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Remediating System Neglect In 

Judgmental Demand Forecasting 

 

Vinakota Srikant 

 

Abstract: 

Prior research has shown that individuals tasked with judgmental forecasting of 

demand based on time-series data overreact in stable environments and underreact 

in unstable environments. Kremer et al. (2011) attributed this to the system neglect 

hypothesis, which claims that forecasters emphasize forecast errors over the system 

parameters. 

The present research investigates interventions that mitigate system neglect and 

address the causal factors for overreaction and underreaction. Given the desire by 

organizations to move towards touchless planning and automated decision-making, 

minimizing human judgment and understanding its drivers is of significant practical 

importance.  

We tested four different interventions on an online subject pool and found that the 

base treatment (simplest method in terms of cognitive load) outperforms all other 

interventions. In contrast to Kremer et al.’s original work we found a disconnect 

between subject’s forecast adjustment scores and forecasting performance.  
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1. Introduction and Problem Statement:  

"There are two kinds of forecasters: those who don't know, and 

those who don't know they don't know." ― John Kenneth Galbraith 

The above quote by the renowned economist John Galbraith succinctly 

summarizes the challenges associated with the forecasting process. A 

forecast is usually the first step in the business cycle, which triggers 

subsequent supply chain activities such as distribution planning, 

production planning, raw material procurement, and manufacturing. 

Forecasts also form the basis of business plans, including setting 

financial targets and measuring the progress toward achieving those 

targets. Forecasting also assumes greater significance since the 

subsequent steps in supply chain planning are usually automated by 

planning systems based on pre-defined parameters such as order 

quantities, safety stock, and lead time.  

Inaccurate forecasts can trigger disproportionate errors (both in internal 

functions and in external trading partners) in the subsequent processes 

ranging from product shortage/overage and resource utilization issues 

to missing financial targets. Some causes of forecast inaccuracies 

include manual adjustments to system-generated forecasts, poorly 

applied statistical models, incomplete or inaccurate historical data, 

incorrect assumptions, incentives, functional biases, and organizational 

politics. While it is a commonly accepted aphorism that forecasts are 

never accurate, it still makes sense from an organizational standpoint to 

invest in improving the forecasting process's accuracy, especially given 
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the extended supply chain lead times and multi-step production and 

distribution processes. Figure 1 below shows a typical forecasting 

process in an organization.  

 

 

 

 

 

 

Figure 1 Typical Forecasting Process in a Firm  

The process can be categorized into five major activities, which are 

briefly discussed as follows: 

i) Defining demand planning strategy - is mainly concerned with 

developing a demand planning approach for products/product 

families, considering demand segmentation, go-to-market 

approach, and performance metrics. 

ii)  Generating base demand – This process involves applying 

analytical models that consider historical data to estimate the 

future demand for a product, e.g., time series forecasting models. 

For new products without any previous demand history and 

segmentation, the demand history of similar products, 

management judgment, or a combination of both is leveraged to 

create a demand forecast.  

iii) Add Market Intelligence – Analytical models may not accurately 

predict events such as promotions, competitor activity, etc. 
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Market intelligence requires the identification of external factors 

that may impact the forecast. 

iv) Demand Validation: Base demand and market intelligence 

together form the demand plan. The various organizational units 

review the demand plan in forums such as demand review 

meetings, S&OP meetings, etc.  

v) Forecast Release: The final step involves releasing the validated 

demand plan to supply planning and reporting systems 

As figure 1 illustrates, the reviewers can adjust forecasts generated by 

the planning systems to consider factors not considered by the 

statistical models and add in market intelligence. The forecast resulting 

from the manual adjustment is usually termed in the literature as a 

judgmentally adjusted forecast. A pure judgmental forecast is, by 

contrast, derived manually without the help of any statistical models or 

tools. 

A recent Fildes and Petropoulos (2015) study finds that only 29% of 

forecasters use statistical models exclusively. Of the balance, 71% use 

judgment or a combination of judgment and statistical forecasting to 

generate forecasts. Their results are comparable to the previous survey 

by Fildes and Goodwin (2007). Fildes et al. (2009) analyzed data on 

600,000 forecasts generated across four companies and found that 

large adjustments generally improved accuracy while smaller 

adjustments negatively impacted accuracy. 
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An interesting phenomenon related to judgmental forecasting is the 

concept of system neglect. Massey & Wu (2005) originally developed 

the system neglect hypothesis, and Kremer et al. (2011) later applied it 

to time series forecasting. The system neglect hypothesis essentially 

states that individuals emphasize the recent signals, i.e., forecast errors, 

relative to the system's characteristics that generate the signals. Kremer 

et al. (2011) applied the system neglect hypothesis to time-series 

forecasting. From a time-series forecasting perspective, a stable 

environment is a time series with constant mean and variance. In 

contrast, an unstable environment is characterized by both noise and 

change in the time series mean.    

Kremer et al. (2011) demonstrated that individuals overreact to forecast 

errors in stable environments and underreact in unstable environments. 

Their research suggests that human judgment is inherently more suited 

for unstable environments than stable but noisy environments. The 

system neglect findings, in conjunction with the earlier results about the 

use of judgmental forecast, have potentially significant implications for 

forecasters and management alike. It implies that judgmental changes 

should be minimized in stable environments (use of normative models 

maximized) and human judgment be reserved for unstable 

environments.  

Given the desire by organizations to move towards touchless planning 

and automated decision-making, minimizing human judgment for stable 

environments assumes greater significance. Decision-makers need to 

be made aware of their tendency to overreact and underreact in the 



5 
  

various demand environments and factor in the system's characteristics. 

In other words, we need to remediate the system neglect and rectify both 

overreaction and underreaction. Our research intends to identify 

approaches that will remediate the impact of the system neglect and 

reduce the salience of the error, which are the key causal factors behind 

underreaction and overreaction, respectively.  
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2. Literature Review:  

One of the most comprehensive reviews of Judgmental Forecasting was 

published by Lawrence et al. (2006). Key findings from the study include 

that results from judgmental forecasting can be as accurate as statistical 

methods, but this is not guaranteed. Lawrence et al. (2006) suggest that 

while the literature provides practical principles which can be applied, 

the results from the literature are contradictory. Individual performance 

is dependent on the characteristics of the time series, and small changes 

in the time series and its presentation can have significant changes in 

performance. As an example, findings from Bolger and Harvey (1993) 

indicate that individuals use different versions of anchor and adjustment 

heuristics for trended and untrended data, and their adjustments are 

suboptimal and biased. In the case of trended data, they found 

significant evidence of serial dependence in the time series.  

Lawrence et al. (2006) also cite research that finds contradictory findings 

on the impact of noise on judgmental forecasting. These contradictions 

could be attributed to varying biases due to "different beliefs about the 

nature of the time series being forecasted." In a more recent review, 

Perera et al. (2019) adopt a supply chain lens to judgmental forecasting 

and update the Lawrence et al. (2006) review. They find increased use 

of judgmental forecasting in retail promotions, increased research into 

the behavioral elements of forecasting, and effectiveness of task 

feedback over performance feedback in the case of Judgmental 

Forecasting. Arvan et al. (2019) reviewed research involving the 

integration of human judgments with analytical models. They suggested 
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that rules-based forecasting (wherein condition – actions statements are 

used to integrate human judgment and statistical models) and 

Forecasting by Analogy (use of structured analogies to incorporate 

insights from similar past events) produce superior results. 

As operations management evolves to incorporate various bodies of 

knowledge from cognitive psychology, social psychology, group 

dynamics, and system dynamics (Bendoly et al., 2009), research in 

Judgmental Forecasting has also evolved to integrate these bodies of 

knowledge. Donahue et al. (2019) and Fanhimnia et al. (2019) provide 

a good review of this area of research.  

The preceding sections provided a broad overview of articles covering 

extant research in Judgmental Forecasting. However, from our 

research's scope, there are two streams of research on Judgmental 

Research that are relevant i) Biases associated with the Judgmental 

Forecasting process and ii) How to improve judgmental forecasting. We 

offer a brief review of the two streams of literature below.  

 

 2.1 Biases in Judgmental Forecasting: 

Biases have been investigated extensively as causal variables impacting 

the accuracy of judgmental forecasts. Biases result from heuristics, 

which are simplified decision rules applied by individuals in varying 

scenarios. Harvey (2007) proposes that individuals choose one of 

availability, representativeness, or anchoring-adjustment heuristics 

based on the type of information available to them. E.g., anchoring refers 

to giving extra credence and basing the decision on a potentially 
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irrelevant piece of information or observation. The anchor on which the 

individual bases his / her decision varies. In the context of forecasting, 

two anchors are relevant, i) the statistical forecast (Eroglu & Croxton 

2010) and ii) the financial sales target. In anchoring based on the 

statistical forecast, extra weight is placed on historical data, ignoring 

recent trends and actuals. In anchoring based on the financial sales 

target, forecasts are manipulated to hit a commercial target without 

adequately adjusting for current trends and actuals. Abundant anecdotal 

evidence suggests anchoring based on sales targets leads to inventory 

surpluses and write-offs.  

Overconfidence is an often-studied bias in the case of interval 

forecasting. The overconfidence bias in forecasting can manifest itself 

as Overprecision, Overestimation, and Overplacement (Healy & Moore 

2007, Bazerman 2013). Overprecision from a forecast standpoint means 

the forecaster is too sure of his judgment and has a tighter confidence 

interval (lower variance) surrounding his forecasts. Overestimation 

refers to excessive confidence in one's capability. From a forecasting 

standpoint, overestimation contributes to overly optimistic demand 

estimates. Overplacement refers to falsely ranking one ability higher 

than others. Overconfidence leads to systematic and predictable errors 

in the forecast (e.g., Gino & Pisano 2008, Bendoly et al. 2010).  

Within individuals, varying traits have been found to mitigate biases. 

Moritz et al. (2014) studied one such trait called cognitive reflection. 

Cognitive reflection is distinct from intelligence and measures 

individuals' ability to defer their initial response and engage in deeper 
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analysis. Prior work has identified that individuals with high levels of 

cognitive reflection are less susceptible to errors associated with 

heuristics and biases (Toplak et al., 2011). Moritz et al. (2014) focused 

on individual factors such as engaging in cognitive reflection and the time 

taken to generate the forecast. They demonstrate that individuals with 

higher levels of cognitive reflection deliver better forecasting 

performance even while controlling for intelligence. Moritz et al. (2014)  

used a learning model to predict the time required for the forecasting 

task. They found that forecast errors increase when the time spent 

relative to the learning model is less or more (which they suggest is a 

measure of under or overthinking). Kremer et al. (2016) find that 

judgmental forecasting is more effective in a top-down process 

(distribution center to store) as compared to a bottom-up (store to 

distribution center).  

Feiler et al. (2013) find evidence for judgment biases in censored 

environments (where individuals do not have access to all the true 

values when deciding) and individuals exhibit overly risk-averse 

behavior. Tong et al. (2018) propose a behavioral remedy to the 

censorship bias and find that asking individuals to estimate the missing 

values explicitly helps reduce the bias by creating a more representative 

sample. Tong and Feiler (2017) use the sample naivete theory to 

advance a behavioral model of forecasting. They argue that individuals 

generate a forecast based on a small (less than 7) and randomly 

generated sample of the series and naively assume that the sample 

represents the true population.  
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Motivational biases are usually introduced by incentives and can play a 

significant part in forecasting. While sales personnel may be motivated 

to inflate a forecast to ensure product availability and maximize sales, 

operations may be motivated to minimize inventory and obsolescence to 

achieve financial incentives. Oliva and Watson (2009) used a case 

study-based approach to identify functional biases and categorize them 

into intentional and unintentional biases. Incentives and power balance 

within the organizations are identified as the cause of intentional biases. 

They identified a consensus forecasting process driven by an 

independent group as a critical mechanism to address the shortcomings 

resulting from the biases. In a more recent study, Scheele et al. (2018) 

argued that rewarding salespeople based on forecast accuracy is not 

enough to enable truthful information sharing. They should also be 

penalized for over‐forecasting more severely than under‐forecasting.  

 

2.2 Improving Judgmental Forecasting 

There is extensive literature that has focussed on how to improve human 

judgment in forecasting. The research on improving Judgemental 

Forecasting has addressed two significant drivers of forecast 

inaccuracies, i) the inconsistency of the decisions and ii) biases. The 

inconsistency of the decisions is also termed noise or random error. 

Bias, as elaborated earlier, refers to a systematic deviation resulting from 

heuristics employed in the decision-making process. The key themes 

emerging from the literature which are relevant for improving judgmental 

time series forecasting are i) Presentation of the Data, ii) Decomposition 
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of the time series, iii) Feedback, iv) Using groups of individuals, and v) 

Training. We provide a brief overview of each of the key themes.  

i) Data Presentation: Goodwin and Wright (1993) find qualified 

evidence that graphically presenting information helps short-term 

forecasting tasks, whereas tabular displays work better in longer-horizon 

tasks. Later work by Lawrence et al. (2006) claims that there is no 

conclusive evidence of the superiority of the graphical presentation 

mode over tabular presentation. Perhaps, Harvey (2001) provides the 

most pragmatic guidance. Harvey (2001) recommends presenting the 

time-series data in a graphical format as a preferred approach in a 

judgmental forecasting task when forecasters do not have any prior 

information about the series. 

One of the most consistent results from the trended time series research 

is the trend-dampening phenomenon. Trend dampening results in lower 

/ higher than the optimal forecast in case of an upward or downward 

trended forecast. Trend dampening is attributed to the anchor and 

adjustment heuristics and random error. Harvey (2001) suggests that 

fitting a line through the data series helps reduce the random error even 

though it does not do much to reduce the anchoring.  

From a point forecasting approach, uncertainty associated with the 

forecast is not explicitly considered. However, as Kremer et al. (2011) 

demonstrate, the level of noise or change impacts the overreaction or 

underreaction and hence the forecast accuracy. Kreye et al. (2012) 

researched different approaches to display uncertainty in cost estimates 

(three-point trend forecast, bar-chart, and a fan chart) and found that fan 
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charts are the most effective means to increase awareness of 

uncertainty associated with the data.  

ii) Decomposition: Decomposition is another tool used to aid 

judgemental forecasting. It involves breaking down the task into simpler 

components that are easier to estimate than the target variable. The 

component estimates are then aggregated to create a forecast. 

Decomposition may be accomplished graphically or numerically. 

Prevailing research suggests decomposition is suitable when time series 

have high uncertainty (McGregor 2001). Lee & Siemsen (2017) found 

that decomposition coupled with decision support improved the 

performance of the newsvendor problem. They decomposed the 

problem into point forecasts, uncertainty estimates, and service level 

projections.  

iii) Feedback: The extant research distinguishes between outcome 

feedback, performance feedback, cognitive process feedback, and task 

properties feedback (Lawrence et al. 2006, Donahue et al. 2019). 

Outcome feedback simply means providing information about the 

accuracy of the last forecast. Performance feedback reports forecast 

accuracy over multiple periods. While outcome feedback is suitable for 

simple forecasting tasks, complex tasks require more highly processed 

feedback (e.g., forecast bias). This is because both outcome and 

performance feedback provides limited information on improving 

accuracy. 

Furthermore, outcome and performance feedback make the individuals 

sensitive to recent errors, which may be simply a result of noise 
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(Donahue 2019). Petropoulos et al. (2017) employed a rolling training 

approach and provided bias feedback to forecasting experts resulting in 

improved performance. Harvey (2001) suggests that sharing past 

records of forecasts and feedback helps improve forecasting accuracy. 

Feedback also helps overcome hindsight and confirmation biases. 

Hindsight bias usually drives forecasters to overestimate their accuracy, 

while confirmation bias will cause subjects to look for evidence 

supporting their beliefs.  

iv) Combining Forecasts: As noted earlier, individual forecasts are 

often characterized by both random error and biases. By averaging 

forecasts of groups of individuals whose forecast errors are negatively 

correlated with one another, the accuracy of the forecasts may be 

improved (Harvey 2001, Goodwin 2000). This approach has also been 

referred to as the "Wisdom of the Crowds" (Surowiecki 2005). Several 

variants to the combination approach have been studied judgmental 

weights instead of simple/weighted averages, combined with a statistical 

forecast, etc. Combining statistical and judgmental forecasts can reduce 

inconsistency in the forecasts and incorporate contextual factors (e.g., 

Sanders and Ritzman 1995). The popular Delphi Method is another 

approach to combining forecasts. The Deplhi Method has improved 

accuracy beyond a simple average (e.g., Goodwin and Song 2014).   

v) Technical Knowledge & Training: Whereas some research 

(Sanders and Ritzman 1992, Edmundson 1990) has found no impact of 

training on the accuracy of judgemental forecasting, other research 

(Lawrence 1985) has found training / technical knowledge helps improve 
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accuracy when information is presented in a tabular format. Legerstee 

and Franses (2014) used a natural experiment in a pharmaceutical 

company and provided experts with various training and feedback. They 

found that the accuracy increased over the year. Petropoulos et al. 

(2017) found that the rolling training approach combined with feedback 

on bias helped improve the forecast accuracy of forecasters with 

technical knowledge. A rolling training approach relies on providing 

forecasters with feedback on their performance (forecast bias) at regular 

intervals and including the complete records.  

A neighboring area of research has been the types of decision support. 

Siefert et al. (2015) reviewed the impact of contextual and historical 

factors on the effectiveness of judgmental forecasting in the fashion 

industry. In a purely judgmental forecasting scenario, they find that 

providing historical and contextual factors is beneficial; however, when 

human judgment is combined with statistical models, providing only 

contextual factors is better. This is because statistical models are better 

suited to detecting patterns than humans. They also suggest that 

humans are more skilled at identifying the interaction between 

contextual factors.  

The above summary indicates that there has been active research on 

judgmental forecasting and how to improve judgmental forecasting. 

However, there have not been any significant efforts to mitigate the 

system neglect found by Kremer et al. (2011), which leads to an 

overreaction in a stable environment and an underreaction in an 

unstable environment. The present research applies the learnings from 
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the rich history of judgmental forecasting to identify measures that could 

remediate the system neglect. Such measures could assist decision-

makers in calibrating their response by making them more aware of their 

system parameters and reducing the salience of errors. The measures 

would also aid organizations in moving towards touchless planning, 

which relies on reducing human intervention.  
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3. Theory & Hypothesis 

Applying the System Neglect theory of Massey and Wu (2005) to the 

task of time series forecasting, Kremer et al. (2011) tested decision 

makers' ability to distinguish change from noise. They posited that 

forecasters emphasize forecast errors more than the system parameters 

(noise and change levels). This is due to the salience of the forecast 

errors over the system parameters. The forecasters did not have apriori 

knowledge about the system parameters and estimated them based on 

the demand signal and the forecast errors. Comparing the subject 

behavior to the normative forecasting model (a single exponential 

smoothing model for a time series with noise and change), they find 

evidence for overreaction in stable environments and underreaction in 

unstable environments.  

Kremer et al. (2011) model the demand process as follows: 

𝐷𝑡 = 𝜇𝑡 + 𝜀𝑡   1(a) 

𝜇𝑡 = 𝜇𝑡−1 + 𝑣𝑡 1(b) 

 

Where Dt represents the actual demand in time t, µt represents the true 

level of the time series. ϵt ~ N( 0, n2) and ʋt ~N(0,c2) are independent 

normal random variables representing the noise and the change 

components. Noise represents a temporary disruption valid for only one 

period, whereas level change represents a permanent change. The 

single exponential smoothing model of the forecast can be expressed 

as: 

𝐹𝑡+1 = 𝛼𝐷𝑡 + (1 − 𝛼)𝐹𝑡 2(a) 
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=  𝐹𝑡 + 𝛼(𝐷𝑡 − 𝐹𝑡)  2(b) 

The above equation indicates that the forecast for period t+1 produced 

in period t is a weighted average of the demand in period t and the 

forecast for period t. Equation 2(b) states that the forecast is a function 

of the error and the weight assigned to the error. Kremer et al. (2011) 

term the forecast error as the strength of the error and the factor α as 

the weight of the error. The weight is determined by the system 

parameters (c and n). The strength factor implies that ceteris paribus 

forecasts with higher errors should be adjusted to a greater degree. The 

optimal value of α per Kremer et al. (2011) is  

𝛼∗(𝑊) =
2

1+√1+4 𝑊⁄
   (3) 

W represents the change to noise ratio in the above equation and is 

defined as W = c2/n2. Replacing the optimal value of α in equation 2(b) 

results in the following: 

𝐹𝑡+1 = 𝐹𝑡 + 𝛼∗(𝑊)(𝐷𝑡 − 𝐹𝑡) (4) 

 

Reviewing equations 3 and 4 jointly implies that when c= 0, α* is 0, or in 

other words, when the time series is characterized by only random noise, 

the most recent period forecast is the optimal forecast. Based on the 

above, Kremer et al. (2011) claim that "forecast errors should be mostly 

discarded and should not influence the new forecast. In contrast, with 

high values of W (variations in demand mostly represent level changes), 

the forecast error should have a greater influence on a forecast". 

However, this is not the case. They demonstrate that individuals 
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overreact in stable environments and underreact in unstable 

environments, meaning the forecasters' α is greater than α* in stable 

environments, and the forecasters' α is less than α* in unstable 

environments.  

Extending on Kremer et al. (2011), we argue that 

overreaction/underreaction due to system neglect can be reduced by 

interventions that trigger the subject to think about the system 

parameters and reduce the salience of forecast errors. Based on the 

survey of the literature presented in the preceding paragraphs, we 

investigate the impact of i) Graphical representation (Fan Charts), ii) 

Decomposition of the forecasting task, and iii) Feedback on Forecast 

Bias on the forecaster's performance 

Before delving into details about the various treatments and how they 

impact overreaction and underreaction, a brief definition of the forecast 

performance metrics is in order.  

i. Forecast error is defined as the difference between the actual 

sales and the forecast.  

ii. Absolute forecast error refers to the absolute value of the 

difference between forecast and actuals. 

iii. Absolute Percentage Error (APE) is the Abs forecast error 

expressed as a percentage of the actual sales.  

iv. MAPE refers to the mean of the Absolute percentage error over 

the given time periods 
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v. Mean Absolute Error: It is defined as the mean of the absolute 

deviation of the observed value from the mean 

vi. Mean Squared Forecast Error: It is defined as the mean of the 

squared forecast errors 

vii. Variance of forecast errors is defined as the sum of the squared 

forecast errors divided by one less than the total number of 

observations (Markridakis et al. 1998) 

viii. Information on forecast bias indicates the tendency to over-

forecast or under-forecast. Bias is the Forecast Error divided by 

the Actual Sales. 

ix. Forecast accuracy, in turn, is defined as (1 – MAPE). Table 1 

below illustrates the calculation of each of the metrics. This 

measure can be calculated for a particular time period or over all 

the time periods (cumulative forecast accuracy). 

 

Time Period Actual 
Sales 

Forecast Error APE 
(%) 

Variance 
of Forecast 

Error 

MAPE 
(%) 

Forecast 
Accuracy 
Current 
Period 

Mean 
Forecast 
Accuracy 

(100-
MAPE) 

37 100 90 10 10.0%  -  10.0% 90.0% 90.0% 

38 90 100 -10 11.1%               200  10.5% 88.9% 89.5% 

39 
80 60 

20 25.0%               233  14.8% 75.0% 85.2% 

 

Table 1 Calculation of Forecast Measures 
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3.1 Graphical Presentation of Information: 

Harvey (2001) summarized the extant literature on the benefits of using 

graphical methods in the judgmental forecasting task. Harvey (2001) 

recommended presenting the time-series data in a graphical format as a 

preferred approach in a judgmental forecasting task when forecasters 

do not have any prior information about the series. In a time-series 

forecasting task involving noise and change, subjects should discern 

between noise and an actual level change. Bank of England first used 

fan charts in 1996 to communicate the uncertainty associated with point 

forecasts. 

Fan charts can be set up based on prediction or confidence intervals. 

Kreye et al. (2012) found that a fan chart (compared to a three-point 

trend forecast or a bar chart) was most effective in making subjects 

aware of the uncertainty associated with cost forecasting. Visual fan 

charts which show the expected dispersion around the mean are an 

effective means to represent uncertainty. We argue that underscoring 

the uncertainty (noise) associated with the forecasting process will aid in 

reducing the salience of the forecast errors, which is desirable in stable 

scenarios.  

In unstable scenarios, additional insights into the nature of the time 

series are desirable to illustrate the unstable nature of the demand. 

Since the demand function is devoid of any seasonality or trends, 

seasonal plots or trend charts are not suited. They may mislead the 

subjects to assume seasonality or trends when no such component 

exists in the demand function. Hence, in addition to the fan charts, we 
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propose presenting subjects with a line chart depicting the moving 

average of the past four time periods would also highlight the changing 

nature of the demand. 

However, we cannot be sure if the reduction in the salience of errors also 

leads to a greater appreciation of the system parameters. Reducing the 

salience of errors is desirable in scenarios with low W values, where 

most errors are triggered by noise in the time series and should be 

ignored. In contrast, scenarios with high values of W forecast errors need 

to influence future forecasts more. The preceding arguments lead us to 

our first hypothesis: 

H1a: Use of visual fan charts in the judgmental forecasting process 

reduces the overreaction  

H1b-i): Use of visual fan charts in the judgmental forecasting process  

reduces the underreaction 

H1b-ii) Use of visual fan charts in the judgmental forecasting process 

increases the underreaction 

3.2 Decomposition:  

In its simplest form, decomposition involves breaking down a variable 

into its various components and then aggregating the components to 

estimate the variable. Decomposition is recommended when estimating 

the components is easier than directly estimating the variable of interest. 

As applied to time series forecasting, traditional decomposition involves 

breaking down the time series into the trend, seasonal, and error 

components. They can take an additive or a multiplicative format 
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(Makridakis et al., 1998). Once the individual components are estimated, 

they can be aggregated mechanically, or the forecaster could aggregate 

manually based on the component estimates. 

Interestingly Lee & Siemsen (2017) found that performance benefits 

were derived from the simplification associated with the decomposition 

task, and the form of aggregation (mechanical or manual) did not impact 

performance. We predict that eliciting the forecaster to estimate the 

mean demand, the change, and the error components will prompt the 

forecasters to consider the system parameter explicitly and reduce the 

salience of the errors by highlighting errors as an integral part of the 

forecasting process. Hence, we hypothesize: 

H2: Decomposition of the time series into individual components 

reduces overreaction and underreaction 

3.3 Forecast Bias Feedback:  

The literature on feedback has argued the superiority of performance 

feedback over outcome feedback. In the case of outcome feedback, the 

forecaster only receives the actuals associated with the forecast. 

Feedback on forecast bias is a form of performance feedback. In 

contrast with accuracy (which does not provide a directional indication 

of the forecast error), bias is more processed information, which tells 

forecasters if they are over or under-forecasting. The bias results are not 

averaged across the time periods (as in the case of MAPE). In the case 

of time series with noise but no change, bias metrics are easily 

interpretable and actionable. Bias information is also helpful in series 
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with monotonic trends as it can highlight if the subject is under-

forecasting or over-forecasting. 

 However, for unstable time series where the true level of the demand 

(𝜇𝑡) of the demand changes for each time period, bias information by 

itself may be difficult to action. Kremer et al. (2011) claim it is difficult to 

estimate "the extent that a variation in the demand signal Dt is evidence 

for a permanent change in the level rather than a random, transient 

shock." The overreaction and underreaction that Kremer et al. (2011) 

have demonstrated is another way bias is manifested. 

Based on the above arguments, we predict that, 

H3a:  Providing bias feedback reduces overreaction 

Effectively mitigating underreaction in unstable time series requires an 

appreciation of the system parameters. In addition, in scenarios with high 

values of W, forecast errors need to have a greater influence on future 

forecasts. As argued earlier, we cannot confidently predict forecasters 

will be able to incorporate  bias feedback to help mitigate the 

underreaction; hence we state the impact of bias feedback as two-part 

hypotheses: 

H3b-i): Providing bias feedback in the judgmental forecasting process 

reduces the underreaction 

H3b-ii): Providing bias feedback in the judgmental forecasting process 

increases the underreaction 
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3.4 Bias and Rolling Training 

Petropoulos et al. (2017) use an approach called "rolling training" to 

provide feedback on the bias to experts. They found that the rolling 

training approach reduced  MAPE  by 3.78%. The approach relies on 

giving forecasters feedback on their performance (bias) at regular 

intervals, including the complete records. The authors claim this 

approach enables the "balance between the sensitivity and stability of 

the feedback."   

Similar findings are reported in a study related to the review of project 

abandonment review decisions by Long et al. (2020). The authors found 

that by limiting the number of reviews, reviews' "decision-making value" 

becomes more salient. The limited number of reviews makes the 

participants more cognitively attentive to information. We propose that 

the above findings can be extended to our current study domain of time-

series forecasting.  

The rolling approach to feedback underscores the demand generation 

process, and the magnitude of the bias provides processed feedback 

about the error. A forecast with higher bias levels will need to be adjusted 

by a greater amount in the opposite direction. While Petropoulos et al. 

(2017) studied the bias feedback and the rolling training approach in 

various time series (stationary, trended, seasonal both trended and 

seasonal), they did not study a non-stationary process. Therefore, we 

argue that a rolling approach paired with bias feedback will enable a 

reduction in overreaction and underreaction 
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H4:  A rolling approach to providing bias feedback reduces overreaction 

and underreaction 
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4. Methodology: 

The testing of the hypotheses requires an experimental setup. With the 

Covid-19 pandemic, scheduling in-person experiments in behavioral 

labs is a logistical challenge and not permitted in some cases. Online 

subject pools such as MTurk and Prolific have recently gained popularity 

and present a potential opportunity for researchers relying on 

experiments as a methodology. Lee et al. (2018) employed Amazon's 

MTurk subject pool to replicate the findings from prior studies conducted 

in a behavioral laboratory. They replicated the findings of the physical 

laboratory studies; however, they found that learning online occurs more 

slowly than in the physical laboratory.  

Prolific is another service provider which has grown in popularity recently 

due to claims of a better-quality subject pool. A key difference between 

Prolific and MTurk is the cost: while Prolific requires subjects to be 

compensated based on minimum wage per UK standards, MTurk does 

not impose a minimum wage. MTurk also offers access to a pool of 

highly rated subjects at a premium price. Due to the lower cost structure 

and the large subject pool required for the experimental scenarios, 

MTurk was chosen as the platform to host the experiment. Participants 

were requested to sign up for the study via postings on the MTurk 

platform. The recruiting material used in MTurk for one of the treatments 

is included in Appendix 1. For other treatments, the recruitment material 

is similar, with minor modifications to describe treatment-specific 

nuances.  
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Pre-screen criteria of participant approval rate (greater than 95%) and 

the number of previous submissions (>100) are applied to ensure 

participants with reasonable quality and experience. Participants who 

participated once in an experimental scenario were not permitted to 

participate in other experimental scenarios to avoid learning effects. 

Upon enrolling in the study, participants were directed to a Qualtrics 

survey which provided the participants with a spreadsheet-based 

simulation tool.  

The Qualtrics survey contained written instructions and detailed various 

performance measures associated with the forecast. Participants had 

the opportunity to revisit the instructions if they needed additional 

clarification. In addition, a short video instruction specific to each 

scenario was provided to the participants to help them familiarize 

themselves with the spreadsheet and the task. Participants also had the 

option to withdraw from the study if they chose to. All participants were 

paid US$ 2 for completed responses. The top 3 respondents with the 

lowest MAPE within a given experimental scenario were rewarded with 

a bonus of US$ 15 each. Participants' responses were automatically 

linked to their MTurk ID via piped text. 

In their original study, Kremer et al. (2011) varied the change level to 

low, medium, and high, while noise was varied between low and high 

levels resulting in six distinct conditions. In our study, we test the extreme 

conditions, i.e., low and high change and low and high noise, resulting 

in four conditions. The four conditions are replicated for the base and 

additional treatments (Fan Chart, Decomposition, Bias, and Rolling 
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Feedback). This ensures that proposed treatments thoroughly address 

the critical low and high levels of change scenarios and all noise levels 

while limiting the number of experiments to a reasonable scope. The 

conditions are summarized in Table 2 below. Table 3 below shows the 

values of optimal α based equation 3 presented earlier. 

 

 

Table 2: Listing of Experiment Conditions 

 n= 10 (Low) n =40 (High) 

c = 0 (Low) 0 0 

c = 40 (High) 0.94 0.62 

 

Table 3: Optimal Alpha by Condition 

A time series with the same parameters (c and n) may have different 

demand realizations. We adopt Kremer et al.'s (2011) approach and, for 

each condition, generate four different demand realizations, in line with 

the original study using the demand function described in equations 1(a) 

and 1(b) prior to the experiment. The starting mean µ0 is 517 (similar to 

the 500 from the original paper). The demand sets are the same across 

 n= 10 (Low) n =40 (High) 

c = 0 (Low)  Condition 1 Condition 2 

c = 10 (Medium)  Not in Scope Not in Scope 

c = 40 (High) Condition 3 Condition 4 
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all the treatments. Subjects are randomly assigned to the demand set 

within a treatment and condition.  

The four conditions and the five treatments lead to a full factorial design 

of 20 scenarios.   

4.1 Experimental Context: 

The context is the same for all the treatment conditions. Participants are 

advised that the objective of the experiment is to study individual 

judgments. The experiment is not intended to test their knowledge but to 

understand the individual decision-making process. Participants take on 

the role of a demand planner for a super-market and are tasked to 

forecast the unconstrained demand for a product. Participants are 

provided the historical data for the last 36 periods. They are required to 

predict the subsequent 36 time periods, one step ahead for the next 

selling period, i.e., forecast period 37, using data available until period 

36. 

 Actual sales for period 37 are then realized, and participants then 

forecast period 38. The process continues till period 72. The 

spreadsheet tool is designed to prevent changing previously submitted 

forecasts and submission of a negative forecast. Following the 

simulation, the participants complete a brief survey about their 

understanding of the forecasting process and the nature of the demand. 

We now proceed to provide a brief description of each treatment below:   

i). Base Treatment (Control Group): In the base condition or the 

control group, we replicate Kremer et al.'s (2011) study for four 
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conditions. The participants were provided with historical product sales 

and asked to forecast the future demand one period at a time. 

Performance measures such as Forecast Error, APE, and MAPE were 

provided. In addition, the actual sales and forecast information was 

displayed in a line chart for the participants to review. Screenshots of the 

input screens and the line charts for the base condition are shown below.  

 

Figure 2 Base Treatment Respondent Forecast Input Screen 
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Figure 3 Line Graph of Actual Demand and Forecast 

ii). Fan chart treatment: In this treatment, in addition to the standard 

line chart, participants were provided with a fan chart that provides a 

visual representation of the uncertainty associated with the forecast. The 

charts are updated after every time period. Fan charts typically depict 

the 90%, 95%, and 99% confidence intervals; we use the 95% and the 

99% confidence intervals in the current research. Fan charts are a 

helpful tool to make the subjects aware of the uncertainty associated 

with the task. Kreye et al. (2012) found that depicting information in fan 

charts primes the subjects to think about the uncertainty associated with 

the task. The task remains the same, i.e., to forecast the next 36 weeks' 

demand one week at a time. The rolling average of the past 4-period 

demands is included as a reference point to indicate the evolution of the 

demand. A snapshot of the visual is shown below in figure 4.  
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Figure 4 Fan Chart Graph 

iii). Decomposition:  Decomposition can take various forms 

(additive, multiplicative, graphical, and mathematical). Decomposition 

involves breaking down the time series into its components and then 

aggregating them. It relies on the simplification of the task. The time 

series components in our experiment are additive in nature and are 

made of the true mean µ, the change c, and the noise ε. By definition, 

the noise is to be ignored. The task for each time period effectively 

reduces to estimating the true level and the change. Hence for each time 

period, the forecaster is required to estimate the true level (past average 

demand) and the change in the level. The two components are then 

mechanically aggregated (via mathematical formula) to estimate the 

forecast. The formula used for aggregation is: 

𝐹𝑡 = 𝜇𝑡 + 𝑣𝑡 (5) 
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To familiarize the participants with the decomposition methodology, they 

simulate a decomposition calculation in the Qualtrics survey. In addition 

to the standard line charts, the graph includes a stacked bar graph that 

illustrates how the individual components are aggregated to make up the 

total demand.  

 

Figure 5 Respondent Input Screen for Decomposition 
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Figure 6 Graph for Decomposition Treatment 

iv). Bias Feedback: Forecast bias is a directional measure of 

forecasting performance. The directional measure provides clear 

feedback if the participants are consistently under-forecasting (positive 

bias) or over-forecasting (negative bias). The participant forecast input 

screen includes a bias performance measure. In addition to the standard 

line graph, a bar graph that depicts the bias performance is included 

(Figure 7).  

v). Rolling Training with Bias:  

The rolling training approach provides a complete and updated record of 

forecasting performance at regular intervals. The experiment 

participants were asked to forecast for 36 periods by forecasting four 

periods at a time. Their actual performance for each time period was 

revealed after every four time periods, and they were provided the same 

performance metrics as the bias treatment (Figure 8).   
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Figure 7: Bias Feedback 

 

Figure 8 – Subject Input Screen for Rolling Training Approach 
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4.2 Conducting the Experiment and Data Collation 

As described earlier, the study was activated in MTurk. The average 

completion based on pre-tests was twenty-five minutes. The participant's 

actual average completion time varied between twenty and thirty-six 

minutes, with an overall average completion time of twenty-seven 

minutes. The participants in the decomposition treatments took the 

longest time, averaging thirty-three minutes. The completion times are 

reported based on tracking by Mturk and are calculated from when a 

participant signs up for the study to when he/she indicates the 

completion by keying a completion code in MTurk. Further breakdown, 

such as actual time spent working on the study versus idle time, is 

unavailable.  

 

The completed responses are reviewed to discard blank responses, i.e., 

participants who signed up for the study but failed to complete the study 

and upload a blank spreadsheet. The individual spreadsheet responses 

are combined to create a complete data set using the extraction, 

transformation, and loading capabilities of the Alteryx software. We now 

proceed with the description of the empirical analysis. 
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5. Empirical Analysis  

The consolidated forecasts are reviewed for typographical errors, 

primarily because participants cannot change the forecast once 

submitted. We replicate the methodology followed by Kremer et al. and 

review all forecasts with an absolute error greater than 300. Forecasts, 

where the typographical errors can be easily identified, are corrected        

( e.g., a forecast of 61 in a long series of forecasts in the range of 450 is 

codified as 461). However, when a determination cannot be made but 

the forecast is identified as a typographical error, it is coded as a missing 

value. Such adjustments are negligible, making up 0.3% of the 

observations. Additional outliers in the forecast and the forecast error 

data are winsorized based on each treatment, condition, and demand 

set within the condition.  

Table 4 below shows the number of participants in each treatment, 

condition, and demand set within a condition. The average number of 

participants per study was 52. The number of participants ranges from 

38 to 66. The variation in the number of participants is primarily due to 

the difference in the number signing up for a particular study and the 

number of qualified responses. The target for each treatment condition 

was to gather 45 responses per condition.   
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Treatment Name Change Noise D1 D2 D3 D4 Total 

Base Low Low 12 (432) 6 (216) 10 (360) 10 (360) 38 (1368) 

Base Low High 22 (792) 5 (180) 15 (540) 12 (432) 54 (1944) 

Base High Low 15 (540) 13 (468) 15 (540) 11 (396) 54 (1944) 

Base High High 14 (504) 13 (468) 13 (468) 17 (612) 57 (2052) 

Fan Low Low 6 (216) 10 (360) 13 (468) 13 (468) 42 (1512) 

Fan Low High 10 (360) 15 (540) 8 (288) 13 (468) 46 (1656) 

Fan High Low 15 (540) 12 (432) 8 (288) 10 (360) 45 (1620) 

Fan High High 15 (540) 22 (792) 9 (324) 12 (432) 58 (2088) 

Decomposition Low Low 13 (468) 16 (576) 14 (504) 12 (432) 55 (1980) 

Decomposition Low High 20 (720) 13 (468) 13 (468) 20 (720) 66 (2376) 

Decomposition High Low 12 (432) 16 (576) 21 (756) 6 (216) 55 (1980) 

Decomposition High High 12 (432) 18 (648) 12 (432) 18 (648) 60 (2160) 

Bias Low Low 8 (288) 15 (540) 12 (432) 11 (396) 46 (1656) 

Bias Low High 21 (756) 6 (216) 25 (900) 12 (432) 64 (2304) 

Bias High Low 14 (504) 15 (540) 11 (396) 15 (540) 55 (1980) 

Bias High High 17 (612) 17 (612) 12 (432) 15 (540) 61 (2196) 

BRT Low Low 8 (288) 10 (360) 14 (504) 13 (468) 45 (1620) 

BRT Low High 12 (432) 16 (576) 17 (612) 12 (432) 57 (2052) 

BRT High Low 14 (504) 12 (432) 11 (396) 6 (216) 43 (1548) 

BRT High High 19 (684) 17 (612) 11 (396) 10 (360) 57 (2052) 

  Total 279 (10044) 267 (9612) 264 (9504) 248 (8928) 1058 (38088) 

 

Table 4 Number of Participants Per Treatment Condition and Demand Set (number in parenthesis is the number of observations) 
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5.1 Variable Definition 

Before we explain the empirical analysis, a description of the variables 

used in the analysis is in order. We estimate an exponential smoothing 

model to compare the observed and optimal forecasts. For clarity, we 

define the following:  

i) Dt denotes the actual demand for time period T, which is 

revealed after the subject submits the forecast 

ii) Fsit denotes the forecast made by an individual I for a time 

period T, for a given treatment condition and a given demand 

set S 

iii) Ft
* denotes the normative optimal forecast and is calculated 

as 

𝑭𝒕
∗ = 𝑭𝒕−𝟏

∗ + 𝜶∗(𝑫𝒕−𝟏 − 𝑭𝒕−𝟏
∗ ) (6) 

iv) MAE(Dt,Fit) denotes the mean absolute forecast error, which 

is the average forecast error of all subjects within a given 

treatment condition for all the time periods 

v) MAE(Dt, Ft*) is the optimal forecast error and is defined as 

𝑬𝒔𝒕
∗ = |𝑭𝒔𝒕

∗ − 𝑫𝒔𝒕| (7) 

vi) MAPE refers to the mean of the Absolute percentage error 

over the given time periods. 
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5.1 .1 Dependent Variables 

i) αits is the adjustment score or the individual-level alpha and is 

calculated as  

𝜶𝒊𝒕𝒔 = (𝑭𝒔𝒊𝒕 − 𝑭𝒔𝒊𝒕−𝟏)  ∕ (𝑫𝒔𝒕−𝟏 − 𝑭𝒔𝒊𝒕−𝟏) (8a) 

Note that the calculation of the adjustment score is modified for the 

rolling training approach. In the case of the rolling treatment, since 

the participant observes errors only after four time periods, we 

modified the calculation of alpha based on the total demand and total 

forecast of the past four periods. Given that there are 36 time periods, 

there are 9 buckets. 

𝜶𝒊𝒕𝒔 = ∑ (𝑭𝒔𝒊𝒕
𝒕=𝟒
𝒕=𝟏 − 𝑭𝒔𝒊𝒕−𝟏) ∑ (𝒕=𝟒

𝒕=𝟏 𝑫𝒔𝒕−𝟏⁄ − 𝑭𝒔𝒊𝒕−𝟏)   (8b) 

5.1.2 Independent Variables 

i) Indicator (dummy) variable representing each treatment 

condition 

ii) Indicator (dummy) variable representing the rolling training 

bucket to account for any clustering effect. 

5.1.3 Control Variables 

i) Esit: denotes the absolute forecast error defined as per 

equation 9 below. In the regression analysis, we divided the 

forecast error by 100 to apply a scaling factor.  

𝑬𝒊𝒕 =
|𝑭𝒔𝒊𝒕−𝑫𝒔𝒕|

𝟏𝟎𝟎
 (9a) 

Note that for the rolling training approach, we average the forecast 

error across the four time periods of each bucket.  
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𝑬𝒊𝒕 = ∑
|𝑭𝒔𝒊𝒕−𝑫𝒔𝒕|

𝟏𝟎𝟎

𝒕=𝟒
𝒕=𝟏  (9b) 

ii) Graph usage: As part of the treatments, we provided extra 

information in graphical format in each review period. We 

quizzed the participants on how frequently they used these 

charts through a 5-point Likert scale, ranging from never (1) 

to always (5). We code graph usage as a factor variable. 

iii) Nature of Demand: Participants are surveyed on their 

perception nature of the demand function, i.e., i) 

unpredictable, ii) Seasonal, iii) Stable, iv) Stable with noise, 

and v) Trended. In our analysis, we group stable and stable 

with noise and code each category as a dummy variable. 

iv) Performance metrics review is a 5-point Likert scale variable 

measure of how frequently the participants reviewed the 

performance metrics ranging from never (1) to always (5). 

The performance metrics shared with them include Forecast 

Errors, APE, and MAPE. Performance metrics are coded as 

a factor variable.  

v) Attention check response: Concerns exist around Mturk 

participants' attention to the task. We have two questions 

designed to verify that the participants read instructions 

carefully. The response is coded as a binary variable, taking 

1 for a correct response and 0 for an incorrect response.  

vi) Fan chart knowledge: We query the participants' 

understanding of fan-chart charts. They are presented with a 

fac-chart and are asked two questions, one asking them to 
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identify the upper bound of the 95% confidence and the other 

asking them about the lower bound of the 95% confidence 

interval.  

Stata allows us to evaluate the impact of each level of the factor 

variable on our prediction.  
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Figure 9 – Forecasting Process 
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5.2 Initial Analysis:  

Our empirical analysis is centered around three critical steps of the 

forecasting process, i) review of the forecast errors, ii) decide the 

adjustment amount and direction, and iii) create a forecast which 

minimizes the MAPE. Depending on the treatment, the information made 

available to the participant varies, but the process never changes. Figure 

9 illustrates the process. Except for the first-period forecast, the subjects 

perform all three steps as they receive information about their previous 

period's forecast performance in terms of forecast errors and MAPE. 

After this, they decide on the adjustment for the current period's forecast, 

following which they create and submit their forecast. The participants 

are incentivized and asked to minimize the MAPE associated with their 

forecast. This process continues for a total of 36 time periods. 

 We build on Kremer et al. (2011), which compares the forecasters' 

errors to the errors obtained under an exponential smoothing model with 

the optimal adjustment factor given the demand noise and change 

conditions. They attribute the lower performance of the subjects to either 

over- or underreaction to forecasting errors, as measured by the 

adjustment factor in their forecasts. The primary reason for such a 

response is that the forecast errors are more salient than the system 

parameters. We developed hypotheses intended to decrease or 

increase the forecasters' adjustment factor by reducing errors' salience 

and/or reducing system neglect by emphasizing the demand process.  
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The empirical analysis thus begins by replicating Kremer et al.’s (2011) 

findings. We subsequently test the hypotheses and discuss the 

forecasting performance in the various treatment conditions. 

5.2.1 Base Treatment - Mean Absolute Errors 

To replicate Kremer et al.’s findings about the forecast errors, we 

performed t-tests to compare the participant's observed MAE to the 

optimal MAE based on the normative forecast. The normative model 

(equation 2(b), reproduced below) requires subjects to consider both the 

forecast error's strength and weight. The strength is the magnitude of 

the forecast error, and the weight individuals assign to the forecast error 

is denoted by alpha. In the normative model, the optimal weight is 

uniquely determined by the system parameters c and n.  

𝐹𝑡+1 =  𝐹𝑡 + 𝛼(𝐷𝑡 − 𝐹𝑡) 2(b) 

Table 5 shows the MAE levels for the base treatment compared to the 

optimal MAE. In line with Kremer et al. findings, forecasting performance 

deteriorates with increases in noise (n) and change (c) levels.  

 
Base 

  

 N10 N40   

C0 8.83*** (6.08)  24.25*** (28.87)   

C40 44.82*** (19.06) 48.16*** (26.94)   
 

Table 5 Two Tail T-Test Comparison of Optimal vs. Observed MAE 

Note: The numbers in parenthesis show optimal MAE based on a 

single exponential smoothing model. 
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5.2.2 Adjustment Scores (α) 

The adjustment score (α) or the weight assigned to the forecast error is 

undefined for the first period and coded as a missing value in our 

empirical analysis. We evaluate the adjustment scores for each forecast 

created by the subject. Table 6 below classifies the observed adjustment 

scores into different buckets.  

   No of Obs % of 
Observation 

(∞, 0) 8,957 24% 

0 2,434 6% 

(0,1) 14,526 38% 

(1, ∞) 12,171 32% 

Total Observations      38,088   
 

Table 6 Subject Adjustment Scores Analysis by Observation 

A negative adjustment score indicates that the participants adjusted their 

forecast in the opposite direction of their forecast error (24% of the 

observations). An adjustment score of zero (6% of the observation) 

indicated no reaction from the participants (i.e., the current forecast is 

the same as the previous forecast). Adjustment scores greater than zero 

and less than one demonstrate exponential smoothing behavior (38%). 

Finally, adjustment scores above one indicate that the participants are 

projecting a trend into the future.  

Supplementary analysis of the answers to a survey question on the 

nature of demand reveals that about half of the participants (47%) 

identified the time series as either stable or stable with noise, whereas 

𝛼𝑖𝑡 
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21% of the respondents identified the time series as a trended one 

(Figure 10).  

 

Figure 10 Participant Response to the Nature of Demand 

To check if participants can effectively distinguish between noise and 

change, we reviewed how the participant’s view of the nature of demand 

as stable or stable with noise varies based on the demand condition. 

Table 7 below shows the breakdown. We find that as noise and change 

level increase, the participant's perception of the demand environment 

as either stable or stable with noise decreases.  

 
Nature of Demand 

(Stable + Stable With Noise) 

 N10 N40 

C0 58.7% 45.8% 

C40 41.2% 41.6% 

Table 7: Proportion of participants perceiving demand as stable 

based on demand condition.  
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We check whether the participants’ perception of the demand impacts 

their adjustment scores. We use a nested regression to account for 

individual-level and demand set-level characteristics. Table 8a shows 

that the adjustment scores (α) of individuals who identified the time 

series as stable or stable with noise are significantly lower. In contrast, 

individuals who identified the time series as unpredictable have higher 

adjustment scores (α). The regression results are shown in Table 8b.   

This preliminary analysis indicates that people find distinguishing 

between change and noise difficult. Hence, they only correctly identify 

stable time series in low noise conditions. Furthermore, we find that the 

participant’s perception of the time series will affect their adjustment 

factors. If they find the series stable, they choose a lower adjustment 

factor than when they do not.  

We included the absolute forecast error as a control. Note that the 

forecast error in the exponential smoothing model should not be a 

predictor of the adjustment score, as the optimal adjustment score is 

exclusively determined by the change and noise level. However, we 

observe that in our results, the absolute forecast errors are significant 

across all conditions and negatively associated with adjustment scores.  



49 
  

 

 

 

 

 

 

Table 8a Adjustment Scores based on Nature of Demand  

  
  

Model 1 
 

Model 2 
 

Model 3 
 

Model 4   
Condition 1 

(C0N10) 

 
Condition 2 

(C0N40) 

 
Condition 3 

(C40N10) 

 
Condition 4 

(C40N10)          

    Coefficient   Coefficient   Coefficient   Coefficient 
Abs. Forecast Error 

 
-0.42*** (0.03) 

 
-0.26*** (0.02) 

 
-0.33*** (0.01) 

 
-0.27*** (0.01) 

Unpredictable 
 

0.01 (0.06) 
 

-0.11*** (0.05) 
 

0.1* (0.06) 
 

-0.01 (0.05) 
Stable & Stable w Noise -0.07** (0.03) 

 
-0.09*** (0.03) 

 
-0.09*** (0.04) 

 
-0.14*** (0.04) 

Seasonal & Trended 
 

0 
 

0 
 

0 
 

0 
Constant   0.34*** (0.14)   0.15 (0.42)   0.35** (0.17)   0.84*** (0.21) 

 

Table 8b Estimation Results Based on Nature of Demand  

  Model 1  Model 2  Model 3  Model 4 

  

Condition 1 
 (C0N10) 

 

Condition 2  
(C0N40) 

 

Condition 3 
 (C40N10) 

 

Condition 4 
 (C40N10) 

  

 

 

 

 

 

 

 

   α   α   α   α 

Unpredictable  0.40  0.35  0.45  0.52 
Stable & Stable w Noise  0.26  0.34  0.31  0.29 
Seasonal & Trended   0.38   0.48   0.52   0.48 
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5.3 Multilevel Nested Models 

We structured the experiment as a multilevel nested model. The 

individual participants are nested within one out of four possible demand 

sets, which are nested within a condition. There are four conditions 

nested within each treatment. Figure 11 below shows a pictorial 

representation of the nested structure.  

 

Figure 11: Nesting and Multilevel Structure of the Study 

Standard ordinary least square regression can produce misleading 

results about the statistical significance of a relationship when it is used 

to analyze nested data sets. A nested structure leads to greater 

statistical dependency in the data (subjects within a demand set, within 

a condition, and in a treatment), which can cause the standard errors to 

be underestimated and inflate the statistical significance (O'Dwyer et al. 

2014). Standard OLS modeling assumes each observation is 

independent and not co-related with other observations in the sample. 

Treatments

C0N10

Base Bias Bias_RT Fan Decomposition

Conditions
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The clustering that naturally occurs in the case of nested models makes 

meeting this assumption challenging. Hence nested modeling 

techniques are needed to address the statistical dependency. In 

standard OLS regression, group characteristics are not considered 

effectively at the individual level. Nested models produce unbiased 

estimates of the standard errors of the regression coefficients. Nested 

modeling also allows group variables (i.e., Treatment, Demand 

Conditions, etc.) to explain individual-level outcomes better. The 

statistical test to check for the necessity to use a nested model is based 

on the interclass correlation coefficient (ICC), which measures the 

degree of statistical dependence in the data. The variance of a 

dependent variable Yij can be split into the within-the-group variance (σ2) 

and between-group variance (𝜏0
2

 ).  

𝐼𝐶𝐶 =  𝜌 =
𝜏0

2

𝜎2+𝜏0
2 (10) 

To quote O'Dwyer et al. (2014), it is "The intraclass correlation coefficient 

(ICC) in equation (10) is used to calculate the portion of the variance in 

the dependent variable that is explained at each level in subsequent 

models with the addition of individual and group measures”. The 

interclass correlation coefficient ranges from 0 to 1, with higher values 

signifying higher levels of statistical dependency.  

To confirm whether our data exhibits a nested structure and requires a 

multilevel modeling approach, we fit a null model that only includes the 

dependent variable and the variables identifying the hierarchical 

structure. We used Stata's "mixed" command to estimate the model 
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using the maximum likelihood estimates option. Convention suggests 

ICC values greater than 0.05 indicate clustering, which needs to be 

controlled. Checking for the interclass correlation in our null model 

shows statistical dependency at the individual and demand set levels       

( Table 9). Consequently, all our analyses will be performed using the 

nested modeling approach.  

Interclass correlation 

     

Level ICC Standard Error 
95% Confidence 

Interval 

Treatment 0.041 0.266 0.011 0.139 

Condition 0.046 0.266 0.014 0.136 

Demand Set 0.053 0.266 0.016 0.136 

Individual 0.253 0.022 0.211 0.298 

 

Table 9 Interclass Estimates for Null Model 

Dummy Variables are generated to denote each treatment and condition 

combination uniquely. We estimate the model for a given condition 

across all treatments based on our nesting structure. Our approach 

yields a model each for the four different conditions. Within each model, 

the base treatment is defined as a reference category. The individual 

adjustment score is the dependent variable, and the treatments are the 

explanatory variables. The absolute forecast error, the usage levels of 

graphs, the performance metrics review frequency, and the attention 

check question responses are also included as control variables.  

We fit a random intercept model for the four models. Models 1 and 2 

represent stable conditions with no change, where the original Kremer 

et al. work observed overreaction, i.e., the observed adjustment factor 
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was greater than the optimal adjustment factor of zero. Models 3 and 4 

are the conditions with high change, where underreaction was observed, 

i.e., the observed adjustment factor was smaller than the optimal 

adjustment factor. The base treatment replicates the original Kremer et 

al. (2011) study. Our research objective is to mitigate the effects of 

underreaction and overreaction in order to help improve forecast 

accuracy. We aim to achieve this by using various treatments that prior 

research has proven effective in improving forecast accuracy in other 

types of time series demand forecasting models (e.g., with seasonality, 

trend, etc.). 

5.4 Hypothesis Testing: In the base treatment, the participants are 

asked to forecast one time period at a time and are presented with 

simple line graphs of actuals and forecasts. We are able to reproduce 

the findings from Kremer's original study and find evidence of 

overreaction in stable conditions and underreaction in unstable 

situations (compared with the optimal response).  

 Base 

 N10 N40 

C0 0.40*** (0) 0.46*** (0) 

C40 0.55*** (0.94) 0.54*** (0.62) 

 

Table 10 Wald test of Optimal Alpha vs. Subject Adj Score 

Note: The number in parenthesis is the Optimal Alpha for each condition 
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We now discuss the results from testing each of the hypotheses 

associated with the treatments. 

5.4.1 Fan Charts:  

Overreaction:  

H1a: Use of visual fan charts in the judgmental forecasting process 

reduces the underreaction  

In earlier sections, we argued that underscoring the uncertainty (noise) 

associated with the forecasting process will aid in reducing the salience 

of the forecast errors, which is desirable in stable scenarios. Fan charts 

are well suited to highlight that uncertainty; hence, we predicted fan 

charts would help reduce overreaction. 

 Fan 

 N10 N40 

C0 0.44 (0.40) 0.62** (0.46) 

C40 0.55 (0.56) 0.55 (0.54) 

Table 11 Wald test of Treatment vs. Base Adjustment Score 

Note: The number in parenthesis is the Adjustment Score (α) for the 

base condition 

Compared to the base treatment, our results show that providing the 

subjects with fan charts causes the overreaction to increase in both 

stable conditions. Furthermore, this increase is significant in stable 

conditions with high noise. The fan charts did not have the desired effect 

of reducing the salience of forecast errors.  
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Figure 12 Fan Chart Questionnaire Response Analysis 

To better understand the lack of positive impact of fan charts on 

overreaction, we reviewed the participant's responses to questions 

probing their understanding of the confidence interval's lower and upper 

bound. Their responses show that only about 6.3% of the participants 

could answer both questions correctly, 63% were able to answer one 

question, and 31% of the respondents could not answer either of the 

questions (see Figure 12). Consequently, we suspect that the subjects 

may not have fully appreciated the concept of fan charts and could not 

apply them effectively in this exercise and realize that, at least in stable 

conditions, the variations in demand are noise and should be ignored.  

We categorize participants based on their answers to the understanding 

questions and add this as a control to the regression. However, the 

results in Table 12 highlight that even participants with a full 

understanding of fan charts do not significantly differ in their adjustment 

scores (α) from the participants with partial knowledge.  
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Model 1 

  
Model 2 

  
Model 3 

  
Model 4 

  

Condition 1 
(C0N10) 

  Condition 2 
(C0N40) 

  Condition 3 
(C40N10) 

  Condition 4 
(C40N40) 

  

 

 

 

 

 

 

 

    Coefficient   Coefficient   Coefficient   Coefficient 

FC Know. Leve 1  0.09 (0.08) 
 

0.01 (0.09) 
 

0.10 (0.08) 
 

-0.04 (0.08) 

FC Know. Leve 2  -0.08 (0.14) 
 

-0.16 (0.17) 
 

-0.11 (0.17) 
 

-0.21 (0.20) 

FC Treatment  0.02 (0.08) 
 

0.19** (0.08) 
 

-0.04 (0.08) 
 

0.02 (0.08) 

Constant   0.45*** (0.15)   0.03 (0.20)   0.33** (0.16)   0.76*** (0.20) 

 

Table 12 Nested Models Fan Charts Estimation  

Note: Controls included in the above estimation 

Looking at the output of Models 1 and 2 in Table 12, fan charts 

contributed to an increase of 0.02 and 0.19 to the adjustment scores, 

respectively, when compared to the base treatment. The impact was 

significant only in condition 2. 

Underreaction: 

H1b-i): Use of visual fan charts in the judgmental forecasting process 

reduces the underreaction 

H1b-ii) Use of visual fan charts in the judgmental forecasting process 

increases the underreaction 

We argued in our earlier sections that fan charts could reduce the 

salience of errors. In contrast, in conditions with a high change-to-noise 

ratio (high values of W), forecast errors must influence future forecasts 

more (reduce system neglect). We were unsure of the directional impact 

of fan charts on underreaction. Hence, we stated our hypothesis related 

to underreaction as a dual one. The results from our analysis show that 
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there is no significant difference in adjustment scores between the base 

and the treatment conditions. The fan chart coefficients from the nested 

models also present the same picture (Table 12).    
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Model 1 

  
Model 2 

  
Model 3 

  
Model 4 

  

Condition 1 
(C0N10)   

Condition 2 
(C0N40)   

Condition 3 
(C40N10)   

Condition 4 
(C40N40) 

  

 

 

 

 

 

 

 

    
Coefficient 

  
Coefficient 

  
Coefficient 

  
Coefficient 

Abs. Forecast Error  
-0.45*** (0.04) 

 
-0.27*** (0.02) 

 
-0.34*** (0.02) 

 
-0.28*** (0.01) 

Fan  
0.02 (0.08) 

 
0.19** (0.08) 

 
-0.04 (0.08) 

 
0.02 (0.08) 

Decomposition  
-0.09* (0.05) 

 
-0.11** (0.05) 

 
-0.14*** (0.06) 

 
-0.26*** (0.06) 

Bias  0.06 (0.05)  -0.01 (0.05)  0.04 (0.06)  -0.05 (0.06) 

Bias w Rolling Training 
0.01 (0.05) 

 
-0.08 (0.05) 

 
-0.16** (0.01) 

 
-0.08 (0.06) 

Constant   
0.45*** (0.15) 

  
0.03 (0.20) 

  
0.33** (0.16) 

  
0.76*** (0.20) 

 

 

Table 13 Consolidated Nested Models Estimation Results 

Note: The Base Treatment is used as the reference category. Numbers in bold indicate the value of the coefficient. Numbers in 

parentheses indicate the standard errors. Controls included in the above estimation 
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5.4.2 Decomposition 

H2: Decomposition of the time series into individual components 

reduces overreaction and underreaction 

Participants were provided information on the nature of the time series 

for all conditions. Subjects were informed that the time series consisted 

of two components: i) noise and ii) change. They were not explicitly 

informed about the actual noise and change levels. In the decomposition 

treatment, participants were asked to separately estimate the past 

average demand and the change in demand. Their estimates were then 

aggregated mechanically to derive the total forecast. We expected that 

the mechanism of estimating the components would emphasize the 

demand generation process. Understanding the process should help in 

both overreaction and underreaction situations by reducing errors' 

salience and system neglect.  

 Decomposition 

 N10 N40 

C0 0.14* (0.40) 0.25** (0.46) 

C40 0.28*** (0.56) 0.20*** (0.54) 

 

Table 14 Wald test of Treatment vs. Base Adjustment Score 

Note: The number in parenthesis is the Alpha for the base condition 

Compared to the base treatment, our results (Table 14) show that getting 

subjects to think and estimate the demand components explicitly 

reduced their adjustment factor across all the conditions. While we 
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achieved the desired response in condition 1 and condition 2, in 

conditions 3 and 4, the participants’ behavior was the opposite of our 

prediction. The nested model estimation results in Table 15 confirm this. 

  
Model 1 

  
Model 2 

  
Model 3 

  
Model 4 

  

Condition 1 
(C0N10) 

  Condition 2 
(C0N40) 

  Condition 3 
(C40N10) 

  Condition 4 
(C40N40) 

  

 

 

 

 

 

 

 

    
Coefficient 

  
Coefficient 

  
Coefficient 

  
Coefficient 

Decomposition 
 

-0.09* (0.05) 
 

-0.11** (0.05) 
 

-0.14*** (0.06) 
 

-0.26*** (0.06) 

Constant   0.45*** (0.15)   0.03 (0.20)   0.33** (0.16)   0.76*** (0.20) 

 

Table 15 Nested Models Decomposition Estimation 

Note: Controls included in the above estimation 

Thus, decomposition reduced overreaction in stable conditions but also 

further worsened underreaction in unstable conditions. Our hypothesis 

is only partially supported.  

To understand the strong dampening effect of decomposition on the 

participants’ adjustment scores across all conditions, we investigated 

how the total forecasts (algebraic sum of average demand and change) 

of the subjects in the decomposition treatment differ from the forecasts 

of the base treatment. Compared to the base treatment, the total forecast 

of the subjects was consistently higher across all the conditions in the 

decomposition treatment. Table 16 below shows a t-test comparison of 

the subject's final forecast in the decomposition treatment against the 

base treatment.  
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Table 16 T-test Comparison of Participants Forecast with 

Decomposition Treatment and Base. 

Note: The number in parenthesis indicates the forecast from the base 

condition.  

To better understand the cause of the higher average demand 

estimation in the decomposition treatment, we plotted the average 

change, demand, and forecast values for each period in the 

decomposition treatment and the forecast from the base treatment in 

Figure 13. Triangular markers represent the demand forecast in the 

base treatment, whereas circular markers represent the decomposition 

treatment. In the decomposition treatment, the green line represents the 

average demand estimation, the orange line represents the change 

estimation, and the maroon line represents the forecast.  

 Forecast (Deco vs. Base) 

 N10 N40 

C0 558.7*** (517.3) 567.3*** (518.4) 

C40 551.3*** (533.4) 562.6*** (505.3) 
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Figure 13 Comparison of Base vs. Decomposition  

A visual inspection reveals a key factor that ultimately affects the 

adjustment score. The visible upwards trend in demand values entered 

by the participants combined with the average change implies that 

participants implicitly impute a trend in the demand series. Given that 

none of the underlying demand conditions exhibited a trend, the lack of 

adjustment to the resulting consistent over-forecasting resulted in a low 

adjustment score across all the conditions.   

5.4.3 Bias Treatment 

Bias is a directional measure of forecast accuracy. A positive bias 

indicates a tendency to under-forecast, while a negative bias denotes an 

over-forecast. Bias is classified as performance feedback since it 

conveys more information than outcome feedback, where the subjects 

are only informed about the actual demand. We predicted that bias 
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feedback would help alleviate overreaction. In case of unstable 

conditions, given that the average demand itself changes from period to 

period, we did not offer a prediction on the direction of the impact of the 

bias feedback. Hence we put forward a dual-part hypothesis about 

underreaction.  

H3a:  Providing bias feedback reduces overreaction 

H3b-i): Providing bias feedback in the judgmental forecasting process 

reduces the underreaction 

H3b-ii): Providing bias feedback in the judgmental forecasting process 

increases the underreaction 

 Bias 

 N10 N40 

C0 0.44 (0.40) 0.45 (0.46) 

C40 0.56 (0.56) 0.42 (0.54) 

Table 17 Wald test of Treatment vs. Base Adjustment Score 

Note: The number in parenthesis is the Alpha for the base condition 

Table 17 compares the bias treatment condition's adjustment scores (α) 

values with the base condition. We see that bias feedback did not 

significantly impact the adjustment scores (α) across the conditions. The 

subject adjustment scores in the bias and base treatment are similar in 

all conditions. Table 18 shows the results of the nested model estimation 

that show no significant impact from the bias feedback on the adjustment 

scores.  
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Model 1 

  
Model 2 

  
Model 3 

  
Model 4 

  

Condition 1 
(C0N10) 

  Condition 
2 (C0N40) 

  Condition 3 
(C40N10) 

  Condition 4 
(C40N40) 

  

 

 

 

 

 

 

 

    Coefficient   Coefficient   Coefficient   Coefficient 

Bias 
 

0.06 (0.05) 
 

-0.01 (0.05) 
 

0.04 (0.06) 
 

-0.05 (0.06) 

Constant   0.45*** (0.15)   0.03 (0.20)   0.33** (0.16)   0.76*** (0.20) 

Table 18 Nested Models Bias Estimation 

Note: Controls included in the above estimation 

Bias as a performance measure should help subjects identify consistent 

over-forecasting and under-forecasting compared to the base treatment. 

Given that there was no significant difference between the base and the 

bias treatment, we proceeded to look at instances of over-forecasting 

and under-forecasting in both the bias and the base treatments.  

We defined over-forecasting and under-forecasting as any four 

consecutive observations with a positive bias or negative bias. Table 19 

below shows the classification based on the above definition. We can 

make a few critical observations from the table below. Firstly, the number 

of people who do not suffer from persistent forecasting bias –positive or 

negative – is relatively high at 83% for the base and 81% for the bias 

treatment, respectively. Bias feedback will offer limited additional 

information for this group of people as they do not suffer from bias.  

 Total Obs.  %No Bias %Over %Under 

Base 7,308   83% 16% 1% 

Bias 8,136   81% 18% 1% 

Table 19 Percentage of Observations classified as Over-

forecasting & Under-forecasting in Base and Bias Treatments 
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Second, when participants display a bias, it is towards over-forecasting 

than under-forecasting. We compared the average bias performance of 

instances of over-forecasting and under-forecasting in the bias treatment 

against the base treatment. Tables 20a and 20b show the results of our 

comparison. 

 

 

Table 20a Bias Performance of Observations Classified as Over-

forecasting from Bias and Base Treatment 

Note: Numbers in parenthesis indicate bias performance of subjects in 

the base treatment  

 Bias Metric (Under-forecasting) 

 N10 N40 

C0 1.78*** (6.8) 3.8*** (4.9) 

C40 10.34*** (5.07) 13.9 (12.83) 

Table 20b Bias Performance of Observations Classified as Over-

forecasting from Bias and Base Treatment 

Based on Table 20a, bias feedback was ineffective at reducing over-

forecasting or, even worse, increased it. Bias feedback seemed to be 

more effective at reducing under-forecasting. To conclude, given that 

under-forecasting was just observed in 1% of the cases, we observe that 

either bias feedback is unnecessary – because the forecasters do not 

display bias – or was ineffective, as in the case of over-forecasting. This 

may explain why there is essentially no difference in the adjustment 

scores between the bias and the base treatments.  

 Bias Metric (Over-forecasting)  

 N10 N40 

C0 -7.2 (-6.6) -9.29*** (-4.9) 

C40 -24.5 (-22.5) -32.24 (-28.8) 
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5.4.4 Bias with Rolling Training 

The rolling training approach is characterized by providing performance 

feedback at regular intervals instead of every time period. We argued 

earlier that limiting the number of reviews emphasizes the review's 

“decision-making value” (Long et al., 2020). With the limited number of 

reviews, participants are expected to be cognitively more attentive. 

Petropoulos et al. (2017) claim that the rolling training approach enables 

the "balance between the sensitivity and stability of the feedback.".  

We argue that compared with the base treatment, where participants are 

exposed to forecast errors every time period, rolling training, with its 

emphasis on balanced feedback and limited reviews, could make them 

more aware of the demand generation process. For example, they could 

notice the minor variation in the demand around the mean in a stable 

series and realize it is a noise. Similarly, in an unstable process, while 

there may be consecutive series of increasing and decreasing demand, 

attentive participants are likely to realize that the variation from one 

bucket to another is indicative of a change than a persistent trend.  

Hence, our hypothesis proposed that the rolling training approach would 

help in both the underreaction and overreaction scenarios.  

H4:  A rolling approach to providing bias feedback reduces overreaction 

and underreaction 
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Table 21 Wald test of Treatment vs. Base Adjustment Score 

As defined previously, the adjustment scores and forecast errors in the 

rolling training conditions are calculated per forecasting bucket 

consisting of 4 time periods rather than for each time period as was done 

in the other treatments. 

Compared with the base treatment, the rolling training approach reduces 

overreaction (although not significantly) in both stable conditions (Table 

21). In the case of unstable conditions, the rolling treatment could not 

trigger an increase in the subjects' adjustment scores (α) compared to 

the base treatment (increasing reaction). In unstable conditions 

(conditions 3 and 4), the desired reaction is that more significant errors 

must greatly influence the forecast. The individual adjustment scores (α) 

were reduced across the board.  

The directional bias feedback did not help participants distinguish the 

variation in demand around the mean in stable conditions as noise.  

Counter to our argument, the participants' limited number of reviews also 

did not help reduce system neglect. If participants gained an insight into 

the demand generation process and, subsequently, the system 

 BRT 

 N10 N40 

C0 0.34 (0.40) 0.29 (0.46) 

C40 0.30** (0.56) 0.32 (0.54) 
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parameters, we would have observed increases in their adjustment 

scores (α) in unstable conditions.  

  
Model 1 

  
Model 2 

  
Model 3 

  
Model 4 

  

Condition 1 
(C0N10) 

  Condition 
2 (C0N40) 

  Condition 3 
(C40N10) 

  Condition 4 
(C40N40) 

  

 

 

 

 

 

 

 

    Coefficient   Coefficient   Coefficient   Coefficient 

Bias w Rol.Trg 
 

0.01 (0.05) 
 

-0.08 (0.05) 
 

-0.16** (0.01) 
 

-0.08 (0.06) 

Constant   0.45*** (0.15)   0.03 (0.20)   0.33** (0.16)   0.76*** (0.20) 

Table 22 Nested Models Rolling Training Estimation 

Note: Controls included in the estimation.  

The nested model estimation outputs are shown in Table 22 and include 

the control variables. Rolling training does not significantly impact 

underreaction or overreaction. Thus, our hypothesis is not supported.  

5.4.5 Full Parameter Knowledge Treatment:  

Our intent with the various treatments was to provide subjects with 

decision tools to help remedy the system neglect and improve 

forecasting performance. Thus, the base condition theoretically provides 

a lower bound for forecasting performance. Kremer et al. further claim, 

"In most instances, system parameters c and n are unknown or even 

unknowable." Therefore, knowledge of system parameters should help 

decide the right adjustment scores. Of course, this assumes that the 

subjects can incorporate the information about the system parameters 

in their demand estimation.  

We conducted a separate experiment where participants were informed 

about the nature of the demand function, and the system parameters c 

and n were disclosed to the participants. This scenario was conducted 
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for the high noise and high change conditions (since this condition 

represents the most complex of all conditions). This is different from the 

original decomposition approach, where participants were provided 

information about the nature of the time series but were not provided any 

information on the system parameters. 

 

Wald test of Optimal Alpha vs. Subject Adj Score 

  Treatment 

Condition Base  Decomposition  Decomposition(PK) 

C40N40 0.54*** (0.62)  0.20*** (0.62)  0.30*** (0.62) 

 

Table 23a Wald test of Optimal Alpha vs. Subject Adj Score 

 

Wald test of Base vs. Subject Adj Score 

    

     

Condition Decomposition  Decomposition(PK) 

C40N40 0.20*** (0.54)  0.30*** (0.54) 

 

Table 23b Wald test of Base vs. Subject Adj Score  

Table 23a and Table 23b compare the adjustment scores from the 

parameter knowledge treatment against the optimal values and the base 

treatment.  

The average adjustment scores continue to show underreaction 

compared to the base treatment (Table 23b). Compared to the original 

decomposition approach, the adjustment scores have increased from 

0.20 to 0.30. It seems that the participants cannot still effectively 
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incorporate the knowledge about the c and n into their forecast 

estimates.  

Improving accuracy in unstable conditions requires subjects to weigh 

recent forecast errors higher in their adjustment scores. The treatment 

has not triggered such a response in the subjects. Table 24 shows the 

estimation results from the multi-level model. It shows that parameter 

knowledge reduces the subject adjustment score compared to the base 

treatment. However, the adjustment scores are higher when compared 

with the decomposition treatment (without parameter knowledge).    

Model 4 

Condition 4 (C40N40) 

  

 

    Coefficient 

PK Decomposition  -0.17*** (0.07) 

Constant   0.67*** (0.04) 

 

Table 24 Estimation Results for Condition 4, including Parameter 

Knowledge Treatment 
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Table 25 T-test of Observed MAPE vs. Opt MAPE 

         

 Base  Bias  BRT 

 N10 N40  N10 N40  N10 N40 

C0 2.20(1.18)*** 5.0(5.56)***  2.86(1.37)*** 6.89(5.54)***  4.97(1.38)*** 10.20(5.93)*** 

C40 10.82(3.96)*** 13.31(6.26)***  12.59(4.01)*** 17.27(6.38)***  15.52(3.95)*** 21.67(6.32)*** 

         

 Fan  Decomposition  PK Decomposition 

 N10 N40  N10 N40  N10 N40 

C0 4.52(1.38) 11.08(6.26)*** C0 9.10(1.37)*** 12.29(5.82)***  - - 

C40 10.02(4.01)*** 9.23(5.72)*** C40 15.04(4.04)*** 11.(5.48)***  - 13.81 (5.63)*** 
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Table 26 T-test of  MAPE Treatment vs. Base 

         

 Bias  BRT  Fan 

 N10 N40  N10 N40  N10 N40 

C0 2.86(2.20)*** 6.89(5.00)***  4.97(2.20)*** 10.20(5.00)***  4.52(2.20) 11.08(5.00)*** 

C40 12.59(10.82)*** 17.27(13.31)***  15.52(10.82)*** 21.67(13.31)***  10.02(10.82)* 9.23(13.31)*** 

         

 Decomposition  PK Decomposition    

 N10 N40  N10 N40    

C0 9.10(2.20)*** 12.29(5.00)***  - -    

C40 15.04(10.82)*** 11.06(13.31)***  - 13.81 (13.31)    
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6. Forecasting Performance Implications 

The ultimate objective of any forecasting exercise is to reduce errors and 

improve accuracy. Accordingly, subjects in our forecast exercise were 

instructed to minimize their forecasts' MAPE, and respondents with the 

lowest MAPE (top three) were incentivized with a bonus payment of USD 

15. Except for the decomposition treatment, the participants did not have 

any indication of the demand function and the research hypothesis. 

There was no apriori forecasting knowledge required from the 

participants. We designed the treatments to address the causes of 

underreaction and overreaction to help improve the MAPE of the 

forecasting process. We deployed Fan Charts and Bias treatments to 

reduce the salience of forecast errors. We used rolling training and 

decomposition approaches to emphasize the system parameters and 

reduce the salience of forecast errors.  

The MAPE values comparisons for each treatment are presented in 

Tables 25 (Observed vs. Optimal) and 26 (Treatment vs. Base). Table 

25 shows that the observed MAPEs are higher than the optimal MAPEs 

in all treatment and condition combinations. In Table 26, we see that only 

conditions 3 and 4 in the Fan Chart treatment and condition 4 in the 

decomposition treatment resulted in MAPE values lower than the base 

condition. We see an increase in MAPE in all other conditions compared 

to the Base treatment.  

A possible explanation for not achieving any reduction in MAPE was that 

the participants could not fully leverage the treatment mechanisms and 
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apply them to the forecasting process. Although instructions and short 

training videos were available for participants' reference, given the 

limited time, participants might not have been able to comprehend fully.  

Recent research by Aguinis et al. (2021) has identified some challenges 

with using the MTurk subject pool. MTurk subject pools generally work 

to maximize monetary gains by completing as many tasks as possible. 

To quote Aguinis et al. 2021 “Compared with student samples, online 

participants are significantly more likely to be distracted due to cell phone 

use (MTurker = 21% vs. student = 9%), internet surfing (MTurker = 11% 

vs. student = 1%), or conversing with another person (MTurker = 21% 

vs. student = 2%)”. Nevertheless, we do not find significant support for 

the attention check questions or the knowledge of fan charts as a 

predictor of performance. Therefore, we cannot conclude whether this is 

the main contributor to the poor performance of the treatments tested. 

The base treatment is cognitively the least demanding of all the 

treatments, which may be why it resulted in lower MAPE for the online 

pool. Some exploratory analysis points to the possibility of limited 

cognitive attention. The base treatment, which is the least informative 

but cognitively the least demanding, nevertheless resulted in lower 

MAPE. To understand whether the participants did suffer from cognitive 

load in the treatments provided, we plotted the MAPE across treatments 

against the self-declared usage of the graphs (Figure 14). Except for the 

base treatment in which usage of the graph is beneficial, the usage 

versus MAPE relationship resembles an inverted “U,” such that very low 

or very high usage levels are associated with lower MAPE than 
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intermediate use. This inferior performance of intermediate graph usage 

in the treatments where the graphs provided significantly different 

information from the data tables supports the idea of a switching cost 

where the participants need to adjust between the various elements of 

the complex graphic and the numeric feedback provided. This increases 

the cognitive burden and reduces forecasting performance.  

 

Figure 14 Subject MAPE versus the usage of Graphs 

Note: The size of the bubble represents the frequency of the 

observation. 
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In Treatment Prediction Result  MAPE 

H1a Fan Chart Fan Chart Reduces Overreaction Not Supported Lower for condition 3. 
Increased for conditions 
1,2 and 4 

H1b-(i) Fan Chart Fan Chart Reduces Underreaction Not Supported 

H1b-(ii) Fan Chart Fan Chart Increases Underreaction Not Supported 

H2 Decomposition Decomposition Reduces Overreaction and 
Underreaction  

Supported for Overreaction 
only 

Lower for condition 4. 
Increased for conditions 
1,2, and 3.  

H3a Bias Bias Feedback Reduces Overreaction Not Supported Increased for all 
conditions 

H3b-(i) Bias Bias Feedback Reduces Underreaction Not Supported 

H3b-(ii) Bias Bias Feedback Increases Underreaction Not Supported 

H4 Bias + Rolling 
Training 

BRT Reduces Overreaction and Underreaction  Not Supported Increased for all 
conditions 

 

Table 27.  Summary of Results
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7. Managerial Implications 

Given the prevalence of judgmental forecasting in industry, our research 

objective was to identify approaches to mitigate the overreaction and 

underreaction observed in time series with noise and change. Kremer et 

al. (2011) identified overreaction and underreaction as the primary 

factors impacting forecasting performance. We deployed tried and 

tested decision support tools to help improve the forecast quality in our 

context characterized by noise and change. We confirmed that rolling 

training and decomposition approaches were able to reduce 

overreaction in the stable time series. However, this did not translate into 

improvements in forecast quality, and we failed to establish a consistent 

relationship between adjustment scores (α) and MAPE.  

In fact, the cases in which a significant improvement in MAPE was 

observed were all cases in which the adjustment factor changed in a 

direction opposite to the one theorized by Kremer et al. (2011). In 

instances where we significantly reduced underreaction in stable 

conditions, the MAPE nevertheless increased. Achieving an 

improvement in MAPE proved to be a challenging task.  

This leads us to question whether the demand forecasting model tested 

by Kremer et al. (2011) is a good model of the individual participants’ 

forecasting decisions, as the forecast models that individuals seem to 

deploy do not conform to the single exponential model. If the exponential 

smoothing model were not to apply, then focusing on the adjustment 
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factor would not achieve the desired outcome, which is improved 

forecasting accuracy.  

Another important finding from our research is that individuals cannot 

effectively distinguish between noise and change. Only demand series 

with low change and low noise is reliably recognized as stable demand 

series. Demand patterns with a high noise but low change are frequently 

misclassified as unstable. This is unfortunate as the desired forecasting 

behavior depends on correctly attributing demand fluctuations to change 

vs. noise. Demand patterns without change require a stable forecast and 

a stronger weight to past observations and downplay errors. In contrast, 

demand patterns displaying significant change require a stronger weight 

towards recent observations that reflect the change. 

Even though we could not improve forecast performance by altering 

adjustment scores (α), there are still a few insights that managers can 

leverage from our study. 

First, in stable demand conditions, more straightforward approaches are 

preferred. They are intuitive and cognitively less demanding. This is 

likely why the base, bias, and fan chart-based methods had lower MAPE 

than rolling training and decomposition-based approaches. The base 

approach was the better-performing one amongst the others, indicating 

limited incremental benefits with the additional tools. To fully leverage 

fan chart-based approaches requires an appreciation of uncertainty and 

confidence intervals. The results from the survey questions suggest a 

lack of such knowledge in the general population.  Developing such an 
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appreciation requires some level of training and education that 

managers need to cater to. The enhanced knowledge could help further 

improve performance in stable conditions. 

Stable time series are, by nature, more suited for automation. However, 

the well-known algorithm aversion phenomenon means that humans are 

hesitant to use algorithms since they are imperfect, even if they perform 

better than humans. Dietvorst et al. (2018) find that people may be more 

willing to accept the outcomes from an algorithm if they are allowed to 

change their forecasts even by a small amount. This approach may help 

balance automation and the manual judgmental approach to improve 

judgmental forecasts.  

Second, distraction or additional cognitive effort may also lead to poorer 

performance. Bias, Rolling Training, Fan Chart, and Decompositions 

were all treatments with additional intervention and action required from 

the participants. The most straightforward base treatment outperformed 

the treatments in the M-Turk participant pool, which is drawn from the 

general population.  

Third, and interestingly, none of the treatments worked in all the 

conditions. This suggests the need for a multi-pronged approach based 

on the nature of time series. Automating decisions in a stable situation 

and simplifying the decomposition-based approach in an unstable 

situation hold the most promise. Such an approach would require some 

statistical analysis of the time-series apriori. Budescu and Chen (2015) 
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suggest an approach that extends the crowds' wisdom using an expert 

pool of forecasters who consistently outperform the others.  

8. Conclusion 

We started our research by replicating the findings from the original 

Kremer et al. (2011) research about system neglect. Our goal was to 

identify treatments that could help mitigate system neglect's effects on 

forecasting performance by influencing the individual adjustment scores 

(α). Table 27 summarizes our findings. We have only been able to trigger 

a reduction in over-reaction with the decomposition approach. None of 

the treatments were able to trigger an increase in adjustment scores (α) 

for the unstable conditions (reduce underreaction). In terms of 

forecasting performance, we reduced MAPE in only three conditions. 

The Fan Chart treatment delivered a reduction in MAPE of 0.8% for 

condition 3 and 3.08% for condition 4, whereas the decomposition 

treatment delivered a reduction in MAPE of 2.25% compared to the base 

treatment.  

The treatments were ineffective in delivering consistent improvement 

across all the conditions. The results find some support in prior research 

highlighted in the literature review. For example, Blogger and Harvey 

(1993) found that individual forecasting performance is highly dependent 

on the characteristics of time series, and small changes in the time series 

and its presentation can significantly affect forecasters’ performance.  

The current research points to several areas for further investigation. 

Firstly, the normative model used in our and the Kremer et al. study was 
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the single exponential smoothing model. We have evaluated individual 

performance against the normative benchmark from the exponential 

smoothing model. Our results show that better alignment with the 

benchmark need not lead to improved forecasting accuracy. Future 

research could investigate other normative models for the demand 

function and evaluate individual responses against it. There is also a 

potential to explore other behavioral models of forecasting which could 

better explain the respondent’s behavior. We noted earlier that Tong and 

Feiler (2017) advanced a behavioral forecasting model, arguing that 

individuals generate a forecast based on a small (less than 7) and 

randomly generated sample of the series and naively assume that the 

sample represents the true population. Researchers could evaluate if 

Tong and Feiler’s model could better describe the individual responses.   

Second, the experimental setup could be varied to understand how 

individual responses vary based on the time series characteristics. 

Within a given treatment, a combination of the conditions can be 

deployed such that the same individual is exposed to different conditions 

within a given treatment. Such treatments can help isolate individual 

responses to differences in time series. E.g., when the demand 

conditions switch from a stable to an unstable condition, we could 

confirm if the individual response switches from overreaction to 

underreaction or vice-versa.  In real-world scenarios, planners often 

have to deal with time series with varying characteristics in no specific 

order; insights from treatments with varying demand functions can help 

design effective interventions from a practitioner's standpoint.   
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Third, as prior research has highlighted the prevalence of judgmental 

forecasting among prior practitioners, it is critical to ensure that 

forecasters are adequately trained and qualified for the forecasting task. 

Budescu and Chen (2015) showed that using an expert pool of 

forecasters who consistently outperform the others delivers significant 

improvements in the quality of aggregation when compared with the 

standard pool.  A recent study by Kim et al. (2019) studied how 

individuals and groups respond to the advice they receive as part of a 

judgmental forecasting activity. They find that groups are better at 

discerning the quality of forecasting advice than individuals and 

generally perform better than individuals. Both studies suggest that the 

potential use of a qualified pool of experts may help improve the 

forecasting performance compared to a normal pool.  

From a practitioner standpoint, this is quite relevant where organizations 

are building Centres of Excellence (COE) to develop and leverage 

expertise. While the forecasting decisions involving stable time series 

could be automated to deliver performance improvements, the pool of 

experts could help drive improvement in performance for unstable series 

could be derived. Future studies could look at evaluating these scenarios 

impact on the system neglect phenomenon.  

Forecasting is a critical business process that significantly impacts the 

top and bottom lines. Our research has attempted to find interventions 

that could improve forecasting by mitigating the effects of underreaction 

and underreaction to forecast errors. We found no treatment worked 

across the conditions, and the individual behavior did not conform to the 
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single exponential smoothing forecasting model. Based on our results, 

we have highlighted some fruitful areas for further research for 

practitioners and academicians.  
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Appendix 1 

Recruitment material for the Base Treatment: 

 

Instructions 

Study Overview and Context 

This is an experiment on individual judgments. The experiment is not intended 

to test your knowledge but is a means to understand the individual decision-

making process. The experiment is to support Doctoral Research. 

You have been given the actual demand for the past 36 time periods. You will 

need to predict the subsequent 36 time periods. 

Software Required 

You will need to have Microsoft Excel 2012 or a later version, and you 

will need to enable Macros.  

Estimated Completion Time 

This task is estimated to take 25 minutes. 

To Receive Credit and Avoid Your Submission Being Rejected 

You must complete and upload the excel simulation with your 

forecast into the survey link and complete the post-simulation survey 

questionnaire.  

Not following the prescribed steps will result in the submission being 

rejected. 

Bonus Payment 

The top 3 entries with the highest forecast accuracy will be awarded a bonus 

payment of USD 15, which will be provided approximately 2 weeks from the 

study completion.  

Study Withdrawal 

You may withdraw from the study within 72 hours of completion by 

informing the principal investigator Srikant Vinakota via email at 

srikant.v@2017@dba.smu.edu.sg. You may also email the principal 

investigator's supervisor Prof. Pascale Crama at pcrama@smu.edu.sg.  

Withdrawn entries will not be reimbursed for the participation fee.  
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Institutional Research Board: 

For questions about IRB, you may contact irb@smu.edu.sg. Please include 

IRB approval number:IRB-21-105-E026-M1(522) 

  

Select the link below to complete the survey. You will receive a code to paste 

into the box below to receive credit for taking our survey at the end of the 

survey. 

Make sure to leave this window open as you complete the survey. When 

you are finished, you will return to this page to paste the code into the box 

below. 

Survey link: 

The link will appear here only if 

you accept this HIT. 
  

Provide the spreadsheet 

completion code here: 
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Appendix 2a 

Instructions For Base Treatment 

Judgmental Demand Forecasting 

The following is an experiment on individual judgments. The experiment 

is not intended to test your knowledge but is a means to understand the 

individual decision-making process.  

Context: You are the demand planner for X-mart, a supermarket. Your 

role is to forecast the future demand for products based on actual past 

demand. 

The demand forecast forms the input for subsequent activities such as 

procurement from the supplier and replenishment of the store. The 

demand forecast is the first step in the planning process, enabling 

product availability, and an accurate forecast leads to improved business 

performance.  

You have been given the actual demand for the past 36 time periods. 

You will need to predict the subsequent 36 time periods one step ahead 

for the next selling period, i.e., forecast period 37, using data available 

through period 36. Actual demand for period 37 is then realized, and you 

will be asked to forecast period 38.  

Forecast Performance Measures:  

Note below the definition of the forecast performance measures. The 

table below shows an example calculation for the measures. The 

number in the red circle corresponds to the measure described below.  
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1. Forecast error is the absolute difference between the actual 

demand and the forecast. For time period 38, this is the 

absolute difference between 90 (actual) and 110 (forecast), 

and it is 20. 

2. Absolute Percentage Error (APE) is the forecast error expressed 

as a percentage of the actual demand. For time period 38, this 

is calculated as (20/90), which is 22.1% 

3. MAPE refers to the Mean of the absolute percentage error (APE) 

over the given time periods. For period 38, this is the average 

of period 37 (10%) and period 38 (22.2%), which is 16.1%.  

Your Objective - Minimize your forecast error which leads to the 

minimization of MAPE 

 

Reward 

Participants will be paid USD 2 for fully completed responses. In 

addition, there is a bonus reward of USD 15 for the top 3 respondents 

with the lowest MAPE for the 36 periods. 

 

Time Period Actual 

Demand

Forecast Forecast 

Error

APE(%) MAPE(%)

T37 100 90 10 10% 10.0%

T38 90 110 20 22% 16.1%

T39 110 100 10 9% 13.8%

1 2 3
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Spreadsheet set up and overview 

1. The spreadsheet uses macros. You may receive security warning 

messages similar to the one shown below. Please Enable Macros 

to use the spreadsheet 

2. Please ensure you key in your Participant ID in Cell B1 in the Tab 

-Spreadsheet Simulation 

3. You are requested to complete the task in one sitting  

 

 

 

 

 

 

 

  

1 

1 

2 
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Steps 

The Actual Demand for the Product are shown in the column labeled 

Actual Demand (Column C in YELLOW).  

1. Provide your forecast in the column labeled User Forecast 

(Column D in BLUE) from Row 37 onwards.  

Note: i) enter values greater than 0, ii) text entries are not 

permitted, iii) forecasts once entered cannot be changed. 

2. The performance metrics will be updated after every submission 

3. The actuals and the forecast are also plotted in a graph that you 

are encouraged to review before your next submission.  

4. Once you have completed the submission for time period 72, the 

spreadsheet simulation task is complete.  

5. YOU MUST THEN SAVE THE SPREADSHEET AND UPLOAD 

IT BACK TO THE SURVEY.  

6. Proceed to complete the questionnaire in the survey. You will 

receive a completion code at the end of the questionnaire, which 

must be typed in MTurk to get credit for your effort.  

 

 

 

 

 

 

Key in your inputs here Actual Demand Your Forecast 
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Appendix 2b 

Instructions for Fan Chart Treatment 

Judgmental Demand Forecasting 

The following is an experiment on individual judgments. The experiment 

is not intended to test your knowledge but is a means to understand the 

individual decision-making process.  

Context: You are the demand planner for X-mart, a supermarket. Your 

role is to forecast the future demand for products based on actual past 

demand. 

The demand forecast forms the input for subsequent activities such as 

procurement from the supplier and replenishment of the store. The 

demand forecast is the first step in the planning process, enabling 

product availability, and an accurate forecast leads to improved business 

performance.  

You have been given the actual demand for the past 36 time periods. 

You will need to predict the subsequent 36 time periods one step ahead 

for the next selling period, i.e., forecast period 37, using data available 

through period 36. Actual demand for period 37 is then realized, and you 

will be asked to forecast period 38.  

Forecast Performance Measures: 

Note below the definition of the forecast performance measures. The 

table below shows an example calculation for the measures. The 

number in the red circle corresponds to the measure described below.  
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1. Forecast error is the absolute difference between the actual 

demand and the forecast. For time period 38, this is the 

absolute difference between 90 (actual) and 110 (forecast) 

and is 20. 

2. Absolute Percentage Error (APE) is the forecast error expressed 

as a percentage of the actual demand. For time period 38, this 

is calculated as (20/90), which is 22.1% 

3. MAPE refers to the Mean of the absolute percentage error (APE) 

over the given time periods. For period 38, this is the average 

of period 37 (10%) and period 38 (22.2%), which is 16.1%.  

Your Objective - Minimize your forecast error which leads to minimization 

of MAPE 

 

 

Reward 

Participants will be paid USD 2 for fully completed responses. In 

addition, there is a bonus reward of USD 15 for the top 3 respondents 

with the lowest MAPE for the 36 periods. 

Time Period Actual 

Demand

Forecast Forecast 

Error

APE(%) MAPE(%)

T37 100 90 10 10.0% 10.0%

T38 90 110 20 22.2% 16.1%

T39 110 100 10 9.1% 13.8%

Forecast Measures

1 2 3
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Spreadsheet set up and overview 

1. The spreadsheet uses macros. You may receive security warning 

messages similar to the one shown below. Please Enable Macros 

to use the spreadsheet 

2. Please ensure you key in your Participant ID in Cell B1 in the Tab 

-Spreadsheet Simulation 

3. You are requested to complete the task in one sitting  

 

 

 

 

 

  

Steps 

The Actual Demand for the Product is shown in the column labeled 

Actual Demand (Column C in YELLOW).  

1. Provide your forecast in the column labeled "User Forecast" 

(Column D in BLUE) from Row 37 onwards.  

Note: i) enter values greater than 0, ii) text entries are not 

permitted, iii) forecasts once entered cannot be changed. 

1 

1 

2 
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2. The actuals and the forecast are also plotted in a graph that 

includes a line chart, a moving average plot, and 90% and 95% 

confidence interval plots.  

3. The 90% confidence interval means there is a 90% likelihood that 

the next demand will be in this interval. The midpoint of the 

interval is the forecast. In other words, there is a 90% chance that 

the correct demand is included by the lower and upper bounds of 

the interval, and there is only a 5% chance that demand will be 

higher than the upper bound and a 5% chance that it will be lower 

than the lower bound (see Figure 1) 

4. The past four periods moving average of actuals is included to 

give you an indication of the evolution of the demand 

5. Once you have completed the submission for time period 72, the 

spreadsheet simulation task is complete.  

6. YOU MUST THEN SAVE THE SPREADSHEET AND UPLOAD 

IT BACK TO THE SURVEY.  

7.  Proceed to complete the questionnaire in the survey. You will 

receive a completion code at the end of the questionnaire, which 

must be typed in MTurk to get credit for your effort.   

  

 

 

  

Key in your inputs here 
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Past 4 period moving average of actuals 

90% CI 95% CI 

Upper Bound of 95% CI =570 

Lower Bound of 95% CI =468 

Actual Demand 
Forecasted Demand 
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Appendix 2c 

Instructions for Bias Treatment 

Judgmental Demand Forecasting 

The following is an experiment on individual judgments. The experiment 

is not intended to test your knowledge but is a means to understand the 

individual decision-making process.  

Context: You are the demand planner for X-mart, a supermarket. Your 

role is to forecast the future demand for products based on actual past 

demand. 

The demand forecast forms the input for subsequent activities such as 

procurement from the supplier and replenishment of the store. The 

demand forecast is the first step in the planning process, enabling 

product availability, and an accurate forecast leads to improved business 

performance.  

You have been given the demand for the past 36 time periods. You will 

need to predict the subsequent 36 time periods one step ahead for the 

next selling period, i.e., forecast period 37, using data available through 

period 36. Actual demand for period 37 is then realized, and you will be 

asked to forecast period 38.  

Forecast Performance Measures: 

Note below the definition of the forecast performance measures. The 

table below shows an example calculation for the measures. The 

number in the red circle corresponds to the measure described below.  
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1. Forecast error is the absolute difference between the actual 

demand and the forecast. For time period 38, this is the 

absolute difference between 90 (actual) and 110 (forecast) 

and is 20. 

2. Absolute Percentage Error (APE) is the forecast error expressed 

as a percentage of the actual demand. For time period 38, this 

is calculated as (20/90), which is 22.2% 

3. MAPE refers to the Mean of the absolute percentage error (APE) 

over the given time periods. For period 38, this is the average 

of period 37 (10%) and period 38 (22.2%), which is 16.1%.  

4. Bias is a directional measure of forecast error percentage error. 

A positive bias indicates the tendency to under forecast, whereas 

a negative bias indicates the tendency to over forecast. Bias is 

calculated as the (Actual-Forecast)/Actual. For period 38, it is 

(90-110)/90, which is -22.2%.  

Your Objective - Minimize your forecast error which leads to minimization 

of MAPE 
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Reward 

Participants will be paid USD 2 for fully completed responses. In 

addition, there is a bonus reward of USD 15 for the top 3 respondents 

with the lowest MAPE for the 36 periods. 

Spreadsheet set up and overview 

1. The spreadsheet uses macros. You may receive security warning 

messages similar to the one shown below. Please Enable Macros 

to use the spreadsheet 

2. Please ensure you key in your Participant ID in Cell B1 in the Tab 

-Spreadsheet Simulation 

3. You are requested to complete the task in one sitting  

 

 

 

 

        

Steps 

The Actual Demand for the Product are shown in the column labeled 

Actual Demand (Column C in YELLOW).  

1. Provide your forecast in the column labeled "User Forecast" 

(Column D in BLUE) from Row 37 onwards.  

1 

1 

2 
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Note: i) enter values greater than 0, ii) text entries are not 

permitted, iii) forecasts once entered cannot be changed. 

2. The actuals and the forecast are plotted in a line chart that depicts 

the actual demand and your forecast. 

3. A plot of the forecast bias in the form of a bar chart is also 

presented. The bar chart indicates the magnitude and direction of 

forecast error (e.g., under forecasting or over-forecasting).  

4. Once you have completed the submission for time period 72, the 

spreadsheet simulation task is complete.  

5. YOU MUST THEN SAVE THE SPREADSHEET AND UPLOAD 

IT BACK TO THE SURVEY.  

6. Proceed to complete the questionnaire in the survey. You will 

receive a completion code at the end of the questionnaire, which 

must be typed in MTurk to get credit for your effort.  

 

 

 

Key in your inputs here 
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Key in your inputs here 

Actual Demand Your Forecast 

+ve Bias - Under forecasting 

-ve Bias Over forecasting 
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Appendix 2d 

Instructions for Rolling Training 

Judgmental Demand Forecasting 

The following is an experiment on individual judgments. The 

experiment is not intended to test your knowledge but is a means to 

understand the individual decision-making process.  

Context: You are the demand planner for X-mart, a supermarket. Your 

role is to forecast the future demand for products based on actual past 

demand. 

The demand forecast forms the input for subsequent activities such as 

procurement from the supplier and replenishment of the store. The 

demand forecast is the first step in the planning process, enabling 

product availability, and an accurate forecast leads to improved 

business performance.  

You have been given the actual demand for the past 36 time periods. 

You will need to predict the subsequent 36 time periods one step 

ahead for the next selling period, i.e., forecast period 37, using data 

available through period 36. Actual demand for period 37 is then 

realized, and you will be asked to forecast period 38.  

Forecast Performance Measures: 

Note below the definition of the forecast performance measures. The 

table below shows an example calculation for the measures. The 

number in the red circle corresponds to the measure described below.  
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1. Forecast error is the absolute difference between the actual 

demand and the forecast. For time period 38, this is the 

absolute difference between 90 (actual) and 110 (forecast) 

and is 20. 

2. Absolute Percentage Error (APE) is the forecast error expressed 

as a percentage of the actual demand. For time period 38, this 

is calculated as (20/90), which is 22.2% 

3. MAPE refers to the Mean of the absolute percentage error 

(APE) over the given time periods. For period 38, this is the 

average of period 37 (10%) and period 38 (22.2%), which is 

16.1%.  

4. Bias is a directional measure of forecast error percentage error. 

A positive bias indicates the tendency to under forecast, 

whereas a negative bias indicates the tendency to over forecast. 

It is calculated as the (Forecast – Actual)/Actual. For period 38, 

it is (110-90)/90, which is -22%.  

Your Objective - Minimize your forecast error which leads to 

minimization of MAPE 
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Reward 

Participants will be paid USD 2 for fully completed responses. In 

addition, there is a bonus reward of USD 15 for the top 3 respondents 

with the lowest MAPE for the 36 periods. 

 

Spreadsheet set up and overview 

1. The spreadsheet uses macros. You may receive security 

warning messages similar to the one shown below. Please 

Enable Macros to use the spreadsheet 

2. Please ensure you key in your Participant ID in Cell B1 in the 

Tab -Spreadsheet Simulation 

You are requested to complete the task in one sitting  
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Steps 

The Actual Demand for the Product are Shown in the column labeled 

Actual Demand (Column C in YELLOW).  

1. Provide your forecast in the column labeled "User Forecast" 

(Column D in BLUE) from Row 37 onwards.  

Note: i) enter values greater than 0, ii) text entries are not 

permitted, iii) forecasts once entered cannot be changed. 

2. The actuals and the forecast are plotted in a line chart that 

depicts the actual demand and your forecast. 

3. A plot of the forecast bias in the form of a bar chart is also 

presented. The bar chart indicates the magnitude and direction 

of forecast error (e.g., under forecasting or over-forecasting).  

4. Once you have completed the submission for time period 72, the 

spreadsheet simulation task is complete.  

5. YOU MUST THEN SAVE THE SPREADSHEET AND UPLOAD 

IT BACK TO THE SURVEY.  

1 
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6. Proceed to complete the questionnaire in the survey. You will 

receive a completion code at the end of the questionnaire, which 

must be typed in MTurk to get credit for your effort.  
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Appendix 2e 

Instructions for Decomposition Training 

Judgmental Demand Forecasting 

The following is an experiment on individual judgments. The experiment 

is not intended to test your knowledge but is a means to understand the 

individual decision-making process.  

Context: You are the demand planner for X-mart, a supermarket. Your 

role is to forecast the future demand for products based on actual past 

demand. 

The demand forecast forms the input for subsequent activities such as 

procurement from the supplier and replenishment of the store. The 

demand forecast is the first step in the planning process, enabling 

product availability, and an accurate forecast leads to improved business 

performance.  

You have been given the actual demand for the past 36 time periods. 

You will need to predict the subsequent 36 time periods one step ahead 

for the next selling period, i.e., forecast period 37, using data available 

through period 36. Actual demand for period 37 is then realized, and you 

will be asked to forecast period 38.  

Forecast Performance Measures: 

Note below the definition of the forecast performance measures. The 

table below shows an example calculation for the measures. The 

number in the red circle corresponds to the measure described below.  
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1. Forecast error is the absolute difference between the actual 

demand and the forecast. For time period 38 this is the 

absolute difference between 90 (actual) and 110 (forecast) 

and is 20. 

2. Absolute Percentage Error (APE) is the forecast error expressed 

as a percentage of the actual demand. For time period 38 this 

is calculated as (20/90) which is 22.1% 

3. MAPE refers to the Mean of the absolute percentage error (APE) 

over the given time periods. For period 38 this is the average 

of period 37 (10%) and period 38 (22.2%) which is 16.1%.  

Your Objective - Minimize your forecast error which leads to minimization 

of MAPE 

Reward 

Participants will be paid USD 2 for fully completed responses. In 

addition, there is a bonus reward of USD 15 for the top 3 respondents 

with the lowest MAPE for the 36 periods. 

Spreadsheet set up and overview 

3. The spreadsheet uses macros. You may receive security warning 

messages similar to the one shown below. Please Enable Macros 

to use the spreadsheet 

4. Please Ensure you key in your Participant ID in Cell B1 in the Tab 

-Spreadsheet Simulation 

5. You are requested to complete the task in one sitting  



112 
  

 

 

 

 

 

 

 

 

 

 

Steps 

The Actual Demand for the Product is Shown in the column labelled 

Actual Demand (Column C in YELLOW).  

7. The forecast can be expressed as the combination of 3 

components 

i. The past average demand 

ii. A level change to the past average demand (can be 

positive or negative) 

iii. A noise component (can be positive or negative) – Noise 

being random in nature should be effectively ignored 

1 

1 
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8. Enter your estimates of past average demand and the change, 

the spreadsheet will then automatically calculate the total demand 

as the sum of average demand and the change and is populated 

in Column F in Yellow) 

9.  Note: i) enter values greater than 0 for past average demand, ii) 

level changes can be positive or negative  iii) text entries are not 

permitted, iii) forecasts once entered cannot be changed" 

10. The performance metrics will be updated after every submission. 

The actuals, forecast components and the total forecast are also 

plotted in a graph that you are encouraged to review before your 

next submission. 

11. Once you have completed submission for time period 72, the 

spreadsheet simulation task is complete.  

12. YOU MUST THEN SAVE THE SPREADSHEET AND UPLOAD 

IT BACK IN THE SURVEY.  

13. Proceed to complete the questionnaire in the survey. You will 

receive a completion code at the end of the questionnaire, which 

must be typed in MTurk to get credit for your effort.  
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Key in your inputs here 

Actual Demand Your Forecast 
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