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ABSTRACT

In this thesis, we develop novel nonparametric estimation techniques for two distinct
classes of models: (1) Generalized Additive Models with Unknown Link Functions (GAMULF)
and (2) Generalized Panel Data Transformation Models with Fixed Effects. Both models
avoid parametric assumptions on their respective link or transformation functions, as well
as the distribution of the idiosyncratic error terms.

The first chapter aims to provide an in-depth and systematic introduction to cross-
sectional and panel-data nonparametric transformation models, encompassing practical ap-
plications, a diverse range of estimation techniques, and the study of asymptotic properties.
We discuss the advantages and limitations of these models and estimation methods, delving
into the latest advancements and innovations in the field. Furthermore, we propose a poten-
tial approach to mitigate the curse of dimensionality in the context of fully nonparametric
transformation models with fixed effects in panel-data settings.

The second chapter proposes a three-stage nonparametric least squares (NPLS) esti-
mation procedure for the additive functions in the GAMULF. In the first stage, we esti-
mate conditional expectation by the local-linear kernel regression and then apply matching
method to the splines series to obtain initial estimators. In the second stage, we use the
local-polynomial kernel regression to estimate the link function. In the third stage, given
the estimators in Stages 1 and 2, we apply the local-linear kernel regression to refine the
initial estimator. The great advantage of such a procedure is that the estimators obtained
at all stages have closed-form expressions, which overcomes the computational hurdle for
existing estimators of the GAMULF model.

The third chapter proposes a multiple-stage Local Maximum Likelihood Estimator (LMLE)



for the structural functions in the generalized panel data transformation model with fixed
effects. In the first stage, we apply the regularized logistic sieve method to estimate the
sieve coefficients associated with the approximation of a composite function and then ap-
ply a matching method to obtain initial consistent estimators of the additive structural
functions. In the second stage, we apply the local polynomial method to estimate certain
composite function and its derivatives to be used later on. In the third stage we apply the
local linear method to obtain the refined estimator of the additive structural functions based
on the estimators obtained in Steps 1 and 2. The greatest advantage is that all minimization
problems are convex and thus overcome the computational hurdle for existing approaches
to the generalized panel data transformation model.

The final estimates of the additive terms in two models achieve the optimal one-dimensional
convergence rate, asymptotic normality and oracle efficiency. The Monte Carlo simulations
demonstrate that our new estimator performs well in finite samples.

The thesis demonstrates the effectiveness of the proposed nonparametric estimation tech-
niques in addressing the complexities of generalized additive models with unknown link

functions and panel data transformation models with fixed effects.
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Chapter One

Exploring Nonparametric
Transformation Models: A
Comprehensive Review of Current

Literature
Authors: Ying Xia

1.1 Introduction

Asymptotic properties of different forms of transformation models have also attracted sig-
nificant interest. Horowitz (1996) focuses on a transformation model with a nonparametric
transformation function and a parametric structural function. Chiappori, Komunjer and
Kristensen (2015) extend Horowitz’s method to a transformation model with both nonpara-
metric transformation and structural functions, considering endogeneity. Although fully
nonparametric transformation models avoid misspecification, they suffer from the curse of
dimensionality.

Inspired by the additive structure in generalized additive models with unknown link



functions (Horowitz (2001), Horowitz and Mammen (2007), Horowitz and Mammen (2011),
Lin, Pan, Lv and Zhang (2018)), Chen, Lu and Wang (2022) propose a fully nonparametric
transformation model with fully additive structural functions. Additionally, they account
for unobserved individual heterogeneity, specifically fixed effects in panel data. Prior to
Chen et al. (2022), Horowitz and Lee (2004), Chen (2010), and Wang and Chen (2020) also
analyzed panel transformation models, but all assumed that the structural function was
parametric.

In summary, the transformation model has been widely studied and applied in various
fields of economics, with researchers continually developing and extending its properties and
applications. The exploration of fully nonparametric transformation models with additive
structural functions, as well as accounting for unobserved individual heterogeneity, has
expanded the model’s capabilities, although challenges such as the curse of dimensionality
still persist.

This chapter is organized as follows: Section 1 investigates the cross-sectional nonpara-
metric and semiparametric transformation models, providing an overview of their estima-
tions and asymptotic properties. Section 2 explores the panel-data nonparametric trans-
formation models, delving into their advantages, challenges, and promising future topics in

this area of research. Finally, Section 3 summarizes the key points discussed in the chapter.

1.2 Cross-sectional Nonparametric Transformation Model
Horowitz (1996) examines the subsequent model:
Ay) =28+ u, (1.2.1)

where A(-) represents an increasing and invertible function. To estimate [ in Equation

(1.2.1) without knowledge of H(-), consider the following relationship:



m(z) = E(Y|z) = E [A'(2'8+u)] = H(2'B). (1.2.2)

Here, Héardle and Stoker (1989) proposes the Average Derivatives Method for estimating
f in Equation (1.2.2). Given the estimator of 3, Horowitz (1996) proposes using the Cu-
mulative Distribution Function (CDF) and Probability Density Function (PDF) of Y given
2'B to estimate A(-). The estimators of both 5 and A(-) achieve \/n convergence rates and
mean-zero normal distributions asymptotically.

Chiappori et al. (2015) builds upon the method proposed by Horowitz (1996) to esti-
mate A() in the absence of knowledge about g(-) in the fully nonparametric model with

endogeneity:
AY) =g(z) + u, (1.2.3)

where ¢(-) is an unknown fully nonparametric function. For identification, Chiappori et al.
(2015) assumes that there exist continuous exogenous independent variables z; and endoge-
nous independent variables x_; such that u_laz;|z_;. The estimator of A(-) in Chiappori
et al. (2015) achieves y/n convergence rates and a mean-zero Gaussian Process.

Thus, regardless of whether the functional form is 2’8 or g(-), and irrespective of the
presence or absence of endogeneity, we can consistently estimate the nonparametric trans-
formation function with convergence rate y/n using the approach outlined in Chiappori et al.
(2015). Since /n is much faster than the nonparametric convergence rate, we can replace
A(+) with its estimator and treat it as known when estimating nonparametric function g(-).
However, the estimation of g(-) still suffers from the curse of dimensionality. To avoid the

curse of dimensionality, one can replace g(z) with G(2/3) and consider the model,

Aly) = G(2'B) + . (1.2.4)



And then we have
my(z) = E(Y|z)=F {A‘l [G(2'B) + u]} = H(2'S), (1.2.5)

which shares similarities with equation (1.2.2) and we can employ a comparable method in
model (1.2.1) to estimate /3 in model (1.2.4).
An alternative approach to avoid the curse of dimensionality is to assume that the

structure function g(x) is additive,

dg
g(x) =Y g(m),

and then we have the model,

M) =3 )+ (1.2.6)
=1

which is a fully nonparametric transformation model under additivity. To estimate model
(1.2.6), since Chiappori et al. (2015) already provides the estimator of A(-) with convergence
rate /n without knowing {gl(-)}fil, we can employ the methods presented in Lin et al.
(2018) and Horowitz and Mammen (2011) to estimate {91(')}721-

In summary, oracle-efficient and optimal-convergence-rate estimators for the cross-sectional

nonparametric and semiparametric transformation models are consistently available.

1.3 Panel-data Nonparametric Transformation Model

Recently, Chen et al. (2022) considered the fully nonparametric transformation model (1.3.1)

under the panel data structure with individual fixed effects,
Ayi) = g(zir) + i + i, (1.3.1)

where «a; represents the individual fixed effect. To eliminate the unknown nonparametric

transformation function and fixed effect, Chen et al. (2022) generated a new variable by



comparing the dependent variable y of the same individual across different periods. The
estimator of the structural function proposed by Chen et al. (2022) has a closed-form
expression, which makes it easy to implement and study its asymptotic normality.

To be more specific, Chen et al. (2022) considered the following model,

de

Ayir) =D gilwnie) + o + war, (1.3.2)

=1
which assumes the additive structure of g(-). However, the estimation is done through
matching with other covariates locally, and thus suffers substantially from the curse of
dimensionality.

To overcome the curse of dimensionality, we propose a promising method to estimate
{gl(-)};iil in model (1.3.2). In the first step, we can employ the method in Chen et al. (2022)
to eliminate the nonparametric transformation function and fixed effect. Subsequently, to
achieve oracle efficiency, optimal convergence rate, and asymptotic normal distribution, we
can extend the methods in Horowitz and Mammen (2011) and Lin et al. (2018) to estimate
{gl(-)}fil in model (1.3.2). This approach can serve as a future topic for discussion and

exploration in the field of panel-data nonparametric transformation models.

1.4 Conclusion

This chapter provides a summary of the literature on both cross-sectional and panel-data
nonparametric transformation models, highlighting their key developments, properties, and
applications in various fields of economics. Additionally, the chapter presents a potential
approach to overcome the curse of dimensionality when dealing with fully nonparametric
transformation models that include fixed effects in a panel-data setting. By addressing this
challenge, researchers can further enhance the capabilities and applicability of nonparametric

transformation models in empirical work.



In chapter 2 and 3 in this thesis, we will develop novel nonparametric estimation tech-
niques for two distinct classes of models: (1) Generalized Additive Models with Unknown
Link Functions (GAMULF) and (2) Generalized Panel Data Transformation Models with
Fixed Effects. Both models avoid parametric assumptions on their respective link or trans-
formation functions, as well as the distribution of the idiosyncratic error terms.

The second chapter proposes a three-stage nonparametric least squares (NPLS) esti-
mation procedure for the additive functions in the GAMULF. In the first stage, we esti-
mate conditional expectation by the local-linear kernel regression and then apply matching
method to the splines series to obtain initial estimators. In the second stage, we use the
local-polynomial kernel regression to estimate the link function. In the third stage, given
the estimators in Stages 1 and 2, we apply the local-linear kernel regression to refine the
initial estimator. The great advantage of such a procedure is that the estimators obtained
at all stages have closed-form expressions, which overcomes the computational hurdle for
existing estimators of the GAMULF model.

The third chapter proposes a multiple-stage Local Maximum Likelihood Estimator (LMLE)
for the structural functions in the generalized panel data transformation model with fixed
effects. In the first stage, we apply the regularized logistic sieve method to estimate the
sieve coefficients associated with the approximation of a composite function and then ap-
ply a matching method to obtain initial consistent estimators of the additive structural
functions. In the second stage, we apply the local polynomial method to estimate certain
composite function and its derivatives to be used later on. In the third stage we apply the
local linear method to obtain the refined estimator of the additive structural functions based
on the estimators obtained in Steps 1 and 2. The greatest advantage is that all minimization
problems are convex and thus overcome the computational hurdle for existing approaches

to the generalized panel data transformation model.



Chapter Two

Efficient Nonparametric Estimation of
the Generalized Additive Model with an

Unknown Link Function

Authors: Ying Xia, Yichong Zhang, Liangjun Su

2.1 Introduction

Economics theories usually do not specify a detailed parametric functional form for the con-
ditional expectation. However, in practice, estimation of conditional expectation function
with multiple covariates fully nonparametrically suffer from the curse of dimensionality. In-
stead, researchers often use the nonparametric additive model which allows each covariate
to enter the conditional mean function in a nonparametric but additive manner. Due to the
additive structure, the estimator of conditional mean function has a one-dimensional non-
parametric convergence rate, and thus, circumvent the curse of dimensionality. However,
it also rules out the interaction between distinct covariates. Generalized additive model
(GAM) further introduces an link function outside the additive structure, which adheres

the fast convergence rate, yet allows for the marginal effect of one regressor to depend



on all other regressors. Due to these advantages, the nonparametric additive model and
GAM have been widely studied and applied. See, for example, Breiman and Friedman
(1985), Stone (1985), Stone (1986), Buja, Hastie and Tibshirani (1989), Linton and Nielsen
(1995), Linton and Héardle (1996), Opsomer and Ruppert (1997), Fan, Hardle and Mammen
(1998), Mammen, Linton and Nielsen (1999), Linton (2000), Opsomer (2000), Horowitz and
Mammen (2004), Nielsen and Sperlich (2005), Mammen and Park (2006), Horowitz and
Mammen (2007), Yu, Park and Mammen (2008), Horowitz and Mammen (2011), Liu, Yang
and Hérdle (2013), Hastie and Tibshirani (2017), Lin et al. (2018). Among them, Horowitz
(2001) and Horowitz and Mammen (2007) consider the GAM with an unknown link function
(GAMULF) and focus on the estimation and inference of the additive term within the link
function up to location and scale normalizations.

Horowitz (2001) and Horowitz and Mammen (2007) propose estimators for the additive
functions in GAMULF which do not achieve oracle efficiency. Here we say the estimator
achieves Oracle efficiency if its asymptotic variance is the same as if other additive compo-
nents and the link function are known. To achieve oracle efficiency, optimal convergence rate
and asymptotic normality at the same time, Horowitz and Mammen (2011) and Lin et al.
(2018) propose multi-stage estimation procedures for GAMULF. However, these multi-stage
estimation procedures require non-linear and non-convex optimization or time-consuming
iteration.

In this article, we propose a new multi-stage estimation procedure with close-form ex-
pression in each stage, which greatly reduces the computational burden in the estimation
of GAMULF. In the first stage, we obtain the B-splines estimators of additive components.
In the second stage, we obtain the kernel-based estimator of the link function. In the third
stage, we estimate each of the additive component via a local linear regression with other
unknown components and the link function replaced by their estimators obtained in the

first and second stages, respectively. We then show the resulting estimator still enjoys the



desired statistical properties as those for GAMULF proposed in the literature such as the
rate-optimal convergence rate, asymptotic normality, and oracle efficiency.

The article is organized as follows. Section 2 describes our methodology. We present the
asymptotic properties of our estimators in Section 3. Section 4 examines the finite sample
performance of our estimators via Monte Carlo simulations. We apply our method to an
empirical dataset in Section 5. Section 6 concludes. All the proofs of the main theorems are
relegated to the appendix.

Notation. We denote tr(-) as the trace operator and = as "is defined as”. For a real
matrix A, let A, ||A|| (z [tr (AA')]“?), IAll,, (z Amaz (A’A)), Amas (A), and Apin(A) be
the transpose of A, the Frobenius norm, the operator norm, and the biggest and smallest
eigenvalues of matrix A, respectively. For any function f(-) defined on the real line, let
Ok f(-) be the k th-order derivatives, for k = 1,2,---. Let B and 5 be convergences in
distribution and probability, respectively. A kernel function H (w) is said to be of order a,
if the following conditions are satisfied, (i) [ H (w)dw = 1, (ii) [ H (w) w®dw = 0, for s =
1,---,a—1 and (iii) [ H (w)wdw € (0,+00). For a vector a = (a1, ,aq), let (a) be
a diagonal matrix with entries ai,---,aq. For any scalar bandwidth h, denote Hy (-) =
%H (ﬁ) and OFHy, (z) = %akH (y) R forx € X and k =1,2,---. To implement multi-

"

dimensional nonparametric regression, for i # j, let Hy, (i,7) = [1, Th, (X1 — X1;), where

h = (hy,---hg,) is a vector of bandwidths and {X;}?_, are the covariates. For a one-
dimensional kernel function 7°(-), we define Tj(-) and T,(i,j) in the same manner as Hy()
and Hy(i,j), respectively. Let {px (-),k=1,2,---} be a sequence of one-dimensional B-
splines basis functions. Let K = K (n) be some integer such that K (n) — oo as n — oo.Let
PE() =[pi(-), - ,px (-)] be one-dimensional B-splines and then, for z = (z,--- ,z4,),
let PX(z) = [PX(x1),-- , P¥(xq,)]’. Fori+#j,let AX;; = X; — X;, APE = PR (X;) —

PX(X;), AP = pi (X1;) — p1 (X1) and

AP = (12 (X10) = 2 (X1) o+ pac (X1a) = prc (X1) (PR (o) = PR (o))



o (PR (Xy,,) — P (de))’)'.

2.2 Setup and Estimation Procedure
In this section, we consider GAMULEF:
YV =Flg(X1) + -+ g4, (Xa,)] + V, (2.2.1)

where X = (Xy,...,X,) is a d, x 1 vector of exogenous regressors, F(-) and {g,(-)},
are unknown and smooth functions of interest and V is an unobserved random variable
satisfying E' (V| X) = 0. Following Horowitz and Mammen’s (2011) lead, we replace additive
terms with B-splines and implement the nonparametric sieve estimation. B-splines have
low multicollinearity and recursive formula for calculation,! which provide computational
advantages, and thus, are widely used in practice. For ease of notation, we assume all
coordinates of X; are continuously distributed. If in an application some elements of X
are discrete, the dimension d, is interpreted as the dimension of the continuous covariates.
All results in this section can then be extended in a conceptually straight-forward manner
by using the continuous covariates only within samples that are homogeneous in discrete
covariates. For x € X, let g(z) = Y% g(x). Fori # j € {1,---,n}, let Ag; =
g9(X;)—g(X;). Forie {l,--- ,n}, let F, = F[g(X;)]. Denote f(-) as the density function
of X;.

We approximate g;(-) by p&(-)'8% forl = 1,--- ,d,. Further denote 3 = (3%, --- , 3%=")’

( ; xz)/ dy

as a dy /X x 1 vector of unknown parameters to be estimated and {8™ = (8", -, B%)'},2,

as K x 1 vectors.
Given observations {Y;, X;}_, we estimate {g;(-)}{*, and F(-) in (2.2.1) via the following

algorithm.

1See Chapter 19 of Powell (1981) and Chapter 4 of Schumaker (2007) for more detail.

10



Algorithm 2.2.1 (Three-stage Estimation Procedure)

1. Undersmoothed estimation {gl('>}7i1 of {gl(‘)}fil in model (2.2.1).

(a) Initial estimation E (Y |X) of E(Y |X) by the local-polynomial regression of
order R.

FOI‘jE{].,'-- 7n}7

(E (Y ‘XJ) 78E (Y |Xj)/ T (R!>_1 aRE (Y ’Xj)/)

n

2
— argmin > { —a—Zb (AX;;)® } T, (i,7),  (2.2.2)

(afbs3i )™ T 1 i=1,#j
where hy = (hi1,h12, -, hia,).

(b) Initial estimation 3 = (1, @’) "of .

B 1 n n - 9 - ~
0= argeminﬁ ZZ {APZ(;) + H'APZ»(J 1)} H,, [E(Y|X;) - EY|X:)].

j=2 1<j

(2.2.3)
which implies

_ { L ARIAR 'Hha[mmxj)—f?(wxn]}_

J=2 1<j

x% En: En: APYAPEVH,, [E(Y X))~ E(Y|X,)]. (2.2.4)

j=2 i<j

Then, define g;(z;) = PK(xl)/B‘”l, fori=1,---,d, and g(z) = Z?l; ai(zy).

2. Oversmoothed estimation {(Eﬂ/]\*ﬁo }n of {(F;,0F;)};—_, by the local-polynomial
=1

1=

regression of order S.
(B0F, - () O F,)

n hs 2
1 _ _
= argmin — E {Y} —a— E [Agi,j]l bl} Thy (D) -

(abr, ,bhs)'n J=1, I=1

11



The corresponding closed-form solution is

¢ y L
1
~ — 1 n Aii,'
(FodF ()7 0 F) =3~ 3" Dy (ag) | 0 | (Lo 145,)")
P s :
[Agi )"
1
1 o _ ANT®
x— > T, (85:)Y; R (2.2.5)
j=1,%i :
[Agij)"

3. Rate-optimal kernel estimation {(f]l(), 891(')) }121 of {(g:1(+), 391('))}2121~
Forl e {1, --- ,d,},

. — / 1 n —~ —~ —~ 2
(gl(ml), 8gl(xl)> = argmin - Z {Yi — Fi+ 0F,51(X;;) —OF; [a+b(X;,; — xl)]} Ty, (X — 1)
(avb)/ =1

The corresponding closed-form solution is

-1

g/(x 1 <& 1 N2
/\l( X =9 = Z (1, X1 — 1) (8Fz) Thy, (X — 1)
0g,(zy) i\ Xy -

1 <& 1 —~ PO
X; Z OFTh,, (X1; — x1) (Yz — F,+0Fg (Xl,i)> - (2.2.6)
=1 Xu — T

Stages 1 and 2 in Algorithm (2.2.1) are standard nonparametric estimations in the

literature. The third stage is designed based on a Taylor’s expansion of g; (X;;):

9 (Xii) = g (z1) + 0gi (z1) (Xii — @),
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which implies

> {Y% —F LZ 9(X;) (Xj:) + g (1) + 0g1 (w1) (Xii — 1) } T, (X1 — 1)

i=1 =1,#

~ Z {Yi — F; + 0Fig1 (X13) — OF; g1 (1) + Ogu () (X — $l)}}2 Th,, (Xpi — ).
i=1

This motivates our third-stage regression. We also note that all these three stages can be

implemented without any forms of numerical optimization.

2.3 Asymptotic Propperties

In this section, we first present the assumptions and then study the asymptotic properties

of the estimators of the structural functions.

2.3.1 Assumptions

To proceed, we introduce some notation. A real-valued m-times continuously differentiable
function ¢(u) on U C R is said to be a y-smooth function if, for some r = y—m € (0, 1], Je,,
10" q(u) — 0™q(u*)| < ¢g|u— u*|" holds for all u,u* € U. It is well known that y-smooth
functions can be approximated well by various linear B-splines (e.g., Chen (2007)). So we
will assume that {g;(-)}(_, are y-smooth functions below.

We will use X = @, X, to denote the support of X;; = (X14,...X4,,) . We make the

following Assumptions.

Assumption 1 (1) {Y;, X;}! | are i.i.d.
(2) The support X of X is compact.
(3) Vie{l,--- ,n}, E(e;| X;) = 0.

(4) There exist positive and finite constants c,,¢. and c, such that c, < E (e*|X = z) <&,

forall x € X and E |ef < 7%j\E (¢?) < oo for all j > 2.

13



Assumption 1 imposes specific conditions on {Y;, X;, e;}. Assumption 1(1) enforces that
the observations are independent and identically distributed (i.i.d.); Assumptions 1(2) and
(3) require the exogenous independent variables to have compact supports; while Assump-
tion 1(4) establishes certain moment conditions on the error terms, thus simplifying the
derivation.

The subsequent assumption pertains to the properties of the additive functions gl(-)flil.

Assumption 2 (1) The function g(-) is bounded and ~y-smooth function with v > 2

within its support for 1 € {1,--- ,d,}.?
(2) There exist constant C € [0, 00) and vectors By = (1,6p) € interior (BX), such that,

fOT’l € {17 to adw}: SUPy ex, ’gl(l‘l) - PK(xl)lﬁl,O‘ = O(K*’Y)

(3) The set of basis functions, {pk(-)}zozl, are twice continuously differentiable everywhere

on X.
(4) maxoc,<, sup, ey |0 PE (W) < Gk

Remark 1 Assumption 2(1) postulates that all one-dimensional nonparametric functions
exhibit sufficient smoothness. Assumptions 2(2)-(4) specify the approximation error for
~v-smooth functions, with polynomials, splines, wavelets, and certain other basis functions
satisfying these conditions. For the sake of scale normalization, the first element of By is

set to 1.

The next assumption concerns the properties of the unknown link function F'(-).

Assumption 3 (1) Let Q = {2721 gi(xy): forle{l,--- ,d,},z € Xl} Then, Jc,, Co,

¢y and ¢3, such that Yw € €,

—00 < < Fw)<é <oo and 0<c¢y <OF(w) <t < oo.

2A real-valued and m-times continuously differentiable function ¢(0) on O C R is said to be a y-smooth

function if, for r = v —m € (0,1], Je,, |0™q(0) — 8™q(0)| < ¢q|0 — 0| holds Vo and 0 € O.
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(2) F(-) is yp-smooth functions with yp > 2.
Next, we state the assumptions on the kernel function.

Assumption 4 (1) The kernel function T(-) is symmetric PDF's and its support is com-

pact and within its supports, it is bounded and ~y-smooth function with v > 2.
(2) H(-) is a kernel function of order ay and ay is even.

(8) The orders of polynomial regression, R and S, are odd.

Assumption 5 (1) The probability density function (PDF) of Xi, fx,(+), is bounded and

bounded away from zero within its support, ¥ 1 € {1,--- ,d,}.

(2) the probability density function (PDF) of g (X) = 2721 9(X1), feex)(+), and its deriva-
tives , Ofyx)(-) and 9 fox)(+), are bounded and bounded away from zero within its

support.

(3) the probability density function (PDF) of E(Y |X;) — E (Y |Xi), fevix;)-exx)(),
and its derivatives, OF fpiy|x,)-pv|x,)(-) and 82fE(y|Xj),E(y|Xi)(-) are bounded and

bounded away from zero within support, ¥V i # j € {1,--- ,n}.

Remark 2 Assumption 5 are standard in the literature of B-splines estimation and kernel

estimation.
Assumption 6 (1) there exist positive constants Cy and Cy such that fori # j € {1,--- ,n

0 < Cy < Amin (B [PR(X3)PR(X0)'| 9 (X0)])
PRCX)PE(XY] 9 (X)]) < G < o0
E(Y|X;) = E(Y |X))])

E(Y|X;) :E(Y\Xi)]) < Oy < 0,

(B
(B
0<Cy < A (E [AP( D AP( v g

Amas (E [AP< DAPGY| E
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0< Ol < )\Inin (aE [Af)z(,j_l)Apl(J_l)/

E(Y]X;) = E(Y X))
)

< Amax (aE [Apif;l)Ap;;l)/

E(Y|X;) :E(Y\Xi)] < Cy < 00,

0<C) < Amin (32E [AQ{;”AQ{;”’ E(Y|X;)=E(Y|X,)

< e (PE | APV AP
— max 1,] 1,]

/)
E(Y|X;) :E(Y\Xi)]) < 0y < o0,
)

0< C1 < Auin (B { ARG APSY

EY[X;)=E(Y[X:)

{ J
< Ao (E { ‘Ag{;”Ag{;”’ E(Y|X;)=E(Y ]Xi)}) <0y < o0

and

ma)fn Amax (8E [PK(XZ)PK(Xl)/‘ g (Xz)]) < CQ < 00,

=1,
max Amax (0PF [PX(X;) PR(X,)'] g (X3)]) < Gy < o0,

=1,

hold uniformly in K =1,2,---, where

O'E [AP.H)APF”'
(2% 1,7

E(Y1X;) = E(Y |X:)]
B [APGOAPSY B (Y IX;) — B (Y (X)]
N DIE(Y[X;) - E(Y X))

)

E(Y|X;)-E(Y|X;)=0

forl =1, 2 and the definitions of other terms are similar.

(2) Asn — oo, K — oo, {hl,l}f; — 0, ho = 0, hg = 0 and {h4,l};ii1 — 0.

K
() (1360n)” = o, (K LRV ﬁh;”f) VR 51 = 0y(1),
dg R+1 —a K ap
dulihi = op | K77 4 ot VER™ |,
1
and Kh* = o(1), where oy, = O, e pfot 4 # .
’ n Hlil hl,l

(4) h3'VK (K“ + \/f+ ﬁh;’f) =o(1) and (h§+1 + W) VK <0(1).
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K logn logn
5) K= 4+ 4/ — + VKh3" +hitt + ./ = W+ hi .
(5) + n + o thyT + nhs Op ( nha + 4,l>

Remark 3 Assumption 6 (1) ensures the existence and nonsingularity of the asymptotic co-
variance matrices for B-splines estimations, which is a standard condition in the B-splines
estimation literature. Assumptions 6(2)-(5) guarantee that the asymptotic biases and vari-
ances of the first-stage and second-stage estimators are sufficiently small for achieving or-

acle efficiency in the third stage. Under standard bandwidth selection methods for local

1
polynomial regression, Assumptions 6 (3), (4), and the condition K~ 4 h3* + | og;an -
nns
logn 5\ . : ,
Op hit +hi, | in (5) hold when R = 3, S = 3, and « is sufficiently large. Conse-

K 1
quently, Assumption 6 (5) simplifies to \/ — + VEKh3" = o, (1 /% +h2 l) .
n nhyy ’

Theorem 2.3.1 Suppose that Assumptions 1 - 4, 5 (1) and (3) and 6 (1) - (2) hold. Then
1.

0 — 6

-1
1 e~ _ _
=_ {n2§ > APGYAPSY H, (B (Y ]Xj)—E(Y\Xi)}}

=2 i<j

1 = _
X {n2 SN 2gi, APV H, [E(Y]X;) - E(Y|X;)]

=2 i<j

1 e — _
Con2 Z Z (APE'B5* — Ngij) AP}J VH,, [E(Y 1X;) - E(Y Xi)]}

j=2 i<j

+Rn5, (2.3.1)

where ||Ry5]| = (h§15h,n)2 + Oy (2?21 hﬁfrl + \/%)

16— 6ol| = Oy (K‘“ + \/§+ ﬁh;ff) :
18 = Boll = O, <K‘“ + \/§+ \/Eth> .
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s sup (g1 () = g1 (a1)] = Oy

VK (K”‘ + \/f + @h;H)] . (2.3.2)

Remark 4 Given Assumption 6 (3), Theorem 2.53.1 (1) signifies the asymptotically negli-
gible dominant effect of the estimation of E(Y|X).

Theorem 2.3.2 Suppose that Assumptions 1 - 5, 6 (1), (2) and (3) hold. Then

1. There exists a positive constant Cy such that

~ e l
F—F| =0 ’g(XZ) - g(Xz)’ + Op (K_a + \/ g + \/ﬁth + h§+1 + W) ,
3
(2.3.3)
hold uniformly overi € {1,--- ,n}.

2. There exist a positive constant Cy such that

—~ K 1
OF; = 0F| = b33 lg(X,) = 9(X0) | + b0, (K“ )=+ VERS + b5+ MZi") ,
3
(2.3.4)
hold uniformly overi € {1,--- ,n}.

Withe Theorems (2.3.1) and (2.3.2), it is straigntforward to show the asymptotic joint

distribution of our three-stage estimators of {(g;(-), 8gl(~))}?il.

Theorem 2.3.3 Suppose that Assumptions Assumptions 1 - 6 hold. Let kqp = [ u® [T(u)]b du
fora,b=0,1,2. Then forl=1,--- ,d,

(1 0 ) |:(/g\l($l)) B (gl(ﬂﬂl))]
0 hyy 5!\}1(1‘1) 9i(1)

1.
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n 1
1 X1 — @ 2
\n X1 — (1’ h > (OF:)" Th,, (X1,s — 1)
i=1 - 4,1
hay

1

n 1 n
1 1 9
Qo Z X —ay | OF T, (X — @) e + 329! (@) Sl X = | OF Ty (Xui — @) (X — @)
=1 h4,l =1 h4,l
+Ry 3 (21), (2.3.5)

Tth

K I
holds for each x; € X, and Ry, 3 (%)) = op ( }fhg: + hil> +0, (K“ RV VERST + h5 ! 4 1/?;2:)

holds uniformly over x; € X .

K I
where Ry 3 (1) = o ( v hL) +0, (K" /o VERS" 4R Og”)

10 gi(z1) gi(x1) 303 ik P gi(r)
\/nh4,l - - - ,
0 hyy dg,(z1) gi(1) 0
iy [ ELEC 2|X)8F \Xl—:cz} woz 0
(E{[0F (g |Xl—xl}) 0 2
K1

—~ logn
sup ||gi(x:) — gi(x1)|| = Oy (hiz + 3 ) .
T EX) nng g

Remark 5 The rate O(n='/%) is widely recognized as the asymptotically optimal bandwidth

for one-dimensional kernel mean regression, specifically when the conditional mean function

possesses continuous second derivatives.

Remark 6 Theorem 2.3.3 (1) furnishes linear representations of the nonparametric esti-

mators {(gl()a 551()) } I = 1% uniformly controlling the remainder terms. This theorem

serves as a foundational component for both pointwise and uniform inference. According to

Chernozhukov, Chetverikov and Kato (2014, Corollary 3.1), uniform inference based on the

multiplier bootstrap is feasible.
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Remark 7 Theorem 2.3.3 (2) elucidates the asymptotic properties of our three-stage esti-
mators for {(gi(-), gi(-))} | = 1% . Notably, the asymptotic distribution of the local-linear es-
timator remains unaffected by random sampling errors emanating from the first two-stage es-
timators. Essentially, the three-stage estimator of (gi(+),0qi(+)) retains the same asymptotic
distribution that would be expected if other additive components {(gi, (), g, ()}l = 1, # 1%

and the link function F(-) were known, for Vi € {1,---  d,}.

Remark 8 Theorem 2.3.3 (3) establishes the uniform convergence rate for {gl(-)}f‘;l. Fur-

thermore, following standard practices in the nonparametric kernel literature, we can also

affirm that the estimators of (gi,(+),0qi,(*)) and (gi,(+), Ogi,(+)) for ¥l # Iy € {1,--- ,d,}

are asymptotically independently distributed.

2.4 Numerical Studies

2.4.1 Data Generating Processes

We use three data generating processes (DGPs) to study the finite sample performance of
estimation methods proposed in this paper and the existing literature.
We consider the following settings.

Example 1 (Continuous Case) In model (2.2.1), we set the dimension as 2, and
g1(z) =sin(z), ¢2(z) =20(z —0.5), F(x)= d(z),

where ®(-) is the CDF of normal distribution. We generate X;; and X;o, i = 1,--- ,n,
from the uniform distribution U[—1,1]. Y; , given X;; and X, is generated through Y; =
Flg1 (Xi1) + g2 (Xi2)] + Vi, where V; is generated from the normal distribution N (0,0.022)
and independent of X;; and Xjs. The simulated results are in Table (3.1).

Example 2 (Continuous Case with Four Components) In model (2.2.1), we set the
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dimension as 4, and

(o) =sin(a), :(e) = Do), i) = 3o=5)% qulo) =cos (G- 3} . Flo) = B(o)

where ®(-) is the CDF of normal distribution. We generate X;;, X;2, X;3 and X4,

i=1.---

)

,n, from the uniform distribution U[—1,1]. Y; , given X, ;, X;2, X;3 and X4, is
generated through V; = F'[g1 (Xi1) + g2 (Xi2) + g3 (Xi1) + 94 (Xi2)] + Vi, where V; is gen-
erated from the normal distribution N(0,3%) and independent of Xi1, Xi2, Xi3 and X, 4.
The simulated results are in Table (3.2).

Example 3 (Binary Case) In model (2.2.1), we set the dimension as 2, and

o) =sin(z), )= 5 (-5 -3, F (x)_liig()x)‘

We generate X;; and X0, i =1,---,n, from the uniform distribution U[—1,1]. Y; , given

X;1 and X9, has the Bernoulli distribution B(1,p;) with
pi = E (Y] Xi,laXiZ) =F [91(Xi,1) + QQ(Xi,2>] .

The link function F'(-) is the commonly used logistic function for binary response. The

simulated results are in Table (3.3).

2.4.2 The Estimation Methods for Comparison

In this section, we use simulated examples to demonstrate how well the proposed estimation
procedure works. For continuous case, we compare the proposed estimation procedure with
the method in Horowitz and Mammen (2011), denoted by HM. For binary case, we compare
the proposed estimation procedure with the method in Horowitz and Mammen (2011) and
Klein and Spady (1993), denoted by HM and KS.

We define the bias, standard deviation (SD), and root mean integrated squared error

A~

(RMISE) of an estimator f(-) of f(-) as
bias — / B [fw)] - ()| v,
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SD = /sd [f(v)} dv
and

RMISE = (bias® + SD?)'/2,

respectively, and use them to assess the accuracy of the estimator f (+).

In the continuous case, we implement both the proposed estimation procedure and the
method from Horowitz and Mammen (2011) on the simulated data. Both methods utilize
B-splines to acquire initial estimators, which are subsequently refined by one-dimensional
kernels to enhance efficiency. The key distinction between the two techniques lies in the
initial B-splines estimator. The initial estimator as per Horowitz and Mammen (2011)
encounters challenges with non-convex optimization and tends to get trapped at local
optima, which, despite its perfect theoretical properties, hampers its performance with
simulated data. For the binary case, we compare our method with both methods pre-
sented in Horowitz and Mammen (2011) and Klein and Spady (1993). Klein and Spady
(1993) estimates a single-index model with a binary response using the Maximum Like-
lihood Estimation (MLE) method. Given that the model Y = F [PX(X)'3] + €, where
e=Flg(X1)+ -+ 94,(Xa,)] — F [PX(X)'B] + V, resembles the single-index model, and
both the proposed method and the one in Klein and Spady (1993) employ kernel estimation
to estimate the link function, we also present the simulation results using the method in
Klein and Spady (1993) for the binary case. To maintain a fair comparison, we extend and
refine the method in Klein and Spady (1993). Since Klein and Spady (1993) employs the
MLE method and Horowitz and Mammen (2007) uses a method akin to weighted OLS,

Klein and Spady (1993) should provide superior performance in the binary case.
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2.4.3 Choices of Tuning Parameters

All the hyperparameters are tunned by cross validation based on grid search. The kernel
function used in the proposed estimation procedure is the Epanechnikov kernel for all sim-
ulated examples in this section. For each simulated example, we assess the accuracy of the
proposed estimation procedure for sample size n = 400 and for each case, we compute the
bias, SD and RMISE of an obtained estimator based on 1000 simulations.

For Example 1 with proposed method, the bandwidths for multi-dimensional kernel
estimation in stage 1(a) are hy; = 2 and hy o = 2, 5-interior-knot cubic B-splines are used
for the first additive term and 3-interior-knot cubic B-splines are used for the second additive
term in stage 1(b), the bandwidth for matching estimator in stage 1(b) is hy = 0.001, the
bandwidth for link function in stage 2 is h3 = 2 and the bandwidths for additive terms
in stage 3 are hy; = 0.2 and hyo = 0.15. For Example 1 with method in Horowitz and
Mammen (2011), the bandwidth for the initial estimator is optimized by cross-validation
method in each replicate. The bandwidth for link function in stage 2 is h3 = 3 and the
bandwidths for additive terms in stage 3 are hy; = 0.2 and hy o = 0.1.

For Example 2 with proposed method, the bandwidths for multi-dimensional kernel
estimation in stage 1(a) are hy; = 10, hyo = 10, hy3 = 2 and hy4 = 10. 3-interior-knot
cubic B-splines are used for each additive term in stage 1(b), the bandwidth for matching
estimator in stage 1(b) is hy = 0.3, the bandwidth for link function in stage 2 is hy = 2 and
the bandwidths for additive terms in stage 3 are hyy = 0.12, hyo = 0.14, hy3 = 0.12 and
hys = 0.18. For Example 2 with method in Horowitz and Mammen (2011), the bandwidth
for the initial estimator is optimized by cross-validation method in each replicate. The
bandwidth for link function in stage 2 is hs = 2 and the bandwidths for additive terms in
stage 3 are hy1 = 0.1, hyp = 0.1, hy3 = 0.1 and hyg = 0.1.

For Example 3 with proposed method, the bandwidths for multi-dimensional kernel

estimation in stage 1(a) are hy; = 2 and h;» = 2, 5-interior-knot cubic B-splines are used
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for the first additive term and 3-interior-knot cubic B-splines are used for the second additive
term in stage 1(b), the bandwidth for matching estimator in stage 1(b) is hy = 0.001, the
bandwidth for link function in stage 2 is h3 = 3 and the bandwidths for additive terms in
stage 3 are hy; = 2 and hyo = 1. For Example 3 with method in Horowitz and Mammen
(2011), the bandwidth for the initial estimator is optimized by cross-validation method in
each replicate. The bandwidth for link function in stage 2 is hs = 0.6 and the bandwidths
for additive terms in stage 3 are hy; = 2.5 and hso = 1.5. For Example 3 with method
in Klein and Spady (1993), the bandwidth for the initial estimator is optimized by cross-
validation method in each replicate. The bandwidth for link function in stage 2 is hy = 3

and the bandwidths for additive terms in stage 3 are hy; = 2 and hyo = 1.

2.4.4 Results

Table 2.1 The simulation results for Example 1 with continuous response

G G2
Prop. RMSE 0.0067 0.0081

Bias  0.0018 0.0018
SD  0.0064 0.0079

HM RMSE 0.0668 0.0462
Bias  0.0147 0.0093
SD 0.0652 0.0453

In the methodologies proposed by Horowitz and Mammen (2011) as well as Klein and
Spady (1993), optimizing the bandwidth for the initial estimator in each simulation proves to
be time-consuming and impractical, especially when dealing with four additive components.
Furthermore, the computation of the initial estimator involves non-convex and non-linear

optimization, leading to results that may be local optima and vary significantly across
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Table 2.2 The simulation results for Example 2 with four components

g1 g2 g3 ga
Prop. RMSE 0.0071 0.0057 0.0065 0.0055

Bias  0.0022 0.0010 0.0012 0.0010
SD  0.0067 0.0056 0.0064 0.0054

HM RMSE 0.0456 0.0177 0.1375 0.0367
Bias  0.0101 0.0050 0.0254 0.0060
SD 0.0444 0.0170 0.1351 0.0362

simulations. Consequently, the computation of the initial estimator in the methods of
Horowitz and Mammen (2011) and Klein and Spady (1993) is not only time-consuming but
also unstable.

The biases, standard deviations (SDs), and root mean squared errors (RMISEs) of the
function estimators g1 (+), g2(+), 93(*), g4(+), and F'(-), based on 1000 replicates, are presented
in Tables (1) to (3).

A comparison presented in Tables (1) to (3) shows that the proposed estimator signifi-
cantly outperforms those of Horowitz and Mammen (2011) and Klein and Spady (1993) in
terms of Bias, SD, and RMISE across all three examples. Thus, it can be concluded that
the proposed estimation procedure exhibits superior performance compared to the methods

introduced in Horowitz and Mammen (2011) and Klein and Spady (1993).

2.5 Application: Why Do Small and Medium Enterprises(SMEs)
Demand Property Liability Insurance

The purchase of insurance is a common practice for businesses of all sizes, industries, and

locations. Property liability insurance, which protects against financial losses from property
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Table 2.3 The simulation results for Example 3 with binary response

G G2
Prop. RMSE 0.0991 0.0804

Bias  0.027 0.0359
SD  0.0953 0.072

HM RMSE 0.2474 0.1247
Bias  0.1384 0.054
SD 0.2051 0.1124

KS RMSE 0.1497 0.0971
Bias  0.0798 0.0666
SD 0.1267 0.0707

damage or bodily injury caused by one’s actions or negligence, is vital for both businesses
and individuals. Studies have shown that a firm’s In(Asset), Credit Score, and the number
of banks SME transacts with (Banks) are significantly related to insurance demand. While
most research focuses on listed firms, few examine small and medium enterprises (SMEs)
due to data limitations.

Yoshihiro (2019) conducted a survey to analyze the insurance demand of SMEs in Japan.
The study’s findings can be concisely summarized as follows: Firstly, SMEs with a higher
risk of bankruptcy often demand less insurance. Teikoku Data Bank’s financial statements
provide credit scores, which indicate the likelihood of bankruptcy for SMEs. For instance,
lower credit scores suggest a higher bankruptcy probability. Credit scores thus facilitate
the analysis of bankruptcy risk on insurance demand. One might expect that SMEs with
low credit scores and high bankruptcy risks would demand more insurance to mitigate
bankruptcy. However, such SMEs may struggle to afford adequate insurance coverage. As

a result, they may choose not to purchase insurance because they have less to lose in case
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of bankruptcy. In contrast, SMEs with high credit scores and low bankruptcy risks may
demand more insurance, as they have more at stake in the event of bankruptcy. This suggests
that higher credit scores should correlate with increased insurance demand. Secondly, SMEs
that have weaker connections with their primary banks are more likely to seek additional
insurance coverage. When these businesses are unable to secure adequate funding from their
main bank, they turn to other financial institutions. Consequently, relying on multiple banks
for financing can signal increased financial limitations. As a result, SMEs that engage with a
higher number of banks are more inclined to obtain increased insurance coverage to mitigate
potential property liability losses, knowing that securing loans may prove challenging.

To investigate the effects of In(Asset), Credit Score and Banks on the demand of property

liability insurance, we are interested in estimating regressions of the form:

In (Insurance Demand;) = F'[g1 (In (Asset;)) + g2 (Credit Score;) + g5 (Banks;)| + ¢,

(2.5.1)
where Banks stands for the number of banks SME transacts with and it is normalized be-
tween 0 and 1. We utilize the same dataset as the one employed in Asai (2019). For further
details on data preparation, please refer to Asai (2019). This study uses The Management
Survey of Corporate Insurance Issues in Japan, which was conducted in January and Febru-
ary of 2014. The survey asked SMEs about their characteristics, insurance purchases, bank
relationships, and the Great East Japan Earthquake. To have a basic idea about what the
data is like, Table (3.4) reports summary statistics. Similarly, Asai (2019) estimated the

linear version of the regression:
In (Insurance Demand;) = By + [1ln (Asset;) + S2Credit Score; + S3Banks; + ¢;,

and the study shows that both the parameters of Credit Score and Banks (the number of
banks SME transacts with) are significantly positive and the parameters of In (Asset;) is

significantly negative.
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Table 2.4 Summary Statistics

Number of Sample Mean Standard Deviation Median  Min Max
Dpendent Variables
In (Insurance Demand) 758 0.782 1.525 0.878  -10.034 6.073
Independent Variables
In(Assets) 758 6.145 0.397 6.134  4.834 7.270
Crredit Score 758 0.585 0.152 0.581 0.000  1.000
Banks 758 0.438 0.245 0.444 0.000  1.000

Figure 1 provides a visual representation of the relationship among (n (Insurance Demand),
In (Asset), Credit Score and Banks in our study. This effects of Credit Score and Banks
are found to be both overall positive and statistically significant, corroborating the results
of the Ordinary Least Squares (OLS) analysis conducted by Asai (2019). Our research
approach, however, offers a more detailed and nuanced perspective compared to the OLS
analysis alone.

We observe that when Credit Score is lower than 0.52 or higher than 0.65, the effect
on [n (Insurance Demand) is relatively stable. The phenomenon suggests that when Credit
Scores are either relatively low or high, they don’t have a substantial influence on the
demand for Property Liability Insurance. This might be due to the presence of other factors
or risk management strategies that play a more significant role in determining the insurance
demand. Businesses with either very low or very high Credit Scores might already have risk
management strategies in place that don’t rely solely on insurance, reducing the impact of
the Credit Score on insurance demand.

We also observe that when the number of banks it transacts with is between 0.30 and
0.45, the effect on In (Insurance Demand) is relatively stable. This suggests that within

this range, the number of banks a business works with does not significantly impact the
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demand for Property Liability Insurance. The possible explanation is that businesses with
either fewer or more bank relationships have different risk management strategies compared
to those with a moderate number of bank relationships. This difference in risk management
approaches could lead to varying demand for Property Liability Insurance.

According to Figure 1, when In (Asset) is lower than 6.0, its effects is found to be negative
and statistically significant, corroborating the results of the Ordinary Least Squares (OLS)
analysis conducted by Asai (2019). Our research approach provides a more detailed and
nuanced perspective on the relationship between a company’s assets and the demand for
Property Liability Insurance. When In(Asset) exceeds 6.1, the effect is observed to be
positive and statistically significant, while when In(Asset) surpasses 6.3, the effect becomes
stable, deviating from the outcomes of the Ordinary Least Squares (OLS) analysis conducted
by Asai (2019). There could be several reasons for this observation. When a company has
a low asset level, it may not have sufficient resources to self-insure or absorb potential
losses. However, as the asset level increases, the company might be in a better position
to bear potential liabilities without relying on Property Liability Insurance. As a result,
the demand for this insurance might decrease as the company becomes more capable of
handling its own risks. As assets increase beyond a certain level, companies might experience
a higher potential for liabilities due to factors such as business expansion or increased
complexity, leading to a higher demand for Property Liability Insurance. When assets reach
a significantly high level, the company may already have optimized its risk management
strategies, and the potential liabilities may not increase proportionally with the assets,
resulting in a minimal effect on Property Liability Insurance Demand.

In summary, our approach showcases the importance of using a more detailed and nu-
anced research approach to better understand the complex effect of different factors on

Property Liability Insurance Demand
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Figure 2.1 Estimation of Structure Functions and Their 95% Confidence Intervals
2.6 Conclusion

In this paper, we create oracle-efficient estimators for a generalized additive model with
an unknown link function (GAMULF), with the assumption that the structural functions
are additive. Our estimators for the conditional mean and gradient exhibit consistency
and asymptotic normality. To estimate the component functions, we suggest a multi-stage
algorithm with a refinement stage that employs a one-dimensional kernel, thus bypassing
the curse of dimensionality. Furthermore, the multi-stage algorithm either provides closed-
form solutions or involves convex optimizations, significantly reducing computational load.
Through simulation studies and real data analysis, we demonstrate that our estimator out-

performs existing methods in terms of efficiency and robustness.
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Chapter Three

Efficient Nonparametric Estimation of

Generalized Panel Data Transformation

Models with Fixed Effects

Authors: Ying Xia, Peter C. B. Phillips, Liangjun Su

3.1 Introduction

Since the pioneering work of Box and Cox (1964), transformation models have been widely
studied. They include many popular models, such as the accelerated failure time model, the
Weibull hazard model, the proportional hazard model and the mixed proportional hazard
model. Due to their popularity, transformation models have been widely applied to empirical
work in various areas of economics to study issues that include the length of unemployment
spell, the time between purchases of a particular good, the time intervals between two child
births, and the insurance claim durations, among others. See Van den Berg (2001) for
a survey on the applications of duration models. Meanwhile, the asymptotic properties of
different forms of transformation models have received a great deal of interest. For example,

Horowitz (1996) focus on a transformation model with a nonparametric transformation
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function and a parametric structural function. Chiappori et al. (2015) extend the method
in Horowitz (1996) to a transformation model with both nonparametric transformation
functions and nonparametric structural functions under endogeneity.

Even though a fully-nonparametric transformation model avoids various misspecification
issues, it suffers from the curse of dimensionality. For this reason, there has developed a
large literature that applies the additive structure in generalized additive models with an
unknown link function; see Horowitz (2001), Horowitz and Mammen (2007), Horowitz and
Mammen (2011) and Lin et al. (2018), among others. Recently, Chen et al. (2022) have
considered a fully nonparametric transformation model with additive structural functions in
a panel data model with fixed effects. In contrast with the early works such as Horowitz and
Lee (2004), Chen (2010) and Wang and Chen (2020) who also analyze panel transformation
models but assume parametric structural functions, Chen et al. (2022) is the only paper
that considers a generalized transformation model with fixed effects under additivity and
avoids imposing any parametric assumption. The estimator of the structural function Chen
et al. (2022) has a closed-form expression, which makes it is easy to implement and to study
the asymptotically normality. Nevertheless, the estimation is done through the matching
with other covariates locally and thus suffers from the curse of dimensionality substantially.

To combat the curse of dimensionality, in this paper we propose a three-stage estima-
tion procedure for the generalized transformation model with fixed effects and additive
structures. We assume that the nonparametric structural function ¢ (-) exhibits an addi-
tive structure: ¢ (z) = S.°, g/ (x;). Inspired by Horowitz and Mammen (2004, 2011) and
Ozabaci, Henderson and Su (2014), we aim to obtain estimators of the additive structural
functions that enjoy the orcale efficiency in the sense that they can be estimated as asymp-
totically efficiently as the oracle estimator obtained when the other additive components are
observed. In the first stage, we first consider a regularized sieve method to estimate the logit

sieve coefficients associated with the approximation of a composite function of the inverse
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L7 (+) of logit-CDF L (-), the CDF F (-) of the error difference, and the structural function
g (+), and then generalize the “pairwise differencing” or “matching” method of Blundell and
Powell (2004) to obtain initial consistent estimators g (-) of the structural functions g (-) .
In the second stage, we consider the local polynomial estimation of LF (-) = L™ (F (+))
and its first order derivative based on the preliminary consistent estimates g, (-). In the
third stage, we apply the local linear method to estimate the one-dimensional object g; (+)
based on the consistent estimates {g; (-)} of {¢:(-)} and those of LF (-) and its first order
derivative. Since only one-dimensional nonparametric objects are estimated in the second
and third stage and the additive structure of g (-) is imposed in the whole procedure, the
whole estimation procedure does not have the curse of dimensionality issue.

Interestingly, all the minimization problems in our three-stage approach are convex prob-
lems. This overcomes the computational hurdle in some existing procedure for transforma-
tion models. Furthermore, our estimator achieve optimal convergence rate, asymptotic
normality and oracle efficiency.

The article is organized as follows. Section 2 describes our methodology. We present the
asymptotic properties of our estimators in Section 3. Section 4 examines the finite sample
performance of our estimators via Monte Carlo simulations. We apply our method to an
empirical dataset in Section 5. Section 6 concludes. All the proofs of the main theorems are
relegated to the appendix.

Notation. For a real matrix A, let A’ denote its transpose, and let [|A]l and [A],,
to denote its Frobenius norm and operator norm, respectively: [|A|| = [tr (A4")]"/* and
[ All,, = v/ Amaz (A'A), where = signifies a definitional relationship, ¢ (-) is a trace operator,
and Apqz (+) denotes the maximum eigenvalue of a real symmetric matrix. Similarly, we use
Amin(+) to denote the minimum eigenvalue of a real symmetric matrix. For any function f(-)
defined on the real line, let f(-), f(-), and f (-) be its first, second, and third order derivatives

and let 0”f(-) be the ath order partial derivative of f (). Let 2 and 5 be convergence in
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distribution and convergence in probability. Let 1{A} denote the usual indicator function
which takes one 1 if A holds true and 0 otherwise. For any positive integer ¢, we write

[c] ={1,2,...,c}. For a vector v, |v|, denotes the number of nonzero elements in v.

3.2 Methodology

In this section we first present the panel data transformation model and then propose a

multi-step procedure to estimate it.

3.2.1 The Model

We consider the following transformation model:

d
AYy)=9g(Xu)+oi+er= Zgl (Xpit) + i + €, (3.2.1)
=1
wherei =1,---,n, t =1,---,T, Y, is the observed dependent /response variable, (X ;, - - - ,deit)/

is a d x 1 vector of observed covariates, g (X;;) = 27:1 g1 (X1it), o is the individual fixed
effect that captures the unobserved individual heterogeneity, €;; is the idiosyncratic error
term, and A () is an unknown transformation function that is strictly increasing. Note
that the model in (3.2.1) specifies a structural relationship between the response variable
Y;; and the covariates in X,;;. We address the important issue of “curse of dimensionality”
by imposing additive structures on the covariates. Also, for simplicity and clarity we as-
sume that ¢,(-), [ = 1,--- ,d are all unknown smooth functions defined on the real line so
that each X, is a scalar random variable. Even though ¢,(-)’s are only components of the
structural relationship, they are often parameters of interest in empirical applications and
we shall refer to them as the structural functions in this paper. In addition, the derivatives,
91(+), -+, ga(:), which measure the marginal effects, are also of interest in practice. For

example, ¢, (X, ;) can be interpreted as the marginal effect of X;;; on A (Y;). The main
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goal of this paper is to estimate (g;(+),--- , ga(-)) and their derivatives (g;(-),--- , ga(-)). Let
g(z) =3 gi(z;) where z = (21, ..., 7).

Throughout the paper we focus on a short panel with T being fixed but allow the
individual effect «; to be correlated with the covariates in arbitrarily unknown form. To
deal with the fixed effects o, we rewrite the model in (3.2.1) as follows:

d
Yii=A"1(g(Xy) + o +ey) =A"" <Z g (X)) + o, + eit> , (3.2.2)
=1
where A7(+) is the inverse function of A(+). Clearly, the above expression indicates that the

model (3.2.1) is different from the classical panel data model of the following form:

d
)/it = Ail (g (th)> + a; + €t = Ail <Z a1 (Xl,it)) -+ a; —+ €t - (323)
=1

For the model in (3.2.3), we can eliminate the fixed effects through various transformations
such as first-differing and within-group transformation. Nevertheless, for the model in (3.2.1)
or (3.2.2), we cannot apply such transformations to remove «; due to the presence of the
nonlinear function A~*. Fortunately, Chen et al. (2022) find that the distribution of D; ;s =
1{Y;; > Y} is free of a;. This motivates the estimation of the structural functions based

on such a non-smooth transformation of the dependent variables.

3.2.2 Estimation Procedure

For clarity, we focus on the case where T" = 2 and then remark on the general case with
T > 2 later on. To avoid complication that arises from the presence of discrete covariates,
we assume that all covariates are continuous variables.

Following the lead of Chen et al. (2022), we compare Yj; with Y;; by defining D; =

1{Yi2 > Yi1}. Since A(:) is strictly increasing, we have

D; =1{A (Y) > A(Yi1)}
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=1{g(Xi2) + €2 > g (Xi1) + €}

=1{g9 (Xi2) — g (Xi1) > A}

=1 {Zgl (Xii2) = Y g (Xin) > Ai} ) (3.2.4)
=1

=1

where A; = €;1 — €;2. Obviously, the fixed effect a; has been removed via the above nonlinear
transformation so that the distribution of D; is free of ;. Let X; = (X;1, Xi2) . Let f(-) and
F (-) denote the probability density function (PDF) and cumulative distribution function
(CDF) of A, respectively. Then

E (D;i|X;) = Pr(g(Xi2) — g(Xi1) > Ay) = F (9 (Xi2) — g (X)) (3.2.5)

Inspired by Horowitz and Mammen (2004, 2011) and Ozabaci et al. (2014), we propose
a three-step procedure to estimate the structural functions and their derivatives below. In
the first stage, we first consider a regularized sieve method to estimate the sieve coefficients
associated with the approximation of a composite function of the inverse L™ (-) of logit-
CDF L(-), the CDF F(-) of A;, and the structural equation g (-), and then generalize
the “pairwise differencing” or “matching” method of Blundell and Powell (2004) to obtain
initial consistent estimators g (-) of the structural functions g; (-) . In the second stage, we
consider the local polynomial estimation of LF (-) = L' (F (+)) and its first order derivative
based on the preliminary consistent estimates g; (-) . Note that LF (-) is a one-dimensional
smooth function and its estimation does not have the curse of dimensionality issue. In the
third stage, we apply the local linear method to estimate the one-dimensional object g; (+)
based on early consistent estimates {g; (-)} of {g; (-)} and those of LF (-) and its first order

derivative. Again, here there is no curse of dimensionality involved here.

First-stage estimation of {g;(-)}",

In the first stage, we consider initial consistent estimation of the structural functions { g (-)};1:1

in model (3.2.1), which is done through two sub-steps.
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In principle, we can estimate {gl(‘)}fl:l via least squares based on the model for the
response variable D; by using sieve approximation for the structural functions in (3.2.4).
Nevertheless, the least squares estimates do not perform well as it cannot ensure the resulting
probability estimates to lie between 0 and 1. To ensure the probability estimates to always
lie between 0 and 1 during the computation, we follow the lead of Hirano, Imbens and
Ridder (2003) and consider the method of logit sieve.

To proceed, we introduce some notations. Let {p; (-),l =1,2,---} denote a sequence of
B-spline basis functions. Let K = K(n) be some integer such that K(n) — oo as n — oo.

Let PX(zy) = [p"(z10), -+ 0" (@a2)']’ where p¥(2) = [p1 (@), ,px ()] for | =
1,....,d. Then under suitable smooth conditions, we can approximate g;(-) by p(-) 5%
where 8% = (B{',---,8%)" is a K x 1 vector of parameters. Let § = (8% ... p%').
In the sequel, we propose to use B-spline estimation as it has faster uniform convergence
rate than the estimation based on the power splines. In addition, it is well known that
B-splines have low multicollinearity and recursive formula for calculation, which provides
great computational advantages in practice. See Chapter 19 of Powell (1981) and Chapter
4 of Schumaker (2007) for more details on B-splines.

Let Ag(X;) = g(Xi2) — g(Xi1), and LF (-) = L7Y(F (+)) . In the first substep, we try
to approximate the composite function LF (Ag(-)). Even though the additive structure
in g (-) implies that that of Ag : Ag(X,) = 320, [0 (Xii2) — a1 (X1.1)], LF (Ag (X)) can
not be written as additive functions of (X1, ..., Xai1, X1,i2, ..., Xa42) . This implies that if
one uses {p®(xy;),l € [d],t € [2]} to approximate this composite function, one has to use
their 2d-dimensional tensor product to form the basis functions, resulting in the “curse of
dimensionality”. Fortunately, noting that Ag (-) is additive and LF (-) is a one-dimensional
function, we can avoid the “curse of dimensionality” via two sieve approximations to the

composite function. First, we approximate Ag (X;) as follows:
Ag(Xi) = (PM(Xi) = P¥(Xa)) Bo+ [ (Xi2) — 1 (X))

37



where 1 (X;) is the approximation error in the sieve approximation of Ag (X;). Then under

certain smooth conditions on F'(-), we can approximate LF (Ag (X;)) as follows
LF (Ag(X;)) = LF (APY(X,)'Bo+ Ar (X))
= LF (APX(X;)B) + LF (Ag;) Ary (X;)

= Do (APR(X)Bo)" + [r> (Xi) + LF (Ag)) Ary (X,)]

R
> ano (APF(X)By)" +7 (X)), (3.2.7)
=0

where Ag? lies between Ag; (X;) and APX(X;) By, 72 (X;) can be regarded as the remainder
term in the Rth order Taylor expansion of LF (-), and r (X;) = [r2 (X;) + LF (AgF) Ary (X5)].
Intuitively, as long as both g, (-)’s and F () are sufficiently smooth, and both K and R di-
verge to infinity, we can control the overall approximation error r (X;) uniformly well. In

practice, we propose to use the following functions as the vector of base functions to ap-

proximate LF (Ag (X;)) :
1, AP®(X;), the tensor product of AP®(X;) up to order R. (3.2.8)

For notational simplicity, we denote the above vector of base functions simply as R (X;) =
RE® (X;) where Kp signifies the dimension of the vector R (X;). Clearly, K is a determin-

istic function of K and R. Then we have
LF (Ag (X)) = R(X;) m for some 1y € RFR,

Note that the true values of the elements of m, depend on the coefficients oy ’s and
8o nonlinearly, but it is hard to incorporate such restrictions in the following estimation

procedure. Instead, we will consider a regularized procedure to estimate my. Specifically, we
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propose to estimate my by the regularized logit sieve (RLS) method:

N
1
7 =argmin—— 3 [D; - In (L (R(X;)'m)) + (1= Dy) - In (1 = L(R(X;)'m))] + Al
i=1
(3.2.9)
| o e _
where L (-) is the Logit CDF: L(x) = T+ exp(a)’ |-||; is the L; norm, and A = A (n)

is a tuning parameter that shrinks to zero as n — oco. In comparison with the standard
logit sieve estimation, we use regularization in the above minimization problem. Following

Belloni, Chernozhukov, Fernandez-Val and Hansen (2017), we can set
A=cen Y207 (1 — ¢,/ {2KR}) (3.2.10)

where ¢ > 1 is slack constant (e.g., 1.1), ¢y, = 0.1/log (n) and &~ (+) is the inverse function
of the standard norm CDF ®. Let m; = E (D;]X;) = L (R(X;)'%), which serves as an initial
consistent estimator for m; = E (D;|X;) . Note that even though the true link function F'(-)
is not a Logistic function, we can use Logistic function inside the function In() in (3.2.9).
Following Hirano et al. (2003) and Belloni et al. (2017), we can establish the convergence
rate for the above regularized logit sieve estimator under some suitable conditions.

In the second substep, we consider the use of a matching method to estimate the struc-

tural functions. To see how the idea of “matching” works, note that
m; = E(Di| X;) = F (Ag (Xy)).-
By the strict monotonicity property of the CDF function F (-),
m; ~ m; if and only if Ag (X;) =~ Ag (Xj;).

So in principle, one can consider minimizing the average squared distance between Ag (X;) and
Ag (X;) when we control m; to lie close to m;. In practice, both Ag (X;) and m;’s are not
observed, we need to use sieve approximation to obtain the former one and replace the latter

one by its preliminary consistent estimate. Note that
m; = F (g (Xi2) — g (X)) = F ([PK(XiQ) - PK(Xil)] '50) :
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Fori e {1,--- ,n}, let

AP PY (X)) — P (Xa),

qk.i Pk (Xl,iZ) — Dk (Xl,z‘l) fork=1,.., K,

Qui = " (X)) —p™ (Xpa) forl=1,...d.
Fori#je{l,---,n}, let
Aplfj = APiK - APij APJJK =q1,i — 41,5,
AP = (g @y Q) and AP = APKTHE_ ppRta,

’ !/
Note that AP/ = (A PhE (APf;fl’K ) ) . To estimate 3°, we normalize its first element

]

to be 1 and rewrite it as 4% = (1,0Y)’. The matching estimator of §° is obtained as follows:

_ 1 2
0 = argmin— Y [Ag{fw'gpl.{;*ﬂ Hup, (R — i) (3.2.11)
1<i#j<n
1 T
= {ng > Apﬁl’KAPi{;LK/thl,ji} 3 > APNAPS TV H(R9:12)
1<i#j<n 1<i#j<n

where Hiyy, ji = Hip, (mj —m;), Hip,(-) = hy'Hy (-/h1), Hi(+) is a one-dimensional kernel

function, and h, is a bandwidth. Let 3 = (1,0) = (B’“/, ...,B“”d/)/, where 5% serves as an

estimator of 3% for [ = 1, ...,d. Then we obtain the estimate of g; (z;) by g(z;) = p®(z;)' 3%
for I =1,---,d and that of g (z) by g(z) = S0, Gi(x;), where = (1, ..., 74) .
Second-stage estimation
To motivate the second-stage estimation, we add some notation. Let

Agi=g(Xi2) — g (Xa) and Agi; = Agi — Ag;.

Let LF(-) = L™' (F(-)), LF; = LF (Ag;) and LF; = LF (Ag;). Note that

Z {DiIn[F (Ag;)] + (1 — D;)In[l — F (Ag;)]}
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Z {D;In[L(LF (Ag))]+ (1 = D;))In[l — L(LF (Ag))]}- (3.2.13)
By Taylor expansions, for any i # j € {1,--- ,n},

F(Agi) = LF(Ag; + (Agi — Ag;)) = LF(Ag;) + > 0“LF (Agg) T (Agiy),
=1

where Ag; ; is close to zero and LF (+) is ag-order continuously differentiable.

Let Agl :g(XZQ) — g (le) and Agi:j = Agl — Agj Deﬁne

Qn Agp {6}20)

= ZHth Agz])

i=1
a2 1 o ] 1 o
X {D2 In [L (bo + lz:; W (Agi,j) bl) + (1 - Dz) In [1 —L (bo + lz:; @ (Agi’j) bl>] } .

where Hop,(-) = hy 'Hy (-/ha), Ha(-) is a one-dimensional kernel function, and h; is a band-

width. Obviously, by + /2, hl 0 (Ag; ]) b; serves as an as-order Taylor series approximation
of LF (Ag;) in the neighborhood of Ag;. Then we can estimate (LFj, thFj) by the min-
imizing Q,, (Ag;, {bi};2,) with respect to {b;},2, :

(ﬁj,hgﬁ’j,--- ,hgzmj> = arg mln Qn (Agj,{bl ah?)
{ou};2

1J1=0

Third-stage estimation

In this stage, we refine the early estimates of the structural functions. Our objective is to
obtain an estimator of g; (-) that is as asymptotically efficient as that obtained when the
other (d — 1) the structural functions {g- (')};i*:l,l*;él were known.

Note that Ag;, = E?Zl [9; (Xj.i2) — g; (Xj1)] enters the Logit sieve objective function.

For the moment, suppose that {g- (-)}7*:1’1*# is known, we aim at estimating g (-) alone
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by the local linear method. Noting that g; (-) appears twice in Ag;, one may be tempted
to conduct the local linear approximation of g; (X;;2) and ¢; (X ;1) simultaneously around
a point ;. But to control the approximation well, one would need to ensure both X ;» and
X1 are around z;. This will yield a local linear estimator with a slower convergence rate
than the usual one-dimensional local linear estimate. To avoid such slow convergence, we
consider Taylor expansion of ¢; (X ;2) and g; (X;,1) separately around a point z; below.

First, by the Taylor expansion of g, (X;;) around z;, we have ¢, (X, ;1) =~ g (z;) +
a1 (z1) (X1 — ay) . It follows that

d

Z (97 (Xji2) — 95 (Xja)] + g0 (Xii2) — g1 (z1) — gu (21) (Xir — 1)
j=1,#1

=Agi + 9 (Xii) — g (x1) — g (z1) (Xpin — 1) = G,
and

LF (Gu;) ~ LF(Agi) — LF(Agi) g0 (20) + gu (1) (X — 21) — g0 (X)) = L ().
(3.2.14)
Similarly, using g; (Xi:2) =~ g (z1)+di (1) (Xi:2 — 21) by Taylor expansion of g; (X ;2) around
x;, we have

d

Z 195 (Xji2) — 95 (Xga)] + g1 (21) + @i (21) (Xpa2 — 1) — g1 (Xp)
Jj=1,j#l

=Ag + g (x) + g (21) (X — 21) — g0 (Xii2) = Giay,
and

LF (Gp;) ~ LF(Agi) + LF(Agi) (g0 (21) + gu (1) (Xpi2 — 21) — g1 (Xi2)] = LF().
(3.2.15)
Obviously, Gy ; is an approximation version of Ag; in which only g; (X;,1) is replaced by its

first order Taylor expansion at z;, and G ; is that of Ag; in which only g; (X 12) is replaced
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by its first order Taylor expansion at x;. Then we may consider the following local likelihood

function to estimate (g; (x;), g (x;))
> Z Hp, (Xp30 — x) {DiIn [L (LF (Gy))] + (1 = D)) In[1 — L (LF (Gy2))]}

= Z ZTh5 X —x){D;In[L(LFy(x)))] + (1 — D;)In[1 — L(LFy(x))]}, (3.2.16)

where Ha,,(-) = h3 ' Hs (-/h3), Hs(+) is a one-dimensional kernel function, and hs is a band-
width.

Of course, we cannot minimize the negative of (3.2.16) with respect to (g; (x;), g (x))
given the unknown nature of LF(Ag;) and LF(Ag;) in the definitions of LF}(x;) and

LF;5(x;). A feasible objective function is given by

T N
W) = =33 Hany (Xiit — 1) [Di In (L (LFM (c)>> +(1—D;)ln (1 ~L (LFiml(c))ﬂ ,
t=1 i=1
(3.2.17)
where ¢ = (cp, 1),
o~ —~ - 1
LF;i4,(c) = LF;—LF;- [Co + Clh (Xia —x) —a (X, 21)] , and
—~ —~ o 1
DFau(©) = LR+ IR a0t g (s =) - @ (Xia)|

By minimizing the objective function in (3.2.17) with respect to (co, ¢1) yields the following

estimates

(@(ml), hggl(xl)) = arg min W, ., (co,c1).

(co,c1)

In the next section we will show that the estimators §;(z;) and ¢,(z;) are oracle efficient.

3.3 Assumptions and Asymptotic Results

In this section, we first present the assumptions and then study the asymptotic properties

of the estimators of the structural functions.
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3.3.1 Assumptions

To proceed, we introduce some notation. A real-valued m-times continuously differentiable
function ¢(u) on U C R is said to be a y-smooth function if, for some r = y—m € (0, 1], Je,,
10" q(u) — 0™q(u*)| < ¢g|u— u*|" holds for all u,u* € U. It is well known that y-smooth
functions can be approximated well by various linear B-splines (e.g., Chen (2007)). So we
will assume that {g;(-)}{_, are y-smooth functions below.

We will use X = @, to denote the support of X; = (Xy, ~-Xd,z't)/~ Let X®? =

X x X denote the support of (X;1, Xio). We make the following assumptions.
Assumption 7 1. {Y;, X;}! | arei.id.;

2. The support X = @ X of Xy = (X1, ...Xd,it)/ is compact;

3. €y 1s strictly stationary over time.

4. (€1, €2) is independent of (X1, Xi2);

5. There exist positive constants c,, ¢ and c. such that ¢, < F (%) < & and E|ey|’ <

A2 \E (€2) < oo for all j > 2.

Assumption 7 imposes some conditions on {Y;, X;, €;}. Assumption 7(1) assumes the
observations are i.i.d.; Assumption 7(2) assumes the exogenous independent variables have
compact supports. Assumptions 7(3) is made to simplify the notation. Assumption 7(4) is
commonly assumed in the nonparametric transformation models to avoid the estimation of
certain conditional distributions. Assumption 7(5) imposes some moment conditions on the

error terms to simplify the derivation.

Assumption 8 1. The link function A(-) is strictly increasing;

2. Bo=(1,0,).
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Assumption 2 is an identification condition. Note that we impose a strictly monotone
condition on the link function in Assumption 2(1) and normalize the first element of 3, to be
1 in Assumption 2(2). Without the scale normalization, the structural functions {gl(-)}f:1

cannot be separately identified from A(-).

Assumption 9 1. The CDF F (-) of A; = €51 — €52 1s strictly monotone and (R + 1)th

order continuously differentiable.

2. There exists a small positive constant ¢ such that 0 < ¢ < inf,_(;, z)exe2 B (D] X; = x)

infy— (4, ap)exer B (Di| X; =2) <1—c

3. The set of basis functions {py(-)}r—, are twice continuously differentiable on their
SUPPOTLS; MaAXo<p,<r MAX| <j<d SUP,, e A, H@thK(xl)H < Clx forr = 0,1,2 for some

large constant C.

4. The functions {gl(')};l:1 are bounded and ~y-smooth function with v > 2 on their sup-
ports; there exist a vector Sy = ( A 6”‘”)/ such that ;' € interior (B) for some
compact set B in RE and alll =1, ..., d, and max;<<g SUp,, ¢ 1, ‘gl(xl) - pK(xl)’ﬁgl} =

O(K™") for some v > 2.

5. There exist a vector ° € interior (II) for some compact set 11 in RER such that

S |LF(Ag (7)) — R(z)'7°] = O(K™ + R~B+D): we can decompose
x=(z],75

R(z) = (Ri(z), R(z)") and 7° = (7%, 7Y)" accordingly such that s2 log? (K Vv n) <

K™ 'n, and Sup, _(, )/€X®2|Rz(x)’7r0| = O(K™7) where sy, = |7},

! !
172

Assumption 9(1) imposes some smooth conditions on F' (-) to ensure the second sieve ap-
proximation considered in the first stage estimation. Assumption 9(2) ensures the desirable
asymptotic properties of the sieve logit estimator in the first stage. Assumption 9(3)-(4)
quantify the properties of the base functions {py(-)},—, and the approximation error for

one-dimensional y-smooth functions. Note that many basis functions such as polynomials,
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splines and wavelets satisfy these conditions with various controls on (,.x. For splines, it is
well known that (,x = K'/2%7; see Newey (1997). Assumption 9(5) reflects the error in the
approximation of LF(Ag (z)) by R(z)'7° is uniformly well controlled where the term K7
is carried over from the approximation of the additive function Ag () by APX(-)'y and the
term R~(F+D signifies the error in the approximation of the (R + 1)th-order continuously
derivative function LF (-) by power series. Clearly, R~(i*1) < K= provided R > clog (K)
for some ¢ > 0. This indicates to suffices to consider R to be proportioal to log (K). Our
simulations indicates that a choice of R like 3 or 4 works sufficiently well in general. In
addition, Assumption 9(5) indicates that 7% should be approximately sparse to facilitate

the asymptotic analysis.

Assumption 10 For every K and R that is sufficiently large,

1. There exist positive constants C and Cs such that

0 < C1 < Amin (B[RX)R(X:)]) < Amax (B [R(X)R(X:)]) < Cs < 00

_ K—1,K n pK—1,K/ S ‘
2. Let n(m;) = E|AP;” " AP |m;| where j # i. Let f,, (-) denote the density
of m;. All eigenvalues of E [ (m;) fm(m;)] are bounded and bounded away from zero:

0 < Cir < Awin (B [0 (mi) frn(mi)]) < Amax (£ [1 (M) frn(mi)]) < Cop, < 00

Assumption 10(1) impose some standard conditions to ensure the logit sieve estimator
to be well behaved. Assumption 10(2) ensures the matching estimator in the second substep

of the first stage estimation is well behaved.

Assumption 11 1. The probability density function (PDF) fx,(-) of X, is bounded

and bounded away from zero within its support X, for 1 € [d].

Assumption 11 imposes some standard conditions on the density of the regressors.
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Assumption 12 1. The kernel function Hy(-) is an ay-order symmetric kernel function

with compact support where a; > 2 is even; it is third order continuously differentiable.

2. Both Hy(-) and H3(-) are second order symmetric kernel functions with compact sup-

port.

Assumption 12(i) imposes some conditions on the kernel function H;(-) used in the first
stage estimation. To eliminate the effect of the first stage estimation, we typically resort to
a higher order kernel with a; > 4. Assumption 12(ii) indicates that we can use the usual
second order kernel function in the second stage local polynomial regression and the third
stage local linear estimation. Note that we cannot use higher order kernel in local linear or

polynomial regressions to avoid asymptotic singularity, but it is fine to set Hs(-) = Ha(-).

Assumption 13 1. Asn — 0o, K — 0o, R — 00, hy — 0 V{ € [3], and R-+D) =

O(K™);

2. hg 4 \/log(n) [(nh) + /K Tog(n) /n + VR + K-751/2 = o(h + (nhs) %)

3. K3log(n)/n = o(1) and VK(VKh' + hi'(\/sr log(REV n)/n+ K~7)) =o(1).

Assumption 13 imposes some conditions on the bandwidths h,’s, the sieve approximating
terms K and R, the order of the kernel used in the first stage estimation, and the order
of the local polynomial used in the second stage estimation. Assumption 13(i) is standard
and minimal except the last part, which ensures that the second sieve approximation error
is no bigger than the first sieve approximation studied in Step 1. Assumption 13(ii) ensures
that the asymptotic biases and variances of the first-stage and second-stage estimators are
sufficiently small to achieve the oracle efficiency in the third stage. To ensure the last stage
local linear estimator of g; (-) to enjoy the optimal rate of convergence, we need to choose

hs to be proportional to n='/5. To be specific, we consider the case where a1 = 4, ay = 3
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and hz oc n™1/%. Assumption 13(ii) requires that

2 1
K o« n”KforcK€<5 >

(v-1/2)'3
hiy o n~“ for some ¢; € i—%C—K 1
1 1 10 8;

11
h 2 —,=].
9 O N orson1602€<10,5>

For example, if v > 2.5, we can simplify choose K = n'/,

3.3.2 Asymptotic Properties

In this subsection we study the asymptotic properties of our three-step estimators.

The following theorem establishes the asymptotic properties of the first-stage estimator

6.

Theorem 3.3.1 Suppose that Assumptions 7-10, 12(1) and 13(i) and (iii) hold. Let g, =

\/$7T1 log(REV n) /n+K~" and nagn = Mgn+V KR +K 72 Let Hip, ji = Hip, (mj —my) .
Then
(i)

—1
= 1 K—1,K n pK—1,K 1 LK
0—6p=— {n? Y APSTYEAPSTY Y, 5 > Ngi APV Huy i

1<izj<n 1<i#j<n

1 —
+ n2 Z (AP Bo = Agij) AP;; I’Kthl,ji} + Rig,

1<iAj<n
(1) Hé - 90“ = Op (N2kn) ;
(iii) L 370 [90 (X10) — 91 (X00)] = Oy (marcn) for 1 =1,--- . d;
(iv) sup,,ex, 90 (21) = g1 (21)| = Op(VEnaxen) for 1 =1,--- . d;

where || Rin|| = Op (m1xn).

Theorem 3.3.1(i) establishes a Bahadur-type representation for the first-stage estimator
6. Theorem 3.3.1(ii) establishes the Euclidean norm for §. Theorem 3.3.1(iii)-(iv) establishes

the mean square convergence and uniform convergence of g (-), respectively.
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The following theorem establishes the asymptotic properties of the second-stage estima-

tors.

Theorem 3.3.2 Suppose that Assumptions 7-10, 12 and 13(i) and (iii) hold. Let ns3g, =

Noren + 3T+ y/In (n) /(nhy). Then

(i) There exists a positive constant cp such that
| (EF(29:0). B2OLF(8g,)) = (LE(8g,), OLF(8gy))| < e 18595 — 551 + O, ()

uniformly over j € {1,--- n};

(i) L, [LF(80)) — LE(Dg)] = 0, () - and £ 0, [1sDLF(Ag,) — mdLF(Ag,)|
= 0y i) -

Theorem 3.3.2(i) establishes the asymptotic expansions for LF (Agj)) and hsOLF (Agj);
Theorem 3.3.2(ii) establishes the mean square error convergence rate for the estimators of
LF(Ag;) and hoOLF(Agj), respectively.

With Theorems 3.3.1 and 3.3.2, we can establish the asymptotic properties of the third
stage estimator of {(gl(-),gl(.))}le.

Theorem 3.3.3 Suppose that Assumptions 7-13 hold. Let ko = [ u® [Hs(u)) du for a,b=

0,1,2. Then forl=1,--- .d,

(i)
Vnhy 0 gx) | [ o) —lg(x) hikan
o vang) [\a)) \at)) * 0 )]
! F2(Ag(X,) - F2(Ag(X5) .
o 0’{E F(Agm»[1—F<Ag<xi>>}|xl*“‘ | Faa) [1—F<Ag<xi>>}|x””‘ ]}
Rp2 0
X
0 ‘2

(i1) 0Dy, e, G () = o)l = Oy (13 + /() [ (ko) )
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Theorem 3.3.3 reports the asymptotic properties of the third step local linear estimator
of {(g1(-), au(-))},. Theorem 3.3.3(i) indicates that the asymptotic distribution of the local
linear estimator of is not affected by random sampling errors in the first two stage estima-
tion. In fact, our local linear estimator of (¢;(-), ¢:(-)) has the same asymptotic distribution
that we would have if the other additive components {(g;(-), gj(-))}j:L -, and link function
F(-) were known. This indicates the oracle efficiency of the estimator. Theorem 3.3.3(ii)
gives the uniform convergence rate for g;(-). Following the standard exercise in the non-
parametric kernel literature, we can also demonstrate that these estimators of (g, (+), g1, (+))
and (gi,(+), 01,(+)), Vlu # lo € {1,--- ,n} are asymptotically independent.

In the proof of Theorem 3.3.3, we give the linear representations of the nonparametric
estimators {(@()@A)) }211 with uniform control of the reminder terms. It serves as a
building block for both pointwise and uniform inference. For example, one can consider uni-
form inference based on the multiplier bootstrap as in Chernozhukov et al. (2014, Corollary

3.1). For brevity, we skip the details.

3.4 Numerical Studies

In this section, we are going to use simulated examples to demonstrate how well the proposed
estimation procedure works. We use the same DGPs in Chen et al. (2022) to compare their
estimator with the proposed estimator. To save space, we only report the detailed results
for the estimator of g;(-). We consider four data generating processes (DGPs).

DGP I A (Yy) = X7, + X3, + a; + €, where €, ~ U(0,1).

DGP I1: A (Yi) = X2 + X2, + @i + €, where (ae; +b) ~ X2(2) with a = 1 (2)” and
b= Sexp (—2).

DGP IIT: A (Vi) = X}, + 0.5X7,, + X3, + a; + €, where e ~ U(0,1).

All DGPs take the Box-Cox transformation of Bickel and Doksum (1981) with A(y) =
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W’% for A = 0.8. Both X} ;; and X5 follow U(—1,1) and their correlation coefficient
is 0.2. a; = 0.5(Xy 4+ Xa4) + 0.5, where n; is a N(0,1) random variable. The error
term either follows symmetric normal distribution or asymmetric Chi-square distribution of
freedom 2.

We define the bias, standard deviation (SD), and root mean integrated squared error

~

(RMISE) of an estimator f(-) of f(-) as
bias = / ‘E [f(u)} - f(v)‘ dv,

SD = /sd [f(v)} dv
and

RMISE = (bias® + SD?)'/2,

~

respectively, and use them to assess the accuracy of the estimator f(-).

The kernel function used in the proposed estimation procedure is the standard Gaussian
kernel for all simulated examples in this section. For each simulated example, we assess
the accuracy of the proposed estimation procedure for sample size n = 500 and for each
case, we compute the bias, SD and RMISE of an obtained estimator based on 1000 simu-
lations. Method in Chen et al. (2022) chooses bandwidth by minimizing the leave-one-out
cross-validation (CV) function. The proposed method chooses bandwidth by grid search to
minimize CV function.

Table 3.1 - 3.3 report bias (Bias), standard deviation (SD) and root mean square error
(RMSE) of g (z1) for DGPs I-II1, respectively. When the error terms follow normal distri-
bution in DGP I and III, the proposed method works better than the method in Chen et al.
(2022), especially at boundary points. When the error term follows Chi-square distribution
in DGP 11, the proposed method defeats the method in Chen et al. (2022) at boundary
points, e.g. x1 = —0.8,—0.6,—0.4,0.4,0.6,0.8, and does not function well at center points,

e.g. 1 = —0.2,0.2. As expected, we usually observe a relatively larger RMSE when the
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Table 3.1 Estimation results for DGP 1

1 -0.8 -0.6 -04 -0.2 0.2 0.4 0.6 0.8
g1(x1)  0.64 0.36 0.16 0.04 0.04 0.16 0.36 0.64

Chen et al. (2022)

RMSE 0.2459 0.1489 0.0946 0.0571 0.0576 0.0928  0.143  0.2358
Bias  -0.1942 -0.091 -0.03 -0.0025 0.004 -0.0232 -0.0828 -0.1826
SD 0.151 0.118 0.0898 0.0571 0.0575  0.09 0.1167  0.1492

the proposed estimator

RMSE 0.108 0.0804 0.0614 0.0423 0.0403 0.0609 0.0834 0.1116
Bias -0.0074 -0.0016 0.0128 0.0179 0.0132 0.0039 -0.0129 -0.0176
SD 0.1077 0.0804 0.0601 0.0383 0.0381 0.0608 0.0824 0.1102

evaluation point is close to the boundary and it is much more obvious in Chen et al. (2022).
The dimension of variables does not influence the simulation performance of the proposed
method, however, the method in Chen et al. (2022) suffers from the curse of dimensionality

in implementation.

3.5 Application: the Effect of Income Shock on Job Cre-
ation

In our empirical study, we investigate the impact of fluctuations in regional income on
employment generation within the nontradable sector for firms. The nontradable sector
encompasses goods and services that cannot be easily traded or transported across regions,
such as hairdressing, restaurants, and local retail stores. These types of businesses predom-
inantly rely on the demand from consumers within their respective regions. Mian and Sufi

(2012) argue that firms operating in the nontradable sector are heavily influenced by local
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Table 3.2 Estimation results for DGP II

1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8
g1(x1)  0.64 0.36 0.16 0.04 0.04 0.16 0.36 0.64

Chen et al. (2022)

RMSE 0.289  0.1668 0.0962 0.0566 0.0594 0.1013 0.1714 0.2962
Bias  -0.2476 -0.1213 -0.0422 -0.0044 -0.0035 -0.0435 -0.1243 -0.2534
SD 0.149 0.1145 0.0865 0.0564 0.0593 0.0915 0.1181 0.1535

the proposed estimator

RMSE 0.1858 0.1389 0.1073 0.0821 0.0829 0.105 0.1335 0.186
Bias  -0.0428 -0.0073  0.024 0.039 0.0396 0.0259 -0.0029 -0.0332
SD 0.1808 0.1387 0.1046 0.0723 0.0728 0.1018 0.1335 0.183

demand, which in turn is impacted by the income levels of the local population. As a result,
when there is a positive shock to income in a region, the purchasing power of the residents
typically increases. This surge in consumer spending leads to a higher demand for goods
and services in the nontradable sector.

To illustrate this relationship, let’s consider a hypothetical example. Suppose a region
experiences an economic boom, resulting in increased income levels for the majority of its
residents. As these individuals now have more disposable income, they are more likely
to spend on goods and services such as dining out, visiting local attractions, or utilizing
personal services like hair salons. This increase in local demand, driven by higher income
levels, would then create more opportunities for businesses in the nontradable sector, po-
tentially leading to the establishment of new businesses or the expansion of existing ones.
Consequently, this growth would translate into the creation of additional employment op-

portunities within the nontradable sector. To test this hypothesis, we are interested in
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Table 3.3 Estimation results for DGP III

1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8
g1(x1)  0.64 0.36 0.16 0.04 0.04 0.16 0.36 0.64

Chen et al. (2022)

RMSE 0.1471 0.1354 0.1163 0.0759 0.0715 0.0935 0.1215 0.2705
Bias  -0.0238 -0.0792 -0.075 -0.0456 0.0431 0.0344 -0.0405 -0.2282
SD 0.1452 0.1099 0.0889 0.0607 0.0571 0.087 0.1146 0.1453

the proposed estimator

RMSE 0.0904 0.0934 0.0896 0.0471 0.0909 0.0838 0.1006 0.0407
Bias  -0.0312 -0.0755 -0.0404 -0.0179 0.0213 0.0322 0.0912 0.0186
SD 0.0848  0.055 0.08 0.0436 0.0884 0.0774 0.0425 0.0362

estimating regressions of the form:

A (Job Creation;;) = ¢; (Income Growth Rate;) + go (In (Total Wage;,)) + a; + €, (3.5.1)

where Job Creationy; is the net employment creation in firms in the nontradable sector in
each age category t - startups (0-1 year old), 2-3 year old, 4-5 year old, and firms 6 year
old or older. We scale all employment numbers by total nontradable sector employment
as of 2000. Income growth rate is the two-year growth in total wages and salaries in the
county level. We utilize the same dataset as the one employed in Adelino, Ma and Robinson
(2017). For further details on data preparation, please refer to Adelino et al. (2017). The
net employment creation by firm age is computed from the publicly available data from the
U.S. Census Quarterly Workforce Indicators (QWI). Income data at the county level come
from the Internal Revenue Srvice(IRS) Statistics of Income and is measured in calendar
years (i.e., January to December of each year). To have a basic idea about what the data

is like, Table 3.4 reports summary statistics. Similarly, Adelino et al. (2017) estimated the
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linear version of the regression:

A (Job Creation;) = By + B1Income Growth Ratey + S2ln (Total Wage;,) + B3ln(Labor Force Population,,)

+ Byln(Percentage of High School Degree or Above;,) + €,

where Labor Force Population;, and Percentage of High School Degree or Above;, are con-
trol variables. Since model (3.5.1) considers individual fixed effects and these two control
variables are absorbed into fixed effects. Adelino et al. (2017) shows that both the parame-
ters of Income Growth Rate and In (Total Wage;,) are significantly positive.

Table 3.4 Summary Statistics

Employment Creation Income Growth In(Total Wages)
count 2005 2005 2005
mean 0.0082 0.0267 0.9844
std 0.0483 0.0439 1.4064
min -0.3423 -0.0914 -2.4323
max 0.2158 0.2505 5.7083

Figure 1 provides a visual representation of the relationship among net employment
creation, income growth, and In(total wages) in our study. This relationship is found to be
both positive and statistically significant, corroborating the results of the Ordinary Least
Squares (OLS) analysis conducted by Adelino et al. (2017). Our research approach, however,
offers a more detailed and nuanced perspective compared to the OLS analysis alone.

We observe that when income growth is close to zero, the effect on employment creation
is relatively minimal. This indicates that a substantial increase in income is necessary for
it to significantly influence job creation. Furthermore, our analysis reveals that when total
wages reach exorbitantly high levels, they actually hinder the creation of new employment
opportunities. This suggests that there is an optimal range for total wages to encourage job

growth.
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In summary, Figure 1 demonstrates that net employment creation is positively and
significantly influenced by income growth and In(total wages) in our study. Our approach
offers additional insights, highlighting the importance of income growth and the potential
negative effects of excessively high total wages on job creation. A noteworthy finding from
our study is the strong impact of increased income on non-tradable employment. This
implies that as income rises, there is an increased demand for goods and services in the
nontradable sector, such as local retail and hospitality industries. This heightened demand,
in turn, stimulates the creation of more job opportunities within the sector, ultimately

contributing to overall higher total employment.
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Figure 3.1 Estimation of Structure Functions and Their 95% Confidence Intervals

3.6 Conclusion

In this paper, we create oracle-efficient estimators for a broadened panel data transforma-
tion model that includes fixed effects, with the assumption that the structural functions
are additive. Our estimators for the conditional mean and gradient exhibit consistency

and asymptotic normality. To estimate the component functions, we suggest a multi-stage
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algorithm with a refinement stage that employs a one-dimensional kernel, thus bypassing
the curse of dimensionality. Furthermore, the multi-stage algorithm either provides closed-
form solutions or involves convex optimizations, significantly reducing computational load.
Through simulation studies and real data analysis, we demonstrate that our estimator out-

performs existing methods in terms of efficiency and robustness.
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APPENDIX



Appendix A

Appendix for Chapter 2

A.1 Proof of Theorem 2.3.1

Substitute the following equality

AP = Dgiy— 00 APSY + (APSB57 = Dgiy) (A.1.1)

»J

into the equation ((3.2.12)) and then we have
6,
1 n n —1
1 ~1), _ _
- {nzZZAPi(J APV H, [E(Y[X) - B (Y |Xi)]}
=2 i<j
1 n on - B B
s oY Ag ARGV H [E(Y X)) — E(Y X))
=2 i<j
1 n n —1
1 ~1), _ _
- {HQZZAR&- ARGy [B (Y 1X) - B(Y |XZ->]}
=2 i<j
1 ~ ¢ ! QT,z -1 n '
x> > (AP = Agig) APV, [B (Y (X)) — E(Y |X))]
=2 i<j

=~ LopLin — Lo, Lo (A.1.2)
(-1) _ K-1,K
By APV = —APSTVE,

Ll,n

1 n n - B B
=522, 9(X) APSVH,, [E(Y X)) - E(Y|X))]
=2 i<j
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ZZQ X;) APV Hy, [E (Y |X;) = E(Y[X))]

Jj=2 i<j

Z% z": z”:g (X;) APV Hy, [E (Y [X;) = E(Y]X))] - (A.1.3)

J=2 i<j
We apply Taylor Expansion to Hy, [E (Y |X;) — E(Y |X;)] at E(Y |X;) — E(Y |X;), for
Z#] € {]-7 7n}

Hy, [E(Y|X;) = E(Y|X,)] = Hy, [E(Y |X;) = E(Y|X;)]
=hy'0H, [E (Y |X;) - E(Y X)) [E(Y|X;) - E(Y|X;) - E(Y X))+ E(Y|X))]

+hy 0P Hyy [E (Y |X;) = E(Y|X0)] [E (Y X)) = E(Y |X:) = E(Y |X;) + E(Y]X)]”

+hy 30" Hy, [E Y|X;) - E(Y|X; } (VX)) = E(Y[X;) = E(Y|X;) + E(Y |X;)]’
—hy'0H,, [E(Y|X;) — E(Y|X)| [E(Y]X;) — E(Y]X;)]

—hy ' OH,, [E (Y |X;) — E(Y |X:)] [E( E(Y|X;)]

—2hy %0 Hy, [E (Y |X;) = E(Y X)) [E (Y |X:) — E(Y |X:)] [E(YV[X;) — E(Y|X;)]

12
+hy* P Hyy [E (Y X)) = E(Y[X)] [E(Y X;) - E(Y |X;))
+h3 20 Hy, [B (Y X;) = B(Y [X)] [E(Y [X:) - B(Y [ X))
+hy S0 Hy, |E (Y |X;) — E(Y |Xi)} [E(Y|X;) - E(Y|X:) - E(Y X))+ E(Y X)),
(A.1.4)
where E (Y |X;) — E (Y |X;) is between E (Y |X;)— E (Y |X;) and E (Y |X;) — E(Y |X;).
By (A.4.3) in Lemma (A .4.1),

hy'0H, [E (Y |X;) — E(Y | X)) [E(Y|X;) - E(Y|X;)]
—hy'OH, [E (Y |X;) — E(Y |X)] [E(Y|X;) — E(Y |X))]

=hy 'O |0Hn, [E (Y |X;) — E (Y | X5)]| (A.15)
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holds uniformly over i # j € {1,--- ,n}.

Substitute ((A.1.4)) into L, ((B.1.9)) and we have

Ll,n

= S S g (X ARGV L B (VX)) ~ B (Y X))

j= 2i<j

+h! nQZZg X;) ARG 0 , [E(YX;) - E(Y |[X)] [E(Y|X;) - E (Y |X;)]

Jj= 21<]

! nQZZg ) APGVOH, [E(Y[X;) = E(Y X)) [E(Y[X:) - E(Y|X,)]

J=2 i<J

hyi6n)? = ZZ\Q X)) APV [ (Y [X;) — B (Y]X,)]|

Jj=2 i<y

=Liny+ Lin2 — Lipsg + Lipna. (A.1.6)

Similarly, we also have

LO,n

2 n n 3 _1
=2 D APGVARTVH (B (Y[X;) — E(Y X))

=2 i<j

I e~ _ _
0y s > D | APV ARG 0, (B (Y 1X;) — B (Y 1X0)|

=2 i<j

hy o) ZZ\A APV, (B (Y 1X;) - E (VX))

j=2 i<Jg

=Lon1+ Lonz + Lons; (A.L.7)

and
L2,n

=YY (APKB = Dgig) APV H [B(Y1X;) = E(Y X))

=2 i<y

— 1 " T,z (-1)
0y s D D [(APEBE = Dgig) APV 0H [E(Y |X;) = E(Y |X)

J=2 i<j
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n n

— 2 1 ! QT2 -
05" 5 SO0 (APKG — 201,) ARG 0, [E(Y X))~ E(Y|X)]
=2 i<j
=Lon1 + Lona+ Lapgs. (A.1.8)

Since the local - polynomial regression is used to reduce bias, the kernel function H (-) could

be the second-order and Hy, ( \/ Hy, ( )\/ Hy, (+). To express terms Ly, and Ly, in a

matrix form, let

vectors = (L0 () 1 B0V 1) ~ BOIXT)

1<j

1 T,z
vectohy; = (n {APK’BO Agw} \/th YX,;,)-EY |Xz)]> )

i<j

and

vectory = <711A3€;1)\/Hh2 [E(Y|X;)-E(Y |X1)}>

Thus, Lo, 1 = vectory'vectors, Ly 1 = vectory'vectory and L, 1 = vector; vectors .

1<j

Given (B.1.8), (B.1.12), (A.1.7) and (B.1.13),

0 — 0y
1 —1
{2 ZZM DAPSYH,, [E(Y X;) — E(Y rm}
Jj=2 i<j
{ ZAgu PSVH,, [E(Y X)) — E(Y[X;)]
=2 i<y

ZZ APK'B5* — Dgiy) ARGV Hy, [E <Y\Xj>—E<YrXi>1}

Jj=2 i<j

+ R, (A.1.9)

where || Rusll = (5 01,)° + Oy (S, A+ /1) + 0, (7).
Given the Assumption 6 (3),

185l = 0, (K—a+ JES ngH) ,
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and

K
max sup |g; (x;) — g ()] = \/EOP (Ka +4/ - + \/Eth> ,

1<I<d, T EX]

| K
where 4/ — is the convergence rate and K~* + + Khy" are the order of bias.
n

A.2 Proof of Theorem 2.3.2

By Taylor Expansion, given the Assumption 3(1) ,

£
—F [g(X;)

S+2 1 [
=" S0'F[9(X) = g(X)' +0 (95 F [g(X,) - 9(x)1"")
=F,+0F [3(X;) — (X)) = OF:[3(X;) — 9(X;)] + OF: [3(X.) — g(X,)]
PR (0X) — GO0 + S0P 5(X,) — g(X) + S0P g(X,) — g%
%83& [9(X;) = g(X))]” + %8’”}'} 9(X;) — g(X)]™ + ( si 1)!8S+1E [9(X;) — g(X))5H
g R G) — X + Rug

S

— ; 8dE [g(Xj) - g(Xl)]d + (S _|1_ 1)!aS+IE [g(XJ) _ g(Xi)]S+1 + (S —~1_ 2)!85+2Fi [g(X]) - g(Xi)]S+2
FRuzi = O [90X) — (X)) + OF[9(X0) — (X)) + R 9(X;) — g0 + o Fi (X)) — g(X)]

(A2.1)

where Rya.i5 = 0 ([90X;) = 9(X0)1"" + [9(X;) = (X)) + [3(X:) — 9(X,)]”) and then

F,—F,
10 0 ~
OF; — OF;
0 s 0
0 0 st

(R))™! (aRﬁi - aRF,»)
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1 DG (L
s 2 s 541
1 n Agz J (A.@]) (Agz j )
LS nan | s hs
j=1,#i : :
h _\S _ s
NG \"™ (DGO NG\
hs3 h3 hs
1
AGi
hs3

1 n ~
Xﬁ Z Th3 (Agi,j)

{~or1a(0x) - 93] + 97 0(X) = 90X + 5P [006,) — 9
j=1,%i

AGi hs
hs
1 1 1
+ 5 Fila(X0) — g(X)” +

(S+1)! (S+1)!
=A7'B;. (A.2.2)

51 E, [g(X,) — (XIS + O5F2F, [g(X,) — g(X)[* + s + R}

Before we derive the asymptotic properties of By, we first show the asymptotic properties of some

important components in B;. Let

1 n B B
By=— 3 T (890) [9(X5) — 91
j=1,#i

and
By= 3 Ty (850 [8(X)) — 9(X)]".
j=1,#i
Similar with ((A.1.4)), by Taylor Expansion,
Thy (AGi5)
=Ty (9(X;) — 9 (Xi)) + hy 10T, (9(X;) — 9 (X)) [9(X;) — g (X3)] = b3 [§(X5) — g (X0)] 0T, (9 (X5) — 9 (Xi))
+h3 1P Thy 9 (X;) — g (X0)][9(X)) — g (X)) + 137 [9(X3) — g (X0)]* 0Ty [9 (X;) — 9 (Xi)] + R
(A.2.3)

holds uniformly over ¢ # j € {1,--- ,n}, where

Roig = hs 20, (0%Th l9.(X5) = 5 (X)) [9.(X) — 9 (X0)]% + [ (X0) = 9 (X0))? 02T, [ (X,) — 9 (X0)])

n

Y T (8315) [9(X;) — 9(X)))?

=1,
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n n
1

== Y T, (9(X;) — g (X)) [g(Xj)_g(Xj)]Q"'hgl% > 0T, (9(X5) — g (X)) [ (X;) — g (X))’

n

=1, =1,
b5 () — g (X0 S 3D 0, (9((X) g (X0) [80X) — g5 + 1525 30 07T g (X)) — g (X0] [ (X,) — g (X))
=1, =1,
52 (X0 g (KO L 3D 0 [0X) — g (K]0 — 0P + 5 S Ry X)) o0
oy JoL A
=Bs1 + Bgo— Baz+ Bay+ Bas + Bag. (A.2.4)

We decompose B as the following,

B

1 <« _
=-0F > Ty (AGij)

=1,

1
Agi
B 1 n ) n
+OF; [9(X:) —g(X)] = D7 Thy (Agiy) !
j=1,%i :
AN ha
h3
1
AN
1 n B hS - )
+— Z Ths (AGi,5) . [(XJ)_Q(XJ)]
=1 :
NgGi ha
h3
1
ANy
1,0 21l & hs3
+o0°Fi[9(X0) = g(X)]* = Y T, (83i5) )
: =1, :
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1
NG
1 1 & _ h
tg T ES YD T (8gig) N [9(X;) — g(Xx;))%*
S+ 1! n . :
J=1,#i .
Agi s
hs3
AGi g
1 1 < _ hs S42
+ OSTPE— Y Ty (0Giy) . [9(X;) — 9(X3)]
(S+2) no A :
Agi,j hs
hs
1
Agi Ngi
1 <« _ h 1 & _ h
+ > Thy (8Giy) ;3 ety > Ty (A3ij) :3 R,
L j=1,%i : j=1,%i .
Agi " Agi "
=Bi1+Bio+Bi3+Bia+Bis+Big+ B+ Bis. (A.2.5)

By (A.2.2), Assumption 3, Lemma (A.4.5) and (A.4.6), there exists positive constant Cy such that

~ K 1
Fy = Fy = C1[3(X:) - g(X.)] + O, (K—“ o, T VER 4R wff,ﬁ”) :
3

hold uniformly over i € {1,--- ,n}; and there exists positive constant Cs such that

R K I
OF, — OF; = hy'Cy [g(X:) — 9(X:)] + h3'0, <K‘“ =+ VERS R+ ,/2?) 7
3

hold uniformly over ¢ € {1, - ,n}.

Thus, (2.3.3) and (2.3.4) in Theorem 2.3.2 are proved.

A.3 Proof of Theorem 2.3.3

Given the Taylor Expansion that, for i € {1,--- ,n},
G (X1,i) =g (X16) + G (X10) — g1 (Xi0)

=g (X13) — g1 (Xi1,0) + g1 (1) + Og1 (1) (X — ) + %3291 (@) (X5 — )’ + %82% (X1) (Xp — ),
where Xlﬂi is between X ; and x;, and then

PO I — 1
Yi = Fi+ 0F:g1 (X14) =Yi — Fy + OF (g0 (Xi4) — g1 (X1.0)] + OF i (g1 (1) + Ogi (1) (Xp0 — 21)] + 5Fi§3291 (20) (X1i — )
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1 _
+(9Fi882g1 (Xl,i) (Xl,i — 1'1)3
=0F; |1 (1) + 01 (21) (X1.i — 2)] + e + OF; [g1 (X14) — g1 (X)) + (Fz - E)
== 1 — 1 _
+3F155291 (ml) (Xl,i, - xl)z + 9Fi682,qz (Xl,i) (Xl’j — Il)g . (A.3.1)

o~ i
We substitute (A.3.1) into (2.2.6) in Algorithm (2.2.1) and the numerator of (@(xl, ag, (xl)) —(gi(z1),0g1(x7))

can be expressed as
-1

1 0 1 1 _ JE
— Z OF Ty, , (X1 — x1) {Yqz — F, 4+ 0F; (g1 (X13) + g1 (z1) + 0gi (1) (Xi,5 — I/)]}
X —

0 hygy nia
1 1 —~ 1 1 — ~
=3 | Xy | OF T (Kig =)+ X — 2y | OFTh,, (Xii — 1) (F - F)
i=1 h4,l i=1 h4,l
1 1 —\2 _
+ > Xii — (8F1> Thayy (Xvi — 21) (90 (Xi) — 91 (X1)]
=t hay
1., 1 & 1 —~\2 2
+50% (@) Xy — (5)Fz) Thy, (Xii —21) (Xoi — )
=t hay
1 1 2 1, o 3
+ Z Xii — (6F1> Th,, (X1 — 1) 68 g1 (X1) (Xii — )
i=1 -
by

=By + By2+ By3z+ Bya+ Bys.

(1 0 ) {(@(ﬂ)) B (91(%))}
0 hay) | \Bgi(z) gi(a1)
{ 1 Xii— 7

Therefore,

Ly 1, X (5 L, (x,
EZ X1 — ’T,l ( z) h4,z( l,i*m)

i=1 h4,l
1< 1 —~ o~
< Z Xpi—ay | OFiTh,, (Xii —x1) (Yi - F,+0F;g (Xl,i))
=1 h4,l
=A; " (Byy + By + Baz+ Bya+ Bys). (A.3.2)

Thus, by ((A.4.59)), ((A.4.60)) and ((A.4.61)), ((A.4.62)), ((A.4.63)) in Lemma (A.4.7),
(1 0 ) [( (1) ) B (gz(ﬂcz))]
0 hgy é211(951) 91(1)
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n 1
1 X —m 2
\n § : X — (17 ) (OF;)" Thy, (X1i — 1)

; ha,
i=1 h4,l
1 1 20, () L - 1 . )
X ﬁ Z Xl,i — X 6F‘iThzl,z (Xl,i ) e + 6 g1 xl ﬁ Z X — T 8F1 Th4,z (Xl,i - xl) (Xl,i - l’l)
i=1 h4,l i=1 h4l
+R 3 (1), (A.3.3)

I K 1
where R, 3 (z1) = 0p + 03, )40, | K=o+ 4/ = + VEhS" + hy ™ + 281 ) holds for each x] €
nhy ' n nhsg

K I
X, and Ry, 3 (%) = op ( log n + h3 ) + 0, (K” +4/ o + \/?hé”{ + h§“ + o%n) holds uniformly

nhy nhs
over x; € A} ;

given the Assumption 6 (4) , and then,

-1

ﬁ((l 0)[(@“))(9“‘”””(E{amgmf\xl:xz}(m“’)‘“ " ))
0 hay 991 (1) gi(z1) 0 [T (w)duw

h 130 (@) E { OF [g (1| X0 = a1 ron
0

+ Op(hil)

-1

. (E{W | X =) (fT(w)dw 0 ))
0 J T (w)dw
N(OE{ e’| X) oF [g (X )Xliml} (E: [w?T O 2"“’));

and thus,
() () G)- ()
0 hay 9g;(x1) a(zy) 0

E{E(62|X)8F[g(X)]2’Xl:xl} Koz 0
N o

i ’ 2 K22
(B{or@eor|xi==}) 0 2
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A.4 Technical Lemmas

A.4.1 Lemmas for the proof of Theorem 2.3.1

Lemma A.4.1 Suppose that Assumptions 2, 3 and 4 (2)hold. Then,
& logn
max |E(Y|X;)—-E(Y|X;)|=0 Mt — - A41
s [EOIX) - B(YIX)| =0, (; Y T (A4.1)

Proof. Given Assumptions 2 (1) and 3, we have the Taylor Expansion that , for i € {1, -+ ,n},

1
Y =E (Y| X)) + e = B (Y| X)) + 0F (Y[ X)) AXj + - + 0" E (Y] X)) (AX)E  + e

1 1

+(R+ 1)!6R+1E(Y| Xj) . (AXZ_J_)®R+1 + (R+ 2)!0R+2E(Y‘ X]') . (AXij)®R+2
1 _

+(R - 3)!8R+3E (Yl Xi,j) . (AXij)®R+3,

where X ; is between X; and X.

And then, by equation ((2.2.2)), for i € {1,--- ,n},

_ _ _ diag(r®®) -
(B0 1) - B 071X, diag) 0B (v 1X,) = 0B (Y [, -+ P00 0" (v |, = 07 (11,
1 X1,i—X1,5 . (Xdz.i*Xd‘t,j)R -
hi, ) R1,dy R
n .. X ,i—X Ni X ,1—X N X1,i—X J X T,.,i_X x,J
D125 Tny (4,5) : his - ( lh,L1 - J) ( lh,l,1 : ]) ( ‘ hl_,,wd )
B n—1 : :
(de,i_Xdz.j>R (de,i_Xdz.j>R (Xl.ifxl,j> (Xdz;l_xd:x:vj>2R
hi,d, h1,d, hia h1,d,
XZZ’:I,;&]‘ Th, (i, 7) | XX, XeoXe (Xl,ﬁXl,J)R (de,erx,j>R ,
n—1 T hin T hia, T hia T hia,
X |e; +

ORHLE (Y] X)) - (AX,;)*T ! n OB (V| X)) - (AX;)®T N ORBE (Y] X)) - (AXy)®"
(R+1)! (R+2)! (R+3)! ’

(A.4.2)

Given ((A.4.2)) and the Assumption 4, it is straightforward to have

d
_ - logn
max |E(Y|X;)—-E({Y|X;)|=0 REF 4 2 ). A43
omax E(Y|X) = B(Y X)) (Z T o (A4.3)
To simplify the notation, let
d
- logn
Shm = O, (Z W+ = ) .

= n Tz by
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Lemma A.4.2 Suppose that Assumptions 2, 3, 4 (2)and 5 (3), 6 (1)-(3) hold. Then
()

I K .
HLo,n,l - E [APZ*(,J' I)Api(,j VIE(Y|X;) - E(Y|X;)=0 fE(Y|Xj)7E(Y\Xi)(O)H =0, ( o ﬁh;’) :

(A.4.4)

(i)
[ Lon2l = VEhy 0, (A.4.5)

and
[ Lol = VE (h2_15h,n)2- (A.4.6)

(iii)
HLO,n - B [Api(,;nﬁpi(,;l)/ EY[X;)-EY|X;) = 0} fE(v|x; )7E(Y|X1-)(0)H = 0p(1). (A.4.7)

and
Amin (Lo,n) = Op(1). (A.4.8)

Proof. (i) It is trivial to prove that

|Eona = B{aPGO ARG L (B 1X)) - BV IXO} | =0, (ﬁ) L (Aa)

By Taylor Expansion,

E {APZ{;”AP;;”/H,Q [E(Y|X;) - E(Y|X, )]}

—e{E[apVapY

E(Y (X)) = E(Y |X0)| Huy [E (Y 1X;) = E(Y |X:)]}

_ (=D A p-1r
=B [8PGVAP

E(Y|X;) = E(Y |X0)| fooix (B (Y |X;))

<! —d)! _ _
+27(“H ! op [Apfjlmgﬁj ol
d=1 aH 1 ;

E(Y|X;) = E(Y [X;)] 0%~ fpype, ) (B (Y [X;)O(hg"),
and then

|E{apY A m, 1 1x;) - B X))

(=D A p(-1r
- E[aPVAP

E(Y[X;) = E(V1X0)] frovixo (B (V1)

ans R d! (ag — d)! _ _ _—
<O(hs*) Z%a“’f{ﬁaﬁj%aﬁj”’ E(Y|X;) = E(Y|X;)] 0% de(Yxi)(E(YXj))H
d=1
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(A.4.10)

holds uniformly over i # j € {1,---,n}, where fgy|x;)-E(v|x;)(*) is the density function of E (Y [X;) —
E (Y| X;), given the Assumption 5 (3). Since fg(y|x,)(-) is bounded, there exists a positive constant ¢ such
that

B(DIX;) = B(Y |X0)] feorixo (B (D1X)||

SCI

9B [ APV ARG
¥ .7

B(D1X;) = By %)

o B[ APV ARG

<O (K) N {07 B | 5PV P

E(DIX;) = E(Y|X:)]}
Given the Assumptions 5 (3) and 6 (2) and (3) ,

|ote [aPG ) apt

E(Y|X;)-E(Y|X;)= 0] 6“H_de(y\Xj )7E(Y\Xi)(0)H O (h3")
-0 (\/Ehgff) : (A.4.11)
holds uniformly over d = 1,--- ,ay. Given the Assumption 6 (1) and (A.4.11)
|E{aPGAPGY L 1B (v 1X;) - E(v X))}

_E [APK‘.”AP.(‘,”'
,] 2,7

E(Y|X;)-E(Y|X;)= O] Te(v|x; )7E(Y|Xi)(0)H
) (\/?hgff) = o(1). (A.4.12)
Thus, by ((A.4.9)) and ((A.4.12)),

[Z0ns = £ [apGH aPG

K a
EY|X;)-E{Y|X;)=0 fE(Y|X])—E(Y\X,)(0)" =0, (\/ —+ \/?hf’) ,

and then (A.4.4) holds.

(i) Given the Assumption 6 (3),

HLO,n,Q

B 1 n n N 3
<hy 'Onn || 3y ’APZ.(J VAPV o, [E(Y[X;) ~ E(Y|X,))] H
=2 i<j

=VEKhy  6p.n, (A4.13)

and then (A.4.5) holds. It is trivial to prove (A.4.6).

(iii) Therefore, given the Assumption 6 (2) , || Lo,n,2|| = 0p (1), || Lo,n,3]

= 0p (1) and then (A.4.7) holds.

Furthermore, we are given the Assumption 6 (3),

Nuin (B[ APV APGV| B (Y 1X5) = BV 1X0) = 0] foix,)-popx) () =00, (A414)
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and then (A.4.8) holds. m

Lemma A.4.3 Suppose that Assumptions 2, 3, 4 (2)and 5 (3), 6 (1)-(3) hold. Then

(i)
[K
| Lo b 1 Linal| = Op < — \/?th> : (A.4.15)
(i)
dg 1
L1 m2ll = O, <Z hit + \/Z) : (A.4.16)
=1
(iii)
& 1
[L1n3]l = Op (Z hitft + \/;> : (A.4.17)
=1
and
1L all = (B3 0nn)” (A.4.18)
(iv)
K 2 & 1
[L1,nll = Oy <\/;+ VEQG" + (hy'onn)” + ;hfjl + \/;) . (A.4.19)
(v)

[ L2nll = Op (K7°). (A.4.20)

Proof. (i) Given the fact that tr(AB) < Apax(B)tr(A) for any symmetric matrix B and positive semidefinite

matrix A,

2
)

||L(z:171L1,n,1 ||2 =1r {L(i:hlLl,n,lLl,n,llL(z»}hl} =0 ()\:n?n (LOJL,l)) tr {Ll,n,lLl,n,ll} - 0(1) HLl,n,1|
(A.4.21)

the last equality is by ((A.4.8)). Given the Assumption 3 (2), the link function F(-) is monotonically in-
1 — .
creasing and thus, g(X;) is also identified given (Y [X;) = Fa (9(X))- Lint = 5 0 9(XHAPSV Hy, [E(Y X)) — B (

is a vector of U-statistics and then we apply Lemma 3.1 in Powell, Stock and Stoker (1989) to L1, 1. Let

(X5, X;) = g(X) APV Hy, [E(Y X)) — B(Y X)),

n—1n—1 n
U, = (Z) SN (X X)),

i=1 j=i+1

7



and

Lipi= %Un. (A4
Also define
T (Xj) = B [qn (X, X;5)| X;],
On = E g (X;)],
and

n

i=1
Before we apply Lemma 3.1 in Powell et al. (1989) to U,, we need to verify the condition E ||, (X;, Xl

o(n). By Assumption 6 (3), we have

2
Elgn (X3, X5) ||

=& tr {g(X,)?AP5GV ARG Hy, [E(Y[X)) - B(Y X0 |

2

and by the proof of Lemma 3.1 in Powell et al. (1989),we have E‘ U, — U,

Inequality, we have

U, —U,

= 0,(n"1/?). (A 4.

22)

2_

= o(n~1). By Markov

23)

To derive the convergence rate of U,, we need to calculate E |, (X;) = 0,]*>. We take conditional expec-

tation of ¢, (X;, X;),

n (X;)
=B {g(X;) APV iy [B (Y [X5) — E (VX)) X }
—£{g(x;) [PV = PV iy [B(Y 1X5) - B (Y |X0)]| X5}
=g(X))P;" VB (), [B(Y |X;) - E(Y |X))]| X;)
—g(X)E{ Pf T H, [B(Y X)) - E(V1X0)| X5 )

ap

_ h
o0 P { Fevio (B Y 1X00) + 200 iy (B(Y 1) + 05

—g(X) {E[PTV| B 1) = E61X)] oo (B (Y 1X,)

H Y
gy Blor 21 (“ZIH Do [apap
=1

E(Y|X;) = E(Y|X:)] 0% ooy (B (Y X)) + o(hg”
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—g(X) {PV = B[PV B 1X:) = BV IX))| } Feorix) (B(YV]X)

+006) P {0 vy (B 1)+ o)}

<N 1 (agr —1)! _ _
—9(X;) {th Z M#E [Api(,j 1>Api(,j 1)

a
=1 "

B (Y 1X;) = BV 1X0)] 0" fee (B (VX)) + O(hg”)} ,
and we take expectation again,

b

=E{g(x,) APy, (B (YV1X;) - B(Y X))}

—E (g(Xj)E (PO B IX) = E(YVIX;)] {ZZ'

" fovixy (E(Y |X,)) + o<h;H>}

H 1 — !
—9(X;) {hgﬂ > Man =1 i [APi{f’AP;;”/

s B (Y1) = B (Y 1) 0 v (B (¥ 1X,) + o(h;”>} ,
=1

and then we get,
10, = O (\/Eh;f) . (A.4.24)
Before we apply ChebyshevA’s inequality, we calculate
E |l (X))
-1 ?
:EHE{g VAPSYH, [E (Y |X;) - (Y|Xi)]‘Xj}H
=E ||g(X;) {PX~2K (X;) - E[PEVE(X)| E(Y X)) = E(Y X))} feorix) (B (Y 1X;)) +0 (hg™)||”
=0 [ir (B {92 {PV — B[PV B IX) = B(YVIX)]}

< {PIV - B[PV BEWIX) = EVIX)| } frorixo (B(Y X)) })]

=0(K). (A.4.25)
Given ((A.4.24)) and ((A.4.25)),
2 K
n - <Z) )
and by ChebyshevA’s inequality,
‘ U, -0, ( Irf) , (A.4.26)

Therefore, given (A.4.21) and (A.4.26), we have HL(I;,ILL”JH =0, (\/% + \/?hg”) and then (A.4.15)
holds.
(ii) By (A.4.2)

Ll,n,Q
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n n

ST () ARG 0, (B (Y |X,) — B(Y (X)) [E(Y1X,) - E(Y[X;)]

]—2 i<j
N _
ngh Zzg P( JoH,, [B(Y|X;) — E(Y|X,)] [E(Y|X;) - E(Y]X;)]
Jj=21i<g
-1
n_lh 33" 0(X) AP0, 1B (Y [X,) ~ E(Y |X,)]
j=21<j
1 X1,—X1,5 (de,L—de,j)R
hi. hi,dg
n ‘ X1, - X1, Xi-X1, )2 X1=X15 \ (Xago—Xag s \
21,25 Tin (1,9) T (hi) ( 2% )( h)
Xay.o—Xay 5 \° (de,L—de,j R(Xl,b—xl,j Xay.i—Xay ;| B
h1,d, hi,d, hi1 h1,d,
XTh, (4,4) (1 le;;fw Xdz;;j:dw (%)R (%>R>’

x [+ OME (Y] X5) - (AX)® "+ 0% 2B (Y] X) - (AX) ™ 4 R

although the summation is over j € {1,--- ,n}, i < j € {1,---,n} and ¢ # j € {1,--- ,n}, the asymptotic
properties should be the same if the summation is taken over j € {1,--- ,n}, i < j € {1,---,n} and
v # 1,7 € {1,---,n} and then it is a U-statistic. Similar with the analysis of (A.4.15), by asymptotic
properties of U-statistic, (A.4.16) holds.

(iii) It is trivial to prove that (A.4.17) holds and

< (5" 0) 2% ZHg(X»APi} D92, 1B (Y 1X,) (V150
1<J

= (hgléh,n) ’

which shows (A.4.18) holds.
(iv) Thus, by ((A.4.15)), ((A.4.16)) and ((A.4.17)), ((A.4.18)) , (A.4.19) holds.
(v) Similar with (A.4.21),

|Zon 1 Lounal|”

1 1
=tr [(Uectm'g'vectorg) vectors'vectohy yvectohy 1 vectors (vectors'vectors) }
-1
<Amin (vectors'vectors) tr (vectorglvectohmUectohlyl/vectorg (vectors'vectors) )

,)\1

— ! (vectors'vectors) tr (vectohy 1vectohy ;")

,)\1

—1 (vectory'vectors) ||vectohy ;||
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=)\"!

min

(E {APZS;DAP;;”’HM (B(Y|X;) - E(Y|X, )]}) 0, (K~2*). (A.4.27)

It is trivial to prove that ||L3731,1L2_,n,2|‘2 =o0p (HL&;JLg,n,lHQ) and HL(;,iL,1L27"73H2 =0p <||L(§771171L2,n,1||2>-

Thus, || Ly L (Lama|| = Op (K~*) and (A.4.20) holds. m
0,n,1 U p

A.4.2 Lemmas for the proof of Theorem 2.3.2

Lemma A.4.4 Suppose that Assumptions 1 - 4, 5 (1) and (3) and 6 (1)-(8) hold. Then

(i)
_ —2a K 2a g
B1=0, | K7°* + — Kh5"# ). (A.4.28)
7
(i)
—2a K 2a
|B2,2| = Oy <K + 4 Khy H) , (A.4.29)
—2« K 2a
|B2,sl s [Bzal, |Bas| = Op ( K77 + — + Kh; (A.4.30)
and
_ —2a K 2an
| Bzl = 0p | K750 4 — + Khy™" ). (A.4.31)
(iii)
_ K a
By =0, (K =+ \/Ehf) , (A.4.32)
n
and
— K a
B3 =0, (B2) = o, (K + 1/; + \/Eh2ﬂ> , (A.4.33)
holds uniformly overi € {1,--- ,n}.

Proof. Here, we show that

By =0, <K‘°‘+ ,/K+\/?th>
n

and before it, we firstly show the corresponding Bernstein Inequality, whose proof is based on Exercise

5.4.15 in Vershynin (2018).
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As Exercise 5.4.15 in Vershynin (2018) states, let X1, -+, X,, be independent mean zero Dy x Do random

matrices such that || X;|| < M almost surely for all i and then we have, for ¢ > 0,

op —

§

where 02 = max (||Z:':1 EXiXil,, >0, EXZ»X;HOP) and |||, is the operator norm. Here we extend

o2+ Mt/3

>
i=1

> t} < 2(D; + Ds) exp (—L> , (A.4.34)

the above Bernstein Inequality for operation norm to Euclidean norm. Given the inequality that,

n 2 n n / n n / n 2
Z Xi =1ir { lz X;| [Z X;| } S max (Dl, D2> )\max { [Z X;| lz X1‘| } = max(Dl, DQ) Z Xi ;
i=1 i=1 i=1 i=1 i=1 i=1 op
we have,
n n n
P ZXZ» >ty =P{ /max(Dy, D) ZXZ» > /max(Dy, Do)t p > P{ ZXi > max(Dl,Dg)t}.
i=1 i=1 i=1

op op

(A.4.35)

We substitute (A.4.35) into (A.4.34),

|

and finally, we get the Bernstein Inequality for Euclidean norm,

n

>ox

i=1

( max (D, Dg)t)2

> maX(Dl,Dg)t} < 2(Dy+ Dy)exp | —

5 | My/max(D1,D2)t ’
2max(D1, Ds) (0’ +—3 max(Dr Dy

P{ > OXi|| > t} < 2(Dy + Dy) exp
i=1 24 Mt
' 2maX(D1 + Dg) (U + 3 max(D1+D2))
If Xq,---, X, are not only independent but also identically distributed, o> = max (n ||EXZ(XZ~||OP N ||EX¢X£||OP).
Furthermore, if X1, -+, X, are D1 x D; matrices or D; x 1 vectors, 02 =n HEXZ-XZ(HOP. Then, we
have

1 o nt?

P{ =3 x| > t} <4Djexp | — — (A.4.36)
n S 2D; (IEXiX/,, + 545)

Bs 1

s
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:% Z Thy (9(X;) — g (X3)) [9(X;) — 9(X;)]

i=1#i

:% ‘%‘Thg (9 (X;) — g (X)) [PE(X;)'B — PE(X;) B0 + PX(X;) B0 — 9(X;)]*
§2% '%.Ths (9(X)) - g (X3) [PF(X;)'B — P (X;)'Bo]” + 2% % Thy (9(X;) — 9 (X2)) [P (X;) B0 — 9(X;)]
Py Jo1 i
<B- ﬁo)/% ‘%‘Tha (9 (X;) — g (X)) PR(X;)PR(X;) (B - Bo) + O (K 21:# Ths (g 9(Xi))
j=12 Ly
<218 — Bo|* Amax (Tll Z:;Tha (9 (X)) — g (X0) P (X)) PR (X; )) +O(K7%). (A.4.37)
ol

E [Ty, (9(X;) — g (X)) PX (X)) PR (X;)] g (X0)]
=E{Th, (9(X;) = g (X)) B [PXXG)PR(X,) | 9 (X5)] | 9 (X)}
:/Th3 (9(X;) — g (X)) {E[PE(X) PR (X,)| g (X)] + 0F [ PE(X,)PX (X)) | g (X)] [ (X;) — g (X3)]
+ OB [P (X)PR(X0)| g (X)] 19 (X;) = 9 (X)) + - } {Fy00 [a(X0)] + 0f g0 [9(X0) [9 (X) = 9 (X0)]
+ 500 [9(X0) lg (X)) — g (X1 + -+ }
=B [ PR (X)) PR(X:)'| 9 (X0)] fyx) l9(Xa)] + b3 OB [PR(X) PR (XY | 9 (X0)] 0 y(x) [9(X0)]

+h§TOPE [PR(X) PR (XY | 9 (X0)] fye) [9(Xa)] + BT E [PR(X) PR (X0 | g (X0)] 0 fyx) [9(Xa)] + -+
(A.4.38)

Given Assumptions 5 (2) and 6 (1) and (3),
| [Tha (9 (X3) = 9 (X)) P (X,)PR(X,) | 9 (X0)] = B [ PROGPR(X0) | 9 (X0)] fyx) 90X = 0 (VERS)
(A.4.39)
holds uniformly over ¢ € {1,2,--- ;n}.
Given the Assumptions 5 (2) and 6 (1), all eigenvalues of E [Ty, (g (X;) — g (X;)) P (X;)PX(X;)| g (Xi)]
are bounded and bounded away from zero.
1B ({Ths (9 (X;) — 9 (X)) PR(X)) PR(X;) = E [Thg (9(X;) — 9 (X)) PR (X5) PR (X)) | 9 (X0)] }

x {Thy (9(X;) — 9 (X2) PR (X)) PR(X;) = B [Thy (9 (X;) — 9 (X2)) PR (X)) PR (XG) [ 9 (X0)] }] 9 (X)),
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(Xi)}

Ty (9 (X5) = 9(X3)) PE(X5) PR(X;) | 9 (X0)] B [Thg (9 (X) — 9 (X0)) PR (X)) PR (X5) | g (X0)]],,

=B {70 (9 (X)) = 9 (X0)* PR PR (XY PR (065 PR () "
[

<[ B {7 (9 (X5) = 9 (X0)* B [PF () P5 (X5) PR (X) P (X)'| 9 (X)) 9 (X0)}

op

1| [Thy (9 (X)) — 9 (X)) PX ) PR | 9 (X)L,

= / T (9.(X) = 0 (X0))* B [PEOGPEC0) PR ) PRGY |0 ()] foo ln ()1 dg ()| +0()
<hy || B [PX(X0) PR (X, PX(X) PR (X0)| 9 (X0)] fyex lo (X,

+0(hs) [|0F [PX (X)X (X, PX(X,) PR (X0 9 (X3)] 0y g (XD,

+0(hs) |07 E [ PR (X:) PR (X:) PR (X)) PR (X0) | 9 (X ]fgm{ Xl

+0(hs) || B [P*(X3) PR (X)) PR (X)) PX(X0)'| 9 (X0)] 8 fy(x) 9 (X, + O(1)

=hy ' As1 + O(h3) (Ao + Agz + Asa) . (A.4.40)

Since E [ HPK (Xi) H2 PE(X)PE(X;) (Xi)} are semi-positive definite and given the Assumptions

5(2) and 6 (1),
Az
=l g HE [ PR (X PR () PR(X) PR (X) | 9 (X0)] |
(Xi)}

=fq(x) l9 (Xi)] H{*I}”ai(l W'E [ PR(X;) PR (X;) PR (X)) PR (X,) | g (X)] w

=fo0lg (X0 mas, B { [ P00 [P0 | (X0}

op

[P |* PR () PR (X0

:fg(X) [g X

op

<o lo ()] sup [ PECO [ B [PE (G0 PR | (X0,
<K fyx || B [P5(X) PR (X)) | g (X3)] Hop
—O(K). (A.4.41)
Substitute ((A.4.41)) into ((A.4.40)) and we have
12 ({Zn, (9 (X)) = 9 (X)) PXX)PR(XG) = B [Tha (9 (X5) — 9 (X0) PR G PR (XY [ 9(X0)]}

x {Thy (9(X;) = 9 (X2) PR (X)) PR(X;) = B [Thy (9 (X;) — 9 (X2)) PE(X) PR (XG) [ 9 (X0)] } 9 (X)),
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=0 (h;'K). (A.4.42)

[ Thy (9 (X;) — g (X2)) PX(X;) PR ()|

op

=0(hy ") || Thy (9 (X;) — 9 (X)) PX(X5) PR,

<O(hz") [|PX(X;) PR (X))

<O(h;'K). (A.4.43)

By Bernstein Inequality ((A.4.36)), there exist positive constants C1 and Cs such that

i

Cont?
<CiKexp | — 21 oLkt
2K(h§1K+ 5 )

% D Ty (9(X;) — g(Xi) PX(X) PR (X)) = E [Th, (9(X5) — g (X)) PR(X;) PR (X;) | g (X))
j=1,%i

:

3VK
<C1K exp (—anthﬂtQ) .

Thus,
1 & ,
P{ie{rﬁzn} =3 T (9(X,) — 9 (X)) PXOXG)PR(X,) = B [Ty (9.(X;) — 9.(X2)) PE(X,) P (X,) | g (X)) >t}
e j=1,#i
<CinK exp (—anh3K72t2) , (A.4.44)
and then

LS T (9.(55) — 9 (X0) PROGPE () = B [T, (91(X5) — 9 (X0) PX (G PE (XY 9 (X0)]
j=1,%#i

_ [logn
_O(K ’I'Lh3> ’

(A.4.45)

holds uniformly over ¢ € {1,--- ,n}.

Afterwards, substitute ((A.4.39)) into ((A.4.45)),

% Z Th, (9 (X;) — g (X3)) PR (X;)PR(X;) — E [PK(X)PK(X)/‘ 9 (X)) fox) [9(X0)]
p——y

) (K,/log” + \/Eh§+1> = 0,(1),
nhg
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holds uniformly over ¢ € {1,2,---,n}. It follows that from the definition of maximum eigenvalue

that

b max (15 Ty (9(5) — 9 (6) PROGIPROGY = B[PREOPECE] 9 060] fyon [g<X1>]|
’ J=1,%#i
—o,(1) (A.4.46)

By ((A.4.37)) and ((A.4.46)),
Byy =0, (K—Qa K, Kh2“H> :

and (A.4.28) holds.

(ii) Given the Assumption 6 (3),

| B2 2|
gL 3 10 (9 () — 9 (X)) 5(X5) — 9 (X513 (X)) — g (X))
j=1,i
<hy' malg (z) — g (@) - Z T3, (9 (X)) — g (X)) [3.(X,) — 9 (X))

71
j=1

ha 'WEK (K—a + \/:+ \/1?th>

K
=0, (KQO‘ +—+ th‘“{> .
n

K
0, (K—Qa + =+ th‘m)
n

and thus (A.4.29) holds. It is trivial to prove (A.4.30), (A.4.31) and (A.4.32). m

Lemma A.4.5 Suppose that Assumptions 1 - 4, 5 (1) and (3) and 6 (1)-(3) hold. Then all eigenvalues of

Ay are bounded and bounded away from zero and it holds uniformly over i € {1,--- ,n}.
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1 _ Ag;
Proof. Let Al,d = g Z]‘:l,;ﬁi Th3 (Agm-) ( hg

d
) , for d € {0,--- ,25} and then

Ao A - Aus
A, A Ay
A= T T R (A.4.47)
ALS-‘—I A1,5+2 e AI,QS'

E[Th, (9(X;) — g(X:)| g (X3)]

= /Th,g (9(X;) —g9(X2)) {fg(X) [9(X)] + 0f () [9(Xa)] [9(X;) — g(Xa)] + %ang(X) [9(X3)] [9(X;) — g(X:)]*
+ é83fg(X) [9(X:)] [9(X;) — g(X)) + i84fg(X) [9(X:)] [9(X;) — g(X)]* + -+ } dg(X;)

— o0 98]+ B30 Fy 960 [ T () (A4.49)

B {1, (0 065) — g (x) | L2 ]y()@-)}

s
= [ (0 (x) — g (x) [M} {fg<x> [90X)] + hsdfy(x) [9(X0) {M)hi‘ggm}

h3
502 o ln60] | P g e o) | 20520 R

+ h%iﬁ“fg(x) [9(X3)] [%—;}(X)} 4 } dg(X;)

1400 [90X0)) [ @ Ty @) + W50y 90X [ 6T, ()

2

] g(Xi)}

:/ThS (9(X5) = g(Xi) {g(Xj);;g(Xi)r {fg<x> [9(X0)] + hsd fyx) [9(X0)] {Q(Xﬂhi;gm}

[Q(Xj)h—gg(Xi)r +h§é83fg(X) (X)) {Q(Xj)};g(xi)r

E { Th, (9 (X;) — g (X3)) {W

RS0 Fy ) (X0
+ 310y o) | 220 } dg(X,)
:fg(X) [9(X,)] /w2Th3 (w)dw + h§+1%32fg(x) [9(X3)] /w4Th3 (w)dw.

Ford=1,2,---,




=fo(x) [9(X3)] / w? T, (w)dw + h§%82 fox) [9(X3)] / WA, (w)dw. (A.4.49)

Q(Xi)}

30y [9(X0)] / WD, () dw + h§é83 Fyoo [9(X0)] / WD, () don. (A.4.50)

and

) . 2d+1
E { T, (9 (X;) — 9(X3)) {M}

Given Assumption 4, by ((A.4.49)) and ((A.4.50)),

. 9(X)) —g(X)) {g(xpg(mf
hs hs
o 9(X;) —9(Xy) {Q(Xj)_g(Xi)r F(X;-)—g(&)} o
- > T, (9(X;) — g (X)) h3 h3 h3.
J=L# : : :
{g(X»—g(Xi)r [g<Xj>—g<Xi>r“ {g(X»—g(Xi)rS
hs hs hs
o x)[ (Xi)] h30fq(x) [9 ) [ wThg(W)dw -+ hsdfyex) [9(X0)] [ w5 Ty, (w)dw
hs0fg(x) [9(X0)] [ @ Th, (w)dw foo) [9(Xi)] [P Ty (w)dw - foexy [9(X0)] [ w5 T Ty (w)dw
fo(x) [9 fw2Th3 w)dw hsafg(x) [9 )] [ W' Ty (W)dw -+ hadfyx) [9(X0)] [ w 3T, (w)dw
| he0fex) [9(X0)] [ Wi, (w)duw fox) lg fw Thy(w)dw o fyex [9(X0)] [ w5 T, (w)dw
h30 fox) [9(X)] [ W™ T, (w)dw o) [9(Xs fwsflTh (W)dw - fox) [9(Xi fw2572Th (w)dw
Ja(x) [g D) w3 T, (w)dw 3O fyx) [9(X0)] [ w9 Ty (w)dw - h3afg(X) O] [ @S T, (w)dw
hsdfyix) [9(X0)]) [ WS Ty (W)dw  fox) [9(X0) ]fWSHThg(w)dw e faole ] J @5 Ty (w)dw
1 hy - hy
hs 1 - 1
1 hsy - hy
hy 1 - 1
+0,(h3H) Eg Z Z +\/%;
hy 1 -0 1
1 hy - hs
hy 1 - 1
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and thus,

1 0 0
0 [w? Ty, (w)dw -+ [wIH T, (w)dw
[ Wi, (w)dw 0 0
0 [T, (w)dw -+ [wI3T),, (w)dw
A1 = fo(x) [9(X0)] ‘ ° v +o,(1), (A451)
0 JwS T (wW)dw -+ [ w72, (w)dw
[ w1 T, (w)dw 0 0
0 Jw ST (W)dw -+ [ W T, (w)dw
hold uniformly over i € {1,--- ,n}.
Since
1
w
w2
A1 = fox) [9(X3)] /Th3(w) 3 (1 w w? W wh3> dw + 0p(1),
w
whs

is positive definite and V |A\| = 1, [w?5T), (w)dw < N A1\ < [ Th, (w)dw, all eigenvalues of A; are bounded

and bounded away from zero and it holds uniformly over i € {1,--- ,n}. m

Lemma A.4.6 Suppose that Assumptions 1 - 6, 6 (1), (2) and (3) hold. Then
(i)
. K a
|B11| = Op (K a+\/+\/Kh2”>, (A.4.52)
’ n

holds uniformly overi € {1,--- ,n}.

89



(it)
foex) [9(X3)]
h3afg(X> [9(X3)] fw2Ths (w)dw
fax) [9(X0)] [ w? Ty (w)dw

Bra— 0 (X0 — gy | o0 BT T | (Ka . @ . \@g,{) 7
h30fyx) [9(X0)] [ w1 T, (w)dw

Fox) l9(X0)] [ 57 Ty (w)dew
hBafg(X) [g(Xl)] wa-HTh:; (w)dw

(A.4.53)
holds for each i € {1,--- ,n}.
(iii)
— K a
|B13| = O, (K +14/ o + \/I?h2H> , (A.4.54)
holds uniformly overi € {1,--- ,n}.
(iv)
[Bral = 0 (1g(X:) - (X)) (A.4.55)
holds for each i € {1,--- ,n}.
(v)
|Bus| = Op(h5*h), (A.4.56)
holds uniformly overi € {1,--- ,n}.
(vi)
|Brol = Op(h5+?), (A.4.57)
holds uniformly over i € {1,--- ,n}.
(vii)
1
NG

1< _ h3 logn
|Bi,7| = - > Ty (Agij) : ei =0, <1/ i ) : (A.4.58)

J=1.#i




holds uniformly over i € {1,--- ,n}.

Proof. (i)
|B11l
1 _ _
- 2jm1,2i Ths (Di5) [9(X5) — 9(X;)]
1 A"Z
n Z] 1,#i Th, (qu j) J [g( ) g(Xj)]
= |0F;
1 Agu he
ST (Bg) (S22 1) - 9()
1
Zg 1,#1 Th3 Agl \J
1 Agl
{ Z] 1,#i Tha (Ag” . }
<0(1)
Agig
AVEBY?
Al/zB1/2
—om | "7 | =0, (K‘“ o Vﬂ) ,
Atl5sBy'”

and (A.4.52) hold uniformly over ¢ € {1,--- ,n}.

(ii) Similar with the proof of Lemma (A.4.5), we have

By 2 =0F; [g(X; Z Th, (AGi5)
] 1,7#1

Ao
=0F; [g(X;) — g(X;)]

Ay s
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1/2
Sy i T (86:5) [0 <Xj>fg<xj>f}

Sy i T (86:5) [0 (X»—g(w}

1/
1 28 2
{ S5t T (Agm( = } zj 11 Ty (09.0) [9(X5) = 9(X,)] }

1/2

1/2




foex) [9(X3)]

h3dfqix) [9(Xi)] [ wTh, (w)dw

Fo(x) [9(Xi)] [ W Ty (w)dw
h30 )] [ W, (w)dw
_org(x) — g(xg) | e S
h3afg(X) [g(XL)] fws_lTh:s (w)dw

fq(X) [g(XZ)] fw57lTh3 (UJ)dUJ
hBafg(X) [q(Xl)} fws+1Th:3 (w)dw

and by the Assumption 6 (3),

] ] K
Rys:= (h;?“ + Zi:) O (Sgg{g(x) - 9(%)) = <h§“ +14/ Zi:) VKO, (Ku SRTENRE \/Khé”’>
[K
=0, (K‘Ur n+\/thH),

and then (A.4.53) hold for each i € {1,--- ,n}.

(iii)
|B1s|

1 1/2 11/2

Az Al,/O Bg/

L b A2By

=|0%Fi~ > T (8Giy) N 9(X;) — (X)) <0(1) ’
i=L#i - :

Agi\"™ 1/2 p1/2

(T3]> Al,/QSBS/

K
=0, <K“+\/n+\/fhgff> :

and then (A.4.54) hold uniformly over i € {1,--- ,n}.

(iv)
| B14]
1
Ao
AgGi
n hs A

= ‘am [9(X:) — g(X,)]

— hs .
(Lgm ) A1,S
h3



=0 ([g(X:) — 9(X0))

and then (A.4.55) hold for each i € {1,--- ,n}.
(v)

1 n
|B15| = 3S+1Fiﬁ Z Thy (AGis)
=LA

and then (A.4.56) hold uniformly over ¢ € {1,--- ,n}.
(vi)

1 n
|B1s| = 3S+2Fz‘5 > Ty (AGij)
J=L A

and then (A.4.57) hold uniformly over i € {1,--- ,n}.
(vii)

1 < _ h3 logn
|Burl=— > Ty (AGiy) : ei = Op <\/ nhs ) 7

J=1#i

and then (A.4.58) hold uniformly over i € {1,--- ,n}. m

A.4.3 Lemmas for the proof of Theorem 2.3.3
Lemma A.4.7 Suppose that Assumptions Assumptions 1 - 6 hold. Then
(1)

w)dw
Ag = E{0F [g(X)P| Xi =i} fx, () (m : ’ )+op(1>.
0 J W (w)dw
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(ii)

VntBii1 % N (o, E{aF g (X)ﬂ X; = xl} E (e X, = 2) fx, (21) (502 0 )) . (A.4.59)
0 [wT(w)?dw

(iii)

(i)

(v)

(vi)

By,

K !
2=0p (K“+\/+\/?h3”+h§“+1/°gn>.
n nhs

K
B4’3 = Op (Bz) = Op <K_a + z + \/?h;H> .

0

n?,t0%qE 8FgX2X=a: fx,(x)kK
B474:(4’12 ! { [g( )]‘ 1 z} X, (T1) k21 T oy(h2).

Proof. Given that

Bus = Op(h3,).

E [(aFi)2 Th,, (X1 — 11)}

(
da
—-E|E laF( Z g(Xj)(Xj,i)) +91(X14)

2

Xl,i} Thy, (Xis— wl))

xl} FE [Th4,1 (Xl,i - ‘Tl)] + Op(l)
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z} Fx (@) / T(w)dw + 0y(1),

Xii—x

> (3/?1)2 Th,, (X1 — 21)

X —

) (OF)* Th,, (Xps — 1) + 0p(1)
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(A.4.62)

(A.4.63)



! " 1 n X i — X
p D ORF Doy Km0 O = (OF) Th, (Xi = )
- : +0,(1)
1 n Xii—x 1 n Xi—x 2 D
S L OF) Ty, (X — ) — Y (SR (0F) Th,, (Xi — m)
n hay n Tz
2
= J T (w)dw 0
=F oF s (XLl) +gl(l’l) x; le (1’1) —|—0p(]_)
=hA 0 J w?T (w)dw
(i
By
1 — 1 _
“n Z X —ay | OFiThy, (Xii — i) e
i=1 haa
1 « 1 Lo 1 N
n Z Xig = | 0P, (Xei =) ei+ n Z X1 —x (8Fz‘ - 5Fi) Thy, (Xi —x1) e
=1 h/47l p— h]47l
=By11+ Baj1-
Given that
1
B Xii— 1 aFiTh4,z (Xl,i —x)e; | =0,
hay
and

I X1 —
1 h
4,1 22 L 2
E Xii—x (Xz i — zz>2 OF Ty, (Xii —mi) €

ha hay
[ 1 X],]tl Zy
_ 4,0 2 2 2
=E\ x, - (Xl,z‘ xl)Q E (€;0F}| X14) T, , (X1i — 1)
L hag hay
2 9 Ko2 0
=B { B\ X)OF [g (X)P| X = a1} fx, () +0,(1).

0 [wT(w)?dw
Thus, by central limit theorem for i.i.d random variables,

Kp2 0

VatBiii S N [0,E { E(e2|X)0F [g (X)ﬂ X, = ml} Fx (1)
0 [w?T(w)dw

and thus (A.4.59) holds.
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In By, given the Assumption that F and OF do
27&.76 {17 7”}7
1

X — 2y
ha

cov

Further given that,

1 Xii—m
E Par (a’F- - 6F-)2 Th,, (X1
Xii—x X1 —m ! ! AT
hay ( Iy )

((‘ﬁ?i - 8Fi) Doy (X —mi)ei | X, —

not involve the 7 th observation, we have, for

1

I (éﬁj - 3FJ‘) Thas (Xij —@)ej | = 0.

hay

max 8/1\7L — OF;

ie{1,---,n}

—z)é? :o( )z—op(l).

Thus, by the central limit theorem for uncorrelated sequence, compared with By 1,1, Ba 1,2 is negelactable.

(iii)

n

1
1
Bys=—

s n Z Xl,i —ay (ﬁ‘iTh4,L (Xl,i — .Tl) (Fz — ﬁi) =

=1

ha,
and then (A.4.60) holds.
(iv)

n 1

Bys = %Z Xii —my (8/?7)

=1 ha
l n
=0y (n > Ty (Xii — ) (@1 (X1i) — g0 (Xl,i))2>
=1

and (A.4.61) holds.

(v) Given that

1
Xii — @

hay

E

w3, B {0F [g COF| X1 = o}

0

By
1 1 n 1
:§a2gl (xl) E Xl,i — X
=1
ha,
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OF Ty, , (X1 —

K , 1
0, (K—a+\/+\/l?hg” +h3 T+ \/Ogn> ,
n nhs

F Ty (X — 1) [ (X0) — 0 (X00)

K
Op (B2) = Oy (K_a Vo, \/?h'zm> ;

) (X5 —x1)°

fx (xl)"m
L +op(h3)),

N2 )
(3Fi) Thy, (X1 — ) (X — )



n 1
1 1 ~ 2
255291 (gg-l) E Xl,i — 1 [(6F1 — 8FZ) + 6Fl} Th4,1 (Xl,i — .’El) (Xl,i _ xl)Z
=1 h4,l
1., 1 1 2 2
253 g (21) - > Xp;—ap | OF Thay (X — @) (Xp3 — )
i=1 I
1., 1 & 1 —~ 2 )
+§8 g1 (%) -~ X —m (3F1 - aFi) Thyy (X —20) (X1 — 1)
i=1 I
5 1 & 1 = 2
+0%g; (w1) - Z X — OF; (8Fi - 3Fi) Thy, (X1 — 1) (X — )
=1 -
hay

hil%82g1E{8F [g (X)H Xy = Il} fXL (l’z)fim
0

+ OP(hi,l)a

and thus (A.4.62) holds.
(vi)

n 1

S|

Bys =

im1
hay

and thus (A.4.63) holds. m
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Appendix B

Appendix for Chapter 3

B.1 Proofs of the Main Results

In this section we prove Theorems 1-3 in the paper.

B.1.1 Proof of Theorem 3.3.1

Convergence Rate of E (D|X = 1)

Recall that g (z;) = Zle gi(zr;) and Ag(x) = g(z2) — g(x1). Recall that LF (-) = L7 (F(-)) and
Ag(X;) = g(Xi2) — g(Xi1). By (3.2.7) and the definition of R (-), we have

E (Di] X;) F(Ag(X;)) = L(LF(Ag (X5))
= L(R(X)'7°+r(X;)) = L(RX;)n°) + L(R})r(X,)

L(R(Xz)lﬂ'o) +TL(XL), (Bll)

where R} lies between R(X;)'7% + 7(X;) and R(X;)'7°, and r1(X;) = L (R!)r(X;) signifies the error for
the logit sieve approximation of E (D;|X;) by L (R(X;)'n°). By uniform boundedness of L(-), we see that

rr(X;) behaves similarly to r(X;) in that SUD,_ (41,24 ex®2 |r(x)] = O (K~7) under Assumptions 9 and 13.
- 12

Let nign = \/Sm log(K® V n)/n+ K~7. Under Assumptions 7— 13, one can follow the proof of Theorem

6.2 in Belloni et al. (2017) hold and obtain the following result: result, we obtain

1 _ 2

- Y[R (7= 7°)]" =0, (fxcn) - (B.1.2)
Under Assumption 10(1), we can show that

%Z (R (7 —7%)]* = 2 > (- ) R(X)R(X:)' (7 — 7°)
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> (7 mm< ZR

rxy ) (- o)

>y |7 — 20| /2 wpal. (B.1.3)
Combining (B.1.2) and (B.1.3) yields
|7 = 7°l| = Op (mxcn) - (B.1.4)
Next,
d d
sup R(z)'7 — LF (Z (14,) Z (@1,ts ) '
x:(zi,z’z)'eX@Z 1=1 =1
d d
< sup |R(z) (7 —7%)| + sup R(z)'n® — LF (Z a(ze,) Z (@1ty > ‘
= (z ! ) cx®2 = (z T ) €ex®? =1 =1
< sup | R(z \|H7r—7TOH+O K~ ")
r:(r; ,3:’2)/62{
= (K Op (MKn) + O (K77) = Oy (Coxmn) - (B.1.5)
By (B.1.1) and the uniform boundedness of the first derivative of L (+),
_ 2 n
2 (Di|X) - E(DIX)]" < —Z [B(Di|X) = L(RCX)'7))" + = 3 [re (X0)]
i=1
-2 n [L(R(X;)'7)— L (R(ac)/wo)}2 + 2 zn: [rr (X3)]
i Z i l
< ISR (- 23 b O
et l i3 Z
and
sup |E(Di|X; = z) — E(D;|X; = )|
m:(z’l,z;)/eX@J?
< sup |E(Di|X; = 2) — L (R(z)'=")| + sup |71, ()]
z:(z&,z’z)lGX@Q z:(mi,xé)/eX@’z
S sw R (-m+  sw )]
m:(z’l,z;)/eX‘@Q z:(m’l,mé)leX@Q
= CoxOp (Mkn) + 0, (K77) = 0, (Kl/men) : (B.1.7)

Convergence Rate of g, ()

Noting that APZ.IJK

= Agi’j—QOIAPiI;iLK-F{APZ;/ﬂO - Agl]} and rccalling that thlrji = thl [E (D] |X]) -
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by (3.2.12) we have

—1
_ 1 B e -
0—0p=—14— Z APEMEAPETVE Z AgijAPETVE Y, i
1<i#j<n 1<7,7$]<n
-1
Z AP’:{?LKAH{?LK/EMMZ_ Z {APK/ Agi,j} APK 1, Kthl Ji
1<i#j<n 1<L7$]<n
= —LyyLin — Lo Lo, (B.1.8)
1 - - - . _ _
where, e.g., Lo, = ﬁzlgiyﬁjgn APZIE I,KAPi{; 1,K,th17ji' Noting that AF)ZK] LK _ *AP]‘IE 1,K7 we
have
1 K-1K 1 K-1K
Lin=-—5 > AgAPS TV Hy, i - —~ > AgAPETVEHy, i
1<i#j<n 1<i#j<n
2 K-
=2 Y Ag APV Hu i (B.1.9)
1<i#j<n
First, we study the asymptotic properties of Lo . Recall that Hyy, ji= Hin, [E (D;|X;) — E (D;|X;)]
and m; = E (D;|X;). Let myi = E (D;|X;) — E(D;|X;), m; = E(D;|X;), mji = E (D;|X;) — E (D;|X3),
and Hip, ji = Hin, (mji) = Hin, [E(Dj]X;) — E(Dj|X;)]. For i # j € {1,--- ,n}
Hup, ji — Hin, ji
=Hy, [E(D;j|X;) — E(D;j|X,)] — Hun, [E (D;|X;) — E (D;|X)]
L B 1 - ) 1 e o
= hy " Hin, (mya) (Mg = mgi) + 5hy*Hin, (mya) (mg; - m;i)* + e SHn, (m3) (mys —myi)°
= hy " Hun, (myi) (Mg —my) = hy " Hu, (mys) (mg —my)
o B B 1 .- B
— hy? Hyp, (myi) (ms — ma) (my —m;) + oM 2 Hun, (mji) (m; —m;)?
1 ~ e o .
+ §h1 2H1h1 (mﬂ) (ml — mi)Q + hl Sthl (mﬂ) (m]'i — mji)‘; s (B.l.lO)

where m7; is between mj; and mj;. It follows that

j
Lon = % ; APETVEAPETY R
1<i#j<n
> APETYEAPETY R Ly, (myi) (my — my)
1<iZj<n
Z APiI;il’KAPiﬁil’K/hlelhl (mﬂ) (ml — mz)
1<i#j<n

> APETNEAPE TR Hyy, (myi) (mi = ma) (my — ma)
1<i#j<n
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K—1,K A pK—1,K17 —2 5 _ 2
Z AV o AP "hy® Hip, (myi) (mj —m;)
1<i#j<n

> APSTVEAPETY Ry, (mys) (mi — ma)?
1<i#j<n

2 : K—-1,K K—-1,Kry3 -3 17 * - 3
APi,j APL]' hl thl (lei) (m]‘i - mji)
1<i#j<n

= LO,nl + Lo’ng + ..+ L07n7. (Bl].].)

By B.2.1, Y5, | Lonell,, = Op (KY2hi ' ikcn) = 0p(1) and Amin(Lo.n) > cr,/2 wp.a.l.
Next, we derive the asymptotic properties of Ly . By (B.1.10), the symmetry of the kernel function
H (-), and the fact that API-I;-*I’K = —APJ{(JI’K,

= Y. Agi AP IKthl,;Hr > AgAPETVERT Hy, (myi) (my —my)
1<17£]<n 1<i#j<n

Z Ag] PK 1Kh 1H1h1 (mﬂ) (ml 7ml)
1<z;£j<n

Z Agl JAPK L Kh 2H1h1 (mﬂ) (m, — mz) (mj — mL)
1<L;£g<n

Z Ag”APK YR T2 Hapy (mys) (i — mj)2
1<z;£_7<n

=5 Y. AgAPSTVERT Hy, (myi) (M —mi)®
1<z7$]<n

= Y AgiAPETUERT Hyy, (m3) (myi — myi)®
1<z;£]<n

7
=> Line. (B.1.12)
(=1

By Lemma B.2.2, Y27 _, [|L1.nell = Op(inxen) and || Ly || = Op(mn + VEA).
Next, we study Ls ,,. By (B.1.10),

1 _
L2,n S ﬁ Z ( PK,ﬁO — Agl,]) APZIE 1’KH1}L1,.7‘1‘
1<i#j<n
1 .
+— > (APY By = Agiy) APV R Hy, (mys) [y —my)
1<i#j<n
1 _ 1y _
- Z ( PK,ﬁO — Ag; g) APE 1A'Kh1 lthl (mji) [mi - mi]
1<iZj<n
1 ..
— ﬁ Z (APK//BO Agl J) APK L Kh 2H1h1 (mﬂ) [T?L, — mz] [m]' — mz]
1<i#j<n
1 _ o _
+ m2 Z (APKIBO — Agij) AP@'{; I’Khl *Hp, (my;) [m; — mj]2
1<i#j<n
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> (APKBo— Agiy) APETVERTEH, (mys) [ — ma]”
1<ij<n
Y. (&PKBo = £gig) APV R Hu, (m) (myi —my)®

1<iz#j<n

7
> Lo (B.1.13)
(=1

+

6n2

By Lemma B.2.3, ZZ:Q | Lanell = Op (K™7) and || Lo, | = Op(K—7+1/2).
By the above results, we have
-1
~ 1 _ _

0—0g=—S = Y APEVEAPETVEH,, i

n 1<i#j<n
1 K—1,K 1 K K—1,K
X ) Z Agi,jAPZ‘J " Hyp, i+ o) Z (Api,jlﬁo — Agi,j) APi,j Hyp, ji

1<i#j<n 1<i#j<n

where HRhl” = Op (ann + K_’y).

Given the result in (B.1.14) and using the results in B.2.1-B.2.3, we can readily show that
Hé — 00“ = Op (7]11(71, + \/Ehtlh + K_’7+1/2) .

Then following the arguments as used in the derivation of (B.1.6)-(B.1.7), we have

n

%Z [ (X)) — g (X)) < %Z [Pk (Xp0) (B — 55’)}2 + % Z [0 (X1it) — P (Xl,it)lﬁgl)]Q
p] im1 im1
< 187 = B3P + sup o (20) — pic (20) B

2
= 0, (o VB £ 1702)) 0, (1672)
= O, (Mgn) forleld],

and

_ = ., 2
sup |gi (1) — g (z)] < sup |px (1) (B = B5)| + sup [g1 (Xvit) — prc (Xiin)' B5")]
T EX T EX] T EX

nxr T T 2

< sup lpk (@)l || = B3| + sup |gi (@) — px (1) B5Y)]
T EX] T EX)

— VRO, (min + VR + KH2) 1.0, (K7)

= 0O, (\/ET]QKH) for I €[d].

where Norn = ks + VKR + K—7H1/2,
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B.1.2 Proof of Theorem 3.3.2

Let
Oy, = (LF(D9)), haOLF(Dgy), -+ b0 LF(Dg;)) = (LF(Dg5), haOLF (Agy), -+ B0 LF(Ag;) .

Let 9, ; (b) = bo+> 12, hl (Ag”) by, where b = (b, by, ...., bs,) . Noting that L (z) = exp () / (1 + exp (2)),

we have

Qn (Agj7 b)
= 3 Han (Agi) (D [L 0 (O] + (1= D)1= L (03 ()}
_ %1 ZHQ’W (AGi ;) {DiV;j (b) — D;In[1+exp (¥;; (b))] — (1 — D;)In[1 +exp (¥ ; (b))}

= LS Ho, (85i5) (n (14 exp (9 (0)] ~ Dii; (0}

i=1

For an arbitrary Ua,, € R+l and 7 € R, let

a2 1
li,j(1) = Hap, (Agi,;) In <1 + exp (Z hll' (Ag, J) o' LF(Agj) + 761 Ung; :

!/
where ¢i; ; = ( R Agl]7 . h;zlaz' *f;) . Then
as 1
l;-/J(T) = Hop, (Agzg) gli,j/UAgjL <Z hl “AgmalLF(AgJ) + 7S14,5 UAg]) and
az
_ 2 1
I/;(r) = Han, (AGiy) [s105'Ung,]” L' (Z hll,AgualLF(Agy) +T<113UA9]> :

It is casy to see that |I”;(7)| < [I//;(7)| |s1;;Ung, | - Define

ﬁAgi = arg max {Qn (A§j7 ((fl?(Agj), hga/L?'(Agj)7 e ,h;Q@(Agj)) s UAQJ))

Agj

— Qn (AG), (LF(Agy), 0LF(Agy), -+ 0 LF(Ag;)) ')}
1Y 1Y
= argmax — D (1) = 15(0)] - - > Hon, (DG j) sti jUng, D

295 1= i=1

We calculate the first order derivative with respect to 7:
07'@71 (Agjv (LF(AgJ)’ 8LF(Ag])7 e 78a2LF(Agj)) ' + TUAQ])

N as
1 B 1
== > Hon, (AGi ) st ;Ung, {L <Z hll'Ag1 SO'LF(Agj) +T§1L]UAQJ> - D,} .

i=1
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Evaluating the above derivative at 7= 0 yields

0-Qn (Agﬁ (LF(Agj)a aLF(Agj)7 T ,8“2LF(Agj)) "+ TUAQJ‘) |T:0

N a2
1 N Lo o
~n i:ZIH%z (Agz‘,j) Cu,jUAg, {L (g 7hl2”&9¢,ja LF(A%‘)> - D,}
1Y 1Y
~n ;l;](O) T ;H%z (Agij) §ii,jUAng1?~

Let
G (Ung,) = Qn (835, ((TF(295), 1oOLF(Agy), -+ b5 05 LF(Dg;)) ' + Uny, ))
- Qn (Agjv (LF(AgJ)v 0LF(Ag])a o 78a2LF(Ag])) /)
- aTQ’IL (Agjv (LF(Agj)v 8LF(Ag])v e 76a2LF(Agj)) ' + TUAQ]) ‘T:O .

Let i j = 1; ;Ung, - Noting that L'(z) = L(z) [l — L(z)] and F'(Ag;) € (0,1), there exists a positive constant

¢> 0 such that

N
1
Gn (Ung,) = " > [1(1) = 15(0) = 17;(0)]
i=1
N
1 670)
> 3 lexp (= lsigl) + lsigl 1]
i=1 hJ
1 a2
= 2 o (B9 I (Z £; 0'LE (Dg;) /u) fexp (= foi 1) + Isi.g| = 1]
i=1 =0
o N
> = Hon, (8gi5) lex (= fsi i) + o] = 1]
i=1
c N 2. aail®
Z ; ;Hth (Agl,]) <2’j - g) )
where the first inequality holds by Lemma 1 in ? and the last inequality follows from the fact that
2 3
efz+x—12%—%Va:>O.

By Step 1 in the proof of Theorem 5.6 in 7, there exists a positive constant ¢* such that

N N 1/2
~ ct . 1 _ -1 _
Gn (UAQJ') 2 5 min |~ > Hon, (AGij) <2501 [ﬂ > Hop, (Agi,j)%‘%j}

Ci=1 i=1

2 _
N

%

% min (HﬁAgj ‘ﬁﬂgj ) , (B.1.15)

where

N ) 3/2
{% >t Hon, (AGi ) %2.,;'}

= in -
vereztt LSOV Hon, (Agig) lsi sl
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Noting that

1/2
{% Zfil H2h2 (Ag’h]) 92,]}

> inf - > 0, (h2),
UeRa2+1 l#Jen{lﬁ,X ,n}H2h2 (Agld) ||§11‘7j|| HUAQJ‘ ||
we have
_ -1
I (hgz+1 +/In(n) /(nhg)) 2 0. (B.1.16)

In addition, by construction and the submultiplicative and triangle inequalities

G (Ung,) < 0Qu (Agj, (LF(Dg;),0LF(Agy), -+ 0 LF(Dg;)) + Uny,) ||

= iiHQilz (83i.3) i jUng, {L (i hlll'Ag”a LF(AgJ)> - Dz}
< 'iﬁ;fbhg (Agij) s1i g {L (Z i ARG LF(Ag])> H HUA%
<\ ENIH%Z (Agig) <l {L (Z hll 00 Jale(Ag])> - F(Agn}‘ |04,
% iHth (Agig) s1i; [F(Dgi) — Hﬁﬁgj (B.1.17)
i=1

Noting that L (LF(Ag;)) = F(Ag;), by Taylor expansions we have
as 1
L (Z hll,A.‘L ;9 LF(AQJ)> - F(Agi)

= [F(Ag:) — F(Agi)] +

L (Z hlll,Ag”r?lLF(AgJ) LF(Ag) + LF(Agi)> - F(Agi):|
= [F(Ag) ~ F(Ag)] + I (LP(830) i + 5 I (LF(A53) (B.1.18)

where Ag; ; is between Y ;7 hl Agh0'LF(Agy) and LF(Ag;), and

a oo

1 _
xi,j—Z A0 [0 LE(8gy) = OLE(Ag)] /1= hll,AguaLFng)/l'
l=as+1

Substituting (B.1.18) into (B.1.17) yields

%Z Han, (AGij) s1i,5 [F(Agi) — F(Agi)]

:

(B.1.19)

G (UAqJ < {H ZH2h2 Agz 7)§11] (LF(Agl)) Xi,j

N
% > Hon, (AGij) s1i L (LF(AGi ) X2

1 N
- > Hon, (Agij) s1ij [F(Dgi) —

=1

<[

= {IG1 sl + G2 | + | Gsnsll + IGansl1} | T,
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where the definitions of Gy .j, £ = 1,...,4, are self-evident. By Lemma B.2.4, we have uniformly over

]6{17 7n}7

‘Gn, (ﬁAg])) S (& ‘AgJ - Agj| HﬁAgJ

+0, (hgﬁl + /log(n)/(nhs2) + 7]2Kn) HﬁAgj

. (B.1.20)

Combining (B.1.15) and (B.1.20), we have uniformly over j € {1,--- ,n}

1) S18g; = Dgsl + 0y (hg7 + Vlog(n)/(nhz) + naic ) -

% min (Hfj&gj

which, in conjunction with (B.1.16) implies that

e

< 18g; = 84,1 + 0y (g + VVlog(m)/(nha) + marcn )

uniformly over j € {1, .- ,n}. The completes the proof of (i).

Given the above uniform rate, (ii) follows automatically.

B.1.3 Proof of Theorem 3.3.3

Convergence Rate of (@(ml), 51(351)) !
Let Uy, = (ﬁz(xz), hsﬁl(xz)) "— (gi(z1), hagi(z1))’. Let ¢ = (co,c1) and Hapy ite, = Han, (X5 — 1) for

t =1, 2. Define

N
1 . 1
Wina (c) = - E H3py i1z, {111 (1 + exp (LFi —LF;- {Co + Clhig (Xuin — @) — gi (Xl,il):| ))
Ci=1

- 1 .
+ D;LF; - [00 + e (X — xz)} - D; (LFi + LF;g (Xl,il))} ;
3
and

N
1 — T 1
Wana, (€) = > Hsny o, {111 <1 +exp (LFi +LF;- {Co +er— (Xip — @) — g (Xl,iQ):| >>

i=1 3
o 1 — -
— D;LF; - |:C() + Clhf (Xl,ig — xl)] —D; (LFZ — LFigl (Xl,ig))} .
3

Then Wz, (¢) = Wi pg, (¢) + Wa g, (¢). Let Uy, = (co — gi(21), ¢1 — hagi(z;)) € R2. Then

. 1
LF; + LF; - |:Co + 01}73 (X2 —m) —a (Xl,i2)]

—

_ - i 1 ) 1 _
=LF;+LF; {(Co —gi(z1)) + (c1 — hsgi(x)) T (X2 — 1) + i) + 5]1(4101)}13,73 (X2 — 1) — g1 (X152)
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1

— == ) 1 —=
=LF; - LF; {gz (X1,i2) — gi(r) — gz(ilfz)hghf3 (X152 — ﬂfz)} + LF; (1, I

(Xi,i2 — 201)) Uy,

—

—LF,—LF,- r1iz + LF g, i2,

and similarly,

. — 1
LF; — LF;- [Co + g (X1 — ) — Gi (Xl,il)]

— . ] 1 - 1 !
=LF; + LF; {?z (X1,01) — gi(xy) — 91(961)%173 (X101 — xz)} —LF; (17 T (X101 — 961)) Uz,

—LF;+LF;- it — LF g, i1,

/
where 74, it = 91 (X1,i¢) — qi(21) — gl(xl)h3h—13 (X1t — 1) and ug, 3¢ = (17 h% (X3t — xl)) U, fort =1,2.

Further define

ll,il(T) = H3h37ilzl In (1 =+ exXp (ﬁz + LFZ . Tzl,“ — TLFZ . uzl,il)) and

lio(T) = Hspyioe In (1 + exp (ﬁz ~ LF; - 1ry,40 + TLF, ’uzl,i2>) ,
Then we have

L) = —~LF; - gy i1 Hapg 1o L (ﬁz + LF; 1y —TLF; - uzl,il) ,

lo(T) = LF; - ug, i2Hshy 120, L (ﬁz — LF; 74,40 +TLF; - Uzl,iz) ,

—2

l/:il (T) = LF’Z . uglyi1H3h3,ilzlL/ (LFZ + LF, cTp,il — TLFl . uzl’il) , and

—

—=2 — = :
ll/:zZ(T) = LF, . ui;,i2H3h37i2IlL/ (LFl - L}?2 *Txy,i2 + TLFl . umlﬂ) B

It is straightforward to show that

15 (7)] < Ui (7) | LF s -t for £ =1,2.
Define
Ung: = arg max {Wna, ((91(22), gu(22)) + UL,) + Wana, ((90(20), u(20)) + Uy,
zy

— Whina, (9i(21), Gi(x1)) — Wana, (gi(@1), gi(21))}

N N N
1 1 1 —
= argr{ljax {n E [11,111(1) - ll,il(o)} + I ;:1 [ll,i2(1) — 11,112(0)] + o E D;H3zpy i10, LE; - Ugy i1

o i=1 i=1

1 —
o > DiHapy 00 LF; - U:c;,iZ} :

i=1
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We calculate the first order derivative at T,

N

) 1 o~ — T —=
OWina, ((91(), gu(2)) + 70U, ) = - > LF;Hsp, itz Uz it {L (LFi + LFiry i1 — TLF; - uzml) - Di} ;
i=1
and
1L — = —
OWa e, ((9u(x), () +7U,, ) = -~ ZLFiHSh;i,inluml,iQ {L (LFz‘ — LFiry 0 +7LF; - le,iQ) - Di} .
i=1

Evaluating the above derivatives at 7 = 0 yields

N
) 1 —= —
arwl,nml ((gl(x)agl(x)) + TU;L) |T=0 = _; ZLFiHQShg,ilzluml,il {L (LFz + LFi'f’ml,il) - Dl} )
i=1
1 N~ — =
O-Wana, ((9u(x), gu(x)) + 7U}) |T:0 = Z LF;H3py i22,Ug, i2 {L (LFi - LFiT.z,,,m) - Di} .
1=1

Let

Gn (Uzl) = Wl,nzz ((gl(x)>gl(x)) + Ua/cl) + WQ,nzl ((gl(x),gl(x)) + Ua’:l) - Wl,nzl (gz(x),gl(w))

= Wana, (91(2), gu(2)) — 0-Wina, ((91(2), d1(2)) +7UL) | __y — 0-Waina, ((91(2), d1(2)) +7UL) | __, -

Noting that L'(x) = L(z) [1 — L(z)] and F(Ag;) € (0,1). There exist a positive constant C; such that

N

N
G (Un) = 3 3 lia(1) = hia(0) = 1 O]+ 1 30 14(1) = 11,(0) = 1./(0)]
= i=1
N " - -5
> L5 WO fey (=[P -t ) + | TF -] ~ 1]

=1 ‘LFL : Uw,,m’

N

1 1;"(0 -

-+ E Z /\7()2 |:eXp (— ‘LFI . uwm-l
i=1 [LFi . um,il’

) + ‘LFi U, i1

]

) + ‘LFz C Uy, 52

_1}

) + ’LFz s Ug, il

N

1 . —

- E Hspy iow, L (LFi —LF;- T.m,iz) [GXP <— )LFi gy i2
i=1

N

1 S — —_
SN T (X — L’(LFi LF1>[ (—’LFI
+n§ ha (X1 — 1) + Tz i) [€Xp Ugy i1

.

where the first inequality holds by Lemma 1 in ? and the last inequality holds because

_1}

1 N 1 r—— 2 1)
chngiihg,iZml i{LFi'uxl,iQ] _E‘LFi'uml,iZ

=1

1 N 11— 2 1)
+ C1g ;H:sh,g,um, (5 [LFi 'Ux,,,il} % ’LFi S Ugy i1

z2 28

Thp—1> - .
e+ z 5 6Vw>0
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By Step 1 in the proof of Theorem 5.6 in ?, there exist some positive constant C'; and C such that

~ 1 . 1 N — 2 1 N — 2
Gn (Uzl) > g min Qlﬁ ;H3h3,ilzl |:LF2 . uzl,i1:| +Q15 ZH3h3,i2z1 |:LF1 : uZz,¢2:| 3

i=1

N 1/2 N 1/2
|1 — 2 |1 — 2
[ [n ;Hfihg,ilwl [LFi 'uwm1] + Cilp [n ;H%g,izz, [LFi 'le,ﬂ} }
C SR e
> min (’ O, ||, (1 + 1) ‘ 7., ) 7 (B.1.21)
where
— 2y 3/2
1 N .
) {; > icq Hang it [LFi : Uml,it}
l; = inf E fort =1,2.
Uy, €R?2T1

1 N
= ieq Hang it

LF;- uxl,it‘
As in (B.1.16), we have

(1 + 1) (3 + /1)) 5 o

(B.1.22)
In addition, by construction,
Gn (l{j‘Ll> S yaTWI,TL.’I;l ((gl(:r)vgl(x)) + TU;z) ‘T:O + 8"'W2anwl ((g (x)7gl(x)) + TUa/tl) ‘7—:0‘
1 &L — =
< - ZLFiHShg,ilmluwl,il {L (LFZ' + LF; 'Tml,il) - Di}
i=1
1 &L — =
+ - Z LF;H3p, i22, Uz, i2 {L (LFi - LF; '%,,m) - Di}
i=1
1L — =
< ||Ug || {Hn ZLFiH3h3,i1mlMxl,it {L (LFi +LF;- Tz,,il) - Di} ‘
i=1
1 &L — =
+ - Z; LF;H3p, io0, oy it {L (LFz‘ —LF;- T;tl,iZ) - Di} ’}
= [|Us, | {Il D1 (z0) | 4 ([ D2n (z0) I} (B.1.23)
1 !
where fiz, it = (17 T (Xl,it - fUl)) .
Note that L (LF;) = F;. By Taylor expansions,
L (ﬁl — LFz . ’f’zl#ig) - DZ
_ —_ 1=
=L (LFz' + LF; — LF; — LF; [g1 (X1,2) — 91 (Xi,52)] + §LF1:gz($zi) (X100 — Iz)2> - D;
=L(LF; 4 04,42) — D;
1 _
= Fi = D; + L' (LF3) 0 i + 5L (LF3) 0, 2, (B.1.24)
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where 611 2 = ﬁl — LF; — LFZ' [§z (X“Q) —q (leig)] + %L.Figl(i'l,ig) (Xl,ig — 1‘1) T2 is between XMQ

and z;, and LF; is between LF; and LF; + 0z, ,i2- Similarly,

L (fﬁl + LFl . Tzl,il) — Dz
—-L (LF +LF; — LF; + LF; (g (X1.1) — 9t (X0.0)] — S LFidi (@) (Xpin — 1) ) -D;

D;
(B.1.25)

=L(LF;+6g4,1) —
63; 1

1 _
—F—D,+ % (LFz) 6”"2‘1 + §L/l (LF )
T1i1 1s between X ;1

where 64, i1 = LF; — LF; + LF; (3 (Xi) — g (Xp.01)) — SLF60(T01) (X — ),

and z;, and LF; is between LF; and LF; + 0z,,i1- Let

Then by (B.1.24),
1 n — — -
Z Z LF;Hsh, iz, fay it (Fi — D;) Z
i=1 i=1

+= ZLF Hny o oy it L' (LF3) 02 + o ZLF Hp iz, fray it L (LF) 02, 55

—

LF *LF H3h3,z2zzﬂxl,zt (F D)

—

= Din,1 (@) + Ding2 (21) + D13 (1) + Dina (71)

It is standard to show that
( 1/(nh5)) for each z; € A} and

0, ( log(n) /(nhg)) .

[ D11 (@)

ma D (a0)]

In addition, we can show that D12 (z;1) = Op (M3kn), Dinga(z1) = O (h3 +773Kn)7 and D1, 4 (27)

O, (h3 + n3k,,) uniformly in ; € &; by using Theorem 3.3.2. It follows that

Dip(z) = O, (hg ++/1/(nh3) + ngKn) for each z; € X} and
max [|Din (2] =

T, €X] P (h% + \/me 773Kn) .

The same conclusion holds for Da,, (z;) . Consequently, by (B.1.23)

G (T) < 0y (1 + VTR + ) |

(B.1.26)

Us,

Combining (B.1.21) and (B.1.26), we have

j) <Op (h% +/1/(nhs) + 7731(71) .

c . -
3 Min 1
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This result, in conjunction with (B.1.22), implies that

|0 = 00 (13 + V/17E3) + ).

In addition, our conditions ensure that n3x, = o (h% ++\/hs/ n) . It follows that

~ 1~ 1,
(), —a(x) | — | a(z), —alz) :’
h3 hs
The above results can be made to hold uniformly in x; with little modification: max,, ey, ‘

Op (13 + log(n)[(nFs)).

~

Us,

~
Us,

=0y (13 +/1/(nhg))

L

Uz

Asymptotic Distribution of (@(Il), ;l(xl))
Noting that (@(xl), h3§l(ml)) "= argming, ¢, Wh,a, (co,c¢1), we have

aWn,wl (CO7 cl)

8(00’61)/ (co,e1)=(Gu(x1), h:agl(%'l))
~ OWi ng, (co,c1) OWa nz, (o, c1) —0
d(corc1)’ (e .en)=(@uta), hsfi(en) 9(corc1)” licosen)=(au(m), hsdu(ar))”

Since we have already proved that (ﬁl(xl), El(xl)> "B (), ailx))’, (ﬁl(;vl), gl(xl)) " is close to
(gi(z1), gi(zy))’ for sufficiently large n and we only need to examine the minimization of W, 4, (co,c1)

around (g;(z;), hsgi(z;))’. By the first order Taylor expansion, we have

0 _ 8Wn,zl (COacl)

9 (o)’ ap)=(guar), hsfiten)
_ 8Wn,.1:1 (00761)
9 (co, 1)’ (a,b)=(g1(21), hagi(z1))

82Wn,wl (CO7 Cl)
8 (CO, Cl)/ 8 (CO7 Cl)

Gi(zr), h3§z($l)) "= (gi(xr), h3§l($l))/} ,
(coser)=(g7 (z1), hag; (1))

where (g} (x1), hsg](x;)) lies between (@(zl), hg/g'\l(a:l)) and (g;(z;), hsgi(z1))-
By the Taylor expansions in (B.1.25) and (B.1.24), we have

OWin,a, (co,c1)
8 (C()7 Cl) /

(co,e1)=(gi(21), hagi(z1))

1 L — 1
=—— ZLFiH3h3,i1z, (1, — (X1 — ml)) (Fy — Dy)
ni4 hs

N
1 , -2 , 1 ,
o ;L (LF:) LF; §1(%13) Hap i ((Xl,il — 1) i (Xi,i1 — 1)
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— 1 _ —
) LFiHapy i1s (17 T (X1 — 901)) {LFi —LF; + LF; (g (X1,i1) — & (Xl,ﬂ)]}

2\»—‘
Mz

= 1
L" (LF;) LF;Hsp, i1a, < s (X101 — wl)) 862,015

|
gl
-1

=1

and

0(co,c1)’ (a,0)=(g1(z1), hagi(z1))
1 N - 1

== ZLFZ‘HSh:;,inl (1, — (X2 — xz)) (F; — D;)
i hs3

N
1 — 1 TS
+ o= Y LF;Hsn, iz, (17 T (Xpi2 — ﬂfz)) L' (LF;) LF (1) (X1a2 — 1)’

N
+ :Lz;z}iH3h3,izzl (17 h% (X142 — xz)) L' (LF;) {fﬁz —LF; — ZEZ G (Xi42) — o (Xl,iZ)]}
1o 1 1, -
+- ;LFnghmzl (1, E (X142 — xl)> + 5L" (LF;) 62, 1o
Given the above results, we can show that

x1), hagi(z . 2 . h3kKa1
Vil | P I 1 (LF(g0) L (09000 | Xt = ] e |
4N (0,{ B[ LF (290X P(8g(X0) [L = F(Dg(X0))]| Xin = o]
-2 Ko2 0
B [LF(8g(X)F(8g(X) [1 = F(A9(X)]| Xi = 1] | .

Wz (gi(z1), hagi(®1)) _ OWn,o (co,c1) and K,y = ‘/ ue [Hg(u)]bdu.

where a(corer)’ = T B(coe1)

(co,c1)=(g1(@1), hsg(z1))
To derive the linear expression and asymptotic distribution of (al (z1), hsg, (Il)) . we calculate the

second order derivative:

82Wn,zl (607 Cl)

!
9 (co,e1) 90, €1) (e ,e1)=(g1 (1), hagu(an))
62W1,’n$1 (005 Cl)

62W2,n$l (COa Cl)

= 7 !/
9 (co, e1) 9 (co,€1) l(co,er)=(gi (@), hamnt@)) 9 (€0,€1) 0 (€0, €1) leq er)=(auw), hagu(an))
N o, _
1 ; = : 1 _
= (LFq) Hspy iva g it L (LFi —LF;- {91(1‘1) + hagi(x)— s (X1 —x) — Gi (Xl,il)])
i1
1L ==\ 2 — =
+ - (LF,) Hspy i9a, fiay il (LFi +LF;- {gl(ﬂﬁi) + hsgz(Iz)h (X2 — @) — Gi (Xl,iQ):|>
i=1
) , . 10
2 9B [L (LF(Ag(X))) LF (Ag(X)))Xl - xl}
0 Kop
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= {B[1 WF(2g(x)) LF* (89(X)| Xi1 = 21| + B [ L' (LF(8g(X)) LF*(8g(X))| Xp0 = ] }

10
X
0 Kop
= {B[LF (0g(X)F(89(X) [1 = F(Bg(X))| X1t = ]

) 1 0
+ B[ 1P (Ag(X)F(Ag(X0) [1 - F(5g(X0))| Xtz = 1]} (O ) ,

/
where My it = <1, h%s (Xl,it — .Tl)> (1, }% (Xl,it — l’l)> for t = 17 2.

It follows that

(@0, hadu@n)’ = (), hogu()’

82WTL,Z{ (CO7 cl)
(9 (Co, Cl)/ 6 (CO7 Cl)

-1
) aW’!L,fL‘l (007 Cl)
!
(co,c1)=(g; (@1), hsg} (z1))’ 9 (co, c1) (cosc1)=(gi(®1), hagi(z1))’

N -1
1 L \2 /
“\n Z (LF%> Hshg itz pray it L (L)

i=1
1o . 1
x n ZLFiHBhs,ilzz (17 s (Xp,i1 — l’l)) (F; — D)
i=1
1 X , o , 1 ,
+ % ZL (LF’) LFigl(xli)H?’hsyilzz (Xl,il - wl) y h73 (Xl,il . xl)
i=1
1o . 1
+ I ZLFiHBhg,wzl (1, hig (Xi42 — l’l)) (F; — D)
i=1
1. 1 , o )
+ % Z LFiHShg,zQzl 1, E (Xl7i2 — xl) L (LF,L) LFigl(xli) (leiQ _ xl) + ]{3717
i=1

where || Rs,||= O, (hg +\/hs/n+ 773Kn> . Then

g1z T h3k21
(1) ) )
0 hs gi(z1) ai(x1) 0

N (0.{& [P (g0 F(Ag00) L~ Fg(0)]| Xeir = ]

+ B[ LF (8g(X)P(89(X)) [1 = F(Dg(X))]| X2 = ] }_1 (T 0)) ’

Noting that LE(-) = L~Y(F(-)), we have

L' (F(Ag(X))) _ 9[In(F(Ag(X))) —In(1 - F(Ag(X)))]
oz ox

LF(Dg(X)) =
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F(Lg(X)) | F(bg(X)) F(Lg(X))
F(Ag(X))  1-F(Ag(X))  F(Ag(X))[1 - F(Ag(X))]

and then we have the final asymptotic distribution of (’g\l(azl) 4 (xl)),

(\/ nhs 0 ) (:‘il (xl)) (gl (sz)) 1. (hém) ]
_ ~ -1 - §9l (1)

0 nh3 gi(r) gi(zy) 0

4y (07 {E P2 (Ag(X)

F(Ag(Xi))[1 = F(Ag(Xi))]
K02 0

This completes the proof of the theorem.

F2(Ag(Xy)) X1 — 21 -
F(Ag(X:)) [1 = F(Ag(Xa))] |~ '

+FB

‘ X1 =x

B.2 Technical Lemmas

In this appendix we state some technical lemmas that are used in the proofs of the main results and then
prove them.

Recall that m; = E (D;|X;), mj; = mj —m;, Hip, ji = Hip, (m; —m;), and fp,(-) denotes the PDF of
m;. Let n(m;) = E [APi{;*l’KAP;;*LKﬂmi)} for j # .

Lemma B.2.1 Let Ly, and Lo 1 be as defined in the proof of Theorem 3.8.1. Suppose that the conditions
in Theorem 38.3.1 are satisfied. Then

(i)l Lot — E (Lo || = Op (W) NE (Lomt) = E [n(mi) fm (mi)][| = O (Kh™) = 0(1), and Amin (Lo,n1) =
Ci1/2 w.p.a.1;

(i) | Lonell o, = Op (KY2hy Mien) = 0p(1) for £=2,...,7;

(iii) || Lo — E [n(mi) fm (ma)]ll,, = 0p(1) and Amin (Lon) = C12/2 w.p.a.1.

Proof. (i) By the variance calculation and Chebyshev inequality, it is standard to show that
1 K—1,K n pK—1,K K—1,K r» pK—1,K
= Y AP AP i - B (AP AP i | = 0y (VETR) -
1<i#j<n

By Taylor expansions and the i.i.d. condition on {X;}, for any j # i

E [APﬁfl’KAPZ-{;*l’K'HMI (mj — mz)} = E {n(m;)Hp, (m; —m;)}

m —m;

=5 otm) [ - Ea (") o o)
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=F {n(mi) / Hy(u) frm (my + hu) du}

= Bln(m) fo (mo)] + O (k) E [n(ma) £5°) (m0)]

Noting that HE { m; fm ] H = , the second part of (i) follows. By the Weyl’s inequality,
)\Inin (LO,nl) Z >\Inin (E (LO,nl)) - HLO,nl -F (LO,TL1)||
2 )\min (E (LO,nl)) - Op (\/ K/n>
1 a
> S (B [10ma) fn (m2)]) = O (KR™) = 0, (VE/n)
> Cy11/2 w.pa.l.

(i) As in part (i), we can readily show that [|Lonell,, = Op (K1/2h1_1171Kn) =o0p, (1) for £ =2,...,7. For

example, for Lg ,2, we have

1 B . )
Honallop = |75 Y APRSTHEAPSTNE T Hu, (myi) (my —my)

1<i#j<n op

IN

1 ¢ - K—1,K A pK—1,K1; —17
-1, —1,K/ y
1%a<><R|m] m| 3 E E AP AP hi " Hip, (myi)
=1 |[i=1,i

= 0 (K1/2771Kn) Oy (hi') =0, (K1/2hI1U1Kn) =o0p(1).

op

(iii) The result follows from (i)-(ii) and the Weyl’s inequality. m

Lemma B.2.2 Let Ly, L1y and Ly 2 be as defined in the proof of Theorem 3.3.1. Suppose that the
conditions in Theorem 3.3.1 are satisfied. Then

(i) |Lvsll = Op (VETn+ VER )

(i) [|1L1,nell = Op (mikcn) for € =2,3;

(iii) | L1 ,nell = Op (mxcn) for € =4,5,6,7;

(i) |1l = Oy (mscn + VERL).

Proof. (i) Note that m; = E (D;|X;) = F (Ag;) under Assumption 2. First, notice that

1
Lim=_5 > (Lgi— Agy) APSTVE Hyy, (mj — mi) =pnUtn,

1<i#j<n

where

1 -1
n n
Uln:(Q) Y (Bgi— £g) APSTV K Hy, (mj—m»:(Q) > an(Xi X)),

1<i#j<n 1<i<j<n
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On = (g)/n2 — 1/2 as n — oo, and ¢in(X;, X;) = Ag,JAPK 1KH1;,,1 (mj;). Note that qi,(-,-) is

symmetric in its two arguments. Let
r1n(X;) = E[qun (X, X;)|X;] for j # i, and 61, = E [r1,(X;)],

By the Hoeffding decomposition (see, Theorem 1 in Section 1.6 of Lee (1990), we have Uy, = 91n+U(1)+[U§33,

where
1 n
U(;l) — Z [r1n(X;) = O1n]
i=1
s
[Ug?n) = (2> Z [QIn(X27 XJ) - Tln(Xi) - Tln(Xj) + Hln} .

1<i<j<n

Note that for j # 4,
B lan(Xe X))|* = B [tr{(8gi,)* APSTEAPSTH Y, (my) }] = 0K = ofn).

2
Then by Lemma 3.1 in Powell et al. (1989), £ HUS) ‘ — o(n=1) and thus UP= o, (n=1/2). It remains to

study 6,, and 10
Let pp (m;) = E [APinl’K|m@} . pg (M) = E[Agilm;] and p(m;) = E [Ag,;APinl’K|mi] Note that

T (X;) =E [(Agi — Agy) APSTVE Hy, (my) \X]} [AngPK S Hon, (mys) \Xj]*AQJE [Apﬁ_l’Kthl (myq) |X]}

Tin1 (X;) — Tin,2 (X;) . By straightforward moment calculations and the independence of {X;}, we have
_ K-1K K—1,K

a1 (Xj) = E {Agi [AP]- - AP } Hip, (my;) |Xj}

= AP]K717KE[ (Agilmi, X;) Hipy (myi) [ X5]
- E{ {AngPK M) \mi,Xj] Hipy (mji) \Xj}

= APSTVEE pg (my) Huny (i) |X5] — E{p (m) Hup, (mys) \X-}

Sl P (m m])fm yam— [ pGm (mglm])fm(m)dm

= AP gy () o im5) + 25 90 gy o) £ <m>]\m:m_ +oli)|
= [o0m) £ )+ 255 00 o ) ot

and
Pins (X)) = Ag]E{[APK LK _ ApE-T K] Hun, (mji) X, }
= Ag;APF VR E[Hy,, (my) | X)) — Agi E {E [APZ-K_LKWian} Hip, (myj;) |Xj}

= ANg; APV E[Hu, (myi) |X5] — AgiE {pp (ma) Hup, (my:) [ X5}
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= BgyPEH £ ) + L1 )+ 08|
1!

ay
hi

= By ) () + 57 000 (o () 1 ] 0]

Then it is easy to show that
100all = 1B [r1n1 (X5)] = Elrane (X))l = 0 (VERE)

where we use the fact that

B{8g; 8P f () = Dg; lp (my) fra ()]}
—E{ APy (m5) fin (m5) = p () fn () }
= {B[8g0PF fy (m))] ~ Elp(m;) fin (m)]}
+E{APS T py () i (mg) = Dg; [p () fn ()]}
= {B[E(8m:Pf ;) i ()] = B lo (mg) fn (ms)]}
({2 (APF Ty ) py (my) fin ()} = E{E (Bgslm) [p (ms) i (m,)]}]

= 0+0=0

by the repeated use of the law of iterated expectations. In addition, we can readily show that E ||r1,, (X)) I? =

O(K) and E H = Op(y/K/n). Consequently, we have

‘o W
inll =O(K/n). Then ||U;,;

103l < 1610 +2[[U52)

=0, (VEN) +0, (VE/n) + 0p(n~"/2) = 0, (VERS + VK [n).

Then the result in (i) follows
(i) Recall that Ly 2 = — ZK#]@ Agi APETUE R Hy, (myq) [ — my], where mj = L (R(X;)'7).

It is easy to see that

2 .
Ll,n2 = ﬁ Z Ag] PK 1Kh lthl (mﬂ)[mj —m]-]
1<i#j<n
2 _ _
= ) Z don ((Xu XJ) 77T) = 2(107LU27L (ﬂ‘)
1<i<j<n
where
Gon (X0, X5),m) = W' Ag; APV Hipy (myi) [L(R(X;)'T) — my)
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+hy A AP Hpy (mig) [L(R(XG)'m) = m)

{£g; [L (R(X;)'m) = my] + Dgi [L (R(X:)'m) —mi]} hy AP Hupy (myy)

1
%m:?52qm&mm,
2) 1<i<j<n
and @, = (")/n2 — 1 as n — o0o. Here we use the fact that thl (m) = *thl (—m) by the symmetry of

H; and APK LE APK LK By construction, gan (X3, X;),m) is symmetric in (X;, X;).

It suffices to determine the probability order of Uy, (7) by studying the U-process {U, (w)}. Let
Ton(Xj,m) = Elgon (X3, X;),7) |X;] and b2, (1) = E[r2,(X;,7)]. Then we have the following Hoeffd-
ing decomposition:

Usp (1) = 02, (1) + 20 (1) + UR (7)

where

n

U ) = 3 ran(Xm) — 20 (1)
Us) (m) = i) (a2 (X3, X;) ) = 720 (X5, ) = T20(X;,7) + 02 ()]
2/ 1<i<j<n

Let 0; =0, = L (R(X;)'w) — m;, where we frequently suppress the dependence of ¢; on 7. Note that
ron(Xj,m) = hi'E [{Agj [L(R(X;)'m) = my] + Ag; [L (R(X;)'m) = mi]} AP Hup, (mig) |Xa}
= hT Ag;0,E [APK SEFL L (mag) | X ] +hT'E [Agﬂ; APEVE L (mag) |X; ]

= rop,1 (X, ) + ran2 (X, ).

Note that
Tgn,l(Xj,TI') = h lAgJ(S E |:A K L Kthl (mu) |X :| — h IAg]5 APK L KE |:IT.[1}L1 (mw) |X]]
= hi'Agi6E [PP (m;) Hip, (mi;) \Xj] - hf1A9j5jAPJK71’KE [Hml (mij) |Xj]
= 30y [ 8 ) pr(ony ) f oy )
—hi'Dgio, APV / Hy (w) fon (my + hu) du
= —Ag;6;0[pp(my) fm (m))] + Agi0; APE VKD fr (my) du + rony o (X, )
and
ron2(Xj,m) = h'E [Agi(siAPiK_l’KHml (mij) |Xj] - hflﬁij_l’KE [Agi5iﬂ1h1 (mij) |Xj]

= hi'E [ps (mi) Hny (mij) 1| = b APSTVEE [ pag (ma) Hing (myg) |X;
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= hl_l /H1 (U) pé(mj + hu)fm (mj + h’u) du

fhl’lAPijl’K/Hl (uw) psg (mj + hu) frm (mj + hu) du

=0 [ps(m;) fm (m)] + APF V0 [psg (my) fon (M) + 2,0 (X5, 7),

Where Ps (mz) = F (AgiéiAPiKil’K‘mi), ,059 (ml) = E(Agzdz\mz), Tgnl,a(Xj 7T) and 7'2n2,a(Xj,7r) de—
note the remainder terms in the first order Taylor expansions, we use the fact that [ H; (u)du = 0 and

[ Hy (u) udu = —1. Note that

[psg (mj) pp(m; + hu) — pp (m;) psg (M + hu) — ps (m;) + ps(mj + hu)] frn (m; + hu)

1 1 1
= hulpsy (my) p) (my) — pp (my) p51) (my) + p§"

(m)] fn (M + hu)
58P lsy (mg) o2 03) = pp (m3) o2 (m3) + 2 ()] fon (s + )
= oy o (- hos) - SRt i (ms + )
where m lies between m; and m; + hu, ¥1; = psq (m;) pg)(mj) —pp (m;) p((;lg) (mj) + pgl>(mj) and 1 =
pig (my) pip () —pp (my) piy (m3) + py” (m3). Then

Hgn (7‘(’) = E[Tgn’l(Xj,ﬂ') + TQn’Q(X]‘,ﬂ')}

hy'! /H1 (u) E{[psg (m;) pp(m; + ha) — pp (m;) psy (m;j + h)
—ps (m;) + ps(m; + hu)} fon (m; + hu) du
= /m (W) UE [ (M + hu) ] du + %/Hl (u) u?E [fm (mj + hu) ta;] du
= Oon1 (7) + Oz (7).
Noting that m; = E (D;|X;) = F (Ag;) = L (LF (Ag;)), we have by Taylor expansions,
§; = L(R(X;)'m) — E (Dj|X;)
= L(R(X;)'m) — L(LF (Ag;))
= L(LF (Agy)) [R(X;)'m — LF (Lgg)] + %L (LF (Ag;)) [R(X,)'m = LF (Ag;))”
= L(LF (Ag))) R(X;) (m —7°) + L(LF (Ag;)) [R(X;)'7° — LF (Agy)]
+ %L (LF (Ag;) {R(X;) (m = 7°) + [R(X;)'x" — LF (Ag;)] }
= L(LF (Ag)) R(X;) (m —7°) + L(LF (Agy)) [R(X;)'7° — LF (Agj)] + 62,

where Ag; is between R(X;)'nm and LF (Ag;). Note that

2
sup max |d;.0 sup R(X,) (7 —7°
[|[m=mO<Cnikn 15]3’1‘ ” = [|[m=mO<Cnikn H ( J) ( )H
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+ sup HR ) —LF(Ag])H

|m—mO<Cnircn

IN

K ||r— >+ 0 (K=2) = 0 (Knig,)

max |R )7r —LF(AQJ” = O(K‘”), and

1<j<n

sup max |LF (Ag;) — LF (Ag;)] < O (\/?7711(”).
lr—m0 || <Cngen LSTST

In addition,

A

sup E(82) sup E|R(X;) (m—77) ‘ )"+ E [R(X;)'x° —LF(AgJ)]2

lmr—mO | <Cmirn ' lmr—mO | <Cmrn

2
+ sup max |J; 2]
jmax [0j,
lm =m0l <Cmigcn *=I=T

O (771Kn) + O ( 2’YF) + O (KQnilKn) = O (n%Kn) .

By these results and the uniform boundedness of L and ﬁ, we can readily show that for [ = 1,2,

Elfmmi)ens) = E{[psg (m) o my) = o (my) o) (my) + 0§ ()] fon (m3) } = O (i)

L1 ) vii|| 5 B{|psa (ms) o) (my) = pr (my) o8y (my) + 5 (mj) | } = O (KM 20 + K, )
uniformly in 7 with ||7r - 7T0H < Cmign- Then

sup 0251 ()]
7= |<Cnikn

sup
[l =70 <Cnikn

/Hl (u) ul [fm (TTL]- + hu) 1/)1]'] du

sup

=m0l <Cmrcn
h% g 3 2

+?/H1 (w) wduB [f$2 (m7) v,]

2

sup B )]l s [R5 () ]|

IO | <Cmrren 2 w0 <Cmxn

= O (nkn) +h0 (Kl/inKn + Kﬁum) = O (MmKn),

B o ) )+ [ ) B (£ ) ]

A

where the second and third equalities hold by the second order Taylor expansions and the fact that
[ Hi (u)udu = —1 and [ Hy (u)udu = 0 by the symmetry of H; (-). Analogously, we have uniformly

in 7 with H7T - 7r0H < Cmikn,

sup |Oon2 (m)] = sup
[|[m=mO<Cnikn [lm— ﬂ‘)|\<0nu<n

h /H YU2E [fon (M + hu) ;] du

Hy (u) WP duE | fD (m3) ¢
flm— 7"0”<CW1KW / 1 [ ] ( J) 2J:|

A
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It follows that

sup — |[an (m)] = O (n15cn) -

lm=mO<Cmxn

Similarly, we can show that

Bl )| e = o)
[|m=mO <Cnirn
and
E sup Hqgn (X1, X9), H ]
_HW*‘”OHSCUlKW
- K-1,K 1 2
S E sup HAQI [L (R(Xl)’ﬂ'o) —m] hflAPl,{ S Hyp, (ml’z)H
LIm—m I <Cmixn
| . 2
S 8| s [[{se L (ROGYT) L (ROGY )] AP i )| }
L7 =mOl[<Cmrn
1.0 -1 K-1,K y 2
+E sup H{Am [L(R(X1)'7%) —ma]} hi " APy " Hip, (ml,Q)H }
|7 =7 <Cnixn
7 (0 0 1A pK-1,K7 2
S E sup H{AQIR(XI) (ﬂ' — T )}hl AP1¢2 ’ thl (mlﬁg)H
|7 =70 <Cnikn
/.0 1A pK-1,K 7 2
+E| s [{ag [L(RE)T) —ma]} AT AP 1Hm4mmw}
lr =7 <Cnikn

S MK,
Then by Corollary 5.3 in 7, we have
- _ 1/2
sup |0 ()| S0 (K ,) () = 0 (1)
lm—mO | <Cnkn
By the empirical process theory, we have
sup HU&Q (7T)H =0, (n71/2K1/2 In (n)) = Oy (MKn) -
=7 <Cmixcn

Consequently, we have

10 @IS swp e (m) +208) (1) + UG ()] = O (msca)
|7 =m0 <Cmixn

and || L1 n2|] = Op (M kn) - Analogously, we can show that ||Li 3| = Op (Mikn) -

(iii) It suffices to obtain the rough probability bound for || L1 ,¢| with ¢ =4,5,6,7. For example,

K-1, — 2
1ZansllS |1h*— Y AgAPSTV Hi, i L(R(X)'T) — B (D)1X;)]
1<z#]<n
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51
§h12ﬁ Z HAQJAPK 1KH1hl g

‘L (LF (Agy) R(X;) (7 — 7°)

1<i#j<n
a1 )
Fhs S g ans i, ] | [ROGYE - LF (89))]
1<i#j<n
o1
+hi2= HAgJ PK IKthlﬂ |632\
1<i#j<n

= hl_zop (Kl/Qn%Kn> =+ h1_20p (Kiz’y) + hl_zop (K277411Kn) = Op (ann) .

Similarly, || L1 nel| =Op (ann) for £ = 5,6, 7. Alternatively, we can use the arguments as used in (ii).

Note that Lin4 = oz Z1<1¢]<n Agi g APETVEhT2 Hyp, (myi) [y — ma) [y —my] . Tt is easy to see

that
1 ..
Ll,n4 = W Z Agl] PK ! Kh 2H1h1 (mﬂ) [’ﬁlz - ml} [mj - m]']
1<i#j<n
1 _ 1 _
= ? Z q3n ((XhXj)yﬂ') = §(PnU3n (77)
1<i<j<n
where
gsn (X3, X)) = Dgig APV R Hy, (mya) [L(R(X)'m) — ma) [L(R(X;)'7) —my]
1
Usn (1) = v D> @sn (X0, X;),7),
(2) 1<i<j<n

and ¢, = (g) /n? — 1 as n — oco. It suffices to determine the probability order of Us, (7) by studying the
U-process {Us,, (1)} . Let r3,(X;, 7) = E [g3n (Xi, X;) ,7) |X;] and 05, (1) = E [r3,(X;,7)]. Then we have

the following Hoeffding decomposition:

Usy, () = 03, () + 20 (1) + UP (),

where
1 n
1
U (1) = = fran(X;,m) — 3 ()]
i=1
1

Ui(’jz) (ﬂ—) = Tn Z [Q3n ((Xi>Xj)77T) _T37L(Xj77r) _7”37L(Xj77r)+93n (W)}

(2) 1<i<j<n
Note that

Tan(Xj,m) = B {AgmAPK SRy, (myi) [L(R(X;) ) — ma) [L(R(X;)'w) — my) |Xj}
= h26,E [ Agi 6 SPST funy (i) X

= hy26,E [Ag,é APEVE Ty (my) |X; ] h26,0g,E [5 APEVE [y (my) |X; ]
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= T3n71(Xj,7T) — T3n72(Xj,7T).

Note that
r3n,1(Xj77T) = h1_26JE [Agl(slAPZK_l’Kthl (mﬂ) |XJ:| - hl_Q(S]APJK_l’KE [Agzcﬁ,th] (m],) |X]]
= h%6,B [p(mi) Hun, (i) 1X;] = b2, 5P VB [pgs (i) Hiny (my2) 1X;
= hf26j/ﬁ1 (u) p(mj + hu) frn (M + hu) du
5, AP [ () g oy ) f o+ )
1 1 -
= §5j62 [p(mj)fm (m])} + §§JAPJK 17K82 [pg(; (mg) Jm (mJ)] + T3n1,a(Xj7 ﬂ-)a
and
7‘37L72(X]' ﬂ') = h;Q(SJAgJE {(SiAPiKil’KHl}Ll (mﬂ) ‘XJ] - h;z(SjAngPjKiLKE |:5iH1h1 (mﬂ) |XJ]

= hi?8;0g,E {P&P (m:) Hip, (mi;) |Xj] — h%8;0g; AP E [p(s (mi) Hin, (mj;) |Xj]
= 28,0, [ B ) par(ms + ) oy + )
—hi28;Ag;APFTHE / Hy (u) ps(my + ha) fu, (mj + hu) du
1 2 1 K—1,K 52
= 59589507 lpsp(my) fm (mj)] + 50,89, AP0 [ps (115) fin (1)) + 32,0 (X5, ),
where 73,1,4(X;, 7) and r3,2,,(X;,7) denote the remainder terms in the second order Taylor expansions,
and we use the fact that [ Hy (u) du =0 and J H, (u) udu = 0. With the above results, we can readily show
that
03n (m)| = [E [r3n,1 (X, m) + 730,2( X5, 7))
% |E{6;0;0% [psp(my) fn (mj)]}] + % ‘E {@AQJAPJK*I’KW [ps (M) fm (mj)]}’

03n,1 (7T) + 63n2 (71') .

A

uniformly in 7 with H7r - 7T0H < Cnign. Then

sup 031 (7)] = sup |E {6,950 [psp(my) fm (m;)]}]
lm=mC<Cmxn [lr=mO<Cmrcn
1/2
S s [B@)]{EN0 lesr(my) i )]}
[lr=mO<Cmxn
= O(mxn)O (Kl/QmKn) =0(MmxKn),
where we use the fact that sup E(82) = O (nig,) and sup E |02 [psp(m;) fm (mj)]H2
lr =m0 <Cnikn lr=mO | <Cmkcn
=0 (Kn?g,) . Similarly, sup 1030.2 ()] = 0 (N1Kcn) -

lm =m0 <Cnikn
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Similarly, we can show that

E sup Ir3n (X1, m)|*| SK*n,, = o(K)
lm =70 <Cmkn
and
E sup lgsn (X1, X2), 7))
w0 lI<Comi
. 2
< E sup HAngAPl{({l’Khl’zthl (may) [L(R(X,)'w) —ma] [L (R(XQ)’W)—W]H
=m0 <Cnikn
. 2
S max  swp Humxw%meMmmmﬁ*%ﬁmmmmM
LSISP |7 — 70| <Cmikcn ’

= 0 (KQU%K’II) 0 (Kh_s) =0 (h;5K3nilKn) .
Then by Corollary 5.3 in 7, we have
_ _ 1/2
sup ||US (@) | S n 7t (K ndiea) P () = 0, ()

7= <Cnxn
By the empirical process theory, we have

sup (U5 ()| = 0 (n 2K M2 (1)) O (K 21m1scn) = 0 (1)

lmr—mO | <Cmircn
Consequently, we have
Won DS sup |8 (m) + 208, () + UL ()| = 0, (mscn)
=m0 <Cmigcn

and ||Lq nall = 0p (Mrn) . Analogously, we can show that || L1 e[| = op (11xn) for £ =5,6,7.

(iv) The result follows from (i)-(iii).

Lemma B.2.3 Let Loy, Lani, ..., Lonr be as defined in the proof of Theorem 3.53.1. Suppose that the
conditions in Theorem 3.3.1 are satisfied. Then

(i) | Lall = Op (K=71/2) 5

(11) | Lonell = 0p (K77Y) for £ =2,..,7;

(iii) || Lap|| = Op (K~7+1/2).

Proof. (i) Note that

2 5]

1 _
|L2n1ll = 3 Z (APY! By — Dgij) AP;; Y H o i
1<iAi<n
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1
SQHIZELX’APIK,ﬁ()*Agl’ﬁ HAPK 1KH‘H1h1,ji|
1<i#j<n

=0, (K77) 0, (K'1?) = 0, (K~7+1/2)

(ii) Note that

1 - _
ﬁ Z ( PK/ﬁO - Ag’b J) AP:{; I’Kh thuﬂ ( mJ)
1<i#j<n

HL2,7L2 ||

hit :
. K/ . 1 K—1,K
2ml4x ’APi Bo — Ag,-’ max | —my| e E HAPM H ’Hl}lhji
1<i#j<n

Op (K77) 0, (Kl/zann) Op (hl_l) =0, (K77).

IN

Similarly, we can show that ||Lg n¢| = 0, (K=7) for £ =3,...,7

(iii) This follows from (i)-(ii). =

Lemma B.2.4 Let Gy p;,...,Ga,nj be as defined in (B.1.19) in the proof of Theorem 3.8.2. Suppose that
the conditions in Theorem 3.3.2 are satisfied. Then

(i) There exists a positive constant cp such that |Gy njl| < cr|Ag; — AGj| + Op(h5>TY) uniformly in
j=1,2,...n

(ii) There exists a positive constant cp such that ||Ga;l| < cr |Agj — Agj| + Op(h> ) uniformly in
1=12,...,n;

(i) maxs < |G 1< Op ()

(iv) maxi<jcn [Gansl|< Op (v/In () /(nh2))

Proof. (i) Recall that gu,j:(lwf%gi?j,.,haz Al )'and

as 0o

1 _
xi,j=2 A0 [0 LE(8gy) = OLE(Ag)] /1= hll,AgwaLF@gﬂ/v
l=as+1

Then
1G1,n5l

< 125 Hans (05 (1 8o g )
=n 2ha 9i,j 7h2 Gijs 7}1;2(12! gi,]‘

i=1

x L' (LF(Ag:)) {Z hlll,Ag” [0'LF(Ag;) — ' LF(Ag))] /Il— > hll'Ag”a LF(Ag; )/l'}‘

l=as+1

<D _0'LF(Agy) — 9'LF(Dgy)| /1
=0
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N
1 i) (1 ng L age ) |
nZ%Mmm@MMW7WMA)LWMMMﬁMﬂ

=1

(o) N
1 1 1
I'LEAG)| /1= Hpuy (AGij) (1, —DGijy s var— NG ) 'L (LE(AG; Ag
o X ol m| L3 55) (Lo G O3 ) ' (EF(88) 70
o .

=Gyipnj1+ Ging2

By the uniform boundedness of all finite order derivatives of L (-),

e |1 1 1 NN
— — - —a 7
1Ginjall < ClAg; — Agl ; - ;th,2 (Agig) <17 EAgi,ja"' 77}1;2&2!&913) ( ho >
as N
< Clog—0gl)y - > N Hon, (8gij)ll < ClAg; — Al
=0 =1

where recall that C' can vary over places. For Gy 2, we have

N
1 a Agi
52|Hh2 (Agm |H( Agm"" ) g 2)” ( gJ)

i=1

oo

>

l=as+1
= Op(h3"*")

N

where we use the fact that max; |Ag;| = O, (h3). It follows that G1.,; < cr|Ag; — Ag;| + O, (hs>*h)
uniformly in j € [n].

(ll) Note that GQ,"j = (G27nj70, ceeny GQ,nj,ah2> s where

N l
1 1
GQ,nj,l = E ZH2h2 (Agz,j) (EA§27]> [F (Agl) - F (Agl)} for | = 0,1,...,ap

=1
Note that
1 N
Ganjo = D Hony (Agi) {F (8g:) = F (Lgi)}
=1
1< 1. .
= - Y Hony (89i) {F (83;) = F (Dgi)} + - D Hon (837;) (Bgiy — Dgig) {F (Agi) — F (Dgi)}
i=1 i=1

G2.nj01 + G2,nj02,
where Ag lies between Ag; ; and Ag; ;. For Go 02, we have by Theorem 3.3.1(iv),
|Gamjo2l S hy! max |AGi; — Agi gl max |[Ag: — Agil

= 0O, <h51 <K1/2772Kn>2> = O, (2Kn) uniformly in j.

For G3.55,01, we can show that

N
%Z Hop, (Dgij) {F (Dgs) — F (Agi)}‘

i=1

|G2,nj,01| ,S
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N
1
S gZW%U%ﬁF@MWE—MHZ%WM)

i=1
Then |G, nj0| = Op (N2kr) . Similarly, we can show that |G2.nj.0e| = Op (2kn) for £ =1,...,as. It follows
that |G| = Op (N2kn) -

(iii) The proof is analogous to that of (i) and thus omitted.

(iv) Recall that Ag; =g(Xi2) — §(Xi1) and Ag;; = Ag; — Agj. Let Ag; =g(Xi2) — g(Xi1) and
Ag; ; = Agi — Agj. Note that Ganj = (Ganj0,--» Ganag) , Where

| 1 1
GXMJ:71§;fﬁM(A9m)<h2A%J> [F(Agi) — Dl

1
Let Gg,nj,l = %Ei\iu# Hp, (Agi ;) <hi2Agm') [F(Agi) — Dy] for I = 0,1,...,as where 0° is defined to be

1. Noting that F (D;|X;) = F (Ag;), we can apply Bernstein exponential inequality to show that

max HGZJUJH =0, ( log(n)/(nhQ)) for 1 =0,1,...,as.

1<j<n
Next,
N
1 _ 1
G&MQ*G&mo:; 2:[H%AA%JW*H%AA%HHFQWH*DJ*EH%AWUWA%)*DH-
=1t

It is easy to see that the second term on the right hand side of the last equation is O, (n_lh; 1) uniformly
in j. For the first term we can readily apply the arguments as used in the proof of Lemma B.2.2 and show

it is o, ( log(n)/(nh2)> uniformly in j. Similarly, for [ =1, ..., as, we have

N l
1 _ 1 1
Gangi = Ginja =~ > [Hmu(ﬁ%ﬁ)(h2ﬂm4) *f&m(ﬁ%ﬁ)<ﬁgﬂmd)l [F(Agi) — Dil,
i=Li]

and we can use the arguments as used in the proof of Lemma B.2.2 and show it is o, ( log(n)/(nh2)>

uniformly in j. =
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