
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Dissertations and Theses Collection (Open
Access) Dissertations and Theses

7-2022

Deepcause: Verifying neural networks with abstraction refinement Deepcause: Verifying neural networks with abstraction refinement

NGUYEN HUA GIA PHUC
Singapore Management University, hgpnguyen.2019@phdcs.smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/etd_coll

 Part of the OS and Networks Commons, and the Software Engineering Commons

Citation Citation
NGUYEN HUA GIA PHUC. Deepcause: Verifying neural networks with abstraction refinement. (2022). 1-44.
Available at:Available at: https://ink.library.smu.edu.sg/etd_coll/447

This Master Thesis is brought to you for free and open access by the Dissertations and Theses at Institutional
Knowledge at Singapore Management University. It has been accepted for inclusion in Dissertations and Theses
Collection (Open Access) by an authorized administrator of Institutional Knowledge at Singapore Management
University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd
https://ink.library.smu.edu.sg/etd_coll?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F447&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F447&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F447&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

DEEPCAUSE: VERIFYING NEURAL

NETWORKS WITH ABSTRACTION

REFINEMENT

NGUYEN HUA GIA PHUC

SINGAPORE MANAGEMENT UNIVERSITY

2022

DeepCause: Verifying Neural Networks with
Abstraction Refinement

Nguyen Hua Gia Phuc

Submitted to School of Computing and Information Systems

in partial fulfillment for the requirements of the Degree of

Master of Philosophy in Information Systems

Master’s Thesis Committee:

Sun Jun (Supervisor / Chair)

Professor of Computer Science

Singapore Management University

David Lo

Professor of Computer Science

Singapore Management University

Jiang Lingxiao

Associate Professor of Computer Science

Singapore Management University

SINGAPORE MANAGEMENT UNIVERSITY

2022

Declaration Page

I hereby declare that this thesis is my original work and it has been written by me in its

entirety.

I have duly acknowledged all the sources of information which have been used in this

thesis

This thesis has also not been submitted for any degree in any university previously

Nguyen Hua Gia Phuc

25 July 2022

Abstract

Neural networks have been becoming essential parts in many safety-critical systems (such

as self-driving cars and medical diagnosis). Due to that, it is desirable that neural networks

not only have high accuracy (which traditionally can be validated using a test set) but also

satisfy some safety properties (such as robustness, fairness, or free of backdoor). To verify

neural networks against desired safety properties, there are many approaches developed

based on classical abstract interpretation. However, like in program verification, these

approaches suffer from false alarms, which may hinder the deployment of the networks.

One natural remedy to tackle the problem adopted from program verification commu-

nity is counterexample-guided abstraction refinement (CEGAR). The application of CE-

GAR in neural network verification is, however, highly non-trivial due to the complication

raised from both neural networks and abstractions. In this thesis, we propose a method

to enhance abstract interpretation in verifying neural networks through an application

of CEGAR in two steps. First, we employ an optimization-based procedure to validate

abstractions along each propagation step and identify problematic abstraction via coun-

terexample searching. Then, we leverage a causality approach to select the most likely

problematic components of the abstraction and refine them accordingly.

To evaluate our approach, we have implemented a prototype named DeepCause based on

DeepPoly and take local robustness as the target safety property to verify. The evalua-

tion shows that our proposal can outperform DeepPoly and RefinePoly in all benchmark

networks. We should note that our idea is not limited to specific abstract domain and we

believe it is a promising step towards enhancing verification of complex neural network

systems.

CONTENTS

Contents

Declaration Page

Abstract

Table of Contents i

Acknowledgement ii

1 Introduction 1

2 An Illustrative Example 4

2.1 Existing Approaches on Verifying the Example 5

2.2 An Overview of Our Approach . 7

3 Preliminaries 10

3.1 Neural Networks . 10

3.2 Problem Definition . 11

3.3 Abstract Interpretation for Neural Networks 11

CONTENTS

4 The Approach 14

4.1 Overall Approach . 14

4.2 Abstraction Validation . 16

4.3 Abstraction Refinement . 18

4.4 A Causality-based Selection . 19

4.5 Soundness . 22

5 Evaluation 23

5.1 Experimental Setup . 23

5.2 Experiment Results . 25

6 Related Work 29

7 Conclusion and Future Work 31

i

Acknowledgement

I would like to acknowledge and give my thank to my supervisor professor Sun Jun, who

make this work possible. I would also like to thank my senior Pham Hong Long who has

guided and given me advice through all stage of my project.

Finally, I would like to give special thanks to my family as a whole for their continuous

support and understand when undertaking my research project.

ii

Chapter 1

Introduction

Recently, neural networks have become essential parts in many safety-critical systems

such as malware detection [42], self-driving cars [4], and medical diagnosis [19]. Due to

this reason, besides the high accuracy requirement, it is thus desirable to formally verify

such neural networks against safety properties, especially before their deployment into

real scenarios.

Inspired by decision making procedure from human beings, the community has identify

and formalized several interesting properties for neural networks, such as local robustness

and fairness. Local robustness means that the networks output remains consistent even

under small perturbation on an input and a network is fair if it’s classification is not

affected by the different values of the chosen feature. In this thesis, we focus on the

neural network verification problem with respect to local robustness property, i.e, given a

specific input, a perturbation within certain range to the input does not change its label.

More formally, a neural network N is local robust on an input x with perturbing range r

if and only if ∀x′ · ||x− x′||p < r =⇒ N(x′) = N(x) (assuming Lp − norm is used).

To tackle the above problem, many approaches are developed based on classical abstract

interpretation idea from program verification, such as AI2 [13], ReluVal [39], DeepZ [28],

DeepPoly [30], RefineZono [29], and RefinePoly [27]. Unfortunately, like in program

verification based on over-approximation, these approaches may suffer from false alarms,

which may hinder the deployment of the networks.

One intuitive way to enhance existing abstract interpretation is to partition the input

1

Chapter 1. Introduction

region. With smaller input region, the precision loss of abstract interpretation usually

decreases. To the best of our knowledge, there is one approach adopts such idea, i.e.,

ReluVal [39] bisects the input space with the guidance of symbolic interval gradients.

However, this method concretizes the symbolic interval and ignore their dependencies at

ReLU layer which causes over-approximate.

In this work, we aim to enhance existing abstract interpretation via counterexample-

guided abstraction refinement (CEGAR). CEGAR has been proven effective for program

verification [1]. Applying CEGAR to neural network verification is however non-trivial

due to the complex nature of neural networks and complicated numerical abstractions.

Once we fail to verify a property based on an abstraction of the given neural network, the

main challenges are how to identify problematic abstraction effectively and how to refine

the abstraction accordingly.

In the case of program verification, given a counterexample in the form of an abstract pro-

gram path, symbolic execution is typically applied to check whether the counterexample is

spurious and methods such as interpolation [25] or weakest precondition computation [8]

can be applied to answer the questions. This is however infeasible in the case of neural

networks since neurons are often fully connected and there is no single path that can be

identified for symbolic execution, even if we overlook the cost of symbolic execution on

neural networks.

Furthermore, in the classic CEGAR, we construct an abstraction of the system and ver-

ify it after the abstraction is complete. If the verification fails, the abstraction is re-

fined based on the counterexample, i.e., by eliminating certain problematic over-approxi-

mation. Sometimes many abstraction refinement iterations are necessary. This is likely the

case in verifying neural networks, as over-approximation happens for every neuron. Fur-

thermore, as neural networks are often fully connected, a problematic over-approximation

in a layer is likely to propagate to subsequent layers. It is thus desirable to identify

problematic over-approximation early.

Our answer to these questions is as follows. Instead of collecting counterexamples after

abstract interpretation, we validate abstraction at each propagation step. In this way,

we could save the cost of symbolic execution and have the chance identify problematic

abstraction early. In specific, we formulate an optimization problem to search for coun-

terexamples. Note that neural network is designed for optimization and as a result, this

optimization problem can often be solved effectively using optimization techniques asso-

2

ciated with neural networks.

After that, with the root problematic over-approximation, we try to eliminate the coun-

terexample through partitioning the very last abstraction. Rather than partition the

abstraction of all neurons which would result in an exponential number of new abstrac-

tions, we choose to select the top k problematic neurons and only partition these neurons

in order to efficiently refine the abstraction. There are several ways to rank the neurons.

One of the most popular method is gradient, many papers like [[39], [38]] use gradient

to determine the attribution of each neuron. Attributions are defined as the effect of an

input feature on the prediction function’s output [34] which means that it show how much

impact a neuron has on the outcome. However, gradient method are shown to be sensitive

to even a simple constant shift in input vector [18]. As a result, we use new attribution

method for neural networks developed using first principles of causality [7] to select the

top k neurons. This method not only doesn’t have the same drawback but it also proved

to capture the causal influence of neuron and products better result than state-of-the-art

gradient-based method [7].

To evaluate this idea, we have implemented our proposal in a prototype named Deep-

Cause. In specific, DeepCause is based on DeepPoly which is the state-of-the-art abstract

interpretation neural network analyzer. We took a set of 45 neural network models trained

on the MNIST dataset with different activation functions and evaluated their robustness

bounds for the first 100 test inputs. The results show that our approach can effectively

improve the performance of DeepPoly. Moreover, as equipped with an optimization-based

validation procedure, DeepCause can also effectively reject non-robust bounds for specific

inputs. In addition, as the idea is quite general and thus applicable to other abstract do-

mains than DeepPoly, we believe DeepCause provides a promising step towards enhancing

the verification of complex systems.

Organization The rest of this paper is organized as follows. Section 2 demonstrates

our approach through an example. Section 3 reviews preliminary knowledge. Section 4

presents our approach in detail. In Section 5, we show the implementation detail and

evaluation results. Section 6 reviews related work. Section 7 concludes and proposes

potential research directions.

3

Chapter 2. An Illustrative Example

Chapter 2

An Illustrative Example

In this section, we illustrate how our proposal works through a simple example. For

simplicity, we write I to be an input to a neural network model and Ij to be its j-th

feature value. Similarly, we write O to be the output of the model and Oj to be its j-th

feature value.

Example 2.1 (A Simple Example). Let us consider the simple fully-connected feed-

forward neural network shown in Fig. 2.1. It consists of four layers, i.e., an input layer,

two hidden layers, and an output layer. Each layer has two neurons. The input layer

reads the input; each hidden layer processes its inputs via an affine transformation and

a ReLU activation function; and the output layer yields an output vector. A label is

then generated based on the largest value in the output vector. The weights on the edges

represent the coefficients of the weight matrix and the values beside each nodes are the

biases for the affine transformations at each layer.

The property to be verified is local robustness. Assume we are given an input (0, 0)

with output label 0. The verification task is to prove that O0 > O1 for all I such that

−1 ≤ I0 ≤ 1 and −1 ≤ I1 ≤ 1. In other words, the neural network is local robust on

input (0, 0) against a perturbation with r = 1.

4

2.1. Existing Approaches on Verifying the Example

Figure 2.1: An illustrative example feed-forward ReLU neural network with one input

layer, two hidden layers and one output layer, each layer containing two neurons.

Figure 2.2: Expanded feed-forward neural network from Figure 2.1

2.1 Existing Approaches on Verifying the Example

In the following, we first show how existing abstract interpretation-based verification

methods work on this example. Due to the different characteristics of affine operations

and activation operations, the network is transformed by expanding each neuron into

two nodes, i.e., one for the affine operation and one for the activation function, in the

pre-processing step. That is, given the network shown in Fig. 2.1, the result of the

transformation is shown in Fig. 2.2.

Abstract interpretation-based approaches reason about the target system’s behaviors via

abstractions, which are defined via abstract transformers. Different from concrete trans-

former f which takes an concrete state as input and yields a concrete output, abstract

transformer f# takes an abstract state, i.e. a set of concrete states, as input and yields

another abstract state as output. To guarantee the soundness, the output abstract states

must over-approximate all the reachable output concrete states from the input concrete

states. The domain of the abstract states is called an abstract domain.

In practice, there are several numerical abstract domains available, and we take Deep-

Poly abstract domain as an example. Here we briefly introduce the DeepPoly domain and

5

Chapter 2. An Illustrative Example

leave the details to Section 3. A DeepPoly abstraction a for one neuron is defined as a tup-

ple a = ⟨a≤, a≥, l, u⟩, where a≤, a≥ are two polyhedral constraints presents symbolic lower

and upper bounds; and l, u are concrete lower and upper bounds which over-approximate

the two symbolic bounds.

Example 2.2 (Verifying Example 2.1 with DeepPoly). We write x
[i]
j where i ∈ 1..6 and

j ∈ {0, 1} to denote the abstraction of node n
[i]
j in Fig. 2.2. First, after the input layer

(layer 0), we transform the input range [−1, 1]× [−1, 1] into a DeepPoly element x[1] such

that

−1 ≤ x
[1]
0 ≤ 1, l

[1]
0 = −1, u

[1]
0 = 1

−1 ≤ x
[1]
1 ≤ 1, l

[1]
1 = −1, u

[1]
1 = 1

Then to compute abstraction x[2], we have x[2] = Affine#(x[1]). As the affine operation on

DeepPoly is exact, we can safely write as x[2] =

[
−2 −1

1 0

]
∗ x[1] +

[
−1

0

]
. Then we have

−2x
[1]
0 − x

[1]
1 − 1 ≤ x

[2]
0 ≤ −2x

[1]
0 − x

[1]
1 − 1

x
[1]
0 ≤ x

[2]
1 ≤ x

[1]
0

where l
[2]
0 = −4, u

[2]
0 = 2 and l

[2]
1 = −1, u

[2]
1 = 1. Next, we can obtain the following

abstraction for each node in the figure.

0 ≤ x
[3]
0 ≤ 0.33x

[2]
0 + 1.33, l

[3]
0 = 0, u

[3]
0 = 2

0 ≤ x
[3]
1 ≤ 0.5x

[2]
1 + 0.5, l

[3]
1 = 0, u

[3]
1 = 1

· · ·
−2x

[5]
0 + x

[5]
1 ≤ x

[6]
0 ≤ −2x

[5]
0 + x

[5]
1 , l

[6]
0 = −1.67, u

[6]
0 = 5

2x
[5]
0 −2x

[5]
1 −2 ≤ x

[6]
1 ≤ 2x

[5]
0 −2x

[5]
1 −2, l

[6]
1 = −12, u

[6]
1 = −1.33

Lastly, to verify the property, we check whether the expression

x
[6]
0 − x

[6]
1 ≥ 0

is always true, i.e., the lower bound of the left-hand side is larger than 0. If it is, the

property O0 > O1 is verified. Unfortunately, the lower bound of the left-hand side is -0.33,

which is smaller than 0. As a result, DeepPoly fails to prove the property. Note that this

does not indicate the neural network is not robust within the given input range.

6

2.2. An Overview of Our Approach

It is not uncommon that existing abstract interpretation-based methods fail to verify a

property. For the above example, DeepZ which uses a different abstract domain, similarly

fails to verify the property. This is because spurious counterexamples introduced by over-

approximation prevent the property from being verified.

One way to address this issue is to refine the abstraction, i.e., to identify an alternative

abstraction based on which the property can be verified. The space of abstractions is

however huge. Because abstraction is applied to every neuron, if there are k ways of

refining a neuron, the number of possible abstractions would be kn where n is the number

of neurons. Given that the number of neurons in real-world neural networks is often

large, ranges from hundreds to millions, we need a way of identifying neurons with likely

problematic abstraction.

2.2 An Overview of Our Approach

Our approach adopts CEGAR to solve the issue of problematic over-approximation and

further improves the classic CEGAR based on the characteristics of neural networks. In

the following, we show how our approach works to verify the example. The details of our

approach are presented in Section 4.

Example 2.3. We start with formulating a constrained optimization problem to check

whether there exists some value I which falsifies the property as follows.

minimize O0 −O1

subject to − 1 ≤ I0 ≤ 1 ∧ −1 ≤ I1 ≤ 1

Note that solving this optimization problem is straightforward based on gradient descent

since neural networks are designed for optimization. If the optimization successfully

identifies an input such that O0 − O1 ≤ 0, a counterexample is identified and thus the

property is falsified. In this example, we fail to identify such an input with thousands of

iterations, which is taken as a hint that the property might be valid.

Next, we compute the abstractions x[1] and x[2] as shown in Example 2.2. Recall that

x[3] is over-approximations. We then formulate a second optimization problem to check

whether there exists some concrete value of x[3] which satisfies the lower bound, upper

bound as well as O0 ≤ O1, i.e., to check whether the over-approximation introduced by

7

Chapter 2. An Illustrative Example

x[3] is problematic. In detail, an optimization problem similar to the one above (i.e., the

bounds of x[3] are used instead of x[1]) is formulated and solved to find a counterexample

at layer 3. Unfortunately, we cannot find any counterexample at this layer either.

However, at layer 5, within several to dozens of iterations, the optimization procedure

successfully identifies a ‘counterexample’, e.g., x[5] = (2, 1) with the output vector (−3, 0).

Either it is a part of some real counterexamples (that we missed in solving the first

optimization problem) or part of a spurious counterexample introduced by x[5] (in which

case refining x[5] would eliminate it). In our approach, we assume the latter and only

examine the possibility of the former if the latter is proven not the case.

We thus refine x[5] next. In this example, the activation function is ReLU and thus

refinement can be done by simply distinguishing whether the input to the ReLU function

is positive or not. Out of the two features of x[5], we choose x
[5]
0 as x

[5]
1 is precise. In a

more general case, we may choose the feature based on the causal analysis. The Average

Causal Effect (ACE) measure causal strength of various input features towards the label

output neuron (in this case x
[6]
0). It is calculated by computing the impact of the input

feature (x
[5]
0 and x

[5]
1) with fixed value β on the output feature (x

[6]
0). The value β is

taken uniformly from the neuron’s interval (l
[5]
0 = 0, u

[5]
0 = 0; l

[5]
1 = 1, l

[5]
1 = 5) and the

ACE calculate the average attribution of all the β. Intuitively, a feature with a larger

causality on the output is more likely the problematic contribution and thus refining the

abstraction on the feature is more likely to eliminate the counterexamples. More details

about this causality-based selection is shown in Chapter 4.

To refine x
[5]
0 , we split its input x

[4]
0 into two parts x

[4,p0]
0 and x

[4,p1]
0 at point 0:

x[4,p0] :


−2x

[3]
0 + 2x

[3]
1 ≤ x

[4,p0]
0 ≤ −2x

[3]
0 + 2x

[3]
1

−2x
[3]
0 + 2x

[3]
1 + 1 ≤ x

[4,p0]
1 ≤ −2x

[3]
0 + 2x

[3]
1 + 1

l
[4,p0]
0 = −4, u

[4,p0]
0 = 0; l

[4,p0]
1 = 1, u

[4,p0]
1 = 5

x[4,p1] :


−2x

[3]
0 + 2x

[3]
1 ≤ x

[4,p1]
0 ≤ −2x

[3]
0 + 2x

[3]
1

−2x
[3]
0 + 2x

[3]
1 + 1 ≤ x

[4,p1]
1 ≤ −2x

[3]
0 + 2x

[3]
1 + 1

l
[4,p1]
0 = 0, u

[4,p1]
0 = 2; l

[4,p1]
1 = 1, u

[4,p1]
1 = 5

For the abstraction part where x
[4]
0 < 0, we have

0 ≤ x
[5,p0]
0 ≤ 0, l

[5,p0]
0 = 0, u

[5,p0]
0 = 0

x
[4,p0]
1 ≤ x

[5,p0]
1 ≤ x

[4,p0]
1 , l

[5,p0]
1 = 1, u

[5,p0]
0 = 5

8

2.2. An Overview of Our Approach

and until the output layer, we have

−2x
[5,p0]
0 + x

[5,p0]
1 ≤ x

[6,p0]
0 ≤ −2x

[5,p0]
0 + x

[5,p0]
1

2x
[5,p0]
0 − 2x

[5,p0]
1 − 2 ≤ x

[6,p0]
1 ≤ 2x

[5,p0]
0 − 2x

[5,p0]
1 − 2

l
[6,p0]
0 = 1, u

[6,p0]
0 = 5; l

[6,p0]
1 = −12, u

[6,p0]
1 = −4

and apparently, it clears from the bound that we have x
[6,p0]
0 > x

[6,p0]
1 . For the other case

where abstraction is x[4,p1], we do the same

x
[4,p1]
0 ≤ x

[5,p1]
0 ≤ x

[4,p1]
0 , l

[5,p1]
0 = 0, u

[5,p1]
0 = 2

x
[4,p1]
1 ≤ x

[5,p01
1 ≤ x

[4,p1]
1 , l

[5,p1]
1 = 1, u

[5,p1]
0 = 5

and

−2x
[5,p1]
0 + x

[5,p1]
1 ≤ x

[6,p1]
0 ≤ −2x

[5,p1]
0 + x

[5,p1]
1

2x
[5,p1]
0 − 2x

[5,p1
1 − 2 ≤ x

[6,p1]
1 ≤ 2x

[5,p1]
0 − 2x

[5,p1]
1 − 2

l
[6,p1]
0 = −1, u

[6,p1]
0 = 5; l

[6,p1]
1 = −12, u

[6,p1]
1 = −4

which also results in x
[6,p1]
0 > x

[6,p1]
1 . Therefore, the label should be 0.

From a high level view, although the original problem can not be verified using DeepPoly,

our approach can verify it through first splitting it into two sub-problems, and then

verifying them separately. In fact, it is a crux to figure out which abstraction to refine

and how to refine the abstraction, both of which will be detailed in the rest of this paper.

9

Chapter 3. Preliminaries

Chapter 3

Preliminaries

In this section, we provide the necessary background on neural networks and abstract

interpretation. Further, we show how abstract interpretation is used to verify neural

networks in existing approaches.

3.1 Neural Networks

In general, a neural network can be viewed as a function N : Rp → Rq mapping an input

x ∈ Rp (e.g., images or texts) to an output y ∈ Rq (e.g., labels for image classification

or texts for machine translation). In this work, we focus on deep feed-forward neural

networks that can be organized using a layered architecture, where data flows from layer

to layer.

The first layer is the input layer; the last layer is the output layer and the remaining

layers are hidden layers. Based on operation a layer performs, there are two common

used layers: affine layer and activation layer. An affine layer applies an affine operation

i.e., Affine(x) = Ax+ b where A is a weight matrix and b is a bias vector. An activation

layer applies a non-linear activation function σ. Widely used activation functions are

ReLU, Sigmoid, and Tanh. Activation function is applied neuron-wise, e.g., given an

input x = (x0, · · · , xp−1) ∈ Rp, ReLU(x) =
(
ReLU(x0), · · · ,ReLU(xp−1)

)
.

In the following, we assume a neural network N consists of k layers, and each layer i

10

3.2. Problem Definition

contains di neurons. Then layer i is a function fi : Rdi → Rdi+1 mapping the input of

layer i, i.e., x[i], to the input of layer i+ 1, i.e., x[i+1], and the neural network is function

N : Rd0 → Rdk , where dk is the dimension of output. Usually the input layer only reads in

data and does not transform the data, and thus we can simply write x[1] = f0(x
[0]) = x[0].

3.2 Problem Definition

A verification task in our setting is a triple {ϕI}N{ϕO} where ϕI is a constraint on the

inputs; N = fk ◦ fk−1 ◦ · · · fi ◦ · · · ◦ f0 is a feed-forward neural network where each fi is a

layer of neurons as discussed in Section 3.1; and ϕO is a constraint on the outputs. Given

N , we write Ni to denote fk ◦fk−1 ◦ · · · ◦fi, i.e., a partial neural network where the i-layer

becomes the input layer.

The triple is invalid if there exists an input x[0] such that x[0] ⊨ ϕI and N(x[0]) ⊨ ¬ϕO.

The input x[0] is referred to as a counterexample. Otherwise, the triple is valid. A

counterexample for Ni where i > 0 is referred to as a partial counterexample, i.e., a

valuation of input to the i-th layer which violates ϕO. The verification problem is defined

as follows. Given a triple {ϕI}N{ϕO}, check whether the triple is valid or not.

In this work, the primary means of verifying neural network is abstraction. Given a

mapping f , we say that a relation F is an abstraction of f if and only if ∀i, f(i) = o,

such that (i, o) ∈ F (i.e., F over-approximates f) and F is less complicated than f in

some measure. An abstraction is ‘good’ if the property can be effectively verified based

on the abstraction. However, it should be noted that abstraction may introduce spurious

counterexamples, in which case we say that the over-approximation is problematic.

3.3 Abstract Interpretation for Neural Networks

Abstract interpretation is a classic static program analysis technique. The idea is to

soundly approximate and reason about a program’ behaviors without executing it. Ab-

stract interpretation concerns two domains, i.e., a concrete domain C where program

states are defined, and an abstract domain A where abstractions are defined.

In abstract interpretation, the choice of abstract domain is crucial as it determines the

11

Chapter 3. Preliminaries

Figure 3.1: Convex approximations for ReLU in DeepPoly, when linj < 0 and linj > 0 is

satisfied.

efficiency and precision of the abstract interpretation. In the literature, several numerical

abstract domains are available for analyzing neural networks, such as interval, zonotope,

and polyhedral. We focus on the DeepPoly abstraction that uses polyhedral in this work.

The DeepPoly abstract domain assign to each neuron a variable that represent its abstrac-

tion. Each variable has two associate polyhedral constraints the lower and upper bounds

of the variable. In addition, the variable also contains interval bounds that are derived

from polyhedral constraints. Therefore, an abstraction of variable X can be written as a

tuple a = ⟨a≤, a≥, l, u⟩ where

a≤, a≥ ∈ {x 7−→ v +
∑

wj · xj | v ∈ R, wi ∈ R} (3.1)

with xj represent the abstraction of other variables and l, u ∈ R satisfying a≤ ≤ x ≤ a≥

and l ≤ x ≤ u. After abstracting the given input region, DeepPoly propagates abstraction

layer by layer according to the layer transformation until the output layer is reached. Then

it checks whether the resulting abstraction always satisfy the target property. If it does,

the property is verified. Otherwise, the verification fails.

To propagate abstractions, it is essential to define abstract transformers, which are used

to approximate corresponding concrete layer operations. For the Affine operation, the

abstract transformer can be defined exactly for DeepPoly abstract domain. In other

words,

∀y ∈ Affine #(a), ∃x ∈ a, such that y = Affine (x).

Now let’s introduce how abstract transformer is defined for ReLU operation in DeepPoly.

To balance efficiency and preciseness, DeepPoly checks the bounds of the neurons first and

then approximate each neuron separately. In specific, assuming the current abstraction

12

3.3. Abstract Interpretation for Neural Networks

is ainj , for neuron j, aoutj can be determined by the following cases:

0 ≤ xout
j ≤ 0, loutj = 0, uout

j = 0 if uin
j ≤ 0

xin
j ≤ xout

j ≤ xin
j , loutj = linj , uout

j = uin
j if linj ≥ 0

0 ≤ xout
j ≤ uin

j (xin
j −linj)

(uin
j −linj)

, loutj = 0, uout
j = uin

j if uin
j ≤ −linj

xin
j ≤ xout

j ≤ uin
j (xin

j −linj)

(uin
j −linj)

, loutj = linj , uout
j = uin

j otherwise

For the two cases that uin
j ≥ 0 and linj < 0, the abstract transformer uses a convex

approximation as in Fig. 3.1 where the slope of the non-vertical edge is uin
j /(uin

j − linj) to

approximate ReLU operation. In fact, such approximation is chosen greedily in order to

minimize its area.

Next, for abstract transformers of Sigmoid and Tanh operations in DeepPoly, as they are

similar to each other, their transformers work the same. Let g : R → R represents the

activation function and g′ is the first derivatives of g. With the current abstraction is ainj ,

the next abstraction aoutj for neuron j can be determined as loutj = g(linj), uout
j = g(uin

j)

and 

g(linj) ≤ xout
j ≤ g(uin

j) if linj = uin
j

xout
j ≥

g(linj) + λ · (xin
j − linj) if 0 < linj

g(linj) + λ′ · (xin
j − linj) otherwise

xout
j ≤

g(uin
j) + λ · (xin

j − uin
j) if uin

j ≤ 0

g(uin
j) + λ′ · (xin

j − uin
j) otherwise

otherwise

, with

λ = (g(uin
j)− g(linj))/(uin

j − linj)

and

λ′ = min(g′(linj), g′(uin
j))

The readers are referred to [30] for more details. We illustrate the ReLU transformer via

the example in Section 2.

In addition toDeepPoly, there are other existing abstract inter-pretation-based approaches

for neural network verification, such as AI2 [13] and DeepZ [28]. All these approaches

share similar overall procedure, i.e., abstracting input region, then applying the abstract

transformer layer by layer until the output layer, and lastly check whether resulting ab-

straction satisfies the target property. All these approaches would fail to verify a property

if any over-approximation introduce property-violating counterexamples, as no abstrac-

tion refinement step is involved.

13

Chapter 4. The Approach

Chapter 4

The Approach

In this section, we present the detail of our approach.

4.1 Overall Approach

Our overall approach is shown in Algorithm 1. We maintain a verification tree through-

out the procedure. Initially, tree has only one root node, which is the initial verification

problem {ϕI}N0{ϕO}. The loop from line 3 to line 17 then iteratively examines and ex-

pands the tree whenever necessary (to proceed the current verification task or decompose

one verification task into multiple tasks). During each iteration, a leaf node representing

an unfinished task t = {a[i]}Ni{ϕO} is selected. First, it checks whether stop condition

is met, i.e., timeout or too many tasks were spawn. If yes, the procedure returns a fail-

ure. Otherwise, we check whether layer i is the output layer (i.e., it does nothing other

than output the result). If it is, we check whether a[i] satisfies ϕO. For local robustness

property, the checking is quite straightforward. The leaf is marked finished if a[i] satisfies

ϕO.

If the above case fails or layer i is not the output layer, we start working on the veri-

fication task. Considering problematic over-approximation might have been introduced

in computing a[i], we first validate a[i] through procedure validate. Intuitively, validate

employs optimization techniques to search for a partial counterexample ‘cheaply’. The

details are discussed in Section 4.2.

14

4.1. Overall Approach

Algorithm 1: DeepCause (ϕI ,N , ϕO)

1 let a[0] be the initial abstraction based on ϕI

2 let tree be a task tree with only a root node {a[0]}N0{ϕO}
3 for each unfinished leaf t = {a[i]}Ni{ϕO} of tree do

4 if timeout or too many tasks are spawn then

5 return ‘Failed’

6 if layer i is the output layer then

7 if a[i] satisfies ϕO then

8 mark t as finished

9 counterexample ce = validate(i, a[i], N, ϕO)

10 if ce is null then

11 get next abstraction a[i+1] = f#
i (a[i])

12 add task {a[i+1]}Ni+1{ϕO} as a child of t

13 else

14 if layer i is the input layer then

15 return ‘Falsified’

16 if refine(tree, i− 1, N, a[i−1]) is False then

17 return ‘Failed’

18 return ‘Verified’

If procedure validate finds no counterexamples, then no evidence shows the over-approximation

introduced by a[i] is problematic (although there is no guarantee) and thus we proceed

to abstract the next layer and construct the next verification task as the child of t. If

a counterexample is at the input layer, then we know that it is a real counterexample

that can invalidate the verification task. In this case, we report the task is falsified as the

result. Otherwise, we start the abstraction refinement process using procedure refine. We

leave the details on how refinement is done in Section 4.3. If the refinement fails, then we

report the verification failure. Otherwise, we continue to the next unfinished task. Once

all the tasks are done, the original verification task is successfully verified.

15

Chapter 4. The Approach

4.2 Abstraction Validation

In the following, we present details of validate, which decides whether an over-approximation

a[i] of the i-th layer of N is problematic or not. Formally, a[i] is problematic if there exists

at least one concrete input x[i] ∈ a[i] such that Ni(x
[i]) ⊨ ¬ϕO.

Note that verifying whether a[i] is problematic equals solving the verification task itself.

Thus, our goal is rather to check whether a[i] is problematic in a ‘cheap’ way. The

basic idea is to sample some valuations within a[i] and check whether any of them are

counterexamples. Due to the geometrically complicated region defined by a[i], trivial

sampling is usually ineffective. In the following, we show how we could sample and search

for counterexamples in a systematic, effective, and efficient way.

First, let’s consider the question how to sample valid valuations of x[i] within DeepPoly a[i].

We can easily obtain all possible sample of x[i] by using the lower bound and upper bound

in a[i]. The sample is guaranteed to be valid and over-approximate all the possible value

of x[i].

Once obtaining valid samples, our approach attempts to search for counterexamples

through pushing these samples towards property-violating zone. Through drawing in-

spiration from the recently developed effective method for adversarial perturbation [24],

we formulate abstraction validation as an optimisation problem and leverage the gradient

information to efficiently generate counterexamples. In particular, the idea is to devise a

loss function to measure how far the current sample is to violate the target property, and

drive the current sample toward property-violating zone through decreasing the value of

loss function. In fact, we adopt the projected gradient descent (PGD) [23], a standard

method for large-scale constrained optimization, to optimize the loss function based on

gradient information. Meanwhile, the gradient information can be efficiently calculated

through the chain rule. Formally, we have

∂Loss(Ni ◦ xi, ϕO)

∂xi

=
∂Loss(Ni ◦ xi, ϵ, ϕO)

∂(Ni ◦ xi)
× ∂(Ni ◦ xi)

∂xi

where the two ingredients on the right side can be collected or calculated efficiently.

Algorithm 2 shows the details of our abstraction validation. The loop from line 2 to

line 10 allows us to search from multiple random seeds until a timeout occurs. At line 3,

we generate a random seed x∗
i in range [l[i], u[i]]. The loop from line 4 to line 10 then

navigates through the space of x∗
i iteratively. In particular, after computing the input x∗

i ,

16

4.2. Abstraction Validation

Algorithm 2: validate(i , a [i],N , ϕO)

1 let counterexample ce be null

2 while not time out do

3 generate random seed x∗i within range [l[i], u[i]]

4 while less than M iterations do

5 if Ni(x
∗
i) violates ϕO then

6 ce = x∗i
7 return ce

8 compute gradient grad = ∂Loss(Ni◦xi ,ϕO)
∂xi

9 x∗i = x∗i − α sgn(grad)

10 clip x∗i to fit in range [l[i], u[i]]

11 return ce /* null in this case */

we check whether x∗
i could lead to property violation, i.e., Ni(x

∗) violates ϕO at line 5.

If it is, we return x∗
i as a counterexample. Otherwise, we follow the gradient to search

through the space. That is, at line 9, we modify x∗
i according to a loss function which is

discussed as follows.

Lastly, we briefly discuss how loss function is constructed. For the robustness analysis,

where our goal is to generate samples with distinct prediction (i.e., label) other than the

original label t, a simple loss function can be defined as below:

Loss(f, x, ϕO) = Ot −max
j ̸=t

(Oj) where O = f(x).

Apparently, decreasing the value of the loss function navigate the input x towards the

property-violating zone. Once a negative loss value is reached, the optimization procedure

return x as a counterexample (a.k.a. adversarial examples in the neural network attack

scenario).

Except the robustness property, ϕO can be given in a more complicated form such as

a constraint in SMTLIB syntax, wherein defining similar loss functions is also possible.

In fact, there are systematic ways to transform any quantifier-free constraint into a loss

function in linear time. As this is not central to our discussion and thus we refer interested

readers to [12] for details.

17

Chapter 4. The Approach

Algorithm 3: refine(tree, i ,N , a [i])

1 measure = causal(i,Ni)

2 get neurons js = k select(measure, a[i], k = 1)

3 if js is empty then

4 return False

5 get refined abstractions as = k split(a [i], js)

6 if as is empty then

7 return False

8 replace sub-tree rooted by a[i] with as

9 return True

4.3 Abstraction Refinement

Now, we present details on how abstraction refinement is done in our framework, i.e.,

the details of procedure refine, which is shown in Algorithm 3. The inputs are the layer

i, the network N , the current abstraction represented in the form of a tree tree, and the

abstraction a[i] at layer i.

Suppose the abstraction a[i+1] is invalid with the witness of counterexample ce. Appar-

ently partitioning a[i+1] itself can not make it more precise. Our idea is to partition the

very abstraction before a[i+1]. In specific, we refine a[i+1] by partitioning k neurons of

abstraction a[i] (notice the index at line 16 of Algorithm 1). In the implementation, we

set k = 1. The k neurons can be regarded as the most effective neurons on the neural

network output. To select these neurons, our work mainly consider their causal effect

(Section 4.4). Intuitively, the causal effect can be regarded as an indicator on how sensi-

tive the output of neural network is with regards to the neuron. Thus, refining the neuron

with maximum causal effect is more likely to change the output so that ce is no longer a

spurious counterexample (i.e., its output according to the abstraction would satisfy ϕO).

Next, we describe how neurons are selected and partitioned for different layer operations.

Note that we only consider the activation operation where the abstraction is not exact so

Affine layer will not be chosen to partition.

Neuron selection and partition for ReLU operation. Given a ReLU function

x
[i+1]
j = ReLU (x

[i]
j), approximation is only introduced for the neuron j such that l

[i]
j < 0

18

4.4. A Causality-based Selection

and u
[i]
j > 0. Therefore, in function k select we only consider these neurons. Once we

picked k neurons, we partition each of them at x
[i]
j = 0 so that the resulting abstraction

for those neurons are exact.

Neuron selection and partition for Sigmoid and Tanh operation. Different from

ReLU activation function, Sigmoid and Tanh are only exact when l
[i]
j = u

[i]
j so for the

most case, all neurons can be considered. In this work, we partition each neuron at the

value (l
[i]
j + u

[i]
j)/2. We notice that unlike ReLU, the next approximation on the refined

neuron may not become exact after the refinement. As a result, to prevent the algorithm

to partition the neuron infinite, each neuron is only partitioned once. We admit that

there may be a more systematic way to choose the partition values for Sigmoid and

Tanh functions and left it to the future work.

4.4 A Causality-based Selection

In this section, we will explain how we rank each neuron for refinement. Since the number

of refining tasks can grow exponentially with the size of the network, it is important

that we need to find the neurons that have the most impact on the output to refine.

DeepCause thus adopts a causality-based method to analyse all neurons in the considering

hidden layer.

In recent years, causality analyse has gain increasing attention in neural network inter-

pretation [7, 14, 43, 26, 33]. Many different approaches have used casual attribution to

explain the relationship between the components in neural networks. Compare to tradi-

tional method like gradient, which suffer from sensitivity and induce causal effects biased

by other input features [7], the causal approach can identify the cause and effect between

network’s components and thus be able to measure the impact of hidden neurons on the

output of the network.

In the following, we go over some concepts which is necessary to understand causality

analysis in this work.

Definition 4.1. (Structural Causal Models) [7]. A Structural Causal Model (SCM) is a

4-tuple (X,U, f, Pu) where, X is a finite set of endogenous variables, usually the observable

random variables in the system; U is a finite set of exogenous variables, usually treated

19

Chapter 4. The Approach

Figure 4.1: An example casual graph.

as unobserved or noise variables; f is a set of functions [f1; f2; ..., fn], where n refers to

the cardinality of the set X and these functions define causal mechanisms, such that

∀xi ∈ X;xi = fi(Par, ui). The set Par is a subset of X − {xi} and ui ∈ U . Finally, Pu

defines a probability distribution over U .

The example in Figure 4.1 is a casual graph that shows a study about income of people,

with nodes being variables and edges represent cause-effect relationship. In this graph,

age is an exogenous variable while experience, enthusiasm and heath that come from age

are a set of endogenous variable. The outcome of this is income. As can be seen from

the graph, age factor has direct effect on experience (more age usually come with more

experience), enthusiasm (young people have more willing and drive to work) and heath

(heath often weaken as time go on). All of these elements can affect what job you have

and in turn, your income. Furthermore, your own age can have direct impact on your

income.

Based on the result in [7], we know that a neural network can be represented in form of

a SCM by considering a set of exogenous random variables that act as causal factors for

input neurons, then considering the neurons in the previous layer as causal factors for the

neurons in the next layer. We then define the causal attribution of each neuron in the

network as follows.

Definition 4.2 (Causal Attribution). We denote the measure of the causal attribution

of given neural network N as y. The Causal Attribution of a neuron x in N ′s to y is:

ACEy
do(x) = Ex[Ey[y|do(x = β)]] (4.1)

20

4.4. A Causality-based Selection

Algorithm 4: causal(i ,Ni)

1 let t be the label of the original input

2 generate random seed x∗i within range [l[i], u[i]]

3 u[k] = Ni(x
∗
i)

4 for neuron j in Ni do

5 β = uniform(l
[i]
j , u

[i]
j)

6 v
[k]
j = Ni(x

∗
i , do(x

j
i = β))

7 y = |u[k]t − v
[k]
t |

8 return y

We notice that our formula is different from [7] because in [7], the authors want to compute

the causal attribution according to a fixed value β of the neuron, while in our work, we

want to compute the average attribution based on the neuron’s interval. In the implemen-

tation shown in Algorithm 4, to compute the right-hand side, we simply apply uniform

sampling to collect a set of values of the neuron based on its interval (line 5) (which is

computed based on the abstract interpretation as presented in Section 3.3). Then for

each value β, we apply the do operation (i.e., set the value of the variable x representing

the considering neuron to β while keeping the values of other neurons in the same layer

unchanged). Let u[k] in line 3 be the output vector according to the random input (from

the layer with the do operation) and v[k] in line 6 be the output vector according to the

input after applying the do operation, we define y =
∣∣∣u[k]

t − v
[k]
t

∣∣∣ with t is the label of the

original input in line 7. Intuitively, the variable y indicates how much the value of the

output at t changes according to the do operation.

Example 4.3. Now we demonstrate how Algorithm 4 work by using x[5] in example 2.3.

In example 2.3, after determine that x[5] need to refine, we choose x
[5]
0 without using casual

analysis because x
[5]
1 is precise. However, in this example, we disregard that and calculate

the casual value of each features regardless.

Let generate random seed in range of x[5] where l
[5]
0 = 0, u

[5]
0 = 0; l

[5]
1 = 1, l

[5]
1 = 5:

x∗
5 =

[
0.5 4
1.5 2
1.75 3.5

]

As such, we have the output value of :

u =
[

0.5 4
1.5 2
1.75 3.5

]
∗
[
−2 2
1 −2

]
=

[
3 −7
−1 −1
0 −3.5

]
21

Chapter 4. The Approach

Next, we apply uniform sampling on x
[5]
0 : β0 = [0, 1, 2]

do(x
[5]
0 = β) =

[[
0 4
0 2
0 3.5

]
,
[
1 4
1 2
1 3.5

]
,
[
2 4
2 2
2 3.5

]]

v0 = N5(x
∗
5, do(x

[5]
0 = β)) =

[[
4 −8
2 −4
3.5 −7

]
,
[

2 −6
0 −2
1.5 −5

]
,
[

0 −4
−2 0
−0.5 −3

]]
The label of the original input is 0. Therefore, we have the result y as following:

u[t]− v0[0] =
[[−1

−3
−3.5

]
,
[

1
−1
−1.5

]
,
[

3
1
0.5

]]

y0 = |u[0]− v0[0]| =
(∣∣∣∣−1− 3− 3.5

3

∣∣∣∣ ∣∣∣∣+1− 1− 1.5

3

∣∣∣∣+ ∣∣∣∣3 + 1 + 0.5

3

∣∣∣∣) /3 = 1.5

We apply the same process to x
[5]
1 with β1 = [1, 3, 5]. The result is y1 = 1.389. According

to the 2 values, we can conclude that feature x
[5]
0 has more impact to the label 0 compare

to feature x
[5]
1 . As a result, x

[5]
0 is chosen to refine.

4.5 Soundness

Before closing this section, we briefly analyze our approach in terms of soundness. In our

approach, the primary means of verifying neural network is abstraction, and we thus focus

on how abstractions are manipulated during the verification. In fact, the abstractions in

our approach can only be manipulated in the following three ways: (a) created from

a given concrete input region; (b) computed through applying abstract transformer on

existing abstractions and (c) refined by partitioning existing abstractions. It is not hard to

guarantee the abstraction from (a) and (b) safely over-approximate corresponding concrete

states. For case (c), suppose we split an abstraction a[i] and get a set of abstraction as.

It is easy to prove that ∀x[i] ∈ a[i], there exists at least one abstraction a[i],pr ∈ as that

x[i] ∈ a[i],pr. Therefore, the soundness is proved1.

1As our implementation is based on ELINA library which is sound with respect to floating point

semantics, our implementation gets this benefit and is thus sound with respect to floating point semantics.

22

Chapter 5

Evaluation

As a proof-of-concept demonstration, we have implemented our approach as a prototype

tool named DeepCause on top of DeepPoly abstract domain. The main procedure of

DeepCause is written in Python with more than 7500 line of code while the underlying

DeepPoly computation is performed by the ELINA library [31, 32].

To evaluate our approach, in this section, we would like to answer the following three

research questions (RQs) :

RQ1: How does DeepCause perform compare to DeepPoly?

RQ2: How does DeepCause perform when using gradient-selection?

RQ3: How efficient is DeepCause compare to other approaches?

5.1 Experimental Setup

To answer above research questions, we have conducted an extensive set of experiments

as follows.

Benchmarks. We collected a benchmark suite of verification tasks across neural network

23

Chapter 5. Evaluation

models trained on MNIST [20] image dataset. MNIST consists of 60000 grayscale images

of handwritten digits, whose resolution is 28 × 28 pixels. The images show white digits

on a black background. During the training, we vary the model size in order to test the

scalability of our approach. In specific, the number of hidden layers in the models varies

from 3 to 5, and the number of neurons for each hidden layer varies from 10 to 50 (step

size if 10). The activation functions in the hidden layers of the networks are either ReLU,

Sigmoid, or Tanh. In total, we have 45 networks. The first 100 images from the test set

are chosen as the test inputs. We notice that for each network model, only the inputs

which are classified correctly by the network are used for robustness evaluation. In total,

there are 4380 verification tasks.

In addition, we apply our approach DeepPoly and RefinePoly to compare our performance.

RefinePoly is a network robustness verified approach that combines the strength of MILP

solver and LP relaxation with fast overapproximation methods (which is DeepPoly in

this case). This method uses the abstract domain as input for MILP solver to refine

the boundary of the domain which in turn make the abstraction tighter which result in

better performance. Therefore, RefinePoly is a refinement-based approach that improve

DeepPoly precision at the cost of it’s runtime. We implement our method into RefinePoly

by splitting the neuron chosen by heuristic and use MILP solver and LP relaxation to

further refine the split boundary. We apply our approach on RefinePoly to see how

effective it is with other method.

Robustness properties. We consider the robustness properties using L∞-norm [6] distance.

This mean that the adversarial region contains all perturbed images x′ where each pixel

x′
i has a distance of at most ϵ from the corresponding pixel xi in the original input x. For

each test input, we try to find the maximum verified robustness bound according to each

verifying approach. The step size of the bound is 0.001.

Experimental Configuration All of our experiments were performed on a Ubuntu 20.04

machine with a 6-core CPU and 16GB memory. Considering the efficiency and termina-

tion issues, we set 128 as the maximum number of tasks for each layer in the network.

Moreover, each neuron in a layer is only refined once. Thus, a verification problem can

be either verified, falsified, or exceeding the maximum refinement limit.

24

5.2. Experiment Results

5.2 Experiment Results

n = 10 n = 20 n = 30 n = 40 n = 50

#c %c #c %c #c %c #c %c #c %c

ReLU

k = 3 63 18.3 65 12 70 12.3 77 9.4 59 8.5

k = 4 66 15.4 74 13.4 69 14.5 68 10.6 60 8.3

k = 5 58 13.6 70 13.4 78 12.7 68 10.3 57 9.2

Sigmoid

k = 3 66 10.8 49 9 48 7.8 41 7.7 25 7.3

k = 4 51 9.9 45 8.1 35 8.2 32 8.8 28 7.9

k = 5 68 12.4 54 8.8 32 7 29 8.7 27 6.6

Tanh

k = 3 74 15.6 55 11.7 28 13.8 25 12.6 21 14.1

k = 4 78 15.7 37 10.4 25 14.6 15 15.3 15 16.3

k = 5 66 15.08 28 16.8 10 16 8 17.1 5 24.9

Table 5.1: Comparison between DeepPoly and DeepCause

To answer RQ1, we compare the performance of DeepCause with DeepPoly on the bench-

mark networks. We report the results based on two measures:

#c the number of the inputs whose verified robustness bounds get improved by Deep-

Cause;

%c the average improved percentage of the robustness bounds on the above inputs.

For example, if there is one improved input and the verified robustness are 0.05 and 0.06

by DeepPoly and DeepCause respectively, then the corresponding results are #c = 1

and %c = (0.06 − 0.05)/0.05 = 20%. We notice that as the underlying engine of Deep-

Cause is based on DeepPoly, the worst case is that DeepCause has the same effectiveness

as DeepPoly.

The results are shown in Table 5.1, which the first column shows the activation function,

the second column shows the number of hidden layers, and the remaining columns show

the results according to the number of neurons in each hidden layer. From the results,

we see that DeepCause can improve the verified robustness bounds of DeepPoly for all

networks. The number of improved testcases is at least 5 to as large as 77 while the

average improved bounds can range from 6.6% at worst to 24.9% at best. Totally, there

25

Chapter 5. Evaluation

n = 10 n = 20 n = 30 n = 40 n = 50

#g #c %g %c #g #c %g %c #g #c %g %c #g #c %g %c #g #c %g %c

ReLU

k = 3 10 10 4.85 8.88 18 18 5.76 6.71 11 28 6.19 6.49 6 41 5.58 5.85 17 28 5.57 6.72

k = 4 11 6 5.51 6.03 14 14 6.78 5.75 14 25 6.91 5.94 9 33 6.69 6.57 11 23 6.76 5.83

k = 5 5 13 5.31 7.86 11 17 5.78 7.01 9 31 8.48 7.01 5 22 6.47 7.4 7 29 7.16 7.17

Sigmoid

k = 3 16 13 7.61 9.46 1 28 7.14 8.13 0 28 7.59 0 23 6.95 1 13 7.69 6.85

k = 4 11 14 6.98 4.89 1 26 8.33 7.72 0 22 7.65 0 18 8.36 3 20 9.39 7.38

k = 5 0 49 10.02 3 37 10.08 8.91 4 22 4.6 7.26 1 14 4.55 6.97 1 12 5.26 6.39

Tanh

k = 3 2 51 7.29 12.63 0 43 11.43 0 21 13.69 0 21 13.33 0 21 14.06

k = 4 0 54 12.81 0 29 9.99 0 20 13.8 0 14 15.72 0 14 16.46

k = 5 0 44 14.34 0 23 16.38 0 10 16.03 0 5 20.02 0 5 24.86

Table 5.2: Comparison between DeepGrad and DeepCause

are 2122 improved tasks (i.e., 48%). The results also show that DeepCause works best

for the ReLU networks where it improves the bounds of 1002 tasks, nearly the half of all

improved tasks. This is expected because the one-time refinement (as in our implementa-

tion) for each hidden neuron in the ReLU networks yields the exact approximation in the

next step, while the one-time refinement in Sigmoid and Tanh networks does not have

this property. We also see that the effectiveness of DeepCause drops on large networks.

The number of tasks improved falls from around 50-80 task in n = 10 to around 5-25 in

n = 50 for the Sigmoid, Tanh networks and the average percentage also decreases from

around 15% to around 8% for ReLU and Sigmoid networks. Again, the results are ex-

pected due to the fact that with large networks, there may be more neurons which need to

be refined at the same time, which will generate more tasks at the considering layer, and

with a limited number of tasks for a layer, we may not refine all the necessary neurons

(especially for the Sigmoid and Tanh networks, where the refinement does not yield the

exact approximation for the neurons).

To answer RQ2, we substitute the function k select in Algorithm 3 by another heuristic,

in which we choose the neurons to refine based on the gradient. That is, with the coun-

terexample ce, we compute the gradient of each neuron in the considering layer according

to the output value of target label, then choose the neurons based on their absolute gradi-

ent from highest to lowest. We call the implementation with this heuristic DeepGrad and

compare its performance with DeepCause. Unlike RQ1, there may be test inputs which

DeepGrad has better performance than DeepCause, so we use the following measures:

#g, #c the number of the inputs whose verified robustness bound get improved by Deep-

Grad compare to DeepCause and vice versa;

26

5.2. Experiment Results

%g, %c the average improved percentage of the robustness bound by DeepGrad compare

to DeepCause and vice versa.

The results are shown in Table 5.2. We notice the %g column is indefinable in case

#g = 0. From the table, we can see that DeepCause and DeepGrad are complement to

each other. However, it is clear that DeepCause has better results, especially when the

the sizes of the networks increase and for Sigmoid and Tanh networks.DeepCause has

better testcases for every network while DeepGrad doesn’t have any in 19 networks, all

of which is either Sigmoid or Tanh networks. For ReLU networks, the different in the

number of improved input between DeepCause and DeepGrad is around 0-6 in n=10, 20

and it grows to around 15-30 in n=40, 50. In summary, DeepGrad has better results in

202 tasks (i.e., 5%) and DeepCause has better results in 1052 tasks (i.e., 24%). Moreover,

the average improved percentage of DeepCause is slightly better than DeepGrad in more

networks in the remaining definable cases. This result shows that the causality approach

not only work better than gradient approach in general but it is also a more suitable

approach for Sigmoid, Tanh and big network.

In addition of DeepPoly, we also apply our method and heuristic to RefinePoly. Due to

limit resource, we are only able to test it on ReLU network but the result shows in Table

5.4 indicates a similar pattern. DeepCause has better performance on both categories

in every network except one (network ReLU 4 10) and the different become larger with

larger network. Table 5.4 shows that DeepCause verifies better robustness in 432 tasks

(i.e., 79%) with maximum percentage is 8.89% compare to DeepGrad with 114 tasks (i.e.,

21%) and 6.41% respectively. In conclusion, both result on DeepPoly and RefinePoly

shows that our method can be appiled and further enhance the performance of existing

methods.

Finally, to answer RQ3, we report the total running time of DeepPoly, DeepGrad, and

DeepCause to verify the max robustness bound according to each tool. From the table,

we can see that DeepCause spends more time than DeepGrad and DeepPoly, which is ex-

pected due to DeepCause has a complex refinement strategy compare to other approaches.

The running time of DeepCause in general is about 2-5 times higher than DeepGrad with

the longerst time is 27626s and 17333s, respectively. Consider that DeepCause has much

better effectiveness, i.e., verify larger robustness bounds, we believe the more running

time is reasonable. The time of DeepCause usually become larger with the size of the

network except when the network become to big or with Sigmoid, Tanh network where

27

Chapter 5. Evaluation

n = 10 n = 20 n = 30 n = 40 n = 50

tp tg tc tp tg tc tp tg tc tp tg tc tp tg tc

ReLU

k = 3 9.5 421.8 615.1 16.2 1859 2123 19.2 3897 6806 24.0 2362 8755 27.9 1847 9739

k = 4 11.7 748.5 1024 22.6 10472 8927 32.9 17333 27626 37.2 2611 15424 40.7 4390 8805

k = 5 14.0 551.8 1356 31.6 12729 22210 39.5 6900 16811 58.5 7166 18429 53.6 1815 6636

Sigmoid

k = 3 10.7 2067 4756 21.5 872.6 4401 26.2 1389 8321 31.3 3138 7074 35.7 820.2 5294

k = 4 11.2 3435 6493 30.3 1774 3665 39.7 1411 6290 44.8 2096 6229 62.2 4166 6420

k = 5 16.7 2874 9272 37.2 3649 1871 53.4 988.7 7481.2 70.7 1139 3096 79.1 6478 3550

Tanh

k = 3 8.8 2625 9796 16.3 1003 8086 21.6 1216 7499 25.8 93.3 9104 31.2 31.2 11034

k = 4 10.7 6421 15265 24.5 458.5 6016 33.1 301.5 9213 40.6 64.6 6408 49.8 174.7 9152

k = 5 13.7 2891.4 12606 34.3 293.1 9797 45.8 45.8 2619 59.2 213.1 1250 71.7 71.7 1565

Table 5.3: The running time (second) of DeepPoly, DeepGrad, and DeepCause to verify

the max robustness bound

n = 10 n = 20 n = 30 n = 40 n = 50

#g #c %g %c #g #c %g %c #g #c %g %c #g #c %g %c #g #c %g %c

ReLU

k = 3 8 16 5.26 7.29 11 22 4.9 6.8 9 27 5.17 7.66 5 25 4.43 6.39 1 19 3.7 5.58

k = 4 14 1 4.88 2.78 15 28 5.51 7.2 12 32 6.41 6.43 6 39 5.05 6.59 5 38 4.05 5.96

k = 5 8 9 4.57 4.97 13 43 5.37 8.89 2 47 3.62 7.08 2 41 3.79 6.76 3 45 5.06 6.8

Table 5.4: Comparison between RefinePoly DeepGrad and RefinePoly DeepCause

our approach become ineffective which make the time go down. We can clearly see the

trend of this in the Table 5.3 where the running time of DeepCause and DeepGrad in-

crease from column n=10 to n=30 and then decrease to column n=50. We also notice that

when we verify the max robustness bound of DeepPoly with DeepGrad and DeepCause,

the running time of three approaches should be similar. It is shown at the Tanh networks

with n = 50, k = 3 or k = 5, the running time of DeepGrad and DeepPoly are the

same because DeepGrad does not have any improved robustness bound in these networks

compare to DeepPoly.

28

Chapter 6

Related Work

Formal local robustness verification for neural networks. To be able to prove the robust-

ness of neural networks, the researchers employ many different certification techniques.

These already existing verifiers can be broadly classified as either complete or incom-

plete. Complete verifiers are exact, i.e., if the verifier fails to certify a network then

the network is non-robust (and vice-versa). Therefore, these verifiers do not have false

positives but they have limited scalability and cannot handle neural networks containing

more than a few hundred hidden neurons. This is because complete verifiers are based

on on computationally expensive methods like SMT solving [11, 38], mixed integer linear

programming [35] or input refinement [39]. On the other hand, incomplete verifiers can

produce false positives which mean that they are sound but may fail to prove robustness

even if it holds. However, they scale much better than complete verifiers due to a variety

of over-approximation method that they employed like duality [10], linear approxima-

tion [40, 41], and abstract interpretation [13, 28]. In summary, there are 2 key challenges

that need to face when creating a new verifier: Scalability and Precision. A sound anal-

ysis of neural networks need to be able to scale to large network while maintaining its

precision. Therefore, in this thesis, we aim for the sweet spot between precision and

scalability.

Neural Network Verification based on Abstraction. This work is closely related to the

many recent proposals on neural network verification. To list a few, AI 2 is the very first

approach to employ Zonotope abstraction to verify neural networks and shows it’s promise

29

Chapter 6. Related Work

compare to other approaches, and then DeepZ improves its precision via better abstract

transformers for activation functions. Later, DeepPoly devises a new abstract domain

based on polyhedra and interval suitable for neural network verification and proves that

it is faster and more effective than others state-of-the-art method. Recently, researchers

propose the Star-based approach [37, 36] to approximate neural network behavior, and

claims to achieve the state-of-the-art performance. Different from our approach, all these

approaches verify neural network without refinement.

The idea of splitting the bounds of inputs or hidden neurons has been explored in previ-

ous works [17, 11, 39, 38, 22] and can be fitted into a unified Branch-and-Bound frame-

work [5]. Therein, [17] encodes the verification problem as a constraint and precisely

solving the constraint, which is very different from abstraction-based methods while [39]

only partition the input region with the guidance of heuristics. In addition, while both

of the researches [11, 38] branch the problem by adding linear constraint in the solver at

ReLU layer, [38] chooses the neuron to split by gradient heuristic, whereas [11] doesn’t

employ specialized heuristics for it. For other works, DeepCause is different from them as

we leverage counterexamples to perform the refinement as soon as possible. Our approach

attempts to find out the root cause of the verification failure and operates on the internal

abstractions to fix it. From this perspective, our approach can also be extended to help

debug the abstraction-based verification. Moreover, we use causality reasoning to choose

the neurons to refine, which shows to be more effective than gradient.

Program Verification CEGAR is a technique widely applied in program verification sce-

narios [8, 16, 9, 2, 3, 15, 21]. The general procedure is to abstract program states first

and applying refinement to get rid of spurious counterexamples. Like in this work, the

important questions include when and how to apply the refinement.

30

Chapter 7

Conclusion and Future Work

In this work, we propose DeepCause, an approach to verify neural networks through

abstraction refinement, which naturally inherits the idea of CEGAR. In particular, we de-

velop an optimisation-based searching procedure to effectively identify problematic over-

approximation and a causality-based heuristics to help select most likely problematic com-

ponents of an abstraction for refinement. According to the evaluations, DeepCause could

improve state-of-the-art methods based on the same abstract domain.

In terms of the future works, we would like to explore two directions. On the one hand,

we plan to extend our approach to support more complicated abstract domains, such as

kReLu [27], so as to further advance the robustness bound in neural network verification.

On the other hand, as the evaluations shows DeepCause has limitation in the scalability,

we would like to improve our approach to handle neural networks in large scales and thus

it can work on neural network in more realistic scenarios.

31

BIBLIOGRAPHY

Bibliography

[1] Thomas Ball, Vladimir Levin, and Sriram K Rajamani. A decade of software model

checking with slam. Communications of the ACM, 54(7):68–76, 2011.

[2] Thomas Ball and Sriram K Rajamani. Automatically validating temporal safety

properties of interfaces. In International SPIN Workshop on Model Checking of

Software, pages 102–122. Springer, 2001.

[3] Dirk Beyer, Thomas A Henzinger, Ranjit Jhala, and Rupak Majumdar. The soft-

ware model checker b last. International Journal on Software Tools for Technology

Transfer, 9(5-6):505–525, 2007.

[4] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat

Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Ji-

akai Zhang, et al. End to end learning for self-driving cars. arXiv preprint

arXiv:1604.07316, 2016.

[5] Rudy R Bunel, Ilker Turkaslan, Philip Torr, Pushmeet Kohli, and Pawan K

Mudigonda. A unified view of piecewise linear neural network verification. In Ad-

vances in Neural Information Processing Systems, pages 4790–4799, 2018.

[6] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural

networks. In 2017 ieee symposium on security and privacy (sp), pages 39–57. IEEE,

2017.

[7] Aditya Chattopadhyay, Piyushi Manupriya, Anirban Sarkar, and Vineeth N. Bala-

subramanian. Neural network attributions: A causal perspective. In Proceedings of

the 36th International Conference on Machine Learning, volume 97, pages 981–990.

ICML 2019, Long Beach, California, USA, 2019.

32

BIBLIOGRAPHY

[8] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.

Counterexample-guided abstraction refinement. In International Conference on

Computer Aided Verification, pages 154–169. Springer, 2000.

[9] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.

Counterexample-guided abstraction refinement for symbolic model checking. Journal

of the ACM (JACM), 50(5):752–794, 2003.

[10] Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy Mann, and

Pushmeet Kohli. A dual approach to scalable verification of deep networks. In

In Proc. Uncertainty in Artificial Intelligence (UAI), pages 162–171, 2018.

[11] Ruediger Ehlers. Formal verification of piece-wise linear feed-forward neural net-

works. In International Symposium on Automated Technology for Verification and

Analysis, pages 269–286. Springer, 2017.

[12] Zhoulai Fu and Zhendong Su. Xsat: a fast floating-point satisfiability solver. In

International Conference on Computer Aided Verification, pages 187–209. Springer,

2016.

[13] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat

Chaudhuri, and Martin Vechev. Ai2: Safety and robustness certification of neu-

ral networks with abstract interpretation. In 2018 IEEE Symposium on Security and

Privacy (SP), pages 3–18. IEEE, 2018.

[14] Michael Harradon, Jeff Druce, , and Brian E. Ruttenberg. Causal learning and

explanation of deep neural networks via autoencoded activations. abs/1802.00541,

2018.

[15] Thomas A Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L McMillan.

Abstractions from proofs. ACM SIGPLAN Notices, 39(1):232–244, 2004.

[16] Thomas A Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. Lazy

abstraction. In Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, pages 58–70, 2002.

[17] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer.

Reluplex: An efficient smt solver for verifying deep neural networks. In International

Conference on Computer Aided Verification, pages 97–117. Springer, 2017.

33

BIBLIOGRAPHY

[18] P.-J. Kindermans, S. Hooker, M. Alber J. Adebayo, K. T. Schutt, S. Dahne,

D. Erhan, and B. Kim. The (un) reliability of saliency methods. arXiv preprint

arXiv:1711.00867, 2017.

[19] Konstantina Kourou, Themis P Exarchos, Konstantinos P Exarchos, Michalis V

Karamouzis, and Dimitrios I Fotiadis. Machine learning applications in cancer prog-

nosis and prediction. Computational and structural biotechnology journal, 13:8–17,

2015.

[20] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–

2324, 1998.

[21] Jiaying Li, Jun Sun, Li Li, Quang Loc Le, and Shang-Wei Lin. Automatic loop-

invariant generation and refinement through selective sampling. In Proceedings of

the 32nd IEEE/ACM International Conference on Automated Software Engineering,

pages 782–792. IEEE Press, 2017.

[22] Jingyue Lu and M Pawan Kumar. Neural network branching for neural network

verification. arXiv preprint arXiv:1912.01329, 2019.

[23] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and

Adrian Vladu. Towards deep learning models resistant to adversarial attacks. arXiv

preprint arXiv:1706.06083, 2017.

[24] MadryLab. Mnist adversarial examples challenge. https://github.com/MadryLab/

mnist_challenge, 2017. [Online; accessed 01-July-2020].

[25] Kenneth L McMillan. Lazy annotation for program testing and verification. In

International Conference on Computer Aided Verification, pages 104–118. Springer,

2010.

[26] Tanmayee Narendra, Anush Sankaran, Deepak Vijaykeerthy, and Senthil Mani. Ex-

plaining deep learning models using causal inference. abs/1811.04376, 2018.

[27] Gagandeep Singh, Rupanshu Ganvir, Markus Püschel, and Martin Vechev. Beyond

the single neuron convex barrier for neural network certification. In Advances in

Neural Information Processing Systems, pages 15098–15109, 2019.

[28] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin

Vechev. Fast and effective robustness certification. In Advances in Neural Information

Processing Systems, pages 10802–10813, 2018.

34

https://github.com/MadryLab/mnist_challenge
https://github.com/MadryLab/mnist_challenge

BIBLIOGRAPHY

[29] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. Boosting ro-

bustness certification of neural networks. In International Conference on Learning

Representations, 2018.

[30] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. An abstract

domain for certifying neural networks. Proceedings of the ACM on Programming

Languages, 3(POPL):41, 2019.

[31] Gagandeep Singh, Markus Püschel, and Martin Vechev. Making numerical program

analysis fast. ACM SIGPLAN Notices, 50(6):303–313, 2015.

[32] Gagandeep Singh, Markus Püschel, and Martin Vechev. Fast polyhedra abstract

domain. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of

Programming Languages, pages 46–59, 2017.

[33] Bing Sun, Jun Sun, Hong Long Pham, and Jie Shi. Causality-based neural network

repair. 2022.

[34] M. Sundararajan, A. Taly, and Q Yan. Axiomatic attribution for deep networks.

arXiv preprint arXiv:1703.01365, 2017.

[35] Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating robustness of neural net-

works with mixed integer programming. arXiv preprint arXiv:1711.07356, 2017.

[36] Hoang-Dung Tran, Stanley Bak, Weiming Xiang, and Taylor T Johnson. Ver-

ification of deep convolutional neural networks using imagestars. arXiv preprint

arXiv:2004.05511, 2020.

[37] Hoang-Dung Tran, Diago Manzanas Lopez, Patrick Musau, Xiaodong Yang,

Luan Viet Nguyen, Weiming Xiang, and Taylor T Johnson. Star-based reachability

analysis of deep neural networks. In International Symposium on Formal Methods,

pages 670–686. Springer, 2019.

[38] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Effi-

cient formal safety analysis of neural networks. In Advances in Neural Information

Processing Systems, pages 6367–6377, 2018.

[39] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Formal

security analysis of neural networks using symbolic intervals. In 27th {USENIX}
Security Symposium ({USENIX} Security 18), pages 1599–1614, 2018.

35

BIBLIOGRAPHY

[40] Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Duane Bon-

ing, Inderjit S Dhillon, and Luca Daniel. Towards fast computation of certified

robustness for relu networks. arXiv preprint arXiv:1804.09699, 2018.

[41] Eric Wong and J Zico Kolter. Provable defenses against adversarial examples via the

convex outer adversarial polytope. arXiv preprint arXiv:1711.00851, 2018.

[42] Zhenlong Yuan, Yongqiang Lu, Zhaoguo Wang, and Yibo Xue. Droid-sec: deep

learning in android malware detection. In Proceedings of the 2014 ACM conference

on SIGCOMM, pages 371–372, 2014.

[43] Álvaro Parafita Mart́ınez and Jordi Vitrià Marca. Explaining visual models by

causal attribution. In 2019 IEEE/CVF International Conference on Computer Vi-

sion Workshops, pages 4167–4175, Seoul, Korea (South), October 27-28, 2019, 2019.

IEEE, ICCV Workshops 2019.

36

	Deepcause: Verifying neural networks with abstraction refinement
	Citation

	Declaration Page
	Abstract
	Table of Contents
	Acknowledgement
	Introduction
	An Illustrative Example
	Existing Approaches on Verifying the Example
	An Overview of Our Approach

	Preliminaries
	Neural Networks
	Problem Definition
	Abstract Interpretation for Neural Networks

	The Approach
	Overall Approach
	Abstraction Validation
	Abstraction Refinement
	A Causality-based Selection
	Soundness

	Evaluation
	Experimental Setup
	Experiment Results

	Related Work
	Conclusion and Future Work

