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ABSTRACT

In this thesis, we develop novel nonparametric estimation techniques for two distinct

classes of models: (1) Generalized Additive Models with Unknown Link Functions (GAMULF)

and (2) Generalized Panel Data Transformation Models with Fixed Effects. Both models

avoid parametric assumptions on their respective link or transformation functions, as well

as the distribution of the idiosyncratic error terms.

The first chapter aims to provide an in-depth and systematic introduction to cross-

sectional and panel-data nonparametric transformation models, encompassing practical ap-

plications, a diverse range of estimation techniques, and the study of asymptotic properties.

We discuss the advantages and limitations of these models and estimation methods, delving

into the latest advancements and innovations in the field. Furthermore, we propose a poten-

tial approach to mitigate the curse of dimensionality in the context of fully nonparametric

transformation models with fixed effects in panel-data settings.

The second chapter proposes a three-stage nonparametric least squares (NPLS) esti-

mation procedure for the additive functions in the GAMULF. In the first stage, we esti-

mate conditional expectation by the local-linear kernel regression and then apply matching

method to the splines series to obtain initial estimators. In the second stage, we use the

local-polynomial kernel regression to estimate the link function. In the third stage, given

the estimators in Stages 1 and 2, we apply the local-linear kernel regression to refine the

initial estimator. The great advantage of such a procedure is that the estimators obtained

at all stages have closed-form expressions, which overcomes the computational hurdle for

existing estimators of the GAMULF model.

The third chapter proposes a multiple-stage Local Maximum Likelihood Estimator (LMLE)



for the structural functions in the generalized panel data transformation model with fixed

effects. In the first stage, we apply the regularized logistic sieve method to estimate the

sieve coefficients associated with the approximation of a composite function and then ap-

ply a matching method to obtain initial consistent estimators of the additive structural

functions. In the second stage, we apply the local polynomial method to estimate certain

composite function and its derivatives to be used later on. In the third stage we apply the

local linear method to obtain the refined estimator of the additive structural functions based

on the estimators obtained in Steps 1 and 2. The greatest advantage is that all minimization

problems are convex and thus overcome the computational hurdle for existing approaches

to the generalized panel data transformation model.

The final estimates of the additive terms in two models achieve the optimal one-dimensional

convergence rate, asymptotic normality and oracle efficiency. The Monte Carlo simulations

demonstrate that our new estimator performs well in finite samples.

The thesis demonstrates the effectiveness of the proposed nonparametric estimation tech-

niques in addressing the complexities of generalized additive models with unknown link

functions and panel data transformation models with fixed effects.
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Chapter One

Exploring Nonparametric

Transformation Models: A

Comprehensive Review of Current

Literature

Authors: Ying Xia

1.1 Introduction

Asymptotic properties of different forms of transformation models have also attracted sig-

nificant interest. Horowitz (1996) focuses on a transformation model with a nonparametric

transformation function and a parametric structural function. Chiappori, Komunjer and

Kristensen (2015) extend Horowitz’s method to a transformation model with both nonpara-

metric transformation and structural functions, considering endogeneity. Although fully

nonparametric transformation models avoid misspecification, they suffer from the curse of

dimensionality.

Inspired by the additive structure in generalized additive models with unknown link
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functions (Horowitz (2001), Horowitz and Mammen (2007), Horowitz and Mammen (2011),

Lin, Pan, Lv and Zhang (2018)), Chen, Lu and Wang (2022) propose a fully nonparametric

transformation model with fully additive structural functions. Additionally, they account

for unobserved individual heterogeneity, specifically fixed effects in panel data. Prior to

Chen et al. (2022), Horowitz and Lee (2004), Chen (2010), and Wang and Chen (2020) also

analyzed panel transformation models, but all assumed that the structural function was

parametric.

In summary, the transformation model has been widely studied and applied in various

fields of economics, with researchers continually developing and extending its properties and

applications. The exploration of fully nonparametric transformation models with additive

structural functions, as well as accounting for unobserved individual heterogeneity, has

expanded the model’s capabilities, although challenges such as the curse of dimensionality

still persist.

This chapter is organized as follows: Section 1 investigates the cross-sectional nonpara-

metric and semiparametric transformation models, providing an overview of their estima-

tions and asymptotic properties. Section 2 explores the panel-data nonparametric trans-

formation models, delving into their advantages, challenges, and promising future topics in

this area of research. Finally, Section 3 summarizes the key points discussed in the chapter.

1.2 Cross-sectional Nonparametric Transformation Model

Horowitz (1996) examines the subsequent model:

⇤(y) = x0� + u, (1.2.1)

where ⇤(·) represents an increasing and invertible function. To estimate � in Equation

(1.2.1) without knowledge of H(·), consider the following relationship:

2



m(x) = E(Y | x) = E
⇥
⇤�1(x0� + u)

⇤
= H(x0�). (1.2.2)

Here, Härdle and Stoker (1989) proposes the Average Derivatives Method for estimating

� in Equation (1.2.2). Given the estimator of �, Horowitz (1996) proposes using the Cu-

mulative Distribution Function (CDF) and Probability Density Function (PDF) of Y given

x0� to estimate ⇤(·). The estimators of both � and ⇤(·) achieve
p
n convergence rates and

mean-zero normal distributions asymptotically.

Chiappori et al. (2015) builds upon the method proposed by Horowitz (1996) to esti-

mate ⇤(·) in the absence of knowledge about g(·) in the fully nonparametric model with

endogeneity:

⇤(Y ) = g(x) + u, (1.2.3)

where g(·) is an unknown fully nonparametric function. For identification, Chiappori et al.

(2015) assumes that there exist continuous exogenous independent variables xI and endoge-

nous independent variables x�I such that u?xI | x�I . The estimator of ⇤(·) in Chiappori

et al. (2015) achieves
p
n convergence rates and a mean-zero Gaussian Process.

Thus, regardless of whether the functional form is x0� or g(·), and irrespective of the

presence or absence of endogeneity, we can consistently estimate the nonparametric trans-

formation function with convergence rate
p
n using the approach outlined in Chiappori et al.

(2015). Since
p
n is much faster than the nonparametric convergence rate, we can replace

⇤(·) with its estimator and treat it as known when estimating nonparametric function g(·).

However, the estimation of g(·) still suffers from the curse of dimensionality. To avoid the

curse of dimensionality, one can replace g(x) with G(x0�) and consider the model,

⇤(y) = G(x0�) + u. (1.2.4)

3



And then we have

m1(x) = E(Y | x) = E
�
⇤�1 [G(x0�) + u]

 
= H1(x

0�), (1.2.5)

which shares similarities with equation (1.2.2) and we can employ a comparable method in

model (1.2.1) to estimate � in model (1.2.4).

An alternative approach to avoid the curse of dimensionality is to assume that the

structure function g(x) is additive,

g(x) =
dxX

l=1

g(xl),

and then we have the model,

⇤(y) =
dxX

l=1

gl(xl) + u, (1.2.6)

which is a fully nonparametric transformation model under additivity. To estimate model

(1.2.6), since Chiappori et al. (2015) already provides the estimator of ⇤(·) with convergence

rate
p
n without knowing {gl(·)}

dx

l=1, we can employ the methods presented in Lin et al.

(2018) and Horowitz and Mammen (2011) to estimate {gl(·)}
dx

l=1.

In summary, oracle-efficient and optimal-convergence-rate estimators for the cross-sectional

nonparametric and semiparametric transformation models are consistently available.

1.3 Panel-data Nonparametric Transformation Model

Recently, Chen et al. (2022) considered the fully nonparametric transformation model (1.3.1)

under the panel data structure with individual fixed effects,

⇤(yit) = g(xit) + ↵i + uit, (1.3.1)

where ↵i represents the individual fixed effect. To eliminate the unknown nonparametric

transformation function and fixed effect, Chen et al. (2022) generated a new variable by

4



comparing the dependent variable y of the same individual across different periods. The

estimator of the structural function proposed by Chen et al. (2022) has a closed-form

expression, which makes it easy to implement and study its asymptotic normality.

To be more specific, Chen et al. (2022) considered the following model,

⇤(yit) =
dxX

l=1

gl(xl,it) + ↵i + uit, (1.3.2)

which assumes the additive structure of g(·). However, the estimation is done through

matching with other covariates locally, and thus suffers substantially from the curse of

dimensionality.

To overcome the curse of dimensionality, we propose a promising method to estimate

{gl(·)}
dx

l=1 in model (1.3.2). In the first step, we can employ the method in Chen et al. (2022)

to eliminate the nonparametric transformation function and fixed effect. Subsequently, to

achieve oracle efficiency, optimal convergence rate, and asymptotic normal distribution, we

can extend the methods in Horowitz and Mammen (2011) and Lin et al. (2018) to estimate

{gl(·)}
dx

l=1 in model (1.3.2). This approach can serve as a future topic for discussion and

exploration in the field of panel-data nonparametric transformation models.

1.4 Conclusion

This chapter provides a summary of the literature on both cross-sectional and panel-data

nonparametric transformation models, highlighting their key developments, properties, and

applications in various fields of economics. Additionally, the chapter presents a potential

approach to overcome the curse of dimensionality when dealing with fully nonparametric

transformation models that include fixed effects in a panel-data setting. By addressing this

challenge, researchers can further enhance the capabilities and applicability of nonparametric

transformation models in empirical work.
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In chapter 2 and 3 in this thesis, we will develop novel nonparametric estimation tech-

niques for two distinct classes of models: (1) Generalized Additive Models with Unknown

Link Functions (GAMULF) and (2) Generalized Panel Data Transformation Models with

Fixed Effects. Both models avoid parametric assumptions on their respective link or trans-

formation functions, as well as the distribution of the idiosyncratic error terms.

The second chapter proposes a three-stage nonparametric least squares (NPLS) esti-

mation procedure for the additive functions in the GAMULF. In the first stage, we esti-

mate conditional expectation by the local-linear kernel regression and then apply matching

method to the splines series to obtain initial estimators. In the second stage, we use the

local-polynomial kernel regression to estimate the link function. In the third stage, given

the estimators in Stages 1 and 2, we apply the local-linear kernel regression to refine the

initial estimator. The great advantage of such a procedure is that the estimators obtained

at all stages have closed-form expressions, which overcomes the computational hurdle for

existing estimators of the GAMULF model.

The third chapter proposes a multiple-stage Local Maximum Likelihood Estimator (LMLE)

for the structural functions in the generalized panel data transformation model with fixed

effects. In the first stage, we apply the regularized logistic sieve method to estimate the

sieve coefficients associated with the approximation of a composite function and then ap-

ply a matching method to obtain initial consistent estimators of the additive structural

functions. In the second stage, we apply the local polynomial method to estimate certain

composite function and its derivatives to be used later on. In the third stage we apply the

local linear method to obtain the refined estimator of the additive structural functions based

on the estimators obtained in Steps 1 and 2. The greatest advantage is that all minimization

problems are convex and thus overcome the computational hurdle for existing approaches

to the generalized panel data transformation model.

6



Chapter Two

Efficient Nonparametric Estimation of

the Generalized Additive Model with an

Unknown Link Function

Authors: Ying Xia, Yichong Zhang, Liangjun Su

2.1 Introduction

Economics theories usually do not specify a detailed parametric functional form for the con-

ditional expectation. However, in practice, estimation of conditional expectation function

with multiple covariates fully nonparametrically suffer from the curse of dimensionality. In-

stead, researchers often use the nonparametric additive model which allows each covariate

to enter the conditional mean function in a nonparametric but additive manner. Due to the

additive structure, the estimator of conditional mean function has a one-dimensional non-

parametric convergence rate, and thus, circumvent the curse of dimensionality. However,

it also rules out the interaction between distinct covariates. Generalized additive model

(GAM) further introduces an link function outside the additive structure, which adheres

the fast convergence rate, yet allows for the marginal effect of one regressor to depend

7



on all other regressors. Due to these advantages, the nonparametric additive model and

GAM have been widely studied and applied. See, for example, Breiman and Friedman

(1985), Stone (1985), Stone (1986), Buja, Hastie and Tibshirani (1989), Linton and Nielsen

(1995), Linton and Härdle (1996), Opsomer and Ruppert (1997), Fan, Härdle and Mammen

(1998), Mammen, Linton and Nielsen (1999), Linton (2000), Opsomer (2000), Horowitz and

Mammen (2004), Nielsen and Sperlich (2005), Mammen and Park (2006), Horowitz and

Mammen (2007), Yu, Park and Mammen (2008), Horowitz and Mammen (2011), Liu, Yang

and Härdle (2013), Hastie and Tibshirani (2017), Lin et al. (2018). Among them, Horowitz

(2001) and Horowitz and Mammen (2007) consider the GAM with an unknown link function

(GAMULF) and focus on the estimation and inference of the additive term within the link

function up to location and scale normalizations.

Horowitz (2001) and Horowitz and Mammen (2007) propose estimators for the additive

functions in GAMULF which do not achieve oracle efficiency. Here we say the estimator

achieves Oracle efficiency if its asymptotic variance is the same as if other additive compo-

nents and the link function are known. To achieve oracle efficiency, optimal convergence rate

and asymptotic normality at the same time, Horowitz and Mammen (2011) and Lin et al.

(2018) propose multi-stage estimation procedures for GAMULF. However, these multi-stage

estimation procedures require non-linear and non-convex optimization or time-consuming

iteration.

In this article, we propose a new multi-stage estimation procedure with close-form ex-

pression in each stage, which greatly reduces the computational burden in the estimation

of GAMULF. In the first stage, we obtain the B-splines estimators of additive components.

In the second stage, we obtain the kernel-based estimator of the link function. In the third

stage, we estimate each of the additive component via a local linear regression with other

unknown components and the link function replaced by their estimators obtained in the

first and second stages, respectively. We then show the resulting estimator still enjoys the

8



desired statistical properties as those for GAMULF proposed in the literature such as the

rate-optimal convergence rate, asymptotic normality, and oracle efficiency.

The article is organized as follows. Section 2 describes our methodology. We present the

asymptotic properties of our estimators in Section 3. Section 4 examines the finite sample

performance of our estimators via Monte Carlo simulations. We apply our method to an

empirical dataset in Section 5. Section 6 concludes. All the proofs of the main theorems are

relegated to the appendix.

Notation. We denote tr(·) as the trace operator and ⌘ as ”is defined as”. For a real

matrix A, let A0, kAk
⇣
⌘ [tr (AA0)]1/2

⌘
, kAk

op

⇣
⌘
p
�max (A0A)

⌘
, �max(A), and �min(A) be

the transpose of A, the Frobenius norm, the operator norm, and the biggest and smallest

eigenvalues of matrix A, respectively. For any function f(·) defined on the real line, let

@kf(·) be the k th-order derivatives, for k = 1, 2, · · · . Let D
! and P

! be convergences in

distribution and probability, respectively. A kernel function H (!) is said to be of order a,

if the following conditions are satisfied, (i)
R
H (!) d! = 1, (ii)

R
H (!)!sd! = 0, for s =

1, · · · , a � 1 and (iii)
R
H (!)!ad! 2 (0,+1). For a vector a = (a1, · · · , ad), let (a) be

a diagonal matrix with entries a1, · · · , ad. For any scalar bandwidth h, denote Hh (·) =

1

h
H
⇣
·

h

⌘
and @kHh2(x) =

1

h
@kH (y)

����
y= x

h

, for x 2 X and k = 1, 2, · · · . To implement multi-

dimensional nonparametric regression, for i 6= j, let Hh (i, j) =
Q

dx

l=1 Thl
(Xl,i �Xl,j), where

h = (h1, · · ·hdx
)0 is a vector of bandwidths and {Xi}

n

i=1 are the covariates. For a one-

dimensional kernel function T (·), we define Th(·) and Th(i, j) in the same manner as Hh(·)

and Hh(i, j), respectively. Let {pk (·) , k = 1, 2, · · · } be a sequence of one-dimensional B-

splines basis functions. Let K = K(n) be some integer such that K (n) ! 1 as n ! 1.Let

PK(·) ⌘ [p1 (·) , · · · , pK (·)]0 be one-dimensional B-splines and then, for x = (x1, · · · , xdx
)0,

let PK(x) ⌘
⇥
PK(x1)0, · · · , PK(xdx

)0
⇤ 0. For i 6= j, let 4Xi,j = Xi �Xj, 4PK

i,j
= PK (Xi)�

PK (Xj), 4P (1)
i,j

= p1 (X1,i)� p1 (X1,j) and

4P (�1)
i,j

=
⇣
p2 (X1,i)� p2 (X1,j) , · · · , pK (X1,i)� pK (X1,j) ,

�
PK (X2,i)� PK (X2,j)

�0
,
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· · · ,
�
PK (Xdx,i

)� PK (Xdx,j
)
�0⌘0

.

2.2 Setup and Estimation Procedure

In this section, we consider GAMULF:

Y = F [g1(X1) + · · ·+ gdx(Xdx
)] + V, (2.2.1)

where X = (X1, . . . , Xdx
)0 is a dx ⇥ 1 vector of exogenous regressors, F (·) and {gl(·)}

dx

l=1

are unknown and smooth functions of interest and V is an unobserved random variable

satisfying E (V |X) = 0. Following Horowitz and Mammen’s (2011) lead, we replace additive

terms with B-splines and implement the nonparametric sieve estimation. B-splines have

low multicollinearity and recursive formula for calculation,1 which provide computational

advantages, and thus, are widely used in practice. For ease of notation, we assume all

coordinates of Xi are continuously distributed. If in an application some elements of X

are discrete, the dimension dx is interpreted as the dimension of the continuous covariates.

All results in this section can then be extended in a conceptually straight-forward manner

by using the continuous covariates only within samples that are homogeneous in discrete

covariates. For x 2 X , let g(x) =
P

dx

l=1 gl(xl). For i 6= j 2 {1, · · · , n}, let 4gi,j =

g (Xj) � g (Xi). For i 2 {1, · · · , n}, let Fi = F [g(Xi)]. Denote f(·) as the density function

of Xi.

We approximate gl(·) by pK(·)0�xl for l = 1, · · · , dx. Further denote � = (�x1 0, · · · , �xdx
0)0

as a dxK ⇥ 1 vector of unknown parameters to be estimated and {�xl = (�xl

1 , · · · , �xl

K
)0}dx

l=1

as K ⇥ 1 vectors.

Given observations {Yi, Xi}
n

i=1, we estimate {gl(·)}dxl=1 and F (·) in (2.2.1) via the following

algorithm.
1
See Chapter 19 of Powell (1981) and Chapter 4 of Schumaker (2007) for more detail.
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Algorithm 2.2.1 (Three-stage Estimation Procedure)

1. Undersmoothed estimation {ḡl(·)}
dx

l=1 of {gl(·)}dxl=1 in model (2.2.1).

(a) Initial estimation Ē (Y |X ) of E (Y |X ) by the local-polynomial regression of

order R.

For j 2 {1, · · · , n},

�
Ē (Y |Xj ) , @Ē (Y |Xj )

0 , · · · , (R!)�1 @RĒ (Y |Xj )
0�

= argmin
(a,{bs}Rs=1)

0

1

n� 1

nX

i=1, 6=j

(
Yi � a�

RX

s=1

bs · (4Xi,j)
⌦s

)2

Th1 (i, j) , (2.2.2)

where h1 = (h1,1, h1,2, · · · , h1,dx).

(b) Initial estimation �̄ =
�
1, ✓̄0

� 0 of �.

✓̄ = argmin
✓

1

n2

nX

j=2

nX

i<j

n
4P (1)

i,j
+ ✓04P (�1)

i,j

o2

Hh2

⇥
Ē (Y |Xj )� Ē (Y |Xi )

⇤
.

(2.2.3)

which implies

✓̄ =�

(
1

n2

nX

j=2

nX

i<j

4P (�1)
i,j

4P (�1)
i,j

0Hh2

⇥
Ē (Y |Xj )� Ē (Y |Xi )

⇤
)�1

⇥
1

n2

nX

j=2

nX

i<j

4P (1)
i,j

4P (�1)
i,j

Hh2

⇥
Ē (Y |Xj )� Ē (Y |Xi )

⇤
. (2.2.4)

Then, define ḡl(xl) = PK(xl)0�̄xl , for l = 1, · · · , dx and ḡ(x) =
P

dx

l=1 ḡl(xl).

2. Oversmoothed estimation
n⇣
bFi, c@F i

⌘on

i=1
of {(Fi, @Fi)}

n

i=1 by the local-polynomial

regression of order S.

⇣
bFi, c@F i, · · · , (S!)

�1 [@h3F i

⌘

= argmin
(a,b1,··· ,bh3)

0

1

n

nX

j=1, 6=i

(
Yj � a�

h3X

l=1

[4ḡi,j]
l bl

)2

Th3 (4ḡi,j) .

11



The corresponding closed-form solution is

⇣
bFi, c@F i, · · · , (S!)

�1 [@h3F i

⌘
=

8
>>>>>>><

>>>>>>>:

1

n

nX

j=1, 6=i

Th3 (4ḡi,j)

0

BBBBBBB@

1

4ḡi,j
...

[4ḡi,j]
h3

1

CCCCCCCA

⇣
1,4ḡi,j, · · · , [4ḡi,j]

h3

⌘

9
>>>>>>>=

>>>>>>>;

�1

⇥
1

n

nX

j=1, 6=i

Th3 (4ḡi,j)Yj

0

BBBBBBB@

1

4ḡi,j
...

[4ḡi,j]
h3

1

CCCCCCCA

. (2.2.5)

3. Rate-optimal kernel estimation
n⇣
bgl(·),c@gl(·)

⌘odx

l=1
of {(gl(·), @gl(·))}dxl=1.

For l 2 {1, · · · , dx},

⇣
bgl(xl),c@gl(xl)

⌘0
= argmin

(a,b)0

1

n

nX

i=1

n
Yi �

bFi + c@F iḡl (Xl,i)� c@F i [a+ b (Xl,i � xl)]
o2

Th4,l
(Xl,i � xl) .

The corresponding closed-form solution is
0

B@
bgl(xl)

c@g
l
(xl)

1

CA =

8
><

>:
1

n

nX

i=1

0

B@
1

Xl,i � xl

1

CA (1, Xl,i � xl)
⇣
c@F i

⌘2
Th4,l

(Xl,i � xl)

9
>=

>;

�1

⇥
1

n

nX

i=1

0

B@
1

Xl,i � xl

1

CA c@F iTh4,l
(Xl,i � xl)

⇣
Yi �

bFi + c@F iḡl (Xl,i)
⌘
. (2.2.6)

Stages 1 and 2 in Algorithm (2.2.1) are standard nonparametric estimations in the

literature. The third stage is designed based on a Taylor’s expansion of gl (Xl,i):

gl (Xl,i) ⇡ gl (xl) + @gl (xl) (Xl,i � xl) ,

12



which implies
nX

i=1

(
Yi � F

"
dxX

j=1, 6=l

g(Xj) (Xj,i) + gl (xl) + @gl (xl) (Xl,i � xl)

#)2

Th4,l
(Xl,i � xl)

⇡

nX

i=1

{Yi � Fi + @Figl (Xl,i)� @Fi [gl (xl) + @gl (xl) (Xl,i � xl)]}
2 Th4,l

(Xl,i � xl) .

This motivates our third-stage regression. We also note that all these three stages can be

implemented without any forms of numerical optimization.

2.3 Asymptotic Propperties

In this section, we first present the assumptions and then study the asymptotic properties

of the estimators of the structural functions.

2.3.1 Assumptions

To proceed, we introduce some notation. A real-valued m-times continuously differentiable

function q(u) on U ⇢ R is said to be a �-smooth function if, for some r = ��m 2 (0, 1], 9cq,

|@mq(u)� @mq(u⇤)|  cq |u� u⇤
|
r holds for all u, u⇤

2 U . It is well known that �-smooth

functions can be approximated well by various linear B-splines (e.g., Chen (2007)). So we

will assume that {gl(·)}
d

l=1 are �-smooth functions below.

We will use X = ⌦
d

l=1Xl to denote the support of Xit = (X1,i, ...Xdx,i
)0 . We make the

following Assumptions.

Assumption 1 (1) {Yi, Xi}
n

i=1 are i.i.d.

(2) The support X of X is compact.

(3) 8i 2 {1, · · · , n}, E(ei|Xi) = 0.

(4) There exist positive and finite constants c
e
, ce and ce such that c

e
 E (e2 |X = x)  ce

for all x 2 X and E |e|j  cj�2
e

j!E (e2) < 1 for all j � 2.

13



Assumption 1 imposes specific conditions on {Yi, Xi, ei}. Assumption 1(1) enforces that

the observations are independent and identically distributed (i.i.d.); Assumptions 1(2) and

(3) require the exogenous independent variables to have compact supports; while Assump-

tion 1(4) establishes certain moment conditions on the error terms, thus simplifying the

derivation.

The subsequent assumption pertains to the properties of the additive functions gl(·)
dx

l=1.

Assumption 2 (1) The function gl(·) is bounded and �-smooth function with � � 2

within its support for l 2 {1, · · · , dx}.2

(2) There exist constant C� 2 [0,1) and vectors �0 = (1, ✓0) 2 interior
�
BK
�
, such that,

for l 2 {1, · · · , dx}, supxl2Xl

��gl(xl)� PK(xl)0�l,0

�� = O(K��).

(3) The set of basis functions,
�
pk(·)

 1
k=1

, are twice continuously differentiable everywhere

on X .

(4) max0sr sup!2X
��@h3PK(!)

��  &rK.

Remark 1 Assumption 2(1) postulates that all one-dimensional nonparametric functions

exhibit sufficient smoothness. Assumptions 2(2)-(4) specify the approximation error for

�-smooth functions, with polynomials, splines, wavelets, and certain other basis functions

satisfying these conditions. For the sake of scale normalization, the first element of �0 is

set to 1.

The next assumption concerns the properties of the unknown link function F (·).

Assumption 3 (1) Let ⌦ =
nP

dx

l=1 gl(xl) : for l 2 {1, · · · , dx} , xl 2 Xl

o
. Then, 9c2, c2,

c3 and c3, such that 8! 2 ⌦,

�1 < c2  F (!)  c2 < 1 and 0 < c3  @F (!)  c3 < 1.
2
A real-valued and m-times continuously differentiable function q(o) on O ⇢ R is said to be a �-smooth

function if, for r = � �m 2 (0, 1], 9cq, |@mq(o)� @mq(eo)|  cq |o� eo|r holds 8o and eo 2 O.
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(2) F (·) is �F -smooth functions with �F � 2.

Next, we state the assumptions on the kernel function.

Assumption 4 (1) The kernel function T (·) is symmetric PDFs and its support is com-

pact and within its supports, it is bounded and �-smooth function with � � 2.

(2) H(·) is a kernel function of order aH and aH is even.

(3) The orders of polynomial regression, R and S, are odd.

Assumption 5 (1) The probability density function (PDF) of Xl, fXl
(·), is bounded and

bounded away from zero within its support, 8 l 2 {1, · · · , dx}.

(2) the probability density function (PDF) of g (X) =
P

dx

l=1 g (Xl), fg(X)(·), and its deriva-

tives , @fg(X)(·) and @2fg(X)(·), are bounded and bounded away from zero within its

support.

(3) the probability density function (PDF) of E (Y |Xj ) � E (Y |Xi ), fE(Y |Xj )�E(Y |Xi )(·),

and its derivatives, @FfE(Y |Xj )�E(Y |Xi )(·) and @2fE(Y |Xj )�E(Y |Xi )(·) are bounded and

bounded away from zero within support, 8 i 6= j 2 {1, · · · , n}.

Remark 2 Assumption 5 are standard in the literature of B-splines estimation and kernel

estimation.

Assumption 6 (1) there exist positive constants C1 and C2 such that for i 6= j 2 {1, · · · , n},

0 < C1  �min

�
E
⇥
PK(Xi)P

K(Xi)
0�� g (Xi)

⇤�

 �max

�
E
⇥
PK(Xi)P

K(Xi)
0�� g (Xi)

⇤�
 C2 < 1

0 < C1  �min

⇣
E
h
4P (�1)

i,j
4P (�1)

i,j

0
���E (Y |Xj ) = E (Y |Xi )

i⌘

 �max

⇣
E
h
4P (�1)

i,j
4P (�1)

i,j

0
���E (Y |Xj ) = E (Y |Xi )

i⌘
 C2 < 1,
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0 < C1  �min

⇣
@E
h
4P (�1)

i,j
4P (�1)

i,j

0
���E (Y |Xj ) = E (Y |Xi )

i⌘

 �max

⇣
@E
h
4P (�1)

i,j
4P (�1)

i,j

0
���E (Y |Xj ) = E (Y |Xi )

i⌘
 C2 < 1,

0 < C1  �min

⇣
@2E

h
4P (�1)

i,j
4P (�1)

i,j

0
���E (Y |Xj ) = E (Y |Xi )

i⌘

 �max

⇣
@2E

h
4P (�1)

i,j
4P (�1)

i,j

0
���E (Y |Xj ) = E (Y |Xi )

i⌘
 C2 < 1,

0 < C1  �min

⇣
E
n���4P (�1)

i,j
4P (�1)

i,j

0
���
���E (Y |Xj ) = E (Y |Xi )

o⌘

 �max

⇣
E
n���4P (�1)

i,j
4P (�1)

i,j

0
���
���E (Y |Xj ) = E (Y |Xi )

o⌘
 C2 < 1,

and

max
i=1,··· ,n

�max

�
@E
⇥
PK(Xi)P

K(Xi)
0�� g (Xi)

⇤�
 C2 < 1,

max
i=1,··· ,n

�max

�
@2E

⇥
PK(Xi)P

K(Xi)
0�� g (Xi)

⇤�
 C2 < 1,

hold uniformly in K = 1, 2, · · · , where

@lE
h
4P (�1)

i,j
4P (�1)

i,j

0
���E (Y |Xj ) = E (Y |Xi )

i

=
@lE

h
4P (�1)

i,j
4P (�1)

i,j

0
���E (Y |Xj )� E (Y |Xi )

i

@ [E (Y |Xj )� E (Y |Xi )]
l

������
E(Y |Xj )�E(Y |Xi )=0

,

for l = 1, 2 and the definitions of other terms are similar.

(2) As n ! 1, K ! 1, {h1,l}
dx

l=1 ! 0, h2 ! 0, h3 ! 0 and {h4,l}
dx

t=1 ! 0.

(3)
�
h�1
2 �h,n

�2
= op

 
K�↵ +

r
K

n
+
p
KhaH

2

!
,
p
Kh�1

2 �h,n = op(1),

P
dx

l=1 h
R+1
1,l = op

 
K�↵ +

r
K

n
+
p
KhaH

2

!
,

and Kh4 = o(1), where �h,n = Op

 
P

dx

l=1 h
R+1
1,l +

s
log n

n
Q

dx

l=1 h1,l

!
.

(4) h�1
3

p
K

 
K�↵ +

r
K

n
+
p
KhaH

2

!
= o(1) and

✓
hS+1
3 +

r
log n

nh3

◆
p
K  O(1).
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(5) K�↵ +

r
K

n
+
p
KhaH

2 + hS+1
3 +

r
log n

nh3
= op

 s
log n

nh4,l
+ h2

4,l

!
.

Remark 3 Assumption 6 (1) ensures the existence and nonsingularity of the asymptotic co-

variance matrices for B-splines estimations, which is a standard condition in the B-splines

estimation literature. Assumptions 6(2)-(5) guarantee that the asymptotic biases and vari-

ances of the first-stage and second-stage estimators are sufficiently small for achieving or-

acle efficiency in the third stage. Under standard bandwidth selection methods for local

polynomial regression, Assumptions 6 (3), (4), and the condition K�↵ + hS+1
3 +

r
log n

nh3
=

op

 s
log n

nh4,l
+ h2

4,l

!
in (5) hold when R = 3, S = 3, and ↵ is sufficiently large. Conse-

quently, Assumption 6 (5) simplifies to
r

K

n
+
p
KhaH

2 = op

 s
log n

nh4,l
+ h2

4,l

!
.

Theorem 2.3.1 Suppose that Assumptions 1 - 4, 5 (1) and (3) and 6 (1) - (2) hold. Then

1.

✓̄ � ✓0

=�

(
1

n2

nX

j=2

nX

i<j

4P (�1)
i,j

4P (�1)
i,j

0Hh2 [E (Y |Xj )� E (Y |Xi )]

)�1

⇥

(
1

n2

nX

j=2

nX

i<j

4gi,j4P (�1)
i,j

Hh2 [E (Y |Xj )� E (Y |Xi )]

�
1

n2

nX

j=2

nX

i<j

�
4PK

i,j

0�x,z

0 �4gi,j
�
4P (�1)

i,j
Hh2 [E (Y |Xj )� E (Y |Xi )]

)

+Rn,5, (2.3.1)

where kRn,5k =
�
h�1
2 �h,n

�2
+Op

⇣P
dx

l=1 h
R+1
1,l +

q
1
n

⌘
.

2.
��✓̄ � ✓0

�� = Op

 
K�↵ +

r
K

n
+
p

KhaH

2

!
,

���̄ � �0

�� = Op

 
K�↵ +

r
K

n
+
p

KhaH

2

!
.
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3.

max
1ldx

sup
xl2Xl

|ḡl (xl)� gl (xl)| = Op

"
p

K

 
K�↵ +

r
K

n
+
p

KhaH

2

!#
. (2.3.2)

Remark 4 Given Assumption 6 (3), Theorem 2.3.1 (1) signifies the asymptotically negli-

gible dominant effect of the estimation of E(Y |X).

Theorem 2.3.2 Suppose that Assumptions 1 - 5, 6 (1), (2) and (3) hold. Then

1. There exists a positive constant C1 such that

��� bFi � Fi

��� = C1 |ḡ(Xi)� g(Xi)|+Op

 
K�↵ +

r
K

n
+
p

KhaH

2 + hS+1
3 +

r
log n

nh3

!
,

(2.3.3)

hold uniformly over i 2 {1, · · · , n}.

2. There exist a positive constant C2 such that

���c@F i � @Fi

��� = h�1
3 C2 |ḡ(Xi)� g(Xi)|+ h�1

3 Op

 
K�↵ +

r
K

n
+
p

KhaH

2 + hS+1
3 +

r
log n

nh3

!
,

(2.3.4)

hold uniformly over i 2 {1, · · · , n}.

Withe Theorems (2.3.1) and (2.3.2), it is straigntforward to show the asymptotic joint

distribution of our three-stage estimators of {(gl(·), @gl(·))}dxl=1.

Theorem 2.3.3 Suppose that Assumptions Assumptions 1 - 6 hold. Let ab =
R
ua [T (u)]b du

for a, b = 0, 1, 2. Then for l = 1, · · · , d,

1.
0

@1 0

0 h4,l

1

A

2

4

0

@ bgl(xl)

c@g
l
(xl)

1

A�

0

@gl(xl)

gl(xl)

1

A

3

5
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=

8
><

>:
1

n

nX

i=1

0

B@
1

Xl,i � xl

h4,l

1

CA
✓
1,

Xl,i � xl

h4,l

◆
(@Fi)

2 Th4,l (Xl,i � xl)

9
>=

>;

�1

⇥

8
><

>:
1

n

nX

i=1

0

B@
1

Xl,i � xl

h4,l

1

CA @FiTh4,l (Xl,i � xl) ei +
1

2
@2gl (xl)

1

n

nX

i=1

0

B@
1

Xl,i � xl

h4,l

1

CA @F 2
i
Th4,l (Xl,i � xl) (Xl,i � xl)

2

9
>=

>;

+Rn,3 (xl) , (2.3.5)

where Rn,3 (xl) = op
⇣q

1
nh4,l

+ h2
4,l

⌘
+Op

 
K�↵ +

r
K

n
+
p
KhaH

2 + hS+1
3 +

r
log n

nh3

!

holds for each xl 2 Xl and Rn,3 (xl) = op
⇣q

logn
nh4,l

+ h24,l

⌘
+Op

 
K�↵ +

r
K

n
+

p
KhaH2 + hS+1

3 +

r
log n

nh3

!

holds uniformly over xl 2 Xl .

2.

p
nh4,l

0

B@
1 0

0 h4,l

1

CA

0

B@

0

B@
bgl(xl)

c@g
l
(xl)

1

CA�

0

B@
gl(xl)

gl(xl)

1

CA�

0

B@
1
2h

2
4,l21@2gl(xl)

0

1

CA

1

CA

d
!N

0

B@0,
E
�
E (e2|X) @F [g (X)]2

��Xl = xl

 
�
E
�
[@F (g (X))]2

��Xl = xl

 �2

0

B@
02 0

0
22

2
21

1

CA

1

CA .

3.

sup
xl2Xl

kbgl(xl)� gl(xl)k = Op

 
h2
4,l +

s
log n

nh4,l

!
.

Remark 5 The rate O(n�1/5) is widely recognized as the asymptotically optimal bandwidth

for one-dimensional kernel mean regression, specifically when the conditional mean function

possesses continuous second derivatives.

Remark 6 Theorem 2.3.3 (1) furnishes linear representations of the nonparametric esti-

mators
n⇣
bgl(·),c@gl(·)

⌘o
l = 1dx, uniformly controlling the remainder terms. This theorem

serves as a foundational component for both pointwise and uniform inference. According to

Chernozhukov, Chetverikov and Kato (2014, Corollary 3.1), uniform inference based on the

multiplier bootstrap is feasible.
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Remark 7 Theorem 2.3.3 (2) elucidates the asymptotic properties of our three-stage esti-

mators for {(gl(·), @gl(·))} l = 1dx. Notably, the asymptotic distribution of the local-linear es-

timator remains unaffected by random sampling errors emanating from the first two-stage es-

timators. Essentially, the three-stage estimator of (gl(·), @gl(·)) retains the same asymptotic

distribution that would be expected if other additive components {(gl1(·), @gl1(·))} l1 = 1, 6= ldx

and the link function F (·) were known, for 8l 2 {1, · · · , dx}.

Remark 8 Theorem 2.3.3 (3) establishes the uniform convergence rate for {gl(·)}
dx

l=1. Fur-

thermore, following standard practices in the nonparametric kernel literature, we can also

affirm that the estimators of (gl1(·), @gl1(·)) and (gl2(·), @gl2(·)) for 8l1 6= l2 2 {1, · · · , dx}

are asymptotically independently distributed.

2.4 Numerical Studies

2.4.1 Data Generating Processes

We use three data generating processes (DGPs) to study the finite sample performance of

estimation methods proposed in this paper and the existing literature.

We consider the following settings.

Example 1 (Continuous Case) In model (2.2.1), we set the dimension as 2, and

g1(x) = sin(x), g2(x) = 2�(x� 0.5), F (x) = �(x),

where �(·) is the CDF of normal distribution. We generate Xi,1 and Xi,2, i = 1, · · · , n,

from the uniform distribution U [�1, 1]. Yi , given Xi,1 and Xi2, is generated through Yi =

F [g1 (Xi,1) + g2 (Xi,2)] + Vi, where Vi is generated from the normal distribution N(0, 0.022)

and independent of Xi,1 and Xi2. The simulated results are in Table (3.1).

Example 2 (Continuous Case with Four Components) In model (2.2.1), we set the
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dimension as 4, and

g1(x) = sin(x), g2(x) = �(x), g3(x) =
1

4
(x�5)2, g4(x) = cos

✓
1

2
x�

3

2

◆
, F (x) = �(x),

where �(·) is the CDF of normal distribution. We generate Xi,1, Xi,2, Xi,3 and Xi,4,

i = 1, · · · , n, from the uniform distribution U [�1, 1]. Yi , given Xi,1, Xi,2, Xi,3 and Xi,4, is

generated through Yi = F [g1 (Xi,1) + g2 (Xi,2) + g3 (Xi,1) + g4 (Xi,2)] + Vi, where Vi is gen-

erated from the normal distribution N(0, 32) and independent of Xi,1, Xi,2, Xi,3 and Xi,4.

The simulated results are in Table (3.2).

Example 3 (Binary Case) In model (2.2.1), we set the dimension as 2, and

g1(x) = sin(x), g2(x) =
1

8
(x� 5)2 � 3, F (x) =

exp(x)

1 + exp(x)
.

We generate Xi,1 and Xi,2, i = 1, · · · , n, from the uniform distribution U [�1, 1]. Yi , given

Xi,1 and Xi2, has the Bernoulli distribution B(1, pi) with

pi = E (Yi|Xi,1, Xi2) = F [g1(Xi,1) + g2(Xi,2)] .

The link function F (·) is the commonly used logistic function for binary response. The

simulated results are in Table (3.3).

2.4.2 The Estimation Methods for Comparison

In this section, we use simulated examples to demonstrate how well the proposed estimation

procedure works. For continuous case, we compare the proposed estimation procedure with

the method in Horowitz and Mammen (2011), denoted by HM. For binary case, we compare

the proposed estimation procedure with the method in Horowitz and Mammen (2011) and

Klein and Spady (1993), denoted by HM and KS.

We define the bias, standard deviation (SD), and root mean integrated squared error

(RMISE) of an estimator f̂(·) of f(·) as

bias =
Z ���E

h
f̂(v)

i
� f(v)

��� dv,
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SD =

Z
sd
h
f̂(v)

i
dv

and

RMISE = (bias2 + SD2)1/2,

respectively, and use them to assess the accuracy of the estimator f̂(·).

In the continuous case, we implement both the proposed estimation procedure and the

method from Horowitz and Mammen (2011) on the simulated data. Both methods utilize

B-splines to acquire initial estimators, which are subsequently refined by one-dimensional

kernels to enhance efficiency. The key distinction between the two techniques lies in the

initial B-splines estimator. The initial estimator as per Horowitz and Mammen (2011)

encounters challenges with non-convex optimization and tends to get trapped at local

optima, which, despite its perfect theoretical properties, hampers its performance with

simulated data. For the binary case, we compare our method with both methods pre-

sented in Horowitz and Mammen (2011) and Klein and Spady (1993). Klein and Spady

(1993) estimates a single-index model with a binary response using the Maximum Like-

lihood Estimation (MLE) method. Given that the model Y = F
⇥
PK(X)0�

⇤
+ ee, where

ee = F [g1(X1) + · · ·+ gdx(Xdx
)]� F

⇥
PK(X)0�

⇤
+ V , resembles the single-index model, and

both the proposed method and the one in Klein and Spady (1993) employ kernel estimation

to estimate the link function, we also present the simulation results using the method in

Klein and Spady (1993) for the binary case. To maintain a fair comparison, we extend and

refine the method in Klein and Spady (1993). Since Klein and Spady (1993) employs the

MLE method and Horowitz and Mammen (2007) uses a method akin to weighted OLS,

Klein and Spady (1993) should provide superior performance in the binary case.
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2.4.3 Choices of Tuning Parameters

All the hyperparameters are tunned by cross validation based on grid search. The kernel

function used in the proposed estimation procedure is the Epanechnikov kernel for all sim-

ulated examples in this section. For each simulated example, we assess the accuracy of the

proposed estimation procedure for sample size n = 400 and for each case, we compute the

bias, SD and RMISE of an obtained estimator based on 1000 simulations.

For Example 1 with proposed method, the bandwidths for multi-dimensional kernel

estimation in stage 1(a) are h1,1 = 2 and h1,2 = 2, 5-interior-knot cubic B-splines are used

for the first additive term and 3-interior-knot cubic B-splines are used for the second additive

term in stage 1(b), the bandwidth for matching estimator in stage 1(b) is h2 = 0.001, the

bandwidth for link function in stage 2 is h3 = 2 and the bandwidths for additive terms

in stage 3 are h4,1 = 0.2 and h4,2 = 0.15. For Example 1 with method in Horowitz and

Mammen (2011), the bandwidth for the initial estimator is optimized by cross-validation

method in each replicate. The bandwidth for link function in stage 2 is h3 = 3 and the

bandwidths for additive terms in stage 3 are h4,1 = 0.2 and h4,2 = 0.1.

For Example 2 with proposed method, the bandwidths for multi-dimensional kernel

estimation in stage 1(a) are h1,1 = 10, h1,2 = 10, h1,3 = 2 and h1,4 = 10. 3-interior-knot

cubic B-splines are used for each additive term in stage 1(b), the bandwidth for matching

estimator in stage 1(b) is h2 = 0.3, the bandwidth for link function in stage 2 is h3 = 2 and

the bandwidths for additive terms in stage 3 are h4,1 = 0.12, h4,2 = 0.14, h4,3 = 0.12 and

h4,4 = 0.18. For Example 2 with method in Horowitz and Mammen (2011), the bandwidth

for the initial estimator is optimized by cross-validation method in each replicate. The

bandwidth for link function in stage 2 is h3 = 2 and the bandwidths for additive terms in

stage 3 are h4,1 = 0.1, h4,2 = 0.1, h4,3 = 0.1 and h4,4 = 0.1.

For Example 3 with proposed method, the bandwidths for multi-dimensional kernel

estimation in stage 1(a) are h1,1 = 2 and h1,2 = 2, 5-interior-knot cubic B-splines are used
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for the first additive term and 3-interior-knot cubic B-splines are used for the second additive

term in stage 1(b), the bandwidth for matching estimator in stage 1(b) is h2 = 0.001, the

bandwidth for link function in stage 2 is h3 = 3 and the bandwidths for additive terms in

stage 3 are h4,1 = 2 and h4,2 = 1. For Example 3 with method in Horowitz and Mammen

(2011), the bandwidth for the initial estimator is optimized by cross-validation method in

each replicate. The bandwidth for link function in stage 2 is h3 = 0.6 and the bandwidths

for additive terms in stage 3 are h4,1 = 2.5 and h4,2 = 1.5. For Example 3 with method

in Klein and Spady (1993), the bandwidth for the initial estimator is optimized by cross-

validation method in each replicate. The bandwidth for link function in stage 2 is h3 = 3

and the bandwidths for additive terms in stage 3 are h4,1 = 2 and h4,2 = 1.

2.4.4 Results

Table 2.1 The simulation results for Example 1 with continuous response

ĝ1 ĝ2

Prop. RMSE 0.0067 0.0081

Bias 0.0018 0.0018

SD 0.0064 0.0079

HM RMSE 0.0668 0.0462

Bias 0.0147 0.0093

SD 0.0652 0.0453

In the methodologies proposed by Horowitz and Mammen (2011) as well as Klein and

Spady (1993), optimizing the bandwidth for the initial estimator in each simulation proves to

be time-consuming and impractical, especially when dealing with four additive components.

Furthermore, the computation of the initial estimator involves non-convex and non-linear

optimization, leading to results that may be local optima and vary significantly across

24



Table 2.2 The simulation results for Example 2 with four components

ĝ1 ĝ2 ĝ3 ĝ4

Prop. RMSE 0.0071 0.0057 0.0065 0.0055

Bias 0.0022 0.0010 0.0012 0.0010

SD 0.0067 0.0056 0.0064 0.0054

HM RMSE 0.0456 0.0177 0.1375 0.0367

Bias 0.0101 0.0050 0.0254 0.0060

SD 0.0444 0.0170 0.1351 0.0362

simulations. Consequently, the computation of the initial estimator in the methods of

Horowitz and Mammen (2011) and Klein and Spady (1993) is not only time-consuming but

also unstable.

The biases, standard deviations (SDs), and root mean squared errors (RMISEs) of the

function estimators g1(·), g2(·), g3(·), g4(·), and F (·), based on 1000 replicates, are presented

in Tables (1) to (3).

A comparison presented in Tables (1) to (3) shows that the proposed estimator signifi-

cantly outperforms those of Horowitz and Mammen (2011) and Klein and Spady (1993) in

terms of Bias, SD, and RMISE across all three examples. Thus, it can be concluded that

the proposed estimation procedure exhibits superior performance compared to the methods

introduced in Horowitz and Mammen (2011) and Klein and Spady (1993).

2.5 Application: Why Do Small and Medium Enterprises(SMEs)

Demand Property Liability Insurance

The purchase of insurance is a common practice for businesses of all sizes, industries, and

locations. Property liability insurance, which protects against financial losses from property
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Table 2.3 The simulation results for Example 3 with binary response

ĝ1 ĝ2

Prop. RMSE 0.0991 0.0804

Bias 0.027 0.0359

SD 0.0953 0.072

HM RMSE 0.2474 0.1247

Bias 0.1384 0.054

SD 0.2051 0.1124

KS RMSE 0.1497 0.0971

Bias 0.0798 0.0666

SD 0.1267 0.0707

damage or bodily injury caused by one’s actions or negligence, is vital for both businesses

and individuals. Studies have shown that a firm’s ln(Asset), Credit Score, and the number

of banks SME transacts with (Banks) are significantly related to insurance demand. While

most research focuses on listed firms, few examine small and medium enterprises (SMEs)

due to data limitations.

Yoshihiro (2019) conducted a survey to analyze the insurance demand of SMEs in Japan.

The study’s findings can be concisely summarized as follows: Firstly, SMEs with a higher

risk of bankruptcy often demand less insurance. Teikoku Data Bank’s financial statements

provide credit scores, which indicate the likelihood of bankruptcy for SMEs. For instance,

lower credit scores suggest a higher bankruptcy probability. Credit scores thus facilitate

the analysis of bankruptcy risk on insurance demand. One might expect that SMEs with

low credit scores and high bankruptcy risks would demand more insurance to mitigate

bankruptcy. However, such SMEs may struggle to afford adequate insurance coverage. As

a result, they may choose not to purchase insurance because they have less to lose in case
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of bankruptcy. In contrast, SMEs with high credit scores and low bankruptcy risks may

demand more insurance, as they have more at stake in the event of bankruptcy. This suggests

that higher credit scores should correlate with increased insurance demand. Secondly, SMEs

that have weaker connections with their primary banks are more likely to seek additional

insurance coverage. When these businesses are unable to secure adequate funding from their

main bank, they turn to other financial institutions. Consequently, relying on multiple banks

for financing can signal increased financial limitations. As a result, SMEs that engage with a

higher number of banks are more inclined to obtain increased insurance coverage to mitigate

potential property liability losses, knowing that securing loans may prove challenging.

To investigate the effects of ln(Asset), Credit Score and Banks on the demand of property

liability insurance, we are interested in estimating regressions of the form:

ln (Insurance Demandi) = F [g1 (ln (Asseti)) + g2 (Credit Scorei) + g3 (Banksi)] + ✏i,

(2.5.1)

where Banks stands for the number of banks SME transacts with and it is normalized be-

tween 0 and 1. We utilize the same dataset as the one employed in Asai (2019). For further

details on data preparation, please refer to Asai (2019). This study uses The Management

Survey of Corporate Insurance Issues in Japan, which was conducted in January and Febru-

ary of 2014. The survey asked SMEs about their characteristics, insurance purchases, bank

relationships, and the Great East Japan Earthquake. To have a basic idea about what the

data is like, Table (3.4) reports summary statistics. Similarly, Asai (2019) estimated the

linear version of the regression:

ln (Insurance Demandi) = �0 + �1ln (Asseti) + �2Credit Scorei + �3Banksi + ✏i,

and the study shows that both the parameters of Credit Score and Banks (the number of

banks SME transacts with) are significantly positive and the parameters of ln (Asseti) is

significantly negative.
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Table 2.4 Summary Statistics

Number of Sample Mean Standard Deviation Median Min Max

Dpendent Variables

ln(Insurance Demand) 758 0.782 1.525 0.878 -10.034 6.073

Independent Variables

ln(Assets) 758 6.145 0.397 6.134 4.834 7.270

Credit Score 758 0.585 0.152 0.581 0.000 1.000

Banks 758 0.438 0.245 0.444 0.000 1.000

Figure 1 provides a visual representation of the relationship among ln (Insurance Demand),

ln (Asset), Credit Score and Banks in our study. This effects of Credit Score and Banks

are found to be both overall positive and statistically significant, corroborating the results

of the Ordinary Least Squares (OLS) analysis conducted by Asai (2019). Our research

approach, however, offers a more detailed and nuanced perspective compared to the OLS

analysis alone.

We observe that when Credit Score is lower than 0.52 or higher than 0.65, the effect

on ln (Insurance Demand) is relatively stable. The phenomenon suggests that when Credit

Scores are either relatively low or high, they don’t have a substantial influence on the

demand for Property Liability Insurance. This might be due to the presence of other factors

or risk management strategies that play a more significant role in determining the insurance

demand. Businesses with either very low or very high Credit Scores might already have risk

management strategies in place that don’t rely solely on insurance, reducing the impact of

the Credit Score on insurance demand.

We also observe that when the number of banks it transacts with is between 0.30 and

0.45, the effect on ln (Insurance Demand) is relatively stable. This suggests that within

this range, the number of banks a business works with does not significantly impact the
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demand for Property Liability Insurance. The possible explanation is that businesses with

either fewer or more bank relationships have different risk management strategies compared

to those with a moderate number of bank relationships. This difference in risk management

approaches could lead to varying demand for Property Liability Insurance.

According to Figure 1, when ln (Asset) is lower than 6.0, its effects is found to be negative

and statistically significant, corroborating the results of the Ordinary Least Squares (OLS)

analysis conducted by Asai (2019). Our research approach provides a more detailed and

nuanced perspective on the relationship between a company’s assets and the demand for

Property Liability Insurance. When ln(Asset) exceeds 6.1, the effect is observed to be

positive and statistically significant, while when ln(Asset) surpasses 6.3, the effect becomes

stable, deviating from the outcomes of the Ordinary Least Squares (OLS) analysis conducted

by Asai (2019). There could be several reasons for this observation. When a company has

a low asset level, it may not have sufficient resources to self-insure or absorb potential

losses. However, as the asset level increases, the company might be in a better position

to bear potential liabilities without relying on Property Liability Insurance. As a result,

the demand for this insurance might decrease as the company becomes more capable of

handling its own risks. As assets increase beyond a certain level, companies might experience

a higher potential for liabilities due to factors such as business expansion or increased

complexity, leading to a higher demand for Property Liability Insurance. When assets reach

a significantly high level, the company may already have optimized its risk management

strategies, and the potential liabilities may not increase proportionally with the assets,

resulting in a minimal effect on Property Liability Insurance Demand.

In summary, our approach showcases the importance of using a more detailed and nu-

anced research approach to better understand the complex effect of different factors on

Property Liability Insurance Demand
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Figure 2.1 Estimation of Structure Functions and Their 95% Confidence Intervals

2.6 Conclusion

In this paper, we create oracle-efficient estimators for a generalized additive model with

an unknown link function (GAMULF), with the assumption that the structural functions

are additive. Our estimators for the conditional mean and gradient exhibit consistency

and asymptotic normality. To estimate the component functions, we suggest a multi-stage

algorithm with a refinement stage that employs a one-dimensional kernel, thus bypassing

the curse of dimensionality. Furthermore, the multi-stage algorithm either provides closed-

form solutions or involves convex optimizations, significantly reducing computational load.

Through simulation studies and real data analysis, we demonstrate that our estimator out-

performs existing methods in terms of efficiency and robustness.
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Chapter Three

Efficient Nonparametric Estimation of

Generalized Panel Data Transformation

Models with Fixed Effects

Authors: Ying Xia, Peter C. B. Phillips, Liangjun Su

3.1 Introduction

Since the pioneering work of Box and Cox (1964), transformation models have been widely

studied. They include many popular models, such as the accelerated failure time model, the

Weibull hazard model, the proportional hazard model and the mixed proportional hazard

model. Due to their popularity, transformation models have been widely applied to empirical

work in various areas of economics to study issues that include the length of unemployment

spell, the time between purchases of a particular good, the time intervals between two child

births, and the insurance claim durations, among others. See Van den Berg (2001) for

a survey on the applications of duration models. Meanwhile, the asymptotic properties of

different forms of transformation models have received a great deal of interest. For example,

Horowitz (1996) focus on a transformation model with a nonparametric transformation
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function and a parametric structural function. Chiappori et al. (2015) extend the method

in Horowitz (1996) to a transformation model with both nonparametric transformation

functions and nonparametric structural functions under endogeneity.

Even though a fully-nonparametric transformation model avoids various misspecification

issues, it suffers from the curse of dimensionality. For this reason, there has developed a

large literature that applies the additive structure in generalized additive models with an

unknown link function; see Horowitz (2001), Horowitz and Mammen (2007), Horowitz and

Mammen (2011) and Lin et al. (2018), among others. Recently, Chen et al. (2022) have

considered a fully nonparametric transformation model with additive structural functions in

a panel data model with fixed effects. In contrast with the early works such as Horowitz and

Lee (2004), Chen (2010) and Wang and Chen (2020) who also analyze panel transformation

models but assume parametric structural functions, Chen et al. (2022) is the only paper

that considers a generalized transformation model with fixed effects under additivity and

avoids imposing any parametric assumption. The estimator of the structural function Chen

et al. (2022) has a closed-form expression, which makes it is easy to implement and to study

the asymptotically normality. Nevertheless, the estimation is done through the matching

with other covariates locally and thus suffers from the curse of dimensionality substantially.

To combat the curse of dimensionality, in this paper we propose a three-stage estima-

tion procedure for the generalized transformation model with fixed effects and additive

structures. We assume that the nonparametric structural function g (·) exhibits an addi-

tive structure: g (x) =
P

d

l=1 gl (xl) . Inspired by Horowitz and Mammen (2004, 2011) and

Ozabaci, Henderson and Su (2014), we aim to obtain estimators of the additive structural

functions that enjoy the orcale efficiency in the sense that they can be estimated as asymp-

totically efficiently as the oracle estimator obtained when the other additive components are

observed. In the first stage, we first consider a regularized sieve method to estimate the logit

sieve coefficients associated with the approximation of a composite function of the inverse
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L�1 (·) of logit-CDF L (·), the CDF F (·) of the error difference, and the structural function

g (·) , and then generalize the “pairwise differencing” or “matching” method of Blundell and

Powell (2004) to obtain initial consistent estimators ḡl (·) of the structural functions gl (·) .

In the second stage, we consider the local polynomial estimation of LF (·) ⌘ L�1 (F (·))

and its first order derivative based on the preliminary consistent estimates ḡl (·) . In the

third stage, we apply the local linear method to estimate the one-dimensional object gl (·)

based on the consistent estimates {ḡl (·)} of {gl (·)} and those of LF (·) and its first order

derivative. Since only one-dimensional nonparametric objects are estimated in the second

and third stage and the additive structure of g (·) is imposed in the whole procedure, the

whole estimation procedure does not have the curse of dimensionality issue.

Interestingly, all the minimization problems in our three-stage approach are convex prob-

lems. This overcomes the computational hurdle in some existing procedure for transforma-

tion models. Furthermore, our estimator achieve optimal convergence rate, asymptotic

normality and oracle efficiency.

The article is organized as follows. Section 2 describes our methodology. We present the

asymptotic properties of our estimators in Section 3. Section 4 examines the finite sample

performance of our estimators via Monte Carlo simulations. We apply our method to an

empirical dataset in Section 5. Section 6 concludes. All the proofs of the main theorems are

relegated to the appendix.

Notation. For a real matrix A, let A0 denote its transpose, and let kAk and kAk
op

to denote its Frobenius norm and operator norm, respectively: kAk ⌘ [tr (AA0)]1/2 and

kAk
op

⌘
p
�max (A0A), where ⌘ signifies a definitional relationship, tr (·) is a trace operator,

and �max (·) denotes the maximum eigenvalue of a real symmetric matrix. Similarly, we use

�min(·) to denote the minimum eigenvalue of a real symmetric matrix. For any function f(·)

defined on the real line, let ḟ(·), f̈(·), and
...
f (·) be its first, second, and third order derivatives

and let @af(·) be the ath order partial derivative of f (·). Let D
! and P

! be convergence in
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distribution and convergence in probability. Let 1{A} denote the usual indicator function

which takes one 1 if A holds true and 0 otherwise. For any positive integer c, we write

[c] = {1, 2, ..., c} . For a vector v, |v|0 denotes the number of nonzero elements in v.

3.2 Methodology

In this section we first present the panel data transformation model and then propose a

multi-step procedure to estimate it.

3.2.1 The Model

We consider the following transformation model:

⇤ (Yit) = g (Xit) + ↵i + ✏it =
dX

l=1

gl (Xl,it) + ↵i + ✏it, (3.2.1)

where i = 1, · · · , n, t = 1, · · · , T, Yit is the observed dependent/response variable, (X1,it, · · · , Xd,it)
0

is a d ⇥ 1 vector of observed covariates, g (Xit) =
P

d

l=1 gl (Xl,it), ↵i is the individual fixed

effect that captures the unobserved individual heterogeneity, ✏it is the idiosyncratic error

term, and ⇤ (·) is an unknown transformation function that is strictly increasing. Note

that the model in (3.2.1) specifies a structural relationship between the response variable

Yit and the covariates in Xit. We address the important issue of “curse of dimensionality”

by imposing additive structures on the covariates. Also, for simplicity and clarity we as-

sume that gl(·), l = 1, · · · , d are all unknown smooth functions defined on the real line so

that each Xl,it is a scalar random variable. Even though gl(·)’s are only components of the

structural relationship, they are often parameters of interest in empirical applications and

we shall refer to them as the structural functions in this paper. In addition, the derivatives,

ġ1(·), · · · , ġd(·), which measure the marginal effects, are also of interest in practice. For

example, ġl (Xl,it) can be interpreted as the marginal effect of Xl,it on ⇤ (Yit). The main
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goal of this paper is to estimate (g1(·), · · · , gd(·)) and their derivatives (ġ1(·), · · · , ġd(·)). Let

g(x) =
P

d

l=1 gl(xl) where x = (x1, ..., xl)0.

Throughout the paper we focus on a short panel with T being fixed but allow the

individual effect ↵i to be correlated with the covariates in arbitrarily unknown form. To

deal with the fixed effects ↵i, we rewrite the model in (3.2.1) as follows:

Yit = ⇤�1 (g (Xit) + ↵i + ✏it) = ⇤�1

 
dX

l=1

gl (Xl,it) + ↵i + ✏it

!
, (3.2.2)

where ⇤�1(·) is the inverse function of ⇤(·). Clearly, the above expression indicates that the

model (3.2.1) is different from the classical panel data model of the following form:

Yit = ⇤�1 (g (Xit)) + ↵i + ✏it = ⇤�1

 
dX

l=1

gl (Xl,it)

!
+ ↵i + ✏it. (3.2.3)

For the model in (3.2.3), we can eliminate the fixed effects through various transformations

such as first-differing and within-group transformation. Nevertheless, for the model in (3.2.1)

or (3.2.2), we cannot apply such transformations to remove ↵i due to the presence of the

nonlinear function ⇤�1. Fortunately, Chen et al. (2022) find that the distribution of Di,ts ⌘

1 {Yit > Yis} is free of ↵i. This motivates the estimation of the structural functions based

on such a non-smooth transformation of the dependent variables.

3.2.2 Estimation Procedure

For clarity, we focus on the case where T = 2 and then remark on the general case with

T > 2 later on. To avoid complication that arises from the presence of discrete covariates,

we assume that all covariates are continuous variables.

Following the lead of Chen et al. (2022), we compare Yi2 with Yi1 by defining Di ⌘

1 {Yi2 > Yi1} . Since ⇤(·) is strictly increasing, we have

Di = 1 {⇤ (Yi2) > ⇤ (Yi1)}

35



= 1 {g (Xi2) + ✏i2 > g (Xi1) + ✏i1}

= 1 {g (Xi2)� g (Xi1) > �i}

= 1

(
dX

l=1

gl (Xl,i2)�
dX

l=1

gl (Xl,i1) > �i

)
, (3.2.4)

where �i = ✏i1�✏i2. Obviously, the fixed effect ↵i has been removed via the above nonlinear

transformation so that the distribution of Di is free of ↵i. Let Xi = (Xi1, Xi2) . Let f(·) and

F (·) denote the probability density function (PDF) and cumulative distribution function

(CDF) of �i, respectively. Then

E (Di|Xi) = Pr (g (Xi2)� g (Xi1) > �i) = F (g (Xi2)� g (Xi1)) . (3.2.5)

Inspired by Horowitz and Mammen (2004, 2011) and Ozabaci et al. (2014), we propose

a three-step procedure to estimate the structural functions and their derivatives below. In

the first stage, we first consider a regularized sieve method to estimate the sieve coefficients

associated with the approximation of a composite function of the inverse L�1 (·) of logit-

CDF L (·), the CDF F (·) of �i, and the structural equation g (·) , and then generalize

the “pairwise differencing” or “matching” method of Blundell and Powell (2004) to obtain

initial consistent estimators ḡl (·) of the structural functions gl (·) . In the second stage, we

consider the local polynomial estimation of LF (·) ⌘ L�1 (F (·)) and its first order derivative

based on the preliminary consistent estimates ḡl (·) . Note that LF (·) is a one-dimensional

smooth function and its estimation does not have the curse of dimensionality issue. In the

third stage, we apply the local linear method to estimate the one-dimensional object gl (·)

based on early consistent estimates {ḡl (·)} of {gl (·)} and those of LF (·) and its first order

derivative. Again, here there is no curse of dimensionality involved here.

First-stage estimation of {gl(·)}
d

l=1

In the first stage, we consider initial consistent estimation of the structural functions {gl(·)}dl=1

in model (3.2.1), which is done through two sub-steps.
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In principle, we can estimate {gl(·)}
d

l=1 via least squares based on the model for the

response variable Di by using sieve approximation for the structural functions in (3.2.4).

Nevertheless, the least squares estimates do not perform well as it cannot ensure the resulting

probability estimates to lie between 0 and 1. To ensure the probability estimates to always

lie between 0 and 1 during the computation, we follow the lead of Hirano, Imbens and

Ridder (2003) and consider the method of logit sieve.

To proceed, we introduce some notations. Let {pl (·) , l = 1, 2, · · · } denote a sequence of

B-spline basis functions. Let K = K(n) be some integer such that K(n) ! 1 as n ! 1.

Let PK(xit) =
⇥
pK(x1,it)0, · · · , pK(xd,it)0

⇤ 0 where pK(xl) ⌘ [p1 (xl) , · · · , pK (xl)]
0 for l =

1, ..., d. Then under suitable smooth conditions, we can approximate gl(·) by pK(·)0�xl

where �xl = (�xl

1 , · · · , �xl

K
)0 is a K ⇥ 1 vector of parameters. Let � = (�x1 0, · · · , �xd 0)0 .

In the sequel, we propose to use B-spline estimation as it has faster uniform convergence

rate than the estimation based on the power splines. In addition, it is well known that

B-splines have low multicollinearity and recursive formula for calculation, which provides

great computational advantages in practice. See Chapter 19 of Powell (1981) and Chapter

4 of Schumaker (2007) for more details on B-splines.

Let �g (Xi) = g (Xi2) � g (Xi1) , and LF (·) = L�1 (F (·)) . In the first substep, we try

to approximate the composite function LF (�g (·)) . Even though the additive structure

in g (·) implies that that of �g : �g (Xi) =
P

d

l=1 [gl (Xl,i2)� gl (Xl,i1)] , LF (�g (Xi)) can

not be written as additive functions of (X1,i1, ..., Xd,i1, X1,i2, ..., Xd,i2) . This implies that if

one uses {pK(xl,it), l 2 [d] , t 2 [2]} to approximate this composite function, one has to use

their 2d-dimensional tensor product to form the basis functions, resulting in the “curse of

dimensionality”. Fortunately, noting that �g (·) is additive and LF (·) is a one-dimensional

function, we can avoid the “curse of dimensionality” via two sieve approximations to the

composite function. First, we approximate �g (Xi) as follows:

�g (Xi) =
�
PK(Xi2)� PK(Xi1)

�0
�0 + [r1 (Xi2)� r1 (Xi1)]
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⌘ �PK(Xi)
0�0 +�r1 (Xi) (3.2.6)

where r1 (Xi) is the approximation error in the sieve approximation of �g (Xi) . Then under

certain smooth conditions on F (·) , we can approximate LF (�g (Xi)) as follows

LF (�g (Xi)) = LF
�
�PK(Xi)

0�0 +�r1 (Xi)
�

= LF
�
�PK(Xi)

0�0

�
+ LF (�g⇤

i
)�r1 (Xi)

=
RX

`=0

↵`,0

�
�PK(Xi)

0�0

�`
+ [r2 (Xi) + LF (�g⇤

i
)�r1 (Xi)]

⌘

RX

`=0

↵`,0

�
�PK(Xi)

0�0

�`
+ r (Xi) , (3.2.7)

where �g⇤
i

lies between �gi (Xi) and �PK(Xi)0�0, r2 (Xi) can be regarded as the remainder

term in the Rth order Taylor expansion of LF (·) , and r (Xi) = [r2 (Xi) + LF (�g⇤
i
)�r1 (Xi)] .

Intuitively, as long as both gl (·)’s and F (·) are sufficiently smooth, and both K and R di-

verge to infinity, we can control the overall approximation error r (Xi) uniformly well. In

practice, we propose to use the following functions as the vector of base functions to ap-

proximate LF (�g (Xi)) :

1, �PK(Xi), the tensor product of �PK(Xi) up to order R. (3.2.8)

For notational simplicity, we denote the above vector of base functions simply as R (Xi) ⌘

RKR (Xi) where KR signifies the dimension of the vector R (Xi) . Clearly, KR is a determin-

istic function of K and R. Then we have

LF (�g (Xi)) ⇡ R (Xi)
0 ⇡0 for some ⇡0 2 RKR .

Note that the true values of the elements of ⇡0 depend on the coefficients ↵`,0’s and

�0 nonlinearly, but it is hard to incorporate such restrictions in the following estimation

procedure. Instead, we will consider a regularized procedure to estimate ⇡0. Specifically, we
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propose to estimate ⇡0 by the regularized logit sieve (RLS) method:

⇡̄ = argmin
⇡

�
1

n

NX

i=1

[Di · ln (L (R(Xi)
0⇡)) + (1�Di) · ln (1� L (R(Xi)

0⇡))] + � k⇡k1 ,

(3.2.9)

where L (·) is the Logit CDF: L(x) =
exp(x)

1 + exp(x)
, k·k1 is the L1 norm, and � = � (n)

is a tuning parameter that shrinks to zero as n ! 1. In comparison with the standard

logit sieve estimation, we use regularization in the above minimization problem. Following

Belloni, Chernozhukov, Fernández-Val and Hansen (2017), we can set

� = cn�1/2��1 (1� c�n/ {2KR}) (3.2.10)

where c > 1 is slack constant (e.g., 1.1), c�n = 0.1/ log (n) and ��1 (·) is the inverse function

of the standard norm CDF �. Let m̄i ⌘ Ē (Di|Xi) = L (R(Xi)0⇡̄) , which serves as an initial

consistent estimator for mi ⌘ E (Di|Xi) . Note that even though the true link function F (·)

is not a Logistic function, we can use Logistic function inside the function ln(·) in (3.2.9).

Following Hirano et al. (2003) and Belloni et al. (2017), we can establish the convergence

rate for the above regularized logit sieve estimator under some suitable conditions.

In the second substep, we consider the use of a matching method to estimate the struc-

tural functions. To see how the idea of “matching” works, note that

mi = E (Di|Xi) = F (�g (Xi)) .

By the strict monotonicity property of the CDF function F (·) ,

mi ⇡ mj if and only if �g (Xi) ⇡ �g (Xj) .

So in principle, one can consider minimizing the average squared distance between �g (Xi) and

�g (Xj) when we control mi to lie close to mj. In practice, both �g (Xi) and mi’s are not

observed, we need to use sieve approximation to obtain the former one and replace the latter

one by its preliminary consistent estimate. Note that

mi = F (g (Xi2)� g (Xi1)) ⇡ F
�⇥
PK(Xi2)� PK(Xi1)

⇤ 0�0
�
.
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For i 2 {1, · · · , n}, let

4PK

i
= PK (Xi2)� PK (Xi1) ,

qk,i = pk (X1,i2)� pk (X1,i1) for k = 1, ..., K,

Ql,i = pK (Xl,i2)� pK (Xl,i1) for l = 1, ..., d.

For i 6= j 2 {1, · · · , n}, let

4PK

i,j
= 4PK

i
�4PK

j
, 4P 1,K

i,j
= q1,i � q1,j,

4PK�1,K
i

=
�
q2,i, ..., qK,i, Q

0
2,i, ..., Q

0
d,i

�0 and 4PK�1,K
i,j

= 4PK�1,K
i

�4PK�1,K
j

.

Note that 4PK

i,j
=

✓
4P 1,K

i,j
,
⇣
4PK�1,K

i,j

⌘0◆0

. To estimate �0, we normalize its first element

to be 1 and rewrite it as �0 = (1, ✓00) 0. The matching estimator of ✓0 is obtained as follows:

✓̄ = argmin
✓

1

n2

X

1i 6=jn

h
4P 1,K

i,j
+ ✓04PK�1,K

i,j

i2
H1h1 (m̄j � m̄i) (3.2.11)

= �

(
1

n2

X

1i 6=jn

4PK�1,K
i,j

4PK�1,K
i,j

0H1h1,ji

)�1
1

n2

X

1i 6=jn

4P 1,K
i,j

4PK�1,K
i,j

H̄1h1,ji,(3.2.12)

where H̄1h1,ji = H1h1 (m̄j � m̄i) , H1h1(·) ⌘ h�1
1 H1 (·/h1), H1(·) is a one-dimensional kernel

function, and h1 is a bandwidth. Let �̄ = (1, ✓̄0) =
�
�̄x10, ..., �̄xd0

�0
, where �̄xl serves as an

estimator of �xl for l = 1, ..., d. Then we obtain the estimate of gl (xl) by ḡl(xl) = pK(xl)0�̄xl

for l = 1, · · · , d and that of g (x) by ḡ(x) ⌘
P

d

l=1 ḡl(xl), where x = (x1, ..., xd)
0 .

Second-stage estimation

To motivate the second-stage estimation, we add some notation. Let

4gi = g (Xi2)� g (Xi1) and 4gi,j = 4gi �4gj.

Let LF (·) = L�1 (F (·)), LFi = LF (�gi) and ˙LF i = ˙LF (�gi). Note that

NX

i=1

{Di ln [F (�gi)] + (1�Di) ln [1� F (�gi)]}
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=
NX

i=1

{Di ln [L (LF (�gi))] + (1�Di) ln [1� L (LF (�gi))]} . (3.2.13)

By Taylor expansions, for any i 6= j 2 {1, · · · , n},

LF (�gi) = LF (�gj + (�gi ��gj)) ⇡ LF (�gj) +
a2X

l=1

@a2LF (�gj)
1

l!
(4gi,j)

l ,

where 4gi,j is close to zero and LF (·) is a2-order continuously differentiable.

Let 4ḡi =ḡ(Xi2)� ḡ (Xi1) and 4ḡi,j = 4ḡi �4ḡj. Define

Qn (4ḡj, {bl}
a2

l=0)

=
�1

n

NX

i=1

H2h2 (4ḡi,j)

⇥

(
Di ln

"
L

 
b0 +

a2X

l=1

1

hl

2l!
(4ḡi,j)

l bl

!#
+ (1�Di) ln

"
1� L

 
b0 +

a2X

l=1

1

hl

2l!
(4ḡi,j)

l bl

!#)
.

where H2h2(·) ⌘ h�1
2 H2 (·/h2), H2(·) is a one-dimensional kernel function, and h2 is a band-

width. Obviously, b0+
P

a2

l=1
1

h
l

2l!
(4ḡi,j)

l bl serves as an a2-order Taylor series approximation

of LF (�ḡi) in the neighborhood of 4ḡj. Then we can estimate
⇣
LFj, ˙h2LF j

⌘
by the min-

imizing Qn (4ḡj, {bl}
a2

l=0) with respect to {bl}
a2

l=0 :

⇣
cLF j, h2

[@LF j, · · · , h
a2
2
\@a2LF j

⌘
= arg min

{bl}
a2
l=0

Qn

�
4ḡj, {bl}

ah2
l=0

�
.

Let ċLF j = [@LF j.

Third-stage estimation

In this stage, we refine the early estimates of the structural functions. Our objective is to

obtain an estimator of gl (·) that is as asymptotically efficient as that obtained when the

other (d� 1) the structural functions {gl⇤ (·)}
d

l⇤=1,l⇤ 6=l
were known.

Note that �gi =
P

d

j=1 [gj (Xj,i2)� gj (Xj,i1)] enters the Logit sieve objective function.

For the moment, suppose that {gl⇤ (·)}
d

l⇤=1,l⇤ 6=l
is known, we aim at estimating gl (·) alone
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by the local linear method. Noting that gl (·) appears twice in �gi, one may be tempted

to conduct the local linear approximation of gl (Xl,i2) and gl (Xl,i1) simultaneously around

a point xl. But to control the approximation well, one would need to ensure both Xl,i2 and

Xl,i1 are around xl. This will yield a local linear estimator with a slower convergence rate

than the usual one-dimensional local linear estimate. To avoid such slow convergence, we

consider Taylor expansion of gl (Xl,i2) and gl (Xl,i1) separately around a point xl below.

First, by the Taylor expansion of gl (Xl,i1) around xl, we have gl (Xl,i1) ⇡ gl (xl) +

ġl (xl) (Xl,i1 � xl) . It follows that

dX

j=1, 6=l

[gj (Xj,i2)� gj (Xj,i1)] + gl (Xl,i2)� gl (xl)� ġl (xl) (Xl,i1 � xl)

= �gi + gl (Xl,i1)� gl (xl)� ġl (xl) (Xl,i1 � xl) ⌘ Gl1,i,

and

LF (Gl1,i) ⇡ LF (�gi)� ˙LF (�gi) [gl (xl) + ġl (xl) (Xl,i1 � xl)� gl (Xl,i1)] ⌘ LFi1(xl).

(3.2.14)

Similarly, using gl (Xl,i2) ⇡ gl (xl)+ġl (xl) (Xl,i2 � xl) by Taylor expansion of gl (Xl,i2) around

xl, we have

dX

j=1,j 6=l

[gj (Xj,i2)� gj (Xj,i1)] + gl (xl) + ġl (xl) (Xl,i2 � xl)� gl (Xl,i1)

= �gi + gl (xl) + ġl (xl) (Xl,i2 � xl)� gl (Xl,i2) ⌘ Gl2,i,

and

LF (Gl2,i) ⇡ LF (�gi) + ˙LF (�gi) [gl (xl) + ġl (xl) (Xl,i2 � xl)� gl (Xl,i2)] ⌘ LFi2(xl).

(3.2.15)

Obviously, Gl1,i is an approximation version of �gi in which only gl (Xl,i1) is replaced by its

first order Taylor expansion at xl, and Gl2,i is that of �gi in which only gl (Xl,i12) is replaced

42



by its first order Taylor expansion at xl. Then we may consider the following local likelihood

function to estimate (gl (xl) , ġl (xl))

2X

t=1

NX

i=1

H3h3 (Xl,it � xl) {Di ln [L (LF (Glt,i))] + (1�Di) ln [1� L (LF (Glt,i))]}

⇡

2X

t=1

NX

i=1

Th3 (Xl,it � xl) {Di ln [L (LFit(xl))] + (1�Di) ln [1� L (LFit(xl))]} , (3.2.16)

where H3h3(·) ⌘ h�1
3 H3 (·/h3), H3(·) is a one-dimensional kernel function, and h3 is a band-

width.

Of course, we cannot minimize the negative of (3.2.16) with respect to (gl (xl) , ġl (xl))

given the unknown nature of LF (�gi) and ˙LF (�gi) in the definitions of LFi1(xl) and

LFi2(xl). A feasible objective function is given by

Wn,xl
(c) ⌘ �

TX

t=1

NX

i=1

H3h3 (Xl,it � xl)
h
Di ln

⇣
L
⇣
cLF it,xl

(c)
⌘⌘

+ (1�Di) ln
⇣
1� L

⇣
cLF it,xl

(c)
⌘⌘i

,

(3.2.17)

where c ⌘ (c0, c1)
0 ,

cLF i1,xl
(c) = cLF i �

ċLF i ·


c0 + c1

1

h3
(Xl,i1 � xl)� ḡl (Xl,i1)

�
, and

cLF i2,xl
(c) = cLF i +

ċLF i ·


c0 + c1

1

h3
(Xl,i2 � xl)� ḡl (Xl,i2)

�
.

By minimizing the objective function in (3.2.17) with respect to (c0, c1) yields the following

estimates
⇣
bgl(xl), h3

ḃg
l
(xl)
⌘
= arg min

(c0,c1)
Wn,xl

(c0, c1).

In the next section we will show that the estimators bgl(xl) and ḃg
l
(xl) are oracle efficient.

3.3 Assumptions and Asymptotic Results

In this section, we first present the assumptions and then study the asymptotic properties

of the estimators of the structural functions.
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3.3.1 Assumptions

To proceed, we introduce some notation. A real-valued m-times continuously differentiable

function q(u) on U ⇢ R is said to be a �-smooth function if, for some r = ��m 2 (0, 1], 9cq,

|@mq(u)� @mq(u⇤)|  cq |u� u⇤
|
r holds for all u, u⇤

2 U . It is well known that �-smooth

functions can be approximated well by various linear B-splines (e.g., Chen (2007)). So we

will assume that {gl(·)}
d

l=1 are �-smooth functions below.

We will use X = ⌦
d

l=1Xl to denote the support of Xit = (X1,it, ...Xd,it)
0 . Let X

⌦2 =

X ⇥ X denote the support of (Xi1, Xi2). We make the following assumptions.

Assumption 7 1. {Yi, Xi}
n

i=1 are i.i.d.;

2. The support X = ⌦
d

l=1Xl of Xit = (X1,it, ...Xd,it)
0 is compact;

3. ✏it is strictly stationary over time.

4. (✏i1, ✏i2) is independent of (Xi1, Xi2);

5. There exist positive constants c
✏
, c✏ and c✏ such that c

✏
 E (✏2

it
)  c✏ and E |✏it|

j


cj�2
✏

j!E (✏2
it
) < 1 for all j � 2.

Assumption 7 imposes some conditions on {Yi, Xi, ✏it} . Assumption 7(1) assumes the

observations are i.i.d.; Assumption 7(2) assumes the exogenous independent variables have

compact supports. Assumptions 7(3) is made to simplify the notation. Assumption 7(4) is

commonly assumed in the nonparametric transformation models to avoid the estimation of

certain conditional distributions. Assumption 7(5) imposes some moment conditions on the

error terms to simplify the derivation.

Assumption 8 1. The link function ⇤(·) is strictly increasing;

2. �0 = (1, ✓00)
0 .
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Assumption 2 is an identification condition. Note that we impose a strictly monotone

condition on the link function in Assumption 2(1) and normalize the first element of �0 to be

1 in Assumption 2(2). Without the scale normalization, the structural functions {gl(·)}
d

l=1

cannot be separately identified from ⇤(·).

Assumption 9 1. The CDF F (·) of �i = ✏i1 � ✏i2 is strictly monotone and (R + 1)th

order continuously differentiable.

2. There exists a small positive constant c such that 0 < c < infx=(x1,x2)2X⌦2 E (Di|Xi = x) 6

infx=(x1,x2)2X⌦2 E (Di|Xi = x) 6 1� c.

3. The set of basis functions {pk(·)}
1
k=1 are twice continuously differentiable on their

supports; max0h2r max1ld supxl2Xl

��@h2pK(xl)
��  C⇣rK for r = 0, 1, 2 for some

large constant C.

4. The functions {gl(·)}
d

l=1 are bounded and �-smooth function with � � 2 on their sup-

ports; there exist a vector �0 =
�
�x10
0 , ...., �xd0

0

�0 such that �xl

0 2 interior (B) for some

compact set B in RK and all l = 1, ..., d, and max1ld supxl2Xl

��gl(xl)� pK(xl)0�
xl

0

�� =

O(K��) for some � > 2.

5. There exist a vector ⇡0
2 interior (⇧) for some compact set ⇧ in RKR such that

sup
x=(x0

1,x
0
2)

02X⌦2 |LF (�g (x)) � R(x)0⇡0
| = O(K�� + R�(R+1)); we can decompose

R(x) = (R1(x)0, R(x)0)0 and ⇡0 = (⇡00
1 , ⇡

00
2 )

0 accordingly such that s2
⇡1
log2

�
KR

_ n
�


K��n, and sup
x=(x0

1,x
0
2)

02X⌦2 |R2(x)0⇡0
| = O(K��) where s⇡1 ⌘ |⇡0

1|0 .

Assumption 9(1) imposes some smooth conditions on F (·) to ensure the second sieve ap-

proximation considered in the first stage estimation. Assumption 9(2) ensures the desirable

asymptotic properties of the sieve logit estimator in the first stage. Assumption 9(3)-(4)

quantify the properties of the base functions {pk(·)}
1
k=1 and the approximation error for

one-dimensional �-smooth functions. Note that many basis functions such as polynomials,
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splines and wavelets satisfy these conditions with various controls on ⇣rK . For splines, it is

well known that ⇣rK = K1/2+r; see Newey (1997). Assumption 9(5) reflects the error in the

approximation of LF (�g (x)) by R(x)0⇡0 is uniformly well controlled where the term K��

is carried over from the approximation of the additive function �g (·) by �PK(·)0�0 and the

term R�(R+1) signifies the error in the approximation of the (R + 1)th-order continuously

derivative function LF (·) by power series. Clearly, R�(R+1)
⌧ K�� provided R � c log (K)

for some c > 0. This indicates to suffices to consider R to be proportioal to log (K) . Our

simulations indicates that a choice of R like 3 or 4 works sufficiently well in general. In

addition, Assumption 9(5) indicates that ⇡0 should be approximately sparse to facilitate

the asymptotic analysis.

Assumption 10 For every K and R that is sufficiently large,

1. There exist positive constants C1 and C2 such that

0 < C1  �min (E [R(Xi)R(Xi)
0])  �max (E [R(Xi)R(Xi)

0])  C2 < 1.

2. Let ⌘ (mi) ⌘ E
h
4PK�1,K

i,j
4PK�1,K

i,j

0
|m

i

i
where j 6= i. Let fm (·) denote the density

of mi. All eigenvalues of E [⌘ (mi) fm(mi)] are bounded and bounded away from zero:

0 < C1L  �min (E [⌘ (mi) fm(mi)])  �max (E [⌘ (mi) fm(mi)])  C2L < 1.

Assumption 10(1) impose some standard conditions to ensure the logit sieve estimator

to be well behaved. Assumption 10(2) ensures the matching estimator in the second substep

of the first stage estimation is well behaved.

Assumption 11 1. The probability density function (PDF) fXl
(·) of Xl,it, is bounded

and bounded away from zero within its support Xl, for l 2 [d] .

Assumption 11 imposes some standard conditions on the density of the regressors.
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Assumption 12 1. The kernel function H1(·) is an a1-order symmetric kernel function

with compact support where a1 � 2 is even; it is third order continuously differentiable.

2. Both H2(·) and H3(·) are second order symmetric kernel functions with compact sup-

port.

Assumption 12(i) imposes some conditions on the kernel function H1(·) used in the first

stage estimation. To eliminate the effect of the first stage estimation, we typically resort to

a higher order kernel with a1 � 4. Assumption 12(ii) indicates that we can use the usual

second order kernel function in the second stage local polynomial regression and the third

stage local linear estimation. Note that we cannot use higher order kernel in local linear or

polynomial regressions to avoid asymptotic singularity, but it is fine to set H3(·) = H2(·).

Assumption 13 1. As n ! 1, K ! 1, R ! 1, h` ! 0 8` 2 [3], and R�(R+1) =

O (K��);

2. ha2+1
2 +

p
log(n)/(nh2) +

p
K log(n)/n+

p
Kha1

1 +K��+1/2 = o(h2
3 + (nh3)

�1/2)

3. K3 log(n)/n = o(1) and
p
K(

p
Kha1

1 + h�1
1 (
p
s⇡1 log(RR _ n)/n+K��)) = o (1) .

Assumption 13 imposes some conditions on the bandwidths h`’s, the sieve approximating

terms K and R, the order of the kernel used in the first stage estimation, and the order

of the local polynomial used in the second stage estimation. Assumption 13(i) is standard

and minimal except the last part, which ensures that the second sieve approximation error

is no bigger than the first sieve approximation studied in Step 1. Assumption 13(ii) ensures

that the asymptotic biases and variances of the first-stage and second-stage estimators are

sufficiently small to achieve the oracle efficiency in the third stage. To ensure the last stage

local linear estimator of gl (·) to enjoy the optimal rate of convergence, we need to choose

h3 to be proportional to n�1/5. To be specific, we consider the case where a1 = 4, a2 = 3
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and h3 _ n�1/5. Assumption 13(ii) requires that

K _ ncK for cK 2

✓
2

5(� � 1/2)
,
1

3

◆

h1 _ n�c1 for some c1 2

✓
1

10
+

cK
8
, 1

◆

h2 _ n�c2 for some c2 2

✓
1

10
,
1

5

◆
.

For example, if � > 2.5, we can simplify choose K = n1/5.

3.3.2 Asymptotic Properties

In this subsection we study the asymptotic properties of our three-step estimators.

The following theorem establishes the asymptotic properties of the first-stage estimator

✓̄.

Theorem 3.3.1 Suppose that Assumptions 7–10, 12(1) and 13(i) and (iii) hold. Let ⌘1Kn =
p
s⇡1 log(RR _ n)/n+K�� and ⌘2Kn = ⌘1Kn+

p
Kha1

1 +K��+1/2. Let H1h1,ji ⌘ H1h1 (mj �mi) .

Then

(i)

✓̄ � ✓0 = �

(
1

n2

X

1i 6=jn

4PK�1,K
i,j

4PK�1,K
i,j

0H1h1,ji

)�1(
1

n2

X

1i 6=jn

4gi,j4PK�1,K
i,j

H1h1,ji

+
1

n2

X

1i 6=jn

�
4PK

i,j

0�0 �4gi,j
�
4PK�1,K

i,j
H1h1,ji

)
+R1n,

(ii)
��✓̄ � ✓0

�� = Op (⌘2Kn) ;

(iii) 1
n

P
n

i=1 [ḡl (Xl,i)� gl (Xl,i)]
2 = Op (⌘2Kn) for l = 1, · · · , d;

(iv) sup
xl2Xl

|ḡl (xl)� gl (xl)| = Op(
p
K⌘2Kn) for l = 1, · · · , d;

where kR1nk = Op (⌘1Kn).

Theorem 3.3.1(i) establishes a Bahadur-type representation for the first-stage estimator

✓̄. Theorem 3.3.1(ii) establishes the Euclidean norm for ✓̄. Theorem 3.3.1(iii)-(iv) establishes

the mean square convergence and uniform convergence of ḡl (·) , respectively.
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The following theorem establishes the asymptotic properties of the second-stage estima-

tors.

Theorem 3.3.2 Suppose that Assumptions 7–10, 12 and 13(i) and (iii) hold. Let ⌘3Kn =

⌘2Kn + ha2+1
2 +

p
ln (n) /(nh2). Then

(i) There exists a positive constant cF such that
���
⇣
cLF (4gj)), h2

[@LF (4gj)
⌘
� (LF (4gj)), h2@LF (4gj))

���  cF |4gj �4ḡj|+Op (⌘3Kn)

uniformly over j 2 {1, · · · , n};

(ii) 1
n

P
n

j=1

h
cLF (4gj)� LF (4gj)

i2
= Op (⌘23Kn

) , and 1
n

P
n

j=1

h
h2

[@LF (4gj)� h2@LF (4gj)
i2

= Op (⌘23Kn
) .

Theorem 3.3.2(i) establishes the asymptotic expansions for cLF (4gj)) and h2
[@LF (4gj);

Theorem 3.3.2(ii) establishes the mean square error convergence rate for the estimators of

LF (4gj) and h2@LF (4gj), respectively.

With Theorems 3.3.1 and 3.3.2, we can establish the asymptotic properties of the third

stage estimator of {(gl(·), ġl(·))}dl=1.

Theorem 3.3.3 Suppose that Assumptions 7–13 hold. Let ab =
R
ua [H3(u)]

b du for a, b =

0, 1, 2. Then for l = 1, · · · , d,

(i)
0

B@

p
nh3 0

0
p
nh3

3

1

CA

2

64

0

B@
bgl(xl)

ḃg
l
(xl)

1

CA�

0

B@
gl(xl)

ġl(xl)

1

CA�
1

2
g̈l(xl)

0

B@
h2
321

0

1

CA

3

75

d
! N

0

@0,

(
E

"
Ḟ 2(4g(Xi))

F (4g(Xi)) [1� F (4g(Xi))]

�����Xl,i1 = xl

#
+ E

"
Ḟ 2(4g(Xi))

F (4g(Xi)) [1� F (4g(Xi))]

�����Xl,i2 = xl

#)�1

⇥

0

B@
02 0

0 22


2
21

1

CA

1

CA .

(ii) sup
xl2Xl

kbgl(xl)� gl(xl)k = Op

⇣
h2
3 +

p
ln (n) / (nh3)

⌘
.
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Theorem 3.3.3 reports the asymptotic properties of the third step local linear estimator

of {(gl(·), ġl(·))}dl=1. Theorem 3.3.3(i) indicates that the asymptotic distribution of the local

linear estimator of is not affected by random sampling errors in the first two stage estima-

tion. In fact, our local linear estimator of (gl(·), ġl(·)) has the same asymptotic distribution

that we would have if the other additive components {(gj(·), ġj(·))}
d

j=1, 6=l
and link function

F (·) were known. This indicates the oracle efficiency of the estimator. Theorem 3.3.3(ii)

gives the uniform convergence rate for gl(·). Following the standard exercise in the non-

parametric kernel literature, we can also demonstrate that these estimators of (gl1(·), ġl1(·))

and (gl2(·), ġl2(·)), 8l1 6= l2 2 {1, · · · , n} are asymptotically independent.

In the proof of Theorem 3.3.3, we give the linear representations of the nonparametric

estimators
n⇣
bgl(·), ḃgl(·)

⌘od

l=1
with uniform control of the reminder terms. It serves as a

building block for both pointwise and uniform inference. For example, one can consider uni-

form inference based on the multiplier bootstrap as in Chernozhukov et al. (2014, Corollary

3.1). For brevity, we skip the details.

3.4 Numerical Studies

In this section, we are going to use simulated examples to demonstrate how well the proposed

estimation procedure works. We use the same DGPs in Chen et al. (2022) to compare their

estimator with the proposed estimator. To save space, we only report the detailed results

for the estimator of g1(·). We consider four data generating processes (DGPs).

DGP I: ⇤ (Yit) = X2
1,it +X2

2,it + ↵i + ✏it, where ✏it ⇠ U(0, 1).

DGP II: ⇤ (Yit) = X2
1,it + X2

2,it + ↵i + ✏it, where (a✏it + b) ⇠ X
2(2) with a = 1

2

�
9
8

�3 and

b = 1
2 exp

�
�

1
2a

�
.

DGP III: ⇤ (Yit) = X3
1,it + 0.5X2

1,it +X2
2,it + ↵i + ✏it, where ✏it ⇠ U(0, 1).

All DGPs take the Box-Cox transformation of Bickel and Doksum (1981) with ⇤(y) =
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|y|�sgn(y)�1
�

for � = 0.8. Both X1,it and X2,it follow U(�1, 1) and their correlation coefficient

is 0.2. ↵i = 0.5 (X1,it +X2,it) + 0.5⌘, where ⌘i is a N(0, 1) random variable. The error

term either follows symmetric normal distribution or asymmetric Chi-square distribution of

freedom 2.

We define the bias, standard deviation (SD), and root mean integrated squared error

(RMISE) of an estimator bf(·) of f(·) as

bias =
Z ���E

h
bf(v)

i
� f(v)

��� dv,

SD =

Z
sd
h
bf(v)

i
dv

and

RMISE = (bias2 + SD2)1/2,

respectively, and use them to assess the accuracy of the estimator bf(·).

The kernel function used in the proposed estimation procedure is the standard Gaussian

kernel for all simulated examples in this section. For each simulated example, we assess

the accuracy of the proposed estimation procedure for sample size n = 500 and for each

case, we compute the bias, SD and RMISE of an obtained estimator based on 1000 simu-

lations. Method in Chen et al. (2022) chooses bandwidth by minimizing the leave-one-out

cross-validation (CV) function. The proposed method chooses bandwidth by grid search to

minimize CV function.

Table 3.1 - 3.3 report bias (Bias), standard deviation (SD) and root mean square error

(RMSE) of g1 (x1) for DGPs I-III, respectively. When the error terms follow normal distri-

bution in DGP I and III, the proposed method works better than the method in Chen et al.

(2022), especially at boundary points. When the error term follows Chi-square distribution

in DGP II, the proposed method defeats the method in Chen et al. (2022) at boundary

points, e.g. x1 = �0.8,�0.6,�0.4, 0.4, 0.6, 0.8, and does not function well at center points,

e.g. x1 = �0.2, 0.2. As expected, we usually observe a relatively larger RMSE when the
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Table 3.1 Estimation results for DGP I

x1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

g1 (x1) 0.64 0.36 0.16 0.04 0.04 0.16 0.36 0.64

Chen et al. (2022)

RMSE 0.2459 0.1489 0.0946 0.0571 0.0576 0.0928 0.143 0.2358

Bias -0.1942 -0.091 -0.03 -0.0025 0.004 -0.0232 -0.0828 -0.1826

SD 0.151 0.118 0.0898 0.0571 0.0575 0.09 0.1167 0.1492

the proposed estimator

RMSE 0.108 0.0804 0.0614 0.0423 0.0403 0.0609 0.0834 0.1116

Bias -0.0074 -0.0016 0.0128 0.0179 0.0132 0.0039 -0.0129 -0.0176

SD 0.1077 0.0804 0.0601 0.0383 0.0381 0.0608 0.0824 0.1102

evaluation point is close to the boundary and it is much more obvious in Chen et al. (2022).

The dimension of variables does not influence the simulation performance of the proposed

method, however, the method in Chen et al. (2022) suffers from the curse of dimensionality

in implementation.

3.5 Application: the Effect of Income Shock on Job Cre-

ation

In our empirical study, we investigate the impact of fluctuations in regional income on

employment generation within the nontradable sector for firms. The nontradable sector

encompasses goods and services that cannot be easily traded or transported across regions,

such as hairdressing, restaurants, and local retail stores. These types of businesses predom-

inantly rely on the demand from consumers within their respective regions. Mian and Sufi

(2012) argue that firms operating in the nontradable sector are heavily influenced by local
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Table 3.2 Estimation results for DGP II

x1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

g1 (x1) 0.64 0.36 0.16 0.04 0.04 0.16 0.36 0.64

Chen et al. (2022)

RMSE 0.289 0.1668 0.0962 0.0566 0.0594 0.1013 0.1714 0.2962

Bias -0.2476 -0.1213 -0.0422 -0.0044 -0.0035 -0.0435 -0.1243 -0.2534

SD 0.149 0.1145 0.0865 0.0564 0.0593 0.0915 0.1181 0.1535

the proposed estimator

RMSE 0.1858 0.1389 0.1073 0.0821 0.0829 0.105 0.1335 0.186

Bias -0.0428 -0.0073 0.024 0.039 0.0396 0.0259 -0.0029 -0.0332

SD 0.1808 0.1387 0.1046 0.0723 0.0728 0.1018 0.1335 0.183

demand, which in turn is impacted by the income levels of the local population. As a result,

when there is a positive shock to income in a region, the purchasing power of the residents

typically increases. This surge in consumer spending leads to a higher demand for goods

and services in the nontradable sector.

To illustrate this relationship, let’s consider a hypothetical example. Suppose a region

experiences an economic boom, resulting in increased income levels for the majority of its

residents. As these individuals now have more disposable income, they are more likely

to spend on goods and services such as dining out, visiting local attractions, or utilizing

personal services like hair salons. This increase in local demand, driven by higher income

levels, would then create more opportunities for businesses in the nontradable sector, po-

tentially leading to the establishment of new businesses or the expansion of existing ones.

Consequently, this growth would translate into the creation of additional employment op-

portunities within the nontradable sector. To test this hypothesis, we are interested in
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Table 3.3 Estimation results for DGP III

x1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

g1 (x1) 0.64 0.36 0.16 0.04 0.04 0.16 0.36 0.64

Chen et al. (2022)

RMSE 0.1471 0.1354 0.1163 0.0759 0.0715 0.0935 0.1215 0.2705

Bias -0.0238 -0.0792 -0.075 -0.0456 0.0431 0.0344 -0.0405 -0.2282

SD 0.1452 0.1099 0.0889 0.0607 0.0571 0.087 0.1146 0.1453

the proposed estimator

RMSE 0.0904 0.0934 0.0896 0.0471 0.0909 0.0838 0.1006 0.0407

Bias -0.0312 -0.0755 -0.0404 -0.0179 0.0213 0.0322 0.0912 0.0186

SD 0.0848 0.055 0.08 0.0436 0.0884 0.0774 0.0425 0.0362

estimating regressions of the form:

⇤ (Job Creationit) = g1 (Income Growth Rateit) + g2 (ln (Total Wage
it
)) + ↵i + ✏it, (3.5.1)

where Job Creationit is the net employment creation in firms in the nontradable sector in

each age category t - startups (0-1 year old), 2-3 year old, 4-5 year old, and firms 6 year

old or older. We scale all employment numbers by total nontradable sector employment

as of 2000. Income growth rate is the two-year growth in total wages and salaries in the

county level. We utilize the same dataset as the one employed in Adelino, Ma and Robinson

(2017). For further details on data preparation, please refer to Adelino et al. (2017). The

net employment creation by firm age is computed from the publicly available data from the

U.S. Census Quarterly Workforce Indicators (QWI). Income data at the county level come

from the Internal Revenue Srvice(IRS) Statistics of Income and is measured in calendar

years (i.e., January to December of each year). To have a basic idea about what the data

is like, Table 3.4 reports summary statistics. Similarly, Adelino et al. (2017) estimated the
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linear version of the regression:

⇤ (Job Creationit) = �0 + �1Income Growth Rateit + �2ln (Total Wageit) + �3ln(Labor Force Populationit)

+ �4ln(Percentage of High School Degree or Aboveit) + ✏it,

where Labor Force Population
it

and Percentage of High School Degree or Above
it

are con-

trol variables. Since model (3.5.1) considers individual fixed effects and these two control

variables are absorbed into fixed effects. Adelino et al. (2017) shows that both the parame-

ters of Income Growth Rate and ln (Total Wage
it
) are significantly positive.

Table 3.4 Summary Statistics

Employment Creation Income Growth ln(Total Wages)

count 2005 2005 2005

mean 0.0082 0.0267 0.9844

std 0.0483 0.0439 1.4064

min -0.3423 -0.0914 -2.4323

max 0.2158 0.2505 5.7083

Figure 1 provides a visual representation of the relationship among net employment

creation, income growth, and ln(total wages) in our study. This relationship is found to be

both positive and statistically significant, corroborating the results of the Ordinary Least

Squares (OLS) analysis conducted by Adelino et al. (2017). Our research approach, however,

offers a more detailed and nuanced perspective compared to the OLS analysis alone.

We observe that when income growth is close to zero, the effect on employment creation

is relatively minimal. This indicates that a substantial increase in income is necessary for

it to significantly influence job creation. Furthermore, our analysis reveals that when total

wages reach exorbitantly high levels, they actually hinder the creation of new employment

opportunities. This suggests that there is an optimal range for total wages to encourage job

growth.
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In summary, Figure 1 demonstrates that net employment creation is positively and

significantly influenced by income growth and ln(total wages) in our study. Our approach

offers additional insights, highlighting the importance of income growth and the potential

negative effects of excessively high total wages on job creation. A noteworthy finding from

our study is the strong impact of increased income on non-tradable employment. This

implies that as income rises, there is an increased demand for goods and services in the

nontradable sector, such as local retail and hospitality industries. This heightened demand,

in turn, stimulates the creation of more job opportunities within the sector, ultimately

contributing to overall higher total employment.

Figure 3.1 Estimation of Structure Functions and Their 95% Confidence Intervals

3.6 Conclusion

In this paper, we create oracle-efficient estimators for a broadened panel data transforma-

tion model that includes fixed effects, with the assumption that the structural functions

are additive. Our estimators for the conditional mean and gradient exhibit consistency

and asymptotic normality. To estimate the component functions, we suggest a multi-stage

56



algorithm with a refinement stage that employs a one-dimensional kernel, thus bypassing

the curse of dimensionality. Furthermore, the multi-stage algorithm either provides closed-

form solutions or involves convex optimizations, significantly reducing computational load.

Through simulation studies and real data analysis, we demonstrate that our estimator out-

performs existing methods in terms of efficiency and robustness.
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Appendix A

Appendix for Chapter 2

A.1 Proof of Theorem 2.3.1

Substitute the following equality

4P (1)
i,j

= 4gi,j � ✓0
0
4P (�1)

i,j
+
�
4PK

i,j

0�x,z

0 �4gi,j
�

(A.1.1)

into the equation ((3.2.12)) and then we have
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⇤

=� L�1
0,nL1,n � L�1

0,nL2,n. (A.1.2)
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We apply Taylor Expansion to Hh2
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Ē (Y |Xj )� E (Y |Xj )

⇤

�h�1
2 @Hh2 [E (Y |Xj )� E (Y |Xi )]

⇥
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(A.1.4)

where ¯̄E (Y |Xj )�
¯̄E (Y |Xi ) is between Ē (Y |Xj )� Ē (Y |Xi ) and E (Y |Xj )�E (Y |Xi ).

By (A.4.3) in Lemma (A.4.1),
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holds uniformly over i 6= j 2 {1, · · · , n}.

Substitute ((A.1.4)) into L1,n ((B.1.9)) and we have
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Similarly, we also have
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Since the local - polynomial regression is used to reduce bias, the kernel function H (·) could

be the second-order and Hh2 (·) =
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is the convergence rate and K�↵ +
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A.2 Proof of Theorem 2.3.2

By Taylor Expansion, given the Assumption 3(1) ,
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@2Fi [ḡ(Xi)� g(Xi)]

2 +
1

(S + 1)!
@S+1Fi [g(Xj)� g(Xi)]

S+1 +
1

(S + 1)!
@S+2Fi [g(Xj)� g(Xi)]

S+2 + ei +Rn,2,i,j

�

=A�1
1 B1. (A.2.2)

Before we derive the asymptotic properties of B1, we first show the asymptotic properties of some

important components in B1. Let

B2 =
1

n

nX

j=1, 6=i
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Rn,1,i,j [ḡ(Xj)� g(Xj)]
2

=B2,1 +B2,2 �B2,3 +B2,4 +B2,5 +B2,6. (A.2.4)

We decompose B1 as the following,
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0

BBBBBBBBB@

1
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By (A.2.2), Assumption 3, Lemma (A.4.5) and (A.4.6), there exists positive constant C1 such that

bFi � Fi = C1 [ḡ(Xi)� g(Xi)] +Op
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hold uniformly over i 2 {1, · · · , n}.

Thus, (2.3.3) and (2.3.4) in Theorem 2.3.2 are proved.

A.3 Proof of Theorem 2.3.3
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A.4 Technical Lemmas

A.4.1 Lemmas for the proof of Theorem 2.3.1

Lemma A.4.1 Suppose that Assumptions 2, 3 and 4 (2)hold. Then,
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Proof. Given Assumptions 2 (1) and 3, we have the Taylor Expansion that , for i 2 {1, · · · , n},
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Given ((A.4.2)) and the Assumption 4, it is straightforward to have
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Lemma A.4.2 Suppose that Assumptions 2, 3, 4 (2)and 5 (3), 6 (1)-(3) hold. Then
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(A.4.10)

holds uniformly over i 6= j 2 {1, · · · , n}, where fE(Y |Xj )�E(Y |Xi )(·) is the density function of E (Y |Xj ) �
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holds uniformly over d = 1, · · · , aH . Given the Assumption 6 (1) and (A.4.11)
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Thus, by ((A.4.9)) and ((A.4.12)),
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and then (A.4.4) holds.

(ii) Given the Assumption 6 (3),

kL0,n,2k

h�1
2 �h,n

������
1

n2

nX

j=2

nX

i<j

���4P (�1)
i,j

4P (�1)
i,j

0@Hh2 [E (Y |Xj )� E (Y |Xi )]
���

������

=
p

Kh�1
2 �h,n, (A.4.13)

and then (A.4.5) holds. It is trivial to prove (A.4.6).
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and then (A.4.8) holds.

Lemma A.4.3 Suppose that Assumptions 2, 3, 4 (2)and 5 (3), 6 (1)-(3) hold. Then
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the last equality is by ((A.4.8)). Given the Assumption 3 (2), the link function F4(·) is monotonically in-
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Before we apply ChebyshevÂ’s inequality, we calculate
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(ii) By (A.4.2)
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⌦R+1 + @R+2E (Y |Xj) · (4X◆j)
⌦R+2 +Rn,5,◆,j

i
;

although the summation is over j 2 {1, · · · , n}, i < j 2 {1, · · · , n} and ◆ 6= j 2 {1, · · · , n}, the asymptotic

properties should be the same if the summation is taken over j 2 {1, · · · , n}, i < j 2 {1, · · · , n} and

◆ 6= i, j 2 {1, · · · , n} and then it is a U-statistic. Similar with the analysis of (A.4.15), by asymptotic

properties of U-statistic, (A.4.16) holds.

(iii) It is trivial to prove that (A.4.17) holds and

kL1,n,4k


�
h�1
2 �h,n

�2 1

n2
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j=2

nX

i<j

���g (Xj)4P (�1)
i,j

@2Hh2 [E (Y |Xj )� E (Y |Xi )]
���

=
�
h�1
2 �h,n

�2
,

which shows (A.4.18) holds.

(iv) Thus, by ((A.4.15)), ((A.4.16)) and ((A.4.17)), ((A.4.18)) , (A.4.19) holds.

(v) Similar with (A.4.21),

��L�1
0,n,1L2,n,1

��2

=tr
h
(vector2

0vector2)
�1

vector2
0vectoh1,1vectoh1,1

0vector2 (vector2
0vector2)

�1
i
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0vector2) tr

⇣
vector2
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⌘

=��1
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=��1
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2
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=��1
min

⇣
E
n
4P (�1)

i,j
4P (�1)

i,j

0Hh2 [E (Y |Xj )� E (Y |Xi )]
o⌘

Op

�
K�2↵

�
. (A.4.27)

It is trivial to prove that
��L�1

0,n,1L2,n,2

��2 = op
⇣��L�1

0,n,1L2,n,1

��2
⌘

and
��L�1

0,n,1L2,n,3

��2 = op
⇣��L�1

0,n,1L2,n,1

��2
⌘
.

Thus,
��L�1

0,n,1L2,n,1

�� = Op (K�↵) and (A.4.20) holds.

A.4.2 Lemmas for the proof of Theorem 2.3.2

Lemma A.4.4 Suppose that Assumptions 1 - 4, 5 (1) and (3) and 6 (1)-(3) hold. Then

(i)

B2,1 = Op

✓
K�2↵ +

K

n
+Kh2aH

2

◆
. (A.4.28)

(ii)

|B2,2| = Op

✓
K�2↵ +

K

n
+Kh2aH

2

◆
, (A.4.29)

|B2,3| , |B2,4| , |B2,5| = Op

✓
K�2↵ +

K

n
+Kh2aH

2

◆
(A.4.30)

and

|B2,6| = op

✓
K�2↵ +

K

n
+Kh2aH

2

◆
. (A.4.31)

(iii)

B2 = Op

 
K�↵ +

r
K

n
+

p

KhaH

2

!
, (A.4.32)

and

B3 = op (B2) = op

 
K�↵ +

r
K

n
+

p

KhaH

2

!
, (A.4.33)

holds uniformly over i 2 {1, · · · , n}.

Proof. Here, we show that

B2 = Op

 
K�↵ +

r
K

n
+

p

KhaH

2

!

and before it, we firstly show the corresponding Bernstein Inequality, whose proof is based on Exercise

5.4.15 in Vershynin (2018).
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As Exercise 5.4.15 in Vershynin (2018) states, let X1, · · · , Xn be independent mean zero D1⇥D2 random

matrices such that kXikop  M almost surely for all i and then we have, for t � 0,
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�����
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=
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◆
, (A.4.34)

where �2 = max
⇣
k
P

n

i=1 EX 0
i
Xikop , k

P
n

i=1 EXiX 0
i
k
op

⌘
and k·k
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is the operator norm. Here we extend

the above Bernstein Inequality for operation norm to Euclidean norm. Given the inequality that,
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,

we have,
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9
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(A.4.35)

We substitute (A.4.35) into (A.4.34),

P

(�����

nX

i=1

Xi

����� �

p
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✓
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p
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◆

1

CCA ,

and finally, we get the Bernstein Inequality for Euclidean norm,

P
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)
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If X1, · · · , Xn are not only independent but also identically distributed, �2 = max
⇣
n kEX 0

i
Xikop , n kEXiX 0

i
k
op

⌘
.

Furthermore, if X1, · · · , Xn are D1 ⇥D1 matrices or D1 ⇥ 1 vectors, �2 = n kEXiX 0
i
k
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. Then, we

have

P

(�����
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⇣
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A . (A.4.36)

(i)

B2,1
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(A.4.38)

Given Assumptions 5 (2) and 6 (1) and (3),

��E
⇥
Th3 (g (Xj)� g (Xi))P

K(Xj)P
K(Xj)

0�� g (Xi)
⇤
� E

⇥
PK(Xi)P

K(Xi)
0�� g (Xi)

⇤
fg(X) [g(Xi)]

�� = O
⇣p

KhS+1
3

⌘
,

(A.4.39)

holds uniformly over i 2 {1, 2, · · · , n}.

Given the Assumptions 5 (2) and 6 (1), all eigenvalues of E
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Substitute ((A.4.41)) into ((A.4.40)) and we have

��E
��

Th3 (g (Xj)� g (Xi))P
K(Xj)P

K(Xj)
0
� E

⇥
Th3 (g (Xj)� g (Xi))P

K(Xj)P
K(Xj)

0�� g (Xi)
⇤ 

⇥
�
Th3 (g (Xj)� g (Xi))P

K(Xj)P
K(Xj)

0
� E

⇥
Th3 (g (Xj)� g (Xi))P

K(Xj)P
K(Xj)

0�� g (Xi)
⇤ �� g (Xi)

���
op

84



=O
�
h�1
3 K

�
. (A.4.42)

��Th3 (g (Xj)� g (Xi))P
K(Xj)P

K(Xj)
0��

op

=O(h�1
3 )

��Th3 (g (Xj)� g (Xi))P
K(Xj)P

K(Xj)
0��

op

O(h�1
3 )

��PK(Xj)P
K(Xj)

0��

O(h�1
3 K). (A.4.43)

By Bernstein Inequality ((A.4.36)), there exist positive constants C1 and C2 such that

P

8
<

:

������
1

n

nX

j=1, 6=i

Th3 (g (Xj)� g (Xi))P
K(Xj)P

K(Xj)
0
� E

⇥
Th3 (g (Xj)� g (Xi))P

K(Xj)P
K(Xj)

0�� g (Xi)
⇤
������
� t

9
=

;

C1K exp

0

B@�
C2nt2

2K
⇣
h�1
3 K +

h
�1
3 Kt

3
p
K

⌘

1

CA

C1K exp
�
�C2nh3K

�2t2
�
.

Thus,

P

8
<

: max
i2{1,··· ,n}

������
1

n

nX

j=1, 6=i

Th3 (g (Xj)� g (Xi))P
K(Xj)P

K(Xj)
0
� E

⇥
Th3 (g (Xj)� g (Xi))P

K(Xj)P
K(Xj)

0�� g (Xi)
⇤
������
� t

9
=

;

C1nK exp
�
�C2nh3K

�2t2
�
, (A.4.44)

and then
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holds uniformly over i 2 {1, · · · , n}.

Afterwards, substitute ((A.4.39)) into ((A.4.45)),
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holds uniformly over i 2 {1, 2, · · · , n}. It follows that from the definition of maximum eigenvalue
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By ((A.4.37)) and ((A.4.46)),
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and thus (A.4.29) holds. It is trivial to prove (A.4.30), (A.4.31) and (A.4.32).

Lemma A.4.5 Suppose that Assumptions 1 - 4, 5 (1) and (3) and 6 (1)-(3) hold. Then all eigenvalues of

A1 are bounded and bounded away from zero and it holds uniformly over i 2 {1, · · · , n}.
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and thus,
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hold uniformly over i 2 {1, · · · , n}.
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B1,2 = @Fi [ḡ(Xi)� g(Xi)]

0

BBBBBBBBBBBBBBBBBBBB@

fg(X) [g(Xi)]

h3@fg(X) [g(Xi)]
R
!2Th3(!)d!

fg(X) [g(Xi)]
R
!3Th3(!)d!

h3@fg(X) [g(Xi)]
R
!4Th3(!)d!

· · ·

h3@fg(X) [g(Xi)]
R
!S�1Th3(!)d!

fg(X) [g(Xi)]
R
!S�1Th3(!)d!

h3@fg(X) [g(Xi)]
R
!S+1Th3(!)d!

1

CCCCCCCCCCCCCCCCCCCCA

+Op

 
K�↵ +

r
K

n
+
p

KhaH

2

!
,

(A.4.53)

holds for each i 2 {1, · · · , n}.

(iii)

|B1,3| = Op

 
K�↵ +

r
K

n
+

p

KhaH

2

!
, (A.4.54)

holds uniformly over i 2 {1, · · · , n}.

(iv)

|B1,4| = O
⇣
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holds uniformly over i 2 {1, · · · , n}.
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A.4.3 Lemmas for the proof of Theorem 2.3.3
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In B4,1,2, given the Assumption that bF and c@F do not involve the i th observation, we have, for
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Th4,l (Xl,i � xl) [ḡl (Xl,i)� gl (Xl,i)]

=Op

 
1

n

nX

i=1

Th4,l (Xl,i � xl) (ḡl (Xl,i)� gl (Xl,i))
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and thus (A.4.62) holds.
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Appendix B

Appendix for Chapter 3

B.1 Proofs of the Main Results

In this section we prove Theorems 1–3 in the paper.

B.1.1 Proof of Theorem 3.3.1

Convergence Rate of Ē (D|X = x)

Recall that g (xt) =
P

d

l=1 gl(xl,t) and �g (x) = g (x2) � g (x1) . Recall that LF (·) = L�1 (F (·)) and

�g (Xi) = g (Xi2)� g (Xi1) . By (3.2.7) and the definition of R (·) , we have
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where R⇤
i

lies between R(Xi)0⇡0 + r(Xi) and R(Xi)0⇡0, and rL(Xi) ⌘ L̇ (R⇤
i
) r(Xi) signifies the error for

the logit sieve approximation of E (Di|Xi) by L
�
R(Xi)0⇡0

�
. By uniform boundedness of L̇ (·) , we see that

rL(Xi) behaves similarly to r(Xi) in that sup
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0
2)

02X⌦2 |r(x)| = O (K��) under Assumptions 9 and 13.

Let ⌘1Kn =
p
s⇡1 log(K

R _ n)/n+K�� . Under Assumptions 7– 13, one can follow the proof of Theorem

6.2 in Belloni et al. (2017) hold and obtain the following result: result, we obtain
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Under Assumption 10(1), we can show that
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Combining (B.1.2) and (B.1.3) yields
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Next,
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By (B.1.1) and the uniform boundedness of the first derivative of L (·) ,
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and
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Convergence Rate of ḡl (·)

Noting that 4P 1,K
i,j

= 4gi,j�✓004PK�1,K
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+
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0�0 �4gi,j
 

and recalling that H̄1h1,ji = H1h1
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Ē (Dj |Xj )� Ē (Di |Xi )

⇤
,
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by (3.2.12) we have
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First, we study the asymptotic properties of L0,n. Recall that H̄1h1,ji= H1h1
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By Lemma B.2.2,
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By Lemma B.2.3,
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where kR1nk = Op (⌘1Kn +K��).
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B.1.2 Proof of Theorem 3.3.2

Let
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=
⇣
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⌘
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Let #i,j (b) = b0+
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1
h
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=
1

n

NX

i=1

H2h2 (4ḡi,j) {ln [1 + exp (#i,j (b))]�Di#i,j (b)} .
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and ⌧ 2 R, let
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.

where &1i,j =
⇣
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1
h
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It is easy to see that
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We calculate the first order derivative with respect to ⌧ :
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Evaluating the above derivative at ⌧= 0 yields
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Let &i,j = & 01i,jU4gj
. Noting that L0(x) = L(x) [1� L(x)] and F (4gi) 2 (0, 1), there exists a positive constant

c> 0 such that
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where the first inequality holds by Lemma 1 in ? and the last inequality follows from the fact that

e�x + x� 1 �
x2

2
�

x3

6
8x > 0.

By Step 1 in the proof of Theorem 5.6 in ?, there exists a positive constant c⇤ such that
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where

l̄ = inf
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Noting that
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In addition, by construction and the submultiplicative and triangle inequalities
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⇣
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Noting that L (LF (4ḡi)) = F (4ḡi), by Taylor expansions we have
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4ḡl

i,j
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where 4¯̄gi,j is between
P
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1

h
l
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Substituting (B.1.18) into (B.1.17) yields
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where the definitions of G`,nj , ` = 1, ..., 4, are self-evident. By Lemma B.2.4, we have uniformly over

j 2 {1, · · · , n},
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⇣
bU4gj

⌘���  cF |4gj �4ḡj |
���bU4gj

���

+Op

⇣
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p
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��� . (B.1.20)

Combining (B.1.15) and (B.1.20), we have uniformly over j 2 {1, · · · , n}
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3
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which, in conjunction with (B.1.16) implies that
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⇣
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p
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uniformly over j 2 {1, · · · , n}. The completes the proof of (i).

Given the above uniform rate, (ii) follows automatically.

B.1.3 Proof of Theorem 3.3.3
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⌘⌘
and

ll,i2(⌧) = H3h3,i2xl
ln
⇣
1 + exp

⇣
dLF i �
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We calculate the first order derivative at ⌧ ,

@⌧W1,nxl

�
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���ḋLF i · uxl,i1

���
⌘
+
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where the first inequality holds by Lemma 1 in ? and the last inequality holds because
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By Step 1 in the proof of Theorem 5.6 in ?, there exist some positive constant C1 and C such that
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where
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1
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As in (B.1.16), we have

�
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p
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In addition, by construction,
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where µxl,it
=
⇣
1, 1

h3
(Xl,it � xl)

⌘0
.

Note that L (LFi) = Fi. By Taylor expansions,

L
⇣
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where �xl,i2 = dLF i � LF i �
ḋLF i [ḡl (Xl,i2)� gl (Xl,i2)] +

1
2
ḋLF ig̈l(x̄l,i2) (Xl,i2 � xl)

2 , x̄l,i2 is between Xl,i2
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Then by (B.1.24),
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The same conclusion holds for D2n (xl) . Consequently, by (B.1.23)
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Combining (B.1.21) and (B.1.26), we have
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This result, in conjunction with (B.1.22), implies that
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The above results can be made to hold uniformly in xl with little modification: maxxl2Xl
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Asymptotic Distribution of
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ḃg
l
(xl))

=
@Wn,xl

(c0, c1)

@ (c0, c1) 0

����
(a,b)=(gl(xl), h3ġl(xl))
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= �
1

n

NX

i=1
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ḋLF iH3h3,i2xl

✓
1,

1

h3
(Xl,i2 � xl)

◆
+

1

2
L00 �L̄F i

�
�2
xl,i2.

Given the above results, we can show that

p
nh3

0

@@Wn,xl
(gl(xl), h3ġl(xl))
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ḃg
l
(xl)

⌘
0
, we calculate the

second order derivative:

@2Wn,xl
(c0, c1)

@ (c0, c1)
0 @ (c0, c1)

����
(c0,c1)=(gl(xl), h3ġl(xl))
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This completes the proof of the theorem.

B.2 Technical Lemmas

In this appendix we state some technical lemmas that are used in the proofs of the main results and then

prove them.

Recall that mi = E (Di|Xi) , mji = mj �mi, H1h1,ji = H1h1(mj �mi), and fm(·) denotes the PDF of

mi. Let ⌘(mi) = E
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i,j
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i,j

0
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i
for j 6= i.

Lemma B.2.1 Let L0,n and L0,n1 be as defined in the proof of Theorem 3.3.1. Suppose that the conditions
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By Taylor expansions and the i.i.d. condition on {Xi} , for any j 6= i
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(iii) The result follows from (i)-(ii) and the Weyl’s inequality.

Lemma B.2.2 Let L1,n, L1,n1 and L1,n2 be as defined in the proof of Theorem 3.3.1. Suppose that the
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Then the result in (i) follows.

(ii) Recall that L1,n2 =
2

n2

P
1i 6=jn

4gj4PK�1,K
i,j

h�1
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H1 and 4PK�1,K
i,j

= �4PK�1,K
j,i

. By construction, q2n ((Xi, Xj) ,⇡) is symmetric in (Xi, Xj) .
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It follows that
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Then by Corollary 5.3 in ?, we have

sup
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By the empirical process theory, we have
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Consequently, we have

kUn (⇡̄)k . sup
k⇡�⇡0kC⌘1Kn

���✓2n (⇡) + 2U(1)
2n (⇡) + U(2)

2n (⇡)
��� = Op (⌘1Kn)

and kL1,n2k = Op (⌘1Kn) . Analogously, we can show that kL1,n3k = Op (⌘1Kn) .

(iii) It suffices to obtain the rough probability bound for kL1,n`k with ` = 4, 5, 6, 7. For example,
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Ḧ1h1,ji

���
���L̇ (LF (4gj))R(Xj)

0 �⇡̄ � ⇡0
����

2

+ h�2
1

1

n2

X

1i 6=jn

���4gj4PK�1,K
i,j
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Similarly, kL1,n`k =Op (⌘1Kn) for ` = 5, 6, 7. Alternatively, we can use the arguments as used in (ii).
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1 Ḧ1h1 (mji) [L (R(Xi)

0⇡)�mi] [L (R(Xj)
0⇡)�mj ] |Xj

o

= h�2
1 �jE

h
4gi,j�i4PK�1,K

i,j
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where r3n1,a(Xj ,⇡) and r3n2,a(Xj ,⇡) denote the remainder terms in the second order Taylor expansions,

and we use the fact that
R
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Similarly, we can show that
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Then by Corollary 5.3 in ?, we have

sup
k⇡�⇡0kC⌘Kn

���U(2)
3n (⇡)

���. n�1 �h1
�5K3⌘41Kn

�1/2
ln (n) = op (⌘1Kn) .

By the empirical process theory, we have
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Consequently, we have
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and kL1,n4k = op (⌘1Kn) . Analogously, we can show that kL1,n`k = op (⌘1Kn) for ` = 5, 6, 7.

(iv) The result follows from (i)-(iii).

Lemma B.2.3 Let L2,n, L2,n1, ..., L2,n7 be as defined in the proof of Theorem 3.3.1. Suppose that the
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Similarly, we can show that kL2,n`k = op (K��) for ` = 3, ..., 7.

(iii) This follows from (i)-(ii).

Lemma B.2.4 Let G1,nj , ..., G4,nj be as defined in (B.1.19) in the proof of Theorem 3.3.2. Suppose that
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4ḡi,j , · · · ,

1

ha2
2 a2!

4ḡa2
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(iii) The proof is analogous to that of (i) and thus omitted.
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[H2h2 (4ḡi,j)�H2h2 (4gi,j)] [F (4gi)�Di]�
1

n
H2h2 (0) [F (4gj)�Dj ] .

It is easy to see that the second term on the right hand side of the last equation is Op

�
n�1h�1

2

�
uniformly

in j. For the first term we can readily apply the arguments as used in the proof of Lemma B.2.2 and show

it is op
⇣p

log(n)/(nh2)
⌘

uniformly in j. Similarly, for l = 1, ..., a2, we have

G4,nj,l �G0
4,nj,l =

1

n

NX

i=1,i 6=j

"
H2h2 (4ḡi,j)

✓
1

h2
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