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Abstract

Reinforcement Learning Approach to Coordinate Real-World
Multi-Agent Dynamic Routing and Scheduling

by

Joe Waldy

Doctor of Philosophy in Computer Science

Singapore Management University

In this thesis, we study new variants of routing and scheduling problems motivated
by real-world problems from the urban logistics and law enforcement domains.
In particular, we focus on two key aspects: dynamic and multi-agent. While
routing problems such as the Vehicle Routing Problem (VRP) is well-studied in the
Operations Research (OR) community, we know that in real-world route planning
today, initially-planned route plans and schedules may be disrupted by dynamically-
occurring events. In addition, routing and scheduling plans cannot be done in silos
due to the presence of other agents which may be independent and self-interested.
These requirements create great opportunities for synergized efforts between OR and
Artificial Intelligence (AI), particularly Reinforcement Learning (RL) and Distributed
AI such as Multi-Agent Systems (MAS).

The fundamental research question for dynamic routing and scheduling is: How
to make optimal decision within a short period of time?. Routing and scheduling
decisions are complex because they are multi-dimensional; consisting of spatial and
temporal components. Meanwhile, each occurrence of dynamic event requires an
event-handling action and a re-planning action such as assignment/dispatch and
rerouting/rescheduling actions respectively. Current approaches are either time
consuming or not sample efficient. Meanwhile, to address complex action, most
current RL approaches either decompose the problem or action into multiple stages.
In this thesis, we propose an RL-based approach that combines Value Function
Approximation (VFA) and routing/scheduling heuristic to learn event-handling and
re-planning policies jointly without the need for any decomposition step. We show
that our approach is faster than sampling-based approaches and more sample efficient



than current offline methods for moderately-sized problem instances. We also show
experimentally that our joint learning approach outperforms the commonly-used
two-stage approach especially when the problem scenario becomes more complex.

Multi-agent routing and scheduling problems in real-world context go beyond
the classical definition of multi-agent in academic literature which usually takes the
form of multiple vehicles or multiple machines. In this thesis, we refer an agent
as a independent, higher-order decision-making entity that is capable of executing
complex action and usually consists of multiple sub-agents such as Logistics Service
Providers (LSPs) where each LSP consists of multiple vehicles. Existing works on
multi-agent VRP assume collaboration amongst agents. However, in real-world
context, agents may not necessarily be collaborative. One such instance is a problem
of coordinating Business-to-Business (B2B) pickup-delivery operations involving
multiple LSPs. To address this gap, we formulate such problem as a strategic
game and propose a scalable, decentralized, coordinated planning approach based
on iterative best response to coordinate multi-agent routing and scheduling. Our
proposed approach is able to ensure that there are enough incentives for agents to
adopt a coordinated plan rather than planning independently. Our approach is also
scalable as it decomposes a multi-agent problem into multiple single-agent problems
allowing existing single-agent planning algorithms to be applied to a smaller problem.

Most current Multi-Agent RL (MARL) approaches solve dynamic routing and
scheduling problems in which an agent is still defined as low-order entity such
as vehicle or machine. Moreover, there is no prior work that addresses dynamic
routing and scheduling problems where there exist multiple independent higher-
order agents capable of making complex decision directly without decomposing
the problem or the action. Therefore, in the final contribution of this thesis, we
present a pioneering effort on a cooperative MARL approach to solve multi-agent
dynamic routing and scheduling problem directly without any decomposition step.
This contribution extends our earlier proposed VFA method to address multi-agent
setting and incorporates an iterative best response procedure as a decentralized
optimization heuristic and an explicit coordination mechanism. We evaluate our
approach against a realistic multi-agent dynamic police patrol problem and through
a series of ablation studies, ascertain the effectiveness of our proposed learning and
coordination mechanisms.



This thesis opens up many opportunities for future research, some of which are
presented in the concluding chapter, specifically those that represent aspects of RL
approach that are peculiar to real-world problem settings.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction
Routing and scheduling problems are classical Combinatorial Optimization Problems
(COPs) that are well-studied and well-researched in the Operations Research (OR)
community [51]. New and more complex variants of these problems have increasingly
been introduced and studied in the literature. These variants are usually driven and
inspired by real-world applications [20]. Meanwhile, the advancement in the field of
Artificial Intelligence (AI) particularly in the sub-fields of Machine Learning (ML)
such as Deep Learning (DL) and Reinforcement Learning (RL), and Distributed
AI such as Multi-Agent System (MAS), brings about greater opportunities for
synergized effort between the two fields of study (AI and OR) to address real-world
routing and scheduling problems that are increasingly more challenging because of
the following two key reasons:

• Dynamic. In most classical routing and scheduling problems, inputs to the
problems are known beforehand and they can be either deterministic or
stochastic. In the dynamic version of those problems, inputs to the problem
may change over time and they are typically exogenous. For example, in
the context of Dynamic Vehicle Routing Problem (DVRP), the exogenous
changes include additional or cancellation requests from customers (stochastic
customers), changes to the traffic conditions (stochastic travel times) and
changes to the customers’ demand (stochastic demand) [102]. The proliferation
of data and the advancement of computing power have enabled researchers in
the last couple of decades to study and develop state-of-the-art methodologies
to solve DVRP [98]. The rise of online shopping and food delivery also heighten
the research interest in the domain of dynamic routing and scheduling (see
[123, 127]). In fact, the popular notion of same-day delivery that many of us

1



CHAPTER 1. INTRODUCTION

are familiar with today is essentially a DVRP.

• Multi-Agent. The notion of multi-agent here does not refer to the classical
notion where an agent is usually defined as a lower-order entity like a vehicle,
machine or a person. With the rise of e-commerce and the increased complexity
of urban logistics, solving Vehicle Routing Problem (VRP) in real-world
environment involves coordinating multiple logistics entities [41] and even
synchronization of routing with scheduling due to shared resource constraints
such as limited docking capacity and availability of equipment or personnel
(see [37, 64, 65]). In other words, routing and scheduling decisions cannot
be done in silos due to the presence of multiple independent and sometimes
self-interested agents.

Motivated by the increasingly complex nature of the operational problems
highlighted above, this thesis aims to develop new methodologies drawing from
relevant techniques in AI (RL and MAS more precisely) and OR to address the
gaps in current works in solving multi-agent and/or dynamic routing and scheduling
problems.

1.1 Motivating Domains
The research work in this thesis is specifically motivated by two real-world application
domains namely urban logistics and law enforcement. Routing and scheduling in the
urban logistics context are not new and are well-studied in the literature. However, in
this thesis, we address problem variants that are either new and/or have potential for
AI applications. Meanwhile, routing and scheduling in the context of law enforcement
operation (specifically police patrol) may not be as well-studied as those in the
logistics context but it presents a huge potential for further research given that
police patrol is done on a daily basis and optimal routing and scheduling of police
patrol is necessary in view of scarce police resources [36].

1.1.1 Urban Logistics

This thesis looks into the two aspects of routing and scheduling in urban logistics
that have huge potential for further research namely dynamic and multi-agent.
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Dynamic. Pick-up and delivery tasks in real-life may be subjected to changes
in the environment such as additional or cancellation of requests, changes to the
traffic conditions or changes to the customers’ demand. These changes or commonly
referred to as dynamic events, may happen to disrupt the initially-planned routes
and schedules. Thus, there is a need to make rerouting or rescheduling decision
as and when these dynamic events happen and decision needs to be made rather
quickly in real-time. The most direct approach to solve this problem is to reoptimize
the routes or schedules with the new information. This is akin to solving a static
variant of the problem again and again whenever there are new information available.
However, such an approach is myopic because it does not take into consideration
future dynamic events and most importantly, it may be time-consuming. The
research challenge that this thesis is addressing will be whether a policy governing
such rerouting or rescheduling decision can be learnt offline and be applied online.
This is exactly what ML and RL are all about; making prediction or decision by
learning from data beforehand.

Multi-Agent. Route planning and scheduling in urban logistics may be subjected
to the presence of other logistics entities also known as Logistic Service Providers
(LSPs) in the environment. One such scenario will be a pick-up and delivery problem
where there are limited shared resources in each of the locations. For example,
in urban, congested cities where space is scarce, each pick-up or delivery location
may have limited parking space or loading/unloading bays. Congestion may take
place if each LSP adopts selfish, uncoordinated planning. This thesis addresses
such a problem of coordinating routing and scheduling in the presence of multiple,
independent entities or agents vying for shared limited resources.

1.1.2 Law Enforcement

Similar to urban logistics, this thesis addresses both dynamic and multi-agent aspects
of police patrol problem.

Dynamic. In policing, occurrences of unexpected incidents often disrupt the
execution of an existing plan. Police patrol agent needs to be dispatched and its
patrol schedule needs to be adapted to respond to dynamically-occurring incidents
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while still fulfilling the two often conflicting objectives of projecting police presence
(proactive patrol) and responding to incidents in a timely manner (reactive patrol).
In addition, such complex decisions need to be made rather quickly and sometimes
instantaneously. The key research challenge that this thesis addresses is whether
ML and RL can be exploited to compute such decisions quickly and intelligently in
order to inform human decision-makers.

Multi-Agent. In most countries, police operations are usually divided into several
sectors or districts or jurisdictions to balance the workload [107]. However, due to
limited police resources and increased workload in terms of number of incidents,
there may be a need to coordinate the schedules of the different police entities so as
to ensure that the common goal of maintaining law and order is being achieved. The
most straightforward approach to address this problem will be to have a centralized
agent which plans the schedules of all police entities. However, this approach is not
practical given that scalability can be an issue and it also goes against the established
operation and reporting structures that are already in place. The research question
will be how to coordinate such an operation involving multiple independent, possibly
selfish agents even in the presence of dynamically-occurring incidents and time
pressure.

1.2 Contributions
The main contributions in this thesis are two-fold. Firstly, we define and formulate
new variants of routing and scheduling problems which incorporate real-world
operational characteristics. Secondly, we propose new solution approaches that
incorporate techniques from outside the OR domain specifically RL and Multi-Agent
Planning (MAP) to address those new variants of the problems which typically are
dynamic and/or multi-agent in nature.

Figure 1.1 provides an overview of the contributions of this thesis and how each
contribution fits into the overall theme of coordinating multi-agent dynamic routing
and scheduling. References to the relevant chapters and sections are provided for a
clearer view on the structure and flow of this thesis.
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Figure 1.1: An overview of the contributions and structure of this thesis.

1.2.1 New Problem Variants

Urban Logistics. We define a new variant of VRP called VRP with Pickup
and Delivery, Time Windows and Location Congestion with Multiple LSPs (or
ML-VRPLC in short) and formulate the problem as an n-player strategic game
[57]. This new problem variant is motivated by real-world problem of coordinating
Business-to-Business (B2B) pickup-delivery operations to and from commercial or
retail locations involving multiple LSPs with limited parking bays at each of the
location.

Law Enforcement. We define a new variant of DVRP with stochastic customers
that incorporates elements of university time-tabling problem called Dynamic Bi-
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Objective Police Patrol Dispatching and Rescheduling Problem (DPRP) and formu-
late it as a route-based Markov Decision Process (MDP) [58]. We extend DPRP to
a multi-agent setting involving multiple police entities which can be represented by
different police sectors or jurisdictions and refer this problem as Multi-Agent DPRP
or MADPRP in short.

1.2.2 New Solution Approaches

Addressing Dynamicity. We propose a new solution approach that combines
Deep RL (specifically neural networks-based Temporal-Difference (TD) learning with
experience replay) to approximate value function and a routing/scheduling heuristic
to solve dynamic routing and scheduling problems. The proposed solution called
Value Function Approximation (VFA) via TD Learning with Heuristic, learns the
assignment/dispatch and rerouting/rescheduling policies jointly. This is in contrast
with many existing approaches in the literature that adopt a two-stage approach
(first stage to address the assignment/dispatch decision and second stage to address
the rerouting/rescheduling decision). This proposed offline approach allows decisions
to be computed quickly and almost instantaneously during run-time unlike many
OR approaches which are sampling-based. We apply this approach to solve two
problems namely DVRP with stochastic customers [56] and DPRP [58]. There are
several works in the literature that build upon our proposed solution approach (see
[14, 92, 114]). In addition, this research contribution represents one of the first few
works in the literature that leverages on RL to address DVRP with route constraints
and full state space [50].

Addressing Multi-Agent. We propose a scalable, decentralized, coordinated
planning approach based on iterative best response to solve the above-mentioned
ML-VRPLC [57]. We formulate and show that this problem is a finite ordinal
potential game with Finite Improvement Property (FIP). This approach iteratively
improves on a initial joint schedule by exploring multiple improvement paths through
best response procedure until an approximate equilibrium is reached. In other words,
we represent each LSP as a player and its schedule as a strategy, and through an
iterative best response procedure, each LSP adjusts its own strategy until no LSP is
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able to improve its own payoff.

Addressing Both Dynamicity and Multi-Agent. We extend our proposed
VFA approach to address multi-agent setting. We propose a Multi-Agent RL (MARL)
approach that combines Multi-Agent Value Function Approximation (MAVFA) with
planning heuristic to solve multi-agent dynamic routing and scheduling problems
directly without the need to decompose the action or the problem into multiple
stages. In our proposed approach, the learned value function is utilized by the
heuristic to search for better rerouting or rescheduling decision. Our proposed
approach incorporates iterative best response procedure to serve as a scalable,
decentralized optimization heuristic and an explicit coordination mechanism for
a more coordinated decision-making amongst multiple agents. We evaluate our
approach on an MADPRP and show experimentally that our approach outperforms
the commonly used two-stage approach and through a series of ablation studies,
ascertain the effectiveness of our proposed learning and coordination mechanisms

1.3 Structure of the Dissertation
This thesis is organized as follows:

• In Chapter 2, we present the background information and related works
pertaining to dynamic routing and scheduling problems and RL approaches
to solve such a problem. In this chapter, we also provide more detailed
descriptions of the motivating problems and their related works.

• In Chapter 3, we propose a new RL-based approach to solve dynamic routing
and scheduling problems and evaluate our proposed approach against two
application domains: urban logistics and law enforcement. The research work
in this chapter has been published in [56, 58].

• In Chapter 4, we study a new problem variant that involves coordinating the
routing and scheduling of multiple agents in view of shared limited resources.
We propose a scalable, decentralized coordinated planning approach based on
iterative best response. This work has been published in [57].
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• In Chapter 5, we build upon the works in the earlier two chapters and propose
a cooperative MARL approach that solves multi-agent dynamic routing and
scheduling problems directly and evaluate our proposed approach on a real-
world problem that incorporate both aspects of dynamicity and multi-agent in
the law enforcement domain. The manuscript of the research work done in
this chapter is currently under review.

• Lastly, in Chapter 6, we conclude this thesis by providing concluding thoughts
on the key contributions of this thesis and discussing future research opportu-
nities that can spring out of the works done in this thesis.
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Chapter 2

Background
In this chapter, we first define the key terminologies and notations used to facilitate
the reading and understanding of this thesis. After which, we present the background
information and related works pertaining to dynamic routing and scheduling problem
and Reinforcement Learning (RL) approaches to solve such problem. Lastly, we
provide more detailed descriptions of the motivating problems and their related
works.

2.1 Terminologies
For greater clarity and focus in reading and understanding the works presented in
this thesis, the definitions of key terminologies used are presented and discussed in
the following paragraphs.

Routing and Scheduling. We define routing and scheduling problem as a variant
or extension of Vehicle Routing Problem (VRP). VRP was first introduced in [32].
We refer the readers to [118] for a comprehensive overview of VRP, its problem
variations and solution approaches. For generality, the word vehicle is omitted
since in our problem setting, vehicle can be generalized as an agent to represent
a person, a group of people or even robots or drones. Meanwhile, schedule is
essentially an extension of a route where route is a sequence of tasks typically
represented by geographical locations while schedule refers to the time and duration
that are attached to each component of the route. We simply use the term plan
interchangeably to refer to either route or schedule or both.
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Figure 2.1: An illustration of the general structure of a dynamic routing and
scheduling problem.

Dynamic Problem. For greater clarity and focus in the discussion, we formulate
dynamic routing and scheduling problem as a sequential decision problem [96, 97].
Further discussion on sequential decision problem can be found in Section 2.3. The
general structure of such dynamic problem is illustrated in Figure 2.1. Step 3
represents the key research focus of this thesis: how do the agent(s) handle the
dynamic event when it occurs (event-handling) and how to amend the initial plan(s)
that have been disrupted due to the occurrence of dynamic event and in the presence
of other agent(s) (re-planning)?.

Multi-Agent. An agent can refer to an entity (usually with intelligence) or a
computer software that acts independently within an environment and is driven by
certain objectives [134]. Meanwhile, Multi-Agent System (MAS) refers to a system
where multiple such agents exist and interact to achieve those objectives [39]. Within
MAS, there exist variations in terms of the characteristics of agents involved, the
degrees of interaction amongst agents and the environment itself [133]. For example,
agents can be homogeneous or heterogeneous, the degree of their autonomy can
range from low to high, the level of interaction may vary from mere observing to
exchanging of information or resources, the nature of interaction can be cooperative
or competitive and the availability of resources in the environment may be limited.

In this thesis, the word agent does not refer to an agent-based approach where
different components of a solution approach or algorithm act as agents who work
together to solve the problem (see [4, 82, 110, 128]). Instead, we refer an agent as
a higher-order decision-making entity that is capable of executing complex action.
These agents can be independent and can consist of multiple sub-agents. This is
unlike the classical examples of multi-agent setting which come in the form of multiple
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vehicles or multiple machines. The attributes of the agents are problem-specific
and are motivated by the real-world domains that we described earlier (the exact
attributes will be described in the later chapters). Meanwhile, the word coordinate
implies the presence of a central agent or authority with limited information and
autonomy over the agents. For example, in the context of an auction, the auctioneer
is the central authority that facilitates the auction process but it does not influence
or dictate agents’ decisions. In our problem context, agents can refer to Logistics
Service Providers (LSPs) or local police entities (belonging to a certain jurisdiction
or sector) while the central coordinator can refer to a logistics platform owner or a
government agency or a central police HQ.

Complex Action. In the context of dynamic routing and scheduling problem, we
define a complex action to include event-handling (how to handle dynamic event
when it occurs) and post-event re-planning (how to amend the initial plan that has
been disrupted due to the occurrence of dynamic event). For example, in a police
patrol problem, the complex action includes assigning an incident to a specific patrol
team (event-handling); and rescheduling patrol schedule(s) of the assigned patrol
team or even the other teams (re-planning). In addition, re-planning action in itself
is complex because rerouting and/or rescheduling actions include both spatial and
temporal dimensions.

2.2 Notations
Table 2.1 provides the set of common notations and the corresponding descriptions
used in the model to describe multi-agent dynamic routing and scheduling problem
in this thesis. Meanwhile, problem-specific notations are described separately in the
relevant section corresponding to the specific problem.

2.3 Sequential Decision Problem
Sequential decision problem has been studied by various research communities
ranging from stochastic optimization, optimal control, Markov Decision Process
(MDP), RL, approximate dynamic programming and robust optimization to name a

11



CHAPTER 2. BACKGROUND

Table 2.1: Set of common notations used in this thesis.
Notation Description

k Decision epoch.
K Terminal decision epoch.
Sk State at decision epoch k.
SK Terminal state or state at the end of planning horizon.
xk Joint action at decision epoch k
Sx

k Post-decision state, state after taking action x.
ωk Realization of a dynamic event at decision epoch k.
V̂ Value function approximate.
θ Parameters of a value function or network.
γ Discount factor.

R(Sk, x) Reward function for taking action x at a given state Sk.
xk,i Action by agent i at decision epoch k.
xk,−i Joint action by all agents except agent i at decision epoch k.
Sk,i Local pre-decision state of agent i at decision epoch k.
Sx,i

k,i Local post-decision state of agent i at decision epoch k

tk Time period where decision epoch k occurs.
δi(k) A plan of agent i at decision epoch k.
δ(k) A joint plan of all agents at decision epoch k

where δ(k) = (δi(k))i∈I .
δ−i(k) A joint plan of all agents except for agent i at

decision epoch k.
(δi(k), δ−i(k)) A joint plan where agent i follows plan δi(k)

while the rest follows a joint plan δ−i(k).
δx(k) A joint plan of all agents after executing action x at

decision epoch k.
ui(δ(k)) Payoff/utility of agent i when all agents follow a joint plan δ(k).

Bi(δ−i(k)) Best response of agent i when all other agents follow a joint plan, δ−i(k).

few [97]. As shown in Figure 2.2, a sequential decision problem consists of a sequence
of states where in each state, a decision-making process is being triggered due to
realization of new information [112].

Sequential decision problem consists of the following key elements namely:

• State variables, Sk. These refer to all the information needed to model the
system and to make a decision.

• Decision variables, xk. These refer to decisions made in response to realiza-
tion of new information in the system and are usually governed by a policy π

where π is a function that maps a state Sk to a decision xk = Xπ(Sk). Decision
can be discrete, continuous, categorical or multi-dimensional (i.e. complex).

• Exogenous information, ωk. A realization of new information or changes
to the current state variables that requires an action or decision to be taken.
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Figure 2.2: An illustration of sequential decision problem, adapted from [83]
.

• Transition function, P . This refers to a model that describes how the
system moves from one state, Sk to next state, Sk+1. This function can be
represented as follows: Sk+1 = P (Sk, xk, ωk+1). This function can be further
broken down into two parts namely, from pre-decision state, Sk to post-decision
state, Sx

k and then from post-decision state, Sx
k to the next pre-decision state

Sk+1.

• Objective function. The goal of solving a sequential decision problem
it to find an optimal policy π∗ that maximizes the expected sum of re-
wards: maxxk∈X(Sk)

{
R(Sk, xk) + E

[∑K
j=k+1 R(Sj, Xπ∗(Sj))|(Sk, xk)

]}
. The

second term of the Bellman equation is commonly referred to as a value
function.

2.4 Markov Decision Process
MDP is a mathematical framework to represent sequential decision problems under
uncertainty. MDP is typically defined as the following tuple:

⟨S, X, R, P, γ⟩

where S represents a finite set of states, X a finite state of actions, R a reward
function where R(s, x) represents the reward of an agent who is in state s and takes
action x; meanwhile, P represents the transition probability of going from state s

to state s′ after taking action x. The goal of solving an MDP is to find an optimal
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policy π∗ which indicates the optimal action x∗ while agent is at a given state s. The
key elements of an MDP are very much consistent with sequential decision problem.

The key challenge of representing a real-world sequential decision problem as an
MDP is that the state space is rather huge. Therefore, factored MDP is a popular
framework to represent large MDP in a compact manner [13]. Factored MDP relies
on exploitation of problem structure to reduce the size of the state space. Factored
MDP describes the set of states with a set of random variables, S = {S1, S2, ..., SN}
[48]. This representation framework is in fact a kind of state aggregation method.
In this framework, states are represented by a set of random variables which means
that states that have the same values across the chosen set of random variables are
aggregated and reduced to a single state.

For the multi-agent version of sequential decision problem, the MDP model (or
MMDP [12] to be exact) is defined by the same tuple as above but with the following
additional elements and definitions:

• I. a set of agents interacting in the system.

• S. a joint state space which can be decomposed into individual agents’ local
states, si ∈ Si.

• X. a joint action space which can be decomposed into individual agents’
actions, xi ∈ Xi.

2.5 DVRP
Dynamic routing and scheduling problem is essentially a variant of Dynamic VRP
(DVRP). DVRP is a variant of VRP whereby inputs to the problem may change
during execution. Research on DVRPs witnessed a surge in the recent decade [98].
This trend is likely to continue given increasing needs toward services like same-day
delivery, availability and accessibility of data and increased computing power.

DVRP can be broadly categorized into dynamic-deterministic and dynamic-
stochastic [95]. Even within dynamic-stochastic VRP, stochasticity arises in different
aspects namely travel times, demands, customers or combinations of these stochastic
aspects [102]. Research focus in the recent decade has been on dynamic-stochastic
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VRP (or DVRP in short) as it models more closely the real-world environment. We
refer the reader to [95, 98, 102] for more detailed discussions on DVRP, its variants
and solution approaches.

2.5.1 Modelling DVRP

DVRP can be modelled as MDP because in DVRP, decisions need to be made in view
of uncertainty and are done sequentially. Conventional MDP in DVRP literature
identifies optimal decision as next customer to visit at every decision point. There
are inconsistencies and disconnectedness between such modelling framework with
the DVRP solution techniques [121]. This is because the solution of a DVRP is a
route plan and not just the next customer/location to visit. Ulmer et al. [120] first
proposed route-based MDP as a unifying modelling framework for DVRP where
the action is not merely the next customer to visit but the remaining route to be
assigned to a vehicle. This thesis adopts the route-based MDP as the main modelling
framework for dynamic routing and scheduling problem.

Why Route-based MDP? Unlike the passenger ride-sharing problem where
single-action MDP makes more sense with somewhat simple consideration of pas-
sengers’ pickup and drop off locations, our motivating problems suffer much more
restrictions and complications.

Firstly, the planning horizon is much longer (for e.g. entire day). In urban
logistics context, the delivery time windows and meal breaks must be considered,
so the decision of which vehicle and the sequence to serve a given request must
anticipate future dynamic requests. This implies that the value of a state needs to
take into account the projected route of the vehicle in anticipation of future new
requests. The calculations of rewards take into account the time window violation
and waiting time that may occur into the future and these calculations can only
be derived if a route is available. Similarly, in police patrol context, we need to
consider the total number of effective patrol time at each location in a given shift.
Computation of reward will require the availability of the planned patrol schedule
for the whole shift.

Secondly, the visibility of entire routes is important in both problem settings.
Practically speaking, LSPs or police do not start off their workday/shift with an
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empty schedule and build it incrementally as the day goes. In urban logistics context,
planned routes are important to drivers from the point of view of execution planning,
cargo loading, tracking and communication on the ground. Each delivery job is
tied to its respective cargo that needs to be loaded to the assigned vehicle, and
swapping cargo between vehicles is not viable operationally. Meanwhile, in police
patrol context, planned routes are important to ensure that all mandatory patrol
areas are being patrolled at least for a minimum required time. In police operations,
there may be occasions where patrol agents need to be at certain location at certain
time and this requirement can only be incorporated if a planned schedule exists.

More detailed discussion on route-based MDP and how it differs from conventional
MDP can be found in [121].

2.5.2 Solution Approaches to DVRP

Based on the survey by Ritzinger et al. [102], there are two broad categories of
approaches for solving DVRP namely offline or pre-processsed decision support and
online decision. Lately, there have been works that try to combine both approaches
(hybrid or offline-online).

Offline or Pre-processed Decision Support. Policies or values for decision-
making are computed prior to execution of plan. Here, the problem is usually
formulated and solved as an MDP. Unfortunately, MDP-based approaches (specif-
ically tabular-based ones) fall into the curse of dimensionality and hence are not
suitable for most real-world problems [95]. Approximate Dynamic Programming
(ADP) approaches are commonly used to tackle the scalability issue, and one such
ADP method for DVRP is Approximate Value Iteration (AVI) (see A.1 for a sample
implementation of an AVI algorithm). Agussurja et al. [1] and Ulmer et al. [124]
proposed AVI to solve DVRP as an MDP. Both papers proposed state aggregation
and representation to further overcome the challenge of large state space. Another
main challenge of ADP is to generate enough scenarios during the training phase so
as to accurately assign a value to a state. AVI approximates the value function as a
lookup table and may fail if certain state is not encountered during the training phase.
Most works used AVI on single vehicle setting without time window constraints
which may not extend well for more complex problems like those with multiple
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vehicles and additional constraints such as time windows or capacity.

Online Decision. Unlike the pre-processed decision support approaches, online
decisions do not compute optimal global policy; rather computations are performed
during the execution of plan. Common approaches in this category are usually
termed as lookahead strategy or rolling horizon procedures [96] such as rollout
algorithms [10, 46, 108] and Multiple Scenario Approach (MSA) [9, 127] (see A.2 for
a sample implementation of an MSA algorithm). They are mainly sampling-based
approaches. The common feature of these methods is that they focus on the current
state and instance. They do not consider the values of all possible states but only the
relevant states at the decision point. At the decision point, the methods do a roll-out
or lookahead to simulate what will happen in the future and use this information
to guide decision-making. Bent and Van Hentenryck [8] introduced the consensus
algorithm into MSA to solve online VRPs with stochastic customers. Consensus
algorithm performs an offline optimization on the available and sampled requests
once per scenario and returns the decision with the largest score or lowest cost.
Online decisions approaches are suitable where there is no strict time constraint
imposed when decision-making is required and work well with increasing degree of
dynamism (DoD). Thus, the choice between online or offline methods will be very
much dependent on how fast decisions need to be made during execution time.

Hybrid (Offline-Online). There have been attempts to combine both approaches
to leverage the strengths of both approaches. Ulmer et al. [119] proposes offline-online
approximate dynamic programming which embeds the offline VFA into the online
roll-out algorithm. Ulmer et al. [119] only managed to run at most 16 lookahead
samples for every decision instance due to resource constraint. The gain achieved
through this hybrid approach may not be compelling enough given the vast compro-
mise in terms of decision-making time. De Filippo et al. [34] proposed an integration
of offline and online optimization by considering multi-stage optimization problems
where the first phase requires offline decision and the subsequent phases require
online decision. The proposed approach works on DVRP with stochastic travel time
where customers are assigned offline but routes are optimized online. This, however,
does not work for other types of DVRP such as DVRP with stochastic customers as
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customer requests are not known beforehand.

Different authors propose different ways of categorizing the solution approaches.
For example, Ulmer et al. [121] categorize the different solution approaches into 4
main types namely Reoptimization (RO), Policy Function Approximation (PFA),
Lookahead Algorithm (LA) and Value Function Approximation (VFA). Meanwhile,
Soeffker et al. [112] categorize the approaches into either predictive or prescriptive.
Despite the differences in how the categorizations are done and how the terminologies
are being used and defined, these proposed categorizations are quite coherent and
consistent with one another.

2.6 Learning to Solve Routing and Scheduling
Problem

Recent advancement in Deep Learning (DL) has enabled machines to outperform
many classical approaches in computer vision and natural language processing by
learning from data [68]. In addition, Deep RL is also able to outperform human
experts in games like Atari [85] and Go [111]. The recent significant progress in DL
has given rise to an increased interest in learning-based approaches to solve NP-hard
Combinatorial Optimization Problems (COPs) (see [7, 126]).

Learning-based approaches to solve COPs are appealing because machines can
be trained to discover their own heuristics and learn the optimal policy to solve
different instances of the same problem. More often than not, NP-hard problems
rely on on heuristics to solve and their performances are evaluated empirically [45].
Most traditional heuristics are designed by human and require human expertise. On
the other hand, DL algorithms have shown to be able to learn from larger datasets
and detect useful patterns and extract features that human may have missed out
[75].

Routing and scheduling problem is an NP-Hard COP. In this section, we provide
a literature review on related works that propose RL approaches to solve VRP,
DVRP and their variants which come close to the dynamic routing and scheduling
problem that this thesis seeks to address.
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2.6.1 RL Approaches to Solve Routing and Scheduling Prob-
lem

There have been numerous works that proposed learning-based approaches especially
RL-based ones to solve VRP. Existing RL-based approaches solve the problem either
through constructing solution node-by-node (see [63, 88, 136]) or through improving
an existing solution (see [27, 42, 80]). Li et al. [70] use the terms end-to-end
and step-by-step approaches to differentiate the two approaches while Falkner and
Schmidt-Thieme [38] use the terms construction and improvement.

The end-to-end or construction approach converts the routing problem to a
vehicle tour generation problem. This approach is the more popular approach
between the two. Although numerous authors have proposed newer and better
models, the methodologies adopted have the following commonalities:

1. Encoder-decoder network architecture (for e.g. Pointer Networks [88], Trans-
former [63]) with attention mechanism to encode the input nodes and decode
the output route node-by-node.

2. Embedding of input data such as the location of the nodes, demands at each
node and vehicles’ capacities in the encoder network.

3. Policy gradient algorithms (for e.g. REINFORCE [63, 88, 136] and Asychronous
Advantage Actor Critic (A3C) [88]) to train the network.

Meanwhile, for the step-by-step or improvement approach, the methodology
starts with an initial feasible solution and iteratively improve it through learning
to choose local search operators [80] or to select nodes to remove and insert into
the route [27, 42]. This type of approach combines RL and classical heuristics to
solve routing problems. Various network architectures are proposed to represent the
policy network such as Long Short-Term Memory (LSTM) [27], Graph Attention
Network (GAN) [42] or Multilayer Perceptron (MLP) with Attention [80]. The
policy network is then trained using either A3C [27], REINFORCE [80] or generic
Actor-Critic with Proximal Policy Optimization (PPO) [42].

Either approaches have both pros and cons. Construction approach can compute
solution quickly and more suitable for simpler problems like Travelling Salesman
Problem (TSP) or single-vehicle VRP. This is because the input to the learning
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model lacks contextual information that a complete solution can provide such as total
waiting time or total time violations. In addition, since the resulting action at every
juncture is next node to visit and no tentative complete solution is available, complex
routing constraints cannot be integrated [50]. Meanwhile, improvement approach
provides a better solution quality for more complex routing problems like VRP with
Time Windows (VRPTW), Dial-A-Ride Problem (DARP) and multi-vehicle VRP.
However, as with classical heuristics, improvement approach is time-consuming.

Many recent works on construction approach build upon the Attention Model
(AM) introduced by Kool et al. [63] to further enhance the capability of this approach
type to address more complex routing problems. For example, Multi-Agent Attention
Model (MAAM) [138] and Joint Attention Model (JAMPR) [38] address multi-vehicle
routing problems while Multi-Decoder Attention Model (MDAM) [136] extend the
original AM to efficiently explore more diverse solutions. In addition, by leveraging
more advanced deep learning architecture, Li et al. [71] introduces vehicle selection
decoder to solve Heterogeneous VRP (HVRP). As of the time that this thesis is
written, there are numerous other works either published or in the works that are
within this popular area of research.

2.6.2 RL Approaches to Solve Dynamic Routing and Schedul-
ing Problem

Most of the RL-based approaches mentioned above solve static routing problems
such as TSP, Capacitated VRP (CVRP), Split Delivery VRP (SDVRP), VRPTW,
Capacitated VRPTW (CVRPTW). Only Nazari et al. [88] evaluated its approach
on a DVRP.

Increasingly, there also have been many recent works that addressed the variants
of DVRP (see [25, 26, 28, 73]). Most of these works adopt a two-stage approach.
Chen et al. [28] uses the terms dispatching-level and routing-level while Chen et al.
[25] uses the terms dispatch policy and matching policy to describe each component
of the two-stage approach. In a two-stage approach, the problem is decomposed
into two stages and solved one after another. The first stage involves learning the
assignment/dispatch policy to determine which agent or vehicle or machine to be
selected. In this stage, several RL algorithms are proposed such as Actor-Critic[28],
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Deep Q-Network (DQN) [26], Double DQN (DDQN) [73] or QMIX [25]. After which,
routing/scheduling decision is executed based on the decision made in the first stage.
In this second stage, the decision is either computed using an exact method or a
heuristic. This is done to reduce the action space.

2.6.3 MARL Approaches to Solve Multi-Agent Dynamic
Routing and Scheduling Problem

We focus our discussion on cooperative Multi-Agent RL since the nature of the
problems that this thesis seeks to address are leaning more towards cooperative
rather than adversarial. The research in cooperative MARL has been to address
the following two main challenges namely partial observability and scalability. The
concept of Centralized Training Decentralized Execution (CTDE) was introduced to
address the partial observability and since have been leveraged by many popular
MARL algorithms such as COMA [40] and MADDPG [79]. To further address
scalability, many works such as Value Decomposition Network (VDN) [115], QMIX
[100] and QTRAN [113] propose value function factorization based on Individual
Global Max (IGM) assumption on top of CTDE to learn decentralized policies.

Current cooperative MARL approaches fall short in addressing sequential decision
problems with complex action (such as routing and/or scheduling) directly. For
instance, VDN, QMIX and COMA only solve problems with discrete actions while
MADDPG addresses problems with continuous actions. Current MARL approaches
solve routing and/or scheduling problem either by decomposing the complex action
into two stages and learn the policy in one of the stages, defining the actions to be
either discrete or continuous, or combining both approaches.

• Two-stage approach. Chen et al. [25] proposed DeepFreight, a model-free
DRL-based approach to solve multi-transfer freight delivery. To solve the
problem, the authors decompose the problem into two stages: truck-dispatch
and request-matching and leverage on QMIX to learn the dispatch policy
while implement a separate matching algorithm for the second stage. Similarly,
Chen et al. [26] solve a same-day delivery problem with vehicles and drones
by decomposing the problem into two stages: assignment and routing. The
authors propose a deep Q-learning approach to learn the assignment policy
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and update the routing via heuristic.

• Redefine action. To solve a dynamic train timetabling problem, Li and
Ni [72] propose a Multi-Agent Asynchronous Actor Critic (A2C) approach.
Instead of defining the action as complex action (i.e. rescheduling), the authors
define a discrete action in the form of integer-typed dwell time i.e. how long a
train stops at a certain station before moving on. In a similar fashion, Zhang
et al. [137] solves job shop scheduling by defining the action as a dispatch
action instead of defining a complex action (i.e. scheduling).

• Combination. Chen et al. [28] decomposes a dynamic courier dispatch
problem into two stages namely dispatch and routing stage. The authors
propose an MARL approach to learn the dispatch policy and define a discrete
action space consisting of a cartesian product of the next grid to visit and the
corresponding period of stay in the grid. Ma et al. [81] propose a hierarchical
approach to solve dynamic pickup and delivery problems by introducing two
levels of agent. The first agent learns a policy to decide which orders to be
released while the second agent learns a policy to choose a local search operator
to reroute the vehicles. Both stages involve discrete actions.

To coordinate amongst agents, various works focus on the aspect of learning to
communicate in cooperative setting such as when communication is needed [54],
what and who to communicate with [33] and how to represent the communication
network [11, 53].

However, communication alone does not guarantee coordination especially when
agents act simultaneously [106]. Acting simultaneously in the context of multi-
agent dynamic routing and scheduling problem is not ideal because it may cause
uncoordinated actions resulting in poor event-handling decision. For example, in
patrol scheduling problem, there may be scenarios where no agent or more than
one agent respond(s) to an incident and this would result in an unattended incident
or delays as agents may be waiting to attend incidents that have already been
responded by other agent.
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2.7 Motivating Problems
This section provides detailed descriptions of the motivating problems and discusses
some related works pertaining to solution approaches to such problems.

2.7.1 Same-Day Delivery Routing Problem

We consider a real-time planning problem in urban logistics in which changes to the
routes and tasks are required in response to dynamic events. For example, customers
may add or cancel requests throughout the day; travel or service times may change
drastically due to traffic congestion; order amounts or demands may need to be
modified. To ensure customers’ demands are met, logistics service providers need to
dynamically respond to these changes quickly.

More precisely, we consider a dynamic multi-vehicle same-day delivery routing
problem with time windows and both known (i.e. fixed) and stochastic customers.
This problem is essentially a DVRP with stochastic customers. Azi et al. [3] were
the first to formulate same-day delivery problem as a DVRP. Since then, there were
many other works that study such variant of DVRP (see [62, 124, 127]).

2.7.2 Dynamic Bi-Objective Police Patrol Dispatching and
Rescheduling Problem

In policing, occurrences of unexpected incidents often disrupt the execution of an
existing plan. Police patrol agents need to be dispatched and patrol schedules need
to be adapted to respond to dynamically-occurring incidents while fulfilling the
two often conflicting objectives of projecting police presence (proactive patrol) and
responding to incidents in a timely manner (reactive patrol). In addition, such
complex decisions need to be made rather quickly and sometimes instantaneously.
To add to the complexity and practicality to the problem, changes to the existing
schedules need to be kept as minimal as possible.

We define this real-world problem as a Dynamic Bi-Objective Police Patrol
Dispatching and Rescheduling Problem (abbrev. DPRP) which is a variant of DVRP
with some elements of a university time-tabling problem.
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2.7.2.1 Police Patrol Routing Problem

DPRP belongs to a larger class of problem called police patrol problem. There are
many aspects within the scope of police patrol problem ranging from designing of
patrol district, resource allocation within a district, route design to combinations
of any of these elements [107]. The discussion in this thesis will be mainly on the
routing and scheduling aspects of the problem.

Many existing works on police patrol problem adopt the hotspot patrol strategy
which mainly addresses the reactive patrol aspect. Such approaches typically begin
by predicting crime hotspots spatially and temporally based on past data and then
allocating police resources accordingly (see [23, 60, 69, 87]). However, there is a gap
in current literature in addressing proactive patrol. One such work that addresses
both aspects is [129]. The authors addressed the dual objectives by decomposing
the problem into two sub-problems.

Meanwhile, most existing works on police patrol routing or scheduling assume
routes and schedules are fixed and none takes into account the disruption to the
existing routes or schedules after incident response. Therefore, this thesis serves as
the first work in the literature to address the dynamic version of the police patrolling
problem while taking into consideration both proactive and reactive patrolling.

There is also another stream of works that represents the police patrol routing
problem as Stackelberg Security Games (SSG) [18, 125]. However, Rosenfeld and
Kraus [105] pointed that SSG may not always be applicable to all patrol context.
SSG assumes the existence of an attacker-defender relationship which may not
always be present in many problem settings. Police handles a variety of incidents
ranging from traffic incidents, maintaining order and crowd control or providing
general assistance to public. This paper assumes a problem setting where incidents
happen rather randomly instead of being triggered by a strategic intent to outwit
the police.

2.7.2.2 Multi-Agent DPRP

Multi-Agent DPRP or MADPRP in short is a multi-agent extension to DPRP. In
MADPRP, there are multiple police sectors consisting of multiple police patrol
teams within each sector. We define these sectors as agents. Each police sector
is in-charge of patrolling their local patrol areas throughout a given shift. At the
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start of the shift, each patrol team in each sector is assigned to an initial patrol
schedule. Throughout the shift, incidents occur dynamically across the different
patrol areas across different sectors. Patrol team needs to be dispatched to respond
to each incident resulting in disruption to the initial schedules. Coordination is
crucial in this problem as patrol teams can cross over to other sectors to respond to
an incident and perform routine patrol so as to ensure that incidents are responded
within target time and all patrol areas are sufficiently patrolled.

This is a new multi-agent variant of a DVRP without any prior works. Existing
approaches to solve multi-agent version of DVRP are very specific to transportation
or logistics problem scenarios (see [78, 130]).

2.7.3 Multi-Party Vehicle Routing Problem with Location
Congestion

Business-to-Business (B2B) pickup-delivery operations to and from commercial or
retail locations involving multiple parties, commonly referred to as LSPs, more often
than not cannot be done in silos. Resource constraints at these locations such as
limited parking bays can cause congestion if each LSP adopts an uncoordinated,
selfish planning. Thus, some form of coordination is needed to deconflict the schedules
of these LSPs to minimize congestion thereby maximizing logistics efficiency. This
research is motivated by a real-world problem of improving logistics efficiency in
shopping malls involving multiple independent LSPs making B2B pickups and
deliveries to these locations in small, congested cities where space is scarce.

Collaborative planning for vehicle routing is an active area of research and had
been shown to improve efficiency, service level and sustainability [41]. However,
collaborative planning assumes that various LSPs are willing to collaborate with each
other by forming coalitions, exchanging of information and/or sharing of resources to
achieve a common objective. Ideally if we have one single agent who can control the
routes and schedules of multiple LSPs with complete information and collaboration
amongst the LSPs, we may achieve some form of system optimality. However, an
unintended outcome is that some LSPs may suffer more loss than if they adopt their
own planning independently. Moreover, such centralized approach is not scalable
and not meaningful in solving the real-world problems, since LSPs may not always
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(a) There are limited resources at each of the
location.

(b) There exist multiple independent LSPs
in the environment. The limited resources at
each location are shared among the multiple
LSPs.

Figure 2.3: Single-LSP VRP with Location Congestion and the multi-LSP version
of the problem.

be willing to collaborate with one another. In a non-collaborative context, LSPs are
independent entities who can only make decision locally in response to other LSPs’
decisions and they do not interact directly with each other to collaborate or make
joint decision.

The underlying problem can be seen as a Vehicle Routing Problem with Pickup
and Delivery, Time Windows and Location Congestion with multiple LSPs (or
ML-VRPLC in short) (see Figures 2.3a and 2.3b).

2.7.3.1 VRP with Location Congestion

VRP with Location Congestion (VRPLC) is essentially a variant of a classical VRP
with Pickup and Delivery, and Time Windows (VRPPDTW) but with cumulative
resource constraint at each location [64]. Resources can be in the form of parking
bays, cargo storage spaces or special equipment such as forklifts (see Figure 2.3a).
VRPLC can be considered as a VRP with resource synchronization [37].

In VRPLC, there are temporal dependencies between routes and schedules that
do not exist in classical VRPs. In classical VRPs, arrival times of vehicles are merely
used to ensure time window feasibility. In VRPLC, changes to the time schedule
of one route may affect the time schedule of another routes in the form of wait
time or time window violation. Many existing approaches to VRP do not take into
consideration this relationship between routes and schedules.

Lam and Van Hentenryck [64] proposed a branch-and-price-and-check (BPC)
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Figure 2.4: ML-VRPLC as a Multi-Party VRP and Multi-Agent Planning Problem.

approach to solve a single-LSP VRPLC. It is inspired by a branch-and-cut-and-
price method for VRPPDTW [103] and combines it with a constraint programming
subproblem to check the VRPPDTW solutions against the resource constraints.
However, BPC approach can only find feasible solutions for instances up to 150
pickup-delivery requests and proves optimality for up to 80 requests given a time
limit of 2 hours. Therefore, this approach is not scalable when applied directly
to solve ML-VPRLC since pickup-delivery requests are usually in the region of
hundreds per LSP and for our problem setting, solution is expected within a region
of 1 hour due to operational requirement. In addition, a direct application of BPC
to ML-VRPLC assumes a fully centralized, collaborative planning approach which
we have concluded earlier that it may not be practical and not meaningful.

2.7.3.2 ML-VRPLC

ML-VRPLC can be considered as a problem belonging to an intersection between
two main, well-studied research areas namely Multi-Party VRP and Multi-Agent
Planning (MAP). Existing approaches to Multi-Party VRP and MAP can broadly
be categorized based on the degrees of collaboration and cooperation respectively.
Based on our understanding of our problem setting, approaches to ML-VRPLC
should fall within Quadrant 3 (see Figure 2.4). In the following paragraphs, we
discuss existing works that are relevant to solving ML-VRPLC.
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ML-VRPLC as a Multi-Party VRP. To solve VRPs involving multiple parties
similar to ML-VRPLC, many existing works in the literature focus on collaborative
planning approaches. Gansterer and Hartl [41] coined the term collaborative vehicle
routing and it is a big area of research on its own. Collaborative vehicle routing can
be classified into centralized and decentralized collaborative planning. The extent
of collaboration ranges from forming of alliances or coalitions (for e.g. [30, 47]) to
sharing of resources such as sharing of vehicles or exchanging of requests through
auction (for e.g. [31, 131]). Many of the existing works in forming of coalitions and
auction mechanism fall within Quadrants 2 and 4 respectively. However, we have
established earlier that existing works in this area are not directly applicable to our
problem due to the non-collaborative nature of the LSPs.

ML-VRPLC as an MAP Problem. MAP is simply planning in an environment
where there exist multiple agents with concurrent actions. Approaches to MAP can
be further categorized into cooperative and non-cooperative domains although most
MAP problems lie in between the two domains.

1. Cooperative Domain. Cooperative MAP involves agents that are not self-
interested and are working together to form a joint plan for a common goal
[117]. Thus, existing approaches in this category fall within Quadrants 1 and 2.
Brafman and Domshlak [15] introduced MA-STRIPS, a multi-agent planning
model on which many cooperative MAP solvers are based on. Nissim et al. [91]
proposed a two-step approach consisting of centralized planner to produce local
plan for each agent followed by solving a distributed constraint satisfaction
problem to obtain a global plan. Meanwhile, Brafman et al. [16] introduced
the concept of planning games and propose two models namely coalition-
planning games and auction-planning games. Those two models assume
agents collaborate with each other through forming of coalitions or through an
auction mechanism; similar to the approaches within the collaborative vehicle
routing domain. In general, the approaches in this domain essentially assume
cooperative agents working together to achieve a common goal.

2. Non-Cooperative Domain. Planning in the context of multiple self-
interested agents where agents do not fully cooperate or collaborate falls
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into the domain of non-cooperative game theory. MAP problem can be for-
mulated as strategic game where agents interact with one another to increase
their individual payoffs.

Lambert Iii et al. [67] proposed a sampled fictitious play algorithm as an
optimization heuristic to solve large-scale optimization problems. Optimization
problem can be formulated as a n-player game where every pure-strategy
equilibrium of a game is a local optimum since no player can change its
strategy to improve the objective function. Fictitious play is an iterative
procedure in which at each step, players compute their best replies based on
the assumption that other players’ actions follow a probability distribution
based on their past decisions [17]. This approach had been applied to various
multi-agent optimization problems where resources are shared and limited
such as dynamic traffic network routing [43], mobile units situation awareness
problem [66], power management in sensor network [21] and multi-agent
orienteering problem [24].

Meanwhile, Jonsson and Rovatsos [59] proposed a best-response planning
method to scale up existing multi-agent planning algorithms. The authors
used existing single-agent planning algorithm to compute best response of each
agent to iteratively improve the initial solution derived from an MAP algorithm.
It is scalable compared to applying the MAP algorithm directly to an MAP
planning problem. However, the authors evaluated their proposed approach
only on standard benchmark problems such as those found in the International
Planning Competition (IPC) domains. On the other hand, De Nijs et al.
[35] applied a similar best-response planning approach to a real-world power
management problem.
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Chapter 3

RL Approach to Solve Dynamic Rout-
ing and Scheduling Problem
In this chapter, we introduce a new RL-based solution approach that combines
value function approximation step with heuristic to solve dynamic routing and
scheduling problems. Our proposed approach addresses the multi-dimensional
nature of routing/scheduling action without decomposing the action into two stages
namely dispatch/assign and reroute/reschedule. We evaluated this proposed solution
approach against two real-world problems of different domains with slightly different
problem settings, namely:

1. Dynamic multi-vehicle same-day delivery routing problem with time windows
and stochastic customers. This problem is essentially a DVRP with stochastic
customers.

2. Dynamic Bi-Objective Police Patrol Dispatching and Rescheduling Problem
(abbrev. DPRP). This problem is a variant of DVRP with stochastic customers
with dual objectives and some elements of a university time-tabling problem.

3.1 Motivation
Current DVRP approaches in the literature fall short when comes to dealing with
real-world dynamic problem settings. Rerouting and rescheduling decisions need
to be computed quickly and sometimes instantaneously. Current approaches in
the OR community are mainly sampling-based/online approaches which reportedly
take the order of 100 seconds per decision [127]. On the other hand, most offline,
MDP-based approaches that adopted Value Function Approximation (VFA) method
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only managed to solve single vehicle problems without any additional constraints like
time windows or capacity. Approximate Value Iteration (AVI), the most common
offline approach in OR community, relies on Monte Carlo method to update the
learned value function which is not sample efficient and require training episodes
in the magnitude of millions [122, 124]. In addition, look-up based AVI may not
extend well for more complex problems due to larger state space.

RL is a natural fit to solve DVRP because DVRP is essentially a sequential
decision-making problem and can be formulated as MDP. In addition, RL is model-
free and learning is done via interacting with environment without the need to know
or model the statistical distribution of dynamic event which is unknown in real-world
context. RL facilitates offline learning of policies and values, which are computed
beforehand and can be quickly executed during run-time for for instantaneous
decision-making.

Current state-of-the-art RL approaches to solve routing problem can only handle
static problems with simple routing constraints. None takes into consideration the
temporal elements of a route (i.e. schedule). Meanwhile, most RL-based approaches
dealing with dynamic variant of routing and scheduling problems decompose the
problems into two stages (see Section 2.6.2). None of the work directly addresses
the routing/scheduling action which is multi-dimensional in nature. Meanwhile,
solution approaches that combine heuristic and learning to solve COPs are not new
(see [116]). However, existing works that combines RL with heuristic mainly solve
static routing and scheduling problems [27, 42, 80].

The proposed solution approach in this chapter of the thesis aims to address the
gaps mentioned above.

3.2 VFA via TD Learning with Heuristic
Our proposed solution approach combines Deep RL (specifically neural networks-
based Temporal-Difference (TD) learning with experience replay) to approximate
the value function and a heuristic to compute rerouting/rescheduling decision. Deep
RL-based method uses neural networks to approximate the value function and
the corresponding parameters of the networks are tuned based on the observed
rewards over many training episodes. There is no need to make assumption on the
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Figure 3.1: VFA via TD Learning with Heuristic.

underlying relationships between the features in the states. In addition, compared
to lookup-based ones like AVI (see Section 2.5.2), VFA via non-parametric models
such as neural networks is a popular choice for more complex problems because they
are able to handle larger state space. As shown in Figure 3.1, our solution approach,
comprises two phases namely training phase and run-time.

3.2.1 Training Phase: Value Function Approximation

We propose to approximate the value function for each post-decision state, V̂ (Sx
k , θ)

with neural networks. To learn the parameter θ, we propose the use of on-policy
TD learning with experience replay.

Algorithm 1 describes how our proposed neural networks-based TD learning
with experience replay algorithm approximates the value function. This algorithm
is adapted from the vanilla version of Deep Q-Network (DQN) with experience
replay [84] with V (Sx, θ) replacing Q(S, x, θ) at lines 10, 15, 19 and 20 since we are
approximating the value function instead of the state-action value or Q-function.
Similar to DQN, two value function networks are used to deal with non-stationarity
of the target network and experience replay to ensure that randomly selected samples
are independent. However, another difference is that this proposed algorithm is
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on-policy while DQN is off-policy (see difference in line 15). Mini-batch gradient
descent is used to update the parameter of target network as shown in line 19. In
addition, a routing or scheduling heuristic is used in line 10 to choose the optimal
rerouting or rescheduling decision since computing the ’true’ arg max involves brute
force enumerating of all possible rerouting or rescheduling sequences.

Unlike the two-stage approach that is commonly adopted in the literature, this
approach learns the dispatch/assignment and rerouting/rescheduling policies jointly
because the value function represents the value of a state after executing both
decisions. The advantage is that the learned value function is utilized by the
heuristic to search for better decision. Thus, the heuristic is also learning and
adapting. Meanwhile, in two-stage approach, the heuristic only provides the reward
signal to learn the dispatch/assignment policy but the learned policy does not inform
how the heuristic works. Thus, there is in fact no learning in the second stage.
However, the downside of this proposed approach is that it is more time-consuming
than the two-stage approach. Nevertheless, we show in our experiments that our
joint approach results in better quality solution within operationally realistic time
limit for moderately-sized problems.

This proposed solution approach provides a general framework that is flexible to
accommodate any learning algorithms (must be value-based) and heuristics.

Why Approximate Value Function? We chose an algorithm that approximates
the value function instead of Q-function. This is deliberately chosen to fit the
context of our problem. In dynamic routing and scheduling problem, a decision
involves a rerouting/rescheduling of the remaining routes or schedule which does
NOT consist of an explicit action per se. As shown in Figure 3.2, in the context
of DVRP with stochastic customers, the decision in response to new customer 6
is not merely choosing the position for insertion but it can also include swapping
of existing customers’ positions. This means that the action space is exponentially
large with respect to number of customers, since every scenario consists of different
possible actions due to different possible lengths of routes and different possible
customer locations. Zhang and Dietterich [139] concluded that Q-function is not
suitable in problem settings where the actions are largely dependent on the current
states like job scheduling problems. Specifying the Q-value of each action is not

33



CHAPTER 3. RL APPROACH TO SOLVE DYNAMIC ROUTING AND
SCHEDULING PROBLEM

Algorithm 1: VFA via TD Learning with Experience Replay
Input : No. Simulation Runs N , Replay Memory D, Initial Value

Function V with random weights θ, Initial Target Value Function
V̂ with random weights θ−

Output : θ
1: i = 1
2: while i ≤ N do
3: Initialise S0 with the initial route/schedule
4: k = 1
5: while Sk ̸= SK do
6: if new event = True then
7: Sk ← (Sx

k−1, ω)
8: With probability ϵ select a random decision xk

9: Otherwise
// use heuristic to find the optimal feasible decision xk

10: xk ← arg maxx∈X(Sk){R(Sk, x) + γV (Sx
k , θ)}

// proceed with the updated route/schedule
11: Sx

k ← (Sk, xk)
12: Store transition (Sk, Sx

k , R(Sk, xk)) in D
13: Sample random minibatch of transitions (Sj, Sx

j , R(Sj, xj)) from
D

14: if Sx
k ̸= SK then

15: yj ← R(Sj, xj) + γV̂ (Sxj

j , θ−)
16: else
17: yj ← R(Sj, xj)
18: end
19: Perform a gradient descent on (yj − V (Sxj−1

j−1 , θ))2 with respect to
parameter θ

20: Reset V̂ = V for every C steps
21: else

// proceed with the existing route/schedule
22: Sx

k ← Sk

23: end
24: k ← k + 1
25: end
26: i← i + 1
27: end
28: return θ
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Figure 3.2: A rerouting decision is more than insertion of new customer and may
include swapping of existing customers.

possible since action space changes depending on the current state. This also means
that off-policy TD learning method like Q-learning and policy gradient method may
not be applicable directly since the action space changes depending on the current
state. Meanwhile, Powell [96] proposed the use of VFA around the post-decision
state and showed that VFA using the post-decision state is equivalent to Q-learning.
However, the advantage of VFA using the post-decision state is that it can handle
multi-dimensional decision variables. The exact proof and explanation can be found
in Chapter 4 of [96]. Thus, we conclude that approximating the value of a post-
decision state using on-policy TD learning is more suitable for this problem setting
where the action is multi-dimensional.

3.2.2 Run-Time: Rerouting/Rescheduling Step

The learned value function is subsequently utilized by the rerouting/rescheduling
heuristic to generate the revised routes or schedules during run-time. Heuristics are
chosen for fast computation and real-time decision-making. As shown in Figure 3.1,
a routing or scheduling heuristic is used to choose the optimal rerouting/rescheduling
decision since computing the ’true’ arg max involves brute force enumerating of all
possible rerouting/rescheduling sequences.
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3.2.3 State Representation

As mentioned in Section 2.5.2, similar to ADP, value-based RL approach face curse
of dimensionality in terms of the state space. Due to the large state space, the post-
decision states are usually aggregated or represented based on certain handcrafted
features. It is important to find features that exploit the structure of the problem
and are able to sufficiently differentiate between two distinct states which may
require two different policies. Another way to reduce the state space is is to build an
encoder network to transform input data to low-dimensional vectors so as to allow
machine to directly learn the key features. The choice is problem-dependent and
this thesis proposes a hybrid approach to leverage the strength of machine while not
ignoring human expert inputs completely.

3.3 Application 1: Same-Day Delivery Routing
Problem

We first evaluate this proposed approach on a dynamic multi-vehicle same-day
delivery routing problem with time windows and stochastic customers. This problem
is essentially a DVRP with stochastic customers.

3.3.1 Problem Description and Model

Table 3.1 provides the set of key notations and the corresponding descriptions used
in this problem.

3.3.1.1 Problem Description

We are given a fleet of M identical vehicles initially located at the depot at the
start of the day. Each vehicle has an initial route βm(0) consisting of a sequence of
customer orders, C0 to fulfill for that particular day. Every route starts and end
at the depot. Every order has a delivery time window [en, ln]. In addition, there
is a lunch hour when no delivery can be made. A waiting time is incurred if the
vehicle either arrives early or during the lunch hour. Throughout the day, new
orders arrive from a set of stochastic order, Cr. An action/decision xk is selected
to modify a route assigned with the new order(s). Delivery later than the time
window upper bound incurs a penalty cost per unit time violated. The objective is
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Table 3.1: Set of notations used in the same-day delivery routing problem.

Notation Description
M Set of identical vehicles, M ∈ {1, ..., M}

Depot is set as location 0.
δm(k) A route or sequence of remaining locations to visit by vehicle m at

decision epoch k.
δx

m(k) A route or sequence of remaining locations to visit by vehicle m after
executing decision x at decision epoch k.

βm(k) A route or sequence of locations to visit and visited by vehicle m updated as of
decision epoch k.

βx
m(k) A route or sequence of locations to visit and visited by vehicle m after executing

decision x at decision epoch k.
vlocm(k) Location of vehicle m at decision epoch k.

t(k) Time at decision epoch k.
Ck Set of realized orders updated as of decision epoch k.
Cr Set of stochastic orders.

CSn(k) Order status of customer order n at decision epoch k.
[en, ln] Delivery time window at customer location for order n.

τ(δm(k)) Total travel time of vehicle m when following route δm(k).
τ(βm(k)) Total travel time of vehicle m when following route βm(k).

wait(δm(k)) Total waiting time of vehicle m when following route δm(k).
wait(βm(k)) Total waiting time of vehicle m when following route βm(k).
pen(δm(k)) Total penalty cost for time windows violation of vehicle m when following

route δm(k).
pen(βm(k)) Total penalty cost for time windows violation of vehicle m when following

route βm(k).

to minimize the sum of total travel and waiting times of all vehicles and penalty
cost for time window violations. In this problem, we focus on insertion of new
orders rather than cancellation since both warrant similar approach and insertion is
more challenging and interesting than cancellation. In addition, in order to simplify
discussion, we assume that a new request can be served without considering its
pickup. Incorporating pickup is fairly straightforward, since we are making route
changes within a single vehicle.

3.3.1.2 Model Formulation

We model this dynamic multi-vehicle same-day delivery routing problem with time
windows and stochastic customers as a route-based MDP.

Decision Epoch. A decision epoch or decision point k occurs at every time step
t(k). This means that dynamic event can take place at any time throughout the
time horizon. Thus, by this definition, k is equal to t(k). This definition of decision
epoch is chosen to simulate real-world environment where dynamic events can take
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place at any time and also to facilitate modelling the arrival rate of these events.

State. A state of the MDP consists of two parts, pre-decision state Sk and post-
decision state Sx

k . Sk captures the necessary information required such as the current
time, locations of all the vehicles, the remaining routes of all the vehicles and the
statuses of all the realized orders. Sk is represented as the following tuple:

Sk = ⟨t(k), vloc(k), δ(k), CS(k)⟩ (3.1)

where the locations of all vehicles, vloc(k) = (vlocm(k))m∈M , the remaining routes
of all vehicles, δ(k) = (δm(k))m∈M and the order statuses of all orders, CS(k) =
(CSn(k))n∈Ck

. The post-decision state Sx
k captures the changes to the state upon

executing a decision. t(k) remains the same while the other three components are
updated depending on the decision taken.

Action/Decision. xk at decision epoch k is the action of updating the remaining
route of the vehicle which is assigned to serve the new order. The route of the chosen
vehicle m, δm(k) is revised to δx

m(k) after executing xk ∈ X(Sk) where all orders
should be delivered within [en, ln]. Note that the time window is a soft constraint
while lunch hour period is a hard constraint. We also assume that there is no
swapping of customer orders among vehicles as the load picked up for a particular
customer order must be delivered to the respective customer.

Transition. There are two main transitions in the model namely, from pre-decision
state, Sk to post-decision Sx

k and from Sx
k to the next pre-decision state, Sk+1. The

transition from Sk to Sx
k has been mentioned in earlier. Meanwhile, during transition

from Sx
k to Sk+1, a realization of new order, ω takes place, and Ck+1 is updated by

adding the new order to Ck and Sk+1 = (Sx
k , ω) where ω ∈ Cr.

Reward Function. The reward function, R(Sk, xk) is defined as the incremental
increase in total cost of being in state Sk and choosing decision x. Cost(Sk, x) is
defined as the total cost (i.e. travel plus wait plus time window violation) when
choosing decision x at state Sk. Figure 3.3 illustrates how this reward function is
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Figure 3.3: Illustration on how the reward function and approximate value function
are derived.

derived.

Cost(Sk, x) =
M∑

m=1
τ(βx

m(k)) + wait(βx
m(k)) + pen(βx

m(k)) (3.2)

R(Sk, xk) = Cost(Sk, xk)− Cost(Sk−1, xk−1) (3.3)

Value Function. The value function equation, V (Sx∗
k ) can be approximated to

the following Bellman Equation:

V̂ (Sx∗

k ) = minx∈X(Sk){R(Sk, x) + γV̂ (Sx
k )} (3.4)

The goal is to minimize the expected future cost over the planning horizon. In other
words, given a state Sk, select decision x that returns the minimum V̂ (Sx∗

k ). As
shown in Figure 3.3, the approximated value function (for e.g. V̂ (S1, x1)) would
take into consideration expected the future rewards from yet-to-realized dynamic
events.
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Figure 3.4: Framework of the proposed approach, DRLSA with SA to compute
rerouting decision.

3.3.2 Solution Approach: DRLSA

We refer our proposed solution approach as Deep Reinforcement Learning with
Simulated Annealing (DRLSA) as we adopt SA to be the rerouting heuristic (see
Figure 3.4). The learnt value function approximate is subsequently utilized by a
SA algorithm to generate the revised routes during run-time. Due to large state
space, a state representation based on the cost of the remaining routes of vehicles
and current time is used to capture the spatial and temporal attributes of the state.

3.3.2.1 Value Function Approximation

During the training phase, we use a set of historical delivery plans to simulate the
initial delivery plans and, depending on the value of Degree of Dynamism (DoD),
a percentage of the orders in the plan is randomly removed and these orders are
added subsequently as realizations of new orders. This is done to simulate dynamic
events. This offline simulation outputs the approximated value function for each
post-decision state, V̂ (Sx

k , θ) in a form of neural networks (see Figure 3.5). The bulk
of the computational time of this approach is during this training phase; and during
execution, the run time is spent on SA to generate the changes to the routes.
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Figure 3.5: Approximate value function that incorporates both assignment and
routing decisions.

3.3.2.2 Routing Optimization via SA

During the run-time phase, a set of scenarios of daily delivery plans and dynamic
realizations of stochastic new orders are presented. Our approach utilizes the
approximate value function from the training phase to compute value of each
decision explored during the SA search. As shown in Figure 3.4, x∗

k is modified using
SA taking into account both immediate cost plus expected future reward computed
by the approximate value function, V̂ (Sx

k ). We note that many routing heuristics
can be used to optimize the routes. In this work, we picked SA due to its efficiency
and effectiveness to provide fast quality solution for vehicle routing problems [29,
93]. The focus of the work is not to find the best heuristics for routing, but a flexible
solution framework which enables different heuristics to be used in optimizing the
routes.

3.3.2.3 State Representation

To exploit the structure of this problem, we propose a state representation based on
the total cost of the remaining routes of the vehicles and the current time at the
point of decision-making. We show that the cost of the remaining routes of vehicles
can serve as proxy to the sequence of the routes and time window requirements.
This state representation captures both spatial and temporal features which impact
decision-making.

Our proposed state representation consists of the current time and the cost of
the remaining routes of the vehicles at decision epoch k which includes the penalty
cost for time window violations for each vehicle. The proposed state representation
is shown below:
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S ′x
k = ⟨t(k), Costremain(Sk, x), Costpenalty(Sk, x)⟩ (3.5)

where Costremain(Sk, x) = (Costremain,m(Sx, k))m∈M

Cost(remain,m)(Sk, x) = τ(δx
m(k)) + wait(δx

m(k))

Costpenalty(Sk, x) = (Costpenalty,m(Sk, x))m∈M

Cost(penalty,m)(Sk, x) = pen(δx
m(k))

Time. t(k) is an important temporal feature in the problem because the earlier
the decision point during run-time, the more likely there will be new stochastic
requests in the future and thus, the anticipatory value for future rewards is higher.
The same principle applies when t(k) happens later during run-time.

Cost of Remaining Routes. The rerouting decision to the existing route does
not depend on the previous visited locations prior to decision point k. This is
because the immediate and future rewards only depend on the remaining routes.

Specifying the exact remaining routes of the vehicles, δ(k) may result in a very
large state space. The proposed state representation uses the cost of remaining
routes, Costremain(Sk, x) as a proxy to for the routes. For example, the cost of route
[3, 4, 5, 0] is different from [3, 5, 4, 0] and this sufficiently differentiate the routes.
There may be scenarios where the cost of two routes may be the same even though
the exact sequences of the routes are different. However, this is not a concern since
rerouting decision is dependent on the immediate reward and the post-decision state
which are different in both scenarios. For example, inserting Customer 6 at the
second position (i.e. [3, 6, 4, 5, 0] and [3, 6, 5, 4, 0] respectively) will result in different
immediate rewards and post-decision states in both scenarios.

Penalty Cost. State representation also needs to capture the time window re-
quirements. Assuming two different new orders with the same location but different
time windows requirements, inserting these two orders at the same exact position in
a route may result in different reward and post-decision state. This is because the
penalty costs for the time window violations are different. Thus, the total penalty
cost can serve as a proxy for the time window requirement.
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3.3.3 Experiments

The objective of the experiment is to evaluate the performance of DRLSA against
other existing algorithms, both offline and online. We evaluate these approaches
based on how much improvement they achieve over the pure re-optimization method
i.e. myopic approach.

3.3.3.1 Benchmark Algorithms

Approximate Value Iteration. Algorithm 7 in Appendix A.1 shows the AVI
algorithm adapted from [124] for the problem setting of this problem. Cumulative
observed rewards are used to approximate the future expected rewards of a state
(lines 12 and 16). We use SA as routing heuristic to compute the arg min in line 7
and same state representation for a fairer comparison.

Multiple Scenario Approach. MSA with consensus algorithm used in this
experiment is adapted from [8, 9]. MSA does not have training phase and is directly
applied during the run-time. The main idea of this algorithm is to find the optimal
route at every decision point by sampling lookahead scenarios and compute the
decision that returns the lowest average total cost across the samples.

Algorithm 8 in Appendix A.2 details how this algorithm is applied during the
run-time. At every decision point k, J samples of future new requests are collected
(line 8). For every sample, an optimal route is calculated assuming that all the future
new requests until k + H are known at k (line 9). We also use SA as the routing
heuristic to compute the optimal route. The resulting optimal route from each
sample is stored with the sampled future new orders removed (line 10). This will
represent one possible rerouting decision. Across many samples, unique rerouting
decisions are stored and the average total cost is calculated for every unique decision
or route (line 11). Route with the lowest average total cost will be selected as the
best decision (line 14).

Myopic Approach. This approach is simply choosing a decision that gives the
minimal immediate total rewards. SA is used here to compute the rerouting decision.
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3.3.3.2 Experiment Design

We use 2-month’s worth of historical delivery data from a local Logistics Service
Provider (LSP) containing 48 customer locations. The data contains the daily
delivery plans generated by an optimization algorithm that minimizes travel time,
wait time, make span (the amount of time the vehicle is out during the delivery) and
penalty cost due to time window violations. The delivery data is split into training
(34 days) and test sets (10 days). 2 vehicles are used for this experiment with an
average of 22 daily orders.

For every test scenario, a random daily delivery plan from the test set is picked
as the initial routes of the vehicles. Depending on DoD, a percentage of the orders
in the initial plan is randomly removed and are added subsequently during the
simulation; following a Poisson process with λ = 1.75 as the rate of occurrences of
dynamic orders per hour. The spatial distribution of customers requesting these
new orders are based on probability distribution derived from the historical data.
We need to specify this distribution in running MSA and not for DRLSA or AVI as
these two methods will learn the underlying distribution during training.

Performance Measure. We use the percentage improvement in terms of the final
total cost that the approaches (DRLSA or AVI or MSA) can achieve over myopic as
the performance measure.

%improveDRLSA = CostDRLSA(SK)− Costmyopic(SK)
Costmyopic(SK) × 100% (3.6)

By this definition, the tested approaches must achieve a negative % improvement
if they are to result in lower cost. For simplicity’s sake and consistency with other
works in the literature, we report reduction in cost as positive value and increase in
cost as negative value.

Experiment Setup. The experiment consists of 3 phases. The 3 phases of
experiment are as follow:

• DRLSA vs. AVI. We use 3 different values of DoD, 0.3, 0.5 and 0.7. DoD

refers to the percentage of total orders that are dynamic. For each DoD,
we ran 20 experiment runs. Each experiment run consists of 50 daily test
scenarios.
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• DRLSA vs. MSA. We use only DoD = 0.7 with 100 test scenarios and
sample size, J = 50 and 100.

• Further Experimentations on DRLSA. We test DRLSA with larger DoDs
and larger problem scale.

The implementation codes are written in Python while PyTorch is used to build
and train the neural networks. The experiments are run on a local machine with
the following configurations: Ubuntu 18.04 with 6 CPU Cores and 16GB RAM.
The detailed descriptions of the simulator used to run the model can be found in
Appendix A.5.

Size of State Space. Based on the state representation in Equation 3.3.2.3, the
size of the state space based on the experiment settings can be estimated as follows:

• Time. Each planning horizon spans from 7am in the morning to 7pm midnight.
This translates to 720 minutes.

• Cost of Remaining Routes. Assuming a vehicle travel non-stop for the whole
of planning horizon, a route has a maximum cost of 720 minutes corresponding
to the duration of the planning horizon.

• Penalty Cost. Similarly, the total penalty cost represented by the total waiting
time and time violation has an upper bound value of 720 minutes.

Thus, the size of state space in our experiment can be estimated to be 7201+2×|M |.
However, the exact size of state space will be smaller since the cost of remaining
routes and penalty cost are not mutually exclusive and must add up to 720.

Model and Training Setup. DRLSA is a fully-connected neural network with 2
hidden layers with 64 nodes and 32 nodes respectively with a total of 2497 trainable
parameters (see Figure 3.6 for the detailed breakdown). Meanwhile, the dimension
of the input features are 5 assuming 2 vehicles. The input dimension size of 5
corresponds to the following state representation:

S ′x
k = ⟨t(k), Costremain,1(Sk, x), Costpenalty,1(Sk, x),

Costremain,2(Sk, x), Costpenalty,2(Sk, x)⟩ (3.7)
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Figure 3.6: The detailed breakdown of the sizes of the trainable weights at each
layer. fc denotes a fully-connected layer. The sum of all the weights is 2497.

We use ReLU as activation function and Adam optimizer to train the networks.
We experimented on various ranges of parameters such as number of hidden layers,
nodes, batch size, update and learn frequencies and learning rate. We empirically
evaluated and found that the following parameters resulted in the best performance
in terms of average total cost: batch size = 20, learn and update frequencies of once
in every 5 steps, learning rate = 0.001 and γ = 0.99. The value of ϵ in the ϵ-greedy
step is set to be decreasing as the number of training episode increases. Stochastic
Gradient Descent is used as the optimizer. For AVI, we use a constant value of
α = 0.1. For MSA, we set H as large number to simulate that all future requests
are known. SA is the default routing heuristic with the following dynamic cooling
function, T = Tmax × e−f( stepcurrent

stepmax
) where stepmax = 2500 and Tmax = 25000.

VFA via non-parametric function has an advantage over the table-based ones
because it may not need to observe all possible states and approximate the function
based on the observed ones. We observe that for DRLSA, the average % improvement
over myopic in the last 100 episodes begins to stabilizes after 2500 training episodes
(see Figure 3.7). Thus, we set the number of training episodes for DRLSA to be
3500 and 35000 for AVI. We show that even with less training episodes, DRLSA is
able to outperform AVI.

Assumptions. There are several assumptions used in modelling the DVRP en-
vironment. There is no capacity constraint, no new order after certain designated
time and no swapping of loads among vehicles once assigned. New orders can be
loaded from another customer locations so no depot returns are required. Vehicle
which is on the way to the next customer order needs to fulfill the order first. Travel
and service times are assumed to be static.
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Figure 3.7: Average % improvement over myopic in last 100 training episodes.

Table 3.2: Average % of improvement of DRLSA vs. AVI over different DoDs.

Method 0.3 0.5 0.7
Average% of improvement DRLSA -1.95% -0.98% 11.90%
over 20 experiment runs AVI 0.24% -1.25% -1.51%

3.3.3.3 Experiment Results

DRLSA vs. AVI. Table 3.2 provides the summary of the phase one results.
The proposed approach outperforms AVI for DoD = 0.7, achieving on average 12%
improvement over myopic. Figure 3.8 shows the average performances of DRLSA
and AVI over myopic over 20 experiment runs. Although the training time of DRLSA
is 4 times longer than AVI (DRLSA takes about 36 seconds/episode compared to
AVI which takes about 8 seconds), the computation time during run-time is almost
instantaneous (< 10 seconds/decision) for both.

We observe that AVI performs quite poorly for every DoD. This can be due
to the fact that the training episodes may not be sufficient for the algorithm to
approximate most or all possible state representations. AVI approximates value of
states that have never been encountered during training as 0 and this is equivalent
to myopic approach. It is no surprise that AVI results in near 0% improvement.
DRLSA does not perform better than myopic when DoD ≤ 0.5. This is expected as
lower DoD means new stochastic orders are less likely to occur and anticipating a
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Figure 3.8: Average % of improvement of DRLSA vs. AVI over different experiment
runs.

rarely occurring event becomes more challenging (which perhaps cannot be learnt).
Nevertheless, this experiment is able to show that DRLSA is able to achieve good
result even with small training episodes and with higher DoDs.

DRLSA vs. MSA. DRLSA achieves an average of 9.6% improvement over 100
test scenarios, outperforming MSA even with J = 100 and it is more than 10 times
faster in terms of computation time (see Table 3.3). MSA needs a very large sample
size in order to evaluate the rerouting decisions. To sample the instances of future
new requests in the next time horizon H, it needs to take into consideration a
combination of the locations of those requests, the arrival time of the requests and
the corresponding time window requirements. Therefore, the performance of online
approach like MSA depends on how good the stochastic model is in simulating the
future events. On the other hand, offline, learning-based approach such as DRLSA
is able to learn the underlying probability distribution of the dynamic events based
on historical data.

To our knowledge, there is no study in the literature that compares performance
between offline and online decisions approaches and no set of benchmark test
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Table 3.3: Average % of improvement and computation time per scenario for DRLSA
vs. MSA.

Average% of Improvement Average Computation Time
100 Test Scenarios per Scenario (in mins)

DRLSA 9.61% < 1
MSA (J = 50) 1.73% 3
MSA (J = 100) 2.20% 10

Table 3.4: Performances of DRLSA for increasing DoDs.

Method 0.6 0.7 0.8
Average % of improvement DRLSA 1.92% 11.90% 12.72%

over 20 experiment runs

parameters available. Nevertheless, based on our experiment, to outperform DRLSA,
MSA needs J >> 100 and even longer computation time.

Further Experimentation on DRLSA. We evaluate the performance of DRLSA
over higher DoDs and are able to show that DRLSA indeed performs better with
increasing DoDs (see Table 3.4).

To evaluate its scalability, we did further experiments with 3 and 4 vehicles with
average total daily orders of 30 and 40 respectively, The available datasets only
allow us to scale up to 4 vehicles with 40 total daily orders. Based on 20 experiment
runs, DRLSA achieves an average of 15.71% and 20.88% improvements over myopic
respectively.

3.3.3.4 Experiment Discussion

Ritzinger et al. [102] summarized the performances of various successful pre-processed
decision methods in the literature. For larger-sized customers (> 30), most ap-
proaches managed to achieve improvements in the region of 5%− 10% over myopic.
Our experiment shows that the performance of DRLSA is comparable with those
cited in that study. However, we note that the experiment setups across the papers
may be different.

This experiment also shows that our proposed approach, DRLSA is able to
outperform both AVI and MSA even with a relatively small number of training
episodes. AVI’s poor performance also reiterates our hypothesis that AVI may not
work well in complex problems with large state spaces (due to multi-vehicle and multi-
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constraints settings) even with state aggregation as a very large number of training
episodes (in the magnitude of millions) are required to reasonably approximate the
value function of most of the states. The experiment also shows that offline approach
like DRLSA is more suited than the online counterparts like MSA for problem setting
that requires instantaneous decision-making such as same-day delivery operations.

3.4 Application 2: Dynamic Bi-Objective Police
Patrol Dispatching and Rescheduling Problem

DPRP, although similar to the first problem, poses slightly different and additional
challenges in a different application domain. The problem deals beyond mere routes
but schedules of the routes while managing dual, conflicting objectives.

3.4.1 Problem Description and Model

Table 3.5 provides the set of key notations and the corresponding descriptions used
in this problem.

3.4.1.1 Problem Description

In a given police sector, there are |I| patrol agents in-charge of patrolling |J | patrol
areas in a shift with a duration of |T | time periods. At the start of the shift, each
patrol agent is assigned to an initial patrol schedule. Throughout the shift, incidents
occur dynamically and a patrol agent is dispatched to respond to each incident
which results in the need to reschedule the initial schedules so as to still fulfill both
objectives of projecting patrol presence and meeting the response time target. We
can observe that this problem shares many similarities with DVRP [36].

Decision Epoch. A decision epoch k occurs whenever an incident occurs and
decisions to dispatch agent to respond to the incident and to reschedule the existing
schedules are required. k = 0 indicates the start of the shift.

Schedule. Each patrol schedule includes the sequence of patrol areas to visit
(routes) and when and how long to patrol each areas (schedule). A sample joint
patrol schedule can be found in Figure 3.9. It is similar to a university time-table
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Table 3.5: Set of key notations used in DPRP.

Notation Description
I A set of patrol agents, I ∈ {1, 2, ..., |I|}.
J A set of patrol areas, J ∈ {1, 2, ..., |J |}.
T A set of time periods in a shift, T ∈ {1, 2, ..., |T |}.
k Decision epoch
tk Time period in a shift where decision epoch k occurs, tk ∈ T .

δi(k) A schedule of patrol agent i at decision epoch k where
δi(k) = (j1, j2, ..., jt, ..., j|T |) where jt ∈ J ∪ {−1}, t ∈ T .

δ(k) A joint schedule of all patrol agents at decision epoch k where
δ(k) = (δ1(k), δ2(k), ..., δ|I|(k)).

δ−i(k) A joint schedule of all patrol agents except for agent i
at decision epoch k where
δ−i(k) = (δ1(k), ..., δi−1(k), δi+1(k), ..., δ|I|(k)).

δx
i (k) A schedule of patrol agent i after executing action x

at decision epoch k.
δx(k) A joint schedule of all patrol agent after executing action x

at decision epoch k.
τtarget A response time target.
τmax A maximum tolerable buffer time from the moment incident occurs

to the moment an agent acts upon the dispatch call.
τk Actual response time to incident at epoch k.

Dh(δ′, δ) Hamming distance (in %) between schedules δ′ and δ.
Pmax Maximum allowable perturbation (in %) from the initial schedule.

d(j, j′) Travel time from patrol area j to another patrol area j′.
Qj Minimum patrol time (in terms of time period) for patrol area j.

σ(k) Patrol statuses of each other patrol area in terms of
the ratio of the effective patrol time over Qj where
σ(k) = (σj(k))j∈J .

with an additional key constraint whereby in between two different patrol areas,
there must be sufficient time periods to cater for travel time. At the start of the
shift, each patrol agent is assigned to an initial patrol schedule, δi(0) that forms
a joint schedule, δ(0). In this paper, we assume that the initial joint schedule is
available and computed independently.

Incident. A dynamic incident, ωk occurs at decision epoch k and is described as
the following tuple: ⟨ωj

k, ωt
k, ωs

k⟩ where ωj
k ∈ J refers to the location of the incident,

ωt
k ∈ T refers to the time period when the incident occurs and ωs

k refers to the
number of time periods needed to resolve the incident. We assume deterministic
resolution time.
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Figure 3.9: A sample joint schedule, δ(k) assuming |I| = 3.

Patrol Presence. We define patrol presence in terms of the number of time
periods each patrol area is being patrolled in a shift. Each patrol area j needs to be
patrolled for at least Qj time periods in a given shift. We define a fitness function,
fp(δ(k)) to quantify the goodness of a given schedule δ(k) in terms of its ability
to project presence. fp(δ(k)) consists of two components namely patrol utilization
(ratio of effective patrol time over total shift time) and penalty cost for failure to
meet the minimum patrol time. Thus, a schedule is deemed to have good patrol
presence if agents spend most of the time patrolling rather than travelling between
patrol areas and each patrol area is being patrolled for at least the required number
of time periods.

fp(δ) =
∑

i∈I,t∈T 1J(δi,t)−
∑

j∈J(Qj(1−min(σj, 1)))
|T | × |I|

(3.8)

where 1J(x) =


1, x ∈ J

0, x ̸∈ J

Response Time. The response time to an incident at decision epoch k, τk is
computed as the time taken by the assigned agent, xi

k to act upon the dispatch
call from the point where incident occurs (xt

k − ωt
k) plus the travel time from its

current location to the incident location. A successful incident response happens
when τk ≤ τtarget. We assume that any dispatch call must be acted upon within
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τmax.

τk = (xt
k − ωt

k) + d(jt′ , ωj
k) (3.9)

where xt
k − ωt

k ≤ τmax, t′ = xt
k

Problem Objective. The objective of the problem is to make dispatching and
rescheduling decisions at every epoch that maximize the number of successful incident
responses while minimizing the reduction in patrol presence.

3.4.1.2 MDP Formulation

We model the problem as a route-based MDP. This modelling framework suits our
problem since a rescheduling decision must include the updated patrol schedules
instead of simply the next patrol area to visit.

State. A state of this MDP consists of two parts, pre-decision state Sk and post-
decision state Sx

k . Sk captures the necessary information required to make the
dispatching and rescheduling decisions. Sk is represented as the following tuple:
⟨tk, δ(k), σ(k), ωk⟩. Meanwhile, the post-decision state Sx

k captures the changes to
the state upon executing a decision. tk remains the same while the other three
components are updated depending on the decision taken.

Action/Decision. xk is the action of dispatching an agent to an incident and
updating the joint schedule at decision epoch k. xk is represented as the following
tuple: ⟨xi

k, xt
k, δx(k)⟩ where xi

k ∈ I is the agent assigned to respond to the incident,
xt

k ∈ T the time period which the assigned agent starts to act upon the dispatch
call and δx(k) the resulting joint schedule after executing action xk.

In a real-world operational setting, the disruption to the initially-planned schedule
must be minimized. We propose the use of Hamming distance to quantify the extent
of disruption to the original schedule and this distance must be within a given
threshold, Pmax.

Dh(δx(k), δ(0)) < Pmax (3.10)

Transition. There are two main transitions in the model namely, from pre-decision
state, Sk to post-decision Sx

k and from Sx
k to the next pre-decision state, Sk+1. The
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transition from Sk to Sx
k takes place after executing action xk. Meanwhile, during

transition from Sx
k to Sk+1, a realization of a dynamic incident, ωk+1 takes place

and Sk+1 = (Sx
k , ωk+1).

Reward Function. The reward function, R(Sk, xk) is designed in such a way that
high reward is given to a successful incident response while minimizing the reduction
in patrol presence at the same time. We introduce fr(xk) to quantify the success of
an incident response when executing xk.

R(Sk, xk) = fr(xk)× fp(δx(k))− fp(δ(k)) (3.11)

fr(xk) =


1, τk ≤ τtarget

0.5, τk > τtarget

0, τk = ∅

(3.12)

The last case in Equation 3.12 indicates that the incident cannot be responded to
due to unavailability of agents within τmax or the existing schedule simply cannot
be disrupted beyond Pmax. As this is beyond the scope of our work, we make the
assumption that additional resources may be activated to ensure that all incidents
are responded to.

Our proposed reward function implicitly maximizes the success rate of responding
to an incident within τtarget while minimizing the impact to the patrol presence.
Unlike the commonly adopted linear scalarization method to address multiple
objectives, there is no need to manually determine a set of weights attached to each
objective.

Objective Function. The objective at every decision epoch k is to select action
x∗

k which maximizes the immediate reward and the expected future reward from
yet-to-realized dynamic events which is represented by the approximated value
function, V̂ (Sx

k ).

x∗
k = argmaxxk∈X(Sk){R(Sk, x) + γV̂ (Sx

k )} (3.13)
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Figure 3.10: The learned value function approximation is utilised by the rescheduling
heuristic to compute rescheduling decisions during run-time.

3.4.2 Solution Approach

We do not reduce the action space by decomposing the problem into two stages
or two sub-problems; instead we learn the dispatching and rescheduling policies
jointly by combining VFA with a rescheduling heuristic. As shown in Figure 3.10,
we propose the use of rescheduling heuristic based on ejection chains to compute
the rescheduling decision. The learnt value function approximate is used to guide
this rescheduling heuristic.

3.4.2.1 Value Function Approximation

As shown in Figure 3.11, we approximate the value function for each post-decision
state, V̂ (Sx

k , θ) with neural networks. The value function represents the value of a
state after executing both dispatch and rescheduling decision. The proposed reward
function ensures that the learned values take into account the need to maximize
both objectives. In other words, given a state and an incident, we need to choose an
action that results in a schedule with better incident response capability and patrol
presence.
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Figure 3.11: Neural network is used to approximate the value function of a post-
decision state. Handcrafted features and encoded schedules are used to reduce the
state space.

State Representation. To reduce the state space, we represent the joint schedule
by extracting its key features and also encoding it into low-dimensional vector
representations. Our encoder network is a multilayer perceptron which takes in the
one-hot vector encoding of each agent’s schedule. In addition, we introduce the
following handcrafted key features to describe a joint schedule:

• Patrol Utilization. The ratio of effective patrol time over the total shift
time of each agent’s schedule.

• Patrol Penalty. Penalty cost for failure to meet the minimum patrol time.

Figure 3.11 shows how our proposed state representation enhances the learning
process by supplementing handcrafted features with encoded schedules as inputs to
the network.

3.4.2.2 Rescheduling Heuristic Based on Ejection Chains

To compute the rescheduling decision almost instantaneously, we propose a reschedul-
ing heuristic based on ejection chains. Ejection chain is a complex neighbourhood
structure which was first introduced in [44] and are commonly used as perturbation
operator to escape local optimum. Although originally designed for TSP, ejection

56



CHAPTER 3. RL APPROACH TO SOLVE DYNAMIC ROUTING AND
SCHEDULING PROBLEM

chain moves have been used by many authors for various optimization problems [19,
61, 94, 101].

Ejection chain move consists of a sequence of operators that forms a chain reaction.
In our problem, the ejection chain consists of a sequence of defect-checking and
repair operations. Insertion of an incident into the schedule potentially introduces a
defect to the schedule (see Figure 3.12). Repairing a defect at one part of a schedule
may introduce a defect in another part. Thus, a chain of CHECK and REPAIR

operations is formed until termination condition is met or until no defect is present.
Two types of defects exist in our problem:

• Type 1: Patrol Consecutiveness. There must be sufficient time periods
in between two different patrol areas in a schedule. The time periods must
be at least able to cater to the travel time between the consecutive patrol
areas. This is a hard constraint since the existence of this defect deems the
schedule to be infeasible. There are two types of cases for this defect type
namely Insufficient case and Excess case. Insufficient case refers to a case
where there are insufficient time periods to cater for the required travel time
while Excess refers to a case where the time periods in between two different
patrol areas are more than the required travel time periods.

• Type 2: Minimum Patrol Presence. Each patrol area must be patrolled
for at least a minimum required amount of time periods, Qj. This is a soft
constraint since the existence of this defect results in a penalty cost that
reduces the goodness of a schedule.

Algorithm 2 describes how this rescheduling heuristic works for every (xi
k, xt

k)
pair. A tabu list is introduced to avoid cycling (lines 4-9). Maximum disruption
check is incorporated in the feasibility check in line 5. To speed up the heuristic,
we propose to explore only one ejection chain instead of exploring multiple ejection
chains at the same time with priority given to repair Type 1 defect (line 17). This
simplified approach results in 5x speed-up on average with minimal impact to the
solution quality.

REPAIR Operation Each ejection chain consists of a series of CHECK and
REPAIR operations (lines 4-19). We omit the implementation details for CHECK

57



CHAPTER 3. RL APPROACH TO SOLVE DYNAMIC ROUTING AND
SCHEDULING PROBLEM

Figure 3.12: Assuming Agent 1 is dispatched to respond to an incident at patrol
area 4 at time period 2 and it takes 1 time period to travel from patrol area 1 to 4
and a resolution time of 1 time unit, direct insertion of the incident into the existing
schedule will create a defect to the schedule. This is unlike in the classical VRP
where additional stop can be directly inserted into a route.

to simplify the discussion as it is fairly straightforward to implement it. Meanwhile,
Algorithm 3 describes how the REPAIR operation works. For each type of defect,
we introduce corresponding repairOperator.

• Repair operators for Type 1 defect. We introduce two repair operators
namely Insert and Replace. Figure 3.13 illustrates how these operators repair
a schedule with Type 1 Defect (Insufficient case). Meanwhile, for the Excess
case, the Insert operator will insert either the origin or destination patrol area
to the excess time period (the illustration can be found in Appendix A.4).

• Repair operator for Type 2 defect. We introduce Replace operator which
simply selects patrol areas that have extra patrol time and replace them with
patrol areas that require more patrol time.

Each repair operator is akin to a local neighbourhood search which explores the
neighbouring schedules by repairing the defect and return the neighbouring schedule
with the highest getScore value (line 7). However, we introduce an ϵ-greedy policy
to explore chain that results from possibly selecting a poorer solution so as to escape
possible local optimum (line 6). The learned value function is being utilized in
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Algorithm 2: Rescheduling Heuristic Based on Ejection Chains
Input : Joint schedule δ(k), incident ωk, agent xi

k, action time xt
k

Output : Post-decision joint schedule δx(k)
1: δx

i (k) := Insert incident ωj
k into agent xi

k’s schedule at time period xt
k

2: δx(k) := (δx
i (k), δ−i(k))

3: while δx(k) is defective do
4: if δx(k) in TabuList then
5: if δx(k) is feasible then
6: return δx(k)
7: else
8: return None
9: end

10: end
11: Add δx(k) into TabuList
12: defects := CHECK(δx(k))
13: if Dh(δx(k), δ(0)) > Pmax then
14: return None
15: end
16: if defects is not empty then
17: Select a defect, d from defects
18: δx(k) := REPAIR(δx(k), d)
19: end
20: end
21: return δx(k)

Algorithm 3: REPAIR

Input : Joint schedule δx(k), defect d
1: Create a set of neighbouring schedules, N := {}
2: for each repair operator do
3: n := repairOperator(δx(k), d)
4: N ∪ {n}
5: end
6: With probability ϵ, bestSolution ∼ U(N)
7: Otherwise, bestSolution := argmaxn∈NgetScore(n)
8: return bestSolution

getScore function to determine the exact neighbourhood move to take. In fact,
getScore is equivalent to Equation 3.11 plus the learned value function and a penalty
term for infeasible solution since the neighbouring schedule may still contain some
defects. For example, in Figure 3.13, only n3 has zero penalty term since n1 and n2

still contain Type 1 defect.
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Figure 3.13: Assuming a patrol sector in the form of 3x3 grid, Insert operator inserts
the necessary travel time into the schedule (see n1). Meanwhile, Replace operator
replaces the infeasible destination with the feasible ones (see n2 and n3).

3.4.3 Experiments

The objective of the experiment is to evaluate the solution quality and the computa-
tional time of our proposed approach against a real-world problem setting. While
we try to mimic the real-world problem setting as close as possible, we evaluate our
proposed approach with synthetically-generated data due to classified nature of the
data.

3.4.3.1 Experimental Setup

Environment Setup. Hexagonal grids of diameter 2.22 km each are drawn over
the local police sectors (see Figure 3.14). Each grid represents a patrol area. We
assume that patrol agents have the flexibility to plan their own routes within a
patrol area.

To evaluate the robustness of our approach, we consider 4 patrol sectors with
different parameter settings and profiles to represent different problem complexities
(see Table 3.6 and Figure 3.15). Sectors A and B represent a slightly less complex
problem with most of the patrol areas having relatively homogeneous patrol density
while C and D represent a more complex problem with more diverse patrol areas.
We define patrol density as the number of minimum patrol time required in a given
hexagonal grid. Meanwhile, B and D have added complexity of lower agent-to-area
ratio.
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Figure 3.14: Each hexagonal grid represents a patrol area.

Table 3.6: Different patrol sectors representing different problem structures and
complexities.

Sector Parameter Description
A |I| = 7, High agent-to-area ratio,

|J | = 14 relatively homogeneous patrol densities (medium)
B |I| = 4, Low agent-to-area ratio,

|J | = 23 relatively homogeneous patrol densities (low)
C |I| = 3, High agent-to-area ratio,

|J | = 6 more diverse patrol densities (low to high)
D |I| = 7, Low agent-to-area ratio,

|J | = 23 more diverse patrol densities low to high)

We define T as a 12-hour shift discretized to 10-minute time periods. We model
the inter-arrival time of the dynamic incident using a Poisson process with λ = 2 as
the rate of occurrences of dynamic incidents per hour.

Training & Testing. In the learning phase, we synthetically generate 100 samples
of initial joint schedules. Each sample represents a joint schedule of a single shift
in a given day. 75% of the samples are used as training data while 25% withheld
as testing data. We derive the initial schedule samples by formulating and solving
a mathematical model based on the static version of the problem (the model
formulation can be found in Appendix A.3). During the testing phase, we run 30

61



CHAPTER 3. RL APPROACH TO SOLVE DYNAMIC ROUTING AND
SCHEDULING PROBLEM

Figure 3.15: Histogram showing the structure of each patrol sector in terms of the
distribution of its patrol areas by their patrol density.

experiments to simulate a month’s worth of patrol schedules. For each experiment,
we run 20 different realizations of dynamic incidents to simulate different scenarios
that may take place in a given day.

Performance Measure. We propose to evaluate the approach based on the %
improvement over myopic in terms of the success rate i.e. number of incidents that
are successfully responded within τtarget and patrol presence in terms of its fp(δ)
value. The myopic approach is simply choosing a decision that gives the maximal
immediate reward using the proposed heuristic. Instead of presenting mean value
as a point estimate to represent the solution quality, we also use 95% Confidence
Interval (CI) of the mean since the problem is stochastic in nature.

Baseline Models. Given that there is no prior work in solving DPRP, we propose
to the following two common approaches in solving similar problem as baseline
models:

• Two-Stage. This corresponds to the earlier-mentioned technique commonly
used in many learning-based approaches. We implemented DQN as the
learning algorithm to learn the dispatch policy with slight differences in the
state representation since DQN approximates Q-value around Sk rather than
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Sx
k .

• Greedy. A commonly adopted dispatching policy by human decision-makers
is to dispatch the nearest available agent to an incident.

The same rescheduling heuristic and reward function are used for fairer comparison.

Size of State Space. Based on the state representation shown in Section 3.4.2.1,
the size of the state space based on the experiment settings can be estimated as
follows:

• Time. Based on our definition of T being in multiple of 10-minute time periods,
the value of time ranges from 0 to 71.

• Patrol Utilization. For a given patrol agent, its patrol utilization values ranges
from 0/|T | to 72/|T | where 0 represents a scenario whereby an agent spends all
the time travelling rather than patrolling while 72 represents another extreme
scenario whereby an agent remains in the same patrol area throughout the
whole duration of the shift.

• Penalty Cost. The penalty cost for not meeting the minimum patrol time for a
patrol area has an upper bound of 72 since Qj can take up to 72 time periods.

• Encoded Schedule. Each agent’s schedule is encoded into a vector with a
dimension of 5 where each element can take a value between 0 to 1.

Thus, the size of state space in our experiment can be estimated to be 723×105×|I|

assuming each element of the encoded schedule is rounded off to one decimal place.

Model Parameters. The value function network is represented as fully-connected
neural network with 2 hidden layers with 64 nodes and 32 nodes respectively. Mean-
while, the encoder network is also represented as fully-connected neural network
with 2 hidden layers with 128 and 64 nodes respectively. We use ReLU as acti-
vation function and Adam optimizer to train the networks. There are a total of
22806 trainable parameters for Sector A problem (see Figure 3.16 for the detailed
breakdown). Here are the values of some key hyperparameters used in the model:
batch size = 64, learn and update frequencies of once in every 10 steps, learning rate
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Figure 3.16: The detailed breakdown of the sizes of the trainable weights at each
layer. fc denotes a fully-connected layer. The sum of all the weights is 22806.

Figure 3.17: Average cumulative rewards over last 250 training episodes.

= 0.005, γ = 0.99 and ϵ = 0.3. We set the number of training episodes for both our
approach and DQN to be 10000 episodes. We observe that the cumulative rewards
(represented as % improvement over myopic) stabilize after around 5000 training
episodes (see Figure 3.17). The training time for our approach in on average < 15
seconds/episode which translates to about 40 hours for 10,000 episodes.

Implementation. The implementation codes are written in Python while PyTorch
is used to build and train the neural networks. To generate the initial schedules
(see Section A.3), Python API of any CPLEX version that is compatible to the
corresponding Python version is required. The experiments are run on a local
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machine with the following configurations: Ubuntu 18.04 with 6 CPU Cores and
16GB RAM. The detailed descriptions of the simulator used to run the model can
be found in Appendix A.5.

3.4.3.2 Experiment Results and Analysis

Solution Quality. There are 3 main observations that we can gather from the
experiments.

1. Our proposed approach is statistically able to produce decisions that result in
higher success rate as compared to the other two baseline models in 3 out of 4
sectors (see Table 3.7). However, our approach performs poorer than myopic
in Sector C. This is because C represents a very small police sector with very
small numbers of agent and patrol areas. Thus, a myopic approach will suffice
given that the decision space is rather limited.

2. Our proposed approach outperforms the Two-Stage approach in more complex
problems. For ease of illustration, we intentionally present the results as line
charts in Figure 3.18. We observe that when the problem scenarios are less
complex (A and B), the performances of both approaches do not differ much.
However, the performance gap widens with our approach outperforming the
Two-Stage approach when it comes to more complex problems (C and D).
Furthermore, our approach has slight edge over Two-Stage approach when
the agent-to-area ratio is low (B and D). In fact, the Two-Stage approach
performs rather poorly and even worse off than myopic when the problem
is both diverse and the agent-to-area ratio is low (D). This may be due to
the fact that in our joint learning approach, the rescheduling heuristic is also
learning and adapting while, in Two-Stage approach, the rescheduling heuristic
provides the reward signal to learn the dispatch policy but the learned policy
does not inform how the heuristic works. Thus, there is in fact no learning
in the second stage. The joint learning mechanism in our approach may be
crucial in addressing more complex problem scenarios.

3. Greedy approach is outperformed by the other models in almost all the scenarios
except for B. This shows that the common notion of dispatching the nearest
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Table 3.7: Our approach statistically outperforms the other two baseline models in
terms of % improvement (success rate) over myopic across 30 experiments in most
sectors.

Sector Our Approach Two-Stage Greedy
A 18.4± 1.9% 16.0± 1.8% −11.7± 1.7%
B 36.6± 9.1% 24.1± 10.6% 48.5± 10.4%
C −5.1± 1.7% −22.4± 2.5% −6.2± 2.0%
D 33.9± 5.3% 0.8± 4.0% 10.1± 5.6%

Figure 3.18: The gap in performance between our approach and the Two-Stage
approach widens with more complex problem scenarios.

available agent may be sub-optimal for most cases except for some specific
cases.

Computational Time. Although our proposed approach is slower than the two
baseline models, it is still able to compute the decision within operationally realistic
time of < 10 seconds on average across all sectors (see Figure 3.19).

The computational time may seem to be relatively long given the simplicity
of the rescheduling heuristic. This is because the heuristic needs to be run for
every (xi

k, xt
k) pair. We allow xt

k to take values other than ωt
k (see Equation 3.9)

which means that agent may not need to respond to the incident immediately. The
intuition behind this waiting strategy which myopically may not make sense, is
that it allows agent to respond to another more urgent incident in the meantime or
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Figure 3.19: Our proposed approach, although slower, is still able to compute
decision within seconds. Only results from 2 largest sectors, A and D are shown as
results from the other sectors also exhibit similar trends.

by responding late to this current incident, it may result in more incidents being
responded successfully later on.

Response vs. Presence. In all 3 approaches, we observe that an increase in
success rate will correspondingly result in a reduction in patrol presence. To evaluate
how our reward function performs in managing this trade-off, we run our approach on
the same set of experiments data but with a modified reward function that is based
on linear scalarization of the two objectives, R′(Sk, xk) = w1×fr(xk)+w2×fp(δx(k)).
In this experiment, we select two sets of weights (w1, w2) = (0.5, 0.5) and (0.7, 0.3)
to represent the notions of "balance" and greater emphasis on incident response
respectively; and Sectors A and D (2 largest sectors with one representing a more
complex problem structure than the other).

Table 3.8 summarizes the experiment results. Comparing against the linear
scalarization method, our reward function enables our proposed approach to respond
to 2 and 4 more incidents while trading-off < 5% and < 10% less proactive patrol
time in A and D respectively. This translates to an average of about 15 minutes
less proactive patrol time per agent for 1 more successful incident response. This
represents a reasonable trade-off operationally. In addition, our proposed reward
function avoids the difficulty of manually assigning weights which have been shown
to produce differing outcomes depending on the problem structures.
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Table 3.8: Comparison of our approach with proposed vs. modified reward functions
over 30 experiments. Results presented are average values across 30 experiments.

Sector Reward No. of Successful Patrol Presence
Function Incident Response fp

R 16.3 0.77
A R′(0.7, 0.3) 14.2 0.80

R′(0.5, 0.5) 14.0 0.81
R 14.1 0.71

D R′(0.7, 0.3) 13.1 0.74
R′(0.5, 0.5) 9.5 0.80

3.4.3.3 Experiment Discussion

We have shown experimentally that our proposed joint learning approach outperforms
the popular Two-Stage approach especially when the problem scenario becomes more
complex within an operationally realistic time. We have also shown empirically how
our reward function is able to implicitly maximize one objective while minimizing
the loss in the other without the need to manually assign weights to each objective.
More importantly, our proposed approach is performing better than the greedy and
myopic policies which are commonly adopted by human decision-maker in most of
the problem scenarios.

3.5 Conclusion
In this chapter, we introduce a new deep RL-based solution approach that combines
value function approximation step with heuristic to solve dynamic routing and
scheduling problem. Our proposed approach is able to handle multi-dimensional
decision variables without the need to decompose the problem into two stages.
By representing the value function as neural networks, our approach is able to
address problems with more complex routing constraints and large state space
which characterize real-world problems. This proposed offline method is able to
compute decision quickly for moderately-sized problem instances based on small
training episodes in the magnitude of thousands. Our approach is also oblivious
to probability distributions of the dynamic events which cannot be assumed to be
known in real-world context. In terms of evaluation, we tested this approach on
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two different problem domains. This approach assumes single-agent setting whereby
a central agent controls and computes the decision. One area of future work that
we are looking into would be to extend this approach to address problems with
multi-agent setting.
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Chapter 4

Coordinating Multi-Agent Routing
and Scheduling
In this chapter, we propose a scalable, decentralized, coordinated planning approach
to solve multi-agent routing and scheduling problems with limited shared resources.
In such problem, multiple independent, non-collaborative agents or entities need to
plan their routes and schedules in an environment where there are limited resources
to be shared among them. Thus, there is a need for coordination to deconflict
the schedules so as to maximize individual reward functions. In our approach, the
problem can be formulated as a potential game where every improvement path
generated by a best response procedure will converge to an equilibrium.

4.1 Motivation
In this chapter, we are addressing Multi-LSP VRP with Location Congestion (ML-
VRPLC), a new variant of multi-agent VRP where there is no prior work done. Given
that the LSPs in ML-VRPLC are considered as loosely-coupled agents, the approach
to solve ML-VRPLC will be somewhere in between cooperative and non-cooperative
domains of Multi-Agent Planning (MAP), although it tends to lean more towards the
non-cooperative domain since LSPs are still largely independent and self-interested.
Our proposed approach includes certain elements that are discussed above such as
fictitious play and best-response planning. Nevertheless, our work differs mainly
from other existing works in that we apply techniques from other research domains
(MAP and Game Theory) on a new variant of a well-studied optimization problem
(VRP) with a real-world problem scale.
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4.2 Coordinating Multi-Party Vehicle Routing
with Location Congestion via Iterative Best
Response

4.2.1 Problem Description

Multiple LSPs have to fulfill a list of pickup-delivery requests within a day. They
have multiple vehicles which need to go to the pickup locations to load up the goods
and deliver them to various commercial or retail locations such as warehouses and
shopping malls. The vehicles need to return to their depot by a certain time and
every request has a time window requirement. A wait time will be incurred if the
vehicle arrives early and time violations if it serves the request late. In addition,
every location has limited parking bays for loading and unloading, and a designated
lunch hour break where no delivery is allowed. As such, further wait time and time
window violations will be incurred if a vehicle arrives in a location where the parking
bays are fully occupied or arrives during the designated lunch hour.

The objective of each LSP is to plan for a schedule that minimizes travel time,
wait time and time window violations. Given that parking bays at every location are
shared among the multiple LSPs, some sort of coordination is needed to deconflict
their schedules to minimize congestion.

4.2.2 Model Formulation

We formulate ML-VRPLC as an n-player game ΓML−V RP LC with LSPs represented
as players i ∈ N having a finite set of strategies Si and sharing the same payoff
function i.e. u1(s) = ... = un(s) = u(s). s ∈ S1 × ....× Sn is a finite set since Si is
finite. Table 4.1 provides the set of notations and the corresponding descriptions
used in the model.

Strategy. In this chapter, we will use the terms strategy, solution and schedule
interchangeably since a strategy of a player i.e. an LSP is represented in the form of
a schedule. A schedule is a solution of a single-LSP VRPLC which consists of the
routes (sequence of locations visited) of every vehicle and the corresponding time
intervals (start and end service times) of every requests served by each vehicle. si is
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Table 4.1: Set of notations used in ΓML−V RP LC .
Notation Description

N A set of LSPs, N ∈ {1, 2, ..., n}.
si A schedule of LSP i, i ∈ N, si ∈ Si.
s A joint schedule of all LSP, s = (s1, s2, ..., sn), s ∈ S.

s−i A joint schedule of all LSP except LSP i, s−i = (s1, ..., si−1, si+1, ..., sn).
(si, s−i) A joint schedule where LSP i follows a schedule si

while the rest follows a joint schedule, s−i.
ui(s) Payoff of LSP i when all LSP follows a joint schedule, s.

Bi(s−i) Best response of LSP i when all other LSPs follow a joint schedule, s−i.

represented as the following tuple:

si = ⟨si.routes, si.timeIntervals⟩

Potential Function. We define a function, P (s) = ∑
i∈N ui(s) i.e. total weighted

sum of travel times, wait times and time violations when all LSP follow a joint
schedule s. In this paper, we define the payoff function, ui(s) as cost incurred (see
Equation 4.7 for the full definition).

Lemma 1. P (s) is an ordinal potential function for ΓML−V RP LC since for every
i ∈ N and for every s−i ∈ S−i

ui(si, s−i)− ui(s′
i, s−i) > 0 iff

P (si, s−i)− P (s′
i, s−i) > 0 for every si, s′

i ∈ Si. (4.1)

Proof.

P (si, s−i)− P (s′
i, s−i) > 0

⇒ ui(si, s−i) +
∑

j∈−i

uj(s−i)−
(

ui(s′
i, s−i) +

∑
j∈−i

uj(s−i)
)

> 0

⇒ ui(si, s−i)− ui(s′
i, s−i) > 0 (4.2)

Thus, ΓML−V RP LC is a finite ordinal potential game and it possesses a pure-
strategy equilibrium and has the Finite Improvement Property (FIP) [86]. Having
the FIP means that every path generated by a best response procedure in ΓML−V RP LC

converges to an equilibrium. We are able to show conceptually and empirically that
our approach converges into an equilibrium in the later sections.
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Equilibrium and Local Optimality. s′ = (s′
i, s′

−i) is an equilibrium if

ui(s′
i, s′

−i) ≤ ui(si, s′
−i) for all i ∈ N where si ∈ Bi(s′

−i). (4.3)

An equilibrium of ΓML−V RP LC is a local optimum since no player can improve its
payoff / reduce its cost by changing its individual schedule. Conversely, every
optimal solution, s∗ of ΓML−V RP LC is an equilibrium since ui(s∗) ≤ ui(si, s∗

−i) for
all i ∈ N where si ∈ Bi(s∗

−i).

Objective Function. The objective of this problem is to minimize the maximum
payoff deviation of any one LSP from an ideal solution.

mins∈Sf(s) (4.4)

f(s) = maxi∈NDeviationLB(s, i) (4.5)

DeviationLB(s, i) = ui(s)− ui(sideal)
ui(sideal) × 100% (4.6)

where sideal is defined as the joint schedule where all other LSPs do not exist to
compete for parking bays. sideal is a Lower Bound (LB) solution since it is a solution
of a relaxed ΓML−V RP LC . We are essentially trying to search for solutions where
each LSP’s payoff is as close as possible to its corresponding LB solution.

We do not define the objective function as mins∈S
∑

i∈N ui(s) because in this
game, the players are not concerned about the system optimality (total payoffs of
all players) but rather on how much benefit it can obtain by adopting a coordinated
planning instead of planning independently.

4.2.3 Solution Approach

The key idea of our proposed approach is to improve a chosen joint schedule iteratively
by computing the best responses of each player assuming the rest of the players adopt
the chosen joint schedule until no improvement can be obtained to the resulting
joint schedule or until a given time limit or maximum number of iterations has
been reached. Our approach is decentralized in nature because each LSP is an
independent agent which can compute its own route and schedule i.e. a central
agent does not dictate how each player determine their decisions.

Given that we have established that our problem is a potential game and has
an FIP, our approach will converge to an equilibrium which has been shown in
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the previous section to be equivalent to a local optimal solution. Therefore, our
approach seeks to explore multiple local optimal solutions until the terminating
conditions are met and returns the best one found so far.

4.2.3.1 Iterative Best Response Algorithm

Algorithm 4 describes how the iterative best response algorithm works. At each
iteration (lines 3-22), a joint schedule is chosen from a sampling pool of previously
obtained improved joint schedules or from the current best joint schedule (line 7).
We implement an epsilon greedy sampling policy to allow for exploration of multiple
improvements paths (see Figure. 4.1 for an example of an improvement path) to
search for best joint schedule. An improvement step consisting of n−1 best response
computations is applied to the chosen joint schedule to obtain new improved joint
schedules (line 10). If no further improvement can be made to the sampled joint
schedule, we proceed to the next iteration (lines 11-13). We update the current
best joint schedule if any of the new joint schedules has a lower f(s) value than
fmin (lines 15-16). Otherwise, we place the new improved joint schedules into the
sampling pool for further improvement steps in the subsequent iterations (lines 17
and 19). We repeat the process until termination conditions are met. Then, we
return the current best joint schedule as the final output.

Initial Solution, Lower Bound and Upper Bound Solutions. The initial
joint schedule can be initialized to any random, feasible joint schedule. However,
in this problem, we use the uncoordinated joint schedule as the initial solution
to be improved by iterative best response algorithm. To compute the initial joint
schedule, sinitial, we first compute the best schedules for each LSP independently
assuming no other LSPs exist to compete for the limited resources. This is akin
to solving a single-LSP VRPLC. The resulting joint schedule is in fact sideal and
is the LB solution to ΓML−V RP LC . Next, a scheduler consisting of a Constraint
Programming (CP) model that incorporates the resource capacity constraint at each
location is solved for the combined routes of sideal. This forms an uncoordinated joint
schedule, suncoord which serves as an Upper Bound (UB) solution to ΓML−V RP LC

as any coordinated planning approaches must result in solutions that are better
than an uncoordinated one. We use the LB and UB solutions in the experiments to
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Algorithm 4: Iterative Best Response Algorithm to solve ML-VRPLC
Input : Initial joint schedule sinitial, maximum iteration K, time limit T
Output : Best found joint schedule sbest

1: sbest := sinitial, fmin := f(sinitial), k = 0
2: Create a sampling pool of joint schedules, H = {sinitial}
3: while k < K and runT ime < T and H ̸= {∅} do
4: if k = 0 then
5: sk := sinitial

6: else
7: With probability ε, sk ∼ U(H) otherwise sk := sbest

8: end
9: Remove sk from H

10: Find new joint schedules {sk,1, sk,2, ..., sk,n} where
sk,i = (sk

i , sk
−i), ui(sk,i) < ui(sk) and sk

i ∈ Bi(sk
−i)

11: if ui(sk) ≤ ui(sk,i) for all i ∈ N then
12: k+ = 1
13: continue
14: end
15: if mini∈Nf(sk,i) ≤ fmin then
16: sbest := sk,i∗ , fmin := f(sk,i∗)
17: put {sk,i}i∈N\{i∗} in H
18: else
19: put {sk,i}i∈N in H
20: end
21: k+ = 1
22: end
23: return sbest

evaluate the solution quality of our proposed approach.

Finite Improvement Paths and Convergence. Each improved joint schedule
can be represented as a node in a directed tree. A series of nodes with parent-child
relationship forms an improvement path as shown in Figure. 4.1 where P (sk,i) <

P (sk−1,i′) for all k ≥ 1 and i, i′ ∈ N . Every improvement path is finite since S is a
finite set. Every finite improvement path will converge to an equilibrium and every
terminal point is a local optimum. However, since the best response is computed
heuristically and there is no way to prove optimality, the resulting equilibrium is
just an approximate. Nevertheless, we can show empirically in our experiments that
our approach will converge to an approximated equilibrium solution after a certain
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Figure 4.1: One example of an improvement path assuming n = 3.

number of iterations.
In short, our approach explore multiple improvement paths to search for joint

schedule that return the best objective value, f(s) with the lowest total payoffs,
P (s) as a secondary objective.

4.2.3.2 Best Response Computation

At every iteration, best response to a chosen joint schedule, sk is computed for
each LSP (line 10 of Algorithm 4). The best response computation of single LSP
is equivalent to solving a single-LSP VRPLC where the resource constraint is
determined by the resource utilization of each location by all other LSPs based on
sk

−i. Table 4.2 shows the notations used in this single-LSP VRPLC model.
We propose a heuristic consisting of Adaptive Large Neighbourhood Search

(ALNS) as route optimizer and a scheduler based on a CP model to solve this
single-LSP VRPLC. Heuristic is proposed as it is more scalable for a real-world
problem setting. ALNS is used to search for better routes and the CP model
based on the resulting routes is then solved to produce a schedule that meets the
resource and time-related constraints. ALNS is chosen because it is probably the
most effective metaheuristic for the VRPPDTW [74] and ALNS is widely used to
solve large-scale problem [132]. Algorithm 5 details the proposed best response
computation consisting of ALNS and CP model.
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Table 4.2: Set of notations used in the single-LSP VRPLC model.

Notation Description
V A set of vehicles.
R A set of all requests.
M A set of all locations.
Rv A set of requests served by vehicle v.
Om A set of requests at location m ∈M .
Cm,t Resource capacity at location m at time t.
er,v Lower time window of request r served by vehicle v.
lr,v Upper time window of request r served by vehicle v.

prev(r) Previous request served prior to request r, prev(r), r ∈ Rv.
dx,y Travel time from location of request x to location of request y.

timeIntervalr,v Time interval when request r in vehicle v is being served,
consisting of start and end time.

T0, coolingRate Parameters for acceptance criteria in Simulated Annealing.

4.2.3.3 ALNS as Route Optimizer

The ALNS algorithm implemented in this paper is adapted from the vanilla version
of ALNS proposed by Ropke and Pisinger [104] with differences in the choices of
remove and insert operators and parameters used. However, the key difference in our
ALNS implementation lies in line 7 of Algorithm 2. To compute the time intervals
and the corresponding payoff of the updated solution, a CP model is solved. The
detailed description of the CP model can be found in Section 4.2.3.4.

As the words adaptive and large in ALNS imply, ALNS explores large search
space for new solutions by adaptively choosing remove and insert operators to remove
a certain number of orders from existing solution and reinserting them back to other
positions to form a new solution (lines 4-6). In our implementation, we use the
following remove and insert operators.

Remove Operators We define the following 5 remove operators and each operator
will select 10− 15% of orders uniformly to be removed from the current solution.

1. Random removal – This operator randomly selects orders from the current
solution. Random removal allows exploration of larger search space even
though the probability of finding a better solution is low.

2. Worst removal – This operator selects orders that result in the maximum
increase in payoff/cost if removed from the current solution.
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Algorithm 5: Best Response Computation
Input : Chosen solution sk, initial temperature T0, coolingRate
Output : Bi(sk

−i)
1: sbest

i := sk
i , si := sinput

i , T = T0
2: while termination criteria are not met do
3: s′

i := si

4: Select removal and insert operators via roulette wheel mechanism
5: Apply the selected removal operator to remove the requests from

s′
i.routes

6: Apply the selected insert operator to insert the orders into s′
i.routes

7: Calculate the cost/payoff, ui(s′
i, sk

−i) and update s′
i.timeIntervals

8: if ui(s′
i, sk

−i) < ui(sbest
i , sk

−i) then
9: sbest

i := s′
i, si := s′

i

10: else
11: if ui(s′

i, sk
−i) < ui(si, sk

−i) then
12: si := s′

i

13: else
14: si := s′

i with probability, min{1, e(ui(si,s
k
−i)−u(s′

i,s
k
−i))/T}

15: end
16: end
17: Update the weights and scores of the operators accordingly
18: T := T ∗ coolingRate

19: end
20: Bi(sk

−i) := sbest
i

21: return Bi(sk
−i)

3. Spatio-temporal distance removal – This operator selects orders which
has the highest sum of spatio-temporal distances with their adjacent orders.
This operator tries to relocate orders that are more likely to incur higher travel
cost and time window violations. The definition of spatio-temporal distance
implemented was first introduced in [99].

4. Time-violation removal – This operator selects orders that result in highest
time window violation. Similar to spatio-temporal distance removal, this
operator tries to relocate orders that are “out of position” with respect to their
time window requirements.

5. Shaw removal – This operator was first introduced in [109]. The basic idea of
Shaw removal is to select orders that are similar to each other. The intuition
is that removing and reinserting orders that are similar to each other is easier
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and is more likely to create better solution. Removing and inserting orders
that are vastly different from one another can be challenging and may result
in unsuccessful reinsertions or poor insertion positions.

The above remove operators are selected to provide both exploitation and
exploration in the search process. Randomization in the operator provides the
exploration capability while removal operators like worst, spatio-temporal and time-
violation are more exploitative in nature as they aim to improve the solution in
a greedy manner. Shaw removal is essentially the opposite of worst removal and
thus having both operators provides a diversification of search. Shaw removal select
orders that are easier to remove and insert while worst removal select orders that
are relatively harder to reinsert.

Insert Operators Prior to any insertion operation, orders are selected for removal
using the selected remove operations as described in previous section. The selected
orders can be removed in two ways namely remove all or remove one by one. Remove
all indicates that the selected orders for removal are removed together prior to
insertion while remove one by one indicates that order is removed one at the time
prior to insertion. Meanwhile, insertion is done sequentially which means that for
remove all, all orders are removed and reinserted one by one while for remove one
by one, each order is removed and reinserted one at a time.

These are the 6 insert operators implemented:

1. Remove all with greedy insertion – All orders are removed prior to
any insertion. Greedy insertion heuristics insert the order that returns the
minimum increase in payoff/cost.

2. Remove one by one with greedy insertion – Similar to the first operator
except that orders are removed and inserted one at a time.

3. Remove all with greedy insertion with noise – Similar to the first
operator except that calculation of increase in payoff/cost includes a noise
function.
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4. Remove one by one with greedy insertion with noise – Similar to the
second operator except that calculation of increase in payoff/cost includes a
noise function.

5. Remove all with regret-k insertion – All orders are removed prior to any
insertion. This operator inserts orders based on their regret values. Regret
value is defined as the difference in the cost of inserting into its best route and
its kth best route.

6. Remove one by one with regret-k insertion – Similar to the fifth operator
except that orders are removed and inserted one at a time.

Similar to the remove operators, the above insert operators are selected to
provide both exploitation and exploration in the search process. Randomization
in the operator via noise function provides the exploration capability while greedy
insertion is more exploitative in nature. In addition, regret insertion provides a
certain degree of lookahead capability since greedy insertion is more likely to cause
the solution to be stuck at local optima.

On top of the exploration capability provided by the remove and insert operators,
a similar mechanism used in Simulated Annealing is applied in choosing poorer
solutions to further enlarge the search space and also to escape local optima (line
14). For more detailed discussions of ALNS algorithm such as on the roulette wheel
mechanism (line 4) and the adaptive weight adjustment for the operators (line 17),
we refer our readers to [104].

4.2.3.4 CP Model as Scheduler

The following CP model is solved to obtain the updated time intervals of the newly-
found routes and the corresponding payoff of the updated schedules at every ALNS
iteration in line 7 of Algorithm 5. The payoff is computed as follow:

ui(si) = w1 × totalTravelT ime(si.routes)+

minimize
∑
v∈V

{
w2 ×

∑
r∈Rv

waitT imer,v + w3 ×
∑

r∈Rv

timeV iolationr,v

}
(4.7)
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where

w1, w2, w3 are predetermined set of weights,

waitT imer,v = min{0, (start(timeIntervalr,v)−

end(timeIntervalprev(r),v)− dprev(r),r)},

timeV iolationr,v = min{0, (end(timeIntervalr,v)− lr,v)},

si.timeIntervals = {timeIntervalr,v}r∈Rv ,v∈V

The second term of Equation 4.7 is the objective function of the CP model with
{timeIntervalr,v}r∈Rv ,v∈V as the primary decision variables of the model. The key
constraints of the CP model are as follow:

CUMULATIV E({timeIntervalr,v : v ∈ V,

r ∈ Rv ∩Om}, 1, Cm,t),∀m ∈M (4.8)

noOverlap({timeIntervalr,v : r ∈ Rv}),∀v ∈ V (4.9)

start(timeIntervalr,v) ≥ end(timeIntervalprev(r),v)

+dprev(r),r, ∀r ∈ Rv, v ∈ V (4.10)

start(timeIntervalr,v) ≥ er,v,∀r ∈ Rv, v ∈ V (4.11)

Constraint 4.8 is used to model the resource capacity constraint at each location at
a given time t where start(timeIntervalr,v) ≤ t ≤ end(timeIntervalr,v) and Cm,t is
determined by the resource utilization of all other LSPs based on sk

−i. Constraint 4.9
ensures that the time intervals of requests within a route do not overlap. Constraints
4.10 and 4.11 ensure that the start time of a request must at least be later than the
end time of the previous request plus the corresponding travel time and it should
not start before its lower time window. Other constraints relating to operational
requirements such as no delivery within lunch hours, operating hours of the locations
and vehicles are omitted to simplify the discussion as it is fairly straightforward to
incorporate these constraints.

4.2.3.5 Solution Illustration

In this section, we provide a simple illustration on how our approach works using
a simple toy example involving 2 LSPs and here, we assume each location has
a capacity of one. Our approach begins by computing the initial solution, lower
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bound and upper bound solutions as explained in Section 4.2.3.1. Each LSP
plans independently assuming no other LSPs exist to compete for resource and
the resulting joint schedule is as follows s1 = ⟨[A, B, ...], [(5, 7), (9, 11), ...]⟩ and
s2 = ⟨[B, D, ...], [(4, 12), (15, 17), ...]⟩. This resulting joint schedule is in fact sideal

which is a LB solution. However, it is observed that LSP 1 will need to wait at
Location B because LSP 2 is still occupying Location B at time interval (9, 11).
Thus, through a CP-based scheduler, this initial joint schedule is revised to a feasible
solution such as s1 = ⟨[A, B, ...], [(5, 7), (13,15), ...]⟩ while s2 remains. Due to the
waiting time incurred in Location B, the cost of this initial solution is higher. This
is a suncoord since there is no coordination involved and is also an UB solution.

Through a iterative best response procedure, our approach tries to improve
this initial solution. For instance, at a given iteration, we first assume s2 to
remain and compute the best response of LSP 1 by using the proposed heuristic
(see Section 4.2.3.2). At the same time, we compute the best response of LSP
2 assuming s1 remains. Each of the resulting new joint schedule is kept if its
objective value is better than the fmin (see line 15-17 of Algorithm 4) or is better
than the solution at the start of this iteration (lines 18-19). Assuming that only
1 resulting joint schedule, s1 = ⟨[A, F, ..., B, ...], [(5, 7), (10, 13), ..., (20,22), ...]⟩ and
s2 = ⟨[B, D, ...], [(4, 12), (15, 17), ...]⟩ returns an improved objective value, we set
this schedule as the current best solution, sbest and place it in the sampling pool H.
This resulting joint schedule is an improved solution because a congestion is avoided
at Location B as LSP 1 visits Location B at a later time interval, (20, 22).

At the next iteration, since the sampling pool consists only 1 joint schedule and
it is also the current best solution, another round of best response computations
is done on this schedule. Assuming that the resulting new joint schedules do not
return improved objective values, this current best solution is then returned as
the local optimal solution which is also an approximate equilibrium solution since
no one player can improve its own payoff. This example illustrates a terminating
condition where the sampling pool is empty and no improvement can be made to
the current best solution. Another instance of terminating condition will be when
the computation time reaches a pre-determined time limit.

In this simple illustration, we simulate 1 iteration of iterative best response
procedure. In practice, there would be multiple iterations and each iteration will
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explore multiple improvement paths since the sampling pool would contain multiple
improved joint schedules.

4.2.3.6 Scalability and Flexibility

Our approach is scalable because the best response computations for every LSP can
be done in parallel since they are independent of each other (line 10 of Algorithm
4). In other words, explorations of multiple improvement paths as shown in Fig. 4.1
can be done concurrently. Our approach is also flexible as it also allows any other
forms of solution approach to single-LSP VRPLC to be used to compute the best
response.

4.2.4 Experiments

The objective of the experiment is twofold. First, we would like to empirically
verify whether our approach converges to an equilibrium for our problem setting
and second, to evaluate the solution quality produced by our proposed approach.
For a more comprehensive evaluation of our proposed approach, we look into the
following aspects in our experiments:

1. Exploration vs. Exploitation. We investigate the impact of implementing
ε-greedy sampling policy to the solution quality.

2. Our Approach vs. Centralized. We compare our proposed decentralized
solution approach with a centralized approach with respect to sideal (LB) and
suncoord (UB). Intuitively, our approach should return solutions with lower
payoff/cost than UB solution and within a reasonable deviation from LB
solution.

3. Sensitivity Analysis. We also investigate the impact of plan deviations by
any of the LSPs to solution quality.

4.2.4.1 Experimental Setup

We synthetically generate 30 test instances to simulate a month’s worth of pickup-
delivery requests for 20 LSPs. These instances are generated based on existing
datasets of our trials with several local LSPs. Each test instances consists of 100
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requests per LSP and each LSP has 10 vehicles. To simulate congestion at the
delivery locations, we narrow down the delivery locations to 15 unique shopping
malls with maximum capacity of 4 parking bays per location. Our approach is
implemented with K set at 300, T = 60 mins and ε = 0.3. The implementation
codes are written in Java while CP Optimizer ver. 12.8 is used to solve the CP model.
The experiments are run on a server with the following configurations: CentOS 8
with 24 CPU Cores and 32GB RAM.

Benchmark Algorithm. We chose a centralized, non-collaborative planning
approach as a benchmark algorithm. It is centralized since all LSPs are treated as
one single LSP and the central agent makes the routing and scheduling decision on
behalf of the LSPs. It is non-collaborative as no exchange of requests or sharing
of vehicles are allowed i.e. each vehicle can only serve requests from the LSP they
belong to. We use a heuristic approach combining ALNS and CP model similar to
the one used to compute best response to solve this single-LSP VRPLC. The initial
solution is constructed via randomized Clarke-Wright Savings Heuristics adapted
from [88]. The algorithm is run for 1 hour and 2 hours for each test instance.

Performance Measures. On top of f(s), we introduce other performance mea-
sures to evaluate the two approaches. The other performance measures introduced
are as follow:

1. Maximum payoff deviation from an uncoordinated solution. f ′(s)
measures the payoff deviation of the worst performing LSP from the payoff
if it follows a schedule based on an uncoordinated planning. A negative
deviation value indicates reduction in cost and the lower the value, the higher
the improvement gained from the UB solution.

f ′(s) = maxi∈NDeviationUB(s, i) (4.12)

DeviationUB(s, i) = ui(s)− ui(suncoor)
ui(suncoor) × 100% (4.13)

2. Average payoff deviation from an ideal solution. The lower the value,
the closer the solution is to the LB solution.

g(s) = 1
n
×

∑
i∈N

DeviationLB(s, i) (4.14)
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Figure 4.2: The total payoffs converge for all 30 test instances. Each coloured line
represents the result of one test instance.

3. Average payoff deviation from an uncoordinated solution. Similar to
Equation 4.12, a negative deviation value indicates reduction in cost.

g′(s) = 1
n
×

∑
i∈N

DeviationUB(s, i) (4.15)

We include results in terms of average and percentiles for a more extensive
evaluation since the approaches being evaluated are heuristics and contain a certain
degree of stochasticity. However, not all of the performance measures are being used
in every experiment. At different parts of the experiments, we select only those
which are relevant.

4.2.4.2 Experimental Results

Convergence. Figure. 4.2 shows that the total payoffs of all players converged
after 200 iterations on average for all test instances. This supports our earlier
deduction that ΓML−V RP LC possesses an FIP and our proposed algorithm explores
multiple improvement path that will converge to an approximated equilibrium.
Meanwhile, the average run-time for 200 iterations is around 1 hour.
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Table 4.3: The impact of ε to the solution quality in terms of the objective function,
f(s) and total payoff, P (s) across 30 test instances.

Performance Measure ε = 0 ε = 0.3 ε = 0.5
Max payoff Q1 19.3% 17.1% 17.0%
deviation from LB Q2 21.3% 21.1% 20.5%
f(s) Q3 25.0% 24.2% 26.2%

Avg 31.8% 21.1% 26.5%
Total payoff (in 1000s) Q1 124.0 122.6 122.1
P (s) Q2 126.5 127.2 128.4

Q3 130.6 130.7 132.6
Avg 128.2 127.5 128.1

Exploration vs. Exploitation. We investigate the impact of the value of ε to
the solution quality in terms of the objective value, f(s) and the total payoff, P (s)
as secondary objective function. As mentioned earlier, the value of ε determines the
probability of exploring "poorer" improvement path at every best response iteration.
ε = 0 implies full exploitation and no exploration, meaning that each best response
procedure is done to improve only the current best solution. In this experiment, we
run our solution approach with 3 different ε values (0, 0.3 and 0.5) against the 30
test instances.

As shown in Table 4.3, although the impact on the total payoff does not seem
to be significant, our approach with ε = 0.3 returns solutions where the payoff of
worst performing LSP is within 21.1% on average compared to 26.5% and 31.8%
when ε = 0.5 and 0 respectively. Based on our experiment, our choice of ε = 0.3
provides a balance between exploration (high ε value) and exploitation (low ε value)
and produces better quality solutions consistently across the 30 test instances.

Our Approach vs. Centralized. As shown in Figure 4.3, we intentionally
present the results as a line chart and sort the test instances based on increasing total
payoff of the ideal solution to better illustrate that our approach returns solutions
whose total payoff are lower than the centralized approach and are well within the
UB and LB solutions in all 30 test instances.

Table 4.4 shows that our approach outperforms the centralized approach on
every performance measure even when the run-time for the centralized approach is
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Figure 4.3: Our proposed approach outperforms the centralized approach (even
when the run-time is doubled) and its solutions are well within the LB and UB
solutions in terms of total payoff.

increased to 2 hours. In terms of the performance of the worst LSP, our approach
is able to ensure that on average, the payoff of the worst performing LSP is still
within about 21.1% from the LB solution and at least gain about 2.7% improvement
over the uncoordinated solution. Meanwhile, even with doubling of the run-time,
the centralized approach can only manage to ensure that the payoff of the worst
performing LSP is within 32.0% from the LB solution while incurring a 13.1%
additional cost as compared to an uncoordinated planning.

On average, across all LSPs, our approach return solutions that are well within
8.6% deviation from the LB solution and improve the payoff of the LSPs by an
average of 10.4% from an uncoordinated planning approach. This is contrasted with
the centralized approach which can only manage to return solutions that are within
14.9% of LB solution on average and an improvement of about 5.1% from the UB
solution even when the run-time is doubled.

We observe that the worst performing LSP in centralized approach consistently
returns g values that are positive (see Table 4.4) which indicates that the solution
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Table 4.4: Our approach outperforms the centralized approach on every performance
measures across 30 test instances.

Performance Our Approach Centralized (1hr) Centralized (2hrs)
Measure
Max payoff Q1 17.1% 28.0% 23.9%
deviation from LB Q2 21.1% 30.7% 28.8%
f(s) Q3 24.2% 36.5% 33.5%

Avg 21.1% 35.0% 32.0%
Max payoff Q1 −3.1% 10.5% 6.8%
deviation from UB Q2 −2.1% 13.7% 9.2%
g(s) Q3 −1.1% 16.4% 15.4%

Avg −2.7% 13.7% 13.1%
Avg payoff Q1 7.5% 15.5% 12.5%
deviation from LB Q2 8.6% 17.2% 14.1%
f ′(s) Q3 9.4% 18.7% 17.1%

Avg 8.6% 17.4% 14.9%
Avg payoff Q1 −11.8% −5.2% −7.4%
deviation from UB Q2 −9.9% −2.4% −4.6%
g′(s) Q3 −8.2% −0.6% −1.6%

Avg −10.4% −3.0% −5.1%

for the worst performing LSP is even worse than that of an uncoordinated planning
approach. This is because the centralized approach only concerns about the system
optimality and not on the performance of each individual LSP. This reiterates our
point that a centralized approach may result in some LSPs performing worse than if
they are to plan independently.

Sensitivity Analysis. Our approach assumes that every LSP follow the generated
coordinated schedules. However, in real-world settings, there are possibilities that
some LSPs deviate from the generated plans. In this experiment, we investigate
the impact of such plan deviations by any of the LSPs on the solution quality. To
simplify the discussion, we assume scenarios where 10%, 30% and 50% of LSPs
deviate from the generated schedules and follow their own planned schedules. We
assume that LSPs are rational agents which mean that their own schedules are
computed with the objective of minimizing their own total payoff/cost.

We generate and run another 30 test instances for this experiment. To evaluate
the impact on the solution quality of the resulting schedules, we use the maximum
and average payoff deviations from the generated plan as the performance measures.
As shown in Table 4.5, a slight plan deviation caused by only 10% of the LSPs result
in the worst performing LSP suffering a loss of almost 30%. Due to the stochastic
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Table 4.5: The impact of plan deviations by 10%, 30% and 50% of the LSPs on the
solution quality across 30 test instances.

Performance 10% of LSPs 30% of LSPs 50% of LSPs
Measure deviate deviate deviate
Max payoff Q1 12.5% 13.7% 16.3%
deviation from Q2 18.7% 19.7% 21.4%
generated plan Q3 27.7% 25.1% 47.2%

Avg 28.5% 35.7% 39.8%
Avg payoff Q1 4.3% 5.3% 6.1%
deviation from Q2 5.4% 5.8% 8.0%
generated plan Q3 6.3% 7.3% 10.3%

Avg 5.7% 7.2% 8.4%

nature of our approach, the eventual worst performing LSP may not be the same
every time the algorithm is run. This may create sufficient deterrence for LSPs from
deviating from the generated schedules. On the other hand, even with half of the
LSPs not following the generated plans, the average payoff deviation is kept within
10%. This shows that our proposed approach is able to produce solutions that are
robust against plan deviations albeit with respect to the average performances of all
the LSPs.

4.2.4.3 Experiment Discussion

The experiments show that our proposed decentralized approach outperforms a
centralized approach given the available run-time limit of 1 hour in all 30 test
instances and in all 4 performance measures. Furthermore, we also find that the
centralized approach is computationally more expensive and therefore not as scalable
as our decentralized approach as it needs longer run-time (> 2 hours) to return
solutions that are at least comparable to our approach.

To further verify the performance of the centralized approach and its lack of
scalability, we run another set of experiments involving 5 LSPs with 100 pickup-
delivery per LSP and each LSP having 10 vehicles. To simulate congestion at the
delivery locations, we set the maximum capacity at 2 parking bays per location. Fig.
4.4 shows that both our proposed approach and the centralized approach produce
comparable solutions in terms of total payoff across 30 test instances given the same
time budget. To further substantiate this claim, we conduct the following paired
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Figure 4.4: Our proposed approach and the centralized approach produce comparable
solutions in terms of total payoff across 30 test instances (5 LSPs). Similar to Figure
4.3, we intentionally present the results as a line chart and sort the test instances
based on increasing total payoff of the ideal solution for ease of visualization.

t-test:

H0 : µd = 0
H1 : µd ̸= 0

where µd refers to the mean difference between the total payoffs of our proposed
approach and the centralized approach. In this test, we assume 95% confidence
level. The test returns a p-value of 0.79 which is greater than α = 0.05. Thus,
there is no significant evidence to reject the null hypothesis and as such we can
conclude statistically that the total payoff of our proposed approach and centralized
approach are comparable. We have shown earlier that the performance gap between
the two approaches widens when the problem scale gets larger (see Section 4.2.4.2).
Therefore, the centralized approach indeed performs well only with smaller scale
problems.

Although further experimentation may be needed to evaluate the robustness
of our approach against various problem scenarios such as varying the number of
LSPs, vehicles, requests and pickup-delivery locations, we have deliberately chosen
to conduct sufficiently varied types of experiments to show that even though there
will be LSPs who gain more and others who will gain less, our approach is able to
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ensure that there are enough incentives (and deterrence too) for LSPs to adopt and
follow this coordinated planning as compared to them performing their own selfish,
independent planning.

4.3 Conclusion
The key idea proposed in this chapter is a scalable, decentralized, coordinated
planning approach that can be tailored to large-scale optimization problems involving
multiple loosely coupled entities competing for shared resources. Our proposed
iterative best response algorithm decomposes a multi-agent problem into multiple
single-agent problems allowing existing single-agent planning algorithms to be applied
to a smaller problem.

Even though we assume that the best response algorithms and the payoff functions
of each LSP (or agent) are identical, our approach can be extended to problems
where each LSP adopts different best response algorithm and payoff function. The
best response computation algorithm is akin to a black-box which can be replaced
with any solution algorithm to solve single-LSP VRPLC (or single-agent version of
the problem). Moreover, even with non-identical payoff functions, the inequality
condition in Equation 4.1 will still be valid and therefore our approach will still
converge to an approximated equilibrium.

One key limitation of our approach is that we assume the environment is static
which may not be the case in real-world setting. We assume that every LSP in the
system is cooperative in the sense that it participates and adheres to the coordinated
planning without any possibility of plan deviation such as dropping out of the system
or making changes to their pickup-delivery requests. It is interesting to investigate
and enhance our approach to take into consideration uncertainty in the environment
and evaluate its robustness in a dynamic environment, as well as to extend it to
domains beyond logistics.
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Chapter 5

RL Approach to Coordinate Multi-
Agent Dynamic Routing and Schedul-
ing
In the previous two chapters, we propose new solution approaches to address each
of the key features of real-world routing and scheduling problems (i.e. dynamicity
and multi-agent). In this chapter we address and propose a solution approach to
problems that incorporate both dynamicity and multi-agent. More precisely, we
propose an MARL approach that combines Multi-Agent Value Function Approx-
imation (MAVFA) with planning heuristic to solve multi-agent dynamic routing
and scheduling problem directly without the need to decompose the action or the
problem into multiple stages. In our approach, the learned value function is utilized
by the heuristic to search for better decision. This is in fact a multi-agent extension
to our proposed solution presented in Chapter 3. We focus our discussion on coop-
erative multi-agent setting where there is a need to coordinate decisions amongst
agents for better global and individual returns. Therefore, to improve coordination
and scalability, we incorporate iterative best response procedure that is proposed
in Chapter 4 to act as a decentralized optimization heuristic and a coordination
mechanism.

5.1 Motivation
As discussed in Section 2.6.3, current cooperative MARL approaches fall short in
addressing multi-agent dynamic routing and scheduling problems directly. Current
approaches either decompose the complex action into two stages or simplify the
action into either discrete or continuous. In addition, current approaches assume
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simultaneous actions by all agents and coordination amongst agents are done through
communication. These assumptions are not ideal as there is no guarantee for proper
event-handling process, for instance, two agents may respond to the same event or no
agent is assigned to respond to the event. Thus, arising from the above-mentioned
gaps in current works, we propose a cooperative MARL approach to address complex
action directly with an explicit coordination mechanism in place of communication
network (which is implicit in nature).

5.2 MAVFA with Planning Heuristic
In a multi-agent dynamic routing and scheduling problem, the objective at every de-
cision epoch k is to select joint action x∗

k which maximizes the immediate reward and
the expected future reward from yet-to-realized dynamic events which is represented
by the approximated value function, V̂ (Sx

k ).

x∗
k = argmax

xk∈X(Sk)
{R(Sk, x) + γV̂ (Sx

k )} (5.1)

To solve the optimization problem in Equation 5.1, we propose a solution approach
that combines MAVFA based on value function factorization with planning heuristic
where the former learns to approximate the joint value function and the latter is
used to compute the argmax. In addition, we incorporate iterative best response
procedure in our approach for a more scalable, coordinated decision-making.

5.2.1 MAVFA based on Value Function Factorization

We assume that the joint value function approximate, V̂ (Sx
k ) can be factorized into

the value function approximates of each agent as shown in Equation 5.2. Similar to
other value function factorization approaches like VDN and QMIX, we assume an
Individual Global Max (IGM) principle. This assumption is reasonable because most
cases of multi-agent dynamic routing and scheduling problems are not a zero-sum
game. For instance, in same-day delivery problem, an agent which is assigned to
a new job may gain profit or loss but this does not directly result in other agents
suffering loss or gaining profit (here, we do not consider loss of opportunity).
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V̂ (Sx
k ) = F

(
V̂ (Sxk,1

k,1 ), V̂ (Sxk,2
k,2 ), ..., V̂ (Sxk,|1|

k,|I| )
)

= F
(

(V̂ (Sxk,i

k,i ))i∈I

) (5.2)

Combining Equation 5.1 and Equation 5.2, the objective function can be rewritten
as follows.

x∗
k = argmax

xk∈X(Sk)

{
R(Sk, xk) + γF

(
(V̂ (Sxk,i

k,i ))i∈I

)}
(5.3)

This objective function can be further rewritten as follows:

x∗
k = argmax

xk∈X(Sk)
argmax

i∈I

{
R

(
(Sxk−1,i

k−1,i , ωk, xk,i),

(Sk,−i, xk,−i)
)

+ γF
(

(V̂ (Sxk,i

k,i ))i∈I)
)} (5.4)

This is because each pre-decision joint state can be represented by |I| different
realizations corresponding to the number of agents that can be assigned to the
handle the new dynamic event (see Equation 5.5).

Sk =
(

(Sxk−1,i
k−1,i , ωk), (Sxk−1,−i

k−1,−i ,∅)
)

=
(

(Sxk−1,i
k−1,i , ωk), (Sk,−i)

) (5.5)

We propose to represent V̂ (Sx
k ) as neural networks with parameters θ and its

architecture can be found in Figure 5.1. Our approach learns the policy to execute
complex action directly because the learned value function represents the value of
a post-decision state, a state after executing both event-handling and re-planning
actions.

5.2.1.1 Local Value Network

The architecture of the local value network, V̂ (Sxk,i

k,i , θi) can be found in Figure 5.2.
For scalability purpose, agent shares the same local network parameter θi. Here,
we assume agents are homogeneous. We propose an encoder network in the form
of multilayer perceptrons to extract the key features of the plan in its raw form
and encoding it into a lower-dimensional vector representation. Depending on the
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Figure 5.1: Given |I| realizations of pre-decision state Sk, there are correspondingly
|I| possible variations of V̂ (Sx

k ).

problem, handcrafted features can be concatenated to enhance learning process.
Many real-world multi-agent dynamic routing and scheduling problems often include
complex constraints that have been thoroughly studied and thus expert knowledge
should not be totally discarded.

The exact architecture of this network may differ depending on the problem
and the nature of the state information. Recurrent Neural Network (RNN) or
Convolutional Neural Network (CNN) can be used if the state information are
sequential in nature or has spatial relationship respectively.

5.2.1.2 Mixing Network

We represent F in Equation 5.2 as neural networks and we loosely refer this network
as a "Mixing Network". We use the term "mixing" in its general definition and it
does not refer to the specific mixing network structure as proposed in QMIX. Similar
to the local value network, the architecture of this network is also context-specific.
The key feature of this network is that extra information that is common to all
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Figure 5.2: Local Value Network

the agents can be passed into the network to enhance coordination. Rashid et al.
[100] in their ablation study have shown that providing extra state information does
improve performance.

5.2.1.3 Learning Algorithm

To learn the parameter θ, we propose to use an on-policy TD learning with experience
replay (see Algorithm 6). This learning algorithm is similar for Algorithm 1 with
the main differences lie in how decision is being computed in line 7 and how the
value function is being represented.

5.2.1.4 VFA-Guided Heuristic

To compute argmaxxk∈X(Sk) in Equation 5.1, we propose to use heuristic. The learnt
value function V̂ (Sx

k ) is used to guide the heuristic to search for better decision
that is both anticipatory and coordinated. Heuristic is chosen because of the need
to make quick decision. Computing a decision for even a single-agent instance
of dynamic routing and scheduling problem is equivalent to solving a mid-sized
NP-hard problem (such as VRP or job scheduling problem) with complex constraints
which cannot be solved to optimality given the short decision time.
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Algorithm 6: MAVFA via TD Learning with Experience Replay
Input : No. Simulation Runs N , Replay Memory D, Value Function

V̂ (., θ), Target Value Function V̂T (., θ−)
Output : θ

1: i = 1
2: while i ≤ N do
3: Initialise S0 with the initial plan
4: k = 1
5: while Sk ̸= SK do
6: Sk ← (Sx

k−1, ωk)
7: With probability ε select a random decision otherwise compute x∗

k

based on Equation 5.4
8: Sx

k ← (Sk, x∗
k)

9: Store transition (Sk, Sx
k , R(Sk, xk)) in D

10: if time to learn then
11: Sample random minibatch of transitions (Sm, Sx

m, R(Sm, xm))
from D

12: if Sx
m ̸= SK then

13: ym ← R(Sm, x) + γV̂T (Sx
m, θ−)

14: else
15: ym ← R(Sm, xm)
16: end
17: Perform a batch gradient descent on (ym − V̂ (Sxm−1

m−1 , θ))2 with
respect to parameter θ

18: Reset V̂T = V̂ for every C steps
19: end
20: k ← k + 1
21: ε← decay ε

22: end
23: i← i + 1
24: end
25: return θ

5.2.2 Iterative Best Response Procedure

We propose an iterative best response procedure to compute argmaxxk∈X(Sk) in a
decentralized manner. The purpose of incorporating this procedure is twofold. Firstly,
it acts as a scalable, decentralized optimization heuristic. To compute argmaxxk∈X(Sk)

directly is akin to solve the multi-agent optimization problem centrally (as a single-
agent) which will be computationally expensive. Secondly, this procedure provides
an explicit coordination mechanism amongst agents via asynchronous actions.
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5.2.2.1 Optimization Heuristic

In Sections 2.7.3.2 and 4.2, we have discussed in details how optimization problem
can be formulated as a n-player game where every pure-strategy equilibrium of a
game is a local optimum since no player can change its strategy to improve the
objective function [67]. The premise of this approach is that the problem must meet
the criteria of being a potential game. Potential game possesses a pure-strategy
equilibrium and has the Finite Improvement Property (FIP) [86]. Having the FIP
means that every path generated by a best response procedure will converge to an
equilibrium.

In the same manner, we formulate the optimization problem found in Equation
5.4 as an I-player game Γ with agents represented as players having a finite set of
strategies ∆i and sharing the same payoff function. We define the payoff function,
ui(δ) as the utility of agent i when all agents follow a joint plan δ. We deliberately
remove the index k to simplify the notation. Here, we make the assumption that
the payoff of each agent is not dependent on other agents’ payoff such that we can
define a function, P (δ) = ∑

i∈I ui(δ). This assumption is consistent with the earlier
IGM assumption.

P (δ) is an ordinal potential function for Γ since for every i ∈ I and for every
δ−i ∈ ∆−i

ui(δi, δ−i)− ui(δ′
i, δ−i) > 0 iff

P (δi, δ−i)− P (δ′
i, δ−i) > 0 for every δi, δ′

i ∈ ∆i. (5.6)

The proof can be found in Equation 4.2. Meanwhile, an equilibrium of Γ is a
local optimum since no player can improve its payoff by changing its individual plan.
Conversely, every optimal solution, δ∗ of Γ is an equilibrium since ui(δ∗) ≥ ui(δi, δ∗

−i)
for all i ∈ I where δi ∈ Bi(δ∗

−i). Intuitively, computing optimal action while assuming
the states and actions of other agents do not change will be sub-optimal. This is
because other agents may take further actions in response to another agent’s action
and return a solution with better overall immediate and future payoffs.

To search for local optimal solution of the optimization problem in Equation
5.4, we propose the same iterative best response algorithm found in Algorithm
4. To reiterate, the key idea of this algorithm is to improve a chosen joint plan
iteratively by computing the best responses of each player assuming the rest of the
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players adopt the chosen joint plan until no improvement can be obtained or until
terminating conditions are met. In short, this algorithm explores multiple local
optimal solutions and returns the best one found. The detailed description of this
algorithm can be found in Section 4.2.3.1

5.2.2.2 Explicit Coordination

Unlike communication network, the proposed iterative best response procedure
induces a more explicit form of coordination as agents take turn to respond to
the other agents’ actions. In simple terms, knowing what other agents are doing
(communication) do not necessarily mean that agents are proactively coordinating.

Although, combining the use of communication network and iterative best
response seem intuitive conceptually, it is not correct methodologically. The presence
of communication network means that an agent’s state and action are dependent of
other agents’ states and actions. In other words, best response procedure will not
converge because an agent can never assume other agents’ plans and payoffs to be
static because the moment an agent performs a best response action, the payoffs of
other agents’ change correspondingly.

5.2.3 Implementation Consideration

The main challenge of learning policy to make complex decision directly is that it is
very computationally expensive to run numerous training episodes. To illustrate,
assuming each decision takes a realistically reasonable time of 10s and there are
30 dynamic incidents per day, one simulation episode takes 10 mins. To train the
model in magnitude of a thousand will take at least 10,000 mins or at least a week
if training episodes are done in sequence.

To address this scalability issue, we parallelize the generation of experiences
[52]. As each training episode is independent of each other, multiple episodes can
be run in parallel resulting in faster learning process as more experiences are being
generated at any one time. This distributed RL mechanism relies one a single learner
but multiple workers to generate experiences.
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5.3 Application: Multi-Agent Dynamic Police Pa-
trol Dispatching and Rescheduling Problem

We apply this approach to solve a Multi-Agent Dynamic Police Patrol Dispatching
and Rescheduling Problem (MADPRP), a real-world problem which motivates this
research work. This problem is particularly challenging as the complex action
includes both rerouting the sequence of locations to patrol (spatial) and rescheduling
the time spent at each location (temporal).

5.3.1 Problem Description and Model

MADPRP is essentially a multi-agent version of the DPRP. As MADPRP and
DPRP share many common problem descriptions and modelling features, this
section will highlight additional details that are specific to MADPRP. We refer
readers to Section 3.4 for detailed problem description and model formulation for
the single-agent DPRP.

5.3.1.1 Problem Description

In MADPRP, there are |I| police sectors in charge of patrolling |J | patrol areas.
We define each patrol sector as an agent; a higher-order decision-making entity
which are capable of executing complex decision. Each police sector i consists of
|Ii| patrol teams that patrol |Ji| patrol areas within its sector and each patrol shift
has a duration of |T | time periods. At the start of the shift, each agent is assigned
to an initial patrol schedule. Throughout the shift, incidents occur dynamically
and a patrol team from a certain sector is dispatched to respond to the incident
which results in the need to reschedule its own and/or even the schedules of all
other agents. Coordination amongst the agents is crucial as patrol teams can cross
over to other sectors to respond to an incident and perform routine patrol so as to
ensure that incidents are responded within target time and all patrol areas across
all sectors are sufficiently patrolled.

Incident. A dynamic incident, ωk occurs at decision epoch k and is described
as the following tuple: ⟨ωi

k, ωj
k, ωt

k, ωs
k⟩ where ωi

k refers to the sector in which the
incident takes place, ωj

k ∈ Jωi
k

refers to the location of the incident, ωt
k ∈ T refers
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to the time period when the incident occurs and ωs
k refers to the number of time

periods needed to resolve the incident. We assume deterministic resolution time.

Patrol Presence. On top of responding to an incident within a target time, police
patrol also aims to project presence. We define patrol presence as a function of the
number of effective time periods each patrol area is being patrolled in a shift. Each
patrol area j needs to be patrolled for at least Qj time periods in a given shift. We
propose a presence utility function of a patrol area j, Up(j) where the utility factor
of any additional patrol time periods beyond the minimum patrol time requirement
decreases exponentially (see Equation 5.7)). This is to simulate that any additional
patrol time periods beyond the minimum requirement are less effective in projecting
presence. σj refers to the total patrol time periods in patrol area j by all teams
across the patrol sectors in a given joint patrol schedule, δ(k).

Up(j) = min(σj, Qj) + 1A ×
σj−Qj∑

i=1
i× e−βpi (5.7)

where 1A =


0, σj −Qj ≤ 0

1, σj −Qj > 0

We define a fitness function, fp(δ(k)) to quantify the goodness of a given schedule
δ(k) in terms of its ability to project presence. We represent fp(δ(k)) as a ratio of
total effective patrol time of to the total time in a shift across all agents and their
patrol teams (see Equation 5.8). Thus, a schedule is deemed to have good patrol
presence if the patrol teams spend most of the time patrolling rather than travelling
between patrol areas and each patrol area is being patrolled sufficiently.

fp(δ) =
∑

j∈J Up(j)
|T | × |I|

(5.8)

Response Time. The response time to an incident at decision epoch k, τk is
computed as the time taken by the assigned patrol team, xm

k to act upon the dispatch
call from the point where incident occurs (xt

k − ωt
k) plus the travel time from its

current location to the incident location. A successful incident response happens
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when τk ≤ τtarget. We assume that any dispatch call must be acted upon within
τmax.

τk = (xt
k − ωt

k) + d(jxm
k

t′ , ωj
k) (5.9)

where xt
k − ωt

k ≤ τmax, t′ = xt
k

Problem Objective. The objective of the problem is to make dispatching and
rescheduling decisions at every epoch that maximize the number of successful incident
responses while minimizing the reduction in patrol presence within and across all
sectors.

5.3.1.2 Model Formulation

Similar to DPRP, we model MADPRP as route-based MDP. As mentioned earlier,
this section will only highlight additional key modelling features that are specific to
MADPRP.

State. Each state can be further categorized as local and global states. Local
state refers to information unique to an agent while global state refers to shared
information across the agents which may be useful to induce coordination. Each
local post-decision state, Sk,i is represented as the following tuple:

⟨δi(k), σi(k)
Qj

, futil(δi(k))⟩ (5.10)

where σi(k)
Qj

is the ratio of total patrol time of each patrol area covered in δi(k) over its
minimum patrol requirement and futil(δi(k)) is a function that compute the ratio of
the total patrol time over the total shift time of all patrol teams. The shared global
state includes the current time, tk and (σj(k)

Qj
)j∈J which represents the ratios of total

patrol time of each patrol area in all sectors over its minimum patrol requirement
when all agents follow a joint schedule, δ(k). Meanwhile, the post-decision state Sx

k

captures the changes to the state upon executing a decision.

Action/Decision. xk is the action of assigning a patrol sector/agent to dispatch
one of their patrol teams to an incident and updating the joint schedule of all agents
at decision epoch k. xk is represented as the following tuple: ⟨xi

k, xm
k , xt

k, δx(k)⟩
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where xi
k ∈ I is the sector/agent assigned to respond to the incident, xm

k ∈ Ixi
k

is
the dispatched patrol team belonging to the assigned agent, xt

k ∈ T the time period
which the assigned patrol team starts to act upon the dispatch call and δx(k) the
resulting joint schedule after executing action xk.

In a real-world operational setting, the disruption to the initially-planned schedule
must be minimized. Similar to DPRP, we propose the use of Hamming distance
to quantify the extent of disruption to the original joint schedule and this distance
must be within a given threshold, Pmax.

Dh(δx(k), δ(0)) < Pmax (5.11)

Reward Function. The reward function, R(Sk, xk) is designed in such a way
that high reward is given to a successful incident response while minimizing the
reduction in patrol presence at the same time. We introduce fr(xk) to quantify the
response utility after executing xk. We propose the use of exponentially decreasing
function to represent the response utility similar to the ones proposed by [2] and
[89]. In other words, the later the incident is being responded, the more severe the
impact of the incident and the less effective a response would be in resolving the
incident. Thus, patrol teams have more incentives to respond to the incident as
early as possible.

R(Sk, xk) = fr(xk)× fp(δx(k))− fp(δ(k)) (5.12)

fr(xk) = e−βr×max(0,τk−τtarget) (5.13)

5.3.2 Solution Approach

We apply our proposed cooperative MARL approach to learn the value function
of joint schedules of all patrol sectors after a patrol team from a particular sector
has been dispatched to attend to a dynamic incident and rescheduling actions have
been performed across all sectors. In other words, the learned value function will
guide the rescheduling heuristic to find dispatch and rescheduling decisions that are
anticipatory and coordinated; meaning that the decisions result in a joint schedule
that takes into account future occurrences of incidents both within and beyond
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own sectors and where agents’ schedules are coordinated and take into account
both individual (sector level) and global (system level) interests. In this problem
context, each agent is interested in fulfilling both its proactive and reactive patrol
requirements. We propose to use the rescheduling heuristic based on ejection chains
that is introduced in Section 3.4.2.2 as the planning heuristic in this problem.

5.3.2.1 MAVFA based on Value Function Factorization

We assume that the value function approximation of the joint post-decision state can
be factorized into the value function approximates of each patrol sectors as stated
in Equation 5.2. This IGM assumption is valid in this problem because the total
number of incidents and the total routine patrol time across all police sectors are
the summation of the incidents responded within every sector and the total routine
patrol time of each patrol sector respectively. In other words, a system optimal
decision i.e. the decision that returns the joint schedule with the best value function
is achieved when each agent chooses a decision that returns agent-level schedule
that has the best value function locally.

5.3.2.2 Iterative Best Response as Scalable Optimization Heuristic and
Coordination Mechanism

A straightforward approach to search for the joint schedule with the best value
function would be to compute argmaxxk∈X(Sk) argmaxi∈I naively by assigning an
incident to each of the |I| agents and followed by rescheduling the joint schedule
across all agents centrally. This approach is both computationally expensive and
practically not realistic. Thus, our proposed approach computes argmaxxk∈X(Sk)

in a decentralized manner via iterative best response. The following paragraphs
illustrate how the proposed iterative best response acts as a scalable, decentralized
optimization heuristic to search for rescheduling actions and at the same time induces
communication amongst the agents.

At a given decision epoch, an incident can be assigned to |I| agents. For each
agent, a single-agent DPRP is solved to determine which patrol team within a sector
is assigned to an incident and the corresponding amended schedules of all patrol
teams within a sector. At this stage, the schedules of the patrol teams in the other
sectors remain. This current solution is sub-optimal as patrol teams from other
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sectors may perform rescheduling actions and return a joint schedule with better
value function. Therefore, the proposed iterative best response algorithm aims to
improve this sub-optimal current solution by computing the best responses of each
agent assuming the rest of the agents’ schedules remain the same.

At each best response iteration, assuming other agents’ schedules remain, a
chosen agent will try to take best response action i.e. rescheduling action to obtain
a better overall value function. This rescheduling action includes repairing defects
caused by other agents i.e. patrolling other agents’ patrol areas that are not patrolled
sufficiently. This step is akin to agents communicating with each other and coordinate
their actions to arrive at a joint schedule that has the best value function (the term
best here refers to local optima and an approximate equilibrium solution (see Section
4.2.3.1 for detailed explanation)).

5.3.3 Experiments

We evaluate our approach on a problem scenario involving 3 police sectors in the
North-Central region of a city-state that we reside in (see Figure 5.3). There are
a total of |J | = 62 patrol areas where each area is represented by a 2km x 2km
hexagonal grid. Each sector represents different problem complexities in terms of
the ratio of patrol team per patrol area, the diversity of the patrol areas and the
spatial distribution of dynamic incidents (see Table 5.1). The 3 chosen police sectors
refer to Sectors A, C and D found in Section 3.4.3. Due to the classified nature of
the data, synthetically-generated data based on publicly-available data sources are
used in this experiment.

5.3.3.1 Experimental Setup and Design

We divide our experiment into two phases to evaluate the impact of each of the
components of our proposed approach on the solution quality and computational
time through a series of ablation studies. For a fairer comparison, we use the same
reward function and rescheduling heuristic in all of the models.

Phase 1. We evaluate the performance of our joint learning mechanism against
another approach that decomposes the problem into two stages where the first stage
involves learning a dispatch policy and second stage involves executing rescheduling
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Figure 5.3: Hexagonal grids drawn over 3 police sectors. Image is intentionally
blurred for anonymity purposes.

Table 5.1: Different patrol sectors representing different problem structures and
complexities.

Sector Parameter Description
1 |I1| = 4, High patrol team-to-area ratio,

|J1| = 14 relatively homogeneous
patrol densities (medium)

2 |I2| = 4, Low patrol team-to-area ratio,
|J2| = 23 relatively homogeneous

patrol densities (low)
3 |I3| = 4, Low patrol team-to-area ratio,

|J3| = 25 more diverse patrol densities
(low to high)

action. We use another popular value-based RL algorithm, DQN to learn the
dispatch policy in the first stage. In addition, we also evaluate the effect of iterative
best response as a coordination mechanism by comparing against another approach
with a communication network. We run a total of 10,000 training episodes where
each episode represents a given initial joint schedule and a set of dynamic events
occurring throughout the planning horizon. We evaluate the solution quality based
on the resulting cumulative rewards in terms of the average % improvement of
incident success rate over myopic approach. Here are the models being run in this
phase:
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• MAVFA-BR-H. This is our proposed approach where BR refers to iterative
best response procedure and H refers to heuristic

• MAVFA-C-H. This is a model that incorporates communication network as
an implicit coordination mechanism instead of iterative best response procedure.
We adapt a Attention-Based Convolutional Communication Network proposed
by Jiang et al. [53].

• MAVFA-H. This is an MAVFA model without any communication mechanism
amongst agents.

• MADQN-BR-H. This is the two-stage approach similar to Chen et al. [25].
In order to evaluate solely on the joint vs. two-stage learning mechanisms, we
retain the same components, BR and H.

Phase 2. We evaluate the impact of our proposed MAVFA algorithm and iterative
best response procedure in making anticipatory and coordinated decision-making
during execution. We run 30 experiments to simulate one month’s worth of daily
operations and for each experiment, we run 20 different set of realizations of dynamic
incidents to simulate different possible daily scenarios. There are 600 data points
representing a sufficiently substantial sample size for statistical evaluation. In this
phase, we evaluate the impact of our approach against the absence of coordination,
collaboration and anticipation (myopic) by running the following baseline models
for comparison on top of MAVFA-BR-H and MAVFA-H:

• VFA-H. This model assumes each sector runs its own independent single-agent
VFA without any form of communication and collaboration amongst agents.

• BR-H. This is a version of our approach without VFA i.e. myopic approach.

We evaluate our approach in terms of its ability to make anticipatory and
coordinated decision-making based on overall success rate (% of incidents responded
within a target time) across all sectors and the success rate of the worst performing
agent. Better coordination should result in more incidents being responded on time
resulting in better overall and individual agents’ success rates. For computational
time, we evaluate based on the time taken per decision (dispatch and reschedule).
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We include results in terms of mean and 95% Confidence Interval (CI) of the mean
rather than just using a single point estimate since the problem and the heuristic
used are stochastic in nature.

5.3.3.2 Size of State Space

Based on the state representation in Section 5.3.1.2, the size of the state space based
on the experiment settings can be estimated as follows:

• Time. Based on our definition of T being in multiple of 10-minute time periods,
the value of time ranges from 0 to 71.

• Patrol Utilization. As shown in Equation 5.10, for a given agent, the patrol
utilization values ranges from 0/|T | to 72/|T | where 0 represents a scenario
whereby an agent spends all the time travelling rather than patrolling while
72 represents another extreme scenario whereby an agent remains in the same
patrol area throughout the whole duration of the shift.

• Patrol Presence. For each patrol area j, the patrol time of an agent i ranges
from 0 to a maximum of 72×|Ii|. 0 represents a scenario whereby agent i does
not patrol area j while the upper bound value represents a scenario whereby
the agent spends all its time in patrol area j.

• Encoded Schedule. In every sector, each patrol team’s schedule is encoded into
a vector with a dimension of 5 where each element can take a value between 0
to 1.

Thus, the size of state space in our experiment can be estimated to be 721+|I| ×
(72 × |Ii|)|I|×|J | × 105×

∑
i∈I

|Ii| assuming each element of the encoded schedule is
rounded off to one decimal place. The first number refers to the time and patrol
utilization of each agent, the second number refers to the patrol presence of each
patrol area by each team in each sector and the last number refers to the vector
representation of the schedules of each patrol team in each sector.

5.3.3.3 Model Parameters

Here are the details of the implemented networks for our proposed approach:
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Figure 5.4: The detailed breakdown of the sizes of the trainable weights at each
layer. fc denotes a fully-connected layer. The sum of all the weights is 32199.

• Encoder. We represent the encoder network as a fully-connected neural
network with 2 hidden layers with 128 and 64 nodes respectively with encoding
dimension of 5.

• Local Value Network. We represent the encoder network as a fully-connected
neural network with 2 hidden layers with 64 and 32 nodes respectively.

• Mixing Network. We represent the encoder network as a fully-connected
neural network with 2 hidden layers with 64 and 32 nodes respectively.

We use ReLU as activation function and Adam optimizer for all the networks.
There are a total of 32199 trainable parameters (see Figure 5.4 for the detailed
breakdown). Meanwhile, Table 5.2 summarizes the values of the hyperparameters
used.

Implementation. The implementation codes are written in Python while PyTorch
is used to build and train the neural networks. To generate the initial schedules
(see Section A.3), Python API of any CPLEX version that is compatible to the
corresponding Python version is required. The experiments are run on a server with
the following configurations: Rocky Linux 8.6, 64-Core processor and 384GB RAM.
The detailed descriptions of the simulator used to run the model can be found in
Appendix A.5.
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Table 5.2: List of hyperparameters used in the implementation of MAVFA.

Hyperparameter Value
γ 0.99

buffer size 1e5
batch size 64

τ (for soft update) 1e3
learning rate 5e-4

learn frequency every 10 steps
update frequency every 20 steps

ε-decay rate 25000
ε-decay start 0.9
ε-decay end 0.05

5.3.3.4 Experimental Results and Discussion

Phase 1. We observe that the cumulative rewards (represented as % improvement
over myopic) stabilize after around 6000 training episodes (see Figure 5.5). We
assume stability where the standard deviation of the cumulative rewards are kept
within 20% of the sample mean for at least 600 consecutive episodes. Figure 5.5
shows that our explicit coordination mechanism is able to learn joint value function
that results in a better overall success rate as compared to the model with an implicit
communication mechanism and one without any form of communication. In terms
of training time, our approach takes on average below 20 minutes/episode with 30
parallel processes (running 30 episodes concurrently) which translates to about over
100 hours for 10,000 episodes.

On the other hand, we observe that our proposed joint learning approach seems
to only outperform the two-stage approach by a slight margin. However, we include
the symbol * beside MADQN-BR-H to indicate that this model has been pre-trained
and went through one round of training prior this experiment. This is because we
observe that 10,000 episodes were not sufficient for this model to learn effectively as
it is only able to achieve an average of −2% improvement over myopic. Thus, given
the same number of training episodes, our proposed approach will outperform the
two-stage approach by a bigger margin.
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Figure 5.5: Average cumulative rewards over the last 600 training episodes.

Phase 2. Our proposed approach is statistically able to produce decisions that
result in higher overall success rate (O) and success rate of the worst-performing
agent (W) as compared to the other baselines except for VFA-H (see Table 5.3).
Our proposed coordination mechanism account to about 13% increase in overall
success rate (MAVFA-BR-H vs. MAVFA-H) while collaboration amongst agent
significantly increases the success rate of the worst performing agent by more than
18% (MAVFA-BR-H vs. VFA-H).

VFA-H represents a solution approach where each agent manages its own patrol
operation. The overall success rate is higher simply because Sector 1 has a higher
patrol team-to-area ratio which increases its ability to respond to local incident
quickly, skewing the average result. Cooperation in light of limited resources
inevitably means that some sort of compromise is needed which in this, our approach
is able to ensure that every sector’s success rate is at least of a certain reasonable
threshold (> 50%).

Although our proposed approach is slower than the other models, it is still able
to compute the decision within an operationally realistic time of less than 30s on
average (see Table 5.3). In fact, our value function approximation steps and iterative
best response procedure account for less than 1s and less than 15s of additional
computation time per decision respectively. The computational time can be further
improved via engineering means such as parallelization of the heuristic or code
optimization.
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Table 5.3: Our approach statistically outperforms the other models in terms of
overall success rate (O) and the success rate of the worst-performing agent (W).

Model Success Rate Time Per
Decision(s)

MAVFA-BR-H (O) 65.0± 0.7% 24.1± 2.1
(W) 52.4± 0.9%

MAVFA-H (O) 57.3± 0.6% 9.3± 1.0
(W) 44.0± 0.8%

VFA-H (O) 67.6± 0.6% 1.4± 0.2
(W) 44.2± 1.0%

BR-H (O) 62.2± 0.8% 23.7± 2.1
(W) 47.9± 1.0%

Discussion. The magnitude of improvements resulted from our proposed approach
may not seem substantial (a 5% improvement over myopic approach). In reality
however, a 5% improvement translates into 3 more incidents responded within target
time, which is quite significant in the law enforcement context. Each late response
to an urgent incident like traffic accident, violent crimes and suspected terrorist
attack can have major adverse impact to public safety and security.

Ritzinger et al. [102] summarize the performances of various offline methods
in the literature that solve DVRP with stochastic customers. Most approaches
(mainly on single-agent problems) manage to achieve improvements in the region of
5%− 10% over myopic. Given the additional complexity of our problem (routing
and scheduling) and multi-agent setting, an improvement of 5% is comparable with
those cited in that study.

We note that comparison against existing cooperative MARL approaches such
as VDN, QMIX and COMA would strengthen our evaluation attempt. However,
such comparisons are not so straightforward. Given that these approaches require
the problem or action to be decomposed into two stages, the rescheduling heuristic
chosen would have to be different. In addition, these approaches assume simultaneous
actions by all agents which mean that additional step is needed to ensure proper
handling of dynamic event to prevent incident being ignored or more than one
agent responding to one incident. Thus, modifications to these approaches such as
action-masking are needed and these may result in deviations from these approaches’
original design. The eventual solution quality of these modified approaches need
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to be assessed more carefully as any improvement may come from the rescheduling
heuristic used.

5.4 Conclusion
We presented a pioneering effort on a cooperative MARL approach to solve multi-
agent dynamic routing and scheduling problem directly. In actual fact, the proposed
approach can be applied to any generic multi-agent sequential decision problem with
complex action. Moving ahead, there are many opportunities to further evaluate
and build upon the ideas proposed. For example, our proposed approach can be
evaluated on other multi-agent sequential decision problem settings. This will require
exploration of more context-specific network architecture. It would also be interesting
to compare our approach with existing cooperative MARL approaches. However, as
mentioned earlier, additional care is required in designing the experiment to ensure
fair comparison, which we hope to address in the future.
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Chapter 6

Conclusion and Future Works
In this thesis, we present solution approaches that synergize techniques from AI
and OR communities to address the dynamic and/or multi-agent aspects of real-
world routing and scheduling problems. We focus our discussions based on the two
real-world motivating problem domains namely urban logistics and law enforcement.
However, we acknowledge that real-world routing and scheduling problems are
wide-ranging in terms of scales, varieties and complexities and even new variants of
these problems continue to surface with the ever-changing technological and industry
landscapes such as the emergence of electric vehicle routing problem [5, 76] and
truck-and-drone coordinated delivery [135]. These present ample opportunities for
further research in applying RL to solve routing and scheduling problems. In the
following sections, we highlight two major directions amongst many others for further
works that can arise from the contributions of this thesis. The two directions are
chosen deliberately to represent aspects of research that are peculiar to real-world
problem settings.

6.1 Addressing Learning Aspect of RL-Based Ap-
proaches in Real-World Problems

As mentioned in Section 2.6.1, there have been numerous works that propose RL-
based approaches to solve routing and scheduling problems (or COPs in general)
in recent years. In particular, recent works are focusing more on solving real-world
variants of those problems such as order batching problem [6], train time-tabling
problem [72] and large-scale routing problem in logistics system [140]. However,
most of the contributions of these works, including ours, are mainly revolving around
methodologies to compute solution either by learning an optimal policy directly or
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learning to approximate value function and combining it with a heuristic. In these
works, assumptions are usually made with regard to these two key components of
an RL-based approach: the reward function and the quality of training data. RL
agents learn mainly from reward signal and the learnt policy is optimized based on
the training data. Unlike in typical games or toy problems, real-world problems
do not have clearly-defined reward function and the input training data cannot be
assumed to follow a certain known static distribution. For example, in same-day
delivery problem, a good solution or a reward may not necessarily be dependent only
on total travel time but may include other complex criteria like how similar vehicles’
routes are with each other and even intangible measure like drivers’ subjective route
preference. In addition, a learned policy may work generally for most instances but
not on specific occasions such as special holiday sales or during the pandemic. This
is because patterns of occurrences of dynamic order requests differ from occasions
to occasions.

Learning reward function based on observed behaviours. One of the
main challenges of application of RL to solve real-world problems will be how to
define a good reward function. Reward function can be subjective, for example
system-generated recommended optimal routes may not be compatible with drivers’
preferences [77]. Thus, it would be interesting and practically more applicable to
learn the reward function based on real, observed behaviour of the agents and this
is in fact an inverse reinforcement learning problem [90].

Adaptable learning mechanism in view of dynamic environment. In our
works, we assume learning a generic policy that is applicable for all occasions. This
assumption is not true in reality. For instance, similar to same-day delivery context,
in law enforcement context, incident patterns differ from day to day and thus, distinct
policies may need to be learnt from different set of data and applied to different
problem scenarios. Haliem et al. [49] proposes an adaptive deep RL approach that
can identify and adapt to changes in the environment in ride-sharing context. The
authors propose an anomaly detection-like mechanism to detect changes to the
dataset to trigger relearning of policies. Such adaptive learning mechanism is very
much relevant when learning to solve real-world routing and scheduling problems.
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6.2 Addressing Additional Complexities of Real-
World Problems

Although we try to model and solve real-world problems that closely mimic those in
real-life, we make several simplification assumptions to reduce the complexities of
the problem. For instance, in MADPRP, we include operational constraints such
as dual patrol objectives and minimal disruption to existing schedule but there are
several problem constraints or requirements that could have been taken into account
such as those discussed in the next two paragraphs.

Collaboration amongst heterogeneous agents. In Chapter 5, we assume
homogeneous agents and dynamic event that only requires the attention of a single
agent. However, in reality, some dynamic events may require attentions from multiple
agents with differing capabilities, for example in the context of disaster response [22]
and even in law enforcement context, some incidents may require attention from
emergency medical services or fire department. This added complexity will pose a
new research challenge of learning to coordinate multiple heterogeneous agents in
the presence of occurrences of a more complex dynamic event.

Learning fairness in multi-agent setting. Fairness in terms of balanced work-
load is important consideration in real-world multi-agent systems. For example, in
patrol scheduling problem, an imbalanced workload may result in some patrol agents
patrolling more locations or responding to more incidents than the others. This
may in turn cause fatigue and reduce the effectiveness of those patrolling agents.
Similarly, in urban logistics context, some drivers may be required to serve more
orders than the others which in turn result in fatigue and unfair work distribution.
Thus, taking into account fairness in solving real-world multi-agent routing and
scheduling problems would result in a more realistic and effective solution. However,
learning to optimize both system performance (joint reward) and fairness at the
same time is a complex optimization problem [55] and would require a novel research
contribution.
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Appendix A

Supplementary Materials

A.1 Approximate Value Iteration

Algorithm 7: Approximate Value Iteration
Input : Initial Values V̂0, No. Simulation Runs N , Step Size α
Output : Values V̂N

1: i = 1
2: while i ≤ N do
3: k = 1
4: while Sk ̸= SK do
5: if new order = True then
6: Sk ← (Sx

k−1, ω)
// use SA to find the optimal feasible decision xk

7: xk ← arg minx∈X(Sk){R(Sk, x) + γV̂i−1(Sx
k )}

// proceed with the updated route
8: else

// proceed with the existing route
9: Sx

k ← Sk

10: end
11: Sx ← Sx ∪ {Sx

k}
12: Rk ← Rk−1 + R(Sk, x)
13: k ← k + 1
14: end

// Update the Value Lookup Table
15: forall Sx

k ∈ S∗ do
16: V̂i(Sx

k )← (1− α)V̂i−1(Sx
k ) + α(RK −Rk)

17: end
18: i← i + 1
19: end
20: return V̂N
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The above algorithm is adapted for the problem discussed in Section 3.3. The value
function approximate is only updated at the end of every episode (line 16). This
corresponds to a Monte Carlo method of learning value function. α refers to learning
step size and in-depth discussion on tuning this parameter can be found in Chapter
11 of [96].

A.2 Multiple Scenario Approach

Algorithm 8: Multiple Scenario Approach with Consensus Algorithm
Input : Initial State S0, Horizon H, Sample Size J
Output : Total Cost Cost(SK), Final State SK

1: k = 1;
2: while Sk ̸= SK do
3: if new order = True then
4: Sk ← (Sx

k−1, ω)
5: j = 1
6: X∗ = [ ]
7: while j ≤ J do
8: Ωj ← SAMPLE(Sk, H)
9: x∗

j ← OPTIMIZE(Sk, Ωj)
10: x∗

j ← x∗
j \ Ωj

11: X∗ ∪ x∗
j

12: j = j + 1
13: end
14: x∗ ← arg minx∗

j ∈X∗ Cost(Sk, x∗
j)

// proceed with the updated route
15: Sx

k ← (Sk, x∗)
16: else

// proceed with the existing route
17: Sx

k ← Sk

18: end
19: k ← k + 1
20: end
21: return Cost(SK), SK

Whenever a dynamic event occurs (a new order appears), an empty list to store
samples of optimal routes is created (line 6). For every sample, SAMPLE function
will produce a set of future new orders until a given time k+H based on current state,
Sk (line 8). OPTIMIZE function will then optimize (using Simulated Annealing)
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the route assuming all sampled new orders are known beforehand (line 9). A resulting
optimal route without the sampled new orders is added to the list X∗ and the cost
of each optimal route is being tracked (lines 10 and 11). The optimal route which
returns the lowest average total cost is be then chosen to update the current route
(lines 14 and 15). Similar to Algorithm 7, this algorithm is adapted for the problem
found in Section 3.3.

A.3 Integer Programming Model for Static Police
Patrol Scheduling Problem

To derive the initial patrol schedules for the experiment in Section 3.4, we formulate
and solve the following integer programming model that represents a set cover model
of a police patrol scheduling problem.

Parameters
I = a set of agents, I ∈ {1, 2, ..., |I|}
J = a set of patrol areas, J ∈ {1, 2, ..., |J |}
T = a set of time periods in a shift, T ∈ {1, 2, ..., |T |}
Qj = minimum patrol time (in terms of time period) for patrol area j

τtarget = a response time target
d(j, j′) = travel time from patrol area j to another patrol area j′

Nj = a set of neighbouring patrol areas within τtarget from patrol area j

S = a set of scenario
Ωs = a set of incidents in scenario s

ωs = incident in scenario s, ωs ∈ Ωs, ωs = ⟨ωj
s, ωt

s, ωg
s⟩ where ωj

s = location (patrol
area) of the incident, ωt

s = start time of the incident and ωg
s = resolution time of

the incident

Decision Variables
zs,ω = set to 1 if incident ω in scenario s is covered or 0 if otherwise
yi,j,t = set to 1 if agent i is patrolling at patrol area j at time period t
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Objective Function

maximize

∑
s∈S

∑
ω∈Ωs

zs,ω∑
s∈S |Ωs|

+
∑

i∈I

∑
j∈J

∑
t∈T yi,j,t

|T | × |I|
(A.1)

subjected to:

∑
j∈J

yi,j,t ≤ 1, i ∈ I, t ∈ T (A.2)

∑
t∈T

∑
i∈I

yi,j,t ≥ Qj, j ∈ J (A.3)

t + d(j, j′)− t′ ≤M(2− yi,j,t − yi,j′,t′), i ∈ I, j, j′ ∈ J, t < t′ ∈ T (A.4)∑
i∈I

∑
j∈N

ω
j
s

yi,j,ωt
s
≥ zs,r, s ∈ S, ωs ∈ Ωs (A.5)

The objective of the problem is to maximize the proportion of incidents success-
fully responded within the response time target plus the proportion of time spent
by each agent patrolling on a given shift period. Constraint A.2 ensures that every
agent can only be patrolling at one patrol area at any one time. Constraint A.3
ensures that each patrol area is being patrolled for at least a required number of
time periods. Constraint A.4 ensures that there is enough time periods in between
two consecutive patrol areas to cater for travel time. Lastly, Constraint A.5 ensures
that an incident is covered if there is at least one agent patrolling in a patrol area
within the response time target from the incident location.

A.4 Repair Operations in Rescheduling Heuristic
based on Ejection Chain

In the proposed rescheduling heuristic based on ejection chain found in Section 3.4,
we introduce two repair operators namely Insert and Replace to repair Type 1 defect.
In the Insufficient case (see Figure A.1), the Insert operator will insert the necessary
travel time period(s) (in this example, additional 1 time period is required) into the
schedule by pushing the destination patrol area to a later time period as illustrated
in neighbouring schedule n1. Meanwhile, Replace operator replaces the infeasible
destination patrol area to feasible ones. In Figure A.1, patrol area 5 can be replaced
by patrol areas 2 or 4 because these patrol areas are 1 time period away from the
origin patrol area i.e. patrol area 1 (see n2 and n3).
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Figure A.1: Sample schedule with Type 1 Defect (Insufficient) case and corresponding
repair operations.

In the Excess case, the Insert operator will insert either the origin or destination
patrol area to the excess time period. In Figure A.2, only 1 time period needed to
travel between patrol area 1 to patrol area 4. Thus, 1 excess time period can be
replaced by either the origin (see n1) or destination patrol area (see n2). Meanwhile,
the Replace operator will replace the destination patrol area with feasible ones. For
example, patrol area 4 can be replaced by patrol area 3 or 7 since these patrol areas
are 2 time periods away from patrol area 1 (see n3 and n4).

Figure A.2: Sample schedule with Type 1 Defect (Excess) case and corresponding
repair operations.
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A.5 Simulator for Dynamic Routing and Schedul-
ing Problem

The simulator for dynamic routing and scheduling problem used in the experiments
in this thesis is implemented in Python. In this section, we describe the general
framework of the simulator setup and how it works. The detailed implementations
(such as the environment setup, planning heuristic used and neural network architec-
ture) and the parameters are problem-specific and those information can be found
in the respective experiment sections of the problems being run in this thesis.

A.5.1 Input Data

The simulator takes in 3 key input components mainly the number of episodes
to run, the initial routes and schedules of all agent and the scenarios to run for
every episode. In other words, for each training or testing episode, the input to
the simulator must include the initial plans of every agent and the dynamic event
scenarios which include the arrival times of every dynamic event and the events
themselves (implemented as an order object or incident object).

Data Source. The initial plans and the scenarios can be obtained from historical
data or can be generated synthetically. For the SDDP problem in Section 3.3,
the initial routes of every vehicle is obtained from a local LSP that we work with.
However, since the available data does not include the detailed information of the
dynamic orders, we synthetically extract some orders to be dynamically inserted
during the planning horizon with a pre-determined rate of arrival of dynamic orders
(see Figure A.3). Meanwhile for both DPRP and MADPRP, due to the sensitive
nature of the data, we synthetically-generate these input data based on publicly-
available data sources. The arrival of dynamic event is modelled as Poisson Process
with a pre-determined λ as rate of occurrence of the event.

A.5.2 Simulation Run

For each training or testing episode, the simulator will initialize the routes or
schedules of every agent with the chosen instance data consisting of initial plans and
the dynamic event scenarios. The simulator will then iterate every pre-determined
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Figure A.3: Dynamic orders are generated by extracting a subset of orders and
synthetically insert them during the planning horizon to simulate arrival of new
dynamic orders.

time step/interval (as defined in the environment setup) until the end of planning
horizon. At every time step, if there is no dynamic event occurring, the simulator
will then proceed to the next time step, otherwise, it will trigger the event-handling
and re-planning step. This is done until the end of planning horizon or until terminal
state is reached. At the end of the run, important summary statistics (for e.g.
computational time, total number of orders fulfilled, etc) are saved for evaluation.

Event-Handling and Replanning Step. Our proposed RL approach is imple-
mented and executed during this step. The codes are implemented in a modular
way such that we can use any models, both our proposed approach or other baseline
models, to compute the event-handling and re-planning decisions. The output of
this step is an updated route or schedule of every agent.
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State Representation. A function is created to transform or aggregate the raw
forms of the initial plans and dynamic order into the respective state representation
format (for e.g. see Equation 3.3.2.3).

139


	Reinforcement learning approach to coordinate real-world multi-agent dynamic routing and scheduling
	Citation

	Contents
	Acknowledgments
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Introduction
	Motivating Domains
	Urban Logistics
	Law Enforcement

	Contributions
	New Problem Variants
	New Solution Approaches

	Structure of the Dissertation

	Background
	Terminologies
	Notations
	Sequential Decision Problem
	Markov Decision Process
	DVRP
	Modelling DVRP
	Solution Approaches to DVRP

	Learning to Solve Routing and Scheduling Problem
	RL Approaches to Solve Routing and Scheduling Problem
	RL Approaches to Solve Dynamic Routing and Scheduling Problem
	MARL Approaches to Solve Multi-Agent Dynamic Routing and Scheduling Problem

	Motivating Problems
	Same-Day Delivery Routing Problem
	Dynamic Bi-Objective Police Patrol Dispatching and Rescheduling Problem
	Multi-Party Vehicle Routing Problem with Location Congestion


	RL Approach to Solve Dynamic Routing and Scheduling Problem
	Motivation
	VFA via TD Learning with Heuristic
	Training Phase: Value Function Approximation
	Run-Time: Rerouting/Rescheduling Step 
	State Representation

	Application 1: Same-Day Delivery Routing Problem
	Problem Description and Model
	Solution Approach: DRLSA
	Experiments

	Application 2: Dynamic Bi-Objective Police Patrol Dispatching and Rescheduling Problem
	Problem Description and Model
	Solution Approach
	Experiments

	Conclusion

	Coordinating Multi-Agent Routing and Scheduling
	Motivation
	Coordinating Multi-Party Vehicle Routing with Location Congestion via Iterative Best Response
	Problem Description
	Model Formulation
	Solution Approach
	Experiments

	Conclusion

	RL Approach to Coordinate Multi-Agent Dynamic Routing and Scheduling
	Motivation
	MAVFA with Planning Heuristic
	MAVFA based on Value Function Factorization
	Iterative Best Response Procedure
	Implementation Consideration

	Application: Multi-Agent Dynamic Police Patrol Dispatching and Rescheduling Problem
	Problem Description and Model
	Solution Approach
	Experiments

	Conclusion

	Conclusion and Future Works
	Addressing Learning Aspect of RL-Based Approaches in Real-World Problems
	Addressing Additional Complexities of Real-World Problems

	Bibliography
	Supplementary Materials
	Approximate Value Iteration
	Multiple Scenario Approach
	Integer Programming Model for Static Police Patrol Scheduling Problem
	Repair Operations in Rescheduling Heuristic based on Ejection Chain
	Simulator for Dynamic Routing and Scheduling Problem
	Input Data
	Simulation Run



