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Abstract

This dissertation studies different long memory models. The first chapter

considers a time series regression model where both the regressors and error

term are locally stationary long memory processes with time-varying memory

parameters, and the regression coefficients are also allowed to be time-varying.

We consider a frequency-domain least squares estimator with kernelized dis-

crete Fourier transform and derive its pointwise asymptotic normality and

uniform consistency. A specification test on the constancy of coefficients is

provided. The second chapter studies a linear regression panel data model

with interactive fixed effects where the regressors, factors and idiosyncratic

error terms are all stationary but with potential long memory. The setup in-

volves a new factor model formulation for which weakly dependent regressors,

factors and innovations are embedded as a special case. Standard methods

based on principal component decomposition and least squares estimation, as

in Bai (2009), are found to suffer bias correction failure because the order of

magnitude of the bias is determined in a complex manner by the memory pa-

rameters. To cope with this failure and to provide a simple implementable

estimation procedure, frequency domain least squares estimation is proposed.

The limit distribution of this frequency domain approach is established and a

hybrid selection method is developed to determine the number of factors. The

third chapter estimates the memory parameters and test them against spurious

long memory of the latent factors in a linear regression model with interactive

fixed effects, based on the estimated discrete Fourier transform of the factors.

The same asymptotic properties hold as if we use the infeasible true factors

for both the memory estimator and the test. This result illustrates how the

frequency domain least squares estimator can be applied to further inference

other than the regression coefficients.
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Chapter 1

Introduction

In the last few decades, long memory has been widely observed and identified

as one of the important characteristics of macroeconomic and financial data

about their strong level of serial persistence (see e.g. Hassler and Wolters, 1995

and Banerjee and Urga, 2005). In linear regression model with long memory

time series data, the classic inference procedures based on the OLS estimator

is proved to be invalid by the literature. And an alternative method is to

handle the model in frequency domain, which is shown to be powerful in long

memory setting and has its own general interest. Hence it is an area with both

challenge and importance.

In this dissertation, we extend the literature my analyzing two types of

long memory models: (1) time-varying regression, and (2) panel regression

with interactive fixed effects. The existence of long memory in these two types

of model has been well documented by current empirical studies. For instance,

see Coakley et al. (2011), Kuan and Hsu (1998) and Lazarová (2005) for long

memory in time series model with potential structural changes or smooth vari-

ations; and the nature of how factor in the interactive fixed effects represent

the latent aggregate macroeconomic or financial trends (see e.g. Stock and

Watson, 1989, 2002) indicates its possibility to be long memory (Granger,

1980). To analyze these two types of model, the current frequency domain
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least squares estimation is adopted and extended to my model setup, which is

new to the literature.

In the second chapter, we propose a linear time-varying regression model,

where the time-variation occurs at both the regression coefficients and the

memory of all variables involved. Following the idea from nonparametric stud-

ies, we kernelized the discrete Fourier transform over frequencies local to zero

and conduct the least squares estimation wherein. The pointwise asymptotic

normality and uniform consistency of this estimator is proved, and a specifi-

cation test for the constancy of regression coefficients is also proposed. To im-

prove the finite sample performance, we propose a frequency domain bootstrap

and prove its validity. Monte Carlo simulation shows that both our estimator

and test perform well in finite sample; and an empirical application in terms

of international spillover effects of inflation rate across European countries is

conducted.

In the third chapter, we propose a long memory panel linear regression

model with interactive fixed effects. The classic least squares estimator based

on principal component analysis is examined in this framework and proved to

be consistent, which is different from pure time series setup. But the asymp-

totic distribution is now dependent on the unknown memory parameters that

contaminate both the convergence rate and the asymptotic bias. Such issue

is difficult to deal with because normally the inference using plug-in estima-

tor of the memory parameters perform poorly in finite sample, and also the

terms with memory parameters are complex in their form. To cope with this

issue, we extend the frequency domain least squares estimator into the factor

model, and prove its consistency and asymptotic normality. Moreover, a self-

normalized inference scheme is developed, together with a selection scheme that

consistently determines the number of factors. Monte Carlo simulation sup-

ports our theory in finite sample, and an empirical illustration of the approach

is provided, examining the long-run relationship between debt and economic

2



growth.

In the fourth chapter, we continue with the factor model above, and try to

study the estimation and inference of the factor memory parameters and test

against the potential spurious long memory. We adopt the classic local Whittle

estimator and the test based on the score of its likelihood function, and show

that the asymptotics of these objects continue to hold as if we are working with

the infeasible true factors instead of their estimators. This illustrates how our

frequency domain least squares estimator in factor model is compatible with

some popular techniques developed for long memory.

In the fifth chapter we conclude and in the appendix we give the theoretical

proofs of our main results and the auxiliary lemmas required.
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Chapter 2

Time-Varying Regression with

Long Memory

2.1 Introduction

Long memory processes have been widely observed in macroeconomic, finan-

cial and other types of data in economy. Different from either I (0) or I (1)

processes that characterize stationarity and non-stationarity using an integer

order of integration, long memory processes allow this order to lie between 0

and 1, which is normally termed ”memory parameter” in the literature. A

memory parameter, denoted by d, can be non-integer and thus measures the

level of persistence of a time series more generally than the commonly used I (0)

and I (1) processes in application. When d > 0, the autocovariance function

is not absolutely summable over the number of lags, and a long memory time

series is still stationary when d ∈
(
0, 1

2

)
and nonstationary when d ∈

[
1
2
, 1
)
.

This property makes some classic inference procedures using long-run variance

fail. And in a long range of economic evolution, structural changes can hap-

pen frequently, either within a country or internationally, due to technology

advances, natural disasters or occurrence of pandemic. Understanding these

facts leads to the recognition that methods need to be developed in time series
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models accounting for both long memory and time-varying nature.

Some current studies have considered coexistence of long memory processes

and discrete structural changes, also termed ”structural breaks”. Among em-

pirical studies, Caporale and Gil-Alana (2013) find long memory nature of

quarterly real output per capita in the U.S. from 1948 to 2008, and find a

change of long memory parameter in the second quarter of 1978. Coakley

et al. (2011) find a coexistence of long memory and structural breaks for 16

types of commodity future contracts in 1990-2009. In the meantime, there

are theoretical studies dealing with such long memory processes with struc-

tural breaks, on which Banerjee and Urga (2005) give a very thorough survey.

Among them, Kuan and Hsu (1998) estimate an one-time breakpoint in a pro-

cess with memory parameter d ∈
(
−1

2
, 1

2

)
using least-squares estimator. Ray

and Tsay (2002) derive a Bayesian method for detecting potentially multiple

structural breaks of persistence d ∈
(
0, 1

2

)
and process level µ in a long mem-

ory process. Lazarová (2005) considers a linear regression with long memory

regressors and error term, and test the structural changes for all relevant pa-

rameters under known breakpoints. For more recent studies, Rachinger (2011)

extends the methodology of Bai and Perron (1998) to long memory processes

for testing multiple structural breaks in memory parameters, and derive least-

square estimation for the breakpoints. Wang et al. (2013) propose a prediction

procedure for long memory processes with structural breaks, with either mem-

ory parameter d or mean µ changes, or both. And Wenger et al. (2018) consider

a test of structural break in the mean of a long memory fractionally integrated

series.

In addition to discrete structural change in long memory processes, there

are studies involving smooth time-varying memory parameters. For instance,

Whitcher and Jensen (2000) estimate time-varying memory parameters based

on the time-scaled properties of the wavelet transform. Boutahar et al. (2008)

estimate an ARFIMA (0, dt, 0) process together with time-varying memory
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parameters dt as a parametric process. The estimation is based on local Whit-

tle estimator developed by Shimotsu and Phillips (2006); but there is no the-

ory supporting its consistency and inference. Lu and Guegan (2011) try to

estimate the time-varying memory parameters in a more generalized k-factor

Gegenbauer process, where seasonality of data can be taken care of by this

model. The asymptotic behavior is considered under frequency domain rather

than time domain. Boubaker (2018) estimates d (t) in an ARFIMA model

with Gaussian noise, mimicking the framework of Boutahar et al. (2008) by

assuming d (t) evolving as a different parametric process. In a more general

framework where no parametric specification is imposed on the process of d (t),

Roueff and von Sachs (2011) consider a wavelet-based estimator of memory pa-

rameters, while under the same setting Wang (2019) considers Fourier-based

Geweke-Porter Hudak (GPH) and local Whittle (LW) estimator.

Moreover, there are studies concerning regression using variables with long

memory, as in Lazarová (2005) we mentioned above. This type of regression

model is special because if the joint persistence of regressors and error terms

are large enough, OLS estimator in time domain will converge slower than the

usual T−
1
2 rate and asymptotic distribution is not Gaussian. This conclusion

is pointed out by Robinson and Hidalgo (1997) and proved by Chung (2002).

Therefore Nielsen (2005) considers a semiparametric weighted frequency do-

main least square (WFDLS hereafter) estimator of linear regression model

where both regressors and error term are allowed to be stationary long memory

processes, and proves its asymptotic normality, a similar FDLS estimator, also

called ”narrow-band” least squares estimator, is adopted by Christensen and

Nielsen (2006) on fractional cointegrated regression model. Nielsen and Fred-

eriksen (2011) extend this method to non-stationary processes. And Shimotsu

(2012) develops a local Whittle estimator dealing with fractional cointegrated

model, estimating both regression coefficients and memory parameters.

In this paper, we focus on a time-varying linear regression model with long

6



memory regressors and error term that have smooth time-varying memory pa-

rameters. This framework has not been covered by current studies yet. To

the best of our knowledge, the most relevant study involves Beran (2009) and

Preuß (2012), where Beran (2009) considers a time-varying AR (∞) model

and estimates both the regression coefficients and memory parameters using a

time domain kernelized maximum likelihood method; while Preuß (2012) gives

some important asymptotic results about locally stationary long memory pro-

cess, and a time-varying regression with polynomial coefficients is considered

with Gaussian error term. we complement these two studies by considering

regression coefficients without any particular functional form; and in terms of

estimator, we adopt the one in Nielsen (2005) using frequency domain weighted

least squares estimation, with Fourier transforms being kernelized as in Roueff

and von Sachs (2011) and Wang (2019). We prove the pointwise consistency,

pointwise asymptotic normality and uniform convergence rate of our estimator;

and develop a specification test about the constancy of regression coefficients,

which could be the main concern when our estimator is applied in the real

data. To overcome the possible poor finite sample performance, we estimate

the asymptotic covariance matrix using a frequency domain bootstrap method

for locally stationary processes developed by Kreiss and Paparoditis (2015),

and prove its validity in our framework. And we conduct the inference using

a self-normalized scheme, which avoids estimating memory parameters, which

may further affect the finite sample performance.

The rest of this paper is organized as follows. Section 2.2 presents the

basic setup of our model. Section 2.3 gives the pointwise limiting distribution

and uniform convergence rate of our proposed frequency domain estimator. In

Section 2.4 we try to consistently estimate the asymptotic covariance in point-

wise limiting distribution using a frequency domain bootstrap, and propose a

specification test over the constancy of regression coefficients. Section 2.5 is

devoted to Monte Carlo simulation, where we report both the basic pointwise

7



performance of our estimator, and size and power of our bootstrapped test

statistic. Section 2.6 illustrates an application of our estimator and bootstrap

testing using inflation rate data among European countries, where we evaluate

the international inflation spillover over time. Section 2.7 concludes. Proofs

and other auxiliary results are in Appendix.

We introduce some notations used in the remainder of this paper. For

any complex matrix A, we use Ā and A∗ to denote its complex conjugate and

conjugate transpose, respectively. Let |A|2 = AA for any complex number A

and |A|2 = AA∗ for any complex matrix A. Let ‖A‖ denote the Frobenius

norm if A is a real matrix and
√∑

i,j |Aij|
2 if A is a complex matrix. Let

fXaa (u, λ), fε (u, λ) denote the spectral densities of a-th element of regressor

Xt,T and error term εt,T respectively, and fXab (u, λ) and fXaε (u, λ) denote the

cross-spectral densities between the a-th and b-th elements of regressor vector

Xt,T and between the a-th element of regressor vector and error term.

2.2 Model and Estimation

2.2.1 Model

In this paper we consider the following regression model:

yt,T = β′
(
t

T

)
Xt,T + εt,T , t = 1, 2, . . . , T,

where Xt,T is a p × 1 vector of regressors, and εt,T is the error term. Pro-

cesses like Xt,T and εt,T are also termed as “locally stationary long memory

processes”, which means the memory parameters should satisfy |d (t)| < 1
2

but

are allowed to vary over time. And the smoothness of d (t) makes it possible

to approximate the original process with a stationary process local to every

t, which is why we call it ”locally stationary”. Local Stationarity is firstly

defined by Dahlhaus (1996) and an extensive review can be seen in Dahlhaus

8



(2012). We assume both Xt,T and εt,T are either short- or long-memory,1 with

time-varying memory parameters dX
(
t
T

)
and dε

(
t
T

)
respectively. Note that

dX
(
t
T

)
=
(
dX1

(
t
T

)
, . . . , dXp

(
t
T

))′
is a vector of memory parameters for each

argument of Xt,T . By local stationarity, we require both dε
(
t
T

)
and dXk

(
t
T

)
,

k = 1, . . . , p, lie in the interval
[
0, 1

2

)
. Following Robinson and Hidalgo (1997),

Hidalgo and Robinson (2002) and Nielsen (2005), we characterize the persis-

tence of {Xt,T} and {εt,T} in frequency domain using their spectral densities,

while we do not specify any of their parametric form except for singularity

at zero frequency for any u ∈ (0, 1). We allow dε (u) + dXk (u) > 1
2
, which is

termed collective strong dependence and makes the usual OLS estimator not

asymptotically normal, see the statement in Robinson and Hidalgo (1997) and

proofs in Chung (2002) for details.

2.2.2 Estimation

For any u ∈ (0, 1), we propose to estimate β (u) by the following minimization

problem:

β̂ (u) = arg min
β∈Rp

M∑
j=1

∣∣∣∣∣
T∑
t=1

(yt,T − β′Xt,T )Kh (t− Tu) eitλj

∣∣∣∣∣
2

λ
2δ(u)
j (2.2.1)

where Kh (u) = K (u/h) /h, and K (·) is a kernel function, h is a bandwidth,

λj = 2πj/T are Fourier frequencies, and λ
2δ(u)
j is a time-varying weight function

as given in Nielsen (2005). Note that we allow δ (u) to be dependent on u as

well.

To see the intuition behind the above estimator, we can consider β (u) = β

as a constant. In this special case, Robinson and Hidalgo (1997) and Nielsen

1For simplicity, we shall refer to Xt,T and εt,T as “long memory processes” in this study,
although they include the possibility of being short memory.
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(2005) give a weighted least squares (WLS) estimator:

β̂ = arg min
β∈Rp

M∑
j=1

|wy (λj)− β′wX (λj)|2 φ (λj)

where φ (λj) is some weight function, and wy (λj) and wX (λj) are Fourier

transforms of yt and Xt respectively, therefore

wy (λj)− β′wX (λj) =
T∑
t=1

(yt − β′Xt) e
itλj

is the Fourier transform of the error term. We can see how the above estimator

is equivalent to (2.2.1) if we set φ (λj) = λ2δ
j and set the kernel function a

constant. When β (u) is indeed time-varying, we can follow Roueff and von

Sachs (2011) and Wang (2019) and introduce a kernel weight into Fourier

transform by assigning more weight on the sample at time t that is closer to

Tu. We define the kernelized discrete Fourier transform (DFT hereafter) of

{yt} at u as follows:

wy (u, λj) ≡
1√

2π
∑T

t=1K
2
h (t− Tu)

T∑
t=1

yt,TKh (t− Tu) eitλj , (2.2.2)

and define wX (u, λj) and wε (u, λj) for {Xt,T} and {εt,T} analogously. Then

analogous to Nielsen (2005),

β̂ (u) =

[
M∑
j=1

λ
2δ(u)
j Re (wX (u, λj)w

∗
X (u, λj))

]−1 [ M∑
j=1

λ
2δ(u)
j Re

(
wX (u, λj)w

∗
y (u, λj)

)]
,

where we use Re(·) to denote the real part of a complex matrix. The above

estimator is well defined provided
∑M

j=1Re(wX (u, λj)w
∗
X (u, λj)) is positive

definite almost surely. We will study the asymptotic properties of β̂ (u) in the

next section.
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2.3 Asymptotic Properties of β̂ (u)

Define the (p+ 1)×1 vector vt,T = (X ′t,T , εt,T )′. Let C denote a generic constant

that could vary across lines. To study the asymptotic distribution of β (u) at

any fixed u ∈ (0, 1), we make the following assumptions together with some

remarks.

Assumption 1. (i) vt,T is generated by a linear process

vt,T =
∞∑
j=0

At,T (j) ζt−j,

where ζt is an i.i.d. sequence such that E (ζt | Ft−1) = 0, E (ζtζ
′
t | Ft−1) = Ip+1,

E (ζtζ
′
t ⊗ ζtζ ′t | Ft−1) = B̃ for a symmetric constant matrix B̃, and E (ζtζ

′
v ⊗ ζsζ ′w) =

Ip+1⊗ Ip+1 if t = v 6= s = w, and E (ζtζ
′
v ⊗ ζsζ ′w) = C̃ for some sparse constant

matrix when t = s 6= v = w and E (ζtζ
′
v ⊗ ζsζ ′w) = P̃ as a permutation matrix

when t = w 6= s = v, and E (ζtζ
′
v ⊗ ζsζ ′w) = 0 otherwise; {At,T (j)}∞j=0 is a

sequence of (p+ 1)× (p+ 1) coefficient matrices such that

At,T (j) =

 AX,t,T (j)

Aε,t,T (j)

 =

 ÃX,t,T (j) 0p×1

01×p Ãε,t,T (j)


and At,T (j) is square-summable over j for all t and T in the sense that∑∞

j=0 ‖At,T (j)‖2 <∞.

(ii) There exist matrix-valued functions A0 (·, j) : (0, 1]→ R(p+1)×(p+1) such

that

max
1≤t≤T

∥∥∥∥A0

(
t

T
, j

)
− At,T (j)

∥∥∥∥ ≤ Cl (j)

T 2
and (2.3.1)

∥∥A0 (u, j)− A0 (v, j)
∥∥ ≤ C |u− v| l (j) , (2.3.2)

with the function l (j) that is square-summable over j.

Assumption 2. (i) Let A (u, λ) =
∑∞

j=0A
0 (u, j) eijλ. The spectral density
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matrix of vt,T

fv (u, λ) =
1

2π
|A (u, λ)|2 (2.3.3)

satisfies that

fv (u, λ) ∼ Λ (u)−1GΛ (u)−1 as λ→ 0+ (2.3.4)

where Λ (u) = Diag
(
λdX1

(u), . . . , λdXp (u), λdε(u)
)
, and G is a real, symmetric

and positive definite (p.d.) matrix.

(ii) Let fv,ab (u, λ) denote the (a, b)-th element of fv (u, λ) for a, b = 1, . . . , p+

1, viz., the cross-spectral density between the a-th and b-th elements of vt,T

with corresponding memory parameters da (u) and db (u). fv,ab (u, λ) satisfies

∣∣fv,ab (u, λ)−Gabλ
−da(u)−db(u)

∣∣ = O
(
λγ−da(u)−db(u)

)
as λ→ 0+ (2.3.5)

for all u ∈ [0, 1] and some γ ∈ (1, 2].

(iii)
∣∣∣∂fv,ab(u,λ)

∂λ

∣∣∣ = O
(
λ−1−da(u)−db(u)

)
as λ→ 0+ for any a, b = 1, . . . , p+ 1.

(iv) For the matrix G, we have that Ga,p+1 = Gp+1,a = 0 for all a =

1, 2, . . . , p; and the leading p× p principal submatrix of G, denoted as GX , is

p.d.

Assumption 3. (i) k (·) is a second-order nonnegative kernel that is continu-

ously differentiable, bounded and symmetric, and has compact support [−1, 1]

such that
∫
k (u) dx = 1. κ0l ≡

∫
[k (u)]ldu <∞ for l = 2, 3, 4.

(ii) |k (u)− k (v)| ≤ Λ1 |u− v| .

(iii) k (u) monotonically increases when u ∈ [−1, 0].

(iv) limT→∞

∣∣∣ 1
Th

∑T
t=1 k

2
(
t−Tu
Th

)
eitλj

∣∣∣ = θ (u, j) for some constant θ (u, j) <

∞ such that there exists a threshold value θ (u), which is dependent on h.

And θ (u, j) = o
(

1√
Mh

)
when j > θ (u) and θ (u, j) > 0 and non-negligible

otherwise. And more specifically,
∣∣∣ 1
Th

∑T
t=1 k

2
(
t−Tu
Th

)
eitλj

∣∣∣ = θ (u, j) + o
(

1
Mh

)

12



and this convergence rate holds uniformly over j. Also we have

∣∣∣∣∣ 1

Th

T∑
t=1

(
t

T
− u
)
k2

(
t− Tu
Th

)
eitλj

∣∣∣∣∣ = o (θ (u, j)) ,

and ∣∣∣∣∣ 1

Th

T∑
t=1

(
t

T
− u
)2

k2

(
t− Tu
Th

)
eitλj

∣∣∣∣∣ = o (θ (u, j)) .

Assumption 4. As T →∞, we have

(i) M →∞, M
T
→ 0;

(ii) h = h (T )→ 0;

(iii) (logM)2

Mh2+δ∗
→ 0, where δ∗ = 1

1−2dX
and dX = supp,u dXp (u).

Assumption 5. The functional coefficient β (u) is twice continuously differ-

entiable on (0, 1).

Remark 1. Assumption 1 and 2 specify the data generating processes (DGP

hereafter) and time-varying spectral densities of locally stationary processes

Xt,T and εt,T , which is a multivariate version of the specification in Dahlhaus

and Polonik (2009). Note that our definition of a locally stationary process

with time-varying memory parameter is equivalent to that in Roueff and von

Sachs (2011) and Wang (2019), both of which are modified from Dahlhaus

(1996) in the form of spectral representation. Their definition specifies such a

process vt,T as

vt,T =

∫ π

−π
At,T (λ) e−iλtdZ (λ) ,

where ζt =
∫ π
−π e

−iλtdZ (λ) is the spectral representation of innovations with

dZ (λ) having zero mean and orthogonality between different λ’s, and At,T (λ) =∑∞
j=0 At,T (j) eiλj is the DFT of the sequence {At,T (j)}. Then by substitution

we can show that

vt,T =
∞∑
j=0

At,T (j) ζt−j =
∞∑
j=0

At,T (j)

∫ π

−π
e−iλ(t−j)dZ (λ)

=

∫ π

−π

∞∑
j=0

At,T (j) e−iλ(t−j)dZ (λ) =

∫ π

−π
At,T (λ) e−iλtdZ (λ) .

13



Note that (2.3.1) in Assumption 1 is a condition similar to but slighly stronger

than the corresponding one in Dahlhaus and Polonik (2009). (2.3.2) specifies

the smoothness of the function A0 (·, j) over its first argument. Dahlhaus and

Polonik (2009) and Roueff and von Sachs (2011) also impose similar conditions

to ours.

Remark 2. In Assumption 1 the symmetric matrix B̃, the sparse matrix C̃ and

permutation matrix P̃ can be calculated using the assumptions E (ζt|Ft−1) = 0,

E
(
ζtζ

′
t | Ft−1

)
= Ip+1 the i.i.d. of innovations ζt. To be exact,

B̃ =


η11 s12 · · · s1,p+1

...
. . .

...

sp+1,1 sp+1,2 · · · ηp+1,p+1

 ,

and

C̃ =


e11 e12 · · · e1,p+1

...
. . .

...

ep+1,1 ep+1,2 · · · ep+1,p+1

 and P̃ =


e11 e21 · · · ep+1,1

...
. . .

...

e1,p+1 e2,p+1 · · · ep+1,p+1


(2.3.6)

where eij is a (p+ 1) × (p+ 1) matrix with all elements equal to zero except

the (i, j)-th one, and sij = eij + eji = sji, and ηii =diag(1, . . . , 1, ηi, 1 . . . , 1)

where ηi = E (ζ4
ti) with ζti the i-th element of ζt.

2

Remark 3. (2.3.5) in Assumption 2 also specifies the rate of convergence of

2For example, suppose p+ 1 = 2, then

B̃ =


η1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 η2

 ,

and

C̃ =


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 and P̃ =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


from which you can observe how P̃ is a permutation matrix in a more obvious manner.
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spectral density when frequency shrinks to 0 from the positive side. Define

C (u, k) ≡
∫ π

−π
f (u, λ) e−ikλdλ =

∞∑
j=0

A0 (u, j)A0′ (u, j + k) .

C (u, k) is termed as “time-varying covariance” in Dahlhaus and Polonik (2009).

This term indicates how we approximate a totally “time-varying” process to

a “tangent” process that is indexed by a local parameter u, with the help

of smoothness conditions in (2.3.1) and (2.3.2). To see the relation between

Cov(vt,T , vt+k,T ) and C (u, k), notice that

Cov (vt,T , vt+k,T )

=
∞∑
j=0

∞∑
l=0

At,T (j)E
(
ζt−jζ

′
t+k−l

)
A′t+k,T (l) =

∞∑
j=0

At,T (j)A′t+k,T (j + k)

=
∞∑
j=0

A0

(
t

T
, j

)
A0′
(
t+ k

T
, j + k

)
+O

(
T−1

)
=
∞∑
j=0

A0 (u, j)A0′ (u, j + k) +O

(
T−1 +

∣∣∣∣u− t

T

∣∣∣∣+

∣∣∣∣u− t+ k

T

∣∣∣∣)
= C (u, k) +O

(
T−1 +

∣∣∣∣u− t

T

∣∣∣∣+

∣∣∣∣u− t+ k

T

∣∣∣∣) , (2.3.7)

where the second equality holds by Assumption 1(i), and the third and fourth

ones holds by (2.3.1) and (2.3.2) respectively in Assumption 1(ii). Note that∣∣u− t
T

∣∣ and
∣∣u− t+k

T

∣∣ are both O (h) if they are on the support of our kernel

function Kh (·). (2.3.7) is helpful in the asymptotic analysis below.

Remark 4. Here we briefly explain why we impose Assumption 3(iv). This

assumption controls the order of the periodogram of our kernel function, which

is a very essential part that makes our results different from the time-constant

long memory regression model like in Nielsen (2005). To be specific, the con-
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vergence rate and asymptotic covariance of β̂ (u) is partly determined by

1[∑T
t=1 k

2
(
t−Tu
Th

)]2

T∑
t=2

t−1∑
s=1

k2

(
t− Tu
Th

)
k2

(
s− Tu
Th

)
cos ((t− s)λj) cos ((t− s)λk) .

(2.3.8)

See (A.2.22) in Supplemental Material for more detail. Suppose we set k
(
t−Tu
Th

)
=

1 over t = 1, . . . , T , then (2.3.8) becomes

1

T 2

T∑
t=2

t−1∑
s=1

cos ((t− s)λj) cos ((t− s)λk)

=
1

2T 2

T∑
t,s=1

(
ei(t−s)λj+k + ei(t−s)λj−k

)
− 1

2T

=
1

2
· 1 (j = k) + 0 · 1 (j 6= k)− 1

2T
,

because
∑T

t,s=1 e
i(t−s)λj+k = 0 holds uniformly over j, k = 1, . . . ,M while∑T

t,s=1 e
i(t−s)λj−k = 0 only when j 6= k. This is exactly what Nielsen (2005,

pp. 294) obtains in his study, and it explains how serial dependence is weak-

ened if we move data from time domain to frequency domain, and in this case

data in different frequencies are asymptotically uncorrelated. However, the

asymptotic uncorrelation may not occur when k
(
t−Tu
Th

)
is not a constant over

t = 1, . . . , T . To see this, using the same reasoning, (2.3.8) is further given by

1[∑T
t=1 k

2
(
t−Tu
Th

)]2

T∑
t=2

t−1∑
s=1

k2

(
t− Tu
Th

)
k2

(
s− Tu
Th

)
cos ((t− s)λj) cos ((t− s)λk)

(2.3.9)

=
1

2 (T 2h2κ02 + o (1))

T∑
t,s=1

k2

(
t− Tu
Th

)
k2

(
s− Tu
Th

)(
ei(t−s)λj+k + ei(t−s)λj−k

)
− 1

2 (T 2h2κ02 + o (1))

T∑
t=1

k4

(
t− Tu
Th

)
,

where the first term corresponds to periodogram of k2
(
t−Tu
Th

)
over frequencies

λj+k and λj−k, while the second term is of smaller order. Suppose we consider
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an arbitrary frequency λq with q ≥ 0, then a DFT of k2
(
t−Tu
Th

)
at λq normalized

by 1
Th

can be given by

1

Th

T∑
t=1

k2

(
t− Tu
Th

)
eitλq =

1

Th

T∑
t=1

k2

(
t− Tu
Th

)
ei2πq(

t
T )

≈ 1

h

∫ 1

0

k2

(
x− u
h

)
ei2πqxdx

= ei2πqu
∫ 1

−1

k2 (v) ei2π(qh)vdv

using Riemann sum approximation and substitution of variable x. Note that

under our setup, q ∈ {0, 1, . . . ,M}. When q = 0, which corresponds to the

case when j = k, the above equation is O (1) in norm. When q 6= 0 but small

enough, we could have qh close to zero at large T . Then by Taylor expansion

at qh = 0 and Leibniz rule,

∫ 1

−1

k2 (v) ei2π(qh)vdv

=

∫ 1

−1

k2 (v) dv + i2πqh

∫ 1

−1

vk2 (v) dv − 2π2q2h2

∫ 1

−1

v2k2 (v) dv

− 4i

3
π3q3h3

∫ 1

−1

v3k2 (v) dv +
2

3
π4q4h4

∫ 1

−1

v4k2 (v) ei2π(q∗h∗)vdv

=

∫ 1

−1

k2 (v) dv − 2π2q2h2

∫ 1

−1

v2k2 (v) dv +O
(
q4h4

)
,

where in the first equality q∗h∗ lies between qh and 0, and all the integrals

are finite due to the boundedness of k (·) and finite integral horizon; and in

the second equality both the odd order terms are zero because vk2 (v) and

v3k2 (v) are odd functions. The order of the second term above is determined

by how qh evolves in asymptotics. For q that is small enough, it is negligible

as T → ∞; and suppose q = qM ∼ Kh−1 for some constant K close to zero,

then the second term above is finite but small as qh is still close to zero.

Then Assumption 3(iv) can be interpreted by specifying θ (u) ∼ Kh−1 for

some constant K as above. Then the first term of (2.3.9) can follow that, for
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all j, k ∈ {1, . . . ,M},

1

T 2h2

T∑
t,s=1

k2

(
t− Tu
Th

)
k2

(
s− Tu
Th

)(
ei(t−s)λj+k + ei(t−s)λj−k

)
→ θ2 (u, j + k) + θ2 (u, j − k) .

When j = k, the leading terms of the above limit is θ2 (u, 2j) with 2j ≤ θ (u);

and when j 6= k, the above limit has its leading terms with min {j + k, |j − k|} ≤

θ (u), which is equivalent to |j − k| ≤ θ (u). And it is easy to see that in time-

constant framework, the only analogous leading term is when j = k, while in

time-varying framework we also need to take into account when j 6= k but

with distance controlled by θ (u) ∼ Kh−1. This explain how
√
h enters the

convergence rate of our estimator. And note that when |j − k| > θ (u), we

have θ2 (u, j + k) + θ2 (u, j − k) = o
(

1
Mh

)
. This is a technical assumption to

make sure a well-defined asymptotic covarice is obtained.

Remark 5. The other parts of Assumption 3 impose some standard conditions

on the kernel function. Assumption 4 imposes some conditions on M, h, and γ.

Assumption 5 imposes the smoothness condition on the functional coefficient

β (·).

To proceed, we introduce some notations. Let the matrix of time-varying

periodogram be

IX (u, λ) ≡ wX (u, λ)w∗X (u, λ) ,

and its (a, b)-th element be IXab (u, λ) = wXa (u, λ)w∗Xb (u, λ) for any 1 ≤

a, b ≤ p, where wXi (u, λ) is the normalized DFT as in (2.2.2) of i-th element

Xi,t,T of Xt,T . Denote the corresponding time-varying cross spectral density as

fXab (u, λ). Similar notations apply to both yt,T and εt,T . Like At,T (j) , we can
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partition A0 (u, j) and A (u, λ) as follows:

A0 (u, j) =

 A0
X (u, j)

A0
ε (u, j)

 =

 Ã0
X (u, j) 0p×1

01×p Ã0
ε (u, j)

 and

A (u, λ) =

 AX (u, λ)

Aε (u, λ)

 =

 ÃX (u, λ) 0p×1

01×p Ãε (u, λ)

 ,

where, e.g., AX (u, λ) =
∑∞

j=0AX (u, j) eijλ denotes the DFT of AX (u, j).

For the matrix G defined in Assumption 2, we use GX,ab to denote its

(a, b)th element for a, b = 1, ..., p and Gεε to denote its (p+ 1, p+ 1)th element.

The first main result in this paper is the asymptotic normality of β̂ (u). This

is formally stated in the following theorem.

Theorem 2.3.1 Suppose that Assumption 1-5 hold. Then

Λ−1
M (u)λ

dε(u)
M

√
Mh

(
β̂ (u)− β (u)− hB̃M (u)

)
d→ N

(
0,Γ−1 (u) Ω (u) Γ−1 (u)

)
,

where ΛM (u) = diag
(
λ
dX1

(u)

M , . . . , λ
dXp (u)

M

)
, and the (a, b)-th element of the p×p

matrix Γ is Γab =
GX,ab

1−dXa (u)−dXb (u)+2δ(u)
, that of Ω is

Ωab = Θ∗

 G
1
2
X,aaG

1
2
X,bbGεε

1− dXa (u)− dXb (u)− 2dε (u) + 4δ (u)


with a finite deterministic function Θ∗ (·). And the bias term B̃M (u) is given

by

B̃M (u) = h−1

[
M∑
j=1

λ
2δ(u)
j Re (wX (u, λj)w

∗
X (u, λj))

]−1

×

[
M∑
j=1

λ
2δ(u)
j Re (wX (u, λj) w̃

∗
X (u, λj))

]
β(1) (u) = Op (1) ,
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with

w̃X (u, λj) =
1

cTu

T∑
t=1

(
t

T
− u
)
Xt,TKh,tue

itλj .

Remark 6. Theorem 2.3.1 has its convergence rate and asymptotic co-

variance similar to Theorem 1 of Nielsen (2005), especially they are identical

if we set Kh (t− Tu) = 1. This also implies how our theorem generalizes the

one of Nielsen (2005) by making it time-varying.

In the following, we study the uniform convergence rate of our estima-

tor. To help develop the corresponding results, we require the following extra

assumptions.

Assumption 6. E
∥∥ζtζ ′t − Ip+1

∥∥s <∞ for some s ≥ 2.

Assumption 7. T
Mηh3 logM

→ 0 with η = C2

1+ 1
3
C2 for C ≥ 3 as T →∞.

Furthermore, we suppose δ (u) ≥ δ for some finite lower bound δ, and

minp
∣∣dXp (u)− dε (u)

∣∣ ≥ 4d for some finite lower bound4d, and both bounds

are uniform over u ∈ (0, 1). We define U = [h, 1− h] so as to avoid the

boundary issues of our kernel function when trying to approximate the relevant

Riemann sum to an integral. Then the following theorem gives the uniform

convergence rate of β̂ (u).

Theorem 2.3.2 Suppose Assumptions 1-7 hold,

sup
u∈U

∥∥∥β̂ (u)− β (u)
∥∥∥ = Op (h) +Op

(
λ4dM

√
logM

Th

)
. (2.3.10)

Theorem 2.3.2 establishes the uniform convergence rate of β̂ (u) over the

compact set U . The two terms on the right hand side (RHS) of (2.3.10) reflect

the contribution from the asymptotic bias and variance terms, respectively.

Unlike the Nadaraya-Watson (local constant) estimator with weakly dependent

observations that exhibits the asymptotic bias of order O (h2) , we can only

derive a bias term of order O (h).
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2.4 Bootstrap Inference

As we can see in Theorem 2.3.1 the asymptotic covariance of our estimator

has no close-form expression, and the ”frequency leak” induced by its proof

also makes the method of moments over frequency domain infeasible. So to

conduct the inference, we propose a bootstrap scheme to estimate the asymp-

totic covariance. This bootstrap covariance estimator can help self-normalize

our estimator, which avoids estimating the time-varying memory parameters

that are typically poor in finite sample performance as well. Additionally we

consider testing the hypothesis that the functional regression coefficients are

constant using our self-normalized estimator.

2.4.1 Bootstrap

Here we propose the bootstrap procedures in frequency domain and prove its

validity. Dahlhaus and Janas (1996), among others, propose bootstrapping the

integrated periodogram over frequency domain for a stationary linear process.

The similar idea is adapted by (Kreiss and Paparoditis, 2015, KP hereafter)

for a locally stationary short memory process and by Preuß (2012) for a locally

stationary long memory process. Here we follow the basic procedure of KP with

some modification and try to generate the bootstrapped version of WT,m∗ .

Before we move on to the specific procedure, we introduce the intuition

behind our bootstrap method. For a locally stationary long memory linear

process {Xt,T}Tt=1, consider a DFT over Fourier frequencies λj = 2πj/T , j =

1, . . . , T as we defined before given by

wX (λj) =
1√
2πT

T∑
t=1

Xt,T e
itλj (2.4.1)
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Then Xt,T can be recovered asymptotically by an discrete inverse of DFT as

Xt,T ≈
√

2π

T

T∑
j=1

wX (λj) e
−itλj

Consider that the linear process {Xt,T}Tt=1, as in Assumption 1, is given by

Xt,T =
∑∞

j=0At,T (j) ζt−j. Then the DFT wX (λj) can be approximated as

follows.

wX (λj) =
1√
2πT

T∑
t=1

∞∑
k=0

At,T (k) ζt−ke
itλj

=
1√
2πT

T∑
t=1

∞∑
k=0

At,T (k) eikλjζt−ke
i(t−k)λj

≈ 1√
2πT

T∑
t=1

A

(
t

T
, λj

)
ζte

itλj

≈ 1√
T

T∑
t=1

√
fX

(
t

T
, λj

)
ζte

itλj

by eqn (2.3.1) to (2.3.3) in Assumption 1 and 2. Then Xt,T can be further

approximated by

Xt,T ≈
√

2π

T

T∑
j=1

wX (λj) e
−itλj

≈
√

2π

T

T∑
j=1

1√
T

T∑
s=1

√
fX

( s
T
, λj

)
ζte

isλje−itλj

≈
√

2π

T

T∑
j=1

√
f̂X

(
t

T
, λj

)
wζ (λj) e

−itλj

where in the last step we replace the spectral density fX
(
t
T
, λj
)

by its estimator

f̂X
(
t
T
, λj
)
. We can derive f̂X

(
t
T
, λj
)

by smoothing the local periodograms,

which is defined by

f̂X (u, λ) =
1

2π

T∑
j=1

ω

(
λ− λj
L

)
IX,L (u, λj)
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where the kernel ω
(
λ−λj
L

)
is an even function over frequency domain satisfying∑T

j=1 ω
(
λ−λj
L

)
= 1 and

∑T
j=1 ω

2
(
λ−λj
L

)
→ 0 as T → ∞; and IX,L (u, λj) is

the localized periodogram defined by

IX,L (u, λj) =
1

2πN

∣∣∣∣∣
N∑
p=0

XbTuc+1−bN/2c+p,T e
itλj

∣∣∣∣∣
2

where N is the length of localized window such that 1
N

+ N
T
→ 0 and we

specify Xt,T = 0 if t ≤ 0 or t > T . Note that this is just one of the spectral

density estimators, the consistency of this estimator is proved for stationary

process in Brockwell and Davis (1991, Chapter 10.4) and extended to locally

stationary long memory process in Preuß (2012). Another types of estimator

that smooths the pre-periodogram over both time and frequency domain is

proposed in Dahlhaus (2012), which is not covered here. In summary, the

above set-up for approximating the sample using inverse of DFT fits the one

proposed in both KP and Preuß (2012). Next we presents the procedures to

generate the bootstrap asymptotic covariance estimator as follows:

1. Obtain the unrestricted residuals ε̂t,T = yt,T−X
′
t,T β̂

(
t
T

)
by our estimator

proposed at each t = 1, . . . , T .

2. Generate pseudo innovations {ζ∗t }
T
t=1 using i.i.d. standard normal distri-

bution.

3. Generate the DFT for the pseudo innovations above as w̃ζ∗ (λj) = 1√
2πT

∑T
t=1 ζ

∗
t e
itλj

at frequencies λj = 2πj/T , j = 1, . . . , bT/2c.

4. Calculate the inverse of DFT as ε∗t,T =
√

2πT
bT/2c

∑bT/2c
j=1

√
2πf̂ε̂

(
t
T
, λj
)
w̃ζ∗ (λj) e

−itλj ,

where f̂ε̂
(
t
T
, λj
)

is the estimated spectral density for residual ε̂t,T .

5. Generate the bootstrapped dependent variable y∗t,T = X
′
t,T β̂

(
t
T

)
+ ε∗t,T

and conduct our estimation that gives β̂∗ (u) for each u ∈ (0, 1).
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6. Repeat step 1-5 for B times, and calculate the bootstrap covariance

through Monte Carlo simulation as

Σ̂∗ (u) =
1

B

B∑
b=1

(
β̂(b)
∗ (u)− β̂ (u)

)(
β̂(b)
∗ (u)− β̂ (u)

)′

where β̂
(b)
∗ (u) is the estimator at b-th bootstrap sample. Then a self-

normalized estimator is given by Σ̂
− 1

2
∗ (u)

(
β̂ (u)− β (u)

)
.

For the consistency of our bootstrap method, we need to firstly show that

for any u ∈ (0, 1), we have λ
dε(u)
M Λ−1

M (u)
√
Mh

(
β̂∗ (u)− β̂ (u)

)
converge in

distribution to the same random object as indicated by Theorem 2.3.1. Note

that here the convergence is not conditional on the original sample (X, ε),

because rather than resampling the data as ususal bootstrap does, we actually

generate a pseudo data that mimic but is independent from the original data.

Before presenting our bootstrap CLT, we give some extra assumptions for the

spectral density estimator f̂ε̂ (·, ·).

Assumption 8. The spectral density estimator f̂ε̂ (·, ·) satisfies

(i)
∣∣∣∂f̂ε̂(u,λ)

∂u

∣∣∣ <∞ for any u ∈ (0, 1) and λ ∈ (0, π);

(ii) supu,λ

∣∣∣f̂ε̂ (u, λ)− fε (u, λ)
∣∣∣ = o (1).

The following theorem gives the CLT of bootstrap regression estimator

under the null hypothesis.

Theorem 2.4.1 Given the conditions for Theorem 2.3.1, 2.3.2 and Assump-

tion 8, as T →∞,

λ
dε(u)
M Λ−1

M (u)
√
Mh

(
β̂∗ (u)− β̂ (u)

)
d∗→ N (0,Σ (u))

where Σ (u) = Γ−1 (u) Ω (u) Γ−1 (u).
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2.4.2 Specification test

Our estimator poses the possibility that the regression coefficients could be

time-varying. Therefore testing the constancy of regression coefficients be-

comes a crucial task in application; and in this subsection we introduce a

specification test of this aim. Consider the following null hypothesis:

H0 : β (u) = β

for some constant p × 1 vector β. And the alternative hypothesis is given by

H1, as at least one element of β (u) is varying with u. As in Cai and Xiao

(2012), we consider a test statistic over the distance between β̂ (u∗i ) and
¯̂
β, in

a finite set of points U∗ = {u∗i }
m∗

i=1, where
¯̂
β is an estimator of β under H0.

Using the results in Nielsen (2005), we can directly define
¯̂
β as

¯̂
β =

[
M∑
j=1

λ
2δ(u)
j Re (wX (λj)w

∗
X (λj))

]−1 [ M∑
j=1

λ
2δ(u)
j Re

(
wX (λj)w

∗
y (λj)

)]
,

(2.4.2)

where wX (λj) is defined as in (2.4.1). Then considering the finite-dimensional

distribution of the difference β̂ (u∗i ) −
¯̂
β for i = 1, 2, . . . ,m∗, we have the fol-

lowing result.

Corollary 2.4.2 Under the conditions of Theorem 2.3.1 to 2.4.1, and under

H0,
{
β̂ (u∗i )−

¯̂
β
}
u∗i∈U∗

have the following asymptotic joint distribution:

ΦU

√
Mh


β̂ (u∗1)− ¯̂

β

...

β̂ (u∗m∗)−
¯̂
β

 d→ N


Σ (u∗1) 0

. . .

0 Σ (u∗m∗)


where ΦU is the block diagonal matrix defined by

ΦU = diag

(
λ
dε(u∗1)
M Λ−1

M (u∗1) , . . . , λ
dε(u∗m∗)
M Λ−1

M (u∗m∗)

)
,
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and Σ (u∗i ) = Γ−1 (u∗i ) Ω (u∗i ) Γ−1 (u∗i ) as defined in Theorem 2.3.1.

We then consider the following two test statistics

WM,T,m∗ ≡ max
1≤i≤m∗

∥∥∥Σ̂
− 1

2
∗ (u∗i )

(
β̂ (u∗i )−

¯̂
β
)∥∥∥2

, (2.4.3)

WS,T,m∗ ≡
m∗∑
i=1

∥∥∥Σ̂
− 1

2
∗ (u∗i )

(
β̂ (u∗i )−

¯̂
β
)∥∥∥2

. (2.4.4)

For this test statistic, we have the following asymptotic null distribution.

Corollary 2.4.3 Under the conditions of Theorem 2.3.1 to Theorem 2.4.1

and corollary 2.4.2, and under H0, WM,T,m∗ and WS,T,m∗ have the following

asymptotic null distribution:

WM,T,m∗
d→ max

1≤i≤m∗
χ2
i (p) , and WS,T,m∗

d→
m∗∑
i=1

χ2
i (p)

where χ2
1 (p) , . . . , χ2

m∗ (p) are independent chi-square distribution with p degrees

of freedom.

2.5 Monte Carlo Simulation

In the Monte Carlo simulation experiment of our estimator and test statistic,

we consider the following data generating process:

yt,T = X
′

t,Tβ

(
t

T

)
+ εt,T t = 1, 2, . . . , T

where without loss of generality, Xt,T is set to be a 2×1 vector. Both Xt,T and

εt,T are generated by time-varying ARFIMA process, and specifically Xt,T is

generated by ARFIMA
(
0, dX

(
t
T

)
, 0
)
, and εt,T by ARFIMA

(
0, dε

(
t
T

)
, 0
)
,

where these time-varying memory parameters are defined by

dX1 (u) = dX2 (u) = (1− cos (πu/3)) , u ∈ [0, 1]
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and

dε (u) = (1− cos (πu/5)) , u ∈ [0, 1] .

And the time-varying regression coefficient vector β (u) is given by β1 (u) =

2 sin (2πu) and β2 (u) = 2 cos (2πu). In terms of orders of the size of fre-

quency M and bandwidth h, we specify M =
⌊
T

4
5

⌋
and h = 0.1SxT

− 1
5

where Sx is the average of standard deviation of each element of Xt,T . In

the following we report the results of averaged bias, root mean-squared er-

ror, and standard error of the estimator β̂ (u) at u = 0.2, 0.4, 0.6 and 0.8.

The results are averaged over R = 200 repetitions, with sample sizes 100, 200

and 400. In detail, the averaged bias is defined by 1
R

∑R
r=1

(
β̂ (u)− β (u)

)
,

mean-squared error by

[
1
R

∑R
r=1

(
β̂ (u)− β (u)

)2
] 1

2

, and standard error by[
1

R−1

∑R
r=1

(
β̂ (u)− β̂ (u)

)2
] 1

2

. For weight function δ (u), we set δ (u) = 3.5,

4.5 and 5.5 respectively. See Table 1 for the above results. Also we present

the graphs in Figure 1 comparing the curves of true parameters β (u) with the

averaged estimator (WFDLS) β̂ (u) at T = 400 and δ (u) = 5.5.

Then in terms of the specification test, we specify the following null and

alternative hypothesis.3

H0 : β (u) = β =
(√

2, 2
√

2
)′
,

H1 : β (u) = (2 sin (2πu) , 2 cos (2πu))′ .

The estimator of β under the null is given by (2.4.2) and test statistics given

by (2.4.3) and (2.4.4). The collection of points {u∗i }
m∗

i=1 are selected as (almost)

equally-spaced in the set
{
t
T

}T
t=1

. By our theory, under the null the above test

statistics converge in distribution to max1≤i≤m∗ χ
2
i (2) and

∑m∗

i=1 χ
2
i (2) respec-

tively with m∗ independent chi-square distribution with degree of freedom 2,

and we therefore can obtain the asymptotic 95% critical value of these two test

3The null and alternative are set this way so that the signal-to-noise ratio of our data
generating process is restricted around 4.
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statistics, denote by CM,0.95 and CS,0.95. For bootstrapping, we set bootstrap

sample size as B = 300. In the following we report the size and power under

the case that m∗ = 2, 4, 8 and 12 in Table 2, where we focus on the case

δ (u) = 5.5. From Table 1 we can see that our estimator converges properly

to true coefficients and Figure 1 shows how the estimated curve is close to its

true values as well. From Table 2 the size control and power both perform well

using our bootstrap covariance estimator.

Table 1: Results of WFDLS estimates of β (u)

β1 (u) β2 (u)

u = 0.2 u = 0.4 u = 0.6 u = 0.8 u = 0.2 u = 0.4 u = 0.6 u = 0.8

δ (u) = 3.5 RMSE T = 100 0.973 0.923 0.957 1.032 1.192 1.085 1.050 0.972

T = 200 0.799 0.771 0.884 0.843 0.885 0.861 0.825 0.742

T = 400 0.626 0.632 0.644 0.734 0.632 0.623 0.662 0.681

STD T = 100 0.975 0.924 0.956 1.032 1.194 1.086 1.042 0.971

T = 200 0.800 0.772 0.885 0.844 0.885 0.861 0.826 0.736

T = 400 0.627 0.633 0.644 0.735 0.632 0.624 0.663 0.679

δ (u) = 4.5 RMSE T = 100 1.130 0.986 1.072 1.133 1.360 1.249 1.177 1.074

T = 200 0.877 0.865 0.974 0.930 0.991 0.949 0.925 0.800

T = 400 0.690 0.692 0.745 0.809 0.707 0.687 0.737 0.745

STD T = 100 1.131 0.987 1.073 1.133 1.362 1.250 1.168 1.072

T = 200 0.878 0.866 0.974 0.931 0.991 0.949 0.925 0.794

T = 400 0.691 0.693 0.744 0.811 0.707 0.688 0.738 0.743

δ (u) = 5.5 RMSE T = 100 1.287 1.044 1.207 1.250 1.501 1.407 1.298 1.198

T = 200 0.941 0.977 1.040 1.034 1.099 1.036 1.011 0.861

T = 400 0.758 0.746 0.829 0.872 0.787 0.747 0.806 0.803

STD T = 100 1.289 1.044 1.209 1.250 1.503 1.408 1.290 1.196

T = 200 0.942 0.978 1.040 1.035 1.098 1.036 1.012 0.856

T = 400 0.759 0.747 0.828 0.873 0.787 0.748 0.807 0.800

Table 2: Size and Power of Specification Test

Size (%) Power (%)

m∗ 2 4 8 12 2 4 8 12

WM,T,m∗ T = 100 13.5 16.5 28.0 36.0 80.0 93.5 99.0 99.5

T = 200 4.5 4.5 3.0 9.0 77.5 96.5 99.5 100

T = 400 3.5 5.0 5.5 5.5 89.5 98.0 100 100

WS,T,m∗ T = 100 13.0 15.5 31.5 39.5 81.5 96.0 99.5 99.5

T = 200 5.0 6.5 5.5 5.5 80.0 98.0 100 100

T = 400 4.5 6.0 2.5 6.5 93.0 99.0 100 100
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Figure 1: WFDLS estimator against true regression coefficients

Figure 2: Spillover effects from France and Portugal
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2.6 Application

In this section, we present an empirical application in terms of the international

inflation spillover effect. The estimation and test for constancy of the effect

are based on the harmonized index of consumer prices (HICP hereafter) data

collect from Eurostat, an thorough online economic database of EU countries.

The HICP are monthly data from January 1996 to March 2020; and differ-

ent from pure CPI data, HICP is comparable across different countries and

thus suitable for our analysis. The nature of long memory for inflation rate

is confirmed by Hassler and Wolters (1995) and Doornik and Ooms (2004),

among others. And the international inflation spillover has its evidence found

by Neely and Rapach (2011), Mumtaz and Surico (2012), Altansukh et al.

(2017) and Kang et al. (2019), among others. They found that there is an “in-

terdependence” of inflation across countries, especially for countries that are

economically or geographically connected to each other. One of the methods

to evaluate inflation spillover effect is to characterize it by a constant regres-

sion coefficient along the inflation rates of different countries, see, for example,

Nielsen and Frederiksen (2011). However, as an indicator of long-run equilib-

rium, the time-varying nature of inflation spillover should be considered, which

is still empty in current literature. Therefore we try to estimate a time-varying

inflation spillover effect to Spain from two other countries: France and Portu-

gal, which are geographically connected to Spain on the ground. This can be

illustrated by the following model:

InflaSPt,T = β1

(
t

T

)
· InflaFRt,T + β2

(
t

T

)
· InflaPOt,T + εt,T

where InflaSPt,T , InflaFRt,T and InflaPOt,T are inflation rates of Spain,

France and Protugal respectively, which are calculated by percentage change

of HICP data over every two consecutive periods, with T = 290. Descriptive

statistics of these three variables are presented in Table 3. For estimation of
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β1

(
t
T

)
and β2

(
t
T

)
, we specify the size of frequency M =

⌊
T

4
5

⌋
and bandwidth

h = 5.5SxT
− 1

5 over all its usage, which is the same as in simulation, and the

graphs of β̂1

(
t
T

)
and β̂2

(
t
T

)
are presented in Figure 2.

Next we consider test of constancy of our functional coefficients β1

(
t
T

)
and

β2

(
t
T

)
, with the following null hypothesis:

H0 :

 β1 (u)

β2 (u)

 =

 β1

β2


for some constants β1 and β2. We conduct the test using number of points

m∗ = 2, 4, 8 and 12; and present the value of WM,T,m∗ , WS,T,m∗ and corre-

sponding 95% critical value as indicated by self-normalization in our bootstrap

procedures, denoted by pM and pS. The results are presented in Table 4. From

Figure 2 we can see the spillover effects of inflation rate in Spain from France

and Portugal both grow stably overtime, while the effect and its growth are

more prominent from France than from Portugal. From Table 4 we can see

that for most of the scenario we reject our null hypothesis, which gives a valid

support of time-varying nature of the inflation rate spillover effects.

Table 3: Descriptive Statistics in Application

Max Min Median Mean Std. Err

InflaSP 2.391 -2.458 0.194 0.170 0.701

InflaFR 1.147 -1.122 0.127 0.122 0.329

InflaPO 2.239 -1.719 0.122 0.159 0.588

Table 4: Specification Test in Application

m∗ 2 4 8 10 12

WM,T,m∗ 7.976 15.180 19.454 15.513 21.082

(7.483) (8.657) (10.055) (10.601) (10.855)

WS,T,m∗ 8.190 23.228 51.171 49.026 82.172

(9.560) (15.694) (26.365) (31.444) (36.377)

2.7 Conclusion

In this paper we consider a weighted frequency-domain least square estima-

tion using kernelized discrete Fourier transform of the data, which consistently
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estimate the time-varying functional regression coefficients. We establish the

pointwise asymptotic normality of our estimator, and derive its uniform con-

vergence rate. Also to handle the potential bad finite sample performance, we

adopt a bootstrap method that takes use of pseudo innovations in our linear

processes and estimation of spectral density for the residuals. We proves its

validity in our framework, and apply it to a test for constancy of our regression

coefficients. An application to estimation of international inflation spillover ef-

fect, using inflation rate data of three European countries, is conducted; and

our bootstrap test reject the null hypothesis that these effects are constant

over time.

There are several possible extensions. First, in terms of our test for con-

stancy, one may consider a test statistic that evaluates uniformly on the interval

[0, 1], this method shall bring to a better finite sample performance than the

one we consider now. Second, one may consider another bootstrap method with

less tuning parameters considered, as ours now need to involve the bandwidths

used for kernelized DFT, for estimating spectral density of the residuals, and

for local time window to construct the local periodogram. And as we can see

in application, selection of these bandwidth could be burdensome somehow,

so at least a data-generated bandwidth selector should be developed. Third,

one may extend the current regression framework to one involving endogeneity,

especially autoregression; or consider a panel data where fixed effect is con-

sidered. So far the frequency domain estimation has not been widely used in

panel data with long memory. We leave this as potential improvement of this

paper or new topics in the future.
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Chapter 3

Unified Factor Model

Estimation and Inference under

Short and Long Memory

3.1 Introduction

For the past two decades, linear panel regression models with interactive fixed

effects have been extensively studied in econometrics and applied in a wide

variety of contexts where large datasets have become available in the social

and business sciences. These models allow for cross section dependence of an

a priori unknown form through the use of latent factors that evolve over time

with individual loadings that determine the strength of the interactions and

temporal dependencies in the panel. The abbreviation “factor model” is used

here to represent this general class of panel factor model.

For these factor models to be useful in applied research, it is important

that the time series properties of the regressors, factors and innovations in

the generating mechanism match those that are present in or implied by the

observed data. In practical work it is often convenient to transform dependent

variables and regressors to stationarity so that the working model involves a
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panel of stationary time series. But such transformations do not eliminate

the possibility of stationary long range dependence or long memory in the

data. To address the complications that can arise through the presence of

long memory, the present paper studies a panel linear regression model with

interactive fixed effects wherein regressors, factors and idiosyncratic error terms

are all stationary but may be driven by long memory processes. The model

setup therefore involves a long memory formulation of the factor model in

which short memory regressors, factors and innovations are embedded as a

special case.

Panel factor model regressions are commonly used in modeling heteroge-

neous individual behavior that relates to consumption, investment, inflation

rates, stock returns, volatility and various other economic and financial indi-

cators. Empirical evidence of long memory has been noted in many of these

indicators, implying autocorrelation structures that differ from short memory

stationary I (0) processes. For instance, Hassler and Wolters (1995) examined

monthly inflation rates for five developed countries and confirmed the presence

of long memory in the time series. Similar empirical evidence was found by

Caporale and Gil-Alana (2007) for the US unemployment rate, by Gil-Alana

and Robinson (2001) for domestic income and consumption in the UK and

Japan, and by Ding et al. (1993), Andersen et al. (2001) and Andersen et al.

(2003) for stock returns, realized stock volatility and realized exchange rate

volatility, respectively.

In applied macroeconomic research, factor modeling is frequently employed

to capture the effects of latent aggregate macroeconomic or financial trends,

e.g., Stock and Watson (1989, 2002). It is also well known that cross section

aggregation of time series can lead to the presence of long memory, as shown

by Granger (1980) and studied in economic and financial data by Chambers

(1998), Pesaran and Chudik (2014), and Michelacci and Zaffaroni (2000). Long

range dependence features in the data and processes like aggregation that un-
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derlie much data collection both motivate studying the impact of such depen-

dence on current methods of panel factor modeling and the development of

new methods to address the existence of long memory in the data.

The present paper undertakes this investigation and development. In par-

ticular, we study estimation, inference, and associated asymptotics for the fit-

ted coefficients in a linear panel regression model with interactive fixed effects

with potential long memory regressors, factors and idiosyncratic errors. The

starting point of the analysis is standard principal components least squares

estimation (Bai (2009)) and its asymptotic performance under long memory.

The results of this analysis reveal that, when the joint memory properties of

variables in the model is strong enough, least squares estimation produces non-

negligible asymptotic bias which is not resolved either by analytical correction,

as suggested in Bai (2009), or by the standard half-panel jackknife methods,

proposed in Fernández-Val and Weidner (2016). The reason for this breakdown

is that the order of magnitude of the bias depends critically on the memory

parameters, as does the convergence rate of the least squares regression coef-

ficient estimator. Different from pure time series long memory regression, the

least squares estimator of factor model still obtains an asymptotic normal dis-

tribution due to the commonly assumed weak dependence over cross-sectional

units, and the condition that the number of cross-sectional units goes to in-

finity in a comparable order with the number of time periods. Moreover, the

convergence rate and bias order can vary across the setting in which regressors

and factors are mean zero or mean non-zero, and their joint memory together

with idiosyncratic error term.

The above issues substantially complicate successful practical implemen-

tation of least squares regression. To resolve these difficulties, the present

paper proposes an alternative approach to time domain regression by using

frequency domain regression methods that have a long history of successful

use in time series regression. These methods originated in the pathbreaking
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studies of Hannan (1963, 1970) on spectral regression, were further developed

for principal components by Brillinger (2001), for trending time series regres-

sion (Phillips, 1991; Corbae et al., 2002), with higher order approximations

in time series regression (Xiao and Phillips, 1998), and recently have been

implemented in long memory time series regressions (e.g. Nielsen, 2005) and

in time-dependent frequency domain principal components modeling (Ombao

and Ho, 2006). In the factor model context, the procedure follows the usual

approach of transforming the model by taking discrete Fourier transforms at

the Fourier frequencies, and performing principal components analysis (PCA)

in the frequency domain on the system and least squares spectral regression

estimation. The combination of PCA and spectral least squares regression

yields consistent coefficient estimation and asymptotic normality under gen-

eral conditions. The asymptotic bias involved in frequency domain estimation

can be corrected and the asymptotic variance matrix can be estimated using a

frequency domain analytic analogue of the formula used in Bai (2009). Infer-

ence is conducted using a self-normalized statistic for which there is no need

for separate estimation of the memory parameters that occur in the asymp-

totic bias and covariance matrix, a feature that simplifies implementation and

improves finite sample performance.

This study contributes to the current literature in two ways. First, we

extend the range of application of the factor model developed in Bai and Ng

(2002), Bai (2003, 2009) and Moon and Weidner (2015), by accounting for

long memory and nesting short memory applications as a special case. Second,

we contribute to the literature of time series long memory modeling, studied

by Robinson and Hidalgo (1997), Marinucci and Robinson (2001), Nielsen

(2005) and Christensen and Nielsen (2006) among others, by extending spectral

regression estimation and inference to the panel factor model. Specifically, the

approach developed extends narrow-band spectral estimation in time series

regression to the panel factor model, showing that asymptotic normality in
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this context holds irrespective of the joint memory of the variables, a result

that arises from cross section aggregation and contrasts with time series least

squares regression for which the limit theory is known to be non-normal when

the sum of the memory parameters of the regressors and the errors exceeds 0.5

(Chung, 2002).

Other recent work has considered the impact of long memory time series

in panel data modeling, notably Ergemen and Velasco (2017), Ergemen (2019)

and Cheung (2021). Ergemen and Velasco (2017) and Ergemen (2019) study

a fractionally integrated factor model where the factors are removed by the

methods introduced by Pesaran (2006), projecting the regression on a fraction-

ally integrated cross-sectional average. Our study differs from these papers by

using a semiparametric formulation of the long memory components and our

approach relies employs PCA in the frequency domain to estimate the discrete

Fourier transforms of the factors. Similar to our approach but working in a

pure factor model, Cheung (2021) seeks to estimate the memory parameters

of the latent factors by PCA. Cheung (2021) focuses on a fully parametric

fractional integrated process and deals with possible nonstationarity, a feature

that our study does not include. On the other hand, our study complements

the results of Cheung (2021) by providing a limit theory for estimation of and

inference concerning the coefficients in a panel linear regression model with

latent factors.

The rest of this paper is organized as follows. Section 3.2 introduces the

factor model with possible long memory in the component variables. Section

3.3 develops the asymptotics of least squares estimation in time domain, as in

Bai (2009) but allowing for stationary long memory. Section 3.4 provides the

corresponding analysis in the frequency domain. Section 3.5 proposes an esti-

mate of the true number of factors that is based on the eigenvalue-ratio method

developed by Ahn and Horenstein (2013), establishing its consistency under

certain conditions. Section 3.6 reports the results of Monte Carlo simulations
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that explore the finite sample performance of panel least squares estimation

in both time and frequency domain formulations, demonstrating some of the

difficulties that are involved in time domain estimation. Section 3.7 provides

an empirical application of our panel frequency domain procedures to investi-

gate the long-run relationship between GDP and private debt levels for a panel

of 21 countries. Section 3.8 concludes. Proofs and other auxiliary technical

results are given in the appendix.

The following notation is adopted. For an arbitrary m × n matrix A, its

transpose is denoted by A′; and its conjugate and conjugate transpose are

denoted by A and A∗ respectively if A is complex; moreover its Frobenius

norm is ‖A‖ =
√

tr (A′A) if A is real, or ‖A‖ =
√

tr (A∗A) if A is complex.

The spectral norm of A is ‖A‖sp =
√
µ1 (A′A), when A is real, and ‖A‖sp =√

µ1 (A∗A), when A is complex, where µ1 (·) denotes the largest eigenvalue

of the Hermitian matrix argument. Let IR denote an R-dimensional identity

matrix. For any two matrix-valued sequences Aj and Bj of the same dimension,

Aj ∼ Bj is defined by
Aj,(m,n)
Bj ,(m,n)

→ 1 as j →∞ for each of its (m,n)-th elements.

3.2 Model

In this paper we consider the data generating process that is given by following

linear panel regression model

Yit = X ′itβ + λ′iFt + εit, i = 1, . . . , N, t = 1, . . . , T, (3.2.1)

with a P -vector of regressors Xit, common regression coefficients β, and an

R-vector of latent factors Ft with factor loading vectors λi, and idiosyncratic

errors εit. This study allows Xit, Ft and εit to be stationary long memory time

series with respective memory parameter vectors given by dX = (dX1 , . . . , dXP )′

and dF = (dF1 , . . . , dFR)′, and memory parameter of εit given by a scalar dε.

Note that we restrict the memory parameters of both Xit and εit to be identical
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across individuals i, so that the cross-sectional heterogeneity in memory is

replaced by the cross-sectionally heterogeneous effect of long memory factors

induced by factor loadings. This sacrifices generality to some extent but makes

it more convenient to handle the model in theory.

There are different ways to define a long memory process in the literature

(see Haldrup and Vald’es, 2017), among which a widespread one is to define

it by a linear process (see e.g. Robinson and Hidalgo, 1997). To be specific,

when dε and all of the elements of dF and dX are within [0, 1
2
), then Ft, Xit

and εit have the following moving average representation:

Ft = µF +
∞∑
j=0

AF,jζF,t−j ≡ µF + F o
t , (3.2.2)

Xit = µX,i +
∞∑
j=0

AX,jζX,i,t−j ≡ µX,i +Xo
it for i = 1, . . . , N, (3.2.3)

εit =
∞∑
j=0

Aε,jζε,i,t−j, (3.2.4)

where AF,j and AX,j are respectively R × R and P × P coefficient matrices

and Aε,j is a scalar, and ζF,t, ζX,i,t and ζε,i,t are the corresponding innovation

processes; and µF and µX,i are respectively R × 1 and P × 1 vectors of ex-

pectation. This specification of long memory processes includes the stationary

ARFIMA (p, d, q) as a special case. And different from ζF,t−j, the innovations

of regressors and idiosyncratic error term characterize the heterogeneity and

dependence of Xit and εit across both individuals and time periods; see Sec-

tion 3.3 for more detail. Following Bai (2009), the least squares (LS hereafter)

estimator of β and Ft in time domain are given by the solution of the following

nonlinear equations:

β̂ =

(
N∑
i=1

X ′iMF̂Xi

)−1 N∑
i=1

X ′iMF̂Yi (3.2.5)
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and [
1

NT

N∑
i=1

(
Yi −Xiβ̂

)(
Yi −Xiβ̂

)′]
F̂ = F̂ VNT , (3.2.6)

together with restrictions F ′F
T

= IR and Λ′Λ
N

being a diagonal matrix, where

F = (F ′1, . . . , F
′
T )′ and Λ = (λ′1, . . . , λ

′
N)′. In this study, we mainly focus on

the asymptotic behavior of β̂, which is discussed in the next section.

3.3 Asymptotic Behavior of Least Squares Es-

timator

In this section, we analyze the asymptotic behavior of the LS estimator in time

domain given by (3.2.5) and (3.2.6). In the following we will use β0, F 0
t , and

F 0 to denote the true values of β, Ft, and F, respectively. We continue to use

λi to denote the true value of the factor loadings as it is not directly estimated

or involved in our theoretical analysis.

To proceed, we further introduce some notation. Define

DNT (F ) =
1

NT

N∑
i=1

X
′

iMFXi−
1

T

[
1

N2

N∑
i=1

N∑
k=1

X ′iMFXkaik

]
≡ 1

NT

N∑
i=1

Zi (F )′ Zi (F ) ,

where aik = λ′i (Λ
′Λ/N)−1 λk, and Zi (F ) = MFXi − 1

N

∑N
k=1 aikMFXk =

(Zi1 (F ) , ..., ZiT (F ))′. This matrix is important in the asymptotic representa-

tion of β̂ − β0 and is also defined in Bai (2009, pp. 1240). Let Zi = Zi (F
0) =

(Zi1, ..., ZiT )′ andDNT = DNT (F 0) .Also for innovations let ζX,t = (ζX,1,t, . . . , ζX,N,t)
′

and ζε,t = (ζε,1,t, . . . , ζε,N,t)
′. And let γN (s, t) = 1

N

∑N
i=1E (εitεis) . For maxi-

mal memory parameters let dX,max = max1≤p≤P dXp and dF,max = max1≤r≤R dFr .

Similarly let dZ = (dZ1 , . . . , dZP )′ be the memory parameter of Zit, and dZ,max =

max1≤p≤P dZp . Then for minimal memory parameters let dX,min = min1≤p≤P dXp ,

and similarly we can define dF,min and dZ,min. Let M be a generic positive con-

stant that may vary across places.

In the following we introduce some technical assumptions together with
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remarks about them.

Assumption A. (i) When each element of da ∈ (0, 1
2
), thenAa,j ∼ Diag

(
jda−1

)
Πa

as j → ∞ for a = F,X, ε, where Diag
(
jda−1

)
is a diagonal matrix (or scalar

if a = ε) with the main diagonal elements given by jdFr−1 for r = 1, . . . , R, or

jdXp−1 for p = 1, . . . , P, or jdε−1; and the R×R matrix ΠF and P × P matrix

ΠX and scalar Πε that are all nonsingular. Otherwise we assume Aa,j is square

summable in certain norm.

(ii) ζF,t, ζX,t and ζε,t satisfy E (ζF,t|FF,t−1) = 0, E (ζX,t|FX,t−1) = 0, and

E (ζε,t|Fε,t−1) = 0, where FF,t−1, FX,t−1 and Fε,t−1 are the corresponding fil-

trations.

(iii) Let ζF,t(p) be the p-th element of ζF,t, and the same notation applies to

ζX,t. We assume that ζF,t satisfy

E
[
ζF,t(p)ζF,t(q) | FF,t−1

]
= Φ1,pq <∞,

E
[
ζF,t(p1)ζF,t(p2)ζF,t(p3) | FF,t−1

]
= Φ2,p1p2p3 <∞,

and

E
[
ζF,t(p1)ζF,t(p2)ζF,t(p3)ζF,t(p4) | FF,t−1

]
= Φ3,p1...p4 <∞

for some absolute constants Φ1,pq, Φ2,p1p2p3 and Φ3,p1...p4 , and for arbitrary p-, q-

and p1-, . . . , p4-th elements of ζF,t. Also the same condition holds for ζX,t and

ζε,t. Additionally, ζε,t satisfies the following eighth-order moment condition

E
[
ζε,t(p1) · · · ζε,t(p8) | FF,t−1

]
= Φ4,p1...p8 <∞ (3.3.1)

for some absolute constant Φ4,p1...p8 , and for arbitrary p1-, . . . , p8-th element

of ζε,t.

(iv) ζε,i,t is independent of ζX,i,s, ζF,r and λj for all r, s, t = 1, . . . , T and

i, j = 1, . . . , N .

Assumption B. (i) E ‖Xit‖4 ≤M .
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(ii) Let F =
{
F ∈ RT×R : F ′F/T = IR

}
. We assume infF∈F DNT (F ) > 0.

(iii) E ‖F 0
t ‖

4 ≤ M and 1
T
F 0′F 0 p→ ΣF > 0 for some R × R matrix ΣF , as

T →∞.

(iv) E ‖λi‖4 ≤ M and 1
N

Λ′Λ
p→ ΣΛ > 0 for some R × R matrix ΣΛ, as

N →∞.

Assumption C. (i) E (εit) = 0 and E |εit|8 ≤M .

(ii) E (εitεjs) = σij,ts, |σij,ts| ≤ σij for all (t, s) , |σij,ts| ≤ τts for all (i, j),

1

N

N∑
i,j=1

σij ≤M , (3.3.2)

and

1

T 1+2dε

T∑
t,s=1

τts ≤M,
1

NT 1+2dε

∑
i,j,t,s=1

|σij,ts| ≤M ,
1

Tmax(4dε,1)

T∑
t,s=1

|γN (s, t)|2 ≤M.

(3.3.3)

(iii) For every (t, s), E
∣∣∣N− 1

2

∑N
i=1 [εitεis − E (εitεis)]

∣∣∣4 ≤M.

(iv) Moreover

1

NT 1+2dε

N∑
i,k=1

T∑
t,s=1

|cov (εitεis, εktεks)| ≤M,

1

N2T 1+2dε

T∑
t,s=1

N∑
i,j,k,l=1

|cov (εitεjt, εksεls)| ≤M,

and

1

NT 2+4dε

N∑
i,k=1

T∑
t,s,u,v=1

|cov (εitεis, εkuεkv)| ≤M.

Assumption D. (i) Suppose E (F o
t F

o′
s ) = ΣF,ts and ‖ΣF,ts‖ ≤ τF,ts. We

assume 1

T
1+2dF,max

∑T
t,s=1 τF,ts ≤M , and

1

Tmax(2dε+2dF,max,1)

T∑
t,s=1

τtsτF,ts ≤M and
1

NTmax(2dF,max+2dε,1)

∑
i,j,t,s=1

|σij,ts| τF,ts ≤M.

(3.3.4)
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(ii) Suppose E(χoitχ
o′
js) = ΣX,ijts with χ = X,Z; and ‖Σχ,ijts‖ ≤ τχ,ts for all

(i, j). With σχ,ijts = tr (Σχ,ijts), we assume 1
T 1+2dχ,max

∑T
t,s=1 τχ,ts ≤M , and

1

Tmax(2dχ,max+2dε,1)

T∑
t,s=1

τtsτχ,ts ≤M and
1

N2Tmax(2dχ,max+2dε,1)

N∑
i,j,k,l=1

T∑
t,s=1

|σij,ts| |σχ,ijts| ≤M.

Assumption E. (i) plimD (F 0) = D0 for some nonrandom positive definite

matrix D0.

(ii) Suppose F 0 does not contain any constant column, N−
1
2T dε−

1
2

∑N
i=1 Z

′
iεi

d→

N (0,Σ);

(iii) Suppose there exists constant column in F 0, then

N−
1
2Tmax(dZ,max+dε,1/2)−1

N∑
i=1

Z ′iεi
d→ N (0,Σ) ,

where

p lim ρ−2
NT

N∑
i,j=1

T∑
t,s=1

σij,tsZitZ
′
js = Σ, and ρNT = N

1
2T

1
2
−dε

in case (ii) and

ρNT = N
1
2T 1−max(dZ,max+dε,1/2)

in case (iii).

Assumption F. dε ≤ min {dF,min, dX,min}.

Remark 1. Assumption A is a panel data extension to the classic setting of a

stationary long memory linear process (see e.g. Nielsen, 2005). To be specific,

the first half of Assumption A(i) is adopted from Chung (2002), whose Lemma

2 shows that autocovariance of F 0
t , Xit and εit satisfy, as j →∞

ΓF (j) = Cov
(
F 0
t , F

0
t−j
)
∼ Diag

(
jdF−

1
2

)
CFDiag

(
jdF−

1
2

)
,

ΓXi (j) = Cov (Xit, Xi,t−j) ∼ Diag
(
jdX−

1
2

)
CXDiag

(
jdX−

1
2

)
,
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and

Γεi (j) = Cov (εit, εi,t−j) ∼ Cεj
2dε−1, (3.3.5)

for some absolute constant matrices CF , CX and scalar Cε. The above approx-

imations imply the square summability of ‖Aa,j‖ for a = F 0, X and ε. Take

AF 0,j for instance. Assumption A(i) implies that for any δ > 0, there exists an

integer Kδ > 0 such that ‖AF 0,j‖2 ≤ (1 + δ)2C
∑R

r=1 j
2dFr−2 for some positive

constant C when j ≥ Kδ, which then implies

∞∑
j=0

‖AF 0,j‖2 =

Kδ∑
j=0

‖AF 0,j‖2+
∞∑

j=Kδ

‖AF 0,j‖2 ≤ Cδ+(1 + δ)2C
R∑
r=1

∞∑
j=Kδ

j2dFr−2 <∞,

by Riemann sum approximation if dFr <
1
2
. This illustrates how A(i) defines

a stationary long memory process through the hyperbolic rate of decay of its

autocovariance function. Note that this part of Assumption A(i) only covers

the long memory scenario as it emphasizes the hyperbolic rate of decay of

autocovariance function, while for short memory processes like ARMA model,

the rate is usually exponential and thus not nested in this half of Assumption

A(i) by simply substituting da = 0. Therefore in the second half we assume

the stationarity of all the variables when some short memory processes are

involved. We can see in Assumption C about how we uniformly deal with

short and long memory, which is explained in Remark 3. As we mentioned

before, a widespread alternative definition of long memory process is modeling

it by a fractionally integrated process I (d), which can be extended to an

ARFIMA (p, d, q) model that is popular in application. Relative to the fully

parametric definition of ARFIMA (p, d, q), ours is termed as semiparametric

modeling of long memory processes, which is free from short-run dynamics

specification and thus can avoid inconsistent estimation if we misspecify the

model, such as the autoregressive or moving average parts. In Assumption

A(ii) and A(iii), we impose moment conditions up to the eighth order. And

Assumption A(iv) implies that εit is independent of Xjs, λj, and F 0
s for all i,
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t, j, and s, which is also assumed in Bai (2009).

Remark 2. Assumption B is also borrowed from Bai (2009), specifying a finite

fourth-order moment for both the factors and factor loadings and a restriction

of strong factors. Note that both of the moment conditions in Assumption

B(i) and B(iii) can be justified by the corresponding fourth-order moment

conditions in Assumption A(i) of innovations.

Remark 3. Assumption C(i) and C(ii) can be implied by our Assumption A.

The reason why we separately list these two sets of assumptions is that our As-

sumption A is comparable to the standard definition of stationary long memory

process, while our Assumption C is comparable to the corresponding Assump-

tion C in Bai (2009). To be specific, C(i) is implied by Assumption A(ii) and

A(iii). To see this, Assumption A(ii) implies the zero expectation and (3.3.1)

in Assumption A(iii) together with the square summability indicated by A(i)

can imply the finite eighth-order moment. In Assumption C(ii), (3.3.2) is the

standard condition of cross-sectional weak dependence of εi,t. And the other

inequalities specify the serial dependence, as they generalize the Assumption

C(ii) in Bai (2009) by including long memory. The idea is adopted from the

Theorem 1 of Chung (2002) via a direct application of (3.3.5). To see this, we

consider the bound |σij,ts| ≤ τts for all (i, j). Consider the simplest case where

i = j, we have σii,ts = σii,t−s by its stationarity, and we can express the bound

τts = τt−s accordingly. By symmetry of τt−s as τt−s = τs−t,

1

T

T∑
t,s=1

τts =
1

T

T∑
t,s=1

τt−s = τ0 +
2

T

∑
t>s

τt−s =
2

T

T−1∑
k=1

(T − k) τk +O (1) . (3.3.6)

Let γi (k) be an arbitrary autocovariance function of order k of εit. By (3.3.5)

γi (k) ∼ Cεk
2dε−1 for some constant Cε as k → ∞. Then for any δ > 0, there

exists an integer Kδ > 0 such that (1− δ)Cεk2dε−1 ≤ γi (k) ≤ (1 + δ)Cεk
2dε−1

when k ≥ Kδ. Let τk = |γ (k)| be an appropriate upper bound for |γi (k)|
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uniformly over i = 1, . . . , N . We have

1

T

T−1∑
k=1

(T − k) τk =

Kδ∑
k=1

(
1− k

T

)
|γ (k)|+

T−1∑
k=Kδ

(
1− k

T

)
|γ (k)|

=
T−1∑
k=Kδ

(
1− k

T

)
|γ (k)|+O (1)

≥ Cε (1− δ)
T−1∑
k=Kδ

(
1− k

T

)
k2dε−1 +O (1)

= Cε (1− δ)T 2dε
1

T

T−1∑
k=Kδ

(
1− k

T

)(
k

T

)2dε−1

+O (1)

= Cε (1− δ)T 2dε

∫ 1

Kδ/T

(1− r) r2dε−1dr

{
1 +O

(
1

T

)}
+O (1) ,

(3.3.7)

given the convergence of both
∫ 1

Kδ/T
(1− r) r2dε−1dr and

∑Kδ
k=1(1 − k

T
) |γ (k)|

when dε > 0. The above calculations indicate that the condition 1
T

∑T
t,s=1 τts ≤

M in Bai (2009) is generally violated unless dε = 0. The same reasoning applies

to show the second inequality in (3.3.3) as long as the cross-sectional correla-

tions among {εit} are “weak enough”. Analogously, for the third inequality in

(3.3.3), we have

1

T

T−1∑
k=1

(T − k) τ 2
k ≈ CεT

4dε−1 1

T

T−1∑
k=1

(
1− k

T

)(
k

T

)4dε−2

= CεT
4dε−1

∫ 1

Kδ/T

(1− r) r4dε−2dr

{
1 +O

(
1

T

)}
+O (1) ,

given the convergence of the last integral, which requires dε > 1/4 so that

4dε − 2 > −1. When 0 ≤ dε ≤ 1/4, we notice that

T 4dε−1

∫ 1

Kδ/T

(1− r) r4dε−2dr = T 4dε−1

∫ 1

Kδ/T

r4dε−2dr − T 4dε−1

∫ 1

Kδ/T

r4dε−1dr,

(3.3.8)

where the second integral is convergent. And the first integral is further given
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by

T 4dε−1

∫ 1

Kδ/T

r4dε−2dr =

∫ 1

Kδ/T

(rT )4dε−2 d(rT ) ≡
∫ T

Kδ

(r∗)
4dε−2 d(r∗) (3.3.9)

= T 4dε−1 +O(1) = O(1). (3.3.10)

It follows that 1
Tmax(1,4dε)

∑T−1
k=1 (T − k) τ 2

k ≤ M, which implies the last condi-

tion in (3.3.3). In the special case where dε = 0, Assumption C(ii) degenerates

to Assumption C(ii) in Bai (2009) which involves only short-range dependence.

Although in this case the integral derived in the end of (3.3.7) is not conver-

gent, the moment condition still coincides with the one in Bai (2009). One

special case of our setup is a linear process with fractional integration, like

(1− L)dF F 0
t = et with L the lag-operator and et a short memory process. As-

sumption C(iii), which reflects the weak cross-sectional dependence, is directly

borrowed from the Assumption C(iii) in Bai (2009). With more tedious argu-

ments, one can also verify Assumption C(iv), as it extends the higher-order

moment conditions of short memory process in the Assumption C(iv) in Bai

(2009). We omit them here for brevity.

Remark 4. Assumption D(i) and D(ii) are adopted from the convergence rate

indicated by Theorem 3 in Chung (2002), where by construction of Zit it could

be treated as a potentially long memory process as well. To provide an intuitive

explanation of the whole Assumption D, we take F 0
t for instance. Assume

R = 1 and let γF (k) denote the autocovariance of F 0
t . Then γF (k) ∼ CFk

2dF−1

for some constant CF as k →∞. Then following the reasoning in (3.3.6) and

(3.3.7), we have

1

2T

T∑
t,s=1

τtsτF,ts

=
1

T

T−1∑
k=1

(T − k) τkτF,k +O (1)
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=

Kδ∑
k=1

(
1− k

T

)
|γ (k)| |γF (k)|+

T−1∑
k=Kδ

(
1− k

T

)
|γ (k)| |γF (k)|+O (1)

=
T−1∑
k=Kδ

(
1− k

T

)
|γ (k)| |γF (k)|+O (1)

≥ CεCF (1− δ)2
T−1∑
k=Kδ

(
1− k

T

)
k2dε−1k2dF−1 +O (1)

= CεCF (1− δ)2 T 2dε+2dF−1 1

T

T−1∑
k=Kδ

(
1− k

T

)(
k

T

)2dε+2dF−2

+O (1)

= CεCF (1− δ)2 T 2dε+2dF−1

∫ 1

Kδ/T

(1− r) r2dε+2dF−2dr

{
1 +O

(
1

T

)}
+O (1) .

The integral in the last equality is convergent only when dε+dF >
1
2
. When dε+

dF ≤ 1/2, we can readily show T 2dε+2dF−1
∫ 1

Kδ/T
(1− r) r2dε+2dF−2dr = O(1) by

the same reasoning in (3.3.8)-(3.3.10). It follows that 1
Tmax(2dε+2dF ,1)

∑T
t,s=1 τtsτF,ts ≤

M and the first part of (3.3.4) in Assumption D(i) holds. Similarly, the second

part of (3.3.4) also holds provided the cross-sectional correlations are suffi-

ciently weak.

Remark 5. Assumption E(i) corresponds partly to Assumption E in Bai

(2009), giving probabilistic limit of D (F ) required for asymptotic covariance

matrix of β̂ − β0. Assumption E(ii) gives the convergence rate of β̂ − β0. Be-

cause cross-sectional weak dependence of εit indicates we can use Lindeberg-

Lévy CLT over i, which requires a uniform boundedness of the second moment

E(Z ′iεiε
′
iZi) =

∑T
t,s=1E (εitεis)E(ZitZ

′
is) by definition of Zi and Assumption

A(iv). As we will see in the following, whether E (Zi) = 0 for all i is determi-

nant in convergence rate. Together with data generating processes in (3.2.2)-

(3.2.4) and the strict exogeneity condition in Assumption A(iv), we can see

how temporal dependence of Zitεit is dominated by the mean of Zit, denoted

by µZ when they are nonzero. To illustrate this idea in a simple manner, con-

sider
∑T

t=1 Zitεit for arbitrary i. Its mean is zero and its variance-covariance
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matrix is given by

E

[(
T∑
t=1

Zitεit

)(
T∑
t=1

Zitεit

)′]
=

T∑
t,s=1

E (ZitZ
′
is)E (εitεis)

=
T∑

t,s=1

[µZµ
′
Z + E (Zo

itZ
o′
is)]E (εitεis) ,

where Zo
it is defined in the same way as Xo

it in (3.2.4). By Assumption C(ii)

and D(ii),

T∑
t,s=1

µZµ
′
ZE (εitεis) = O

(
T 1+2dε

)
and

T∑
t,s=1

E (Zo
itZ

o′
is)E (εitεis) = O

(
Tmax(2dZ,max+2dε,1)

)
,

thus µFµ
′
F dominates in the summation as along as µF 6= 0, and only the

autocovariance structure of εit is applicable because of its mean-zero nature.

If µF = 0, the order above will be also affected by dF,max as Assumption

D(i) implies. Note that by definition, Zi can be interpreted as the residual

of linear projection of Xi on the column space of F , and demeaned by a

weighted average. So by construction E(Z ′iF
0) = 0 holds by orthogonality,

and E (Zi) = 0 if F 0 contains a constant column or if

Xit = φiF
0
t + uit

with E (uit | F 0) = 0 is the true data generating process, that is to say,

(Xit, F
0
t ) follow a linear regression model or Xit follows a pure factor model

with latent factors given by Ft. The latter setting is adopted in some current

studies (Ergemen, 2019, among others) and is more restrictive but easier to

deal with in practice, so in this study we only focus on the former setting that

F contains a constant column. If E (Zi) = 0, the convergence rate is adopted

from Theorem 3 in Chung (2002). In pure time series models, we cannot obtain

asymptotic normality for OLS estimator when dZ,max + dε ≥ 1
2
, but in panel

models, weak dependence over i and large number of cross-sectional units can
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help us regain the asymptotic normality. Moreover, a constant column in F 0

indicates the existence of individual fixed effect in our model. In Bai (2009)

this is only a special case of factor as LS estimator is only less efficient when

individual fixed effect is not canceled out by within-group transformation. But

in our model, individual fixed effect may affect the convergence rate of LS es-

timator when long memory exists in idiosyncratic error term. One may think

about dealing with such issue by doing within-group transformation in our

model before the LS estimation. In our online supplement we will discuss how

the asymptotic behavior of β̂ changes under such transformation.

Remark 6. Assumption F indicates the condition of fractional cointegration,

which generalizes the usual cointegration notion in time series literature, see

e.g. Marinucci and Robinson (2001). It also implies that dε < dZ,min by

construction of Zi.

Let F 0
rt and Zk,it denote the r-th and k-th element of F 0

t and Zit. The

following theorem establishes the asymptotic distribution of the LS estimator

β̂.

Theorem 3.3.1 Suppose that Assumption A-F hold. Then for comparable N

and T such that T/N → ρ > 0, we have

ρNT

(
β̂ − β0 − 1

T 1−2dε
ANT −

1

N
CNT

)
d→ N

(
0, D−1

0 ΣD−1
0

)
,

where ρNT is defined in Assumption E(ii) that depends on the setup for the

factor F 0 and magnitude of dZ,max + dε, D0 and Σ are given in Assumption

E(i), and the bias terms ANT and CNT are each Op (1) and given by

ANT = −D−1
NT

1

NT 1+2dε

N∑
i=1

X ′iMF 0

1

N

N∑
k=1

ΩkF̂

(
F 0′F̂

T

)−1(
Λ′Λ

N

)−1

λi,
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and

CNT = −D−1
NT

1

N

N∑
i=1

(Xi − Vi)′ F 0

T

(
F 0′F 0

T

)−1(
Λ′Λ

N

)−1
1

T

N∑
k=1

λkε
′
kεi,

where Vi = 1
N

∑N
k=1 aikXk with aik = λ′i

(
Λ′Λ
N

)−1
λk.

The above theorem shows in factor model, the convergence rate of the LS

estimator β̂ is slowed by the existence of long memory. In terms of limiting

distribution, although we still have asymptotic normality, the bias terms now

have their orders dependent on the long memory parameters. In the special

case where all memory parameters are zero, the above result is the same as

the one obtained by Bai (2009), which shows how our Theorem 3.3.1 nests the

short memory setting as a special case. However, the convergence rate ρNT

has a complex representation based on whether F 0 has a constant column, and

whether dZ,max + dε is greater than 1
2

or not. This dramatically complicates

the implementation of LS estimator, which is illustrated by Monte Carlo sim-

ulations in Section 3.6, where we find out the performance of analytical bias

correction is poor. In the meantime we adopt the half-panel jackknife bias

correction that is adjusted by memory parameters, whose results are not good

either after we plug in the local Whittle estimator of the memory parameters.

This difficulty in implementation calls for an alternative method to deal with

stationary long memory in our model. In the next section we try to develop a

frequency domain least squares estimator that is widely studied in long mem-

ory time series regression model, and analyze its asymptotic behavior in our

panel setup.
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3.4 Frequency Domain Least Squares Estima-

tor

In this section we introduce the frequency domain least squares (FDLS) esti-

mator and then study its asymptotic properties.

3.4.1 Estimation method

From Theorem 3.3.1, we can see how complicated the implementation is for LS

estimator to account for the potential existence of long memory. To simplifies

the implementation, we propose a new estimator, which is based on the LS es-

timation over frequency domain (FDLS hereafter). To be specific, we consider

the discrete Fourier transform (DFT hereafter) on both sides of model (3.2.1)

over frequency γj,

1√
2πT

T∑
t=1

Yite
itγj

=
β′√
2πT

T∑
t=1

Xite
itγj +

1√
2πT

λ′i

T∑
t=1

F 0
t e

itγj

+
1√
2πT

T∑
t=1

εite
itγj , i = 1, . . . , N , j = 1, . . . , L. (3.4.1)

where i =
√
−1 is the imaginary unit, and γj = 2πj

T
for j = 1, . . . , L. The

frequencies γj are called “Fourier frequencies”, which removes the mean of

the processes in the frequency domain. For instance, consider the DFT over

Fourier frequencies of F 0
t given by (3.2.2), we have

T∑
t=1

F 0
t e

itγj = µF

T∑
t=1

eitγj +
T∑
t=1

F o
t e

itγj

= µF
eiγj
(
1− eiTγj

)
1− eiγj

+
T∑
t=1

F o
t e

itγj =
T∑
t=1

F o
t e

itγj

by Euler’s identity eiTγj = ei2πj = 1.
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For ease of notation, let WY,ij =
∑T

t=1 Yite
itγj , and define WX,ij, WF,j and

Wε,ij analogously. Let Wa,i =
(
W ′
a,i1, . . . ,W

′
a,iL

)′
for a = Y,X, ε and WF =(

W ′
F,1, . . . ,W

′
F,L

)′
. Note that WY,i, WX,i, and WF are L× 1, L×P, and L×R

matrices, respectively. Then (3.4.1) can be rewritten as

WY,ij = β′WX,ij + λ′iWF 0,j +Wε,ij, i = 1, . . . , N , j = 1, . . . , L. (3.4.2)

This model can also be treated as a panel data model, with T time periods re-

placed by L frequencies. Then the FDLS estimator has the following objective

function

SSR (β,WF ,Λ) =
1

NT

N∑
i=1

(WY,i −WX,iβ −WFλi)
∗ (WY,i −WX,iβ −WFλi)

=
1

NT
‖WY −WX · β − ΛW ′

F‖
2

(3.4.3)

subject to the constraint that Γ̃FW
∗
FWF Γ̃F/T = IR, where Γ̃F = Diag

{
γ
dFr−

1
2

L

}
.

And WX · β =
∑P

p=1W
p
Xβp with βp and W p

X correspond to the p-th element

of β and WX,ij, and both WY and W p
X are N × L complex matrices of DFT.

Here Γ̃F is an R×R diagonal matrix for normalization over frequency domain,

so as to make the notation consistent with the time domain setting. Such

normalization can be justified by the properties of average periodogram, see

our assumptions and remarks later on. We further denote W̃F,j = Γ̃FWF,j and

λ̃i = Γ̃−1
F λi, by which we can rewrite the model (3.4.2) as

WY,ij = β′WX,ij + λ̃′iW̃F,j +Wε,ij, i = 1, . . . , N , j = 1, . . . , L, (3.4.4)

or in vector-matrix notation

WY,i = WX,iβ + W̃F λ̃i +Wε,i, i = 1, . . . , N, (3.4.5)

where W̃F =
(
W̃F,1, . . . , W̃F,L

)′
. Note that W̃F = WF Γ̃F and Λ̃ = (λ̃1, ..., λ̃N)′ =
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ΛΓ̃−1
F , and W̃ ∗

F W̃F/T = IR by construction. Define the projection matrix in a

complex vector space by

MW̃F
= IL − W̃F

(
W̃ ∗
F W̃F

)−1

W̃ ∗
F ≡ IL −PW̃F

.

Clearly, the columns of W̃F spans the same space as those of WF because

PW̃F
= W̃F

(
W̃ ∗
F W̃F

)−1

W̃ ∗
F = WF Γ̃F Γ̃−1

F (W ∗
FWF )−1 Γ̃−1

F Γ̃FW
∗
F = PWF

.

Then by construction MWF
WF = W ∗

FMWF
= 0. It follows that we can pre-

multiply both sides of (3.4.5) by MW̃F
to obtain

MW̃F
WY,i = MW̃F

WX,iβ + MW̃F
Wε,i, i = 1, . . . , N,

Then an infeasible FDLS estimator of β is obtained by regressing MW̃F
WY,i

on MW̃F
WX,i to obtain

β̃
(
W̃F

)
=

[
N∑
i=1

Re
(
W ∗
X,iMW̃F

WX,i

)]−1 N∑
i=1

Re
(
W ∗
X,iMW̃F

WY,i

)
.

Next, we consider the infeasible FDLS estimation of the factors and factor

loadings. Given β, we denote Ui = Ui (β) = Yi −Xiβ and its DFT WU,i over

the same Fourier frequencies as above. Then WU,i has the pure factor structure

in frequency domain:

WU,i = W̃F λ̃i +Wε,i.

Define WU = (WU,1, . . . ,WU,N)′ and Wε = (Wε,1, . . . ,Wε,N)′, which are two

N × L matrices. Then the FDLS objective function is

1

NT
tr
[(
WU − Λ̃W̃ ′

F

)∗ (
WU − Λ̃W̃ ′

F

)]
=

1

NT

N∑
i=1

L∑
j=1

∣∣∣WU,ij − λ̃′iW̃F,j

∣∣∣2 .
(3.4.6)

This objective function is identical to the one in Bai (2009, pp. 1236) except it
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is in the frequency domain, and we can concentrate Λ̃ out by using

Λ̃ = WUW̃ F

(
W̃ ∗
F W̃F

)−1

= WUW̃ F/T (3.4.7)

along with the restriction W̃ ∗
F W̃F/T = IR. Using (3.4.7), the objective function

in (3.4.6) becomes

tr
[(
WU − Λ̃W̃ ′

F

)∗ (
WU − Λ̃W̃ ′

F

)]
= tr

[(
WU −WUW̃ F W̃

′
F/T

)∗ (
WU −WUW̃ F W̃

′
F/T

)]
= tr (W ∗

UWU)− tr
(
W̃ ′
FW

∗
UWUW̃ F

)
/T. (3.4.8)

Therefore minimizing (3.4.6) is equivalent to maximizing tr
(
W̃ ′
FW

∗
UWUW̃ F

)
,

which is the typical principal components analysis (PCA) problem in frequency

domain, where W ∗
UWU is the stacked periodogram of U . As documented in

Brillinger (2001, pp. 70,342), PCA continues to work and the estimator of W̃F ,

denoted by ŴF , is given by the eigenvectors multiplied by
√
T of W ∗

UWU cor-

responding to the its first R largest eigenvalues, which are real because W ∗
UWU

is Hermitian. Note that as in Bai (2009) the indeterminacy over rotation for

W̃F still holds by the restriction W̃ ∗
F W̃F/T = IR. Moreover, the above PCA

actually obtains the estimator of W̃F , which is normalized column-wise by the

matrix Γ̃F , so WF is definitely not identified here, and the same issue holds

for Λ̃. However, this lack of identifiability does not matter for our purpose in

estimating β as we can see in the transformed model (3.4.4).

In practice, we iterate between β and W̃F . So the feasible FDLS estimator(
β̃, ŴF

)
of
(
β, W̃F

)
is given by the solution of the following set of nonlinear

equations:

β̃ =

[
N∑
i=1

Re
(
W ∗
X,iMŴF

WX,i

)]−1 N∑
i=1

Re
(
W ∗
X,iMŴF

WY,i

)
, (3.4.9)
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and

[
1

NT

N∑
i=1

(
WY,i −WX,iβ̃

)(
WY,i −WX,iβ̃

)∗]
ŴF = ŴFVNL, (3.4.10)

where VNL is the diagonal matrix containing the R largest eigenvalues of

W ∗
UWU in decreasing order.

In the next subsection we study the asymptotic properties of FDLS esti-

mator.

3.4.2 Asymptotic properties of the frequency domain

estimator

In this subsection, we develop the asymptotic theory for the FDLS estimator

β̃ together with ŴF , which is the PCA estimator of DFT of the factor F . To

proceed, we add some notation. Let Γ̃X = Diag
{
γ
dXp−

1
2

L

}
and W̃X,i = WX,iΓ̃X

for each i in the same manner as we define Γ̃F and W̃F above. Similarly, let

Γ̃ε = γ
dε− 1

2
L and W̃εi = Wε,iΓ̃ε. As in the time domain, define

D†NL (WF ) =
1

NT

N∑
i=1

Re
(
W ∗
X,iMWF

WX,i

)
− 1

N2T

N∑
i=1

N∑
k=1

Re
(
W ∗
X,iMWF

WX,kaik
)

=
1

NT

N∑
i=1

Re (WZ,i (F )∗WZ,i (F )) ,

where WZ,i (F ) = MWF
WX,i − 1

N

∑N
k=1 MWF

WX,kaik. Let WZ,i = WZ,i (F
0)

and D†NL = D†NL (WF 0). Then we can define the variable Zit like we did in

time domain as if its DFT over Fourier frequencies is given by WZ,i, and W̃Z,i

is defined in the same manner as W̃X,i above. Let fε,i (·) denote the marginal

spectral density of εit. We introduce some extra assumptions that are specified

for the FDLS estimation together with some remarks.

Assumption A∗. (i) Denote the (P +R + 1) × 1 vector Vit = (X ′it, F
′
t , εit)

′.

Suppose Vit is covariance stationary and has the spectral density matrix satis-
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fying

fV,i (γ) ∼ Γ (γ) ΥiΓ (γ) as γ → 0+, (3.4.11)

where Υi is a (P +R + 1)× (P +R + 1) symmetric matrix that is finite uni-

formly over i with the following structure:

Υi =


Υi,XX Υi,XF 0

Υ′i,XF ΥFF 0

0 0 Υi,εε

 ,

in which for all i, the P × P and R × R submatrices Υi,XX and Υi,FF are

positive definite, and the scalar Υi,εε > 0. Γ is a diagonal matrix given by

Γ (γ) = Diag
(
γ−dX1 , . . . , γ−dXP , γ−dF1 , . . . , γ−dFR , γ−dε

)
.

(ii) There exists θ ∈ (0, 2] such that for each i,

∣∣fV,i,(ab) − υi,(ab)γ−da−db∣∣ = O
(
γθ−da−db

)
as γ → 0+

for arbitrary a, b = 1, . . . , (P +R + 1).

(iii) Let Vit = µV +
∑∞

j=0AV,jζV,i,t−j, where AV,j is a block-diagonal matrix

consisting of AX,j, AF,j and Aε,j in order, as given by (3.2.2)-(3.2.4). And

define AV (γ) =
∑∞

j=0AV,je
ijγ. As γ → 0+,

∥∥∥∥dAV,a(γ)

dγ

∥∥∥∥ = O
(
γ−1 ‖AV,a(γ)‖

)
for arbitrary a = 1, . . . , (P +R+ 1), where AV,a(γ) is the a-th row of AV,a(γ).

Assumption B∗. (i) Let Γ̌X,j = Diag
(
γ
dXp
j

)
, we assume E

∥∥Γ̌X,jWX,ij

∥∥4 ≤

M and 1
T
W̃ ∗
X,iW̃X,i

p→ ΣW
X,i > 0 for some matrix ΣW

X,i, as T → ∞ for each

i = 1, . . . , N .

(ii) Let W =
{
W̃F ∈ CL×R : W̃F = WF Γ̃F , W̃ ∗

F W̃F/T = IR
}

. We assume
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infW̃∈W D
†
NL

(
W̃
)
> 0.

(iii) Let Γ̌F,j = Diag
(
γ
dFr
j

)
, we assumeE

∥∥Γ̌F,jWF,j

∥∥4 ≤M and 1
T
W̃ ∗
F W̃F

p→

ΣW
F > 0 for some matrix ΣW

F , as T →∞.

Assumption C∗. (i) E
∥∥γdεj Wε,ij

∥∥8 ≤ M and 1
T
W̃ ∗
ε,iW̃ε,i

p→ Σε,i > 0 for some

matrix Σε,i, as T →∞.

(ii) Let
√
E
∣∣Wε,ikW ∗

ε,jl

∣∣2 = σW,1ij,kl and E
∣∣Wε,ikW

∗
ε,il

∣∣2 = σW,1i,kl . We assume

σW,1ij,kl ≤ γ−dεk γ−dεl σWij and
√
σW,1i,kl σ

W,1
j,kl ≤ γ−2dε

k γ−2dε
l σWij for all (k, l) and

1

N

N∑
i,j=1

σWij ≤M. (3.4.12)

Moreover, let
∣∣E (Wε,ikW

∗
ε,jl

)∣∣ = σW,2ij,kl. We assume
∣∣∣σW,2ij,kl

∣∣∣ ≤ σWkl for all (i, j),

and

γ2dε
L

L1+2dε

L∑
k,l=1

σWkl ≤M ,
γ2dε
L

NL1+2dε

N∑
i,j=1

L∑
k,l=1

∣∣σWij,kl∣∣ ≤M , and
1

T 4dε log2 L

L∑
k,l=1

γWN (k, l)2 ≤M,

(3.4.13)

where γWN (k, l) = 1
N

∑N
i=1E

(
Wε,ilW

∗
ε,ik

)
.

(iii) Let Ωi = Γ̌εE
(
Wε,iW

∗
ε,i

)
Γ̌ε, where Γ̌ε = Diag

(
γdεj
)
. The largest eigen-

value of Ωi is bounded uniformly over i and T as T →∞.

(iv) For every (k, l), E
∣∣∣N− 1

2γdεj γ
dε
l

∑N
i=1

[
Wε,ikW

∗
ε,il − E(Wε,ikW

∗
ε,il)
]∣∣∣4 ≤

M .

(v) Moreover,

γ4dε
L

NL2

N∑
i,j=1

L∑
k,l=1

∣∣cov(Wε,ikW
∗
ε,ik,Wε,jlW

∗
ε,jl)
∣∣ ≤M, (3.4.14)

γ4dε
L

N2L2

N∑
i,j,m,n=1

L∑
k,l=1

∣∣cov(Wε,ikW
∗
ε,jk,Wε,mlW

∗
ε,nl)

∣∣ ≤M,

and

γ4dε
L

NL2

N∑
i,j=1

L∑
k,l=1

∣∣cov(Wε,ikW
∗
ε,il,Wε,jkW

∗
ε,jl)
∣∣ ≤M.
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Assumption D∗. (i) Let ΓZ = Diag
{
γ
dZp
L

}
. plim γ−1

L ΓZD
†
NL (WF 0) ΓZ =

DW
0 for some matrix DW

0 > 0.

(ii)
√
NLγdε−1

L ΓZ
NT

∑N
i=1 Re

(
W ∗
Z,iWε,i

) d→ N
(
0,ΣW

0

)
, where

ΣW
0 = p lim

γ2dε−1
L

NT

N∑
i,j=1

Re
(
ΓZW

∗
Z,iWε,i

)
Re
(
W ∗
ε,iWZ,iΓZ

)
≡ p lim Σ†NL.

(iii) Moreover, we have for each i = 1, . . . , N that

E

∥∥∥∥∥
√
Lγ

dε− 1
2

L

T
W ∗
ε,iW̃X,i

∥∥∥∥∥
2

≤M , E

∥∥∥∥∥
√
Lγ

dε− 1
2

L

T
W ∗
ε,iW̃F

∥∥∥∥∥
2

≤M,

and

E

∥∥∥∥∥
√
Lγ

dε− 1
2

L

T
W ∗
ε,iW̃Z,i

∥∥∥∥∥
2

≤M,

and the following also holds:

E

∥∥∥∥∥
√
NLγ

dε− 1
2

L

NT

N∑
i=1

W ∗
ε,iW̃X,i

∥∥∥∥∥
2

≤M,

E

∥∥∥∥∥
√
NLγ

dε− 1
2

L

NT

N∑
i=1

λiW
∗
ε,iW̃F

∥∥∥∥∥
2

≤M , and E

∥∥∥∥∥
√
NLγ

dε− 1
2

L

NT

N∑
i=1

W ∗
ε,iW̃F

∥∥∥∥∥
2

≤M.

Assumption E∗. As T →∞, we assume (i) L
T

+ 1
L
→ 0. Moreover, denote d =

max {dX,max, dF,max, dZ,max}, d = min {dX,min, dF,min, dZ,min}, and ∆d = d − d,

then we assume:

(ii) dε <
1
4
, d > dε and 7

(
1
2
− d
)
> 1

2
; and (iii)

(
1

N
1
3

+
√

L
N

+ 1√
L

)
γ−2∆d
L →

0.

Remark 7. Assumption A∗ is basically the standard restrictions of multi-

variate stationary long memory processes (see, e.g. Christensen and Nielsen,

2006). Assumption A∗(i) complements Assumption A(i) as it defines the long
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memory processes through their joint spectral density matrix around zero fre-

quencies, where a certain power law is satisfied. Under stationary long mem-

ory, Assumption A∗(i) and A(i) are basically equivalent to each other, but

the former assumption in frequency domain also holds uniformly under short

memory. Also note that we allow the spectral density to have heterogeneous

constant multiplier across i, which indicates a heterogeneous cross-correlation

and auto-correlation structure among different cross-sectional units.

Remark 8. Assumption B∗ extends the conditions in Assumption B to the

frequency domain, as it is consistent with the result of probabilistic limit for

the average (cross-) periodogram, which is shown in Theorem 1 of Robinson

(1994b) for univariate case and Theorem 1 in Lobato (1997) for multivariate

case. It is also consistent with the results on how the expectation of peri-

odogram approximates the spectral density as indicated by (3.16) in the proof

of Theorem 1 in Robinson (1995a).

Remark 9. Assumption C∗ extends Assumption C to the frequency do-

main, where C∗(i) gives the probabilistic limit of averaged periodogram and

the fourth order moment of periodogram of the idiosyncratic error as in B∗(i)

and B∗(iii). And C∗(ii) gives the conditions of cross-sectional weak dependence

in (3.4.12) and of serial dependence over frequencies in (3.4.13) for the DFT

of idiosyncratic error. Conditions given by (3.4.12) is slightly stronger than

those analogs in (3.3.2) in time domain, and we impose them so as to support

C∗(v). The conditions given by (3.4.13) adopt the Theorem 2 in Robinson

(1995b) which gives the limit of expectation of W ∗
ε,iWε,i at Fourier frequencies

defined above. To see how it holds, we use the fact that
∣∣E (Wε,ikW

∗
ε,jl

)∣∣ ≤√
E
(
Wε,ikW ∗

ε,jl

)2
and call upon Theorem 1 in Robinson (1995b), which in our

setting indicates that

lim
T→∞

E

{
Wε,ikW

∗
ε,il

fε,i (γk)
1
2 fε,i (γl)

1
2

}
= Pd (k, l) , with Pd (k, l) ≤M

(kl)dε

k + l
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for some positive constant M <∞. Then

L∑
k,l=1

σWi,kl ≤M

L∑
k,l=1

(kl)dε

k + l
fε,i (γk)

1
2 fε,i (γl)

1
2

∼M

L∑
k,l=1

(kl)dε

k + l
γ−dεk γ−dεl ≤M

(
L∑
k=1

kdε−
1
2γ−dεk

)2

=
M

(2π)2dε−1

(
T dε+

1
2

1

T

L∑
k=1

γ
− 1

2
k

)2

≈ M

(2π)2dε−1

(
T dε+

1
2γ

1
2
L

{
1 +O

(
1

T

)})2

= O
(
γ−2dε
L L1+2dε

)
,

which explains the orders in (3.4.12). By the same reasoning, (3.4.13) can be

explained through

L∑
k,l=1

γWN (k, l)2 ≤M
L∑

k,l=1

(kl)2dε

(k + l)2fε,i (γk) fε,i (γl)

≤M

(
L∑
k=1

k2dε−1γ−2dε
k

)2

≤M

(
T 2dε

L∑
k=1

k−1

)2

= O
(
T 4dε log2 L

)
.

C∗(iii) mimics the Assumption C(ii) in Bai (2009) in time domain, as it adopts

C∗(i) to control the order in frequency. And C∗(iv) continues to illustrate the

weak cross-sectional dependence.

Remark 10. And C∗(v) gives some higher order conditions that mimic the

ones in time domain setup. To give more explanation, denote W̌ε,ij = γdεj Wε,ij.

And take (3.4.14) for instance, we have

N∑
i,j=1

L∑
k,l=1

∣∣cov(Wε,ikW
∗
ε,ik,Wε,jlW

∗
ε,jl)
∣∣

=
N∑

i,j=1

L∑
k,l=1

∣∣γ−2dε
k γ−2dε

l cov(W̌ε,ikW̌
∗
ε,ik, W̌ε,jlW̌

∗
ε,jl)
∣∣

≤
N∑

i,j=1

L∑
k,l=1

γ−2dε
k γ−2dε

l

√
Var

(
W̌ε,ikW̌ ∗

ε,ik

)
Var

(
W̌ε,jlW̌ ∗

ε,jl

)
≤

N∑
i,j=1

L∑
k,l=1

γ−2dε
k γ−2dε

l

√
E
∣∣W̌ε,ikW̌ ∗

ε,ik

∣∣2E ∣∣W̌ε,jlW̌ ∗
ε,jl

∣∣2
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≤
L∑

k,l=1

γ−2dε
k γ−2dε

l

N∑
i,j=1

√
σW,2i σW,2j = O

(
NT 2γ2−4dε

L

)
= O

(
NL2γ−4dε

L

)
using the second inequality in (3.4.12) and Riemann sum approximation.

Remark 11. Assumption D∗(i) and D∗(ii) extends the distributional theory

in Theorem 2 of Christensen and Nielsen (2006) into factor model structure.

This is relatively high-order assumption and is not a trivial result because WZ,i

by construction is not the DFT of a linear process like WX,i and WF . Note that

different from time domain setup, Assumption C∗ does not really impose the

”weak dependence” over frequencies as the normalization there is only slightly

stronger than using the limit of averaged periodogram. Such conclusion is also

confirmed by the proof of Theorem 2 in Christensen and Nielsen (2006) as

weak dependence over frequencies only occurs in cross-periodogram between

the error and the regressors, rather than the periodograms, and this conclusion

is reflected by Assumption D∗(iii) in our factor model.

In the following we present some asymptotic theoretical results of our FDLS

estimator. Then in the following proposition we firstly establish the result of

consistency for FDLS estimators β̃ and ŴF .

Proposition 3.4.1 Suppose Assumptions A-D and A∗-B∗ hold. Then as (N, T )→

∞ we have

(i) The FDLS estimator β is consistent as β̃
p→ β;

(ii) The matrix W̃ ∗
F 0ŴF/T is invertible and

∥∥PŴF
−PWF0

∥∥ p→ 0.

In the above proposition, (i) establishes the consistency of β̂W and(ii) in-

dicates that the columns of ŴF span the same space as those of W̃F 0 asymp-

totically. These results are intermediately used in the subsequent analysis.

Next, we establish the theory of asymptotic distribution of β̂W and its

asymptotic bias terms, given by the following theorem.
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Theorem 3.4.2 Suppose Assumptions A, B and A∗-E∗ hold. Then as (N, T )→

∞ for comparable N and T such that N/T → ρ, we have

√
NLγdεL Γ−1

Z

(
β̃ − β0 − AWNT

)
d→ N

(
0,
(
DW

0

)−1
ΣW

0

(
DW

0

)−1
)
,

for positive definite matrices DW
0 and ΣW

0 defined in Assumption D∗, where

AWNT = Op (φL) with

φL =
γ

2dZ,min+2dF,min−dX,max−3dF,max−2dε
L

L
.

The asymptotic bias term AWNT is given by

AWNT = −ΓZ
(
DW
NL

)−1
ΓZ

γ−1
L

NT

N∑
i=1

Re

(
W ∗
X,iMŴF

1

NT

N∑
k=1

Diag
(
|Wε,kj|2

)
ŴF G̃λ̃i

)

= −
(
D†NL (WF 0)

)−1 1

NT

N∑
i=1

Re

(
W ∗
X,iMŴF

1

NT

N∑
k=1

Diag
(
|Wε,kj|2

)
ŴF G̃λ̃i

)

where G̃ =

(
W̃ ∗
F0ŴF

T

)−1 (
Λ̃′Λ̃
N

)−1

, and DW
NL = γ−1

L ΓZD
†
NL (WF 0) ΓZ = Op (1).

Note that in frequency domain, L (or h = L
T

) can be treated as a “band-

width” as it measures the width of frequency region local to zero. Then instead

of dealing with summation over both dimensions as in a classic panel model,

our asymptotic theory is more like the one for a cross-sectional nonparametric

regression model, where the limiting theory can be obtained by large N alone,

and the large T helps to control the bandwidth. This insight can be partly

explain by the component
√
NL =

√
NTh in our convergence rate. By this

reasoning we need L = O (Tα), with 0 < α < 1, which can obtains an elegant

form of asymptotic distribution as shown above, but at the cost of efficiency.

This reflects the bias-variance trade-off in the nonparametric model studies.

And in terms of the bias, we have only one nonnegligible term that corre-

spond to the one with order 1
T

in time domain. This is because the sample

size in frequency domain is of smaller order of T , and thus of N when N
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and T have comparable size as we assume. But here we still keep it explicit

in our asymptotic distribution so as to help compare with time domain least

squares estimator in this paper and in Bai (2009). We can correct these bias

using half-panel jackknife as we did in the time domain setting, which require

estimation of all memory parameters as before. But after taking DFT, over

frequency domain we have asymptotic serial uncorrelation in large T as in-

dicated by Assumption C∗. This implies we have weak dependence on both

cross-sectional units and frequencies now, therefore we can consider estimate

the bias term with its analytical form in frequency domain analogous to the

ones in Bai (2009, pp. 1250). Specifically, we consider directly estimating

ĀWNT = − 1

NT
D†NL (WF 0)−1

N∑
i=1

Re

(
W ∗
X,iMŴF

1

N

N∑
k=1

Diag
(
|Wε,kj|2

)
ŴF G̃λ̃i

)

by replacing WF 0 with ŴF and λ̃i with λ̂i from (3.4.7). In addition, we can

replace Diag
(
|Wε,kj|2

)
by Ω̂k = Diag

(
Ŵε,k1Ŵ

∗
ε,k1, . . . , Ŵε,kLŴ

∗
ε,kL

)
, where

Ŵε,i = WY,i − ŴX,iβ̃ − ŴF λ̂i. That is, we estimate ĀNT by

ÂWNT = − 1

NT

(
D̂W
NL

)−1
N∑
i=1

Re

W ∗
X,iMŴF

1

NT

N∑
k=1

Ω̂kŴF

(
Λ̂′Λ̂

N

)−1

λ̂i

 ,

(3.4.15)

where

D̂W
NL =

1

NT

N∑
i=1

Re
(
Ŵ ∗
Z,iŴZ,i

)
,

with ŴZ,i = W ∗
X,iMŴF

− 1
N

∑N
k=1W

∗
X,kMŴF

âik and âik = λ̂′i

(
Λ̂′Λ̂
N

)−1

λ̂k esti-

mated by our PCA in frequency domain. Then the bias-corrected estimator is

given by β̃bc = β̃ − ÂWNT .

To proceed, we consider a feasible implementation of the inference given

by Theorem 3.4.2, where we do not need to estimate any of the memory pa-

rameters. To do that, we estimate the asymptotic covariance matrix using(
D̂W
NL

)−1

Σ̂W
NL

(
D̂W
NL

)−1

, where for Σ̂W
NL we focus on the case when ζε,i,t is

64



independent across i, and the estimator is given by

Σ̂W
NL =

1

N2T 2

N∑
i=1

Re
(
Ŵ ∗
Z,iŴε,i

)
Re
(
Ŵ ∗
ε,iŴZ,i

)

The following theorem establishes the asymptotic distribution of β̃bc using the

above estimation of covariance matrix.

Theorem 3.4.3 Suppose Assumptions A, B and Assumption A∗-E∗ hold; and

as N, T →∞ for comparable N and T such that N/T → ρ we have

(
Σ̂W
NL

)− 1
2
D̂W
NL

(
β̃bc − β0

)
d→ N (0, IP ) .

The above theorem adopts the idea of self-normalization. To see this, since β̃bc

consistently correct the bias, we have from above that

√
NLγdεL Γ−1

Z

(
β̃bc − β0

)
d→ N

(
0,
(
DW

0

)−1
ΣW

0

(
DW

0

)−1
)
,

which includes memory parameters that were treated as coefficients to be esti-

mated. The inference of β̃ based on the plug-in estimator (like local Whittle)

of these memory parameters could perform not that well in finite sample. So

we try to fix it by showing

(
D̂W
NL

)−1

Σ̂W
NL

(
D̂W
NL

)−1 p−→
√
NLγdεL Γ−1

Z

(
DW

0

)−1
ΣW

0

(
DW

0

)−1√
NLγdεL Γ−1

Z

which is presented in the proof of Theorem 3.4.3.

3.5 Determination of Number of Factors

So far we have assumed to know the true number of factors in analysis of model

(3.2.1), but in practice one has to determine the number of factors to use. This

leads to the requirement of consistently estimating the true number of factors
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(denoted by R0 afterwards), which is an intrinsic issue in factor analysis. For

pure factor model, there are various methods to determine R0; see Bai and Ng

(2002) for an information criterion approach, and Onatski (2010) for an ”edge

distribution” approach, and Ahn and Horenstein (2013) (2013, AH afterwards)

for eigenvalue ratio and growth ratio approach. In this section we try to modify

the eigenvalue ratio (ER) estimation into our regression model in frequency

domain, and illustrate its consistency. To proceed, we specify an upper bound

Rmax ≥ R0. The procedure goes as the following:

1. Conduct the frequency domain least squares using Rmax factors, as indi-

cated by (3.4.9) and (3.4.10) using model (3.4.4), and correct its bias by

Theorem 3.4.3. Denote this estimator by β̃(Rmax).

2. Let ũit = Yit − X ′itβ̃(Rmax) be the ”partial” residual of FDLS in time

domain, which builds up a N × T real matrix Ũ . Then derive the

first Rmax + 1-th largest eigenvalues of Ũ Ũ ′/NT , denoted by µ̃NT,j, j =

1, . . . , Rmax + 1.

3. Let the eigenvalue ratio be ER (j) =
µ̃NT,j
µ̃NT,j+1

and ER estimate of number

of factors is given by r̃ER = max1≤j≤Rmax ER (j).

The above method is a modification of ER estimate from AH as we have to

take the regression structure into account. By the reasoning as in Bai (2009),

ũit follows a pure factor model approximately, and thus ER estimate can be

applied. To be exact,

ũit = Yit −X ′itβ̃(Rmax) = X ′it

(
β − β̃(Rmax)

)
+ uit

= X ′it

(
β − β̃(Rmax)

)
+ λ′iFt + εit. (3.5.1)

And considering the complex convergence rate and bias order pattern of time

domain least squares estimator, as presented in Theorem 3.3.1, we use fre-

quency domain estimator in step 1 above, which makes this procedure a hybrid
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approach of time and frequency domain. To proceed, we define some additional

notations adopted from AH. Let ψk (A) be the k-th largest eigenvalue of ma-

trix A; and m = min (N, T ) and M = max (N, T ); and b·c the integer part

of a number. In the following we present the consistency of our modified ER

estimate with some extra assumptions imposed.

Assumption G. (i) Let µNT,k = ψk
[(

Λ
′
Λ/N

) (
F
′
F/T

)]
for k = 1, . . . , R0.

Then plimµNT,k = µk for some µk ∈ (0,∞) and for each k = 1, . . . R0. (ii) R0

is finite.

Assumption H. (i) 0 < y ≡ limm→∞
m
M
≤ 1.

(ii) Let E be the N × T matrix consisting of εit, then E = R
1
2
TZG

1
2
N where

Z is an N × T matrix with i.i.d. element along both dimensions with finite

fourth moment; and R
1
2
T and G

1
2
N are symmetric square roots of positive definite

matrices RT : T×T andGN : N×N with ψ1 (RT ) < c1, ψ1 (GN) < c1 uniformly

over N and T respectively.

Assumption I. (i) ψT (RT ) > c2 for all T .

(ii) Let y∗ = limm→∞
m
N

= min (y, 1). Then there exists a real number

d∗ ∈ (1− y∗, 1] such that ψbd∗Nc (GN) > c2 for all N .

Assumption J. Consider linear combinations WX ·α ≡
∑P

p=1 αpW
p
X such that

W p
X is an N ×L complex matrix of DFT of the p-th element of regressor, and

the P × 1 vector α satisfies ‖α‖ = 1. There exists a constant b > 0 such that

min
α∈RP ,‖α‖=1

1

NT

L∑
r=R+R0+1

µr [(WX · α)∗ (WX · α)] ≥ b w.p.a.1.

The Assumption G-I are directly borrowed from the Assumption A, C and

D in AH. These three assumptions are not related to the level of persistence

among any variables, and thus can continue to hold under our setup. As-

sumption B in AH gives the moment conditions and cross-sectional and serial

dependence of factors, factor loadings and idiosyncratic error, which is already

covered by our Assumption B and C and thus is compatible with long mem-
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ory. As we show in the proof of Theorem 3.5.1 in Appendix, the conditions

of serial dependence do not play an important role in proving the consistency

of r̃ER, so most of the proof of Theorem 1 in AH and relevant lemmas con-

tinue to hold. Assumption J is the frequency domain extension of Assumption

NC in Moon and Weidner (2015), which also illustrates the noncollinearity

of regressor. With the above extra assumptions, we establish the following

theorem:

Theorem 3.5.1 Suppose Assumption B, C, G-J and B∗, C∗ and E∗ hold with

R0 ≥ 1, we have
∥∥∥β̃(Rmax) − β

∥∥∥ = Op

(
γ

1
2
−dX,max

L

)
; and there exists dc ∈ (0, 1]

such that limm→∞ Pr (r̃ER = R0) = 1 for any Rmax ∈ (R0, bdcmc −R0 − 1].

3.6 Monte Carlo Simulations

3.6.1 Results using time domain least squares estima-

tion

Firstly we examine the performance of time domain LS estimator in finite

sample, using the following model

Yit = X ′itβ
0 + λ′iF

0
t + εit (3.6.1)

where β0 = (0.6, 0.9)′. Moreover, we consider four sets of data generating pro-

cesses (DGP hereafter) with two regressors (K = 2) and two factors (R0 = 2).

In detail, the idiosyncratic error is firstly generated by

εit = 0.4εi,t−1 + eit; (3.6.2)

and we consider the cases with and without conditional heteroskedasticity for

εit. When idiosyncratic error term is conditionally heteroskedastic, we adopt
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the multiplier as

ε∗it = 0.06

√
X ′itXit

K
εit. (3.6.3)

The above setup characterizes two varieties of DGP. And the other two are

specified by the following DGPs of factor:

F 0
t = 2− 0.7F 0

t−1 + ef,t, (3.6.4)

and

F 0
t = 2− 0.2F 0

t−1 + ef,t, (3.6.5)

where ef,t ∼ I (df ) and eit ∼ I (de) are two (multivariate) fractional integrated

processes generated by i.i.d. t (5) innovations. In terms of regressor, it is

generated by

Xit =
2∑
r=1

(χri + λri)
(
F 0
rt + F 0

r,t−1

)
+ X̃it (3.6.6)

with X̃it = 1 − 0.8X̃it−1 + xit. Four DGPs we try to specify are denoted by

DGP1 to DGP4, where DGP1 combines (3.6.2) and (3.6.4), DGP2 combines

(3.6.3) and (3.6.4), DGP3 combines (3.6.2) and (3.6.5), and DGP4 combines

(3.6.3) and (3.6.5). Random variables frt, eit, xit, λri, and χri are mutually

independent, and xit ∼ I (dX) with i.i.d. t (5) innovations as above, and χri

and λri ∼ N (1, 1). As a benchmark, we firstly estimate β using LS estimator

with its bias corrected by the classic half-panel jackknife using the bias order

1
N

+ 1
T

as in Fernández-Val and Weidner (2016), denoted by β̂. To evaluate the

performance of LS estimator, we choose the first argument of β and present

its Monte Carlo root mean squared error (RMSE) of β̂ − β and ‖PF̂ − PF 0‖F
with projection matrix PA = A (A′A)−1A′. Also we present Monte Carlo stan-

dard deviation (STD) of β̂ − β to examine the order of its variance, and by

comparing RMSE and STD, we can see if the bias is still prominent or cor-

rected properly by classic half-panel jackknife method. Moreover, to illustrate

the asymptotic normality, we present 95%-level empirical coverage probability

69



(COVP) Pr
(∣∣∣ β̂k−βkσ̂k

∣∣∣ ≤ Z0.025

)
with standard normal critical values denoted

by Z, and for some cases we compare the histogram of β̂−β
σ̂

against standard

normality for illustration of its asymptotic distribution, where σ̂ is the Monte

Carlo standard deviation of β̂. We repeat the simulation with 200 repetitions,

with sample size N = T = 100 and 200.

To cover as many cases within the range of short memory and stationary

long memory, we present the results of following combinations of memory pa-

rameters. Firstly we consider the short memory case df = de = dX = 0. And

then for long memory cases, we consider df = dX = 0.2 and de = 0.1; and

df = dX = 0.2 and de = 0.3; and df = dX = de = 0.3; and df = dX = 0.4 and

de = 0.3. Note that our selection include the cases of short memory, weakly

and strong long memory, and when fractional cointegration condition holds

and does not hold. Results are presented in left panel of Table 1. And in

terms of bias correction in time domain, Theorem 3.3.1 shows that only de

enters the order of bias when factors and regressors have nonzero mean. We

examine this theory by considering the bias-corrected estimator β̃ defined by

β̃ = β̂ − 1

T 1−2de
C − 1

N
B,

given the true memory parameter de, which is an infeasible estimator. And we

also present the performance of feasible bias-corrected estimator β̃∗, which is

an adjusted half-panel jackknife bias correction by memory parameter, which

is given by

β̃∗ =

(
2 +

1

21−2d̂ε̂ − 1

)
β̂ − β̃∗N/2,T −

1

21−2d̂ε̂ − 1
β̃∗N,T/2,

where d̂ε̂ = 1
N

∑N
i=1 d̂ε̂i is the individual average of the local Whittle estimator

of regression residuals. The estimate β̃∗N/2,T is defined by average of LS esti-

mator using half-panels given respectively by {i = 1, . . . , dN/2e ; t = 1, . . . , T}

and {i = bN/2c+ 1, . . . , N ; t = 1, . . . , T}, with d·e and b·c being the ceiling
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and floor functions; and β̃∗k,N,T/2 is defined similarly using half-panels given by

{i = 1, . . . , N ; t = 1, . . . , dT/2e} and {i = 1, . . . , N ; t = bT/2c+ 1, . . . , T}. To

intuitively see how β̃∗ correct the bias terms, we rewrite it as

β̃∗ = β̂ −
(
β̃∗N/2,T − β̂

)
− 1

21−2d̂ε̂ − 1

(
β̃∗N,T/2 − β̂

)
.

Note that by Theorem 3.3.1,

β̂ = β0 +
1

T 1−2dε
C +

1

N
B,

then in asymptotics we have

β̃∗k,N/2,T = β0 +
1

T 1−2dε
C +

2

N
B, and β̃∗k,N,T/2 = β0 +

21−2dε

T 1−2dε
C +

1

N
B.

Therefore β̃∗k,N/2,T − β̂k = 1
N
B and β̃∗k,N,T/2 − β̂k =

(21−2dε−1)
T 1−2dε C, and by substi-

tution we can see how β̃∗k correct the bias. Results of the above bias correction

are presented in Table 3, where we consider a benchmark setup as we set both

factor and regressor short memory variables.

From left panel of Table 1 and 2, we can see that time domain least squares

estimator has prominent downward bias issue, especially when the joint mem-

ory is strong enough, which affects the inference as our coverage probabilities

show. In Table 3, although in different setup, we can still see how bias is

well corrected comparing the bias and coverage probability of β̂ with that of

β̃∗. But the results of feasible estimator β̃∗F , where we replace all the memory

parameters with its local Whittle-based estimator, is not good in some cases,

which shows the necessity of using a more valid method as our frequency do-

main least squares estimation in the following.
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3.6.2 Results using frequency domain least squares es-

timation

To examine the finite sample performance of frequency domain LS estimator,

we consider the same data generating process as in time domain case above,

given by (3.6.1)-(3.6.6). And we conduct DFT to (3.6.1) over the frequencies

γj = 2πj
T

for j = 1, . . . , L where L =
⌊
T

4
5

⌋
. This implies the model

WY,ij = W ′
X,ijβ + λ

′

iWF,j +Wε,ij, i = 1, . . . , N , j = 1, . . . ,
⌊
T

4
5

⌋

as (3.4.2). We present performance of β̃∗∗k , the bias-corrected estimator given

by Theorem 3.4.3, k = 1, 2, indicated by (3.4.9) and (3.4.10), including the

root mean square error (RMSE), the standard deviation (STD), the 95%-level

empirical coverage probablity (COVP) Pr
(∣∣∣ β̃∗∗k −βkσ̂k

∣∣∣ ≤ Z0.025

)
with σ̂k the es-

timation of asymptotic variance of β̃∗∗k given by 3.4.3 as well, and the bias

(BIAS), all averaged over repetitions. And to thoroughly compare the FDLS

with least squares estimator in time domain, the above results are presented

in right panel of Table 1 and 2. We can see that under short memory and

relatively weak long memory case, time domain least squares estimator does

not outperform the results of FDLS in a great deal, as they both obtain good

bias control and coverage probabilities, although FDLS is a bit less efficient

due to loss in sample size after DFT. However, when joint memory is relatively

stronger, FDLS performs better as it prominently correct the bias and obtains

a good coverage probability in most cases.

In the end we adopt the estimation of true number of factors introduced

in last section, where we consider DGP1, but with true number of factors

R0 equal to either 2 or 3. We specify Rmax = 8 for both cases, and for the

estimated number of factors over repetitions, we report the average (Mean),

median (Median), ratio of correct estimation (RCE), over-estimation (ROE)

and under-estimation (RDE) of the true number R0. In Table 4 we presents
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the above results together with using the method of information criterion (IC)

function proposed by Bai (2009), which is given by

ICp1 (k) = ln
(
V
(
k, F̂ k

))
+ k

(
N + T

NT

)
ln

(
NT

N + T

)
,

where V
(
k, F̂ k

)
= 1

NT

∑N
i=1

∑T
t=1 ε̂

2
it, with ε̂2

it the residual given by time do-

main least squares estimator. From Table 4, we can see that in asymptotics,

ER estimate outperform the IC one, especially when joint memory is strong

enough. The only concern is that under relatively small sample, ER may suffer

from the issue of under-estimating the number of factor, which may lead to an

inconsistent least squares estimator based on that estimated R.
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Table 1: LS estimate over frequency domain and its bias correction (DGP1 and 2)

DGP1

β̂ (bias-corrected time domain LS estimate by Bai (2009)) β̃∗∗
(A)

(bias-corrected FDLS estimate)

BIAS STD RMSE COVP(95%) BIAS STD RMSE COVP(95%)

de = 0, df = 0, dX = 0

N,T = 100 -0.000 0.004 0.004 0.960 -0.001 0.012 0.012 0.938

N,T = 200 0.000 0.002 0.002 0.965 -0.001 0.008 0.008 0.960

de = 0.1, df = 0.2, dX = 0.2

N,T = 100 -0.002 0.007 0.007 0.940 -0.003 0.014 0.014 0.925

N,T = 200 -0.001 0.003 0.003 0.950 -0.002 0.010 0.010 0.940

de = 0.3, df = 0.3, dX = 0.3

N,T = 100 -0.012 0.008 0.014 0.680 -0.005 0.021 0.021 0.948

N,T = 200 -0.009 0.005 0.010 0.565 -0.004 0.014 0.014 0.953

de = 0.3, df = 0.4, dX = 0.4

N,T = 100 -0.011 0.009 0.015 0.800 -0.010 0.022 0.024 0.928

N,T = 200 -0.009 0.005 0.011 0.600 -0.005 0.013 0.014 0.920

DGP2

β̂ (bias-corrected time domain LS estimate by Bai (2009)) β̃∗∗
(A)

(bias-corrected FDLS estimate)

BIAS STD RMSE COVP(95%) BIAS STD RMSE COVP(95%)

de = 0, df = 0, dX = 0

N,T = 100 -0.001 0.009 0.009 0.965 0.000 0.013 0.013 0.945

N,T = 200 -0.000 0.004 0.004 0.950 0.000 0.006 0.006 0.963

de = 0.1, df = 0.2, dX = 0.2

N,T = 100 -0.001 0.009 0.009 0.955 -0.004 0.014 0.015 0.940

N,T = 200 -0.001 0.005 0.005 0.955 -0.001 0.006 0.007 0.933

de = 0.3, df = 0.3, dX = 0.3

N,T = 100 -0.007 0.014 0.016 0.925 -0.006 0.016 0.017 0.928

N,T = 200 -0.007 0.007 0.010 0.855 -0.002 0.011 0.011 0.935

de = 0.3, df = 0.4, dX = 0.4

N,T = 100 -0.006 0.016 0.017 0.925 -0.006 0.019 0.020 0.925

N,T = 200 -0.007 0.009 0.011 0.900 -0.003 0.001 0.010 0.955
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Table 2: LS estimate over frequency domain and its bias correction (DGP3 and 4)

DGP3

β̂ (bias-corrected time domain LS estimate by Bai (2009)) β̃∗∗
(A)

(bias-corrected FDLS estimate)

BIAS STD RMSE COVP(95%) BIAS STD RMSE COVP(95%)

de = 0, df = 0, dX = 0

N,T = 100 0.000 0.004 0.004 0.955 -0.002 0.012 0.012 0.925

N,T = 200 0.000 0.002 0.002 0.950 -0.001 0.008 0.008 0.958

de = 0.1, df = 0.2, dX = 0.2

N,T = 100 -0.002 0.005 0.005 0.950 -0.005 0.014 0.015 0.940

N,T = 200 -0.000 0.003 0.003 0.950 -0.001 0.009 0.009 0.955

de = 0.3, df = 0.3, dX = 0.3

N,T = 100 -0.010 0.008 0.013 0.755 -0.008 0.022 0.023 0.920

N,T = 200 -0.008 0.004 0.009 0.565 -0.004 0.015 0.015 0.948

de = 0.3, df = 0.4, dX = 0.4

N,T = 100 -0.009 0.009 0.013 0.805 -0.008 0.023 0.025 0.908

N,T = 200 -0.008 0.005 0.010 0.595 -0.005 0.013 0.014 0.950

DGP4

β̂ (bias-corrected time domain LS estimate by Bai (2009)) β̃∗∗
(A)

(bias-corrected FDLS estimate)

BIAS STD RMSE COVP(95%) BIAS STD RMSE COVP(95%)

de = 0, df = 0, dX = 0

N,T = 100 -0.000 0.008 0.008 0.945 -0.001 0.011 0.011 0.915

N,T = 200 -0.000 0.004 0.004 0.940 0.000 0.007 0.007 0.953

de = 0.1, df = 0.2, dX = 0.2

N,T = 100 -0.001 0.010 0.010 0.945 -0.003 0.013 0.013 0.915

N,T = 200 -0.001 0.005 0.005 0.945 -0.001 0.006 0.006 0.943

de = 0.3, df = 0.3, dX = 0.3

N,T = 100 -0.008 0.014 0.016 0.910 -0.005 0.018 0.018 0.908

N,T = 200 -0.005 0.008 0.009 0.910 -0.004 0.010 0.010 0.925

de = 0.3, df = 0.4, dX = 0.4

N,T = 100 -0.005 0.014 0.015 0.925 -0.004 0.017 0.018 0.923

N,T = 200 -0.005 0.008 0.009 0.895 -0.003 0.011 0.011 0.925
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Table 3: Correction of bias

Estimator RMSE STD COVP(95%) BIAS

β̂ de = 0.2, df = 0, dX = 0

N,T = 100 0.001 0.001 0.965 -0.233

N,T = 200 0.005 0.005 0.940 -0.381

de = 0.3, df = 0, dX = 0

N,T = 100 0.014 0.012 0.910 -0.656

N,T = 200 0.008 0.006 0.845 -0.867

β̃∗ de = 0.2, df = 0, dX = 0

N,T = 100 0.010 0.010 0.950 0.014

N,T = 200 0.005 0.005 0.955 -0.044

de = 0.3, df = 0, dX = 0

N,T = 100 0.012 0.012 0.960 -0.037

N,T = 200 0.006 0.006 0.945 0.045

β̃∗F de = 0.2, df = 0, dX = 0

N,T = 100 0.011 0.011 0.965 0.005

N,T = 200 0.005 0.005 0.965 -0.004

de = 0.3, df = 0, dX = 0

N,T = 100 0.015 0.015 0.935 -0.065

N,T = 200 0.007 0.007 0.935 0.411
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Table 4: Estimation of R0

R0 = 2 R0 = 3

Method Mean Median RCE ROE RDE Mean Median RCE ROE RDE

IC de = 0, df = 0, dX = 0

N,T = 100 2.005 2 0.995 0.005 0 3 3 1 0 0

N,T = 200 2 2 1 0 0 3 3 1 0 0

de = 0.1, df = 0.2, dX = 0.2

N,T = 100 2.005 2 0.995 0.005 0 3 3 1 0 0

N,T = 200 2 2 1 0 0 3 3 1 0 0

de = 0.3, df = 0.3, dX = 0.3

N,T = 100 5.255 5 0 1 0 6.225 6 0 1 0

N,T = 200 4.860 5 0 1 0 5.685 6 0 1 0

de = 0.3, df = 0.4, dX = 0.4

N,T = 100 5.085 5 0 1 0 5.960 6 0 1 0

N,T = 200 4.725 5 0 1 0 5.475 5 0 1 0

ER de = 0, df = 0, dX = 0

N,T = 100 1.995 2 0.995 0 0.005 3 3 1 0 0

N,T = 200 2 2 1 0 0 3 3 1 0 0

de = 0.1, df = 0.2, dX = 0.2

N,T = 100 1.990 2 0.990 0 0.010 3 3 1 0 0

N,T = 200 2 2 1 0 0 3 3 1 0 0

de = 0.3, df = 0.3, dX = 0.3

N,T = 100 1.810 2 0.810 0 0.190 2.240 3 0.620 0 0.380

N,T = 200 1.980 2 0.980 0 0.020 2.930 3 0.965 0 0.035

de = 0.3, df = 0.4, dX = 0.4

N,T = 100 1.810 2 0.810 0 0.190 2.270 3 0.635 0 0.365

N,T = 200 1.980 2 0.980 0 0.020 2.910 3 0.955 0 0.045

3.7 Empirical Applications

In this section we try to adopt our methodology to the relationship between

GDP and and private debt. In the literature there has been mixed results about

this relationship and their long memory nature. Andrés et al. (2020) show,

using an equilibrium model, that private deleveraging and slower economic

growth may happen together after a tightening of fiscal policy, especially under

recession. But Eggertsson and Krugman (2012) shows the negative effects

from private deleveraging to economic growth could be temporary. Caporale

et al. (2021) study the series of credit of non-financial sector in 43 OECD
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countries, and find out their highly persistent nature. Ergemen (2019) put the

relationship between economic growth and private debt volume into a linear

regression with interactive fixed effect like we do, but estimate the individual-

specific coefficient using CCE method. In our application, we try to extend the

framework of Ergemen (2019) by using a FDLS estimator and involving some

other regressors, but focus on regression coefficient common to each individual.

In detail, we consider the following model:

∆ log Yit = β1∆ logCit + β2∆ logEit + λ′iF
0
t + εit, (3.7.1)

where λi and F 0
t are factor loading and factor that are both R × 1 vectors.

Above we denote ∆ log Yit = log Yit − log Yi,t−1. And the series above could

be stationary but still long memory as Caporale et al. (2021) show that most

of the memory parameter estimates of debt-to-GDP ratio are close to or even

slightly higher than one. The variables we involve are GDP (Y ), credit to non-

financial sector (C) and total employment (E) as a proxy of labor input and

human capital. Our data is adopted from Bank of International Settlements

(BIS) Statistics Warehouse and OECD iLibrary, including 20 OECD countries

and one non-OECD country, from 1996Q1 to 2021Q1. Our panel is balanced

with T = 100. In Table 4 we present the estimation results of β1 to β3 together

with estimates of their standard error, as given by Theorem 3.4.3. Note that we

thoroughly try R = 1, . . . , 8, and as shown in Supplemental Material, the usual

eigenvalue-ratio method developed by Ahn and Horenstein (2013) to estimate

the number of factors still works and thus we can pick up the correct model

as we wish. In Table 5 we present the descriptive statistics of our data across

every country involved, where we also estimate memory parameters averaged

for each variable using local-Whittle estimator within the range
(
−1

2
, 1

2

)
. We

can see that for ∆ log Y , almost all countries turn out to have anti-persistence;

while for ∆ logC and ∆ logE, some countries have these two variables to

be long memory. Although so far we have not considered the setup where
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memory parameters are heterogeneous in regressors across individuals in our

theory, the above results still partly fit our framework as long memory factors

and idiosyncratic error terms can occur together with long memory regressors.

Results of coefficients estimation and determination of factor number at every

R (also specified as Rmax) are presented in Table 6, which shows as a long-

term relationship, private debt volume has positive effect on economic growth,

which also fits most of the individual effects indicated by Ergemen (2019), and

eigenvalue ratio method implies there is only factor in this model.

Table 5: Descriptive statistics and memory parameter estimation in application

∆ log Y
(
d̂ = −0.16

)
∆ logC

(
d̂ = 0.14

)
∆ logE

(
d̂ = 0.48

)
Country Mean STD Max Min Mem Mean STD. Max Min Mem Mean STD Max Min Mem

Spain 0.004 0.027 0.155 -0.194 -0.149 0.012 0.030 0.170 -0.115 0.276 0.004 0.012 0.033 -0.077 0.274

Belgium 0.004 0.018 0.111 -0.127 -0.272 0.012 0.022 0.116 -0.083 0.162 0.002 0.002 0.007 -0.008 0.488

Italy 0.000 0.023 0.148 -0.140 -0.233 0.007 0.025 0.171 -0.086 0.082 0.001 0.005 0.013 -0.028 0.196

Chile 0.008 0.020 0.063 -0.136 -0.022 0.016 0.026 0.068 -0.086 0.187 0.005 0.030 0.086 -0.225 -0.202

Austria 0.004 0.018 0.104 -0.122 -0.173 0.007 0.019 0.118 -0.082 -0.020 0.002 0.006 0.030 -0.043 -0.184

Hungary 0.006 0.021 0.099 -0.151 -0.075 0.014 0.038 0.132 -0.139 0.150 0.002 0.011 0.031 -0.028 -0.112

Norway 0.004 0.013 0.042 -0.047 -0.276 0.011 0.019 0.062 -0.040 0.061 0.002 0.009 0.018 -0.017 -0.160

Netherlands 0.014 0.014 0.072 -0.088 -0.067 0.008 0.018 0.073 -0.068 0.197 0.002 0.005 0.016 -0.027 0.236

Ireland 0.014 0.034 0.204 -0.054 0.017 0.023 0.064 0.493 -0.113 0.002 0.005 0.013 0.034 -0.070 0.250

France 0.003 0.024 0.171 -0.145 -0.347 0.010 0.022 0.189 -0.077 -0.391 0.002 0.004 0.014 -0.027 0.140

Sweden 0.006 0.014 0.072 -0.085 -0.052 0.014 0.018 0.083 -0.065 0.042 0.002 0.016 0.031 -0.026 -0.458

Luxembourg 0.009 0.019 0.076 -0.065 -0.017 0.023 0.045 0.207 -0.095 0.332 0.005 0.003 0.013 -0.008 0.263

Poland 0.009 0.018 0.076 -0.098 -0.280 0.022 0.032 0.105 -0.099 0.252 0.001 0.007 0.014 -0.029 0.371

Denmark 0.004 0.012 0.061 -0.067 -0.074 0.009 0.016 0.048 -0.051 0.211 0.001 0.005 0.015 -0.025 0.183

Israel 0.009 0.016 0.085 -0.097 -0.188 0.011 0.022 0.105 -0.087 0.053 0.006 0.008 0.025 -0.022 0.108

Switzerland 0.005 0.011 0.062 -0.064 -0.129 0.008 0.015 0.075 -0.035 -0.093 0.002 0.007 0.020 -0.024 -0.140

Finland 0.005 0.014 0.045 -0.067 0.105 0.010 0.019 0.065 -0.047 0.034 0.002 0.008 0.018 -0.034 0.064

Czech Republic 0.005 0.015 0.065 -0.093 0.087 0.006 0.029 0.119 -0.131 0.079 0.000 0.008 0.019 -0.021 -0.080

Portugal 0.002 0.024 0.137 -0.166 -0.216 0.008 0.026 0.148 -0.115 0.169 0.000 0.008 0.019 -0.038 0.223

United Kingdom 0.004 0.028 0.161 -0.218 -0.323 0.008 0.029 0.169 -0.163 -0.019 0.002 0.004 0.008 -0.012 0.246

Germany 0.003 0.016 0.087 -0.105 -0.227 0.003 0.016 0.102 -0.064 0.011 0.002 0.003 0.009 -0.013 0.438

79



Table 6: Estimation results in application

R 1 2 3 4 5 6 7 8

β̃∗∗1 0.187 0.122 0.114 0.131 0.115 0.098 0.092 0.092

s.e.(β̃∗∗1 ) (0.014) (0.006) (0.008) (0.010) (0.010) (0.009) (0.010) (0.012)

β̃∗∗2 0.167 0.162 0.161 0.122 0.086 0.151 0.115 0.123

s.e.(β̃∗∗2 ) (0.026) (0.020) (0.031) (0.024) (0.025) (0.032) (0.029) (0.026)

R̂ 1 1 1 1 1 1 1 1

3.8 Conclusion

We have considered a linear regression with interactive fixed effects, where we

extend the current studies as we allow for stationary long memory in regressors,

factors and idiosyncratic error term. We find out the bias and convergence rate

issues in classic time domain least squares estimator and its difficulty to handle

in practice, and then derive our own solution to it, a frequency domain least

square estimator that takes advantage of the singularity of spectral density at

zero frequency for possible long memory processes. There are indeed several

strands to extend the current study. First, we can discuss whether Whittle-

like estimator of memory parameters of factors and idiosyncratic error term

still works if using estimated factors and residual, and how would its asymp-

totic behavior changes. Second, as in Ergemen (2019) we can generalize our

memory parameter setting to allow it to be heterogeneous in regressors across

individuals, which is more relevant in application. Third we can try analyz-

ing whether our asymptotic theories still hold under stationary anti-persistent

data with d ∈
(
−1

2
, 0
)
, as many studies of time series long memory model have

considered. Fourth it is interesting to study the long memory factor model

under near-nonstationary and nonstationary data, which is more involved in

application but may lead to some totally different theoretical results.
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Chapter 4

Factor Memories Estimation

And Test against Spurious Long

Memory

4.1 Introduction

In this paper, we follow the setup in chapter two, a linear regression model

with interactive fixed effects, where the regressors, the latent factors and the

idiosyncratic error are allowed to be stationary long memory variables. We

consider the estimation and inference of the memory parameters of the latent

factors, and a test against the spurious long memory. This paper responds to

the interest of panel modeling in the literature of financial and macroeconomic

data (see e.g. Lahiri and Liu, 2006 and Luciani and Veredas, 2015) and the

existence of long memory in such variables and some latent trends involved

(see e.g. Hassler and Wolters, 1995). We adopt the traditional Local Whit-

tle estimator developed by Robinson (1995c) to the estimated discrete Fourier

transforms of the latent factor, which is based on the frequency domain prin-

cipal component least squares estimator in chapter two. Estimates of factor

memories are proved to be consistent and asymptotically normal without any
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efficiency loss relative to using the infeasible true factors. Moreover, we adopt

the test developed by Qu (2011) against the existence of spurious long mem-

ory, which is characterized by short memory process contaminated by either

random level shifts or time-varying smooth trends. Such processes may lead

to a positive bias of the local Whittle estimator and is mistaken for a long

memory process.

This paper is organized as follows. In section 4.2 we describe the data

generating process and the model setup. In section 4.3 we give the local Whittle

estimator of the factor memories based on the frequency domain estimate of

the discrete Fourier transform of the latent factors, and analyze its asymptotic

properties. In section 4.4 we establish the test against spurious long memory

and derive its asymptotic null distribution. In section 4.5 we conduct the Monte

Carlo simulation examining the convergence of our local Whittle estimator and

the size and power under two global alternatives of the test.

The following notation is adopted. For an arbitrary m × n matrix A,

its transpose is denoted by A′, its conjugate is denoted by A and conjugate

transpose by A∗ if A is complex, its Frobenius norm is ‖A‖ =
√

tr (A′A) if

A is real, or ‖A‖ =
√

tr (A∗A) if A is complex. The spectral norm of A is

‖A‖sp =
√
µ1 (A′A), when A is real, and ‖A‖sp =

√
µ1 (A∗A), when A is

complex, where µ1 (·) denotes the largest eigenvalue of the Hermitian matrix

argument. Let IR denote an R-dimensional identity matrix. For any two

matrix-valued sequences Aj and Bj of the same dimension, Aj ∼ Bj is defined

by
Aj,(m,n)
Bj ,(m,n)

→ 1 as j →∞ for each of its (m,n)-th elements.

4.2 Model

Consider the following static panel linear regression model with interactive

fixed effects,

Yit = X ′itβ + λ′iFt + εit, i = 1, . . . , N, t = 1, . . . , T, (4.2.1)
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where we have P×1 regressorsXit and regression coefficients β, and R×1 latent

factors Ft and factor loadings λi, and idiosyncratic errors εit. In this study, we

allow Xit, Ft and εit to be all possibly stationary long memory processes with

memory parameters given by dX = (dX1 , . . . , dXP )′, dF = (dF1 , . . . , dFR)′ and

dε. In this study we focus on the scenario that the memory parameters of both

Xit and εit are homogeneous across individuals i, so that the cross-sectional

heterogeneity of memory in this model is totally explained by the interactive

fixed effects, especially through multiplication of factor loadings. This setting

sacrifices generality to some extent but makes it more convenient to handle

the model in theory.

In terms of the data generating processes of all the possibly long memory

variables, we define them as linear processes that follow Robinson and Hidalgo

(1997). To be specific, let dε and all of the elements of dF and dX lie within

the interval
[
0, 1

2

)
. And Ft, Xit and εit have the following moving average

representations:

Ft = µF +
∞∑
j=0

AF,jζF,t−j ≡ µF + F o
t , (4.2.2)

and for every i = 1, . . . , N ,

Xit = µX,i +
∞∑
j=0

AX,jζX,i,t−j ≡ µX,i +Xo
it, (4.2.3)

and

εit =
∞∑
j=0

Aε,jζε,i,t−j, (4.2.4)

where AF,j and AX,j and are Aε,j respectively R×R, P×P and 1×1 coefficients,

and ζF,t, ζX,i,t and ζε,i,t are the corresponding innovation processes. µF and

µX are R × 1 and P × 1 vectors of expectation. The long memory property

is defined through the spectral densities of all these variables in frequency

domain. For instance, let the matrix-valued spectral density function of Ft be
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fF (γ), then it satisfies

fF (γ) ∼ ΓGΓ, as γ → 0+,

where G is a positive definite matrix and Γ = Diag(γ−dFr ), k = 1, . . . , K. This

is the multivariate extension of the scalar spectral density of a potentially

long memory process, which has the form f(γ) ∼ gγ−2d. This implies that

marginally for each k = 1, . . . , K, we have fFr(γ) ∼ grγ
−2dFr . The similar

power law holds for the spectral densities of Xit and εit.

This specification of possibly long memory processes includes the stationary

fractional integrated processes and ARFIMA (p, d, q) as special cases. And

different from ζF,t−j, the innovations of the regressors and the idiosyncratic

error term characterize the heterogeneity and cross-sectional dependence of

Xit and εit.

4.3 Estimation of Factor Memories

In this section, we try to estimate the memory parameters of the latent factors

by local Whittle estimator using their estimated discrete Fourier transform

(DFT hereafter) from frequency domain principal component least squares

(FDPCLS hereafter) estimation of model (4.2.1). Then we establish the con-

sistency and asymptotic normality of memory estimators.

4.3.1 Local Whittle estimation

To proceed, we first adopt the FDPCLS estimator of model (4.2.1), which

jointly estimates the regression coefficients β and the DFT of latent factors Ft.

To be specific, the FDPCLS estimator is given by the solutions of the following
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nonlinear equations in frequency domain:

β̃ =

[
N∑
i=1

Re
(
W ∗
X,iMŴF

WX,i

)]−1 N∑
i=1

Re
(
W ∗
X,iMŴF

WY,i

)
and

[WUW
∗
U ] ŴF =

[
1

NT

N∑
i=1

(
WY,i −WX,iβ̃

)(
WY,i −WX,iβ̃

)∗]
ŴF (4.3.1)

= ŴFVNL, (4.3.2)

where VNL is the diagonal matrix containing the r largest eigenvalues of WUW
∗
U

in decreasing order. In the above equations, WX,i =
(
W ′
X,i1, . . . ,W

′
X,iL

)′
is a

L × P complex matrix that gives the DFT of regressors Xi over frequencies

indexed by j = 1, . . . , L. The DFT of Xi is defined by

WX,ij =
T∑
t=1

Xite
itγj , j = 1, . . . , L,

where i is the imaginary unit such that i2 = −1, and γj = 2πj
T

, j = 1, . . . , L

are the Fourier frequencies. Note that by conducting such DFT on both sides

of model (4.2.1) with certain normalization, we can obtain a new panel linear

regression model on individual and frequency dimensions, which is

WY,ij = β′WX,ij + λ′iWF,j +Wε,ij, i = 1, . . . , N , j = 1, . . . , L. (4.3.3)

And thus FDPCLS is actually a frequency domain extension of the time do-

main least squares estimator developed by Bai (2009). To make our fre-

quency domain estimator comparable to the time domain one, we denote Γ̃X =

Diag
{
γ
dXp−

1
2

L

}
and Γ̃F = Diag

{
γ
dFr−

1
2

L

}
as part of the normalization matrix

for the DFT of regressors and factors, by which we define W̃F = Γ̃FWF and

Λ̃ = ΛΓ̃−1
F . Then similar to Bai (2009), an identifying restriction W̃ ∗

F W̃F/T = I

is imposed to proceed with our FDPCLS estimation, and model (4.3.3) can be
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rewritten as

WY,ij = β′WX,ij + λ̃′iW̃F,j +Wε,ij, i = 1, . . . , N , j = 1, . . . , L.

From what we have obtained above, the memories of latent factors are

then estimated using the very classic local Whittle estimator because of the

stationarity of the processes. To be specific, given the estimated DFT of

the latent factors, ŴF , the local Whittle estimator minimizes the objective

function marginally on each r = 1, . . . , R

Qr(υ, d) =
1

L

L∑
j=1

{
log (υγ−2d

j ) +
γ2d
j

υ
ÎFr,j

}
, (4.3.4)

where ÎF,j = Ŵ ∗
F,jŴF,j is the periodogram of the estimated DFT of factors.

Then the local Whittle estimator of dF,r can be written as

(υ̂F̂r , d̂F̂r) = arg min
0<υ<∞,d∈[0, 12)

Qr(υ, d).

By first order condition in terms of υ, the estimation of dFr can also be given

by

d̂F̂r = arg min
d∈[0, 12)

Kr (d) ,

such that for each r = 1, . . . , R,

Kr (d) = log Ĝr (d)− 2d
1

L

L∑
j=1

log γj (4.3.5)

where

Ĝr (d) =
1

L

L∑
j=1

γ2d
j ÎFr,j. (4.3.6)

In the next subsection, we try to derive the asymptotic behavior of the local

Whittle estimator, where we its consistency and asymptotic normality are

established.
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4.3.2 Asymptotic properties of the local Whittle esti-

mator

In this subsection, we give the results of consistency and asymptotic normality

of the local Whittle estimator of the factor memories, which is developed based

on the FDPCLS estimator. So as in the last chapter and Bai (2009) in time

domain, we define

D†NL (WF ) =
1

NT

N∑
i=1

W ∗
X,iMWF

WX,i −
1

N2T

N∑
i=1

N∑
k=1

W ∗
X,iMWF

WX,kaik

=
1

NT

N∑
i=1

WZ,i (F )∗WZ,i (F ) , (4.3.7)

where WZ,i (F ) = MWF
WX,i− 1

N

∑N
k=1 MWF

WX,kaik. Also let WZ,i = WZ,i (F
0)

and D†NL = D†NL (WF 0). Then we can define the variable Zit like we did in time

domain as if its DFT over Fourier frequencies is given by WZ,i, and denote its

memory parameters by dZ = (dZ1 , . . . , dZP ). Following are the assumptions to

proceed with our theory:

Assumption A. (i) Denote the (P +R + 1) × 1 vector Vit = (X ′it, F
′
t , εit)

′.

Suppose Vit is covariance stationary and has the spectral density matrix satis-

fying

fV,i (γ) ∼ Γ (γ) ΥiΓ (γ) as γ → 0+, (4.3.8)

where Υi is a (P +R + 1)× (P +R + 1) symmetric matrix that is finite uni-

formly over i with the following structure:

Υi =


Υi,XX Υi,XF 0

Υ′i,XF ΥFF 0

0 0 Υi,εε

 ,

in which for all i, the P × P and R × R submatrices Υi,XX and Υi,FF are
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positive definite, and the scalar Υi,εε > 0. Γ is a diagonal matrix given by

Γ (γ) = Diag
(
γ−dX1 , . . . , γ−dXP , γ−dF1 , . . . , γ−dFR , γ−dε

)
.

(ii) There exists θ ∈ (0, 2] such that for each i,

∣∣fV,i,(ab) − υi,(ab)γ−da−db∣∣ = O
(
γθ−da−db

)
as γ → 0+

for arbitrary a, b = 1, . . . , (P +R + 1).

(iii) Let Vit = µV +
∑∞

j=0AV,jζV,i,t−j, where AV,j is a block-diagonal matrix

consisting of AX,j, AF,j and Aε,j in order, as given by (4.2.2)-(4.2.4). And

define AV (γ) =
∑∞

j=0AV,je
ijγ. As γ → 0+,

∥∥∥∥dAV,a(γ)

dγ

∥∥∥∥ = O
(
γ−1 ‖AV,a(γ)‖

)
for arbitrary a = 1, . . . , (P +R+ 1), where AV,a(γ) is the a-th row of AV,a(γ).

(iv) ζF,t, ζX,t and ζε,t satisfy E (ζF,t|FF,t−1) = 0, E (ζX,t|FX,t−1) = 0, and

E (ζε,t|Fε,t−1) = 0, where FF,t−1, FX,t−1 and Fε,t−1 are the corresponding fil-

trations.

(v) Let ζF,t(p) be the p-th element of ζF,t, and the same notation applies to

ζX,t. We assume that ζF,t satisfy

E
[
ζF,t(p)ζF,t(q) | FF,t−1

]
= Φ1,pq <∞, E

[
ζF,t(p1)ζF,t(p2)ζF,t(p3) | FF,t−1

]
= Φ2,p1p2p3 <∞,

and

E
[
ζF,t(p1)ζF,t(p2)ζF,t(p3)ζF,t(p4) | FF,t−1

]
= Φ3,p1...p4 <∞

for some absolute constants Φ1,pq, Φ2,p1p2p3 and Φ3,p1...p4 , and for arbitrary p-, q-

and p1-, . . . , p4-th elements of ζF,t. Also the same condition holds for ζX,t and
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ζε,t. Additionally, ζε,t satisfies the following eighth-order moment condition

E
[
ζε,t(p1) · · · ζε,t(p8) | FF,t−1

]
= Φ4,p1...p8 <∞ (4.3.9)

for some absolute constant Φ4,p1...p8 , and for arbitrary p1-, . . . , p8-th element

of ζε,t.

(vi) ζε,i,t is independent of ζX,i,s, ζF,r and λj for all r, s, t = 1, . . . , T and

i, j = 1, . . . , N .

Assumption B. (i) Let Γ̌X,j = Diag
(
γ
dXp
j

)
, we assume E

∥∥Γ̌X,jWX,ij

∥∥4 ≤M

and 1
T
W̃ ∗
X,iW̃X,i

p→ ΣW
X,i > 0 for some matrix ΣW

X,i, as T → ∞ for each i =

1, . . . , N .

(ii) Let W =
{
W̃F ∈ CL×R : W̃F = WF Γ̃F , W̃ ∗

F W̃F/T = IR
}

. We assume

inf
W̃∈W

D†NL

(
W̃
)
> 0.

(iii) Let Γ̌F,j = Diag
(
γ
dFr
j

)
, we assumeE

∥∥Γ̌F,jWF,j

∥∥4 ≤M and 1
T
W̃ ∗
F W̃F

p→

ΣW
F > 0 for some matrix ΣW

F , as T →∞.

Assumption C. (i) E
∥∥γdεj Wε,ij

∥∥8 ≤ M and 1
T
W̃ ∗
ε,iW̃ε,i

p→ Σε,i > 0 for some

matrix Σε,i, as T →∞.

(ii) Let
√
E
∣∣Wε,ikW ∗

ε,jl

∣∣2 = σW,1ij,kl and E
∣∣Wε,ikW

∗
ε,il

∣∣2 = σW,1i,kl . We assume

σW,1ij,kl ≤ γ−dεk γ−dεl σWij and
√
σW,1i,kl σ

W,1
j,kl ≤ γ−2dε

k γ−2dε
l σWij for all (k, l) and

1

N

N∑
i,j=1

σWij ≤M. (4.3.10)

Moreover, let
∣∣E (Wε,ikW

∗
ε,jl

)∣∣ = σW,2ij,kl. We assume
∣∣∣σW,2ij,kl

∣∣∣ ≤ σWkl for all (i, j),

and

γ2dε
L

L1+2dε

L∑
k,l=1

σWkl ≤M ,
γ2dε
L

NL1+2dε

N∑
i,j=1

L∑
k,l=1

∣∣σWij,kl∣∣ ≤M , and
1

T 4dε log2 L

L∑
k,l=1

γWN (k, l)2 ≤M,

(4.3.11)
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where γWN (k, l) = 1
N

∑N
i=1E

(
Wε,ilW

∗
ε,ik

)
.

(iii) Let Ωi = Γ̌εE
(
Wε,iW

∗
ε,i

)
Γ̌ε, where Γ̌ε = Diag

(
γdεj
)
. The largest eigen-

value of Ωi is bounded uniformly over i and T as T →∞.

(iv) For every (k, l), E
∣∣∣N− 1

2γdεj γ
dε
l

∑N
i=1

[
Wε,ikW

∗
ε,il − E(Wε,ikW

∗
ε,il)
]∣∣∣4 ≤

M .

(v) Moreover,

γ4dε
L

NL2

N∑
i,j=1

L∑
k,l=1

∣∣cov(Wε,ikW
∗
ε,ik,Wε,jlW

∗
ε,jl)
∣∣ ≤M, (4.3.12)

γ4dε
L

N2L2

N∑
i,j,m,n=1

L∑
k,l=1

∣∣cov(Wε,ikW
∗
ε,jk,Wε,mlW

∗
ε,nl)

∣∣ ≤M,

and

γ4dε
L

NL2

N∑
i,j=1

L∑
k,l=1

∣∣cov(Wε,ikW
∗
ε,il,Wε,jkW

∗
ε,jl)
∣∣ ≤M.

Assumption D. (i) Let ΓZ = Diag
{
γ
dZp
L

}
. plim γ−1

L ΓZD
†
NL (WF 0) ΓZ = DW

0

for some matrix DW
0 > 0.

(ii)
√
NLγdε−1

L ΓZ
NT

∑N
i=1W

∗
Z,iWε,i

d→ N (0,Σ), where

ΣW = p lim
γ2dε−1
L

NT

N∑
i,j=1

L∑
k,l=1

Re
(
σWii,klΓZWZ,ikW

∗
Z,ilΓZ

)
.

(iii) Moreover, we have for each i = 1, . . . , N that

E

∥∥∥∥∥
√
Lγ

dε− 1
2

L

T
W ∗
ε,iW̃X,i

∥∥∥∥∥
2

≤M , and E

∥∥∥∥∥
√
Lγ

dε− 1
2

L

T
W ∗
ε,iW̃F

∥∥∥∥∥
2

≤M,

and the following also holds:

E

∥∥∥∥∥
√
NLγ

dε− 1
2

L

NT

N∑
i=1

W ∗
ε,iW̃X,i

∥∥∥∥∥
2

≤M,
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E

∥∥∥∥∥
√
NLγ

dε− 1
2

L

NT

N∑
i=1

λiW
∗
ε,iW̃F

∥∥∥∥∥
2

≤M , and E

∥∥∥∥∥
√
NLγ

dε− 1
2

L

NT

N∑
i=1

W ∗
ε,iW̃F

∥∥∥∥∥
2

≤M.

Assumption E. As T →∞, we assume (i) L
T

+ 1
L
→ 0. Moreover, denote d =

max {dX,max, dF,max, dZ,max}, d = min {dX,min, dF,min, dZ,min}, and ∆d = d − d,

then we assume:

(ii) d > dε; and (iii)
(√

L
N

+ 1√
L

)
γ−2∆d
L → 0.

Assumption F. The model (4.3.3) satisfies the following identifying restric-

tions:

(i) 1
T
W̃F W̃

∗
F = I. (ii) Λ′Λ/N is a diagonal matrix with distinct main

diagonal elements.

Remark 1. Assumption A-E are adopted from chapter 2, which can be treated

as the frequency domain extensions of the assumptions that are imposed in

Bai (2009). Assumption F corresponds to one of the identifying restrictions

indicated by Bai and Ng (2013), which is also a frequency domain extension.

The other two restrictions in that paper can also be applied but will not be

discussed here for simplicity.

The next two theorems establish the consistency and asymptotic normality

of the local Whittle estimator of each dFr , r = 1, . . . , R, where from Assump-

tion A(i), we denote υFr , r = 1, . . . , R, as the main diagonal elements of ΥFF .

Theorem 4.3.1 Suppose Assumption A-H hold, as N, T → ∞ with N
T
→ φ

for some finite constant φ we have for each r = 1, . . . , R, d̂F̂r
p−→ dFr .

Next we derive the asymptotic distribution of the local Whittle estimator. De-

note the spectral density matrix of factor by fF (γ) and ΓF (γ) = Diag
(
γ−dF1 , . . . , γ−dFR

)
,

then we need the following additional assumption to proceed.

Assumption G. For some ρ ∈ (0, 2],

fF (γ) ∼ ΓF (γ) ΥFFΓF (γ) (1 +O (γρ)) ,
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and ρ satisfies L1+2ρ(logL)2

T 2ρ → 0.

Theorem 4.3.2 Suppose Assumptions A-G hold, as N, T → ∞ with N
T
→ φ

for some finite constant φ we have for each r = 1, . . . , R that
√
L
(
d̂F̂r − dFr

)
d−→

N
(
0, 1

4

)
.

4.4 Test against Spurious Long Memory

In this section we try to adopt a test from Qu (2011) against the spurious

long memory of the latent factors, which is based on the score of local Whittle

estimator. And then its asymptotic null distribution and consistency against

several alternatives that represent the spurious long memory is presented.

We test marginally every single element of factors against spurious long

memory. For each r = 1, . . . , R, the null hypothesis of interest is given by

• H0: fFr(γ) ∼ υFrγ
−2dFr as γ → 0+ with υFr > 0 and dFr ∈

(
−1

2
, 1

2

)
,

And the test statistic is based on the score of the profile likelihood function of

local Whittle estimator. Recall that for each r = 1, . . . , R, minimizing Qr(υ, d)

in (4.3.4) with respect to g helps us obtain the profiled likelihood function given

by (4.3.5) and (4.3.6). The derivative of Kr(d) then helps build up the test

statistic, which is given by

∂Kr(dr)

∂dr
=

2υr√
LĜ(dr)

{
L−

1
2

L∑
j=1

uj

(
ÎFr,j

υFrγ
−2dr
j

− 1

)}

where uj = log γj− 1
L

∑L
j=1 log γj = log j− 1

L

∑L
j=1 log j. Then using the above

score function, the test statistic is then given by

Vr = sup
ρ∈[ι,1]

(
L∑
j=1

u2
j

)− 1
2

∣∣∣∣∣∣∣
bLρc∑
j=1

uj

 ÎFr,j

Ĝ
(
d̂F̂r

)
γ
−2d̂F̂r
j

− 1


∣∣∣∣∣∣∣ ,

where ÎF,j and d̂F̂r are respectively the estimated periodogram and the local
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Whittle estimator the memory parameter of the r-th latent factor from FDP-

CLS; and ι is a small trimming parameter. In the following theorem, we try

to establish the asymptotic null distribution of our test statistic.

Theorem 4.4.1 Under Assumptions A-G, as N, T → ∞ with N
T
→ φ for

some constant φ we have for each r = 1, . . . R that

Vr ⇒ sup
ρ∈[ι,1]

∣∣∣∣∫ ρ

0

(1 + log s) dW (s)−W (1)

∫ ρ

0

(1 + log s) ds− Φ(ρ)

∫ 1

0

(1 + log s) dW (s)

∣∣∣∣ ,
where Φ(ρ) =

∫ ρ
0

(1 + log s)2 ds and W (s) is a Wiener process in [0, 1].

4.5 Monte Carlo Simulation and Application

In this section we try to conduct an experimental simulation to testify the

performance of the test above. The setup of linear regression is basically the

same as in chapter 2, while under the null and alternative hypothesis, the

DGPs of factors are given respectively by:

H0 : Ft = 1− 0.7Ft−1 + et,

with et is an I(dF ) process. And for the global alternatives, we follow the

lead of Qu (2011) and consider two types of the latent factors that represent

the spurious long memory. The first one is short memory processes that is

contaminated by random level shifts:

H
(1)
1 : Ft = µt + zt,

where µt = µt−1 + πtηt, and πt follows an i.i.d. Bernoulli distribution with

Pr(πt = 1) = 6
T

and Pr(πt = 0) = 1 − 6
T

, and zt ∼ iidN(0, 5) and ηt ∼

iidN(0, 1). This alternative serves as a nonstationary random level shift, and

the Bernoulli distribution ensures the amount of shift is finite even under very
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large sample. The second alternative is a short memory process with a time-

varying smooth trend:

H
(2)
1 : Ft = zt + h

(
t

T

)
,

where h (·) is a Lipschitz continuous function on [0, 1]. To be specific, we

specify h
(
t
T

)
= sin (4πt/T ) and zt being the same as above. In the following

Table 1, we present the estimated factor memory parameter and the rate of

rejections under both the null and alternative hypotheses with nominal levels

of significance being 0.1 and 0.05, respectively, so as to evaluate the size and

power and the performance of local Whittle estimator of the factor memory

parameter.

The results are presented under three different values of dF : 0.2, 0.3 and

0.4, with dX = 0.4 and dε = 0.2 throughout these scenarios. The bandwidth L

is set to be bT 0.7c. And we focus on the case where the true number of factors

is 2, and in Table 1 we report the results from the second factor. Note that to

implement the test, we choose the trimming parameter ι = 0.05 and employ

the corresponding asymptotic critical values documented in Qu (2011).

In terms of empirical application, we try to adopt the data from our last

chapter and check out if there is spurious long memory through their local

Whittle estimator. The results are presented for the largest estimated memory

parameter of the estimated DFT of the factor, together with its test statistic.

The trimming parameter is set to be 0.05 as in the simulation. We can find

out that there are relatively strong evidence that support the existence of long

memory in the factors, as the null is rejected under 5% level of significance

under all numbers of factors, see Table 2 below. But somehow in the case

R = 1 the estimated memory seems to fall in the range of anti-persistence,

which is not so consistent with our estimation of factor number as one in last

chapter. We believe a larger sample size can help fix it.
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Table 1. Results of simulation

N,T d̂F 5% 10%

Under H0, dF = 0.2

N = 100, T = 200 0.144 0.030 0.045

N = 200, T = 400 0.170 0.020 0.065

N = 300, T = 600 0.180 0.060 0.090

Under H0, dF = 0.3

N = 100, T = 200 0.239 0.030 0.040

N = 200, T = 400 0.259 0.045 0.065

N = 300, T = 600 0.275 0.060 0.085

Under H0, dF = 0.4

N = 100, T = 200 0.342 0.030 0.045

N = 200, T = 400 0.377 0.050 0.060

N = 300, T = 600 0.386 0.045 0.100

Under H
(1)
1

N = 100, T = 200 0.243 0.295 0.365

N = 200, T = 400 0.260 0.550 0.645

N = 300, T = 600 0.267 0.740 0.805

Under H
(2)
1

N = 100, T = 200 0.191 0.425 0.565

N = 200, T = 400 0.200 0.725 0.805

N = 300, T = 600 0.209 0.950 0.980

Table 2: Results of empirical application

R 1 2 3 4 5 6 7 8

d̂Fmax -0.169 0.222 0.213 0.198 0.191 0.200 0.231 0.242

Vmax 0.227 1.063 1.028 0.998 0.988 1.001 1.001 1.096

4.6 Conclusion

In this paper we prove the validity of the traditional local Whittle estimator

and the test against spurious long memory for the estimated latent factor,

in a long memory linear regression model with interactive fixed effects. This

illustrates how the FDPCLS estimator is easy to implement not just in the

estimation and inference of the regression coefficients, but also of the memory

parameters.
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Chapter 5

Conclusion

This dissertation contributes to the estimation and inference theory of long

memory time series and panel model. We extend the current literature by

considering a time-varying linear regression model and a factor model under

long memory, and modify the classic frequency domain estimator to fit the

new framework. The asymptotic properties of these estimators of regression

coefficients and relevant tests are developed, together with Monte Carlo sim-

ulation that shows the good performance of the estimators and tests in finite

sample. Also in empirical applications, our methods are employed to study

the inflation spillover effect and the debt-growth nexus.

In the future research, there are several main directions to further extend

this dissertation. First, a uniform inference of our time-varying regression co-

efficients and a data-driven bandwidth can be developed in the second chapter.

Second, in the third chapter the high-level assumptions of the CLT should be

replaced by the theory that generalizes the proof of Christensen and Nielsen

(2006) to the factor model. Third, our analysis could be extended to the range

of anti-persistence for both of our model setup, as it also covers plenty to

financial data.
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Appendix A

Technical Results for Chapter 2

A.1 Proofs of the Main Results

In this appendix we first state some technical lemmas and propositions whose proofs can be

found later. Then we prove the main results of Chapter 2.

A.1.1 Some Technical Lemmas and Propositions

To simplify the notations, let Kh,tu = Kh (t− Tu), cTu =
√

2π
∑T
t=1K

2
h,tu, and sometimes

we denote wX,j = wX (u, λj) when no confusion arises from suppressing its dependence on u,

and the same notation holds for wa (u, λj), Ia (u, λj) and Aa (u, λj) with a = X, ε, ζ. First,

we state three lemmas that are used in the proof of Theorem 2.3.1.

Lemma A.1.1 Under Assumption 1-5, for any fixed u ∈ (0, 1)

ΛM
λ
−2δ(u)
M

M

M∑
j=1

Re
(
wX,jw

∗
X,j

)
λ

2δ(u)
j ΛM − Γ (u) = op (1) (A.1.1)

where ΛM = diag
(
λ
dX1

(u)

M , . . . , λ
dXp (u)

M

)
, and the (a, b)-th element of Γ (u) is given by

Γab (u) = Gab/ (1− dXa (u)− dXb (u) + 2δ (u)).

Lemma A.1.2 Under Assumption 1-5, for any fixed u ∈ (0, 1)

ΛM
λ
dε(u)−2δ(u)
M

√
h√

M

M∑
j=1

λ
2δ(u)
j Re

(
wX,jw

∗
ε,j

) d−→ N (0,Ω (u))
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where ΛM = diag
(
λ
dX1

(u)

M , . . . , λ
dXp (u)

M

)
, and the (a, b)-th element of Ω (u) is

Ωab (u) = Θ∗

 G
1
2

X,aaG
1
2

X,bbGεε

2 (1− dXa (u)− dXb (u)− 2dε (u) + 4δ (u))

 ,

given a finite deterministic function Θ∗ (·).

The following two positions are used in the proof of Theorem 2.3.2:

Proposition A.1.3 Under Assumption 1 to 5, for any M that is defined in Assumption

4(i), we have

(i) Sa (m) = 1
T

∑M
j=1 |wXa,j −AXa,jwζ,j |

2
= Op (hFXaa (u, λm)),

(ii) Sb (m) = 1
T

∑M
j=1

(
IXaa,j +AXa,jIζ,jA

∗
Xa,j

)
= Op (hFXaa (u, λm)),

where wXa,j is the a-th element of wX,j, and the same notation holds for AXa,j and IXaa,j;

and FXaa (u, λm) is the marginal spectral distribution function corresponding to the spectral

density defined in Assumption 2.

Proposition A.1.4 Let

B̃1,Ma =

M∑
j=1

λ
2δ(u)
j Re

(
Iaε,j −AXa,jIζ,jA∗ε,j

)
,

where Iaε,j is the cross-periodogram between Xa and ε. Then suppose Assumption 1-5 hold,

we have for each a = 1, . . . , p,

B̃1,Ma = Op

(
λ

2δ(u)−dXa (u)−dε(u)
M

(
h−1 (logM)

2
+ h−1M

1
4 (logM)

1
2 + h−1M

1
2T−

1
4 (logM)

1
2

))
.

Proposition A.1.5 Define

Zt,T (u) =
ζ ′tKh,tu√

1
T

∑T
t=1K

2
h,tu

∑
s<t

Ct−s,T (u)
ζsKh,su√

1
T

∑T
t=1K

2
h,tu

,

where Ct−s,T (u) is given by

Ct−s,T (u) =

p∑
a=1

ηa
λ
dXa (u)+dε(u)−2δ(u)
M

√
h

2πT
√
M

M∑
j=1

λ
2δ(u)
j Re

(
A′Xa,jAε,j +A′ε,jAXa,j

)
cos (tλj)

with arbitrary weight ηa. Given a finite deterministic function Θ∗ (·), recall

Ωab = Θ∗

 G
1
2

X,aaG
1
2

X,bbGε

1− dXa (u)− dXb (u)− 2dε (u) + 4δ (u)

 ,

then under the conditions of Theorem 2.3.1, the following conclusions will hold:
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(i)
∑T
t=1 E

(
Z2
t,T (u) | Ft−1

) p→
∑p
a=1

∑p
b=1 ηaηbΩab;

(ii)
∑T
t=1 E

(
Z2
t,T (u) 1 (|Zt,T (u)| > ε)

) p→ 0 for all ε > 0.

A.1.2 Proofs of the Main Theorems

Proof of Theorem 2.3.1. Recall that

β̂ (u) =

 M∑
j=1

λ
2δ(u)
j Re (wX (u, λj)w

∗
X (u, λj))

−1  M∑
j=1

λ
2δ(u)
j Re

(
wX (u, λj)w

∗
y (u, λj)

)
≡ R−1

XX (u)RXY (u) .

Using yt = β (u)
′
Xt,T +

(
β
(
t
T

)
− β (u)

)′
Xt,T + εt,T , we make the following decomposition

for wy (u, λj):

wy (u, λj) = β (u)
′ 1

cTu

T∑
t=1

Xt,TKh,tue
itλj +

1

cTu

T∑
t=1

(
β

(
t

T

)
− β (u)

)′
Xt,TKh,tue

itλj

+
1

cTu

T∑
t=1

εt,TKh,tue
itλj

≡ β′ (u)wX (u, λj) + w̃X (u, λj) + wε (u, λj) ,

then it follows that

β̂ (u)− β (u) = R−1
XX (u)


M∑
j=1

λ
2δ(u)
j Re (wX (u, λj) w̃

∗
X (u, λj)) +

M∑
j=1

λ
2δ(u)
j Re (wX (u, λj)w

∗
ε (u, λj))


≡ R−1

XX (u) {BM (u) + VM (u)} ,

where BM (u) and VM (u) contribute to the asymptotic bias and variance parts of β̂ (u)−β (u)

respectively.

First for VM (u), by Lemma A.1.1 we have

ΛM
λ
−2δ(u)
M

M
RXX (u) ΛM = ΛM

λ
−2δ(u)
M

M

M∑
j=1

λ
2δ(u)
j Re (wX (u, λj)w

∗
X (u, λj)) ΛM

p→ Γ (u) .

(A.1.2)

By Lemma A.1.2,

ΛM
λ
dε(u)−2δ(u)
M

√
h√

M

M∑
j=1

λ
2δ(u)
j Re (wX (u, λj)w

∗
ε (u, λj))

d→ N (0,Ω (u)) .

Next, we study BM (u) . By Assumption 3(i),
∣∣ t
T − u

∣∣ ≤ h holds uniformly on the support

of kernel function k (·). Then by Assumption 5 and Taylor expansion, we have that for any

99



∣∣ t
T − u

∣∣ = O (h) ,

β

(
t

T

)
= β (u) + β(1) (u)

(
t

T
− u
)

+O
(
h2
)
,

where β(1) (u) is the first order derivative of β (u). Note that to derive the order of bias

term, it is sufficient to replace β
(
t
T

)
− β (u) with β(1) (u)

(
t
T − u

)
as it is the leading term.

So in the following we denote instead

w̃X (u, λj) =
1

cTu

T∑
t=1

(
t

T
− u
)
Xt,TKh,tue

itλj ,

and

BM (u) =

M∑
j=1

λ
2δ(u)
j Re (wX (u, λj) w̃

∗
X (u, λj))β

(1) (u) .

Uniformly in u ∈ [0, 1], we define and decompose BM (u) as

BM (u) =

M∑
j=1

λ
2δ(u)
j Re

(
AX (u, λj)wζ (u, λj) w̃

∗
ζ (u, λj)A

∗
X (u, λj)

)
β(1) (u)

+

BM (u)−
M∑
j=1

λ
2δ(u)
j Re

(
AX (u, λj)wζ (u, λj) w̃

∗
ζ (u, λj)A

∗
X (u, λj)

)
β(1) (u)


≡ (B1 +B2)β(1) (u) ,

where we define w̃ζ (u, λj) = 1
cTu

T∑
t=1

ζt
(
t
T − u

)
Kh,tue

itλj . We analyze B1 and B2 in the

following. Firstly for B1 we have

B1 =

M∑
j=1

λ
2δ(u)
j Re

(
AX (u, λj)wζ (u, λj) w̃

∗
ζ (u, λj)A

∗
X (u, λj)

)
=

M∑
j=1

λ
2δ(u)
j Re

(
AX (u, λj)

1

c2Tu

T∑
t,s=1

ζtζ
′

s

( s
T
− u
)
Kh,tuKh,sue

i(t−s)λjA∗X (u, λj)

)

=

M∑
j=1

λ
2δ(u)
j Re

(
AX (u, λj)

1

c2Tu

T∑
t=1

ζtζ
′

t

(
t

T
− u
)
K2
h,tuA

∗
X (u, λj)

)

+

M∑
j=1

λ
2δ(u)
j Re

AX (u, λj)
1

c2Tu

∑
t6=s

ζtζ
′

s

( s
T
− u
)
Kh,tuKh,sue

i(t−s)λjA∗X (u, λj)


≡

M∑
j=1

λ
2δ(u)
j Re (b1,j) +

M∑
j=1

λ
2δ(u)
j Re (b2,j) ≡ B11 +B12,

then we can closely follow the proof of Lemma A.1.1 to derive their order. To be spe-

cific, firstly we still consider an arbitrary (a, b)-th element of B11, denoted as B11,ab, whose
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expectation is given by

E (B11,ab) =

M∑
j=1

λ
2δ(u)
j Re

(
AXa (u, λj)A

∗
Xb

(u, λj)
) 1

c2Tu

T∑
t=1

(
t

T
− u
)
K2
h,tu

≤ h
M∑
j=1

λ
2δ(u)
j Re (fXab (u, λj)) = O

(
hMλ

2δ(u)−dXa (u)−dXb (u)

M

)
,

and its variance is given by

V ar (B11,ab) =

M∑
j,k=1

λ
2δ(u)
j λ

2δ(u)
k Cov (Re (b1,j,ab) ,Re (b1,k,ab))

≤
M∑

j,k=1

λ
2δ(u)
j λ

2δ(u)
k {V ar (Re (b1,j,ab))V ar (Re (b1,k,ab))}

1
2 ,

where it is adequate to consider V ar (Re (b1,j)) only. Then we have

V ar (Re (b1,j,ab))

= E (Re (b1,j,ab)− E (Re (b1,j,ab)))
2

≤ E

∣∣∣∣∣AXa (u, λj)
1

c2Tu

T∑
t=1

(
ζtζ
′

t − Ip+1

)( t

T
− u
)
K2
h,tuA

∗
Xb

(u, λj)

∣∣∣∣∣
2

≡ E
∣∣∣AXa,jD̃1,jA

∗
Xb,j

∣∣∣2 ,
where Ip+1 is a (p+ 1)× (p+ 1) identity matrix, then

E
∣∣∣AXa,jD̃1,jA

∗
Xb,j

∣∣∣2 = E
(
AXa,jD̃1,jA

∗
Xb,j

AXb,jD̃1,jA
∗
Xa,j

)
= E

[
tr
(
AXa,jD̃1,jA

∗
Xb,j

AXb,jD̃1,jA
∗
Xa,j

)]
= vec

(
A∗Xa,jAXa,j

)′
E
(
D̃1,j ⊗ D̃1,j

)
vec

(
A∗Xb,jAXb,j

)
,

where E
(
D̃1,j ⊗ D̃1,j

)
can be further given by

E
(
D̃1,j ⊗ D̃1,j

)
(A.1.3)

= E

[
1

c2Tu

T∑
t=1

(
ζtζ
′

t − Ip
)( t

T
− u
)
K2
h,tu ⊗

1

c2Tu

T∑
t=1

(
ζtζ
′

t − Ip
)( t

T
− u
)
K2
h,tu

]

= E

(
1

c2Tu

T∑
t=1

ζtζ
′

t

(
t

T
− u
)
K2
h,tu ⊗

1

c2Tu

T∑
t=1

ζtζ
′

t

(
t

T
− u
)
K2
h,tu

)

− Ip+1

c2Tu

T∑
t=1

(
t

T
− u
)
K2
h,tu ⊗ E

(
1

c2Tu

T∑
t=1

ζtζ
′

t

(
t

T
− u
)
K2
h,tu

)

− E

(
1

c2Tu

T∑
t=1

ζtζ
′

t

(
t

T
− u
)
K2
h,tu

)
⊗ Ip+1

c2Tu

T∑
t=1

(
t

T
− u
)
K2
h,tu
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+
Ip+1

c2Tu

T∑
t=1

(
t

T
− u
)
K2
h,tu ⊗

Ip+1

c2Tu

T∑
t=1

(
t

T
− u
)
K2
h,tu.

Note that 1
c2Tu

∑T
t=1

(
t
T − u

)
K2
h,tu = O (h) by domain of the kernel function, and

E

(
1

c2Tu

T∑
t=1

ζtζ
′

t

(
t

T
− u
)
K2
h,tu

)
=

1

c2Tu

T∑
t=1

(
t

T
− u
)
K2
h,tu = O (h) Ip+1,

thus

E
(
D̃1,j ⊗ D̃1,j

)
= E

(
1

c2Tu

T∑
t=1

ζtζ
′

t

(
t

T
− u
)
K2
h,tu ⊗

1

c2Tu

T∑
t=1

ζtζ
′

t

(
t

T
− u
)
K2
h,tu

)

− Ip+1

c2Tu

T∑
t=1

(
t

T
− u
)
K2
h,tu ⊗

Ip+1

c2Tu

T∑
t=1

(
t

T
− u
)
K2
h,tu,

and then

E

(
1

c2Tu

T∑
t=1

ζtζ
′

t

(
t

T
− u
)
K2
h,tu ⊗

1

c2Tu

T∑
t=1

ζtζ
′

t

(
t

T
− u
)
K2
h,tu

)

=
1

c4Tu

T∑
t,s=1

E
(
ζtζ
′

t ⊗ ζsζ
′

s

)( t

T
− u
)( s

T
− u
)
K2
h,tuK

2
h,su.

Compared with (A.2.4), the above equation has extra components
(
t
T − u

)
and

(
s
T − u

)
that are uniformly bounded by h. Then given the non-negativity of K2

h,tuK
2
h,su and the fact

that E
(
ζtζ
′

t ⊗ ζsζ
′

s

)
has a uniform bound as well, we can adjust the results in (A.2.4) and

conclude that

E

(
1

c2Tu

T∑
t=1

ζtζ
′

t

(
t

T
− u
)
K2
h,tu ⊗

1

c2Tu

T∑
t=1

ζtζ
′

t

(
t

T
− u
)
K2
h,tu

)
= O

(
h

T

)
(Ip+1 ⊗ Ip+1)

and so as the other terms in (A.1.3). Therefore E
(
D̃1,j ⊗ D̃1,j

)
= O

(
h
T

)
(Ip+1 ⊗ Ip+1), and

therefore

V ar (Re (b1,j,ab)) ≤ E
∣∣∣AXa,jD̃1,jA

∗
Xb,j

∣∣∣2
= vec

(
A∗Xa,jAXa,j

)′
E
(
D̃1,j ⊗ D̃1,j

)
vec

(
A∗Xb,jAXb,j

)
= O

(
h

T
λ
−dXa (u)−dXb (u)

j λ
−dXa (u)−dXb (u)

k

)
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and

V ar (B11,ab) ≤
M∑

j,k=1

λ
2δ(u)
j λ

2δ(u)
k {V ar (Re (b1,j,ab))V ar (Re (b1,k,ab))}

1
2

= O

(
h

T
M2λ

2[2δ(u)−dXa (u)−dXb (u)]
M

)
.

Combining the order of E (B11,ab) and V ar (B11,ab), we can conclude thatB11 = Op

(
hMλ

2δ(u)−2dX(u)
M

)
with dX (u) = maxp dXp (u).

Next for B12, we can also closely follow the corresponding parts in the proof of Lemma

A.1.1. We denote

B12 =

M∑
j=1

λ
2δ(u)
j Re

AX (u, λj)
1

c2Tu

∑
t6=s

ζtζ
′

s

( s
T
− u
)
Kh,tuKh,sue

i(t−s)λjA∗X (u, λj)


=

1

c2Tu

∑
t6=s

ζ
′

t Re

 M∑
j=1

λ
2δ(u)
j A

′

X (u, λj)AX (u, λj)
( s
T
− u
)
Kh,tuKh,sue

i(t−s)λj

 ζs

≡ 1

c2Tu

∑
t6=s

ζ
′

t Re
(

Φ̃t,s,M

)
ζs.

Since E (B12) = 0, we only need to consider its variance, which is bounded by

1

c4Tu
E

∣∣∣∣∣∣
∑
t6=s

ζ
′

t Re
(

Φ̃t,s,M

)
ζs

∣∣∣∣∣∣
2

=
1

c4Tu

∑
t1 6=s1

∑
t2 6=s2

vec
(

Φ̃t2,s2,M

)′
E
(
ζs2ζ

′

s1 ⊗ ζt2ζ
′

t1

)
vec
(

Φ̃t1,s1,M

)
.

The above equation has the same structure as (A.2.5), then the reasoning for analyzing V1

and V2 in the proof of Lemma A.1.1 still holds. And we can easily see that the only difference

lies within the order of two following objects:

∣∣∣∣∣ 1

c2Tu

T∑
t=1

(
t

T
− u
)2

K2
h,tue

itλj−k

∣∣∣∣∣ = o
(
h−1θ (u, j)

)
and ∣∣∣∣∣ 1

c2Tu

T∑
t=1

(
t

T
− u
)
K2
h,tue

itλj−k

∣∣∣∣∣ = o
(
h−1θ (u, j)

)
with j 6= k. These two orders hold by Assumption 3(iv), and they correspond to

∣∣∣ 1
c2Tu

∑T
t=1K

2
h,tue

itλj−k

∣∣∣
in V1 and V2 respectively. The rest of the reasoning will follow the proof of Lemma A.1.1

and we can conclude that B12 = op

(√
Mh−

1
2λ

2δ(u)−2dX(u)
M

)
.
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Next recall that B2 is given by

B2 =

M∑
j=1

λ
2δ(u)
j Re

(
wX (u, λj) w̃

∗
X (u, λj)−AX (u, λj)wζ (u, λj) w̃

∗
ζ (u, λj)A

∗
X (u, λj)

)
≡

M∑
j=1

λ
2δ(u)
j Re (b3,j) .

Note that the above equation has the same structure as Q1,M in (A.2.1) in the proof of

Lemma A.1.1, whose order is derived using Proposition A.1.3. Then following the same

reasoning, we have for B2 that

|B2| ≤
M−1∑
j=1

(
λ

2δ(u)
j − λ2δ(u)

j+1

) M∑
k=1

|Re (b3,k)|+ λ
2δ(u)
M

M∑
j=1

|Re (b3,j)| ,

where considering an arbitrary (a, b)-th element and using a more compact notation,

M∑
j=1

|Re (b3,j,ab)|

≤
M∑
j=1

∣∣wXa,jw̃∗Xb,j −AXa,jwζ,jw̃∗ζ,jA∗Xb,j∣∣
=

M∑
j=1

1

2

∣∣(wXa,j −AXa,jwζ,j) (w̃∗Xb,j + w̃∗ζ,jA
∗
Xb,j

)
+ (wXa,j +AXa,jwζ,j)

(
w̃∗Xb,j − w̃

∗
ζ,jA

∗
Xb,j

)∣∣ ,
then following how we analyze the order of S1 (M) and S2 (M) in the proof of Lemma A.1.1,

it is sufficient to analyze the square root of the following two objects:

B̃21 =

M∑
j=1

|wXa,j −AXa,jwζ,j |
2

and B̃22 =

M∑
j=1

|w̃Xb,j − w̃ζ,jAXb,j |
2
,

where the first term can directly follow Proposition A.1.3 and thus B̃21 = op (TFXaa (u, λM )).

Then for B̃22, we can still closely follow the proof of Proposition A.1.3, and only difference

appears in the counterparts of (A.2.10), which is given by

K∗ (u, λ) =
1

c2Tu

∣∣∣∣∣
T∑
t=1

(
t

T
− u
)
Kh,tue

itλ

∣∣∣∣∣
2

,

where

∣∣∣∣∣
T∑
t=1

(
t

T
− u
)
Kh,tue

itλ

∣∣∣∣∣
=

∣∣∣∣∣
T−1∑
t=1

[(
t

T
− u
)
Kh,tu −

(
t+ 1

T
− u
)
Kh,t+1,u

] t∑
s=1

eisλ + (1− u)Kh,T,u

T∑
t=1

eitλ

∣∣∣∣∣
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≤
T−1∑
t=1

∣∣∣∣( t

T
− u
)
Kh,tu −

(
t+ 1

T
− u
)
Kh,t+1,u

∣∣∣∣ max
1≤t≤T

∣∣∣∣∣
t∑

s=1

eisλ

∣∣∣∣∣+ (1− u)Kh,T,u

∣∣∣∣∣
T∑
t=1

eitλ

∣∣∣∣∣
=

T−1∑
t=1

∣∣∣∣( t

T
− u
)

(Kh,tu −Kh,t+1,u)− 1

T
Kh,t+1,u

∣∣∣∣ max
1≤t≤T

∣∣∣∣∣
t∑

s=1

eisλ

∣∣∣∣∣+ (1− u)Kh,T,u

∣∣∣∣∣
T∑
t=1

eitλ

∣∣∣∣∣
≤

(
h

T−1∑
t=1

|Kh,tu −Kh,t+1,u|+
1

T

T−1∑
t=1

Kh,t+1,u

)
max

1≤t≤T

∣∣∣∣∣
t∑

s=1

eisλ

∣∣∣∣∣+ hKh,T,u

∣∣∣∣∣
T∑
t=1

eitλ

∣∣∣∣∣ .
Since for some constant C, 1

T

∑T−1
t=1 Kh,t+1,u ≤ C by Assumption 3(i); and by the proof of

Proposition A.1.3,
∑T−1
t=1 |Kh,tu −Kh,t+1,u| ≤ Ch−1 and

∣∣∣∑t
s=1 e

isλ
∣∣∣ ≤ C

|λ| uniformly over

t, we can thus imply that ∣∣∣∣∣
T∑
t=1

(
t

T
− u
)
Kh,tue

itλ

∣∣∣∣∣ ≤ C

|λ|
,

and thus K∗ (u, λ) = O
(
h
T |λ|

−2
)

, which is the order of K̃ (u, λ) multiplying h2 in (A.2.11).

Note that this order holds uniformly over j, so we can directly follow the proof of Proposition

A.1.3 and conclude that B̃22 = op
(
Th2FXbb (u, λM )

)
, and then following how we analyze

(A.2.3) in the proof of Lemma A.1.1,

M∑
j=1

|Re (b3,j,ab)| = op

(
ThF

1
2

Xaa
(u, λM )F

1
2

Xbb
(u, λM )

)

and thus

B2 =

M∑
j=1

λ
2δ(u)
j Re (b3,j) = op

(
hMλ

2δ(u)−2dX(u)
M

)
.

Finally, the whole bias term can be given by

R−1
XX (u)BM (u) =

(
λ

2dX(u)−2δ(u)
M

M
RXX (u)

)−1(
λ

2dX(u)−2δ(u)
M

M
BM (u)

)

= Op (1)

(
Op (h) + op

(
1√
Mh

)
+ op (h)

)
β(1) (u)

= (Op (h) + op (h))β(1) (u) = Op (h)β(1) (u) ,

where the second equality holds by (A.1.2) and the third one holds by Assumption 4(iii). This

result determines the order of bias term under our local-constant-type estimator. And note

that our proof above also indicates this order to hold uniformly over u ∈ (0, 1), which will help

our proof of Theorem 2.3.2 in the following. Therefore denoting B̃M (u) = R−1
XX (u)BM (u),

we can conclude that

Λ−1
M (u)λ

dε(u)
M

√
Mh

(
β̂ (u)− β (u)− hB̃M (u)

)
d→ N

(
0,Γ−1 (u) Ω (u) Γ−1 (u)

)
,
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where

B̃M (u) = h−1

 M∑
j=1

λ
2δ(u)
j Re (wX (u, λj)w

∗
X (u, λj))

−1

×

 M∑
j=1

λ
2δ(u)
j Re (wX (u, λj) w̃

∗
X (u, λj))

β(1) (u) .

Summarizing the above results completes the proof of Theorem 2.3.1. �

Proof of Theorem 2.3.2. Without loss of generality, we assume p = 1 in this proof for

notation simplicity. Recall that in this case β̂ (u) is given by

β̂ (u) =

 M∑
j=1

λ
2δ(u)
j Re (wX (u, λj)wX (u, λj))

−1  M∑
j=1

λ
2δ(u)
j Re (wX (u, λj)wy (u, λj))

 ≡ RXY (u)

RXX (u)
.

Then following the proof of Theorem 2 and 8 in Hansen (2008) we set R̃0
XY (u) = β (u) Γ (u)

with Γ (u) defined as in Lemma A.1.1 and thus Γ (u) = GX
1−2dX(u)+2δ(u) with GX being the

constant multiplier of the spectral density of Xt,T , as we define in (2.3.4) in Assumption

2(i). Then we can further denote

β̂ (u) =
RXY (u)

RXX (u)
=

λ
2dX (u)−2δ(u)

M

M RXY (u)

λ
2dX (u)−2δ(u)

M

M RXX (u)
≡ R̃XY (u)

R̃XX (u)

=
R̃XY (u) /Γ (u)

R̃XX (u) /Γ (u)
,

where dX (u) is the memory parameter local to a fixed u ∈ [0, 1] for the scalar regressor

Xt,T . Note that the denominator is further given by

R̃XX (u)

Γ (u)
= 1 +

R̃XX (u)− Γ (u)

Γ (u)
;

and the numerator is further given by

R̃XY (u)

Γ (u)
= β (u) +

R̃XY (u)− R̃0
XY (u)

Γ (u)
.

Therefore in the following it is sufficient to prove the uniform asymptotic negligibility of

R̃XX (u)− Γ (u) and derive the uniform order of R̃XY (u)− R̃0
XY (u) over u ∈ U .

First, we denote aMT =
√

logM
Th , then we try to show that supu∈U

∣∣∣R̃XX (u)− Γ (u)
∣∣∣ =
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Op (aMT ). Denote

AX (u) =
λ

2dX(u)−2δ(u)
M

M

M∑
j=1

λ
2δ(u)
j Re

(
AX,jIζ,jA

∗
X,j

)

using the same notations as in the proof before. Note that

sup
u∈U

∣∣∣R̃XX (u)− Γ (u)
∣∣∣ ≤ sup

u∈U

∣∣∣R̃XX (u)−AX (u)
∣∣∣+sup

u∈U
|AX (u)− E (AX (u))|+sup

u∈U
|E (AX (u))− Γ (u)| ,

and by the proof of Lemma A.1.1, supu∈U

∣∣∣R̃XX (u)−AX (u)
∣∣∣ and supu∈U |E (AX (u))− Γ (u)|

correspond to Q1,M and Q3,M in (A.2.1). Therefore we have

R̃XX (u) = AX (u) +Op (h) and E (AX (u)) = Γ (u) + o (h)

uniformly over u ∈ U . Then it remains to study the order of supu∈U |AX (u)− E (AX (u))|,

which is given by

sup
u∈U
|AX (u)− E (AX (u))| = sup

u∈U

∣∣∣∣∣∣λ
2dX(u)−2δ(u)
M

M

M∑
j=1

λ
2δ(u)
j Re

(
AX,j (Iζ,j − E (Iζ,j))A

∗
X,j

)∣∣∣∣∣∣
where for each j = 1, . . . ,M

Re
(
AX,jIζ,jA

∗
X,j

)
= Re

(
AX,j

1

c2Tu

T∑
t=1

T∑
s=1

ζtζ
′

sKh,tuKh,sue
i(t−s)λjA∗X,j

)

= AX,j
1

c2Tu

T∑
t=1

ζtζ
′

tK
2
h,tuA

∗
X,j + Re

AX,j 1

c2Tu

∑
t 6=s

ζtζ
′

sKh,tuKh,sue
i(t−s)λjA∗X,j


= AX,j

1

c2Tu

T∑
t=1

ζtζ
′

tK
2
h,tuA

∗
X,j + Re

(
AX,j

1

c2Tu
2
∑
t>s

ζtζ
′

sKh,tuKh,sue
i(t−s)λjA∗X,j

)

≡ 1

c2Tu

T∑
t=1

(
K2
h,tuZ1t,j + 2Kh,tuZ2t,j

)
.

It is easy to see for each j, the process {Z1t,j} is i.i.d. over t with its expectation equal to

AX,jA
∗
X,j . And

Re
(
AX,jE (Iζ,j)A

∗
X,j

)
= Re

(
AX,j

1

c2Tu

T∑
t=1

T∑
s=1

E
(
ζtζ
′

s

)
Kh,tuKh,sue

i(t−s)λjA∗X,j

)

= AX,j
1

c2Tu

T∑
t=1

K2
h,tuA

∗
X,j =

1

c2Tu

T∑
t=1

K2
h,tuE (Z1t,j) .
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And Z2t,j is given by

Z2t,j = ζ
′

t

t−1∑
s=1

Kh,suRe
(
A
′

X,jAX,je
i(t−s)λj

)
ζs,

which implies that {Z2t,j} is a martingale difference sequence (m.d.s.). Therefore supu∈U |AX (u)− E (AX (u))|

can be bounded as the following,

sup
u∈U
|AX (u)− E (AX (u))| ≤ sup

u∈U

∣∣∣∣∣∣λ
2dX(u)−2δ(u)
M

M

M∑
j=1

λ
2δ(u)
j Re

(
1

c2Tu

T∑
t=1

K2
h,tu (Z1t,j − E (Z1t,j))

)∣∣∣∣∣∣
+ sup
u∈U

∣∣∣∣∣∣λ
2dX(u)−2δ(u)
M

M

M∑
j=1

λ
2δ(u)
j Re

(
1

c2Tu

T∑
t=1

Kh,tuZ2t,j

)∣∣∣∣∣∣
= sup
u∈U

∣∣∣∣∣∣ 1

c2Tu

T∑
t=1

K2
h,tu

λ2dX(u)−2δ(u)
M

M

M∑
j=1

λ
2δ(u)
j Re (Z1t,j − E (Z1t,j))

∣∣∣∣∣∣
+ sup
u∈U

∣∣∣∣∣∣ 1

c2Tu

T∑
t=1

Kh,tu

λ2dX(u)−2δ(u)
M

M

M∑
j=1

λ
2δ(u)
j Re (Z2t,j)

∣∣∣∣∣∣
≡ sup
u∈U

∣∣∣∣∣ 1

c2Tu

T∑
t=1

K2
h,tuZ̈1t,M

∣∣∣∣∣+ sup
u∈U

∣∣∣∣∣ 1

c2Tu

T∑
t=1

Kh,tuZ̈2t,M

∣∣∣∣∣
≡ sup
u∈U
|SX1 (u)|+ sup

u∈U
|SX2 (u)| .

Therefore using the restriction of linear process given by Assumption 1(i), we can return

to analyzing the objects with average over time domain, and thus can borrow some classic

methodology to obtain its uniform order (e.g. Hansen (2008)). In the following we firstly

study supu∈U |SX1 (u)|. As the standard procedures to derive its uniform convergence rate,

we firstly truncate the process
{
Z̈1t,M

}
using the threshold τMT = a−1

MT . Then we denote

for any u ∈ U ,

SX1 (u) =
1

c2Tu

T∑
t=1

K2
h,tuZ̈1t,M1

(∣∣∣Z̈1t,M

∣∣∣ ≤ τMT

)
+

1

c2Tu

T∑
t=1

K2
h,tuZ̈1t,M1

(∣∣∣Z̈1t,M

∣∣∣ > τMT

)
≡ SX11 (u) + SX12 (u) .

For SX12 (u) we have

E |SX12 (u)| ≤ 1

c2Tu

T∑
t=1

K2
h,tuE

(∣∣∣Z̈1t,M

∣∣∣1(∣∣∣Z̈1t,M

∣∣∣ > τMT

))
≤ 1

c2Tu

T∑
t=1

K2
h,tuE

(∣∣∣Z̈1t,M

∣∣∣2 τ−(2−1)
MT 1

(∣∣∣Z̈1t,M

∣∣∣ > τMT

))

≤
τ−1
MT

c2Tu

T∑
t=1

K2
h,tuE

∣∣∣Z̈1t,M

∣∣∣2 ≤ τ−1
MT ,
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where in the second inequality we adopt Assumption 6(ii) with s = 2, and the last inequality

holds by the fact that

E
∣∣∣Z̈1t,M

∣∣∣s = E

∣∣∣∣∣∣λ
2dX(u)−2δ(u)
M

M

M∑
j=1

λ
2δ(u)
j Re (Z1t,j − E (Z1t,j))

∣∣∣∣∣∣
s

= E

∣∣∣∣∣∣λ
2dX(u)−2δ(u)
M

M

M∑
j=1

λ
2δ(u)
j Re

(
AX,j

(
ζtζ
′

t − I2
)
A∗X,j

)∣∣∣∣∣∣
s

≤

∣∣∣∣∣∣λ
2dX(u)−2δ(u)
M

M

M∑
j=1

λ
2δ(u)
j |AX,j |2

∣∣∣∣∣∣
s

E
∥∥∥ζtζ ′t − I2∥∥∥s

using Assumption 2(i) and 6, and definition of c2Tu. Then Markov’s inequality implies that

|SX12 (u)| = Op
(
τ−1
MT

)
= Op (aMT ) holds uniformly over u ∈ U .

Then in the following for SX11 (u) we can assume
∣∣∣Z̈1t,M

∣∣∣ ≤ τT and replace Z̈1t,M1
(∣∣∣Z̈1t,M

∣∣∣ ≤ τMT

)
with Z̈1t,M . To further proceed, we split the space U using regions Ui =

{
u : u ∈ U , |u− ui| ≤ aMTh

2
}

with grids {ui}, i = 1, . . . , N . Then by definition N = 1
aMTh2 asymptotically. Suppose we

define Kh,tu = K2
h,tu, then the nonnegativity, boundedness and Lipschitz continuity of Kh,tu

from Assumption 3(i) and 3(ii) together ensure the Lipschitz continuity of Kh,tu. Thus we

can treat Kh,tu ≡ h−2k
(
t−Tu
Th

)
as a new kernel. Note that as in the proof of Proposition

A.1.3, Hansen (2008, pp. 740-741) implies that for all u ∈ Ui and any i, the kernel Kh,tu

satisfies that ∣∣Kh,tu −Kh,tui

∣∣ ≤ Ch−2 |u− ui|K
∗
h,tui ≤ CaMTK

∗
h,tui

for some constant C and some integrable kernel function K
∗
h,tu. And for SX11 (u), we also

have

|SX11 (u)| =

∣∣∣∣∣ 1

c2Tu

T∑
t=1

K2
h,tuZ̈1t,M

∣∣∣∣∣ (A.1.4)

=

∣∣∣∣∣∣ 1

c2Tu

T∑
t=1

Kh,tu

λ2dX(u)−2δ(u)
M

M

M∑
j=1

λ
2δ(u)
j Re

(
AX,j

(
ζtζ
′

t − I2
)
A∗X,j

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣ C

2πTh−1

T∑
t=1

Kh,tu

λ2dX(u)−2δ(u)
M

M

M∑
j=1

λ
2δ(u)
j |AX,j |2

∥∥∥ζtζ ′t − I2∥∥∥
∣∣∣∣∣∣

=

∣∣∣∣∣∣ C

Th−1

T∑
t=1

Kh,tu

λ2dX(u)−2δ(u)
M

M

M∑
j=1

λ
2δ(u)
j fX (u, λj)

∥∥∥ζtζ ′t − I2∥∥∥
∣∣∣∣∣∣

=

∣∣∣∣∣ C

Th−1

T∑
t=1

Kh,tu

∥∥∥ζtζ ′t − I2∥∥∥
∣∣∣∣∣ (1 +Op (λγM )) ,

where the first inequality holds by the definition of c2Tu and Riemann sum approximation,
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and the last two equalities hold by Assumption 2(i) and 2(ii). Then for any i,

sup
u∈Ui

|SX11 (u)| = sup
u∈Ui

∣∣∣∣∣ 1

c2Tu

T∑
t=1

K2
h,tuZ̈1t,M

∣∣∣∣∣
≤ sup
u∈Ui

∣∣∣∣∣ C

Th−1

T∑
t=1

Kh,tu

∥∥∥ζtζ ′t − I2∥∥∥
∣∣∣∣∣ (1 +Op (λγM ))

≡ sup
u∈Ui

|Ψ (u)| (1 +Op (λγM )) ,

with γ ≥ 1 defined in Assumption 2(ii). So to derive the order of supu∈Ui |SX11 (u)| for each

i and then for supu∈U |SX11 (u)|, it is sufficient to study supu∈Ui |Ψ (u)| for each i and then

for supu∈U |Ψ (u)|. Then supu∈Ui |Ψ (u)| can be further given by

sup
u∈Ui

|Ψ (u)| = sup
u∈Ui

∣∣∣∣∣ C

Th−1

T∑
t=1

Kh,tu

∥∥∥ζtζ ′t − I2∥∥∥
∣∣∣∣∣

≤

∣∣∣∣∣ C

Th−1

T∑
t=1

Kh,tui

∥∥∥ζtζ ′t − I2∥∥∥
∣∣∣∣∣+ Ch−2 |u− ui|

∣∣∣∣∣ C

Th−1

T∑
t=1

K
∗
h,tui

∥∥∥ζtζ ′t − I2∥∥∥
∣∣∣∣∣ ,

thus

Pr

(
sup
u∈U
|Ψ (u)| ≥ ε

)
≤ N max

1≤i≤N
Pr

(
sup
u∈Ui

|Ψ (u)| ≥ ε
)

≤ N max
1≤i≤N

Pr

(∣∣∣∣∣ 1

Th−1

T∑
t=1

Kh,tui

∥∥∥ζtζ ′t − I2∥∥∥
∣∣∣∣∣ ≥ Cε

)
(A.1.5)

+N max
1≤i≤N

Pr

(∣∣∣∣∣ 1

Th−1

T∑
t=1

K
∗
h,tui

∥∥∥ζtζ ′t − I2∥∥∥
∣∣∣∣∣ ≥ Cε

)
, (A.1.6)

where in (A.1.6) we use the fact that aMT < 1 when T is large enough. In the following we

bound both (A.1.5) and (A.1.6) using the same exponential inequality adopted from Bennett

(1962, pp. 34) as

Pr

(∣∣∣∣∣
T∑
t=1

k

(
t− Tu
Th

)∥∥∥ζtζ ′t − I2∥∥∥
∣∣∣∣∣ ≥ CThε

)
≤ exp

(
− C2ε2/2

σ2 +QTCε/3

)
,

where we take (A.1.5) for instance and use Kh,tu = h−2k
(
t−Tu
Th

)
, and the above inequality

holds for every ε ≥ 0 with σ2 =
∑T
t=1 E

(
k

2 ( t−Tu
Th

) ∥∥∥ζtζ ′t − I2∥∥∥2
)

, and QT = max1≤t≤T Qt

with k
(
t−Tu
Th

) ∥∥∥ζtζ ′t − I2∥∥∥ ≤ Qt. Then to proceed, we can set QT = τMT = a−1
MT using the

same reasoning as in (A.1.4). And a bound for σ2 can hold with some constant C as

σ2 =

T∑
t=1

E
(
k

2
(
t− Tu
Th

)∥∥∥ζtζ ′t − I2∥∥∥2
)
≤ CTh
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by Riemann sum approximation. Then by setting ε = aMT =
√

logM
Th , we can obtain for

sufficiently large T that

Pr

(∣∣∣∣∣
T∑
t=1

k

(
t− Tu
Th

)∥∥∥ζtζ ′t − I2∥∥∥
∣∣∣∣∣ ≥ CThaMT

)
≤ exp

(
− C2T 2h2a2

MT /2

Th+ C2a−1
MTThaMT /3

)

= exp

(
−
(
C2 logM

)
/2

1 + C2/3

)
= M

− C2

2+ 2
3
C2
,

which holds uniformly over u. Then

Pr

(
sup
u∈U
|Ψ (u)| ≥ ε

)
≤ NM

− C2

2+ 2
3
C2

= a−1
MTh

−2M
− C2

2+ 2
3
C2

=

 T

(logM)M
C2

1+ 1
3
C2
h3

 1
2

= o (1)

when C is sufficiently large by Assumption 7. Therefore we can conclude that supu∈U |SX1 (u)| =

Op (aMT ).

Next for supu∈U |SX2 (u)|, we have by what we obtained from the proof of Lemma A.1.2,

sup
u∈U
|SX2 (u)|

= sup
u∈U

∣∣∣∣∣ 1

c2Tu

T∑
t=2

Kh,tuZ̈2t,M

∣∣∣∣∣
= sup
u∈U

∣∣∣∣∣∣ 1

c2Tu

T∑
t=2

Kh,tu

λ2dX(u)−2δ(u)
M

M

M∑
j=1

λ
2δ(u)
j Re (Z2t,j)

∣∣∣∣∣∣
= sup
u∈U

∣∣∣∣∣∣ 1

c2Tu

T∑
t=2

Kh,tuζ
′

t

∑
s<t

Kh,su
λ

2dX(u)−2δ(u)
M

M

M∑
j=1

λ
2δ(u)
j Re

(
2A
′

X,jAX,j

)
cos ((t− s)λj) ζs

∣∣∣∣∣∣
≡ sup
u∈U

∣∣∣∣∣
T∑
t=2

Z̃2t,M

∣∣∣∣∣ .
Note that Z̃2t,M is a m.d.s., then we can analyze its order using the same truncation thresh-

old, and the same split of U , while using a different exponential inequality for martingale

(see e.g. (1.9) in Fan et al. (2015)), which is given by

P
{
ST ≥ ε and VT ≤ v2 for some T

}
≤ exp

(
− ε2

2 (v2 +QT ε)

)

if the m.d.s. satisfies that max1≤t≤T |Xt| ≤ QT with probability approaching one, with

ST =
∑T
t=1Xt and VT =

∑T
t=1 E

(
X2
t | Ft−1

)
. Then under our setup

T∑
t=1

E
(
Z̃2

2t,M | Ft−1

)
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=

T∑
t=1

E


Kh,tu

c2Tu
ζ
′

t

∑
s<t

Kh,su
λ

2dX(u)−2δ(u)
M

M

M∑
j=1

λ
2δ(u)
j Re

(
2A
′

X,jAX,j

)
cos ((t− s)λj) ζs

2

| Ft−1


=

T∑
t=1

Z̆
′

2tZ̆2t

where

Z̆2t =
Kh,tu

c2Tu

∑
s<t

Kh,su
λ

2dX(u)−2δ(u)
M

M

M∑
j=1

λ
2δ(u)
j Re

(
2A
′

X,jAX,j

)
cos ((t− s)λj) ζs

≡ Kh,tu

c2Tu

∑
s<t

ΥMsζs.

Then by the nonnegativity of
∑T
t=1 Z̆

′

2tZ̆2t, we have

E

∣∣∣∣∣
T∑
t=1

Z̆
′

2tZ̆2t

∣∣∣∣∣ =

T∑
t=1

E
(
Z̆
′

2tZ̆2t

)
=

T∑
t=1

K2
h,tu

c4Tu
E

[
tr

(∑
s<t

∑
r<t

ζ
′

rΥ
′

MrΥMsζs

)]
=

T∑
t=1

Kh,tu

c2Tu

∑
s<t

‖ΥMs‖2

≤
T∑
t=1

K2
h,tu

c4Tu

∑
s<t

Kh,su
λ

2dX(u)−2δ(u)
M

M

M∑
j=1

λ
2δ(u)
j

∥∥∥Re
(

2A
′

X,jAX,j

)
cos ((t− s)λj)

∥∥∥
2

≤
T∑
t=1

K2
h,tu

c4Tu

∑
s<t

Kh,su
λ

2dX(u)−2δ(u)
M

M

M∑
j=1

λ
2δ(u)−2dX(u)
j cos ((t− s)λj)

2

≤ C

for some constant C, where the second last inequality follows from how we derived the

asymptotic covariance in the proof of Proposition A.1.4. Then by Markov’s inequality

Pr

(
T∑
t=1

Z̆
′

2tZ̆2t > ϕ

)
≤ C

ϕ

holds for any ϕ ≥ 0, which means
∑T
t=1 Z̆

′

2tZ̆2t is bounded in probability. Therefore using

the above exponential inequality we have for any u ∈ U that

Pr

(∣∣∣∣∣
T∑
t=1

Z̃2t,M

∣∣∣∣∣ ≥ ε
)

= P

{∣∣∣∣∣
T∑
t=1

Z̈2t,M

∣∣∣∣∣ ≥ ε and

T∑
t=1

E
(
Z̈2

2t

)
≤ C for some T

}

≤ exp

(
− ε2

2 (C +QT ε)

)
= M

− C2

2+ 2
3
C2

by specifying ε = εT =
√

logM
Th , which is the same order as we obtained just now. This helps

concludes that supu∈U |SX2 (u)| = Op (aMT ). Therefore we have supu∈U

∣∣∣R̃XX (u)− Γ (u)
∣∣∣ =
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Op (aMT ) + op (1).

Second, we try to derive the uniform order of supu∈U

∣∣∣R̃XY (u)− R̃0
XY (u)

∣∣∣, which can

be further given by

sup
u∈U

∣∣∣R̃XY (u)− R̃0
XY (u)

∣∣∣ ≤ sup
u∈U

∣∣∣R̃XX (u)β (u)− R̃0
XY (u)

∣∣∣+sup
u∈U

∣∣∣R̃XX (u)
∣∣∣+sup

u∈U

∣∣∣R̃Xε (u)
∣∣∣ ,

where

R̃XX (u) =
λ

2dX(u)−2δ(u)
M

M

M∑
j=1

λ
2δ(u)
j Re (wX (u, λj) w̃

∗
X (u, λj))

with w̃X (u, λj) defined as part of bias term in the proof of Theorem 2.3.1. Since

sup
u∈U

∣∣∣R̃XX (u)β (u)− R̃0
XY (u)

∣∣∣ = sup
u∈U

∣∣∣R̃XX (u)β (u)− Γ (u)β (u)
∣∣∣ = Op (aMT ) + op (1)

and supu∈U

∣∣∣R̃XX (u)
∣∣∣ = Op (h). Then it remains to study the order of supu∈U

∣∣∣R̃Xε (u)
∣∣∣.

Using the same reasoning and by replacing wX (u, λj) with wε (u, λj), we can obtain

sup
u∈U

∣∣∣R̃Xε (u)
∣∣∣ = Op

(
λ
4d
M aMT

)
.

Therefore by gathering all the terms we have so far, supu∈U

∣∣∣β̂ (u)− β (u)
∣∣∣ = Op (h) +

Op

(
λ
4d
M

√
logM
Th

)
. �

Proof of Theorem 2.4.1. Following the reasoning and notations in the proof of Theorem

2.3.1, we firstly decompose β̂∗ (u), which is

β̂∗ (u) =

 M∑
j=1

λ
2δ(u)
j Re (wX (u, λj)w

∗
X (u, λj))

−1  M∑
j=1

λ
2δ(u)
j Re

(
wX (u, λj)w

∗
y∗ (u, λj)

)
≡ R−1

XX (u)RXY∗ (u) .

And then within RXY∗ (u), w∗y∗ (u, λj) is given by

w∗y∗ (u, λj) =
1

cTu

T∑
t=1

Kh,tuy∗t,T e
itλj

=
1

cTu

T∑
t=1

Kh,tu

(
X
′

t,T β̂

(
t

T

)
+ ε∗t,T

)
eitλj

=
1

cTu

T∑
t=1

Kh,tu

[
X
′

t,T

(
β̂ (u) +

(
β̂

(
t

T

)
− β̂ (u)

))
+ ε∗t,T

]
eitλj

≡ w∗X (u, λj) β̂ (u) + w∗ε∗ (u, λj) + ŵ∗X (u, λj) ,
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where w∗ε∗ (u, λj) is defined in the same manner as w∗y∗ (u, λj), and ŵ∗X (u, λj) is defined by

ŵ∗X (u, λj) =
1

cTu

T∑
t=1

Kh,tuX
′

t,T

(
β̂

(
t

T

)
− β̂ (u)

)
eitλj

=
1

cTu

T∑
t=1

Kh,tuX
′

t,T

[(
β̂

(
t

T

)
− β

(
t

T

))
−
(
β̂ (u)− β (u)

)]
eitλj

− 1

cTu

T∑
t=1

Kh,tuX
′

t,T

(
β

(
t

T

)
− β (u)

)
eitλj

≡ ŵ∗(1)
X (u, λj) + w̃∗X (u, λj) ,

where w̃∗X (u, λj) is identical to the one defined in the proof of Theorem 2.3.1 about the

order of bias. And by Theorem 2.3.2, both β̂
(
t
T

)
− β

(
t
T

)
and β̂ (u) − β (u) have uniform

order given by Op (h). Thus we can follow the same reasoning as in the proof of Theorem

2.3.1 to obtain the order of bias as Op (h). In detail,

β̂∗ (u) = β̂ (u) + hB̃∗M (u) +R−1
XX (u)RXε∗ (u)

where

B̃∗M (u) = h−1

 M∑
j=1

λ
2δ(u)
j Re (wX (u, λj)w

∗
X (u, λj))

−1  M∑
j=1

λ
2δ(u)
j Re (wX (u, λj) ŵ

∗
X (u, λj))

 = Op (1)

and RXε∗ (u) =
[∑M

j=1 λ
2δ(u)
j Re

(
wX (u, λj)w

∗
ε∗ (u, λj)

)]
. Note that the asymptotics of

R−1
XX (u) is derived as in Lemma A.1.1, then it remains to analyze the limiting distribution

of RXε∗ (u), which follows that

RXε∗ (u)

= ΛM (u)λ
dε(u)−2δ(u)
M

√
h

M

M∑
j=1

λ
2δ(u)
j Re

(
wX (u, λj)w

∗
ε∗ (u, λj)

)
= ΛM (u)λ

dε(u)−2δ(u)
M

√
h

M

M∑
j=1

λ
2δ(u)
j Re (AX (u, λj) Iζ∗ (u, λj)A

∗
ε (u, λj)) (A.1.7)

+ ΛM (u)λ
dε(u)−2δ(u)
M

√
h

M

M∑
j=1

λ
2δ(u)
j Re

(
wX (u, λj)w

∗
ε∗ (u, λj)−AX (u, λj) Iζ∗ (u, λj)A

∗
ε (u, λj)

)
(A.1.8)

together with the convergence rate. Since (A.1.7), conditional on (X, ε), can follow the same

moment condition and Linderberg condition as in the proof of Lemma A.1.2, as we only

replace the innovation vector process {ζt} with the pseudo innovation vector process {ζ∗t}
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that share the same moment conditions up to fourth order. Then it remains to analyze the

asymptotics of (A.1.8). Following we have done in the proof of Lemma A.1.2 and Proposition

A.1.4, an arbitrary a-th element of (A.1.8) can be further given by

M∑
j=1

λ
2δ(u)
j Re

(
wXa (u, λj)w

∗
ε∗ (u, λj)−AXa (u, λj) Iζ∗ (u, λj)A

∗
ε (u, λj)

)
=

M−1∑
j=1

(
λ

2δ(u)−dXa (u)−dε(u)
j − λ2δ(u)−dXa (u)−dε(u)

j+1

) j∑
k=1

λ
dXa (u)+dε(u)
k Re

(
Iaε∗,k −AXa,kIζ∗,kA∗ε,k

)
+ λ

2δ(u)−dXa (u)−dε(u)
M

M∑
j=1

λ
dXa (u)+dε(u)
j Re

(
Iaε∗,j −AXa,jIζ∗,jA∗ε,j

)
≡
M−1∑
j=1

(
λ

2δ(u)−dXa (u)−dε(u)
j − λ2δ(u)−dXa (u)−dε(u)

j+1

)
Q∗ (j) + λ

2δ(u)−dXa (u)−dε(u)
M Q∗ (M)

using more compact notation as before, and here we do not consider the multiplier ΛM (u)λ
dε(u)−2δ(u)
M

√
h
M

for now. Then as in the proof of Proposition A.1.4, Q∗ (j) for any fixed 1 ≤ j ≤ M follows

that

Q∗ (j) =

j∑
k=1

λ
dXa (u)+dε(u)
k Re

(
Iaε∗,k −AXa,kIζ∗,kA∗ε,k

)
=

l∑
k=1

λ
dXa (u)+dε(u)
k Re

(
Iaε∗,k −AXa,kIζ∗,kA∗ε,k

)
+

j∑
k=l+1

λ
dXa (u)+dε(u)
k Re

(
Iaε∗,k −AXa,kIζ∗,kA∗ε,k

)
≡ Q∗1 +Q∗2.

Firstly for Q∗1 we have

E |Q∗1| ≤
1

2

(
l∑

k=1

λ
dXa (u)
k E |wXa,k −AXa,kwζ∗,k|

2

) 1
2

1

2

(
l∑

k=1

λ
dε(u)
k E

∣∣w∗ε∗,k + w∗ζ∗,kA
∗
ε,k

∣∣2) 1
2

+
1

2

(
l∑

k=1

λ
dXa (u)
k E |wXa,k +AXa,kwζ∗,k|

2

) 1
2

1

2

(
l∑

k=1

λ
dε(u)
k E

∣∣w∗ε∗,k − w∗ζ∗,kA∗ε,k∣∣2
) 1

2

.

At each 1 ≤ k ≤ l,

E |wXa,k −AXa,kwζ∗,k|
2

=
1

c2Tu

T∑
t,s=1

Kh,tuKh,sue
i(t−s)λk

×
[
E (Xa,t,TXa,s,T )− E (Xa,t,T ζ

′
∗s)A

∗
Xa,k −AXa,kE (ζ∗tXa,s,T ) +AXa,kE (ζ∗tζ

′
∗s)A

∗
Xa,k

]
.

Note that our bootstrap only replaces the innovation of error term. Suppose we decom-

pose ζt =
(
ζ ′X,t, ζε,t

)′
, then ζ∗t =

(
ζ ′X,t, ζ∗ε,t

)′
. Following the proof of Proposition A.1.3,
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E (Xa,t,TXa,s,T ) stays the same as before, while

E
(
Xa,t,T ζ

′

∗s

)
= E

( ∞∑
k=0

AXa,t,T (k) ζt−kζ
′

∗s

)
=

∞∑
k=0

(
ÃXa,t,T (k) , 0

)
E

 ζX,t−kζ
′

X,s ζX,t−kζ∗ε,s

ζε,t−kζ
′

X,s ζε,t−kζ∗ε,s


=
(
ÃXa,t,T (t− s) , 0

) Ip 0p×1

01×p 0

 = AXa,t,T (t− s)

by Assumption 1(i), which also replicates the result in the proof of Proposition A.1.3. And

the same conclusion holds for E (ζ∗tXa,s,T ). And E
(
ζ∗tζ

′

∗s

)
= E

(
ζtζ
′

s

)
by construction.

Therefore E |wXa,k −AXa,kwζ∗,k|
2

is the same as E |wXa,k −AXa,kwζ,k|
2

as in the proof of

Proposition A.1.4, and the same conclusion holds for E |wXa,k +AXa,kwζ∗,k|
2

as well. Next

E
∣∣w∗ε∗,k − w∗ζ∗,kA∗ε,k∣∣2

=
1

c2Tu

T∑
t,s=1

Kh,tuKh,sue
i(t−s)λk

[
E (ε∗t,T ε∗s,T )− E

(
ε∗t,T ζ

′

∗s

)
A∗ε,k −Aε,kE (ζ∗tε∗s,T ) +Aε,kE

(
ζ∗tζ

′

∗s

)
A∗ε,k

]
,

where

E (ε∗t,T ε∗s,T ) = E

 2π

T 2

T∑
j=1

T∑
k=1

√
f̂ε̂

(
t

T
, λj

)√
f̂ε̂

( s
T
, λk

) T∑
r=1

T∑
u=1

ζ∗ε,rζ∗ε,ue
i(r−t)λje−i(u−s)λk


=

2π

T 2

T∑
j=1

T∑
k=1

√
f̂ε̂

(
t

T
, λj

)√
f̂ε̂

( s
T
, λk

) T∑
r=1

eirλj−ke−itλjeisλk

=
2π

T

T∑
j=1

√
f̂ε̂

(
t

T
, λj

)√
f̂ε̂

( s
T
, λk

)
e−i(t−s)λj

=
2π

T

T∑
j=1

√
fε

(
t

T
, λj

)√
fε

( s
T
, λj

)
e−i(t−s)λj + o (1)

=

∫ 2π

0

fε (u, λ) e−i(t−s)λdλ ·O (1 + h) =

∫ π

−π
fε (u, λ) e−i(t−s)λdλ ·O (1 + h)

where the third equality holds because
∑T
r=1 e

irλj−k is nonzero only when j = k, the fourth

one holds by Assumption 8(ii), the fifth one holds by Riemann sum approximation and the

corresponding smoothness conditions of fε (u, λ) over u ∈ (0, 1), and the last equality holds

by 2π-periodicity property of fε (u, λ) e−i(t−s)λ. Note that again we obtain the same result

as E (εt,T εs,T ). Next

E
(
ε∗t,T ζ

′

∗s

)
=

√
2π

T

T∑
j=1

√
f̂ε̂

(
t

T
, λj

)
1√
T

T∑
r=1

E
(
ζ∗ε,rζ

′

∗s

)
ei(r−t)λj ,

where as before ζ
′

∗s =
(
ζ
′

X,s, ζ∗ε,s

)′
. Therefore it is sufficient to consider the element involv-
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ing ζ∗ε,s, which gives

√
2π

T

T∑
j=1

√
f̂ε̂

(
t

T
, λj

) T∑
r=1

E (ζ∗ε,rζ∗ε,s) e
i(r−t)λj

=

√
2π

T

T∑
j=1

√
fε

(
t

T
, λj

)
e−i(t−s)λj + o (1)

=
1√
2π

∫ π

−π

√
fε (u, λ)e−i(t−s)λdλ ·O (1 + h)

=
1

2π

∫ π

−π
|Aε (u, λ+ λk)| e−i(t−s)λ+λkdλ ·O (1 + h) ,

which is also identical to E
(
εt,T ζ

′

s

)
except imposing the norm to |Aε (u, λ+ λk)|, but it

will have the same order in the end. And the same result holds for E (ζ∗tε∗s,T ), which

implies that E
∣∣∣w∗ε∗,k − w∗ζ∗,kA∗ε,k∣∣∣2 has the same order as E

∣∣∣w∗ε,k − w∗ζ,kA∗ε,k∣∣∣2, and the

same conclusion holds for E
∣∣∣w∗ε∗,k + w∗ζ∗,kA

∗
ε,k

∣∣∣2. Together with what we have derived for

E |wXa,k −AXa,kwζ∗,k|
2

and E |wXa,k +AXa,kwζ∗,k|
2
, E |Q∗1| has the same order as E |Q1| in

the proof of Proposition A.1.4.

Next for Q∗2, we continue following the proof of Proposition A.1.4 and have that

E |Q∗2|
2

= E

[(
j∑

k=l+1

λ
dXa (u)+dε(u)
k

(
Iaε∗,k −AXa,kIζ∗,kA∗ε,k

))( j∑
k=l+1

λ
dXa (u)+dε(u)
k

(
I∗aε∗,k −Aε,kIζ∗,kA

∗
Xa,k

))]

=

j∑
k=l+1

λ
2(dXa (u)+dε(u))
k E

[(
wXa,kw

∗
ε∗,k −AXa,kwζ∗,kw

∗
ζ∗,kA

∗
ε,k

) (
wε∗,kw

∗
Xa,k −Aε,kwζ∗,kw

∗
ζ∗,kA

∗
Xa,k

)]
+

j∑
s 6=k;k,s=l+1

λ
dXa (u)+dε(u)
k λ

dXa (u)+dε(u)
s

× E
[(
wXa,kw

∗
ε∗,k −AXa,kwζ∗,kw

∗
ζ∗,kA

∗
ε,k

) (
wε∗,kw

∗
Xa,k −Aε,kwζ∗,kw

∗
ζ∗,kA

∗
Xa,k

)]
≡ Q∗21 +Q∗22,

where using the same notation as in the proof of Proposition A.1.4, we can denote

Q∗21 =

j∑
k=l+1

λ
2(dXa (u)+dε(u))
k [E (ake

∗
k)E (eka

∗
k) + E (akek)E (e∗ka

∗
k) + E (aka

∗
k)E (e∗kek)

− E (AkE
∗
k)E (eka

∗
k)− E (Akek)E (E∗ka

∗
k)− E (Aka

∗
k)E (E∗kek)

− E (ake
∗
k)E (EkA

∗
k)− E (akEk)E (e∗kA

∗
k)− E (akA

∗
k)E (e∗kEk)

+E (AkE
∗
k)E (EkA

∗
k) + E (AkEk)E (E∗kA

∗
k) + E (AkA

∗
k)E (E∗kEk)]

+

j∑
k=l+1

λ
2(dXa (u)+dε(u))
k [cum (ak, e

∗
k, ek, a

∗
k)− cum (Ak, E

∗
k , ek, a

∗
k)
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−cum (ak, e
∗
k, Ek, A

∗
k) + cum (Ak, E

∗
k , Ek, A

∗
k)]

≡ Q21,a +Q21,b,

where Q21,a is the part without cumulant and Q21,b is the part with cumulant, and

Q22 =

j∑
s6=k;i,k,s=l+1

λ
dXa (u)+dε(u)
k λ

dXa (u)+dε(u)
s [E (ake

∗
k)E (esa

∗
s) + E (akes)E (e∗ka

∗
s) + E (aka

∗
s)E (e∗kes)

− E (AkE
∗
k)E (esa

∗
s)− E (Akes)E (E∗ka

∗
s)− E (Aka

∗
s)E (E∗kes)

− E (ake
∗
k)E (EsA

∗
s)− E (akEs)E (e∗kA

∗
s)− E (akA

∗
s)E (e∗kEs)

+E (AkE
∗
k)E (EsA

∗
s) + E (AkEs)E (E∗kA

∗
s) + E (AkA

∗
s)E (E∗kEs)]

+

j∑
s6=k;i,k,s=l+1

λ
dXa (u)+dε(u)
k λ

dXa (u)+dε(u)
s

× [cum (ak, e
∗
k, es, a

∗
s)− cum (Ak, E

∗
k , es, a

∗
s)− cum (ak, e

∗
k, Es, A

∗
s) + cum (Ak, E

∗
k , Es, A

∗
s)]

≡ Q22,a +Q22,b,

where Q22,a is the part without cumulant and Q22,b is the part with cumulant. Note that

the order of Q21,a and Q22,a, can be covered by analysis of E (eke
∗
k), E (aka

∗
k), E (AkA

∗
k)

and E (EkE
∗
k), which can be dealt with identially as we did above, and the same order as

in the proof of Proposition A.1.4 continues to hold. Thus it remains to consider the parts

containing cumulants, Q21,b and Q22,b, and it is sufficient to analyze Q22,b as it is dominant,

which is given by

Q22,b =

j∑
s 6=k;i,k,s=l+1

λ
dXa (u)+dε(u)
k λ

dXa (u)+dε(u)
s

× [cum (ak, e
∗
k, es, a

∗
s)− cum (Ak, E

∗
k , es, a

∗
s)− cum (ak, e

∗
k, Es, A

∗
s) + cum (Ak, E

∗
k , Es, A

∗
s)]

=

j∑
s 6=k;i,k,s=l+1

λ
dXa (u)+dε(u)
k λ

dXa (u)+dε(u)
s

×
[
cum

(
w̃X̃a,k, w̃

∗
ε̃∗,k

, w̃ε̃∗,s, w̃
∗
X̃a,s

)
− cum

(
AXa,kw̃ζ̃∗,k, w̃

∗
ζ̃∗,k

A∗ε,k, w̃ε̃∗,s, w̃
∗
X̃a,s

)
−cum

(
w̃X̃a,k, w̃

∗
ε̃∗,k

, Aε,sw̃ζ̃∗,s, w̃
∗
ζ̃∗,s

AXa,s

)
+ cum

(
AXa,kw̃ζ̃∗,k, w̃

∗
ζ̃∗,k

A∗ε,k, Aε,sw̃ζ̃∗,s, w̃
∗
ζ̃∗,s

AXa,s

)]
,

where correspondingly we denote

w̃X̃a,k =
1√
2πT

T∑
t=1

X̃a,t,u,T e
itλk =

1√
2πT

T∑
t=1

√
2πT

c2Tu
Xa,t,TKh,tue

itλk ,

and denote w̃∗ε̃∗,k and w̃ζ̃∗,k in the same manner. We consider cum
(
w̃X̃a,k, w̃

∗
ε̃∗,k

, w̃ε̃∗,s, w̃
∗
X̃a,s

)
,

118



which at large enough T is given by

cum
(
w̃X̃a,k, w̃

∗
ε̃∗,k

, w̃ε̃∗,s, w̃
∗
X̃a,s

)
= cum

(
1√
2πT

T∑
t=1

X̃a,t,u,T e
itλk ,

1√
2πT

T∑
t=1

ε̃∗t,u,T e
−itλk ,

1√
2πT

T∑
t=1

ε̃∗t,u,T e
itλs ,

1√
2πT

T∑
t=1

X̃a,t,u,T e
−itλs

)

=

∑T
t1,...,t4=1

(2πT )
2 cum

(
X̃a,t1,u,T , ε̃∗t2,u,T , ε̃∗t3,u,T , X̃a,t4,u,T

)
ei[(t1−t2)λk+(t3−t4)λs]

=

∑T
t1,...,t4=1

(2πT )
2 cum

 ∞∑
j=0

AXa,t1,T (j) ζt1−j,T ,

∞∑
j=0

Aε,t2,T (j) ζt2−j,T ,

∞∑
j=0

Aε,t3,T (j) ζt3−j,T ,

∞∑
j=0

AXa,t4,T (j) ζt4−j,T


×
(

2πT

c2Tu

)2

Kh,t1uKh,t2uKh,t3uKh,t4ue
i[(t1−t2)λk+(t3−t4)λs],

where the third equality holds by the fact that

ε∗t,T =

√
2π

T

T∑
j=1

√
f̂ε̂

(
t

T
, λj

) T∑
r=1

ζ∗ε,re
i(r−t)λj

=

∞∑
l=0

∫ π

−π
|Aε (u, λ)| e−ilλdλζ∗ε,t−l ≡

∞∑
l=0

A∗ (u, l) ζ∗ε,t−l

by denoting r − t = −l; and the second equality holds as we can replace ζ∗ε,r with its

i.i.d. pairs to make the indices match, which requires a large T . We can see that ε∗t,T can

recapture the linear process structure asymptotically, and in (A.2.18) the part corresponding

to Aε (u, λ) can be replaced by |Aε (u, λ)|, which means the rest of the order is also identical

to the one indicated in Proposition A.1.4, which then completes the proof of Theorem. �

A.2 Proofs of the Technical Lemmas and Propo-

sitions

Proof of Lemma A.1.1. Denote the matrix of time-varying periodogram as IX (u, λ) ≡

wX (u, λ)w∗X (u, λ), and its (a, b)-th element as IXab (u, λ) = wXa (u, λ)w∗Xb (u, λ) for any

1 ≤ a, b ≤ p. We focus on the asymptotics of

λ
dXa (u)+dXb (u)−2δ(u)

M

M

M∑
j=1

λ
2δ(u)
j Re (IXab (u, λj)) ,

which is the (a, b)-th element of the first term in LHS of (A.1.1), and 1 ≤ a, b ≤ p. To save

space, we will suppress the dependence of IX,ab (u, λj) , Iζ (u, λj) , wXa (u, λj) , wζ (u, λj) ,

and AXa (u, λj) on u and write them as IX,ab,j , Iζ,j , wXa,j , wζ,j , and AXa,j , respectively
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whenever no confusion can arise. Let

q1,j = IXab,j −AXa,jIζ,jA∗Xb,j and q2,j = AXa,jIζ,jA
∗
Xb,j
− fXab (u, λj) ,

where AXa (u, λj) ≡
∑∞
k=0A

0
Xa

(u, k) eikλj is defined as in (2.3.1). Consider the following

decomposition:

λ
dXa (u)+dXb (u)−2δ(u)

M

M

M∑
j=1

λ
2δ(u)
j Re (IXab (u, λj))− Γab (u)

=
λ
dXa (u)+dXb (u)−2δ(u)

M

M

M∑
j=1

λ
2δ(u)
j Re (q1,j) +

λ
dXa (u)+dXb (u)−2δ(u)

M

M

M∑
j=1

λ
2δ(u)
j Re (q2,j)

+

λ
dXa (u)+dXb (u)−2δ(u)

M

M

M∑
j=1

λ
2δ(u)
j Re (fXab (u, λj))− Γab (u)


≡ Q1,M +Q2,M +Q3,M . (A.2.1)

We prove the lemma by showing that Ql,M = op (1) for l = 1, 2, 3.

First, we study Q1,M . By summation by parts, we have

1

M

M∑
j=1

λ
2δ(u)
j Re (q1,j) =

M−1∑
j=1

(
λ

2δ(u)
j − λ2δ(u)

j+1

) 1

M

j∑
k=1

Re (q1,k) + λ
2δ(u)
M

1

M

M∑
j=1

Re (q1,j)

≤
M−1∑
j=1

∣∣∣λ2δ(u)
j − λ2δ(u)

j+1

∣∣∣ 1

M

M∑
k=1

|Re (q1,k)|+ λ
2δ(u)
M

1

M

M∑
j=1

Re (q1,j)

(A.2.2)

where

M∑
j=1

|Re (q1,j)|

≤
M∑
j=1

∣∣IXab,j −AXa,jIζ,jA∗Xb,j∣∣ =

M∑
j=1

∣∣wXa,jw∗Xb,j −AXa,jwζ,jw∗ζ,jA∗Xb,j∣∣
=

M∑
j=1

1

2

∣∣(wXa,j −AXa,jwζ,j) (w∗Xb,j + w∗ζ,jA
∗
Xb,j

)
+ (wXa,j +AXa,jwζ,j)

(
w∗Xb,j − w

∗
ζ,jA

∗
Xb,j

)∣∣
≤ 1

2

M∑
j=1

∣∣(wXa,j −AXa,jwζ,j) (w∗Xb,j + w∗ζ,jA
∗
Xb,j

)∣∣+
1

2

M∑
j=1

∣∣(wXa,j +AXa,jwζ,j)
(
w∗Xb,j − w

∗
ζ,jA

∗
Xb,j

)∣∣
≡ 1

2
(S1 (M) + S2 (M)) .
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By Cauchy-Schwarz inequality,

S1 (M) ≤

 M∑
j=1

|wXa,j −AXa,jwζ,j |
2

 1
2
 M∑
j=1

∣∣w∗Xb,j + w∗ζ,jA
∗
Xb,j

∣∣2 1
2

≤

 M∑
j=1

|wXa,j −AXa,jwζ,j |
2

 1
2
2

M∑
j=1

(
IXbb,j +AXb,jIζ,jA

∗
Xb,j

) 1
2

≡ S
1
2
11 (M) · S

1
2
12 (M) ,

and similarly

S2 (M) ≤

 M∑
j=1

|wXb,j −AXb,jwζ,j |
2

 1
2
2

M∑
j=1

(
IXaa,j +AXa,jIζ,jA

∗
Xa,j

) 1
2

≡ S
1
2
21 (M)·S

1
2
22 (M) .

By Proposition A.1.3, we have

S11 (M) = op (TFXaa (u, λM )) and S12 (M) = op (TFXaa (u, λM )) .

It follows that S1 (M) = op

(
TF

1
2

Xaa
(u, λm)F

1
2

Xbb
(u, λm)

)
. Similarly,

S2 (M) = op

(
TF

1
2

Xaa
(u, λM )F

1
2

Xbb
(u, λM )

)
.

Then
∑M
j=1Re(q1,j) = op

(
TF

1
2

Xaa
(u, λM )F

1
2

Xbb
(u, λM )

)
, and the same order holds for

∣∣∣∑M
k=1Re (q1,k)

∣∣∣.
This, in conjunction with (A.2.2), implies that

1

M

M∑
j=1

λ
2δ(u)
j Re (q1,j) ≤

1

M

M−1∑
j=1

∣∣∣λ2δ(u)
j − λ2δ(u)

j+1

∣∣∣ op (TF 1
2

Xaa
(u, λM )F

1
2

Xbb
(u, λM )

)
+

1

M
λ

2δ(u)
M op

(
TF

1
2

Xaa
(u, λM )F

1
2

Xbb
(u, λM )

)
≡ B1,M +B2,M .

(A.2.3)

Noting that λj+1 = 2π(j+1)
T = 2πj

T (1 + 1
j ) = λj(1 + 1

j ), we have for some absolute constant

C that

∣∣∣λ2δ(u)
j − λ2δ(u)

j+1

∣∣∣ = λ
2δ(u)
j

∣∣∣∣∣
(

1 +
1

j

)2δ(u)

− 1

∣∣∣∣∣ ≤ C

j
λ

2δ(u)
j = O

(
1

2πj
λ

2δ(u)
j

)
= O

(
1

T
λ

2δ(u)−1
j

)
,

and note that the existence of C can be justified by the leading terms of binomial series(
1 + 1

j

)2δ(u)

and the fact that the remaining terms are of smaller magnitude as j goes from

1 to M .
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Then by Assumption 2, B1,M follows that

B1,M =
1

M

M−1∑
j=1

∣∣∣λ2δ(u)
j − λ2δ(u)

j+1

∣∣∣ op (TF 1
2

Xaa
(u, λM )F

1
2

Xbb
(u, λM )

)

=
1

M
O

 1

T

M−1∑
j=1

λ
2δ(u)−1
j

 op

(
Tλ

1−dXa (u)−dXb (u)

M

)
=

T

M
op

(
λ

2δ(u)+1−dXa (u)−dXb (u)

M

)
= op

(
λ

2δ(u)−dXa (u)−dXb (u)

M

)
.

Similarly

B2,M =
1

M
λ

2δ(u)
M op

(
TF

1
2

Xaa
(u, λM )F

1
2

Xbb
(u, λM )

)
= op

(
λ

2δ(u)−dXa (u)−dXb (u)

M

)
.

It follows that 1
M

∑M
j=1 λ

2δ(u)
j Re(q1,j) = op

(
λ

2δ(u)−dXa (u)−dXb (u)

M

)
and therefore by Riemann

sum approximation,

Q1,M =
λ
dXa (u)+dXb (u)−2δ(u)

M

M

M∑
j=1

λ
2δ(u)
j Re (q1,j) = op (1) .

Next, we study Q2,M . We decompose it as

Q2,M =
λ
dXa (u)+dXb (u)−2δ(u)

M

M

M∑
j=1

λ
2δ(u)
j Re

(
AXa,jIζ,jA

∗
Xb,j
− fXab (u, λj)

)
=
λ
dXa (u)+dXb (u)−2δ(u)

M

M

M∑
j=1

λ
2δ(u)
j Re

(
AXa,j

1

c2Tu

T∑
t=1

ζtζ
′

tK
2
h,tuA

∗
Xb,j
− fXab (u, λj)

)

+
λ
dXa (u)+dXb (u)−2δ(u)

M

M

M∑
j=1

λ
2δ(u)
j Re

AXa,j 1

c2Tu

∑
t6=s

ζtζ
′

sKh,tuKh,sue
i(t−s)λjA∗Xb,j


≡
λ
dXa (u)+dXb (u)−2δ(u)

M

M

M∑
j=1

λ
2δ(u)
j Re (q2,j1 + q2,j2)

≡ Q2,M1 +Q2,M2.

In the following we study Q2,M1 and Q2,M2 separately. Firstly for Q2,M1 we have its expec-

tation given by

E (Q2,M1) =
λ
dXa (u)+dXb (u)−2δ(u)

M

M

M∑
j=1

λ
2δ(u)
j Re

(
AXa,j

1

c2Tu

T∑
t=1

E (ζtζ
′
t)K

2
h,tuA

∗
Xb,j
− fXab (u, λj)

)

=
λ
dXa (u)+dXb (u)−2δ(u)

M

M

M∑
j=1

λ
2δ(u)
j Re

(
1

c2Tu

T∑
t=1

K2
h,tuAXa,jA

∗
Xb,j
− fXab (u, λj)

)

=
λ
dXa (u)+dXb (u)−2δ(u)

M

M

M∑
j=1

λ
2δ(u)
j Re

(
1

2π
AXa,jA

∗
Xb,j
− fXab (u, λj)

)
= 0
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by Assumption 1. Then for the variance of Q2,M1 we have

Var (Q2,M1) =
λ

2[dXa (u)+dXb (u)−2δ(u)]

M

M2

M∑
j=1

M∑
k=1

λ
2δ(u)
j λ

2δ(u)
k Cov (Re (q2,j1) ,Re (q2,k1))

≤
λ

2[dXa (u)+dXb (u)−2δ(u)]

M

M2

M∑
j=1

M∑
k=1

λ
2δ(u)
j λ

2δ(u)
k {Var (Re (q2,j1)) Var (Re (q2,k1))}1/2 .

Note that

Var (Re (q2,j1)) = E

[
Re

(
AXa,j

1

c2Tu

T∑
t=1

ζtζ
′
tK

2
h,tuA

∗
Xb,j
− fXab (u, λj)

)]2

≤ E

∣∣∣∣∣AXa,j 1

c2Tu

T∑
t=1

ζtζ
′
tK

2
h,tuA

∗
Xb,j
− fXab (u, λj)

∣∣∣∣∣
2

= E

∣∣∣∣∣AXa,j 1

c2Tu

T∑
t=1

ζtζ
′
tK

2
h,tuA

∗
Xb,j
− 1

2π
AXa,jA

∗
Xb,j

∣∣∣∣∣
2

≡ E
∣∣AXa,jD1jA

∗
Xb,j

∣∣2
where we denote D1j ≡ D1 (u, λj) ≡ 1

c2Tu

∑T
t=1 ζtζ

′

tK
2
h,tu− 1

2π Ip+1, which is a real symmetric

matrix. Then following the above equalities, and using the fact that tr(ABCD) = vec (A′)
′×

(D′ ⊗B)× vec (C), we have

E
∣∣AXa,jD1jA

∗
Xb,j

∣∣2 = E
(
AXa,jD1jA

∗
Xb,j

AXb,jD1jA
∗
Xa,j

)
= E

[
tr
(
A∗Xa,jAXa,jD1jA

∗
Xb,j

AXb,jD1j

)]
= vec

(
A∗Xa,jAXa,j

)′ E (D1j ⊗D1j) vec
(
A∗Xb,jAXb,j

)
,

Let D1j,mn denote the (m,n)-th element of D1j :

D1j,mn =
1

c2Tu

T∑
t=1

ζt,mζt,nK
2
h,tu −

1 (m = n)

2π
,

we have that

E (D1j ⊗D1j) = E

[(
1

c2Tu

T∑
t=1

ζtζ
′
tK

2
h,tu −

1

2π
Ip+1

)
⊗

(
1

c2Tu

T∑
t=1

ζtζ
′
tK

2
h,tu −

1

2π
Ip+1

)]

= E

(
1

c2Tu

T∑
t=1

ζtζ
′
tK

2
h,tu ⊗

1

c2Tu

T∑
t=1

ζtζ
′
tK

2
h,tu

)
− 1

2π
Ip+1 ⊗ E

(
1

c2Tu

T∑
t=1

ζtζ
′
tK

2
h,tu

)

− E

(
1

c2Tu

T∑
t=1

ζtζ
′
tK

2
h,tu

)
⊗ 1

2π
Ip+1 +

1

(2π)
2 (Ip+1 ⊗ Ip+1)

= E

(
1

c2Tu

T∑
t=1

ζtζ
′
tK

2
h,tu ⊗

1

c2Tu

T∑
t=1

ζtζ
′
tK

2
h,tu

)
− 1

(2π)
2 (Ip+1 ⊗ Ip+1) ,
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where the last equality holds by the fact that

1

2π
Ip+1 ⊗ E

(
1

c2Tu

T∑
t=1

ζtζ
′
tK

2
h,tu

)
= E

(
1

c2Tu

T∑
t=1

ζtζ
′
tK

2
h,tu

)
⊗ 1

2π
Ip+1

=
1

c2Tu

T∑
t=1

K2
h,tuIp+1 ⊗

1

2π
Ip+1 =

1

(2π)
2 (Ip+1 ⊗ Ip+1) .

Next we can see that

E

(
1

c2Tu

T∑
t=1

ζtζ
′
tK

2
h,tu ⊗

1

c2Tu

T∑
t=1

ζtζ
′
tK

2
h,tu

)
(A.2.4)

=
1

c4Tu

T∑
t,s=1

E (ζtζ
′
t ⊗ ζsζ ′s)K2

h,tuK
2
h,su

≤ 1

c4Tu

T∑
t,s=1

[C (Ip+1 ⊗ Ip+1) 1 (t = s) + (Ip+1 ⊗ Ip+1) 1 (t 6= s)]K2
h,tuK

2
h,su

=
1

c4Tu

C (Ip+1 ⊗ Ip+1)

T∑
t=1

K4
h,tu + (Ip+1 ⊗ Ip+1)

T∑
t6=s

K2
h,tuK

2
h,su


≤

(Ip+1 ⊗ Ip+1)C
∑T
t=1K

4
h,tu

c4Tu
+

1

(2π)
2 Ip+1 ⊗ Ip+1

= O

(
1

Th

)
Ip+1 ⊗ Ip+1 +

1

(2π)
2 Ip+1 ⊗ Ip+1

where the inequality holds by Assumption 1(i) and the last equality holds by Assumption

3(ii) and Riemann sum approximation that
∑T
t=1K

4
h (t− Tu) = Th−3κ04 [1 + o (1)] and∑T

t=1K
2
h (t− Tu) = Th−1κ02 [1 + o (1)]. Then in sum, E (D1j ⊗D1j) = O

(
1
Th

)
Ip+1⊗Ip+1,

which then implies that

V ar (Re (q2,j1)) = E
∣∣AXa,jD1jA

∗
Xb,j

∣∣2 = O

(
1

Th

) ∣∣AXa,jA∗Xb,j∣∣2
= O

(
1

Th
λ
−2dXa (u)−2dXb (u)

j

)

and

Var (Q2,M1) ≤
λ

2[dXa (u)+dXb (u)−2δ(u)]

M

M2

M∑
j=1

M∑
k=1

λ
2δ(u)
j λ

2δ(u)
k {Var (Re (q2,j1)) Var (Re (q2,k1))}1/2

=
λ

2[dXa (u)+dXb (u)−2δ(u)]

M

M2Th

M∑
j=1

M∑
k=1

O
(
λ

2δ(u)−dXa (u)−dXb (u)

j λ
2δ(u)−dXa (u)−dXb (u)

k

)
= O

(
1

Th

)
= o (1)

by Assumption 4(ii) and 4(iii), and thus Q2,M1 = op (1).
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Next for Q2,M2, we can rewrite it as

Q2,M2 =
λ
dXa (u)+dXb (u)−2δ(u)

M

M

M∑
j=1

λ
2δ(u)
j Re

AXa,j 1

c2Tu

∑
t 6=s

ζtζ
′
sKh,tuKh,sue

i(t−s)λjA∗Xb,j


=
λ
dXa (u)+dXb (u)−2δ(u)

M

M

1

c2Tu

∑
t 6=s

ζ ′tRe

 M∑
j=1

λ
2δ(u)
j A′Xa,jAXb,jKh,tuKh,sue

i(t−s)λj

 ζs

≡
λ
dXa (u)+dXb (u)−2δ(u)

M

M

1

c2Tu
Re

∑
t 6=s

ζ ′tΦt,s,Mζs

 .

Then it is easy to see that E (Q2,M2) = 0, and its order can be determined by E |Q2,M2|2,

which is further bounded by

E |Q2,M2|2 ≤
λ

2[dXa (u)+dXb (u)−2δ(u)]
M

M2

1

c4Tu
E

∣∣∣∣∣∣
∑
t6=s

ζ ′tΦt,s,Mζs

∣∣∣∣∣∣
2

=
λ

2[dXa (u)+dXb (u)−2δ(u)]
M

M2

1

c4Tu

∑
t1 6=s1

∑
t2 6=s2

E
(
ζ ′t1Φt1,s1,Mζs1ζ

′
t2Φt2,s2,Mζs2

)

=
λ

2[dXa (u)+dXb (u)−2δ(u)]
M

M2

1

c4Tu

∑
t1 6=s1

∑
t2 6=s2

E
[
tr
(
ζ ′s1Φ′t1,s1,Mζt1ζ

′
t2Φt2,s2,Mζs2

)]

=
λ

2[dXa (u)+dXb (u)−2δ(u)]
M

M2

1

c4Tu

∑
t1 6=s1

∑
t2 6=s2

E
[
tr
(
Φ′t1,s1,Mζt1ζ

′
t2Φt2,s2,Mζs2ζ

′
s1

)]

=
λ

2[dXa (u)+dXb (u)−2δ(u)]
M

M2

1

c4Tu

∑
t1 6=s1

∑
t2 6=s2

vec
(
Φt2,s2,M

)′ E (ζs2ζ ′s1 ⊗ ζt2ζ ′t1) vec (Φt1,s1,M ) .

(A.2.5)

And by Assumption 1(i) and (2.3.6),

E
(
ζs2ζ

′
s1 ⊗ ζt2ζ

′
t1

)
= (Ip+1 ⊗ Ip+1) 1 (t1 = t2 6= s2 = s1) + P̃1 (t1 = s2 6= t2 = s1)

with sparse permutation matrix P̃ defined in Assumption 1(i) and (2.3.6). Then (A.2.5)

follows that

λ
2[dXa (u)+dXb (u)−2δ(u)]
M

M2

1

c4Tu

∑
t1 6=s1

∑
t2 6=s2

vec
(
Φt2,s2,M

)′ E (ζs2ζ ′s1 ⊗ ζt2ζ ′t1) vec (Φt1,s1,M )

=
λ

2[dXa (u)+dXb (u)−2δ(u)]
M

M2

1

c4Tu

∑
t 6=s

vec
(
Φt,s,M

)′
(Ip+1 ⊗ Ip+1) vec (Φt,s,M )

+
λ

2[dXa (u)+dXb (u)−2δ(u)]
M

M2

1

c4Tu

∑
t6=s

vec
(
Φs,t,M

)′
P̃vec (Φt,s,M )

≡ V1 + V2,
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where firstly V1 is further given by

|V1| =
λ

2[dXa (u)+dXb (u)−2δ(u)]
M

M2c4Tu

∣∣∣∣∣∣
∑
t 6=s

vec
(
Φt,s,M

)′
(Ip+1 ⊗ Ip+1) vec (Φt,s,M )

∣∣∣∣∣∣
=
λ

2[dXa (u)+dXb (u)−2δ(u)]
M

M2c4Tu

∣∣∣∣∣∣
∑
t 6=s

vec

 M∑
j=1

λ
2δ(u)
j A∗Xa,jAXb,jKh,tuKh,sue

−i(t−s)λj

′

× (Ip+1 ⊗ Ip+1) vec

 M∑
j=1

λ
2δ(u)
j A′Xa,jAXb,jKh,tuKh,sue

i(t−s)λj

∣∣∣∣∣∣
≤
λ

2[dXa (u)+dXb (u)−2δ(u)]
M

M2

M∑
j,k=1

λ
2δ(u)
j λ

2δ(u)
k

∣∣∣∣∣∣ 1

c4Tu

∑
t 6=s

K2
h,tuK

2
h,sue

−i(t−s)λj−k

∣∣∣∣∣∣
×
∥∥vec

(
A∗Xa,jAXb,j

)∥∥ ‖Ip+1 ⊗ Ip+1‖
∥∥vec

(
A′Xa,kAXb,k

)∥∥
≤
λ

2[dXa (u)+dXb (u)−2δ(u)]
M

M2

M∑
j=1

λ
4δ(u)
j

∣∣∣∣∣∣ 1

c4Tu

∑
t6=s

K2
h,tuK

2
h,su

∣∣∣∣∣∣
×
∥∥vec

(
A∗Xa,jAXb,j

)∥∥ ‖Ip+1 ⊗ Ip+1‖
∥∥vec

(
A′Xa,jAXb,j

)∥∥
+
λ

2[dXa (u)+dXb (u)−2δ(u)]
M

M2

∑
j 6=k

λ
2δ(u)
j λ

2δ(u)
k

∣∣∣∣∣∣ 1

c4Tu

∑
t6=s

K2
h,tuK

2
h,sue

−i(t−s)λj−k

∣∣∣∣∣∣
×
∥∥vec

(
A∗Xa,jAXb,j

)∥∥ ‖Ip+1 ⊗ Ip+1‖
∥∥vec

(
A′Xa,kAXb,k

)∥∥
≡ V11 + V12,

where the norm ‖V ‖ for a K-dimensional complex vector V is defined by
√∑K

i=1 |Vi|
2
, with

|·|2 being the squared-modulus of a complex number. Then for V11 we have

V11 =
λ

2[dXa (u)+dXb (u)−2δ(u)]
M

2πM2

M∑
j=1

λ
4δ(u)
j

∥∥vec
(
A∗Xa,jAXb,j

)∥∥ ‖Ip+1 ⊗ Ip+1‖
∥∥vec

(
A′Xa,jAXb,j

)∥∥ ,
using the fact that

1

c4Tu

∑
t 6=s

K2
h,tuK

2
h,su ≤

1

c4Tu

T∑
t,s=1

K2
h,tuK

2
h,su =

1

2π
.

And V12 is given by

V12 = O
(
h−1

) λ2[dXa (u)+dXb (u)−2δ(u)]
M

M2

×
∑

j 6=k;|j−k|≤δ(u)

λ
2δ(u)
j λ

2δ(u)
k

∥∥vec
(
A∗Xa,jAXb,j

)∥∥ ‖Ip+1 ⊗ Ip+1‖
∥∥vec

(
A′Xa,kAXb,k

)∥∥
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using the fact that

∣∣∣∣∣∣ 1

c4Tu

∑
t 6=s

K2
h,tuK

2
h,sue

−i(t−s)λj−k

∣∣∣∣∣∣ ≤
∣∣∣∣∣ 1

c2Tu

T∑
t=1

K2
h,tue

itλj−k

∣∣∣∣∣
2

=

∣∣∣∣∣
∑T
t=1 k

2
(
t−Tu
Th

)
eitλj−k

2πThκ02 + o (1)

∣∣∣∣∣
2

= O
(
h−1

)
accroding to Assumption 3(iv). Suppose we denote the k-th element of AXa,j as AXa,j(k),

then the norm
∥∥vec

(
A∗Xa,jAXa,j

)∥∥ is further given by

∥∥vec
(
A∗Xa,jAXb,j

)∥∥ =

 p+1∑
k,l=1

∣∣AXa,j(k)AXb,j(l)
∣∣2 1

2

=

 p+1∑
k,l=1

∣∣AXa,j(k)

∣∣2 ∣∣AXb,j(l)∣∣2
 1

2

=
(
|AXa,j |

2 |AXb,j |
2
) 1

2

= |AXa,j | |AXb,j | = O
(
λ
−dXa (u)−dXb (u)

j

)
,

which implies that

V11 =
λ

2[dXa (u)+dXb (u)−2δ(u)]

M

2πM2

M∑
j=1

O
(
λ

4δ(u)−2dXa (u)−2dXb (u)

j

)
= O

(
1

M

)
= o (1) ,

and

V12 = O

λ2[dXa (u)+dXb (u)−2δ(u)]
M

M2h

∑
j 6=k;|j−k|≤δ(u)

λ
2δ(u)−dXa (u)−dXb (u)

j λ
2δ(u)−dXa (u)−dXb (u)

k


= O

(
1

Mh

)
= o(1)

by Assumption 4(iii). This concludes the proof of asymptotic negligibility of V1.

Next for V2 we have in norm that

|V2| =

∣∣∣∣∣∣λ
2[dXa (u)+dXb (u)−2δ(u)]

M

M2

1

c4Tu

∑
t6=s

vec
(
Φs,t,M

)′
P̃vec (Φt,s,M )

∣∣∣∣∣∣
≤
λ

2[dXa (u)+dXb (u)−2δ(u)]

M

M2

M∑
j,k=1

λ
2δ(u)
j λ

2δ(u)
k

∣∣∣∣∣∣ 1

c4Tu

∑
t6=s

K2
h,tuK

2
h,sue

−i(t−s)λj−k

∣∣∣∣∣∣
×
∥∥vec

(
A∗Xa,jAXb,j

)∥∥ ∥∥∥P̃∥∥∥∥∥∥vec
(
A
′

Xa,kAXb,k

)∥∥∥ .
Note that the formula above is identical to the one for V1 except ‖Ip+1 ⊗ Ip+1‖ is replaced

by
∥∥∥P̃∥∥∥. And by definition of P̃ , as presented in Assumption 1(i) and (2.3.6), the Frobenius

norm of permutation matrix
∥∥∥P̃∥∥∥ is identical to an identity matrix of the same dimension.

Therefore the order of V2 shall be the same as that of V1. Therefore combining what we

have so far, we prove that Q2,M2 = op (1).
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Now, we study Q3,M . By Assumption 2 and the numerical property of Riemann sum

approximation, we have

Q3,M = λ
dXa (u)+dXb (u)−2δ(u)

M

1

M

M∑
j=1

λ
2δ(u)
j Re (fX,ab (u, λj))−

GX,ab
1− dXa (u)− dXb (u) + 2δ (u)

� GX,abλ
dXa (u)+dXb (u)−2δ(u)

M

1

M

M∑
j=1

λ
2δ(u)−dXa (u)−dXb (u)

j − GX,ab
1− dXa (u)− dXb (u) + 2δ (u)

= o (1)

where the last equality follows because

λ
dXa (u)+dXb (u)−2δ(u)

M

1

M

M∑
j=1

λ
2δ(u)−dXa (u)−dXb (u)

j

= λ
dXa (u)+dXb (u)−2δ(u)

M

(
2πM

T

)2δ(u)−dXa (u)−dXb (u)
1

M

M∑
j=1

(
j

M

)2δ(u)−dXa (u)−dXb (u)

= λ
dXa (u)+dXb (u)−2δ(u)

M

(
2πM

T

)2δ(u)−dXa (u)−dXb (u) [∫ 1

0

x2δ(u)−dXa (u)−dXb (u)dx+O
(
M−1

)]
=

1

1− dXa (u)− dXb (u) + 2δ (u)
+O

(
M−1

)
.

In sum, we have shown that Q1,M +Q2,M +Q3,M = op (1). This completes the proof of

Lemma A.1.1. �

Proof of Lemma A.1.2. Let η = (η1, ..., ηp)
′ be an arbitrary nonrandom p× 1 real vector

such that ‖η‖ = 1. By Cramér-Wold Device, it suffices to consider

p∑
a=1

ηaλ
dXa (u)+dε(u)−2δ(u)
M

√
h

M

M∑
j=1

λ
2δ(u)
j Re (Iaε (u, λj)) ≡ BM ,

where Iaε (u, λj) = wX,a (u, λj)w
∗
ε (u, λj) denotes the cross-periodogram. As before, we will

suppress the dependence of Iaε (u, λj) , wXa (u, λj) , wζ (u, λj) , AXa (u, λj) , Aε (u, λj) and

Iζ (u, λj) on u and write them as Iaε,j , wXa,j , wζ,j , AXa,j , Aε,j and Iζ,j . To proceed, we

consider the following decomposition

BM =

p∑
a=1

ηa
λ
dXa (u)+dε(u)−2δ(u)
M

√
h√

M

M∑
j=1

λ
2δ(u)
j Re

(
Iaε,j −AXa,jIζ,jA∗ε,j

)
+

p∑
a=1

ηa
λ
dXa (u)+dε(u)−2δ(u)
M

√
h√

M

M∑
j=1

λ
2δ(u)
j Re

(
AXa,jIζ,jA

∗
ε,j

)
≡ B1,M +B2,M . (A.2.6)

We shall prove the asymptotic negligibility of B1,M and an establish a CLT for B2,M .
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First, we study B1,M that is given by

B1,M =

p∑
a=1

ηa
λ
dXa (u)+dε(u)−2δ(u)
M

√
h√

M

M∑
j=1

λ
2δ(u)
j Re

(
Iaε,j −AXa,jIζ,jA∗ε,j

)
≡

p∑
a=1

ηa
λ
dXa (u)+dε(u)−2δ(u)
M

√
h√

M
B̃1,Ma,

then by summation by parts, for any a = 1, . . . , p,

B̃1,Ma =

M−1∑
j=1

(
λ

2δ(u)−dXa (u)−dε(u)
j − λ2δ(u)−dXa (u)−dε(u)

j+1

) j∑
k=1

λ
dXa (u)+dε(u)
k Re

(
Iaε,k −AXa,kIζ,kA∗ε,k

)
+ λ

2δ(u)−dXa (u)−dε(u)
M

M∑
j=1

λ
dXa (u)+dε(u)
j Re

(
Iaε,j −AXa,jIζ,jA∗ε,j

)
= Op

(
λ

2δ(u)−dXa (u)−dε(u)
M

(
h−1 (logM)

2
+ h−1M

1
4 (logM)

1
2 + h−1M

1
2T−

1
4 (logM)

1
2

))

by Proposition A.1.4, which implies that

B1,M =

p∑
a=1

ηa
λ
dXa (u)+dε(u)−2δ(u)
M

√
h√

M
B̃1,Ma

=

p∑
a=1

ηaOp

(
(logM)

2

M
1
2h

1
2

+
(logM)

1
2

M
1
4h

1
2

+
(logM)

1
2

T
1
4h

1
2

)
= op (1)

by Assumption 4(iii).

Next, we study B2,M . We make the following decomposition

B2,M =

p∑
a=1

ηa
λ
dXa (u)+dε(u)−2δ(u)
M

√
h√

M

M∑
j=1

λ
2δ(u)
j Re

(
AXa,jIζ,jA

∗
ε,j

)
=

p∑
a=1

ηa
λ
dXa (u)+dε(u)−2δ(u)
M

√
h√

M

M∑
j=1

λ
2δ(u)
j Re

[
AXa,j

∑T
t=1 ζtζ

′

tK
2
h,tu

c2Tu
A∗ε,j

]

+

p∑
a=1

ηa
λ
dXa (u)+dε(u)−2δ(u)
M

√
h√

M

M∑
j=1

λ
2δ(u)
j Re

[
AXa

∑
t 6=s ζtζ

′

sKh,tuKh,sue
i(t−s)λj

c2Tu
A∗ε

]

≡ B2,M1 +B2,M2.

For B2,M1, we make further decomposition:

B2,M1 =

p∑
a=1

ηa
λ
dXa (u)+dε(u)−2δ(u)
M

M

M∑
j=1

λ
2δ(u)
j Re

AXa,j
∑T
t=1

(
ζtζ
′

t − Ip+1

)
K2
h,tu

c2Tu
A∗ε,j


+

p∑
a=1

ηa
λ
dXa (u)+dε(u)−2δ(u)
M

M

M∑
j=1

λ
2δ(u)
j Re

[
1

2π
AXa,jA

∗
ε,j

]
= op (1)
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by how we study Q2,M1 in the proof of Lemma A.1.1 and Assumption 2(iv).

To study B2,M2, note that

B2,M2 =

T∑
t=1

ζ
′

tKh,tu√
1
T

∑T
t=1K

2
h,tu

∑
s<t

Ct−s,T (u)
ζsKh,su√

1
T

∑T
t=1K

2
h,tu

≡
T∑
t=1

Zt,T (u) (A.2.7)

where Ct,T (u) is given by

Ct,T (u) =

p∑
a=1

ηa
λ
dXa (u)+dε(u)−2δ(u)
M

√
h

2πT
√
M

M∑
j=1

λ
2δ(u)
j Re

(
A
′

Xa,jAε,j +A
′

ε,jAXa,j

)
cos (tλj)

(A.2.8)

≡
√
h√

M2πT

M∑
j=1

θj cos (tλj)

Apparently, Zt,T (u) is a martingale difference sequence under Assumption 1. Then

by the martigale central limit theorem (see, e.g., Hall and Heyde (1980, Ch3.2), Robinson

(1995a), Lobato (1999), Nielsen (2005)), it is sufficient to prove:

(i)
∑T
t=1 E

(
Z2
t,T (u) | Ft−1

) p→
∑p
a=1

∑p
b=1 ηaηbΩab for some p× p matrix Ω;

(ii)
∑T
t=1 E

(
Z2
t,T (u) 1 (|Zt,T (u)| > ε)

) p→ 0 for all ε > 0.

By Proposition A.1.5, these two conditions hold. Consequently, we have

p∑
a=1

ηa
λ
dXa (u)+dε(u)−2δ(u)
M

√
h√

M

M∑
j=1

Re
(
AXa,jIζ,jA

∗
ε,j

) d→ N

(
0,

p∑
a=1

p∑
b=1

ηaηbΩab (u)

)

where Ωab (u) = Θ∗

(
G

1
2
X,aaG

1
2
X,bbGε

1−dXa (u)−dXb (u)−2dε(u)+4δ(u)

)
. And together with B1,M = op (1)

shown just now, we complete the proof of Lemma A.1.2. �

Proof of Proposition A.1.3. (i) The proof follows closely from that of Proposition 4 in

Lobato (1997). The major difference lies on the presence of kernel weight in the definitions

of wXa and wζ . By the nonnegativity of Sa (M), its stochastic order can be obtained

by the order of its expectation by Markov’s inequality. Recall that wXa,j = wXa (u, λj) ,

wζ,j = wζ (u, λj) , and AXa,j = AXa,j (u, λj) . We have

E [Sa (M)] = E

 1

T

M∑
j=1

(wXa,j −AXa,jwζ,j)
(
w∗Xa,j − w

∗
ζ,jA

∗
Xa,j

)
= E

 1

Tc2Tu

M∑
j=1

T∑
t=1

[Xa,t,T −AXa,jζt]Kh,tue
itλj

T∑
s=1

[
X ′a,s,T − ζ ′sA∗Xa,j

]
Kh,sue

−isλj


=

1

Tc2Tu

M∑
j=1

T∑
t=1

T∑
s=1

Kh,tuKh,sue
i(t−s)λj
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·
[
E
(
Xa,t,TX

′
a,s,T

)
− E (Xa,t,T ζ

′
s)A

∗
Xa,j −AXa,jE (ζtXa,s,T ) +AXa,jE (ζtζ

′
s)A

∗
Xa,j

]
.

We will evaluate E
(
Xa,t,TX

′
a,s,T

)
, E (Xa,t,T ζ

′
s), E

(
ζtX

′
a,s,T

)
, and E (ζtζ

′
s). Let ψ1 = T−1 +∣∣u− t

T

∣∣+ ∣∣u− s
T

∣∣ and ψ2,t = T−1 +
∣∣u− t

T

∣∣. For E
(
Xa,t,TX

′
a,s,T

)
, we have by Assumption

1(ii) that

E
(
Xa,t,TX

′
a,s,T

)
= E

( ∞∑
k=0

∞∑
l=0

AXa,t,T (k) ζt−kζ
′
s−lA

′
Xa,s,T (l)

)
=

∞∑
l=0

AXa,t,T (l + (t− s))A′Xa,s,T (l)

=

∫ π

−π
fXa (u, λ) e−i(t−s)λdλ ·O (1 + ψ1)

=
1

2π

∫ π

−π
AXa (u, λ)A∗Xa (u, λ) e−i(t−s)λdλ ·O (1 + ψ1)

=
1

2π

∫ π

−π
AXa (u, λ+ λj)A

∗
Xa (u, λ+ λj) e

−i(t−s)(λ+λj)dλ ·O (1 + ψ1)

where the third equality holds by the approximation in (2.3.7), the fourth equality holds by

the definition of the spectral density, and the fifth equality holds because both AXa (u, λ)

and e−i(t−s)λ have period 2π along the argument λ. Similarly,

E (Xa,t,T ζ
′
s) = E

( ∞∑
k=0

AXa,t,T (k) ζt−kζ
′
s

)
= AXa,t,T (t− s) = AXa (u, t− s) ·O (1 + ψ2,t)

=
1

2π

∫ π

−π
AXa (u, λ+ λj) e

−i(t−s)(λ+λj)dλ ·O (1 + ψ2,t)

where the second equality holds by Assumption 1(i), and the third equality holds by the

approximations in (2.3.1) and (2.3.2) in Assumption 1(ii). By the same token,

E
(
ζtX

′
a,s,T

)
= E

(
ζt

∞∑
k=0

ζ ′s−kA
′
Xa,s,T (k)

)
= A′Xa,s,T (s− t) = A′Xa (u, s− t) ·O (1 + ψ2,s)

=
1

2π

∫ π

−π
A∗Xa (u, λ+ λj) e

−i(t−s)(λ+λj)dλ ·O (1 + ψ2,s) .

In addition, it is easy to see that E
(
ζtζ
′

s

)
= 1

2π

∫ π
−π e

−i(t−s)(λ+λj)dλ. Then

E [Sa (M)]

=
1

Tc2Tu

M∑
j=1

T∑
t=1

T∑
s=1

Kh,tuKh,sue
i(t−s)λj

×
[∫ π

−π
[AXa (u, λ+ λj)−AXa (u, λj)]

[
A∗Xa (u, λ+ λj)−A∗Xa (u, λj)

]
e−i(t−s)(λ+λj)dλ ·O (1 + ψ1)

]
=

1

(2π)
2
T

M∑
j=1

∫ π

−π
K̃ (u, λ) [AXa (u, λ+ λj)−AXa (u, λj)]

[
A∗Xa (u, λ+ λj)−A∗Xa (u, λj)

]
dλ ·O(1)

+
1

Tc2Tu

M∑
j=1

T∑
t=1

T∑
s=1

Kh,tuKh,sue
i(t−s)λj

∫ π

−π
[AXa (u, λ+ λj)−AXa (u, λj)]
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×
[
A∗Xa (u, λ+ λj)−A∗Xa (u, λj)

]
e−i(t−s)(λ+λj)dλ ·O (ψ1)

≡ ES1 + ES2, (A.2.9)

where K̃ (u, λ) is a Fejér kernel “weighted ” by Kh (t− Tu) /
√∑T

t=1K
2
h (t− Tu), as

K̃ (u, λ) =
1∑T

t=1K
2
h (t− Tu)

∣∣∣∣∣
T∑
t=1

Kh (t− Tu) eitλ

∣∣∣∣∣
2

(A.2.10)

It is easy to argue that ES2 = o (ES1) by using the fact that
∣∣u− t

T

∣∣ ≤ h on the support of

kernel Kh (t− Tu). So we focus on the derivation of the order of ES1 below.

To derive the order of ES1, we first derive that the order of K̃ (u, λ) . Note that by

summation by parts and triangle inequality,

∣∣∣∣∣
T∑
t=1

Kh (t− Tu) eitλ

∣∣∣∣∣ =

∣∣∣∣∣
T−1∑
t=1

[Kh (t− Tu)−Kh (t+ 1− Tu)]

t∑
s=1

eisλ +Kh (T − Tu)

T∑
t=1

eitλ

∣∣∣∣∣
≤

∣∣∣∣∣
T−1∑
t=1

(Kh,tu −Kh,t+1,u)

t∑
s=1

eisλ

∣∣∣∣∣+Kh,Tu

∣∣∣∣∣
T∑
t=1

eitλ

∣∣∣∣∣
≤
T−1∑
t=1

|Kh,tu −Kh,t+1,u| max
1≤t≤T

∣∣∣∣∣
t∑

s=1

eisλ

∣∣∣∣∣+Kh,Tu

∣∣∣∣∣
T∑
t=1

eitλ

∣∣∣∣∣ .
As in Hansen (2008, pp. 740-741), Assumption 3 implies that

|Kh,tu −Kh,t+1,u| = h−1

∣∣∣∣k( t− TuTh

)
− k

(
t+ 1− Tu

Th

)∣∣∣∣ ≤ h−1 1

Th
k∗
(
t− Tu
Th

)
,

where k∗ (u) = Λ11 (|u| ≤ 2) . Then

T−1∑
t=1

|Kh,tu −Kh,t+1,u| ≤ h−1 1

Th

T−1∑
t=1

k∗
(
t− Tu
Th

)
≤ Ch−1 for some C <∞.

Next, as Wang (2019) observes, sin (λ/2) ≥ λ/π in the interval (0, π) because the function

g (λ) = sin (λ/2)−λ/π is concave on (0, π) and f (0) = f (π) = 0. Similarly, sin (λ/2) ≤ λ/π

for λ ∈ (−π, 0) . It follows that for all λ ∈ (−π, π) , we have |sin (λ/2)| ≥ |λ| /π, and

∣∣∣∣∣
t∑

s=1

eisλ

∣∣∣∣∣ =

∣∣∣∣∣eiλ
(
1− eitλ

)
1− eiλ

∣∣∣∣∣ =

∣∣∣∣eiλe−iλ/2eitλ/2 e−itλ/2 − eitλ/2e−iλ/2 − eiλ/2

∣∣∣∣
=

∣∣∣∣ei(t+1)λ/2−2i sin (tλ/2)

−2i sin (λ/2)

∣∣∣∣ ≤ C

|λ|
uniformly in t.

In addition, Kh,Tu = h−1k
(
T−Tu
Th

)
≤ Ch−1. Consequently, we have

∣∣∣∣∣
T∑
t=1

Kh (t− Tu) eitλ

∣∣∣∣∣ ≤ C

h |λ|
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where recall the constant C can vary across lines. This result, in conjunction with the fact

that
∑T
t=1K

2
h (t− Tu) = Th−1

∫
k (u)

2
du[1 + o (1)], implies that

K̃ (u, λ) =
1∑T

t=1K
2
h (t− Tu)

∣∣∣∣∣
T∑
t=1

Kh (t− Tu) eitλ

∣∣∣∣∣
2

=
1

Th−1
O
(
h−2 |λ|−2

)
= O

(
T−1h−1 |λ|−2

)
.

(A.2.11)

Given the above order of K̃ (u, λ) , we are ready to derive the order of ES1. By definition

of spectral density in Assumption 2, we have for some constants C1 and C2,

ES1 ≤
1

2πT

M∑
j=1

∫ π

−π
K̃ (u, λ) [C1fXaa (u, λ+ λj) + C2fXaa (u, λj)] dλ

≤ C 1

2πT

M∑
j=1

∫ π

−π
K̃ (u, λ) [fXaa (u, λ+ λj) + fXaa (u, λj)] dλ ≡ C · ES1.

Following the proof of Proposition 4 in Robinson (1994b), we make the following decompo-

sition for ES1 :

ES1 =
1

2πT

M∑
j=1

[(∫ −τ
−π

+

∫ π

τ

)
+

(∫ −h−1λm

−τ
+

∫ τ

h−1λm

)
+

(∫ −λm
−h−1λm

+

∫ h−1λm

λm

)

+

(∫ −εTλm
−λm

+

∫ λm

εTλm

)
+

∫ εTλm

−εTλm

]
K̃ (u, λ) [fXaa (u, λ+ λj) + fXaa (u, λj)] dλ

≡ ES11 + ES12 + ES13 + ES14 + ES15

where τ is some fixed but small enough constant and εT is a shrinking sequence to be defined

later. We then study ES1l’s, l = 1, . . . , 5 in turn.

First, for ES11, we have

ES11 =
1

T

M∑
j=1

(∫ −τ
−π

+

∫ π

τ

)
K̃ (u, λ) [fXaa (u, λ+ λj) + fXaa (u, λj)] dλ

≤ C

T 2h

M∑
j=1

(∫ −τ
−π

+

∫ π

τ

)
λ−2fXaa (u, λ+ λj) dλ+

C

T 2h

M∑
j=1

fXaa (u, λj)

∫ π

τ

λ−2dλ

≤ C

T 2hτ2

M∑
j=1

∫ π

−π
fXaa (u, λ+ λj) dλ+

C

T 2hτ

M∑
j=1

fXaa (u, λj)

=
C

T 2hτ2

M∑
j=1

∫ π

−π
fXaa (u, λ) dλ+

C

T 2hτ

M∑
j=1

fXaa (u, λj)

= O

(
M

T 2h
+

1

Th
FXaa (u, λM )

)
= O

(
1

Th
FXaa (u, λM )

)

where the first inequality holds by the order of K̃ (u, λ) derived above and the fact that

K̃ (u, λ) is an even function, the second inequality holds by the non-negativity of spectral
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density function fXaa (u, λ) , and the second equality holds by the property that spectral

density function fXaa (u, λ) has period 2π, the next to last equality follows from the fact

that 1
T

∑M
j=1 fXaa (u, λj) = O (FXaa (u, λM )) by Proposition 1 in Robinson (1994b), and the

last equality holds by the fact that M = o (T ). Note that the above tricks will be applied

repeatedly in the following proof of this proposition.

Next, we study ES12. Note that

ES12 =
1

T

M∑
j=1

(∫ −h−1λM

−τ
+

∫ τ

h−1λM

)
K̃ (u, λ) [fXaa (u, λ+ λj) + fXaa (u, λj)] dλ

≤ C

T 2h

M∑
j=1

1

(h−1λM )
2

(∫ −h−1λM

−τ
+

∫ τ

h−1λM

)
fXaa (u, λ+ λj) dλ

+
C

T 2h

M∑
j=1

fXaa (u, λj)

∫ τ

h−1λM

1

λ2
dλ

≤ Ch

T 2λ2
M

M∑
j=1

∫ τ

h−1λM

fXaa (u, λj) dλ+
C

T 2λM

M∑
j=1

fXaa (u, λj)

= O

 1

T 2λM

M∑
j=1

fXaa (u, λj)

 = O

 1

TλM

M∑
j=1

fXaa (u, λj)

 = O

(
1

M
FXaa (u, λM )

)

where the first inequality holds by the even property of K̃ (u, λ) and its bound derived

above, and the second inequality holds because fXaa (u, λ+ λj) ≤ fXaa (u, λj) for all |λ| ∈[
h−1λM , τ

)
for small fixed τ by the singularity of spectral density around zero frequency.

Next, for ES13 we have

ES13 =
1

T

M∑
j=1

(∫ −λM
−h−1λM

+

∫ h−1λM

λM

)
K̃ (u, λ) [fXaa (u, λ+ λj) + fXaa (u, λj)] dλ

≤ C

T 2λ2
Mh

M∑
j=1

∫ h−1λM

λM

fXaa (u, λ+ λj) dλ+
C

T 2h

M∑
j=1

fXaa (u, λj)

∫ h−1λM

λM

1

λ2
dλ

≤ C

T 2λ2
Mh

M∑
j=1

∫ h−1λM

λM

fXaa (u, λj) dλ+
C

T 2h

M∑
j=1

fXaa (u, λj)

∫ h−1λM

λM

1

λ2
dλ

= O

h−1λM
T 2λ2

Mh

M∑
j=1

fXaa (u, λj) +
1

T 2λMh

M∑
j=1

fXaa (u, λj)


= O

((
1

TλMh2
+

1

TλMh

)
FXaa (u, λM )

)
= O

(
1

Mh2
FXaa (u, λM )

)
.

To study ES14, we specify a sequence εT such that as T →∞, εT → 0 and εTM →∞,

and there exists a constant Cε such that CεεTM is an integer. Under this specification, we
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have

ES14 =
1

T

M∑
j=1

(∫ −εTλM
−λM

+

∫ λM

εTλM

)
K̃ (u, λ) [fXaa (u, λ+ λj) + fXaa (u, λj)] dλ

≤ C

T

M∑
j=1

∫ λM

εTλM

K̃ (λ) fXaa (u, λ+ λj) dλ+
C

T

M∑
j=1

fXaa (u, λj)

∫ λM

εTλM

K̃ (λ) dλ

≤ C

T 2h

M∑
j=1

fXaa (u, λj)

∫ λM

εTλM

1

λ2
dλ

= O

(
1

MεTh
FXaa (u, λM )

)
. (A.2.12)

Finally, for ES15 we make the following decomposition:

ES15 =
1

T

CεεTM∑
j=1

∫ εTλM

−εTλM
K̃ (u, λ) [fXaa (u, λ+ λj) + fXaa (u, λj)] dλ

+
1

T

M∑
j=CεεTM+1

∫ εTλM

−εTλM
K̃ (u, λ) [fXaa (u, λ+ λj) + fXaa (u, λj)] dλ

≡ ES15,1 + ES15,2.

For ES15,1, we have

ES15,1 =
1

T

CεεTM∑
j=1

∫ εTλM

−εTλM
K̃ (u, λ) [fXaa (u, λ+ λj) + fXaa (u, λj)] dλ

≤ 2

T

CεεTM∑
j=1

fXaa (u, λj)

∫ εTλM

−εTλM
K̃ (u, λ) dλ ≤ 4π

T

CεεTM∑
j=1

fXaa (u, λj)

= O (FXaa (u,CεεTλM )) = O
(
ε

1−2dXa (u)
T FXaa (u, λM )

)
,

where the first inequality holds by the nonnegativity of K̃ (u, λ) and montone property of

fXaa (u, ·) in the neighborhood of 0 for each u, and the second inequality holds by the fact

that

∫ π

−π
K̃ (u, λ) dλ =

1∑T
t=1K

2
h (t− Tu)

∫ π

−π

∣∣∣∣∣
T∑
t=1

Kh (t− Tu) eitλ

∣∣∣∣∣
2

dλ

=
1∑T

t=1K
2
h (t− Tu)

T∑
t=1

T∑
s=1

Kh (t− Tu)Kh (s− Tu)

∫ π

−π
ei(t−s)λdλ

=

∑T
t=1K

2
h (t− Tu)∑T

t=1K
2
h (t− Tu)

∫ π

−π
dλ = 2π.

Here we use the fact that
∫ π
−π e

i(t−s)λdλ = 0 for all t 6= s with t, s = 1, ..., T. The last equality

holds by the fact that in the neighborhood of zero frequency, FXaa (u, λ) = O
(
λ1−2dXa (u)

)
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for each u by Assumption 2(i).

For ES15,2 we can consider instead the following term

ES15,2 =
1

T

M∑
j=CεεTM+1

∫ εTλM

−εTλM
K̃ (u, λ) |AXa (u, λ+ λj)−AXa (u, λj)|2 dλ

≤ C

T

M∑
j=CεεTM+1

∫ εTλM

−εTλM
K̃ (u, λ)

∣∣∣(λ+ λj)
−dXa (u) − λ−dXa (u)

j

∣∣∣2 dλ
= O

 1

T

M∑
j=CεεTM+1

∫ εTλM

−εTλM
K̃ (u, λ)

∣∣∣λ−dXa (u)−1
j λ

∣∣∣2 dλ


= O

 1

T

∫ εTλM

−εTλM
λ2K̃ (u, λ) dλ

M∑
j=CεεTM+1

λ
−2dXa (u)−2
j


= O

(
1

Th
λ
−2dXa (u)−1
εTM

∫ εTλM

−εTλM
dλ

)
= O

(
εTλM
Th

(εTλM )
−2dXa (u)−1

)

= O

(
1

Mhε
2dXa (u)
T

FXaa (u, λM )

)
(A.2.13)

where the first equality follows from the fact that |AXa (u, λj)| = O(f
1
2

Xaa
(u, λj)), and the

second equality holds by first-order Taylor expansion of (λ+ λj)
−dXa (u)

at λ = 0. Then we

can express ES15,2 = 1
2πES15,2 +

(
ES15,2 − 1

2πES15,2

)
, and note that

1

2π
ES15,2 =

1

T

M∑
j=CεεTm+1

∫ εTλM

−εTλM
K̃ (u, λ)

1

2π
|AXa (u, λ+ λj)−AXa (u, λj)|2 dλ

=
1

T

M∑
j=CεεTm+1

∫ εTλM

−εTλM
K̃ (u, λ) [fXaa (u, λ+ λj) + fXaa (u, λj)]

− 1

2πT

M∑
j=CεεTm+1

∫ εTλM

−εTλM
K̃ (u, λ)

[
AXa (u, λ+ λj)A

∗
Xa (u, λj) +AXa (u, λj)A

∗
Xa (u, λ+ λj)

]
≡ ES15,2 +

1

2π
RES15,2,

and RES15,2 is further given by

∣∣RES15,2

∣∣ ≤ 1

2πT

M∑
j=CεεTm+1

∫ εTλM

−εTλM
K̃ (u, λ)

∣∣AXa (u, λ+ λj)A
∗
Xa (u, λj) +AXa (u, λj)A

∗
Xa (u, λ+ λj)

∣∣
= O

 1

2πT

∫ εTλM

−εTλM
K̃ (λ)

M∑
j=CεεTm+1

λ
−2dXa (u)
j


≤ O

(
λ

1−2dXa (u)
M

1

Th

∫ εTλM

−εTλM

1

λ2
dλ

)
= O

(
1

MhεT
FXaa (u, λM )

)
.

Then we can conclude that ES15,2 = O
(

1
MhεT

FXaa (u, λM )
)

.

Note that one appropriate choice of εT can be εT = hδ where δ = 1
1−2dX

is defined as
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in Assumption 4(iii), which then makes both (A.2.12) and (A.2.13) O (hFXaa (u, λM )), and

thus

E (Sa (M)) = O

((
1

Mh2
+ ε

1−2dXa (u)
T +

1

MhεT

)
FXaa (u, λM )

)
= O (hFXaa (u, λM ))

by choices of εT above and by Assumption 4(iii). This is similar to the conclusion of Propo-

sition 4 in Robinson (1994b). And thus we finish the proof of argument (i).

(ii) By the same reasoning as used in the proof of (i), we can prove E
[

1
T

∑M
j=1

(
IX,aa +AXaIζA

∗
Xa

)]
=

O (hFXaa (u, λM )). The result follows by the Markov inequality. �

Proof of Proposition A.1.4. Using the notation in the proof of Lemma A.1.1, we

have

B̃1,Ma =

M∑
j=1

λ
2δ(u)
j Re

[
Iaε,j −AXa,jIζ,jA∗ε,j

]
(A.2.14)

=

M−1∑
j=1

(
λ

2δ(u)−dXa (u)−dε(u)
j − λ2δ(u)−dXa (u)−dε(u)

j+1

) j∑
k=1

λ
dXa (u)+dε(u)
k Re

(
Iaε,k −AXa,kIζ,kA∗ε,k

)
+ λ

2δ(u)−dXa (u)−dε(u)
M

M∑
j=1

λ
dXa (u)+dε(u)
j Re

(
Iaε,j −AXa,jIζ,jA∗ε,j

)
≡
M−1∑
j=1

(
λ

2δ(u)−dXa (u)−dε(u)
j − λ2δ(u)−dXa (u)−dε(u)

j+1

)
· Q̃ (j) + λ

2δ(u)−dXa (u)−dε(u)
M · Q̃ (M) .

In the following we try to apply the proof of (C.2) in Lobato (1999) to derive the order

for both Q̃ (j) for arbitrary fixed 1 ≤ j < M and Q̃ (M). Take Q̃ (j) for example, it has the

decomposition given by

Q̃ (j) =

j∑
k=1

λ
dXa (u)+dε(u)
k Re

(
Iaε,k −AXa,kIζ,kA∗ε,k

)
=

l∑
k=1

λ
dXa (u)+dε(u)
k Re

(
Iaε,k −AXa,kIζ,kA∗ε,k

)
+

j∑
k=l+1

λ
dXa (u)+dε(u)
k Re

(
Iaε,k −AXa,kIζ,kA∗ε,k

)
≡ Q1 +Q2,

with l being an integer less than j that is determined later. Firstly for Q1, for each 1 ≤ k ≤ l

we consider q1k ≡ Re
(
Iaε,k −AXa,kIζ,kA∗ε,k

)
,

E |Q1| ≤
l∑

k=1

λ
dXa (u)+dε(u)
k E |q1k| =

l∑
k=1

λ
dXa (u)+dε(u)
k E

∣∣Re
(
wXa,kw

∗
ε,k −AXa,kwζ,kw∗ζ,kA∗ε,k

)∣∣
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≤ 1

2

l∑
k=1

λ
dXa (u)+dε(u)
k E

∣∣(wXa,k −AXa,kwζ,k)
(
w∗ε,k + w∗ζ,kA

∗
ε,k

)∣∣
+

1

2

l∑
k=1

λ
dXa (u)+dε(u)
k E

∣∣(wXa,k +AXa,kwζ,k)
(
w∗ε,k − w∗ζ,kA∗ε,k

)∣∣
≤ 1

2

(
l∑

k=1

λ
2dXa (u)
k E |wXa,k −AXa,kwζ,k|

2

) 1
2
(

l∑
k=1

λ
2dε(u)
k E

∣∣w∗ε,k + w∗ζ,kA
∗
ε,k

∣∣2) 1
2

+
1

2

(
l∑

k=1

λ
2dXa (u)
k E |wXa,k +AXa,kwζ,k|

2

) 1
2
(

l∑
k=1

λ
2dε(u)
k E

∣∣w∗ε,k − w∗ζ,kA∗ε,k∣∣2
) 1

2

,

following the same reasoning in the proof of Lemma A.1.1. Then we have for E
∣∣∣w̃X̃a,k −AXa,jw̃ζ̃,k∣∣∣2

at each k = 1, . . . , l that

E |wXa,k −AXa,kwζ,k|
2

= E
[
(wXa,k −AXa,kwζ,k)

(
w∗Xa,k − w

∗
ζ,kA

∗
Xa,k

)]
=

1

c2Tu
E

[
T∑
t=1

(Xa,t,T −AXa,kζt)Kh,tue
itλk

T∑
s=1

(
Xa,s,T − ζ ′sA∗Xa,k

)
Kh,sue

−isλk

]

=
1

c2Tu

T∑
t=1

T∑
s=1

Kh,tuKh,sue
i(t−s)λk

×
[
E (Xa,t,TXa,s,T )− E (Xa,t,T ζ

′
s)A

∗
Xa,k −AXa,kE (ζtXa,s,T ) +AXa,kE (ζtζ

′
s)A

∗
Xa,k

]
=

∫ π

−π
K̃ (λ) [AXa (u, λ+ λk)−AXa (u, λk)]

[
A∗Xa (u, λ+ λk)−A∗Xa (u, λk)

]
dλ ·O (1 + ψ1)

≡ Ek1 + Ek2 (A.2.15)

where Ek1 is the term containing the O(1) multiplier and Ek2 is the one with O (ψ1). The

above is obtained as we have showed before in (A.2.9) in the proof of Proposition A.1.3,

where ψ1 = T−1 +
∣∣u− t

T

∣∣+
∣∣u− s

T

∣∣, and K̃ (λ) is given by

K̃ (λ) =
1

c2Tu

∣∣∣∣∣
T∑
t=1

Kh,tue
itλ

∣∣∣∣∣
2

= O
(
T−1h−1 |λ|−2

)
,

which is identical to the weighted Fejér kernel in (A.2.11) while we suppress its dependence

on u. Note that Ek2 is dominated by Ek1 in order; and for Ek1, we have

Ek1 ≤ O (1)

∫ π

−π
K̃ (λ) [C1fXaa (u, λ+ λk) + C2fXaa (u, λk)] dλ

≤ C
∫ π

−π
K̃ (λ) [fXaa (u, λ+ λk) + fXaa (u, λk)] dλ ≡ C · E∗k1
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for some absolute constants C1, C2 and C. Then we decompose E∗k1 as

E∗k1 =

[∣∣∣∣∫ π

ε

∣∣∣∣+

∣∣∣∣∫ ε

λk

∣∣∣∣+

∫ λk

−λk

]
K̃ (λ) [fXaa (u, λ+ λk) + fXaa (u, λk)] dλ

≡ E∗k11 + E∗k12 + E∗k13,

where ε is some fixed constant that is small enough. Firstly E∗k11 is further given by

E∗k11 =

(∫ −ε
−π

+

∫ π

ε

)
K̃ (λ) [fXaa (u, λ+ λk) + fXaa (u, λk)] dλ

≤ max
|λ|≥ε

K̃ (λ)

∫ π

−π
|fXaa (u, λ+ λk) + fXaa (u, λk)| dλ

= O
(
T−1h−1

(
1 + λ

−2dXa (u)
k

))
= o

(
h−1k−1λ

−2dXa (u)
k

)
,

where the second equality holds by the nonnegativity of fXaa (u, λ) and its integrability; and

then E∗k12 follows that

E∗k12 =

(∫ −λk
−ε

+

∫ ε

λk

)
K̃ (λ) [fXaa (u, λ+ λk) + fXaa (u, λk)] dλ

≤ C

[
max

2λk≤λ≤ε+λk

|fXaa (u, λ)|
λ(1−2dXa (u))/2

∫ ε+λk

2λk

λ(1−2dXa (u))/2K̃ (λ) dλ+ |fXaa (u, λk)|
∫ ε

λk

K̃ (λ) dλ

]

= O
(
λ
−(1+2dXa (u))/2
k

)
O

(
T−1h−1

∫ ∞
2λk

λ−(3+2dXa (u))/2dλ

)
+O

(
λ
−2dXa (u)
k

)
O

(
T−1h−1

∫ ∞
λk

λ−2dλ

)
= O

(
h−1k−1λ

−2dXa (u)
k

)

for some absolute constant C; next E∗k13 is given by

E∗k13 =

∫ λk

−λk
K̃ (λ) [fXaa (u, λ+ λk) + fXaa (u, λk)] dλ

≤ 2fXaa (u, λk)

∫ λk

−λk
K̃ (λ) dλ

= O
(
h−1k−1λ

−2dXa (u)
k

)
,

therefore in conclusion E∗k1 = O
(
h−1k−1λ

−2dXa (u)
k

)
for each k = 1, . . . , l and so as Ek1 and

E |wXa,k −AXa,kwζ,k|
2
, and it is easy to see that the same order holds for E |wXa,k +AXa,kwζ,k|

2
;

and the same reasoning holds for E
∣∣∣w∗ε,k − w∗ζ,kA∗ε,k∣∣∣2 and E

∣∣∣w∗ε,k + w∗ζ,kA
∗
ε,k

∣∣∣2. Therefore

Q1 = Op
(
h−1 log l

)
by Riemann sum approximation.

Next for Q2, we consider its expectation of squared norm following the proof of (C.2) in
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Lobato (1999), which is given by

E |Q2|2 = E

[(
j∑

k=l+1

λ
dXa (u)+dε(u)
k

(
Iaε,k −AXa,kIζ,kA∗ε,k

))( j∑
k=l+1

λ
dXa (u)+dε(u)
k

(
I∗aε,k −Aε,kIζ,kA∗Xa,k

))]

=

j∑
k=l+1

λ
2(dXa (u)+dε(u))
k E

[(
wXa,kw

∗
ε,k −AXa,kwζ,kw∗ζ,kA∗ε,k

) (
wε,kw

∗
Xa,k −Aε,kwζ,kw

∗
ζ,kA

∗
Xa,k

)]
+

j∑
s6=k;k,s=l+1

λ
dXa (u)+dε(u)
k λ

dXa (u)+dε(u)
s

× E
[(
wXa,kw

∗
ε,k −AXa,kwζ,kw∗ζ,kA∗ε,k

) (
wε,sw

∗
Xa,s −Aε,swζ,sw

∗
ζ,sA

∗
Xa,s

)]
≡ Q21 +Q22,

where in detail,

Q21 =

j∑
k=l+1

λ
2(dXa (u)+dε(u))
k

[
E
(
wXa,kw

∗
ε,kwε,kw

∗
Xa,k

)
− E

(
AXa,kwζ,kw

∗
ζ,kA

∗
ε,kwε,kw

∗
Xa,k

)
−E

(
wXa,kw

∗
ε,kAε,kwζ,kw

∗
ζ,kA

∗
Xa,k

)
+ E

(
AXa,kwζ,kw

∗
ζ,kA

∗
ε,kAε,kwζ,kw

∗
ζ,kA

∗
Xa,k

)]
and

Q22 =

j∑
s6=k;i,k,s=l+1

λ
dXa (u)+dε(u)
k λ

dXa (u)+dε(u)
s

[
E
(
wXa,kw

∗
ε,kwε,sw

∗
Xa,s

)
− E

(
AXa,kwζ,kw

∗
ζ,kA

∗
ε,kwε,sw

∗
Xa,s

)
−E

(
wXa,kw

∗
ε,kAε,swζ,sw

∗
ζ,sA

∗
Xa,s

)
+ E

(
AXa,kwζ,kw

∗
ζ,kA

∗
ε,kAε,swζ,sw

∗
ζ,sA

∗
Xa,s

)]
.

Note that wXa,k, wε,k, AXa,kwζ,k and Aε,kwζ,k are all mean-zero scalars for k = l+ 1, . . . , j,

and thus both Q21 and Q22 consist of terms in the form E (wxyz) with w, x, y and z as zero

mean scalars, which follows that

E (wxyz) = E (wx)E (yz) + E (wy)E (xz) + E (wz)E (xy) + cum (w, x, y, z)

where cum(w, x, y, z) is the joint cumulant of these four random variables. For ease of

notation, we denote wXa,k ≡ ak, wε,k ≡ ek, AXa,kwζ,k ≡ Ak and Aε,kwζ,k ≡ Ek. Then by

decomposing Q21 and Q22 into two parts, with and without cumulants, we have them given

by

Q21 =

j∑
k=l+1

λ
2(dXa (u)+dε(u))
k [E (ake

∗
k)E (eka

∗
k) + E (akek)E (e∗ka

∗
k) + E (aka

∗
k)E (e∗kek)

− E (AkE
∗
k)E (eka

∗
k)− E (Akek)E (E∗ka

∗
k)− E (Aka

∗
k)E (E∗kek)

− E (ake
∗
k)E (EkA

∗
k)− E (akEk)E (e∗kA

∗
k)− E (akA

∗
k)E (e∗kEk)
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+E (AkE
∗
k)E (EkA

∗
k) + E (AkEk)E (E∗kA

∗
k) + E (AkA

∗
k)E (E∗kEk)]

+

j∑
k=l+1

λ
2(dXa (u)+dε(u))
k [cum (ak, e

∗
k, ek, a

∗
k)− cum (Ak, E

∗
k , ek, a

∗
k)

−cum (ak, e
∗
k, Ek, A

∗
k) + cum (Ak, E

∗
k , Ek, A

∗
k)] ≡ Q21,a +Q21,b,

where Q21,a is the part without cumulant and Q21,b is the part with cumulant, and using

the same notataion,

Q22 =

j∑
s6=k;i,k,s=l+1

λ
dXa (u)+dε(u)
k λ

dXa (u)+dε(u)
s [E (ake

∗
k)E (esa

∗
s) + E (akes)E (e∗ka

∗
s) + E (aka

∗
s)E (e∗kes)

− E (AkE
∗
k)E (esa

∗
s)− E (Akes)E (E∗ka

∗
s)− E (Aka

∗
s)E (E∗kes)

− E (ake
∗
k)E (EsA

∗
s)− E (akEs)E (e∗kA

∗
s)− E (akA

∗
s)E (e∗kEs)

+E (AkE
∗
k)E (EsA

∗
s) + E (AkEs)E (E∗kA

∗
s) + E (AkA

∗
s)E (E∗kEs)]

+

j∑
s6=k;i,k,s=l+1

λ
dXa (u)+dε(u)
k λ

dXa (u)+dε(u)
s

× [cum (ak, e
∗
k, es, a

∗
s)− cum (Ak, E

∗
k , es, a

∗
s)− cum (ak, e

∗
k, Es, A

∗
s) + cum (Ak, E

∗
k , Es, A

∗
s)]

≡ Q22,a +Q22,b,

where Q22,a is the part without cumulant and Q22,b is the part with cumulant. Firstly

we derive the order for Q21,a and Q22,a. Since we need to obtain some similar results as

Theorem 2 in Robinson (1995c), we consider analyzing E (ake
∗
k) as the following:

E (ake
∗
k) = E

(
wXa,kw

∗
ε,k

)
=

1

c2Tu

T∑
t=1

T∑
s=1

E (Xa,t,T εs,T )Kh,tuKh,sue
i(t−s)λk

=
1

c2Tu

T∑
t=1

T∑
s=1

[∫ π

−π
fXaε (u, λ) e−i(t−s)λdλ ·O (1 + ψ1)

]
Kh,tuKh,sue

i(t−s)λk

=

∫ π

−π
fXaε (u, λ) K̃ (λk − λ) dλ ·O (1 + h)

=

∫ π

−π
(fXaε (u, λ)− fXaε (u, λk)) K̃ (λk − λ) dλ ·O (1 + h) + fXaε (u, λk) ·O (1 + h)

≡ EW1 + EW2

where EW1 = O (1)
∫ π
−π (fXaε (u, λ)− fXaε (u, λk)) K̃ (λk − λ) dλ, and EW2 refers to the

rest of the terms. Next we denote C as some absolute constant whose value may varies

across lines. Following the proof of Theorem 2 in Robinson (1995c),

EW1 ≤ C
∫ π

−π
(fXaε (u, λ)− fXaε (u, λk)) K̃ (λk − λ) dλ
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= C

[∣∣∣∣∫ π

ε

∣∣∣∣+

∣∣∣∣∫ ε

2λk

∣∣∣∣+

∣∣∣∣∣
∫ 2λk

λk/2

∣∣∣∣∣+

∫ λk/2

−λk/2

]
(fXaε (u, λ)− fXaε (u, λk)) K̃ (λk − λ) dλ

≡ C (EW11 + EW12 + EW13 + EW14) ,

where firstly EW11 is given by

EW11 =

(∫ −ε
−π

+

∫ π

ε

)
(fXaε (u, λ)− fXaε (u, λk)) K̃ (λk − λ) dλ

≤ C max
|λ|≥ε

K̃ (λk − λ)

∫ π

−π
|fXaε (u, λ)− fXaε (u, λk)| dλ

≤ C max
|λ|≥ε

K̃ (λk − λ)

∫ π

−π
|fXaε (u, λ)|+ |fXaε (u, λk)| dλ

≤ C

Th

(
1 + λ

−dXa (u)−dε(u)
k

)
.

Note that the above order holds by Assumption 2(i), K̃ (λ) ≤ CT−1h−1λ−2, and the fact

that fXaε (u, λ) ≥ 0 and
∫ π
−π fXaε (u, λ) dλ <∞. Next for EW12 we have

EW12

=

(∫ −2λk

−ε
+

∫ ε

2λk

)
(fXaε (u, λ)− fXaε (u, λk)) K̃ (λk − λ) dλ

≤ C max
2λk≤λ≤ε

fXaε (u, λ)

λ(1−dXa (u)−dε(u))/2

∫ π

2λk

λ(1−dXa (u)−dε(u))/2K̃ (λk − λ) dλ+ |fXaε (u, λk)|
∫ π

2λk

K̃ (λk − λ) dλ

= C max
2λk≤λ≤ε

λ−(1+dXa (u)+dε(u))/2 1

Th

∫ π

2λk

λ−(3+dXa (u)+dε(u))/2dλ+ Cλ
−dXa (u)−dε(u)
k

1

Th

∫ π

2λk

λ−2dλ

= Ch−1k−1λ
−dXa (u)−dε(u)
k ,

using the similar reasoing as before. Next for EW13 we have

EW13 =

(∫ −λk/2
−2λk

+

∫ 2λk

λk/2

)
(fXaε (u, λ)− fXaε (u, λk)) K̃ (λk − λ) dλ

≤ C max
λk/2≤λ≤2λk

∣∣∣∣∂fXaε (u, λ)

∂λ

∣∣∣∣ ∫ 2λk

λk/2

|λk − λ| K̃ (λk − λ) dλ

≤ Cλ−1−dXa (u)−dε(u)
k

1

T

∫ 2λk

λk/2

∣∣∣∣∣
T∑
t=1

Kh,tue
it(λk−λ)

∣∣∣∣∣ dλ,
and it remains to derive the order for

∫ Cλk
0

∣∣∣∑T
t=1Kh,tue

itλ
∣∣∣ dλ for some constant C by

change of variable. By our proof of Proposition A.1.3 we have
∣∣∣∑T

t=1Kh,tue
itλ
∣∣∣ ≤ Ch−1

∣∣∣ sin(Tλ/2)
sin(λ/2)

∣∣∣
for some constant C, and thus

∫ Cλk

0

∣∣∣∣∣
T∑
t=1

Kh,tue
itλ

∣∣∣∣∣ dλ ≤ Ch−1

∫ Cλk

0

∣∣∣∣ sin (Tλ/2)

sin (λ/2)

∣∣∣∣ dλ ≤ Ch−1 log k
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using Lemma 5 in Robinson (1994a) for some constant C, when k is large enough but fixed.1

Then we can conclude that EW13 ≤ Ch−1k−1 log kλ
−dXa (u)−dε(u)
k . At last for EW14 we

have

EW14 =

∫ λk/2

−λk/2
(fXaε (u, λ)− fXaε (u, λk)) K̃ (λk − λ) dλ

≤ max
|λ|≤λk/2

K̃ (λk − λ)

∫ λk/2

−λk/2
|fXaε (u, λ)|+ |fXaε (u, λk)| dλ

≤ C

Th
λ−2
k λ

1−dXa (u)−dε(u)
k ≤ Ch−1k−1λ

−dXa (u)−dε(u)
k

for some absolute constant C. Note that h−1k−1λ
−dXa (u)−dε(u)
k is dominated by h−1k−1 log kλ

−dXa (u)−dε(u)
k ,

we thus have EW1 ≤ Ch−1k−1 log kλ
−dXa (u)−dε(u)
k , and thus EW2 is dominated by EW1,

which then concludes that

E (ake
∗
k) = E

(
wXa,kw

∗
ε,k

)
≤ Ch−1k−1 log kλ

−dXa (u)−dε(u)
k .

And it is easy to see that E (eka
∗
k) has the same order. Next using the same reasoning, we

have

E (aka
∗
k) = E

(
wXa,kw

∗
Xa,k

)
≤ Ch−1k−1 log kλ

−2dXa (u)
k ,

E (eke
∗
k) = E

(
wε,kw

∗
ε,k

)
≤ Ch−1k−1 log kλ

−2dε(u)
k .

And it is easy to see that

E (AkE
∗
k) = E

(
AXa,kwζ,kw

∗
ζ,kA

∗
ε,k

)
= AXa,k

1

c2Tu

T∑
t,s=1

E
(
ζtζ
′

s

)
Kh,tuKh,sue

i(t−s)λkA∗ε,k

=
1

2π
AXa,kA

∗
ε,k = fXaε (u, λk) ≤ Cλ−dXa (u)−dε(u)

k

by Assumption 1(i) and 2(i). And it is easy to see the same bound holds for E (EkA
∗
k), and

by the same reasoning and the fact that Ek is a scalar,

E (E∗kEk) = E (EkE
∗
k) ≤ Cλ−2dε(u)

k and E (AkA
∗
k) ≤ Cλ−2dXa (u)

k .

Next using Cauchy-Schwarz inequality, E (Aka
∗
k) can be bounded by

|E (Aka
∗
k)| ≤ (E (AkA

∗
k))

1
2 (E (aka

∗
k))

1
2 ≤ C

√
h−1k−1 log kλ

−2dXa (u)
k ,

1Note that in Lemma 5 of Robinson (1994a), k is required to be a sequence k (T ) such
that k

T → 0 as T → ∞. But by its proof the order also holds when k is large enough but
fixed. However even if we treat k as such a sequence, the same conclusion should also hold
as in (A.2.19) the asymptotic order is determined by the sum of tail terms when j and k are
large enough as sequences defined above.
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and by the same reasoning we have

|E (Akek)| ≤ C
√
h−1k−1 log kλ

−dXa (u)−dε(u)
k ,

|E (akEk)| ≤ C
√
h−1k−1 log kλ

−dXa (u)−dε(u)
k ,

|E (E∗kek)| ≤ C
√
h−1k−1 log kλ

−2dε(u)
k .

Then combining all the terms we analyzed so far, we can conclude that

Q21,a =

j∑
k=l+1

λ
2(dXa (u)+dε(u))
k E (ake

∗
k)E (eka

∗
k) + E (akek)E (e∗ka

∗
k) + E (aka

∗
k)E (e∗kek)

(A.2.16)

− E (AkE
∗
k)E (eka

∗
k)− E (Akek)E (E∗ka

∗
k)− E (Aka

∗
k)E (E∗kek)

− E (ake
∗
k)E (EkA

∗
k)− E (akEk)E (e∗kA

∗
k)− E (akA

∗
k)E (e∗kEk)

+ E (AkE
∗
k)E (EkA

∗
k) + E (AkEk)E (E∗kA

∗
k) + E (AkA

∗
k)E (E∗kEk)

= O

(
j∑

k=l+1

(
h−1k−1 log k

)2)
= O

(
h−2l−1 (log j)

2
)
.

And using Cauchy-Schwarz inequality and the same reasoning above, we have for Q22,a that

Q22,a =

j∑
s6=k;i,k,s=l+1

λ
dXa (u)+dε(u)
k λ

dXa (u)+dε(u)
s E (ake

∗
k)E (esa

∗
s) + E (akes)E (e∗ka

∗
s) + E (aka

∗
s)E (e∗kes)

− E (AkE
∗
k)E (esa

∗
s)− E (Akes)E (E∗ka

∗
s)− E (Aka

∗
s)E (E∗kes)

− E (ake
∗
k)E (EsA

∗
s)− E (akEs)E (e∗kA

∗
s)− E (akA

∗
s)E (e∗kEs)

+ E (AkE
∗
k)E (EsA

∗
s) + E (AkEs)E (E∗kA

∗
s) + E (AkA

∗
s)E (E∗kEs)

= O

( j∑
k=l+1

h−1k−1 log k

)2
 = O

(
h−2 (log j)

4
)
.

Therefore by specifying l ∼ jα for an arbitrary α ∈ (0, 1), we can conclude that

Q21,a +Q22,a = O
(
h−2j−α (log j)

2
+ h−2 (log j)

4
)
. (A.2.17)

Next for the parts containing cumulants, Q21,b and Q22,b, following (C.9) in Lobato

(1999), it is sufficient to analyze Q22,b as it is the dominant one, which is given by

Q22,b =

j∑
s6=k;i,k,s=l+1

λ
dXa (u)+dε(u)
k λ

dXa (u)+dε(u)
s

× [cum (ak, e
∗
k, es, a

∗
s)− cum (Ak, E

∗
k , es, a

∗
s)− cum (ak, e

∗
k, Es, A

∗
s) + cum (Ak, E

∗
k , Es, A

∗
s)]
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=

j∑
s6=k;i,k,s=l+1

λ
dXa (u)+dε(u)
k λ

dXa (u)+dε(u)
s

[
cum

(
w̃X̃a,k, w̃

∗
ε̃,k, w̃ε̃,s, w̃

∗
X̃a,s

)
− cum

(
AXa,kw̃ζ̃,k, w̃

∗
ζ̃,k
A∗ε,k, w̃ε̃,s, w̃

∗
X̃a,s

)
−cum

(
w̃X̃a,k, w̃

∗
ε̃,k, Aε,sw̃ζ̃,s, w̃

∗
ζ̃,s
AXa,s

)
+ cum

(
AXa,kw̃ζ̃,k, w̃

∗
ζ̃,k
A∗ε,k, Aε,sw̃ζ̃,s, w̃

∗
ζ̃,s
AXa,s

)]
,

where we denote

w̃X̃a,k =
1√
2πT

T∑
t=1

X̃a,t,u,T e
itλk =

1√
2πT

T∑
t=1

√
2πT

c2Tu
Xa,t,TKh,tue

itλk ,

and denote w̃∗ε̃,k and w̃ζ̃,k in the same way. We firstly consider cum
(
w̃X̃a,k, w̃

∗
ε̃,k, w̃ε̃,s, w̃

∗
X̃a,s

)
,

which is given by

cum
(
w̃X̃a,k, w̃

∗
ε̃,k, w̃ε̃,s, w̃

∗
X̃a,s

)
(A.2.18)

= cum

(
1√
2πT

T∑
t=1

X̃a,t,u,T e
itλk ,

1√
2πT

T∑
t=1

ε̃t,u,T e
−itλk ,

1√
2πT

T∑
t=1

ε̃t,u,T e
itλs ,

1√
2πT

T∑
t=1

X̃a,t,u,T e
−itλs

)

=

∑T
t1,...,t4=1

(2πT )
2 cum

(
X̃a,t1,u,T , ε̃t2,u,T , ε̃t3,u,T , X̃a,t4,u,T

)
ei[(t1−t2)λk+(t3−t4)λs]

=

∑T
t1,...,t4=1

(2πT )
2 cum

 ∞∑
j=0

AXa,t1,T (j) ζt1−j,T ,

∞∑
j=0

Aε,t2,T (j) ζt2−j,T ,

∞∑
j=0

Aε,t3,T (j) ζt3−j,T ,

∞∑
j=0

AXa,t4,T (j) ζt4−j,T


×
(

2πT

c2Tu

)2

Kh,t1uKh,t2uKh,t3uKh,t4ue
i[(t1−t2)λk+(t3−t4)λs]

=

∑T
t1,...,t4=1

(2πT )
2 cum

 ∞∑
j=0

A0
Xa,jζt1−j,T ,

∞∑
j=0

A0
ε,jζt2−j,T ,

∞∑
j=0

A0
ε,jζt3−j,T ,

∞∑
j=0

A0
Xa,jζt4−j,T


×
(

2πT

c2Tu

)2

Kh,t1uKh,t2uKh,t3uKh,t4ue
i[(t1−t2)λk+(t3−t4)λs]O (1 + h)

≡
∑T
t1,...,t4=1

(2πT )
2 cum (G1 (t1) , G2 (t2) , G3 (t3) , G4 (t4))

(
2πT

c2Tu

)2

Kh,t1−4ue
i[(t1−t2)λk+(t3−t4)λs]O (1 + h)

by linearity of cumulants and Assumption 1, where we denote AXa,t1,T (j) as the a-th row

of AX,t1,T (j) and A0
Xa,j

= A0
Xa

(u, j) and A0
ε,j = A0

ε (u, j) using the notation in Assumption

1(ii). In the following we further define the vector

G (t) = (G1 (t) , G2 (t) , G3 (t) , G4 (t))
′
,
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then G (t) is a 4× 1 vector-valued linear process given by

Gi (t) =

∞∑
j=0

A0
Gι,jζt−j,T , ι = 1, . . . 4,

where

A0
G,j =

(
A0′
G1,j , A

0′
G2,j , A

0′
G3,j , A

0′
G4,j

)′
=
(
A0′
Xa,j , A

0′
ε,j , A

0′
ε,j , A

0′
Xa,j

)′
is the 4 × (p+ 1) matrix of filter for G (t). Note that the cumulants provided by (A.2.18)

is derived in the same way as in Lobato (1999, pp. 146), except we involve the kernels(
2πT
c2Tu

)2

Kh,t1uKh,t2uKh,t3uKh,t4u over summation of t. And it is the same for other cu-

mumlants in Q22,b. Therefore (C.9) in Lobato (1999, pp. 146) shall still hold with Dirichlet’s

kernel replaced by a kernelized version, as in the following:

Q22,b =

j∑
s6=k;i,k,s=l+1

λ
dXa (u)+dε(u)
k λ

dXa (u)+dε(u)
s

1

(2π)
3

p+1∑
p1,...,p4=1

κp1,...p4

(2πT )
2

×
∫ π

−π

∫ π

−π

∫ π

−π

[
AG1p1 (λs + λ1 + λ2 + λ3)AG2p2 (λs − λ2)−AG1p1 (λs)AG2p2 (λs)

]
×
[
AG3p3 (λk − λ1)AG4p4 (λk − λ3)−AG3p3 (λk)AG4p4 (λk)

]
Ξks (λ1, λ2, λ3) dλ1dλ2dλ3O (1 + h) ,

where AG1p1 (λ) =
∑∞
j=−∞A0

Gι,j
eijλ, and κp1,...p4 = E (ζp1ζp2ζp3ζp4) − 3, and the same

notation holds for other similar terms. And

Ξks (λ1, λ2, λ3) = D̃ (λs − λ1 − λ2 − λ3) D̃ (λ1 + λk) D̃ (λ2 − λs) D̃ (λ3 − λk)

where D̃ (λ) = 1√
1

2πT c
2
Tu

∑T
t=1Kh,tue

itλ is the ”kernelized” Dirichlet’s kernel. Then following

the reasoning in Lobato (1999, pp. 146-148), it is adequate to consider the order of

P̃j (I, pk) =

∫ π

−π
|AIpk (λ+ λj)−AIpk (λj)|2 K̃ (λ− λj) dλ, I = Xa, ε,

where

K̃ (λ) =
1

c2Tu

∣∣∣∣∣
T∑
t=1

Kh,tue
itλ

∣∣∣∣∣
2

=
1

2πT

∣∣∣D̃ (λ)
∣∣∣2

because it is shown by Lobato (1999) that

Q22,b = O

 j∑
s 6=k;i,k,s=l+1

λ
dXa (u)+dε(u)
k λ

dXa (u)+dε(u)
s P̃

1
2
s (Xa, p1) P̃

1
2
s (ε, p2) P̃

1
2

k (Xa, p3) P̃
1
2

k (ε, p4)


+O

 j∑
s 6=k;i,k,s=l+1

λ
dXa (u)+dε(u)
k λ

dXa (u)+dε(u)
s P̃

1
2
s (Xa, p1) P̃

1
2
s (ε, p2) P̃

1
2

k (ε, p3)λ
−dXa (u)
k



146



+O

 j∑
s 6=k;i,k,s=l+1

λ
dXa (u)+dε(u)
k λ

dXa (u)+dε(u)
s T−

1
2 P̃

1
2
s (Xa, p1) P̃

1
2
s (ε, p2)λ

−dXa (u)−dε(u)
k

 .

And note that P̃j (I, pk) shares the same order for all pk with (A.2.15) as we can replace λ

with λ + λj because of the periodicity of 2π for both AIpk (·) and K̃ (·). Thus P̃j (I, pk) =

O
(
h−1j−1λ

−2dI(u)
j

)
uniformly for all for all pk. Therefore by substitution

Q22,b = O
(
h−2 (log j)

2
+ h−2j

1
2 log j + h−2jT−

1
2 log j

)
,

and together with (A.2.17), we can conclude that

Q2 = O
(
h−1 (log j)

2
+ h−1j

1
4 (log j)

1
2 + h−1j

1
2T−

1
4 (log j)

1
2

)

and

Q̃ (j) = Q1 +Q2 = Op

(
h−1 (log j)

2
+ h−1j

1
4 (log j)

1
2 + h−1j

1
2T−

1
4 (log j)

1
2

)

by our choice of l. Then the order of B̃1,Ma is given by

B̃1,Ma

=

M−1∑
j=1

(
λ

2δ(u)−dXa (u)−dε(u)
j − λ2δ(u)−dXa (u)−dε(u)

j+1

)
· Q̃ (j) + λ

2δ(u)−dXa (u)−dε(u)
M · Q̃ (M)

= Op

T dXa (u)+dε(u)−2δ(u)
M∑
j=1

j2δ(u)−dXa (u)−dε(u)−1
(
h−1 (log j)

2
+ h−1j

1
4 (log j)

1
2 + h−1j

1
2T−

1
4 (log j)

1
2

)
+Op

(
λ

2δ(u)−dXa (u)−dε(u)
M

(
h−1 (logM)

2
+ h−1M

1
4 (logM)

1
2 + h−1M

1
2T−

1
4 (logM)

1
2

))
= Op

(
T dXa (u)+dε(u)−2δ(u)

(
M2δ(u)−dXa (u)−dε(u)h−1 (logM)

2
+M2δ(u)−dXa (u)−dε(u)+ 1

4h−1 (logM)
1
2

))
+Op

(
M2δ(u)−dXa (u)−dε(u)+ 1

2h−1T−
1
4 (logM)

1
2

)
+Op

(
λ

2δ(u)−dXa (u)−dε(u)
M

(
h−1 (logM)

2
+ h−1M

1
4 (logM)

1
2 + h−1M

1
2T−

1
4 (logM)

1
2

))
= Op

(
λ

2δ(u)−dXa (u)−dε(u)
M

(
h−1 (logM)

2
+ h−1M

1
4 (logM)

1
2 + h−1M

1
2T−

1
4 (logM)

1
2

))
,

which completes the proof of Proposition A.1.4.

Proof of Proposition A.1.5. (i) Recall that Zt,T (u) = ζ̃
′

t,u,T

∑
s<t Ct,s,T (u) ζ̃s,u,T , where

Ct,T (u) =

p∑
a=1

ηa
λ
dXa (u)+dε(u)−2δ(u)
M

√
h

2πT
√
M

M∑
j=1

λ
2δ(u)
j Re

(
A′Xa,jAε,j +A′ε,jAXa,j

)
cos (tλj)

≡
√
h

2πT
√
M

M∑
j=1

θj cos (tλj)
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using the notation thatAXa,j = AXa,j (u, λj), Aε,j = Aε,j (u, λj) and ζ̃t,u,T =
ζtKh,tu√

1
T

∑T
t=1K

2
h,tu

.

Note that

T∑
t=1

E
(
Z2
t,T (u) | Ft−1

)
=

T∑
t=2

E

(∑
s<t

∑
r<t

ζ̃ ′sC
′
t−s,T (u) ζ̃tζ̃

′
tCt−r,T (u) ζ̃r | Ft−1

)

=

T∑
t=2

∑
s<t

∑
r<t

ζ̃ ′sC
′
t−s,T (u) K̃2

t,TCt−r,T (u) ζ̃r

=

T∑
t=2

t−1∑
s=1

ζ̃ ′sC
′
t−s,T (u) K̃2

t,TCt−s,T (u) ζ̃s +

T∑
t=2

∑
s 6=r;s,r<t

ζ̃ ′sC
′
t−s,T (u) K̃2

t,TCt−r,T (u) ζ̃r ≡ Z1 + Z2,

where in the second equality K̃2
t,T =

K2
h,tu

1
T

∑T
t=1K

2
h,tu

. Then it suffices to prove Z1
p→
∑p
a=1

∑p
b=1 ηaηbΩab

and Z2 = op (1).

First we study Z2. Note that E (Z2) = 0 and then following the proof of Lemma 2 in

Lobato (1999),

E
(
Z2

2

)
=

T∑
t=2

T∑
z=2

∑
s6=r;s,r<t

∑
v 6=w;v,w<z

E
[
ζ̃ ′sC

′
t−s,T (u) K̃2

t,TCt−r,T (u) ζ̃r ζ̃
′
vC
′
z−v,T (u) K̃2

z,TCz−w,T (u) ζ̃w

]

=

T∑
t=2

T∑
z=2

∑
s6=r;s,r<t

∑
v 6=w;v,w<z

K̃2
t,T K̃

2
z,TE

[
tr
(
ζ̃ ′sC

′
t−s,T (u)Ct−r,T (u) ζ̃r ζ̃

′
vC
′
z−v,T (u)Cz−w,T (u) ζ̃w

)]

=

T∑
t=2

T∑
z=2

∑
s6=r;s,r<t

∑
v 6=w;v,w<z

K̃2
t,T K̃

2
z,Tvec′

(
C ′t−s,T (u)Ct−r,T (u)

)
E
[
ζ̃r ζ̃
′
v ⊗ ζ̃sζ̃ ′w

]
vec
(
C ′z−v,T (u)Cz−w,T (u)

)
,

using the fact that tr(ABCD) = vec (A′)
′
(D′ ⊗B) vec (C). The expectation part above is

given by

E
[
ζ̃r ζ̃
′
v ⊗ ζ̃sζ̃ ′w

]
=
Kh,ruKh,vuKh,suKh,wu(

1
T

∑T
t=1K

2
h,tu

)2 E [ζrζ
′
v ⊗ ζsζ ′w]

= K̃r,T K̃v,T K̃s,T K̃w,T

[
(Ip+1 ⊗ Ip+1) 1 (r = v 6= s = w) + P̃1 (r = w 6= s = v)

]

by Assumption 1(i), where P̃ is defined as in Assumption 1(i) and (2.3.6) as a constant

permutation matrix that has the same dimension as Ip+1⊗Ip+1. Therefore we can decompose
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E
(
Z2

2

)
by

E
(
Z2

2

)
=

T∑
t=2

T∑
z=2

(z∧t)−1∑
s,r=1
s 6=r

K̃2
t,T K̃

2
z,T K̃

2
r,T K̃

2
s,T tr

(
C ′t−s,T (u)Ct−r,T (u)C ′z−r,T (u)Cz−s,T (u)

)
(A.2.19)

+

T∑
t=2

T∑
z=2

(z∧t)−1∑
s,r=1
s 6=r

K̃2
t,T K̃

2
z,T K̃

2
r,T K̃

2
s,Tvec

(
C ′t−s,T (u)Ct−r,T (u)

)′
P̃vec

(
C ′z−s,T (u)Cz−r,T (u)

)

≡ Z21 + Z22,

where a ∧ b = min (a, b) . For Z21, we have

Z21 = 2

T∑
t=2

T∑
z=2

(z∧t)−1∑
r>s

K̃2
t,T K̃

2
z,T K̃

2
r,T K̃

2
s,T tr

(
C ′t−s,T (u)Ct−r,T (u)C ′z−r,T (u)Cz−s,T (u)

)
= 2

T∑
t=2

t−1∑
r>s

K̃4
t,T K̃

2
r,T K̃

2
s,T tr

(
C ′t−s,T (u)Ct−r,T (u)C ′t−r,T (u)Ct−s,T (u)

)
+ 4

T∑
t=3

t−1∑
z=2

z−1∑
r>s

K̃2
t,T K̃

2
z,T K̃

2
r,T K̃

2
s,T tr

(
C ′t−s,T (u)Ct−r,T (u)C ′z−r,T (u)Cz−s,T (u)

)
≡ Z21,a + Z21,b.

It is easy to show that the order of Z21,a is not bigger than that of Z21,b. So we can focus

on Z21,b below. By Cauchy-Schwarz inequality,

Z21,b ≤ 4

T∑
t=3

t−1∑
z=2

z−1∑
r>s

K̃2
t,T K̃

2
z,T K̃

2
r,T K̃

2
s,T

∥∥C ′t−s,T (u)Ct−r,T (u)
∥∥∥∥C ′z−r,T (u)Cz−s,T (u)

∥∥
(A.2.20)

≤ 4

T∑
t=3

t−1∑
z=2

K̃2
t,T K̃

2
z,T

z−1∑
r=1

K̃2
r,T ‖Cz−r,T (u)‖2

z−1∑
r=1

K̃2
r,T ‖Ct−r,T (u)‖2

≤ Qh−2
T∑
t=3

t−1∑
z=2

K̃2
t,T K̃

2
z,T

z−1∑
r=1

‖Cz−r,T (u)‖2
z−1∑
r=1

‖Ct−r,T (u)‖2

= Qh−2
T∑
t=3

t−1∑
z=2

K̃2
t,T K̃

2
z,T

z−1∑
r=1

‖Cr,T (u)‖2
t−1∑

r=t−z+1

‖Cr,T (u)‖2

≤ Qh−2

(
T∑
t=1

‖Ct,T (u)‖2
)

T∑
t=3

K̃2
t,T

t−1∑
z=2

K̃2
z,T

t−1∑
r=t−z+1

‖Cr,T (u)‖2

≤ QTh−3

(
T∑
t=1

‖Ct,T (u)‖2
)(

T∑
t=1

t ‖Ct,T (u)‖2
)
,

where the third inequality holds for some absolute constant Q by Assumption 3(i) and
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Riemann sum approximation, and the last inequality holds by the following:

T∑
t=3

t−1∑
z=2

K̃2
t,T K̃

2
z,T

t−1∑
r=t−z+1

‖Cr,T (u)‖2

= K̃2
2,T K̃

2
3,T ‖C2,T (u)‖2

+ K̃2
3,T K̃

2
4,T ‖C2,T (u)‖2 +

(
K̃2

2,T K̃
2
4,T + K̃2

3,T K̃
2
4,T

)
‖C3,T (u)‖2

+ K̃2
4,T K̃

2
5,T ‖C2,T (u)‖2 +

(
K̃2

3,T K̃
2
5,T + K̃2

4,T K̃
2
5,T

)
‖C3,T (u)‖2

+
(
K̃2

2,T K̃
2
5,T + K̃2

3,T K̃
2
5,T + K̃2

4,T K̃
2
5,T

)
‖C4,T (u)‖2

. . .

+ K̃2
T−1,T K̃

2
T,T ‖C2,T (u)‖2 + · · ·+

(
K̃2

2,T K̃
2
T,T + · · ·+ K̃2

T−1,T K̃
2
T,T

)
‖CT−1,T (u)‖2

≤ C
T∑
t=3

‖Ct−1,T (u)‖2 (t− 2)

T−t+2∑
s=2

K̃4
s,T

≤ C

(
T∑
t=1

K̃4
t,T

)(
T∑
t=1

t ‖Ct,T (u)‖2
)
≤ CTh−1

bT/2c∑
t=1

t ‖Ct,T (u)‖2 ,

for some constant C, where in the last inequality bXc is defined as the largest integer that

is smaller than X. Note that our Ct,T (u) is numerically identical to that in the proof of

Theorem 1 in Nielsen (2005) except the dependence on u and an extra multiplier
√
h, and

this dependence makes the asymptotic order of Ct,T (u) analogous to the corresponding order

in Nielsen (2005, pp. 301-302) as

‖Ct,T (u)‖ = O

(√
Mh

T
+

√
h

t
√
M

)
(A.2.21)

and
T∑
t=1

‖Ct,T (u)‖2 = O

bT/Mc∑
t=1

Mh

T 2
+

T∑
t=bT/Mc+1

h

t2M

 = O

(
h

T

)
,

using the cut-off t = bT/Mc as in Nielsen (2005). Then for h−3
∑bT/2c
t=1 t ‖Ct,T (u)‖2 we use

a different cut-off t = bT/Mc from Nielsen (2005) and the sum is given by

h−3

bT/2c∑
t=1

t ‖Ct,T (u)‖2 = O

h−2

bT/Mc∑
t=1

tM

T 2
+

bT/2c∑
t=bT/Mc+1

1

tM


= O

(
M

T 2h2
(T/M)

2
+

1

Mh2

(
log T − log

T

M

))
= O

(
logM

Mh2

)
= o (1)
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by Assumption 4(iii). Note that bT/Mc is an appropriate cut-off because

T

2
>

T

M
> 1

in asymptotics. Therefore we prove the negligibility for Z21. Next for Z22 we have

|Z22|

≤
T∑
t=2

T∑
z=2

(z∧t)−1∑
s6=r;s,r<t

K̃2
t,T K̃

2
z,T K̃

2
r,T K̃

2
s,T

∥∥vec
(
C ′t−s,T (u)Ct−r,T (u)

)∥∥ ∥∥∥P̃∥∥∥∥∥vec
(
C ′z−s,T (u)Cz−r,T (u)

)∥∥
=
∥∥∥P̃∥∥∥ T∑

t=2

T∑
z=2

(z∧t)−1∑
s6=r;s,r<t

K̃2
t,T K̃

2
z,T K̃

2
r,T K̃

2
s,T

∥∥vec
(
C ′t−s,T (u)Ct−r,T (u)

)∥∥ ∥∥vec
(
C ′z−s,T (u)Cz−r,T (u)

)∥∥
≤ 2

∥∥∥P̃∥∥∥ T∑
t=2

T∑
z=2

(z∧t)−1∑
r>s

K̃2
t,T K̃

2
z,T K̃

2
r,T K̃

2
s,T

∥∥C ′t−s,T (u)Ct−r,T (u)
∥∥∥∥C ′z−s,T (u)Cz−r,T (u)

∥∥
= 2

∥∥∥P̃∥∥∥ T∑
t=2

t−1∑
r>s

K̃2
t,T K̃

2
z,T K̃

2
r,T K̃

2
s,T

∥∥C ′t−s,T (u)Ct−r,T (u)
∥∥2

+ 4
∥∥∥P̃∥∥∥ T∑

t=3

t−1∑
z=2

z−1∑
r>s

K̃2
t,T K̃

2
z,T K̃

2
r,T K̃

2
s,T

∥∥C ′t−s,T (u)Ct−r,T (u)
∥∥∥∥C ′z−s,T (u)Cz−r,T (u)

∥∥
≡ Z22,a + Z22,b,

where the third inequality holds by the fact that ‖vec (X)‖ = ‖X‖ for any matrix X. Note

that
∥∥∥P̃∥∥∥ is finite as a permutation matrix. Therefore as we just analyzed, Z22,a is smaller

than Z22,b, and Z22,b has the same bound as in (A.2.20), which implies that Z22 is negligible

as well.

Next, we prove Z1 =
∑T
t=2

∑t−1
s=1 ζ̃

′
sC
′
t−s,T (u) K̃2

t,TCt−s,T (u) ζ̃s
p→
∑p
a=1

∑p
b=1 ηaηbΩab.

For E (Z1) , we have

E (Z1) =

T∑
t=2

t−1∑
s=1

K̃2
t,T tr

[
C ′t−s,T (u)Ct−s,T (u)E

(
ζ̃sζ̃
′
s

)]
=

T∑
t=2

t−1∑
s=1

K̃2
t,T K̃

2
s,T tr

[
C ′t−s,T (u)Ct−s,T (u)

]
=

T∑
t=2

t−1∑
s=1

hK̃2
t,T K̃

2
s,T

4π2T 2M

M∑
j,k=1

tr
[
θ′jθk

]
cos ((t− s)λj) cos ((t− s)λk)

=

T∑
t=2

t−1∑
s=1

hK̃2
t,T K̃

2
s,T

4π2T 2M

M∑
j=1

tr
[
θ′jθj

]
cos2 ((t− s)λj)

+

T∑
t=2

t−1∑
s=1

hK̃2
t,T K̃

2
s,T

4π2T 2M

∑
j 6=k

tr
[
θ′jθk

]
cos ((t− s)λj) cos ((t− s)λk)

≡ EZ11 + EZ12.
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For both EZ11 and EZ12, we can firstly consider the summation over time domain, under

either j = k or j 6= k, which is given by

h

T 2

T∑
t=2

t−1∑
s=1

K̃2
t,T K̃

2
s,T cos ((t− s)λj) cos ((t− s)λk) (A.2.22)

=
h

4T 2

T∑
t=2

t−1∑
s=1

K̃2
t,T K̃

2
s,T

(
ei(t−s)λj + e−i(t−s)λj

)(
ei(t−s)λk + e−i(t−s)λk

)
=

h

4T 2

T∑
t=2

t−1∑
s=1

K̃2
t,T K̃

2
s,T

(
ei(t−s)λj+k + e−i(t−s)λj−k + ei(t−s)λj−k + e−i(t−s)λj+k

)
=

h

8T 2

T∑
t=1

T∑
s=1

K̃2
t,T K̃

2
s,T

(
ei(t−s)λj+k + e−i(t−s)λj−k + ei(t−s)λj−k + e−i(t−s)λj+k

)
− h

8T 2

T∑
t=1

K̃4
t,T

=
h

4T 2

T∑
t=1

T∑
s=1

K̃2
t,T K̃

2
s,T

(
ei(t−s)λj+k + ei(t−s)λj−k

)
− h

8T 2

T∑
t=1

K̃4
t,T

=
h

4T 2

T∑
t=1

T∑
s=1

K̃2
t,T K̃

2
s,T

(
ei(t−s)λj+k + ei(t−s)λj−k

)
+O

(
1

T

)

Note that
∑T
t=1

∑T
s=1 K̃

2
t,T K̃

2
s,T e

i(t−s)λj+k is the periodogram of K̃2
t,T at frequency λj+k, and

it is thus equal to
∑T
t=1

∑T
s=1 K̃

2
t,T K̃

2
s,T e

−i(t−s)λj+k , and
∑T
t=1

∑T
s=1 K̃

2
t,T K̃

2
s,T e

i(t−s)λj−k has

the similar argument. Then we can focus on the DFT of K̃2
t,T at frequencies λj+k and λj−k,

in which we consider the latter for instance. Note that when j = k, it is easy to see that
√
h
T

∑T
t=1 K̃

2
t,T e

itλj−k =
√
h
T

∑T
t=1 K̃

2
t,T =

√
h; and when j 6= k we denote q = j − k and it

follows by Assumption 3(iv) that

∣∣∣∣∣
√
h

T

T∑
t=1

K̃2
t,T e

itλq

∣∣∣∣∣ =

√
h∑T

t=1 k
2
(
t−Tu
Th

) ∣∣∣∣∣
T∑
t=1

k2

(
t− Tu
Th

)
eitλq

∣∣∣∣∣
=

√
h

Thκ02 + o (1)

∣∣∣∣∣
T∑
t=1

k2

(
t− Tu
Th

)
eitλq

∣∣∣∣∣→ θ (u, q)

κ02
<∞ (A.2.23)

as T →∞. And the same reasoning can hold for DFT of K̃2
t,T at frequencies λj+k as well.

Then since a periodogram is the squared modulus of a DFT, we can see that

h

T 2

T∑
t=1

T∑
s=1

K̃2
t,T K̃

2
s,T e

i(t−s)λj−k → θ (u, j − k)

κ02
.

And a similar consequence holds for
∑T
t=1

∑T
s=1 K̃

2
t,T K̃

2
s,T e

i(t−s)λj+k , which then altogether

implies that

h

T 2

T∑
t=2

t−1∑
s=1

K̃2
t,T K̃

2
s,T cos ((t− s)λj) cos ((t− s)λk)

=
h

4T 2

T∑
t=1

T∑
s=1

K̃2
t,T K̃

2
s,T

(
ei(t−s)λj+k + ei(t−s)λj−k

)
+O

(
1

T

)
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=
θ (u, j − k) + θ (u, j − k)

4κ02
1 (j 6= k) + o

(
1

M

)
+O

(
1

T

)
≡
(
θ∗ (u, j, k)

4κ02
+ o

(
1

M

))
1 (j 6= k) .

Then it is sufficient to consider the asymptotics of EZ12 with summation over j and k, which

is given by

EZ12 =

T∑
t=2

t−1∑
s=1

hK̃2
t,T K̃

2
s,T

4π2T 2M

∑
j 6=k

tr
[
θ
′

jθk

]
cos ((t− s)λj) cos ((t− s)λk) (A.2.24)

=
λ
dXa (u)+dXb (u)+2dε(u)−4δ(u)

M

4π2κ02M

p∑
a=1

p∑
b=1

ηaηb
∑

j 6=k;j+k≤θ(u);j−k≤θ(u)

θ∗ (u, j, k)

· λ2δ(u)
j λ

2δ(u)
k tr

[
Re
(
A
′

Xa,jAε,j +A
′

ε,jAXa,j

)
Re
(
A
′

Xb,k
Aε,k +A

′

ε,kAXb,k

)]
+
λ

2dXa (u)+2dε(u)−4δ(u)
M

4π2κ02M

p∑
a=1

p∑
b=1

ηaηb
∑
j 6=k

o

(
1

M

)
· λ2δ(u)

j λ
2δ(u)
k tr

[
Re
(
A
′

Xa,jAε,j +A
′

ε,jAXa,j

)
Re
(
A
′

Xb,k
Aε,k +A

′

ε,kAXb,k

)]

where in the second equality we take into consideration the definition of the limit θ (u, j),

note that the finiteness of θ (u) guarantees the validity of order 1
M . And within the trace

operator above, we have Re
(
A
′

Xa,j
Aε,j +A

′

ε,jAXa,j

)
given by

Re
(
A
′

Xa,jAε,j +A
′

ε,jAXa,j

)
= Re

(
A∗Xa,jAε,j +A∗ε,jAXa,j

)
= Re

 0p×p Ã∗Xa,jÃε,j

01×p 01×1

+

 0p×p 0p×1

ÃXa,jÃ
∗
ε,j 01×1



=

 0p×p Re
(
Ã∗Xa,jÃε,j

)
Re
(
ÃXa,jÃ

∗
ε,j

)
01×1


from Assumption 1(i) and the fact that Re (X) = Re

(
X
)

for any complex vector X with

conjugate X, and thus the similar conclusion holds for Re
(
A
′

Xa,k
Aε,k +A

′

ε,kAXa,k

)
. There-

fore

tr
[
Re
(
A
′

Xa,jAε,j +A
′

ε,jAXa,j

)
Re
(
A
′

Xb,k
Aε,k +A

′

ε,kAXb,k

)]
= tr

[
Re
(
A∗Xa,jAε,j +A

∗

ε,jAXa,j

)
Re
(
A∗Xb,kAε,k +A∗ε,kAXb,k

)]
= tr


 0p×p Re

(
Ã∗Xa,jÃε,j

)
Re
(
ÃXa,jÃ

∗
ε,j

)
01×1


 0p×p Re

(
Ã∗Xb,kÃε,k

)
Re
(
ÃXb,kÃ

∗
ε,k

)
01×1




= tr


 Re

(
Ã∗Xa,jÃε,j

)
Re
(
ÃXb,kÃ

∗
ε,k

)
0p×1

01×p Re
(
ÃXa,jÃ

∗
ε,j

)
Re
(
Ã∗Xb,kÃε,k

)


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= tr
[
Re
(
Ã∗Xa,jÃε,j

)
Re
(
ÃXb,kÃ

∗
ε,k

)]
+ Re

(
ÃXa,jÃ

∗
ε,j

)
Re
(
Ã∗Xb,kÃε,k

)
= Re

(
ÃXb,kÃ

∗
ε,k

)
Re
(
Ã∗Xa,jÃε,j

)
+ Re

(
ÃXa,jÃ

∗
ε,j

)
Re
(
Ã∗Xb,kÃε,k

)
.

Denote the l-th element of ÃXa,k as ÃXa,k(l), then we have

Re
(
ÃXb,kÃ

∗
ε,k

)
Re
(
Ã∗Xa,jÃε,j

)
=

p∑
l=1

Re
(
ÃXb,k(l)Ã

∗
ε,k

)
Re
(
Ã∗Xa,j(l)Ãε,j

)
.

Note that by Assumption 1(i) and 2(i), fε (u, λj) = 1
2π

∣∣∣Ãε,j∣∣∣2 and fXa (u, λj) = 1
2π

∣∣∣ÃXa,j∣∣∣2.

Then by Lobato (1997, pp. 151), there exist a nonempty subset L ⊆ {1, . . . , p} such that

1
2π

∣∣∣ÃXa,j(l)∣∣∣2 ∼ Clλ
−2dXa (u)
j for all l ∈ L and

∑
l∈L Cl = GXaa , and for the rest of the

arguments m ∈ {1, . . . , p} \L, 1
2π

∣∣∣ÃXa,j(m)

∣∣∣2 = o
(
λ
−2dXa (u)
j

)
. Then take Re

(
Ã∗Xa,jÃε,j

)
for instance, we can see that

Re
(
Ã∗Xa,jÃε,j

)
= Re

(
ÃXa,j

)
Re
(
Ãε,j

)
− Im

(
ÃXa,j

)
Im
(
Ãε,j

)
.

And note that by Assumption 2(ii) Im
(
ÃXa,j

)
= O

(
λ
γ−2dXa (u)
j

)
and Im

(
Ãε,j

)
= O

(
λ
γ−2dε(u)
j

)
,

which implies that the Re
(
ÃXa,j

)
and Re

(
Ãε,j

)
are the leading terms in

∣∣∣ÃXa,j∣∣∣2 and∣∣∣Ãε,j∣∣∣2 respectively, therefore

Re
(
Ã∗Xa,jÃε,j

)
=
∣∣∣ÃXa,j∣∣∣ ∣∣∣Ãε,j∣∣∣+O

(
λ

2γ−2dXa (u)−2dε(u)
j

)
∼ 2πG

1
2

Xaa
G

1
2
ε λ
−dXa (u)−dε(u)
j .

By the same reasoning, Re
(
ÃXb,kÃ

∗
ε,k

)
∼ 2πG

1
2

Xbb
G

1
2
ε λ
−dXb (u)−dε(u)

k , which implies that

tr
[
Re
(
A
′

Xa,jAε,j +A
′

ε,jAXa,j

)
Re
(
A
′

Xb,k
Aε,k +A

′

ε,kAXb,k

)]
∼ 8π2G

1
2

Xaa
G

1
2

Xbb
Gελ

−dXa (u)−dε(u)
j λ

−dXb (u)−dε(u)

k .

Substituting this result into (A.2.24) we have

EZ12 =

T∑
t=2

t−1∑
s=1

hK̃2
t,T K̃

2
s,T

4π2T 2M

M∑
j,k=1

tr
[
θ
′

jθk

]
cos ((t− s)λj) cos ((t− s)λk)

∼
2G

1
2

Xaa
G

1
2

Xbb
Gελ

dXa (u)+dXb (u)+2dε(u)−4δ(u)

M

κ02M

p∑
a=1

p∑
b=1

ηaηb

·
∑

j 6=k;j+k≤θ(u);j−k≤θ(u)

θ∗ (u, j, k)λ
2δ(u)−dXa (u)−dε(u)
j λ

2δ(u)−dXb (u)−dε(u)

k
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→
p∑
a=1

p∑
b=1

ηaηbΘ
∗

 G
1
2

Xaa
G

1
2

Xbb
Gε

(1− dXa (u)− dε (u) + 2δ (u))

 .

Then it remains to analyze the order of EZ11, which can be done in the same manner as

above. Note that in EZ11,

cos2 ((t− s)λj) =
1

2
[cos (2 (t− s)λj) + 1] .

Then consider the summation over time domain first, we have

h

T 2

T∑
t=2

t−1∑
s=1

K̃2
t,T K̃

2
s,T cos2 ((t− s)λj)

=
h

2T 2

T∑
t=2

t−1∑
s=1

K̃2
t,T K̃

2
s,T (cos (2 (t− s)λj) + 1)

=
h

2T 2

T∑
t=2

t−1∑
s=1

K̃2
t,T K̃

2
s,T cos (2 (t− s)λj) +

h

2T 2

T∑
t=2

t−1∑
s=1

K̃2
t,T K̃

2
s,T ≡ EZ11,a + EZ11,b,

where firstly EZ11,b is given by

EZ11,b =
h

2T 2

T∑
t=2

t−1∑
s=1

K̃2
t,T K̃

2
s,T =

h

2T 2

( T∑
t=1

K̃2
t,T

)2

−
T∑
t=1

K̃4
t,T


=

h

2T 2

(
T∑
t=1

K2
h,tu

1
T

∑T
t=1K

2
h,tu

)2

− h

2T 2

T∑
t=1

K4
h,tu(

1
T

∑T
t=1K

2
h,tu

)2

= O
(
h+ T−1

)
,

and then EZ11,a is given by

EZ11,a =
h

2T 2

T∑
t=2

t−1∑
s=1

K̃2
t,T K̃

2
s,T cos (2 (t− s)λj)

=
h

4T 2

[
T∑
t=1

T∑
s=1

K̃2
t,T K̃

2
s,T cos (2 (t− s)λj)−

T∑
t=1

K̃4
t,T

]

=
h

4T 2
Re

 T∑
t=1

T∑
s=1

K2
h,tuK

2
h,su(

1
T

∑T
t=1K

2
h,tu

)2 e
i(t−s)2λj

+O
(
T−1

)
≤ θ (u, 2j) + o

(
1

M

)
,

by Assumption 3(iv). Thus EZ11,a+EZ11,b ≤ θ (u, 2j)+O (h), and this order holds uniformly
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over j. Then given the properties of function θ (u, j), we have as T →∞,

EZ11 =

T∑
t=2

t−1∑
s=1

hK̃2
t,T K̃

2
s,T

4π2T 2M

M∑
j=1

tr
[
θ
′

jθj

]
cos2 ((t− s)λj)

≤
2GXabGελ

dXa (u)+dXb (u)+2dε(u)−4δ(u)

M

κ02M

p∑
a=1

p∑
b=1

ηaηb
∑
j≤θ(u)

θ (u, 2j)λ
4δ(u)−dXa (u)−dXb (u)−2dε(u)

j

+O (h)
2GXabGελ

dXa (u)+dXb (u)+2dε(u)−4δ(u)

M

κ02M

p∑
a=1

p∑
b=1

ηaηb

M∑
j=1

λ
4δ(u)−dXa (u)−dXb (u)−2dε(u)

j

=
2GXabGε
κ02M

p∑
a=1

p∑
b=1

ηaηb
∑
j≤θ(u)

θ (u, 2j)
j

M

4δ(u)−dXa (u)−dXb (u)−2dε(u)

+O (h) = o (1)

using the conclusion in Nielsen (2005, pp. 294) and the fact that θ (u) is finite. Therefore

combining what we have derived for EZ11 and EZ12, we can conclude that

E (Z1)→
p∑
a=1

p∑
b=1

ηaηbΘ
∗

 G
1
2

Xaa
G

1
2

Xbb
Gε

(1− dXa (u)− dε (u) + 2δ (u))

 =

p∑
a=1

p∑
b=1

ηaηbΩab.

Next to prove the convergence in probability we study E
(
Z2

1

)
. Note that

E
(
Z2

1

)
(A.2.25)

= E

∣∣∣∣∣
T∑
t=2

t−1∑
s=1

ζ̃ ′sC
′
t−s,T (u) K̃2

t,TCt−s,T (u) ζ̃s

∣∣∣∣∣
2

= E

(
T∑

t1,t2=2

t1−1∑
s1=1

t2−1∑
s2=1

ζ̃ ′s1C
′
t1−s1,T (u) K̃2

t1,TCt1−s1,T (u) ζ̃s1 ζ̃
′
s2C

′
t2−s2,T (u) K̃2

t2,TCt2−s2,T (u) ζ̃s2

)

=

T∑
t1,t2=2

t1−1∑
s1=1

t2−1∑
s2=1

K̃2
t1,T K̃

2
t2,TE

(
tr
[
C ′t1−s1,T (u)Ct1−s1,T (u) ζ̃s1 ζ̃

′
s2C

′
t2−s2,T (u)Ct2−s2,T (u) ζ̃s2 ζ̃

′
s1

])

=

T∑
t1,t2=2

t1−1∑
s1=1

t2−1∑
s2=1

K̃2
t1,T K̃

2
t2,Tvec

(
C ′t2−s2,T (u)Ct2−s2,T (u)

)′ E(ζ̃s2 ζ̃ ′s1 ⊗ ζ̃s2 ζ̃ ′s1) vec
(
C ′t1−s1,T (u)Ct1−s1,T (u)

)
=

T∑
t1,t2=2

t1−1∑
s1=1

t2−1∑
s2=1

K̃2
t1,T K̃

2
t2,T K̃

2
s1,T K̃

2
s2,T

× vec
(
C ′t2−s2,T (u)Ct2−s2,T (u)

)′ E (ζs2ζ ′s1 ⊗ ζs2ζ ′s1) vec
(
C ′t1−s1,T (u)Ct1−s1,T (u)

)
=

T∑
t1,t2=2

(t1−1)∧(t2−1)∑
s=1

K̃2
t1,T K̃

2
t2,T K̃

4
s,T

× vec
(
C ′t2−s2,T (u)Ct2−s2,T (u)

)′ E (ζsζ
′
s ⊗ ζsζ ′s) vec

(
C ′t1−s1,T (u)Ct1−s1,T (u)

)
+

T∑
t1,t2=2

(t1−1)∧(t2−1)∑
s1,s2=1
s1 6=s2

K̃2
t1,T K̃

2
t2,T K̃

2
s1,T K̃

2
s2,T

×
(

vec
(
C
′

t2−s2,T (u)Ct2−s2,T (u)
)′

E
(
ζs2ζ

′

s1 ⊗ ζs2ζ
′

s1

)
vec
(
C
′

t1−s1,T (u)Ct1−s1,T (u)
))

156



≡ SZ1 + SZ2.

Firstly for SZ2, we have E
(
ζs2ζ

′

s1 ⊗ ζs2ζ
′

s1

)
= C̃ by Assumption 1(i) with the sparse con-

stant matrix C̃ is given in detail by

C̃ =


e11 e12 · · · e1,p+1

...
. . .

...

ep+1,1 ep+1,2 · · · ep+1,p+1

 ,

where eij is a (p+ 1) × (p+ 1) matrix with all elements equal to zero except the (i, j)-th

one. Therefore

SZ2

=

T∑
t1=2

T∑
t2=2

(t1−1)∧(t2−1)∑
s1,s2=1
s1 6=s2

K̃2
t1,T K̃

2
t2,T K̃

2
s1,T K̃

2
s2,Tvec

(
C
′

t2−s2,T (u)Ct2−s2,T (u)
)′
C̃vec

(
C
′

t1−s1,T (u)Ct1−s1,T (u)
)

=

T∑
t1=2

T∑
t2=2

(t1−1)∧(t2−1)∑
s1,s2=1
s1 6=s2

K̃2
t1,T K̃

2
t2,T K̃

2
s1,T K̃

2
s2,T tr

(
C
′

t1−s1,T (u)Ct1−s1,T (u)
)

tr
(
C
′

t2−s2,T (u)Ct2−s2,T (u)
)

= E (Z1)
2 −

T∑
t1=2

T∑
t2=2

(t1−1)∧(t2−1)∑
s=1

K̃2
t1,T K̃

2
t2,T K̃

4
s,T tr

(
C
′

t1−s,T (u)Ct1−s,T (u)
)

tr
(
C
′

t2−s,T (u)Ct2−s,T (u)
)

≡ E (Z1)
2 −RSZ2,

where RSZ2 can be further given by

RSZ2 =

T∑
t1=2

T∑
t2=2

(t1−1)∧(t2−1)∑
s=1

K̃2
t1,T K̃

2
t2,T K̃

4
s,T

 h

4π2T 2M

M∑
j,k=1

tr
(
θ
′

jθk

)
cos ((t1 − s)λj) cos ((t1 − s)λk)


×

 h

4π2T 2M

M∑
j,k=1

tr
(
θ
′

jθk

)
cos ((t2 − s)λj) cos ((t2 − s)λk)

 .

Note that by Nielsen (2005, pp. 294), ‖θj‖ = O

((
M
j

)dXa (u)+dε(u)−2δ(u)
)

as θj in our study

is numerically identical to the one in Nielsen (2005), and thus using this property |RSZ2|

can be bounded by

|RSZ2|

≤ 1

T

T∑
t2=1

K̃2
t2,T

h

4π2M

1

T

M∑
j,k=1

∣∣tr (θ′jθk)∣∣
×

∣∣∣∣∣∣
T∑

t1=1

T∑
s=1

K̃2
t1,T K̃

4
s,T

h

4π2T 2M

M∑
j,k=1

tr
(
θ′jθk

)
cos ((t1 − s)λj) cos ((t1 − s)λk)

∣∣∣∣∣∣
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= O (Mh)

∣∣∣∣∣∣
T∑

t1=1

T∑
s=1

K̃2
t1,T K̃

4
s,T

h

4π2T 3M

M∑
j,k=1

tr
(
θ′jθk

)
cos ((t1 − s)λj) cos ((t1 − s)λk)

∣∣∣∣∣∣
≤ O (Mh)

1

4π2M

M∑
j,k=1

∣∣tr (θ′jθk)∣∣
∣∣∣∣∣ hT 3

T∑
t1=1

T∑
s=1

K̃2
t1,T K̃

4
s,T cos ((t1 − s)λj) cos ((t1 − s)λk)

∣∣∣∣∣
= O (Mh)

1

4π2M

M∑
j,k=1

∣∣tr (θ′jθk)∣∣
×

∣∣∣∣∣ hT 3

T∑
t1=1

T∑
s=1

K̃2
t1,T K̃

4
s,T

1

4

(
ei(t1−s)λj+k + e−i(t1−s)λj−k + ei(t1−s)λj−k + e−i(t1−s)λj+k

)∣∣∣∣∣
≡ O (Mh)

1

4π2M

M∑
j,k=1

∣∣tr (θ′jθk)∣∣
∣∣∣∣∣ hT 3

T∑
t1=1

T∑
s=1

K̃2
t1,T K̃

4
s,T

1

4
C (λ)

∣∣∣∣∣ ,
where in C (λ) anyone of the four terms can lead to the same order, so it is sufficient to

analyze one of them. We take ei(t1−s)λj+k for instance, and have that

1

4π2M

M∑
j,k=1

∣∣∣tr (θ′jθk)∣∣∣
∣∣∣∣∣ hT 3

T∑
t1=1

T∑
s=1

K̃2
t1,T K̃

4
s,T

1

4
ei(t1−s)λj+k

∣∣∣∣∣
≤ 1

4π2M

M∑
j,k=1

∣∣∣tr (θ′jθk)∣∣∣
∣∣∣∣∣
√
h

T

T∑
t1=1

K̃2
t1,T e

it1λj+k

∣∣∣∣∣
√
h

T 2

T∑
s=1

K̃4
s,T = O

(
1

T
√
h

)

using the same reasoning as in (A.2.23), and the definition that K̃2
t,T =

K2
h,tu

1
T

∑T
t=1K

2
h,tu

. There-

fore |RSZ2| = O
(
Mh
T
√
h

)
= o (1). Next by Assumption 1(i) E

(
ζsζ

′

s ⊗ ζsζ
′

s

)
= B̃, then SZ1

follows that

SZ1 ≤
∥∥∥B̃∥∥∥ T∑

t1=2

T∑
t2=2

(t1−1)∧(t2−1)∑
s=1

K̃2
t1,T K̃

2
t2,T K̃

4
s,T

∥∥∥C ′t2−s,T (u)Ct2−s,T (u)
∥∥∥∥∥∥C ′t1−s,T (u)Ct1−s,T (u)

∥∥∥ ,
which has the same order as |Z21,b| in (A.2.20) and thus negligible. Therefore we can conclude

that E
(
Z2

1

)
= E (Z1)

2
+ o (1) and thus the variance of Z1 is negligible, which then implies

that

Z1 =

p∑
a=1

p∑
b=1

ηaηbΘ
∗

 G
1
2

Xaa
G

1
2

Xbb
Gε

(1− dXa (u)− dε (u) + 2δ (u))

+ op (1) .

Then we complete the proof of arguemnt (i).

(ii) As in Lobato (1999), it is sufficient to prove
∑T
t=1 E

(
Z4
t,T (u)

)
→ 0. Note that

T∑
t=1

E
(
Z4
t,T (u)

)
=

T∑
t=2

E

(∑
s<t

∑
r<t

ζ̃
′

sC
′
t−s,T (u) ζ̃tζ̃

′

tCt−r,T (u) ζ̃r

)2

=

T∑
t=2

E

[∑
s<t

∑
r<t

ζ̃
′

sC
′
t−s,T (u) ζ̃tζ̃

′

tCt−r,T (u) ζ̃r
∑
v<t

∑
w<t

ζ̃
′

vC
′
t−v,T (u) ζ̃tζ̃

′

tCt−w,T (u) ζ̃w

]
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=

T∑
t=2

∑
s,r,v,w<t

E
{

tr
[
Ct−w,T (u) ζ̃w ζ̃

′

sC
′
t−s,T (u) ζ̃tζ̃

′

tCt−r,T (u) ζ̃r ζ̃
′

vC
′
t−v,T (u) ζ̃tζ̃

′

t

]}

=

T∑
t=2

K̃4
t,T

∑
s,r,v,w<t

E
[
vec
(
Ct−r,T (u) ζ̃r ζ̃

′

vC
′
t−v,T (u)

)′ (
ζ̃tζ̃
′

t ⊗ ζ̃tζ̃
′

t

)
vec
(
Ct−s,T (u) ζ̃sζ̃

′

wC
′
t−w,T (u)

)]

≤
∥∥∥B̃∥∥∥ T∑

t=2

K̃4
t,T

∑
s,r,v,w<t

E
∥∥∥vec

(
Ct−r,T (u) ζ̃r ζ̃

′

vC
′
t−v,T (u)

)∥∥∥∥∥∥vec
(
Ct−s,T (u) ζ̃sζ̃

′

wC
′
t−w,T (u)

)∥∥∥
=
∥∥∥B̃∥∥∥ T∑

t=2

K̃4
t,T

∑
s,r,v,w<t

E
∥∥∥Ct−r,T (u) ζ̃r ζ̃

′

vC
′
t−v,T (u)

∥∥∥∥∥∥Ct−s,T (u) ζ̃sζ̃
′

wC
′
t−w,T (u)

∥∥∥
≤
∥∥∥B̃∥∥∥ T∑

t=2

K̃4
t,T

∑
r,v<t

(
E
∥∥∥Ct−r,T (u) ζ̃r ζ̃

′

vC
′
t−v,T (u)

∥∥∥2
) 1

2 ∑
s,w<t

(
E
∥∥∥Ct−s,T (u) ζ̃sζ̃

′

wC
′
t−w,T (u)

∥∥∥2
) 1

2

.

Note that by the same reasoning as how we derive (A.2.19), we have

E
∥∥∥Ct−r,T (u) ζ̃r ζ̃

′

vC
′
t−v,T (u)

∥∥∥2

= E
[
tr
(
C ′t−v,T (u)Ct−v,T (u) ζ̃v ζ̃

′

rC
′

t−r,T (u)Ct−r,T (u) ζ̃r ζ̃
′

v

)]
≤ RK̃2

v,T K̃
2
r,T

∥∥C ′t−v,T (u)Ct−v,T (u)
∥∥∥∥C ′t−r,T (u)Ct−r,T (u)

∥∥
with some constant R, where the last inequality holds by Assumption 1(i) and by the

derivation of (A.2.25). Therefore it is enough to consider EF2 as it is dominant in order

when summing over t, v and r. Then by substitution,

T∑
t=1

E
(
Z4
t,T (u)

)
≤ R

T∑
t=2

K̃4
t,T

∑
r,v<t

K̃v,T K̃r,T

√∥∥∥C ′t−v,T (u)Ct−v,T (u)
∥∥∥∥∥∥C ′t−r,T (u)Ct−r,T (u)

∥∥∥
×
∑
s,w<t

K̃s,T K̃w,T

√∥∥∥C ′t−s,T (u)Ct−s,T (u)
∥∥∥ ∥∥∥C ′t−w,T (u)Ct−w,T (u)

∥∥∥
= R

T∑
t=2

K̃4
t,T

(∑
r<t

K̃r,T

√∥∥∥C ′t−r,T (u)Ct−r,T (u)
∥∥∥)2(∑

s<t

K̃s,T

√∥∥∥C ′t−s,T (u)Ct−s,T (u)
∥∥∥)2

≤ R
T∑
t=2

K̃4
t,T

(∑
r<t

K̃2
r,T

)2(∑
s<t

‖Ct−s,T (u)‖4
)2

≤ Rh−2

(
T∑
r=1

K̃2
r,T

)2 T∑
t=1

(∑
s<t

‖Ct−s,T (u)‖4
)2

= O
(
T 2h−2

)(T−1∑
t=1

(T − t) ‖Ct−s,T (u)‖4
)2

≤ O
(
T 2h−2

)(
T

T−1∑
t=1

‖Ct−s,T (u)‖4
)2

= O

(
M2h2

T 2

)
,
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where the last equality holds because

T−1∑
t=1

‖Ct−s,T (u)‖4 = O

bT/Mc∑
t=1

M2h2

T 4
+

T∑
bT/Mc+1

h2

t4M2


= O

(
Mh2

T 3
+

h2

T 3M2

)
= O

(
Mh2

T 3

)
,

then we can conclude that
∑T
t=1 E

(
Z4
t,T (u)

)
= o (1).

This completes the proof of Proposition A.1.5. �
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Appendix B

Technical Results for Chapter 3

B.1 Proofs of the Main Results

In this appendix we prove the main results in the paper. The proofs call upon some technical

lemmas that proved in the online supplement. Throughout the proof, we use C to denote

some absolute constant that may vary across lines. We use A . B to denote A/B = Op (1) .

B.1.1 Proofs of the Results in Section 3.3

To prove Theorem 3.3.1, we need the following four lemmas.

Lemma B.1.1 Suppose Assumptions A–E and the other conditions for Theorem 3.3.1 hold.

Let H =
(

Λ′Λ
N

)(
F 0′F̂
T

)
V −1
NT and δNT = min

(
N1/2, T 1−max(2dε,1/2)

)
. Then

1

T

∥∥∥F̂ − F 0H
∥∥∥2

= Op

(∥∥∥β̂ − β0
∥∥∥2

+ δ−2
NT

)
.

Lemma B.1.2 Suppose Assumptions A–E and the other conditions for Theorem 3.3.1 hold.

We have

1

N

N∑
i=1

λi
ε′iF̂

T
= Op

(
N−

1
2T dε−

1
2 +N−1 +N−

1
2

∥∥∥β̂ − β0
∥∥∥) .

Lemma B.1.3 Suppose Assumptions A–E and the other conditions for Theorem 3.3.1 hold.

Let J8 = − 1
NT

∑N
i=1X

′
iMF̂

1
NT

∑N
k=1 εkε

′
kF̂Gλi, where G =

(
F 0′F̂
T

)−1 (
Λ′Λ
N

)−1

. Then

J8 = AoNT +Op

(
N−

1
2T dε−

1
2

(∥∥∥β̂ − β0
∥∥∥+ δ−1

NT

))
,

where AoNT = − 1
NT

∑N
i=1X

′
iMF̂

1
NT

∑N
k=1 ΩkF̂Gλi = Op

(
T 2dε−1

)
and Ωk = E (εkε

′
k) for

every k = 1, . . . , N.
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Lemma B.1.4 Suppose Assumptions A–E and the other conditions for Theorem 3.3.1 hold.

We have

1

NT

N∑
i=1

[
X ′iMF̂ −

1

N

N∑
k=1

aikX
′
kMF̂

]
εi

=
1

NT

N∑
i=1

[
X ′iMF 0 − 1

N

N∑
k=1

aikX
′
kMF 0

]
εi + CoNT + op

(∥∥∥β̂ − β0
∥∥∥)+Op

(
N−

1
2T dε−

1
2 δ−1
NT +N−

1
2T dε−1

)
,

where CoNT = 1
NT

∑N
i=1

(Xi−Vi)′F 0

T

(
F 0′F 0

T

)−1 (
Λ′Λ
N

)−1
1
N

∑N
k=1 λkε

′
kεi = Op

(
1
N

)
.

Proof of Theorem 3.3.1. By the definition of β̂, we have

(
1

NT

N∑
i=1

X ′iMF̂Xi

)(
β̂ − β0

)
=

1

NT

N∑
i=1

X ′iMF̂F
0λi +

1

NT

N∑
i=1

X ′iMF̂ εi. (B.1.1)

For the first term on the right hand side (rhs), we have MF̂F
0 = MF̂ (F 0 − F̂H−1) where

H is defined in Lemma B.1.1 as H =
(

Λ′Λ
N

)(
F 0′ F̂
T

)
V −1
NT ≡ G−1V −1

NT . The asymptotic

invertibility of H and VNT can be proved as in Proposition 1 of Bai (2009), as its proof does

not involve any premise of serial persistence, and it holds under long range dependence as

well. Then

1

NT

N∑
i=1

X ′iMF̂F
0λi =

1

NT

N∑
i=1

X ′iMF̂

(
F 0 − F̂H−1

)
λi =

1

NT

N∑
i=1

X
′

iMF̂

(
F 0 − F̂ VNTG

)
λi.

Let δ̂ = β̂ − β0. By the eigenvalue problem in (3.2.6),

F̂ VNT =
1

NT

N∑
i=1

Xiδ̂δ̂
′X ′iF̂ −

1

NT

N∑
i=1

Xiδ̂λ
′
iF

0′F̂ − 1

NT

N∑
i=1

Xiδ̂ε
′
iF̂

+
1

NT

N∑
i=1

F 0λiδ̂
′X ′iF̂ −

1

NT

N∑
i=1

εiδ̂
′X ′iF̂ +

1

NT

N∑
i=1

F 0λiε
′
iF̂

+
1

NT

N∑
i=1

εiλ
′
iF

0′F̂ +
1

NT

N∑
i=1

εiε
′
iF̂ +

1

NT

N∑
i=1

F 0λiλ
′
iF

0′F̂ (B.1.2)

≡ I1 + · · ·+ I9.

Then F̂ VNTG− F 0 = (I1 + · · ·+ I8)G and

1

NT

N∑
i=1

X ′iMF̂F
0λi = − 1

NT

N∑
i=1

X ′iMF̂ [I1 + · · ·+ I8]Gλi ≡ J1 + · · ·+ J8.

We can derive the order of J ′`s by using the same reasoning as used in the proof of Lemma
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B.1.1. For J1, we have

‖J1‖ =

∥∥∥∥∥ 1

NT

N∑
i=1

X ′iMF̂

1

NT

N∑
k=1

Xk δ̂δ̂
′X ′kF̂Gλi

∥∥∥∥∥
≤ 1

N
√
T

N∑
i=1

‖Xi‖ ‖λi‖
1

NT

N∑
k=1

‖Xk‖2
∥∥∥δ̂∥∥∥2 1√

T

∥∥∥F̂∥∥∥ ‖G‖
.
∥∥∥δ̂∥∥∥2

(
1

NT

N∑
i=1

‖Xi‖2
) 1

2
(

1

N

N∑
i=1

‖λi‖2
) 1

2

1

NT

N∑
k=1

‖Xk‖2 = Op

(∥∥∥δ̂∥∥∥2
)
,

where we use the fact that
∥∥MF̂

∥∥
sp

= 1, 1√
T

∥∥∥F̂∥∥∥ =
√
R, and Assumption B(i) and B(iv).

For J3 we have

J3 =
−1

N2

N∑
i=1

N∑
k=1

(
X ′iMF̂Xk

T

)(
ε′kF

0H

T

)
Gλiδ̂

+
−1

N2

N∑
i=1

N∑
k=1

X ′iMF̂Xk

T

ε′k

(
F̂ − F 0H

)
T

Gλiδ̂ ≡ J31 + J32.

Note that

‖J31‖ =

∥∥∥∥∥ 1

N2

N∑
i=1

N∑
k=1

(
X ′iMF̂Xk

T

)(
ε′kF

0H

T

)
Gλiδ̂

∥∥∥∥∥
.
∥∥∥δ̂∥∥∥ 1

N
√
T

N∑
i=1

‖Xi‖ ‖λi‖
∥∥∥∥ε′kF 0H

T

∥∥∥∥ 1

N
√
T

N∑
k=1

‖Xk‖

≤
∥∥∥δ̂∥∥∥ 1

NT

N∑
i=1

‖Xi‖2
[

1

N

N∑
i=1

‖λi‖2
] 1

2
[

1

N

N∑
k=1

∥∥∥∥ε′kF 0H

T

∥∥∥∥2
] 1

2

.
∥∥∥δ̂∥∥∥[ 1

N

N∑
k=1

∥∥∥∥ε′kF 0H

T

∥∥∥∥2
] 1

2

≡
∥∥∥δ̂∥∥∥ J̄31,

by Assumption B(i) and B(iv). By arguments as used to show (B.2.2) in the proof of Lemma

B.1.2 and Assumption D(i), we can show that J̄2
31 = Op

(
T 2dε−1

)
= op (1). Therefore

‖J31‖ = op

(∥∥∥δ̂∥∥∥). Similarly, we can show ‖J32‖ = op

(∥∥∥δ̂∥∥∥) by adopting Lemma B.1.1.

Then ‖J3‖ = op

(∥∥∥δ̂∥∥∥). By the same token, we can show that

‖J5‖ =

∥∥∥∥∥ 1

NT

N∑
i=1

X ′iMF̂

(
1

NT

N∑
k=1

εk δ̂
′X ′kF̂

)
Gλi

∥∥∥∥∥ = op

(∥∥∥δ̂∥∥∥) .
For J4, we have

‖J4‖ =

∥∥∥∥∥ 1

NT

N∑
i=1

X ′iMF̂

(
1

NT

N∑
k=1

F 0λk δ̂
′X ′kF̂

)
Gλi

∥∥∥∥∥
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=
1

N2T 2

∥∥∥∥∥
N∑
i=1

X ′iMF̂

(
F 0 − F̂H−1

) N∑
k=1

λk δ̂
′X ′kF̂Gλi

∥∥∥∥∥
.

{
1

NT

N∑
i=1

‖Xi‖2
}{

1

N

N∑
i=1

‖λi‖2
}1/2

∥∥∥F 0 − F̂H−1
∥∥∥

√
T

∥∥∥δ̂∥∥∥ = op

(∥∥∥δ̂∥∥∥)

by Lemma B.1.1. For J6, we have

‖J6‖ =

∥∥∥∥∥ 1

N2T

N∑
i=1

N∑
k=1

X ′iMF̂Fλk
ε′kF̂

T
Gλi

∥∥∥∥∥
=

∥∥∥∥∥ 1

NT

N∑
i=1

X ′iMF̂

(
F 0 − F̂H−1

)( 1

N

N∑
k=1

λk
ε′kF̂

T

)
Gλi

∥∥∥∥∥
.

1

N
√
T

N∑
i=1

‖Xi‖ ‖λi‖

∥∥∥∥∥ 1

N

N∑
k=1

λk
ε′kF̂

T

∥∥∥∥∥ 1√
T

∥∥∥F 0 − F̂H−1
∥∥∥

.

∥∥∥∥∥ 1

N

N∑
k=1

λk
ε′kF̂

T

∥∥∥∥∥ 1√
T

∥∥∥F 0 − F̂H−1
∥∥∥

= Op

(
N−

1
2T dε−

1
2

(
1 +

∥∥∥δ̂∥∥∥))Op (∥∥∥δ̂∥∥∥+ δ−1
NT

)
= op

(∥∥∥δ̂∥∥∥)+Op

(
N−

1
2T dε−

1
2 δ−1
NT

)

by Lemmas B.1.1 and B.1.2.

As in Bai (2009), J2 and J7 directly enter the asymptotic distribution and J8 con-

tributes to the bias under possible long range dependence. For J8, we make the following

decomposition:

J8 = − 1

NT

N∑
i=1

X ′iMF̂

1

NT

N∑
k=1

εkε
′
kF̂Gλi

= − 1

NT

N∑
i=1

X ′iMF̂

1

NT

N∑
k=1

ΩkF̂Gλi −
1

NT

N∑
i=1

X ′iMF̂

1

NT

N∑
k=1

(εkε
′
k − Ωk)F 0HGλi

− 1

NT

N∑
i=1

X ′iMF̂

1

NT

N∑
k=1

(εkε
′
k − Ωk)

(
F̂ − F 0H

)
Gλi ≡ J81 + J82 + J83.

By Lemma B.1.3, J81 = AoNT = Op
(
T 2dε−1

)
and

J82+J83 = Op

(
N−

1
2T 2dε−1 +N−

1
2T dε−

1
2

(∥∥∥δ̂∥∥∥+ δ−1
NT

))
= op

(∥∥∥δ̂∥∥∥)+Op

(
N−1T dε−

1
2 +N−

1
2T 3dε− 3

2

)
.

In sum, we have

1

NT

N∑
i=1

X ′iMF̂F
0λi = J2+J7+AoNT+op

(∥∥∥δ̂∥∥∥)+Op

(
N−1T dε−

1
2 +N−

1
2T 3dε− 3

2

)
. (B.1.3)
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Combining (B.1.1) and (B.1.3) yields

(
1

NT

N∑
i=1

X ′iMF̂Xi + op (1)

)
δ̂−J2 =

1

NT

N∑
i=1

X ′iMF̂ εi+J7+AoNT+Op

(
N−1T dε−

1
2 +N−

1
2T 3dε− 3

2

)
,

which then implies that

[
DNT

(
F̂
)

+ op (1)
] (
β̂ − β0

)
=

1

NT

N∑
i=1

(
X ′iMF̂ −

1

N

N∑
k=1

aikX
′
kMF̂

)
εi +AoNT +Op

(
N−

1
2T 2dε−1 +N−

1
2T 3dε− 3

2

)
.

(B.1.4)

Then by Lemma B.1.4 and the conditions that T
N → ρ > 0 and dZ,max > dε,

[
D
(
F̂
)

+ op (1)
]
ρNT

(
β̂ − β0

)
=
ρNT
NT

N∑
i=1

[
X ′iMF̂ −

1

N

N∑
k=1

aikX
′
kMF̂

]
εi + ρNTA

o
NT + ρNTOp

(
N−

1
2T 2dε−1 +N−

1
2T 3dε− 3

2

)
=
ρNT
NT

N∑
i=1

[
X ′iMF 0 − 1

N

N∑
k=1

aikX
′
kMF 0

]
εi + ρNT (AoNT + CoNT ) + ρNTOp

(
N−

1
2T 2dε−1 +N−

1
2T dε−

1
2 δ−1
NT

)
,

=
ρNT
NT

N∑
i=1

Z ′iεi + ρNT (AoNT + CoNT ) + op (1) ,

where recall that Zi = MF 0Xi − 1
N

∑N
k=1 aikMF 0Xk. By Assumption E(i), DNT

(
F 0
)

=

1
NT

∑N
i=1 Z

′
iZi

p→ D0 > 0. Using this assumption and Lemma B.1.1, we can readily show

that DNT (F̂ ) = DNT

(
F 0
)

+Op

(∥∥∥δ̂∥∥∥+ δ−1
NT

)
= D0 + op (1). It follows that

ρNT

(
β̂ − β0 − 1

T 1−2dε
AoNT −

1

N
CoNT

)
d→ N

(
0, D−1

0 ΣD−1
0

)
,

where

ANT = −DNT

(
F 0
)−1 1

NT 1+2dε

N∑
i=1

X ′iMF
1

N

N∑
k=1

ΩkF̂

(
F 0′F̂

T

)−1(
Λ′Λ

N

)−1

λi, and

CNT = −DNT

(
F 0
)−1 1

NT

N∑
i=1

(Xi − Vi)′ F 0

T

(
F 0′F 0

T

)−1(
Λ′Λ

N

)−1 N∑
k=1

λkε
′
kεi.

This completes the proof of Theorem 3.3.1. �
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B.1.2 Proofs of the Results in Section 3.4

To prove Proposition 3.4.1, we need the following lemma whose proofs can be found in

Supplemental Material.

Lemma B.1.5 Under Assumptions A–D and A∗−B∗ we have

(i) supW̃F∈W

∥∥∥ 1
NT

∑N
i=1W

∗
X,iMW̃F

W ∗ε,i

∥∥∥ = op (1);

(ii) supW̃F∈W

∥∥∥ 1
NT

∑N
i=1 λ

′
iW
∗
F 0MW̃F

Wε,i

∥∥∥ = op (1);

(iii) supW̃F∈W

∥∥∥ 1
NT

∑N
i=1W

∗
ε,i

(
PW̃F

−PW̃F0

)
W ∗ε,i

∥∥∥ = op (1).

Proof of Proposition 3.4.1. The proof of this proposition follows closely to the proof

of Proposition 1 in Bai (2009, pp. 1264) using the modified theory of consistency of an

extremum estimator. Let δ = β − β0. By definition, the FDLS estimator
(
β̃, ŴF

)
solves

the following concentrated minimization problem as

(
β̃, ŴF

)
= arg min

β∈RP ,W̃F∈W
SNT

(
β, W̃F

)
,

where W =
{
W̃F ∈ CL×R : W̃F = WF Γ̃F , W̃

∗
F W̃F /T = IR

}
. Recall the original objective

function is given by (3.4.3) and (3.4.4) as

SSR (β,WF ,Λ) =

N∑
i=1

(WY,i −WX,iβ −WFλi)
∗

(WY,i −WX,iβ −WFλi)

=

N∑
i=1

(
WY,i −WX,iβ − W̃F λ̃i

)∗ (
WY,i −WX,iβ − W̃F λ̃i

)
.

Let WU,i = WU,i (β) = WY,i −WX,iβ. As in (3.4.7), we concentrate λ̃i out by plugging

λ̃i =
(
W̃ ∗F W̃F

)−1

W̃ ∗F (WY,i −WX,iβ) = W̃ ∗F (WY,i −WX,iβ) /T ≡ W̃ ∗FWU,i/T

into the above objective function and then simplify to obtain the concentrated objective

function:

SNT

(
β, W̃F

)
=

1

NT

N∑
i=1

(
WY,i −WX,iβ − W̃F λ̃i

)∗ (
WY,i −WX,iβ − W̃F λ̃i

)
− 1

NT

N∑
i=1

W ∗ε,iMW̃F
Wε,i

=
1

NT

N∑
i=1

(
WU,i − W̃F W̃

∗
FWU,i/T

)∗ (
WU,i − W̃F W̃

∗
FWU,i/T

)
− 1

NT

N∑
i=1

W ∗ε,iMW̃F
Wε,i

=
1

NT

N∑
i=1

(WY,i −WX,iβ)
∗
MW̃F

(WY,i −WX,iβ)− 1

NT

N∑
i=1

W ∗ε,iMW̃F
Wε,i.

As in Bai (2009), we approximate SNT

(
β, W̃F

)
with another random function S̃NT

(
β, W̃F

)
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as follows

SNT

(
β, W̃F

)
= S̃NT

(
δ, W̃F

)
+ δ′

1

NT

N∑
i=1

W ∗X,iMW̃F
Wε,i +

1

NT

N∑
i=1

W ∗ε,iMW̃F
WX,iδ

+
1

NT

N∑
i=1

λ′iW
∗
F 0MW̃F

W ∗ε,i +
1

NT

N∑
i=1

W ∗ε,iMW̃F
WF 0λi

+
1

NT

N∑
i=1

W ∗ε,i

(
PW̃F

−PW̃F0

)
Wε,i,

where

S̃NT

(
β, W̃F

)
= δ′

(
1

NT

N∑
i=1

W ∗X,iMW̃F
WX,i

)
δ + tr

[(
W ∗F 0MW̃F

WF 0

T

)(
Λ′Λ

N

)]

+ δ′
1

NT

N∑
i=1

W ∗X,iMW̃F
WF 0λi +

1

NT

N∑
i=1

λ′iW
∗
F 0MW̃F

WX,iδ.

where δ = β − β0. By Lemma B.1.5, SNT

(
β, W̃F

)
= S̃NT

(
β, W̃F

)
+ op (1) uniformly

over β ∈ RP and W̃F ∈ W. Then we can focus on the approximated objective function

S̃NT

(
β, W̃F

)
. Note that S̃NT

(
β0, HWF 0

)
= 0 for any asymptotically invertible matrix

H by construction, and because Γ̃F is also invertible, S̃NT

(
β0, HW̃F 0

)
= 0 holds as well.

Then analogously to the proof in Bai (2009), we denote

A =
1

NT

N∑
i=1

W ∗X,iMW̃F
WX,i, B =

1

T

(
Λ′Λ

N
⊗ IL

)
, C =

1

NT

N∑
i=1

(
λi ⊗MW̃F

WX,i

)
,

and η = vec
(
MW̃F

WF 0

)
, where vec(·) is the vectorization operator that stack the columns

of a matrix into a single column vector. Then

S̃NT

(
β, W̃F

)
= δ′Aδ + η∗Bη + δ′C∗η + η∗Cδ

= δ′
(
A− C∗B−1C

)
δ +

(
η∗ + δ′C∗B−1

)
B
(
η +B−1Cδ

)
≡ δ′D†(W̃F )δ + θ∗Bθ.

By Assumption B(iv), B is positive definite asymptotically, and so as D†(W̃F ) by Assump-

tion B∗(ii). Therefore S̃NT

(
β, W̃F

)
> 0 if δ = β − β0 6= 0 or W̃F 6= HW̃F 0 , which implies(

β0, HW̃F 0

)
is the unique minimizer of S̃NT

(
β, W̃F

)
over the restrictions. With this re-

sult, in conjunction with the uniform approximation before and arguments used in Bai (2009,

pp. 1265), we can conclude that β̃ is a consistent estimator for β.

Next, for (ii), note that the proof in Bai (2009, pp. 1265) is extended directly to our

frequency domain setup given the consistency of β̃. �
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To prove Theorem 3.4.2, we require the following lemmas that are proved in the Online

Supplement.

Lemma B.1.6 Suppose Assumption A, B, and A∗-E∗, and the other conditions of Theorem

3.4.2 hold. Let H̃ =
(

Λ̃′Λ̃
N

)(
W̃∗
F0ŴF

T

)
V −1
NL. Then

T−
1
2

∥∥∥ŴF − W̃F 0H̃
∥∥∥ = Op

(
δW1,NT

∥∥∥β̃ − β0
∥∥∥+N−

1
2 γ

1−dF,max−dε
L

)
,

where δW1,NT = γ
1
2−dX,max

L

(
γ

1
2−dF,max

L + γ
1
2−dε
L

)
.

Lemma B.1.7 Suppose Assumptions A, B, and A∗-E∗, and the other conditions of Theo-

rem 3.4.2 hold. We have

1

N

N∑
i=1

λi

(
W ∗ε,iŴF

T

)
= Op

(
δW,NL

∥∥∥β̃ − β0
∥∥∥+N−

1
2L−

1
2 γ

3
2−2dF,max−dε
L

)

where δW,NL = N−
1
2 γ

1−dX,max−dε
L

(
γ

1
2−dF,max

L + γ
1
2−dε
L

)
.

Lemma B.1.8 Suppose Assumptions A, B, and A∗-E∗, and suppose the other conditions

of Theorem 3.4.2 hold. Let

J̃8 = − 1

NT

N∑
i=1

Re

(
W ∗X,iMŴF

1

NT

N∑
k=1

Wε,kW
∗
ε,kŴF Ǧλi

)

and

ANT = − 1

NT

N∑
i=1

Re

(
W ∗X,iMŴF

1

NT

N∑
k=1

Diag
(
|Wε,kj |2

)
ŴF Ǧλi

)
,

with Diag
(
|Wε,kj |2

)
a diagonal matrix of |Wε,kj |2, j = 1, . . . , L. Then

J̃8 = ANT +Op

(
1

T
γ

2+2dF,min−dX,max−3dF,max−2dε
L

)
+Op

((
T 2dε−1γ

dF,min−dX,max

L +N−
1
2 γ

1−2dε+(dF,min−dX,max)
L

)(
δW1,NT

(
β̃ − β0

)
+N−

1
2 γ

1−dF,max−dε
L

))

and

ANT = Op

(
1

L
γ

2+2dF,min−dX,max−3dF,max−2dε
L

)
.

Lemma B.1.9 Suppose Assumptions A, B, and A∗-E∗, and suppose the other conditions

of Theorem 3.4.2 hold. Recall that WV,i = 1
N

∑N
k=1 aikWX,k. We have

√
NLγdε−1

L ΓZ
NT

N∑
i=1

Re
[(
W ∗X,i −W ∗V,i

)
MŴF

Wε,i

]
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=

√
NLγdε−1

L ΓZ
NT

N∑
i=1

Re
[(
W ∗X,i −W ∗V,i

)
MWF0Wε,i

]
+ op

(√
NLγdεL Γ−1

Z

(
β̃ − β0

))
+ op (1) .

Proof of Theorem 3.4.2. Recall that

β̃ =

[
1

NT

N∑
i=1

Re
(
W ∗X,iMŴF

WX,i

)]−1 [
1

NT

N∑
i=1

Re
(
W ∗X,iMŴF

WY,i

)]
,

where WY,i = WX,iβ
0 + W̃F 0 λ̃i +Wε,i. Then

δ̃ ≡ β̃ − β0 =

[
1

NT

N∑
i=1

Re
(
W ∗X,iMŴF

WX,i

)]−1

×

[
1

NT

N∑
i=1

Re
(
W ∗X,iMŴF

W̃F 0 λ̃i

)
+

1

NT

N∑
i=1

Re
(
W ∗X,iMŴF

Wε,i

)]
,

which implies that

[
1

NT

N∑
i=1

Re
(
W ∗X,iMŴF

WX,i

)](
β̃ − β0

)
(B.1.5)

=
1

NT

N∑
i=1

Re
(
W ∗X,iMŴF

W̃F 0 λ̃i

)
+

1

NT

N∑
i=1

Re
(
W ∗X,iMŴF

Wε,i

)
. (B.1.6)

First, we study 1
NT

∑N
i=1 Re

(
W ∗X,iMŴF

WF 0λi

)
. Note that MŴF

W̃F 0 = MŴF

(
W̃F 0 − ŴF H̃

−1
)
,

where the asymptotic invertibility of H̃ can be proved using similar reasoning as used in the

time domain. We consider the following eigenvalue problem

[
1

NT

N∑
i=1

(
WY,i −WX,iβ̃

)(
WY,i −WX,iβ̃

)∗]
ŴF = ŴFVNL.

By expanding WY,i in the above equation, we have

ŴFVNL =
1

NT

N∑
i=1

WX,iδ̃δ̃
′W ∗X,iŴF −

1

NT

N∑
i=1

WX,iδ̃λ
′
iW
∗
F 0ŴF −

1

NT

N∑
i=1

WX,iδ̃W
∗
ε,iŴ

∗
F

− 1

NT

N∑
i=1

WF 0λiδ̃
′W ∗X,iŴF −

1

NT

N∑
i=1

Wε,iδ̃
′W ∗X,iŴF +

1

NT

N∑
i=1

WF 0λiW
∗
ε,iŴF

+
1

NT

N∑
i=1

Wε,iλ
′
iW
∗
F 0ŴF +

1

NT

N∑
i=1

Wε,iW
∗
ε,iŴF +

1

NT

N∑
i=1

W̃F 0 λ̃iλ̃
′
iW̃
∗
F 0ŴF

≡ Ĩ1 + · · ·+ Ĩ9. (B.1.7)

This, in conjunction with the definition of H̃ given in the proof of Lemma B.1.6, it implies
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that

W̃F 0 − ŴF H̃
−1 = −

(
Ĩ1 + · · ·+ Ĩ8

)(
W̃ ∗F 0ŴF /T

)−1 (
Λ̃′Λ̃/N

)−1

= −
(
Ĩ1 + · · ·+ Ĩ8

)
G̃.

Then

1

NT

N∑
i=1

Re
(
W ∗X,iMŴF

W̃F 0 λ̃i

)
=

1

NT

N∑
i=1

Re
(
W ∗X,iMŴF

W̃F 0 Γ̃−1
F λi

)
=

1

NT

N∑
i=1

Re
(
W ∗X,iMŴF

(
W̃F 0 − ŴF H̃

−1
)

Γ̃−1
F λi

)
= − 1

NT

N∑
i=1

Re

(
W ∗X,iMŴF

(
Ĩ1 + · · ·+ Ĩ8

)(
W̃ ∗F 0ŴF /T

)−1

Γ̃F (Λ′Λ/N)
−1
λi

)

≡ − 1

NT

N∑
i=1

Re
(
W ∗X,iMŴF

(
Ĩ1 + · · ·+ Ĩ8

)
Ǧλi

)
≡ J̃1 + · · ·+ J̃8.

It is easy to show that H̃ = Op

(
γ

1−2dF,max

L

)
and Ǧ = Op

(
γ
dF,min− 1

2

L

)
by Assumption B(iv)

and B∗(iii). For J̃1, we have

∥∥∥J̃1

∥∥∥ =

∥∥∥∥∥ 1

NT

N∑
i=1

W ∗X,iMŴF

(
1

NT

N∑
k=1

W ∗X,k δ̃δ̃
′WX,kŴ

∗
F

)
Ǧλi

∥∥∥∥∥
.
∥∥∥G̃∥∥∥ ∥∥∥δ̃∥∥∥2 1

N
√
T

N∑
i=1

‖WX,i‖ ‖λi‖
1

NT

N∑
k=1

‖WX,k‖2

. γ
dF,min− 1

2

L

∥∥∥δ̃∥∥∥2
{

1

NT

N∑
i=1

‖WX,i‖2
}3/2 [

1

N

N∑
i=1

‖λi‖2
] 1

2

= γ
dF,min− 1

2

L

∥∥∥δ̃∥∥∥2

Op

(
γ

3/2−3dX,max

L

)
Op (1) = Op

(
γ

1+dF,min−3dX,max

L

∥∥∥δ̃∥∥∥2
)
,

where we use the additional facts that
∥∥∥MŴF

∥∥∥
sp

= 1 and 1
NT

∑N
k=1 ‖WX,k‖2 = Op

(
γ

1−2dX,max

L

)
by Assumption B∗(i). Then we can express J̃1 = −J̃∗1 δ̃ with J̃∗1 = Op

(
γ

1+dF,min−3dX,max

L δ̃
)

.

Next as in time domain, J̃2 will enter the asymptotic distribution. For J̃3, we make the

following decomposition:

J̃3 =
−1

NT

N∑
i=1

Re

(
W ∗X,iMŴF

(
1

NT

N∑
k=1

WX,k δ̃W
∗
ε,kŴF

)
Ǧλi

)

=
−1

N2

N∑
i=1

N∑
k=1

Re

[(
W ∗X,iMŴF

WX,k

T

)(
W ∗ε,kW̃F 0H̃

T

)
Ǧλiδ̃

]
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+
−1

N2

N∑
i=1

N∑
k=1

Re

(W ∗X,iMŴF
WX,k

T

)W ∗ε,k
(
ŴF − W̃F 0H̃

)
T

 Ǧλiδ̃

 ≡ J̃3,1 + J̃3,2.

First,

∥∥∥J̃3,1

∥∥∥ . γdF,min− 1
2

L

∥∥∥δ̃∥∥∥ 1

NT

N∑
i=1

‖WX,i‖2
[

1

N

N∑
i=1

‖λi‖2
] 1

2

 1

N

N∑
k=1

∥∥∥∥∥W ∗ε,kW̃F 0H̃

T

∥∥∥∥∥
2
 1

2

. γ
dF,min− 1

2

L

∥∥∥δ̃∥∥∥ 1

NT

N∑
i=1

‖WX,i‖2
[

1

N

N∑
i=1

‖λi‖2
] 1

2
[

1

NT 2

N∑
k=1

∥∥∥W ∗ε,kW̃F 0

∥∥∥2
] 1

2 ∥∥∥H̃∥∥∥
= γ

dF,min− 1
2

L

∥∥∥δ̃∥∥∥Op (γ1−2dX,max

L

)
Op(1)Op

(
T−

1
2L−

1
2 γ

1
2−dε
L

)
Op(1)Op

(
γ

1−2dF,max

L

)
= Op

(
T−

1
2L−

1
2 γ

2−2dF,max−2dX,max+(dF,min−dε)
L

∥∥∥δ̃∥∥∥)

by Assumption B(iv), B∗(i), C∗(i) and D∗(iii). And using the same notation involving J̃∗1 ,

we have J̃3,1 = −J̃∗3,1δ̃ with J̃∗3,1 = Op

(
T−

1
2L−

1
2 γ

2−2dF,max−2dX,max+(dF,min−dε)
L

)
. And by

the same reasoning and Lemma B.1.6,

∥∥∥J̃3,2

∥∥∥ . γdF,min− 1
2

L

∥∥∥δ̃∥∥∥ 1

NT

N∑
i=1

‖WX,i‖2
[

1

N

N∑
i=1

‖λi‖2
] 1

2
[

1

NT

N∑
k=1

‖Wε,k‖2
] 1

2

1

T
1
2

∥∥∥ŴF − W̃F 0H̃
∥∥∥

= Op

(
γ

1−2dX,max+(dF,min−dε)
L

∥∥∥δ̃∥∥∥(δW1,NT

∥∥∥δ̃∥∥∥+N−
1
2 γ

1−dF,max−dε
L

))
,

where δW1,NT is defined in Lemma B.1.6, which altogether form the order of J̃3. And we

can write J̃3,2 = −J̃∗3,2δ̃ with

J̃∗3,2 = Op

(
γ

1−2dX,max+(dF,min−dε)
L N−

1
2 γ

1−dF,max−dε
L

)
+Op

(
γ

1−2dX,max+(dF,min−dε)
L δW1,NT δ̃

)
.

Next

∥∥∥J̃4

∥∥∥ =

∥∥∥∥∥ 1

NT

N∑
i=1

W ∗X,iMŴF

(
1

NT

N∑
k=1

WF 0λk δ̃
′W ∗X,kŴF

)
Ǧλi

∥∥∥∥∥
=

∥∥∥∥∥ 1

NT

N∑
i=1

W ∗X,iMŴF

(
1

NT

N∑
k=1

(
W̃F 0 − ŴF H̃

−1
)
λ̃k δ̃
′W ∗X,kŴF

)
Ǧλi

∥∥∥∥∥
. γ

dF,min− 1
2

L

∥∥∥δ̃∥∥∥( 1

NT
1
2

N∑
i=1

‖WX,i‖ ‖λi‖

)2

1

T
1
2

∥∥∥ŴF

∥∥∥ 1

T
1
2

∥∥∥ŴF − W̃F 0H̃
∥∥∥∥∥∥H̃−1Γ̃−1

F

∥∥∥
. γ2dF,min−1

L

∥∥∥δ̃∥∥∥ 1

NT

N∑
i=1

‖WX,i‖2
1

N

N∑
i=1

‖λi‖2
1

T
1
2

∥∥∥ŴF − W̃F 0H̃
∥∥∥

= Op

(
γ

2dF,min−1
L

∥∥∥δ̃∥∥∥)Op (γ1−2dX,max

L

)
Op(1)Op

(
δW1,NT

∥∥∥δ̃∥∥∥+N−
1
2 γ1−2dε
L

)
= Op

(
γ

2dF,min−2dX,max

L δW1,NT

∥∥∥δ̃∥∥∥2
)

+Op

(
γ

2dF,min−2dX,max

L N−
1
2 γ

1−dF,max−dε
L

∥∥∥δ̃∥∥∥) ,
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and thus we can write J̃4 = −J̃∗4 δ̃ with

J̃∗4 = Op

(
γ

2dF,min−2dX,max

L N−
1
2 γ

1−dF,max−dε
L

)
+Op

(
γ

2dF,min−2dX,max

L δW1,NT δ̃
)
.

Next,

∥∥∥J̃5

∥∥∥ =

∥∥∥∥∥ 1

NT

N∑
i=1

W ∗X,iMŴF

(
1

NT

N∑
k=1

Wε,k δ̃
′W ∗X,kŴF

)
Ǧλi

∥∥∥∥∥
. γ

dF,min− 1
2

L

∥∥∥δ̃∥∥∥ 1

NT
1
2

N∑
i=1

‖WX,i‖ ‖λi‖
1

NT

N∑
k=1

‖Wε,k‖ ‖WX,k‖
1

T
1
2

∥∥∥ŴF

∥∥∥
= Op

(
γ
dF,min− 1

2

L

∥∥∥δ̃∥∥∥)Op (γ 1
2−dX,max

L

)
Op

(
γ

1−dX,max−dε
L

)
= Op

(
γ

1−2dX,max+(dF,min−dε)
L

∥∥∥δ̃∥∥∥) ,
and J̃5 = −J̃∗5 δ̃ with J̃∗5 = Op

(
γ

1−2dX,max+(dF,min−dε)
L

)
. Next for J̃6, we have

∥∥∥J̃6

∥∥∥ =

∥∥∥∥∥ 1

NT

N∑
i=1

W ∗X,iMŴF
W̃F 0 λ̃k

(
1

N

N∑
k=1

W ∗ε,kŴF

T
Ǧλi

)∥∥∥∥∥
=

∥∥∥∥∥ 1

NT

N∑
i=1

W ∗X,iMŴF

(
W̃F 0 − ŴF H̃

−1
)

Γ̃−1
F

(
1

N

N∑
k=1

λk
W ∗ε,kŴF

T

)
Ǧλi

∥∥∥∥∥
. γ

dF,min− 1
2

L

1

NT
1
2

N∑
i=1

‖WX,i‖ ‖λi‖
1

T
1
2

∥∥∥ŴF − W̃F 0H̃
∥∥∥∥∥∥∥∥ 1

N

N∑
k=1

λk
W ∗ε,kŴF

T

∥∥∥∥∥∥∥∥H̃−1Γ̃−1
F

∥∥∥
= Op

(
γ

2dF,min−1
L

)
Op

(
γ

1
2−dX,max

L

)
Op

(
δW1,NT

∥∥∥δ̃∥∥∥+N−
1
2 γ

1−dF,max−dε
L

)
×Op

(
δW,NL

∥∥∥δ̃∥∥∥+N−
1
2L−

1
2 γ

3
2−2dF,max−dε
L

)
= Op

(
γ

1
2−dX,max+2dF,min−1

L δW1,NT δW,NL

∥∥∥δ̃∥∥∥2
)

+Op

(
γ

1
2−dX,max+2dF,min−1

L

(
δW1,NTN

− 1
2L−

1
2 γ

3
2−2dF,max−dε
L + δW,NLN

− 1
2 γ

1−dF,max−dε
L

)∥∥∥δ̃∥∥∥)
+Op

(
γ

1
2−dX,max+2dF,min−1

L N−
1
2L−

1
2 γ

3
2−2dF,max−dε
L N−

1
2 γ

1−dF,max−dε
L

)
≡ Op

(
∆1,NT

∥∥∥δ̃∥∥∥2

+ ∆2,NT

∥∥∥δ̃∥∥∥+ ∆3,NT

)
,

by Lemma B.1.6 and B.1.7. Also we can write J̃6 = −J̃∗6,1δ̃+J̃∗6,2 with J̃∗6,1 = Op

(
∆1,NT δ̃ + ∆2,NT

)
,

and J̃∗6,2 = Op (∆3,NT ). And same as J̃2, J̃7 contributes to the asymptotic distribution di-

rectly. Lastly for J̃8, by Lemma B.1.8, we have J̃8 = ANT + J̌8, where

ANT = − 1

NT

N∑
i=1

Re

(
W ∗X,iMŴF

1

NT

N∑
k=1

Diag
(
|Wε,kj |2

)
ŴF Ǧλi

)

= Op

(
1

L
γ

2+2dF,min−dX,max−3dF,max−2dε
L

)
, (B.1.8)
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and

∥∥J̌8

∥∥ = Op

(
1

T
γ

2+2dF,min−dX,max−3dF,max−2dε
L

)
+Op

((
T 2dε−1γ

dF,min−dX,max

L +N−
1
2 γ

1−2dε+(dF,min−dX,max)
L

)(
δW1,NT

∥∥∥δ̃∥∥∥+N−
1
2 γ

1−dF,max−dε
L

))
≡ Op

(
∆̌1,NT

∥∥∥δ̃∥∥∥+ ∆̌2,NT

)
,

and ANT will enter the bias. As before we can write J̌8 = J̌∗8,1δ̃+J̌∗8,2 with J̌∗8,1 = Op
(
∆̌1,NT

)
and J̌∗8,2 = Op

(
∆̌2,NT

)
.

Then summarizing all the results we have obtained so far, (B.1.5) and (B.1.6) can be

written as

[
1

NT

N∑
i=1

Re
(
W ∗X,iMŴF

WX,i

)](
β̃ − β0

)
=
(
J̃1 + · · ·+ J̃8

)
+

1

NT

N∑
i=1

Re
(
W ∗X,iMŴF

Wε,i

)
,

which is equivalent to

[
1

NT

N∑
i=1

Re
(
W ∗X,iMŴF

WX,i

)
− J̃2 +

(
J̃∗1 + J̃∗3,1 + J̃∗3,2 + J̃∗4 + J̃∗5 + J̃∗6,1 + J̌∗8,1

)](
β̃ − β0

)
= J̃∗6,2 +ANT + J̌8,2 +

1

NT

N∑
i=1

Re
(
W ∗X,iMŴF

Wε,i

)
+ J̃7. (B.1.9)

By construction D†NL

(
ŴF

)
= 1

NT

∑N
i=1 Re

(
W ∗X,iMŴF

WX,i

)
− J̃2, and denote J̃∗ = J̃∗1 +

J̃∗3,1+J̃∗3,2+J̃∗4 +J̃∗5 +J̃∗6,1 and ĈNL =
√
NLγdε−1

L ΓZ
NT

∑N
i=1 Re

((
W ∗X,iMŴF

− 1
N

∑N
k=1 aikW

∗
X,kMŴF

)
Wε,i

)
,

then left-multiplying
√
NLγdε−1

L ΓZ on both sides of (B.1.9) implies

γ−1
L ΓZ

[
D†NL

(
ŴF

)
+ J̃∗

]
ΓZ
√
NLγdεL Γ−1

Z

(
β̃ − β0

)
=
√
NLγdε−1

L ΓZ

(
J̃∗6,2 +ANT + J̌8,2

)
+ĈNL.

To proceed, it is easy to show γ−1
L ΓZ

[
D†NL

(
ŴF

)
−D†NL

]
ΓZ = op(1) using Lemma B.1.6

some other regularity conditions. We also need to show that γ−1
L ΓZ J̃∗ΓZ = op(1), which

means J̃∗ = op

(
γ

1−2dZ,min

L

)
as the order is defined using matrix norm. Note that this

argument can be proved because the following seven arguments hold under Assumption

E∗(ii) and E∗(iii) about the relative magnitude among the memory parameters and the

convergence rate of δ̃:

γ
2dZ,min−1
L

∥∥∥J̃∗1∥∥∥ = Op

(
γ

2dZ,min+dF,min−3dX,max

L

∥∥∥δ̃∥∥∥) = op(1);

γ
2dZ,min−1
L

∥∥∥J̃∗3,1∥∥∥ = Op

(
T−

1
2L−

1
2 γ

1+2dZ,min−2dF,max−2dX,max+(dF,min−dε)
L

)
= op(1);

γ
2dZ,min−1
L

∥∥∥J̃∗3,2∥∥∥ = Op

(
γ

2dZ,min−2dX,max+(dF,min−dε)
L

(
δW1,NT

∥∥∥δ̃∥∥∥+N−
1
2 γ

1−dF,max−dε
L

))
= op(1);
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γ
2dZ,min−1
L

∥∥∥J̃∗4∥∥∥ = Op

(
γ

2dZ,min+2dF,min−2dX,max−1
L

(
δW1,NT

∥∥∥δ̃∥∥∥+N−
1
2 γ

1−dF,max−dε
L

))
= op(1);

γ
2dZ,min−1
L

∥∥∥J̃∗5∥∥∥ = Op

(
γ

2dZ,min−2dX,max+(dF,min−dε)
L

∥∥∥δ̃∥∥∥) = op(1);

γ
2dZ,min−1
L

∥∥∥J̃∗6,1∥∥∥
= γ

2dZ,min−1
L Op

(
∆1,NT

∥∥∥δ̃∥∥∥+ ∆2,NT

)
= Op

(
γ

2dZ,min−dX,max+2dF,min− 3
2

L δW1,NT δW,NL

∥∥∥δ̃∥∥∥)
+Op

(
γ

2dZ,min−dX,max+2dF,min− 3
2

L

(
δW1,NTN

− 1
2L−

1
2 γ

3
2−2dF,max−dε
L + δW,NLN

− 1
2 γ

1−dF,max−dε
L

))
= op(1);

γ
2dZ,min−1
L

∥∥J̌∗8,1∥∥
= Op

(
δW1,NT

(
T 2dε−1γ

dF,min−dX,max+2dZ,min−1
L +N−

1
2 γ

2dZ,min−2dε+(dF,min−dX,max)
L

))
= op(1)

Next in the following we examine the negligibility of
√
NLγdε−1

L ΓZ J̃
∗
6,2 and

√
NLγdε−1

L ΓZ J̌
∗
8,2.

To be specific, as above we check whether J̃∗6,2 and J̌∗8,2 are op

(
1√
NL

γ
1−dZ,min−dε
L

)
. And as

a result,

√
NLγ

dZ,min+dε−1
L

∥∥∥J̃∗6,2∥∥∥
= Op

(√
NLγ

dZ,min+dε−1
L ∆3,NT

)
= Op

(√
NLγ

dZ,min+dε−1
L γ

1
2−dX,max+2dF,min−1

L N−
1
2L−

1
2 γ

3
2−2dF,max−dε
L N−

1
2 γ

1−dF,max−dε
L

)
+Op

(
N−

1
2 γ

1+2dF,min+dZ,min−3dF,max−dX,max−dε
L

)
= op (1) ,

and

√
NLγ

dZ,min+dε−1
L

∥∥J̌∗8,2∥∥
= Op

(
γ

3
2 +dZ,min+2dF,min−dX,max−3dF,max−dε
L

)
+Op

(
L

1
2

T 1−2dε
γ
dF,min+dZ,min−dX,max−dF,max

L + γ
3
2−2dε+dZ,min+dF,min−dX,max−dF,max

L

)
= op(1)

Lastly we analyze ĈNL. Since by Assumption E∗(ii), CNL
d→ N (0,Σ) with

CNL =

√
NLγdε−1

L ΓZ
NT

N∑
i=1

Re

((
W ∗X,iMWF0 −

1

N

N∑
k=1

aikW
∗
X,kMWF0

)
Wε,i

)
,
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and by Lemma B.1.9 ĈNL = CNL + C∗NLδ̃ + op(1), where C∗NL = op

(√
NLγdεL Γ−1

Z

)
. Com-

bining all the terms we have so far implies that

[
γ−1
L ΓZD

†
NLΓZ + op (1)

]√
NLγdεL Γ−1

Z

(
β̃ − β0

)
=

√
NLγdε−1

L ΓZ
NT

N∑
i=1

Re

((
WX,iMW∗

F0
− 1

N

N∑
k=1

aikWX,kMW∗
F0

)
W ∗ε,i

)
+
√
NLγdε−1

L ΓZANT + op(1)

≡ CNL + ÃWNT + op (1) .

The asymptotic bias term satisfies

ÃWNT = Op

(√
N

L
γ

1+dZ,min+2dF,min−dX,max−3dF,max−dε
L

)

=
√
NLγdεL Γ−1

Z Op

(
1

L
γ

1+2dZ,min+2dF,min−dX,max−3dF,max−2dε
L

)
, (B.1.10)

which could be explosive. Note that CNL satisfies the CLT as CNL
d→ N (0,Σ) by Assump-

tion D∗(ii). Denoting DW
NL = γ−1

L ΓZD
†
NLΓZ , we can rewrite the above formula as

√
NLγdεL Γ−1

Z

(
β̃ − β0

)
=
(
DW
NL

)−1
CNL +

(
DW
NL

)−1
ÃWNT + op(1),

because
(
DW
NL

)−1
= Op(1) by Assumption D(i), and thus using the right hand side of

(B.1.10), we have

√
NLγdεL Γ−1

Z

(
β̃ − β0 −AWNT

)
=
(
DW
NL

)−1
CNL + op(1),

where

AWNT = ΓZ
(
DW
NL

)−1
ΓZγ

−1
L ANT

= −ΓZ
(
DW
NL

)−1
ΓZ

γ−1
L

NT

N∑
i=1

Re

(
W ∗X,iMŴF

1

NT

N∑
k=1

Diag
(
|Wε,kj |2

)
ŴF Ǧλi

)
,

with AWNT = Op (φL) and φL =
γ
2dZ,min+2dF,min−dX,max−3dF,max−2dε

L

L , which is based on (B.1.8)

and the definition of GammaZ .

Summarizing all we have so far, we complete the proof of Theorem 3.4.2. �

Proof of Theorem 3.4.3. In the first stage we prove the consistency of asymptotic

covariance estimator. By construction, it is equivalent to show the consistency of both
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γ−1
L ΓZD̂

W
NLΓZ and γ2dε−1

L ΓZΣ̂WNLΓZ . Firstly recall that

D̂W
NL =

1

NT

N∑
i=1

Re
(
W ∗X,iMŴF

WX,i

)
− 1

T

[
1

N2

N∑
i=1

N∑
k=1

Re
(
W ∗X,iMŴF

WX,kâik

)]

=
1

NT

N∑
i=1

Re
(
Ŵ ∗Z,iŴZ,i

)
.

Then by Assumption D∗(i) it is sufficient to prove γ−1
L ΓZ

(
D̂W
NL −D

†
NL

)
ΓZ = op (1), where

by definition D†NL has the same form as D̃ only with ŴF and âik replaced by their true

values. Then

γ−1
L ΓZ

(
D̃ −D†NL

)
ΓZ =

γ−1
L ΓZ
NT

N∑
i=1

Re
(
W ∗X,i

(
MŴF

−MW̃F0

)
WX,i

)
ΓZ

−
γ−1
L ΓZ
T

[
1

N2

N∑
i=1

N∑
k=1

Re
(
W ∗X,iMŴF

WX,k (âik − aik)
)]

ΓZ

−
γ−1
L ΓZ
T

[
1

N2

N∑
i=1

N∑
k=1

Re
(
W ∗X,i

(
MŴF

−MW̃F0

)
W ∗X,kaik

)]
ΓZ

= d1 + d2 + d3.

using the fact that MW̃F0
= MWF0 . Firstly as before, we denote δ̃ = β̃ − β, and d1 follows

that

‖d1‖ =

∥∥∥∥∥γ−1
L ΓZ
NT

N∑
i=1

Re
(
W ∗X,i

(
PŴF

−PW̃F0

)
WX,i

)
ΓZ

∥∥∥∥∥
. γ2dZ,min−1

L

1

NT

N∑
i=1

‖WX,i‖2
∥∥∥PŴF

−PW̃F0

∥∥∥
= Op

(
γ

1
2 +2dZ,min−2dX,max−dF,max

L

(
δW1,NT

∥∥∥δ̃∥∥∥+N−
1
2 γ

1−dF,max−dε
L

) 1
2

)
= op(1)

by Assumption E∗(iii) given the convergence rate of β̃, where the last two equalities holds

by the following reasoning:

∥∥∥PŴF
−PW̃F0

∥∥∥2

= tr

[(
PŴF

−PW̃F0

)2
]

= 2tr
(
IR − Ŵ ∗FPW̃F0

ŴF /T
)

= 2tr

IR −
Ŵ ∗F W̃F 0

T

(
W̃ ∗F 0W̃F 0

T

)−1
W̃ ∗F 0ŴF

T

 , (B.1.11)

then using fact that

W̃ ∗F 0ŴF

T
=

1

T
W̃ ∗F 0W̃F 0H̃ +

1

T
W̃ ∗F 0

(
ŴF − W̃F 0H̃

)
,
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where
∥∥∥H̃∥∥∥ = Op

(
γ

1−2dF,max

L

)
is defined as in Lemma B.1.6, we have

Ŵ ∗F W̃F 0

T

(
W̃ ∗F 0W̃F 0

T

)−1
W̃ ∗F 0ŴF

T

=

[
W̃ ∗F 0W̃F 0

T
H̃ +

1

T
W̃ ∗F 0

(
ŴF − W̃F 0H̃

)]∗(W̃ ∗F 0W̃F 0

T

)−1 [
W̃ ∗F 0W̃F 0

T
H̃ +

1

T
W̃ ∗F 0

(
ŴF − W̃F 0H̃

)]

= H̃∗

(
W̃ ∗F 0W̃F 0

T

)
H̃ +

1

T

(
ŴF − W̃F 0H̃

)∗
W̃F 0H̃ +

1

T
H̃∗W̃ ∗F 0

(
ŴF − W̃F 0H̃

)

+
1

T 2

(
ŴF − W̃F 0H̃

)∗
W̃F 0

(
W̃ ∗F 0W̃F 0

T

)−1

W̃ ∗F 0

(
ŴF − W̃F 0H̃

)
≡ d11 + d12 + d13 + d14.

Then for (B.1.11), we can analyze it through the decomposition above. First for tr (IR − d11)

we have

tr (IR − d11) = tr

(
IR − H̃∗

(
W̃ ∗F 0W̃F 0

T

)
H̃

)

≤
√
R

∥∥∥∥∥IR − H̃∗
(
W̃ ∗F 0W̃F 0

T

)
H̃

∥∥∥∥∥ = Op

(
γ

1−2dF,max

L

(
δW1,NT

∥∥∥δ̃∥∥∥+N−
1
2 γ

1−dF,max−dε
L

))

by (B.2.10) in the proof of Lemma B.1.9. By the same reasoning we can deal with the

Frobenius norm of d12-d14 instead of their traces. To be specific, by Lemma B.1.6 and As-

sumption B∗(iii), ‖d12‖ and ‖d13‖ have the same order as tr (IR − d11), which also dominate

‖d14‖. And by Assumption B(iv) d3 have the same order as d1.

Next for d2, note that we can rewrite aik = λ̃′k

(
Λ̃′Λ̃
N

)−1

λ̃i, and âik = λ̂∗k

(
Λ̂∗Λ̂
N

)−1

λ̂i

with Λ̂ = ŴUŴF /T where WU is an N×L complex matrix such that WU,i = WY,i−WX,iβ,

thus λ̂i = Ŵ ∗F ŴU,i/T . Since the conjugate transpose is compatible with the real vectors, we

have

âik − aik = λ̂∗k

(
Λ̂∗Λ̂

N

)−1 (
λ̂i − H̃−1λ̃i

)

+ λ̂∗k

( Λ̂∗Λ̂

N

)−1

− H̃∗
(

Λ̃′Λ̃

N

)−1

H̃

 H̃−1λ̃i

+
(
λ̂k − H̃−1λ̃k

)∗
H̃∗

(
Λ̃′Λ̃

N

)−1

λ̃i

≡ bik + cik + dik

following the proof of Proposition 2 in Bai (2009), with H̃ defined as in Lemma B.1.6. Then

d2 can be decomposed into d21 + d22 + d23 which correspond to bik, cik and dik respectively
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above. So it remains to study d21, d22 and d23, where d21 is firstly given by

‖d21‖ =

∥∥∥∥∥∥γ
−1
L ΓZ
T

 1

N2

N∑
i=1

N∑
k=1

Re

W ∗X,iMŴF
WX,kλ̂

∗
k

(
Λ̂∗Λ̂

N

)−1 (
λ̂i − H̃−1λ̃i

)ΓZ

∥∥∥∥∥∥
. γ2dZ,min−1

L

1

NT
1
2

∥∥∥∥∥
N∑
i=1

(
λ̂i − H̃−1λ̃i

)
W ∗X,i

∥∥∥∥∥ 1

NT
1
2

N∑
k=1

‖WX,k‖

∥∥∥∥∥∥λ̂∗k
(

Λ̂∗Λ̂

N

)−1
∥∥∥∥∥∥

. γ
2dZ,min−dX,max− 1

2

L

1

NT
1
2

∥∥∥∥∥
N∑
i=1

(
λ̂i − H̃−1λ̃i

)
W ∗X,i

∥∥∥∥∥ .
by the fact that λ̂∗k

(
Λ̂∗Λ̂
N

)−1 (
λ̂i − H̃−1λ̃i

)
is a scalar and the property of PCA in frequency

domain. Then it is adequate to study the order of 1
N

∑N
i=1

∥∥∥λ̂i − H̃−1λ̃i

∥∥∥2

. Since λ̂i =

Ŵ ∗F ŴU,i/T , we have

λ̂i = Ŵ ∗F

(
WY,i −WX,iβ̃

)
/T

=
1

T
Ŵ ∗F

(
W̃F 0 λ̃i +Wε,i −WX,iδ̃

)
=

1

T
Ŵ ∗F ŴF H̃

−1λ̃i +
1

T
Ŵ ∗F

(
W̃F 0 − ŴF H̃

−1
)
λ̃i +

1

T
Ŵ ∗FWε,i −

1

T
Ŵ ∗FWX,iδ̃

= H̃−1λ̃i +
1

T
Ŵ ∗F

(
W̃F 0 − ŴF H̃

−1
)
λ̃i +

1

T
Ŵ ∗F 0Wε,i −

1

T
Ŵ ∗FWX,iδ̃

therefore by the same reasoning as we have used so far,

1

NT
1
2

∥∥∥∥∥
N∑
i=1

(
λ̂i − H̃−1λ̃i

)
W ∗X,i

∥∥∥∥∥ (B.1.12)

= Op

((
γ
dF,min−dX,max

L δW1,NT + γ
1−2dX,max

L

)∥∥∥δ̃∥∥∥)
+Op

(
N−

1
2 γ

1+dF,min−dF,max−dX,max−dε
L +N−

1
2L−

1
2 γ

1−dX,max−dε
L

)

by Lemma B.1.6 and D∗(iii), which is op(1) by convergence rate of β̃ and Assumption E∗(iii).

Therefore by substitution, ‖d21‖ = Op

(
D1,NT

∥∥∥δ̃∥∥∥+D2,NT

)
, with

D1,NT = γ
dF,min+2dZ,min−2dX,max− 1

2

L δW1,NT + γ
1
2 +2dZ,min−3dX,max

L ,

and

D2,NT = N−
1
2 γ

1
2 +dF,min+2dZ,min−2dX,max−dF,max−dε
L +N−

1
2L−

1
2 γ

1
2 +2dZ,min−2dX,max−dε
L ,

which implies the negligibility of ‖d21‖ by convergence rate of β̃ and Assumption E∗(iii).

And it is easy to see the same reasoning and order hold for d23. Then it remains to analyze
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d22, which follows that

‖d22‖

=
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N

)
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(
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)−1

H̃

= −
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Λ̃′Λ̃
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)−1
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whose order can be derived in a similar way from (B.1.12). To be specific,

∥∥∥∥∥∥
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,

and analogous to (B.1.13), we have

(
1
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∥∥∥2
) 1
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1
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)
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(B.1.13)

Therefore d22 is dominated by d21 and thus negligible as well. So we prove the consistency

of D̂W
NL.
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Next to show the consistency of ΣWNL, recall that

Σ̂WNL =
1

N2T 2

N∑
i=1

Re
(
Ŵ ∗Z,iŴε,i

)
Re
(
Ŵ ∗ε,iŴZ,i

)

By Assumption D∗(ii), it is sufficient to prove NLγ2dε−2
L ΓZΣ̂WNLΓZ − Σ† = op (1), where

Σ† =
γ2dε−1
L

NT

N∑
i=1

Re
(
ΓZW

∗
Z,iWε,i

)
Re
(
W ∗ε,iWZ,iΓZ

)
under the additional condition of cross-sectional independence of ζε,i,t. To begin, we have

the following decomposition:

NLγ2dε−2
L ΓZΣ̂WNLΓZ − Σ†

=
γ2dε−1
L

NT

N∑
i=1

ΓZ
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Re
(
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)
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)
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(
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)
Re
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ΓZ
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NT

N∑
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(
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)
Re
(
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)
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+
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ΓZRe
(
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(
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)
ΓZ

≡ w1 + w2.

Firstly for w1, it follows that
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) 1
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≡
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w11
√
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where by Assumption D∗(iii) w12 = Op(1). And for w11, we can firstly bound it by

w11 ≤
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∥∥∥ΓZŴ
∗
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∥∥∥ΓZ

(
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)
Wε,i

∥∥∥2

≡ w11,1+w11,2.

By what we have analyzed the consistency of DW
NL, it is easy to see the negligibility of w11,2.

And for w11,1, note that

Ŵε,i = WY,i −WX,iβ̃ − ŴF λ̂i

= Wε,i −WX,iδ̃ + W̃F 0H̃
(
λ̂i − H̃−1λ̃i

)
+
(
ŴF − W̃F 0H̃

)
H̃−1λ̃i +

(
ŴF − W̃F 0H̃

)(
λ̂i − H̃−1λ̃i

)
,

(B.1.14)
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where clearly the last term above is dominated by the others. Then w11,1 follows that

w11,1 .
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∥∥∥ΓZW
∗
Z,iWX,iδ̃
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)

= op(1)

by Assumption E∗(iii) and (B.1.12), thus w1 = op(1). Also by the same reasoning we have

w2 = op (1), which completes the proof of NLγ2dε−2
L ΓZΣ̂WNLΓZ − Σ† = op (1). Combining

the results we have so far it can be concluded that

(
Σ̂WNL

)− 1
2
(
D̂W
NL

)
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ΣW0

)− 1
2
(
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0

)√
NLγdεL Γ−1

Z ,

which illustrates the idea of self-normalization.

In the next stage we prove the validity of our bias correction. To be exact, we are about

to prove
√
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)
= op(1).

Recall that
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γ−1
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W
NLΓZ

]−1
√
NLγdε−1
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N∑
k=1

Ω̂kŴF
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)−1
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and
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NLΓZ

]−1
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NLγdε−1
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W ∗X,iMŴF

1
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ŴF G̃λ̃i

)

= −
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†
NLΓZ

]−1
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L ΓZ
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N∑
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Re

(
W ∗X,iMŴF

1

NT

N∑
k=1

Diag
(
|Wε,kj |2

)
ŴF G̃H̃H̃

−1λ̃i

)

= −
[
γ−1
L ΓZD

†
NLΓZ

]−1
√
NLγdε−1

L ΓZ
NT

N∑
i=1

Re

(
W ∗X,iMŴF

1

NT

N∑
k=1

Diag
(
|Wε,kj |2

)
ŴF G̃V

−1
NLλ̃i

)
.

Note that the denominator parts above are γ−1
L ΓZD̂

W
NLΓZ and γ−1

L ΓZD
†
NLΓZ , and the

negligibility of their difference has already been proved just now. So it is sufficient to
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consider the difference between the numerator parts, which by the same reasoning as before,

can be decomposed by

√
NLγdε−1

L ΓZ
NT

N∑
i=1

Re

[
W ∗X,iMŴF

1

NT

N∑
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ŴFV

−1
NLλ̂i

]

+

√
NLγdε−1

L ΓZ
NT

N∑
i=1

Re

(
W ∗X,iMŴF

1
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(
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ŴFV

−1
NL

(
λ̂i − H̃−1λ̃i

))

≡ D1 +D2

where we use the fact that
(

Λ̂′Λ̂
N

)−1

= V −1
NL by (3.4.7) and (3.4.10). For D1, following the

same reasoning as before,

‖D1‖ .
√
NLγ
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2

L

∥∥∥∥∥ 1

NT
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(
Ω̂k −Diag

(
|Wε,kj |2

))∥∥∥∥∥ .
Since by (B.1.14),
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)
.
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)∥∥∥2

+
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)
H̃−1λ̃k
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,

then ‖D1‖ will further follow that

‖D1‖

.
√
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2

L

1
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N∑
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≤
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)
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NLγ

1
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L

∥∥∥δ̃∥∥∥2
)

+Op

(√
NLγ

1
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L

)
.

And for ‖D2‖, we have

‖D2‖ .
√
NLγ

dZ,min+dε−dX,max− 1
2

L

(
1

N

N∑
i=1

∥∥∥λ̂i − H̃−1λ̃i

∥∥∥2
) 1

2
∥∥∥∥∥ 1

NT

N∑
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Diag
(
|Wε,kj |2

)∥∥∥∥∥ ,
It is easy to show the negligibility of both D1 and D2 by the same reasoning as before and

Assumption C∗(i) and E∗(ii). So we complete the proof of Theorem 3.4.3. �
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B.1.3 Proofs of the Results in Section 3.5

Proof of Theorem 3.5.1. First we prove the consistency of β̃(Rmax), which extends the

proof of Theorem 4.1 in Moon and Weidner (2015) into frequency domain. To be specific,

β̃(Rmax) = arg min
β∈RP

LRmax

NT (β) ,

where by extending the objective function (3.4.3), and by considering (3.4.6), (3.4.7) and

(3.4.8) together with the property of PCA,

LRmax

NT (β) = min
Λ̃∈CN×Rmax ,W̃F∈CL×Rmax

1
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∥∥∥WY −WX · β − Λ̃W̃ ′F

∥∥∥2
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[
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∗]

=
1
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L∑
r=Rmax+1

µr
[
(WY −WX · β)

∗
(WY −WX · β)

]

subject to the identification restrictions, where µr(·) represents the r-th largest eigenvalue.

Note that WY = WX · β0 + Λ̃0W̃ ′F 0 + Wε, where we put the superscripts to emphasize the

true values. Then

LRmax

NT (β)

= min
Λ̃∈CN×Rmax ,W̃F∈CL×Rmax

1

NT

∥∥∥WX · δ +Wε + Λ̃0W̃ ′F 0 − Λ̃W̃ ′F

∥∥∥2
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1
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[
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1
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(WX · δ)∗
]
− tr

(
WεPW̃F
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)
− 2tr

[
(WX · δ) PW̃F
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]

+ tr (WεW
∗
ε ) + 2tr [(WX · δ)W ∗ε ]

≥ 1

NT

L∑
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[
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]
+

1

NT
tr (WεW

∗
ε ) +

1

NT
2tr [(WX · δ)W ∗ε ]

− 1

NT

(
2
(
Rmax +R0

)
‖Wε‖2 + 2

(
Rmax +R0

)
‖Wε‖ ‖WX · δ‖

)
≥ b ‖δ‖2 +

1

NT
tr (WεW

∗
ε ) +Op

(
γ1−2dε
L

)
+Op

(
‖δ‖ γ1−dX,max−dε

L

)
(B.1.15)

by Assumption B∗(i), C∗(i) and J, where δ = β − β0 following our notation before. Next it

is easy to see

LRmax

NT (β) ≤ LRmax

NT

(
β0
)
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= min
Λ̃∈CN×Rmax ,W̃F∈CL×Rmax

1

NT

∥∥∥Wε + Λ̃0W̃ ′F 0 − Λ̃W̃ ′F

∥∥∥2

≤ 1

NT
‖Wε‖2 =

1

NT
tr (WεW

∗
ε ) . (B.1.16)

Then combining (B.1.15) and (B.1.16) we have

b ‖δ‖2 +Op

(
γ1−2dε
L

)
+Op

(
‖δ‖ γ1−dX,max−dε

L

)
≤ 0,

which implies a loose order of ‖δ‖ as
∥∥∥β̃(Rmax) − β

∥∥∥ = Op

(
γ

1
2−dX,max

L

)
by Assumption E∗(ii)

and validates the consistency of β̃(Rmax).

Next we try to prove of the consistency of ER estimator, which will closely follow the

proof of Theorem 1 in AH. To proceed, we can complete the proof by showing the following

three statements:

µ̃NT,j
µ̃NT,j+1

=
µNT,j
µNT,j+1

+ op (1) = Op (1) for j = 1, . . . , R0 − 1,

where µNT,j is the j-th largest eigenvalue of
(

Λ′Λ
N

)(
F ′F
T

)
1 ; and

µ̃NT,R0

µ̃NT,R0+1
≥
µNT,R0 +Op

(
N−

1
2 +m−1 +

(
β̃(Rmax) − β

))
[c+ op (1)] /m

p→∞,

with c = c21
(
1 +
√
y
)2

and

µ̃NT,R0+j

µ̃NT,R0+j+1
≤ c+ op (1)

c+ op (1)
for j = 1, . . . , bdcmc − 2R0 − 1,

with c = c22y
∗∗ (1−√by∗)2 and y∗∗ = limm→∞

N
M .

As shown in AH, all the reasoning in its proof of Theorem 1 will hold except that µ̃NT,j

is the j-th largest eigenvalue of ŨŨ ′

NT , where Ũ is the estimator of U . Thus there will be

an additional error that measures how precisely U is estimated by Ũ , which is given by

β̃(Rmax) − β. Following the proof of Lemma A.11 and A.9 in AH, we can see it is sufficient

to show that for any j = 1, . . . , bdcmc −R0,

ψj

(
Ũ Ũ ′

NT

)
= ψj

(
UU ′

NT

)
+ op(1).

Without loss of generality we can focus on the case when the regressor is a scalar, then from

1For ease of notation, we drop all the superscripts 0 for true values of factors, factor
loadings and regression coefficients in this part of proof.
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(3.5.1) we have

1√
NT

Ũ =
1√
NT

X ·
(
β − β̃(Rmax)

)
+

1√
NT

U =
1√
NT

U +Op

(
δ̃Rmax

)
,

where as before, we denote δ̃Rmax
= β̃(Rmax) − β, and X · δ̃Rmax

=
∑P
p=1Xpδ̃Rmax,p with Xp

and δ̃Rmax,p representing the p-th argument. And

Ũ Ũ ′
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NT
− 1
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)(
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+R =
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NT
+Op

(
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)

where the order of tail term holds under Frobenius norm and thus folows from Assumption

B and C(i). Then Weyl’s inequality (or Lemma A.5 in AH) indicates that
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(
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NT

)
≤ ψj

(
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NT

)
+ ψ1 (R) = ψj

(
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NT

)
+Op

(
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)
(B.1.17)

because |ψ1 (R)| ≤ ‖R‖. And next we denote Ξk as the matrix of first k-largest eigenvectors

of UU ′

NT normalized by Ξk′Ξk/T = Ik, then for any k = 1, . . . , R0,

k∑
j=1

ψj

(
Ũ Ũ ′

NT

)
≥ tr

(
1

NT 2
Ξk′UU ′Ξk +
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=
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)
, (B.1.18)

because
∣∣tr ( 1

T Ξk′RΞk
)∣∣ ≤ ∥∥∥ 1√

T
Ξk
∥∥∥ ‖R‖. Note that (B.1.17) and (B.1.18) hold for arbitrary

j, k = 1, . . . , bdcmc −R0, which implies that ψj

(
ŨŨ ′

NT

)
= ψj

(
UU ′

NT

)
+Op

(
δ̃Rmax

)
. And the

remaining parts of proof will be the same as in AH using UU ′

NT , and the consistency of our ER

estimator is confirmed by the consistency of β̃(Rmax), which completes the proof of Theorem

3.5.1. �

B.2 Proofs of the Technical Lemmas

Proof of Lemma B.1.1. Let δ̂ = β̂ − β0. The proof follows closely that of Proposition

A.1(ii) in Bai (2009). By the decomposition in (B.1.2), the fact that I9 = F Λ′Λ
N

F 0′F̂
T , and

the definition of H and G, we have

F̂ VNT

(
F 0′F̂

T

)−1(
Λ′Λ

N

)−1

− F = F̂H−1 − F
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= (I1 + · · ·+ I8)

(
F 0′F̂

T

)−1(
Λ′Λ

N

)−1

= (I1 + · · ·+ I8)G.

Then T−
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Note that T−
1
2

∥∥∥F̂∥∥∥ =
√
R. As in Bai (2009), it is easy to argue that H is asymptotically

nonsingular, so is G. Then ‖G‖ = Op (1) and it remains to derive the order of T−
1
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` = 1, ..., 8. First,
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where we use the fact that 1
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where the last equality holds by Assumption B(iii) and B(iv) and Markov inequality. By

the same token, we have T−
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and similarly, T−
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where the last equality holds by the fact that
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by Assumption A(v), B(iv) and C(ii). Therefore T−
1
2 ‖I6‖ = Op(N

− 1
2 ). Analogously,
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.Note that so far the orders for terms

I1-I7 all replicate those in Bai (2009, pp. 1267).

Now, we study I8. Let I8t denote the t-th row of I8, which can be decomposed as follows:
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For II2, we have
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=
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by Assumption C(iii). Then T−1 ‖I8‖2 = Op
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)
. Therefore by the

invertibility of H, we can conclude that 1
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Proof of Lemma B.1.2. Note that 1
N

∑N
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T = 1

N
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Note that

E
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N∑
i,j=1

T∑
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, (B.2.2)

where the second quality holds by Assumption A(v), and the second inequality can be derived

from Assumption B(iii) and B(iv) using Cauchy-Schwarz inequality, and the last equality

holds by Assumption C(ii). Then A1 = Op
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)
. For A2, following the proof of
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by Assumption B(i), B(iv) and C(ii). Similarly,
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where the last equality holds by using Cauchy-Schwarz inequality, Assumption B(i) and

B(iv), and the same reasoning to obtain the order of Ā1 above. For a5 we have
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‖a61‖ =

∥∥∥∥∥ 1

N2T 2

N∑
i=1

λiε
′
iF

N∑
k=1

λkε
′
kFHG

∥∥∥∥∥ .
∥∥∥∥∥ 1

NT

N∑
i=1

λiε
′
iF

∥∥∥∥∥
2

= Op
(
N−1T 2dε−1

)
,

and

‖a62‖ =

∥∥∥∥∥ 1

N2T 2

N∑
i=1

λiε
′
iF

N∑
k=1

λkε
′
k

(
F̂ − F 0H

)
G

∥∥∥∥∥
.

∥∥∥∥∥ 1

NT

N∑
i=1

λiε
′
iF

∥∥∥∥∥
∥∥∥∥∥ 1

NT

N∑
k=1

λkε
′
k

(
F̂ − F 0H

)∥∥∥∥∥
≤ Op

(
N−

1
2T dε−

1
2

)( 1

N

N∑
k=1

‖λk‖2
) 1

2
(

1

NT

N∑
k=1

‖εk‖2
) 1

2

∥∥∥F̂ − F 0H
∥∥∥

√
T

= Op

(
N−

1
2T dε−

1
2

(∥∥∥δ̂∥∥∥+ δ−1
NT

))

by Lemma B.1.1. Then ‖a6‖ = Op

(
N−1T 2dε−1 +N−

1
2T dε−

1
2

(∥∥∥δ̂∥∥∥+ δ−1
NT

))
. Next, for a7

190



we have
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using the same reasoning as above by Assumption B(iv) and C(ii).

Lastly, we study a8 by making the following decomposition
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It follows that that ‖a81a‖ = Op
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which then completes the proof of Lemma B.1.2. �

Proof of Lemma B.1.3. Consider the following decomposition of J8:

J8 =
1

NT

N∑
i=1

X ′iMF̂

1

NT

N∑
k=1

ΩkF̂Gλi +
1

NT

N∑
i=1

X ′iMF̂

1

NT

N∑
k=1

(εkε
′
k − Ωk) F̂Gλi

≡ J81 + J82,

where Ωk = E (εkε
′
k) and J81 = ANT . For J81, we have

‖J81‖ =

∥∥∥∥∥ 1

NT

N∑
i=1

X ′iMF̂

1

NT

N∑
k=1

ΩkF̂Gλi

∥∥∥∥∥ . 1

N
√
T

N∑
i=1

‖Xi‖ ‖λi‖

∥∥∥∥∥ 1

NT

N∑
k=1

Ωk

∥∥∥∥∥
.

 1

N2T 2

N∑
i,k=1

T∑
t,s=1

E (εitεis)E (εktεks)

 1
2

≤

(
1

T 2

T∑
t,s=1

|γN (s, t)|2
) 1

2

= Op

(
Tmax(2dε,1/2)−1

)
,

by Assumption B(i), B(iv) and C(ii). For J82, we make the decomposition

J82 =
1

NT

N∑
i=1

X ′iMF̂

1

NT

N∑
k=1

(εkε
′
k − Ωk)FHGλi

+
1

NT

N∑
i=1

X ′iMF̂

1

NT

N∑
k=1

(εkε
′
k − Ωk) (F̂ − F 0H)Gλi ≡ J821 + J822.

For J821, we have

J821 =
1

N2T 2

N∑
i=1

N∑
k=1

[X ′i (εkε
′
k − Ωk)FHGλi]−

1

N2T 2

N∑
i=1

N∑
k=1

[
X ′i

1

T
F̂ F̂ ′ (εkε

′
k − Ωk)FHGλi

]

=
1√
NT

1

N

N∑
i=1

ζiFHGλi −
1

N2T 2

N∑
i=1

N∑
k=1

[
X ′i

1

T
F̂ F̂ ′ (εkε

′
k − Ωk)FHGλi

]
≡ J821a + J821b,

where

ζi =
1√
N

N∑
k=1

1

T

T∑
t=1

T∑
s=1

Xit (εktεks − E (εktεks))F
′
s.
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Note that

E ‖ζi‖2 =
1

N

N∑
i,k=1

1

T 2

T∑
t,s,u,v=1

E (X ′itXiuF
′
sFv) cov (εktεks, εiuεiv)

≤ max
i,k,t,s,u,v

|E (X ′itXiuF
′
sFv)|

1

N

N∑
i,k=1

1

T 2

T∑
t,s,u,v=1

|cov (εktεks, εiuεiv)| = O
(
T 4dε

)
,

by Assumption C(iv). With this, we can readily show that J821a = Op(N
− 1

2T 2dε−1). For

J821b, we have

‖J821b‖ .
1√
NT

1

NT

N∑
i=1

∥∥∥X ′iF̂∥∥∥ ‖λi‖
∥∥∥∥∥ 1√

N

N∑
k=1

1

T

T∑
t=1

T∑
s=1

F̂t [εktεks − E (εktεks)]F
′
s

∥∥∥∥∥
.

1√
NT

∥∥∥∥∥ 1√
N

N∑
k=1

1

T

T∑
t=1

T∑
s=1

F̂t [εktεks − E (εktεks)]F
′
s

∥∥∥∥∥
.

1√
NT

∥∥∥∥∥ 1√
N

N∑
k=1

1

T

T∑
t=1

T∑
s=1

Ft [εktεks − E (εktεks)]F
′
s

∥∥∥∥∥
+

1√
NT

∥∥∥∥∥ 1√
N

N∑
k=1

1

T

T∑
t=1

T∑
s=1

(
F̂t −HFt

)
[εktεks − E (εktεks)]F

′
s

∥∥∥∥∥
≡ 1√

NT
{J821b1 + J821b2} .

Using the same reasoning as used for J821a, we can show J821b1 = Op(N
− 1

2T 2dε−1). In addi-

tion, by Lemma B.1.1 and the fact
∥∥∥ 1√

N

∑N
k=1 (εkε

′
k − Ωk)

∥∥∥ = Op(T
1
2 +dε) under Assumption

C,

‖J821b2‖ .
1√
T

∥∥∥F̂ − F 0H
∥∥∥∥∥∥∥∥ 1√

N

N∑
k=1

(εkε
′
k − Ωk)

∥∥∥∥∥ = Op

(
T

1
2 +dε

(∥∥∥δ̂∥∥∥+ δ−1
NT

))
.

Then J821b = Op

(
N−

1
2T dε−

1
2

(∥∥∥δ̂∥∥∥+ δ−1
NT

))
. Next, for J822 we have

‖J822‖ =

∥∥∥∥∥ 1

NT

N∑
i=1

X ′iMF̂

1

NT

N∑
k=1

(εkε
′
k − Ωk)

(
F̂ − F 0H

)
Gλi

∥∥∥∥∥
.

∥∥∥∥∥ 1

NT

N∑
k=1

(εkε
′
k − Ωk)

∥∥∥∥∥ 1√
T

∥∥∥F̂ − F 0H
∥∥∥ = Op

(
N−

1
2T dε−

1
2

(∥∥∥δ̂∥∥∥+ δ−1
NT

))
.

In sum, we have

J8 = ANT +Op

(
N−

1
2T 2dε−1 +N−

1
2T dε−

1
2

(∥∥∥δ̂∥∥∥+ δ−1
NT

))
,

which finishes the proof of Lemma B.1.3. �
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Proof of Lemma B.1.4. Following the proof of Lemma A.8 in Bai (2009), we first study

1

NT

N∑
i=1

X ′i
(
MF −MF̂

)
εi.

We make the following decomposition

1

NT

N∑
i=1

X ′i
(
MF −MF̂

)
εi

=
1

NT

N∑
i=1

X ′i
(
PF̂ −PF

)
εi

=
1

NT

N∑
i=1

X ′i

(
F̂ − F 0H

)
T

H ′F ′εi +
1

NT

N∑
i=1

X ′i

(
F̂ − F 0H

)
T

(
F̂ − F 0H

)′
εi

+
1

NT

N∑
i=1

X ′iF
0H

T

(
F̂ − F 0H

)′
εi +

1

NT

N∑
i=1

X ′iF

T

[
HH ′ −

(
F ′F

T

)−1
]
F ′εi

≡ a+ b+ c+ d.

For a, we have

‖a‖ =

∥∥∥∥∥ 1

T

T∑
s=1

(
F̂s −H ′Fs

)′
H ′

(
1

NT

N∑
i=1

T∑
t=1

FtXisεit

)∥∥∥∥∥
.

(
1

T

T∑
s=1

∥∥∥F̂s −H ′Fs∥∥∥2
) 1

2

 1

T

T∑
s=1

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

FtXisεit

∥∥∥∥∥
2
 1

2

= Op

(
N−1/2T dε−1/2

(∥∥∥δ̂∥∥∥+ δ−1
NT

))

by Lemma B.1.1 and the fact that

E

 1

T

T∑
s=1

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

FtXisεit

∥∥∥∥∥
2


=
1

T

T∑
s=1

1

N2T 2

N∑
i,j=1

T∑
r,t=1

E (εitεjr)E (F ′tFrX
′
isXjs)

≤ max
i,j,t,r,s

E (F ′tFrX
′
isXjs)

1

N2T 2

N∑
i,j=1

T∑
r,t=1

|E (εitεjr)| = O
(
N−1T 2dε−1

)

under Assumptions B(i), B(iv) and C(ii). Next, for b we have

‖b‖ =

∥∥∥∥∥∥ 1

NT

N∑
i=1

X ′i

(
F̂ − F 0H

)
T

(
F̂ − F 0H

)′
εi

∥∥∥∥∥∥
F

≤

(
1

T

T∑
t=1

∥∥∥F̂t −H ′Ft∥∥∥2

F

) 1

T 2

T∑
t=1

T∑
s=1

∥∥∥∥∥ 1

N

N∑
i=1

Xisεit

∥∥∥∥∥
2
 1

2
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= Op

(
N−1/2

(∥∥∥δ̂∥∥∥+ δ−1
NT

))

by Cauchy-Schwarz inequality, Lemma B.1.1 and the fact that

E

 1

T 2

T∑
t,s=1

∥∥∥∥∥ 1

N

N∑
i=1

Xisεit

∥∥∥∥∥
2
 =

1

T 2

T∑
s=1

1

N2

N∑
i,j=1

T∑
t=1

E (εitεjt)E (X ′isXjs)

≤ max
i,j,s
|E (X ′isXjs)|

1

N2T

N∑
i,j=1

T∑
t=1

|E (εitεjt)| = O
(
N−1

)
.

Next, we study c by making the following decomposition:

c =
1

NT

N∑
i=1

X ′iF

T

(
F ′F

T

)−1 (
F̂H−1 − F

)′
εi

+
1

NT

N∑
i=1

X ′iF

T

(
HH ′ −

(
F ′F

T

)−1
)(

F̂H−1 − F
)′
εi ≡ c1 + c2.

For c2 we have, by denoting Q = HH ′ −
(
F ′F
T

)−1

that

‖c2‖ =

∥∥∥∥∥ 1

NT

N∑
i=1

X ′iF
0

T
Q
(
F̂H−1 − F

)′
εi

∥∥∥∥∥
=

1

NT

N∑
i=1

[
ε′i

(
F̂H−1 − F

)
⊗
(
X ′iF

T

)]
vec (Q)

=
[
Op

(
N−

1
2T dε−

1
2

)
+Op

(
N−

1
2T dε−

1
2

∥∥∥δ̂∥∥∥)] vec (Q)

by the proof of Lemma B.1.2. Next by Assumption B(iii) and Lemma B.1.1,

1

T
F ′
(
F̂ − F 0H

)
= Op

(∥∥∥δ̂∥∥∥+ δ−1
NT

)
,

and the same order holds for 1
T F̂
′
(
F̂ − F 0H

)
. Then left multiplying 1

T F
′
(
F̂ − F 0H

)
by

H ′ and using the transpose of 1
T F̂
′
(
F̂ − F 0H

)
, we can obtain

IR −H ′
F ′F

T
H = Op

(∥∥∥δ̂∥∥∥+ δ−1
NT

)
,

where the same order holds for IR−F
′F
T HH ′ and thus forQ. Therefore c2 = Op

(
N−

1
2T dε−

1
2

(∥∥∥δ̂∥∥∥+ δ−1
NT

))
.

For c1, we have by (B.1.2) and the proof of Lemma B.1.1 that

c1 =
1

NT

N∑
i=1

X ′iF

T

(
F ′F

T

)−1 (
F̂H−1 − F

)′
εi

=
1

NT

N∑
i=1

X ′iF

T

(
F ′F

T

)−1(
Λ′Λ

N

)−1
(
F̂ ′F

T

)−1

(I1 + · · ·+ I8)
′
εi ≡ c1,1 + · · ·+ c1,8.
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For c11 we have, by denoting G̃ =
(
F ′F
T

)−1 (
Λ′Λ
N

)−1 (
F̂ ′F
T

)−1

that

‖c1,1‖ =

∥∥∥∥∥ 1

NT

N∑
i=1

X ′iF

T
G̃I ′1εi

∥∥∥∥∥
=

∥∥∥∥∥ 1

NT

N∑
i=1

X ′iF

T
G̃

1

NT

N∑
k=1

F̂ ′Xk δ̂δ̂
′X ′kεi

∥∥∥∥∥
.
∥∥∥δ̂∥∥∥2 1

N
√
T

N∑
i=1

∥∥∥∥X ′iFT
∥∥∥∥ ‖εi‖ 1√

T

∥∥∥F̂∥∥∥ 1

NT

N∑
k=1

‖Xk‖2 = Op

(∥∥∥δ̂∥∥∥2
)

by Assumption B(i), B(iii) and C(ii), and the fact that G̃ = Op (1). For c1,2, we have

‖c1,2‖ =

∥∥∥∥∥ 1

NT

N∑
i=1

X ′iF

T
G̃

1

NT

N∑
k=1

F̂ ′Fλk δ̂
′X ′kεi

∥∥∥∥∥
.
∥∥∥δ̂∥∥∥ 1

N

N∑
i=1

∥∥∥∥X ′iFT
∥∥∥∥ 1

NT

∥∥∥∥∥
N∑
k=1

X ′kεiλ
′
k

∥∥∥∥∥
≤
∥∥∥δ̂∥∥∥ 1√

N

(
1

N

N∑
i=1

∥∥∥∥X ′iFT
∥∥∥∥2
) 1

2

 1

N2T 2

N∑
i=1

∥∥∥∥∥
N∑
k=1

X ′kεiλ
′
k

∥∥∥∥∥
2
 1

2

= Op

(
N−

1
2T dε−1/2

∥∥∥δ̂∥∥∥) ,
by Cauchy-Schwarz inequality and similar arguments as used above. Similarly, c1,` =

Op

(
N−

1
2T dε−

1
2

∥∥∥δ̂∥∥∥) for ` = 3, 4, 5 as in the proof of Lemma B.1.1. Let ω be a P × 1

nonrandom vector with ‖ω‖ = 1.

|ω′c1,7| =

∣∣∣∣∣ 1

NT

N∑
i=1

ω′X ′iF

T
G̃

1

NT

N∑
k=1

F̂ ′Fλkε
′
kεi

∣∣∣∣∣
=

∣∣∣∣∣tr
((

F ′F

T

)−1(
Λ′Λ

N

)−1
1

NT

N∑
i=1

1

N

N∑
k=1

λkε
′
kεi

ω′X ′iF

T

)∣∣∣∣∣
.

∥∥∥∥∥ 1

N

N∑
k=1

λkε
′
k

1

NT

N∑
i=1

εi
ω′X ′i√
T

∥∥∥∥∥
≤ 1

N

∥∥∥∥∥ 1√
NT

N∑
k=1

λkε
′
k

∥∥∥∥∥
∥∥∥∥∥ 1√

NT

N∑
i=1

εi
ω′X ′i√
T

∥∥∥∥∥ = Op

(
1

N

)
,

where the last equality holds by the fact that

E

∥∥∥∥∥ 1√
NT

N∑
i=1

λiε
′
i

∥∥∥∥∥
2
 =

1

NT

T∑
t=1

N∑
i,j=1

E [λ′iλj ]E (εitεjt) ≤ max
i,j
|E [tr (λ′iλj)]|

1

N

N∑
i,j=1

σij = O (1)

by Assumption B(i), B(iii) and C(ii), and similarly E
∥∥∥ 1√

NT

∑N
i=1 εiω

′X ′i

∥∥∥2

= Op (1) . Note

that the probability order of c1,7 is the same as that in Bai (2009) and it is a potential bias
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term to be corrected. Therefore we denote c1,7 = −CNT = Op
(

1
N

)
. Lastly, for c1,8 we have

c1,8 =
1

NT

N∑
i=1

X ′iF
0

T
G̃

1

NT

N∑
k=1

H ′F ′εkε
′
kεi +

1

NT

N∑
i=1

X ′iF

T
G̃

1

NT

N∑
k=1

(
F̂ − F 0H

)′
εkε
′
kεi

≡ c1,81 + c1,82.

Note that

c1,81 =
1

NT

N∑
i=1

X ′iF

T
G̃

1

NT

N∑
k=1

H ′F ′εk[ε′kεi − E (ε′kεi)] +
1

NT

N∑
i=1

X ′iF

T
G̃

1

NT

N∑
k=1

H ′F ′εkE (ε′kεi)

≡ c1,811 + c1,812.

For c1,811,

|ω′c1,811| =

∥∥∥∥∥∥ 1

N2T 3

N∑
i,k=1

FG̃H ′F ′εk[ε′kεi − E (ε′kεi)]ω
′X ′i

∥∥∥∥∥∥
.

∥∥∥∥∥∥ 1

N2T 5/2

N∑
i,k=1

F ′εk[ε′kεi − E (ε′kεi)]ω
′X ′i

∥∥∥∥∥∥
.

1

T

 1

N

N∑
k=1

∥∥∥∥∥ 1

NT

N∑
i=1

[ε′kεi − E (ε′kεi)]ω
′X ′i

∥∥∥∥∥
2
 1

2 (
1

NT

N∑
k=1

‖F ′εk‖
2

) 1
2

=
1

T
Op

(
N−

1
2T dε

)
Op
(
T dε
)

= Op

(
N−

1
2T 2dε−1

)
,

where the last equality holds by the fact that

E

 1

N

N∑
k=1

∥∥∥∥∥ 1

NT

N∑
i=1

[ε′kεi − E (ε′kεi)]ω
′X ′i

∥∥∥∥∥
2


=
1

N3T

N∑
i,j,k=1

E

[
ω′X ′iXjω

T

] T∑
t,s=1

E {[εitεkt − E (εitεkt)] [εjsεks − E (εjsεks)]}

≤ max
i,j

E

[
ω′X ′iXjω

T

]
1

N3T

N∑
i,j,k=1

T∑
t,s=1

E [(εktεit − E (εktεit)) (εksεjs − E (εksεjs))]

.
1

N3T

N∑
i,j,k=1

T∑
t,s=1

|cov (εitεkt, εjsεks)| = O
(
N−1T 2dε

)
(B.2.3)

by Assumption B(i), B(iii) and C(iv). Next,

‖c1,812‖ =

∥∥∥∥∥ 1

NT

1

N

N∑
i=1

X ′iF

T
G̃

N∑
k=1

H ′F ′εk
E (ε′kεi)

T

∥∥∥∥∥ . 1

NT

1

N

N∑
i,k=1

∥∥∥∥X ′iFT
∥∥∥∥
F

‖F ′εk‖F σik,
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where the expectation of the term is bounded above by

1

NT
max
i,k

E

(∥∥∥∥X ′iFT
∥∥∥∥ ‖F ′εk‖F) 1

N

N∑
i,k=1

σik

≤ M

N
max
i

(
E

∥∥∥∥X ′iFT
∥∥∥∥2
) 1

2

max
k

(
E

∥∥∥∥F ′εkT
∥∥∥∥2
) 1

2

= O
(
N−1T dε−

1
2

)
.

So c1,812 = Op
(
N−1T dε−1/2

)
and c1,81 = Op(N

− 1
2T 2dε−1). For c1,82, we make the following

decomposition

c1,82 =
1

NT

N∑
i=1

X ′iF

T
G̃

1

NT

N∑
k=1

(
F̂ − F 0H

)′
εk [ε′kεi − E (ε′kεi)]

+
1

NT

N∑
i=1

X ′iF
0

T
G̃

1

NT

N∑
k=1

(
F̂ − F 0H

)′
εkE (ε′kεi) ≡ c1,821 + c1,822.

For the first term on the rhs, we have

‖c1,821‖ .
1

T

 1

N

N∑
k=1

∥∥∥∥∥ 1

NT

N∑
i=1

X ′i

T∑
t=1

[εktεit − E (εktεit)]

∥∥∥∥∥
2
 1

2 (
1

N

N∑
k=1

∥∥∥∥ 1√
T

(
F̂ − F 0H

)′
εk

∥∥∥∥2
) 1

2

= T−1O
(
N−1/2T dε

)
Op

(∥∥∥δ̂∥∥∥+ δ−1
NT

)
= Op

(
N−

1
2T dε−1

∥∥∥δ̂∥∥∥+N−1/2T dε−1δ−1
NT

)

by (B.2.3) and the derivation of order of the term A2 in the proof of Lemma B.1.2. In

addition,

‖c1,822‖ .
1

NT

1

N

N∑
i,k=1

∥∥∥∥X ′iFT
∥∥∥∥∥∥∥∥(F̂ − F 0H

)′
εk

∥∥∥∥
F

σik = Op

(
N−1

(∥∥∥δ̂∥∥∥+ δ−1
NT

))

by Lemma B.1.1 and arguments as used to analyze c1,812 above. Therefore we can conclude

that

c1,82 = Op

((
N−

1
2T dε−1 +N−1

)(∥∥∥δ̂∥∥∥+ δ−1
NT

))
.

Lastly, we study d.

‖d‖ =

∥∥∥∥∥ 1

NT

N∑
i=1

X ′iF

T
QF ′εi

∥∥∥∥∥ ≤ 1

T

1

N

N∑
i=1

∥∥∥∥X ′iFT
∥∥∥∥ ‖F ′εi‖ ‖Q‖

.
1

T
‖Q‖ = Op

(
T−1

(∥∥∥δ̂∥∥∥+ δ−1
NT

))

we we use the fact that ‖Q‖ = Op

(∥∥∥δ̂∥∥∥+ δ−1
NT

)
derived above.
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As in Bai (2009), the approximation error of the second part,

1

NT

N∑
i=1

(
1

N

N∑
k=1

aikXk

)′ (
MF −MF̂

)
εi ≡

1

NT

N∑
i=1

V ′i
(
MF −MF̂

)
εi,

can be expressed by replacing Xi with Vi, and apply the same arguments and probability

order as above. Then we concludes that

1

NT

N∑
i=1

[
X ′iMF̂ −

1

N

N∑
k=1

aikX
′
kMF̂

]
εi

=
1

NT

N∑
i=1

[
X ′iMF −

1

N

N∑
k=1

aikX
′
kMF

]
εi − CNT

+Op

(
N−

1
2T dε−

1
2

(∥∥∥δ̂∥∥∥+ δ−1
NT

)
+
∥∥∥δ̂∥∥∥2

+N−
1
2T 2dε−1

)
.

This completes the proof of Lemma B.1.4. �

Proof of Lemma B.1.5. (i) Note that

1

NT

N∑
i=1

W ∗X,iMW̃F
Wε,i =

1

NT

N∑
i=1

W ∗X,iWε,i −
1

NT

N∑
i=1

W ∗X,i
W̃F W̃

∗
F

T
Wε,i ≡ A1 +A2

under the restriction W̃F ∈ W ≡
{
W̃F : W̃ ∗F W̃F /T = IR

}
. We first study A1. Recall that

Xp,it denote the p-th element of Xit. Let WXp,il denote the p-th element of of WX,il and

WXp,i = (WXp,i1, ...,WXp,iL)′. The modulus of 1
TW

∗
Xp,i

Wε,i satisfies

∣∣∣∣ 1

T
W ∗Xp,iWε,i

∣∣∣∣ =

∣∣∣∣∣∣ 1

T

L∑
j=1

WXp,ijW
∗
ε,ij

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ 1

T

L∑
j=1

WXp,ijW
∗
Xp,ij

∣∣∣∣∣∣
1
2
∣∣∣∣∣∣ 1

T

L∑
j=1

Wε,ijW
∗
ε,ij

∣∣∣∣∣∣
1
2

≡
∣∣∣F̂Xp,i (γL)

∣∣∣ 12 ∣∣∣F̂ε,i (γL)
∣∣∣ 12

by Cauchy-Schwarz inequality. Note that the two terms on the r.h.s. are averaged pe-

riodograms of {Xp,it}Tt=1 and {εit}Tt=1. Under Assumption A, A∗ and G, we can adopt

Theorem 1 in Robinson (1994b) to obtain

F̂Xp,i (γL)

FXp,i (γL)

p→ 1 and
F̂ε,i (γL)

Fε,i (γL)

p→ 1 as T →∞, (B.2.4)

where FXp,i (γL) and Fε (γL) are the “pseudo spectral distribution” for {Xp,it}Tt=1 and

{εit}Tt=1 , respectively. Then we can conclude that F̂Xp,i (γL) ∼ Υi,XX,pp
1−2dXp

γ
1−2dXp
L and F̂ε,i (γL) ∼

Υi,ε
1−2dε

γ1−2dε
L , where Υi,XX,pp denote the (p, p)-th element of Υi,XX . This result is compatible
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with our Assumption B∗(i) and C∗(i), and implies that for each p,

∣∣∣∣∣ 1

NT

N∑
i=1

W ∗Xp,iWε,i

∣∣∣∣∣ . 1

N

N∑
i=1

∣∣∣∣Υi,XX,pp

1− 2dXp
γ

1−2dXp
L

∣∣∣∣ 12 ∣∣∣∣ Υi,εε

1− 2dε
γ1−2dε
L

∣∣∣∣ 12

=
1

N

N∑
i=1

(
Υi,XX,ppΥi,εε(

1− 2dXp
)

(1− 2dε)

) 1
2

γ
1−dXp−dε
L = op(1)

by Assumption A∗(i) and the fact that dXp and dε being strictly less than 1
2 . It follows that

‖A1‖2 =

P∑
p=1

∣∣∣∣∣ 1

NT

N∑
i=1

W ∗Xp,iWε,i

∣∣∣∣∣
2

= Op

(
γ

2(1−dX,max−dε)
L

)
= op (1) ,

with dX,max = max1≤p≤P dXp . Next, for A2 we have

A2 =
1

N

N∑
i=1

(
1

T
W ∗X,iW̃F

)(
1

T
W̃ ∗FWε,i

)
≡ 1

N

N∑
i=1

Ai,21Ai,22.

Note that Ai,21 is a P × R matrix and Ai,22 an R × 1 vector. Consider an arbitrary p-

th element of Ai,21Ai,22, which is given by
∑R
r=1Ai,21,prAi,22,r, where Ai,21,pr and Ai,22,r

denotes the (p, r)-th element of Ai,21 and the rth element of Ai,22, respectively:

Ai,21,pr =
1

T
W ∗Xp,iW̄Fr , and Ai,22,r =

1

T
W̄ ∗FrWε,i,

where WXp,i and W̄Fr are both L × 1 vectors that refer to the DFT of p-th element of the

regressor Xit and the r-th element of Ft (which may not be the true vector in this lemma).

By construction W̄Fr = γ
dFr− 1

2

L WFr . Then using the same reasoning that analyzes A1, we

obtain
∣∣∣ 1
TW

∗
Xp,i

W̄Fr

∣∣∣ = Op

(
γ

1
2−dXp
L

)
and

∣∣∣ 1
T W̃

∗
Fr
Wε,i

∣∣∣ = Op

(
γ

1
2−dε
L

)
uniformly in i. It

follows that

‖A2‖2 =

P∑
p=1

∣∣∣∣∣
R∑
r=1

1

N

N∑
i=1

Ai,21,prAi,22,r

∣∣∣∣∣
2

. max
p,r

∣∣∣∣∣ 1

N

N∑
i=1

Ai,21,prAi,22,r

∣∣∣∣∣
2

= Op

(
γ

2(1−dX,max−dε)
L

)
.

That is, A2 = Op

(
γ

1−dX,max−dε
L

)
. In sum, we have

sup
W̃F∈W

∥∥∥∥∥ 1

NT

N∑
i=1

W ∗X,iMW̃F
Wε,i

∥∥∥∥∥ = op (1) .

(ii) and (iii): The proof is similar to that of (i) and thus omitted. �

Proof of Lemma B.1.6. Let δ̃ = β̃ − β. As in the proof of Lemma B.1.1, we consider the

201



following eigenvalue problem

[
1

NT

N∑
i=1

(
WY,i −WX,iβ̃

)(
WY,i −WX,iβ̃

)∗]
ŴF = ŴFVNL. (B.2.5)

By expanding WY,i, (B.2.5) follows that

ŴFVNL =
1

NT

N∑
i=1

WX,iδ̃δ̃
′W ∗X,iŴF −

1

NT

N∑
i=1

WX,iδ̃λ
′
iW
∗
F 0ŴF −

1

NT

N∑
i=1

WX,iδ̃W
∗
ε,iŴF

− 1

NT

N∑
i=1

WF 0λiδ̃
′W ∗X,iŴF −

1

NT

N∑
i=1

Wε,iδ̃
′W ∗X,iŴF +

1

NT

N∑
i=1

WF 0λiW
∗
ε,iŴF

+
1

NT

N∑
i=1

Wε,iλ
′
iW
∗
F 0ŴF +

1

NT

N∑
i=1

Wε,iW
∗
ε,iŴF +

1

NT

N∑
i=1

W̃F 0 λ̃iλ̃
′
iW̃
∗
F 0ŴF

≡ Ĩ1 + · · ·+ Ĩ9. (B.2.6)

Since Ĩ9 = W̃F 0

(
Λ̃′Λ̃/N

)(
W̃ ∗F 0ŴF /T

)
, we have

ŴFVNL − W̃F 0

(
Λ̃′Λ̃/N

)(
W̃ ∗F 0ŴF /T

)
= Ĩ1 + · · ·+ Ĩ8.

Recall that H̃ =
(

Λ̃′Λ̃
N

)(
W̃∗
F0ŴF

T

)
V −1
NL. Then

T−
1
2

∥∥∥ŴF − W̃F 0H̃
∥∥∥ = T−

1
2

∥∥∥∥[ŴFVNL

(
W̃ ∗F 0ŴF /T

)−1 (
Λ̃
′
Λ̃/N

)−1

− W̃F 0

]
H̃

∥∥∥∥
= T−

1
2

∥∥∥∥(Ĩ1 + · · ·+ Ĩ8

)(
W̃ ∗F 0ŴF /T

)−1 (
Λ̃′Λ̃/N

)−1

H̃

∥∥∥∥
. T−

1
2

(∥∥∥Ĩ1∥∥∥+ · · ·
∥∥∥Ĩ8∥∥∥)∥∥V −1

NL

∥∥
given the invertibility of W̃ ∗F 0ŴF /T by Proposition 3.4.1 using the same reasoning as in the

proof of Proposition 1 in Bai (2009). It is sufficient to study Ĩ1, . . . , Ĩ8. For Ĩ1, we have

T−
1
2

∥∥∥Ĩ1∥∥∥ = T−
1
2

∥∥∥∥∥ 1

NT

N∑
i=1

W ∗X,iδ̃δ̃
′W ∗X,iŴF

∥∥∥∥∥
≤ 1

N

N∑
i=1

1

T
‖WX,i‖2

∥∥∥δ̃∥∥∥2

T−
1
2

∥∥∥ŴF

∥∥∥ . 1

N

N∑
i=1

1

T
‖WX,i‖2

∥∥∥δ̃∥∥∥2

= Op

(
γ

1−2dX,max

L

)∥∥∥δ̃∥∥∥2

= op

(
γ

1−2dX,max

L

∥∥∥δ̃∥∥∥) ,
where we use the fact that T−

1
2

∥∥∥ŴF

∥∥∥ =
√
R and 1

NT

∑N
i=1 ‖WX,i‖2 = Op

(
γ

1−2dX,max

L

)
by

following arguments used in the proof of Lemma B.1.5 under Assumption B∗(i). Similarly,

T−
1
2

∥∥∥Ĩ2∥∥∥ = T−
1
2

∥∥∥∥∥ 1

NT

N∑
i=1

WX,iδ̃λ̃
′
iW̃
∗
F 0ŴF

∥∥∥∥∥
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.
1

NT
1
2

N∑
i=1

‖WX,i‖
∥∥∥λ̃i∥∥∥T− 1

2

∥∥∥W̃F 0

∥∥∥∥∥∥δ̃∥∥∥
.

{
1

NT

N∑
i=1

‖WX,i‖2
}1/2{

1

N

N∑
i=1

∥∥∥λ̃i∥∥∥2
}1/2 ∥∥∥δ̃∥∥∥

= Op

(
γ

1/2−dX,max

L

)
Op

(
γ

1/2−dF,max

L

)∥∥∥δ̃∥∥∥ = Op

(
γ

1−dX,max−dF,max

L

∥∥∥δ̃∥∥∥)

by Assumption B(iv), the fact that λ̃i = Γ̃−1
F λi and that 1

T

∥∥∥W̃F 0

∥∥∥2

= Op (1) by following

arguments used in the proof of Lemma B.1.5. Analogously, we have

T−
1
2

∥∥∥Ĩ3∥∥∥ = T−
1
2

∥∥∥∥∥ 1

NT

N∑
i=1

WX,iδ̃W
∗
ε,iŴF

∥∥∥∥∥ = Op

(
γ

1−dX,max−dε
L

∥∥∥δ̃∥∥∥) ,

T−
1
2

∥∥∥Ĩ4∥∥∥ = T−
1
2

∥∥∥∥∥ 1

NT

N∑
i=1

W̃F 0 λ̃iδ̃
′W ∗X,iŴF

∥∥∥∥∥ = Op

(
γ

1−dX,max−dF
L

∥∥∥δ̃∥∥∥) ,
and

T−
1
2

∥∥∥Ĩ5∥∥∥ = T−
1
2

∥∥∥∥∥ 1

NT

N∑
i=1

Wε,iδ̃
′W ∗X,iŴF

∥∥∥∥∥ = Op

(
γ

1−dX,max−dε
L

∥∥∥δ̃∥∥∥) .
For Ĩ6 we have

T−
1
2

∥∥∥Ĩ6∥∥∥ = T−
1
2

∥∥∥∥∥ 1

NT

N∑
i=1

W̃F 0 λ̃iW
∗
ε,iŴF

∥∥∥∥∥ . 1

NT
1
2

∥∥∥∥∥
N∑
i=1

λ̃iW
∗
ε,i

∥∥∥∥∥
= Op

(
N−

1
2 γ

1−dF,max−dε
L

)
,

by Assumption C∗(i) and C∗(ii) using the similar reasoning as in the proof of Lemma 1(ii)

in Bai and Ng (2002). Note that Ĩ7 is a conjugate transpose of Ĩ6, so T−
1
2

∥∥∥Ĩ7∥∥∥ = T−
1
2

∥∥∥Ĩ6∥∥∥
and share the same order. For Ĩ8, we follow the reasoning as used in the proof of Lemma

B.1.1 and consider the transpose of the l-th row of Ĩ8 as

Ĩ8,l =
1

NT

N∑
i=1

L∑
k=1

Wε,ilW
∗
ε,ikŴF,k

=
1

NT

N∑
i=1

L∑
k=1

E
(
Wε,ilW

∗
ε,ik

)
ŴF,k +

1

T

L∑
k=1

(
1

N

N∑
i=1

Wε,ilW
∗
ε,ik − γWN (k, l)

)
ŴF,k ≡ Ĩ8,l1 + Ĩ8,l2,

where γWN (k, l) = 1
N

∑N
i=1E

(
Wε,ilW

∗
ε,ik

)
and ŴF,k denotes the k-th column of ŴF . Note

that

1

T

L∑
l=1

∥∥∥Ĩ8,l1∥∥∥2

=
1

N2T 2

L∑
l=1

∥∥∥∥∥
N∑
i=1

L∑
k=1

E
(
Wε,ilW

∗
ε,ik

)
ŴF,k

∥∥∥∥∥
2

=
1

N2T 3

L∑
l=1

N∑
i,j=1

L∑
k,m=1

E
(
Wε,ilW

∗
ε,ik

)
E
(
W ∗ε,jlWε,jm

)
Ŵ ∗F,kŴF,m
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≤ 1

N2T 3

L∑
l=1

N∑
i,j=1

L∑
k,m=1

√
E
∣∣∣Wε,ilW ∗ε,ik

∣∣∣2E ∣∣∣W ∗ε,jlWε,jm

∣∣∣2 ∥∥∥ŴF,k

∥∥∥∥∥∥ŴF,m

∥∥∥
≤ 1

N2T 3

L∑
l=1

N∑
i,j=1

L∑
k,m=1

γ−2dε
l γ−dεk γ−dεm σWij

∥∥∥ŴF,k

∥∥∥∥∥∥ŴF,m

∥∥∥
.

1

NT 3

(
L∑
l=1

γ−2dε
l

)2( L∑
l=k

∥∥∥ŴF,k

∥∥∥2
)

= Op

(
1

N
γ2−4dε
L

)

by Assumption C∗(ii). In addition, 1
T

∑L
l=1

∥∥∥Ĩ8,l2∥∥∥2

= Op

(
N−1γ2−4dε

L

)
following the same

reasoning as above and using Assumption C∗(iv). In sum, we have

T−
1
2

∥∥∥ŴF − W̃F 0H̃
∥∥∥ = Op

(
γ

1
2−dX,max

L

(
γ

1
2−dF,max

L + γ
1
2−dε
L

)∥∥∥δ̃∥∥∥+N−
1
2 γ1−2dε
L

)
≡ Op

(
δW1,NT

∥∥∥δ̃∥∥∥+N−
1
2 γ

1−dF,max−dε
L

)
,

which completes the proof of Lemma B.1.6. �

Proof of Lemma B.1.7. The proof of this lemma parallels that of Lemma B.1.2. Note

that

1

N

N∑
i=1

λi
W ∗ε,iŴF

T
=

1

N

N∑
i=1

λi
W ∗ε,iW̃F 0H̃

T
+

1

N

N∑
i=1

λi
W ∗ε,i

(
ŴF − W̃F 0H̃

)
T

≡ A1 +A2. (B.2.7)

For A1, we have

‖A1‖ ≤
∥∥∥H̃∥∥∥ 1

NT

∥∥∥∥∥
N∑
i=1

λiW
∗
ε,iW̃F 0

∥∥∥∥∥
= Op

(
γ

1−2dF,max

L

)
Op

(
N−

1
2L−

1
2 γ

1
2−dε
L

)
= Op

(
N−

1
2N−

1
2 γ

3
2−2dF,max−dε
L

)

by B∗(iii) and D∗(iii), and the fact that H̃ = Op

(
γ

1−2dF,max

L

)
as in the proof of Lemma

B.1.6. Next we denote

G̃ =

(
W̃ ∗F 0ŴF

T

)−1(
Λ̃′Λ̃

N

)−1

= Op

(
γ

2dF,min−1
L

)
.

Following the proof of Lemma B.1.6, we have for A2 that

1

N

N∑
i=1

λi
W ∗ε,i

(
ŴF − W̃F 0H̃

)
T

=
1

N

N∑
i=1

λi
W ∗ε,i

(
ŴF H̃

−1 − W̃F 0

)
T

H̃

=
1

N

N∑
i=1

λi
W ∗ε,i

(
Ĩ1 + · · ·+ Ĩ8

)
G̃

T
H̃
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.
1

NT

N∑
i=1

λiW
∗
ε,i

(
Ĩ1 + · · ·+ Ĩ8

)
≡ a1 + · · ·+ a8,

using the fact that
∥∥∥G̃H̃∥∥∥ =

∥∥V −1
NL

∥∥ = Op (1). For a1, we have

‖a1‖ =

∥∥∥∥∥ 1

N

N∑
i=1

λi
1

T
W ∗ε,i

1

NT

N∑
k=1

WX,k δ̃δ̃
′W ∗X,kŴF

∥∥∥∥∥
.

1

NT
1
2

∥∥∥∥∥
N∑
i=1

λiW
∗
ε,i

∥∥∥∥∥ 1

NT

N∑
k=1

∥∥W ∗X,k∥∥2
∥∥∥δ̃∥∥∥2

= Op

(
N−

1
2 γ

1
2−dε
L

)
Op

(
γ

1−2dX,max

L

)∥∥∥δ̃∥∥∥2

= Op

(
N−

1
2 γ

3
2−2dX,max−dε
L

∥∥∥δ̃∥∥∥2
)

by Assumption B∗(i) and C∗(i). Similarly,

‖a2‖ =

∥∥∥∥∥ 1

N

N∑
i=1

λi
1

T
W ∗ε,i

1

NT

N∑
k=1

WX,k δ̃λ
′
kW
∗
F 0ŴF

∥∥∥∥∥
.

1

NT
1
2

∥∥∥∥∥
N∑
i=1

λiW
∗
ε,i

∥∥∥∥∥ 1

NT
1
2

N∑
k=1

‖WX,k‖ ‖λk‖
∥∥∥δ̃∥∥∥T− 1

2 ‖WF 0‖

.
1

NT
1
2

∥∥∥∥∥
N∑
i=1

λiW
∗
ε,i

∥∥∥∥∥
{

1

NT

N∑
k=1

‖WX,k‖2
}1/2

T−
1
2 ‖WF 0‖

∥∥∥δ̃∥∥∥
= Op

(
N−

1
2 γ

1
2−dε
L

)
Op

(
γ

1/2−dX,max

L

)
Op

(
γ

1/2−dF,max

L

)∥∥∥δ̃∥∥∥ = Op

(
N−

1
2 γ

3
2−dF,max−dX,max−dε
L

∥∥∥δ̃∥∥∥) ,

‖a3‖ =

∥∥∥∥∥ 1

N

N∑
i=1

λi
1

T
W ∗ε,i

1

NT

N∑
k=1

WX,k δ̃W
∗
ε,kŴF

∥∥∥∥∥
.

1

NT
1
2

∥∥∥∥∥
N∑
i=1

λiW
∗
ε,i

∥∥∥∥∥ 1

NT

N∑
k=1

‖WX,k‖ ‖Wε,k‖
∥∥∥δ̃∥∥∥

.
1

NT
1
2

∥∥∥∥∥
N∑
i=1

λiW
∗
ε,i

∥∥∥∥∥
{

1

NT

N∑
k=1

‖WX,k‖2
}1/2{

1

NT

N∑
k=1

‖Wε,k‖2
}1/2 ∥∥∥δ̃∥∥∥

= Op

(
N−

1
2 γ

1
2−dε
L

)
Op

(
γ

1/2−dX,max

L

)
Op

(
γ

1/2−dε
L

)∥∥∥δ̃∥∥∥ = Op

(
N−

1
2 γ

3
2−dX,max−2dε
L

∥∥∥δ̃∥∥∥) ,

‖a4‖ =

∥∥∥∥∥ 1

N

N∑
i=1

λi
1

T
W ∗ε,i

1

NT

N∑
k=1

WF 0λk δ̃
′W ∗X,kŴF

∥∥∥∥∥
.

1

NT
1
2

∥∥∥∥∥
N∑
i=1

λiW
∗
ε,i

∥∥∥∥∥ 1

NT
1
2

N∑
k=1

‖WX,k‖ ‖λk‖T−
1
2 ‖WF 0‖

∥∥∥δ̃∥∥∥
≤ 1

NT
1
2

∥∥∥∥∥
N∑
i=1

λiW
∗
ε,i

∥∥∥∥∥
{

1

NT

N∑
k=1

‖WX,k‖2
}1/2

T−
1
2 ‖WF 0‖

∥∥∥δ̃∥∥∥
= Op

(
N−

1
2 γ

1
2−dε
L

)
Op

(
γ

1/2−dX,max

L

)
Op

(
γ

1/2−dF,max

L

)∥∥∥δ̃∥∥∥ = Op

(
N−

1
2 γ

3
2−dX,max−dF,max−dε
L

∥∥∥δ̃∥∥∥) ,
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and

‖a5‖ =

∥∥∥∥∥ 1

N

N∑
i=1

λi
1

T
W ∗ε,i

1

NT

N∑
k=1

Wε,k δ̃
′W ∗X,kŴF

∥∥∥∥∥
.

1

NT
1
2

∥∥∥∥∥
N∑
i=1

λiW
∗
ε,i

∥∥∥∥∥
{

1

NT

N∑
k=1

‖Wε,k‖2
}1/2{

1

NT

N∑
k=1

‖WX,k‖2
}1/2 ∥∥∥δ̃∥∥∥

= Op

(
N−

1
2 γ

1
2−dε
L

)
Op

(
γ

1/2−dε
L

)
Op

(
γ

1/2−dX,max

L

)∥∥∥δ̃∥∥∥ = Op

(
N−

1
2 γ

3
2−dX,max−2dε
L

∥∥∥δ̃∥∥∥) .
For a6 we make the following decomposition

a6 =
1

N2T 2

N∑
i=1

λiW
∗
ε,i

N∑
k=1

WF 0λkW
∗
ε,k

[
W̃F 0H̃ +

(
ŴF − W̃F 0H̃

)]
≡ a6,1 + a6,2.

Note that

‖a6,1‖ =

∥∥∥∥∥ 1

N2T 2

N∑
i=1

λiW
∗
ε,iWF 0

N∑
k=1

λkW
∗
ε,kW̃F 0H̃

∥∥∥∥∥ ≤ ∥∥∥Γ̃F H̃
∥∥∥∥∥∥∥∥ 1

NT

N∑
i=1

λiW
∗
ε,iWF 0

∥∥∥∥∥
2

. γ
1
2−dF,max

L

∥∥∥∥∥ 1

NT

N∑
i=1

λiW
∗
ε,iWF 0

∥∥∥∥∥
2

= Op

(
γ

1
2−dF,max

L

)
Op

(
N−1L−1γ2−2dε

L

)
Op

(
γ
−2dF,max

L

)
= Op

(
N−1L−1γ

5
2−3dF,max−2dε
L

)
,

by Assumption D∗(iii). Next

‖a6,2‖ =

∥∥∥∥∥ 1

N2T 2

N∑
i=1

λiW
∗
ε,iWF 0

N∑
k=1

λkW
∗
ε,k

(
ŴF − W̃F 0H̃

)∥∥∥∥∥
≤ 1

N2T

∥∥∥∥∥
N∑
i=1

λiW
∗
ε,i

∥∥∥∥∥
2

T−
1
2 ‖WF 0‖T− 1

2

∥∥∥ŴF − W̃F 0H̃
∥∥∥

= Op

(
N−1γ1−2dε

L

)
Op

(
γ

1
2−dF,max

L

)
Op

(
δW1,NT

∥∥∥δ̃∥∥∥+N−
1
2 γ

1−dF,max−dε
L

)
= Op

(
N−1γ

3
2−dF,max−2dε
L

(
δW1,NT

∥∥∥δ̃∥∥∥+N−
1
2 γ

1−dF,max−dε
L

))
,

by Lemma B.1.1, where δW1,NT = γ
1
2−dX,max

L

(
γ

1
2−dF,max

L + γ
1
2−dε
L

)
. And the order of∥∥∥ 1

NT
1
2

∑N
i=1 λiW

∗
ε,i

∥∥∥2

above is obtained because

E

∥∥∥∥∥ 1

NT
1
2

N∑
i=1

λiW
∗
ε,i

∥∥∥∥∥
2

1

T
=

1

N2T

N∑
i,k=1

E (λ′kλi)E
(
W ∗ε,iWε,k

)
≤ max

i,k
|E (λ′kλi)|

1

N2T

N∑
i,k=1

L∑
l=1

∣∣E (W ∗ε,ilWε,kl

)∣∣ = O
(
N−1γ1−2dε

L

)
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by Assumption B(iv), C∗(i) and C∗(ii). Then

a6 = Op

(
N−1L−1γ

5
2−3dF,max−2dε
L +N−1γ

3
2−dF,max−2dε
L

(
δW1,NT

∥∥∥δ̃∥∥∥+N−
1
2 γ

1−dF,max−dε
L

))
.

For a7 we have, by the same reasoning as a6,2 that

‖a7‖ =

∥∥∥∥∥ 1

N

N∑
i=1

λi
1

T
W ∗ε,i

(
1

NT

N∑
k=1

Wε,kλ
′
kW
∗
F 0ŴF

)∥∥∥∥∥
.

1

N2T

∥∥∥∥∥
N∑
i=1

λiW
∗
ε,i

∥∥∥∥∥
2

T−
1
2 ‖WF 0‖

= Op

(
N−1γ1−2dε

L

)
Op

(
γ

1
2−dF,max

L

)
= Op

(
N−1γ

3
2−dF,max−2dε
L

)
.

For a8, we have

a8 =
1

N2T 2

N∑
i=1

λiW
∗
ε,i

N∑
k=1

Wε,kW
∗
ε,k

[
W̃F 0H̃ +

(
ŴF − W̃F 0H̃

)]
≡ a8,1 + a8,2.

Note that

a8,1 =
1

N2T 2

N∑
i=1

N∑
k=1

λi

L∑
l=1

[
W ∗ε,ilWε,kl − E

(
W ∗ε,ilWε,kl

)]
W ∗ε,kW̃F 0H̃

+
1

N2T 2

N∑
i=1

N∑
k=1

λi

L∑
l=1

E
(
W ∗ε,ilWε,kl

)
W ∗ε,kW̃F 0H̃ ≡ a8,11 + a8,12.

For a8,11, we have

‖a8,11‖ ≤
1

N2T 2

N∑
k=1

∥∥∥∥∥
N∑
i=1

λi

L∑
l=1

[
W ∗ε,ilWε,kl − E

(
W ∗ε,ilWε,kl

)]∥∥∥∥∥ ∥∥∥W ∗ε,kW̃F 0H̃
∥∥∥

≤ 1√
NT

 1

N2

N∑
k=1

∥∥∥∥∥
N∑
i=1

λi

L∑
l=1

[
W ∗ε,ilWε,kl − E

(
W ∗ε,ilWε,kl

)]∥∥∥∥∥
2
 1

2 (
1

NT 2

N∑
k=1

∥∥∥W ∗ε,kW̃F 0H̃
∥∥∥2
) 1

2

= O
(
N−

1
2T−1

)
Op

(
Lγ−2dε

L

)
Op

(
L−

1
2 γ

3
2−2dF,max−dε
L

)
= Op

(
N−

1
2L−

1
2 γ

5
2−2dF,max−3dε
L

)

by Assumption B(iv), B∗(iii), C∗(i), C∗(v) and E∗(iii) using the same reasoning as studying

a81a in the proof of Lemma B.1.2. To be specific,

E

 1

N2

N∑
k=1

∥∥∥∥∥
N∑
i=1

λi

L∑
l=1

[
W ∗ε,ilWε,kl − E

(
W ∗ε,ilWε,kl

)]∥∥∥∥∥
2


=
1

N2

N∑
h,i,k=1

E (λ∗i λh)

L∑
l,m=1

E
{[
W ∗ε,ilWε,kl − E

(
W ∗ε,ilWε,kl

)] [
W ∗ε,hmWε,km − E

(
W ∗ε,hmWε,km

)]}

207



=
1

N2

N∑
h,i,k=1

E (λ∗i λh)

L∑
l,m=1

cov
[
W ∗ε,ilWε,kl,W

∗
ε,hmWε,km

]
≤ maxi,hE (λ∗i λh)

N2

N∑
h,i,k=1

L∑
l,m=1

∣∣cov
[
W ∗ε,ilWε,kl,W

∗
ε,hmWε,km

]∣∣ = O
(
L2γ−4dε

L

)
.

Next, a8,12 follows that

‖a8,12‖ ≤
1

N2T 2

N∑
i=1

N∑
k=1

‖λi‖

(
L∑
l=1

∣∣E (W ∗ε,ilWε,kl

)∣∣)∥∥∥W ∗ε,kW̃F 0H̃
∥∥∥

. γ1−2dF,max

L

1

N2T

N∑
i=1

‖λi‖
N∑
k=1

(
L∑
l=1

∣∣E (W ∗ε,ilWε,kl

)∣∣) 1√
T

∥∥∥Wε,kW̃F 0

∥∥∥
.
γ

1−2dF,max

L√
NT

(
1

N

N∑
i=1

‖λi‖2
) 1

2

 1

N

N∑
i=1

N∑
k=1

(
L∑
l=1

∣∣E (W ∗ε,ilWε,kl

)∣∣)2
 1

2 (
1

N

N∑
k=1

1

T

∥∥∥Wε,kW̃F 0

∥∥∥2
) 1

2

= Op

(
γ

1−2dF,max

L N−
1
2T−1

)
Op (1)O

(
Lγ−2dε

L

)
Op

(
L−

1
2 γ

1
2−dε
L

)
= Op

(
N−

1
2L−

1
2 γ

5
2−2dF,max−3dε
L

)

by Cauchy-Schwarz inequality and Assumptions B(iv), C∗(i), C∗(ii) and D∗(iii). To be

specific,

1

N

N∑
i=1

N∑
k=1

(
L∑
l=1

∣∣E (W ∗ε,ilWε,kl

)∣∣)2

≤ 1

N

N∑
i=1

N∑
k=1

(
L∑
l=1

√
E
(
W ∗ε,ilWε,kl

)2
)2

≤ 1

N

N∑
i=1

N∑
k=1

(
σWij
)2( L∑

l=1

γ−2dε
l

)2

= O
(
L2γ−4dε

L

)

Therefore, a8,1 = Op

(
N−

1
2L−

1
2 γ

5
2−2dF,max−3dε
L

)
. As for the order of a8,2, the similar rea-

soning holds except we replace T−
1
2

∥∥∥W̃F 0H̃
∥∥∥ by T−

1
2

∥∥∥ŴF − W̃F 0H
∥∥∥, therefore

‖a8,2‖ = Op

(
N−

1
2 γ

3
2−3dε
L

(
δW1,NT

∥∥∥δ̃∥∥∥+N−
1
2 γ

1−dF,max−dε
L

))
,

where δW1,NT is defined in Lemma B.1.6. Then

a8 = Op

(
N−

1
2 γ

3
2−3dε
L

(
L−

1
2 γ

1−2dF,max

L + δW1,NT

∥∥∥δ̃∥∥∥+N−
1
2 γ

1−dF,max−dε
L

))
.

In sum, we have

∥∥∥∥∥ 1

N

N∑
i=1

λi
W ∗ε,iŴF

T

∥∥∥∥∥ = Op

(
N−

1
2L−

1
2 γ

3
2−2dF,max−dε
L

)
+Op

(
N−

1
2 γ

3
2−2dX,max−dε
L

∥∥∥δ̃∥∥∥2
)

+Op

(
N−

1
2 γ

3
2−dX,max−dF,max−dε
L

∥∥∥δ̃∥∥∥)+Op

(
N−

1
2 γ

3
2−dX,max−2dε
L

∥∥∥δ̃∥∥∥)
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+Op

(
N−1L−1γ

5
2−3dF,max−2dε
L

)
+Op

(
N−1γ

3
2−dF,max−2dε
L

)
+Op

(
N−1γ

3
2−dF,max−2dε
L

(
δW1,NT

∥∥∥δ̃∥∥∥+N−
1
2 γ

1−dF,max−dε
L

))
+Op

(
N−

1
2 γ

3
2−3dε
L

(
L−

1
2 γ

1−2dF,max

L + δW1,NT

∥∥∥δ̃∥∥∥+N−
1
2 γ

1−dF,max−dε
L

))
≡ Op

(
δW,NL

∥∥∥δ̃∥∥∥+N−
1
2L−

1
2 γ

3
2−2dF,max−dε
L

)
,

where δW,NL = N−
1
2 γ

1−dX,max−dε
L

(
γ

1
2−dF,max

L + γ
1
2−dε
L

)
. This completes the proof of Lemma

B.1.7. �

Proof of Lemma B.1.8. For J̃8 we have the following decomposition:

J̃8 = − 1

NT

N∑
i=1

Re

(
W ∗X,iMŴF

1

NT

N∑
k=1

Wε,kW
∗
ε,kŴF Ǧλi

)

= − 1

N2T 2

N∑
i,k=1

Re
(
W ∗X,iWε,kW

∗
ε,kŴF Ǧλi

)
+

1

N2T 2

N∑
i,k=1

Re

(
W ∗X,iŴF

T
Ŵ ∗FWε,kW

∗
ε,kŴF Ǧλi

)

≡ J̃8,a + J̃8,b.

Firstly J̃8,a can be decomposed similarly into

J̃8,a

= − 1

N2T 2

N∑
i,k=1

Re
(
W ∗X,iWε,kW

∗
ε,kW̃F 0H̃Ǧλi

)
− 1

N2T 2

N∑
i,k=1

Re
(
W ∗X,iWε,kW

∗
ε,k

(
ŴF − W̃F 0H̃

)
Ǧλi

)

= − 1

N2T 2

N∑
i,k=1

Re

 L∑
j=1

WX,ijWε,kjW ε,kjW̃
′
F 0,jH̃Ǧλi

− 1

N2T 2

N∑
i,k=1

Re

 L∑
j 6=l

WX,ijWε,kjW ε,klW̃
′
F 0,lH̃Ǧλi


− 1

N2T 2

N∑
i,k=1

Re
(
W ∗X,iWε,kW

∗
ε,k

(
ŴF − W̃F 0H̃

)
Ǧλi

)
≡ J̃8,a1 + J̃8,a2 + J̃8,a3,

and then J̃8,b could have the similar decomposition given by

J̃8,b =
1

N2T 2

N∑
i,k=1

Re

W ∗X,iŴF

T
H̃∗

L∑
j=1

W̃F 0,jWε,kjW ε,kjW̃
′
F 0,jH̃Ǧλi


+

1

N2T 2

N∑
i,k=1

Re

W ∗X,iŴF

T
H̃∗

L∑
j 6=l

W̃F 0,jWε,kjW ε,klW̃
′
F 0,lH̃Ǧλi


+

1

N2T 2

N∑
i,k=1

Re

(
W ∗X,iŴF

T
Ŵ ∗FWε,kW

∗
ε,k

(
ŴF − W̃F 0H̃

)
Ǧλi

)

+
1

N2T 2

N∑
i,k=1

Re

(
W ∗X,iŴF

T

(
ŴF − W̃F 0H̃

)∗
Wε,kW

∗
ε,k

(
ŴF − W̃F 0H̃

)
Ǧλi

)
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≡ J̃8,b1 + J̃8,b2 + J̃8,b3 + J̃8,b4.

Next, define J̃8,1 = J̃8,a1 + J̃8,b1, and define J̃8,2 and J̃8,3 in the same manner. It is easy to

see that

J̃8,1 = − 1

N2T 2

N∑
i,k=1

Re

 L∑
j=1

WX,ijWε,kjW ε,kjW̃
′
F 0,jH̃Ǧλi


+

1

N2T 2

N∑
i,k=1

Re

W ∗X,iŴF

T
H̃∗

L∑
j=1

W̃F 0,jWε,kjW ε,kjW̃
′
F 0,jH̃Ǧλi


= − 1

NT

N∑
i=1

Re

(
W ∗X,iMŴF

1

NT

N∑
k=1

Diag
(
|Wε,kj |2

)
ŴF Ǧλi

)
= ANT .

Suppose we define Jit =
(
X ′it, F

0′
t

)′
, and WJ,ij its DFT at frequency γj . Then J̃8,a1 and J̃8,b1

correspond to the submatrices of
∑L
j=1W J,ijWε,kjW ε,kjW̃

′
J,ij with different weighted sum

over i and k. And the same notation works for J̃8,2. Following (22)-(35) in the proof of The-

orem 2 in Christensen and Nielsen (2006) and using Cauchy-Schwarz inequality, which is re-

flected by our Assumption D(iii), it can be concluded that J̃8,1 = Op

(
1
Lγ

2+2dF,min−dX,max−3dF,max−2dε
L

)
and J̃8,2 = Op

(
1
T γ

2+2dF,min−dX,max−3dF,max−2dε
L

)
.

Then we analyze the order of J̃8,3, which follows that

J̃8,3 = − 1

N2T 2

N∑
i,k=1

Re
(
W ∗X,iMŴF

Wε,kW
∗
ε,k

(
ŴF − W̃F 0H̃

)
Ǧλi

)

= − 1

NT

N∑
i=1

Re

(
W ∗X,iMŴF

1

NT

N∑
k=1

E
(
Wε,kW

∗
ε,k

) (
ŴF − W̃F 0H̃

)
Ǧλi

)

− 1

NT

N∑
i=1

Re

(
W ∗X,iMŴF

1

NT

N∑
k=1

(
Wε,kW

∗
ε,k − E

(
Wε,kW

∗
ε,k

)) (
ŴF − W̃F 0H̃

)
Ǧλi

)

≡ J̃8,31 + J̃8,32,

where J̃8,31 is given in norm by

∥∥∥J̃8,31

∥∥∥ . γdF,min− 1
2

L

1

NT

N∑
i=1

∥∥∥∥WX,i√
T

∥∥∥∥ ‖λi‖ 1

N

N∑
k=1

‖Ωk‖sp
∥∥Γ̌−1

ε

∥∥2

sp

1√
T

∥∥∥ŴF − W̃F 0H̃
∥∥∥

= Op

(
T 2dε−1γ

dF,min−dX,max

L

(
δW1,NT

∥∥∥δ̃∥∥∥+N−
1
2 γ

1−dF,max−dε
L

))

by Assumption C∗(iii). And for J̃8,32 we have

∥∥∥J̃8,32

∥∥∥ . γdF,min− 1
2

L

1

N
√
T

N∑
i=1

‖WX,i‖ ‖λi‖
1

NT

∥∥∥∥∥
N∑
k=1

(
Wε,kW

∗
ε,k − E

(
Wε,kW

∗
ε,k

))∥∥∥∥∥ 1√
T

∥∥∥ŴF − W̃F 0H̃
∥∥∥

= Op

(
γ
dF,min− 1

2

L

)
Op

(
γ

1
2−dX,max

L

)
Op

(
N−

1
2 γ1−2dε
L

)
Op

(
δW1,NT
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by Assumption C∗(v). And the order of J̃8,b4 can be omitted as it is dominated by J̃8,b3.

Thus we complete the proof of Lemma B.1.8. �

Proof of Lemma B.1.9. We first consider how
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ŴF − W̃F 0H̃

)
H̃∗W̃ ∗F 0

T
Wε,i


+

√
NLγdε−1

L ΓZ
NT

N∑
i=1

Re

W ∗X,i
(
ŴF − W̃F 0H̃

)(
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We study a, b, c and d in turn. First, for a we have

‖a‖ =

∥∥∥∥∥∥
√
NLγdε−1

L ΓZ
NT

N∑
i=1

Re

W ∗X,i
(
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and an order of L small enough relative to T that represents an undersmoothed estimator.

Next, for b we have
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ŴF − W̃F 0H̃

)∗
T

Wε,i


∥∥∥∥∥∥∥

≤
√
NLγdε−1

L ‖ΓZ‖

{
1

NT

N∑
i=1

‖WX,i‖ ‖Wε,i‖

}
1

T
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as it relies on some milder conditions relative to ‖a‖.
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and similarly
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Then
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and so is the probability order of
∥∥∥Q̃∥∥∥. Therefore we can conclude that
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Next for c1 we have
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ĞŴ ∗F

1

NT

N∑
k=1

Wε,kλ
′
kW
∗
F 0Wε,i

∥∥∥∥∥
.
√
NLγdε−1

L ‖ΓZ‖
1

NT

N∑
i=1

‖WX,i‖ ‖W ∗F 0Wε,i‖

∥∥∥∥∥ 1

NT 3
2

N∑
k=1
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T . Note that this term corresponds to one of the asymptotic bias in
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where E
∣∣∣Wε,ilW

∗
ε,kl

∣∣∣2 ≤ γ−4dε
l

(
σWik
)2

by Assumption C∗(ii). For E |AiA∗k| we also have

E |AiA∗k| ≤ E (‖Ai‖ ‖Ak‖) ≤
√
E ‖Ai‖2E ‖Ak‖2.

Focusing on E ‖Ai‖2, we denote WX,ij as the conjugate of WX,ij , and denote W̌F 0,j =

Γ̌F,jW̌F 0,j as in Assumption C∗(iii) with W̌X,ij defined in the same manner. Then

E ‖Ai‖2 =
1

T 2
ω′ΓZ

L∑
j,l=1

E
(
WX,ijW

′
F 0,jΓ̃

2
FWF 0,lW

∗
X,il

)
ΓZω

=
1

T 2
ω′ΓZ

L∑
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E
(
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X,jW̌X,ijW̌

′
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−1
F,jΓ̃

2
F Γ̌−1

F,lW̌F 0,lW̌
∗
X,ilΓ̌

−1
X,l

)
ΓZω

.
1

T 2
γ

2dZ,min

L

L∑
j,l=1

γ
−dX,max

j γ
−dX,max

l

∥∥∥Γ̌−1
F,jΓ̃

2
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F,l

∥∥∥E (∥∥∥W̌X,ijW̌
′
F 0,j

∥∥∥∥∥W̌F 0,lW̌
∗
X,il

∥∥)
= O

(
γ

2−2dX,max+2dZ,min

L

)

by Assumption B∗(i) and B∗(iii). Therefore what remains is to consider the order of

1

NT

L∑
l=1

N∑
i,k=1

(
E
∣∣Wε,ilW

∗
ε,kl

∣∣2) 1
2

,

which is given by O
(
γ1−2dε
L

)
. This implies that (B.2.11) is O

(
γ

3−2dX,max−2dε+2dZ,min

L

)
.

Similarly, we have

E

 1

T

L∑
l=1

∥∥∥∥∥ 1√
N

N∑
i=k

λkWε,kl

∥∥∥∥∥
2
 = O

(
γ1−2dε
L

)
,

which altogether forms the order of c1,7. Then lastly c1,8 is given by

c1,8 =

√
NLγdε−1

L ΓZ
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i=1
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T
ĞI∗8Wε,i

=

√
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ĞH̃∗W̃ ∗F 0
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+
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T
Ğ
(
ŴF − W̃F 0H̃

)∗ 1

NT

N∑
k=1

Wε,kW
∗
ε,kWε,i ≡ c1,81 + c1,82.

Then it remains to study c1,81 and c1,82. For c1,81, we have

c1,81 =

√
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T
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1
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+

√
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L ΓZ
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T
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1
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Wε,kE
(
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)
≡ c1,811 + c1,812.

Note that

‖c1,811‖

=

∥∥∥∥∥
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L
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1
2L−

1
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1
2−dε
L

)
= Op

(
1√
T
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1−2dε+dZ,min−dX,max

L

)
= op (1)

by Assumption D∗(iii), where the last two equalities hold by Assumption C∗(i) and the fact

that

E

 1
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N∑
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∥∥∥∥∥ 1

N
√
T

N∑
i=1

W ∗X,iW̃F 0

T
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)]∥∥∥∥∥
2
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L γ
1−2dX,max

L

)
(B.2.12)

by Assumption C∗(v) following the similar reasoning to (B.2.3) in the proof of Lemma

B.1.4. Similarly c1,812 has the same order, which is obtained by replacing W ∗ε,klWε,il −

E
(
W ∗ε,klWε,il

)
on the left hand side of (B.2.12) by E

(
W ∗ε,klWε,il

)
and using Assumption

C∗(ii). And for c1,82, we have
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By Assumption B∗(iii) and B∗(iv), we have
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by Lemma B.1.6, as
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the same reasoning and conditions that
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ŴF − W̃F 0H̃

)∗ 1

NT

N∑
k=1

Wε,kE
(
W ∗ε,kWε,i

)∥∥∥∥∥
.
√
NLγdε−1

L ‖ΓZ‖ γ
2dF,min−1
L

1

N

N∑
i=1

∥∥∥∥∥W ∗X,iW̃F 0

T

∥∥∥∥∥ 1

N

N∑
k=1

∥∥∥∥ 1

T

(
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by Lemma B.1.6 and by Assumption C∗(ii).
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Lastly for d we have
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by Assumption D∗(iii) as before.

This completes the proof of approximation for the first part as
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Then for the second part given by
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MŴF

−MWF0

)
Wε,i

]
.

By replacing WX,i by WV,i, we can obtain the same order for the second part. Then we can

conclude that
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This completes the proof of Lemma B.1.9. �
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B.3 Demeaned Time Domain Least Squares

Estimator

By (3.2.2) and (3.2.3), the model (3.2.1) can be rewritten as

Yit = X ′itβ
0 + λ

′

iF
0
t + εit

=
(
µX,i + X̃it

)′
β0 + λ′i

(
µF + F̃ 0

t

)
+ εit

= X̃ ′itβ
0 + λ′iF̃

0
t +

(
µ′X,iβ

0 + λ′iµF
)

+ εit

≡ X̃ ′itβ0 + λ
′

iF̃
0
t + µ̃i + εit, (B.3.1)

which is a factor model together with additive individual effects. Then following Bai (2009),

we conduct the LS estimation to its demeaned version

Ẏit =
˙̃
X
′

itβ
0 + λ′i

˙̃
F

0

t + ˙εit, (B.3.2)

where Ẏit = Yit − Y i· and Y i· = 1
T

∑T
t=1 Yit. In this study both µ̃i and F̃ 0

t are nuisance

parameters and thus we do not need the identification condition
∑T
t=1 F̃

0
t = 0, which is quite

restrictive in application. And as in (3.2.5) and (3.2.6), the LS estimator of model (B.3.2)

is given by
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(
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F ∗ = F ∗VNT .

In the following theorem we present the asymptotic behavior of β∗. As before, we denote

Z∗i = M ˙̃
F

0
˙̃
Xi −

1

N

N∑
k=1

aikM ˙̃
F

0
˙̃
Xk.

And the theorem is stated as below.

Theorem B.3.1 Suppose that Assumption A-F hold. Then for comparable N and T such

that T/N → ρ > 0, we have for some positive definite matrices D̃0 and Σ̃ that,

(i) when dZ + dε >
1
2 and dF + dε >

1
2 ,

N
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,
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where B∗ is the probability limit of
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where B∗ is the same as above and C∗2 is the probability limit of
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F

0′ ˙̃
F

0

T

−1(
Λ′Λ

N

)−1

λi.

By within-group transformation, the LS estimator now obtains a unified convergence rate

that only depends on the memory parameters of idiosyncratic error term. But meanwhile the
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order of bias term has a complex pattern as it depends both on dZ+dε and dF+dε. Therefore

to sum up the LS estimator using data in time domain could be difficult to implement if we

account for long memory in the model.

Proof of Theorem B.3.1. The proof of Theorem B.3.1 can follow the same steps as

the proof of Theorem 3.3.1. It is easy to see that all the asymptotically negligible terms are

still negligible, and thus we can focus on the order of bias terms and the convergence rate

of β∗. To be specific, the order of two bias terms under LS estimator of model (B.3.2), B∗

and C∗j , j = 1, . . . , 4, are related to the order of the following two terms

c̃1.7
∗

= − 1

NT

N∑
i=1

(
˙̃
Xi −

˙̃
V i

)′
˙̃
F

0

T

 ˙̃
F

0′ ˙̃
F

0

T

−1(
Λ
′
Λ

N

)−1
1

N

N∑
k=1

λkε̇k
′ε̇i, (B.3.3)

and

J̃8
∗

= − 1

NT

N∑
i=1

˙̃
X
′

iM ˙̃
F

0

1

NT

N∑
k=1

ε̇kε̇k
′ ˙̃
F

0

 ˙̃
F

0′ ˙̃
F

0

T

−1(
Λ
′
Λ

N

)−1

λi (B.3.4)

respectively. Firstly for (B.3.3), the same arguments can hold as in the non-demean model,

and thus c̃1.7
∗

= Op
(

1
N

)
. And then for (B.3.4), we firstly denote

˙̃
Z
′

i =
˙̃
X

′

iM ˙̃
F

0 . Then by

definition of Z∗i , we can see the memory parameter vector of
˙̃
Zi is also dZ , which implies

that

J̃8
∗

= − 1

N2

N∑
i=1

N∑
k=1

(
1

T

T∑
t=1

˙̃
Zit ˙εkt

)(
1

T

T∑
t=1

˙̃
F

0

t ˙εkt

) ˙̃
F

0′ ˙̃
F

0

T

−1(
Λ
′
Λ

N

)−1

λi,

where 1
T

∑T
t=1

˙̃
Zit ˙εkt and 1

T

∑T
t=1

˙̃
F

0

t ˙εkt can be treated as the sample cross-covariance be-

tween
˙̃
Zit,

˙̃
F

0

t and εkt. Therefore Assumption D(i) implies that

1

T

T∑
t=1

˙̃
F

0

t ε̇kt =

{
Op
(
T dF+dε−1

)
, if dF + dε >

1
2

Op(T−
1
2 ), if dF + dε ≤ 1

2

,

which concludes that

J̃8
∗

=



Op
(
T dZ+dε−1T dF+dε−1

)
, if dZ + dε >

1
2 and dF + dε >

1
2

Op

(
T dZ+dε−1T−

1
2

)
, if dZ + dε >

1
2 ≥ dF + dε

Op

(
T dF+dε−1T−

1
2

)
, if dF + dε >

1
2 ≥ dZ + dε

Op(T
−1), if dZ + dε ≤ 1

2 and dF + dε ≤ 1
2

.
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Therefore by what we have so far, the asymptotic representation of β∗ − β0 follows that

β∗ − β0 = D

(
˙̃
F

0
)−1

[
1

NT

N∑
i=1

Z∗
′

i ε̇i + c̃1.7
∗

+ J̃8
∗
]

+ op (1) + op
(
β∗ − β0

)
,

and Assumption F implies that N−
1
2T dε−

1
2

∑N
i=1 Z

∗′
i ε̇i

d→ N
(

0, Σ̃
)

. And also D

(
˙̃
F

0
)

p→

D̃0 for some positive definite matrix D̃0. Then we have the asymptotic distribution of β∗−β0

given by



N
1
2T

1
2−dε

(
β∗ − β0 − 1

NB
∗ − 1

T 1−(dZ+dε)T 1−(dF+dε)
C∗1

)
d→ N

(
0, D̃−1

0 Σ̃D̃−1
0

)
, if min (dZ , dF ) + dε >

1
2

N
1
2T

1
2−dε

(
β∗ − β0 − 1

NB
∗ − 1

T 1−(dZ+dε)T
1
2
C∗2

)
d→ N

(
0, D̃−1

0 Σ̃D̃−1
0

)
, if dZ + dε >

1
2 ≥ dF + dε

N
1
2T

1
2−dε

(
β∗ − β0 − 1

NB
∗ − 1

T 1−(dF+dε)T
1
2
C∗3

)
d→ N

(
0, D̃−1

0 Σ̃D̃−1
0

)
, if dF + dε >

1
2 ≥ dZ + dε

N
1
2T

1
2−dε

(
β∗ − β0 − 1

NB
∗ − 1

T C
∗
4

) d→ N
(

0, D̃−1
0 Σ̃D̃−1

0

)
, if dZ + dε ≤ 1

2 and dF + dε ≤ 1
2

where B∗ is the probability limit of

B̃∗ = −D
(

˙̃
F

0
)−1

1

N

N∑
i=1

(
˙̃
Xi −

˙̃
V i

)′
˙̃
F

0

T

 ˙̃
F

0′ ˙̃
F

0

T

−1(
Λ′Λ

N

)−1
1

T

N∑
k=1

λkε̇k
′ε̇i,

and C∗1 is the probability limit of

C̃∗1 = −D
(

˙̃
F

0
)−1

1

NT dZ+dε

N∑
i=1

˙̃
X

′

iM ˙̃
F

0

1

NT dF+dε

N∑
k=1

ε̇kε̇k
′ ˙̃
F

0

 ˙̃
F

0′ ˙̃
F

0

T

−1(
Λ
′
Λ

N

)−1

λi,

and C∗2 is the probability limit of

C̃∗2 = −D
(

˙̃
F

0
)−1

1

NT
1
2

N∑
i=1

˙̃
X

′

iM ˙̃
F

0

1

NT dF+dε

N∑
k=1

ε̇kε̇k
′ ˙̃
F

0

 ˙̃
F

0′ ˙̃
F

0

T

−1(
Λ′Λ

N

)−1

λi,

C∗3 is the probability limit of

C̃∗3 = −D
(

˙̃
F

0
)−1

1

NT dZ+dε

N∑
i=1

˙̃
X

′

iM ˙̃
F

0

1

NT
1
2

N∑
k=1

ε̇kε̇k
′ ˙̃
F

0

 ˙̃
F

0′ ˙̃
F

0

T

−1(
Λ
′
Λ

N

)−1

λi,

and C∗4 is the probability limit of

C̃∗4 = −D
(

˙̃
F

0
)−1

1

NT
1
2

N∑
i=1

˙̃
X

′

iM ˙̃
F

0

1

NT
1
2

N∑
k=1

ε̇kε̇k
′ ˙̃F

0

 ˙̃
F

0′ ˙̃
F
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T

−1(
Λ′Λ

N

)−1

λi.

This completes the proof of Theorem B.3.1. �
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Appendix C

Technical Results for Chapter 4

C.1 Proofs of the Main results

In this section we prove the theorems in the main text, where some auxiliary lemmas are

included. Lemma C.1.1 is directly borrowed from the Lemma A.6 in the last chapter and thus

presented without proof. The proof of rest of the lemmas will be given in the supplemental

materials.

Lemma C.1.1 Suppose Assumption A-F hold and the other conditions of Theorem 4.3.1

hold. Let H̃ =
(

Λ̃′Λ̃
N

)(
W̃∗F ŴF

T

)
V −1
NL. Then

T−
1
2

∥∥∥Ŵ − W̃F H̃
∥∥∥ = Op

(
δW1,NT

∥∥∥β̃ − β∥∥∥+N−
1
2 γ

1−dF,max−dε
L

)
,

where δW1,NT = γ
1
2−dX,max

L

(
γ

1
2−dF,max

L + γ
1
2−dε
L

)
. Furthermore, we define a new variable

Zit through its DFT by (4.3.7) and denote its memory parameter vector as dZ

β̃ − β = Op

(
T 2dε

L
γ

2dZ,min+dF,min−dX,max

L +
γ
dZ,min−dε
L√
NL

)
.

Lemma C.1.2 Suppose Assumption A-F and the other conditions of Theorem 4.3.1 hold,

and define

H̃ =

(
Λ̃′Λ̃

N

)(
W̃F Ŵ

∗
F

T

)
V −1
NL,

then H̃ = I+Op (δNT ) where δNT = δW1,NT

(
β̃ − β

)
+N−

1
2 γ

1−dF,max−dε
L with δW1,NT given

by Lemma C.1.1.
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Lemma C.1.3 Suppose Assumption A-F hold, we have for arbitrary 1 ≤ j ≤ L that

∥∥∥ÎF,j − ĨF,j∥∥∥ ≤ Op (δNT )
∥∥∥ĨF,j∥∥∥+Op

(
γ

3
2−2dF,max−dX,max

L

∥∥∥δ̃∥∥∥+N−
1
2 γ

3
2−2dF,max−dε
L

)
J̃FF,j

+Op

(
γ

3
2−3dF,max

L

∥∥∥δ̃∥∥∥) J̃FX,j +Op

(
L−

1
2 γ

5
2−4dF,max−dε
L

)
J̃Fε,j

+Op

(
γ

3
2−3dF,max

L

)
J̌Fε,j + IEF ,j

where J̃FF,j =
∥∥∥W̃F,jW

∗
F,j

∥∥∥, J̃FX,j =

(
1
N

∑N
i=1

∥∥∥W̃F,jW
∗
X,ij

∥∥∥2
) 1

2

, J̃Fε,j =

(
1
N

∑N
i=1

∥∥∥W̃F,jW ε,ij

∥∥∥2
) 1

2

and J̌Fε,j =
∥∥∥ 1
N

∑N
i=1 W̃F,jW ε,ijλ

′
i

∥∥∥; and IEF ,j is a smaller order term at each j relative to

the others.

Proof of Theorem 4.3.1

Proof of this theorem is based on the proof of Theorem 1 in Robinson (1995c). Since our

local Whittle estimator is conducted marginally at each r = 1, . . . ,K, and the proof of

consistency of every d̂F̂r is identical, we proceed with the proof in the following marginally

at each r = 1, . . . , R and omit the subscript r in all the arguments for ease of notation. To

be specific, for an arbitrary δ > 0, let Nδ = {d : |d− dF | < δ} and N̄δ = (−∞,∞) − Nδ.

Then

P
(∣∣∣d̂F̂ − dF ∣∣∣ ≥ δ) = P

(
inf

N̄δ∩[0, 12 )
K (d) ≤ inf

Nδ∩[0, 12 )
K (d)

)

≤ P

(
inf

N̄δ∩[0, 12 )
K (d)−K (dF ) ≤ 0

)
. (C.1.1)

The consistency of d̂F̂ will hold if P
(∣∣∣d̂F̂ − dF ∣∣∣ ≥ δ) is o (1). And by the fact that both d̂F̂

and dF lie within the interval
[
0, 1

2

)
, it is sufficient to consider δ < 1

2 . Next, define

V (d) = log

{
Ĝ (dF )

υF

}
− log

{
Ĝ (d)

G(d)

}
− log

 1

L

L∑
j=1

j2(d−dF )

/
L2(d−dF )

2 (d− dF ) + 1


+ 2 (d− dF )

 1

L

L∑
j=1

log j − (logL− 1)


≡ log

{
Ĝ (dF )

υF

}
− log

{
Ĝ (d)

G (d)

}
+ V ∗ (d)

and

U (d) = 2 (d− dF )− log {2 (d− dF ) + 1} ,
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where G (d) = υF
1
L

∑L
j=1 γ

2(d−dF )
j . Note that we focus on the profile likelihood function

K (d) = log Ĝ (d)− 2d
1

L

L∑
j=1

log γj

where Ĝ (d) = 1
L

∑L
j=1 γ

2d
j ÎF,j . And our profile likelihood function is different from the one

in Robinson (1995c) only by replacing IF,j , the periodogram of the true factor, with its

estimation ÎF,j . Therefore the reasoning in the proof of Theorem 1 in Robinson (1995c) will

continue to follow as K (d)−K (dF ) = U (d)−V (d). Furthermore, we define υ̃F = γ2dF−1
L υF

and G̃(d) = γ2dF−1
L G(d). Then

log

{
Ĝ (dF )

υF

}
− log

{
Ĝ (d)

G (d)

}
= log

{
Ĝ (dF )

υ̃F

}
− log

{
Ĝ (d)

G̃(d)

}
,

which updates the expression of V (d). Furthermore, (C.1.1) is bounded by

P

 inf
N̄δ∩[0, 12 )

U (d) ≤ sup
[0, 12 )

|V (d)|

 ,

and then it is sufficient to show that infN̄δ∩[0, 12 ) U (d) is lower bounded away from zero and

sup[0, 12 ) |V (d)| is o (1). And since neither V ∗ (d) nor U (d) is random or depends on the

periodogram, the orders of these two objects will also hold as indicated by Robinson (1995c)

that infN̄δ∩[0, 12 ) U (d) > 1
2δ

2 and sup[0, 12 ) |V
∗ (d)| = o (1). To handle the remainder of V (d),

by the fact that υ̃F = G̃ (dF ), we will try to prove sup[0, 12 )

∣∣∣log
{
Ĝ(d)

G̃(d)

}∣∣∣ = op (1). Then by

Taylor expansion, it is sufficient to show

sup
[0, 12 )

∣∣∣∣∣ Ĝ (d)− G̃(d)

G̃(d)

∣∣∣∣∣ = op (1) .

To proceed, denote Ĝ(d)−G̃(d)

G̃(d)
= A(d)

B(d) , where

A (d) =
2 (d− dF ) + 1

L

L∑
j=1

(
j

L

)2(d−dF )
(
ÎF,j
g̃j
− 1

)

and

B(d) =
2 (d− dF ) + 1

L

L∑
j=1

(
j

L

)2(d−dF )

,

as we denote g̃j = υ̃F γ
−2dF
j . Note that B(d) is same as the one presented in Robinson

(1995c), whose Lemma 1 then shows that inf[0, 12 )B (d) ≥ 1
2 . Therefore it remains to show
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the asymptotic negligibility of sup[0, 12 ) |A (d)|. Note that

A (d) =
2 (d− dF ) + 1

L

L∑
j=1

(
j

L

)2(d−dF )
(
ÎF,j − ĨF,j

g̃j

)
(C.1.2)

+
2 (d− dF ) + 1

L

L∑
j=1

(
j

L

)2(d−dF )
(
ĨF,j
g̃j
− 1

)
, (C.1.3)

where ĨF,j = γ2dF−1
L IF,j with IF,j being the periodogram of the true factor. Then (C.1.3)

is equal to

2 (d− dF ) + 1

L

L∑
j=1

(
j

L

)2(d−dF )(
IF,j
gj
− 1

)

with gj = υF γ
−2dF
j , whose negligibility is proved by Theorem 1 of Robinson (1995c). So we

still need to show that (C.1.2) is negligible as well. By summation by parts we have

(C.1.2) ≤ 3

L

∣∣∣∣∣∣
L−1∑
r=1

[( r
L

)2(d−dF )

−
(
r + 1

L

)2(d−dF )
]

r∑
j=1

(
ÎF,j − ĨF,j

g̃j

)∣∣∣∣∣∣ (C.1.4)

+
3

L

∣∣∣∣∣∣
L∑
j=1

(
ÎF,j − ĨF,j

g̃j

)∣∣∣∣∣∣ , (C.1.5)

where the right hand side of (C.1.4) is further bounded by

6

L−1∑
r=1

( r
L

)1−2dF 1

r2

∣∣∣∣∣∣
r∑
j=1

(
ÎF,j − ĨF,j

g̃j

)∣∣∣∣∣∣ (C.1.6)

because
∣∣∣1− (1 + 1

r

)2(d−dF )
∣∣∣ ≤ 2

r on
[
0, 1

2

)
when r > 0 and 0 < 1− 2dF ≤ 1 + 2 (d− dF ) on

the same range of dF by Robinson (1995c). By Lemma C.1.2 and C.1.3, (C.1.5) is bounded

by

3

L

L∑
j=1

∣∣∣∣∣ ÎF,j − ĨF,jg̃j

∣∣∣∣∣
≤ Op (δNT )

3

L

L∑
j=1

∣∣∣∣∣ ĨF,jg̃j
∣∣∣∣∣+Op

(
γ

3
2−2dF,max−dX,max

L

∥∥∥δ̃∥∥∥+N−
1
2 γ

3
2−2dF,max−dε
L

) 3

L

L∑
j=1

J̃FF,j
g̃j

+Op

(
γ

3
2−3dF,max

L

∥∥∥δ̃∥∥∥) 3

L

L∑
j=1

J̃FX,j
g̃j

+Op

(
L−

1
2 γ

5
2−4dF,max−dε
L

) 3

L

L∑
j=1

J̃Fε,j
g̃j

+Op

(
γ

3
2−3dF,max

L

) 3

L

L∑
j=1

J̌Fε,j
g̃j

+
3

L

L∑
j=1

IEF ,j
g̃j

≡ I1 + · · ·+ I5 +
3

L

L∑
j=1

IEF ,j
g̃j

, (C.1.7)
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where J̃FF,j =
∣∣∣W̃F,jW

∗
F,j

∣∣∣, J̃FX,j =

(
1
N

∑N
i=1

∥∥∥W̃F,jW
∗
X,ij

∥∥∥2
) 1

2

, J̃Fε,j =

(
1
N

∑N
i=1

∣∣∣W̃F,jW ε,ij

∣∣∣2) 1
2

,

and J̌Fε,j =
∥∥∥ 1
N

∑N
i=1 W̃F,jW ε,ijλ

′
i

∥∥∥, which correspond to the scenario when R = 1 in

Lemma C.1.3, which fits the setup in this proof. Also by Lemma C.1.3, it is sufficient to

show the negligibility of I1-I4 because 3
L

∑L
j=1

IEF ,j
g̃j

is of smaller order than the other terms.

Then firstly for I1, we have for some constant C that

E

 3

L

L∑
j=1

∣∣∣∣∣ ĨF,jg̃j
∣∣∣∣∣
 =

3

L

L∑
j=1

E

∣∣∣∣IF,jgj
∣∣∣∣ ≤ C (C.1.8)

by Assumption B(iii), which is also supported by (3.16) in the proof of Theorem 1 in Robin-

son (1995c). Then I1 = op(1). Following the similar reasoning, for I2 we have

E

 3

L

L∑
j=1

J̃FF,j
g̃j

 =
3γ

1
2−dF
L

L

L∑
j=1

E

∣∣∣∣IF,jgj
∣∣∣∣ = O

(
γ

1
2−dF
L

)
, (C.1.9)

which then proves I2 = op(1). And for I3,

E

 3

L

L∑
j=1

J̃FX,j
g̃j


≤ 3

L

L∑
j=1

1

g̃j

(
1

N

N∑
i=1

E
∥∥∥W̃F,jW

∗
X,ij

∥∥∥2
) 1

2

≤ 3

L

L∑
j=1

1

g̃j

(
1

N

N∑
i=1

(
E
∣∣∣W̃F,j

∣∣∣4) 1
2 (
E ‖WX,ij‖4

) 1
2

) 1
2

≤ C

L

L∑
j=1

γ
dF− 1

2

L γ
−dF−dX,max

j

g̃j
=
Cγ

1
2−dF
L

L

L∑
j=1

γ
dF−dX,max

j = O
(
γ

1
2−dX,max

L

)
(C.1.10)

by Assumption B(i), B(iii) and using Jensen’s inequality, Cauchy-Schwarz inequality and

Riemann-sum approximation, which altogether shows I3 = op(1). And next for I4, we can

follow the same reasoning as for I3 by replacingX with ε, which implies that E
(

3
L

∑L
j=1

J̃FX,j
g̃j

)
=

O
(
γ

1
2−dε
L

)
and thus I4 = op(1). Lastly for I5, we have

E

 3

L

L∑
j=1

J̌Fε,j
g̃j


≤ 3

L

L∑
j=1

1

g̃j

E ∥∥∥W̃F,j

∥∥∥2

E

∥∥∥∥∥ 1

N

N∑
i=1

W ε,ijλ
′
i

∥∥∥∥∥
2
 1

2

≤ C

L

L∑
j=1

γ
dF− 1

2

L γ−dFj

g̃j

max
i,k
|E (λ′iλk)| 1

N2

N∑
i,k=1

∣∣E (W ε,ijW ε,kj

)∣∣ 1
2
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≤ C√
NL

L∑
j=1

γ
dF− 1

2

L γ−dF−dεj

g̃j
= O

(
N−

1
2 γ

1
2−dε
L

)
(C.1.11)

by Assumption C(ii), which also proves the negligibility of I5.

Next using the same reasoning through both sides of (C.1.7)-(C.1.11), we define

∆NT = δNT + γ
3
2−2dF,max−dX,max

L

∥∥∥δ̃∥∥∥+N−
1
2 γ

3
2−2dF,max−dε
L + γ

3
2−3dF,max

L

∥∥∥δ̃∥∥∥
+ L−

1
2 γ

5
2−4dF,max−dε
L +N−

1
2 γ

3
2−3dF,max

L . (C.1.12)

Then by changing the upper limit of summation from L to r, we can obtain a loose bound

as
∑r
j=1E

∣∣∣( ÎF,j−ĨF,jg̃j

)∣∣∣ = O (r∆NT ). Therefore the expectation of (C.1.6) is given by

6

L−1∑
r=1

( r
L

)1−2dF 1

r2

r∑
j=1

E

∣∣∣∣∣
(
ÎF,j − ĨF,j

g̃j

)∣∣∣∣∣ = O (∆NT )
1

L

L−1∑
r=1

( r
L

)−2dF
= o(1) (C.1.13)

by Riemann-sum approximation, which completes the proof of Theorem 4.3.1. �

Proof of Theorem 4.3.2

Here we follow the proof of Theorem 2 in Robinson (1995c) and the notations used in the

proof of Theorem 4.3.1 above. By consistency of d̂F̂ , as T →∞, it satisfies

0 =
∂K

(
d̂F̂

)
∂d

=
∂K (dF )

∂d
+
∂2K

(
d̃
)

∂d

(
d̂F̂ − dF

)

by Taylor expansion, where
∣∣∣d̃− d∣∣∣ ≤ ∣∣∣d̂F̂ − dF ∣∣∣. By replacing the periodogram of true

factor by the estimated one, the proof in Robinson (1995c) can proceed as

∂K (d)

∂d
= 2

Ĝ1(d)

Ĝ0(d)
− 2

L

L∑
j=1

log γj , (C.1.14)

and

∂2K (d)

∂d
=

4
[
Ĝ2(d)Ĝ0(d)− Ĝ2

1(d)
]

Ĝ2
0(d)

=
4
[
F̂2(d)F̂0(d)− F̂ 2

1 (d)
]

F̂ 2
0 (d)

=
4
[
Ê2(d)Ê0(d)− Ê2

1(d)
]

Ê2
0(d)

,

where

Ĝk(d) =
γ1−2dF
L

L

L∑
j=1

(log γj)
k
γ2d
j ÎF,j ,
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and

F̂k(d) =
γ1−2dF
L

L

L∑
j=1

(log j)
k
γ2d
j ÎF,j , and Êk(d) =

γ1−2dF
L

L

L∑
j=1

(log j)
k
j2dÎF,j .

As in Robinson (1995c), we fix ε > 0 such that 2ε < (logL)
2
, then we define the set

M =
{
d : (logL)

3 |d− dF | ≤ ε
}

, in which

∣∣∣Êk(d)− Êk (dF )
∣∣∣ ≤ γ1−2dF

L

L

L∑
j=1

∣∣∣j2(d−dF ) − 1
∣∣∣ (log j)

k
j2dF ÎF,j ≤ 2eε (logL)

k−2
Ê0 (dF ) .

(C.1.15)

The above inequality holds because the reasoning required are all about the deterministic

part of Êk(d). Therefore for η > 0,

P

(∣∣∣Êk (d̃)− Êk (dF )
∣∣∣ > η

(
2π

T

)−2dF
)

≤ P
(
Ĝ0 (dF ) >

η

2eε
(logL)

2−k
)

+ P
(

(logL)
3 |d− dF | > ε

)
. (C.1.16)

For k = 0, 1, 2, the first probability in (C.1.16) tends to zero because Ê0 (dF ) =
(

2π
T

)−2dF
Ĝ0 (dF )

and Ĝ0 (dF )
p−→ υF ∈ (0,∞) according to the asymptotic negligibility of sup[0, 12 ) |A (d)| as

given in the proof of Theorem 4.3.1. Continue following Robinson (1995c) as we did before,

to prove the negligibility of second probability, it is sufficient to show

P

 inf
N̄δ∩[0, 12 )∩M

U (d) ≤ sup
N̄δ∩[0, 12 )

|V (d)|

→ 0, (C.1.17)

where M = (−∞,∞) −M . Based on the lower bound of U(d) under the inclusion of M ,

and the reasoning about the order of V (d) in the proof of Theorem 4.3.1, (C.1.17) holds if

supN̄δ∩[0, 12 ) |A (d)| = op

(
(logL)

−6
)

. Recall from (C.1.2) and (C.1.3) that

A (d) =
2 (d− dF ) + 1

L

L∑
j=1

(
j

L

)2(d−dF )
(
ÎF,j − ĨF,j

g̃j

)

+
2 (d− dF ) + 1

L

L∑
j=1

(
j

L

)2(d−dF )
(
ĨF,j
g̃j
− 1

)
≡ A1(d) +A2(d),

we can see Robinson (1995c) has already proved supN̄δ∩[0, 12 ) |A2 (d)| = op

(
(logL)

−6
)

, and

the orders given by the left hand side of (C.1.7) shows supN̄δ∩[0, 12 ) |A1 (d)| ≤ sup[0, 12 ) |A1 (d)| =

op

(
(logL)

−6
)

, which altogether proves (C.1.17) and the negligibility of the left hand side
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of (C.1.16). Such conclusion, as shown in Robinson (1995c), implies

∂2K
(
d̃
)

∂d
=

4
[
F̂2 (dF ) F̂ (dF )− F̂ 2

1 (dF )
]

F̂ 2
0 (dF )

+ op(1)

as T →∞. Next for k ≥ 0,

∣∣∣∣∣∣F̂k (dF )− υF
1

L

L∑
j=1

(log j)
k

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1L
L∑
j=1

(log j)
k
[
γ1−2dF
L γ2dF

j ÎF,j − υF
]∣∣∣∣∣∣ =

∣∣∣∣∣∣υFL
L∑
j=1

(log j)
k

[
ÎF,j
g̃j
− 1

]∣∣∣∣∣∣
≤ υF

L

L∑
j=1

(log j)
k

∣∣∣∣∣ ÎF,j − ĨF,jg̃j

∣∣∣∣∣+
υF
L

L∑
j=1

(log j)
k

∣∣∣∣IF,jgj − 1

∣∣∣∣ ≡ F1 + F2,

where Robinson (1995c) has proved the asymptotic negligibility of F2. And for F1, we have

by summation by parts that

υF
L

L∑
j=1

(log j)
k

∣∣∣∣∣ ÎF,j − ĨF,jg̃j

∣∣∣∣∣
≤ υF

L

L−1∑
r=1

∣∣∣(log r)
k − (log(r + 1))

k
∣∣∣
∣∣∣∣∣∣
r∑
j=1

ÎF,j − ĨF,j
g̃j

∣∣∣∣∣∣+
υF
L

(logL)
k

∣∣∣∣∣∣
L∑
j=1

ÎF,j − ĨF,j
g̃j

∣∣∣∣∣∣
≡ F11 + F12.

Firstly for F12, the reasoning behind (C.1.7) based on Lemma C.1.3 continues to hold and

proves its negligibility. Next for F11, we adopt the conclusion in Robinson (1995c) that∣∣∣(log r)
k − (log(r + 1))

k
∣∣∣ ≤ (log(r+1))k−1

r . Note that following the reasoning as we analyze

(C.1.6), we have

1

L

L−1∑
r=1

(log(r + 1))
k−1 1

r

r∑
j=1

E

∣∣∣∣∣
(
ÎF,j − ĨF,j

g̃j

)∣∣∣∣∣ = O
(

(∆NT ) (logL)
k−1
)
,

which corresponds to (C.1.13) and is negligible because it is dominated by F12. Therefore,

identical to what Robinson (1995c) has obtained, the limit of F2 dominates in the limit and

thus
∂2K(d̃)
∂d

p−→ 4.

Next we turn to ∂K(dF )
∂d . By (C.1.14) and the fact that Ĝ0 (dF )

p−→ υF ,

L
1
2
∂K (dF )

∂d
= 2L−

1
2

L∑
j=1

(log γj)
γ1−2dF
L γ2dF

j ÎF,j

Ĝ0 (dF )
− 2L−

1
2

L∑
j=1

log γj

= 2L−
1
2

L∑
j=1

uj
γ1−2dF
L γ2dF

j ÎF,j

υF + op(1)
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= 2L−
1
2

(
1− op(1)

υF + op(1)

) L∑
j=1

uj
ÎF,j
g̃j

= 2L−
1
2

L∑
j=1

uj

(
ÎF,j
g̃j
− 1

)
(1 + op(1))

= 2L−
1
2

L∑
j=1

uj

(
ÎF,j − ĨF,j

g̃j

)
(1 + op(1)) + 2L−

1
2

L∑
j=1

uj

(
IF,j
gj
− 1

)
(1 + op(1))

≡ L1 + L2, (C.1.18)

where uj = log j− 1
L

∑L
j=1 log j and the second last equality holds by the fact that

∑L
j=1 uj =

0. Firstly for L1, we have

L−
1
2

L∑
j=1

ujE

∣∣∣∣∣ ÎF,j − ĨF,jg̃j

∣∣∣∣∣ ≤ (√L logL
) 1

L

L∑
j=1

E

∣∣∣∣∣ ÎF,j − ĨF,jg̃j

∣∣∣∣∣ = O
(

∆NT

√
L logL

)
,

which is negligible by the definition of ∆NT in (C.1.12) by Assumption E(i). And lastly we

can see that L2 is identical to (4.11) in the proof of Theorem 2 in Robinson (1995c), which

follows that L2
d−→ N (0, 4), and thus the proof of Theorem 4.3.2 is completed. �

Proof of Theorem 4.4.1

Proof of this theorem is based on the proof of Theorem 1 in Qu (2011). And same as before,

such statistic is calculated marginally at each r = 1, . . . , R in the same manner. So we omit

the subscript r as we did in the proof of the theorems above and treat the factor as a scalar.

Since by construction 1
L

∑L
j=1 u

2
j → 1, it is sufficient to consider the uniform convergence of

ṼL

(
ρ, d̂F̂

)
= L−

1
2

bLρc∑
j=1

uj

 ÎF,j

Ĝ
(
d̂F̂

)
γ
−2d̂F̂
j

− 1


over ρ ∈ [0, 1]. To proceed, we conduct the first-order Taylor expansion at d̂F̂ = dF ,

ṼL

(
ρ, d̂F̂

)
= L−

1
2

bLρc∑
j=1

uj

(
ÎF,j

Ĝ (dF ) γ−2dF
j

− 1

)
+ L−

1
2

∂ṼL

(
ρ, d̃
)

∂d
L

1
2

(
d̂F̂ − dF

)
≡ V1 + V2,

where

L−
1
2

∂ṼL

(
ρ, d̃
)

∂d
=

2

LĜ
(
d̃
)2

bLρc∑
j=1

uj
ÎF,j

γ−2d̃
j

{
1

L
log γj

L∑
k=1

ÎF,k

γ−2d̃
k

− 1

L

L∑
s=1

log γs
ÎF,s

γ−2d̃
s

}
.
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Following the reasoning on both sides of (C.1.18), we have

V1 = L−
1
2

bLρc∑
j=1

uj

(
IF,j
gj
− 1

)
(1 + op(1)) + op(1)

with gj = υF γ
−2dF
j . Such conclusion holds because by arguments like (C.1.13) the above

approximation can be applied at any upper limit of summation less than or equal to L,

therefore also applied uniformly in ρ ∈ [0, 1]. This implies (A.2) in the proof of Theorem 1

in Qu (2011) equals to V1 asymptotically.

Next for V2, by replacing IF,j with its FDPCLS estimator, and using the notation of υ̃F

and G̃(d) in the proof of Theorem 4.3.1 and 4.3.2, the reasoning in Qu (2011) continues to

hold as we can rewrite it as

V2 =
2

Ĝ
(
d̃
)2

(
L−1

L∑
k=1

ÎF,k

γ−2d̃
k

)L−1

bLρc∑
j=1

u2
j

ÎF,j

γ−2d̃
j

− 2

Ĝ
(
d̃
)2

L−1

bLρc∑
j=1

uj
ÎF,j

γ−2d̃
j

(L−1
L∑
s=1

us
ÎF,s

γ−2d̃
s

)
.

In the following we try to analyze the asymptotics of 1

Ĝ(d̃)

(
L−1

∑bLρc
j=1 ukj

ÎF,j

γ−2d̃
j

)
with k =

0, 1, 2, using the similar approximation scheme as we used before. To be specific,

1

Ĝ
(
d̃
)
L−1

bLρc∑
j=1

ukj
ÎF,j

γ−2d̃
j

 =
L−1

∑bLρc
j=1 ukj γ

2d̃
j ÎF,j

L−1
∑L
j=1 γ

2d̃
j ÎF,j

=

γ
1−2dF
L

L

∑bLρc
j=1 ukj j

2d̃ÎF,j

γ
1−2dF
L

L

∑L
j=1 j

2d̃ÎF,j

, (C.1.19)

where the numerator of the right hand side of (C.1.19), under the case k = 0, 1, 2, are further

given respectively by

γ1−2dF
L

L

bLρc∑
j=1

j2d̃ÎF,j ≡ Ê0

(
ρ, d̃
)

, when k = 0;

γ1−2dF
L

L

bLρc∑
j=1

ujj
2d̃ÎF,j =

γ1−2dF
L

L

bLρc∑
j=1

(log j) j2d̃ÎF,j −

 1

L

L∑
j=1

log j

 γ1−2dF
L

L

bLρc∑
j=1

j2d̃ÎF,j

≡ Ê1

(
ρ, d̃
)
−

 1

L

L∑
j=1

log j

 Ê0

(
ρ, d̃
)

, when k = 1;

and

γ1−2dF
L

L

bLρc∑
j=1

u2
jj

2d̃ÎF,j =
γ1−2dF
L

L

bLρc∑
j=1

(log j)
2
j2d̃ÎF,j −

 2

L

L∑
j=1

log j

 γ1−2dF
L

L

bLρc∑
j=1

(log j) j2d̃ÎF,j
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+

 1

L

L∑
j=1

log j

2

γ1−2dF
L

L

bLρc∑
j=1

j2d̃ÎF,j

≡ Ê2

(
ρ, d̃
)
−

 2

L

L∑
j=1

log j

 Ê1

(
ρ, d̃
)

+

 1

L

L∑
j=1

log j

2

Ê0

(
ρ, d̃
)

, when k = 2.

Therefore it is sufficient to analyze the asymptotics of Êk

(
ρ, d̃
)

for k = 0, 1, 2. To proceed,

we denote δ
(
d̂F̂ , dF

)
as the interval between d̂F̂ and dF , and firstly try to prove

sup
d∈δ(d̂F̂ ,dF )

sup
ρ∈[0,1]

∣∣∣Êk (ρ, d)− Êk (ρ, dF )
∣∣∣ = op

(
T 2dF (logL)

−2
)
.

To be specific, we can follow the reasoning in (C.1.15) and (C.1.16) because

sup
d∈δ(d̂F̂ ,dF )

sup
ρ∈[0,1]

∣∣∣Êk (ρ, d)− Êk (ρ, dF )
∣∣∣

= sup
d∈δ(d̂F̂ ,dF )

sup
ρ∈[0,1]

∣∣∣∣∣∣γ
1−2dF
L

L

bLρc∑
j=1

(log j)
k (
j2d − j2dF

)
ÎF,j

∣∣∣∣∣∣
≤ sup
d∈δ(d̂F̂ ,dF )

γ1−2dF
L

L

L∑
j=1

∣∣∣j2(d−dF ) − 1
∣∣∣ (log j)

k
j2dF ÎF,j ,

which can be bounded as in (C.1.15) and (C.1.16) by defining the alternative set given by

M =
{
d : (logL)

5 |d− dF | ≤ ε
}

as given by the proof of Lemma B.2 in Qu (2011), which is

also indicated by Andrews and Sun (2004) and Wu and Shao (2007), and thus can be proved

as op
(
T 2dF

)
as indicated by the left hand side of (C.1.16). Next we try to prove

sup
ρ∈[0,1]

∣∣∣Êk (ρ, dF )− Ek (ρ, dF )
∣∣∣ = op

(
T 2dF (logL)

−2
)
,

where Ek (ρ, dF ) = 1
L

∑bLρc
j=1 (log j)

k
j2dF IF,j . To be specific,

sup
ρ∈[0,1]

∣∣∣Êk (ρ, dF )− Ek (ρ, dF )
∣∣∣ = sup

ρ∈[0,1]

∣∣∣∣∣∣ 1L
bLρc∑
j=1

(log j)
k
j2dF

(
γ1−2dF
L ÎF,j − IF,j

)∣∣∣∣∣∣
≤
(

2π

T

)−2dF 1

L

L∑
j=1

(log j)
k

∣∣∣∣∣ ÎF,j − ĨF,jg̃j

∣∣∣∣∣ = op

(
T 2dF (logL)

−2
)

by how we prove the negligibility of F1 in the proof of Theorem 4.3.2. Now combining what

we have obtained so far, the right hand side of (C.1.19) follows that

γ
1−2dF
L

L

∑bLρc
j=1 ukj j

2d̃ÎF,j

γ
1−2dF
L

L

∑L
j=1 j

2d̃ÎF,j

=
1
L

∑bLρc
j=1 ukj j

2dF IF,j + op
(
T 2dF

)
1
L

∑L
j=1 j

2dF IF,j + op (T 2dF )
,

234



then the proof of Lemma B.3 in Qu (2011) will hold and implies that

1

Ĝ
(
d̃
)
L−1

bLρc∑
j=1

ukj
ÎF,j

γ−2d̃
j

 =
1

L

bLρc∑
j=1

ukj + op(1),

then the proof of Theorem 1 in Qu (2011) continues to hold as V2 → 2Φ (ρ). Combining all

we have so far, the expression (A.4) in Qu (2011) holds asymptotically for our ṼL

(
ρ, d̂F̂

)
as

ṼL

(
ρ, d̂F̂

)
=

L− 1
2

υF
G (dF )

bLρc∑
j=1

uj

(
IF,j

υF γ
−2dF
j

− 1

)
− L− 3

2
υF

G (dF )

bLρc∑
j=1

uj

 L∑
j=1

(
IF,j

υF γ
−2dF
j

− 1

)
× (1 + op(1)) + 2Φ (ρ)L

1
2

(
d̂F̂r − dF

)
+ op(1).

Therefore the finite-sample convergence and the tightness will hold as in Qu (2011), which

completes the proof of our Theorem 4.4.1. �

C.2 Proofs of the Technical Lemmas

Proof of Lemma C.1.2

Proof of this lemma will closely follow the proof of (2) in Bai and Ng (2013), as it is adopted

using our framework of linear regression with interactive fixed effects. To be specific,

W̃ ∗F ŴF

T
=

1

T
W̃ ∗F

(
ŴF − W̃F H̃

)
+

1

T
W̃ ∗F W̃F H̃. (C.2.1)

Note that by Lemma C.1.1 and Assumption B(iii), 1
T W̃

∗
F

(
ŴF − W̃F H̃

)
= Op (δNT ) in

which

δNT = δW1,NT

(
β̃ − β

)
+N−

1
2 γ

1−dF,max−dε
L ,

where δW1,NT = γ
1
2−dX,max

L

(
γ

1
2−dF,max

L + γ
1
2−dε
L

)
as presented in Lemma C.1.1. Then left

multiplying H̃∗ to both sides of (C.2.1), we have

1

T
H̃∗W̃ ∗F ŴF =

1

T
H̃∗W̃ ∗F W̃F H̃ +Op

(
δ(1),NT

)
, (C.2.2)

where δ(1),NT = γ
1−2dF,max

L δNT because H̃ = Op

(
γ

1−2dF,max

L

)
by construction. Furthermore

the left hand side of (C.2.2) is given by

1

T
H̃∗W̃ ∗F ŴF =

1

T

(
H̃∗W̃ ∗F − Ŵ ∗F + Ŵ ∗F

)
ŴF
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= I +Op (δNT ) (C.2.3)

by the identifying restriction of our FDPCLS estimator and Lemma C.1.1. Equating (C.2.3)

and the right hand side of (C.2.2) we have

1

T
H̃∗W̃ ∗F W̃F H̃ = H̃∗H̃ = I +Op (δNT )

by Assumption F(i). Following the same reasoning as in Bai and Ng (2013), we can ignore

the negligible term Op (δNT ), and H̃ is a unitary matrix, the complex generalization of

orthogonal matrix, which means H̃ has its eigenvalues being either 1 or -1. Then in the

following it is sufficient to prove that H̃ is also a diagonal matrix, after which we can

assume all its eigenvalues are 1 by multiplying the columns by -1 of ŴF corresponding to -1

eigenvalues.

Recall that H̃ by definition is given by

Ȟ =

(
Λ̃′Λ̃

N

)(
W̃ ∗F ŴF

T

)
V −1
NL =

(
Λ̃′Λ̃

N

)(
1

T
W̃ ∗F W̃F H̃ +

1

T
W̃ ∗F

(
ŴF − W̃F H̃

))
V −1
NL

=

(
Λ̃′Λ̃

N

)
H̃V −1

NL +Op
(
δ(1),NT

)
≡ AH̃V −1

NL +Op
(
δ(1),NT

)
(C.2.4)

by Assumption F(i) and the construction of Λ̃. Then right multiplying VNL on both sides

of (C.2.4) we have

AH̃ = H̃VNL +Op
(
δ(1),NT

)
.

This replicates the form of (23) in Bai and Ng (2013) except that H̃ could be a complex

matrix. But it can still be a matrix of eigenvectors of matrix A as the columns of H̃ now

form the eigenbasis of a complex space. Then the rest of reasoning in Bai and Ng (2013) will

hold because by Assumption F(ii), which implies that A is a diagonal matrix with distinct

eigenvalues. Therefore H̃ = I +Op (δNT ). �

Proof of Lemma C.1.3

From the right hand side of both (4.3.1) and (4.3.2), we have for each j = 1, . . . , L that

ŴF,j =

[
1

NT

N∑
i=1

ŴU,ijŴ
∗
U,i

]
ŴFV

−1
NL, (C.2.5)
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where we denote ŴU,i = WY,i −WX,iβ̃. Also we denote δ̃ = β̃ − β. By expanding ŴU,i as

denoted just now and WY,i by (4.3.3), (C.2.5) becomes

Ŵ ′F,j =
1

NT

N∑
i=1

W ′X,ij δ̃δ̃
′W ∗X,iŴFV

−1
NL −

1

NT

N∑
i=1

W ′X,ij δ̃λ
′
iW
∗
F ŴFV

−1
NL −

1

NT

N∑
i=1

W ′X,ij δ̃W
∗
ε,iŴFV

−1
NL

− 1

NT

N∑
i=1

W ′F,jλiδ̃
′W ∗X,iŴFV

−1
NL −

1

NT

N∑
i=1

Wε,ij δ̃
′W ∗X,iŴFV

−1
NL +

1

NT

N∑
i=1

W ′F,jλiW
∗
ε,iŴFV

−1
NL

+
1

NT

N∑
i=1

Wε,ijλ
′
iW
∗
F ŴFV

−1
NL +

1

NT

N∑
i=1

Wε,ijW
∗
ε,iŴFV

−1
NL +

1

NT

N∑
i=1

W̃ ′F,j λ̃iλ̃
′
iW̃
∗
F ŴFV

−1
NL

≡ Ĩ1 + · · ·+ Ĩ9.

Since Ĩ9 = W̃ ′F,j

(
Λ̃′Λ̃/N

)(
W̃F Ŵ

∗
F /T

)
V −1
NL, we have

Ŵ ′F,j − W̃ ′F,j
(

Λ̃′Λ̃/N
)(

W̃F Ŵ
∗
F /T

)
V −1
NL = Ĩ1 + · · ·+ Ĩ8 = Ŵ ′F,j − W̃ ′F,jH̃ ≡ E′F,j . (C.2.6)

From (C.2.6) we have

Ŵ ′F,j = W̃ ′F,j + W̃ ′F,j

(
H̃ − I

)
+ E′F,j ,

then the estimated periodogram ÎF,j = ŴF,jŴ
∗
F,j follows that

ÎF,j = ĨF,j + ĨF,j

(
H̃ − I

)
+ W̃F,jE

∗
F,j +

(
H̃ − I

)′
ĨF,j +

(
H̃ − I

)′
ĨF,j

(
H̃ − I

)
+
(
H̃ − I

)′
W̃F,jE

∗
F,j + EF,jW̃

∗
F,j + EF,jW

∗
F,j

(
H̃ − I

)
+ IEF ,j

= ĨF,j + ĨF,j

(
H̃ − I

)
+
(
H̃ − I

)′
ĨF,j +

(
H̃ − I

)′
ĨF,j

(
H̃ − I

)
+ H̃ ′W̃F,jE

∗
F,j + EF,jW̃

∗
F,jH̃ + IEF ,j

≡ ĨF,j + J̃1 + · · ·+ J̃6,

where ĨF,j = W̃F,jW̃
∗
F,j , and IEF ,j is defined in the same manner. Then in the following we

derive the orders of J̃1, . . . , J̃6, taking the structure of EF,j given by (C.2.6) into consideration

and following the proof of Lemma A.6 in our chapter 2. Firstly for J̃1, we have

∥∥∥J̃1

∥∥∥ =

∥∥∥∥ĨF,j(H̃ − I)∥∥∥∥ ≤ Op (δNT )
∥∥∥ĨF,j∥∥∥

= Op

(
δW1,NT

∥∥∥δ̃∥∥∥+N−
1
2 γ

1−dF,max−dε
L

)∥∥∥ĨF,j∥∥∥
by Lemma C.1.2, and the same order holds for J̃2. Similarly J̃3 ≤ Op

(
δ2
NT

) ∥∥∥ĨF,j∥∥∥ and thus

it will be dominated by J̃1 and J̃2. Therefore we set them as parts of the leading terms

later. Next for J̃4, by substituting (C.2.6) we have

J̃4 = H̃ ′W̃F,jE
∗
F,j = H̃ ′W̃F,j

(
Ĩ1 + · · ·+ Ĩ8

)
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= H̃ ′
1

NT

N∑
i=1

W̃F,jW
∗
X,ij δ̃δ̃

′W ′X,iŴFV
−1
NL − H̃

′ 1

NT

N∑
i=1

W̃F,jW
∗
X,ij δ̃λ

′
iW
′
F ŴFV

−1
NL

− H̃ ′ 1

NT

N∑
i=1

W̃F,jW
∗
X,ij δ̃W

′
ε,iŴFV

−1
NL − H̃

′ 1

NT

N∑
i=1

W̃F,jW
∗
F,jλiδ̃

′W ′X,iŴFV
−1
NL

− H̃ ′ 1

NT

N∑
i=1

W̃F,jW ε,ij δ̃
′W ′X,iŴFV

−1
NL + H̃ ′

1

NT

N∑
i=1

W̃F,jW
∗
F,jλiW

′
ε,iŴFV

−1
NL

+ H̃ ′
1

NT

N∑
i=1

W̃F,jW ε,ijλ
′
iW
′
F ŴFV

−1
NL + H̃ ′

1

NT

N∑
i=1

W̃F,jW ε,ijW
′
ε,iŴFV

−1
NL

≡ J̃4,1 + · · ·+ J̃4,8.

We first analyze the order of
∥∥∥J̃4,1

∥∥∥, which follows that

∥∥∥J̃4,1

∥∥∥ =

∥∥∥∥∥H̃ ′ 1

NT

N∑
i=1

W̃F,jW
∗
X,ij δ̃δ̃

′W ′X,iŴFV
−1
NL

∥∥∥∥∥
≤
∥∥∥H̃∥∥∥ ∥∥∥δ̃∥∥∥2 1

NT

N∑
i=1

∥∥∥W̃F,jW
∗
X,ij

∥∥∥ ‖WX,i‖
∥∥∥ŴF

∥∥∥ ∥∥V −1
NL

∥∥
≤ Op

(
γ

1−2dF,max

L

∥∥∥δ̃∥∥∥2
)

1

N
√
T

N∑
i=1

∥∥∥W̃F,jW
∗
X,ij

∥∥∥ ‖WX,i‖

≤ Op
(
γ

1−2dF,max

L

∥∥∥δ̃∥∥∥2
)(

1

N

N∑
i=1

∥∥∥W̃F,jW
∗
X,ij

∥∥∥2
) 1

2
(

1

NT

N∑
i=1

‖WX,i‖2
) 1

2

≤ Op
(
γ

3
2−2dF,max−dX,max

L

∥∥∥δ̃∥∥∥2
)(

1

N

N∑
i=1

∥∥∥W̃F,jW
∗
X,ij

∥∥∥2
) 1

2

≡ Op
(
γ

3
2−2dF,max−dX,max

L

∥∥∥δ̃∥∥∥2
)
J̃FX,j

by Cauchy-Schwarz inequality and Assumption B(i). Then by the same reasoning as we

analyze J̃4,1 where we follow the reasoning in the proof of Lemma A.6 in our chapter two,

we can conclude that

∥∥∥J̃4,2

∥∥∥ =

∥∥∥∥∥H̃ ′ 1

NT

N∑
i=1

W̃F,jW
∗
X,ij δ̃λ

′
iW
′
F ŴFV

−1
NL

∥∥∥∥∥ ≤ Op (γ 3
2−3dF,max

L

∥∥∥δ̃∥∥∥) J̃FX,j ,
∥∥∥J̃4,3

∥∥∥ =

∥∥∥∥∥H̃ ′ 1

NT

N∑
i=1

W̃F,jW
∗
X,ij δ̃W

′
ε,iŴFV

−1
NL

∥∥∥∥∥ ≤ Op (γ 3
2−2dF,max−dε
L

∥∥∥δ̃∥∥∥) J̃FX,j ,

∥∥∥J̃4,4

∥∥∥ =

∥∥∥∥∥H̃ ′ 1

NT

N∑
i=1

W̃F,jW
∗
F,jλiδ̃

′W ′X,iŴFV
−1
NL

∥∥∥∥∥ ≤ Op (γ 3
2−2dF,max−dX,max

L

∥∥∥δ̃∥∥∥)∥∥∥W̃F,jW
∗
F,j

∥∥∥
≡ Op

(
γ

3
2−2dF,max−dX,max

L

∥∥∥δ̃∥∥∥) J̃FF,j
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and

∥∥∥J̃4,5

∥∥∥ =

∥∥∥∥∥H̃ ′ 1

NT

N∑
i=1

W̃F,jW ε,ij δ̃
′W ′X,iŴFV

−1
NL

∥∥∥∥∥ ≤ Op (γ 3
2−2dF,max−dX,max

L

∥∥∥δ̃∥∥∥)( 1

N

N∑
i=1

∥∥∥W̃F,jW ε,ij

∥∥∥2
) 1

2

≡ Op
(
γ

3
2−2dF,max−dX,max

L

∥∥∥δ̃∥∥∥) J̃Fε,j .
Next for J̃4,6, we have

∥∥∥J̃4,6

∥∥∥ =

∥∥∥∥∥H̃ ′ 1

NT

N∑
i=1

W̃F,jW
∗
F,jλiW

′
ε,iŴFV

−1
NL

∥∥∥∥∥ . ∥∥∥H̃∥∥∥∥∥∥W̃F,jW
∗
F,j

∥∥∥ 1

N
√
T

∥∥∥∥∥
N∑
i=1

λiW
′
ε,i

∥∥∥∥∥
= Op

(
N−

1
2 γ

3
2−2dF,max−dε
L

)
J̃FF,j

by Assumption C(i) and C(ii). And lastly for J̃4,7 and J̃4,8 we have

∥∥∥J̃4,7

∥∥∥ =

∥∥∥∥∥H̃ ′ 1

NT

N∑
i=1

W̃F,jW ε,ijλ
′
iW
′
F ŴFV

−1
NL

∥∥∥∥∥
.
∥∥∥H̃∥∥∥ ∥∥∥∥∥ 1

N

N∑
i=1

W̃F,jW ε,ijλ
′
i

∥∥∥∥∥
∥∥∥∥∥W ′F ŴF

T

∥∥∥∥∥
= Op

(
γ

3
2−3dF,max

L

)∥∥∥∥∥ 1

N

N∑
i=1

W̃F,jW ε,ijλ
′
i

∥∥∥∥∥ ≡ Op (γ 3
2−3dF,max

L

)
J̌Fε,j ,

and

J̃4,8 = H̃ ′
1

NT

N∑
i=1

W̃F,jW ε,ijW
′
ε,i

(
W̃F H̃

)
V −1
NL

+ H̃ ′
1

NT

N∑
i=1

W̃F,jW ε,ijW
′
ε,i

(
ŴF − W̃F H̃

)
V −1
NL ≡ J̃4,81 + J̃4,82,

where

∥∥∥J̃4,81

∥∥∥ . γ2−4dF,max

L

∥∥∥∥∥ 1

NT

N∑
i=1

W̃F,jW ε,ijW
′
ε,iW̃F
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≤ γ2−4dF,max

L

(
1

N

N∑
i=1

∥∥∥W̃F,jW ε,ij

∥∥∥2
) 1

2
(

1

NT 2

N∑
i=1

∥∥∥W ∗ε,iW̃F

∥∥∥2
) 1

2

= Op

(
L−

1
2 γ

5
2−4dF,max−dε
L

)
J̃Fε,j

by Assumption D(iii). And

∥∥∥J̃4,82

∥∥∥ . γ1−2dF,max

L

∥∥∥∥∥ 1

NT

N∑
i=1

W̃F,jW ε,ijW
′
ε,i

(
ŴF − W̃F H̃

)∥∥∥∥∥
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≤ γ1−2dF,max

L J̃Fε,j

(
1

NT

N∑
i=1

‖Wε,i‖2
) 1

2

T−
1
2

∥∥∥ŴF − W̃F H̃
∥∥∥

≤ Op
(
γ

3
2−2dF,max−dε
L δNT

)
J̃Fε,j .

Then to sum up what we have obtained so far,

∥∥∥J̃4

∥∥∥ ≤ Op (γ 3
2−2dF,max−dX,max

L

∥∥∥δ̃∥∥∥+N−
1
2 γ

3
2−2dF,max−dε
L

)
J̃FF,j

+Op

(
γ

3
2−3dF,max

L

∥∥∥δ̃∥∥∥) J̃FX,j +Op

(
L−

1
2 γ

5
2−4dF,max−dε
L

)
J̃Fε,j +Op

(
γ

3
2−3dF,max

L

)
J̌Fε,j

by Assumption E(ii), E(iii) and the convergence rate of δ̃ given by Lemma C.1.1. And it

is easy to see
∥∥∥J̃5

∥∥∥ has the same order as
∥∥∥J̃4

∥∥∥, and
∥∥∥J̃6

∥∥∥ is dominated by
∥∥∥J̃4

∥∥∥ and
∥∥∥J̃5

∥∥∥
because there are negligible terms with higher order included. The detailed analysis will be

very tedious so we omit here. Therefore we can summarize all the terms so far and conclude

that

∥∥∥ÎF,j − ĨF,j∥∥∥ ≤ Op (δNT )
∥∥∥ĨF,j∥∥∥+Op

(
γ

3
2−2dF,max−dX,max

L

∥∥∥δ̃∥∥∥+N−
1
2 γ

3
2−2dF,max−dε
L

)
J̃FF,j

+Op

(
γ

3
2−3dF,max

L

∥∥∥δ̃∥∥∥) J̃FX,j +Op

(
L−

1
2 γ

5
2−4dF,max−dε
L

)
J̃Fε,j

+Op

(
γ

3
2−3dF,max

L

)
J̌Fε,j + IEF ,j

with IEF ,j being a smaller order term at each j relative to the others. �
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