity path where we only focus on entities in a path (e1, .., eL), or a relation path

(r1, · · · , rL−1). In this work, we report the NGEO for entity and relation path

separately as NGEO(Ent) and NGEO(Rel) so we could make better observations

about the dissimilarity between predicted path and ground truth path.

73

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

Path Embedding Distance (PED)

While NGEO measures the differences between two paths, it lacks explicit se-

mantic comparison between entities or relations from the two paths. Thus, we

propose another similarity-based metric: Path Embedding Distance (PED) that

quantify the semantic discrepancies between two paths using embeddings.

The key idea of PED is to measure the distance between the generated path

and ground truth path using their embedding representations. With a PathVAE

that encodes paths into latent representations, the alignment of the path repre-

sentations in the embedding space reflect that paths of similar semantics will

have similar representations. Using our path encoder, we could obtain the rep-

resentation of generated path zptp as well as the ground truth path zptgt. The path

embedding distance could thus be defined by the cosine distance of the two:

PED(p, pgt) = 1− |Rescaled Cosine Similarity(zptp , z
pt
gt)| (4.10)

where Rescaled Cosine Similarity is cosine similarity (originally ranged [-1,1])

rescaled to be in the range of [0,1], i.e.,

Rescaled Cosine Similarity =
Cosine Similarity + 1

2

In this work, we use the same pathVAE in ECPR to learn the path representation

to obtain PED.

We report PED and NGEO between the highest ranked path returned by the

path ranker and ground truth path. Both PED and NGEO return 0 when the

returned path is identical to the ground truth, and value closer to 1 otherwise.

4.7 Experiment Results on Wikinews Datasets

In this section, we present the performance results of ECPR-based models and

other baselines on the two Wikinews datasets, Wiki-film and Wiki-music. Five-

74

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

Figure 4.3: Visualization of PathVAE Embedding Model

fold cross validation is used to report the averageMRR, hit@k, NGEO, and PED

of all the models. As the ECPR framework is complex, we first present a series

of retrieval accuracy results for evaluating the model components and options.

We then present selected case examples to show the differences among context

encoder options, between context window and whole document options in con-

text encoding, and between different contextualized embedding-based context

encoder options. Other than the result analysis in Section 4.7.6, we leave out

results from models using whole document as the context range option in view

of their poorer results than that those model using the context window option.

For easy reading, the best results in the result tables are boldfaced.

4.7.1 Path Embeddings with PathVAE

Before we present other results, we first present results of path encoding with

PathVAE. In Figure 4.3, we show the t-SNE visualization of PathVAE embed-

dings of a random sample of paths including four selected paths. These four

selected paths share the same head entity Francis Coppola:

• (A) Francis Coppola director←−−−− The Godfather,

• (B) Francis Coppola director←−−−− The Godfather Part II,

• (C) Francis Coppola director←−−−− Apocalypse Now, and

• (D) Francis Coppola child−−→ Sofia Coppola.

We want to examine if PathVAE demonstrates the property of placing similar

75

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

paths close to one another and different paths from from one another. This way,

one can determine if clusters form among paths. Furthermore, we want to eval-

uate if PathVAE can effectively handle new paths.

Among the selected paths, paths A, B, and C are similar to one another as

they share the same relation label, director. We observe their mutual closeness

by PathVAE in Figure 4.3. Path D, on the other hand, is far from the rest as it

describe a different relation. Figure 4.3 also depicts paths A, B and C in the same

cluster (colored blue) while D is in another (colored orange) when we cluster the

paths usingK-means. This empirically illustrates that PathVAE can encode paths

effectively.

Next, we check if distance between paths reflects similarity. Among paths

A, B and C, the first two are more similar to each other as they share related tail

entities, i.e., (The Godfather Part II is a sequel to The Godfather). Path C’s tail

entity (Apocalypse Now) is less related to that of A and B. The locations of paths

A, B and C in Figure 4.3 match the above judgements. The distance between

embeddings of paths A and C is larger than that between A and B. This indicates

that our trained pathVAE embedding model captures path similarity well.

In addition to paths A-D, in the figure, we also show path (E) Francis Cop-

pola director←−−−− The Godfather(film series), where The Godfather(film series) is a

randomly sampled neighbor surrounding paths A-D. The visualization displays

the embeddings of path E within the same cluster as paths A to C. Furthermore,

as the entity The Godfather(film series) is related to The Godfather and The God-

father Part II, E is very near paths A and B in the PathVAE embedding space.

Finally, to demonstrate PathVAE’s ability to induce the embeddings of new

paths, we show a path that does not exist in the training path set: (F) Francis

Coppola director←−−−− The Godfather Saga. Since The Godfather Saga is a television

miniseries that combines TheGodfather and TheGodfather Part II into one film,

PathVAE has correctly placed path F near paths A and B as shown in Figure 4.3.

76

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

Table 4.3: Performance Comparison among AVG Embedding Encoders (with
PathVAE and LTR, CW only)

Dataset Model
Context Enc Evaluation Metrics
AVG Emb
Model MRR hit@k NGEO PEDk=1 k=3 k=5 Rel Ent

Wiki-
film

ECPR-
AVG Emb

TransE 0.372 0.1999 0.4897 0.6887 0.17 0.17 0.301
Word2vec 0.375 0.2005 0.4897 0.6891 0.17 0.16 0.299

Wikipedia2vec 0.382 0.2177 0.5069 0.6998 0.16 0.15 0.278

Wiki-
music

ECPR-
AVG Emb

TransE 0.495 0.2054 0.6163 0.9068 0.14 0.14 0.221
Word2vec 0.504 0.2089 0.6207 0.9092 0.14 0.13 0.219

Wikipedia2vec 0.513 0.2108 0.6223 0.9117 0.13 0.12 0.216

4.7.2 AVG Embedding Encoders

We evaluate the CPR results of ECPR-basedmodels using different AVG embed-

ding context encoders while using PathVAE for path encoding and learning-to-

rank for path ranking. For simplicity, we assume context window (CW) to be the

default context range option. As shown in Table 4.3, entity-word embeddings

(i.e., Wikipedia2vec) performs the best among all AVG embedding encoders.

Entity-only (TransE) andWord-only (Word2vec) AVG embedding options share

similar poor performance. The same result is observed for both Wiki-film and

Wiki-music datasets. It shows that by combining both entity and word embed-

dings, Wikipedia2vec can more effectively capture the context semantics than

TransE and Word2vec. When there is no other entity mentioned in the con-

text window, entity-only AVG embedding option will reduce to random guess.

Thismay explain why entity-only AVG embedding performs slightly poorer than

word-ony AVG embedding. As AVG embedding using Wikipedia2vec yields

the best performance, we will leave out TransE and Word2Vec options in the

subsequent experiment results and discussions.

4.7.3 Context-fused Entity Context Encoder

Table 4.4 shows the results of ECPR-based models using context-fused entity

embeddings, models that use constraints for retrofitting, i.e., Retrofit (I+O), out-

performs Retrofit(I) and No Retrofit. The inclusion of both in-context and out-

77

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

Table 4.4: Performance Comparison among Context-fused Entity Context En-
coders (with PathVAE and LTR)

Dataset Model
Context Enc Evaluation Metrics
Context-fused

Entity MRR hit@k NGEO PEDk=1 k=3 k=5 Rel Ent

Wiki-
film

ECPR-
Cxt Emb

No Retrofit 0.363 0.1443 0.3992 0.6515 0.18 0.18 0.324
Retrofit (I) 0.391 0.2204 0.5079 0.6834 0.16 0.15 0.241
Retrofit (I+O) 0.414 0.2587 0.5432 0.7116 0.16 0.15 0.227

Wiki-
music

ECPR-
Cxt Emb

No Retrofit 0.459 0.1832 0.5429 0.9043 0.17 0.16 0.247
Retrofit (I) 0.515 0.2203 0.6354 0.9121 0.13 0.12 0.214
Retrofit (I+O) 0.521 0.2547 0.6679 0.9136 0.13 0.12 0.203

context constraints helps to augment the query entity representationswith knowl-

edge that are relevant to the context. Table 4.4 shows that the No Retrofit option

yields the worst performance. This is reasonable as the input in this setting is

basically [zei , zej], which do not provide any additional information and will re-

sult in performance similar to random guess. The Retrofit(I+O) option yields

the best performance followed by the Retrofit(I) option. Henceforth, we will

use Retrofit(I+O), as the representative context-fused entity encoding option, in

the subsequent experiment results.

4.7.4 Contextualized Embeddings

Finally, we compare ECPR-based models that utilize contextualized embed-

dings. As shown in Table 4.5, ECPR-KEPLER and ECPR-BERT are the best and

worst performing models. ECPR-Cxt Emb(k-bert) is the second best perform-

ing model followed by ECPR-Cxt Emb(KG-BERT). Both KEPLER and k-bert

incorporate descriptive knowledge of entities in addition to relation structure of

knowledge graph during training. KG-BERT in contrast incorporates only rela-

tion structure of knowledge graph. This may explain the observed performance

differences. Henceforth, we shall use KEPLER as the representative contextu-

alized word-entity embeddings in subsequent experiments.

78

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

Table 4.5: Performance Comparison among Contextualized Word-Entity Em-
beddings (with PathVAE and LTR, CW only)

Dataset Model
Context Enc Evaluation Metrics
Context.

Embeddings MRR hit@k NGEO PEDk=1 k=3 k=5 Rel Ent

Wiki-
film

ECPR-BERT BERT 0.483 0.2864 0.6422 0.7828 0.13 0.11 0.189

ECPR-
Cxt Emb

KG-BERT 0.487 0.2954 0.6467 0.7866 0.13 0.12 0.179
k-bert 0.546 0.3682 0.7238 0.8261 0.12 0.1 0.173

KEPLER 0.558 0.3786 0.729 0.8339 0.12 0.09 0.171

Wiki-
music

ECPR-BERT BERT 0.574 0.3389 0.6999 0.9212 0.12 0.1 0.183

ECPR-
Cxt Emb

KG-BERT 0.598 0.3578 0.713 0.9234 0.12 0.1 0.179
k-bert 0.627 0.4002 0.7378 0.9251 0.11 0.09 0.173

KEPLER 0.653 0.4447 0.7561 0.93 0.11 0.09 0.165

Table 4.6: Performance Comparison among Binary Classification Ranker and
LTR (with KEPLER and PathVAE, CW only)

Dataset Model Path Rnk.
Evaluation Metrics

MRR hit@k NGEO PEDk=1 k=3 k=5 Rel Ent
Wiki-
film

ECPR-
Cxt Emb

Binary 0.553 0.3772 0.7187 0.8331 0.14 0.11 0.182
LTR 0.558 0.3786 0.729 0.8339 0.12 0.09 0.171

Wiki-
music

ECPR-
Cxt Emb

Binary 0.648 0.4431 0.7499 0.9291 0.12 0.09 0.171
LTR 0.653 0.4447 0.7561 0.93 0.11 0.09 0.165

4.7.5 Results of Pank Rankers

In addition to different context encoders, we also compare the path rankers: bi-

nary classifier and learning-to-rank (LTR) model. We evaluate the two with

ECPR-Cxt Emb using KEPLER context encoder and PathVAE path encoder.

As shown in Table 4.6, we found that LTR path ranker outperforms binary clas-

sifier ranker. This findings is more significant in the NGEO and PED results.

LTR’s list-wise ranking mechanism is more superior than binary classifier which

only has been optimized to predict the ground truth contextual path. Hence, it is

appropriate to use LTR as default.

4.7.6 Overall Results

In the previous sections, we evaluate the performance of the ECPR-based mod-

els using the same path encoding method, and the different configurations of

79

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

context encoding methods using the context window option. This allows us to

determine the best configuration of each context encoding method using the con-

text window option. We now show the results of the different context encoding

method with the best configuration using the context window and whole docu-

ment options, and compare against the various baseline models. We conduct this

evaluation on the Wiki-film and Wiki-music datasets and the results are shown

in Tables 4.7 and 4.8 respectively.

For MRR and hit@k, the best-performing model is ECPR-Cxt Emb with

KEPLER using context window as context encoder, PathVAE and LTR ranker

as path encoder and path ranker respectively. For both datasets, ECPR-Cxt Emb

outperforms ECPR-Cxt-fused followed by others. ECPR-AVG Emb and ECPR-

TF-IDF share similar performance and outperform the baseline-AVG Emb and

Baseline-IF-IDF by a small margin. The baseline TF-IDF with cosine similarity

path ranking performs so poorly that its MRR is only 0.003 better than random

guess. Generally, the two no-PathVAE baselines(TF-IDF and AVG Emb.) also

perform poorly when learning to rank is used.

In summary, we conclude thatECPR-CxtEmb>ECPR-Cxt-fused> {ECPR-

AVG Emb, ECPR-TF-IDF} where > denotes ”outperforms”. This suggests

that context encoders which embed more information perform better. Although

ECPR-AVG Emb already considers words and entities in the query context, they

do not differentiate the importance of words and entities to the query context.

ECPR-Cxt-fused with Retrofit(I+O), on the other hand, treats entities in and

outside context window differently. It can therefore learn to exclude negative

context from the entity representation by using NCR constraints, and achieve

better performance results. Finally, ECPR-Cxt Emb encodes context in a way

that the more important information weighs more in the context representation.

It distinguishes every token no matter it is an entity or a word, and is able to rep-

resent the context use both background knowledge from the pre-trained model

and contextual information from the context document. Therefore, it is not a

80

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

surprise for ECPR-Cxt Emb to outperform the others. Although the gaps in per-

formance seems small, we conduct significance test on the results and concluded

significant difference (p-value< 0.01) between our best and runner-up models.

We also compare models when using context window and whole document

as context range (except ECPR-Cxt-fused). Tables 4.7 and 4.8 show that those

using context window outperforms those using the whole context document.

This suggests that the whole document content dilutes the focus on query en-

tities. It is therefore better to derive context encoding using words and entities

nearby the query entities.

Next, we examine the differences between the traditional performance met-

rics, MRR and hit@k, with our proposed path similarity-based metrics, NGEO

and PED. We observe that the similarity-based metrics generally capture perfor-

mance differences more clearly. In particular, NGEO reflects how much modi-

fication should be made to a top ranked path for it to be converted to the ground

truth path, and PED indicates the similarity of the two paths in a embedding

space. This result suggests that when a good model (e.g.,ECPR-Cxt-Emb using

KEPLER) does not rank the ground truth path at the top, it would still predict a

path that is similar. We will elaborate this in our case studies in Section 4.7.8.

There might be concerns about whether our models favor shorter paths over

longer paths. While we find our model favor shorter paths, the averaged length

of paths selected by the model for Wiki-film dataset (=3.842) are longer than

that of shortest candidate paths (=2.34). We have the same observation for the

averaged length of paths selected by the AMT human annotators (=3.837).

4.7.7 Model Efficiency

In ECPRmodels, we use pre-trained context encoders and path encoders. In both

training and querying, context and path encoding incur very little time(< 1 ms

per context/path). Thus, we spent most of the time on candidate path extraction

and learning of path ranker.

81

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

Table 4.7: Result on Wiki-film (Best Performance Bolded, Runner-up Perfor-
mance Underlined)

Settings Evaluation Metrics

Model Path Enc. PathRnk. Cxt Enc.
Cxt
Rng MRR hit@k NGEO PEDk=1 k=3 k=5 Rel Ent

Baseline Random Guess 0.354 0.13 0.3901 0.6410 0.19 0.18 0.329
Shortest Path Baseline 0.363 0.1537 0.405 0.641 0.18 0.17 0.324

ECPR-
TF-IDF

PathVAE LTR

TF-IDF CW 0.368 0.1801 0.4548 0.6744 0.17 0.17 0.313
WD 0.366 0.1723 0.4313 0.6529 0.18 0.17 0.321

ECPR-
AVG Emb Wiki2vec CW 0.382 0.2177 0.5069 0.6998 0.16 0.15 0.278

WD 0.371 0.1988 0.4889 0.6862 0.17 0.16 0.306
ECPR-
Cxt-fused

Retrofit
(I+O) -† 0.414 0.2587 0.5432 0.7116 0.16 0.15 0.227

ECPR-
Cxt Emb

k-bert CW 0.546 0.3682 0.7238 0.8261 0.12 0.10 0.173
WD 0.501 0.315 0.6623 0.7892 0.13 0.11 0.176

KEPLER CW 0.558 0.3786 0.729 0.8339 0.12 0.09 0.171
WD 0.507 0.3243 0.6717 0.7953 0.12 0.10 0.180

Other
Baselines

TF-IDF
Cos

TF-IDF

CW 0.360 0.1362 0.392 0.6422 0.18 0.18 0.325
WD 0.357 0.1341 0.3918 0.6403 0.18 0.18 0.329

LTR CW 0.365 0.1541 0.423 0.6469 0.18 0.17 0.316
WD 0.364 0.1539 0.411 0.6411 0.18 0.17 0.319

AVG
Emb.

Cos
Wiki2vec

CW 0.367 0.1663 0.4308 0.6572 0.18 0.17 0.320
WD 0.366 0.1642 0.4256 0.6533 0.18 0.17 0.323

LTR CW 0.368 0.1792 0.4421 0.6791 0.17 0.17 0.315
WD 0.368 0.1784 0.4304 0.6786 0.17 0.17 0.317

Path Enc.: Path encoder, Path Rnk.: Path ranker, Cxt Enc.: Context encoder
Cxt Rng: Context range, CW: Context Window Only,WD:Whole Document
†Retrofit (I+O) does not apply to either CW or WD setting.

82

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

Table 4.8: Result on Wiki-music (Best Performance Bolded, Runner-up Perfor-
mance Underlined)

Settings Evaluation Metrics

Model Path Enc. PathRnk. Cxt Enc.
Cxt
Rng MRR hit@k NGEO PEDk=1 k=3 k=5 Rel Ent

Baseline Random Guess 0.458 0.1808 0.5425 0.9042 0.17 0.16 0.245
Shortest Path Baseline 0.475 0.1978 0.6013 0.9044 0.17 0.16 0.234

ECPR-
TF-IDF

PathVAE LTR

TF-IDF CW 0.488 0.2038 0.6154 0.9067 0.14 0.14 0.225
WD 0.484 0.2022 0.6111 0.9065 0.15 0.14 0.228

ECPR-
AVG Emb Wiki2vec CW 0.513 0.2108 0.6223 0.9117 0.13 0.12 0.216

WD 0.509 0.2053 0.6204 0.9073 0.14 0.13 0.22
ECPR-
Cxt-fused

Retrofit
(I+O) -† 0.521 0.2547 0.6679 0.9136 0.13 0.12 0.203

ECPR-
Cxt Emb

k-bert CW 0.626 0.4002 0.7378 0.9251 0.11 0.09 0.173
WD 0.591 0.3889 0.7123 0.9172 0.11 0.11 0.182

KEPLER CW 0.653 0.4447 0.7561 0.93 0.11 0.09 0.165
WD 0.627 0.4361 0.7522 0.9295 0.11 0.1 0.171

Other
Baselines

TF-IDF
Cos

TF-IDF

CW 0.472 0.1981 0.5939 0.9051 0.17 0.16 0.239
WD 0.471 0.1968 0.5935 0.9044 0.17 0.16 0.241

LTR CW 0.478 0.1993 0.6023 0.9053 0.16 0.16 0.233
WD 0.475 0.1981 0.6012 0.9045 0.17 0.16 0.235

AVG
Emb.

Cos
Wiki2vec

CW 0.477 0.1998 0.6010 0.9054 0.16 0.15 0.231
WD 0.474 0.198 0.6009 0.9051 0.16 0.15 0.232

LTR CW 0.487 0.2029 0.6139 0. 9063 0.15 0.14 0.228
WD 0.483 0.2013 0.6107 0.9052 0.16 0.14 0.231

Path Enc.: Path encoder, Path Rnk.: Path ranker, Cxt Enc.: Context encoder
Cxt Rng: Context range, CW: Context Window Only,WD:Whole Document
†Retrofit (I+O) does not apply to either CW or WD setting.

83

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

Candidate path extraction could cost a lot of time as one has to conduct ran-

dom walk on every possible entity that could on the path from the head entity

to the tail entity. To improve efficiency when extracting candidate paths, for an

head entity eh we keep a dictionary of list of entities it can reach in one to LMAX

steps. Before generating candidate paths between eh and a tail entity et with

random walk, we eliminate every i-hop neighbor of eh if it cannot reach et in

LMAX−i steps. By doing so, we significantly reduce the time spent in candidate

path extraction. In average, it takes 3.42 seconds to extract all candidate paths

given a pair of head and tail entities in the query phase.

To learn a binary classifier path ranker, we spent 412 and 339 seconds for

Wiki-film and Wiki-music dataset. In the query phase, it only take < 1 ms to

provide prediction to a query. Compared to binary classifier path ranker, LTR

path rankers take more time as LTR involves a more complicated optimization

process. Still, it only takes 14.3 and 11.2 minutes to train LTR path rankers for

Wiki-film and Wiki-music datasets, and around 30 ms to give prediction in the

query phase.

4.7.8 Case Example Analysis

Here, we illustrate the model differences using a few case examples. In the

examples, entity mentions are underlined. Mentions of query entities are in bold

and underlined.

Comparison among All Context Encoders.

In the following, we illustrate the differences among different models using their

top ranked candidate paths for the same context document and query entities.

These models use context window option, PathVAE path encoder and learning-

to-rank path ranker.

Case Example 1: Consider the example query entities Emma Stone and Andrew

Garfield in the following context from Wiki-film:

84

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

“The movie, featuring Ryan Gosling and Emma Stone, received nominations

in all major categories. Gosling and Stone received nominations for Best Ac-

tor and Actress respectively... Andrew Garfield, who previously starred in

The Amazing Spider-Man along with Emma Stone, competes with Gosling for

his role in Hacksaw Ridge...”6

Both of ECPR-AVG Emb and ECPR-Cxt-fused with Retrofit(I+O) predict

the path:

Emma Stone starring←−−−− The Amazing Spider-Man starring−−−−→ Andrew Garfield

as the contextual path. This is because both context encoders are somewhat mis-

led by the mention of The Amazing Spider-Man appearing near that of Andrew

Garfield.

The ground truth path, on the other hand, is returned by ECPR-Cxt Emb:

Emma Stone starring←−−−− La La Land WikiPageLink−−−−−−−→ Academy Awards WikiPageLink−−−−−−−→ Andrew Garfield

Since the co-star Ryan Gosling appears in the context window of Emma Stone,

KEPLER is able to tell that this context is about the movie La La Land instead

of The Amazing Spider-Man which is less relevant to the awards nomination

context. ECPR-Cxt-Emb with KEPLER is therefore able to retrieve the correct

contextual path, even when La La Land is not found in the context window of

both head and tail entities.

Case Example 2: When ECPR-Cxt-Emb with KEPLER does not predict the

ground truth path successfully, it still returns paths that are very similar to the

ground truth. Consider the following context document and the query entity pair

(Casino Royale, Charlie and the Chocolate Factory):

“Firefighters have confirmed that the large James Bond sound stage at Pinewood Studios

has been destroyed by fire. It is thought eight fire engines were called to the
6https://en.wikinews.org/wiki/La_La_Land_receives_record-equalling_fourteen_Oscar

_nominations;_Hacksaw_Ridge_gets_six

85

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

scene near Iver Heath in Buckinghamshire on Sunday morning, where film-

ing for Casino Royale, the latest Bond movie...and high-budget movies like

Harry Potter and Charlie and the Chocolate Factory have since been filmed

there...”7

The ground truth path is:

Casino Royale WikiPageLink−−−−−−−→ Pinewood Studios WikiPageLink−−−−−−−→ Charlie and the Chocolate Factory

While ECPR-Cxt Emb does not predict the same, it returns a path that is very

similar to the ground truth:

Casino Royale subject−−−→ Films shot at Pinewood Studios subject←−−− Charlie and the Chocolate Factory

In fact, one might argue that the path returned by ECPR-Cxt Emb is actually

better. It has not been include for human annotation (i.e., to be considered for

ground truth) because it includes an entity not mentioned in the context docu-

ment (i.e., Films shot at Pinewood Studios). Recall that our annotation process

assumes that all contextual paths are derived from an entity network involving

entity mentions in the context document. We leave the discussion of queries

with such ground truth paths in Section 4.8 which involves experiments using a

synthetic dataset. On the other hand, misled by the mention of Buckinghamshire

in the context window, ECPR-AVG Emb ranks the following path the highest.

Casino Royale WikiPageLink−−−−−−−→ Buckinghamshire country−−−−→ United Kingdom country−−−−→

Charlie and the Chocolate Factory

While both ECPR-AVG and ECPR-Cxt-Emb fail to return the ground truth, the

path returned by ECPR-Cxt Emb is more contextual than that returned by ECPR-

AVG Emb as measured by both NGEO and PED.
7https://en.wikinews.org/wiki/James_Bond_set_at_Pinewood_Studios_destroyed_by_fire

86

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

Models using Context Window versus Models using Whole Document.

‘ Our earlier experiment results show that context defined by words/entities

within same context window outperforms those which use the whole context

document. This is not surprising as there might be irrelevant information or

noises in the document. Here, we focus on ECPR-Cxt-Emb with KEPLER us-

ing whole document or context window. While we do not report case studies on

other models, the result is consistent.

Case Example 3: Consider the query Alfred Hitchcock and United Kingdom in

the context:

“At least nine of Alfred Hitchcock’s rare silent films, made at the beginning

of his career, will be staged in 2012 in many public screenings... Hitchcock

was born in Leytonstone, London, United Kingdom on August 13, 1899... and

one of his most successful movies during his Hollywood stay was the 1958 film

Vertigo...” 8

The ground truth path is

Alfred Hitchcock birthPlace−−−−−→ Leytonstone country−−−−→ United Kingdom.

ECPR-Cxt-Emb with KEPLER that only focuses on context window surround

the query entities successfully returns the correct contextual path. As several

mentions of movies directed by Hitchcock are included in the context document,

ECPR-Cxt-Emb with KEPLER using whole document option returns a wrong

path as follows.

Alfred Hitchcock director←−−−− Vertigo country−−−−→ United Kingdom

It ranked the ground truth path at the 4th position.
8https://en.wikinews.org/wiki/Nine_of_Alfred_Hitchcock%27s_films_are_restored;_30_years_since_his_death

87

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

ECPR-BERT versus ECPR-Cxt Emb Models using KEPLER.

Generally, our experiment results show that ECPR-Cxt Emb methods (i.e., KG-

BERT, k-bert, and KEPLER) outperform ECPR-BERT although BERT already

shows promising improvement over other baseline models, especially in context

documents where query entities are not given much description.

Case Example 4: For instance, when retrieving the contextual path between

Barack Obama and Bill Clinton in the following context:

“On Saturday night, formerUnited States presidentsBarack Obama,Bill Clinton,

Jimmy Carter and father and son George H.W. Bush and George W. Bush at-

tended a concert at the Reed Arena in Texas to raise funds for hurricane relief...”9

Since the context windows of the two query entities overlap each other, we

only have one context window to extract information from. ECPR-BERT, re-

turns the path:

Barack Obama subject←−−− Presidents of the United States subject−−−→ Bill Clinton

as many other ex-presidents of the United States are mentioned in the context

window. The ground truth path, is returned by ECPR-Cxt Emb:

Barack Obama WikiPageLink←−−−−−−− One America Appeal WikiPageLink−−−−−−−→ Bill Clinton.

ECPR-Cxt Emb appears to know that when the keywords Texas, hurricane, and

funds appear together with Barack Obama and Bill Clinton in the same context,

the story is about the establishment of One_America_Appeal. ECPR-BERT, on

the other hand, does not have such background knowledge embedded in it. It

therefore fails to retrieve the ground truth contextual path.
9https://en.wikinews.org/wiki/Five_United_States_ex-presidents_raise_relief_funds_at_hurricane_event

88

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

4.8 Analysis on Synthetic Datasets

In this section, we analyze our proposed models from different aspects using

synthetic datasets. As described in Section A.2, we generate synthetic context

documents and their contextual paths from a sampled knowledge graph built on

DBpedia. As the size of synthetic dataset is much larger thanWikinews datasets,

we have sufficient number of queries and their candidate paths to evaluate how

well a model copes with queries of varying levels of difficulty.

Through this analysis on synthetic dataset, we aim to answer the following

research questions:

• How does the model perform on large-scale datasets?

• How does the similarity among candidate paths affect the performance?

When candidate paths are similar, it will naturally be more difficult for a

model to determine the most contextual path among them.

• How does the number of candidate paths affect the performance? Queries

with many candidate paths should be more difficult than those with few

candidate paths.

• How does the length of the contextual path affect the performance? When

the ground truth contextual path involves many entities and relations, it

will be more difficult to encode its semantics and match with the query

context.

For the first research question, we use the Synthetic-L dataset. For the second

research question onwards, we use Synthetic-S dataset and compare the perfor-

mance on synthetic dataset of two selected models: (a) ECPR-Cxt Emb + Path-

VAE + LTR (context window only) and (b) ECPR-AVG Emb + PathVAE + LTR

(context window only). (a) is our best-performing model, and (b) is a simple

model that take the average embeddings of both words and entities in context

encoding.

89

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

Table 4.9: Result on Synthetic-L (Best Performance Bolded, Runner-up Perfor-
mance Underlined)

Settings Evaluation Metrics

Model Path Enc. PathRnk. Cxt Enc.
Cxt
Rng MRR hit@k NGEO PEDk=1 k=3 k=5 Rel Ent

Baseline Random Guess 0.348 0.126 0.378 0.631 0.19 0.2 0.332
Shortest Path Baseline 0.357 0.1472 0.401 0.638 0.18 0.19 0.329

ECPR-
TF-IDF

PathVAE LTR

TF-IDF CW 0.366 0.1743 0.4429 0.6737 0.17 0.17 0.317
WD 0.36 0.1721 0.4176 0.6503 0.18 0.19 0.325

ECPR-
AVG Emb Wiki2vec CW 0.378 0.1882 0.4837 0.6729 0.16 0.16 0.283

WD 0.371 0.1849 0.4518 0.6643 0.18 0.18 0.31
ECPR-
Cxt-fused

Retrofit
(I+O) -† 0.408 0.2639 0.5634 0.7263 0.15 0.16 0.264

ECPR-
Cxt Emb

k-bert CW 0.528 0.3547 0.6947 0.8149 0.12 0.11 0.198
WD 0.483 0.2999 0.6364 0.7436 0.14 0.12 0.203

KEPLER CW 0.532 0.3614 0.7182 0.8305 0.12 0.1 0.187
WD 0.516 0.3114 0.6552 0.7772 0.12 0.11 0.191

CW: Context Window Only,WD:Whole Document
†Retrofit (I+O) does not apply to either CW or WD setting.

4.8.1 Model Performance on Large-scale Dataset (Synthetic-

L)

As Wiki-film and Wiki-music datasets are relatively small-sized, we experi-

mented selected ECPR models with exact same setting as described in Sec-

tion 4.6 on the much larger Synthetic-L dataset. As shown in Table 4.9, the

results observed using Sythetic(L) are similar to those in Tables 4.7 and 4.8. The

best-performingmodel is ECPR-Ext Embwith KEPLER followed by ECPR-Ext

Emb with k-bert. The results also show that all ECPR models outperform the

two baselines. This result suggests that ECPR models can effectively handle

large-scale datasets.

4.8.2 Similarity among Candidate Contextual Paths

Our second research question studies how the models perform when the candi-

date paths are very similar. Consider the three example paths,

(1)Francis Coppola director←−−−− The Godfather starring−−−−→ Al Pacino,

90

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

Table 4.10: Retrieval Performance of Query Sets with Different Similarity Set-
ting among Candidate Paths

Model
A (N=300)

PEDP < 0.3
B (N=300)

PEDP > 0.5
B-A

MRR hit@1 MRR hit@1 MRR hit@1
ECPR-AVG Emb 0.363 0.1563 0.392 0.2245 0.029 0.0682
ECPR-Cxt Emb 0.547 0.3599 0.569 0.3808 0.022 0.0209

(2)Francis Coppola director←−−−− The Godfather Part II starring−−−−→ Al Pacino, and

(3)Francis Coppola director←−−−− The Godfather Part III starring−−−−→ Al Pacino.

These paths are similar as they only differ by their intermediate entities. A query

with such candidate paths is considered difficult, as it requires the semantics of

query context and candidate paths to be accurately represented for the models to

determine the correct contextual path.

To conduct this evaluation, we construct two sets of queries from Synthetic-S

based on the degree of similarity among the candidate paths of these queries. For

each query in the synthetic dataset, we compute the pairwise PED among all its

candidate paths PEDP . Small PEDP suggests high path similarity. We then

derive two query sets: (Query set A) consisting of 300 queries with PEDP <

0.3, and (Query set B) consisting of another 300 queries with PEDP > 0.5.

The average number of candidate paths per query in both query sets A and B is

8. We then evaluate the model trained on Wikinews-film on the two query sets

constructed using the synthetic dataset.

Based on the results in Table 4.10, we first verify that query set A is more

difficult than query set B. Furthermore, not only does ECPR-Cxt Emb with KE-

PLER outperforms ECPR-AVG Emb with Wikipedia2vec on both query sets,

the performance gap between two query sets for ECPR-Cxt Emb is also smaller

than that for ECPR-AVG Emb. This suggests that ECPR-Cxt Emb could handle

query set A with accuracy similar to query set B.

91

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

Table 4.11: Retrieval Performance of Query Sets with Different Number of Can-
didate Contextual Paths (Numbers in brackets are improvement over Random
Guess)

Model
A (N=50)

AVG #Candidate=12.3
B (N=50)

AVG #Candidate=3.4
MRR hit@1 MRR hit@1

Random Guess 0.261 0.085 0.599 0.341

ECPR-AVG Emb 0.339
(+0.078)

0.102
(+0.017)

0.624
(+0.025)

0.397
(+0.056)

ECPR-Cxt Emb 0.356
(+0.095)

0.141
(+0.056)

0.703
(+0.104)

0.429
(+0.088)

4.8.3 Number of Candidate Paths

Queries with more candidate paths are likely to be more challenging than those

with few candidate paths. Among the queries of Synthetic-L, we construct two

subsets of 50 queries each: (Query set A) has on average 12.3 candidate paths

per query, and (Query set B) has an average of 3.4 candidate paths per query.

We use the model trained on Wikinews-film and evaluate on the two query sets

on the synthetic dataset. We report MRR and hit@1 in Table 4.11. Additionally,

we report the performance of a random baseline where a randomly selected can-

didate path is returned. We show the change in performance between the models

and this random guess baseline in brackets.

The performance of query set A is much lower than that of query set B

for both ECPR-Cxt-fused and ECPR-Cxt-Emb, confirming our hypothesis that

queries withmore candidate paths aremore difficult. Moreover, while bothmod-

els significantly outperform the random baseline, ECPR-Cxt Emb consistently

achieves better improvement as opposed to ECPR-AVGEmb. The improvement

inMRR is almost similar for both query sets A and B, suggesting that ECPR-Cxt

Emb’s performance in both difficult and simple tasks are very much alike.

92

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

Table 4.12: Retrieval Performance of Query Sets with Different Length of Con-
textual Path

Model
A (N=300)

Length of GT Path≥ 5
B (N=300)

Length of GT Path≤ 3
A’ (N=93)
Subset of A

MRR hit@1 MRR hit@1 MRR hit@1
ECPR-AVG Emb 0.376 0.2033 0.383 0.218 0.369 0.1963
ECPR-Cxt Emb 0.543 0.3596 0.561 0.3791 0.539 0.3484

4.8.4 Length of Contextual Path

Finally, we answer our third research question by examining how ECPR-Cxt-

fused and ECPR-Cxt-Emb perform on queries with longer contextual paths.

Contextual pathwithmore hopsmeans thatmore entities and relations are needed

in describing the relation between head and tail entities. When the contextual

path is long, we may not find the mentions of every entity in the contextual path

within the context document. There may be cases where some entities in the

contextual path are not even found in the context document. Thus, such queries

are considered difficult tasks.

Here we construct two query sets from Synthetic-S each with 300 queries:

(Query set A) involving ground truth paths with length≥ 5 , and (Query set B)

involving ground truth paths with length≤ 3. In addition, we extract a subset of

A (Query set A’) in which not every path entity exists in the context document.

Queries in A’ are considered the most difficult tasks. When constructing the

query set, we control the average number of candidate paths per query to be 8

to avoid performance being affected by number of candidate paths. The average

length of candidate paths for query sets A and B are 3.63 and 3.67 respectively.

The path length difference is considered small. We show the performance in

Table 4.12. Firstly, query set A is clearly more difficult compared to B to both

ECPR-Cxt Emb and ECPR-AVG Emb. The models perform less accurately for

query set A. Furthermore, the change in performance between A’ and A is much

smaller for ECPR-Cxt Emb compared to that for ECPR-AVG Emb. This obser-

vation suggests that ECPR-Cxt Emb copes with these difficult queries better.

93

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

4.9 CPR And Other IR Tasks

In this section, we discuss how CPR could benefit other IR tasks. We have elab-

orated the similarities and disparities between CPR and IR tasks such as recom-

mendation and question answering in Section 2. While our proposed models

cannot be directly utilized to address these IR tasks due to the disparities, they

can support others by providing additional information.

Explainable recommendation systems often use purchase history to infer user

preferences to determine items to be recommended. For example, one may rec-

ommend items from a company that sold many items to the user beforehand.

The systems may also find other users with similar purchase histories so as to

use these users’ item for recommendation.

Textual context, or information context, is often overlooked during the rec-

ommendation. The information context could come from a product’s descrip-

tion, or an article the user just read. After linking mentions in the information

context to entities in knowledge graph, one can apply CPR to return the contex-

tual paths linking the entities. When there are product items linked to these entity

mentions, the system could use the contextual paths to find other product items

as candidates for the recommendation. For example, suppose a user reads an ar-

ticle about a book he has purchased. The article is about a movie story adapted

from the book, and there exists another book adapted by the same director. Such

an indirect relation between the two books is hard for current recommendation

systems to learn. However, through figuring out the contextual path,

Book A adapt−−−→ Movie A director−−−−→ Director director−1

−−−−−→ Movie B adapt−1

−−−−→ Book B

CPR can help to explain the actual reason the second book should be recom-

mended to the user. In summary, CPR helps to find the context-dependent con-

nection between two entities. Any IR systems that have textual data as input can

benefit from this additional information provided by CPR.

94

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

4.10 Summary

Contextual path retrieval (CPR) is a novel and important information retrieval

task when knowledge graphs are available for explaining the connections be-

tween entities found in some common context. In this study, we propose an

ECPR framework to solve the task with modularized functional components and

several proposed models for these components. We show that our ECPR model

with KEPLER contextualized embedding outperforms baseline models through

a series of experiments on two real datasets. Case study analysis has been con-

ducted to compare the characteristics of different model settings. Furthermore,

we analyze how selected models perform with different types of queries using

synthetic datasets. Our contribution in this chapter can be summarized as fol-

lows.

• We formally define the Contextual Path Retrieval Problem (CPR) and pro-

pose a novel ECPR framework to determine contextul paths between two

entities in a knowledge graph. The framework is generic and consists of

three components, context encoder, path encoder and path ranker.

• In ECPR, we propose various context encoders which effectively lever-

age on all semantics in context and to incorporate background knowledge

using pre-trained model.

• We propose PathVAE which utilize LSTM-VAE as our path encoder to

generate a representation inductively for any given path in knowledge

graph in a self-supervised manner.

• Our experiments on two real datasets show that ECPR-based model with

contextualized entity/word embedding as context encoder, pathVAE as

path encoder, and learning-to-rank path ranker outperforms other base-

lines on both MRR and hit@k, as well as two similarity-based metrics

95

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

NGEO and PED. Moreover, we conduct case studies to reveal the salient

characteristics of ECPR.

• We conduct analysis on two synthetic datasets to compare how selected

models perform on datasets of large-scale data, and how they perform on

queries of different degrees of complexity.

Moving forward, we believe that there are still ample room for future CPR

research. First, the accuracy of CPR task can be improved further through using

much larger training data and larger knowledge graphs. Second, we can further

extend the ECPR framework, say applying more advanced path encoding and

path rankingmethods. Third, we believemore work can be conducted to develop

highly efficient models for CPR tasks as the LSTM component of ECPR does

not scale very well for very large knowledge graphs and many candidate paths.

One major limitation of CPR is that it requires the inclusion of entity pairs

and context in a query, assuming that the user issuing the query has a certain

level of understanding or specific expectations from the knowledge graph. The

requirement for users to understand the knowledge graph can be alleviated by

implementing a user interface that visually represents the knowledge graph and

the retrieved contextual path. For example, the interface can display a sampled

knowledge graph containing 1 to n-hop neighbors of the query entities, along

with the relations between them. All candidate contextual paths should be high-

lighted in this sampled knowledge graph. Furthermore, the interface should in-

clude explanations of the meaning of knowledge graph relations. This approach

ensures that all necessary information to comprehend the contextual paths is pro-

vided, eliminating the need for users to possess any prior knowledge about the

entities or relations.

Other future directions include extensions of CPR task. In particular, CPR

task with multiple ground truth paths per query should be further studied. This

will allowCPR to be used inmore real world applications. As relations in knowl-

edge graphs may not be complete, the future research of CPR should focus on

96

CHAPTER 4. CONTEXTUAL PATH RETRIEVAL

generation of contextual paths instead of retrieval. At present, CPR task assumes

each query consists of two entities. One can extend CPR to consider more enti-

ties and to retrieve contextual graphs connecting these entities instead of paths.

Finally, there aremany downstream applications and IR tasks that require knowl-

edge extraction and reasoning could benefit from CPR. For example, to allow

fact checking to classify a claim as fact or hoax, one could extend CPR to verify

the connections of entities mentioned in the claim. CPR can also be used in a

question answering scenario where explanation text or answer can be generated

from a contextual path.

97

Chapter 5

Contextual Path Generation: A

Monotonic Approach

Nowadays, knowledge-based applications, such as question answering and in-

formation searches, increasingly depend on complex reasoning over knowledge

graphs for result generation and explanation. Finding a knowledge path that ex-

plains the semantic connection between two entities mentioned in a given piece

of text is thus an important task.

5.1 Research Objective

5.1.1 Problem Formulation

Example: Consider the example in Figure 5.1. We have an input text d con-

taining a set of sentences {S1, S2, · · · } and it covers news about Daniel Craig

replacing Pierce Brosnan in the James Bond movie series. Suppose we want

to know the semantic connection between Martin Campbell and Daniel Craig

mentioned in d and both Campbell and Craig already exist as entities in a given

film-related knowledge graph G. The semantic connection that is required is

a path of entities and relations: Campbell direct−−−→ Casino Royale has actor−−−−−→ Craig

that says Campbell is the director of the movie Casino Royale which stars Craig.

98

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

This path is known as the contextual path as it accurately captures the connection

between the two persons in the news context. Another path Campbell director−−−−→

GoldenEye country−−−−→ UK birth place−−−−−−→ Craig is not the contextual path for the same

news as this path is irrelevant to the news content. In this example, we call

Campbell and Craig the head entity and tail entity and denote them by eH , eT

respectively. The news document is called the context document.

We call the above knowledge graph path inference taskContextual PathGen-

eration (CPG). In the following, we give a formal definition of CPG.

Problem Definition (Contextual Path Generation): Formally, the input of

a contextual path generation (CPG) task is a query q consisting of head and

tail entities denoted by eH and eT respectively and a context document d, i.e.,

q = ⟨eH , eT , d⟩. A background knowledge graph G that covers a large set of

entities and relations connecting them is also given. CPG returns a contextual

path between eH and eT , pq = ⟨eH , r1, e2, r2, ..., eT ⟩. pq is composed of entities

ei and relation labels rk of a knowledge graph G relevant to d which mentions

both eH and eT . All entities and relation labels on the path pq are expected to

exist in the knowledge graph G.

A knowledge graphG is made up of a set of entitiesE. Entities are connected

with each other through a set of relations L. Each relation l = (ei, rk, ej) (l ∈ L)

connects two entities ei and ej by a relation label rk ∈ R where R denotes the

set of relation labels in G. A chain of relations makes up a path p = l1, l2, ...l|p|,

where |p| represents the number of relations exists in p. In CPG, we use the

expression e1
r1−→ e2 to represent a single-relation path, or a one-hop path. A

n-hop path is thus represented by e1
r1−→ ej

rk−→ e2...
rn−→ en.

For the purpose of establishing connections between entities, we assume that

every relation label r and its inverse r−1 exist in R. Specifically, for every re-

lation (ei, rk, ej) in L, its inverse (ej, r−1
k , ei) also exists in L. Given a pair of

head and tail entities, there may be no path, one path, or multiple paths connect-

ing them in G. The contextual path could be one of these paths, or a path that

99

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

Figure 5.1: Contextual Path Generation Example (See footnote1for more content
in d)

does not exist in G as it involves relation(s) inferred from G and the context

document d. This makes CPG different from other problems that adopt a closed

world assumption [91] about the knowledge graph relations, i.e., non-existent

relations are invalid by default.

A solution to this CPG task problem will substantially benefit knowledge-

based content analysis and search. Contextual paths not only provide the back-

ground knowledge to understand d, but also offer a new knowledge layer to

search d and other documents (e.g., to find documents that cover directors di-

recting movies which feature Daniel Craig).

5.1.2 Challenges

In this chapter, we aim to propose a model that is capable of generating the

correct contextual path given a pair of head and tail entities, a context document,

and a background knowledge graph. There are mainly three technical challenges

in CPG tasks, namely: (a) sparse and noisy content in the context document

which could mislead the choice of entities and relations forming the contextual
1British actor Daniel Craig has been confirmed as the man to follow Pierce Brosnan as the

sixth James Bond. Producer Barbara Broccoli and director Martin Campbell called Craig ‘a
superb actor who has all the qualities needed to bring a contemporary edge to the role’... The
next Bond film Casino Royale is due to film in Italy, the Bahamas, the Czech Republic and
Pinewood Studios. The film is due for release in 2006.

100

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

path, (b) missing relations in the knowledge graph that are required to form part

of the contextual path, and (c) well-formedness of the generated contextual path.

The first challenge is caused by context documents containing potentially

sparse and noisy information due to its short length and some parts of the content

being irrelevant to the input query. Without a good semantic representation of the

context, the solution model will be misled into returning the incorrect contextual

paths.

Secondly, the knowledge graph may not provide all the relations required

to form the contextual path for a given query. That is, some relations may be

missing from the knowledge graph. This can happen in many practical scenarios

where the knowledge graph is incomplete. Hence, CPG has to infer missing

relation edges when generating the contextual paths. These generated relations

not only have to be semantically “reasonable”, but also relevant to the input

query.

Thirdly, when generating a contextual path, we need to ensure its well-formedness

which includes ensuring the path to be loopless and to successfully connect eH

with eT . Loops are redundant information in the resultant path. A contextual

path pq is loopless if every entity e ∈ pq appears only once. The generation of

pq is finished if it starts and ends with eH and eT respectively. To the best of our

knowledge, both criteria have not yet been considered in the sequence generation

research if we consider paths as a special type of sequence [?, 34, 116].

To develop models for the CPG task, we need to consider the above three

challenges. Moreover, we also seek to create datasets with ground truth con-

textual paths as well as performance metrics for measuring different aspects of

accuracy (e.g., semantic relevance and well-formedness of the resultant contex-

tual paths) in the model results.

101

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

Table 5.1: Table of Notations

Symbol Definition

G = (E,R, L) Knowledge graph
E = {e1, · · · , e|E|} Set of entities
R = {r1, · · · , r|R|} Set of relation labels
L = {l1, · · · , l|L|} Set of relations
q = ⟨eH , eT , d⟩ Query triplet

d Context document
eH Head entity
eT Tail entity
pq Contextual path of query q

Sd = {s1, · · · , s|Sd|} Sentences of the context document d
si Embedding of a sentence si

ze, zr Entity and relation representations
Hd Base and BERT-encoded context document
HB BERT-encoded context document for mixed-encoder

HeH/HeT Representations of eH and eT
St Transformer decoder output at step t

5.2 Proposed Architecture and Models

In this section, we describe our proposed transformer-based model architecture

and its modules for deriving different CPG solution models. The important no-

tation used throughout this chapter is listed in Table 5.1.

5.2.1 Overview of Model Architecture

Our proposed CPG architecture is based on the transformer encoder-decoder

model [107]. It sees the generation of contextual paths as a decoding step with

the input condition encoding the context document and the pair of head and tail

entities. To the best of our knowledge, this is the first work to attempt conditional

knowledge graph path generation using a transformer approach. We design our

CPGmodel architecture that consists of a context encoder, and a controlled path

generator as shown in Figure 5.2. By instantiating this architecture with differ-

ent module options, we can create different solution models for CPG tasks (see

Section 5.2.6).

102

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

Figure 5.2: Proposed CPG Architecture

Given a query q = ⟨eH , eT , d⟩, the context encoder converts the context doc-

ument d into a context representationHd with a knowledge graph providing the

background knowledge. The controlled path generator uses Hd, HeH and HeT

as input to generate a contextual path pq starting from eH in multiple steps. To

ensure the quality of the generated contextual paths, we propose two novel scal-

ing methods, namely penalization and reward scaling. These scaling methods

guide the generation process to avoid resampling entities already included in the

path, but to enhance the likelihood of generated path reaching the tail entity eT .

Algorithm 1 shows the procedural view of our proposed CPG architecture. In

the following, we use an example to walk through Algorithm 1. A more detailed

description of the context encoder and controlled path generator will be given in

Sections 5.2.2 and 5.2.3 respectively.

Example of Contextual Path Generation. We illustrate how we generate the

contextual path Campbell direct−−→ Casino Royale has actor−−−−→ Craig with the example

query in Figure 5.1. Firstly, we encode d with the context encoder and obtained

Hd. At the beginning, the contextual path pq is empty, and the initial state S0

given to the transformer decoder consists of the initial entity e0 = [start] and

103

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

initial relation r0 = [start]. [start] is a special token to mark the start of the

path. We also pass Hd, eH = Campbell, and eT = Craig to the tranformer de-

coder module. In the first step (t = 1), the transformer decoder takes S0, Hd,

and the two entities as input and outputs the hidden state S1. With S1, the re-

lation sampling module is to sample the next relation r1 = [start]. With both

r1 and S̃1, the entity sampling module is to sample the entity e1 = Campbell.

We append (r1, e1) to the contextual path pq. Following the sample procedure,

we sample r2 = direct and e2 = Casino Royale at t = 2. At t = 3, we

sample r3 = has actor and e3 = Craig. The path generation process termi-

nates as it reaches the tail entity eT = Craig. Finally, the model outputs pq =

{[start], [start], [start],Campbell, direct,Casino Royale, has actor,Craig}.

5.2.2 Context Encoder

Wedenote a context document d by a sequence of sentencesSd = {s1, s2, ...s|Sd|}.

We first encode each sentence si into an embedding si. Other than textual con-

tent, d may contain mentions of entities including the head and tail entities. To

derive the context vector representation Hd that leverages on pre-trained back-

ground knowledge, we propose three transformer-based encoder models to sum-

marize Sd = {s1, · · · , s|Sd|}, namely: Base-encoder, BERT-encoder and Mixed-

encoder as shown in Figure 5.1.

Base-encoder. For Base-encoder, we use entity and/or word embeddings of

the input knowledge graphG to first obtain each sentence’s embedding. Suppose

a sentence si contains a set of entitiesEi and wordsWi. The sentence embedding

si is defined as the average word and/or entity embeddings learned using knowl-

edge graph embeddingmethods, such as TransE [12], andWikipedia2vec [128].

Other embedding schemes could also have been used but these will be left to be

investigated in our future work. We average all sentence embeddings to obtain

the context embedding Hd, i.e., Hd = 1
|Sd|

∑
si∈Sd si. This encoding process

maps the original sentences which may include sparse vocabulary to a dense

104

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

Algorithm 1: Contextual Path Generation
input : Query q = ⟨eH , eT , d⟩, Knowledge Graph G
output: Contextual path pq

// Context Encoder
Hd ← Enc(d) // Applicable to all context encoder options
HB ← BERT (d) // Only applicable to mixed-encoder option

// Controlled Path Generation
t = 1; et = e0; rt = r0; p

q = {} // Initialize t, et, rt, and pq
S0 ← e0 // Initialize S0

while t ≤ LMAX and et <> eT do
// Transformer Decoder (Base/BERT Encoder)
St ← Dec(S<t, Hd, HeH , HeT)
// Transformer Decoder (Mixed encoder)
St ← Dec(S<t, Hd, HeH , HeT , HB)

// Non-linear transformation layer FFNR(·)
SR
t ← FFNR(St)

// Obtain relation sampling distribution using softmax
PR
t ← Softmax(SR

t)
// Sample rt
rt ← Sample(PR

t)

// Non-linear transformation layer FFNE(·)
SE
t ← FFNE(St, rt)

// Obtain entity sampling distribution using softmax
PE
t ← Softmax(SE

t)

P′E
t ← PRScale(PE

t , G) // Penalization and Reward Scaling
et ← Sample(P′E

t) // Sample et
pq ← pq + (rt, et) // Append rt and et to pq
t++

end
return pq

embedding.

BERT-encoder. For BERT-encoder, we use the contextualized word embed-

ding of a pre-trained BERT to derive a context document embedding Hd. We

first concatenate all sentences of Sd and insert a [CLS] token before the concate-

nated sentences. The output representation vector corresponding to the [CLS]

token captures the meaning of the entire document d. We denote this represen-

105

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

Figure 5.3: Illustration of CPG-mixed Encoder and Decoder

tation vector by Hd = BERT (d). BERT itself is already a transformer. Other

more advanced encoders such as k-BERT, and RoBERTa [29, 74, 146] can also

be used but we will leave investigation of them to future work.

Mixed-encoder. For Mixed-encoder, we combine the BERT-encoded con-

text document embeddings, denoted byHB = BERT (d), with the base-encoded

sentence embeddings Hd (for TransE or Wiki2vec). This is achieved using

attention-based fusion models as shown in the context encoder component of

Figure 5.3.

Let Hℓ
d denote the document representation at the ℓ-th layer of the mixed

encoder for all ℓ ∈ [L], where L is the number of layers in the mixed encoder.

We denote the 0-th layer embedding of d by H0
d = Hd, and the i-th sentence

embedding inHℓ
d as hℓ

i for i ∈ [|Sd|]. The output representation in the ℓ-th layer

of i-th sentence is:

h̃ℓ
i =

1

2

(
attnS(h

ℓ−1
i , Hℓ−1

d , Hℓ−1
d) + attnB(h

ℓ−1
i , HB, HB)

)

106

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

where attnS and attnB are two separate attention models. hℓ−1
i is the repre-

sentation of sentence i from the previous layer. Each h̃ℓ
i is then processed by a

non-linear transformation layer FFN(·), which is defined as follows,

FFN(x) = W2(max(W1x+ b1, 0)) + b2

where x is the input, W∗ and b∗ are trainable parameters, and max(·) is an

element-wise operation. We then obtain the output of the ℓ-th layer by:

Hℓ
d = (FFN(h̃ℓ

1), ..., FFN(h̃ℓ
Id))

The mixed encoder outputs the context embedding HL
d at the last layer. In this

way, HL
d captures both information from the self-attention block, and semantic

information from the BERT embeddings.

5.2.3 Controlled Path Generation

If we treat context document, head and tail entities as conditions and the con-

textual path as a sequence, CPG can be regarded as some kind of conditional se-

quential generation. Most works on conditional sequential generation focus on

generating text sequences conditioned on a single-valued signal, such as tense,

sentiment polarity or formality [27, 46, 94, 133]. For example, BERT-infused

translation uses a pre-trained encoder to first obtain the abstract representation

of a condition to be used as the input of the text generation model [144]. KG-

BART generates a commonsense sentence given a set of concepts from the com-

monsense knowledge graph input [75]. There are also works that generate sen-

tences conditioned on a context document following a given syntax of an exem-

plar [63,84]. Nevertheless, none of the existing works on conditional sequential

generation address the generation of knowledge graph paths which connect a

head entity with a tail entity with a sequence of relations with relevant labels.

Depending on the choice of context encoding option, the controlled path

107

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

Figure 5.4: Illustration of Relation and Entity Sampling Process

generation process is slightly different. In the following, we describe the decod-

ing step of the controlled path generation process for Base-Encoder and BERT-

Encoder, followed by that for Mixed Encoder. Finally, we cover the common

relation and entity sampling step using softmax.

Decoding with Base-encoded and BERT-encoded context. With the context

representationHd (in the case of Base-encoder and BERT-encoder), the contex-

tual path generation module iteratively generates the relation edges to form a

contextual path starting from eH . As shown in Figure 5.2, the module consists

of a transformer decoder that takes Hd, HeH , and HeT as input for all its layers.

H(·) is an encoding function for entities. At step t, the transformer decoder also

takes the relation and entity sampled from the previous generation step denoted

by S<t. Suppose rt and et denote the relation and entity respectively generated

at step t. For generation step t = 1, the sampled relation and entity from the

previous step r0 and e0 are assigned zero start vectors as input to the transformer

decoder. That is, S<1 = S0 is a zero vector.

For each generation step t (t ≥ 1), the transformer decoder generates an

output vector SL
t after L layers of decoding. For generation step t, we use Sℓ

<t =

108

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

(Sℓ
1, ..., S

ℓ
t−1) to denote the hidden state of the ℓ-th layer in the decoder up to step

t. Sℓ
1 indicates the start of a sequence, and Sℓ

t is the embedding of the element

to be generated at step t− 1. At each ℓ-th layer, we have the output of the self-

attention model attnS:

Ŝℓ
t = attnS(S

ℓ−1
t , Sℓ−1

<t+1, Sℓ−1
<t+1)

Sℓ−1
t is the encoder output from previous layer at step t.

Ŝℓ
t = attnS(S

ℓ−1
t , Sℓ−1

<t , Sℓ−1
<t)

We then obtain the output of the encoder-decoder attention model attnE:

S̃ℓ
t = attnE(Ŝ

ℓ
t , H

L
d , H

L
d)

We then obtain Sℓ
t by passing S̃ℓ

t through a non-linear transformation layer:

Sℓ
t = FFN(S̃ℓ

t)

The final output of the transformer decoder at step t is SL
t .

Decoding withMixed-encoded context. For the controlled path generator cou-

pled with mixed-encoder, we specially design the transformer decoder to incor-

porate a BERT-Decoder attention block on HB and another Encoder-Decoder

attention block on Hd, HeH , and HeT which form the context representation

output of transformer encoder HL
d . These attention blocks control how each

path element to be generated interacts with the context representations from the

BERT-encoder and mixed-encoder in every transformer layer.

S̃ℓ
t =

1

2

(
attnB(Ŝ

ℓ
t , HB, HB) + attnE(Ŝ

ℓ
t , H

′, H ′)
)

109

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

where

H ′ = (HL
d , HeH , HeT)

We then obtain Sℓ
t by passing S̃ℓ

t through a non-linear transformation layer:

Sℓ
t = FFN(S̃ℓ

t)

The final output of the transformer decoder at step t is SL
t .

Relation and Entity Sampler. SL
t is fed to the relation and entity sampler to

sample a relation-entity pair linking the previously generated entity et−1 with et

via a relation label rt. For relation sampling, we pass SL
t through a feed forward

network FFNR to obtain SR
t . We then feed SR

t to a linear mapping function

and softmax layer to obtain the probability distribution over candidate relations

PR
t , and finally sample rt from PR

t . Subsequently, we pass SL
t together with SR

t

through a feed forward network FFNE to obtain SE
t . SE

t goes through a similar

process to generate PE
t . We then apply penalization and reward scaling on PE

t .

Finally, we sample et from PE
t .

To reduce the candidate pool and to ensure the generated path is well-formed,

we force the model to generate only relations (or entities) that have at least one

link to some entity of the type identical to the previous entity (or relation). For

instance, when et−1 is an entity of type Person, we force the model to not predict

relations such as foundingDate or headquarters, as these relations have not been

linked to any of the Person type entities in the knowledge graph.

Let R∗ and E∗ be the candidate relation set and entity set, respectively. The

generation of path ends when the module samples the tail entity eT from E∗,

or when the path reaches the maximum length LMAX , a user specified param-

eter. Finally, we obtain the contextual path pq = ⟨eH , r1, e1, ..., rl, el⟩ where

l ≤ LMAX is the length (or number of relations) of pq. Note that el should

ideally be eT .

110

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

Figure 5.5: Reward Scaling

The generation of an entity/relation tuple at generation step t is as follows:

(1) a relation softmax takes concat(eH , eT , ho
t , rt−1, et−1) as input, and generates

probabilities of all candidate relations {pr′ |r′ ∈ R∗} where SL
t is the output of

the Transformer decoder; (2) a relation rt is then sampled fromR∗; (3) rt is then

fed to an entity softmax together with eH , eT , and ho
t to obtain the probability

distribution of candidate entities {pe′ |e′ ∈ E∗}; (4) entity et is sampled from E∗

based on the distribution, and repeat the above for step t + 1 until eT or LMAX

is reached.

In the above path generation, two issues need to be addressed, namely (1)

loopy paths and (2) unfinished paths. A loopy path is one that traverses the same

entity more than once. An unfinished path is one that fails to reach the desired

tail entity eT . We therefore propose penalization scaling and reward scaling to

address them in Sections 5.2.4 and 5.2.5 respectively.

Following the transformer structure, we use the loss function: L =
∑|pq |

t=1 CE(rt, r∗t)+

CE(et, e∗t) where CE denotes the cross-entropy loss, r∗t and e∗t are the ground

truth relation and entity respectively at step t.

5.2.4 Penalization Scaling

The penalization scaling scheme addresses the loopy path issue. Consider the

example path: A r1−→ B r3−→ C r2−→ A r1−→ B r3−→ C r4−→ D which contains a loop, A r1−→

B r3−→ C r2−→ A. Loops are redundant sub-paths that not only harm the accuracy

of the contextual path but may also result in unfinished paths when we limit the

maximum length of path to be generated, i.e., LMAX .

The idea of penalization scaling is simply to avoid re-visiting any previously

111

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

generated entity. For example, when predicting the next relation/entity of A r1−→

B r3−→ C, we should force the model not to sample A again. To achieve this, after

entity softmax is applied and before the sampling of next entity, we multiply

the prediction probability of previously sampled entities A, B, and C by a hyper-

parameter 0 ≤ β < 1. That is, at step t, pe′ = β ·pe′ if e′ ∈ {eH , eT , e1, · · · et−1}.

To determine how penalization scaling will reduce loops in the generated

path, we formulate Theorem 5.2.1 which determines the probability of generat-

ing a unique path of length t without revisiting any entity.

Theorem 5.2.1. Suppose m is the number of entities in E, and the probability

of sampling every entity is initially the same. The probability of generating a

unique path sequence of length t without revisiting any entity is:

p =
t∏

i=1

(
1− (i− 1)β

m− (i− 1)(1− β)

)
(5.1)

Proof. We first prove that Equation 5.1 holds when t = 1 as p = 1.

Suppose Equation 5.1 holds for t = k. That is,

p =
k∏

i=1

(
1− (i− 1)β

m− (i− 1)(1− β)

)
For t = k + 1, the probability to add another distinct entity fromm− k distinct

entities is
m− k

m− k + kβ

The probability of k + 1 distinct entities in the sequence is thus:

p =

[
k∏

i=1

(
1− (i− 1)β

m− (i− 1)(1− β)

)]
· m− k

m− k + kβ

=

[
k∏

i=1

(
1− (i− 1)β

m− (i− 1)(1− β)

)]
·
(
1− kβ

m− k(1− β)

)

=
k+1∏
i=1

(
1− (i− 1)β

m− (i− 1)(1− β)

)
(5.2)

112

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

By induction, we prove that Theorem 5.2.1 holds.

Based on Theorem 5.2.1, we can derive two special cases:

• For special case β = 0 (i.e., revisiting any previously sampled entity is

not possible), the probability of generating a unique sequence of t entities

is

p = 1

• For special case β = 1 (i.e., any previously sampled entity can be visited

as if they were just like any other not yet sampled entity), the probability

of generating a unique sequence of t entities is

p =
t∏

i=1

(1− i− 1

m
)

When m is large compared with t, the denominator m − (i − 1)(1 − β)

becomes very closed to m. As a result, p becomes smaller as we increase β.

Nevertheless, the following corollary provides a lower bound to p.

Corollary 5.2.1.1. Suppose β < 0.5, andm≫ K ·(1−β) for very large integer

K. The probability of generating a unique sequence of t entities p will then be

larger than
(K−2t

K

)t−1.

113

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

Proof.

p =
t∏

i=1

(
1− (i− 1)β

m− (i− 1)(1− β)

)
Since β < 0.5, we have (1− β) > β.

p >

t∏
i=1

(
1− (i− 1)(1− β)

m− (i− 1)(1− β)

)
Withm≫ K · (1− β)

p≫
t∏

i=1

(
1− (i− 1)(1− β)

K · (1− β)− (i− 1)(1− β)

)

=
t∏

i=1

(
1− (i− 1)

K− (i− 1)

)

=
t−1∏
i=0

K− 2i

K− i

>

(
K− 2t

K

)t−1

(5.3)

Equation 5.3 shows the lower bound of p. As K≫ t, p remains to be quite

close to 1. For example, when t = LMAX = 6 and K = 500, p > 0.88. That

is, with more than 88% chance, we will obtain a sequence of distinct entities of

length 6.

5.2.5 Reward Scaling

An unfinished path is one that does not end with the tail entity eT or with the

length ofLMAX . Two reasons could contribute to unfinished paths: (1) there is a

loop(s) in the path, or (2) the intermediate entity (or entities) steers the path away

from eT . Since the loop problem has been addressed by penalization scaling, we

propose a reward scaling scheme to avoid case (2).

Reward scaling scheme prefers the entity softmax to favor entities that are

on the paths leading to the tail entity eT as well as relevant to the given context.

For instance, in Figure 5.5, when predicting the next relation/entity after A r1−→

B with eT = D, C would be a better choice than E and F because it is on a path

between B and D.

114

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

Our proposed reward scaling therefore introduces amultiplicative factorαi ≥

1 to the prediction probability of each entity ei in entity softmax. We first esti-

mate how likely each entity will reach eH by a personalized random walk over

a weighted graph G′ = (E ′, R′) derived from G. E ′ are the entities within the

distance of nrw hops from the tail entity eT , and R′ ⊆ L are the relations among

entities of E ′. Here we set nrw = 6 according to the maximum length of con-

textual path to be generated. We assign each relation r ∈ R′ a weight based on

its semantic similarity to the context document d by measuring the cosine dis-

tance between BERT-encoded embedding of r’s relation label and that of d. We

turn this cosine distance into a transition probability of r. Next, we conduct K

iterations of a random walk starting from eT with restarting probability prw on

G′. Let ni be the number of times an entity ei ∈ E ′ is visited, the reward factor

of ei is defined as αi = 1 + ni∑
e′∈E′ ne′

. We empirically setK = 20.

Assume the probability distribution of sampling entities is uniform, and the

number of entities in E ′ to be sampled is m′. Theorem 5.2.2 shows the proba-

bility of a path with t steps ending with eT .

Theorem 5.2.2. With reward scaling, the probability of a path with t hops ending

with the tail entity eT is:

(
nrw + 1

nrw
× 1

m′

)(
1− nrw + 1

nrw
× 1

m′

)t−1

(5.4)

Proof. The proof assumes that entity softmax and relation softmax return equal

uniform probabilities for entities and relation label respectively in every iteration

of softmax computation. It also assumes no penalization scaling is performed.

Before applying reward scaling, the probability of sampling eT at any step

is 1
m′ . The probability of eT sampled at step t is:

1

m′

(
1− 1

m′

)t−1

(5.5)

With reward scaling, the probability of sampling eT is changed to 1
αeT

. Hence,

115

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

the probability of eT sampled at step t is:

αeT

m′

(
1− αeT

m′

)t−1

(5.6)

where αeT is derived from the number of random walk visits of eT . As there are

K random walks,

αeT = 1 +
Num of random walk visits of eT

Num of random walk visits of all entities in E ′ (5.7)

= 1 +
K

nrwK
(5.8)

=
nrw + 1

nrw
(5.9)

This is because eT will be sampled for at least K times as it is the starting

entity of randomwalks. Finally, the probability of sampling eT at tth step is thus:

(
nrw + 1

nrw
× 1

m′

)(
1− nrw + 1

nrw
× 1

m′

)t−1

(5.10)

Note that reward scaling does not affect the inference of missing relations as

we do not rule out missing relations during path generation asR′ is derived from

the random walk and relations that are more likely to exist (i.e., more related to

d) are assigned higher weight. For instance, although the link between ei and ej

is unobserved in the knowledge graph, the model learns to infer this link because

ej can be visited by the randomwalk and thus is promoted by the reward scaling.

We assign αi = 1 for entities not in E ′.

Theorem 5.2.3. The probability of generating any path not ending with eT re-

duces with reward scaling.

Proof. Suppose a path not ending with eT requires t hops to generate. Without

116

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

reward scaling, its probability is:

(
1− 1

m′

)t

(5.11)

With reward scaling, its probability is:

(
1− αeT

m′

)t

(5.12)

As (1 − 1
m′) > (1 − αeT

m′), Equation 5.11 is larger than Equation 5.12 for

any t. This implies that it is less likely to sample paths not ending with eT after

applying reward scaling.

5.2.6 CPG Models

With different context encoder options coupled with the above controlled path

generation module, we derive the following variations of the CPG models:

CPG-Base. These models use Base-encoder as the context encoder. Specif-

ically, we develop two CPG-Base models: (a) CPG-Base(TransE) and (b) CPG-

Base(Wiki2vec). We describe the implementation of these two models in Sec-

tion 5.3.3.

CPG-BERT. This is the only CPG model using BERT-encoder. Other than

that, CPG-BERT and the various CPG-Base models share the same transformer

decoder, relation softmax, and entity softmax module designs.

CPG-Mixed. This group of CPG models uses a base-encoder and the trans-

former decoder of a controlled path generator with an added BERT-Decoder at-

tention as shown in Figure 5.3. We call such models CPG-Mixed and there

are two CPG-Mixed variants depending on the choice of base-encoded sentence

embedding. CPG-Mixed(TransE) and CPG-Mixed(Wiki2vec) adopt TransE and

Wiki2vec as their base-encoded sentence embeddings, respectively.

117

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

Model Complexity. Here, we compare the number of trainable parameters of

the CPG models. Let Ds denote the embedding dimension, and DFFN denote

the inner-layer dimensionality of the FFN layer. L is the number of layers of

encoder/decoder in the model. For simplicity, we exclude bias in the following

analysis.

We start by analyzing the number of parameters in each component included

in a transformer structure:

• Multi-head Self Attention: Nsa = 4× (Ds × Ds)

• Layer Normalization: Nnorm = Ds

• Feed-Forward Layer: Nff = Ds × DFFN

CPG-Base uses the original encoder-decoder transformer structure. The num-

ber of trainable parameters in the encoder is thus L× (1× Nsa + 2× Nnorm +

2×Nff). The number of trainable parameters in the decoder is L× (2×Nsa +

3× Nnorm + 2× Nff).

CPG-BERT utilizes a pre-trained BERTmodel as the encoder and only trains

the decoder. The number of parameters of its decoder is identical to that of CPG-

Base.

CPG-Mixed is the most computationally expensive model as it introduces an

additional BERT-Enc attention component in each layer. As a result, the encoder

contains L× (2×Nsa + 2×Nnorm + 2×Nff) trainable parameters, while the

decoder has L× (3× Nsa + 3× Nnorm + 2× Nff) parameters.

All of the models share the same entity/relation sampling process, as shown

in Figure 5.2. When sampling the entity/relation, we use a feed-forward network

with a linear layer which projects the output of the feed-forward network to the

dimension of vocabulary. The number of trainable parameters for entity and

relation sampling is thus Nsamp = 2× (Ds ×DFFN) +Ds × |R∗|+Ds × |E∗|.

Overall, the different CPG models do not differ much in number of model

parameters. CPG-Mixed has more parameters for the self-attention modules.

118

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

5.3 Experiments on Real Datasets

5.3.1 Wikinews Dataset

We have constructed Wiki-film and Wiki-music datasets following the annota-

tion approach in Appendix A. Each dataset consists of 40 Wikinews articles as

context documents. We then identify 563 and 471 entities mentioned in these

two sets of context documents respectively and which can be found in a knowl-

edge graph extracted from DBpedia2. In the DBpedia knowledge base, each

entity in the knowledge graph corresponds to an article in Wikipedia. Every

attribute within the infobox of the article is extracted as a DBpedia relation link-

ing to another entity corresponding to another Wikipedia article. The attribute

label in the infobox is used as the relation label. To derive the set of (eH , eT)

entity pairs, we identify 1396 and 1237 entity pairs from the context documents

of the Wiki-film and Wiki-music datasets such that both entities of each pair can

be found in a context document with paths connecting them. Since each entity

pair is associated with a context document, the number of queries (d, eH , eT) for

the datasets are 1396 and 1237, respectively. Each query is associated with a

ground truth contextual path. The detailed statistics of the datasets are shown in

Table 4.2.

We crowd-source the ground truth contextual path for each (eH , eT) entity

pair using AMT workers annotating the path using a custom-developed web-

based annotation interface and the annotation approach described inAppendixA.

To make the annotation reasonable to most annotators, we limit the contextual

paths to have a maximum length of six.
2https://wiki.dbpedia.org

119

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

5.3.2 Evaluation Metrics

In our experiment, we divide the entity pairs into five folds. One-fold is used for

testing, and the remaining four folds are used for model training. We measure

the model performance using two types of metrics.

The first set of metrics measures the quality of generated paths not using

ground truth contextual paths. Instead, they measure the proportion of generated

paths that are unfinished (%Uf), and proportion of generated paths with loops

(%Lp).

The second set of metrics measures accuracy with respect to the ground truth

paths. The percentage of ground truth paths (%Gt) measures the proportion of

generated paths matching the ground truth ones. The second metric normalized

graph edit distanceNGEDmeasures the structural similarity between generated

path and ground truth path. This metric prefers the generated path most struc-

turally similar to the ground truth contextual path as they can be different due to

length and ordering of elements.

Normalized Graph Edit Distance (NGED). The Graph Edit Distance (GED) is

a metric originally designed to measure the similarity of two graphs by counting

the number of operations needed to transform one graph to another [142]. We

adapt it to measure the similarity between a generated path pi and the ground

truth path pgti . In this work, we define the normalized GED between pi and pgti

as:

NGED(pi, p
gt
i) = min(

GED(pi, p
gt
i)

|pgti |
, 1) (5.13)

where |pgti | is the length of ground truth path. A path p here refers to a sequence

of both entities and relations, i.e., p = ⟨e1, r1, ..., rL−1, eL⟩. GED(pi, p
gt
i) is

defined by:

GED(pi, p
gt
i) =

∑
opj∈OP (pi,p

gt
i)

copj (5.14)

where OP (pi, p
gt
i) is the sequence of edit operations for converting the for-

120

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

mer to the latter. The symbol copj denotes the semantic cost of operation opj

which is of one of the following six operation types, namely: semantic entity

insertion (vi), semantic entity deletion (vd), semantic entity substitution (vs),

semantic relation insertion (ri), semantic relation deletion (rd), and semantic

relation substitution (rs).

We then define the semantic cost of each operation type as follows:

Semantic Entity Insertion: cvi = dist(t, t0)

Semantic Entity Deletion: cvd(t′) = dist(t′, t0)

Semantic Entity Substitution: cvs(t, t′) = dist(t, t′)

Semantic Relation Insertion: cri(r) = dist(r, r0)

Semantic Relation Deletion: crd(r′) = dist(r′, r0)

Semantic Relation Substitution: crs(r, r′) = dist(r, r′)

(5.15)

Where t, t′ and t0 refer to the inserted entity type, deleted entity type, and the

root entity type in the ontology, respectively. r, r′ and r0 refer to the inserted

relation label, deleted relation label, and the root relation label in the ontology,

respectively. Given two entity types (or relation labels) t1 and t2, we define

dist(t1, t2) to be the distance between t1 and t2 in the ontology structure of the

knowledge graph.

dist(t1, t2) = 1− |S(t1) ∩ S(t2)|
|S(t1) ∪ S(t2)|

(5.16)

where S(ti) is the set of supertypes of ti in the ontology. For example, let

Actor and MovieDirector be two entity types in the ontology structure and the

relevant supertype relationships in the ontology are {Agent→ Person, Person→

Artist, Artist→ Actor, Person→ MovieDirector} where→ denotes the super-

type relationship. The distance between Actor and MovieDirector (which share

two entity types) is thus 1− 2
5
= 3

5
.

From the above definition, we also derive normalized GED for the entity

121

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

paths of generated path pi and ground truth path pgti asNGEDEnt(Ent(pi), Ent(pgti)),

and normalizedGED for the relation paths of pi and pgti asNGEDRel(Rel(pi), Rel(pgti)).

The entity path involves only the entities of a path Ent(p) =(e1, .., eL), and the

relation path involves only the relations of a path Rel(p) =(r1, ..., rL−1).

Path Embedding Distance. While NGED measures the differences between

two contextual paths referring to a knowledge graph structure, it lacks an ex-

plicit semantic comparison between two different entities or relations. Thus, we

propose the Path Embedding Distance (PED) metric to measure the semantic

discrepancies between two paths using embeddings.

The key idea of PED is to learn the embedding representation of each path

and measure the embedding distance between the generated path and ground

truth path. We train an LSTM-VAE to encode paths into their embedding repre-

sentations independent of their path lengths. The path representations generated

by LSTM-VAE are aligned semantically such that paths of similar semantics

will have similar representations. Using our pre-trained LSTM-VAE, we could

obtain the representation of generated path Zi as well as the ground truth path

Zgt
i . The path embedding distance could thus be defined by the cosine distance

of the two:

PED(pi, p
gt
i) = 1− |Cosine Similarity(Zi, Z

gt
i)| (5.17)

Learning of LSTM-VAE. To encode a path pk = ⟨eh, r1, e2, r2, · · · , rL−1, eT ⟩,

we first break up pk into a sequence of (entity, relation) tuples and feed each tu-

ple to a Long Short-Term Memory (LSTM), one at each step. That is, pk will be

divided into (eh, r1), (e2, r2), ..., (eL−1, rL−1), and et tuples which are then fed to

LSTM. In each step, the LSTM layer encodes a tuple of the path, and generates

the representation to be passed on to the next step. The representation generated

at the final step after feeding et to the LSTM is the overall path representation

Zpt
k .

122

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

Let pk be an input path and its path elements be represented by Xpk =

{w1, ..., wL} where wt is the path element of step t. The decoder of LSTM-VAE

works as a standard language model [8] as follows:

pθ(pk|Zpt
k) =

L∏
l=1

pθ(wl | w1 : wl−1, Z
pt
k) (5.18)

The loss function for LSTM-VAELpt is defined to consist of a reconstruction

loss and a regularizer term as shown below:

Lpt ≥ Eqϕ

∑
pk∈P

logpθ(Xpk | Z
pt
k)− DKL

(
qϕ(Zpt|X) ∥ p(Zpt)

)
(5.19)

where θ and ϕ are the parameters of the decoder and encoder, respectively. Zpt
k

is the latent representation of pk deriving from

Zpt
k = µptk + σptk

2 ⊙ ϵ, with ϵ ∼ N (0, I) (5.20)

5.3.3 Models for Comparison

We include all the three categories of CPG models in our experiments, namely:

(1) CPG-Base, (2) CPG-BERT, and (3) CPG-Mixed. The dimensionality of

sentence embedding used in these models is Ds = 256. Each transformer en-

coder/decoder consists of L = 6 layers. For the attention models attn∗, the

dimensionality of key and value are both 32. For all non-linear transformation

layers FFN∗(·) we set the input and output dimension to be 256, and the inner-

layer dimension to be 2048. We set the penalization factor β = 0.5 as this

yields the best performance during tuning. We empirically set K = 20, prw =

0.4, drw = 10 for the random walk in the reward scaling scheme.

• CPG-Base. As baselines, we haveCPG-Base(TransE) andCPG-Base(Wiki2vec)

represented as Trans(E) and Wiki2vec(EW) respectively.

– TransE is a knowledge graph embedding method that learns the em-

123

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

beddings of entities in G by modeling relations as translation oper-

ations. A sentence’s embedding is derived by averaging the embed-

dings of entities in the sentence. That is, si = Avge∈Ei
embTransE(e)

where Ei denotes the entities in sentence si, and embTransE(e) de-

notes the TransE embedding of entity e.

– Wikipedia2vec (or Wiki2vec) is specially designed for the knowl-

edge graph constructed fromWikipedia data. It jointlymodels words

and entities of a knowledge graph G in the same embedding space.

The sentence embedding is the averaged embedding of both entities

andwords presented in the sentence. That is, si = Avge∈Ei∪Wi
embWiki2vec(e)

whereWi denotes the set of words in sentence si, and embWiki2vec(e)

denotes the Wiki2vec embedding of entity e.

We train the TransE model using the input knowledge graph (DBpedia).

We use the publicly available pre-trained Wiki2vec [128]. The parenthe-

sized suffix ‘(E)’ (or ‘(EW)’) indicate if the information used covers entity

embedding only (or both word and entity embeddings).

• CPG-BERT.Here, we have our CPG-BERTmodels using contextual word

embeddings. We useBERT-mini from https://github.com/google-research/bert

(256 dimensions with 4 layers) for the BERT-encoder to generate sentence

embeddings. For simplicity, we use BERT(W) to denote this model.

• CPG-Mixed. We have two CPG-Mixed models, CPG-Mixed(TransE)

andCPG-Mixed(Wiki2vec), denoted byM-TransE(EW) andM-Wiki2vec(EW)

respectively. The twomodels use BERT-mini for BERT-encoded sentence

embedding.

We also introduce two baseline models that do not follow our proposed CPG

architecture for comparison, namely:

• GPT.We fine-tune a GPT model to generate knowledge graph paths. We

provide the head and tail entities as prefix input in the form of “⟨soe⟩ eH

124

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

⟨SEP⟩ eT ⟨eoe⟩” to GPT and fine-tune it to generate the contextual paths

between the head and tail entities. Since there is no context given to this

model, the generation is prone to random generation.

• GPT+Context. We further fine-tune another GPT model (denoted by

GPT+Context) that takes both query entities and the context document

as input in the form of “⟨soe⟩ eH ⟨SEP⟩ eT ⟨eoe⟩ ⟨sod⟩ d ⟨eod⟩”. This

GPT model is also fine-tuned to generate a random path between the head

and tail entities.

5.3.4 Comparison of CPG Models

In the first set of experiment results shown in Table 5.2, the various CPGmodels

with both penalization and reward scaling schemes are evaluated and compared.

The best results are indicated in boldface. We discuss the result findings below.

Overview of Model Performances. Table 5.2 shows that CPG-Mixed with

Wikipedia2vec (M-Wiki2vec(EW)) is the best-performing model by all met-

rics recovering 63.7% and 69.9% of ground truth paths for datasets Wiki-film

and Wiki-music, respectively. This is followed by CPG-Mixed with TransE

as the base embedding (M-TransE(EW)) which achieves 63.3% and 67.4% for

Wiki-film and Wiki-music datasets, respectively. M-Wiki2vec(EW) and M-

TransE(EW) also outperform the other models in other metrics, i.e., NGED,

PED, %Uf, and %Lp. Overall, CPG-Mixed models outperform the CPG-BERT

model, BERT(W), andBERT(W) in turn outperformsCPG-Basemodels, TransE(E)

andWiki2vec(EW). Fine-tunedGPTs, GPT andGPT+Context, perform theworst

as they do not have a mechanism to ensure always generate a relevant path.

TransE(E) recovers only 34.5% and 36.7% of ground truth paths for Wiki-film

and Wiki-music datasets, respectively. This is reasonable since BERT-encoder

and mixed encoder consider contextualized word embeddings unlike the base

encoder treating every instance of the word or entity the same.

125

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

Table 5.2: Experiment Results (Best results are shown in boldface.)

Models NGED PED %Gt %Uf %LpEnt Rel

Wiki-film

Fine-tuned GPTs

GPT 0.46∗∗ 0.35∗∗ 0.39∗∗ 8.1∗∗ 9.3∗∗ 38.4∗∗
GPT+Context 0.33∗∗ 0.29∗∗ 0.37∗∗ 13.4∗∗ 15.4∗∗ 32.1∗∗

CPG-Base

TransE(E) 0.23∗∗ 0.20∗∗ 0.34∗∗ 34.5∗∗ 19.4∗∗ 12.1∗∗
Wiki2vec(EW) 0.21∗∗ 0.18∗∗ 0.29∗∗ 40.5∗∗ 19.2∗∗ 11.8∗∗

CPG-BERT

BERT(W) 0.17∗∗ 0.14∗ 0.25∗∗ 46.5∗∗ 14.6∗∗ 10.1∗∗

CPG-Mixed

M-TransE(EW) 0.14 0.13∗ 0.22∗ 63.3 11.6 7.3
M-Wiki2vec(EW) 0.14 0.12 0.20 63.7 10.3 7.3

Wiki-music

Fine-tuned GPTs

GPT 0.43∗∗ 0.31∗∗ 0.37∗∗ 9.2∗∗ 10.4∗∗ 27.4∗∗
GPT+Context 0.36∗∗ 0.27∗∗ 0.37∗∗ 14.8∗∗ 17.2∗∗ 29.5∗∗

CPG-Base

TransE(E) 0.24∗∗ 0.19∗∗ 0.31∗∗ 36.7∗∗ 17.6∗∗ 11.5∗∗
Wiki2vec(EW) 0.20∗∗ 0.18∗∗ 0.31∗∗ 42.4∗∗ 17.3∗∗ 10.9∗∗

CPG-BERT

BERT(W) 0.18∗∗ 0.14∗∗ 0.24∗∗ 48.2∗∗ 13.9∗∗ 8.7∗∗

CPG-Mixed

M-TransE(EW) 0.14 0.14 0.23∗ 67.4∗ 10.8 6.8
M-Wiki2vec(EW) 0.13 0.13 0.21 69.9 10.9 6.7

W:Word only. E: Entity only. EW: Use both entity and word.
NGED: Normalized Graph Edit Distance,
%Gt: % ground truth paths recovered.
%Uf: % of unfinished paths,%Lp: % of loopy paths.
∗∗: Significance test between M-Wiki2vec(EW) and other models
with p-value ≤ 0.05
∗: Significance test between M-Wiki2vec(EW) and other models
with 0.05 < p-value ≤ 0.1

We conduct paired t-test to compare the results of each baseline model with

the best performing model, i.e., M-Wiki2vec(EW). As shown in Table 5.2, in

126

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

Table 5.3: Ablation of Penalization/Reward Scaling (Wiki-film)

Models NGED %Gt %Uf %LpEnt Rel

CPG-Base

TransE(E) 0.23 0.20 34.5 19.4 12.1
TransE(E) w/o PR 0.28 0.25 23.7 36.7 24.6
TransE(E) w/o R 0.28 0.25 25.1 33.2 17.3
TransE(E) w/o P 0.27 0.25 27.1 23.3 22.9
Wiki2vec(EW) 0.21 0.18 40.5 19.2 11.8
Wiki2vec(EW) w/o PR 0.25 0.24 29.7 34.9 23.8
Wiki2vec(EW) w/o R 0.25 0.24 33.1 35.7 17.2
Wiki2vec(EW) w/o P 0.25 0.23 34.2 22.6 24.1

CPG-BERT

BERT(W) 0.17 0.14 46.5 14.6 10.1
BERT(W) w/o PR 0.23 0.18 29.3 31.7 19.9
BERT(W) w/o R 0.22 0.17 35.3 28.5 15.4
BERT(W) w/o P 0.21 0.17 33.9 22.6 17.8

CPG-Mixed

M-TransE(EW) 0.14 0.13 63.3 11.6 7.3
M-TransE(EW) w/o PR 0.19 0.16 45.2 24.9 14.2
M-TransE(EW) w/o R 0.18 0.16 48.8 22.7 11.2
M-TransE(EW) w/o P 0.17 0.15 50.1 16.2 13.7
M-Wiki2vec(EW) 0.14 0.12 63.7 10.3 7.3
M-Wiki2vec(EW) w/o PR 0.19 0.15 47.3 23.4 14.0
M-Wiki2vec(EW) w/o R 0.18 0.14 49.1 21.1 9.5
M-Wiki2vec(EW) w/o P 0.17 0.15 49.7 14.3 12.5

W:Word only. E: Entity only. EW: Using both entity and word.
P: Penalization scaling. R: Reward scaling. w/o: without.

both Wikinews datasets, M-Wiki2vec(EW) performs better than all other non

CPG-Mixed models with p-value ≤ 0.05. Among the CPG-Mixed models, M-

Wiki2vec(EW) still outperformsM-TransE(EW), albeit not significantly in most

of themetrics. NGED, PED, and%Gt are the only threemetrics thatM-Wiki2vec(EW)

significantly outperforms with p-value ranges from 0.5 to 0.1.

Choices of entity, word, and BERT embeddings. In this analysis, we evaluate

how the choice of embeddings in context encoding could affect model perfor-

mance. We focus on CPG models with both penalization and reward scaling

schemes only as shown in the top section of Table 5.2. The results show that

127

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

models using embeddings trained on both entity and word embeddings (i.e.,

Wiki2vec(EW), M-TransE(EW), and M-Wiki2vec(RW)) outperform those us-

ing entity embeddings only (i.e., TransE(E)).

For example, CPG-Base using Wiki2vec (Wiki2vec(EW)) outperforms that

using TransE (TransE(E)). The same findings are observed between CPG-Mixed

models (i.e., M-Wiki2vec(EW) outperforms M-TransE(EW)). The NGED and

%GT results of M-TransE(EW) are poorer than M-Wiki2vec(EW) but the dif-

ference is less obvious compared to that between TransE(E) andWiki2vec(EW).

5.3.5 Effects of Penalization/Reward Scaling

Here, we compare the models with penalization and reward scaling with those

without (i.e., without penalization scaling w/o P, those without reward scaling

w/o R, and those without both scaling w/o PR). We only show the experiment

results conducted on the Wiki-film dataset, since the results for the Wiki-music

dataset are similar. Table 5.3 shows the results of the ablation of penalization

and reward scaling. For easy reading, we also show the results with both scaling

schemes in boldface.

The results show that by not applying these scaling schemes (i.e., w/o PR),

both %Uf and %Lp deteriorate substantially for all the models. The largest in-

crease for %Uf and %Lp are 117% (from 14.6% to 31.7%) and 110% (from

10.1% to 19.9%) respectively for BERT(W) w/o PR. Smaller deteriorations in

%Uf and %Lp can still be observed if only one of the scaling schemes is applied.

Models without scaling also suffer substantial decline in %GT. This result shows

that our scaling schemes effectively direct the models to generate paths toward

the tail entities without loops. As a side effect, we also see improvement in

NGED.

128

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

5.3.6 Effects of Context Document Content Amount

In the earlier experiments, contextual paths are generated using the entire context

document as input. However, many real-world use cases expect sparse and noisy

content in the context documents. Thus, in this section, we examine how a CPG

model behaves when varying the amount of data in the context document using

Wiki-film dataset. In this study, we only report the results using the best per-

forming model M-Wiki2vec(EW) with both penalization and reward scalings.

We experiment with four different settings, namely:

(a) x: a zero vector as context representation simulating no context is given;

(b) ment_sent: we only use sentences covering the head and tail entities eH

and eT as context; and

(c) rand50: we randomly sample 50% of the news article as context.

(d) full: we use the full news article as the context document.

Note that both settings (b) and (c) simulate a scenario of limited context with

relevant content, and a scenario of half the amount of context, respectively.

Table 5.4 shows the NGED and %Gt results of M-Wiki2vec(EW) under dif-

ferent settings. We also illustrate the paths generated by M-Wiki2vec(EW) for

an example input consisting of eH = Campbell, eT = Brosnan and our James

Bond context document example in Figure 5.1. Under the x context setting,

M-Wiki2vec(EW) tends to choose popular relations as there is no context infor-

mation at all. On the other hand, entities that are more likely to lead to the tail

entity are preferred due to the reward scaling. Therefore, the model usually gen-

erates shortest paths with popular relations/entities. In our James Bond example,

M-Wiki2vec(EW) generates a shortest path between the entities Campbell and

Brosnan, which is unfortunately not the ground truth.

The rand50 setting yields better performance than no context setting (x in

Table 5.4). Nevertheless, if the context sampled is irrelevant to the ground truth,

129

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

Table 5.4: Effects of Context Content Amount on Wiki-film with M-
Wiki2vec(EW)

Ground Truth: Campbell d−→ Casino Royale s−→ Daniel Craig pb−→ James Bond pb−→ Brosnan
Context NGED(R/E) %Gt Path Generated

x 0.35 / 0.32 12.1 Campbell d−→ GoldenEye s−→ Brosnan

rand50 0.31 / 0.28 14.9 Campbell d−→ Casino Royale p−→ Barbara Broccoli p−→ GoldenEye s−→ Brosnan
ment_sent 0.18 / 0.21 44.2 Campbell d−→ Casino Royale s−→ Daniel Craig pb−→ James Bond pb−→ Brosnan

full 0.14 / 0.12 63.7 Campbell d−→ Casino Royale s−→ Daniel Craig pb−→ James Bond pb−→ Brosnan

d= director, s= hasactor, p= producer, pb= portrayBy

irrelevant entities or relations will also be included in the generated paths. For

the example query, the generated path contains some irrelevant entities (i.e.,Bar-

bara Broccoli and GoldenEye) and is longer.

Finally, under the ment_sent setting, the paths generated are quite similar

to full context setting although the % of ground truth paths recovered by the

ment_sent setting (i.e., 44.2%) is still clearly lower than that of full (i.e., 63.7%).

Since only sentences with entity mentions are covered in this setting, there is a

drop in overall accuracy. Nevertheless, we still observe few cases where the

generated path withment_sent setting is identical to that generated with the full

setting because some noisy information in the context might have been removed.

In our example, the model using thement_sent setting manages to generate the

ground truth path.

5.3.7 Error Type Analysis

To better understand the difference among the CPG models, we analyze the er-

rors in the generated contextual paths using Wiki-film dataset. We randomly

sample 100 erroneous paths generated from each model and conduct a qualita-

tive study which involves inspecting the paths manually. We assign one or more

of the following error types to each path:

• E1: Loopy path (see Section 5.2.4 for definition)

• E2: Unfinished path (see Section 5.2.5 for definition)

130

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

Table 5.5: Error Type Analysis on Wiki-film dataset

Models E1 E2 E3 E4

GPT Baseline GPT 34% 11% 47% 9%
GPT+Context 29% 16% 42% 7%

CPG-Base TransE(E) 20% 30% 35% 16%
Wiki2vec(EW) 20% 32% 31% 20%

CPG-BERT BERT (W) 19% 27% 27% 25%

CPG-Mixed M-TransE(EW) 23% 25% 13% 35%
M-Wiki2vec(EW) 20% 28% 15% 32%

• E3: Non-loopy path that still contains extra relations upon human judge-

ment.

E.g., The path Actor has actor−−−−→ Movie_A director−−−−→ Director director−−−−→ Movie_B

is of E3-type as the ground truth is Actor has actor−−−−→ Movie_B.

• E4: Path with exactly one erroneous relation or entity.

E.g., Actor has actor−−−−→ Movie_A director−−−−→ Director instead of Actor has actor−−−−→

Movie_B director−−−−→ Director

Table 5.5 shows the distribution of E1-E4 errors among the 100 erroneous

paths per model. Note that there are other forms of errors we do not consider in

this error analysis, and more than one error type may be assigned to each path.

As a result, the numbers in Table 5.5 will not add up to 100%.

From Table 5.5, we make the following observations. Firstly, the erroneous

paths generated by TransE(E) and Wiki2vec(EW) are more likely to have non-

loopy pathwith extra relations (E3) compared to the ones generated byBERT(W),

M-Trans(EW) and M-Wiki2vec(EW). However, they have less E4 errors com-

pared to the rest. Secondly, among the CPG-Basemodels, Wiki2vec(EW) enjoys

a smaller proportion of E3 errors (31%) than that of TransE(E) (35%). This is

due to Wiki2vec(EW) being semantically enriched by knowledge graph embed-

ding. BERT(W) also sees some improvement in E3 due to its pre-trained contex-

tual word embeddings. Using both entities and words for sentence embedding,

M-Wiki2vec(EW) reduces E3 error to 15% only. Finally, it is interesting to find

131

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

the proportion of E4 errors higher for models with better CPG performance.

Hence, it is not a surprise to see M-Wiki2vec(EW) yielding the highest E4 error

rate as the model has already proportionally done well in other easier error types

(E1 to E3).

5.3.8 Inferring Relations in the Wiki-film Dataset

We next conduct a qualitative study on the Wiki-film dataset to examine in-

ferred relations in the generated paths. Using our James Bond context docu-

ment example, the M-Wiki2vec(EW) model generates a path for eH =BBC and

eT =Craigwhich co-occur in the context document segment “Craig’s film cred-

its include... his major breakthrough was a starring role in the 1996BBC drama

Our Friends in the North.” The generated contextual path is:

BBC studio−−−→ Our Friends in the North hasactor−−−−−→ Craig

This path explains the connection between these two entities perfectly, and the

relationBBC studio−−−→ Our Friends in the North does not exist in our knowledge

graph but is semantically appropriate.

Note that another path that connects BBC and Craig exists in the knowledge

graph:

BBC owningCompany−−−−−−−−−→ BBC_Two channel−−−−→ Our Friend in the North
hasactor−−−−−→ Craig

However, it does not match the context as well as our generated contextual path

as the relations involved are less direct.

5.4 Experiment on a Synthetic Dataset

While the two Wikinews datasets are constructed with ground truth contextual

paths, they are small and do not allow us to study the CPG model performance

at scale. In this section, we therefore conduct another set of experiments using

132

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

a synthetic dataset, Synthetic-S. Synthetic-S is about 50 times larger by number

of context documents and 4 times larger by number of head-tail entity pairs. We

describe the process of constructing the synthetic dataset in Appendix A.

5.4.1 CPG Model Performance on the Synthetic-S Dataset

With the synthetic dataset, we conduct the evaluation of our proposed CPG-

models as well as the GPT baseline models. We report their NGED, %Gt, %Uf,

and%Lp performance in Table 5.6. The results are generally consistent with that

on theWiki-film andWiki-music datasets. M-Wiki2vec(EW) again outperforms

all other model variants across all metrics except for %Lp. M-TransE(EW) and

BERT(W) remain to be the second and third best-performing models, respec-

tively. Significance test shows that M-Wiki2vec(EW) has significantly better

performance than non CPG-Mixed models with p value≤ 0.05. Unsurprisingly,

GPT and GPT+context are the worst performing models. On the other hand, our

proposed CPG models still generate decent contextual paths that are complete,

loopless, and matching the context.

Nevertheless, we observe that the performance results of all models are gen-

erally lower for the synthetic dataset compared with those for Wiki-film dataset.

For instance, the best %Gt result from M-Wikipedia(EW), 53.3%, is substan-

tially lower than what the same model can achieve for the Wiki-film dataset

(%Gt=63.7). This is because the generation of paths may be affected by the

noisy sentences sampled during the document generation process.

As in our experiments on Wiki-film and Wiki-music datasets, we also con-

duct significance tests to compare the results of each baseline model with that

of M-Wiki2vec(EW). This significance test results show that M-Wiki2vec(EW)

performs significantly better than all baselines with p-value≤ 0.05. Among the

CPG-Mixed models, M-Wiki2vec(EW) outperforms M-TransE(EW) but their

difference is not significant.

133

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

Table 5.6: Experiment Result: Synthetic-S Dataset

Models NGED PED %Gt %Uf %LpEnt Rel

GPT Baseline

GPT 0.53∗∗ 0.37∗∗ 0.4∗∗ 11.4∗∗ 7.7∗∗ 31.4∗∗
GPT+context 0.41∗∗ 0.25∗∗ 0.38∗∗ 15.4∗∗ 14.6∗∗ 30.9∗∗

CPG-Base

TransE(E) 0.26∗∗ 0.21∗∗ 0.31∗∗ 38.6∗∗ 19.6∗∗ 13.7∗∗
Wiki2vec(EW) 0.22∗∗ 0.18∗∗ 0.28∗∗ 40.3∗∗ 18.2∗∗ 12.7∗∗

CPG-BERT

BERT(W) 0.18∗∗ 0.15∗∗ 0.23∗∗ 45.6∗∗ 15.3∗∗ 9.1∗

CPG-Mixed

M-TransE(EW) 0.15 0.14 0.20 51.4∗ 15.3∗ 8.8
M-Wiki2vec(EW) 0.15 0.13 0.20 53.3 14.7 8.9

W:Word only. E: Entity only. EW: Use both entity and word.
∗∗: Significance test between M-Wiki2vec(EW) and other models
with p-value ≤ 0.05
∗: Significance test between M-Wiki2vec(EW) and other models
with 0.05 < p-value ≤ 0.1

5.4.2 Coping with Incomplete Knowledge Graphs

In this experiment, we examine how a proposed CPG model copes with incom-

plete knowledge graphs. We specifically want to study knowledge graphs with

an incomplete set of relation edges. Under this setting, a CPG model will have

to infer the missing relation edges as it seeks to generate the contextual path

results. Hence, we divide this section into two parts. The first part involves

an experiment to evaluate how a CPG model performs for different extents of

missing edges in the knowledge graph. The second part performs a qualitative

evaluation of the inferred relation edges. We will use M-Wiki2vec(EW) as our

representative CPG model.

In the first part, we evaluate the performance of M-Wiki2vec(EW) by ran-

domly removing k percent of the edges (10 ≤ k ≤ 50) from the knowledge

graph. We use the synthetic dataset in this evaluation and report the perfor-

134

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

Table 5.7: Experiment Result: CPG with Incomplete Knowledge Graphs
(Synthetic-S, M-Wiki2vec)

k
NGED PED %GT % CP Edges

Removed
% Removed CP
Edges RecoveredEnt Rel

0 (Full KG) 0.15 0.13 0.2 53.3 - -

10 0.15 0.14 0.21 45.2 5.37 63.7
30 0.19 0.19 0.25 36.4 19.31 56.3
50 0.28 0.21 0.32 27.7 38.45 43.4

CP Edges: Edges exist in the ground truth contextual path

mance of M-Wiki2vec(EW) in Table 5.7. The results show that compared with

the knowledge graph with k = 0%missing edges, M-Wiki2vec(EW) sees poorer

performance as k increases. We also note that when k is small, as much as

63.7% of the edges removed from contextual paths can be correctly recovered.

For larger k settings, the proportion of correctly recovered contextual path edges

removed from the knowledge graph decreases as expected.

In the second part, we empirically observe that M-Wiki2vec(EW) is more

likely to recover edges between entities which are logically or semantically re-

lated. For instance, we find that a movie m is inferred to be made in country c

(i.e., m country−−−−→ France) if it mostly stars actors and actresses from c. As a result,

M-Wiki2vec(EW) successfully recovers Top Gun country−−−−→ United States, and

Amour(film) country−−−−→ France. On the other hand, the model fails to recover

edges like Ridley Scott producer−−−−−→ American Gangster(film), Crimson Tide
starring−−−−→ Viggo Mortensen, and Clint Eastwood artist−−−→ Bar Room Buddies.

These are edges with specific semantics and are thus more difficult to infer.

5.5 Using aKGQAModel forCPG:AModelAdap-

tation Experiment

CPG has some resemblance to some question answering (QA) tasks if we view

the input context document, head and tail entities forming the question, question

135

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

entity, and answer entity, respectively. CPG is however significantly different

from QA tasks (including knowledge graph QA) as the latter seek knowledge

graph entities as answers to a given question but not the correct path connecting

entities in the input context document.

In this section, our goal is to examine how a state-of-the-art QA model that

derives answers from a knowledge graph performs in the CPG task after some

adaptation. Among the many QA tasks, QA over knowledge graphs or KGQA is

most related to CPG tasks. KGQA aims to find an answer entity from a knowl-

edge graph given a query. The query includes a question as the context and a

question entity mentioned in the context. While the question entity is analogous

to the head entity of CPG tasks, KGQA does not involve any tail entity. Instead

of returning a contextual path, KGQA requires all candidate answer entities to

be ranked and the highest ranked one will be returned as the predicted answer.

We choose to adapt EmbedKGQA, a state-of-the-art KGQA model proposed by

Saxena, Tripathi, and Talukdar for CPG [93]. In the following, we outline the

changes made to EmbedKGQA model and our experiment results.

5.5.1 Modified EmbedKGQAModel

EmbedKGQA is an embedding-basedmodel trained on theMetaQAdataset [139].

In the original KGQA setting, a training instance consists of an entity eh and

a piece of text q as the question, and another entity et as the answer. Em-

bedKGQA assumes that there is a learned knowledge graph embedding model

Z = {Ze, Zr} where ze ∈ Ze is the entity embedding of entity e and zr ∈ Zr

is the relation embedding of relation r. To predict the answer to a question,

EmbedKGQA learns to embed the question q as a fixed dimension vector zq by

ROBERTa so that the answer score ϕ(zhe , zq, zte) is maximized. EmbedKGQA

uses ComplEx as the base knowledge graph embedding model, and adopts its

136

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

scoring function as the answer scoring function:

ϕ(zhe , zq, z
t
e) = Re(

n∑
k=1

zh(k)e z(k)q z̄t(k)e) (5.21)

where zhe , zte, zq ∈ Cn, z(k) refers to the k-th dimension of z, and z̄ = Re(z) −

iIm(z). Re() is a function that only returns the real value of the input complex

number and Im() returns the imaginary value. By maximizing this scoring func-

tion, EmbedKGQA learns to represent the question as a relation in the knowledge

graph embedding space that connects the question entity and answer entity. The

trained EmbedKGQA model can then be used to determine the answer entity of

a new question entity eh′ and question q′ by selecting the answer entity with the

highest ϕ() score as follows:

et′ = maxt′ϕ(z
h′

e , zq′ , z
t′

e) (5.22)

Although EmbedKGQA is easy to generalize to other QA datasets, it cannot

be directly utilized to solve the CPG task. Hence, we made three major modifi-

cations to the model. First, as the question q in KGQA is similar to the context

document d in CPG, we use the question embedding module in EmbedKGQA

to encode the context document. The context document embedding module en-

codes the context document to ann-dimension vector following the same process

as the original question embedding module. We use the exact parameter setting

as in EmbedKGQA [93].

Second, EmbedKGQA uses all entities in the knowledge graph as candidate

answer entities, but it is unclear how it performs the negative sampling process.

We therefore employ a pre-filtering process to sample negative answers. Let Eh

denote the set of 1- to 3-hop neighbors of eh. We define two types of negative

samples: (1) entities outside Eh, and (2) entities within Eh but which do not

exist in the ground truth contextual path. For each query, we sample 20 negative

answers from these two sets of entities with a 1:1 ratio.

137

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

Finally, although EmbedKGQA tries to identify entities in the knowledge

graph that are most relevant to the question, it does not generate a path between

the question entity and answer entity. Therefore, we propose a simple contextual

path construction algorithm which connects entities to form a path. As shown

in Algorithm 2, the path construction process starts with ranking entities and

relations among 1-hop neighbors of eh. It then chooses the most context-relevant

entity e∗ to be the next element in the path. To connect eh and e∗, we find the

most context-relevant relation among relations between them in the knowledge

graph. The algorithm then uses e∗ as new eh and repeats itself until it reaches et

or when the path length reaches the maximum.

Algorithm 2: Construction of Contextual Path with the Modified Em-
bedKGQA
input : Head entity eh, Tail entity et, Context document d, Maximum

length of path LMAX

output: Contextual Path p

p = {eh}
while length(p) ≤ LMAX or eh ̸= et do

Extract Gh = {Eh, Rh}, the 1-hop subgraph surrounding eh
e∗ = argmaxe′∈Eh

ϕ(eh, d, e
′)

r∗ = argmax
r′∈Rh,eh

r′→e∗
S(r′, d)

p.insert(r∗) // to insert r∗ into p
p.insert(e∗) // to insert e∗ into p
eh ← e∗

end

5.5.2 Experiment and Results

We compare EmbedKGQAwith the GPT baselines and our proposed CPGmod-

els on the Wiki-film dataset only. Additionally, we introduce a model vari-

ant “EmbedKGQA no-revisit” where revisiting of entities is strictly prohibited.

When constructing the contextual path with Algorithm 2, we exclude every en-

tity that exists in p from Eh to avoid creating loops. As a result, this model will

not generate any loop and potentially improve the quality of generated paths.

138

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

Table 5.8: Experiment Results: CPG with QA Model (Wiki-film)

Models NGED PED %GT %Uf %LpEnt Rel

GPT Baseline

GPT 0.45 0.35 10.2 11.3 35.5
GPT+Context 0.32 0.27 16.2 15.8 29.4

QAModel

EmbedKGQA 0.28 0.23 25.3 39.2 19.5
EmbedKGQA No-revisit 0.27 0.22 28.8 37.7 0

CPG-Base

TransE(E) 0.21 0.19 39.7 19.2 10.2
Wiki2vec(EW) 0.2 0.18 42.9 18.4 9.4

CPG-BERT

BERT(W) 0.16 0.14 53.1 14.5 8.3

CPG-Mixed

M-TransE(EW) 0.13 0.12 68.8 12.2 5.9
M-Wiki2vec(EW) 0.12 0.12 69.3 10.7 5.6

W:Word only. E: Entity only. EW: Use both entity and word.

We show the results in Table 5.8. EmbedKGQA outperforms the GPT base-

lines in NGED, PED, and %Ground truth path. However, it underperforms all

other CPG models in % unfinished path (%Uf) due to the lack of a proper path

construction method. %Loops wise, EmbedKGQA’s performance lies between

GPT baselines and CPG models. EmbedKGQA is able to identify relations and

entities that match the context better, resulting in lower NGED and PED. How-

ever, it does not guarantee a high-quality contextual path even with our proposed

path construction algorithm. The proportion of unfinished paths %Uf and loopy

paths %Lp are thus higher compared to our CPG models. While we reduce %Lp

to zero in EmbedKGQA no-revisit by introducing the no-revisit policy, it does

not significantly improve the model performance in other metrics such as NGED

and %Uf.

The experiment results suggest the uniqueness of CPG makes it difficult for

both the vanilla and modified QA models to be used as solutions. Specifically,

139

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

CPG requires the construction of high-quality contextual paths, which is often

not considered in the existing QA works.

5.6 Summary

In this chapter, we formally define the Contextual Path Generation (CPG) prob-

lem and proposed a transformer-based architecture to address three challenges:

(a) sparse and noisy context document, (b) incomplete knowledge graph, and (c)

well-formedness of the generated path. Our contribution in this chapter can be

summarized as follows.

• To address the first challenge, we design a transformer-based model ar-

chitecture to encode a context document d for input to the generation of a

contextual path. In particular, we develop context encoders using knowl-

edge graph entity and word embeddings, and pre-trained contextualized

word embeddings.

• We develop an autoregressive controlled path generation approach to gen-

erate contextual paths with the encoded d, eH and eT . As this approach

can infer missing relations in the knowledge graph, it addresses the second

challenge. We also introduce penalization and reward scaling strategies to

reduce the sampling of already generated entities and to increase the like-

lihood of reaching eT respectively in path generation. The two strategies

address the challenge of generating well-formed contextual paths,

• Based on our proposed model architecture, we derive several CPGmodels

with different combinations of context encoder and controlled path gen-

eration options.

• We also construct two real datasets and a large synthetic dataset. Each

dataset consists of a set of queries and their “ground truth” contextual

140

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

paths for model training and experiment evaluation. These datasets will

be made publicly available along with the publication of this chapter.

• Our experiments show that several of our proposed CPG models perform

reasonably well in returning the ground truth contextual paths. The result

also shows that the penalization and reward scaling strategies can effec-

tively reduce unfinished paths by as much as 52.6% and loops by as much

as 53.5%. We also show the model performance under different input

context settings.

• To show the difference between CPG and QA tasks, we modify a state-

of-the-art QA model, EmbedKGQA, for CPG tasks [69,139]. Our exper-

iment results show that while CPG shares some similarities with knowl-

edge graph QA, the QA solution models are not likely to perform well for

CPG even after some adaptation.

While there is still room for performance improvement, this CPG research

also opens up a number of new research directions. Firstly, CPG creates a new

way of knowledge graph reasoning induced by external textual content. The

inferred relations in the generated contextual paths can be used to supplement

the existing knowledge graph. Nevertheless, there are still interesting research

questions on how these inferred relations can be aid the other downstream infor-

mation retrieval tasks to offer explanations or to improve the tasks’ performance;

and how these inferred relations can be aggregated from the query results on

large number of context documents to create a knowledge graph from scratch or

to update an existing knowledge graph.

Secondly, our proposed approach handles both unfinished path and looping

problems by scaling strategies. Further research can be conducted to allow the

controlled path generation step to directly produce loopless and finished contex-

tual paths. This may further enhance the quality of resultant contextual paths.

Finally, CPG can be further extended to generate contextual subgraphs, as

141

CHAPTER 5. CONTEXTUAL PATH GENERATION: A MONOTONIC APPROACH

opposed to contextual paths. This will require the input to be a set of entities and

the generation process to consider the graph structure. To our best knowledge,

research on controlled graph or subgraph generation is still at its nascent stage

and will likely become an important research topic in the future.

142

Chapter 6

Contextual Path Generation: A

Non-Monotonic Approach

In previous chapter, we introduce a generation model that address the contextual

retrieval task CPG. Still, how to generate a high-quality contextual path that is

both complete and loopless remains a critical issue. In this chapter, we attempt

to address CPG with a novel generation model, named Non-Monotonic Con-

textual Path Generation (NMCPG). As the name suggests, NMCPG generates a

knowledge graph non-monotonically. This ensures that the generated contextual

paths always start and end with the query entities. Unlike the monotonic CPG,

NMCPG is based on a pre-trained generation model that learns to generate high

quality knowledge graph path. To cope with the NMCPGmodel, we also design

a two-stage framework that incorporate knowledge graph and context document

differently compared to CPG. The pre-trained generation model is fine-tuned to

embed the interaction between knowledge and text in the representation space.

143

CHAPTER 6. CONTEXTUAL PATH GENERATION: A NON-MONOTONIC APPROACH

6.1 Research Objective

6.1.1 Problem Definition

There are mainly three challenges we face when solving the CPG problem,

namely (a) noisy and sparse context document, (b) incompleteness of knowledge

graph, and (c) well-formedness of generated contextual paths.

The first challenge is caused by the document containing information that is

both relevant and irrelevant to the query entities. A method that fails to extract

the relevant information will thus generate low-quality paths. The challenge is

further complicated by context documents that are short and is thus sparse in

content. To address this challenge, we need to extract relevant semantics from

the context to used as input condition to path generation.

Secondly, most knowledge graphs in the real world are often incomplete

with missing relation edges. To cope with this issue, the framework is expected

to infer new relation edges.

Thirdly, most models for sequence generation are designed for single object-

type left grounded sequences. Single object-type sequence is one that contains

elements of the same type. Left-grounded sequence is one that has leftmost

element is fixed but not the remaining elements. Hence, these models could not

generate contextual paths with entities and relations as alternating path elements,

and always end with the tail entities, the two well-formedness criteria of CPG.

Given a query entity pair (eh, et), a well-formed path is a path that start with eh

and ends with et. As non well-formed paths are considered incorrect, our goal is

thus to design a generation model that always generates well-formed contextual

paths.

To address the challenges and obtain high-quality contextual paths, we pro-

pose a two-stage framework that extracts context-relevant entities and generates

the contextual path non-monotonically from a given initial state. As shown in

144

CHAPTER 6. CONTEXTUAL PATH GENERATION: A NON-MONOTONIC APPROACH

Figure 6.1, the framework consists of a context extractor and a contextual path

generator. The former derives context entities E(q) from the input knowledge

graph G and query represented by a tuple (eh, et, d) where d is the context doc-

ument. The context entities capture the relevant query’s information, enrich the

sparse content in context document with knowledge graph’s entities, and mini-

mize noises found in the original context document. We propose two different

methods for context extractor to extract from knowledge graph contextually rel-

evant entities, one based on binary classification and another based on learning-

to-rank on multi-head self attention of candidate entities. The latter leverages

interaction between entities to enhance the relevance of resultant entities ad-

dressing the noisy and sparse context document challenge.

In addition, we introduce the contextual path generator which generates the

contextual path pq = ⟨e1q, r1q , · · · , e
Nq
q ⟩ conditioned on the context entities. pq is

a sequence of entities and relations connecting from e1q = eh to e
Nq
q = et. This

generator is capable of inferring new relation edges which addresses our second

challenge. For the contextual path generator module, we propose a novel method

which generates the contextual path non-monotonically and also guarantees the

generated contextual paths are well-formed addressing the final challenge.

6.2 ProposedFramework andContextual PathGen-

eration Models

In this section, we first describe our proposed two-stage framework. We then

present the proposed methods for the context extractor and contextual path gen-

erator modules of the framework that form the different CPG solution models.

6.2.1 Two-Stage Framework

Before we present the framework, we give the definition of knowledge graph.

We define the knowledge graph G to be a tuple (E,L,R) where E denotes a

145

CHAPTER 6. CONTEXTUAL PATH GENERATION: A NON-MONOTONIC APPROACH

set of entities, L denotes a set of relation edges, and R denotes a set of relation

labels or simply relations. Each relation edge (ei, rk, ej) ofL directly links entity

ei to entity ej via a relation edge with label rk that can be found in R. We can

also denote the same edge by ei
rk−→ ej . Notation wise, we use italic for entities

(e.g., Biden) and boldface (e.g., presidentof) for relations. For the purpose of

establishing connections between entities, we assume that each relation and its

reverse can always be found in R. For example, for the knowledge graph to

capture Biden is the president of USA, R should contain both eBiden
presidentof−−−−−→

eUSA, and eUSA
presidentof−1

−−−−−−−→ eBiden.

The input of CPG can be captured as a query q represented by (eh, et, d)

where eh and et are the input entities and d is the context document. The out-

put of CPG is a path p represented as a sequence of path elements denoted by

⟨eq,1, rq,1, eq,2, rq,2, · · · ,rq,(nq−1),eq,nq⟩ where eq,1 = eh and eq,nq = et. The path

elements include the entities and relation labels involved in the path. We assume

that all entities and relation labels that are used in any path should be found in

E and R respectively, i.e., ∀i, eq,i ∈ E and ∀k, rq,k ∈ L. Nevertheless, it is

possible that some relation edges of a path may not exist in the knowledge graph

G as the latter is incomplete.

As shown in Figure 6.1, our proposed framework consists of a context ex-

tractor and a contextual path generator. The former derives context entities

E(q) = {e1, e2, ...e|E(q)|} from the query q and input knowledge graph G. Con-

text entities are entities relevant to the query and they may be mentioned in d. To

enrich the sparse content of the context document, one should also select rele-

vant entities from the knowledge graph to be context entities thereby addressing

part of the path relevance challenge (as the remaining part is to be addressed by

the contextual path generator).

The context entities together with the query are then provided to the contex-

tual path generator to construct the resultant contextual path(s) leveraging the

interaction between context entities to finally determine the relevant entities and

146

CHAPTER 6. CONTEXTUAL PATH GENERATION: A NON-MONOTONIC APPROACH

Figure 6.1: The Two-stage Framework for Contextual Path Generation

relation edges and sequence them to form the resultant path. In this process, new

relation edges may be inferred to address the incomplete knowledge graph chal-

lenge. We further propose a non-monotonic path generation process to ensure

that the resultant path is both semantically relevant and well-formed addressing

the path relevance and path well-formedness challenges respectively.

The above non-monotonic path generation approach is novel and is different

from the existing single object-type monotonic sequence generation approach,

considering that knowledge path is a type of sequence. Single object-type se-

quence generation is one that generates elements of the same type, instead of

entities and relation edges as alternating path elements. Themonotonic sequence

generation is one that always generate elements from left to right only. Such gen-

eration may fail to reach the tail entity et, and repeat the same path element(s).

In this case, the generated path is not well-formed. As non well-formed paths are

considered incorrect, our goal is thus to design a generation model that always

generates well-formed contextual paths.

6.2.2 Context Extractor

The context extractor takes a query q = (eh, et, d) and a knowledge graph G

as input, and decides the set of context entities E(q). Ideally, E(q) contains

the set of entities for constructing the correct contextual path. In this section,

we propose two context extraction methods: Knowledge-enabled Embedding

Matching Model (KEMatch) and Learning-To-Rank with Multi-Head Self

Attention Model (LTRMHSA). The former is based on binary classification,

and the latter is based on learning-to-rank on multi-head self attention.

147

CHAPTER 6. CONTEXTUAL PATH GENERATION: A NON-MONOTONIC APPROACH

Figure 6.2: Context Extractors

The two methods share a common Query-induced Entity Selector which

derives a subset of knowledge graph’s entities Er(q) = {e1, e2, · · · , emq} as

candidate entities using the query entities eh and et wheremq = |Er(q)|.

Let Er(h) and Er(t) be the sets of entities in the knowledge graph G which

are reachable from eh and et respectively in k-hops. The set of candidate entities

is then obtained byEr(q) = Er(h)∪Er(t). The remainingmodules of KEMatch

and LTRMHSA then select a subset of entities from Er(q) to form the context

entity set E(q).

KEMatch: Knowledge-enabled Embedding Matching

In KEMatch, we train a classifier to decide whether a candidate entity is related

to the context or not. Thus, we introduce a simple binary classifier which takes

an entity and the context as input, and outputs a probability between 0-1 that

suggests the relatedness between the two inputs. Given Er(q) already derived

148

CHAPTER 6. CONTEXTUAL PATH GENERATION: A NON-MONOTONIC APPROACH

by the query-induced entity extractor, the classifier performs matching of every

candidate entity e from Er(q) with the vector representation of the query zq. We

define this matching model by: fkem(ze, zq) → {0, 1} where ze and zq denote

the candidate entity representation and query representation respectively. The

candidate entities are predicted with label 1 (or matching) if they are deemed

as semantically relevant, and label 0 (or non-matching) otherwise. Only the

predicted matching entities will be returned as the set of context entities E(q).

We denote the size of E(q) bym.

KEMatch uses k-bert [74], a knowledge-enabled contextualized word em-

beddings, to derive zq and ze. We introduce four different query representation

schemes:

• Average Entity Representation: zq =
∑

e′∈E(d) ze′

|E(d)| , where E(d) is the set

of entities mentioned in context document d (which includes eh and et),

and the representation of an entity e is defined by ze = 1
|W (e)|

∑
w∈W (e) zw

whereW (e) denotes the words in the entity name of e, and zw denotes the

k-bert embedding of word w. Note that E(d) is not necessarily identical

toE(q) as not all entities inE(d) are fromG(q) and the latter may contain

entities not in d.

• Mention Paragraph Representation: zq = ENC(pq), where pq =

ph + pt where ph and pt are the paragraphs in d mentioning eh and et

respectively. ENC is an encoder that derives a paragraph representation

by averaging the k-bert embeddings of words in the paragraph.

• Title andMention ParagraphRepresentations: This representation con-

catenates the representations of the title and mention paragraphs denoted

by p1 and pq respectively. Title paragraph p1 refers to the first paragraph

in d. Hence, zq = [ENC(p1), ENC(pq)].

• Contextual Query Entity Representation. This scheme combines eh,

et, and the context document d as a sequence of word tokens for input to

149

CHAPTER 6. CONTEXTUAL PATH GENERATION: A NON-MONOTONIC APPROACH

ENC. zq is then defined as the average k-bert embedding of word tokens

in eh, et and d.

The matching model of KEMatch fkem is trained with a set of queries with

their corresponding positive and negative entity sets denoted byE(q)+ andE(q)−

respectively. For a query q, we use p∗q to denote the ground truth contextual path.

E(q)+ is then assigned the (positive) entities in p∗q . To avoid false negative enti-

ties, E(q)− is assigned with a set of hard negative entities sampled from entities

with few or no common neighbor with entities ofE(q)+ in the knowledge graph

G. That is,E(q)− = {e|e ∈ E(q)−E(q)+ and
∑

e′∈E(q)+ co-occur(e, e′) ≤ δ},

where co-occur(·) is a function that returns the number of common neighbors of

the two input entities and δ is a threshold parameter. In this paper, we use the

averaged co-occur(·) between positive pairs in the training set as δ, and choose

E(q)− to be 10 times the size of E(q)+.

We learn the matching function fkem as a logistic regression classifier which

takes zq and ze as input, and outputs the prediction probability ŷ. In this paper,

we consider three input feature combinations, namely: (i) concatenation [zq, ze],

(ii) hadamard product zq ⊙ ze, and (iii) subtraction zq − ze. Note that when

zq = [ENC(p1), ENC(pq)], hadamard product and subtractionmethods are not

applicable due to dimension mismatch between zq and ze. fkem is learned with

cross entropy loss. Once fkem is learned, given a query q, we select top nCXT

entities in G(q) with highest prediction probability as context entities Ê(q). In

our experiment, we empirically set nCXT = 10.

LTRMHSA: Learning-to-rank with Multi-head Self-attention

While KEMatch is easy to train with low computation overheads, it suffers from

a major shortcoming of not considering how an entity determines the relevance

of other entities when it co-occurs with different entities. For instance, when the

entity Ben Affleck (an actor) is mentioned together with Rosamund Piker (an ac-

tress) in the context, the candidate movie entity Gone Girl will become relevant

150

CHAPTER 6. CONTEXTUAL PATH GENERATION: A NON-MONOTONIC APPROACH

and thus should be included in E(q), as they both starred in this movie. On the

other hand, when the entity Ben Affleck appears with Matt Damon (another ac-

tor) in the context, another movie entityGoodWill Hunting should be included in

E(q) instead. As a result, we propose LTRMHSA, an attention-based learning-

to-rank model which considers the interaction among candidate entities when

determining their relevance. We adapt the multi-head self-attention model from

Tu et. al [106], to model interaction among entities of Er(q), and propose a

Multi-Head Self-Attention (MHSA) layer and Pairwise Bi-Linear layer to select

context entities.

As depicted in Figure 6.2, LTRMHSA also uses the query-induced entity

selector to obtain Er(q). It then concatenates all its entities with the context

document d and encodes these pairs using k-bert [74]. Each document-candidate

entity pair (d, ei) is first represented as a sequence of word tokens started with

a “[cls]” tag token followed by d’s word tokens, “[sep]” tag token, the word

tokens of ei’s entity name, and “[sep]” tag token. The output representation of

“[cls]” from k-bert for each (d, ei) pair, denoted by zcls,i, then summarizes the

semantics of the context document d and the corresponding entity ei. TheMHSA

layer takes the sequence ofmq output representations zcls1 to zclsmq
and allows them

to interact using multi-head self-attention:

Multihead(Q,K, V) = Concat(head1, ..., headn)W
0

headh = Attention(QWQ
h , KW k

h , V W v
h), h ∈ {1, · · · , nh}

Attention(Qh, Kh, Vh) = softmax(
QhK

T
h√

dk

)Vh

(6.1)

whereQ,K and V aremq×dz matrices where dz is the dimensionality of zcls,i.

Qh, Kh, and Vh are mq × dk matrices where dk is the inner dimension of self

attention. WQ
h , WK

h , and W V
h are learnable dz × dk projection matrices of the

sequence of zcls,i’s for different heads. For nh heads, dk is determined by dz

151

CHAPTER 6. CONTEXTUAL PATH GENERATION: A NON-MONOTONIC APPROACH

divided by nh. In this work, we set nh = 8,

A pairwise bi-linear learning-to-rank classifier fltr then ranks all candidate

entities by their relevance to the query. We assume that a context entity should

havemore inter-entity interaction with entities inE(q)+ (or entities in the ground

truth contextual path p∗q) than other entities. The classifier fltr(ei, ej) → {0, 1}

is therefore expected to return 1 if the entity ei is more relevant to the context

document d than entity ej , 0 otherwise.

We also introduce a score function S(·) to measure the relevant of entity.

S(ei) =


2 if ei can be found in p∗q

1 if ei ∈ E(d)

0 otherwise

(6.2)

For a given query q, the ground truth label yi,j assigned to fltr(ei, ej) is:

yi,j =


1 if S(ei) > S(ej)

0 if S(ei) ≤ S(ej)
(6.3)

The Pairwise Bi-Linear layer of LTRMHSA fltr is then optimized with binary

cross entropy on the ground truth yi,j and predicted label ŷi,j of (ei, ej).

During the inference phase, we derive a relevance score Ŝ(ei) to determine

the relevance of ei to q by gathering the pair-wise prediction results of fltr(ei, ej)

for ei, ej ∈ Er(q). Ŝ(ei) =
∑mq

j=1 1(ŷi,j > 0.5) where 1(·) is an indicator

function. Finally, we use a context entity selector to select the nCXT entities

with the highest Ŝ scores to construct E(q), similar to that in KEMatch. In this

paper, we empirically use nCXT = 10.

6.2.3 Contextual Path Generator

Contextual path generator is responsible for generating a path pq given E(q)

and for inferring missing relations when needed. We propose aNon-Monotonic

152

CHAPTER 6. CONTEXTUAL PATH GENERATION: A NON-MONOTONIC APPROACH

Figure 6.3: Pretraining and Fine-tuning Steps of Non-Monotonic Contextual
Path Generation with Pretrained Transformer (NMCPGT)

Contextual PathGenerationwith PretrainedTransformer (NMCPGT)method

as shown in Figure 6.3. NMCPTGT addresses the two limitations of traditional

monotonic generation models such as n-gram [7] or neural language models [90]

where the order of element generation is always from left to right. The first lim-

itation is the generation of unfinished paths when the model generates a path

that starts with eh but could not ends with et. The second limitation is the diffi-

culty to leverage on both eh and et to determine the next element to generate in

the monotonic manner. Thus, in this paper, we propose the non-monotonic path

generation model which substantially increases the odd of finished paths and

is trained to generate the more likely path elements using eh, et and the other

already generated path elements in each generation step.

NMPCPGT is obtained in twp steps, namely the pretraining and fine-tuning

steps. In pretraining, a pretrained path generation model is learned to be familiar

with the knowledge graph’s entities and relations and the ways entities of dif-

ferent types are connected with one another via relation edges and it is able to

generate knowledge paths given a (eh, et) pair. In fine-tuning, we further train

the model to include candidate entitiesE(q) as additional input and to return the

contextual path.

153

CHAPTER 6. CONTEXTUAL PATH GENERATION: A NON-MONOTONIC APPROACH

Figure 6.4: Binary Trees of Non-Monotonic Generation: (a) A terminal binary
tree that shows the generation steps for a path (with generation order numbers
and path order numbers shown in blue and green respectively); (b) Two binary
trees with the same generated sequence.

Pretraining of Non-Monotonic Path Generation Model

Our non-monotonic path generation model learns to generate path elements in

any order. Borrowing the idea from an earlier work [14], we represent the gen-

eration order of all the path elements (i.e., entities and relations of the contextual

path) using a binary tree in which each tree node is either an entity/relation or

an “end” (or “E”) item. The model generates these elements in a top-down and

left-to-right manner, until the binary tree has “E” items generated for all the

leaf nodes. Once the generation process is completed, the generated contextual

path is the sequence of path elements (excluding the “E” items) determined by

a traversal method, called path order, which is a modified Depth First Search

(DFS).

Consider the binary tree output example of our non-monotonic path genera-

tion module in Figure 6.4(a). The generation order starts with the root node, fol-

lowed by its left child node, and then right child node. The generation order num-

bers of the three nodes are thus assigned 1, 2 and 3 as shown in blue in the figure.

Following that, the nodes to be generated next are those at the third and fourth

layers with generation order numbers assigned from 4 to 11. For each node,

we generate a path element or “E” item. As shown in Figure 6.4(a), we finally

154

CHAPTER 6. CONTEXTUAL PATH GENERATION: A NON-MONOTONIC APPROACH

obtain a contextual path from the binary tree by constructing a sequence of the

path elements (excluding the “E” items) following the path order numbers shown

in green. The generated path is: eMattDamon
almaMater−−−−−→ eHavardUniversity

state−−→

eMassachusetts.

Our non-monotonic path generation model is based on reinforcement learn-

ing. We let V be the set of all entities and relations, i.e., V = E ∪ R. Let

Y = (w1, ..., wN) denote a sequence of path elements where wi ∈ V and Ṽ

be {V ∪ ⟨e⟩} where ⟨e⟩ denote the terminal or “E” item. Let D denote the

collection of Y ’s. The generation process is regarded as deterministically nav-

igating a state space S . A state s ∈ S corresponds to a binary tree of nodes

from Ṽ . For instance, the example we show in Figure 6.4(a) has an initial state

s1=(Matt Damon), and a final state s11=(Matt Damon,⟨e⟩,MA, · · · , State, · · · ,

⟨e⟩). The subscript of state si is the generation order number. An action a is

an element of Ṽ that is chosen to be added to the tree for the next available

generation order index. As mentioned previously, when every leaf node in the

binary tree is the terminal node ⟨e⟩, the generation reaches the terminal state sT .

T = 2N + 1 denotes the number of nodes (or states) that exist in the terminal

binary tree. We use τ(i) to represent the generation order index of the generated

element with path order number = i, e.g., τ(10) = 3 in Figure 6.4(a).

The goal of non-monotonic path generation model is to learn a policy π

which imitates an oracle policy π∗ which always generates a knowledge graph

path. A policy is a stochastic mapping from states to actions. It decides for each

generation order index which element or terminal symbol to generate. When the

binary tree is terminal, the entire path is determined by the sequence of elements

following the path order numbers. The probability of an action a ∈ Ṽ given a

state s under policy π is denoted as π(a|s).

To ensure that we generate a path from eh to et, the policy is trained to gen-

erate eh, ⟨e⟩, et, and ⟨e⟩ for the states s1, s2, s3 and s5 respectively. That is,

π(eh|s1)= π(⟨e⟩|s2)= π(et|s3) = π(⟨e⟩|s5) = 1.0.

155

CHAPTER 6. CONTEXTUAL PATH GENERATION: A NON-MONOTONIC APPROACH

LetU [T] be the uniform distribution over all the states of a binary tree {1, ..., T}

and dtπ be the state distribution obtained from running π for t-many steps. When

generating an element or terminal symbol, the model updates the current learned

policy π by comparing its predicted cost to an observed cost-to-go estimatedwith

states drawn from πin and actions from πout. In other words, we train π to pick

actions that minimize C(π; πout, st). C(π; πout, st) measures the loss incurred by

π against the cost-to-go estimates under πout for a given state st. The model then

learns πout that minimizes the following cost function:

EY∼DEt∼U [T]Est∼dt
πin
[C(π; πout, st)] (6.4)

where st is the state corresponding to the top-down traversal of the generated

binary tree at step t. This process finds a policy that performs on-par or better

than the oracle policy π∗ with access to only states st.

The non-monotonic generation model can be implemented with LSTM units

model, or with transformer structure [107]. In this paper, we build the model

with the latter.

Oracle Policies. Given a partially generated target path p = ⟨w1, · · · , wn⟩ at

state st corresponding to the generation step t, we define Yt as the set of elements

in p that can be generated for state st for the non-monotonic generation model

to be able to generate p eventually. An oracle policy is defined as:

π∗(a|st) =


1 if a = ⟨e⟩ and Yt = ⟨⟩

P (a) if a ∈ Yt

0 otherwise

(6.5)

where P (a) is defined such that
∑

a∈Yt
P (a) = 1. For every generation step

t, the oracle policy always generates valid action a (i.e., if a ∈ Yt) with posi-

tive probabilities, invalid actions with zero probabilities, and ⟨e⟩ when no other

elements are required to be generated. We can design different oracle policies

156

CHAPTER 6. CONTEXTUAL PATH GENERATION: A NON-MONOTONIC APPROACH

by defining P (a) differently. Let g and h are the nearest left parent and nearest

right parent respectively of the tree node corresponding to step t based on the

path order. Let the actions generated at steps g and h be ag = wg and ah = wh

respectively. We now derive Yt as follows:

Yt =


{wg+1, · · · , wh−1} ∪ {⟨e⟩} if ag and ah are found

{w1, · · · , wh−1} ∪ {⟨e⟩} if only ah is found

{wg+1, · · · , wn} ∪ {⟨e⟩} if only ag is found

(6.6)

In this paper, we use an annealed coaching oracle which combines a uni-

form oracle and a coaching oracle to address the problem of not exploring di-

verse set of generation orders. The uniform oracle treats all possible gener-

ation orders that lead to the target sequence as equally likely, without prefer-

ring any specific set of orders. It gives uniform probabilities P (a) = 1/|V |

for all elements in the sequence. On the other hand, coaching oracle ensures

no invalid action is assigned by any probability. It prefers actions that are pre-

ferred by the current parameterized policy and reinforces the selection by the cur-

rent policy π if it is valid. In other words, π∗
coaching(a|s) ∝ π∗

uniform(a|s)π(a|s).

The annealed coaching oracle can therefore be represented as π∗
annealed(a|s) =

βπ∗
uniform(a|s) + (1− β)π∗

coaching(a|s).

Cost Functions. Since the generation is non-monotonic, the generation order

does not necessarily match the path order, and hence there can be multiple ter-

minal binary trees that share the same generated sequence of path elements. For

a desired sequence to be finally generated based on a partially generated binary

tree, we need to determine if the element to be generated could violate the desired

sequence. Therefore, we consider all entities and relations that can be generated

as correct generation. We show two valid binary trees of a sequence ABCD gen-

erated by the non-monotonic generation model in Figure 6.4(b). When deciding

the left child of D, any token that locates before it in the sequence can lead to

157

CHAPTER 6. CONTEXTUAL PATH GENERATION: A NON-MONOTONIC APPROACH

Figure 6.5: Illustration of Non-Monotonic Path Generation: (a) Serialize an in-
put tree with path traversal; (b) Generation of a Contextual Path

generation of a valid binary tree. For instance, C is chosen in the left tree and

the right tree chooses B. As a result, we consider B or C as correct generation

when computing the cross entropy. Any other tokens are considered incorrect,

including the termination node ⟨e⟩. We define the Cross Entropy Loss as fol-

lows,

C(π; πout, st) =

− (
∑
w∈V +

yπ,st log(pπ,st) + (1− yπ,st) log(1− pπ,st))
(6.7)

where V + denotes the set of entities/relations that are deemed correct at this

time step t. yπ,st ∈ {0, 1} such that yπ,st = 1 if the generation predicted by π in

state st leads to a valid path binary tree, and pπ,st is the generation probability.

In our experiment, we generated 100,000 paths from the knowledge graph

for the pretraining. The paths are generated by first sampling e1 from the graph

as the head entity of the path, followed by sampling the next entity e2 connected

to e1 with an edge e1
r1−→ e2 and adding that to the path. This process is repeated

until we have sampled L edges, or stops with a chance of 20%. We will use the

first and last entities of the path as eh and et respectively.

Fine-tuning Non-Monotonic Contextual Path Generation

To direct the NMCPGT model to generate a path according to a context, we

fine-tune our pretrained path generation model with additional context entities

158

CHAPTER 6. CONTEXTUAL PATH GENERATION: A NON-MONOTONIC APPROACH

E(q).

The context entities are arbitrarily ordered and separated by spaces. They

are then concatenated with the query entities before given to the pretrained trans-

former. We then fine-tune the transformer to return the correct contextual path.

The fine-tuning step is very similar to that of pretraining except that the pretrain-

ing step involves sampled paths instead of ground truth contextual paths. The

fine-tuning step is also different due to additional context entities. Its input se-

quence is in the format of “[soc] e1 e2 ... e|E(q)| [sep] eh [e] et [e] [eoc]” where

[sep] is a special token separating the context entities and the initial tree. We

illustrate the contextual path generation process in Figure 6.5(b).

In the prediction phase, we construct an initial tree with eh and et as the

first and last nodes in the generation order leaving the left child of et missing.

The serialized sequence of the initial tree is then fed to the decoder as prefix

in the format of “[soc] eh [e] et [e] [eoc]” where [soc] and [eoc] are special

tokens signaling the start and the end of the prefix, and [e] is the token for the

termination signal ⟨e⟩. The model then completes the binary tree and recovers

the predicted contextual path by traversing the tree in path order.

6.2.4 Tree Serialization

During both the pretraining and fine-tuning phases, we need to feed the initial

generation state represented as a binary tree to the transformer for training. Since

the transformer can only generate a sequence of objects, it is trained to decode

or generate the sequence of actions that represents the serialized binary tree of

the training path. We serialize a path by traversing it in a top-down, left-to-right

manner. The serialization process is shown in Figure 6.5(a). For each time step

t, the transformer decoder generates (or predicts) the next action of binary tree

which is in turn used as input to the transformer decoder for generating the next

action. This repetitive process ends when the binary tree is terminal.

159

CHAPTER 6. CONTEXTUAL PATH GENERATION: A NON-MONOTONIC APPROACH

6.3 Experiment Results

6.3.1 Dataset

Similar to the experiments discussed in previous chapters, we use the Wiki-film

and Wiki-music dataset described in Section A.2. The detailed statistics of the

datasets are shown in second and third columns of Table 6.1.

6.3.2 Evaluation Metrics

For measure the CPG performance, we divide the (eh, et) entity pairs of each

dataset into five folds. Each fold takes turn to be used for test while the remain-

ing four folds are used for model training. We repeat this process five times

and report the averaged performance across five folds in the experiment. We

measure the model performance using three types of metrics, namely: (a) per-

centage of recovered ground truth paths; (b) averaged pair-wise similarity; and

(c) normalized graph edit distance.

Percentage of recovered ground truth paths (%Path Recovered). This

metric measures the proportion of generated paths that are identical to the ground

truth path. In this metric, the similarity between the generated and ground truth

paths is not considered.

Average pairwise similarity (AVGPWSim). This metric shows howmuch

a generated path overlaps with the ground truth contextual path. Given a path

p generated by the model, we compute its pairwise similarity with the ground

truth path p∗ by

s(p, p∗) =
{E(p) ∪ L(p)} ∩ {E(p∗) ∪ L(p∗)}
{E(p) ∪ L(p)} ∪ {E(p∗) ∪ L(p∗)}

(6.8)

where E(p) and L(p) represent the set of entities and relation labels exists in p

respectively. We then compute the average pairwise similarity for all the gener-

ated paths. While this metric can effectively determine how close the generated

160

CHAPTER 6. CONTEXTUAL PATH GENERATION: A NON-MONOTONIC APPROACH

Table 6.1: Dataset Statistics

Wikinews Dataset
Wiki-film Wiki-music

context documents 40 40
entities mentioned 563 471
(eh, et) entity pairs 1,396 1,237

Knowledge Graph
entities 59,173 44,886
relations 651 513

Ground Truth Contextual Paths
Avg./Max. path length 3.87/6 3.62/6
unique path entities 563 471
unique path relations 139 108

path is to ground truth, it does not consider the ordering of the entities and re-

lations. Moreover, it does not take into consideration the semantic relatedness

between the two paths. The next normalized graph edit distance metric thus

addresses these limitations.

Last but not least, we also includeNormalizedGraphEdit Distance (NGEO)

which has been covered in Section 5.3.

To compare the effectiveness of our proposed models and baselines, we de-

sign a series of experiments to measure the correctness of their generated paths.

As our framework consists of context extractor and non-monotonic contextual

path generator, we first evaluate the former before analyzing the overall contex-

tual path generation performance on our two Wikinews datasets. Additionally,

we complete a series of experiments on a synthetic dataset to show the scalability

of our dataset, and the ability to infer missing relations of the knowledge graph.

6.3.3 Effectiveness of Context Extractor Methods

Our first set of experiments evaluates the effectiveness of context extraction

models returning the ground truth contextual path entities as context entities for

a set of queries. Other than our proposed context extractor methods KEMatch

161

CHAPTER 6. CONTEXTUAL PATH GENERATION: A NON-MONOTONIC APPROACH

and LTRMHSA, we also include a context window baseline method described

below.

• Context window baseline. We introduce a context extractor baseline

method to compare against our proposed KEMatch and LTRMHSAmeth-

ods. In this baseline method, we extract the entities mentioned in the text

surrounding eh and that in the text surrounding et within a distance of

cw word tokens in context document d. In this paper, we empirically use

cw = 20.

• KEMatch. KEMatch prunes the query-induced entities graph with a clas-

sifier, and keep only the top nCXT entities with highest prediction prob-

ability as context entities. As described in Section 6.2, we experiment

three different methods of query representation zq, namely (1) average

entity representation, (2) mention paragraph representation, (3) title and

mention paragraph representation, and (4) contextual query entity repre-

sentation. We also propose three feature combination schemes to combine

zq and ze, the representation of entity e from G(q): (a) concatenation +,

(b) hadamard product ⊙, and (c) subtraction −, and an additional (d) all

which concatenates (a), (b), and (c) together as feature. The parameters

k = 2, δ = 4, and nCXT = 10 are chosen based on grid search.

• LTRMHSA.We employ a learning-to-rank with multi-head self-attention

model to extract the most context-relevant entities as context entities. We

set nCXT = 10 to stay consistent with KEMatch.

We use a pretrained DBpedia k-bert model as the context encoder [74]. The

model uses the following configuration: L = 12, A = 12, H = 768.

We measure the performance of context entity extraction by precision and

recall defined by Precision= |E(q)∩E∗(q)|
|E(q)| and Recall= |E(q)∩E∗(q)|

|E∗(q)| respectively.

E(q) denotes the set of context entities extracted by the extractor and E∗(q) is

the set of ground truth context entities. We utilize the negative sampling process

162

CHAPTER 6. CONTEXTUAL PATH GENERATION: A NON-MONOTONIC APPROACH

described under Section 6.2 and conduct 10-fold cross validation. As we have

consistent observations on Wiki-film and Wiki-music and due to limitation in

space, we only show the experiment result of Wiki-film dataset in Table 6.2. In

this comparison, we additionally include the context window baseline.

LTRMHSA which considers inter-entity interaction yields the best precision

(85.9%) and recall (83.1%). KEMatch using contextual query entity represen-

tation with the hadamard product feature combination option, return the next

best precision (81.3%) and recall (78.9%). This is followed by KEMatch us-

ing mention paragraph representation also with the hadamard product feature

combination option. These results suggest that the contextualized query entity

representation is the best option for KEMatch. Finally, the context window base-

line is the worst-performing method as it does not involve the knowledge graph

entities.

Among the other KEMatch variants, average entity representation performs

better than title and mention paragraph representation possibly due to the lat-

ter’s high feature dimensionality. We observe features with high coefficient has

been assigned to both p1 and pq. This observation supports our hypothesis that

the title paragraph contains useful information about the contextual relationship

between the query entities. Finally, among the different feature representations,

hadamard product achieves the best performance, followed by concatenation and

subtraction. Although all these three feature representations show decent predic-

tive results, combining them together does not result in better performance due

to high feature dimension.

While Table 6.2 shows that LTRMHSA enjoys higher accuracy than all of the

KEMatch variants, the former involves a computational complexity of O(m2
q)

compared with KEMatch’s O(mq). When mq is large, the computational over-

head of LTRMHSA could be significantly higher which adversely affects the

time needed for generating a contextual path. As a result, one should take into

consideration the trade-off between performance and execution time when de-

163

CHAPTER 6. CONTEXTUAL PATH GENERATION: A NON-MONOTONIC APPROACH

Table 6.2: Performance in Context Entity Extraction (Wiki-film)

Context Extractor Feature Precall Recall
Combinations

Context Window 68.4 62.3

KEMatch

AVG Entity Rep.

+ 73.5 70.9
⊙ 75.6 73.8
- 72.9 70.1
all 72.1 69.3

Mention
Paragraph Rep.

+ 75.4 73.2
⊙ 80.1 77.6
- 72.7 71.6
all 71.5 69.8

Title + Mention
Paragraph Rep. + 69.20 65.4

Cxt. Query
Entity Rep.

+ 74.7 72.3
⊙ 81.3 78.9
- 72.5 71.7
all 71.9 70.4

LTRMHSA 85.9 83.1

ciding which context extractor to use together with NMCPGT in practice.

6.3.4 Performance in Contextual Path Generation

Next, we conduct experiments to evaluate the models’ performance in gener-

ating the contextual paths. We compare our proposed models combining non-

monotonic contextual path generation method (NMCPGT) with different con-

text extractor options, namely: KEMatch and its variants, LTRMHSA, con-

text window entities, and random context entities. The random context entities

method randomly selects nCXT entities fromG(q) as the context entities. We set

nCXT = 10which is consistent with thenCXT for KEMatch and LTRMHSA. For

simplicity, we name our models by “NMCPGT+⟨context extractor method⟩”

where the ⟨context extractor method⟩ options are Random Context, Context

Window, KEMatch, and LTRMHSA.

To evaluate the importance of the context document, we additionally in-

clude a non-contextual non-monotonic path generation (NCNMPG) baseline

which generates the contextual path from path generator that only takes eh and

164

CHAPTER 6. CONTEXTUAL PATH GENERATION: A NON-MONOTONIC APPROACH

Table 6.3: Path Generation Performance onWiki-Film andWiki-Music Datasets

Dataset Wiki-film Wiki-music

Feat.
Comb. %Recov AVG

PW Sim
NGEO(E),
NGEO(R) %Recov AVG

PW Sim
NGEO(E),
NGEO(R)

NCNMPG 19.7 0.44 0.29, 0.24 20.32 0.46 0.29, 0.23

N
M
C
PG

T

Random Context 62.33 0.59 0.26, 0.22 60.15 0.58 0.27, 0.22
Context Window 73.27 0.75 0.2, 0.19 75.22 0.74 0.21, 0.2

KEMatch
AVG Ent Rep.

+ 76.76 0.83 0.17, 0.16 78.13 0.81 0.17, 0.15
⊙ 78.14 0.84 0.17, 0.16 78.92 0.81 0.17, 0.15
- 71.11 0.78 0.19, 0.18 70.37 0.80 0.2, 0.18
all 73.2 0.79 0.18, 0.17 74.52 0.78 0.18, 0.16

KEMatch
Mention
Para. Rep.

+ 77.41 0.86 0.17, 0.15 76.49 0.85 0.17, 0.16
⊙ 80.13 0.87 0.16, 0.15 80.41 0.87 0.16, 0.16
- 73.29 0.81 0.18, 0.18 72.48 0.82 0.19, 0.18
all 74.19 0.81 0.18, 0.17 74.07 0.83 0.19, 0.18

KEMatch
Title + Mention
Para. Rep.

+ 72.28 0.78 0.18, 0.16 71.78 0.77 0.19, 0.16

KEMatch
Cxt. Query
Ent Rep.

⊙ 81.2 0.87 0.15, 0.15 82.89 0.88 0.16, 0.15

LTRMHSA 84.13 0.89 0.14, 0.14 85.37 0.91 0.14, 0.14

et as input, without any knowledge of the context document. In other words,

this model does not use any context entities as condition, and only relies on the

pretrained transformer when generating paths.

For the path generation, we only include the annealed coaching oracleπ∗
annealed

as it has been shown to outperform the uniform and coaching oracles in [14]. The

model is optimized with cross entropy loss. The non-monotonic path generator

uses a 4-layer transformer structure with, 4 attention heads, hidden dimension

of 256, and feed-forward dimension of 1024. Adam optimizer is used with the

initial learning rate of 10−5. The model is trained with 100 epochs. After the

50 burn-in epochs, β is linearly annealed from 1.0 by 0.01 in each epoch. The

implementation of all neural structures is based on Pytorch.

We report the % ground truth recovered(%Recov), averaged pairwise sim-

ilarity(AVG PW Sim), NGEO(E), and NGEO(R) of the generated contextual

paths by different models in Table 6.3. We have similar observations based on

the experiments on the two real-world datasets. The contextual path genera-

165

CHAPTER 6. CONTEXTUAL PATH GENERATION: A NON-MONOTONIC APPROACH

tion performance is also consistent with the results in Table 6.2. The model

NMCPGT+LTRMHSA outperforms other models for all metrics, followed by

NMCPGT+KEMatchwith context query entity representation andmention para-

graph representation. Among theNMCPGT+KEMatchmodel variants, Hadamard

product is the best feature combinationmethodwhile subtraction being theworst.

The simple baselineswhich do not extract context entities, includingNon-Contextualized

Generation and Random Context baseline, perform the worst. This indicates the

importance of a good context extractor – the better we extract context entities,

the more accurate the generated contextual paths will be. In the following, we

use two case examples to illustrate the difference between the different models.

Case example 1. Consider the query entities Zacharias Kunuk and Inuit in

the following context from Wiki-film:

“Produced by an Igloolik, Nunavut company, the film is titled The Journals of

Knud Rassmusen, and co-directed by Zacharias Kunuk of Igloolik and Norman

Cohn of Montreal. The company received critical acclaim for their first film,

Atanarjuat, ... The film portrays the pressures on traditional Inuit culture....1”

The ground truth contextual path is eKunuk
director−−−−→ eTheJournalOfKnudRasmussen

pageLink−−−−−→

eInuit, which is successfully generated by both NMCPGT+LTRMHSA and NM-

CPGT+KEMatchwith context query entity representation. NMCPGT+KEMatch

withmention paragraph representation, on the other hand, generates eKunuk
producer−−−−→

eTheJournalOfKnudRasmussen
pageLink−−−−−→ eInuit. Although this is not a ground truth path,

it is semantically correct as Kunuk is the co-founder of the production com-

pany Igloolik, Nunavut company. Both NMCPGT+context window and NM-

CPGT+KEMatchwithAVGentity representation extractors generate eKunuk
director−−−−→

eAtanarjuat
pageLink−−−−−→ eInuit, which suggests the generation of path is affected by en-

tities within the context document. Finally, the non-contextualized generation

and NMCPGT+random context baseline generates the shortest path between the

query entities in knowledge graph: eKunuk
pageLink−−−−−→ eInuit.

1https://en.wikinews.org/wiki/Film_from_Nunavut_in_Canada%27s_north
_to_open_TIFF

166

CHAPTER 6. CONTEXTUAL PATH GENERATION: A NON-MONOTONIC APPROACH

Table 6.4: Non-monotonic(Non-M) and Monotonic(M) Generation

%Unf %Recov AVG
PW Sim NGEO(E),NGEO(R)

π∗
annealed

(Non-Monotonic) 0 84.13 0.89 0.14, 0.14

π∗
L−R

(Monotonic) 29.73 42.85 0.73 0.19, 0.16

Case example 2. Consider another query entities James Bond and Pinewood

Studio in the following context from Wiki-film:

Firefighters have confirmed that the large JamesBond sound stage atPinewood

Studios has been destroyed by fire... where filming for Casino Royale, the latest

Bond movie, has been completed... Pinewood, which was created in 1935, was

the filming ground for Dr No, the first ever James Bond movie in 1962.2

Both NMCPGT+LTRMHSA and NMCPGT+KEMatch with context query

entity representation generate eJamesBond
isSeriesOf−−−−−→ eDr.No

pageLink−−−−−→ ePinewoodStudio,

which is different from the ground truth path eJamesBond
isSeriesOf−−−−−→ eCasinoRoyale

pageLink−−−−−→

ePinewoodStudio. Nevertheless, the path is considered semantically correct as the

event carried by both paths exists in the context document. NMCPGT+KEMatch

with mention paragraph representation successfully generates the ground truth

path as it only focuses on the paragraph in which Casino Royale is mentioned.

It is not affected by the mention of Dr. No.

6.3.5 Comparison betweenNon-monotonic andMonotonic Path

Generation

In this section, we compare our non-monotonic path generator NMCPGT+LTRMHSA

with a left-to-right counterpart by evaluating them on the Wiki-film dataset. As

discussed in Section 6.2.3, we choose to use a non-monotonic generation model

because left-to-right generation models are likely to generate unfinished paths.

To conduct this experiment, we replace π∗
annealed of NMCPGT by a Left-

2https://en.wikinews.org/wiki/James_Bond_set_at_Pinewood_Studios
_destroyed_by_fire

167

CHAPTER 6. CONTEXTUAL PATH GENERATION: A NON-MONOTONIC APPROACH

to-Right Oracle π∗
L−R which always assign probability of 1 to the leftmost to-

be-generated path element of the sequence. As suggested in [14], π∗
L−R results

in maximum likelihood learning of an autoregressive sequence model, which

makes the generation process identical to neural sequence models such as GPT-

2 [90]. We use the same input sequence, “[soc] e1 e2 ... e|E(q)| [sep] eh [e] et

[e] [eoc]”, for fine-tuning the non-monotonic and monotonic models. In this

experiment, we include a new metric representing the percentage of %unfin-

ished path in the result (%Unf) to evaluate the model’s ability of completing

the path. We define a unfinished path as one that starts with eh but could not

end with et within LMAX = 6 relation edges. Note that the generated paths,

finished or not, may involve inferred relation edges. We report the experiment

result on Wiki-film dataset for NMCPGT+LTRMHSA in Table 6.4. Since NM-

CPGT+LTRMHSA is required to generate path elements between eh and et, it

has %Unf = 0. The monotonic model, however, sees 29.73% of the generated

paths unfinished. With fewer finished paths, the %path recovered of the mono-

tonic model is also substantially less than NMCPGT+LTRMHSA.

While the monotonic model performs badly in well-formed path generation,

it achieves decent average pairwise similarity and NGEO results. This suggests

that the monotonic model generates entities and relation labels that are still rele-

vant to the context with the helps of LTRMHSA context extractor. For instance,

for the query with entities (eBrokeback Mountain, eMel Gibson) and the following context

document:

...Ledger starred in the 2005movieBrokebackMountainwhere he was nom-

inated for the Academy Award and the Golden Globe Award for Best Actor. He

also starred in the 2000 movie The Patriot withMel Gibson...3

The ground truth contextual path of this query should be eBrokebackMountain
starring−−−−→

eLedger
starring−−−−→ eThePatriot

starring−−−−→ eGibson. The non-monotonicmodel usingπ∗
annealed

generate the ground truth path perfectly. On the other hand, the monotonic
3https://en.wikinews.org/wiki/Australian_actor_Heath_Ledger_found_dead

_in_New_York_City

168

CHAPTER 6. CONTEXTUAL PATH GENERATION: A NON-MONOTONIC APPROACH

model using π∗
L−R generates a path that is unfinished: eBrokebackMountain

subject−−−→

eAcademyAward
subject−−−→ eAcademyAwardForBestActor

subject−−−→ eLedger
starring−−−−→ eThePatriot

pageLink−−−−−→

eLedger. Nevertheless, the generated path is still very relevant to the context. In

fact, if we do not force the model to stop at the length of 6, it will eventually

reach eMel Gibson at the 8th hop. This example explains why we obtain relatively

high pairwise similarity and NGEO for the monotonic model.

6.4 Discussion

In this paper, we formally define the CPG task and propose a two-stage CPG

framework consisting of a context extractor and a non-monotonic path gener-

ation with pretrained transformer (NMCPGT). Through experiments, we show

that our NMCPGT combined with various context extractor models generate

knowledge graph paths that are more similar to the ground truths than the base-

line models.

In the research aspect, this paper addresses the inherent challenges of knowl-

edge graph reasoning induced by external textual content. Knowledge graph rea-

soning refers to inferring new facts in the knowledge graph from textual data.

CPG represents a new approach to generate new relation instances as facts from

input context documents. It can be combined with information retrieval research

to offer explanations to search or prediction results using both existing and in-

ferred relations of knowledge graphs. This will pave the foundational work for

future research in information retrieval with explainable AI.

NMCPGT also brings several technical advancements to the field of infor-

mation retrieval. One major distinction between this work and previous KGIR

works is the use of a generative pretrained model. Previous works that use

the knowledge graph to reason, such as MHQA-GRN [98] and LEGO [92],

mostly generate knowledge paths by traversing the knowledge graph. Such

methods suffer from limitations, including (1) only being able to generate ob-

169

CHAPTER 6. CONTEXTUAL PATH GENERATION: A NON-MONOTONIC APPROACH

served knowledge graph relations, (2) having long inference times, and (3) not

guaranteeing finished and loopless paths. In contrast, NMCPGT uses a pre-

trained knowledge graph path generation model that is trained to generate high-

quality knowledge paths in a very short inference time. Furthermore, after being

fine-tuned with the context entities as a part of the prompt, the generation model

gains the ability to infer unseen relations from the context. To the best of our

knowledge, we are the first to approach the knowledge graph path generation

task with a pretrained generation model.

NMCPGThas introduced another advancement, which is the ability to gener-

ate a knowledge path in a non-monotonic manner. As explained in Section 6.3.5,

this non-monotonic generation order greatly enhances the path quality and ac-

curacy by reducing the generation of incomplete paths. Conversely, traversal-

based knowledge path generation methods are limited to left-to-right or right-to-

left generation, where the next relation and entity to be generated depend on the

currently visited entity in the knowledge graph. The knowledge path generation

model in NMCPGT is optimized with a policy learning-based objective, which

enables it to generate entities without depending on the knowledge graph struc-

ture. This approach ensures that the model always generates a complete path

that begins and ends with the query entities, providing better flexibility to the

generation process as it is less restricted by the existing knowledge graph.

In the practical aspect, CPG overlays a context document with contextual

paths. This simplifies content understanding as both the known and inferred rela-

tions of contextual paths between entities in the context can be highlighted to the

readers. For instance, a content analysis system could process documents with

CPG and obtain contextual paths of entity pairs mentioned in the documents.

The users can therefore access background information of the entity pairs from

the contextual paths, regardless it being explicit or implicit to them in the docu-

ments. Given an entity pair, one can refer to other entities exist in the contextual

path to gather more understanding of the relation between them. Moreover, the

170

CHAPTER 6. CONTEXTUAL PATH GENERATION: A NON-MONOTONIC APPROACH

user can filter documents that cover a specific event between this entity pair (i.e.,

with contextual path consisting specific knowledge graph relation).

In addition, it is possible to automatically enrich a knowledge graph with

CPG. Knowledge graphs can be incomplete and outdated, which is a common

limitation faced by many knowledge graph-based applications. CPG may help

to address such issue by inferring new relations during generation of contextual

paths. With a large enough set of documents, one could augment the knowledge

graph with newly inferred relation so the knowledge within it is more up-to-date.

This can be especially helpful for ISs that require latest information to reach the

best solution, such as decision-making systems or competitor analysis systems.

To summarize, the method proposed in this work showcases a new way to

infer and represent contextual relations between two entity mentions in a text

document. We presented such contextual relations as knowledge graph paths

(i.e., contextual paths), which can be easily utilized by any information system or

other downstream tasks. To the best of our knowledge, we are the first to define

contextual path and the problem of CPG. CPG contributes to knowledge in IR

from both research and practical aspects. It also opens various future research

directions, which we discuss in the next section.

6.5 Summary

In this chapter, we aim to enhance the understanding of textual documents by

deriving knowledge paths among the mentions of entities. To address the chal-

lenges in path generation, we proposed a two-stage contextual path generation

framework that can handle (i) noisy context information, (ii) missing relation

edges in knowledge graphs, and (iii) generate well-formed paths. We improve

context entity extraction and develop non-monotonic generationwith pretraining

to overcome these challenges.

In the following, we describe our contribution in this chapter:

171

CHAPTER 6. CONTEXTUAL PATH GENERATION: A NON-MONOTONIC APPROACH

• We design a two-stage framework consisting of a context extractor and

path generator to develop CPG solution models. Based on this frame-

work, we propose two context extraction methods, knowledge-enabled

embedding matching and learning-to-rank with multi-head self attention,

to determine a set of context entities relevant to the query entity pair and

context document. For contextual path generation, we propose a non-

monotonic path generation method with pretrained transformer to gener-

ate high quality paths.

• We show in the experiments on two real-world datasets that our best per-

forming CPG model recovers nearby 85% of ground truth paths, which is

14.8% higher than a context window baseline.

• We show in the experiments on a synthetic dataset that our models can

copewith large datasets. We also show that ourmodel using non-monotonic

path generation returns 42%more ground truth contextual paths and 29.7%

less incomplete paths than themodel usingmonotonic generation approach.

• We evaluate and demonstrate our proposed model’s ability to recover con-

textual paths with different proportions of missing relation edges in the

knowledge graph.

Due to the high cost of annotation efforts, we only conducted experiments on

a dataset built with Wikinews articles. However, with more datasets annotated

in the future, we will be able to conduct experiments on larger datasets to further

validate the current findings. Moreover, we assume that only one ground truth

contextual path exists between a query entity pair in this dataset, which can be

vastly different from a real-world scenario. Therefore, we shall further refine

both the dataset and experiment design to address this limitation.

There are several interesting future directions for CPG research. First, it

offers a general framework that can be adapted to different knowledge graph-

enhanced information systems. For example, in a recommendation system, we

172

CHAPTER 6. CONTEXTUAL PATH GENERATION: A NON-MONOTONIC APPROACH

can recommend items by constructing a path out of the user’s product purchase

and browsing history. A search engine can use contextual paths in a set of text

documents to summarize how they are interconnected with entities and relations.

Second, CPG can be viewed as an interesting means to derive new relations

not found in the existing knowledge graphs. For this to work at scale, we re-

quire many context documents of the same knowledge domain to be provided.

It should also be compared and evaluated against other knowledge completion

methods. Third, an extension of CPG to find contextual subgraphs (instead of

contextual paths) connecting a set of input entities in a context document is also

another interesting research direction. Finally, it is worthwhile to explore how

to further expand the scale of the pretrained knowledge path model used in NM-

CPGT. With the recent advancements in large pretrained language models, they

can generate natural language with high quality and accuracy. Researchers have

even identified new abilities that emerged during large-scale pretraining, such as

in-context learning and reasoning with chain-of-thought. We hypothesize that a

pretrained large knowledge path model of larger scale will have better generation

and reasoning ability, which can further improve the accuracy of downstream

KG-based IR tasks like CPG.

173

Chapter 7

Conclusion

This dissertation aims to address the common challenge underlying contextual

information retrieval research, that is finding the semantic connections among

entities embedded in context of different forms (e.g., text, image, etc.) This chal-

lenge is akin to connecting dots in a puzzle with the help of background knowl-

edge. We first confine the context to be textual and the background knowledge

to be some knowledge graph or association graph that captures relationships

between knowledge entities which may be found in the given context. For ex-

ample, the context could be a piece of news mentioning some named entities, or

a classroom question about biological concept entities,

With the above-mentioned context definition, one can define different types

of contextual information retrieval tasks. In this dissertation, Contextual Path

Retrieval (CPR), Contextual Path Generation (CPG), and Non-Monotonic Con-

textual Path Generation (NMCPG) are example tasks which return some path(s)

as results. One can define other contextual information retrieval tasks that return

text or graphs instead of paths. To address these contextual information retrieval

tasks, we first present a meta-framework that considers the interaction between

knowledge and textual content of context when learning the context represen-

tation. This learned contextual representation will be subsequently used in the

downstream contextual information retrieval task(s) which is usually formulated

174

CHAPTER 7. CONCLUSION

as a prediction task (e.g., prediction of path’s relevance in the case of CPR, or

prediction of path’s elements).

Before we embark on the research CPR, CPG andNMCPG,we first study the

contextual representation learning for textual documents as contexts, and these

contexts are connected with one another in a large document network. By treat-

ing entities and words mentioned in these textual documents as attribute values,

we seek to learn the contextual representations of these textual documents using

our proposed multi-VAE approach called ECAN. ECAN combines network em-

beddings with attribute embeddings such that contextual representations, entity

and attribute representations share the same space.

From the technical standpoint, this dissertation has contributed the follow-

ing:

• It introduces different interesting forms of context representation learning,

including contexts in network and contexts covering entities and words

where the context entities can be found in some knowledge graph. It fur-

ther demonstrates how contextual representations can be effectively used

for contextual path retrieval and generation tasks.

• In contextual path retrieval, this dissertation proposes a solution frame-

work in which new contextual representation methods and path embed-

ding methods are developed to support effective retrieval of contextual

paths. It is also in this work we create the first few datasets constructed

from real world data for CPR and CPG research, as well as datasets using

synthetic algorithms.

• In contextual path generation, the dissertation focuses on utilizing the

knowledge and text representations to infer the relation edges required to

generate the path connecting the two query entities guided by the contex-

tual representation of context document. Our proposed monotonic CPG

model employs an encoder-decoder transformer. The encoder learns to

175

CHAPTER 7. CONCLUSION

combine knowledge graph and text representations into one single contex-

tual representation vector. The decoder generates contextual paths given

the contextual representation from the encoder. In non-monotonic CPG,

the dissertation proposes a generation model consisting of a path decoder.

We first pre-train path decoder to generate knowledge graph paths from

initial query entities’ representations. This model is then fine-tuned to

generate the contextual path conditioned on the query entities and the con-

textual representation.

While this dissertation provides both datasets and models for conducting re-

search in contextual information retrieval, it is subject to several limitations:

• The datasets utilized in this study are relatively small in scale. We uti-

lized theWiki-film andWiki-music datasets in our experiments conducted

in Chapters 4 to 6. Compared to existing knowledge graphs such as the

comprehensive DBPedia knowledge graph1 with over 3.5 million enti-

ties, Scopus2 with more than 90 million entities, and WordNet3 covering

more than 110,000 entities, the scale of the knowledge graphs employed

by these two datasets are relatively small. While we have created syn-

thetic datasets that are much larger, we are not able to experiment on large

real world datasets to demonstrate the scale generalizability of our model

performance.

• For CPR and CPG, we assume that the input query has undergone appro-

priate entity linking. During this process, each entity has been linked to

its respective entity ID in the knowledge graph. However, the accuracy of

CPR and CPG heavily depends on the accuracy of entity linking. In other

words, it is crucial to ensure that the entity mentions are correctly linked

to the corresponding knowledge graph entities.
1https://yago-knowledge.org/
2https://www.elsevier.com/solutions/scopus
3https://wordnet.princeton.edu/

176

CHAPTER 7. CONCLUSION

• In this dissertation, our emphasis lies in the retrieval and generation of

contextual information through multi-hop knowledge graph paths. Al-

though this representation of contextual information effectively captures

the semantic connection between two entities, it may overlook the valu-

able interactions among other entities mentioned within the given context.

• Themethods presented in this dissertation are specifically designed to pro-

cess textual input. However, it is important to note that other forms of

data, including images, videos, and sensor data, have not been considered

within the scope of this research. Embracing multimodal data has the po-

tential to offer intriguing and distinctive perspectives, enabling a more

profound comprehension of the context.

With these limitations in mind, this dissertation opens up several exciting

research directions that can be studied in the future:

• Firstly, our study can be extended to improve the generalizability of our

proposed frameworks. There are two aspects of generalizability we can

improve upon, namely: (a) domain generalizability, and (b) scale gener-

alizability. In this dissertation, we have conducted our research on film

and music news domains only. To generalize the results to other domains,

we need to construct more datasets covering other domains. An important

future direction is to develop new ways to collect much larger datasets for

contextual information retrieval research.

• Secondly, our proposed methods can be extended to handle inputs with-

out entity linkage. Given the existing research suggesting that the inclu-

sion of contextual information enhances entity linking accuracy [40], it

is worthwhile to investigate the potential of jointly linking entities and

retrieving/generating contextual paths. Such an exploration could poten-

tially lead to improvements in CPR/CPG accuracy as well.

177

CHAPTER 7. CONCLUSION

• Thirdly, there is potential to explore contextual information retrieval tasks

beyond CPR and CPG. For instance, instead of returning contextual paths,

researchers can investigate tasks that involve retrieving graph structures

or text results as part of the retrieval process. Utilizing more complex

structure to represent contextual information can offer amore holistic view

of the interaction among entities mentioned in the contextual document.

• Fourthly, our proposed meta-framework can be adapted to contexts be-

yond text. For example, the meta-framework can be extended to consider

multimedia or more complex context. Considering the advancements in

multimedia and NLP, we envisage that new context definitions and con-

textual information retrieval tasks will pave the way to many novel and

interesting future works.

Finally, to conclude, this dissertation is clearly one early attempt to con-

nect one entity to another entity with information embedded in context. In the

process of establishing connections, we may retrieve existing connections from

knowledge graphs or generate new connections to enrich the existing knowledge

graphs. This demonstrates the symbiotic relationship between contextual infor-

mation retrieval and knowledge graph. At the higher level, entities are not the

only dots to be connected. With further research, we hopefully will be able to

connect more complex information structures such as relation edges, subgraphs,

and beyond.

178

Appendices

179

Appendix A

Construction of Real and Synthetic

Data Collections

There were no publicly available datasets for contextual path retrieval and con-

textual path generation experiments and evaluation. Hence, we construct three

datasets, two real datasets and one synthetic dataset fromWikiNews articles, and

recruit Amazon Mechanical Turk workers to annotate WikiNews1 news articles.

We extract a subset of DBpedia data as the input knowledge graph. DBpedia2 is a

knowledge base created for Wikipedia articles. Each article entry in Wikipedia

corresponds to an entity in DBpedia. The entity’s attributes are usually found

within the infobox of the corresponding article entry. The attribute value is an-

other DBpedia entity corresponding to another Wikipedia entry. The attribute

label corresponds to the relation label. In the following, we elaborate on how

our knowledge graph is extracted from DBpedia, how the input entity pairs and

context documents are obtained, and how the contextual paths for entity pairs

are determined.
1https://en.wikinews.org
2https://wiki.dbpedia.org

180

APPENDIX A. CONSTRUCTION OF REAL AND SYNTHETIC DATA COLLECTIONS

Figure A.1: Annotation Interface

A.1 Wikinews Datasets

To construct a real dataset, we crowd-sourced annotations of contextual paths for

two sets of Wikinews articles. Each Wikinews article serves as a context docu-

ment. Wikinews is ideal for a number of reasons: (1) Wikinews articles are well

written, (2) they are already classified into categories according to its topic, (3)

they areWikified, that is, the entity mentions are linked to theWikipedia entries,

and (4) the knowledge graph of entities and relations in Wikinews can be found

in DBpedia. In this work, we select 40 articles under Film category and another

40 underMusic category. We name the two datasetsWiki-film andWiki-music.

The Wikinews archive is publicly available 3. Since not every AMT worker is

familiar with films, the annotation of contextual paths inWikinews article is non-

trivial. Furthermore, an entity pair could have a lot of candidate contextual paths

between them. We thus split the annotation into two phases: (P1) one-hop path

annotation and (P2) multi-hop path annotation. To derive longer-hop paths

for annotation, we also augment the Wikinews articles with additional sentences

covering more entities between P1 and P2.
3https://dumps.wikimedia.org/

181

APPENDIX A. CONSTRUCTION OF REAL AND SYNTHETIC DATA COLLECTIONS

A.1.1 P1: One-hop Path Annotation.

In this phase, we extract all one-hop relations from DBpedia between a pair

of entities in an article. An annotator is asked to identify whether the one-hop

relation could explain the co-occurrence of the two entities. Figure A.1 is a

screenshot of our annotation interface showing a Wikinews article displayed as

a set of sentences and the entity pair highlighted and underlined (i.e., Alfonso

Cuarón andChildren ofMen). The annotator is required to determine if a relation

Alfonso Cuarón director−−−−→ Children of Men can explain the co-occurrence. To

know more about the entities, the annotator can click on any highlighted entity

and browse its Wikipedia page on the right. At the end of this annotation task,

some entity pairs in an article have their contextual paths identified while other

entity pairs have none. The latter can be due to either no contextual paths or

longer contextual paths connecting them.

To further control the annotation quality, the annotator went through a brief

online tutorial. We also designed a qualification test to exclude annotators who

fail to get 8 correct answers out of 10 entity pairs. The annotator was also not

allowed to give his/her answer until all sentences of the article are read (i.e.,

scrolling to the end of the article). For a one-hop relation to be used as a ground

truth contextual path, we require it to be selected by at least two out of three

annotators.

A.1.2 P2: Augmentation of Entity Network.

After the one-hop path annotation, each article has a set of entities and their one-

hop contextual paths. We then constructed a network connecting all these entities

with the paths. From this entity network, we seek to generate longer contextual

paths for other pairs of entities that co-occurring in the article. However, we

found the combined contextual paths form multiple star networks such that each

star network involves a hub entity connecting to many other entities in the article

182

APPENDIX A. CONSTRUCTION OF REAL AND SYNTHETIC DATA COLLECTIONS

Figure A.2: Star Network

Figure A.3: Network with an Inserted Entity

as shown in Figure A.2. This limits the longest path to be two-hops. To diversify

the contextual paths, we manually add new entities to the entity networks to

increase connectivity as well as to permit longer paths to be generated. For

example, Figure A.3 shows a newly inserted entity A to allow longer paths, e.g.,

fromB to D to A and to C. To preserve the context, the added entities are required

to be very relevant to the existing entities in the article.

Let the current entities of the document d be Ed. For each entity e in Ed, we

consider augmenting the entity network with e’s neighboring entities currently

not in Ed but exist in the knowledge graph, DBpedia in this case. For a neigh-

boring entity of e, say en, to be added to Ed, en must have relation to at least

another entity e′ ∈ Ed. Moreover, we need to sample a sentence s from some

paragraphs in e, e′ and en’s Wikipedia articles that cover both en and at least one

of e and e′. s is then inserted into d right after the sentence containing e′. Other-

wise, we will not insert en intoEd. In total, we have added 85 additional entities

to the dataset, while the number of articles remains to be 40. The algorithm is

shown in Algorithm 3.

183

APPENDIX A. CONSTRUCTION OF REAL AND SYNTHETIC DATA COLLECTIONS

Algorithm 3: Completion of Entity Network
input : Document d, Entity set Ed of d
output: Document d′, Entity set E ′

d

initialization;
for entity e in Ed do

for en in e’s neighbors in the knowledge graph and en ̸∈ Ed do
if en has relation with some other entity e′ in Ed then

Sample a sentence s from e, e′ or en’s Wikipedia page;
Insert s into d after the first sentence containing e′ in d;
Insert en to Ed;

end
end

Consider the example Wikinews article in Figure A.14: ‘Children of Men,

a movie based on a P.D. James book, has won the 2006 USC Scripter Award

for its writing.... The winning screenwriters are Alfonso Cuarón, Timothy J.

Sexton... Alfonso Cuarón Orozco was born in Mexico City, the son of Alfredo

Cuarón. The Children of Men was James’ 12th book, written in 1992..” Sup-

pose Children of Men and Alfonso Cuarón are entities already in the article.

Suppose Mexico City is a new common neighboring entity not in the original

article, we may insert the sampled sentence s (underlined) right after the first

sentence which see the appearance of Alfonso Cuarón so as to have s works

as background information of the new entity. This mechanism allows us to ex-

tend the size of the entity network of a document, while maintaining a natural

narrative.

A.1.3 P2: Multi-hop Path Annotation

After the augmentation of entity network from P1, we conduct another task to

collect annotations for multi-hop paths. Consider the example in Figure A.3,

there are two paths from entity A to entity B: A→C→D→B and A→D→B. In

P2, we need annotators to decide which path is more likely to be the contex-

tual path. We implemented a user interface similar to that of P1. Again, the
4https://en.wikinews.org/wiki/%22Children_of_Men%22_wins_Scripter_Award_for_writing

184

APPENDIX A. CONSTRUCTION OF REAL AND SYNTHETIC DATA COLLECTIONS

annotators need to pass a qualification test including 10 questions with accuracy

higher than 80%, and we derive the ground truth annotated paths with majority

vote. Eventually, we collected the contextual paths for 1396 and 1237 entity

pairs for Wiki-film and Wiki-music dataset, respectively. The statistics of the

two datasets are shown in Table A.1.

A.2 Synthetic Dataset

While real datasets are useful for performance evaluation in real world appli-

cations, they are costly to construct and hence too small to evaluate models for

different task settings (e.g., queries with different number of candidate paths,

queries with different length of contextual path...). This motivates us to con-

struct a synthetic dataset with controllable dataset characteristics.

A.2.1 Knowledge Graph Construction

The first step to generating our synthetic dataset is to sample a subset of the

knowledge graph that are dedicated to a certain domain. As one of our datasets

are related to films, we have determined film related entities and relations in

DBpedia to be included in our knowledge graph. The entities include DBpedia

entries of types: Artist,Work,MovieDirector,TelevisionDirector,TheatreDi-

rector, Writer, Person, and Film. From these entities, we find the DBpedia

relations between them. In this manner, we use a knowledge graph GFilm =

(EFilm, LFilm, RFilm, F Film).

A.2.2 Generation of Paths

We next generate a set of distinctive contextual paths which will be used for

the construction of context documents. To generate a path p, we first sample an

entity eh from EFilm and assign ⟨eh⟩ to p. Subsequently, we sample a neigh-

bor e1 of eh with relation label r1 from LFilm and append ⟨r1, e1⟩ to p. The

185

APPENDIX A. CONSTRUCTION OF REAL AND SYNTHETIC DATA COLLECTIONS

Algorithm 4: Synthetic Path Generation
input : Set of entities EFilm, Maximum length of path t
output: Synthetic path p
Uniformly sample an entity eh from EFilm;
p = ⟨eh⟩;
while length(p) ≤ t do

Sample a neighbor ei of eh related by label r from LFilm;
p += ⟨r, ei⟩;
eh ← ei;
Throw a die di ∈ [0, 1];
if di ≤ 0.2 then

break;
end

sampling repeats for the neighbors of e1 until |p| reaches a length threshold t or

when a path-termination event occurs with 20% chance. In each iteration, there

is a chance of 20% that the sampling process will terminate with a complete

contextual path, before we move on to generate the next contextual path. The

pseudo code for the path generation is shown in Algorithm 4. In this work, we

empirically set t to be 6. We exclude duplicate paths in the generation process.

A.2.3 Generation of Context Documents

While the generation of contextual paths is solely based on sampling GFilm, we

synthesize a context document d for each contextual path p by sampling sen-

tences from Wikipedia articles covering the relations in p. Let a contextual path

be denoted by p = ⟨eh, r1, e1, · · · , et⟩. The context document generation steps

are depicted in Algorithm 5. We begin by sampling a relation (ei, r, ej) from

p. Let the Wikipedia articles of ei and ej be di and dj respectively. We then

sample a sentence with a probability psent from a paragraph in either di or dj . To

enhance the “relevance” of the sampled sentence, we sample from paragraphs

in the di and dj that contain the mentions of both ei and ej . In addition, with a

smaller probability pintro, we sample from the introduction section of di (or d2)

to mimic the natural writing style, that provide some background knowledge of

ei (or ej) as part of the context. Finally, we sample with very small probability

186

APPENDIX A. CONSTRUCTION OF REAL AND SYNTHETIC DATA COLLECTIONS

Algorithm 5: Synthetic Document Generation
input : Path p generated using Alg 4, Maximum number of sentences

in a document n
output: Synthetic Document d
d = {};
while |d| ≤ n do

Uniformly sample a relation (ei, r, ej) from p;
di = Wikipedia article of ei;
dj = Wikipedia article of ej;
Throw a die di ∈ [0, 1];
if 0 ≤ di < psent then

Sample a sentence s from paragraphs containing both ei and ej
in di or dj;

else if psent ≤ di < psent + pintro then
Sample a sentence s from the Introduction paragraph of di or dj;

else
Sample a sentence s from the rest of the paragraphs of di or dj;

end
d += s

end

from the remaining sentences of di and dj to add noises to the context document

d. In this work, we empirically set psent and pintro to 0.6 and 0.3 respectively as

shown in Algorithm 5. We leave the comparison of different ways of generation

to future work.

In this work, we generate two synthetic datasets of different scale, namely

Synthetic(S) and (L). We show the statistics of the two synthetic datasets and

two real-world datasets in Table A.1.

187

APPENDIX A. CONSTRUCTION OF REAL AND SYNTHETIC DATA COLLECTIONS

Table A.1: Dataset Statistics

Synthetic Wikinews
S L Wiki-film Wiki-music

Context Documents 2,000 80,000 40 40
Entity Pairs 5,000 200,000 1,396 1,237
Max Path Length 6 6 6 6

Entities in Knowledge Graph 59,173 91,364 59,173 44,886
Relations in Knowledge Graph 651 651 651 513

AVG Ground Truth (GT) Path Length 4 4 3.87 3.62
Distinct Entities in GT Path 19,173 33,142 563 471
Distinct Relations in GT Path 648 648 139 108

Avg # Candidate Paths per Entity Pair 8.76 7.93 7.69 5.53
AVG Candidate Path Length (including GT) 4.83 4.77 3.92 3.58
Distinct Entities in Candidate Paths (including GT) 53,382 72,163 7,264 5,994
Distinct Relations in Candidate Paths (including GT) 651 651 163 122

188

Bibliography

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,

Michael Isard, et al. Tensorflow: A system for large-scale machine learn-

ing. In OSDI, 2016.

[2] Nitish Aggarwal, Sumit Bhatia, and Vinith Misra. Connecting the dots:

Explaining relationships between unconnected entities in a knowledge

graph. In ESWC, 2016.

[3] Qingyao Ai, Vahid Azizi, Xu Chen, and Yongfeng Zhang. Learning het-

erogeneous knowledge base embeddings for explainable recommenda-

tion. Algorithms, 11(9), 2018.

[4] KM Annervaz, Somnath Basu Roy Chowdhury, and Ambedkar

Dukkipati. Learning beyond datasets: Knowledge graph augmented neu-

ral networks for natural language processing. In NAACL, 2018.

[5] Akari Asai, Kazuma Hashimoto, Hannaneh Hajishirzi, Richard Socher,

and Caiming Xiong. Learning to retrieve reasoning paths over wikipedia

graph for question answering. In ICLR, 2020.

[6] Stephen H. Bach, Matthias Broecheler, Bert Huang, and Lise Getoor.

Hinge-loss markov random fields and probabilistic soft logic. The Jour-

nal of Machine Learning Research, 18(1):3846–3912, Jan 2017.

189

BIBLIOGRAPHY

[7] Lalit R. Bahl, Frederick Jelinek, and Robert L. Mercer. A maximum like-

lihood approach to continuous speech recognition. IEEE Transactions on

Pattern Analysis and Machine Intelligence, PAMI-5(2):179–190, 1983.

[8] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin.

A neural probabilistic language model. JMLR, 3:1137–1155, 2003.

[9] Sumit Bhatia, Purusharth Dwivedi, and Avneet Kaur. That’s interesting,

tell me more! finding descriptive support passages for knowledge graph

relationships. In ISWC, 2018.

[10] Roi Blanco and Hugo Zaragoza. Finding support sentences for entities.

In SIGIR, 2010.

[11] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie

Taylor. Freebase: A collaboratively created graph database for structuring

human knowledge. In SIGMOD, 2008.

[12] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston,

and Oksana Yakhnenko. Translating embeddings for modeling multi-

relational data. In NeurIPS. 2013.

[13] Diane Bouchacourt, Ryota Tomioka, and Sebastian Nowozin. Multi-level

variational autoencoder: Learning disentangled representations from

grouped observations. In AAAI, 2018.

[14] Kiante Brantley, Kyunghyun Cho, Hal Daumé, and Sean Welleck. Non-

monotonic sequential text generation. In Workshop on Widening NLP,

2019.

[15] Sebastian Bruch. An alternative cross entropy loss for Learning-to-Rank,

November 2019.

[16] C J Burges. From ranknet to lambdarank to lambdamart. 2010.

190

BIBLIOGRAPHY

[17] Yixin Cao, Xiang Wang, Xiangnan He, Zikun Hu, and Tat-Seng Chua.

Unifying knowledge graph learning and recommendation: Towards a bet-

ter understanding of user preferences. InWWW, 2019.

[18] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning

to rank: from pairwise approach to listwise approach. In ICML, pages

129–136, June 2007.

[19] Shiyu Chang, Wei Han, Jiliang Tang, Guo-Jun Qi, Charu C Aggarwal,

and Thomas S Huang. Heterogeneous network embedding via deep ar-

chitectures. In KDD, 2015.

[20] Shubham Chatterjee and Laura Dietz. Why does this entity matter? sup-

port passage retrieval for entity retrieval. In SIGIR, 2019.

[21] Shubham Chatterjee and Laura Dietz. Entity retrieval using fine-grained

entity aspects. In SIGIR, 2021.

[22] Hongxu Chen, Yicong Li, Xiangguo Sun, Guandong Xu, and Hongzhi

Yin. Temporalmeta-path guided explainable recommendation. InWSDM,

2021.

[23] Ryan Clancy, Ihab F Ilyas, and Jimmy Lin. Scalable knowledge graph

construction from text collections. In Workshop on Fact Extraction and

VERification, 2019.

[24] Zhihong Cui, Hongxu Chen, Lizhen Cui, Shijun Liu, Xueyan Liu, Guan-

dong Xu, and Hongzhi Yin. Reinforced kgs reasoning for explainable

sequential recommendation. World Wide Web, 25:631–654, 2022.

[25] Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan

Durugkar, Akshay Krishnamurthy, Alex Smola, and Andrew McCallum.

Go for a walk and arrive at the answer: Reasoning over paths in knowl-

edge bases using reinforcement learning. In ICLR, 2018.

191

BIBLIOGRAPHY

[26] Rajarshi Das, Arvind Neelakantan, David Belanger, and Andrew McCal-

lum. Chains of reasoning over entities, relations, and text using recurrent

neural networks. In 15th Conference of the European Chapter of the As-

sociation for Computational Linguistics (EACL), 2017.

[27] Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank,

Piero Molino, Jason Yosinski, and Rosanne Liu. Plug and play language

models: A simple approach to controlled text generation. ICLR, 2020.

[28] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian

Riedel. Convolutional 2d knowledge graph embeddings. In AAAI, 2018.

[29] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

Bert: Pre-training of deep bidirectional transformers for language under-

standing. In NAACL, 2019.

[30] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. Metapath2Vec:

Scalable representation learning for heterogeneous networks. In KDD,

2017.

[31] Zhengxiao Du, Chang Zhou, Jiangchao Yao, Teng Tu, Letian Cheng,

Hongxia Yang, Jingren Zhou, and Jie Tang. CogKR: Cognitive graph

for multi-hop knowledge reasoning. IEEE Transactions on Knowledge

and Data Engineering (TKDE), page 1–1, 2021.

[32] Babak Esmaeili, Hao Wu, Sarthak Jain, Alican Bozkurt, N Siddharth,

Brooks Paige, Dana H Brooks, Jennifer Dy, and Jan-Willem van de

Meent. Structured disentangled representations. In PMLR, volume 89,

pages 2525–2534, 2019.

[33] Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar, Chris Dyer, Eduard

Hovy, and NoahA. Smith. Retrofitting word vectors to semantic lexicons.

In NAACL, 2015.

192

BIBLIOGRAPHY

[34] Cong Fu, Tong Chen, Meng Qu, Woojeong Jin, and Xiang Ren. Collab-

orative policy learning for open knowledge graph reasoning. In EMNLP,

2019.

[35] Hongchang Gao and Heng Huang. Deep Attributed Network Embedding.

In IJCAI, pages 3364–3370, 2018.

[36] Zhiqiang Geng, Yanhui Zhang, and Yongming Han. Joint entity and

relation extraction model based on rich semantics. Neurocomputing,

429:132–140, 2021.

[37] Fréderic Godin, Anjishnu Kumar, and Arpit Mittal. Learning when not

to answer: a ternary reward structure for reinforcement learning based

question answering. In NeurIPs Workshop in Relational Representation

Learning, 2019.

[38] Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and

Daan Wierstra. Draw: A recurrent neural network for image generation.

arXiv preprint arXiv:1502.04623, 2015.

[39] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning

for networks. KDD, 2016.

[40] Nitish Gupta, Sameer Singh, and Dan Roth. Entity linking via joint en-

coding of types, descriptions, and context. In EMNLP, 2017.

[41] Benjamin Heitmann and Conor Hayes. Using linked data to build open,

collaborative recommender systems. In 2010 AAAI Spring Symposium

Series, 2010.

[42] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.

Neural computation, 9(8):1735–1780, 1997.

[43] Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino, Hagen Fürste-

nau, Manfred Pinkal, Marc Spaniol, Bilyana Taneva, Stefan Thater, and

193

BIBLIOGRAPHY

Gerhard Weikum. Robust disambiguation of named entities in text. In

EMNLP, 2011.

[44] John L Holland. A theory of vocational choice. Journal of counseling

psychology, 6(1):35, 1959.

[45] Binbin Hu, Chuan Shi, Wayne Xin Zhao, and Philip S Yu. Leverag-

ing meta-path based context for top-n recommendation with a neural co-

attention model. In SIGKDD, 2018.

[46] Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdinov, and

Eric P Xing. Toward controlled generation of text. In ICML, 2017.

[47] Feiran Huang, Xiaoming Zhang, Chaozhuo Li, Zhoujun Li, Yueying He,

and Zhonghua Zhao. Multimodal network embedding via attention based

multi-view variational autoencoder. In ICMR, 2018.

[48] Xiao Huang, Jundong Li, and Xia Hu. Accelerated attributed network

embedding. In SDM, 2017.

[49] Xiao Huang, Jundong Li, and Xia Hu. Label informed attributed network

embedding. In WSDM, 2017.

[50] Xiao Huang, Jingyuan Zhang, Dingcheng Li, and Ping Li. Knowledge

graph embedding based question answering. InWSDM, 2019.

[51] Wiradee Imrattanatrai, Makoto P. Kato, and Masatoshi Yoshikawa. Iden-

tifying entity properties from text with zero-shot learning. In SIGIR, 2019.

[52] Guoliang Ji, Kang Liu, Shizhu He, and Jun Zhao. Knowledge graph com-

pletion with adaptive sparse transfer matrix. Feb. 2016.

[53] Zhuxi Jiang, Yin Zheng, Huachun Tan, Bangsheng Tang, and Hanning

Zhou. Variational deep embedding: An unsupervised and generative ap-

proach to clustering. arXiv preprint arXiv:1611.05148, 2016.

194

BIBLIOGRAPHY

[54] Di Jin, Bingyi Li, Pengfei Jiao, Dongxiao He, and Weixiong Zhang.

Network-specific variational auto-encoder for embedding in attribute net-

works. In IJCAI, 2019.

[55] Amina Kadry and Laura Dietz. Open relation extraction for support pas-

sage retrieval: Merit and open issues. In SIGIR, 2017.

[56] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong

Ma, Qiwei Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient

boosting decision tree. Adv. Neural Inf. Process. Syst., 30:3146–3154,

2017.

[57] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-

mization. ICLR, 2015.

[58] Diederik P Kingma and Max Welling. Auto-encoding variational bayes.

In ICLR, 2013.

[59] Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max

Welling. Semi-supervised learning with deep generative models. In

NeurIPS, 2014.

[60] Thomas N Kipf and Max Welling. Semi-supervised classification with

graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[61] Thomas NKipf andMaxWelling. Variational graph auto-encoders. 2016.

[62] Markus Krötzsch, MaximilianMarx, Ana Ozaki, and Veronika Thost. At-

tributed description logics: Reasoning on knowledge graphs. In IJCAI,

2018.

[63] AshutoshKumar, Kabir Ahuja, RaghuramVadapalli, and Partha Talukdar.

Syntax-Guided Controlled Generation of Paraphrases. TACL, 8:330–345,

06 2020.

195

BIBLIOGRAPHY

[64] Souvik Kundu, Tushar Khot, Ashish Sabharwal, and Peter Clark. Exploit-

ing explicit paths for multi-hop reading comprehension. In ACL, 2019.

[65] Quoc Le and Tomas Mikolov. Distributed representations of sentences

and documents. In International Conference on Machine Learning, 2014.

[66] Hang Li, Haozheng Wang, Zhenglu Yang, and Haochen Liu. Effective

representing of information network by variational autoencoder. In IJCAI,

2017.

[67] Zixuan Li, Xiaolong Jin, Saiping Guan, Yuanzhuo Wang, and Xueqi

Cheng. Path reasoning over knowledge graph: A multi-agent and re-

inforcement learning based method. In ICDMW, 2018.

[68] Zixuan Li, Xiaolong Jin, Wei Li, Saiping Guan, Jiafeng Guo, Huawei

Shen, Yuanzhuo Wang, and Xueqi Cheng. Temporal knowledge graph

reasoning based on evolutional representation learning. In SIGIR, 2021.

[69] Bill Yuchen Lin, Xinyue Chen, Jamin Chen, and Xiang Ren. Kag-

net: Knowledge-aware graph networks for commonsense reasoning. In

EMNLP-IJCNLP, 2019.

[70] Qika Lin, Jun Liu, Yudai Pan, Lingling Zhang, Xin Hu, and Jie Ma. Rule-

enhanced iterative complementation for knowledge graph reasoning. Inf.

Sci., 575:66–79, 2021.

[71] Xi Victoria Lin, Richard Socher, and Caiming Xiong. Multi-hop knowl-

edge graph reasoning with reward shaping. In EMNLP, 2018.

[72] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learn-

ing entity and relation embeddings for knowledge graph completion.

2015.

196

BIBLIOGRAPHY

[73] Hao Liu, Shuwang Zhou, Changfang Chen, Tianlei Gao, Jiyong Xu, and

Minglei Shu. Dynamic knowledge graph reasoning based on deep rein-

forcement learning. Knowledge-Based Systems, 241:108235, Apr 2022.

[74] Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju, Haotang Deng,

and Ping Wang. K-BERT: Enabling language representation with knowl-

edge graph. In AAAI, 2020.

[75] Ye Liu, YaoWan, LifangHe, Hao Peng, and Philip SYu. Kg-bart: Knowl-

edge graph-augmented bart for generative commonsense reasoning. In

AAAI, 2021.

[76] Chaitanya Malaviya, Chandra Bhagavatula, Antoine Bosselut, and Yejin

Choi. Commonsense knowledge base completion with structural and se-

mantic context. AAAI, 34(03):2925–2933, Apr 2020.

[77] Aman Mehta, Aashay Singhal, and Kamalakar Karlapalem. Scalable

knowledge graph construction over text using deep learning based predi-

cate mapping. InWWW, 2019.

[78] Zaiqiao Meng, Shangsong Liang, Hongyan Bao, and Xiangliang Zhang.

Co-embedding attributed networks. InWSDM, 2019.

[79] Zaiqiao Meng, Shangsong Liang, Jinyuan Fang, and Teng Xiao. Semi-

supervisedly co-embedding attributed networks. In NeurIPS, 2019.

[80] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient

estimation of word representations in vector space, January 2013.

[81] Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise Thomson, Milica Gašić,

Lina M Rojas-Barahona, Pei-Hao Su, David Vandyke, Tsung-Hsien Wen,

and Steve Young. Counter-fitting word vectors to linguistic constraints.

In NAACL-HLT, 2016.

197

BIBLIOGRAPHY

[82] Dai Quoc Nguyen, Tu Dinh Nguyen, Dat Quoc Nguyen, and Dinh Phung.

A novel embedding model for knowledge base completion based on con-

volutional neural network. In NAACL, 2018.

[83] Shirui Pan, Jia Wu, Xingquan Zhu, Chengqi Zhang, and YangWang. Tri-

party deep network representation. In IJCAI, 2016.

[84] Hao Peng, Ankur P. Parikh, Manaal Faruqui, Bhuwan Dhingra, and Das

Dipanjan. Text generation with exemplar-based adaptive decoding. In

NAACL, 2019.

[85] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove:

Global vectors for word representation. In EMNLP, 2014.

[86] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online

learning of social representations. In KDD, 2014.

[87] Giuseppe Pirrò. Explaining and suggesting relatedness in knowledge

graphs. In ISWC, 2015.

[88] Lin Qiu, Yunxuan Xiao, Yanru Qu, Hao Zhou, Lei Li, Weinan Zhang, and

Yong Yu. Dynamically fused graph network for multi-hop reasoning. In

ACL, 2019.

[89] Meng Qu and Jian Tang. Probabilistic logic neural networks for reason-

ing. In NeurIPs, 2019.

[90] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and

Ilya Sutskever. Language models are unsupervised multitask learners.

2019.

[91] Raymond Reiter. On closed world data bases. In Readings in artificial

intelligence, pages 119–140. Elsevier, 1981.

[92] Hongyu Ren, Hanjun Dai, Bo Dai, Xinyun Chen, Michihiro Yasunaga,

Haitian Sun, Dale Schuurmans, Jure Leskovec, and Denny Zhou. Lego:

198

BIBLIOGRAPHY

Latent execution-guided reasoning for multi-hop question answering on

knowledge graphs. In ICML, volume 139 of PLMR, pages 8959–8970,

2021.

[93] Apoorv Saxena, Aditay Tripathi, and Partha Talukdar. Improving multi-

hop question answering over knowledge graphs using knowledge base

embeddings. In ACL, 2020.

[94] Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi Jaakkola. Style

transfer from Non-Parallel text by Cross-Alignment. In NeurIPS, 2017.

[95] Baoxu Shi and Tim Weninger. Proje: Embedding projection for knowl-

edge graph completion. Feb. 2017.

[96] Yu Shi, Huan Gui, Qi Zhu, Lance Kaplan, and Jiawei Han. Aspem: Em-

bedding learning by aspects in heterogeneous information networks. In

SDM, 2018.

[97] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output

representation using deep conditional generative models. In NeurIPS,

2015.

[98] Linfeng Song, Zhiguo Wang, Mo Yu, Yue Zhang, Radu Florian, and

Daniel Gildea. Evidence integration for multi-hop reading comprehen-

sion with graph neural networks. IEEE Transactions on Knowledge and

Data Engineering, 34(2):631–639, Feb 2022.

[99] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. RotatE:

Knowledge graph embedding by relational rotation in complex space. In

ICLR, 2019.

[100] Alon Talmor and Jonathan Berant. The web as a knowledge-base for

answering complex questions. In NAACL, June 2018.

199

BIBLIOGRAPHY

[101] Jian Tang, Meng Qu, MingzheWang, Ming Zhang, Jun Yan, and Qiaozhu

Mei. Line: Large-scale information network embedding. In TheWebConf,

2015.

[102] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su.

Arnetminer: extraction andmining of academic social networks. InKDD,

2008.

[103] Xing Tang, Ling Chen, Jun Cui, and Baogang Wei. Knowledge repre-

sentation learning with entity descriptions, hierarchical types, and textual

relations. IP&M, 56:809–822, 2019.

[104] Théo Trouillon, Christopher R. Dance, Éric Gaussier, Johannes Welbl,

Sebastian Riedel, and Guillaume Bouchard. Knowledge graph comple-

tion via complex tensor factorization. Journal of Machine Learning Re-

search, 18(130):1–38, 2017.

[105] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Eric Gaussier, and

Guillaume Bouchard. Complex embeddings for simple link prediction.

In ICML, 2016.

[106] Ming Tu, Kevin Huang, Guangtao Wang, Jing Huang, Xiaodong He, and

Bowen Zhou. Select, answer and explain: Interpretable Multi-Hop read-

ing comprehension over multiple documents. In AAAI, 2020.

[107] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N Gomez, Ł Ukasz Kaiser, and Illia Polosukhin. Attention

is all you need. In NeurIPS, 2017.

[108] Severine Verlinden, Klim Zaporojets, Johannes Deleu, Thomas De-

meester, and Chris Develder. Injecting knowledge base information into

end-to-end joint entity and relation extraction and coreference resolution.

In ACL-IJCNLP, 2021.

200

BIBLIOGRAPHY

[109] Nikos Voskarides, EdgarMeij, andMaarten de Rijke. Generating descrip-

tions of entity relationships. In ECIR, 2017.

[110] Nikos Voskarides, Edgar Meij, Manos Tsagkias, Maarten De Rijke, and

Wouter Weerkamp. Learning to explain entity relationships in knowledge

graphs. In ACL, 2015.

[111] Guojia Wan and Bo Du. Gaussianpath:a bayesian multi-hop reasoning

framework for knowledge graph reasoning. Proceedings of the AAAI Con-

ference on Artificial Intelligence, 35(5):4393–4401, May 2021.

[112] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network em-

bedding. In KDD, 2016.

[113] Peifeng Wang, Nanyun Peng, Pedro Szekely, and Xiang Ren. Connect-

ing the dots: A knowledgeable path generator for commonsense question

answering. In EMNLP, 2020.

[114] Suhang Wang, Charu Aggarwal, Jiliang Tang, and Huan Liu. Attributed

signed network embedding. In CIKM, 2017.

[115] Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua.

Kgat: Knowledge graph attention network for recommendation. In KDD,

2019.

[116] Xiang Wang, Dingxian Wang, Canran Xu, Xiangnan He, Yixin Cao, and

Tat-Seng Chua. Explainable reasoning over knowledge graphs for rec-

ommendation. In AAAI, 2019.

[117] Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan Zhang, Zhiyuan

Liu, Juanzi Li, and Jian Tang. Kepler: A unified model for knowledge

embedding and pre-trained language representation. Transactions of the

Association for Computational Linguistics, 9:176–194, 2021.

201

BIBLIOGRAPHY

[118] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge

graph embedding by translating on hyperplanes. 2014.

[119] Johannes Welbl, Pontus Stenetorp, and Sebastian Riedel. Constructing

datasets for multi-hop reading comprehension across documents. Trans-

actions of the Association for Computational Linguistics, 6:287–302,

2018.

[120] Robert West, Evgeniy Gabrilovich, Kevin Murphy, Shaohua Sun, Rahul

Gupta, and Dekang Lin. Knowledge base completion via search-based

QA. In WWW, 2014.

[121] Ian H Witten and David N Milne. An effective, low-cost measure of

semantic relatedness obtained from wikipedia links. In AAAI Workshop

on Wikipedia and Artificial Intelligence: an Evolving Synergy, 2008.

[122] Jiapeng Wu, Meng Cao, Jackie Chi Kit Cheung, and William L. Hamil-

ton. Temp: Temporal message passing for temporal knowledge graph

completion. In EMNLP, 2020.

[123] Yikun Xian, Zuohui Fu, SMuthukrishnan, Gerard deMelo, and Yongfeng

Zhang. Reinforcement knowledge graph reasoning for explainable rec-

ommendation. In SIGIR, 2019.

[124] Chenyan Xiong, Russell Power, and Jamie Callan. Explicit semantic

ranking for academic search via knowledge graph embedding. InWWW,

pages 1271–1279, 2017.

[125] Wenhan Xiong, Thien Hoang, and William Yang Wang. DeepPath: A re-

inforcement learning method for knowledge graph reasoning. In EMNLP,

2017.

[126] Kun Xu, Siva Reddy, Yansong Feng, Songfang Huang, and Dongyan

Zhao. Question answering on Freebase via relation extraction and tex-

tual evidence. In ACL, 2016.

202

BIBLIOGRAPHY

[127] Weidi Xu, Haoze Sun, Chao Deng, and Ying Tan. Variational autoencoder

for semi-supervised text classification. In AAAI, 2017.

[128] Ikuya Yamada, Hiroyuki Shindo, Hideaki Takeda, and Yoshiyasu Take-

fuji. Joint learning of the embedding of words and entities for named

entity disambiguation. In CoNLL, 2016.

[129] Xinchen Yan, Jimei Yang, Kihyuk Sohn, and Honglak Lee. At-

tribute2image: Conditional image generation from visual attributes. In

ECCV, 2016.

[130] Bishan Yang, Wen-Tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng.

Embedding entities and relations for learning and inference in knowledge

bases. In ICLR, 2015.

[131] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Chang.

Network representation learning with rich text information. In IJCAI,

2015.

[132] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen,

Ruslan Salakhutdinov, and Christopher DManning. HotpotQA: A dataset

for diverse, explainable multi-hop question answering. In EMNLP, 2018.

[133] Zichao Yang, Zhiting Hu, Chris Dyer, Eric P Xing, and Taylor Berg-

Kirkpatrick. Unsupervised text style transfer using language models as

discriminators. In NeurIPS. 2018.

[134] Liang Yao, Chengsheng Mao, and Yuan Luo. Kg-bert: Bert for knowl-

edge graph completion. In AAAI, 2020.

[135] Wenpeng Yin, Mo Yu, Bing Xiang, Bowen Zhou, and Hinrich Schütze.

Simple QA by Attentive Convolutional Neural Network. In COLING,

2016.

203

BIBLIOGRAPHY

[136] Xiao Yu, Xiang Ren, Quanquan Gu, Yizhou Sun, and Jiawei Han. Col-

laborative filtering with entity similarity regularization in heterogeneous

information networks. In IJCAI HINA, 2013.

[137] Ningyu Zhang, Xiang Chen, Xin Xie, Shumin Deng, Chuanqi Tan, Mosha

Chen, Fei Huang, Luo Si, and Huajun Chen. Document-level relation

extraction as semantic segmentation. In IJCAI, 2021.

[138] Ningyu Zhang, Shumin Deng, Zhanlin Sun, Guanying Wang, Xi Chen,

Wei Zhang, and Huajun Chen. Long-tail relation extraction via knowl-

edge graph embeddings and graph convolution networks. In NAACL,

2019.

[139] Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexander J Smola, and

Le Song. Variational reasoning for question answering with knowledge

graph. In AAAI, 2018.

[140] Zhen Zhang, Hongxia Yang, Jiajun Bu, Sheng Zhou, Pinggang Yu, Jian-

wei Zhang, Martin Ester, and Can Wang. Anrl: Attributed network rep-

resentation learning via deep neural networks. In IJCAI, 2018.

[141] Huan Zhao, Quanming Yao, Jianda Li, Yangqiu Song, and Dik Lun Lee.

Meta-Graph based recommendation fusion over heterogeneous informa-

tion networks. In KDD, 2017.

[142] Weiguo Zheng, Lei Zou, Wei Peng, Xifeng Yan, Shaoxu Song, and

Dongyan Zhao. Semantic sparql similarity search over rdf knowledge

graphs. PVLDB, 9(11):840–851, 2016.

[143] Mantong Zhou,Minlie Huang, andXiaoyan Zhu. An interpretable reason-

ing network for Multi-Relation question answering. In COLING, 2018.

[144] Jinhua Zhu, Yingce Xia, Lijun Wu, Di He, Tao Qin, Wengang Zhou,

Houqiang Li, and Tie-Yan Liu. Incorporating bert into neural machine

translation. ICLR, 2020.

204

BIBLIOGRAPHY

[145] Qiannan Zhu, Xiaofei Zhou, Jianlong Tan, and Li Guo. Knowledge base

reasoning with convolutional-based recurrent neural networks. IEEE

Transactions on Knowledge and Data Engineering, 33(5):2015–2028,

May 2021.

[146] Liu Zhuang, Lin Wayne, Shi Ya, and Zhao Jun. A robustly optimized

bert pre-training approach with post-training. In Proceedings of the 20th

Chinese National Conference on Computational Linguistics, 2021.

205

	Connecting the dots for contextual information retrieval
	Citation

	Introduction
	Motivation
	Research Objectives and Framework
	Summary of Dissertation Contributions
	Dissertation Structure

	Related Work
	Text and Knowledge Graph Representation Learning
	Contextual Retrieval of Knowledge
	Contextual Retrieval of Text Documents
	Contextual Item Recommendation
	Contextual Question Answering

	Co-Embedding Attributed Network Representation Learning
	Research Objective
	Related Work
	HIN Embeddings
	Variational Auto-encoder Embeddings

	Co-Embedding with External Knowledge
	Framework Overview
	Attribute-to-Attribute Association
	Input Matrices Construction
	Co-Embedding Learning

	Co-embedding Learning Using VAE
	CAN
	ECAN Models
	Mixed Model

	Experiments
	Datasets
	Baseline and Model Settings
	Running Time

	Results
	Node Classification
	Link Prediction
	Choice of Dimension Size

	Case Study
	Movie Profiling
	Error Analysis

	Summary

	Contextual Path Retrieval
	Research Objectives
	Contextual Path Retrieval
	Definitions
	Proposed ECPR Framework

	Context Encoder
	TF-IDF
	Averaged Embeddings
	Context-fused Entity Embeddings
	Contextualized Embedding Representation

	Path Encoder
	Path Ranker
	Binary Classifier
	Learning to Rank
	Training of Path Encoder and Ranker

	Experiments
	Model Settings
	Evaluation Metrics

	Experiment Results on Wikinews Datasets
	Path Embeddings with PathVAE
	AVG Embedding Encoders
	Context-fused Entity Context Encoder
	Contextualized Embeddings
	Results of Pank Rankers
	Overall Results
	Model Efficiency
	Case Example Analysis

	Analysis on Synthetic Datasets
	Model Performance on Large-scale Dataset (Synthetic-L)
	Similarity among Candidate Contextual Paths
	Number of Candidate Paths
	Length of Contextual Path

	CPR And Other IR Tasks
	Summary

	Contextual Path Generation: A Monotonic Approach
	Research Objective
	Problem Formulation
	Challenges

	Proposed Architecture and Models
	Overview of Model Architecture
	Context Encoder
	Controlled Path Generation
	Penalization Scaling
	Reward Scaling
	CPG Models

	Experiments on Real Datasets
	Wikinews Dataset
	Evaluation Metrics
	Models for Comparison
	Comparison of CPG Models
	Effects of Penalization/Reward Scaling
	Effects of Context Document Content Amount
	Error Type Analysis
	Inferring Relations in the Wiki-film Dataset

	Experiment on a Synthetic Dataset
	CPG Model Performance on the Synthetic-S Dataset
	Coping with Incomplete Knowledge Graphs

	Using a KGQA Model for CPG: A Model Adaptation Experiment
	Modified EmbedKGQA Model
	Experiment and Results

	Summary

	Contextual Path Generation: A Non-Monotonic Approach
	Research Objective
	Problem Definition

	Proposed Framework and Contextual Path Generation Models
	Two-Stage Framework
	Context Extractor
	Contextual Path Generator
	Tree Serialization

	Experiment Results
	Dataset
	Evaluation Metrics
	Effectiveness of Context Extractor Methods
	Performance in Contextual Path Generation
	Comparison between Non-monotonic and Monotonic Path Generation

	Discussion
	Summary

	Conclusion
	Appendices
	Construction of Real and Synthetic Data Collections
	Wikinews Datasets
	P1: One-hop Path Annotation.
	P2: Augmentation of Entity Network.
	P2: Multi-hop Path Annotation

	Synthetic Dataset
	Knowledge Graph Construction
	Generation of Paths
	Generation of Context Documents

	Bibliography

