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Abstract

This dissertation studies different long memory models. The first chapter
considers a time series regression model where both the regressors and error
term are locally stationary long memory processes with time-varying memory
parameters, and the regression coefficients are also allowed to be time-varying.
We consider a frequency-domain least squares estimator with kernelized dis-
crete Fourier transform and derive its pointwise asymptotic normality and
uniform consistency. A specification test on the constancy of coefficients is
provided. The second chapter studies a linear regression panel data model
with interactive fixed effects where the regressors, factors and idiosyncratic
error terms are all stationary but with potential long memory. The setup in-
volves a new factor model formulation for which weakly dependent regressors,
factors and innovations are embedded as a special case. Standard methods
based on principal component decomposition and least squares estimation, as
in Bai (2009), are found to suffer bias correction failure because the order of
magnitude of the bias is determined in a complex manner by the memory pa-
rameters. To cope with this failure and to provide a simple implementable
estimation procedure, frequency domain least squares estimation is proposed.
The limit distribution of this frequency domain approach is established and a
hybrid selection method is developed to determine the number of factors. The
third chapter estimates the memory parameters and test them against spurious
long memory of the latent factors in a linear regression model with interactive
fixed effects, based on the estimated discrete Fourier transform of the factors.
The same asymptotic properties hold as if we use the infeasible true factors
for both the memory estimator and the test. This result illustrates how the
frequency domain least squares estimator can be applied to further inference

other than the regression coefficients.
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Chapter 1

Introduction

In the last few decades, long memory has been widely observed and identified
as one of the important characteristics of macroeconomic and financial data
about their strong level of serial persistence (see e.g. Hassler and Wolters, 1995
and Banerjee and Urga, 2005). In linear regression model with long memory
time series data, the classic inference procedures based on the OLS estimator
is proved to be invalid by the literature. And an alternative method is to
handle the model in frequency domain, which is shown to be powerful in long
memory setting and has its own general interest. Hence it is an area with both
challenge and importance.

In this dissertation, we extend the literature my analyzing two types of
long memory models: (1) time-varying regression, and (2) panel regression
with interactive fixed effects. The existence of long memory in these two types
of model has been well documented by current empirical studies. For instance,
see Coakley et al. (2011), Kuan and Hsu (1998) and Lazarovéa (2005) for long
memory in time series model with potential structural changes or smooth vari-
ations; and the nature of how factor in the interactive fixed effects represent
the latent aggregate macroeconomic or financial trends (see e.g. Stock and
Watson, 1989, 2002) indicates its possibility to be long memory (Granger,

1980). To analyze these two types of model, the current frequency domain



least squares estimation is adopted and extended to my model setup, which is
new to the literature.

In the second chapter, we propose a linear time-varying regression model,
where the time-variation occurs at both the regression coefficients and the
memory of all variables involved. Following the idea from nonparametric stud-
ies, we kernelized the discrete Fourier transform over frequencies local to zero
and conduct the least squares estimation wherein. The pointwise asymptotic
normality and uniform consistency of this estimator is proved, and a specifi-
cation test for the constancy of regression coefficients is also proposed. To im-
prove the finite sample performance, we propose a frequency domain bootstrap
and prove its validity. Monte Carlo simulation shows that both our estimator
and test perform well in finite sample; and an empirical application in terms
of international spillover effects of inflation rate across European countries is
conducted.

In the third chapter, we propose a long memory panel linear regression
model with interactive fixed effects. The classic least squares estimator based
on principal component analysis is examined in this framework and proved to
be consistent, which is different from pure time series setup. But the asymp-
totic distribution is now dependent on the unknown memory parameters that
contaminate both the convergence rate and the asymptotic bias. Such issue
is difficult to deal with because normally the inference using plug-in estima-
tor of the memory parameters perform poorly in finite sample, and also the
terms with memory parameters are complex in their form. To cope with this
issue, we extend the frequency domain least squares estimator into the factor
model, and prove its consistency and asymptotic normality. Moreover, a self-
normalized inference scheme is developed, together with a selection scheme that
consistently determines the number of factors. Monte Carlo simulation sup-
ports our theory in finite sample, and an empirical illustration of the approach

is provided, examining the long-run relationship between debt and economic



growth.

In the fourth chapter, we continue with the factor model above, and try to
study the estimation and inference of the factor memory parameters and test
against the potential spurious long memory. We adopt the classic local Whittle
estimator and the test based on the score of its likelihood function, and show
that the asymptotics of these objects continue to hold as if we are working with
the infeasible true factors instead of their estimators. This illustrates how our
frequency domain least squares estimator in factor model is compatible with
some popular techniques developed for long memory.

In the fifth chapter we conclude and in the appendix we give the theoretical

proofs of our main results and the auxiliary lemmas required.



Chapter 2

Time-Varying Regression with

Long Memory

2.1 Introduction

Long memory processes have been widely observed in macroeconomic, finan-
cial and other types of data in economy. Different from either 7 (0) or I (1)
processes that characterize stationarity and non-stationarity using an integer
order of integration, long memory processes allow this order to lie between 0
and 1, which is normally termed "memory parameter” in the literature. A
memory parameter, denoted by d, can be non-integer and thus measures the
level of persistence of a time series more generally than the commonly used 1 (0)
and I (1) processes in application. When d > 0, the autocovariance function
is not absolutely summable over the number of lags, and a long memory time
series is still stationary when d € (O, %) and nonstationary when d € [%, 1).
This property makes some classic inference procedures using long-run variance
fail. And in a long range of economic evolution, structural changes can hap-
pen frequently, either within a country or internationally, due to technology
advances, natural disasters or occurrence of pandemic. Understanding these

facts leads to the recognition that methods need to be developed in time series
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models accounting for both long memory and time-varying nature.

Some current studies have considered coexistence of long memory processes
and discrete structural changes, also termed ”structural breaks”. Among em-
pirical studies, Caporale and Gil-Alana (2013) find long memory nature of
quarterly real output per capita in the U.S. from 1948 to 2008, and find a
change of long memory parameter in the second quarter of 1978. Coakley
et al. (2011) find a coexistence of long memory and structural breaks for 16
types of commodity future contracts in 1990-2009. In the meantime, there
are theoretical studies dealing with such long memory processes with struc-
tural breaks, on which Banerjee and Urga (2005) give a very thorough survey.
Among them, Kuan and Hsu (1998) estimate an one-time breakpoint in a pro-
11

—) using least-squares estimator. Ray

cess with memory parameter d € (—57 5

and Tsay (2002) derive a Bayesian method for detecting potentially multiple
structural breaks of persistence d € (0, %) and process level p in a long mem-
ory process. Lazarova (2005) considers a linear regression with long memory
regressors and error term, and test the structural changes for all relevant pa-
rameters under known breakpoints. For more recent studies, Rachinger (2011)
extends the methodology of Bai and Perron (1998) to long memory processes
for testing multiple structural breaks in memory parameters, and derive least-
square estimation for the breakpoints. Wang et al. (2013) propose a prediction
procedure for long memory processes with structural breaks, with either mem-
ory parameter d or mean u changes, or both. And Wenger et al. (2018) consider
a test of structural break in the mean of a long memory fractionally integrated
series.

In addition to discrete structural change in long memory processes, there
are studies involving smooth time-varying memory parameters. For instance,
Whitcher and Jensen (2000) estimate time-varying memory parameters based
on the time-scaled properties of the wavelet transform. Boutahar et al. (2008)

estimate an ARFIMA (0,d;,0) process together with time-varying memory



parameters d; as a parametric process. The estimation is based on local Whit-
tle estimator developed by Shimotsu and Phillips (2006); but there is no the-
ory supporting its consistency and inference. Lu and Guegan (2011) try to
estimate the time-varying memory parameters in a more generalized k-factor
Gegenbauer process, where seasonality of data can be taken care of by this
model. The asymptotic behavior is considered under frequency domain rather
than time domain. Boubaker (2018) estimates d () in an ARFIM A model
with Gaussian noise, mimicking the framework of Boutahar et al. (2008) by
assuming d (t) evolving as a different parametric process. In a more general
framework where no parametric specification is imposed on the process of d (),
Roueff and von Sachs (2011) consider a wavelet-based estimator of memory pa-
rameters, while under the same setting Wang (2019) considers Fourier-based
Geweke-Porter Hudak (GPH) and local Whittle (LW) estimator.

Moreover, there are studies concerning regression using variables with long
memory, as in Lazarova (2005) we mentioned above. This type of regression
model is special because if the joint persistence of regressors and error terms
are large enough, OLS estimator in time domain will converge slower than the
usual 7~ 2 rate and asymptotic distribution is not Gaussian. This conclusion
is pointed out by Robinson and Hidalgo (1997) and proved by Chung (2002).
Therefore Nielsen (2005) considers a semiparametric weighted frequency do-
main least square (WFDLS hereafter) estimator of linear regression model
where both regressors and error term are allowed to be stationary long memory
processes, and proves its asymptotic normality, a similar FDLS estimator, also
called "narrow-band” least squares estimator, is adopted by Christensen and
Nielsen (2006) on fractional cointegrated regression model. Nielsen and Fred-
eriksen (2011) extend this method to non-stationary processes. And Shimotsu
(2012) develops a local Whittle estimator dealing with fractional cointegrated
model, estimating both regression coefficients and memory parameters.

In this paper, we focus on a time-varying linear regression model with long



memory regressors and error term that have smooth time-varying memory pa-
rameters. This framework has not been covered by current studies yet. To
the best of our knowledge, the most relevant study involves Beran (2009) and
Preuf§ (2012), where Beran (2009) considers a time-varying AR (00) model
and estimates both the regression coefficients and memory parameters using a
time domain kernelized maximum likelihood method; while Preuf (2012) gives
some important asymptotic results about locally stationary long memory pro-
cess, and a time-varying regression with polynomial coefficients is considered
with Gaussian error term. we complement these two studies by considering
regression coefficients without any particular functional form; and in terms of
estimator, we adopt the one in Nielsen (2005) using frequency domain weighted
least squares estimation, with Fourier transforms being kernelized as in Roueff
and von Sachs (2011) and Wang (2019). We prove the pointwise consistency,
pointwise asymptotic normality and uniform convergence rate of our estimator;
and develop a specification test about the constancy of regression coefficients,
which could be the main concern when our estimator is applied in the real
data. To overcome the possible poor finite sample performance, we estimate
the asymptotic covariance matrix using a frequency domain bootstrap method
for locally stationary processes developed by Kreiss and Paparoditis (2015),
and prove its validity in our framework. And we conduct the inference using
a self-normalized scheme, which avoids estimating memory parameters, which
may further affect the finite sample performance.

The rest of this paper is organized as follows. Section 2.2 presents the
basic setup of our model. Section 2.3 gives the pointwise limiting distribution
and uniform convergence rate of our proposed frequency domain estimator. In
Section 2.4 we try to consistently estimate the asymptotic covariance in point-
wise limiting distribution using a frequency domain bootstrap, and propose a
specification test over the constancy of regression coefficients. Section 2.5 is

devoted to Monte Carlo simulation, where we report both the basic pointwise



performance of our estimator, and size and power of our bootstrapped test
statistic. Section 2.6 illustrates an application of our estimator and bootstrap
testing using inflation rate data among European countries, where we evaluate
the international inflation spillover over time. Section 2.7 concludes. Proofs
and other auxiliary results are in Appendix.

We introduce some notations used in the remainder of this paper. For
any complex matrix A, we use A and A* to denote its complex conjugate and
conjugate transpose, respectively. Let |A|2 = AA for any complex number A
and |A]> = AA* for any complex matrix A. Let ||A|| denote the Frobenius
norm if A is a real matrix and />, ; |A;;)? if A is a complex matrix. Let
fxo. (U, A), fe(u, A) denote the spectral densities of a-th element of regressor
X and error term e; r respectively, and fx,, (u, A) and fx,. (u, A) denote the
cross-spectral densities between the a-th and b-th elements of regressor vector

X1 and between the a-th element of regressor vector and error term.

2.2 Model and Estimation

2.2.1 Model

In this paper we consider the following regression model:

t
yer = <f> Xir+er t=1,2,...,T,

where X, 1 is a p x 1 vector of regressors, and ¢, is the error term. Pro-
cesses like X; 1 and ;7 are also termed as “locally stationary long memory
processes”, which means the memory parameters should satisfy |d (¢)| <  but
are allowed to vary over time. And the smoothness of d () makes it possible
to approximate the original process with a stationary process local to every
t, which is why we call it "locally stationary”. Local Stationarity is firstly

defined by Dahlhaus (1996) and an extensive review can be seen in Dahlhaus
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(2012). We assume both X, 7 and &, 1 are either short- or long-memory," with
time-varying memory parameters dx (t) and d. (—) respectively. Note that
dx (%) = (dx, (%) ,....dx, (%))I is a vector of memory parameters for each
argument of X, r. By local stationarity, we require both d. (%) and dy, (%),
k=1,...,p, lie in the interval [0, 3). Following Robinson and Hidalgo (1997),
Hidalgo and Robinson (2002) and Nielsen (2005), we characterize the persis-
tence of {X;r} and {e,r} in frequency domain using their spectral densities,
while we do not specify any of their parametric form except for singularity
at zero frequency for any u € (0,1). We allow d. (u) + dx, (u) > 5, which is
termed collective strong dependence and makes the usual OLS estimator not
asymptotically normal, see the statement in Robinson and Hidalgo (1997) and
proofs in Chung (2002) for details.

2.2.2 Estimation

For any u € (0,1), we propose to estimate 5 (u) by the following minimization

problem:
M | T 2
B(w) =argmin | (e — ' Xer) Ko (¢ = Tu) ™) AP (2.21)
7j=1|t=1

where Kj (u) = K (u/h) /h, and K (-) is a kernel function, h is a bandwidth,
A; = 2mj /T are Fourier frequencies, and )\]2-6(”) is a time-varying weight function
as given in Nielsen (2005). Note that we allow J (u) to be dependent on u as
well.

To see the intuition behind the above estimator, we can consider 5 (u) =

as a constant. In this special case, Robinson and Hidalgo (1997) and Nielsen

'For simplicity, we shall refer to X; r and e 7 as “long memory processes” in this study,
although they include the possibility of being short memory.

9



(2005) give a weighted least squares (WLS) estimator:

= arg mmz lwy, (A;) — B'wx ()\j)|2¢()\j)

BeRp 4

where ¢ (\;) is some weight function, and w, (}\;) and wx (A;) are Fourier

transforms of 3, and X; respectively, therefore

T
wy (A) — Bwx (\) = (g — B'X,) ™

is the Fourier transform of the error term. We can see how the above estimator
is equivalent to (2.2.1) if we set ¢ ();) = A3 and set the kernel function a
constant. When ( (u) is indeed time-varying, we can follow Roueff and von
Sachs (2011) and Wang (2019) and introduce a kernel weight into Fourier
transform by assigning more weight on the sample at time ¢ that is closer to
Tu. We define the kernelized discrete Fourier transform (DFT hereafter) of

{y:} at u as follows:

T
1 4

)= g Yor Ky (t — Tu) ™, (2.2.2)

\/27th VK7 (t—Tu) =1

and define wx (u, A;) and w, (u, A;) for {X;r} and {e,7} analogously. Then

analogous to Nielsen (2005),

B (u) = [Z A Re (wy (u, Aj) wiy (u, AJ-»] [Z APWRe (wx (u, Ag) w) (u, )

j=1 j=1

where we use Re(+) to denote the real part of a complex matrix. The above
estimator is well defined provided Zj]\ilRe(wX (u, \j) w (u, A;)) is positive
definite almost surely. We will study the asymptotic properties of 3 (u) in the

next section.
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2.3 Asymptotic Properties of 3 (u)

Define the (p + 1) x1 vector v, 7 = (X{ 7, &:,7)". Let C denote a generic constant
that could vary across lines. To study the asymptotic distribution of 3 (u) at
any fixed u € (0,1), we make the following assumptions together with some
remarks.

Assumption 1. (i) v.r is generated by a linear process

v = Z Avr (7) G
=0

where (; is an i.i.d. sequence such that E (¢; | Fi—1) = 0, E (GG | Fie1) = Lpta,
E (¢ @ GCl | Fioy) = B for asymmetric constant matrix B, and E (¢, @ (,() =
L@ ift=v#s=w,and E((( ® ((,) = C for some sparse constant
matrix when ¢t = s # v = w and E (¢ ® ((),) = Pasa permutation matrix
when ¢t = w # s = v, and E(G(, ® (:(,) = 0 otherwise; {A,r (j)}2, is a

sequence of (p+ 1) X (p+ 1) coefficient matrices such that
Axr () Axer () Opxa

Aur (5) = = y
As,t,T (.]) 01 Xp Az—:,t,T (])

and A;r (j) is square-summable over j for all £ and 7" in the sense that

>rzo Az (I < oo

(ii) There exist matrix-valued functions A° (-, 7) : (0, 1] — R®FV*P+D) guch

that
oft .\ : Cl(j)
max. A (?,]) At,T(‘y)Hg e and (2.3.1)
14 () = 4° (0. )| < Clu— o]0, (232)

with the function [ (j) that is square-summable over j.

Assumption 2. (i) Let A(u,\) = 3272 A% (u, j) €”*. The spectral density

11



matrix of vy

1 2
satisfies that
fou, ) ~A(w) "GA(w)™ as A —0F (2.3.4)

where A (u) = Diag (/\dXI W X)) )\df(“)) , and G is a real, symmetric
and positive definite (p.d.) matrix.

(ii) Let fyap (u, A) denote the (a, b)-th element of f, (u, ) fora,b=1,...,p+
1, viz., the cross-spectral density between the a-th and b-th elements of v,

with corresponding memory parameters d, (u) and dy, (u). fo.a (u, \) satisfies
| Fosab (U, A) = GpA~ )=l | = O (\rmdal=dlm)) a5 X - 0T (2.3.5)

for all u € [0,1] and some v € (1,2].
(iii) )af”+/\(u’)‘)‘ =0 ()\*l’d“(“)’db(“)) as A — 0" forany a,b=1,...,p+ 1.
(iv) For the matrix G, we have that G,,1 = Gpi1, = 0 for all a =

1,2,...,p; and the leading p x p principal submatrix of GG, denoted as Gy, is

p.d.

Assumption 3. (i) k (-) is a second-order nonnegative kernel that is continu-

ously differentiable, bounded and symmetric, and has compact support [—1, 1]

such that [k (u)de = 1. ko = [[k (u)]'du < oo for | = 2,3,4.

(i) |k (u) — Kk (v)] < Ay |u—1].
(iii) k (u) monotonically increases when u € [—1,0].
o T () e

oo such that there exists a threshold value @ (u), which is dependent on h.

(iv) limy o0 = 0 (u, j) for some constant 0 (u, j) <

And 6 (u,j) = o <;> when j > 6 (u) and 0 (u,j) > 0 and non-negligible

VMR
otherwise. And more specifically, |7 Ethl k2 (5Ee) e | =0 (u, ) + o (75:)

12



and this convergence rate holds uniformly over j. Also we have

T
.S > (7 - ) () e =00,
and )
LY (52 -
Assumption 4. As T — oo, we have
(i) M — o0, 2 — 0;
(ii) h =h(T) — 0;
(iii) g};ﬁfgf — 0, where 0, = 1733)( and dy = sup,,,, dx, (u).

Assumption 5. The functional coefficient 3 (u) is twice continuously differ-
entiable on (0,1).

Remark 1. Assumption 1 and 2 specify the data generating processes (DGP
hereafter) and time-varying spectral densities of locally stationary processes
X:r and e, 7, which is a multivariate version of the specification in Dahlhaus
and Polonik (2009). Note that our definition of a locally stationary process
with time-varying memory parameter is equivalent to that in Roueff and von
Sachs (2011) and Wang (2019), both of which are modified from Dahlhaus
(1996) in the form of spectral representation. Their definition specifies such a

process v as

vor — / Aur (V) Mz (V)

—T

™

where (; = f_ﬂ e~dZ ()\) is the spectral representation of innovations with
dZ (\) having zero mean and orthogonality between different A’s, and A; 7 (A) =
> 20 Avr (7) €N is the DFT of the sequence {A; 7 (j)}. Then by substitution

we can show that
v =3 Avr () G = Y Avr (4) / e Nz (\)
— / D A (j) e dz (M) = / Avr (N e ™dzZ ().

13



Note that (2.3.1) in Assumption 1 is a condition similar to but slighly stronger
than the corresponding one in Dahlhaus and Polonik (2009). (2.3.2) specifies
the smoothness of the function A (-, j) over its first argument. Dahlhaus and
Polonik (2009) and Roueff and von Sachs (2011) also impose similar conditions
to ours.

Remark 2. In Assumption 1 the symmetric matrix B , the sparse matrix C and
permutation matrix P can be calculated using the assumptions E (¢;| Fi_1) = 0,

E (Ctg; | .7-"t_1) = I, 41 the ii.d. of innovations (;. To be exact,

N S12 S1p+1
B = ,
Sp+1,1 Sp+12 0 Tpyipyl
and
€1 €12 s €1,p+1 €1 €21 s €p+1,1
C= : : and P =
€p+1,1 €pt12 " Eptiptl €1pt1 €2p11 0 €pripyl

(2.3.6)
where e;; is a (p+ 1) x (p+ 1) matrix with all elements equal to zero except
the (i, j)-th one, and s;; = e;; + ej; = s;;, and n;; =diag(1,...,1,m;,1...,1)
where n; = E (¢;}) with (;; the i-th element of (;.?

Remark 3. (2.3.5) in Assumption 2 also specifies the rate of convergence of

2For example, suppose p + 1 = 2, then

7]1001

~ 011 0

B=19 11 0 |

1 0 0 7

and

100 1 100 0
~ 000 0 ~ 0010
C=loooo|®P=]0y 100
100 1 000 1

from which you can observe how P is a permutation matrix in a more obvious manner.

14



spectral density when frequency shrinks to 0 from the positive side. Define

C(u, k) = ' fu, ) e ™ dx =" A% (u, j) A (u,j + k).
- =
C' (u, k) is termed as “time-varying covariance” in Dahlhaus and Polonik (2009).
This term indicates how we approximate a totally “time-varying” process to
a “tangent” process that is indexed by a local parameter w, with the help
of smoothness conditions in (2.3.1) and (2.3.2). To see the relation between

Cov (v, Veprr) and C (u, k), notice that

Cov (vt Vesk.T)

= Z Z Avr (J Ct St A:‘,+kT Z Air ( t+k,T (j+k)

7=0 [=0

=) A (%J) A” (t;k,j +k’> +0(T7)
=0

=S A ) A g+ 0+ 0 (T4 - g o )

~ T T

_ -1 _t itk

_C(u,k)+O(T + |u T‘—f"u ) (2.3.7)

where the second equality holds by Assumption 1(i), and the third and fourth
ones holds by (2.3.1) and (2.3.2) respectively in Assumption 1(ii). Note that
}u — %’ and ’u — #| are both O (h) if they are on the support of our kernel
function K} (+). (2.3.7) is helpful in the asymptotic analysis below.

Remark 4. Here we briefly explain why we impose Assumption 3(iv). This
assumption controls the order of the periodogram of our kernel function, which
is a very essential part that makes our results different from the time-constant

long memory regression model like in Nielsen (2005). To be specific, the con-
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vergence rate and asymptotic covariance of B (u) is partly determined by

sk (o

[ Lk (t ) } =2 s—1 ) e (S ;gu) cos ((£ — s) Aj) cos ((t —s) Ax).

(2.3.8)

See (A.2.22) in Supplemental Material for more detail. Suppose we set k (t T“) =

lovert=1,...,T, then (2.3.8) becomes

because 223:1 et=9Nitk = 0 holds uniformly over j,k = 1,..., M while
223:1 e!=Xi-k = 0 only when j # k. This is exactly what Nielsen (2005,
pp. 294) obtains in his study, and it explains how serial dependence is weak-
ened if we move data from time domain to frequency domain, and in this case

data in different frequencies are asymptotically uncorrelated. However, the

t—Tu

asymptotic uncorrelation may not occur when k ( i

) 1s not a constant over

t=1,...,T. To see this, using the same reasoning, (2.3.8) is further given by

(s

[z (t ru) } e )k2 (S;hTu) cos ((t — s) A) cos ((t — ) Ax)

(2.3.9)

T
s—Tu 4 ,
k,Q i(t—s)Njtk i(t—s)Aj—k
2(T2h2/<;02+0 Z ( ) (Th )(e e )

e (52)

where the first term corresponds to periodogram of k? (

|Mﬂ

(T2 ]’L2 Rp2 —|— O

t—Tu
Th

) over frequencies

itk and A;_g, while the second term is of smaller order. Suppose we consider

16



an arbitrary frequency A, with ¢ > 0, then a DFT of k? (t_T?) at A\, normalized

by ﬁ can be given by

T
1 p(L=Tu\ i, _ 1 o (L= Tu i2mq( %)
Thzk<Th )e Thzk ™ )¢
1

1 _
E ]{' (I U) z27rqxdx

_ 127rqu/ k,2 z27r qh)vdv

using Riemann sum approximation and substitution of variable z. Note that
under our setup, ¢ € {0,1,..., M}. When ¢ = 0, which corresponds to the
case when j = k, the above equation is O (1) in norm. When ¢ # 0 but small
enough, we could have gh close to zero at large 1. Then by Taylor expansion

at gh = 0 and Leibniz rule,

1
/ l{?2 (U) €i27r(qh)vdv

1

1 1 1
= / E* (v) dv + i27rqh/ vk? (v) dv — 272¢*h? / vk (v) dv

1 -1 1

4i ! 2 ! (i he
— §27r3q3h3/ v k? (v) dv + §7T4q4h4/ v E? (v) 2 (@ h)v gy
-1 -1

1 1
= / k* (v) dv — 27T2q2h2/ v’k (v)dv + O (¢*h?),

1 1

where in the first equality ¢*h* lies between gh and 0, and all the integrals
are finite due to the boundedness of & (-) and finite integral horizon; and in
the second equality both the odd order terms are zero because vk? (v) and
v3k? (v) are odd functions. The order of the second term above is determined
by how qh evolves in asymptotics. For ¢ that is small enough, it is negligible
as T — oo; and suppose ¢ = qas ~ Kh~! for some constant K close to zero,
then the second term above is finite but small as ¢h is still close to zero.
Then Assumption 3(iv) can be interpreted by specifying 0 (u) ~ Kh~! for

some constant K as above. Then the first term of (2.3.9) can follow that, for

17



all j,ke{1,..., M)},

T
1 oft—Tu\ o (s—Tu i(t—s)\; i(t—s)Aj_
mzk<Th>k< h )<6 e

t,s=1

— 0% (u,j +k)+0*(u,j— k).

When j = k, the leading terms of the above limit is 62 (u,2j) with 25 < @ (u);
and when j # k, the above limit has its leading terms with min {j + &, [j — k|} <
0 (u), which is equivalent to |j — k| < @ (u). And it is easy to see that in time-
constant framework, the only analogous leading term is when j = k, while in
time-varying framework we also need to take into account when j # k but
with distance controlled by 6 (u) ~ Kh~'. This explain how v/h enters the
convergence rate of our estimator. And note that when |j — k| > 0 (u), we
have 6% (u,j + k) + 6 (u, j — k) = o (577). This is a technical assumption to

make sure a well-defined asymptotic covarice is obtained.

Remark 5. The other parts of Assumption 3 impose some standard conditions
on the kernel function. Assumption 4 imposes some conditions on M, h, and ~.

Assumption 5 imposes the smoothness condition on the functional coefficient

B ()

To proceed, we introduce some notations. Let the matrix of time-varying
periodogram be

Iy (u, A) = wx (u, \) wy (u, ),

and its (a,b)-th element be Iy, (u,A) = wx, (u, \) w¥, (u, ) for any 1 <
a,b < p, where wy, (u, \) is the normalized DFT as in (2.2.2) of i-th element
X1 of X; . Denote the corresponding time-varying cross spectral density as

fx,, (u, A). Similar notations apply to both y;r and e, . Like A, 1 (j), we can

18



partition A° (u, j) and A (u, \) as follows:

Ag{ (u7j> Ag{ (u,j) 0px1

A% (u,j) = = . and
Ag (u7j> 01><p Ag <u>]>
Ax (u, A Ax (u, ) 0,

Alu,\) = x ( ) _ x ( ) ) px1 ’
Ag (u, \) 01xp Ac (u, \)

where, e.g., Ax (u,\) = Y272 Ax (u, j) €¥* denotes the DFT of Ay (u, j).

For the matrix G defined in Assumption 2, we use Gx 4 to denote its
(a,b)th element for a,b =1, ..., p and G.. to denote its (p + 1, p + 1)th element.
The first main result in this paper is the asymptotic normality of B (u). This

is formally stated in the following theorem.

Theorem 2.3.1 Suppose that Assumption 1-5 hold. Then

A3 (u) ANV MR (B (w) — B (u) — hBys (u)) N (0,77 () Q (u) T (u)) |

where Ay (u) = dmg()\dxl( ), . ,/\7\2{”(@> , and the (a, b)-th element of the pxp

. . Cxa
matriz T is Ty = o o )d(Xb(u)"FQ(S that of € is

G)E(,aaGEC,bbGEE
1 —dyx, (u) —dx, (u) — 2d. (u) 4+ 40 (u)

Qo = O

with a finite deterministic function ©* (-). And the bias term By (u) is given

by

B (u) = b [Z X Re (wx: (u, M) wh (u, w]

Jj=1

X [Z)\du)Re wx (u, A\j) Wy (u, A, ))] B (u) =0, (1),

J=1
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with
~ L ('t oy
Wy (u, \;) = o tz:l: (f — u) XerKp e
Remark 6. Theorem 2.3.1 has its convergence rate and asymptotic co-
variance similar to Theorem 1 of Nielsen (2005), especially they are identical
if we set K}, (t —Tu) = 1. This also implies how our theorem generalizes the

one of Nielsen (2005) by making it time-varying.

In the following, we study the uniform convergence rate of our estima-
tor. To help develop the corresponding results, we require the following extra

assumptions.

Assumption 6. E HQQ/ — IPHHS < oo for some s > 2.

T

T — 0 with n = Sfor € > 3 as T — oo,

Assumption 7. i

Furthermore, we suppose d (u) > ¢ for some finite lower bound 4, and
min, |d x, (u) —d. (u)| > Ad for some finite lower bound Ad, and both bounds
are uniform over u € (0,1). We define U = [h,1 — h] so as to avoid the
boundary issues of our kernel function when trying to approximate the relevant
Riemann sum to an integral. Then the following theorem gives the uniform

convergence rate of /3 (u).

Theorem 2.3.2 Suppose Assumptions 1-7 hold,

B (u)— B (u)H = 0,(h) +0, <Af;, / 10?%) . (2.3.10)

Theorem 2.3.2 establishes the uniform convergence rate of 3 (u) over the

sup
ueU

compact set Y. The two terms on the right hand side (RHS) of (2.3.10) reflect
the contribution from the asymptotic bias and variance terms, respectively.
Unlike the Nadaraya-Watson (local constant) estimator with weakly dependent
observations that exhibits the asymptotic bias of order O (h?), we can only

derive a bias term of order O (h).
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2.4 Bootstrap Inference

As we can see in Theorem 2.3.1 the asymptotic covariance of our estimator
has no close-form expression, and the ”frequency leak” induced by its proof
also makes the method of moments over frequency domain infeasible. So to
conduct the inference, we propose a bootstrap scheme to estimate the asymp-
totic covariance. This bootstrap covariance estimator can help self-normalize
our estimator, which avoids estimating the time-varying memory parameters
that are typically poor in finite sample performance as well. Additionally we
consider testing the hypothesis that the functional regression coefficients are

constant using our self-normalized estimator.

2.4.1 Bootstrap

Here we propose the bootstrap procedures in frequency domain and prove its
validity. Dahlhaus and Janas (1996), among others, propose bootstrapping the
integrated periodogram over frequency domain for a stationary linear process.
The similar idea is adapted by (Kreiss and Paparoditis, 2015, KP hereafter)
for a locally stationary short memory process and by Preufl (2012) for a locally
stationary long memory process. Here we follow the basic procedure of KP with
some modification and try to generate the bootstrapped version of W .
Before we move on to the specific procedure, we introduce the intuition
behind our bootstrap method. For a locally stationary long memory linear
process {Xt,T}z:p consider a DFT over Fourier frequencies \; = 27j/T, j =

1,...,T as we defined before given by

T
1 -
Wy (Nj) = \/WE Xy e (2.4.1)
t=1
21



Then X, 1 can be recovered asymptotically by an discrete inverse of DF'T as

T
/2T _ it
Xt,T ~ ? ; wx ()\J) e tA;

Consider that the linear process {Xt,T};‘le, as in Assumption 1, is given by
T = Z;io Ai 7 (j) G—j. Then the DFT wx ()\;) can be approximated as

follows.

by eqn (2.3.1) to (2.3.3) in Assumption 1 and 2. Then X;r can be further

approximated by

where in the last step we replace the spectral density fx (%, )\j) by its estimator
fX (%, )\j). We can derive fX (%, )\j) by smoothing the local periodograms,
which is defined by

—%iw( )IXL<U)‘)

Jj=1
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where the kernel w (A;Aj

) is an even function over frequency domain satisfying

ST w (A_LAJ) = 1 and ZJLWQ (A_L—AJ> — 0as T — oo; and Ixz (u, A)) is

J=1

the localized periodogram defined by

N 2

Z X\ Tuj+1-|Ny2)tprE"
p=0

1
() =5

where N is the length of localized window such that % + % — 0 and we
specify X; 7 = 0if t <0 or t > T. Note that this is just one of the spectral
density estimators, the consistency of this estimator is proved for stationary
process in Brockwell and Davis (1991, Chapter 10.4) and extended to locally
stationary long memory process in Preufl (2012). Another types of estimator
that smooths the pre-periodogram over both time and frequency domain is
proposed in Dahlhaus (2012), which is not covered here. In summary, the
above set-up for approximating the sample using inverse of DFT fits the one
proposed in both KP and Preuf§ (2012). Next we presents the procedures to

generate the bootstrap asymptotic covariance estimator as follows:

1. Obtain the unrestricted residuals &, 7 = y¢ 1 —X;TBA (%) by our estimator

proposed at each t =1,...,7T.

2. Generate pseudo innovations {Ct*}f:l using ¢.7.d. standard normal distri-

bution.

3. Generate the DFT for the pseudo innovations above as @+ (\) = Z5—= ST et

at frequencies \; =275 /T, j=1,...,|T/2].

4. Calculate the inverse of DFT as €} - = L_% Z]LZ/F o7 f= (5, Aj)ex (N) e,

where fé (%, )\j) is the estimated spectral density for residual &, 7.

5. Generate the bootstrapped dependent variable y; = X;,TB (%) + Er

and conduct our estimation that gives 3, (u) for each u € (0, 1).
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6. Repeat step 1-5 for B times, and calculate the bootstrap covariance

through Monte Carlo simulation as

where Bib) (u) is the estimator at b-th bootstrap sample. Then a self-

normalized estimator is given by i:% (u) (B (u) — 3 (u))

For the consistency of our bootstrap method, we need to firstly show that
for any u € (0,1), we have )\?\Z(")A;j (u) v/ Mh (B* (u) —B(u)) converge in
distribution to the same random object as indicated by Theorem 2.3.1. Note
that here the convergence is not conditional on the original sample (X,¢),
because rather than resampling the data as ususal bootstrap does, we actually
generate a pseudo data that mimic but is independent from the original data.
Before presenting our bootstrap CLT, we give some extra assumptions for the

spectral density estimator f=(-,-).

Assumption 8. The spectral density estimator fg(-, -) satisfies
(i) ‘W‘ < oo for any u € (0,1) and A € (0, 7);
fe(u,X) = fo (u, \)| = o (1).

The following theorem gives the CLT of bootstrap regression estimator

(if) sup,

under the null hypothesis.

Theorem 2.4.1 Given the conditions for Theorem 2.5.1, 2.3.2 and Assump-

tion 8, as T — o0,

where ¥ (u) =T (u) Q (u) T (u).
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2.4.2 Specification test

Our estimator poses the possibility that the regression coefficients could be
time-varying. Therefore testing the constancy of regression coefficients be-
comes a crucial task in application; and in this subsection we introduce a

specification test of this aim. Consider the following null hypothesis:

for some constant p x 1 vector 8. And the alternative hypothesis is given by
H;, as at least one element of [ (u) is varying with w. As in Cai and Xiao
(2012), we consider a test statistic over the distance between § (u}) and é , in
a finite set of points U* = {u} };’:1, where 5 is an estimator of  under Hy.
Using the results in Nielsen (2005), we can directly define 5 as

Z/\ “Re (@x (\) Ty (V) [Z)\fé "Re (@x (\) @, (A)) |

Jj=1

(2.4.2)

where Wy ();) is defined as in (2.4.1). Then considering the finite-dimensional

(2
distribution of the difference § (u?) — 3 for i = 1,2,...,m*, we have the fol-

lowing result.

Corollary 2.4.2 Under the conditions of Theorem 2.5.1 to 2.j.1, and under

Hy, {B (uf) — é} have the following asymptotic joint distribution:
u;eU*

&,V Mh : AN

B (uty) — B 0 5 (uf.)

where @y is the block diagonal matriz defined by

&, — diag (Adf( DAt (), %)y (u;*)> ,
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and ¥ (uf) =T (uf) Q (uf) T (u}) as defined in Theorem 2.3.1.

K3 (2 (3

We then consider the following two test statistics

AL A x 2
Wiz = max |52 () (3 ) = 8) || (243)
o A1 ~ = 2
Wz = > [557 () (B () - B) (2.4.4)
i=1

For this test statistic, we have the following asymptotic null distribution.

Corollary 2.4.3 Under the conditions of Theorem 2.5.1 to Theorem 2.4.1
and corollary 2.4.2, and under Hy, Wi rm and Wer .+ have the following

asymptotic null distribution:

m*
d d
WM,T,m* — lmax X@2 (p) ) and WS,T,m* — Z X12 (p)

<i<m*
i=1

where X3 (p), ..., X% (p) are independent chi-square distribution with p degrees

of freedom.

2.5 Monte Carlo Simulation

In the Monte Carlo simulation experiment of our estimator and test statistic,

we consider the following data generating process:

/ t
yt,T:Xt7T6 (T) +5t7T t = 1,2,...,T

where without loss of generality, X, r is set to be a 2 x 1 vector. Both X, r and
;1 are generated by time-varying ARFIMA process, and specifically X is
generated by ARFIMA (0,dx (%) ,0), and e,r by ARFIMA (0,d. (%) ,0),

where these time-varying memory parameters are defined by

dx, (u) =dyx, (u) = (1 —cos (mu/3)), we€|0,1]
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and

d. (u) = (1 —=cos(mu/5)), wuel01].

And the time-varying regression coefficient vector 3 (u) is given by 1 (u) =
2sin (2u) and [y (u) = 2cos (2ru). In terms of orders of the size of fre-
quency M and bandwidth A, we specify M = LT%J and h = 0.1SxT_é
where S, is the average of standard deviation of each element of X;,. In
the following we report the results of averaged bias, root mean-squared er-
ror, and standard error of the estimator B(u) at v = 0.2, 0.4, 0.6 and 0.8.
The results are averaged over R = 200 repetitions, with sample sizes 100, 200

and 400. In detail, the averaged bias is defined by %Zil (B (u) — B (u)),

. 272
mean-squared error by {% Zle (B (u) — 3 (u)) } , and standard error by
1

—= 212

lﬁ P (B (u) — 3 (u)) } . For weight function d (u), we set ¢ (u) = 3.5,
4.5 and 5.5 respectively. See Table 1 for the above results. Also we present

the graphs in Figure 1 comparing the curves of true parameters 3 (u) with the

~

averaged estimator (WFDLS) 3 (u) at T'= 400 and ¢ (u) = 5.5.
Then in terms of the specification test, we specify the following null and

alternative hypothesis.®

Hy: Bu) =B = (VZ2v2) .

H; : B (u) = (2sin (27u) , 2 cos (27u))" .

The estimator of § under the null is given by (2.4.2) and test statistics given
by (2.4.3) and (2.4.4). The collection of points {u}}", are selected as (almost)
equally-spaced in the set {%}tT:l By our theory, under the null the above test
statistics converge in distribution to max;<j<p+ x? (2) and 327 x2 (2) respec-
tively with m* independent chi-square distribution with degree of freedom 2,

and we therefore can obtain the asymptotic 95% critical value of these two test

3The null and alternative are set this way so that the signal-to-noise ratio of our data
generating process is restricted around 4.
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statistics, denote by Cir0.95 and Cgg95. For bootstrapping, we set bootstrap

sample size as B = 300. In the following we report the size and power under

the case that m* = 2, 4, 8 and 12 in Table 2, where we focus on the case

d (u) = 5.5. From Table 1 we can see that our estimator converges properly

to true coefficients and Figure 1 shows how the estimated curve is close to its

true values as well. From Table 2 the size control and power both perform well

using our bootstrap covariance estimator.

Table 1: Results of WFDLS estimates of 3 (u)

B1 (u) B2 (u)
u=02 u=04 u=06 u=028 u=02 uwu=04 u=06 u=028
6(u)=35 RMSE T =100 0.973 0.923 0.957 1.032 1.192 1.085 1.050 0.972
T = 200 0.799 0.771 0.884 0.843 0.885 0.861 0.825 0.742
T =400 0.626 0.632 0.644 0.734 0.632 0.623 0.662 0.681
STD T =100 0.975 0.924 0.956 1.032 1.194 1.086 1.042 0.971
T =200 0.800 0.772 0.885 0.844 0.885 0.861 0.826 0.736
T =400 0.627 0.633 0.644 0.735 0.632 0.624 0.663 0.679
6(u)=45 RMSE T =100 1.130 0.986 1.072 1.133 1.360 1.249 1.177 1.074
T = 200 0.877 0.865 0.974 0.930 0.991 0.949 0.925 0.800
T =400 0.690 0.692 0.745 0.809 0.707 0.687 0.737 0.745
STD T =100 1.131 0.987 1.073 1.133 1.362 1.250 1.168 1.072
T = 200 0.878 0.866 0.974 0.931 0.991 0.949 0.925 0.794
T = 400 0.691 0.693 0.744 0.811 0.707 0.688 0.738 0.743
6(u)=55 RMSE T =100 1.287 1.044 1.207 1.250 1.501 1.407 1.298 1.198
T = 200 0.941 0.977 1.040 1.034 1.099 1.036 1.011 0.861
T = 400 0.758 0.746 0.829 0.872 0.787 0.747 0.806 0.803
STD T =100 1.289 1.044 1.209 1.250 1.503 1.408 1.290 1.196
T =200 0.942 0.978 1.040 1.035 1.098 1.036 1.012 0.856
T =400 0.759 0.747 0.828 0.873 0.787 0.748 0.807 0.800
Table 2: Size and Power of Specification Test
Size (%) Power (%)

m* 2 4 8 12 2 4 8 12

Wa,rym= T =100 135 16.5 28.0 36.0 80.0 93.5 99.0 99.5

T =200 4.5 4.5 3.0 9.0 775  96.5 99.5 100

T =400 3.5 5.0 5.5 5.5 89.5 98.0 100 100

Wsrm+ T =100 130 155 315 39.5 81.5 96.0 99.5 99.5

T =200 5.0 6.5 5.5 5.5 80.0 98.0 100 100

T =400 4.5 6.0 2.5 6.5 93.0 99.0 100 100
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Figure 1: WFDLS estimator against true regression coefficients
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Figure 2: Spillover effects from France and Portugal
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2.6 Application

In this section, we present an empirical application in terms of the international
inflation spillover effect. The estimation and test for constancy of the effect
are based on the harmonized index of consumer prices (HICP hereafter) data
collect from Eurostat, an thorough online economic database of EU countries.
The HICP are monthly data from January 1996 to March 2020; and differ-
ent from pure CPI data, HICP is comparable across different countries and
thus suitable for our analysis. The nature of long memory for inflation rate
is confirmed by Hassler and Wolters (1995) and Doornik and Ooms (2004),
among others. And the international inflation spillover has its evidence found
by Neely and Rapach (2011), Mumtaz and Surico (2012), Altansukh et al.
(2017) and Kang et al. (2019), among others. They found that there is an “in-
terdependence” of inflation across countries, especially for countries that are
economically or geographically connected to each other. One of the methods
to evaluate inflation spillover effect is to characterize it by a constant regres-
sion coefficient along the inflation rates of different countries, see, for example,
Nielsen and Frederiksen (2011). However, as an indicator of long-run equilib-
rium, the time-varying nature of inflation spillover should be considered, which
is still empty in current literature. Therefore we try to estimate a time-varying
inflation spillover effect to Spain from two other countries: France and Portu-
gal, which are geographically connected to Spain on the ground. This can be

illustrated by the following model:

t

InflaSP,r = B (f) “InflaF Ryr + B2 (%) ~InflaPOyr + e

where InflaSP,r, InflaF R,r and InflaPO;r are inflation rates of Spain,
France and Protugal respectively, which are calculated by percentage change
of HICP data over every two consecutive periods, with T = 290. Descriptive

statistics of these three variables are presented in Table 3. For estimation of
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By (%) and Bs (%), we specify the size of frequency M = LT%J and bandwidth
h = 5.5SxT_% over all its usage, which is the same as in simulation, and the
graphs of /3, (%) and By (%) are presented in Figure 2.

Next we consider test of constancy of our functional coefficients 3, ( ) and

1
T

5o (%), with the following null hypothesis:

H, - B (U) _ B

Ba (u) o
for some constants 3; and (. We conduct the test using number of points
m* = 2, 4, 8 and 12; and present the value of Wiy 1+, Werm+ and corre-
sponding 95% critical value as indicated by self-normalization in our bootstrap
procedures, denoted by py; and ps. The results are presented in Table 4. From
Figure 2 we can see the spillover effects of inflation rate in Spain from France
and Portugal both grow stably overtime, while the effect and its growth are
more prominent from France than from Portugal. From Table 4 we can see

that for most of the scenario we reject our null hypothesis, which gives a valid

support of time-varying nature of the inflation rate spillover effects.

Table 3: Descriptive Statistics in Application

Max Min Median Mean  Std. Err

InflaSP 2391 -2.458 0.194 0.170 0.701
InflaFR 1.147 -1.122 0.127 0.122 0.329
InflaPO  2.239 -1.719 0.122 0.159 0.588

Table 4: Specification Test in Application

m* 2 4 8 10 12

WL Tym» 7976 15180  19.454 15513  21.082
(7.483)  (8.657)  (10.055) (10.601)  (10.855)

WS, T 8.190  23.228 51171  49.026  82.172

(9.560)  (15.694)  (26.365) (31.444)  (36.377)

2.7 Conclusion

In this paper we consider a weighted frequency-domain least square estima-

tion using kernelized discrete Fourier transform of the data, which consistently
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estimate the time-varying functional regression coefficients. We establish the
pointwise asymptotic normality of our estimator, and derive its uniform con-
vergence rate. Also to handle the potential bad finite sample performance, we
adopt a bootstrap method that takes use of pseudo innovations in our linear
processes and estimation of spectral density for the residuals. We proves its
validity in our framework, and apply it to a test for constancy of our regression
coefficients. An application to estimation of international inflation spillover ef-
fect, using inflation rate data of three European countries, is conducted; and
our bootstrap test reject the null hypothesis that these effects are constant
over time.

There are several possible extensions. First, in terms of our test for con-
stancy, one may consider a test statistic that evaluates uniformly on the interval
0, 1], this method shall bring to a better finite sample performance than the
one we consider now. Second, one may consider another bootstrap method with
less tuning parameters considered, as ours now need to involve the bandwidths
used for kernelized DF'T, for estimating spectral density of the residuals, and
for local time window to construct the local periodogram. And as we can see
in application, selection of these bandwidth could be burdensome somehow,
so at least a data-generated bandwidth selector should be developed. Third,
one may extend the current regression framework to one involving endogeneity,
especially autoregression; or consider a panel data where fixed effect is con-
sidered. So far the frequency domain estimation has not been widely used in
panel data with long memory. We leave this as potential improvement of this

paper or new topics in the future.
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Chapter 3

Unified Factor Model
Estimation and Inference under

Short and Long Memory

3.1 Introduction

For the past two decades, linear panel regression models with interactive fixed
effects have been extensively studied in econometrics and applied in a wide
variety of contexts where large datasets have become available in the social
and business sciences. These models allow for cross section dependence of an
a priori unknown form through the use of latent factors that evolve over time
with individual loadings that determine the strength of the interactions and
temporal dependencies in the panel. The abbreviation “factor model” is used
here to represent this general class of panel factor model.

For these factor models to be useful in applied research, it is important
that the time series properties of the regressors, factors and innovations in
the generating mechanism match those that are present in or implied by the
observed data. In practical work it is often convenient to transform dependent

variables and regressors to stationarity so that the working model involves a
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panel of stationary time series. But such transformations do not eliminate
the possibility of stationary long range dependence or long memory in the
data. To address the complications that can arise through the presence of
long memory, the present paper studies a panel linear regression model with
interactive fixed effects wherein regressors, factors and idiosyncratic error terms
are all stationary but may be driven by long memory processes. The model
setup therefore involves a long memory formulation of the factor model in
which short memory regressors, factors and innovations are embedded as a
special case.

Panel factor model regressions are commonly used in modeling heteroge-
neous individual behavior that relates to consumption, investment, inflation
rates, stock returns, volatility and various other economic and financial indi-
cators. Empirical evidence of long memory has been noted in many of these
indicators, implying autocorrelation structures that differ from short memory
stationary I (0) processes. For instance, Hassler and Wolters (1995) examined
monthly inflation rates for five developed countries and confirmed the presence
of long memory in the time series. Similar empirical evidence was found by
Caporale and Gil-Alana (2007) for the US unemployment rate, by Gil-Alana
and Robinson (2001) for domestic income and consumption in the UK and
Japan, and by Ding et al. (1993), Andersen et al. (2001) and Andersen et al.
(2003) for stock returns, realized stock volatility and realized exchange rate
volatility, respectively.

In applied macroeconomic research, factor modeling is frequently employed
to capture the effects of latent aggregate macroeconomic or financial trends,
e.g., Stock and Watson (1989, 2002). It is also well known that cross section
aggregation of time series can lead to the presence of long memory, as shown
by Granger (1980) and studied in economic and financial data by Chambers
(1998), Pesaran and Chudik (2014), and Michelacci and Zaffaroni (2000). Long

range dependence features in the data and processes like aggregation that un-
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derlie much data collection both motivate studying the impact of such depen-
dence on current methods of panel factor modeling and the development of
new methods to address the existence of long memory in the data.

The present paper undertakes this investigation and development. In par-
ticular, we study estimation, inference, and associated asymptotics for the fit-
ted coefficients in a linear panel regression model with interactive fixed effects
with potential long memory regressors, factors and idiosyncratic errors. The
starting point of the analysis is standard principal components least squares
estimation (Bai (2009)) and its asymptotic performance under long memory.
The results of this analysis reveal that, when the joint memory properties of
variables in the model is strong enough, least squares estimation produces non-
negligible asymptotic bias which is not resolved either by analytical correction,
as suggested in Bai (2009), or by the standard half-panel jackknife methods,
proposed in Fernandez-Val and Weidner (2016). The reason for this breakdown
is that the order of magnitude of the bias depends critically on the memory
parameters, as does the convergence rate of the least squares regression coef-
ficient estimator. Different from pure time series long memory regression, the
least squares estimator of factor model still obtains an asymptotic normal dis-
tribution due to the commonly assumed weak dependence over cross-sectional
units, and the condition that the number of cross-sectional units goes to in-
finity in a comparable order with the number of time periods. Moreover, the
convergence rate and bias order can vary across the setting in which regressors
and factors are mean zero or mean non-zero, and their joint memory together
with idiosyncratic error term.

The above issues substantially complicate successful practical implemen-
tation of least squares regression. To resolve these difficulties, the present
paper proposes an alternative approach to time domain regression by using
frequency domain regression methods that have a long history of successful

use in time series regression. These methods originated in the pathbreaking
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studies of Hannan (1963, 1970) on spectral regression, were further developed
for principal components by Brillinger (2001), for trending time series regres-
sion (Phillips, 1991; Corbae et al., 2002), with higher order approximations
in time series regression (Xiao and Phillips, 1998), and recently have been
implemented in long memory time series regressions (e.g. Nielsen, 2005) and
in time-dependent frequency domain principal components modeling (Ombao
and Ho, 2006). In the factor model context, the procedure follows the usual
approach of transforming the model by taking discrete Fourier transforms at
the Fourier frequencies, and performing principal components analysis (PCA)
in the frequency domain on the system and least squares spectral regression
estimation. The combination of PCA and spectral least squares regression
yields consistent coefficient estimation and asymptotic normality under gen-
eral conditions. The asymptotic bias involved in frequency domain estimation
can be corrected and the asymptotic variance matrix can be estimated using a
frequency domain analytic analogue of the formula used in Bai (2009). Infer-
ence is conducted using a self-normalized statistic for which there is no need
for separate estimation of the memory parameters that occur in the asymp-
totic bias and covariance matrix, a feature that simplifies implementation and
improves finite sample performance.

This study contributes to the current literature in two ways. First, we
extend the range of application of the factor model developed in Bai and Ng
(2002), Bai (2003, 2009) and Moon and Weidner (2015), by accounting for
long memory and nesting short memory applications as a special case. Second,
we contribute to the literature of time series long memory modeling, studied
by Robinson and Hidalgo (1997), Marinucci and Robinson (2001), Nielsen
(2005) and Christensen and Nielsen (2006) among others, by extending spectral
regression estimation and inference to the panel factor model. Specifically, the
approach developed extends narrow-band spectral estimation in time series

regression to the panel factor model, showing that asymptotic normality in

36



this context holds irrespective of the joint memory of the variables, a result
that arises from cross section aggregation and contrasts with time series least
squares regression for which the limit theory is known to be non-normal when
the sum of the memory parameters of the regressors and the errors exceeds 0.5
(Chung, 2002).

Other recent work has considered the impact of long memory time series
in panel data modeling, notably Ergemen and Velasco (2017), Ergemen (2019)
and Cheung (2021). Ergemen and Velasco (2017) and Ergemen (2019) study
a fractionally integrated factor model where the factors are removed by the
methods introduced by Pesaran (2006), projecting the regression on a fraction-
ally integrated cross-sectional average. Our study differs from these papers by
using a semiparametric formulation of the long memory components and our
approach relies employs PCA in the frequency domain to estimate the discrete
Fourier transforms of the factors. Similar to our approach but working in a
pure factor model, Cheung (2021) seeks to estimate the memory parameters
of the latent factors by PCA. Cheung (2021) focuses on a fully parametric
fractional integrated process and deals with possible nonstationarity, a feature
that our study does not include. On the other hand, our study complements
the results of Cheung (2021) by providing a limit theory for estimation of and
inference concerning the coefficients in a panel linear regression model with
latent factors.

The rest of this paper is organized as follows. Section 3.2 introduces the
factor model with possible long memory in the component variables. Section
3.3 develops the asymptotics of least squares estimation in time domain, as in
Bai (2009) but allowing for stationary long memory. Section 3.4 provides the
corresponding analysis in the frequency domain. Section 3.5 proposes an esti-
mate of the true number of factors that is based on the eigenvalue-ratio method
developed by Ahn and Horenstein (2013), establishing its consistency under

certain conditions. Section 3.6 reports the results of Monte Carlo simulations
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that explore the finite sample performance of panel least squares estimation
in both time and frequency domain formulations, demonstrating some of the
difficulties that are involved in time domain estimation. Section 3.7 provides
an empirical application of our panel frequency domain procedures to investi-
gate the long-run relationship between GDP and private debt levels for a panel
of 21 countries. Section 3.8 concludes. Proofs and other auxiliary technical
results are given in the appendix.

The following notation is adopted. For an arbitrary m x n matrix A, its
transpose is denoted by A’; and its conjugate and conjugate transpose are
denoted by A and A* respectively if A is complex; moreover its Frobenius
norm is [|A|| = y/tr (A’A) if A is real, or [|A| = y/tr (A*A) if A is complex.
The spectral norm of A is [|All,, = \/u1 (A’A), when A is real, and ||A]|,, =

w1 (A*A), when A is complex, where p; (-) denotes the largest eigenvalue
of the Hermitian matrix argument. Let Iz denote an R-dimensional identity
matrix. For any two matrix-valued sequences A; and B; of the same dimension,

A; ~ B is defined by ;_”‘EZ’% — 1 as j — oo for each of its (m, n)-th elements.

3.2 Model

In this paper we consider the data generating process that is given by following

linear panel regression model

Yi=X.,B+NF,+¢ey, i=1,....,N, t=1,...,T, (3.2.1)

with a P-vector of regressors X;;, common regression coefficients 3, and an
R-vector of latent factors F; with factor loading vectors )\;, and idiosyncratic
errors £;4. This study allows X;;, I} and €;; to be stationary long memory time
series with respective memory parameter vectors given by dx = (dy,,...,dx P)'
and dp = (dp,,. .. ,dFR)/, and memory parameter of €; given by a scalar d..

Note that we restrict the memory parameters of both X;; and ¢;; to be identical
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across individuals ¢, so that the cross-sectional heterogeneity in memory is
replaced by the cross-sectionally heterogeneous effect of long memory factors
induced by factor loadings. This sacrifices generality to some extent but makes
it more convenient to handle the model in theory.

There are different ways to define a long memory process in the literature
(see Haldrup and Vald’es, 2017), among which a widespread one is to define
it by a linear process (see e.g. Robinson and Hidalgo, 1997). To be specific,
when d. and all of the elements of dr and dx are within [0, %), then F}, X;

and e, have the following moving average representation:

Fo = pr+ Z ApiCri—j = pr + FY, (3.2.2)
=0

Xit = HMXx; + ZAX,jCX,i,t—j = Ux; + Xlot for i = 1, ce ,N, (323)

=0

Eit = ZAE,jCE,i,tfja (324)
=0

where Ap; and Ay ; are respectively R x R and P x P coefficient matrices
and A, ; is a scalar, and (g, (x,¢ and (. ;¢ are the corresponding innovation
processes; and pp and px,; are respectively R x 1 and P x 1 vectors of ex-
pectation. This specification of long memory processes includes the stationary
ARFIMA (p,d,q) as a special case. And different from (g;_;, the innovations
of regressors and idiosyncratic error term characterize the heterogeneity and
dependence of X;; and ¢; across both individuals and time periods; see Sec-
tion 3.3 for more detail. Following Bai (2009), the least squares (LS hereafter)
estimator of # and F} in time domain are given by the solution of the following

nonlinear equations:

N
B = (Z X{MFXZ) > XMY; (3.2.5)
i=1 =1
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and
N

! Y, - x:8) (vi— x.8) | F = Fv, 3.2.6
W;(— B) (Y= XiB) | F = FVar, (3.2.6)
together with restrictions LTF = Iz and % being a diagonal matrix, where

F = (F,...,F;) and A = (X,,...,Xy)". In this study, we mainly focus on

the asymptotic behavior of B , which is discussed in the next section.

3.3 Asymptotic Behavior of Least Squares Es-
timator

In this section, we analyze the asymptotic behavior of the LS estimator in time
domain given by (3.2.5) and (3.2.6). In the following we will use 3°, F, and
F? to denote the true values of 3, F;, and F, respectively. We continue to use
A; to denote the true value of the factor loadings as it is not directly estimated
or involved in our theoretical analysis.

To proceed, we further introduce some notation. Define

N N N N
Dyr (F) = % ; X;MFXZ—% % ; ; X{MpXpay| = % ; Zi(F) Z; (F),
where ay, = N, (NA/N)' N, and Z; (F) = MpX, — £ 30 auMp X, =

(Zy (F), ..., Zyp (F))'. This matrix is important in the asymptotic representa-

tion of 3 — % and is also defined in Bai (2009, pp. 1240). Let Z; = Z; (F°) =

(Zit, -y Zir)' and Dyp = Dy (FP) . Also for innovations let (x s = (Cxay - - - Cxovie)
and G = (Coag,--- ,C57N7t)/. And let vy (s,t) = % Zf\il E (eyé€is) . For maxi-

mal memory parameters let dx max = maxj<p<p dx, and dpmax = maxi<,<r dp,.
Similarly let d; = (dz,, .. .,dz,) be the memory parameter of Z;;, and dz max =
max;<p<p dz,. Then for minimal memory parameters let dx min = minj<,<p dx,,

and similarly we can define dg i, and dz min. Let M be a generic positive con-

stant that may vary across places.

In the following we introduce some technical assumptions together with
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remarks about them.

Assumption A. (i) When each element of d, € (0, 3), then A, ; ~ Diag (j%*) I,
as 7 — oo for a = F, X, e, where Diag (jda_l) is a diagonal matrix (or scalar
if ¢ = £) with the main diagonal elements given by j%+~! for r = 1,..., R, or
gL for p=1,..., P, or j%~!: and the R x R matrix IIz and P x P matrix
IIx and scalar II. that are all nonsingular. Otherwise we assume A, ; is square
summable in certain norm.

(ii) CF,ta CX,t and Cs,t satisfy E(CF,t'-FF,tfl) =0, E(CX,t’FX,tfl) = 0, and
E (¢ 4| Fep—1) = 0, where Fri_1, Fxs—1 and F. ;1 are the corresponding fil-
trations.

(iii) Let Cpy(p) be the p-th element of (f, and the same notation applies to

Cxt- We assume that (g, satisty

E [CF,t(p)CF,t(q) | ]:F,t—l] =0y, < 00,

E [Crutp)Cripn)CFts) | Friz1] = Popipops < 00,

and

L [CF,t(pl)(F»t(pz)CFi(ps)CF,t(m) | ]:Fyt—l} = (1)3:P1~--P4 <0

for some absolute constants @y ;, P2 5, pops and Ps . 4, , and for arbitrary p-, ¢-
and p;-, ..., ps-th elements of (p;. Also the same condition holds for (x; and

(- Additionally, (., satisfies the following eighth-order moment condition

E [Cs,t(pl) T Ce,t(pg) ‘ ‘/T_‘F,tfl} = (1)4,p1...p8 < 0 (331)

for some absolute constant ®4,, ., and for arbitrary p;-, ..., ps-th element

of §57t.

(iv) (e is independent of (x;s, Cry and A; for all 7,5, = 1,...,7T and
ij=1,... . N,

Assumption B. (i) E || X;|* < M.
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(ii) Let F = {F € RT*F: F'F/T =1p}. We assume infper Dy7 (F) > 0.

(iit) B[ F|* < M and LFYF° % % > 0 for some R x R matrix Y, as
T — oo.

(iv) E|\|* < M and LA'A B B, > 0 for some R x R matrix ¥, as

N — oo.

Assumption C. (i) E (g4) = 0 and E |ex|° < M.

(11) E (Sitgjs> = Oijts, |O'ij,ts’ S Eij for all (t,S), ’Uij,ts| S Tts for all (Z,j),

L X
N 2 % S M, (3.3.2)
ij=1
and
1 1 1 d
2
m;m <M, vrer ; 1 a5l < M, mtzl v (s, O < M.
,8= 1,5,t,8= 5=
(3.3.3)
. 4
(iii) For every (t,s), E ’Nﬁ SV [encis — E (eneis)]| < M.

(iv) Moreover

N T
1
NT1+2de Z Z |cov (€it€is, Ertns)| < M,

ik=11t,5=1

T N
1
m Z Z |COV (5it€jt7€ksgls)| < M,

t,s=114,5,kl=1

and

N T
1
N T2+4d: Z Z |cov (€4€is, Erulrn)| < M.

i,k=1t,s,u,v=1

Assumption D. (i) Suppose E (FPF?) = Y and [|[Eps|| < 7pes. We

1 T
assume T2 max Zt,SZl TFEts < M, and

1 T 1
E < E . < M.
Tmax(2ds+2dp,max,1) TtsTRts = M and N T max(2dp max+2de,1) ’Ulj,tsl TFts > M

t,s=1 2,7,t,s=1
(3.3.4)
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(ii) Suppose E(x$X%) = Lx.ijes With x = X, Z; and || X, ijes]| < 7y for all

. . T
(4,7). With oy jjis = tr (Sy.ij1s), We assume —rrg—— Zt,s:l Tyts < M, and

T1+2dx, max
1 T 1 N T
< E E g < M.
TmaX(QdX,maXJerE,l) Z TtsTxts = M and NQTmaX(QdX,maerst,l) |0_U7t5| |O_X77’]t5| — M
t,s=1 3,5,k l=11,5=1

Assumption E. (i) plim D (F°) = D, for some nonrandom positive definite
matrix Dy.

(i) Suppose F° does not contain any constant, column, N —3Tde=3 Zfil Zle; N
N (0,%);

(iii) Suppose there exists constant column in F°, then
N
N_%Tmax(dz,max‘i‘de;l/Z)—l Z Z/gz i> N (O E)
(2 9 P
i=1

where

N T
p lim p Z Z OijusZuliy = %, and pyp = NzT3z %

i,j=1t,s=1
in case (ii) and

PNT = N%Tlfmax(dz,maerdE,l/Q)

in case (iii).
Assumption F. d. < min {dpmin, dx min}-

Remark 1. Assumption A is a panel data extension to the classic setting of a
stationary long memory linear process (see e.g. Nielsen, 2005). To be specific,
the first half of Assumption A(i) is adopted from Chung (2002), whose Lemma

2 shows that autocovariance of F?, X;; and e satisfy, as j — oo
['r(j) = Cov (Fto, Ft(lj) ~ Diag <de’%> CrDiag <de’%) ,

[y, (j) = Cov (Xit, Xi4—j) ~ Diag (jdx*é) Cx Diag (jdX*%> ,
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and

L., (j) = Cov (eir,g54—5) ~ Cej?® 1, (3.3.5)

for some absolute constant matrices C'r, C'x and scalar C.. The above approx-
imations imply the square summability of ||A, || for a = F°, X and e. Take
Apo ; for instance. Assumption A(i) implies that for any ¢ > 0, there exists an
integer K5 > 0 such that || Apo||> < (1+6)°C 3", 52472 for some positive

constant C' when 7 > Kj, which then implies

Z ”AFOJH Z ||AF07]|| +Z ||AFOJ|| < Cs+(149) CZ Z j2dFr_2 <
7=0

J=Ks r=1 j=Ks

by Riemann sum approximation if dp < % This illustrates how A(i) defines
a stationary long memory process through the hyperbolic rate of decay of its
autocovariance function. Note that this part of Assumption A(i) only covers
the long memory scenario as it emphasizes the hyperbolic rate of decay of
autocovariance function, while for short memory processes like ARMA model,
the rate is usually exponential and thus not nested in this half of Assumption
A(i) by simply substituting d, = 0. Therefore in the second half we assume
the stationarity of all the variables when some short memory processes are
involved. We can see in Assumption C about how we uniformly deal with
short and long memory, which is explained in Remark 3. As we mentioned
before, a widespread alternative definition of long memory process is modeling
it by a fractionally integrated process I (d), which can be extended to an
ARFIMA (p,d,q) model that is popular in application. Relative to the fully
parametric definition of ARFIMA (p,d, q), ours is termed as semiparametric
modeling of long memory processes, which is free from short-run dynamics
specification and thus can avoid inconsistent estimation if we misspecify the
model, such as the autoregressive or moving average parts. In Assumption
A(ii) and A(iii), we impose moment conditions up to the eighth order. And

Assumption A(iv) implies that ; is independent of X, A;, and F? for all i,
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t, 7, and s, which is also assumed in Bai (2009).

Remark 2. Assumption B is also borrowed from Bai (2009), specifying a finite
fourth-order moment for both the factors and factor loadings and a restriction
of strong factors. Note that both of the moment conditions in Assumption
B(i) and B(iii) can be justified by the corresponding fourth-order moment

conditions in Assumption A(i) of innovations.

Remark 3. Assumption C(i) and C(ii) can be implied by our Assumption A.
The reason why we separately list these two sets of assumptions is that our As-
sumption A is comparable to the standard definition of stationary long memory
process, while our Assumption C is comparable to the corresponding Assump-
tion C in Bai (2009). To be specific, C(i) is implied by Assumption A(ii) and
A(iii). To see this, Assumption A(ii) implies the zero expectation and (3.3.1)
in Assumption A(iii) together with the square summability indicated by A(i)
can imply the finite eighth-order moment. In Assumption C(ii), (3.3.2) is the
standard condition of cross-sectional weak dependence of €;;. And the other
inequalities specify the serial dependence, as they generalize the Assumption
C(ii) in Bai (2009) by including long memory. The idea is adopted from the
Theorem 1 of Chung (2002) via a direct application of (3.3.5). To see this, we
consider the bound |o;; 5| < 7 for all (7, j). Consider the simplest case where
t = j, we have 0,45 = 01— by its stationarity, and we can express the bound

Tis = Ti—s accordingly. By symmetry of 7,_4 as 743 = 75_4,

T-1

T T _
1 1 2 2
?ZM:TZTH:TWTZTH:T (T —k)m+0(1). (3.3.6)

t,s=1 t,s=1 t>s k=1

Let 7; (k) be an arbitrary autocovariance function of order k of ;. By (3.3.5)
i (k) ~ C.k*®==1 for some constant C. as k — oo. Then for any 6§ > 0, there
exists an integer K > 0 such that (1 — §) C.k%*®=~1 < v, (k) < (1 +6) C k=1

when k£ > K. Let 7, = |y (k)| be an appropriate upper bound for |v; (k)]
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uniformly over : = 1,..., N. We have

%Z_I(T_ ,i(l") >|+§5 (1-7) b
K (1= ) wi+ow
> C.(1—06) :g; <1 — %) K=+ 0O (1)
= C.(1 —5)T2d5% TZE (1— %) <%>2d51+0(1)

=C.(1—6)T%" /KZ/T (1 —7r)r?=tar {1 + O (%)} +0(1),

(3.3.7)

given the convergence of both fll(a/T (1 —7r)r2==tdr and 352 (1 — LY |y (k)]
when d. > 0. The above calculations indicate that the condition % 225:1 Tis <
M in Bai (2009) is generally violated unless d. = 0. The same reasoning applies
to show the second inequality in (3.3.3) as long as the cross-sectional correla-

tions among {&;;} are “weak enough”. Analogously, for the third inequality in

(3.3.3), we have

T-1 T-1 4d.—2
1 5 d.—1 1 k E\

k=1 k=1
1
= C€T4d5_1/ (1 —r)r'%"2dr {1 +0 <l> } +0(1),
Ks/T T

given the convergence of the last integral, which requires d. > 1/4 so that

~

4d. — 2 > —1. When 0 < d. < 1/4, we notice that

1 1 1
T4d571 / (1 o 7,) 7,4d572dr _ T4d571 / 7’4d€72d7’ o T4dsfl / r4d571d7,7
Ks/T Ks/T Ks/T

(3.3.8)

where the second integral is convergent. And the first integral is further given
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by

et / 1 P2y = / 1 (rT)* 2 d(rT) = /K i(r*)4d£2d(r*) (3.3.9)

Ks/T Ks/T

=T 1+ 0(1) = 0(1). (3.3.10)

It follows that =ty Sy (I — k) 72 < M, which implies the last condi-
tion in (3.3.3). In the special case where d. = 0, Assumption C(ii) degenerates
to Assumption C(ii) in Bai (2009) which involves only short-range dependence.
Although in this case the integral derived in the end of (3.3.7) is not conver-
gent, the moment condition still coincides with the one in Bai (2009). One
special case of our setup is a linear process with fractional integration, like
(1 — L) FY = e, with L the lag-operator and e; a short memory process. As-
sumption C(iii), which reflects the weak cross-sectional dependence, is directly
borrowed from the Assumption C(iii) in Bai (2009). With more tedious argu-
ments, one can also verify Assumption C(iv), as it extends the higher-order

moment conditions of short memory process in the Assumption C(iv) in Bai

(2009). We omit them here for brevity.

Remark 4. Assumption D(i) and D(ii) are adopted from the convergence rate
indicated by Theorem 3 in Chung (2002), where by construction of Z;; it could
be treated as a potentially long memory process as well. To provide an intuitive
explanation of the whole Assumption D, we take F) for instance. Assume
R = 1 and let yp (k) denote the autocovariance of F. Then vp (k) ~ Cpk?r—1
for some constant Cr as k — oco. Then following the reasoning in (3.3.6) and

(3.3.7), we have

1 T
ﬁ Z TisTE ts

t,s=1
1 T—-1
:T (T—l{)TkTRk—}—O(l)
k=1

A7



(1= 7)) wlbemi+ X (1-3) @b @l+ow

I
Iz

k=Kg
T—1 k’
=% (1= 7) h®lhe w100
k=Kj
T—1 k‘
> C.Cp(1-6)* ) <1 — ?) k2de—tg2dr=1 4 0 (1)

k=Kj

1 TX—:l k’ k’ 2de+2dp—2
= C.Cp (1 — §)? T2det2dr—1 _ (1 - —) (—) +0(1)
T 5 T)\T

1
= C.Cr (1— 5)2T2d5+2dF‘1/

Ks/T

(1 — ) pPdet2dr=2qy {1 +0 (%) } +0(1).

The integral in the last equality is convergent only when d.+dp > % When d.+
dp < 1/2, we can readily show T2d=+2dr—1 ffl(é/T (1 —7)r2d=+2dr=24r = O(1) by
the same reasoning in (3.3.8)-(3.3.10). It follows that m 225:1 TisTRLs <
M and the first part of (3.3.4) in Assumption D(i) holds. Similarly, the second
part of (3.3.4) also holds provided the cross-sectional correlations are suffi-

ciently weak.

Remark 5. Assumption E(i) corresponds partly to Assumption E in Bai
(2009), giving probabilistic limit of D (F') required for asymptotic covariance
matrix of 3 — °. Assumption E(ii) gives the convergence rate of 3 — 3°. Be-
cause cross-sectional weak dependence of ¢;; indicates we can use Lindeberg-
Lévy CLT over ¢, which requires a uniform boundedness of the second moment
E(ZleeiZi) = 3.1,y E (cucis) E(ZuZ,) by definition of Z; and Assumption
A(iv). As we will see in the following, whether F (Z;) = 0 for all ¢ is determi-
nant in convergence rate. Together with data generating processes in (3.2.2)-
(3.2.4) and the strict exogeneity condition in Assumption A(iv), we can see
how temporal dependence of Z;;&;; is dominated by the mean of Z;;, denoted
by @z when they are nonzero. To illustrate this idea in a simple manner, con-

sider ) ,_, Zyey for arbitrary 4. Its mean is zero and its variance-covariance
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matrix is given by

T T ! T
(Z Zité?it) (Z Zitéfit) ] Z (ZuZi,) E (cucis)
t=1 t=1 s=1
T
Z pzily + E(Z5ZD) E (eicis)
where Zf, is defined in the same way as X, in (3.2.4). By Assumption C(ii)
and D(ii),

> pzilyE (guis) = O (T'2*) and Z E(Z,Z2) E (igis) = O (Tm¥dzmat2de )y
tys=1 tys=1

thus ppp’ dominates in the summation as along as urp # 0, and only the
autocovariance structure of e; is applicable because of its mean-zero nature.
If pp = 0, the order above will be also affected by dpmax as Assumption
D(i) implies. Note that by definition, Z; can be interpreted as the residual
of linear projection of X; on the column space of F', and demeaned by a
weighted average. So by construction E(Z/F") = 0 holds by orthogonality,

and E (Z;) = 0 if F contains a constant column or if
Xit = 6iF) + uy

with E (uy | F°) = 0 is the true data generating process, that is to say,
(X, FY) follow a linear regression model or X;; follows a pure factor model
with latent factors given by F;. The latter setting is adopted in some current
studies (Ergemen, 2019, among others) and is more restrictive but easier to
deal with in practice, so in this study we only focus on the former setting that
F' contains a constant column. If £ (Z;) = 0, the convergence rate is adopted
from Theorem 3 in Chung (2002). In pure time series models, we cannot obtain
asymptotic normality for OLS estimator when dzmax + d: > %, but in panel

models, weak dependence over i and large number of cross-sectional units can
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help us regain the asymptotic normality. Moreover, a constant column in F°
indicates the existence of individual fixed effect in our model. In Bai (2009)
this is only a special case of factor as LS estimator is only less efficient when
individual fixed effect is not canceled out by within-group transformation. But
in our model, individual fixed effect may affect the convergence rate of LS es-
timator when long memory exists in idiosyncratic error term. One may think
about dealing with such issue by doing within-group transformation in our
model before the LS estimation. In our online supplement we will discuss how

the asymptotic behavior of B changes under such transformation.

Remark 6. Assumption F indicates the condition of fractional cointegration,
which generalizes the usual cointegration notion in time series literature, see
e.g. Marinucci and Robinson (2001). It also implies that d. < dzmm by
construction of Z;.

Let FY, and Z; denote the r-th and k-th element of F? and Z;. The

following theorem establishes the asymptotic distribution of the LS estimator

A.

Theorem 3.3.1 Suppose that Assumption A-F hold. Then for comparable N

and T such that T/N — p > 0, we have

5 1 1
PNT (ﬁ - BO - mANT - NCNT) i) N (0, DO_IEDO_I) s

where pnr is defined in Assumption E(ii) that depends on the setup for the
factor F° and magnitude of dzmax + de, Dy and X are given in Assumption

E(i), and the bias terms Anr and Cnr are each O, (1) and given by

N N ~ —1 1
1 1 [ FUF ANA
_ -1
Ant = =Dr ZX;MF“NZQI“F < T ) ( N ) A
=1 k=1
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and

N / -1 —1 N
1 S (X, — V;) FO [ FO RO NAN M1 >
k=1

=1

where ‘/YZ = % Zi\[:l aika with i = )\2 (A]([A)_l )\k

The above theorem shows in factor model, the convergence rate of the LS
estimator 3 is slowed by the existence of long memory. In terms of limiting
distribution, although we still have asymptotic normality, the bias terms now
have their orders dependent on the long memory parameters. In the special
case where all memory parameters are zero, the above result is the same as
the one obtained by Bai (2009), which shows how our Theorem 3.3.1 nests the
short memory setting as a special case. However, the convergence rate pyr
has a complex representation based on whether F° has a constant column, and
whether dz .x + d. is greater than % or not. This dramatically complicates
the implementation of LS estimator, which is illustrated by Monte Carlo sim-
ulations in Section 3.6, where we find out the performance of analytical bias
correction is poor. In the meantime we adopt the half-panel jackknife bias
correction that is adjusted by memory parameters, whose results are not good
either after we plug in the local Whittle estimator of the memory parameters.
This difficulty in implementation calls for an alternative method to deal with
stationary long memory in our model. In the next section we try to develop a
frequency domain least squares estimator that is widely studied in long mem-
ory time series regression model, and analyze its asymptotic behavior in our

panel setup.
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3.4 Frequency Domain Least Squares Estima-

tor

In this section we introduce the frequency domain least squares (FDLS) esti-

mator and then study its asymptotic properties.

3.4.1 Estimation method

From Theorem 3.3.1, we can see how complicated the implementation is for LS
estimator to account for the potential existence of long memory. To simplifies
the implementation, we propose a new estimator, which is based on the LS es-
timation over frequency domain (FDLS hereafter). To be specific, we consider
the discrete Fourier transform (DFT hereafter) on both sides of model (3.2.1)

over frequency ;,

T
1 .
V2rT 2 Ve
™ _

t=1

, T T
. 1 .
§ Xipe 4 Ag§ Felti
VerT = VerT ' =

1
V21T

+

T
> ewe i=1,... N, j=1,... L. (3.4.1)
t=1

where i = y/—1 is the imaginary unit, and ; = 2% for y =1,...,L. The
frequencies v; are called “Fourier frequencies”, which removes the mean of
the processes in the frequency domain. For instance, consider the DFT over

Fourier frequencies of F} given by (3.2.2), we have

T T T
2 :Ftoemj = up 2 :elt'yj + § :Ftoelt'yj
t=1 t=1 t=1

el (1 — eiTW) T it r i
S I T E Fpe™ = E et
— J
€ t=1

t=1

by Euler’s identity 77 = ei2™ = 1.
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. T Sty
For ease of notation, let Wy,;; = >,_, ¥;€!%, and define Wy ;;, Wg; and

W, ; analogously. Let W,,; = (W’

ails s

W(;,iL), for a =Y, X,e and Wp =
(Wl/7,1’ ceey W}IT',L)/‘ Note that WYJ', WXJ;, and WF are L x 1, L x P, and L X R

matrices, respectively. Then (3.4.1) can be rewritten as
Wyij = BWxij + XWgo; + We,5,i=1,...,N,j=1,...,L. (3.4.2)

This model can also be treated as a panel data model, with T" time periods re-
placed by L frequencies. Then the FDLS estimator has the following objective

function

N
SSR (8, W, A) }: (Wyi — WxiB = Weki)" (Wy; = Wxi8 — W)

1
~ NT
o Wy = Wi - 5 — AW (3.4.3)

- . - _1
subject to the constraint that I'pWiWgpl'p/T = Ig, where I'r = Diag {’yzFT 2 }

And Wy - 8 = Z;D:l W% B, with 8, and W% correspond to the p-th element

of f and Wy ;;, and both Wy and W% are N x L complex matrices of DFT.

Here T'p is an R x R diagonal matrix for normalization over frequency domain,

so as to make the notation consistent with the time domain setting. Such

normalization can be justified by the properties of average periodogram, see

our assumptions and remarks later on. We further denote WF,]- =T rWpg; and

Xi = Tz, by which we can rewrite the model (3.4.2) as
Wyij = 8 Wxag + NWpj + Weigi=1,...,N,j=1,..., L, (3.4.4)
or in vector-matrix notation
Wy = Wxif +Wphi+Wesi=1,...,N, (3.4.5)
. - N / . N - - -
where WF = (WFJ, ey WF,L) . Note that WF = WFPF and A = (/\1, ceey )\N)I =
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Af;l, and W;WF /T = 1g by construction. Define the projection matrix in a

complex vector space by
- N
My, =L = We (Wille) Wi =1 - Py,
Clearly, the columns of Wy spans the same space as those of Wy because
- U L. .
Py, = Wi (WilWp) Wi = Wl D! (WiWe) " TR Tl = Py,

Then by construction My, Wr = WrMy,. = 0. It follows that we can pre-

multiply both sides of (3.4.5) by My, to obtain
MWFWY:i = MWFWX,ZB + MWFWE’“ ’L = 1, e ,N,
Then an infeasible FDLS estimator of § is obtained by regressing My, Wy;

on My, Wx; to obtain

N -1 N

Z Re (Wi My, Wx,) Z Re (Wi My, Wy,) .

i=1 i=1

(i) -

Next, we consider the infeasible FDLS estimation of the factors and factor
loadings. Given g, we denote U; = U; (8) = Y; — X, and its DFT Wy, over
the same Fourier frequencies as above. Then Wy;; has the pure factor structure

in frequency domain:

Wy = WFS\i + W,

Define Wy = Wyi,...,Wyn) and W. = (W.y,...,W.x)', which are two

N x L matrices. Then the FDLS objective function is

%tr [(WU - AWl’m)* <WU - AW#)} = NT i i ‘WU,z‘j ~ AWk

This objective function is identical to the one in Bai (2009, pp. 1236) except it
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is in the frequency domain, and we can concentrate A out by using
~ — ~ ~ 71 —
A=WyWp (W;:WF) — Wy Wp/T (3.4.7)

along with the restriction W3Wy /T = I. Using (3.4.7), the objective function

in (3.4.6) becomes

[ (W — ;)" (W — 8 )|
=t [ (W — W W W /T)* (Wor = WoW e/ T)]

= tr (WiWy) — tr (W}W(jWUWF> /T, (3.4.8)

Therefore minimizing (3.4.6) is equivalent to maximizing tr (W}WEWUWF> :
which is the typical principal components analysis (PCA) problem in frequency
domain, where W5Wy is the stacked periodogram of U. As documented in
Brillinger (2001, pp. 70,342), PCA continues to work and the estimator of W,
denoted by W, is given by the eigenvectors multiplied by v/T of Wi Wy cor-
responding to the its first R largest eigenvalues, which are real because W Wy,
is Hermitian. Note that as in Bai (2009) the indeterminacy over rotation for
W still holds by the restriction W;iWg/T = Iz. Moreover, the above PCA
actually obtains the estimator of W, which is normalized column-wise by the
matrix ['p, so W is definitely not identified here, and the same issue holds
for A. However, this lack of identifiability does not matter for our purpose in
estimating [ as we can see in the transformed model (3.4.4).

In practice, we iterate between 3 and W So the feasible FDLS estimator
<B, WF> of (ﬁ, WF) is given by the solution of the following set of nonlinear
equations:

N -1 N
B=1) Re (W;Z-MWFWX,i)l > Re (Wi My, Wy,) (3.4.9)

i=1 i=1

25



and

1 N

NT ; <WY,z’ - WXfLB) <WY,i - WX@B) *] Wr = WpVni, (3.4.10)

where Vyp is the diagonal matrix containing the R largest eigenvalues of
W5Wy in decreasing order.
In the next subsection we study the asymptotic properties of FDLS esti-

mator.

3.4.2 Asymptotic properties of the frequency domain

estimator

In this subsection, we develop the asymptotic theory for the FDLS estimator
3 together with WF, which is the PCA estimator of DFT of the factor F. To
proceed, we add some notation. Let I'y = Diag {WZX”_%} and VT/X’Z» = WXJI;X
for each i in the same manner as we define T'x and W above. Similarly, let

~ 1

I, = 72575 and WE = Wmf‘g. As in the time domain, define

N

N
1 1
Dl (Wg) = ~7 > Re (Wi ,Mw, Wx,) — T > ) Re (Wi My, Wy rai)
=1 i=1 k=1
1 N
=NT > Re(Wyz; (F) Wz, (F)),

=1

where Wz, (F) = My, Wy, — & S0, My, Wy pai. Let Wy = Wy, (FO)
and DY, = DI, (Wgo). Then we can define the variable Z; like we did in
time domain as if its DF'T over Fourier frequencies is given by Wy ;, and Wzyi
is defined in the same manner as WXJ- above. Let f.;(-) denote the marginal
spectral density of €;;. We introduce some extra assumptions that are specified

for the FDLS estimation together with some remarks.

Assumption A*. (i) Denote the (P4 R+ 1) x 1 vector Vi, = (X}, F!,ex)".

it

Suppose Vj; is covariance stationary and has the spectral density matrix satis-
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fying
fri() ~T ()Tl (7) as vy — 07, (3.4.11)

where YT;isa (P+ R+ 1) x (P 4+ R+ 1) symmetric matrix that is finite uni-

formly over ¢ with the following structure:

Tixx Yixrp O
0 0 T e

in which for all ¢, the P x P and R x R submatrices T; xx and Y, pp are

positive definite, and the scalar Y, .. > 0. I' is a diagonal matrix given by

[ (y) = Diag (v ™,y e,y 7 y7de)

(ii) There exists 6 € (0, 2] such that for each 1,

‘fV,i,(ab) — Uz’,(ab)’fdrdb‘ =0 (797drdb) asy — 0"

for arbitrary a,b=1,...,(P+ R+ 1).

(iii) Let Vie = py + 372 Av,jCviis—j, where Ay is a block-diagonal matrix
consisting of Ax;, Ap; and A.; in order, as given by (3.2.2)-(3.2.4). And
define Ay (y) =372 Ay Asy — 07,

Hdﬁl_va =0 (v | Ava())

for arbitrary a = 1,...,(P+ R+ 1), where Ay,(7) is the a-th row of Ay (7).

Assumption B*. (i) Let I'x; = Diag (7?(1’), we assume F “fX,jWX,ij|’4 <
M and FWi Wy, 5 S¥, > 0 for some matrix ¥, as T — oo for each
i=1....N.

(ii) Let W = {Wp € CLB . Wy = Welp, WiWp/T = ]IR}. We assume
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inf ey D, (W) > 0.
(iii) Let T'y; = Diag <7;IFT>, we assume F H]T’FJVVFJH4 < M and %W};WF RS

YW > 0 for some matrix XY, as T — oco.

Assumption C*. (i) F H W, UH < M and %W;‘zWH N Y. > 0 for some

matrix Y. ;, as T' — oo.

.. 2
(ii) Let \/E |Wa,ikW:,jl‘ o kl and E W, sz*lz| UZV,C’ZI. We assume
w1 —de  —de—=W w1 Wl —2de . —2d:—= W
Oiiet S oy and yJogpo < for all (k,1) and

N
1 _
~ > T <M. (3.4.12)
ij=1
Moreover, let |E ( WeaWZ; )’ = ag/kzl We assume ‘aiv]‘f’,fl‘ < @} for all (i,7),
and
72d5 L 72d5 N L
L —W L W
Tig 2_ O =M, e D2 ol <M and T4d5 lo? [, Z w (k,1)°
k=1 ij=1 k=1 & &=
(3.4.13)

where vy (k1) = Ly, EW.aWZi).
(iii) Let ©; = I.E (W“W;l) I'., where I'. = Diag (Py;lf). The largest eigen-

value of €); is bounded uniformly over ¢ and T as T" — oc.
4

(iv) For every (k,1), E|N-29%q SN [Wo g W2y — EWoaW2y)]| <
M.
(v) Moreover,
4d5 N
NL2 Z |cov(WeaWei Wea W2 )| < M, (3.4.14)
i,j=1 k,l=1

N2L2 Z Z |COV e ik 8]k7W€,mlW:’nl)} < ]\47

i,j,mn=1k,[=1

and

NLQ Z Z |COV &,k z—:ll?WE,jkW:’jl)‘ <M.

i,7=1k,l=1
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Assumption D*. (i) Let I'; = Diag {yzz”}. plim ;' T, DY, (W) Ty =
D}V for some matrix DYV > 0.

(if) Y2 T2 S Re (W5, W2,) 5 N (0,51), where

Sy = plim 7;3;1 i Re (W3 ,W.,;) Re (W2,Wz,I'z) = plim B,
ij=1
(iii) Moreover, we have for each i = 1,..., N that
E %WWX 2 <M, E %WWF 2 < M,
and L )
E MWQZWZJ < M,

T

and the following also holds:

2

1
\/WWdS_E N ~
B> W Wy, <M,
NT i=1
mvde—% N ~ 2 mvde—% N ~ 2
|| 2 AW We | <M and B || ——ct—> W2,Wp| <M.
i=1 i=1

Assumption E*. As T — oo, we assume (i) %—i—% — 0. Moreover, denote d =
max {dX7maxa dF,maxa dZ,max}a d = min {dX,mim dF,mim dZ,min}7 and Ad = a - C_lv

then we assume:

(i) d. <1, d>d.and 7 (3 — d) > 1; and (ii) (ﬁ + \/%4_ \%) N2

Remark 7. Assumption A* is basically the standard restrictions of multi-
variate stationary long memory processes (see, e.g. Christensen and Nielsen,

2006). Assumption A*(i) complements Assumption A(i) as it defines the long
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memory processes through their joint spectral density matrix around zero fre-
quencies, where a certain power law is satisfied. Under stationary long mem-
ory, Assumption A*(i) and A(i) are basically equivalent to each other, but
the former assumption in frequency domain also holds uniformly under short
memory. Also note that we allow the spectral density to have heterogeneous
constant multiplier across ¢, which indicates a heterogeneous cross-correlation

and auto-correlation structure among different cross-sectional units.

Remark 8. Assumption B* extends the conditions in Assumption B to the
frequency domain, as it is consistent with the result of probabilistic limit for
the average (cross-) periodogram, which is shown in Theorem 1 of Robinson
(1994b) for univariate case and Theorem 1 in Lobato (1997) for multivariate
case. It is also consistent with the results on how the expectation of peri-
odogram approximates the spectral density as indicated by (3.16) in the proof
of Theorem 1 in Robinson (1995a).

Remark 9. Assumption C* extends Assumption C to the frequency do-
main, where C*(i) gives the probabilistic limit of averaged periodogram and
the fourth order moment of periodogram of the idiosyncratic error as in B*(i)
and B*(iii). And C*(ii) gives the conditions of cross-sectional weak dependence
in (3.4.12) and of serial dependence over frequencies in (3.4.13) for the DFT
of idiosyncratic error. Conditions given by (3.4.12) is slightly stronger than
those analogs in (3.3.2) in time domain, and we impose them so as to support
C*(v). The conditions given by (3.4.13) adopt the Theorem 2 in Robinson
(1995b) which gives the limit of expectation of W;W,; at Fourier frequencies

defined above. To see how it holds, we use the fact that |E We W2, )‘ <

\/ E(WeaW?, ? and call upon Theorem 1 in Robinson (1995b), which in our

setting indicates that

lim F

T—o00

{ Ws,ikW;il
k+1

} . (ki)™
; = py(k,1), with Py (k1) < M
fei ()2 feii ()2
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for some positive constant M < co. Then

~ W L (kD) .
Dot S MY fei ()7 fei (1)
k=1 kl=1
LR, A
MY it M Sk
k=1 k=1
M 1 & ’
_ Td5+;_275>
2d.—1 k
(27) ( T
M detd 3 1 ’ —2d. de

which explains the orders in (3.4.12). By the same reasoning, (3.4.13) can be

explained through

>l ey <ar Y B
TN fsz ’Yk) fsz(%)
k=1 :1 k + l ’
L 2 L 2
S (Z 2d5—1 2d5> S M (]12(16 Z k_1> =0 (T4ds IOgQ L) ]
k= k=1

C*(iii) mimics the Assumption C(ii) in Bai (2009) in time domain, as it adopts
C*(i) to control the order in frequency. And C*(iv) continues to illustrate the

weak cross-sectional dependence.

Remark 10. And C*(v) gives some higher order conditions that mimic the
ones in time domain setup. To give more explanation, denote Ww-j = 'yfg Weij.

And take (3.4.14) for instance, we have

N L
Z Z |COV<W€ ZkWE’Lk7W W:;l)‘

N L
= 0D e cov (Wea W WeW2 )|

N L
< Z Z Vi 2oy e \/Var (Wesz:zk) Var (W, JlWEJZ)

@
<
Il
i
B
T~
Il
—
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L

N
< 30 Y JAPR < 0 (VT

k=1 ij=1

= O (NL*y,**)

using the second inequality in (3.4.12) and Riemann sum approximation.

Remark 11. Assumption D*(i) and D*(ii) extends the distributional theory
in Theorem 2 of Christensen and Nielsen (2006) into factor model structure.
This is relatively high-order assumption and is not a trivial result because Wy,
by construction is not the DFT of a linear process like W ; and Wr. Note that
different from time domain setup, Assumption C* does not really impose the
"weak dependence” over frequencies as the normalization there is only slightly
stronger than using the limit of averaged periodogram. Such conclusion is also
confirmed by the proof of Theorem 2 in Christensen and Nielsen (2006) as
weak dependence over frequencies only occurs in cross-periodogram between
the error and the regressors, rather than the periodograms, and this conclusion
is reflected by Assumption D*(iii) in our factor model.

In the following we present some asymptotic theoretical results of our FDLS
estimator. Then in the following proposition we firstly establish the result of

consistency for FDLS estimators B and Wp.

Proposition 3.4.1 Suppose Assumptions A-D and A*-B* hold. Then as (N,T) —
oo we have
(i) The FDLS estimator ( is consistent as B N B,

(i1) The matriz W;OWF/T is invertible and HPWF — Py, I 200,

In the above proposition, (i) establishes the consistency of BW and(ii) in-
dicates that the columns of W span the same space as those of Wyro asymp-
totically. These results are intermediately used in the subsequent analysis.

Next, we establish the theory of asymptotic distribution of BW and its

asymptotic bias terms, given by the following theorem.
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Theorem 3.4.2 Suppose Assumptions A, B and A*-E* hold. Then as (N,T) —

oo for comparable N and T such that N/T — p, we have
VRT T (5 50— %) S (0. (D) st (01) ).

for positive definite matrices DJ/ and % defined in Assumption D*, where

ANy = Oy (¢1) with

2dZ,min +2dF, min 7dX,max 73dF,max 72d€

or = 1 -

The asymptotic bias term AN, is given by

-1 N N
. 1
AW, =T, (DY) IFZZVLTE 'Re (W;iMWFWE ' Diag (|We ;1) WFG)\Z)

1] 1 L o
=— (D]T\,L (WFo)) NT Z Re (W)*(ZMWFW Z Diag (|W57kj|2) WFG)\z)
i=1 k=1

- T 1A -1 T -1
where G = <M) (%) . and DY, =~7'T,DY,, (Wgo) Ty =0, (1).

Note that in frequency domain, L (or h = %) can be treated as a “band-
width” as it measures the width of frequency region local to zero. Then instead
of dealing with summation over both dimensions as in a classic panel model,
our asymptotic theory is more like the one for a cross-sectional nonparametric
regression model, where the limiting theory can be obtained by large N alone,

and the large 7" helps to control the bandwidth. This insight can be partly

explain by the component v NL = v/ NTh in our convergence rate. By this
reasoning we need L = O (T*), with 0 < a < 1, which can obtains an elegant
form of asymptotic distribution as shown above, but at the cost of efficiency.
This reflects the bias-variance trade-off in the nonparametric model studies.
And in terms of the bias, we have only one nonnegligible term that corre-
spond to the one with order % in time domain. This is because the sample

size in frequency domain is of smaller order of 7', and thus of N when N
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and T have comparable size as we assume. But here we still keep it explicit
in our asymptotic distribution so as to help compare with time domain least
squares estimator in this paper and in Bai (2009). We can correct these bias
using half-panel jackknife as we did in the time domain setting, which require
estimation of all memory parameters as before. But after taking DFT, over
frequency domain we have asymptotic serial uncorrelation in large 7' as in-
dicated by Assumption C*. This implies we have weak dependence on both
cross-sectional units and frequencies now, therefore we can consider estimate
the bias term with its analytical form in frequency domain analogous to the

ones in Bai (2009, pp. 1250). Specifically, we consider directly estimating

N N
- 1 1 e

w T —1 * . 2
ANy = =57 D W) ; Re (WXJMWFN ; Diag (W %) WFGAi)
by replacing Wyo with Wy and ); with A; from (3.4.7). In addition, we can
replace Diag (|W57k]~|2) by Qp = Diag <W57k1W;k1,...,Wa,kLW;kL>, where

We,i = Wy, — WXZB — ij\z That is, we estimate Ayp by

where

. 1 XN L

Dy, = NT Z Re (WEZWZJ ’

i=1
with Wy, = Wi My, — L8 Wi My, ay and ay = A (A’TA>_1 A esti-
mated by our PCA in frequency domain. Then the bias-corrected estimator is
given by % = 3 — AV,
To proceed, we consider a feasible implementation of the inference given

by Theorem 3.4.2, where we do not need to estimate any of the memory pa-
rameters. To do that, we estimate the asymptotic covariance matrix using

. -1, . A
<D]V\[,/L> v (DK{L> , where for X}, we focus on the case when (., is
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independent across 7, and the estimator is given by

ﬁ g: Re (W;ZVVEJ Re (W:ZWZZ)
i=1

SWo
ENL_

The following theorem establishes the asymptotic distribution of e using the

above estimation of covariance matrix.

Theorem 3.4.3 Suppose Assumptions A, B and Assumption A*-E* hold; and

as N, T — oo for comparable N and T such that N/T — p we have

-

(2%)7 DY, (Bbc - 5[)) N (0,1p).

The above theorem adopts the idea of self-normalization. To see this, since Bbe

consistently correct the bias, we have from above that
VNLyET (B - 8°) S (0.(DY) s (D)7,

which includes memory parameters that were treated as coefficients to be esti-
mated. The inference of 3 based on the plug-in estimator (like local Whittle)
of these memory parameters could perform not that well in finite sample. So

we try to fix it by showing
. -1, . -1 B B
(D) SN (DNL) & VNLyErs (D)7 s (D)™ VN Ly

which is presented in the proof of Theorem 3.4.3.

3.5 Determination of Number of Factors

So far we have assumed to know the true number of factors in analysis of model
(3.2.1), but in practice one has to determine the number of factors to use. This

leads to the requirement of consistently estimating the true number of factors
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(denoted by RY afterwards), which is an intrinsic issue in factor analysis. For
pure factor model, there are various methods to determine RY; see Bai and Ng
(2002) for an information criterion approach, and Onatski (2010) for an ”edge
distribution” approach, and Ahn and Horenstein (2013) (2013, AH afterwards)
for eigenvalue ratio and growth ratio approach. In this section we try to modify
the eigenvalue ratio (ER) estimation into our regression model in frequency
domain, and illustrate its consistency. To proceed, we specify an upper bound

Ruax > RY. The procedure goes as the following:

1. Conduct the frequency domain least squares using R,., factors, as indi-
cated by (3.4.9) and (3.4.10) using model (3.4.4), and correct its bias by

Theorem 3.4.3. Denote this estimator by B(Rmx).

2. Let uyy = Yy — X{tB(Rmax) be the "partial” residual of FDLS in time
domain, which builds up a N x T real matrix U. Then derive the
first Ryax + 1-th largest eigenvalues of uu’ J/NT, denoted by finr,j, j =

... R + 1.

3. Let the eigenvalue ratio be ER (j) = <22 and ER estimate of number

o KNT,j4+1

of factors is given by 7gr = maxi<j<g,.. ER(J).

The above method is a modification of ER estimate from AH as we have to
take the regression structure into account. By the reasoning as in Bai (2009),
u;; follows a pure factor model approximately, and thus ER estimate can be

applied. To be exact,

Uiy = Yy — Xz{tﬁ(Rmax) = Xz{t </3 - B(Rmx)> + Ui

= XZ/t (/6 - B(Rmax)> + )\;E + Eit- (351)

And considering the complex convergence rate and bias order pattern of time
domain least squares estimator, as presented in Theorem 3.3.1, we use fre-

quency domain estimator in step 1 above, which makes this procedure a hybrid
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approach of time and frequency domain. To proceed, we define some additional
notations adopted from AH. Let ¢ (A) be the k-th largest eigenvalue of ma-
trix A; and m = min (N,T") and M = max (N,T); and |-| the integer part
of a number. In the following we present the consistency of our modified ER

estimate with some extra assumptions imposed.

Assumption G. (i) Let unry = ¢y [(ANA/N) (F'F/T)] for k = 1,..., R°.
Then plim pyr ) = px for some py, € (0,00) and for each k= 1,... R%. (ii) R°

is finite.

Assumption H. (i) 0 < y = lim, o 77 < 1.

(ii) Let E be the N x T matrix consisting of g, then F = R%,Z G]%V where
Z is an N x T matrix with i.i.d. element along both dimensions with finite
fourth moment; and Ré and G]%\, are symmetric square roots of positive definite
matrices Ry : TXT and Gy : Nx N with ¢y (Rr) < ¢1, ¥1 (Gn) < ¢1 uniformly

over N and T respectively.

Assumption I. (i) ¥ (Rr) > ¢ for all T
(ii) Let y* = limy oo 5 = min(y,1). Then there exists a real number

d* € (1 —y*, 1] such that ¥gn| (Gn) > ¢ for all N.

Assumption J. Consider linear combinations W -a = ZII; _, a, W% such that

W% is an N x L complex matrix of DFT of the p-th element of regressor, and

the P x 1 vector « satisfies ||a|| = 1. There exists a constant b > 0 such that
1 L
i — Wy =) (Wx -a)] > b wp.a.l.
peltin > wlWx-a) (Wx-a)] >bwpa
r=R+RO0+1

The Assumption G-I are directly borrowed from the Assumption A, C and
D in AH. These three assumptions are not related to the level of persistence
among any variables, and thus can continue to hold under our setup. As-
sumption B in AH gives the moment conditions and cross-sectional and serial
dependence of factors, factor loadings and idiosyncratic error, which is already

covered by our Assumption B and C and thus is compatible with long mem-
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ory. As we show in the proof of Theorem 3.5.1 in Appendix, the conditions
of serial dependence do not play an important role in proving the consistency
of rrr, so most of the proof of Theorem 1 in AH and relevant lemmas con-
tinue to hold. Assumption J is the frequency domain extension of Assumption
NC in Moon and Weidner (2015), which also illustrates the noncollinearity
of regressor. With the above extra assumptions, we establish the following

theorem:

Theorem 3.5.1 Suppose Assumption B, C, G-J and B*, C* and E* hold with
R° > 1, we have HB(RmaX) — BH =0, (72751)(,%,(); and there exists d° € (0, 1]

such that lim,, o Pr (Tgr = R°) =1 for any Ruax € (R, |d°m| — R® — 1].

3.6 Monte Carlo Simulations

3.6.1 Results using time domain least squares estima-
tion

Firstly we examine the performance of time domain LS estimator in finite

sample, using the following model
Yie = X48° + NiF) + eq (3.6.1)

where 3° = (0.6,0.9)". Moreover, we consider four sets of data generating pro-
cesses (DGP hereafter) with two regressors (K = 2) and two factors (R? = 2).

In detail, the idiosyncratic error is firstly generated by
Eit — 0.481‘715,1 + €it; (362)

and we consider the cases with and without conditional heteroskedasticity for

gi+. When idiosyncratic error term is conditionally heteroskedastic, we adopt
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the multiplier as

X X;
et = 0.06 %git. (3.6.3)

The above setup characterizes two varieties of DGP. And the other two are

specified by the following DGPs of factor:
F)=2—0.7TF) | + ey, (3.6.4)

and

F) =2—-02F), + ey, (3.6.5)

where ey, ~ I (dy) and e;; ~ I (d.) are two (multivariate) fractional integrated
processes generated by i.i.d. ¢(5) innovations. In terms of regressor, it is
generated by

2

r=1
with )?Z-t =1- 0.8)N(Z~t_1 + x. Four DGPs we try to specify are denoted by
DGP1 to DGP4, where DGP1 combines (3.6.2) and (3.6.4), DGP2 combines
(3.6.3) and (3.6.4), DGP3 combines (3.6.2) and (3.6.5), and DGP4 combines
(3.6.3) and (3.6.5). Random variables f.;, e, Ty, Ay, and x,; are mutually
independent, and z; ~ I (dx) with i.i.d. ¢(5) innovations as above, and y,;
and \,; ~ N (1,1). As a benchmark, we firstly estimate 3 using LS estimator
with its bias corrected by the classic half-panel jackknife using the bias order
% +% as in Fernandez-Val and Weidner (2016), denoted by 3. To evaluate the
performance of LS estimator, we choose the first argument of § and present
its Monte Carlo root mean squared error (RMSE) of 4 — § and || Pz — Ppo| .
with projection matrix Py = A (A’A)~" A’. Also we present Monte Carlo stan-
dard deviation (STD) of 3 — B to examine the order of its variance, and by
comparing RMSE and STD, we can see if the bias is still prominent or cor-
rected properly by classic half-panel jackknife method. Moreover, to illustrate

the asymptotic normality, we present 95%-level empirical coverage probability
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Br—Br
Ok

(COVP) Pr(

< Z0.025> with standard normal critical values denoted
by Z, and for some cases we compare the histogram of % against standard
normality for illustration of its asymptotic distribution, where o is the Monte
Carlo standard deviation of B . We repeat the simulation with 200 repetitions,
with sample size N =T = 100 and 200.

To cover as many cases within the range of short memory and stationary
long memory, we present the results of following combinations of memory pa-
rameters. Firstly we consider the short memory case dy = d. = dx = 0. And
then for long memory cases, we consider dy = dx = 0.2 and d. = 0.1; and
dy =dx =0.2 and d. = 0.3; and df = dx = d. = 0.3; and dy = dx = 0.4 and
de = 0.3. Note that our selection include the cases of short memory, weakly
and strong long memory, and when fractional cointegration condition holds
and does not hold. Results are presented in left panel of Table 1. And in
terms of bias correction in time domain, Theorem 3.3.1 shows that only d,
enters the order of bias when factors and regressors have nonzero mean. We

examine this theory by considering the bias-corrected estimator /3 defined by

~ A 1 1

5:5—mC—NBa

given the true memory parameter d., which is an infeasible estimator. And we
also present the performance of feasible bias-corrected estimator 5*, which is
an adjusted half-panel jackknife bias correction by memory parameter, which

is given by

. 1 5 Sk 1 Q%
6 = <2 + m) B — 5N/2,T - mBMTﬂ’

where C/l\g = % Zi\; c?g is the individual average of the local Whittle estimator
of regression residuals. The estimate BJ*V o7 18 defined by average of LS esti-
mator using half-panels given respectively by {i = 1,...,[N/2];t=1,...,T}
and {i = |[N/2]+1,...,N;t=1,...,T}, with [-] and |-] being the ceiling
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and floor functions; and 5; N2 1S defined similarly using half-panels given by
{i=1,...,N;t=1,...,[T/2]}and {i=1,...,N;t = |T/2| +1,...,T}. To

intuitively see how 3* correct the bias terms, we rewrite it as

~

Q% 2 2% 2 1 Q%
g =p- <5N/2,T - 5) - m (5N,T/2 - B) :
Note that by Theorem 3.3.1,

A ]. 1
0
5 ﬂ +1—EC+NB’

then in asymptotics we have

21—2d8 1
C+ —B.

1 2 .
————C+ —B, and 5k,N,T/2 = 50 + T1-2d- N

D 0
Bk,N/Q,T — ﬁ + T1—2d5 N

2172d5 1

Therefore BZ,N/z,T — Bk = %B and BI:,N,T/2 — Bk = Tl_—Qde)C, and by substi-
tution we can see how S} correct the bias. Results of the above bias correction
are presented in Table 3, where we consider a benchmark setup as we set both
factor and regressor short memory variables.

From left panel of Table 1 and 2, we can see that time domain least squares
estimator has prominent downward bias issue, especially when the joint mem-
ory is strong enough, which affects the inference as our coverage probabilities
show. In Table 3, although in different setup, we can still see how bias is
well corrected comparing the bias and coverage probability of B with that of
3*. But the results of feasible estimator B}, where we replace all the memory
parameters with its local Whittle-based estimator, is not good in some cases,
which shows the necessity of using a more valid method as our frequency do-

main least squares estimation in the following.
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3.6.2 Results using frequency domain least squares es-

timation

To examine the finite sample performance of frequency domain LS estimator,
we consider the same data generating process as in time domain case above,
given by (3.6.1)-(3.6.6). And we conduct DFT to (3.6.1) over the frequencies

Vi = 2%] for y=1,...,L where L = LT%J This implies the model
Wyﬂ'j - W)l(ﬂ-jﬂ —|— )\;WFJ‘ —|— Wg,ij7 Z — 1, e ,N, ] - 1, ey \‘T%J

as (3.4.2). We present performance of B,’;*, the bias-corrected estimator given
by Theorem 3.4.3, k = 1,2, indicated by (3.4.9) and (3.4.10), including the
root mean square error (RMSE), the standard deviation (STD), the 95%-level

empirical coverage probablity (COVP) Pr ( 6’68—;6’“

< Z0,025> with o the es-
timation of asymptotic variance of BZ* given by 3.4.3 as well, and the bias
(BIAS), all averaged over repetitions. And to thoroughly compare the FDLS
with least squares estimator in time domain, the above results are presented
in right panel of Table 1 and 2. We can see that under short memory and
relatively weak long memory case, time domain least squares estimator does
not outperform the results of FDLS in a great deal, as they both obtain good
bias control and coverage probabilities, although FDLS is a bit less efficient
due to loss in sample size after DFT. However, when joint memory is relatively
stronger, FDLS performs better as it prominently correct the bias and obtains
a good coverage probability in most cases.

In the end we adopt the estimation of true number of factors introduced
in last section, where we consider DGP1, but with true number of factors
R° equal to either 2 or 3. We specify Ry.x = 8 for both cases, and for the
estimated number of factors over repetitions, we report the average (Mean),
median (Median), ratio of correct estimation (RCE), over-estimation (ROE)

and under-estimation (RDE) of the true number R°. In Table 4 we presents
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the above results together with using the method of information criterion (IC)

function proposed by Bai (2009), which is given by

1Cy (k) = (V (k F¥)) + (NN+TT> In ( NN+TT> ,

where V (k:, ﬁ’k> = = 3N ST &2, with €% the residual given by time do-

main least squares estimator. From Table 4, we can see that in asymptotics,
ER estimate outperform the IC one, especially when joint memory is strong
enough. The only concern is that under relatively small sample, ER may suffer
from the issue of under-estimating the number of factor, which may lead to an

inconsistent least squares estimator based on that estimated R.
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Table 1: LS estimate over frequency domain and its bias correction (DGP1 and 2)

DGP1

B (bias-corrected time domain LS estimate by Bai (2009)) ,EZ‘Z) (bias-corrected FDLS estimate)

BIAS STD RMSE COVP(95%) BIAS STD RMSE COVP(95%)
de=0,df =0,dx =0

N,T =100 -0.000 0.004 0.004 0.960 -0.001 0.012 0.012 0.938

N,T =200 0.000 0.002 0.002 0.965 -0.001 0.008 0.008 0.960
de =0.1,df = 0.2, dx = 0.2

N, T =100 -0.002 0.007 0.007 0.940 -0.003 0.014 0.014 0.925

N,T =200 -0.001 0.003 0.003 0.950 -0.002 0.010 0.010 0.940
de =0.3,dy = 0.3, dx = 0.3

N,T =100 -0.012 0.008 0.014 0.680 -0.005 0.021 0.021 0.948

N,T =200 -0.009 0.005 0.010 0.565 -0.004 0.014 0.014 0.953
de =0.3,ds =04, dx = 0.4

N, T =100 -0.011 0.009 0.015 0.800 -0.010 0.022 0.024 0.928

N,T =200 -0.009 0.005 0.011 0.600 -0.005 0.013 0.014 0.920

DGP2

B (bias-corrected time domain LS estimate by Bai (2009))

B?fw (bias-corrected FDLS estimate)

BIAS STD RMSE COVP(95%) BIAS STD RMSE COVP(95%)
de=0,ds =0,dx =0

N,T =100 -0.001 0.009 0.009 0.965 0.000 0.013 0.013 0.945

N,T =200 -0.000 0.004 0.004 0.950 0.000 0.006 0.006 0.963
de =0.1,df = 0.2, dx = 0.2

N,T =100 -0.001 0.009 0.009 0.955 -0.004 0.014 0.015 0.940

N,T =200 -0.001 0.005 0.005 0.955 -0.001 0.006 0.007 0.933
de =0.3,ds = 0.3, dx = 0.3

N,T=100 -0.007 0.014 0.016 0.925 -0.006 0.016 0.017 0.928

N,T =200 -0.007 0.007 0.010 0.855 -0.002 0.011 0.011 0.935
de = 0.3, df = 0.4, dx = 0.4

N,T =100 -0.006 0.016 0.017 0.925 -0.006 0.019 0.020 0.925

N,T =200 -0.007 0.009 0.011 0.900 -0.003 0.001 0.010 0.955
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Table 2: LS estimate over frequency domain and its bias correction (DGP3 and 4)

DGP3

B (bias-corrected time domain LS estimate by Bai (2009))

B(*,:) (bias-corrected FDLS estimate)

BIAS STD RMSE  COVP(95%) BIAS STD RMSE  COVP(95%)
de=0,df =0,dx =0

N,T =100  0.000 0.004 0.004 0.955 -0.002 0.012 0.012 0.925

N,T=200 0.000 0.002 0.002 0.950 -0.001 0.008 0.008 0.958
de =0.1,ds = 0.2, dx = 0.2

N,T =100 -0.002 0.005 0.005 0.950 -0.005 0.014 0.015 0.940

N,T =200 -0.000 0.003 0.003 0.950 -0.001 0.009 0.009 0.955
de = 0.3, df = 0.3, dx = 0.3

N,T=100 -0.010 0.008 0.013 0.755 -0.008 0.022 0.023 0.920

N,T=200 -0.008 0.004 0.009 0.565 -0.004 0.015 0.015 0.948
de = 0.3, df =04, dx = 0.4

N,T =100 -0.009 0.009 0.013 0.805 -0.008 0.023 0.025 0.908

N,T =200 -0.008 0.005 0.010 0.595 -0.005 0.013 0.014 0.950

DGP4

B (bias-corrected time domain LS estimate by Bai (2009))

B(";) (bias-corrected FDLS estimate)

BIAS STD RMSE COVP(95%) BIAS STD RMSE COVP(95%)
de=0,d; =0,dx =0

N,T=100 -0.000 0.008 0.008 0.945 -0.001 0.011 0.011 0.915

N,T =200 -0.000 0.004 0.004 0.940 0.000 0.007 0.007 0.953
de =0.1,df = 0.2, dx = 0.2

N, T =100 -0.001 0.010 0.010 0.945 -0.003 0.013 0.013 0.915

N,T =200 -0.001 0.005 0.005 0.945 -0.001 0.006 0.006 0.943
de =0.3,ds = 0.3, dx = 0.3

N,T=100 -0.008 0.014 0.016 0.910 -0.005 0.018 0.018 0.908

N,T =200 -0.005 0.008 0.009 0.910 -0.004 0.010 0.010 0.925
de =03, df =04, dx = 0.4

N,T =100 -0.005 0.014 0.015 0.925 -0.004 0.017 0.018 0.923

N,T =200 -0.005 0.008 0.009 0.895 -0.003 0.011 0.011 0.925
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Table 3: Correction of bias

Estimator RMSE STD COVP(95%) BIAS
B de =02, df =0, dx =0

N, T =100  0.001 0.001 0.965 -0.233

N, T =200  0.005 0.005 0.940 -0.381
de=03,d; =0,dx =0

N, T =100 0.014 0.012 0.910 -0.656

N, T =200  0.008 0.006 0.845 -0.867
B* de =0.2,d; =0,dx =0

N, T =100 0.010 0.010 0.950 0.014

N, T =200  0.005 0.005 0.955 -0.044
de=03,d; =0,dx =0

N, T =100  0.012 0.012 0.960 -0.037

N, T =200  0.006 0.006 0.945 0.045
B de=02,d; =0,dx =0

N, T =100  0.011 0.011 0.965 0.005

N, T =200  0.005 0.005 0.965 -0.004
de=03,d; =0,dx =0

N, T =100 0.015 0.015 0.935 -0.065

N, T =200  0.007 0.007 0.935 0.411
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Table 4: Estimation of R

RO =2 R0 =3
Method Mean Median RCE ROE RDE Mean Median RCE ROE RDE
c de =0,dy =0,dx =0
N,T =100 2.005 2 0.995 0.005 0 3 3 1 0 0
N, T = 200 2 2 1 0 0 3 3 1 0 0
de =0.1,df =0.2,dx =02
N,T =100 2.005 2 0.995 0.005 0 3 3 1 0 0
N,T =200 2 2 1 0 0 3 3 1 0 0
de =0.3,dy =0.3,dx =0.3
N, T =100 5.255 5 0 1 0 6.225 6 0 1 0
N,T =200 4.860 5 0 1 0 5.685 6 0 1 0
de =0.3,dy =04,dx =04
N,T =100 5.085 5 0 1 0 5.960 6 0 1 0
N, T =200 4.725 5 0 1 0 5.475 5 0 1 0
ER de =0,dy =0,dx =0
N,T =100 1.995 2 0.995 0 0.005 3 3 1 0 0
N, T =200 2 2 1 0 0 3 3 1 0 0
de =0.1,dy =0.2,dx =0.2
N, T =100 1.990 2 0.990 0 0.010 3 3 1 0 0
N,T =200 2 2 1 0 0 3 3 1 0 0
de =0.3,dy =0.3,dx =0.3
N,T =100 1.810 2 0.810 0 0.190 2.240 3 0.620 0 0.380
N, T =200 1.980 2 0.980 0 0.020 2.930 3 0.965 0 0.035
de = 0.3, df = 0.4, dx = 0.4
N, T =100 1.810 2 0.810 0 0.190 2.270 3 0.635 0 0.365
N, T =200 1.980 2 0.980 0 0.020 2.910 3 0.955 0 0.045

3.7 Empirical Applications

In this section we try to adopt our methodology to the relationship between

GDP and and private debt. In the literature there has been mixed results about

this relationship and their long memory nature. Andrés et al. (2020) show,

using an equilibrium model, that private deleveraging and slower economic

growth may happen together after a tightening of fiscal policy, especially under

recession. But Eggertsson and Krugman (2012) shows the negative effects

from private deleveraging to economic growth could be temporary. Caporale

et al. (2021) study the series of credit of non-financial sector in 43 OECD
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countries, and find out their highly persistent nature. Ergemen (2019) put the
relationship between economic growth and private debt volume into a linear
regression with interactive fixed effect like we do, but estimate the individual-
specific coefficient using CCE method. In our application, we try to extend the
framework of Ergemen (2019) by using a FDLS estimator and involving some
other regressors, but focus on regression coefficient common to each individual.

In detail, we consider the following model:

AlogYi = 51Alog Cyy + BoAlog By + N.F) + &4, (3.7.1)

where )\; and F) are factor loading and factor that are both R x 1 vectors.
Above we denote AlogY;, = logY;, —logY;;_1. And the series above could
be stationary but still long memory as Caporale et al. (2021) show that most
of the memory parameter estimates of debt-to-GDP ratio are close to or even
slightly higher than one. The variables we involve are GDP (Y'), credit to non-
financial sector (C') and total employment (F) as a proxy of labor input and
human capital. Our data is adopted from Bank of International Settlements
(BIS) Statistics Warehouse and OECD iLibrary, including 20 OECD countries
and one non-OECD country, from 1996Q1 to 2021Q1. Our panel is balanced
with 7" = 100. In Table 4 we present the estimation results of 3; to 85 together
with estimates of their standard error, as given by Theorem 3.4.3. Note that we
thoroughly try R = 1,...,8, and as shown in Supplemental Material, the usual
eigenvalue-ratio method developed by Ahn and Horenstein (2013) to estimate
the number of factors still works and thus we can pick up the correct model
as we wish. In Table 5 we present the descriptive statistics of our data across
every country involved, where we also estimate memory parameters averaged
for each variable using local-Whittle estimator within the range (—%, %) We
can see that for AlogY’, almost all countries turn out to have anti-persistence;
while for AlogC and Alog F/, some countries have these two variables to

be long memory. Although so far we have not considered the setup where
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memory parameters are heterogeneous in regressors across individuals in our

theory, the above results still partly fit our framework as long memory factors

and idiosyncratic error terms can occur together with long memory regressors.

Results of coefficients estimation and determination of factor number at every

R (also specified as Rya.yx) are presented in Table 6, which shows as a long-

term relationship, private debt volume has positive effect on economic growth,

which also fits most of the individual effects indicated by Ergemen (2019), and

eigenvalue ratio method implies there is only factor in this model.

Table 5: Descriptive statistics and memory parameter estimation in application

AlogY (UZ = 70.16>

AlogC (cZ = 0,14)

Alog E (ci - 0.48)

Country Mean STD Max Min Mem Mean STD. Max Min Mem Mean STD Max Min Mem
Spain 0.004 0.027 0.155 -0.194 -0.149 0.012 0.030 0.170 -0.115 0.276 0.004 0.012 0.033 -0.077 0.274
Belgium 0.004 0.018 0.111 -0.127 -0.272 0.012 0.022 0.116 -0.083 0.162 0.002 0.002 0.007 -0.008 0.488
Italy 0.000 0.023 0.148 -0.140 -0.233 0.007 0.025 0.171 -0.086 0.082 0.001 0.005 0.013 -0.028 0.196
Chile 0.008 0.020 0.063 -0.136 -0.022 0.016 0.026 0.068 -0.086 0.187 0.005 0.030 0.086 -0.225 -0.202
Austria 0.004 0.018 0.104 -0.122 -0.173 0.007 0.019 0.118 -0.082 -0.020 0.002 0.006 0.030 -0.043 -0.184
Hungary 0.006 0.021 0.099 -0.151 -0.075 0.014 0.038 0.132 -0.139 0.150 0.002 0.011 0.031 -0.028 -0.112
Norway 0.004 0.013 0.042 -0.047 -0.276 0.011 0.019 0.062 -0.040 0.061 0.002 0.009 0.018 -0.017 -0.160
Netherlands ~ 0.014 0.014 0.072 -0.088 -0.067 0.008 0.018 0.073 -0.068 0.197 0.002 0.005 0.016 -0.027 0.236
Ireland 0.014 0.034 0.204 -0.054 0.017 0.023 0.064 0.493 -0.113 0.002 0.005 0.013 0.034 -0.070 0.250
France 0.003 0.024 0.171 -0.145 -0.347 0.010 0.022 0.189 -0.077 -0.391 0.002 0.004 0.014 -0.027 0.140
Sweden 0.006 0.014 0.072 -0.085 -0.052 0.014 0.018 0.083 -0.065 0.042 0.002 0.016 0.031 -0.026 -0.458
Luxembourg  0.009 0.019 0.076 -0.065 -0.017 0.023 0.045 0.207 -0.095 0.332 0.005 0.003 0.013 -0.008 0.263
Poland 0.009 0.018 0.076 -0.098 -0.280 0.022 0.032 0.105 -0.099 0.252 0.001 0.007 0.014 -0.029 0.371
Denmark 0.004 0.012 0.061 -0.067 -0.074 0.009 0.016 0.048 -0.051 0.211 0.001 0.005 0.015 -0.025 0.183
Israel 0.009 0.016 0.085 -0.097 -0.188 0.011 0.022 0.105 -0.087 0.053 0.006 0.008 0.025 -0.022 0.108
Switzerland 0.005 0.011 0.062 -0.064 -0.129 0.008 0.015 0.075 -0.035 -0.093 0.002 0.007 0.020 -0.024 -0.140
Finland 0.005 0.014 0.045 -0.067 0.105 0.010 0.019 0.065 -0.047 0.034 0.002 0.008 0.018 -0.034 0.064
Czech Republic 0.005 0.015 0.065 -0.093 0.087 0.006 0.029 0.119 -0.131 0.079 0.000 0.008 0.019 -0.021 -0.080
Portugal 0.002 0.024 0.137 -0.166 -0.216 0.008 0.026 0.148 -0.115 0.169 0.000 0.008 0.019 -0.038 0.223
United Kingdom 0.004 0.028 0.161 -0.218 -0.323 0.008 0.029 0.169 -0.163 -0.019 0.002 0.004 0.008 -0.012 0.246
Germany 0.003 0.016 0.087 -0.105 -0.227 0.003 0.016 0.102 -0.064 0.011 0.002 0.003 0.009 -0.013 0.438
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Table 6: Estimation results in application

R 1 2 3 4 5 6 7 8

e 0.187 0.122 0.114 0.131 0.115 0.098 0.092 0.092
s.e.(B1*)  (0.014)  (0.006)  (0.008)  (0.010)  (0.010)  (0.009)  (0.010)  (0.012)

Gy 0.167 0.162 0.161 0.122 0.086 0.151 0.115 0.123
se.(B3*)  (0.026)  (0.020)  (0.031)  (0.024)  (0.025)  (0.032)  (0.029)  (0.026)

R 1 1 1 1 1 1 1 1

3.8 Conclusion

We have considered a linear regression with interactive fixed effects, where we
extend the current studies as we allow for stationary long memory in regressors,
factors and idiosyncratic error term. We find out the bias and convergence rate
issues in classic time domain least squares estimator and its difficulty to handle
in practice, and then derive our own solution to it, a frequency domain least
square estimator that takes advantage of the singularity of spectral density at
zero frequency for possible long memory processes. There are indeed several
strands to extend the current study. First, we can discuss whether Whittle-
like estimator of memory parameters of factors and idiosyncratic error term
still works if using estimated factors and residual, and how would its asymp-
totic behavior changes. Second, as in Ergemen (2019) we can generalize our
memory parameter setting to allow it to be heterogeneous in regressors across
individuals, which is more relevant in application. Third we can try analyz-
ing whether our asymptotic theories still hold under stationary anti-persistent
data with d € (—%, O), as many studies of time series long memory model have
considered. Fourth it is interesting to study the long memory factor model
under near-nonstationary and nonstationary data, which is more involved in

application but may lead to some totally different theoretical results.
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Chapter 4

Factor Memories Estimation
And Test against Spurious Long

Memory

4.1 Introduction

In this paper, we follow the setup in chapter two, a linear regression model
with interactive fixed effects, where the regressors, the latent factors and the
idiosyncratic error are allowed to be stationary long memory variables. We
consider the estimation and inference of the memory parameters of the latent
factors, and a test against the spurious long memory. This paper responds to
the interest of panel modeling in the literature of financial and macroeconomic
data (see e.g. Lahiri and Liu, 2006 and Luciani and Veredas, 2015) and the
existence of long memory in such variables and some latent trends involved
(see e.g. Hassler and Wolters, 1995). We adopt the traditional Local Whit-
tle estimator developed by Robinson (1995¢) to the estimated discrete Fourier
transforms of the latent factor, which is based on the frequency domain prin-
cipal component least squares estimator in chapter two. Estimates of factor

memories are proved to be consistent and asymptotically normal without any
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efficiency loss relative to using the infeasible true factors. Moreover, we adopt
the test developed by Qu (2011) against the existence of spurious long mem-
ory, which is characterized by short memory process contaminated by either
random level shifts or time-varying smooth trends. Such processes may lead
to a positive bias of the local Whittle estimator and is mistaken for a long
mMemory process.

This paper is organized as follows. In section 4.2 we describe the data
generating process and the model setup. In section 4.3 we give the local Whittle
estimator of the factor memories based on the frequency domain estimate of
the discrete Fourier transform of the latent factors, and analyze its asymptotic
properties. In section 4.4 we establish the test against spurious long memory
and derive its asymptotic null distribution. In section 4.5 we conduct the Monte
Carlo simulation examining the convergence of our local Whittle estimator and
the size and power under two global alternatives of the test.

The following notation is adopted. For an arbitrary m x n matrix A,
its transpose is denoted by A’, its conjugate is denoted by A and conjugate
transpose by A* if A is complex, its Frobenius norm is ||A|| = /tr (A’A) if
A is real, or ||A|| = /tr(A*A) if A is complex. The spectral norm of A is
[Ally, = vV (AA), when A is real, and [|A[|,, = /p1 (A*A), when A is
complex, where 14 (+) denotes the largest eigenvalue of the Hermitian matrix
argument. Let [y denote an R-dimensional identity matrix. For any two

matrix-valued sequences A; and B; of the same dimension, A; ~ B; is defined

Aj (m.n)

Y Bomn) 1 as j — oo for each of its (m, n)-th elements.
J ’

4.2 Model

Consider the following static panel linear regression model with interactive

fixed effects,

Yi=X,B+NF +ey, i=1,... N, t=1,...T, (4.2.1)
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where we have P x1 regressors X;; and regression coefficients 3, and Rx 1 latent
factors F} and factor loadings A;, and idiosyncratic errors €;. In this study, we
allow X;;, F; and €; to be all possibly stationary long memory processes with
memory parameters given by dx = (dx,,...,dx,), dr = (dp,,...,dp,) and
d.. In this study we focus on the scenario that the memory parameters of both
X, and g5 are homogeneous across individuals 4, so that the cross-sectional
heterogeneity of memory in this model is totally explained by the interactive
fixed effects, especially through multiplication of factor loadings. This setting
sacrifices generality to some extent but makes it more convenient to handle
the model in theory.

In terms of the data generating processes of all the possibly long memory
variables, we define them as linear processes that follow Robinson and Hidalgo
(1997). To be specific, let d. and all of the elements of dr and dx lie within
the interval [O, %) And F;, X;; and e; have the following moving average
representations:

Fy=pr+ ) ApjCri-j = pr + FY, (4.2.2)

Jj=0

and for every i =1,..., N,

Xit = px;i + Z Ax jCxit—j = px,i + X3, (4.2.3)
=0
and
Eit = Z Ae,jgs,i,tfja (424)
=0

where Ap; and Ax ; and are A, j respectively Rx R, Px P and 1x1 coefficients,
and Cpy, Cxi¢ and (.;; are the corresponding innovation processes. pp and
px are R x 1 and P x 1 vectors of expectation. The long memory property
is defined through the spectral densities of all these variables in frequency

domain. For instance, let the matrix-valued spectral density function of F} be
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fr(7), then it satisfies

fr(7) ~TGT, as y = 0F,

where G is a positive definite matrix and I' = Diag(y~ %), k=1,..., K. This
is the multivariate extension of the scalar spectral density of a potentially
long memory process, which has the form f(v) ~ gy~2? This implies that

~2dr.  The similar

marginally for each k = 1,..., K, we have fg (y) ~ g7y
power law holds for the spectral densities of X;; and ;.
This specification of possibly long memory processes includes the stationary
fractional integrated processes and ARFIMA (p,d,q) as special cases. And
different from (g;_;, the innovations of the regressors and the idiosyncratic

error term characterize the heterogeneity and cross-sectional dependence of

Xit and Eit-

4.3 Estimation of Factor Memories

In this section, we try to estimate the memory parameters of the latent factors
by local Whittle estimator using their estimated discrete Fourier transform
(DFT hereafter) from frequency domain principal component least squares

(FDPCLS hereafter) estimation of model (4.2.1). Then we establish the con-

sistency and asymptotic normality of memory estimators.

4.3.1 Local Whittle estimation

To proceed, we first adopt the FDPCLS estimator of model (4.2.1), which
jointly estimates the regression coefficients 5 and the DFT of latent factors F;.

To be specific, the FDPCLS estimator is given by the solutions of the following
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nonlinear equations in frequency domain:

N -1 N
B= 1) Re(Wx, My, WX,i)] > Re (Wi, My, Wy,)
i=1 i=1
and
(W Wi| Wi = % ; (Wy,z' - WXzB) (Wy,z' - WXzB) *] We  (43.1)

= WrVyy, (4.3.2)

where Vi, is the diagonal matrix containing the r largest eigenvalues of Wy W5
in decreasing order. In the above equations, Wx; = (Wk,y, .-, W)’wL)/ is a
L x P complex matrix that gives the DFT of regressors X; over frequencies

indexed by j = 1,..., L. The DFT of X is defined by
T
WX,ij - ZXiteit7j7 .] = 17 cty L7
t=1
where i is the imaginary unit such that i = —1, and ~; = %, j=1,...,L
are the Fourier frequencies. Note that by conducting such DFT on both sides

of model (4.2.1) with certain normalization, we can obtain a new panel linear

regression model on individual and frequency dimensions, which is
WY,ij - 5,WX77;]' -+ )\;WFJ' -+ W(c_‘yij7 Z = 1, “ee ,N, j = 1, ey L (433)

And thus FDPCLS is actually a frequency domain extension of the time do-
main least squares estimator developed by Bai (2009). To make our fre-
quency domain estimator comparable to the time domain one, we denote I'y=
Diag {WZX”_%} and T'y = Diag {'yzFF%} as part of the normalization matrix
for the DF'T of regressors and factors, by which we define WF =T rWr and
A = AT;'. Then similar to Bai (2009), an identifying restriction WiWg/T = I

is imposed to proceed with our FDPCLS estimation, and model (4.3.3) can be
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rewritten as

Wy = BWxij + NWej+Weij,i=1,...,N, j=1,..., L.

From what we have obtained above, the memories of latent factors are
then estimated using the very classic local Whittle estimator because of the
stationarity of the processes. To be specific, given the estimated DFT of
the latent factors, Wp, the local Whittle estimator minimizes the objective

function marginally on each r =1,... R

SIE

QT’(U? d) -

L

7.
> {log (0752 + %Im} : (4.3.4)

7=1

where Ip; = W;’jWF,j is the periodogram of the estimated DF'T of factors.

Then the local Whittle estimator of dr, can be written as

(Op ,cfp ) = arg min Q- (v,d).
T 0<v<oo,de[0,1)

By first order condition in terms of v, the estimation of dp. can also be given

by
dp =arg min K, (d),
" def0,3)
such that for each r=1,... R,
R 1 &
K, (d) = log G, (d) — 2+ ; log 7 (4.3.5)
where
. 1< -
G, (d) =+ > 7" Ir 5 (4.3.6)
j=1

In the next subsection, we try to derive the asymptotic behavior of the local

Whittle estimator, where we its consistency and asymptotic normality are

established.
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4.3.2 Asymptotic properties of the local Whittle esti-

mator

In this subsection, we give the results of consistency and asymptotic normality
of the local Whittle estimator of the factor memories, which is developed based
on the FDPCLS estimator. So as in the last chapter and Bai (2009) in time

domain, we define

N N N
1 1
DY, (Wr) = == WiMw, Wi — <= > > Wi M, W pai
NT =1 N T =1 k=1
1 N
= 57 2 Waa (F) Wai (F), (4.3.7)

where Wy, (F) = My, W ,i— % S0 My, W gair.. Also let Wy, = Wy, (F)
and D;r\, 7 = D]TV ;, (Wgo). Then we can define the variable Z;; like we did in time
domain as if its DF'T over Fourier frequencies is given by Wy, and denote its
memory parameters by dz = (dz,,...,dz,). Following are the assumptions to

proceed with our theory:

Assumption A. (i) Denote the (P + R+ 1) x 1 vector Vi, = (X}, F/,ci)’.
Suppose Vj; is covariance stationary and has the spectral density matrix satis-
fying

fri () ~T(y) T (7) asy — 07, (4.3.8)

where T, isa (P+ R+ 1) x (P + R+ 1) symmetric matrix that is finite uni-

formly over ¢ with the following structure:

Tixx Yixp O

0 0 Tice

in which for all 4, the P x P and R x R submatrices T; xx and T, pp are
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positive definite, and the scalar Y, .. > 0. I' is a diagonal matrix given by

r (7) = Dlag (/Y_dxl, .. ,’y_dXP , 'y_dF1’ o 7/}/—(71F137,>/—ds) )
(ii) There exists 6 € (0, 2] such that for each 4,

G—da—db)

| Fviaab) — Viayy "% = O (v as vy — 0"

for arbitrary a,b=1,...,(P+ R+ 1).

(ili) Let Vie = py + 372 Av,jCviis—j, where Ay is a block-diagonal matrix
consisting of Ax;, Ap,; and A.; in order, as given by (4.2.2)-(4.2.4). And
define Ay () = 3272 Ave?7. As v — 0%,

g

20— 0 (7 vl

for arbitrary a = 1,..., (P + R+ 1), where Ay, (7) is the a-th row of Ay, (7).
(iv) Cre, (xt and oy satisfy E (Cry|Fri—1) = 0, B (Cx¢|Fxe—1) = 0, and
E ((4|Fer—1) = 0, where Fpy1, Fxi—1 and F.;_; are the corresponding fil-
trations.
(v) Let Cpy(p) be the p-th element of (¢, and the same notation applies to

Cx,t. We assume that (g satisty

E [Cruwm)Crita) | Fri-1] = Prpq < 00, E [Crim)Criws)Crims) | Fri-1] = Popipp, < 00,

and

E [Cr ) Crtmn)CFts)Critpa) | Fri-1] = ®3py.ps < 00

for some absolute constants ®; ;, P2, pops and Ps ., 4, , and for arbitrary p-, ¢-

and p;-, ..., ps-th elements of (p;. Also the same condition holds for (x; and
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C.+. Additionally, (.. satisfies the following eighth-order moment condition

E [Cotton)* Cotips) | Fra—1] = Pupy.pg < 00 (4.3.9)

for some absolute constant ®4,, .., and for arbitrary p;-, ..., ps-th element
of (4.

(vi) .t is independent of (x5, (r, and A; for all 7,s,t = 1,...,T and
,j=1,...,N.

Assumption B. (i) Let f‘X,j = Diag <fijp>, we assume F Hf‘x,jWXJj”Ll <M
and %W}ZWX, RS ¥, > 0 for some matrix XY, as T — oo for each i =
1,....N.
(i) Let W = {WF € CLXE . Wi = Wplp, W}WF/T = ]IR}. We assume
inf Dl (W) >0,
Wew
(iii) Let IV“F’]- = Diag <fij’“>, we assume F HIV‘FJ-VVF,J-H4 < M and %W}Wp LN

YW > 0 for some matrix X%, as T — oo.

Assumption C. (i) F H W, ZJH < M and %W;zWH N Yei > 0 for some
matrix Y. ;, as T" — oo.

(ii) Let \/E |W€ kW o kl and F }Wg ZICW:11| Jx/k’ll. We assume
Jij,}cl < vt Eﬁij and @/0%1 JV[;CZI <y 2oy e o,/ for all (k,) and

2

N
1
v d T <M. (4.3.10)
ij=1
Moreover, let |E (W, ;W ]l)‘ = ax/kl We assume ‘aWkl W for all (i, ),
and
72d5 L
L —W
J1+2de o <M, NL1+2d5 Z Z }Uw kl’ =M, and —2———r T4d€ log? I, Z 7N (%, l
k=1 ij=1 k=1 & & pim1
(4.3.11)
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where 11 (k,1) = & X8, B (WoulV2,y).
(iil) Let Q; =T.E (WEZWL) I'., where I'. = Diag (fy;lf). The largest eigen-

value of €2; is bounded uniformly over ¢ and T as T' — oc.

4
(iv) For every (k,1), E|N-29%n SN [We 0 W2y — E(We,ikngﬂ)]( <
M.
(v) Moreover,
yide
L Z Z oV (WeaWe s We W2 )| < M, (4.3.12)
1,7=1k, =1

N2L2 Z Z |COV szk ]k’ WE,mlW:,nl)} < M7

i,73,mn=1kl=1

and

4d5
NLQ Z Z {COV Elk Zl?WE]kW;jl)‘ S M.

1,j=1 k,l=1

Assumption D. (i) Let T = Diag {VZZP } plim 77 'T; DL, (Wgo) T = DIV
for some matrix DY > 0.

(ii) FVL Tz SN Wy W 4 N (0,%), where

2d. 1
>V = plim ﬁYNT Z Z Re (o, leZWszWZleZ)
1,j=1k,l=1
(iii) Moreover, we have for each ¢ = 1,..., N that
d.—1 2 d.—1 2
Ly, 2 ~ Lv,m 2 ~
E %W;iwxﬂ <M, and E %W;WF < M,
and the following also holds:
NLfydE e I ~ ’
E L WX Wxill <M,
YN Sy




2

<M, and FE

2

< M.

1
de—1

NIy &L VNI &L
B = 2 AW a2 WA
=1 =1

Assumption E. As T — oo, we assume (i) £+ 1 — 0. Moreover, denote d =
max {dX,max, dF,max, dz,max}, d = min {dX,min, dF,mim dZ,min}y and Ad = d — d,
then we assume:

(ii) d > d.; and (iii) (\/% + ﬁ) ()
Assumption F. The model (4.3.3) satisfies the following identifying restric-
tions:

(i) %WFW; = I. (ii) A’A/N is a diagonal matrix with distinct main

diagonal elements.

Remark 1. Assumption A-E are adopted from chapter 2, which can be treated
as the frequency domain extensions of the assumptions that are imposed in
Bai (2009). Assumption F corresponds to one of the identifying restrictions
indicated by Bai and Ng (2013), which is also a frequency domain extension.
The other two restrictions in that paper can also be applied but will not be
discussed here for simplicity.

The next two theorems establish the consistency and asymptotic normality
of the local Whittle estimator of each dg,, r = 1,..., R, where from Assump-

tion A(i), we denote vg,, r = 1,..., R, as the main diagonal elements of Y pp.

Theorem 4.3.1 Suppose Assumption A-H hold, as N, T — oo with % — ¢

for some finite constant ¢ we have for eachr =1,..., R, CZFT LN dp,.

Next we derive the asymptotic distribution of the local Whittle estimator. De-

note the spectral density matrix of factor by fp () and T'p () = Diag ("%, ...

then we need the following additional assumption to proceed.

Assumption G. For some p € (0,2],

Jr(y) ~Tr(y) Yrel'r (7) (1 + 0 (77)),
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L1+2¢(log L)?

T — 0.

and p satisfies

Theorem 4.3.2 Suppose Assumptions A-G hold, as N, T — oo with % — @
for some finite constant ¢ we have for eachr =1, ..., R that V'L (a?/F — dpr> 4,
N(0,%).
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4.4 Test against Spurious Long Memory

In this section we try to adopt a test from Qu (2011) against the spurious
long memory of the latent factors, which is based on the score of local Whittle
estimator. And then its asymptotic null distribution and consistency against
several alternatives that represent the spurious long memory is presented.
We test marginally every single element of factors against spurious long

memory. For each r =1,..., R, the null hypothesis of interest is given by
o Hy: frr(7y) ~ vp Y2 as v — 07 with vg, > 0 and dp, € (—%, %),

And the test statistic is based on the score of the profile likelihood function of
local Whittle estimator. Recall that for each r = 1,..., R, minimizing Q,.(v, d)
in (4.3.4) with respect to g helps us obtain the profiled likelihood function given
by (4.3.5) and (4.3.6). The derivative of K,(d) then helps build up the test

statistic, which is given by

aKr(dr) 2vy FT,J
g o (o))

where u; = logy; — % le log~y; = logj— % Zle log 7. Then using the above

score function, the test statistic is then given by

=3 ||Lp] i
V, = sup (Zu) Zuj - Frog -1,
=1

pE(e1] G(d )ij dF'r

where [ rj and d 7, are respectively the estimated periodogram and the local
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Whittle estimator the memory parameter of the r-th latent factor from FDP-
CLS; and ¢ is a small trimming parameter. In the following theorem, we try

to establish the asymptotic null distribution of our test statistic.

Theorem 4.4.1 Under Assumptions A-G, as N, T — oo with % — ¢ for

some constant ¢ we have for each r =1, ... R that

V., = sup
pE[L,1]

/Op(1+10gs) dW(s)—W(l)/Op(lJrlogs) ds—cp(p)/o (14 log s) AW (s)]

where ®(p) = [ (1 + log s)*ds and W (s) is a Wiener process in [0, 1].

4.5 Monte Carlo Simulation and Application

In this section we try to conduct an experimental simulation to testify the
performance of the test above. The setup of linear regression is basically the
same as in chapter 2, while under the null and alternative hypothesis, the

DGPs of factors are given respectively by:
Hy:F,=1—-0.7F,_1 + e,

with e; is an I(dp) process. And for the global alternatives, we follow the
lead of Qu (2011) and consider two types of the latent factors that represent
the spurious long memory. The first one is short memory processes that is

contaminated by random level shifts:
Hl(l) D F= e+

where py = py—1 + mn;, and 7 follows an i.i.d. Bernoulli distribution with

Pr(im; = 1) = % and Pr(m = 0) = 1 —

T and z; ~ 1dN(0,5) and 1, ~

6
T
iidN(0,1). This alternative serves as a nonstationary random level shift, and

the Bernoulli distribution ensures the amount of shift is finite even under very
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large sample. The second alternative is a short memory process with a time-

varying smooth trend:
H1(2)3Ft22t+h i )
T

where h(-) is a Lipschitz continuous function on [0,1]. To be specific, we
specify h (%) = sin (47t /T) and z; being the same as above. In the following
Table 1, we present the estimated factor memory parameter and the rate of
rejections under both the null and alternative hypotheses with nominal levels
of significance being 0.1 and 0.05, respectively, so as to evaluate the size and
power and the performance of local Whittle estimator of the factor memory
parameter.

The results are presented under three different values of dp: 0.2, 0.3 and
0.4, with dxy = 0.4 and d. = 0.2 throughout these scenarios. The bandwidth L
is set to be |7°7]. And we focus on the case where the true number of factors
is 2, and in Table 1 we report the results from the second factor. Note that to
implement the test, we choose the trimming parameter : = 0.05 and employ
the corresponding asymptotic critical values documented in Qu (2011).

In terms of empirical application, we try to adopt the data from our last
chapter and check out if there is spurious long memory through their local
Whittle estimator. The results are presented for the largest estimated memory
parameter of the estimated DFT of the factor, together with its test statistic.
The trimming parameter is set to be 0.05 as in the simulation. We can find
out that there are relatively strong evidence that support the existence of long
memory in the factors, as the null is rejected under 5% level of significance
under all numbers of factors, see Table 2 below. But somehow in the case
R = 1 the estimated memory seems to fall in the range of anti-persistence,
which is not so consistent with our estimation of factor number as one in last

chapter. We believe a larger sample size can help fix it.
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Table 1. Results of simulation

N, T dr 5%  10%

Under Hy, dp = 0.2

N =100,T = 200 0.144 0.030 0.045
N =200,T = 400 0.170  0.020 0.065
N = 300,T = 600 0.180 0.060 0.090

Under Hg, dp = 0.3

N =100,T = 200 0.239 0.030 0.040
N =200,T = 400 0.259  0.045 0.065
N = 300,T = 600 0.275 0.060 0.085

Under Hg, dp = 0.4

N =100,T = 200 0.342  0.030 0.045
N = 200,T = 400 0.377  0.050 0.060
N = 300,T = 600 0.386  0.045 0.100
Under H{l)

N =100,T = 200 0.243 0.295 0.365
N =200,T = 400 0.260 0.550 0.645
N = 300,T = 600 0.267 0.740 0.805
Under H£2)

N =100,T = 200 0.191 0.425 0.565
N =200,T = 400 0.200 0.725 0.805
N = 300,T = 600 0.209  0.950 0.980

Table 2: Results of empirical application

R 1 2 3 4 5 6 7 8

-0.169 0.222 0.213 0.198 0.191 0.200 0.231 0.242

Fmax

Vmax 0.227 1.063 1.028 0.998 0.988 1.001 1.001 1.096

4.6 Conclusion

In this paper we prove the validity of the traditional local Whittle estimator
and the test against spurious long memory for the estimated latent factor,
in a long memory linear regression model with interactive fixed effects. This
illustrates how the FDPCLS estimator is easy to implement not just in the
estimation and inference of the regression coefficients, but also of the memory

parameters.
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Chapter 5

Conclusion

This dissertation contributes to the estimation and inference theory of long
memory time series and panel model. We extend the current literature by
considering a time-varying linear regression model and a factor model under
long memory, and modify the classic frequency domain estimator to fit the
new framework. The asymptotic properties of these estimators of regression
coefficients and relevant tests are developed, together with Monte Carlo sim-
ulation that shows the good performance of the estimators and tests in finite
sample. Also in empirical applications, our methods are employed to study
the inflation spillover effect and the debt-growth nexus.

In the future research, there are several main directions to further extend
this dissertation. First, a uniform inference of our time-varying regression co-
efficients and a data-driven bandwidth can be developed in the second chapter.
Second, in the third chapter the high-level assumptions of the CLT should be
replaced by the theory that generalizes the proof of Christensen and Nielsen
(2006) to the factor model. Third, our analysis could be extended to the range
of anti-persistence for both of our model setup, as it also covers plenty to

financial data.
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Appendix A

Technical Results for Chapter 2

A.1 Proofs of the Main Results

In this appendix we first state some technical lemmas and propositions whose proofs can be

found later. Then we prove the main results of Chapter 2.

A.1.1 Some Technical Lemmas and Propositions

To simplify the notations, let Kp, o, = Kp, (t — Tw), ¢y = /27 Zle K,2L +u» and sometimes

we denote wx, ; = wx (u, A;) when no confusion arises from suppressing its dependence on u,
and the same notation holds for wq (u, A;), I (u, A;) and A, (u, A;) with @ = X, ¢, (. First,

we state three lemmas that are used in the proof of Theorem 2.3.1.

Lemma A.1.1 Under Assumption 1-5, for any fized u € (0,1)

—26(u) M

A u
A2 3 Re (wx gy ) X Ay = T () = 0, (1) (AL1)

j=1

where Ay = diag ()\?Vfl(u),...,)\i??(u)>, and the (a,b)-th element of T (u) is given by
Top (u) = Gap/ (1 —dx, (u) — dx, (u) + 26 (u)).

Lemma A.1.2 Under Assumption 1-5, for any fized u € (0,1)

de(u)—26(u
AM)\M( )-2000) /7y

M
= A7 Re (wy g ;) 5 N (0,9 (u)
j=1

97



where Ay; = diag ()\dxl(u), - )\djvf’) (u)>, and the (a,b)-th element of 2 (u) is

1 1
2 2
GX,aaGX,bbGes

Qo (1) = O7 | ST (0) — do, () — 20 (w) § 46 (w)) )

given a finite deterministic function ©* (+).
The following two positions are used in the proof of Theorem 2.3.2:

Proposition A.1.3 Under Assumption 1 to 5, for any M that is defined in Assumption
4(i), we have

(i) Sa(m) = 4 350, [wx, ; — Ax, jwe |* = Op (hFx,, (u;Am)),

(ii) Sp (m) = 4 3501 (Ixews + Axaile A%, ;) = Op (hFx,, (1, An)),
where wx, ; is the a-th element of wx j, and the same notation holds for Ax, ; and Ix,, j;

and Fx,, (u, Am) is the marginal spectral distribution function corresponding to the spectral

density defined in Assumption 2.
Proposition A.1.4 Let
M
o o(u
Binva = Z)\f “Re (Lo — Ax, 51, iAL;)
j=1

where I, j s the cross-periodogram between X, and €. Then suppose Assumption 1-5 hold,

we have for each a =1,...,p,

Birta =0, (Aijw"d%(“)‘d*“) (h*l (log M)? + h='M7 (log M)? + h"'M3T~1 (log M)%)) :
Proposition A.1.5 Define
/K u SK su
Zor (u) = % Z Co—sr (u) C—h7
\/thl htu s<t \/thl htu

where Cy_s 1 (u) s given by

p dxa(u)er (u)—26( u)f 25(w)

u _ _
Coosr ( Z% T Z)\ ., iAej + AL Ax, ;) cos (t);)

with arbitrary weight n,. Given a finite deterministic function ©* (-), recall

Qa =0 )
0 =0 1—dy, (u) — dx, (1) — 2d. (u) + 46 (u)

then under the conditions of Theorem 2.3.1, the following conclusions will hold:

98



(i) Zthl E (Zt2,T (u) | ]:t—l) 5 ZZ:l Zi):l NaM2ab;
(ii) S0 E(Z2 7 (W) 1 (| Zer (u)] > €)) B0 for all e > 0.

A.1.2 Proofs of the Main Theorems

Proof of Theorem 2.3.1. Recall that

B )= |3 NRe (wy (u, Aj) w (u, A))) Z *Re (wx (u, Aj) w (u, Az))

j=1 j=1

= R)_(lx (u) Rxy (u) .

Using y = 8 (u) X;1r + (6 (%) -0 (u))/ X1 + €1, we make the following decomposition

for wy (u, Aj):

T ’
Wy (’U,,)\j) = 6( Tw ZXt TKht 610\7 + — ! Z (ﬁ (;) — B(U)) Xt,TKh7tueit>\j

C
Tut1
T

1
+ — th TKh tue
CTuy =1

= 6" (uw) wx (u, Aj) +Wx (u, Aj) +we (u, A;),

then it follows that

B(u) — B (u) = R\ (u ZA% IRe (wy (u, X)) D (u,2)) + D AP Re (wx (u, A7) wk (u, A7)

j=1 j=1

= Ry (w) {Bar (u) + Vs (w)},

where By (u) and Vs (1) contribute to the asymptotic bias and variance parts of 3 (u)— 8 (u)
respectively.

First for Vs (u), by Lemma A.1.1 we have

)\—26(u) )\—26(u) M 26(u)
AM MM Rxx (U)A]\/[ A]y[ Z)\ Re(wX (u by )wX (u A ))A]\/j —) F( )

= (A.1.2)

By Lemma A.1.2,

u) 25(u) f

AM NiTi

ZA” “Re (wx (u, M) w’ (u, A})) % N (0, (w)).

Jj=1

Next, we study Bys (u) . By Assumption 3(i), |+

of kernel function & (-). Then by Assumption 5 and Taylor expansion, we have that for any
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8 (;) =B (u) + B (u) (; —u) +0 (1),

where () (u) is the first order derivative of §(u). Note that to derive the order of bias
term, it is sufficient to replace 8 (%) — 3 (u) with B (u) (% — u) as it is the leading term.

So in the following we denote instead

T .
Z ( — U) Xt,TKh,tuelt/\]

C
Tu =1

and

M
Bar (u) = > AZRe (wx (u, Ay) @y (us Ag)) B ().

j=1

Uniformly in u € [0, 1], we define and decompose By (u) as

By (u ZA”(“) Re (Ax (u, Aj) we (u, Aj) @ (u, Aj) A (u, A7) 8D (u)
j=1

M
+ | Bas (u) — Z )\?5(1») Re (Ax (u, Aj) we (u, Aj) W (u, Aj) A (u, Az)) BW (u)

Jj=1

(B1 + B2) BY (u),

T

c;u ZQ (% — u) Kptue™. We analyze By and B; in the
t=1

following. Firstly for By we have

where we define we (u, Aj) =

M
5 u ok *
= Z)‘f ( )Re (AX (u>>‘j)wC (uv/\j)w( (u7)‘j)AX (u7)‘j))

j—l
= ZV‘““ Re (Ax u, Aj) Z GG (5 =) K K e A mm)
Jj=1 Tu t,s=1
- 1
20(u *
=YX ) Re (AX (1 5) 5~ Z e ( u) K} o Ax (u, Aj)>
=1 Tu t=1
M
+ ZA?(;(“) Re | Ax (u, ) ZQC ( U) K tu K sue™ 9% A% (u, )))
=1 Tu t#s

M
A Re (b ) + DX Re (baj) = Bun + Baa,

j=1

-

.
Il
—

then we can closely follow the proof of Lemma A.1.1 to derive their order. To be spe-

cific, firstly we still consider an arbitrary (a, b)-th element of By, denoted as Biq, 4, whose
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expectation is given by

M T
1 t
E (Bi1a) = A2 Re (Ax, (u, Aj) Ak, (u)\))c > (T—u>K,2mu

2
=1 Tu —1
M ) )
= hZA " Re (fx,, (u,A)) = O (hM)\Q (u)—dx, (u)— Xb(u)) 7
Jj=1

and its variance is given by

Var (Biy.a) = NN Cov (Re (brjap) s Re (b1 k,ab)

J 1

[N

)\25(u))\25(u {(Var (Re (by j.ap)) Var (Re (b1 x.ap))}?
1

IN

]#Mi FNE

J

where it is adequate to consider Var (Re (b1,;)) only. Then we have

Var (Re (b1 j,ab))

=E (Re (b1,j,a) — E(Re (b1,j,ab)))2
. 2

1
A () - 3 (660~ ) (= o) KR, (00

Tu =1

<E

i

~ 2
— *
=E ‘Axa,le,ijb,j

where 471 is a (p+ 1) x (p+ 1) identity matrix, then

2 ~ ~
=E (AXaJDlJAXb,jAXbJDL] ij>

E ‘Axa,jﬁl,jAﬁcb,j
~-E [tr (Axa,jf%,jAﬁgb,ijb,jﬁl,jAhg‘)}

= vVec (A;(a,jAXa,j) E (ﬁl,j ® 51,j> vec (A}b,jAXb»j) 5
where E (517j ® Elyj) can be further given by

E(51j®51j)

1 T / t
z< It o )
1 t 9 ¢ )
o ZQQ ( u) K}, @ thgt (T - u) K2,
“Tu =1 Hu =1
Ip-l—l d 4 2
a Z <T B u) K O F < ZCtCﬁ < - ) Kh,m)
Tu =1 F =1
T
( ZQQ (t - U) Kj tu> ® IPH Z (; — u) K} 1
T“ t=1 CTu =1
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+

T T
S (g ) K B (- w) K
% - T h, tu C T h,tu*

[T Tu =1

Note that —— Et 1 (5 —u) K}, = O (h) by domain of the kernel function, and

( ZQQ ( ) Kh,tu> = CQIZT: <; - U) Kjy = O (h) Iy,

Tu t=1 Tu =1
thus
E (51,3‘ ® 51,;‘)
S CEN IR W CEREN
Tu t=1 Tu t=1
T T
Iy t Iy t
_ cp? 3 <T - u) K}, ® —c’; > (T - u) K20,
Tu =1 Tu t=1
and then
(C 36 (5 ) Kt 326 (5 -4) Kk
Tu t=1 Tu t=1
t s
1 (¢ @) ( - u) (7 —u) K2 0ukcE o
T“ t,s=1
Compared with (A.2.4), the above equation has extra components (T — u) and (f — u)

that are uniformly bounded by h. Then given the non-negativity of K}, ,, K

h,su

and the fact
that E (Ctg; ® CSC;> has a uniform bound as well, we can adjust the results in (A.2.4) and

conclude that

h
( 2 ZQQ} ( U) Ki 1u ® ) ZQQ ( u) Kﬁ,m) =0 (T> (Ipy1 ® Ipy1)
U t=1 U t=1

and so as the other terms in (A.1.3). Therefore E (51,3- ® 51,j) =0 (%) (11 ® Iy+1), and

therefore

~ 2
Var (Re (b)) < E|Ax, ;D1 A, ;

= vec (A*Xa,jAXa,j)/ E (‘51J X El,j) vec (Ai;(b,jAXb,j)

h | —dx, (w)—dx, (u) \ —dx, (v)—dx, (u)
-0 (T)\j X Xy )\k X Xy
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and

=

M
Var (Bia) < Y AN (Var (Re (b jan)) Var (Re (b1 .a0))}
j,k=1

_0 (hMQA [26(uw)—dx,, (u)— dxb(u)]>

Combining the order of E (Bi1,45) and Var (B11,4p), we can conclude that B1; = O, (hM)\?\f[(u)_ﬁX(u))
with dy (u) = max, dx, (u).
Next for Byo, we can also closely follow the corresponding parts in the proof of Lemma

A.1.1. We denote

M
12 = Z Aié(u) Re (u, A5) Z GiCs ( U) K otu K sue™ % A% (u, )
= Tu t;ﬁs

M
’ —_ 8 ) .
Z Ct Z )\55(U)AX (u, )\J) Ax (u, )\]) (? - u) Kh,tuKhﬁ;uel(tis))\J Cs
Tu ts J=1

G Re (T ¢

Tu t;és

Since E (Bj2) = 0, we only need to consider its variance, which is bounded by

2

C%E S Re (o) ¢,

Tu t£s

Z Z vec <¢t2 s2, M) (CSQC;l ® Ct2§;1) vec (tﬁf)tlysl_’M) .

Tu t1#£s1 taF sz

The above equation has the same structure as (A.2.5), then the reasoning for analyzing V;
and V5 in the proof of Lemma A.1.1 still holds. And we can easily see that the only difference

lies within the order of two following objects:

=0 (/fl& (u,j))

Ly (E o) ke
C’% T h,tu

and
T

1 t .
2 Z (T Bl u> ngl,tue ikl =

2
cTu t=1

(™16 (u, )

Z lt)\j,k
t=1 htu

in Vi and V5, respectively. The rest of the reasoning will follow the proof of Lemma All1l

with j # k. These two orders hold by Assumption 3(iv), and they correspond to

and we can conclude that Bz = o, (\/ Mh_%)\ij(“)fﬂx (u)).
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Next recall that Bs is given by

M
By = " AP Re (wx (u, Ay) @k (u,A) — Ax (u, A) we (u, Ay) @F (u, Aj) Ak (u, Ay))
j=1

M
= Z A2 Re (b3 ;) .

Note that the above equation has the same structure as Q1 in (A.2.1) in the proof of
Lemma A.1.1, whose order is derived using Proposition A.1.3. Then following the same

reasoning, we have for By that
M-1
Bal < 32 (35 - 5i<f)Z|Re bl 8503 et

j=1 j=1

where considering an arbitrary (a,b)-th element and using a more compact notation,

M
> Re (bs jab)l
j_

B

~ % ~ % *
|U’Xa,ijb,j - AXa,ij,ij,jAXb,j’

<
I
—

1 N
3 ((wx, ; — Ax, jwe ;) (DX, ; + W A%, ;) + (wx, ; + Ax, jwe ;) (0%, ; — 0 jA%, ;)|

e

<

then following how we analyze the order of Sy (M) and Sy (M) in the proof of Lemma A.1.1,

it is sufficient to analyze the square root of the following two objects:

M M

_ , _ ) - ,

By =Y |wx, ; — Ax, jwe;|° and Byy =Y _|iix, j — @ jAx, ;I
Jj=1 j=1

where the first term can directly follow Proposition A.1.3 and thus By = op (TFx,, (u, A\n)).
Then for égg, we can still closely follow the proof of Proposition A.1.3, and only difference

appears in the counterparts of (A.2.10), which is given by

2
K, (u,\) =

T/t
v K uit)\
z(T ) niue®|

t=1

1
2
CTu
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T-1 t T

t t+1 . .
t= s=1 t=1
T-1 T

1

t
< - U) (Kntu — Kng1,u) — TKh,t+1,u max

E ezs)\
1<t<T

E eis)\
s=1

+ (=) Kyl ™

t=1

t=1

T—1
1
< (h Z | Khiw — Knjig1,0] + = T Z Kh 41 u> Jmax.

T

E eit)\ .

t=1

+hKp 1

Since for some constant C, = T t 1 Kh 1410 < C by Assumption 3(i); and by the proof of

Proposition A.1.3, ZtT;l |Knu — Knt1,0] < Ch™! and ‘Zs:l e'sA

< W uniformly over

t, we can thus imply that

C
< R
Al

e
Z (T _ U) Kh tueztA

t=1

and thus K, (u,\) = O (% |/\|_2), which is the order of K (u, \) multiplying /2 in (A.2.11).
Note that this order holds uniformly over j, so we can directly follow the proof of Proposition
A.1.3 and conclude that §22 = 0p (ThQFXbb (u, )\M)), and then following how we analyze

(A.2.3) in the proof of Lemma A.1.1,

M
1 1
> IRe (bs )| = 0 (THE, (. Anr) F,, (u M) )

j=1

and thus
M p—
By =Y X" Re(bs;) = o, (hMA?V‘jW)*de(“)) .

j=1

Finally, the whole bias term can be given by

. )\de (u)—26(u 2dX(u) 28 (u)
Ryx (u)Bas (u) = 7]\4 i Rxx (u 7M B (u)

- An(0<m+%(¢Lh o (1)) 5 (1)

= (O (h) + 0, (h)) BY (u) = Oy (h) BY (u),

where the second equality holds by (A.1.2) and the third one holds by Assumption 4(iii). This
result determines the order of bias term under our local-constant-type estimator. And note
that our proof above also indicates this order to hold uniformly over u € (0, 1), which will help
our proof of Theorem 2.3.2 in the following. Therefore denoting Bys (u) = Ry (u) Bas (u),

we can conclude that

At (u) A=A (B (u) — B (u) — KBy (u)) LN (0,7 () Q) T (1),
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where

-1

M
Bas () = b | 3APRe (wx (u,A) w (u, 1))

Jj=1

M
x| STAPORe (wy (u, Ay) @y () | 8D (u).

Jj=1

Summarizing the above results completes the proof of Theorem 2.3.1. B

Proof of Theorem 2.3.2. Without loss of generality, we assume p = 1 in this proof for

notation simplicity. Recall that in this case 3 (u) is given by

—1

M M
B(u) = Z A?‘;(u)Re (wx (u, Aj) Wx (u, Aj)) Z A?S(H)Re (wx (u, \j) Wy (u, Aj))
j=1 j=1
Then following the proof of Theorem 2 and 8 in Hansen (2008) we set E%Y (u) =B (u)T (u)
. . G . .
with T' (u) defined as in Lemma A.1.1 and thus I' (u) = T5dx (750 With Gx being the
constant multiplier of the spectral density of X, 7, as we define in (2.3.4) in Assumption

2(i). Then we can further denote

)\ﬁx(u)—mm)

B(u) = Rxy (u)  —r——Rxvy (u) _ Rxy (u)
e () WRXX (u)  Rxx ()

_ Bxy (@) /T(u
Rxx (u) /T (u

~—

i

~—

where dx (u) is the memory parameter local to a fixed u € [0,1] for the scalar regressor

X: 1. Note that the denominator is further given by

Rxx () _ | Box (w) =T (u)
L(u) I (u) ’
and the numerator is further given by
Rxy (u) Rxy (u) = Ry (u)
rw W Tw

Therefore in the following it is sufficient to prove the uniform asymptotic negligibility of

Rxx (u) — T (u) and derive the uniform order of Rxy (u) — Ry (u) over u € U.

First, we denote apr = 10%2\4, then we try to show that sup, ¢, Rxx (u) =T (u)| =
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O, (anyrr). Denote

)\2dx(u)—26(u) M 26(u)
AX (u) = MTZA] Re (AXJ[CJA;(J)

j=1

using the same notations as in the proof before. Note that

sup | Rxx (u) =T (U)’ < sup | R x (u) — Ax (u)|+sup [Ax (u) — E (Ax (u))|+sup [E (Ax (u)) =T (u)],
ucl uel ucl ucl

and by the proof of Lemma A.1.1, sup,, ¢, ’EXX (u) — Ax (u)’ and sup, ¢y [E (Ax (w)) — T (u)]

correspond to Q1,p and Q3 in (A.2.1). Therefore we have

Rxx (u) = Ax (u) + O, (h) and E(Ax (u)) =T (u) + o (h)
uniformly over u € Y. Then it remains to study the order of sup, o, |[Ax (uv) — E (Ax (u))],
which is given by

)\de (u)—26(u) M

sup [Ax (u) — E (Ax (u))] = sup | "M SOAPRe (Ax (I — E(Ic;) Ak ;)

uel uel M j=1

where for each j=1,..., M

T T
1 : s)r; Ax
Re (Ax ;1 ;A%,;) = Re (Ax’jz DD Gl Knsue T AXJ)

c
Tu =1 s=1
T
— Ay, K7 1 A Ay Kt K sue’ N A
— 44X, 72 ZCtCt hytu X,j+Re X.i72 ZCtCs hyitudlh,su€ TAX
“Tu 121 “Tu g

T
1 ! * 1 ! P(t—8)N; g%
=Axj5- > GG KR A% + Re <Ax,j 22 D GG K n K s’ AX,J')

Tu =1 Tu  t>s
T
_ 1 2
=2 Z (Kh,tuzlt,j + 2Kh¢tuZ2t,j) .
“Tu y=1

It is easy to see for each j, the process {Z1; ;} is 1.i.d. over ¢ with its expectation equal to

Ax ;A% And

T T
1 : Y
Re (Ax,E (I ;) Ak ;) = Re (AX,J- > > E(ad) Kh’tuKh’Sue’(t_‘s)’\ﬂA}’j>

2
c
Tu =1 s=1
T T
Ay STR2Z A = L NTR2 R (2,
— 4X,i73 htutX,5 — 72 h,tu ( 1t,j)‘
Tu y— “Tu 1=
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And Zy ; is given by

t—1
Zoj =G Y KnwRe (Axgzx,jei(t_sw) Css

s=1

which implies that { Zy; ;} is a martingale difference sequence (m.d.s.). Therefore sup, ¢, |Ax (u) — E (Ax (u))]

can be bounded as the following,

N2dx(=25) M LT
A —E(A < B — A0 — K? (Z1¢; —E(Z11
21615\ x (u) —E(Ax (u)] < sup i >N 2. Z htu (Z1tj — E(Z1t,5))

Jj=1

+ sup Z A2(WRe

)\2dx (u)—26(u) M
ueU (

ZKh tuZ2t,]>

T“tl

1 I /\2dx() 25(u) M 25(0)
=sup |—-— K? w | A Re (Z E(Z1t.;
uell,){ C% ; h,t i ]21 ( 1t,5 — ( 1t,J))
>\2dx(u) 25(u) M

+ sup Z Koo | 2> ARe (Za )

weld |ty {= j=1
T T
= sup E Kh w21t | + sup E K tuZot.m
ueU Tu =1 ueU Tu =1

= sup |SX; (u)| + sup |SXs (u)].
ueU ueU

Therefore using the restriction of linear process given by Assumption 1(i), we can return
to analyzing the objects with average over time domain, and thus can borrow some classic
methodology to obtain its uniform order (e.g. Hansen (2008)). In the following we firstly
study sup, ey, [SX1 (u)|. As the standard procedures to derive its uniform convergence rate,

we firstly truncate the process {Zu, M} using the threshold 7,7 = aX/[lT. Then we denote

for any u € U,
1 & .. 1 E

SXi(u) = = ZKh ruZrerl (‘th,M‘ < TMT) + 5 ZKh ruZrearl (’th M’ > TMT)
Tu $—1 Tu t=1

= SXH (u) + SX12 (u) .

For SXi5 (u) we have

E|SXis (u)| < Czi ET: K} (‘ZH,M‘ 1 (‘ZM,M‘ > TMT))

Tu ¢—1
T

1 . ..
< CQT ZKh tu <’th,M’ TM(YQ‘ Y1 (’ZIt,M‘ > TMT))
u =1

| /\

2

T .

]\/IT —1
E Khtu ’ZM,M‘ < Ty
CTu t=1
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where in the second inequality we adopt Assumption 6(ii) with s = 2, and the last inequality
holds by the fact that

< \2dx () =26(u) M

) MT Z A?é(u)Re (Zu,j —E (th,j))

E ‘th,M
j=1
2dx (u)—26(u) M
—F % Z A?é(u)Re (Ax,j (th; - 12) A}J)
=1

S

\2dx (w)=25(u) M

<| P 2 Ml E |66 - |

using Assumption 2(i) and 6, and definition of ¢2,,. Then Markov’s inequality implies that
1SX12 (w)| = O, (1377) = Op (arsr) holds uniformly over u € U.

Then in the following for SX1; (u) we can assume ‘th’M’ < 7r and replace th7M1 (‘th,M‘ < TMT)
with th,M. To further proceed, we split the space U using regions U; = {u cu €U, lu—uy < aMThQ}
with grids {u;}, ¢ = 1,..., N. Then by definition N = aMT — - asymptotically. Suppose we
define F;Ltu =K }27,,tu? then the nonnegativity, boundedness and Lipschitz continuity of K, 4,
from Assumption 3(i) and 3(ii) together ensure the Lipschitz continuity of Kp, 4, Thus we
can treat Kh w = h 2%k (t T“) as a new kernel. Note that as in the proof of Proposition
A.1.3, Hansen (2008, pp.740-741) implies that for all u € U; and any 4, the kernel Kp, 4,
satisfies that

| Kt — Kh,tui‘ < Ch™2 |u — uy FZ,W < CGMTF;MH

for some constant C' and some integrable kernel function F;tu. And for SX11 (u), we also

have
|5X11 (u)| = ZKh AT (A.1.4)
€Ty t=1
1 T o )\2dx(u)—26(u) M 26(u)
= | > B | P > A WRe (4 (GG - 1) Ak
Tu =1 =1
T 2dx (u)—28(u) M
c b7 )‘M 25(u)
< 5t 2 Kt Z/\ sl 66t 1o

)\de (u)—26(u) M

e [ S o
t=1
_ XT: |GG = || 1+ 0, (A3,

where the first inequality holds by the definition of ¢%, and Riemann sum approximation,

109



and the last two equalities hold by Assumption 2(i) and 2(ii). Then for any 4,

T

sup |SXy; (u)| = sup K?., Zvm

uweU; uel; CTu ; htu 1t
< sup ¢ Z?h u |[Ge —I2H (14 0p (\3y))
o uelU; Th=t =1 ’ b

sup W ()] (14 Op (A3y))

with v > 1 defined in Assumption 2(ii). So to derive the order of sup,,¢¢;, [SX11 (u)| for each
i and then for sup,, ¢, [SX11 ()], it is sufficient to study sup,cy;, |¥ (u)| for each i and then

for sup,,y0 W (u)|. Then sup,, ¢, [¥ (u)| can be further given by

T
C — /
sup |V (u)| = sup Kt ||G€ —IQH
ueUi\ (u) D |7 ; tu ||
C < C <
R ’ _92 — ’
< |7t ;Kwui )gtgt—IQH +Oh? Ju— il | ;KWW ¢y — I

thus

Pr{sup|¥ (u)|>¢e| <N max Pr|( sup |V (u)|>¢e
(sup ¥ 01> ¢) < & max Pr (sup 19 ()] > ¢
T*
712Kh,tui
t=1

1 T
Th—1 Z Khiui
t=1

GG — I

1
<N p
=040 r( Th

> Cs) (A.1.5)

G — I2H

+ N max Pr(
1<i<N

> Ce) . (A.1.6)

where in (A.1.6) we use the fact that ay < 1 when T is large enough. In the following we
bound both (A.1.5) and (A.1.6) using the same exponential inequality adopted from Bennett
(1962, pp. 34) as

T
—(t-T
e[S ()
t=1
where we take (A.1.5) for instance and use K htu =D~ 2k ( —F ) and the above inequality

G — IzH ) and Qr = max;<i<7 Q4

e IQH C%2)2 )

o2+ QrCe/3

> CThs) < exp (

holds for every & > 0 with 02 = Y1 E (k )

with & (t T“ HQQ — IQH < ;. Then to proceed, we can set Qr = Ty = aMlT using the

same reasoning as in (A.1.4). And a bound for o2 can hold with some constant C' as

o= ()

Gl — IQH ) < CTh

110



by Riemann sum approximation. Then by setting € = ayr = 10%,]:/[ , we can obtain for

sufficiently large T that

T
—(t—Tu ’ C*T?h%a3, /2
T k H -1 H > CTha < ex (— )
( tz:; ( Th ) Ct(t 2 MT P Th + CZG,NITT}LCLMT/?)
(C%log M) /2 —_q
= _ = M 2+302
which holds uniformly over u. Then
__c? T 2
Pr (sup |U (u)| > €> <NM >3 = a7 h™2M 2+ e = = =o0(1)
ueu (log M) M 3% 3

when C is sufficiently large by Assumption 7. Therefore we can conclude that sup, o, [SX1 (u)| =
Op (aMT) .

Next for sup,, ¢y, |SX2 (u)|, we have by what we obtained from the proof of Lemma A.1.2,

sup |SXs (u)]
ueU

weU CTu —a

= sup ZKh tu ot M‘

\2dx (u)=26(u) M

26 (u
= sup ZKh tu MT Z)‘j “Re (Za;)
weld |1y 1= j=1

)\de(u) 26(u) M

= sup Z Ky mgt Z Kpsy 2t —onu— Z )\55(”) Re <2A/XJZXJ> cos ((t —s) Aj) Cs

well | €1, =2 s<t j=1

T ~
= sup ZZ2t7M|'

ueU t—2

Note that th, M is a m.d.s., then we can analyze its order using the same truncation thresh-
old, and the same split of U, while using a different exponential inequality for martingale

(see e.g. (1.9) in Fan et al. (2015)), which is given by

2
5
P{Spr>¢ and Vp<v® for some T} <exp|——s——
57 2 rev <o (ppri i)
if the m.d.s. satisfies that maxi<;<7|X;| < Qr with probability approaching one, with

St = Zle X; and Vp = Z;‘ll E (th | .7-},1). Then under our setup
T

Z]E (th,]\/[ | ]:tfl)

t=1
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T Kh /\2dx( u)—26(u) M o5
tu u / —
Z Ct ZKh su M Z)\J ( )Re (2AX,jAX,j> COS((t—S) >\j)<s | ft,1
t=1 Tu s<t j=1
T
where
. Kh tu )\de(u)—Qé(u) M 26(u)
Doy = ZK,MuiM i Z)\ “ Re <2AXJAXJ) cos ((t —s) Aj) Cs
Ty s<t j=1
Kh u
= TJ Z T]\/IsCs-
CTU s<t

Then by the nonnegativity of ZtT=1 ZétZth, we have

T

=S B (Z )

t=1

T
E|S" Z 2
t=1

2

d T
:Z htu (ZZC TMTTMSCS>] Z 2 Z”TMSHQ
t=1 s<t r<t = Cu ~
T K2 Y )\2dX(u)—2§(u) M "
S; C;’z 2 Kp oM = > 25 ) ‘R (2AXJAXJ) cos ((t — s)

)\de (u)—26(u) M 2

T 2
Do | K P DN T M eos (1 - ) Ay)

4
=1 Tu s<t j=1

IA
=~

~

IA
Q

for some constant C, where the second last inequality follows from how we derived the

asymptotic covariance in the proof of Proposition A.1.4. Then by Markov’s inequality

t1Q

T
Pr (Z Ty Zog > <p> <

t=1

holds for any ¢ > 0, which means 23:1 ZétZugt is bounded in probability. Therefore using

the above exponential inequality we have for any u € U that

(=) {5

g2 - %2 Pl
< - — M 24+ %2C
—G“D( 2«>+QT@> ’

> ¢ and ZE (ZQt) < C for some T}

t=1

log M
Th

by specifying € = ep = which is the same order as we obtained just now. This helps

concludes that sup,, ¢, [SX2 (u)| = O, (arrr). Therefore we have sup,, ¢y, Rxx (u) =T (u)| =
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Oyp (amr) + 0y (1).

Second, we try to derive the uniform order of sup, ¢, ’EXY (u) — E%Y (u)|, which can

be further given by

sup | Roxy (u) = Ry ()] < sup |Rocx (u) B (w) — By ()| +5up | Rocx ()| +5up | R (u)

)

ueU ueU ueU uel
where
— )\2dx (u)—26(u) M 26(u)
Rxx (u) = MT D> AL Re (wx (u, Aj) B (u, X))
j=1

with wx (u, A;) defined as part of bias term in the proof of Theorem 2.3.1. Since

sup Rixcx (u) B (u) = Ry (u)| = sup Rxx (u) B (u) = T (u) B (u)| = Op (anrr) + 0 (1)

and sup,cy }EXX (u)‘ = Op (h). Then it remains to study the order of sup,<;, ‘Exs (u)‘

Using the same reasoning and by replacing wx (u, A;) with we (u, A;), we can obtain

sup |Rx. (u ‘ = ( aMT)
ueU

Therefore by gathering all the terms we have so far, sup,y ’B () —B(uw)| = Op(h) +

Ad  [log M
0, (1,57

Proof of Theorem 2.4.1. Following the reasoning and notations in the proof of Theorem

2.3.1, we firstly decompose B* (u), which is

-1

M M
B (w) = | Y22 Re (wy (u, Aj) wi (w,A)) | | 30X Re (wax (w, M) w, (u, A7)
j=1 j=1

= Ry (u) Rxy, (u).
And then within Rxy, (u),

wy_(u, ;) is given by

it
y* (u )\j) == § Kh Jtulxt, T6
CTu

oAt Iy
= a ZKh tu (Xt,Tﬁ (T> + 5*t,T) e tA;

gl (o () ) ]

w;( (U,)\J)B(U) + w:* (U'a )‘]) + ’&)\;( (ua /\J) 5
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where w? (u,\;) is defined in the same manner as w;

u. (U, Aj), and @ (u, ;) is defined by

L 3(3) )
EZKW t,T [( (;) -8 <;>) — (B(u) _5(u)>} oitAs
_EZK’”“ tT( (7)) e

WY (u

=03V (u, \) + T (0, ),

where w¥% (u, A;) is identical to the one defined in the proof of Theorem 2.3.1 about the
order of bias. And by Theorem 2.3.2, both 3 (%) — B (%) and B (u) — B (1) have uniform
order given by O, (h). Thus we can follow the same reasoning as in the proof of Theorem

2.3.1 to obtain the order of bias as O, (h). In detail,

B (u) = B (u) + hBjy (u) + Ry (u) Rxe. (u)

where

1
M M
IE* Z 2(S(u)Re (wx (u, Aj) wy (u, Aj)) Z)\?é(“)Re (wx (u, \j) W (u,A\;)) | =

=1

and Rx., (u) = [Z;‘/fl ?B(U)Re (wX (u, Aj) wr, (u,)\j))]. Note that the asymptotics of
Ry (u) is derived as in Lemma A.1.1, then it remains to analyze the limiting distribution

of Rx., (u), which follows that

RXE* (u)
h M
= Apy (u) A3 (=200, | i Z A2 Re (wx (u, Aj) wk, (u, A7)
= Apy (u) A=() 7290 “M/ ZA% “Re (Ax (u, M) I, (u, M) A (u, A})) (A.1.7)

u)— u h u * *
+ A (u) Ag5 720 M/MZAJ?‘“ "Re (wx (u, X)) w?, (u,\;) — Ax (u, A)) e, (u, A;) AL (u, ;)
j=1

(A.1.8)

together with the convergence rate. Since (A.1.7), conditional on (X, €), can follow the same
moment condition and Linderberg condition as in the proof of Lemma A.1.2, as we only

replace the innovation vector process {(;} with the pseudo innovation vector process {(y:}
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that share the same moment conditions up to fourth order. Then it remains to analyze the
asymptotics of (A.1.8). Following we have done in the proof of Lemma A.1.2 and Proposition

A.1.4, an arbitrary a-th element of (A.1.8) can be further given by

M
§(u * *
SN Re (w, (u, M) w?, (u,Ay) — Ax, (u,Ag) I, (u, ) A2 (u, A5))

Jj=1

g

—1

J
26(u) —dx, () ~de () _ 3 20(u)—dx, (u)~d (u) dx () b () .
=3 (At — A2 ) Do A Re (Tne. s — Ax, kle. xAZL)
J k=1

Il
—

M
26(u)—dx, (u)—de (u) dx, (u)+de (u) x
+A2 x § A" Re (Lo, ,; — Ax.jlc. jAL;)
j=1
M-1

= (/\ié(u)—dxa(u)—dg(u) _Ajfr(u) dx, (u)—d. (u)> Q" (j )+)\26(u) dx, (u)—de (u)Q (M)

<.
Il
fa

using more compact notation as before, and here we do not consider the multiplier Ay (u) )\7\5[(”)_25(") £/ %
for now. Then as in the proof of Proposition A.1.4, @* (j) for any fixed 1 < j < M follows
that

J
Q* (]) _ Z )\ZXQ (w)+de (u) Re (Iaa*,k: _ AXa,kIC*,kA;k)

k=1
l
= SOOI Re (1o, ik — Ax, il 1ALy, Z Axa (T Re (e g — Axy il 1AL
k=1 k=141
= Qi + Q5.

Firstly for Q] we have

(NI

MN

1

1 2
w1 dx, () 2
ElQil <5 (Z AV Ewx, ke — Ax, kwe, k|

k=1

M| —
bl
Il
—

l\D\»—l

(Z MR fwx, g + Ax, g, 4l )

1
! 3
1 d. « . e (2
2 ( N R fw = wl g AL ) :
k=1 k

=1

At each 1 <k <1,

E|wx, x — Ax, wwe. il

Z Kh tuKh suel(t il

T“’ts 1

x [E(XatrXas1) = E(Xap 1) A,k — Axy bE (GaXasm) + Ax, kB (Carly) A, 1] -

Note that our bootstrap only replaces the innovation of error term. Suppose we decom-

pose (; = (Cg(7t,C57t)/, then (. = (gg(yt,g*s,t)'. Following the proof of Proposition A.1.3,
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E(Xat,7Xa,s,1) stays the same as before, while

/ > ~ (X,t—kcl s CX,t—kC* ,8
E (Xou7C.s) = (Z Ax,r () G kc*s> =3 (Axutr (1) ,0) E - ]
k=0 Cs,tfkg)gs Cs,tka*s,s
~ I, 0px1
= (Axaur =900 | 7 ) = Axr(t-9)
lep O

by Assumption 1(i), which also replicates the result in the proof of Proposition A.1.3. And
the same conclusion holds for E (¢4 X, s,7). And E ((*t(:;s> =K (CtC;) by construction.
Therefore E |wx, 1 — Axmkwgmk\z is the same as E |wx, j — Axmkwgk\z as in the proof of

Proposition A.1.4, and the same conclusion holds for E |wx, » + Axa,kw¢*7;€|2 as well. Next

E|w?, ; — wZ*,kAZ,klz

5 Z Kh,tuKh,suei(t_s)/\k {E (E*t,TE*s,T) -E (5*t,TC;s) :,k - Ae,kE (C*tf‘:*s,T) + Aa,kE ((*tg;s) ;k} )

C
Tu ¢ s=1

where
I . [
E (E*t,TE*s,T) =E Ti Z ? fs Z Z C*a rC*s uel(T RRY e_l(“ )Xk
7j=1 r=1u=1
o T T
= Ti Z Z ( ) l )‘k Z e“‘)\] ke—ztkj 615>\k
j=1k=1
- T
(R G e

= 2%2 fs <1t—n/\J> \/ fs (%a/\j)eii(tisp\j + 0(1)
j:l V

fg (u, \) e 1NN O (1 +h) = [ fo(u,\) e AN O (1+h)

0

where the third equality holds because Ef e™Ai~* is nonzero only when j = k, the fourth
one holds by Assumption 8(ii), the fifth one holds by Riemann sum approximation and the
corresponding smoothness conditions of f (u,A) over u € (0,1), and the last equality holds
by 2m-periodicity property of f. (u, \) e~ t=9)A Note that again we obtain the same result

as E (e;,7€s,1). Next

E (g*t,TC:«s) = \/?Z \/T\F Z]E Cre, rg*s) ir=bA;,
=

’

where as before C;S = (C;{7S, 4*878) . Therefore it is sufficient to consider the element involv-
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ing Cye,s, which gives

Jj=1
V2T t s
=k (A) 1= 4 o(1)
j=1
1 4 )
= ﬁ fe (u, e 92N . 0 (14 h)
™ J—m
1 .
=3 |A (u, A+ M) | e {EA A dX O (1 + h),
™

which is also identical to E (Et,TC;) except imposing the norm to |Ac (u, A + Ag)|, but it
will have the same order in the end. And the same result holds for E ({.&xs,7), which

2 2
implies that E |jw? *U’Z*,kA:,k has the same order as E|w] fwz’kA;k , and the

2
same conclusion holds for E ’w: Lt kaA:k‘ . Together with what we have derived for
Elwx, i — Axa’kw@’k|2 and E|wx, 1 + AXa,ka*’k|2, E |@Q%] has the same order as E|Q1] in
the proof of Proposition A.1.4.

Next for ()5, we continue following the proof of Proposition A.1.4 and have that

E|Q3I’

i i
=E [( > xRl (- AXa,kIC*,kA:,k)> ( > AR (A (- As,kIC*,kA;(a,k)>]

k=l+1 k=1+1

J
2(dx, (u)+de(u))
= E Ap TR [(wx, wwk, g — Ax, pwe, kWE, RAL ) (W, gwi,  — Acpwe, pwl, 1A%, k)]
k=Il+1

J
i Z )\Zxa (u)+d5(u)/\«51xa (u)+de(u)

s#k;k,s=l+1
* * * * * *
X B [(wx, pwl, k — Ax, pwe, w0l 1 ALg) (we, pwk, g, — Aepwe, w0l k1 Ax, k)]

= Q5 + Q2,

where using the same notation as in the proof of Proposition A.1.4, we can denote

J
Q5= > A B (4, o) E (eaf) + E (arer) E (efa) + E (araf) E (cer)
k=141

— E(ARE}) E (eray) — E (Ager) E (Eay) — E (Aray) E (Eger)
— E (agey) E (EpAy) — E (arEy) E (e; Ap) — E (0. A}) E (e E)

+E (AxEp) E (ExAp) + E (AxEg) E (Ep Af) + E (AR Ay) E (ERE))]

J
+ Z )\i(dX“ (w)+de(w)) [cum (ak, €}, ex, ar) — cum (Ag, Ef, ex, ay,)
k=I+1
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—cum (ag, ey, By, Ay) + cum (A, Eg, B, A})]

= Q21,0 + @210,

where ()21 4 is the part without cumulant and @21 is the part with cumulant, and

J
Qu= Y Al () R () o) B (egal) + E (age,) E (efal) + E (aal) E (cjes)
s#k;i,k,s=1+1

—E(ALE})E (esal) — E (Akes) E (Efal) — E(Aral) E (Efes)
—E(are;) E(EALY) —E(arEs)E (e AL) — E (apA%) E (e} Es)
+E (AR Ey) E (Es A7) + E (AcES) E (ERAY) + E (ApAD) E (B ES))
J
+ Z )\Zxa(U)-*-de(U))\gxa(U)+ds(U)
s#k;yik,s=l+1

X [cum (ag, €5, €5, as) — cum (Ayg, Ef, es,a%) — cum (ag, ef, Es, A%) + cum (A, B}, Es, A%)]

= Q22,0 + Q22

where Q224 is the part without cumulant and @224 is the part with cumulant. Note that
the order of Q21,, and Q22,4, can be covered by analysis of E (ege;), E (araj), E (ArA4})
and E (E,E}), which can be dealt with identially as we did above, and the same order as
in the proof of Proposition A.1.4 continues to hold. Thus it remains to consider the parts
containing cumulants, Q21 and @22, and it is sufficient to analyze Q22 as it is dominant,

which is given by

J
d w)+de(u) ydx, (u)+de (u
Q220 = Z )\an( )Hde () ydxy (u)+de(u)
s#k;ik,s=l+1
X [cum (ag, €}, es, a}) — cum (Ag, B}, es,as) — cum (ag, ef, Es, AZ) + cum (A, Ej, Eq, AY)]

_ zj: A (00, ()40

s#k;i,k,s=14+1
* ~ ~ %
X [Cum (’u}X e 6 k,wg* S7w§ 7S) — cum (AX k:wC ko C kAa,k)wg*,Saw)za7s)

—cum (wX k, WE, 1 A, ch S,@—Z‘;’SAXH,S) + cum (AX kw( o W AE i Ae, SwC o 2*,SAX‘1’S):|7
where correspondingly we denote

itk
)

T
E itA E
W a,t,u,T€ e’ a t,TKh,tue
Xk = VorT P} V2T

and denote wf , and w, wg_ . n the same manner. We consider cum (wX o WE, o, W, s, w)?ws) ,
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which at large enough T is given by

~ ~ % ~ ~%
cum (w)? K WE, k’w&’svwia’s)

:cum< TTFTZ a,t,u,T€

Zt}xk

T
_ t1,..,t4a=1 v ~ ~ v i[(t1—to) A+ (tza—ta) Xs
= T 2 cun (Xa,thU,T’S*tzyu,Tv5*t37U,T7Xa,t47u,T) etltr=t2) Mt (ta—ta)As]
(2rT)
T
t1,.0, t4 1 A A A
(2 T T, 2z cum Xa,t1,T Ctl JT7 e,t2,T Ct2 jTa st3T
s

2rT? i[(t1—t2) Ap+(ts—ta) As]
X | —5 Kh,tluKh,tzuKh,tguKh,t4ue 1Ak 8T )
where the third equality holds by the fact that

T
Ext, T = 7 Z fa ( j) Zg*s,rei(T_t))\j
r=1
= Z/ ‘Aa (u, )\)‘ e_il/\d)\C*e,tfl = Z A* (U7 l) C*s,tfl
=0T =0

1 T
— it g : Teit)\
) E *t,u,
V2T 7

~

—it
a,t,u,T€ S)

o]
3) Cts—4.1 Z Ax o, (J) Cla—j,r

by denoting r —t = —I; and the second equality holds as we can replace (i, with its

ii.d. pairs to make the indices match, which requires a large 7. We can see that €.¢ 7 can

recapture the linear process structure asymptotically, and in (A.2.18) the part corresponding

to Ac (u, A) can be replaced by |A¢ (u, A)|, which means the rest of the order is also identical

to the one indicated in Proposition A.1.4, which then completes the proof of Theorem. B

A.2 Proofs of the Technical Lemmas and Propo-

sitions

Proof of Lemma A.1.1. Denote the matrix of time-varying periodogram as Ix (u,A) =

wx (u, \) wy (u, A), and its (a,b)-th element as Ix,, (u,\) = wx, (u,\) w¥, (u,A) for any

1 < a,b <p. We focus on the asymptotics of

an (u)+dxb (u)—25(u) M

A 26(u
M DN Re (Lx,, (u.)))

j=1

which is the (a, b)-th element of the first term in LHS of (A.1.1), and 1 < a,b < p. To save

space, we will suppress the dependence of Ix qp (u, A;), I¢ (u, A;), wx, (u, ), we (u, Aj),

and Ax, (u,\;) on u and write them as Ix 4 ;, Icj, wx, j, We j, and Ax, j, respectively
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whenever no confusion can arise. Let

Q1,5 = Ix,,j — Ax,jlcjAx, j and @25 = Ax, jlc jAX, ; — fxa, (U, A5),

where Ax, (u,\;) = Y52 A%, (u, k) e is defined as in (2.3.1). Consider the following

decomposition:

/\an (u)+dx, (u)—26(u) M

25(u)
i ;)\ Re (Ix,, (u,A;)) — Tap (u)
Adxa (w)+dx, (u)—26(u) M 0 an (w)+dx, (u)—26(u) M 0
=M ZA “Re (g 7 S TAPMRe (g2,)
j=1
)\dxa (u)+de (u) 25(71,) M 26(
M u
+ i ;A Re (fx,, (4,4)) = Tap (u)
=Qim + Q2m + Q3. (A.2.1)
We prove the lemma by showing that Q; s = o, (1) for { =1,2,3.
First, we study Q1,5. By summation by parts, we have
M 5 M-1 5 5 1 J 1 M
2 u 26(u 2 u
Z “Re (g1,/) = ()‘j -2 ) D Re(g1x) + Xy MZRe(qLJ’)
J=1 Jj=1 k=1 j=
M—1 5 5 M 5 M
20(u 2 u 20(u
S ‘A] ( ) j+(1 Z |Re q1,k | + >\ ( ) ZRE (QLj)
j=1 k:l j:l

(A.2.2)

where

M
3. Re(an)

M
§ : IXabJ AXaa]IC JAXb _7| - § |an7.7wXb J AXa;]wC ]wC ]AXb ]|
J=1 Jj=1

M
1 * * * * * *
= Z B} ’(mej — Ax, jw¢ ) (wXb,j + w(,ijb,j) + (wx,,; + Ax,,j0¢,5) (wXb,j - wc,jAXb,j)|

j=1
1 M 1 M
< 5D l(wxe s = Axyjweg) (W +wE A% )| + 5 D |(wx,j + Ax, juwe ) (wk, ; — g ;A% )]
j=1 j=1
1
=35 (51 (M) + 52 (M)).
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By Cauchy-Schwarz inequality,

M H 2
2 * * * 2
Sy (M) < | ) fwx, ; — Ax, jwe D lwk, ; +wd A%,
j=1 j=1
M % M % 1 1
2 * — Q2 b
<D lwx, ; — Ax, jwe 2> (Ixy + Ax, il A%, ;) | = SH (M) - SE (M),
=1 j=1
and similarly
1 1
M 2 M 2 1 1
2 * — 2 2
Sp (M) < [ D wx,; — Ax, jwe ] 2> (Ixpoj + Ax, 1A%, ;) | = SH (M)-S3, (M),
j=1 J=1

By Proposition A.1.3, we have

S (M) = 0, (T'Fx,, (u, Am)) and Siz2 (M) = o, (T'Fx,, (u, Anr)) -
It follows that Sy (M) = o, (TFX (u, M) F2, (u, A,n)). Similarly,
S2 (M) = 0, (TFR,,, (w M) FX,, (A1) )

1 1
Then ijvilRe(ql,j) =0, (TF)Z(M (u, Anr) Fg,, (u, )\M)>, and the same order holds for Z,JCVIZI Re (q1.1)|-

This, in conjunction with (A.2.2), implies that

M M-1
1 25 1 25 26 1 1
= A Re(qy) < o X0 =230 0y (TR, (w Anr) PR, (s Aar) )
=1 i=1
+ LB, (TEE (uAn) FE (uAar)) = Buag + B
M M p Xaa y AM Xpp s AM = D1,Mm 2,M -

(A.2.3)

Noting that \j+1 = 2”(%+1) =201+ %) =\(1+ %), we have for some absolute constant

C' that

26 (u)
J

‘)\36(”) . )\26(u) —\

C | 25(u) 1 25(u) 1| 25(u)—1
+1 S*)\ :O 7A :O *)\ 3

j 2mj T

< 1)26(u)
14> 1
J

and note that the existence of C' can be justified by the leading terms of binomial series

25(u)
(1 + %) and the fact that the remaining terms are of smaller magnitude as j goes from

1to M.
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Then by Assumption 2, B; s follows that

1 \20(w) _ 3 26(w)
BlM_MZ Aj+1

1 1
0p (TFX (u, Mar) F2, (u, )\M))
1 1 MY 1-d d
o) )\25(u) 1 (T}\ Xq (u)— Xb(u)>
]:1

()\2 (u)+1—dx, (u)— dxb(u)) =0, ()\if[(u)fdxa(u)fdxb(u)) .

Similarly

1 2 1 1 26 () —dx, (u)—dx, ()
Byar = 2010, (TF;M (u, Ant) F2, (u,AM)) =0, ()\M Xa(W)=dx, ) .

26(u)Re(q17j) =op (A?\Z(u)_dx“(u)_dxb(u)) and therefore by Riemann

It follows that - i ZJ 1A

sum approximation,

dx, (u)+dx, (v)—26(u) M

A
T SN Re (1) = 0, (1).
j=1

Ql,]w =

Next, we study Q2 pr. We decompose it as

)\an (u)+dx, (u)—26(u) M

26(u
Qo = M - ;A “Re (Ax, ;1c; A%, = fxa (W)
)\dxa(u)+dxb(u)725(u) M 2500
= M M Z )\] u R,e (AXa ] Z CtCtKh tuAXb j fXab (U7 A]))
j=1 Tu t—1
)\an (u)-‘rdxb(u)—Qé(u) M 25(0) 1 / -
+ = M Z/\j "Re Axoiz > GG K K p sue’ TN A,

Tu t£s

<
Il
—

)\dX,,, (u)erxb (u)—26(uw)

— M
M

)‘26(U)Re (QQ gl + Q2,32)

Mz

<.
Il
-

= Q2,m1 + Q2,m2-

In the following we study Q2 a1 and Q2 a2 separately. Firstly for Q2 a1 we have its expec-

tation given by

Adxa(u)-l—dxb(u) 26(u) M 0 1 T
E (Qan) = M 3 AR, <,4Xmj 5= DB (GG K7 A%, 5 — Fxo (g ))
j=1 Tu =1
)\dxa (u)+dx, (u)—26(u) M 25(w) 1 T
u *
e T LIS SIRY)
Tu =1
)\dxa(u)—‘rdxb(u) 25(“) M 26(
i ZA u ( Ax, i A% 5 — Fxon (u,Aj)> _
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by Assumption 1. Then for the variance of Q2 /1 we have

2ldx, (u)+dx, (W) ~26(u)] M M

A (u 6(u
Var (Q2,a1) = e sz AL Cov (Re (g2,1) , Re (g2,41))
j=1k=1
)\Q[dx,l(u)erxb(u) 26(w)] M M 0 25(
1/2
< oM Ve SN TARENES (Var (Re (g2,51)) Var (Re (g2.01)) 7.
j=1k=1
Note that
T 2
1
Var (Re (q2,j1)) =E |Re <AXa’J C Z CtCtKh tuAXb J fXab (’LL, )\J)>‘|
Tu t=1
2
S E (l?j Z CtCt’Kh tuAXb 7 fXab (u7 A])
Tu t=1
2
* _ * 2
=E Axa,g =) ZCtCtKh wAx, j — WAXavjAXb,j = ]E|AXaij1jAXb1j’
u =1
where we denote Dy; = D; (u, \;) = Zt 1 tht be w5 L I,+1, which is a real symmetric

matrix. Then following the above equahtles, and using the fact that tr(ABCD) = vec (A’)" x
(D' ® B) x vec (C'), we have

E |AijDle}b,j’2 =E (Ax,,;D1jA%, jAx, ;D1 A%, ;) = E [tr (A%, ;Ax, ;D1iA%, ;A%,.:D1j)]

—= vec (A}a,jAXa,j)/]E (Dlj ® Dlj)VEC (Aj(b,jAvaj) 5

Let D1 mn denote the (m,n)-th element of D ;:

1(m =n)

imn — Z Ct mCt nKh tu o )

we have that

E(Dlj ® Dlj) =E

( ZCtCtKh tu : Ip+1> ( ZCtCtKh tu ! Ip—H)}

Tu t=1 Tu i—
1 1 1 T
=E TZQQ{K}%M ZCthKh | — Tlp—‘,—l QE TZQQK,%M
“Tu =1 Tu t=1 g “Tu 321
1 & 1 1
IE _ /K2 I I I
(CQTu ;Ct@ h,tu) ® o 1Pl +— (277) 5 (Up+1 ® Ipi1)
1 ) 1
=E (2 Z CtgéKfQL,tu Z CtCtKh tu) ) (Ip+1 ® Ip+1) ,
“Tu 4= Ty t=1 (2m)
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where the last equality holds by the fact that

1 1
%Ierl QFE < E GGKG tu) = < Z GG t“) 27TIp+1
Tu =1 Tu t=1
CTu t=1 ht" Ipta or LT (2m)? p+1 & fptl) -

Next we can see that

( Z GGt B © Z@@Kh tu> (A.24)

T"tl Tutl

E (CtCt ® CSC )Kh tuKh su

IN Il
Q‘H Q‘»—‘
Mﬂ“ﬁMﬂ

P+1 ® Ip-‘rl) (t = 5) + (IP-H @ I;D-H) 1 (t 7é 5)] KizL,tuKizL,su

1
Tu t,s:l
1 T T
=7 (¢ (Ip+1 ® Ipi1) Z K+ (Ipt1 © Ipy1) ZKZ,tuK}%,su
Tu = t#s
I ®1I C 1
< ( p+1 p+1) Zt 1 h tu + 2Ip+1 ®Ip+1

CTu (27‘1’)

1 1
O(Th) p+1®l+1+( 77) 5lp+1 @ Ipya

where the inequality holds by Assumption 1(i) and the last equality holds by Assumption
3(ii) and Riemann sum approximation that Zthl K (t—Tu) = Th™3ko4 [l +0(1)] and
S K2 (t—Tu) = Th™ ko2 [1 4+ 0(1)]. Then insum, E (D1; ® D1;) = O (%) Lpt1 @ Lpi1,

which then implies that

* 2 1 % 2
Var (Re (g2,51)) = E[Ax, ;D1 A%, 4| = O (Th) |Ax..54%, 4]

2dx, (u)—2dx, (u)
= ()

and

)\2[an (u)+dx, (u)—26(u)]
Var (Qo.n) < M

M
S AZENBE) (Var (Re (g2,01)) Var (Re (g2,00))}

NE

2
M j=1k=1
- )\?\dea(u)wxb(u)fza(u)] M M ; /\QJ(H)_dXG(u)_de(u))\%(u)_dxa(u)_d)(b(u)
= 20 ‘ )

—

e
I

—_

<.

“o(h) e

by Assumption 4(ii) and 4(iii), and thus Q2 p1 = 0, (1).
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Next for (2 a2, we can rewrite it as

)\dxa (u)+dxb (u)—26(u) M o 1 ‘
Q2.2 = i Z A (“Re AX,j 5 Z Gl KK sue™ N AY,
j=1 €Tu t#s

)\dxa (u)+dx, (u)—26(u) 1 M 25 o ‘

= M ZC)& Z (u IXa,jAXb,th,tuKh,suel(t_s)Aj gs

M CT“ t#s j=1

)\dxa (u)+dxb (u)—26(u) 1

— ‘M !

= M aRe Zth)t,s,MCs

t#£s

Then it is easy to see that E (Q2 p2) = 0, and its order can be determined by E |Q2,M2|2,

which is further bounded by

)\Q[dxa(u)+dxb(u)—26(u)] . 2
E Q2 a|” < 2M e CTE ZC;‘I%,S,MCS
Tu t#s
)\?\/[Idxa(u)—&-dxb(u)—QtS(u)] 1

= a Z Z ]E(Gl(I)tl,s1,MCs1Ci{QEtz,sz,MCsz)

M? c
Tu t1#£s1 taFsa

2[dx, (u)+dx, (u) 726(u)]

S X Y

— )\]\/I

2[dx, (u)+dx, (u)—26(u)]

M2

Tu t1#s1 taFsa

ZZ]Etr

51 tl,al,]\/ICt1 Ctg (bt2782,M<82)]

t1 S1, MCt1Ct2¢t2 S2, I\/ICSQCSl)]

Tu t1#s1 taFsa
2[dx, (u)+dx, (u) —26(u)]

= Aui Ve Z Z vec <I>t27527 )/E

Tu t1#s1 taFsa

(Cszggl ® Ctzgt/l) vec ((bthshM) .

(A.2.5)

And by Assumption 1(i) and (2.3.6),

E (¢l ® CCt) = (Tpp1 @ Ipp1) 1 (1 = to # 52 = s1) + P1(t; = sy # ty = 51)

with sparse permutation matrix P defined in Assumption 1(i) and (2.3.6). Then (A.2.5)

follows that

2[dx, (u)+dx, (u)—25(u)]

Aur iz Z Z vec (D, 50, M ),E

T" t1#£s1 taFsa
)\2[an (w)+dx, (u)—25(w)]

(CSQ C;l ® Ctz C;l) vee ((I)tl,ShM)

—_ ’
_ M e C%WU#ZSVGC (®t7s7]\/j) (Ip+1 ®Ip+1)VeC ((pt,s,M)
)\Q[dxa (u)+dx, (u)—25(u)]
+ M Ve Z Vec i M Pvec (Dy,s,0)
Tu t£s
=V + Ve,
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where firstly V; is further given by

)\2[an (w)+dx, (u)—25(w)] B /
|Vl| _ M M2 T ZVGC (@ns,M) (Ip+1 ® Ip+1) vec ((I)t,s,M)
CTu t£s
2l W, 02300 T ’
=M v A* —i(t—s)A;
a M?ct, ;VGC Jz::l N AR, A KK sue” )

M
) - i(t—s)\s
X (Ips1 ® Ipp1) vec Z )\3 (u)A/X,,,,jAXb,th,tuKh,sue (t=9)4;

j=1
)\2[an (w)+dx, (u)—26(w)] M 1
< M e Z )\55(’114) )\ié(u) CT Z K}%,mKi%,sueﬂ(tfs)Aj_k
jk=1 Tu g

x ||vec (A%, jAx, )| Hpr1 ® Lpya | |[vee (Ax, 1 Ax,5)]|
2[dx, (w)+dx, (u)—26(u)

)‘]VI
< Ve

M

46 (u 1
Z)‘j w CTZKZ,tuK?L,su

]
j=1 Tu £

x ||vee (A%, jAx,.5) || 1 ps1 ® Tpga |l || vee (A, ;Ax, ;)]

)\2[dxa(u)+dxb(u)726(u)] 250 2500y | 1 _
L P DU P oD DL S
j#k Tu yo£g

x ||vec (A%, jAx,5) || Hp+1 @ Tpa | ||vee (A, 1 Ax,k) ||

= Vi1 + Vio,

where the norm ||V|| for a K-dimensional complex vector V' is defined by 4/ Zfil Vi, with

|~|2 being the squared-modulus of a complex number. Then for V37 we have

/\Q[dxa (w)+dx, (w)—25(u)] M y )
Vll = M 27TM2 Z)\J (u) Hvec (A;(a’jAvaj)H ||Ip+1 ®Ip+1” HVEC (A/Xa,jAXb,j)H ,
j=1
using the fact that
1 1 Z .
CTZK]?L7tuK}2L,su S CT Z K}atuK}QL,su = %
T ts Tu ¢s=1

And V34 is given by

)\Q[dxa (u)+dx, (u)—25(u)]
Vig=0 (h7") M

M2

xS TN lvee (A%, Axy ) | o © L | [[vee (A, yAx, 1)
JFk;|—k|<o(u)
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using the fact that

ZKh tuKh su® ilE—)
Tu t#s

Zt>\ k
E Kh tu -

T“tl

Et k2 (L0 giths 2
2nThkoz +o(1)

—o(n)

accroding to Assumption 3(iv). Suppose we denote the k-th element of Ax, ; as Ax, ju),

then the norm Hvec (A}MAXQ ,j) H is further given by

1 1
2 2
AL Ay V| = pglj Ay mAx ol pglj A A
Hvec( Xa,j Xb,J)H_ | Xa,j(k) Xw(l)’ | Xa,j(k | Xba(l’
k=1 k=1

1
2 2\ 2 —dx, (u)—dx, (u)
(1%, 14x0) " = 14x,5] 1 Ax, 5] = O (2 0750 00),

which implies that

2[dx, (u)+dx, (u)—26(u)] M
)\ “ b u)— u)— u 1
Vi, = M ZO ()\45( )= 2dx (u)=2dx, ( )) -0 () =o(1),

SESVE : j M
Jj=1
and
A2 La (o), (=200 25 (u)—dx, (u)—dx, (u) \ 26(u) —dx, (u) —d>x, (u)
u—xau—xu u—Xau—Xu
Vig =0 [ “X4 o E A RO b

J7Fk; |5 —k|<6(u)
1
=0 <Mh) =o(1)

by Assumption 4(iii). This concludes the proof of asymptotic negligibility of V;.

Next for V5 we have in norm that

2[dx, (W) +dx, (u)—26(u)]

A
|V'2‘ = M e ZVGC st M PVeC ((I)t,s,M)
Tu t#s
)\2[dxa(u)+dxb(u)*25(u)] M 26 () « 26(u)
u u et S)A;
< = M?2 Z )\j )\k: ZK}L tuKh su€ (t=e)2—k

jk=1 Tu t#s

v (45, s A ) [P ree (At |

Note that the formula above is identical to the one for Vi except ||I,+1 ® 41| is replaced
by Hﬁ H And by definition of P, as presented in Assumption 1(i) and (2.3.6), the Frobenius
norm of permutation matrix Hﬁ H is identical to an identity matrix of the same dimension.
Therefore the order of V5, shall be the same as that of V3. Therefore combining what we

have so far, we prove that Q2 p2 = 0, (1).
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Now, we study Q3 as. By Assumption 2 and the numerical property of Riemann sum

approximation, we have

M

dx, (u)+dx, (u)—25(u) 1 5(u) Gx,ab

=) b — Re ( u, \;)) —
Q3,m M M ; (fx.ab (1, 27)) 1—dx, (u) —dx, (u) + 26 (u)
dx, (u) +x, (w)-25(w) 1 n 26(u) —dux, (u)—dx, (u) _ Gx ab

oye a)\xau xbu U u Xq (U Xy X,a

i 2:: 1—dx, (u) — dx, (u) + 20 (u)
=o0(1)

where the last equality follows because

M
dx, (w)+dx, (u)—28(u) 1 25(u)—dx, (u)—dx, (u)
Ar b — A “ b

26(u)—dx, (u)—dx, (u) M .\ 26(u)—dx, (u)—dx, (u)
_ a0, (=200 (%M ) B (J> B

T M <
j=1
26(u)—dx, (u)—dx, (u) 1
_ )\(Ii\/);a(u)—o—dxb(u)—QJ(u) <27;M) x X, [/ 2= dxe () =dx, (W) g 4 O (ML)
0

1
T 1—dx, (u) — dx, (u) + 20 (u)

+0 (M™Y.

In sum, we have shown that Q1 a + Q2,0 + @33 = 0p (1). This completes the proof of
Lemma A.1.1. R

Proof of Lemma A.1.2. Let = (11, ...,7,)" be an arbitrary nonrandom p x 1 real vector

such that ||n|| = 1. By Cramér-Wold Device, it suffices to consider

p M

dx, (u)+de(u)—26(u h 26(u _
D gy (el )’/ME ARe (Lee (u,A;)) = Bar,
a=1 j=1

where I, (u, Aj) = wx,q (u, Aj) wE (u, Aj) denotes the cross-periodogram. As before, we will
suppress the dependence of I, (u, A;), wx, (u,A;), we (u, Aj), Ax, (v, A;), Ac (u, A;) and
Ic (u, A;) on u and write them as I, ;, wx, j, Wej, Ax, j, Ae; and I¢ ;. To proceed, we

consider the following decomposition

P dxa(u)-i-d (u)— 26(u)f

25(u *
BM - Zna \/M Z A )R as i AXa,jIC,jAe,j)
an (u)+de (u)726(u)\/ﬁ
5(u) *
+Z”a > AP MRe (Ax, jIc ;AL )
VM =
= Bi,m + B2,y (A.2.6)

We shall prove the asymptotic negligibility of By ps and an establish a CLT for B /.
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First, we study B ps that is given by

)\dxa(u)-‘rd e (u)— 25(u)f

M=

- 26 (u) *
B2 e NGT; Z Ay Re (Tae j — Ax, 1 AL )
B EP: ; )\l;lvfa(unda(u)f%(u)\[g
= a — May
a=1 M "
then by summation by parts, for any a = 1,...,p,
_ M-1 J
Biara = Z (A?(S(u)—dxa (u)—de(u) /\?j_(lu)—dxa (u)—dg(u)) z )\Zxa (U)+d5(u)Re (Iae,k . AXa,kIg,kA;k)
j=1 k=1
5(u)—d d - d d
+/\?\/[(u)7 Xa (W)= a(u)Zija(u)Jr E(u)P{ ( ae,j AXmJICJA )
j=1
= 0 (A7 (O (371 (1og M 4+ h™MF (log M)® 4 ™ METH (log M)* ) )

by Proposition A.1.4, which implies that

P )\dxa(u)er e(u)—26( u)f

BI,M:Zna — BlMa
a=1 M
1 1
(log M)*  (log M)  (log M)*
= O = 1
2 P<M;hé MR T

by Assumption 4(iii).

Next, we study Ba jr. We make the following decomposition

p an(u)er (u)—26( u)\/’ 0
By = Z 77 S TAPMRe (Ax, e AL;)

Jj=1

p )\dxa(u)+d e (u)— 26(1;)\[ 26(u) Zt ) CtCt h .
B pr muain ) TN P AL L
a=1 j=1 Tu
P dx, (u)+de(u)—26(u) M ! i(t—s)A;
AM \/E 28 (u) Zt;ﬁs CtCsKh,tuKh,sue 7
+ > N A Re |Ax, Az

= By m1 + Ba, v

For Bs a1, we make further decomposition:

o ST (66— hpo) K
By v = Z 77a >N APRe | Ay, ; A2

M = 2., &
dxa (u)+de(u)—26(u) M 5w 1
2 u *
DR D Re [ |
=0, (1)
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by how we study Q2 pr1 in the proof of Lemma A.1.1 and Assumption 2(iv).

To study Bs ar2, note that

T 4 T
Ba p2 = Z M Z Ci—sr (0) M = Z Zyr (u) (A.2.7)

t=11\/7F Zt 1 h tu S<t \/ T Zt 1 h gty =1

where Cy 7 (u) is given by

p dxa(u)+d (u)— 26(u)f 26(u)
Cor (u Z’?a N Z)\ Re (AX A+ AL AXQ,J) cos (t);)

(A.2.8)

M
= \/M\/QETIT ; 6; cos (tA;)

Apparently, Z; r (u) is a martingale difference sequence under Assumption 1. Then
by the martigale central limit theorem (see, e.g., Hall and Heyde (1980, Ch3.2), Robinson
(1995a), Lobato (1999), Nielsen (2005)), it is sufficient to prove:

(i) L E (Z27 (u) | Focr) B 320 50 MamyQap for some p x p matrix Q;

(i) S E(Z2 7 (u) 1 (| Zer (w)] > €)) 5 0 for all € > 0.

By Proposition A.1.5, these two conditions hold. Consequently, we have

P /\(]i\j[(a(u)+d5(u)72§(u)\/ﬁ M

P
Na \/M ZRB AX JICJ —)N(O,ZZW anab )

j=1 a=1b=1

1
G2 G2, G
_ * X,aaY X bb €
where g (u) = © T—dx, (w)—dx, (u)—2d- (W) +45(u)

. And together with Biy = 0p (1)

shown just now, we complete the proof of Lemma A.1.2. B

Proof of Proposition A.1.3. (i) The proof follows closely from that of Proposition 4 in
Lobato (1997). The major difference lies on the presence of kernel weight in the definitions
of wx, and w¢. By the nonnegativity of S, (M), its stochastic order can be obtained
by the order of its expectation by Markov’s inequality. Recall that wx, ; = wx, (u,A;),
we,j = we (u, ), and Ax, ; = Ax, j (u, A;). We have

M
1 * * *
E[S, (M) =E (T (wx, j — Ax, jwe ) (W, ; — wi A%, ;)

M T
L 2V * — S8\
=E [TczT > 2; [Xae1 — Ax, iG] Knpue™ ; (X! s — €A% ] K™Y

1 XL |
T T ZZZKh,tuKh7suel(t*5)>\j
Tu 5
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E (Xar X 1) — E(Xap 1) Ax, j — Ax, B (G Xasr) + Ax, GE (GG A, 5] -

We will evaluate E (Xa t TX,; s T), E(X.:7Cl), E (CtXa s T) and E (L), Let oy =T +
’u - f‘ + |u - f’ and 9o =T~ 1 + ’u — f‘ For E (Xa;t7TXa,s,T)’ we have by Assumption
1(ii) that

=0 1=0

E (Xa t TXa s T (Z Ax,+1 (k) G sz ZAX .5, (l)> = Z Ax, e (I +(t—s)) IXQ,S,T ()
1=0

= | Ix @A) e TR0 (14 4)

1 4 .
=5/ AXa (u, \) A%, (u, A) e 792N - O (14 )

1 g )
= gr | Axe A+ ) A%, (w A+ ) e mIOFNIAN - O (1 4+ 4y)
e

where the third equality holds by the approximation in (2.3.7), the fourth equality holds by
the definition of the spectral density, and the fifth equality holds because both Ax, (u, )

and e~“*=%)A have period 27 along the argument ). Similarly,

E (Xat.7C) (ZAXa,tT ) G—kCL > =Ax, 47 (t—5)=Ax, (u,t —5)-O(1+1ay)

o / Ax, (u, A+ X;) e DO AN O (14 4 )
T —T

where the second equality holds by Assumption 1(i), and the third equality holds by the

approximations in (2.3.1) and (2.3.2) in Assumption 1(ii). By the same token,

(CtXa s, T (Ct Z C kA Xa,s T )) = A/Xa,s,T (s—1t)= A/Xa (u,s —t)-O(1+ ¢2,5>

1 i )
=gr | A WAt X)) e =IO AN - O (14 1)
T
In addition, it is easy to see that E (Cg;) 2 [T e {t=)OHA)GN. Then

X { / [Ax, (, A+ ;) = Ax, (u,\)] [A%, (u, A+ X)) = A%, (u,Ag)] e ETHOFADAN O (14 4)
= Z K (u, A) [Ax, (u, A+ X)) — Ax, (u,\))] [A%, (w, A+ A;) — A%, (u,A5)] dr-O(1)
M T T
TCT Z Z; z; Kh tuKh suel(t )As / [AX (U, A + )\]) - AXa (’U,, /\j)]
U j=1t=1s
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x [Ax. (u, A+ ;) — A%, (u, )] e OGN O ()

= ES, + ES,, (A.2.9)

where K (u, ) is a Fejér kernel “weighted ” by Kj, (t — Tw) /\/Zthl K32 (t —Tu), as

2
1

T
K (t — Tu) ett?
ST K2 (t—Tu) 2 Knlt=Tw)

t=1

K (u,\) =

(A.2.10)

It is easy to argue that ESy = o (ESy) by using the fact that |u — %’ < h on the support of
kernel K}, (t — T'w). So we focus on the derivation of the order of ES; below.
To derive the order of ES;, we first derive that the order of K (u, \). Note that by

summation by parts and triangle inequality,

T

ZKh(t—Tu)ew‘ =

t=1

T-1 t

S En(t—Tu) = Ky (t+1=Tu)] > e + K (T —Tu) e
t=1

t=1 s=1

T-1 t T
< § (Kh,tu - Kh,t+1,u) E 613)\ + Kh,Tu E eZt)\
t=1 s=1 t=1
T

+ Kn 1w

1<t<T

t T
E ezs)\ E ezt)\ )
s=1 t=1

-1
|Kh tu — Kp 41, ul max
t=1

As in Hansen (2008, pp. 740-741), Assumption 3 implies that

t—Tu t+1—Tu t—Tu
— ) <hl=k
b ) - () = ()

where k* (u) = A11 (Ju| <2). Then

|Kh,tu - Kh,t+1,u| = h_l

T-1 —

1 t—Tu
Kt — Knir1.u <h ™1 k* < Ch™! 1 C )
>~ Ko~ Kisiaal hz () = en orsome € <

Next, as Wang (2019) observes, sin (A/2) > A/m in the interval (0, 7) because the function
g (X) =sin (A/2) — A/7 is concave on (0,7) and f (0) = f (7) = 0. Similarly, sin (A/2) < A/x
for A € (—m,0). It follows that for all A € (—m,7), we have [sin (A/2)| > |A] /7, and

t

2 eis)\

s=1

et (1 _ eitk) —itA/2 _ itA/Q

1 — et

Giltra/2 ~2isin (tA/2) <
—2isin (A\/2) 1Al

ehe—iN/2 zt)\/Qe
e—iA/2 _ giN/2

uniformly in ¢.

In addition, Kj, 7, = h™ 'k (T T“) < Ch~!. Consequently, we have

<

T
K, (t—T it

t=1

<
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where recall the constant C' can vary across lines. This result, in conjunction with the fact

that Zthl K} (t—Tu)=Th ! [k (u)® du[l + 0 (1)], implies that

2
1

T
K, (t — Tu) '

T

Yoo K2 (t—Tu) Z

t=1

K (u,\) =

(A.2.11)
Given the above order of K (u, \) , we are ready to derive the order of ES;. By definition

of spectral density in Assumption 2, we have for some constants C; and Cs,

ES; < TZ K (u, \) [C1 Fxon (u, X+ Nj) + Cafx,, (u, Ag)] dA

M-

1 - o
< Cﬁ K (u, ) [fx,. (W, A+ X))+ fx,. (u,\j)]dA=C-ESy.

j=17-"

Following the proof of Proposition 4 in Robinson (1994b), we make the following decompo-

sition for ES; :

;M —h A, T —Am R A
7 o) U
TZ (/ / ) </ hl)\m> ( —hil)\m, Am >
—eTAm Am ETAm
+ / )]
—Am ETAm —&TAm

= FESi11 + ES12+ ESi13+ ES14+ ESi5

K (1, ) [fx0 (s A4 A7) + fx, (1, Ag)] AN

where 7 is some fixed but small enough constant and e is a shrinking sequence to be defined
later. We then study ESy;’s, I =1,...,5 in turn.

First, for £S11, we have
LM
ESH:T,ZI(/_ /) (U A) [fxpe (U X+ X5) + fxo, (w, Aj)] dA
=

C M C M
—2 —2
<T2h§_:</ /> Fxon (U, X+ Xj) dX + T—g Xou (U, 2) //\ dX

B C
ST?WZ fXW (1 A+ Ag) dA + 5 foaa (u, )

c T C
= T2h7-2 Z/ fXaa ('U,, )\) d)\ + T2hT Zf—Xaa, (U’7 )\7)
j=17"7 j=1

M 1 1
=0 <T2h + ﬁFXaa (U,)\M)> =0 (ThFXm (U,AM))

where the first inequality holds by the order of K (u,)) derived above and the fact that

K (u, ) is an even function, the second inequality holds by the non-negativity of spectral
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density function fx,, (u,\), and the second equality holds by the property that spectral
density function fx,, (u,A) has period 27, the next to last equality follows from the fact
that & ZJ 1 [xea (W, Aj) = O (Fx,, (u, Aar)) by Proposition 1 in Robinson (1994b), and the
last equality holds by the fact that M = o(T'). Note that the above tricks will be applied
repeatedly in the following proof of this proposition.

Next, we study ES72. Note that

1 M h™ Am T _
ESi2 = fz (/‘r +/hl)\M> K(ua )‘) [an,n, (ua/\+ /\J) + fXa,a, (U,A])] dA

¢ 1 L (1 A+ A;) dA
O (T Ve
T2h = (h="An)? [T h=1 A Jx ’

C U T
+ﬂ2fxw (u,)\j)/ = dA

h=*An A

c
7T2A2 Z/ o e () dX fow (u, )

1 1 1
=0 m;fxaa(uv/\j) =0 m;fXaa(ua/\j) :O<MFXaa(“7/\M))

where the first inequality holds by the even property of K (u, \) and its bound derived
above, and the second inequality holds because fx,, (u, A+ ;) < fx,, (u,A;) for all |A| €
[hil)\ M, T) for small fixed 7 by the singularity of spectral density around zero frequency.

Next, for £S13 we have

R A\
Sy = Z ( [ ) R () e (024 X) + L, (u.2))] X
BRPVYs Anm
1)\1»1 M hil)\]\l 1
stAthA fon uA+A>dA+T2hfow ) [

C L c i
< - § . _ § . _
= T2)2 1 j—1/A Pxaa (W A5) A+ 75y o P (1 29) AM 2

M

i § (1) LS e )
u, u i
T2>\2 h Xaa T2)\Mh =~ Xaa (W Aj

1 1 1
0] ((T)\Mhz + T)\Mh> Xaa (%)xM)) (0] (Mh2 X, (U, /\M))

To study ES14, we specify a sequence er such that as T'— oo, e — 0 and e M — o0,

and there exists a constant C. such that C.epM is an integer. Under this specification, we
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lM —ETAM AMm -
Sy, = Z(/ +f )K(%)\)[fxaa(U7>\+/\j)+fxaa(%>\j)]d)\

T j=1 —AMm TAM

C M Am Av
<23 [ RO A )i S fow ) [ Ry

j=1"eTAM erAm

o Y Ao q
< o7 D [Xaa (uw)/ —d\

Tth; 7 ernn N2

1

= F . A2.12

O M€Th Xaa (U” AM)) ( )

Finally, for £S5 we make the following decomposition:

1 Ceer M pepin
BSs=g > [ RN (wd+A) + fx,, ()] d)

T j—l _5T>\M

ET)\M _
+% Z / (0, N) [Fxon (s A+ X)) + fxon (u,A))] dA

j=Ceer M+1 ET/\M

= E515’1 + E51572.
For ES15,1, we have

Ceer M Lep )
1 TAM
BSta=g > [ RN fx. @A+ A)+ fr., (0A)]d
i —€TAM
CEETM

Ceer M erAm Ao
fx (u,Aj)/ K (u,A)dA < - > Fxan ()
j=1

2
T j=1 —€TAM

=0 (FXM (U,CE{-:T)\M)) =0 (E; 2dxa(u)FXaa (U,AM)> ’

where the first inequality holds by the nonnegativity of K (u, ) and montone property of
fx.. (u,-) in the neighborhood of 0 for each u, and the second inequality holds by the fact

that

2
dX

T
L 1 ™ .
K (u,\)d\ = / Ky, (t — Tu) '
/ Y K (¢ = Tu) Jon Z

—T

=1
1 a ™
Z Z Ky (t—Tu) Kp (s — Tu)/ PAGRDRY Y

Zt 1K2( t=1 s=1 -

K2(t—T
:Zt;l (¢ “)/ d\ = 2.
Zt:l K% (t — TU) —T

Here we use the fact that 7 it=5)Ag\ = 0 for all t # s with ¢, s = 1, ..., T. The last equality

holds by the fact that in the neighborhood of zero frequency, Fx,, (u,A) = O ()\1_2an (“))
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for each u by Assumption 2(i).

For ES;52 we can consider instead the following term

1 M 5T>\M - 5
BSua=7 > [ (1 A) [ Ax, (A + ) — Ax, (1, A,)> dA
j=Ceer M+1 *ET’\M
M A
¢ M dx, () _ y—dx, (u)|?
Sf 3 ’(A+>\) Xa (W) _ 32 X

=Ceer M+1 T)‘M

1 ET)\M~
Py /

j=Ceer M+1 ET’\M

1 eTAM M u
oyt -2 u)—2
) T/ MK (wA)dr >0 A e

fdxa(“)_l)\‘Qd/\
J

—erAM j=CeerM+1
1| “2dy, (w)-1 /ET’\M ETAM “2dx, (u)—1
=0 =AM d\| =0 Apg) 20X
Th er M e Th (‘ET M)
= O WPXQG (U, )\M) ( 213)
T

1
where the first equality follows from the fact that |[Ax, (u, \;)| = O(f%, (u,A;)), and the
second equality holds by first-order Taylor expansion of (A + )\j)fdxa () at A = 0. Then we
can express ESi52 = %EiSmg + (E51572 - %EiSw’g), and note that

1 __ 1 M erAMm 5
e BSua=g Y [ R@N) o Ax (A4 A) - Ax, () i)

1 o eTAM
=T > / K (u, N) [fxo0 (W A+ X)) + fxon (u,A))]

j=Ccerm+1 erAM

ET>\M _
S Z / A N [Ax, (A + A) Ak, (n,A) + Ax, (u, A) A, (u, A+ X))
j=C.erm+17 ~ETAM

= ESi52 + *RE515,2,
2

and RES5 2 is further given by

ET)\M

1
|[RES152| < 5— 27T Z / u7>\)|Axa (u, A+ A7) A, (u, ) + Ax, (u,Ag) Ak, (u, A+ )|
j=Ceepm+1Y —ETAM
1 e L —2da ()
S E= BREIOND VI
27T —eTAM j=Ceerm+1 ’
1 erAm 1
<0 [ Al 2dxa @ —d\ | =0(——F Au) |-
( Th —erAM A2 Mher Kaa (u’ ]\/I)

Then we can conclude that ESj52 = O (M}LET Fx,, (u, /\M)>.

Note that one appropriate choice of e7 can be ep = h? where § = - ;E is defined as
X
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in Assumption 4(iii), which then makes both (A.2.12) and (A.2.13) O (hFx,, (u, Apr)), and

thus

_ 1 1-2dx, (u) 1
(50 (00)) = O ( (7 + 457 + 3 ) P (a0

= O (hFx,, (u, An))

by choices of ex above and by Assumption 4(iii). This is similar to the conclusion of Propo-
sition 4 in Robinson (1994b). And thus we finish the proof of argument (7).

(i) By the same reasoning as used in the proof of (i), we can prove E [% ZJ]Vil (Ix,aa + Ax, IgA}a)} =
O (hFx,, (u,Apr)). The result follows by the Markov inequality. W

Proof of Proposition A.1.4. Using the notation in the proof of Lemma A.1.1, we

have
Biata =Y XN'WRe [Ie,; — Ax, jIc AL ] (A.2.14)
j=1
M—1 7
= ()\?‘s(u)fdx‘l (W—de(u) _ /\ii(lu)fdx'l(u)fda(u)) Z )\ZX“(U)erE(u)Re (Tae — AXa,kIC7kA:7k)
j=1 k=1

M
B0, () e N N (0RO (A g AT )

Jj=1

g

-1

(Azé(u)—dxa (u)=de(u) _ 426(u)=dx, (U)—ds(u)> é () + )\?\Z(u)—dxa(w—da(u) . @(M)

J j+1

<.
I
—

In the following we try to apply the proof of (C.2) in Lobato (1999) to derive the order
for both Q (j) for arbitrary fixed 1 < 7 < M and Q (M). Take Q (j) for example, it has the

decomposition given by

J
Q) = Z)‘ZXQ (W) tde(w)p o (Iaa,k _ AXa,kIC,kA;k)
k=1

l J
= Z )\ZX“’ (u)erE(u)Re (Ias,k — AXa,k:I(,kA;k) + Z /\ZX"’ (u)+d5(u)Re (Iag,k - AXa,kIC,kAZ,k)
k=1 k=141

= Q1+ Q2,

with [ being an integer less than j that is determined later. Firstly for @1, foreach 1 < k <[

we consider ¢1x = Re (Iae,k — AkaIC,kA:,k),

! !
d u)+de (u d u)+de(u * * *
E|Q:] < Zkkx"( Jrde(wg lqik| = Z/\kxa( Sl |Re (wx, pw? — Ax, kwe swl g AL L) |
=1 k=1
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l
1 u u % " "
< 5 Z dxa( )+de( )E ’ WX, .k — Axa,k’wg,k) (w&k + wc,kAe,k)‘
!
1 u u " " «
+§ AZXQ( )+de( )E|(an,k+AXa,ka,k) (we,k _wC,kAE,k)’
k
_1 : 2 2
<3 (Z:: ARy, i — Ax, kwel ) <2=: AR Wk g, + wi L AL | >
! 5 /0 1
+ % <Z Azdxa (u) N 2) (Z )\ids(u)E ‘wz wc LA k| )
k=1 1

following the same reasoning in the proof of Lemma A.1.1. Then we have for E ‘@f(mk —Ax,j @E,k

at each £k =1,...,[ that

Elwx, r — Ax, xwe il

=E [(wx, » — Ax, ke k) (W, 1 — wz,kAg(a,k)]

T T
1 ) )
§ tA 2 : / —isA
- 02 E (Xa,t,T - AXa,kCt) Kh,tuel k (Xa,s,T - CSA}{“]@) Kh,sue 150k
Tu t=1 s=1
1 T T
i(t—s)A
= CT E § Kh,tuKh,suel( A
Tu =1 s=1

X [E(Xa,t,0Xa,s,1) — B (Xap,10¢) A%, i — Axo kB (G Xas,1) + Ax, kB (GC) Ak, 1]

= K (M) [Ax, (u, A+ Xe) — Ax, (u, M\o)] [A%, (u, A+ Xe) — Ak, (u, Ag)] dX - O (1 +1p1)

—T

= Fp1 + Ego (A215)

where Ej; is the term containing the O(1) multiplier and Ejs is the one with O (¢1). The
above is obtained as we have showed before in (A.2.9) in the proof of Proposition A.1.3,

where 1 =T + ‘u T’ + ‘u

K ()\) is given by
2

~0 (T—lh—l |)\|_2),

which is identical to the weighted Fejér kernel in (A.2.11) while we suppress its dependence

Z Kh tue

t=1

Tu

on u. Note that Fys is dominated by Ej; in order; and for Ey;, we have

™

B <O01) | KO)[Cifx,, (u, A+ ) + Cafx,. (u, Ap)] dA

—T
T

<C | KN I[fx., (w A+ M)+ fx., (u,\)]dA=C - Ef;

—T
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for some absolute constants C, Cy and C. Then we decompose E}; as

AR

= Epi + Epe + Ejss

Epy = +

— Ak

]
+/ ] K (N [fxo, (W A4+ M) + fx,, (u, Ar)] dA

where ¢ is some fixed constant that is small enough. Firstly E;,, is further given by

Ef, = (/__EJF/W) K\ [fx,, X+ M) + Fx,. (s Ak)] dA
< maxIN(()\) /7T |fX o (U A+ i) + fxan (u, M) dA

[A[>e —

=0 (1707 (14 AP )) = o (R IA ),

where the second equality holds by the nonnegativity of fx,_ (u, A) and its integrability; and

then E},, follows that

— Ak € _
E;, = (/_ +/Ak> K\ [fx.. (w, A+ M) + fx,. (us Ae)] dA

|/ xa (4, N)]

< _Jaa AT
=C l2>\k<>\<a+,\k AI=2dx, ()/2 [, N

0 ( A (2 <u>)/2) 0 (T_1 Bl /2

—0 (h*lk*l)\ldeXa (u))

e+ Ak _ e
/ AA=2dxa ()2 10 (X)X + | fx,, (w, M) [ K (X) dA
2

o0

)\—(3+2an (u))/?d)\> + O ()\IZZan (u)) O (T_lh—l /OO )\_Qd)\>
)\k >\k

for some absolute constant C; next E};5 is given by

e
Bz = . K (A [fXau (u A+ X)) + fxo (u, Ak)] dA
Ak
e
< 2fx,, (U, k) K (A)dA
“An

=0 (A,

therefore in conclusion E}; = O (h_lk_l)\,zzdx‘l (u)> for each k =1,...,l and so as Ej; and
Elwx, r — Axa,kwg,k|2, and it is easy to see that the same order holds for E |wx, r + AXa,kU/C,k|2§

2 2
- 3 . * * * * * *
and the same reasoning holds for E ‘ws’k - wg,kAa,k‘ and E |\w? ; +wf AZ | . Therefore

Q1 =0, (h_1 logl) by Riemann sum approximation.

Next for @2, we consider its expectation of squared norm following the proof of (C.2) in
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Lobato (1999), which is given by

E|Q:> =E

J J
( Z )\Zxa(u)+da(u) (Ias,k - AXa,kIC,kA;k)) ( Z /\Zxa (u)+de(u) ( za,k . Aa,kIC,kA}a,k)>‘|

k=Il+1 k=l+1

J
d u)+de (u * * * * * *
= Z )‘i( Xo () Hde() g [(“’Xa,kws,k - AXa,kwc,kwc,kAs,k) (we,kwxa,k - Ae,kwc,kwg,kAxa,k)]
k=141
J

s#k;k,s=l+1
* * * * * *
x E [(wx, pw? ), — Ax, pwe pw AL y) (wz swX, o — Ac swe swl (A )]

= @21 + @22,

where in detail,

i
2(dx, (u)+de (u))
Qu= Y X\ SE (wx, pw? pwe pwk, i) — B (Ax, pwe pwf AL pwe swie, 1)
k=Il+1

*

—E (wx, xw?  Ac pwe pwf y A, ) + B (Ax, pwe pwl AL g Ac pwe gwf A, 1) ]

and
d dx, (w)+tde () ydx, (u)+de (u)
Qo= Yy AT ITEMIR (wy jw? ywe awy, o) — B (Ax, gwepw? p AL pwe sk, )
s#k;ik,s=l+1
-E (an’ka,kAE,SwC’Swz,sAj;(a,s) + E (AXa’ka’ka,kA:,kAffvSwC;SwZ,sA;(a,s)} .
Note that wx,, k, ek, Ax, kwer and A pwe k are all mean-zero scalars for k =14+1,...,7,

and thus both Q21 and Q22 consist of terms in the form E (wayz) with w, z, y and z as zero

mean scalars, which follows that
E (wzyz) = E (wx) E (yz) + E (wy) E (z2) + E (w2) E (zy) + cum (w, z, y, 2)

where cum(w,z,y,z) is the joint cumulant of these four random variables. For ease of
notation, we denote wx, = ak, We i = €, Ax, rwer = Ay and Ag pwe i = E. Then by
decomposing Q21 and Q22 into two parts, with and without cumulants, we have them given

by

J
Qo= Y N | (g 00V E (eraf) + E (arer) E (ciaf) + E (araj) E (efer)
k=141

— E(AvEp) E (exay,) — E (Ager) E (Efay) — E (Agay) E (Efey)

— E (agey) E (EpAy) — E (arEy) E (e; Ap) — E (0. A}) E (e Ef)
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E (AxEy) E (B Ay) + E(ArEr) E(EpAL) + E (AxAy) E (B Ey)]
J
+ Z )\i(dx‘l (w)+de(w)) [cum (ak, €}, ex, ay) — cum (A, Ef, eg, ay,)
k=I+1

_Cum(a/mek;aEkyAk)+Cum(AkaEk7Eka )] Q21a+Q21 b

where (21,4 is the part without cumulant and @214 is the part with cumulant, and using

the same notataion,

J
Que= Y APl B0 [ (4 0) E (eat) + E (ares) E (efa?) + E (axal) E (cfes)
s#k;i,k,s=1+1

B (A FY) E (esa?) — E (Ages) E (Bfal) — E (Axal) E (Efes)
—E(are;) E(EAL) —E(apEs)E (e AL) —E (apA%) E (e} Es)
+E (AR Ey) E (B A7) + E (AcES) E (ERAY) + E (ApAY) E (B ES)]
J
+ Z )\Zxa(u)+da(u))\gxa(u)+da(u)
s#k;ik,s=1+1

X [cum (ag, e}, €s, as) — cum (Ay, Ef, e5,a%) — cum (ag, ef,, Es, AZ) + cum (A, E}, Es, A%)]

= Q22,0 + @220,

where 22, is the part without cumulant and Q22 is the part with cumulant. Firstly
we derive the order for @Q21,, and @QQ22,4. Since we need to obtain some similar results as

Theorem 2 in Robinson (1995c¢), we consider analyzing E (axej) as the following:

T T
* 1 ? S

E (axer) = E (wx, pw ) CTZZ]E Xat.785,1) Kn K p au€’ 20
T

U t=1 s=1
1 E § " —i(t—s i(t—s
- C% t=1 1 L/ ‘fXﬂf (u7 >‘) € (¢ Md}‘ -0 (1 + q/)1) Kh,tuKhﬁue (t=2)2
u s= —T

/ﬁ Fxue W, N K (Mg —A)dA-O (1 + h)

—T

/_7r (Fx.e (U, A) — fx,e (u, Ag)) K (A= A)dX-O(1+h)+ fx,e (u, ) -O(1+h)

= EW, + EW,y

where EW; = O (1) [T (fx,e (4, A) = fx,e (u, \e)) K (A, — A)dX, and EW, refers to the
rest of the terms. Next we denote C' as some absolute constant whose value may varies

across lines. Following the proof of Theorem 2 in Robinson (1995¢),

T

EWi <C [ (fxee (w,A) = fxoe (u, Ar)) K (A — A) dX

—T
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=C + +

/7\' /E /QXk
€ 2)\k Ak /2

=C (EWM + EWis + EWi3 + EWM) ,

Ak/2 _
+/ ‘| (fX,IE ('LL,)\) - fXae (’LL, )\k)) K()\k - )\) dA

—AR/2

where firstly EW7, is given by

B, = ( |+ ) (Frae (1 2) — Freue (1 20) B (A — A)dA

< C\I}\llaxK (A — )\)/ Ifx.e (U, A) — fx.e (u, \)| dA

< Comax K O =) [ e (0] + e M) A
c —dix, (u)—de (u)
<y (1% )

Note that the above order holds by Assumption 2(i), K (\) < CT~'h~*A~2, and the fact
that fx,z (u,A) > 0and ["_ fx,e (u,\) d\ < 0o. Next for EW1y we have

EW12
—2)% £ _
/ / (fXaE (’LL, )‘) - fXas (u, )\k)) K ()\k - )\) dA
20,
FXoe (0, 3) (1—dx, (u)—de (u)) /2 7o T
S CQAI,CD<§(<E )\(1 dx, (u)—de(u))/2 )\ Xq U u K ()\k - )d)\ + |fXa5 (U,)\k)| o K()\k: — )\) d\
k

— C max )\ (It+dx, (u)+d€(u))/27 " 2\~ Bdx, (u)+de (u)/2 g\ + C}\—dxa (u)—dg(u)i " A2d)\

22, <A<e h 2 k Th -~

— Ch—l k—l)\;dxa,(“)*ds (u)
using the similar reasoing as before. Next for FWi3 we have

—Ar/2 2\ ~
EW13 = (/ +/}\ ) (fxas (U, )\) — fXas (u, /\k)) K (>\k — )\) d\

*2>\k k/2
(u, ) 22 _
<C max afx (u, ‘/ Ak — ALK (A — A) dA
A /2SA<20 A /2
1-d PR N e ;
< O 1T (el / KO d,
T I 5

. . . C>\
and it remains to derive the order for k

Zt 1 Kn, tue“”\’ dA for some constant C' by

sin(T'XA/2)

<Ch ' sin(A/2)

change of variable. By our proof of Proposition A.1.3 we have ‘thl K e

for some constant C, and thus

T

/OC)\;C Z

t=1

sin (TA/2)

K u it
hitu® sin (1/2)

Cx
dXx < Ch_l/
0

‘ d\ < Ch~tlogk
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using Lemma 5 in Robinson (1994a) for some constant C, when k is large enough but fixed."

—de(u)

Then we can conclude that EW;3 < Ch~'k~!log k)\,;dx‘l(u) . At last for EW74 we

have

)\k/2 —
EW14 = /)\ / (fXa,s (u, )\) — fXas (u, )\k)) K ()\k — )\) d)\
—A&/2

- kk/Q
< max K()\k — )\)/ |fXae (u,)\)| + |fX,16 (u,)\k)| dX

T AISAR/2 /2
C |2 1-dx, (w)—de(u) 11y —dxg (W) —de(u)
S A < ChT ETIA, e

for some absolute constant C. Note that o= k=1 A, X« =% is dominated by h=1k=! log kA, X« (V=%

7d5 (u)

we thus have EW; < Ch='k~1log kA, ™= , and thus EW, is dominated by EW;,

which then concludes that
E (arer) = E (wx, pw? ) < Ch™' k™ log ko, e (740,

And it is easy to see that E (exa}) has the same order. Next using the same reasoning, we
have

E (aka};) =K (anvkw;(a,k) < Ch*lkfl log kA;dea (u)’
E(exe}) = B (wepwly) < Ch™ 'k Hog kA, 2.

And it is easy to see that

T
* * * 1 4 i(t—8)Ap A%
B (AcB}) = E (Ax, swe il AL k) = Axyn5— O B (GC) KnauEnsue M AL,

Tu t,s=1

1 _ _
= o Axa kAL g = fxae (0, A6) S OXy e (1) 7de)

by Assumption 1(i) and 2(i). And it is easy to see the same bound holds for E (EA}), and

by the same reasoning and the fact that E} is a scalar,
E(E;Ey) = E (E.E}) < CA 2™ and E (A, Af) < CA 25 ),
Next using Cauchy-Schwarz inequality, E (Agaj) can be bounded by

IE (Axa})| < (B (AxA}))® (B (axa}))® < Cv/h Tk log kg 2 ™),

INote that in Lemma 5 of Robinson (1994a), k is required to be a sequence k (T') such
that % — 0 as T — oo. But by its proof the order also holds when k is large enough but
fixed. However even if we treat k as such a sequence, the same conclusion should also hold
as in (A.2.19) the asymptotic order is determined by the sum of tail terms when j and & are
large enough as sequences defined above.
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and by the same reasoning we have
IE (Ager)| < Cv/h=Th—Tlog kA;, e (74

[E (axEp)| < Cv/h=Tk=Tlog kA, e (740,
E (Ejfex)] < Cv/h=Tk—Tlog kA, 2%

Then combining all the terms we analyzed so far, we can conclude that

J
Qora= Y Ao HECDE (04e0) B (enay) + E (axer) E (€ap) + E (araj) E (fer)
k=i+1

(A.2.16)
— E(ALE}) E (exa}) — E (Avex) E (Bia}) — E (Ara}) E (Bfer)
— E(are}) E(ExA}) — E (axEp) E (A7) — E (ax A3) E (¢} Fy)
+E(ALE)E(ELAL) + E(ArEL) E(ELAL) + E (A AL E (ELEY)

-0 < z]: (h"*k " log k)2> =0 (h‘21‘1 (1ogj)2) .

k=I+1
And using Cauchy-Schwarz inequality and the same reasoning above, we have for Q22 , that

J
Qua= Y. ApeOFeEe OO (g ) E (e,a%) + E (ares) E (efal) + E (apal) E (efes)
s#k;i,k,s=1+1
—E(ALE})E (esal) — E (Ages) E (Efal) — E(Aral) E (Efes)
—E (age;) E(E;AL) —E (arEs) E (e} AZ) — E (ar AL) E (e, Es)

+ E(ALE}) E (E.A%) + E (AE,) E (B{ A7) + E (A, A) E (B} E,)
2

0 ( zjj h—lkz—llogk) -0 (h‘2 (logj)4).

k=l+1

Therefore by specifying | ~ j* for an arbitrary « € (0, 1), we can conclude that
QQl,a + Q22,a =0 (h72jia (10gj)2 + h? (10gj)4) . (A'2'17)
Next for the parts containing cumulants, Q214 and (a2, following (C.9) in Lobato
(1999), it is sufficient to analyze Q224 as it is the dominant one, which is given by
J

Q22 = Z )\Zxa(u)+ds(u) ALxa (W) e ()
s#k;i,k,s=I+1

X [cum (ag, ey, €5, a%) — cum (Ag, Ef, es,a%) — cum (ag, ey, Es, AL) + cum (Ag, E}, E;, AY)]
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J
= Z )‘Zxa (U)+d£(U))\gxa (e () [Cum (wX k" 5 k7 ws EM) N;? s)

s#k;yik,s=l+1
~ ~ % * ~ ~ %
— cum (A'Xa!kwak’ wEkA57k7 wg’s, 'LU)?(1 5)

~ ~ % * *
—cum (wga’k,wak, A, ch S,wE’SAXa,S) + cum (AX ka k,w AE ks Ae ch S,wE’SAXa’Sﬂ ,

where we denote

1 1 & [onr
Wy , = E :)}a et = E Koo r K e
Xa,k \/ﬁ pot 4w, T \/ﬁ o C%u gt TINh t

i T~ 3 ] - : ~ _ ~x ~  ~x
and denote wZ ; and w;, in the same way. We firstly consider cum (mek, WE i, We,s, w)zms) ,

which is given by

~ ~x o~ ~
cum (wgmk,wabwg’s,wga’s) (A.2.18)

1 < JR—
= cum E Xa,t,u,Telt)\k7 E é:'t,u,Teilt)\ka
V2rT P} 2nT

T
1 ~ Gt 1 v —itA >
T Zet,u,Te %y ZXa,t,u,Te y
\V2rT 1 V2rT

T

_ Ztl,...,m:l
(27 T)?
T

_ Ztl’m,M:

5 lcum ZAXa,tl,T( Ctl —7, TvaE ta, T <t2 73,7
(27nT) = =

cum (Xa,tl,u,T7 g152,11,,T7 giﬁg,u,T7 Xa,t4,u,T) el[(tl ~t2) Akt (ta—ta) Al

Z Ac 3,1 (J) Cts—j. 15 Z Ax a1 () Ctamji
=0

=0

2

2

2nT (4 — -

X (C) Kh,tluKh,tzuKh,tguKh,tz;uel[(tl t2))\k+(t$ t4)>\s]
Tu

- Ztl’ t4 lcum ZAXaJCtl ]TvZAethz ]TvZAsttg ]TvZAXaJCM 3,

(27TT) =0 =0 7=0

2rT i[(t1—t2)Ap+(tz—ta)As]
X CT Kh,t1uKh,tzuKh,tguKh,t4ue ! 20k 3 Hne O (1 + h)

Tu

T 2

_ 27T .

= Zttsd o (G (1) Ga (12) G (1) G (1) (Z ) Kip, e TN HET0MIO0 (14 )

(27TT) CTu

by linearity of cumulants and Assumption 1, where we denote Ax, ¢, 7 (j) as the a-th row
of Ax 1, 7 (j) and A% ; = A%, (u,j) and A2 ; = A? (u, j) using the notation in Assumption

1(ii). In the following we further define the vector

G(t)=(Gi(t),G2(t),G5(1),Ga (1),
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then G (t) is a 4 x 1 vector-valued linear process given by

o
Z 0
= AGL,th_j7T’ L:17...4,
j=0
where

AO/ AOI AO/

!
aJ? e g e )

AOG (AG1 J’AGQJ’AGSJ’AG4]) = (Agé

is the 4 x (p + 1) matrix of filter for G (¢). Note that the cumulants provided by (A.2.18)

is derived in the same way as in Lobato (1999, pp.146), except we involve the kernels

2
(i’;T) Ky t10uKh toulKh tsufh t, Over summation of . And it is the same for other cu-
Tu

mumlants in Qa2 . Therefore (C.9) in Lobato (1999, pp. 146) shall still hold with Dirichlet’s

kernel replaced by a kernelized version, as in the following:

J p+1
u u U u 1
Qa2 = Z )\ZXH,( )+de( ))\dxa( )+de (u) Z ’%1,7..@;
ki o=ii] (2m)* =, (2rT)

/ / AGIPI >‘ +A1+ A+ )‘3) AG2P2 ( s ) AGlpl ( S) AG2P2 (>‘8)

X [AGaps (k= A1) Ay (k= 23) = Adiaps () Acp, ()| Sk (At A, Ag) dhdradAsO (1+ ),

where Ag,p, (A) = Y o0 A%“jeiﬂ, and Kp, . py = E((pyCpaCp3lp,) — 3, and the same

j=—o00

notation holds for other similar terms. And
Zhs A1, A2, A3) = D (Mg — A1 — Ao — A3) D (A1 + M) D (A2 — As) D (g — Ag)

where D () = \/fﬁ Zle K}, €' is the "kernelized” Dirichlet’s kernel. Then following
27T "Tu

the reasoning in Lobato (1999, pp. 146-148), it is adequate to consider the order of

P (I,p) =/ |Arpe A+ X)) = Ay WP E (A= X)) d\, T = X,

—T

where
2
K 2
T2, ; nawe™) = QWT‘ ‘
because it is shown by Lobato (1999) that
J u u U u) 53 ~1 ~1 ~1
Q22,b =0 Z A‘;Xa( )+de ( ))\?Xa( )+de ( )Ps2 (Xa,p1)P2 (6 pQ)Pz (meg)PQ (67])4)
s#k;jik,s=l+1
! u u u uw) 5% ~1 ~1 — w
+0 Z )\Zxa( )+de( ))\an( )+de ( )P2 (Xa,p1)P2 (E pg)PZ (57]33) )‘k dxg (u)
s#k;i,k,s=1+1
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RN

J
+0 Z AZX(; (u)—i—dg(u)/\glxa (u)-l—dg(u) %P% (Xaapl) P ))\ dx o (u)—de(u)

s#k;ik,s=1+1

(€,p2

And note that ]3]- (I,py) shares the same order for all p;, with (A.2.15) as we can replace A
with A + \; because of the periodicity of 27 for both Ay, () and K (). Thus ﬁj (I,pg) =

0] (h’lj’l)\j_ml(u)) uniformly for all for all pg. Therefore by substitution
Q2= O (™2 (log ) + h~2j logj + h=2T Flog)
and together with (A.2.17), we can conclude that
Q2= 0 (h™" (tog j)* + h™4j* (log ) +h 1§37 (log ) )

and

N|=

+ h_lj%T 1 (log 7)

N
—

Qi) = Qi+ Q2 =0, (" (10gj)* + h~"j* (log )
by our choice of [. Then the order of f?l, Ma 1s given by

Bl,Ma

_ ()\?S(u)—dxa(u)—dg(u) 7)\26(1;) dx, (u)—d. (u)) @( )+)\26(u) dx, (u)—de(u) @'(M)

Jj+1
Jj=1

Nl=

M
= 0y | e (0rb)=2000) §7 2000 (e (41 (log j)? 4 b 13 (log )+ hL AT

j=1

O, (A?\j(u)_dx“ (1) = de (1) (hfl (log M) + b~ ' M7 (log M) + R MET 7 (log M)%>)

+

NH

(log j)

=0, (dea (w)+de (u)—25(u) <M26(u)—dxa (uw)—de (u) 1 (log M)2 4 20w —dx, (w)—de (u)+§ f,—1 (log M)%))

M) =dxy (W) =de()+5 =17 (g M)%)

%
+ 0, (A O (31 (log M+ BT MY (log M)? + BT MATE (log M) ) )

W=

-0, (Aﬁjw*d%(“)*df(“) (h—l (log M)® + h=*M* (log M)? + h='M3T~* (log M) ))
which completes the proof of Proposition A.1.4.
Proof of Proposition A.1.5. (i) Recall that Z; 7 (u) = Zt/uT Y st Cts1 (1) Es,u,Ta where

p dxa(u)+d (u)—26( u)\/’ 26(w)
u Y ! A
Cor (u Zna ST ZA Re (Aly, jAcj + AL Ax, ;) cos (tA;)

vh
= — 0. cos (t\;
QWM;J<»
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using the notation that Ax, ; = Ax, ; (u,A;), Ae j = A. ; (u, ;) and Coug = ——2Entn

’ ’ T VESLIRE
Note that

E(Z} 7 (u) | Fi1)

T
Z <ZZCC£ sT CtCtCt ’I"T( )a“|]:t1>

s<t r<t

-

>N GO (W) KR Corr (u) G,

s<t r<t

(7> IEM%'

—1 T
S G0 WK Coar WG+ Y > G (W) Ky Copr (u) G = Z1 + Za,
s=1

t t=2 s#r;s,r<t

||
N

K2

h,tu

where in the second equality K T = 127 Then it suffices to prove Z; LN 2521 2521 a6 2ab
h,tu

and Zy = op, (1).

First we study Z,. Note that E (Z3) = 0 and then following the proof of Lemma 2 in
Lobato (1999),

T T
=33 > Y B[ @ ERCir ) GG () K2 Cam (1) G
t=2 z=2

VY Y Y RERE[r (E0 ) Crr 0GEC i 0 Cor (0]

s#T;s, r<t vAEw;v,wz

t=2 2=2 s#r;s,r<t vEw;v,W<z

=30 Y Y RRREpved (Clyr () Coopr (W) E |G © GG vee (G, 7 (w) Camur (w)

using the fact that tr(ABCD) = vec (A’) (D’ @ B)vec (C). The expectation part above is
given by

E[03 06d] - K(Kz ki, z; s
t=1 htu

= TTKUTKSTKwT[(IPH®Ip+1)1(r:v;&s:w)—klgl(r:w#s:v)]

E[¢-¢) ® ()

by Assumption 1(i), where P is defined as in Assumption 1(i) and (2.3.6) as a constant

permutation matrix that has the same dimension as I, {1®I,41. Therefore we can decompose
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E (Z3) by

T (2At)—1

T
ZZ Z KtQTKZ TKrTK ot (Cl_gp (u) Copr (w) Oy p () Cag 1 (w)

z=2 s,r=1

SFET

u-
l\3

(A.2.19)
T (2At)—1
Z KtQTKz TK’I‘ TKS TVec (Ct s, T ( ) Ct*”‘,T (u)) Pvec (Cz s, T ( ) CZ*”‘,T (u))

+
1]~
(]

= Zo1 + Zaa,

where a A b = min (a,b) . For Zs;, we have

T T (2At)—

Z21—QZZ Z KZT TK Ttr( t— eT( u) C—r,1 (u) ;—r,T (u) Coesr (U))
t=22=2 r>s
T t—1

_2ZZK;1TKT‘TK Ttr( t— sT( ) Ce—rr (u) :Lr,T (u) Cr—s,r (“))
t=21r>s
T t—12—1

+4 Z Z Z I?iTl?g,ng,Tl?f,Ttr ( ;—s,T (u) Ci—rr (u) ;—T,T (u) Cosr (u))

t=3 2=21r>s

= Zot,0 + Zo1p.

It is easy to show that the order of Zy; , is not bigger than that of Z3; ;. So we can focus

on Zs p below. By Cauchy-Schwarz inequality,

T t—12—-1

Zo1p <4 Z Z Z Kt2T I?ET ||C£—5,T (u) Cir1 (U)H HC,Iz—r,T (u) Crsr (U)H

t=3 z=21r>s

(A.2.20)

t

|
—

z—1

z—1
o~ e 2 - 2
K} Kf,TE Kl |Comrr @)I* Y KL g | Comrr (w)]
r=1

IN

DY

M

t=3 z=2
T t—1 z—1
<Qh YN K2R TZHOZ rr @)Y G ()]
t=3 z=2 r=1
T t—1 _ t—1
=Qh) " KZ,TKS,TZIICT,T @I* > ICr W)
t=3 z2=2 = r=t—z-+1
T t—1
<Qn2 (3 ICur (u) )ZK TZK > (G )
t=1 r=t—z+1
T T
< QTh™? (Z ICe.1 (u ) <Zt|l0m ) ,
t=1 t=1

where the third inequality holds for some absolute constant @ by Assumption 3(i) and

149



Riemann sum approximation, and the last inequality holds by the following:

T t—1 t—1
7 7> 2
§ Kt2,TKz2,T E |Crr ()|l
t=3 z=2 r=t—z+1

T 7 2
= K3 r K3 |Cor (u)

e 7> 2 T 7 7> > 2
+ K3 r R |G I + (K3 2R3 r + KigKir) [Car ()]

7 7 2 - T 7 e 2
+ K3 R2p |Cor () + (R3rREr + K3 rK22) |Car (u)]

+ (I?ngng + I?gTj?gT + KZ,TI?E?,T> |Ca,r (U)H2

+ K3 o KEr Cor ()P + -+ + (B3 oK+ 4+ K3y oK) IOy ()P

T—t+2

T
<CY G ar @ (t-2) Y Kir
t=3 5=2

T T |T/2]
> 2 — 2
<o (2K3T> (ztcw Wl ) <OTh S G )
t=1 t=1 t=1

for some constant C', where in the last inequality | X | is defined as the largest integer that
is smaller than X. Note that our C; r (u) is numerically identical to that in the proof of
Theorem 1 in Nielsen (2005) except the dependence on u and an extra multiplier Vh, and
this dependence makes the asymptotic order of C; 7 (u) analogous to the corresponding order

in Nielsen (2005, pp. 301-302) as

VMh  Vh
= v A2.21
|Ceir (w) o< Tt (A2.21)
and
T [T/M] T
2 Mh h h
SlcrwiP=o ¥ 5+ Y o :0(T>,
=t t=1 t=|T/M]+1

using the cut-off t = |T/M | as in Nielsen (2005). Then for h=3 Z}Z{ZJ t|Cer (u)||* we use
a different cut-off ¢ = |T/M | from Nielsen (2005) and the sum is given by

[7/2] ) [T/M] M [T/2] 1
-3 _ -2
h Z t ||Ct’T (U)” =01|h Z ﬁ + Z tﬂ
t=1 t=1 t=|T/M|+1

M , 1 T

0 <1;%‘f> —o(1)
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by Assumption 4(iii). Note that |T'/M | is an appropriate cut-off because

>1

N[N
Sl

in asymptotics. Therefore we prove the negligibility for Z5;. Next for Zss we have

<3 Z REpR2 p K20 K2 [vee (Clyr (u) Compr (@) ||| P vee (CLe i (w) Compr ()|

= HPHZZ Z K2R K20 K2 g |[vee (Cf g () Corr (w)) | [[vee (C_y 1 (u) Compr (w)) |

=2 2=2 s#r;s,r<t
(zAt)—1

<2HPHZZ S R2R2R2 K2 ||C i (0) Copr )] | €l () Cor ()]

t=22=2 r>s

T t—1

=2 HPH SN R K2 K2 K24 |Gl (u) G ()
t=21r>s
T t—12—-1

+4||P|| SoDN RER2 p K2 K2 |Gl () Comrr ()] (|G () Comrr ()

t=3 z=2r>s

= 292,04 + Zoop,

where the third inequality holds by the fact that ||vec (X)|| = || X for any matrix X. Note
that H]S H is finite as a permutation matrix. Therefore as we just analyzed, Zsg , is smaller
than Zsg 3, and Zag , has the same bound as in (A.2.20), which implies that Zss is negligible
as well.

Next, we prove Z; = ZZ:Q Zi;ll @CQ_S,T (u) f(tZ,TCt—s,T (u) G B D am1 bt Natab-
For E (Z;), we have

T t-1

B(2) =323 Kirtr [Clor () Cosr (0B (601

ZZK2TK2Ttr 1o (W) Cios i (u)]
t=2 s=1
L h‘Kt,TKiT -
4m2T2M
]k:—l

1 772T2M Ztr [66] cos® ((t — s) Aj)

L hK? K2
Z%Ztr [001] cos ((t — s) Aj) cos ((t — 5) Ak)

s=1

tr [070)] cos ((t — s) A;) cos (£ — ) Ax)

-
||
v

I
~ »
[
e

(1~ 1=

+
&

= EZ11 + EZq.
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For both FZ1; and EZ,5, we can firstly consider the summation over time domain, under

either j = k or j # k, which is given by

T t—1

h — o~
73 D 2 Kiw K peos ((t— 5) Ag) cos ((t — 5) ) (A.2.22)
t=2 s=1
h T t—1 _
= S Y R2R? (ez(t—sw i e—i(t—sw) (eut—sm n e—z‘(t—sm)
t=2 s=1
h T t—1
= = ZZ[??,TKSQT (ei(t—s))\j+k Lo ilt=)N—k 4 Gilt=9)N ik 4 e—i(t—s))\j+k)
t=2 s=1
hodm g~ ~ ) ) ) , hoLL
_ ﬁ Z ZKtz,TKSQ,T (ez(t—s))\j+k + e~ i(t=5)X;—k + PRI LRV + e—z(t—s)>x;-+k> _ Sﬁ ZK?’T
t=1 s=1 =1
T T T
_ 4h2 ZZKE K2, ( i(t=9) Xk 4 gilt—s) ) Z
t=1 s=1 =1
h ENEAY ) ) 1
= 173 2 D KEpR2y (M7 Mk 4 07Nk 1 0 (T>
t=1 s=1

Note that 23:1 Zle I}E,TIN(SQ,Tei(t*S)AJM is the periodogram of [N(ET at frequency Ay, and
it is thus equal to 3, 377, IN(E’TI?S%Te_"(t_S))‘H’“, and Y7 ST [N(ETIN(E e t=9)Xi-k has
the similar argument. Then we can focus on the DFT of IN{E o at frequencies A5 and A\j_p,
in which we consider the latter for instance. Note that when j = k, it is easy to see that
@ Zthl I?ﬁTeitAf*k = @ Zthl I?ET = vh; and when j # k we denote ¢ = j — k and it

follows by Assumption 3(iv) that

\/*T
G

T
ithg
st ()
T
Vh Zk,z (t ;Zh) A

- Thlﬁ)og —+ 0(1) =1

as T'— oco. And the same reasoning can hold for DFT of K T at frequencies Ajyj as well.

Then since a periodogram is the squared modulus of a DFT, we can see that

i
T2

And a similar consequence holds for Zthl ZZ=1 I?zTI?§7Tei(t*S)A-7+k, which then altogether

implies that

tTK 7 cos ((t—s)Aj)cos ((t—s)Ax)

T 1
Z PpREp (s 4l ’“)+O<T>
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bt () o)

(B (L)1 an

Then it is sufficient to consider the asymptotics of EZ15 with summation over j and k, which

is given by

It hK2 K2
EZyy = 22 Zl oY [9 ek] cos ((t — s) ;) cos ((t — ) Ap) (A.2.24)
;Efz(“)erxb(U)Jers(U) 46(u) p p . .
- 47T2I€02M ZZ%% Z 0 (u’j7k)

a=1b=1 Gk iR <0(u);j—k<0(u)

. A?é(u)Aié(u)tr [Re (A'ijzw- + A,e,jZXa,j) Re (A/bekZE,k + A;ykZvak)}

)\2an (u)+2de (u)—486(u) P

Ld 1
P> Y Yo (57

a=1b=1 j#k

. /\35(u))\i5(“)tr [Re (A/XM.ZEJ + A;jZXa,j) Re (A’XMZE,k + A;kZXb,k)}

where in the second equality we take into consideration the definition of the limit 8 (u, j),
note that the finiteness of 0 (u) guarantees the validity of order M And within the trace

operator above, we have Re (AX jAEJ- + AEJ-AXM) given by

Re (A'ijzw- + A;,jZXa,j) = Re (A;(a,jAE,j + A:,jAij)

— Re Opxp gﬁcwjgaj n N Opmi Opxl
01><p 01><1 AXa,jA;j O1><1
- Opxp Re (4%, ,A,;)
Re (AXUA* ) 011

from Assumption 1(i) and the fact that Re (X) = Re (X) for any complex vector X with
conjugate X, and thus the similar conclusion holds for Re (A/Xa’ pAck + A;y kZXaJC)' There-

fore

tr [Re (A/Xa,jzsd + Ala,jZXa,j) Re (A/Xb,kzs,k + Ala,kZXb,k)]

= tr [Re (A}a,jAEJ + A;jAij) Re (A;Q,kAe,k + A:,kAXb,k)}

o - Opxp Re (Z}mjfz&j) Opxp Re (‘Zi;(mkg&k)
i Re (AvXa,jAv:,j) 011 Re (gxhkg;k) 011

. [ Re (A* LJ) Re (Axb kA€k> Opx1
_ 01 Re (4x, ;Az,) Re (A%, A )

153



=tr {Re (’Z}mjg&j) Re (ﬁxbkg:k)} + Re (AXa JA* ) Re (g}bkggo

= Re (Ax, 44z, ) Re (Ay, ;A ) +Re (Ax, ;4% ) Re (A%, Aok

Denote the I-th element of AvXa,k as Aixmk(l), then we have
~ ~ ~ ~ p ~ ~ ~ ~
Re (Ax, 142, ) Re (A%, ;Acy) = Y Re (Ax, kA2 Re (A%, 5 Aes ) -
=1

2 ~ 2
Ao and fx, (u,\j) = 5= ‘

Then by Lobato (1997, pp.151), there exist a nonempty subset L C {1,...,p} such that

Note that by Assumption 1(i) and 2(i), f (u, \j) = 5

27

a»d

~ 2
a,j(l)‘ ~ C’l/\;wx‘l(u) forall I € L and )}, C; = Gx,,, and for the rest of the

. 2 SO
AXa,j(m)‘ =0 (A;dea (u)). Then take Re(A}mjAs,j>

arguments m € {1,...,p}\L, 5

for instance, we can see that
Re (Alj;(a,jgg,j> = Re (Avx(“j) Re (Av&j) —Im (Axa ]> Im (AV J) .

And note that by Assumption 2(ii) Im (‘ZXW‘) 0O ()\7 2dx, u)) and Tm (ga j) —0 ()\A_/ﬁul&(u))7
2

which implies that the Re (EXC“J-) and Re (ASJ are the leading terms in ‘AX J’ and

2

‘ﬁ&j respectively, therefore

Re (K}a’jﬁe,j) = ‘an,j

L4aj

+ 19) (A?'nydxa (u)—2d. (u))

~2nG%, GEN e (7d (),

(u)—de (u)

. oY 11 —d e
By the same reasoning, Re (AXb,kA:’k) ~2nGy, GZA, Xp , which implies that

tr [Re (A/Xa’jzm + A;’ -Zxa,g) Re (A/X,”kzs,k + A;’ksz,k)}

~BTGL GE GoA; e (T y (e,
Xob

Substituting this result into (A.2.24) we have

T t—1 hKZ T M ,
EZy —ZZ 47r2T2M | tr {9]-94 cos ((t — s) Aj) cos ((t — s) \g)

2G2 G)ngbG )\dxa (u)+dx, (u)+2de (u)—46(u) Zp: p
K/OQM P ot nanb
2 0% (w1 . ) A20(00 (1000 200 =, ()0

FFki+E<O(u);i—k<0(u)
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p P 3 3
GgfaaG)chbGa
=D 2 mam®" (1 —dx, (u) — dz (u) + 26 (v))

a=1b=1

Then it remains to analyze the order of £Z7;, which can be done in the same manner as

above. Note that in EFZqq,
9 1
cos” ((t —s) Aj) = 5 [cos (2 (t —s) Aj) +1].

Then consider the summation over time domain first, we have

T -1
h o~
ﬁZZKtQ,TKSQ,TCOSQ((t_S))‘j)
t=2 s=1
T -1

2T2 ZZKETK (cos(2(t—s)Aj)+1)
t=2 s=1
T t-1 T t-1

2T2 ZZKETK T COS (2 (t - 5) 2T2 ZKZTKe T — EZlLa + Ele,bv

t=2 s=1 t=2 s=1

where firstly EZ11 is given by

T t—1

T 2 7
= o S Repit, = ZE§T> SRy

t=2 s=1

t=1
2
T 2 T 4
h Kh tu Khtu
= 272 (Z Z 2
tlT t1 htu t=1 ( Ztl htu)

=0(h+T7"),

and then EZ;; , is given by

T t—1
h Y~
EZina= 5y SN KK pcos(2(t—s))))
t=2 s=1
P
=17 ZZK%TK§7TCOS( (t—s)A ZK?T]
t=1 s=1

a htuKI%su i(t 205 1
ke[ Y Ze I +0(T7Y)
t=1s=1 ( Zt 1 htu)

<o(u.2)+o(5).

by Assumption 3(iv). Thus EZ11 a+EZ11,5 < 6 (u,25)+0 (h), and this order holds uniformly
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over j. Then given the properties of function 6 (u, j), we have as T' — oo,

T t— 2 17
K T ST
EZn :ZZ gT2M Ztr [9 0, ] cos? ((t — 5) ;)
t=2 s=1
dx (u)+dx (u)+2d (u)—46(u) p
2GX G b ZZ 46(u —dx, (u)—dx, (u)—2d (u)
< nato » 0 (u,2j) ‘ ’
H02M a=1b=1 jgg(u)
dxy (W) +dx, (w)+2de(w)—45(w) p p M
2Gx. , GXy° b 45(u)—dx, (w)—dx, (u)—2de (u)
—|—O h ab M u /\‘ a b €
() v ;;n Ub; ;

40 (u)—dx, (u)—dx, (u)—2d:(u)

2GXab ¢ L 3 ] )
2By o X 03 L0 = o)
a=1b=1 7<0(u)
using the conclusion in Nielsen (2005, pp.294) and the fact that 6 (u) is finite. Therefore
combining what we have derived for EZy; and EZ;5, we can conclude that
G2 G)?(bbGE

Z1) =Y Y nam®” = dx. () —d. () 720 (u = > e ab-

a=1 b=1 a=1b=1

Next to prove the convergence in probability we study E (Z%) . Note that

E (Z3) (A.2.25)
T t-1 N N 2
=K Z Cé é—s,T (u) KtQ,TCt—S,T (u) Cs
t=2 s=1
T ti—1ta—1 _ _ -
:E< Z C;l élfsl,T (u) Ktzl,TCtlfsly ( )CS1C52 to— SQT( ) t22,TC752*52,T (U)€52>
t1,t0=2s51=1s2=1
T t1—1ta—1
- > K2 r B2 0B (10 €y (0) Coy i1 (0) 86,8 (0) Gy (0) 8L ])

t1—1ta—1

T
= Z Z Z [?El,TRith,TveC (01‘{2—52,T (’LL) Cvt’z—SQ7 ( )) (<92C91 @ <92C91) vec (Ot1 s1,T (u) Ct1—517T (u))

t1,to=2s1=1 so=1
t1—1ty—1

T
Z Z Z Kfl,TKEQ,TKs21,TK§2,T
t1,t2=2s1=1s2=1
x vec (Cf, _y, 7 (1) Cry—spr (1) B (Coy €, @ Co (L) vee (Cy, ., 1 (w) Cry—sy 1 (w)

T (ti—1)A(t2—1) _ ~
=) Z K} 2K}, Kl
t1,ta=2
X vec (Ctg so,T ( ) Ct2*52,T (U))/ E (gscg ® CSC )VeC (Ctl s1,T ( ) Ctl*Sl,T (u))
T (t1—1)A(t2—1)
+ Z Z Kt21 TKt22 TK31 TK827

t1,to=2 s1,52=1

51#£82

’

x <Vec (0;2_521 () Crysy 7 (u)) E (<52<;1 ® <s2<;1) vec (ogl_shT () Cty g, 7 (u)))
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= SZl + SZ2

Firstly for SZs5, we have E (CSQC;l ® CSQC;1> =C by Assumption 1(i) with the sparse con-

stant matrix C is given in detail by

€11 €12 ce €1,p+1

€p+1,1 €p+1,2 ° Epilp+l

where e;; is a (p+ 1) x (p+ 1) matrix with all elements equal to zero except the (4, j)-th

one. Therefore

SZy

T T (t1—1)A(t2—1) !

= Z Z Z Kt1 TKEQ,TKELTKEQ,TVEC (Ct2752’T (u) Ct27521T (u)) CVGC (Ctlfsl,T (u) CtlfslyT (U))
t1=21t2=2 8178;:1
S1F#S2

T T (tl 1)/\ to— 1) . ~ _
=X X KRR ARt (Chrmarr (@) Ctrrr () 11 (Cly 1 (W) Cama ()

t2 2 81,82= 1

51752
T (tl 1)/\ to— 1)

Yy > K o K3 r Kbt (€ (0) oo () 1 (Cly i (0) Cla s ()

t1=21t5=2
=E(Z,)° — RSZs,
where RSZ, can be further given by

(tl 1)/\(t2 1) M

iy nd h /
) 2 4
RSZy = t; t; Z Ki, rKi, 7Kg 1 2T j%z:l tr (Hjﬁk) cos ((t1 — s) Aj) cos ((t1 — 8) Ax)
h M
2T Z tr <0j0k) cos ((t2 — s) Aj) cos ((ta — s) Ag)
jk=1

5 as 0; in our study

dx, (u)+de(u)—26(u)
Note that by Nielsen (2005, pp. 294), ||6;]| = O <(M) " >

is numerically identical to the one in Nielsen (2005), and thus using this property |RSZs|

can be bounded by

|RSZs|

1 < h o1 X

LS R LS (o)

to=1 j,k=1

N

M

Z ZKtl T ST4 Q;QM Z tr (6560x) cos ((t1 — ) Aj) cos ((t1 — ) Ax)

t1=1s=1 7,k=1
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M
~ h
O (Mh) Z ZKfl, §T4 T3] Z tr (00x) cos ((t1 — s) Aj) cos ((t1 — ) Ax)
t1=1s=1 7,k=1
1 M h T T
<O(Mh) 577 le |t (00) | ?tz:;;Ktl K2 g cos ((t1 — 8) Aj) cos ((tr — 5) Ax)

1
k=1

T T
X % Z Z}?EI’T}?;TE (ei(tl—s)qu,k + e—i(tl—s))\j,k + ei(tl—s))\j,k + e—i(t1—s))\j+k>

t1=1s=1
T3 Z ZKtl T ()‘) )

=0 (M |tr (66,)]
QMJ;I t1=1s=1

where in C' (\) anyone of the four terms can lead to the same order, so it is sufficient to

i(tlfS))\

analyze one of them. We take e i+k for instance, and have that

47r2M Z ‘” (0 9’“)‘

]. !
S el Z tr @JH’“)
§ k=1

T3 Z Z K} oK) poetthmshive

t1=1s=1
Vh =~y VI e ~ 1
v K2 ltl)\j+k v K4 —

T Z t1,7¢ T2 5; s7=0 vh
Kh tu

t1=1
1 T 2
T Et 1 h tu

fore |[RSZs| = O (TM—J%) = 0(1). Next by Assumption 1(i) E (csg; ® gsg;) — B, then SZ,

using the same reasoning as in (A.2.23), and the definition that I?ET = . There-

follows that

T (tl 1)/\(t2 1)

SZ_HBHZZ > R 2K oKl |[Cliar (@) Cramoir )] || Gl () G ()

t1=2t=2

which has the same order as | Z21 5| in (A.2.20) and thus negligible. Therefore we can conclude
that E (Z7) = E (Z1)? + 0 (1) and thus the variance of Z; is negligible, which then implies

that ) )
- £ * G)E( G?{(,;,GE
2= 2 2 mn® | T g sy | oW

Then we complete the proof of arguemnt (i).

(ii) As in Lobato (1999), it is sufficient to prove Zthl E (Z;fT (u)) — 0. Note that

T
Z E (Zt4,T (U))

t=1
T 2
ZE<ZZC Cl_sr (W) GGCrrr (u )E)
t=2 s<t r<t
T
ZE[ZZCCQ o1 (W GGC_rr (W) G YD CC i (1) GG Comnr (1) G
t s<t r<t v<t w<t
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E{tr [Crur () QlClr (@) GG Crpr 0 GCCL (0 GG |}

5,0, w<t

Rir X Blvee(Conr @EECur®) (68 ©8) vee (Comar () EECE i ()

M= 10>

)

~+
||
\)

s,rv,w<t

IN
S|

SRy Y B (Cor GG i )] ree (Comnr GG vr )]
t=2

s,rv,w<t

_ |z XT:IN(;{T > JEHCt_T,T(u)&E{, ;_U,T(U)H Hct_s,T(u)@Q t/—“’vT(“)H
t=2

s,rv,w<t

IN
S|

Skt 3 (2lecritetrofl) X (el oicts o)
t=2 raw<t

Note that by the same reasoning as how we derive (A.2.19), we have

B[ e ) S0 )|
=E [t (Gl (@) Comoir ) GG Ol (0) Conr ()G, )|

< RI}&TI?%,T chgfv,T (u) Ci—v,r (U)H HCLnT (u) Ci—r1 (U)H

with some constant R, where the last inequality holds by Assumption 1(i) and by the
derivation of (A.2.25). Therefore it is enough to consider EF5 as it is dominant in order

when summing over ¢, v and r. Then by substitution,

T T

S E(Zirw) <R tTZKvTK,T\/HCt o (@) Comir )| |1y () Corr (W)

t=1 t=2 r,o<t

<3 Kg,Tf(w,T\/ |Gt @) Comsr )| || Co i () Cor ()|

s,w<t

R tT<ZKrT\/HOz i (1) Ciorr ( H) (;f?s,cﬁ\\c;_s,T(u)ct_s,T<u>H>

T 2
<R (ZK ) (cht_s,T(u)H“)
t=2 . r<t , / s<t )
< Rh™? (Z f(f,T> > (Z ICs—s. (u)l“)
r=1

= s<t
T—1 2
(Z =) | Cr—s,1 (u )||4>
t=1
T—1 2 M2h2
(Tan o ) —o(*5").
=1
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where the last equality holds because

T-1 LT/MJ 212 T 2

. M?2h h
Sl =0 Y =+ Y am
— =1 \T/M]+1

Mh? h? Mh?
O<T3+T3 W) :O<Ts)’
then we can conclude that » thl E (Z;fT (u)) =o(1).

This completes the proof of Proposition A.1.5. B
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Appendix B

Technical Results for Chapter 3

B.1 Proofs of the Main Results

In this appendix we prove the main results in the paper. The proofs call upon some technical
lemmas that proved in the online supplement. Throughout the proof, we use C' to denote

some absolute constant that may vary across lines. We use A < B to denote A/B = O, (1).

B.1.1 Proofs of the Results in Section 3.3

To prove Theorem 3.3.1, we need the following four lemmas.

Lemma B.1.1 Suppose Assumptions A—E and the other conditions for Theorem 3.3.1 hold.

Let H = (%) (575) Vi and dyp = min (NV/2, 71 -max(Gel/2) - Then

1

T

P FOHH2 -0, (HB - [30H2 + 5,;,3) .

Lemma B.1.2 Suppose Assumptions A—FE and the other conditions for Theorem 3.3.1 hold.
We have

TP
= =0, (N—%Tds—% FN"lpNTE

L5y
Ni:l '

Lemma B.1.3 Suppose Assumptions A—E and the other conditions for Theorem 3.3.1 hold.

=)

. B TN
Let Js = — w7 Ef\il XMy w7 Eszl exe, FGA;, where G = (%) (ANA) . Then
T = A + 0 (N4 (6= 57+ 1))

where Ayp = — 7 ZZ]\LI X/Mp+= Zivzl QO FGN = O, (T%4==1) and Qu, = E (exe},) for

everyk=1,...,N.
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Lemma B.1.4 Suppose Assumptions A—E and the other conditions for Theorem 3.3.1 hold.
We have

N

1
XZIMF - N Zaile/cMF] E;
k=1

1 N

LN
:WZ

i=1

N
1
XZ{MFO - N ZaikX,;MFo
k=1

-1 -1
o 1 N (X;=V))'F° (% o A'A 1 NV I 1
where C{p = w77 2 i1 T T N ¥ Lno1 Meerei = Op () -

Proof of Theorem 3.3.1. By the definition of B, we have

N N
<N1T ZXéMﬁXi> (/9 - 60) = ﬁ D XIMpFON + o ZX Mge.  (B.L1)
=1 1=1

For the first term on the right hand side (rhs), we have Mz F® = M (F® — FH~') where

H is defined in Lemma B.1.1 as H = (AJ/VA) (FOTF) Vyr = G7'Vyi. The asymptotic
invertibility of H and Vi can be proved as in Proposition 1 of Bai (2009), as its proof does

not involve any premise of serial persistence, and it holds under long range dependence as

well. Then

— S XM\ = — 3 XM, (FO _ FH—l) No= > XM (FO - FVNTG) A
1 F T 7 F g ) F

NT 2~ NT 2 NT 2

Let 6 = 8 — 9. By the eigenvalue problem in (3.2.6),
;N
FVnr = 4= Z X00' X F —

N N
1 N 1 A 1 R
— § PO\ XF — — § O XIF + —— § FO\e F
T i=1 ' NT 1=1 ) ' i NT =1 57’

N N N
S| | R
= > ENFUF + Y el F + — Y FOAMNFYF (B.12)
T i=1 NT i=1 NT i=1

L+ -+ 1.
Then E'VyrG — FO = (I1 +---+ 1I3g) G and
N
ZXM SFON, = Z s+ BIGN=J 4+ T

We can derive the order of Jjs by using the same reasoning as used in the proof of Lemma

162

&+ C%p + 0, (HB - ﬂOH) +0, (N*%Tdféég,; n N’%Tdf1> ,



B.1.1. For J;, we have

N

N
1 Z 1 Z an .
k=1

Il = ‘ NT 2

LSl <L S e 6 L 2] e
< S 2 1Kl Il 5 3 8" == [ ne

il (NITi ||Xi|2>2 (}Vi W) i = o, ().
i=1 i=1 k=1

A

where we use the fact that HMFHsp =

F’ = VR, and Assumption B(i) and B(iv).

For J3 we have

N N
XIMpXi\ (e, FOH .
ngNZZ< )( T ) GAid

N N 0
XM, X, €k (F F H) .
+N7;; k T G)\(SEJ31+J32
Note that
N N
e XM X, skFOH A
[Ja1] = NQ;ZI< T )< T G
N N
NI e FOH| 1
< || il | I X
<Pl sz a HNﬁgn N
1 X 1 XN 3 N 273
2 2 2
<[ g [y | |
=1 =1 =1
N 272
A1 el FOH NI
<6l | = k = (14| J.
S > T ] 31,

by Assumption B(i) and B(iv). By arguments as used to show (B.2.2) in the proof of Lemma
B.1.2 and Assumption D(i), we can show that J% = O, (T?%7!) = o,(1). Therefore
I51]] = op (HSH) Similarly, we can show ||Js2|| = o, (HSH) by adopting Lemma B.1.1.

Then ||J3|| = o, (HgH) By the same token, we can show that

1751l =

= ([3])-

N
NITZ)(;MF< Zekaxk )G/\
i=1

For J4, we have

N
1 A A
k=1
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N N
3 XM, (FO - FH*) S NS XLFGA,

i=1 k=1
1/2 0 _ -1
S {NlT i ||Xz-||2} {}V i ||Ai|2} w [8]) = <. (J14])

by Lemma B.1.1. For Jg, we have

1
~ N?T?

1 L& e b

_ 2 :2 : / N k .
1 & 1
7 2 XM (PO~ P (
N A
1 e
N 2T

k=1

e F
T ) G

7l -2
—=||F°— FH
VT

1 N
S W;IIX il [ Al
1 N
v
o, (v b1t (i) ] )
o () o (v b53)

by Lemmas B.1.1 and B.1.2.

S

Gl

As in Bai (2009), J> and J; directly enter the asymptotic distribution and Jg con-

tributes to the bias under possible long range dependence. For Jg, we make the following

decomposition:
1 & 1
= XMy
NTi - NT
1 < =

B 0

= ZXMFNTZQ’“FGA T; T &~ ~ ) FRHGA
1 & 1

B T A

By Lemma B.1.3, Js; = A%y = O, (T?%71) and
b= 0y (41581 5 (] 523)) = o [0y (v 1 -3,
In sum, we have

N
LT ST XIMEFON = Jot+Jr+ Aptop (H5H>+OP (Nrrdd e NTETHE) L (BL)
=1
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Combining (B.1.1) and (B.1.3) yields

N
Ly 1

which then implies that

[Dvr (F) +0,(1)] (5~ ﬁo)

NT pat

N

> XIMgpeitJrt A +0, (N*lef% + N*%T“f%) ,
1=1

Then by Lemma B.1.4 and the conditions that %

[P (F) +on ] v (5-5)

,0 N 1 N
NT
= NT XZ/MF‘ - N E aikX,;MF
i=1 k=1
p N 1 N
NT j : j :
= ﬁ - X;MFO — N’c 1aikX]/€MFO

= pNT Z Zigi + pnt (AXr + Cip) + 0p

where recall that Z; = Mpo X; —
N7 i1 Zi%i B
that Dyr(F) = Dyr (F°) + O, (H5

ei + pn1 (A% + C%r) + pn10p (N-%T%-l +N7ET%35)

1),

N
:LZ XM —*ZalkaM )51+ANT+O ( 77T2d571+N,%T3d57%>'

(B.1.4)

~ — P> 0and dz max > de,

i + pNT AT + pNTOp (N’%T%E*1 + N*%T3df’%)

LS aixMpoXy. By Assumption E(i), Dyr (F°) =
Dy > 0. Using this assumption and Lemma B.1.1, we can readily show

‘ +03) = Do + 0y (1). Tt follows that

- ;OJ%T) 4 N (0,D5'=D; Y,

« 1 Y
PNT (ﬂ - BO - T1—2d. NT
where
_ oy —1 1
Anr = —Dyr (F?) NT1+2d- ZX
=1
Cyr = —Dyp(F%) 7' -2 3
NT NT NT 2

This completes the proof of Theorem 3.3.1.
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B.1.2 Proofs of the Results in Section 3.4

To prove Proposition 3.4.1, we need the following lemma whose proofs can be found in

Supplemental Material.

Lemma B.1.5 Under Assumptions A-D and A*—B* we have
. N * *
(Z) SupWFEW Hﬁ Zi:l WX,Z'MWFWE,’ = 0p (1))
g N "
(i1) 5By e | s 00 XW oMy, Wes| = 0, (1);

(i) supy;, cyy Hﬁ D W (PWF - PVVFO) W,

=0, (1).

Proof of Proposition 3.4.1. The proof of this proposition follows closely to the proof
of Proposition 1 in Bai (2009, pp.1264) using the modified theory of consistency of an
extremum estimator. Let § = 8 — 8°. By definition, the FDLS estimator (B,WF) solves
the following concentrated minimization problem as

<BaWF) = arg mi.n SNT <ﬂaWF)7
BERP WreW
where W = {WF € CH B Wy = Wplp, WpWr /T = ]IR}. Recall the original objective

function is given by (3.4.3) and (3.4.4) as

N
SSR(B,Wp,A) = > (Wyi—Wx.iB—Wrki)" Wy, — Wxif = Weki)

i=1

(WY,i - Wx 8 — VNVFS\i)* (WY,i - Wx 8~ WF&‘) .

I
<M2

i=1

Let Wy,; = Wy, (8) = Wy,; — Wx ;8. As in (3.4.7), we concentrate \; out by plugging

-1 N _
A = (W;WF) Wi Wy, = Wx i) = Wi (Wy,, = Wxi8) /T = WpWuy /T

into the above objective function and then simplify to obtain the concentrated objective

function:
. N L o N
Swr (BWe) = 2 2 (W = Wi = Wk ) (Wi = Wi = Wik ) = o= >0 WMy, W
; i=1
1 & - . - 1 &
-2 (Wos = WeWiWoi /T) (Woa = WeWiWoi/T) = < ; W2 My, We
1 O 1 &
= > (W = WxiB) My, (Wy = W iB) =~ > WE My, We s,
NT < " NT ~ "
As in Bai (2009), we approximate Sy <ﬁ, Wp) with another random function Sy (6, Wp)
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as follows

N N
~ ~ ~ 1 1
SNT ([3, WF) = SnT (5, WF) + (yﬁ E W;(,iMWFWEJ + ﬁ E W;,iMWFWX,i(S
=1 =1

N N
1 E /‘17* ‘17* 1 § ‘17* ‘17
+ NT i=1 . FOMWF ei t NT i=1 EJ]MWF o

N
1 *
g W (P, — Py, ) W
i=1

where

N *
g 7 st 1 * WF‘JMWFWFD AA
Snr (ﬁ, WF) —5 (NT E»—1: Wi My, Wi | 6+t | (=== ) (=

N N
1 * 1 *
+ 6 ~T > Wi My, Wrod; + ~T > XN WioMyy, Wi 6.
=1 =1

where § = 8 — 3°. By Lemma B.1.5, Syr (ﬁ, Wp) = Syt (B,WF) + 0p (1) uniformly
over B € RY and Wrp € W. Then we can focus on the approximated objective function
Syt (@Wp). Note that Sy (ﬁO,HWpo) = 0 for any asymptotically invertible matrix
H by construction, and because [ is also invertible, St (60, H Wpo) = 0 holds as well.

Then analogously to the proof in Bai (2009), we denote

N
1
ﬁ Z ()\74 ® MWF WX,Z) 5

i=1

N
1 S 1 (NA
A = ﬁ o WX,iMVVFWX»i’ B - = < N

T ®HL>7C:

and 1 = vec (MWF WFo) , where vec(+) is the vectorization operator that stack the columns

of a matrix into a single column vector. Then

Syt (ﬁ, WF) = §'AS + n* By + §'C*n + n*C§
=0 (A-C*B7'C) 6+ (n* +8C*B~") B(n+ B 'C9)

= §'DY (W) + 6% BY.

By Assumption B(iv), B is positive definite asymptotically, and so as DT (W) by Assump-
tion B*(ii). Therefore Syt (ﬁ, Wp) >0if6d=p8—p8°+#0or Wg # HWpo, which implies
(BO,H Wpo) is the unique minimizer of Sy (5, WF> over the restrictions. With this re-
sult, in conjunction with the uniform approximation before and arguments used in Bai (2009,
pp. 1265), we can conclude that B is a consistent estimator for (.

Next, for (ii), note that the proof in Bai (2009, pp.1265) is extended directly to our

frequency domain setup given the consistency of 5. m
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To prove Theorem 3.4.2, we require the following lemmas that are proved in the Online

Supplement.

Lemma B.1.6 Suppose Assumption A, B, and A*-E*, and the other conditions of Theorem

3.4.2 hold. Let H = (A];,A) (W) Vyi- Then

_1
2

. ~ _1 1—dpmax—de

WF—WFOHH = (5W17NTHﬁ_BOH+N 2y, >7
—dXx max —dF max $—d.

where dw1,nT = 'yL ('yL +7 )

Lemma B.1.7 Suppose Assumptions A, B, and A*-E*, and the other conditions of Theo-
rem 3.4.2 hold. We have

iv: (W WF) =0y (5W,NL HB - 50H + N_%L_%WL%JdF’mx*ds)

_1 1—dx max—d dp, max 14
wher@ (SW,NL = N QrYL X, ma e (’)/L F, +7L2 E).

Lemma B.1.8 Suppose Assumptions A, B, and A*-E*, and suppose the other conditions
of Theorem 3.4.2 hold. Let

N
- 1 . 1 G
Js =~ 2 Re <WXJMWF ~7 ; WE,kW&kWpGAJ

and

ANT = — 45 Z Re (WXz Wg NT ZDZGQ (‘WE kil ) WFG)‘Z’) )

with Diag <|W6,kj|2) a diagonal matriz of |W57kj|2, j=1,...,L. Then

1 2104 d 3d 2d
JS ANT"'O <T L F,min —&X max — F,max — €

_|_ Op ((T2d€71FY(li/F,min_dX,max + N*%ryi_2de+(dF,min_dX,max ) ((SWl NT (ﬂ 50) _|_ ]\77l 1 dF max ds))

and

1 2494 —d —3d 2d,
F,min X ,max F,max —
Ayt =0, ( o .

Lemma B.1.9 Suppose Assumptions A, B, and A*-E*, and suppose the other conditions
of Theorem 3.4.2 hold. Recall that Wy,; = % ng’:l aixtWx . We have

INEE T2 S (0, - W) M
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de—1
= LTS e (03~ W) Mo W]+ 0, (VT (3 7)) 0, 1)

Proof of Theorem 3.4.2. Recall that

where Wy ; = Wx ;8% + WgoX; + We;. Then

N —1
b=p5-8"= % Z Re (W)*(JMWF WX,i)]
i—1

% iv: Re (W;(viMWFWFOXi) + % iv: Re (W;‘“MWFW“)‘| ,
i=1 =1

which implies that

NT f: Re (WiiMWFWX@)] (3 - BO) (B.1.5)
i=1
= iv: Re (W;MMWF WFOX,») + % zN: Re (W;;JMWF W) . (B.1.6)
i=1 i=1

First, we study ﬁ Zf\il Re (W;(,iMWF Wgo A,) Note that My, Wgo = My, <Wpo — Wpﬁ’l) ,
where the asymptotic invertibility of H can be proved using similar reasoning as used in the
time domain. We consider the following eigenvalue problem

1 N

NT Z (WY,i - WXZB) (Wy,i - WX’LB) *] Wr = WpVyr.

By expanding Wy ; in the above equation, we have
1 & 1 & 1 &
I _ - YN *‘A - f’/‘ * 1T - 5 *AA*
WrVive = 57 ; Wi i00' W3 Wr — o ; W idNiWioWr — o ; W, W W
1 - 1 - 1
NT Z WFOAi(S,W;(,iWF “NT Z WE,iJIW;(,iWF + NT Z WFO)\iW;iWF
i=1 i=1 i=1

N N N
1 . 1 . 1 S
T 2 We Wi Wr + <o D WeaW2 W+ o Y- Wi AW W
=1 =1 =1

=L+ 41 (B.1.7)

This, in conjunction with the definition of H given in the proof of Lemma B.1.6, it implies
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that

Then

It is easy to show that H = Op ( 1-2dr, ma") and G = Op ( dr,min %> by Assumption B(iv)
and B*(iii). For .J;, we have

] =

N N
1 1 <z . -
N7 Z Wi My, (NT > W;k(sa/wx,kwp’:) GX;

s[el bl 5 ZH Wil 1) NTzankn

4 ez (1 X N 2
F,min— % )

s 9] w7 2 Wl §7ﬁ||A P
dme %

H ( 3/2—3(1}(1“—.3)() ( ) ( 1+dpF,min —3d X max

i),

1 2d max
= Land g S [Wael* = 0, i
by Assumption B*(i). Then we can express J, = —J;d with Jf = O, (7£+dF'mi“73dX"““5).

where we use the additional facts that HMWF

Next as in time domain, Jo will enter the asymptotic distribution. For .Js, we make the

following decomposition:
. 1 1 XN _
Js = o D Re | Wi My, (NT > WX7;€6WE*7,€WF> GAi)
' k=1

<W;<,iMZII/E/FWX,k> (W:k?jFOH> G)‘igl
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N N © M, Wz (W — WroH
—1 WX,iMW WXJ@ &k( F F ) S ~
+ 32 D> Re < " > - GXib| = T30 + J32.

1=1 k=1

First,

1

HJ3 1” < ’de min — 3

(Sl

1 1 & ) &
ﬁ;HWX,iH N;HNH ﬁz

1 ~

d 1 Y 1 di RS ?
F,min— 35 2 2 ¥ i ]
St ] s N;nm] 75 O | W ] 7]

o1 _ 1_ —
=513 0n (3172 ) 00, (173 L7597 7) 0,10, (172

-0 (T—%L—%’y2_2dF,max_QdX,lnax+(dF,n1i11_ds)
- L

by Assumption B(iv), B*(i), C*(i) and D*(iii). And using the same notation involving J;,
we have j371 = _j§,15 with j?f,l = Op( QL—l 2 2d F,max 2dx,max+(dF,min*da)). And by

the same reasoning and Lemma B.1.6,

1

HJQ,QH < ,de min T 3

I

1 & 1 1 & f
5"72 W sll? 72 Al 72 w2l

(5W1,NT HSH + N*%ﬁ*dﬂmarda)) 7

1-2dx max+(dF,min—
=0y (7L

where 0y, v is defined in Lemma B.1.6, which altogether form the order of jg. And we

can write J3 o = —j§,25 with

7 1-2dx max+(dF,min—de) n\7—1 1 dF,max— 1-2dx max+(dF,min—de N
J32=0p (’YL o (A=) =gy AR )*O ( Xl )5W1,NT5)-

Next
- 1 & . -
| 7] = T Z Wi My, (NT 3 WFoAk(s’W;(,kWF) G\
k=1
N
NT Z Wi ;M <N1T Z Wgo — Wpﬁf—l) Xké’w;(’kvifp> G
i=1 k=1

-

][5

N 2
d min T 3
SRR bl (NT > Wl I ||> T

N
1z 1 1 1
< 2dpmin 1H5H We 12 LS o2 L
<o 7NTZH xall 5 DI 7y

(627 )on =) s i )

0]
2d F,min —2d X max 2dF,min—=2dX max p\r— 4 1 dF,max—
Op( i Xomax § 1NTH H >+O (’)/L N

WFOﬁH

i)
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and thus we can write Jy = fjjg with
j: — Op (f}/idF,min_de,mafo%7£_dF,max ) + O ( 2dF mm_2dX max(S Wi NTS) .

Next,

!!sz|

N N
1 . 1 R O
NT Z Wi, iMyy, (NT Z W&k(g/WX,kWF) G\
i—1

d min—%

frma=h anm NTZHWMHHWMH Ve
Op ( dF min 3 H) ( dX max) O </_y}l dX max de)
Op < 1-2dx max+(dF,min— )

and J5 = —J36 with J& = O, (7£72dx’m“x+(d’v"“‘"7ds)). Next for Jg, we have

W

NTZWXlM WFoAk<NZ ek FGA1>|
N * 11

LS i My, (Weo - el ) 7 (jlv ZMWE;WF> N

=1
W W,
NZM TF

7] =

1
2

dF,min
St Zuwxlu Il

e

2d min_1 5—d ,max —l 1 d max da
=0, (ni" )Op(vf ) )0 (b [§] + N2y trm)
S
3 —dx,max+2dp,min—1 2|2
=0y (’Yf © " Ow1,NTOW,NL H(SH )
£ —dX max+2dF min— —1 3-2dpmax— 1 1—dp max— <
+Op (75 - " <5W1 NeNT3L 27 o +5WNLN Ty, )HfSH)
1_ . _ _
+ Op (712‘ dx max+2dF, min— N 2L77 —2dF, max— EN*%P)I}‘ dF,max ds)

2 5
=0, (AI,NT H5H + A N H(SH + As,NT> ,

by Lemma B.1.6 and B.1.7. Also we can write Jo = —Jg’18+Jg’2 with jgl =0, (ALNTS + AQ’NT>7
and jg,z = O, (A3 n7). And same as Jy, J; contributes to the asymptotic distribution di-

rectly. Lastly for jg, by Lemma B.1.8, we have Js = Ayt + Jgs, where

N N
1 N 1 . 2\ 13, ~
Anr =~ ;zlj Re (WXJMWFNT ;;1 Diag (IWe i) WFG)\,)

1 242dp, min —dx —3dp —2d
,min ,max ,max €
= Op (’y[ s (Blg)
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and

Jg

TL

+O (<T2d5717dlen_dX max ]\[7l }‘ 2de+(dF,min—dx max ) (5W1 NTH H"‘Nﬁl 1—dF max— de))

— O ( 1 2+2dF‘ mm_dX max_?’dF max —2de )

=0, (ALNT H(SH + Az,NT) )

and Ay will enter the bias. As before we can write Jg = j§715+j§72 with j§71 =0, (ALNT)
and jék’Q = Op (AQyNT).
Then summarizing all the results we have obtained so far, (B.1.5) and (B.1.6) can be

written as

% g:Re (W;(,iMWFWX,i)‘| (B - BO) — <j1 + e+ Jg)—&—— ZRe (WX My, We Z) ,
i=1

which is equivalent to

N
7 D Re (Wit My, W) = ot (5 + Jiy + Jip + T+ 5 + Ty + ngl)] (5-5)
=1
N
= jgg + An7 + j872 + % ; Re (W;(,iMWF Ws,i) + j7. (B,1,9)

By construction DjVL (WF) = ﬁ va 1 Re (W)*( My, Wx,i> — jz, and denote J, = jl* +
Tiat T ot Ti+ i+ Jgy and Oy = YNBET2 57 Re (W3 My, — & S0, anVi, My, ) Wei),
then left-multiplying v/ NLfyzE_lFZ on both sides of (B.1.9) implies

L' Tz [DJTVL (WF) + j*] IzVNLyT,! (B - 50) = VNLy{~'Ty (j(;g + Ant + j8,2> +Cni.

To proceed, it is easy to show v, 'T'z [D]TVL (WF> - D}LVL} I'z = 0,(1) using Lemma B.1.6
some other regularity conditions. We also need to show that vglI‘ 7. Dy = 0p(1), which
means J, = op (*yi 2dz, “““) as the order is defined using matrix norm. Note that this
argument can be proved because the following seven arguments hold under Assumption
E*(ii) and E*(iii) about the relative magnitude among the memory parameters and the
convergence rate of ¢:

L

2dz min—1 || Fx
7 ’ L

2dz min+dF,min—3dX max
-0 (7 z, F, X,

SH) = 0p(1);

2dz min—1 o —1 . 1 142dz min—2dF max —2dx max+(dFmin—de) | __ X

i [ 752 =00 (77327443 = 0,(1)
2dz min—1 || 7% 2d z,min—2d X max+(dF,min— -1 1 dF max—de .
i | Fal = 0n (o3 * (dwrrvr 3] + N4 ) =t
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2dZ,min_1 T
i

2dZ,min+2dF,min_ZdX,max_1 N 1 1- dFmax ds . .
=0, (0 (waave o] = w=0i7tm) ) = ot

2dz,min—1 || Fx
Y J5

2dz min—2dx max+(dF,min—de) || ¥
: =0, (sl irmn = 5]} = o,(1);

2dz min—1 || 7%
L HJG,l H

= Widz’min_lop (AI,NT HSH + A2,NT)

2dz,min —dX,max+2dF,mi N
— O ( Z,min X, ma: F,min — 25W17NT5W,NL H(SH)

+ O ( 2dz, min—dx,max+2dF,min—35 (5W1 NN~ 2L77 —2dF,max— < 4 5W N N~3 —dF, max ds))
= op(1);
2dz min—1 || 7
v gl

2d. —1 _dF,min—dX max+2dz, min—1 — 1 2dz min—2de+(dF,min—dX max)
=0p (6W1:NT (T C L i + N2 :

= 0p(1)

Next in the following we examine the negligibility of v N L’yzf -ry jé‘z and v N ngs_lf z jgg.

To be specific, as above we check whether jg;,Q and j§72 are o, ( \/772 4z, “““_dg). And as

a result,
dz min+de—1 || 7
VNLy;* - HJ52H
T dzmintde—1
— Op ( NL,YLZ.mmJF € A&NT)
dz mintde—1_ 3 —dx max+t2dFmin—1 rr—1 7 —1 3—2dpmax—de x\;—1 1—dp max—de
» (VNI Vi N=3L 7347 N=3q)

—1 142dpmin+dz,min—3dF max —dx,max—d
+0p (N 7L ' ' E) =0, (1),

and

VN Lygm = e |

O ( +dZ mm+2dF mm_dX max_de max )

1
Lz dp i - _
F,min +dZ,mm dX,max dp max —2d. +dZ 11111;+dF min dX,max dF,max o
+ 0y ( . op(1)

Lastly we analyze Cyr. Since by Assumption E*(ii), Cnz 4N (0, %) with

/ d 7111
CNL ,YL Z ZRG

N
1
WiiMw,, — > anWi Mw,, | Wei |,
k=1
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and by Lemma B.1.9 Cx = Cnp, + Ci 0 + 0,(1), where C%; = o, (\/NL’ygEF;). Com-

bining all the terms we have so far implies that

[771FZDJVLFZ +op ( )} VNLy{T, ( )
_VNLyE'T 1 &
'VL z ZR W M-, —NZ%W“MW* W2 | + VNLy Tz Anr + 0,(1)

=Cnyp + ANy +o0,(1).

The asymptotic bias term satisfies

A 0O N 14+dz min+2dF, min —dx ,max —3dF,max —de
NT — Yp ZWL

— VNIAETS0, ( L4202 i 24 min =, =34 s —2de ) (B.1.10)

which could be explosive. Note that Cnp, satisfies the CLT as Cyp, AN (0,%) by Assump-

tion D*(ii). Denoting DY, = ’yL_ll“ZD;rVLI‘Z, we can rewrite the above formula as
_1 /(3 ~1
VNIyTg (B 8°) = (D) Cvi + (DNL) ™ Alir + 0p(1),

because (D}(‘,’L)_l = 0,(1) by Assumption D(i), and thus using the right hand side of
(B.1.10), we have

VNIyfT (8- 8° - ANr) = (DRL) ™ Cwi +0,(1),
where

1 _
AYr =Ty (DyL) Tz 'Anr
_1 N

=-Iyz (D]V\‘f/L) T ZR <WX1 W NT ZDWQ (|Wa kjl ) WFG/\i> )

de mm+2dF min dX,max*3dF,max*2d5

with AW, = O, (¢1) and ¢, = 7 , which is based on (B.1.8)

and the definition of Gammaz.

Summarizing all we have so far, we complete the proof of Theorem 3.4.2. B

Proof of Theorem 3.4.3. In the first stage we prove the consistency of asymptotic

covariance estimator. By construction, it is equivalent to show the consistency of both
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YL r,DW, T, and 72d ~I1,3W T4, Firstly recall that

1

N
. 1
W _ * N ) — =
DNy = 7 ;Re (Wi My, W) = =

N N
1 " N
7DD Re (WX7iMWFWX,kaik>]
| X
= LS Re (15,72
NT g € Ziv"VZ,
Then by Assumption D*(i) it is sufficient to prove v; 'T'z (lA)]V\‘,/L - DLL) 'z = o0, (1), where

by definition D}V ;, has the same form as D only with W and @, replaced by their true

values. Then

—1 N
— ~ Y I_‘Z *
7'T7 (D= D)7 = Lz § :Re (Wis (M, — My, ) W) Tz

F N N
7L Z 2 Z Z Re (W;(,ZMWF WX,k (alk — aik))‘| FZ
Fy FZ 1 z;l k;l
L N2 Z ZRe (W)*(z (MWF - MWFO) W)*gkaik)] L'z
i=1 k=1
- dl + d2 + d3.

using the fact that MWFO = Myw,,. Firstly as before, we denote 6= B — [, and d; follows
that

ldall =

lerZ ZR (WXZ ( PWFO) WX,Z») r

2d nnn_]- 1
St ZnWin Py, -

N

+2dZ mm_2dX max_dF max N 1 1 dFmax ds 2
-0, < 2 (5W17NTH5H+N 5yl ) )—op(n

by Assumption E*(iii) given the convergence rate of B, where the last two equalities holds

by the following reasoning:

HPWF ~Py, 2 tr [(PWF — PWF0)2:| = %r (IR - W}PWFO WF/T)

=2tr | Iz — (B.1.11)

L. .- -1 . .
WiWgo [ WhoWio WioWr

T T T ’
then using fact that

Wj;kvo WF

R RO
P Wi Wil + = Wi (We =Wl
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where HﬁH =0, (»yi_ZdF’"‘a") is defined as in Lemma B.1.6, we have

~ ~ ~ ~ -1 - ~
WiWpo (WioWpo )\  WioWr
T T T

Wito Wi
T

3 ;;0 WFO
T

~ ~ —1
W o Wo )

A 4 Wi (Wi - WFUEI)] * ( -

i+ %W;U (e WFOFI)]
_ i <WFTWF> i L (W Wpolt) Wt + L (W~ Vo)

1

o N [(WEW
+ﬁ(WF—WFOH) WFO (FOFO

—1
T ) W;*O (WF - WFOINJ) =dy1 + diz + dis + dia.

Then for (B.1.11), we can analyze it through the decomposition above. First for tr (Ig — d11)

we have

- W W .
tr (Ig — diy) = tr (HR - H* <F°TF°> H)

~ WEW. - _ < . -
<VR|lzp—H" <F0TF0> HH =0, (’Vi 2 me (5W1,NT H(SH —|—N7§"/£ A ds))

by (B.2.10) in the proof of Lemma B.1.9. By the same reasoning we can deal with the
Frobenius norm of dj2-dy4 instead of their traces. To be specific, by Lemma B.1.6 and As-
sumption B*(iii), ||d12|| and ||d;3|| have the same order as tr (Ig — d11), which also dominate
|[d14]]. And by Assumption B(iv) ds have the same order as d;.

Next for do, note that we can rewrite a;, = 5\2 (%)71 j\i, and a;, = 5\,’; (%)71 5\1
with A = WUVAVF/T where Wy is an N x L complex matrix such that Wy, = Wy, — Wx ; 8,
thus \; = W}WUZ /T. Since the conjugate transpose is compatible with the real vectors, we

have

~ oA\ —1
- [ A*A A
aikaik—x;g< - ) (A= a7'%)
AR\ MR
A (N) —ﬁ*<N> | a,

(e (A'

-

2 )
N———
|

N>/l

= by + cip + dig

following the proof of Proposition 2 in Bai (2009), with H defined as in Lemma B.1.6. Then

ds can be decomposed into dsy + doo + dog which correspond to by, ¢, and d;, respectively
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above. So it remains to study da1, dos and dog, where do; is firstly given by

_1 N N -1
r 1 A*A N -
o | VLT 2|5 2o Do Re | Wi My, WXk)\k< - ) (Aﬁ *%) T,
1=1 k=1
N N Aer L

< 2dZ,min_1 1 (X 7H715\') W* ) ]' W 5\* A A

S N7l ; i i) Wxi| T kz::l\l okl || A |

< 2dZ,min_dX,max_% ]‘ i(;\ —ﬁilj\) W* )

N’YL NT% P ) 1 X,i

~ PPN SN . ~
by the fact that A} (A—NA> ()\i — Hfl)\i) is a scalar and the property of PCA in frequency
domain. Then it is adequate to study the order of % Ef\il ‘
WiWy.i/T, we have

2

5\1‘ — f{_l;\i Since \; =

i = W5 (WY,i — WXzE) /T
1 . - ~ -
= Wi (WFo/\i W — WX,ia)
1A*A rr—11% 1A* T T r7—1\ Y 1A* 1A* N
= FWEWeH ™A + 27 (WFO —WrH ) N S WiWei = ZWiWaid

- 1
=H '\ +

7% I T rr— 3 1.2 * 1.2 * <
~Wi (WFO Wl 1) Nt Wi Wei = = Wil 0

therefore by the same reasoning as we have used so far,

(B.1.12)

dF min—dX max 1-2dx, max N
=0, (o= dw v ) 3]

— L1 14+dpr min—dF max—dX,max—de —1,._1 1—dx max—de
+0, (N Byl +N"ELEAL )

by Lemma B.1.6 and D*(iii), which is 0,(1) by convergence rate of 3 and Assumption E*(ii).
Therefore by substitution, |[das | = O, (D1 yr HéH + Do xr), with

dF,min+2dz min—2dx max—

1 .
5+2dz min—3dx max
DinT ="7p 7

1
20w, NT + ]

)

and

Doy = N_%7%+dp,min+2dz,m;n—2dx‘max—dp,max—d5 4 N_%L_%7§+2dz,min—2dx,mx_d€
NT = L L

)

which implies the negligibility of ||da1|| by convergence rate of 5 and Assumption E*(iii).

And it is easy to see the same reasoning and order hold for ds3. Then it remains to analyze
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ds2, which follows that

[|daz||

—1 N N Y -1 <% 1

_ Lz | 1 . o | [(AFA _ [ NA )

- | e (Wi, wen | (2] - il 5,
i=1 k=1

N N ~ oA\ —1 ~ o~ —1
1 O 1 A* AA
SapiEmn Tt S Wl [ Wl A — i i
~ NT3 ;H X,z” i NT? ;H ch|| k N ~
A AN
_ 2dF,min+2dz min —2dx max—1 oy ~
=0, (7L ) ( N H ( ~ ) Hjl.

Since

whose order can be derived in a similar way from (B.1.12). To be specific,

LN -1 o\ -1
*A . AA ~ 5 4 dp min—6dp 1
— i H| oyt trmn = Odrme
H( N > ( N ) o VN

5 1 N 2 %
5+dF, min—6dF, max N 1%
<A g (N ;_1 i —H™ N\ > ;

A* _ ﬁ—l]\*

and analogous to (B.1.13), we have

1

2
N rr—173 2 . dF,min_% %_dx,max N
Ao~ H'N =0, ( (7 SwinT +7F Y

p
+0 (N—%,Y%’FdF,min*dF‘max*ds + L—%,y%72dl‘_‘,max7ds)
p L L .

(v

(B.1.13)

Therefore dyo is dominated by do; and thus negligible as well. So we prove the consistency

of DY, .
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Next to show the consistency of X%, | recall that

N

A 1 PRI PRI

SN = o O Re (W Wes) Re (W2,0772,)
i=1

By Assumption D*(ii), it is sufficient to prove NL'yidE*zeﬁ}/\If/LFZ —Xf =0, (1), where

2d.—1 N
nt = ’YL ZRe T, W3, We.) Re (W2, Wzl )

under the additional condition of cross-sectional independence of (. ;:. To begin, we have

the following decomposition:

NLyM==21,3W 1, — 2t

’Yid ! i\’: Iy {Re (WZ 1Wa z) Re (W;in,i) —Re (W;in) Re (W:aiWZ’i)} L'z

2d.—1 N

vL ZI‘ZRe (WZJ/V“ — Wy, W, ) Re (W, W) Tz

72d571 N a A
+ L STl (W o) Re (W2 iz = W2, T

= w1 + wa.

Firstly for ws, it follows that

1
2

2d.—1
<’YLT ZHFZWZzW“H2> = Jwiiy/wiz,

o1 N
|w1s< o _ZHFZ(WZIWM WiaWe) |

where by Assumption D*(iii) wy2 = O,(1). And for ws1, we can firstly bound it by

22d

wyy < ——E—— o NT ZHFZWZZ (Wm*We,i>

2d.—1 9

S (i) v

2
‘ + = wiy1,1+W11,2-

By what we have analyzed the consistency of DY, , it is easy to see the negligibility of W11,2-

And for w11, note that

W57i =Wy, — Wx.iff — We;
= Wei = Wb+ WroBl (A = H7UX) + (W = Wi D) BN+ (Wi = Wieo ) (A = ')
(B.1.14)

180



where clearly the last term above is dominated by the others. Then w1 follows that

2d.—1 N 2d.—1 2
< * ’YL T—1%
Wity S ,WX,Z(S‘ + ZHFZWZZWFoH (Ai-a71%) ’
2d.—1
+ Z HFZWZz (We —Wrolt)

. 2
— 0, (“Yi 2dx, max> +o, (Vz 2dp, max) Lo, ( 2de +2dF max— HWF _ WFOHH >
=0p(1)
by Assumption E*(iii) and (B.1.12), thus w; = 0,(1). Also by the same reasoning we have

wy = 0, (1), which completes the proof of NL’y%dE*QFZiWLFZ — %7 =0, (1). Combining

the results we have so far it can be concluded that
R -1 . 1
(EW2) " (DN.) & (=) (D) VN Ly Tz

which illustrates the idea of self-normalization.
In the next stage we prove the validity of our bias correction. To be exact, we are about

to prove

VNIA%T ! (AWT - A]V\‘,’T) = 0,(1).

Recall that

\/E’Y%F;AWT

A I AL 1FZZRG WXZMWFNTszwF (@’Vf‘)_lx ,
and

VNLy{T 7 Ay

[~ 1 VNIVET'T, & .
=— _’YLlI‘zD}LVsz_ L ZR W3 XMy NT ZDmg (|W5 1 ) WerG\;

[ _ 11 \/W’yda 1FZ
= - |yi'raDl, 1y R ZR W3 My, NT ZDmg (IWes*) WG,
: 11 VNI T
_ —1 t L Z 1
== |p'T2Dl | 2 ZR (WXZ . NT ZDzag (|W5 Kl )WFGVNLA )

Note that the denominator parts above are v 'TzDW¥, T, and Wzlsz;fv Iz, and the

negligibility of their difference has already been proved just now. So it is sufficient to
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consider the difference between the numerator parts, which by the same reasoning as before,

can be decomposed by

VN ’YL 11—‘Z ZR

Wi M NL ﬁ: (% — Diag (|Wepsl*) ) WeViths
k=1

FJ,\YIZT*IFZ ZR (WXZ W NT ZDmg (WV8 kjl ) WrVyt ( ﬂ-—l;\i)>

ED1+D2

N |
where we use the fact that (A A) = Vi by (3.4.7) and (3.4.10). For Dy, following the

same reasoning as before,

) _ _1
||D1H vazz‘mm"rds dx,max—3

i 2 (0~ i (2ss)) |

Since by (B.1.14),

)

R N2 . . N - e 2
(’Wg,kj\ We i ) < [ Whcasd| o g (3= 7050 || Wk — W 1) 15
then || D;]| will further follow that

[ D1

L, ML )
/ dz mintde —dX max—73% IA;V 2
2N7 E : Eil: ) ekj| — |”677€j

(s s (5 i) 5

Mzﬁ

< mWZZ‘min"'ds —dX, max—3 ]VlT

b
Il
_

1 ) _ ~12 1 ) _ _
o, (mﬁwz,m,ﬁdg 3dx max 5H )+Op (\/ﬁ,}/z-i-dz,mm-‘rds dx max dp,mx).

And for ||Ds||, we have

- iDiag (IW-s?)
k=1

%
2 1
71)\1 L

It is easy to show the negligibility of both D; and D5 by the same reasoning as before and

N
Az mintde—dx max—% [ 1 <
IDall € VRt 2<Nz\ 1
1=1

Assumption C*(i) and E*(ii). So we complete the proof of Theorem 3.4.3. B
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B.1.3 Proofs of the Results in Section 3.5

Proof of Theorem 3.5.1. First we prove the consistency of B( Runax)s Which extends the

proof of Theorem 4.1 in Moon and Weidner (2015) into frequency domain. To be specific,
3 : Ruax
B(Runax) = 818 Join Ly (B),

where by extending the objective function (3.4.3), and by considering (3.4.6), (3.4.7) and

(3.4.8) together with the property of PCA,

. 1 |12
ﬁﬁ“jﬁ" (B) = min NT HWY - Wx -8 —AWp

RECN X Pmax  Wp €CL * Rimax

. 1 )
= dnin et [(Wy = Wi - ) My, (Wy = Wi 5)°]

1

L
T NT S e [(Wy = Wx - 8)" (Wy — Wx - B)]
T=Rmax+1

subject to the identification restrictions, where p,.(-) represents the r-th largest eigenvalue.
Note that Wy = Wy - 8° + AOVNVI{?O + W,, where we put the superscripts to emphasize the

true values. Then

Ly (B)

. 1 .
= min ﬁ HWX . (5+ WE +A0W}~0 — AW;W

]\e(CN X Rmax 7WF €CL X Rmax

2

1 o2
> i — . — d
> min o NT HWX 0+ W, —AWpg

A€CN X Emax+R9 1/, cCL X Bmax+

. 1 *
= WFecgrqunmﬁRO Wtr [(WX -0+ W) \Y I (Wx -6+ W,) ]

= min Ltr (W - 6) My, (Wx - 8] —tr (WePWFW;) —2tr [(Wx - 0) Py, W

WFeCLXRmax+RO NT

+tr (W W) + 2tr [(Wx - 6) W]

L

1 . 1 . 1 .
>~ 2 ke [(Wx8) (Wi 0)] + omtr (WeW2) + o2t (Wi - 0) W
r=Rmax+RO+1
1
— 7 (2 B+ BO) Wl + 2 (R + B) [We | [ Wi - 3]])
1 N —2d, 1—dx,max—de
> b0]* + ot (WaW2) + Oy (7172 ) + Oy (l8l] ) (B.1.15)

by Assumption B*(i), C*(i) and J, where § = 8 — 3° following our notation before. Next it

is easy to see

L= (B) < L (8°)
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2

. 1 075 o
min NT HWE + A Wpo — AW}

]\E(CN X Rmax ;WF €CLxRmax

1 2 1
< R — |/[/ = —_— M/ M/ * . 1.

Then combining (B.1.15) and (B.1.16) we have

b1 + 0y (7% ) + 0, (I8l 7" <o,

1

which implies a loose order of ||d]| as HB(RMX) - BH =0, (”yffdx’m"“j by Assumption E*(ii)
and validates the consistency of B( Ronax) -
Next we try to prove of the consistency of ER estimator, which will closely follow the

proof of Theorem 1 in AH. To proceed, we can complete the proof by showing the following

three statements:

ANTj _  BNT,

_ +0,(1)=0,(1) forj=1,...,R* 1,
MNT,j+1 UNT,j+1

where gy ; is the j-th largest eigenvalue of <A1/VA> (F/F)l ; and

INT, RO S pn,ro + Op (N_% +m~t + (B(Rmx) - 5))

ANT,RO41 [€+ o0, (1)] /m

P
— 00,

with ¢ = ¢} (1 + \/ﬂ)Q and

ANTRO‘j €t op(l)

ANT,RO4+j+1 ~ €+ 0p (1)

for j=1,...,|dm] — 2R® — 1,

with ¢ = cy** (1 — \/W)2 and y** = lim,,— o0 %

As shown in AH, all the reasoning in its proof of Theorem 1 will hold except that finr ;
is the j-th largest eigenvalue of %, where U is the estimator of U. Thus there will be
an additional error that measures how precisely U is estimated by U, which is given by

B( Runax) — B+ Following the proof of Lemma A.11 and A.9 in AH, we can see it is sufficient

to show that for any j =1,..., |[d°m| — RY,

uu’ vy’
Y (NT) = 1P; (NT) +0,(1).

Without loss of generality we can focus on the case when the regressor is a scalar, then from

IFor ease of notation, we drop all the superscripts 0 for true values of factors, factor
loadings and regression coefficients in this part of proof.
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(3.5.1) we have

1 =~ 1 ~ 1 1 <
U= X- U+ 0, (0 ,
\/ﬁ \/ﬁ (6 B Rmax)) F \/7 D ( Rnlax)
where as before, we denote 0, = B( Ruay) — B> and X - Or,, 25:1 X,0R,...p With X,,

and 0g » representing the p-th argument. And

max

- ;T (x5 >*<>*<> (x-r...)

where the order of tail term holds under Frobenius norm and thus folows from Assumption

B and C(i). Then Weyl’s inequality (or Lemma A.5 in AH) indicates that

¥ (TT) o (5 ) +o@ = (57) + 00 (5r..) (B.117)

because |1 (R)| < ||R||. And next we denote ZF as the matrix of first k-largest eigenvectors

of []J\% normalized by Z¥=F /T =T, then for any k =1,..., R,

k
=> % I]JVUT> +Op (5R) ; (B.1.18)

because ’tr (%E’“RE’“)} < HﬁEk

‘ | R||. Note that (B.1.17) and (B.1.18) hold for arbitrary
gk =1,...,[d°m| — R°, which implies that ¢, (@) wj ( ) +0, ( m) And the
remaining parts of proof will be the same as in AH using NT , and the consistency of our ER

estimator is confirmed by the consistency of ﬁ( R which completes the proof of Theorem

max)?

3.5.1. 1

B.2 Proofs of the Technical Lemmas

Proof of Lemma B.1.1. Let § = B — 39, The proof follows closely that of Proposition

A.1(ii) in Bai (2009). By the decomposition in (B.1.2), the fact that Iy = FA];,A F;:F, and

the definition of H and G, we have

—1
0/ 7 / -1
FVnr (F F) <AA> —F=FH'-

T N
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~ —1
FOYF AMANT!
:(11+~--+18)< T ) <N> =L +--+15)G.

Then T3

A 7 -1 ’
FVNT (F;F) (ANA

Note that T2

o

FH = v/R. As in Bai (2009), it is easy to argue that H is asymptotically

L 1
Pi 1_FH <T 3 (|L] + -+ I 1G]

nonsingular, so is G. Then ||G|| = O, (1) and it remains to derive the order of T2 |1, for

{=1,...,8. First,

.|2 2, .
T = )

>

-0, (4)

where we use the fact that = vazl 1X4]|> = O, (1) by Assumption B(i) and Markov in-

equality. Next

1

T7%||L)| =12

-4

N
< iz X[ [Nl
N VT

1 g ) X ) 2 )
< (i) (33 i -on (J4).

where the last equality holds by Assumption B(iii) and B(iv) and Markov inequality. By

N
1 A .
— > X ONFUF
NT &

the same token, we have T2 |I]| = T2

NT Zf\i1 FO)\iS/X{FH =0, (HSH) . For I3, we

have

T3 ||| =72

1 N

i Sl E

NT;XZ&ZF
N

L Xl el

< g=rell e ll

SNXTT
=1

| X 3 L 3

w7 2o 1507 ) 200 ) o] = o (]9

(NT;” ||> (NT;neu) 5| =on (3]) -

ﬁ Zf\; 51‘5'XZ{FH =0, (HSH) For Is, we have

SllT—3

d

A

and similarly, T2 ||I5|| = T—2

2 2

1 N
— 2
T 5l =

1 N
—FN N\ F
NT Zl €

where the last equality holds by the fact that

N 2

Z )\162

=1

1
E|l —
NT

R MY
= %7 > E(ele) EVGN) < N > 7, =0()
i,j=1

1,j=1
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by Assumption A(v), B(iv) and C(ii). Therefore T2 ||Ig| = Op(N’%). Analogously,
T = % HNT PR 15z/\’F0’FH = O, (N7') .Note that so far the orders for terms
I1-I7 all replicate those in Bai (2009, pp. 1267).

Now, we study Is. Let Ig; denote the ¢t-th row of Ig, which can be decomposed as follows:

1 & I gy Q. A
Ist = NT ;Qte;F =7 SZ: N Zl €it€isF
1T o T N
:TSE:;’VN(SJ;) 5+T;<Nz Eit€is — St)>F —ISt,1+I8t,27

where v (s,t) = & S0 B (eqeis). Then T4 ||Is||? = T2 S0 [sel|” < 2771 300, [ Zsea |+

or-15° Igo|® = 111 + I1,. By Cauchy-Schwarz inequality and by Assumption C(ii),
t=1 ;

T T 1 T T
1L < - ( ZZ 5 t ) < > 2 ZZ,}/N (S,t)2 — Op (Tmax(4d€,1)72> 7

For 15, we have

HQZ%Z

\
=l

(1 & ] 1 :
H(E ) (23 (zfst@ ~ 0,5,

sul

where & = % Zfil git€is — YN (8,1), and the last equality above holds by Assumption B(iii)

and the fact that
|z T 2 | I
4
3 () <5 3 e (B2.1)
=1 —
4

s, u=1
T2
=0 (N)

by Assumption C(iii). Then T!||Ig]|> = O, (N~! 4+ T™ax(4d=D)=2) " Therefore by the

. 2 12
invertibility of H, we can conclude that % HF — FOHH =0, (H&H ) +0, (6;,2T) .

€ (P — FOH)
1= 1 T

Proof of Lemma B.1.2. Note that - ~ sz\;1 i E;TF = % ZN

Ay + As. For Ay, we have

N

i Fo
N ; AT

= [[Ad-

i=1
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Note that

- 1 X
E|A|" = 557 2 BUEFF) (A N2T2 Z Z E (eire;) E (FYFNN)

i,j=1 i,j=1t,5=1

max; ;15 | E (FYFNA)| oa

< e 2 D | ()]
i,j=1t,s=1
M N T
< N2T2 Z Z |E (Eit5i5)| =0 (N_lTQdE_l) ) (B.2.2)

i,j=1t,s=1

where the second quality holds by Assumption A(v), and the second inequality can be derived
from Assumption B(iii) and B(iv) using Cauchy-Schwarz inequality, and the last equality
holds by Assumption C(ii). Then A; = O, (N_%Tdf_%). For As, following the proof of

N N |
Lemma B.1.1 and recalling that G = (&TF) (ANA>

N N

1 i 1

— S N N = (I + -+ I)GH
NZ)\’ T NZ)\Z T NT;MZ(Hr +13) G

E(a1+~'-+a8)GH.

Then it remains to bound a;’s by following partly the proof of Lemma A.4(ii) in Bai (2009)

and use some results derived in our proof of Lemma B.1.1. For a; we have

N N
||a1|:|’N2T ZZ el X100’ X, FG

N
a2 1 1
<1 6 =3 (=
=4 NTk_1<N

”XkH) =

) 1 NI 2\ 2 1 N 3
=1 i—1 T
N 2\ 3
<73 |5 LZL SneXil| | =0, (Norret |
~ NT &~ N? b T

where we use the result that

I
3~
M=

Z)\EXk

Z\H

1N
EN—Z:

INA

=]
~B
=]
M= =z~
=
>
\)>/
2
N
M=
M=
=
Sﬂ

K

IA
=<

M=

M=
™
=

K

n
Q
=
)
&
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by Assumption B(i), B(iv) and C(ii). Similarly,

’ﬂ

1 1 &
. / / O/

=1 k=1
1 L1

S 3073 (3 [ e ) i

k=1 =1

1 e 2\ 3 | N 3
_11lza 2
<T ol | — — et X — A
< o (7 e e ) ()
=0, (N*%Tdff 5’)
and

N 1 N

=|— e == Xuoel F
llas|l HNT;/\“E‘ NT; kO, )G

1 N N
Y 1 1
<T QNT];< sz: el X |gk|> [(Easalaiiiel

1 1| & ?\ ? 1 &
<7726 [ =S = |IY Nelx
-0, (N—%Tds—% 8).
Next,

1 1 &
= ||— e — N FAYXLE
||a4H HNT izzl)‘lgz <NT Z A0’ X ) G

k=1

Il ||Xk|> 8] 72

where the last equality holds by using Cauchy-Schwarz inequality, Assumption B(i) and

B(iv), and the same reasoning to obtain the order of A; above. For as we have

las|l =

T N N
1 1 1 o XL F
t=1 1=1 k=1
T N N
1 1 1 | Xkl 1
< — . - T
<3r (H =3 hen ) ( 7 2 el 3| 7




< 9 (0 | Do e Ngi( >l ||Xk||>
= = o \VN
v
Note that
E(at—,l)ziiiiE(mj) B (eueie) < max | B (0, Li i E et = O ()
NT 2 N 2 P EEO3 D)

by Assumption B(iv) and C(ii), and

—

as2 < Ti (NZnektn ) (}Vi ) 0, (1)

by Cauchy-Schwarz inequality, Assumption B(i) and C(i). Then |as| = O, (N*l/2 HgH)

For ag, we have

1 & 1 & )
%6 = 37 g (NT kZ_IF/\keﬁcF> G
N N
S el Y Fael {FOH + (F - FUH)] G = ag1 + ags.
=1 k=1

1
TON2T2

2
Note that B || s S0 Ml F||” = s SN Bleusis) B FLF,) = O (NTTe ) by

using the same reasoning as we analyze A; above, we have

=0, (N—1T2d5—1) ’

1 ’
— SN\ F
NT ; €

1
llae1 || = HN2T2 > e FZ)\kakFHG
k=1

and

llac2|| = HN2T2 Z)\ & FZ)\kfk (F F0H> G
k=1

1 N/\’F F'H
v 2o ek (F - 70

1
2

1
ﬁ Z )\i5;F
i=1

N
<0 (NTiTE) (}Vz w)
k=1

-0, (-t (] 55)

. FOHH

1 N 3|

2
— 5 e ||
<NT = I ’“') JT

by Lemma B.1.1. Then |lag|| = O, <N‘1T2df_1 + N-2Td=~2 (HSH + 6;,;)) . Next, for a7
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we have

laz|| =
1=1 k=1
N N —1
! (A
— HNQT ];;)\ﬁﬂk)\k ( N )
<LZ LZ“% ngtx
- NT t=1 \/N \/> =1
1 L1 Y ]

< LSS || =0, (v

T 2|V 2 :

using the same reasoning as above by Assumption B(iv) and C(ii).

Lastly, we study ag by making the following decomposition

f: el i exh, [FOH + (F = FOH )| G = a1 + asa,

i=1 k=1

1

9 = Nope

For agy, we have

M-
sz
qu

a81(HG)_1 - 2 Eit€kt ngs s
N T 1=1 k=1 t=1
N N T T
1 1 1 1
= —=— — Ailestert — E (eaee —= > ersky
me,;<w§§ - <n)(ﬁz )
TS 5] £.9) s VISR § SES SRR
= = i (EitEk ] Eksl's | = A81a T A81b-
NVT N k=1 T i=1 t=1 o VT s—1
Note that
N N
lastall < Z =33 Aleuens — B (cuei) ‘ H I
k=1 NT i=1 t=1 \/T s=1
N N 2\ 3
1
< Op (Td N Z Wicii D> Nileiene — E(cirene)]
k=1 i=1 t=1

by arguments as used in the analysis of A; above and Assumption C(ii). By Assumption
C(iv),

N 2

\/% Z Z )\i[gitgkt - F <5it5kt)]

=1 t=1

N N T
1y % ST ST BN E{lusk — B (cuck)lesehs — B (ejses)]}

M N T
< Ve Z Z |cov (Eitgk)tagjsgks” =0 (TQdE).

191



It follows that that |lasia| = O, (N’%Tzda’l). Next, noting that

N N T
lagis|| < %ﬁ%ZZ [l ( Z 52t€kt)|>

1 T
ﬁ ;Ekst

by Cauchy-Schwarz inequality, the reasoning for A; above, and Assumption C(ii). Then
lasis]] = O, (N_lef_%) and |lag) || = Op(N~2T2de=1 4 N=17%~3)  Next we analyze

aso:

N N
1 )
1267 = s SN Nicleney (F - FOH)
1=1 k=1

z M fvivi(

k=

2\
Nl =

N T el (F—FOH)
Y AE ) AN

=1 t=1

—

= ag2q + a82p

where &, = ﬁ Zivzl Zthl Nilgiteri—E (eient)]. It is easy to show that + Zgil E|&|? =
O (T%%) under Assumptions A(v), B(iv) and C(iv). Then by Lemma B.1.1,

H ” 1 1 iv: 8/ (F*FOH)
a =— =) &—F—F
82a NT Nk:1 k T
1/2
o1 N & (F-Fom)
_NT{N];”&l } NI; T
= (NT)~'20, (T%) O, (H(SH + o)
and
LN N & (P - Fo)
HCL82b||<N NI;<T;;>\ZE(€lt€kt)> T
A 21/21N€(FF0H) 1/2
SN Nkz::l T;;)\iE(Eztgkt) N; T
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So [lasz|| = Op ((N’%Tdffl/2 + N1 (H(§H + 6&%)) and |jag| = O, (N~2T2d -1 N-1Td==3) 4
Oy ((virtm12 4 Ny (|5 + 03%) ) -

In sum, we can conclude that

N o F r

Z & F

i)

Op (N“AT% 3 4 N1 N4

which then completes the proof of Lemma B.1.2. B

Proof of Lemma B.1.3. Consider the following decomposition of J8:

N N
1 1
= — X’M O F X — Q E
Js NT ;:1 FNT ,; 1 kG +NT E FNT g: exel — ) FGA;
= Jg1 + Jsa,

where Qp = E (exe),) and Jg1 = Anp. For Jgi, we have

vl

1
2

1 N
N7 2
k=1

= XM a

A

N2T Z Z Eztgzs Ek:tgks)

T
< (; > m(s,tﬂ) = 0, (T2,

by Assumption B(i), B(iv) and C(ii). For Jsz, we make the decomposition

N
1
D OXIMp—= > (exel, — ) FHGA;
k=

N N
1 1 R
+— § XIMp— § (exely — ) (F — FYH)GX; = Jsor + Jgoo.

For Jgs1, we have

N N N
Jsa1 = N2T2 DD X (ener, — Q) FHGA] — N2T2 3 {X’ FF' (epe), — Qk)FHG)\i]
i=1 k=1 i=1 k=1
N 1 N N
\FT N ZQFHG)\ NI DD [X —FF' (epel, — Qi) FHG; }
i=1 k=1

= Jg21a + J32105

where

el

N T T
G = i Z ZZX (enters — E (ereens)) Fl.

k=1 t=1 s=1
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Note that

N T
1 1
E|G]® = N E = E E (X}, XiuFF,) cov (€ktEhs, Eiukiv)
i,k=1 t,s,u,v=1

N T
1 1
< max |E(X{tXqus’Fv)|N§ 7 § |coV (ptEhss Einciv)| = O (T1%)

i,k,t,s,u,v
e i,k=1 t,s,u,v=1

by Assumption C(iv). With this, we can readily show that Jgo1, = Op(N_%TQdE_l). For

Jgglb, we have

1 K1 g
‘ NZ >N Filewiers — B (iens)] F

k=1 t=1 s=1

ool S 57 Z |xi2] 1

1 | XL
N — > = 5y [eniers — E (Exeers)] FL
UNT | VR 25T 22
1 | ML
S——=)> = Fy [ekiens — E (eniers)] F
UNT | VR 2T 22
1 | N
SR | L (F—HF)geS—Esast’
INT \/N;T;; : t ) [exeen (€ktErs)]
1
= m {Js2161 + Js2102} -
Using the same reasoning as used for Jga14, we can show Jgo1p1 = O (N*%Tzdfl). In addi-
tion, by Lemma B.1.1 and the fact H Vi Zk 1 (enel, — Q) H = O, (T2*4) under Assumption
C,

o, (ot (] )

Then Jg215 = O, (N_%Tdf_% (HSH + 5&%)) Next, for Jgao we have

N
L 1z 1
| Js2162l S VT HF - FOHH H\/N 2:(Ek€§€ — )
h=1

(| Js22]l = H NT XN:XZ’MFNIT XN: (erel, — Q) (F - FOH) GAi
=1 k=1
< % é (exeh — Q) % |7~ Fon| = 0, (N4t (|8] + 634)) -

In sum, we have
Js = AnT + Op (N_%TME_1 + N"3T% 3 (HgH +5N1T)> ,

which finishes the proof of Lemma B.1.3. W
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Proof of Lemma B.1.4. Following the proof of Lemma A.8 in Bai (2009), we first study

N
1
i=1

We make the following decomposition
X
ﬁZX,{ (Mr —Mj) ¢
i=1

1 N
7TZX1/ (PIZ—'_PF) E;
=1

N X! (F _ FOH)

1 1 R '
- H'Fle; + —— (F - FOH) .
TNT & T STNT T :
N N —1
1 X!/F°H Y 1 X!/F . (F'F )
N—g (F FH)si+NT; - HH< ) Fle;
=a+b+c+d.
For a, we have
d 1
||Cl|| = Z (F H F) ( ZFthsazt> H
s=1 i=1 t=1
2\ 3

| N
WZZFtXisfit

i=1 t=1

A
/\
HMH

5 T
) (72
=0, ( et 2 (6] + oyt ))

by Lemma B.1.1 and the fact that

T

ESY

s=1

1 N T
72 Légtt
NT ~

N T
Z Z (civejr) E (F{Fr X[ Xjs)

H
ﬁMﬂ

< max E(F/F. X!, X;s) ﬁ Z Z |E (cieje)| = O (N71T20=1)

t,r,s
A i,j=1rt=1

under Assumptions B(i), B(iv) and C(ii). Next, for b we have

o = =3 X(FTFH) (F-rFon)e

i=1

1 <N -
(330
t=1

1
2\ 2

IN

H'F,

F
|
=) X
N=

2 1 T T
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-on (v (l+50)

by Cauchy-Schwarz inequality, Lemma B.1.1 and the fact that

AN [ 2 1 ;| NI
E| 7 > v Y Xicu| | =D 5 O 2 Eleusy) BE(X[X )
t,s=1 =1 s=1 i,j=11t=1
, NoT
—1
< max |E (X[ Xs)] NoT Z Z |E (eiteje)| = O (N7H).

i,j=11t=1

Next, we study ¢ by making the following decomposition:
N -1
1 X/F (F'F P !
() (Fr-)a

N -1
1 & XIF , (F'F - r
+WE T (HH—( T ) )(FH —F) gi=c1+ co.

L\ -1
For ¢, we have, by denoting Q = HH' — (FTF) that

eall = ’

T
- SR () o
)i

0, (N7AT%7) 4 0, (N—hremd

by the proof of Lemma B.1.2. Next by Assumption B(iii) and Lemma B.1.1,
1 ! T 0 g 6—1
7 (F=rom) = 0, ([ +6v%).

and the same order holds for L F” (F —F'H ) Then left multiplying +F’ (ﬁ —F'H ) by
H'’ and using the transpose of %F’ (F - FOH), we can obtain

F'F

a0, (] +5t).

where the same order holds for ]IR—gHH’ and thus for . Therefore co = O, (NféTdf’% (HSH + 5;&)) .

For ¢;, we have by (B.1.2) and the proof of Lemma B.1.1 that

N —1
1 X XIF (FF ) /
S i FH—l—F) ;
o= NF T <T> ( c

~ -1
1 NXIF(FF\ ' (NA\T (PR ,
= — (hi+-+1g)ei=cip+--+cis.




- N N L |
For ¢;1; we have, by denoting G = (FTF> (ANA> (FTF> that

llevall =

A
>

e L] 3o =, ()

by Assumption B(i), B(iii) and C(ii), and the fact that G = O, (1). For ¢; 2, we have

N N
1 X’F N

= ||=—= "FXY X es

levell = || 7 2T ; k0  Xpe
X F
4] 5 225 s 3 e
N N 2
_ 1 iZ X/F oy
B v N N =1 T *

-0 (i),

by Cauchy-Schwarz inequality and similar arguments as used above. Similarly, ¢, =

Op (N’%TdE*E B) ) for £ = 3,4,5 as in the proof of Lemma B.1.1. Let w be a P x 1
nonrandom vector with |lw|| = 1.
N N
WXIF -1
lw'er 7] = NT Z G— Z F'Fpele;
i=1 =
A’A WwXIF
) (( (%) mhasae)
=1
1 N W /
<= A
Jifress g

k=1
where the last equality holds by the fact that

2

L& , I N
Ell|l—=) X\e, — E[NX]E (enej) < maX|E BICYY
A= D RPN

2
by Assumption B(i), B(iii) and C(ii), and similarly F H vazl giw'X]|| =0, (1). Note

1
VNT
that the probability order of ¢ 7 is the same as that in Bai (2009) and it is a potential bias
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term to be corrected. Therefore we denote ¢17 = —Cnr = O, (%) Lastly, for ¢; g we have

1 XFo 1 & ) 1 RXIF A1 afe N
cl,S:WZ T GN—kz:: "Flepere; + WZ T GWZ(F_FH> ELERES

i=1 =1 k=1

= 1,81 +C1,82-

Note that
N N N N
1 X/F - 1 , 1 X/F - 1 - ,
617817]\[7; GNikZ €k€1—E(€k€i)}+ﬁ; T GW;HF&ICE({‘:]CEZ')
= 1,811 T C1,812-
For ¢ 811,
1 N
Wensul = || 37 i;l FGH'F'ei[erei — B (epei)|w' X]
1 N
/ / / ! /
s N2T5/2 4;1}7 exlekei — E (ehe)w' X;
11 &1 & %\ * 1 O :
/ / Iyt / 2
133 |wr L pax] | (gryirar)

T
- ;0 (N Tde) 0, (T%) = 0, (N*%T‘Zde*l),

where the last equality holds by the fact that

N
1
NT Z[sﬁcai — E (ghei)|w' X!

k=1 i=1
N T
1 wXIX;
= T . { w} Z {[eiere — E (euene)] [ejsehs — B (j55ks)]}
i,5,k=1 =1
WX Xjw] 1 Y&
< max F []] 3 Z E [(exteit — E (er€ir)) (Erscjs — E (ers€js))]
i T N3T 4 -
i,j,k=1t,5s=1
N T
§ Z Z |cov (548 ke, €jsEks)| = O (N1T2%) (B.2.3)

jk=1t,s=1
by Assumption B(i), B(iii) and C(iv). Next,
yp. X

1 N X! (:7 Ek8l>
Tﬁg D H'Fe—7—=

k=1

X/F

11 &
SNTN 2

i,k=1

||F ekl g Tk,

1 g2l = ’
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where the expectation of the term is bounded above by

R P
NT T

<%ma FE XZ{F
- N iX T

1 N
cele) 3 2 7

ik=1
9\ z 2\ 3
F/
) max (EH ek ) :O(Nflef%).
k T

So C1,812 = Op (N—le5—1/2) and C181 = Op(N_%T2dE_1). For C1,82, We make the fOHOWing

decomposition
N N
1 X/F - 1 . 0\ , ,
CLg2 = 3o ; + G kg{ (F=F'H) exlehei — B (ehes)]
N N
1 X/FO . 1 R ’
T NT Z ZT Gﬁ Z (F - FOH) exE (e)ei) = c1821 + 1,802

&
Il
-
£
Il
-

For the first term on the rhs, we have

-

N

1
N T 2\ 2 N o\ 2
1 1 1 1 1 A !
H01,821|| S =1 ~ Z T ZX,/ Z [€kt€z’t - F (€kt€z’t)] | ( = (F - FOH) €k )
T\N k=1 NT i=1 t=1 k=1 \/T

=710 (N27%) 0, (||8]| + 63%) = 0, (N2 ||3]| + N2 1)

by (B.2.3) and the derivation of order of the term Ay in the proof of Lemma B.1.2. In

addition,

1 N

lergozll S =

H H F FOH) ex

7= 0p (N ([5] + o5%))

by Lemma B.1.1 and arguments as used to analyze c; g2 above. Therefore we can conclude

F

that
c1,82 =0, ((N_%Tdf_1 + N_l) (HSH + 5](,1T)) )
Lastly, we study d.

N

NLZ XiF QF'e;

Il = |

N
L1010, (- [ +553)

we we use the fact that ||Q| = O, <H3H + (5;,1T) derived above.

X/F
i ienan

A
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As in Bai (2009), the approximation error of the second part,

11 ' 1 &
—g —E ik X, Mp—M;)e; = E ! (Mp —M3) e,
NT i=1 <N k:1ak k> ( ) F)E NT K ( " F)€

i=1

can be expressed by replacing X; with V;, and apply the same arguments and probability

order as above. Then we concludes that
N
1
N
1
= N7 2

+0, (N—%Tds—% (8] + 552) + ] + N—%T%—l) .

N
1
Xz/MF - N ZailelfMF‘| E;
k=1

N

1

XMp — w > aikX]’@MF‘| & —Cnr
k=1

This completes the proof of Lemma B.1.4. B

Proof of Lemma B.1.5. (i) Note that
N N N S
ﬁ Z WX,iMWF W571; = ﬁ Z WX77;W571', - ﬁ Z WX,iTFWE,i = A1 + A2
i=1 i=1 i=1
under the restriction Wy € W = {WF : W}WF/T = ]IR}. We first study A;. Recall that

Xp,it denote the p-th element of X;;. Let Wx_ ; denote the p-th element of of Wx ; and

Wx,i = Wx,.i1,..., Wx, ). The modulus of %W;}NWE, satisfies

D=
[N

L L L
T Z Wx,iWeus| < |7 Z Wx,iiWx,ii| |7 Z WeiiWeis
j=1 j=1

Jj=1

1 *
‘ TWXp’iWE’i =

1
2

FXp,i (’YL)

N

F57i ('VL)

by Cauchy-Schwarz inequality. Note that the two terms on the r.h.s. are averaged pe-
riodograms of {Xpﬂ;t}tT:1 and {{—:it}Z;I. Under Assumption A, A* and G, we can adopt

Theorem 1 in Robinson (1994b) to obtain

Fe i ('7L)
D,

_ ]. and —_
Fx,, () Fei(ve)

K1las T — oo, (B.2.4)
where Fx, , (vz) and F.(yp) are the “pseudo spectral distribution” for {th}f:l and

Ti.XX,pp 172dXP
T-2dx, 'L

{Eit};‘ll , respectively. Then we can conclude that FXW- () ~ and F. ; (yz) ~

132; fyi_2d5, where T, x x pp denote the (p, p)-th element of T; x x. This result is compatible
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with our Assumption B*(i) and C*(i), and implies that for each p,

N 1 1
1 TXX 1-2dx, |2

< —6AA.pp P

NNZ: 1—2dy, '*

N 3
1 Tz XX ppTi ce 1—dx,—de
_ ; ; » _ 1
N;<(1—2dx y1-2d)) " o)

by Assumption A*(i) and the fact that dx, and d. being strictly less than % It follows that

Ti,es 1—2d.
‘ 1—2d. T

T W, W

2
2(1—dx max—de
=0, () 0, (1),

P

ENEEDY

p=1

1 N
N7 2 W, Wei
=1

with dx max = maxj<p,<p dx,. Next, for Ay we have

N
1 1. -
Ag = Nizzl (TWX,iWF) ( WiW, > ZAZ 214,22

Note that A;2; is a P x R matrix and A; 22 an R x 1 vector. Consider an arbitrary p-
th element of Ai,21Ai,227 which is given by Zle A1'7217pr14i7227r, where Ai,21,pr and Ai,22,r

denotes the (p, r)-th element of A; 51 and the rth element of A; 22, respectively:
1oL 1,
Ai21pr = TWXNWFT’ and A; 29, = TWFTWe,ia

where Wx_ ; and W, are both L x 1 vectors that refer to the DFT of p-th element of the

regressor X;; and the r-th element of F; (which may not be the true vector in this lemma).
- _1

By construction Wg, = 'yzp” 2Wr,.. Then using the same reasoning that analyzes A;, we

: 1 * T,
obtain ‘TWXMWFT

1_4q ~
. (’yz X”) and ‘%W}er

1
=0, (’yLz d5> uniformly in 7. It
follows that

N 2

< max

142)* = Z

p=1

"o
2N

r=1 i=

N
1
E Ai,21,prAi,22,r
i:l

—d max_ds
=0p ('7]24(1 * )> .

Azler 1,22,
1

That is, Ay = O, (vé X, max—de ) . In sum, we have

N
1
sup ||—— g W}‘mMW We

WrpeWw NT i=1 g

=0, (1).

(ii) and (iii): The proof is similar to that of (i) and thus omitted. W

Proof of Lemma B.1.6. Let § = B — 8. As in the proof of Lemma B.1.1, we consider the
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following eigenvalue problem

1

NT i}; (WY,i - WX’LB) (WY,i - WXZB) *1 Wp = WrVyr. (B.2.5)

By expanding Wy ;, (B.2.5) follows that
1 & 1 & 1 &
T _ YN * 1T - S/ * 1T o STU* 11
WrVve = ; Wi id0' W3 Wr — 1 ; W iAW Wi = < ; W, 0W. ;Wr
1 - 1 - 1
- N7 > Wrodid Wi ;W — ~T > Wb Wi W + T > Wro W2, Wi
1=1 =1 =1

N N N
! Wi W —1 * 1 AU VAY 14007
+ 57 ; WeiXiWiWr + <o ; WeWZWr + o ; Woro N W Wi

=L+ 41 (B.2.6)
Since Iy = Wgo (f\’[&/N) (W;OWF/T), we have

WeVir, — Wio (M/N) (W;O Wi /T) =+t

Recall that H = (%;f‘) (W;%WF> Vﬁi. Then

ot (Wttr) (Vi) e

(Bt o+ ) (Wioe/7)  (RA/N) HH

<18 (] s

given the invertibility of W;io W /T by Proposition 3.4.1 using the same reasoning as in the

proof of Proposition 1 in Bai (2009). It is sufficient to study I,,...,Is. For I, we have

N
~ 1 1 o .
T3 11H=T—f o7 2 Wi 80 Wi Wi
i=1
N N
101 T 11 T
= NZZ,:1 7 W, Ha” IVF S N 2T IWxil"]jo

1-2dx max \ || 3|2 1-2d X, max
=0, (v ) | = op (07

i)

WF” - \/E and ﬁ vazl ||VVX71-||2 — Op (,yi_2dx,max> by

following arguments used in the proof of Lemma B.1.5 under Assumption B*(i). Similarly,

where we use the fact that 72

N
-1 1 2 : AT 1A TRT )
T 2 ﬁi=1 WX,i(S)\iWFOWF

I}H — T3
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=

1

1

T2

ol

2

=1

;i Fﬁl e

1/2—dx max 1/2—dF max N 1—dx max—dF,max
p(%/ © )Op (’VL/ " )‘5H= (% et

Qr—"\

)

- . L2
by Assumption B(iv), the fact that \; = ['z'\; and that T HWFO = O, (1) by following

arguments used in the proof of Lemma B.1.5. Analogously, we have

N
71 e 1 N * 11 _ 1—dx max—de || ¥
Al =7 | st = 0, (a7 5],
1 N d
_1 | _1 S Y ok 14 1—dx,max—dr || 7
2 I4H=T 2 —T;WFOAZ-(;'WXJWF 0, (WL x 6 )
and
N
4 _1 1 T 1—dx,max—
e
Forfg we have
. 1 KL N
3% [6H:T—§ 7TZWFOAZ-W§JWF ;AZ—WE

Op (Nféfyl dFmax da),

by Assumption C*(i) and C*(ii) using the similar reasoning as in the proof of Lemma 1(ii)
ol =% o]

and share the same order. For Ig, we follow the reasoning as used in the proof of Lemma

in Bai and Ng (2002). Note that I; is a conjugate transpose of I, so T2

B.1.1 and consider the transpose of the I-th row of Ig as

N L A 1L N ) i i
Z Z E (WeaWZi) W + T Z ( Z Wi — v (K, l)) Wrk = Isun + Is o,
k=1

where YX (k,1) = % Zfil E (WE’Z—ZWE*’%) and ka denotes the k-th column of Wr. Note

that
1 L ~ 2 1 L L 2
TZHIS’“H N272 ZZE(WE AW i) Wek
=1 1=1 |li=1 k=1
1 L N L
=g 2 2 D BEWeaWi) B (W2 Wejm) Wi i Wi
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IN

‘ Ejl Evjm’

A
-
@
VR

L
s H2 _ 172 4d.
5 N L
1=k

by Assumption C*(ii). In addition, Zl 1 H[g ZQH =0, (N Ly2—dde ) following the same

reasoning as above and using Assumption C*(iv). In sum, we have

T3

~ ~ 1_
WFOHH _ (’YL dx max ('7]% dF,max_"_,yL )H H‘i‘N_7 1— 2d)

=0y (5W1,NT HSH + N*%,yi dF max d5> ’
which completes the proof of Lemma B.1.6. B

Proof of Lemma B.1.7. The proof of this lemma parallels that of Lemma B.1.2. Note

that
1L WEW, N = Wi H N WF—WFoH
D P S PR L )
= A, + Ay, (B.2.7)

For A;, we have

-1 -
Al < |[A]| 7 || AWz W

1_ 3_ —
— O ( 1— 2dFmdx) Op (N—%L—%’yf de) — Op (N_%N_%'YE 2dF,mauc ds)

by B*(iii) and D*(iii), and the fact that H = O, ( Lm2dr, "‘”‘) as in the proof of Lemma

B.1.6. Next we denote

~ ~ —1 ~ o~ —1
5 WF*‘O Wr ANA _ 2dF,min—1

Following the proof of Lemma B.1.6, we have for A, that

W (Wp — WroH N WpH™ ' — Wgo) _
]1[1'_1)\1 ( FT : ) ]17'_ ( T F>H
N Wi (L4 + 1) G

]1[2_ (1 T 8) "



N
1 -
Nig (]1+ +18)Ea1+~~+a8,
using the fact that Héﬁ[H = ||V1\7L1H = Op (1). For a1, we have

lJaa | = Z)\ ezNTZWXk(S(S Wi xWe

1
S HD L S a8

=0, (N*E’Yf_de) 0, <,yi—2dx,max) Hg” ~0, (Né’yé_zdx max—

)

by Assumption B*(i) and C*(i). Similarly,

1 N 1 * 1 al S\/ * 11
~ Z Aifwwﬁ Z Wx 1O\, Wi W

Jaall =
ZHWMH el |8 7% 1wl
1 N 1 1/2
Sl DR {NTZIIWX,kllz} T4 Wil 3]
i=1 k=1
=0, (N0 ) 0, (1) 0, (a7 5] = 0p (b ).
1 N
== A W* W 6W W,
llas| N; EzNT; X,k EWVE
1 & -
o S Il Wi |8
k=1
) . N 1/2 ) N 1/2
s N7 v 1 1Al
S 27 {N ;nwx,kn} {NTI;HWE,ICH} 5
< )0, (47 0, (1) ] =0, (v ).
N
llaall = Z Wz, zNT ZWFOAMS Wi s Wr
RIS o 1 -
< LIS S et I 7 el 19
i=1 ? k=1
1 N 1 N 1/2
* 2 _1 <
< o oA {NTZan,kn} T4 ol 3]
2 li=1 k=1

~ 3_ _ _
o, (N_§7 ds) 0, (ﬁ/zfdx,max) 0, (Vi/zfdp,max) H(SH ~0, (N_%fy}j’ dx max—AF max—de

i).

205



and
N

Z)\ s*zNTZ We k8 Wi W
k

. 1/2 L 1/2
{NTZHWe,k-HQ} {MZ”WX,kHQ} HCSH
k=1 k=1

=0, (N—mf—da) O, (wi/hde) 0, (fyi“*dxﬂm) HSH _o, (N ;VL —dx max—2d.

llas|| =

1

1
2

<

)

For ag we make the following decomposition

N N
1 L . L
a6 = 3z DMWY Wi MW [WFUH + (WF - WFOH)} = 46,1 + g 2.
=1 k=1

Note that

2

‘FFHH H Z AW Wpo

N
1
llas,1 || = HW Z)\i Wpo Z/\kWE kWFOH
i=1 k=1

2

< %_dF,max
~ ’YL

1 *
~T Z W2 Wio
=1

O (,YL dr, maX) Op (NflLfl,_Yi—ng) Op (,YL_QdF,max) _ Op (N lL 1 —3dF, max 2ds) ’

by Assumption D*(iii). Next

N N
1 * * T T 17
llag.2]| = HN2T2 S AW Wi SNVE, (WF —WFOH)H
) k=1

ZA

T
(o w) S L
(o

A max— —} L —de
e (v ] £ )),

T3 |[Weo|| T3

IN

WF_VVFO;}H

1_ 1_
by Lemma B.1.1, where SwinT = 7L 4 mas (yf 4rimax +9} ds). And the order of

H ~r? Zi:l AW, above is obtained because
R o &
S| = S B B (W2 W)
2 5
i=1 i,k=1
;] ML
1 1 2d,
<maX|E()\’)\)|N2T ;IE{E(WHZWEM )| =0 (N )
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by Assumption B(iv), C*(i) and C*(ii). Then

2d.

3_ ]
a’GZOp <N lL 1 —3dF, max— +N71'}/£ dF,max— (5W1 NTH H+N7l 1—dp max— d5>>.

For a7 we have, by the same reasoning as ag 2 that

1L 1 1 &
— L * / * 1T
||a7H - N;AZTWE’i <NT ];Ws,k‘)\kWFOWF> H
N 2
_1
S N2T Z)‘iWs T—= ”WFO”
=1

=0, (N 11— 2d€> 0, (%%fdamx) 0, (N‘ —dr,max— 2ds).

For ag, we have

N N

1 ~ ~ ~ ~ ~

as = s DMWY WeaW [WFOH n (WF - WFOH)} = g1 + as.2.
=1 k=1

Note that

L
Ai Z g, les kl — (W:,ilWe,k-l)] W:,kWFOH

as,1 = N2T2 Z
N
N2T2 Z

N

i=1k=1 I=1

For ag 11, we have

1 M L o
llag 11l < N2T2 Z Z)xi Z (W2 aWepr — E (W23 We )] H “W;kWFOH“

k=11li=1 1=1
1 L X L 2\ 7 Lo o 1
< W FZ ZA’L alea kl — (W.:,ilwa,kl)] (NTQ Z HW:,kWFOHH >
=1lli=1 =1 —

k
=0 (N3T1) 0, (Ly**) 0, (L-yf 200 )
0

gfzdF,mxfsdE)

by Assumption B(iv), B*(iii), C*(i), C*(v) and E*(iii) using the same reasoning as studying

ag1q in the proof of Lemma B.1.2. To be specific,

N 2

Bl

k=1

L

Z i Z e aWe ki — (W:,ilw&kl)]

i=1 =1

N L
Z N An) D EB{[WZyWers — E(WZaWera)] W2 Webm — E (W2 We k) }
k=

l,m=1

h
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N L
- Z (AfAn) Z cov “lekz,W thskm]

i,k=1 l,m=1

AFAR) I
< W Z Z |cov [WZaWepts W We o || = O (LQVL%)'

Next, ag 12 follows that

N N L
1
Ha&le < W ZZ ||/\l|| (Z ’E (W:,ilWE,kl ) H kWFOHH
1 ~
Sy Z Bl Z (Z B (W2aWen ) || W

1

12 2 NN /L 2
e 2 DL I £ 9) S S LICER)

i=1 k=1

10 (19;%) 0, (L7447 ™)

Nl

N
1 1 ~ 2
<N > [ e
k=1
_ Op ( 1— 2dFmaxN—%T—1)

b (
~0, (N e §7£—2dFmax—3df)

by Cauchy-Schwarz inequality and Assumptions B(iv), C*(i), C*(ii) and D*(iii). To be

specific,

A
=]~
-

ey (Z :,uwe,mn)z <

N
i=1 k=1 i=1 k=1 \l=1
| NN e 2
—Ww —2d. | _ 2 —4d.
ey (o ) — 0 (12;)

i=1 k=1 I=1
Therefore, ag1 = O, (N 2L" 7_2dF max —3de ) As for the order of ag 2, the similar rea-
soning holds except we replace T' -3 Wro H H by T2 |Wp —W

1

_1 5— -1 1 dpmax—de
sl =0y (V4237 (s [+ 3710} 7).

where dy1, n7 is defined in Lemma B.1.6. Then

3_ —
as = O, (N—%% 3d. (L‘%vi 2rmas | 5o NTH “+N_l T p— d))

In sum, we have

W* Wp

3_ _ 3_
_o, (N‘%L‘%yg 2d 1 max ds)+op (N WL 2d x max —de

5H2)

—5 g_d)( max —dF,max —de
+0, (N7hyi 7™ '

) o, (tak

“[#])
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+
)
S|
/N

N*lL*l,yL%_z%dF,max_ng) +O (N 'YL dFmax_Qd)

— §7d max — —_= max
+OP<N by (5W1NTH H—i—N 2 1 dr, d))

+
S
=
/N

N_%WLgi?)de (L_%’Y}:MF’MX-I-(SWl NTH H + N2y 1 dF max— di))

=0p (5WNL H H + N~ 2L_§,y£_2dF max d5> ’

1—dx max—

where dw nL = N*%'yL : 4 ('yL drmax | ’yz_dg) . This completes the proof of Lemma
B.1.7. 1

Proof of Lemma B.1.8. For .J3 we have the following decomposition:

N N
1 . 1 . G
Jo= -5 E‘ 'Re (WX’iMWFNT ;—1: WE}kWE’kWFG)\z)

N

Wi W

=~ 2 e (W We W20V Ga) + AﬂT2§:R’< W%vaka%GA>
i,k=1 i,k=1

= jS,a + js,b-

Firstly jg,a can be decomposed similarly into

jS,a
1 N B B 1 N ~ -
- i%::l Re (Wi Wer W2 Wro HGX ) = 1575 i%::l Re (Wi Wes W (Wi = WioIT) G
1 N L o ) 1 N L o )
- > Re [ > WiijWesiWeniWho ;HGA; | — ~ops ST Re | Y Wi ijWe i WesaWiho HGA;
ik=1 j=1 ik=1 GAL
N ~ ~
o O Re (Wi WeaWzy, (W — WiofT) G

i,k=1

= j&al + jS,aQ + js,a:a,

and then j&b could have the similar decomposition given by

Wi Wi
ZXi7F H*ZWFO W k]WEkjWFO HG)‘

1
JS b= NeT2 z

Wx.W.
X H*ZWFO We s W e aWho JHGN;

J#l

N
N2T ;
N
N2T kz
N
N2T ;

W(%I%@@J

Wx.

(W Wp
( WF - WFOH) W W2, (WF - WFOFI) GA)
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= j8,b1 + js,bz + j8,b3 + js,b4.

Next, define j&l = j&al + js,m, and define j&g and j&g in the same manner. It is easy to

see that

N L
~ 1 __ _ ~ ~ o
Jg,l = —W Z Re ZWX,ijWE,kjWE,kjW}IT‘OJHG)\i

ik=1 j=1
* 7 L

R Wi W - = o
b D0 Re | S S W e W IO,

ik=1 j=1

N N
_ _ﬁ 3 Re (W;;JMWFN}T 3" Diag (\Wa,kj\g) WFG‘)\Z) = Ayr.
i=1 k=1

Suppose we define J;; = (X{t, Fto’)/, and W ;; its DFT at frequency ;. Then jg,al and j&bl
correspond to the submatrices of Zle W 1iiWe i W e kj W"IU with different weighted sum

over i and k. And the same notation works for Jg o. Following (22)-(35) in the proof of The-

orem 2 in Christensen and Nielsen (2006) and using Cauchy-Schwarz inequality, which is re-

flected by our Assumption D(iii), it can be concluded that Jg 1 = O, (%viwdﬂm“‘_dx"“ax_3dF"“ax_2d5)
and jg,z =0, (%%%udp:min7dx,max73dF,mx72dE).

Then we analyze the order of j&g, which follows that

s = —ﬁ i Re (W;;JMWF W kW2, (WF _ WFOISI) G‘)\i)

ik=1
1 & 1 X X o
= %7 ; Re <W)*(,iMWF NT k; E (W WZy) (WF - WFOH) GAZ->

N N
1 1 N
— 7> Re (W;‘()iMWFM > (Wes Wiy, = B (WesW2y) (Wi = Wi ) G)\i>
i=1 k=1

= Jg31 + Js,32,

where Jg 31 is given in norm by

T dFmin—l 1 al WXZ 1 al 51112 1 ~ ~ ~
||| s 2" NTzH Tl g 219l P2, s [ = o |
=1 k=1

_ Op (T2d5fl,yzF,mm—dx,max <5W1,NT HSH + Nféfyi—dzr.max—&))

by Assumption C*(iii). And for Jg 32 we have

N
ST (WerWiy — E (WeikW2y))
k=

m_mmu

L
VT

R § 1_ B _ B
=0, (42" 1) 0 (327 ) 0y (N7E91725) 0y (Swawr 3] + N trmesm)

N
7 dF‘min_l 1 1
ao|| < AEFmnTE T Wil 11| ——
| Fs.a]| 5 72 N 2 Wl 7

= =
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_ Op (Nf%’yi_st"F(dF,min_dX,xnax) ((sz,NT HSH + Nﬁévi dF,max d5)> 7

because
1 N
E ﬁ ]; (WE,ng k E ||]
1
1 N 1
< o= Eigltr[(wg,iwgz B (WeiW2,)) (Wes W — B (WeilW2)) |
1 N L 1
=57 Z Z oV (WeitWe s We W2 o) O(N 2,yl Zd)
i,k=11,m=1

by Assumption C*(v). And the order of j&b4 can be omitted as it is dominated by jg,bg.

Thus we complete the proof of Lemma B.1.8.

Proof of Lemma B.1.9. We first consider how 'YL Tz ZZ 1 Re (WX My, We l)

converges to

VNLyj~'Ty Ty &

N ZR (W My, Wes) -

Noting that My, — Mw,, = Pw,, — Py, and Py, = WFWI’;/T, we have

FJ,\YTT—lFZ ZR |:WXZ ( Wy — PWFO) Wa,i:|

_ VNLyi 'y _1FZ WeWp .
N > Re | Wi, —=+ T Wei = WPy Wes
=1

(Wi = Wroll ) B Wiy
T £,

VNI~yE"1r, &

(WF _ vaoﬁ) jng - wFoﬁ)*WW

L VNL )

X]LT Iz ; Re [ W,

Weo (WF - wFog)*
T

Wei

VN 'VL Iz "
NT z; Re | Wk,

~ ~ ~ —1
\/775 1FZ WxiWro [ - -, W o Wio i7*
NT ZRG —r \HT 7 WioWes

=a+b+c+d.
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We study a, b, c and d in turn. First, for a we have

\/77?, 71FZ ZR W)*( ) (

lall =

Wi — Wi ) B H
- |

VNLyE Ty
NT3

N
1-2dp max
St NL mlnrzn{ TQZHWmnHWFOWH
1=

A ~ . 1
[Wr — Wt oy

i

_ Wz—mp,mxmvngz,min—lOp (L_%Vi dx,max—de )O (5W1 NT H H n N_* 1 2d, )

—+/N ,.YLEF 10 ( 2d 7 min—2dF, max+1—dx max— EéWl,NT H(S’D

+ O ( 2— 2dF max —2de¢ erz min—dXx, [l]dx)

:op< Fng HSH)—i—op(l),
by Lemma B.1.6 and the fact that
S (NAN =y (WEWE Y
o () o (M v

and an order of L small enough relative to T that represents an undersmoothed estimator.

S W [Wisawe.s
i=1

Wi — WFOHH

1-2dp max
=0y (’YL " ) )

Next, for b we have

) VNIyT,, - (WF - WFoﬁI> (WF - WF0H> v
H || - NT ; X.,i T £,1
1 Y 1 - 2
< VNIt Ty {NT 2l |WE,¢||} - Wrofl |

— / ,}/L e—1 dmeO ( 1— deax ds) (5W1 NTH H +N 1 2 2dFmax 2d5>

_ <||2 L o - -
_ VNIyETS0, ( 207 min—dx max daf;?/Vl,NTH(sH )+Op< /Nﬁ 20— 27, i dx,max>

=0 ( oz 3] + e .

as it relies on some milder conditions relative to ||a||.

Next, for ¢ we have

\/77% _1FZ ZR

V rYLE*lFZ ZRe W)*(JWFO (W;‘OWFO
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d _ *
F’VL 1PZ ZR <WX1WFO Q (Wpﬁ[ﬁl — WFU) Ws,i) =+ e

L —1
s W W,
where Q = HH* — (FOTFO) . For ¢y, we have

de 71F N W lWFO - . _ Q%
A XrT 2N QI (W — WiolT) Wy
i=1

lleall = ‘

‘WF _ WFHH}

< VNI 0y {NT S Wl |Wm||} (& @]l

Oy (VNI Tzl ) 0y (Swr,wr 8] + N 3aprmes=) [l ||

Then it remains to study the order of HQH To do that, we consider
Lz (Wi — W) = 0, (5 N3y trmex—de B.2
T Fo( F— Wpo )— <W1NT + ), (B.2.8)

and similarly

1. * I T [ -5 max — Qe
Wi (WF—WFoH) -0, (5W1 NTH H I\ P d). (B.2.9)
Then
~*W* WFO~ 1 S ~*W* WFO"
Ir — H FOTHH: FWiWro — H F"T HH (B.2.10)
< T(WF—WF0H> (WF—WF0H>H+HT(WF—WF0H) WFUHH
+ Hﬁ*w;o (Wi = Wrofi) H

= s (s[5 + b = 0, o (i [ b))

and so is the probability order of HQH Therefore we can conclude that

1 2dz, min—d X, max —de +2d F,min —2d F max
— -

dzmm Ax max+2dE min—2drmax | L 2-2dp max—2d-

:op( | H(SH) +o,(1).

Next for ¢; we have

C1
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(Well ™t = W) Wy

~ - ~ —1
NIy, iRe Wi Wro (WioWpo
T ONT T T

i=1

~ ~ ~ —1 ~ ~ -1
_ VN 'yg P, & Wi Wro (WiaoWeo \ = (NA\ "= [ WiWo . =
2 Re| =7 p) () (M) ()

=c+ - tags.

Let
~ —1 1

oo [ WiWeo WiaWeo ) n (NAN T o (Wil

- T - T FA\'N F T
Then

VNILyET, LWy Wro
lerall = | NLT > G We

i=1

vIN 'Yg 71FZiWXZWF0é”
NT T

Z WX k66 WX kWE 7,|

=

167

Wo

T3 T3

}NTznw el
:\/ﬁydﬁdz,min ( —dx max— )Op (W’;de’mx)o ( 2dF min— )H H
~o0, <F 2, min+2d 5 min—3dX max H ) _ op< o H H)

where we use the fact that HGH < HI‘FH =0, ( 2dF,min— ) . Next, for ¢; 2 we have

< VNI T {NT S Wl ||Wm||} » Z Wl

5 /NL'YZEJ'_dZYmin 1{

NT
=1

NI dE—lr N W* 7,W .
S e

i=1

_ | VNLyi~'Ty XN: Wi iWro .

izl =

1
NT 2T GWiWro o ];/\kéw)(kW“

N
< NIy ||PZ{NTZ||WXZ }{Nlﬂywx,kn ||Ak|}{ é||WF0}HGH (@l
k=1
VNI 210, (3 m ) 0, (37 m) 0, (i) 0, (v2=) 3]

/ 2dF,mint2dz, min—dF,max —2dx max—de || T
_ ’YLEF 10 ( F, Z, F, X, e 6H)

—%( ez Bl

Similarly, we can show that ¢y 3 to ¢1 5 are each o, (

E’L

F;H HSH) For ¢ 6, we have

VNI Ty &L Wi Wro
el = || k2 3 G
: NT T




d.—1 N * I N
VNIAE T, KW Wpo o . 1
‘ Ly Tz PRt Wi~ § jWE,kA;CWP’:OWE,i

NT T
;X
S VNI Izl o Z Wil W Wei ‘NT S Wi | ¢
2 k=1
— \/ﬁ,y?/s‘f‘dz,min_lO (Li% 1— dX l’nax_d )
- 3_ _ -
% Op <5W,NL H(SH + N_%L_%'YLQ 2d F max ds) Op ('_Y(L{F,nun dF,max)
_ \/ﬁ,yzsrglOp (L—%,yidz,min*dx‘max*dserF,min*dF,maxéw’NL HSH)
+ O ( ,ng—?dF max —de +dZ,min—dX,max+dF,min—dF, xnax)
=0 ( 0z 1|8]]) + e
1_ 1_
by Lemma B.1.7 where w,nz = N_%Vi dx,max—dr,max—de (%_3 dF,max T ds>. For 1.7,
with a nonrandom P-vector w such that ||w|| = 1, we have
lw’er 7]
VNILA%=1Ty, i W ;Wpo SIW
NT ~ T e

~ ~ _1 _ N
~ WEoW. ~ ANA ! 1 azwIFZW i
=VN 7L NT tr | Wgo <FUT FO) FF(N) NZ)\k kz X,
glw FZWX ZWFO

\ﬁz kW:k\ﬁZ T
\/WVLﬁ T
<

v e [

1
de—1 ||+ 2\ 2
T (O IS
> N £ N ~ i VVeil

[ L 14dy mintdpmin—d —2d
_ 2 Z,min F,min X, max £ _
=0p ( N’YL = 0p(1),

where A; = % Note that this term corresponds to one of the asymptotic bias in

SVNLyp™! HFFH NT

-

1 &1 & ’
Z2 | e MWk
Tl=1 \/Nkzl

the time domain LS estimator but it asymptotically negligible here due to the smaller order
of magnitude for L. To make our asymptotic theory more comparable with the one in time

domain, we keep this term explicit. The last two equalities hold by the following reasoning:

|E (A A E (WeaWi)]
1

INA
Z‘H
~

M=

M= 1=

Il
-
S

E|A; ALl (E |W57HW§7M|2>§ (B.2.11)
1

IA
Z‘H
S
(]~

Il
—
-
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where ‘WEMW; ‘ < —4de (*Z,Z)Q by Assumption C*(ii). For E |A;Af| we also have

EA AL < E (Al [ Ak]l) < \/E 1Al B [ Al

Focusing on E||4;]°, we denote W,ij as the conjugate of Wy ;;, and denote Wyo ; =

f’F7jWFo,j as in Assumption C*(iii) with WX@- defined in the same manner. Then

B A = /T Z (WX7ijW§o7jf‘%WFo7lW},il> T w
1 L
= wTz Y E (FXJWXJ-J-WQO TLT2T FlWFolWXZlFXl) Iy
J,l=1
1 L
2dz min —dx, max _—dX max
< ﬁPyL z, Z v; X, 7, X FFJF FFIH E (HWX UWFO ‘ )

Jl=1

2—2dx max+2dz min
=o (v )

by Assumption B*(i) and B*(iii). Therefore what remains is to consider the order of

S

1 L N
ﬁz > <E|leW;kz| )

1=1 4,k=1
which is given by O (7%72d€). This implies that (B.2.11) is O (’yi 2, max—2de +2d7, ““").
Similarly, we have

2

1 &
T2
1=1

| X
N z:; AMeWe i =0 (71{ 2de ) )

which altogether forms the order of ¢; 7. Then lastly c; g is given by

C1,8 =

VNL&==1Ty, zN: W . Wo
NT

i=1

VNLAE Ty A Wi Wro o 1 &
NT Z T ZWE

i=1 k=1
VNINVE Ty Wi iWro oo 1 O )
NT ; e GH Wi ]; We W2 We s
VNLE'T, N Wi W - ~ al
Z ’ G( r—Wpg H) ZWEkWEkWEz—0181+6182
NT & T NT £~

Then it remains to study c; g1 and ¢; g2. For ¢; 81, we have

VNLy~'Ty i W iWeo

C1,81 = NT T

GH*W ZN: i = E (W2 Wey)]

i=1
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VNI T, X We Wro o -
+ L ZZ X, FO ZWE kE

GH*WFO e, kWE 1) = Cl 811 + Cl 812
NT — T
Note that
llesiall
de _1FZ 1 N W)*( 1WFO L . . 1 -
| NLT ; NVT P 7 ; e, sze il — (Wg,mWe,z’l)] GH {\/TWFOWs,k]
1
N L 2\ 2
- 1 Wk, vVFo )
5 \/WVLE 1 ||FZH ﬁ Z f Z z Z €, leE il — (Wa,leE,il):I
k=1 =1
N o\ B
1 1 .
X <W 7TWFOWE7]€ >
k=1
O (o (ko )

1 1 2d.4dz min—dx.max
0, (e teme i) —o, 1)

by Assumption D*(iii), where the last two equalities hold by Assumption C*(i) and the fact

that
1 & al WX’LWFO - 2
(e Erir £ 758 st
:O(N 172 4d. 7i—mx,mx) (B.2.12)

by Assumption C*(v) following the similar reasoning to (B.2.3) in the proof of Lemma
B.1.4. Similarly c¢;g12 has the same order, which is obtained by replacing W/ Wei —
E (W*leml> on the left hand side of (B.2.12) by F (W*,sze,il) and using Assumption

€, €

C*(ii). And for ¢q g2, we have

NIV Ty Wi Wro re o e 1 &
o P ) S - )
i—1 k=1
NIy Ty qm WaaWro e o a3 1
n FJ’\V{LT z Z X7T FOG (WF _ WFoH) N7 ZWE”“E (W;ka)
i=1 k=1

= 1,821 + €1,822,

By Assumption B*(iii) and B*(iv), we have

VNIyETT, SN Wi Wro . /. L )
llc1 g1l = | NLT z Z XT G(WF*WFUH) TZng Wi Wei—E (W2 eWei)]

i=1
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1 zN:WXZWFO L
NVT <
1 - 1 R N 2\ 2
(oElpeore]
= VNI Tz O, ( 237 min )OP<N>%7§fzu7dxmm>

-3 d max*d l7d5
XOP<(5W1NTH H—FN 2 1 " )’Yf )

< 1—dx max—AdF max+dz mint2dF min—3d
- O (a H(SH + N ’ Y ’ Y )
P 3,NL \/ NWL

:op( I‘Elu HSH) +o0,(1),
by Lemma B.1.6, as
;XN
E@T
k=1

and a3 v = VNL~®

the same reasoning and conditions that

2d 7, min — 1
SVNLyf= Tyl ™ NT Z
k=1 =1

2 12
> =0 ((512/1,17NT H(;H + N—l,yi—de,mx—st> Vi_2d6> 7

-1 —1 2dz min+2dpmin—dXx, max—3de
L'y HN 7L

j%@%—ﬂ%ﬁfW@

. Next for ¢ gg2, we have by

||C1,822||

de —1 N W* 1W . ~ 5 A* 1 N
| VL T2 S ST G (W~ Wi ) o S We B (W2 W)
k=1

i=1
B (W2, We)
T

W ZW 1 /. SN
—Xi TP T(WF—WFoH) W

2}1/

1y

k=1

N
- dp min—
SVNLy T gl Z

1/2
Wi W
WF—WF0H> We XZ o

N
< dg 1 1—\ 2dF min —
VNLyp = [Tzllv

1l

N
N N FE ( )
1 1
NN
- N -5 ax € lfds
= VNLyg ™ [Pzl 7 70y ((Swave |[§]| + N=3ap ) 97 7%)

< 0y (1E75) 0, (N1 1)

7l 2d min+2dF min—dX max—3d S
NT70, (b sy ]

L . - _ _
5T i s i
+0 < ,yl-i-dz mint2dF,min —dX,max —dF,max—3de
PV

o (T I ) 40

by Lemma B.1.6 and by Assumption C*(ii).
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Lastly for d we have

VNIV 'Ty i Wi Wio - -

I =‘ Y QWi
WF“ W We.;
de—1 FoVVed
< VNIyi " || HQHNZH ‘ -
2y 1/2 9y 1/2

Wi Wro
< VNLf rg ) | @ ZH X

= VNLygH|T2] O, ( e (5W1,1\7T‘(5H—|—N_l 1= masx— df))
—d max _ 1 l_ds
x O, ( X, )Op (L 22 )

— VNLy*T3'0, ( -3 1 dx max—de+2dz,min—2dF,max 5 “VTHSH)

+ O ( 2—dx, max dF,max*Qda+dz,min*dF,max>
:op< Fng HSH)—i—op(l),

by Assumption D*(iii) as before.

This completes the proof of approximation for the first part as

VNI Ty & ZR (WXZM Wﬂ)

ZR (Wi My, We.,) +op( d ||| H‘SH) +o,(1).

Then for the second part given by

\/7'71: - FZ ZR

(le ZN: aikW;gk) <MWF - MWFO) W]
k=1
_ FvL 1, & ZR [sz< . —MWFO) We,i] .

By replacing Wx ; by Wy;, we can obtain the same order for the second part. Then we can

conclude that

de—1p . 1 & i}
VN vL ZZR WMy, = = > aiwWi My, | Wes

k=1

de—1 N
_ VN r 1
FYL z ZRG <<W;}7iMWFO N 2 :aikW;(,kMWFf)) We,i)

k=1

+op (\/ﬁygffgl HSH) +0,(1)

This completes the proof of Lemma B.1.9. B
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B.3 Demeaned Time Domain Least Squares

Estimator

By (3.2.2) and (3.2.3), the model (3.2.1) can be rewritten as

}/;-t = X;tﬁo + )\;Fto + Eit
~ i -
- (’uX’i * X“) B+ X; (MF + Ff) + i
- )?Z{fﬂo + )‘;ﬁto + (M/X,iﬂo + /\;.UF) + €t

= X!,8° + \,F? + i + e, (B.3.1)

which is a factor model together with additive individual effects. Then following Bai (2009),

we conduct the LS estimation to its demeaned version
. ! -0
Yii = X, + NoF, + i, (B.3.2)

where Yit =Y, —-Y, and Y; = % Zthl Yi:. In this study both f; and EO are nuisance
parameters and thus we do not need the identification condition Zthl F? = 0, which is quite
restrictive in application. And as in (3.2.5) and (3.2.6), the LS estimator of model (B.3.2)
is given by
N kS o ! .
8* = (Z XZ-MF*XZ) > X MpY;
i=1 i=1
and
1 N . kS . o !
NT > ( B B VNT

i=1

In the following theorem we present the asymptotic behavior of 8*. As before, we denote

N
N A 1 A
Zi=MgXi— & ;aikaoXk.

And the theorem is stated as below.

Theorem B.3.1 Suppose that Assumption A-F hold. Then for comparable N and T such
that T/N — p > 0, we have for some positive definite matrices Dy and ¥ that,

(i) when dz +d. > 3 and dp + de > 3,

i1 _gq, * 0 1 * 1 * d -1 -1
N=T= (ﬁ -6 - NB - Tl(dZera)Tl(dFera)Cl) N (O’DO xDy ) '
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where B* is the probability limit of

i ) F F AA lZ/\e"s*
T kck <4

~ -0\ 1 1 N (
B*=-D|(F —
() 5%
with ‘N/z = % 25:1 aik)N(k; and C is the probability limit of

~ N R A 1 X (P F AAN
i=1 k=1

(i) when dz + de > % >dp +d.,

1

1 l,ds * O,i *
S <”B =N~ @it

c;) 4 (0.05'80;").

where B* is the same as above and C5 is the probability limit of

’ 71
, N 0

. .0
N I N 1 0 [FOF AAN T
02“D(F) W;XN#NT%;MF T (N) Ass

(iii) when dp + d. > 2 > dy + d.,

114, * O_i * 1
N=T: (ﬁ p NB T1—(dp+de) T3

c;;) 4 (0.5515D5 ),

where B* is the same as above and C5 is the probability limit of

’ —1

_ .0 —1 1 N L 1 N -0 FO FO A/A —1
;=-D[(F XM-o0o—oc—7"r ke F| ——
s ( ) NT? ; i NTdrtde ;6’“6’“ T ( N > Ai

(iv) when dz +d. < 3 and dp + de < 3,
1.1 4 * 0 1 _, T . d A1 —1
NETE (7= 30— =B~ 2C; —>N(0,D0 $D; )

where B* is the same as above and C is the probability limit of

-1

_ o\l o N 1 X -0 fO/fO AAN L
C;i=-D|F X M- LR F _— A;-
‘ ( ) NT? ; UENTS ;Ekak T ( N )

By within-group transformation, the LS estimator now obtains a unified convergence rate

that only depends on the memory parameters of idiosyncratic error term. But meanwhile the
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order of bias term has a complex pattern as it depends both on dz+d. and dp+d.. Therefore
to sum up the LS estimator using data in time domain could be difficult to implement if we

account for long memory in the model.

Proof of Theorem B.3.1. The proof of Theorem B.3.1 can follow the same steps as
the proof of Theorem 3.3.1. It is easy to see that all the asymptotically negligible terms are
still negligible, and thus we can focus on the order of bias terms and the convergence rate

of 8*. To be specific, the order of two bias terms under LS estimator of model (B.3.2), B*

and C7, j =1,...,4, are related to the order of the following two terms
S Ly 20 L0 -0 -1 1

. | (X -v) F (' AN 1S

1.7 = —— — — o Ei B.3.

cl.7 NT; T T N Nkzzl)\kgk Eiy ( 33)
and

N 0 20 -0\ 1 A,A -1
—~ 1 =/ 1 X P F

respectively. Firstly for (B.3.3), the same arguments can hold as in the non-demean model,

’

— % by s
and thus c1.7 = O, (%;). And then for (B.3.4), we firstly denote Z; = XiMﬁO' Then by

definition of Z}, we can see the memory parameter vector of Zi is also dz, which implies

7

that

no

-1
N T T VA ' —1
% 1 1 A 1 =0 F F AA
J8 :7F_ Z<T2Z1t5kt> <TZFt5kt> T (N) i,

. . 0
T 5 . T & .
where & >, Zuejw and &>, F, ek can be treated as the sample cross-covariance be-
. . 0

tween Zm F, and eg. Therefore Assumption D(i) implies that

LSl = [T
Tt:l ' OP(Tié)alf dF+da S % ’

which concludes that

O, (Tdz+de=1pdrtd-=1) "if dy + d. > 1 and dp + d. > 3

. O, (Taz+47174) il dy +d. > § > dp +d.

J8

N= N

0, (TdF+ds—1T—%) if dp +de > 1 > dy +d.

Op(T71), if dz + d. < § and d + d. < 3
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Therefore by what we have so far, the asymptotic representation of 5* — 3° follows that

L0\ ! N, —
ﬂ*—ﬂO:D<F> —TZZZ-*E'Z--FC]..’? +J8 | +0, (1) +0, (B —B°),
i=1

- -0
and Assumption F implies that N-27d-=3 Zfil ZF & AN (0, E). And also D <F ) RN

Dy for some positive definite matrix Dy. Then we have the asymptotic distribution of 8* — 5°

given by
1,01 « " <\ d S 1a A . .
N2Tz—de (5 — B = ¥B" - ) —>N(O7DO '$D; 1) ,if min (dz,dp) +de > 3
NiTi—de (,3* — B0~ Lpr_ m@) LY (o,DgliD ) Jifdg +de > 1 > dp +d.
N3T3—de (5* A ; mcg) iN(o,[)gle[) ) Jifdp+de >3 >dy +de
NETEde (57— g0 — LB~ £C7) S N (0,D5'SD5" ) if dz +d. < § and dp +d. <}

- () ;VZ (% - Tv) F il (x8y” ;ZA
and CF is the probability limit of
. P N L A X Lo (FF B AA)
Ci=-D (F ) W;XiMﬁomkzﬂgﬁk Fo| = <N> i,
and C5 is the probability limit of
T
C3 is the probability limit of
L0 oy !

. SN o (B R (aa)
03 =-D (F ) WZ M~0 Z&‘ké‘k F e — <N Ai,

and C} is the probability limit of

i L0\ ! N 1 X 0 (F F AAN
*=_D|[F e F
o ( ) Z T 2 . (N) M

This completes the proof of Theorem B.3.1. B
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Appendix C

Technical Results for Chapter 4

C.1 Proofs of the Main results

In this section we prove the theorems in the main text, where some auxiliary lemmas are
included. Lemma C.1.1 is directly borrowed from the Lemma A.6 in the last chapter and thus
presented without proof. The proof of rest of the lemmas will be given in the supplemental

materials.

Lemma C.1.1 Suppose Assumption A-F hold and the other conditions of Theorem /.5.1
hold. Let H = (A];,A) (W;TWF> Vui- Then

T3

W B WFﬁH = OP (6W1,NT HB - BH —|— N_%fy}lidl‘ﬂ,max*da) 7

Lody max [ L—drmax 14 .
where SwinT = VP ('yf fme 4 g2 5). Furthermore, we define a new variable

Zi through its DET by (4.3.7) and denote its memory parameter vector as dz

2d dz,min—d
T=%% 2d 7, min+AdF, min—dX max 7L :
+ -

B_ﬂzOp<L7L JNL

Lemma C.1.2 Suppose Assumption A-F and the other conditions of Theorem 4.3.1 hold,

(KA (Wi

then H = I+0, (SnT) where Sn = Swi N (B - ﬂ) +N7%W’i_dﬂm”_d5 with Sw1 NT given

and define

by Lemma C.1.1.
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Lemma C.1.3 Suppose Assumption A-F hold, we have for arbitrary 1 < j < L that

3
3 —2dp max—de

SHJer%'yL )jFF,j

~ ~ 5_ — ~
5H) Jrx,j +Op (L_%Vf i ds) JIFe,j

A ~ o 372d max*d ,max
HIFJ - IF,jH < Oy (6nT) HIF,jH +Op (Vf " *

3 _
+ Op (7[2/ 3dr max

2 _3dF max\ 7
+ Op (75 " ) Jrej+1Ep,j

N5 .
> cJpej = (i, PO HWFJWE,U

; and Ig, ; is a smaller order term at each j relative to

1
2>2

where Jen; = || Wi Wi,

7 _ 1 N I ) *
’ JFXJ - (N Zi:l HWF,JWX,U

¥ 1 N 7 T ’
and Jpej = Hﬁ > im1 WriWe i

the others.

Proof of Theorem 4.3.1

Proof of this theorem is based on the proof of Theorem 1 in Robinson (1995¢). Since our
local Whittle estimator is conducted marginally at each » = 1,..., K, and the proof of
consistency of every dAFr is identical, we proceed with the proof in the following marginally
at each r = 1,..., R and omit the subscript r in all the arguments for ease of notation. To
be specific, for an arbitrary § > 0, let N5 = {d: |d — dp| < §} and N5 = (—o0,00) — N.
Then

P (\CZF - dp‘ > 5) —p ( ir[lg’l)K(d) < inf,é)K(d)>

Nsnfo,1 Nsn[o
<P < inf K (d)—K(dp) < 0) . (C.1.1)
Nsn[0,1)

The consistency of d 4 will hold if P (

cfp — dp’ > 5) is 0(1). And by the fact that both cle

and dp lie within the interval [0, %), it is sufficient to consider § < % Next, define
G (dr) G (d) L L2 dr)
d)=1 —1 ——= 5 —1 — d=dp) [~
V (d) og{ o %2\ Ga) og L;] 5d—dp) + 1
1 .
+2(d—dp) ZZlog]—(1ogL—1)

Elog{Gq(jd;’)} —10g{2§j§} +V* (d)

U(d)=2(d—dp)—log{2(d—dp) + 1},

and
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where G (d) = vrt Zj 1Y f(d_dp). Note that we focus on the profile likelihood function

where G (d) = T Z 177 24]p ;. And our profile likelihood function is different from the one
in Robinson (1995¢) only by replacing Ir ;, the periodogram of the true factor, with its
estimation 1 ;. Therefore the reasoning in the proof of Theorem 1 in Robinson (1995¢) will
continue to follow as K (d) — K (dp) = U (d)—V (d). Furthermore, we define 0p = 72 'up

and G(d) = 73" ~'G(d). Then

G (dF) G (d) G (dr) G (d)
{2 o {22} 58]

which updates the expression of V(d). Furthermore, (C.1.1) is bounded by

Pl inf U <sup|V()]],
meb) o)
and then it is sufficient to show that inf N5n[0,3) U (d) is lower bounded away from zero and
SUP[, 1) [V (d)] is 0(1). And since neither V* (d) nor U (d) is random or depends on the
periodogram, the orders of these two objects will also hold as indicated by Robinson (1995¢)
that inf}\'/m[o,%) U (d) > £6% and SUP[o, 1) |[V*(d)| = o (1). To handle the remainder of V' (d),
by the fact that 0p = G (dr), we will try to prove sup[ llog{ Gl }’ op (1). Then by

(d)
Taylor expansion, it is sufficient to show

sup M =o0,(1).
p3)|  CG@
To proceed, denote % = %, where
2(d—dr)+1 (]) Ip;
Ald) = ———— = —= -1

and

B(d) = 24— dr) 1 2(d— dF Z_:( )2(d dF)7

dr

as we denote §; = Opy; > Note that B(d) is same as the one presented in Robinson
J J

%. Therefore it remains to show

(1995¢), whose Lemma 1 then shows that inf[O 1) B(d) >
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the asymptotic negligibility of SUP[y, 1) |A(d)|. Note that
2

L ) /7 =
Ad) = 2(d—dp)+1 dF +1 Z( > 2 <IFJg_]IFJ> (C.1.2)
L 2d—dr) [ 7
2(d - dF Z() <I;j ) (C.1.3)

where I ; = 72" ' with Ir; being the periodogram of the true factor. Then (C.1.3)

g () (5

Jj=1

is equal to

with g; = vF'yj_zdF whose negligibility is proved by Theorem 1 of Robinson (1995¢). So we

still need to show that (C.1.2) is negligible as well. By summation by parts we have

L-1 _ 2(d—dp)] T - =
3 7\ 2(d—dr) r+1 Ip;, —Ip;
(C12)< 7|3 l(L) . ( - ) ] 3 (FJgFJ> (C.1.4)
r=1 j= J

j=1

(IF,J‘ - IFJ‘) 7 (C.1.5)

where the right hand side of (C.1.4) is further bounded by

62( )1 e 1 i(IF]ngFJ> (C.1.6)

j=1
1\2(d—dr)
) [072)Whenr>0and0<1—2dp<1+2(d dr) on

because ’1 -(1+2

< % on
the same range of dp by Robinson (1995¢). By Lemma C.1.2 and C.1.3, (C.1.5) is bounded

by
L ~ ~
§Z Ip; —Ir,
L 7
3 L i ; 2d d od d 3 L j
<0,00m) 33115 0, (-t [ ) 25 o
= 9 2
3 J . g L7
v, (27 [3]) 30 T o (o) By T
j=1 J j=1 J
L 5 L
3dpmax) 3 Jre; 3 Ip,
+O ( 2 )— ~’ _’_7 s,
p \L L; J; L; J;
L
3 < In
=L+ -+ +- )y —5 C.1.7
L gj ( )
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N T *
Jo= (]{1 Zi:l HWFJWX,Z']‘

i 1 N i T /
and Jreg = |5 I WegWeih,

where Jpp; = ’WFJW;:J :

, which correspond to the scenario when R = 1 in

Lemma C.1.3, which fits the setup in this proof. Also by Lemma C.1.3, it is sufficient to

show the negligibility of I1-I, because 2 7 Z g is of smaller order than the other terms.
J

Then firstly for 17, we have for some constant C' that

fFJ IFJ (C.1.8)

3L
PlILG,

3L
1t

by Assumption B(iii), which is also supported by (3.16) in the proof of Theorem 1 in Robin-

son (1995¢). Then I; = 0,(1). Following the similar reasoning, for I, we have

L 1_dp

Z ~FF] _ 3’YL1L EL:E
j=1

j=1

Ir;

~0 (ﬁ‘dl’) : (C.1.9)

b«\w

which then proves I» = 0,(1). And for I3,

iiJFXJ

=1 9i

<.

1
2)2

1
N 3 N\ b 1\ 2
(w3 () (eman)’)

i=1

IN
=

31 (1SN e .
T2 W SB[
j=1J i=1

IN
e
M=

j=1

dr—% —dp—dx max 3—dp L
7L

Y5 C”y dp—dx,max _ dX max
Jgj L Z Fodx, O(’yL x, ) (C.1.10)

IN
=~ Q

~
Il
-

by Assumption B(i), B(iii) and using Jensen’s inequality, Cauchy-Schwarz inequality and

Riemann-sum approximation, which altogether shows I3 = 0,(1). And next for I, we can

follow the same reasoning as for I3 by replacing X with e, which implies that (% Zle JF;,(’j
J

1
0 (fyLQ ds) and thus Iy = 0,(1). Lastly for I5, we have

L
B2y dres
L= §
L ) : 2\ =
Ir7 /
Sz;gj EHWF;H E N;W&U)‘Z
O Ty 1o ’
<O (sl E O 5 3 18 (e We)|
= J b i,k=1
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) s Jpej = (N dim1 ‘WF,jWe,ij

)
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C 7L j _1 14,
< NLZ i :O(N 5y 2 ) (C.1.11)

by Assumption C(ii), which also proves the negligibility of I.
Next using the same reasoning through both sides of (C.1.7)-(C.1.11), we define

H + N_7 2dF max—de + ’YL%_3dF,max

—2dF,max—dx,max

il

ANt =dnT + 7L

+L,%7L§*4dF,max*ds +N7%7L§73dﬂ"‘ax' (0112)

Then by changing the upper limit of summation from L to r, we can obtain a loose bound

as 22:1 E ‘ (%)‘ = O (rApnTt). Therefore the expectation of (C.1.6) is given by

62( >1 2ar 1 _1E‘<IF]%IFJ>‘ O (Awr) L z::( ) oy (C113)

by Riemann-sum approximation, which completes the proof of Theorem 4.3.1. B

Proof of Theorem 4.3.2

Here we follow the proof of Theorem 2 in Robinson (1995¢) and the notations used in the

proof of Theorem 4.3.1 above. By consistency of CZF, as T — oo, it satisfies

o- ) e 20

by Taylor expansion, where ‘J— d‘ < ‘a?F — dp‘. By replacing the periodogram of true

factor by the estimated one, the proof in Robinson (1995¢) can proceed as

A L
agéd) = g 3 %Z 08 Vs (C.1.14)
and
K (@) A[C2)God) - G| a[Pua)Fy@) - Fa)
od G3(d) N F2(d)
4 [Ba(d)Eold) - B3 (@)
- E2(d) ’
where
R 1 2dp L
Gi(d) = £ ; (log ;)" v3Ir;,
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and

1 2drp

L

1-2dp

L L
> (logj)* ~3Ir;, and Ei(d) = WLL > (log )" j*ir,.

j=1 j=1

Fi.(d

As in Robinson (1995¢), we fix ¢ > 0 such that 2¢ < (logL)?, then we define the set
M = {d - (log L) |d — dp| < g}, in which

1 2dp

L
’Ek( ~ By (dr) ‘ Z‘ (4=dr) — 1 (log §)* j**" Iy < 2ee (log L)* ™ Eo (dr) .

(C.1.15)
The above inequality holds because the reasoning required are all about the deterministic

part of Ej, (d). Therefore for n > 0,

( af-a(2) )

P o (dp) > 2— (log L) ‘“) P ((1og L?|d—dp| > 5) . (C.1.16)

For k = 0,1, 2, the first probability in (C.1.16) tends to zero because o (dr) = (27”)_2# Go (dr)
and G (dr) 2 vp € (0,00) according to the asymptotic negligibility of SUp[y, 1) |A(d)| as

2
given in the proof of Theorem 4.3.1. Continue following Robinson (1995¢) as we did before,

to prove the negligibility of second probability, it is sufficient to show

P inf U< sup |V(d)|] —0, (C.1.17)
Nsn[o,3)n1 Nsnl[o,1)

where M = (—o0,00) — M. Based on the lower bound of U(d) under the inclusion of M,
and the reasoning about the order of V(d) in the proof of Theorem 4.3.1, (C.1.17) holds if
SUP 7, [0,3) |A(d)] = op ((log L)fﬁ). Recall from (C.1.2) and (C.1.3) that

2(d—dr) (7 7 .

j=1

2(d—dp)+ 1<~ [\ (In; B

=1

) 142 ()] = o, ((log £)™°), and
the orders given by the left hand side of (C.1.7) shows sup g, n[0.3) |A; (d)| < SUp[y, 1) |A; (d)| =

we can see Robinson (1995¢) has already proved sup Nsn[0,4
72

Op ((1og L)y” >, which altogether proves (C.1.17) and the negligibility of the left hand side
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of (C.1.16). Such conclusion, as shown in Robinson (1995c), implies

oK (d) 4 [By (de) F (dr) — F? (dr)

= ~ + o0,(1
as T — oo. Next for k > 0,
L
dF —’UF Z 10g]
L L A
1 1—2dp _2dp 7 UF k| Iry
== (logj) [WL ; IF,j—UF} ==Y (logj)" | =L -1
L j=1 L =1 9j
. ~ L
v Ip; —Ip; v . Ip;
< TFZ log j) 71%4 L TF (log j)" I:i]_l‘ =F + Fy,
i=1 i =1 9i

where Robinson (1995¢) has proved the asymptotic negligibility of F5. And for Fy, we have

by summation by parts that

L A ~
VR IF,‘
TZ IOgJ 3; ’
Jj=1
< ”FLZI\UO )~ g+ )| |30 T T (g PR
<7 2 |(os g 275 g (sl 2 =7
= F11 + Fia.

Firstly for Fya, the reasoning behind (C.1.7) based on Lemma C.1.3 continues to hold and
proves its negligibility. Next for Fj;, we adopt the conclusion in Robinson (1995c) that
‘(1og mF — (log(r + 1))k’ < M. Note that following the reasoning as we analyze
(C.1.6), we have

1 L-1 b1 1 T jF’j B I~F,] .
I ; (log(r + 1)) ;;E e 0] ((ANT) (log L) ) 7

which corresponds to (C.1.13) and is negligible because it is dominated by Fj2. Therefore,

identical to what Robinson (1995c¢) has obtained, the limit of F» dominates in the limit and
9’ K (d)
ad

Next we turn to %. By (C.1.14) and the fact that Go (dr) 2 vp,

thus Loy,

1 OK (dp) TR el L&
L3 901 =33 (logy) 2T 915N ogy,
5 ]Z: 8%) = D log,
1— 2dF dFI

-1 YL
=2L
ZU] UF+Op 1)
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j=1 J
L f ]
=2L73 w; [ZL 1) (1+40,(1
2 j ( W )( (1))
J_
L - ~ L
Irj—Ir, Ir;
=2L" 3 Zuj (FJQJFJ> (1+0,(1)) +2L72 Zuj < ;J - 1) (1+0,(1))
j=1 j=1
EL1+L2, (0118)

where u; = log j —% le log 7 and the second last equality holds by the fact that ZJ'L:1 u; =

0. Firstly for L;, we have

L ~
Ip; —1Ip,

L7 u,E

j=1

< (VLlogL) iZL:E

j=1

Ip; —1Ir,

7 =0 (ANT\FLlog L) ,

9j

which is negligible by the definition of Ayxp in (C.1.12) by Assumption E(i). And lastly we
can see that Lo is identical to (4.11) in the proof of Theorem 2 in Robinson (1995¢), which

follows that Ly % N (0,4), and thus the proof of Theorem 4.3.2 is completed. W

Proof of Theorem 4.4.1

Proof of this theorem is based on the proof of Theorem 1 in Qu (2011). And same as before,
such statistic is calculated marginally at each r = 1,..., R in the same manner. So we omit

the subscript r as we did in the proof of the theorems above and treat the factor as a scalar.

Since by construction % Z]LZI uf — 1, it is sufficient to consider the uniform convergence of
_ . ) [Lp] I~
Vi (P,dﬁ) =LY | e
j=1 G (d F) vt

over p € [0,1]. To proceed, we conduct the first-order Taylor expansion at d p=dp,

V. (p,d}) L% LLXP:J uj (IFJ_MF — 1) +L*%ML% (&F - dp> =V, + Va,

j=1 G (dr)7; dd
where
vy (p, J) o el (g i L )
_1 .k }
L™z i =— Zuj ;J{Llogfyjz QJ_ZZIOg%’ 2‘2}
LG (d) Jj=1 j = s=1 s



Following the reasoning on both sides of (C.1.18), we have

) [Lp] I
V=it S (22 1) o) o)
j=1

with g; = vp'yj_ZdF. Such conclusion holds because by arguments like (C.1.13) the above
approximation can be applied at any upper limit of summation less than or equal to L,
therefore also applied uniformly in p € [0, 1]. This implies (A.2) in the proof of Theorem 1
in Qu (2011) equals to Vi asymptotically.

Next for Va, by replacing Ir ; with its FDPCLS estimator, and using the notation of v
and G(d) in the proof of Theorem 4.3.1 and 4.3.2, the reasoning in Qu (2011) continues to

hold as we can rewrite it as

[Lp] = [Lp]
TR G Byl o) I G o

G (d k=1 Yk G(J>2 =1 7]

In the following we try to analyze the asymptotics of (~) < ZLL"J k IF;d) with k£ =
Vs

0,1,2, using the similar approximation scheme as we used before. To be specific,

1,

L A L ir L
LZJ TR DS L R e S ARVl T (©1.19)
_2d - d - 1-2dp ] 5 .1
G( ) L~ 1Zj 173 IF] ’YLL Z‘f:l] dIF,j

where the numerator of the right hand side of (C.1.19), under the case k = 0, 1, 2, are further

given respectively by

1 2dp LLP) .
Z]MIF] =F (p,d),whenk:();
71—2dp [Lp] . 71—2dp [Lp] . 1 L 1 2dp LLpP]
LL > e = LL > (log ) j*'Ir,; — I Zlogj Z 7r;
j=1 j=1 j=1

1-2dp LLp]

- L
Y 2d 7 Y N2 2d 7 2 |7 N 2d i
b Yl ey = Y (log ) ey — | £ ) logi | Y (log) i*'r,

j=1 j=1 j=1 j=1
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1 L 717201F [Lp]
. L 2d 7
- Z;bgj 7 ;J Ir,;

2

glogj El(p,d)+ ;jzi;logj Eo(p,d),whenk:z

Il
>
V)
—
>
IS
N
|
Il

Therefore it is sufficient to analyze the asymptotics of Ey, (p, (i) for k =0,1,2. To proceed,

we denote ¢ (cf o dp) as the interval between d 7 and dp, and firstly try to prove

A~

Ey (p,d) = Ey (p. dr)| = 0, (T2 (10g L))

sup sup
des(dp,dr) PE[0,1]

To be specific, we can follow the reasoning in (C.1.15) and (C.1.16) because

sup sup |Ej (p,d) — Ey, 2 dF)’

ded(dg,dr) PE[0,1]
7172@ [Lp] . R

= sup sup |“Ep— B (logj)" (5% — j*7) L

des(dp,dr) PE[0,1] j=1

7172(117 L & A

< sup LL > ’jQ(d_dF) - 1‘ (log §)" j**" Ir,

ded(dp dr) j=1

which can be bounded as in (C.1.15) and (C.1.16) by defining the alternative set given by
M = {d (log L)*|d — dp| < E} as given by the proof of Lemma B.2 in Qu (2011), which is
also indicated by Andrews and Sun (2004) and Wu and Shao (2007), and thus can be proved

as op (T2dF) as indicated by the left hand side of (C.1.16). Next we try to prove

sup |Ei (p.dr) = By (p,dr)| = o, (T%% (10g 1) %),
p€0,1]

where By, (p,dp) = 1 ZJLZJ (log j)* j2dr Ir,;. To be specific,

[Lp]
sup |Fx (p,dr) — Ex (p,dr)| = sup I Z (log 5)* j2* (7;72‘1F1F,j - IFJ)
pel0,1] pel0] |+ 5
—2dp L 2 7
o2 1 k[ Irg—IFrg| 2d -2

by how we prove the negligibility of F; in the proof of Theorem 4.3.2. Now combining what

we have obtained so far, the right hand side of (C.1.19) follows that

0 LEp)  ks2df . 1 SoLEe) o ka2dp g 2dp
T 2jor Wi ey p 02wt R+ op (T%r)
1—2d A — 1 I - ;
L d Ej;:ﬂ'leF,j T 2 je1 324 I + 0p (T24r)
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then the proof of Lemma B.3 in Qu (2011) will hold and implies that

1 [Lp] Iy 1 [Lp]
—1 k 5] _ k
g () i S e
j=1 j j=1

then the proof of Theorem 1 in Qu (2011) continues to hold as Va2 — 2® (p). Combining all
we have so far, the expression (A.4) in Qu (2011) holds asymptotically for our Vi (p, JF)

as

1 VR LLe] IF 1 3 VR LLe] = IF 1
¥% 7. = -5 R et Y _ 2 . )
Vi (pdi) = |17 s 2w (U =TE 1> s 2w Z(W = Tr

j=1 Fj

% (1+0p(1)) +20 (p) L¥ (dp, — dr) + 0,(1).

Therefore the finite-sample convergence and the tightness will hold as in Qu (2011), which

completes the proof of our Theorem 4.4.1. W

C.2 Proofs of the Technical Lemmas

Proof of Lemma C.1.2

Proof of this lemma will closely follow the proof of (2) in Bai and Ng (2013), as it is adopted
using our framework of linear regression with interactive fixed effects. To be specific,

WilWp 1

s (e L 1o~ -
L W (WF - WFH) + Wi, (C.2.1)

Note that by Lemma C.1.1 and Assumption B(iii), 7 Vi (WF - Wpf[) = O, (dnT) iIn
which
= 1 1—dpmax—de
ONT = Ow1,NT (,6—5) + N2y ’

1 1 1
where dwinT = 7} 4% max (’yf drmax | vi ds) as presented in Lemma C.1.1. Then left

multiplying H* to both sides of (C.2.1), we have

1 [T*T1/7* 11 1~ *YI7* 1A/ T
TH WiWp = fH WiWrH + O, (61),nT) (C.2.2)
where 61y y7 = vi_ZdF"“”é N because H = O, (vé_mF""a") by construction. Furthermore

the left hand side of (C.2.2) is given by

1~*~*A 1 [T* 117 * T7* Tr* T

235



—I+0,(6xT) (C.2.3)

by the identifying restriction of our FDPCLS estimator and Lemma C.1.1. Equating (C.2.3)
and the right hand side of (C.2.2) we have

1~ - - -
FH WiWpH = H'H =1+ 0, (6x7)

by Assumption F(i). Following the same reasoning as in Bai and Ng (2013), we can ignore
the negligible term O, (Jy7), and H is a unitary matrix, the complex generalization of
orthogonal matrix, which means H has its eigenvalues being either 1 or -1. Then in the
following it is sufficient to prove that H is also a diagonal matrix, after which we can
assume all its eigenvalues are 1 by multiplying the columns by -1 of Wr corresponding to -1
eigenvalues.

Recall that H by definition is given by

COURRN (Wl o (WA (1 s 1\
i = ( * ) ( o )VNg _ (N) (TWFWFH+TWF (WF—WFH)> Vil

NAY -~ N
= ( N ) HVNll, + Op (5(1),NT) = AHVNé + Op (5(1),NT) (0.2.4)

by Assumption F(i) and the construction of A. Then right multiplying Vi on both sides
of (C.2.4) we have
AH = gVNL + Op (6(1),NT> .

This replicates the form of (23) in Bai and Ng (2013) except that H could be a complex
matrix. But it can still be a matrix of eigenvectors of matrix A as the columns of H now
form the eigenbasis of a complex space. Then the rest of reasoning in Bai and Ng (2013) will
hold because by Assumption F(ii), which implies that A is a diagonal matrix with distinct
cigenvalues. Therefore H = I + Op (6nr). 1

Proof of Lemma C.1.3

From the right hand side of both (4.3.1) and (4.3.2), we have for each j = 1,..., L that

Wr,; = WrVyi, (C.2.5)

1 N
NT > Wi Wi,
i=1
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where we denote WU,Z- =Wy, — leﬁ Also we denote 6 = 8 — 3. By expanding WU,i as

denoted just now and Wy; by (4.3.3), (C.2.5) becomes

N N N
T 1 N * T — 1 < * 17 — 1 IS * 17 —
WII?‘,j = ﬁ Z W)/(,ij55/WX,¢WFVNL1 - ﬁ Z W)/(,ijé/\gWFWFVNi - ﬁ Z Wg(,ij(sWs,iWFvNi
i=1 i=1 i=1
1 N N N

. S 1 G 1 S
-7 > Wi Mid Wi WeVy) — ~T > Wi 0 Wi ,WrVy ] + ~T > Wi MW WeVy ]
i=1 =1 i=1

N N N
1 S 1 s 1 T
+ ~7 ; W i NiWiEWEVy L + ~T ; We, i WEWeVT + ~T ; Wi M NWEW RV}

Since Iy = Wl’;j (A’A/N) (WFW;;/T) Vxi, we have
Why = Wiy (MA/N) (WeWi/T) Vit = Lt -+ s = Why = Wh I = B (C2.6)
From (C.2.6) we have
Wiy = Wiy + Wi, (B 1) + Ef,,
then the estimated periodogram Ir.; = WFJ'W;‘) ; follows that
Ty =Tyt Ty (B 1)+ Wiy By + (B~ 1) Ty + (= 1) Ty (- 1)
(B~ 1) Wiy By + By Wi+ B Wiy (B~ 1) + T,
=Tyt g (A1) 4 (B 1) Tog 4 (B 1) Ty (B~ 1)+ BWis By + By Wi B + T
=Ip;j+Ji+ -+ Jo

where I Fj = WFJ- W}*; i and Ig,, ; is defined in the same manner. Then in the following we
derive the orders of jl, ceey j6, taking the structure of E'r ; given by (C.2.6) into consideration

and following the proof of Lemma A.6 in our chapter 2. Firstly for J;, we have

] =

INFﬂ-(ﬁ—I)H < Op (OnT) HfF,j

-0, (5W1,NT HSH +N—%7£—dp,m—d5> pr,jH

by Lemma C.1.2, and the same order holds for .J,. Similarly J3 < O, (6%7) HfF] and thus

it will be dominated by Jy and J,. Therefore we set them as parts of the leading terms

later. Next for .Jy, by substituting (C.2.6) we have
Jy = H'Wr;E}, = HWr; (jl N fs)
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N
~ 1 ~ . 3z — _ -1 ~ . = = _
= H' o Y Wi Wi 500 Wi WV — H' ; Wi Wi i 0NWEW gV
L 7 xSt yir o 1—1 ~/1N~ * S 11—l
— H' 5o D W Wiy OWL W rViyy — ' o ; W Wi Mid' W WV ]
N
S W W W W Vigh - B S Wi Wi AW W Vi)
NT 5] ] , NL NT P »J \J £,1 NL

N N
-1 ~ — — _ ~ 1 ~ — — _
+H = W, W i NWpW eV + H' <= > WeWeiy WL ,WeVy}
3 i=1

We first analyze the order of Hj471

’, which follows that

N
~ ~ 1 ~ ~ -
]| = [ e v
=1

1=

Wil

nn=n2 1 S R B
< |81 577 32 I 1ot [ v

IN

1-2dF max
Op ('VL

N
12 1 .
5‘ - HW Wi W
) sz 2w

1
N 2 N
~112 1 - . 2 1
5‘ ) <NZ“WF7JWX,ij ) (NTZ”WX”"F)
=1 =1

)

by Cauchy-Schwarz inequality and Assumption B(i). Then by the same reasoning as we

IA

1-2dF max
Op <7L

IA

3 _ 2d F max —A X me
O 2 ,max ,max
p ( L

2 1 M. i
i) (&5l

3 2dpmax—dx,max ||7]|2) 7
= Op (’)/Lz ' 5 JFX,j

analyze j4,1 where we follow the reasoning in the proof of Lemma A.6 in our chapter two,

we can conclude that

N
~ ~ 1 ~ « ~ = _ §73d  max ~ ~
|12]| = HH/NT ;WFJWX)U&\QW}WFVNi < 0y (v 3]) Trxs
~ ~ 1 N ~ ~ - 3_94 d |~ ~
| 71s] = HH/NT ; Wi Wiy 0WLWVigh || < 0y (7720 5])) e,

3

2dF, max—dx max
( ) 2 s s
<— p ( L

N
~ ~ 1 ~ ~ = _ ~ ~ N
HJ4,4H - HH/NT N W Wi N8 Wi W eV 5H) HWFJWFJ
=1

3 —2dp —dx
E O (’y 2 ,ymax ,ymax
p L

o) e
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and

< O ( *_QdF max dX max

|75 = HH’ o7 Z Wiy Weis8 W WiVl

= O ( L§*2dF max —dX max H) JFE]
Next for j4}6, we have
| X
o] = 7 3 Wi v < ] v i | i | S

JrF,;

-2

1
_1 3 2dp —d, ~4
o 3 smax —de
= Op (N 27 )

by Assumption C(i) and C(ii). And lastly for Jy 7 and J, g we have

N
~ ~ 1 ~ I = _
HJMH - HH’NT N Wiy We i NWEW Vi
=1

N
- 1 -
< Al S

~0, ( —3dp, max)

WLW p
T

N
NZW Wi\,

_ 3 _3dp,max\ 7
=0, (’)’f ) JFej,

and
J4 8= HINT ZWF]WE 'LJW/ (WFH) V]\Fi
-1 . AP . .
/ ! -1
+H NT ; WpiWeiiWe,; (WF - WFH)V 1 = Jagr + Jag2,
where

HJ4 81” < 72 4d P, max

N
1 ~ JE— =
7 2 We We iy WL We
i=1

d WA !

2—4dF max * 1T

v (35 f) (s ]
i=1

_1 S ddpmax—de\ 7
0, (1 gy

by Assumption D(iii). And

1-2dF max
HJ482H S T

NT Z Wiy Weis WLy (We — Wil H
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| X 3
1—2dp max 7 2 —1 s S
< Jrey (NT;HWe,z‘H ) T HWF —WFHH
3_ _ -
<0, (’YLQ 2 d€5NT> JFe ;-

Then to sum up what we have obtained so far,

~ 3_ - ) ~ 3_ _ ~
HJ4H SOP (')/z 2dF,I[ldX dX,max 6H +N—%ﬁy£ 2dF,max da) JFFJ

3-3dpmax [| ]|\ 7 —1 S—ddpmax—de\ 7 3-3drmax\ 7
+0p (75 " 5H) Jrx,i+ Op (L Byp ) Jrej+ Op (“YLQ " ) JFe,j

by Assumption E(ii), E(iii) and the convergence rate of 4 given by Lemma C.1.1. And it
’j4 ’j5 ‘

because there are negligible terms with higher order included. The detailed analysis will be

is easy to see HJE,’ has the same order as

, and HJGH is dominated by HJ4H and

very tedious so we omit here. Therefore we can summarize all the terms so far and conclude

that

3 2dF max—de
Ir; — Ik,

||+ v ioi

< O, (OnT) HfF,j

3

+ Op (’V[E, —3dF, max

2 —2dF —dx
O 3 ,max ,max
P (f}/l

) jFF,j

SH) Jrx;+ 0y (L_%v§_4dF’max_d5) Jpe,j

%_SdF,max 7
+0p (72 Jrej +15p

with g, ; being a smaller order term at each j relative to the others. l
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