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Continual Learning with Neural Networks
PHAM Hong Quang

Abstract

Recent years have witnessed tremendous successes of artificial neural networks

in many applications, ranging from visual perception to language understand-

ing. However, such achievements have been mostly demonstrated on a large

amount of labeled data that is static throughout learning. In contrast, real-

world environments are always evolving, where new patterns emerge and the

older ones become inactive before reappearing in the future. In this respect,

continual learning aims to achieve a higher level of intelligence by learning on-

line on a data stream of several tasks. As it turns out, neural networks are

not equipped to learn continually: they lack the ability to facilitate knowledge

transfer and remember the learned skills. Therefore, this thesis has been ded-

icated to developing effective continual learning methods and investigating

their broader impacts on other research disciplines.

Towards this end, we have made several contributions to facilitate continual

learning research. First, we contribute to the classical continual learning frame-

work by analyzing how Batch Normalization affects different replay strategies.

We discovered that although Batch Normalization facilitates continual learn-

ing, it also hinders the performance of older tasks. We named this the cross-task

normalization phenomenon and conducted a comprehensive analysis to investi-

gate and alleviate its negative effects.

Then, we developed a novel fast and slow learning framework for contin-

ual learning based on the Complementary Learning Systems [62, 14] of human



learning. Particularly, the fast and slow learning principle suggests to model

continual learning at two levels: general representation learning and learning

of individual experience. This principle has been the main tool for us to ad-

dress the challenges of learning new skills while remembering old knowledge

in continual learning. We first realized the fast-and-slow learning principle in

Contextual Transformation Networks (CTN) as an efficient and effective online

continual learning algorithm. Then, we proposed DualNets, which incorpo-

rated representation learning into continual learning and proposed an effective

strategy to utilize general representations for better supervised learning. Dual-

Nets not only addresses CTN’s limitations but is also applicable to general con-

tinual learning settings. Through extensive experiments, our findings suggest

that DualNets is an effective and achieved strong results in several challenging

continual learning settings, even in the complex scenarios of limited training

samples or distribution shifts.

Furthermore, we went beyond the traditional image benchmarks to test the

proposed fast-and-slow continual learning framework on the online time series

forecasting problem. We proposed Fast and Slow Networks (FSNet) as a rad-

ical approach to online time series forecasting by formulating it as a continual

learning problem. FSNet leverages and improves upon the fast-and slow learn-

ing principle to address two major time series forecasting challenges: fast adap-

tation to concept drifts and learning of recurring concepts. From experiments

with both real and synthetic datasets, we found FSNet’s promising capabilities

in dealing with concept drifts and recurring patterns.

Finally, we conclude the dissertation with a summary of our contributions

and an outline of potential future directions in continual learning research.
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Chapter 1

Introduction

1.1 Motivation

Our world is always evolving, with new information appearing sequentially

while older patterns might remain inactive for a long time before re-emerging.

Such an ever-changing environment requires humans to constantly adapt to

new information while retaining the learned knowledge for future usage. Sim-

ilarly, Artificial Intelligence (AI) agents must also be able to operate in the same

dynamic world. Thus, developing agents that can continually learn through

time, accumulate, and retain knowledge has been one of the hallmark chal-

lenges in AI.

In recent years, deep learning has demonstrated remarkable success in solv-

ing cognitive tasks, even outperforming humans in some individual problems

such as visual recognition [92] and Atari games [54, 166]. As a result, deep

neural networks have become one of the most popular tools for many AI stud-

ies. However, much of the existing works often train the networks in a batch

learning (offline) process, where a large amount of data of a pre-defined prob-

lem is collected, then the networks are trained until convergence before being

1



Chapter 1. Introduction

evaluated. By doing so, the batch learning setting assumes a static world with

all patterns available at the beginning, which is clearly different from practice.

Whenever a new pattern emerges, the trained model becomes outdated, and

the whole training process has to start over again with both new and old data

mixed altogether. In the current big data era, data is generated in huge volumes

at high speeds. Therefore, such static models will quickly become obsolete, and

re-training them from scratch to accommodate new information is computa-

tionally infeasible. Consequently, without a mechanism allowing AI agents to

learn efficiently in the real world, practical and effective machine intelligence

cannot be achieved.

Different from the traditional batch training, continual learning focuses on

learning a data stream consisting of multiple problems. On-the-fly learning

makes continual learning models highly scalable and applicable to solving dif-

ferent tasks. However, deep neural networks are not naturally equipped which

the capabilities to achieve continual learning. They catastrophically forget the

learned information [9, 21, 15] and lack the ability to accumulate knowledge

to facilitate future learning [125], which is referred to as the stability-plasticity

dilemma [1, 6]. Despite extensive efforts in continual learning research, ex-

isting studies suffer from two major drawbacks. First, they often achieve a

poor stability-plasticity trade-off or require extensive memory/computational

resources to achieve satisfactory performances. Second, they are often devel-

oped for a specific scenario and may not perform well in general settings and

applications. This dissertation investigates the problem of training deep neural

networks to learn continually. We aim to develop a deeper understanding of

the stability-plasticity dilemma and devise a general continual learning frame-

work that is effective and applicable to different continual learning scenarios.

The rest of this Chapter is organized as follows. In Section 1.2, we detail the

2



Chapter 1. Introduction

continual learning problem and summarize its challenges. Then, we outline

the main contribution of this dissertation in Section 1.3. Finally, we conclude

this Chapter with an outline of the dissertation structure in Section 1.4.

1.2 Continual Learning

1.2.1 Overview

Continual learning, also referred to as lifelong learning or incremental learn-

ing, is the general problem of training a model on data streams consisting of

multiple tasks. Such a data stream is called the continuum. The main goal of

continual learning is to train a model that can solve all observed tasks so far at

any time during training. For example, a model is trained to classify cat vs doc

and then followed by lion vs tiger. Different from the traditional batch training,

the learner is not restricted to solving only pre-defined tasks but always has to

solve new problems while maintaining the ability to solve the learned ones.

Although continual learning is a natural task for humans, it is extremely

difficult for AI agents, especially deep neural networks. Early studies have no-

ticed the catastrophic forgetting phenomenon when training neural networks on

sequential data: newly learned knowledge overwrites the older one, resulting

in the inability to retrieve learned patterns. One popular hypothesis is that the

distributed representation property, while supporting the generalization ability to

new data, is also a culprit causing catastrophic forgetting [10, 13, 21]. Particu-

larly in neural networks, a pattern is encoded using many neurons, and each

neuron, in turn, contributes to the activation of several patterns. Therefore,

learning a new pattern will modify several neurons, which interferes with the

activation of the learned ones, resulting in the inability to retrieve the learned
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patterns. Lastly, the catastrophic forgetting effect is more severe for deep neu-

ral networks than the shallower ones since changes in the shallow layers may

cascade, resulting in significant changes in the final output [197].

Another equally important aspect of continual learning is the ability to fa-

cilitate forward knowledge transfer across tasks to improve the learning out-

comes. Since traditional deep neural networks require many training samples

and computational resources to achieve good performances, they have been

shown to achieve poor performances and slow convergences when naively

training on data streams [115, 124]. In contrast, continual learning presents

additional information as the task structure, which the learner should exploit

to improve its performance. Particularly, a model already trained on a large

number of tasks should leverage its learned knowledge to solve a new prob-

lem faster than another one trained from scratch. This ability is often referred

to as positive forward transfer. Moreover, learning to solve new tasks will accu-

mulate additional knowledge that can be useful to improve the performances

of past tasks, which is called positive backward transfer. Unfortunately, achiev-

ing positive forward and backward transfer is difficult since they contradict

each other, creating the infamous stability-plasticity dilemma [1, 6]. Focusing on

learning new tasks will make the model too plastic and prone to catastrophic

forgetting, causing negative backward transfer. Similarly, since old tasks’ data

is limited, a too stable model that only preserves the learned knowledge will

hinder the learning of new tasks, causing negative forward transfer. Therefore,

the main goal of continual learning is to develop general, efficient algorithms

that achieve a good trade-off between facilitating the positive forward trans-

fer and alleviating negative backward transfer (catastrophic forgetting) under

a reasonable complexity.

Continual learning is not only a stand-alone research problem but also a
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ubiquitous challenge in many real-world applications. After promising progress

on the image recognition task, continual learning has been gaining much inter-

est and moving to more domains such as medical image analysis [176, 94] and

practical applications such as recommendation systems [190, 200]. For exam-

ple, consider an online retail platform that deploys a recommendation system

to suggest useful items to users. Most users do not always buy items contin-

uously. Instead, they only shop when needed or once in a while as a leisure

activity. Therefore, most users can have long periods of inactivity, which re-

quires the model to remember the users’ preferences. Moreover, new users

are always joining the platform but only have limited interactions in the be-

ginning. Thus, it is beneficial that the system can quickly transfer knowledge

from existing users to provide meaningful suggestions. Such aspects of real-

world recommendation systems are highly similar to continual learning, which

has motivated the developments of the intersection between continual learning

and recommendation systems. Consequently, continual learning has become

ubiquitous in many real-world scenarios with a strong impact on many appli-

cations.

1.2.2 Challenges

Although simply storing all data and retraining before testing is a trivial ap-

proach to continual learning, it is infeasible in practice because of the computa-

tionally or privacy concerns. As such, we list below a list of the most important

desiderata, which must be met in a continual learning system.

1. Constant or sublinear memory growth We refer to the memory as the

storage required to store the model’s parameter and additional informa-

tion of each task to assist future learning. Ideally, except for the classifier,
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the model should not be expensively expanded after each task, and the

memory size should grow sublinearly with the number of tasks.

2. Positive forward transfer The model should leverage its previous knowl-

edge to improve the learning of newer tasks. Thus, a continual learner

should learn newer skills more efficiently than a learned trained from

scratch.

3. Graceful forgetting - limited backward transfer Naturally, continual

learning will cause negative backward transfer and result in catastrophic

forgetting. Therefore, an effective continual learner should be able to

maintain its learned knowledge and alleviate forgetting.

Simultaneously satisfying the above criteria is the main challenge of continual

learning: developing efficient algorithm that achieves better trade-off between

stability and plasticity. In addition, we also consider other minor desiderata that

may not be satisfied simultaneously and can be relaxed in certain applications.

1. Online learning Samples in the continuum should arrive sequentially

in small mini-batches, and revisiting old samples is not allowed except

those stored in a memory buffer.

2. Task-agnostic continual learning / no oracle at test time In certain set-

tings or model’s components1, the task identifier is not required to make

predictions. In such cases, the continuum only contains the tuple of in-

puts and outputs (xi, yi), making it task-agnostic and the model should

not request the task identifier, especially at test time.

3. Problem agnostic A continual learning method should be developed for

a general problem and not be restricted to a specific dataset.

1such as the batch normalization, which we will elaborate in details in Chapter 3
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While the major desiderata must all be satisfied, existing works usually make

some relaxations to the minor desiderata. For example, class-incremental learn-

ing methods [82, 187] are often developed in the batch setting where all sam-

ples of a task arrive at each step, and the model can train that task for many

epochs before moving on to a new one. In this dissertation, we mainly focus

on the strictly online setting where both the task and data within each task ar-

rive sequentially. Such a setting is more realistic and ubiquitous in real-world

scenarios [132].

1.3 Contribution Summary

This dissertation aims to develop a deeper understanding of continual learn-

ing. To this end, we first contribute the understanding of classical continual

learning algorithms by analyzing how Batch Normalization (BN) affects con-

tinual learning, which presents a new perspective of catastrophic forgetting.

Then, we develop a fast-and-slow learning framework motivated by the Comple-

mentary Learning Systems theory [14, 62] of human learning. We then realize this

framework to several continual learning algorithms that are efficient, effective,

and applicable to many scenarios.

Figure 1.1 depicts a taxonomy of our contributions to continual learning

and deep learning. For clarity, we refer to existing studies as the Classical frame-

work, and Fast-and-slow learning framework refers to the approach developed in

this dissertation. In the following, we highlight the contributions made in this

dissertation.
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Deep Learning

Batch Learning Continual Learning

Methodology

Classical framework

Continual Normalization
(Chapter 3)

Fast-and-slow learning framework

Contextual Transformation
Networks (Chapter 4)

DualNets
(Chapter 5)

Fast and Slow Learning
Networks (Chapter 6)

FIGURE 1.1: An overview of our dissertation contributions to con-
tinual learning, which is highlighted in bold.

• Continual Batch Normalization BN has been crucial in successfully train-

ing deep neural networks, allowing for faster convergence and better per-

formances. Although recent efforts have been trying to train deep net-

works without normalization layers in standard batch learning, we argue

that BN and its variants are still critical for continual learning. Particu-

larly, we show that BN facilitates training and forward transfer, allow-

ing the networks to achieve higher overall performance compared to a

network without any NLs. However, we also discover that BN is also a

source of catastrophic forgetting because it performs two different opera-

tions during training and testing. Therefore, we propose a novel normal-

ization layer that enjoys the benefit of BN while alleviating its negative

effect.

Related Publications

– Quang Pham, Chenghao Liu, Steven C.H. Hoi. Continual Normal-

ization: Rethinking Batch Normalization for Online Continual Learn-

ing. In International Conference on Learning Representation (ICLR),

2022 [223].
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• Contextual Transformation Networks (CTN) While static architecture

approaches are efficient, they are not as competitive as dynamic architec-

ture methods because they only model the generic features while neglect-

ing task-specific features. We propose to augment the standard backbone

in static architecture approaches with a controller component that can ef-

ficiently model the task-specific features. The two components are trained

in a novel optimization procedure so that the features complement each

other, which results in significant performance improvements.

Related Publications

– Quang Pham, Chenghao Liu, Doyen Sahoo, Steven C.H. Hoi. Con-

textual Transformation Networks for Online Continual Learning. In

International Conference on Learning Representation (ICLR), 2021 [214].

• Continual Learning: Fast and Slow CTN has demonstrated that learn-

ing both generic and task-specific features in a static backbone network

is possible and beneficial. However, we argue that generic features are

still prone to forgetting because they are driven to change and accommo-

date new patterns from incoming tasks. However, slow learning systems

are supposed to learn features that are common to all tasks and are less

likely to change too drastically when learning new tasks. For this, we

propose to train the slow network by minimizing a self-supervised learning

loss that models the intrinsic properties in the data. Moreover, we also

propose a novel task-agnostic adaptation mechanism that transforms the

slow, generic features to become instance-specific.

Related Publications
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– Quang Pham, Chenghao Liu, Steven C.H. Hoi. Continual Learning,

Fast and Slow. Under review at IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence (TPAMI).

– Quang Pham, Chenghao Liu, Steven C.H. Hoi. DualNet: Contin-

ual Learning: Fast and Slow. In Conference on Neural Information

Processing Systems (NeurIPS), 2021 [215].

• Learning Fast and Slow for Online Time Series Forecasting. Time series

is ubiquitous in many applications due to the sequential nature of data.

We address two major time series forecasting challenges: (i) fast adapta-

tion to concept drifts; and (ii) learning recurring concepts by formulating

them as a continual learning problem. We then propose FSNet, which

improves upon the fast-and-slow learning principle to address such chal-

lenges effectively.

Related Publications

– Quang Pham, Chenghao Liu, Steven C.H. Hoi. Learning Fast and

Slow for Online Time Series Forecasting. Under review [224].

1.4 Dissertation Structure

In Chapter 1, we introduced the continual learning problem and summarized

the contributions of this dissertation. Next, we present a comprehensive liter-

ature review for continual learning in Chapter 2. Here we formalize the con-

tinual learning problem and provide a taxonomy of existing continual learning

studies. We also discuss how continual learning relates to other machine learn-

ing paradigms. The chapter is followed by our main contributions: Contextual
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Transformation Networks in Chapter 4, Fast and Slow Continual Learning in

Chapter 5, Learning Fast and Slow for Online Time Series Forecasting in Chap-

ter 6, and Continual Normalization in Chapter 3. Lastly, we discuss promising

future research directions in Chapter 7.
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Chapter 2

Literature Review

This chapter introduces the continual learning problem and reviews its litera-

ture. We mainly focus on the development of continual learning methods and

studies analyzing continual learning. We also briefly discuss the Complemen-

tary Learning Systems (CLS) theory, which is the main motivation behind our

methods. Lastly, we discuss how continual learning relates to other machine

learning paradigms to give a broader view of the field.

2.1 Continual Learning

2.1.1 Problem Formulation

We now describe the general problem setting of continual learning [21, 11, 149,

17]. We will discuss the supervised learning setting since it is the main fo-

cus of this dissertation. Let Xt ⊂ RD and Yt ⊂ N be the t-th input feature

and label spaces respectively. The t-th task is defined as a joint distribution

Pt(X, Y ) = P (Xt, Yt) over Xt × Yt, and is simply denoted as Tt. Moreover, we

12
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task A task B task 1 task 2 task 3 task 4

. . .

Validation tasks Continual learning taskst = 0

FIGURE 2.1: The continual learning setting considered in this dis-
sertation. Task A and B are used for hyper-parameters cross-
validation and can be revisited multiple times. Task 1, 2, etc.
are used for continual learning. Both the continual learning tasks

their data arrive sequentially.

will use the term “task" and “problem" interchangeably throughout this disser-

tation. In continual learning, a continuum is defined as a training data stream

Dtr = {xi, ti, yi}∞i=1 where each training sample is a tuple formed by an input

feature xi ∈ Xti , a task descriptor ti (optional), and a target label yi ∈ Yti . The

task descriptor describes the problem of learning y from x, and can take differ-

ent forms such as a set of semantic attributes of objects in the task [29], or simply

an index of the task [80], which we use in this formulation. While observing the

data samples inDtr in an online manner, our goal is to learn a predictor param-

eterized by ω ∈ RN as fω : X ×T → Y such that the predictor can correctly pre-

dict y from x on all observed tasks, i.e. fω(x) = y,∀t′ ≤ t, (x, y) ∼ Pt′(X, Y ). It is

important to note that since this dissertation focuses on deep neural networks,

ω is a vectorized representation of the model parameter where each parame-

ter is reshaped into a vector and then concatenated altogether. Moreover, ω

refers to the total parameter of the model and can include different components.

For example, in Chapter 4, the total parameter includes the base model φ, the

controller θ, and a set of classifiers {ϕi}Ti=1, making ω = {φ,θ,ϕ1, . . . ,ϕT}.

Most existing studies in literature focus on the locally i.i.d continuum (lo-

cally independent, identically distributed continuum), in which every triplet
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(xi, ti, yi) satisfies (xi, yi)
iid∼ Pti(X, Y ). Continuums with correlated samples

are not yet widely studied, and is beyond the scope of this dissertation. In the

literature, there exist several different continual learning protocols. Here we

categorize them based on two questions:

i) Is the task identifier ti given during training and testing? And

ii) Is the training within each task performed online?

For question (i), when we do not know which task the sample belongs to, the

protocol is called “task-free” and there is a shared classifier (last layer) for all

tasks [126]. Otherwise, the protocol is called “task-aware" where the task iden-

tifier is given and only the corresponding classifier is selected during inference.

In question (ii), data of a task can either be fully available when task changes

or can arrives sequentially. When all the task data is available, training within

tasks can be done in an offline fashion with multiple epochs through the data.

On the other hand, when samples of each task arrives sequentially, the training

of each task is performed online in only one epoch and the whole continuum

becomes a data stream. The terms “online continual learning" and “batch con-

tinual learning" used in this dissertation refer to how the sample of each task are

presented during training. Empirically, the online continual learning is more

challenging than its offline counterpart due to the difficulty of optimizing deep

neural network online. In addition, the task-aware evaluation often has better

performances than the task-free evaluation due to the additional information

from the task identifiers.

Lastly, hyperparameter cross-validation is an important problem in contin-

ual learning, regardless of the protocol considered. Particularly, we must not

use data of future tasks when searching for the hyperparameter. Here we fol-

low [129] and assume that we have access to a small amount of tasks prior to
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continual learning. Such tasks will not be encountered again during actual con-

tinual learning and only be used for cross-validation. Figure 2.1 demonstrates

the continual learning protocol considered throughout this dissertation where

task A and task B are provided prior to continual learning for cross-validation

and can be revisited many times. The actual continual learning process starts

at t = 0 with tasks and their training samples arrive sequentially in an online

fashion.

2.1.2 Evaluation Metrics

To measure the model performance, we adopt four standard metrics: Average

Accuracy ACC(↑) [80], Backward Transfer BWT(↑) [80], Forgetting Measure

FM(↓) [129], and Learning Accuracy LA(↑) [156]. Denote ai,j as the model’s

accuracy evaluated on the test set Dtej after it has been trained on the most

recent sample of task Ti. Then, the above metrics are defined as:

• Average Accuracy (higher is better): the average accuracy of all observed

tasks:

ACC(↑) =
1

T

T∑
i=1

aT,i.

• Forgetting Measure (lower is better): the average forgetting compared

to each task’s best performance in history:

FM(↓) =
1

T − 1

T−1∑
j=1

max
l∈{1,...T−1}

al,j − aT,j.
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• Backward Transfer BWT(↑) (higher is better): the average of changes in

each task at the end compared to when it is learned:

BWT(↑) =
1

T − 1

T−1∑
j=1

aT,j − aj,j,

• Learning Accuracy (higher is better): measures the performance of a

model on a task right after it finishes training that task:

LA(↑) =
1

T

T∑
i=1

ai,i.

The Averaged Accuracy (ACC(↑) ) measures the model’s overall performance

across all tasks and is a common metric to compare among different methods.

Backward Transfer (BWT(↑) ) and Forgetting Measure (FM(↓) ) measure the

model’s forgetting as the averaged performance changes of old tasks. Finally,

Learning Accuracy (LA(↑) ) measures the model’s ability to acquire new knowl-

edge. Note that in the task free setting, the task identifiers are not given to the

model at any time and are only used to measure the evaluation metrics.

2.2 Continual Learning Studies

2.2.1 Overview

Pioneer works in [9, 21, 15] discovered that binding new patterns to a neural

network would overwrite the learned ones and named this the catastrophic

forgetting phenomenon. Therefore, neural networks tend to be overly plastic,

giving them a great ability to learn many patterns at a cost of struggling to
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Continual Learning with Neural Networks

Methodology

Theoretical studyStatic architecture

Regularization Replay-based

Dynamic architecture

Meta-analysisNetwork 
growing

Subnetworks 
searching/
generation

FIGURE 2.2: A diagram illustrating the taxonomy of existing con-
tinual learning studies, white text indicates a category of study.

remember when learning sequentially. With the recent developments of pow-

erful computational devices such as GPU, and the availability of large datasets

to train deep neural networks, continual learning and catastrophic forgetting

have received increased interests. [41] is one of the first study to revisit contin-

ual learning with modern neural networks architecture and demonstrate the

catastrophic forgetting effects when learning two tasks. Since then, several

theoretical works have generalization bounds [208, 167] to better understand

continual learning via the PAC-Bayes framework [48, 64] or set theory [184].

Moreover, early continual learning methods addressed the catastrophic forget-

ting problem by constraining the network’s internal representation to be more

local rather than globally distributed [40, 42]. However, such methods only

found successful in a sequence of two tasks while struggling to generalize to

longer sequences.

Recent efforts have been focused on studying continual learning on more

challenging problems and longer sequence of tasks (usually more than 10). Ex-

isting methods can be broadly categorized into two major approaches based on
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the network parameter extracting the features of each task. Note that this cat-

egorization is based on the backbone network (feature extractor), which does

not include the classifiers, since each task may have its own classifier. A first

family is the static architecture methods where a single backbone network is

shared for all tasks. Such methods often require an episodic memory to store

important information of old tasks, which is later interleaved with the train-

ing of newer tasks. The episodic memory can contain a subset of old samples

(replayed-based methods), or the importance of each parameters to previous

tasks (regularization methods). The second family is the dynamic architecture

approach where a (partially) different backbone network is used for each task.

The subnetworks can be either identified from a bigger network, or progres-

sively grown as new tasks arrive. Concurrently, continual learning is also ac-

tively studied in neuroscience, which develops better understanding of contin-

ual learning in human. One notable approach is the CLS theory [14, 62], which

we will also briefly discuss in Section 2.2.5. Figure 2.2 illustrate a taxonomy

of existing continual learning studies with neural networks. In the following,

we describe the continual learning methods and meta-analysis studies in more

details while leaving to each chapter the description of its closely related works.

2.2.2 Static Architecture Approach

Regularization Methods Regularization methods prevent catastrophic for-

getting to previous tasks via a regularizer added to the main lost function.

Generally, regularization methods optimize the following equation at task Tt:

Lt(ω) = L̃t(ω) + λRt(ω), (2.1)
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where L̃t(·) denotes the loss of task Tt such as the cross-entropy loss, λ is the

balancing factor,Rt(ω) is the regularizer for task Tt, and L(·) denotes the regu-

larized loss1. Early works [23, 77] designed the regularizerRt to be the knowl-

edge distillation loss [50] using the previous model and current data, which

serves as a proxy to control the changes of new models’ outputs on old data.

This approach and its variants [61] have shown promising results and even

integrated into a bigger pipeline [201, 103]. However, [118] shows that this

regularizer only works when tasks are highly similar and its performance can

quickly deteriorate when tasks differ slightly.

A more rigorous approach to Equation 2.1 is following the Bayesian view

of continual learning [104, 109, 99, 133] where the posterior of previous tasks

serves as a prior for the current task, which provides a natural recursive for-

mulation to solve continual learning. This approach can be implemented via

variational inference on feed-forward networks [109], or achieved via the fol-

lowing regularizers:

Rt(ω) =
∑
i

(ωi − ω∗i,t−1)ᵀH(ω∗t−1)(ωi − ω∗i,t−1) or (2.2)

Rt(ω) =
∑
t′<t

∑
i

(ωi − ω∗i,t′)ᵀH(ω∗t′)(ωi − ω∗i,t′), (2.3)

where ωi is the i-th parameter, ω∗i,t′ is the optimal i-th parameter of task Tt′ ,

and H(ω∗t′) is the importance measure of the parameter ω∗t′ to task t′. In gen-

eral, with a model ω ∈ RN , the importance measurement H(ω∗t′) describes the

importance of each parameter in ω to the task Tt′ relative to other parameters,

which requires N2 entries. In Equation 2.2, the regularizer is derived exactly

from the Bayesian rule [104], which only requires to constrain from the imme-

diate preceding task. On the other hand, Equation 2.3 has one regularizer per

1for simplicity, we omit the dependence of the loss on the sample in this case
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task and over-emphasizes older tasks’ importance according to the Bayes rule,

which can be useful when prioritizing minimizing catastrophic forgetting.

The important question in such regularization methods is how to estimate

the importance of each parameter to a task Tt′ , which is denoted as H(ω∗t′). In

the Bayesian formulation, the parameter importance corresponds to the inverse

of the covariate matrix [104], and is obtained by performing the Laplace propa-

gation [20] on the current task’s posterior. However, inverting the full covariate

matrix is infeasible for deep neural networks. Therefore, many studies have

been devoted to develop more efficient and even better estimates of the param-

eter importance such as approximating the covariate matrix to be diagonal [76,

104] or block diagonal [114]. Other techniques involve directly measure the the

contribution of each parameter to the change of the loss function [89, 150], or

the model’s output [90].

It is worth noting that each regularizer requires storing a snapshot of the

model parameter ω∗t′ and their corresponding importance estimates H(ω∗t′). As

a result, the cost of storing one regularizer is twice the number of parameters

in the model, which can be expensive for deep neural networks.

Replay-based Methods Different from regularization methods, replay-based

methods store a small amount of old data and interleave them with the train-

ing of new tasks. The simplest replay form is experience replay [12], also called

rehearsal [15], which simply re-trains the old samples while learning the newer

ones. Advances rehearsal techniques involve using nearest neighbor classi-

fier [82], additional regularizers using soft labels [120, 170, 175], training schemes

to improve knowledge transfer [156]. Since repeatedly training on a small

amount of data in the memory can be prone to overfitting, [80, 124] proposed to

use the memory data to constraint the model to not increase the losses on those
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data while training new tasks. [129] proposed a more efficient version of [80] by

considering the averaged loss, which significantly speeds up the training time.

Interestingly, experience replay is a quite general strategies that also found suc-

cessful in other application domains such as Reinforcement Learning, which

uses experience replay to decorrelate the observations, smoothing changes in

the distribution, or alleviate catastrophic forgetting [54, 69, 157].

In applications where storing the original data is not possible (e.g. due to

privacy concerns), pseudo-rehearsal trains another model to generate synthetic

data for experience replay. With the recent success of generative models such as

Generative Adversarial Networks [45], generating synthetic, high-dimensional

data such as high-resolution images become possible and has shown promis-

ing results in continual learning [84, 179, 171, 148]. However, this approach

requires incorporating training a generative model such as GANs continually,

which is extremely challenging since training GANs itself can be modeled as a

continual learning problem [198] and may result in a circular reasoning fallacy.

Another approach is to directly optimize the synthetic samples such that they

maximize performance on a separate memory units [187].

2.2.3 Dynamic Architecture Approach

Different from the static architecture approach, dynamic architecture methods

use a partially separate backbone network to extract the feature of each task.

In an extreme case, a separate network is allocated for each task [66], which

completely avoids forgetting since the task-specific networks are frozen upon

learning the new tasks. However, this comes at a cost of linear growth in the

number of model parameters, which may not be applicable in practice. Another

extreme is starting from a very large network and identifying a configuration of
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subnetworks that is suitable for each task. The subnetworks can be identified

by performing search [72, 153].

However, a majority of dynamic architecture methods lie between the above

extreme, with a partial parameter sharing among all subnetworks and a mech-

anism to generate the task specific parameters. The task-specific networks can

be accumulated into a single set of parameter via superposition [131, 131], gen-

erated from another network [194], masked [117], or gradually grown from the

original network [123, 137, 122, 143]. Note that such methods do not com-

pletely eliminate forgetting since there is still a partially parameter sharing

across tasks. However, empirically, they still demonstrate a strong performance

with very little forgetting.

Lastly, dynamic architecture approaches are often expensive to train in prac-

tice due to the cost of constantly expanding the network of searching for a sub-

network configuration. Therefore, they often show competitive performance in

the offline continual learning while struggling in the online setting [129].

2.2.4 Meta-Analysis of Continual Learning

Meta-analysis of continual learning plays an important role in broadening our

understanding of continual learning. Such studies do not heavily focus on de-

veloping a novel continual learning method but they focus on analyzing how

different components of the models and the continuum affect the overall per-

formance. As a result, they provide deeper insights to existing methods and

the catastrophic forgetting phenomenon.

The first type of meta analysis in continual learning considers the contin-

uum’s properties and how they affect the overall performances. Particularly,
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they study the task order [161], tasks’ difficulties, and the degree dissimilar-

ity among the tasks [147]. Such studies provided insights the design of future

continual learning benchmarks.

The second meta analysis explores the relationship between continual learn-

ing and other learning paradigms. [192] studied the local optima of continual

learning and multitask learning and discovered that they were connected by a

linear path of low error in the parameter space. [139] studied the relationship

between meta learning and continual learning and unified them in a hierarchi-

cal Bayes framework.

Since computer vision and Reinforcement Learning (RL) are the more pop-

ular domains to study continual learning, the third type of meta analysis ex-

plores the catastrophic forgetting beyond vision and RL benchmarks and con-

volutional neural networks backbone. Specifically, continual learning and catas-

trophic forgetting have been explored in recurrent neural networks [158, 209],

NLP applications [146, 159, 168], and recommendation systems [190, 200].

The last type of meta-analysis explores how catastrophic forgetting corre-

lates to different training elements. [197, 113] conducted a comprehensive

study of catastrophic forgetting in different layers of the backbone network

and how it is alleviated by existing methods. [193] instead studied how dif-

ferent training parameters such as dropout, learning rate decay, etc., effect the

training in continual learning. In this dissertation, Chapter 3 is also a meta

analysis study where we study the effect of batch normalization to continual

learning.

Meta-analysis studies have shown to broaden our understanding of con-

tinual learning and demonstrated continual learning in various AI problems.

23



Chapter 2. Literature Review

They also provided a deeper understanding of the catastrophic forgetting phe-

nomenon, showing that it happened from various factors, ranging from dis-

tributed representation property to different training hyper-parameter settings.

2.2.5 Complementary Learning Systems

Although continual learning has shown to be an extremely difficult task for

neural networks, humans is a natural continual learner. Therefore, extensive

efforts in neuroscience have been devoted to study the human brain to under-

stand its mechanism supporting continual learning. Among which, the CLS

theory [36, 62] is one of the most prominent study because of its effectiveness

and empirical support.

According to the CLS theory, there are two components in the human brain

interacting with one another to facilitate learning over time. First, the hippocam-

pus focuses on the fast acquisition of the specific experiences. Such experiences

are pattern-specific and can be easily overwritten when the hippocampus accu-

mulate newer experiences. Therefore, there is a need for a second component,

called the neocortex to support long-term knowledge retention. Via the memory

consolidation process, which could happen during sleeping, the hippocampus’

pattern-specific experiences are transferred to the neocortex to form a general

representation that can last for a long time, which is referred to as the slow

learning. Consequently, the hippocampus supports the learning ability in hu-

man while the neocortex supports the ability to remember and generalize to

novel experience. The two components always interact with each other to facil-

itate the learning and remembering ability in human. This hierarchical design

of the brain is also supported in other studies in neuroscience [30]. Figure. 2.3

illustrates the fast-and-slow learning paradigm induced by the CLS theory.
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of structured 
knowledge
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FIGURE 2.3: An illustration of the fast and slow learning accord-
ing to the CLS theory. Figure is inspired from [149].

Most methods described in Section 2.2.2 and 2.2.3 only employ a single

learning component. We refer to these methods as the classical framework. On

the other hand, the CLS theory instead suggest successful continual learning

in human is supported by two learning components. Therefore, we adopt this

idea to develop a fast-and-slow learning framework as a novel approach to

continual learning. Particularly, the fast-and-slow learning framework models

the hippocampus and neocortex by deploying two systems that is responsible

for learning different patterns. This principle is the core of our algorithms pro-

posed in Chapter 4, 5, and 6.

2.3 Relation to Other Machine Learning Paradigms

Continual learning is closely related to other machine learning paradigms, which

have been concurrently studied and developed in other fields. In the following,

we will discuss each paradigm briefly, and compare them to continual learning.

Multi-task learning Multi-task learning aims at simultaneously training a

model on a set of tasks such that the overall performances are maximized. The

tasks are pre-defined and all data samples are provided prior to training. Some

tasks can be positive or negative correlated to one another. Therefore the model

should leverage the positive transfer among the positive correlated tasks while
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alleviating the negative transfers from the negative correlated ones. In litera-

ture, given the same backbone, the model trained with multi-task learning is

often referred to as a soft upper bound of the continual learning model.

Transfer Learning Transfer learning aims at improving the learning outcomes

of a given target task by levering the knowledge from a set of related tasks,

which are call the source tasks. Therefore, transfer learning mostly focus on

facilitating positive forward transfer, which is one of the continual learning’s

goal. However, transfer learning studies often do not focus on the performance

on the source tasks and only transfer knowledge to a single target task. In

contrast, continual learning aims at maximizing the performances on all tasks.

Moreover, the target task in continual learning always changes with the learned

tasks at this step become the source task for the incoming ones.

Domain Adaptation Domain adaptation is one subfield of transfer learning

where the source and target tasks share the same input and label spaces X ,Y ,

but each task is a different domain on the joint distribution2. For example, the

source domains can be images of digits in black and while while the target

domain is those digits in colored backgrounds. Similar to transfer learning,

domain adaptation is unidirectional and only focus on one target domain.

Online Convex Optimization Online Convex Optimization (OCO), concerns

the learning of a linear model over a stream of data samples belonging to a sin-

gle task. Compared to OCO, continual learning contains multiple tasks, which

makes the sampling procedure in the whole continuum non-i.d.d. Moreover,

2Recall that a task is defined as a distribution P (X,Y ).
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online learning aimed minimized the regret on the training data3 while contin-

ual learning aims at maximizing the generalization to the test data.

Meta Learning (Few-shot learning) In literature, there exist several slightly

different definitions for meta learning. The definition we use here is based on

the work of [22, 172] which studies the “few-shot learning problem". Meta

learning aims at training a model that can quickly learn to solve new tasks by

utilizing its internal knowledge obtained from solving many prior problems.

Therefore, meta learning mainly concerns about facilitating positive forward

knowledge transfer while neglecting the ability to retain obtained knowledge.

Lastly, meta learning and continual learning settings can be complemen-

tary to each other. For example, meta continual learning [136, 138] and con-

tinual meta learning [101] studies the intersection of both fields by applying

meta learning algorithms to continual learning or designing meta learning al-

gorithms without forgetting. However, such problems are beyond the scope of

this dissertation, which focuses on the traditional continual learning setting.

2.4 Summary

This chapter presented the continual learning problem and a brief survey of

the related studies. In particular, we first gave a formal definition of continual

learning and introduced several benchmarks with the evaluation metrics. We

then briefly discussed the literature, including existing approaches and meta

analyses of continual learning. This chapter concluded with an overview of

different machine learning paradigms and how continual learning fitted to this

bigger picture.

3regret is defined as the difference between the model’s cumulative loss versus the best
model in hindsight.

27



Chapter 3

Continual Normalization

We first look at the classical continual learning framework of experience re-

play and study how common training components affect continual learning.

Particularly, we are interested in Normalization Layers (NLs) as it is a crucial

component for the success of deep models on image datasets. We consider the

online continual learning setting with image benchmarks to analyze the ben-

efits and drawbacks of different NLs to continual learning. From there, we

propose the desiderata of an ideal NL for continual learning and propose Con-

tinual Normalization (CN), a NL that satisfies such criteria. Extensive experi-

ments demonstrate the strength and weaknesses of different NLs and how CN

can be a more suitable NL for online continual learning with images.

3.1 Introduction

While most previous works focus on developing strategies to alleviate catas-

trophic forgetting and facilitating knowledge transfer [149], scant attention has

been paid to the backbone they used. In standard backbone networks such

as ResNets [60], it is natural to use Batch Normalization (BN) [51], which has
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enabled the deep learning community to make substantial progress in many

applications [182]. Although recent efforts have shown promising results in

training deep networks without BN in a single task learning [204], we argue

that BN has a huge impact on continual learning. Particularly, when using an

episodic memory, BN improves knowledge sharing across tasks by allowing

data of previous tasks to contribute to the normalization of current samples and

vice versa. Unfortunately, in this work, we have explored a negative effect of

BN that hinders its performance on older tasks and thus increases catastrophic

forgetting. Explicitly, unlike the standard classification problems, data in con-

tinual learning arrived sequentially, which are not independent and identically

distributed (non-i.i.d). Moreover, especially in the online setting [80], the data

distribution changes over time, which is also highly non-stationary. Together,

such properties make the BN’s running statistics heavily biased towards the

current task. Consequently, during inference, the model normalizes previous

tasks’ data using the moments of the current task, which we refer to as the

“cross-task normalization effect”.

Although using an episodic memory can alleviate cross-task normalization

in BN, it is not possible to fully mitigate this effect without storing all past

data, which is against the continual learning purposes. On the other hand,

spatial normalization layers such as GN [121] do not perform cross-task nor-

malization because they normalize each feature individually along the spatial

dimensions. As we will empirically verify in Section 3.5.2, although such lay-

ers suffer less forgetting than BN, they do not learn individual tasks as well

as BN because they lack the knowledge transfer mechanism via normalizing

along the mini-batch dimension. This result suggests that a continual learning

normalization layer should balance normalizing along the mini-batch and spa-

tial dimensions to achieve a good trade-off between knowledge transfer and
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alleviating forgetting. Such properties are crucial for continual learning, espe-

cially in the online setting [79, 156], but not satisfied by existing normalization

layers. Consequently, we propose Continual Normalization (CN), a novel nor-

malization layer that takes into account the spatial information when normal-

izing along the mini-batch dimension. Therefore, our CN enjoys the benefits

of BN while alleviating the cross-task normalization effect. Lastly, our study

is orthogonal to the continual learning literature, and the proposed CN can

be easily integrated into any existing methods to improve their performances

across different online protocols.

In summary, we make the following contributions. First, we study the ben-

efits of BN and its cross-task normalization effect in continual learning. Then,

we identify the desiderata of a normalization layer for continual learning and

propose CN, a novel normalization layer that improves the performance of ex-

isting continual learning methods. Lastly, we conduct extensive experiments to

validate the benefits and drawbacks of BN, as well as the improvements of CN

over BN.

3.2 Notations and Preliminaries

This section provides the necessary background of continual learning and nor-

malization layers.

3.2.1 Notations

We focus on the image recognition problem and denote an image asx ∈ RW×H×C ,

whereW ,H ,C are the image width, height, and the number of channels respec-

tively. A convolutional neural network (CNN) with parameter θ is denoted as

fθ(·). A feature map of a mini-batch B is defined as a ∈ RB×C×W×H . Finally.
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FIGURE 3.1: An illustration of different normalization methods
using cube diagram derived from [121]. Each cube represents a
feature map tensor with N as the batch axis, C as the channel axis,
and (H,W) as the channel axes. Pixels in blue are normalized by
the same moments calculated from different samples while pixels
in orange are normalized by the same moments calculated from

within sample. Best viewed in colors.

each image x is associated with a label y ∈ {1, 2 . . . , Y } and a task identifier

t ∈ {1, 2, . . . , T}, that is optionally revealed to the model, depending on the

protocol.

3.2.2 Normalization Layers

Normalization layers are essential in training deep neural networks [182]. Ex-

isting works have demonstrated that having a specific normalization layer tai-

lored towards each learning problem is beneficial. However, the continual

learning community stills mostly adopt the standard BN in their backbone net-

work, and lack a systematic study regarding normalization layers [188]. To the

best of our knowledge, this is the first work proposing a dedicated continual

learning normalization layer.

In general, a normalization layer takes a mini-batch of feature maps a =

(a1, . . . ,aB) as input and perform the Z-normalization as:

a′ = γ

(
a− µ√
σ2 + ε

)
+ β, (3.1)
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where µ and σ2 are the mean and variance calculated from the features in B,

and ε is a small constant added to avoid division by zero. The affine transfor-

mation’s parameters γ, β ∈ RC are |C|-dimensional vectors learned by back-

propagation to retain the layer’s representation capacity. For brevity, we will

use “moments” to refer to both the mean µ and the variance σ2.

It is important to note that the Z-normalization step in Eq.( 3.1) also depends

on the network’s parameter θ at the time of performing the normalization. As a

result, the input’s distributions of each layer continuously change during train-

ing, results in the internal covariate shift phenomenon [51, 165]. To alleviate

the effect, BN proposes to not backpropagate through the moments calcula-

tion during the backward pass, which has been subsequently adopted in later

works.

Batch Normalization BN is one of the first normalization layers that found

success in a wide range of deep learning applications [51, 116, 95]. During

training, BN calculates the moments across the mini-batch dimension as:

µBN =
1

BHW

B∑
b=1

W∑
w=1

H∑
H=1

abcwh, σ2
BN =

1

BHW

B∑
b=1

W∑
w=1

H∑
H=1

(abcwh − µBN)2.

(3.2)

At test time, it is important for BN to be able to make predictions with only one

data sample to make the prediction deterministic. As a result, BN replaces the

mini-batch mean and variance in Eq. (3.2) by an estimate of the global values

obtained during training as:

µ← µ+ η(µB − µ), σ ← σ + η(σB − σ), (3.3)
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where η is the exponential running average’s momentum, which were set to

0.1.

Spatial Normalization Layers The discrepancy between training and testing

in BN can be problematic when the training mini-batch size is small [74], or

when the testing data distribution differs from the training distributions. In

such scenarios, the running estimate of the mean and variance obtained dur-

ing training are a poor estimate of the moments to normalize the testing data.

Therefore, there have been tremendous efforts in developing alternatives to

BN to address these challenges. One notable approach is normalizing along

the spatial dimensions of each sample independently, which completely avoid

the negative effect from having a biased global moments. In the following, we

discuss popular examples of such layers.

Layer Normalization (LN) [56] Layer Normalization [56] was proposed to

address the discrepancy between training and testing in BN by normalization

along the spatial dimension of the input feature. Particularly, LN computes the

moments to normalize the activation as:

µLN =
1

CWH

C∑
c=1

W∑
w=1

H∑
h=1

abcwh

σ2
LN =

1

CWH

C∑
c=1

W∑
w=1

H∑
h=1

(abcwh − µLN)2 (3.4)

Instance Normalization (IN) [67] Similar to LN, Instance Normalization [67]

also normalizes along the spatial dimension. However, IN normalizes each

channel separately instead of jointly as in LN. Specifically, IN computes the
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moments to normalize as:

µIN =
1

WH

W∑
w=1

H∑
h=1

abcwh

σ2
IN =

1

WH

W∑
w=1

H∑
h=1

(abcwh − µLN)2 (3.5)

Group Normalization (GN) [121] GN proposes to normalize each feature

individually by dividing each channel into groups and then normalize each

group separately. Moreover, GN does not normalize along the batch dimen-

sion, thus performs the same computation during training and testing. Com-

putationally, GN first divides the channels C into G groups as:

a′bgkhw ← abchw, where k = b∗cC
G
, (3.6)

Then, for each group g, the features are normalized with the moments calcu-

lated as:

µ
(g)
GN =

1

m

K∑
k=1

W∑
w=1

H∑
h=1

a′bgkhw, σ
(g)
GN

2
=

1

m

K∑
k=1

W∑
w=1

H∑
h=1

(a′bgkhw − µ
(g)
GN)2 (3.7)

GN has shown comparable performance to BN with large mini-batch sizes (e.g.

32 or more), while significantly outperformed BN with small mini-batch sizes

(e.g. one or two). Notably, when putting all channels into a single group (set-

ting G = 1), GN is equivalent to Layer Normalization (LN) [56], which normal-

izes the whole layer of each sample. On the other extreme, when separating

each channel as a group (setting G = C), GN becomes Instance Normalization

(IN) [67], which normalizes the spatial dimension in each channel of each fea-

ture. Figure 3.1 provides an illustration of BN, GN, IN, and the proposed CN,

which we will discuss in Section 3.4.
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3.2.3 Switchable Normalization (SN)

While LN and IN addressed some limitations of BN, their success are quite

limited to certain applications. For example, LR is suitable for recurrent neural

networks and language applications [56, 160], while IN is widely used in image

stylization and image generation [67, 85]. Beyond their dedicated applications,

BN still performs superior to LR and IN. Therefore, SN [108] is designed to take

advantage of both LN and IN while enjoying BN’s strong performance. Let Ω =

{BN,LN,IN} , SN combines the moments of all three normalization layers and

performs the following normalization:

a′ = γ

(
a−

∑
k∈Ωwµk√

w′σ2
k + ε

)
+ β, (3.8)

wherew andw′ are the learned blending factors to combine the three moments

and are learned by backpropagation.

3.3 Batch Normalization in Continual Learning

3.3.1 Normalization Layers Benefit Continual Learning

We argue that BN is helpful for forward transfer in two aspects. First, BN

makes the optimization landscape smoother [116], which allows the optimiza-

tion of deep neural networks to converge faster and better [95]. In continual

learning, BN enables the model to learn individual tasks better than the no-

normalization method. Second, with the episodic memory, BN uses data of

the current task and previous tasks (in the memory) to update its running mo-

ments. Therefore, BN further facilitates forward knowledge transfer during

experience replay: current task data is normalized using moments calculated
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Method ACC FM LA ∆
(1)
µ ∆

(2)
µ ∆

(1)

σ2 ∆
(2)

σ2

Single-BN 72.81 18.65 87.74 10.85 0.91 3.69 7.74Single-BN∗ 75.92 15.13 88.24

ER-BN 80.66 9.34 88.23 3.56 0.46 1.41 3.16ER-BN∗ 81.75 8.51 88.46

TABLE 3.1: Evaluation metrics on the pMNIST benchmark. The
magnitude of the differences are calculated as ∆

(k)
ω = ||ω(k)

BN −
ω

(k)
BN∗ ||1, where ω ∈ {µ, σ2} and k ∈ {1, 2} denotes the first or

second BN layer. Bold indicates the best scores.

from both current and previous samples. Compared to BN, spatial normal-

ization layers (such as GN) lack the ability to facilitate forward transfer via

normalizing using moments calculated from samples of both old and current

tasks. We will empirically verify the benefits of different normalization layers

to continual learning in Section 3.5.2.

3.3.2 The Cross-Task Normalization Effect

Recall that BN maintains a running estimate of the global moments to normal-

ize the testing data. In the standard learning with a single task where training

samples are i.i.d, one can expect such estimates can well-characterize the true,

global moments, and can be used to normalize the testing data. However, on-

line continual learning data is non-i.i.d and highly non stationary. Therefore,

BN’s estimation of the global moments is heavily biased towards the current

task because the recent mini-batches only contain that task’s data. As a re-

sult, during inference, when evaluating the older tasks, BN normalizes pre-

vious tasks’ data using the current task’s moments, which we refer to as the

cross-task normalization effect.
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FIGURE 3.2: Changes of moments (L1 distance - y axis) between
BN and BN∗ throughout training on a 2-layers MLP backbone.
Standard deviation values are omitted due to small values (e.g.

< 0.1)

We consider a toy experiment on the permuted MNIST (pMNIST) bench-

mark [80] to explore the cross-task normalization effect in BN. We construct a

sequence of five task, each has 2,000 training and 10,000 testing samples. We

implement a multilayer perceptron (MLP) backbone configured as Input(784)-

FC1(100)-BN1(100)-FC2(100)-BN(100)-Softmax(10), where the number inside the

parentheses indicates the output dimension of that layer. We consider the Sin-

gle and ER strategies for this experiment, where the Single strategy is the naive

method that trains continuously without any memory or regularization. For

each method, we implement an optimal-at-test-time BN variant (denoted by

the suffix -BN∗) that calculates the global moments using all training data of

all tasks before testing. Compared to BN, BN∗ has the same parameters, train-

ing procedure and only differs in the moments used to normalize the testing

data. We emphasize that although BN∗ is unrealistic, it sheds light on how
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cross-task normalization affects the performance of CL algorithms. We report

the averaged accuracy at the end of training ACC(↑) [79], forgetting measure

FM(↓) [96], and learning accuracy LA(↑) [156] in this experiment.

Table 3.1 reports the evaluation metrics at the end of training. Besides the

standard metrics, we also report the moments’ difference magnitudes between

the standard BN and the global BN variant. We also plot the changing rate

of each moment through out learning in Figure 3.2. We observe that the gap

between two BN variants is significant without the episodic memory. When

using the episodic memory, ER can reduce the gap because the pMNIST is

quite simple and even the ER strategy can achieve close performances to the

offline model [130]. Moreover, it is important to note that training with BN on

imbalanced data also affects the model’s learning dynamics, resulting in a sub-

optimal parameter. Nevertheless, having an unbiased estimate of the global

moments can greatly improve overall accuracy given the same model param-

eters. Moreover, this improvement is attributed to reducing forgetting rather

than facilitating transfer: BN∗ has lower FM but almost similar LA compared to

the traditional BN. In Table 3.1 and Figure 3.2, we observe that except the mean

of the second layer, the other moments quickly diverge from the optimal BN∗

as the model observes more tasks. Moreover, the discrepancy in the first layer

can cascade through the network depth and result different deeper features.

This result agrees with recent finding [197] that deeper layers are more respon-

sible for causing forgetting because their hidden representation deviates from

the model trained on all tasks. Overall, these results show that normalizing

older tasks using the current task’s moments causes higher forgetting, which

we refer to as the “cross-task normalization effect".
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3.3.3 Desiderata for Continual Learning Normalization Layers

While BN facilitates continual learning, it also amplifies catastrophic forget-

ting by causing the cross-task normalization effect. To retain the BN’s benefits

while alleviating its drawbacks, we argue that an ideal normalization layer for

continual learning should be adaptive by incorporating each feature’s statistics

into its normalization. Being adaptive can mitigate the cross-task normaliza-

tion effect because each sample is now normalized differently at test time in-

stead of being normalized by a set of biased moments. In literature, adaptive

normalization layers have shown promising results when the mini-batch sizes

are small [121], or when the number of training data is extremely limited [169].

In such cases, normalizing along the spatial dimensions of each feature can al-

leviate the negative effect from an inaccurate estimate of the global moments.

Inspired by this observation, we propose the desiderata for a continual learning

normalization layer:

• Facilitates the performance of deep networks by improving knowledge

sharing within and across-task (when the episodic memory is used), thus

increasing the performance of all tasks, e.g. ACC(↑) ;

• Is adaptive at test time: each data sample should be normalized differ-

ently. Moreover, each data sample should contribute to its normalized

feature’s statistic, thus reducing catastrophic forgetting;

• Does not require additional input at test time such as the episodic mem-

ory, or the task identifier.

To simultaneously facilitate training and mitigating the cross-task normaliza-

tion effect, a normalization layer has to balance between both across mini-

batch normalization and within-sample normalization. As we will show in
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Section 3.5.2, BN can facilitate training by normalizing along the mini-batch di-

mension; however, it is not adaptive at test time and suffers from the cross-task

normalization effect. On the other hand, GN is fully adaptive, but it does not

facilitate training compared to BN. Therefore, it is imperative to balance both

aspects to improve continual learning performance. Lastly, we expect a con-

tinual learning normalization layer can be a direct replacement for BN, thus, it

should not require additional information to work, especially at test time.

3.4 Continual Normalization (CN)

CN works by first performing a spatial normalization on the feature map, which

we choose to be group normalization. Then, the group-normalized features

are further normalized by a batch normalization layer. Formally, given the in-

put feature map a, we denote BN1,0 and GN1,0 as the batch normalization and

group normalization layers without the affine transformation parameters1, CN

obtains the normalized features aCN as:

aGN ← GN1,0(a); aCN ← γBN1,0(aGN) + β. (3.9)

The GN component does not use the affine transformation to make the inter-

mediate feature BN1,0(aGN) well-normalized across the mini-batch and spatial

dimensions. Moreover, performing GN first allows the spatial-normalized fea-

tures to contribute to the BN’s running statistic, which further reduce the cross-

task normalization effect. An illustration of CN is given in Figure 3.1.

By its design, one can see that CN satisfies the desiderata of a continual

learning normalization layer. Particularly, CN balances between facilitating

1which is equivalent to setting γ = 1 and β = 0
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training and alleviating the cross-task normalizing effect by normalizing the

input feature across mini-batch and individually. Therefore, CN is adaptive

at test time and produces well-normalized features in the mini-batch and spa-

tial dimensions, which strikes a great balance between BN and other instance-

based normalizers. Lastly, CN uses the same input as conventional normaliza-

tion layers and does not introduce extra learnable parameters that can be prone

to catastrophic forgetting.

We now discuss why CN is a more suitable normalization layer for con-

tinual learning than recent advanced normalization layers. SwitchNorm [108]

proposed to combine the moments from three normalization layers: BN, IN,

and LN to normalize the feature map (Eq. 3.8). However, the blending weights

w andw′ make the output feature not well-normalized in any dimensions since

such weights are smaller than one, which scale down the moments. Moreover,

the choice of IN and LN may not be helpful for image recognition problems.

Similar to SN, TaskNorm [169] combines the moments from BN and IN by a

blending factor, which is learned for each task. As a result, TaskNorm also

suffers in that its outputs are not well-normalized. Moreover, TaskNorm ad-

dresses the meta learning problem and requires knowing the task identifier at

test time, which violates our third criterion of requiring additional information

compared to BN and our CN.

3.5 Experiment

We evaluate the proposed CN’s performance compared to a suite of normal-

ization layers with a focus on the online continual learning settings where it is

more challenging to obtain a good global moments for BN. Our goal is to eval-

uate the following hypotheses: (i) BN can facilitate knowledge transfer better
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TABLE 3.2: Dataset summary

#task img size #training imgs #testing imgs #classes Section

pMNIST 5 28×28 10,000 50,000 10 Section 3.3.2
Split CIFAR10 5 3×32×32 50,000 10,000 10 Section 3.5.3
Split CIFAR100 20 3×84×84 50,000 10,000 100 Section 3.5.2
Split Mni IMN 20 3×84×84 50,000 10,000 100 Section 3.5.2
Split Tiny IMN 10 3×64×64 100,000 10,000 200 Section 3.5.3
COCOseq 4 3×224×224 35,072 6,346 70 Section 3.5.4
NUS-WIDEseq 6 3×224×224 48,724 2,367 49 Section 3.5.4

than spatial normalization layers such as GN and SN (ii) Spatial normalization

layers have lower forgetting than BN; (iii) CN can improve over other normal-

ization layers by reducing catastrophic forgetting and facilitating knowledge

transfer; (iv) CN is a direct replacement of BN without additional parameters

and minimal computational overhead.

3.5.1 Dataset Summary

Table 3.2 summaries the datasets used throughout our experiments. In the fol-

lowing, we also summarize the key settings in our experiments.

Toy pMNIST Benchmark In the toy pMNIST benchmark, we construct

a sequence of five task by applying a random but fixed permutation on the

original MNIST [19] dataset to create a task. Each task consists of 1,000 train-

ing samples and 10,000 testing samples as the original MNIST dataset. In the

pre-processing step, we normalize the pixel value by dividing its value by

255.0. Both the Single and Experience Replay (ER) methods were trained us-

ing the Stochastic Gradient Descent (SGD) optimizer with mini-batch size 10

over one epoch with learning rate 0.03. This benchmark follows the “single-

head” setting [96], thus we only maintain a single classifier for all tasks and

task-identifiers are not provided in both training and testing.
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Online Task-IL Continual Learning Benchmarks (Split CIFAR100 and Split

Mini IMN) In the data pre-processing step, we normalize the pixel density to

[0 − 1] range and resize the image size to 3 × 32 × 32 and 3 × 84 × 84 for the

Split CIFAR100 and Split minIMN benchmarks, respectively. No other data

pre-processing steps are performed. All methods are optimized by SGD with

mini-batch size 10 over one epoch. The episodic memory is implemented as a

Ring buffer [129] with 50 samples per task.

Online Task-IL and Class-IL Continual Learning Benchmarks (Split CIFAR-

10 and Split Tiny IMN) We follow the protocol as the DER++ work [170]

except the number of epochs, which we set to one. Particularly, training is

performed with data augmentation on both the data stream and the memory

samples (random crops, horizontal flips). We follow the configurations pro-

vided by the authors, including the hyper-parameters of mini-batch size, the

reservoir sampling memory management strategy, learning rates, etc. For the

memory size of 2560, which were not conducted in the original paper, we use

the same setting as the case of 5120 memory slots.

Online Task-Free Long-Tailed Continual Learning (COCOseq and NUS-

WIDEseq) We follow the same settings as the original work [183] in our ex-

periments. Particularly, we train each method using the Adam optimizer [47]

with default hyper-parameters (β1 = 0.9, β2 = 0.999, ε = 1e−4), mini-batch size

10 over one epoch. The episodic memory is implemented as a reservoir buffer

using the PRS [183] strategy with total 2,000 slots.

3.5.2 Online Task-incremental Continual Learning

Setting We first consider the standard online, task-incremental continual learn-

ing setting [80] on the Split CIFAR-100 and Split Mini IMN benchmarks. We

follow the standard setting in [129] to split the original CIFAR100 [28] or Mini
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IMN [68] datasets into a sequence of 20 tasks, three of which are used for hyper-

parameter cross-validation, and the remaining 17 tasks are used for continual

learning.

We consider two popular continual learning strategies: (i) Experience Re-

play (ER) [130]; and (ii) Dark Experience Replay++ (DER++) [170]. Besides the

vanilla ER, we also consider DER++, a recent improved ER variants, to demon-

strate that our proposed CN can work well across different ER-based strategies.

All methods use a standard ResNet 18 backbone [60] (not pre-trained) and are

optimized over one epoch with batch size 10 using the SGD optimizer. For each

continual learning strategies, we compare our proposed CN with five compet-

ing normalization layers: (i) BN [51]; (ii) Batch Renormalization (BRN) [74]; (iii)

IN [67]; (iv) GN [121]; and (v) SN [108]. We cross-validate and set the number

of groups to be G = 32 for our CN and GN in this experiment.

Results Table 3.3 reports the evaluation metrics of different normalization

layers on the Split CIFAR-100 and Split Mini IMN benchmarks. We consider the

averaged accuracy at the end of training ACC(↑) [79], forgetting measure FM(↓)

[96], and learning accuracy LA(↑) [156] as discussed in Chapter 2. Clearly, IN

does not perform well because it is not designed for image recognition prob-

lems. Compared to adaptive normalization methods such as GN and SN, BN

suffers from more catastrophic forgetting (higher FM(↓) ) but at the same time

can transfer knowledge better across tasks (higher LA(↑) ). Moreover, BRN per-

forms worse than BN since it does not address the biased estimate of the global

moments, which makes normalizing with the global moments during training

ineffective. Overall, the results show that although traditional adaptive meth-

ods such as GN and SN do not suffer from the cross-task normalization ef-

fect and enjoy lower FM(↓) values, they lack the ability to facilitate knowledge
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TABLE 3.3: Evaluation metrics of different normalization layers
on the Split CIFAR100 and Split Mini IMN benchmarks. Bold in-
dicates the best averaged scores, † suffix indicates non-adaptive

method

ER Split CIFAR100 Split Mini IMN

Norm. Layer ACC(↑) FM(↓) LA(↑) ACC(↑) FM(↓) LA(↑)

NoNL 55.87±0.46 4.46±0.48 57.26±0.64 47.40±2.80 3.17±0.99 45.31±2.18

BN† 64.97±1.09 9.24±1.98 71.56±0.75 59.09±1.74 8.57±1.52 65.24±0.52
BRN† 63.47±1.33 8.43±1.03 69.83±2.52 54.55±2.70 6.66±1.84 58.53±1.88
IN 59.17±0.96 11.47±0.92 69.40±0.93 48.74±1.98 15.28±1.88 62.88±1.13
GN 63.42±0.92 7.39±1.24 68.03±0.19 55.65±2.92 8.31±1.00 59.25±0.72
SN 64.79±0.88 7.92±0.64 71.10±0.51 56.84±1.37 10.11±1.46 64.09±1.53
CN(ours) 67.48±0.81 7.29±1.59 74.27±0.36 64.28±1.49 8.08±1.18 70.90±1.16

DER++ Split CIFAR100 Split Mini IMN

Norm. Layer ACC(↑) FM(↓) LA(↑) ACC(↑) FM(↓) LA(↑)

NoNL 57.14±0.46 4.46±0.48 57.26±0.64 47.18±3.20 2.77±1.68 45.01±3.35

BN† 66.50±2.52 8.58±2.28 73.78±1.02 61.08±0.91 6.90±0.99 66.10±0.89
BRN† 66.89±1.22 6.98±2.23 73.30±0.08 57.37±1.75 6.66±1.84 66.53±1.56
IN 61.18±0.96 10.59±0.77 71.00±0.57 54.05±1.26 11.82±1.32 65.03±1.69
GN 66.58±0.27 5.70±0.69 69.63±1.12 60.50±1.91 6.17±1.28 63.10±1.53
SN 67.17±0.23 6.01±0.15 72.13±0.23 57.73±1.97 8.92±1.84 63.87±0.64
CN(ours) 69.13±0.56 6.48±0.81 74.89±0.40 66.29±1.11 6.47±1.46 71.75±0.68

transfer across tasks, which results in lower LA(↑) . Moreover, BN can facilitate

knowledge sharing across tasks, but it suffers more from forgetting because of

the cross-task normalization effect. Across all benchmarks, our CN comes out

as a clear winner by achieving the best overall performance (ACC(↑) ). This

result shows that CN can strike a great balance between reducing catastrophic

forgetting and facilitating knowledge transfer to improve continual learning.

Complexity Comparison We study the complexity of different normalization

layers and reporting the training time on the Split CIFAR100 benchmark in
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TABLE 3.4: Running time of ER on the Split CIFAR100 bench-
marks of different normalization layers. ∆% indicates the per-

centage increases of training time over BN

BN GN SN CN

Time (s) 1583 1607 2036 1642
∆% 0% 1.51% 28.61% 3.72%

Tabe 3.4. Both GN and our CN have minimal computational overhead com-

pared to BN, while SN suffers from additional computational cost from calcu-

lating and normalizing with different sets of moments.

3.5.3 Online Class-Incremental Continual Learning

Setting We consider the online task incremental (Task-IL) and class incre-

mental (Class-IL) learning problems on the Split-CIFAR10 (Split CIFAR-10) and

Split-Tiny-ImageNet (Split Tiny IMN) benchmarks. We follow the same experi-

ment setups as [170] except the number of training epochs, which we set to one.

All experiments uses the DER++ strategy [170] on a ResNet 18 [60] backbone

(not pre-trained) trained with data augmentation using the SGD optimizer. We

consider three different total episodic memory sizes of 500, 2560, and 5120, and

compare different NLs in this experiment.

Result Table 3.5 reports the ACC and FM metrics on the Split CIFAR-10 and

Split Tiny IMN benchmarks under both the Task-IL and Class-IL settings. For

CN, we consider two configurations with the number of groups being G = 8

and G = 32. In most cases, our CN outperforms the standard BN on both

metrics, with a more significant gap on larger memory sizes of 2560 and 5120.

Interestingly, BN is highly unstable in the Split CIFAR-10, Class-IL benchmark

with high standard deviations. In contrast, both CN variants show better and

more stable results, especially in the more challenging Class-IL setting with a
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TABLE 3.5: Evaluation metrics of DER++ with different normal-
ization layers on the Split CIFAR-10 and Split Tiny IMN bench-
marks. Parentheses indicates the number of groups in CN. Bold

indicates the best averaged scores

Buffer Method
Split CIFAR-10 Split Tiny IMN

Class-IL Task-IL Class-IL Task-IL

ACC(↑) FM(↓) ACC(↑) FM(↓) ACC(↑) FM(↓) ACC(↑) FM(↓)

500

BN 48.9±4.5 33.6±5.8 82.6±2.3 3.2±1.9 6.7±0.1 38.1±0.5 40.2±0.9 6.5±1.0
IN 35.9±2.0 45.0±3.6 78.8±1.6 1.8±0.9 2.2±0.5 16.9±0.9 20.6±0.5 1.7±0.5
GN 46.8±5.1 29.7±11.5 82.1±5.2 1.9±1.2 7.2±0.4 36.0±2.4 41.1±0.5 4.5±1.8
SN 42.3±3.9 32.3±11.6 80.6±3.4 2.6±2.0 4.5±1.0 25.0±2.4 33.6±1.3 2.5±1.9
CN (G=8) 48.9±0.3 27.9±5.0 84.7±0.5 2.2±0.3 7.3±0.9 37.5±2.3 42.2±2.1 4.9±2.2
CN (G=32) 51.7±1.9 28.2±4.0 86.2±2.2 2.0±1.3 6.5±0.7 40.1±1.7 40.6±1.4 6.8±1.9

2560

BN 52.3±4.6 29.7±6.1 86.6±1.6 0.9±0.7 11.2±2.3 36.0±2.0 50.8±1.7 2.8±1.2
IN 36.1±2.8 37.8±8.8 79.1±1.1 0.8±1.4 2.4±0.4 19.2±1.5 25.4±1.7 0.6±0.5
GN 53.3±3.5 28.8±3.2 87.3±2.4 0.6±0.7 11.0±1.3 35.5±1.2 50.9±3.0 1.9±1.6
SN 42.3±3.9 30.8±10.4 80.0±6.4 4.7±5.2 4.4±1.4 27.3±2.9 37.6±3.0 3.5±1.8
CN (G=8) 53.7±3.4 25.5±4.7 87.3±2.7 1.6±1.6 10.7±1.3 38.0±1.2 52.6±1.2 1.5±0.5
CN (G=32) 57.3±2.0 21.6±5.6 88.4±1.1 1.7±1.1 11.9±0.3 36.7±1.2 51.5±0.2 2.8±0.9

5120

BN 52.0±7.8 26.7±10.3 85.6±3.3 2.0±1.5 11.2±2.7 36.8±2.0 52.2±1.7 2.6±1.5
IN 32.2±4.5 41.5±3.6 77.2±3.8 2.1±2.3 2.3±0.6 18.0±1.3 25.5±2.0 1.6±0.9
GN 48.6±2.6 32.2±4.8 86.5±0.8 0.5±0.5 9.2±1.8 36.8±1.6 48.0±6.0 4.9±6.3
SN 42.9±8.9 36.2±8.3 81.1±2.4 3.6±2.4 4.3±0.6 23.3±1.9 37.9±3.0 2.7±1.9
CN (G=8) 54.1±4.0 24.0±4.0 87.1±2.8 0.7±0.7 12.2±0.6 34.6±2.6 53.1±1.8 3.1±1.9
CN (G=32) 57.9±4.1 22.2±1.0 88.3±0.9 1.3±0.9 12.2±0.2 35.6±1.3 54.9±1.5 1.5±1.1

small memory size (indicated by small standard deviation values). We also

report the evolution of ACC in Figure 3.3. Both CN variants consistently out-

perform BN throughout training, with only one exception at the second task on

the Split Tiny IMN. CN (G = 32) shows more stable and better performances

than BN and CN(G = 8).

3.5.4 Long-tailed Online Continual Learning

We now evaluate the normalization layers on the challenging task-free, long-

tailed continual learning setting [183], which is more challenging and realistic

since real-world data usually follow long-tailed distributions. We consider the

PRS strategy [183] and the COCOseq and NUS-WIDEseq benchmarks, which

consists of four and six tasks, respectively. Unlike the previous benchmarks,

47



Chapter 3. Continual Normalization

1 2 3 4 5
Task

75

80

85

90
AC

C

CN(G=32)
CN(G=8)
BN

(A) Split CIFAR-10, Task-IL

1 2 3 4 5 6 7 8 9 10
Task

30

40

50

AC
C

CN(G=32)
CN(G=8)
BN

(B) Split Tiny IMN, Task-IL

FIGURE 3.3: The evolution of ACC(↑) on observed tasks so far
on the Split CIFAR-10 and Split Tiny IMN benchmarks, Task-IL

screnario with DER++ and memory size of 5120 samples.

TABLE 3.6: Evaluation metrics of the PRS strategy on the CO-
COseq and NUS-WIDEseq benchmarks. We report the mean per-
formance over five runs. Bold indicates the best averaged scores

COCOseq
Majority Moderate Minority Overall

C-F1 O-F1 mAP C-F1 O-F1 mAP C-F1 O-F1 mAP C-F1 O-F1 mAP

BN 64.2 58.3 66.2 51.2 48.1 55.7 31.6 31.4 38.1 51.8 48.6 54.9
CN(ours) 64.8 58.5 66.8 52.5 49.2 55.7 35.7 35.5 38.4 53.1 49.8 55.1

NUS-WIDEseq
Majority Moderate Minority Overall

C-F1 O-F1 mAP C-F1 O-F1 mAP C-F1 O-F1 mAP C-F1 O-F1 mAP

BN 24.3 16.1 21.2 16.2 16.5 20.9 28.5 28.2 32.3 23.4 20.9 25.7
CN(ours) 25.0 17.2 22.7 17.1 17.4 21.5 27.3 27.0 31.0 23.5 21.3 25.9

images in the COCOseq and NUS-WIDEseq benchmarks can have multiple la-

bels, resulting in a long-tailed distribution over each task’s image label. Fol-

lowing [183], we report the average overall F1 (O-F1), per-class F1 (C-F1), and

the mean average precision (mAP) at the end of training and their correspond-

ing forgetting measures (FM). We also report each metric over the minority

classes (<200 samples), moderate classes (200-900 samples), majority classes

(>900 samples), and all classes. Empirically, we found that smaller groups

helped in the long-tailed setting because the moments were calculated over

more channels, reducing the dominants of head classes. Therefore, we use
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TABLE 3.7: Forgetting measure (FM(↓) ) of each metric from the
PRS strategy on the COCOseq and NUS-WIDEseq benchmarks,
lower is better. We report the mean performance over five runs.

Bold indicates the best averaged scores

COCOseq
Majority Moderate Minority Overall

C-F1 O-F1 mAP C-F1 O-F1 mAP C-F1 O-F1 mAP C-F1 O-F1 mAP

BN 23.5 22.8 8.4 30.0 30.2 9.4 36.2 35.7 13.2 29.7 29.5 9.7
CN(ours) 23.5 23.1 6.5 26.9 26.9 7.4 26.8 26.5 12.2 25.6 25.7 8.0

NUS-WIDEseq
Majority Moderate Minority Overall

C-F1 O-F1 mAP C-F1 O-F1 mAP C-F1 O-F1 mAP C-F1 O-F1 mAP

BN 54.6 50.7 12.5 62.2 61.9 15.5 52.5 52.4 12.2 57.6 55.7 11.2
CN(ours) 52.7 48.7 8.6 58.8 58.0 10.3 51.2 50.6 11.6 57.4 55.5 8.1

G = 4 groups in this experiment.

We replicate PRS with BN to compare with our CN and report the results

in Table 3.6 and Table 3.7. We observe consistent improvements over BN from

only changing the normalization layers, especially in reducing FM(↓) across all

classes.

3.5.5 Discussion of The Results

Our experiments have shown promising results for CN being a potential re-

placement for BN in online continual learning. While the results are gener-

ally consistent, there are a few scenarios where CN does not perform as good

as other baselines. First, from the task-incremental experiment in Table 3.3,

DER++ with CN achieved lower FM compared to GN. The reason could be

from the DER++’s soft-label loss, which together with GN, overemphasizes

on reducing FM and achieved lower FM. On the other hand, CN has to bal-

ance between reducing FM and improving LA. Second, training with data aug-

mentation in the online setting could induce high variations across different

runs. Table 3.5 shows that most methods have high standard deviations on
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the Split CIFAR-10 benchmark, especially with small memory sizes. In such

scenarios, there could be insignificant differences between the first and second

best methods. Also, on the NUS-WIDEseq benchmark, CN has lower evalua-

tion metrics on minority classes than BN. One possible reason is the noisy na-

ture of the NUS-WIDE dataset, including the background diversity and huge

number of labels per image, which could highly impact the tail classes’ per-

formance. Lastly, CN introduces an additional hyper-parameter (number of

groups), which needs to be cross-validated for optimal performance.

3.6 Conclusion

In this Chapter, we investigated the potentials and limitations of NLs in on-

line continual learning with images. We showed that while BN can facilitate

knowledge transfer by normalizing along the mini-batch dimension, the cross-

task normalization effect hinders older tasks’ performance and increases catas-

trophic forgetting. This limitation motivated us to propose CN, a novel nor-

malization layer especially designed for online continual learning settings. Our

extensive experiments corroborate our findings and demonstrate the efficacy of

CN over other normalization strategies. Particularly, we showed that CN is a

plug-in replacement for BN and can offer significant improvements on different

evaluation metrics across different online settings with minimal computational

overhead.

50



Chapter 4

Contextual Transformation

Networks

Chapter 3 studied BN within the classical continual learning framework. We

have seen that classical methods are inefficient to achieve continual learning.

This requires a new framework to facilitate continual learning in deep net-

works. Therefore, we now shift the focus to the development of the fast-and-

slow learning framework and derive efficient, effective continual learning al-

gorithms. From Chapter 2, recall that there are two major continual learning

approaches of static and dynamic architectures. On the one hand, fixed ar-

chitectures rely on a single network to learn models that can perform well on

all tasks. As a result, they often only accommodate common features of those

tasks but neglect each task’s specific features. On the other hand, dynamic ar-

chitecture methods can have a separate network for each task, but they are too

expensive to train and not scalable in practice, especially in the online setting.

In this chapter, we aim to bridge the gap between these two major approaches

by developing a strategy that enjoys the simplicity of static architectures meth-

ods and the strong performances of the dynamic architectures ones.
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4.1 Introduction

In the literature, fixed architecture methods employ a shared feature extractor

and a set of classifiers, one for each task [80, 129, 130, 125]. Although using

a shared feature extractor has achieved promising results, the common and

global features are rather generic and not well-tailored towards each specific

task. This problem is even more severe when old data is limited while learning

new tasks. As a result, the common feature extractor loses its ability to ex-

tract previous tasks’ features, resulting in catastrophic forgetting. On the other

hand, while dynamic architecture methods such as [66, 143, 122] alleviate this

problem by having a separate network for each task, they suffer from the un-

bounded growth of the parameters. Moreover, the subnetworks’ design is not

trivial and requires extensive resource usage [66, 143], which is not practical in

many applications. These limitations motivated us to develop a novel method

that can facilitate continual learning with a fixed architecture by modeling the

task-specific features.

To achieve this goal, we first revisit a popular result in learning multiple

tasks that each task’s features are centered around a common vector [26, 32,

48, 145]. This result motivates us to develop a novel framework of Contex-

tual Transformation Networks (CTN), which consists of a base network that

learns the common features of a given input and a controller that efficiently

transforms the common features to become task-specific, given a task identi-

fier. While one can train CTN using experience replay, it does not explicitly

aim at achieving a good trade-off between stability and plasticity. Therefore,

we propose a novel dual memory system and a learning method that encapsu-

late alleviating forgetting and facilitating knowledge transfer simultaneously.
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Particularly, we propose two distinct memories: the episodic memory and the se-

mantic memory associated with the base model and the controller, respectively.

Then, the base model is trained by experience replay on the episodic memory

while the controllers is trained to learn task-specific features that can generalize

to the semantic memory. As a result, CTN achieves a good trade-off between

preventing catastrophic forgetting and facilitating knowledge transfer because

the task-specific features can generalize well to all past and current tasks. Fig-

ure 4.1 gives an overview of the proposed Contextual Transformation Network

(CTN).

Interestingly, the designs of our CTN and dual memory are partially related

to the Complementary Learning Systems (CLS) theory in neuroscience [14, 62].

Particularly, the controller acts as a neocortex that learns the structured knowl-

edge of each task. In contrast, the base model acts as a hippocampus that per-

forms rapid learning to acquire new information from the current task’s train-

ing data. Following the naming convention of memory in neuroscience, our

CTN is equipped with two replay memory types. (i) the episodic memory (as-

sociated with the hippocampus) caches a small amount of past tasks’ training

data, which will be replayed when training the base networks. (ii) the semantic

memory (associated with the neocortex) stores another distinct set of old data

only used to train the controller such that the task-specific features can general-

ize well across tasks. Moreover, the CLS theory also suggests that the interplay

between the neocortex and the hippocampus attributes to the ability to recall

knowledge and generalize to novel experiences [36]. Our proposed learning

approach closely characterizes such properties: the base model focuses on ac-

quiring new knowledge from the current task while the controller uses the base

model’s knowledge to generalize to novel samples.
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In summary, this chapter makes the following contributions. First, we pro-

pose CTN, a novel continual learning method that can model task-specific fea-

tures while enjoying neglectable complexity overhead compared to fixed archi-

tecture methods (please refer to Table 4.4). Second, we propose a novel objec-

tive that can improve the trade-off between alleviating forgetting and facilitat-

ing knowledge transfer to train CTN. Third, we conduct extensive experiments

on continual learning benchmarks to demonstrate the efficacy of CTN com-

pared to a suite of baselines. Finally, we provide a comprehensive analysis to

investigate the complementarity of each CTN’s component.

4.2 Method

Sampling

 Data Sources

Semantic 
Memory

Episodic 
Memory Base 

net 

   Controller 

Classifier

Used in Outer-loops Used in Inner-loops
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FIGURE 4.1: Overview of the Contextual Transformation Net-
works (CTN). CTN consists of a controller θ that modifies the
features of the base model φ. The base model is trained using
experience replay on the episodic memory while the controller is
trained to generalize to the semantic memory, which addresses
both alleviating forgetting and facilitating knowledge transfer.

Best viewed in colors.

Notations. We denote φ as parameter of the base model that extracts global

features from the input and θ as the parameter of the controller which modifies

the features from φ given a task identifier t. The task identifier can be a set

of semantic attributes about objects of that task [29] or simply an index of the
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task, which we use in this chapter as a one-hot vector. A prediction is given as

gϕt(hφ,θ(x, t)), where gϕt(·) is the task Tt’s classifier with parameter ϕt such as

a fully connected layer with softmax activation, and hφ,θ(x, t) is the final fea-

ture after transformed by the controller. We denote Dtr
t as the training data of

task Tt,Mem
t andMsm

t as the episodic memory and the semantic memory of task Tt
respectively. The episodic memory and semantic memory maintains two dis-

tinct sets of data obtained from task Tt. Our CTN employs an episodic memory

to store a small amount of training samples of each task to support continual

learning, which is a common practice for experience replay strategies [130].

The episodic memory of task T1, . . . , Tt−1 is denoted as Mem
<t ; similarly, Msm

<t

denotes the semantic memory of the first t− 1 tasks.

Remark. Both theMem
t andMsm

t are obtained fromDtr
t through the learner’s

internal memory management strategy and contains distinct samples from each

other such that their combined sizes do not exceed a pre-defined budget.

4.2.1 Learning Task-Specific Features for Continual Learning

Given a backbone network, one can implement the task-specific features by

employing a set of task-specific filters and applying them to the backbone’s

output. However, this trivial approach is not scalable, even for small networks.

In the worst case, it results in storing an additional network per task, which

violates the fixed architecture constraint. Since we want to obtain task-specific

features with minimal parameter overhead, we propose to use a feature-wise

transformation [112] to efficiently extract the task-specific features h̃(x, t) from

the common features ĥ(x) as follows:

h̃(x; t) =
γt
‖γt‖2

⊗ ĥ(x) +
βt
‖βt‖2

and {γt, βt} = cθ(t), (4.1)
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where⊗ denotes the element-wise multiplication operator, and cθ(t) is the con-

troller implemented as a linear layer with parameter θ that predicts the trans-

formation coefficients {γt, βt} given the task identifier t. Since the task iden-

tifiers are one-hot vectors, which are sparse and make training the controller

difficult, we also introduce an embedding layer to map the task identifiers to

dense, low dimensional vectors. For simplicity, we will use θ to refer to both

the embedding and the linear layer parameters. In addition, instead of storing

a set of coefficients {γt, βt} for each task, we only need a fixed set of parame-

ter θ to predict these coefficients, which results in the fixed parameters in the

controller. The coefficients {γt, βt} are `2-normalized and then transforms the

common features ĥ(x, t) to become task-specific features h̃(x; t). Finally, both

feature types are combined by a residual connection before passing to the cor-

responding classifier gt(·) to make the final prediction:

gϕt(σ(h(x, t))), and h(x, t) = ĥ(x, t) + h̃(x, t), (4.2)

where σ(·) is a nonlinear activation function such as ReLU. Importantly, when

the task-specific features are removed, i.e., h̃(x, t) = 0, Equation 4.2 reduces to

the traditional experience replay. Lastly, for each incoming task, CTN has to

allocate a new classifier, which is the same for all continual learning methods,

and a new embedding vector, which is usually low dimensional, e.g. 32 or 64.

Therefore, CTN enjoys almost the same parameter growth as existing continual

learning methods with a static backbone network.

4.2.2 Training the Controller

While one can train CTN with experience replay (ER), it does not explicitly

address the trade-off between facilitating knowledge transfer and alleviating

56



Chapter 4. Contextual Transformation Networks

catastrophic forgetting. This motivates us to develop a novel training method

that can simultaneously address both problems by leveraging the controller’s

task-specific features. First, we introduce a dual memory system consisting

of the semantic memory Msm
t associated with the controller and the episodic

memory Mem
t associated with the base model. We propose to train only the

base model using experience replay with the episodic memory to obtain new

knowledge from incoming tasks. The controller is also trained so that the task-

specific features can generalize to unseen samples to the base model stored in

the semantic memory. As a result, the task-specific features can generalize to

both previous and current tasks, which simultaneously encapsulate both al-

leviating forgetting and facilitating knowledge transfer. Formally, given the

current batch of data for task Tt as Bt, the training of CTN can be formulated as

the following bilevel optimization problem [27]:

Outer problem: minθ Lctrl({φ∗,θ};Msm
<t+1)

Inner problem: s.t φ∗ = arg min
φ
Ltr({φ,θ},Bt ∪Mem

<t ), (4.3)

where φ∗ denotes the optimal base model corresponding to the current con-

troller θ. Since every CTN’s prediction always involves both the controller and

the base model, we use Ltr({φ,θ},Bt ∪Mem
<t ) to denote the training loss of the

pair {φ,θ} on the data Bt∪Mem
<t . Similarly, Lctrl(·) denotes the controller’s loss.

For simplicity, we omitted the dependency of the the loss on the classifiers’ pa-

rameters and imply that the classifiers are jointly updated with the base model.

Since we do not know the optimal transformation coefficients of any task, the

controller is trained to minimize the classification loss of the samples via φ.

We implement both the training and controller’s losses as the cross-entropy

loss. Notably, Equation 4.3 characterizes two nested optimization problems:
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the outer problem, which trains the controller to generalize, and each controller

parameter θ parameterizes an inner problem that trains the base model to ac-

quire new knowledge via experience replay. Moreover, only φ is trained in the

inner problem, while only θ is updated in the outer problem.

The bilevel optimization objective such as Equation 4.3 has been success-

fully applied in other machine learning disciplines such as hyperparameter

optimization, meta learning [100, 73], and AutoML [144]. In this chapter, we

extend this framework to continual learning to train the controller. However,

unlike existing works [100, 73, 144], our Equation 4.3 has to be solved incre-

mentally when a new data sample arrives. Therefore, we consider Equation 4.3

as an online learning problem and optimize it using the follow the leader princi-

ple [2]. Particularly, we relax the optimal solutions of both the inner and outer

problems to be solutions from a few gradient steps. When a new training sam-

ple arrives, we first train the base model φ using experience replay for a few

SGD steps with an inner learning rate α, each of which is implemented as:

φ← φ− α∇φLtr({φ,θ},Bt ∪Mem
<t ), (4.4)

Then, we optimize the controller θ such that it can improve φ’s performance

on the semantic memory:

θ ← θ − β∇θLctrl({φ,θ},Msm
<t+1), (4.5)

where β is the outer learning rate. As a result, Equation 4.3 is implemented

as an alternative update procedure involving several outer updates to train

θ, each of which includes an inner update to train φ. Moreover, performing

several updates per incoming sample does not violate the online assumption

since we will not revisit that sample in the future, unless it is stored in the
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memories.

4.2.3 Training the base network

Despite using task-specific features, the base network may still forget previous

tasks because of the small episodic memory. To further alleviate catastrophic

forgetting in φ, we regularize the training loss Ltr(·) with a behavioral cloning

(BC) strategy based on knowledge distillation [50, 120]. Let ŷ be the logits of

the model’s prediction before the softmax layer π(·), we regularize the training

loss on the episodic memory data in Equation 4.4 as:

Ltr({φ,θ}, (x, y, k)) = L(π(ŷ), y) + λDKL

(
π

(
ŷ

τ

)∣∣∣∣∣∣∣∣ π( ŷkτ
))

, (4.6)

where λ is the trade-off parameter, τ is the softmax’s temperature, and ŷk is

a snapshot of the model prediction on the sample (x, k) at the end of task

Tk. While the behavioral cloning strategy requires storing ŷk, the memory

increase is minimal since ŷk is a vector with dimension bounded by the total

classes, which is much smaller than the image x dimension. Importantly, the

behavioural cloning strategy is used to alleviate catastrophic forgetting, which

only happens in the base model, not the controller. Particularly, the controller’s

inputs are task identifiers such as one-hot vectors, which are fully available

during learning. In summary, our episodic memory stores the input image x,

its corresponding label y and the soft label ŷ, while the semantic memory stores

the input-label pair x, y.
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4.3 Related Work

4.3.1 Feature-wise Transformation

Early works [57, 83] showed that instead of using a task-specific network on

the input, one can employ a set of 1 × 1 filters to extract the task-specific from

the common features. However, such approaches still require a quadratic com-

plexity overhead in the number of channels, which can be expensive. Another

compelling solution is the feature-wise transformation, FiLM [112], which only

requires a linear complexity. Thanks to its efficiency, FiLM has been success-

fully applied in many problems, including meta learning [155, 164], visual rea-

soning [112], and others fields [98] with remarkable success. Notably, CNAPs

[155] proposed an adaptation network to generate the FiLM’s parameters and

quickly adapt to new tasks. CNAPs has showed promising results when hav-

ing access to a large amount of tasks to pre-train the common features. How-

ever, this setting is different from continual learning where the learner has to

obtain new knowledge on the fly. Therefore, CNAPs are principally differs

from CTN in that CNAPs assume having access to a well-pretrained knowl-

edge source and uses FiLM to quickly adapt this knowledge to a new task. On

the other hand, CTNs use FiLM to accelerate the knowledge acquisition when

learning progressively. Lastly, we emphasize that the CTN’s design is general.

If more budget is allowed, the proposed CTN is readily compatible with the

aforementioned feature transformation methods such as [83] by adjusting the

controller’s output dimension.

60



Chapter 4. Contextual Transformation Networks

4.3.2 Meta Learning

Meta learning [7], also learning to learn, refers to a learning paradigm where an

algorithm learns to improve the performance of another algorithm. Our CTN

design is related to such learning to learn architectures where the controller is

trained to improve the base model’s performance. Importantly, we note that

there exist other continual learning variants that intersect with meta learning,

such as meta-continual learning [138] and continual-meta learning [136, 171].

However, they consider different goals and problem settings, such as meta pre-

training [138] or rapid recovering the performance at test time given a finetun-

ing step before inference is allowed [136], which is not the conventional online

continual learning problem [80] we focus in this dissertation.

Meta learning has been an appealing solution to learn a good initialization

from a large amount of tasks [73], even in an online manner: Online Meta

Learning (OML) [134]. However, we emphasize that OML fundamentally dif-

fers from our CTN in two aspects. First, OML requires all data of previous tasks

and aims to improve the performance of future tasks, which is different from

continual learning. Second, OML learns an initialization and requires finetun-

ing at test time, which is not practical, especially when testing on learned tasks.

In contrast, CTN is a continual learning method that maximizes the perfor-

mance of the current task as well as all previous tasks. Moreover, CTN can

make a prediction at any time without requiring an additional finetuning step.
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TABLE 4.1: Evaluation metrics on continual learning benchmarks
considered. All methods use the same backbone network for all

benchmarks, episodic memory size is M=50 samples per task

Method
pMNIST CORe50

ACC(↑) FM(↓) LA(↑) ACC(↑) FM(↓) LA(↑)

Finetune 61.66±1.50 20.67±1.64 80.89±0.45 4.38±0.10 49.66±1.14 49.08±1.20
LwF 63.31±3.56 14.29±3.05 75.76±1.43 31.20±0.66 20.44±1.37 49.20±1.10
EWC 67.34±3.00 11.00±2.36 76.59±1.49 31.86±3.90 14.34±3.08 42.98±2.50
GEM 74.84±0.95 8.57±0.33 81.74±0.77 42.56±0.86 7.36±0.90 46.84±2.22
KDR 72.97±0.58 9.20±0.44 81.40±0.41 OOM OOM OOM
AGEM 68.67±0.71 13.98±0.68 81.54±0.25 40.28±3.15 11.08±4.01 46.68±1.51
MER 76.59±0.74 6.88±0.59 82.09±0.33 39.28±1.25 9.08±1.25 45.52±0.96
ER-Ring 76.02±0.59 8.57±0.33 83.69±0.44 41.72±1.30 9.10±0.80 48.18±0.81
MIR 76.58±0.10 8.34±0.11 83.57±0.07 43.50±1.92 6.14±0.91 45.98±1.14
CTN (ours) 79.01±0.65 6.69±0.51 85.11±0.45 54.17±0.85 5.50±1.01 55.32±0.34

Independent∗ 81.05±0.29 0.00 81.05±0.29 53.54±1.10 0.00 53.54±1.10
Offline 84.95±0.95 - - 89.73±0.91 - -

Method
Split CIFAR Split miniIMN

ACC(↑) FM(↓) LA(↑) ACC(↑) FM(↓) LA(↑)

Finetune 33.52±3.13 33.88±2.78 65.15±1.18 31.51±2.00 26.00±2.12 55.83±1.42
EWC 39.46±3.75 24.69±3.84 64.54±1.20 32.52±0.53 25.74±2.78 56.39±2.45
ICARL 50.27±0.84 16.55±0.82 65.83±1.53 44.95±0.08 17.59±0.40 61.46±0.50
GEM 57.77±0.86 10.93±1.03 66.45±0.06 55.04±1.88 7.81±1.70 60.13±1.36
KDR 62.75±0.80 5.01±0.79 66.11±0.70 56.89±2.45 4.83±1.23 59.29±1.31
AGEM 58.27±0.86 8.76±0.67 66.12±1.17 51.14±2.16 6.99±1.96 55.11±0.76
MER 61.32±0.86 11.90±0.86 72.51±0.41 57.94±1.08 8.98±0.79 66.11±0.76
ER-Ring 61.36±1.01 7.20±0.72 67.05±1.08 53.43±1.18 11.21±1.35 63.46±1.05
MIR 63.37±1.99 10.53±1.63 73.27±0.77 51.97±1.58 10.37±2.72 60.63±3.43
CTN (ours) 67.65±0.43 6.33±0.70 73.43±0.45 65.82±0.59 3.02±1.13 67.43±1.37

Independent∗ 67.21±0.51 0.00 67.21±0.51 65.85±0.98 0.00 65.85±0.98
Offline 74.11±0.66 - - 71.15±2.95 - -
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4.4 Experiments

4.4.1 Benchmark Datasets and Baselines

We consider four continual learning benchmarks in our experiments. Permuted

MNIST (pMNIST) [80]: each task is a random but fixed permutation of the

original MNIST. We generate 23 tasks with 1,000 images for training and the

testing set has the same amount of images as in the original MNIST data. Split

CIFAR-100 (Split CIFAR) [80] is constructed by splitting the CIFAR100 [28]

dataset into 20 tasks, each of which contains 5 different classes sampled with-

out replacement from the total of 100 classes. Split Mini ImageNet (Split mini-

IMN) [129], similarly, we split the miniIMN dataset [68] into 20 disjoint tasks.

Finally, we consider the CORe50 benchmark by constructing a sequence of 10

tasks using the original CORe50 dataset [78].

Throughout the experiments, we compare CTN with a suite of baselines:

GEM [80], AGEM [129], MER [156], ER-Ring [130], and MIR [125]. We also con-

sider the independent model [80], a dynamic architecture method that maintains

a separate network for each task, and each has the same number of parame-

ters as other baselines. While the independent model is unrealistic, it is highly

competitive and was used as an upper bound of a state-of-the-art dynamic ar-

chitecture method in [137]. Finally, we include the Offline model, which does

not follow the continual learning setting and performs multitask training on all

tasks’ data.

We use a multilayer perceptron with two hidden layers of size 256 for pM-

NIST, a reduced ResNet18 with three times fewer filters [80] for Split CIFAR and

Split miniIMN, and a full ResNet18 on CORE50. Following [80], we use a Ring

buffer as the memory structure for all methods and random sampling to se-

lect data from memory, including the episodic and semantic memories of CTN.
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The exceptions are MER [156], which uses reservoir sampling, and MIR [125],

which use their sampling strategies as proposed by the authors. For CTN, the

episodic memory and semantic memory are implemented as two Ring buffers

with sizes equal to 80% and 20% of the total budget. This configuration is also

cross-validated from the validation tasks. For each incoming batch of data, we

randomly push 80% samples to the current task’s episodic memory and the

other 20% are for the current task’s semantic memory.

We follow the procedure proposed in [129] to cross-validate all hyperpa-

rameters using the first three tasks. Then, the best configuration is selected to

perform continual learning on the remaining tasks. During continual learn-

ing, the task identifier is given to all methods. We optimize all models using

SGD with a mini-batch of size ten over one epoch. We run each experiment

five times, each has the same task order but different initialization seed, and re-

port the following metrics as discussed in Chapter 2: Averaged Accuracy [80]:

ACC(↑) (higher is better) , Forgetting Measure [96]: FM(↓) (lower is better), and

Learning Accuracy [156]: LA(↑) (higher is better).

4.4.2 Results of Continual Learning Benchmarks

Table 4.1 reports the evaluation metrics of the models on four continual learn-

ing benchmarks considered with 50 samples per task. We observe that CTN is

even comparable with the independent method and outperforms other base-

lines by a large margin. We remind that the independent method has T times

more parameters than the remaining methods, where T is the total number

of tasks. Moreover, CTN can exploit the relationship across tasks via the task

identifiers to improve its performance. For example, learning to classify “man”

and “woman” may be helpful to classify “boy” and “girl” because they be-

long to the same superclass “people”. Finally, CTN significantly outperforms
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the baselines by achieving a better trade-off between alleviating catastrophic

forgetting and facilitating knowledge transfer, as shown by lower FM(↓) and

higher LA(↑) . Overall, CTN achieves state-of-the-art results, even compara-

ble with arge scale dynamic architecture method, while enjoying neglectable

model complexity overhead compared to fixed architecture methods.
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FIGURE 4.2: ACC(↑) as a function of the episodic memory size on
the Split CIFAR-100 and Split miniIMN benchmarks. Best viewed

in colors.

ACC(↑) as a function of the episodic memory size We study the models’

performances as the memory size increases. We consider the Split CIFAR 100

and Split miniIMN benchmarks and train the models of CTN, ER, MIR, and

GEM with the total memory size per task increasing from 50 to 200. Figure 4.2

plots the ACC(↑) curves as a function of the memory size. Generally, the per-

formances of all methods increase with larger memory sizes. Overall, CTN

consistently outperforms the competitors across all memory sizes. Notably, in

both benchmarks, CTN can achieve comparable performances to the Offline

model even when the memory size per task is only 175. The results show that

CTN not only excels in the low memory regime but also scales remarkably well

when more memory budget is allowed.
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4.4.3 Results on Learning with Limited Training Data

TABLE 4.2: Evaluation metrics on the Small Split CIFAR bench-
marks, M denotes the memory per task

Method
Reduced Split CIFAR 25%, M = 50 Reduced Split CIFAR 25%, M = 25

ACC(↑) FM(↓) LA(↑) ACC(↑) FM(↓) LA(↑)

GEM 51.01±0.95 5.65±1.09 53.39±0.98 47.33±0.89 8.77±1.58 53.79±1.35
ER-Ring 52.02±0.90 4.31±0.94 53.97±0.65 48.15±0.87 8.22±1.17 53.88±0.93
MIR 50.82±0.83 5.22±0.68 53.27±1.05 47.19±0.54 8.41±0.94 53.51±0.74

CTN 61.27±0.93 4.19±0.78 61.92±1.15 56.17±1.63 7.71±1.22 61.40±0.64

Method
Reduced Split CIFAR 10%, M = 50 Reduced Split CIFAR 10%, M = 25

ACC(↑) FM(↓) LA(↑) ACC(↑) FM(↓) LA(↑)

GEM 44.06±1.31 6.96±0.87 48.67±0.84 42.67±1.62 8.39±1.35 49.46±0.40
ER-Ring 44.60±1.65 6.07±1.77 48.36±0.46 43.09±1.22 7.68±1.94 49.40±1.40
MIR 46.63±0.56 4.38±0.45 48.35±0.52 44.12±0.94 6.84±1.05 48.48±0.76

CTN 56.61±0.74 4.33±0.48 58.77±0.99 52.64±0.63 6.74±0.73 57.27±1.02

One important goal of continual learning is to be able to learn with a lim-

ited amount of training data per task. This setting is much more challenging

because it tests the learner’s ability to quickly acquire knowledge only with

limited training samples by utilizing its past experiences. In this experiment,

we explore how different memory-based methods perform with only limited

training samples per task and memory size. We consider the Split CIFAR bench-

mark; however, we reduce the amount of training data per task significantly.

Particularly, we only consider 25% and 10% of the original data per task while

the test data remains the same. We name the new benchmarks Reduced Split

CIFAR 25% and Reduced Split CIFAR 10%, respectively. Notably, the Reduced

Split CIFAR 10% only has five samples per class, which is extremely challeng-

ing. We compare CTN with GEM, ER, and MIR on these benchmarks with the

memory size of 50 and 25 samples per task.
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Table 4.2 shows the results of this experiment. When the training data is

scarce, the baselines performances drop significantly, even below 50% ACC(↑)

in three settings. CTN, on the other hand, consistently outperforms the base-

lines by a large margin, from 8% to 10% across benchmarks, even in the chal-

lenging Reduced Split Cifar 10%. Moreover, the three baselines have similarly

low LA, showing that they struggle in acquiring new knowledge when the

training data of each task are limited. On the other hand, CTN can leverage in-

formation about the task-specific features to improve knowledge transfer and

the learning outcomes. It is worth noting that even with 25% training data and

50 memory slots per task, CTN already outperforms several baselines that are

trained with full data by cross-referencing the results with Table 4.1.

TABLE 4.3: ACC(↑) of each component in CTN on Split CIFAR
and Split mini Imagenet with 50 memory slots per task. BC: be-
havioral cloning (Equation 4.6), C: controller, BO: Bilevel opti-

mization (Equation 4.3)

BC C BO
Split CIFAR Split miniIMN

ACC(↑) FM(↓) LA(↑) ACC(↑) FM(↓) LA(↑)

CTN X X X 67.65±0.43 6.33±0.70 73.43±0.45 65.82±0.59 3.02±1.13 67.73±1.73
X X 66.37±0.53 9.64±0.98 75.40±0.60 60.04±1.37 10.48±0.99 69.87±0.60

X X 64.46±1.16 8.51±1.53 72.23±0.54 61.01±1.09 5.31±0.94 64.35±0.83
X 62.76±0.49 10.10±0.78 72.12±0.41 58.95±1.76 9.08±1.61 66.94±0.83

ER 61.36±1.01 7.20±0.72 67.05±1.08 53.43±1.18 11.21±1.35 63.46±1.05

4.4.4 Ablation Study

We study the contribution of each component in CTN in its overall performance

and consider the Split CIFAR and Split miniIMN benchmarks with an episodic

memory of 50 samples per task. Particularly, we are interested in how (1) the

controller, (2) the bi-level optimization, and (3) the behavioral cloning strategy
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contribute to the base model. We implement variants of CTN with different

combinations of these components and report the results in Table 4.3. Notably,

CTN with only the controller (C) is equivalent to training the base network and

the controller using the vanilla experience replay approach. Despite this, the

controller can offer significant improvements over ER: over 5% ACC(↑) in Split

miniIMN. When the controller is optimized by our proposed bilevel optimiza-

tion (C + BO), the performances are further improved, showing that our pro-

posed bilevel objective achieves a better trade-off between alleviating forget-

ting and facilitating knowledge transfer. Lastly, the behavioral cloning strategy

can help alleviate forgetting and further strengthen the results. Overall, each of

the proposed components adds positive contributions to the base model, and

they work collectively as a holistic method and achieved state-of-the-art results

in continual learning.

4.4.5 Complexity Analysis

TABLE 4.4: Model complexity of CTN with various backbone ar-
chitectures

Backbone Controller
Total Increase

Structure # Params Structure # Params

MLP [784-256-256-10] 269,322 Linear model 17,728 287,050 6.58%
Reduced ResNet18 1,095,555 Linear model 20,992 1,116,547 1.92%

Full ResNet18 11,202,162 Linear model 59,200 11,261,362 0.53%

In this section, we study the CTN’s complexity with the backbones used in

our experiments and report the results in Table 4.4. In all cases, the controller

only adds minimal additional parameters, almost neglectable in complex deep

architectures such as ResNets [60, 80]. Therefore, we can safely compare CTN
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TABLE 4.5: Averaged running time (in seconds) of compared
methods on the task-aware continual learning benchmarks. All
methods use M=50 memory slots per task, Ring buffer, and up to

four gradient updates per samples

Benchmark \ Method ER-Ring MIR AGEM CTN GEM

pMNIST 61 92 90 110 103
Split CIFAR100 632 1030 680 910 1700
Split miniIMN 1320 2130 1700 1890 2850

with other fixed architecture methods using the same backbone because they

have nearly the same number of parameters.

Table 4.5 reports the averaged running time (in seconds) of considered meth-

ods. All methods are implemented using Pytorch [151] version 1.5 and CUDA

10.2. Experiments are conducted using a single K80 GPU and all methods are

allowed up to four gradients steps per sample. Clearly, ER-Ring has the most

efficient time complexity thanks to its simplicity. On the other hand, GEM has

high computational costs because of its quadratic constraints. MIR also exhibits

high running time because of its virtual update, which doubles the total gra-

dient updates. CTN, in general, is slightly faster MIR and more efficient than

GEM. Overall, CTN achieves a great trade-off between model/computational

complexity and performance: CTN’s performances are significantly higher than

considered baselines with only minimal memory and computational overhead.

4.4.6 Effect of The semantic memory Size

We study how the semantic memory size effects CTN performance. For this

experiment, we consider the validation tasks in the Split CIFAR-100 benchmark

(the first three tasks) and vary the semantic memory size and episodic memory

size such that their total sizes equals to 50 samples per task.
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FIGURE 4.3: Effect of memory size on CTN’s performance. For
every semantic memory size m × 50, the corresponding episodic

memory size is (1−m)× 50.

Figure 4.3 reports the results of this experiment. We can see that when the

semantic memory size is 10 (20% of the total memory), CTN achieves the high-

est ACC, FM(↓) and lowest FM(↓) and these evaluation metrics degrades when

the semantic memory sizes increases. Generally, we have to balance the amount

of memory for controller and the base network. Since the controller is only a

simple model, it only requires a small amount of data in the semantic memory.

4.5 Variants of CTN

TABLE 4.6: Alternative strategies to reduce forgetting in CTN’s
inner optimization. BC: behavioural cloning strategy in Equa-

tion 4.6

Method
Split CIFAR Split miniIMN

ACC(↑) FM(↓) LA(↑) ACC(↑) FM(↓) LA(↑)

CTN-BC 67.65±0.43 6.33±0.70 73.43±0.45 65.82±0.59 3.02±1.13 67.73±1.73
CTN-EWC 60.33±1.44 9.33±1.55 68.78±0.24 57.69±0.96 5.59±0.45 61.53±1.38
CTN-GEM 64.40±2.52 8.06±1.92 71.49±0.46 60.65±0.80 5.83±0.84 64.42±0.46
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In this section, we explore alternative strategies for alleviating catastrophic

forgetting in CTN’s inner optimization problem, which is experience replay

(ER) to train the base model φ. Particularly, instead of the behavioural cloning

strategy in Equation 4.6, we consider two strategy to alleviate forgetting in

ER by combining ER with EWC [76] and GEM [80]. Table 4.6 show the re-

sults of this experiment on the Split CIFAR100 and Split miniIMN benchmarks.

We can see that the behavioural cloning strategy significantly outperforms its

competitors, EWC and GEM. Notably, using CTN with EWC requires larger

episodic memory to store the previous tasks’ parameters and their importance.

Moreover, using CTN with GEM results in slower running time since GEM

has the slowest training time as shown in Table 4.5. The results show that

the behavioural cloning strategy is more suitable for alleviating forgetting in

ER, while enjoying less memory overhead or faster running time compared to

other alternatives.

4.6 Conclusion

In this Chapter, we propose Contextual Transformation Networks (CTN), a

fixed architecture network that can model both the common features and spe-

cific features of each task. Through extensive experiments, our results demon-

strate that CTN consistently outperforms fixed architecture methods and achieves

state-of-the-art results. Moreover, CTN is even comparable with a large scale

dynamic architecture network, while enjoying almost no additional model com-

plexity.

Despite promising results, there are still two major drawbacks in CTN. First,

it is strictly a task-aware method because the controller requires the identifiers

as input. Second, CTN uses ER as a proxy to obtain general representation via
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multitask learning. Such an multi-task training approach usually suffers when

tasks are not closely related. In Chapter 5 we seek to develop a more general

strategy that is applicable to general continual learning settings and is robust

to the negative transfer from unrelated tasks.

4.7 Implementing CTN

4.7.1 CTN with Common Architectures

In this section, we provide the implementation details of CTN on two feedfor-

ward network bases that we use in our experiments. We implement the context

model as a single regression layer. Moreover, we share the parameter of the

scale and shift models γ, β, resulting in one set of parameters that takes a task

embedding as input and outputs both scale and shift values for a particular

layer of the base network. Next, we will describe our implementation of CTN

with the base network as MLP and ResNet [60]. For CTN, we will use ĥ as the

original features, h̃ as the task-specific features, and h as the combine features.

CTN with Multilayer Perceptron. Consider an L−layers MLP with the form:

h0 =x

hl =ReLU(W>
l hl−1),∀l = 1, . . . , L− 1,

hL =gt = Softmax(W>
L,thL−1)
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where the last layer is the softmax classifier ht. Since the last classification layer

is already conditioned on the task information, here we are interested in condi-

tioning the intermediate layers hl<L. The CTN with MLP is implemented as:

ĥ0 =x

ĥl =ReLU(W>
l hl−1), ∀l = 1, . . . , L− 1,

h̃l =ReLU(γt ⊗W>
l hl−1 + βt),∀l = 1, . . . , L− 1,

hl =ĥl + h̃l

hL =gt = Softmax(W>
L,thL−1)

We condition each hidden layer of a MLP by using one context network for each

layer. Each context network does not share parameters, however, the scale and

shift models for one layer is shared.

CTN with Deep Residual Network. Unlike MLP, we apply the task condi-

tioning after the residual blocks instead of each convolution layer. Particularly,

given a residual block defined as:

ĥ1 =ReLU(BN(conv(x))) ĥ2 = BN(conv(h1))

ĥ3 =BN(conv(x)) ĥ4 = conv(x)

h̄ =ĥ3 + ĥ4

The task-conditioned residual block is computed as:

h̃ = ReLU(h̄) + ReLU(γt ⊗ h̄+ βt)
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While in principle, it is possible to have a context network for each of the resid-

ual block, we empirically found that this does not offer significant improve-

ments over using only one controller on the last residual block. Therefore, we

only use one controller on the last residual block in all experiments that use a

ResNet.

4.7.2 Pseudo-code

We provide the details algorithm of our CTN and its subroutines in Alg. 1. For

simplicity, we drop the dependency of the losses on the parameters and use
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Ltr(Bn) to denote Ltr(φ,ϕ,Bn;θ) and L(Bn) to denote L(φ,ϕ,Bn;θ)

Algorithm 1: Contextual Transformation Networks (CTN)

1 Algorithm TrainCTN(θ,φ,Dtr1:T)
Require: base model φ, controller θ, classifier ϕ

Init: θ,φ,ϕ,Mem
t ← ∅,Msm

t ← ∅

2 for t← 1 to T do

3 for j ← 1 to nbatches do // Receive the dataset Dtr
t sequentially

4 Receive a mini batch of data Bj from Dtrt
5 x∗, y∗ ← Random sampling from Bj
6 Msm

t ←MemoryUpdate(Msm
t , {x∗, y∗})

7 Mem
t ←MemoryUpdate(Mem

t ,Bj)

8 for i← 1 to nouter do

9 for n← 1 to ninner do

10 Bem ← Sample(Mem
<t )

11 Bn ← Bem ∪ Bj
12 φ← φ−∇φLtr(Bn) // Inner update the base model φ

ϕ← ϕ−∇ϕLtr(Bn) // Inner update the classifier φ

13 Bsm ← Sample (Msm
≤t )

14 θ ← θ −∇θL(Bsm) // Outer update the controller θ

15 Mem
t ←Mem

t ∪ {π(ŷ/τ)} // Calculate the behavioural cloning

outputs

16 Mem ←Mem ∪Mem
t // Update the total episodic memory

17 return θ,φ
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Algorithm 2: CTN subroutines.

1 Procedure Forward(θ,φ,ϕ,x, t)

2 γt, βt ← cθ(t) // Calculate the transforming coefficients

3 h̃(x; t)← γt
‖γt‖2

⊗ ĥ(x) + βt
‖βt‖2

// Calculate the task-specific features

4 return gϕt(h(x, t))

1 Procedure MemoryUpdate(M,B)
Require: ImplementM as a queue (FIFO) data structure

2 for (x, y) inB do

3 M.append(x, y)

4 returnM
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Chapter 5

Fast and Slow Continual Learning

In Chapter 4, we discussed CTN, a promising online continual learning strat-

egy motivated by the CLS theory. This Chapter further refines the fast-and-

slow learning idea to DualNets, a general continual learning method. As we

will demonstrate, DualNets not only address CTN’s weaknesses but also show

remarkable successes on various continual learning scenarios.

5.1 Introduction

In Chapter 4, we reviewed the CLS theory and discussed how it motivated

the development of CTN. In literature, several continual learning strategies are

also inspired from the CLS theory, from using the episodic memory [80] to im-

proving the representation [138, 154]. However, most existing studies were de-

veloped on the standard, controlled benchmarks and showed limited success

on general scenarios where the data consists limited training samples or dis-

tribution shifts [199]. Therefore, the main focus of this Chapter is the develop-

ment of a novel and general framework inspired by the CLS theory to address
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not only the conventional continual learning problems but also the real-world

challenges of distribution shifts or limited training data.

To this end, we first argue that most existing studies do not closely model

the CLS theory because they use a single backbone to model both the hip-

pocampus and neocortex, which binds two representation types into the same

network. Therefore, they cannot guarantee to decouple general representation

and task-specific representation. Moreover, since such networks are trained

to minimize only the supervised loss, they lack a separate and specific slow

learning component that supports a general representation. During contin-

ual learning, the representation obtained by repeatedly performing supervised

learning on a small amount of memory data can be prone to overfitting and

may not generalize well across tasks. On the other hand. recent studies in con-

tinual learning show that other forms of representation such as unsupervised

representation [59, 111] are often more resisting to forgetting compared to the

supervised learning ones, which yields little improvements [106]. This result

motivates us to conceptualize a novel fast-and-slow learning framework for

continual learning, which comprises a two separate learning systems. The fast

learner focuses on supervised learning while the slow learner focuses on accu-

mulating better representations. As a result, the fast learner can take advantage

of the slow representation to learn new tasks more efficiently, while retaining

the old tasks’ knowledge.

From the fast-and-slow learning framework, we propose DualNets (for Dual

Networks), a novel and practical continual learning paradigm consisting of two

separate learning systems. Particularly, DualNets consist of two complementary

and parallel training processes. First, the representation learning phase involves

only the slow network, which continuously optimizes a Self-Supervised Learn-

ing (SSL) loss to model the generic, task-agnostic features [59, 111]. Separating
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DualNet
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The Slow learner’s learning process
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Self-supervised learning
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FIGURE 5.1: Overview of the DualNet architecture, which con-
sists of (i) a slow learner (blue) that learns representation by op-
timizing an SSL loss using samples from the memory, and (ii) a
fast learner (orange) that adapts the slow net’s representation for
quick knowledge acquisition of labeled data. Both learners can
be trained synchronously. M denotes a randomly sampled mini-
batch andMA,MB denote two views ofM obtained by applying

two different data transformations. Best viewed in colors.

the slow learning phase allows DualNets continuously improve representation

even when there are no labeled samples, which is ubiquitous in real-world de-

ployment scenarios where labeled data can be delayed [132] or even limited,

which we will demonstrate in Section 5.4.1. Secondly and simultaneously, the

supervised learning phase involves both learners. In this phase, the goal is to

train the fast learner, a more lightweight model that can do supervised learning

more efficiently on data streams. We also propose a simple feature adaptation

mechanism so that the fast learner can incorporate the slow representations

into its predictions to ensure good results. Figure 5.1 depicts an overview of

our DualNets.

Lastly, by design, the original DualNet utilizes all slow features to learn the

current sample. We note that this strategy may hinder the performance when

the continuum contains unrelated tasks. In such scenarios, there might be nega-

tive transfer among tasks, resulting in a performance drop when using all slow
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features. In continual learning literature, this challenge is commonly addressed

by a dynamic architecture design, which uses different subnetworks for the un-

related tasks [199] and can perform well where tasks are not related. However,

despite strong results, such strategies are often expensive to train, incurs addi-

tional complexities overhead, and often perform poorly in the online learning

scenario [129]. Therefore, we propose to enrich DualNet with the ability to pre-

vent negative knowledge transfer from unrelated features by preventing the

co-adaptation between the fast and slow learners, allowing the fast learner to

learn more useful and robust features for the supervised learning. To this end,

we propose DualNet++, which equips DualNet with a simple, yet elegant reg-

ularization strategy to alleviate the negative knowledge transfer in continual

learning. Particularly, DualNet++ inserts a dropout layer between the fast and

slow learners’ interaction, which prevents its fast learner co-adapt to the slow

features. As a result, DualNet++ is robust to the negative knowledge transfer

under the presence of unrelated or interference tasks in continual learning. No-

tably, as we will empirically verify in Section 5.4.2, DualNet++ achieve promis-

ing performance on the CTrL benchmark [199], which was specifically designed

to test the model’s ability to transfer knowledge in different complex scenarios.

In summary, this Chapter makes the following contributions:

1. We propose DualNet, a novel and generalized continual learning frame-

work comprising two key components of fast and slow learning systems,

which is motivated by the CLS theory.

2. We develop to practical algorithms of DualNet and DualNet++, which

implements the fast and slow learning approaches for continual learning.

Notably, DualNet++ is also robust to the negative knowledge transfer.
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3. We conduct extensive experiments to demonstrate DualNet’s competitive

performance compared to state-of-the-art (SOTA) methods. We also pro-

vide comprehensive studies of DualNet’s efficacy, robustness to the slow

learner’s objectives, and scalability to the computational resources.

5.2 Related Work

Representation Learning for Continual Learning Representation learning

has been an important research field in machine learning and deep learning [31,

39]. Recent works demonstrated that a general representation could transfer

well to many downstream tasks [110], or generalize well under limited train-

ing samples [73]. For continual learning, extensive efforts have been devoted

to learning a generic representation that can alleviate forgetting while facilitat-

ing knowledge transfer. The representation can be learned either by supervised

learning [82], unsupervised learning [59, 111, 154], or meta (pre-)training [138,

136]. While unsupervised and meta training have shown promising results

on simple datasets such as MNIST and Omniglot, they lack the scalability to

real-world benchmarks. In contrast, our DualNets decouple the representation

learning into the slow learner, which is scalable in practice by training syn-

chronously with the supervised learning phase. Moreover, our work incorpo-

rates self-supervised learning into the continual learning process and does not

require any pre-training steps.

5.3 Method

We denote M as the episodic memory that stores a subset of observed data

and interleave them when learning the current samples [80, 130]. FromM, we
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useM to denote a randomly sampled mini-batch, andMA,MB to denote two

views of M obtained by applying two different data transformations. We also

denote φ as the parameter of the slow network that learns general representa-

tion from the input data and θ as the parameter of the fast network that learns

the transformation coefficients.

5.3.1 The DualNets Paradigm

DualNet learns generic representations to support better generalization capa-

bilities across both old and new tasks in continual learning. The model consists

two main learning modules (Figure 5.1): (i) the slow learner is responsible for

learning a general representation; and (ii) the fast learner learns with labeled

data from the continuum to quickly capture the new information and then con-

solidate the knowledge to the slow learner.

DualNets’ learning can be broken down into two synchronous phases. First,

the self-supervised learning phase in which the slow learner optimizes an SSL

objective on incoming samples and samples from the episodic memory. Sec-

ond, the supervised learning phase, which involves the fast learner using the

representation from the slow learner and adapting it for supervised learning.

The incurred loss will be backpropagated through both learners for supervised

knowledge consolidation. Additionally, the fast learner’s adaptation is per-

sample-based and does not require additional information such as the task

identifiers. While the SSL can make the slow learner’s representation generic,

backprogating the supervised learning loss end-to-end ensures that the slow

learner can learn representations that are useful for the supervised learning.

Lastly, DualNet uses the same episodic memory’s budget as other methods to

store the samples and their labels, but the slow learner only requires the sam-

ples while the fast learner uses both samples and their labels.
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FIGURE 5.2: An illustration of DualNets forward calculation dur-
ing the supervised learning or inference phase on a standard
ResNet [60] backbone. Given an input image, the slow learner
(blue) first performs the forward pass to obtain the feature maps.
Then, the fast learner (orange) perform its forward pass using

both the slow and fast features. Best viewed in colors.

The Slow Learner

The slow learner is a standard backbone network φ trained to optimize an

SSL loss, denoted by LSSL. As a result, any SSL objectives can be applied

in this step. However, to minimize the additional computational resources

while ensuring a general representation, we only consider the SSL loss that

(i) does not require additional memory units (such as the negative queue in

MoCo [180]), (ii) does not always maintain an additional copy of the network

(such as BYOL [177]), and (iii) does not use handcrafted pretext losses (such as

RotNet [31] or JiGEN [128]). Therefore, we consider contrastive SSL losses [110]

and implement DualNets using Barlow Twins [221], a common SSL method

that achieved promising results with minimal computational overheads. For-

mally, Barlow Twins requires two views MA and MB by applying two differ-

ent data transformations to a batch of images M . By default, M contains in-

coming samples from the environment and samples in the episodic memory to

maximize the number of samples for SSL. The augmented data is then passed
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to the slow net φ to obtain two representations ZA and ZB. The Barlow Twins

loss is defined as:

LBT ,
∑
i

(1− Cii)2 + λBT
∑
i

∑
j 6=i

C2
ij, (5.1)

where λBT is a trade-off factor, and C is the cross-correlation matrix between

ZA and ZB:

Cij ,
∑

b z
A
b,iz

B
b,j√∑

B(zAb,i)
2
√∑

B(zBb,j)
2

(5.2)

with b denotes the mini-batch index and i, j are the vector dimension indices.

Intuitively, by optimizing the cross-correlation matrix to be identity, Barlow

Twins enforces the network to learn essential information that is invariant to

the distortions (unit elements on the diagonal) while eliminating the redun-

dancy information in the data (zero element elsewhere). In our implementa-

tion, we follow the standard practice in SSL to employ a projector on top of the

slow network’s last layer to obtain the representations ZA,ZB. For supervised

learning with the fast network, which will be described in Section 5.3.1, we use

the slow network’s last layer as the representation Z.

Optimization in Online Continual Learning In most SSL training, the

LARS optimizer [88] is employed for distributed training across many devices,

which takes advantage of a large amount of unlabeled data. However, in on-

line continual learning, the episodic memory only stores a small number of

samples, which are always changing because of the memory updating mecha-

nism. As a result, the data distribution in the episodic memory always drifts

after each iteration, and the SSL loss in DualNet presents different challenges

compared to the traditional SSL optimization. Particularly, although the SSL

objective in continual learning can be easily optimized using one device, we
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need to quickly capture the knowledge of the currently stored samples before

the newer ones replace them. In this work, we propose to optimize the slow

learner using the Look-ahead optimizer [162], which performs the following up-

dates:

φ̃k ←φ̃k−1 − ε∇φ̃k−1
LBT , with φ̃0 ← φ and k = 1, . . . , K (5.3)

φ←φ+ β(φ̃K − φ), (5.4)

where β is the Look-ahead’s learning rate and ε is the Look-ahead’s SGD learn-

ing rate. As a special case of K = 1, the optimization reduces to the tradi-

tional optimization of LBT using SGD. By performing K > 1 updates using a

standard SGD optimizer, the look-ahead weight φ̃K is used to perform a mo-

mentum update for the original slow learner φ. As a result, the slow learner

optimization can explore regions that are undiscovered by the traditional op-

timizer and enjoys faster training convergence [162]. Note that SSL focuses on

minimizing the training loss rather than generalizing this loss to unseen sam-

ples, and the learned representation requires to be adapted to perform well on

a downstream task. Therefore, such properties make the Look-ahead optimizer

a more suitable choice over the standard SGD to train the slow learner. For the

batch continual learning setting [76], because the model can learn the current

task for many epochs, it is sufficient to train the slow learner with the standard

SGD in this scenario.

Lastly, we emphasize that although we choose to use Barlow Twins as the

SSL objective, DualNets are compatible with any existing methods in the lit-

erature, which we will explore empirically in Section 5.4.1. Moreover, we can

always train the slow learner in the background by optimizing Equation 5.1

synchronously with the continual learning of the fast learner, which we will
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detail in the following section.

The Fast Learner

Given a labeled sample {x, y}, the fast learner’s goal is utilizing the slow learner’s

representation to learn this sample via an adaptation mechanism. We propose

a general context-free adaptation mechanism by extending and improving the

channel-wise transformation [112, 214] to the general continual learning set-

ting. Particularly, such strategies relies on low dimensional context vectors,

such as task identifiers, to learn a channel-wise transformation coefficients. In

the task-free setting, the model needs to learn such information from the raw,

high dimensional images. To compensate for the increased learning complex-

ity, we propose to implement the fast net as a smaller neural network instead of

a simple linear layer [214]. Moreover, the transformation is pixel-wise instead

of channel-wise to allow for a more fine-grained usage of the slow feature given

the current image.

Formally, let {hi}Li=1 be the feature maps from the slow learner’s layers

on the image x, e.g. h1,h2,h3,h4 are outputs from four residual blocks in

ResNets [60], our goal is to obtain the adapted feature h′L conditioned on the

image x. Therefore, we design the fast learner as a simple CNN with L layers,

and the adapted feature h′L is obtained as

ml =gθ,l(h
′
l−1), with h′0 = x and l = 1, . . . , L

h′l =hl �ml, ∀l = 1, . . . , L, (5.5)

where � denotes the element-wise multiplication, gθ,l denotes the l-th layer’s

output from the fast network θ and has the same dimension as the correspond-

ing slow feature hl. The fast net final layer’s transformed feature h′L will be fed
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into a classifier for prediction.

Thanks to the simplicity of the transformation, the fast learner is light-weight

but still can take advantage of the slow learner’s rich representation for better

supervised learning. Meanwhile, the slow learner is mostly trained by the SSL

loss to obtain a generic representation that is resistant to catastrophic forget-

ting. Figure 5.2 illustrates the fast and slow learners’ interaction during the

supervised learning or inference phase.

The Fast Learner’s Objective To further facilitate the fast learner’s knowl-

edge acquisition during supervised learning, we also mix the current sample

with previous data in the episodic memory, which is a form of experience re-

play (ER). Particularly, given the incoming labeled sample {x, y} and a mini-

batch of memory dataM belonging to a past task k, we consider the ER with a

soft label loss [120] for the supervised learning phase as:

Ltr =CE(π(DualNet(x), y) +
1

|M |

|M |∑
i=1

CE(π(ŷi), yi)+

+λtrDKL

(
π

(
ŷi
τ

)∣∣∣∣∣∣∣∣ π( ŷkτ
))

, (5.6)

where CE is the cross-entropy loss , DKL is the KL-divergence, ŷ is the Du-

alNet’s prediction, ŷk is snapshot of the model’s logits (the fast learner’s pre-

diction) of the corresponding sample at the end of task k, π(·) is the softmax

function with temperature τ , and λtr is the trade-off factor between the soft

and hard labels in the training loss. Similar to [214, 170], Equation 5.6 requires

minimal additional memory to store the soft label ŷ in conjunction with the

image x and the hard label y.
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5.3.2 DualNet++

This section details DualNet++, an improved version of DualNet to tackle the

challenge of preventing negative knowledge transfer and learning modular

knowledge in continual learning [199]. In many real-world applications, data

in continual learning may contain vastly different visual features, which could

even be adversarial to one another [217]. Common approaches to tackle such

challenges [199, 213] are mainly based on the dynamic architectures, which

compartmentalize knowledge into different modules. Then, the model only

uses the relevant subnetwork to learn a current task, which only transfers use-

ful knowledge while alleviating the negative effects of unrelated features. To

make DualNets applicable to real-world problems, we believe that selective

knowledge transfer is an important component to enrich DualNet with.

To this end, we analyze the DualNet’s drawback in achieving a good trans-

fer when learning from complex continual learning streams. We argue that

since the slow features in DualNets are obtained from all tasks’ data, the origi-

nal DualNet will learn the fast features dependent on the slow features. While

this is helpful in the controlled environments with no negative transfers, it will

hinder the performance when there are tasks unrelated to one another. Thus,

we propose DualNet++ that alleviates the co-adaptation between the fast and

slow features, allowing it to learn more robust features that are useful for the

current task. DualNet++ introduces a simple dropout layer [35] between the

fast and slow learners’ interactions. As a result, under the presence of negative

transfer, the fast learner will not become dependent on the slow feature [35, 53]

and can focus on learning features useful for the current inputs.

To implement DualNet++, we insert a spatial dropout layer [55] between the

fast and slow learner interaction. Formally, DualNet++ replace the interaction
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in Eq. 5.5 as:

ml =gθ,l(h
′
l−1), with h′0 = x and l = 1, . . . , L

h′l =Dl � hl �ml, ∀l = 1, . . . , L, (5.7)

whereDl ∈ Rn×w×h is a spatial dropout mask obtained as

dl,i ∼Bernoulli(p),∀i = 1, . . . , n (5.8)

Dl ←Repeat(dl, n× w × h),dl = {dl,1, . . . , dl,n}. (5.9)

In Eq. 5.8, Bernoulli(p) denotes a sample randomly drawn from a Bernoulli dis-

tribution with probability p, and Repeat in Eq. 5.9 denotes reshaping a vector to

a particular dimensions by repeating its values along the required axes. Specif-

ically, the dropout mask D is obtained by performing n independent dropout

trial on a feature map of size n×w×h, and each trial will zero an entire channel.

We also note that it is possible to apply the traditional dropout [35] on the pixels

independently, or inserting dropout in the backbone networks. However, pre-

liminary results of such strategies are not promising due to the incompatibility

between dropout and batch normalization [51, 142]. Therefore, we decided

to not explore these configurations further. In contrast, the spatial dropout is

more suitable for convolutional neural networks, and is only inserted in the fast

and slow networks’ interaction, not between the hidden layers. Lastly, a recent

work [191] also show promising results of applying dropout in continual learn-

ing. However, their studies only focus on the simple feed-forward architectures

and left the convolution networks unexplored.
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5.4 Experiments

We compare DualNets against competitive continual learning approaches in

both the online [80] and offline [76, 199] scenarios. Our goal of the experiments

is to investigate the following hypotheses: (i) DualNets can work well across

different continual learning scenarios; (ii) DualNets are robust to the choice

of the SSL loss; (iii) DualNets are scalable with the number of SSL training

iterations; (iv) DualNet++ can efficiently learn under the presence of unrelated

tasks and distribution shifts. In all experiments, DualNet++’s dropout ratio is

set as p = 0.1 for the online setting, and p = 0.2 for the batch setting, unless

otherwise stated.

5.4.1 Online Continual Learning Experiments

We first consider the Online Continual Learning setting [80] where both the tasks

and samples within each task arrive sequentially. This setting presents a unique

challenge where the catastrophic forgetting and facilitating knowledge transfer

problems are entangled [170]. Thus, successful online continual learning solu-

tions must achieve a good trade-off of these conflicting objectives.

Setup

Benchmarks We consider the “Split" continual learning benchmarks constructed

from the miniImageNet [68] and CORE50 dataset [78] with three validation

tasks and 17, 10 continual learning tasks, respectively. Each task is created by

randomly sampling without replacement five classes from the original dataset.

We also consider both the task-aware and task-free protocols. For the task-

aware (TA) protocol, the task identifier is available, and only the corresponding

classifier is selected for training and evaluation. In contrast, the task-identifiers
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are not given in the task-free (TF) protocol, and the models have to predict all

classes observed so far.

Baselines We compare DualNet and DualNet++ against a suite of state-of-

the-art continual learning methods. First, we consider ER [130], a simple expe-

rience replay method that works consistently well across benchmarks. Then we

include DER++ [170], an ER variant that augments ER with a `2 loss on the soft

labels. We also compare with CTN [214] a recent state-of-the-art method on the

online task-aware setting. For all methods, the hyper-parameters are selected

by performing grid-search on the cross-validation tasks.

Architecture We use a full ResNet18 [60] as the backbone for all methods. In

addition, we construct the DualNet’s fast learner as follows: the fast learner has

the same number of convolutional layers as the number of residual blocks in the

slow learners. A residual block and its corresponding fast learner’s layer will

have the same output dimensions. With this configuration, the fast learner’s

architecture is uniquely determined by the slow learner’s network and only

increased the number of parameters by about 20%. Lastly, all networks in our

experiments are trained from scratch.

Training In the supervised learning phase, all methods are optimized by

the (SGD) optimizer over one epoch with mini-batch size 10 and 32 on the Split

miniImageNet and CORE50 benchmarks respectively [80, 214]. In the represen-

tation learning phase, we use the Look-ahead optimizer [162] to train the Dual-

Nets’ slow learner as described in Section 5.3.1. We employ an episodic mem-

ory with 50 samples per task and the Ring-buffer management strategy [80] in

the task-aware setting. In the task-free setting, the memory is implemented as

a reservoir buffer [5] with 100 samples per class. We simulate the synchronous

training property in DualNet by training the slow learner with n iterations us-

ing the episodic memory data before observing a mini-batch of labeled data.
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Data pre-processing DualNet’s slow learner follows the data transforma-

tions used in BarlowTwins [221]. For the supervised learning phase, we con-

sider two options. First, the standard data pre-processing of no data augmen-

tation during both training and evaluation, which is commonly implemented

in existing studies [80, 130]. Second, we also train the baselines with data aug-

mentation for a fair comparison. However, we observe the data transformation

in [221] is too aggressive; therefore, we only implement the random cropping

and flipping for the supervised training phase of these baselines. In all scenar-

ios, the inference phase does not any use data augmentations.

Results of Online Continual Learning Benchmarks

Table 5.1 reports the evaluation metrics on the CORE50 and Split miniImageNet

benchmarks, where we omit CTN’s performance on the task-free setting since

it is strictly a task-aware method. Our DualNet’s slow learner optimizes the

Barlow Twins objective for n = 3 iterations between every incoming mini-batch

of labeled data. We will explore the impact of the SSL iteration in Section 5.4.1.

Generally, data augmentation creates more samples to train the models and

provides improvements in all cases. Consistent with previous studies, we ob-

serve that DER++ performs slightly better than ER thanks to its soft-label loss.

Similarly, CTN can perform better than both ER and DER++ because of its

ability to model task-specific features. Overall, our DualNets consistently out-

perform other baselines by a large margin, even with the data augmentation

propagated to their training. Specifically, DualNets are more resistant to catas-

trophic forgetting (lower FM) while greatly facilitating knowledge transfer (higher

LA), which results in better overall performance, indicated by higher ACC. We

also observe that DualNet++ performs marginally better than DualNet in all

cases, suggesting the benefits of the spatial dropout regularization. Lastly, since
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TABLE 5.1: Evaluation metrics on the Split miniImageNet and
CORE50 benchmarks. All methods use an episodic memory of
50 samples per task in the TA setting, and 100 samples per class
in the TF setting. The “Aug" suffix denotes using data augmen-
tation. We highlight the methods with best mean metrics in bold,

and underline the second best methods

Method
Split miniImageNet-TA Split miniImageNet-TF

ACC(↑) FM(↓) LA(↑) ACC(↑) FM(↓) LA(↑)

ER 58.24±0.78 9.22±0.78 65.36±0.71 25.12±0.99 28.56±1.10 49.04±1.56

ER-Aug 59.80±1.51 4.68±1.21 58.94±0.69 27.94±2.44 29.36±3.23 54.02±1.02

DER++ 62.32±0.78 7.00±0.81 67.30±0.57 27.16±1.99 34.56±2.48 59.54±1.53

DER++-Aug 63.48±0.98 4.01±1.21 62.17±0.52 28.26±1.81 36.70±1.85 62.70±0.41

CTN 65.82±0.59 3.02±1.13 67.43±1.37 N/A N/A N/A
CTN-Aug 68.04±1.23 3.94±0.98 69.84±0.78 N/A N/A N/A

DualNet 73.20±0.68 3.86±1.01 74.12±0.12 36.86±1.36 28.63±2.26 63.46±1.97

DualNet++ 74.24±0.95 2.83±0.71 74.11±0.30 37.56±1.12 27.13±1.16 63.96±1.02

Method
CORE50-TA CORE50-TF

ACC(↑) FM(↓) LA(↑) ACC(↑) FM(↓) LA(↑)

ER 41.72±1.30 9.10±0.80 48.18±0.81 21.80±0.70 14.42±1.10 33.94±1.49

ER-Aug 44.16±2.05 5.72±0.02 47.83±1.61 25.34±0.74 15.28±0.63 37.94±0.91

DER++ 46.62±0.46 4.66±0.46 48.32±0.69 22.84±0.84 13.10±0.40 34.50±0.81

DER++-Aug 45.12±0.68 5.02±0.98 47.67±0.08 28.10±0.80 10.43±2.10 36.16±0.19

CTN 54.17±0.85 5.50±1.10 55.32±0.34 N/A N/A N/A
CTN-Aug 53.40±1.37 6.18±1.61 55.40±1.47 N/A N/A N/A

DualNet 57.64±1.36 4.43±0.82 58.86±0.66 38.76±1.52 8.06±0.43 40.00±1.67

DualNet++ 59.07±1.30 2.86±0.92 59.23±1.03 39.42±1.80 7.08±2.25 39.52±1.09

our DualNets have a similar supervised procedure as DER++, this result shows

that the DualNets’ representation learning and fast adaptation mechanism are

beneficial to continual learning.

Ablation Study of the Slow Learner Objectives and Optimizers

We now study the effects of the slow learner’s objective and optimizer on the

final performance of DualNets by considering several objectives to train the
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TABLE 5.2: DualNet’s performance with different slow learner ob-
jectives and optimizers on the Split miniImageNet-TA benchmark

DualNet
SGD Look-ahead

ACC(↑) FM(↓) LA(↑) ACC(↑) FM(↓) LA(↑)

Barlow Twins 64.20±2.37 4.79±1.19 64.83±1.67 73.20±0.68 3.86±1.01 74.12±0.12

SimCLR 71.49±1.01 4.23±0.46 72.64±1.20 72.13±0.44 4.13±0.52 73.09±0.16

SimSiam 70.55±0.98 4.93±1.31 71.90±0.65 71.94±0.64 4.21±0.28 72.93±0.38

BYOL 69.76±2.12 4.23±1.41 70.33±0.87 71.73±0.47 3.96±0.62 72.06±0.28

Classification 68.50±1.67 5.53±1.67 72.93±1.10 70.96±1.08 6.33±0.28 73.92±1.14

DualNet++
SGD Look-ahead

ACC(↑) FM(↓) LA(↑) ACC(↑) FM(↓) LA(↑)

Barlow Twins 69.76±1.43 2.93±0.67 68.96±1.03 74.24±0.95 2.83±0.71 74.11±0.30

SimCLR 71.16±0.72 3.13±1.33 71.96±0.77 72.14±0.81 4.12±0.28 73.33±0.58

SimSiam 69.56±0.11 4.53±0.54 71.66±1.01 71.99±1.33 4.13±0.45 73.01±0.57

BYOL 69.16±1.12 4.24±1.21 69.93±1.46 71.63±1.12 4.96±1.88 72.73±0.77

Classification 69.83±0.36 5.26±0.54 72.20±0.66 70.96±0.52 5.10±0.57 72.96±0.86

slow learner. First, we consider the classification loss to train the slow net, which

reduces DualNet’s representation learning to only supervised learning. Sec-

ond, we consider various contrastive SSL losses, including SimCLR [173], Sim-

Siam [206], and BYOL [177]. In this setting, DualNets’ slow representation

involves a direct optimization of a SSL loss and an indirect classification loss

backpropagated via the fast learner.

We consider the Split miniImageNet-TA and TF benchmark with 50 mem-

ory slots per task and optimize each objective using the SGD and Look-ahead

optimizers. Table 5.2 reports the result of this experiment. In general, we ob-

serve that SSL objectives achieve a better performance than the classification

loss. Moreover, the Look-ahead optimizer consistently improves the perfor-

mances on all objectives compared to the SGD optimizer. This result shows that

the DualNets design is general and can work well with different slow learner’s

objectives. Interestingly, when using the Look-ahead optimizer, we observe a
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correlation between the SSL losses in DualNets with their performances in the

standard SSL scenario [221]. This result suggests that DualNets can take ad-

vantage of future SOTA SSL losses to further improve the performance.

Ablation Study of Self-Supervised Learning Iterations
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FIGURE 5.3: Performance of DualNet and DualNet++ with differ-
ent self-supervised learning iterations n.

We now investigate DualNet’s performances with different SSL optimiza-

tion iterations n. Small values of n indicate there is little to no delay of labeled

data from the continuum, and the fast learner has to query the slow learner’s

representation continuously. On the other hand, larger n simulates the situa-

tions where labeled data is delayed, which allows the slow learner to train its

SSL objective for more iterations between each query from the fast learner. In
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this experiment, we gradually increase the SSL training iterations between each

supervised update by varying from n = 1 to n = 20.

We run the experiments on both the Split miniImageNet benchmarks under

the TA and TF settings. Figure 5.3 reports the result of DualNet and DualNet++

in this scenario. In general, we observe that in all cases, the average accuracy

ACC(↑) increases as more SSL iterations are allowed. The same conclusion also

holds for the FM(↓) and LA(↑) metrics, although there are small fluctuations at

n = 3 and n = 10. Moreover, DualNet++ is more stable than DualNet in this

experiment by having smaller variance across different runs. We can conclude

that both DualNet and DualNet++ are highly scalable with the number of SSL

training iterations. This promising result demonstrates the DualNets’ potential

to be deployed in real-world continual learning scenarios where labeled data is

delayed [132], which allows the slow learner to learn in the background.

Ablation Study of DualNets Components

TABLE 5.3: Evaluation of DualNet’s slow learner on the Split
miniImageNet TA and TF benchmarks

DualNet
Split miniImageNet-TA

ACC(↑) FM(↓) LA(↑)

Slow + Fast Nets 73.20±0.68 3.86±1.01 74.12±0.12

Slow Net 68.33±0.57 5.12±0.78 69.20±0.32

DualNet
Split miniImageNet-TF

ACC(↑) FM(↓) LA(↑)

Slow + Fast Nets 36.86±1.36 28.63±2.26 63.46±1.97

Slow Net 27.30±0.25 34.60±1.12 59.70±1.26

Compared to the standard ER strategy with soft labels [120, 170], DuelNets

introduce an additional fast learner and a representation learning phase. In this
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experiment, we investigate the contribution of the fast learner on the Split mini-

ImageNet benchmark, both the TA and TF settings. We create a variant, Slow

Learner, that uses only a ResNet backbone to optimize both the supervised and

SSL losses. Table 5.3 report the result of this experiment. We can see that the

slow learner variant binds both representation types into the same backbone

and performs significantly worse than the original DualNet in both scenarios.

This result corroborates with our motivation in Section 5.1 that it is more bene-

ficial to separate the two representations into two distinct systems.

Semi-Supervised Continual Learning Setting

TABLE 5.4: Evaluation metrics on the Split miniImageNet-TA
benchmarks under the semi-supervised setting, where ρ denotes

the fraction of data that is labeled

Method
ρ = 10%

ACC(↑) FM(↓) LA(↑)

ER 41.66±2.72 6.80±2.07 42.33±1.51

DER++ 44.56±1.41 4.55±0.66 43.03±0.71

CTN 49.80±2.66 3.96±1.16 47.76±0.99

DualNet 54.03±2.88 3.46±1.17 49.96±0.17

DualNet++ 58.03±0.99 2.16±0.59 53.56±0.11

Method
ρ = 25%

ACC(↑) FM(↓) LA(↑)

ER 50.13±2.19 6.76±1.51 51.90±2.16

DER++ 51.63±1.11 6.03±1.46 52.36±0.55

CTN 55.90±0.86 3.84±0.32 55.69±0.98

DualNet 62.80±2.40 3.13±0.99 59.60±1.87

DualNet++ 63.96±1.22 2.20±0.32 60.66±1.02

In real-world continual learning scenarios, there exist abundant unlabeled

data, which are costly and even unnecessary to label entirely. Therefore, a
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practical continual learning system should be able to improve its representa-

tion using unlabeled samples while waiting for the labeled data. To test the

performance of existing methods in such scenarios, we create a semi-supervised

continual learning benchmark, where the data stream contains both labeled and

unlabeled data. For this, we consider the Split miniImageNet-TA benchmark

but provide labels randomly to a fraction (ρ) of the total samples, which we set

to be ρ = 10% and ρ = 25%. The remaining samples are unlabeled and cannot

be processed by the baselines we have considered so far. In contrast, such sam-

ples can go directly to the DualNet’s slow learner to improve its representation

while the fast learner stays inactive. Other configurations remain the same as

the experiment in Section 5.4.1.

Table 5.4 shows the results of this experiment. Under the limited labeled

data regimes, the results of ER and DER++ drop significantly. Meanwhile, CTN

can still maintain competitive performances thanks to additional information

from the task identifiers, which remains untouched. On the other hand, both

DualNet and DualNet++ can efficiently leverage the unlabeled data to improve

its performance and outperform other baselines, even CTN. We also observe

larger gaps between DualNet++ and DualNet, especially with ρ = 10%, com-

pared to the fully supervised scenario. This gap is attributed to the dropout

layers in DualNet++, which improve the fast learner’s ability to use the slow

features and to better perform supervised learning. Overall, the result demon-

strates DualNets potential to work in a real-world environment, where data is

partially labeled.

DualNet’s Upper Bound

In our work, there are three factors affecting the DualNets’ upper bound: (i)

model architecture: slow net (standard backbone) versus fast and slow nets
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TABLE 5.5: Performance of the Offline model under different con-
figuration on the Split miniImageNet-TA benchmark, * denotes

the method is trained in the continual learning setting

Architecture Method Loss Data Aug ACC

Fast+Slow nets

DualNet* SL+SSL Yes 73.20±0.68

Offline SL No 75.83±1.07

Offline SL Yes 77.63±0.48

Offline SL+SSL Yes 77.98±0.16

Slow net
Offline SL No 71.15±2.95

Offline SL Yes 75.46±0.97

(DualNets); (ii) training loss: supervised learning loss (SL) or supervised and

self-supervised learning losses (SL+SSL); and (iii) data augmentation. As a re-

sult, we believe that an upper bound of DualNet is a model having all three fac-

tors as DualNet (has fast and slow learners, optimized both SL and SSL losses

with data augmentation) and is trained offline. The offline model has access to

all tasks’ data to simultaneously optimizes both the SL and SSL losses, which

are backpropagated through both learners. Here we consider the offline model

trained up to five epochs.

We explore different combinations of the aforementioned factors to train an

Offline model on the Split miniImageNet-TA benchmark and report the result

in Table 5.5. Note that the configuration of Slow Net + Offline + SL + no data

augmentation is the previous result reported in [214]. Our argued upper bound

for DualNet has the following configuration: Fast + Slow nets + Offline + SL

+ SSL + data augmentation. The result confirms the upper bound of DualNet.

Moreover, in the offline training with all data, the SSL only contributes a minor

improvement to the SL. However, in continual learning, SSL is more beneficial

because its representation does not depend on the class label, and therefore

more resistant to catastrophic forgetting when old task data is limited.
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TABLE 5.6: Details of the CTrL benchmark streams built from
five common datasets: CIFAR-10 [28], MNIST [19], DTD [43], F-

MNIST (Fashion MNIST) [87], and SVHN [33]

Stream Configuration T1 T2 T3 T4 T5 T6

S+
Dataset CIFAR-10 MNIST DTD F-MNIST SVHN CIFAR-10
# Train samples 4000 400 400 400 400 400
# Val. samples 2000 200 200 200 200 200

S−
Dataset CIFAR-10 MNIST DTD F-MNIST SVHN CIFAR-10
# Train samples 400 400 400 400 400 4000
# Val. samples 200 200 200 200 200 2000

Sin
Dataset R-MNIST CIFAR-10 DTD F-MNIST SVHN R-MNIST
# Train samples 4000 400 400 400 400 50
# Val. samples 2000 200 200 200 200 30

Sout
Dataset CIFAR-10 MNIST DTD F-MNIST SVHN CIFAR-10
# Train samples 4000 400 400 400 400 400
# Val. samples 2000 200 200 200 200 200

Spl
Dataset MNIST DTDd F-MNIST SVHN CIFAR-10 -
# Train samples 400 400 400 400 4000 -
# Val. samples 200 200 200 200 2000 -

5.4.2 Batch Continual Learning Experiments

We now consider the Batch Continual Learning setting [76], where all data sam-

ples of a task arrive at each continual learning step. As a result, the model is

allowed to train on these samples for multiple epochs before moving on to the

next task. Thus, most methods do not suffer from the difficulties of training

deep neural networks online and focus only on preventing catastrophic forget-

ting [170].

Setups

The CTrL Benchmark In the batch learning setting, we focus on exploring Du-

alNet’s ability to facilitate knowledge transfer in complex continual learning

scenarios. To this end, we consider the CTrL benchmark [199], which was care-

fully designed to access the model’s ability to selectively transfer knowledge
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while avoiding catastrophic forgetting. Before introducing the CTrL streams,

we briefly summarize the concept of related tasks used in CTrL.

We denote a continual learning task as T . Then, CTrL introduces four vari-

ants of T as: (1) T −: a task whose data is sampled from the same distribution

as T but has a much smaller number of training samples; (2) T + is similar to

T − but has much more training samples than T ; (3) T ′ is similar to T but has a

different input distribution, i.e., different background colors; and (4) T ′′ is sim-

ilar to T but has a different output distribution, i.e., the label order is randomly

permuted. In addition, there are no relationships between two tasks that have

different subscripts. With this notation, the CTrL benchmarks introduce five

continual learning streams to evaluate five basic knowledge transfer abilities

comprehensively.

In the S− = {T +
1 , T2, T3, T4, T5, T −1 } stream, the last task is similar to the first

one but it has much smaller training samples. Therefore, successful methods

must remember and transfer the knowledge after learning four unrelated tasks.

In the S+ = {T −1 , T2, T3, T4, T5, T +
1 } stream, the first task is similar but has

much smaller data than the last one, which requires the model to remember

and update the knowledge after learning irrelevant tasks.

The S in = {T1, T2, T3, T4, T5, T ′1} and Sout = {T ,1T2, T3, T4, T5, T ′′1 } streams re-

quire the model to learn representations that are useful to either input or output

distribution shifts.

Lastly, the Spl = {T1, T2, T3, T4, T5} stream test the model’s ability to learn

unrelated tasks with the potential interference from unrelated features. Ta-

ble 5.6 provides the details of each stream in the CTrL benchmark. Interest-

ingly, the S−,S+,S in and Sout streams contain one unrelated task from the DTD

dataset [43], which has very different visual features from the remaining tasks

(see Table 5.6). Therefore, we believe the CTrL benchmark can access DualNets’
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ability to selective transfer useful knowledge under the presence of negative

transfer.

Baselines Existing works have shown that standard static architecture meth-

ods struggle to solve the CTrL benchmark while dynamic architecture approaches

show more promising results [199, 213] thanks to their ability to compartmen-

talize knowledge into modules. We follow the experimental setting in [213]

and compare DualNets with a suite of competitive baselines. First, we consider

static architecture approaches of EWC [76] and O-EWC [104] (online EWC),

which use a quadratic regularizer to penalize changes to important parameters

of previous tasks according to the Fisher information. The original EWC [76]

maintains an estimate of the Fisher information matrix for each task, while O-

EWC maintains a moving average of the parameters importance. Next, we

include experience replay ER, dark experience replay DER++, and the naive

Finetune strategy that trains a single model without any continual learning

strategies. We also consider the task-free and task-aware variants of these base-

lines.

Second, we consider a suite of dynamic architecture approaches. The In-

dependent [80] baseline trains a separate model for each task. HAT [117] pro-

poses to learn hard attention masks to gate the backbone network, which pre-

vents catastrophic forgetting. SG-F [189] proposes a task-specific structural

network that learns to update existing modules, combine modules, and add

new modules. MNTDP [199] organizes the backbone network into modules

and efficiently searches the path configuration to connect the modules to solve

a given task. Lastly, LMC [213], a recent dynamic architecture method that

proposes to equip each module with a local structural component to predict its
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relevance for a given input, which does not require task identifier at test time 1

and provide a more systematic strategy to expand and search the layout over

modules. Although these methods are not task-free, [213] found that using a

shared classifier might be helpful for the CTrL benchmark. Thus, we also con-

sidered, within the task-aware category, a shared-head variant of these base-

lines, denoted by the (H) suffix. The task-identifiers are only used for selecting

the subnetworks in the backbone network.

Training We follow the training procedure provided in [213] for a fair com-

parison. Particularly, for each task, we train each method over 100 epochs using

the Adam optimizer [52]. We use a weak data augmentation of random flipping

and random cropping for both the supervised learning phase of all methods

and the self-supervised learning phase of DualNet. Furthermore, since Dual-

Nets are allowed to train for 100 epochs, it is sufficient to use the standard SGD

to optimize the SSL loss. Our preliminary experiments show that in this setting,

the Look-ahead and SGD optimizers achieve the same results. Therefore, we

train DualNets’ supervised and SSL losses using the standard SGD optimizer.

Regarding the model complexity, we anchor on the final model of LMC, the

state-of-the-art method on this benchmark, to calculate the total parameters

used. Then, we select the replay buffer size of each method so that their total

parameters 2 equals to LMC. We repeat each experiment five times and report

the average ACC(↑) and BWT(↑) at the end of learning.

Evaluation Metrics on CTrL

Table 5.7 reports the evaluation metrics at the end of training on the CTrL

benchmarks. We organize the results into two blocks: (i) task-aware setting that

1LMC still requires task identifiers during training, which we consider as a task-aware
method.

2total parameters = model parameters + memory parameters in floating point numbers.
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TABLE 5.7: Evaluation metrics on the CTrL benchmark, we re-
port the average accuracy ACC(↑) and backward transfer BWT(↑)
at the end of training. We organize the methods into task-free
(first block) and task-aware (last-block). Task-aware variants are
denoted with the (A) suffix, (H) suffix denotes the shared-head
variant, ∗ denotes methods that use more parameters. We high-
light the methods with best mean metrics in bold, and underline

the second best methods

Method S− S+ Sin Sout Spl

ACC(↑) BWT(↑) ACC(↑) BWT(↑) ACC(↑) BWT(↑) ACC(↑) BWT(↑) ACC(↑) BWT(↑)

Task-free

Finetune 47.5± 1.5 -14.9±1.4 31.4±3.7 -29.3±3.8 39.7±5.0 -23.9±5.7 45.4±4.0 -15.5±3.7 29.1±3.1 -29.2±3.2

Finetune-L 52.1±1.4 -15.7±1.7 38.2±3.2 -25.08±3.3 49.3±2.0 -18.4±2.0 49.3±2.1 -18.4±2.0 37.1±2.1 -26.0±2.2

EWC 62.7±0.7 -3.6±0.9 53.4±1.8 -2.3±0.4 56.3±2.5 -9.1±3.3 62.5±0.9 -3.6±0.9 52.3±1.4 -5.7±1.3

O-EWC 62.0±0.7 -3.2±0.7 54.6±0.7 -1.3±1.0 54.2±3.1 -10.8±3.1 62.4±0.4 -3.0±0.9 52.3±1.4 -5.7±1.3

ER 61.5±0.5 -3.1±1.2 59.9±0.5 0.2±0.9 50.0±1.4 -12.6±0.2 51.0±0.5 -6.3±1.2 54.6±2.2 -5.7±2.3

DER++ 63.0±0.7 -2.6±0.4 59.9±0.9 0.1±0.9 55.8±2.6 -10.5±1.9 55.4±0.6 -0.9±0.4 58.1±1.7 -3.3±0.6

DualNet 65.5±0.6 -1.8±0.4 61.1±0.7 1.3±0.6 59.1±0.5 -6.8±0.5 55.7±0.4 -0.7±0.6 58.9±2.2 -1.8±0.1

DualNet++ 68.7±0.7 -0.1±0.1 62.9±0.8 2.9±1.4 61.6±1.1 -5.1±0.6 57.3±0.9 -0.6±0.3 59.7±1.2 0.2±0.4

Task-aware

Independent∗ 62.7±0.9 0.0 63.2±0.8 0.0 63.1±0.7 0.0 63.1±0.7 0.0 63.9±0.5 0.0

HAT(A) 63.7±0.7 -1.3±0.6 61.4±0.5 -0.2±0.2 50.1±0.8 0.0±0.1 61.9±1.3 -3.2±1.3 61.2±0.7 -0.1±0.2

SG-F(A) 63.6±1.5 0.0 61.5±0.6 0.0 65.5±1.8 0.0 64.1±0.0 0.0 62.0±1.3 0.0
SG-F(A) 29.5±3.5 -35.3±4.0 20.4±4.4 -39.3±6.7 24.4±5.6 -38.7±4.0 30.5±4.5 -34.0±5.5 19.4±1.0 -41.8±1.6

LMC(A) 66.6±1.5 -0.0±0.1 60.1±2.7 -1.4±2.4 69.5±1.0 0.0±0.1 66.7±2.2 -0.1±0.1 61.6±4.8 -3.5±3.1

MNTDP(A,H) 66.3±0.8 0.0 62.6±0.8 0.0 63.1±0.7 0.0 63.1±0.7 0.0 63.9±0.5 0.0
MNTDP(A) 41.9±2.5 -2.8±0.6 43.2±1.3 -10.8±2.0 32.7±13.6 -15.2±13.2 37.9±2.7 -5.8±3.5 35.1±3.6 -16.4±4.6

LMC(A,H) 67.2±1.5 -0.5±0.4 62.2±4.5 2.3±1.6 68.5±1.7 -0.1±0.1 55.1±3.4 -7.4±4.0 63.5±1.9 -1.0±1.5

LMC(A) 64.9±1.9 -0.2±0.2 55.8±2.5 -0.3±1.2 67.6±2.7 -0.8±1.0 54.2±3.6 -2.9±2.0 53.8±5.7 3.1±5.5

ER(A,H) 62.9±0.4 -0.7±1.1 55.9±1.2 1.7±0.9 54.8±3.2 -4.2±3.7 47.6±1.5 -7.6±1.6 55.6±1.3 -1.2±1.5

DER++(A) 65.3±0.5 0.2±0.7 60.2±1.4 0.9±0.5 59.0±3.8 -3.8±2.0 64.7±1.4 0.4±0.2 58.5±1.2 0.0±1.7

DualNet(A) 68.1±0.7 0.2±0.4 62.2±1.0 4.6±1.3 63.8±1.6 -3.4±0.8 67.3±0.7 0.7±1.5 59.6±0.9 -1.2±0.1

DualNet++(A) 69.6±1.1 1.3±0.8 63.3±0.9 4.3±0.5 64.1±2.2 -3.4±1.1 68.1±0.5 0.7±1.8 62.2±0.6 0.1±1.1

provides task identifiers during both training and evaluation; and (ii) task-free

setting where task-identifier are not provided during evaluation. In general,

the results show that dynamic architecture methods, especially recent works

such as the shared-head variants of MNTDP [199] and LMC [213], can per-

form competitively on this benchmark and outperforms the static architecture

approaches. Among task-free methods, we observe that DualNet and Dual-

Net++ outperform all the baselines considered with only one exception in the
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Soutstream where they were outperformed by EWC and O-EWC. Moreover, in

most cases, DualNet++ achieves improvements on ACC(↑) and BWT(↑) over

DualNet, indicating the benefits of its spatial dropout layers in preventing neg-

ative transfer in continual learning. In the task-aware setting, we observe many

competitive baselines with high performance. Notably, most baselines in this

category are dynamic architecture approaches, which have long been dominat-

ing the CTrL benchmark. Nevertheless, DualNet++ can perform favorably and

achieve top-2 performances in several streams. To the best of our knowledge,

this is the first result showing a static architecture method consistently perform-

ing comparable with the dynamic architecture ones on the CTrL benchmarks.

Lastly, we highlight that, despite the strong results, dynamic architecture meth-

ods in the Task-aware category exhibit high variance on different runs, which

arises from them training larger models on a small amount of samples. On

the other hand, DualNets perform consistently and have small variance in all

cases.

TABLE 5.8: Transfer results on the CTrL benchmark. We report the
accuracy of the first and last task of each stream. We also report
∆, the difference between the last task accuracy from the model
compared to the reference Independent model. We highlight the
methods with best mean metrics in bold, and underline the sec-

ond best methods

Method S− S+ Sin Sout

ACC T1 ACC T6 ∆ ACC T1 ACC T6 Delta ACC T1 ACC T6 ∆ ACC T1 ACC T6 ∆

Independent 65.5±0.7 41.8±1.0 0 41.3±2.9 65.6±0.5 0 98.5±0.2 76.9±4.9 0 65.9±0.6 43.5±1.6 0
MNTDP(A) 63.0±3.6 56.9±5.1 15.1 43.2±0.7 65.9±0.8 0.3 98.9±0.1 93.3±1.6 16.4 65.0±1.2 57.7±1.7 14.2
LMC 65.2±0.4 60.0±1.1 18.2 42.9±0.9 60.6±1.9 -4.7 98.7±0.1 92.5±7.6 15.6 65.2±0.2 59.8±1.1 16.3
LMC(A,H) 62.2±0.4 63.0±1.7 21.2 43.1±0.6 62.2±0.7 -3.4 98.7±0.1 88.3±1.6 11.4 65.5±0.6 42.0±21.9 -1.5
SG-F(A) 64.9±0.4 49.1±7.3 7.3 43.1±0.4 61.7±1.7 -3.9 98.8±0.1 80.4±6.8 3.5 65.0±0.4 51.5±6.5 8
DER++(A) 68.5±1.5 69.9±0.8 28.1 36.7±2.4 58.8±1.7 -6.8 98.1±0.2 93.4±2.3 16.5 67.4±2.3 66.9±2.0 23.4

DualNet(A) 71.8±0.8 71.9±0.8 27.2 41.2±0.4 64.5±0.8 -1.1 98.9±0.1 94.8±2.4 17.9 69.6±1.8 68.4±1.7 24.9
DualNet++(A) 72.6±0.9 72.8±0.6 31.0 40.0±0.1 64.8±0.8 -0.8 98.9±0.1 94.8±1.5 17.9 71.0±1.4 71.4±1.2 27.9
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TABLE 5.9: DualNet++ with different dropout ratio p on the
CTrL benchmark using the task-aware evaluation. With the ra-
tio p = 0.0, DualNet++ reduces to the standard DualNet. Best

mean results are highlighted in bold

DualNet++(A) S− S+ Sin Sout Spl

ACC(↑) BWT(↑) ACC(↑) BWT(↑) ACC(↑) BWT(↑) ACC(↑) BWT(↑) ACC(↑) BWT(↑)

p = 0.0 68.1±0.7 0.2±0.4 62.2±1.0 4.6±1.3 63.8±1.6 -3.4±0.8 67.3±0.7 0.7±1.5 58.6±0.9 -1.2±0.1

p = 0.1 68.8±0.8 0.7±0.3 61.6±1.1 1.3±0.7 63.6±2.0 4.7±0.6 69.1±1.4 1.4±0.6 61.5±1.8 1.4±0.6

p = 0.2 69.6±1.1 1.3±0.8 63.3±0.9 4.3±0.5 64.1±2.2 -3.4±1.1 68.1±0.5 0.7±1.8 62.2±0.6 0.1±1.1

p = 0.3 66.8±1.2 -1.0±0.7 61.2±0.6 3.5±0.2 63.5±1.6 -2.6±0.7 67.6±0.8 0.4±0.5 61.3±1.4 0.6±0.5

p = 0.5 67.1±0.6 -0.7±1.1 60.7±1.0 3.6±0.3 63.2±0.2 -1.8±1.1 67.2±1.2 -0.2±0.7 61.2±0.9 0.7±0.1

Transfer Results on CTrL

We now take a closer look at the transferring capabilities of different methods

on the CTrL benchmark. Recall that in the S−, S+, S in, Soutstreams, only the

first and last tasks are closely related, while the intermediate ones are distrac-

tors. Therefore, the ACC(↑) metric alone might not be sufficient to evaluate the

model’s ability to transfer because it also measures the performance of unre-

lated tasks. Thus, in these streams, it is helpful to look at the accuracy of the

first and last task explicitly [213], and compare them with a reference model,

Independent, that trains a separate model for each task. We report the results

of this experiment in Table 5.8. We can see that except for the S+stream, both

DualNet and DualNet++ achieve significantly better accuracy on the last task

and have a higher differences (∆) compared to the reference model. On the

S+stream, we observe that DualNets are marginally worse than a few base-

lines, suggesting that remembering and continuing to learn from a limited rep-

resentation is challenging for DualNets. This phenomenon is easy to under-

stand since learning good representations from limited data with distractors is

a challenging problem. Overall, the results suggest that DualNets can remem-

ber long-term knowledge in several cases and learn robust representations to

distribution shifts, which facilitates successful continual learning in complex
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scenarios. Moreover, retaining and continuing learning from limited experi-

ences (the S+stream) presents a promising future research direction.

Robustness to The Dropout Ratio

In literature, the dropout ratio for fully connected layers are commonly set as

p = 0.5 while this value is set to lower values, e.g. p = 0.1 or p = 0.15, for

convolutional layers [55]. We now investigate how this hyper-parameter af-

fects DualNet++ performance. We consider the CTrL benchmark and report

DualNet++(A) with different dropout ratios in Table 5.9.

It is worth noting that by removing the dropout layer (setting p = 0.0),

DualNet++ reduces to DualNet. The results show that DualNet++ is robust to

and beneficial from the small dropout ratios. Specifically, DualNet++ achieves

similar performances when p = 0.1 and p = 0.2, and both can outperform

the standard DualNet (p = 0.0). When using larger dropout ratio, e.g. p =

0.3 and p = 0.5, we observe a performance drop on all streams in the CTrL

benchmark, which is consistent with the conventional usage of dropout layers

in convolutional networks.

5.4.3 Summary of Results

We now provide a summary of the experimental results.

We have conducted experiments on various continual learning settings and

examined different scenarios, ranging from the traditional settings to the com-

plex scenarios of semi-supervised learning or complex transfer scenarios. In

most cases, DualNet and DualNet++ outperform the baselines, often quite sig-

nificantly. There is an exception of the S+and S instreams where the model

needs to learn from limited data with different input distributions, which presents
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an interesting future work. We also found DualNets to be robust to the choice

of SSL loss, an benefited from the LA optimizer and more SSL training iter-

ations in the online continual learning setting. Between DualNet and Dual-

Net++, DualNet++ achieves similar performances to DualNet in the controlled

environment where labeled data is plentiful. On the other hand, DualNet++ of-

fers significant improvements in scenarios where labeled data is limited (semi-

supervised setting) or there exists negative knowledge transfer from unrelated

tasks or distribution shifts (CTrL benchmark).

5.5 Conclusion

Inspired by the Complementary Learning System theory, we propose a novel

fast-and-slow learning framework for continual learning and conceptualize it

into the DualNets paradigm. DualNets (DualNet and DualNet++) comprise

two key learning components: (i) a slow learner that focuses on learning a gen-

eral and task-agnostic representation using the memory data; and (ii) a fast

learner focuses on capturing new supervised learning knowledge via a novel

adaptation mechanism. Moreover, the fast and slow learners complement each

other while working synchronously, resulting in a holistic continual learning

method. Our experiments on challenging benchmarks demonstrate the effi-

cacy of DualNets. Lastly, extensive and carefully designed ablation studies

show that DualNets are robust the hyper-parameter configurations, scalable

with more resources, and can work well in several challenging continual learn-

ing scenarios.

Limitations and Future Work Because the DualNet’s slow learner can al-

ways be trained in the background, it incurs computational costs that need to be

properly managed. For large-scale systems, such additional computations can
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increase infrastructural costs substantially. Therefore, it is important to man-

age the slow learner to balance between performance and computational over-

heads. In addition, implementing DualNet to specific applications requires ad-

ditional considerations to address its inherent challenges. For example, medical

image analysis applications may require paying attention to specific regions in

the image or considering the data imbalance. However, since we demonstrate

the efficacy of DualNet in general settings, such properties are not considered.

In practice, it would be more beneficial to capture such domain-specific infor-

mation to achieve better results. For general applications of DualNet, we also

expect that a more suitable objective to train the slow learner can further im-

prove the results. Lastly, through extensive experiments, we identified the sce-

nario of S inand S+, continual learning from limited data under distribution

shifts, to be challenging for DualNets. This suggests a promising future re-

search direction to develop a better, more robust representation learning from

limited training samples and can be robust to distribution shifts.

5.6 Implementing DualNets

We provide the pseudo-code of DualNets in Algorithm 3.
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Algorithm 3: Psuedo-code to train DualNets.
1 Algorithm TrainDualNet(θ,φ,Dtr1:T)

Require: slow learner φ, fast learner θ, episodic memoryM, inner
updates N , Look-ahead inner updates K (for Look-ahead)

Init: θ,φ,M← ∅
2 for t← 1 to T do
3 for j ← 1 to nbatches do // Receive the dataset Dtr

t sequentially
4 Receive a mini batch of data Bj from Dtrt
5 M←MemoryUpdate(M,Bj) // Update the episodic

memory
6 for i← 1 to∞ do // Train the slow learner synchronously
7 Train the slow learner using the Look-ahead

procedure

8 for n← 1 to N do // Train the fast learner synchronously
9 Mn ← Sample(M)

10 Bn ←Mn ∪ Bj
11 SGD update the slow learner: φ← φ−∇φLtr(Bn)
12 SGD update the fast learner θ ← θ −∇θLtr(Bn)

13 Mem
t ←Mem

t ∪ {π(ŷ/τ)}
14 return θ,φ

1 Procedure Look-ahead(φ,M)
2 φ̃0 ← φ
3 for k ← 1 to K − 1 do
4 Mk ← Sample(M) ∪Bj
5 Obtains two views ofMk : MA

k ,M
B
k

6 Calculate the Barlow Twins loss: LBT (φ̃k,M
A
k ,M

B
k )

7 SGD update the slow learner: φ̃k+1 ← φk − ε∇φk
LBT

8 Look-ahead update the slow learner: φ← φ+ β(φ̃K − φ)
9 return φ
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Chapter 6

Learning Fast and Slow for Online

Time Series Forecasting

In Chapter 4 and 5, we demonstrated the fast-and-slow learning framework

for continual learning. Despite encouraging results, previous experiments are

mostly conducted on benchmarks derived from standard datasets for batch

training. This common practice results in a gap between continual learning

researches and how continual learning can actually be applied in other disci-

plines. To address this limitation, this Chapter investigates a radical approach

to online time series forecasting from a continual learning and the CLS theory

perspectives. Particularly, we aim to address two important challenges of fast

adaptation to concept drifts and facilitate learning of recurring concepts in time

series as a continual learning problem. Further improving upon the fast-and-

slow learning discussed so far in this dissertation, we propose FSNet as a novel

method to effectively forecast time series on the fly. Extensive experiments on

real and synthetic datasets suggested that FSNet can quickly learn (require less

samples) new concepts on data streams, remember and recall recurring pat-

terns to facilitate their learning in the future.
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6.1 Introduction

Time series forecasting plays an important role in both research and industries.

Correctly forecast time series can greatly benefit various business sectors such

as traffic management and electricity consumption [105]. As a result, tremen-

dous efforts have been devoted to develop better forecasting models [195, 202,

216], with a recent success on deep neural networks [141, 218, 220, 222] thanks

to their impressive capabilities to discover hierarchical latent representations

and complex dependencies. However, such studies focus on the batch learning

setting which requires the whole training dataset to be made available a priori

and implies the relationship between the input and outputs remains static over

time. This assumption is restrictive in real-world applications such as finance,

where data arrives in a stream and the input-output relationship can change

quickly [44]. In such cases, re-training the model from scratch could be time

consuming. Therefore, it is desirable to train the forecaster online [38, 63] using

only new samples to capture the changing dynamic in the environment.

As we have discussed so far in this dissertation, training deep neural net-

works on data streams remains challenging for two reasons. First, naively train

deep neural networks on data streams converges slowly [115, 125] because the

offline training benefits such as mini-batches or training for multiple epochs

are not available. Moreover, when a distribution shift happens [44], such cum-

bersome models would require many more training samples to be able to learn

such new concepts. Second, time series data often exhibits recurrent patterns

where one pattern could become inactive and re-emerge in the future. Since

deep networks suffer from the catastrophic forgetting phenomenon [8], they

cannot retain prior knowledge and result in inefficient learning of recurring
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patterns, which further hinders the overall performance. In many time se-

ries forecasting applications, the distributions often evolve (change) over time,

which makes the previous models outdated and requires us to provide new

models with meaningful forecasts in a timely manner. Therefore, deep neural

networks, although possess strong representation learning capabilities, lack a

mechanism to facilitate successful learning on online time series data.

To address the above limitations, we innovatively formulate online time se-

ries forecasting as an online, task-free continual learning problem [125, 126]. Par-

ticularly, continual learning requires balancing two objectives: (i) utilizing past

knowledge to facilitate fast learning of current patterns; and (ii) maintaining

and updating the already acquired knowledge. These two objectives closely

match the aforementioned challenges and are usually referred to as the stability-

plasticity dilemma [4]. With this connection, we develop an effective online time

series forecasting framework motivated by the Complementary Learning Systems

(CLS) theory [14, 62], a neuroscience framework for human continual learning.

Specifically, the CLS theory suggests that humans can continually learn thanks

to the interactions between the hippocampus and the neocortex, which supports

the consolidation, recall, and update such experiences to form a more general

representation, which supports generalization to new experiences.

This Chapter develops FSNet (Fast-and-Slow learning Network) to enhance

the sample efficiency of deep networks when learning with time series data

streams, especially when dealing with distribution shifts or recurring concepts.

FSNet’s key idea for fast learning is that it does not explicitly detect distribution

shifts but instead always improving the learning of current samples. To do so,

FSNet employs a per-layer adapter to model the temporal consistency in time

series and adjust each intermediate layer to learn better, which in turn improve

the learning of the whole deep network. In addition, FSNet further employs an
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associative memory [75] to store important, recurring patterns observed during

training. When encountering repeating events, the adapter interacts with its

memory to retrieve and update the previous actions to facilitate fast learning of

such patterns. Consequently, the adapter can model the temporal smoothness

in time series to facilitate learning while its interactions with the associative

memory allows each layer to remember and quickly improve the learning of

recurring patterns.

In summary, our work makes the following contributions. First, we innova-

tively formulate learning fast in online time series forecasting with deep models

as a continual learning problem. Second, motivated by the CLS theory for con-

tinual learning, we propose a fast-and-slow learning paradigm of FSNet to han-

dle both the fast changing and long-term knowledge in time series. Lastly, we

conduct extensive experiments with both real and synthetic datasets to demon-

strate FSNet’s efficacy and robustness.

6.2 Proposed Framework

This Section summarizes the background of time series forecasting and presents

our FSNet framework.

6.2.1 Time Series Forecasting Settings

Let X = (x1, . . . ,xT ) ∈ RT×n be a time series of T observations, each has n di-

mensions. The goal of time series forecasting is that given a look-back window

of length e, ending at time i: Xi,e = (xi−e+1, . . . ,xi), predict the next H steps of

the time series as fω(Xi,H) = (xi+1, . . . ,xi+H), where ω denotes the parameter of

the forecasting model. We refer to a pair of look-back and forecast windows as a

sample. For multiple-step forecasting (H > 1) we follow the standard approach
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of employing a linear regressor to forecast all H steps in the horizon simulta-

neously [222]. Particularly, the linear regressor is a mapping Rd → Rn×H that

maps a d−dimensional feature vector (i.e. output from the penultimate layer

of a deep neural network) to the values of all dimensions in the time series H

steps in the future.

Online Time Series Forecasting Online time series forecasting is ubiq-

uitous is many real-world scenarios [38, 63, 102, 127] due to the sequential

nature of data. In this setting, there is no separation of training and evalua-

tion. Instead, learning occurs over a sequence of rounds. At each round, the

model receives a look-back window and predicts the forecast window. Then,

the true answer is revealed to improve the model’s predictions of the incom-

ing rounds [135]. The model is commonly evaluated by its accumulated er-

rors throughout learning [115]. Due to its challenging nature, online time se-

ries forecasting exhibits several challenging sub-problems, ranging from learn-

ing under concept drifts [44], to dealing with missing values because of the

irregularly-sampled data [186, 211]. In this work, we focus on the problem of

fast learning (in terms of sample efficiency) under concept drifts by improving

the deep network’s architecture and recalling relevant past knowledge.

There is also a rich literature of Bayesian continual learning to address re-

gression problems [24, 140, 211]. However, such formulation follow the Bayesian

framework, which allows for forgetting of past knowledge and does not have

an explicit mechanism for fast learning [104, 107]. Moreover, such methods

were not developed with deep neural networks and it is non-trivial to extend

such methods to the setting of our study.
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FIGURE 6.1: An overview of FSNet. a) A standard TCN back-
bone (green-shared) of L dilated convolution stacks (-shaded). b)
A stack of convolution filters (yellow-shaded). c) Each convolu-
tion filter in FSNet is equipped with an adapter and and associa-
tive memory to facilitate fast adaptation to both old and new pat-
terns by monitoring the backbone’s gradient EMA. Best viewed in

colors.

6.2.2 Online Time Series Forecasting as a Continual Learning

Problem

Our formulation is motivated by the locally stationary stochastic processes ob-

servation, where a time series can be split into a sequence of stationary seg-

ments [37, 34, 58]. Since the same underlying process generates samples from a

stationary segment, we refer to forecasting each stationary segment as a learn-

ing task for continual learning. We note that this formulation is general and

encompasses existing learning paradigms. For example, splitting into only one

segment indicates no concept drifts, and learning reduces to online learning in

stationary environments [135]. Online continual learning [125] corresponds to

the case of there are at least two segments. Moreover, we also do not assume

that the time points of task switch are given to the model, which is a common

setting in many continual learning studies [76, 80]. Manually obtaining such
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information in real-world time series can be expensive because of the missing

or irregularly sampled data [186, 210]. Therefore, while we assume that the

data comprises several tasks, the task-changing points are not provided by the

environment, which corresponds to the online, task-free continual learning for-

mulation [125, 126, 181, 205].

We now discuss the differences between our formulation with existing stud-

ies. First, most existing task-free continual learning frameworks [126, 215] are

developed for image data, which vastly differs from time series. The input and

label spaces of images are different (continuous vs discrete) while time series’

input and output share the same real-valued space. Additionally, the image’s

label changes significantly across tasks while time series data changes gradu-

ally over time with no clear boundary. Moreover, time series exhibits strong

temporal information among consecutive samples, which does not exist in im-

age data. Therefore, it is non-trivial to simply apply existing continual learn-

ing methods to time series and successful solutions requires carefully handling

unique characteristics from time series data.

Second, time series evolves and old patterns may not reappear exactly in

the future. Thus, we are not interested in remembering old patterns precisely

but predicting how they will evolve. For example, we do not need to predict the

electricity consumption over the last winter. But it is more important to predict the

electricity consumption this winter, assuming that it is likely to have a similar pattern

as the last one. Therefore, we do not need a separate test set for evaluation, but

training follows the online learning setting where a model is evaluated by its

accumulated errors throughout learning.
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6.2.3 Fast and Slow Learning Networks (FSNet)

FSNet always leverages past knowledge to improve the learning in the fu-

ture (Section 6.2.3), which is akin to facilitating forward transfer in continual

learning [80]. Additionally, FSNet remembers repeating events and continue

to learn them when they reappear (Section 6.2.3, which is akin to preventing

catastrophic forgetting [76].

We consider Temporal Convolutional Network (TCN) [93] as the backbone

deep neural network to extract a time series feature representation due to the

simple forward architecture and promising results [220]. The backbone has L

layer with parameters θ = {θl}Ll=1. FSNet improves the TCN backbone with two

complementary components: a per-layer adapter φl and a per-layer associative

memory Ml. Thus, the total trainable parameters is ω = {θl,φl}Ll=1 and the

total associative memory isM = {Ml}Ll=1. We also use hl and h̃l to denote the

original feature and adapter feature map of the l−layer. Figure 6.1 provides an

illustration of FSNet.

Fast-adaptation Mechanism

The key observation allowing for a fast learning is to facilitate the learning of

each intermediate layer via the following observation: the partial derivative∇θl`

characterizes the contribution of layer θl to the forecasting loss `. Traditional train-

ing schemes simply move the parameters along this gradient direction, which

results in ineffective online learning [115, 152]. Moreover, time series data ex-

hibits strong temporal consistency across consecutive samples, which is not

captured by existing training frameworks. Putting these observations together,

we argue that an exponential moving average (EMA) of the partial derivative

can provide meaningful information about the temporal smoothness in time
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series. Consequently, leveraging this knowledge can improve the learning of

each layer, which in turn improves the whole network’s performance.

To utilize the gradient EMA, we propose to treat it as a context to support

fast learning via the feature-wise transformation framework [112, 98, 214, 219].

Particularly, we propose to equip each layer with an adapter to map the layer’s

gradient EMA to a set of smaller, more compact transformation coefficients.

These coefficients are applied on the corresponding layer’s parameters and fea-

ture so that they can leverage the temporal consistency to learn better. We first

define the EMA of the l−layer’s partial derivative as:

ĝl ← γĝl + (1− γ)gtl , (6.1)

where gtl denotes the gradient of the l−th layer at time t and ĝl denotes the

EMA. The adapter takes ĝl as input and maps it to the adaptation coefficients

ul. Then, an adapter for the l−th layer is a linear layer that maps the context ĝl

to a set of transformation coefficients ul = [αl;βl]. In this work, we consider a

two-stage transformations [219] which involve a weight and bias transforma-

tion coefficients αl and a feature transformation coefficients βl.

The adaptation process for a layer θl is summarized as:

[αl,βl] =ul, where ul = Ω(ĝl;φl) (6.2)

Weight adaptation: θ̃l =tile(αl)� θl, and (6.3)

Feature adaptation: h̃l =tile(βl)� hl, where hl = θ̃l ~ h̃l−1. (6.4)

Here, hl is a stack of I features maps with C channels and length Z, h̃l is the

adapted feature, θ̃l denotes the adapted weight, � denotes the element-wise
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multiplication, and tile(αl) denotes that the weight adaptor is applied per-

channel on all filters via a tile function that repeats a vector along the new

axes.

Chunking Operation we now describe the chunking adapter’s chunking

operation to efficiently compute the adaptation coefficients. For convenient,

we denote vec(·) as a vectorizing operation that flattens a tensor into a vector;

we use split(e, B) to denote splitting a vector e into B segments, each has size

dim(e)/B. An adapter maps its backbone’s layer EMA gradient to an adapta-

tion coefficient u ∈ Rd via the chunking process as:

ĝl ←vec(ĝl)

[b1, b2, . . . bd]←reshape(ĝl; d)

[h1,h2, . . . ,hd]←[W
(1)
φ b1,W

(1)
φ b2, . . . ,W

(1)
φ bd]

[u1,u2, . . . ,ud]←[W
(2)
φ h1,W

(2)
φ h2, . . . ,W

(2)
φ hd].

Where we denote W (1)
φ and W (2)

φ as the first and second weight matrix of the

adapter. In summary, the chunking process can be summarized by the follow-

ing steps: (1) flatten the gradient EMA into a vector; (2) split the gradient vector

into d chunks; (3) map each chunk to a hidden representation; and (4) map each

hidden representation to a coordinate of the target adaptation parameter u.

Remembering Recurring Events with an Associative Memory

In time series, old patterns may reappear in the future and it is imperative to

leverage our past actions improve the learning outcomes. In FSNet, an adap-

tation to a pattern is represented by the coefficients u, which we argue to be

useful to learn repeating events. Specifically, u represents how we adapted to

a particular pattern in the past; thus, storing and retrieving the appropriate u
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may facilitate learning the corresponding pattern when they reappear in the

future. Therefore, as the second key element in FSNet, we implement an asso-

ciative memory to store the adaptation coefficients of repeating events encoun-

tered during learning. Consequently, the adapter alone can handle fast changes

over a short time scale, while the associative memory can facilitate learning of

repeating patterns. In summary, we equip each adapter with an associative

memoryMl ∈ RN×d where d denotes the dimensionality of ul, and N denotes

the number of elements, which we fix as N = 32 by default.

Sparse Adapter-Memory Interactions Interacting with the memory at ev-

ery step is expensive and susceptible to noises. Thus, we propose to trigger

this interaction only when a substantial representation change happens. In-

terference between the current and past representations can be characterized

in terms of a dot product between the gradients [80, 156]. As a result, we

propose to trigger the memory interaction only when the representation has

changed significantly, which can be detected by monitoring the cosine simi-

larity between the recent and long-term gradients. To this end, in addition to

the gradient EMA in Equation 6.2, we deploy another gradient EMA ĝ′l with

a smaller coefficient γ′ < γ and measure their cosine similarity to trigger the

memory interaction as:

Trigger if : cos(ĝl, ĝ
′
l) =

ĝl · ĝ′l
||ĝl|| ||ĝl||

< −τ, (6.5)

where τ > 0 is a hyper-parameter determining the significant degree of in-

terference. Moreover, we want to set τ to a relatively high value (e.g. 0.7) so

that the memory only remembers significant changing patterns, which could

be important and may reappear.
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The Adapter-Memory Interacting Mechanism Since the current adapta-

tion coefficients may not capture the whole event, which could span over a few

samples, we perform the memory read and write operations using the adapta-

tion coefficients’s EMA (with coefficient γ′) to fully capture the current pattern.

The EMA of ul is calculated in the same manner as Equation 6.1. When a mem-

ory interaction is triggered, the adapter queries and retrieves the most similar

transformations in the past via an attention read operation, which is a weighted

sum over the memory items:

1. Attention calculation: rl = softmax(Mlûl);

2. Top-k selection: r(k)
l = TopK(rl);

3. Retrieval: ũl =
∑K

i=1 r
(k)
l [i]Ml[i],

where r(k)[i] denotes the i-th element of r(k)
l andMl[i] denotes the i-th row of

Ml. Since the memory could store conflicting patterns, we employ a sparse

attention by retrieving the top-k most relevant memory items, which we fix

as k = 2. The retrieved adaptation coefficient characterizes old experiences

in adapting to the current pattern in the past and can improve learning at the

present time by weighted summing with the current parameters as

ul ← τul + (1− τ)ũt, (6.6)

where we use the same threshold value τ to determine the sparse memory in-

teraction and the weighted sum of the adaptation coefficients. Then we per-

form a write operation to update and accumulate the knowledge stored inMl:

Ml ←τMl + (1− τ)ûl ⊗ r(k)
l andMl ←

Ml

max(1, ||Ml||2)
, (6.7)
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where ⊗ denotes the outer-product operator, which allows us to efficiently

write the new knowledge to the most relevant locations indicated by r(k)
l [65,

75]. The memory is then normalized to avoid its values scaling exponentially.

Remarks on FSNet’s fast learning mechanism FSNet facilitate online time

series forecasting by always learning fast at the current time step, regardless of

a distribution shift happens or not. To do so, FSNet employs the adapters to

model the temporal smoothness in time series and an associative memory to

remember recurring events. Since time series always evolves, it is more desir-

able for the memory to support the read and write operations so that the model

could leverage its experiences in the past to further improve the current learn-

ing. The episodic memory used in Chapters 3, 4, and 5 does not support these

operations and requires storing the original data, which might be prohibited

in many applications due to privacy concerns. The associative memory used

in this Chapter is one of a simple data structures that satisfy these constraints,

and has been successfully applied in other applications such as RL [163] and

associative recall [46]. Exploring more sophisticated relational memory struc-

tures [185] would be an interesting future research direction.

6.3 Experiments

Our experiments aim at investigating the following hypotheses: (i) FSNet fa-

cilitates faster adaptation to both new and recurring concepts compared to ex-

isting strategies; (ii) FSNet achieves faster and better convergence than other

methods; and (iii) modeling the partial derivative is the key ingredients for fast

adaptation.
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6.3.1 Experimental Settings

Datasets We explore a wide range of time series forecasting datasets. ETT1 [222]

records the target value of “oil temperature" and 6 power load features over a

period of two years. We consider the ETTh2 and ETTm1 benchmarks where

the observations are recorded hourly and in 15-minutes intervals respectively.

ECL (Electricty Consuming Load)2 collects the electricity consumption of 321

clients from 2012 to 2014. Traffic3 records the road occupancy rates at San Fran-

cisco Bay area freeways. Weather4 records 11 climate features from nearly 1,600

locations in the U.S in an hour intervals from 2010 to 2013.

We also construct two synthetic datasets to explicitly test the model’s abil-

ity to deal with new and recurring concept drifts. We synthesize a task by

sampling 1, 000 samples from a first-order autoregressive process with coeffi-

cient ϕ: ARϕ(1), where different tasks correspond to different ϕ values. The first

synthetic data, S-Abrupt (S-A), contains abrupt, and recurrent concepts where

the samples abruptly switch from one AR process to another by the following

order: AR0.1(1), AR0.4(1), AR0.6(1), AR0.1(1), AR0.3(1), AR0.6(1). The second data,

S-Gradual (S-G) contains gradual, incremental shifts, where the shift starts at

the last 20% of each task. In this scenario, the last 20% samples of a task is an

averaged of two AR process with the order as above. Note that we randomly

chose the values of ϕ so that these datasets do not give unfair advantages to

any methods.

Baselines We consider a suite of baselines from continual learning, time se-

ries forecasting, and online learning. First, the OnlineTCN strategy that simply

trains continuously [25]. Second, we consider the Experience Replay (ER) [12,

1https://github.com/zhouhaoyi/ETDataset
2https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
3https://pems.dot.ca.gov/
4https://www.ncei.noaa.gov/data/local-climatological-data/
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130] strategy where a buffer is employed to store previous data and interleave

old samples during the learning of newer ones. We also include three recent

advanced variants of ER. First, TFCL [126] introduces a task-boundaries detec-

tion mechanism and a knowledge consolidation strategy by regularizing the

networks’ outputs [91]. Second, MIR [125] replace the random sampling in ER

by selecting samples that cause the most forgetting. Lastly, DER++ [170] aug-

ments the standard ER with a knowledge distillation strategy [50]. We empha-

size that ER and and its variants are strong baselines in the online setting since

they enjoy the benefits of training on mini-batches, which greatly reduce noises

from singe samples and offer faster, better convergence [18]. While the afore-

mentioned baselines use a TCN backbone, we also include Informer [222], a re-

cent time series forecasting method based on the transformer architecture [86].

Lastly, we include the historical inertia (HI) baseline [207] that simply uses the

last observations in the look-back window as its prediction of the forecast win-

dow. Very recently, HI was found to perform competitive in the batch training

of time series forecasting. We remind the readers that online time series fore-

casting have not been widely studied with deep models, therefore, we include

general strategies from related fields that we inspired from. Such baselines are

competitive and yet general enough to extend to our problem.

Implementation Details We split the data into warm-up and online train-

ing phases by the ratio of 25:75 and consider the TCN backbone [220] for experi-

ments, except the Informer baseline. We follow the optimization details in [222]

by optimizing the `2 (MSE) loss with the AdamW optimizer [81]. Both the

epoch and batch size are set to one to follow the online learning setting. We im-

plement a fair comparison by making sure that all baselines use the same total

memory budget as our FSNet, which includes three-times the network sizes: one

working model and two EMA of its gradient. Thus, for ER, MIR, and DER++,
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TABLE 6.1: Final cumulative MSE and MAE of algorithms at the
end of learning. “†" indicates a transformer backbone, “-" indi-
cates the model did not converge. S-A: S-Abrupt, S-G: S-Gradual.

Best results are in bold.

Method FSNet DER++[170] MIR[125] ER[130] TFCL[126] OnlineTCN Informer [222] HI [207]

H MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ET
T

h2 1 0.466 0.368 0.508 0.375 0.486 0.410 0.508 0.376 0.557 0.472 0.502 0.436 7.571 0.850 0.404 0.336
24 0.687 0.467 0.828 0.540 0.812 0.541 0.808 0.543 0.846 0.548 0.830 0.547 4.629 0.668 2.561 0.656
48 0.846 0.515 1.157 0.577 1.103 0.565 1.136 0.571 1.208 0.592 1.183 0.589 5.692 0.752 4.547 0.836

ET
Tm

1 1 0.105 0.188 0.098 0.183 0.099 0.184 0.099 0.184 0.099 0.185 0.109 0.204 0.456 0.392 0.120 0.193
24 0.136 0.248 0.239 0.329 0.242 0.335 0.259 0.346 0.239 0.335 0.272 0.361 0.827 0.551 3.027 1.010
48 0.129 0.245 0.264 0.355 0.271 0.362 0.288 0.372 0.242 0.344 0.280 0.371 0.853 0.533 4.068 1.212

EC
L 1 3.143 0.472 2.657 0.421 2.575 0.504 2.579 0.506 2.732 0.524 3.309 0.635 - - 6.747 0.376

24 6.051 0.997 8.996 1.035 9.265 1.066 9.327 1.057 12.094 1.256 11.339 1.196 - - 5.998 0.371
48 7.034 1.061 9.009 1.048 9.411 1.079 9.685 1.074 12.110 1.303 11.534 1.235 - - 7.233 0.447

Tr
af

fic 1 0.288 0.253 0.289 0.248 0.290 0.251 0.291 0.252 0.323 0.273 0.315 0.283 0.795 0.507 0.483 0.328
24 0.362 0.288 0.387 0.295 0.391 0.302 0.391 0.302 0.553 0.383 0.452 0.363 1.267 0.750 0.798 0.367

W
TH

1 0.162 0.216 0.174 0.235 0.179 0.244 0.180 0.244 0.177 0.240 0.206 0.276 0.426 0.458 0.207 0.188
24 0.188 0.276 0.287 0.351 0.291 0.355 0.293 0.356 0.301 0.363 0.308 0.367 0.370 0.417 0.638 0.499
48 0.223 0.301 0.294 0.359 0.297 0.361 0.297 0.363 0.323 0.382 0.302 0.362 0.367 0.419 0.828 0.606

S-
A 1 1.391 0.929 2.334 1.181 2.482 1.213 2.372 1.157 2.321 1.144 2.668 1.216 3.690 1.410 1.033 0.812

24 1.299 0.904 3.598 1.439 3.662 1.450 3.375 1.360 3.415 1.366 3.904 1.491 3.657 1.426 7.783 2.072

S-
G 1 1.760 1.038 2.335 1.181 2.482 1.213 2.476 1.212 2.428 1.199 2.927 1.304 4.024 1.501 1.066 0.822

24 1.299 0.904 3.598 1.439 3.662 1.450 3.667 1.489 3.829 1.479 3.904 1.491 3.657 1.426 7.783 2.072

we allow an episodic memory to store previous samples to meet this budget.

For the remaining baselines, we instead increased the backbone size. Lastly,

in the warm-up phase, we calculate the mean and standard deviation to nor-

malize online training samples and perform hyper-parameter cross-validation.

For all benchmarks, we set the look-back window length to be 60 and vary the

forecast horizon as H ∈ {1, 24, 48}.

6.3.2 Online Forecasting Results

Cumulative Performance Table 6.1 reports the cumulative mean-squared er-

rors (MSE) and mean-absolute errors (MAE) at the end of training. The re-

ported numbers are averaged over five runs. We observe that ER and its vari-

ants (MIR, DER++) are strong competitors and can significantly improve over
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FIGURE 6.2: Evolution of the cumulative MSE loss during train-
ing with forecasting window H = 24.

the simple TCN strategies. However, such methods still cannot work well un-

der multiple task switches (S-Abrupt). Moreover, no clear task boundaries (S-

Gradual) presents an even more challenging problem and increases most mod-

els’ errors. In addition, previous work has observed that TCN can outperform

Informer in the standard time series forecasting [225]. Here we also observe

similar results that Informer does not perform well in the online setting, and

is outperformed by other baselines. HI is also a strong competitor when the

forecast window is H = 1. However, its performance quickly degrades on all

datasets with longer forecast windows. On the other hand, our FSNet shows

promising results on all datasets and outperforms most competing baselines

across different settings. Moreover, FSNet’s improvements on the synthetic

datasets indicate its ability to quickly adapt to the non-stationary environment

and recall previous knowledge, even without clear task boundaries.

Convergent behaviors of Different Learning Strategies Figure 6.2 reports

the convergent behaviors on the considered methods. We omit the S-Abrupt
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FIGURE 6.3: Visualization of the model’s prediction throughout
the online learning process. We focus on a short horizon of 200
time steps after a concept drift, which is critical for fast learning.

dataset for spaces because we observe the same behavior as S-Gradual. The

results clearly show the benefits of ER by offering faster convergence during

learning compared to OnlineTCN. However, it is important to note that storing

the original data may not apply in many domains. On S-Gradual, most base-

lines demonstrate the inability to quickly recover from concept drifts, indicated

by the increasing trend in the error curves. We also observe promising results

of FSNet on most datasets, with significant improvements over the baselines

on the ETT, WTH, and S-Gradual datasets. The remaining datasets are more

challenging with missing values [141] and large magnitude varying within and
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across dimensions, which may require calculating better data normalization

statistics. While FSNet achieved encouraging results, handling the above chal-

lenges can further improve its performance. Overall, the results shed light on

the challenges of online time series forecasting and demonstrate promising re-

sults of FSNet.

Visualization We explore the model’s prediction quality on the S-Abrupt

since it is a univariate time series. The remaining real-world datasets are mul-

tivariate, thus challenging to visualize. Particularly, we are interested in the

models’ behaviour when an old task’s reappear. Therefore, in Figure 6.3, we

plot the model’s forecasting at various time points after t = 3000. We can see

the difficulties of training deep neural networks online in that the model strug-

gles to learn at the early stages, where it only observed a few samples. We

focus on the early stages of task switches (e.g. the first 200 samples), which

requires the model to quickly adapt to the distribution shifts. With the lim-

ited samples per task and the presence of multiple concept drifts, the standard

online optimization collapsed to a naive solution of predicting random noises

around zero. However, FSNet can successfully capture the time series’ patterns

and provide better forecasts as learning progresses. Overall, we can clearly see

FSNet can provide better quality forecasts compared to other baselines.

6.3.3 Ablation Studies of FSNet’s Design

This experiment analyzes the contribution of each FSNet’s component. First,

we explore the benefits of using the associative memory (Section 6.2.3) by con-

structing a No Memory variant that only uses an adapter, without the memory.

Second, we further remove the adapter, which results in the Naive variant that

directly trains the adaptation coefficients u jointly with the backbone, which

corresponds to the NCCL design [219]. The Naive variant demonstrates the
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TABLE 6.2: Final comulative MSE and MAE of different FSNet
variants. Best results are in bold.

Method
FSNet Variant

M=128 (large) M=32 (original) No Memory Naive

Data H MSE MAE MSE MAE MSE MAE MSE MAE

ETTh2
24 0.616 0.456 0.687 0.467 0.689 0.468 0.860 0.555
48 0.846 0.513 0.846 0.515 0.924 0.526 0.973 0.570

Traffic
1 0.285 0.251 0.288 0.253 0.294 0.252 0.330 0.282
24 0.358 0.285 0.362 0.288 0.355 0.284 0.463 0.362

S-A
1 1.388 0.928 1.391 0.929 1.734 1.024 3.318 1.416
24 1.213 0.870 1.299 0.904 1.390 0.933 3.727 1.467

S-G
1 1.758 1.040 1.760 1.038 1.734 1.024 3.318 1.414
24 1.293 0.902 1.299 0.904 1.415 0.940 3.748 1.478

benefits of monitoring the layer’s gradients, our key idea for fast adaptation

(Section 6.2.3). Lastly, we explore FSNet’s scalability by increasing the associa-

tive memory size from 32 items (original) to a larger scale of 128 items.

We report the results in Table 6.2. We first observe that FSNet achieves sim-

ilar results with the No Memory variant on the Traffic and S-Gradual datasets.

One possible reason is the insignificant representation interference in the Traf-

fic dataset and the slowly changing representations in the S-Gradual dataset.

In such cases, the representation changes can be easily captured by the adapter

alone and may not trigger the memory interactions. In contrast, on ETTh2 and

S-Abrupt, which may have sudden drifts, we clearly observe the benefits of

storing and recalling the model’s past action to facilitate learning of repeating

events. Second, the Naive variant does not achieve satisfactory results, indicat-

ing the benefits of modeling the temporal smoothness in time series via the use

of gradient EMA. Lastly, the large memory variant of FSNet provides improve-

ments in most cases, indicating FSNet’s scalability with more budget. Overall,

these results demonstrated the complementary of each FSNet’s components to
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TABLE 6.3: Results of different FSNet’s hyper-parameter configu-
rations on the ETTh2 (H = 48) and S-A (H = 24) benchmarks.

Configuration ETTh2 S-A

γ γ′ τ MSE MAE MSE MAE

0.9 0.3 0.75 0.846 0.515 1.760 1.038
0.9 0.4 0.8 0.860 0.521 1.816 1.086
0.99 0.4 0.7 0.847 0.512 1.791 1.049
0.99 0.3 0.8 0.845 0.514 1.777 1.042

deal with different types of concept drift in time series.

6.3.4 Robustness of Hyper-parameter Settings

This experiment explores the robustness of FSNet to different hyper-parameter

setting. Particularly, we focus on the configuration of three hyper-parameters:

(i) the gradient EMA γ; (ii) the short-term gradient EMA γ′; and (iii) the associa-

tive memory activation threshold τ . In general, we provide two guidelines to

reduce the search space of these hyper-parameters: (i) setting γ to a high value

(e.g. 0.9) and γ′ to a small value (e.g. 0.3 or 0.4); (ii) set τ to be relatively high

(e.g. 0.75). We report the results of several hyper-parameter configurations in

Table 6.3. We observe that there are not significant differences among these

configurations . It is also worth noting that we use the same configuration for

all experiments conducted in this work. Therefore, we can conclude that FSNet

is robust to these configurations.

6.3.5 FSNet and Experience Replay

This experiment explore the complementarity between FSNet and experience

replay (ER). We hypothesize that ER is a valuable component when learning on
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TABLE 6.4: Performance of FSNet with and without experience
replay.

Data H FSNet FSNet+ER

MSE MAE MSE MAE

ETTh2
1 0.466 0.368 0.434 0.361
24 0.687 0.467 0.650 0.462
48 0.846 0.515 0.842 0.511

Traffic 1 0.321 0.26 0.243 0.248
24 0.421 0.312 0.350 0.275

data streams because it introduces the benefits of mini-batch training to online

learning.

We implement a variant of FSNet with an episodic memory for experience

replay and report its performance in Table 6.4. We can see that FSNet+ER

outperforms FSNet in all cases, indicating the benefits of ER, even to FSNet.

However, it is important that using ER will introduce additional memory com-

plexity and that scales with the look-back window. Lastly, in many real-world

applications, storing previous data samples might be prohibited due to privacy

concerns.

6.3.6 Complexity Analysis

In this Section, we analyze the memory and time complexity of FSNet.

Asymptotic analysis We consider the TCN forecaster used throughout this

work and analyze the model, total memory, and time complexities of the methods

considered in our work. We let N denotes the number of parameters of the

the convolutional layers, E denotes the length of the look-back window, and H

denotes the length of the forecast window.
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TABLE 6.5: Summary of the model and total memory complex-
ity of different methods.N denotes the number parameters of the
convolutional layers, H and E denotes the look-back and forecast

windows length

Method OnlineTCN ER MIR DER++ FSNet

Model Complexity O(N +H)
Memory Complexity N/A O(E +H) O(N)
Total Complexity O(N +H) O(N + E +H) O(N +H)

Model and Total complexity We analyze the model and the total memory

complexity, which arises from the model and additional memory units.

First, the standard TCN forecaster incur a O(N + H) memory complexity

arising from N parameters of the convolutional layers, and an order of H pa-

rameters from the linear regressor.

Second, we consider the replayed-based strategies, which also incur the

same O(N + H) model complexity as the OnlineTCN. For the total memory,

they use an episodic memory to store the previous samples, which costsO(E+

H) for both methods. Additionally, TFCL stores the importance of previous

parameters while MIR makes a copy of the model for its virtual update, both

of which cost O(N +H). Therefore, the total memory complexity of the replay

strategies (ER, DER++, MIR, and TFCL) is O(N + E +H).

Third, in FSNet, both the per-layer adapters and the associative memory

cost similar number of parameters as the convolutional layers because they are

matrices with number of channels as one dimension. Therefore, asymptotically,

FSNet also incurs a model and total complexity ofO(N+H) where the constant

term is small.

Table 6.5 summarizes the asymptotic memory complexity discussed so far.

Table 6.6 shows the number of parameters used of different strategies on the
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TABLE 6.6: Summary of the model complexity on the ETTh2 data
set with forecasting window H = 24. We report the number of
floating points incurred by the backbone and different types of
memory. GI = Gradient Importance (TFCL), G-EMA = Gradient
Exponential Moving Average (FSNet), AM = Associative Memory

(FSNet), EM = Episodic Memory (ER).

Method
Model Memory

Total
Backbone Adapter GI G-EMA AM EM

FSNet 1,041,288 733,334 N/A 614,400 1,130,496 N/A 3,519,518
ER 1,041,288 N/A N/A N/A N/A 2,822,400 3,863,688
OnlineTCN 3,667,208 N/A N/A N/A N/A N/A 3,667,208
TFCL 1,041,288 N/A 2,082,576 N/A N/A 806,400 3,930,264

ETTh2 dataset with the forecast window of H = 24. We consider the total pa-

rameters (model and memory) of FSNet as the total budget and adjust other

baselines to meet the budget. As we analyzed, for FSNet, its components, in-

cluding the adapter, associative memory, and gradient EMA, require an order

of parameter as the convolutional layers in the backbone network. For the On-

lineTCN strategy, we increases the number of convolutional filters so that it has

roughly the same total parameters as FSNet. For ER and TFCL, we change the

number of samples stored in the episodic memory.

Time Complexity We report the throughput (samples/second) of different

methods in Table 6.7 using a single V100 GPU. We can see that ER and DER++

have high throughput (low running time) compared to others thanks to their

simplicity. As FSNet introduces additional mechanisms to allow the network

to take less samples to adapt to the distribution shifts, its throughput is lower

than ER and DER++. Nevertheless, FSNet is more efficient than and MIR com-

parable to TFCL, which are two common continual learning strategies.
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TABLE 6.7: Throughput (sample/second) of different methods in
our experiments with forecast window of H = 1.

Running Time ETTh2 ETTm1 WTH ECL Traffic S-A

ER 46 46 43 42 39 46
DER++ 45 45 43 42 38 46
TFCL 29 28 27 27 26 27
MIR 22 22 21 21 30 23

FSNet 28 28 28 27 27 29

6.4 Conclusion

We have investigated the limitations of training deep neural networks for on-

line time series forecasting in non-stationary environments, where they lack the

capability to adapt to new or recurring patterns quickly. We then propose Fast

and Slow learning Networks (FSNet) by extending the CLS theory for contin-

ual learning to online time series forecasting. FSNet augments a neural net-

work backbone with two key components: (i) an adapter for adapting to the

recent changes; and (ii) an associative memory to handle recurrent patterns.

Moreover, the adapter sparsely interacts with its memory to store, update, and

retrieve important recurring patterns to facilitate learning of such events in the

future. Extensive experiments demonstrate the FSNet’s capability to deal with

various types of concept drifts to achieve promising results in both real-world

and synthetic time series data.

We now discuss several aspects for further studies. First, properly normal-

izing data in a stream can greatly facilitate training, especially under the pres-

ence of concept drift (Section 6.3.2). In addition, while FSNet presents a general

framework to forecast time series online, adopting it to a particular application

requires incorporating specific domain knowledge to ensure satisfactory per-

formances. In summary, we firmly believe that FSNet is an encouraging first
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step towards a general solutions for an important, yet challenging problem of

online time series forecasting.

6.5 Additional Details

6.5.1 Synthetic Data

We use the following first-order auto-regressive process model ARϕ(1) defined

as

Xt = ϕXt−1 + εt, (6.8)

where εt are random noises and Xt−1 are randomly generated. The S-Abrupt

data is described by the following equation:

Xt =



AR0.1 if 1 < t ≤ 1000

AR0.4 if 1000 < t ≤ 1999

AR0.6 if 2000 < t ≤ 2999

AR0.1 if 3000 < t ≤ 3999

AR0.4 if 4000 < t ≤ 4999

AR0.6 if 5000 < t ≤ 5999.

(6.9)
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FIGURE 6.4: Visualization of the raw S-Abrupt and S-Gradual
datasets before normalization. Colored regions indicate the data
generating distribution where we use the same color for the same
distribution. In S-Guadual, white color region indicates the grad-

ual transition from one distribution to another.

The S-Gradual data is described as

Xt =



AR0.1 if 1 < t ≤ 800

0.5× (AR0.1 + AR0.4) if 800 < t ≤ 1000

AR0.4 if 1000 < t ≤ 1600

0.5× (AR0.4 + AR0.6) if 1600 < t ≤ 1800

AR0.6 if 1800 < t < 2400

0.5× (AR0.6 + AR0.1) if 2400 < t ≤ 2600

AR0.1 if 2600 < t ≤ 3200

0.5× (AR0.1 + AR0.4) if 3200 < t ≤ 3400

AR0.4 if 3400 < t ≤ 4000

0.5× (AR0.4 + AR0.6 if 4000 < t ≤ 4200

AR0.6 if 4200 < t ≤ 5000

(6.10)
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Figure 6.4 plots the unnormalized synthetic datasets.

6.5.2 Loss function

All methods in our experiments optimize the `2 loss function defined as fol-

lows. Let x and y ∈ RH be the look-back and ground-truth forecast windows,

and ŷ be the model’s prediction of the true forecast windows. The `2 loss is

defined as:

`(ŷt,yt) = `(fω(xt),yt) :=
1

H

H∑
j=1

||ŷi − yi||2 (6.11)

LetM be the episodic memory storing previous samples, Bt be a mini-batch

of samples sampled fromM. ER minimizes the following loss function:

LER
t = `(fω(xt),yt) + λER

∑
(x,y)∈Bt

`(fω(x),y), (6.12)

where `(·, ·) denotes the MSE loss and λER is the trade-off parameter of cur-

rent and past examples. DER++ further improves ER by adding a distillation

loss [50]. For this purpose, DER++ also stores the model’s forecast into the

memory and minimizes the following loss:

LDER++
t = `(fω(xt),yt) + λER

∑
(x,y)∈Bt

`(fω(x),y) + λDER++

∑
(x,ŷ)∈Bt

`(fω(x), ŷ).

(6.13)
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6.5.3 Implementing FSNet

Algorithm 4 provides the psedo-code for our FSNet.

Algorithm 4: Fast and Slow learning Networks (FSNet)
Require: Two EMA coefficients γ′ < γ, memory interaction threshold τ

Init: backbone θ, adapter φ, associative memoryM, regressorR

1 for t← 1 to T do

2 Receive the t− look-back window xt

3 h0 = xt

4 for j ← 1 to L do // Forward computation over L layers

5 [αl,βl] = ul, where ul = Ω(ĝl;φl) // Initial adaptation

parameter

6 if trigger == True then

7 ũl ← Read(ûl,Ml)

8 Ml ←Write(Ml, ûl)

9 ul ← τul + (1− τ)ũl

10 θ̃l = tile(αl)� θl // Weight adaptation

11 h̃l = tile(βl)� hl, where hl = θ̃l ~ h̃l−1. // Feature adaptation

12 Forecast ŷt = RhT

13 Receive the ground-truth y

14 Calculate the forecast loss and backpropagate

15 Update the regressorR via SGD

16 for j ← 1 to L do // Backward to update the model and EMA

17 Update the EMA of ĝl, ĝl′,ul

18 Update φl,θl via SGD

19 if cos(ĝl, ĝl) < −τ then

20 trigger← True
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Discussion and Future Work

In this Chapter, we first summarize the main contributions of the works pre-

sented in this dissertation in Section 7.1. We then outline several promising

research directions towards realizing continual learning in Section 7.2. This

dissertation ends with a concluding remark in Section 7.3.

7.1 Summary of Contributions

In this dissertation, we proposed novel algorithms for Continual Learning with

Deep Neural Networks. Specifically, we identified the limitations of existing

studies and proposed fast-and-slow continual learning, a novel and holistic

framework to address those issues. Our methods are inspired by the Com-

plementary Learning Systems (CLS) theory, which models the way humans

perform continual learning. Our fast-and-slow learning framework suggests

learning should consist of two levels: learning at the sample level and learning

representation across tasks. We went beyond the traditional image benchmarks

to test our fast-and-slow continual learning framework’s capabilities in the time

series forecasting domain. Lastly, we shed lights on how Batch Normalization
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(BN), a classical and important component for training deep networks, could

cause catastrophic forgetting. In summary, we have made the following contri-

butions in the field of Continual Learning and time series forecasting:

• Continual Normalization. We conduct a meta-analysis of continual learn-

ing by studying BN to understand how it affects continual learning. We

demonstrate that while BN can greatly facilitate the forward knowledge

transfer, it simultaneously increases the error of learned tasks during test

time, which we referred to as the cross-task normalization effect. From

there, we propose a novel normalization layer named Continual Normal-

ization (CN) that is specifically designed for online continual learning

with images. CN can enjoy BN’s benefits, alleviate the cross-task nor-

malization effect, and incur minimal complexity overhead.

• Contextual Transformation Networks We aim at bridging the gap be-

tween two major continual learning approaches: (i) static architecture

methods that are efficient but have limited performances; and (ii) dy-

namic architecture methods that achieve strong performances but are highly

inefficient. The proposed CTN algorithm enhances a static architecture

backbone with a novel controller component supporting the ability to

model task-specific features while keeping the model’s size almost fixed.

Our findings show that CTN performs significantly better than previous

strategies, even comparable with a strong baselines that has 17-times more

parameters.

• Fast and Slow Continual Learning This Chapter realizes the CLS the-

ory into DualNets, a general continual learning framework. Particularly,

DualNet consists of two distinct learning component: (i) the fast network
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plays the role of the hippocampus that focuses on fast learning of pattern-

separated representation; and (ii) the slow network, which corresponds

to the neocortex and learns a general, task-agnostic representation. Ex-

tensive experiments show that DualNets is general, applicable to various

challenging continual learning scenarios, and robust to different hyper-

parameter configurations.

• Learning Fast and Slow for Online Time Series Forecasting We pro-

posed FSNet as a radical approach to online time series forecasting. FS-

Net addresses the time series forecasting’s challenges of fast adaptation

to concept drifts and learning of recurring patterns by formulating them

as a continual learning problem. FSNet further extends the fast-and-slow

learning idea to derive an effective solution for these challenges. Our ex-

perimental findings demonstrated FSNet’s ability to learn in nonstation-

ary environments with concept drifts and recurring patterns.

7.2 Future Research Directions

This Section outlines the potential future directions for continual learning and

beyond.

7.2.1 Continual Learning with Foundation Models

Foundation models [203] refer to a class of neural networks pre-trained on a

massive amount of unlabeled data, usually via self-supervised learning. Since

their first introduction in 2018 [97], foundation models have demonstrated re-

markable successes in solving a wide range of problems, ranging from lan-

guage [97, 196] to vision [174] domains. As a result, they present a paradigm
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shift in solving many AI problems. Due to the strong prior knowledge, founda-

tion models can perform well on many different problems simply by finetun-

ing a small number of parameters. Therefore, we firmly believe that foundation

models is an important step toward general intelligent machines with continual

learning capabilities.

Towards this goal, the learning agent first starts as a foundation model in-

stead of learning from scratch, as we considered so far in this dissertation. With

such pre-trained knowledge, foundation models have strong potential to learn

new skills, even learning with a few training samples. However, they are also

more prone to catastrophic forgetting: any changes to the model’s parameters

can greatly alter many learned patterns. As such, we need to revise the contin-

ual learning constraints for such foundation models. Particularly, facilitating

forward transfer is almost guaranteed; however, one might be interested in a

more compact and modularized way to organize knowledge in such models so

that learning new skills could be further accelerated. Moreover, catastrophic

forgetting is more eminent, which requires a better strategy to prevent the for-

getting of old knowledge or even allow a positive backward transfer.

7.2.2 Broader Impacts of Continual Learning

The majority of existing continual learning research has been conducted on

benchmarks derived from batch learning datasets. Although this strategy pro-

vides a controlled environment for fast research development, it lacks a connec-

tion to real-world applications. Recently, there have been attempts to extend

continual learning strategies beyond such an environment to address other re-

search challenges. Chapter 6 presents such an approach where we leveraged

continual learning to address online time series forecasting. Beside our work,
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there are concurrent studies exploring continual learning in various applica-

tions domains such as: users modeling on Twitter [181], landmark recogni-

tion [205], recommendation systems [200], etc. Such studies explore how con-

tinual learning appears in natural data and propose novel solutions based on

existing continual learning ideas. As a result, we believe that advances in con-

tinual learning research can result in significant improvements in those appli-

cations.

Beyond various applications, continual learning is also attractive to differ-

ent research disciplines. One particular research of interest is the intersection

of continual learning, multi-task/supervised learning [16], and the credit as-

signment problem [3]. Several studies [70, 71, 49] have explored multi-task

learning models trained by gradient-based optimization (e.g. SGD) from the

continual learning perspective. They discovered that in such settings, each

task requires setting the model’s parameter to a certain value, creating a tug-

of-war dynamic [178]. In particular, training requires samples from all tasks to

be present at each step to reach an equilibrium that can solve all tasks. Oth-

erwise, the missing task does not participate in the tug-of-war game, and the

model’s parameters will be allocated to solve the remaining tasks. A closer look

at supervised learning with a single task also reveals the same pattern [119]:

the model can quickly learn easy samples while it takes much longer to learn

the difficult ones. As a result, optimizations require going through the whole

dataset several times until the model reaches an equilibrium of performances

on both easy and difficult samples. This raises an interesting perspective of

training classical paradigms more efficiently via continual learning. In this

view, the continual learning models can quickly learn, remember easy sam-

ples and proceed to learn the more difficult ones, which would substantially

reduce the training complexities.
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7.2.3 Classical Continual Learning

We have discussed the potential of continual learning with foundation models

and their broader impacts on other research disciplines. Those ambitious and

long-term research goals require careful plans for meaningful progress. To this

end, we review the benefits and limitations of existing studies and outline the

immediate next steps for continual learning.

Summary and Benefits Most existing continual learning studies have devel-

oped strategies to enable deep neural networks to solve a sequence of tasks.

These studies often employ a standard architecture (such as a MLP or a reduced

version of ResNet [80]), and benchmarks constructed from standard datasets

such as MNIST [19] or CIFAR [28]. As a result, such practices allow for a fast

methodology development cycle, which quickly improves our understanding

of continual learning.

Limitations The most critical limitation of classical continual learning stud-

ies is that such artificial benchmarks may only partially model how continual

learning happens in the real world. For example, the above benchmarks do

not consider the distribution shifts over time, training with limited or partially

labeled samples, or negative transfer from noises, which are common practical

consideration [132, 199]. As a result, general and practical continual learning

remains a challenging research problem.

Outlook We firmly believe that developing practical and challenging bench-

marks is an important and prominent first step for continual learning research.
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The CTRL benchmark [199] used in Chapter 5 tried to incorporate other ele-

ments, such as (artificial) distribution shifts and negative transfer is a promis-

ing first step. Recently, there have been tremendous efforts in developing gen-

eral, practical and challenging continual learning benchmarks. Notably, the

Firehose [181] and Standard/Long Stream [212] are developed for continual

learning in the natural language processing domain. Similarly, the Continual

Localization [205] benchmark is a large-scale and challenging benchmark for

continual learning in the vision domain. These are a few examples of recent

benchmarks to facilitate continual learning in various domains, and we firmly

believe they will facilitate meaningful continual learning progress in the future.

7.3 Concluding Remarks

Deep learning has been a frontier of AI research over the last decade. They

presented a new tool for researchers and practitioners to achieve successes that

seemed nearly impossible before. However, such promising opportunities are

also accompanied by unique challenges. One of which is empowering deep

neural networks with the continual learning capability to truly interact in a

real-world environment. To this end, this dissertation studies the problem of

continual learning with deep neural networks. We have contributed to the clas-

sical continual learning strategies and a novel fast-and-slow learning frame-

work, which brings a new perspective to continual learning. We firmly believe

our contributions present a promising and important step toward the next gen-

eration of intelligent machines with general and continual learning capabilities.
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