
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Dissertations and Theses Collection (Open
Access) Dissertations and Theses

1-2023

Fortifying the seams of software systems Fortifying the seams of software systems

Hong Jin KANG
Singapore Management University, hjkang.2018@phdcs.smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/etd_coll

 Part of the Software Engineering Commons, and the Systems Architecture Commons

Citation Citation
KANG, Hong Jin. Fortifying the seams of software systems. (2023). 1-309.
Available at:Available at: https://ink.library.smu.edu.sg/etd_coll/454

This PhD Dissertation is brought to you for free and open access by the Dissertations and Theses at Institutional
Knowledge at Singapore Management University. It has been accepted for inclusion in Dissertations and Theses
Collection (Open Access) by an authorized administrator of Institutional Knowledge at Singapore Management
University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd
https://ink.library.smu.edu.sg/etd_coll?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F454&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F454&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/144?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F454&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

FORTIFYING THE SEAMS OF SOFTWARE SYSTEMS

Hong Jin Kang

SCHOOL OF COMPUTING AND INFORMATION SYSTEMS
SINGAPORE MANAGEMENT UNIVERSITY

2023

Fortifying the Seams of Software Systems

Hong Jin Kang

Submitted to School of Computing and Information Systems in partial
fulfillment of the requirements for

the Degree of Doctor of Philosophy in Computer Science

Dissertation Committee:
David Lo (Supervisor/Chair)

Professor
Singapore Management University

Lingxiao Jiang
Associate Professor

Singapore Management University

Hady W. Lauw
Associate Professor

Singapore Management University

Ming Li
Professor

Nanjing University

Singapore Management University
2023

I hereby declare that this dissertation is my original work and it has been
written by me in its entirety.

I have duly acknowledged all the sources of information which have been
used in this dissertation.

This dissertation has also not been submitted for any degree in any
university previously.

Hong Jin Kang
5 January 2023

Hong Jin Kang

Fortifying the Seams of Software Systems
Hong Jin Kang

A seam in software is a place where two components within a software sys-
tem meet. There are more seams in software now than ever before as modern
software systems rely extensively on third-party software components, e.g.,
libraries. Due to the increasing complexity of software systems, understand-
ing and improving the reliability of these components and their use is crucial.
While the use of software components eases the development process, it also
introduces challenges due to the interaction between the components.

This dissertation tackles problems associated with software reliability
when using third-party software components. Developers write programs
that interact with libraries through their Application Programming Inter-
faces (API). Both static and dynamic analysis of API-using code require
knowledge of the API and its usage constraints. Hence, we develop tech-
niques to learn and model the usage constraints of APIs. Next, we apply
the insights gleaned from our studies to support bug-finding techniques us-
ing static and dynamic analysis. Then, we look into larger software systems
comprising multiple components. We propose techniques for mining rules
to monitor the joint behaviors of apps, and for exploiting known library
vulnerabilities from a project importing a library. These techniques aim to
assist developers to better understand third-party components, and to detect
weaknesses in software systems.

The dissertation includes the following contributions:

1. ALP: An approach using active learning to mine GitHub and train an
API misuse detector using subgraph patterns. Previous work in this
area has relied on learning from examples on GitHub and assuming that
frequent usage patterns should be learned. However, frequent examples
are not always correct, and correct examples may not be frequent. ALP
weakens this assumption by involving a human annotator who labels
informative examples. This helps to improve the effectiveness of the
detector and reduce the need for large amounts of training data.

2. We have conducted a replication study of techniques for postprocess-
ing the warnings reported by a static analyzer. Static analyzers often
produce a large number of false alarms, and many proposed techniques
use machine learning to filter out false alarms. However, we have found
that the performance of these techniques may have been overoptimistic
due to methodological issues in their experiments. As a result, we
have proposed a new approach called TrailMarker, which uses few-shot

in-context learning by exploiting a small number of labels on warn-
ings associated with the same traces, including events on the execution
paths that invoke library functions. This approach provides a more
effective way of filtering out false alarms from static analysis.

3. DICE: A tool that implements our proposed framework, Adversarial
Specification Mining, to falsify incorrect rules derived from a collection
of execution traces. Uncommon API usage patterns may not be rep-
resented in the execution traces, leading to the inference of inaccurate
rules. To address this problem, DICE focuses its execution of an API
on falsifying each inferred rule. This allows for the creation of a more
accurate and refined set of rules, which can be used to infer a behavioral
model of the API.

4. SkipFuzz: An active learning approach to learn the input constraints
of API. SkipFuzz preprocesses the possible inputs to deep learning li-
braries. By doing so, it would use inputs that are more likely to pro-
vide new information for SkipFuzz to refine its model of the input
constraints, e.g. by falsifying a property that SkipFuzz believed had
to hold for the input to be valid. This enables SkipFuzz to generate
a greater proportion of valid inputs with a high level of diversity. 23
CVE IDs have been assigned to the vulnerabilities found by SkipFuzz.

5. IoTBox: An approach that mines rules for monitoring an Internet-of-
Things (IoT) environment. Prior studies use handcrafted safety and
security policies to detect these threats from the joint behavior of apps
in an environment. These policies may not anticipate all usages of
the devices and apps, causing false alarms. Using a formal model of
the applications on an IoT environment, IoTBox explores its possible
behaviors and encodes them in rules that, after the developer/user
validated them, can be used to disallow previously unseen behaviors.

6. TRANSFER: An approach that automatically generates test cases ex-
ploiting a vulnerability in a library imported in a project (a client
program). TRANSFER implements our proposed framework, Test
Mimicry. Given a library test case that demonstrates triggers the
vulnerability from the library code, TRANSFER aims to trigger the
library vulnerability from the client program. Using search-based test
generation, TRANSFER construct goals corresponding to the library’s
program state when the vulnerability is triggered, which guides the
generation of a test case that triggers the library vulnerability.

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 3

1.2.1 Static Analysis and APIs 3
1.2.2 Dynamic Analysis and APIs 4
1.2.3 Interacting Systems . 5
1.2.4 Publications. 7

1.3 Reading Guide . 8

2 Background 9
2.1 Third-party Software Components 9
2.2 Detecting Bugs . 10
2.3 Mining Rules and Specifications 11

3 (Static Analysis + API) Active Learning of Discriminative
Subgraph Patterns for API Misuse Detection 15
3.1 Overview . 15
3.2 Background . 16

3.2.1 Motivating Examples 17
3.2.2 API Usage Graph . 20
3.2.3 Active Learning . 22
3.2.4 Learning with Rejection and Novelty Detection 24

3.3 The ALP Approach . 26
3.3.1 High-level Overview 26
3.3.2 Workflow of ALP . 28
3.3.3 Extended API Usage Graph 29
3.3.4 Mining GitHub . 33
3.3.5 Discriminative subgraph mining 34
3.3.6 Selection of examples to label 39
3.3.7 Graph classification . 43

3.4 Empirical Evaluation . 46

i

3.4.1 Benchmarks . 46
3.4.2 Research Questions . 51
3.4.3 Experimental Results 52

3.5 Discussion . 57
3.5.1 Qualitative Analysis 57
3.5.2 Threats to Validity . 61

3.6 Related Work . 62
3.7 Summary . 63

4 (Static Analysis + API) Detecting False Alarms from Auto-
matic Static Analysis Tools 64
4.1 Overview . 64
4.2 Background . 67

4.2.1 Automatic Static Analysis Tools 67
4.2.2 Distinguishing between Actionable Warnings and False

Alarms . 68
4.3 Study Design . 71

4.3.1 Research Questions . 71
4.3.2 Evaluation Setting . 71

4.4 Analysis of the Golden Features 72
4.5 Analysis of the Closed-Warning Heuristic 80

4.5.1 Choosing a different reference revision 81
4.5.2 Unconfirmed actionable warnings 82
4.5.3 Unconfirmed false alarms 85

4.6 Discussion . 88
4.6.1 Lessons Learned . 88
4.6.2 Threats to Validity . 89

4.7 Towards a new approach . 90
4.7.1 In-context learning . 92

4.8 Few-shot in-context filtering of false alarms 93
4.8.1 Overview . 93
4.8.2 Problem Formulation 94
4.8.3 Selection of training warnings 95
4.8.4 In-context learning . 98

4.9 Experimental Setup . 101
4.9.1 Dataset . 101
4.9.2 Baselines . 101
4.9.3 Evaluation Metrics . 103
4.9.4 Research Questions . 103

4.10 Experimental Results . 104
4.10.1 RQ1. On the effectiveness of TrailMarker 104

ii

4.10.2 RQ2. On the components of TrailMarker 105
4.10.3 RQ3. On the parameters of TrailMarker 106

4.11 Discussion . 108
4.11.1 Sample efficiency . 108
4.11.2 Implications . 108
4.11.3 Qualitative analysis . 109
4.11.4 Threats to Validity . 111

4.12 Related Work . 111
4.13 Summary . 112

5 (Dynamic Analysis + API) Adversarial Specification Mining113
5.1 Overview . 113
5.2 Background . 115

5.2.1 Specification Mining 115
5.2.2 Test Generation for Specification Mining 117
5.2.3 Search-based test generation 118

5.3 The DICE Approach . 122
5.3.1 Overview . 122
5.3.2 Mining Purity-Aware Temporal Specification 123
5.3.3 Adversarial Test Generation 126
5.3.4 Example of the search process 134
5.3.5 FSA Inference . 136

5.4 Evaluation . 143
5.4.1 Experimental setup . 144
5.4.2 RQ1: Effectiveness in inferring FSA models 145
5.4.3 RQ2: Effectiveness of DICE-Tester 147
5.4.4 RQ3: Effectiveness of DICE-Miner 148

5.5 Discussion . 149
5.5.1 RQ4: Effectiveness in finding counterexamples 150
5.5.2 RQ5: Effectiveness of constraints in inferring FSA . . . 152
5.5.3 RQ6: Effect of the quality of initial test suite 153
5.5.4 Qualitative Evaluation 154
5.5.5 RQ7: Use of FSA models for fuzzing 157
5.5.6 Threats to Validity . 162

5.6 Related Work . 163
5.7 Conclusion and Future Work 164

6 (Dynamic Analysis + API) Active Learning-based Input Se-
lection for Fuzzing Deep Learning Libraries 166
6.1 Overview . 166
6.2 Background . 169

iii

6.3 Preliminaries . 171
6.3.1 Active Learning . 171
6.3.2 Input properties . 172
6.3.3 Input categories . 173
6.3.4 Motivating Example 174

6.4 SkipFuzz . 176
6.4.1 Overview . 176
6.4.2 Step 1: Input property checking and input category

construction . 178
6.4.3 Step 2: Active Learning-driven fuzzing 178
6.4.4 Input constraint inference 180

6.5 Implementation . 182
6.6 Evaluation . 183

6.6.1 Research Questions . 183
6.6.2 Experimental Setup . 184
6.6.3 Experimental Results 185

6.7 Discussion and Limitations . 191
6.8 Related Work . 192
6.9 Summary . 193

7 (System of Interacting Components) IoTBox: Sandbox Min-
ing to Prevent Interaction Threats in IoT Systems 194
7.1 Overview . 194
7.2 Background . 196

7.2.1 Smart Home Platforms 196
7.2.2 Formal model of a smart home 198
7.2.3 Mining sandboxes . 199

7.3 IoTBox . 200
7.3.1 Exploration phase . 201
7.3.2 Sandboxing phase . 204

7.4 Empirical Evaluation . 205
7.4.1 RQ1: How frequently do handcrafted security policies

lead to false positives? 207
7.4.2 RQ2: How effective is IoTBox? 209

7.5 Discussion . 214
7.5.1 Risk of encoding malicious behavior in the sandbox . . 214
7.5.2 Limitations and Tradeoffs 216
7.5.3 Threats to Validity . 216

7.6 Related Work . 217
7.7 Summary . 218

iv

8 (System of Interacting Components) Test Mimicry to Assess
the Exploitability of Library Vulnerabilities 220
8.1 Overview . 220
8.2 Background and Motivation 223

8.2.1 Software Composition Analysis 223
8.2.2 Search-based test generation 223
8.2.3 Motivating Example 225

8.3 Test Mimicry . 227
8.3.1 Objectives and Problem Formulation 227
8.3.2 Approach . 228
8.3.3 Satisfying a vulnerability’s triggering conditions 230
8.3.4 Implementation . 235

8.4 Empirical Evaluation . 236
8.4.1 Experimental Setup . 236
8.4.2 Experimental Results 239

8.5 Discussion . 241
8.5.1 Qualitative Analysis 241
8.5.2 Threats to Validity . 243

8.6 Related Work . 244
8.7 Summary . 246

9 Conclusion and Future Work 247
9.1 Conclusion . 247
9.2 Future Work . 248

v

Acknowledgements

This Ph.D. dissertation is the culmination of years of hard work. This was
a long and challenging period of time. This dissertation was only possible
because of the support and generosity of many people.

I thank my advisor, Prof David Lo, for the outstanding mentorship over
the past 4.5 years. I am immensely grateful and indebted to David for his
patience, encouragement, and support. My research took many twists and
turns, and it is only with David’s insights and expertise that I managed to
find my way to the end of this challenging but rewarding journey.

To Prof Lingxiao Jiang, Prof Hady Lauw, and Prof Ming Li, I extend
my thanks for serving on my dissertation committee and for your precious
time and effort to review and evaluate my dissertation. The feedback I
received from the qualifying exam and the dissertation proposal have shaped
the research done in this dissertation.

Additionally, I would also like to thank everyone who gave feedback on
this dissertation, including the committee members and Dr Julia Lawall,
for their time and effort. This dissertation was significantly improved after
incorporating the feedback.

Before starting my PhD, I worked as a research engineer. This brief
period of time was deeply influential on the work done in this dissertation.
The work we completed in that time shaped my research tastes and honed
my research skills. I thank my collaborators who worked on this project with
me: Prof David Lo, Prof Lingxiao Jiang, Dr Julia Lawall, Dr Gilles Muller,
and Dr Ferdian Thung.

During my PhD, I had the fortune for working with many talented col-
laborators. I learned many lessons from these collaborations. Without the
mentorship, expertise, and support generously given by my collaborators,
I would not have been able to complete the work done in my PhD. In al-
phabetical order, I thank Abhishek Sharma, Andrew E. Santosa, Asankhaya
Sharma, Bach Le, Bowen Xu, Chaiyong Ragkhitwetsagul, Corina S. Pasare-
anu, Ferdian Thung, Gilles Muller, Huy Tu, Imam Nur Bani Yusuf, Jieke
Shi, Julia Lawall, Khai Loong Aw, Lingxiao Jiang, Lucas Serrano, Muham-

i

mad Hilmi Asyrofi, Ming Li, Ming Yi Ang, Pattarakrit Rattanukul, Rat-
nadira Widyasari, Rahul Yedida, Sheng Qin Sim, Stefanus Haryono, Thanh
Le-Cong, Tegawendé F. Bissyandé, Thong Hoang (James), Tim Menzies,
Truong Giang Nguyen, Xueqi Yang, Yunbo Lyu, Zhipeng Zhao, Zhou Yang.

I thank both the current members and alumni of our research group. The
group was a great place for sharing ideas and I am thankful for the interesting
discussions, helpful suggestions, and many more.

I am thankful to the Software Engineering research community, especially
the reviewers who impacted and improved my research. My submissions tend
to receive insightful reviews that provide constructive feedback for improving
the work. My work was built on many inspiring studies and I performed my
research while standing on the shoulders of giants.

I would also like to express my gratitude to Singapore Management Uni-
versity (SMU). SMU was a great environment for my research and I would
like to thank everyone who provided the resources and support needed for
this dissertation. In particular, I thank everyone in the graduate office and re-
search administration, including Chui Ngoh, Caroline, Yar Ling, Chew Hong,
Pei Huan, for the support and the immense patience that they must have
had for all of my interactions with them.

I thank my family, especially my parents and parents-in-law. I have
received tremendous support, companionship, and understanding from my
family in the past four years. I would also like to express my thanks to my
friends for their support, great memories, and interesting discussions.

Finally, I would like to thank my wife, Wei Ling, for having gone through
so much with me. Her love, patience, and support was a driving force for me
during the long hours of research. I could not have completed this dissertation
without her unwavering encouragement and understanding. I am infinitely
grateful.

ii

Chapter 1

Introduction

1.1 Motivation

Software systems are now pervasive in virtually every aspect of our lives.
Software reliability is more critical than ever. However, modern software
systems are becoming increasingly complex as the use of third-party systems
have become ubiquitous. Libraries help to bring down the cost of software
development by providing functionalities that can easily be reused, through
their APIs (Application Programming Interfaces). The number of libraries on
package repositories, such as PyPI and npm, is rapidly increasing [52, 442].
An average project is now believed to include over 110 libraries.1 While li-
braries increase the ease of developing software, they also drive the increasing
complexity of software systems, introducing new challenges and risks.

Challenges. The inner workings and implementations of libraries are
abstracted through their APIs. This has several implications which pose
challenges for software reliability. Firstly, developers may only have a surface-
level understanding of the libraries and third-party systems before interacting
with them. Secondly, as APIs may be opaque, tools that we have relied on
to fortify software systems may not be able to effectively navigate their way
around and into the APIs. Thirdly, developers may be unaware of bugs and
security weaknesses that arise from the use of libraries with security issues
and the composition of smaller software components into a larger system.

To correctly use a library, developers interact with the library through its
API. When invoking a library’s API, mistakes made by the developers may
lead to subtle but severe consequences. While APIs may hide the low-level
details of a library, developers have to understand the APIs’ intended usages

1https://www.contrastsecurity.com/security-influencers/

2021-state-of-open-source-security-report-findings

1

https://www.contrastsecurity.com/security-influencers/2021-state-of-open-source-security-report-findings
https://www.contrastsecurity.com/security-influencers/2021-state-of-open-source-security-report-findings

and constraints that they may impose. Failing to do so may introduce bugs
and defects, which could lead to consequences such as data loss and security
vulnerabilities. Close to 10% of all software bugs were found to be caused
by API misuses [58]. As such, tools that help developers to understand APIs
and detect developer mistakes in their use are important.

Static analyzers and fuzzers are often used to improve software reliability.
However, these techniques suffer from limitations. Static analyzers produce
a large number of false alarms [215] while fuzzers cannot always generate
a large proportion of meaningful, valid inputs [308]. The use of libraries
present challenges for static analyzers as they may not be able to correctly
understand idioms and domain knowledge of the developers. As such, static
analyzers overapproximate possible execution paths, including paths that
cannot be taken in reality. Without knowledge of the input constraints of a
given function from an API, fuzzers cannot effectively generate structurally
and semantically-valid inputs. As such, fuzzers may fail to adequately test
the core logic of a library and are stuck testing code for input validation.

Beneath the problems that surface at the API-level, the composition of
reusable software components may lead to unexpected behaviors. Even when
each component works as expected, their interactions may lead to danger-
ous behaviors. For example, in an Internet-of-Things environment, programs
are triggered given certain conditions, may actuate sensors in the environ-
ment and may, in turn, trigger other programs. The joint behaviors may
produce unintended results. Furthermore, when reusable software compo-
nents contain bugs and vulnerabilities, these weaknesses could propagate to
larger software systems that used the components as building blocks. Due to
this risk, it is critical for developers to better understand possible weaknesses
when building systems that comprise these components. Approximately 40%
of vulnerabilities in software projects are introduced by the inclusion of a de-
pendency [37]. While developers currently deploy monitoring systems that
alert them about vulnerable libraries, these systems are known to produce
a large number of false alarms [437]. To support developers in judiciously
building larger systems, we need tools that provide more precise warnings.

Thesis. A seam in software is a place where two parts of the software
meet [148]. This dissertation takes the perspective that understanding the in-
teraction between components where their seams meet is essential to improv-
ing the reliability of modern software systems. The work in this dissertation
introduces techniques to prevent bugs in the interaction between software
systems. The chapters share a common theme where a useful abstraction
or model is identified for capturing salient information about the library/-
software system. The abstraction then empowers automated techniques for
fortifying software systems.

2

1.2 Contributions

1.2.1 Static Analysis and APIs

We start by using static analysis to improve the reliability of developer-
written programs that use APIs. We propose and investigate a new approach
for detecting code that incorrectly use APIs. Next, as static analysis tools
tend to produce a large number of false alarms, we look into metohds of
identifying and filtering false alarms.

In the first study, this dissertation presents ALP, an approach for detect-
ing API misuses, which are violations of usage constraints of the API. While
there have been techniques proposed to detect such misuses, studies have
shown that they fail to reliably detect misuses while reporting many false
positives. One limitation of prior work is the inability to reliably identify
correct patterns of usage. Many approaches conflate a usage pattern’s fre-
quency with correct patterns. Due to the variety of alternative usage patterns
that may be uncommon but are correct, anomaly detection-based techniques
have limited success in identifying misuses. We address these challenges and
propose ALP (Actively Learned Patterns), reformulating API misuse detec-
tion as a classification problem, where each API usage is identified as a misuse
or not. Prior work has shown the promise of representing programs as graphs
with complex relationships. ALP mines discriminative subgraphs, capturing
relationships between program elements that indicative of correct or misuses
of an API. Through limited human supervision, we reduce the reliance on
the assumption relating frequency and correctness. The principles of ac-
tive learning are incorporated to shift human attention away from the most
frequent patterns. Instead, ALP samples informative and representative ex-
amples while minimizing labeling effort. In our empirical evaluation, ALP
substantially outperforms prior approaches on both MUBench [59], an API
Misuse benchmark, and a new dataset that we constructed from real-world
software projects.

In the second study, we present our research on filtering false alarms of
static analyzers. Bug detection approaches based on static analysis, such as
FindBugs and Infer, have been adopted by many projects. Still, these ap-
proaches are characterized by the large volume of false alarms that are pro-
duced. Researchers have proposed techniques to postprocess the warnings,
using machine learning techniques on handcrafted features. These features
are metrics that are extracted from the characteristics and history of the
file, code, and warning. We found that several studies used an experimental
procedure that results in data leakage, i.e., the model is trained using infor-
mation that would not be available at prediction time, and data duplication,

3

i.e., some testing data is present during training. These issues are subtle but
have significant implications. Firstly, the ground-truth labels have leaked
into features that measure the proportion of actionable warnings in a given
context. Secondly, as the construction of each of the training and testing
datasets do not consider the warnings already present in the other, many
warnings in the testing dataset appear in the training dataset. Next, we
demonstrate limitations in the warning oracle that determines the ground-
truth labels. Given warnings reported on a revision of the project, the warn-
ing oracle relies on a heuristic comparing these warnings to the warnings
reported in a reference revision chronologically in the future of the given re-
vision. We show the choice of reference revision influences the distribution of
labels determined by the oracle. Moreover, the heuristic produces labels that
do not agree with human oracles. Without data leakage and data duplica-
tion, the postprocessing approaches are still effective, but we find that there
is still room for improvement as the number of labelled examples required
for a machine learning to learn from is still high.

In our analysis, we find that an important aspect of filtering false alarms
is the inclusion of the bug triggering path in the postprocessing analysis.
For example, some false alarms stem from the static analyzer’s inability to
account for common code idioms related to commonly used APIs, as well as
its inability to handle invocations to third-party libraries. To this end, we
propose a new approach, TrailMarker, that exploits in-context learning using
large language models to learn from a few labeled examples.

1.2.2 Dynamic Analysis and APIs

Next, we investigate dynamic analysis techniques, which have been used
to generate behavioural models of APIs and to find bugs in libraries. In
contrast to static analysis techniques, dynamic analysis may fail to cover all
behaviors of the program, leading to the inference of an inaccurate model of
the program. We propose a method of finding traces of program behaviors
that are not represented in a collection of traces. When fuzzing libraries,
fuzzers are challenged by the difficulty in generating valid inputs that satisfy
the API’s input constraints. We propose a method of learning information
about the input constraints during fuzzing, which improves the generation
of inputs for fuzzing.

In the third study, we present our research on dynamic analysis of APIs.
To refine behavioural models of API usages, we use search-based test gener-
ation for generating counterexamples to temporal properties, which are used
as input to an automata inference algorithm. Our work mines finite-state
automata (FSA) from execution traces, collected from the execution of test

4

cases using the API. To learn accurate specifications, many tests are required.
Existing approaches generalize from a limited number of traces or use simple
test generation strategies. Unfortunately, these strategies may not exercise
uncommon usage patterns of a software system. This may cause incorrect
rules to be inferred from the execution traces (e.g. a uncommon pattern may
be incorrectly believed to be impossible in the software system). To address
this problem, we propose a new approach, adversarial specification mining,
and develop a prototype, DICE (Diversity through Counter-Examples). In-
correct rules are caused by missing but possible execution traces, i.e., insuf-
ficiently diverse traces. Targeting gaps in the diversity of the test traces,
DICE produces new execution traces corresponding to usage patterns that
were unrepresented in code executed by the input test suite.

In the fourth study, we extend our insights from the previous chapter
to mine API usage constraints for more effective library fuzzing. We focus
our attention on deep learning libraries. Deep learning libraries are widely
used today, and empirical studies have characterized the properties of in-
puts expected by the library, as well as the inputs that can trigger bugs and
vulnerabilities in them. Building on the domain understanding gained from
these empirical studies, we build a fuzzer that can learn input constraints
on-the-fly. We propose SkipFuzz, a fuzzer that applies active learning to
learn the input constraints to improve fuzzing. Inputs are selected to re-
fine the fuzzer’s knowledge of the APIs’ input constraints. This enables the
fuzzer to produce a greater proportion of valid inputs. This enables quicker
enumeration of the inputs that are likely to cause unexpected behaviors. 28
vulnerabilities have been confirmed in TensorFlow, with 23 unique CVE IDs
assigned.

1.2.3 Interacting Systems

While the previous studies learn and detect issues in a single program (e.g.,
a library, or a program using a library), the combination of behaviors of
multiple programs may pose challenges to developers. To defend against
malicious behaviors from the joint behaviors of multiple programs, we pro-
pose a method of mining security policies where individual programs may
interact to produce unexpected behaviors. To help developers understand
security weaknesses in the libraries included in their programs, we propose
a method to generate a test case that provides more information about the
exploitability of a library vulnerability from a program.

In the fifth study, we present our research on learning rules about an
Internet-of-Things software environment. We report our research on an In-
ternet of Things (IoT) platform where programs may be individually correct,

5

but threats may emerge from the joint behavior of multiple programs. Rules
and policies may be written to allow only expected behaviors or block po-
tentially dangerous behaviors. With these rules, a sandbox or monitoring
system can be set up to defend against unexpected behaviors. While prior
studies use handcrafted safety and security policies to detect these threats,
these policies may not anticipate all legitimate uses of the devices and apps
in a smart home, causing false alarms. We propose to mine sandbox rules
for securing an IoT environment. After the joint behaviors are analyzed
from a bundle of apps and devices, a sandbox can be deployed to disallow
previously unseen behaviors. Moreover, the execution of malicious behavior,
introduced from software updates or obscured through methods to hinder
program analysis, will be blocked.

In the sixth study, we present our research that allows developers to bet-
ter understand the exploitability of library vulnerabilities. When projects in-
clude libraries, library vulnerabilities may propagate and cause these projects
to suffer from the same security weaknesses. For example, the Log4Shell vul-
nerability affected the popular Log4J library and impacted over 8% of the
Maven Central repository.2. Developers can use Software Composition Anal-
ysis tools to warn them of potential library vulnerabilities, but these tools
often produce a large number of false alarms, making it difficult for develop-
ers to understand and prioritize alerts about library vulnerabilities.

We propose a framework, Test Mimicry, which addresses this problem by
constructing a test case that exploits a vulnerability in the library dependen-
cies of a project. It leverages the test cases written by software developers
to accompany bugs and vulnerability fixes. Given a test case in a software
library that reveals a vulnerability, our approach captures the program state
associated with the vulnerability. Then, a test generation tool is guided
to construct a test case for the client program that invokes the library and
reaches the same program state reached in the library’s test case. Our frame-
work is implemented in a tool, TRANSFER, which uses search-based test
generation. Based on the library’s test case, TRANSFER produces search
goals that represent the program state where the vulnerability is triggered.
This enables us to construct test cases that demonstrate attacks on a client
project, which will provide useful information to developers to understand
how the vulnerability could be exploited on their systems.

2https://security.googleblog.com/2021/12/understanding-impact-of-apache-log4j.html

6

1.2.4 Publications.

This dissertation aims to be self-contained. The core of this dissertation
reports work that was described in the following first-authored papers:

1. “Active Learning of Discriminative Subgraph Patterns for API Misuse
Detection” IEEE Transactions on Software Engineering (TSE 2022). [222]

2. “Detecting False Alarms from Automatic Static Analysis Tools: How
Far are We?” IEEE/ACM International Conference on Software Engi-
neering (ICSE 2022) [220]

3. “Adversarial specification mining.” ACM Transactions on Software
Engineering and Methodology (TOSEM 2021) [223]

4. “IoTBox: Sandbox Mining to Prevent Interaction Threats in IoT Sys-
tems.” IEEE Conference on Software Testing, Verification and Valida-
tion (ICST 2021) [225]

5. “Test Mimicry to Assess the Exploitability of Library Vulnerabilities.”
ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA 2022) [224]

6. “SkipFuzz: Active Learning-based Input Selection for Fuzzing Deep
Learning Libraries” (under submission)

7. “Few-shot In-context Filtering of False Alarms from Static Analyzers”
(to be submitted)

Some material from the following papers, whose contributions are not
essential to this dissertation but influenced the work reported in the above
papers, are included:

1. “Semantic patches for Java Program Transformation (experience re-
port).” European Conference on Object-Oriented Programming (ECOOP
2019) [226]

2. “Assessing the Generalizability of code2vec Token Embeddings.” IEEE/ACM
International Conference on Automated Software Engineering (ASE
2019) [221]

7

1.3 Reading Guide

Figure 1.1 illustrates the roadmap of the dissertation. The remainder of this
dissertation is organized as follows. Chapter 2 presents an overview of related
work on the themes of the dissertation, namely, improving understanding and
analysis of APIs, libraries, and the interaction of software systems. Chapter 3
presents ALP, an active learning approach for detecting API misuses. Chap-
ter 4 presents our research on machine learning techniques, including our
proposed approach TrailMarker, that filters false alarms from static analyz-
ers. Chapter 5 presents an approach, DICE, that uses a test case generator to
obtain more diverse execution traces for learning models of APIs. Chapter 6
presents SkipFuzz, a fuzzer that updates its knowledge about an API’s input
constraints by learning from the execution outcomes given the inputs gener-
ated during fuzzing. Chapter 7 presents IoTBox, a sandbox mining technique
to learn rules about the joint behaviors of a system with multiple IoT apps,
enabling the construction of a sandbox to defend an environment against
malicious attackers. Chapter 8 presents TRANSFER, which constructs a
vulnerability-revealing test case for a client program using a vulnerable li-
brary. Finally, in Chapter 9, we conclude this dissertation and discuss some
potential future research directions.

Figure 1.1: Roadmap of this dissertation

8

Chapter 2

Background

2.1 Third-party Software Components

In modern software development, the use of third-party software components,
e.g. libraries and frameworks, are now ubiquitous. While providing benefits,
they also introduce new challenges for software development. While devel-
opers may understand their own code, they are less likely to understand the
code of third-party software components. Developers and their code inter-
act with third-party components through their API, which abstracts away
low-level details.

The use of libraries and their APIs presents challenges. These chal-
lenges include the need for developers to be aware of and manage break-
ing changes [419, 88, 292], API deprecations [226, 182, 261, 247], license
changes [393], malicious packages [395, 396], as well as bugs and vulnerabil-
ities found in the libraries [156, 332, 203]. Each of these tasks may require
substantial effort from developers and may be error-prone. In particular,
vulnerabilities in libraries pose challenges as there is growing concern about
the opaqueness of the libraries used in a software project. As some libraries,
such as Log4J, are widely used, security weaknesses in these libraries have
a widespread impact [44, 15]. Libraries may not publicly disclose every vul-
nerability found in their code [352, 304, 458], and fixes to vulnerabilities may
only be released after large delays [204, 329].

APIs can also be challenging to use. While there has been significant ef-
fort on improving usability issues [296], a large proportion of bugs are caused
by misuses of APIs by developers [58]. APIs impose usage constraints that
developers should adhere to. Failing to do so may lead to unexpected behav-
iors, and may introduce bugs and vulnerabilities [59, 61]. These constraints
may not be well-documented [388, 295, 421], making understanding them

9

challenging for developers. Hence, tools that allow for better understanding
of these constraints may be highly valuable.

Many studies have presented methods to improve the reliability of li-
braries and APIs. Some researchers target developers and propose meth-
ods of recommending APIs. Other propose techniques for mining models
of API usages [157, 423], synthesizing code using APIs [82], automatically
migrating usages of deprecated APIs [305, 226, 182, 247], and finding API
misuses [59, 60, 61, 416, 229].

Other research focuses on improving the reliability of the libraries them-
selves. Some studies propose methods of detecting breaking changes in the
libraries [95, 284], detecting malicious packages [395, 396], and finding bugs
in the libraries through testing their APIs [213, 206, 447, 415, 132].

Emerging computing platforms, such as an Internet-of-Things (IoT) plat-
form, tend to involve interacting devices and apps [53, 301, 105, 106]. The
platform adopts an event-handling paradigm. The apps are bounded to and
listens for events from a few physical devices. On receiving events from sensor
devices (e.g. a light sensor), the apps may trigger the actuator devices (e.g.
a lamp). While providing great convenience, these apps are known to pose
a challenge for users to understand [407, 184]. The interaction between mul-
tiple apps may lead to unexpected behaviors. Moreover, apps may contain
malicious behaviors that are difficult to detect by end users.

2.2 Detecting Bugs

To improve software reliability, both static and dynamic analysis have been
used to detect bugs and vulnerabilities. Static analysis tools are able to detect
bugs at low cost as they do not execute the program. These tools are well-
known to suffer from a large number of false alarms, which hinders their adop-
tion [215, 119, 294]. Dynamic analysis tools execute the programs. While
they do not suffer from large numbers of false alarms, they may get stuck in
the shallow parts of the programs as entering program states associated with
complex constraints can be challenging for fuzzing [308, 421, 325, 326, 70].

Static analyzers, such as Findbugs [75] and Infer [137], report warnings of
possible bugs in code. Findbugs includes over 400 bug patterns that match
a range of possible bugs, such as null pointer dereferences. They have been
known to find a large number of bugs and have been adopted in many different
code contexts. Still, many warnings are false alarms, which limits its adoption
as developers do not trust its warnings [215, 119]. Many factors, including
the use of APIs, may contribute to false alarms. Many studies have proposed
methods of improving static analyzers. Several studies [404, 181, 186, 232,

10

241, 351, 435, 417, 364, 234] postprocess the warnings reported to attempt
to filter out false alarms or to prioritize warnings that are more likely to be
true alarms.

Dynamic analysis techniques include both test case generation tools and
fuzzers. Both techniques usually aim to maximize code coverage of the soft-
ware under test. Test case generation tools include Randoop [306] and Evo-
Suite [158]. These tools generate unit tests by creating objects and argu-
ments to invoke the methods in a program. Search-based test generation
tools, such as EvoSuite [158], uses evolutionary algorithms to evolve test
cases over multiple generations. EvoSuite [158] has been known to achieve a
high level of code coverage on large benchmarks of real-world programs [311].
Similar to test case generation tools, fuzzers automatically tests software
systems. Fuzzers randomly generate inputs to invoke programs. Since its
early successes in crashing UNIX utilities, fuzzers have now been applied to
a wide range of software systems, including stateful programs [325] and li-
braries [213, 206, 447, 415, 132]. As these techniques execute the programs,
each execution requires some computational power and time. One challenge
faced by dynamic analysis tools is the waste of executions as the majority of
generated inputs may be invalid, i.e., they fail shallow checks. For example,
when fuzzing deep learning libraries, one study reported that a random input
generator produces valid inputs only a fifth of the time [421].

2.3 Mining Rules and Specifications

Mining patterns/features. To understand how an API should be used,
many studies have proposed methods for mining patterns from publicly avail-
able resources such as GitHub and StackOverflow.

Many studies have proposed approaches for mining API usage patterns [456,
262, 414, 413, 291, 303, 61, 449, 381]. Patterns mined from StackOverflow
were shown to contain API misuses [449]. Other approaches focus on mining
patterns from repositories on GitHub.

Several studies describe how to use their patterns for detecting API mis-
uses in source code [262, 414, 413, 291, 303, 61, 381]. Many of these studies
mine frequent patterns and detect misuses from anomalies from frequent
patterns in their choice of source code representation. PR-Miner [262] uses
frequent itemset mining over the function calls invoked to identify associa-
tion rules between functions. JADET [414] constructs finite state automatas
based on temporal properties over method calls and extracts patterns from
them. It detects anomalies that violate the model and heuristically ranks
them. Building on JADET, Tikanga [413] converts JADET’s models into

11

formulas in Computational Tree Logic, then use model checking to identify
formulae with enough support in a codebase. DMMC [291] detects missing
calls on a receiver type, characterising methods by the invocations on each
receiver type. Alattin [381] is an approach that mines alternative patterns to
detect missing conditional checks. GrouMiner [303] represents programs as
groums, which are graphs that encode method calls, field accesses, control,
and data-flow. MUDetect [61] encodes methods as API Usage Graphs, build-
ing on top of Groums but encoding more relationships between program ele-
ments. The above studies proposed unsupervised techniques to mine patterns
solely based on their frequency. Apart from mining patterns from GitHub,
MUTAPI [416] applies mutation analysis to discover misuse patterns that
are mutants of correct usage patterns.

Apart from static analysis, runtime verification can be used to detect
violations of API specifications [214]. Runtime verification depends on spec-
ifications or patterns that can be both automatically mined [331] or written
by hand. However, Legunsen et al. [255] have shown that both manually
written specifications and automatically mined specifications have high false
positive rates.

Mining models using Active Learning. In active learning [63, 64,
101], a learner sends queries to an oracle (e.g., a human-in-the-loop, or by
execution of a program) who responds with some feedback (e.g., the ground
truth label of a given data instance). The feedback is used by the learner to
refine its model. Active learning has been employed for inferring models of
programs. Some studies learns automaton models using active learning, using
Angluin’s L* algorithm [63] or the QSM technique [139], to build models of
software systems [397, 68, 129]. For example, execution traces can be used
to construct a specification of a software system [397]. An oracle, which
can be a human user, is involved in answering membership queries, i.e. if a
sequence of events (e.g. method calls) should be accepted or rejected by the
ground-truth state machine representing the software system. Others have
used active automata learning for finding differences between programs [68]
and finding security flaws in TLS implementations [129]. Researchers have
used active learning for the generation of assertions from test suite [324]
as well as for regenerating programs using the models to remove undesired
behaviors [389, 365].

In classification tasks, active learning is used to query for labels of a
small number of informative data instance when labeling every instance is
too costly [361]. Data instances are identified, for example, based on the
instances that would cause the model to undergo the greatest change if the
labels of data instances were known [363]. In software engineering, active
learning has been used for the classification of execution traces [92], and for

12

tasks related to defect and fault prediction [382, 278].
Mining input constraints. To invoke a function in a library, the in-

puts supplied has to adhere to the API input constraints. To test a li-
brary function, randomly generated inputs can be supplied without having
knowledge of the input constraints. However, unlike other programs e.g.
UNIX utilities [286, 285] that take sequences of bytes as input, many pro-
grams, including libraries, accept inputs with both syntactic and semantic
pre-conditions [308, 76]. Therefore, the vast majority of random inputs will
be invalid and fail to test the core logic of the program.

Some studies have proposed to extract constraints from documentation [87,
170, 377, 421], which enables test generators to be more effective. Specifica-
tions generated by JDoctor [87] can be integrated with Randoop [306], while
DocTer [421] extracts input constraints for fuzzing deep learning libraries.

Other research infer types [191, 320, 330, 279], which are useful for pro-
grams written in dynamically typed languages. In some languages, type an-
notations can be added to existing code, allowing flexibility for developers,
but is challenging and tedious to perform manually. Studies have proposed
automated methods of inferring types, often done so probabilistically using
deep learning approaches.

Mining rules for monitoring program behaviors. Traditionally,
malicious programs have been executed in sandboxes, which blocks access
to security-sensitive resources. Researchers [209, 79] suggest that entirely
blocking/allowing access to a certain resource may be too coarse-grained, and
have proposed to identify more granular conditions of accessing each resource.
To do so, techniques have been proposed to automate the mining of rules to
be enforced in a sandbox. Jamrozik et al. [209] mines associations between
GUI elements and sensitive API access. This allows the identification of rules
permitting access to sensitive resources, such as the camera, only if the user
is performing specific actions on the app. If the sandbox detects previously
unseen sensitive behaviors (e.g. reading a file), the user is alerted. This
allows the user to assesses the situation and determine if the new behavior
is permitted or stopped.

Existing techniques [252, 209, 398, 79] rely on test generation to explore
the possible behaviors for generating rules. These rules can be mined with
test case generation using the test complement exclusion [438] method. As
test case generation do not observe all behaviors, it is possible that behaviors
that have not been observed will occur in future. Test complement exclusion
uses this as a guarantee by using the sandbox to allow only behaviors seen
as the rules were mined. If malicious behavior wasn’t observed before, then
no malicious behavior can execute.

Existing techniques differ in the context considered to determine if a

13

given resource should be accessible. If the rule allowing a resource access is
too coarse-grained, then it may fail to detect malicious behaviors. If it is too
granular, then it may block benign behaviors with inconsequential differences.
Wan et al. [398] considers system calls that are called. In Jamrozik et al’s
work [209], the execution context is the last interacted GUI element before
an API call. Le et al’s work [252] considers the execution context to be the
sequence of other API calls before a given API call.

Mining specifications and behavioural models. Many specification
mining algorithms have been proposed. To infer models based on Finite State
Automata (FSA), specification mining algorithms abstract over states, and
determine if two set of execution traces result in the same state. A classic
algorithm that infers a Finite State Automaton from traces is the k-tails
algorithm [62]. The k-tails algorithm [62] first uses the input execution traces
to build a Prefix Tree Acceptor (PTA). A PTA is a tree-like deterministic
finite automaton (DFA) where states are grouped and merged based on the
prefix that they share. This automaton is consistent with the input traces
and will accept all of them. Next, the algorithm merges states that have the
same sequences of invocations in the next k steps.

Building on the k-tails algorithm, Lo et al. [275] propose to mine temporal
rules that hold over the input traces and prevent any merge that will result in
a violation of the rules. GK-tail [277] mines extended FSA where transitions
are labelled not only with method calls, but includes parameter values. They
introduce multiple merging criteria, including criteria that do not require
exact matches of the transitions, and allow for more general conditions of
the parameter values. Krka et al. [242] introduce multiple algorithms in their
work, including SEKT, which extends k-tails by adding another condition for
equivalence: States are merged only if they correspond to the same abstract
state, which are defined by the invariants extracted by Daikon. Le et al. [252]
propose a deep-learning based approach, Deep Specification Miner (DSM).
After training a Recurrent Neural Network (RNN) on the execution traces,
DSM characterizes the states by feature vectors from the RNN.

While variants of the k-tails algorithm combine states based on their
prefixes and an equivalence criteria, other approaches have been proposed
to determine the states in a model. The CONTRACTOR [128] and CON-
TRACTOR++ [242], which uses program invariants [146] to characterize
model states. ADABU [127] and Tautoko [126] identify inspector methods
for each class. Inspector methods are heuristically identified based on their
return type (not void), a lack of parameters, and the lack of side-effects.
States are characterized by the return values, which are abstracted over to
prevent a large number of states, of these inspector methods.

14

Chapter 3

(Static Analysis + API) Active
Learning of Discriminative
Subgraph Patterns for API
Misuse Detection

3.1 Overview

Developers frequently use Application Programming Interfaces (APIs) incor-
rectly by violating usage constraints that these APIs may impose [144, 295,
59]. Known as API misuses, the violation of these constraints is a frequent
cause of bugs, resulting in software crashes and vulnerabilities.

There have been many techniques proposed to detect misuses of APIs [344];
both static and dynamic analysis have been employed. However, recent stud-
ies have shown the ineffectiveness of existing techniques. Manually written
specifications and API misuse detectors using static analysis have low pre-
cision and recall [255, 60]. From a survey of existing API misuses detec-
tors by Amann et al. [60], most existing detectors mine frequent patterns
from existing code. These detectors then look for code that deviates from
these patterns, assuming that these deviations are API misuses. Along with
recent studies [61, 416, 381], Amann et al. [60] suggested that this naive
assumption is the cause of the numerous false positives of existing detec-
tors. There may be uncommon patterns of usage that do not conform to
the mined patterns, but do not lead to bugs. Furthermore, there are classes
of APIs where their prevalent use are incorrect, such as Java Cryptographic
APIs [144, 295, 243, 165]. For these APIs, their correct usage may look like
deviants of the most frequent patterns. Due to these reasons, the frequency

15

of a usage pattern is not a reliable signal of its correctness.
We propose our approach, ALP (Actively Learned Patterns), for detecting

Java misuses. While still using frequency information, ALP does not rely on
it as the only signal of correctness, and incorporates some human supervision
from an experienced user of each API to identify discriminative subgraph
features, i.e. subgraphs that occur more frequently in graphs of one label than
the other. These subgraph patterns act as indicators of either correctness
or misuse. Based on the discriminative subgraphs present in each usage
example, they are classified with a machine learning classifier.

However, it is impossible to label every usage pattern of an API. Fur-
thermore, similar to findings from prior work [381], we find that API usage
is highly imbalanced, with most APIs exhibiting distributions where correct
usage examples outnumber misuse examples. Misuses are usually the minor-
ity class in this classification-based formulation of the API misuse detection
problem. While they are the minority, misuses may lead to bugs and vulner-
abilities. As a result, failing to detect them may have severe consequences. A
naive sampling of examples to label is likely to pick usage examples containing
frequent patterns, while omitting less common but informative patterns that
may be discriminative of the minority class. Therefore, key to our approach
is our careful use of usage examples from GitHub. ALP uses active learning
to identify informative examples for human annotation. This enables ALP
to sample a small but informative number of examples for labeling.

Next, to reduce misclassification, ALP withholds judgement on examples
it cannot classify with confidence, such as uncommon usage patterns it has
not seen, and leaves them for further human inspection. Notice that this
is in contrast with existing misuse detectors, which considers usage that
deviates from previously seen examples as misuses. Using a novelty detector,
ALP withholds judgement on usage instances that it is uncertain of. During
practical use, it is plausible for ALP to encounter usage instances of the
API that do not resemble any training example. Given the prevalence of
correct alternative usage patterns [381], we suggest that the optimal behavior
of an API misuse detection tool is to signal that it does not know how
to classify such usage instances. By withholding judgement, ALP prevents
wasted developer effort investigating false positives.

3.2 Background

We present some background information of ALP. Through examples, we
motivate the features of ALP through the challenges of detecting misuses
that are tackled by ALP. Afterwards, we describe the API Usage Graph [61],

16

a graph representation of source code shown to be promising for the API
misuse detection problem. We build ALP on top of the API Usage Graph.

3.2.1 Motivating Examples

In this section, we show simplified examples from GitHub projects that show
the challenges we attempt to address. Existing misuse detectors usually
conflate frequent usage patterns and correct usage patterns, then look for
API usage instances that deviate from these patterns. The two primary
challenges that we tackle in this work are that there is no known way to
reliably and automatically evaluate the correctness of a mined pattern
(Challenge 1) and the correctness of a usage example that deviates
from known usage patterns (Challenge 2).

Cipher cipher = Cipher.getInstance("DES");

cipher.init(1, secretKey);

byte[] textBytes = text.getBytes(charset);

byte[] bytes = cipher.doFinal(textBytes);

Figure 3.1: A usage pattern involving Cipher. This uses the ”DES” algo-
rithm, known to be insecure [144].

The distribution of API usages is highly skewed, and most frequency-
based pattern mining approaches assume that the most common patterns
are more likely to be correct. However, this is not the case for some APIs,
such as cryptographic APIs. An example of an incorrect API usage is shown
in Figure 3.1. Hence, the assumption that a highly frequent usage pattern is
a correct usage is not a valid assumption, and we address this by including
some human supervision. Still, even with a user of the APIs labeling a
sample of usage examples, it is challenging to train an effective classifier.
Due to the imbalanced distribution of API usage patterns, if one tries to
learn usage patterns through a random sampling of examples from GitHub,
then it is possible that the sample does not contain a single example using an
uncommon pattern. In the case of Cipher, one may only encounter examples
similar to the above, and miss out the uncommon but correct usage examples.

The second challenge is related to the high rate of false positives. To
detect misuses, existing tools look for deviations from mined patterns. Simply
reporting any deviation as a misuse will produce numerous false positives,
and existing tools attempt to mitigate this problem through various heuristics
although the use of heuristics alone are insufficient to solve the problem.

17

For an example API, we look at java.util.Map. Included in Java’s
standard library, this data structure is ubiquitous in Java projects. Yet,
when we inspect the evaluation results of existing detectors on API misuse
detection benchmark, MUBench [59, 60], we find that none of the existing
misuse detectors are able to detect misuses of Map. We hypothesize that this
is caused by the variety of usage contexts it appears in. Based on an empirical
analysis by sampling API usage instances from GitHub, the idiomatic usage
pattern is a null-check performed on the return value of the get(key) method
call, but there are less common patterns that may not be idiomatic, but are
safe and correct.

// 1. A pattern that is common and correct

map1 = new HashMap<>();

Integer val1 = map1.get("data");

if (val1 != null) {

...

}

// 2. A pattern that is uncommon but correct.

// If reported as a misuse, it would be a false positive

map2 = new ConcurrentHashMap<>();

for (String key : map2.keySet()) {

int val2 = map2.get(key);

...

}

// 3. A misuse of Map.

// If not reported as a misuse,

// it would be a false negative.

// codeMap.get() may return null

((Integer)this.codeMap.get(

cause.getClass())).intValue()

Figure 3.2: Three usages of Map. The first is common and correct, while the
second is uncommon but correct. The third is a simplification of a misuse
from MUBench.

In the second example shown in Figure 3.2, we see an uncommon usage of
a ConcurrentHashMap. While it implements the Map interface, ConcurrentHashMap
does not allow for null values in it. Hence, invoking get on keys of the map
(by iterating over keySet) never returns null. However, based on the frequent
pattern of a null-check, this usage instance may be considered a misuse as
it deviates from the pattern. Reporting it results in a false positive. Many
tools use a ranking-based approach by computing various metrics, such as
rareness [303], to rank their output with the aim of ranking false positives
below true positives.

The third usage is a misuse, in which a method is invoked on the return
value of get without checking for null, but is not detected by existing tech-

18

niques. In particular, while it is a deviation from the null-check pattern,
MUDetectXP does not report such usage instances as it heuristically omits
fields from its findings. This restriction was required to prevent numerous
false positives related to the usage of fields. While this heuristic succeeds in
reducing the number of false positives, it may cause MUDetectXP to miss
misuses.

The poor empirical performance [60] of these tools suggest the need for
a different approach to reduce false positives. We suggest that, despite some
success in using heuristics to prevent the reporting of false positives, the
fundamental problem of distinguishing real usage constraints from spurious
usage patterns remains unsolved.

We also address a third challenge, which is that API usage patterns
can be complex (Challenge 3). Some studies model method calls and
their order of invocation, data-flow, and control-flow [414, 413], other studies
has suggested the need for modelling multiple objects [331], static methods
and constants [454], self-usages [61] (the usage of an API within its own
implementation), inheritance [454], argument values [144, 455], and synchro-
nization [266, 61]. Consequently, the representation of a usage pattern has
to be sufficiently rich to capture this complexity.

1 class CopyOnWriteMap<K,V> implements ConcurrentMap<K,V> {

2 ...

3 public V putIfAbsent(K k, V v) {

4 synchronized(this) {

5 if (!containsKey(k))

6 return put(k, v);

7 else

8 return get(k);

9 }

10 }

11 ...

12 public V get(K k) {

13 this.internalMap.get(k);

14 }

15 }

Figure 3.3: Example usage of Map in a CopyOnWriteMap, which transitively
implements the Map interface

In Figure 3.3, we show an example of the complex relationships between
program elements related to usage of an API. We see uses of Map that have
relationships with program elements beyond control-flow. The class, Copy-
OnWriteMap, is a sub-type of Map through the ConcurrentMap interface.
The get(key) on line 8 is a self-usage, invoking get(key) which is overridden
by the class (line 12). The object, itself a Map, is used to synchronize access
to the other method calls on line 4.

19

Figure 3.4: Example of an API Usage Graph

3.2.2 API Usage Graph

As prior work [60, 303, 61, 454] have shown the promise of using a graph
representation of API usage for detecting API misuses, our work represents
programs as graphs. Amann et al. [61] proposed the API Usage Graph. An
example is shown in Figure 3.4, constructed based on the putIfAbsent method
in Figure 3.3. The API Usage Graph is a directed multi-graph with labeled
nodes and edges. Nodes represent objects, values, method invocations, con-
structor calls, field accesses, and conditional checks. Edges represent data
and control flow between the program elements of the nodes. Edges have the
following labels:

• recv (linking method calls that are invoked on a object),

• param (linking variables/literals used as arguments to the methods
called. While labeled “param”, a more accurate label may be “arg”
as this links variables/literals used as arguments to method call.),

• def (linking actions creating/returning a data),

• order (linking actions in order of execution),

• sel (for control-flow; representing a control-relationship),

20

• sync (linking actions to objects they are synchronized on),

• throw and handle (for exceptional flow).

Amann et al. [61] mined subgraphs of the API Usage Graph. Alternatives
to using the API Usage Graph are to use patterns mined from other repre-
sentations of a program. For example, Grouminer [303] considers control
and dataflow dependencies, while DMMC [291] encodes the set of methods
called on an object. Still, the expressivity of the API Usage Graph allows
it to distinguish more types of misuses from correct usage. While previously
proposed detectors have modelled some of these relationships, they were not
considered in tandem. On the other hand, these relationships are combined
in the API Usage Graph [61]. Therefore, patterns mined in these prior stud-
ies [303, 291] can also be represented as a subgraph pattern in the API Usage
Graphs Frequent subgraphs mined from API usage graphs was shown to be
able to capture usage constraints of APIs in previous work [61]. Therefore,
we express programs as API Usage Graphs in our work and mine subgraphs
from them.

Discriminative Subgraph Mining Many existing approaches focus on
mining frequent usage patterns of source code using an API. Frequent sub-
graphs are discovered by identifying subgraphs occuring more than a user-
specified number of times in a collection of graphs. Most of these frequent
subgraphs will not be discriminative of API misuses, in other words, they may
appear equally frequently in both correct and incorrect API usages. More-
over, there is usually a large number of subgraphs with frequency greater than
the user-specified number of times. The large volume of frequent subgraphs
may make further processing of the subgraphs unscalable.

One solution to the limitations of frequent pattern mining is to mine
discriminative subgraphs. Used for graph classification tasks where graphs
have different labels, these subgraphs are both frequent and have discrimi-
native power to distinguish between graphs of different labels. In our study,
we mine discriminative subgraphs to distinguish API usage graphs that are
misuses from API usage graphs that are correct. In other words, we look
only for frequent subgraphs that are indicative of either correct or incorrect
API usage. While all discriminative subgraphs are frequent, not all frequent
subgraphs are discriminative.

Graphs can be represented by the subgraphs that they contain. To use
discriminative subgraphs to perform classification, each usage location is ex-
pressed in terms of the presence and absence of these subgraphs. A vector of
the same length of the number of discriminative subgraphs, containing 0s and
1s representing absence and presence respectively, is passed into a machine
learning classifier. For example, the source code given in Figure 3.3 could

21

Figure 3.5: Vector representation of a usage example. The i ’th element in the
vector is 1 if the i ’th discriminative subgraph is present in the usage example.
Given that the second element represents a check for containsKey, and the
program in Figure 3.3 contains a checks for containsKey, the second element
is 1.

be represented as a vector in Figure 3.5. A single usage example may match
multiple subgraph features (e.g. both the second and last subgraph features
in Figure 3.5 are matched). The other discriminative subgraphs that are not
present in the API usage location have a value of 0 in the vector. Represent-
ing the usage in this form allows the use of machine learning classifiers which
take vectors as input.

The task is of a probabilistic nature; while it is typically the case that con-
tainsKey followed by get is a correct usage, this usage pattern does not guar-
antee that the usage is correct. Some implementations of java.util.Map

may allow a null value. As such, an approach that directly matches pro-
grams to a singular pattern cannot capture this uncertainty while the machine
learning classifier-based approach of ALP reflects the nature of this task.

3.2.3 Active Learning

Active learning is a subfield of machine learning that aims to achieve better
effectiveness while requiring fewer labelled examples [125, 260, 259, 122, 162].
Many machine learning techniques require many labeled examples, which are
examples where their true class has been indicated by a human annotator,
to train a model. Active learning techniques can be useful in situations
where labels of examples are hard to obtain. Rather than selecting random
examples to be labelled, active learning aims to select informative and rep-
resentative examples, and has been shown to be effective in minimizing the
number of labels required to learn an effective classifier. Approaches using

22

Figure 3.6: Data points projected onto the input feature space. Each point
represents one example. The dashed line represented the decision boundary
of the model, which learned to distinguish between examples of two different
labels. The figure indicates two groups of examples that have been labeled.
The unfilled circles indicate examples that have not been labeled. An active
learner may select an example from Unlabeled for labeling.

active learning ask queries that are answered by an oracle (usually human
annotators). These queries are unlabelled examples; their true classes are
not known yet as they have not been labeled by the human annotator. In
the context of graph classification, an active learning technique poses query
graphs, unlabeled graphs, to the human annotator.

Many frameworks for querying unlabelled examples have been proposed [125,
260, 259, 122, 162]. Many of these strategies direct the human annotator’s
attention at informative examples, such as examples where the model pro-
duces the most uncertain predictions [125, 260, 259], examples that would
cause the model to change the most [362], or examples that will reduce the
variance of a model [122]. In Figure 3.6, points with similar features as the

23

already labeled examples (and are close to them in the input space) are less
likely to be selected, since they likely share the same label as the labeled ex-
amples. An example from the Unlabeled region is likely to be selected as it
is far from the already labeled examples. Another direction of research mea-
sures the representativeness of unlabelled examples, addressing limitations
of prior techniques that tend to select outliers for labeling (e.g. selecting the
outlier in Figure 3.6 may not give us information about the other points in
the Unlabeled cluster). These techniques, e.g. [362, 162], favour examples
that are in dense regions of the input space, or are most similar to other
unlabelled examples (e.g. examples from Unlabeled in Figure 3.6) . In
short, active learning tries to minimize the total number of labels required
by selecting query examples that are informative and representative. An
informative example is one that should be dissimilar to examples that are
already labelled, while a representative example is one that is similar to other
unlabelled examples.

In ALP, we leverage active learning to iteratively identify examples from
GitHub to be labelled by the human annotator. We describe in Section 3.3.6
how we determine unlabelled usage examples that are dissimilar from already
labelled examples, while ensuring that they are similar to other unlabelled
usage examples.

To motivate this, we use Figure 3.1 as an example. If ALP has already ob-
tained enough examples to mine a feature indicating that getInstance(”DES”)
is an incorrect use, ALP will focus more on examples that do not contain
getInstance(”DES”) (hence, dissimilar to existing labeled examples). How-
ever, of the different usage examples, it will be helpful to focus on examples
with usage patterns that do not appear by coincidence and are not outliers
(in other words, examples which are similar to other unlabelled examples).
These heuristics would help ALP to locate examples that use other types of
algorithm (e.g. ”AES”).

3.2.4 Learning with Rejection and Novelty Detection

Researchers have proposed a framework for classification with a reject op-
tion [117, 193, 124]. This framework consists of two components: a tra-
ditional classifier and a rejection function. The goal is a machine learning
model that knows what it does not know. It is suggested that this frame-
work is useful for scenarios where incorrect predictions can be costly, such
as medical diagnosis [193]. Typically, approaches that incorporate learning
with rejection estimate the confidence of a prediction. If less confident about
a prediction, the model withholds its prediction.

Rejecting a classification and task of novelty detection are closely re-

24

Figure 3.7: Examples projected onto the input feature space. Given that
two features related to “DES” and “AES” have been identified, a novelty
detector detects if a test instance (shown with a question mark, “?”) uses
an algorithm it has not seen (e.g. “RSA”). This allows ALP to make the
right choice to reject the classification as it has no way to make the right
prediction.

lated [378]; a classification should be rejected if the object under classification
is an outlier [378], and novelty detection is the task of identifying that some
test example does not resemble the examples used during training. While
modern machine learning techniques learn from large amounts of data, it is
still possible that a large number of examples that exist in the real world are
not reflected within the dataset. Solutions to this problem learn a model of
“normal” examples seen during training, and use the model to detect “ab-
normal” examples during testing. One-class classification can be used to
approach this problem [166, 321], in which a model learns to differentiate the
“normal” class seen during training from all other examples [230].

In ALP, we use a classifier with a reject option, in which we use an
off-the-shelf novelty detector (later described in Section 3.3.7) as a measure
of the confidence of a prediction. If the novelty detector determines that
the example is novel, then it rejects the classification and does not make a
prediction. The novelty detector compares a test instance to its neighbours
to determine how isolated the instance is; the more isolated and further it is
from its neighborhood, the more novel it is.

In the example of Cipher, if ALP has only seen examples that allowed it
to mine some features for a small set of algorithms (e.g. getInstance("DES")

25

and getInstance("AES")), it will not be able to correctly judge the correct-
ness of a previously unseen algorithm. When faced with a test instance that
use a new algorithm, e.g. getInstance("RSA"), as shown in Figure 3.7 as
the question mark (“?”), the novelty detector allows ALP to detect that it is
a an out-of-distribution instance as it does not resemble any of the training
examples, all of which have one of the two subgraph features.

3.3 The ALP Approach

Figure 3.8: High-level overview of ALP. ALP’s objective is to classify API
usages. A user labels a small sample of usage examples, categorizing them as
misuses or correct uses. Discriminative subgraphs, which are indicative of ei-
ther correct uses or misuses, are identified from these labeled examples. ALP
may identify more samples of informative and representative code examples
for labeling. Based on the discriminative subgraphs, a given API usage can
be represented as a vector, and then input to a Machine Learning classifier
to determine if it is a misuse.

3.3.1 High-level Overview

In ALP, the API misuse detection task is reformulated as a graph classifica-
tion task. In this formulation of the problem, usage sites of an API (methods

26

using an API) can be classified as either a misuse or a correct usage. Sum-
marized in Figure 3.8, ALP relies on a human annotator to label a small
set of selected examples as correct and misuse examples. Next, it performs
discriminative subgraph mining while picking more examples for the human
annotator to label based on principles of Active Learning. Finally, a machine
learning classifier is trained together with a novelty detector.

We represent each method with a usage of the API as a graph, G. ALP
extends the API Usage Graph to represent source code (Section 3.3.3). Ex-
amples of API usage are mined from GitHub (Section 3.3.4) and these ex-
amples are transformed into graphs. In order to train and use a machine
learning classifier, each graph is represented as a feature vector, v. To this
end, we identify and use discriminative subgraphs features (Section 3.3.5).

The difficulty of addressing Challenge 1 using a supervised approach
is the need to minimize human effort while labeling examples that are less
common but informative. It is not possible for a human to label every pos-
sible usage pattern. ALP directs human attention to examples that differ
from already labeled examples to maximise the diversity of labeled exam-
ples, addressing Challenges 1 and 2. This is enabled by an active-learning
inspired approach (Section 3.3.6), in which ALP iteratively queries the hu-
man annotator for the labels of a small but informative batch of examples.

Finally, we perform classification using a machine learning classifier (Sec-
tion 3.3.7). We utilize reject option in classification [117, 193] for handling
usage instances with uncertain labels. This helps addresses Challenge 2
during testing time, detecting if the usage instance is too abnormal from
training usage examples. When faced with an abnormal example, ALP does
not consider it a misuse, but defers judgement. The classification module
outputs one of three labels, Rejection (signalling uncertainty), Misuse, or
Correct.

ALP represents programs using the API Usage Graphs (see Section 3.2.2).
This enables ALP to mine subgraph features that are complex, consisting of
multiple types of information (e.g. both constraints on parameter values and
control-flow can be included within a single pattern). To tackle Challenge
3, we address several limitations of the API Usage Graph by extending it to
include richer information about the program. In this work, we refer to our
extension as the EAUG (Extended API Usage Graph).

To sum up, ALP consists of the following components:

• Extensions to the API Usage Graph (Extended API Usage
Graph). This allows for the subgraph mining process to mine features
that are key to avoid false positives.

• A wrapper over GitHub’s search API. This is used to obtain usage

27

examples.

• A loop over the human annotating the examples, the discrim-
inative subgraph miner, and the selector of examples to label.
This is the only component requiring (potentially multiple iterations
of) human input.

• The graph classifier. Based on the features mined by the discrimi-
native subgraph miner, the classifier is tuned over the training dataset.
It outputs one of three labels (Correct, Misuse, and Unknown) for an
unlabelled instance during testing time.

3.3.2 Workflow of ALP

ALP is intended for use by an experienced user of a given API. We assume
that these users are knowledgeable about the use of the API, and can accu-
rately label the correctness of their usages with relatively low effort. ALP
enables a user to identify potential problems without writing a specification
by hand. Some studies have shown that manually written specifications may
introduce many false positives as they fail to account for all usage patterns
used by API clients [255]. Other studies also suggest that developers face
many challenges writing specifications [108, 358].

In this work, the first author studied the APIs carefully before labeling
the data. We envision that our work may be useful for an API developer
to locate all projects and locations where the API may be used incorrectly,
such as if a vulnerability related to the API has been reported, or if the API
developer plans to introduce a breaking change that may affect clients that
have used the API in a way not expected by the API developer [18] (e.g. due
to API workarounds [246]). There is often a knowledge gap between API
developers and API users [246, 343], and it is possible that users may use
an API in ways that violate undocumented usage constraints (i.e., misuses)
. For such cases, a modification to the API by the developer may break the
client projects [290, 155]. Considering the latter usage scenario (developer
introduces breaking changes), the following illustrates the benefit of ALP:

Without ALP, the API developer will have to search for all usages of
the API and manually inspect them to determine if it is a misuse. The API
developer may try to filter the usages, but ultimately will find it difficult to
perform a search that checks if a given constraint holds and to enumerate
over all the valid usage scenarios. The developer may also miss out uncom-
mon usage patterns. This leads to loss of time and increases the cost of
maintenance when the API developer wishes to introduce breaking changes.

28

With ALP, the API developer only has to label a small number of usage
examples, and ALP can classify the locations that are likely to be misuses,
acting as a filter for usages that the developer has to inspect. Moreover, once
ALP has been trained, it can be used again without any cost. The developer
only needs to inspect the few locations that ALP reports misuses in, and can
quickly reach out to the developers of the client projects. As a result, the
developer can save time and effort while detecting potential problems.

The workflow of using ALP is given as follows:

• First, the type of the API is given as input, then ALP randomly selects
a small number of examples for the user to label.

• Next, the first batch of inputs is input to ALP, which may query the
user for the labels to another batch of examples. This step is repeated
until the stopping criteria (e.g. a maximum of 5% of the dataset are
labelled, or if ALP has found enough discriminative subgraphs for 95%
of the dataset) is met. After this step, no further data is labeled.

• ALP uses the labeled examples as input to construct a machine learning
model of the API. Both the graph classifier and novelty detector are
trained in this step.

• After ALP has a trained model of the API, it can accept test instances
as input. Given a file with source code using an API, ALP converts
each method using the API into a vector. For each instance, the model
produces one of three labels, Correct, Misuses, or Unknown.

Within this study, we limit ourselves to look for misuses in MUBench
and AU500. To evaluate the generalizibility of the approach, we do not label
usage examples from projects that are present in MUBench and the AU500.
The usages in MUBench and AU500 are used only as test instances.

3.3.3 Extended API Usage Graph

To mine discriminative subgraphs, we represent an API usage as a graph, and
we propose extensions to the API Usage Graph (AUG). While the AUG can
represent many important aspects of an API usage, we find that it considers
only information of program elements directly related to the execution of the
program. We hypothesize that other elements in the source code, which may
not directly influence a program’s execution, may serve to inform developers
of their purpose and can act as indicators of the different contexts of an
API usage. Extending the AUG with these indicators may allow subgraphs
that are more discriminative to be mined. In this subsection, we motivate

29

the choices we make for extending the AUG using concrete examples from
GitHub.

1 void sendNck(String protocol, PrintWriter printWriter,

2 String result) {

3 printWriter.write(protocol + TOKEN_DIVISION +

4 result + "\r\n");

5 printWriter.flush();

6 }

7
8 void quit(String nickName, PrintWriter printWriter,

9 BufferedReader bufferReader, Socket socket) {

10 ... // removed irrelevant code

11 printWriter.close();

12 ... // removed irrelevant code

13 }

Figure 3.9: Simplified example usage of PrintWriter. The PrintWriter’s
use is spread across multiple methods.

Parameters and fields. The AUG does not distinguish between variables
that are instantiated locally in the scope of the current method, the fields
of the class, and the parameters of the current method. We suggest that
having the ability to distinguish between them will help to further distin-
guish between different usage contexts, including self-usages [60] where the
implementation of an API calls itself. In practice, developers may use fields
and parameters differently from local variables. Fields have a wider range of
usage compared to local variables; the usage of fields may extend beyond a
single method and may hold the result of partial computation, may be used
for synchronization, or for caching. Empirically, we found that the use of
some APIs are not self-contained within a single call site, e.g. many usages
of PrintWriter use it as a field in an enclosing class. While the correct use
of a PrintWriter requires close to be invoked at the end of its lifecycle, its
correct use may be spread across multiple methods of the enclosing class.
Hence, a misuse only occurs if a usage constraint of the enclosing class is,
itself, violated. Another frequently observed pattern (e.g. in Figure 3.9) is
that a PrintWriter is passed as an argument to the method, and it would
not be a misuse if the PrintWriter wasn’t closed as the client of the API
that passed in the PrintWriter should close it from the outside of the API.
On the other hand, had the PrintWriter been instantiated as a local vari-
able, then failing to invoke close on it will cause a resource leak. Note that
while the AUG has an edge type (described above as the param edge) to
indicate that a particular variable is passed as an argument in a method call,
the AUG does not indicate the parameters of the method represented by the
AUG.

30

Figure 3.10: When a field is used in a method, the initialization of the field
is linked to the method through an order edge.

In the EAUG, we indicate fields and parameters differently from local
variables, indicating this piece of information in the data node. Similar to
fields, method parameters may have implicit usage constraints on them and
may follow specific rules and patterns [455, 444].

Constructors and field initializations. We observe that constructors
and field initializations provide essential information to identify misuses. For
example, some fields are immutable (e.g. the name of a cryptographic algo-
rithm, such as “DES” and “AES”, as a string constant, and this information
is essential to identifying API misuses related to cryptography), such as the
example in Figure 3.11. Once assigned a value, they are never reassigned and
this value is critical in deciding if the use of an API is a misuse. To include
such information, we find statements from blocks of code containing the ini-
tialization of fields (e.g. constructors, field initialization, and initialization
blocks), linking them to the graph of methods that use these fields. As the
execution of the initializations and constructor must occur before the execu-
tion of other methods, they are joined by order edges in the graph, where
the initializations are ordered before the method invocations. An example is

31

1 // a constant with a choice of algorithm

2 private static String DES_CBC = "DES/CBC/PKCS7Padding";

3
4 byte[] process(

5 byte[] src, byte[] key, byte[] iv) {

6 ...

7 Cipher cipher = Cipher.getInstance(DES_CBC);

8 ...

9 }

Figure 3.11: Simplified example usage of a Cipher. The Cipher is initialized
using the value of a field.

shown in Figure 3.10.

Subtyping and inheritance. The self-usage of members of an API often
imply different usage constraints [61], for example, one source of false pos-
itives was related to self-usage, in which a class invokes its own API in its
own implementation [61] as API usage within its own implementation may
deviate from common usage patterns [61]. For example, a class implement-
ing the Iterator interface may internally call its next() method without a
check of the hasNext() method [60]. Usage constraints expected of clients,
e.g. guarding method calls or checking a return value, may not be necessary
for self-usages. Other studies also found that API clients may extend the
API through inheritance [454]. We try to detect this context by including
information about subtyping and inheritance in the Extended AUG (EAUG);
if a class implements a given interface, a correct usage of the API may resem-
ble other usages that implements the same interface. Thus, the EAUG can
model self-usages by generalizing it as a usage contextualized by a particular
interface.

We encode such information by including the superclass/interface as a
data node linked to the method entry. Concretely, this allows ALP to extract
this information as a subgraph of a single node during the discriminative
subgraph mining process. In the vector representation of the usage example,
it may not be directly useful on its own, but it may provide useful information
in conjunction with the other subgraph features for the classifier to make a
decision.

Comparison with AUG In Figure 3.12, we provide a visualization of the
EAUG of the example shown earlier in Figure 3.3, which is represented as an
AUG shown ealier in Figure 3.4. In the EAUG, the interface, ConcurrentMap,
implemented by the CopyOnWriteMap is captured in a node. Moreover, the
type of the variable is suffixed with “param:” if it was passed into the method
from the calling site as an argument. While this example does not use a field,

32

(a) Example of an Extended API Usage
Graph (b) Example of an API Usage Graph

Figure 3.12: Example of an Extended API Usage Graph, shown in (a). The
corresponding API Usage Graph, previously presented in Figure 3.4, of the
same program is shown in (b)

the type of a field would be similarly prefixed with “field:”. This allows ALP
to distinguish between fields, parameters, and locally instantiated variables.

3.3.4 Mining GitHub

To learn subgraph features, we first require a set of usage examples of a
given API. We take advantage of the numerous usage examples of an API
on GitHub. The examples from GitHub are later labeled by the human
annotator and this data is used as the training dataset.

We mine GitHub for usage examples by adapting a tool [71] that wraps
over GitHub’s search API. Types are resolved on a best-effort basis by down-
loading the latest version of the libraries whenever requiring third-party de-
pendencies. If type resolution fails, we discard the usage example.

As the majority of files on GitHub are clones [276], we perform a file-level
code clone de-duplication to avoid wasted effort and space storing redundant
information. We use a token-based algorithm similar to SourcererCC [356].
Much of SourcererCC focuses on scalability, which we did not need in our
work and we used only its code comparison algorithm. Next, methods using
the API are identified and a method-level de-duplication is used to further
trim the dataset. Hence, only unique methods will be labeled by a human
annotator.

To detect code clones, we use a token-based approach [356]. We con-
sider a block of code as a bag of tokens. The similarity measure, O (Bx, By),
between two code blocks, O(Bx, By), is computed based on the number of

33

tokens shared by the code blocks, it is given as follows:

O (Bx, By) = |Bx ∩By|
If O (Bx, By) is greater than 0.7, then we consider the code blocks as

clones. As earlier described, we perform code clone deduplication at the
method-level, and the human annotator does not waste any effort in labeling
a code clone of an earlier labeled method.

On average, we find that there are about 7 code clones (explained) for
a file containing an API usage. 37% of the files have at least one clone, and
the most frequently cloned file had over 1600 code clones. This is in line with
previous studies [276, 169], which found a large number of copy-and-pasted
code on GitHub.

3.3.5 Discriminative subgraph mining

Unlike typical machine learning applications, graphs cannot be immediately
encoded in a vector space, which is required to pass the graph as input to
a machine learning classifier. One method of encoding a graph in a vector
space is to run a subgraph mining algorithm and identify the best subgraph
features. The graph is represented as a vector indicating if these subgraphs
are contained in it. Then, we mine subgraphs that are discriminative, i.e.
occurring more frequently in graphs of one label than the other. Rather than
using frequent subgraphs, we posit that discriminative subgraphs are more
likely to better represent usage constraints.

In Figure 3.13, we illustrate the discriminative subgraph mining process
using the running example. Given some examples that have been labeled,
ALP mines subgraphs from them. Among the examples containing a null-
check following a get method call, there are significantly more examples that
are labeled by the human annotator as correct usages than incorrect usages.
Thus, the subgraph shown in Figure 3.14, common to the three examples in
Figure 3.13, is identified as a discriminative subgraph feature.

In this study, discriminative subgraphs are identified by two criteria. As
ALP enumerates through frequent subgraphs, a test of statistical significance
is performed to filter out insignificant subgraphs. At the end of the frequent
subgraph mining process, a second round of filtering is done using the CORK
criterion [379], which we use to remove subgraph features that do not con-
tribute to improving classification.

Enumerating frequent subgraphs Enumerating frequent subgraphs al-
lows us to skip the consideration of subgraphs with support below a thresh-
old, min sup. However, identifying frequent subgraphs is computationally

34

(a) Fragments of three examples using java.util.Map

(b) Parts of the three examples represented as EAUGs

Figure 3.13: Simplified examples of three usages of java.util.Map, shown
in (a), and parts of their EAUG representation, shown in (b)

35

Figure 3.14: Example discriminative subgraph mined from the examples in
Figure 3.13 after labeling. This discriminative subgraph represents a null-
check following get

costly due to the cost of checking for subgraph isomorphism, which deter-
mines if a graph contains a particular subgraph. This check is known to
be NP-complete. To enumerate frequent subgraphs quickly, we leverage the
frequent subgraph mining algorithm, gSpan [427], which is well-understood
and efficient.

gSpan takes a collection of graphs and min sup as input, identifying sub-
graphs with frequency abovemin sup as output. To efficiently enumerate the
frequent subgraphs, gSpan maps each subgraph to a canonical representation,
a minimum DFS code. Through a depth-first search, gSpan enumerates sub-
graphs in their DFS code order. The order of subgraphs visited can be viewed
as a traversal of a DFS code tree. When a subgraph with a non-minimum
DFS code is reached, it is directly pruned from the code tree. Using this
strategy, gSpan visits subgraphs in the canonical search space, without the
computationally expensive test for subgraph isomorphism. In this work, we
set min sup to a small value, 3. In practice, the threshold required for a sub-
graph to be discriminative predominantly depends on the Chi-Square test of
independence if the choice of the min sup parameter is small.

Testing for significance A frequent subgraph may occur commonly among
the usage examples of an API, but have no implication on the correctness
of the usage. For example, a frequent subgraph of java.util.Map may cap-
ture the common use of System.out.println (as shown in Figure 3.15), which
is unrelated to using java.util.Map, while another frequent subgraph cap-
tures the usage pattern of a null-check following get, a true usage constraint
(previously shown in Figure 3.14). Our objective is to filter away the sub-
graph shown in Figure 3.15, but keep the subgraph shown in Figure 3.14.
Therefore, when enumerating the frequent subgraphs, we perform a second

36

Figure 3.15: Simplified example of a frequent subgraph that is not discrim-
inative, representing usages printing to standard output. ALP enumerates
such subgraphs, but they fail to pass the checks used to identify discrimina-
tive subgraphs.

check that the frequent subgraph has some discriminative power. In the case
of java.util.Map, the subgraph that captures the null-check would be dis-
criminative, while the subgraph that encodes printing to System.out would
be filtered out.

Next, we try to find subgraphs that appear more frequently among one
label (C or M). To determine if a subgraph appears significantly more in
graphs of one label than the other, we compute the support of each subgraph.
We count four quantities. They are CH , the support (number of ‘hits’) of
the subgraph among examples labeled C, examples of correct usage, CM , the
number of graphs labeled C that does not contain the subgraph (‘misses’),
and MH and MM , similarly defined for the examples labeled M, the examples
of misuses. Then, we use a Chi-Square test of independence to determine if
the difference in the number of occurrences of a subgraph in the two set C and
M is more often than expected by chance, using a significance level of 0.05
as a threshold. The Chi-Square statistic measures the statistical significance
of a pattern, and is calculated as follows:

χ2 =
∑

i={C,M}

∑
j={H,M}

(
oij − eij

)2
eij

(3.1)

oij is the support observed of CH , CM , MH , and MM . eij is the expected
support, given the null hypothesis that the subgraph is not discriminative of
either label. Under the null hypothesis, the subgraph is expected to appear a
similar number of times in graphs of both labels. The Chi-Square statistic is,
therefore, a measure that the difference in the number of observations did not
occur by chance. For the null hypothesis to be rejected, the subgraph should

37

appear significantly more frequently in graphs of one label. The larger χ2

is, the more probable there is a relationship between the subgraph and the
label. Subgraphs that are not discriminative with respect to the two label
are filtered out.

CORK scoring criterion Finally, we use the CORK scoring criterion [379].
While the subgraphs remaining after the previous step are discriminative, the
subgraphs may not be independent and may frequently co-occur with one an-
other. The CORK criterion allows us to address this by discarding subgraphs
that do not contribute to better classification. CORK counts the number of
correspondences, which are pairs of misuse and correct examples that cannot
be disambiguated from each other given the selected set of features. A high
correspondence indicates that the selected features lack discriminative power
and more features should be selected. CORK is defined by the following
equation, where v is the example represented as a feature vector, and f is a
feature in the set of selected features, F . Given a pair of labeled examples
i and j, i and j correspond with each other if they have different labels but
their feature vectors, v, constructed based on the currently selected features,
are identical.

correspondence(i, j)⇔
(
v(i) ∈ C

)
∧
(
v(j) ∈M

)
∧ ∀f ∈ F

(
v
(i)
f = v

(j)
f

) (3.2)

Initially, F is empty. We iterate through the significant subgraphs in the
decreasing order of their coverage of the unlabeled dataset, considering one
subgraph at a time. A subgraph feature is added to F only if it improves
the CORK score (i.e. only if it contributes to disambiguating at least one
pair of misuse/correct example). After this step, we have obtained a set of
discriminative subgraphs which will be used to construct the feature vector
of a usage site.

Branch-and-prune Mining subgraphs is known to be computationally in-
tensive. For mining subgraphs in a shorter time, researchers have proposed
various methods to speed up the search. Such approaches may involve prun-
ing the search space. For example, gSpan employs a heuristic to prune
branches during the traversal of the code tree. Branches corresponding to
supergraphs are pruned if a subgraph has frequency below the minimum
support, min sup, as any supergraph has a lower frequency than its sub-
graph. Similar to existing subgraph mining algorithms [379], ALP’s extends
the branch-and-prune approach in the canonical search space to speed up
subgraph mining. As our focus is to identify subgraphs that occur more sig-
nificantly for one label, we compute the upper-bound of significance that a

38

supergraph can have in this particular branch. For any subgraph, the best
case is that one of CH or MH is maximized while the other is 0. Within the
code tree, as we traverse from a subgraph to its supergraph, a supergraph
feature is most informative when one of CH or MH reaches 0 while the other
(MH or CH) is maintained at its current value. As such, we compute the
best p-value (as given by the Chi-Square test) that a supergraph can achieve
on a traversal of a particular branch. If this score is insignificant, then we
prune this branch. This allows us to speed up the subgraph mining process.
In this study, we only consider subgraph patterns with size up to 6 edges to
keep running time reasonable. The size of subgraphs considered influences
the running time. There is an exponential increase in running time for every
increase in the number of edges we consider. Six was, therefore, selected as
this was the maximum size of subgraph that we could mine within one hour
from a dataset of over 2000 API usage examples. The size of the subgraph
affects the specificity of the features we mine; if we set the size to a greater
value, then it could mine larger patterns. However, the larger the pattern is,
the more likely it is specific to a few usage locations, while smaller patterns
are more likely to be found in more usage locations. Empirically, all the
mined subgraphs in our experiments had fewer than 6 edges.

3.3.6 Selection of examples to label

ALP involves a human-in-the-loop, using multiple rounds of labeling. It
initially queries for labels of several dozens randomly sampled unique meth-
ods. For the subsequent rounds of labelling, ALP applies principles of active
learning [240, 147, 199] to the selection of queries for labeling. Different from
typical scenarios that active learning is applied to [147], the choice of selected
examples to label and the identification of discriminative subgraphs features
are closely coupled. For a subgraph to be identified as a discriminative sub-
graph, it has to occur among the labeled usage examples enough times such
that it can be statistically more common in either the correct usage or misuse
examples. Therefore, a sufficient number of graphs that contain the subgraph
must be labeled. Otherwise this subgraph, regardless of how potentially dis-
criminative it can be (given a hypothetical fully-labeled dataset), cannot be
selected as a feature.

However, it is prohibitively expensive for us to label enough graphs to
have information about every subgraphs. As described earlier in Section 3.2,
performing active learning on graphs requires the selection of query graphs
in each round. These query graphs are the usage examples that the human
annotator will annotate in the coming round. Existing studies [240, 199]
suggest a good selection of query examples should be both informative and

39

representative. A query graph should not be similar to graphs already labeled
(i.e. informative), and it should be similar to other graphs that are unlabeled
(i.e. representative).

Informativeness Using these principles, we identify heuristics for picking
examples to label. To pick informative examples, we only select queries from
the graphs uncovered by the currently selected features. Thus, the query
graphs will be dissimilar from already-labeled graphs as they will not share
features. Due to the coupling between the choice of examples to label and
subgraph features, we propose that the informativeness of labeled examples
can be viewed through the informativeness of the subgraphs features they
contain. As such, we measure the informativeness of subgraphs using the
notion of coverage following the work of Wang et al. [401], but viewed through
the lens of graphs and subgraphs:

• Coverage: the proportion of total examples containing at least one
selected subgraph. Having a high coverage indicates that we can char-
acterize the space of the API usage using the selected subgraphs. The
more the coverage increases when a subgraph is selected, the more in-
formative the subgraph is.

In the example of labeling java.util.Map, if ALP has already seen
enough examples to know that a null-check following get is a common and
correct usage pattern, ALP focuses the labeler’s attention to examples that
do not contain a null-check following get.

Representativeness To prevent the selection of non-representative exam-
ples, i.e. outliers, we filter out subgraphs that appear in too few graphs.
These subgraphs can never be discriminative even if all graphs are labeled,
as the number of graphs they appear in is too small. The number of graphs,
min signif , required to be significant is pre-computed based on the Chi-
Square test of independence and the threshold of statistical significance (p-
value=0.05). We pick only query graphs containing the remaining subgraphs.
In other words, we only select graphs containing potentially discriminative
subgraphs, which are subgraphs that are contained in at least min signif
graphs. Consequently, graphs containing such subgraphs share at least one
feature with min signif − 1 other graphs, and are less likely to be outliers.

To pre-compute min signif , we simply enumerate possible values starting
from 1 and pass these values to the Chi-Square test, given the number of
occurrences of correct and incorrect uses among the currently labeled set of
examples. We pick the smallest value that satisfies the threshold of statistical
significance (0.05) and set min signif to this value.

40

String rule = inputSourceMap.get(ruleName);

...

InputSource is = new InputSource(

StreamUtil.stringTOInputStream(rule));

Figure 3.16: An example usage of java.util.Map that is not representative.
It uses project-specific code (StreamUtil.stringTOInputStream). ALP has
little to gain even if this example was labeled.

In the example of labeling java.util.Map, ALP should avoid wasting the
labeler’s attention on outliers, such as uncommon usages that are specific to
a given client project (e.g. the example shown in Figure 3.16). Knowing the
labels of the outliers would not help ALP to learn discriminative subgraph
features.

Constraint solving For each iteration, we view the selection problem as an
optimization problem where we pick unlabeled examples to optimize quality
metrics with respect to some constraints. The first constraint is that for each
potentially-informative subgraph, we only want to pick the minimal number
of graphs for the subgraph to be selected as a discriminative feature. The
second constraint is that, in each batch, we pick at most 0.5% of graphs to
label. Therefore, solving the optimization problem can be seen as the selec-
tion of a minimal number of graphs to maximize our knowledge of subgraphs
that cover many graphs.

We encode information about the graphs, subgraphs, and subgraph iso-
morphisms as a logic program. We pass the logic program as input to an
off-the-shelf logic program solver, Clingo [168], selected for its ease-of-use
and its strong performance against other systems [100]. The solution to the
optimization problem is the next set of examples to label. These graphs are
labeled and passed to the subgraph mining algorithm. This process is con-
tinued until one of two stopping criteria is satisfied: 1. more than 95% of
the training dataset has been covered by the identified subgraph features, or
2. we have labeled 5% of the dataset. As only 0.5% of graphs are labelled in
each batch, it may take up to 10 batches to satisfy the stopping criterion of
5% of the dataset being labeled. These values were picked arbitrarily. We as-
sumed that a limited number of examples were collected and 5% was chosen
as a sweet spot. Empirically, we collected an average of 2330 usage examples
per API, and on average, only about 1% of the examples were labeled.

In this logic program, we consider a set of predicates. First, we de-
fine graph(i) for all uncovered graphs in the dataset. Next, we define

41

subgraph(j) for all frequent subgraphs that were mined as an intermediate
product of the discriminative subgraph mining process. Note that these are
frequent subgraphs, and not discriminative subgraphs, as we are trying to
determine the next set of graphs to label. Therefore, these graphs do not
yet contain a subgraph that we have found to be discriminative. After this,
covers(i, j) is defined over graph(i) and subgraph(j), and it holds sub-
graph if j is present in the graph i. As earlier described, coverage gives
us the total number of graphs that have been covered; containing at least
one subgraph that may be discriminative. The output of executing the logic
program on Clingo is the answer set containing the query graphs, which are
the graphs that are selected. These are the usage examples that will be
labeled in the next iteration. Logically, we express the two desired proper-
ties of informativeness and representativeness by maximizing the coverage of
graphs, given a set of subgraphs that may be discriminative subgraphs.

1 % each graph can be selected only once

2 { selected(G) : graph(G) } <= 1 :- graph(G).

3
4 % a subgraph may_be_discriminative if n graphs are selected

5 % and contains the subgraph

6 may_be_discriminative(SG) :- #count {

7 G : selected(G), covers(G, SG), graph(G) } >= n,

8 subgraph(SG).

9
10 % s or less graphs are selected

11 :- { selected(G)} > s.

12
13 % a graph is covered if a subgraph that may_be_discriminative

14 % is contained in it

15 coverage(X) :- X = #count {G: covers(G,SG), graph(G),

16 may_be_discriminative(SG) }.

17
18 #maximize {X : coverage(X) }.

Figure 3.17: Expressing the constraints as a logic program, trying to find the
best selected graphs based on the subgraphs that may be discriminative.

We show the encoding of these properties in Figure 3.17. After the logic
program is executed, the output are the query graphs, which are the graphs
that are selected. Line 2 specifies a constraint that each graph can be
selected for labelling at most once. Lines 5-8 determine if a subgraph may

42

be discriminative given the currently selected graphs. A frequent subgraph
has to appear a statistically significant number of times (n in Figure 3.17)
among the labelled graphs for it to be considered a discriminative subgraph.
Therefore, if a subgraph appears in fewer labeled graphs than this threshold,
it cannot be discriminative. In this formulation, we consider that a subgraph
may be discriminative if it appears in at least n query graphs, where n is the
support required for a subgraph to be discriminative. Line 101denotes that
the total number of query graphs should not exceed s, set to be 0.5% of the
total number of graphs. This number is the number of instances that the
human annotator has to label in the next iteration. Lines 15 to 18 declares
that the choice of selected graphs should maximize the coverage. In short,
we find a small set of graphs such that labelling them may help to identify
the set of subgraphs that maximises coverage.

Observe that, at each iteration of selecting a batch of query examples, the
coverage can only increase as we only select graphs that were not previously
covered. This helps in identifying query graphs that are more informative
than if we had randomly selected examples. Next, the selection of query
graph targets only subgraphs that may be discriminative. This helps to
select only graphs that are representative.

We visualize this process in Figure 3.18, and to improve the intuition of
this process, we work backwards from our objective. Our objective is to max-
imise coverage of all unlabeled graphs. A graph is covered when a subgraph is
discriminative and is contained in this graph. A sub-objective is, then, to de-
termine the choice of discriminative subgraphs that can maximise coverage.
To determine if a graph is discriminative, ALP requires a statistically signifi-
cant number of graphs to be labeled. In Figure 3.18, to simplify our example,
we assume that only one graph is required to be labeled for a subgraph to be
discriminative. Then, in this simple example, three subgraphs will suffice to
cover 9 out of 10 examples. The next sub-objective is to select the graph for
labeling. One graph is selected for each potentially discriminative subgraph.
As there are three subgraphs, three graphs that contain these subgraphs are
selected. By labelling these three selected graphs, we will have information
about the subgraphs they contain, and these subgraphs cover most of the
examples.

3.3.7 Graph classification

The final part of ALP is the classification module which uses classification
with a reject option. Apart from (M)isuses and (C)orrect, we introduce
a third decision, reject, expressing uncertainty and inability to classify the
usage instance accurately. This module comprises of a machine learning clas-

43

Figure 3.18: Our objective is to maximise coverage (green dots on the right,
each dot represents a one usage example) while minimizing the number of
labeled examples (black dots on the left). In this example, by labeling 3
graphs, we gain enough information about the subgraphs that can collectively
cover 9 graphs.

44

API
Usage

Novelty
Detector

Reject

Classifier

C/M

Classification Module

Figure 3.19: ALP’s Classification Module. Given an input method, it either
signals that it cannot be classified (Reject), or classifies it as a misuse (M)
or correct use (C).

sifier and a novelty detector, as seen in Figure 3.19. To classify an API usage
instance, the input API usage is encoded into an EAUG, G, and subgraph
isomorphism tests are performed for each discriminative subgraph [180]. This
gives us the feature vector, v.

vi =

{
1 if Fi ⊑ G (i.e. Fi is a subgraph of G)
0 otherwise

(3.3)

v is a binary indicator vector, given in Equation 3.3. vi is set to 1 if the
graph contains the i-th discriminative subgraph feature, Fi.

To train the classification module, a grid-search is done on the training
data to identify the best-performing (in terms of F1) classifier in 5-fold cross
validation. As the dataset is imbalanced, we oversample instances of the mi-
nority class. SVM (with linear, RBF kernel), K-nearest neighbors and Bayes
Classifier (Naive and Complement [340]) are included in the grid search. Our
choice of classifiers exclude Deep Learning models as they need voluminous
data, but our dataset typically have only about 50 labels for each API. We
train one model per API.

Novelty detection The novelty detector allows the classification module to
identify that a code usage is abnormal and is unrepresented in the training
dataset. Novel usage patterns can appear during practical usage, and cannot
be characterized by the set of patterns identified from the training dataset.
As we train our classification model, the novelty detector is also tuned on
the training dataset. To perform novelty detection, we use the Local Outlier
Factor [94] algorithm. For each data point, the algorithm measures how
isolated is it with respect to its neighbors. The novelty detector can be

45

viewed as a binary classifier, categorizing an example as an outlier or not. If
it is an outlier, then ALP withholds its judgement. We use an off-the-shelf
implementation1 of this algorithm in this work.

This algorithm was selected for its effectiveness on data distributions
where the data forms clusters of different densities. We expect that API
usage examples follows this distribution. Due to alternate usage patterns,
we expect that majority of examples belong to a core-pattern cluster, with
smaller, loose clusters containing other examples using alternative patterns.
An advantage of this technique is that it provides an outlier factor, which is
a measure of how much of an outlier a point is, rather than just producing a
binary output. We train one model for each API.

3.4 Empirical Evaluation

3.4.1 Benchmarks

To evaluate the effectiveness of ALP, we run an empirical evaluation using two
benchmarks. MUBench was used to evaluate prior work [59, 60, 61], and the
AU500 dataset that was constructed from API usage instances in real-world
projects. The training dataset comprises usage examples of the API selected
by ALP from GitHub, To evaluate ALP on the benchmarks, we took care to
construct the training dataset such that API usage examples from projects
in the benchmarks were not labeled. Therefore, ALP takes advantage of data
from many projects from GitHub, but this dataset is separate from the testing
dataset. For each API, an average of 2330 usage examples (at the granularity
of a method) were collected from GitHub. Using the procedure described in
Section 3.3.6, we use an average of 23 labels for each iteration, and an average
of slightly over 2 iterations were required for each API. This quantity is fewer
than other studies that use active learning for tasks related to defect and fault
prediction [382, 278], as well as studies using active learning for inferring state
machine specifications [397], which may require the user to answer several
hundred queries.

We studied the same APIs as prior work [61], which are 57 APIs from
both the Java standard library as well as third party libraries. Through the
discriminative mining process, we mined about 6 discriminative subgraphs
per API. As the size of the vector passed to the machine learning classifier
is equal to the number of discriminative subgraphs, the average vector size
in our experiments is also 6.

1https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.

LocalOutlierFactor.html

46

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html

All experiments were run on a Ubuntu server with an Intel(R) Core(TM)
i7-9700K CPU @ 3.60GHz and 64GB of RAM.

MUBench. First, we perform the experiments using the API Mis-
use Detector benchmark, MUBench [59], that was used to systematically
evaluate the existing misuse detectors. These existing misuse detectors are
Tikanga [413], Jadet [414], DMMC [291], GrouMiner [303], MUDetect [61],
MUDetectXP (MUDetect on its cross-project setting, where it mines multiple
projects [61]). Tikanga, JADET, DMMC, GrouMiner, and MUDetect mine
patterns from the project with the misuse. Instead of only a single project,
MUDetectXP uses Boa [143] to search for examples on GitHub, mining API
usage patterns from multiple projects. We report the results that were previ-
ously reported by Amann et al. [61]. Similarly, we use examples from GitHub
to train ALP. While the existing approaches are unsupervised, ALP harnesses
the power of limited human supervision to boost its performance.

We follow the experimental setup from prior work [60] for computing Re-
call and Precision. For computing Recall, an experimental procedure known
as Experiment R was proposed. In Experiment R, the findings of the de-
tectors are inspected to count the number of known misuses reported. The
extended version of MUBench was used, containing 208 methods with a mis-
used API. Consisting of misuses identified in prior studies, MUBench allows
comparison between misuse detectors over these known misuses. This proce-
dure allows us to compare and contrast the misuses found by each detector.
We use ALP to train models of the APIs studied in Experiment R.

As studies [153, 239, 215] have shown that developers rarely use tools
producing many false positives, an experimental setting for computing Pre-
cision is provided by MUBench. In this experimental setup, Experiment P,
ten projects from the MUBench are selected and the misuse detectors are
run on these projects. We use the same projects as the previous studies:
Of these ten projects, five were used by Amann et al. [59] in the original
version of MUBench, while another five were included in the extended ver-
sion of MUBench [61]. These projects were selected as they were among the
projects where previously studied detectors could successfully run on, and at
most one detector did not report any findings [61].

To compute precision, the findings of the misuse detectors are investi-
gated manually. Because of the large volume of findings that are reported by
existing misuse detectors, only the top-20 findings of each detector on each
project are investigated, allowing us to compute Precision@20. This is the
same procedure used for evaluating Precision in previous studies [60, 59, 61].
This keeps the amount of effort required to investigate the findings reason-
able. ALP does not produce a ranking of findings. To allow for comparison
against the other detectors, we sample 20 reported misuses using the outlier

47

Table 3.1: Number of usage sites in our evaluation dataset, AU500

Category Project Commit Sites

GUI

Apache FOP 1942336d7 59
SwingX 820656c 16
JFreeChart 893f9b15 51
iTextPdf 2d5b6a212 71

Commons

Apache Lang 0820c4c89 34
Apache Math 1abe3c769 22
Apache Text 7d2b511 13
Apache BCEL 5cc4b163 3

Security

Apache Fortress a7ab0c01 6
Santuario 3832bd83 15
Apache Pdfbox 72249f6ff 17
Wildfly-Eytron a73bbba0f0 14

Database

JackRabbit da3fd4199 90
H2Database 0ea0365c2 84
Curator 2af84b9f 3
Apache BigTop c9cb18fb 3

Total 500

factors produced by the novelty detector, which may be interpreted as a de-
gree of confidence that ALP has in a particular finding. As the outlier factors
are not comparable between different APIs, we randomly sample (without
replacement) 20 misuses inversely weighted by its outlier factor; we are less
likely to sample a misuse if the misuse is likely to be an outlier.

MUBench [59] also provided an experiment setup for the Recall Upper
Bound. In this setting, perfect examples to mine patterns of, i.e. only correct
usage examples, are provided to the detectors for each misuse. However, this
is irrelevant to ALP and MUDetectXP [61], as they mine GitHub for usage
examples.

AU500.
To gain a different perspective of the overall effectiveness of ALP, we con-

struct a new dataset. To avoid bias from focusing on the misuses collated in
MUBench, which were previously identified by existing misuse detectors, we
sample 500 API usage instances randomly from 16 open-source Java projects,
which are clients of the APIs we study. We use the same client projects
as those investigated by Wen et al. [416] These projects were identified as
projects that were from diverse domains, categorized based on their official
definition and GitHub topics [416] . Wen et al. [416] studied the APIs in

48

Table 3.2: Breakdown of correct and misuses in AU500

Project # Misuses # Correct usage

Apache FOP [7] 18 42
SwingX [40] 3 15
JFreeChart [25] 10 42
iTextPdf [23] 13 56

Apache Lang [3] 4 30
Apache Math [4] 3 16
Apache Text [5] 1 12
Apache BCEL [11] 1 2

Apache Fortress [8] 0 6
Santuario [31] 2 13
Apache Pdfbox [9] 6 11
Wildfly-Eytron [43] 4 10

JackRabbit [24] 5 85
H2Database [16] 43 41
Curator [6] 0 3
Apache BigTop [2] 2 1

Total 115 385

MUBench, as well as popular APIs discussed on StackOverflow [449]. How-
ever, in this work, we look only for uses of the APIs studied by Amann et
al. [61], as we use MUDetectXP as our baseline. The details of the projects
that are given in Table 3.1. We use exactly the same projects studied by
Wen et al. [416], identifying the right commits based on the dates that the
projects were accessed by Wen et al. [416]. Each usage instance of an API
was labeled by human annotators as either a correct use or a misuse. The
dataset and labeling guideline are available on the artifact website.

As we randomly sampled usages from the clients projects, the distribution
of API usages in the AU500 reflects the actual distribution of 9972 API usage
locations in the client projects. A further breakdown of the API usages into
misuses and correct usages is given in Table 3.2.

We had 4 annotators label the dataset. Only one of the annotators is an
author of the paper reporting this study. One of the annotators has a working
experience of over 10 years in industry and all the annotators have at least
one year of experience. Each usage instance was independently labeled by at
least 2 annotators. When there were disagreements, consensus was reached
through a discussion between the annotators.

A typical annotator took about 4 minutes to annotate each usage instance,

49

Table 3.3: The number of misuses with a particular violation type, based on
the MUC, in the AU500

Violation Type # violations
Missing Method Call 51
Missing Condition 62

null check 21
value or state 41

Missing Exception Handling 2

but first spent up to 32 minutes to understand the labeling guideline and the
APIs through reading its Javadoc, related StackOverflow posts, and examples
of misuses. Similar to previous studies on API misuses, we consider usages
at the granularity of a method. When considering a usage example, an
annotator was expected to look at the rest of the source code in the same
file. The usage example is presented in its original source code with code
comments intact. We instructed the annotators to use the projects’ Javadoc
documentation and code comments of other files in the project when required.
If a class or method from a third-party library is used, then the annotators
were instructed to use the documentation of the third-party library.

For inter-annotator agreement, we computed Fleiss’ Kappa [154] of 0.49,
which is interpreted as Moderate Agreement. Disagreements were caused by
differences in opinion about other mistakes in the same function and if they
should be considered as a violation of the API’s usage constraint. Another
source of disagreement was over the enclosing class’ undocumented invariants
and usage constraints.

Next, we used the API-Misuse Classification (MUC), developed by Amann
et al. [60] to label each misuse with the type of violation. The MUC allows
for the comparison of different API misuse detectors in terms of the types
of violation they can detect. the MUC distinguishes between misuses with
missing or redundant program elements. The breakdown of violation types
in the AU500 is given in Table 3.3. Compared to MUBench, the AU500
has 4 categories of violation types related to missing API usage elements,
while MUBench has 7 categories of missing API usage elements. In the
AU500, there are no violations with redundant program elements, which are
the minority of misuses in MUBench. However, similar to MUBench, the
vast majority of misuses in the AU500 are related to missing method calls or
condition checks. While MUBench had a single instance for misuses related
to missing or additional synchronization, context, iteration, the AU500 does
not have any misuses related to them. In the construction of the AU500, we

50

selected the same APIs as the APIs studied in MUBench. However, while
MUBench largely consists of misuses identified in prior studies, the instances
in the AU500 were randomly sampled from 16 projects. Therefore, the dis-
tribution of misuses in the AU500 are representative of the distribution of
misuses in the 16 projects.

Compared to the projects evaluated in MUBench’s Experiment P, AU500
share 3 projects (IText, JFreeChart, Apache Math), but different versions
(as identified by their commits) of each project were used in the AU500 and
MUBench.

For the AU500, we compute Recall, Precision and F-measure by running
the misuse detectors on all the projects, and retain only the reported misuses
among the 500 annotated instances. As every test instance was annotated, we
can compute Precision instead of computing Precision@20 as we have done
for MUBench. Precision can be computed similarly to its use in machine
learning literature, in which it is the proportion of true misuses among the
reported misuses in the 500 labeled instances. True positives is the size of the
intersection of the reported misuses and the instances labeled as a misuse.
False positives is the size of the intersection of the reported misuses and
the instances labeled as a correct usage. False negatives is the size of the
intersection of the reported correct usages and the instances labeled as a
misuse.

Precision = TP
FP+FP

Recall = TP
FP+FN

Finally, the F1 is the harmonic mean of Precision and Recall:

F1 = 2× Precision ×Recall
Precision+Recall

To obtain the results for MUDetectXP, we run MUDetectXP on the 16
projects, but we do not retrain it on new data as it already had models for
the APIs we study. Both ALP and MUDetectXP learn their models from
data obtained from GitHub.

3.4.2 Research Questions

Our evaluation aims to answer these research questions:

RQ1. Is ALP able to detect misuses previously detected by existing
tools?

This research question concerns the ability of ALP to detect misuses
found by existing misuse detectors. We compare ALP against existing misuse
detectors on MUBench.

51

RQ2. Does ALP find more misuses compared to existing ap-
proaches?

The objective of this research question is to evaluate the effectiveness
of ALP. Rather than focusing on the misuses found in previous studies, we
evaluate ALP on the AU500, constructed from API usage instances in real-
world projects.

RQ3. What is the effect of having a reject option and EAUG in
ALP?

In this research question, our objective is to have an ablation study, where
we determine if the reject option and our extensions to the AUG are extrane-
ous. To minimize false positives, ALP leverages a novelty detector to reject
classifying test usage instances that are dissimilar to training examples. Also,
to incorporate more signals beyond program elements used in the execution
of a program, ALP used an extended version of the AUG that captures more
information. Using the same metrics, we compare the performance of ALP
with and without the two components on the AU500 dataset.

RQ4. What is the effect of using a different training dataset?
ALP was trained with usage examples of APIs mined from GitHub. In

machine learning-based approaches, the quality of data used for training is
known to affect effectiveness. Therefore, in our last research question, we in-
vestigate the change in performance of ALP when a different training dataset
is used. We observe and compare the change in performance metrics when
ALP is trained on the same dataset used by MUDetectXP [61]. This train-
ing data was constructed through the 2015 GitHub dataset from BOA [143],
containing up to 1,000 usage examples for each API.

3.4.3 Experimental Results

RQ1. Performance of ALP on MUBench.
Table 3.4 and 3.5 summarize the results of our evaluation on MUBench.

During our manual inspection of the results, we find that one of the misuses
in MUBench, identified by MUDetect in prior work, was, in fact, a false
positive. This case, identified as a misuse of java.util.Map, is actually
a usage of Multimap2. Unlike Map, Multimap does not return null, and
instead returns an empty collection when get(key) is invoked with a key not
contained in the map. As its usage in this case is not a misuse, we removed
this case from our evaluation. Another misuse site was in a project that was
no longer publicly accessible, and as such, we also removed this case from our

2https://guava.dev/releases/23.0/api/docs/com/google/common/collect/

Multimap.html#get-K-

52

https://guava.dev/releases/23.0/api/docs/com/google/common/collect/Multimap.html##get-K-
https://guava.dev/releases/23.0/api/docs/com/google/common/collect/Multimap.html##get-K-

Table 3.4: Statistics of running MUBench’s Experiment P. Other than ALP,
the results of the detectors were taken from prior work [61].

Detector Experiment P
findings # true misuses Prec. @ 20

Tikanga 85 7 8.2%
JADET 91 8 8.8%
DMMC 161 12 7.5%
GrouMiner 156 4 2.6%
MUDetect 146 32 21.9%
MUDetectXP 91 31 34.1%
ALP 164 72 43.9%

Table 3.5: Statistics of running MUBench’s Experiment R. # unique is the
number of misuses found only by one detector. Other than ALP, the results
of the detectors were taken from prior work [61].

Detector Misuses in Experiment R
found # unique Recall

Tikanga 13 0 6.3%
JADET 7 1 3.4%
DMMC 21 4 10.1%
GrouMiner 5 0 2.4%
MUDetect 42 4 20.2%
MUDetectXP 90 6 43.3%
ALP 117 35 56.3%

evaluation. Without using examples from GitHub, MUDetect outperforms
the other existing tools in both precision and recall, and by using examples
from GitHub, MUDetectXP improves substantially over MUDetect and is
the strongest baseline.

For Precision@20, following the procedure described in MUBench [60],
we3 manually inspected the top 20 cases found by ALP on each project, and
finished with a precision of 43.9%. We computed Cohen’s Kappa to measure
the agreement between the two annotators and obtained a Kappa value of
0.75 – usually interpreted as substantial agreement [248, 368]. According to
Landis and Koch [248], a Kappa value between 0.40 to 0.6 corresponds to
moderate agreement, while 0.6 to 0.8 is substantial agreement, and a value

3Two annotators, including a non-author of the paper that reported this research work
who was not informed about the purpose of the labels

53

above 0.8 is almost perfect agreement. In total, ALP reports 164 violations in
the top-20 findings in the ten projects, identifying 72 true misuses. Compared
to existing detectors, ALP outperforms the baseline detectors in terms of
Precision, with the strongest baseline, MUDetectXP, achieving a precision of
34.1%. Table 3.4 summarizes Experiment P’s results.

For Recall, ALP identifies 117 misuses out of the 208 misuse (56.3%) in
MUBench. In contrast, MUDetectXP identifies 90 cases out of 208 misuses
(43.3%). Thus, ALP improves over the state-of-the-art by 13%.

The results of Experiment R are summarized in Table 3.5. From the
results, there are 35 misuses that only ALP can find, and there are just 15
misuses that the existing detectors can find that ALP is unable to. This
shows that ALP is capable of detecting misuses that none of the existing
misuse detectors can detect.

Next, we construct a composite baseline detector built from all baselines.
This detector reports a misuse at a particular location as long as a single
baseline detector reports a misuse. This composite detector would correctly
report 111 misuses, and have a resulting Recall of 53.4%, which is still fewer
than the 117 misuses and recall of 56.3% ALP detects. Comparing the com-
posite detector and ALP, there are 15 misuses found only by the composite
detector, while there are 35 misuses found only by ALP. This indicates that
ALP is complementary to prior techniques.

Compared to MUDetectXP, ALP was able to mine more usage constraints
with fewer spurious patterns. Together with the extensions to the AUG, ALP
was able to mitigate the effect of self-usages (where the internal implemen-
tation of an API calls itself) without the need for handcrafted heuristics.
We will provide a further discussion of the differences between ALP and
MUDetectXP in Section 3.5.1.

We investigated the true misuses that ALP did not find. For misuses
related to some APIs, we find that there are too few examples on GitHub to
learn any meaningful patterns. Neither ALP nor MUDetectXP was able to
detect misuses related to these APIs as both correct and incorrect usages of
these APIs are too rare. These APIs include:

• org.apache.jackrabbit.core.config.ConfigurationParser,

• org.apache.commons.lang.text.StrBuilder,

• org.apache.commons.httpclient.auth.AuthState.

We did not observe any trend regarding the misuses that ALP could detect
in the AU500 dataset based on the categories of misuses in the API-Misuse
Classification (MUC) [60] framework, which categorizes misuses based on the

54

Table 3.6: Experimental results on the AU500 dataset

Detector Prec. Recall F1
ALP 44.7% 54.8% 49.2%

ALP (w/o reject option) 36.0% 62.6% 45.7%
ALP (w/o EAUG) 19.0% 45.2% 26.7%

MUDetectXP 27.6% 29.6% 28.6%

type of violation (e.g. missing null-check). ALP was able to detect misuses
in the AU500 belonging to every category of the MUC. Consistently, the
remaining misuses that were undetected by ALP are spread across various
categories.

RQ2. Performance of ALP on the AU500. Next, we compare
the evaluation metrics of the best-performing baseline, MUDetectXP [61],
against ALP on the AU500. As MUDetectXP was shown to outperform the
other existing baseline detectors, we focus on it.

Table 3.6 shows the evaluation metrics of ALP and MUDetectXP on our
evaluation dataset. Of the 500 usage instances to classify, ALP reports 141 of
them to be misuses, identifying 63 true misuses correctly, while MUDetectXP
reports misuses for 123 of them, identifying 34 true misuses correctly. ALP
finds 29 more misuses than MUDetect. In total, there are 115 true misuses
among the 500 usage sites. Therefore, ALP has a recall of 54.8% while
MUDetectXP has a recall of 29.6% (a difference of 25.2%). ALP has a
precision of 44.7% while MUDetect has a precision of 27.6% (a difference of
17.1%). Overall, ALP achieves an F1 of 49.2%, a substantial improvement
(of 20.6%) over MUDetectXP, which achieves an F1 of 28.6%.

Among the true misuses detected by either tool, ALP managed to find 36
misuses that MUDetectXP did not identify, while MUDetectXP identified 7
misuses that ALP did not detect. There are 27 misuses that both MUDe-
tectXP and ALP identified. These numbers indicate that if combined, ALP
and MUDetectXP will detect 70 of the 115 true misuses (a recall of 60.9%).
This represents an increase in Recall of about 6% compared to the use of
ALP alone, and it suggests that ALP is complementary to MUDetectXP.
Overall, ALP outperforms the state-of-the-art approach, MUDetectXP, but
a developer trying to detect as many misuses as possible, regardless of the
amount of developer effort needed, should use both tools together.

RQ3. Effect of reject option and EAUG on ALP
The first two rows of Table 3.6 shows the performance of ALP with and

55

without the reject option. Without the reject option, ALP reports 59 more
instances are buggy (among the 500 annotated usage instances), however, its
precision is lowered by 8.7%. Among the 59 more findings, only 9 of them
were true misuses (or about 15.3%). This indicates that the novelty detector
was helpful in withholding inaccurate decisions. ALP’s recall increases by
about 7.8% without the reject option, but overall, it attains a reduced F1 of
45.7% compared to 49.2%.

On MUBench Experiment R, ALP finds 1 more misuse when the reject
option is removed. Without the use of the novelty detector, we have no
means to rank the misuses reported by ALP. Therefore, we are unable to
compare the change in performance in Precision@20, which requires the top
20 misuses for each project. Instead, we run ALP with and without the
reject option, and we report the total number of misuses reported among the
projects. Without the reject option, ALP reports 543 misuses in total, while
with the reject option, it reports 440 misuses in total. Thus, by removing the
reject option, ALP would report 23% more usage locations. We sampled 30
of the 103 rejected misuses, and found that just 3 of them were true positives.
Therefore, we see that the reject option helps to mitigate Challenge 2, and
overall, improves F1.

Next, we evaluate ALP with and without the extensions made to the
AUG. The third row of Table 3.6 shows the performance of ALP without the
EAUG, i.e., using only the original AUG. We found that the performance of
ALP dropped substantially without the EAUG, with a reduction in precision
of over 20% on the AU500. On MUBench’s Experiment R, the Recall of
ALP dropped to 24.5%, a decline of 30%. We observed that the decrease in
effectiveness was caused primarily by reporting many false positives related to
ResultSet, which implements the Closeable interface. Without the EAUG
distinguishing between parameters and local variables, ALP would report
that any usage of the ResultSet without a corresponding close method call
as a misuse, even if the ResultSet was passed in as an argument or was a
field. Therefore, we conclude that capturing this information, as done in the
EAUG, is important for distinguishing between correct and incorrect usages
of some APIs.

RQ4. Effect of using a different training dataset
In our final research question, we compare the performance of ALP when

using the same training data as MUDetectXP [61]. Referring to the dataset
used by MUDetectXP as the GitHub 2015 dataset, Table 3.7 summarizes
the differences in performance metrics. On both MUBench and the AU500,
overall performance declined when the GitHub 2015 dataset was used. On
MUBench, both Precision@20 and Recall drops from 43.9% to 36.3% and
from 56.3% to 47.6%. On the AU500, Precision drops from 44.7% to 28.2%.

56

Table 3.7: Summary of differences in performance metrics when ALP is
trained with the same dataset (GitHub 2015) as MUDetectXP

Detector MUBench AU500
Prec.@20 Recall Prec. Recall F1

ALP (original data) 43.9% 56.3% 44.7% 54.8% 49.2%
ALP (GitHub 2015) 36.3% 47.6% 28.2% 58.3% 38.0%

MUDetectXP 34.1% 43.3% 27.6% 29.6% 28.6%

While Recall increased from 54.8% to 58.3%, the overall performance, in
terms of F1, dropped from 49.2% to 38.0%.

Compared to MUDetectXP, all performance metrics of ALP remained
higher. In particular, the F1 of ALP is almost 10% higher than the F1
of MUDetectXP on the AU500. The results suggest that ALP improves
over MUDetectXP even when using the same training dataset, validating
our findings and design decisions, even though the choice of training dataset
influences overall effectiveness.

Overall, the experimental results suggest that the effectiveness of ALP
depends heavily on having a training dataset that is sufficiently large. This
supports the intuition that ALP leverages the diversity in the training dataset
to mine discriminative subgraphs and construct an accurate classifier. Quali-
tatively, we observed that the smaller dataset had the consequence of having
lower diversity among the usage examples used for training. This hindered
the identification of discriminative subgraphs for many APIs. For some APIs,
there were extremely few examples of incorrect usage in the smaller dataset,
preventing ALP from learning a model of that API.

3.5 Discussion

3.5.1 Qualitative Analysis

So far, we have shown a quantitative evaluation of ALP. Next, we perform a
qualitative evaluation of ALP. In this section, we look into the features that
were identified by ALP and MUDetectXP. We also discuss cases of misuses
of the most common APIs, which provide insights as to why ALP was able
to detect some misuses that MUDetectXP missed, as well as some cases that
ALP failed to detect a misuse.

Developers may implement a class that extends Enumeration. In their
implementation of the nextElement method, the obligation to check for has-

57

MoreElements falls on the client of the new class. Take, for example, the
code snippet from a real GitHub project given in Figure 3.20. Reporting
new FileInputStream(fileNames.nextElement()) as a misuse of nextElement
results in a false positive. ALP correctly identifies that the information about
implementing the Enumeration interface is an important feature for detect-
ing misuses of nextElement. This is possible as ALP includes subtyping in its
model of source code, the EAUG. Therefore, ALP is able to correctly detect
that this usage is a correct usage, avoiding a false positive. On the other
hand, existing misuse detectors are incapable of encoding any pattern that
captures such information, showing the difficulty of Challenge 3, which
motivates an expressive representation of programs.

class MyInputStreamEnumerator implements

Enumeration<FileInputStream> {

private Enumeration<String> fileNames;

public MyInputStreamEnumerator(

Enumeration<String> fileNames) {

this.fileNames = fileNames;

}

@Override public boolean hasMoreElements() {

return fileNames.hasMoreElements();

}

@Override public FileInputStream nextElement() {

FileInputStream ret = null;

try {

ret = new FileInputStream(

fileNames.nextElement());

} catch(FileNotFoundException ex) {

ex.printStackTrace();

}

return ret;

}

}

Figure 3.20: A client of nextElement. A salient feature recognised by ALP is
that the class implements Enumeration, highlighted in red, which helps ALP
to correctly judge that this is not a misuse without the need for handcrafted
heuristics.

Next, we investigate the patterns mined by ALP and MUDetectXP as
both MUDetectXP and ALP produce subgraph patterns as a by-product.
As each usage instance was compared against the mined patterns, having
many patterns that are unrelated to the API usage will lead to lower ef-
fectiveness. We analyze these subgraph patterns for java.util.Map. As
mentioned previously, we focus on Map due to its prevalence in virtually all
Java projects.

The results are given in Table 3.8. While MUDetectXP did not detect

58

Figure 3.21: A spurious usage pattern mined by MUDetect. While fetching
an object from a map and putting it into another is frequent, its violation
leads to no consequences.

Table 3.8: Patterns discovered by MUDetectXP and ALP

Detector total patterns # unrelated
MUDetectXP 81 72

ALP 35 9

any misuse of java.util.Map in MUBench, MUDetectXP mines 81 patterns
related to it. Of these patterns, 72 (88%) do not relate any of the program
elements (e.g. method invocations, parameter values) of Map, and instead
are spurious patterns (e.g. related to printing data to standard output) that
occur frequently with Map in the dataset. These patterns can never identify
a misuse of Map, only producing false positives. The remaining patterns
are related to Map, but do not represent usage constraints. For example,
the pattern in Figure 3.21 was identified by MUDetectXP and led to several
false positives. While this pattern frequently appeared, it is not a usage
constraint; when violated, there are no consequences. This demonstrates that
MUDetectXP faces Challenge 1 and 2; it is difficult to automatically and
reliably determine the correctness of a pattern, and when given a violation
of a pattern, it is difficult to determine if the violation really is a misuse.

ALP mines 35 patterns of java.util.Map. Of these patterns, just 9
(25%) of them are patterns that do not show any relationship between pro-
gram elements of Map. The patterns mined for each API are available on
the artifact website. This suggests that ALP addresses Challenge 1

59

and 2; it reduces the number of spurious patterns that are mined,
and largely picks up subgraphs that are more likely to affect the
correctness of the API usage.

One reason that ALP detects some misuses that are missed by MUDe-
tectXP is that MUDetectXP failed to mine the usage constraint using its
subgraph mining algorithm. For example, MUDetectXP is not able to de-
tect misuses related to java.util.List, which was often misused in cases
when its size was not checked before invoking get(index) on it. We hypothe-
size that this limitation is caused by the different ways that the size can be
checked before invoking get(index), for example, within a for-loop or check-
ing for isEmpty before invoking get(0), as well as the possibility of having
arbitrary amounts of code in between the check on the size and the invo-
cation to get(index). On the other hand, ALP is able to represent
a usage using multiple disjoint subgraphs, and the use of human
labels allows it to filter out subgraphs that are incidentally mined
from the arbitrary code in between the relevant code.

We also inspected some cases that ALP did not successfully detect. Be-
cause ALP makes a decision based on subgraphs which are disjoint from one
another, it may fail to detect a misuse when a single method contains multi-
ple instances of the object. For instance, if there are multiple uses of an API
in a method, it cannot detect cases where the first object is correctly used,
but the second object is not. The first correct usage masks the incorrect
second usage. In contrast, MUDetectXP is able to detect that the second
usage violates a usage constraint.

In Section 3.4.3, we observed that ALP was less effective when using
the smaller and, as a result, less diverse dataset. This is related to another
limitation of ALP, in which it cannot identify patterns which occur extremely
rarely. Both correct and incorrect usage patterns that are rare cannot be
identified as discriminative subgraphs as ALP will consider them outliers.
MUDetectXP shares a similar limitation. If it fails to identify any patterns
from a limited set of examples, then it cannot detect any misuses. However,
unlike ALP, MUDetectXP only requires examples of correct usages.

Ultimately, while ALP outperforms MUDetectXP quantitatively, both
tools are complementary, outperforming the other under different circum-
stances. Fundamentally, both approaches rely on different strategies, having
strengths and limitations that are different from each other. As mentioned
previously in Section 3.4.3 (RQ2), and they should be used together if the
goal is to detect as many misuses as possible.

To conclude, our takeaways from the qualitative evaluation are as follows:

• ALP’s extensions to the API Usage Graph allowed it to correctly detect

60

self-usages (calling another method from within the same interface)
without the need for handcrafted heuristics.

• ALP has some success in addressing the challenges we described at the
start of this section. It identifies usage constraints while minimizing
the number of irrelevant patterns mined.

• By representing each graph using a vector of disjoint subgraphs, ALP
avoids some difficulties faced by prior studies.

• ALP and MUDetectXP may outperform each other under different cir-
cumstances and have different limitations, and to detect as many mis-
uses as possible, both tools should be considered.

3.5.2 Threats to Validity

To mitigate threats to internal validity, we double checked our source code
and data, however, errors may remain. Whenever possible, we reused exist-
ing, off-the-shelf implementations of algorithms to reduce the risk of imple-
mentation mistakes. We also make our source code publicly available on the
artifact website. Another threat is bias in our dataset. To mitigate this bias,
each instance is labeled by at least one annotator with industry experience.

For minimizing threats to construct validity, we reused the same bench-
mark and evaluation metrics as previous studies. For the AU500 dataset, as
we have a complete set of labels, we reuse evaluation metrics that are more
commonly used for various classification problems in other domains.

The projects used by ALP differ from those used by MUDetectXP, how-
ever, both sets of projects were obtained from GitHub. Since the projects
were sampled from GitHub, we do not expect substantial differences be-
tween the projects used. However, we note that ALP downloaded a larger
corpus of usage examples (about 2000 examples of API usage examples com-
pared to only 1000 for MUDetectXP). When we modified the source code
for MUDetectXP to mine patterns from up to 2000 examples, we found that
MUDetectXP faces scalability issues. Running on a machine with 64GB of
RAM, MUDetectXP exhausts all the available memory while mining pat-
terns. Therefore, we are unable to complete the experiments without chang-
ing the subgraph mining process used by MUDetectXP, which would fun-
damentally change how MUDetectXP identifies patterns. Furthermore, in
RQ4 (see Section 3.4.3), we have investigated the performance of ALP when
using the same dataset as MUDetextXP and found that ALP still outper-
formed MUDetectXP on both MUBench and the AU500 dataset. Funda-
mentally, ALP mines only discriminative patterns considering informative

61

usage examples, while MUDetectXP mines all frequent patterns considering
all examples.

To mitigate threats to external validity, we have used two benchmarks to
increase the spread of API usage examples considered. A threat is that our
findings may not apply to APIs that were not studied. However, we study
the same APIs as prior work, and both the APIs and projects studied are
from diverse domains.

3.6 Related Work

Dynamic analysis Researchers have proposed the use of runtime verifica-
tion to detect violations of API specifications [214], these specifications can
be both automatically mined [331] or written by hand. However, Legunsen
et al. [255] have shown that both manually written specifications and auto-
matically mined specifications have high false positive rates. This suggests
the need for more tooling in mining and writing API specifications. Their
analysis revealed that the manually written JavaMOP specifications did not
sufficiently encode valid alternative usages. ALP is complementary to these
approaches; ALP can help to discover salient patterns for writing specifica-
tions. Some patterns may not be obvious and ALP may assist specification
writers in discovering unusual usage patterns.

Catcher [229] uses search-based testing to detect API misuses. Focusing
on the API of the Java standard library, it generates test cases directed at
code using the API of interest to find a test case triggering an exception from
the API. MUTAPI [416] is an approach using mutation testing for discovering
API misuse patterns. MUTAPI mutates correct usage of an API within client
projects. In contrast to our work and other API misuse detectors, MUTAPI
is focused on misuse pattern discovery. Its precision was not evaluated on
MUBench. While the misuse patterns found by MUTAPI achieved a recall
of 49% on the original version of MUBench [59] (with about 50 misuses), our
work achieves a recall of about 56% on the extended version of MUBench [60,
61] (with 208 misuse locations). Both Catcher and MUTAPI are limited to
misuses which cause exceptions to be thrown, while our approach can detect
misuses with other consequences, such as resource leaks. We do not directly
compare the performance of ALP and MUTAPI as MUTAPI relies on the
execution of a test suite to detect misuses while ALP relies on static analysis
to detect misuses. MUTAPI can work only on projects with an available test
suite, while ALP is able to detect misuses in projects without test suites or
with test suites with limited coverage. Existing research has also shown that

62

many projects have poor code coverage and that developers do not always
write test cases[237, 235].

Other work on API There are other research efforts on other ways to assist
development using APIs. Researchers have worked on better search for API
usage examples [175, 176, 401], recommendation of APIs [300, 302, 157], gen-
erating or improving documentation [445, 131], studying API usage in Stack-
Overflow answers [449, 339], and finding API workarounds [246]. Lamothe
et al. [246] showed that developers may intentionally use APIs in ways that
are not officially supported by the API developers; these workarounds may
be viewed as alternative usage patterns.

3.7 Summary

We propose ALP, which represents programs as graphs and classifies them to
detect API misuses. ALP is a human-in-the-loop technique that identifies
examples for mining discriminative subgraphs. Through the principles of
active learning, a small but informative number of examples are identified
and labeled. These examples are used to train a classifier with a reject option,
which reserves judgement when encountering programs that it is uncertain
about. On both MUBench and our newly constructed AU500 dataset, ALP
substantially outperforms existing approaches and the state-of-the-art tool,
MUDetectXP.

63

Chapter 4

(Static Analysis + API)
Detecting False Alarms from
Automatic Static Analysis
Tools

4.1 Overview

It has been 15 years since Findbugs [75] was introduced to detect bugs in Java
programs. Along with other automatic static analysis tools (ASATs) [350,
353, 137], FindBugs aims to detect incorrect code by matching code against
bug patterns [75, 196], for example, patterns of code that may dereference
a null pointer. Since then, many projects have adopted these tools as they
help in detecting bugs at low cost. However, these tools do not guaran-
tee that the warnings are real bugs. Many developers do not perceive the
warnings by ASATs to be relevant due to the high incidence of effective
false alarms [216, 391, 353]. Prior work has suggested that the false positive
rate may range up to 91%. While the overapproximation of static analysis
may cause false alarms, false alarms do not only refer to errors from analy-
sis or overapproximation, but include warnings that developers did not act
on [216, 354, 353]. Developers may not act on a warning if they do not think
the warning represents a bug or believe that a fix is too risky.

To address the high rate of false alarms, many researchers [404, 188] have
proposed techniques to prune false alarms and identify actionable warnings,
which are the warnings that developers would fix. These approaches [181,
186, 232, 241, 351, 435, 417, 364, 234] consider different aspects of a warn-
ing reported by Findbugs in a project, including factors about the source

64

code [181], repository history [417], file characteristics [263, 435], and histor-
ical data about fixes to Findbugs warnings [241] within the project. Wang
et al. [404] completed a systematic evaluation of the features that have been
proposed in the literature, and identified 23 “Golden Features”, which are
the most important features for detecting actionable Findbugs warnings. Us-
ing these features, subsequent studies [429, 432, 431] show that any machine
learning technique, e.g. SVM, performs effectively, and that the use of a
small number of training instances can train effective models. In these stud-
ies, performances of up to 96% Recall, 98% Precision, and 99.5% AUC can be
achieved. A perfect predictor has a Recall, Precision, and AUC of 100learning
techniques using the Golden Features are almost perfect.

Although the Golden Features have been shown to perform well, we do
not know why they are effective. Therefore, in this work we seek to get a
deeper understanding of the Golden Features. We find a few issues: First,
the ground-truth label was leaked into the features measuring the proportion
of actionable warnings in a given context. Second, warnings in the test
data were used for training. To understand their impact, we addressed the
two flaws and found that the performance of the Golden Features declines.
Our results show that the use of the Golden Features do not substantially
outperform a strawman baseline that predicts all warnings are actionable.

Next, we investigate the warning oracle used to obtain ground-truth labels
when constructing the dataset. To evaluate any proposed approach, a large
dataset should be built, where each warning is accurately labeled as either
an actionable warning or false alarm. Many studies [404, 429, 432] use a
heuristic, which we term the closed-warning heuristic, as the warning oracle
to determine the actionability of a warning, checking if the same warning is
reported in a reference revision, a revision chronologically after the testing
revision. If the file is still present and the warning is not reported in the
reference revision, then the warning is closed and is assumed to be fixed. It
is, therefore, assumed to be actionable. Conversely, a warning that remained
open is a false alarm. A revision made a few years after the simulated time of
the experimental setting is used as the reference revision. Prior studies [404,
429, 432] selected reference revisions set 2 years after the testing revision.
However, no prior work has investigated the robustness of the heuristic.

There are several desirable qualities of a warning oracle. Firstly, it should
allow the construction of a sufficiently large dataset. Secondly, it should be
reliable; the labels should be robust to minor changes in the oracle. Thirdly,
it should generate labels that human annotators and developers of projects
using ASATs agree with. An advantage of the closed-warning heuristic is
that it enables the construction of a large dataset. However, our experiments
demonstrate the lack of consistency in the labels given changes in the choice

65

of the reference revision. This may allow different conclusions to be reached
from the experiments. Our experiments also uncover that the oracle does not
always produce labels that human annotators or developers agree with. These
limitations show that alone, the heuristic do not always produce trustworthy
labels. After removing unconfirmed actionable warnings, the effectiveness of
the Golden Features SVM improves, indicating the importance of clean data.

We highlight lessons learned from our experiments. Our results show
the need to carefully design an experimental procedure to assess future ap-
proaches, comparing them against appropriate baselines. Our work points
out open challenges in the design of a warning oracle for the construction of
a benchmark. Based on the lessons learned, we outline several guidelines for
future work.

Subsequently, we analyze the use of pretrained models of code for filtering
false alarms. Recently, Kharkar et al. [231] have found that pretrained models
of code can be employed as a filter to remove false alarms from a static
analyzer, Infer. Their experiments showed that both a zero-shot approach
and finetuned pretrained model were able to filter out false alarms while
retaining a majority of the true alarms.

In this study, we reproduced the work of Kharkar et al. [231] but find that
the performance of the zero-shot approach may not be sufficiently effective.
Considering the objectives of both retaining true alarms and filtering out false
alarms, the zero-shot approach fails to outperform the use of Infer without
any postprocessing, making tradeoffs between precision and recall. We were
able to replicate the other proposed approach, and found that it was effective
at filtering false alarms, but the process of finetuning the model requires a
large number of labelled warnings. Automatically generated labels may be of
poor quality [220] and manually labelled data is expensive. This motivates
approaches that require only a small number of labels.

To this end, we propose a new approach, TrailMarker. TrailMarker
uses in-context learning [96] with a large language model of source code, In-
coder [160]. With the use of transformer-based architectures [392], large
language models of source code are pretrained with enormous datasets [201].
Surprisingly, they have been shown to exhibit effective performance on many
tasks that may require some understanding of program semantics [254, 228,
420]. In-context learning aims to utilize the large amount of background
knowledge captured by these models. Instead of providing a large training
dataset for finetuning or retraining, in-context learning requires a demonstra-
tion of a small number of labelled warnings to be provided. Conditioning on
the demonstration as context, the large language model can be immediately
used for a different task than its pretraining task.

To minimize the number of labels required, TrailMarker uses a novel

66

strategy of selecting a small number of warnings to present to the human-in-
the-loop, who provides the labels of these warnings. TrailMarker aims to
leverage in-context learning for learning and generalizing from the demon-
stration of a a small number of labelled examples. Apart from minimizing
the number of labels required, the selection of warnings to use the demon-
stration would impact the effectiveness of the approach. While Kharkar et
al. [231] considers only the program location at which a warning is reported,
the execution paths of programs often cross functions and code from multi-
ple files. Incorporating more information may improve the filtering, hence,
TrailMarker guides its selection of warnings using information from the
execution path analyzed by Infer when providing demonstrations to the large
language model of code. Considers the seletion of warnings as a set cover
problem, TrailMarker selects warnings such that there is some informa-
tion for every trace event on the path reported by the static analyzer. As
such, TrailMarker constructs informative demonstrations to a large lan-
guage model.

As the code and dataset used in the experiments of the prior study [231]
are not publicly available, we reimplement their proposed approaches and
construct a new dataset. Our experimental results shows that TrailMarker
achieves an F1 of 87.1% compared to the F1 of 82.8% from the state-of-the-
art approach while requiring labels on only a quarter of all training warnings.
We also perform an ablation analysis and find that both the use of in-context
learning and the set cover strategy for selecting labelled warnings are impor-
tant to TrailMarker.

4.2 Background

4.2.1 Automatic Static Analysis Tools

Many researchers have proposed Automatic Static Analysis Tools (ASATs),
such as Findbugs [75], to detect possible bugs during the software devel-
opment process. Research has shown these tools are useful and succeed in
detecting bugs that developers are interested in with low cost. Compared
to program verification or software testing, these tools rely on bug patterns
written by the authors of the static analysis tools, matching code that may be
buggy. Findbugs includes over 400 bug patterns that match a range of pos-
sible bugs, such as class casts that are impossible, null pointer dereferences,
and incorrect synchronization.

Studies have also shown that ASATs are able to detect real bugs [383,
179]. Indeed, static analysis tools are adopted by large companies [74, 353,

67

137] and open source projects [84] to detect bugs at low cost. Developers may
run them during local development, use them in Continuous Integration [436]
and during code review to detect buggy code to catch bugs early [391, 384,
77, 312]. Projects may configure the tools [436], for example, to suppress
false alarms by configuring a filter file to exclude specific warnings [46].

Developers largely perceive ASATs to be relevant, and the majority of
practitioners have used or heard of ASATs [375, 391, 280]. Still, these tools
are characterized by the large amounts of false alarms that they produce, and
among other reasons, this has led to resistance in adopting them in many
software projects [216].

4.2.2 Distinguishing between Actionable Warnings and
False Alarms

To minimize the overhead of inspecting false alarms, researchers have pro-
posed approaches based on machine learning to rank or classify the warnings.
A large number of features have been designed over the past 15 years; for
example, based on software metrics (e.g. size of the file, number of comments
in the code), source code history (e.g. number of lines of code recently added
to a file), and characteristics and history of the warnings (e.g. the number
of revisions where the warning has been opened).

Researchers have evaluated their proposed tools through datasets of warn-
ings produced by Findbugs [181, 186, 187, 351, 364, 435, 189]. Recently,
Wang et al. [404] performed a systematic analysis of the features proposed in
the literature. From 116 features, they identified 23 Golden Features, which
are the features that achieve effective performance. The features are listed
in Table 4.1. These features include metrics such as the code-to-comments
ratio [263], and the number of lines added in the past [187, 351]. Of note are
several features of the “Warning combination” feature type. We will refer to
three of these features, warning context in method, warning context
in file, and warning context for warning type, as the warning con-
text features. We refer to another two features, the defect likelihood for
warning pattern, and discretization of defect likelihood as the defect
likelihood features. These features are various measures of the proportion
of actionable warnings within a population of warnings, building on top of
the insight that warnings within the population share the same label, e.g.
if a warning was previously fixed in a file, it is more likely that the other
warnings in the same file will be fixed too.

Further research [429] on the Golden Features of Wang et al. [404] showed
the lack of influence of the choice of machine learning model on effectiveness.

68

Table 4.1: The Golden Features studied in prior work [404, 429, 432]. A
warning context is defined [404] as the difference of the number of actionable
warnings and false alarms divided by the total number of warnings reported in
a given method/file, or for a warning pattern. We provide more descriptions
of each feature in our replication package [28].

Feature type Feature
warning context in method
warning context in file

Warning combination warning context for warning type
defect likelihood for warning pattern
discretization of defect likelihood
average lifetime for warning type
comment-code ratio
method depth

Code characteristics file depth
methods in file
classes in package
warning pattern

Warning characteristics warning type
warning priority
package
file age

File history file creation
developers

Code analysis parameter signature
method visibility

Code history LOC added in file (last 25 revisions)
LOC added in package (past 3 month)

Warning history warning lifetime by revision

They suggested that a linear SVM was optimal since it requires a lower cost
of training. In contrast, while a deep learning approach achieves similar
levels of effectiveness, it has a longer training time. Their analysis [429]
suggested that the detection of false alarms is an intrinsically easy problem.
A different study [432] demonstrated that, with the Golden Features, only
a small proportion of the dataset has to be labelled to train an effective
classifier. The Golden Features are a subject of our study. In Section 4.4, we
analyze them in detail.

Closed-warning heuristic. The procedure to construct and label the

69

Figure 4.1: The dataset comprises warnings created before the training and
testing revisions. The labels of each warning are determined by the closed-
warning heuristic; if a warning is closed at the reference revision and the file
has not been deleted, then it is actionable.

ground-truth dataset can be visualized in Figure 4.1. To assess an approach
that detects false alarms, a dataset of Findbugs warnings is collected. While
some researchers [186, 364] construct a labelled dataset through manual la-
belling of the warnings in a single revision, other researchers collect a dataset
through an automatic ground-truth data collection process [181, 186, 404,
432, 429]. Data for a testing revision and at least one training revision, set
chronologically before the testing revision, is collected. This simulates real-
world use of the tool, in which training is done on the history of the project,
and then used at the time of the testing revision.

Using the closed-warning heuristic as the warning oracle, each warning
in a given revision is compared against a reference revision set in the future
of the test revision. If a specific warning is no longer present in the reference
revision (i.e., a closed warning), the heuristic assumes that the warning is
actionable. If the warning is present in both the given and reference revision
(i.e., an open warning), then the heuristic assumes that it is a false alarm.
If the file that contains the code with the warning has been deleted, then
the warning is labelled unknown and is removed from the dataset. In other
words, according to the the closed-warning heuristic, a closed warning is al-
ways actionable as long as the file has not been deleted, and an open warning
is always unactionable. Beyond studies for detecting actionable studies, re-
searchers have also applied the heuristic to identify bug-fixing commits to
mine patterns of bug fixes [270, 271]. The heuristic is a subject of our study,
and we assess its robustness and its level of agreement with human oracles
in Section 4.5.

70

4.3 Study Design

4.3.1 Research Questions

RQ1. Why do the Golden Features work?
This research question seeks to understand the Golden Features. While

previous studies have highlighted their strong results, there has not been
an in-depth analysis of their practicality. We study the Golden Features
and the dataset used in the experiments by Wang et al. [404] and Yang et
al. [429]. We investigate the aspects of the features and dataset that allow
accurate predictions by the best performing machine learning model, an SVM
using the Golden Features. We replicate the results of the previous studies
and validate the predictive power of the Golden Features. To understand the
importance of different features, we use LIME [341] to narrow our focus down
to the features that contributes the most to the predictions. Afterwards, we
switch to increasingly simpler classifiers and analyze the experimental data
to better understand why the choice of classifiers did not influence the results
in prior studies.

RQ2. How suitable is the closed-warning heuristic as a warning
oracle?

This research question concerns the suitability of the closed-warning heuris-
tic as a warning oracle. A good oracle should be robust, and its judgments
should agree with the analysis of a human annotator. We investigate the
robustness of the heuristic, checking the consistency of labels under different
choices of the reference revision. While previous studies used a 2-years inter-
val between the test revision and reference revision, we investigate if different
conclusions can be reached with a different time interval. Next, we compute
the proportion of closed warnings that human annotators labelled actionable,
and the proportion of open warnings that project developers suppressed as
false alarms.

4.3.2 Evaluation Setting

To analyze the performance of machine learning approaches that identify ac-
tionable Findbugs warnings, we use the same metrics as prior studies [432,
429, 404]. A true positive (TP) is an actionable Findbugs warning correctly
predicted to be actionable. A false positive (FP) is an unactionable Find-
bugs warning incorrectly predicted to be actionable. Note that we use the
term false alarm to refer to unactionable Findbugs warning. A false positive,
therefore, refers to a false alarm that is incorrectly determined to be an ac-

71

tionable warning. A false negative (FN) is an actionable warning incorrectly
predicted to be a false alarm. A true negative is a unactionable warning
correctly predicted to be a false alarm.

We compute Precision and Recall as follows:

Precision = TP
TP+FP

Recall = TP
TP+FN

Finally, we compute and present F1, the harmonic mean of Precision and
Recall. F1 is known to capture the trade-off between Precision and Recall,
and is used in place of accuracy given an imbalanced dataset. F1 is computed
as follows:

F1 = 2× Precision × Recall
Precision+Recall

The Area Under the receiver operator characteristics Curve (AUC) is a
measure of the predictive power of a machine learning approach to distinguish
between true and false alarms. Ranging between 0 (worst discrimination)
and 1 (perfect discrimination), AUC is the area under the curve of the true
positive rate against the false positive rate, and recommended over accuracy
when the data is imbalanced. A strawman classifier that always outputs a
single label has an AUC of 0.5.

Our dataset consist of projects that were studied by Yang et al. [429, 432]
and Wang et al. [404]. Similar to previous studies [432, 429], we use one
training revision and one testing revision. We use the same testing revision
as previous studies [432, 429, 404]. We train one model for each project.

4.4 Analysis of the Golden Features

To answer the first research question, we investigate the performance of the
Golden Features by first using the same dataset used by Yang et al. [429].
The dataset includes two revisions from 9 projects. The testing revisions are
the revisions of the projects on 1 January 2014, and the training revision
is a revision of the projects up to 6 months before the testing revision. In
total, 31,058 warning instances were obtained by running Findbugs over the
training and testing revision. On average, 14.1% of the warnings in the
dataset were actionable. Table 4.2 shows the breakdown of the warnings.

We successfully replicate the performance observed in the experiments
of Yang et al. [429] and Wang et al. [404], obtaining high AUC values of

72

Table 4.2: The number of training, testing instances, and the percentage of
actionable warnings (Act. %) in the dataset. The testing revision is the last
revision checked into the main branch on 2014-01-01.

Project Training With duplicates W/o duplicates
testing Act. % testing Act. %

ant 1229 1115 5% 21 71%
cassandra 2584 2601 14% 551 70%
commons 725 786 5% 4 50%
derby 2479 2507 5% 499 31%
jmeter 604 613 24% 57 19%
lucene 3259 3425 34% 893 59%
maven 813 818 3% 149 14%
tomcat 1435 1441 23% 227 41%
phoenix 2235 2389 14% 214 22%

up to 0.99, identical to the study of Yang et al. [429]. An average F1 of
0.88 was obtained, with F1 ranging from 0.65 to 0.95. Table 4.3 shows the
experimental results that we have obtained.

Yang et al. [429] found that the dataset was intrisically easy as the data
was inherently low dimensional. To further analyze their findings, we used
tools from the field of explainable AI, in particular LIME [341], to iden-
tify the most important features contributing to each prediction. LIME is
an explanation technique that identifies the most important features that
contributed to an individual prediction. To identify the most important fea-
tures, we sampled 50 predictions made by the Golden Features SVM, and
used LIME to identify the top features contributing to the predictions. We
found that two features, warning context of file and warning context
of package, appeared in the top-3 features of every prediction.

Warning context and defect likelihood features. On analyzing the
source code of the feature extractor developed by Wang et al. [404], we found
a subtle data leak in the implementation of the warning context and defect
likelihood features. These features utilize findings from previous studies [241]
that found that the warnings within a population (e.g. warnings in the same
file) tend to be homogenous; if one warning is a false alarm, then the other
warnings in the same population tend to be false alarms as well. Including
warning context of file and warning context of package, there are an-
other 3 features computed similarly (warning context of warning type,
defect likelihood for warning pattern, Discretization of defect likeli-
hood for warning pattern). At a high-level, the warning context features

73

Table 4.3: Effectiveness of an SVM using the Golden Features after separately
removing the leaked features and removing the duplicate warnings between
the training and testing dataset. The numbers in parentheses are the F1
obtained by the baseline classifier that predicts all warnings are actionable.

Project Golden Features − leaked features − data duplication
F1 AUC F1 AUC F1 AUC

ant 0.94 (0.09) 1.00 0.11 (0.09) 0.67 - -
cassandra 0.92 (0.24) 1.00 0.45 (0.24) 0.86 0.9 (0.41) 0.99
commons 0.65 (0.10) 0.99 0.16 (0.10) 0.65 0.75 (0.25) 0.97
derby 0.95 (0.09) 1.00 0.39 (0.09) 0.93 0.97 (0.28) 0.97
jmeter 0.94 (0.38) 0.99 0.53 (0.38) 0.76 1.00 (0.14) 1.00
lucene-solr 0.87 (0.51) 0.97 0.59 (0.51) 0.74 0.87 (0.53) 0.98
maven 0.86 (0.07) 1.00 0.27 (0.07) 0.9 0.95 (0.24) 0.99
tomcat 0.93 (0.37) 1.00 0.48 (0.37) 0.73 0.95 (0.70) 1.00
phoenix 0.89 (0.25) 1.00 0.42 (0.25) 0.78 0.83 (0.37) 0.99
Average 0.88 (0.23) 1.00 0.38 (0.23) 0.76 0.90 (0.37) 0.99

Table 4.4: Effectiveness of an SVM using the Golden Features after removing
both the leaked features and removing the duplicate warnings between the
training and testing dataset. The numbers in parentheses are the F1 obtained
by the baseline classifier that predicts all warnings are actionable.

Project Golden Features − leak, duplication
F1 AUC F1 AUC

ant 0.94 (0.09) 1.00 - -
cassandra 0.92 (0.24) 1.00 0.29 (0.41) 0.54
commons 0.65 (0.10) 0.99 0.11 (0.25) 0.49
derby 0.95 (0.09) 1.00 0.30 (0.28) 0.59
jmeter 0.94 (0.38) 0.99 0.25 (0.14) 1.00
lucene-solr 0.87 (0.51) 0.97 0.23 (0.53) 0.62
maven 0.86 (0.07) 1.00 0.27 (0.24) 0.58
tomcat 0.93 (0.37) 1.00 0.65 (0.70) 0.39
phoenix 0.89 (0.25) 1.00 0.40 (0.37) 0.63
Average 0.88 (0.23) 1.00 0.31 (0.37) 0.59

74

are computed as follows:

|W actionable
relevant |−|W false alarm

relevant |
|Wrelevant |

Wrelevant refers to the set of warnings relevant to the feature type. For
example, Wrelevant of warning context of file considers the warnings that
are reported in a given file, while Wrelevant of warning context of warning
type considers all warnings for the given category of patterns (e.g. STYLE,
INTERNATIONALIZATION). Note that a warning pattern refers to a specific
bug pattern in Findbugs (e.g. “ES COMPARING STRINGS WITH EQ”),
and a warning type is a category of patterns. The defect likelihood for
warning pattern [364] feature computes the proportion of warnings that
were actionable out of all warnings with the given bug pattern, p:

D(p) =
|W actionable

relevant |
|Wrelevant |

The discretization of defect likelihood for warning type [364] fea-
ture, computed for each type/category T of bug patterns, is a measure of the
difference in defect likelihood from the defect likelihood of T for each bug
pattern in the category:

1
|T |−1

∑
p∈T (D(p)−D(T))2

The five warning context and defect likelihood features require informa-
tion about the actionability of each warning in the population of warnings
considered. A data leakage occurs when the classifier utilizes information that
is unavailable at the time of its predictions [387, 227]. As shown in Figure
4.2, while the ratio of actionable warnings are computed over the warnings
reported in the past (the black line in Figure 4.2), the closed-warning heuris-
tic to determine the ground-truth label of a warning (the red lines in Figure
4.1 and Figure 4.2) is utilized to determine if these warnings were action-
able. To compute the warning context of a given warning, Wt in the testing
revision, the labels of all warnings in the population of warnings (e.g. all
warnings in the same file), including Wt, are obtained based on comparison
to the reference revision.

Since the ground-truth label is also obtained based on comparison to
the reference revision, the ground-truth label is inadvertently leaked into the
computation of the warning context. This is not a realistic assumption in
practice; at test time, the ground-truth label of the warning context of Wt

is the target of the prediction. While checking if a warning will be closed 2
years in the future is possible within an experiment, there is no way to check

75

Figure 4.2: The warning context and defect likelihood features use labels
derived through the closed-warning heuristic, using information from the
reference revision, chronologically in the future of the test revision. In a
realistic setting, this information will not be present at test time.

if the warnings will be closed 2 years into the future in practice. Table 4.3
shows the large drop in F1, from an average of 0.88 to 0.38, when these five
features are dropped. We refer to these features as leaked features.

Baseline using data leakage. Data leakage leads to an experimental
setting that overestimates the effectiveness of the classifier under study [387,
227]. In Table 4.5, we show that a baseline equivalent to the Golden Features
can be developed using only the five leaked features. Using just the leaked
features with an SVM, we construct a baseline that achieves performance
comparable to the use of the Golden Features. An SVM using the leaked
features has a Recall of 0.79, about 0.10 lower than the Golden Features SVM,
however, they achieve identical Precision of 0.94, which results in an F1 of
0.83, just 0.05 lower than the Golden Features. This indicates that the strong
performance of the Golden Features in the experiments depends largely on
the leaked features, and is an optimistic estimate of their effectiveness.

The computation of the warning context and defect likelihood features caused
data leakage, as it used labels determined by comparison against the reference
revision, chronologically in the future of the testing time.

Data duplication. Next, we progressively selected simpler machine
learning models and surprisingly, found that a k-Nearest Neighbors (kNN)
classifier performs effectively. In particular, we found a surprising trend
where the lower values of k led to better results. The results of the experiment
where we iteratively lowered k to consider in the prediction are shown in Table
4.5.

Surprisingly, a kNN classifier with k=1 (i.e., only one neighbor is con-
sidered to make a prediction) produces the best result, obtained a Precision

76

of 0.87, a Recall of 0.90, with an F1 of 0.84. With k=1, the classifier was
selecting a single most similar warning in the training dataset. In typical
usage of kNN, a low value of k may cause the classifier to be influenced by
noise and outliers, which makes the strong results surprising. To analyze the
results further, we observed that the number of training (15,363) and testing
instances (15,695) were similar, and we investigated the data carefully. We
found that many testing instances appeared in both the training and testing
dataset.

The data duplication was caused by the data collection process, in which
all warnings produced by Findbugs for both the training and test revisions
were included in the training and testing dataset. Say we have a warning at
the training revision, determined to be open and, therefore, unactionable by
the closed-warning heuristic. In other words, the warning remained open in
the period before the training revision to the reference revision. Then, the
warning would certainly be opened at the testing revision, which is chronolog-
ically before the reference revision but after the training revision. Likewise,
if we have a warning only closed after the testing revision, but was open
during the testing revision, then the same warning would be present at both
the training and testing revision with the same “actionable” label. Conse-
quently, a large number of warnings appear in both the training and testing
dataset. This contributes to an unrealistic experimental setting.

Table 4.5: Average Precision (Prec.), Recall, and F1 of various approaches
on the original dataset by Yang et al.

Technique Prec. Recall F1
Golden Features SVM 0.84 0.94 0.88
− leaked features 0.26 0.70 0.38
− data duplication 0.88 0.93 0.90
− data duplication and leaked features 0.27 0.57 0.31
+ reimplemented leaked features 0.32 0.57 0.38
Golden Features kNN (with k=10) 0.91 0.57 0.68
Golden Features kNN (with k=5) 0.86 0.72 0.78
Golden Features kNN (with k=3) 0.87 0.78 0.82
Golden Features kNN (with k=1) 0.87 0.90 0.84
Only leaked features SVM 0.79 0.94 0.83
Repeat label from training dataset 0.72 0.80 0.75

Baseline using duplicated data. Data duplication creates an artificial
experimental setting that inflates performance metrics [54]. To confirm that
the data duplication contributes to the ease of the task, we construct a weak

77

Figure 4.3: We reimplemented the leaked features. The reimplemented fea-
tures use only information (represented by the blue, dashed lines) available
at the present (i.e., either the training or test revision) to determine if a
warning (i.e., created before the training or test revision) has been closed.
Under this setting, no information from the reference revision is used for
making predictions.

baseline, a dummy classifier, that leverages the duplication of testing data in
the training dataset. Given a warning from the testing dataset, the classifier
heuristically identifies the same warning from the training dataset by search-
ing for a training warning based on the class name (e.g. “BooleanUtils”)
and bug pattern name (e.g. “ES COMPARING STRINGS WITH EQ”). If
there are multiple warnings with the same class name and bug pattern name,
a random training instance is selected from among them. The classifier then
outputs the label of the training instance. If there is no training instance with
the same class and bug pattern type, then the classifier defaults to predicting
that the warning is a false alarm, which is the majority class label.

Table 4.5 shows the comparison of various approaches, including the base-
line approaches, on the dataset. The dummy classifier achieves a strong per-
formance, achieving a Precision of 0.72, a Recall of 0.80, and an F1 of 0.75.
While the dummy classifier underperforms the model using the leaked fea-
tures, it outperforms the Golden Features SVM without the leaked features.
This indicates that using just two attributes, (1) the class name and (2) the
bug pattern of the warning, is enough to obtain strong performance on a
dataset with data duplication. Therefore, we conclude that the data dupli-
cation between the training and testing dataset contributes to the strong
performance observed in previous studies.

The experimental results are summarized in Table 4.5. With both the
leaked features and duplicated data, the average F1 was 0.88. After the
data leakage features are removed, F1 decreased to 0.38. After removing the
duplicated data, F1 decreases further to 0.31. The average project’s AUC
decreased from 1.00 to 0.59. In comparison, using a strawman baseline that

78

predicts that every warning is actionable produces an F1 of 0.52 (with an
AUC of 0.5).

All warnings reported by FindBugs on both the training and testing revisions
were included in the datasets. Warnings reported at the training revision may
still be reported at the testing revision, leading to data duplication between
the training and testing dataset.

Experiments under a more realistic setting. To better understand
the performance of the Golden Features SVM, we ran another experiment
where the two issues of data leakage and data duplication have been fixed.
First, we deduplicated the test data from the training dataset. Instead of
including all warnings in the testing revision, we only consider new warnings
introduced between the time after the training revision and before the testing
revision. Figure 4.3 shows our procedure. As compared to the previous
dataset construction process in Figure 4.1, only the warnings created after
the training revision and before the testing revision are used for testing. This
better reflects real-world conditions where all warnings prior to usage are used
for training, but none of the testing data involves warnings that have already
been classified. In total, the number of warnings in the testing revisions
decreased from a total of 15,695 to 2,615 after deduplication. Without the
duplicated data and without using the leaked features, the average F1 drops
from 0.88 to 0.31 as seen in Table 4.3 and Table 4.4.

Next, we reimplemented the leaked features to investigate the effective-
ness of Golden Features SVM. To prevent data leakage, we modified the
definition of the leaked features. Figure 4.3 visualizes the computation of
the warning context and defect likelihood features. Instead of considering
all warnings, we consider only warnings that were introduced in the 1 year
duration before the training or testing revision. Instead of using the refer-
ence revision, we use the given revision (i.e., either the training or testing
revision) to determine if the warning was closed. A warning is closed at a
given revision if Findbugs does not report it. In other words, for the training
revision, only the warnings created within the past year before the training
revision are considered. For testing, only the warnings created within one
year before the testing revision are considered. A time interval of 1 year
was selected in contrast to the study by Wang et al. [404], which used time
intervals of up to 6 months. Unlike Wang et al. [404], for the testing revision,
we consider only warnings created after the training revision to prevent data
duplication. Consequently, we found fewer newly created warnings in the
short time interval between the training and testing revisions.

Note that after reimplementing the warning context and defect likelihood

79

features, we could not run the experiments for the project Phoenix as we
faced many difficulties building old versions of the project. Moreover, their
revision history did not go back beyond 3 years, required for computing the
warning context and defect likelihood features for the training revision. This
limitation is not present for Wang et al. [404], as they compute the features
by checking if the given warning is closed in the reference revision, set in the
future of the test revision (causing data leakage). As such, we omit Phoenix
for the rest of the experiments.

Table 4.5 shows the performance of the Golden Features SVM using the
reimplemented features. Without the leaked features, the Golden Features
SVM achieves an F1 of 0.38. Even with the reimplementation of the leaked
features, the Golden Features SVM underperforms the strawman baseline,
which predicts all warnings are actionable, with an F1 of 0.43.

Answer to RQ1: After removing the data leakage and data duplication, our
experimental results indicate that the Golden Features SVM underperforms
the strawman baseline, although its AUC (> 0.5) suggests that the Golden
Features have predictive power.

4.5 Analysis of the Closed-Warning Heuristic

Next, given that the quality and realism of the dataset heavily influences the
evaluation of the Golden Features SVM, we perform a deeper analysis of the
construction of the ground-truth dataset. In previous studies [404, 429, 432],
the warning oracle is the closed-warning heuristic; a warning is heuristically
determined to be actionable if it was closed (i.e., reported by Findbugs in
a revision but was not reported by Findbugs in the reference revision, and
the file was not deleted), and is a false alarm if it was open (i.e. reported by
Findbugs on both the training/test and reference revision).

In the first part of our analysis, we investigate the consistency in the
warning oracle given a change in the reference revision. Next, we determine
if human annotators consider closed warnings as actionable warnings. Then,
we match open warnings against Findbugs filter files in projects that have
configured them for suppresssing false alarms. Finally, we observe if cleaner
data leads to increased effectiveness of the Golden Features SVM.

80

4.5.1 Choosing a different reference revision

We perform a series of experiments to determine how the time interval be-
tween the test revision and the selected reference revision influences the
ground truth label of the warnings. We hypothesize that the longer the
time interval between the test and reference revision, the greater the propor-
tion of closed warnings. Based on the closed-warning heuristic, this would
cause more warnings to be labelled actionable. If so, the lack of consistency
in labels should call the robustness of the heuristic into question. If many
bugs are fixed only after many years, then an open warning at any given time
may, in fact, be actionable. Besides that, if changing the reference revision
leads us to a different conclusion about the Golden Features SVM, then it
limits the level of confidence that researchers can have in the experimental
results.

In our experiments, we use three reference revisions set two, three, and
four years after the test revision. By switching the reference revision, we
observe changes in the average actionability ratio. While the actionability
ratio remained consistent for the 4 out of 8 projects, the actionability ratio
increased by over for the other 4 projects, as seen in Table 4.6, Table 4.7, and
Table 4.8. Overall, the average actionability ratio increased by 14% when
varying the time interval between the test and reference revision from 2 to
4 years. Considering all projects, we performed a Wilcoxon signed-rank test
and found that the change in actionability ratio is statistically significant
(p-value=0.03 < 0.05).

In terms of the effectiveness of the Golden Features SVM, its average
F1 increased from 0.39 to 0.57, as seen in Table 4.6, Table 4.7, and Table
4.8. Considering all projects, the Golden Features SVM underperformed the
strawman baseline. Our experiments showed some variation of the Golden
Features SVM’s effectiveness given a change in the reference revision. For
instance, the Golden Features SVM achieved a low F1 of 0.06 in Derby when
the time interval between the test and reference revision was 2 years, but
had a high F1 of 0.72 with a time interval of 4 years.

By changing reference revisions, the problem exhibits different character-
istics. Using a reference revision 4 years after the test revision, actionable
warnings would be the majority class, while they were the minority class
when using the other reference revisions. 4 of 8 projects have an AUC that
flipped from one side of 0.5 to the other (e.g. the Golden Features SVM’s
AUC is under 0.5 on Derby given a 2-years interval, but the AUC increases
above 0.5 given a 4-years interval). In short, different conclusions about the
task and the effectiveness of the Golden Features may be reached.

81

Table 4.6: The number of training, testing instances, and the percentage
of actionable warnings (Act. %) in the dataset when varying the reference
revision to be 2 years after the training revision. The numbers in parentheses
are the F1 obtained by the baseline classifier that predicts all warnings are
actionable. The testing revision is the last revision checked in to the main
branch before 2014-01-01.

Project # testing 2 years
instances Act. % F1 AUC

ant 21 24 0 (0.38) 0.43
cassandra 551 41 0.56 (0.59) 0.52
commons 4 50 0.66 (1.00) 1.00
derby 489 10 0.06 (0.18) 0.33
jmeter 57 17 0.13 (0.16) 0.58
lucene 993 44 0.56 (0.62) 0.58
maven 149 17 0.25 (0.29) 0.41
tomcat 226 42 0.53 (0.59) 0.51
Average 311 40 0.39 (0.43) 0.54

Changing the reference revision may affect the distribution of the actionable
warnings, which may impact the conclusions reached from experiments on
the effectiveness of the Golden Features SVM.

4.5.2 Unconfirmed actionable warnings

Next, we investigate if closed warnings are truly actionable warnings. There
are multiple reasons for a warning to close. Code containing the warning
could be deleted or modified while implementing a new feature, and the
warning may only be closed incidentally.

To further understand the characteristics of closed warnings, and to de-
termine how likely is a closed warning an actionable warning, we sampled
1,357 warnings (which is more than the statistically representative sample
size of 384 warnings) that were closed. Two authors of this study indepen-
dently analyzed each warning to determine if they were removed for a bug
fix. If the warning was closed due to code changes unrelated to the warning,
then we do not consider the warning as actionable. If the code containing the
warning was modified such that it was not easily discernible if the warning
was closed with the intention of fixing the warning, then we consider it “un-
known”. If the original version of the code had any comments indicating that
Findbugs reported a false alarm (e.g. explaining the reason that a seemingly

82

Table 4.7: The number of training, testing instances, and the percentage
of actionable warnings (Act. %) in the dataset when varying the reference
revision to be 3 years after the training revision. The numbers in parentheses
are the F1 obtained by the baseline classifier that predicts all warnings are
actionable. The testing revision is the last revision checked in to the main
branch before 2014-01-01.

Project # testing 3 years
instances Act. % F1 AUC

ant 21 43 0.13 (0.60) 0.48
cassandra 551 46 0.61 (0.63) 0.41
commons 4 50 1.00 (0.67) 1.00
derby 489 59 0.58 (0.74) 0.46
jmeter 57 26 0.12 (0.27) 0.4
lucene 993 49 0.58 (0.66) 0.57
maven 149 16 0.27 (0.28) 0.44
tomcat 226 61 0.51 (0.57) 0.48
Average 311 42 0.48 (0.55) 0.53

buggy behavior was expected behavior), then we consider the warning a false
alarm. When the labels differed between the annotators, they discussed the
disagreements to reach a consensus. We computed Cohen’s Kappa to mea-
sure the inter-annotator agreement, and obtained a value of 0.83, which is
considered as strong agreement [248].

Finally, after labelling, 176 (13%) of the heuristically-closed warnings
were considered as false alarms. Another 520 warnings (38%) were cate-
gorized as “unknown”. Lastly, 660 (49%) warnings were still considered
actionable after labelling.

For an example of a warning labelled “unknown”, Figure 4.4 shows a
fragment of code where Findbugs complains about the use of the Long con-
structor, indicating that Long.valueOf would be more efficient. Even though
the warning is removed in the reference revision, the entire functionality of
the code fragment was changed as shown in Figure 4.5. In such cases, we
label the warning as “unknown” instead of “actionable” or a “false alarm”, as
there is no evidence that the warning was fixed or ignored. We consider that
the warning was removed incidentally, and that the annotators are unable to
accurately label the warning.

While the closed-warning heuristic considered that a warning could be
removed through the deletion of a file, it does not consider other cases where
a warning could be incidentally removed through code modification that

83

Figure 4.4: Example of code that Findbugs reports a warning on. Find-
bugs warns against using new Long, recommending the more efficient
Long.valueOf to instantiate a Long object.

Figure 4.5: The warning from Figure 4.4 is removed through a change in
functionality, unrelated to the warning otherwise.

84

Table 4.8: The number of training, testing instances, and the percentage
of actionable warnings (Act. %) in the dataset when varying the reference
revision to be 4 years after the training revision. The numbers in parentheses
are the F1 obtained by the baseline classifier that predicts all warnings are
actionable. The testing revision is the last revision checked in to the main
branch before 2014-01-01.

Project # testing 4 years
instances Act. % F1 AUC

ant 21 43 0 (0.60) 0.32
cassandra 551 43 0.58 (0.60) 0.48
commons 4 50 1.00 (0.67) 1.00
derby 489 66 0.72 (0.80) 0.52
jmeter 57 91 0.71 (0.95) 0.52
lucene 993 67 0.63 (0.8) 0.53
maven 149 16 0.27 (0.28) 0.44
tomcat 226 52 0.64 (0.69) 0.54
Average 311 54 0.57 (0.67) 0.54

does not fix the bug indicated by the warning. Our results indicate that the
heuristic may not be sufficiently robust.

Only 47% of closed warnings were labelled actionable by human annotators,
implying that many closed warnings are not actionable. Many closed warn-
ings were only closed incidentally.

4.5.3 Unconfirmed false alarms

The lack of consistency of the closed-warning heuristic raises questions about
its robustness in labelling the warnings in the dataset. Moreover, our findings
from Section 4.5.1 indicate the possibility that some actionable warnings
would only be closed given a longer time interval between the test revision
and the reference revision. This may reflect real-world conditions, where
developers may not prioritize reports from ASATs and may take a long time
before inspecting them. Thus, this raises the possibility that open warnings
could represent actionable warnings that the developers would only notice
with enough time. We run an experiment to understand this effect, focusing
on projects that have shown evidence of using Findbugs in their development
practices. In this experimental setup, we remove open warnings that are not
confirmed by the project developers to be false alarms.

85

Table 4.9: Number of open warnings in each project matched by their Find-
bugs filter file. If a warning was filtered, it indicates that the project’s de-
velopers consider it a false alarm.

Project # open warnings # filtered % filtered
jmeter 710 6 1%
tomcat 1624 9 1%
commons-lang 106 19 18%
flink 4934 4754 96%
hadoop 3053 269 9%
jenkins 1212 178 15%
kudu 1873 464 25%
kafka 4668 2993 64%
morphia 65 0 0%
undertow 347 113 33%
xmlgraphics-fop 949 909 96%
Average (Mean) 1666 818 31%
Average (Median) 1212 178 18%

Some projects, which have integrated Findbugs into their development
process, have a Findbugs filter file [46], in which Findbugs can be configured
to ignore false alarms. The filter file allows developers to suppress warnings
of specific bug patterns on the indicated files. Developers may add warnings
to the Findbugs filter file after inspecting the warnings and identifying false
alarms. On projects that have created and maintained a Findbugs filter file,
we assume that a developer would either fix the buggy code or update the
Findbugs filter file after inspecting a warning. If so, then an open warning
that is not matched by the Findbugs filter file may not be a false alarm, but
has not been inspected by a developer. If an open warning matches the filter,
then it has been confirmed by the developers to be a false alarm.

To investigate the proportion of open warnings that are confirmed to be
false alarms by project developers, we identified 3 projects (JMeter, Tomcat,
Commons-Lang) that have already configured the Findbugs filter file from
Wang et al.’s dataset [404], used in the preceding experiments. Next, we
searched GitHub for large, mature projects that showed evidence of using
Findbugs and have configured a Findbugs filter file. Using the GitHub Search
API, we looked for XML files containing the term FindbugsFilter, which
is a keyword used in Findbugs filter files, in projects that were not forks,
filtering out projects with less than 100 stars or had less than 10 lines in the
Findbugs filter file. We obtained 8 projects.

86

Table 4.10: Effectiveness of the Golden Features SVM after removing uncon-
firmed actionable warnings/false alarms. Act. % refers to the proportion of
actionable warnings. The numbers in parentheses are the F1 of the strawman
baseline.

Dataset Act. % F1 AUC
Original dataset [429, 432] 39.9 0.39 (0.43) 0.54
− unconfirmed actionable warnings 40.0 0.61 (0.57) 0.66
Projects using Findbugs 38.0 0.43 (0.44) 0.62
− unconfirmed false alarms 40.0 0.41 (0.46) 0.60

The statistics of the warnings reported by Findbugs on the projects are
displayed in Table 4.9. On average, 31% of the open warnings are matched
by the Findbugs filter configured by the developers, although the proportion
varies for each project. As there are usually more false alarms than actionable
warnings, our results suggest that the majority of open warnings remain
uninspected by developers, which may contribute to noise in a dataset.

Only 31% of open warnings have been explicitly indicated by developers to
be false alarms. This suggests that only a minority of open warnings may be
false alarms. While the rest of the open warnings could be false alarms, they
could also be actionable warnings that have not been inspected yet.

Next, we investigate the impact of the unconfirmed actionable warnings
and false alarms on the Golden Features SVM. We hypothesize that cleaning
up the data will improve its effectiveness.

To study the impact of unconfirmed actionable warnings, we used the
dataset of warnings from the projects by Wang et al. [404] and Yang et
al. [429, 432]. These projects were the same projects studied earlier in Section
4.5.2. We construct a dataset of warnings with only the warnings confirmed
by the human annotators to be actionable warnings. We randomly sampled
a subset of open warnings to retain a similar actionability ratio.

For evaluating the effect of unconfirmed false alarms, we used the warn-
ings from the projects that used Findbugs (from Section 4.5.3). However, we
omit 4 projects (JMeter, Tomcat, Hadoop, Morphia) where less than 10%
of open warnings matched the filter file, as the low percentage may indicate
that the Findbugs filter files are not kept up to date in these projects. From
the other projects, only open warnings that match the filter file are included.
We sampled a subset of closed warnings to retain a similar actionability ratio.

The outcome of our experiment is shown in Table 4.10. Removing uncon-
firmed actionable warnings led to an increased AUC from 0.54 to 0.68, and

87

an increased F1 from 0.39 to 0.64. This outperforms the strawman baseline
which has an F1 of 0.57, suggesting that cleaner data may increase the effec-
tiveness of the Golden Features SVM. However, removing unconfirmed false
alarms did not help. The results may indicate that cleaner data may help
and removing unconfirmed actionable warnings, which is the minority class,
may have a positive effect on the effectiveness of a classifier.

Answer to RQ2: The closed-warning heuristic conflates closed warnings
for actionable warnings and open warnings for false alarms. We find having
cleaner data by removing unconfirmed actionable warnings may boost the
performance of the Golden Features SVM, motivating the need to denoise
data.

4.6 Discussion

4.6.1 Lessons Learned

To detect actionable warnings, the Golden Features are not a silver
bullet. Far from being easy, our results indicate that the state-of-the-art
machine learning approach only has marginal improvements over a strawman
baseline that always predicts that a warning is actionable. Note that our work
does not show that the use of machine learning for classifying warnings from
static analyzers is impractical or impossible; the AUC of the Golden Features
SVM is above 0.5, indicating that the features have predictive power.

All that glitters is not gold; it is essential to qualitatively ana-
lyze and understand the reasons for seemingly strong performance.
Despite achieving excellent performance, the Golden Features have bugs re-
lated to subtle data leakage and data duplication. This emphasizes the im-
portance for a deeper analysis of experimental results, and both quantitative
and qualitative analysis are essential. We call for the need for more repli-
cation studies, as such works can highlight the opportunities and challenges
for future work. While previous studies [432, 429] compared their proposed
approaches to other techniques, they did not compare them against straw-
man baselines. Our work reemphasizes the need to compare newly proposed
techniques to simple baselines [161].

The closed-warning heuristic for generating labels allows a large
dataset to be built, but is not enough for building a benchmark. Our
work sheds light on the limitations of the closed-warning heuristic, suggesting
that it may not be sufficiently accurate; warnings may be closed incidentally,
and actionable warnings may stay open for years before they are closed.

88

As a benchmark is essential for charting research direction [369], the con-
struction of a representative dataset is important. Several studies have pro-
posed similar processes relying on the closed-warning heuristic to build a
ground-truth dataset [404, 181, 232, 189], while others have relied on man-
ual labelling [186, 187, 364, 351, 435, 234]. Heuristics enables automation,
allowing for a dataset of a greater scale. However, heuristics may not be
robust enough. On the other hand, solely labelling warnings through man-
ual analysis is not scalable, and may be subject to an annotator’s bias. We
suggest that datasets proposed in future should rely on both heuristics and
manual labelling; apart from its greater scale, the closed-warning heuristic
enables rich information to be gathered from the activities of the developers
to help the manual labelling process. For example, code commits provide
richer information, such as the commit message, simplifying the task for hu-
man annotators. In contrast, prior studies [186, 187, 364, 351, 435, 234]
have relied on annotators who inspected only the source code that warnings
are reported on. Our experiments suggest using the closed-warning heuris-
tic, followed by manual labelling is promising – the annotators had a strong
agreement (Cohen’s Kappa > 0.8), while no strong agreement in manual
labelling has been demonstrated in prior work.

A good benchmark requires scale and should be labelled by many anno-
tators. Fields such as code clone detection have created large benchmarks
through community effort [349]. This motivates the need for community ef-
fort to build a benchmark for actionable warning detection too. As a deriva-
tive of this empirical study, we have labelled 1,300 closed warnings, usable
as a starting point.

4.6.2 Threats to Validity

A possible threat to internal validity is the incorrect implementation of our
code. To mitigate this, we reused existing data and code whenever possible,
including the dataset by Wang et al. [404] and Yang et al. [429, 432], and the
feature extractor by Wang et al. [404]. Our code and data are available [28].

Threats to construct validity are related to the appropriateness of the
evaluation metrics. We considered the evaluation metrics used in prior stud-
ies [404, 429, 432], and also computed F1, which have been used in many
classification tasks [233, 336, 450]. F1 captures the tradeoff between Preci-
sion and Recall, and is a more appropriate measure on an imbalanced dataset.

Threats to external validity concern the generalizability of our findings.
We studied nine projects used in previous studies, and we considered another
set of projects that actively uses Findbugs. All considered projects were large,
mature projects.

89

Another threat is the focus on Findbugs and Java projects. Our analysis
may not generalize to warnings of other ASATs, such as Infer [137]. Findbugs
detects a wide range of bug patterns, including bugs patterns shared by other
ASATs, and the features are not language-specific. Moreover, we used the
same dataset as prior studies [404, 429, 432]. Findbugs is among the most
commonly used ASATs [436], having been downloaded over a million times.

4.7 Towards a new approach

Using pretrained models of code. Recently, Kharkar et al. [231] found
that pretrained models of code are able to filter false alarms from Infer,
outperforming the use of simple handcrafted features. These approaches
work directly on the source code, without the need for extracting handcrafted
features. They explore the use of both a zero-shot approach and a finetuned
transformer-based model. The transformer-based model that is finetuned on
labelled dataset of warnings is their best performing technique. Similar to
other approaches [405, 430, 433, 220], Kharkar et al. [231] formulates the task
of filtering false alarm as a binary classification problem. After receiving an
input string of the code context, their transformer-based model outputs a
label that indicates if a warning is a true or a false alarm. Their experiments
suggested that language model of code are able to recognize and adapt to code
idioms that static analyzers struggle with. However, from the experimental
results reported in the paper, the improvements in precision came at a cost
of incorrectly filtering out some true alarms.

final InputValidateResult<Integer> selectIndex =

validateUserInputAsInteger(input, entities.size(),

"You have input a wrong value %s.");

if (selectIndex.getErrorMessage() == null) {

return wrap(entities.get(selectIndex.getObj() - 1)); // warning

location

}

return error(selectIndex.getErrorMessage());

Listing 4.1: Source code at the warning location. Infer believes that
selectIndex.getObj() may return null.

// (0)

// InputValidateResult.java

public static <T> InputValidateResult<T> error(String

errorMessage) {

final InputValidateResult<T> res = new InputValidateResult<>();

90

res.errorMessage = errorMessage;

> return res;

...

// (1)

// DefaultPrompter.java:

// Taking true branch

InputValidateResult<Integer> selectIndex =

validateUserInputAsInteger(input, entities.size(), "You have

input a wrong value %s.");

> if (selectIndex.getErrorMessage() == null) {

return wrap(entities.get(selectIndex.getObj() - 1));

}

...

// (2)

// InputValidateResult.java:

// return from a call to Object InputValidateResult.getObj()

public T getObj() {

> return obj;

}

...

// (3)

// DefaultPrompter.java:

if (selectIndex.getErrorMessage() == null) {

> return wrap(entities.get(selectIndex.getObj() - 1));

}

return error(selectIndex.getErrorMessage());

Listing 4.2: Part of the traces reported by Infer. Initially, a
InputValidateResult is constructed. An InputValidateResult has either
a non-null getObj() or a non-null getErrorMessage() Subsequently, the
path includes a trace event where both the error message and underlying
object is null.

Example. Figure 4.1 shows a simplified example of a program where
Infer incorrectly reports a possible null pointer dereference (that is a false
alarm). Figure 4.2 shows the path of trace events that Infer analyzed. A false
alarm occurs when the static analyzer takes a path that cannot be taken in
reality. Such a path would contains at least one trace event that is impossible.
Infer may not be aware of code idioms that human developers understand
when reading the code. For example, in Figure 4.2, InputValidateResult
is a class that can either have an error message (getErrorMessage() would
return a non-null value) or an underlying object (getObj() would return a
non-null object). Therefore, on taking a branch where getErrorMessage()

91

== null, we can expect getObj() to return a non-null value. As Infer is un-
aware of the natural language semantics of the program, it overapproximates
the possible paths, and reports a path where both getErrorMessage() and
getObj() are null. Note that these trace events may correspond to source
code from other methods (i.e., interprocedural analysis) in files other than
the file where the warning is reported on.

Large amount of data. Given enough training data, language models
of code are able to learn the code contexts where these overapproximations
occur, and can filter out these warnings by recognizing that a warning was
reported under a similar code context. However, they rely on a large corpus
of training data to be finetuned for this task. Our approach exploits a much
smaller number of labelled data. It is able to do so by through the use of
in-context learning. Our approach exploits the insights that a single impos-
sible trace event makes a path infeasible, i.e., to be certain that a path is
infeasible, every trace event has to be inspected, and that the mistakes made
by the static analyzer are systematic, i.e., the same impossible events occur
in multiple, different paths. Through in-context learning, TrailMarker
analyzes each test warning considering a few other labelled training warn-
ings. When considered together, the selection of labelled training warnings
maximizes the number of trace events shared between the training warnings
and the test warning. To reduce the number of warnings that require la-
belling from an oracle, TrailMarker favours the reuse of existing labels
when it constructs a demonstration to the large language model for each test
warning.

4.7.1 In-context learning

The effective of large pretrained models has been shown in Software Engi-
neering research [228, 281, 254]. For example, CodeBERT has been shown to
be effective for type inference [228], program repair [281, 420], and call graph
analysis [254]. These models usually use a transformer [392] architecture and
are trained on enormous corpus of data obtained from GitHub. These tech-
niques are often pretrained on the masked language modelling objective, in
which they learn to recover masked tokens given a code context. For exam-
ple, the Incoder [160] model was proposed by Facebook and was trained using
a variant of the masked language modelling objective. During pretraining,
the models capture a large amount of information about programs and their
source code.

Finetuning. To employ a pre-trained model, finetuning has to be per-
formed on the downstream task. This enables the feature representations
obtained from the pretrained model to be customized to be more relevant to

92

the downstream task. For example, Kharkar et al. [231] add a classification
head to CodeBERTa, a model similar to RoBERTa [272]. They then tuned
the parameters of the classification head while freezing the parameters of
CodeBERTa.

In-context learning. Recently, large language models of code have been
shown to be few-shot learners. In particular, in-context learning [96] has been
proposed for large language models of code. Instead of tuning the model pa-
rameters, k input-output warnings are provided as a demonstration to the
pre-trained model, whose parameters are kept frozen after pretraining. By
using the background knowledge already captured during pretraining, the
model may be able to recognize latent concepts from the examples in the
demonstration. In-context learning transforms classification problems to the
next-token prediction task, a classification is generated by inspecting the
next token label, labeltest, generated by the large language model given the
test instance, X test, and a series of training examples, X trg, and their labels,
labeltrg. In other words, a demonstration is a tuple:

(X trg
1 , labeltrg1 , X trg

2 , labeltrg2 , ..., X trg
k , labeltrgk , X test)

As X test is not accompanied by its label, in-context learning leverages the
ability of the large language model to output a token label with the highest
predicted probability.

Note that there is a limited budget of providing warnings as a demonstra-
tion. The input of the large language model only allows for 2048 tokens to
be provided, as such, we cannot provide a large volume of training warnings.
Care must be taken to provide informative warnings that are useful for a
particular testing instance. In this study, the training examples are snippets
of code from the source code on which warnings are reported on and the
labels indicate if the corresponding warning was a true alarm (“yes”) or a
false alarm (“no”), i.e., binary classification.

4.8 Few-shot in-context filtering of false alarms

4.8.1 Overview

We propose TrailMarker, which uses in-context learning and a novel
strategy of selecting training examples to be labelled and provided in the
demonstrations to the large language model. An overview of TrailMarker
is given in Figure 4.6. TrailMarker formulates the problem of selecting
training warnings as a set cover problem on the trace events of the warn-
ing under classification ((1) in the Figure); it aims to select warnings that

93

Figure 4.6: Overview of TrailMarker. TrailMarker does not require
a fully labelled dataset. Given a warning from the testing dataset, it selects
some training warnings that should be passed to the large language model
(1). The selected training warnings are passed to the oracle, a human-in-the-
loop, for their labels. Next, these warnings form the demonstration which
is passed to the large language model (2), which produces the output of
TrailMarker.

provide useful information for making predictions about the test instance.
By using the 1 billion-parameter model of Incoder [160], which is a large
language model of code, TrailMarker performs in-context learning ((2)
in the Figure), which enables it to accurately classify a large proportion of
the dataset while having access to only a small number of labelled warnings.
Using in-context learning and the novel selection strategy, TrailMarker
reduces the burden of requiring expensive manually labelled data while pro-
viding a high level of effectiveness in identifying false alarms.

4.8.2 Problem Formulation

In this study, the task of filtering false alarms from static analyzers is formu-
lated as follows.

Prior knowledge: A dataset of training warnings, Wtrain. Initially, all
warnings are unlabelled. Each training example, W i

train, is comprised of the
source code of the method in which the warning are reported on and the path
of trace events, Ei

train, reported by Infer (see Figure 4.2 for an example).
Input: A warning instance, Wtest, from the testing dataset. As before,

each warning is associated with the source code of the method on which the

94

warning is reported on and path of trace events, Etest.
Output: A boolean label, labeltest, indicating if the warning, Wtest, was

a true alarm or a false alarm.
Oracle: An oracle, which is assumed to be the human-in-the-loop, can

add labels to warnings in the training dataset. The oracle can generate labels
for multiple training warnings given one test input, i.e., multiple warnings
can be labelled at any time in order to produce an output for each input test
instance. Once a warning has been labelled, the labels can be subsequently
without having to query the oracle again.

The total number of training warnings that are labelled is of interest
in this study. Manually labelling warnings is expensive and automatically
determined labels are inaccurate [220]. We seek to reduce this cost in this
study.

4.8.3 Selection of training warnings

Motivation. Unlike prior studies [96] that randomly select labelled warn-
ings to use a demonstration, TrailMarker adopts a novel strategy of se-
lecting informative warnings. Randomly selected warnings may not share
a similar context to the test instance, and the the information provided in
the randomly selected warnings may not help in accurately classifying the
test instance [269]. Our strategy aims to minimize the number of training
warnings that require labels while having a high level of effectiveness.

Set Cover. Given a test warning, which includes the path of trace events,
P i
train, that leads to a null pointer dereference, TrailMarker treats the

task as a set cover problem. The set cover problem is a classic combinatorial
problem to identify the smallest subcollection of items whose union is the
entire universe of items. TrailMarker aims to select warnings from the
training warnings that contain trace events that overlap with the traces in the
test warning. TrailMarker is given the collection of trace events, Etest,
(in the path, P i

train, that results in a null pointer dereference) of the warning.
For each test warning, TrailMarker considers the collection of traces from
the warning as a universe of trace events. For each training example, it filter
out traces that are not sufficiently similar to any trace in the testing trace
(i.e., the trace cannot cover any member of Etest). We later elaborate on the
computation of the similarity. Then, we apply a greedy algorithm to identify
the subcollection of training warnings, Wselected, associated with set of trace
events, Etrain, that maximizes the coverage the trace events, Etest. In this
problem setting, there is no guarantee that the traces in the test warning
appear or are similar to any trace in the training dataset. Hence, some
traces cannot be covered regardless of the selection of training warnings, i.e.,

95

Figure 4.7: The selection of warnings to provide a demonstration is done by
selecting warnings to cover the traces in the testing instance. Warnings 1,3
,4 are selected as they collectively cover all the traces of the test warning.

|Etrain| <= |Etest|. The algorithm terminates once progress can no longer be
made.

Example. An example is shown in Figure 4.7. In the figure, the testing
warning that comprises 6 trace events in the path that leads to a dereference.
TrailMarker selects warnings 1, 3 and 4, which are training warnings that
contain traces that match the traces in the testing instance. For all the traces
to be covered, Warning 1 matches the first two traces, warning 3 matches
the 3rd, 4th, and last trace, while warning 4 covers the 5th trace. Note that
warning 2 is not selected as the only trace it shares with the testing instance
is already covered by warning 1. The set cover strategy closely matches our
intuition of the problem; we wish to obtain some information about every
trace event as just one impossible trace event is enough to determine that a
path is infeasible. As such, our goal is to maximize the number of trace events
that are covered by at least one warning instead of covering any particular
trace event more than once.

TrailMarker selects examples from the training dataset as shown in
Algorithm 1. First, the traces associated with the testing warning is re-
trieved (line 2). Based on sim, TrailMarker determines which trace
events in the testing trace can be covered by each training trace. It enu-
merates over every trace event in the training traces, Etrain (lines 4–15) and
checks if the similarity between each trace event and each of the testing
trace events are higher than sim (lines 7–12). Given any training trace,

96

Algorithm 1: Selecting k training warnings based on the overlap
in their traces and the traces of the test instance.
Inputs:

• k ← number of warnings to use in a demonstration

• sim ← similarity threshold to determine if two traces are a match

• test warning ← the test warning from Wtest. The source code where the warning
is reported and the bug trace can be retrieved.

• trg warnings ← the training warnings from Wtrain.

• oracle ← a function that returns the labels of a warning, e.g. by involving a
human-in-the-loop

• similarity(a, b) ← a function that accepts two traces, returning a value between
0.0 and 1.0

• previously seen ← labels, Ltrain, of previously selected warnings

function SelectWarnings(k, sim, test warning, trg warnings, oracle, similarity,
previously seen)

test trace ← traces(test warning)
trg traces ← []
for trg warning ← trg warnings do

trg trace ← {}
old traces ← traces(trg warning)
for old trace ← old traces do

for test event ← test trace do
if similarity(old trace, test event) > sim then

trg trace ← trg trace ∪ test event
end

end

end
trg traces ← trg traces :: (trg warning , trg trace)

end
selected warnings ← SetCover(trg traces, test trace, similarity, sim)
if selected warnings.length < k then

selected warnings ← selected warnings :: k − selected warnings.length most
similar warnings

end
for selected warning ← selected warnings do

if selected warning /∈ previously seen then
previously seen ← previously seen ∪ oracle(selected warning)

end

end
return selected warnings, previously seen

97

Ei
train ∈ Etrain, TrailMarker considers that Ei

train covers a trace event,
Ej

test, only if their similarity is greater than sim, i.e., sim(Ei
train, E

j
test) > sim.

Afterwards, considering the coverage of testing trace events, Etest, covered
by each warning from the training dataset, Wtrain, a subset of the training
warnings are selected by treating the problem as a set cover problem (line
16, later elaborated upon in Algorithm 2). If fewer than k warnings are
obtained from the set cover (line 17), more warnings are selected based on
the similarity of the method content where the warning was reported (line
18). Finally, if there are any selected warnings that have not been previously
labelled, the oracle is queried for their labels (lines 20–24). The algorithm
returns the selected warnings and their labels (line 25).

The set cover strategy of selecting labelled warnings is given in Algo-
rithm 2. The algorithm returns a list of selected warnings (initially initial-
ized as an empty list in line 3). While not all traces in the test warning have
been matched to a trace among the training warnings (line 4), the algorithm
greedily selects the next warning (line 6) by picking the warning that covers
the most of the remaining uncovered test traces (line 8). If multiple warnings
cover the same number of the remaining trace events, warnings that have al-
ready been labelled are favoured (lines 13–18). Once the next warning has
been selected, the set of covered test traces are updated (lines 23–24), then
the loop restarts to select the subsequent warning. If some test traces cannot
be covered, the algorithm will fail to make progress as it cannot find a next
warning that can improve the coverage. When this occurs, the algorithm
terminates (lines 20–22).

Similarity between trace events. Algorithm 2 requires the compu-
tation of the similarity between pairs of trace events. This can be obtained
by passing each trace event, consisting of a single snippet of code (i.e., the
expression on which a null dereference occurs, or a function invocation) and a
piece of natural language text describing the occurrence of control flow (e.g.
“taking the true branch”, “invoking a function call”), into the pretrained
large language model, Incoder [160], used in this study. Then, we obtain the
representation of the trace by obtaining the hidden state of the last layer
of the transformer model. This gives us a vector corresponding to a trace
event. After obtaining vectors of both trace events, we compute the cosine
similarity between them.

4.8.4 In-context learning

Constructing a demonstration. We apply prompt templates, which are
instantiated to be a sequence of tokens provided as input to the large language
model. The prompt templates are as follows:

98

Algorithm 2: The set cover strategy of selecting warnings, Wselected

from the training dataset warnings to maximize its coverage of the
trace events, Etest of a testing warning.
Inputs:

• trg traces ← the trace events of each training example. A list containing sets of
trace events.

• test trace ← the trace events in the testing instance. A set of trace events.

• similarity(a, b) ← a function that accepts two trace events and return a value
between 0.0 and 1.0

• sim ← similarity threshold to determine if two traces are a match

• previously seen ← a set of previously labelled warnings

function SetCover(trg traces, test trace, similarity, sim)
result set ← {} ▷ Tracks which trace events have been covered
result ← [] ▷ Tracks which warnings have been selected
while test trace \ result set ̸= {} do

add set ← {}
selected warning ← −1
remaining traces ← test trace \ result set ▷ trace events that have not been
covered
for warning, trg trace ←trg traces do

▷ Greedily pick the warning that covers the most of the remaining trace
events
if | remaining traces \ trg trace | < | remaining traces \ add set | then

selected warning ← warning
add set ← trg trace

end
if | remaining traces \ trg trace | = | remaining traces \ add set | then

if warning∈ previously seen then
selected warning ← warning
add set ← trg trace

end

end

end
if selected warning = -1 then

break ▷ Terminate if further progress is impossible
else

result set = result set ∪ add set
result = result :: selected warning

end

end
return result

99

Figure 4.8: Given a demonstration comprising of multiple training warnings
and their labels, in-context learning queries the large language model for the
label of the test instance.

warning(W) = ”code : “‘X“‘”
label(x) = ”warning : L.”
X is replaced with the content of the method on which the warning W

is reported. L is either “yes” or “no”, corresponding to the binary labels
indicating if the warning was a true or false alarm.

Inference. As seen in Figure 4.8, a demonstration is a sequence of
(warning(W 1

selected), label(l
1
selected),warning(W

2
selected),

label(l2selected), ...,warning(W
k
selected), label(l

k
selected),

warning(Wtest)), in which k training warnings are provided along with their
labels, and a single testing warning, Wtest, is provided. Once the templates
have been instantiated, they are concatenated together. The large language
model then completes the line of the provided “warning:” prefix. The pre-
dicted label is the prediction ltest.

Preprocessing. To maximize the amount of information provided, the
source code of each example provided is preprocessed to removed consecutive
whitespaces (e.g., the indentation at the start of each line). To fit the limited
budget of 2048 tokens, each example is truncated to contain the preceding
2048/(k + 1) tokens. Thus, k, the number of warnings selected for each
demonstration, influences the amount of information provided and the value
of k represents a trade-off between the number of warnings and the amount
of information given in each example. The inputs to the large language
model are tokenized by the tokenizer associated with the particular large
language model (i.e., used during their pretraining). The tokenizer uses byte

100

pair encoding [360], which reduces the size of the vocabulary by breaking up
uncommon long tokens into subtokens seen during training, mitigating the
issue of out-of-vocabulary tokens.

4.9 Experimental Setup

4.9.1 Dataset

Table 4.11: Statistics of the datasets used

Project #LoC # true alarms # false alarms
Ambry 192,565 10 28
Azure Maven 29,899 4 30
Plugin
Azure SDK 259,125 539 1,068
Nacos 200,053 12 50
total 681,642 565 1,176

As the dataset of Kharkar et al. [231] is not publicly available, we con-
structed a new dataset of Java programs based on the projects used in their
dataset. We omitted the Playwright project as it was not a Java project.
The other two projects used in the experiments of the Kharkar et al. [231]
study were internal projects that are not publicly available. Table 4.11 shows
the details of the dataset. All of these projects are under active development
and are widely used. We ran Infer on the revisions of the project indicated
in the Table. We labelled each warning produced by Infer. In total, we ob-
tained 565 true alarms and 1,176 false alarms. In our experiments, using a
75%/25% split, we obtain a training and testing dataset.

4.9.2 Baselines

To assess and understand the effectiveness of TrailMarker, we use the
following baseline approaches in our experiments:

CodeBERTa. Similar to Kharkar et al. [231], a pretrained CodeBERTa
model is finetuned on a fully labelled training dataset. The model is finetuned
for 5 epochs. Based on the validation dataset, the best-performing model is
selected.

CodeBERT. While the DeepInferEnhance approach of Kharkar et al. [231]
is not publicly available, we trained a CodeBERT model that is similar to
DeepInferEnhance. A classification head is added to the base CodeBERT

101

model (“microsoft/codebert-base”) and is finetuned on our fully labelled
training dataset. The model is finetuned for 5 epochs. Based on the val-
idation dataset, the best-performing model is selected.

Zero-shot. We use the Incoder model based on the description of the
zero-shot learning approach described by Kharkar et al. [231]. The GPT-
C [374] model used by Kharkar et al. is not publicly available. However, the
improvements we obtain using Incoder compared to the strawman baseline
are consistent with the improvements of GPT-C over the strawman. As
in any zero-shot approach, we do not train or finetune the model further.
Instead, the content of the source code where a warning is reported on is
provided to the pretrained model. We truncate the content up to the point
where the warning is reported and add an incomplete statement as a prompt
to the model. Next, we process the output generated by the Incoder model as
it generates code based on the context. This approach relies on the intuition
that many null dereference warnings are addressed by the addition of a null-
check before the dereference occurs. Similar to Kharkar et al. [231], we add
seven prefixes of possible null checks (e.g. if (, assert) as prompts and obtain
five completions considered by the language model to be the most likely
completions. If any of the completions produced by the model contains the
term null or NULL, then we consider that the model predicts the warning is
a true alarm.

Strawman. Prior research [220] has shown the importance of comparing
newly proposed approaches against a strawman approach. In this task, one
strawman approach simply predicts that all warnings are true alarms. In
other words, this is the true performance of the static analyzer. If a pro-
posed approach of postprocessing the warnings underperforms the strawman
approach, then it implies that the approach did not improve over the use of
Infer without any postprocessing.

TrailMarkerrandomselection. In an ablation analysis, to validate the utility
of using the set cover strategy of selecting warnings, we compare Trail-
Marker against a baseline that randomly selects warnings. In-context
learning usually randomly selects warnings [96].

TrailMarkervoting. In an ablation analysis, to validate the utility of
using in-context learning, we compare TrailMarker against a baseline
that produces its output based on voting strategy of the labelled warnings
selected by the set cover strategy.

TrailMarkermethodcontent In an ablation analysis, to validate the utility
of analyzing the traces in the path to select warnings for demonstration, we
compare TrailMarker against a baseline that selects warnings based on
the similarity of their method content where the warning was reported.

TrailMarkersimilartraces In an ablation analysis, to validate the utility

102

of using the set cover strategy of selecting warnings, we compare Trail-
Marker against a baseline that selects warnings based on warnings with
similar traces.

4.9.3 Evaluation Metrics

We use widely used, standard metrics in this study that were used in prior
studies [231, 220]. Due to prevalence of false alarms, the true warnings are
the minority class in our task. A true positive (TP) is a warning correctly
predicted to be a true warning. A false positive (FP) is a false alarm incor-
rectly predicted to be a true warning. We use the term false alarm to refer to
warning of a null dereference that cannot occur in reality. A false positive, on
the other hand, refers to a false alarm that is incorrectly determined to be a
true warning. A false negative (TN) is a true warning incorrectly determined
to be a false alarm.

We compute Precision and Recall as follows:

Precision = TP
TP+FP

Recall = TP
TP+FN

Next, we compute the harmonic mean of Precision and Recall, F1, which
captures the trade-off between Precision and Recall. F1 is used in place of
accuracy given an imbalanced dataset where the instances of majority class
occurs much more frequently than the minority clas. F1 is computed as
follows:

F1 = 2× Precision × Recall
Precision+Recall

Finally, an objective of this study is to reduce the number of training
warnings that require labels, which are costly to obtain in reality. Hence, we
report the number of labelled warnings required by the approaches.

4.9.4 Research Questions

Our experiments are guided by the following research questions:

RQ1. How effective is TrailMarker? We investigate to what extent is
TrailMarker able to distinguish true alarms from false alarms produced
by Infer. We compare TrailMarker against other approaches using pre-
trained models of code, as well as the trivial strawman baseline. We assess

103

Table 4.12: Experimental results showing the effectiveness of the approaches.
TrailMarker achives the highest F1 (87.1%) while requiring the least
number of labelled warnings (335).

Approach Precision Recall F1 # labels
Strawman 31.6% 100% 48.0% N/A
Zero-shot 31.7% 97.5% 47.9% 0 (0%)
CodeBERT 76.9% 89.8% 82.8% 867 (67%)
CodeBERTa 76.1% 88.3% 81.8% 867 (67%)
TrailMarker 85.8% 88.3% 87.1% 335 (25.7%)

the approaches based on the effectiveness in identifying false alarms as well
as its number of labelled training warnings required.

RQ2. Which components of TrailMarker contributes to its effec-
tiveness? The improvements by TrailMarker stems from its use of in-
context learning and the novel strategy of labelling only the training warnings
selected through solving the set cover problem. In this research question, we
analyze how each technique contributes to TrailMarker.

RQ3. How do the parameters of TrailMarker influence its effec-
tiveness? TrailMarker has several parameters that may affect its perfor-
mance, including the number of warnings provided in the demonstration as
well as the similarity threshold that determines if a particular trace matches
a trace from the test instance. We analyze how modifying the values of the
parameters influences effectiveness of TrailMarker.

4.10 Experimental Results

4.10.1 RQ1. On the effectiveness of TrailMarker

We evaluate the effectiveness of TrailMarker by comparing it against
the state-of-the-art approaches proposed by Kharkar et al. [231]. Table 4.12
shows the results of our experiments. In the study of Kharkar et al. [231],
the best performing model is the finetuned transformer-based model. In our
replication of the zero-shot approach, we find that it does not always out-
perform the strawman approach which always predicts that each warning is
a true warning (F1 of 48.0% vs 47.9%). While some false alarms are fil-
tered out, a similar number of true alarms are also removed. This suggests
that there may not be any advantages to deploying the zero-shot approach.
This result is consistent with the findings of the Kharkar et al. [231] paper,

104

Table 4.13: An ablation analysis using several baselines. Each baseline is
identical to TrailMarker except in one component. TrailMarkervoting

replaces the use of in-context learning with a voting strategy of predicting la-
bels. TrailMarkerrandomselection, TrailMarkermethodcontent, and Trail-
Markersimilartraces replace the the set cover strategy.

Approach Prec. Recall F1 # labels
TrailMarker 85.8% 88.3% 87.1% 335 (25.7%)
Voting 78.9% 21.9% 34.3% 335
Random selection 41.7% 32.8% 36.7% 841
Method content 76.7% 83.5% 79.9% 433
Similar traces 39.6% 73.7% 51.5% 154

where they found the increase in Precision (15.1%) is also accompanied by
a decrease in Recall of a similar magnitude (11.7%). We successfully repli-
cate the finetuned transformer-based approach using both CodeBERTa and
CodeBERT. After finetuning CodeBERTa, we obtain an F1 of 81.8%. On
finetuning CodeBERT, we obtained a stronger baseline performance of 82.8%
F1 on a precision of 76.9% and 89.8%. Both finetuned models outperform
the strawman approach.

Next, we find that TrailMarker outperforms the finetuned CodeBERT
model, improving on F1 by 4.3%. Most of the improvements come from
the increased precision, increasing from 76.9% to 85.8%, or an improvement
of 8.9%. Importantly, TrailMarker has an increased effectiveness while
requiring only a fraction of the training data used to finetune CodeBERT.
TrailMarker requires only 335 (or 25.7%) of the training dataset to be
labelled. In contrast, finetuning CodeBERT involves 975 training warnings,
with N warnings held out as a validation dataset used to determine when to
stop the finetuning.

Answer to RQ1:
TrailMarker outperforms the prior state-of-the-art approach, a
finetuned CodeBERT, by 4.3% in F1 while requiring just 25.7% of
the training dataset to be labelled.

4.10.2 RQ2. On the components of TrailMarker

We assess the two component of TrailMarker, as seen in Table 6.8.
TrailMarker uses in-context learning and a strategy of selecting examples
to label by viewing the coverage of the trace events as a set cover problem.

105

To determine if the in-context learning was essential to the technique, we
dropped the use of the large language model of code, and replaced it with a
nearest neighbor algorithm. This assesses if the strategy of selecting informa-
tive warnings was already enough for an effective detector. The performance
of TrailMarker decreases from 87.1% to just 34.3%, indicating that the
use of in-context learning was important.

Next, we assess if the set cover strategy of selecting warnings was helpful
to the approach and if the use of in-context learning was sufficient for high
effectiveness. We replaced the set cover strategy by random selection, as is
usually done in other studies using in-context learning [96]. We find that the
F1 decreases from 87.1% to just 36.7%. This shows that the set cover strat-
egy was essential to TrailMarker to select informative warnings from the
training dataset. The reduction in the number of labelled warnings required
from 841 to 335 (39.8%) also indicates the amount of effort required saved
through the use of TrailMarker.

Apart from randomly selecting warnings, another strategy to select ex-
amples would be to pick the warnings that have the most similar traces to the
traces from testing warning. However, we find that doing so would reduce
the F1 from 87.1% to just 51.5%. This validates our intuition guiding the set
cover strategy that maximizing information for every trace event is essential
to constructing a good demonstration for in-context learning.

While TrailMarker considers the similarity of traces to identify the
warnings to include in the demonstration, another strategy is to pick warnings
based on the similarity of the method content at the location of the warning.
In this strategy, the top k warnings reported at locations most similar to the
source code at the test warning location is selected. This causes a reduction
of 7.2% in F1 while increasing the number of required labelled warnings from
335 to 433. Overall, the decreased performance suggests that the use of traces
to identify informative examples was important.

Answer to RQ2: Both the use of in-context learning and the set cover
strategy of selecting labelled training warnings were essential to Trail-
Marker. Without in-context learning, F1 decreases from 87.1% to
83.0%. Without the set cover strategy, F1 decreases to 36.7%.

4.10.3 RQ3. On the parameters of TrailMarker

TrailMarker is parameterized by k, the number of labelled warnings to
include in a demonstration, and sim, the similarity threshold used to de-
termine if two traces are sufficiently similar to be considered a match. We

106

Table 4.14: Experimental results when varying the number of examples used
in a demonstration, k.

Number of examples, k Precision Recall F1 # labels
1 82.4% 85.4% 83.9% 227
3 85.8% 88.3% 87.1% 335 (25.7%)
5 78.1% 86.1% 81.9% 485 (37.3%)
7 76.1% 86.1% 80.8% 578 (44.4%)
10 79.2% 86.1% 82.5% 690 (53.0%)

Table 4.15: Experimental results when varying the similarity threshold, sim,
which controls for the selection of traces that match one another.

Similarity threshold,
sim

Precision Recall F1 # labels

0.95 83.2% 83.2% 83.2% 369 (28.4%)
0.9 85.8% 88.3% 87.1% 335 (25.7%)
0.8 82.9% 88.3% 85.5% 329 (25.3%)
0.7 83.8% 86.9% 85.3% 324 (24.9%)
0.6 83.0% 82.5% 82.8% 324 (24.9%)

investigate how the values of these parameters influence the effectiveness of
TrailMarker. Table 4.14 shows the experimental results of varying k. A
larger value of k would mean that more warnings are provided in the demon-
stration, but to fit the limited budget of 2048 input tokens to the large
language model, a greater number of tokens from each example would be
truncated. Moreover, including a larger k would mean that less informative
warnings would be provided as a demonstration, which may be a form of
noise that reduces the effectiveness of in-context learning. By increasing k,
both the Precision and Recall of TrailMarker decreased. Varying k from
5 to 10 does not change Recall. Overall, the F1 decreased from 87.1% down
to 80.8% while the number of labels required increased as k increases.

When varying sim, we found that F1 decreases as the value of sim de-
creases while the number of labelled warnings decreases. Decreasing sim
makes it more likely that a previously labelled example can be used to cover
the traces of a test instance, however, it also increases the possibility that
a poorly matched warning, which may be less informative, training warning
is used in the demonstration for in-context learning. F1 decreases down to
85.3% as sim is reduced to 0.7 and the number of labelled warnings needed
decreases slightly from 335 to 324. Overall, the results suggest that there are
only small amount of savings in terms of the number of labels to be gained

107

from decreasing sim while having a slight decrease in F1.

Answer to RQ3: Increasing k leads to both a lower level of effective-
ness and an increased number of labelled warnings required. Vary-
ing sim leads to a greater number of labelled warnings required while
slightly decreasing its effectiveness.

4.11 Discussion

4.11.1 Sample efficiency

Our experimental results indicates that TrailMarker performs effectively
given a small amount of labelled data. The experimental results validate
our design decisions. In particular, our experiments show that the use of
traces enable a small amount of labels compared to the use of the method
content as the warning context. Using the method content as the context,
TrailMarker requires 433 instances compared to just 335. Moreover, the
use of the set cover strategy for selecting warnings is a large improvement
over a random selection of warnings, reducing the number of labels required
from 841 to 335.

While we have analyzed TrailMarker and found is effective given a
small amount of data, we perform a more in-depth analysis of using Code-
BERT. We extract a training dataset of the training instances selected using
the set cover strategy, and finetuned CodeBERT only on these warnings. The
results are shown in Table . We find that the performance of CodeBERT
drops substantially. Its F1 decreases from 82.8% to 76.4%. In comparison,
as previously seen, TrailMarker achieves an F1 of 87.1% while using the
same limited number of training warnings.

4.11.2 Implications

The set cover strategy was motivated by the the insight that identifying
an infeasible path requires the checking if the path contains one impossible
trace event. In our experiments, we find that the set cover strategy improves
over both a random selection of warnings and the selection of the warnings
with the most similar traces. This validates our insight that obtaining some
information about each trace event is helpful.

Our insight that the false alarms are systematic and recurring allows us
to exploit already labelled warnings during the selection of warnings. To
understanding the effect of favouring already labelled warnings, we run one

108

more experiment where the set cover strategy no longer favours previously
labelled example. This substantially reduces the number of labelled warn-
ings required. If TrailMarker does not favour already labelled warnings,
the set cover strategy requires 415 labelled warnings. Moreover, F1 slightly
decreases from 87.1% to 85.6%, which suggests some benefits to effectiveness
from the reuse of already labelled warnings.

4.11.3 Qualitative analysis

We qualitatively analyze our results and discuss two case studies to better
understand the false alarms reported by Infer.

1 if (!TakeContinuationToken.tryParse(topContinuationToken,

outTakeContinuationToken)) {

2 String message = String.format("INVALID JSON in

continuation token %s for Top~Context",

3 topContinuationToken);

4 CosmosException dce = BridgeInternal.createCosmosException(

5 HttpConstants.StatusCodes.BADREQUEST, message);

6 return Flux.error(dce);

7 }

8
9 takeContinuationToken = outTakeContinuationToken.v;

10 if (takeContinuationToken.getTakeCount() > topCount) {

11 ...

Listing 4.3: One reason for false alarms appears to be Infer’s inability
to precisely reason about conditional nullness. In this example,
Infer reports that takeContinuationToken could be null. However, if
TakeContinuationToken.tryParse fails to set outTakeContinuationToken
to be non-null, the program would have taken the error path leading to
return Flux.error(dce)

Listing 4.3 shows an example where the static analyzer reports a false
alarm. The code uses a parser for a Domain Specific Language1. A possible
null pointer dereference of takeContinuationToken is reported on line 10.
The variable takeContinuationToken was assigned to outTakeContinuationToken.v
on line 9. However, had outTakeContinuationToken.v been null, the error
branch on lines 2–6 would have been taken as tryParse would have returned
null, and line 9 would not be reached. Our approach predicts the warning
to be a false alarm because the idiom (of tryParse returning false if the .v

1https://learn.microsoft.com/en-us/azure/cosmos-db/nosql/samples-java#

query-examples

109

https://learn.microsoft.com/en-us/azure/cosmos-db/nosql/samples-java##query-examples
https://learn.microsoft.com/en-us/azure/cosmos-db/nosql/samples-java##query-examples

field of its second parameter failed to be set to a non-null value) would have
been used multiple times (for parsing and processing each type of token).
As a warning is reported for each time this idiom was used, TrailMarker
exploits the recurrence of similar code context and requires only just one
such warning to be labelled.

public DnsRecordSetImpl withoutIPv6Address(String ipv6Address) {

this.recordSetRemoveInfo.aaaaRecords().add(new

AaaaRecord().withIpv6Address(ipv6Address));

return this;

}

Listing 4.4: The static analyzer reports that aaaaRecords() may return
null. However, this is extremely unlikely as recordSetRemoveInfo always
initializes a non-null aaaRecord when it is constructed. The use of traces
enables our approach to determine that this context is identical to Listing
4.5

Listing 4.4 shows the source code of one warning reported by the static
analyzer. The code is related to DNS records (“AAAA” and “SRV” are DNS
record types). While the warning flags aaaaRecords() as potentially return-
ing null, this is unlikely as the constructor used in instantiating recordSetRemoveInfo
sets the field to be non-null. This warning is similar to the warning in Listing
4.5. As TrailMarker considers the traces when selecting example warn-
ings, it selects Listing 4.5 and its label (“no”) as part of its demonstration.
Notice that both methods are short, have little overlap in the identifiers
used, and have different intents (one modifies a single field, the IP address
(ipv4Address), and the other modifies multiple fields such as the port and
priority). Determining that the relatedness of the warnings presents a chal-
lenge when considering only their source code. This validates our motivation
of considering the traces to select warnings for a demonstration.

public DnsRecordSetImpl withoutRecord(String target, int port, int

priority, int weight) {

this.recordSetRemoveInfo

.srvRecords()

.add(new SrvRecord().withTarget(target).withPort(port)

.withPriority(priority).withWeight(weight));

}

Listing 4.5: The static analyzer reports that srvRecords() may return
null. However, this is extremely unlikely as srvRecords is always initialized
to be non-null in the constructor invoked when recordSetRemoveInfo is
initialized.

110

4.11.4 Threats to Validity

Threats to External Validity. Our study considers only one large lan-
guage model of code and the results of our experiments may change depend-
ing on the choice of large language model used. However, Another possible
threat is related to the size of the dataset. Our dataset is small compared to
other datasets used for classification tasks as it is challenging and costly to
obtain labels for each warning. However, the dataset includes warnings from
multiple projects from different domains. As such, we believe that experi-
ments on the dataset should generalize to static analyzer warnings on other
projects.

Threats to Construct Validity. As we have used the same evaluation
metrics as prior studies, we share the same threats to construct validity
as prior work. These metrics are standard for evaluating approaches that
perform classification. As such, we believe that there are minimal threats to
construct validity.

4.12 Related Work

Null pointer dereferences. Null pointer dereferences are a common class
of bugs that can lead to severe consequences, including security weaknesses.
A range of static analyzers include rules and and detectors for finding po-
tential null pointer deferences. These tools include Infer [137] and Find-
Bugs/SpotBugs [75], among other approaches [135, 313, 78]. An empirical
analysis found that all tools fail to find the majority of null pointer exceptions
in the real world, while generating a large number of warnings [385]. This
indicates that these challenges are foundational, and provide motivation for
our research in filtering out the false alarms.

Many studies have performed retrospectives of the state-of-the-art for
various Software Engineering tasks. Some papers [441, 264, 273, 192, 173]
study the limitations of existing tools, and others [265, 334, 221] assess the
applicability of the tools when applied to situations to a different setting
from the original experiments. Our study not only uncovers limitations of
the Golden Features, but investigates the performance of the Golden Features
under different settings (a different warning oracle in our study).

Other studies have shown the need to carefully consider data used in
experiments [387, 54, 452, 218]. Similar to Allamanis et al. [54], we show that
data duplication may cause overly optimistic experimental results. Our work
is similar to the work of Tu et al. [387] in highlighting the problem of data
leakage, where information from the future is used by a classifier. Similar to

111

Kalliamvakou et al. [218], we suggest that researchers should be careful about
interpreting automatically mined data. Our analysis indicates that there may
be delays before developers inspect static analysis warnings. Related to this,
Zheng et al. [452] found that the status of many issues in Bugzilla may only
be changed after large delays. These delays have implications for heuristics
that are used to automatically infer labels from historical data (in our case:
if a warning is actionable). Kochhar et al. [238] investigated three types of
bias that affect datasets used to evaluate bug localization techniques.

Improving static analyzers. False alarms may be caused by bugs in the
implementation of the static analyzers. Some researchers propose techniques
for differential testing to detect bugs among static analyzers that report
warnings of the same types of bugs [402]. Other studies propose methods
of inspecting patches from open-source repositories for the manual design of
bug detection rules [298, 297].

4.13 Summary

In our replication study study, we show that the problem of detecting ac-
tionable warnings from Automatic Static Analysis Tools is far from solved.
In prior work, the strong performance of the “Golden Features” were con-
tributed by data leakage and data duplication issues.

Our study highlights the need for deeper study of the warning oracle to
determine ground-truth labels. By changing the reference revision, different
conclusions about performance of the Golden Features can be reached. Fur-
thermore, the oracle produce labels that human annotators and developers
of projects using static analysis tools may not agree with. It highlights the
need for community effort to build a reliable benchmark and to compare
newly proposed approaches with strawman baselines. A replication package
is provided at https://github.com/SA-retrospective/study.

Next, we propose a new approach of filtering false alarms from static an-
alyzers. Our proposed approach, TrailMarker, uses in-context learning
using a large language model of code and a strategy of selecting informative
warnings for use in the demonstrations for in-context learning. Unlike exist-
ing techniques, TrailMarker requires substantially fewer training warn-
ings while achieving a higher F1.

112

Chapter 5

(Dynamic Analysis + API)
Adversarial Specification
Mining

5.1 Overview

Researchers have proposed many techniques to automatically infer specifi-
cations and usage models, frequently in the form of Finite State Automata
(FSA). These models represents the possible transitions between program
states, and shows how to reach a state from another. These techniques re-
quire execution traces of the software as input. It is assumed that these
traces are representative of the software and that all correct behavior are re-
flected in these traces. Unfortunately, it was found that automatically mined
specifications are still inaccurate [255]. One reason for this may be that the
traces used to construct these specifications are not representative and are
not sufficiently diverse. Other researchers have proposed techniques [121, 99]
to determine if enough traces have been seen, but these techniques only con-
sider the traces that have already been seen and metrics are computed only
over the observed traces. They are unable to reason about execution traces
which are possible but are uncommon.

Test generation may be a way to generate new tests that specification
miners can learn from, and in several studies, researchers have used test
generation to mine specifications. Tautoko [126], for example, refines a FSA-
based specification by generating tests to cover missing transitions. Deep
Specification Miner (DSM) [252] leverages random test generation to pro-
duce a large number of traces to learn language models from. Still, as we
investigate later in this study, these techniques are not sufficient for produc-

113

ing highly accurate models. DSM relies on randomized test generation, and
even when provided with traces of uncommon usage, it is not able to leverage
these traces to produce more accurate models. Tautoko relies on methods
that reveal the state of an object to detect a state change, which may limit it
from working effectively for all types of objects. As such, we hypothesize that
existing test generation strategies do not completely address the problem of
uncommon usage patterns.

For ensuring that uncommon usage is represented, we propose a pro-
cess which we term adversarial specification mining. In the first phase, we
mine specifications from traces collected from running a set of test cases of
the software under test. In the second phase, test generation is guided to-
wards the discovery of counterexamples of the mined specifications. In the
third phase, a specification miner uses the new counterexamples to construct
an accurate model. We developed a prototype, DICE (Diversity through
Counter-Examples). DICE mines FSA models through an adversarial speci-
fication mining process. For the purpose of inferring a more accurate model,
DICE produces more example execution traces given an initial set of tempo-
ral specifications, aiming to find inaccuracies in them. This is done through a
search-based test generation process is adversarial to the input specifications,
searching for tests that exercise the software under test in ways that the in-
put specifications would not accept as correct usage. DICE contains two
main components: DICE-Tester, which drives test generation towards un-
common patterns, and DICE-Miner, which converts execution traces into
a Finite-State Automata (FSA) model. This is the first study that makes
use of search-based testing for mining specifications.

DICE-Tester uses a search-based testing framework, Evosuite[158], guid-
ing it towards the generation of counterexamples of the input specifications
by representing traces that will falsify the specifications as search goals. The
modifications made by DICE-Tester prevents the search algorithm in Evo-
suite from getting caught in a local optima, enabling Evosuite to efficiently
search for counterexamples. We use the DynaMOSA algorithm, introduced
in a previous study [311], to allow Evosuite to dynamically select objectives
instead of trying to achieve pareto optimality.

To characterize a set of traces, we first mine specifications as properties in
Linear Temporal Logic (LTL), a formalism of constraints on event-ordering,
that hold on the traces. Prior work has shown the relationship between
LTL and specification mining [142, 250, 85, 86, 428], and has applied data
mining techniques to infer temporal properties [251, 103]. Still, automati-
cally mined properties are typically not completely accurate. As such, this
motivates work on boosting the accuracy of identifying temporal properties.
Adversarial specification mining solves this problem by filtering out temporal

114

properties that can be invalidated. In this study, we use six LTL property
templates introduced in previous studies [250, 372, 85]. However, we propose
a reformulation of three properties, in which we use knowledge of method
purity derived from low-cost heuristics and static analysis, to reformulate
the properties, tackling shortcomings of the properties described in a recent
study [372]. In this work, we use the terms “pure” and “side-effect-free”
interchangeably.

As a result of guiding test generation to search for counterexamples, the
traces collected by DICE-Tester include uncommon, but correct, usage pat-
terns of the library. To infer an FSA model, we use the traces and temporal
properties in a FSA inference algorithm that we propose. We borrow insights
from prior work [128, 242], characterizing the states in an FSA based on the
methods that are enabled and which can be invoked from it. We make two
observations of limitations in existing model inference algorithms and mod-
ify our algorithm to address them. In our evaluation of DICE, we find that
the models produced by DICE outperform models from existing specification
miners, such as the state-of-the-art specification miner, Deep Specification
Miner [252]. Finally, we compare DICE and DSM by using the models they
infer in server fuzzing, and we find that the models learned by DICE helps
in increasing line and branch coverage on an FTP server.

5.2 Background

5.2.1 Specification Mining

K-tails and its variants. Many specification mining algorithms have been
proposed. To infer FSA, specification mining algorithms have to provide ab-
stractions over states, and determine if two traces result in the same state.
A classic algorithm that infers a Finite State Automaton from traces is the
k-tails algorithm [62]. The k-tails algorithm [62] first uses the input exe-
cution traces to build a Prefix Tree Acceptor (PTA). A PTA is a tree-like
deterministic finite automaton (DFA) where states are grouped and merged
based on the prefix that they share. This automaton is consistent with the
input traces and will accept all of them. Next, the algorithm merges states
that have the same sequences of invocations in the next k steps. The value
of the parameter, k, can vary. This trades off precision and recall; a small
value of k results in more spurious merges while a large value of k leads to
lower generality.

Studies have extended the traditional k-tails algorithm. These studies
often keep the first step of the original k-tails algorithm, using a PTA to

115

create a tree-like automaton that directly represents the input traces. These
algorithms thus inherit the assumptions made by k-tails in its first step,
that states with the same prefix are equivalent, typically only modifying
the second step of the k-tails algorithm, changing the equivalence criteria of
states before merging them.

Lo et al. [275] propose to mine temporal rules that hold over the input
traces and prevent any merge that will result in a violation of the rules.
Lorenzoli et al. [277] introduce GK-tail, which mines extended FSA where
transitions are labelled not only with method calls, but includes parameter
values. They introduce different merging criteria, including criteria that do
not require exact matches of the transitions, and allow for more general
conditions of the parameter values. Krka et al. [242] introduce multiple
algorithms in their work, including SEKT, which extends k-tails by adding
another condition for equivalence: States are merged only if they correspond
to the same abstract state, which are defined by the invariants extracted
by Daikon. Le et al. [252] propose a deep-learning based approach, Deep
Specification Miner (DSM), to determine if a set of states are equivalent.
They train a Recurrent Neural Network-based model to produce features
characterizing each state in a high-dimensional space. After clustering the
states in this space, states are merged according to the clusters they belong
to. Therefore, each cluster is mapped to a single state in the output FSA. In
this study, states are characterized by a feature vector built for each state,
which includes the likelihood of each possible transition label based on their
prefix.

State abstraction. While k-tails and its variants combine states based
on their prefixes and an equivalence criteria, other approaches have pro-
posed other methods to infer the states in an FSA. de Caso et al. [128] pro-
pose CONTRACTOR, which uses program invariants to characterize states
of an FSA based on the enabledness of methods. A method is enabled if
the invariants of the state hold. States are thus a combination of enabled
methods, where the pre-conditions of the methods are consistent with one
another. CONTRACTOR was proposed as a method to validate pre- and
post-conditions specifications by presenting a state machine abstraction of
the specifications. The finite state machine help in revealing potential in-
accuracies among the pre- and post-conditions. Constructing all possible
combinations of enabledness of the methods result in number of states ex-
ponential to the number of methods. To avoid this state space blowup,
CONTRACTOR models the dependencies between method enabledness to
reduce the number of states. Afterwards, only the states reachable from
the initial state are retained. Krka et al. [242] enhance the CONTRAC-
TOR model by proposing CONTRACTOR++, filtering invariants inferred

116

by Daikon [146] and including the output value of method invocations in the
labels of transitions.

Finally, approaches such as ADABU [127] and Tautoko [126] identify a
set of inspectors for each class. Inspector methods are heuristically identified
based on their return type (not void), a lack of parameters, and the lack of
side-effects. Abstract states are characterized by the return values of these
inspector methods, which are abstracted over to prevent a large number of
states. For example, an integer return value is abstracted into one of three
abstract values based on its relative value to 0 (either >0, = 0, < 0). These
approaches may not perform well in the absence of inspectors.

Temporal properties. Several techniques have shown the use of tem-
poral properties in inferring FSA from traces [142, 250, 85, 86, 428]. As
mentioned earlier, Lo et al. [275] use temporal properties to prevent erro-
neous merges. Data mining has been used for the identification of these
rules; however, the number of false positives of inferred rules can be high,
motivating the need for better ways to identify temporal rules [380]. Le et
al. [251] have studied the use of different interestingness measures, while Cao
et al. [103] proposed the use of learning-to-rank algorithms composing differ-
ent interestingness measures to identify accurate properties. Le et al. [250]
have also built a meta-model, SpecForge, over existing algorithms in order
to decompose mined FSAs into temporal rules, and recompose selected ones
back into an FSA. In recent work, Sun et al. [372] used crowdsourcing for
identifying correct temporal properties, however, this process was not done
automatically, relying on human annotators.

5.2.2 Test Generation for Specification Mining

Test generation for specification mining have been studied previously. Xie
and Notkin [422] propose a feedback loop between specification inference and
test generation. However, there is no publicly available version of a tool that
implements this strategy and this strategy was not empirically evaluated.
Tautoko [126] uses test generation to further refine a specification. Tautoko
mutates an initial test suite and a given FSA model to find missing transitions
in the FSA model. DSM [252] uses Randoop [306], which performs random-
ized test generation, and traces are collected from the test cases generated
to train a Recurrent Neural Network on.

The above studies use randomized testing or mutate an existing test suite
for mining specifications. These test generation techniques do not systemat-
ically diversify the test suite or use any strategy to ensure sufficient diversity
in the test cases.

117

5.2.3 Search-based test generation

In this study, we use search-based test generation to create test cases to learn
specifications from. The generation of test cases are guided towards search
goals that we define. We opt to use a search-based test generation tool,
Evosuite [158]. Evosuite is a unit test generation tool for Java that uses a
evolutionary approach to search for high-quality test cases that fulfils a spec-
ified set of coverage criteria. Evosuite evolves a population of tests through
multiple generations, and in each generation, discards tests that are less fit
while mutating surviving tests. This acts as a search process that iteratively
improve the test cases to cover the search objectives. Many optimizations
have been proposed and implemented in Evosuite since its inception [67, 346].
Evosuite is automated and does not require any manually written tests as
input. Developers can extend the search algorithm or add new coverage and
fitness goals. Evosuite comes with a variety of coverage goals, ranging from
structural coverage to method coverage goals. Structural coverage goals in-
clude line coverage and branch coverage, while method coverage goals guide
Evosuite towards tests that invoke every constructor and method of the class.
We select Evosuite instead of alternative tools due to its strong performance
among state-of-the-art test generation tools [289].

Multiple objective formulation. In the past, test case generation
focused on optimising for various coverage criteria independently of each
other. Recently, Rojas et al. [345] generated tests while optimising multiple
objectives simultaneously, aggregating fitness functions through a weighted
sum. However, other studies show the limitations of aggregating multiple
fitness goals as a single measure. For example, one such limitation is that
the weighted sum aggregation assumes that each fitness goal is independent
of each other, which is not true of structural coverage goals (for example,
conditional dependencies mean that line and branch coverage goals may
depend on one another). Instead of optimizing tests towards a single ag-
gregated fitness value, other researchers have applied multi-objective search
algorithms [310]. These algorithms presents several advantages, including
preventing the search process from getting stuck in a local minima, and can
generate high quality test cases [310]. Indeed, Gay [167] showed that optimis-
ing for multiple objectives at the same time instead of enumerating through
the objectives one by one lead to test suites that better detect faults.

There are problems specific to test generation when formulated as a multi-
objective search. When faced with a large number of search goals, it is im-
possible to rank many of the individual test cases when considering all of
the goals. Due to this, the search process may degrade to become essentially
random [310]. Another problem is that a test case that may be fit, when con-

118

Figure 5.1: Example of several objective function vectors of test cases that
are non-dominated. There may be more than a few non-dominated test cases
and each of them have an equal chance to get included. We use DynaMOSA
to address this problem.

sidering every search goal, but may not fully cover any individual search goal.
In other words, although the multi-objective formulation of test generation
may produce test cases that are pareto-optimal, with the tests representing
optimal trade-offs between fitness goals, it may not produce a resulting test
suite that completely covers an objective. This is detrimental to our study
as we require test cases that contradict a temporal specification, instead of
just being close to covering it, regardless of the number of other fitness goals
the tests are close to covering. Such a set of test cases will provide us with no
value. For example, given several test cases which are scored as the vectors
shown in Figure 5.1, all the tests are non-dominated (each test is no worse
than another with respect to at least one search goal). In this example, the
individual values in the vector represent the distance for a particular search
goal. A lower distance is better and a distance of 0.0 indicate that the test
case covers that goal. While objective A is covered by test T1 and objective
C by T4, objective B is not covered by any test. As none of the tests domi-
nate each other, they have equal probability of getting selected for the next
generation. Objective B is a difficult objective to cover. In our study, it is
important that we retain and evolve test case T5 in the next generation as
it is closest to covering objective B.

To address these problems, the DynaMOSAmulti-objective algorithm [311]
has been proposed for Evosuite. The DynaMOSA algorithm, at a high-level,
is given in Algorithm 3. It evolves an initial randomly generated popula-
tion of tests through multiple generations. Given a set of coverage goals,
the algorithm evolves a population of test cases through the usual mutation
and cross-over operators (line 5). This gives us the offspring, Q, a set of
test cases containing new tests as well as retaining some test cases from the
previous generation. The test cases in Q are ranked and binned into a list of
fronts, which partitions Q. The first front contains the best test case with

119

Algorithm 3: Simplified version of the DynaMOSA algorithm.
Given a program, P , and the set of coverage goals, C, DynaMOSA
constructs a test suite, TS.

Input: A set of coverage goals C.
Input: Program, P .
Input: Population Size M .
Output: A test suite, TS, which is a collection of test cases

1 D = GetControlDependencies(P)
2 P = RandomPopulation();
3 A = InitArchive(P, C);
4 C’ = UpdateCurrentGoals(A, C, D);
5 while Search budget is not expanded do
6 Q = GenerateOffspring(P);
7 P = {};
8 A = UpdateArchive(A, Q, C’);
9 C’ = UpdateCurrentGoals(A, C’, D);

10 fronts = Rank(Q);
11 for front ← fronts do
12 if P.size >= M then
13 break;
14 end
15 for TC ← fronts do
16 if P.size + 1 > M then
17 break;
18 end
19 AddToPopulation(P, TC);

20 end

21 end

22 end
23 TS = A.getTestCases();

120

respect to each coverage goal. After the first front, each subsequent front
ranks the remaining test cases by their pareto-optimality. The length (num-
ber of statements) of the test case is used as a tiebreaker when two test cases
have the same score, preferring shorter test cases which is more likely to run
in shorter time. Then, the top ranked test cases form the population of the
next generation and the offspring of this population are generated, and the
process continues until the search budget is exhausted.

Archive. DynaMOSA maintains an archive, A (used in lines 8 and 23),
similar to other search-based test generation strategies. During the test gen-
eration process, the archive stores test cases covering previously uncovered
goals and provides a way to retrieve the best test case for a particular search
goal. The archive accounts for accidental coverage; a goal may be collaterally
covered by a previous search for another set of goals. When a test case for
a particular search goal is stored in the archive, this search goal is removed
from the current set of goals (line 8). As a consequence, the current set of
search goals contains only the uncovered goals and focuses the search process
on them. The archive is updated whenever the search goal is covered, but
also when a test case that is shorter than the current test and covers the
same goal. At the end of the test generation process, the test cases in the
archive are retrieved and are the output test suite (line 22).

1 if (functionA())) { // Initially targeted as it does not depend on another line

2 if (functionB()) { // Targeted only after line 1 is covered

3 functionC(); // Targeted only after lines 1 and 2 are covered

4 }

5 } else {

6 functionD(); // Targeted only after line 1 is covered

7 }

Figure 5.2: DynaMOSA uses the control dependencies to dynamically target
only search goals that can be covered. Line 3 is targeted only after lines 1
and 2 are covered. After lines 1 and 2 are covered, line 3 is added to the
current set of goals.

Dynamic selection of targets. The key feature of DynaMOSA is
that it allows Evosuite to dynamically select targets based on the control
dependencies between one another. Initially, only a subset of the coverage
goals that are independent of other goals are targeted. Dynamically selecting
targets allows Evosuite to be more efficient when trying to cover multiple
structural goals.

For example, statements within branches require the if-statement to be
covered first, therefore these statements are initially not targeted by Evosuite
until the if-statement has been covered. If the if-statement has not been

121

covered, then these goals cannot be covered. The fitness, of a test with
respect to these goals is, therefore, always worse than the fitness of the test
with respect to goal of covering the if-statement. In the example shown in
Figure 5.2 statement 3 cannot be covered before both statements 1 and 2
are covered. If a test case has not covered statement 1, it is not necessary
to consider the fitness value of a test with respect to the search goal of
covering statement 3. Therefore, these uncoverable goals do not contribute
meaningfully to the ranking.

Evosuite first computes a control dependency graph of the program before
generating tests and uses information from the control dependency graph to
update the current set of search goals. As described earlier, before ranking
test cases by their pareto-optimality, DynaMOSA first ensures that tests
that are closest to a targeted search goal always survive and are retained in
the next generation, even if these tests are not pareto-optimal with respect
to the other goals. This makes it more probable for Evosuite to progress
towards individual goals, including those that may be difficult to cover. This
particular feature is the reason why we build DICE on top of the DynaMOSA
strategy.

In Algorithm 3, the dynamic selection of targets can be seen in lines 4 and
9, in which the archive is used to determine which goals have been covered.
DynaMOSA uses the control dependencies, D, to determine the initial set of
targets in line 4. As the goals are covered, it adds the goals that depend on
the covered goals in line 8 to the currently targeted set of goals, C ′.

5.3 The DICE Approach

5.3.1 Overview

We show a high-level overview of the approach used by DICE in Figure 5.3.
DICE consists of 2 main components: DICE-Tester and DICE-Miner. From
a high-level perspective, DICE takes a class under test and an initial test
suite as input, producing a FSA model as output. DICE first exercises the
test suite, collecting the execution traces. This is followed by three phases:

• Mining Purity-Aware Temporal Specification. First, temporal
specifications, in the form of LTL temporal properties, are mined from
these traces while being aware of method purity.

• Adversarial Test Generation. The temporal specifications are fed
into DICE-Tester and are converted into search goals for the test gener-
ation process. DICE-Tester is adversarial to the temporal specifications

122

Initial
test
suite

Traces

Temporal
Specifications

DICE-
Tester

New TracesDICE-MinerOutput FSA

DICE

Figure 5.3: High-level overview of DICE

and refines them by invalidating incorrect properties, while generating
new test cases and collecting the execution traces of these test cases.

• FSA Inference. Finally, the new traces and temporal specifications,
with invalid specifications now removed, are input into DICE-Miner,
which will infer an FSA. DICE-Miner avoids weaknesses of existing
algorithms by using method purity and the temporal specifications to
prevent over-generalisation.

5.3.2 Mining Purity-Aware Temporal Specification

The test generation phase of the adversarial specification mining process
requires a set of specifications. As such, the first phase of DICE is to mine
temporal specifications over the input traces collected from the input test
suite. A formalism over constraints ordering events is Linear Temporal Logic
(LTL) [327, 202]. Like previous studies in specification mining [142, 250, 85,
86, 428], we use LTL to specify constraints over events. In this work, events
are specifically method invocations of a class and the following subset of LTL
connectives are used in the property templates:

1. X ϕ means that ϕ has to hold at the neXt state.

2. F ϕ means that ϕ has to hold at some Future state.

123

3. G ϕ means that ϕ has to hold Globally at all future states.

4. ρ U ϕ is ‘Until’, which means that ϕ has to hold at some point. ρ has
to hold until ϕ holds.

5. ρ W ϕ is ‘Weak until’, which means that ρ has to hold until ϕ holds.
If ϕ never becomes true, ρ has to hold forever.

Six LTL property templates are commonly used in previous studies. The
six LTL property templates are described as follows:

1. AF(a, b): an occurrence of event a must be eventually followed by
event b. In LTL, this rule is G(a→ XFb)

2. NF(a, b): an occurrence of event a is never followed by event b. In
LTL, this rule is G(a→ XG(¬b))

3. AP(a, b): an occurrence of event a must be preceded by event b. In
LTL, this rule is ¬aWb

4. AIF(a, b): an occurrence of event a be immediately followed event b.
In LTL, this rule is G(a→ b)

5. NIF(a, b): an occurrence of event a is never immediately followed by
event b. In LTL, this rule is G(a→ X(¬b))

6. AIP(a, b): an occurrence of event a must be immediately preceded by
event b. In LTL, this rule is F (a)→ (¬a U(b ∧Xa))

The last three properties, introduced by Beschastnikh et al. [85] and Le
et al. [250], are ”immediately” variants of the first three properties and have
been shown to be useful for describing FSAs. In this work, we use the
LTL property templates from previous work which only consider 2 events.
Later, in Section 5.5.4 (Qualitative Evaluation), we note some limitations of
considering only 2 events at a time. We also note that the primary objective
of this study is to infer automata models, and the LTL specifications are only
later used to guide the testing process and the inference of the models.

While we use the same LTL property templates studied by Beschastnikh
et al. [85] and Le et al. [250], in our work, we adapt three of them. Recently,
Sun et al. [372] pointed out shortcomings of these patterns when using
crowdsourcing to identify temporal specifications. AIP(a, b) and AIF(a,
b), for example, can never be true since a method can always be invoked
between any pair of events a and b. To address these shortcoming and to
retain the benefits of these properties in describing temporal constraints, we

124

observe that side-effect-free method invocations can never affect the state of
a software system, and as such, can be abstracted away in the description
of the ”immediately” variants of the LTL properties. We reformulate these
variants to incorporate knowledge of side-effect free methods:

1. AIF(a, b): an occurrence of event a must be immediately followed by
an occurrence of event b , ignoring all occurrence of side-effect-free
events. In LTL, this rule is G(a → X ((p1 ∨ p2 ∨ p3 ∨ · · · ∨ pn) U b),
where p1, p2,. . . ,pn are side-effect free events, known ahead of time.

2. NIF(a, b): an occurrence of event a is never immediately followed by
event b, ignoring the occurrence of side-effect-free events. In LTL, this
rule is G(a→ X(p1 ∨ p2 ∨ p3 ∨ · · · ∨ pn) U ¬b), where p1, p2,. . . ,pn are
side-effect free events, known ahead of time.

3. AIP(a, b): an occurrence of event a must be immediately preceded by
event b, ignoring the occurrence of side-effect-free events. In LTL, this
rule is F (a) → (¬a U(b ∧ X((p1 ∨ p2 ∨ p3 ∨ · · · ∨ pn) Ua))) where p1,
p2,. . . ,pn are side-effect free events, known ahead of time.

To identify side-effect free methods of a class, we use a lightweight static
analysis [200] and a heuristic based on the method name (we consider names
starting with ”is-” or ”has-” to be getters, which are typically pure). While
static analysis is used to partially accomplish this, it is not necessary for our
approach. When neither source code nor bytecode is available, a developer
can annotate the purity of relevant events by hand.

To mine LTL specifications, we use a solution similar to the linear miner
algorithm described by Lemieux et al. [257]. However, as we are only inter-
ested in 2-event rules and we restrict ourselves to a few properties, we do not
face the challenges that they solve. We use a simple way of iterating over
the traces and try to use each trace to falsify the LTL specifications.

In the work by Lemieux et al. [257], support and confidence thresholds
are needed. The support counts the number of times while iterating through
the traces where a property can be falsified, but is not. The confidence of
a property is the ratio of support of a property to the number of times the
property can be falsified. When the number of times the property can be
falsified is 0, the confidence is defined to be 1.

For our work, as we are interested only in properties that are never falsi-
fied, thus in our implementation, we require a confidence of 1.0 for the rules
that we mine. Moreover, we only require a support of 1 to admit the tem-
poral property. In other words, as long as a property holds on a trace, and
we do not encounter any trace that contradicts the property, we admit the
property.

125

5.3.3 Adversarial Test Generation

The specification mining process adversarially generates test cases against
an input specification, aiming to invalidate the specification. To this end,
DICE converts the temporal specifications mined from the previous phase
into search goals for search-based testing. The objective of this phase is to
allow for the discovery of test cases that produce traces that are uncommon
and not represented in the initial test suite. To do so, the temporal spec-
ifications are converted into fitness goals for test generation. DICE-Tester
generates test cases using Evosuite1 with the addition of the new fitness goals
and coverage criteria.

A fitness cost is computed for each fitness goal for each test case that is
generated. A single test case may contain multiple object instances of the
class of interest and we consider a single trace to be the methods invoked on
a single object instance. Therefore, each test may produce multiple traces,
one for each object instance in the test case. The fitness of a test, T , with
respect to a fitness goal, G, is determined by the trace with the best fitness.

Fitness(T,G) = min(Fitness(tr,G)) , tr ∈ traces(T)

We define a new coverage criterion,
TemporalPropertyCounterExample(PropertyType, EventA, EventB), based
on the LTL properties we have mined. An temporal property is covered if a
trace contains a sequence of method invocations that is a counterexample of
it. In this formulation, DICE-Tester creates a fitness goal for each temporal
property we have mined, guiding Evosuite to produce counterexamples for
them. With respect to a single fitness goal, a test is fitter than another if
the fitness cost of the test is lower than the other. A goal is covered when
the fitness cost is 0, i.e., when a counterexample trace is produced when
exercising the test.

When the property is not covered, we aim to guide the test generation
process towards a test covering the property. Generally, a trace is scored rel-
ative to the number of modifications required to transform the trace to, first,
a trace supporting the temporal property, then, to falsifying the temporal
property. This will push test generation towards test cases that first support
the property, from which they may be mutated towards counterexamples
afterwards.

To this end, we grant a better fitness cost when the trace contains one
method of a ”never” property (NF, NIF) and when the trace contains both

1Evosuite version 1.0.6 was used in this study

126

methods of an ”always” property (AP, AIP, AF, AIF). To summarize, for a
temporal property AP(A,B) or AIP(A,B), we assign fitness costs to traces
such that the following ordering holds:

1. Traces falsifying the temporal property (best)

2. Traces supporting the temporal property

3. Traces containing at least one of the events, A or B, but neither sup-
porting or falsifying the temporal property.

4. Traces where none of A and B are present (worst)

The above ordering guides our design of the fitness functions for all prop-
erty types. Using the above ordering, the traces are partitioned into 4 subsets
for the ”always” properties, AP, AIP, AF, and AIF. In our implementation,
as Evosuite expects a numerical cost, we evenly partition the range [0, 1] into
the 4 subsets. Formally, each trace, tr, is assigned a cost for the search goal
targeting a property, p, relating two events, A and B, based on the following
conditions:

Fitness(tr, p) =

0.0 if falsifies(tr, p)

0.33 if !falsifies(tr, p) and supports(tr, p)

0.66 if !falsifies(tr, p) and !supports(tr, p)

and (contains(tr, A) or contains(tr, B))

1.0 otherwise

.

To provide some intuition, we use an example using a property AP(A,
B), event B must precede event A. A trace in which event B does not precede
event A, e.g. [X, Y, A], will falsify the property. Given a trace [B, X, Y, A],
which supports the property, the trace is one transformation away, in which
the method call B is removed, away from falsifying the property. For another
example, using a trace [B, X, Y]. This trace is one edit from supporting the
property. The event A is added in any of the three positions (between B
and X, between X and Y, after Y). After this, the modified trace is one edit
from falsifying the property AP(A, B). As it took two edits, the trace [B,
X, Y] is less fit than the trace [B, X, Y, A] which only requires one edit.
Observe that a trace may containing sequence of events that both supports
and falsifies a property. A trace [A, B, A] has both the sequence [A], which
falsifies AP(A,B), and [B, A], which supports AP(A,B). According to our
fitness formulation, this trace will obtain a fitness cost of 0, since it falsifies
the property.

127

A trace without both events A and B, e.g. [X, Y], has the worst fitness
cost for the AP(A, B) search goal. This may be contrary to intuition, since a
trace without any of the property’s events may resemble a trace that has a few
edits away from falsifying the property. For example, the trace [X, Y] is only
1 edit from falsifying the property directly, e.g. [X, Y] to [X, Y, A]. There are
numerous such traces among the entire test population. An objective of our
fitness functions is to focus the search on properties that are hard to falsify.
If the property can be easily covered by having such a trace transformed to a
counterexample trace, there would be numerous such cases. It is very likely
that the search goal can be covered as part of collateral coverage when the
entire test population evolves to satisfy other coverage goals. On the other
hand, temporal properties that are more difficult to cover will benefit from
the focused search.

For example, consider the property AP(isEmpty:false, push:true) for
a hypothetical data structure, which holds if the data structure cannot report
that it is not empty unless the push method has been successfully invoked.
A counterexample trace can be constructed, e.g. [<init>, pushAll:true,
isEmpty:false], by using an alternative method (pushAll:true) to in-
sert an item into the data structure. From a trace supporting the event,
e.g. [<init>, push:true, isEmpty:false], a single transformation from
push:true to pushAll:true will lead to a trace falsifying the property. On
the other hand, given an initial trace [<init>, get:false, clearAllElements]
that does not contain either event in the property, if we try to falsify the
property by adding a isEmpty method invocation, instead of adding the
isEmpty:false event, the event isEmpty:true added to the trace. It is
not possible to arbitrarily add an isEmpty:false event into any position
in a trace. The pushAll:true event has to be successfully added first. As
a result, a randomly generated trace without the isEmpty:true event, e.g.
[<init>, get:false, clearAllElements], is much further than a trace sup-
porting the property, e.g. [<init>, push:true, isEmpty:false].

For a temporal property AF(A,B), a trace is scored similarly. Observe
that the fitness cost of AF(A,B) can be computed by using the same scoring
rules for AP(B, A) and reversing the trace. Likewise, AIF(A,B) can be
computed using AIP(B, A) by reversing the trace.

For a NF property, NF(A,B), the same ordering of traces described above
applies. A trace supporting the property is a trace where A is present, but
B does not appear after A. In the ”immediately” variation of NF, NIF, the
fitness functions can be computed to differentiate individual traces from one
another with higher granularity, while still respecting the ordering of traces.
In NIF, the fitness cost reflects how closely positioned the two events in the
property are within the trace. A better fitness cost is returned if both events

128

are included in the trace, and we score the fitness value based on how far
apart the method invocations are. This will push test generation towards
tests where the events are located nearer to each other. The fitness cost
of a trace, tr, with respect to the fitness goal of the property NIF(A,B) is
computed as shown in Algorithm 4.

Algorithm 4 takes a single trace, consisting of a sequence of events, as
input and returns the fitness score of this trace. The fitness score ranges from
0 to 1, and a score of 0 indicates the maximum fitness value while a score
of 1 indicates that the trace has no relevance for this goal. A single pass is
made through the sequence of events to look for instances of event A (lines
5-19). A counter (line 4) to measure the distance between a pair of events
A and B is updated in this pass. Each time we reach an instance of event
A, we record its position and reset the counter (lines 7,8). Once an instance
of event A has been found (line 10), we increase the counter for each impure
(i.e. not side-effect free) event we pass (line 11-12). Whenever we reach an
instance of event B, we update the minimum distance between the last seen
instance of A and B if the counter is less than the previous minimum distance
between A and B (line 14-16). Finally, the fitness score is computed from
the minimum distance. If the distance is 0, then the goal is covered and 0 is
output as the fitness score (line 20-22). Otherwise, the ratio of the distance
to the length of trace is used as the fitness score (line 23-27).

To conclude, the satisfaction criterion of each TemporalPropertyCoun-
terExample depends on the property type. Effectively, if a test contains a
trace with a fitness score of 0, then the test is a counterexample. It may be
interpreted as follows:

• AF(a,b): a test is a counterexample of AF(a, b) if it contains a trace
with an invocation of a that is not (immediately) followed by b.

• NF(a,b): a test is a counterexample of NF(a, b) if it contains a trace
with an invocation of a that is (immediately) followed by b.

• AP(a,b): a test is a counterexample of AP(a, b) if it contains a trace
with an invocation of b that is not (immediately) preceded by a.

As a consequence of including our new fitness goals into Evosuite, there
are a large number of search objectives (one for each temporal property we
have mined). As described in Section 5.2, this hampers the ability of Evosuite
to search effectively for good test cases that will cover the uncovered goals.
The large number of search goals causes the search process to be similar to a
random search process, reducing its performance. To manage the large set of
goals, we use the DynaMOSA search algorithm as discussed earlier in Section

129

Algorithm 4: Fitness computation of a trace, tr, with respect to
TemporalPropertyCounterExample(NIF, A, B)

Input: A trace, tr. A fitness goal for a NIF property, NIF (A,B).
Output: Fitness cost of the trace. 0 means that the property is

covered
1 eventAPosition = -1;
2 i = 0;
3 distance = 999;
4 counter = 0;
5 for event ← tr do
6 if event = A then
7 eventAPosition = i;
8 counter = 0;

9 else
10 if eventAPosition ̸= −1 then
11 if !isPure(event) then
12 counter += 1;
13 end
14 if event = B then
15 distance = Min(counter, distance);
16 end

17 end

18 end

19 end
20 if distance = 0 then
21 return 0
22 else
23 if eventAPosition = -1 then

/* Event A does not appear, trace is irrelevant to

this goal */

24 return 1

25 else
26 return distance / (length(tr))
27 end

28 end

130

Thus, we use the DynaMOSA search algorithm in DICE-Tester with three
modifications. To further boost the efficiency of selecting tests, our first
modification is to model the dependencies between the coverage goals beyond
structural goals to allow Evosuite to dynamically select goals more effectively.
While the DynaMOSA algorithm already models the dependency between
structural coverage goals based on control dependencies, it does not model
other forms of dependencies, including usage dependencies between methods.
It is unable to perform any reasoning about method coverage goals, which
DICE-Tester is able to constrain using the LTL properties we have mined
previously.

The dependency tree is constructed prior to the start of the search pro-
cess. At this stage, we assume that every mined LTL properties is true. This
dependency tree relates method coverage goals with the
TemporalPropertyCounterExample coverage goals that we introduced in
this work. A method coverage goal, Method(A), is covered when a test case
invokes the method A at least once. We add dependencies based on the
following rules:

• Given AP(A, B), DICE-Tester adds a dependency where B depends on
A. i.e. Method(A) should be covered before Method(B)

• Given NF(A, B) or NIF(A,B), DICE-Tester adds a dependency where
Method(A) should be covered before TemporalPropertyCounterExample(NF,
A, B) or
TemporalPropertyCounterExample(NIF, A, B).

• Given AF(A, B) or AIF(A,B), DICE-Tester adds a dependency where
Method(A)should be covered before TemporalPropertyCounterExample(AF,
A, B) or TemporalPropertyCounterExample(AIF, A, B).

• Given AP(A, B) or AIP(A,B), DICE-Tester adds a dependency where
Method(B) should be covered before TemporalPropertyCounterExample(AP,
A, B) or TemporalPropertyCounterExample(AIP, A, B).

For example, given NF(StringTokenizer, nextToken), for its corre-
sponding goal TemporalPropertyCounterExample(NF, StringTokenizer,

nextToken) to be satisfied, the method coverage goal, Method(StringTokenizer),
must be satisfied first. If this method coverage goal is not satisfied, then it is
impossible for the test to produce a counterexample and this goal is always
completely uncovered for any test case. Thus, it will not contribute mean-
ingfully to the ranking of tests maintained by DynaMOSA [158]. Constraints
about the ordering of methods provided by the set of AP temporal proper-
ties also allow us to add dependencies between a pair of method coverage

131

Uncovered,
not currently

targeted

Uncovered,
currently
targeted

Covered

Abandoned

Figure 5.4: Lifecycle of a search goal. At the end of the search process, a
goal is either covered or abandoned.

goals. For another example, given AP(initVerify,update), we add a de-
pendency between Method(update) and Method(initVerify), requiring an
invocation of initVerify before Evosuite adds update to the set of currently
targeted goals. While other coverage goals may return a fitness value be-
tween 0 and 1, the fitness of a test with respect to a method coverage goal is
binary, either the goal is covered or it is not. Therefore, if the prerequisites
are not met, a method coverage goal is always uncovered for every test case.

Our second modification is made for the lifecycle of a search goal. In
the DynaMOSA algorithm, goals are in one of 3 states. A goal is either a)
covered, b) uncovered but not in the current set of goals, or is c) uncovered
but in the current set of goals. In DICE-Tester, we added a new state in
this lifecycle. Thus, a goal can be in one of 4 states: covered, uncovered
but in the current set of goals, uncovered but not in the current set of goals,
or abandoned (see Figure 5.4). We refer to a goal as abandoned if it is not
covered but we have removed it from the current set of goals.

The addition of this state is motivated by the fact that at least some of
the mined properties are true. As these properties are true, it is impossible
to generate a test case that is a counterexample to it. Consequently, goals
representing counterexamples to these properties can never be covered, and
this has detrimental effects on the search process. Such goals will continue
to contribute to the preference ranking used in Evosuite. This has several
implications. Test cases that are closest to and ”almost covering” the goal
will always remain in our population, although they will not contribute to
producing interesting test cases. The search may be weighted towards tests
that have a higher chance of covering these goals, even though these goals
cannot be covered. This may potentially prevent other test cases (that may
lead to a counterexample of another property) from getting added to the

132

population. Furthermore, these goals have no meaningful contribution to
the ranking process when weighing the pareto-optimality of the other test
cases. This slows down the search process, wasting time to compute the
fitness of tests with respect to these goals.

Hence, we add the abandoned state in the lifecycle of a goal. To enable
goals to transit to this state, DICE-Tester tracks the age of each goal. Cov-
ered goals and goals that are not in the set of currently targeted goals do not
have an age. When an uncovered goal moves into the set of targeted goals,
its age is initialized to 0. We increment the age of a goal for each generation
where DICE-Tester does not find a test case that covers it. Once the age of a
goal has exceeded a threshold, we abandon the goal by removing it from the
set of targets. In our experiments, we set this threshold to 100 generations.
Once abandoned, goals can never be restored back to the set of targets.

Our third modification is to reset the population of the tests once it
has gotten stuck. While the first two modifications allow Evosuite to find
more counterexamples, we observed that the search can still get stuck in a
local optima. Finally, we bypass this problem by resetting the population
of tests, and in effect restarting the search, once 100 generations has passed
without DICE-Tester finding a test that is a counterexample to any goal.
We did not thoroughly empirically evaluate the threshold for abandoning a
goal or resetting the population, however, we noticed in our experiments that
changing these parameters do not affect the results much, provided that they
are not too small.

With these three modifications, DICE-Tester is able to guide test gener-
ation towards finding counterexamples to spuriously mined LTL properties,
to invalidate them. Temporal properties with at least one counterexample
are removed.

Next, we collect execution traces from the output test suite, which are
constructed from the test cases that produced counterexamples to the tempo-
ral properties. These are later passed as input to the FSA inference process.
Typically, specification mining algorithms use traces of correct executions
and our approach is not an exception. Therefore, we filter out traces of
executions that may not represent a correct usage. If the invocation of a
method results in a thrown exception, we ignore the invocation and any fur-
ther method invocations (as the exceptional invocation may have an effect on
the state). Apart from exceptional executions, we also try to detect resource
leaks and omit any possible trace that caused them. We keep track of the
number of file descriptors that are opened by the process that is executing
the tests 2. Next, we compared the number of file descriptors before and after

2We run Evosuite without its sandbox which prevents environmental interactions

133

the runs, and if we find a mismatch between them, we assume that the tests
have triggered a sequence of methods that leaked a file or a socket. When
this happens, we remove all traces of tests that led to resource leaks. While
this may inadvertently result in correct traces that are incorrectly discarded
(consider a scenario where a test instantiated multiple FileOutputStreams,
we discard traces from every FileOutputStream as long as one of them caused
a leak, even if the rest of the instances represent correct usage of FileOut-
putStream), this helps us ensure that the traces we have collected do not
contain executions of invalid usage of an API or class.

5.3.4 Example of the search process

interface DataStructure<T> {

public boolean add(T item);

public boolean addAll(Collection<T> items);

public boolean isEmpty();

public void clear();

public T get();

public Collection<T> getAll();

}

Figure 5.5: The API of a hypothetical data-structure.

In this section, we present a synthetic example of the search process.
Using a hypothetical data-structure shown in Figure 5.5, we show how a small
set of test cases may evolve over a few generations to become counterexamples
for a three properties that are not true properties:

• Goal 1: AP(isEmpty:FALSE, add:true),

• Goal 2: AIF(clear, isEmpty:TRUE), and

• Goal 3: AF(clear, isEmpty:TRUE),

We run the DICE process to search for test cases that will falsify the
properties. In this simple example, all three properties are falsifiable. As
described earlier, we use the dependencies between search goals to consider
fewer search goals at a time, omitting goals that cannot be covered yet. At
the start of the DICE-Tester process, the following dependencies between

134

search goals are added:

Method(isEmpty : FALSE)→ AP (isEmpty : FALSE, add : true)
Method(isEmpty : TRUE)→ AIF (clear, isEmpty : TRUE),

AF (clear, isEmpty : TRUE)
Method(clear)→ AIF (clear, isEmpty : TRUE), AF (clear, isEmpty : TRUE)
Method(add : TRUE)→ AP (isEmpty : FALSE, add : true)

The dependencies should be interpreted such that the search goals on
the right (the consequent) are added to the currently targeted set of goals
once the search goal on the left (the antecedent) has been covered. The test
generation process starts by creating a population of randomly generated
tests. In this example, we assume that the population size is two, and that
each test produces only one trace. First, DICE-Tester generates 2 tests,
giving us the following traces as shown below in Figure 5.6:

[clear, isEmpty:TRUE, getAll] (-, 0.33, 0.33)

[getAll, add:FALSE] (-, 1.00, 1.00)

Figure 5.6: The initial population. The numbers on the right show their
fitness costs for Goals 2 and 3. Goal 1 is not considered yet as neither of the
method coverage goals it depends on has been covered.

In Figure 5.6, Goal 1 is not considered among the search goals (listed as
’-’) as neither of the method coverage goals it depends on has been covered.
When the number of goals is large, this helps to simplify the comparison
between test cases. When this initial population of test cases is evolved, it
produces a set of new test cases as shown in Figure 5.7. Since the method
coverage goal of Goal 1 has been covered, all the search goals for the 3
properties are now considered.

[clear, getAll, isEmpty:TRUE, getAll] (1.00, 0.00, 0.33) *

[clear, isEmpty:TRUE, add:TRUE, isEmpty:FALSE] (0.33, 0.33, 0.33) *

[add:TRUE, clear, isEmpty:TRUE, getAll] (0.66, 0.33, 0.33)

[getAll, isEmpty:TRUE, add:TRUE, getAll] (0.66, 0.66, 0.66)

[getAll, add:TRUE, get] (0.66, 1.00, 1.00)

Figure 5.7: The offspring of the first generation. We order them by their
pareto-optimality.

In Figure 5.7, the test cases that are selected to form the next population
of tests are indicated with a *. As the first test case has fully covered Goal

135

2 (falsifying the property that clear is always followed by isEmpty:TRUE),
it is selected. As for the second test case, it ties with the third test case
for the best fitness score on Goal 3, but it is the best test case for Goal 1.
Therefore, both the first and second test cases are selected as they are the
best test cases with respect to the search goals. The remaining test cases are
ordered by pareto-optimality. The third test case dominates the fourth test
case, and the fourth test case dominates the fifth test case. The first test
case is inserted into the archive, as it has fully covered a search goal. If the
population size was greater than 2, then the remaining test cases would be
added in this order.

Finally, in the next round, we get the following offspring shown in Figure
5.8. As search goal 2 was already fully covered earlier, we no longer need to
consider the test cases’ fitness with respect to it.

[clear, isEmpty:TRUE, addAll:TRUE, isEmpty:FALSE] (0.00, -, 0.33) *

[clear, clear, getAll] (0.66, -, 0.00) *

[clear, getAll, isEmpty:TRUE, add:TRUE, getAll] (0.66, -, 0.66)

[clear, isEmpty:TRUE, sEmpty:TRUE, add:TRUE, getAll] (0.66, -, 1.00)

Figure 5.8: The offspring of the second generation of test cases. All the
test cases are covered after this. Note that Goal 2 was not considered when
computing the objective function vectors as it has a corresponding test case
in the archive.

Both Goals 1 and 3 have counterexample traces from this set of offspring,
and these two test cases are added to the archive. As all the search goals
related to the temporal properties are covered, we end the test generation
process. In practice, it is typically the case that not all coverage goals can
be covered and the test generation process only ends when the search budget
is fully consumed. The test cases from the archive are retrieved to form the
output test suite, which is run and its execution traces are collected to be
used as input to the next step of DICE.

5.3.5 FSA Inference

The final phase of the adversarial specification mining approach is to take
the temporal properties and traces produced from the previous phases and
infer an FSA model. In DICE, the DICE-Miner algorithm is responsible for
this. We add the traces produced by the DICE-Tester to the original set of
traces for input to DICE-Miner.

An overview of DICE-Miner is given in Figure 5.9. The DICE-Miner algo-
rithm to infer an FSA-based specification is similar to the k-tails algorithm,

136

Traces
Mined tempo-
ral properties

Step 1: Construct
an acceptor of the
observed traces

Step 2: Merge
equivalent states

Figure 5.9: High-level overview of DICE-Miner

comprising of two steps. In the first step, we construct an initial automaton
based on the input traces and the mined temporal properties. Similar to the
PTA (described earlier in Section 5.2), our initial automaton accepts all of
the observed input traces. The mined temporal properties are used to pre-
vent erroneous merging of states. In the second step, we merge equivalent
states in this automaton, leveraging the mined temporal properties. The
mined temporal properties are used to derive the set of enabled methods of
each state, which is the equivalence criteria used in DICE-Miner to merge
states. We elaborate on this equivalence criteria below in Section 5.3.5.

Regarding the first step of the algorithm, we make the following observa-
tions:

• Observation A: Side-effect-free events can be interleaved in any order,
and do not change the present state of the software system.

• Observation B: The first step of constructing a PTA makes the assump-
tion that states with the same history of events are equivalent. This
assumption may not be true.

We propose a specification mining algorithm with these observations in mind.
In light of the first observation, we include information of the purity of each
method to allow the model to have greater generalizability. The second
observation guided us to prevent the incorrect conflation of states while con-
structing an initial model that accepts all of the input traces.

With observation A, we model the freedom of side-effects as self-loops
in the automaton. We add Constraint A where we ensure that transitions
labelled with side-effect free method calls are self-loop. This has the ad-
vantage of increasing the model’s generalizability, allowing it to accept an
equivalent trace with a different permutation of the pure methods. For ex-
ample, for StringTokenizer, observing an input trace [StringTokenizer,

137

hasMoreElements:true, hasMoreTokens:true] allows the construction of
an automaton that will accept a different trace (note a different order-
ing of the method invocations), [StringTokenizer, hasMoreTokens:true,
hasMoreElements:true]. This is the case even without the observation of
a trace with this sequence of method calls, since the only difference is that
the pure methods hasMoreTokens and hasMoreElements were invoked in a
different order from the same state.

To address observation B, we add Constraint B where we prevent the er-
roneous conflation of states occurring in the first step of k-tails and its vari-
ants. If these states are incorrectly merged in the first step, regardless of the
equivalence criteria selected for merging states, this inaccuracy in the initial
model will negatively impact the quality of the final FSA produced. This is
because the second step does not split up incorrectly merged states from the
first step. For an example of Observation B, with the Iterator class, given
the trace [Iterator, hasNext:true, next, hasNext:false] and a different
trace sharing a prefix, [Iterator, hasNext:true, next, hasNext:true],
the states reached in the two traces after the invocation of next is differ-
ent, yet constructing a PTA will conflate these states as they share the same
preceding events [Iterator, hasNext:true, next]. Conflating these states
produces an automaton where both hasNext:false and hasNext:true are
incorrectly enabled from the same state.

To address this, we propose to detect incorrectly merged states using the
mined temporal properties while constructing an initial automaton accepting
all of the observed traces. Whenever adding a new transition to an automa-
ton results in an automaton that may produce traces violating the mined
properties, we modify the automaton such that these violations will not oc-
cur. Next, we discuss the details of the DICE-Miner algorithm, and show we
address both observations within the first step of our algorithm.

First Step
Next, we describe the first step of the DICE-Miner algorithm. In the

first step, we pass the example traces into the function CreateCompatibleAc-
ceptor, which constructs a Non-deterministic Finite Automaton (NFA). This
automaton is build to accept all of the example traces, much like a PTA. How-
ever, unlike the construction of a PTA, CreateCompatibleAcceptor avoids the
creation of states that may accept sequences of events that violates a con-
straint (we refer to such states as incompatible with the constraint). We
consider a state to violate a constraint if it causes the automaton to accept
a trace violating the constraint. Observe that although the states were con-
structed based on individually observed traces, and that every trace does
not violate the temporal properties mined earlier, it is possible to construct
a PTA with states that may accept traces violating the temporal properties.

138

Algorithm 5: Pseudocode for CreateCompatibleAcceptor. This is a
simplified version of the algorithm. In reality, the automaton is non-
deterministic and given an event, there may be multiple transitions
labeled with the same event.
Input: Input traces, traces
Output: A DFA that accepts all traces in traces, without creating

any states that may violate any constraint
1 automaton = emptyAutomaton();
2 for trace ← traces do
3 prefix = [];
4 state = automaton.initialState;
5 for event ← trace do
6 if state.canAccept(event) then
7 nextState = state.accept(event);
8 state = nextState;

9 else
10 if !state.HasIncompatibleTransition(event) then
11 newState = state.addTransitionToNewState(event);
12 state = newState;

13 else
14 stateToModify, suffix =

FindAncestorWithoutIncompatibleTransition(state,
event);

15 for suffixEvent ← suffix do
16 newState = stateToMod-

ify.addTransitionToNewState(suffixEvent);
17 stateToModify = newState;

18 end

19 end

20 end

21 end
22 return automaton

23 end

139

For example, given two traces, [Stack, addAll, remove, isEmpty:TRUE] and
[Stack, addAll, remove, get] and a temporal property, NIF(isEmpty=True,
get)), a state with an incoming edge, isEmpty:TRUE (a self-loop on the state,
as a result of Constraint A and the fact that isEmpty is pure), and an out-
going edge, get, is incompatible with the temporal property as it can accept
a trace with the sequence of events [isEmpty:TRUE, get]. The algorithm to
split up a state with incompatible edges is given in Algorithm 5.

CreateCompatibleAcceptor first initializes an empty automaton before it-
erating over each trace (lines 1-2). For each event in a trace, we first try
to accept the event without modifying the NFA (lines 5-8). On reaching an
event, e, that cannot be accepted, we modify the NFA to add new states and
transitions such that it will accept the events. Before adding a new state,
we first ensure that the new transition will not cause the current state to be
incompatible with any constraint (line 10). If adding the transition results
in an incompatible state (lines 13 - 19), we traverse backwards, looking for
an ancestor where we can add transitions corresponding to the events up to
e without introducing an incompatible state (line 13). From this ancestor
node, we add new transitions and states to represent the events up to e (lines
15-18).

Algorithm 6: Pseudocode of FindAncestorWithoutIncompatible-
Transition. Traverses the ancestry of a state to locate a state to
branch from.
Input: The current state, state, and the event that introduced an

incompatible state, event
Output: An ancestor state and a sequence of events to add

transitions for
1 parent = state;
2 suffix = [];
3 label = event;
4 while parent.HasIncompatibleTransition(label) do
5 grandParent, label = parent.getIncomingTransition();
6 suffix = label :: suffix;
7 parent = grandParent;

8 end
9 return parent, suffix

To find an ancestor from which it is possible to add a new chain of events
such that an event can be added without incompatibility, we use the al-
gorithm FindAncestorWithoutIncompatibleTransition. The details of Find-

140

Algorithm 7: Pseudocode of HasIncompatibleTransition. Checks if
a transition labeled with the event can be added to the input state.

Input: A state, state, and an event to add, event
Output: true if adding the event does result in the state becoming

incompatible
1 for transition ← state.incomingTransitions do
2 if NIF(transition,event) then
3 return true
4 end

5 end
6 if NF(state.prefix,event) then
7 return true
8 else
9 return false

10 end

AncestorWithoutIncompatibleTransition are given in Algorithm 6. We ini-
tialize the algorithm (lines 1-3) before we iteratively traverse the ancestors of
the parent state. At this state of the DICE-Miner algorithm, all states have
at most one incoming transition originating from another state, which is ob-
tained using getIncomingTransition. As we traverse backwards, we collect
the labels on the transitions (line 6). These labels correspond to the events
that we will have to add transitions for. The traversal ends once we find an
ancestor that we add the sequence of events including e without creating an
incompatible state.

Algorithm 7 shows the check for an incompatible state. As we only add
new outgoing transitions, it is sufficient to check pairs of the existing incoming
transitions with the new event to detect NIF violations (lines 1-5). To check
NF violations, we check the prefix of the state against the event (line 6).
The prefix of each state is constructed by traversing all transitions on the
trail of ancestor states. This includes all self-loops on each ancestor (i.e. the
self-loops are traversed first before moving to a child state). It is enough to
check for violations of NF and NIF, as the other properties are never violated
in the first stage of DICE-Miner.

At the end of the first step, we receive an automaton that contains self-
loops in some states, and these are the only cycles in it. The inferred model
is a Non-Deterministic Automaton (NFA) as states can have multiple transi-
tions with the same label. We presented simplified versions of the algorithms
for ease for explanation. As the automata involved are NFAs, there may be

141

more than one transition from a state given an event. The model is con-
structed based on the observed traces. It is sound with respect to these
traces, and will accept all of these concrete traces.

Second Step
In the second step, we merge equivalent states in the automaton. To

merge two states, a and b, we remove both states from the state machine,
then add a new state, c. All the transitions from a and b are added onto
state c. If there are multiple transitions with the same label, source, and
destination, only one of them is kept and the duplicates are removed. As
we already noted earlier, our model is non-deterministic and there may be
multiple transitions from a state labelled with the same event.

To determine if two states are equivalent, we draw inspiration from the
CONTRACTOR model [128] and define the equivalence of states based on
the set of methods that are enabled. Concrete states that have the same
enabled methods are merged. As described by de Caso et al. [128], this
results in models with states that are intuitively interpreted and are at an
abstraction level that developers find convenient. While we reuse the con-
cept of the enabledness of methods in order to group states, our method is
still primarily based on the execution traces that are input to DICE. The
CONTRACTOR method requires further annotation and the computing of
dependencies between the enabledness of all pairs of methods. In our work,
we do not use these dependencies and other related concepts described by de
Caso et al. [128] to avoid the need to annotate the pre- and post-conditions
of every method. Prior work [242] has also shown that the performance of
the CONTRACTOR approach is highly dependent on the quality of the pre-
and post-conditions, and that it exhausts the running memory when pro-
vided with noisy invariants. Instead, we use the temporal properties to aid
in determining the enabledness of a method at a particular state. We leave
the study of the applicability of the dependencies of method enabledness on
DICE and their integration into DICE for future work.

However, unlike de Caso et al. [128] and Krka et al. [242] which creates
models from the state invariants of an object, we derive the enabledness of a
method from the set of NF and NIF properties. If there are no LTL property
that disables a method based on its prefix, the known incoming transitions,
and the known outgoing transitions, then we consider that this method is
enabled. We consider a method, say method A, to be disabled on a state
from following conditions.

142

disabled(state, A) =

true if NF (X,A), X ∈ prefix(state)

true if NIF (X,A), X ∈ incoming(state)

true if NIF (A, Y), A is pure, Y ∈ outgoing(state)

false otherwise

.

If a method on a state leads to the automaton accepting a trace containing
a pair of successive events violating the property, then the method is disabled.
For example, a state with an incoming transition add:true (indicating that
an item was successfully added) will have the event isEmpty:false disabled
(the state can’t be empty after a successful addition) by the second condition.
As another example, a state with the outgoing transition remove:true (in-
dicating that an item can be successfully removed from this state) will have
the event isEmpty:true disabled (if an item can be successfully removed, it
means it can’t be empty) by the third condition. Methods can be enabled
even if we have not seen the method invoked from a particular state in a
concrete trace. Before merging two states, DICE-Miner checks that it does
not lead to a violation of known LTL properties. Similar to the work by Lo
et al. [275], a pair of states cannot be merged if it results in a state machine
that violates any temporal property known to hold on the observed traces.

5.4 Evaluation

To empirically evaluate our tool, we investigate 3 research questions.

• RQ1: How effective is DICE in inferring FSA models?
RQ1 investigates the effectiveness of the adversarial specification min-
ing approach by comparing the FSA models inferred by DICE against
models inferred by state-of-the-art specification miners.

• RQ2: How effective is DICE-Tester?
RQ2 investigates the effectiveness of the test generation component,
DICE-Tester. This is done by comparing the tool against Evosuite,
with DynaMOSA as its search algorithm, as a test generation baseline
to answer this question. Instead of using the traces produced by DICE-
Tester, we study if using traces produced by Evosuite is enough to mine
better specifications. Here, our objective is to evaluate the value of the
temporal-property guided adversarial test generation strategy we built
on top of Evosuite.

143

• RQ3: How effective is DICE-Miner?
RQ3 investigates if the specification miner, DICE-Miner, can utilize the
traces generated by DICE-Tester effectively. We compare DICE-Miner
against DSM as a baseline, passing the same set of traces produced by
DICE-Tester as input to both tools.

5.4.1 Experimental setup

Evaluation To investigate these questions, we empirically evaluate the tools
by assessing the quality of the models inferred against ground-truth models.
Similar to previous studies, we measure precision and recall. This procedure
for computing precision and recall has been used in prior studies [251, 242].
As input, a ground-truth model and the model inferred by DICE is provided.
From these two models, traces are generated by randomly traversing the
edges in the model. The precision of the inferred model is the percentage
of traces produced by the inferred model that are accepted by the ground-
truth model. The recall of the inferred model is the percentage of traces
it accepts among the traces produced by the ground-truth model. In other
words, precision is the proportion of traces from the inferred that are correct,
and recall is the proportion of correct traces that the inferred model accepts.
Finally, the quality of the model is measured using F-measure, computed as
follows.

F-Measure = 2× Precision ×Recall
Precision+Recall

The 11 ground-truth models publicly released from Le et al.’s evalua-
tion of DSM [252] are used 3. These evaluation library classes, used for
evaluating specification miners in previous studies, represent 100 analysed
methods in total, and represent different categories of libraries ranging from
data streaming to message exchange. To analyse the classes from JDK,
we copied the source files of the corresponding classes from OpenJDK 1.8,
to get around a constraint in Evosuite that prevented instrumentation and
bytecode-rewriting of classes from some packages provided by the JDK.
OpenJDK 1.8 was used as this was the version used in previous studies, and
we observe that the choice of a more recent version will not impact the evalu-
ation results as the ground-truth models involved only methods from earlier
JDK versions. We also omitted traces from DICE-Tester containing events
that are not present in the ground-truth models. This is done to allow di-
rect comparison against the approaches used in previous studies. During our
evaluation, we discovered a minor inaccuracy in the ground-truth model of

3https://github.com/lebuitienduy/DSM

144

https://github.com/lebuitienduy/DSM

Table 5.1: Precision, Recall, and F measure of DICE and DSM. NFST refers
to NumberFormatStringTokenizer.

Class
DICE DSM

P R F P R F
ArrayList 31.4 27.3 29.2 44.5 16.3 23.9
HashMap 100.0 94.1 97.0 100.0 55.2 71.1
HashSet 87.4 100.0 93.3 74.0 62.4 67.7
Hashtable 84.0 100.0 92.5 100.0 66.6 79.9
LinkedList 100.0 100.0 100.0 100.0 23.7 38.4
NFST 87.2 89.2 88.2 54.1 70.2 61.1

Signature 100.0 100.0 100.0 100.0 91.2 95.4
Socket 87.3 67.3 76.0 58.4 62.6 60.4
StackAr 86.8 93.9 89.8 61.6 97.1 75.4

StringTokenizer 100.0 100.0 100.0 93.6 100.0 96.7
ZipOutputStream 100.0 100.0 100.0 80.6 100.0 89.3

Average 87.8 88.3 87.8 77.3 67.3 68.4

ZipOutputStream, in which DICE-Tester found counterexamples to. Hence,
we corrected the ground-truth model to account for the missing transition.
Finally, for each case, we account for randomness by computing the average
of the evaluation metrics from 20 runs of the experiment.

5.4.2 RQ1: Effectiveness in inferring FSA models

To determine the effectiveness of our tool for answering RQ1, we compute
precision, recall and F-measure of the output FSAs for 11 target library
classes. We compare against DSM [252], which uses deep-learning and ran-
domized test generation [306], as a baseline. For a second baseline, we also
compare our tool against Tautoko [126], which leverages test generation to
complete an initial FSA model. Tautoko takes the specifications inferred by
the specification miner, ADABU [127]. Given an initial test suite, it learns
an initial model using ADABU and then mutates test cases and executes
them again to cover missing transitions in the initial model.

We initialized DICE using the test suite used by DSM in its evaluation,
which is generated by Randoop [307]. From the results reported in Table
5.1, DICE improves on the average F-measure of DSM by over 19% (from
68.4 to 87.8), and, for every class, the difference between DICE and DSM
is statistically significant – measured using the Wilcoxon signed-rank test.
This indicates that DICE was effective in inferring FSA models.

145

Table 5.2: Precision, Recall, and F-measure of Tautoko and DICE. NFST
refers to NumberFormatStringTokenizer.

Class
DICE Tautoko

P R F P R F
ArrayList 31.4 27.3 29.2 - - -
HashMap 100.0 94.1 97.0 56.7 25.4 35.1
HashSet 87.4 100.0 93.3 100.0 13.6 23.9
Hashtable 84.0 100.0 92.5 38.8 23.3 29.1
LinkedList 100.0 100.0 100.0 100.0 20.9 34.6
NFST 87.2 89.2 88.2 100.0 100.0 100.0

Signature 100.0 100.0 100.0 100.0 23.8 38.4
Socket 87.3 67.3 76.0 84.1 24.4 37.7
StackAr 86.8 93.9 89.8 100.0 87.0 92.8

StringTokenizer 100.0 100.0 100.0 100.0 100.0 100.0
ZipOutputStream 100.0 100.0 100.0 100.0 25.0 40.5

Average 87.8 88.3 87.8 88.0 44.3 53.2

We also investigated the effectiveness of DICE against Tautoko [126],
which generates tests based on missing transitions in an initial model. We
compare the FSAs mined by DICE against Tautoko’s. The publicly available
version of the executable artifact was downloaded from Tautoko’s website4

and executed on the same evaluation classes above, using Randoop gener-
ated tests as input to Tautoko. For some classes, Tautoko produced models
containing methods that were not present in the ground-truth models. We
therefore manually modified the models produced by Tautoko such that these
methods were omitted, and merged states connected by a transition labelled
with removed methods. For Socket, ZipOutputStream, and Signature, we
evaluate the models published on Tautoko’s homepage due to technical dif-
ficulties we encountered trying to run Tautoko on these classes. However,
we modify the evaluation criteria as Tautoko does not produce models with
transitions labelled with boolean return values of method calls. To compute
the evaluation metrics for Tautoko’s models, we ignore return values. This
should generally lead to higher F-measures. We report the results in Table
5.2.

In one case (ArrayList), Tautoko does not run to completion within 24
hours. For the other classes that Tautoko can mine models for, we observe
that Tautoko does not produce models of high F-measures. Apart from
StackAr, DICE outperforms Tautoko on the 11 classes. While DICE produces

4https://www.st.cs.uni-saarland.de/models/tautoko/

146

models with an average F-measure of 87.8, Tautoko produces models with
an average F-measure of 53.2. If we omit the model of ArrayList, then
DICE produces models with an average F-measure of 93.7. We hypothesize
that in certain cases, Tautoko’s reliance on inspector methods (see Section
5.2.1) meant that it can not identify the right abstract states. For example,
ZipOutputStream’s state is not characterized by any inspector methods, and
as such, Tautoko is unable to mine a good model of it.

The adversarial specification mining process implemented by DICE produces
FSA-based models of higher quality, which outperforms existing approaches
for inferring FSAs

5.4.3 RQ2: Effectiveness of DICE-Tester

To answer RQ2, we aim to determine if the improvements was a result of
our improvements to Evosuite, by studying if Evosuite alone was enough to
produce diverse tests that would benefit the specification miner. We use
Evosuite (version 1.0.6), with the DynaMOSA [311] search algorithm, as a
baseline approach, collecting the traces produced by the final test suite that
is the output of Evosuite. We use the default configuration of Evosuite. We
do not try to find the optimal configuration for Evosuite as previous studies
have indicated that tuning these parameters often do not outperform the
default configuration [67]. By default, the population size of test cases is
50 individuals. The default crossover operator is used, which is the single-
point crossover with probability of 0.75. The selection of test cases is done
using tournament selection, with a tournament size of 10. Tests are mutated
with a probability inversely proportional to the number of statements it con-
tains. We use the same test budget of 15 minutes for both DICE-Tester
and Evosuite. The traces produced from Evosuite are passed as input to
DICE-Miner instead of the traces from DICE-Tester, and we compute the
evaluation metrics of the FSA models produced.

The results are shown in Table 5.3. On some classes, DICE-Tester can
outperform Evosuite by up to 18.9% in F-measure, and on average, DICE-
Tester outperforms Evosuite by about 3.7%. To mitigate the effect of ran-
domness, we run the experiments 20 times and compute if the differences are
statistically significant using the Wilcoxon signed-rank test. We find that
the differences are statistically significant for 4 out of the 11 classes in the
benchmark. This indicates that, on its own, Evosuite is already effective in
generating diverse test cases, although DICE-Tester can explore some un-
common usage patterns more effectively. We hypothesize that many of these
classes do not exhibit complex usage constraints, therefore, Evosuite already

147

Table 5.3: Precision, Recall, and F-measure of DICE-Miner when using
DICE-Tester and Evosuite. NFST refers to NumberFormatStringTokenizer.
* indicate that the difference in F-measures is statistically significant.

Class
DICE-Tester Evosuite

P R F P R F
ArrayList * 31.4 27.3 29.2 74.7 17.0 27.6
HashMap 100.0 94.1 97.0 100.0 94.1 97.0
HashSet * 87.4 100.0 93.3 84.5 65.2 74.3
Hashtable 84.0 100.0 92.5 91.0 93.1 92.0

LinkedList * 100.0 100.0 100.0 100.0 89.9 94.7
NFST 87.2 89.2 88.2 87.2 89.2 88.2

Signature 100.0 100.0 100.0 100.0 100.0 100.0
Socket 87.3 67.3 76.0 86.4 67.5 75.8

StackAr * 86.8 93.9 89.8 68.9 84.7 76.0
StringTokenizer 100.0 100.0 100.0 100.0 100.0 100.0
ZipOutputStream 100.0 100.0 100.0 100.0 100.0 100.0

Average 87.8 88.3 87.8 90.4 81.9 84.1

performs well for these classes. However, to effectively explore non-trivial
usage constraints, DICE-Tester can help significantly.

While Evosuite, with the DynaMOSA algorithm, is already able to aid the
specification mining process by producing traces that allow DICE-Miner to
achieve good performance, DICE-Tester takes it a step further, producing
traces that are even better.

5.4.4 RQ3: Effectiveness of DICE-Miner

To answer RQ3, we compare DICE and DSM with both approaches using
the same set of traces. We run DSM when provided with the traces from
DICE-Tester. We compare the performance of DICE-Miner against DSM.
In this study, we do not compare our tool against other specification min-
ers since DSM [252] is the state-of-the-art specification miner and has been
demonstrated to outperform multiple approaches such as the traditional k-
tails algorithm, SEKT, TEMI and CONTRACTOR++ [252]. The results of
using DSM with the additional traces are shown in Table 5.4.

We observe that DSM’s performance does not improve with the additional
traces. In fact, the additional traces causes the performance of DSM to
decrease. As DSM’s states are partially determined by the probability of
observing each next transition, we hypothesize that it is sensitive to the set

148

Table 5.4: Precision, Recall, and F-measure of DICE and DSM with the
traces produced from DICE-Tester. NFST refers to NumberFormatString-
Tokenizer.

Class
DICE DSM

P R F P R F
ArrayList 31.4 27.3 29.2 60.4 16.5 25.9
HashMap 100.0 94.1 97.0 30.8 86.0 45.3
HashSet 87.4 100.0 93.3 50.9 52.7 51.8
Hashtable 84.0 100.0 92.5 93.3 70.2 80.1
LinkedList 100.0 100.0 100.0 100.0 16.5 25.9
NFST 87.2 89.2 88.2 57.3 81.9 67.4

Signature 100.0 100.0 100.0 100.0 100.0 100.0
Socket 87.3 67.3 76.0 40.7 63.9 49.8
StackAr 86.8 93.9 89.8 47.2 100.0 64.1

StringTokenizer 100.0 100.0 100.0 75.3 100.0 85.9
ZipOutputStream 100.0 100.0 100.0 79.8 75.4 77.5

Average 87.8 88.3 87.8 64.7 71.4 63.4

of input traces used and it does not handle low-probability, but still valid,
transitions robustly. Also noteworthy is that DICE-Miner can achieve a 100%
F-measure in 4 of the 11 classes, while DSM achieves a perfect score in only
one case. This shows that DICE-Miner is able to utilize diverse traces more
effectively than DSM.

DICE-Miner outperforms a state-of-the-art specification mining technique
even when the diverse traces produced by DICE-Tester are included in its
input.

5.5 Discussion

To further investigate our results, we raised four additional research questions
for investigation and qualitatively analysed the models produced by DICE.

• RQ4: How effective were our adaptations of Evosuite for find-
ing counterexamples?
RQ4 studies the effectiveness of DICE-Tester in discovering counterex-
amples of temporal properties. Instead of measuring the quality of
the FSAs output from DICE-Miner, an indirect measurement of how
much the test generation benefited the specification mining process,
we directly inspect the number of false temporal properties that the

149

two tools, DICE-Tester and Evosuite (with DynaMOSA), are able to
invalidate by finding counterexamples.

• RQ5: How much did the constraints we introduced help to im-
prove the performance of our specification mining algorithm?
RQ5 investigates the two constraints that we added in DICE-Miner
motivated by the two observations we made. These observations are
described in Section 5.3.5, involving method purity and incompatible
transitions on a state. The first constraint ensures that transitions
labelled with side-effect free methods are self-loops, and the second
constraint prevents the erroneous conflation of states that may accept
traces that violate previously-mined temporal properties. We try to
drop these constraints and observe their effect on the performance of
DICE-Miner.

• RQ6: How much does the quality of the initial test suite affect
DICE?
RQ6 varies the quality of the initial test suite by using reduced subsets
of it as input to the DICE process. We aim to investigate if the quality
of the initial test suite has an effect on the quality of the models inferred
by DICE.

• RQ7: Can the FSAs inferred by DICE be used to support
additional testing activities, for example, to perform protocol
fuzzing?
RQ7 investigates if the FSAs learned by DICE can be used to aid in
fuzzing servers of stateful protocols. Effective fuzzing of a server re-
quires the fuzzer to be aware of the specific order of messages to reach
certain states. We use state models learned by DICE to initialize a
server fuzzer and observe if it helps the fuzzing process. This func-
tions as an evaluation of DICE to determine if its inferred models have
practical applicability.

5.5.1 RQ4: Effectiveness in finding counterexamples

To try to further quantify the difference in performance of DICE-Tester
and Evosuite+DynaMOSA, we compare the set of temporal properties that
were successfully invalidated at the end of the test generation process. We
evaluate them against the ground-truth properties annotated by human ex-
perts. These ground truth properties were made publicly available by Sun
et al. [372]. The human experts annotated each possible temporal property
following the template indicating if the property is true. This was done for

150

Table 5.5: Number of incorrect rules failed to be invalidated when using all
possible LTL properties as input

Class DICE-Tester Evosuite
HashSet 51 233
StackAr 39 108

StringTokenizer 35 216
Average 41.7 185.7

three classes, HashSet, StringTokenizer and StackAr, which we use in our
evaluation.

As input to DICE-Tester, we enumerate all possible temporal proper-
ties between the methods of the class, and run DICE-Tester. For Evo-
suite+DynaMOSA, during the test generation process, we collect the traces
when executing tests and print to standard output if the trace of the test pro-
duced is a counterexample to a temporal property. Note that the set of input
temporal properties will include properties that contradict each other (e.g.
both NF(A, B) and AF(A, B) are part of the input). In total, there were 56
true properties for HashSet out of 1014 possible properties, 35 true properties
out of 384 possible properties for StringTokenizer and 42 true properties out
of 600 possible properties for StackAr.

The results are reported in Table 5.5, and we observe that in each class,
DICE-Tester successfully found counterexamples for a vast majority of the
incorrect properties. Out of an average of 621.7 incorrect properties, DICE-
Tester successfully constructs tests that contradict an average of 580 of them,
or over 93% of the them. In contrast, Evosuite does not succeed in invalidat-
ing most of the incorrect properties, and there were four times the number
of incorrect properties that Evosuite failed to find counterexamples of.

Next, we also investigate the effect of the threshold for resetting the test
population, described in Section 5.3.3. On average, the test budget of 15
minutes allows to search to run for 505 generations. With a threshold of 100
generations, we observe an average of 1 reset for each run. We varied the
threshold and run DICE on the classes in the benchmark. The evaluation
metrics are reported in Table 5.6. Our findings are that having too low
a threshold adversely affects the quality of the models learned by DICE.
Decreasing the threshold from 100 generations to 50 generation caused a large
drop in F-measure from 87.8% to 64.4%, over a 20% decline. On the other
hand, increasing the threshold to 150 generations caused a slight decrease
in quality, from 87.8% to 86.7%. The results suggest that, at least for this
benchmark set of classes, the default value that we choose (100 generations)

151

Table 5.6: Precision, Recall, and F-measure for DICE varying the threshold
for resetting the test population. NFST refers to NumberFormatStringTok-
enizer.

Class
100 50 150
F P R F P R F

ArrayList 29.2 72.6 15.7 25.8 78.0 16.1 26.6
HashMap 97.0 100.0 94.1 97.0 100.0 100.0 100.0
HashSet 93.2 77.9 18.3 30.0 95.9 80.7 87.6
Hashtable 92.5 98.2 100.0 99.1 96.6 100.0 98.3
LinkedList 100.0 5.9 44.4 10.4 100.0 100.0 100.0
NFST 88.2 87.7 86.4 87.0 86.6 85.6 86.1

Signature 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Socket 76.0 53.4 66.0 59.0 80.5 66.0 72.5
StackAr 89.8 41.7 88.2 56.6 83.2 84.7 84.0

StringTokenizer 100.0 100.0 100.0 100.0 100.0 100.0 100.0
ZipOutputStream 100.0 28.6 100.0 44.4 72.7 100.0 84.2

Average 87.8 69.6 73.9 64.5 91.3 86.7 86.7

is reasonably good.

DICE-Tester outperforms Evosuite in finding counterexamples for incorrect
temporal properties, validating the benefits of our modifications for improv-
ing the search process.

5.5.2 RQ5: Effectiveness of constraints in inferring FSA

To study if the two constraints described in Section 5.3.5 influenced the per-
formance of DICE-Miner, we ran more experiments, omitting the constraints.
Constraint A refers to the constraint that pure methods do not cause a transi-
tion to another state, while Constraint B refers to the constraint that a state
should be split up if it has incompatible transitions. We use the execution
traces from Le et al. [252] and DICE-Tester in these experiments.

The results are presented in Table 5.7. Without both constraints, the
average F-measure dropped by about 5.2%. In virtually all classes, we see
a decline in the performance of DSM-Miner. We see that using information
about method purity is important to achieving good performance. While us-
ing Constraint B alone did not provide any improvements without Constraint
A, it was necessary to increase the performance to 87.8 from 82.6 (with only
Constraint A). This confirms our observations that these two constraints are
important for specification mining.

152

Table 5.7: F-measure of DICE-Miner, without the constraints (A and B) we
identified. NFST refers to NumberFormatStringTokenizer.

Class Both with A, w/o B with B, w/o A None
ArrayList 29.2 28.6 30.4 31.3
HashMap 97.0 97.0 97.8 97.8
HashSet 93.2 88.5 91.8 92.3
Hashtable 92.5 86.3 84.9 87.7
LinkedList 100.0 100.0 70.8 70.8
NFST 88.2 72.7 81.8 81.8

Signature 100.0 100.0 100.0 100.0
Socket 76.0 63.5 67.9 67.8
StackAr 89.8 71.9 65.2 74.5

StringTokenizer 100.0 100.0 100.0 100.0
ZipOutputStream 100.0 100.0 100.0 100.0

Average 87.8 82.6 80.9 82.2

The two constraints that we added for addressing the two observations were
helpful for DICE-Miner to achieve its performance.

5.5.3 RQ6: Effect of the quality of initial test suite

To answer RQ6, we investigate how sensitive the DICE process is to the
initial input test suite. We performed experiments using different subsets of
the initial test suite. We do not run experiments using the test suite originally
written by the developers accompanying the classes in the benchmark. We
manually analysed the test cases for these classes and found that exercising
these tests would only produce a few traces. The functionality of each class is
well tested, but the tests typically do not have a high diversity regarding the
sequences of method invocations. For example, the test cases for a LinkedList
exercise each method of the LinkedList, but do not show how the methods
relate to one another. Therefore, we do not expect the evaluation metrics
of DICE to change significantly from using a small subset (e.g. 25%) of the
initial test suite used as input to the earlier experiments.

The results are shown in Table 5.8. By using 50% of the initial test suite,
F-measure drops from 87.8% to 87.2%, and by using 25% of the initial test
suite, it drops further to 86.8%. This indicates that the initial quality of the
test suite influences the quality of the models inferred by DICE, however,
the difference is small. Interestingly, we noticed that F-measure increased
for some of the classes in the benchmark. The models for ArrayList and

153

Table 5.8: Precision, Recall, and F-measure for DICE varying the initial test
suite. NFST refers to NumberFormatStringTokenizer.

Class
100% 50% 25%
F P R F P R F

ArrayList 29.2 31.9 21.1 25.4 28.6 25.3 26.8
HashMap 97.0 100.0 94.1 97.0 100.0 83.1 90.8
HashSet 93.2 92.4 100.0 96.0 94.1 100.0 97.0
Hashtable 92.5 98.0 100.0 99.0 96.3 100.0 98.1
LinkedList 100.0 100.0 100.0 100.0 100.0 100.0 100.0
NFST 88.2 92.1 89.4 90.7 92.9 87.9 90.3

Signature 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Socket 76.0 84.8 62.5 72.0 88.3 61.7 72.6
StackAr 89.8 76.4 81.9 79.0 73.9 84.7 78.9

StringTokenizer 100.0 100.0 100.0 100.0 100.0 100.0 100.0
ZipOutputStream 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Average 87.8 88.7 86.3 87.2 88.6 85.7 86.8

HashSet improved in quality by about 1% in F-measure. For these cases,
as having fewer initial traces may mean that we infer a larger number of
incorrect temporal properties, we hypothesize that these large number of
incorrect traces can sometimes lead the search process to collaterally cover
more temporal properties and produce informative traces that were useful to
the inference process. We answer RQ6 by concluding that the quality of the
initial test suite has an impact on the models inferred by DICE, but overall,
this impact is small.

The quality of initial test suite has a small effect (1% change in the average
F-measure) on the quality of the models inferred by DICE.

5.5.4 Qualitative Evaluation

While the DICE system results in an improved F-measure compared to ex-
isting approaches, it is not able to achieve 100% correct finite-state automata
for all of the 11 classes. We manually inspected the resulting FSA to try to
identify reasons as to why this is the case, and to propose next steps for our
work.

One interesting observation is that the interpretation of FSA models may
differ between models that have identical F-measures. Apart from boost-
ing the accuracy of models, having knowledge of pure methods will produce
models that are qualitatively better for program comprehension. For exam-

154

StringTokenizer
END

hasMore:F

END

hasMore:F

hasMore:T
nextToken

C4 C0 C3

C2

Figure 5.10: Example of a FSA model produced by DSM. hasMore:T is short
for hasMoreTokens:TRUE and hasMore:F is short of hasMoreTokens:FALSE

StringTokenizer

StringTokenizer

END

hasMore:T
nextToken

nextToken
END

hasMore:F

2

17276

17610

17562

Figure 5.11: Example of a FSA model produced by DICE-Miner. hasMore:T
is short for hasMoreTokens:TRUE and hasMore:F is short for hasMoreTo-
kens:FALSE

155

ple, referring to Figure 5.10, DSM produces a model for StringTokenizer that
suggests that nextToken is always enabled should a developer never invoke
hasMoreTokens. In contrast, the model produced by DICE-Miner, as shown
in Figure 5.11, cannot be erroneously interpreted in this manner. The invo-
cation of hasMoreTokens with different return values are not allowed on the
same state and it is clear that nextToken may change the state of a String-
Tokenizer object such that nextToken can not be further invoked. Note that
both the models produced by DSM and DICE-Miner have an F-measure of
100, showing that there may be qualitative differences between models that
are automatically evaluated to be perfectly accurate.

The method hasMoreTokens represents an interesting case that may be
a next step for DICE-Miner. While it is accurately identified as a side-effect
free method heuristically by DICE-Miner, the static analysis we performed
did not reveal it as a pure method. The implementation of hasMoreTokens
is, in fact, impure. A static analysis-based approach therefore treats has-
MoreTokens as an impure method. More sophisticated analysis of purity,
such as using the notion of observational-purity [80, 299] will help to pro-
duce qualitatively better models. Observationally-pure methods refer to the
class of methods, in which hasMoreTokens belongs to, which have side-effects
that cannot be observed outside of the class. From the perspective of learn-
ing usage models and specifications about usage of the class, these methods
are effectively pure. While our naive name-based heuristic may help to iden-
tify some of these methods, it is likely that there are observationally-pure
methods in the wild that we cannot detect.

Investigating the poor performance of DICE for some classes, the lack of
expressiveness of the six LTL property templates considered is a possible rea-
son for it. LTL properties templates involving more than 2 events and the use
of other temporal operators beyond the basic operators may be required. For
example, clients of NumberFormatStringTokenizer are able to reset its state
using the reset method, as such, there are constraints between its methods
that can only be expressed through the use of LTL formula involving more
than 2 events. The property NF(hasNextToken():FALSE,nextToken) is
false, contrary to intuition, since invoking reset after hasNextToken:FALSE
may allow nextToken to be invoked again. In this case, the three-event
property (hasNextToken():FALSE NF nextToken) U reset is necessary to
accurately represent the temporal constraints between the methods. This for-
mula indicates that nextToken cannot follow hasNextToken():FALSE until
the object instance has been reset.

While in this work, we have considered only 2 event LTL formulae, it may
be possible to use formulae relating 3 or more events and use them during
the testing process or to guide the merging of the states in the automaton.

156

However, having more complex formulae will come at a cost and there may
be a trade-off; gaining some accuracy but slowing down the approach. In-
cluding longer rules will lead to an exponential growth in their numbers.
Indeed, many studies have focused on mining rules and patterns involving
only 2 events [251, 428, 355, 274], and researchers have noted the problem of
scalability when mining longer patterns [317].

5.5.5 RQ7: Use of FSA models for fuzzing

Using the inferred FSAs for fuzzing
Next, we evaluate models produced by DICE in its applicability on fuzzing

servers of stateful network protocols [325]. In fuzzing, random test inputs
are generated automatically in order to find bugs. It is important to discover
critical bugs in the implementation of protocols. The Heartbleed vulnerabil-
ity 5, a security bug in the implementation of the Transport Layer Security in
the OpenSSL library, has shown the pervasiveness and the high cost of such
bugs [140]. Server fuzzing may help in finding these bugs and several server
fuzzers, such as AFLNET [325], have been proposed. Servers are stateful and
reaching specific states may require specific sequences of messages between
server and client. Without information about the specific messages required,
the fuzzer is unlikely to send a sequence of messages that exercises program
states deep in the server. The FSA model learned by DICE can be used as a
state model to guide the server in reaching states that are difficult to reach
otherwise.

AFLNET [325] is a coverage-guided fuzzer that has been shown to out-
perform other server fuzzers. Like other coverage-guided fuzzers, AFLNET
instruments the program to receive feedback if there is an increase in the
server’s code coverage achieved by an input. This feedback is used by the
fuzzer to decide which inputs to mutate, optimising its choice of inputs for
increased coverage of the program. Unlike other coverage-guided fuzzers,
AFLNET has a state model of the server and detects if inputs lead to un-
explored states. In other words, an input is retained for further mutation
by AFLNET if it leads to increased coverage or enters an unexplored state.
During the fuzzing process, AFLNET constructs a state model of the server
using the observed status code sent by the server. By updating the state
model during runtime, AFLNET is able to detect bugs in states that only
appear in the implementation of the protocol and not in the protocol’s official
definition. As a tradeoff, AFLNET may spend a significant amount of time
early in the fuzzing process using a rudimentary state model and, until the

5https://heartbleed.com/

157

https://heartbleed.com/

state model is refined, is unable to reach deep into the program.
During the fuzzing process, AFLNET selects the next input for fuzzing

by selecting a state in the state model to act as the target state. From this
target state, two criteria are applied. First, AFLNET picks, with a higher
probability, states that are less frequently exercised. Second, states that have
been associated with a greater number of inputs that lead to higher coverage
or new states are more likely to be selected. Then, an input associated with
that state is mutated in a way that ensures that that particular state is still
visited by the new input.

A state inference algorithm, such as DICE, can enhance the workings of
AFLNET by providing it with the state model before starting the fuzzer. By
running DICE on a protocol client, DICE produces a model of the protocol
which can be used for server fuzzing. We observe that the API members
of a protocol’s client tend to have a one-to-one correspondence to the re-
quest types defined in a protocol. For instance, an FTP client typically has
API members for each request type (e.g. the user() method sends a USER
request, the pass() method sends a PASS request). Consequently, an au-
tomaton specification of a protocol’s client API is a model of the
protocol from the client’s perspective. The state model is, therefore,
useful for a fuzzer to simulate the protocol’s client. To target a particular
state, one can traverse the edges from the starting state until the target state
is reached; the labels on the edges traversed are the requests the client will
have to make.

We modify the state-of-the-art server fuzzer, AFLNET, to use the au-
tomaton produced from DICE as the state model. Instead of starting the
fuzzing process with an empty state model, we modify it to be initialized
with the output of DICE. We also make some modifications in AFLNET re-
lated to how it uses a state model. Presently, the status code in the server’s
response is used as an indicator of the present state. On the other hand,
the states in DICE’s state machine are more granular. We modify AFLNET
to traverse the state machine while considering more information than the
response code of the server, namely, the sequence of requests made so far.
Additionally, when the server responds with a status code indicating an error,
we assume that the state has not changed. In contrast, AFLNET transits
to an error state when the server replies with server code indicating an er-
ror. Overall, with our modifications and initialization with DICE’s output,
AFLNET can work with a higher granularity of states and is more likely
to generate inputs that are accepted, allowing it to generate inputs that go
deeper into the program. To distinguish between the two systems, we will
refer to our modified version of AFLNET as DICE+AFLNET.

To look at an example of the difference between AFLNET and DICE+AFLNET,

158

Figure 5.12: State traversal in AFLNET’s inferred state machine for the
given sequence of request types

we use the following example sequence of requests made by AFLNET: [USER,
PASS, MKD, SIZE]. In this sequence, the client has successfully logged in
with a user. The user then fails to create a new directory, due to insufficient
access rights, and attempts to get the size of file that does not exist on the
server. Given this sequence of requests, the server responds with the fol-
lowing sequence of response codes: (331, 230, 550, 550), indicating that
the login was successful but the creation of the new directory and access of
a non-existent file have failed. AFLNET traverses the states as shown in
Figure 5.12, in which it first moves to state 331, then to 230, and to 550.
On the other hand, DICE+AFLNET traverses the states as shown in Fig-
ure 5.13. Notice that DICE+AFLNET remains in the same state after the
failed requests. Compared to the transition to state 550 used in AFLNET,
we suggest that this more accurately captures the semantics of a failed re-
quest in the two protocols that we study. As this may not be true of many
network protocols, we will provide configuration options allowing the user
of the fuzzer to specify the semantics of a failed request with respect to the
state model. Overall, this enables AFLNET to work with the state models
from DICE, which are more granular.

Experimental Results. To determine if the models learned by DICE
can aid server fuzzers, we evaluate DICE+AFLNET on two protocols that
were studied in the evaluation of AFLNET [325], FTP and RTSP. We reuse
the same FTP6 and RTSP7 servers that were fuzzed by Pham et al. [325]. We
run the modified version of AFLNet that takes a state machine from DICE as
input. For each of the two protocols, we performed a search on GitHub to find

6https://github.com/hfiref0x/LightFTP
7http://www.live555.com/mediaServer/

159

https://github.com/hfiref0x/LightFTP
http://www.live555.com/mediaServer/

Figure 5.13: State traversal in DICE’s inferred state machine for the same
sequence of request types as Figure 5.12

open-source clients89 of the protocol. We selected one client for each protocol
and ran DICE on it. This process is semi-automatic. Some human effort was
required to annotate which API methods directly represent a request from the
client. We modified the source of the clients to enable DICE to run effectively
on it. Originally, the clients have different API usage patterns in which the
developers have to check the integer return value of the method call (int
returnCode = ftpClient.user(username)), or invoke another method to
retrieve the response server code (if (parseServerResponse() != 200)).
We modified the clients to throw exceptions on requests where the server
responds with status codes signalling failure. For each of the two clients, the
modification of the client took less than 15 minutes. This was done for DICE
to detect a failing method call. DICE was run on each client for another 15
minutes.

The modification of the client and annotation of the methods took less
than 15 minutes for each protocol. In total, less than 30 minutes is required to
make the necessary modifications and to run DICE. For a fair comparison,
we grant AFLNET an additional hour of fuzzing to account for the addi-
tional effort and time to run DICE. We fuzz each protocol for 24 hours using
DICE+AFLNET, and 25 hours using the original version of AFLNET. We
compare the fuzzers by the average line and branch coverage of the resulting
inputs. Apart from the additional step of running the automata inference

8https://github.com/apache/commons-net
9https://github.com/mutaphore/RTSP-Client-Server

160

https://github.com/apache/commons-net
https://github.com/mutaphore/RTSP-Client-Server

Table 5.9: Line and Branch Coverage achieved on each protocol server by
the AFLNET and DICE+AFLNET. Numbers in parenthesis indicate the
proportion of total lines/branches covered.

Protocol
AFLNET DICE+AFLNET

Lines Branches Lines Branches
FTP 644 (57%) 311 (40%) 777 (69%) 400 (50%)
RTSP 2453 (11%) 1216 (7%) 2470 (11%) 1234 (7%)

Table 5.10: Line and Branch Coverage achieved on each protocol server when
using the state models from DSM and DICE. Numbers in parenthesis indicate
the proportion of total lines/branches covered.

Protocol
DSM+AFLNET DICE+AFLNET
Lines Branches Lines Branches

FTP 703 (62%) 341 (43%) 777 (69%) 400 (50%)
RTSP 2448 (11%) 1201 (7%) 2470 (11%) 1234 (7%)

algorithms and the different running time, we follow the same fuzzing pro-
cedure as prior work. As the fuzzing process is stochatic, we mitigate the
effect or randomness by running 20 independent experiments for each fuzzer
and report the average coverage obtained.

The average coverage achieved by the fuzzers are shown in Table 6.6. On
the RTSP server, there was only a slight increase in coverage (of 17 lines
and 18 branches). As Pham et al. [325] observed, the RTSP server has fewer
states to explore and the number of messages required to exercise code deeper
into the server is lower than FTP. In other words, for such protocols where
the state model is simpler, AFLNET benefits less from having a state model
initialized before it begins fuzzing. On the other hand, on the FTP server,
the use of the state machine from DICE significantly improves both line and
branch coverage. The average line coverage increased from 57% to 69% and
branch coverage increased from 40% to 50%.

Next, we investigate if AFLNET achieves the same increase in perfor-
mance when we use the automata inferred by DSM [252] instead of DICE.
The experimental results are shown in Table 5.10. On the RTSP server, the
difference between the use of models from DSM and DICE is insignificant.
However, on the FTP server, DICE achieves a significantly higher line and
branch coverage. We also observe that the coverage on the FTP server in-
creased over the baseline AFLNET fuzzer; it increases from 57% to 62% line
coverage, suggesting that the modifications we made to initialize the fuzzing
with an initial state machine were useful.

161

Based on the improvements on fuzzing the FTP server, we answer RQ7
by concluding that there is evidence that the models learned by DICE have
practical applicability to a downstream application. DICE provides an infor-
mative state model that the fuzzer can use to guide the mutation of inputs,
and may effectively boost the performance of a stateful server fuzzer. In the
future, we will further evaluate DICE on more protocols.

The FSA models learned by DICE have practical downstream application
and can be used for initializing a fuzzer with a state model. It improves the
coverage achieved by a fuzzer on the servers of a two stateful protocols.

5.5.6 Threats to Validity

Threats to internal validity. In our studies, we have tried to reuse most
of existing implementation whenever possible. While it may be possible that
there are bugs in the code we have written, we have checked them multiple
times to reduce threats to internal validity. We have evaluated DICE in dif-
ferent aspects, such as evaluating that each component in DICE outperforms
strong baselines (DSM and Tautoko for DICE, Evosuite for DICE-Tester,
DSM for DICE-Miner). We have performed a deep analysis, including a
qualitative analysis, for a deeper understanding of DICE.

Threats to construct validity. In our experiments, we used common
evaluation metrics that were used in previous studies. The evaluation process
for computing these metrics has been used in previous studies and is well-
understood.

Threats to external validity. While it may be possible that our find-
ings do not generalize to other library classes and APIs, we have considered
the 11 classes evaluated in previous studies on specification mining. These
classes are diverse, coming from both the Java standard library and other
third-party libraries. Furthermore, these are classes used in real-world soft-
ware and are from a range of different domains. We emphasize that our
approach cannot capture every possible constraint of an API or an object
class, and it may not be possible to propose search goals for every constraint.
The models DICE learned may not always be a realistic representation of ev-
ery program. DICE is currently limited to mining finite-state automata,
corresponding to regular languages. Still, on a benchmark created by prior
studies, we have shown that the automata mined by DICE are more accurate
specifications than those mined by prior approaches. Although DICE cannot
mine specifications represented by a context-free language, we note many
specifications mined in the literature are regular languages and researchers
have found uses for these specifications, such as analysing and finding secu-

162

rity flaws in bank cards [50] and TLS [129], or modelling Android applica-
tions [335]. Moreover, as we have shown in Section 5.5.5, DICE can still learn
models that are useful on a downstream task. We leave the mining of other
types of specifications, such as those equivalent to context-free languages, as
future work.

5.6 Related Work

Usage models have been incorporated in test case generation previously by
Fraser and Zeller [159]. However, they use usage models to improve the read-
ability of test cases by guiding test generation to resemble test cases written
by humans, and reducing the amount of nonsensical test cases generated. In
contrast, our work aims to generate test cases that are correct, but do not
resemble common usage patterns that tend to be exercised by existing tests.

For the generation of test inputs, various approaches first learn the prob-
ability distribution of observed test inputs. While most techniques generate
test inputs that resemble the learned distribution to produce synthetically
correct inputs, the Skyfire [400] approach learns a probability distribution
to generate test inputs that do not resemble the examples it has seen, ap-
plying heuristics such as favouring low probability rules. Pavese et al. [316]
proposed inverting the probabilities in grammar-based test generation to ex-
plore uncommon test inputs. Our work shares a similar goal with these two
studies, aiming to explore uncommon behavior in testing.

Many studies have studied diversity in test generation [287, 149, 112,
150]. For example, researchers have studied the diversity of test inputs and
outputs [57]. Shin et al. [367] have proposed the use of diversity for mutation
testing. Our work differs from these studies as we focus on the diversity of
execution traces produced by tests, instead of modelling the diversity of the
inputs or outputs of each method. Moreover, we use test generation only to
produce more diverse traces, supporting our objective of learning accurate
FSA specifications.

There are other studies on the diversity of software traces, for exam-
ple, coverage information collected from test execution [258, 150]. Typically,
these studies propose metrics over traces to measure the similarity of tests to
maximize fault detection capability [149]. Our goal in this study is different,
aiming to diversify traces for mining more accurate FSA specification models
of a software system.

There are similarities between DICE and model checking approaches that
leverage counterexamples. One example is CEGAR [120], that performs
counterexample-guided abstraction refinement during model checking. In

163

CEGAR, counterexamples are used to split the abstract state as a coun-
terexample indicates that there is some behaviour in the abstract model that
is not present in the concrete version. The abstract state is split such that
it no longer admits the counterexample.

Adaptive model checking [171] is akin to black-box model checking [318],
where there is no initial model of the system. In adaptive model checking,
an inaccurate model is updated as it is used to verify a software system.
Inaccuracies in the model may be due to differences caused by updates to
the system. Like other Angluin-style automata learners, counterexamples are
used to incrementally improve the model. These model checking techniques
use the Vasilevskii-Chow algorithm [390, 118] for conformance testing to
check if the model is equivalent to the system. DICE is similar as it tests the
system against specifications, but differs in that it never checks or verifies
conformance between the model and software system, which can be expensive
and impractical with a cost exponential to the size of the automaton. DICE
avoids this cost, only performing search-based testing to search for traces
that falsify individual LTL properties.

5.7 Conclusion and Future Work

To conclude, we proposed a new approach of adversarial specification min-
ing and prototyped a tool, DICE (Diversity through Counter-Examples),
for mining specifications. DICE systematically diversifies execution traces
and addresses shortcomings in current specification mining algorithms. By
adversarially guiding test generation towards finding counterexamples of the
specification, our approach produces diverse traces that represent uncom-
mon but correct usage of the program. To do so, we introduce new fitness
goals representing counterexamples to temporal specifications expressed in
LTL properties, address shortcomings in the LTL property templates used in
previous studies, and use search-based testing to produce diverse traces. To
take advantage of the diverse traces and the temporal properties, we propose
a new specification mining algorithm that utilizes knowledge of method pu-
rity and use the temporal specifications to prevent erroneous merges to infer
Finite-State Automata models with improved precision and recall. Finally, in
our empirical evaluation, our approach significantly outperforms DSM, the
current state-of-the-art specification miner, and Tautoko, which generates
tests for specification mining. DICE produces models with an average F-
measure of 87.8, while the current state-of-the-art approach, DSM, produces
models with an average F-measure of 68.4. and Tautoko produces models
with an average F-measure of 53.2 in our experiments. Furthermore, our

164

experiments suggest that the performance of DSM does not always improve
when provided with more data. The artifact website of DICE can be found
at https://kanghj.github.io/DICE

While we focus on generating uncommon sequences of method invocations
in this study, we hope to explore the integration of methods that diversify
test inputs [149, 112] to improve DICE’s ability to generate uncommon test
cases in future. We also hope to investigate more expressive LTL property
types and evaluate DICE with other specifications beyond those that were
studied in prior work. We will also study the tradeoffs of including longer
temporal properties in future. Another possible direction is to explore more
complex properties using temporal properties that were hard for DICE-Tester
to falsify. The difficulty in falsifying them may indicate that the properties
hold, or that there are more complex relationships between the events in the
property. Users of DICE may also find these properties useful. We will also
study other ways to improve the effectiveness of DICE-Tester. To that end,
we hope to explore the use of techniques such as Swarm Testing [172], which
may help to further increase the diversity of tests.

165

Chapter 6

(Dynamic Analysis + API)
Active Learning-based Input
Selection for Fuzzing Deep
Learning Libraries

6.1 Overview

The use of deep learning is now prevalent. It affects many aspects of our
lives, including in safety and security-critical domains such as self-driving
vehicles [357, 457]. Consequently, there have been increasing concerns about
vulnerabilities in deep learning systems, which can have a severe impact.
While many studies have focused on testing and uncovering weaknesses of
deep learning models, the development of approaches that mitigate the risks
of vulnerabilities in deep learning libraries, such as TensorFlow and PyTorch,
is equally crucial. These vulnerabilities may lead to errors that corrupt mem-
ory contents or crash the software system, which can be abused for denial-
of-service attacks on applications using deep learning libraries.

Challenges. Fuzzing the deep learning libraries poses challenges related
to the selection of suitable inputs. The first challenge is that the space of
inputs is large and many generated inputs do not belong to the domain of
semantically-valid inputs. By randomly selecting inputs from the large
input space, the vast majority of inputs would be rejected by the library’s
input validation checks, and therefore, fail to adequately test the library’s
behaviors. A second challenge is related to the redundancy of inputs.
Given the observation of a test outcome (e.g., an exception thrown when
invoked with a particular input), an appropriate strategy should be employed

166

to pick an input that tests a different behavior from the already observed
test outcome. Otherwise, the same library behavior would be tested again,
leading to redundancies in fuzzing. Ideally, a fuzzer triggers a wide range of
test behaviors.

For most of the deep learning libraries’ APIs, the input constraints are
unknown [421]. Without knowledge of the input constraints, randomly gen-
erated inputs can be supplied. However, unlike other programs e.g. UNIX
utilities [286, 285] that take sequences of bytes as input, libraries accept in-
puts that are highly structured [308, 76]. Likewise, for TensorFlow and Py-
Torch, randomly generated inputs are unlikely to be structurally valid (e.g.
a tensor) or semantically valid (i.e., passing the libraries’ input validation).

Existing approaches. Existing works propose methods of partially ad-
dressing the first challenge of selecting inputs satisfying the function’s input
constraints, i.e., generating valid inputs. As off-the-shelf fuzzers do not en-
code knowledge of these constraints and cannot generate a high proportion of
semantically valid inputs, Xie et al. [421] proposed DocTer, which infers the
input constraints from API documentation. FreeFuzz [415] mines valid in-
puts of functions from open source code and resources. DeepRel [132], build-
ing on FreeFuzz, identifies pairs of similar functions using their documenta-
tion to share the mined valid inputs. DocTer and DeepRel rely on API doc-
umentation, which may not always be available or well-maintained. There-
fore, they may not be able to cover all functions in the libraries’ APIs [421].
Moreover, not every function would be invoked in open-source code. This
motivates new techniques of input constraint inference sans documentation
and high-quality sample usages.

Existing approaches do not address the second challenge of high in-
put redundancy. They apply random mutations to change the type, value,
etc. [415, 132] of a valid input or randomly select inputs based on the input
constraints [421]. There are numerous possible inputs, with the majority of
them triggering the same behaviors and provides no new information. This
motivates methods of distinguishing inputs and systematically selecting them
for invoking the library.

Our approach. In this study, we propose an approach (embodied in a
tool), SkipFuzz, that infers a model of the input constraints at the same
time as fuzzing the deep learning library. SkipFuzz does not require existing
specifications or the collection of a wide range of seed inputs, as was done
in prior work. Instead, it learns the input constraints of the API functions
through fuzzing. Once inferred, the input constraints allow the generation
of valid inputs. To do so, SkipFuzz employs active learning, which learns
by interactively querying an oracle. In SkipFuzz, the test executor takes
the role of the oracle by constructing and executing test cases invoking the

167

library based on the queries. The test outcomes (e.g., if the input is valid,
invalid, or a crashing input) are provided back to the active learner. For
successful inference of the input constraints, the active learner queries the test
executor with a wide range of inputs that satisfy/violate different possible
input constraints. This enables fuzzing with less redundancy.

SkipFuzz leverages findings from prior studies [210, 211, 205, 421]. Skip-
Fuzz employs a set of input properties, by which test inputs are distin-
guished. The design of the input properties is based on the input constraints
and root causes of bugs identified in these studies. SkipFuzz seeks to re-
duce redundancy by assuming that inputs with the same properties trigger
the same behaviors; if the input does (not) trigger a vulnerability, then other
inputs with the same properties will also (not) trigger it. The input proper-
ties differentiate inputs by their structure, shapes, values, corresponding to
possible input constraints. Inputs satisfying the same properties are grouped
into the same category. Selecting inputs from different categories allows for
more input diversity and is more likely to provide new information about the
input constraints.

The active learner aims to identify a hypothesis of the input constraints
that is consistent with the observed outcomes. In the active learning litera-
ture [101], a consistent hypothesis is one where the behavior of the program
under the hypothesis matches that of the actual program. Given the execu-
tion history indicating if each input was valid or invalid, an ideal hypothesis
is a set of categories that contain the valid inputs but exclude the invalid
inputs. We quantitatively assess the consistency between a given hypothesis
and the observed test outcomes using precision, the proportion of observed
valid inputs under the hypothesis, and recall, the proportion of valid inputs
under the hypothesis out of all observed valid inputs. Once a hypothesis
is found to be adequate, SkipFuzz generates only inputs satisfying the hy-
pothesized input constraint, allowing for a high proportion of valid inputs to
be generated.

In our experiments, SkipFuzz detects crashes in 108 functions in Ten-
sorFlow and 58 functions in PyTorch. After analyzing and removing crashes
with similar root causes, the new crashes have been reported to the devel-
opers. 23 TensorFlow vulnerabilities and 6 PyTorch bug reports have been
confirmed or fixed. SkipFuzz can trigger up to 65% of the crashes found by
the prior approaches, DocTer and DeepRel. In a deeper analysis, we find that
SkipFuzz has a greater input and output diversity, which contributes to its
capability in generating crashing inputs. SkipFuzz is able to generate valid
inputs for 37% of TensorFlow and PyTorch’s API, while prior approaches
only generate valid inputs for up to 30% of the API. When the active learner
succeeds in inferring an input constraint, SkipFuzz is able to generate valid

168

inputs over 70% of the time, indicating that the input constraint was inferred
reasonably well. This validates that active learning is effective in inferring
the input constraints. Overall, SkipFuzz generates more crashing inputs
than existing approaches.

6.2 Background

Deep learning libraries, such as TensorFlow and PyTorch, are employed by
deep learning systems. Library vulnerabilities widen the attack surface of the
software systems that depend on them [426]. These vulnerabilities may, for
example, allow denial-of-service attacks on software systems using them [49].

Architecture. The core functionality of the deep learning libraries is
implemented in their kernels, which are written in a low-level language such
as C/C++. Applications using the libraries access their functionality through
their Python API. The libraries perform validation on their inputs before
accessing the core library code.

Input domain of deep learning libraries. Among others, the input
domain of deep learning libraries includes tensors and matrices. These in-
puts are complex; a tensor may be sparse or dense (corresponding to the
format that the tensors are encoded), may be ragged (tensors with variable
length), has a shape (dimensions of the matrix/tensor) and rank (number of
linearly independent columns). Functions in the libraries’ APIs may impose
constraints on its inputs, for example, requiring tensors of a specific type
(e.g. float) and size (e.g. a 3x3 matrix). Xie et al. [421] investigated Ten-
sorFlow’s input constraints and categorized them by their structure (e.g., a
list), type (e.g., tensor containing ‘float’ values), shape (e.g., a 2-d tensor),
and valid values (e.g., non-negative integers)

Bugs in deep learning libraries. Previous studies [211, 205, 210] have
empirically analyzed bugs in deep learning programs. Jia et al. [210] re-
ported that common root causes of bugs within TensorFlow include type
confusion (incorrect assumptions about a variable type), dimension mis-
matches (inadequate checks of a variable’s shape), and unhandled corner
cases (usually related to incorrect handling of a specific variable’s value, e.g.
unhandled division by zero errors). The overlap between the root causes
of bugs and input constraints suggests that distinguishing inputs by these
properties would help in both finding bugs and inferring input constraints.

Testing deep learning libraries. Several recent works [323, 412, 178,
403] mutate deep learning models for testing deep learning libraries. Sub-
sequently, the experiments of FreeFuzz [415] showed that API-level testing
of deep learning libraries is more effective. FreeFuzz is seeded with inputs

169

Table 6.1: A glossary of terms used in the Active Learning literature and
this chapter.

Active Learning: An algorithm that learns by interactively
querying an oracle.

Consistency: The extent to which executions under the
inferred hypothesis matches the actual program

Input constraints: The validation checks performed by
the library on its inputs

Input properties: Predicates which describe inputs
Input categories: Conjunction of input properties.
Hypothesis: A model of the input constraints as inferred
by SkipFuzz. A disjunction of properties associated
with a set of input categories.

from publicly available code, models, and library test cases.
To effectively test the deep learning libraries, the inputs selected by the

fuzzer should be semantically valid, i.e. they should satisfy the input vali-
dation checks of the API function. Otherwise, the core functionality of the
libraries would not be tested. To address this, DocTer [421] was proposed to
exploit the libraries’ consistently structured documentation to extract input
constraints. Still, as the API documentation is incomplete, manual anno-
tation is required for part of the API and DocTer achieves a valid input
generation rate of only 33%.

DeepRel [132] and FreeFuzz [415] use seed inputs collected from pub-
licly available resources (e.g., publicly available deep learning models, doc-
umentation, developer test suites). FreeFuzz invokes functions in the API
for which a valid invocation was observed from the resources. Building on
FreeFuzz, DeepRel generates valid inputs for some functions without seed
inputs by using the similarity of pairs of functions to transfer inputs from
test cases of similar API functions to other functions without seed inputs.
The similarity of functions is determined based on the function signature
and documentation, which may limit it to well-documented functions. The
existing approaches do not have a method of systematically selecting inputs
to reduce redundancy.

170

Table 6.2: Examples of input property templates. X refers to the input. C
and C1 refer to constant values, which can be replaced with concrete values
to instantiate a property. SkipFuzz uses a total of 92 property templates,
which can be viewed on the artifact website [48].

Property Example Description
group
Type isinstance(X, type) the type of the input (e.g. a list)
Structure X.dtype = type the type (e.g. int) of elements

in a tensor/matrix
X < C ranges of values

Value all(X > C) ranges of values of elements in
a tensor/data structure

X[C] = C1 value of a specific element
len(X) < C length/size of a data structure

Shape X.shape.rank > C rank of a matrix
X.shape[C] == C2 size of a specific dimension

6.3 Preliminaries

6.3.1 Active Learning

We apply active learning for input constraint inference. To infer and refine a
model of a function’s input constraints, our approach generates inputs that
provide new information when they are used to invoke a function. Table 6.1
presents a glossary of terms used in the active learning phase of SkipFuzz.

In active learning [63, 64], a learner sends queries to an oracle who re-
sponds with some feedback (e.g., the ground truth label of a given data in-
stance). When active learning is employed for inferring a model of a program,
a hypothesis is a possible model. A hypothesis is consistent if the behavior
expected from the model matches the actual behavior of the program.

In this chapter, active learning is done while fuzzing the deep learning
libraries. Our study combines active learning with fuzzing to learn the in-
put constraints of an API. Fuzzing is used to learn a model of the input
constraints, which are, in turn, used to improve fuzzing by enabling the gen-
eration of semantically valid inputs.

Input constraint inference. Our approach, SkipFuzz, aims to infer
accurate models of the input constraints of the functions in the deep learning
libraries’ API. Input constraints refer to the conditions on the inputs that
are expected to be fulfilled for the function to be successfully invoked. Code

171

Input 1

property: type(X) == RaggedTensor

input1 = tf.ragged.constant([[1,1,1,1], [2]])

Input 2

property: X.dtype = [(’qint32’, ’<i4’)]

input2 = tf.constant(np.zeros((1,1,1,1),

[(’qint32’, ’<i4’)]))

Figure 6.1: Example of inputs constructed using tf.constant differing in
their properties

in the library typically performs validation checks on the inputs, ensuring
that the constraints are satisfied before executing the core functionality of
the library. SkipFuzz refines a hypothesis of the input constraints of the
API functions as queries are made to the test executor. The test executor
answers the queries by checking if an input with properties corresponding
to the query satisfies the input constraint (i.e., if it is valid, invalid, crash)
determined by observing if the function was invoked without error (valid),
rejects the input through an exception (invalid), or crashes the program.
A crashing input is one that causes the library to terminate in an unclean
manner (e.g. segmentation faults), which leads to a denial-of-service.

6.3.2 Input properties

SkipFuzz characterizes inputs to the deep learning libraries by input prop-
erties. The properties are used by SkipFuzz to distinguish inputs from
one another. Some examples of the properties are given in Table 6.2. The
properties were designed based on previous empirical studies of deep learn-
ing libraries, which found that the common root causes of bugs are type
confusion, dimension mismatches, and unhandled corner cases. The
root causes motivate properties related to an input’s type, shape, and value,
respectively.

Two example inputs are shown in Figure 6.1. These inputs, which are
constructed using tf.constant, are both Tensors. However, they both sat-
isfy at least one property that is not satisfied by the other. As they do not
share the same properties, they are more likely to trigger different behaviors
when passed to the same function.

172

6.3.3 Input categories

As each input can satisfy multiple input properties, SkipFuzz characterizes
each input with the properties that it satisfies. As a pre-processing step of
fuzzing, SkipFuzz groups inputs that satisfy the same properties. An input
category is a conjunction of input properties and is associated with the inputs
that satisfy the conjunction of properties.

As all inputs in a category satisfy the same conjunction of properties,
they all satisfy the input constraints corresponding to the properties. For
example, an input of a category with the property X.shape.rank == 4 will
pass the validation checks of a function requiring an input of rank 4.

Definition 1. Two inputs, x and y, belong to the same input category,
C, if every property that x satisfies matches a property that y satisfies, and
vice versa.

A category contains the inputs that satisfy the same properties We assume
that the true input constraints of the function corresponding to a set of input
categories, i.e., a collection of properties describing valid inputs. For example,
all inputs in the input category associated with {X is not None, X.shape
= (2,2) } are tensors of the same shape and will satisfy input constraints
requiring tensors of this shape. The execution of multiple test cases selecting
inputs from different categories provides information about the function’s
true input constraints. As such, the input categories allow the systematic
selection of inputs during fuzzing.

Definition 2. An input category, C1, is weaker than an input category,
C2, if the set of inputs associated with C1 is a superset of the set of inputs
associated with C2.

SkipFuzz orders the categories by their strengths. One category, C1,
is stronger than another if it has input properties that are associated with
inputs that are a subset of the inputs associated with the other category,
C2. Intuitively, if the input constraints of a function match the properties of
an input category, c1, then we assume that inputs from a stronger category,
c2, would be valid. Inputs from the stronger category will observe the same
input properties of the weaker category, and will satisfy the corresponding
input constraints.

For example, given a first category associated with the set {X is not

None, X.shape = (2,2) }, and a second category associated with {X is not

None, X.shape = (2,2), ∀ x ∈ X (x > 0) }, the first category is weaker
than the second category (as the first category has fewer properties to satisfy).

173

If the first category is already a match for the actual input constraints, then
we expect that the inputs from the second category would be valid.

SkipFuzz maintains a mapping of the input categories to the inputs
satisfying the associated properties. This enables it to quickly sample the
inputs during fuzzing. The input categories also allow for the sampling of
fewer redundant inputs. An input sampled from an input category will satisfy
all properties associated with the input category. To obtain some evidence
that inputs from a category satisfy the actual input constraints of a function,
SkipFuzz observes the outcome of invoking the function with inputs sampled
from the category.

Definition 3. A hypothesis is a disjunction of properties associated with
a set of input categories.

SkipFuzz models the input constraints of a function as a set of input
categories. The active learner infers and refines its hypothesis of the true
input constraints expressed as a disjunction of the properties associated with
the input categories. A disjunction of input categories is used because the
functions in TensorFlow and PyTorch allow for a union of types, a com-
mon feature of dynamically typed languages, e.g., Python. For example, a
hypothesis can be constructed by the selection of two input categories, one
associated with the set {X is not None, X.type = list, len(X) = 4 },
and another with the set {X is not None, type(X) == Tensor), X.dtype
== tf.int64 }. The hypothesis captures a different set of properties de-
pending on the input’s type. Once SkipFuzz considers a hypothesis of the
input constraints to be adequate, SkipFuzz then generates test cases using
inputs expected to be valid according to the inferred input constraints.

6.3.4 Motivating Example

Figure 6.2 shows an example of a test case generated for the API function,
tf.placeholder with default. To generate semantically valid inputs that
satisfy the function’s input constraints, the inputs require the right type and
satisfy other constraints on their shape and values. If shape is a list, there
are other constraints such as the type or range of values of its elements. If
provided an input that does not meet these constraints, the library signals
that the input is invalid by throwing an appropriate exception.

To generate valid inputs, SkipFuzz has to discover the input constraint
by invoking the function multiple times with different values of shape and
observing the result of each invocation. A successful invocation indicates
that the input satisfies the input constraints, and an unsuccessful invocation
indicates otherwise. SkipFuzz forms a hypothesis regarding the constraints

174

import tensorflow as tf

generate inputs

input1 = tf.constant([1, 2, 3])

shape = [4]

invoke the target API function with

the generated inputs

tf.placeholder_with_default(input1, shape)

Figure 6.2: Example of a test input generated for
placeholder with default. Inputs for each argument (e.g. shape)
are generated. A valid input of shape can be a tf.TensorShape or a list

of int

of shape. As previously described, SkipFuzz expresses a hypothesis as a
disjunction of properties so that it can capture input constraints that are a
union of multiple constraints. The true constraints of the shape parameter
permits inputs typed list or tf.TensorShape. SkipFuzz has to express
one set of properties if provided a list and another set of constraints if
provided a tf.TensorShape.

Once the input constraints are successfully inferred, SkipFuzz generates
inputs that are valid, i.e., invoking the function without error, by sampling
inputs from the input categories in the hypothesis. This allows SkipFuzz
to generate inputs that pass the input validation checks and test the core
functionality of the library. Testing the libraries with a diverse range of
inputs is key to finding crashes. In Figure 6.2, if shape is a quantized tensor,
then the library’s kernel code does not correctly access its memory contents
and will trigger a segmentation fault. In other words, a quantized shape is
a crashing input. Finding a crashing input poses a challenge as the space of
inputs is large and there are only a few crashing inputs. Many inputs are
redundant as they share the same properties. For example, all inputs with
the same wrong shape will fail the same validation check on the input shape
and not reach the core functionality of the library. To this end, SkipFuzz
does not get stuck with inputs that fail the same validation checks as using
them does not provide SkipFuzz with new information. Instead, SkipFuzz
skips past the inputs in the same category to inputs from other categories,
invoking the function with more informative inputs.

175

Figure 6.3: Overview of SkipFuzz. Step 1 : Seed inputs (e.g. collected

from the library’s test suite) are grouped into input categories. Step 2 : As
the library is fuzzed, the active learner has 3 modes that determine what
queries are posed to the test executor. It selects input categories from the
input space. Initially, in its (a) random generation mode, it randomly selects
input categories (denoted as circles). Next, in its (b) inference mode, it
selects input categories to refine its hypothesis of the input constraints, which
are formed based on the execution log which indicates the outcomes (check
marks denote valid inputs and exclamation marks (!) denote invalid inputs)
of prior queries. Finally, once a hypothesized input constraint is accepted,
in its (c) valid input generation mode, it selects only inputs satisfying the
hypothesis. Each blue, dashed ellipse shows the narrowing space of categories
considered in each mode.

6.4 SkipFuzz

6.4.1 Overview

Figure 6.3 shows the overview of SkipFuzz. In the first step (1 in Figure
6.3), SkipFuzz collects inputs from the execution of the library’s test suite
and associates them with properties that they satisfy (Section 6.4.2). Then,
each input is grouped into input categories with other inputs satisfying the
same properties. These inputs form the input space considered by SkipFuzz.
In the second step (2 in Figure 6.3), SkipFuzz fuzzes the deep learning

176

libraries. This involves the generation of test cases by selecting inputs to use
as arguments in invoking the API functions. The selection of inputs involves
an active learning algorithm that infers the input constraints of a target API
function. The active learner constructs queries to check if an input category
is a member of the input domain, i.e., its inputs are valid. The test executor
has the role of the oracle; to respond to the query, it invokes the library
with appropriate inputs sampled from the queried category, checking if they
satisfy the actual input constraints (i.e., the function invocation does not
lead to an exception or crash).

The test executor constructs test cases by sampling inputs associated with
the target input categories. As it constructs and executes a test program, the
invocation of the library is monitored for crashes (errors in the C++ code of
the libraries that may be exploited by an attacker, e.g., segmentation faults)
and exceptions thrown by the library are caught. The observation (i.e., query
and the outcome of the test execution, valid, invalid, or crash) is written to
the execution log. Considering these observations, the active learner refines
its hypothesis and constructs more queries.

During fuzzing, SkipFuzz employs active learning to learn the input
constraints of the API function. The fuzzing loop involves an active learner
and a test executor. The active learner maintains a hypothesis of the input
constraints of a given API function. To check the hypothesis, it passes queries
to the test executor. Each query is one input category. On receiving the
query, the test executor samples an input that satisfies the input category
and constructs a Python program that invokes a function from the library’s
API. Each constructed Python program consists of code that generates the
inputs (e.g., the variable, shape, in Figure 6.2) using program fragments (e.g.,
invocation of tf.constant) collected from the developer test suite. After the
inputs are selected, they are passed as arguments to the API function under
test (e.g., tf.placeholder with default).

When fuzzing each target function, there are three phases (described
in detail in Section 6.4.3). Initially, as there is no history to support a
hypothesis, SkipFuzz’s randomly selects input categories from the entire
input space ((a) in Figure 6.3). Afterward, the active learner begins to
pose queries to the test executor for input constraint inference (described in
Section 6.4.4). These queries are selected based on the hypotheses ((b) in
Figure 6.3). Each query corresponds to one input category. Finally, once the
hypothesis is determined to be adequately consistent, then SkipFuzz selects
only inputs that satisfy the input constraints indicated by the hypothesis ((c)
in Figure 6.3).

SkipFuzz maintains a list of crashing test cases. When SkipFuzz is
terminated, the crashes are the output of SkipFuzz and can be inspected.

177

6.4.2 Step 1: Input property checking and input cate-
gory construction

SkipFuzz requires seed inputs before it begins categorizing them. In our
experiments, we use the developer test suite, which is readily available from
the deep learning libraries’ repositories, and execute them to obtain seed
inputs. Before the execution of the test cases, SkipFuzz instruments the
API functions. As the test cases are executed, the inputs passed as arguments
to the functions of the APIs are traced. Whenever a library test case invokes
the API function (either directly or transitively), the API function sequences
(e.g. ⟨ tf.constant, tf.ragged.constant ⟩) for generating the argument
inputs are recorded. This enables SkipFuzz to reconstruct the inputs used
in the developer test suite.

SkipFuzz enumerates the possible properties for each obtained input,
checking if the input satisfies the input properties. After associating the
satisfied properties with every input, SkipFuzz groups them into input cat-
egories. The input categories are fixed at this time, to be later used during
fuzzing. A mapping from categories to their inputs is maintained by Skip-
Fuzz for efficient sampling of the inputs.

Reducing input redundancy. SkipFuzz leverages the input cate-
gories to reduce redundancy. As inputs from the same categories share the
same properties, they will satisfy the same constraints corresponding to these
properties. By selecting inputs from different categories, SkipFuzz aims to
not construct multiple test cases with similar inputs that will fail the same
validation checks, as it does not gain information necessary for refining its
hypotheses. By avoiding the use of inputs that are similar to previously se-
lected inputs, each test case is more likely to provide new information about
the true input constraints. Hence, using inputs from different categories leads
to the use of fewer redundant inputs.

6.4.3 Step 2: Active Learning-driven fuzzing

In the second step, SkipFuzz begins fuzzing the deep learning libraries. This
is done through three phases.

(a) Random inputs generation. SkipFuzz begins generating test
cases for each target function by selecting inputs from random categories.
This phase ends once SkipFuzz successfully generates a test case with valid
inputs (i.e., the function executes without error using the inputs).

(b) Input constraint inference. Once a valid input has been identified,
SkipFuzz is able to form hypotheses of the input constraints (later described
in Section 6.4.4). SkipFuzz tests the hypothesis that is most consistent with

178

Algorithm 8: The fuzzing loop of SkipFuzz which involves the
active learner posing queries to the test executor.

function fuzz(input categories):
1 history = []
2 while not done do
3 selected category ← active learner(input categories,history)
4 if selected category == null then
5 random category = sample(input categories)
6 input ← sample(random category)

7 else
8 input ← sample(selected category)
9 end

10 tc ← construct test case(input)
11 outcome ← execute(tc)
12 update(history, selected category, outcome)

13 end

the observations by selecting queries based on the hypothesis. It selects input
categories from which inputs should be valid according to the hypothesis, as
well as categories from which invalid inputs should be produced. Through
interacting with the test executor, the active learner refines the hypothesis.

The active learner forms hypotheses of the correct input constraint, as-
sessing them by quantitative measures of consistency. These measures are
computed using the number of observed valid and invalid inputs that cor-
rectly and incorrectly satisfy the hypothesized input constraints.

(c) Valid input generation. Once SkipFuzz considers a hypothesis
adequately consistent, SkipFuzz begins to construct test cases with inputs
that are valid according to the hypothesized input constraints. This is done
by sampling inputs from the input categories that are part of or are stronger
than the hypothesis.

The procedure for selecting one argument given an API function is given
in Algorithm 8. Initially, SkipFuzz begins the fuzzing campaign with purely
random inputs as the active learner is not able to construct queries without
previously observed executions (lines 4–6). After one valid input is observed,
the active learner begins to pose queries to the test executor, which constructs
test cases based on the queries (line 3). When SkipFuzz has entered its valid
input generation mode, the active learning only poses queries to guide the
selection of inputs that are expected to be valid according to the hypothesis.
Given the input category in a query, the fuzzer selects a random input that

179

is associated with the input category (line 8). With the selected input, a test
case is constructed and then executed to invoke the library (lines 10–11).
The outcome of the test execution is written to the execution log (line 12),
history, which is used in the next iteration by the active learner to pose a
new query.

6.4.4 Input constraint inference

The key novelty of SkipFuzz is that it learns the input constraints while
fuzzing the API function (in (b) of step 2 in Figure 6.3). Through the in-
teraction of the active learner with a test executor, the active learner records
the test outcomes in the execution log. These observations are used to form
and refine hypotheses of the input constraints, and for the active learner to
pose queries to the test executor.

Selecting queries based on a hypothesis. We refer again to Table
6.1, the glossary of terms used in the active learning phase of SkipFuzz.
The active learner in SkipFuzz poses queries to the test executor to check
if its hypothesis of the actual input constraints indeed match the true input
constraints. If the hypothesis is a match, then inputs satisfying the hypoth-
esis should be accepted by the library while inputs that do not satisfy the
hypothesis should be rejected by the library. Hence, we expect that inputs
from the input categories of the hypothesis should lead to valid outcomes.
Conversely, inputs that are missing at least one property in a category of the
hypothesis should be rejected. We expect that these queries should result
in invalid outcomes. If these queries lead to valid outcomes, then it implies
that the hypothesis is stronger (see Definition 2 in Section 6.3.3) than the
true input constraints.

As such, for one hypothesis, the active learner constructs several queries
by selecting input categories with respect to the input categories that com-
pose the hypothesis. One set of queries checks that inputs satisfying the
hypothesis also indeed satisfy the actual input constraints (i.e., the test con-
structed will be executed without error). Another set of queries checks if
the inputs that do not satisfy the hypothesis also do not satisfy the input
constraints (i.e., the test constructed results in an error when executed).

At the beginning of the fuzzing campaign, SkipFuzz selects random in-
puts. As the fuzzing proceeds, the active learner begins to pose queries to the
test executor. The active learner considers the execution log to select input
categories to form a hypothesis, and selects input categories as queries. It
optimizes for the confirmation of possible hypotheses of the input constraints
of the API function.

As the test executor component evaluates a test case, the query (i.e.,

180

choice of input category) and test outcome are written in the execution log.
If a test case results in an exception thrown by the deep learning library,
then the input is invalid. If the library invocation succeeds without any
exceptions, then the input is valid. If the test case crashes the deep learning
library, then the input is a crashing input.

Measuring consistency. At any given time, there may be multiple
hypotheses that can be considered by the active learner. The active learner
selects the hypothesis that is the most consistent with the observations in
the execution log. To do so, it quantitatively measures the number of valid
and invalid inputs that are consistent with the hypothesis. Given a perfectly
consistent hypothesis, all valid inputs will be included in an input category
in the hypothesis. Conversely, all invalid inputs should not be a member of
the hypothesis.

As it may not be possible to infer a perfectly consistent hypothesis, we
compute quantitative measures of a hypothesis’ consistency. Each hypothe-
sis proposed by the active learner is assessed on its consistency with regard
to the observations in the execution log; valid inputs should satisfy the input
constraints in the hypothesis and invalid inputs should not. Within Skip-
Fuzz, we do not expect that the hypothesis will perfectly match the input
constraints. As such, SkipFuzz assesses each hypothesis and selects one
that is the most consistent with the observed executions. A good hypothesis
includes input constraints that cover a large part, if not all, of the valid obser-
vations. It should also not incorrectly cover invalid inputs. SkipFuzz uses
precision and recall to assess the quality of a hypothesis. Out of all inputs
selected, given that covered(valid, hypothesis) represents the number of
valid inputs that fall within the hypothesis, and covered(all, hypothesis)

represents the number of inputs, both valid and invalid, that fall within the
hypothesis. The precision, P, and recall, R, are computed as follows:

P =
covered(valid, hypothesis)

covered(all, hypothesis)

R =
covered(valid, hypothesis)

|valid|
Precision measures the proportion of valid inputs that fall within the

hypothesized input constraints out of all the observed inputs. Recall mea-
sures the proportion of valid inputs that fall within the hypothesized input
constraints out of all the observed valid inputs. Together, the two metrics
measure the adequacy of the hypothesized input constraint. A hypothesis is
adequately consistent if the precision and recall exceed a threshold set at the
start of the fuzzing campaign.

181

6.5 Implementation

In the previous section, we have discussed the key ideas behind SkipFuzz.
Here, we discuss the implementation details.

Building the input database. SkipFuzz is implemented as a Python
program that takes the API and the developer test suite as its input. The
list of functions in the API is obtained. We obtain the input values used in
the library test suite as the seed inputs for SkipFuzz, the Python library
code is instrumented to track the invocation of every function call to record
their argument inputs. The functions to construct the inputs, the returned
values of their invocations, and the input properties satisfied by the inputs
are stored in the database. Inputs are generated by fetching and invoking
the functions.

Crash Oracle. As our research objective in this study is to assess the
ability of SkipFuzz to explore the input space, we only monitor the deep
learning libraries for crashing inputs. SkipFuzz is implemented with a crash
oracle. The test executor constructs and executes a test program on a dif-
ferent process. Then, the test process is monitored for crashes. Inputs that
crash the library are written to the execution log. These crashes are later
investigated manually to identify unique crashes before we report them to
TensorFlow and PyTorch.

The crash oracle detects weaknesses considered as security vulnerabili-
ties [49] (e.g. segmentation faults) that cause the running process to termi-
nate in an unclean way. Other methods of detecting vulnerabilities may be
implemented in SkipFuzz in the future, but in our experiments, we focused
on uncovering crashes in the libraries that may be exploited for denial-of-
service attacks.

Active Learning. The active learner takes the execution log as in-
put and produces a series of queries to be posed to the test executor. The
queries are constructed based on the subset of input categories in the hy-
pothesis. The construction of a hypothesis and the selection of queries are
obtained through the execution of a logic program. Using a logic program
allows us to declaratively express the desired characteristics of a hypothesis
and optimize the selection of input categories against a criteria. The active
learner selects an appropriate hypothesis while maximizing the number of
valid inputs that match the hypothesis, minimizing the number of invalid in-
puts that are incorrectly matched by the hypothesized input constraint, and
favouring simpler hypothesis by minimizing the number of input categories
used in the hypothesis. In this way, SkipFuzz assesses each hypothesis on
its consistency with the observed test outcomes.

182

SkipFuzz accepts a hypothesized input constraint considering if its preci-
sion and recall exceed a threshold. In our experiments, we set a low threshold
for both precision and recall at 0.25. This enables the input constraints to
be inferred for a large proportion of the API. As our goal is to fuzz the API
thoroughly, we find allowing the fuzzer to focus on a broad region of inputs
that include the valid domain of inputs of the functions is more beneficial
than precisely identifying the valid domain of inputs. We empirically find
that the low thresholds do not adversely impact the proportion of valid in-
puts selected by SkipFuzz when using the hypothesized input constraints
to generate valid inputs. This is because the logic program already optimizes
the selection of hypotheses for a high level of consistency.

Interleaving of target functions. The active learner SkipFuzz em-
ploys clingo [168] to execute the logic programs used by SkipFuzz to select
the next set of inputs. Logic programs take a significant amount of time to
be executed to produce their output. To allow time for the logic program to
be executed, SkipFuzz interleaves the construction of test cases for different
API functions, coming back to the same function only after completing a test
case for each of the other test cases. This provides ample time for the logic
program to be run before the same API function is tested again.

6.6 Evaluation

6.6.1 Research Questions

Our experiments aim to provide answers to the following research questions.
We investigate SkipFuzz capability in finding crashing inputs (RQ1). Next,
we analyze the input generation ability of SkipFuzz (RQ2 – RQ4).

RQ1. Does SkipFuzz produce crashing inputs?
This question concerns the ability of SkipFuzz in triggering crashes,

which is our primary objective. We count the number of new crashes that
have not been previously reported, which we then reported to the library
developers for validation. We also compare the ability of each approach in
triggering the set of crashes found by at least one approach.

RQ2. Does SkipFuzz sample diverse inputs?
Active learning should enable SkipFuzz to reduce redundancy during

fuzzing by selecting a wide range of input categories. We investigate if Skip-
Fuzz was able to do so. We compare SkipFuzz against the baselines and
compare the inputs generated to fuzz the functions known to crash.

RQ3. Does SkipFuzz sample valid inputs?

183

SkipFuzz is expected to generate a larger proportion of valid inputs.
We investigate if inputs selected to satisfy the inferred input constraints are
indeed valid inputs.

RQ4. Which components of SkipFuzz contribute to its ability to
find crashing inputs?

SkipFuzz aims to have a less redundant selection of inputs and generate a
higher proportion of valid inputs. We perform an ablation study to determine
how the components of SkipFuzz contribute to it.

6.6.2 Experimental Setup

Baselines. We compare SkipFuzz against the state-of-the-art deep learning
library fuzzers targeting the libraries’ API, DeepRel [132] and DocTer [421].
We run the tools from their replication packages and analyze the list of bugs
reported.

DeepRel builds on top of FreeFuzz [415], using the same strategy of gen-
erating inputs for each API function. DeepRel and FreeFuzz collect inputs
for use from open-source code on GitHub, publicly available models, and the
library test suite. Compared to FreeFuzz and DeepRel, SkipFuzz uses only
inputs from the libraries’ test suites while DeepRel and FreeFuzz use seed
inputs collected from open source resources. As DeepRel and FreeFuzz uses
the same input generation strategy and differ only in the number of API
functions they cover, we only compare SkipFuzz against DeepRel.

DocTer extracts input constraints from the library documentation. Then,
it generates inputs to invoke the libraries considering the extracted input
constraints.

Environment. We run experiments on TensorFlow 2.7.0 and PyTorch
1.10, the same version of the libraries used by the most recent study [132].
We collect a list of all API functions of TensorFlow and PyTorch. It is used
in our initial experiments, where we attempt to run the approaches on every
function. Subsequently, we focus our analysis on the ability of the fuzzers to
trigger the crashes found by the approaches. Using DocTer, DeepRel, and
SkipFuzz, there are crashing inputs to 231 functions in TensorFlow and 95
functions in PyTorch.

We configured and ran the fuzzers for up to 48 hours. In the prior ex-
periments of the baseline fuzzers [421, 415, 132], the tools were allowed up
to 1,000 [415, 132] or 2,000 [421] executions for each function. To generate
1,000 test cases, we executed DeepRel and it took 172 hours and 43 hours to
complete generating test cases for TensorFlow and PyTorch. DocTer took 16
hours for TensorFlow and 25 hours on PyTorch. Therefore, to use the same

184

Table 6.3: The number of unique new vulnerabilities of TensorFlow reported
in this study and prior studies.

Approach # new vulnerabilities
DocTer 1
FreeFuzz 7
DeepRel 1
SkipFuzz 23

budget for a fair comparison, we tweaked the number of test cases generated
by the baseline fuzzers to fit in 48 hours and reran the fuzzers.

Our experiments on executed on a machine with an Intel(R) Xeon(R)
CPU E5-2640 v4 @ 2.40GHz, 205G, Tesla P100. While our fuzzer does not
directly use the GPU, some functions in the library may use the GPU.

Evaluation Metrics.

We use the following metrics to assess SkipFuzz:

• # of detected crashes. The primary goal of SkipFuzz is to generate
inputs to crash TensorFlow and PyTorch.

• Input property coverage. We report the number of unique input
properties that have been satisfied by at least one input during fuzzing.
To reduce input redundancy, a high input diversity is desirable. To
measure the diversity of inputs, we count the total number of unique
input properties observed to be satisfied at least once.

• API coverage. We report the number of functions that valid inputs
were successfully generated for. This metric was previously used in the
evaluation of DeepRel [132]. Related to this metric, we also report the
proportion of generated valid inputs.

6.6.3 Experimental Results

RQ1. Vulnerabilities detected

Existing crashes. We perform a thorough analysis of the capability of
the approaches in detecting existing crashes. In this analysis, we consider
all crashes found by the approaches. To perform this analysis, we consider
that a vulnerability was not detected if its corresponding API function is not

185

covered by the tool or if the tool does not report the bug although test cases
were generated for the function.

In total, SkipFuzz detects a total of 168 crashing functions, 108 in Ten-
sorFlow version 2.7.0 and 58 in PyTorch version 1.10. From the 108 Tensor-
Flow functions, we grouped related crashes and reported 43 vulnerabilities.
From the 58 PyTorch functions, we reported 10 vulnerabilities. After cor-
responding with the developers of TensorFlow and PyTorch, they confirmed
that 23 of the TensorFlow vulnerabilities and 5 of the PyTorch vulnerabilities
were previously unknown. The remaining crashes are confirmed as vulnera-
bilities too, but they were already known by the developers (although the fix
was not released yet).

We received 23 CVEs from these reports. Next, we analyze the extent to
which SkipFuzz, DocTer, and DeepRel are able to detect the same vulner-
abilities.

DocTer found 163 crashing functions. Of the 108 vulnerable TensorFlow
and 58 vulnerable PyTorch functions found by SkipFuzz, DocTer was able
to successfully generate crashing inputs to 6 of the 108 vulnerable functions
in TensorFlow. and 12 of the 58 vulnerable functions in PyTorch. Overall,
DocTer detects just 18 of the 166 vulnerable functions detected by SkipFuzz.

On the other hand, when executed on the versions of libraries before these
crashes were fixed, SkipFuzz is able to detect 52 (84%) out of the 62 crashing
functions in TensorFlow detected by DocTer. On PyTorch, SkipFuzz is
able to detect 7 (23%) out of the 31 crashing functions detected by DocTer.
Overall, SkipFuzz detects 59 (63%) out of 93 crashing functions detected
by DocTer.

Figure 6.4: Crashes in the deep learning libraries found by DeepRel, DocTer,
and SkipFuzz.

186

Next, we compare SkipFuzz against DeepRel and FreeFuzz. DeepRel

and FreeFuzz was able to detect crashes for only 9 of the 108 TensorFlow
functions and 7 of the 59 PyTorch functions. The original experiments done
to evaluate FreeFuzz [415] and DeepRel [415] resulted in 39 bug reports on
TensorFlow, of which 10 involved crashes, and 72 bug reports on PyTorch, of
which 7 involved crashes. When executed on versions of the libraries before
the crashes were fixed, SkipFuzz is able to detect 8 (80%) of the 10 crashes
on TensorFlow and 3 (43%) of the 7 crashes on PyTorch. Figure 6.4 shows
two Venn diagrams of the functions that each approach is able to generate
crashing inputs to.

New vulnerabilities in TensorFlow. Table 6.3 shows the number of
new crashes found in the experiments of DocTer, FreeFuzz, and DeepRel.
On TensorFlow, we determine if a crash is new by going through the list of
TensorFlow vulnerability reports and comparing the referenced bug reports
against the bug reports referenced by the replication packages of the prior ap-
proaches. DocTer [421] found 1 newly discovered vulnerability. FreeFuzz [415]
and DeepRel [132] found a total of 8 crashes. In our experiments, SkipFuzz
detects 33 new vulnerabilities. 23 of them have been confirmed by Tensor-
Flow developers to be new vulnerabilities, with 23 CVE IDs assigned. We do
not perform this analysis for the crashing inputs to PyTorch as its developers
do not assign CVEs to potential security weaknesses.

There has been significant effort in detecting TensorFlow vulnerabilities.
Apart from the baseline approaches discussed, it is a fuzz target in the OSS-
Fuzz project [47]. OSS-Fuzz has found over 30,000 bugs in open source
projects, including 6 security bugs in TensorFlow1. Evidently, finding new
vulnerabilities is not trivial.

RQ2. Reducing input redundancy.

To investigate the factors contributing to SkipFuzz’s performance, we study
the inputs used in fuzzing. We evaluate the reduction in redundancy by
measuring input diversity.

We analyze the coverage of input properties by the inputs generated by
the approaches. A higher coverage of input properties indicates a greater
diversity of inputs. This suggests a low amount of redundancy in input
generation. Conversely, a low coverage may indicate that similar inputs was
generated over and over again, which implies a high level of redundancy as
the inputs may be failing the same validation checks, or triggering the same
library behavior. We investigate the number of properties that were satisfied

1Issues tagged “Bug-Security” on https://bugs.chromium.org/p/oss-fuzz/issues/

list?sort=-opened&can=1&q=proj:TensorFlow

187

https://bugs.chromium.org/p/oss-fuzz/issues/list?sort=-opened&can=1&q=proj:TensorFlow
https://bugs.chromium.org/p/oss-fuzz/issues/list?sort=-opened&can=1&q=proj:TensorFlow

Table 6.4: Coverage of input properties

Approach % input properties covered
DocTer 15%
DeepRel 16%
SkipFuzz 31%

Table 6.5: The distribution of outcomes running the test cases produced by
DeepRel, SkipFuzz, and DocTer. SkipFuzz produces test cases with more
diverse outcomes, indicating that it is better at uncovering corner cases. IAE
refers to InvalidArgumentError

Exception type DeepRel DocTer SkipFuzz
None (no errors) 77% 13% 24%
IAE 15% <1% 2%
ValueError 6% 41% 7%
TypeError 1% 46% 19%
Other errors <1% <1% 48%

by an input passed to TensorFlow’s and PyTorch’s API as a proportion of
all input properties observed in the experiments. In this analysis, we focus
on the test cases generated to target the crashing functions to investigate the
reason for SkipFuzz’s stronger ability to generate crashing inputs.

Input diversity. Table 6.4 shows the experimental results. The inputs
used by SkipFuzz in its test cases cover two times more input properties than
the inputs used in the test cases generated by DeepRel and DocTer. While
the inputs selected by DeepRel and DocTer cover only 16% and 15% of the
possible input properties, SkipFuzz achieves an average of 37% property
coverage. This suggests that the diversity of the inputs contributed to the
stronger performance of SkipFuzz.

Output diversity. We further investigate if the increased input diversity
leads to more diverse library behaviors. To do so, we analyze the result of
each generated test case by investigating the number of occurrences of each
type of input constraint that was not satisfied. We count the number of times
each type of exception is thrown. Note that we do not consider crashes among
these outcomes (crashes are rare occurrences leading to the termination of
the running process).

The proportion of each result type (e.g., a successful run without errors,
or a particular exception type) is shown in Table 6.5. SkipFuzz achieves a
distribution with diverse test outcomes while DeepRel has a greater propor-
tion of successful executions of TensorFlow. We stress that a high proportion

188

of valid inputs is usually desirable but maybe achieved at the cost of failing
to explore uncovered behaviors, for example, if a fuzzer uses the same valid
input over and over again. Our experimental result suggests that SkipFuzz
achieves a high diversity of outcomes; SkipFuzz triggers up to 30 types
of exceptions, ranging from RecursionOverflow, UnicodeDecodeError, and
ResourceExhaustedError (categorized as “Other errors” in Table 6.5), while
DeepRel triggers only 7 types of exceptions. DocTer only triggers 4 types
of exceptions, with the vast majority of them InvalidArgumentError and
ValueError. The experimental results validate our finding that SkipFuzz
successfully triggers a greater number of different behaviors (and corner
cases) compared to DeepRel and DocTer.

RQ3. Generating valid inputs

SkipFuzz performs input constraint inference. We study if the inferred input
constraints are precise enough for producing inputs satisfying the actual input
constraints.

DocTer generates just valid inputs 13% of the time, underperforming
SkipFuzz which produces valid inputs 24% of the time. This validates
our initial intuition for using active learning. The better performance of
SkipFuzz in generating valid inputs indicates that active learning may be
more successful in inferring input constraints than DocTer’s use of the API
documentation, which may be incomplete [421].

DeepRel uses FreeFuzz as its test generator, and therefore, will produce
the same output as FreeFuzz. Their input generation strategy is to mutate
the seed inputs. As seed inputs are always semantically valid inputs, the vast
majority of inputs generated by FreeFuzz and DeepRel are valid. However,
as discussed in the previous section, a large proportion of valid inputs may
imply that the fuzzer is using similar inputs repeatedly, leading to redundan-
cies. Indeed, based on Table 6.5, DeepRel has a lower diversity of inputs,
which may have led to a lower chance of generating crashing inputs (Table
6.3).

API Coverage. Table 6.6 shows the API Coverage obtained by Skip-
Fuzz and the baseline tools. SkipFuzz successfully invokes 37% of the
functions in the API. In contrast, the strongest baseline, DeepRel, generates
valid inputs for 30% of the API functions. The results indicate that Skip-
Fuzz is able to generate valid inputs for a greater proportion of the API
than existing techniques.

Table 6.7 shows the proportion of valid inputs generated. We compare
SkipFuzz against DocTer as well as a simple baseline that randomly se-
lects inputs used in the libraries’ test suite. While SkipFuzz generates valid

189

Table 6.6: Coverage of the functions in the API. We consider an API func-
tion covered if the tool generates valid inputs. The numbers in parenthesis
indicate the proportion of the API that SkipFuzz accepts the hypothesized
input constraints for.

Approach API Coverage # of functions covered
DocTer 12% 956
DeepRel 30% 1902
SkipFuzz 37% 2362

Table 6.7: Proportion of valid inputs generated

Approach % of valid test cases
Random selection of inputs 1%
DocTer 13%
SkipFuzz 24%
DeepRel 77%
SkipFuzz (valid input mode) 80%

inputs 24% of the time considering all three input generation modes, Skip-
Fuzz produces valid inputs 80% of the time in its valid input generation
mode (after inferring the input constraints). This is higher than the propor-
tion of valid inputs generated by both DocTer and DeepRel. Overall, this
demonstrates the benefit of the active selection approach for input constraint
inference.

RQ4. Ablation analysis

For a deeper analysis, we perform an ablation study on SkipFuzz. Skip-
Fuzz− refers to a version of SkipFuzz where inputs are sampled from the
input categories, but there is no active learner posing queries and no inference
of the input constraints (removing 2 in Figure 6.3). SkipFuzz−− refer to
a version of SkipFuzz where inputs are selected randomly (removing both

1 and 2 in Figure 6.3).
Table 6.8 shows the experimental results of the ablation analysis. Without

using active learning to infer input constraints, the number of crashes found
by SkipFuzz− drops from 168 to 122, a 26% decline. Without using active
learning, SkipFuzz− does not drive the test executor toward valid inputs.
While it is able to cover a higher proportion of properties (93%), the majority
of the inputs (99%) are invalid.

Without the input properties, SkipFuzz−− selects inputs entirely at ran-

190

Table 6.8: Ablation analysis of the components in SkipFuzz. % valid is
the proportion of valid inputs that are generated. SkipFuzz− removes ac-
tive learning. SkipFuzz−− removes the use of input properties and active
learning.

Approach Property % valid # crashes
coverage

SkipFuzz 31% 24% 168
SkipFuzz− 93% 1% 112
SkipFuzz−− 84% 1% 52

dom. The number of detected crashes substantially drops to just 52, a third
of the original number of crashing inputs found. The majority of inputs
selected are invalid; only 1% of them are valid. It spends most of its test
budget using inputs that invokes the library with errors.

The experimental results indicates that higher input diversity alone is not
enough. Having a valid input proportion that is too low hinders the ability to
find crashing inputs. Overall, our experimental results suggest that the input
properties are essential to SkipFuzz and that active learning substantially
boosts the effectiveness of SkipFuzz.

6.7 Discussion and Limitations

Our experiments demonstrate that SkipFuzz outperforms the existing fuzzers
in generating crashing inputs to TensorFlow and PyTorch. Our analysis sug-
gests that SkipFuzz is effective due to the combination of both the higher
diversity of inputs and the higher proportion of valid inputs. These im-
provements stem from the effectiveness of active learning in input constraint
inference.

Effectiveness of active learning. Active learning is effective in our
task as we encoded the domain knowledge of deep learning libraries in the
input properties. This allows SkipFuzz to successfully infer the input con-
straints. Had the input properties not correctly encoded the input con-
straints, a hypothesis would not express meaningful properties. Once Skip-
Fuzz infers the input constraints, the majority of inputs generated are valid.
This is an improvement compared to the prior approach of extracting con-
straints from documentation.

Limitations. Next, we discuss some limitations of SkipFuzz. The ac-
tive learner poses queries that are answered through the invocation of the
library. This is a form of dynamic program analysis. it, therefore, inherits the

191

limitations of dynamic analysis; the observed behaviors are an underapproxi-
mation of the actual behaviors of a program. Consequently, the model of the
input constraints hypothesized by SkipFuzz may not capture some proper-
ties of the true input constraints of the library. We leave the investigation of
other methods of input constraint inference for future work.

6.8 Related Work

Fuzzing deep learning models and systems. Researchers have pro-
posed approaches to assess the security of deep learning systems. Existing
approaches fuzzes either deep learning models [425, 177, 138] or larger sys-
tems that use deep learning [424, 183, 141, 72, 371, 457]. Other approaches
use static analysis [245, 268]. Some studies reveal that software deploying
deep learning does not secure their models well; the weights of models can be
stolen by querying the model repeatedly [217, 208]. SkipFuzz fuzzes deep
learning libraries rather than individual models or systems that use deep
learning.

Fuzzing deep learning libraries. Several approaches have been pro-
posed for testing deep learning libraries. Several approaches detect bugs
through metamorphic and differential testing [323, 403, 412, 178, 425]. These
approaches check for different behaviors when the same behavior is expected,
e.g. a similar function invoked with the same inputs on TensorFlow and Py-
Torch. Another approach targets precision errors in TensorFlow [451]. Cru-
cially, these previous studies overlook the systematic selection of inputs for
minimizing redundancy.

ExAIS [359] uses specifications of the deep learning layers for fuzzing. As
it requires expert analysis and manual writing of specifications, its scalabil-
ity is limited. The closest approaches to SkipFuzz are DocTer [421] and
DeepRel [132], which have been discussed and used in our experiments.

Fuzzing other libraries. Recent research has also proposed to fuzz
libraries. Some approaches aim to generating valid inputs for libraries in
specific languages, e.g. Rust [213, 376]. Some studies propose approaches
for constructing fuzz drivers [76, 206, 443], e.g. library calls to prepare the
complex inputs required to invoke the library. SkipFuzz has a similar goal
of generating valid inputs but does so through active learning to infer the
input constraints.

Selecting inputs. Several studies [337, 399, 309, 459, 114] propose meth-
ods of selecting good inputs for fuzzing. Some methods optimize for code
coverage [337, 399, 309, 90] or filtering out inputs predicted not to reach a
target program location [459]. Unlike these approaches, SkipFuzz selects

192

inputs that may glean more information about the input constraints.
Input validation. SkipFuzz addresses the problem of generating in-

puts that pass input validation checks through input constraint inference.
Several approaches [123, 267, 185, 319, 408] use static analysis to address the
problem. DriFuzz [366] proposes a method of generating high-quality initial
seed inputs. Different from these approaches, SkipFuzz uses active learning
to learn the input constraints to generate valid inputs.

Active Learning. Our approach uses active learning [101, 361, 63, 64],
which queries an oracle and learns from its feedback. In classification tasks,
active learning is used to query for labels of informative data instance when
labeling every instance is too difficult [361]. Recent work uses active learning
to learn models of programs, and then regenerate programs using the models
to remove undesired behaviors [389, 365]. SkipFuzz uses active learning to
learn models of input constraints.

6.9 Summary

In this study, we address the problem of generating crashing inputs to deep
learning libraries. Our approach, SkipFuzz, uses active learning to infer
the input constraints of the libraries’ API during fuzzing. SkipFuzz has
two advantages over existing approaches. Firstly, SkipFuzz infers the in-
put constraints without the use of documented specifications. Secondly, its
use of active learning guides the selection of a diverse set of inputs during
fuzzing. These advantages address the challenge of generating semantically-
valid inputs as well as the challenge of reducing input redundancy, which is
only partially addressed and overlooked by the previous studies, respectively.
Our experiments show that addressing both challenges is crucial. 23 CVEs
have been assigned to vulnerabilities found by SkipFuzz. The source code
of SkipFuzz can be found at https://github.com/skipfuzz/skipfuzz.

193

https://github.com/skipfuzz/skipfuzz

Chapter 7

(System of Interacting
Components) IoTBox: Sandbox
Mining to Prevent Interaction
Threats in IoT Systems

7.1 Overview

Internet of Things (IoT) systems, such as smart homes, are becoming popular
and widespread. There are security risks at each level of granularity in an IoT
environment. At the application-level, researchers have studied the security
implications of IoT platforms that allow users to install apps that allow
devices to interact with one another. A smart home comprises a collection of
devices and apps. These apps control and connect different devices together,
bringing many benefits and convenience to users, but this comes at the price
of security risks. The increased attack surface has led to new types of attack,
such as those that introduce physical risks. For example, an app can be
used to configure a smart home such that the windows will be opened if
a temperature sensor in a room measures a reading above a user-specified
temperature. A malicious app can spoof fake temperature readings to trigger
the opening of the window, potentially allowing a break-in [136]. Other apps
can open a door when no one is at home, disable a smoke detector, and induce
seizures through the rapid strobing of lights [347]. Hence, it is important to
understand the security risks of apps used in a smart home and defend against
malicious behaviors.

One source of complexity is that apps can interact with one another
through the devices they control and are triggered by. Malicious behavior

194

can arise through the interaction of multiple apps, which may interact to
produce unintended results in the physical environment. This motivates the
need to study a smart home as a system of interacting apps and devices,
rather than asserting that the behaviors of the individual apps in the smart
home are safe.

Existing work has focused on using model checking or monitoring smart
homes to ensure that joint behaviors of the apps do not violate safety prop-
erties [105, 301, 106, 53, 406]. Some of these techniques extract models of the
apps through static analysis [105, 301, 53], checking them against predefined
safety properties that were written by hand. For example, techniques may
enforce a property that the door is never unlocked while the occupants of a
smart home are away, and another property may be that the lights in the
house are never automatically switched off while the occupants are home.

A problem is that these properties may not anticipate all legitimate uses
of the apps. Indeed, the normal executions of some apps deliberately violate
these safety properties and users may install these apps knowingly. A secu-
rity policy that prohibits any switches from turning on when the users are
not home will prevent the use of the legitimate app, VacationLightingDirec-
tor [42], which simulates occupancy in a house by occasionally switching on
the lights when the user is on vacation. These techniques cannot distinguish
between user-intended violations of the properties from real safety problems.
Moreover, as new devices and new apps are developed and introduced into
the market, there will be new forms of incorrect behavior involving new apps
and devices. Existing techniques cannot defend against new modes of at-
tacks involving new channels or devices, for which safety properties have not
been written yet. This motivates the need to automatically identify relevant
security policies.

In this work, we propose that we can begin addressing the above men-
tioned limitations through the technique of sandbox mining [209], inspired
by the work by Jamrozik et al. mining sandboxes for Android apps [209].
We propose IoTBox, which automatically mines a sandbox for a smart home.
Rather than writing out safety properties by hand, IoTBox encodes the cur-
rent behaviors of a smart home and protects the user against unexpected
behaviors. The possible behaviors of a smart home are encapsulated in the
sandbox, which detects changes in behavior. Changes in behaviors may be
caused by the introduction of malicious behavior in an app, unexpected bugs
due to a new interaction between apps, or the removal of behavior that the
user depended on. After the sandbox is mined, it excludes behavior that was
not previously captured during analysis. If an app is replaced or updated
with malicious code, the sandbox prohibits any behavior that violates its
rules and reports it. The user of the apps can investigate and decide if the

195

new behavior should be permitted. If a change is benign and acceptable to
the user, the sandbox can be relearned on the updated smart home again,
and will defend the smart home system against new threats.

However, unlike mining sandboxes for Android [209, 252, 79], the possi-
ble behaviors in a smart home cannot be as easily explored using test case
generation. Unlike traditional software systems, actions invoked within the
smart home may take several seconds before they execute. The state space,
composed of every app located in the smart home, is enormous compared to
individual Android apps. Yet, it is essential to comprehensively explore the
possible behaviors of the smart home to learn accurate rules.

Another challenge is that malicious behavior may disable an action in-
stead of invoking new actions. For example, an adversary may disable exist-
ing behavior that locks a door when the user is asleep, leaving it unlocked
for an adversary. Consequently, a sandbox for IoT should detect changes in
behavior that causes missing actions.

In this study, we overcome the above challenges by leveraging the pre-
cision of the formal models proposed in existing studies [53]. Specifically,
IoTBox uses a formal model of a smart home [53] to identify a complete ex-
ecution context for any automated action with the help of a model checker.
During monitoring of the environment, IoTBox then uses these execution
contexts to identify actions that it expects the smart home to automatically
run. If there is a mismatch between the expected actions and actions in re-
ality, then IoTBox detects that there is a behavioral change and alarms the
user.

7.2 Background

In this section, we present relevant background. IoTBox builds on top of
both prior studies formalizing an IoT system [53], and techniques to mine
sandboxes [209, 252, 398].

7.2.1 Smart Home Platforms

We focus on the apps in the Samsung SmartThings [30] and IFTTT [19]
platforms. In a typical smart home platform, physical devices have a cor-
responding virtual representation on the platform. The state of each device
is a mapping of attributes to values. The state of a device can be modi-
fied through actions, such as switching on the lights (toggling switch.off to
switch.on). The set of attributes and actions of a device is determined upon

196

Motion
detected

HOME Mode

Switch on

Unlock Door

AppTouch

Figure 7.1: This smart home transits to HOME mode on detecting motion
(App1) or if a light is switched on (App2). The door is unlocked when the
mode has changed or through a user interaction with the SmartThings app
(App 3).

registration of the physical device to the smart home platform, where it is
granted a capability (e.g. a lock, a switch, or a thermostat).

Once registered, apps can access these devices by specifying the required
capability. Within the apps written in Groovy, each device can then be
accessed as an object. Device attributes are read through the attributes on
the object, and the actions on the device (e.g. door.unlock(), alarm.off()) are
invoked through method calls. Installed apps can interact with one another
through various means. For example, an app can change the mode of the
smart home to Home, indicating that the user is home, and a second app
unlocks the door when it detects that there is a mode change.

Arbitrary apps can be installed by the user on the smart home platform.
Each app has a set of capabilities it requires, in which the user binds existing
devices to. Apps are written following an event-handling paradigm. Usually,
app waits for events from sensor devices and trigger new actions through
actuator devices. Apps can interact through devices (e.g. one app toggles a
switch at a particular time of the day, and another app is triggered by the
switch to turn on all the lamps in the house) or through physical channels
(e.g. one app triggers a lamp in a room, which causes another app to pick
up sensor readings from an illuminance sensor).

We show an example of app interactions spanning multiple apps in Figure
7.1. A first app switches the smart home to HOME mode after a motion
sensor detects motion, a second app switches the smart home to HOME
mode if a light is switched on, and a third app unlocks the door if it detects
a transition to HOME mode or if the user unlocks the door through the
SmartThings apps. This transitively creates a link between a motion sensor
event and unlocking the door.

197

7.2.2 Formal model of a smart home

In this study, we use the formal model of a smart home proposed by Alhanah-
nah et al. [53]. They provide a tool, IoTCOM [53], to analyse apps written
for the SmartThings and IFTTT platforms. IoTCOM provides a parser that
translates these apps to Alloy [207] models. A smart home consists of a set of
devices and apps. Each device has one or more capabilities, attributes, and
at any time, a value associated with each attribute. Smart apps can connect
these devices, such as invoking an actuator (e.g. unlocking a door) given a
reading from a sensor (e.g. a motion detector sensing motion). A smart app
is a collection of rules. Rules are tuples of a Trigger × a set of Conditions
× a set of Commands.

Triggers represent the conditions in which the app is activated. These
are often events from the smart home sensors, such as a door opening. A trig-
ger comprises a device capability, an attribute associated with the capability,
and the value of the attribute. Each rule has at most one trigger.

Conditions represent the logical predicates on the state of other de-
vices/smart home. These predicates guard the invocation of a rule’s com-
mands. For example, after a rule is triggered by an event (“smoke detected”),
a rule may have other conditions (“the door is locked”), before it executes a
command (“unlock the door”). A trigger comprises a capability, an attribute
associated with the capability, and the value of the attribute. Each rule may
have any number of conditions.

Commands represent the actions taken by a rule, including device ac-
tuations that change the physical state of the smart home. Each command
comprises a device capability, an attribute, and a value. A rule may have
one or more commands.

The SmartThings platform also allow for state variables that persist over
different executions of an app. Each state variable is encoded as a device
capability in IoTCOM, allowing for analysis of behaviors that depend on
these variables.

Another consideration is communication between devices and apps through
physical channels. IoTCOM [53] includes the physical channels in its model
of the smart home, and models them as a mapping of capabilities to a physi-
cal channel. Each channel can link together an actuator device (e.g. a valve)
and a sensor device (e.g. a water sensor).

IoTCOM [53] precisely represents the smart home in Alloy, and uses the
Alloy Analyser to assert that safety properties hold on the smart home.
First, IoTCOM converts the apps in the smart home to Alloy models. Their
joint behaviors are represented as a behavioral rule graph, which captures the
behaviors of apps, linking together the triggers, conditions, and commands

198

of relevant rules. IoTCOM then asserts that the apps do not violate any
safety property. In our work, IoTBox can be built on top of any formal
model, however, as prior studies faced scalability issues [105, 212, 301], we
use IoTCOM’s precise model of a smart home.

7.2.3 Mining sandboxes

Traditionally, malicious programs have been executed in sandboxes, which
blocks access to resources that have security concerns. Researchers [209, 79]
have suggested that entirely blocking/allowing access to a certain resource
may be too coarsed-grained, and have proposed to identify more granular
conditions of accessing each resource, restricting access if the conditions are
unmet. To do so, techniques have been proposed to automate the mining
of rules for a sandbox. Jamrozik et al. [209] suggest mining associations
between GUI elements and sensitive API access through the generation of
Android GUI tests. This allows the identification of rules permitting access
to sensitive resources, such as the camera, only if the user is performing
specific actions on the app.

There are two phases to mining sandboxes, the exploration phase and the
sandboxing phase. In the first phase, the behaviors of an app are explored
and encoded into the sandbox. In the sandboxing phase, new behaviors that
were not seen during the first phase are prohibited. If the app requires a new
behavior, the sandbox should prohibit it or defer the request for the approval
by a human user.

For example, if a new version of an app is released, a user can install and
run it in the sandbox. As the sandbox detects previously unseen behavior
(e.g. reading a file), it alerts the user. Then, the user assesses the situation,
and if the user determines if the new behavior is desirable, its execution is
permitted. Otherwise, the execution of the potentially dangerous behavior
is stopped.

For these techniques to work effectively, it is necessary to sufficiently ex-
plore the app. If a normal behavior is not accessed during the exploration,
it will be produce false alarms during the sandboxing phase. Existing tech-
niques [252, 209, 398, 79] rely on test generation to explore the app. These
studies suggest that test generation can be effective for exploring behaviors
in individual Android applications and Linux containers.

Key to mining sandboxes with test case generation is the test complement
exclusion [438] method. There is no guarantee that behaviors that have not
been observed will not occur in future. Test complement exclusion turns this
limitation into a guarantee by using the sandbox to allow only behaviors seen
as the sandbox is mined. Therefore, if no malicious behavior was observed,

199

then no malicious behavior can execute.
Existing techniques differ in the context considered to determine if a given

resource should be accessible. If the rule allowing a resource access is too
coarse-grained, then it may fail to detect malicious behaviors, while if it is too
granular, then it may stop benign behaviors with inconsequential differences
from executing. In the work of Wan et al. [398], only the set of system calls
are tracked and their contexts are ignored. In Jamrozik et al’s work [209],
the execution context is the GUI element that the user interacted with before
an Android API call. In Le et al’s work [252], the execution context is the
sequence of other API calls before the given API call.

7.3 IoTBox

Our primary contribution is the proposal of IoTBox, a technique that mines
a sandbox for a smart home. Key to our approach is to consider only causal
information between events in a smart home. First, IoTBox connects events
and actions to determine all possible paths leading to any action. If there is
some unexplained difference between IoTBox’s expectations and the actions
in the real world, then it suggests that there is a behavior in the smart home
that differs from the rules that IoTBox has learned. There are two phases
to IoTBox, much like other techniques mining sandboxes [209, 398, 252, 79],
the exploration phase and the sandboxing phase.

In the exploration phase, IoTBox thoroughly explores of the behaviors of
the software system to determine the execution context of possible actions in
the smart home. We consider an action’s execution context as the set of ex-
ecution paths causing the action’s execution. IoTBox’s refines the execution
context of a given action, finding all possible causes of the action, by utiliz-
ing the Alloy Analyzer to identify all paths linked to the action, including
non-trivial interactions across multiple apps and timed events. This creates
two guarantees. Firstly, only events that are linked to the given action are
identified, and secondly, all such events are found. In contrast, existing work
on mining sandboxes rely on test case generation, which may fail to com-
prehensively explore the entire search space of behaviors (In Section 7.5, we
discuss the tradeoffs of this choice). Abstracting the identified behaviors as
rules, IoTBox uses these rules in the sandboxing phase to judge if there is
any missing or disallowed action given recently observed events.

200

7.3.1 Exploration phase

To mine a sandbox, we use the Alloy Analyzer, a model checker, to thoroughly
explore the behaviors of a bundle of apps encoded in the behavioral rule
models, introduced by Alhanahnah et al. [53]. As described before in Section
7.2, these models are encoded in Alloy. The exploration phase can be viewed
as answering the question “What are all possible paths that lead to a given
action?”.

After we have produced formal models of all apps in the smart home,
our first step is to identify all actions that the apps may execute. This is
done by traversing all rules and picking out all actions that may be executed.
Our next step is to find all execution paths to lead to any given action. In
the example in Figure 7.1, one such path is (“Motion Detected” → “Home
Mode” → “Unlock Door”), This entails finding out all events, events, that
can trigger each action, a. First, we identify an event, event, that will trig-
ger it (i.e., by simply using the triggers and conditions of the rules that the
action is a command of). Next, we construct an Alloy assertion that checks
that all events on a path leading to the action is either event, or is preceded
by it. The following Linear Temporal Logic [163] fragment describes that
any occurrence of a must be on an execution path triggered by event:

¬a W event

event has a device capability, an attribute, and a value associated with
the attribute. This is used to initialize events, which initially contains just
event. For example using Figure 7.1, given a trigger (location, location mode,
HOME), which matches an event on a motion sensor, we initialize the set,
events, to contain a single event, (location, location mode, HOME). An ex-
ample of the assertion in Alloy is shown in Figure 7.2. It asserts that for all
rules that unlocks the door, there is no direct or transitive predecessor that
is not on the chain of events triggered by the transition to HOME mode.

We run the Alloy Analyser to check the assertion. If the assertion fails,
the Alloy Analyser will generate a counterexample of an event, different from
event, that transitively triggers the action. This new event, event2 (one of
“motion detected”, “switch on”, or “App Touch” in our example), is added
to events, and we modify the assertion to look for counterexamples of paths
which are triggered by events not in events. Only event2, which is only a
single event that precedes the other events on the path, is added. Obtaining
the possible paths from event2 is done afterwards. There may be multiple
paths that are triggered by event2 that result in a.

201

assert {

no r : IoTApp.rules, action : r.commands {

action.attribute =lock

action.value =unlock

(some predecessor : r.*(~connected),
action’ : predecessor.triggers
{

not {(

{

action’.attribute =location_mode

action’.value =HOME

}) or

(some predecessor’ : predecessor.*(~connected),
action’’ : predecessor’.triggers
{

predecessor ̸=r

action’’.attribute =location_mode

action’’.value =HOME

}

)}

})

}

}

Figure 7.2: Example of an Alloy assertion. The Alloy Analyser produces a
counterexample, a path that triggers the unlocking of a door without initially
triggered by a transition to HOME Mode.

¬a W (event ∨ event2)

Again, we execute the Alloy Analyser to check this assertion. If it fails,
we once again use the counterexample it finds to modify the assertion. This
process continues until the Alloy Analyser fails to find a counterexample,
and that all chains of events that lead to a have been accounted for. At
the end of this process, this assertion doubles as an interpretable security
policy. The policy declares all possible events that can lead to a, and checks
that other events do not transitively trigger a. This process produces the
following assertion with n different triggering events:

¬a W (∨n1eventi)

An advantage of this technique is that it identifies only events that have
a causal relationship with a based on the behavioral rule graph. Only events
that are a root cause of the execution of a are identified and included in
events. This avoids the problem of spurious associations had we applied
data mining techniques on the large number of events.

202

Next, we traverse the behavioral rule graph, beginning with the members
of events. We find all paths that lead to a. A path is a series of events and
does not contain loops. From all paths that start with a member of events,
we identify all subpaths that end with a, and in turn, these subpaths are
paths. This gives us the set of paths, paths.

execution context(a) = paths

We treat paths as the execution context of a. For an invocation of a, at
least one path within the execution context must be satisfied; all conditions
and their predicates along the path must be satisfied, and all triggers in this
path must have been triggered. satisfied(path) is an implementation detail
that will be described in Section 7.3.2.

If an execution context of an action is satisfied, then an actuation of
the action is expected. With this assumption, IoTBox looks for mismatches
between the expected and actual actions in the smart home. Let us define
two predicates: expected(a) is true when the execution context of a has been
satisfied. actual(a) is true when the action a has been observed in the IoT
environment. Based on these two predicates, the following gives a formal
definition of IoTBox’s assumption:

satisfied(execution context(a))↔
∃path(path ∈ execution context(a) ∧ satisfied(path))

expected(a)↔ satisfied(execution context(a))

By the end of this phase, we have constructed for any given action, a,
an execution context that comprises the set of all paths that lead to the
triggering of a. The execution context allows for both the detection of new
causes of an action and missing actions.

Given an action a that has taken place, IoTBox considers it as a disallowed
action if its execution was not expected.

disallowed(a)↔ ¬expected(a) ∧ actual(a)

Conversely, IoTBox considers an action to be missing if its execution was
expected but is not observed in reality.

missing(a)↔ expected(a) ∧ ¬actual(a)

203

7.3.2 Sandboxing phase

The objective of the sandboxing phase is to detect if there is a change in the
behaviors of the smart home. This is done through monitoring executions at
runtime. While the exploration phase was done through static analysis, it
is insufficient to use static analysis to prevent malicious behaviors; malicious
behaviors can be invoked through dynamic language features, such as call-
by-reflection. Within IoTBox, the sandboxing phase answers the question:
“For all automated actions, are there changes in the paths that can trigger
it?”

If there is an unexpected action, then it implies that there is a new path
that IoTBox is unaware of. If there is a missing action, then it implies that
some paths has been removed.

When deployed, IoTBox communicates with the app before the execution
of each action and whenever an event takes place. This requires the instru-
mentation of the smart apps to send events to IoTBox. We write a Groovy
program transformer that modifies the Groovy smart apps at each event han-
dler and at call sites of any action. The modified app calls out to a third-party
server to either update IoTBox of new events or to request for permission
to run an action. When an event handler runs, it logs the event to IoT-
Box. Before an action is invoked, the app waits for permission from IoTBox.
Malicious behavior may be invoked through dynamic program features such
as call-by-reflection, and we add guards to locations using Groovy’s GString
feature to perform dynamic method invocations. The action, resolved at run-
time, waits for permission from IoTBox before execution, similar to statically
invoked actions.

The traces of events and actions previously taken in the smart home
prior to the action are used by IoTBox to make a decision to allow or reject
an action. As events occur in a smart home, IoTBox updates its model of
expected actions based on the execution contexts of the actions. With every
new event that is reported, IoTBox determines if there is any missing event.
IoTBox warns the user if an action is rejected or if there is a missing action.

We did not experience significantly increased latencies when we deployed
our tool on the SmartThings Simulator. Our findings are similar with pre-
vious studies, which found that even after instrumentation, the latency for
an action to execute is largely caused by communication between the IoT
platform’s server and the physical device [106].

IoTBox uses the most recent executed events to make decisions, much like
DSM, the state-of-the-art technique to mine sandboxes [252]. Using these
events, it makes a best-effort guess if each path in an action’s execution
context is satisfied. IoTBox is conservative about the triggers on the path,

204

requiring that they must all be present before allowing an action, but liberal
in checking the conditions; an action is denied only if there is evidence that
a condition is not satisfied. Concretely, we propose the following algorithm
to determine if satisfied(path) holds for a given path.

In Algorithm 9, we iterate over the sequence of events in the traces, using
tracePointer (initialized in Line 1, incremented in Line 16), and over the
triggers on the path (Line 3). Each trigger has conditions associated with it,
coming from the same rule (Line 4). Between the events that match subse-
quent triggers, if an event matches a condition on its device and attribute,
but with a different value, then it causes the valuation of the condition to
be false. If the event matches on the value, then it causes the valuation
to be true. We track the conditions’ valuation using isConditionNegated

(initialized in Line 2), which maps a condition to true if an event caused the
condition to have a negative valuation (set in either Line 10 or 12). Before
the next trigger is matched, if a condition’s valuation is false, then the path
cannot be satisfied (Lines 18-20). any(isConditionNegated, conditions)

returns true if any condition maps to true. A path is not satisfied if there is
a missing trigger (Line 21) or if there is evidence that a required condition
is false (Line 18). Otherwise, the path is satisfied (Line 25).

This algorithm is best-effort and may not always be accurate. A smart
home is stateful and local information from the most recent traces may not
be enough to make the right decisions; it is not always possible to determine
the truth value of a condition. For example, a condition that the home is in
HOME mode cannot always be determined from the most recent traces, as
HOME mode may have been set hours or even days ago1. While it may be
possible to simply store the all updates to state of the smart home, including
state changes from multiple days ago, we surmise this poses a privacy risk if
this monitoring service is ever compromised [439, 152]. As such, we present
an approach that use a minimal amount of information from recent traces to
make best-effort decisions.

7.4 Empirical Evaluation

We are interested in answering 2 research questions:

• RQ1: How frequently do handcrafted security policies lead to
false positives?

Existing approaches detect security issues from the joint behavior of
multiples apps. We claim that their handcrafted policies may produce

1This is particularly true during a pandemic

205

Algorithm 9: Algorithm to determine if a given path is satisfied
(i.e., satisfied(path)) based on the events in trace.

Input: A sequence of events, trace.
Input: A path, path.
Output: satisfied(path), either true or false

1 traceP tr = 0, event = null
2 isConditionNegated = {}
3 for trigger ← triggersOf(path) do
4 conds = conditionsAssociatedWith(trigger, path)
5 while event != trigger && traceP tr <trace.len do
6 event = trace[traceP tr]
7 for cond← conds do
8 if cond.device = event.device && cond.attribute =

event.attribute then
9 if cond.value! = event.value then

10 isConditionNegated[cond] = true
11 else
12 isConditionNegated[cond] = false
13 end

14 end

15 end
16 traceP tr++

17 end
18 if any(isConditionNegated, conds) then
19 return false
20 end
21 if traceP tr == trace.len && event != trigger then
22 return false
23 end

24 end
25 return true

206

many false positives. In this research question, we investigate if indi-
vidual benign apps violate the security policies. As users are likely to
understand and reason about individual apps, we assume that, if in-
stalled, their behaviors are intentionally introduced into a smart home.

• RQ2: How effective is IoTBox?

In this research question, we investigate the effectiveness of IoTBox
against DSM, previously proposed for Android apps, and a simple
strawman sandbox.

7.4.1 RQ1: How frequently do handcrafted security
policies lead to false positives?

This research question investigates the prevalence of false positives from the
use of handcrafted security policies from prior work. We test a random
sample of 500 apps from public repositories containing existing apps [21, 81].
For each app, we check the model produced by IoTCOM against the 36
policies used in IoTCOM [53]. These policies are similar to the policies
used in other studies [106, 301, 105]. As we only test individual apps, all
violations are not caused by interactions between apps, and are likely to be
from behaviors that were intended if a user installed the app.

Findings

We find that out of the 500 apps, 326 of them (65%) violate at least one
policy, with a total of 572 violations. On average, there is 1 violation per
app. If deployed in a real setting, there is a high chance that a violation of the
security policies is a false alarm. While the security policies were designed
for and can help to catch dangerous behaviors, they cannot be used out of
the box.

One cause of the numerous false alarms is that the policies are too broadly
specified, causing IoTCOM to detect violations even for legitimate uses. For
each app, we describe the policy violated (based on the policies used in
IoTCOM [53]), highlight the reason for the violation, and if the violation of
the policy is intended. False alarms can come from either surprising uses of
devices or from IoTCOM’s overapproximation of execution paths that will
not be taken in reality. While we discuss only 4 violations (out of 326)
in Table 7.1, we expect that, in the wild, there are many situations where
IoT devices are used in unexpected ways. Many of these uses will violate
security policies that do not anticipate surprising uses. This problem was
also observed by Celik et al. [105]. For example, they reported anecdotes

207

Table 7.1: Behaviors of individual apps that violate the handcrafted security
policies. The parenthesis indicate the policy identifier in the IoTCOM pa-
per. Policies prefixed with P indicates a safety property, while T indicates a
general coordination threat.

Policy Violated Reason for violation

The heater should not be turned Intended; the app (use outdoor temp to
off when the temperature turn on off a switch) turns off a switch
is low (P.7) (which may be the heater) based on the

temperature outside, and not indoors.

Lights are not switched off Intended; the app (IlluminatedResponseto-
if someone is at home (P.9) -UnexpectedVisitors [20]) toggles the lights

on and off for illuminating someone
snooping about the house (e.g. a burglar),
switching the lights off if the burglar has left.

No rules with conflicting actions Intended; the app (LockDoorafter-
but same triggers/conditions -Xminutes [26]) sets a variable for internal
(T7) bookkeeping (to track that the door was

automatically opened), but sets it
to a different value (that it has been closed)
after some time.

Location mode should be set to Intended; while the user is home, the app
HOME when someone is at home (MotionModeChange [27]) may set the mode
(P.15) to NIGHT.

208

of users using flood sensors that produce alerts when water levels are low
(contrary to its expected use in detecting floods) for reminders to water their
plants.

In Software Engineering literature, researchers have pointed out that users
rarely use tools that produce many false positives, inhibiting its usage [153,
239, 215]. Users would need to apply significant effort to understand and
tweak each security policy to their smart home. This finding motivates more
research into automating this process.

7.4.2 RQ2: How effective is IoTBox?

This research question investigates the effectiveness of IoTBox. We com-
pare the number of bundles of apps for which IoTBox successfully identifies
malicious changes in behavior. In all cases, we compare IoTBox against two
baseline techniques, a strawman sandbox and DSM [252]. All techniques take
traces of events as input. First, for each bundle, we produced events based on
the formal models to simulate the smart home, triggering an average of 1208
actions. Next, to confirm our findings, we generate tests on the SmartThings
Simulator and collect traces from the apps’ executions, triggering 555 actions
on average.

Experimental Setting

We use the flawed apps that were studied previously. We use the bundles
of apps from IoTMAL, used in the evaluation of previous studies (Bundle 1-
6) [105, 53]. Furthermore, we proposed new bundles of apps (Bundles 7-16),
constructed with individual, flawed apps proposed in prior studies [105] and
combining them with other benign apps. We study the same apps used in
the evaluation of IoTCOM [53]. Bundle 17 is the example from Figure 7.1,
and we constructed a malicious variant by removing a transition to HOME
mode.

In each bundle, we locate the app with malicious behavior and create a
variant of the bundle by removing the unsafe logic in this app. To evaluate
the ability of IoTBox to detect missing behavior, we further constructed
variants of several bundles by removing a piece of behavior required for it to
function correctly. We pass the benign bundles of apps as input to IoTBox,
which explores their behaviors and constructs rules for the execution of each
action. Thus, in this work, a benign bundle of apps is the modified bundle
of apps without malicious behavior. A malicious bundle of apps is either
1) the original bundle containing an app with a malicious behavior, or 2)
a bundle of apps modified from the a benign bundle to remove a necessary

209

behavior. A total of 17 benign bundles of apps were explored, and 20 variants
of these bundles of apps with either additional malicious or missing necessary
behavior were constructed.

Next, we statically produce execution traces of the bundles of apps. The
executions of the benign bundles of apps are used for learning the sandbox
for both the strawman sandbox and DSM. The trace are produced from the
models to allow for a fair comparison of existing techniques and IoTBox, as
only the parts of the IoT app captured by the formal models are used to
produce traces. To produce events from the formal models, we identify two
types of event for each trigger and predicate; one event will set the predicate
to true, and another will falsify the predicate. We track the state of the
environment as a mapping of the attributes of every device located in the
environment to one value. We model time using a counter, which increases for
every event. At each time step, a random event will be selected for execution.
As an event is executed, the state of the environment is modified. Every time
an event is executed, we iterate over all the rules in the formal model and
determine for each rule, if its trigger matches the event, and if its conditions
have been met by the modified state. If so, then an event that matches the
command will be executed, either immediately or after some time.

The execution traces from the malicious bundles of apps are input to all
techniques. If a technique rejects more than 1% of actions, then we consider
that it is able to detect the malicious behavior in the bundle.

In simulating the apps’ executions, we constructed a challenging exper-
imental setup. We produced a large number of events while simulating the
possibility of race conditions between the apps. The triggering of apps may
be delayed to reflect real-world network conditions. Events from the execu-
tion of an app may be interleaved between executions of other apps. Thus,
the threshold of 1% permits some degree of false positives caused by these
challenging conditions. Without this threshold, DSM will find two times
more false positives. In practice, we expect that these challenging conditions
will not frequently occur. Also, we believe that users will find reasonably
rare false alarms to be acceptable. We manually inspected the statically gen-
erated traces to verify if the traces are plausible based on the source code.
Of 50 randomly sampled traces, none were infeasible.

The strawman sandbox detects if there is any action executed by the
smart home that was not seen during the exploration phase. Any previously
unseen action is rejected. DSM [252] takes the sequence of events and ac-
tions that occurs before an action as input. DSM uses an automaton model,
inferred through a Recurrent Neural Network [252]. If the events are rejected
by this model, the action is prohibited.

We use IoTBox as described in Section 7.3. Rules of the sandbox are

210

first learned through the exploration of the modified bundles of apps without
any malicious behavior. Next, we test the sandbox against both the original
bundle of apps containing the malicious behavior, and the modified bundles
without malicious behavior. We count the number of malicious bundles of
apps that were correctly identified (True Positives), the number of benign
bundle of apps identified as malicious (False Positives), and the number of
malicious bundle of apps identified as benign (False Negatives).

We evaluated the effectiveness of the tools using Precision, Recall, and
F1. Precision and Recall are computed as follows:

Precision = TP
FP+FP

Recall = TP
FP+FN

A precision of 100% indicates that the absence of false positives, while a
recall of 100% indicates that every malicious behavior was caught. Finally,
F1 is the harmonic mean of precision and recall. These metrics are widely
used in the literature of both mining sandboxes [252, 79], as well as other
related domains such as the detection of malware [342, 69].

Experimental Results from Statically Produced Traces

Table 7.2 summarizes our results on the static traces, for 16 out of 20 bundles,
IoTBox detected a change in behavior that should be disallowed. In contrast,
DSM and the strawman detected only 13 and 8 bundles with changed be-
havior.

We evaluated the techniques on false alarms and found that DSM pro-
duced false positives on 3 bundles. Both the strawman and IoTBox do not
produce false positives.

As we produced over a thousand traces, we rule out a lack of training
data as a reason for DSM’s relative ineffectiveness. We hypothesize that its
poor performance is caused by the tight coupling of its decisions to the local
context, requiring that all necessary information to make the right decision
appear in the most recent traces. In fact, the relevant events to make the
right decision can occur far apart from one another. While Le et al. [252]
suggests that DSM’s use of Recurrent Neural Networks may help in capturing
long-term dependencies between events, still, an IoT system is stateful and
the relevant state changes may have occurred before the collection of the
most recent traces. Ultimately, DSM is fooled by spurious patterns in the
most recent traces. On the other hand, IoTBox encodes domain knowledge
of IoT apps, only loosely enforcing conditions to check if they are satisfied.

Only IoTBox can detect changes in behavior that result in missing actions
(indicated with (M) in Table 7.2). Both DSM and the strawman do not detect

211

Table 7.2: Bundles with malicious behavior that were detected. T indicates
that the malicious behavior was detected, F otherwise. FP indicates that the
benign bundle was classified as malicious. (M) indicates bundles where the
malicious change is a removal of existing behavior.

Bundle Strawman DSM IoTBox
1. Bundle 1 F F T
2. Bundle 2 T T T
3. Bundle 3 T T, FP T
4. Bundle 4 T T, FP T
5. Bundle 5 T T T
6. Bundle 6 T T T
7. MaliciousBatteryMonitor [151, 212] T T T
7 (M) F F F
8. ID1BrightenMyPath F T T
9. ID2SecuritySystem F T T
10. ID3SmokeAlarm F T F
11. ID4PowerAllowance F F,FP F
12. ID5FakeAlarm F T T
12 (M) F F T
13. ID6TurnOnSwitchNotHome T T T
13 (M) F F T
14. ID7ConflictTimeandPresence F T F
15. ID8LocationSubscribeFailure (M) F F T
16. ID9DisableVacationMode T T T
17. Figure 7.1 (M) F F T
True Positives 8 13 16
False Positives 0 3 0
Recall 40% 70% 80%
Precision 100% 75% 100%
F1 57% 72% 88%

212

missing actions. On the other hand, IoTBox detects 4 out of 5 cases with
missing actions.

Both the strawman sandbox and IoTBox have 100% precision. Overall,
IoTBox performs best, in terms of Recall and F1 score. Even if we omit
the cases with missing actions, then IoTBox has a Recall of 60% and an F1
of 75%. Overall, we believe that there is sufficient evidence to suggest that
IoTBox is more effective than existing sandbox mining techniques.

Experimental Results on Traces from Test Case Generation

Next, we investigate the effectiveness of IoTBox on traces produced from
test case generation. This approach uses the SmartThings simulator [32].
We instrument the apps, adding log statements to them.This allows us to
collect information about the state of the smart home without modification
to the platform that the apps runs on. Our objective is to elicit enough traces
to evaluate IoTBox to determine if our findings are likely to hold in practice.

Our test generation strategy identifies relevant event types by detecting
which devices are present in the smart home. After that, it randomly gener-
ate events of these types through the simulated devices in the SmartThings
IDE. As some apps are time-sensitive, we transform the Groovy programs,
replacing time-related functions with mocks. Our test generator simulates
the passing of time. Instead of using the current real-world time, the app
fetches the mocked time from our server. Time monotonically increases with
the number of executed events; every time an event is executed, the test
generator advances time by a random number of minutes. For functions
scheduled to run after some time (i.e., using runIn), we set its waiting du-
ration to between 1 to 3 minutes, giving them a high chance of executing
within the experimentation duration.

Execution traces are collected from the logs. Each trace is a sequence of
events and actions executed by the apps. For each bundle, we generate tests
for over an hour. The same execution contexts are used, unmodified, from
the previous experiments.

Due to the limitations of the SmartThings simulator, we restrict our anal-
ysis to only a few bundles of apps. The simulator cannot simulate physical
channels of interactions (e.g. an app switching on a lamp may trigger an
app reading from a light sensor), and does not support simulating every
device type, a known limitation of test generation on the SmartThings sim-
ulator [212]. Therefore, we cannot create an accurate simulation of several
bundles (Bundles 4-7, 12-14) in our evaluation dataset. We also omit Bundles
where IoTBox was ineffective on the static traces (Bundles 10, 11).

Our results are shown in Table 7.3. IoTBox detects the malicious changes

213

Table 7.3: Effectiveness of IoTBox on traces from test generation. Not all
bundles can run on the SmartThings Simulator as they use devices unsup-
ported by the Simulator.

Bundle Malicious Behavior Detected
1. Bundle 1 T
2. Bundle 2 T
3. Bundle 3 T

8. ID1BrightenMyPath T
9. ID2SecuritySystem T

16. ID9DisableVacationMode T
17. Figure 7.1 (M) T

in behaviors on all seven bundles of apps. As before, there are no false
positives. Overall, these results agrees with the evaluation results using the
statically produced traces in Table 7.2, and supports our findings that IoTBox
is effective in mining sandboxes for a smart home.

7.5 Discussion

7.5.1 Risk of encoding malicious behavior in the sand-
box

In any technique mining sandboxes, there is a risk that the mined rules
encode malicious behavior that were already present in the smart home [209,
398]. If so, the sandboxing phase does not prevent its execution as it is an
expected behavior. This is one source of false negatives [209], as the malicious
behavior would be considered benign. On the other hand, this implies that
the malicious behavior is already explicitly described in the security policy
mined during the exploration phase and can be checked by a human user.

We analyse the quality of the rules produced by IoTBox. The rules mined
by IoTBox are simple and precise, expressed as an Alloy assertion. Further-
more, IoTBox can visualize the paths from any unexpected trigger to a given
action. This lends the rules to inspection by human users of an IoT system.

We investigate what a malicious behavior encoded in the rules may look
like. We use the running example involving the unlocking of doors introduced
in Figure 7.1, and now, we point out it was crafted with a flaw in mind. While
it correctly unlocks the door when the smart home transits to HOME mode,
in fact, it unlocks the door in any mode change, including mode changes

214

Motion
detected

HOME Mode

Switch on

Unlock Door

AppTouch

AWAY ModeSwitch off

Figure 7.3: An undesired path (from the interaction of App2 and App3 in
dotted lines) to unlock the door is already in the smart home before the
exploration phase. Undesired paths may not be easily noticed. IoTBox helps
detect such paths through its interpretable rules.

away from HOME (e.g. to AWAY) [41]. This behavior is unexpected to our
hypothetical user who did not carefully inspect the app.

In Figure 7.3, we show a more complete version of the graph from Figure
7.1 (in Section 7.2) with this surprising behavior. An excerpt of the security
policy mined by IoTBox is shown in Figure 7.4. Both the Alloy assertion
and accompanying code comments, generated by IoTBox, makes it simple
to determine the events that led to the smart home automatically unlocking
the app. Also, IoTBox can present all paths that lead to a given action
from a given event, providing a visualization identical to the graph shown
in Figure 7.3. In this case, our hypothetical user may inspect the security
policy, and will be surprised that toggling a particular switch will always
trigger the unlocking of the door. Thus, the user will be able to identify
existing undesired behavior with the help of IoTBox.

IoTBox allows malicious behaviors to be executed provided that they were
encoded in the execution context. While this seems to be a limitation, this
is, in fact, a strength of sandbox mining. Writers of malicious apps are forced
to “disclose-or-die” [209], as any malicious behavior must be made explicitly
detectable for analysis. Otherwise, the sandbox will prevent its execution. If
so, a user of an IoT environment can detect the malicious behavior through
inspection of the assertion and the visualization of paths leading to an action,
both produced by IoTBox, to locate the undesired behavior.

215

assert {

// if the lock is automatically unlocked,

// it is caused by ...

no r : IoTApp.rules, action : r.commands {

action.attribute =lock

action.value =unlock

(some predecessor : r.*(~connected),
action’ : predecessor.triggers {

not {

. . .// omitted code

// the switch turning on OR off

action’.attribute =switch

(action’.value =switch_on

or

action’.value =switch_off)

}

)

}

}

Figure 7.4: Excerpt of the Alloy assertion revealing possible triggers.

7.5.2 Limitations and Tradeoffs

The primary difference between IoTBox and existing techniques that mine
sandboxes is its use of models produced from static analysis, instead of using
test generation. Fundamentally, the previous techniques use test complement
exclusion [438]. This relies on the incompleteness of test case generation; test
generation cannot explore all possible behaviors. If only normal behaviors
were observed from testing during the exploration phase, then it guarantees
that the sandbox allows only normal behaviors to run. IoTBox relies on a
variant of this guarantee; only behaviors captured in the formal model can be
executed. Conversely, potentially dangerous behaviors that were not analysed
are disallowed from running.

We do not learn from normal executions, but include all behaviors that
were abstracted into an app’s model. By doing so, we gain the advantage
of fewer false alarms as more behaviors are covered compared to test gener-
ation. On the other hand, static analysis usually overapproximates possible
behaviors, introducing the possibility of including malicious behavior in a
model. This is mitigated in IoTBox through non-opaque rules that can be
interpreted by human users.

7.5.3 Threats to Validity

We mitigate threats to internal validity by relying on the models and tool
used by other researchers [53], with a formalism of an IoT app (abstracted
into triggers, conditions, and commands) that is similar to that of other

216

studies [212, 105, 106, 301]. In some cases, we find that the Alloy models
produced by IoTCOM are not directly usable (e.g. as they do not compile),
so we modified them. Our models are publicly available [22].

To minimize threats to construct validity, we have used the evaluation
metrics from previous studies [252, 79]. We evaluated the risk of false nega-
tives, similar to Jamrozik et al. [209]. Moreover, we studied the same flawed
IoT apps from a previous study [53], and many of these apps have also been
studied in other works [212, 105, 106, 104]. We studied 20 bundles of apps,
similar to prior studies. Jamrozik et al. [209] and Le et al. [249] studied 13
and 25 Android apps, and Wan et al. [398] studied 8 Linux containers.

A threat to external validity is that our experiments focuses only on
the SmartThings and IFTTT platforms. Other smart home platforms in-
clude Apple’s HomeKit [10], Google Home [14], Zapier [45], and Home As-
sistant [17]. However, as SmartThings support more devices than competing
platforms [30] and IFTTT has over 11 milion users, we expect our findings
to generalize.

7.6 Related Work

Mining sandboxes. Compared to existing studies on mining sandboxes [209,
252, 79, 398], IoTBox does not use test case generation due to the difficulties
of generating comprehensive test cases for an entire IoT system. Instead,
IoTBox explores a formal model of the smart home, identifying the execu-
tion context of an action through the counterexamples found by the Alloy
Analyser [207]. This has the advantage of identifying only events that have
a causal relationship with a given action through analysis of the behavioral
rule graph.

Related to mining sandboxes, Acar et al. [51] suggests that the automatic
generation of security policies may help to address the permission compre-
hension problem on Android. Provos [333] proposed learning policies for
system calls in UNIX systems. IoTBox is the first approach to account for
context that span multiple apps in a smart home.

Threats in an IoT system. Researchers have studied threats at the
application-level on IoT platforms [151, 407, 105, 106, 406, 53, 301, 116, 136,
386, 373]. ContexIOT [212] considers the context of an app in isolation,
missing out threats that span multiple apps. Some studies have shown the
prevalence of incorrect behavior in IoT applications [386, 53, 373, 81]. Com-
pared to IoTMon [136], Soteria [105], IoTGuard [106], HOMEGUARD [116],
IoTSan [301], IoTCOM [53], iRuler [406], our work shares the goal of iden-
tifying malicious behavior from the interaction of apps, but different from

217

these studies, does not require predefined policies of potentially dangerous
interactions and has the objective of inferring rules that will help to detect
behavioral changes. Moreover, these studies do not detect missing actions
caused by malicious behavior.

IoTBox and ProvThings [407] share similarities as both studies trace the
origins of events, traversing graphs of apps connected by how they trigger
and influence the execution of one another. However, they have different
goals. IoTBox mines rules for a sandbox to detect behavioral changes while
ProvThings collects information for debugging.

Other aspects of IoT systems have been studied [56, 152, 65, 453, 110].
Researchers studied the impact of platform compromise [152], and suggested
the need to minimize potential damage from an adversary that has compro-
mised an IoT platform. Various security aspects, including the misuse of
IoT devices for botnets [29, 65] and firmware security [453, 110], have been
studied but differs from our work in their goals.

Other researchers have shown that developers face difficulties trying to
interpret behaviors in IoT apps [93, 446, 198, 439]. IoTBox may be helpful
as a debugging aid, as it can reveal unexpected changes in behavior given
a behavioral change. Researchers have suggested the need to simplify the
configuration of privacy policies [440]. There are many concerns, including
the invasion of privacy of other users in the smart home [439]. Our work
may find application in these areas, in helping to interpret the automation in
a smart home. Indeed, other IoT researchers have pointed out the need for
tools to allow users to identify the effects of enabling a new app, to identify
unforeseen consequences [184].

7.7 Summary

In this work, we show that many handcrafted security policies for smart
home produce numerous false alarms and suggest the need to automate the
specialization of these policies for a smart home. We propose IoTBox to
mine sandboxes of IoT systems, which detects change in behaviors in IoT
systems. A sandbox with rules mined from an existing smart home will pro-
duce few false positives from unexpected usages of apps and devices. IoTBox
produces rules that can be inspected and visualized by a human user. We
develop IoTBox, which identifies the complete execution context of any ac-
tion. This produces rules that we can enforce during deployment, detecting
both disallowed and missing actions.

IoTBox can comprehensive explore the behaviors of a smart home and
can precisely identify rules to enforce. We empirically evaluated IoTBox on

218

app bundles containing flawed behavior that were studied in prior work. We
find that it can effectively detect changes that introduce malicious behavior,
without producing false positives. A replication package is available [22].

219

Chapter 8

(System of Interacting
Components) Test Mimicry to
Assess the Exploitability of
Library Vulnerabilities

8.1 Overview

Software engineering projects often depend on open-source software libraries [314,
244, 409]. As vulnerabilities in a project’s library dependencies may be
exploited by attackers of the project, developers have to understand their
project’s dependencies and update them whenever library vulnerabilities are
discovered. For example, the recent Log4Shell vulnerability, which affected
millions of devices, required client developers to update their applications
to use the latest version of the log4j library quickly [44, 15]. Moreover, as
the clients of a library include other libraries, a vulnerability in one library
would transitively propagate throughout the ecosystem of libraries and their
clients.

After library vulnerabilities have been fixed and publicly disclosed, client
developers are advised to update their dependencies to use the new, non-
vulnerable versions of libraries. However, studies have shown that client
developers are reluctant to update their dependencies. Many alerts regarding
vulnerable dependencies are false alarms [314], and developers may be wary
of breaking changes from library updates. This leaves client projects open to
exploitation of vulnerabilities in library dependencies [244, 130, 288, 409].

To address this problem, there have been proposed techniques that as-
sess the reachability of the vulnerable code (e.g. function) from the client

220

project, allowing developers and security researchers to better assess a vul-
nerability’s exploitability from the client project. Existing techniques use call
graph analysis to determine if the vulnerable code is called from the client
project [328, 156, 203]. As control-flow within functions is not considered,
existing techniques produce false alarms [156]. Fundamentally, these tools
are limited since they check only if a vulnerable function may be called, but
do not determine if the client projects are able to construct the inputs that
trigger the vulnerability [156, 328, 203].

Recently, Iannone et al. [203] proposed Siege, a tool that automatically
generates test cases demonstrating the exploitability of library vulnerabilities
for client projects [203]. Given a description of the vulnerability, which is
manually determined from a vulnerability-fixing commit, Siege targets the
coverage of a single line of library code indicated. Siege generates test cases
of the client projects that transitively execute the line of code, thus, providing
evidence that the library vulnerability can be reached from the client project.
While Siege could confirm the exploitability of some vulnerabilities, it is
limited by its inability to overcome the intrinsic complexity of exploiting
vulnerabilities; specific domain knowledge is required for triggering many
vulnerabilities [203].

Recreating the triggering conditions of a vulnerability may be challenging
because of the domain knowledge required. Take CVE-2019-12402 [13] in
Apache Tika as an example: an attacker can trigger a denial-of-service attack
by providing a zip file quine1, a specially-crafted zip file that is unzipped to
produce itself as output. It is extremely hard to build a zip file quine with
random mutations (as in fuzzing) even with some guidance.

To overcome the challenging requirement of extensive domain knowledge,
we propose to leverage test cases of the vulnerable, open-source libraries,
particularly the test cases that accompany the vulnerability fixes. Specifi-
cally, we propose a new framework, which we term Test Mimicry, depicted
in Figure 8.1. Expert domain knowledge and the conditions (e.g., specific
inputs, program state) of triggering a vulnerability are captured in the test
cases written by the domain experts. Rather than blindly generating test
cases, we generate test cases of the client project that invokes the vulnerable
method with the same arguments as the library’s vulnerability-witnessing
test cases. Rather than designing oracles to detect if a vulnerability has
been triggered, we detect the replication of the program state reached in the
vulnerability-witnessing test case.

Concretely, our framework uses the vulnerability-witnessing test case
from the library’s code, denoted as LT , to generate a test case, denoted

1https://www.cvedetails.com/cve/CVE-2019-10094/

221

Figure 8.1: Test mimicry: Constructing a test case, CT , for the library’s
client that demonstrates the same library vulnerability as witnessed by a
library’s test case, LT .

as CT , for code in a client project that mimics LT . CT should test the client
program such that the library exhibits the same behavior when it was tested
with LT . If the same program state reached by LT can be reproduced, then
the vulnerability can be triggered from the client program. If so, then we
have evidence that the vulnerability is exploitable from the client project.

To this end, we implement a tool, TRANSFER. TRANSFER targets
client projects of open-source Java libraries. Given a library function, VF,
associated with a known vulnerability, TRANSFER executes the library
test case, LT , that demonstrates how the vulnerability can be triggered. Af-
ter identifying the program state relevant to the vulnerability, TRANSFER
extracts the triggering conditions, σ, which are satisfied by reaching the same
program state from a generated test case. TRANSFER uses an evolution-
ary algorithm to generate test cases, directing it to transitively invoke VF
through the client program and favors test cases closer to satisfying σ. Fi-
nally, TRANSFER outputs a test case if it is sufficiently close to satisfying
σ.

We evaluate TRANSFER by analyzing 22 real library vulnerabilities
from a wide range of domains (e.g. JSON parsing, file compression) and
types of vulnerabilities (e.g. XXE injections, unhandled exceptions). Ana-
lyzing 64 real client programs obtained from GitHub, we find that a library
vulnerability can be exploited from 42 of them. While Siege produces ex-
ploits for 5 client programs, TRANSFER generates exploits for 23 client

222

programs.

8.2 Background and Motivation

Our work builds on prior studies on software composition analysis and search-
based test generation. In this section, we describe them.

8.2.1 Software Composition Analysis

Software composition analysis is a domain related to the identification and
replacement of vulnerable dependencies of software projects [156, 328]. Many
solutions enumerate through a project’s dependencies to detect potentially
vulnerable libraries (i.e., looking up the versions of the project’s dependencies
against a database of known vulnerable library versions). From the source
code of the project, a call graph is constructed to determine if a vulnerable
library function is reachable. These analyses produce false positives as static
call graphs may contain calls that do not occur at runtime [174, 348]. Hence,
existing approaches [156, 328] complement the static analysis with dynamic
analysis by running the client projects’ test cases to construct call graphs,
which reduces the number of false positives. These techniques are limited by
the test coverage of the client projects, which may be low [236, 235]. Fun-
damentally, call graph-based approaches are limited as they do not consider
control-flow or check that the inputs for triggering the vulnerability can be
passed from client programs [156, 328, 203].

Siege [203] is a search-based test generator that produces exploits on
client programs that executes vulnerable library code. These exploits are
in the form of test cases that reveal how the library vulnerabilities can be
exploited from the client programs. Exploits produced by Siege and our
tool, TRANSFER, act as evidence of the exploitability of the library vul-
nerability from the client projects.

8.2.2 Search-based test generation

Search-based techniques have been proposed for generating test cases to sat-
isfy a specified search criterion. EvoSuite generates test cases that achieve
high coverage for Java programs [158]. Siege [203] assesses the exploitabil-
ity of library vulnerabilities from client programs generating a test case for
the client program, guided by the criterion of executing a vulnerable line of
library code given as an input vulnerability description. Algorithm 10 shows
a simplified version of a genetic algorithm for generating test cases. Starting

223

Algorithm 10: Simplified version of a genetic algorithm for gener-
ating test cases

Inputs: 1. goals, the search goals
2. M , the population size
3. search budget , amount of time to run

Output: tests, test cases
1 P0 = construct random population(M)
2 k = 0
3 fitness = compute fitness(pop, goals)
4 best fitness = max(fitness)
5 while best fitness < 1 and time spent <search budget do
6 k = k + 1
7 // offsprings through mutations and crossover
8 offsprings = generate offspring(Pk−1)
9 // evaluate fitness and pick top M tests

10 Pk = Pk−1∪ offsprings
11 fitness = compute fitness(Pk, goals)
12 Pk = select top M(Pk, fitness)

13 end
14 return Pk

15

with a population of randomly generated test cases, a fitness value for each
test case is computed with respect to the search goals (e.g., total code cov-
erage for EvoSuite, how close the test is to covering the vulnerable line of
code for Siege). While the search budget has not been exhausted and the
optimal fitness value has not been reached, the genetic algorithm produces a
new generation of test cases through mutations and crossovers on the previ-
ous generation of the test cases. The top M test cases are selected based on
their fitness values to populate the next generation. As such, test cases with
poor fitness are removed from the population.

A challenge faced by search-based test generators is the reproduction of
complex behaviors. It is difficult for unguided, random test case generation
to produce test cases that invoke complex behaviors. To generate test cases
that invoke more complex behaviors, many techniques have been proposed.
One such method is seeding [346], which uses existing knowledge about the
program to help solve the search process. For example, string and numerical
literals within the program are extracted into a constants pool. Seeding
increases the likelihood of the test generator using these values, allowing it to

224

Figure 8.2: The information of a vulnerability given in NVD. The high-level
description of the vulnerability makes assessing its possible impact difficult.

pass difficult conditional checks. A related technique is test carving [145, 346].
Test carving was proposed to convert larger system tests to a set of smaller
unit tests for the same project. The technique extracts parts of the program
state reached in the system tests as they are executed, capturing potentially
reusable objects that can be recreated when constructing new test cases. The
object states that comprise the program state may be difficult to recreate,
and carving allows the construction of new test cases that starts from the
same program state.

In this work, we build TRANSFER using the infrastructure and tooling
provided by EvoSuite. Due to its maturity [55, 134], TRANSFER uses
EvoSuite’s implementation of the genetic algorithm, including the crossover
and mutation operators. Unlike EvoSuite, TRANSFER seeks to repro-
duce, from client programs, the behavior demonstrated by the vulnerability-
witnessing test case. TRANSFER’s search criteria are dynamically deter-
mined from execution of the vulnerability-witnessing test case. TRANS-
FER targets the same vulnerable library function executed by the test case,
producing new test cases that satisfies the triggering conditions extracted
from its carved program state.

8.2.3 Motivating Example

From an alert about a new vulnerability in a library, e.g. CVE-2020-13956,
a developer of a project (which may itself be another library) using the vul-
nerable library (e.g. Apache HttpComponents) is unsure if the vulnerability
can be exploited. Figure 8.2 shows the vulnerability’s high-level descrip-
tion, indicating that the vulnerable behavior occurs when a “misinterpreted
authority component in request URIs” is input to the library. Without bet-
ter understanding the vulnerability’s exploitability and knowing that many
alerts about vulnerable dependencies are false alarms [315], the developer
may not prioritize the library update, leaving the library vulnerability in the
project open to exploitation.

On the other hand, with the test case generated by TRANSFER,

225

Config config = new Config();
BasicClassicHttpRequest httpRequest =
new BasicClassicHttpRequest(”/”, null,
”http://blah@goggle.com:80@google.com/”);

HttpClient httpClient = new HttpClient(config);
try {
httpClient.execute(httpRequest);
fail (”Expecting IOException”);

} catch(IOException e) {
verifyException(”CloseableHttpClient”, e);
}

Figure 8.3: Snippet of a test case generated by TRANSFER, with changes
made for conciseness. The test case demonstrates how the client program
can transitively invoke VF with inputs that triggers the vulnerability.

the developer has evidence of the exploitability of the vulnerability from the
client project. As seen in Figure 8.3, the test case shows the client project
class (HttpClient) and function (execute) that transitively calls the vul-
nerable function, how the function from the client program may be invoked
to trigger the vulnerability (i.e. the construction of multiple classes from the
client project and a concrete example of a malformed URL triggering the
vulnerability, http://blah@goggle.com:80@google.com). While Siege strug-
gles to construct a malformed URL, TRANSFER uses the example of the
malformed URL from the library’s test case. Providing evidence of the ex-
ploitability of a vulnerable may motivate developers to update their library
dependencies.

Given the growing prevalence of library vulnerabilities, their widespread
impact, and the importance of detecting them, reducing the difficulty of
generating exploits for even a proportion of vulnerabilities would already
be helpful. Moreover, writing test cases for bug fixes is considered a good
software development practice [83]. Still, we assess the feasibility of using test
cases from libraries. We looked for vulnerabilities reported in vulnerability
databases [38, 39]. From the entries between March 2017 and March 2021,
we sampled 780 entries containing a reference to a GitHub commit fixing the
vulnerability. From the 780 entries, we identified 233 vulnerabilities from
libraries. Of the 233 vulnerabilities, 121 (over 51%) of the commits include a
test case, showing that a majority of vulnerabilities are fixed with test cases.
Furthermore, our analysis underestimates the true number of vulnerabilities
that can be revealed through a test case, as test cases may be introduced

226

through a different commit from the vulnerability fix. This indicates that
test mimicry is likely to work for a large number of vulnerabilities.

Figure 8.4: Overview of TRANSFER. From the vulnerability-witnessing
test case from the library, TRANSFER produces an exploit for the client
project – the Software Under Test (SUT).

8.3 Test Mimicry

In this section, we describe the details of our tool, TRANSFER.

8.3.1 Objectives and Problem Formulation

From a known vulnerability in a library and a function associated with the
vulnerability, the vulnerable function, VF , a client program is a program from
a different project using the library. Given a test case, LT , that witnesses the
vulnerability, our goal is to assess if the library vulnerability can be exploited
in the client program by deriving a test case CT for the client program that
mimics LT . We refer to CT as the exploit (from the client program) and LT

as the vulnerability-witnessing test case (from the library code). We consider
that a library vulnerability can be exploited from the client project if CT
can be generated. CT is a test case invoking public functions of the client
program and transitively executes VF to exhibit the same behavior witnessed
by LT .

227

8.3.2 Approach

Figure 8.4 presents an overview of our tool, TRANSFER. TRANSFER
takes as input 1) the vulnerability-witnessing test case, LT , from an open-
source library, 2) the vulnerable library function, VF, and 3) the code of
the client project that uses the vulnerable library. After instrumenting and
executing LT , TRANSFER extracts the triggering conditions, σ, from the
carved program state. TRANSFER generates a test case (that executes the
client program) that satisfies σ if it finds one within the search budget.

Execution of LT

Test mimicry relies on information from LT . TRANSFER instruments the
library code to carve LT , TRANSFER executes LT to invoke the vulner-
able library function, VF , and collects the sequences of function calls and
arguments to construct and initialize objects. Based on inputs and outputs
of VF , the relevant parts of the program state are extracted (1 in Figure
8.4).

Search Goals

To achieve the high-level objective of reproducing the vulnerable behavior,
TRANSFER attempts to direct test case generation towards code that exe-
cutes VF and bring the program to the same state as LT . To do so, TRANS-
FER constructs the search goals (2 in Figure 8.4) that will guide the test
generator. TRANSFER uses two types of search goals: line coverage goals
and a goal that represents the vulnerability’s triggering conditions. After
computing a static call graph, TRANSFER determines the paths from the
client program that lead to VF . For the functions on the paths, line cov-
erage goals are constructed for the lines in the functions. From the carved
object states obtained from the execution of LT , TRANSFER extracts the
vulnerability’s triggering conditions, σ.

Each search goal type is associated with a fitness function that estimates
the distance of a test case from satisfying the goal. For a line coverage goal,
the fitness functions measure how close the test case came to covering the
line. For the triggering conditions, the fitness function is an estimate of
similarity of the program state when invoking V F to σ (described in Section
8.3.3).

Line coverage goals for directed test generation. While our ob-
jective is to satisfy the conditions of triggering the vulnerability when tran-
sitively invoking VF , generating a test case that invokes VF through the
client program can be challenging. To address this challenge, TRANSFER

228

constructs line coverage goals for the lines of the functions in the call graph
between the client program and VF , directing the search towards test cases
that are closer (covering code on paths in the call graph that end at VF) to
invoking VF .

TRANSFER uses a standard fitness function for line coverage using
branch distance [283, 66]. Based on the control dependencies of the line, the
branch distance heuristically estimates how close a test case is to taking a
correct branch that the line depends on (e.g. how close the branch predicate
is to becoming true) when an undesired control-flow path is taken [283, 66].

Vulnerability-triggering conditions. TRANSFER carves LT to ob-
tain the program state associated with the triggering of the vulnerability,
from which it extracts values and properties of the objects to form the vul-
nerability triggering conditions. Test cases are generated and evolved towards
satisfying the triggering conditions.

To guide test generation towards the vulnerable behavior, the fitness func-
tions favor test cases that, through functions of the client project, invokes
VF with inputs and output having states that come closer to satisfying σ.
We provide more details in Section 8.3.3.

Evolutionary Test Generation

For test generation, TRANSFER uses an evolutionary algorithm to favor
the generation of fitter test cases (3 in Figure 8.4, with a simplified version
shown in Algorithm10). TRANSFER seeds the object pool with the carved
objects from LT , allowing TRANSFER to invoke the function calls to create
complex objects from the library. Due to EvoSuite’s maturity and effec-
tiveness [55, 134], we use its representation (i.e., a sequence of function calls)
and implementation of test chromosomes, crossover, and mutation operators
in TRANSFER. TRANSFER uses the multi-objective DYNAMOSA [311]
algorithm, shown to be the state-of-the-art for search-based test generation.

The DYNAMOSA [311] algorithm was proposed for test generators to
fully achieve the coverage of each individual goal. Other algorithms may
instead converge in a local optimum that minimizes its distance from multiple
objectives, but does not necessarily satisfy any individual goal [311]. This
characteristic of DYNAMOSA makes it suitable for our work as our primary
focus is to reproduce the program state of the vulnerability regardless of how
close the test case is to covering the other (line coverage) goals.

TRANSFER’s effectiveness stems from test mimicry, i.e. dynamically
constructing search goals determined from the execution of LT . In TRANS-
FER, the test case with the highest fitness with respect to σ is produced as
the output, CT , if its fitness is sufficiently high (set to a fitness threshold of

229

0.9 in our experiments).
Once the triggering conditions are met or the search budget has been

used up, TRANSFER outputs the test case by considering only the search
goal representing the triggering conditions. We do not consider line coverage
goals when determining the best test case, as an exploit, CT , may not have
covered all lines in the functions between the client program and VF in the
call graph.

8.3.3 Satisfying a vulnerability’s triggering conditions

TRANSFER’s primary objective is the reproduction of the behavior re-
vealed by the LT . To detect that a test case has reproduced the same behav-
ior, TRANSFER uses the program state relevant to the input and output
of VF carved from the execution of LT , extracting a set of conditions as the
triggering conditions, σ. σ abstracts over the program state reached by LT .

To detect that a generated test case satisfies σ, TRANSFER compares
the inputs and outputs of VF with σ. If the test case successfully (transitively
through the client program) invokes VF with inputs and outputs that match
σ, then σ is satisfied and we consider that the test case has invoked VF
with the same behavior as LT . We emphasize that the test generator does
not produce test cases that directly call VF . Instead, TRANSFER
produces test cases that execute the client program, i.e., VF is transitively
invoked through the client program.

For example, based on the vulnerability discussed in Section 8.2.3, TRANS-
FER identifies that the vulnerability is triggered from the program state
reached by passing “blah@goggle.com:80@google.com” as an input to a func-
tion, URIUtils.extractHost used by the library to extract the host of a
URL. TRANSFER generates test cases of the client program that calls the
library functions that may directly or transitively invoke the
URIUtils.extractHost function.

During test generation on the client project, we compute the fitness of
the test case with respect to the triggering conditions. The fitness function
estimates the similarity of the program state reached by the generated test
case as compared to LT .

Vulnerability triggering conditions. The triggering conditions, σ, are
predicates over the values of the input and output of the VF . To detect if σ
is satisfied, we can view it as the comparison of the relevant objects captured
in σ during the execution of LT (2 in Figure 8.4) and their correspond-
ing values currently observed during the invocation of VF (as part of test

generation, 3 in Figure 8.4). The input of VF is its method receiver and
arguments, and its output is either its return value or an exception thrown

230

during its execution. To simplify our description, let us define actuals to
refer to the inputs and output of VF when transitively invoked (through the
client program) by a generated test case. We define references as the cor-
responding values in σ, which capture the input and output values observed
during the execution of LT . During test generation, if all of actuals match
their corresponding parts in references , then σ is satisfied and CT has been
found.

The similarity between actuals and references is the average similarity
between the individual elements of actuals and their corresponding element
in references . The best similarity value is 1 and the worst similarity value is
0.

similarity(actuals , references) =
1
N
×

∑N
i=1 similarity(actuals [i], references [i])

For comparison between individual elements of actuals and references ,
TRANSFER compares them based on their type. We consider the following
types of values:

• Primitive and enumeration values: For primitive values (e.g., long,
int, char) as well as values of enums, TRANSFER directly compares
their values.

• String-like values: For values of types byte[], char[], String, TRANS-
FER compares them by computing the edit distance normalized by the
maximum length of the values.

• Objects: To compare two objects, TRANSFER compares their exter-
nally observable states [127].

• Files: For files, TRANSFER treats them as objects, however, any files
read by LT are also made available for reading to CT . File names are
stored in the constant pool to allow test cases to have a greater chance
of reading the file.

• Exceptions: Exceptions can be thrown by VF . TRANSFER considers
any exception as the output of VF , comparing its type and exception
message.

Comparing primitive or enumeration values

TRANSFER directly compares primitive values and enums. Primitive types
include long, int, short, double, float, char, boolean. If actual matches
reference, then a similarity value of 1 is returned, otherwise a similarity
value of 0 is returned.

231

Algorithm 11: similarity stringlike(actual , reference): Comput-
ing the similarity of actual and reference when they are string-like
(e.g. String, char[])

Inputs: 1. actual , one of the objects in actuals.
2. reference, one of the objects in references .

Output: similarity between actual and reference, a float between 0
and 1.

function similarity stringlike(actual , reference):
1 edit dist = edit distance(actual, reference)
2 max len = max(length(actual), length(reference))
3 bug localization techni len > 0 ? 1 - edit dist / max len : 0

Comparing string-like values

For values that are string-like (i.e., char[], byte[], String), As shown in
Algorithm 11, during the generation of test cases, TRANSFER computes
the edit distance between the two string-like values. The fewer edits needed
to convert one value to the other, the more similar they are. The similarity
is then obtained by subtracting the edit distance normalized by the length
of the longer value from 1.

Comparing objects

For objects, TRANSFER characterizes them by their externally observable
state, using inspector functions [127] defined on the class. Inspector functions
refer to public methods that return a value and are side-effect free (deter-
mined through a simple static analysis [158]). The state of each object is
then constructed using the values returned by the inspectors. An example
object state for a java.net.URI object is given in Figure 8.5.

Similarity of two objects Algorithm 12 shows the computation of the
similarity between actual and reference. First, TRANSFER checks for null
for both the actual and reference objects (Lines 1-9). If both of them are
null, then TRANSFER considers them to be a match, otherwise, if either
actual or reference is null, TRANSFER assigns the lowest similarity score
(similarity=0).

TRANSFER compares inspectors only if both of them are non-null and
are objects of the same class (Lines 10 to 17). The similarity of the objects
is computed as the average similarity between the inspectors of the objects,
which will be described in the next paragraph. similarity(actual , reference)
returns a value between 0 to 1, where 1 is the highest similarity. TRANS-

232

{

getHost() -> "google.com",

getPath() -> "/",

getPort() -> 80,

...

isOpaque() -> true,

isAbsolute() -> true,

}

Figure 8.5: Simplified example of the object state of a URI object, identified
through a mapping of its inspector functions to their return values

FER conservatively rejects the match if no inspectors are found (Line 16).
Similarity of two objects w.r.t an inspector. Algorithm 13 shows

the computation of the similarity of actual and reference with respect to
a single, given inspector. Its return value is between 0 and 1, inclusively.
For each inspector function, TRANSFER uses a different similarity func-
tion based on the function return type. If the return type of the inspec-
tor is primitive, then the similarity of the two values is computed using
similarity primitive (described in Section 8.3.3). If the return type is string-
like, then similarity stringlike (Section 3) is invoked on the return values of
the inspectors instead. Otherwise, if the inspector returns another object, we
recursively invoke similarity (Figure 12). To avoid infinite recursion (e.g. a
function returning the another object of the same class), a depth parameter
can be configured in TRANSFER. For example, the normalize() function
of a java.net.URI returns another java.net.URI object. By default, we
limit our consideration of objects only up to a depth of two.

Comparing files

For files that are accessed during the execution of the vulnerability-witnessing
test, LT , they are treated as objects (e.g. typically files are accessed through
an InputStream object or a File object, and can be treated as such). The
files on the filesystem are copied and made available during the generation
of CT . The filenames are added as strings to the constants pool, which
allows TRANSFER to use the filename when generating test cases. As
they are treated as objects, TRANSFER uses the same similarity function
(Algorithm 12).

233

Algorithm 12: similarity(actual , reference): computing the simi-
larity of two objects, actual and reference.

Inputs: 1. actual , one of the objects in actuals.
2. reference, one of the objects in references .

Output: similarity between actual and reference, a float between 0
and 1.

function similarity(actual , reference):
1 if reference == null and actual == null then
2 return 1
3 end
4 if reference == null or actual == null then
5 return 0
6 end
7 if actual.getClass() ̸= reference.getClass() then
8 return 0
9 end

10 ins = get inspectors(actual)
11 if ins is not empty then
12 obj sim ←

∑
in∈ins similarity(actual , reference, in)

13 obj sim ← 1
|ins| × obj sim

14 return obj sim

15 else
16 return 0
17 end

Comparing exceptions

TRANSFER compares exceptions thrown by VF by their types
(e.g. NullPointerException) and exception messages. While other stud-
ies [133] have used more sophisticated methods of comparing exceptions, we
find that the use of the exception type and message is sufficient to guide test
generation in our experiments.

Computing the fitness of a test case with respect to σ

From a single test case, the client program may invoke VF multiple times.
To compute the fitness score of a test case, TRANSFER takes the highest
similarity obtained among the multiple invocations of VF . Each invocation
of VF is associated with a set of inputs and outputs. The similarity of an
invocation, inv, to σ is computed based on similarity(actuals, references),

234

Algorithm 13: similarity(actual , reference, inspector): Computing
the similarity score of an object to a reference object with respect
to a given inspector function

Inputs: 1. actual, an object from actuals
2. reference, an object from references
3. inspector, a single inspector function

Output: similarity, between 0 and 1. 1 indicates that the two
objects are equivalent wrt to inspector.

function similarity(actual , reference, inspector):
1 actual ins ← inspector(actual)
2 reference ins ← inspector(reference)
3 if inspector returns a string-like value then
4 return similarity stringlike(actual ins , reference ins)
5 end
6 if inspector returns a primitive value then
7 return similarity primitive(actual ins , reference ins)
8 end
9 if inspector returns another object then

10 return similarity(actual ins , reference ins)
11 end

where actuals are the inputs and output associated with inv. In turn, the
test case is as fit as the similarity of the invocation most similar to σ:

similarity(inv , references) = similarity(actuals , references)
fitness(testcase) = max(similarity(inv)), inv ∈ invocations

8.3.4 Implementation

We implement our tool, TRANSFER, that realizes our novel framework
of test mimicry, on top of the implementation of the genetic algorithm
and other infrastructure of EvoSuite 1.1.0. TRANSFER uses the DY-
NAMOSA [311] evolutionary algorithm for generating test cases. TRANS-
FER uses the default configuration of EvoSuite as prior work has shown
that tuning EvoSuite’s parameters does not lead to improved performance
over its default configuration [67]. The size of the population of test cases is 50
individuals. The default crossover operator is used, which is the single-point
crossover with probability of 0.75. Test cases are selected using tournament
selection, with a tournament size of 10. We use ASM [98] to instrument the
code, in particular, the vulnerable function VF .

235

8.4 Empirical Evaluation

Our experiments aim to answer the following research questions:

RQ1. Can TRANSFER generate exploits in client programs that
demonstrate library vulnerabilities?

This research question is concerned with the efficacy of TRANSFER in
generating test cases that reveal client usage of vulnerable library functions.
Using a benchmark of library vulnerabilities and code from client projects
that we have identified by hand, we compute the number of true positives and
compute its accuracy. We use Siege [203] as the baseline for comparison.

RQ2. How do the different search goals affect the effectiveness of
TRANSFER?

TRANSFER has two types of search goals: the primary search goal
of satisfying the triggering conditions, and line coverage goals for directing
test generation towards the vulnerable library function. We investigate the
impact of the goal types on the effectiveness of TRANSFER via an ablation
study.

8.4.1 Experimental Setup

Experimental subjects. In our experiments, we analyzed 22 recent vulner-
abilities from 18 libraries. We manually selected the vulnerabilities for their
diversity; the vulnerabilities manifest a range of behaviors, ranging from
timeouts and out-of-memory errors (crash behaviors) to incorrect functional
behaviors (non-crash behaviors). Similarly, we selected widely-used libraries
that cover a range of domains, from file compression (Junrar), parsing XML
(Jackson, XStream) and JSON (Json-Smart, OSWAP Json), cryptographic
libraries (Bouncy Castle), to HTTP requests (HttpClient). Consequently, the
vulnerabilities are not restricted to a single domain. Apart from considering
vulnerabilities publicly disclosed as CVEs in the NVD database, we studied
several vulnerabilities that were fixed silently [352, 115]. These vulnerabilities
were identified from publicly accessible vulnerability databases [38, 39].

The vulnerabilities used in our experiments are provided in Table 8.1.
Half of these vulnerabilities (11 vulnerabilities) result in crashes, exceptions,
or timeouts. The other 11 vulnerabilities do result in non-crashing behav-
iors. For example, two vulnerabilities from Apache HttpClient manifest as
incorrect functional behavior (e.g. constructing a URI with an incorrect
hostname).

For each vulnerability, we identified the vulnerable library function and
a vulnerability-witnessing test case through manual analysis. Next, we

236

Table 8.1: The vulnerabilities used in our experiments, including the names
and descriptions of the vulnerable libraries, and the effect of the vulnerability.
✕ indicates that an exploit could not be generated. A single ✓ indicates one
exploit for a client program was successfully constructed. Two ✓ indicates
that exploits were successfully constructed for both client programs.

Vulnerability Library Siege TRANSFER

CVE-2020-28052 Bouncy Castle ✕ ✓✓

CODEC-134 [12] Apache Codecs ✕ ✓✓

CVE-2020-13956 Apache HttpClient ✕ ✓✓

HTTPCLIENT-1803 [35] Apache HttpClient ✕ ✕

CVE-2019-14900 Hibernate ✕ ✕

CVE-2020-15250 JUnit ✓✓ ✓✓

CVE-2021-23899 OWASP ✕ ✓

JSON Sanitizer

CVE-2020-26217 XStream ✕ ✓✓

CVE-2019-12415 Apache POI ✕ ✕

CVE-2018-1000632 Dom4J ✕ ✓

CVE-2020-10693 Hibernate ✕ ✕

CVE-2018-1000873 Jackson ✕ ✕

CVE-2019-12402 Apache Compress ✕ ✓

CVE-2018-12418 Junrar ✕ ✓✓

CVE-2019-10094 Apache Tika ✕ ✓

TwelveMonkeys-595 [33] TwelveMonkeys ✕ ✕

CVE-2020-28491 Jackson ✕ ✕

CVE-2018-1274 Spring Framework ✕ ✕

CVE-2021-27568 Json-smart ✓ ✓

Zip4J-263 [34] Zip4J ✓✓ ✓✓

Spring Security-8317 [36] Spring Framework ✕ ✓✓

CVE-2017-7957 XStream ✕ ✓✓

Total 5 23

237

manually identified up to two vulnerable, real client projects for each library
vulnerability. For the 22 vulnerabilities, we investigated a total of 64 client
projects with source code available on GitHub. From 64 client projects, we
obtained 42 pairs of (vulnerability, client program) where the client program
is able to trigger the library vulnerability. In the other 24 cases, we2 con-
firmed that the client programs are unable to trigger the vulnerability despite
calling the vulnerable function, using this to validate that TRANSFER does
not generate test cases unnecessarily. All pairs that we investigated are pro-
vided on the project website3.

While Siege was evaluated on 11 vulnerabilities by Iannone et al. [203],
the experiments involved only toy client programs that were written by hand.
As such, the client programs may not reflect actual usage of the libraries. We
do not use handwritten experimental programs in our experiments. Instead,
we use realistic client programs from open-source repositories on GitHub.

Vulnerabilities may depend on many conditions to be triggered, including
environmental factors such as software configuration. These environmental
factors differ between vulnerabilities. In our experiments, we do not model
environmental factors (e.g. specific configurations of the library or client
project) or global variables, although it is possible to expand a vulnerability’s
triggering conditions to account for them.

Baselines. As baseline, we compare TRANSFER to Siege [203].
Siege is a test generator that targets a single vulnerable line of code given as
input. We use the code provided in the replication package of Siege. To use
Siege in our experiments, we identified a line of code for each vulnerability.
In the ablation study, after removing both types of goals from TRANS-
FER, we compare TRANSFER against EvoSuite, which optimizes for
code coverage in the client program.

Experimental setup. We ran TRANSFER and Siege for up to 10
minutes. In studies related to test generation, experimental durations range
from a few minutes [91, 133, 370, 338] to several days [194]. We selected 10
minutes for the same experimental duration as studies on crash reproduc-
tion [370]. Our experiments were run on a machine with 2.3 GHz Dual-Core
Intel Core i5 with 8GB of RAM.

To mitigate the effect of randomness, we repeat each run 20 times. We
consider that a vulnerability is shown to be exploitable from a client program
if a tool (i.e., TRANSFER or Siege) is able to construct an exploit at least
50% of the time, similar to previous studies on crash reproduction [370].

A true positive (“TP”) is the successful generation of a test case for

2The first and second authors manually investigated the client projects.
3https://github.com/soarsmu/transfer

238

https://github.com/soarsmu/transfer

Table 8.2: Number of true positives, false negatives, and proportion of vul-
nerabilities detected by TRANSFER, TRANSFER without directed test
generation, TRANSFER without the triggering conditions, and a baseline
EvoSuite.

Approach # TP # FN % detected
TRANSFER 23 19 55%
− directed generation 20 22 48%
− triggering conditions 4 38 10%
− both (EvoSuite) 4 38 10%

the client program that triggers the library’s vulnerability. A false negative
(“FN”) is the failure to generate a test case triggering the library’s vulner-
ability when the vulnerability can be triggered. To determine if a test case
triggers the vulnerability, we manually inspected and ran them to check that
they indeed recreated the conditions that triggers the vulnerabilities. We
compute the proportion of vulnerable client programs for which TRANS-
FER/Siege successfully generates an exploit.

8.4.2 Experimental Results

RQ1. Efficacy of TRANSFER

The client projects and vulnerabilities detected by TRANSFER are given
in Table 8.1. TRANSFER confirmed the exploitability of the library’s vul-
nerability in 55% (23 / 42) of the client programs. In contrast, Siege [203]
was only able to construct an exploit for 5 client projects (12% of the total
vulnerable client programs). TRANSFER outperforms Siege in 13 cases.
This shows that TRANSFER can generate exploits for client programs, out-
performing the state-of-the-art test generator by a large margin (over 40%
increase in number of generated exploits).

Among the client programs where TRANSFER succeeded in generat-
ing an exploit, TRANSFER required an average of 27 generations, and
took an average of 41 seconds to produce an exploit. This suggests that
TRANSFER could quickly construct exploits for the vulnerabilities in our
experiments.

A desirable quality of TRANSFER is the absence of false alarms. There-
fore, TRANSFER should not produce a test case when the vulnerability
cannot be exploited. Among the 24 cases where the client programs are un-
able to trigger the vulnerability, we found that TRANSFER exhibited the
correct behavior by not producing test cases. Note that the call graphs com-

239

puted for these pairs indicate that the vulnerable function could be invoked
from the client programs, suggesting that existing call graph-based detectors
would incorrectly report false alarms.

Among the total of 17 libraries considered, TRANSFER is able to trigger
the vulnerabilities in 14 libraries. Of the 22 vulnerabilities, 11 are not crash-
related and TRANSFER detects 7 of these 11 vulnerabilities. This indicates
that TRANSFER is able to detect non-crash vulnerabilities. As for the
other 11 vulnerabilities with exceptions, crashes, or timeouts, TRANSFER
detects 7 of them, suggesting that TRANSFER is effective for both crash
and non-crash vulnerabilities.

Answer to RQ1: TRANSFER is able to generate exploits for vulnera-
bilities for 14 libraries, producing 23 exploits for 64 client programs. The
baseline Siege was only able to generate 5 exploits.

RQ2. Ablation study

Next, we performed an ablation study on TRANSFER by disabling the
search goals accordingly. Table 8.2 shows the results of this experiment.

Without the primary goal of the triggering conditions, TRANSFER
created exploits of only 3 vulnerabilities from the client programs. In this
setting, TRANSFER is equivalent to EvoSuite if EvoSuite considers
only the line and branch coverage goals of the path along the call graph and
the vulnerable function are provided. The decrease in effectiveness shows
that the triggering conditions are essential. Without them, TRANSFER is
unable to select a test case that confirms that the vulnerability is exploitable.

By dropping the line coverage goals that direct test generation towards
the vulnerable library function, TRANSFER is unable to trigger the vul-
nerability in 3 cases (CVE-2020-28052, CVE-2020-13956, CVE-2019-10094).
Without the line coverage goals, TRANSFER had to generate a test case
that reached the vulnerable function through completely random mutations.
As such, the generated test cases are less likely to invoke the vulnerable
function.

Table 8.3 shows the four cases where we observed that directed test gener-
ation substantially changed the number of generations required for TRANS-
FER to discover an exploit. For the other cases, we did not notice a sig-
nificant change in the number of generations required. In 3 of 4 cases, the
line coverage goals allowed TRANSFER to discover the exploit in a smaller
number of generations. However, in one case (CODEC-134), the line cov-
erage goals slowed down the search. In the other 16 cases, TRANSFER
performed similarly with or without the line coverage goals.

240

Table 8.3: The average number of generations required (number of seconds
given in parentheses) for TRANSFER to find an exploit, with and without
the use of the line coverage goals that direct test generation towards code on
the call graph between the client program and the vulnerable function.

Vulnerability TRANSFER −directed test generation
CODEC-134 34 (21s) 20 (15s)
CVE-2020-13956 26 (41s) 58 (50s)
CVE-2021-23899 2 (20s) 6 (108s)
CVE-2019-12402 7 (11s) 343 (328s)

Along with the 3 cases where TRANSFER could not reveal the vulnera-
bility in the client programs, there are a total of 7 cases (41% of the 17 cases
where TRANSFER could detect the vulnerability in the client program)
where the line coverage goals increased the effectiveness of TRANSFER.
Therefore, we see that the line coverage goals were important, although not
essential, in our experiments.

Answer to RQ2: While test generation directed by line coverage helped,
guiding test generation to satisfy the triggering conditions extracted from
the carved program state was essential to TRANSFER.

8.5 Discussion

We qualitatively analyse our results to better understand the performance of
TRANSFER and discuss threats to validity.

8.5.1 Qualitative Analysis

Why did TRANSFER work?

Generating complex inputs. Both TRANSFER and Siege direct
test generation towards the vulnerable library code. However, there are 18
client programs where Siege was not able to uncover the library vulnerability
while TRANSFER was able to. Our ablation study reveals that capturing
the triggering conditions of the vulnerabilities was the key to TRANSFER’s
effectiveness. Indeed, many vulnerabilities are corner cases and exceptional
behaviors of the software system, and TRANSFER targets the triggering
conditions, which provides better guidance for uncovering the vulnerability.

241

arg1.getRawAuthority()==

"blah@goggle.com:80@google.com"

&& arg1.getScheme() == "http"

&& arg1.getRawPath() == "/"

...

Figure 8.6: Part of the triggering conditions identified for CVE-2020-13956

As an example, we use CVE-2020-13956 from Section 8.2.3, a simplified
version of the triggering conditions captured from the library’s test case is
shown in Figure 8.6. The vulnerability manifests when an invalid URL (e.g.
“blah@goggle.com:80@google.com”) is passed into the vulnerable function,
and causes a connection to an unexpected host. Neither EvoSuite nor
Siege account for the necessary inputs and program state for the exploit.
EvoSuite aims to covers all other behaviors, while TRANSFER targets
a single behavior encapsulated by the triggering conditions, σ. Siege has
to construct an invalid URL from scratch, while TRANSFER leverages the
input from the library’s test case.

Guidance from triggering conditions. In Table 8.2, TRANSFER
using only directed test generation without the triggering conditions performs
identically to EvoSuite. Given that only one class is targeted, the search
budget of 10 minutes may have provided enough time for EvoSuite to
cover the same code locations that TRANSFER was directed to. This
indicates that the guidance from the triggering conditions contributed to the
improvements of TRANSFER over EvoSuite.

Compared to Siege, TRANSFER and Siege fundamentally differ in
how they guide the test generator. Siege checks for the coverage of a vul-
nerable line of code in the library, while TRANSFER checks if program
state reached by the library test case has been reproduced. In 7 vulnera-
bilities in our experiments, both benign and malicious inputs would cover
the same lines of code, and, hence, Siege does not succeed in creating an
exploit. In these cases, guiding the test generator by code coverage may not
be enough for producing an exploit.

Complementary to existing tools.

We suggest test mimicry is complementary to existing, call graph-based tech-
niques [156, 328]. Call graph-based techniques produce false positives, which
may lead to low adoption [239, 215]. If TRANSFER succeeds in demon-
strating that a vulnerability can be exploited, then developer effort can be

242

reduced. However, if TRANSFER fails in generating a test case, it does
not mean that the vulnerability is not exploitable, and developers will have
to expend effort in investigating the vulnerability.

Test mimicry relies on a test case from the library. While the test case
demonstrates the vulnerability, the extracted triggering conditions, σ, do
not characterize all possible triggers of the vulnerability. For example, the
test case of CVE-2020-13956 (Figure 8.6) shows one possible URL out of
many that could trigger the vulnerability. Nevertheless, as our goal is to
demonstrate that the vulnerability may be exploited from a client program,
having a single example may suffice to guide the creation of a test case
demonstrating the vulnerability’s exploitability.

Next Steps

While TRANSFER was successful in a number of cases in our evaluation,
we identified some limitations to be addressed in future work.

Dependence on inspector functions. In TwelveMonkeys-595, TRANS-
FER is unable to produce a test case as the arguments to the vulnerable
function lacked inspector functions. TRANSFER could not extract trig-
gering conditions that capture the program state. In the future, we plan to
additionally use other means of extracting vulnerability-triggering conditions
beyond the use of inspectors.

Irrelevant program states. In Figure 8.6, the triggering conditions
captured aspects that were irrelevant to triggering the vulnerability (e.g.
getScheme() == “http”) along with the the necessary aspects (having
getRawAuthority() set to an invalid URL, “blah@goggle.com:80@google.com”).
In other words, the triggering conditions captured by TRANSFER are more
specific than the actual conditions required to trigger the vulnerability. While
TRANSFER is able to construct a test case that satisfies the triggering con-
ditions in Figure 8.6, including its irrelevant aspects, we found that in other
cases, TRANSFER may have been limited by its inability to satisfy the ir-
relevant aspects of the captured triggering conditions. In the future, we will
explore techniques from the area of test input minimization for the extracted
triggering conditions.

8.5.2 Threats to Validity

A threat to validity is the selection of vulnerabilities in our experiments.
The vulnerabilities and client projects were selected through manual analysis.
While the type of test case is not a limitation of the method, the test case
has to target only the vulnerable behavior (i.e., it does not exercise unrelated

243

behaviors of the vulnerable code location). Otherwise, there is no way to
correctly identify the right behavior associated with the vulnerability.

Our experiments focused on the effectiveness of the test mimicry tech-
nique. As such, we focused on evaluating the design decisions unique to
TRANSFER and used the default parameters of EvoSuite. If we fine-
tune the parameters of the search parameters, TRANSFER may perform
better in our experiments and we leave these experiments for future work.
Likewise, we used the DynaMOSA search algorithm as it has been shown to
outperform other search algorithms in generating test cases [311, 102].

Regarding the generalizability of our findings, we selected vulnerabilities
that range across multiple domains for our experiments. Table 8.4 shows
the description of each library in our experiments while Table 8.5 shows
the number of successfully generated test cases for the domains of libraries
considered in our experiments. As our experiments covered various domains,
we believe our approach is not limited to specific domains and we expect it
to generalize to domains beyond our evaluation. Still, it is possible that it
will not work on some domains that we have not identified yet. Compared
to the benchmark of Iannone et al. [203], our benchmark is larger and uses
realistic client programs instead of toy programs.

8.6 Related Work

Software Composition Analysis and Search-based Test Generation are dis-
cussed in Section 8.2. Here, we discuss other related works.

Automated Exploit Generation. Our work is related to the field of
Automated Exploit Generation [73, 107], with the same goal of producing
exploits for known vulnerabilities. Brumley et al. [97] have shown the pos-
sibility of generating exploits based on the patch fixing the vulnerability.
While our work relies on information in a patch, we demonstrate that the
test case accompanying the bug fix can be used to generate exploits, while
prior work used only the modified code. Moreover, Brumley et al. [97] only
creates exploits of vulnerabilities associated with missing input validation.

Other studies that automatically generate exploits study specific types
of vulnerabilities for a narrow range of software systems [418, 190, 411, 197,
113, 434]. For example, Chen et al. [113] generate exploits for vulnerabilities
caused by out-of-bounds writes, generating 11 exploits. You et al. [434]
proposes the use of natural language processing to extract information to
guide fuzzing, triggering 18 vulnerabilities in the Linux kernel. In contrast,
TRANSFER construct test cases for a wide range of vulnerabilities for Java
programs.

244

Table 8.4: Descriptions of the libraries and vulnerabilities analyzed in this
study

Vulnerability Library Effect of vulnerability

CVE-2020-28052 Bouncy Castle wrong functional behavior

CODEC-134 [12] Apache Codecs wrong functional behavior

CVE-2020-13956 Apache HttpClient wrong functional behavior

HTTPCLIENT-1803 [35] Apache HttpClient wrong functional behavior

CVE-2019-14900 Hibernate SQL injection

CVE-2020-15250 JUnit wrong file permissions

CVE-2021-23899 OWASP JSON Sanitizer arbitrary code injection

CVE-2020-26217 XStream remote code execution

CVE-2019-12415 Apache POI XXE Injection

CVE-2018-1000632 Dom4J XXE Injection

CVE-2020-10693 Hibernate bypass input sanitization

CVE-2018-1000873 Jackson slow performance

CVE-2019-12402 Apache Compress infinite loop

CVE-2018-12418 Junrar infinite loop

CVE-2019-10094 Apache Tika infinite loop

TwelveMonkeys-595 [33] TwelveMonkeys infinite loop

CVE-2020-28491 Jackson out of memory

CVE-2018-1274 Spring Framework out of memory

CVE-2021-27568 Json-smart exception

Zip4J-263 [34] Zip4J exception

Spring Security-8317 [36] Spring Framework exception

CVE-2017-7957 XStream exception

Table 8.5: The domains of the libraries considered and the number of gener-
ated exploits in our experiments.

Domain Libraries # exploits

File compression Zip4J, Commons Compress 5
Serialization/deserialization XStream, jackson, dom4j 6
Web development/utilities Spring, Hibernate ORM 4
Data encoding/cryptography Bouncy castle, Apache POI 4
File formats (PDFs, images) Apache Tika, Twelvemonkey 1
Test Framework JUnit 1

245

Test input generation. There is a large amount of work on test input
generation [1, 219, 91, 282, 195, 194, 308, 253, 394, 89, 111, 164]. These
studies use fuzzing or symbolic execution, focus on maximizing coverage [1,
91, 308, 111, 164], or finding vulnerabilities with oracles such as crashes or
poor performance [253, 256, 322]. Compared to these studies, apart from
generating test inputs (e.g. a string), TRANSFER constructs the sequence
of different function calls (e.g. constructors, setter functions) that set up
the object states necessary to trigger the vulnerability. Provided with a
vulnerability-witnessing test case, TRANSFER focuses on demonstrating a
single, vulnerable behavior and is able to detect vulnerabilities that do not
manifest as crashes.

Directed fuzzing [89, 410, 109] focuses fuzzing efforts on selected code
locations. Similarly, TRANSFER directs test generation towards the vul-
nerable code location. However, beyond reaching the same code locations,
TRANSFER focuses on reproducing the program state reached in a library
test case to check if a library vulnerability can be exploited from a client
program.

Crash reproduction. Botsing [133] is an approach that uses search-
based test generation to reproduce crashes given stacktraces. Botsing is
complementary to our approach in detecting vulnerabilities that result in
crashes. However, not all vulnerabilities manifest as exceptions and Botsing
cannot be used without a stacktrace. As such, we do not use Botsing in our
experiments as just 4 out of the 22 studied vulnerabilities result in exceptions.

Reusing test cases. Researchers have proposed techniques that reuses
existing test cases from other projects [448]. Given similar but not identical
programs, Zhang and Kim [448] try to reuse existing test cases to enable
behavioral comparison between the programs. Our work is similar in reusing
properties of an existing test case in a different software system, but we focus
on generating tests for client programs rather than similar programs. While
Mujahid et al. [293] proposes the use of client test cases to detect breaking
changes in libraries, our work proposes the use of library test cases to detect
the exploitability of library vulnerabilities from client programs.

8.7 Summary

We propose test mimicry to leverage vulnerability-witnessing test cases from
open-source libraries, generating test cases for client projects that demon-
strate the exploitability of the library vulnerabilities. Our tool, TRANS-
FER, captures the program states reached by the library test cases, directing
test case generation for client programs towards reconstructing them.

246

Chapter 9

Conclusion and Future Work

9.1 Conclusion

Today, software projects frequently use third-party software components, e.g.
libraries. Working with libraries and their APIs is, therefore, an essential
part of software development. Likewise, improving the reliability of software
that reuse existing software components is now a critical task that demands
greater research attention.

This dissertation presents several techniques for fortifying software sys-
tems, paying particular attention to issues that may arise at the seams [148]
of software, where multiple parts of the software system interaction. We
summarize the impact of this dissertation in three aspects:

1. We develop techniques to learn patterns regarding API usages and con-
straints. We employ active learning for mining subgraph patterns from
GitHub to train an API misuse detector. We find that active learning
can weaken the reliance on frequency to determine the correctness of a
usage pattern (Chapter 3). We use search-based test generator to gen-
erate execution traces of underexplored API usage patterns, providing
counterexamples to incorrectly learned rules (Chapter 5). While one
study focuses on static analysis, while the other on dynamic analysis,
the experiments from both studies highlight that the importance of the
inclusion of uncommon API usage patterns when mining and inferring
models.

2. We support existing static analysis and dynamic analysis techniques.
Our replication study showed that there is room for improving tech-
niques that postprocess warnings from static analyzers. To reduce the
need for a large number of labelled examples, we carefully select a small

247

number of examples for labelling to maximize their informativeness
when employing in-context learning to filter out false alarms (Chapter
4). When building a fuzzer of deep learning libraries, our approach in-
vokes the library with informative inputs that allow for the refinement
of its model of the API’s input constraints (Chapter 6). This enables
the generation of valid, diverse inputs. Both studies had experimental
results that suggested that the consideration of small number of infor-
mative data points can lead to a large improvement in bug detection
effectiveness of both static and dynamic analysis.

3. Finally, we highlight the challenge and importance of analyzing a soft-
ware system comprising multiple interacting components. In an Internet-
of-Things environment, our experiments show that handcrafted rules
may lead to large number of false alarms, and may fail to detect mali-
cious behaviors (Chapter 7). When a program includes a library, vul-
nerabilities in the library may be exploited from the program (Chapter
8). Our work paves the way forward in addressing these problems,
proposing approaches that automatically reveal unexpected behaviors
and confirming that a vulnerability may be exploited. As developers
have to judicious about constructing complex software systems, more
work has to go into supporting them.

9.2 Future Work

Here, we describe potential work that may advance the work presented in
this dissertation.

Obtaining more types of information from oracles. Our work
relies on active learning, in which an oracle is queried for feedback. We
explored both the use of feedback from human oracles as well as from the
execution of programs. The proposed approaches had an objective to reduce
the number of queries presented to the oracle. Still, each query is expensive.
Instead of reducing the number of queries, future work may benefit from
the exploration of types of queries that may provide more information. It
may be worthwhile to explore other means of obtaining information and
feedback from the oracles, such as the human-in-the-loop. For feedback from
human oracles, one possible direction is that a human annotator can provide
explanations for each label. For feedback from program executions, collecting
more information by applying more instrumentation may be able to provide
more contextual information.

More expressive representations and models. We have explored a

248

wide variety of representations of abstractions for modelling API constraints
and usages. Nevertheless, each type of representation make trade-offs be-
tween different desirable qualities. A formal, symbolic representation allows
for precise rules and reasoning, while a continuous, vector representation
seems to better support learning on vast corpora of publicly-available open-
source data. Future studies should explore more ways of expressing knowl-
edge about APIs, such as the use of neurosymbolic approaches.

Providing more context and explanations when producing alerts.
A recurring theme in this dissertation is the reluctance of developers to adopt
tools when provided a large number of false alarms and the lack of precision
in models (warnings from static analysis, handcrafted models/rules for moni-
toring a system, alerts about library vulnerabilities). This suggests that when
developer tools are developed, more consideration can be placed on usability
by providing more context to the alerts such that inspecting and suppress-
ing a false alarm requires only some effort. Apart from providing greater
context, developers are also known to prefer using tools that enable a short
feedback loop when making decisions. Future work can explore the types
of information that are useful to distinguish between true and false alarms
when providing an alert to developers, as well as the interaction between the
developer and the tool.

To conclude, as the use of libraries and reusable software components
grow, there are tremendous challenges and opportunities. The work in this
dissertation has addressed some aspects of software reliability related to the
interaction between software systems. We hope our work encourages future
work into understanding and addressing the problems we have highlighted.
We believe that there will be more advances and breakthroughs made in this
field, which will enable greater developer productivity and software reliability
when reusing software.

249

Bibliography

[1] American Fuzzy Lop (AFL). http://lcamtuf.coredump.cx/afl/

technical_details.txt.

[2] Apache Bigtop. https://github.com/apache/bigtop.

[3] Apache Commons-Lang. https://github.com/apache/

commons-lang.

[4] Apache Commons-Math. https://github.com/apache/

commons-math.

[5] Apache Commons-Text. https://github.com/apache/

commons-text.

[6] Apache Curator. https://github.com/apache/curator.

[7] Apache FOP. https://github.com/apache/fop.

[8] Apache Fortress. https://github.com/apache/

directory-fortress.

[9] Apache PDFBox. https://github.com/apache/pdfbox.

[10] Apple HomeKit. https://www.apple.com/ios/home/.

[11] BCEL. https://github.com/apache/commons-bcel.

[12] CODEC-134 from Apache Commons Codecs’s issue tracker. https:

//issues.apache.org/jira/browse/CODEC-134.

[13] CVE-2019-12402. https://nvd.nist.gov/vuln/detail/

CVE-2019-12402.

[14] Google Home. https://store.google.com/sg/category/

connected_home.

250

http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
https://github.com/apache/bigtop
https://github.com/apache/commons-lang
https://github.com/apache/commons-lang
https://github.com/apache/commons-math
https://github.com/apache/commons-math
https://github.com/apache/commons-text
https://github.com/apache/commons-text
https://github.com/apache/curator
https://github.com/apache/fop
https://github.com/apache/directory-fortress
https://github.com/apache/directory-fortress
https://github.com/apache/pdfbox
https://github.com/apache/commons-bcel
https://issues.apache.org/jira/browse/CODEC-134
https://issues.apache.org/jira/browse/CODEC-134
https://nvd.nist.gov/vuln/detail/CVE-2019-12402
https://nvd.nist.gov/vuln/detail/CVE-2019-12402
https://store.google.com/sg/category/connected_home
https://store.google.com/sg/category/connected_home

[15] Google security blog: Understanding the impact of apache
log4j vulnerability. https://security.googleblog.com/2021/12/

understanding-impact-of-apache-log4j.html.

[16] H2 database. https://github.com/h2database/h2database.

[17] Home Assistant. https://www.home-assistant.io/.

[18] Hyrum’s law. https://www.hyrumslaw.com/. Accessed 2 Dec 2020.

[19] IFTTT. https://ifttt.com/.

[20] Illuminated Response to Unexpected Visitors. https:

//github.com/IoTBench/IoTBench-test-suite/

blob/master/smartThings/smartThings-contexIoT/

smartThings-contextIoT-official-and-third-party/

IlluminatedResponsetoUnexpectedVisitors.txt.groovy.

[21] IoTBench. https://github.com/IoTBench/IoTBench-test-suite.

[22] IoTBox artifact website. https://github.com/iotboxdeveloper/

iotbox.

[23] ITextPDF. https://github.com/itext/itextpdf.

[24] Jackrabbit. https://github.com/apache/jackrabbit.

[25] JFreeChart. https://github.com/jfree/jfreechart.

[26] Lock Door after X minutes. https://

github.com/IoTBench/IoTBench-test-suite/blob/

master/smartThings/smartThings-contexIoT/

smartThings-contextIoT-official-and-third-party/

LockDoorafterXminutes.txt.groovy.

[27] Motion Mode Change. https://github.

com/IoTBench/IoTBench-test-suite/blob/

master/smartThings/smartThings-contexIoT/

smartThings-contextIoT-official-and-third-party/

MotionModeChange.txt.groovy.

[28] Replication package. https://github.com/SA-retrospective/

study.

251

https://security.googleblog.com/2021/12/understanding-impact-of-apache-log4j.html
https://security.googleblog.com/2021/12/understanding-impact-of-apache-log4j.html
https://github.com/h2database/h2database
https://www.home-assistant.io/
https://www.hyrumslaw.com/
https://github.com/IoTBench/IoTBench-test-suite/blob/master/smartThings/smartThings-contexIoT/smartThings-contextIoT-official-and-third-party/IlluminatedResponsetoUnexpectedVisitors.txt.groovy
https://github.com/IoTBench/IoTBench-test-suite/blob/master/smartThings/smartThings-contexIoT/smartThings-contextIoT-official-and-third-party/IlluminatedResponsetoUnexpectedVisitors.txt.groovy
https://github.com/IoTBench/IoTBench-test-suite/blob/master/smartThings/smartThings-contexIoT/smartThings-contextIoT-official-and-third-party/IlluminatedResponsetoUnexpectedVisitors.txt.groovy
https://github.com/IoTBench/IoTBench-test-suite/blob/master/smartThings/smartThings-contexIoT/smartThings-contextIoT-official-and-third-party/IlluminatedResponsetoUnexpectedVisitors.txt.groovy
https://github.com/IoTBench/IoTBench-test-suite/blob/master/smartThings/smartThings-contexIoT/smartThings-contextIoT-official-and-third-party/IlluminatedResponsetoUnexpectedVisitors.txt.groovy
https://github.com/iotboxdeveloper/iotbox
https://github.com/iotboxdeveloper/iotbox
https://github.com/itext/itextpdf
https://github.com/apache/jackrabbit
https://github.com/jfree/jfreechart
https://github.com/IoTBench/IoTBench-test-suite/blob/master/smartThings/smartThings-contexIoT/smartThings-contextIoT-official-and-third-party/LockDoorafterXminutes.txt.groovy
https://github.com/IoTBench/IoTBench-test-suite/blob/master/smartThings/smartThings-contexIoT/smartThings-contextIoT-official-and-third-party/LockDoorafterXminutes.txt.groovy
https://github.com/IoTBench/IoTBench-test-suite/blob/master/smartThings/smartThings-contexIoT/smartThings-contextIoT-official-and-third-party/LockDoorafterXminutes.txt.groovy
https://github.com/IoTBench/IoTBench-test-suite/blob/master/smartThings/smartThings-contexIoT/smartThings-contextIoT-official-and-third-party/LockDoorafterXminutes.txt.groovy
https://github.com/IoTBench/IoTBench-test-suite/blob/master/smartThings/smartThings-contexIoT/smartThings-contextIoT-official-and-third-party/LockDoorafterXminutes.txt.groovy
https://github.com/IoTBench/IoTBench-test-suite/blob/master/smartThings/smartThings-contexIoT/smartThings-contextIoT-official-and-third-party/MotionModeChange.txt.groovy
https://github.com/IoTBench/IoTBench-test-suite/blob/master/smartThings/smartThings-contexIoT/smartThings-contextIoT-official-and-third-party/MotionModeChange.txt.groovy
https://github.com/IoTBench/IoTBench-test-suite/blob/master/smartThings/smartThings-contexIoT/smartThings-contextIoT-official-and-third-party/MotionModeChange.txt.groovy
https://github.com/IoTBench/IoTBench-test-suite/blob/master/smartThings/smartThings-contexIoT/smartThings-contextIoT-official-and-third-party/MotionModeChange.txt.groovy
https://github.com/IoTBench/IoTBench-test-suite/blob/master/smartThings/smartThings-contexIoT/smartThings-contextIoT-official-and-third-party/MotionModeChange.txt.groovy
https://github.com/SA-retrospective/study
https://github.com/SA-retrospective/study

[29] Report: Millions (and Millions) of Devices Vulnerable in lat-
est Mirai Attacks. https://securityledger.com/2016/11/

report-millions-and-millions-of-devices-vulnerable-in-latest-mirai-attacks/.

[30] Samsung SmartThings. https://www.smartthings.com/.

[31] Santuario. https://github.com/apache/santuario-java.

[32] SmartThings Simulator. https://graph.api.smartthings.com/

ide/apps.

[33] SNYK-JAVA-COMTWELVEMONKEYSIMAGEIO-
1083830 from SNYK. https://snyk.io/vuln/

SNYK-JAVA-COMTWELVEMONKEYSIMAGEIO-1083830.

[34] SNYK-JAVA-NETLINGALAZIP4J-1074967 from SNYK. https://

snyk.io/vuln/SNYK-JAVA-NETLINGALAZIP4J-1074967.

[35] SNYK-JAVA-ORGAPACHEHTTPCOMPONENTS-
31517 from SNYK. https://snyk.io/vuln/

SNYK-JAVA-ORGAPACHEHTTPCOMPONENTS-31517.

[36] SNYK-JAVA-ORGSPRINGFRAMEWORKSECURITY-
570204 from SNYK. https://snyk.io/vuln/

SNYK-JAVA-ORGSPRINGFRAMEWORKSECURITY-570204.

[37] Snyk’s state of open source security report 2022. https://resources.
snyk.io/state-of-open-source-security-report-2022.

[38] Snyk’s vulnerability database. https://snyk.io/vuln?type=maven.

[39] SourceClear’s vulnerability database. https://www.sourceclear.

com/vulnerability-database/.

[40] SwingX. https://github.com/ebourg/swingx.

[41] Unlock Door. https://github.com/

IoTBench/IoTBench-test-suite/blob/

master/smartThings/smartThings-contexIoT/

smartThings-contextIoT-official-and-third-party/

Unlockdoor.txt.groovy.

[42] Vacation Light Director. https://community.smartthings.com/t/

new-app-vacation-light-director/7230.

252

https://securityledger.com/2016/11/report-millions-and-millions-of-devices-vulnerable-in-latest-mirai-attacks/
https://securityledger.com/2016/11/report-millions-and-millions-of-devices-vulnerable-in-latest-mirai-attacks/
https://github.com/apache/santuario-java
https://graph.api.smartthings.com/ide/apps
https://graph.api.smartthings.com/ide/apps
https://snyk.io/vuln/SNYK-JAVA-COMTWELVEMONKEYSIMAGEIO-1083830
https://snyk.io/vuln/SNYK-JAVA-COMTWELVEMONKEYSIMAGEIO-1083830
https://snyk.io/vuln/SNYK-JAVA-NETLINGALAZIP4J-1074967
https://snyk.io/vuln/SNYK-JAVA-NETLINGALAZIP4J-1074967
https://snyk.io/vuln/SNYK-JAVA-ORGAPACHEHTTPCOMPONENTS-31517
https://snyk.io/vuln/SNYK-JAVA-ORGAPACHEHTTPCOMPONENTS-31517
https://snyk.io/vuln/SNYK-JAVA-ORGSPRINGFRAMEWORKSECURITY-570204
https://snyk.io/vuln/SNYK-JAVA-ORGSPRINGFRAMEWORKSECURITY-570204
https://resources.snyk.io/state-of-open-source-security-report-2022
https://resources.snyk.io/state-of-open-source-security-report-2022
https://snyk.io/vuln?type=maven
https://www.sourceclear.com/vulnerability-database/
https://www.sourceclear.com/vulnerability-database/
https://github.com/ebourg/swingx
https://github.com/IoTBench/IoTBench-test-suite/blob/master/smartThings/smartThings-contexIoT/smartThings-contextIoT-official-and-third-party/Unlockdoor.txt.groovy
https://github.com/IoTBench/IoTBench-test-suite/blob/master/smartThings/smartThings-contexIoT/smartThings-contextIoT-official-and-third-party/Unlockdoor.txt.groovy
https://github.com/IoTBench/IoTBench-test-suite/blob/master/smartThings/smartThings-contexIoT/smartThings-contextIoT-official-and-third-party/Unlockdoor.txt.groovy
https://github.com/IoTBench/IoTBench-test-suite/blob/master/smartThings/smartThings-contexIoT/smartThings-contextIoT-official-and-third-party/Unlockdoor.txt.groovy
https://github.com/IoTBench/IoTBench-test-suite/blob/master/smartThings/smartThings-contexIoT/smartThings-contextIoT-official-and-third-party/Unlockdoor.txt.groovy
https://community.smartthings.com/t/new-app-vacation-light-director/7230
https://community.smartthings.com/t/new-app-vacation-light-director/7230

[43] Wildfly-Eytron. https://github.com/wildfly-security/wildfly.

[44] Wired: The log4j vulnerability will haunt the internet for years. https:
//www.wired.com/story/log4j-log4shell/.

[45] Zapier. https://zapier.com/.

[46] Findbugs filter file. http://findbugs.sourceforge.net/manual/

filter.html, September, 2021.

[47] OSS-Fuzz. https://github.com/google/oss-fuzz, 2022. Accessed: 2022-
10-10.

[48] SkipFuzz’s GitHub repository. https://github.com/skipfuzz/skipfuzz,
2022.

[49] TensorFlow security policy. https://github.com/tensorflow/

tensorflow/security/policy, 2022. Accessed: 2022-04-20.

[50] Aarts, F., De Ruiter, J., and Poll, E. Formal models of bank
cards for free. In 2013 IEEE Sixth International Conference on Soft-
ware Testing, Verification and Validation Workshops (2013), IEEE,
pp. 461–468.

[51] Acar, Y., Backes, M., Bugiel, S., Fahl, S., McDaniel, P.,
and Smith, M. Sok: Lessons learned from android security research
for appified software platforms. In 2016 IEEE Symposium on Security
and Privacy (2016), IEEE, pp. 433–451.

[52] Alfadel, M., Costa, D. E., and Shihab, E. Empirical analysis
of security vulnerabilities in python packages. In 2021 IEEE Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER) (2021), IEEE, pp. 446–457.

[53] Alhanahnah, M., Stevens, C., and Bagheri, H. Scalable anal-
ysis of interaction threats in IoT systems. In Proceedings of the 29th
ACM SIGSOFT International Symposium on Software Testing and
Analysis (2020), pp. 272–285.

[54] Allamanis, M. The adverse effects of code duplication in machine
learning models of code. In ACM SIGPLAN International Symposium
on New Ideas, New Paradigms, and Reflections on Programming and
Software (Onward! 2019) (2019), pp. 143–153.

253

https://github.com/wildfly-security/wildfly
https://www.wired.com/story/log4j-log4shell/
https://www.wired.com/story/log4j-log4shell/
http://findbugs.sourceforge.net/manual/filter.html
http://findbugs.sourceforge.net/manual/filter.html
https://github.com/tensorflow/tensorflow/security/policy
https://github.com/tensorflow/tensorflow/security/policy

[55] Almasi, M. M., Hemmati, H., Fraser, G., Arcuri, A., and
Benefelds, J. An industrial evaluation of unit test generation: Find-
ing real faults in a financial application. In IEEE/ACM International
Conference on Software Engineering: Software Engineering in Practice
Track (ICSE-SEIP) (2017), IEEE, pp. 263–272.

[56] Alrawi, O., Lever, C., Antonakakis, M., and Monrose, F.
Sok: Security evaluation of home-based IoT deployments. In 2019
IEEE Symposium on Security and Privacy (2019), IEEE, pp. 1362–
1380.

[57] Alshahwan, N., and Harman, M. Augmenting test suites effec-
tiveness by increasing output diversity. In 2012 34th International
Conference on Software Engineering (ICSE) (2012), IEEE, pp. 1345–
1348.

[58] Amann, S. A systematic approach to benchmark and improve auto-
mated static detection of Java-API misuses. PhD thesis, Universitäts-
und Landesbibliothek Darmstadt, 2018.

[59] Amann, S., Nadi, S., Nguyen, H. A., Nguyen, T. N., and
Mezini, M. MUBench: a benchmark for API-misuse detectors. In
Proceedings of the 13th International Conference on Mining Software
Repositories (2016), pp. 464–467.

[60] Amann, S., Nguyen, H. A., Nadi, S., Nguyen, T. N., and
Mezini, M. A systematic evaluation of static API-misuse detectors.
IEEE Transactions on Software Engineering 45, 12 (2018), 1170–1188.

[61] Amann, S., Nguyen, H. A., Nadi, S., Nguyen, T. N., and
Mezini, M. Investigating next steps in static API-misuse detection.
In 2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR) (2019), IEEE, pp. 265–275.

[62] Ammons, G., Bod́ık, R., and Larus, J. R. Mining specifications.
ACM Sigplan Notices 37, 1 (2002), 4–16.

[63] Angluin, D. Learning regular sets from queries and counterexamples.
Information and computation 75, 2 (1987), 87–106.

[64] Angluin, D. Queries and concept learning. Machine learning 2, 4
(1988), 319–342.

254

[65] Antonakakis, M., April, T., Bailey, M., Bernhard, M.,
Bursztein, E., Cochran, J., Durumeric, Z., Halderman,
J. A., Invernizzi, L., Kallitsis, M., et al. Understanding the
Mirai botnet. In 26th USENIX security symposium (USENIX Security
17) (2017), pp. 1093–1110.

[66] Arcuri, A. It really does matter how you normalize the branch dis-
tance in search-based software testing. Software Testing, Verification
and Reliability 23, 2 (2013), 119–147.

[67] Arcuri, A., and Fraser, G. Parameter tuning or default values? an
empirical investigation in search-based software engineering. Empirical
Software Engineering 18, 3 (2013), 594–623.

[68] Argyros, G., Stais, I., Jana, S., Keromytis, A. D., and Ki-
ayias, A. Sfadiff: Automated evasion attacks and fingerprinting using
black-box differential automata learning. In Proceedings of the 2016
ACM SIGSAC conference on computer and communications security
(2016), pp. 1690–1701.

[69] Arp, D., Spreitzenbarth, M., Gascon, H., Rieck, K., and
Siemens, C. Drebin: Effective and explainable detection of android
malware in your pocket.

[70] Aschermann, C., Frassetto, T., Holz, T., Jauernig, P.,
Sadeghi, A.-R., and Teuchert, D. Nautilus: Fishing for deep
bugs with grammars. In NDSS (2019).

[71] Asyrofi, M. H., Thung, F., Lo, D., and Jiang, L. AUSearch:
Accurate API usage search in github repositories with type resolution.
In IEEE International Conference on Software Analysis, Evolution and
Reengineering (2020).

[72] Asyrofi, M. H., Yang, Z., Yusuf, I. N. B., Kang, H. J.,
Thung, F., and Lo, D. Biasfinder: Metamorphic test generation
to uncover bias for sentiment analysis systems. IEEE Transactions on
Software Engineering (TSE) (2021).

[73] Avgerinos, T., Cha, S. K., Rebert, A., Schwartz, E. J., Woo,
M., and Brumley, D. Automatic exploit generation. Communica-
tions of the ACM 57, 2 (2014), 74–84.

255

[74] Ayewah, N., and Pugh, W. The google findbugs fixit. In 19th
International Symposium on Software Testing and Analysis (ISSTA
2010) (2010), pp. 241–252.

[75] Ayewah, N., Pugh, W., Hovemeyer, D., Morgenthaler,
J. D., and Penix, J. Using static analysis to find bugs. IEEE
Software 25, 5 (2008), 22–29.

[76] Babić, D., Bucur, S., Chen, Y., Ivančić, F., King, T., Ku-
sano, M., Lemieux, C., Szekeres, L., and Wang, W. Fudge:
fuzz driver generation at scale. In Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering (2019), pp. 975–
985.

[77] Balachandran, V. Reducing human effort and improving quality in
peer code reviews using automatic static analysis and reviewer recom-
mendation. In 35th International Conference on Software Engineering
(ICSE 2013) (2013), IEEE, pp. 931–940.

[78] Banerjee, S., Clapp, L., and Sridharan, M. Nullaway: Practi-
cal type-based null safety for java. In Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering (2019), pp. 740–
750.

[79] Bao, L., Le, T.-D. B., and Lo, D. Mining sandboxes: Are we there
yet? In 2018 IEEE 25th International Conference on Software Analy-
sis, Evolution and Reengineering (SANER) (2018), IEEE, pp. 445–455.

[80] Barnett, M., Naumann, D. A., Schulte, W., and Sun, Q.
99.44% pure: Useful abstractions in specifications. In ECOOP work-
shop on formal techniques for Java-like programs (FTfJP) (2004).

[81] Bastys, I., Balliu, M., and Sabelfeld, A. If this then
what? controlling flows in IoT apps. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Secu-
rity (2018), pp. 1102–1119.

[82] Bavishi, R., Lemieux, C., Fox, R., Sen, K., and Stoica, I. Au-
topandas: neural-backed generators for program synthesis. Proceedings
of the ACM on Programming Languages 3, OOPSLA (2019), 1–27.

256

[83] Beck, K. Test-driven development: by example. Addison-Wesley Pro-
fessional, 2003.

[84] Beller, M., Bholanath, R., McIntosh, S., and Zaidman, A.
Analyzing the state of static analysis: A large-scale evaluation in open
source software. In IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER 2016) (2016), IEEE
Computer Society, pp. 470–481.

[85] Beschastnikh, I., Brun, Y., Abrahamson, J., Ernst, M. D.,
and Krishnamurthy, A. Using declarative specification to improve
the understanding, extensibility, and comparison of model-inference
algorithms. IEEE Transactions on Software Engineering 41, 4 (2014),
408–428.

[86] Beschastnikh, I., Brun, Y., Schneider, S., Sloan, M., and
Ernst, M. D. Leveraging existing instrumentation to automatically
infer invariant-constrained models. In Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on Founda-
tions of software engineering (2011), ACM, pp. 267–277.

[87] Blasi, A., Goffi, A., Kuznetsov, K., Gorla, A., Ernst,
M. D., Pezzè, M., and Castellanos, S. D. Translating code
comments to procedure specifications. In Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis
(2018), pp. 242–253.

[88] Bogart, C., Kästner, C., Herbsleb, J., and Thung, F. How to
break an api: cost negotiation and community values in three software
ecosystems. In Proceedings of the 2016 24th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering (2016),
pp. 109–120.

[89] Böhme, M., Pham, V.-T., Nguyen, M.-D., and Roychoud-
hury, A. Directed greybox fuzzing. In ACM SIGSAC Conference on
Computer and Communications Security (CCS) (2017), pp. 2329–2344.

[90] Böhme, M., Pham, V.-T., and Roychoudhury, A. Coverage-
based greybox fuzzing as markov chain. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security
(2016), pp. 1032–1043.

257

[91] Böhme, M., Pham, V.-T., and Roychoudhury, A. Coverage-
based greybox fuzzing as markov chain. IEEE Transactions on Software
Engineering (TSE) 45, 5 (2017), 489–506.

[92] Bowring, J. F., Rehg, J. M., and Harrold, M. J. Active learn-
ing for automatic classification of software behavior. ACM SIGSOFT
Software Engineering Notes 29, 4 (2004), 195–205.

[93] Brackenbury, W., Deora, A., Ritchey, J., Vallee, J., He,
W., Wang, G., Littman, M. L., and Ur, B. How users interpret
bugs in trigger-action programming. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems (2019), pp. 1–12.

[94] Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander, J.
LOF: identifying density-based local outliers. In Proceedings of the
2000 ACM SIGMOD international conference on Management of data
(2000), pp. 93–104.

[95] Brito, A., Xavier, L., Hora, A., and Valente, M. T. Apidiff:
Detecting api breaking changes. In 2018 IEEE 25th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER)
(2018), IEEE, pp. 507–511.

[96] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry,
G., Askell, A., et al. Language models are few-shot learners. Ad-
vances in neural information processing systems 33 (2020), 1877–1901.

[97] Brumley, D., Poosankam, P., Song, D., and Zheng, J. Auto-
matic patch-based exploit generation is possible: Techniques and im-
plications. In IEEE Symposium on Security and Privacy (S&P) (2008),
IEEE, pp. 143–157.

[98] Bruneton, E., Lenglet, R., and Coupaye, T. ASM: a code
manipulation tool to implement adaptable systems. Adaptable and
extensible component systems 30, 19 (2002).

[99] Busany, N., and Maoz, S. Behavioral log analysis with statisti-
cal guarantees. In 2016 IEEE/ACM 38th International Conference on
Software Engineering (ICSE) (2016), IEEE, pp. 877–887.

[100] Calimeri, F., Gebser, M., Maratea, M., and Ricca, F. Design
and results of the fifth answer set programming competition. Artificial
Intelligence 231 (2016), 151–181.

258

[101] Cambronero, J. P., Dang, T. H., Vasilakis, N., Shen, J., Wu,
J., and Rinard, M. C. Active learning for software engineering.
In Proceedings of the 2019 ACM SIGPLAN International Symposium
on New Ideas, New Paradigms, and Reflections on Programming and
Software (2019), pp. 62–78.

[102] Campos, J., Ge, Y., Albunian, N., Fraser, G., Eler, M., and
Arcuri, A. An empirical evaluation of evolutionary algorithms for
unit test suite generation. Information and Software Technology (IST)
104 (2018), 207–235.

[103] Cao, Z., Tian, Y., Le, T.-D. B., and Lo, D. Rule-based specifi-
cation mining leveraging learning to rank. Automated Software Engi-
neering 25, 3 (2018), 501–530.

[104] Celik, Z. B., Babun, L., Sikder, A. K., Aksu, H., Tan, G.,
McDaniel, P., and Uluagac, A. S. Sensitive information tracking
in commodity IoT. In 27th USENIX Security Symposium (USENIX
Security 18) (2018), pp. 1687–1704.

[105] Celik, Z. B., McDaniel, P., and Tan, G. Soteria: Automated
IoT safety and security analysis. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18) (2018), pp. 147–158.

[106] Celik, Z. B., Tan, G., and McDaniel, P. D. IoTGuard: Dynamic
enforcement of security and safety policy in commodity IoT. In NDSS
2019.

[107] Cha, S. K., Avgerinos, T., Rebert, A., and Brumley, D. Un-
leashing Mayhem on binary code. In IEEE Symposium on Security and
Privacy (S&P) (2012), IEEE, pp. 380–394.

[108] Chalin, P. Are practitioners writing contracts? In Rigorous Develop-
ment of Complex Fault-Tolerant Systems. Springer, 2006, pp. 100–113.

[109] Chen, H., Xue, Y., Li, Y., Chen, B., Xie, X., Wu, X., and
Liu, Y. Hawkeye: Towards a desired directed grey-box fuzzer. In
ACM SIGSAC Conference on Computer and Communications Security
(CCS) (2018), pp. 2095–2108.

[110] Chen, J., Diao, W., Zhao, Q., Zuo, C., Lin, Z., Wang, X.,
Lau, W. C., Sun, M., Yang, R., and Zhang, K. IoTFuzzer:
Discovering memory corruptions in IoT through app-based fuzzing. In
NDSS (2018).

259

[111] Chen, P., and Chen, H. Angora: Efficient fuzzing by principled
search. In IEEE Symposium on Security and Privacy (S&P) (2018),
IEEE, pp. 711–725.

[112] Chen, T. Y., Kuo, F.-C., Merkel, R. G., and Tse, T. Adaptive
random testing: The art of test case diversity. Journal of Systems and
Software 83, 1 (2010), 60–66.

[113] Chen, W., Zou, X., Li, G., and Qian, Z. KOOBE: Towards
facilitating exploit generation of kernel out-of-bounds write vulnera-
bilities. In USENIX Security Symposium (USENIX Security) (2020),
pp. 1093–1110.

[114] Chen, Y., Jiang, Y., Ma, F., Liang, J., Wang, M., Zhou, C.,
Jiao, X., and Su, Z. EnFuzz: Ensemble fuzzing with seed synchro-
nization among diverse fuzzers. In 28th USENIX Security Symposium
(USENIX Security 19) (2019), pp. 1967–1983.

[115] Chen, Y., Santosa, A. E., Yi, A. M., Sharma, A., Sharma, A.,
and Lo, D. A machine learning approach for vulnerability curation.
In International Conference on Mining Software Repositories (MSR)
(2020), pp. 32–42.

[116] Chi, H., Zeng, Q., Du, X., and Yu, J. Cross-app interference
threats in smart homes: Categorization, detection and handling. In
2020 50th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN) (2020), IEEE, pp. 411–423.

[117] Chow, C. On optimum recognition error and reject tradeoff. IEEE
Transactions on information theory 16, 1 (1970), 41–46.

[118] Chow, T. S. Testing software design modeled by finite-state machines.
IEEE Transactions on Software Engineering, 3 (1978), 178–187.

[119] Christakis, M., and Bird, C. What developers want and need
from program analysis: an empirical study. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engi-
neering, ASE 2016, Singapore, September 3-7, 2016 (2016), ACM,
pp. 332–343.

[120] Clarke, E., Grumberg, O., Jha, S., Lu, Y., and Veith,
H. Counterexample-guided abstraction refinement for symbolic model
checking. Journal of the ACM (JACM) 50, 5 (2003), 752–794.

260

[121] Cohen, H., and Maoz, S. Have we seen enough traces?(t). In 2015
30th IEEE/ACM International Conference on Automated Software En-
gineering (ASE) (2015), IEEE, pp. 93–103.

[122] Cohn, D. A., Ghahramani, Z., and Jordan, M. I. Active learn-
ing with statistical models. Journal of artificial intelligence research 4
(1996), 129–145.

[123] Corina, J., Machiry, A., Salls, C., Shoshitaishvili, Y., Hao,
S., Kruegel, C., and Vigna, G. Difuze: Interface aware fuzzing for
kernel drivers. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (CCS 2017) (2017), pp. 2123–
2138.

[124] Cortes, C., DeSalvo, G., and Mohri, M. Learning with rejection.
In International Conference on Algorithmic Learning Theory (2016),
Springer, pp. 67–82.

[125] Dagan, I., and Engelson, S. P. Committee-based sampling for
training probabilistic classifiers. InMachine Learning Proceedings 1995.
Elsevier, 1995, pp. 150–157.

[126] Dallmeier, V., Knopp, N., Mallon, C., Hack, S., and Zeller,
A. Generating test cases for specification mining. In Proceedings of the
19th international symposium on Software testing and analysis (2010),
ACM, pp. 85–96.

[127] Dallmeier, V., Lindig, C., Wasylkowski, A., and Zeller,
A. Mining object behavior with adabu. In Proceedings of the 2006
international workshop on Dynamic systems analysis (2006), ACM,
pp. 17–24.

[128] de Caso, G., Braberman, V., Garbervetsky, D., and Uchi-
tel, S. Automated abstractions for contract validation. IEEE Trans-
actions on Software Engineering 38, 1 (2010), 141–162.

[129] De Ruiter, J., and Poll, E. Protocol state fuzzing of TLS imple-
mentations. In 24th USENIX Security Symposium (USENIX Security
15) (2015), pp. 193–206.

[130] Decan, A., Mens, T., and Constantinou, E. On the impact
of security vulnerabilities in the npm package dependency network.
In International Conference on Mining Software Repositories (MSR)
(2018), pp. 181–191.

261

[131] Dekel, U., and Herbsleb, J. D. Improving API documentation
usability with knowledge pushing. In 2009 IEEE 31st International
Conference on Software Engineering (2009), IEEE, pp. 320–330.

[132] Deng, Y., Yang, C., Wei, A., and Zhang, L. Fuzzing deep-
learning libraries via automated relational API inference. In 2022 ACM
Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE 2022) (2022).

[133] Derakhshanfar, P., Devroey, X., Panichella, A., Zaidman,
A., and van Deursen, A. Botsing, a search-based crash reproduc-
tion framework for java. In IEEE/ACM International Conference on
Automated Software Engineering (ASE) (2020), IEEE, pp. 1278–1282.

[134] Devroey, X., Panichella, S., and Gambi, A. Java unit testing
tool competition: Eighth round. In IEEE/ACM International Confer-
ence on Software Engineering Workshops (2020), pp. 545–548.

[135] Dietl, W., Dietzel, S., Ernst, M. D., Muşlu, K., and
Schiller, T. W. Building and using pluggable type-checkers. In Pro-
ceedings of the 33rd International Conference on Software Engineering
(2011), pp. 681–690.

[136] Ding, W., and Hu, H. On the safety of IoT device physical interac-
tion control. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (2018), pp. 832–846.

[137] Distefano, D., Fähndrich, M., Logozzo, F., and O’Hearn,
P. W. Scaling static analyses at facebook. Communications of the
ACM 62, 8 (2019), 62–70.

[138] Du, X., Xie, X., Li, Y., Ma, L., Liu, Y., and Zhao, J. Deep-
Stellar: Model-based quantitative analysis of stateful deep learning sys-
tems. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE 2019) (2019), pp. 477–487.

[139] Dupont, P., Lambeau, B., Damas, C., and Lamsweerde, A. v.
The qsm algorithm and its application to software behavior model in-
duction. Applied Artificial Intelligence 22, 1-2 (2008), 77–115.

[140] Durumeric, Z., Li, F., Kasten, J., Amann, J., Beekman, J.,
Payer, M., Weaver, N., Adrian, D., Paxson, V., Bailey, M.,

262

et al. The matter of heartbleed. In Proceedings of the 2014 Conference
on Internet Measurement Conference (2014), pp. 475–488.

[141] Dwarakanath, A., Ahuja, M., Sikand, S., Rao, R. M., Bose,
R. J. C., Dubash, N., and Podder, S. Identifying implementa-
tion bugs in machine learning based image classifiers using metamor-
phic testing. In Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2018) (2018),
pp. 118–128.

[142] Dwyer, M. B., Avrunin, G. S., and Corbett, J. C. Patterns
in property specifications for finite-state verification. In Proceedings
of the 1999 International Conference on Software Engineering (IEEE
Cat. No. 99CB37002) (1999), IEEE, pp. 411–420.

[143] Dyer, R., Nguyen, H. A., Rajan, H., and Nguyen, T. N. Boa:
A language and infrastructure for analyzing ultra-large-scale software
repositories. In 2013 35th International Conference on Software Engi-
neering (ICSE) (2013), IEEE, pp. 422–431.

[144] Egele, M., Brumley, D., Fratantonio, Y., and Kruegel, C.
An empirical study of cryptographic misuse in android applications.
In Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security (2013), pp. 73–84.

[145] Elbaum, S., Chin, H. N., Dwyer, M. B., and Dokulil, J.
Carving differential unit test cases from system test cases. In ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering (FSE) (2006), pp. 253–264.

[146] Ernst, M. D., Perkins, J. H., Guo, P. J., McCamant, S.,
Pacheco, C., Tschantz, M. S., and Xiao, C. The daikon sys-
tem for dynamic detection of likely invariants. Science of computer
programming 69, 1-3 (2007), 35–45.

[147] Ertekin, S., Huang, J., Bottou, L., and Giles, L. Learning
on the border: active learning in imbalanced data classification. In
Proceedings of the sixteenth ACM conference on Conference on infor-
mation and knowledge management (2007), pp. 127–136.

[148] Feathers, M. Working Effectively With Legacy Code: Work Effect
Leg Code p1. Prentice Hall Professional, 2004.

263

[149] Feldt, R., Poulding, S., Clark, D., and Yoo, S. Test set di-
ameter: Quantifying the diversity of sets of test cases. In 2016 IEEE
International Conference on Software Testing, Verification and Valida-
tion (ICST) (2016), IEEE, pp. 223–233.

[150] Feldt, R., Torkar, R., Gorschek, T., and Afzal, W. Search-
ing for cognitively diverse tests: Towards universal test diversity met-
rics. In 2008 IEEE International Conference on Software Testing Ver-
ification and Validation Workshop (2008), IEEE, pp. 178–186.

[151] Fernandes, E., Jung, J., and Prakash, A. Security analysis
of emerging smart home applications. In 2016 IEEE symposium on
security and privacy (SP) (2016), IEEE, pp. 636–654.

[152] Fernandes, E., Rahmati, A., Jung, J., and Prakash, A. De-
centralized action integrity for trigger-action IoT platforms. In Proceed-
ings 2018 Network and Distributed System Security Symposium (2018).

[153] Flanagan, C., Leino, K. R. M., Lillibridge, M., Nelson, G.,
Saxe, J. B., and Stata, R. Extended static checking for Java.
In ACM SIGPLAN 2002 Conference on Programming language design
and implementation (PLDI) (2002), pp. 234–245.

[154] Fleiss, J. L. Measuring nominal scale agreement among many raters.
Psychological bulletin 76, 5 (1971), 378.

[155] Foo, D., Chua, H., Yeo, J., Ang, M. Y., and Sharma, A.
Efficient static checking of library updates. In 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE) (2018), pp. 791–
796.

[156] Foo, D., Yeo, J., Xiao, H., and Sharma, A. The dynamics
of Software Composition Analysis. Automated Software Engineering
(ASE) (Late Breaking Results) (2019).

[157] Fowkes, J., and Sutton, C. Parameter-free probabilistic API min-
ing across github. In 2016 24th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering (FSE) (2016), pp. 254–
265.

[158] Fraser, G., and Arcuri, A. Evosuite: automatic test suite gen-
eration for object-oriented software. In Proceedings of the 19th ACM

264

SIGSOFT symposium and the 13th European conference on Founda-
tions of software engineering (2011), ACM, pp. 416–419.

[159] Fraser, G., and Zeller, A. Exploiting common object usage in
test case generation. In 2011 Fourth IEEE International Conference on
Software Testing, Verification and Validation (2011), IEEE, pp. 80–89.

[160] Fried, D., Aghajanyan, A., Lin, J., Wang, S., Wallace, E.,
Shi, F., Zhong, R., Yih, W.-t., Zettlemoyer, L., and Lewis,
M. Incoder: A generative model for code infilling and synthesis. arXiv
preprint arXiv:2204.05999 (2022).

[161] Fu, W., and Menzies, T. Easy over hard: A case study on deep
learning. In 2017 11th joint meeting on foundations of software engi-
neering (FSE) (2017), pp. 49–60.

[162] Fujii, A., Tokunaga, T., Inui, K., and Tanaka, H. Selec-
tive sampling for example-based word sense disambiguation. Com-
putational linguistics-Association for Computational Linguistics 24, 4
(1998), 573–597.

[163] Gabbay, D., Pnueli, A., Shelah, S., and Stavi, J. On the tem-
poral analysis of fairness. In Proceedings of the 7th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages (1980),
pp. 163–173.

[164] Gan, S., Zhang, C., Qin, X., Tu, X., Li, K., Pei, Z., and Chen,
Z. CollAFL: Path sensitive fuzzing. In IEEE Symposium on Security
and Privacy (S&P) (2018), IEEE, pp. 679–696.

[165] Gao, J., Kong, P., Li, L., Bissyandé, T. F., and Klein, J.
Negative results on mining crypto-API usage rules in Android apps. In
2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR) (2019), IEEE, pp. 388–398.

[166] Gardner, A. B., Krieger, A. M., Vachtsevanos, G., and
Litt, B. One-class novelty detection for seizure analysis from in-
tracranial eeg. Journal of Machine Learning Research 7, Jun (2006),
1025–1044.

[167] Gay, G. The fitness function for the job: Search-based generation of
test suites that detect real faults. In 2017 IEEE International Confer-
ence on Software Testing, Verification and Validation (ICST) (2017),
IEEE, pp. 345–355.

265

[168] Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M.,
Schaub, T., and Thiele, S. A user’s guide to gringo, clasp, clingo,
and iclingo.

[169] Gharehyazie, M., Ray, B., and Filkov, V. Some from here, some
from there: Cross-project code reuse in github. In 2017 IEEE/ACM
14th International Conference on Mining Software Repositories (MSR)
(2017), IEEE, pp. 291–301.

[170] Goffi, A., Gorla, A., Ernst, M. D., and Pezzè, M. Automatic
generation of oracles for exceptional behaviors. In Proceedings of the
25th international symposium on software testing and analysis (2016),
pp. 213–224.

[171] Groce, A., Peled, D., and Yannakakis, M. Adaptive model
checking. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (2002), Springer, pp. 357–370.

[172] Groce, A., Zhang, C., Eide, E., Chen, Y., and Regehr, J.
Swarm testing. In Proceedings of the 2012 International Symposium
on Software Testing and Analysis (2012), pp. 78–88.

[173] Gros, D., Sezhiyan, H., Devanbu, P., and Yu, Z. Code to com-
ment “translation”: Data, metrics, baselining & evaluation. In 35th
IEEE/ACM International Conference on Automated Software Engi-
neering (ASE 2020) (2020), IEEE, pp. 746–757.

[174] Grove, D., and Chambers, C. A framework for call graph con-
struction algorithms. ACM Transactions on Programming Languages
and Systems (TOPLAS) 23, 6 (2001), 685–746.

[175] Gu, X., Zhang, H., and Kim, S. Codekernel: A graph kernel
based approach to the selection of API usage examples. In 2019 34th
IEEE/ACM International Conference on Automated Software Engi-
neering (ASE) (2019), IEEE, pp. 590–601.

[176] Gu, X., Zhang, H., Zhang, D., and Kim, S. Deep API learning. In
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE) (2016), pp. 631–642.

[177] Guo, J., Jiang, Y., Zhao, Y., Chen, Q., and Sun, J. DLFuzz:
Differential fuzzing testing of deep learning systems. In Proceedings of
the 2018 26th ACM Joint Meeting on European Software Engineering

266

Conference and Symposium on the Foundations of Software Engineer-
ing (ESEC/FSE 2018) (2018), pp. 739–743.

[178] Guo, Q., Xie, X., Li, Y., Zhang, X., Liu, Y., Li, X., and Shen,
C. Audee: Automated testing for deep learning frameworks. In 2020
35th IEEE/ACM International Conference on Automated Software En-
gineering (ASE 2020) (2020), IEEE, pp. 486–498.

[179] Habib, A., and Pradel, M. How many of all bugs do we find?
a study of static bug detectors. In 33rd IEEE/ACM International
Conference on Automated Software Engineering (ASE 2018) (2018),
IEEE, pp. 317–328.

[180] Hagberg, A., Swart, P., and S Chult, D. Exploring network
structure, dynamics, and function using NetworkX. Tech. rep., Los
Alamos National Lab.(LANL), Los Alamos, NM (United States), 2008.

[181] Hanam, Q., Tan, L., Holmes, R., and Lam, P. Finding pat-
terns in static analysis alerts: improving actionable alert ranking. In
11th Working Conference on mining software repositories (MSR 2014)
(2014), pp. 152–161.

[182] Haryono, S. A., Thung, F., Kang, H. J., Serrano, L.,
Muller, G., Lawall, J., Lo, D., and Jiang, L. Automatic an-
droid deprecated-api usage update by learning from single updated ex-
ample. In Proceedings of the 28th international conference on program
comprehension (2020), pp. 401–405.

[183] He, P., Meister, C., and Su, Z. Testing machine translation via
referential transparency. In 2021 IEEE/ACM 43rd International Con-
ference on Software Engineering (ICSE 2021) (2021), IEEE, pp. 410–
422.

[184] He, W., Martinez, J., Padhi, R., Zhang, L., and Ur, B. When
smart devices are stupid: negative experiences using home smart de-
vices. In 2019 IEEE Security and Privacy Workshops (SPW) (2019),
IEEE, pp. 150–155.

[185] He, X., Xie, X., Li, Y., Sun, J., Li, F., Zou, W., Liu, Y.,
Yu, L., Zhou, J., Shi, W., et al. SoFi: Reflection-augmented
fuzzing for javascript engines. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security (CSS 2021)
(2021), pp. 2229–2242.

267

[186] Heckman, S., and Williams, L. On establishing a benchmark for
evaluating static analysis alert prioritization and classification tech-
niques. In 2nd ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM 2008) (2008), pp. 41–
50.

[187] Heckman, S., and Williams, L. A model building process for iden-
tifying actionable static analysis alerts. In International Conference
on Software Testing Verification and Validation (ICST 2009) (2009),
IEEE, pp. 161–170.

[188] Heckman, S., and Williams, L. A systematic literature review
of actionable alert identification techniques for automated static code
analysis. Information and Software Technology (IST) 53, 4 (2011),
363–387.

[189] Heckman, S., and Williams, L. A comparative evaluation of static
analysis actionable alert identification techniques. In 9th International
Conference on Predictive Models in Software Engineering (PROMISE
2013) (2013), pp. 1–10.

[190] Heelan, S., Melham, T., and Kroening, D. Gollum: Modular
and greybox exploit generation for heap overflows in interpreters. In
ACM SIGSAC Conference on Computer and Communications Security
(CCS) (2019), pp. 1689–1706.

[191] Hellendoorn, V. J., Bird, C., Barr, E. T., and Allamanis,
M. Deep learning type inference. In Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE
2018) (2018), pp. 152–162.

[192] Hellendoorn, V. J., and Devanbu, P. Are deep neural net-
works the best choice for modeling source code? In 11th Joint Meeting
on Foundations of Software Engineering (ESEC/FSE 2017) (2017),
pp. 763–773.

[193] Herbei, R., and Wegkamp, M. H. Classification with reject op-
tion. The Canadian Journal of Statistics/La Revue Canadienne de
Statistique (2006), 709–721.

[194] Holler, C., Herzig, K., and Zeller, A. Fuzzing with code frag-
ments. In 21st USENIX Security Symposium (USENIX Security 12)
(2012), pp. 445–458.

268

[195] Hoschele, M., and Zeller, A. Mining input grammars with auto-
gram. In 2017 IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C) (2017), IEEE, pp. 31–34.

[196] Hovemeyer, D., and Pugh, W. Finding bugs is easy. ACM SIG-
PLAN notices 39, 12 (2004), 92–106.

[197] Hu, H., Chua, Z. L., Adrian, S., Saxena, P., and Liang, Z.
Automatic generation of data-oriented exploits. In USENIX Security
Symposium (USENIX Security) (2015), pp. 177–192.

[198] Huang, J., and Cakmak, M. Supporting mental model accuracy
in trigger-action programming. In Proceedings of the 2015 ACM In-
ternational Joint Conference on Pervasive and Ubiquitous Computing
(2015), pp. 215–225.

[199] Huang, S.-J., Jin, R., and Zhou, Z.-H. Active learning by query-
ing informative and representative examples. In Advances in neural
information processing systems (2010), pp. 892–900.

[200] Huang, W., and Milanova, A. Reiminfer: method purity infer-
ence for java. In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering (2012), ACM,
p. 38.

[201] Husain, H., Wu, H.-H., Gazit, T., Allamanis, M., and
Brockschmidt, M. Codesearchnet challenge: Evaluating the state
of semantic code search. arXiv preprint arXiv:1909.09436 (2019).

[202] Huth, M., and Ryan, M. Logic in Computer Science: Modelling
and reasoning about systems. Cambridge university press, 2004.

[203] Iannone, E., Di Nucci, D., Sabetta, A., and De Lucia, A. To-
ward automated exploit generation for known vulnerabilities in open-
source libraries. In IEEE/ACM International Conference on Program
Comprehension (ICPC) (2021), IEEE, pp. 396–400.

[204] Imtiaz, N., Khanom, A., and Williams, L. Open or sneaky? fast
or slow? light or heavy?: Investigating security releases of open source
packages. IEEE Transactions on Software Engineering (2022).

[205] Islam, M. J., Nguyen, G., Pan, R., and Rajan, H. A compre-
hensive study on deep learning bug characteristics. In Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering

269

Conference and Symposium on the Foundations of Software Engineer-
ing (ESEC/FSE 2019) (2019), pp. 510–520.

[206] Ispoglou, K., Austin, D., Mohan, V., and Payer, M. Fuzzgen:
Automatic fuzzer generation. In 29th {USENIX} Security Symposium
({USENIX} Security 20) (2020), pp. 2271–2287.

[207] Jackson, D. Software Abstractions: logic, language, and analysis.
MIT press, 2012.

[208] Jagielski, M., Carlini, N., Berthelot, D., Kurakin, A., and
Papernot, N. High accuracy and high fidelity extraction of neural
networks. In 29th USENIX security symposium (USENIX Security 20)
(2020), pp. 1345–1362.

[209] Jamrozik, K., von Styp-Rekowsky, P., and Zeller, A. Mining
sandboxes. In Proceedings of the 38th International Conference on
Software Engineering (2016), pp. 37–48.

[210] Jia, L., Zhong, H., Wang, X., Huang, L., and Lu, X. An
empirical study on bugs inside TensorFlow. In International Confer-
ence on Database Systems for Advanced Applications (2020), Springer,
pp. 604–620.

[211] Jia, L., Zhong, H., Wang, X., Huang, L., and Lu, X. The
symptoms, causes, and repairs of bugs inside a deep learning library.
Journal of Systems and Software (JSS) 177 (2021), 110935.

[212] Jia, Y. J., Chen, Q. A., Wang, S., Rahmati, A., Fernandes,
E., Mao, Z. M., Prakash, A., and Unviersity, S. ContexloT:
Towards providing contextual integrity to appified IoT platforms. In
NDSS (2017).

[213] Jiang, J., Xu, H., and Zhou, Y. RULF: Rust library fuzzing via api
dependency graph traversal. In 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2021) (2021),
IEEE, pp. 581–592.

[214] Jin, D., Meredith, P. O., Lee, C., and Roşu, G. JavaMOP:
Efficient parametric runtime monitoring framework. In 2012 34th In-
ternational Conference on Software Engineering (ICSE) (2012), IEEE,
pp. 1427–1430.

270

[215] Johnson, B., Song, Y., Murphy-Hill, E., and Bowdidge, R.
Why don’t software developers use static analysis tools to find bugs?
In 2013 35th International Conference on Software Engineering (ICSE)
(2013), IEEE, pp. 672–681.

[216] Johnson, B., Song, Y., Murphy-Hill, E. R., and Bowdidge,
R. W. Why don’t software developers use static analysis tools to
find bugs? In 35th International Conference on Software Engineering,
(ICSE 2013) (2013), IEEE Computer Society, pp. 672–681.

[217] Juuti, M., Szyller, S., Marchal, S., and Asokan, N. Prada:
protecting against dnn model stealing attacks. In 2019 IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P) (2019), IEEE,
pp. 512–527.

[218] Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L.,
German, D. M., and Damian, D. The promises and perils of min-
ing github. In 11th working conference on Mining Software Repositories
(MSR 2014) (2014), pp. 92–101.

[219] Kampmann, A., Havrikov, N., Soremekun, E. O., and Zeller,
A. When does my program do this? learning circumstances of software
behavior. In ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineer-
ing (ESEC/FSE) (2020), pp. 1228–1239.

[220] Kang, H. J., Aw, K. L., and Lo, D. Detecting false alarms from
automatic static analysis tools: How far are we? In Proceedings of the
IEEE/ACM International Conference on Software Engineering 2022
(2022).

[221] Kang, H. J., Bissyandé, T. F., and Lo, D. Assessing the gen-
eralizability of code2vec token embeddings. In 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE)
(2019), IEEE, pp. 1–12.

[222] Kang, H. J., and Lo, D. Active learning of discriminative subgraph
patterns for api misuse detection. IEEE Transactions on Software En-
gineering (2021).

[223] Kang, H. J., and Lo, D. Adversarial specification mining. ACM
Transactions on Software Engineering and Methodology (TOSEM) 30,
2 (2021), 1–40.

271

[224] Kang, H. J., Nguyen, T. G., Le, B., Păsăreanu, C. S., and
Lo, D. Test mimicry to assess the exploitability of library vulnerabil-
ities. In Proceedings of the 31st ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis (2022), pp. 276–288.

[225] Kang, H. J., Sim, S. Q., and Lo, D. Iotbox: Sandbox mining to
prevent interaction threats in iot systems. In 2021 14th IEEE Confer-
ence on Software Testing, Verification and Validation (ICST) (2021),
IEEE, pp. 182–193.

[226] Kang, H. J., Thung, F., Lawall, J., Muller, G., Jiang, L.,
and Lo, D. Semantic patches for java program transformation (expe-
rience report). In 33rd European Conference on Object-Oriented Pro-
gramming (ECOOP 2019) (2019), Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik.

[227] Kaufman, S., Rosset, S., Perlich, C., and Stitelman, O.
Leakage in data mining: Formulation, detection, and avoidance. ACM
Transactions on Knowledge Discovery from Data (TKDD) 6, 4 (2012),
1–21.

[228] Kazerounian, M., Foster, J. S., and Min, B. Simtyper: sound
type inference for ruby using type equality prediction. Proceedings of
the ACM on Programming Languages 5, OOPSLA (2021), 1–27.

[229] Kechagia, M., Devroey, X., Panichella, A., Gousios, G.,
and van Deursen, A. Effective and efficient API misuse detection
via exception propagation and search-based testing. In Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing
and Analysis (2019), pp. 192–203.

[230] Khan, S. S., and Madden, M. G. One-class classification: taxon-
omy of study and review of techniques. The Knowledge Engineering
Review 29, 3 (2014), 345–374.

[231] Kharkar, A., Moghaddam, R. Z., Jin, M., Liu, X., Shi, X.,
Clement, C., and Sundaresan, N. Learning to reduce false pos-
itives in analytic bug detectors. In Proceedings of the IEEE/ACM
International Conference on Software Engineering 2022 (2022).

[232] Kim, S., and Ernst, M. D. Prioritizing warning categories by an-
alyzing software history. In 4th International Workshop on Mining
Software Repositories (MSR 07: ICSE Workshops 2007) (2007), IEEE,
pp. 27–27.

272

[233] Kim, S., Whitehead, E. J., and Zhang, Y. Classifying software
changes: Clean or buggy? IEEE Transactions on Software Engineering
(TSE) 34, 2 (2008), 181–196.

[234] Koc, U., Wei, S., Foster, J. S., Carpuat, M., and Porter,
A. A. An empirical assessment of machine learning approaches for
triaging reports of a java static analysis tool. In 12th IEEE conference
on software testing, validation and verification (ICST 2019) (2019),
IEEE, pp. 288–299.

[235] Kochhar, P. S., Bissyandé, T. F., Lo, D., and Jiang, L. Adop-
tion of software testing in open source projects–a preliminary study on
50,000 projects. In 2013 17th european conference on software mainte-
nance and reengineering (2013), IEEE, pp. 353–356.

[236] Kochhar, P. S., Thung, F., and Lo, D. Code coverage and test
suite effectiveness: Empirical study with real bugs in large systems. In
IEEE International conference on Software Analysis, Evolution, and
Reengineering (SANER) (2015), IEEE, pp. 560–564.

[237] Kochhar, P. S., Thung, F., Nagappan, N., Zimmermann, T.,
and Lo, D. Understanding the test automation culture of app devel-
opers. In 2015 IEEE 8th International Conference on Software Testing,
Verification and Validation (ICST) (2015), IEEE, pp. 1–10.

[238] Kochhar, P. S., Tian, Y., and Lo, D. Potential biases in bug
localization: Do they matter? In Proceedings of the 29th ACM/IEEE
international conference on Automated software engineering (2014),
pp. 803–814.

[239] Kochhar, P. S., Xia, X., Lo, D., and Li, S. Practitioners’ expec-
tations on automated fault localization. In 25th International Sympo-
sium on Software Testing and Analysis (2016), pp. 165–176.

[240] Kong, X., Fan, W., and Yu, P. S. Dual active feature and sam-
ple selection for graph classification. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data
mining (2011), pp. 654–662.

[241] Kremenek, T., Ashcraft, K., Yang, J., and Engler, D. Cor-
relation exploitation in error ranking. ACM SIGSOFT Software Engi-
neering Notes 29, 6 (2004), 83–93.

273

[242] Krka, I., Brun, Y., and Medvidovic, N. Automatic mining of
specifications from invocation traces and method invariants. In Proceed-
ings of the 22nd ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering (2014), ACM, pp. 178–189.

[243] Krüger, S., Späth, J., Ali, K., Bodden, E., and Mezini, M.
CrySL: An extensible approach to validating the correct usage of cryp-
tographic APIs. IEEE Transactions on Software Engineering (2019).

[244] Kula, R. G., German, D. M., Ouni, A., Ishio, T., and In-
oue, K. Do developers update their library dependencies? Empirical
Software Engineering 23, 1 (2018), 384–417.

[245] Lagouvardos, S., Dolby, J., Grech, N., Antoniadis, A., and
Smaragdakis, Y. Static analysis of shape in TensorFlow programs. In
34th European Conference on Object-Oriented Programming (ECOOP
2020) (2020), Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

[246] Lamothe, M., and Shang, W. When APIs are intentionally by-
passed: An exploratory study of API workarounds. In 42nd Interna-
tional Conference on Software Engineering (ICSE) (2020), vol. 2020.

[247] Lamothe, M., Shang, W., and Chen, T.-H. P. A3: Assisting
android api migrations using code examples. IEEE Transactions on
Software Engineering (2020).

[248] Landis, J. R., and Koch, G. G. The measurement of observer
agreement for categorical data. biometrics (1977), 159–174.

[249] Le, T.-D. B., Bao, L., Lo, D., Gao, D., and Li, L. Towards min-
ing comprehensive Android sandboxes. In 2018 23rd International con-
ference on engineering of complex computer systems (ICECCS) (2018),
IEEE, pp. 51–60.

[250] Le, T.-D. B., Le, X.-B. D., Lo, D., and Beschastnikh, I. Syn-
ergizing specification miners through model fissions and fusions (t). In
2015 30th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE) (2015), IEEE, pp. 115–125.

[251] Le, T.-D. B., and Lo, D. Beyond support and confidence: Exploring
interestingness measures for rule-based specification mining. In 2015
IEEE 22nd International Conference on Software Analysis, Evolution,
and Reengineering (SANER) (2015), IEEE, pp. 331–340.

274

[252] Le, T.-D. B., and Lo, D. Deep specification mining. In Proceed-
ings of the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis (2018), ACM, pp. 106–117.

[253] Le, X.-B. D., Pasareanu, C., Padhye, R., Lo, D., Visser,
W., and Sen, K. SAFFRON: Adaptive grammar-based fuzzing for
worst-case analysis. ACM SIGSOFT Software Engineering Notes 44,
4 (2019), 14–14.

[254] Le-Cong, T., Kang, H. J., Nguyen, T. G., Haryono, S. A.,
Lo, D., Le, X.-B. D., and Huynh, Q. T. Autopruner: transformer-
based call graph pruning. In Proceedings of the 30th ACM Joint Eu-
ropean Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering (2022), pp. 520–532.

[255] Legunsen, O., Hassan, W. U., Xu, X., Roşu, G., and Mari-
nov, D. How good are the specs? a study of the bug-finding effec-
tiveness of existing Java API specifications. In 2016 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE)
(2016), IEEE, pp. 602–613.

[256] Lemieux, C., Padhye, R., Sen, K., and Song, D. PerfFuzz: Au-
tomatically generating pathological inputs. In ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis (ISSTA) (2018),
pp. 254–265.

[257] Lemieux, C., Park, D., and Beschastnikh, I. General ltl specifi-
cation mining (t). In 2015 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE) (2015), IEEE, pp. 81–92.

[258] Leon, D., and Podgurski, A. A comparison of coverage-based and
distribution-based techniques for filtering and prioritizing test cases.
In 14th International Symposium on Software Reliability Engineering,
2003. ISSRE 2003. (2003), IEEE, pp. 442–453.

[259] Lewis, D. D., and Catlett, J. Heterogeneous uncertainty sampling
for supervised learning. InMachine learning proceedings 1994. Elsevier,
1994, pp. 148–156.

[260] Lewis, D. D., and Gale, W. A. A sequential algorithm for training
text classifiers. In SIGIR’94 (1994), Springer, pp. 3–12.

[261] Li, L., Gao, J., Bissyandé, T. F., Ma, L., Xia, X., and Klein,
J. Characterising deprecated android apis. In Proceedings of the

275

15th International Conference on Mining Software Repositories (2018),
pp. 254–264.

[262] Li, Z., and Zhou, Y. Pr-miner: automatically extracting implicit
programming rules and detecting violations in large software code.
ACM SIGSOFT Software Engineering Notes 30, 5 (2005), 306–315.

[263] Liang, G., Wu, L., Wu, Q., Wang, Q., Xie, T., and Mei,
H. Automatic construction of an effective training set for prioritizing
static analysis warnings. In IEEE/ACM international conference on
Automated Software Engineering (ASE 2010) (2010), pp. 93–102.

[264] Lin, B., Wang, S., Liu, K., Mao, X., and Bissyandé, T. F. Au-
tomated comment update: How far are we? In IEEE/ACM 29th Inter-
national Conference on Program Comprehension (ICPC 2021) (2021),
IEEE, pp. 36–46.

[265] Lin, B., Zampetti, F., Bavota, G., Di Penta, M., Lanza, M.,
and Oliveto, R. Sentiment analysis for software engineering: How
far can we go? In 40th International Conference on Software Engi-
neering (ICSE 2018) (2018), pp. 94–104.

[266] Lin, Z., Zhong, H., Chen, Y., and Zhao, J. Lockpeeker: detecting
latent locks in Java APIs. In Proc. ASE (2016), ACM, pp. 368–378.

[267] Liu, B., Zhang, C., Gong, G., Zeng, Y., Ruan, H., and Zhuge,
J. FANS: Fuzzing Android native system services via automated inter-
face analysis. In 29th USENIX Security Symposium (USENIX Security
20) (2020), pp. 307–323.

[268] Liu, C., Lu, J., Li, G., Yuan, T., Li, L., Tan, F., Yang, J.,
You, L., and Xue, J. Detecting TensorFlow program bugs in real-
world industrial environment. In 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2021) (2021),
IEEE, pp. 55–66.

[269] Liu, J., Shen, D., Zhang, Y., Dolan, B., Carin, L., and Chen,
W. What makes good in-context examples for gpt-3? arXiv preprint
arXiv:2101.06804 (2021).

[270] Liu, K., Kim, D., Bissyandé, T. F., Yoo, S., and Le Traon,
Y. Mining fix patterns for findbugs violations. IEEE Transactions on
Software Engineering (2018).

276

[271] Liu, K., Koyuncu, A., Kim, D., and Bissyandé, T. F. Avatar:
Fixing semantic bugs with fix patterns of static analysis violations. In
26th IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER 2019) (2019), IEEE, pp. 1–12.

[272] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692 (2019).

[273] Liu, Z., Xia, X., Hassan, A. E., Lo, D., Xing, Z., and Wang,
X. Neural-machine-translation-based commit message generation: how
far are we? In 33rd ACM/IEEE International Conference on Auto-
mated Software Engineering (ASE 2018) (2018), pp. 373–384.

[274] Lo, D., Khoo, S.-C., and Liu, C. Mining temporal rules for soft-
ware maintenance. Journal of Software Maintenance and Evolution:
Research and Practice 20, 4 (2008), 227–247.

[275] Lo, D., Mariani, L., and Pezzè, M. Automatic steering of behav-
ioral model inference. In Proceedings of the the 7th joint meeting of
the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering (2009), ACM,
pp. 345–354.

[276] Lopes, C. V., Maj, P., Martins, P., Saini, V., Yang, D.,
Zitny, J., Sajnani, H., and Vitek, J. Déjàvu: a map of code
duplicates on github. Proceedings of the ACM on Programming Lan-
guages 1, OOPSLA (2017), 1–28.

[277] Lorenzoli, D., Mariani, L., and Pezzè, M. Automatic genera-
tion of software behavioral models. In Proceedings of the 30th interna-
tional conference on Software engineering (2008), ACM, pp. 501–510.

[278] Lu, H., and Cukic, B. An adaptive approach with active learning in
software fault prediction. In Proceedings of the 8th International Con-
ference on Predictive Models in Software Engineering (2012), pp. 79–
88.

[279] Malik, R. S., Patra, J., and Pradel, M. Nl2type: inferring
javascript function types from natural language information. In 2019
IEEE/ACM 41st International Conference on Software Engineering
(ICSE) (2019), IEEE, pp. 304–315.

277

[280] Marcilio, D., Bonifácio, R., Monteiro, E., Canedo, E., Luz,
W., and Pinto, G. Are static analysis violations really fixed? a closer
look at realistic usage of sonarqube. In IEEE/ACM 27th International
Conference on Program Comprehension (ICPC 2019) (2019), IEEE,
pp. 209–219.

[281] Mashhadi, E., and Hemmati, H. Applying codebert for automated
program repair of java simple bugs. In 2021 IEEE/ACM 18th Inter-
national Conference on Mining Software Repositories (MSR) (2021),
IEEE, pp. 505–509.

[282] Mathis, B., Gopinath, R., and Zeller, A. Learning input tokens
for effective fuzzing. In ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA) (2020), pp. 27–37.

[283] McMinn, P. Search-based software test data generation: a survey.
Software testing, Verification and reliability 14, 2 (2004), 105–156.

[284] Mezzetti, G., Møller, A., and Torp, M. T. Type regres-
sion testing to detect breaking changes in node. js libraries. In 32nd
european conference on object-oriented programming (ECOOP 2018)
(2018), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[285] Miller, B., Zhang, M., and Heymann, E. The relevance of classic
fuzz testing: Have we solved this one? IEEE Transactions on Software
Engineering (TSE) (2020).

[286] Miller, B. P., Fredriksen, L., and So, B. An empirical study
of the reliability of unix utilities. Communications of the ACM 33, 12
(1990), 32–44.

[287] Miranda, B., Cruciani, E., Verdecchia, R., and Bertolino,
A. Fast approaches to scalable similarity-based test case prioritiza-
tion. In Proceedings of the 40th International Conference on Software
Engineering (2018), ACM, pp. 222–232.

[288] Mirhosseini, S., and Parnin, C. Can automated pull requests
encourage software developers to upgrade out-of-date dependencies?
In IEEE/ACM International Conference on Automated Software En-
gineering (ASE) (2017), IEEE, pp. 84–94.

[289] Molina, U. R., Kifetew, F., and Panichella, A. Java unit
testing tool competition-sixth round. In 2018 IEEE/ACM 11th Inter-
national Workshop on Search-Based Software Testing (SBST) (2018),
IEEE, pp. 22–29.

278

[290] Møller, A., Nielsen, B. B., and Torp, M. T. Detecting locations
in javascript programs affected by breaking library changes. Proceedings
of the ACM on Programming Languages 4, OOPSLA (2020), 1–25.

[291] Monperrus, M., Bruch, M., and Mezini, M. Detecting missing
method calls in object-oriented software. In European Conference on
Object-Oriented Programming (2010), Springer, pp. 2–25.

[292] Mora, F., Li, Y., Rubin, J., and Chechik, M. Client-specific
equivalence checking. In 2018 33rd IEEE/ACM International Con-
ference on Automated Software Engineering (ASE) (2018), IEEE,
pp. 441–451.

[293] Mujahid, S., Abdalkareem, R., Shihab, E., and McIntosh,
S. Using others’ tests to identify breaking updates. In International
Conference on Mining Software Repositories (MSR) (2020), pp. 466–
476.

[294] Nachtigall, M., Schlichtig, M., and Bodden, E. A large-
scale study of usability criteria addressed by static analysis tools. In
Proceedings of the 31st ACM SIGSOFT International Symposium on
Software Testing and Analysis (2022), pp. 532–543.

[295] Nadi, S., Krüger, S., Mezini, M., and Bodden, E. Jumping
through hoops: Why do Java developers struggle with cryptography
APIs? In Proceedings of the 38th International Conference on Software
Engineering (ICSE) (2016), pp. 935–946.

[296] Nam, D., Horvath, A., Macvean, A., Myers, B., and
Vasilescu, B. Marble: Mining for boilerplate code to identify api
usability problems. In 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE) (2019), IEEE, pp. 615–627.

[297] Nam, J., Wang, S., Xi, Y., and Tan, L. Designing bug detection
rules for fewer false alarms. In Proceedings of the 40th International
Conference on Software Engineering: Companion Proceeedings (2018),
pp. 315–316.

[298] Nam, J., Wang, S., Xi, Y., and Tan, L. A bug finder refined by a
large set of open-source projects. Information and Software Technology
112 (2019), 164–175.

[299] Naumann, D. A. Observational purity and encapsulation. Theoretical
Computer Science 376, 3 (2007), 205–224.

279

[300] Nguyen, A. T., Hilton, M., Codoban, M., Nguyen, H. A.,
Mast, L., Rademacher, E., Nguyen, T. N., and Dig, D.
API code recommendation using statistical learning from fine-grained
changes. In 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE) (2016), pp. 511–522.

[301] Nguyen, D. T., Song, C., Qian, Z., Krishnamurthy, S. V.,
Colbert, E. J., and McDaniel, P. IoTSan: Fortifying the safety
of IoT systems. In Proceedings of the 14th International Conference on
emerging Networking EXperiments and Technologies (2018), pp. 191–
203.

[302] Nguyen, P. T., Di Rocco, J., Di Ruscio, D., Ochoa, L.,
Degueule, T., and Di Penta, M. Focus: A recommender system
for mining API function calls and usage patterns. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE) (2019),
IEEE, pp. 1050–1060.

[303] Nguyen, T. T., Nguyen, H. A., Pham, N. H., Al-Kofahi,
J. M., and Nguyen, T. N. Graph-based mining of multiple ob-
ject usage patterns. In Proceedings of the 7th joint meeting of the
European Software Engineering Conference and the ACM SIGSOFT
symposium on the Foundations of Software Engineering (ESEC/FSE)
(2009), pp. 383–392.

[304] Nguyen-Truong, G., Kang, H. J., Lo, D., Sharma, A., San-
tosa, A. E., Sharma, A., and Ang, M. Y. Hermes: Using
commit-issue linking to detect vulnerability-fixing commits. In 2022
IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER) (2022), IEEE, pp. 51–62.

[305] Nielsen, B. B., Torp, M. T., and Møller, A. Semantic patches
for adaptation of javascript programs to evolving libraries. In 2021
IEEE/ACM 43rd International Conference on Software Engineering
(ICSE) (2021), IEEE, pp. 74–85.

[306] Pacheco, C., and Ernst, M. D. Randoop: feedback-directed ran-
dom testing for java. In OOPSLA Companion (2007), pp. 815–816.

[307] Pacheco, C., Lahiri, S. K., Ernst, M. D., and Ball, T.
Feedback-directed random test generation. In Proceedings of the 29th
international conference on Software Engineering (2007), IEEE Com-
puter Society, pp. 75–84.

280

[308] Padhye, R., Lemieux, C., Sen, K., Papadakis, M., and
Le Traon, Y. Semantic fuzzing with zest. In Proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing
and Analysis (2019), pp. 329–340.

[309] Pailoor, S., Aday, A., and Jana, S. MoonShine: Optimizing OS
fuzzer seed selection with trace distillation. In 27th USENIX Security
Symposium (USENIX Security 18) (2018), pp. 729–743.

[310] Panichella, A., Kifetew, F. M., and Tonella, P. Reformulat-
ing branch coverage as a many-objective optimization problem. In 2015
IEEE 8th International Conference on Software Testing, Verification
and Validation (ICST) (2015), IEEE, pp. 1–10.

[311] Panichella, A., Kifetew, F. M., and Tonella, P. Automated
test case generation as a many-objective optimisation problem with
dynamic selection of the targets. IEEE Transactions on Software En-
gineering 44, 2 (2017), 122–158.

[312] Panichella, S., Arnaoudova, V., Di Penta, M., and Anto-
niol, G. Would static analysis tools help developers with code re-
views? In 22nd IEEE International Conference on Software Analysis,
Evolution, and Reengineering (SANER 2015) (2015), IEEE, pp. 161–
170.

[313] Papi, M. M., Ali, M., Correa Jr, T. L., Perkins, J. H., and
Ernst, M. D. Practical pluggable types for java. In Proceedings of the
2008 international symposium on Software testing and analysis (2008),
pp. 201–212.

[314] Pashchenko, I., Plate, H., Ponta, S. E., Sabetta, A., and
Massacci, F. Vulnerable open source dependencies: Counting those
that matter. In ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM) (2018), pp. 1–10.

[315] Pashchenko, I., Plate, H., Ponta, S. E., Sabetta, A., and
Massacci, F. Vuln4real: A methodology for counting actually vulner-
able dependencies. IEEE Transactions on Software Engineering (TSE)
(2020).

[316] Pavese, E., Soremekun, E. O., Havrikov, N., Grunske, L.,
and Zeller, A. Inputs from hell: Generating uncommon inputs
from common samples. CoRR abs/1812.07525 (2018).

281

[317] Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H.,
Chen, Q., Dayal, U., and Hsu, M.-C. Mining sequential patterns
by pattern-growth: The prefixspan approach. IEEE Transactions on
Knowledge and Data Engineering 16, 11 (2004), 1424–1440.

[318] Peled, D., Vardi, M. Y., and Yannakakis, M. Black box check-
ing. In Formal Methods for Protocol Engineering and Distributed Sys-
tems. Springer, 1999, pp. 225–240.

[319] Peng, H., Shoshitaishvili, Y., and Payer, M. T-fuzz: fuzzing
by program transformation. In 2018 IEEE Symposium on Security and
Privacy (S&P) (2018), IEEE, pp. 697–710.

[320] Peng, Y., Gao, C., Li, Z., Gao, B., Lo, D., Zhang, Q., and
Lyu, M. Static inference meets deep learning: a hybrid type infer-
ence approach for python. In Proceedings of the 44th International
Conference on Software Engineering (2022), pp. 2019–2030.

[321] Perera, P., Nallapati, R., and Xiang, B. OCGAN: One-class
novelty detection using gans with constrained latent representations. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2019), pp. 2898–2906.

[322] Petsios, T., Zhao, J., Keromytis, A. D., and Jana, S. Slow-
Fuzz: Automated domain-independent detection of algorithmic com-
plexity vulnerabilities. In ACM SIGSAC Conference on Computer and
Communications Security (CCS) (2017), pp. 2155–2168.

[323] Pham, H. V., Lutellier, T., Qi, W., and Tan, L. Cradle: cross-
backend validation to detect and localize bugs in deep learning libraries.
In 2019 IEEE/ACM 41st International Conference on Software Engi-
neering (ICSE) (2019), IEEE, pp. 1027–1038.

[324] Pham, L. H., Thi, L. L. T., and Sun, J. Assertion generation
through active learning. In International Conference on Formal Engi-
neering Methods (2017), Springer, pp. 174–191.

[325] Pham, V.-T., Böhme, M., and Roychoudhury, A. Aflnet: A
greybox fuzzer for network protocols. In Proceedings of the IEEE Inter-
national Conference on Software Testing, Verification and Validation
(Testing Tools Track) (2020).

282

[326] Pham, V.-T., Böhme, M., Santosa, A. E., Căciulescu, A. R.,
and Roychoudhury, A. Smart greybox fuzzing. IEEE Transactions
on Software Engineering 47, 9 (2019), 1980–1997.

[327] Pnueli, A. The temporal logic of programs. In 18th Annual Sympo-
sium on Foundations of Computer Science (1977), IEEE, pp. 46–57.

[328] Ponta, S. E., Plate, H., and Sabetta, A. Beyond metadata:
Code-centric and usage-based analysis of known vulnerabilities in open-
source software. In IEEE International Conference on Software Main-
tenance and Evolution (ICSME) (2018), IEEE, pp. 449–460.

[329] Ponta, S. E., Plate, H., Sabetta, A., Bezzi, M., and Dan-
gremont, C. A manually-curated dataset of fixes to vulnerabilities of
open-source software. In 2019 IEEE/ACM 16th International Confer-
ence on Mining Software Repositories (MSR) (2019), IEEE, pp. 383–
387.

[330] Pradel, M., Gousios, G., Liu, J., and Chandra, S. Typewriter:
Neural type prediction with search-based validation. In Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering
(2020), pp. 209–220.

[331] Pradel, M., Jaspan, C., Aldrich, J., and Gross, T. R. Stati-
cally checking API protocol conformance with mined multi-object spec-
ifications. In 2012 34th International Conference on Software Engineer-
ing (ICSE) (2012), IEEE, pp. 925–935.

[332] Prana, G. A. A., Sharma, A., Shar, L. K., Foo, D., Santosa,
A. E., Sharma, A., and Lo, D. Out of sight, out of mind? how vul-
nerable dependencies affect open-source projects. Empirical Software
Engineering 26, 4 (2021), 1–34.

[333] Provos, N. Improving host security with system call policies.

[334] Rabin, M. R. I., Bui, N. D., Wang, K., Yu, Y., Jiang, L., and
Alipour, M. A. On the generalizability of neural program models
with respect to semantic-preserving program transformations. Infor-
mation and Software Technology (IST) 135 (2021), 106552.

[335] Radhakrishna, A., Lewchenko, N. V., Meier, S., Mover, S.,
Sripada, K. C., Zufferey, D., Chang, B.-Y. E., and Cernỳ, P.
Droidstar: callback typestates for android classes. In 2018 IEEE/ACM

283

40th International Conference on Software Engineering (ICSE) (2018),
IEEE, pp. 1160–1170.

[336] Rahman, F., Posnett, D., and Devanbu, P. Recalling the ”im-
precision” of cross-project defect prediction. In ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering
(FSE 2012) (2012), pp. 1–11.

[337] Rebert, A., Cha, S. K., Avgerinos, T., Foote, J., Warren,
D., Grieco, G., and Brumley, D. Optimizing seed selection for
fuzzing. In 23rd USENIX Security Symposium (USENIX Security 14)
(2014), pp. 861–875.

[338] Reddy, S., Lemieux, C., Padhye, R., and Sen, K. Quickly gen-
erating diverse valid test inputs with reinforcement learning. In 2020
IEEE/ACM 42nd International Conference on Software Engineering
(ICSE) (2020), IEEE, pp. 1410–1421.

[339] Reinhardt, A., Zhang, T., Mathur, M., and Kim, M. Aug-
menting stack overflow with API usage patterns mined from GitHub.
In 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineer-
ing (2018), pp. 880–883.

[340] Rennie, J. D., Shih, L., Teevan, J., and Karger, D. R. Tack-
ling the poor assumptions of naive bayes text classifiers. In Proceed-
ings of the 20th international conference on machine learning (ICML)
(2003), pp. 616–623.

[341] Ribeiro, M. T., Singh, S., and Guestrin, C. ”why should I
trust you?” explaining the predictions of any classifier. In 22nd ACM
SIGKDD international conference on Knowledge Discovery and Data
mining (2016), pp. 1135–1144.

[342] Rieck, K., Trinius, P., Willems, C., and Holz, T. Automatic
analysis of malware behavior using machine learning. Journal of Com-
puter Security 19, 4 (2011), 639–668.

[343] Robbes, R., and Lungu, M. A study of ripple effects in software
ecosystems (NIER track). In 33rd International Conference on Soft-
ware Engineering (2011), pp. 904–907.

284

[344] Robillard, M. P., Bodden, E., Kawrykow, D., Mezini, M.,
and Ratchford, T. Automated API property inference techniques.
IEEE Transactions on Software Engineering 39, 5 (2012), 613–637.

[345] Rojas, J. M., Campos, J., Vivanti, M., Fraser, G., and Ar-
curi, A. Combining multiple coverage criteria in search-based unit
test generation. In International Symposium on Search Based Software
Engineering (2015), Springer, pp. 93–108.

[346] Rojas, J. M., Fraser, G., and Arcuri, A. Seeding strategies in
search-based unit test generation. Software Testing, Verification and
Reliability 26, 5 (2016), 366–401.

[347] Ronen, E., and Shamir, A. Extended functionality attacks on IoT
devices: The case of smart lights. In 2016 IEEE European Symposium
on Security and Privacy (EuroS&P) (2016), IEEE, pp. 3–12.

[348] Rountev, A., Kagan, S., and Gibas, M. Static and dynamic anal-
ysis of call chains in Java. In ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA) (2004), pp. 1–11.

[349] Roy, C. K., and Cordy, J. R. Benchmarks for software clone
detection: A ten-year retrospective. In 25th IEEE International Con-
ference on Software Analysis, Evolution and Reengineering (SANER
2018) (2018), IEEE, pp. 26–37.

[350] Rutar, N., Almazan, C. B., and Foster, J. S. A comparison of
bug finding tools for java. In 15th International Symposium on Software
Reliability Engineering (ISSRE 2004) (2004), IEEE, pp. 245–256.

[351] Ruthruff, J., Penix, J., Morgenthaler, J., Elbaum, S., and
Rothermel, G. Predicting accurate and actionable static analysis
warnings. In 30th ACM/IEEE International Conference on Software
Engineering (ICSE 2008) (2008), IEEE, pp. 341–350.

[352] Sabetta, A., and Bezzi, M. A practical approach to the auto-
matic classification of security-relevant commits. In IEEE International
Conference on Software Maintenance and Evolution (ICSME) (2018),
IEEE, pp. 579–582.

[353] Sadowski, C., Aftandilian, E., Eagle, A., Miller-Cushon,
L., and Jaspan, C. Lessons from building static analysis tools at
google. Communications of the ACM 61, 4 (2018), 58–66.

285

[354] Sadowski, C., Van Gogh, J., Jaspan, C., Soderberg, E., and
Winter, C. Tricorder: Building a program analysis ecosystem. In
IEEE/ACM 37th IEEE International Conference on Software Engi-
neering (ICSE 2015) (2015), vol. 1, IEEE, pp. 598–608.

[355] Safyallah, H., and Sartipi, K. Dynamic analysis of software sys-
tems using execution pattern mining. In 14th IEEE International Con-
ference on Program Comprehension (ICPC’06) (2006), IEEE, pp. 84–
88.

[356] Sajnani, H., Saini, V., Svajlenko, J., Roy, C. K., and Lopes,
C. V. SourcererCC: Scaling code clone detection to big-code. In Pro-
ceedings of the 38th International Conference on Software Engineering
(ICSE) (2016), pp. 1157–1168.

[357] Sato, T., Shen, J., Wang, N., Jia, Y., Lin, X., and Chen, Q. A.
Dirty road can attack: Security of deep learning based automated lane
centering under {Physical-World} attack. In 30th USENIX Security
Symposium (USENIX Security 21) (2021), pp. 3309–3326.

[358] Schiller, T. W., Donohue, K., Coward, F., and Ernst, M. D.
Case studies and tools for contract specifications. In Proceedings of the
36th International Conference on Software Engineering (ICSE) (2014),
pp. 596–607.

[359] Schumi, R., and Sun, J. ExAIS: Executable ai semantics. In 2022
IEEE/ACM 41st International Conference on Software Engineering
(ICSE 2022) (2022).

[360] Sennrich, R., Haddow, B., and Birch, A. Neural machine trans-
lation of rare words with subword units. In 54th Annual Meeting of
the Association for Computational Linguistics (2016), Association for
Computational Linguistics (ACL), pp. 1715–1725.

[361] Settles, B. Active learning literature survey. Tech. rep., University
of Wisconsin-Madison Department of Computer Sciences, 2009.

[362] Settles, B., and Craven, M. An analysis of active learning strate-
gies for sequence labeling tasks. In Proceedings of the 2008 Confer-
ence on Empirical Methods in Natural Language Processing (2008),
pp. 1070–1079.

[363] Settles, B., Craven, M., and Ray, S. Multiple-instance active
learning. Advances in neural information processing systems 20 (2007).

286

[364] Shen, H., Fang, J., and Zhao, J. Efindbugs: Effective error
ranking for findbugs. In 4th IEEE International Conference on Soft-
ware Testing, Verification and Validation (ICST 2011) (2011), IEEE,
pp. 299–308.

[365] Shen, J., and Rinard, M. C. Active learning for inference and
regeneration of applications that access databases. ACM Transactions
on Programming Languages and Systems (TOPLAS) 42, 4 (2021), 1–
119.

[366] Shen, Z., Roongta, R., and Dolan-Gavitt, B. Drifuzz: Harvest-
ing bugs in device drivers from golden seeds. In 31st USENIX Security
Symposium (USENIX Security 22) (2022), pp. 1275–1290.

[367] Shin, D., Yoo, S., and Bae, D.-H. Diversity-aware mutation ade-
quacy criterion for improving fault detection capability. In 2016 IEEE
Ninth International Conference on Software Testing, Verification and
Validation Workshops (ICSTW) (2016), IEEE, pp. 122–131.

[368] Sim, J., and Wright, C. C. The kappa statistic in reliability studies:
use, interpretation, and sample size requirements. Physical therapy 85,
3 (2005), 257–268.

[369] Sim, S. E., Easterbrook, S., and Holt, R. C. Using bench-
marking to advance research: A challenge to software engineering. In
25th International Conference on Software Engineering (ICSE 2003)
(2003), IEEE, pp. 74–83.

[370] Soltani, M., Panichella, A., and Van Deursen, A. Search-
based crash reproduction and its impact on debugging. IEEE Trans-
actions on Software Engineering (TSE) 46, 12 (2018), 1294–1317.

[371] Soremekun, E., Udeshi, S. S., and Chattopadhyay, S. Astraea:
Grammar-based fairness testing. IEEE Transactions on Software En-
gineering (TSE) (2022).

[372] Sun, P., Brown, C., Beschastnikh, I., and Stolee, K. T.
Mining specifications from documentation using a crowd. In 2019
IEEE 26th International Conference on Software Analysis, Evolution
and Reengineering (SANER) (2019), IEEE, pp. 275–286.

[373] Surbatovich, M., Aljuraidan, J., Bauer, L., Das, A., and
Jia, L. Some recipes can do more than spoil your appetite: Analyzing
the security and privacy risks of IFTTT recipes. In Proceedings of the

287

26th International Conference on World Wide Web (2017), pp. 1501–
1510.

[374] Svyatkovskiy, A., Deng, S. K., Fu, S., and Sundaresan, N.
Intellicode compose: Code generation using transformer. In Proceed-
ings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineer-
ing (2020), pp. 1433–1443.

[375] Tahaei, M., Vaniea, K., Beznosov, K., and Wolters, M. K.
Security notifications in static analysis tools: Developers’ attitudes,
comprehension, and ability to act on them. In 2021 CHI Conference
on Human Factors in Computing Systems (2021), pp. 1–17.

[376] Takashima, Y., Martins, R., Jia, L., and Păsăreanu, C. S.
SyRust: automatic testing of Rust libraries with semantic-aware pro-
gram synthesis. In Proceedings of the 42nd ACM SIGPLAN Interna-
tional Conference on Programming Language Design and Implementa-
tion (PLDI 2021) (2021), pp. 899–913.

[377] Tan, S. H., Marinov, D., Tan, L., and Leavens, G. T. @
tcomment: Testing javadoc comments to detect comment-code incon-
sistencies. In 2012 IEEE Fifth International Conference on Software
Testing, Verification and Validation (2012), IEEE, pp. 260–269.

[378] Tax, D. M., and Duin, R. P. Growing a multi-class classifier with
a reject option. Pattern Recognition Letters 29, 10 (2008), 1565–1570.

[379] Thoma, M., Cheng, H., Gretton, A., Han, J., Kriegel, H.-P.,
Smola, A., Song, L., Yu, P. S., Yan, X., and Borgwardt, K.
Near-optimal supervised feature selection among frequent subgraphs.
In Proceedings of the 2009 SIAM International Conference on Data
Mining (2009), SIAM, pp. 1076–1087.

[380] Thummalapenta, S., and Xie, T. Mining exception-handling rules
as sequence association rules. In Proceedings of the 31st International
Conference on Software Engineering (2009), IEEE Computer Society,
pp. 496–506.

[381] Thummalapenta, S., and Xie, T. Alattin: mining alternative
patterns for defect detection. Automated Software Engineering 18, 3-4
(2011), 293–323.

288

[382] Thung, F., Le, X.-B. D., and Lo, D. Active semi-supervised
defect categorization. In 2015 IEEE 23rd International Conference on
Program Comprehension (2015), IEEE, pp. 60–70.

[383] Thung, F., Lo, D., Jiang, L., Rahman, F., Devanbu, P. T.,
et al. To what extent could we detect field defects? an empirical study
of false negatives in static bug finding tools. In 27th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE 2012)
(2012), IEEE, pp. 50–59.

[384] Tómasdóttir, K. F., Aniche, M., and van Deursen, A. Why
and how javascript developers use linters. In 32nd IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE 2017)
(2017), IEEE, pp. 578–589.

[385] Tomassi, D. A., and Rubio-González, C. On the real-world ef-
fectiveness of static bug detectors at finding null pointer exceptions. In
2021 36th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE) (2021), IEEE, pp. 292–303.

[386] Trimananda, R., Aqajari, S. A. H., Chuang, J., Demsky, B.,
Xu, G. H., and Lu, S. Understanding and automatically detecting
conflicting interactions between smart home IoT applications. In Pro-
ceedings of the 28th ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering
(2020).

[387] Tu, F., Zhu, J., Zheng, Q., and Zhou, M. Be careful of when: an
empirical study on time-related misuse of issue tracking data. In 26th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE
2018) (2018), pp. 307–318.

[388] Uddin, G., and Robillard, M. P. How api documentation fails.
Ieee software 32, 4 (2015), 68–75.

[389] Vasilakis, N., Benetopoulos, A., Handa, S., Schoen, A.,
Shen, J., and Rinard, M. C. Supply-chain vulnerability elimi-
nation via active learning and regeneration. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security
(CCS 2021) (2021), pp. 1755–1770.

[390] Vasilevskii, M. Failure diagnosis of automata. Cybernetics 9, 4
(1973), 653–665.

289

[391] Vassallo, C., Panichella, S., Palomba, F., Proksch, S.,
Gall, H. C., and Zaidman, A. How developers engage with static
analysis tools in different contexts. Empirical Software Engineering
(EMSE) 25, 2 (2020), 1419–1457.

[392] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. Advances in neural information processing systems 30
(2017).

[393] Vendome, C., Linares-Vásquez, M., Bavota, G., Di Penta,
M., German, D., and Poshyvanyk, D. License usage and changes:
a large-scale study of java projects on github. In 2015 IEEE 23rd
International Conference on Program Comprehension (2015), IEEE,
pp. 218–228.

[394] Visser, W., Pǎsǎreanu, C. S., and Khurshid, S. Test input
generation with Java PathFinder. In ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA) (2004), pp. 97–
107.

[395] Vu, D.-L., Massacci, F., Pashchenko, I., Plate, H., and Sa-
betta, A. Lastpymile: identifying the discrepancy between sources
and packages. In Proceedings of the 29th ACM Joint Meeting on Eu-
ropean Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering (2021), pp. 780–792.

[396] Vu, D. L., Pashchenko, I., Massacci, F., Plate, H., and Sa-
betta, A. Towards using source code repositories to identify software
supply chain attacks. In Proceedings of the 2020 ACM SIGSAC Con-
ference on Computer and Communications Security (2020), pp. 2093–
2095.

[397] Walkinshaw, N., Bogdanov, K., Holcombe, M., and
Salahuddin, S. Reverse engineering state machines by interactive
grammar inference. In 14th Working Conference on Reverse Engineer-
ing (WCRE 2007) (2007), IEEE, pp. 209–218.

[398] Wan, Z., Lo, D., Xia, X., Cai, L., and Li, S. Mining sandboxes for
Linux containers. In 2017 IEEE International Conference on Software
Testing, Verification and Validation (ICST) (2017), IEEE, pp. 92–102.

[399] Wang, D., Zhang, Z., Zhang, H., Qian, Z., Krishnamurthy,
S. V., and Abu-Ghazaleh, N. SyzVegas: Beating kernel fuzzing

290

odds with reinforcement learning. In 30th USENIX Security Sympo-
sium (USENIX Security 21) (2021), pp. 2741–2758.

[400] Wang, J., Chen, B., Wei, L., and Liu, Y. Skyfire: Data-driven
seed generation for fuzzing. In 2017 IEEE Symposium on Security and
Privacy (SP) (2017), IEEE, pp. 579–594.

[401] Wang, J., Dang, Y., Zhang, H., Chen, K., Xie, T., and Zhang,
D. Mining succinct and high-coverage API usage patterns from source
code. In 2013 10th Working Conference on Mining Software Reposito-
ries (MSR) (2013), IEEE, pp. 319–328.

[402] Wang, J., Huang, Y., Wang, S., and Wang, Q. Find bugs in
static bug finders. In 2022 IEEE/ACM 30th International Conference
on Program Comprehension (ICPC) (2022), IEEE, pp. 516–527.

[403] Wang, J., Lutellier, T., Qian, S., Pham, H. V., and Tan, L.
Eagle: Creating equivalent graphs to test deep learning libraries. In
2022 IEEE/ACM 41st International Conference on Software Engineer-
ing (ICSE 2022) (2022).

[404] Wang, J., Wang, S., and Wang, Q. Is there a ”golden” feature set
for static warning identification?: an experimental evaluation. In 12th
ACM/IEEE International Symposium on Empirical Software Engineer-
ing and Measurement, (ESEM 2018) (2018), ACM, pp. 17:1–17:10.

[405] Wang, J., Wang, S., and Wang, Q. Is there a” golden” feature set
for static warning identification? an experimental evaluation. In Pro-
ceedings of the 12th ACM/IEEE international symposium on empirical
software engineering and measurement (2018), pp. 1–10.

[406] Wang, Q., Datta, P., Yang, W., Liu, S., Bates, A., and
Gunter, C. A. Charting the attack surface of trigger-action IoT
platforms. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security (2019), pp. 1439–1453.

[407] Wang, Q., Hassan, W. U., Bates, A., and Gunter, C. Fear and
logging in the internet of things. In Network and Distributed Systems
Symposium (2018).

[408] Wang, T., Wei, T., Gu, G., and Zou, W. Taintscope: A
checksum-aware directed fuzzing tool for automatic software vulner-
ability detection. In 2010 IEEE Symposium on Security and Privacy
(S&P (2010), IEEE, pp. 497–512.

291

[409] Wang, Y., Chen, B., Huang, K., Shi, B., Xu, C., Peng, X.,
Wu, Y., and Liu, Y. An empirical study of usages, updates and
risks of third-party libraries in Java projects. In IEEE International
Conference on Software Maintenance and Evolution (ICSME) (2020),
IEEE, pp. 35–45.

[410] Wang, Y., Wu, Z., Wei, Q., and Wang, Q. NeuFuzz: Efficient
fuzzing with deep neural network. IEEE Access 7 (2019), 36340–36352.

[411] Wang, Y., Zhang, C., Zhao, Z., Zhang, B., Gong, X., and
Zou, W. MAZE: Towards automated heap feng shui. In USENIX
Security Symposium (USENIX Security) (2021).

[412] Wang, Z., Yan, M., Chen, J., Liu, S., and Zhang, D. Deep
learning library testing via effective model generation. In Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering
(2020), pp. 788–799.

[413] Wasylkowski, A., and Zeller, A. Mining temporal specifications
from object usage. Automated Software Engineering 18, 3-4 (2011),
263–292.

[414] Wasylkowski, A., Zeller, A., and Lindig, C. Detecting ob-
ject usage anomalies. In Proceedings of the the 6th joint meeting of
the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering (ESEC/FSE
(2007), pp. 35–44.

[415] Wei, A., Deng, Y., Yang, C., and Zhang, L. Free lunch for
testing: Fuzzing deep-learning libraries from open source. In 2022
IEEE/ACM 41st International Conference on Software Engineering
(ICSE 2022) (2022).

[416] Wen, M., Liu, Y., Wu, R., Xie, X., Cheung, S.-C., and Su,
Z. Exposing library API misuses via mutation analysis. In 2019
IEEE/ACM 41st International Conference on Software Engineering
(ICSE) (2019), IEEE, pp. 866–877.

[417] Williams, C. C., and Hollingsworth, J. K. Automatic mining
of source code repositories to improve bug finding techniques. IEEE
Transactions on Software Engineering (TSE) 31, 6 (2005), 466–480.

292

[418] Wu, W., Chen, Y., Xu, J., Xing, X., Gong, X., and Zou, W.
FUZE: Towards facilitating exploit generation for kernel use-after-free
vulnerabilities. In USENIX Security Symposium (USENIX Security)
(2018), pp. 781–797.

[419] Xavier, L., Brito, A., Hora, A., and Valente, M. T. Historical
and impact analysis of api breaking changes: A large-scale study. In
2017 IEEE 24th International Conference on Software Analysis, Evo-
lution and Reengineering (SANER) (2017), IEEE, pp. 138–147.

[420] Xia, C. S., and Zhang, L. Less training, more repairing please:
revisiting automated program repair via zero-shot learning. In Pro-
ceedings of the 30th ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering
(2022), pp. 959–971.

[421] Xie, D., Li, Y., Kim, M., Pham, H. V., Tan, L., Zhang, X.,
and Godfrey, M. W. DocTer: documentation-guided fuzzing for
testing deep learning api functions. In Proceedings of the 31st ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA 2022) (2022), pp. 176–188.

[422] Xie, T., and Notkin, D. Mutually enhancing test generation and
specification inference. In International Workshop on Formal Ap-
proaches to Software Testing (2003), Springer, pp. 60–69.

[423] Xie, T., and Pei, J. Mapo: Mining api usages from open source
repositories. In Proceedings of the 2006 international workshop on Min-
ing software repositories (2006), pp. 54–57.

[424] Xie, X., Ho, J. W., Murphy, C., Kaiser, G., Xu, B., and
Chen, T. Y. Testing and validating machine learning classifiers by
metamorphic testing. Journal of Systems and Software (JSS) 84, 4
(2011), 544–558.

[425] Xie, X., Ma, L., Juefei-Xu, F., Xue, M., Chen, H., Liu, Y.,
Zhao, J., Li, B., Yin, J., and See, S. DeepHunter: a coverage-
guided fuzz testing framework for deep neural networks. In Proceed-
ings of the 28th ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA 2019) (2019), pp. 146–157.

[426] Xin Tan, Kai Gao, M. Z. L. Z. An exploratory study of deep learn-
ing supply chain. In 2022 IEEE/ACM 41st International Conference
on Software Engineering (ICSE) (2022).

293

[427] Yan, X., and Han, J. gSpan: Graph-based substructure pattern
mining. In 2002 IEEE International Conference on Data Mining, 2002.
Proceedings. (2002), IEEE, pp. 721–724.

[428] Yang, J., Evans, D., Bhardwaj, D., Bhat, T., and Das, M.
Perracotta: mining temporal api rules from imperfect traces. In Pro-
ceedings of the 28th international conference on Software engineering
(2006), ACM, pp. 282–291.

[429] Yang, X., Chen, J., Yedida, R., Yu, Z., and Menzies, T. Learn-
ing to recognize actionable static code warnings (is intrinsically easy).
Empirical Software Engineering (EMSE) 26, 3 (2021), 56.

[430] Yang, X., Chen, J., Yedida, R., Yu, Z., and Menzies, T. Learn-
ing to recognize actionable static code warnings (is intrinsically easy).
Empirical Software Engineering 26, 3 (2021), 1–24.

[431] Yang, X., and Menzies, T. Documenting evidence of a reproduction
of ‘is there a “golden” feature set for static warning identification?—an
experimental evaluation’. In 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE 2021) (2021), pp. 1603–1603.

[432] Yang, X., Yu, Z., Wang, J., and Menzies, T. Understanding
static code warnings: An incremental AI approach. Expert Syst. Appl.
167 (2021), 114134.

[433] Yang, X., Yu, Z., Wang, J., and Menzies, T. Understanding
static code warnings: An incremental ai approach. Expert Systems
with Applications 167 (2021), 114134.

[434] You, W., Zong, P., Chen, K., Wang, X., Liao, X., Bian, P.,
and Liang, B. SemFuzz: Semantics-based automatic generation of
proof-of-concept exploits. In ACM SIGSAC Conference on Computer
and Communications Security (CCS) (2017), pp. 2139–2154.

[435] Yüksel, U., and Sözer, H. Automated classification of static code
analysis alerts: A case study. In IEEE International Conference on
Software Maintenance (ICSM 2013) (2013), IEEE, pp. 532–535.

[436] Zampetti, F., Scalabrino, S., Oliveto, R., Canfora, G., and
Di Penta, M. How open source projects use static code analysis

294

tools in continuous integration pipelines. In IEEE/ACM 14th Interna-
tional Conference on Mining Software Repositories (MSR 2017) (2017),
IEEE, pp. 334–344.

[437] Zapata, R. E., Kula, R. G., Chinthanet, B., Ishio, T., Mat-
sumoto, K., and Ihara, A. Towards smoother library migrations:
A look at vulnerable dependency migrations at function level for npm
javascript packages. In 2018 IEEE International Conference on Soft-
ware Maintenance and Evolution (ICSME) (2018), IEEE, pp. 559–563.

[438] Zeller, A. Test complement exclusion: Guarantees from dynamic
analysis. In 2015 IEEE 23rd International Conference on Program
Comprehension (2015), IEEE, pp. 1–2.

[439] Zeng, E., Mare, S., and Roesner, F. End user security and pri-
vacy concerns with smart homes. In Thirteenth Symposium on Usable
Privacy and Security (SOUPS 2017) (2017), pp. 65–80.

[440] Zeng, E., and Roesner, F. Understanding and improving secu-
rity and privacy in multi-user smart homes: a design exploration and
in-home user study. In 28th USENIX Security Symposium (USENIX
Security 19) (2019), pp. 159–176.

[441] Zeng, Z., Zhang, Y., Zhang, H., and Zhang, L. Deep just-
in-time defect prediction: how far are we? In 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA
2021) (2021), pp. 427–438.

[442] Zerouali, A., Mens, T., Decan, A., and De Roover, C. On the
impact of security vulnerabilities in the npm and rubygems dependency
networks. Empirical Software Engineering 27, 5 (2022), 1–45.

[443] Zhang, C., Lin, X., Li, Y., Xue, Y., and Liu, Y. Apicraft: Fuzz
driver generation for closed-source {SDK} libraries. In 30th {USENIX}
Security Symposium ({USENIX} Security 21) (2021), pp. 2811–2828.

[444] Zhang, C., Yang, J., Zhang, Y., Fan, J., Zhang, X., Zhao, J.,
and Ou, P. Automatic parameter recommendation for practical API
usage. In 2012 34th International Conference on Software Engineering
(ICSE) (2012), IEEE, pp. 826–836.

[445] Zhang, J., Jiang, H., Ren, Z., Zhang, T., and Huang, Z.
Enriching API documentation with code samples and usage scenarios

295

from crowd knowledge. IEEE Transactions on Software Engineering
(2019).

[446] Zhang, L., He, W., Martinez, J., Brackenbury, N., Lu, S.,
and Ur, B. AutoTap: synthesizing and repairing trigger-action pro-
grams using LTL properties. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE) (2019), IEEE, pp. 281–
291.

[447] Zhang, M., Liu, J., Ma, F., Zhang, H., and Jiang, Y. Intelli-
gen: Automatic driver synthesis for fuzz testing. In 2021 IEEE/ACM
43rd International Conference on Software Engineering: Software En-
gineering in Practice (ICSE-SEIP) (2021), IEEE, pp. 318–327.

[448] Zhang, T., and Kim, M. Automated transplantation and differential
testing for clones. In IEEE/ACM International Conference on Software
Engineering (ICSE) (2017), IEEE/ACM, pp. 665–676.

[449] Zhang, T., Upadhyaya, G., Reinhardt, A., Rajan, H., and
Kim, M. Are code examples on an online q&a forum reliable?: a
study of API misuse on stack overflow. In 2018 IEEE/ACM 40th In-
ternational Conference on Software Engineering (ICSE) (2018), IEEE,
pp. 886–896.

[450] Zhang, T., Xu, B., Thung, F., Haryono, S. A., Lo, D., and
Jiang, L. Sentiment analysis for software engineering: How far can
pre-trained transformer models go? In IEEE International Conference
on Software Maintenance and Evolution (ICSME 2020) (2020), IEEE,
pp. 70–80.

[451] Zhang, X., Sun, N., Fang, C., Liu, J., Liu, J., Chai, D., Wang,
J., and Chen, Z. Predoo: precision testing of deep learning operators.
In Proceedings of the 30th ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA 2021) (2021), pp. 400–412.

[452] Zheng, Q., Mockus, A., and Zhou, M. A method to identify and
correct problematic software activity data: Exploiting capacity con-
straints and data redundancies. In 10th Joint Meeting on Foundations
of Software Engineering (ESEC/FSE 2015) (2015), pp. 637–648.

[453] Zheng, Y., Davanian, A., Yin, H., Song, C., Zhu, H., and Sun,
L. FIRM-AFL: high-throughput greybox fuzzing of IoT firmware via
augmented process emulation. In 28th USENIX Security Symposium
(USENIX Security 19) (2019), pp. 1099–1114.

296

[454] Zhong, H., and Mei, H. An empirical study on API usages. IEEE
Transactions on Software Engineering 45, 4 (2017), 319–334.

[455] Zhong, H., Meng, N., Li, Z., and Jia, L. An empirical study on
API parameter rules. In 2020 IEEE/ACM 42th International Confer-
ence on Software Engineering (ICSE) (2020), pp. 899–911.

[456] Zhong, H., Xie, T., Zhang, L., Pei, J., and Mei, H. MAPO:
Mining and recommending API usage patterns. In European Confer-
ence on Object-Oriented Programming (2009), Springer, pp. 318–343.

[457] Zhou, H., Li, W., Kong, Z., Guo, J., Zhang, Y., Yu, B.,
Zhang, L., and Liu, C. Deepbillboard: Systematic physical-world
testing of autonomous driving systems. In 2020 IEEE/ACM 42nd In-
ternational Conference on Software Engineering (ICSE) (2020), IEEE,
pp. 347–358.

[458] Zhou, J., Pacheco, M., Wan, Z., Xia, X., Lo, D., Wang, Y.,
and Hassan, A. E. Finding a needle in a haystack: Automated min-
ing of silent vulnerability fixes. In 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE) (2021), IEEE,
pp. 705–716.

[459] Zong, P., Lv, T., Wang, D., Deng, Z., Liang, R., and Chen,
K. FuzzGuard: Filtering out unreachable inputs in directed grey-box
fuzzing through deep learning. In 29th USENIX Security Symposium
(USENIX Security 20) (2020), pp. 2255–2269.

297

	Fortifying the seams of software systems
	Citation

	Introduction
	Motivation
	Contributions
	Static Analysis and APIs
	Dynamic Analysis and APIs
	Interacting Systems
	Publications.

	Reading Guide

	Background
	Third-party Software Components
	Detecting Bugs
	Mining Rules and Specifications

	(Static Analysis + API) Active Learning of Discriminative Subgraph Patterns for API Misuse Detection
	Overview
	Background
	Motivating Examples
	API Usage Graph
	Active Learning
	Learning with Rejection and Novelty Detection

	The ALP Approach
	High-level Overview
	Workflow of ALP
	Extended API Usage Graph
	Mining GitHub
	Discriminative subgraph mining
	Selection of examples to label
	Graph classification

	Empirical Evaluation
	Benchmarks
	Research Questions
	Experimental Results

	Discussion
	Qualitative Analysis
	Threats to Validity

	Related Work
	Summary

	(Static Analysis + API) Detecting False Alarms from Automatic Static Analysis Tools
	Overview
	Background
	Automatic Static Analysis Tools
	Distinguishing between Actionable Warnings and False Alarms

	Study Design
	Research Questions
	Evaluation Setting

	Analysis of the Golden Features
	Analysis of the Closed-Warning Heuristic
	Choosing a different reference revision
	Unconfirmed actionable warnings
	Unconfirmed false alarms

	Discussion
	Lessons Learned
	Threats to Validity

	Towards a new approach
	In-context learning

	Few-shot in-context filtering of false alarms
	Overview
	Problem Formulation
	Selection of training warnings
	In-context learning

	Experimental Setup
	Dataset
	Baselines
	Evaluation Metrics
	Research Questions

	Experimental Results
	RQ1. On the effectiveness of TrailMarker
	RQ2. On the components of TrailMarker
	RQ3. On the parameters of TrailMarker

	Discussion
	Sample efficiency
	Implications
	Qualitative analysis
	Threats to Validity

	Related Work
	Summary

	(Dynamic Analysis + API) Adversarial Specification Mining
	Overview
	Background
	Specification Mining
	Test Generation for Specification Mining
	Search-based test generation

	The DICE Approach
	Overview
	Mining Purity-Aware Temporal Specification
	Adversarial Test Generation
	Example of the search process
	FSA Inference

	Evaluation
	Experimental setup
	RQ1: Effectiveness in inferring FSA models
	RQ2: Effectiveness of DICE-Tester
	RQ3: Effectiveness of DICE-Miner

	Discussion
	RQ4: Effectiveness in finding counterexamples
	RQ5: Effectiveness of constraints in inferring FSA
	RQ6: Effect of the quality of initial test suite
	Qualitative Evaluation
	RQ7: Use of FSA models for fuzzing
	Threats to Validity

	Related Work
	Conclusion and Future Work

	(Dynamic Analysis + API) Active Learning-based Input Selection for Fuzzing Deep Learning Libraries
	Overview
	Background
	Preliminaries
	Active Learning
	Input properties
	Input categories
	Motivating Example

	SkipFuzz
	Overview
	Step 1: Input property checking and input category construction
	Step 2: Active Learning-driven fuzzing
	Input constraint inference

	Implementation
	Evaluation
	Research Questions
	Experimental Setup
	Experimental Results

	Discussion and Limitations
	Related Work
	Summary

	(System of Interacting Components) IoTBox: Sandbox Mining to Prevent Interaction Threats in IoT Systems
	Overview
	Background
	Smart Home Platforms
	Formal model of a smart home
	Mining sandboxes

	IoTBox
	Exploration phase
	Sandboxing phase

	Empirical Evaluation
	RQ1: How frequently do handcrafted security policies lead to false positives?
	RQ2: How effective is IoTBox?

	Discussion
	Risk of encoding malicious behavior in the sandbox
	Limitations and Tradeoffs
	Threats to Validity

	Related Work
	Summary

	(System of Interacting Components) Test Mimicry to Assess the Exploitability of Library Vulnerabilities
	Overview
	Background and Motivation
	Software Composition Analysis
	Search-based test generation
	Motivating Example

	Test Mimicry
	Objectives and Problem Formulation
	Approach
	Satisfying a vulnerability's triggering conditions
	Implementation

	Empirical Evaluation
	Experimental Setup
	Experimental Results

	Discussion
	Qualitative Analysis
	Threats to Validity

	Related Work
	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

