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ABSTRACT
With the continuing advances in data storage and commu-
nication technology, there has been an explosive growth of
music information from different application domains. As
an effective technique for organizing, browsing, and search-
ing large data collections, music information retrieval is at-
tracting more and more attention. How to measure and
model the similarity between different music items is one
of the most fundamental yet challenging research problems.
In this paper, we introduce a novel framework based on a
multimodal and adaptive similarity measure for various ap-
plications. Distinguished from previous approaches, our sys-
tem can effectively combine music properties from different
aspects into a compact signature via supervised learning.
In addition, an incremental Locality Sensitive Hashing algo-
rithm has been developed to support efficient retrieval pro-
cesses with different kinds of queries. Experimental results
based on two large music collections reveal various advan-
tages of the proposed framework including effectiveness, ef-
ficiency, adaptiveness, and scalability.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Query for-
mulation, Search process; H.5.5 [Sound and Music Com-
puting]: Systems

General Terms
Algorithms, Design, Experimentation, Human Factors

Keywords
Music, Similarity Measure, Personalization, Browsing, Search,
Recommendation

1. INTRODUCTION
Over the past decade, empowered by advances in network-

ing, data compression and digital storage, modern infor-
mation systems dealt with ever-increasing amounts of mu-
sic data from various domain applications. Consequently,
the development of advanced Music Information Retrieval
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(MIR) techniques have gained great momentum as a means
to facilitate effective music organization, browsing, and sear-
ching. One of the typical examples is that an end user might
issue a text-based query to search for music records per-
formed by a particular artist.

As one of the most fundamental components for MIR ap-
plications, how to measure and model similarity between
music items is an important yet challenging research ques-
tion [5]. This is because music information can contain rich
semantics and the related representations of low-level fea-
tures are high-dimensional in nature. There has been in-
tense research in this field and the solutions proposed so far
can be generally classified into three independent families:

Metadata-based similarity measure (MBSM) - Text
retrieval techniques are used to compare the similarity be-
tween the input keywords and the metadata around mu-
sic items [1, 2]. The keywords could include the title, au-
thor, genre, performer’s name, etc. The main disadvantage
is that high-level domain knowledge is essential for creat-
ing the metadata and music facet (timbre, rhythm, melody,
etc.) identification. It would be very expensive and difficult
to represent this information using human languages.

Content-based similarity measure (CBSM) - Ex-
tracting temporal and spectral features from music items
for use as content descriptors has a relatively long history.
It can be used as musical content representation to facilitate
applications [8, 11, 20] for searching similar music record-
ings in a database by content-related queries (audio clips,
humming, tapping, etc.). However, the previous research
on music content similarity measures focused mainly on a
single aspect similarity measure or a holistic similarity mea-
sure. In single aspect similarity, only limited retrieval op-
tions are available. With this paradigm, end users have less
flexibility to describe their information need. On the other
hand, for the holistic similarity measure [8], high dimen-
sional feature space results in slow nearest neighbor finding
or complex probability model comparison (Gaussian Mix-
ture Models, etc.). This is impractical for a commercial size
database containing millions of songs. In addition, either
the single aspect or holistic similarity is not flexible enough
to adapt with the users’ evolving music information needs
or retrieval context. Even worse, no personalization of the
similarity measure is allowed.

Semantic description-based similarity measure (SD-
SM) - It is a proposed paradigm originally developed for
image and video retrieval [17]. The basic idea is to an-
notate each music item in a collection using a vocabulary
of predefined words. Music can be represented as a se-



Table 1: Summary of the main categories for music similarity measure.

Type of Measure
Physical Semantic Computational Indexing

Personalization
Representation Related Metric Structure

MBSM
Textual

Yes
Inner product Inverted list,

No
keywords of document vectors Hashing

CBSM
Feature vector,

No
Mahalanobis, Euclidean, High-dimensional indexing

No
probability models KL divergence, etc. tree, linear search

SDSM
Multinomial distribution

Yes KL divergence, etc. Linear search No
of a bag of keywords

CompositeMap FMSV + DV Yes
Inner produce of document Hybrid: inverted

Yes
vectors, Euclidean list + iLSH

Index for 

social dim.: 

Title

Index for 
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Figure 1: The conceptual framework of CompositeMap for effective multi-model music similarity measure.

mantic multinomial distribution over the vocabulary. The
Kullback-Leibler (KL) divergence [17] is used to measure the
distance between the multinomial distributions of the query
and a music record. The same problem of limited description
capability of human languages also exists in SDSM, since a
limit number of keywords are used to describe music con-
tent. The large vocabulary (easily hundreds of keywords)
results in low efficient indexing and ranking, thus unafford-
able response time.

Table 1 summarizes the existing work for music similar-
ity measures. We can see that the similarity between two
musical items can be measured from multiple dimensions in
terms of title, author, genre, melody, rhythm, tempo, in-
strumentation, etc. These dimensions are not independent.
Different emphasis on each dimension will result in different
similarity between the same two music items [5, 7].

Motivated by the above observations, we propose a novel
framework for multifaceted music similarity measure. The
key innovation of this study is to design and develop a
comprehensive representation of music items called Com-
positeMap. Using CompositeMap, music content-related
dimensions (genre, mood, tempo, melody, etc.) are mod-
eled as Fuzzy Music Semantic Vectors (FMSVs) and social
information-related dimensions are described as Document
Vectors (DVs). Adaptive similarity between music items can
be measured using each individual musical dimension, or by
any combination of those dimensions based on user’s pre-
ferred music information need in each search process. To the
best of our knowledge, this is the first method to seamlessly
integrate the metadata, content, and semantic description-
based similarity measure into a single framework. Moreover,
personalization of music similarity can be easily enabled in
related applications, where end users with certain informa-
tion needs in a particular context are able to specify their
desirable dimensions to retrieve similar music items. By
better modeling users’ search targets based on personalized

music dimensions, we can create more comprehensive sim-
ilarity measures and improve the music retrieval accuracy.
Compared with SDSM, high-level semantic concepts of a
common music facet are grouped into a single music dimen-
sion. For example, tens of genre classes are grouped into
a genre dimension. Therefore, each music dimension con-
tains a many fewer components than the whole vocabulary
in SDSM. This advantage can provide more efficient mu-
sic query and ranking in large databases. In addition, we
also developed an indexing structure based on the LSH al-
gorithm [3] to further improve the efficiency of the retrieval
process. We implemented a showcase system of keyword
and content-based music searching based on YouTube music
data. Evaluation results based on two large-scale data sets
collected from YouTube demonstrate the various advantages
of the proposed scheme for music similarity measure.

The remainder of this paper is organized as follows. In
Sec. 2, we give a detailed introduction of the proposed frame-
work. Sec. 3 describes the experimental setup. Evaluation
results are discussed in Sec. 4, which is followed by our con-
clusion in Sec. 5.

2. THE FRAMEWORK
To address the problem raised in Sec. 1, a novel frame-

work is developed to facilitate effective and flexible music
information retrieval. As illustrated in Fig. 1, this multi-
layer structure consists of two major functionality modules:
music signature generation and indexing. In this approach,
we propose a compact music signature, called Fuzzy Mu-
sic Semantic Vector (FMSV). FMSV can explicitly describe
each music content-related dimension in a structured and
human-understandable way. A conceptual diagram is pre-
sented in Fig. 2. By further representing the social infor-
mation dimensions as Document Vectors (DVs) [13], a novel
scheme called CompositeMap is proposed to map multiple
and cross-modal music dimensions into a unified representa-
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Figure 2: Illustration of music space with exemplar music
dimensions: genre, mood, and comments.

tion. These music dimensions further span a music space, in
which adaptive music similarity can be measured between
any two music items. Each dimension can be indexed sepa-
rately using incremental Locality Sensitive Hashing (iLSH)
or inverted list in the indexing module. This framework fa-
cilitates flexible retrieval by involving user’s personalization
of preferred musical facets.

2.1 Fuzzy Music Semantic Vector - FMSV
To represent each music content-related dimension, we de-

sign a new representation - Fuzzy Music Semantic Vector
(FMSV). We define the i-th music dimension as a FMSV,
f i = [fi,1 ... fi,Ni ]

T , 0 ≤ fi,j ≤ 1, 1 ≤ j ≤ Ni. For music
dimension related to classification (genre, mood, etc.), Ni

is the number of classes in the i-th music dimension and
fi,j indicates the probability that the music item belongs
to the j-th class of the i-th music dimension. For other
content-related music dimensions (tempo, melody, etc.), Ni

is the number of normalized values, fi,j , of that music di-
mension1. We further employ Document Vectors (DVs) [13],
d = [di,1 ... di,Ni ]

T , to model each social information-related
music dimension, where di,j ∈ {0, 1} and di,j = 1 indicates
the j-th word in a dictionary exists in the i-th music dimen-
sion. All music dimensions are represented as real vectors
with different number of components (we notate both FMSV
and DV by f from here). Based on FMSV and DV, a music
item can be represented as the set of all music dimensions,
M = {fi|1 ≤ i ≤ N}. Examples of FMSVs and DVs for
different music dimensions are illustrated in Fig. 2, in which
the positions on genre, mood or comments axis illustrate the
different vector values of FMSVs or DVs.

As discussed in [5, 6, 12], music semantic concepts are
usually represented by rigid human labels, e.g., classical for
a genre type. However, music concepts are fuzzy in nature.
Humans do not always agree on a single label for the same
music item. Besides, human labels may be too broad to com-
pare the similarity between two music items. These observa-
tions imply that human labels are not good representations
of musical semantics when measuring music similarity.

We propose FMSV to represent each high-level music di-
mension. It represents the probabilities that a music item
belongs to each class of that dimension or the most proba-

1
Lower-case bold letters notate column vectors. Italic letters notate

scalars. Calligraphic upper-case letters notate sets.

ble values that dimension has. It reveals the fuzzy nature
(uncertainty) of human’s perception, which is a more ac-
curate representation of human’s musical opinions. FMSVs
are well structured and human understandable, which al-
lows direct interaction between users and the music signa-
ture. FMSVs are efficient to compute, as the FMSV of
each music dimension has many fewer components (e.g.,
≈ 10 in genre [8]) than existing audio features (e.g., ≈
100 in Sec. 2.3.1). The human-understandable nature al-
lows FMSVs to be customized to represent different sets of
classes in various applications. These properties not only
make FMSVs effective to represent music but also flexible
to use and efficient to index in music retrieval applications.

2.2 Adaptive Music Similarity Measure
With the above description, we can see that FMSVs and

DVs satisfy properties of Euclidean metric, i.e., symmetry,
and triangle inequality. The distance between two music
items Mj and Mk in the i-th music dimension fi can be
measured by the normalized Euclidean metric as:

dis(f j
i , fk

i ) =

√√√√ 1

Ni

Ni∑

l=1

(f j
i,l − fk

i,l)
2 (1)

where Ni is the number of components in the i-th music
dimension, and dis(f j

i , fk
i ) ∈ [0, 1].

With all the N music dimensions, we can span a music
space in which musical items can be characterized by clear
and musically meaningful concepts. The music space can be
personalized by users into a subspace, P = {(pi, wpi)|1 ≤
pi ≤ N, 1 ≤ i ≤ NP , NP ≤ N}, by choosing the most inter-
esting dimensions pi and specifying their preferred weights,
wpi ∈ [0, 1]. In P, a personalized music similarity measure
between two music items Mj and Mk is defined as:

Sim(Mj ,Mk;P) =

NP∑
i=1

wpi · α
1 + exp (dis(f j

i , fk
i ))

− β (2)

where α and β are normalizing factors. If α = 2 e+1
e−1

and

β = 2
e−1

, Sim(Mj ,Mk;P) ∈ [0, 1].

2.3 CompositeMap: From Rigid Acoustic
Features to Adaptive FMSVs

In order to map low-level acoustic features into FMSVs
for content related music dimensions (Fig. 3) and to map
text information into DVs for social information related mu-
sic dimensions [13], a supervised learning based scheme,
called CompositeMap, is developed to generate a new fea-
ture space. During the mapping of FMSVs, the most effec-
tive heuristic feature sets are selected to ensure reasonable
prediction accuracy. Then a feature selection algorithm is
applied to reduce dimensionality. Efficient multi-class prob-
ability estimation is then conducted to generate FMSVs.
For the mapping of non-classification related FMSVs, we di-
rectly calculate their most probable values. For example,
for tempo and melody we compute the beat histogram and
pitch histogram as their FMSVs, respectively.

2.3.1 Audio Feature Extraction and Selection
In this framework, we consider various audio features.

Based on their musical meanings, we categorized the em-
ployed features as follows:

Timbral features represent the timbral texture of mu-
sical sounds. Timbral features are calculated based on the
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Figure 3: CompositeMap: from rigid acoustic features to adaptive FMSVs.

magnitude spectrum of short time Fourier transform (STFT)
and include: Spectral Centroid, Rolloff, Flux, Low-Energy
feature [19]; Spectral Contrast [12]; Mel-Frequency Cepstral
Coefficients(MFCCs) [10]. The total dimensionality is 20.

Temporal features represent musical properties based
on time domain signals. They include: Zero Crossing Rate;
Autocorrelation Coefficients; Waveform Moments; Ampli-
tude Modulation [12]. The total dimensionality is 15.

Spectral features complement timbral features in rep-
resenting musical characteristics by spectra. They include
Auto-regressive (AR) features; Spectral Asymmetry, Kurto-
sis, Flatness, Crest Factors, Slope, Decrease, Variation; Fre-
quency Derivative of Constant-Q Coefficients; Octave Band
Signal Intensities [12]. The total dimensionality is 20.

Rhythmic features represent musical timing character-
istics of a music item. They include: Beat Histogram [19];
Rhythm Strength, Regularity and Average Tempo [12]. The
total dimensionality is 12.

Melody features summarize the melody content of a
music item. We employ Pitch Histogram proposed in [19] as
melody features. The total dimensionality is 48.

As noticed, low-level audio features contain many more
components (115) than FMSVs. High dimensionality of
existing audio features has restricted the applicability of
content-based music retrieval in large collections. A fea-
ture selection algorithm (Alg. 1) based on localized predic-
tion error [14] is applied to reduce the dimensionality of the
combined features while maintaining relatively good predic-
tion accuracy. In Alg. 1, te is the stopping threshold of the
decrease in prediction accuracy. Feature selection can sig-
nificantly reduce the complexity of on-line prediction at an
affordable cost of higher off-line computation.

Algorithm 1: Feature selection algorithm.

Input: Initial feature set, F = {ci|1 ≤ i ≤ Nd};
training and testing databases, DBtr and DBte;

Output: Selected feature set, Fs = {cs
i |1 ≤ i ≤ Ns

d} ⊂ F ;
Description:
1: Train SVM using ePEGASOS on DBtr with features F ;
2: Compute the localized prediction error eo on DBte;
3: Let Fs := F ;
4: repeat
5: Train the classifier on DBtr with feature set Fs;
6: for i = 1 to Ns

d do
7: Compute the localized prediction error, ei, by keeping

cs
i constant as its mean on DBte; [14]

8: end for
9: Set r := arg mini {ei|0 ≤ i ≤ Ns

d};
10: Set Fs := Fs \ {cs

r};
11: until er − eo > te
12: return Fs.

2.3.2 Multi-class Probability Estimation
In this study, Support Vector Machines (SVMs) are used

for the purpose of multi-class probability estimation. Based
on an efficient SVM training algorithm, PEGASOS [16], for
binary classification problems with only binary label output,
we propose an extended version, ePEGASOS, to support
multi-class SVMs with probability estimates. The running
time of PEGASOS has inverse dependency on the training
dataset. Based on our experimental results, we show that
ePEGASOS reveals the same desirable property: training
a better generalized SVM with less run time on a large
database.

PEGASOS is an iterative algorithm for optimizing SVM
w on a given training set S = {(xi, yi)}m

i=1, where xi ∈ Rn

and yi ∈ {+1,−1}. Each iteration involves a stochastic gra-
dient descent step and a projection step. By giving T , the
number of iterations, and k, the number of samples used for
calculating sub-gradients at each iteration, PEGASOS op-
timizes the following unconstrained training error function
with a penalty term for the norm of SVM being learned:

f(w;At) =
λ

2
‖ w ‖2 +

1

k

∑

(x,y)∈At

max{0, 1− y〈w,x〉} (3)

where At ⊂ S is formed by k samples selected i.i.d. from
S at each iteration t. w is initialized as zero vector and is
updated at each iteration t as follows:

wt+ 1
2

= (1− ηtλ)wt +
ηt

k

∑

(x,y)∈A+
t

yx (4)

wt+1 = min{1,
1/
√

λ

‖ wt+ 1
2
‖}wt+ 1

2
(5)

where ηt = 1/(λt) is the learning rate, A+
t is the set of

samples on which w has non-zero training error. To train
kernel SVMs, wt can be calculated as wt =

∑
i∈It

αixi,

where It ⊂ {1, ..., m}. Then 〈wt,xt〉 =
∑

i∈It
αi〈xi,xt〉

and ‖ wt ‖2=
∑

i,j∈It
αiαj〈xi,xj〉. Once w is trained, we

employ the method proposed in [15] to estimate the proba-
bility that a unknown sample belongs to class y = 1 as:

r+ =
1

1 + exp(A〈w,x〉+ B)
(6)

where A and B are estimated scalars by minimizing the error
function using the training data and their decision values.

Based on the above binary class SVM with a probability
estimate, we further employ the generalized Bradley-Terry
model [9] to extend binary-probability PEGASOS to sup-
port multi-class probability estimate. In K class classifica-



Table 2: The hierarchy of the tunable database, including 3020 music items. The number of collected music items is indicated
after each class label. Some music items are shared by multiple music dimensions.

Genre - 1163 Mood - 778 Vocalness - 1968 Instrument - 1392
Classical - 112 Jazz - 125 Passionate - 156 Nonvocal - 493 Brass - 310 Woodwinds - 382 Percussion - 356 Strings - 344
Country - 118 Rock - 122 Rollicking - 158 Male - 494 Trombone - 103 Flute - 124 Piano - 129 Violin - 111
Baroque - 121 Romantic - 124 Literate - 160 Female - 484 Trumpet - 104 Clarinet - 125 Snare - 100 Cello - 100
Electronic - 130 Blues - 105 Humorous - 152 Mixed - 497 Tuba - 103 Saxophone - 133 DrumKit - 127 Guitar - 133
HipHop - 106 Metal - 100 Aggressive - 152

tion problems, one-against-the-rest scheme is employed to
decouple the multi-class problem into K binary classifica-
tion problems. The Bradley-Terry model is formulated as:

minp −∑K
i=1 (r+

i log( pi∑K
j=1 pj

) + r−i log(
∑K

j=1, 6=i pj∑K
j=1 pj

))

subject to
∑K

j=1 pj = 1, 0 ≤ pj , j = 1, ..., K.
(7)

to derive probability pj , j = 1, ..., K, that a unknown sample
belongs to the j-th class. Then the FMSV is formed as
f = [p1 ... pK ]T .

2.4 iLSH Indexing Structure
Inspired by the inverted index used in text retrieval, we

develop a hybrid indexing framework to index each music
dimension separately by its most suitable algorithm in order
to build an overall efficient index for the whole music space.

Music dimensions represented by FMSVs are indexed by
a proposed incremental Locality Sensitive Hashing (iLSH).
The original LSH was proposed in [3]. It supports fast near-
est neighbor search in high dimensional space with sub-linear
time, which is critical for large music database of millions of
tracks. To better suit our indexing solution to real applica-
tion scenarios, such as on YouTube or Last.fm, where new
music samples are periodically added into existing indexes,
we propose an iLSH algorithm (Alg. 2) to efficiently update
the existing index structure without the need to recompute
the whole index from scratch. iLSH is desirable especially in
a large database. In Alg. 2, the difference function for two
sets of parameters is defined as:

dif(Θ, Θ′) = |k − k′

k
|+ |L− L′

L
| (8)

where Θ = {k, L}; k is the number of hashing functions
chosen to construct a hash table; L is the number of hash
tables [3]. γ and tΘ are two update thresholds. Inverted
list [13] is used for music dimensions represented by DVs.

Based on the above indexing approach, the time complex-

ity of online query is sub-linear, O(NP · Nd · n1/c2), where
NP is the number of personalized music dimensions, Nd is
the highest number of components in all those music dimen-
sions, n is the total number of music items in the database,
and c is the factor for approximate nearest neighbor finding
in iLSH. In a commercial system, NP and Nd will be small
(≈ 10), while n is over a million. c > 1, can be tuned to
trade off between query accuracy and efficiency.

2.5 Composite Ranking
Based on users’ personalization input P discussed in 2.2,

nearest music items Mri to the query Mq are retrieved by
iLSH in each of the personalized dimensions, (p, w) ∈ P.
The adaptive music similarity measure, Sim(Mq,Mri ;P), is
then used to rank all the returned items. As Sim(Mq,Mri ;P)
is of accumulative nature, music items that are near to the
query in more music dimensions are more likely ranked top.

Algorithm 2: Incremental Locality Sensitive Hashing.

Input: Initial set of samples S;
Additional online sets of samples Si, 1 ≤ i ≤ Ns;

Output: Index H for all samples;
Description:
1: Compute the parameter set Θ of the hashing structure H

based on S;
2: Hash S into H [3];
3: Set the last update position of H, s := 1;
4: for i = 1 to Ns do
5: if | ∪i

j=s Sj | < γ · |S| then

6: Hash Si into H and continue;
7: else
8: Compute the new parameter set Θ′ of the hashing

structure H′ based on S ∪ (∪i
j=sSj);

9: if dif(Θ, Θ′) < tΘ then
10: Hash Si into H and continue;
11: else
12: Set H := H′, re-hash S ∪ (∪i

j=sSj) into H;

13: Set s := i;
14: end if
15: end if
16: end for
17: return H.

3. EXPERIMENTAL CONFIGURATION
A music search system on top of YouTube APIs and Mars-

yas [18] was implemented as an exemplar application of
the proposed framework. In this section, we give an intro-
duction on experimental configuration for empirical study.
Sec. 3.1 describes query design and two music test collec-
tions. Sec. 3.2 details the methodology for the experimental
study, hardware configuration and evaluation metric.

3.1 Design of Database and Query
By crawling the audio stream of music videos on YouTube,

we built a tunable test collection (TS1 with 3020 music
items) with YouTube social text information and manually
labeled content related tags (Table 2 shows its hierarchy).
TS1 is labeled and cross checked by multiple amateur musi-
cians to ensure the validity of the ground truth. TS1 is in-
tended to evaluate the effectiveness of FMSV generation and
compare the retrieval precision of FMSV with other audio
signatures. A large scale test collection (TS2 with 100,000
music items) with YouTube social text information and the
built FMSV description2 was built to evaluate the effective-
ness of FMSV on large scale collections and the scalability
of the proposed framework.

To simulate the realistic music search behavior, we design
music queries with different levels of complexity in musi-
cal information need. Audio queries were designed to allow
personalization of any single music dimension or any combi-
nation of music dimensions. Some examples of the designed

2
The YouTube ID lists, human labeled tags and audio features of

both test collections can be obtained by emailing the first author.



Table 3: Examples of designed queries to evaluate the example system for personalized music search.
No. Genre Mood Vocalness Instrument Comments
1 Country Passionate Male “Thank God I’m a Country Boy” by John Denver
2 Country Humorous Female “Landslide” by Dixie Chicks
3 HipHop Aggressive Male “Till I Collapse” by Eminem
4 Classical Nonvocal Violin “Partita No. 3” in E by Bach
5 Baroque Rollicking Nonvocal Piano “First Impressions” by William Goldstein
6 Romantic Rollicking Nonvocal Guitar “Another Day” by Dream Theater
7 Metal Aggressive “The Metal Lyrics” by Tenacious D
... ...... ...... ...... ...... ......
23 Baroque Rollicking Nonvocal Piano “Aria” by Daniel Barenboim
24 Nonvocal Snare “Krystal Klear” Snare Drum Solo by Scott Fairdosi
25 Passionate Nonvocal DrumKit “Travis Barker Superbowl Drum Remix” by Haven Lamoureux

queries are listed in Table 3. Each query is associated with
different music dimensions, which simulates the search situ-
ation that different users may want to search similar music
to the query based on its different music aspects, i.e., genre,
mood, etc. Users can form low complex queries (personalize
one music dimension) or high complex queries (personalize
more dimensions) to search for their wanted music.

3.2 Methodology
24 subjects volunteered for the evaluation. 10 of them are

amateur musicians, familiar with various music styles and
taxonomy. The other 14 are music hobbyists. It is noted
that for each audio query, the class labels of each music
dimension only serve as a reference. The subjects do not
need to know the actual meaning of all the class labels in
order to judge the similarity of the returned results. They
just need to distinguish different music dimensions.

For each test collection, the same methodology was ap-
plied to conduct experiments. A briefing was conducted
before the experiment to make sure subjects understood the
experimental procedure and were familiar with the music
dimensions to be used. Firstly, subjects were asked to do
searches with low complex queries by randomly selecting
an audio query of one personalized music dimension. For
each search task, subjects needed to judge whether each of
the first 30 returned results was similar to the query in the
personalized music dimension. For a complete trial, each
subject repeated this with each of the music dimensions per-
sonalized and an audio query randomly selected. With this
procedure, we guaranteed that over each music dimension,
the same number of searches were performed and the se-
lected queries for each dimension were uniformly distributed
among all the designed queries. Secondly, high complex
queries were used for searches by subjects. We followed the
methodology described above to ask each subject to con-
duct at least one complete trail over all combinations of the
music dimensions. When more music dimensions were per-
sonalized, the returned result is considered relevant as long
as it was similar to the query in any of the music dimensions.

Precision@n is used as the metric to evaluate the re-
trieval effectiveness. It is defined as the percentage of the
relevant results in the top n returned ones. The average
precision@{5-30} was measured for search tasks of both low
and high complex queries. The average runing/response
time were employed to evaluate the system efficiency. All
experiments were conducted on a DELL PowerEdge 2970
workstation with 2 CPUs (each is a Quad-Core Intel Xeon
E5420, 2x6MB cache CPU) and 32GB memory (DDR-2
667MHz).

4. RESULT ANALYSIS
In this section, we study the proposed framework from

two main aspects - effectiveness and efficiency.

4.1 Effectiveness Study
4.1.1 Effectiveness of FMSV generation

Effective FMSV generation plays a very important role
on the final performance of the whole system. For music di-
mensions, such as genre, mood, instrument, and vocalness,
multi-class SVMs were trained using randomly selected 50%
of music items in each class and evaluated using the rest
on TS1. 10 evaluation trials were conducted. The average
classification accuracy and standard deviation are listed in
Table 4. These accuracies of our approach are comparable
to the state of the art performances [8]. The high quality
FMSV generation is the foundation of accurate music re-
trieval.

Table 4: Effectiveness of generating FMSV.
Genre Mood Vocal Instrument

61.0±1.4 70.7±0.6 71.6 ± 2.3 75.9 ± 3.4

4.1.2 Effectiveness of search
Based on TS1, we compare the retrieval effectiveness of

FMSV with other audio signatures: existing audio features
(AF), described in Sec. 2.3.1, and the transformed audio fea-
tures by principal component analysis (AFPCA). For AF,
all the 115 features components were combined as a mu-
sic signature for genre/mood dimensions, and 55 feature
components (without rhythmic and melody features) were
combined for instrument/vocalness. For AFPCA, 95% data
variance was retained during PCA, which corresponds to
18 and 12 feature components for genre/mood and instru-
ment/vocalness, respectively. 50% of data were used to train
FMSV and AFPCA, the rest were used for testing.

Fig. 4 shows the precision@{5-30} of searches using FMSV,
AF and AFPCA for low complex queries. In each of the
four music dimensions, FMSV clearly outperforms AF and
AFPCA with statistically significant improvement. Fig. 5
illustrates their retrieval precision for high complex queries.
It is noted that when personalizing more music dimensions,
search precision consistently gets better than personalizing
one music dimension. With high complex queries, FMSV
still performs the best. In some queries with genre+instrument
or genre+vocalness personalized, FMSV reveals more im-
provement than with low complex queries. Those results
imply that music content representation based on FMSV
carries more useful information and enjoy superior discrim-
ination capability. It leads to better search accuracy.

Fig. 6 illustrates the average precision of FMSV for low/high
complex queries on TS2. One thing worth noting is that
while the size of test collection becomes larger, FMSV still
can sustain superior retrieval accuracy. This result demon-
strates the robustness of FMSV from another perspective.
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Figure 4: Average precision@{5-30} comparison for low
complex queries on TS1.
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Figure 5: Average precision@{5-30} comparison for high
complex queries on TS1.
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Figure 6: Average precision@{5-30} of FMSV for both low
and high complex queries on TS2.

4.2 Efficiency Study
4.2.1 Efficiency of FMSV generation

Training SVMs could be a very time consuming process.
In the first set of experiment, we evaluate ePEGASOS over
a large data set, the Reuters CCAT3. The main purpose
of this study is to show that using the proposed algorithm,
SVM training time has inverse dependency on the size of
training data, provided that the same generalization error is
maintained. The left sub-figure of Fig. 7 shows the average
running time of ePEGASOS training a multi-class SVM on
CCAT. It is noted that the running time decreases when
more and more training data are provided. On large data

3
CCAT consists of 804,414 samples with 47,236 components.
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Figure 7: The average running time of SMO and ePEGA-
SOS in training multi-class SVMs with probability estimate
on different sized datasets.
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Figure 8: The indexing and query time comparison in in-
cremental indexing scenario.

sets, this is desirable to train SVMs with less running time
and better generalization performance.

We further compare the average running time of ePEGA-
SOS and SMO4 on a smaller scale genre feature set to show
its efficiency. As shown in the right sub-figure of Fig. 7, the
running time of ePEGASOS almost stays the same as more
training data are added, while the running time of SMO in-
creases dramatically. Due to the much smaller scale of the
genre feature set compared with CCAT, the running time
of ePEGASOS is already very low and does not decrease as
dramatically as on CCAT.

In the feature selection algorithm (Alg. 1), the stopping
threshold te was set as 0.03. With this setting, 30 out of 115
features were selected for genre/mood dimensions and 20 out
of 55 features were selected for instrument/vocalness. The
average FMSV generation time for a 3-minute music item
is reduced from 1.561 to 1.303 seconds and from 1.334 to
1.127 seconds, respectively. The 0.2 seconds improvement
is significant as it constitutes more than 10% of the total
response time (≈ 1.7 seconds), described in Sec. 4.2.3.

4.2.2 Efficiency of index construction and
query processing

For large MIR systems, economic maintenance cost is an-
other important concern. In this study, we compare the
average index construction time of iLSH and LSH in the
following scenario: firstly index a static data set, which con-
tains 1,000,000 data samples of 15 components with value
ranging from 0 to 1 to simulate FMSVs; then update the
index structure when 20,000 new samples are added into
the data set at regular time instances. The size of the initial
static data set is at the comparable order of commercial mu-
sic databases, such as YouTube and Last.fm. The number
of samples added at each time instance simulates the mu-
sic items uploaded by users on YouTube or created by new
artists on Last.fm in a period of time. This scenario consid-
ers the need of incremental indexing in real life applications.

Fig. 8 shows the average index construction time of 10
runs with γ = 0.1 and tΘ = 0.08. iLSH performs signif-

4
SMO is used in LIBSVM, an efficient SVM implementation package.
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Figure 9: The average response time of search in single
music dimension on various data set scales.

icantly better than LSH at most of the time instances, as
iLSH only updates the index structure instead of re-indexing
from scratch like LSH. At the time instances when iLSH per-
forms a complete update (re-indexing), its running time is
the same as LSH.

The average top-100 query time of iLSH/LSH was com-
pared with KD-tree [4]. The average query time of 100
queries is illustrated in Fig. 8. It is noted that iLSH and
LSH has the same query time (≈ 100 ms in a data set of
1.6 million samples), as they follow the same procedure to
search nearest neighbors. Their query time is significantly
lower than KD-tree over all sized data sets.

4.2.3 Efficiency of search
In Fig. 9, we compared the average top-100 response time

of a search process including query upload, music signature
generation, query, and ranking for a single music dimen-
sion. Different music signatures (FMSV, AF, and AFPCA)
on various sized data sets were evaluated. Since FMSV
has many fewer components (≈ 10) than AF (115), the
response time using FMSV is significantly less than using
AF, especially on large data set. After applying PCA on
AF (AFPCA), the response time is reduced compared with
AF. However, due to the concern of retrieval effectiveness,
enough features must be retained in PCA (could be > 10).
This adds unpredictable factors to the response time, as dif-
ferent feature sets need to keep different number of compo-
nents in PCA. In our system, as AFPCA has more features
than FMSV, its response time is longer. As the data set
gets larger, the response time of FMSV remains acceptable
(≈ 0.5 seconds on the data set with 3000 samples and ≈ 1.7
seconds on the data set with 1 million samples). The flexi-
ble indexing approach of the framework allows easy parallel
implementation of music search over multiple music dimen-
sions. Therefore, the above response time is illustrative even
when searching is with multiple music dimensions.

With fast response time in each music dimension and effi-
cient parallel computation for multiple dimensions, the pro-
posed framework scales well on large databases.

5. CONCLUSIONS
We have presented CompositeMap, a novel framework

of multimodal music similarity measure to facilitate vari-
ous music retrieval tasks such as organizing, browsing, and
searching in a large data set. We have detailed the FMSV
which can map any existing audio features into high-level
concepts such as genre, mood, etc. CompositeMap has uni-
fied content-based, metadata-based, and semantic description-
based music retrieval approaches. It combines different mu-
sic facets into a compact signature which can enable per-

sonalized services for users with different information needs,
background knowledge, and expectations.

For a case study, we have employed CompositeMap in a
music search engine to evaluate its effectiveness, efficiency,
adaptiveness and scalability using two separate large scale
music collections extracted from YouTube. Our objective
evaluation and user study show the clear advantages of the
proposed framework. Furthermore, our project has led to
several innovations including an efficient SVM training al-
gorithm with multi-class probability estimates and an incre-
mental Locality Sensitive Hashing algorithm.
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