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Spatial Panel Data Models: Unbalanced Panel,

Threshold Effect and Network Structure

Xiaoyu Meng

Abstract

This thesis studies the estimation and inference problems for spatial panel

data models when the panels are unbalanced, when the panels contain thresh-

old effects, or when the panels contain time-varying network structures. These

three scenarios divide the thesis naturally into three chapters.

The first chapter considers estimation and inferences for fixed effects spa-

tial panel data models based on unbalanced panels that result from randomly

missing spatial units. The unbalanced nature of the panel data renders the

standard method of estimation inapplicable. In this chapter, we proposed an

M-estimation method where the estimating functions are obtained by adjust-

ing the concentrated quasi scores to account for the estimation of fixed ef-

fects and/or the presence of unknown spatiotemporal heteroscedasticity. The

method allows for general time-varying spatial weight matrices without row-

normalization, and is able to give full control of the individual and time specific

effects for all the spatial units involved in the data. Consistency and asymptotic

normality of the proposed estimators are established. Inference methods are

introduced and their consistency is proved. Monte Carlo results show excellent

finite sample performance of the proposed methods. An empirical application

is presented on commodity tax competition among US states.

The second chapter introduces general estimation and inference methods

for threshold spatial panel data models with two-way fixed effects (2FE) in

a diminishing-threshold-effects framework. A valid objective function is first

obtained by a simple adjustment on the concentrated quasi loglikelihood with

2FE being concentrated out, which leads to a consistent estimation of all com-

mon parameters including the threshold parameter. We then show that the

estimation of threshold parameter has an asymptotically negligible effect on



the asymptotic distribution of the other estimators, and thereby lead to valid

inference methods for other common parameters after a bias correction. A

likelihood ratio test is proposed for statistical inference on the threshold pa-

rameter. We also propose a sup-Wald test for the presence of threshold ef-

fects, based on an M-estimation method with the estimating functions being

obtained by simply adjusting the concentrated quasi-score functions. Monte

Carlo results show that the proposed methods perform well in finite samples.

An empirical application is presented on age-of-leader effects on political com-

petitions across Chinese cities.

The third chapter considers the specification and estimation of a three-

dimensional (3-D) spatial panel data model with time-varying network struc-

tures. The model allows for endogenous and exogenous interaction effects,

correlation of unobservables, and most importantly group-specific effects that

are allowed to interact with the individual and time specific effects. The time-

varying network structures provide information on the identification of various

interaction effects but also yield time-varying sociomatrices whose row sums

may not be constant, which renders the transformation-based quasi maximum

likelihood inapplicable. In this chapter, we propose an adjusted quasi score

method where the estimating functions are obtained by adjusting the concen-

trated quasi scores (with fixed effects being concentrated out) to account for

the effects of concentration. The method is able to give full control of general

specifications of three-way fixed effects. Consistency and asymptotic normality

of the proposed estimators are established. Monte Carlo results show excellent

finite sample performance of the proposed methods.
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Chapter 1

Unbalanced Spatial Panel Data

Models with Fixed Effects

1.1 Introduction

The literature on spatial panel data (SPD) models has been fast-growing

since Anselin (1988), due to the fact that the SPD models are able to take

into account the spatial interaction effects and control for the unobservable

heterogeneity. Most of the works on SPD models are based on “complete”

or “balanced” panels, i.e., a set of observations collected on n spatial units

over the entire T periods in time (e.g., Baltagi et al., 2003; Lee and Yu, 2010;

Baltagi and Yang, 2013a,b; Yang et al., 2016; Liu and Yang, 2020, to mention

a few); only a few on “incomplete” or “unbalanced” panels (Wang and Lee,

2013b; Egger et al., 2005; Baltagi et al., 2007; Baltagi et al., 2015). This is

in stark contrast to the usual panel model literature, which contains a sizable

portion of works on unbalanced panels (e.g., Wansbeek and Kapteyn, 1989;

Baltagi and Chang, 1994; Davis, 2001; Baltagi et al., 2001; Antweiler, 2001;

Baltagi and Song, 2006; Bai et al., 2015; Wooldridge, 2019, among others),

textbook treatments (Baltagi, 2013; Hsiao, 2014; Greene, 2018), and software

implementations (STATA, SAS, and R).

Unbalanced panels are likely to be the norm in typical economic empiri-

cal settings (Baltagi and Song, 2006), so are the unbalanced spatial panels.
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Unbalancedness may be the result of “randomly missing” observations such

as early drop-outs, late entrants and lack of economic activities, or “nonran-

domly missing” observations such as attrition and sample selection (Baltagi

and Song, 2006; Baltagi, 2013, Ch. 9). The key difference between the two

missing mechanisms is that in the former analyses can simply be done based

on the actual observed data, but in the latter “imputation” may be necessary

before formal analyses. Under the random missing mechanism, most of the

methods and techniques developed for balanced panels can be adapted to suit

the unbalanced panels, but these may not be true or cannot be easily done for

spatial panels. Under the nonrandom missing mechanism, the treatments be-

come much more complicated for both regular and spatial panels, in particular

the latter.

The limited literature on unbalanced spatial panels contains three interest-

ing empirical studies under the randomly missing mechanism (RMM). Baltagi

et al. (2007) studied the third-country effects on foreign direct investment

(FDI) based on an unbalanced SPD model with only spatial error effects. Eg-

ger et al. (2005) studied US state tax competition based on an unbalanced SPD

model with both spatial lag and spatial error. Both papers focus on random

effects model and adapt the GMM approach of Kapoor et al. (2007). There

are no theoretical studies being given on the properties of these methods and

no formal considerations being given on the models with fixed effects. Baltagi

et al. (2015) studied hedonic housing prices based on an unbalanced spatial

lag pseudo-panel data model with nested random effects by adapting the ML

approach of Antweiler (2001). The only two theoretical studies in this litera-

ture are Wang and Lee (2013b) and Zhou et al. (2022). In the former study,

SPD models with (correlated) random effects are considered where missing

data occur only on the response variable. Although the fixed effects model

was also treated in their appendix, it requires the spatial weights matrices to

be time-invariant that is clearly not satisfied by the unbalanced SPD models.

In the latter work, an autoregressive panel data model with spatially corre-

lated error terms is studied under the missing at random (MAR) assumption

in the sense that the missing of the response does not depend on the response
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itself. Related works but under spatial cross-sectional setup include Kelejian

and Prucha (2010), LeSage and Pace (2004), Wang and Lee (2013a) and Zhou

et al.(2017). Many important and common issues remain for the unbalanced

SPD models even under the simpler random missing mechanism, such as fixed

effects, heteroscedasticity (spatial and temporal), and serial correlation. It is

therefore highly desirable to develop general estimation and inference methods

to address these issues.

In this chapter, we consider the unbalanced SPD models with RMM. In

a spatial panel framework, by RMM we mean specifically “randomly missing

spatial units” in the sense that the spatial units not present in the t-th time

period did not make impacts on their ‘neighbors’ at that time so that analy-

ses can simply be done based on the observed spatial units and their spatial

interactions. The popular transformation method (Lee and Yu, 2010) can-

not be applied to handle the fixed effects due to the fact that spatial weight

matrices are time-varying, and may not be row-normalizable (Liu and Lee,

2010). The heteroscedasticity-robust method of Liu and Yang (2020) cannot

be applied either due to a similar reason. The GMM-type methods of Moscone

and Tosetti (2011) and Badinger and Egger (2015) cannot be easily adapted

either, besides the issues on efficiency, time fixed effects, and incidental param-

eters problem. Allowing serial correlation in the error term is interesting but

has not been considered. We focus on the unbalanced SPD models with both

unit- and time-specific fixed effects, where the errors can be homoscedastic or

heteroscedastic of unknown form in both cross-sectional and time dimensions,

leaving the issue of serial correlation to the extensions section.

We propose a general M-, or adjusted quasi score (AQS), estimation method,

for estimating the unbalanced SPD models. The method starts from the joint

quasi score functions of both the common parameters and fixed effects, then

concentrates out the fixed effects to give the concentrated quasi score functions,

and then adjusts these concentrated score functions to give a set of unbiased

estimating functions for the common parameters – the AQS functions. Solv-

ing the AQS equations gives the M-estimators that are shown to be consistent

and asymptotically unbiased. We first consider an FE-SPD model with both

3



spatial lag and spatial error effects under homoscedasticity to fix the main

ideas behind the proposed methodology. Then, we make a full extension of

the methods to allow for unknown heteroscedasticity in the errors across both

space and time. For this, a new way of adjusting the concentrated quasi score

functions is required to make them robust against the unknown heteroscedas-

ticity. Consistency and asymptotic normality of all these proposed estimators

are established. Simple methods of inference are introduced under both ho-

moscedastic and heteroscedastic errors. Monte Carlo results show excellent

finite sample performance of the proposed methods. The proposed methods

are simple and reliable, and yet quite general, having great extensibility for

extra features in the model (e.g., serial correlation and time-varying coeffi-

cients), and for different types of models (e.g., models with random effects and

interactive fixed effects). Last, an empirical application on commodity tax

competition among US states is demonstrated.

The rest of this chapter is organized as follows. Section 1.2 introduces the

M-estimation method for estimating an unbalance SPD model with two-way

FE under homoscedasticity, studies the consistency and asymptotic normality

of the M-estimators, and presents a simple method for standard errors estima-

tion. Section 1.3 makes a full extension of the M-estimation in Section 1.2 by

allowing the errors to be heteroscedastic across both space and time. Section

1.4 presents Monte Carlo simulation findings. The empirical application is

given in Section 1.5. Finally, Section 1.6 concludes. Proofs of the main results

are given in Appendices B and C.

1.2 Unbalanced FE-SPD Model with Homoscedasticity

1.2.1 The model

Consider a study that lasts T periods and involves a total of n spatial units.

At time t, only nt of these n spatial units are available to give observations on

their responses and explanatory variables, and the rest are not due to random

missing, e.g., early drop-outs, late entries, lack of economic activities, etc., as

discussed in the introduction. These spatial units are interconnected with their

‘connectivity’ changing over time; they typically vary in size, causing the error
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distributions to be heteroscedastic; and certain unit- and time-specific features

may not be observed but must be acknowledged. These give rise to a spatial

panel data (SPD) model with unbalanced panels, time-varying spatial weight

matrices, unknown heteroscedasticity, and unit- and time-specific fixed effects

(FE):

Yt = λ0WtYt +Xtβ0 +Dtµ0 + αt0lnt + Ut, Ut = ρ0MtUt + Vt, t = 1, . . . , T,

(1.1)

where Yt is a vector of observations on nt spatial units at time t, Xt is an nt×k

matrices containing values of k time-varying exogenous regressors, and Ut =

(u1t, u2t, . . . , untt)
′ and Vt = (v1t, v2t, . . . , vntt)

′ are nt×1 vectors of disturbances

and idiosyncratic errors, respectively. Wt and Mt are given nt × nt spatial

weight matrices. λ0 and ρ0 are spatial coefficients, which together with Wt

and Mt characterize the spatial lag (SL) effects and the spatial error (SE)

effects, respectively. Spatial Durbin terms, WtXt, can be added. However,

there might be overfitting identification problem if the model contains all three

spatial effects (Anselin et al., 2008; Lee and Yu, 2016). β0 is a k × 1 vector of

regression coefficients. µ0 = {µi0}ni=1 denotes an n × 1 vector of unit-specific

effects and α0 = {αt0}Tt=1 a T ×1 vector of time-specific effects. Dt is an nt×n

‘selection’ matrix obtained from the n × n identity matrix In by deleting its

rows that correspond to the missing units at time t, and lnt is an nt× 1 vector

of ones.

Both µ0 and α0 are allowed to correlate with the time-varying regressors

in an arbitrary manner and hence are considered as fixed effects. When the

change in Wt and Mt is due only to the missing spatial units, they can be

written as Wt = DtWD′t and Mt = DtMD′t, where W and M are the spatial

weight matrices for all the n spatial units involved in the study. The idiosyn-

cratic errors {vit} are first treated as independent and identically distributed

(iid) across i and over t, and then extended to be independent but not identi-

cally distributed (inid).

An important advantage of the modeling strategy of (1.1) is that it allows

the full control of the unobserved heterogeneity of all n spatial units, as long

as each of the n spatial units is observed at least twice over the entire period of
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study so that all the n units remain in the model after the fixed effects being

concentrated out. Moreover, the spatial weight matrices Wt and Mt are not

necessarily row-normalized, and they are allowed to be generally time-varying,

catering to both the random-missing mechanism and the genuine time-varying

features.

Some generic notations and conventions will be followed. For a square

matrix, | · | denotes its determinant and tr(·) its trace. For a real symmetric

matrix, γmin(·) and γmax(·) denote its smallest and largest eigenvalues. For a

real n×m matrix A, A′ denotes its transpose, ‖A‖F its Frobenius norm, ‖A‖1

its maximum column sum norm, ‖A‖∞ its maximum row sum norm, and A◦ =

A+A′. For a real n×m matrix A with a full column rank, PA = A(A′A)−1A′

and QA = In − PA are the two orthogonal projection matrices. The operator

diag(·) forms a diagonal matrix by diagonal elements of a square matrix or

elements of a given vector, diagv(·) forms a column vector using diagonal

elements of a square matrix, and blkdiag(· · · ) forms a block-diagonal matrix

by the given submatrices. The usual expectation and variance operators, E(·)

and Var(·), correspond to true parameter values with a subscript 0.

1.2.2 Quasi-Maximum likelihood estimation

Define W = blkdiag(W1, . . . ,WT ), M = blkdiag(M1, . . . ,MT ), Dµ =

(D′1, . . . , D
′
T )′, and Dα = blkdiag(ln1 , . . . , lnT ). Denote N =

∑T
t=1 nt, Y =

(Y ′1 , . . . , Y
′
T )′, X = (X ′1, . . . , X

′
T )′, U = (U ′1, . . . , U

′
T )′, and V = (V ′1 , . . . , V

′
T )′.

Model (1.1) is written in the matrix form: Y = λ0WY+Xβ0 +Dµµ0 +Dαα0 +

U and U = ρ0MU+V. The existing method of estimating an SPD model with

fixed effects is to apply orthogonal transformations to wipe out the fixed effects

so that the transformed model remains in the same spatial structure and the

(quasi) likelihood can be formed (see, e.g., Lee and Yu, 2010; Yang et al., 2016).

This method requires that the panel is balanced, spatial weight matrices are

time-invariant and row-normalized, and idiosyncratic errors are homoscedastic.

However, none of these is met in the current model specification. To overcome

this difficulty, we start with the quasi maximum likelihood (QML) method that

estimates the common parameters and the fixed effects together. To eliminate
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the effects of estimating the fixed effects on the estimation of the common

parameters, we in next subsection modify the quasi score functions to produce

a set of unbiased and consistent estimating equations. For QML estimation,

first note that there are n + T fixed effects parameters but only n + T − 1 of

them are identifiable. A zero-sum constraint is put on the α′ts and the QML

estimation is based on the following model form:

Y = λ0WY + Xβ0 + Dµµ0 + D?
αα

?
0 + U, U = ρ0MU + V. (1.2)

where α?0 = (α?20, . . . , α
?
T0)′, and D?

α = [−ln1l
′
T−1; blkdiag(ln2 , . . . , lnT )].

Denote the set of common parameters by θ = (β′, σ2
v , δ
′)′ where δ = (λ, ρ)′,

and the set of incidental parameters by φ = (µ′, α?′)′. Define AN(λ) = IN−λW

and BN(ρ) = IN − ρM. We have the quasi Gaussian loglikelihood function of

θ and φ:

`N(θ, φ) = −N
2

ln 2π−N
2

lnσ2
v+ln |AN(λ)|+ln |BN(ρ)|− 1

2σ2
v
V′(β, δ, φ)V(β, δ, φ),

(1.3)

where V(β, δ, φ) = BN(ρ)[AN(λ)Y −Xβ −Dφ], and D = [Dµ, D?
α].

Let D(ρ) = BN(ρ)D. Given θ, `N(θ, φ) is partially maximized at

φ̂N(β, δ) = [D′(ρ)D(ρ)]−1D′(ρ)BN(ρ)[AN(λ)Y −Xβ]. (1.4)

Substituting φ̂N(β, δ) into `N(θ, φ) gives the concentrated quasi loglikelihood

function for θ:

`cN(θ) = −N
2

ln 2π − N
2

lnσ2
v + ln |AN(λ)|+ ln |BN(ρ)| − 1

2σ2
v
Ṽ′(β, δ)Ṽ(β, δ),

(1.5)

where Ṽ(β, δ) = QD(ρ)BN(ρ)[AN(λ)Y − Xβ] and QD(ρ) is the projection

matrix based on D(ρ). The direct quasi maximum likelihood (QML) estimator

θ̂QML of θ maximizes `cN(θ).

However, such a direct estimation of the common parameters θ completely

ignores the impact from the estimation of the incidental parameters φ, render-

ing θ̂QML be inconsistent or asymptotically biased – the well known incidental

parameters problem of Neyman and Scott (1948). In their study for a balanced

FE-SPD model, Lee and Yu (2010) show that the direct QMLEs of β and δ

are consistent no matter T is large or small, but their distributions are asymp-

7



totically centered only when T is small relative to n. They further show that

the QMLE of σ2
v is inconsistent and its limiting distribution is degenerate due

to the incidental parameters problem when T is finite. Therefore, if the direct

QML approach were followed, a bias correction needs to be done to remove

the asymptotic bias for valid statistical inferences, which needs one additional

condition that T
n3 → 0. To overcome these problems, Lee and Yu (2010) pro-

pose a transformation approach to wipe out the fixed effects, taking advantage

of the panel being balanced and spatial weight matrices being time-invariant

and row-normalized. In our model specification, none of these features holds

and the transformation approach fails to work. Therefore, an alternative (and

more general) approach is highly desirable.

1.2.3 The M-estimation

The root cause of inconsistency or asymptotic bias for the direct QML

estimation is that a necessary condition for consistency of QML estimators,

plim 1
N
ScN(θ0) = 0, is violated due to the concentration/estimation of the inci-

dental parameters µ and α, where θ0 denotes the true value of the parameter

vector θ, and ScN(θ) = ∂
∂θ
`cN(θ) is a set of the concentrated quasi score (CQS)

functions given as (see Appendix B)

ScN(θ) =



1
σ2
v
X′B′N(ρ)Ṽ(β, δ),

1
2σ4
v
[Ṽ′(β, δ)Ṽ(β, δ)−Nσ2

v ],

1
σ2
v
Y′W′B′N(ρ)Ṽ(β, δ)− tr[FN(λ)],

1
σ2
v
Ṽ′(β, δ)GN(ρ)Ṽ(β, δ)− tr[GN(ρ)],

(1.6)

where FN(λ) = WA−1
N (λ) and GN(ρ) = MB−1

N (ρ).

Under mild conditions, maximizing `cN(θ) is equivalent to solving ScN(θ) =

0. It is easy to show that at the true value θ0 of θ,

E[ScN(θ0)] =



0k,

−n+T−1
2σ2
v0
,

tr[QD(ρ0)BN(ρ0)FN(λ0)B−1
N (ρ0)]− tr[FN(λ0)],

tr[QD(ρ0)GN(ρ0)]− tr[GN(ρ0)],

(1.7)
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and that limN→∞
1
N

E[ScN(θ0)] 6= 0 with a fixed T . This implies that plimN→∞

1
N
ScN(θ0) 6= 0, and therefore θ̂QML cannot be consistent when T is fixed. When

T goes large with n, consistency can be achieved but one can show that the

limiting distribution of
√
N(θ̂QML − θ0) is a non-centered normal, suggesting

that θ̂N has a bias of order 1√
N

.

Note that E[ScN(θ0)] depends only on the common parameters θ0 and the

observables. It therefore offers a feasible way to analytically correct the CQS

functions to give a set of unbiased estimating functions, or the adjusted quasi

score (AQS) functions, as S∗N(θ0) = ScN(θ0)− E[ScN(θ0)], which takes the form

at the general θ:

S∗N(θ) =



1
σ2
v
X′B′N(ρ)Ṽ(β, δ),

1
2σ4
v

[
Ṽ′(β, δ)Ṽ(β, δ)−N1σ

2
v

]
,

1
σ2
v
Y′W′B′N(ρ)Ṽ(β, δ)− tr[QD(ρ)BN(ρ)FN(λ)B−1

N (ρ)],

1
σ2
v
Ṽ′(β, δ)GN(ρ)Ṽ(β, δ)− tr[QD(ρ)GN(ρ)],

(1.8)

where N1 = N − n− T + 1, the effective sample size after taking into account

the estimation of fixed effects. Solving the AQS equations: S∗N(θ) = 0, gives

the M-estimator of θ, i.e., θ̂∗N = arg{S∗N(θ) = 0}. It is easy to verity that

E[S∗N(θ0)] = 0 and plim 1
N
S∗N(θ0) = 0, making it possible for θ̂∗N to be

√
N1-

consistent with a proper limiting distribution.

The M-estimation falls in spirit to the “Modified Equations of Maximum

Likelihood” of Neyman and Scott (1948, Sec. 5), in searching for a potential

method to handle the incidental parameters problem. Its generality and ver-

satility in dealing with the incidental parameters problems have been demon-

strated by recent works: Baltagi and Yang (2013a,b), Liu and Yang (2015,

2020), Yang (2018), Li and Yang (2020, 2021) and Xu and Yang (2020).

Clearly, this approach falls into the M-estimation method, and it is also a

method of moments under the ‘just identified’ scenario. Therefore, the result-

ing estimator is also called the MM estimator. Our approach offers a special

way of finding the ‘right set’ of estimating equations or moment conditions. In

the special case of a balanced panel with time-invariant and row-normalized

spatial weight matrices, our M-estimation is equivalent to the QML method of

9



Lee and Yu (2010) based on orthogonal transformations, with effective sample

size N1 = N − n− T + 1 = (n− 1)(T − 1).

The root-finding process for the M-estimation can be simplified by first

solving the equations for β and σ2
v , giving the constrained M-estimators of β

and σ2
v :

β̂∗N(δ) = [X′(ρ)X(ρ)]−1X′(ρ)CN(δ)Y and σ̂∗2v,N(δ) = 1
N1

V̂′(δ)V̂(δ), (1.9)

where X(ρ) = QD(ρ)BN(ρ)X, CN(δ) = BN(ρ)AN(λ) and V̂(δ) = Ṽ(β̂∗N(δ), δ).

Substituting β̂∗N(δ) and σ̂∗2v,N(δ) back into (1.8) gives the concentrated AQS

functions of δ:

S∗cN (δ) =


1

σ̂∗2v,N (δ)
Y′W′B′N(ρ)V̂(δ)− tr[QD(ρ)BN(ρ)FN(λ)B−1

N (ρ)],

1
σ̂∗2v,N (δ)

V̂′(δ)GN(ρ)V̂(δ)− tr[QD(ρ)GN(ρ)].

(1.10)

Solving the concentrated estimating (or AQS) equations, S∗cN (δ) = 0, we obtain

the unconstrained M-estimator δ̂∗N of δ. Thus the unconstrained M-estimators

of β and σ2
v are β̂∗N ≡ β̂∗N(δ̂∗N) and σ̂∗2v,N ≡ σ̂∗2v,N(δ̂∗N). The M-estimator of θ is

thus θ̂∗N = (β̂∗′N , σ̂
∗2
v,N , δ̂

∗
N)′.

From the above developments, we see that a big advantage of this method is

that it provides a consistent estimation of all parameters including σ2
v with the

joint asymptotic distribution of the M-estimators being centered as long as N

is large. Therefore, all the problems associated with the incidental parameters

are gone. Furthermore, we do not have any restriction on the proportion of n

and T as they go to infinity, and T (or n) can be even fixed. As this method is

based on the adjusted quasi score functions, it may inherit the nice properties

from the maximum likelihood estimation. It is well known that ML estimators

often have better finite-samples properties than GMM/IV estimators. See also

Hsiao (2018) for more discussions on the advantages of the quasi-likelihood

approach compared with GMM estimation.

1.2.4 Asymptotic properties of the M-estimators

Denote a parametric quantity evaluated at the true parameter values by

dropping its argument(s), e.g., AN ≡ AN(λ0), BN ≡ BN(ρ0), and CN ≡

CN(δ0). Let ∆ be the parameter space for δ, and ∆λ and ∆ρ be the sub-
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spaces for λ and ρ, respectively. Consistency and asymptotic normality of

the proposed M-estimators for the unbalanced FE-SPD model are established

under the following set of regularity conditions.

Assumption A: The innovations vit are iid for all i and t with mean zero,

variance σ2
v0, and E|vit|4+ε0 <∞ for some ε0 > 0.

Assumption B: The space ∆ is compact, and the true parameters δ0 lie

in its interior.

Assumption C: (i) The elements of X are non-stochastic and bounded,

uniformly in i and t, and (ii) limN→∞
1
N
X′(ρ)X(ρ) exists and is non-singular,

uniformly in ρ ∈ ∆ρ.

Assumption D: {Wt} and {Mt} are known time-varying matrices. W

and M are such that (i) their elements are at most of uniform order h−1
n such

that hn
n
→ 0, as n→∞; (ii) their diagonal elements are zero; and (iii) ‖W‖∞,

‖W‖1, ‖M‖∞, and ‖M‖1 are all bounded.

Assumption E: For A($) = AN(λ) or BN(ρ) with $ = λ or ρ,

(i) both ‖A−1‖∞ and ‖A−1‖1 are bounded;

(ii) either ‖A−1($)‖∞ or ‖A−1($)‖1 is bounded, uniformly in $ ∈ ∆$;

(iii) 0 < c$ ≤ inf$∈∆$ γmin[A′($)A($)] ≤ sup$∈∆$
γmax[A′($)A($)] ≤

c̄$ <∞;

(iv) Bs(ρ)Ds[
1
T

∑T
t=1D

′
tB
′
t(ρ)Jt(ρ)Bt(ρ)Dt]

−1D′tB
′
t(ρ) is bounded in both

row and column sum norms, uniformly in ρ ∈ ∆ρ for all s and t, where

Bt(ρ) = Int − ρMt for t = 1, . . . , T , and Jt(ρ) = In1 for t = 1, and Int −

Bt(ρ)lnt [l
′
ntB

′
t(ρ)Bt(ρ)lnt ]

−1l′ntB
′
t(ρ) for t = 2, . . . , T .

Assumption F: (i) n is large (T is large or small), (ii) ∀t, nt increases

with n in the same rate, and (iii) all spatial units are observed at least twice

over a total of T periods.

Assumptions A-E are standard in the spatial econometrics literature (see,

e.g., Lee and Yu, 2010; Yang, 2018) except Assumption E(iv). With this addi-

tional condition, Lemma A.3 shows that ‖QD(ρ)‖1 and ‖QD(ρ)‖∞ are bounded

uniformly in ρ ∈ ∆ρ, which is necessary to facilitate the study of the asymp-

totic properties of the spatial parameter estimators. Assumption E(iv) is not

restrictive as it holds for a special balanced panel (see Appendix B). Assump-
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tion F(i) allows (a) both n and T are large and (b) n is large and T is finite.

Both scenarios encounter the so-called incidental parameters problem of Ney-

man and Scott (1948) due to the direct estimation of the individual and time

fixed effects. The former leads to the asymptotic bias and the latter the incon-

sistency in the estimation of the structural parameters. As the usual transfor-

mation method is inapplicable to handle the incidental parameters problem in

the unbalanced panels, a new (M-estimation) method is therefore introduced.

Assumption F(ii) requires that each nt increases with n, indicating that the

number of observed individuals should not be too small relative to n in each

period. Assumption F(iii) ensures that the spatial structure is complete after

µ is concentrated out.

We first prove the consistency of δ̂∗N . The key step in the proof is to

compare S∗cN (δ) with its population counterpart. Let S̄∗N(θ) = E[S∗N(θ)]. Given

δ, S̄∗N(θ) = 0 is partially solved at

β̄∗N(δ) = [X′(ρ)X(ρ)]−1X′(ρ)CN(δ)E(Y) and σ̄∗2v,N(δ) = 1
N1

E[V̄′(δ)V̄(δ)],

(1.11)

where V̄(δ) = Ṽ(β̄∗N(δ), δ) = QD(ρ)BN(ρ)[AN(λ)Y −Xβ̄∗N(δ)]. Substituting

β̄∗N(δ) and σ̄∗2v,N(δ) into the δ-component of S̄∗N(θ), we obtain the population

counterpart of S∗cN (δ) as

S̄∗cN (δ) =


1

σ̄∗2v,N (δ)
E[Y′W′B′N(ρ)V̄(δ)]− tr[QD(ρ)BN(ρ)FN(λ)B−1

N (ρ)],

1
σ̄∗2v,N (δ)

E[V̄′(δ)GN(ρ)V̄(δ)]− tr[QD(ρ)GN(ρ)].

(1.12)

Clearly, S∗cN (δ̂∗N) = 0 by construction. Also, it is easy to see that S̄∗cN (δ0) = 0

as β̄∗N(δ0) = β0 and σ̄∗2v,N(δ0) = σ2
v0. Thus, by theorem 5.9 of van der Vaart

(1998), δ̂∗N will be consistent for δ0 if supδ∈∆
1
N1

∥∥S∗cN (δ)− S̄∗cN (δ)
∥∥ p−→ 0 and

the following identification condition holds:

Assumption G: infδ:d(δ,δ0)≥ε
∥∥S̄∗cN (δ)

∥∥ > 0 for every ε > 0, where d(δ, δ0)

is a measure of distance between δ and δ0.

Assumption G is a high level assumption being put up for simplicity of

presentation. It can be shown to be true under some low level conditions. We

have (see (B.5), Appendix B),
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σ̄∗2v,N(δ) = 1
N1
η′A′−1

N Q′N(δ)QN(δ)A−1
N η +

σ2
v0

N1
tr[QD(ρ)CN(δ)],

where CN(δ) = CN(δ)(C′NCN)−1C′N(δ), QN(δ) = QX(ρ)QD(ρ)CN(δ), and η =

Xβ0 + Dφ0. A sufficient condition for Assumption G to hold is either (a) or

(b) holds, where

(a) 1
σ̄∗2v,N (δ)

η′F′NB′N(ρ)QN(δ)A−1
N η+tr[

σ2
v0

σ̄∗2v,N (δ)
P1(δ)−P2(δ)] 6= 0, for δ 6= δ0,

(b) 1
σ̄∗2v,N (δ)

η′A′−1
N Q′N(δ)GN(ρ)QN(δ)A−1

N η+tr[
σ2
v0

σ̄∗2v,N (δ)
P3(ρ)CN(δ)−P3(ρ)] 6=

0, for δ 6= δ0,

with P1(δ) = C′−1
N C′N(δ)QD(ρ)BN(ρ)FNB−1

N , P2(δ) = QD(ρ)BN(ρ)FN(λ)B−1
N (ρ),

and P3(ρ) = QD(ρ)GN(ρ)QD(ρ). It is easy to see that QN(δ0)A−1
N η = 0,

CN(δ0) = IN and σ̄∗2v,N(δ0) = σ2
v0. Hence the two quantities in (a) and (b)

are identical 0 at the true parameter values. Once the consistency of δ̂∗N is

established, the consistency of β̂∗N and σ̂∗2v,N follows by Assumptions C-E.

Theorem 1.1. Suppose Assumptions A-G hold. We have, as N → ∞,

θ̂∗N
p−→ θ0.

To derive the asymptotic distribution of θ̂∗N , we apply the mean value the-

orem: 0 = S∗N(θ̂∗N) = S∗N(θ0) + ∂
∂θ′
S∗N(θ̄)(θ̂∗N − θ0), where θ̄ lies between θ̂∗N and

θ0, and its value varies over the rows of ∂
∂θ′
S∗N(θ̄). Using Ṽ(β0, δ0) = QDV and

Y = A−1
N (η + B−1

N V),

S∗N(θ0) =



1
σ2
v0
X′V,

1
2σ4
v0

(V′QDV −N1σ
2
v),

1
σ2
v0

V′P2BNη + 1
σ2
v0

V′P2V − tr(P2),

1
σ2
v0

V′P3V − tr(P3),

(1.13)

and its asymptotic normality is proved by the central limit theorem (CLT)

for linear-quadratic (LQ) forms of Kelejian and Prucha (2001). This together

with the proper asymptotic behavior of the ‘Hessian’ matrix, ∂
∂θ′
S∗N(θ) (given

in (B.4), Appendix B), lead to the following theorem.

Theorem 1.2. Under Assumptions A-G, we have, as N →∞,√
N1

(
θ̂∗N − θ0

) D−→ N
(

0, lim
N→∞

Σ∗−1
N (θ0)Γ∗N(θ0)Σ∗′−1

N (θ0)
)
,

where Σ∗N(θ0) = − 1
N1

E[ ∂
∂θ′
S∗N(θ0)] and Γ∗N(θ0) = 1

N1
Var[S∗N(θ0)], both assumed

to exist and Σ∗N(θ0) assumed to be positive definite for sufficiently large N .
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1.2.5 Inference based on M-estimation

To conduct inferences for θ based on the proposed M-estimators, consistent

estimates of Σ∗N(θ0) and Γ∗N(θ0) are needed. The analytical expression of Σ∗N(θ)

can easily be obtained from the Hessian matrix ∂
∂θ′
S∗N(θ) that is given in (B.4).

As it depends only on the common parameters θ, a simple plug-in estimator

Σ∗N(θ̂∗N) can be used to consistently estimate Σ∗N(θ0). Alternatively, a simpler

sample analogue of Σ∗N(θ) also provides a consistent estimator:

Σ̂∗N = − 1
N1

∂
∂θ′
S∗N(θ)

∣∣∣
θ=θ̂∗N

. (1.14)

The consistency of Σ∗N(θ̂∗N) or Σ̂∗N is proved in the proof of Theorem 1.2.

Now, using Lemma A.5 with iid errors, one derives Γ∗N(θ0), which has the

distinct elements:

N1Γ∗βθ =
[

1
σ2
v0
X′X, γ

2σ3
v0
X′q, γ

σv0
X′p2 + 1

σ2
v0
X′P2BNη,

γ
2σv0

X′p3

]
,

N1Γ∗σ2
vσ

2
v

= 1
4σ4
v0

(2N1 + κq′q),

N1Γ∗σ2
vλ

= γ
2σ3
v0
q′P2BNη + 1

2σ2
v0

[2tr(P2QD) + κq′p2],

N1Γ∗σ2
vρ

= 1
2σ2
v0

[2tr(P3QD) + κq′p3],

N1Γ∗λλ = 1
σ2
v0
η′B′NP ′2P2BNη + 2γ

σv0
p′2P2BNη + tr(P2P◦2 ) + κp′2p2,

N1Γ∗λρ = tr(P3P◦2 ) + κp′2p3 + γ
σv0
p′3P2BNη,

N1Γ∗ρρ = tr(P3P◦3 ) + κp′3p3,

(1.15)

where pr = diagv(Pr), r = 2, 3, and q = diagv(QD). This shows clearly that

the estimation of Γ∗N(θ0) is more complicated as Γ∗N(θ0) contains not only the

common parameters θ, but also the fixed effects φ embedded in η, and the

skewness γ and the excess kurtosis κ of the idiosyncratic errors. Thus, the

common plug-in approach may not provide a valid estimate.

Let φ̂∗N be the M-estimator of φ, obtained through (1.4), i.e., φ̂∗N = φ̂N(β̂∗N , δ̂
∗
N).

Let Γ∗N(θ̂∗N) = Γ∗N(θ)|(θ=θ̂∗N ,φ=φ̂∗N ,γ=γ̂N ,κ=κ̂N ) be the plug-in estimator, where γ̂N

and κ̂N areconsistent estimators of γ and κ. When both n and T are large,

Γ∗N(θ̂∗N) would be consistent as φ̂∗N is. However, when n is large but T is fixed,

φ̂∗N (its component µ̂∗N) is not consistent. Plugging µ̂∗N into Γ∗N(θ) will induce

a bias (inconsistency), and a bias correction is necessary.

From the expression of Γ∗N(θ0) given above, we see that only the λ-components

involve φ through η, which may not be consistently estimated by the plug-
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in method. We can further show that the components of Γ∗N(θ0) linear in

φ can also be consistently estimated by the plug-in method. Therefore, the

only term that cannot be consistently estimated by the plug-in method is

1
σ2
v0
η′B′NP ′2P2BNη associated with the λ-λ component of Γ∗N(θ0). We have the

following corollary. See its proof in Appendix B for details on these discussions.

Corollary 1.1. Under the assumptions of Theorem 1.2, we have,

Γ∗N(θ̂∗N) = Γ∗N(θ0) + Bias∗(δ0) + op(1),

where Bias∗(δ0) is a (k + 3) × (k + 3) matrix having zero entries everywhere

except the λ-λ entry, which takes the form 1
N1
tr(P ′2P2PD).

The result of Corollary 1.1 leads immediately a general consistent estimator

of Γ∗N(θ0):

Γ̂∗N = Γ∗N(θ̂∗N)− Bias∗(δ̂∗N). (1.16)

Then, it is only left to find consistent estimators for γ and κ. Since we can-

not ‘consistently’ estimate V = BN(ANY−η) due to the incidental parameters

problem, we start from Ṽ = QDV, which can be ‘consistently’ estimated by

V̂ = QD(ρ̂∗N)BN(ρ̂∗N)[AN(λ̂∗N)Y−Xβ̂∗N ]. Let qjk be the (j, k)th element of QD.

Denote the elements of V by vj, and the elements of Ṽ by ṽj, j = 1, . . . , N ,

where j is the combined index for i = 1, . . . , nt and t = 1, . . . , T . Then,

ṽj = qj1v1 + qj2v2 + · · ·+ qjNvN , and thus,

E(ṽ3
j ) =

∑N
k=1 q

3
jkE(v3

k) = σ3
vγ
∑N

k=1 q
3
jk, j = 1, . . . , N.

Summing E(ṽ3
j ) over j, we obtain γ =

(∑N
j=1 E(ṽ3

j )
)(
σ3
v

∑N
j=1

∑N
k=1 q

3
jk

)−1
, and

its sample analogue gives a consistent estimator of γ:

γ̂N =

∑N
j=1 v̂

3
j

σ̂∗3v,N
∑N

j=1

∑N
k=1 q̂

3
jk

. (1.17)

where v̂j is the jth element of V̂(β̂∗N , λ̂
∗
N) and q̂jk is the (j, k)th element of

QD(ρ̂∗N). Similarly,

E(ṽ4
j ) =

∑N
k=1 q

4
jkE(v4

k) + 3σ4
v

∑N
k=1

∑N
l=1 q

2
jkq

2
jl − 3σ4

v

∑N
k=1 q

4
jk

=
∑N

k=1 q
4
jkκσ

4
v + 3σ4

v

∑N
k=1

∑N
l=1 q

2
jkq

2
jl,

which gives κ =
(∑N

j=1 E(ṽ4
j )− 3σ4

v

∑N
j=1

∑N
k=1

∑N
l=1 q

2
jkq

2
jl

)(
σ4
v

∑N
j=1

∑N
k=1 q

4
jk

)−1
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by summing E(ṽ4
j ) over j. Hence, a consistent estimator for κ is

κ̂N =

∑N
j=1 v̂

4
j − 3σ̂∗4v,N

∑N
j=1

∑N
k=1

∑N
l=1 q̂

2
jkq̂

2
jl

σ̂∗4v,N
∑N

j=1

∑N
k=1 q̂

4
jk

. (1.18)

Corollary 1.2. Under Assumptions A-G, we have, as N →∞,

(i) γ̂N
p−→ γ0 and κ̂N

p−→ κ0; (ii) Σ̂∗N − Σ∗N(θ0)
p−→ 0 and Γ̂∗N −

Γ∗N(θ0)
p−→ 0; and therefore Σ̂∗−1

N Γ̂∗N Σ̂∗′−1
N − Σ∗−1

N (θ0)Γ∗N(θ0)Σ∗′−1
N (θ0)

p−→ 0.

1.3 Unbalanced FE-SPD Model with Heteroscedasticity

Cross-sectional heteroscedasticity is rather common in spatial regression

models due to misspecification, peer interaction, aggregation, clustering, etc.

(Anselin, 1988; Liu and Yang, 2015). The same is true for SPD or unbal-

anced SPD models. Robust methods have been introduced for SPD models,

but are limited to balanced panels with cross-sectional heteroscedasticity only

(Moscone and Tosetti, 2011; Baltagi and Yang, 2013b; Badinger and Egger,

2015; Liu and Yang, 2020). Time-series heteroscedasticity is also important, in

particular in short panels (Alvarez and Arellano, 2004; Bai, 2013). Therefore,

it is highly desirable to extend the set of estimation and inference methods in-

troduced in Section 1.2 to allow for unknown spatiotemporal heteroscedasticity

as specified in the extended assumption below.

Assumption A′: The innovations vj (or vit) are independently but not

identically distributed (inid), i.e., {vj} ∼ inid(0, σ2
j ), and E|vj|4+ε0 < ∞ for

some ε0 > 0.

Assumption A′ relaxes Assumption A by allowing the variance of the id-

iosyncratic error to vary freely across cross-section and over time. As E[S∗N(θ0)]

6= 0 under Assumption A′, we need to readjust score functions (1.6) to make

it centered under unknown heteroscedasticity.

1.3.1 M-Estimation under unknown heteroscedasticity

Denote H = diag(σ2
1, σ

2
2, · · · , σ2

N), and hence Var(V) = H. As in Liu

and Yang (2015, 2020), we modify the relevant components of the CQS vector

ScN(θ) given in (1.6), so that their expectations at the true parameter θ0 are

zero under unknown heteroscedasticity.
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First, consider the stochastic element of the λ-component of ScN(θ) given in

(1.6). Define F̄N(δ) = BN(ρ)FN(λ)B−1
N (ρ), and as usual denote F̄N = F̄N(δ0).

Using Ṽ(β0, δ0) = QDV and BNWY = F̄NCNY, and noting CNY = BNη+V

and η = Xβ0 + Dφ0, we have,

E[Y′W′B′NṼ(β0, δ0)] = E(Y′C′N F̄′NQDV) = tr(HF̄′NQD) = tr[H diag(F̄′NQD)]

= tr[H diag(F̄′NQD) diag(QD)−1QD] = E(Y′C′N F̄′NQDV),

where F̄′N = F̄′N(δ0) and F̄′N(δ) = diag[F̄′N(δ)QD(ρ)]diag[QD(ρ)]−1. Taking

the difference between the quantities inside the second expectation and the

last expectation, we obtain:

Y′C′N(δ)[F̄′N(δ)− F̄′N(δ)]Ṽ(β, δ), (1.19)

the adjusted λ-component of the CQS functions, having a zero expectation

and a zero probability limit upon dividing by N at θ0 under unknown het-

eroscedasticity.

Now, consider the stochastic element of the ρ-component of the CQS vector

ScN(θ) given in (1.6). Similar to the above, we have,

E(Ṽ′GNṼ) = E(V′QDGNQDV) = tr(HḠNQD) = tr[H diag(ḠNQD)]

= tr[H diag(ḠNQD) diag(QD)−1QD] = E(V′ḠNQDV),

where ḠN(ρ) = QD(ρ)GN(ρ) and ḠN(ρ) = diag[ḠN(ρ)QD(ρ)]diag[QD(ρ)]−1.

Replacing the V′ in the second and last expectations by [AN(λ)Y−Xβ]′B′N(ρ),

and taking the difference between the two quantities inside the expectations,

we obtain a robust AQS function for ρ:

[AN(λ)Y −Xβ]′B′N(ρ)[ḠN(ρ)− ḠN(ρ)]Ṽ(β, δ). (1.20)

The β-component of ScN(θ) is automatically robust against the unknown

heteroscedasticity. Therefore, the desired AQS functions robust against the

unknown heteroscedasticity H are,

S�N(β, δ) =


X′(ρ)Ṽ(β, δ),

Y′C′N(δ)[F̄′N(δ)− F̄′N(δ)]Ṽ(β, δ),

[AN(λ)Y −Xβ]′B′N(ρ)[ḠN(ρ)− ḠN(ρ)]Ṽ(β, δ).

(1.21)

Solving S�N(β, δ) = 0 gives the robust M- (RM-) estimators, β̂�N and δ̂�N , of β
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and δ.

Similarly, this root-finding process can be simplified by first solving for β

given δ, to give the constrained estimator β̂�N(δ) and the concentrated robust

AQS functions:

S�cN (δ) =

Y′C′N(δ)[F̄′N(δ)− F̄′N(δ)]V̂(δ),

[AN(λ)Y −Xβ̂�N(δ)]′B′N(ρ)[ḠN(ρ)− ḠN(ρ)]V̂(δ),

(1.22)

where β̂�N(δ) = β̂∗N(δ) given in (1.9), and V̂(δ) = Ṽ(β̂�N(δ), δ). Then, solving

S�cN (δ) = 0, we obtain the RM-estimator δ̂�N of δ, and thus the RM-estimator

β̂�N ≡ β̂�N(δ̂�N) of β.

1.3.2 Asymptotic properties of the robust M-estimators

Similar to the case of the homoscedastic model, we first establish the consis-

tency of δ̂�N . Then, the consistency of β̂�N follows. Let S̄�N(β, δ) = E[S�N(β, δ)] be

the population robust AQS functions. Then, the β-component of S̄�N(β, δ) = 0

is solved at β̄�N(δ) = β̄∗N(δ) given in (1.11). Upon substitution, we obtain the

population counterpart of S�cN (δ):

S̄�cN (δ) =

E[Y′C′N(δ)[F̄′N(δ)− F̄′N(δ)]V̄(δ)],

E
{
AN(λ)Y −Xβ̄�N(δ)]′B′N(ρ)[ḠN(ρ)− ḠN(ρ)]V̄(δ)

}
,

(1.23)

where V̄(δ) = Ṽ(β̄�N(δ), δ). As S�cN (δ̂�N) and S̄�cN (δ0) are both zero, by theorem

5.9 of van der Vaart (1998) δ̂�N will be consistent for δ0 if supδ∈∆
1
N1

∥∥S�cN (δ)−

S̄�cN (δ)
∥∥ p−→ 0 and the following identification condition holds:

Assumption G′: infδ:d(δ,δ0)≥ε
∥∥S̄�cN (δ)

∥∥ > 0 for every ε > 0, where d(δ, δ0)

is a measure of distance between δ and δ0.

Again, Assumption G′ is put up for simplicity. More primitive conditions

under which Assumption G′ holds are that for δ 6= δ0 either of the following

conditions holds:

(a) η′A′−1
N C′N(δ)[F̄′N(δ)−F̄′N(δ)]QN(δ)A−1

N η+tr[QD(ρ)ChN(δ)
(
F̄′N(δ)−F̄′N(δ)

)
] 6=

0; or

(b) η′A′−1
N C′N(δ)M′N(ρ)

[
ḠN(ρ)−ḠN(ρ)

]
QN(δ)A−1

N η+tr[QD(ρ)ChN(δ)
(
ḠN(ρ)−

ḠN(ρ)
)
] 6= 0,

where ChN(δ) = CN(δ)C−1
N HC−1′

N C′N(δ) and MN(ρ) = IN−BN(ρ)X[X′(ρ)X(ρ)]−1
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X′(ρ). Similarly, as ChN(δ0) = H and QN(δ0)A−1
N η = 0, the two quantities in

(a) and (b) are 0 at δ0.

Denote ξ = (β′, δ′)′ and ξ̂�N = (β̂�′N , δ̂
�′
N)′. We have the following consistency

theorem.

Theorem 1.3. Under Assumptions A′, B-F and G′, we have, as N →∞,

ξ̂�N
p−→ ξ0.

Similarly, the asymptotic normality of ξ̂�N can be established, by applying

the mean value theorem to each element of S�N(ξ̂�N) = 0 at ξ0. The robust AQS

function at ξ0 is

S�N(ξ0) =


X′V,

η′B′N(F̄′N − F̄′N)QDV + V′(F̄′N − F̄′N)QDV,

φ′0D′(ḠN − ḠN)QDV + V′(ḠN − ḠN)QDV,

(1.24)

which can also be verified to be asymptotically normal by using the CLT for LQ

forms of Kelejian and Prucha (2001). The adjusted Hessian ∂
∂ξ′
S�N(ξ̄), shown

in (C.1) in Appendix C, has a proper asymptotic behavior, for some ξ̄ lying

between ξ̂�N and ξ0 elementwise. Consequently, the asymptotic distribution for

ξ̂�N can be established in the following theorem.

Theorem 1.4. Under the assumptions of Theorem 1.3, we have, as N →

∞, √
N1

(
ξ̂�N − ξ0

) D−→ N
(

0, lim
N→∞

Σ�−1
N (ξ0)Γ�N(ξ0)Σ�′−1

N (ξ0)
)
,

where Σ�N(ξ0) = − 1
N1

E
[
∂
∂ξ′
S�N(ξ0)

]
and Γ�N(ξ0) = 1

N1
Var
[
S�N(ξ0)

]
, both assumed

to exist and Σ�N(ξ0) assumed to be positive definite for sufficiently large N .

1.3.3 Heteroscedasticity robust inferences

Robust inferences for ξ0 depends on the availability of consistent estima-

tors of Σ�N(ξ0) and Γ�N(ξ0). Similar to the case of homoscedastic model, Σ�N(ξ0)

can be estimated by its observed counterpart Σ̂�N = − 1
N1

∂
∂ξ′
S�N(ξ)|ξ=ξ̂�N , with

detailed expression of ∂
∂ξ′
S�N(ξ) being given in (C.1), Appendix C. The consis-

tency of Σ̂�N is proved in the proof of Theorem 1.4.

However, the VC matrix Γ�N(ξ0) involves the common parameters ξ0, the

fixed effects φ0, and the unknown H, as seen from its distinct elements derived
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by Lemma A.5:

N1Γ�βξ = [X′HX, X′HLλBNη, X′HLρDφ0],

N1Γ�λλ = η′B′NL′λHLλBNη + tr(HLλHL◦λ),

N1Γ�λρ = η′B′NL′λHLρDφ0 + tr(HLλHL◦ρ),

N1Γ�ρρ = φ′0D′L′ρHLρDφ0 + tr(HLρHL◦ρ),

(1.25)

where Lλ(δ) = QD(ρ)[F̄N(δ) − F̄N(δ)] and Lρ(ρ) = QD(ρ)[Ḡ′N(ρ) − Ḡ′N(ρ)].

This makes the estimation of Γ�N(ξ0) more challenging than the case of ho-

moscedastic model as the number of unknown elements (parameters) in φ and

H both grow with the sample size N (a more serious incidental parameters

problem). A nice feature of the analytical expression of Γ�N(ξ0) is that it does

not involve 3rd and 4th moments of the errors due to the fact that the key

matrices, Lλ(δ) and Lρ(δ), have zero diagonals. This makes it possible to

adopt again the approach of ‘plug-in’ and ‘bias-correction’ as in the case of

homoscedastic model.

To facilitate the discussion, write Γ�N(ξ0) as Γ�N(ξ0, φ,H). Let φ̂�N be the

estimator of φ obtained from the RM-estimator ξ̂�N through (1.4). We then

define Γ�N(ξ̂�N , φ̂
�
N ,H) as the plug-in estimator of Γ�N(ξ0) for a given H. We

have (similar to Corollary 1.1) the following corollary.

Corollary 1.3. Under the assumptions of Theorem 1.4, we have,

Γ�N(ξ̂�N , φ̂
�
N ,H) = Γ�N(ξ0) + Bias�φ(δ0,H) + op(1),

where Bias�φ(δ0,H) is a (k+2)×(k+2) matrix with all the β-related entries being

zero and the δ entry of the elements: 1
N1
tr(HPDL′aHLbPD), for a, b = λ, ρ.

To estimate H and thus to give a full estimate of Γ�N(ξ0, φ,H), note that

Ṽ = QDV, which can be ‘consistently’ estimated by V̂ = QD(ρ̂�N)BN(ρ̂�N)

[AN(λ̂�N)Y −Xβ̂�N ]. Note also that

E(Ṽ � Ṽ) = [QD �QD](σ2
1, σ

2
2, . . . , σ

2
N)′,

where � denotes the Hadamard (elementwise) product. A natural set of esti-

mates of the heteroscedasticity parameters (σ2
1, σ

2
2, . . . , σ

2
N) is therefore given

as follows:

(σ̂2
1, σ̂

2
2, . . . , σ̂

2
N)′ = [QD(ρ̂�N)�QD(ρ̂�N)]−(V̂ � V̂),
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where [ · ]− denotes a generalized inverse. Therefore, an estimate of H is

Ĥ = diag(σ̂2
1, σ̂

2
2, . . . , σ̂

2
N).

To ‘see’ the invertibility of QD(ρ) � QD(ρ), we have, QD(ρ) � QD(ρ) =

IN − 2IN �PD(ρ) +PD(ρ)�PD(ρ). By Schur product theorem, the last term is

positive semi-definite. In addition, when T is not too small, IN−2IN�PD(ρ) is

positive definite, because the diagonal elements of PD(ρ) are of order Op(1/T )

(See the proof of Lemma A.3). Thus, QD(ρ) � QD(ρ) is typically invertible,

for ρ in a neighborhood of ρ0, which is assumed to facilitate the proof of

theoretical results. In practice, however, one may just use the generalized

inverse of QD(ρ)�QD(ρ).

From (1.25), we see that the elements of Γ(ξ0, φ,H) take either of the forms:

tr(HCN) and tr(HANHBN). It is important to know the effects of replacing

H by Ĥ in these two forms.

Lemma 1.1. Assume ΠN(ρ) = [QD(ρ)�QD(ρ)]−1 exists for ρ in a neigh-

borhood of ρ0, and is bounded in both row and column sum norms. Let AN =

[aij] and BN = [bij] be square matrices of dimension N with zero diagonals and

bounded row and column sum norms. Let CN = [cij] be an N ×N matrix with

diagonal elements being uniformly bounded. We have,

(i) 1
N
tr(ĤCN)− 1

N
tr(HCN) = op(1),

(ii) 1
N
tr(ĤANĤBN)− 2

N
tr((AN �BN)ΠNΛ(H)ΠN)− 1

N
tr(HANHBN) =

op(1),

where ΠN = ΠN(ρ0), Λ(H) = {(q′jHqk)
2}Nj,k=1, and q′j is the jth row of QD.

The assumptions on ΠN(ρ) in Lemma 1.1 always hold for a balanced panel

(See Appendix C). The bias term in Corollary 1.3 needs a further correction

when H is replaced by Ĥ as it contains elements of the form tr(HANHBN)

with diagonal elements of AN and BN not strictly zero. However, the effect

of non-zero diagonals is shown to be negligible due to the existence of a lower

ranked matrix PD and its orthogonality with QD. Combining the results of

Corollary 1.3 and Lemma 1.1, we have the full estimate of Γ�N(ξ0):

Γ̂�N = Γ�N(ξ̂�N , φ̂
�
N , Ĥ)− Bias�φ(δ̂�N , Ĥ)− Bias�H(δ̂�N , Ĥ), (1.26)

where Bias�H(δ0,H) has entries 0, or 2
N1
tr((La�L◦b−PDL′a�LbPD)ΠNΛ(H)ΠN),
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a, b = λ, ρ.

Corollary 1.4. Under the assumptions of Theorem 1.4, we have as N →

∞,

Σ̂�N − Σ�N(ξ0)
p−→ 0 and Γ̂�N − Γ�N(ξ0)

p−→ 0,

and therefore, Σ̂�−1
N Γ̂�N Σ̂�′−1

N − Σ�−1
N (ξ0)Γ�N(ξ0)Σ�′−1

N (ξ0)
p−→ 0.

1.4 Monte Carlo Study

Extensive Monte Carlo experiments are carried out to investigate the finite

sample performance of the proposed M-estimators, the RM-estimators, and

the corresponding standard error estimators of the unbalanced SPD models

with two-way fixed effects. To see the effectiveness of the adjustments on

the concentrated quasi scores in controlling the effects of estimating the fixed

effects, we also include the direct QML estimators in the Monte Carlo study.

We choose different values of n and T , and fix the percentage of randomly

missing observations at 10%, and make sure that each individual is observed at

least twice over the entire period. We consider two data generating processes:

unbalanced FE-SPD models with SL and SE effects or with SL and SD (spatial

Durbin) effects:

SL-SE Model : Yt = λWtYt +Xtβ1 +Dtµ+ αtlnt + Ut, Ut = ρMtUt + Vt,

(1.27)

SL-SD Model : Yt = λWtYt +Xtβ1 +WtXtβ2 +Dtµ+ αtlnt + Vt, (1.28)

for t = 1, . . . , T . Note that we consider Durbin effects, WtXt, only in the SL

model due to the identification issue mentioned earlier. We choose β1 = 1,

β2 = 0 or 0.5, λ = 0.2 and ρ = 0.2. Generate X ′ts independently from

N(0, 22In), and set the individual effects µ = 1
T

ΣT
t=1Xt+e, where e ∼ N(0, In).

Then, omit the “missing” elements ofXt. The time fixed effects α are generated

from N(0, IT ). The error (vit) distributions can be (i) normal, (ii) normal

mixture (10% N(0, 42) and 90% N(0, 1)), or (iii) chi-square with 3 degrees of

freedom. For the purpose of comparison, we set σ2
v0 = 1 for homoscedastic case,

and set the average of error variances in the heteroscedastic case to 1. Monte

Carlo (empirical) means and standard deviations (shown in the brackets) are
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reported for QMLE, M-estimation and RM-estimation. Further, empirical

averages of the standard error estimates (shown in the square brackets) are

also reported for M-estimation and RM-estimation, based on the robust VC

matrix estimates, Σ̂∗−1
N Γ̂∗N Σ̂∗′−1

N for the M-estimation and Σ̂�−1
N Γ̂�N Σ̂�′−1

N for the

RM-estimation. The number of Monte Carlo runs is 1000.

The spatial weights Wt and Mt are first generated as time-varying n × n

matrices according to rook contiguity, queen contiguity, or group interac-

tion scheme, and then their rows and columns corresponding to the miss-

ing spatial units are deleted. The groups’ sizes in the group interaction

scheme can be either increasing or fixed as n increases. In the former, we let

K(n) = Round(n0.5) be the number of groups and then generate K(n) group

sizes according to a uniform distribution, and in the latter, we start with six

groups of sizes (3,5,7,9,11,15) and then replicate to give a n to be multiples

of 50. See Yang (2015) for details in generating these spatial layouts. In the

latter case, the variation in group sizes does not shrink to zero as n increases.

As a result, the M-estimation would not be consistent under heteroscedasticity

(Liu and Yang, 2015, 2020). In this case, the heteroscedasticity is generated

as follows: for each group, if the group size is larger than the mean group

size, then the variance is set to be the same as the group size, otherwise, the

variance is the square of the inverse of the group size (Lin and Lee, 2010).

Tables 1.1a and 1.1b report partial Monte Carlo results for the unbalanced

FE-SPD model with SL and SE effects and homoscedastic errors, for T = 5

and 10, respectively. The results show an excellent finite performance of the

proposed M-estimation and RM-estimation, as well as their standard error

estimators. The proposed M-estimation performs uniformly much better than

the QML method in the estimation of σ2
v , λ and ρ, irrespective of the choices

of the spatial weight matrices and the values of n and T . Our M-estimators

exhibit a good performance even when the sample size is as small as n = 50

and T = 5, and improve on average when the sample expands, regardless of

the error distributions. The
√
N1-consistency of the M-estimators is clearly

demonstrated by the Monte Carlo sds. Moreover, the robust estimates of

standard errors ŝd’s are on average very close to the corresponding Monte
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Carlo standard errors. By comparing the results of M-estimators and RM-

estimators, we cannot see which one beats the other in terms of bias and

efficiency for these homoscedastic models.

Tables 1.2a and 1.2b present partial Monte Carlo results for the unbalanced

FE-SPD model with SL and SD effects and homoscedastic errors, for T = 5

and 10, respectively. The results again show an excellent performance of the

proposed set of estimation and inference methods. As in the case of the SL-SE

model, the M-estimation and RM-estimation give quite similar results, and

both show a clear convergence as sample size increases. Their corresponding

standard error estimates also perform very well. In contrast, the QMLE can

perform poorly.

Tables 1.3a and 1.3b report partial Monte Carlo results for the unbalanced

FE-SPD model with SL and SE effects and heteroscedastic errors, for T = 5

and 10, respectively. The results show an excellent finite sample performance

of the proposed RM-estimation and its estimated standard error. In contrast,

the QMLE and M-estimation typically provide worse estimates for spatial pa-

rameters than RM-estimation. Our RM-estimators perform well even when

sample size is quite small, and show convergence to the true value as sample

size increases. In addition, ŝds are very closed to sds for our RM-estimators,

consistent with our theoretical expectation.

Tables 1.4 presents partial Monte Carlo results for the unbalanced FE-

SPD model with SL and SD effects and heteroscedastic errors, for T = 5 and

10, respectively. The weight matrix is specified as group interaction with a

fixed group sizes scheme. We can see a much better finite sample performance

for our RM-estimation than QMLE and M-estimation, and the corresponding

standard error estimates also have a good performance.

1.5 An Empirical Application

In this section, we present an empirical study to analyze horizontal compe-

tition in excise taxes on gasoline, cigarettes, and beers among US states. Ac-

cording to theoretical studies by Kanbur and Keen (1993) and Nielsen (2001),

the tax competition is usually induced by cross-border shopping, which causes
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Table 1.1a. Empirical mean(sd)[ŝd] of the estimators for FE-SPD model

with SL-SE effects, 10% random missing, homoscedasticity,

(β1, λ, ρ, σ
2
v) = (1, 0.2, 0.2, 1), T=5.

W= Rook, M=Queen W=Group-I, M=Queen

QMLE M-Est RM-Est QMLE M-Est RM-Est
n = 50; error = 1, 2, 3, for the three panels below

β1 .9998(.039) 1.0007(.039)[.039] 1.0007(.039)[.039] .9976(.038) .9986(.038)[.038] .9986(.038)[.038]
λ .1848(.063) .1999(.063)[.062] .1999(.063)[.062] .1666(.077) .1885(.075)[.075] .1887(.076)[.074]
ρ .1112(.152) .1868(.146)[.148] .1867(.146)[.146] .1101(.147) .1889(.141)[.150] .1889(.141)[.147]
σ2
v .7394(.083) .9829(.110)[.107] − .7390(.082) .9828(.109)[.106] −
β1 .9981(.038) .9989(.038)[.039] .9989(.038)[.038] .9980(.038) .9989(.038)[.038] .9989(.038)[.038]
λ .1849(.061) .1998(.061)[.062] .1999(.061)[.060] .1689(.076) .1909(.074)[.074] .1909(.074)[.072]
ρ .1179(.149) .1933(.143)[.148] .1932(.144)[.140] .1121(.148) .1915(.143)[.150] .1913(.143)[.143]
σ2
v .7358(.172) .9780(.228)[.215] − .7420(.176) .9867(.234)[.218] −
β1 .9981(.038) .9990(.038)[.039] .9990(.038)[.038] .9980(.038) .9990(.037)[.038] .9990(.037)[.038]
λ .1825(.061) .1976(.061)[.062] .1976(.061)[.061] .1688(.078) .1907(.076)[.074] .1908(.076)[.073]
ρ .1165(.150) .1919(.144)[.148] .1917(.144)[.143] .1104(.150) .1894(.145)[.150] .1894(.145)[.146]
σ2
v .7421(.128) .9864(.169)[.161] − .7380(.129) .9814(.171)[.161] −

n = 100; error = 1, 2, 3, for the three panels below
β1 1.0010(.027) 1.0011(.026)[.027] 1.0011(.026)[.027] 1.0015(.029) 1.0009(.029)[.029] 1.0009(.029)[.028]
λ .1922(.043) .1993(.043)[.042] .1994(.043)[.042] .1842(.055) .1960(.055)[.054] .1961(.055)[.053]
ρ .1565(.099) .1906(.096)[.100] .1906(.096)[.099] .1626(.104) .1954(.101)[.099] .1954(.101)[.098]
σ2
v .7617(.060) .9942(.078)[.076] − .7604(.058) .9928(.076)[.076] −
β1 .9993(.028) .9994(.028)[.027] .9994(.028)[.027] 1.0015(.029) 1.0009(.029)[.029] 1.0009(.029)[.028]
λ .1923(.042) .1994(.042)[.042] .1994(.042)[.042] .1829(.055) .1948(.054)[.054] .1948(.054)[.053]
ρ .1623(.102) .1962(.099)[.099] .1962(.099)[.096] .1588(.100) .1917(.097)[.099] .1916(.097)[.097]
σ2
v .7624(.128) .9951(.167)[.160] − .7674(.128) 1.0019(.167)[.161] −
β1 .9983(.027) .9984(.027)[.027] .9984(.027)[.027] 1.0000(.028) .9994(.028)[.029] .9994(.028)[.028]
λ .1937(.043) .2009(.043)[.042] .2009(.043)[.042] .1831(.056) .1950(.055)[.054] .1950(.055)[.053]
ρ .1621(.100) .1961(.097)[.099] .1961(.097)[.098] .1599(.098) .1928(.095)[.099] .1929(.096)[.097]
σ2
v .7625(.092) .9951(.120)[.118] − .7636(.091) .9970(.118)[.118] −

n = 200; error = 1, 2, 3, for the three panels below
β1 1.0002(.019) 1.0001(.019)[.019] 1.0001(.019)[.019] 1.0002(.020) 1.0001(.020)[.020] 1.0001(.020)[.019]
λ .1964(.028) .1998(.028)[.029] .1998(.028)[.029] .1856(.049) .1955(.049)[.048] .1955(.049)[.048]
ρ .1805(.071) .1947(.069)[.068] .1948(.069)[.068] .1829(.069) .1970(.068)[.068] .1970(.068)[.068]
σ2
v .7703(.042) .9958(.054)[.053] − .7708(.040) .9966(.052)[.053] −
β1 .9997(.019) .9996(.019)[.019] .9996(.019)[.019] 1.0001(.020) .9999(.020)[.020] .9999(.020)[.019]
λ .1969(.029) .2003(.029)[.029] .2003(.029)[.028] .1851(.049) .1950(.049)[.048] .1950(.049)[.048]
ρ .1850(.069) .1991(.067)[.068] .1991(.067)[.067] .1864(.068) .2004(.066)[.068] .2004(.066)[.067]
σ2
v .7679(.089) .9927(.115)[.114] − .7701(.091) .9956(.118)[.114] −
β1 1.0007(.019) 1.0006(.019)[.019] 1.0006(.019)[.019] 1.0002(.019) 1.0000(.019)[.020] 1.0000(.019)[.020]
λ .1968(.028) .2002(.028)[.029] .2002(.028)[.029] .1861(.049) .1960(.048)[.048] .1960(.048)[.048]
ρ .1840(.069) .1981(.067)[.068] .1981(.067)[.067] .1832(.070) .1973(.068)[.068] .1973(.068)[.067]
σ2
v .7688(.063) .9939(.082)[.083] − .7736(.066) 1.0002(.085)[.085] −

n = 400; error = 1, 2, 3, for the three panels below
β1 1.0003(.014) 1.0003(.014)[.013] 1.0003(.014)[.013] 1.0003(.013) 1.0003(.013)[.013] 1.0003(.013)[.013]
λ .1985(.019) .2001(.019)[.019] .2001(.019)[.019] .1875(.041) .1949(.040)[.042] .1949(.040)[.042]
ρ .1936(.049) .1982(.048)[.047] .1982(.048)[.047] .1953(.049) .1999(.048)[.047] .1999(.048)[.047]
σ2
v .7738(.028) .9966(.036)[.038] − .7734(.029) .9961(.037)[.038] −
β1 1.0001(.013) 1.0000(.013)[.013] 1.0000(.013)[.013] 1.0007(.013) 1.0007(.013)[.013] 1.0007(.013)[.013]
λ .1985(.019) .2001(.019)[.020] .2001(.019)[.019] .1899(.041) .1972(.041)[.042] .1972(.041)[.042]
ρ .1937(.048) .1983(.047)[.048] .1983(.047)[.047] .1922(.048) .1969(.047)[.047] .1969(.047)[.047]
σ2
v .7782(.063) 1.0023(.081)[.082] − .7767(.062) 1.0004(.080)[.082] −
β1 1.0001(.013) 1.0001(.013)[.013] 1.0001(.013)[.013] .9999(.013) .9999(.013)[.013] .9999(.013)[.013]
λ .1972(.020) .1988(.020)[.020] .1987(.020)[.019] .1921(.042) .1994(.041)[.042] .1994(.041)[.042]
ρ .1944(.050) .1990(.049)[.047] .1990(.049)[.047] .1924(.049) .1970(.048)[.047] .1970(.048)[.047]
σ2
v .7743(.049) .9973(.063)[.060] − .7729(.046) .9955(.059)[.060] −

Note: error = 1(normal), 2(normal mixture), 3(chi-square); Xt values are generated from N(0, 22).
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Table 1.1b. Empirical mean(sd)[ŝd] of the estimators for FE-SPD model

with SL-SE effects, 10% random missing, homoscedasticity,

(β1, λ, ρ, σ
2
v) = (1, 0.2, 0.2, 1), T=10.

W=Rook, M=Queen W=Group-I, M=Queen
QMLE M-Est RM-Est QMLE M-Est RM-Est

n = 50; error = 1, 2, 3, for the three panels below
β1 1.0019(.026) 1.0008(.026)[.026] 1.0008(.026)[.026] .9993(.025) .9989(.025)[.026] .9989(.025)[.026]
λ .1820(.039) .1976(.039)[.040] .1976(.039)[.040] .1780(.046) .1971(.045)[.045] .1971(.046)[.045]
ρ .1239(.093) .1974(.091)[.091] .1974(.092)[.091] .1210(.093) .1927(.092)[.091] .1927(.092)[.091]
σ2
v .8641(.062) .9930(.071)[.071] − .8641(.063) .9936(.072)[.071] −
β1 1.0006(.026) .9995(.026)[.026] .9995(.026)[.026] .9986(.025) .9982(.025)[.026] .9982(.025)[.025]
λ .1849(.039) .2004(.039)[.040] .2004(.039)[.039] .1779(.047) .1968(.046)[.045] .1969(.047)[.045]
ρ .1203(.093) .1941(.091)[.092] .1940(.091)[.089] .1235(.093) .1951(.091)[.091] .1950(.091)[.089]
σ2
v .8625(.144) .9912(.166)[.156] − .8641(.138) .9935(.158)[.156] −
β1 1.0019(.026) 1.0008(.026)[.026] 1.0008(.026)[.026] 1.0003(.026) .9999(.026)[.026] .9999(.026)[.026]
λ .1819(.040) .1976(.040)[.040] .1976(.040)[.040] .1771(.046) .1960(.045)[.045] .1961(.045)[.045]
ρ .1194(.094) .1931(.093)[.091] .1931(.093)[.090] .1211(.093) .1928(.091)[.091] .1928(.092)[.090]
σ2
v .8667(.105) .9962(.121)[.113] − .8615(.101) .9906(.116)[.113] −

n = 100; error = 1, 2, 3, for the three panels below
β1 1.0001(.018) .9997(.018)[.018] .9997(.018)[.018] 1.0004(.018) 1.0004(.018)[.017] 1.0004(.018)[.017]
λ .1924(.027) .1993(.027)[.027] .1993(.027)[.027] .1817(.040) .1963(.039)[.039] .1964(.039)[.039]
ρ .1600(.063) .1952(.062)[.063] .1952(.062)[.063] .1638(.064) .1988(.063)[.063] .1989(.063)[.063]
σ2
v .8792(.044) .9986(.050)[.050] − .8787(.046) .9981(.052)[.050] −
β1 1.0005(.018) 1.0000(.018)[.018] 1.0000(.018)[.018] 1.0001(.018) 1.0000(.018)[.017] 1.0000(.018)[.017]
λ .1932(.027) .2001(.027)[.027] .2000(.027)[.027] .1838(.040) .1983(.040)[.039] .1983(.040)[.039]
ρ .1634(.062) .1985(.061)[.063] .1985(.061)[.062] .1601(.063) .1952(.062)[.063] .1952(.062)[.062]
σ2
v .8773(.102) .9964(.116)[.112] − .8780(.101) .9973(.115)[.113] −
β1 1.0005(.018) 1.0001(.018)[.018] 1.0001(.018)[.018] .9998(.018) .9998(.018)[.017] .9998(.018)[.017]
λ .1923(.027) .1992(.027)[.027] .1992(.027)[.027] .1834(.041) .1979(.040)[.039] .1979(.040)[.039]
ρ .1609(.064) .1961(.063)[.063] .1961(.063)[.063] .1618(.064) .1969(.063)[.063] .1969(.063)[.062]
σ2
v .8782(.073) .9975(.083)[.082] − .8763(.072) .9954(.082)[.082] −

n = 200; error = 1, 2, 3, for the three panels below
β1 1.0004(.013) 1.0001(.013)[.013] 1.0001(.013)[.013] .9996(.013) .9996(.013)[.012] .9996(.013)[.012]
λ .1961(.018) .1994(.018)[.019] .1994(.018)[.019] .1883(.033) .1986(.033)[.033] .1986(.033)[.033]
ρ .1823(.044) .1985(.044)[.044] .1986(.044)[.044] .1834(.044) .1997(.043)[.044] .1997(.043)[.044]
σ2
v .8826(.030) .9973(.034)[.035] − .8836(.031) .9986(.035)[.035] −
β1 1.0002(.013) .9999(.013)[.013] .9999(.013)[.013] .9998(.013) .9997(.013)[.012] .9997(.013)[.012]
λ .1960(.018) .1993(.018)[.019] .1993(.018)[.019] .1876(.033) .1979(.033)[.033] .1980(.033)[.033]
ρ .1821(.043) .1984(.043)[.044] .1984(.043)[.044] .1808(.045) .1972(.044)[.044] .1972(.044)[.044]
σ2
v .8820(.071) .9967(.080)[.080] − .8825(.075) .9973(.084)[.081] −
β1 .9996(.012) .9993(.012)[.013] .9993(.012)[.013] 1.0005(.012) 1.0005(.012)[.012] 1.0005(.012)[.012]
λ .1968(.019) .2000(.019)[.019] .2000(.019)[.019] .1878(.033) .1981(.033)[.033] .1982(.033)[.033]
ρ .1818(.044) .1980(.043)[.044] .1980(.043)[.044] .1834(.046) .1997(.046)[.044] .1997(.046)[.044]
σ2
v .8842(.053) .9992(.060)[.058] − .8829(.051) .9978(.057)[.058] −

n = 400; error = 1, 2, 3, for the three panels below
β1 1.0004(.009) 1.0003(.009)[.009] 1.0003(.009)[.009] 1.0001(.009) 1.0000(.009)[.009] 1.0000(.009)[.009]
λ .1982(.014) .1998(.014)[.014] .1999(.014)[.014] .1922(.027) .1987(.027)[.026] .1989(.027)[.026]
ρ .1918(.033) .1989(.032)[.031] .1989(.032)[.031] .1915(.033) .1986(.033)[.031] .1986(.033)[.031]
σ2
v .8854(.022) .9982(.024)[.025] − .8853(.022) .9982(.024)[.025] −
β1 .9998(.009) .9997(.009)[.009] .9997(.009)[.009] 1.0001(.009) 1.0000(.009)[.009] 1.0000(.009)[.009]
λ .1983(.013) .1999(.013)[.014] .2000(.013)[.014] .1913(.027) .1978(.027)[.026] .1981(.027)[.026]
ρ .1931(.031) .2001(.030)[.031] .2001(.030)[.031] .1905(.032) .1976(.032)[.031] .1976(.032)[.031]
σ2
v .8847(.050) .9974(.056)[.057] − .8851(.051) .9979(.057)[.057] −
β1 .9995(.009) .9994(.009)[.009] .9994(.009)[.009] .9997(.009) .9996(.009)[.009] .9996(.009)[.009]
λ .1978(.013) .1994(.013)[.014] .1996(.013)[.014] .1926(.026) .1991(.026)[.026] .1993(.026)[.026]
ρ .1931(.031) .2002(.031)[.031] .2002(.031)[.031] .1907(.032) .1978(.031)[.031] .1978(.031)[.031]
σ2
v .8873(.038) 1.0004(.043)[.042] − .8881(.036) 1.0013(.041)[.042] −

Note: error = 1(normal), 2(normal mixture), 3(chi-square); Xt values are generated from N(0, 22).
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Table 1.2a. Empirical mean(sd)[ŝd] of estimators for FE-SPD model

with SL-SD effects, 10% random missing, homoscedasticity,

(β1, β2, λ, σ
2
v) = (1, 0.5, 0.2, 1), T=5.

W=Queen W=Group-I

QMLE M-Est RM-Est QMLE M-Est RM-Est
n = 50; error = 1, 2, 3, for the three panels below

β1 1.0056(.041) .9999(.041)[.041] .9999(.041)[.041] 1.0130(.043) 1.0060(.043)[.043] 1.0060(.043)[.042]
β2 .5898(.194) .5147(.195)[.194] .5146(.195)[.193] .6567(.251) .5636(.241)[.231] .5637(.242)[.228]
λ .1276(.125) .1862(.125)[.123] .1863(.125)[.122] .1103(.131) .1644(.125)[.119] .1643(.126)[.117]
σ2
v .7390(.082) .9779(.109)[.106] − .7398(.081) .9793(.108)[.106] −
β1 1.0081(.040) 1.0024(.040)[.041] 1.0024(.040)[.040] 1.0101(.044) 1.0032(.044)[.042] 1.0031(.044)[.042]
β2 .5909(.196) .5158(.197)[.195] .5156(.197)[.189] .6426(.238) .5504(.229)[.229] .5497(.230)[.220]
λ .1235(.122) .1822(.122)[.124] .1823(.123)[.120] .1130(.124) .1668(.119)[.119] .1673(.120)[.114]
σ2
v .7410(.180) .9806(.238)[.216] − .7413(.171) .9812(.226)[.215] −
β1 1.0066(.041) 1.0009(.041)[.041] 1.0009(.041)[.041] 1.0113(.043) 1.0044(.042)[.042] 1.0044(.042)[.042]
β2 .5904(.192) .5151(.193)[.195] .5151(.194)[.192] .6385(.242) .5463(.232)[.229] .5458(.234)[.225]
λ .1252(.123) .1840(.123)[.124] .1841(.123)[.122] .1183(.126) .1719(.121)[.118] .1723(.122)[.116]
σ2
v .7436(.128) .9841(.169)[.160] − .7411(.130) .9809(.172)[.158] −

n = 100; error = 1, 2, 3, for the three panels below
β1 1.0047(.030) 1.0016(.030)[.031] 1.0016(.030)[.031] 1.0038(.027) 1.0012(.027)[.027] 1.0012(.027)[.027]
β2 .5502(.135) .5114(.135)[.133] .5114(.135)[.138] .5879(.180) .5307(.175)[.173] .5306(.176)[.177]
λ .1621(.085) .1908(.085)[.084] .1908(.085)[.088] .1466(.095) .1808(.093)[.092] .1808(.093)[.094]
σ2
v .7618(.059) .9903(.076)[.075] − .7630(.058) .9921(.075)[.075] −
β1 1.0053(.031) 1.0021(.031)[.031] 1.0021(.031)[.031] 1.0043(.027) 1.0016(.027)[.027] 1.0016(.027)[.027]
β2 .5551(.130) .5163(.130)[.133] .5162(.130)[.136] .5956(.189) .5384(.183)[.173] .5385(.183)[.175]
λ .1585(.084) .1872(.084)[.084] .1872(.084)[.087] .1433(.100) .1775(.097)[.092] .1774(.097)[.093]
σ2
v .7675(.129) .9977(.168)[.159] − .7644(.129) .9940(.167)[.159] −
β1 1.0032(.030) 1.0001(.030)[.030] 1.0001(.030)[.031] 1.0044(.027) 1.0017(.027)[.027] 1.0017(.027)[.027]
β2 .5535(.136) .5149(.136)[.133] .5150(.136)[.136] .5859(.180) .5285(.175)[.173] .5283(.175)[.176]
λ .1598(.086) .1884(.085)[.084] .1883(.085)[.087] .1465(.096) .1808(.093)[.092] .1810(.093)[.094]
σ2
v .7616(.091) .9900(.119)[.116] − .7676(.095) .9981(.123)[.118] −

n = 200; error = 1, 2, 3, for the three panels below
β1 1.0020(.021) 1.0006(.021)[.020] 1.0006(.021)[.021] 1.0027(.020) 1.0011(.020)[.020] 1.0011(.020)[.020]
β2 .5244(.096) .5056(.096)[.094] .5056(.096)[.097] .5722(.170) .5257(.165)[.157] .5257(.165)[.160]
λ .1824(.058) .1962(.059)[.057] .1962(.059)[.060] .1597(.083) .1858(.081)[.079] .1859(.081)[.080]
σ2
v .7713(.041) .9948(.053)[.053] − .7726(.041) .9949(.053)[.053] −
β1 1.0013(.020) .9999(.020)[.020] .9999(.020)[.021] 1.0026(.020) 1.0011(.020)[.020] 1.0011(.020)[.020]
β2 .5269(.093) .5082(.093)[.093] .5081(.093)[.097] .5687(.160) .5224(.156)[.157] .5222(.156)[.158]
λ .1808(.057) .1945(.057)[.057] .1946(.057)[.060] .1605(.080) .1866(.078)[.079] .1867(.078)[.079]
σ2
v .7726(.091) .9964(.118)[.114] − .7740(.089) .9967(.114)[.113] −
β1 1.0017(.020) 1.0002(.020)[.020] 1.0002(.020)[.021] 1.0033(.019) 1.0018(.019)[.020] 1.0018(.019)[.020]
β2 .5248(.094) .5060(.094)[.094] .5060(.094)[.097] .5759(.164) .5293(.160)[.158] .5293(.160)[.159]
λ .1826(.056) .1963(.056)[.057] .1963(.056)[.060] .1564(.082) .1827(.080)[.079] .1827(.080)[.080]
σ2
v .7741(.065) .9984(.083)[.084] − .7726(.067) .9950(.087)[.083] −

n = 400; error = 1, 2, 3, for the three panels below
β1 1.0012(.014) 1.0005(.014)[.014] 1.0005(.014)[.014] 1.0012(.014) 1.0005(.014)[.014] 1.0005(.014)[.014]
β2 .5120(.065) .5028(.065)[.064] .5028(.065)[.067] .5526(.142) .5197(.139)[.136] .5196(.139)[.138]
λ .1909(.041) .1980(.041)[.041] .1980(.041)[.043] .1702(.069) .1890(.067)[.067] .1891(.067)[.068]
σ2
v .7761(.030) .9992(.039)[.038] − .7759(.029) .9989(.038)[.038] −
β1 1.0011(.014) 1.0004(.014)[.014] 1.0004(.014)[.014] 1.0010(.014) 1.0003(.014)[.014] 1.0003(.014)[.014]
β2 .5116(.064) .5024(.064)[.064] .5024(.064)[.067] .5553(.141) .5224(.139)[.136] .5225(.139)[.138]
λ .1904(.042) .1975(.042)[.041] .1975(.042)[.043] .1682(.070) .1870(.069)[.067] .1870(.069)[.068]
σ2
v .7730(.062) .9952(.080)[.081] − .7756(.064) .9986(.082)[.082] −
β1 1.0010(.014) 1.0003(.014)[.014] 1.0003(.014)[.014] 1.0012(.014) 1.0004(.014)[.014] 1.0004(.014)[.014]
β2 .5101(.063) .5009(.063)[.064] .5009(.063)[.067] .5551(.140) .5223(.138)[.136] .5222(.138)[.138]
λ .1913(.040) .1984(.040)[.041] .1984(.040)[.043] .1692(.068) .1879(.066)[.067] .1880(.067)[.068]
σ2
v .7764(.047) .9996(.061)[.060] − .7763(.048) .9996(.061)[.060] −

Note: error = 1(normal), 2(normal mixture), 3(chi-square); Xt values are generated from N(0, 22).
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Table 1.2b. Empirical mean(sd)[ŝd] of estimators for FE-SPD model

with SL-SD effects, 10% random missing, homoscedasticity,

(β1, β2, λ, σ
2
v) = (1, 0.5, 0.2, 1), T=10.

W=Queen W=Group-I

QMLE M-Est RM-Est QMLE M-Est RM-Est
n = 50; error = 1, 2, 3, for the three panels below

β1 1.0072(.026) 1.0014(.026)[.027] 1.0014(.026)[.027] 1.0083(.029) 1.0016(.029)[.028] 1.0016(.029)[.028]
β2 .5823(.122) .5074(.123)[.124] .5073(.123)[.125] .6090(.159) .5238(.152)[.149] .5237(.152)[.149]
λ .1368(.078) .1935(.078)[.080] .1935(.079)[.081] .1357(.081) .1861(.078)[.075] .1861(.078)[.075]
σ2
v .8604(.060) .9889(.069)[.070] − .8607(.062) .9894(.071)[.071] −
β1 1.0069(.027) 1.0011(.027)[.027] 1.0011(.027)[.027] 1.0099(.028) 1.0032(.027)[.028] 1.0032(.027)[.028]
β2 .5850(.122) .5104(.123)[.124] .5104(.123)[.124] .6074(.156) .5223(.150)[.149] .5224(.150)[.148]
λ .1354(.080) .1918(.080)[.079] .1919(.080)[.079] .1355(.079) .1858(.075)[.075] .1857(.075)[.073]
σ2
v .8674(.140) .9970(.161)[.158] − .8686(.143) .9984(.164)[.159] −
β1 1.0068(.027) 1.0010(.027)[.027] 1.0010(.027)[.027] 1.0069(.028) 1.0003(.028)[.028] 1.0003(.028)[.028]
β2 .5827(.124) .5082(.125)[.124] .5079(.125)[.125] .6057(.153) .5208(.147)[.148] .5209(.147)[.148]
λ .1364(.080) .1929(.080)[.079] .1931(.080)[.080] .1370(.078) .1872(.074)[.074] .1871(.074)[.074]
σ2
v .8607(.105) .9893(.120)[.113] − .8575(.101) .9857(.116)[.112] −

n = 100; error = 1, 2, 3, for the three panels below
β1 1.0024(.019) .9997(.019)[.018] .9997(.019)[.018] 1.0033(.019) .9999(.019)[.019] .9999(.019)[.019]
β2 .5381(.083) .5025(.083)[.083] .5025(.083)[.086] .5815(.135) .5142(.130)[.127] .5140(.131)[.128]
λ .1697(.055) .1982(.055)[.055] .1982(.055)[.057] .1528(.069) .1927(.067)[.065] .1928(.067)[.066]
σ2
v .8765(.043) .9956(.049)[.050] − .8766(.044) .9958(.050)[.050] −
β1 1.0036(.018) 1.0008(.018)[.018] 1.0008(.018)[.018] 1.0036(.019) 1.0002(.019)[.019] 1.0002(.019)[.019]
β2 .5403(.083) .5046(.083)[.083] .5045(.083)[.086] .5882(.133) .5207(.128)[.128] .5206(.128)[.128]
λ .1678(.056) .1963(.056)[.055] .1963(.056)[.057] .1480(.069) .1881(.066)[.066] .1882(.066)[.066]
σ2
v .8771(.101) .9963(.115)[.113] − .8752(.101) .9942(.114)[.113] −
β1 1.0029(.018) 1.0001(.018)[.018] 1.0001(.018)[.018] 1.0045(.019) 1.0011(.019)[.019] 1.0011(.019)[.019]
β2 .5381(.083) .5024(.083)[.083] .5024(.083)[.086] .5853(.131) .5179(.127)[.127] .5179(.126)[.128]
λ .1686(.055) .1971(.055)[.055] .1971(.055)[.057] .1488(.068) .1889(.066)[.066] .1889(.066)[.066]
σ2
v .8755(.074) .9944(.084)[.081] − .8755(.075) .9945(.086)[.081] −

n = 200; error = 1, 2, 3, for the three panels below
β1 1.0017(.013) 1.0003(.013)[.013] 1.0003(.013)[.013] 1.0023(.013) 1.0007(.013)[.013] 1.0007(.013)[.013]
β2 .5218(.061) .5034(.061)[.060] .5034(.061)[.062] .5592(.109) .5124(.106)[.104] .5124(.106)[.106]
λ .1827(.039) .1972(.039)[.039] .1972(.039)[.040] .1653(.055) .1926(.054)[.054] .1925(.054)[.055]
σ2
v .8835(.032) .9979(.036)[.035] − .8837(.032) .9983(.036)[.035] −
β1 1.0018(.013) 1.0005(.013)[.013] 1.0005(.013)[.013] 1.0021(.013) 1.0005(.013)[.013] 1.0005(.013)[.013]
β2 .5202(.060) .5017(.060)[.060] .5018(.060)[.062] .5580(.106) .5112(.103)[.104] .5110(.103)[.106]
λ .1838(.040) .1982(.040)[.039] .1982(.040)[.040] .1661(.055) .1933(.053)[.054] .1934(.053)[.055]
σ2
v .8816(.073) .9958(.082)[.080] − .8839(.072) .9985(.082)[.081] −
β1 1.0017(.013) 1.0003(.013)[.013] 1.0003(.013)[.013] 1.0019(.013) 1.0004(.013)[.013] 1.0004(.013)[.013]
β2 .5220(.060) .5035(.060)[.060] .5035(.060)[.062] .5581(.107) .5113(.104)[.104] .5112(.104)[.106]
λ .1834(.039) .1978(.039)[.039] .1978(.039)[.040] .1670(.054) .1942(.053)[.054] .1943(.053)[.055]
σ2
v .8837(.052) .9981(.059)[.058] − .8844(.051) .9991(.057)[.058] −

n = 400; error = 1, 2, 3, for the three panels below
β1 1.0007(.009) 1.0000(.009)[.009] 1.0000(.009)[.010] 1.0012(.009) 1.0004(.009)[.009] 1.0004(.009)[.009]
β2 .5101(.043) .5004(.043)[.044] .5004(.043)[.046] .5476(.100) .5120(.098)[.091] .5121(.098)[.093]
λ .1918(.026) .1990(.026)[.028] .1989(.026)[.029] .1732(.049) .1935(.048)[.046] .1934(.048)[.047]
σ2
v .8851(.022) .9980(.025)[.025] − .8867(.023) .9998(.026)[.025] −
β1 1.0006(.009) .9998(.009)[.009] .9998(.009)[.010] 1.0007(.009) .9999(.009)[.009] .9999(.009)[.009]
β2 .5086(.043) .4989(.043)[.044] .5018(.060)[.062] .5444(.093) .5088(.091)[.091] .5088(.091)[.092]
λ .1934(.026) .2006(.026)[.028] .1982(.040)[.040] .1753(.047) .1955(.046)[.046] .1956(.046)[.047]
σ2
v .8867(.052) .9998(.059)[.058] − .8853(.051) .9983(.058)[.057] −
β1 1.0009(.009) 1.0002(.009)[.009] 1.0003(.013)[.013] 1.0012(.009) 1.0003(.009)[.009] 1.0003(.009)[.009]
β2 .5127(.042) .5030(.042)[.044] .5035(.060)[.062] .5489(.094) .5131(.092)[.092] .5131(.092)[.093]
λ .1913(.026) .1984(.026)[.028] .1978(.039)[.040] .1726(.048) .1930(.047)[.046] .1930(.047)[.047]
σ2
v .8840(.037) .9967(.042)[.041] − .8864(.036) .9996(.041)[.042] −

Note: error = 1(normal), 2(normal mixture), 3(chi-square); Xt values are generated from N(0, 22).
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Table 1.3a. Empirical mean(sd)[ŝd] of estimators for FE-SPD model

with SL-SE effects, 10% random missing, heteroscedasticity,

(β1, λ, ρ, σ
2
v) = (1, 0.2, 0.2, 1), T=5.

W=M=Group-II W=Group-II, M=Queen

QMLE M-Est M-Est QMLE M-Est RM-Est
n = 50; error = 1, 2, 3, for the three panels below

β1 1.0001(.042) 1.0001(.042)[.041] .9993(.042)[.042] .9974(.039) .9978(.039)[.040] .9979(.039)[.039]
λ .1878(.070) .1944(.068)[.098] .1973(.080)[.080] .1311(.086) .1735(.083)[.106] .1894(.089)[.090]
ρ -.0161(.209) .0905(.177)[.199] .1016(.272)[.247] .1077(.147) .1845(.141)[.145] .1889(.141)[.142]
σ2
v .7664(.102) 1.0237(.136)[.150] − .7717(.102) 1.0264(.136)[.150] −
β1 1.0012(.042) 1.0013(.042)[.040] 1.0005(.043)[.041] .9980(.039) .9985(.039)[.040] .9985(.039)[.038]
λ .1873(.072) .1938(.069)[.098] .1956(.082)[.080] .1343(.083) .1757(.080)[.105] .1915(.085)[.088]
ρ -.0008(.198) .1036(.168)[.198] .1235(.248)[.232] .1086(.146) .1853(.140)[.146] .1894(.140)[.135]
σ2
v .7606(.217) 1.0154(.290)[.274] − .7695(.221) 1.0234(.294)[.277] −
β1 .9986(.041) .9986(.042)[.041] .9978(.042)[.041] .9980(.040) .9984(.040)[.040] .9985(.040)[.039]
λ .1843(.070) .1911(.067)[.099] .1928(.081)[.080] .1316(.084) .1737(.081)[.106] .1896(.087)[.089]
ρ -.0072(.205) .0980(.174)[.198] .1144(.260)[.238] .1113(.144) .1878(.138)[.145] .1919(.138)[.139]
σ2
v .7727(.158) 1.0319(.211)[.212] − .7744(.161) 1.0300(.214)[.210] −

n = 100; error = 1, 2, 3, for the three panels below
β1 1.0005(.028) 1.0005(.028)[.028] 1.0002(.028)[.028] 1.0003(.025) 1.0005(.025)[.026] 1.0006(.025)[.026]
λ .1927(.049) .1954(.048)[.064] .1992(.056)[.054] .1733(.045) .1849(.045)[.054] .1960(.046)[.048]
ρ .0883(.131) .1304(.120)[.127] .1573(.167)[.160] .1665(.095) .1995(.093)[.095] .1980(.092)[.094]
σ2
v .7572(.071) .9925(.093)[.105] − .7706(.070) .9985(.090)[.102] −
β1 1.0004(.029) 1.0004(.029)[.028] 1.0001(.029)[.028] .9994(.026) .9996(.026)[.026] .9997(.026)[.026]
λ .1921(.049) .1948(.048)[.063] .1985(.055)[.053] .1736(.045) .1851(.045)[.054] .1960(.046)[.047]
ρ .0884(.129) .1305(.118)[.128] .1578(.165)[.157] .1668(.093) .1997(.090)[.095] .1984(.090)[.090]
σ2
v .7554(.155) .9901(.203)[.199] − .7648(.153) .9910(.198)[.194] −
β1 .9997(.029) .9997(.029)[.028] .9995(.029)[.028] .9996(.026) .9998(.026)[.026] .9999(.026)[.026]
λ .1914(.049) .1941(.048)[.063] .1979(.055)[.054] .1739(.045) .1854(.045)[.054] .1964(.047)[.047]
ρ .0877(.130) .1299(.119)[.128] .1566(.167)[.159] .1656(.097) .1985(.095)[.095] .1971(.094)[.093]
σ2
v .7614(.115) .9979(.150)[.152] − .7646(.112) .9907(.145)[.146] −

n = 200; error = 1, 2, 3, for the three panels below
β1 .9991(.019) .9991(.019)[.019] .9990(.019)[.019] .9987(.020) .9988(.020)[.019] .9989(.020)[.019]
λ .1950(.034) .1962(.034)[.044] .2000(.040)[.040] .1784(.035) .1853(.034)[.042] .1980(.036)[.037]
ρ .1272(.086) .1441(.082)[.084] .1763(.112)[.107] .1862(.071) .2006(.070)[.068] .1996(.069)[.069]
σ2
v .7657(.050) .9907(.065)[.073] − .7647(.051) .9883(.065)[.073] −
β1 .9996(.019) .9996(.019)[.019] .9995(.019)[.019] .9992(.019) .9993(.019)[.019] .9994(.019)[.019]
λ .1939(.035) .1951(.035)[.044] .1984(.041)[.040] .1773(.035) .1842(.034)[.042] .1968(.036)[.037]
ρ .1345(.083) .1511(.079)[.083] .1857(.106)[.105] .1816(.071) .1960(.069)[.068] .1952(.069)[.068]
σ2
v .7704(.111) .9967(.144)[.143] − .7660(.110) .9899(.142)[.141] −
β1 .9996(.019) .9996(.019)[.019] .9996(.019)[.019] .9987(.019) .9988(.019)[.019] .9990(.019)[.019]
λ .1947(.035) .1959(.035)[.044] .1996(.041)[.040] .1782(.035) .1851(.034)[.042] .1978(.036)[.037]
ρ .1290(.085) .1459(.081)[.084] .1787(.110)[.106] .1840(.070) .1984(.069)[.068] .1975(.068)[.068]
σ2
v .7646(.080) .9893(.104)[.106] − .7664(.081) .9905(.104)[.106] −

n = 400; error = 1, 2, 3, for the three panels below
β1 .9999(.014) .9999(.014)[.013] .9999(.014)[.014] 1.0000(.013) 1.0000(.013)[.013] 1.0000(.013)[.013]
λ .1966(.026) .1970(.026)[.031] .1998(.030)[.030] .1862(.024) .1894(.024)[.028] .2002(.025)[.026]
ρ .1491(.060) .1550(.058)[.058] .1892(.075)[.074] .1945(.047) .1990(.046)[.047] .1991(.046)[.047]
σ2
v .7849(.034) 1.0110(.044)[.052] − .7839(.034) 1.0096(.044)[.052] −
β1 .9998(.014) .9998(.014)[.013] .9998(.014)[.014] .9994(.013) .9994(.013)[.013] .9994(.013)[.013]
λ .1968(.027) .1972(.027)[.031] .1998(.031)[.030] .1835(.025) .1866(.025)[.028] .1973(.026)[.026]
ρ .1509(.061) .1568(.059)[.058] .1914(.075)[.074] .1959(.048) .2003(.047)[.047] .2004(.047)[.047]
σ2
v .7878(.079) 1.0148(.102)[.103] − .7842(.080) 1.0100(.103)[.103] −
β1 1.0000(.013) 1.0000(.013)[.013] 1.0000(.014)[.014] 1.0005(.014) 1.0005(.014)[.013] 1.0005(.014)[.013]
λ .1949(.027) .1953(.027)[.031] .1980(.031)[.030] .1861(.024) .1893(.024)[.028] .2001(.025)[.026]
ρ .1500(.059) .1559(.057)[.058] .1904(.073)[.074] .1955(.047) .1999(.046)[.047] .2001(.046)[.047]
σ2
v .7869(.059) 1.0136(.076)[.078] − .7854(.059) 1.0116(.076)[.078] −

Note: error = 1(normal), 2(normal mixture), 3(chi-square); Xt values are generated from N(0, 22).
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Table 1.3b. Empirical mean(sd)[ŝd] of estimators for FE-SPD model

with SL-SE effects, 10% random missing, heteroscedasticity,

(β1, λ, ρ, σ
2
v) = (1, 0.2, 0.2, 1), T=10.

W=M=Group-II W=Group-II, M=Queen

QMLE M-Est RM-Est QMLE M-Est RM-Est
n = 50; error = 1, 2, 3, for the three panels below

β1 1.0015(.025) 1.0012(.025)[.025] 1.0009(.025)[.024] 1.0024(.026) 1.0007(.026)[.026] .9999(.026)[.025]
λ .1899(.039) .1953(.038)[.054] .1987(.043)[.042] .1677(.036) .1880(.035)[.047] .1973(.037)[.037]
ρ .0447(.119) .1342(.106)[.117] .1660(.146)[.139] .1290(.092) .2001(.091)[.090] .1988(.091)[.089]
σ2
v .8647(.073) .9940(.083)[.093] − .8737(.074) 1.0030(.085)[.094] −
β1 .9997(.025) .9995(.025)[.025] .9992(.025)[.024] 1.0015(.025) .9998(.025)[.025] .9989(.025)[.025]
λ .1900(.039) .1954(.037)[.054] .1990(.042)[.042] .1686(.035) .1888(.034)[.047] .1981(.036)[.037]
ρ .0425(.118) .1324(.105)[.119] .1636(.145)[.137] .1284(.092) .1995(.090)[.090] .1980(.089)[.087]
σ2
v .8715(.175) 1.0019(.201)[.192] − .8744(.173) 1.0037(.198)[.193] −
β1 1.0011(.025) 1.0009(.025)[.025] 1.0006(.025)[.024] 1.0021(.025) 1.0004(.025)[.026] .9995(.025)[.025]
λ .1898(.039) .1952(.037)[.054] .1987(.042)[.042] .1677(.035) .1881(.035)[.047] .1974(.036)[.037]
ρ .0461(.115) .1355(.102)[.117] .1682(.139)[.138] .1280(.092) .1992(.090)[.090] .1981(.090)[.088]
σ2
v .8646(.125) .9940(.144)[.141] − .8751(.123) 1.0047(.141)[.144] −

n = 100; error = 1, 2, 3, for the three panels below
β1 .9994(.018) .9995(.018)[.018] .9996(.018)[.018] .9996(.018) .9994(.018)[.018] .9992(.018)[.018]
λ .1901(.034) .1936(.034)[.043] .1980(.040)[.038] .1760(.034) .1889(.033)[.038] .2000(.035)[.035]
ρ .1077(.082) .1470(.077)[.080] .1809(.106)[.101] .1627(.066) .1979(.065)[.064] .1979(.065)[.064]
σ2
v .8663(.053) .9860(.060)[.067] − .8717(.054) .9931(.062)[.067] −
β1 .9991(.018) .9992(.018)[.018] .9992(.018)[.018] 1.0003(.019) 1.0001(.019)[.018] .9999(.019)[.018]
λ .1902(.033) .1937(.032)[.043] .1978(.038)[.038] .1746(.034) .1875(.033)[.038] .1985(.035)[.035]
ρ .1106(.078) .1497(.073)[.080] .1848(.101)[.099] .1605(.066) .1957(.065)[.064] .1957(.065)[.063]
σ2
v .8659(.124) .9855(.141)[.139] − .8736(.125) .9953(.143)[.139] −
β1 .9999(.018) 1.0000(.018)[.018] 1.0000(.018)[.018] .9997(.019) .9995(.019)[.018] .9993(.019)[.018]
λ .1922(.033) .1957(.032)[.043] .2005(.037)[.038] .1738(.033) .1867(.033)[.038] .1977(.035)[.035]
ρ .1077(.079) .1470(.074)[.080] .1808(.102)[.100] .1607(.066) .1958(.065)[.064] .1958(.064)[.063]
σ2
v .8630(.088) .9822(.100)[.102] − .8760(.091) .9981(.104)[.103] −

n = 200; error = 1, 2, 3, for the three panels below
β1 .9999(.013) 1.0000(.013)[.013] 1.0000(.013)[.013] 1.0004(.013) 1.0001(.013)[.013] .9997(.013)[.013]
λ .1938(.026) .1951(.026)[.030] .1976(.030)[.029] .1833(.022) .1892(.022)[.026] .1997(.023)[.023]
ρ .1420(.057) .1601(.055)[.055] .1955(.071)[.069] .1830(.045) .1995(.044)[.044] .1999(.044)[.044]
σ2
v .8932(.038) 1.0097(.043)[.048] − .8922(.036) 1.0082(.041)[.048] −
β1 .9999(.013) 1.0000(.013)[.013] 1.0000(.013)[.013] 1.0007(.012) 1.0005(.012)[.013] 1.0000(.012)[.013]
λ .1958(.026) .1972(.025)[.030] .2000(.029)[.029] .1821(.022) .1880(.022)[.026] .1985(.023)[.023]
ρ .1399(.056) .1581(.054)[.055] .1926(.070)[.069] .1798(.045) .1964(.045)[.044] .1968(.045)[.044]
σ2
v .8939(.089) 1.0105(.101)[.101] − .8912(.090) 1.0070(.102)[.100] −
β1 .9993(.013) .9993(.013)[.013] .9993(.013)[.013] 1.0006(.013) 1.0003(.013)[.013] .9999(.013)[.013]
λ .1955(.026) .1969(.026)[.030] .1998(.029)[.029] .1830(.023) .1890(.023)[.026] .1996(.024)[.023]
ρ .1379(.057) .1561(.055)[.055] .1903(.071)[.070] .1784(.043) .1949(.043)[.044] .1953(.043)[.044]
σ2
v .8916(.063) 1.0080(.072)[.074] − .8956(.065) 1.0121(.074)[.074] −

n = 400; error = 1, 2, 3, for the three panels below
β1 1.0003(.009) 1.0009(.009)[.009] 1.0003(.009)[.009] .9997(.009) .9997(.009)[.009] .9994(.009)[.009]
λ .1974(.016) .2490(.018)[.019] .2010(.018)[.018] .1860(.016) .1888(.016)[.018] .1991(.016)[.017]
ρ .1533(.037) .1210(.028)[.037] .1959(.046)[.047] .1924(.032) .1995(.031)[.031] .2001(.031)[.032]
σ2
v .8923(.027) 1.0063(.030)[.034] − .8913(.028) 1.0049(.031)[.034] −
β1 .9995(.009) 1.0001(.009)[.009] .9995(.009)[.009] 1.0003(.009) 1.0003(.009)[.009] 1.0000(.009)[.009]
λ .1965(.017) .2493(.019)[.019] .1997(.019)[.018] .1871(.016) .1900(.016)[.018] .2004(.017)[.017]
ρ .1562(.038) .1232(.029)[.037] .1996(.048)[.047] .1914(.031) .1985(.030)[.031] .1991(.030)[.031]
σ2
v .8933(.061) 1.0075(.069)[.072] − .8923(.063) 1.0060(.071)[.071] −
β1 .9998(.009) 1.0004(.009)[.009] .9998(.009)[.009] 1.0003(.009) 1.0002(.009)[.009] 1.0000(.009)[.009]
λ .1968(.017) .2485(.018)[.019] .2003(.019)[.018] .1864(.016) .1892(.016)[.018] .1996(.016)[.017]
ρ .1531(.038) .1208(.029)[.037] .1958(.047)[.047] .1922(.031) .1993(.031)[.031] .1999(.031)[.032]
σ2
v .8960(.045) 1.0105(.051)[.053] − .8950(.047) 1.0090(.053)[.053] −

Note: error = 1(normal), 2(normal mixture), 3(chi-square); Xt values are generated from N(0, 22).
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Table 1.4. Empirical mean(sd)[ŝd] of estimators for FE-SPD model

with SL-SD effects, 10% random missing, heteroscedasticity,

(β1, β2, λ, σ
2
v) = (1, 0.2, 0.2, 1), W=Group-II.

T=5 T=10
QMLE M-Est RM-Est QMLE M-Est RM-Est

n = 50; error = 1, 2, 3, for the three panels below
β1 1.0113(.045) 1.0054(.045)[.042] 1.0033(.045)[.044] 1.0134(.028) 1.0058(.028)[.027] 1.0024(.028)[.029]
β2 .7304(.237) .6103(.223)[.277] .5672(.256)[.269] .6962(.153) .5798(.143)[.172] .5278(.167)[.190]
λ .0569(.146) .1317(.137)[.152] .1583(.159)[.165] .0811(.089) .1517(.084)[.096] .1831(.099)[.114]
σ2
v .7704(.102) 1.0208(.135)[.148] − .8676(.074) .9945(.085)[.093] −
β1 1.0124(.045) 1.0065(.044)[.042] 1.0045(.045)[.043] 1.0130(.028) 1.0054(.028)[.027] 1.0021(.028)[.028]
β2 .7306(.230) .6121(.216)[.276] .5705(.247)[.261] .6972(.151) .5811(.141)[.172] .5302(.166)[.187]
λ .0572(.141) .1310(.132)[.151] .1566(.153)[.160] .0805(.089) .1508(.083)[.096] .1816(.099)[.112]
σ2
v .7664(.224) 1.0156(.297)[.273] − .8662(.171) .9930(.196)[.189] −
β1 1.0084(.044) 1.0025(.044)[.043] 1.0003(.044)[.043] 1.0127(.028) 1.0051(.028)[.027] 1.0017(.029)[.029]
β2 .7193(.232) .5998(.218)[.276] .5557(.249)[.266] .6969(.156) .5804(.146)[.172] .5285(.171)[.189]
λ .0627(.143) .1373(.134)[.152] .1645(.155)[.164] .0809(.092) .1514(.086)[.096] .1828(.102)[.113]
σ2
v .7771(.166) 1.0297(.219)[.211] − .8710(.122) .9984(.140)[.142] −

n = 100; error = 1, 2, 3, for the three panels below
β1 1.0090(.032) 1.0056(.032)[.030] 1.0028(.032)[.032] 1.0080(.020) 1.0045(.020)[.019] 1.0011(.020)[.021]
β2 .6379(.166) .5817(.161)[.185] .5351(.185)[.201] .6174(.106) .5644(.102)[.118] .5130(.120)[.125]
λ .1149(.095) .1497(.092)[.103] .1785(.109)[.119] .1250(.063) .1588(.061)[.066] .1914(.073)[.077]
σ2
v .7609(.070) .9942(.091)[.105] − .8659(.052) .9843(.060)[.067] −
β1 1.0081(.031) 1.0047(.031)[.029] 1.0019(.031)[.032] 1.0080(.020) 1.0045(.020)[.019] 1.0012(.020)[.021]
β2 .6336(.161) .5778(.156)[.185] .5313(.179)[.196] .6179(.104) .5650(.101)[.118] .5141(.118)[.124]
λ .1168(.092) .1513(.089)[.102] .1801(.105)[.116] .1247(.063) .1584(.061)[.067] .1907(.072)[.076]
σ2
v .7653(.160) .9998(.209)[.200] − .8667(.119) .9853(.136)[.138] −
β1 1.0081(.031) 1.0048(.031)[.030] 1.0020(.031)[.032] 1.0077(.020) 1.0042(.020)[.019] 1.0009(.021)[.021]
β2 .6370(.163) .5810(.158)[.185] .5348(.182)[.200] .6186(.106) .5656(.103)[.118] .5150(.121)[.124]
λ .1150(.095) .1497(.092)[.103] .1782(.108)[.118] .1238(.064) .1575(.062)[.067] .1897(.075)[.076]
σ2
v .7629(.115) .9968(.150)[.152] − .8691(.090) .9880(.102)[.102] −

n = 200; error = 1, 2, 3, for the three panels below
β1 1.0067(.021) 1.0050(.021)[.021] 1.0017(.022)[.023] 1.0053(.015) 1.0036(.015)[.014] 1.0005(.015)[.015]
β2 .5960(.117) .5690(.116)[.129] .5193(.133)[.146] .5831(.077) .5563(.076)[.082] .5074(.086)[.093]
λ .1412(.067) .1573(.066)[.068] .1869(.077)[.085] .1485(.044) .1651(.044)[.046] .1953(.051)[.055]
σ2
v .7670(.051) .9909(.066)[.073] − .8830(.039) .9979(.044)[.047] −
β1 1.0056(.021) 1.0038(.021)[.021] 1.0005(.022)[.023] 1.0051(.014) 1.0034(.014)[.014] 1.0003(.015)[.015]
β2 .5952(.113) .5683(.111)[.129] .5179(.127)[.144] .5807(.075) .5540(.073)[.083] .5048(.083)[.093]
λ .1438(.064) .1598(.063)[.068] .1898(.074)[.084] .1495(.043) .1660(.043)[.046] .1964(.050)[.055]
σ2
v .7684(.110) .9926(.143)[.141] − .8814(.088) .9962(.099)[.099] −
β1 1.0062(.022) 1.0044(.021)[.021] 1.0011(.022)[.023] 1.0049(.015) 1.0032(.015)[.014] 1.0001(.015)[.015]
β2 .5952(.116) .5682(.114)[.129] .5180(.131)[.145] .5839(.077) .5572(.076)[.083] .5081(.086)[.093]
λ .1434(.066) .1595(.065)[.068] .1893(.076)[.084] .1487(.044) .1652(.043)[.046] .1956(.051)[.055]
σ2
v .7646(.082) .9878(.105)[.106] − .8848(.063) 1.0000(.071)[.074] −

n = 400; error = 1, 2, 3, for the three panels below
β1 1.0049(.015) 1.0040(.015)[.014] 1.0006(.015)[.016] 1.0039(.010) 1.0030(.010)[.010] 1.0000(.010)[.011]
β2 .5716(.079) .5582(.078)[.086] .5083(.090)[.103] .5631(.051) .5498(.051)[.057] .5031(.057)[.065]
λ .1562(.046) .1643(.046)[.048] .1947(.054)[.062] .1616(.030) .1698(.030)[.032] .1987(.034)[.039]
σ2
v .7778(.036) .9995(.046)[.052] − .8933(.027) 1.0073(.031)[.034] −
β1 1.0048(.014) 1.0040(.014)[.014] 1.0006(.015)[.015] 1.0041(.010) 1.0032(.010)[.010] 1.0003(.010)[.010]
β2 .5695(.080) .5561(.079)[.086] .5057(.091)[.103] .5627(.051) .5495(.051)[.057] .5030(.057)[.065]
λ .1579(.047) .1660(.047)[.048] .1968(.055)[.061] .1609(.030) .1691(.029)[.032] .1979(.034)[.039]
σ2
v .7778(.078) .9995(.100)[.102] − .8948(.064) 1.0089(.072)[.072] −
β1 1.0047(.014) 1.0038(.014)[.014] 1.0005(.014)[.015] 1.0038(.010) 1.0030(.010)[.010] 1.0000(.010)[.010]
β2 .5714(.078) .5580(.077)[.086] .5084(.089)[.103] .5615(.050) .5483(.049)[.057] .5017(.056)[.065]
λ .1560(.046) .1641(.046)[.048] .1944(.054)[.062] .1620(.029) .1701(.029)[.032] .1990(.033)[.039]
σ2
v .7777(.057) .9993(.073)[.076] − .8905(.047) 1.0041(.053)[.053] −

Note: error = 1(normal), 2(normal mixture), 3(chi-square); Xt values are generated from N(0, 22).
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the tax rates of neighboring states are likely to play a role in the determi-

nation of excise tax policy. Based on this theory, Egger et al. (2005) and

Devereux et al. (2007) use spatial econometric techniques to identify such

phenomenon. Both of them propose to use the 2SLS method to estimate the

spatial lag parameter. As the quadratic moment conditions are not used for

spatial parameters, the 2SLS approach usually cannot provide efficient estima-

tion results, compared with our M-estimation. In addition, our M-estimation

is able to be robust against unknown heteroscedasticity.

We construct a panel of data from 48 US states over 23 years, from 1977 to

1999. Following Devereux et al. (2007), we do not use the two states, Alaska

and Hawaii, as they do not share borders with any other states. The missing

percentages for three types of tax rates are, respectively, 8.61%, 6.25%, and

6.34%. As the missing percentage is small, we argue the interaction effects of

unobserved units on observed ones are asymptotically negligible. That is, with

a fixed number of missing, the unbalanced model at least asymptotically fits

our random missing mechanism. The spatial neighboring states are defined as

those that share a common border. The overall spatial weight matrix W for

the total 48 states is row-normalized with zero on the diagonals. In each time

period t, the rows and columns of W corresponding to the missing observations

will be deleted, yielding Wt. Thus, {Wt} are generally time-varying and may

not be row-normalized. We follow Egger et al. (2005) and set a number of

control variables including state size (population density), spatially weighted

size, age dependency ratio, government ideological orientation, lagged sales

tax rate, top income tax rate, and public expenditure. The data of tax rates

on gasoline, cigarettes, and beers are collected from the World Tax Database

(WTD) maintained by the Office of Tax Policy Research at the University of

Michigan, and all the other control variables are collected following Egger et

al. (2005).

Table 1.5 summarizes the M-estimation results for gasoline, cigarettes, and

beer tax rates. For the models with only SE effects, the spatial error parameter

estimate exhibits a significant positive value for each type of tax rate. This

implies that the unobserved stochastic shocks increasing one state’s tax rates
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Table 1.5. M-estimation results for US state tax competition.
Explanatory Variables Gasoline Cigarettes Beer

SE SL SL-SE SE SL SL-SE SE SL SL-SE

Spatial lag parameter 0.273 0.235 0.487 0.788 0.072 -0.270
(0.02)*** (0.02)*** (0.05)*** (0.05)*** (0.03)*** (0.03)***

State size -0.015 0.002 -0.002 0.342 0.306 0.257 0.084 0.097 0.082
(0.02) (0.01) (0.01) (0.06)*** (0.03)*** (0.02)*** (0.03)*** (0.01)*** (0.02)***

Weighted size 0.001 -0.010 -0.008 -0.009 -0.072 -0.117 -0.009 -0.018 0.003
of neighbours (0.01) (0.06) (0.06) (0.03) (0.18) (0.13) (0.01) (0.08) (0.10)
Dependency ratio 0.012 -0.047 -0.044 0.313 0.159 -0.050 0.245 0.233 0.338

(0.07) (0.01)*** (0.01)*** (0.24) (0.03)*** (0.03)* (0.10)*** (0.01)*** (0.01)***
Political orientation 0.029 0.021 0.021 -0.047 -0.055 -0.039 -0.012 -0.018 -0.002
of state governments (0.01)*** (0.17) (0.17) (0.03) (0.48) (0.50) (0.02) (0.23) (0.21)
Lagged sales tax rate -0.180 -0.120 -0.130 1.628 1.256 0.527 0.037 -0.030 0.082

(0.17) (0.06)** (0.06)** (0.50)*** (0.17)*** (0.16)*** (0.23) (0.08) (0.08)
Lagged top income 0.143 0.137 0.133 -0.331 -0.328 -0.271 -0.073 -0.080 -0.067
tax rate (0.06)*** (0.00)*** (0.00)*** (0.17)* (0.00)*** (0.00)*** (0.08) (0.00)*** (0.00)***
Public expenditure -0.001 -0.001 -0.001 0.002 0.002 0.002 0.001 0.001 0.001

(0.00)*** (0.04) (0.05) (0.00)*** (0.04) (0.05) (0.00)*** (0.04) (0.08)
Spatial error parameter 0.300 0.071 0.492 -0.555 0.190 0.451

(0.05)*** (0.08) (0.04)*** (0.12)*** (0.05)*** (0.08)***
Observations 1009 1009 1009 1035 1035 1035 1034 1034 1034
Note: Standard errors of coefficients are in parentheses. *,**,*** represent significance levels 10%, 5% and 1%, respectively.

would also have a positive effect on its neighbors’ tax rates. For the models

with only SL effects, we identify a significant positive spatial lag parameter for

all the tax rates. These findings suggest the existence of the tax competition

and consistent with the results in Devereux et al. (2007). When including

both SL and SE effects into the models, we still can observe significant positive

results for spatial lag parameter estimate for Gasoline and Cigarettes tax rates.

In addition, the spatial error parameter estimate for Cigarettes tax rates is

significantly negative, which is consistent with that in Egger et al. (2005).

However, our approach has advantages in that we are able to make statistical

inferences on the SE effect. For the Beer tax rates, we find a significant negative

estimate for the SL parameter but a significant positive estimate for the SE

parameter.

As different states vary greatly in so many aspects such as history, popula-

tion structure, and other social-economical characteristics, it is thus natural to

believe that the innovations may be heteroscedastic. Therefore, we also report

all the empirical findings based on the RM-estimation in Table 1.6. The coef-

ficients are close to those in Table 1.5 with only mild differences in significance

level for some estimates.

1.6 Extensions

As discussed in the introduction section, the unbalanced SPD (USPD) mod-

els and the associated M-estimations are quite general in that they can be
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Table 1.6. RM-estimation results for US state tax competition.
Explanatory Variables Gasoline Cigarettes Beer

SE SL SL-SE SE SL SL-SE SE SL SL-SE

Spatial lag parameter 0.267 0.231 0.468 0.715 0.071 -0.259
(0.03)*** (0.03)*** (0.08)*** (0.07)*** (0.02)*** (0.02)***

State size -0.016 0.001 -0.003 0.341 0.305 0.271 0.084 0.096 0.083
(0.03) (0.01) (0.01) (0.10)*** (0.02)*** (0.02)*** (0.02)*** (0.01)*** (0.01)***

Weighted size 0.001 -0.009 -0.008 -0.009 -0.069 -0.106 -0.009 -0.018 0.003
of neighbours (0.01) (0.06) (0.06) (0.02) (0.17) (0.17) (0.01) (0.13) (0.16)
Dependency ratio 0.014 -0.046 -0.043 0.323 0.173 0.010 0.245 0.233 0.336

(0.07) (0.01)*** (0.01)*** (0.20) (0.04)*** (0.03) (0.15) (0.02)*** (0.02)***
Political orientation 0.029 0.021 0.021 -0.046 -0.055 -0.044 -0.012 -0.018 -0.002
of state governments (0.01)*** (0.23) (0.23) (0.04) (0.53) (0.63) (0.02) (0.18) (0.17)
Lagged sales tax rate -0.177 -0.119 -0.128 1.601 1.224 0.671 0.036 -0.030 0.078

(0.23) (0.07) (0.07)* (0.57)*** (0.17)*** (0.16)*** (0.19) (0.06) (0.06)
Lagged top income 0.144 0.137 0.134 -0.334 -0.332 -0.292 -0.073 -0.080 -0.069
tax rate (0.07)* (0.00)*** (0.00)*** (0.16)** (0.00)*** (0.00)*** (0.06) (0.00)*** (0.00)***
Public expenditure -0.001 -0.001 -0.001 0.002 0.002 0.002 0.001 0.001 0.001

(0.00)*** (0.04) (0.05) (0.00)*** (0.06) (0.12) (0.00)*** (0.05) (0.09)
Spatial error parameter 0.289 0.068 0.478 -0.421 0.189 0.436

(0.05)*** (0.07) (0.06)*** (0.23)* (0.06)*** (0.09)***
Observations 1009 1009 1009 1035 1035 1035 1034 1034 1034
Note: Standard errors of coefficients are in parentheses. *,**,*** represent significance levels 10%, 5% and 1%, respectively.

extended to allow for additional features in the model or to different types of

unbalanced SPD models. For illustration, we extend the current model to allow

errors to be serially correlated, and consider models with random effects (RE).

We present some details on the following four extensions: (i) USPD model with

two-way FE and serial correlation, (ii) USPD model with two-way FE, het-

eroscedasticity and serial correlation, (iii) USPD model with two-way RE and

serial correlation, and (iv) USPD model with two-way RE, heteroscedasticity

and serial correlation. For serial correlation, we assume that the model errors

follow a stationary AR(1), i.e., vit = %vi,t−1 + eit with |%| < 1. Cases (i), (ii)

and (iv) all encounter incidental parameters problem, the standard methods

for balanced panels cannot be applied, and the proposed M-estimation needs

to be called for. Case (iii) illustrates the simplicity of the proposed modeling

strategy in controlling the random effects in the unbalanced SPD models with

general time-varying spatial weight matrices and serial correlation.

(i) USPD Model with Two-Way FE and Serial Correlation

Assume vit = %vi,t−1 + eit with |%| < 1, and eit ∼ iid(0, σ2
e). Denote K =

blkdiag(D1, . . . , DT ). It is easy to see that Var(V) = σ2
eK(ΩV (%) ⊗ In)K′ ≡

σ2
eΥN(%), where

ΩV (%) =
1

1− %2


1 % · · · %T−1

% 1 · · · %T−2

...
...

. . .
...

%T−1 %T−2 1

 .
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Denote UN(ρ, %) = Υ−1
N (%)−Υ−1

N (%)D(ρ)[D′(ρ)Υ−1
N (%)D(ρ)]−1D′(ρ)Υ−1

N (%). Let

θ = (β′, σ2
e , δ)

′, where δ = (λ, ρ, %)′. The concentrated quasi Gaussian loglike-

lihood function (with φ being concentrated) of θ takes the form:

`cN(θ) = −N
2

ln 2π−N
2

lnσ2
e−1

2
ln |ΥN(%)|+ln |AN(λ)|+ln |BN(ρ)|− 1

2σ2
e
Ṽ′(β, δ)Ṽ(β, δ),

where Ṽ(β, δ) = UN(ρ, %)BN(ρ)[AN(λ)Y − Xβ]. Hence, the concentrated

quasi score (CQS) functions ScN(θ) = ∂
∂θ
`cN(θ) is given as

ScN(θ) =



1
σ2
e
X′B′N(ρ)U′N(ρ, %)Ṽ(β, δ),

1
2σ4
e
[Ṽ′(β, δ)Ṽ(β, δ)−Nσ2

e ],

1
σ2
e
Y′W′B′N(ρ)U′N(ρ, %)Ṽ(β, δ)− tr[FN(λ)],

1
σ2
e
Ṽ(β, δ)′GN(ρ)ΥN(%)Ṽ(β, δ)− tr[GN(ρ)],

1
2σ2
e
Ṽ(β, δ)′Υ̇N(%)Ṽ(β, δ)− 1

2
tr[Υ−1

N (%)Υ̇N(%)],

where Υ̇N(%) = ∂
∂%

ΥN(%). To remove the effect from estimating FEs, we correct

ScN(θ) using S∗N(θ0) = ScN(θ0)−E[ScN(θ0)], which takes the form at the general

θ:

S∗N(θ) =



1
σ2
e
X′B′N(ρ)U′N(ρ, %)Ṽ(β, δ),

1
2σ4
e
[Ṽ′(β, δ)Ṽ(β, δ)− σ2

etr(UN(ρ, %))],

1
σ2
e
Y′W′B′N(ρ)U′N(ρ, %)Ṽ(β, δ)− tr[BN(ρ)FN(λ)B−1

N (ρ)ΥN(%)U2
N(ρ, %)],

1
σ2
e
Ṽ(β, δ)′GN(ρ)ΥN(%)Ṽ(β, δ)− tr[GN(ρ)ΥN(%)UN(ρ, %)],

1
2σ2
e
Ṽ(β, δ)′Υ̇N(%)Ṽ(β, δ)− 1

2
tr[Υ̇N(%)UN(ρ, %)].

Solving the AQS equations: S∗N(θ) = 0, gives the M-estimator of θ.

(ii) USPD Model with Two-Way FE, heteroscedasticity and Serial

Correlation

Now, we consider the case that errors are heteroscedastic across individuals

and serially correlated across time, i.e., vit = %vi,t−1 +eit with |%| < 1 and eit ∼

inid(0, σ2
i ). Let h = diag(σ2

1, . . . , σ
2
n). In this case, we have Var(V) = HΥN(%),

where H = blkdiag(h1, . . . , hT ) and ht is obtained from h by omitting the rows

and columns corresponding to the missing units at time t. Following the similar

derivations as we do in Subsection 1.3.1, we obtain the desired AQS functions
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robust against the unknown heteroscedasticity:

S�N(β, δ) =



X′B′N(ρ)U′N(ρ, %)Ṽ(β, δ),

Y′A′N(λ)B′N(ρ)[F̄′N(λ, ρ)− F̄′N(δ)]Ṽ(β, δ),

[AN(λ)Y −Xβ]′B′N(ρ)[ḠN(ρ, %)− ḠN(ρ, %)]Ṽ(β, δ),

[AN(λ)Y −Xβ]′B′N(ρ)[ŪN(ρ, %)− ŪN(ρ, %)]Ṽ(β, δ),

where F̄′N (λ, ρ) = B−1′
N (ρ)F′N (λ)B′N (ρ), ḠN (ρ, %) = UN (ρ, %)GN (ρ)ΥN (%), ŪN (ρ, %)

= UN (ρ, %)Υ̇N (%), F̄′N (δ) = Υ−1
N (%)diag[ΥN (%)F̄′N (δ)UN (ρ, %)]diag[UN (ρ, %)]−1,

ḠN (ρ, %) = Υ−1
N (%)diag[ΥN (%)ḠN (ρ, %)UN (ρ, %)]diag[UN (ρ, %)]−1, and ŪN (ρ, %) =

Υ−1
N (%)diag[ΥN (%)ŪN (ρ, %)UN (ρ, %)]diag[UN (ρ, %)]−1.

Solving the robust AQS equations: S�N(β, δ) = 0, gives the M-estimators

of β and δ, robust against unknown heteroscedasticity, and allowing serial

correlation of AR(1) form.

(iii) USPD Model with Two-Way RE and Serial Correlation

Assume µi ∼ iid(0, σ2
µ), αt ∼ iid(0, σ2

α), and they are mutually independent

and independent of eit. Then the covariance matrix of the composite error

term is

0N(θ1) = σ2
µDµ(ρ) + σ2

αDα(ρ) + σ2
eΥN(%),

with θ1 = (ρ, %, σ2
e , σ

2
µ, σ

2
α)′, Dµ(ρ) = BN(ρ)DµD

′
µB
′
N(ρ) and Dα(ρ) = BN(ρ)

DαD
′
αB
′
N(ρ). The quasi Gaussian loglikelihood function of θ = (β′, λ, θ′1)′ is

`N(θ) = − N
2

ln 2π − 1
2

ln |0N(θ1)|+ ln |AN(λ)|+ ln |BN(ρ)|

− 1
2
V′(β, λ, ρ)0−1

N (θ1)V(β, λ, ρ),

where V(β, λ, ρ) = BN(ρ)[AN(λ)Y − Xβ]. The direct QML estimator θ̂QML

of θ maximizes the above equation `N(θ), and its consistency and asymptotic

normality can be easily established.

(iv) USPD Model with Two-Way RE, heteroscedasticity and Serial

Correlation

We now extend the model in (iii) to allow heteroscedasticity in the errors

as in (ii) above. Denote Ṽ(θ) = 0−1
N (θ1)V(β, λ, ρ). The quasi score functions

36



assuming homoscedasticity are:

SN(θ) =



X′B′N (ρ)Ṽ(θ),

Y′W′B′N (ρ)Ṽ(θ)− tr[FN (λ)],

σ2
eṼ
′(θ)GN (ρ)ΥN (%)Ṽ(θ)− σ2

etr[GN (ρ)ΥN (%)0−1
N (θ1)],

σ2
e
2 Ṽ′(θ)Υ̇N (%)Ṽ(θ)− σ2

e
2 tr[Υ̇N (%)0−1

N (θ1)],

1
2Ṽ
′(θ)ΥN (%)Ṽ(θ)− 1

2tr[ΥN (%)0−1
N (θ1)],

1
2Ṽ
′(θ)Dµ(ρ)Ṽ(θ)− 1

2tr[Dµ(ρ)0−1
N (θ1)],

1
2Ṽ
′(θ)Dα(ρ)Ṽ(θ)− 1

2tr[Dα(ρ)0−1
N (θ1)].

It is easy to see that E[ScN(θ0)] 6= 0 when e′its are heteroscedastic. Therefore,

some adjustments on the above quasi score functions are necessary in order

to have consistent estimation. Denote θ2 = (ρ, %, σ2
µ, σ

2
α)′, ξ = (β′, λ, θ′2)′,

0N(θ2) = σ2
µDµ(ρ) + σ2

αDα(ρ) + ΥN(%) and Ṽ(ξ) = 0−1
N (θ2)V(β, λ, ρ). Alone

the similar ideas of Section, some tedious algebra leads to the AQS functions

robust against the unknown heteroscedasticity and allowing serial correlation

of AR(1) form:

S�N(ξ) =



X′B′N (ρ)Ṽ(ξ),

Y′A′N (λ)B′N (ρ)[F̄′N (λ, ρ)− F̄′N (λ, θ2)]Ṽ(ξ)− tr[F̄N (λ, ρ)− F̄N (λ, θ2)],

V′(β, λ, ρ)[ḠN (θ2)− ḠN (θ2)]Ṽ(ξ)− tr[ḠN (θ2)− ḠN (θ2)],

V′(β, λ, ρ)[ŪN (θ2)− ŪN (θ2)]Ṽ(ξ)− tr[ŪN (θ2)− ŪN (θ2)],

V′(β, λ, ρ)[S̄µ(θ2)− S̄µ(θ2)]Ṽ(ξ)− tr[S̄µ(θ2)− S̄µ(θ2)],

V′(β, λ, ρ)[S̄α(θ2)− S̄α(θ2)]Ṽ(ξ)− tr[S̄α(θ2)− S̄α(θ2)],

where F̄′N (λ, ρ) = B−1′
N (ρ)F′N (λ)B′N (ρ), ḠN (θ2) = 0−1

N (θ2)GN (ρ)ΥN (%),

ŪN (θ2) = 0−1
N (θ2)Υ̇N (%), S̄$(θ2) = 0−1

N (θ2)D$(ρ),

F̄′N (λ, θ2) = Υ−1
N (%)diag[ΥN (%)F̄′N (δ)0−1

N (θ2)]diag[0−1
N (θ2)]−1,

ḠN (θ2) = Υ−1
N (%)diag[ΥN (%)ḠN (θ2)0−1

N (θ2)]diag[0−1
N (θ2)]−1,

ŪN (θ2) = Υ−1
N (%)diag[ΥN (%)ŪN (θ2)0−1

N (θ2)]diag[0−1
N (θ2)]−1,

and S̄$(θ2) = Υ−1
N (%)diag[ΥN (%)S̄$(θ2)0−1

N (θ2)]diag[0−1
N (θ2)]−1, for $ = µ or α.

Solving the robust AQS equations: S�N(ξ) = 0, gives the M-estimator of ξ,

robust against unknown heteroscedasticity, and allowing serial correlation of

AR(1) form.
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Asymptotic properties of the M-estimators in cases (i) and (ii) can be

studied in a similar way as that in the main text of this chapter, and infer-

ences methods can be developed along the same line. However, formal studies

on these cases are still quite involved, and can only be done in a future re-

search work. For the cases (iii) and (iv), we do not foresee any difficulties

in establishing the asymptotic properties of the QML and M-estimators, but

developments of the inference methods may encounter some difficulties due to

the involvement of three error components which may be all non-normal, and

the allowance of unknown heteroscedasticity. Formal studies on these cases

are in our future research agenda.

1.7 Conclusion

We consider estimation and inference for an unbalanced spatial panel data

model with both individual and time fixed effects, where the unbalancedness

is caused by, e.g., late entries, early dropouts, lack of economic activities,

such that the missing spatial units at a given time period do not generate

any spillover effects on their ‘neighbors”. Unbalanced spatial panels with fixed

effects render the commonly adopted approach, the orthogonal transformation,

inapplicable. An adjusted quasi score (AQS) is proposed, which adjusts the

concentrated quasi scores (with the fixed effects being concentrated out) to

remove the effects of estimating these incidental parameters. For the statistical

inferences, the main difficulty lies with the fact that ‘consistent’ estimates

of the idiosyncratic errors are unavailable due to the incidental parameters

problem. A ‘plug-in and then bias-correction’ method is proposed to give

consistent estimates of the standard errors of the M-estimators. The proposed

methods are then extended to allow for unknown heteroscedasticity along both

the cross-sectional and time dimensions. Monte Carlo results show excellent

performance of the proposed estimation and inference methods.

The proposed methods are seen to be very general in handling the un-

balanced SPD models in the presence of incidental parameters such as fixed

effects and unknown heteroscedasticity, allowing the spatial weight matrices

to be time-varying and without row-normalizations. The generality of the
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proposed methods is further demonstrated by considering the following ex-

tensions: the unbalanced SPD model with (i) two-way fixed effects (FE) and

serial correlation, (ii) two-way FE, heteroscedasticity and serial correlation,

(iii) two-way random effects (RE) and serial correlation, and (iv) two-way RE,

heteroscedasticity and serial correlation. The current study also sheds light on

an interesting but challenging extension: unbalanced SPD models with inter-

active fixed effects in the spirit of Bai et al. (2015). However, rigorous studies

on these extensions can only be done in future works.
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Chapter 2

Threshold Spatial Panel Data

Models with Fixed Effects

2.1 Introduction

Since Anselin (1988), researchers have been paying increasing attention to

spatial panel data (SPD) models for their ability to model the cross-sectional

dependence while maintaining full control for the unobservable heterogene-

ity. See, among others, Baltagi et al. (2003), Lee and Yu (2010), Baltagi

and Yang (2013a,b), Yang et al. (2016), Liu and Yang (2020) and Li and

Yang (2020,2021). The threshold regression model is another popular specifi-

cation with wide practical applicability, which divides observations into distinct

regimes, depending on the value of an observable variable (threshold variable)

– whether or not it exceeds some threshold value. See Hansen (2011) for an

overview of the development of threshold models in both econometrics and

economics literature. However, the existing studies of threshold models have

been limited to the regular panel data models (e.g., Hansen, 1999) until very

recently Wei et al. (2021) propose a threshold SPD model aiming to include

both important structures in a single model.1 The combined model can bene-

fit from the advantages of both structures. On one hand, it enables the panel

1Related works but under spatial cross-sectional setup include Deng (2018) and Zhu et
al. (2020).
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threshold model to account for cross-sectional dependence, and on the other

hand, the combined model can capture heterogeneous spatial effects under dif-

ferent circumstances. This greatly increases the flexibility of the SPD models.

The spatial models with threshold effects (though rarely studied in the

econometrics literature) can offer a wide range of applications. In social science,

Schelling (1971) finds a phenomenon of “neighborhood tipping” in the process

of residential segregation that only when a recognizable new minority enters

a neighborhood in sufficient numbers, will the spillover effects occur to the

earlier residents. Strong empirical evidence of this phenomenon is later found

by Card et al. (2008). In public economics, Glaeser et al. (1996) study the

relationship between crime and social interactions and find that the amount

of spillover effects for different types of crimes is distinct, depending on the

severity of the crime. In empirical finance, Pesaran and Pick (2017) argue that

financial crises spreading from one place to others may have two categories

of causes: inter-dependence and financial contagion, distinguished by some

threshold effects, and different causes would have varying degrees of impact on

other places.

The literature on threshold models has been fast-growing since Tong (1978)

due to their broad applicability. Chan (1993) first finds that the asymptotic

distribution of least squares (LS) estimator of threshold parameter is a func-

tional of a compound Poission process, depending on many nuisance parame-

ters including the marginal distribution of the covariates and all the regression

coefficients. Hence, this theory cannot provide a practical method to make

statistical inference on the threshold parameter. Hansen (2000) assumes that

the threshold effects decrease with sample size and presents a likelihood ratio

(LR) test method for the construction of confidence intervals for the thresh-

old parameter. Seo and Linton (2007) propose a smoothed LS estimation

and establish inference theories in both fixed and diminishing threshold effects

frameworks. However, both of these studies are at the expense of the con-

vergence rate, compared to Chan (1993). As for the panel threshold models,

Hansen (1999) studies a threshold static panel data model under the same

diminishing-threshold-effect assumption. He suggests using the classic within
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transformation to first eliminate the individual-specific fixed effects and then

applying the LS method for estimation. Dang et al. (2012) extend the model

to include dynamic structure and propose to apply the GMM technique for

estimation in a short panel setup. Seo and Shin (2016) further extend the dy-

namic model by allowing for endogenous threshold variable and regressors in

both shrinking and fixed threshold effects frameworks. They develop a general

GMM estimator for threshold parameter which follows a normal distribution

asymptotically. However, all the above studies maintain the assumption of no

cross-sectional dependence, which may be restrictive for some empirical appli-

cations. In a recent paper, Miao et al. (2020) try to relax this restriction and

propose a panel threshold model with interactive fixed effects. They study the

LS estimation in the diminishing-threshold-effect framework.

Spatial models offer an alternative way to model cross-sectional depen-

dence, and in addition they can capture endogenous and contextual spatial

interaction effects (Manski, 1993). The sole work in this literature is Wei et al.

(2021), which extends Hansen (1999) to allow for spatial autoregressive (SAR)

structure in the model. The threshold effects are allowed for both spatial and

regression coefficients. However, the estimation method they propose is a two-

stage least square (2SLS) estimation (Caner and Hansen, 2004), which is typ-

ically inefficient compared to ML-type estimation for spatial models. Besides,

the asymptotic properties of the estimators are not studied and the statistical

inference of the threshold parameter is not considered. Another related work is

Li (2018), which studies an SPD model with structural change, a special case

of the threshold SPD model with the threshold variable being simply the time

variable. A direct quasi maximum likelihood (QML) approach is proposed for

the model estimation, where the incidental parameters problem (Neyman and

Scott, 1948) due to the estimation of fixed effects is not addressed. Both stud-

ies do not consider the time-specific fixed effects, which might be important

and have empirical implications in many economic studies (e.g., Ertur and

Koch, 2007; Elhorst and Fréret, 2009). Moreover, the additional time fixed

effects can make the incidental parameters problem more complicated to deal

with in the SPD framework (Lee and Yu, 2010). It is therefore highly desirable
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to develop a formal study to provide general estimation, testing and inference

methods for the threshold SPD models with both individual and time fixed

effects.

In this chapter, we study a threshold spatial panel data model with two-

way fixed effects, which allows for the presence of threshold effects in both

spatial parameter and regression slopes. To facilitate statistical inference on

the threshold parameter, we impose the assumption of diminishing-threshold-

effect as in Hansen (2000). We propose an ML-type estimation method as it

often has better finite-samples properties than GMM/IV approach. The classi-

cal within transformation is not suitable for the ML estimation, as it will create

linear dependence in the resulting disturbances. Meanwhile, the presence of

the threshold effects also renders the orthogonal transformation approach (Lee

and Yu, 2010) inapplicable to eliminate fixed effects because spatial weight

matrices are often time-varying and may not be row-normalized. Therefore,

an adjusted quasi maximum likelihood estimation method is proposed. The

method starts from the joint quasi Gaussian loglikelihood function of all the

parameters, then concentrates out the fixed effects to give the concentrated

quasi loglikelihood function, and then adjusts this concentrated loglikelihood

function to ‘recover’ the effect of degrees of freedom loss due to the estimation

of the fixed effects parameters. Maximizing the adjusted concentrated log-

likelihood function gives the adjusted QML estimators. It is worth mentioning

that the incidental parameter problem caused by the estimation of fixed effects

cannot be fully removed by this adjustment to the concentrated loglikelihood

function. Thus, one main challenging part of our study still lies with the anal-

ysis of the threshold estimator in conjunction with the incidental parameters

problem. In the contrast, Hansen (1999) does not have such an incidental pa-

rameter problem as the within transformation can be applied to eliminate the

fixed effects. Another main challenging part is that the nonlinearity resulting

from the SAR structure makes the analysis in Hansen (1999) unsuitable for

our model.

We find our adjusted QML method can yield consistent estimations for spa-

tial, variance and regression coefficients, no matter T is small or large, which
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is different from the direct QML approach in Li (2018) where the variance es-

timate is inconsistent when T is fixed. Under a non-restrictive condition that

T does not grow faster than n, the adjusted QML estimator of the threshold

parameter is also shown to be consistent. We find the convergence rate of

the threshold estimate is related to the threshold diminishing rate and, under

this rate, the estimation error of the threshold estimate has an asymptotically

negligible effect on the other estimators. Hence, the asymptotic normality of

the common estimators except for the threshold estimator is established. Due

to the incidental parameters problem, the estimates of spatial parameters are

not asymptotically centered when T and n go to infinity at the same rate. A

simple bias correction procedure is proposed to remove these asymptotic bi-

ases. We also derive the asymptotic distribution of the threshold estimate but

it involves the unknown parameters that cannot be estimated correctly. There-

fore, we propose an LR test statistic to facilitate inference on the threshold

parameter. In contrast to Hansen (1999), the LR statistic is not asymptot-

ically pivotal even under homoskedasticity because its limiting distribution

involves the third and fourth moments of the errors. When the errors are

normally distributed, these third and fourth moments are zero and thus the

LR statistic becomes pivotal. If the normality condition is suspected, a non-

parametric technique can be applied to estimate the unknown parameter in

the limit distribution of LR statistic. Finally, we follow Hansen (1996) and

propose a sup-Wald statistic to test the existence of threshold effects. In view

of the fact that the asymptotic distribution of the sup-Wald statistic based

on the adjusted QML estimators cannot be approximated via simulation, we

instead propose a sup-Wald statistic based on an M-, or adjusted quasi score

(AQS) estimation, where the estimating function is obtained by adjusting the

quasi score functions with the fixed effects being concentrated out. We intro-

duce a bootstrap procedure to obtain the asymptotically correct critical values

for the proposed sup-Wald statistic. Monte Carlo results show the excellent

performance of the proposed estimators and test statistics.

The practical relevance of allowing for threshold effects in SPD models is

illustrated by studying the threshold effect of leaders’ age on political compe-
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titions across 338 cities in China over the periods 2010 to 2012. The political

competitions among city leaders of the same level are identified by the spa-

tial effects across city-level total investments. We find that the competitions

are strong for local leaders who are younger than a threshold age but tend

to vanish for those who are older than the threshold level, approaching the

retirement age.

The outline of this chapter is as follows. Section 2.2 introduces our model

and assumptions, discusses the QML estimation and its asymptotic properties,

and studies the likelihood ratio test on the threshold value. Section 2.3 studies

the hypothesis testing on the presence of threshold effects. Monte Carlo simu-

lation findings are in Section 2.4. Section 2.5 applies our method to study the

age-of-leader effects on political competitions across Chinese cities. Section 2.6

discusses some extensions. Section 2.7 concludes. Proofs are collected in the

appendices.

Notation. Im denotes an m × m identity matrix, 0m×n an m × n zero

matrix, and lm an m × 1 vector of ones. For a square matrix, | · | denotes

its determinant and tr(·) its trace. For a real symmetric matrix, ρmin(·) de-

notes its smallest eigenvalue. For a real n × m matrix A with elements aij,

its Frobenius norm is denoted as ‖A‖, its maximum column sum norm by

‖A‖1 = max16j6m
∑n

i=1 |aij| and its maximum row sum norm by ‖A‖∞ =

max16i6n
∑m

j=1 |aij|. The operators diag(·) forms a diagonal matrix using the

diagonal elements of a square matrix or a given vector and diagv(·) forms a

column vector using the diagonal elements of a square matrix. The true value

of a parameter is denoted by adding a subscript 0. Finally, As = A+ A′.

2.2 The Model and Adjusted QML Estimation

2.2.1 Threshold SPD model with fixed effects

Consider a total of n spatial units, interconnected at time t through an

n × n spatial weight matrix Wt. There exists a threshold variable qit such

that depending on its value the spatial and regression coefficients may differ.

Let dit(γ) = 1(qit 6 γ), where 1(·) is the indicator function and γ is the

threshold parameter assumed to take values in a bounded set Γ = [γ, γ]. Define
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dt(γ) = diag{d1t(γ), . . . , dnt(γ)}. The model we consider takes the vector form:

Yt = λ10WtYt + λ20dt(γ0)WtYt +Xtβ10 + dt(γ0)Xtβ20 + µ0 + αt0ln + Vt, (2.1)

t = 1, . . . , T , where Yt = (y1t, . . . , ynt)
′ is an n× 1 vector of responses at time

t, Xt = (x1t, . . . , xnt)
′ is an n× k matrices containing values of k time-varying

regressors, and Vt = (v1t, v2t, . . . , vnt)
′ is an n×1 vector of idiosyncratic errors.

The λ10 characterizes the baseline spatial lag effect and β10 (k×1) the baseline

regression coefficients; and λ20 and β20 (k×1) are the corresponding threshold

effects.2 µ0 = {µi0}ni=1 is an n × 1 vector of individual-specific effects and

α0 = {αt0}Tt=1 is a T × 1 vector of time-specific effects, which are allowed to be

correlated with Xt in an arbitrary manner. Therefore, the model is referred to,

in this chapter, as the threshold spatial panel data (TSPD) model with two-way

fixed effects (2FE).

The neighborhood structure of the n spatial units at period t is captured

by a time-varying spatial weight matrix Wt, and the magnitude of the inter-

action effects from its neighbors is measured by the spatial lag parameters.

Thus, Model (2.1) implies that each spatial unit i in any period t receives

a certain level of interaction effects from its neighbors (measured by λ10 or

λ10 + λ20), depending on the level of its threshold variable qit. When γ0 is

known, our model can simply be treated as a second-order SPD model of two

spatial lag terms with weight matrices being Wt and dt(γ0)Wt, respectively.

However, there is one complication: dt(γ0)Wt can no longer be time-invariant

and row-normalized even if Wt’s are. This causes the convenient transfor-

mation approach (Lee and Yu, 2010) inapplicable for model estimation and

inference. Therefore, an alternative method, allowing Wt to be time-varying

without the need of row-normalization, is desired. When γ0 is unknown and

has to be estimated together with other parameters, the involvement of step

functions dit(γ0) in the likelihood renders it to be discrete in γ and therefore

the standard likelihood inference methods are no longer valid.

As discussed in the introduction, we approach the estimation and infer-

ence problems for the TSPD-2FE model by an adjusted QML method, where

2Model (2.1) can be extended by including the spatial lag terms of Xt, i.e., the spatial
Durbin effects, and their threshold effects without additional technical complications.
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the concentrated loglikelihood (with µ and α being concentrated out) is mod-

ified to give a consistent estimation of all the common parameters. Then, we

show that the estimation of the threshold parameters does not have an impact

asymptotically on the joint asymptotic distribution of the other common pa-

rameters, thereby leading to bias-corrected estimation and inference methods

for these parameters. A likelihood ratio test is proposed for inference for the

threshold parameter.

2.2.2 Adjusted QML estimation

Denote λ = (λ1, λ2)′, β = (β′1, β
′
2)′, φ = (β′, λ′)′ and θ = (φ′, σ2)′. De-

fine At(λ, γ) = In−λ1Wt−λ2dt(γ)Wt, Yt(λ, γ) = At(λ, γ)Yt and Xt(γ) =

[Xt, dt(γ)Xt]. Under exogeneity of {Xt} and {Wt}, we have the quasi Gaus-

sian loglikelihood as if {vit} are iid N(0, σ2
0),

`nT (θ, γ, µ, α) = − nT
2

ln(2πσ2) +
∑T

t=1 ln |At(λ, γ)|

− 1
2σ2

∑T
t=1 V

′
t (φ, γ, µ, α)Vt(φ, γ, µ, α), (2.2)

where Vt(φ, γ, µ, α) = Yt(λ, γ)− Xt(γ)β − µ− αtln.

To estimate the individual and time fixed effects, we impose a zero-sum

constraint,
∑T

t=1 αt = 0, to avoid the unidentification of µi0 and αt0 as µi0 +

αt0 = (µi0+c)+(αt0−c) for an arbitrary c. Then, given φ and γ, the first-order

conditions for µ and αt imply

µ̂(φ, γ) = 1
T

∑T
t=1[Yt(λ, γ)− Xt(γ)β] and α̂t(φ, γ) = 1

n
l′n[Ỹt(λ, γ)− X̃t(γ)β],

where an important shorthand notation is used: for a sequence of vectors

or matrices Πt, t = 1, . . . , T , their time demeaned versions are denoted by

Π̃t = Πt − 1
T

∑T
t=1 Πt.

Substituting µ̂(φ, γ) and α̂t(φ, γ) into `nT (θ, γ, µ, α) for µ and α, respec-

tively, gives the concentrated quasi loglikelihood function for (θ, γ):

`cnT (θ, γ) = −nT
2

ln(2πσ2) +
∑T

t=1 ln |At(λ, γ)| − 1
2σ2

∑T
t=1 Ṽ

′
t (φ, γ)JnṼt(φ, γ),

(2.3)

where Jn = In − 1
n
lnl
′
n and Ṽt(φ, γ) = Ỹt(λ, γ)− X̃t(γ)β. Maximizing `cnT (θ, γ)

gives the direct QML estimators θ̂dnT and γ̂dnT of θ and γ.

Note that, for a known γ0, `cnT (θ, γ0) corresponds to the regular SPD-2FE
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model studied by Lee and Yu (2010), who show that when T is fixed maximiz-

ing `cnT (θ, γ0) w.r.t. θ only gives consistent estimators for spatial and regression

parameters β and λ (in general) but not for the variance parameter σ2 - the

well known incidental parameters problem of Neyman and Scott (1948). An in-

tuitive interpretation is that the direct QML estimator of σ2 failed to ‘recover’

the effect of degrees of freedom loss due to the estimation of n fixed effects

parameters µ. One would expect that the TSPD-2FE model face the same

issue in the sense that maximizing `cnT (θ, γ) would not lead to a consistent

estimation of σ2 when T is fixed. However, we find that a simple adjustment

on `cnT (θ, γ) will achieve the consistency of joint estimation of θ and γ (see

next subsection for a detailed theoretical reasoning), that is

`∗nT (θ, γ) = − n(T−1)
2

ln(2πσ2) + T−1
T

∑T
t=1 ln |At(λ, γ)|

− 1
2σ2

∑T
t=1 Ṽ

′
t (φ, γ)JnṼt(φ, γ). (2.4)

Therefore, the adjusted QML estimators of θ and γ are defined as follows

(θ̂nT , γ̂nT ) = argmax
(θ,γ)∈Θ×Γ

`∗nT (θ, γ),

where Θ is the parameter space for θ.3 To solve the above maximization

problem, we first maximize the above objective function to obtain an estimate

θ̂nT (γ) of θ for a given γ. Then, we define `∗cnT (γ) ≡ `∗nT (θ̂nT (γ), γ), and search

over Γ for γ̂nT that maximizes `∗cnT (γ). Note that the objective function `∗cnT (γ)

is a step function with at most nT steps as it depends on γ only through

the indicator function 1{qit 6 γ}. Thus, the latter maximization problem is

reduced to search for γ̂nT over ΓnT = Γ ∩ {qit, 1 6 i 6 n, 1 6 t 6 T}. When

nT is large, Hansen (1999) suggests that the search can be restricted to a grid

of N0 specific quantiles for some N0 < nT , ΓN0 = {q(1), . . . , q(N0)}, where q(j)

is the [η+ j−1
N0−1

(1− 2η)]th quantile of the sample qit and η = 1% or 5%. Then,

γ̂N0 = argmaxγ∈ΓN0
`∗cnT (γ) is a good approximation to γ̂nT . Given γ̂nT , the

QMLE of θ is just θ̂nT ≡ θ̂nT (γ̂nT ).

3Our adjusted QML approach falls in spirit to the “Bias-Correction of the Concentrated
Likelihood function” of Arellano and Hahn (2007). Cox and Reid’s (1987) adjusted profile
likelihood approach also belongs to this category but requires the parameter of interest to
be orthogonalized to the nuisance parameters.
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2.2.3 Asymptotic properties of the adjusted QML estimators

In this subsection, we study the asymptotic properties of the adjusted QML

estimators. We first find the probability limit of (θ̂nT , γ̂nT ), then exam the

convergence rate of γ̂nT , then derive the asymptotic distribution of θ̂nT (and

that of γ̂nT ), and then we introduce a statistical inference procedure for γ

based on a likelihood ratio test.

Denote Gt(λ, γ) = WtA
−1
t (λ, γ) and Zt(ψ, γ) = Gt(λ, γ)(Xt(γ)β+µ+αtln).

Let Ht = [Xt, Zt] and M(γ) = 1
nT

∑n
i=1

∑T
t=1 E(hith

′
it|qit = γ), where h′it is the

ith row of Ht. Let f(·) be the probability density function of qit. Through-

out this chapter, a parametric quantity at true parameter(s) is denoted by

dropping its argument(s), e.g., At = At(λ0, γ0), Gt = Gt(λ0, γ0), M = M(γ0)

and f = f(γ0). To provide rigorous asymptotic analysis of the adjusted QML

estimators, we make the following assumptions:

Assumption A: The innovations vit are independent and identically dis-

tributed (iid) across i and t, having mean zero, variance σ2
0, and E|vit|8+ε0 <∞

for some ε0 > 0.

Assumption B: (i) The regressors and the threshold variable are exoge-

nous with elements (xit, qit) being iid across i and t, (ii) E(‖hit‖4) < ∞,

(iii) For all γ ∈ Γ, E(‖hit‖4|qit = γ) 6 c and f(γ) 6 c for some c < ∞,

(iv) M(γ)f(γ) is continuous at γ = γ0, (v) 0 < Mf < ∞, (vi) the limit of

1
nT

∑T
t=1 X̃′t(γ)JnX̃t(γ) exists and is nonsingular.

Assumption C: {Wt} are exogenous time-varying spatial weight matrices

with zero diagonal elements. Both ‖Wt‖1 and ‖Wt‖∞ are bounded for all t.

Assumption D: The true λ0 lies in the interior of a compact space Λ. For

each t and (γ, λ) ∈ Γ×Λ, (i) At(λ, γ) is invertible; (ii) both ‖A−1
t (λ, γ)‖1 and

‖A−1
t (λ, γ)‖∞ are bounded.

Assumption E: n is large, and T can be finite or large but cannot grow

faster than n, i.e., T
n
→ a, where 0 6 a <∞.

Assumption F: Threshold effects λ20 and β20 satisfy that λ20 = (nT )−τ l0

and β20 = (nT )−τb0 for some τ ∈ (0, 1/2) with l0 ∈ R, l0 6= 0 and b0 ∈ Rk,

b0 6= 0.

The iid assumption in A is standard in the spatial econometrics literature
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(see, e.g., Lee and Yu, 2010; Li, 2018), but the finite eighth moment condition

on errors is more stringent than in the standard SPD models, where only a

finite fourth moment condition is required. With this stronger assumption,

Lemma B.1 in Appendix B shows the weak convergence in function space for

some linear-quadratic (LQ) forms that depend on γ through the indication

function 1{qit 6 γ}, which is crucial for the asymptotic studies on our esti-

mators. Assumption B(i) assumes regressors and threshold variable are both

exogenous, which also appears in Hansen (1999, 2000). As {hit} can be treated

as the model regressors in a reduced form of (2.1) (see (2.12)), Assumption

B(ii)–(v) are also common in the threshold literature, corresponding to As-

sumptions 4, 6 and 7 in Hansen (1999). Assumption B(vi) is the identification

condition for β. Assumption C and D are standard in spatial econometrics

literature. Assumption E allows (i) both n and T are large and (ii) n is large

and T is finite. Both scenarios encounter the incidental parameters problem

of Neyman and Scott (1948) due to the estimation of the individual and time

fixed effects. The assumption that T cannot grow faster than n is used to

establish the consistency of γ̂nT . Assumption F is in the spirit of Hansen

(2000) so that the asymptotic distribution of the threshold estimator is free

of nuisance parameters, and thus making statistical inference on γ is possible.

On the contrary, if the threshold effects are fixed (i.e., τ = 0), according to

Chan (1993), we can expect that the asymptotic distribution of γ̂nT will involve

nuisance parameters such as the marginal distribution of the xit.

Validity of the objective function `∗nT (θ, γ). Based on some of the

assumptions above, a critical discussion can then be given on the validity of

the objective function `∗nT (θ, γ). First, the adjusted score vector with respect

to θ has the form:

S∗θ,nT (θ, γ) =



1
σ2

∑T
t=1 X̃′t(γ)JnṼt(φ, γ),

1
σ2

∑T
t=1 Ỹ ′tJnṼt(φ, γ)− T̄

∑T
t=1 tr[Gt(λ, γ)],

1
σ2

∑T
t=1 Ỹ◦′t (γ)JnṼt(φ, γ)− T̄

∑T
t=1 tr[dt(γ)Gt(λ, γ)],

1
2σ4

∑T
t=1 Ṽ

′
t (φ, γ)JnṼt(φ, γ)− n(T−1)

2σ2 ,

(2.5)

where T̄ = T−1
T

, Yt = WtYt and Y◦t (γ) = dt(γ)Yt to denote their time demeaned
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versions Ỹt and Ỹ◦t (γ). Then, we find plimn,T→∞
1

n(T−1)
S∗θ,nT (θ0, γ0) = 0 holds,

which is a necessary condition for the consistency of θ̂nT , i.e., θ̂nT − θ0 = op(1).

We have

E[S∗θ,nT (θ0, γ0)] =
(
01×2k,−T−1

nT

∑T
t=1 l

′
nGtln,−T−1

nT

∑T
t=1 l

′
ndt(γ0)Gtln,− (T−1)

2σ2
0

)
.

Note that l′nGtln and l′ndt(γ0)Gtln are both O(n) for any t, since Gt’s are

bounded in both row and column sums. Thus, we have E[S∗θ,nT (θ0, γ0)] = O(T ).

The adjustment corrects the degrees of freedom loss, making the effective sam-

ple size become n(T − 1). It follows that 1
n(T−1)

S∗θ,nT (θ0, γ0) = Op(
1
n
). Hence,

a consistent estimation is possible for all the common parameters based on

maximizing `∗nT (θ, γ), whether T is small or large.

To proceed with a detailed study on the asymptotic properties of θ̂nT and

γ̂nT , we first examine their consistency, which follows from the consistency of

λ̂nT and γ̂nT as argued below. Given λ and γ, `∗nT (θ, γ) is partially maximized

at

β̂nT (λ, γ) = [
∑T

t=1 X̃′t(γ)JnX̃t(γ)]−1
∑T

t=1 X̃′t(γ)JnỸt(λ, γ), and (2.6)

σ̂2
nT (λ, γ) = 1

n(T−1)

∑T
t=1

∥∥Jn[Ỹt(λ, γ)− X̃t(γ)β̂nT (λ, γ)]
∥∥2
. (2.7)

Hence, the concentrated loglikelihood function of λ and γ is4

`∗cnT (λ, γ) = −n(T−1)
2

(ln 2π + 1)− n(T−1)
2

ln σ̂2
nT (λ, γ) + T̄

∑T
t=1 ln |At(λ, γ)|.

(2.8)

The QMLEs λ̂nT and γ̂nT together maximize the above likelihood function,

and the QMLEs of β and σ2 are respectively, β̂nT ≡ β̂nT (λ̂nT , γ̂nT ) and σ̂2
nT ≡

σ̂2
nT (λ̂nT , γ̂nT ). It is interesting to note from (B.4) and (B.5) in Appendix B

that, under Assumptions B(vi) and F, the consistencies of β̂nT and σ̂2
nT follows

that of λ̂nT , whether γ̂nT is consistent or not.

The above discussions suggest that the consistency of θ̂nT does not rely

on that of γ̂nT under the diminishing threshold assumption, and thus it can

be established separately. To see it more clearly, we introduce the population

4 It is worth to mention that the concentrated function of `cnT (θ, γ) in (2.3), `cnT (λ, γ) =
T
T−1`

∗c
nT (λ, γ) + nT

2 ln T
T−1 . Thus, `∗cnT (λ, γ) and `cnT (λ, γ) yield the same maximizer. How-

ever, as discussed above, `∗nT (θ, γ) is a valid joint objective function that is possible to
provide consistent estimates for all the common parameters.
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counterpart of `∗cnT (λ, γ), which is ¯̀∗c
nT (λ, γ) = max

β,σ2
E[`∗nT (θ, γ)]. Given λ and γ,

E[`∗nT (θ, γ)] is partially maximized at

β̄nT (λ, γ) = [
∑T

t=1 E(X̃′t(γ)JnX̃t(γ))]−1
∑T

t=1 E(X̃′t(γ)JnỸt(λ, γ)), and (2.9)

σ̄2
nT (λ, γ) = 1

n(T−1)

∑T
t=1 E

∥∥Jn[Ỹt(λ, γ)− X̃t(γ)β̄nT (λ, γ)]
∥∥2
. (2.10)

Thus, we have, upon substituting β̄nT (λ, γ) and σ̄2
nT (λ, γ) back in E[`∗nT (θ, γ)],

¯̀∗c
nT (λ, γ) = n(T−1)

2
(ln 2π + 1)− n(T−1)

2
ln σ̄2

nT (λ, γ) + T̄
∑T

t=1 E(ln |At(λ, γ)|).

(2.11)

If γ0 were known, standard asymptotic arguments (e.g., Theorem 5.9 of

van der Vaar, 1998) lead to the consistency of λ̂nT (γ0): uniform convergence

of 1
n(T−1)

[`∗cnT (λ, γ0) − ¯̀∗c
nT (λ, γ0)] to 0 in λ ∈ Λ, and global identification of λ0

in that it uniquely maximizes the limit of 1
n(T−1)

¯̀∗c
nT (λ, γ0) on Λ. When γ0 is

unknown, the convergence of 1
n(T−1)

[`∗cnT (λ, γ) − ¯̀∗c
nT (λ, γ)] is still useful to es-

tablish the consistency of λ̂nT , uniformly in γ ∈ Γ, but it cannot provide useful

information to study the asymptotic behavior of γ̂nT as the threshold effects be-

come zero at the limit. Therefore, we first show that λ̂nT (γ) is consistent to λ0,

uniformly in γ ∈ Γ5. It then provides the basis to further establish the consis-

tency of γ̂nT . Let σ2
nT (λ, γ) =

σ2
0

(n−1)T

∑T
t=1 tr(A′−1

t A′t(λ, γ)JnAt(λ, γ)A−1
t ) and

Ht(γ) = [Xt, Zt, dt(γ)Xt, dt(γ)Zt]. We provide the identification conditions

for λ as follows.

Assumption G: Either (i) the limit of 1
n(T−1)

∑T
t=1[H̃′t(γ)JnH̃t(γ)] exists

and is nonsingular, uniformly in γ ∈ Γ; or (ii) the limit of 1
n(T−1)

∑T
t=1(ln |σ2

nT (λ0, γ)

A−1
t (λ0, γ)A′−1

t (λ0, γ)| − ln |σ2
nT (λ, γ)A−1

t (λ, γ)A′−1
t (λ, γ)|) 6= 0 for λ 6= λ0, uni-

formly in γ ∈ Γ.

Assumption G generalizes the global identification conditions for SPD mod-

els in Lee and Yu (2010) to the models with threshold effects. To gain more

intuitions on these assumptions, noting Yt = A−1
t (Xtβ10 + dt(γ0)Xtβ20 + µ0 +

αt0ln + Vt), we have

Yt = Xtβ10+Ztλ10+dt(γ0)Xtβ20+dt(γ0)Ztλ20+µ0+αt0ln+A−1
t Vt, t = 1, . . . , T,

(2.12)

5One can also see from (B.14) that limnT→∞
1

n(T−1)ESθ,nT (θ0, γ) = 0, uniformly in γ ∈ Γ,

a necessary condition to have the consistency of θ̂nT (γ).
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because A−1
t = In +λ10Gt +λ20dt(γ0)Gt, which comes from In = At +λ10Wt +

λ20dt(γ0)Wt by multiplying A−1
t on both sides of the equation. Clearly, the

above equation can be treated as a standard panel data model with regres-

sor Ht(γ0) in period t. Thus, it is standard to impose the non-singularity

or full rank condition on the limit of 1
n(T−1)

∑T
t=1 E[H̃′t(γ0)JnH̃t(γ0)] to iden-

tify φ or λ. As discussed above, the consistency of γ̂nT has not been es-

tablished so far. Therefore, we impose Assumption G(i) instead. In addi-

tion, note that Var(Yt|Xt) = σ2
0A
−1
t A′−1

t . Thus, λ can also be identified by

the uniqueness of Var(Y|X1, . . . , XT ), where Y = (Y ′1 , . . . , Y
′
T )′. Again, γ̂nT

is not consistent at this moment so that we impose Assumption G(ii) in-

stead. With the above identification conditions and the uniform convergence

of 1
n(T−1)

[`∗cnT (λ, γ)− ¯̀∗c
nT (λ, γ)] to 0 in γ ∈ Γ, we have the following theorem.

Theorem 2.1. Suppose Assumptions A-G hold. We have θ̂nT − θ0
p−→ 0.

As the adjustment to the concentrated loglikelihood function in (2.4) can

help to ‘recover’ the degrees of freedom loss caused by the estimation of the

incidental parameter µ, we see all the common estimators are consistent even

when T is fixed. As discussed above, although λ̂nT is shown to be consistent,

the convergence of the original objective function 1
n(T−1)

`∗cnT (λ, γ) is still too

fast to be useful for studying the limiting behavior of γ̂nT , when the threshold

effects shrink to zero at rate (nT )−τ . However, we find the re-scaled objective

function:

`∗∗nT (γ) = (nT )2τ

n(T−1)
[`∗cnT (λ̂nT (γ), γ)− `∗cnT (λ0, γ0)] (2.13)

can be very useful. Specifically, multiplying (nT )2τ gives us the non-diminishing

threshold effects, while taking the differences removes the terms that are not

asymptotically negligible, i.e., those have order bigger than Op((nT )1−2τ ).

The consistency of γ̂nT follows if the maximizer of `∗∗nT (γ) has an asymptoti-

cally negligible distance from γ0, i.e., the identification condition for γ. Let

dt(γ1, γ2) = dt(γ1) − dt(γ2) and Ht(γ) = [Ht(γ), dt(γ0, γ)Ht]. Let Ct(γ) be

a 3 × 3 matrix with (a, b)th element being tr[Cs
a,t(γ)Cs

b,t(γ)], where C1,t =

Gt − 1
nT

∑T
t=1 tr(Gt)In, C2,t(γ) = dt(γ)Gt − 1

nT

∑T
t=1 tr(dt(γ)Gt)In, C3,t(γ) =

dt(γ0, γ)Gt − 1
nT

∑T
t=1 tr(dt(γ0, γ)Gt)In. We introduce the identification con-
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dition for γ.

Assumption H: There exists a constant c > 0 such that either

(i) ρmin
(

1
n(T−1)

∑T
t=1 H̃′t(γ)JnH̃t(γ)

)
≥ c|γ − γ0|, or

(ii) ρmin
(

1
n(T−1)

∑T
t=1 Ct(γ)

)
≥ c|γ − γ0|.

As shown in Appendix B, to study the asymptotic properties of `∗∗nT (γ̂nT ),

one has to establish a rough convergence rate for λ̂nT − λ0. As the objective

function is highly nonlinear in the λ and there is no closed form solution for its

QMLE, we have to rely on the study of the θ-component of the concentrated

quasi score (CQS) function given in (2.5). We start with a Taylor expansion

of S∗θ,nT (θ̂nT , γ̂nT ) = 0 at θ0, then justify the non-singularity of the limit of the

information matrix, which is also guaranteed by Assumption H, and finally

study the order of the component CQS function S∗θ,nT (θ0, γ̂nT ). By Theorem

2.1, we thus prove (nT )τ (θ̂nT − θ0) = Op(1) under Assumption E, regardless

of the consistency of γ̂nT . With this preliminary convergence rate, the limit

of `∗∗nT (γ̂nT ) can be shown to be less than zero unless |γ̂nT − γ0| = op(1) un-

der Assumption H. However, the definition of γ̂nT implies that we must have

`∗∗nT (γ̂nT ) ≥ 0. Consequently, the consistency of γ̂nT follows.

Theorem 2.2. Suppose Assumptions A-H hold. We have γ̂nT − γ0
p−→ 0.

To establish the convergence rate for γ̂nT , one needs a more precise knowl-

edge of the convergence rate for θ̂nT . With the consistency of γ̂nT and the Tay-

lor expansion mentioned above, we can further show (nT )τ (θ̂nT − θ0) = op(1).

Based on this result, we next establish the convergence rate for γ̂nT in the

following theorem.

Theorem 2.3. Under Assumptions A-H, anT (γ̂nT − γ0) = Op(1), where

anT = (nT )1−2τ .

The theorem shows that the convergence rate of γ̂nT is anT , which is in line

with the findings of Hansen (1999). Intuitively speaking, the convergence rate

is faster when the threshold effects in the model are larger (threshold diminish-

ing rate is slower as τ is smaller), providing more sample information regarding

to the threshold parameter γ and hence more precise estimation of it. Theo-

rem 2.3 is crucial for establishing the asymptotic distribution of θ̂nT . Again,
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by using the Taylor expansion of the S∗θ,nT (θ̂nT , γ̂nT ) = 0 at θ0, the asymptotic

property of
√
n(T − 1)(θ̂nT−θ0) depends on that of 1√

n(T−1)
S∗θ,nT (θ0, γ̂nT ) pro-

vided the non-singularity of the limit of the information matrix. With Theo-

rem 2.3, we can show 1√
n(T−1)

‖S∗θ,nT (θ0, γ̂nT ) − S∗θ,nT (θ0, γ0)‖ p−→ 0. Thus, it

is equivalent to studying the the asymptotic property of 1√
n(T−1)

S∗θ,nT (θ0, γ0),

which leads to the limiting distribution of θ̂nT (γ0) and that of θ̂nT . We have

the following theorem.

Theorem 2.4. Under Assumptions A-H, we have

(i)
√
n(T − 1)(θ̂nT − θ0) + Σ−1

nT

√
abθ,nT

D−→ N
(
0, lim

nT→∞
Σ−1
nTΩnTΣ−1

nT

)
,

(ii)
√
n(T − 1)(θ̂nT − θ̂nT (γ0))

p−→ 0,

where ΣnT = ΣnT (θ0, γ0) and ΩnT = ΩnT (θ0, γ0) are given in (B.13) and

(B.23), respectively; a = T
n

and bθ,nT (θ, γ) =
(
01×2k,

√
T̄

nT

∑T
t=1 l

′
nGt(λ, γ)ln,

√
T̄

nT

∑T
t=1 l

′
ndt(γ)Gt(λ, γ)ln,

√
T̄

2σ2

)′
.

Theorem 2.4(i) shows that the convergence rate of θ̂nT is
√
n(T − 1) but

has an asymptotic bias when n and T go to infinity proportionally. If T is

fixed, then a = T
n
→ 0 and hence the estimates of all common parameters are

asymptotically centered. This result is in contract to the direct approach of

Li (2018) where the variance estimate is asymptotically biased no matter T

is large or small. As is shown in (B.23) in Appendix B, ΩnT (θ0, γ0) involves

not only the excess kurtosis κ4 of the errors but also the skewness κ3 and

one additional component BnT (γ0). This is also in contrast with the result

for standard SPD model (Lee and Yu, 2010) where the limiting variance only

involves κ4. The reason for this is due to the time-varying feature of the

model. Specifically, if both {Gt} and {dt(γ0)Gt} are time constant, we will

not have κ3 and BnT (γ0) in ΩnT (θ0, γ0) anymore. Moreover, when errors {vit}

are normally distributed (κ3 = κ4 = 0) and T is large, we have ΩnT (θ0, γ0) =

ΣnT (θ0, γ0), because BnT (γ0) = O( 1
T

). From Theorem 2.4(ii), we can also see

that given the convergence rate of γ̂nT in Theorem 2.3, we can treat the true

value of γ as given. In other words, the estimation error associated with γ̂nT

has asymptotically negligible effects on the asymptotic property of the QMLEs

of the common θ. To sum up, Theorem 2.1 shows that θ̂nT (γ) is consistent
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for θ0 for any γ ∈ Γ, while Theorem 2.4(ii) suggests that θ̂nT ≡ θ̂nT (γ̂nT ) is

asymptotically equivalent to θ̂nT (γ0). Finally, as θ̂nT may be asymptotically

biased, in practice one can carry out a bias-correction using the results of

Theorem 2.4, as in Lee and Yu (2010) for a regular SPD model.

Next, we establish the asymptotic distribution of γ̂nT . Let

Ξ1 = limnT→∞ T̄ [δ′0Mδ0 + l20σ
2
0(π1 + π2)] and

Ξ2 = limnT→∞ T̄
2(2l0σ0κ3δ

′
0π3 + l20σ

2
0κ4π2),

where δ0 = (b′0, l0)′, π1(γ) = 1
nT

∑T
t=1

∑n
i=1 E(

∑n
j=1 g

2
ij,t|qit = γ), π2(γ) =

1
nT

∑T
t=1

∑n
i=1 E(g2

ii,t|qit = γ), π3(γ) = 1
nT

∑T
t=1

∑n
i=1 E(gii,thit|qit = γ), and

gij,t is the (i, j)th entry of Gt. Under Assumption B(v), it is easy to see that

Ξ1 must be strictly positive. Thus, the following theorem provides the asymp-

totic distribution of γ̂nT .

Theorem 2.5. Under Assumptions A-H, we have

anT (γ̂nT − γ0)
D−→ σ2

0

f

Ξ

Ξ2
1

argmax
−∞<r<∞

[
− |r|

2
+W (r)

]
,

where Ξ = Ξ1 + Ξ2 and W (r) as a two-sided standard Brownian motion on

the real line, i.e., W (r) = Wa(−r)1{r 6 0} + Wb(r)1{r > 0}, and Wa(·)

and Wb(·) are two independent standard Brownian motions on [0,∞) with

Wa(0) = Wb(0) = 0.

According to Chan (1993), when the threshold effects are fixed over sample

size (i.e., τ = 0), it may be possible to demonstrate that nT (γ̂nT−γ0) = Op(1),

but the asymptotic distribution of nT (γ̂nT − γ0) might be a functional of a

compound Poisson process that depends on the marginal distribution of xit,

and hence is not useful for making inference on γ. In contrast, under the

shrinking threshold effects assumption, Theorem 2.5 shows that the limiting

distribution of γ̂nT does not involve this undue component. However, in order

to make inference on γ directly through the above theorem, one has to find a

consistent estimate for the scale component Ξ
Ξ2
1f

. Note that both Ξ1 and Ξ2

involve δ0 or l0, neither of which can be estimated accurately without prior

knowledge of the nuisance parameter τ . Thus, we propose a likelihood ratio

type test as follows.
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2.2.4 Inference for γ based on the likelihood ratio test

Following Hansen (1999), we propose a likelihood ratio statistic to test the

null hypothesis H0 : γ = γ0. Recall `∗cnT (γ) ≡ `∗nT (θ̂nT (γ), γ). Define

LRnT (γ) = 2[`∗cnT (γ̂nT )− `∗cnT (γ)]. (2.14)

Theorem 2.6. Under Assumptions A-H, we have

LRnT (γ0)
D−→ $2 0,

where $2 = 1 + Ξ2

Ξ1
, and 0 = max

−∞<r<∞
[−|r|+ 2W (r)], of which the distribution

function is characterized by P (0 6 z) = (1− e−z/2)2.

Note that $2 from the above theorem is equal to Ξ
Ξ1

, since Ξ = Ξ1 + Ξ2.

Thus, $2 must be strictly positive, because Ξ1 is so and σ2
0Ξ is the variance of

some LQ form (see Lemma B.3 in Appendix B). In a special case when error

terms are iid normally distributed, one has Ξ2 = 0 because κ3 = κ4 = 0. It

follows that $2 = 1 and the asymptotic distribution of LRnT (γ0) is pivotal.

This result is different from Theorem 1 of Hansen (1999), in which only the

homoskedasticity assumption is needed to have the scale parameter equal to 1.

In the standard panel data model, the corresponding σ2
0Ξ is just the variance

of some linear form so that it does not involve the third and fourth moments

of errors.

When errors are not normally distributed, $2 must be estimated consis-

tently. Let φ20 = (β′20, λ20)′, the collection of the threshold effects. Then, by

Assumption F, we have

Ξ2

Ξ1

=
(nT )−2τΞ2

(nT )−2τΞ1

=
limnT→∞ T̄ [2λ20σ0κ3φ

′
20π3 + λ2

20σ
2
0κ4π2]

limnT→∞[φ′20Mφ20 + λ2
20σ

2
0(π1 + π2)]

.

Note that φ′20Mφ20 = 1
nT

∑n
i=1

∑T
t=1 E[(x′itβ20)2 + 2λ20Zitx

′
itβ20 + Z2

itλ
2
20|qit =

γ0] and φ′20π3 = 1
nT

∑n
i=1

∑T
t=1 E[gii,t(x

′
itβ20 + Zitλ20)|qit = γ0], where Zit

is the ith element of Zt. As Yt = A−1
t (Xtβ0 + µ0 + αt0ln + Vt), we have

Yt ≡ WtYt = Zt + GtVt, which implies that E(Zitx
′
it|qit) = E(Yitx′it|qit),

E(gii,tZit|qit) = E(gii,tYit|qit) and E(Z2
it|qit) = E(Y2

it|qit) − σ2
0E(
∑n

j=1 g
2
ij,t|qit),

where Yit is the ith element of Yt. Given these, we have

Ξ2

Ξ1

=
limnT→∞

∑n
i=1

∑T
t=1 E(ϑ2,it|qit = γ0)

limnT→∞
∑n

i=1

∑T
t=1 E(ϑ1,it|qit = γ0)

,
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where we define ϑ1,it = (x′itβ20)2 + 2λ20Yitx′itβ20 +Y2
itλ

2
20 +λ2

20σ
2
0g

2
ii,t and ϑ2,it =

T̄ [2λ20σ0κ3gii,t(x
′
itβ20 + Yitλ20) + λ2

20σ
2
0κ4g

2
ii,t]. To find their sample counter-

parts, we let κ̂3 and κ̂4 be the consistent estimations of κ3 and κ4, which are

standard to find in the literature (see Li, 2018), ĝij,t the ith row and jth column

of Gt(λ̂nT , γ̂nT ). Thus, their sample counterparts are just ϑ̂1,it = (x′itβ̂2,nT )2 +

2λ̂2,nTYitx′itβ̂2,nT+Y2
itλ̂

2
2,nT+λ̂2

2,nT σ̂
2
nT ĝ

2
ii,t and ϑ̂2,it = T̄ [2λ̂2,nT σ̂nT κ̂3ĝii,t(x

′
itβ̂2,nT+

Yitλ̂2,nT ) + λ̂2
2,nT σ̂

2
nT κ̂4ĝ

2
ii,t], respectively. Therefore, we finally propose to esti-

mate $2 by

$̂2 = 1 +

∑n
i=1

∑T
t=1 Kh(qit − γ̂nT )ϑ̂2,it∑n

i=1

∑T
t=1 Kh(qit − γ̂nT )ϑ̂1,it

,

where Kh(u) = h−1k(u/h) for some bandwidth h → 0 and kernel function

k(·). With this, a test of H0 : γ = γ0 rejects at the asymptotic level of α

if LRnT (γ0)/$̂2 exceeds 01−α, where 01−α = −2 ln(1 −
√

1− α) is the 1 − α

quantile of 0. From the Table I of Hansen (2000), we have 01−α = 5.94, 7.35

and 10.59 for α = 0.1, 0.05 and 0.01, respectively.

2.3 Testing for the Existence of Threshold Effects

In this section, we introduce a statistic to test whether the threshold effects

are statistically significant. The null hypothesis of no threshold effect in the

model (2.1) can be represented by H0 : φ20 = 0. However, the threshold

parameter γ is not identified under this null hypothesis, so the asymptotic

distributions of classical tests are nonstandard and it is impossible to tabulate

their critical values. This classical problem was raised by Davies (1977) and has

been well investigated by Andrew (1993) and Hansen (1996). We follow Hansen

(1996) and study the local power of our test by considering the sequence of

Pitman local alternatives: H1 : φ20 = C√
nT

, where C = (C ′b, Cl)
′, Cb is a

k × 1 vector and Cl is a scalar. In this sequence of alternatives, we see the

diminishing rate is faster than the one specified in Assumption F. Meanwhile,

according to Hansen (1996), this diminishing rate can also facilitate our study

on the distributional theory of the test statistic. Moreover, this sequence of

alternatives corresponds to the null hypothesis when C = 0.

In this chapter, we consider a Wald-type test statistic. For each γ ∈ Γ, we
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construct a classical Wald statistic, WnT (γ). The asymptotic distribution of

WnT (γ) depends on the nuisance parameter γ. However, Hansen (1996) shows

in a linear threshold regression framework that a proper transformation of the

Wald statistic, such as supγ∈Γ WnT (γ), can have an asymptotic distribution

free of γ and thus is able to be approximated via simulation. To simulate

the asymptotic distribution of the sup-Wald statistic based on our QMLEs

for the threshold SPD models, one has to approximate the θ-component of

the CQS function, S∗θ,nT (θ0, γ) given in (2.5), under the null in the bootstrap

world. Note that simulations of the λ1- and λ2- components of S∗θ,nT (θ0, γ)

require a bootstrap sample for Yt = WtYt, for which we need ‘consistent’ esti-

mates of the individual fixed effects. But this is not possible when T is fixed

due to the incidental parameters problem. In contrast, the standard linear

panel data model in Hansen (1999) does not involve such an issue as only the

β-component of S∗θ,nT (θ0, γ) is needed in the simulation. To deal with this

issue, we propose a sup-Wald statistic based on an M-estimator of the model,

θ̂�nT (γ) = arg{S�θ,nT (θ, γ) = 0}, where the estimating function S�θ,nT (θ, γ) is ob-

tained by adjusting S∗θ,nT (θ0, γ). To apply the simulation techniques in Hansen

(1996, p.419), there are two necessary principals the adjustment should follow:

(i) Under the alternatives, θ̂�nT (γ)− θ0 = op(1), uniformly in γ ∈ Γ; (ii) Under

the null, S�θ,nT (θ0, γ) can be approximated using its sample analogue.

For (i), we need that under the alternatives, limnT→∞
1
nT

E[S�θ,nT (θ0, γ)] = 0

uniformly in γ ∈ Γ such that plimnT→∞
1
nT
S�θ,nT (θ0, γ) = 0, which is a nec-

essary condition for θ̂�nT (γ) to be consistent. The principal (ii) requires that

S�θ,nT (θ0, γ) under the null only involves terms that we can calculate without

knowledge of µ0. We next show that the β-component of S∗θ,nT (θ0, γ) in (2.5)

automatically satisfies these conditions. Note that Vt(φ0, γ) = dt(γ0, γ)Htφ20 +

λ20dt(γ0, γ)GtVt+µ0 +αt0ln+Vt by (B.1) from Appendix B. Thus, it is easy to

see limnT→∞
1

σ2
0nT

E[
∑T

t=1 X̃′t(γ)JnṼt(φ0, γ)] = 0 under the alternatives, so the

first principal is satisfied. Meanwhile, we also have 1
σ2
0

∑T
t=1 X̃′t(γ)JnṼt(φ0, γ) =

1
σ2
0

∑T
t=1 X̃′t(γ)JnṼt under the null. As Xt(γ)’s are observed and σ2

0 can be ap-

proximated by its M-estimator, we only need to find bootstrap sample for

Ṽt. Note that Ṽt = Ỹt − X̃tβ0 − αt0ln. Thus, it is nature to use Ṽ �t (γ) =
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Ỹt(λ̂
�
nT (γ), γ)− X̃t(γ)β̂�nT (γ)− α̂t(φ̂�nT (γ), γ)ln to approximate Ṽt, since θ̂�nT (γ)

is consistent uniformly in γ ∈ Γ.

Next, we consider the λ1-component of (2.5). Recall Zt(ψ, γ) = Gt(λ, γ)

(Xt(γ)β + µ + αtln) and note that Yt = Zt + GtVt. As discussed above, the

difficulty in approximating Ỹt lies with the fact that a ‘consistent’ estimate of

µ0 embedded in Zt is unavailable due to the incidental parameters problem.

For this reason, we do adjustment for the λ1-component as follows. Note that

the λ1-component is essentially an LQ-form. Under the alternatives, we have

lim
nT→∞

1
nT

E[ 1
σ2
0

∑T
t=1 Ỹ ′tJnṼt(φ0, γ)− T̄

∑T
t=1 trGt(λ0, γ)]

= lim
nT→∞

1
nT

E[T̄
∑T

t=1 tr(JnGt(λ0, γ))− T̄
∑T

t=1 trGt(λ0, γ)]

= lim
nT→∞

1
nT

E[ 1
σ2
0

∑T
t=1(K̃ ′t(φ0, γ) + Ṽ ′t (φ0, γ)JnGt(λ0, γ))JnṼt(φ0, γ)

− T̄
∑T

t=1 trGt(λ0, γ)],

for any γ, where Kt(φ, γ) = Gt(λ, γ)Xt(γ)β. Then taking the difference be-

tween the two quantities inside the second and third expectations and replacing

θ0 by the general parameter θ, we obtain the desired adjusted estimating func-

tion for λ1:

1
σ2

∑T
t=1[K̃ ′t(φ, γ) + Ṽ ′t (φ, γ)JnGt(λ, γ)]JnṼt(φ, γ)− T̄

∑T
t=1 tr(JnGt(λ, γ)),

which is still an LQ-form but only involves terms that are approximable. Sim-

ilarly, the desired adjusted estimating function for λ2 is:

1
σ2

∑T
t=1[K̃◦′t (φ, γ)+Ṽ ′t (φ, γ)Jndt(γ)Gt(λ, γ)]JnṼt(φ, γ)−T̄

∑T
t=1 tr(Jndt(γ)Gt(λ, γ))],

where K◦t (φ, γ) = dt(γ)Kt(φ, γ). As for the σ2-component of (2.5), we have

lim
nT→∞

1
nT

E[ 1
2σ4

0

∑T
t=1 Ṽ

′
t (φ0, γ)JnṼt(φ0, γ)− n(T−1)

2σ2
0

] = lim
nT→∞

1
nT

[ (n−1)(T−1)

2σ2
0

− n(T−1)

2σ2
0

].

Similarly, by taking the difference between the two quantities inside the square

brackets and using the general parameter θ instead, we finally obtain the ad-

justed function for σ2:

1
2σ4

∑T
t=1 Ṽ

′
t (φ, γ)JnṼt(φ, γ)− (n−1)(T−1)

2σ2 .

A set of unbiased estimating functions or adjusted quasi score (AQS) functions
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are as follows,

S�θ,nT (θ, γ) =



1
σ2

∑T
t=1 X̃′t(γ)JnṼt(φ, γ),

1
σ2

∑T
t=1[K̃ ′t(φ, γ) + Ṽ ′t (φ, γ)JnGt(λ, γ)]JnṼt(φ, γ)

−T̄
∑T

t=1 tr[JnGt(λ, γ)],

1
σ2

∑T
t=1[K̃◦′t (φ, γ) + Ṽ ′t (φ, γ)Jndt(γ)Gt(λ, γ)]JnṼt(φ, γ)

−T̄
∑T

t=1 tr[Jndt(γ)Gt(λ, γ)],

1
2σ4

∑T
t=1 Ṽ

′
t (φ, γ)JnṼt(φ, γ)− (n−1)(T−1)

2σ2 .

(2.15)

For each γ ∈ Γ, the M- or AQS estimator of θ is defined as θ̂�nT (γ) =

arg{S�θ,nT (θ, γ) = 0}. From the first and last components of S�θ,nT (θ, γ), we

have β̂�nT (λ, γ) = β̂nT (λ, γ) and σ̂2�
nT (λ, γ) = n

n−1
σ̂2
nT (λ, γ). Thus, under the

alternatives, the consistency of θ̂�nT (γ) lies with that of λ̂�nT (γ) uniformly in γ

(see (B.4) and (B.5) in Appendix B). We substitute β̂�nT (λ, γ) and σ̂2�
nT (λ, γ)

into the λ- components of AQS functions, yielding the concentrated AQS

functions, S�cθ,nT (λ, γ). To show the consistency of λ̂�nT (γ), we need to find

the population counterpart of S�cθ,nT (λ, γ). Let S̄�θ,nT (θ, γ) = E[S�θ,nT (θ, γ)].

Given λ and γ, S̄�θ,nT (θ, γ) = 0 is partially solved at β̄�nT (λ, γ) = β̄nT (λ, γ)

and σ̄2�
nT (λ, γ) = n

n−1
σ̄2
nT (λ, γ). Substituting them back into the λ- compo-

nents of S̄�θ,nT (θ, γ) gives S̄�cθ,nT (λ, γ), which is just the population counterpart

of S�cθ,nT (λ, γ) (The expressions for S�cθ,nT (λ, γ) and S̄�cθ,nT (λ, γ) can be found in

Appendix B). By Theorem 5.9 of van der Vaar (1998), λ̂�nT (γ) converges to

λ0,∀γ, if supλ∈Λ
1
nT
|S�cθ,nT (λ, γ) − S̄�cθ,nT (λ, γ)| = op(1),∀γ, and the following

identification condition holds:

Assumption G′: infλ:d(λ,λ0)≥ε ‖S̄�cθ (λ, γ)‖ > 0 for any γ and ε > 0, where

S̄�cθ (λ, γ) = limnT→∞
1
nT
S̄�cθ,nT (λ, γ) and d(λ, λ0) is a measure of distance be-

tween λ and λ0.

Note that Assumption G′ can be shown to be true under some primitive

conditions (see Appendix B). Given λ̂�nT (γ), the M-estimators of β and σ2 are

just β̂�nT (γ) ≡ β̂�nT (λ̂�nT (γ), γ) and σ̂2�
nT (γ) ≡ σ̂2�

nT (λ̂�nT (γ), γ). Under the alterna-

tives, once the consistency of λ̂�nT (γ) is established as above, the consistency of

β̂�nT (γ) and σ̂2�
nT (γ) follows by Assumptions B(vi). The following theorem shows

that our AQS function S̄�θ,nT (θ, γ) indeed satisfy the two necessary principals
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required in Hansen (1996):

Theorem 2.7. Suppose Assumptions A-E and G’ hold. We have,

(i) under the alternatives, θ̂�nT (γ)− θ0 = op(1), uniformly in γ ∈ Γ, and

(ii) under the null, S�θ,nT (θ0, γ) can be approximated using its sample ana-

logue.

The proof of result (i) of Theorem 2.7 is in Appendix B. Given (i) and

under the null, it is easy to see that Kt(φ0, γ), Gt(λ0, γ) and Ṽt(φ0, γ) can be

approximated by Kt(φ̂
�
nT (γ), γ), Gt(λ̂

�
nT (γ), γ) and Ṽ �t (γ), respectively. Hence,

result (ii) also holds. We then define Σ�nT (γ, γ) = − 1
nT

E[ ∂
∂θ′
S�θ,nT (θ0, γ)] and

Ω�nT (γ, γ) = 1
nT

Var[S�θ,nT (θ0, γ)], and the analytical expressions for Σ�nT (γ1, γ2)

and Ω�nT (γ1, γ2) are in (B.25) and (B.26), respectively. Letting Q̂nT (γ) ≡

Σ̂�−1
nT (γ, γ)Ω̂�nT (γ, γ)Σ̂�′−1

nT (γ, γ) where Σ̂�nT (γ, γ) and Ω̂�nT (γ, γ) are their respec-

tive plug-in estimators, we have the sup-Wald statistic:

supWnT ≡ sup
γ∈Γ

WnT (γ), (2.16)

where WnT (γ) = nT θ̂�′nT (γ)L[L′Q̂nT (γ)L]−1L′θ̂�nT (γ), and L is a selection ma-

trix defined as

L =

0k×k Ik 0k×1 0k×1 0k×1

01×k 01×k 0 1 0

′ .
Theorem 2.8. Under Assumptions A-E, G’, and the alternatives H1 :

φ20 = C√
nT

,

supWnT
D−→ sup

γ∈Γ
W c(γ),

where W c(γ) = [L′S̄(γ) + Σ̄(γ)C]′Q̄(γ, γ)−1[L′S̄(γ) + Σ̄(γ)C], S̄(γ) is a mean-

zero Gaussian process with covariance kernel Q̄(γ1, γ2) = L′Σ�−1(γ1, γ2)Ω�(γ1, γ2)

Σ�−1(γ1, γ2)L, Σ̄(γ) = L′Σ�−1(γ, γ)Σ�(γ, γ0)L, Σ�(γ1, γ2) = lim
nT→∞

Σ�nT (γ1, γ2),

and Ω�(γ1, γ2) = lim
nT→∞

Ω�nT (γ1, γ2).

Clearly, supγ∈ΓW
0(γ) = supγ∈Γ S̄(γ)′LQ̄(γ, γ)−1L′S̄(γ) under the null,

C = 0. It is a functional of chi-square processes and the asymptotic criti-

cal values for which cannot be tabulated in general. In special cases, Andrews

(1993) and Li (2018) show the critical values of testing for the existence of

structure change depend only on the column dimension of regressors and the
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parameter space of γ0 so that they can be tabulated. But it is not the case

for general threshold models. We thus follow Hansen (1996) and propose the

following bootstrap procedure to approximate the asymptotic null distribution

of the test statistic.

1. Calculate α̂�t,nT (γ) = α̂t(φ̂
�
nT (γ), γ) and Ṽ �t (γ) = Ỹt(λ̂

�
nT (γ), γ)−X̃t(γ)β̂�nT (γ)

−α̂�t,nT (γ)ln. Let {ṽ�it(γ)} be the elements of Ṽ �t (γ) and group them by

unit: Ṽ �i (γ) = (ṽ�i1(γ), . . . , ṽ�iT (γ)).

2. Let FnT be the empirical distribution function (EFD) defined by {Ṽ �1 (γ),

. . . , Ṽ �n (γ)}. With replacement, draw a random sample of size n from

FnT . Then group them back by time to give a bootstrap sample {Ṽ b
t (γ)}.

3. Calculate Ŝbθ,nT (γ), a value of S�θ,nT (θ̂�nT (γ), γ) with Ṽt(φ̂
�
nT (γ), γ) replaced

by Ṽ b
t (γ).

4. Compute supW b
nT ≡ supγ∈Γ

1
nT
Ŝb′θ,nT (γ)Σ̂�′−1

nT (γ, γ)L[L′Q̂nT (γ)L]−1L′

Σ̂�−1
nT (γ, γ)Ŝbθ,nT (γ).

5. Repeat steps 2-4 B times.

6. Calculate the bootstrap p-value of the test: pbW = 1
B

∑B
b=1 1{supW b

nT ≥

supWnT}, and reject the null when pbW is less than the pre-chosen level

of significance.

Under the assumptions of Theorem 2.8, θ̂�nT (γ) is consistent to θ0 on Γ.

Therefore, it is easy to see the M-estimator of time fixed effect α̂�t,nT (γ) is also

consistent for each t, no matter whether T is fixed or large. Hence, {ṽ�it(γ)} are

consistent estimates of {ṽit}, which are iid across i. When both n and T are

large, individual and time fixed effects can be estimated consistently, and thus

we can find ’consistent’ estimation for idiosyncratic errors {vit}. Therefore,

the block bootstrap procedure above can be simply replaced by boostrapping

on {v̂it}, which are the elements of V̂ �t (γ) = Yt(λ̂
�
nT (γ), γ) − Xt(γ)β̂�nT (γ) −

µ̂�nT (γ) − α̂�t,nT (γ)ln with µ̂�nT (γ) = µ̂(φ̂�nT (γ), γ). Following theorem justifies

the asymptotic validity of the above procedure.

Theorem 2.9. Suppose Assumptions A-E, G′ and the null hypothesis hold,
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we have

supW b
nT

D−→ sup
γ∈Γ

W 0(γ).

The above theorem implies that we can approximate the asymptotic null

distribution of the statistic supWnT by the EDF of {supW b
nT , b = 1, . . . , B} for

a sufficiently large B. Therefore, we can reject the null at the significance level

of α when pbW < α.

2.4 Monte Carlo Study

Monte Carlo experiments are carried out to evaluate the finite sample per-

formance of the proposed estimators and test statistics. The following data

generating process is used:

Yt = λ1WtYt + λ2dt(γ)WtYt +Xtβ1 + dt(γ)Xtβ2 + µ+ αtln + Vt, t = 1, . . . , T

where the time-varying weight matrices Wt’s are generated according to Queen

contiguity, xit are generated from N(1, 1), the fixed effects µ are generated

according to 1
T

ΣT
t=1Xt + e, where e ∼ N(0, IN), and the time fixed effects α

are generated from N(0, IT ). The distributions of the error term can be (i)

normal, (ii) normal mixture (10% N(0, 42) and 90% N(0, 1)), or (iii) chi-square

with 3 degrees of freedom. In both (ii) and (iii), the error distributions are

standardized to have mean zero and variance σ2 = 1. We set β1 = 1, λ1 = 0.2,

β2 = λ2 = (nT )−0.2 and γ = 1. The number of Monte Carlo runs under each

parameter configuration is 1000.

Tables 2.1a and 2.1b report the Monte Carlo results for the 2SLS esti-

mator of Wei et al. (2021), the direct QMLE based on (2.3), and the bias-

corrected QMLE (bc-QMLE) based on (2.4), under various combinations of

n = 50, 100, 200 and T = 5, 10, 20, 40. Monte Carlo or empirical estimation

biases (bias), and standard deviations (sd) are reported. Further, empirical

averages of the robust standard error estimates (rse) are also reported for bc-

QMLE. Note that the direct QMLE and bc-QMLE share the same estimated

value of γ as discussed in Footnote 4. From the results, we see that the finite

sample performance of the 2SLS estimator can be very poor with large biases

and large standard deviations. The use of the direct QML method can help
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improve the estimation of all parameters except for the error variance. This is

in line with our theory – the direct QML estimation of σ2 is inconsistent for

when T is fixed due to the incidental parameters problem. In contrast, our

bc-QMLE has an excellent finite performance in terms of both consistency and

efficiency. All the estimations improve on average when the sample expands,

regardless of the error distributions. The
√
n(T − 1) convergence rate of the

common QMLEs is clearly demonstrated by the Monte Carlo standard errors.

Moreover, the robust estimates of standard errors rses are on average very close

to the corresponding Monte Carlo sds and become closer as the sample size

increases.

Following Theorem 2.5, we propose to make inference on γ by applying the

LR test in Subsection 2.2.4. Table 2.2 reports the empirical size of the LR

test. We find the rejection rates for all types of error distributions are close to

the nominal levels and improve on average as the sample size becomes large.

Table 2.3 reports the results for testing the threshold effects. Under the null,

β20 = λ20 = 0, the rejection rates for all types of error distribution are close

to the nominal levels. We also consider the local power of our test in the last

two columns of the table. It can be seen that the rejection rates rise quickly

as β20 and λ20 deviate from 0. When β20 = λ20 = 10/
√
nT , the power of our

test reaches 100% for all the sample sizes.

2.5 An Empirical Application

In this section, we apply our method to study the age-of-leader effects

on political competitions across Chinese cities. The tournament competition

among Chinese city government leaders has been an important topic in China’s

economic growth literature (Yao and Zhang, 2015). Local government leaders

compete against one another in enhancing local investment and promoting the

local economy’s growth so as to increase their chances for political promotion.

Based on this theory, Yu et al. (2016) document a strong spatial effect for

the city-level total investment. Besides, the age of a local leader is another

pivotal factor determining the leader’s chances of promotion. A leader’s chance

diminishes quickly as he or she gets older (Yao and Zhang, 2015; Yu et al.,
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Table 2.1a. Empirical bias(sd)[ŝd] of the estimators for FE-SPD model

with threshold effects; Wt=Queen Contiguity.

2SLS QMLE QMLE-bc 2SLS QMLE QMLE-bc

T = 5 T = 10

n = 100, error = 1, 2, 3, for the three panels below

β1 -.0527(0.748) -.0040(0.090) -.0063(0.090)[0.090] .0070(0.901) .0026(0.060) .0010(0.060)[0.060]

β2 .0709(1.217) .0063(0.137) .0041(0.136)[0.141] -.0153(1.087) -.0098(0.103) -.0114(0.103)[0.099]

λ1 .0704(0.728) -.0238(0.067) -.0016(0.067)[0.065] .0138(0.329) -.0242(0.047) -.0011(0.047)[0.046]

λ2 -.0541(1.129) -.0031(0.044) -.0034(0.044)[0.044] .0037(0.625) -.0006(0.035) -.0011(0.035)[0.034]

σ2 .0971(0.079) -.2135(0.055) -.0096(0.069)[0.070] .1087(0.055) -.1095(0.043) -.0031(0.048)[0.047]

γ -.0843(0.416) -.0114(0.023) − -.0143(0.027) .0006(0.019) −
β1 -.0955(0.745) -.0040(0.092) -.0064(0.092)[0.090] .0496(0.868) -.0007(0.059) -.0022(0.059)[0.060]

β2 .1815(1.259) -.0043(0.148) -.0065(0.148)[0.141] -.0635(1.040) -.0042(0.104) -.0058(0.104)[0.100]

λ1 .1151(0.730) -.0208(0.069) .0013(0.069)[0.066] -.0041(0.316) -.0260(0.046) -.0028(0.046)[0.046]

λ2 -.0870(1.134) -.0031(0.046) -.0034(0.046)[0.045] .0350(0.600) -.0014(0.034) -.0018(0.034)[0.034]

σ2 .1003(0.169) -.2123(0.120) -.0082(0.151)[0.148] .1130(0.115) -.1044(0.096) .0026(0.108)[0.107]

γ -.0999(0.433) -.0114(0.023) − -.0159(0.027) .0002(0.020) −
β1 -.0713(0.714) .0006(0.090) -.0018(0.090)[0.089] .0298(0.856) .0000(0.059) -.0016(0.059)[0.060]

β2 .1152(1.221) .0033(0.148) .0012(0.148)[0.141] -.0404(1.029) -.0056(0.105) -.0071(0.105)[0.099]

λ1 .0921(0.668) -.0248(0.067) -.0027(0.067)[0.065] .0066(0.319) -.0247(0.048) -.0016(0.048)[0.046]

λ2 -.0710(1.078) -.0012(0.045) -.0016(0.045)[0.045] .0201(0.593) -.0021(0.034) -.0026(0.034)[0.035]

σ2 .1070(0.126) -.2086(0.090) -.0034(0.113)[0.109] .1044(0.084) -.1117(0.068) -.0057(0.077)[0.076]

γ -.0832(0.406) -.0103(0.021) − -.0130(0.024) .0019(0.019) −
n = 200, error = 1, 2, 3, for the three panels below

β1 .0489(0.621) .0023(0.057) .0016(0.056)[0.055] .0248(0.332) -.0020(0.038) -.0023(0.038)[0.037]

β2 -.0537(0.703) -.0045(0.102) -.0048(0.102)[0.098] -.0269(0.424) .0000(0.066) -.0003(0.066)[0.065]

λ1 -.0061(0.183) -.0162(0.051) -.0042(0.051)[0.049] .0041(0.169) -.0135(0.033) -.0012(0.033)[0.032]

λ2 .0337(0.425) .0027(0.034) .0025(0.034)[0.033] .0246(0.271) -.0019(0.020) -.0018(0.020)[0.019]

σ2 .1161(0.060) -.2109(0.039) -.0100(0.049)[0.049] .1133(0.038) -.1056(0.030) -.0025(0.033)[0.033]

γ -.0205(0.069) .0030(0.019) − -.0091(0.019) -.0017(0.007) −
β1 .0203(0.635) .0011(0.056) .0004(0.056)[0.055] .0162(0.325) -.0014(0.038) -.0017(0.038)[0.037]

β2 -.0225(0.717) -.0031(0.100) -.0033(0.100)[0.098] -.0198(0.413) -.0015(0.066) -.0018(0.066)[0.065]

λ1 -.0017(0.186) -.0111(0.050) .0009(0.050)[0.049] .0133(0.171) -.0140(0.033) -.0017(0.033)[0.032]

λ2 .0152(0.434) .0003(0.034) .0000(0.034)[0.033] .0153(0.265) -.0003(0.019) -.0003(0.019)[0.019]

σ2 .1193(0.124) -.2088(0.091) -.0074(0.114)[0.107] .1148(0.080) -.1051(0.067) -.0020(0.075)[0.076]

γ -.0148(0.052) .0028(0.019) − -.0082(0.018) -.0014(0.009) −
β1 .0242(0.643) .0018(0.053) .0011(0.053)[0.054] .0359(0.308) .0019(0.038) .0017(0.038)[0.037]

β2 -.0255(0.728) -.0033(0.097) -.0036(0.097)[0.097] -.0409(0.390) -.0038(0.066) -.0041(0.066)[0.064]

λ1 .0017(0.192) -.0148(0.050) -.0027(0.050)[0.049] .0044(0.161) -.0131(0.033) -.0008(0.033)[0.032]

λ2 .0153(0.440) .0014(0.034) .0012(0.034)[0.034] .0328(0.251) -.0006(0.019) -.0006(0.019)[0.020]

σ2 .1181(0.091) -.2087(0.065) -.0073(0.082)[0.078] .1180(0.063) -.1025(0.051) .0009(0.057)[0.055]

γ -.0180(0.060) .0051(0.019) − -.0081(0.019) -.0008(0.007) −
Note: error = 1(normal), 2(normal mixture), 3(chi-square).
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Table 2.1b. Empirical bias(sd)[ŝd] of the estimators for FE-SPD model

with threshold effects; Wt=Queen Contiguity.

2SLS QMLE QMLE-bc 2SLS QMLE QMLE-bc

T = 5 T = 10

n = 50, error = 1, 2, 3, for the three panels below

β1 -.1976(1.170) -.0029(0.113) -.0085(0.112)[0.106] -.1379(0.929) -.0013(0.082) -.0030(0.082)[0.080]

β2 .4325(1.968) .0097(0.185) .0158(0.184)[0.167] .1459(0.996) .0010(0.139) .0016(0.139)[0.133]

λ1 .1591(0.979) -.0537(0.098) -.0088(0.098)[0.092] .0662(0.349) -.0555(0.066) -.0093(0.066)[0.063]

λ2 -.0581(1.096) .0000(0.059) -.0024(0.059)[0.057] -.0855(0.629) .0002(0.040) -.0003(0.040)[0.039]

σ2 .1911(0.124) -.2296(0.077) -.0232(0.098)[0.099] .1088(0.079) -.1255(0.060) -.0140(0.067)[0.066]

γ -.1390(0.567) -.0142(0.051) − -.0160(0.100) .0045(0.022) −
β1 -.2602(1.158) -.0015(0.115) -.0070(0.114)[0.105] -.0910(0.920) .0019(0.085) .0003(0.085)[0.080]

β2 .4917(2.003) .0019(0.205) .0080(0.204)[0.166] .0926(0.959) -.0004(0.139) -.0001(0.138)[0.133]

λ1 .2329(0.994) -.0546(0.098) -.0100(0.098)[0.092] .0544(0.354) -.0572(0.068) -.0109(0.068)[0.063]

λ2 -.1122(1.131) -.0012(0.060) -.0035(0.059)[0.057] -.0554(0.612) .0014(0.042) .0009(0.042)[0.039]

σ2 .1766(0.238) -.2369(0.172) -.0324(0.218)[0.194] .1055(0.155) -.1243(0.131) -.0126(0.148)[0.146]

γ -.1189(0.594) -.0178(0.089) − -.0079(0.087) .0039(0.023) −
β1 -.1699(1.379) -.0027(0.110) -.0083(0.110)[0.105] -.0834(0.941) -.0022(0.081) -.0039(0.081)[0.079]

β2 .5650(2.354) .0110(0.195) .0171(0.194)[0.166] .0937(0.994) .0052(0.131) .0057(0.131)[0.132]

λ1 .1368(1.152) -.0557(0.100) -.0109(0.100)[0.092] .0490(0.369) -.0545(0.066) -.0082(0.065)[0.063]

λ2 .0087(1.285) .0006(0.059) -.0016(0.059)[0.057] -.0497(0.633) -.0008(0.039) -.0013(0.039)[0.039]

σ2 .1910(0.184) -.2257(0.126) -.0181(0.160)[0.146] .1025(0.126) -.1260(0.097) -.0146(0.109)[0.106]

γ -.1571(0.583) -.0117(0.063) − -.0137(0.110) .0059(0.021) −
T = 20 T = 40

n = 50, error = 1, 2, 3, for the three panels below

β1 -.0496(0.461) .0022(0.054) -.0004(0.054)[0.052] .0093(0.391) -.0008(0.039) -.0017(0.039)[0.039]

β2 .0566(0.565) -.0038(0.093) -.0026(0.093)[0.089] -.0123(0.442) -.0002(0.064) .0006(0.064)[0.064]

λ1 .0337(0.244) -.0522(0.048) -.0063(0.048)[0.045] .0072(0.122) -.0518(0.033) -.0044(0.033)[0.031]

λ2 -.0373(0.367) .0016(0.032) .0003(0.032)[0.031] .0076(0.259) -.0007(0.021) -.0008(0.021)[0.020]

σ2 .1068(0.052) -.0714(0.042) -.0077(0.044)[0.046] .0937(0.038) -.0445(0.032) -.0047(0.033)[0.032]

γ -.0091(0.028) .0002(0.020) − -.0054(0.010) -.0026(0.006) −
β1 -.0484(0.447) .0056(0.052) .0031(0.052)[0.051] .0061(0.388) .0015(0.037) .0006(0.037)[0.039]

β2 .0536(0.559) -.0058(0.092) -.0046(0.092)[0.089] -.0100(0.440) -.0042(0.064) -.0034(0.064)[0.064]

λ1 .0367(0.244) -.0528(0.046) -.0071(0.046)[0.045] .0090(0.126) -.0507(0.033) -.0033(0.033)[0.032]

λ2 -.0406(0.365) .0021(0.032) .0008(0.032)[0.031] .0048(0.256) .0004(0.020) .0004(0.020)[0.021]

σ2 .1031(0.118) -.0747(0.103) -.0111(0.110)[0.104] .0987(0.079) -.0409(0.072) -.0010(0.075)[0.075]

γ -.0123(0.059) .0001(0.019) − -.0053(0.011) -.0026(0.007) −
β1 -.0823(0.469) .0054(0.053) .0028(0.053)[0.051] .0086(0.401) .0016(0.039) .0007(0.039)[0.038]

β2 .0993(0.567) -.0047(0.093) -.0033(0.092)[0.089] -.0097(0.459) -.0020(0.064) -.0012(0.064)[0.064]

λ1 .0541(0.255) -.0516(0.048) -.0058(0.048)[0.045] .0069(0.122) -.0510(0.032) -.0036(0.032)[0.031]

λ2 -.0655(0.375) .0028(0.033) .0015(0.033)[0.032] .0059(0.266) .0001(0.021) .0000(0.021)[0.021]

σ2 .1079(0.086) -.0715(0.073) -.0078(0.078)[0.076] .0985(0.059) -.0409(0.053) -.0010(0.055)[0.055]

γ -.0121(0.040) .0008(0.019) − -.0050(0.011) -.0016(0.006) −
Note: error = 1(normal), 2(normal mixture), 3(chi-square).
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Table 2.2. Empirical sizes of LR test at 0.01, 0.05 and 0.10 levels;

Wt = Queen Contiguity.

n T
Normal errors Normal mixture Chi-square

0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

50 5 .009 .037 .063 .019 .062 .096 .013 .044 .079

10 .006 .039 .074 .015 .046 .076 .013 .042 .062

20 .008 .058 .082 .016 .054 .080 .014 .044 .086

40 .012 .060 .098 .010 .054 .094 .008 .056 .100

100 5 .008 .037 .062 .012 .049 .078 .011 .039 .063

10 .016 .059 .095 .017 .064 .106 .008 .042 .082

200 5 .010 .049 .094 .028 .060 .096 .004 .042 .098

10 .009 .046 .095 .015 .053 .085 .010 .060 .095

Table 2.3. Rejecting frequency of tests for threshold effects

at 0.01, 0.05 and 0.10 levels; Wt = Queen Contiguity.

error n T
λ2 = β2 = 0 λ2 = β2 = 2/

√
nT λ2 = β2 = 10/

√
nT

0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

1 50 5 .014 .034 .064 .110 .256 .366 1.000 1.000 1.000

10 .016 .044 .068 .092 .248 .344 1.000 1.000 1.000

20 .016 .046 .082 .140 .272 .400 1.000 1.000 1.000

40 .010 .058 .102 .098 .264 .358 1.000 1.000 1.000

100 5 .022 .068 .098 .104 .242 .334 1.000 1.000 1.000

10 .007 .048 .086 .102 .260 .336 1.000 1.000 1.000

200 5 .018 .060 .110 .140 .270 .378 1.000 1.000 1.000

10 .010 .064 .120 .074 .194 .306 1.000 1.000 1.000

2 50 5 .008 .030 .050 .106 .252 .354 1.000 1.000 1.000

10 .008 .032 .064 .086 .220 .294 1.000 1.000 1.000

20 .006 .040 .108 .150 .286 .402 1.000 1.000 1.000

40 .016 .054 .100 .104 .274 .380 1.000 1.000 1.000

100 5 .007 .034 .065 .118 .262 .336 1.000 1.000 1.000

10 .011 .036 .074 .100 .234 .348 1.000 1.000 1.000

200 5 .006 .052 .114 .108 .232 .358 1.000 1.000 1.000

10 .010 .056 .090 .072 .200 .302 1.000 1.000 1.000

3 50 5 .014 .028 .060 .120 .262 .350 1.000 1.000 1.000

10 .014 .044 .078 .106 .268 .372 1.000 1.000 1.000

20 .014 .062 .116 .150 .300 .418 1.000 1.000 1.000

40 .012 .052 .096 .110 .242 .342 1.000 1.000 1.000

100 5 .020 .060 .081 .100 .234 .330 1.000 1.000 1.000

10 .008 .042 .084 .096 .232 .326 1.000 1.000 1.000

200 5 .014 .068 .100 .092 .256 .358 1.000 1.000 1.000

10 .008 .046 .078 .100 .212 .328 1.000 1.000 1.000

Note: error = 1(normal), 2(normal mixture), 3(chi-square).
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2016). Thus, those leaders who are close to retirement age (60) should have

less incentive to join this tournament competition than the young leaders, and

thus a weaker spatial effect should be expected among the old leaders. That is,

we would expect that the spatial correlation of city-level total investment has a

threshold effect based on the leaders’ age. In contrast to Yu et al. (2016) who

try various cutoff ages to see the change of the spatial correlation over leader’s

age, our threshold SPD model can directly estimate the threshold age. First,

a test of no threshold effects is carried out using the sup-Wald test developed

in Section 2.3, and then if this test is rejected, a confidence interval for the

threshold parameter is constructed by inverting the LR test given in Subsection

2.2.4.

Model and data. Following the above discussions, we consider the fol-

lowing model:

invit = λ1

∑n
j=1wij,tinvjt + λ2

∑n
j=1wij,tinvjt1{ageit 6 γ}+ xitβ + µi + αt + vit,

where invit denotes the total investment of local government of city i in year

t, ageit denotes the age of the local leader of city i in year t, xit is a vector of

time-varying regressors including fiscal revenue, fiscal expenditure, population,

manufacturing ratio, GDP per capita and a set of province level variables: fiscal

revenue, fiscal expenditure, and public capital investment, µi and αt are the

two-way fixed effects, and vit is the idiosyncratic error. We follow Yu et al.

(2016) and define those same-province cities whose within-province rankings

of GDP per capita are either one place above or below a city as this city’s

spatial neighbors, because they are the main competitors in the tournament

competition. Because there is no theoretical evidence to justify the threshold

effects for regression coefficients, they are not included.

We analyze the annual total investments (in RMB) of 338 cities in the 27

provinces in mainland China from 2010 to 2012. Economic data is from Fiscal

Statistics of Cities and Counties in China, China City Statistical Yearbook and

China Statistical Yearbook for Regional Economy for the period 2010-2012.

The ages of leaders are obtained from local government websites. The data is

standardized to make all the variables have comparable scales.
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Test for the presence of threshold effects. Before the estimation of

the model, we conduct hypothesis testing on the presence of the age-of-leader

threshold effect. In China’s local official system, there are two types of leaders

in the local governments, party secretaries and mayors. Party secretaries are

mainly responsible for personnel work and overall decision-making while the

mayors are for the formulation and implementation of specific economic and

social policies so that Yao and Zhang (2013) find the weight of economic per-

formance is lower for the party secretary than for the mayor in the assessment

of local leaders. Therefore, we will consider these two groups of leaders, sepa-

rately. In addition, as Yu et al. (2016) find the age-of-leader effects on political

competitions are more clear among old leaders and old leaders have different

spatial responsiveness to their young and old neighbors, we also separate the

leaders into young and old groups. The old leaders are defined as those whose

ages are above the median age (49 for the mayor group and 52 for the party

secretary group).

Table 2.4 reports the supWnT statistics and the associated bootstrap p-

values based on 500 bootstrap replications for both mayor and party chief

groups. The row labeled “all vs all” considers the spatial correlation among

all the leaders in the group. “old vs all” considers the spatial correlation

between old leaders and all their neighbors. Similarly, “old vs old” considers

the spatial correlation among all the old leaders in the group, and “old vs

young” considers the spatial correlation between old leaders and their young

neighbors. Apparently, we can reject the null hypothesis of no threshold effect

at the 10% level for “old vs all” and 1% level for “old vs old” patterns in the

mayor group.

Estimation results. Table 2.5 reports the regression results for the two

scenarios when we can reject the null hypothesis of no threshold effect. “Model

1” and “Model 2” are corresponding to the “old vs all” pattern and “old vs

old” pattern in the mayor group, respectively. The estimations of threshold

coefficient γ are 54.75 (54 years and 9 months) and 55.33 (55 years and 4

months) for these two models, respectively. We also report the 95% confidence

intervals that are based on the likelihood ratio test. The estimations of λ1 in
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Table 2.4. Test for the presence of threshold effect.

Mayor Party Chief

supWnT p-value supWnT p-value

all vs all 5.114 0.648 6.977 0.388

old vs all 8.325 0.067 7.110 0.157

old vs old 13.27 0.007 7.635 0.221

old vs young 3.418 0.411 6.202 0.120

Table 2.5. Estimates of spatial competitions in government

investments among Chinese cites.

Government Investments Model 1 Model 2

Mayor: old vs all Mayor: old vs old

Threshold estimate:

Threshold (γ) 54.75 55.33

95% confidence interval [49.33, 57.92] [49.75, 58.00]

Spatial effects:

Base effect (λ1) 0.012 (0.001) 0.008 (0.002)

Threshold effect (λ2) 0.071 (0.001) 0.099 (0.002)

Impact of covariates:

Fiscal revenue 0.308 (0.004) 0.311 (0.004)

Fiscal expenditure 0.127 (0.002) 0.123 (0.002)

Population 0.024 (0.001) 0.025 (0.001)

manufacturing ratio 0.771 (0.004) 0.767 (0.004)

GDP per capita -0.140 (0.002) -0.137 (0.002)

Provincial fiscal revenue 0.259 (0.006) 0.251 (0.006)

Provincial fiscal expenditure -0.129 (0.006) -0.128 (0.006)

Public capital investment -0.009 (0.000) -0.011 (0.000)

Note: The values without parentheses are the QMLE for all the parameters. The values

in parentheses are the corresponding standard errors.

these two models suggest that the spatial correlations when the ages of local

leaders are beyond the threshold levels are slightly positive (0.012 and 0.008).

In the contrast, when the ages of local leaders are below the threshold levels,

the spatial correlations among local investments are the estimations of λ1 +λ2

and thus become strongly positive as λ2 are positive with a much larger mag-

nitude. These empirical findings are in line with our theoretical expectation,

considering that the city leaders normally take office in their forties or fifties

and the mandatory retirement age for them is 60. A more comprehensive study

on this topic is of interest as future research.

2.6 Extensions

We have by far focused on a threshold SPD model (2.1) that contains only

a spatial lag (SL) structure with additive fixed effects, for ease of exposition.

The proposed estimation and inference methods are in fact quite general and
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can be extended to include additional features in the model such as spatial

error dependence, serial correlation, time dynamics, multiple threshold effects,

threshold effects on error parameters, interactive fixed effects, etc. An imme-

diate and much-needed extension is the inclusion of spatial error (SE) effect:

Yt = λ10WtYt+λ20dt(γ0)WtYt+Xtβ10+dt(γ0)Xtβ20+µ0+αt0ln+Ut, Ut = ρ0MtUt+Vt,

for t = 1, . . . , T , where parameter ρ and weight matrices {Mt} together char-

acterize the SE effects, and the other parts are defined in Model (2.1). Let

Bt(ρ) = In− ρMt. The quasi Caussian loglikelihood function of all the param-

eters takes the form

`nT (θ, ρ, γ, µ, α) = − nT
2

ln(2πσ2) +
∑T

t=1 ln |At(λ, γ)|+
∑T

t=1 ln |Bt(ρ)|

− 1
2σ2

∑T
t=1 V

′
t (φ, ρ, γ, µ, α)Vt(φ, ρ, γ, µ, α),

where Vt(φ, ρ, γ, µ, α) = Bt(ρ)[Yt(λ, γ)−Xt(γ)β−µ−αtln]. To make µ and α

identifiable, we impose
∑T

t=1B
′
t(ρ)Bt(ρ)αtln = 0. Given (φ, ρ, γ), `nT (θ, ρ, γ, µ, α)

is partially maximized at

µ̂(φ, ρ, γ) = [
∑T

t=1B
′
t(ρ)Bt(ρ)]−1

∑T
t=1B

′
t(ρ)Bt(ρ)[Yt(λ, γ)− Xt(γ)β] and

α̂t(φ, ρ, γ) = (l′nB
′
t(ρ)Bt(ρ)ln)−1l′nB

′
t(ρ)Bt(ρ)[Yt(λ, γ)− Xt(γ)β − µ̂(φ, ρ, γ)].

Thus, the adjusted concentrated quasi loglikelihood function corresponding to

(2.4) becomes

`∗nT (θ, ρ, γ) = − n(T−1)
2

ln(2πσ2) + T−1
T

∑T
t=1 ln |At(λ, γ)|+ T−1

T

∑T
t=1 ln |Bt(ρ)|

− 1
2σ2

∑T
t=1 V̈

′
t (φ, ρ, γ)Qt(ρ)V̈t(φ, ρ, γ),

where Qt(ρ) = In −Bt(ρ)ln(l′nB
′
t(ρ)Bt(ρ)ln)−1l′nB

′
t(ρ) and V̈t(φ, ρ, γ) = Bt(ρ)

[Yt(λ, γ)−Xt(γ)β − µ̂(φ, ρ, γ)]. In special cases when {Mt} are time-invariant

and row-normalized, Qt(ρ) is reduced to Jn as Bt(ρ)ln = (1 − ρ)ln, and

V̈t(φ, ρ, γ) becomes Bt(ρ)[Ỹt(λ, γ) − X̃t(γ)β]. In general, the adjusted QML

estimators of θ, ρ and γ are simply

(θ̂nT , ρ̂nT , γ̂nT ) = argmax
(θ,ρ,γ)∈Θ×∆ρ×Γ

`∗nT (θ, ρ, γ),

where ∆ρ is the parameter space for ρ.

In practice, we can first maximize the objective function conditional on γ to
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get θ̂nT (γ) and ρ̂nT (γ), and then apply the grid search algorithm in Subsection

2.2.2 to obtain γ̂nT . With some additional conditions (e.g., both ‖Mt‖1 and

‖Mt‖∞ are bounded; both ‖B−1
t (ρ)‖1 and ‖B−1

t (ρ)‖∞ are bounded on ∆ρ; ρ

is identifiable), we expect the estimation error of γ̂nT still have asymptotically

negligible effects on (θ̂nT , ρ̂nT ), and thus we can establish similar results to

those in Theorems 2.1 - 2.5. Moreover, to construct confidence interval for γ,

we construct the LR statistic in the same way as in Subsection 2.2.4,

LRnT (γ) = 2[`∗nT (θ̂nT , ρ̂nT , γ̂nT )− `∗nT (θ̂nT (γ), ρ̂nT (γ), γ)].

When errors are normally distributed, the asymptotic distribution of LRnT (γ0)

is still pivotal, following the distribution of 0. In this case, the asymptotic

1 − α confidence interval for γ is the set of values of γ satisfying LRnT (γ) 6

01−α. Finally, to test the presence of threshold effects, we first derive the

CQS functions of `∗nT (θ, ρ, γ) with respect to θ and ρ, and then adjust them,

following the two principals in Section 2.3, to obtain the AQS functions. Thus,

the sup-Wald test statistic and bootstrap procedure can be constructed in a

similar manner.

Our estimation and inference methods can also be extended to handle mod-

els with other additional features. Firstly, extension to allow for serial corre-

lation in the error term (e.g., vit = %vi,t−1 + eit with |%| < 1) is also straight-

forward like the above one with the SE structure. We expect the arguments

and ideas behind estimation and inference methods can still be applied with

minor modifications. Secondly, we can generalize our model to the dynamic

SPD framework. When T is large, the direct QML approach should pro-

vide a consistent estimation for all the parameters, and thus the asymptotic

properties of these QMLEs can be derived in a standard manner. When T is

fixed, the analysis will become complicated as adjustments to the concentrated

QML function are required to deal with the incidental parameters problems

coming from both the initial condition and the concentration. Thirdly, exten-

sion to include multiple thresholds (Hansen, 1999) is also of theoretical and

practical interest. For this extension, our QML approach is still appropriate

and the objective function with multiple thresholds corresponding (2.4) is also
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straightforward to construct. Thus, the adjusted QML estimators of all the

parameters including multiple threshold parameters jointly minimize the new

objective function. In practice, the grid search over multiple thresholds may

require an excessive amount of computation. We recommend using the sequen-

tial estimation method with refinement (Bai, 1997; Hansen, 1999) to avoid this

computational burden.

Fourthly, our methods can also be extended to include the threshold effects

on error parameters, e.g., error variance (Miao et al., 2020). In this case, the

threshold effects on error parameters need to be incorporated into the QML

function. For example, when error variance has threshold effects, for each ob-

servation the variance parameter will appear in the form of σ2
1 + σ2

21(qit 6 γ),

where σ2
1 is the baseline parameter and σ2

2 is its threshold effect. Finally,

our methods can be extended to allow the individual and time fixed effects

to appear in the model interactively. According to Miao et al. (2020), we

would expect the concentrated QML estimation (with common factors being

concentrated out) can provide a consistent estimation for all the parameters,

including threshold parameter and factor loadings, when both n and T are

large. Besides, we expect that the estimation error of the threshold estimate

still has no asymptotic effect on the asymptotic properties of the other esti-

mators and that the inference methods in this chapter can still be applied.

However, formal studies on these extensions are still quite involved and can

only be handled in future research.

2.7 Conclusion

In this chapter, we consider estimation and inference for a threshold spatial

panel data model with both individual and time fixed effects, where threshold

effects are allowed for both spatial and regression parameters. The presence

of the threshold effects renders the commonly used orthogonal transformation

approach inapplicable to wipe out fixed effects. We propose an adjusted quasi

maximum likelihood estimation method, where the objective function is ob-

tained by adjusting the concentrated quasi loglikelihood function (with fixed

effects being concentrated out) to ‘recover’ the effect of degrees of freedom loss
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due to the estimation of these incidental parameters. We study the asymptotic

properties of the adjusted QML estimators in the diminishing-threshold-effect

framework and propose a likelihood ratio statistic to construct confidence in-

tervals for the threshold parameter. We also consider the hypothesis testing

on the presence of threshold effects and a sup-Wald statistic based on an M-

estimator is proposed. Monte Carlo results show excellent performance of the

proposed estimation and inference methods. We apply our model to study the

age-of-leader effects on political competitions across Chinese cities and find

competitions only exist among city leaders who are younger than a threshold

age.
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Chapter 3

Spatial Panel Data Models with

Time-Varying Network

Structures

3.1 Introduction

One important application of spatial models is to be used as a social inter-

action model in social economics, where the spatial weight matrix, also called

sociomatrix (Liu and Lee, 2010), is used to capture the information on the

connections of nodes (individuals) in a social network. It provides methods to

model aggregate behavior as the outcome of individual decisions when these

decisions are made interactively in the network (Durlauf and Young, 2001).

According to Manski (1993), these interaction effects can be separated into

endogenous effects, exogenous (contextual) effects, and unobserved correlation

effects. Since Lee (2007), researchers have recognized that these effects can be

captured by spatial lag term, Durbin term, and group-specific fixed effects, re-

spectively, in spatial autoregressive (SAR) models. Many papers then followed

this work and studied these interaction effects using the same model specifica-

tions, e.g., Bramoullé et al. (2009), Lin (2010), Liu and Lee (2010), and Lee

et al. (2010) under spatial cross-sectional data setup, and Kwok (2019) and

Han et al. (2019) under spatial panel data (SPD) setup.

SPD models have received increasing attention from econometricians since
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Anselin (1988). See, for example, Baltagi et al. (2003), Lee and Yu (2010),

Baltagi and Yang (2013a,b), Yang et al. (2016), and Liu and Yang, (2020).

Besides taking into account spatial and social interactions, SPD models are

also able to have full control for the unobserved heterogeneity. In this chapter,

we reformulate SPD models as social interaction models, where we allow the

network structures to be time-varying. That is, each individual could switch

social groups or/and their network connections within these social groups may

also change over time. This phenomenon is quite common in practice. For

example, one major application of the social interaction model is to identify

peer effects on student academic achievement (Lin, 2010; Han et al., 2019),

where a social group is specified at grade or class level, and one’s network con-

nections are made up of friends. Thus, it is common to see that some students

change classes over time. In addition, each student may also have different

network connections over time in the process of expanding his/her circle of

friends. Other major applications include studying the neighborhood influ-

ences on consumption behaviors (Case, 1991), welfare participation (Bertrand

et al., 2000), and secondary school enrollment decisions (Bobonis and Finan,

2009), all of which are based on neighborhood networks. They are also change-

able over time because people might move to different communities. However,

this practical feature is not considered in Kwok’s (2019) model as he assumes

that the sociomatrices and group-specific effects are time-invariant.

Identification issues regarding social interactions models is also a focus of

attention in the literature. In a pioneer work, Manski (1993) first pointed

out a ’reflection’ problem for social interactions in a linear-in-means model,

which refers to the difficulty of identification between endogenous and exoge-

nous interaction effects. Lee (2007) considers a SAR model where each node

is equally influenced by all the peers in its group but not by itself, as the

information on how individuals interact within a group is unobservable. He

finds that variations in group sizes can make the identification possible, but it

can be weak when all the group sizes are large. Bramoullé et al. (2009) and

Lee et al. (2010) then also consider a SAR model but assume the information

on network structure is available so that each node is only influenced by its
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connected nodes (e.g., friends or roommates) in a network (e.g., class, grade

or school). They show that the various interaction effects are generally identi-

fied by using this information. However, all the above works assume that the

sociomatrix is row-normalized such that each row sums to unity, which might

have some potential pitfalls (Kelejian and Prucha, 2010) or limitations (e.g.,

isolated units are not covered) in practice. For this reason, Liu and Lee (2010)

abandon this assumption and find the variation in the Bonacich centrality mea-

sure (number of connections of each node) can instead yield identification for

various interaction effects. As regards to panel social interaction model, Kwok

(2019) derives the identification conditions for higher-order SPD models with

network structures under the row-normalization assumption. Han et al. (2019)

do not provide the identification conditions for their model. In this chapter,

we assume that the network information is available and that sociomatrices

are not necessary to be row-normalized. Under these assumptions, we derive

the identification conditions of various social interaction effects in SPD models

with time-varying network structures.

As discussed above, one important advantage of social interaction models

in the SPD framework is that they have the ability to have full control of three-

dimensional (3-D) unobserved heterogeneity. Besides the common individual-

and time-specific effects, the unobserved group-specific effects are additionally

used to capture the unobserved correlation effects in a group in that individuals

in the same group tend to have similar characteristics or face similar environ-

ments (Manski, 1993). However, Kwok (2019) fails to take into account the

former two specific effects in his model. Besides, the literature pertaining to

multi-dimensional SPD models mainly focuses on random-effects models, e.g.,

Le Gallo and Pirotte (2017), Baltagi et al. (2003), and Baltagi et al. (2015).

Although Han et al. (2019) consider an SPD model with one particular type

of three-way fixed effects and develop a Bayesian Markov chain Monte Carlo

sampling approach to estimate the model, the well-known incidental param-

eters problem of Neyman and Scott (1948) is ignored in their paper. Hence,

there seem to be no formal considerations being given to the SPD models with

multi-dimensional fixed effects. In practice, the three types of fixed effects can
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appear either additively or interactively according to economic theory1, so that

the total number of possible specifications of these fixed effects can be as large

as 26 (including the one with no fixed effects). In this chapter, we only consider

the empirically most meaningful specification for social interaction models as

proposed in Han et al. (2019): time-invariant individual-specific effects plus

time-varying group-specific effects. For example, it is plausible to assume that

the inner abilities of students remain unchanged over time but students in the

same classroom may face different environments (e.g., teachers) in different

semesters. Although we only focus on this single specification, the main idea

behind the proposed methodology can be easily adapted to deal with all the

other specifications.

In our model, the number of groups may grow with the sample size (the

number of spatial units), and thereby direct estimation of the group-specific

effects will give rise to the incidental parameters problem in that some pa-

rameter estimates are not consistent or asymptotically biased, similar to the

direct estimation of two-way fixed effects (Lee and Yu, 2010). Another stan-

dard method is to transform the original model to wipe out the fixed effects.

In view of the fact that the spatial matrices are time-varying and their row

sums may not be constant (Liu and Lee, 2010), the transformed model would

not have a well-defined SAR structure, and thus the (quasi) likelihood function

cannot be formed. As an ML-type estimation often has better finite-samples

properties than GMM/IV approach, it is desirable to propose a more general

ML-type method for estimation.

To tackle the issues mentioned above, we propose a general M-, or ad-

justed quasi score (AQS) method. The method starts from the joint quasi

score functions of both the common parameters and fixed effects, then con-

centrates out the fixed effects to give the concentrated quasi score functions,

and then adjusts these concentrated score functions to give a set of unbiased

estimating functions (the AQS functions) for the common parameters. Solving

these AQS functions gives the AQS estimators of common parameters. Besides

all the interaction effects mentioned above, we also allow the disturbances of

1See Balazsi et al. (2017) for enormous examples of empirical studies for multi-
dimensional fixed effects models.
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connected nodes to be spatially correlated to further capture similar prefer-

ences of these connected individuals as argued in Moffitt (2001). We show the

AQS estimators are consistent and asymptotically normally distributed with-

out asymptotic bias. Simulation results also show our AQS estimators have

excellent finite sample performance.

The rest of this chapter is organized as follows. Section 3.2 introduces the

SPD model with time-varying network structures, discusses the issues of direct

QML estimation, and finally proposes the M-estimation method for estimating

the model. The consistency and asymptotic normality of the AQS estimators

are also studied in this section. Section 3.3 presents Monte Carlo results and

Section 3.4 concludes. Proofs of the main results are given in the Appendices.

Some generic notations and conventions will be followed. Im denotes an

m×m identity matrix, 0m×n an m×n zero matrix, and lm an m× 1 vector of

ones. For a square matrix, | · | denotes its determinant and tr(·) its trace. For

a real symmetric matrix, γmin(·) and γmax(·) denote, respectively, its smallest

and largest eigenvalues. For a real n×m matrix A, A′ denotes its transpose,

A◦ = A+A′, ‖A‖F is its Frobenius norm, ‖A‖1 its maximum absolute column

sum norm, and ‖A‖∞ its maximum absolute row sum norm. For a real n×m

matrix A with a full column rank, PA = A(A′A)−1A′ denotes the projection

matrix into the column space of A, and QA = In − PA the projection matrix

into the space orthogonal to the column space of A. The operator diag(·)

forms a diagonal matrix by the diagonal elements of a square matrix or by the

elements of a given vector, diagv(·) forms a column vector using the diagonal

elements of a square matrix, and blkdiag(· · · ) forms a block-diagonal matrix

by placing the given matrices or vectors along the diagonal direction. The

usual expectation and variance operators, E(·) and Var(·), correspond to true

parameter values with a subscript 0.

3.2 SPD Model with Time-Varying Network Structures

3.2.1 The model with time-invariant grouping

To illustrate the main idea, we first focus on a simple model where indi-

viduals are not allowed to switch groups over time so that the group members
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are fixed in each period. Consider a study that lasts T periods and involves

a total of n spatial units. They are divided into G social groups with group

sizes (s1, . . . , sG) such that
∑G

g=1 sg = n. Within the same group, individuals

are connected according to the observable network structures which may still

be time-varying as individuals may have more or fewer connections over time.

The outcome of each individual is subjected to the social interaction effects of

these connections. These give rise to a spatial panel data (SPD) model with

time-varying network structures:

yigt = λ
∑sg

j=1 wij,gtyjgt + xigtβ1 +
∑sg

j=1 wij,gtxjgtβ2 + µig + γgt + uigt, (3.1)

uigt = ρ
∑sg

j=1 mij,gtujgt + vigt,

for i = 1, . . . , sg, g = 1, . . . , G and t = 1, . . . , T . Note that yigt is the dependent

variable for individual i of group g at time period t. wij,gt and mij,gt are the

(i, j)th elements of Wgt and Mgt, respectively, which are the sociomatrices of

group g at time period t. In principle, {Wgt} and {Mgt} may or may not be

the same. xigt is the corresponding 1 × k vector of time-varying exogenous

regressors. Idiosyncratic errors {vjgt} are assumed to be iid with zero mean

and variance σ2. β1 is the k × 1 vectors of regression coefficients. In the

social interaction literature, λ and β2 represent the endogenous effect and the

contextual effects, respectively, and ρ captures the unobservable correlated

effects of connected individuals. µig stands for the time-invariant individual-

specific effect for unit i in group g. γgt stands for the time-varying group-

specific effect that is shared by all the individuals in group g at time t. In this

chapter, they both are allowed to correlate with the regressors in an arbitrary

manner and hence are considered as fixed effects (FE).

Stacking all the sg observations in group g yields

Ygt = λWgtYgt + Zgtβ + µg + γgtlsg + Ugt, Ugt = ρMgtUgt + Vgt, (3.2)

where g = 1, . . . , G, t = 1, . . . , T , Ygt = (y1gt, . . . , ysg ,gt)
′, Zgt = (Xgt,WgtXgt),

Xgt = (x′1gt, . . . , x
′
sg ,gt)

′, Ugt = (u1gt, . . . , usg ,gt)
′, Vgt = (v1gt, . . . , vsg ,gt)

′, β =

(β′1, β
′
2)′, and µg = (µ1g, . . . , µsg ,g)

′. Further stacking all the groups in period
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t, we have

Yt = λWtYt + Ztβ + µ+ Lγt + Ut, Ut = ρMtUt + Vt, t = 1, · · · , T, (3.3)

where Yt = (Y ′1t, . . . , Y
′
Gt)
′, Zt = (Z ′1t, . . . , Z

′
Gt)
′, Ut = (U ′1t, . . . , U

′
Gt)
′, Vt =

(V ′1t, . . . , V
′
Gt)
′, Wt = blkdiag(W1t, . . . ,WGt), L = blkdiag(ls1 , . . . , lsG), µ =

(µ′1, . . . , µ
′
G)′, and lastly, γt = (γ1t, . . . , γGt)

′.

As discussed in the introduction, the above model can be adjusted to allow

for all the other possible specifications of the three-way fixed effects, depending

on the economic theory. The estimation strategy introduced later is flexible to

deal with all of these specifications. A major advantage of these models is that

they are able to have full control of unobserved heterogeneity along the three

dimensions. Another important feature of the above model is that the row sums

of time-varying sociomatrices may not be constant. This is commonly seen in

network studies because there might be some isolated individuals (Bramoullé

et al., 2009) whose connection groups are empty, i.e., the row sums in the

sociomatrices corresponding to these individuals are zero. But the row sums

for the other individuals who have connections will not be zero.

3.2.2 The model with time-varying grouping

The above model can be further generalized to allow units to switch groups

over time. In this case, the group members will be changing. We assume there

are still n spatial units divided into G social groups in each time period. But

the group sizes are now {sgt} such that
∑G

g=1 sgt = n for each t. In this case,

the model for yigt is the same as (3.1) except the value ranges of indices i and j

now depends on both group g and time t, i.e., i, j = 1, . . . , sgt. Corresponding

to (3.2), we stack all the sgt observations in the g-th group at time t,

Ygt = λWgtYgt + Zgtβ + µ(t)
g + γgtlsgt + Ugt, Ugt = ρMgtUgt + Vgt, (3.4)

where g = 1, . . . , G, Ygt = (y1gt, . . . , ysgt,gt)
′, Zgt = (Xgt,WgtXgt), Xgt =

(x′1gt, . . . , x
′
sgt,gt)

′, Ugt = (u1gt, . . . , usgt,gt)
′, Vgt = (v1gt, . . . , vsgt,gt)

′, and µ
(t)
g =

(µ1g, . . . , µsgt,g)
′ representing the set of time-invariant individual fixed effects

for these sgt units. Then, we stack all the groups in period t and get

Yt = λWtYt +Ztβ + µ(t) +Ltγt +Ut, Ut = ρMtUt + Vt, t = 1, · · · , T, (3.5)

82



where Yt = (Y ′1t, . . . , Y
′
Gt)
′, Zt = (Z ′1t, . . . , Z

′
Gt)
′, Ut = (U ′1t, . . . , U

′
Gt)
′, Vt =

(V ′1t, . . . , V
′
Gt)
′, Wt = blkdiag(W1t, . . . ,WGt), Lt = blkdiag(ls1t , . . . , lsGt), µ

(t) =

(µ
(t)′
1 , . . . , µ

(t)′
G )′ and γt = (γ1t, . . . , γGt)

′. It is worth mentioning that although

µ(t) stands for time-invariant individual-specific effects, the elements of it may

have various orders over time as the observations are sorted by groups in each

time period.

3.2.3 Quasi-maximum likelihood estimation

It is well-known that the maximum likelihood (ML) method is usually

more efficient than the 2SLS or GMM approaches, especially when the er-

rors are normally distributed. Therefore, we start with the quasi-maximum

likelihood (QML) estimation and then discuss the disadvantages it has. As

the main ideas of constructing the loglikelihood functions for the above two

models are the same, we discuss them at the same time below. For the model

in Subsection 3.2.1, we let Y = (Y ′1 , . . . , Y
′
T )′, W = blkdiag(W1, . . . ,WT ), Z =

(Z ′1, . . . , Z
′
T )′, U = (U ′1, . . . , U

′
T )′, V = (V ′1 , . . . , V

′
T )′, M = blkdiag(M1, . . . ,MT ),

γ = (γ′1, . . . , γ
′
T )′, Dµ = lT ⊗ In, and Dγ = IT ⊗ L. Then, we can write

model (3.3) into the vector form: Y = λWY + Zβ + Dµµ + Dγγ + U and

U = ρMU+V. For the standard two-way FE-SPD model, the transformation

approach (e.g., Lee and Yu, 2010; Yang et al., 2016) is usually preferred for

eliminating the fixed effects as the transformed model remains in the same

spatial structure and thus the (quasi) likelihood can be formed. However, it is

hard to find such a transformation to wipe out general three-way fixed effects

without affecting the spatial structure. Besides, this method requires that

spatial weight matrices (sociomatrices) are time-invariant and row-normalized

even for the two-way fixed effects models, and both of these two features are

not met in the current model. Therefore, we consider using the direct QML

estimation, i.e., we estimate fixed effects together with all the common param-

eters.

For this, we first obtain the concentrated quasi likelihood function with all

fixed effects concentrated out and then maximize the concentrated function to

get estimations for the common parameters. In the first step, as dummy matrix
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(Dµ,Dγ) is rank-deficient, we have to impose some restrictions on the fixed

effects parameters to make them concentratable. The two most widely used

are either to set their average to zero or to leave out some of the parameters.

In this chapter, we follow the latter approach and omit either some individual

fixed effects or some group-time interactive fixed effects parameters. For each

specific group, it has the same group members over all the periods. Therefore,

we will not be able to identify its group effects of all the time periods separated

from the individual effects belonging to this group, i.e., µig + γgt = (µig + c) +

(γgt − c) for an arbitrary c. To avoid this, we can drop either one µ-dummy

or one γ-dummy for this group. For example, we can omit µ1g or γg1 for each

group g. Thus, a total of G number of µ-dummies or γ-dummies needs to

be dropped. In this chapter, we consider dropping γ-dummies for example.

Hence, the group-time effects become γ? = (γ′2, . . . , γ
′
T )′ after omission. The

dummy matrix Dγ now changes to D?
γ = [0n×G(T−1); IT−1 ⊗ L]. Thus, our

estimation will be based on the following model:

Y = λWY + Zβ + Dφ+ U, U = ρMU + V, (3.6)

where φ = (µ′, γ?′)′ and D = (Dµ,D
?
γ) with a full column rank, n+G(T − 1).

Before we build up the loglikelihood function for the above model, some

similar discussion can also be applied to the model in Subsection 3.2.2. Firstly,

it is also possible to write the model into vector form: Y = λWY + Zβ +

Dµµ+Dγγ+U and U = ρMU+V, where Dµ and Dγ become dummy variable

matrices that are defined following the observations order in (3.5), and all the

other notations are defined same as above. However, the non-identification

issues mentioned above now only apply to the groups whose members are

fixed over time, i.e., the group size variation over time provides information

for identification of the fixed effects. Thus, we can simply omit one γ-dummy

for each of these groups. If none of the groups has fixed members, then we

can arbitrarily omit one γ-dummy to avoid the simple dummy variable trap.

Thus, we can find the estimation model corresponding to (3.6). In this case,

the column rank of D changes to n+G(T − 1) + (G− r̄), where r̄ = max{1, r}

and r is the number of groups with fixed members. Thus, model (3.6) can be
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treated as a special case of this model, where r̄ = G.

Let θ = (β′, σ2, δ′)′, where δ = (λ, ρ)′. In this chapter, we call θ the set

of common parameters and φ the set of incidental parameters. Let AnT (λ) =

InT − λW and BnT (ρ) = InT − ρM. For both of the above models, we have

the quasi Gaussian loglikelihood function of θ and φ:

`nT (θ, φ) = −nT
2

ln 2π−nT
2

lnσ2+ln |AnT (λ)|+ln |BnT (ρ)|− 1
2σ2 V

′(β, δ, φ)V(β, δ, φ),

(3.7)

where V(β, δ, φ) = BnT (ρ)[AnT (λ)Y − Zβ −Dφ].

Let D(ρ) = BnT (ρ)D. Given θ, `nT (θ, φ) is partially maximized at

φ̂nT (β, δ) = [D′(ρ)D(ρ)]−1D′(ρ)BnT (ρ)[AnT (λ)Y − Zβ]. (3.8)

Substituting φ̂nT (β, δ) into `nT (θ, φ) gives the concentrated quasi loglikelihood

function for θ:

`cnT (θ) = −nT
2

ln 2π− nT
2

lnσ2 + ln |AnT (λ)|+ ln |BnT (ρ)| − 1
2σ2 Ṽ

′(β, δ)Ṽ(β, δ),

(3.9)

where Ṽ(β, δ) = QD(ρ)BnT (ρ)[AnT (λ)Y − Zβ] and QD(ρ) is the projection

matrix based on D(ρ). The direct quasi maximum likelihood (QML) estima-

tor θ̂QML of θ maximizes `cnT (θ). However, Lee and Yu (2010) demonstrate in

their work for a two-way FE-SPD model that the direct QMLEs of β and δ

are consistent no matter when T is large or small, but their distributions are

asymptotically centered only when T is small compared to n. They also show

that when T is finite, the QMLE of σ2 is inconsistent and its limiting distri-

bution is degenerate. The reason for these is that such a direct estimation of

the common parameters θ completely ignores the effects from the estimation

of the incidental parameters φ – the well known incidental parameters prob-

lem of Neyman and Scott (1948). For the current model specification, as the

number of groups is also allowed to be large , the incidental parameters prob-

lem could become more complicated. Thus, it is well expected that θ̂QML will

also be inconsistent or asymptotically biased in some scenarios. Therefore, an

alternative (and more general) ML-type approach is highly desirable.
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3.2.4 Adjusted quasi score estimation

Under mild conditions, maximizing `cnT (θ) is equivalent to solving ScnT (θ) =

0, where ScnT (θ) = ∂
∂θ
`cnT (θ), the set of the concentrated quasi score (CQS)

functions. The fundamental reason of inconsistency or asymptotic bias for the

direct QML estimation is that a necessary condition for consistency of QML

estimators, plim 1
nT
ScnT (θ0) = 0, is violated due to the concentration of the

incidental parameters φ. To see it more clearly, we first derive the set of the

CQS functions:

ScnT (θ) =



1
σ2 Z

′B′nT (ρ)Ṽ(β, δ),

1
2σ4 [Ṽ′(β, δ)Ṽ(β, δ)− nTσ2],

1
σ2 Y

′W′B′nT (ρ)Ṽ(β, δ)− tr[FnT (λ)],

1
σ2 Ṽ

′(β, δ)GnT (ρ)Ṽ(β, δ)− tr[GnT (ρ)],

(3.10)

where FnT (λ) = WA−1
nT (λ) and GnT (ρ) = MB−1

nT (ρ). At the true value θ0 of

θ, we have

E[ScnT (θ0)] =



0k,

−n+G(T−1)+(G−r̄)
2σ2

0
,

tr[QD(ρ0)BnT (ρ0)FnT (λ0)B−1
nT (ρ0)]− tr[FnT (λ0)],

tr[QD(ρ0)GnT (ρ0)]− tr[GnT (ρ0)].

(3.11)

Thus, we have limnT→∞
1
nT

E[ScnT (θ0)] 6= 0 in general. According to Lemma A.6,

this suggests plimnT→∞
1
nT
ScnT (θ0) 6= 0, and therefore θ̂QML cannot be consistent

in general.

However, we note that E[ScnT (θ0)] depends only on the common parameters

θ0 and the observables. It therefore offers a feasible way to analytically correct

the CQS functions to give a set of unbiased estimating functions, or the adjusted

quasi score (AQS) functions, as S∗nT (θ0) = ScnT (θ0) − E[ScnT (θ0)], which takes
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the form at the general θ:

S∗nT (θ) =



1
σ2 Z

′B′nT (ρ)Ṽ(β, δ),

1
2σ4

[
Ṽ′(β, δ)Ṽ(β, δ)−N1σ

2
]
,

1
σ2 Y

′W′B′nT (ρ)Ṽ(β, δ)− tr[QD(ρ)BnT (ρ)FnT (λ)B−1
nT (ρ)],

1
σ2 Ṽ

′(β, δ)GnT (ρ)Ṽ(β, δ)− tr[QD(ρ)GnT (ρ)],

(3.12)

where N1 = (n−G)(T −1)− (G− r̄), the effective sample size after taking into

account the estimation of fixed effects. When r̄ is larger, there are fewer fixed

effects dummies for estimation (concentration) as more dummies are omitted

for identification, yielding a larger effective sample size. Solving the AQS

equations: S∗nT (θ) = 0, gives the AQS estimator of θ, i.e., θ̂∗nT = arg{S∗nT (θ) =

0}. It is easy to verity that E[S∗nT (θ0)] = 0 and plim 1
nT
S∗nT (θ0) = 0, making it

possible for θ̂∗nT to be
√
N1-consistent with a proper limiting distribution.

The AQS approach falls in spirit to the “Modified Equations of Maximum

Likelihood” of Neyman and Scott (1948, Sec. 5) or “Bias-Correction of the

Moment Equation” of Arellano and Hahn (2007), in searching for a potential

method to handle the incidental parameters problem. In the special case of

a two-way fixed effects SPD panel with time-invariant and row-normalized

spatial weight matrices, our AQS method is equivalent to the QML method

of Lee and Yu (2010) based on orthonormal transformations, with an effective

sample size (n− 1)(T − 1).

The root-finding process for the AQS estimation can be simplified by first

solving the equations for β and σ2, giving the constrained AQS estimators of

β and σ2:

β̂∗nT (δ) = [Z′(ρ)Z(ρ)]−1Z′(ρ)CnT (δ)Y and σ̂∗2nT (δ) = 1
N1

V̂′(δ)V̂(δ), (3.13)

where Z(ρ) = QD(ρ)BnT (ρ)Z, CnT (δ) = BnT (ρ)AnT (λ) and V̂(δ) = Ṽ(β̂∗nT (δ), δ).

Substituting β̂∗nT (δ) and σ̂∗2nT (δ) back into (3.12) gives the concentrated AQS

functions of δ:

S∗cnT (δ) =


1

σ̂∗2nT (δ)
Y′W′B′nT (ρ)V̂(δ)− tr[QD(ρ)BnT (ρ)FnT (λ)B−1

nT (ρ)],

1
σ̂∗2nT (δ)

V̂′(δ)GnT (ρ)V̂(δ)− tr[QD(ρ)GnT (ρ)].

(3.14)
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Solving the concentrated estimating (or AQS) equations, S∗cnT (δ) = 0, we ob-

tain the unconstrained AQS estimator δ̂∗nT of δ. Thus the unconstrained AQS

estimators of β and σ2 are β̂∗nT ≡ β̂∗nT (δ̂∗nT ) and σ̂∗2nT ≡ σ̂∗2nT (δ̂∗nT ). The AQS

estimator of θ is thus θ̂∗nT = (β̂∗′nT , σ̂
∗2
nT , δ̂

∗
nT )′.

We can see from the preceding developments that a significant feature of

this method is that it enables consistent estimation of all parameters, including

σ2, with the joint asymptotic distribution of the AQS estimators being centered

as long as N1 is large. As a result, all the problems associated with incidental

parameters problem have been resolved. Furthermore, we have no constraints

on the proportions of n and T as they grow to infinity, group sizes can be

large or small, and either T can even be fixed. Because the method is based

on adjusted quasi-score functions, it may inherit some of the advantages of

maximum likelihood estimation, such as efficiency. See also Hsiao (2018) for

more discussions on the advantages of the ML-type approach compared with

GMM estimation.

3.2.5 Asymptotic properties of the AQS estimators

Denote a parametric quantity evaluated at the true parameter values by

dropping its argument(s), e.g., AnT ≡ AnT (λ0), BnT ≡ BnT (ρ0), and CnT ≡

CnT (δ0). Let ∆ be the parameter space for δ, and ∆λ and ∆ρ be the sub-

spaces for λ and ρ, respectively. Consistency and asymptotic normality of

the proposed AQS estimators for the SPD model with time-varying network

structures are established under the following set of regularity conditions.

Assumption A: The innovations vigt are iid for all i and t with mean

zero, variance σ2
0, and E|vigt|4+ε0 <∞ for some ε0 > 0.

Assumption B: The space ∆ is compact, and the true parameters δ0 lie

in its interior.

Assumption C: (i) The elements of Z are non-stochastic and bounded,

uniformly in i and t, and (ii) limnT→∞
1
nT

Z′(ρ)Z(ρ) exists and is non-singular,

uniformly in ρ ∈ ∆ρ.

Assumption D: {Wt} and {Mt} are known time-varying matrices. W

and M are such that (i) their elements are at most of uniform order h−1
n such
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that hn
n
→ 0, as n→∞; (ii) their diagonal elements are zero; and (iii) ‖W‖∞,

‖W‖1, ‖M‖∞, and ‖M‖1 are all bounded.

Assumption E: For A($) = AnT (λ) or BnT (ρ) with $ = λ or ρ,

(i) both ‖A−1‖∞ and ‖A−1‖1 are bounded;

(ii) either ‖A−1($)‖∞ or ‖A−1($)‖1 is bounded, uniformly in $ ∈ ∆$;

(iii) 0 < c$ ≤ inf$∈∆$ γmin[A′($)A($)] ≤ sup$∈∆$
γmax[A′($)A($)] ≤

c̄$ <∞;

(iv) both ‖QD(ρ)‖1 and ‖QD(ρ)‖∞ are bounded, uniformly in ρ ∈ ∆ρ.

Assumption F: n is large, and T is large or small. As nT goes to infinity,

N1

nT
tends to an non-zero constant.

Assumptions A-E are standard in the spatial econometrics literature (see,

e.g., Lee and Yu, 2010) except Assumption E(iv). This additional condition

is necessary to facilitate the study of the asymptotic properties of the spatial

estimators. For the time-invariant grouping model, this condition holds as long

as

Bgt(ρ)Dgt[
1
GT

∑T
t=1

∑G
g=1 D

′
gtB

′
gt(ρ)Jgt(ρ)Bgt(ρ)Dgt]

−1D′qsB
′
qs(ρ)

is bounded in both row and column sum norms, uniformly in ρ ∈ ∆ρ for all

(g, t, q, s), where Jgt(ρ) equals to Isg for t = 1 and Isg−Bgt(ρ)lsg [l
′
sgB

′
gt(ρ)Bgt(ρ)lsg ]

−1

l′sgB
′
gt(ρ) for t = 2, . . . , T , and Bgt(ρ) = Isg−ρMgt for t = 1, . . . , T (see Lemma

A.3 for details). Assumption F allows (a) both n and T are large and (b) n

is large and T is finite. Meanwhile, the second part of Assumption F suggests

that G can also be either large or small. All the scenarios encounter the so-

called incidental parameters problem of Neyman and Scott (1948) due to the

direct estimation of the fixed effects. It could lead to the asymptotic bias or

inconsistency in the estimation of the common parameters. As the transfor-

mation strategy is inapplicable to handle this incidental parameters problem

in our model, a new (AQS) method is therefore introduced.

We first prove the consistency of δ̂∗nT . The key step in the proof is to

compare S∗cnT (δ) with its population counterpart. Let S̄∗nT (θ) = E[S∗nT (θ)].
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Given δ, S̄∗nT (θ) = 0 is partially solved at

β̄∗nT (δ) = [Z′(ρ)Z(ρ)]−1Z′(ρ)CnT (δ)E(Y) and σ̄∗2nT (δ) = 1
N1

E[V̄′(δ)V̄(δ)],

(3.15)

where V̄(δ) = Ṽ(β̄∗nT (δ), δ) = QD(ρ)BnT (ρ)[AnT (λ)Y−Zβ̄∗nT (δ)]. Substituting

β̄∗nT (δ) and σ̄∗2nT (δ) into the δ-component of S̄∗nT (θ), we obtain the population

counterpart of S∗cnT (δ) as

S̄∗cnT (δ) =


1

σ̄∗2nT (δ)
E[Y′W′B′nT (ρ)V̄(δ)]− tr[QD(ρ)BnT (ρ)FnT (λ)B−1

nT (ρ)],

1
σ̄∗2nT (δ)

E[V̄′(δ)GnT (ρ)V̄(δ)]− tr[QD(ρ)GnT (ρ)].

(3.16)

Clearly, S∗cnT (δ̂∗nT ) = 0 by construction. Also, it is easy to see that S̄∗cnT (δ0) =

0 as β̄∗nT (δ0) = β0 and σ̄∗2nT (δ0) = σ2
0. Thus, by theorem 5.9 of van der Vaart

(1998), δ̂∗nT will be consistent for δ0 if supδ∈∆
1
N1

∥∥S∗cnT (δ)− S̄∗cnT (δ)
∥∥ p−→ 0 and

the following identification condition holds:

Assumption G: infδ:d(δ,δ0)≥ε
∥∥S̄∗cnT (δ)

∥∥ > 0 for every ε > 0, where d(δ, δ0)

is a measure of distance between δ and δ0.

Assumption G is a high level assumption being put up for simplicity of

presentation. It can be shown to be true under some low level conditions. We

have (see (B.5), Appendix B),

σ̄∗2nT (δ) = 1
N1
η′A′−1

nT Q′nT (δ)QnT (δ)A−1
nTη +

σ2
0

N1
tr[QD(ρ)CnT (δ)],

where CnT (δ) = CnT (δ)(C′nTCnT )−1C′nT (δ), QnT (δ) = QZ(ρ)QD(ρ)CnT (δ), and

η = Zβ0 + Dφ0. A sufficient condition for Assumption G to hold is either (a)

or (b) holds, where

(a) 1
σ̄∗2nT (δ)

η′F′nTB′nT (ρ)QnT (δ)A−1
nTη+tr[

σ2
0

σ̄∗2nT (δ)
P1(δ)−P2(δ)] 6= 0, for δ 6= δ0,

(b) 1
σ̄∗2nT (δ)

η′A′−1
nT Q′nT (δ)GnT (ρ)QnT (δ)A−1

nTη+tr[
σ2
0

σ̄∗2nT (δ)
P3(ρ)CnT (δ)−P3(ρ)] 6=

0, for δ 6= δ0,

with P1(δ) = C′−1
nT C′nT (δ)QD(ρ)BnT (ρ)FnTB−1

nT , P2(δ) = QD(ρ)BnT (ρ)FnT (λ)

B−1
nT (ρ), and P3(ρ) = QD(ρ)GnT (ρ)QD(ρ). It is easy to see thatQnT (δ0)A−1

nTη =

0, CnT (δ0) = InT and σ̄∗2nT (δ0) = σ2
0. Hence the two quantities in (a) and (b)

are identical 0 at the true parameter values. Once the consistency of δ̂∗nT is

established, the consistency of β̂∗nT and σ̂∗2nT follows by Assumptions C-E.

Theorem 3.1. Suppose Assumptions A-G hold. We have, as nT → ∞,

90



θ̂∗nT
p−→ θ0.

To derive the asymptotic distribution of θ̂∗nT , we apply the mean value

theorem: 0 = S∗nT (θ̂∗nT ) = S∗nT (θ0) + ∂
∂θ′
S∗nT (θ̄)(θ̂∗nT − θ0), where θ̄ lies between

θ̂∗nT and θ0, and its value varies over the rows of ∂
∂θ′
S∗nT (θ̄). Using Ṽ(β0, δ0) =

QDV and Y = A−1
nT (η + B−1

nTV),

S∗nT (θ0) =



1
σ2
0
Z′V,

1
2σ4

0
(V′QDV −N1σ

2),

1
σ2
0
V′P2BnTη + 1

σ2
0
V′P2V − tr(P2),

1
σ2
0
V′P3V − tr(P3),

(3.17)

and its asymptotic normality is proved by the central limit theorem (CLT)

for linear-quadratic (LQ) forms of Kelejian and Prucha (2001). This together

with the proper asymptotic behavior of the ‘Hessian’ matrix, ∂
∂θ′
S∗nT (θ) (given

in (B.4), Appendix B), lead to the following theorem.

Theorem 3.2. Under Assumptions A-G, we have, as nT →∞,√
N1

(
θ̂∗nT − θ0

) D−→ N
(

0, lim
N1→∞

Σ∗−1
nT (θ0)Γ∗nT (θ0)Σ∗′−1

nT (θ0)
)
,

where Σ∗nT (θ0) = − 1
N1

E[ ∂
∂θ′
S∗nT (θ0)] and Γ∗nT (θ0) = 1

N1
Var[S∗nT (θ0)], both as-

sumed to exist and Σ∗nT (θ0) assumed to be positive definite for sufficiently large

N1.

3.2.6 Inference based on AQS estimation

To conduct inferences for θ based on the proposed AQS estimators, consis-

tent estimates of Σ∗nT (θ0) and Γ∗nT (θ0) are needed. The analytical expression of

Σ∗nT (θ) can easily be obtained from the Hessian matrix ∂
∂θ′
S∗nT (θ) that is given

in (B.4). We note that it depends only on the common parameters θ. There-

fore, a simple plug-in estimator Σ∗nT (θ̂∗nT ) can be used to consistently estimate

Σ∗nT (θ0). Alternatively, a simpler sample analogue of Σ∗nT (θ) also provides a

consistent estimator:

Σ̂∗nT = − 1
N1

∂
∂θ′
S∗nT (θ)

∣∣∣
θ=θ̂∗nT

. (3.18)

The consistency of Σ∗nT (θ̂∗nT ) or Σ̂∗nT is proved in the proof of Theorem 3.2.

As for the estimation of Γ∗nT (θ0), we first derive all the elements of it using
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Lemma A.5:

N1Γ∗βθ =
[

1
σ2
0
Z′Z, κ3

2σ3
0
Z′q, κ3

σ0
Z′p2 + 1

σ2
0
Z′P2BnTη,

κ3
2σ0

Z′p3

]
,

N1Γ∗σ2σ2 = 1
4σ4

0
(2N1 + κ4q

′q),

N1Γ∗σ2λ = κ3
2σ3

0
q′P2BnTη + 1

2σ2
0
[2tr(P2QD) + κ4q

′p2],

N1Γ∗σ2ρ = 1
2σ2

0
[2tr(P3QD) + κ4q

′p3],

N1Γ∗λλ = 1
σ2
0
η′B′nTP ′2P2BnTη + 2κ3

σ0
p′2P2BnTη + tr(P2P◦2 ) + κ4p

′
2p2,

N1Γ∗λρ = tr(P3P◦2 ) + κ4p
′
2p3 + κ3

σ0
p′3P2BnTη,

N1Γ∗ρρ = tr(P3P◦3 ) + κ4p
′
3p3,

(3.19)

where pr = diagv(Pr), r = 2, 3, and q = diagv(QD). From the above ex-

pressions, we see that Γ∗nT (θ0) contains not only the common parameters

θ, but also the incidental parameters φ embedded in η, and the skewness

κ3 and the excess kurtosis κ4 of the idiosyncratic errors. Thus, the com-

mon plug-in approach may not provide a valid estimate. To be more spe-

cific, let Γ∗nT (θ̂∗nT ) = Γ∗nT (θ)|(θ=θ̂∗nT ,φ=φ̂∗nT ,κ3=κ̂3,nT ,κ4=κ̂4,nT ) be the plug-in esti-

mator, where φ̂∗nT is the AQS estimator of φ, obtained through (3.8), i.e.,

φ̂∗nT = φ̂nT (β̂∗nT , δ̂
∗
nT ), and κ̂3,nT and κ̂4,nT are consistent estimators of κ3 and

κ4. When sg, ∀g, and T are large at the same time, Γ∗nT (θ̂∗nT ) would be consis-

tent as φ̂∗nT is. However, when group sizes of some group g is not large, γ̂∗gt,nT

(component of φ̂∗nT ) is not consistent for each t. When T is not large, then

φ̂∗nT (its component µ̂∗nT ) is also not consistent. Plugging φ̂∗nT into Γ∗nT (θ) will

induce a bias (inconsistency), and a bias correction is necessary.

From the expression of Γ∗nT (θ0) given above, we see that only the λ-components

involve φ through η, which may not be consistently estimated by the plug-in

method. We can further show that the components of Γ∗nT (θ0) linear in φ

can also be consistently estimated by the plug-in method. Therefore, the

only term that cannot be consistently estimated by the plug-in method is

1
σ2
0
η′B′nTP ′2P2BnTη associated with the λ-λ component of Γ∗nT (θ0). We have

the following corollary. See its proof in Appendix B for details on these dis-

cussions.

Corollary 3.1. Under the assumptions of Theorem 3.2, we have,

Γ∗nT (θ̂∗nT ) = Γ∗nT (θ0) + Bias∗(δ0) + op(1),
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where Bias∗(δ0) is a (k + 3) × (k + 3) matrix having zero entries everywhere

except the λ-λ entry, which takes the form 1
N1
tr(P ′2P2PD).

The result of Corollary 3.1 leads immediately a general consistent estimator

of Γ∗nT (θ0):

Γ̂∗nT = Γ∗nT (θ̂∗nT )− Bias∗(δ̂∗nT ). (3.20)

Then, it is only left to find consistent estimators for κ3 and κ4. Since

we cannot ‘consistently’ estimate V = BnT (AnTY − η) due to the incidental

parameters problem, we start from Ṽ = QDV, which can be ‘consistently’

estimated by V̂ = QD(ρ̂∗nT )BnT (ρ̂∗nT )[AnT (λ̂∗nT )Y − Zβ̂∗nT ]. Let qjk be the

(j, k)th element of QD. Denote the elements of V by vj, and the elements

of Ṽ by ṽj, j = 1, . . . , N , where j is the combined index for i = 1, . . . , sg,

g = 1, . . . , G and t = 1, . . . , T . Then, ṽj = qj1v1 + qj2v2 + · · · + qjNvN , and

thus,

E(ṽ3
j ) =

∑N
k=1 q

3
jkE(v3

k) = σ3κ3

∑N
k=1 q

3
jk, j = 1, . . . , N.

Summing E(ṽ3
j ) over j, we obtain κ3 =

(∑N
j=1 E(ṽ3

j )
)(
σ3
∑N

j=1

∑N
k=1 q

3
jk

)−1
,

and its sample analogue gives a consistent estimator of κ3:

κ̂3,nT =

∑N
j=1 v̂

3
j

σ̂∗3nT
∑N

j=1

∑N
k=1 q̂

3
jk

. (3.21)

where v̂j is the jth element of V̂(β̂∗nT , λ̂
∗
nT ) and q̂jk is the (j, k)th element of

QD(ρ̂∗nT ). Similarly,

E(ṽ4
j ) =

∑N
k=1 q

4
jkE(v4

k) + 3σ4
∑N

k=1

∑N
l=1 q

2
jkq

2
jl − 3σ4

∑N
k=1 q

4
jk

=
∑N

k=1 q
4
jkκ4σ

4 + 3σ4
∑N

k=1

∑N
l=1 q

2
jkq

2
jl,

which gives κ4 =
(∑N

j=1 E(ṽ4
j )− 3σ4

∑N
j=1

∑N
k=1

∑N
l=1 q

2
jkq

2
jl

)(
σ4
∑N

j=1

∑N
k=1 q

4
jk

)−1

by summing E(ṽ4
j ) over j. Hence, a consistent estimator for κ4 is

κ̂4,nT =

∑N
j=1 v̂

4
j − 3σ̂∗4nT

∑N
j=1

∑N
k=1

∑N
l=1 q̂

2
jkq̂

2
jl

σ̂∗4nT
∑N

j=1

∑N
k=1 q̂

4
jk

. (3.22)

Corollary 3.2. Under Assumptions A-G, we have, as N1 →∞,

(i) κ̂3,nT
p−→ κ30 and κ̂4,nT

p−→ κ40; (ii) Σ̂∗nT − Σ∗nT (θ0)
p−→ 0 and

Γ̂∗nT − Γ∗nT (θ0)
p−→ 0;
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and therefore Σ̂∗−1
nT Γ̂∗nT Σ̂∗′−1

nT − Σ∗−1
nT (θ0)Γ∗nT (θ0)Σ∗′−1

nT (θ0)
p−→ 0.

3.3 Monte Carlo Study

Extensive Monte Carlo experiments are carried out to investigate the fi-

nite sample performance of the proposed AQS estimators and the correspond-

ing standard error estimators for the SPD models with time-varying network

structures. In order to see the effectiveness of the adjustments on the concen-

trated quasi scores in controlling the effects of estimating the fixed effects, we

also include the direct QML estimators in the Monte Carlo study. Both time-

invariant and time-varying grouping cases are considered. Hence, we have the

following two data generating processes:

Ygt = λWgtYgt + Zgtβ + µg + γgtlsg + Ugt, Ugt = ρWgtUgt + Vgt, (3.23)

Ygt = λWgtYgt + Zgtβ + µ(t)
g + γgtlsgt + Ugt, Ugt = ρWgtUgt + Vgt, (3.24)

for g = 1, . . . , G and t = 1, . . . , T , where the first process represents the time-

invariant grouping model and the second the time-varying grouping model.

We choose T = 5 or 10 for both models. For the first model, we consider four

combinations with different numbers of groups G and group sizes {sg}. The

first case contains 5 groups with equal group sizes of sg = 10. For comparison,

the second case contains 10 groups with equal group sizes of sg = 5. To study

the effect of group sizes, we also consider 5 and 10 groups with equal group

sizes of sg = 20 and sg = 10, respectively. Therefore, the first two cases have

n = 50 and the other two have n = 100. For the second model, we let n units

randomly be separated into G groups at each time, where n = 50 or 100, and

G = 5 or 10.

For each group at period t, the sociomatrix Wgt is generated following

Liu and Lee (2010). First, for the ith row of Wgt, we generate an integer

kigt uniformly at random from the set of integers [0,1,2,3]. Then we set the

(i + 1)th,. . ., (i + kigt)th elements of the ith row of Wgt to be ones and the

rest elements in that row to be zeros, if i + kigt ≤ sg; otherwise the entries

of ones will be wrapped around such that the first (i + kigt − m) entries of

the ith row will be ones. We choose β1 = 1, β2 = 0.5, σ2 = 1, λ = 0.2 and
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ρ = 0.2. Generate X ′gts independently from N(0, Isg), and set the individual

effects as 1
T

ΣT
t=1Xgt + e, where e ∼ N(0, Isg). The group-time fixed effects γgt

are generated from N(0, 1). The error (vigt) distributions can be (i) normal,

(ii) normal mixture (10% N(0, 42) and 90% N(0, 1)), or (iii) chi-square with 3

degrees of freedom.2 Monte Carlo (empirical) means and standard deviations

(shown in the brackets) are reported for QMLE and AQSE. Further, empirical

averages of the standard error estimates (shown in the square brackets) are also

reported for AQSE, based on the robust VC matrix estimates, Σ̂∗−1
nT Γ̂∗nT Σ̂∗′−1

nT .

The number of Monte Carlo runs is 1000.

Tables 3.1a and 3.1b report Monte Carlo results for the time-invariant

grouping model, for T = 5 and 10, respectively. The results show an excellent

finite performance of the proposed AQS estimators, as well as their standard

error estimators. The proposed AQS method performs uniformly much better

than the QML method in the point estimation of σ2, λ, and ρ, irrespective of

the choices of G, {sg} and T . By comparing the empirical sds of two types of

estimators, we see that AQSE is almost as efficient as the QMLE. Our AQS

estimators exhibit a good performance even when the sample size is as small

as n = 50 and T = 5, and improve on average when the sample expands,

regardless of the error distributions. The
√
N1-consistency of the AQSEs is

clearly demonstrated by the Monte Carlo sds. Moreover, the robust estimates

of standard errors ŝd’s are on average very close to the corresponding Monte

Carlo standard errors.

Tables 3.2a and 3.2b report Monte Carlo results for the time-varying group-

ing model, for T = 5 and 10, respectively. The results again show an excellent

finite sample performance of the proposed estimation. The corresponding stan-

dard error estimates also perform very well. In contrast, the QMLE typical

provide worse estimates than the AQSE. We see the QMLEs of ρ and σ2 are

still far away from their true values even for the largest sample size.

2In the cases (ii) and (iii), the generated errors are standardized to have mean zero and
variance σ2.
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Table 3.1a. Empirical mean(sd)[ŝd] of the estimators for SPD model with

time-invariant grouping, (β1, β2, λ, ρ, σ
2) = (1, 0.5, 0.2, 0.2, 1), T = 5.

n G Normal Errors Normal Mixture Chi-Square

QMLE AQSE QMLE AQSE QMLE AQSE

50 5 β1 0.9992(0.088) 0.9996(0.085)[0.084] 1.0004(0.087) 1.0004(0.086)[0.084] 0.9997(0.085) 1.0000(0.084)[0.085]

β2 0.5024(0.078) 0.5015(0.081)[0.080] 0.5005(0.081) 0.4999(0.083)[0.080] 0.5015(0.079) 0.4997(0.082)[0.080]

λ 0.2004(0.033) 0.1996(0.042)[0.040] 0.1996(0.033) 0.1996(0.043)[0.040] 0.2006(0.034) 0.2011(0.044)[0.041]

ρ -0.0076(0.096) 0.1897(0.097)[0.102] -0.0078(0.107) 0.1871(0.106)[0.106] -0.0114(0.104) 0.1814(0.105)[0.103]

σ2 0.6803(0.073) 0.9748(0.105)[0.104] 0.6741(0.148) 0.9649(0.210)[0.200] 0.6785(0.111) 0.9719(0.158)[0.150]

10 β1 0.9984(0.083) 0.9991(0.081)[0.081] 1.0014(0.083) 1.0023(0.081)[0.081] 1.0028(0.082) 1.0039(0.081)[0.081]

β2 0.4989(0.082) 0.4993(0.084)[0.082] 0.5011(0.085) 0.5004(0.085)[0.082] 0.4998(0.084) 0.4996(0.084)[0.083]

λ 0.1998(0.031) 0.1987(0.038)[0.039] 0.2010(0.034) 0.2011(0.042)[0.038] 0.2009(0.031) 0.2011(0.040)[0.040]

ρ -0.0065(0.095) 0.1914(0.093)[0.102] -0.0089(0.105) 0.1860(0.104)[0.104] -0.0100(0.104) 0.1858(0.102)[0.105]

σ2 0.6807(0.075) 0.9755(0.107)[0.104] 0.6786(0.157) 0.9716(0.224)[0.202] 0.6812(0.114) 0.9760(0.163)[0.150]

100 5 β1 0.9973(0.052) 0.9968(0.052)[0.050] 0.9980(0.051) 0.9979(0.051)[0.050] 1.0020(0.051) 1.0019(0.051)[0.050]

β2 0.4962(0.052) 0.4980(0.053)[0.053] 0.4992(0.055) 0.5010(0.055)[0.054] 0.4985(0.053) 0.5004(0.054)[0.053]

λ 0.2016(0.023) 0.1997(0.025)[0.025] 0.2014(0.025) 0.1997(0.026)[0.025] 0.2020(0.024) 0.2002(0.025)[0.025]

ρ 0.1474(0.065) 0.1967(0.053)[0.055] 0.1441(0.070) 0.1941(0.058)[0.057] 0.1487(0.069) 0.1978(0.057)[0.056]

σ2 0.7508(0.055) 0.9906(0.073)[0.072] 0.7506(0.117) 0.9904(0.155)[0.149] 0.7495(0.085) 0.9888(0.112)[0.110]

10 β1 1.0009(0.050) 1.0008(0.050)[0.050] 0.9972(0.050) 0.9970(0.049)[0.050] 1.0019(0.051) 1.0017(0.051)[0.050]

β2 0.4993(0.054) 0.5011(0.054)[0.054] 0.4974(0.055) 0.4994(0.055)[0.055] 0.4977(0.053) 0.5000(0.053)[0.054]

λ 0.2009(0.024) 0.1991(0.026)[0.025] 0.2008(0.024) 0.1987(0.026)[0.025] 0.2015(0.024) 0.1994(0.025)[0.025]

ρ 0.1462(0.068) 0.1953(0.056)[0.055] 0.1492(0.070) 0.1985(0.058)[0.057] 0.1494(0.067) 0.1989(0.054)[0.056]

σ2 0.7497(0.056) 0.9892(0.074)[0.071] 0.7498(0.114) 0.9892(0.150)[0.150] 0.7527(0.086) 0.9931(0.113)[0.110]

200 5 β1 0.9999(0.039) 0.9996(0.039)[0.039] 1.0004(0.038) 1.0002(0.038)[0.039] 1.0002(0.041) 0.9999(0.041)[0.039]

β2 0.4953(0.037) 0.4979(0.038)[0.039] 0.4981(0.039) 0.5007(0.040)[0.039] 0.4964(0.039) 0.4989(0.039)[0.039]

λ 0.2025(0.016) 0.2003(0.018)[0.018] 0.2029(0.017) 0.2006(0.018)[0.018] 0.2011(0.018) 0.1988(0.019)[0.018]

ρ 0.1490(0.048) 0.1993(0.039)[0.040] 0.1484(0.047) 0.1991(0.039)[0.040] 0.1490(0.048) 0.1992(0.040)[0.040]

σ2 0.7533(0.037) 0.9939(0.049)[0.051] 0.7527(0.084) 0.9931(0.111)[0.108] 0.7543(0.063) 0.9952(0.083)[0.079]

10 β1 1.0025(0.038) 1.0023(0.038)[0.036] 1.0026(0.036) 1.0023(0.036)[0.036] 1.0007(0.036) 1.0004(0.035)[0.036]

β2 0.4972(0.037) 0.4996(0.037)[0.037] 0.4970(0.036) 0.4994(0.036)[0.037] 0.4995(0.036) 0.5018(0.037)[0.037]

λ 0.2031(0.016) 0.2011(0.017)[0.017] 0.2022(0.016) 0.2000(0.017)[0.017] 0.2016(0.017) 0.1996(0.018)[0.017]

ρ 0.1477(0.046) 0.1982(0.039)[0.039] 0.1476(0.047) 0.1984(0.040)[0.040] 0.1481(0.049) 0.1982(0.041)[0.039]

σ2 0.7532(0.037) 0.9937(0.049)[0.051] 0.7535(0.085) 0.9942(0.112)[0.108] 0.7531(0.063) 0.9936(0.083)[0.079]
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Table 3.1b. Empirical mean(sd)[ŝd] of the estimators for SPD model with

time-invariant grouping, (β1, β2, λ, ρ, σ
2) = (1, 0.5, 0.2, 0.2, 1), T = 10.

n G Normal Errors Normal Mixture Chi-Square

QMLE AQSE QMLE AQSE QMLE AQSE

50 5 β1 0.9990(0.051) 0.9993(0.050)[0.049] 0.9994(0.050) 0.9994(0.049)[0.048] 1.0010(0.048) 1.0011(0.048)[0.049]

β2 0.5023(0.048) 0.5017(0.048)[0.049] 0.5016(0.049) 0.5008(0.050)[0.049] 0.5016(0.049) 0.5000(0.049)[0.049]

λ 0.1983(0.021) 0.1984(0.026)[0.024] 0.1986(0.020) 0.1990(0.026)[0.025] 0.1996(0.020) 0.2004(0.024)[0.024]

ρ 0.0080(0.056) 0.1963(0.066)[0.064] 0.0044(0.059) 0.1934(0.071)[0.071] 0.0045(0.058) 0.1936(0.066)[0.068]

σ2 0.7740(0.055) 0.9871(0.070)[0.071] 0.7669(0.116) 0.9781(0.148)[0.147] 0.7734(0.091) 0.9867(0.115)[0.110]

10 β1 1.0012(0.051) 1.0014(0.049)[0.050] 0.9999(0.051) 1.0002(0.049)[0.050] 0.9985(0.051) 0.9990(0.050)[0.049]

β2 0.5021(0.051) 0.5011(0.052)[0.050] 0.5032(0.049) 0.5023(0.050)[0.051] 0.5016(0.049) 0.5010(0.050)[0.051]

λ 0.1979(0.021) 0.1980(0.025)[0.024] 0.1985(0.020) 0.1985(0.025)[0.025] 0.1982(0.021) 0.1989(0.026)[0.025]

ρ 0.0102(0.056) 0.1993(0.064)[0.065] 0.0085(0.059) 0.1962(0.070)[0.069] 0.0040(0.060) 0.1924(0.070)[0.068]

σ2 0.7750(0.056) 0.9883(0.071)[0.071] 0.7762(0.119) 0.9895(0.151)[0.149] 0.7724(0.091) 0.9853(0.116)[0.109]

100 5 β1 1.0003(0.035) 1.0000(0.035)[0.034] 0.9997(0.034) 0.9996(0.034)[0.034] 0.9996(0.035) 0.9994(0.034)[0.034]

β2 0.4983(0.035) 0.5002(0.035)[0.035] 0.4989(0.033) 0.5009(0.034)[0.035] 0.4990(0.034) 0.5009(0.035)[0.035]

λ 0.2013(0.016) 0.1993(0.017)[0.017] 0.2007(0.016) 0.1989(0.017)[0.017] 0.2010(0.016) 0.1992(0.017)[0.017]

ρ 0.1446(0.041) 0.2003(0.037)[0.036] 0.1439(0.041) 0.1992(0.037)[0.037] 0.1445(0.040) 0.2000(0.037)[0.036]

σ2 0.8463(0.042) 0.9934(0.049)[0.048] 0.8491(0.099) 0.9966(0.116)[0.108] 0.8440(0.068) 0.9907(0.080)[0.077]

10 β1 0.9999(0.034) 0.9998(0.034)[0.034] 0.9978(0.035) 0.9977(0.035)[0.034] 1.0002(0.033) 1.0002(0.033)[0.034]

β2 0.4999(0.033) 0.5016(0.033)[0.034] 0.4967(0.034) 0.4986(0.034)[0.035] 0.4971(0.033) 0.4987(0.034)[0.034]

λ 0.2011(0.016) 0.1996(0.017)[0.016] 0.2016(0.015) 0.2001(0.017)[0.016] 0.2021(0.015) 0.2006(0.016)[0.016]

ρ 0.1426(0.038) 0.1979(0.034)[0.035] 0.1416(0.040) 0.1971(0.036)[0.036] 0.1406(0.040) 0.1967(0.037)[0.036]

σ2 0.8457(0.042) 0.9928(0.050)[0.048] 0.8500(0.096) 0.9978(0.112)[0.107] 0.8467(0.069) 0.9939(0.081)[0.077]

200 5 β1 1.0014(0.023) 1.0012(0.023)[0.024] 0.9997(0.025) 0.9995(0.025)[0.024] 1.0011(0.025) 1.0008(0.025)[0.024]

β2 0.4983(0.025) 0.5002(0.025)[0.024] 0.4973(0.024) 0.4990(0.024)[0.024] 0.4993(0.024) 0.5010(0.024)[0.024]

λ 0.2016(0.011) 0.1999(0.012)[0.011] 0.2014(0.011) 0.1997(0.012)[0.012] 0.2010(0.011) 0.1993(0.012)[0.012]

ρ 0.1437(0.028) 0.1992(0.025)[0.025] 0.1431(0.028) 0.1988(0.025)[0.026] 0.1447(0.028) 0.2000(0.025)[0.025]

σ2 0.8492(0.028) 0.9969(0.033)[0.034] 0.8476(0.065) 0.9950(0.076)[0.076] 0.8480(0.048) 0.9954(0.056)[0.055]

10 β1 1.0002(0.023) 0.9999(0.023)[0.024] 0.9998(0.024) 0.9995(0.024)[0.024] 0.9995(0.025) 0.9993(0.025)[0.024]

β2 0.4980(0.025) 0.4998(0.025)[0.024] 0.4986(0.024) 0.5004(0.024)[0.024] 0.4980(0.023) 0.4998(0.023)[0.024]

λ 0.2017(0.011) 0.1999(0.012)[0.011] 0.2017(0.010) 0.1999(0.011)[0.012] 0.2018(0.011) 0.2001(0.011)[0.012]

ρ 0.1428(0.027) 0.1987(0.025)[0.025] 0.1458(0.027) 0.2012(0.025)[0.025] 0.1425(0.028) 0.1982(0.025)[0.025]

σ2 0.8483(0.029) 0.9958(0.034)[0.034] 0.8479(0.066) 0.9953(0.077)[0.077] 0.8499(0.048) 0.9977(0.056)[0.055]
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Table 3.2a. Empirical mean(sd)[ŝd] of the estimators for SPD model with

time-varying grouping, (β1, β2, λ, ρ, σ
2) = (1, 0.5, 0.2, 0.2, 1), T = 5.

n G Normal Errors Normal Mixture Chi-Square

QMLE AQSE QMLE AQSE QMLE AQSE

50 5 β1 0.9984(0.077) 0.9973(0.075)[0.072] 1.0027(0.071) 1.0018(0.069)[0.072] 1.0006(0.073) 1.0004(0.071)[0.072]

β2 0.4963(0.079) 0.4989(0.080)[0.076] 0.4960(0.076) 0.4983(0.077)[0.075] 0.4990(0.072) 0.5021(0.073)[0.077]

λ 0.2031(0.033) 0.1999(0.040)[0.037] 0.2035(0.034) 0.2003(0.040)[0.037] 0.2025(0.031) 0.1992(0.037)[0.038]

ρ -0.0198(0.113) 0.1836(0.098)[0.095] -0.0131(0.118) 0.1832(0.101)[0.100] -0.0155(0.109) 0.1848(0.091)[0.102]

σ2 0.6631(0.074) 0.9697(0.106)[0.105] 0.6575(0.162) 0.9598(0.234)[0.198] 0.6676(0.116) 0.9762(0.169)[0.154]

10 β1 0.9979(0.098) 1.0042(0.085)[0.086] 0.9991(0.097) 1.0019(0.086)[0.086] 0.9889(0.095) 1.0005(0.085)[0.086]

β2 0.5192(0.099) 0.4959(0.091)[0.089] 0.5157(0.101) 0.4868(0.091)[0.089] 0.5140(0.103) 0.4914(0.091)[0.089]

λ 0.1810(0.039) 0.2019(0.049)[0.044] 0.1831(0.040) 0.2088(0.051)[0.046] 0.1805(0.039) 0.2058(0.050)[0.045]

ρ -0.3467(0.113) 0.1598(0.122)[0.124] -0.3625(0.125) 0.1363(0.144)[0.137] -0.3671(0.112) 0.1458(0.133)[0.129]

σ2 0.4627(0.070) 0.9427(0.125)[0.123] 0.4593(0.121) 0.9334(0.232)[0.209] 0.4615(0.090) 0.9446(0.176)[0.166]

100 5 β1 1.0021(0.048) 1.0018(0.049)[0.049] 1.0001(0.048) 0.9998(0.048)[0.049] 0.9994(0.052) 0.9992(0.052)[0.049]

β2 0.5011(0.052) 0.5031(0.053)[0.053] 0.4977(0.052) 0.5001(0.053)[0.052] 0.4978(0.053) 0.5001(0.053)[0.052]

λ 0.2013(0.025) 0.1994(0.026)[0.025] 0.2007(0.023) 0.1985(0.025)[0.025] 0.2025(0.025) 0.2005(0.027)[0.025]

ρ 0.1468(0.068) 0.1969(0.055)[0.056] 0.1494(0.066) 0.1995(0.054)[0.058] 0.1444(0.072) 0.1948(0.058)[0.057]

σ2 0.7503(0.056) 0.9899(0.074)[0.071] 0.7436(0.115) 0.9810(0.152)[0.148] 0.7493(0.087) 0.9887(0.115)[0.109]

10 β1 0.9997(0.053) 0.9990(0.052)[0.054] 1.0013(0.054) 0.9997(0.054)[0.054] 0.9995(0.054) 0.9985(0.053)[0.054]

β2 0.4945(0.054) 0.4984(0.055)[0.055] 0.4948(0.054) 0.4993(0.054)[0.055] 0.4931(0.055) 0.4981(0.055)[0.056]

λ 0.2030(0.023) 0.1985(0.028)[0.026] 0.2042(0.022) 0.1995(0.027)[0.027] 0.2037(0.022) 0.1992(0.027)[0.027]

ρ -0.0126(0.077) 0.1935(0.070)[0.069] -0.0105(0.083) 0.1932(0.074)[0.075] -0.0111(0.077) 0.1917(0.071)[0.071]

σ2 0.6703(0.052) 0.9837(0.074)[0.076] 0.6662(0.108) 0.9770(0.157)[0.149] 0.6713(0.081) 0.9847(0.118)[0.111]

200 5 β1 1.0022(0.036) 1.0018(0.036)[0.036] 0.9995(0.035) 0.9992(0.035)[0.036] 0.9994(0.036) 0.9992(0.036)[0.036]

β2 0.4962(0.036) 0.4984(0.037)[0.037] 0.4978(0.036) 0.5002(0.037)[0.037] 0.4988(0.036) 0.5013(0.036)[0.037]

λ 0.2020(0.017) 0.1997(0.018)[0.018] 0.2016(0.017) 0.1993(0.019)[0.018] 0.2018(0.017) 0.1993(0.019)[0.018]

ρ 0.1458(0.046) 0.1970(0.039)[0.039] 0.1481(0.048) 0.1989(0.041)[0.040] 0.1505(0.047) 0.2007(0.039)[0.040]

σ2 0.7543(0.038) 0.9952(0.050)[0.051] 0.7549(0.082) 0.9960(0.108)[0.108] 0.7531(0.061) 0.9935(0.080)[0.080]

10 β1 1.0026(0.035) 1.0023(0.035)[0.036] 0.9985(0.035) 0.9983(0.035)[0.036] 0.9999(0.035) 0.9996(0.035)[0.036]

β2 0.4984(0.036) 0.5007(0.037)[0.036] 0.4973(0.037) 0.4996(0.038)[0.036] 0.4984(0.037) 0.5009(0.038)[0.036]

λ 0.2017(0.017) 0.1995(0.018)[0.017] 0.2016(0.016) 0.1995(0.017)[0.017] 0.2012(0.016) 0.1990(0.017)[0.017]

ρ 0.1456(0.046) 0.1969(0.038)[0.039] 0.1476(0.048) 0.1981(0.040)[0.040] 0.1509(0.048) 0.2011(0.040)[0.039]

σ2 0.7545(0.039) 0.9954(0.051)[0.051] 0.7518(0.081) 0.9918(0.107)[0.108] 0.7508(0.063) 0.9905(0.083)[0.079]
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Table 3.2b. Empirical mean(sd)[ŝd] of the estimators for SPD model with

time-varying grouping, (β1, β2, λ, ρ, σ
2) = (1, 0.5, 0.2, 0.2, 1), T = 10.

n G Normal Errors Normal Mixture Chi-Square

QMLE AQSE QMLE AQSE QMLE AQSE

50 5 β1 1.0021(0.049) 1.0010(0.047)[0.049] 0.9996(0.048) 0.9985(0.047)[0.049] 0.9986(0.051) 0.9980(0.050)[0.049]

β2 0.4996(0.053) 0.5010(0.054)[0.052] 0.5024(0.052) 0.5031(0.052)[0.052] 0.4979(0.053) 0.5000(0.053)[0.052]

λ 0.2020(0.021) 0.1994(0.027)[0.026] 0.1997(0.022) 0.1976(0.027)[0.026] 0.2017(0.022) 0.1990(0.027)[0.026]

ρ 0.0190(0.061) 0.1969(0.063)[0.064] 0.0204(0.065) 0.1970(0.065)[0.068] 0.0216(0.061) 0.1984(0.063)[0.064]

σ2 0.7709(0.054) 0.9872(0.069)[0.071] 0.7690(0.121) 0.9849(0.155)[0.148] 0.7658(0.090) 0.9802(0.114)[0.108]

10 β1 0.9978(0.057) 1.0001(0.052)[0.054] 0.9958(0.060) 0.9986(0.054)[0.054] 0.9950(0.060) 1.0003(0.055)[0.055]

β2 0.5196(0.063) 0.5002(0.058)[0.057] 0.5216(0.063) 0.5004(0.059)[0.058] 0.5190(0.063) 0.5002(0.061)[0.057]

λ 0.1857(0.023) 0.2018(0.030)[0.029] 0.1829(0.024) 0.2012(0.033)[0.030] 0.1825(0.023) 0.1998(0.032)[0.029]

ρ -0.2419(0.065) 0.1811(0.084)[0.084] -0.2457(0.073) 0.1751(0.095)[0.095] -0.2461(0.068) 0.1831(0.088)[0.086]

σ2 0.5818(0.054) 0.9772(0.085)[0.083] 0.5762(0.097) 0.9669(0.160)[0.155] 0.5817(0.077) 0.9800(0.123)[0.119]

100 5 β1 0.9998(0.034) 0.9995(0.034)[0.033] 1.0015(0.033) 1.0014(0.033)[0.033] 1.0021(0.032) 1.0020(0.032)[0.033]

β2 0.4972(0.034) 0.4987(0.035)[0.034] 0.5003(0.033) 0.5023(0.034)[0.035] 0.4990(0.034) 0.5009(0.034)[0.034]

λ 0.2015(0.016) 0.1998(0.017)[0.017] 0.2008(0.016) 0.1989(0.017)[0.017] 0.2017(0.015) 0.2001(0.017)[0.017]

ρ 0.1425(0.040) 0.1980(0.037)[0.036] 0.1444(0.040) 0.2001(0.036)[0.037] 0.1428(0.042) 0.1981(0.039)[0.036]

σ2 0.8456(0.041) 0.9927(0.048)[0.048] 0.8472(0.094) 0.9945(0.111)[0.107] 0.8443(0.066) 0.9911(0.077)[0.077]

10 β1 0.9997(0.036) 0.9995(0.036)[0.036] 1.0016(0.037) 1.0007(0.036)[0.036] 0.9994(0.037) 0.9988(0.037)[0.036]

β2 0.4973(0.036) 0.5006(0.037)[0.036] 0.5002(0.036) 0.5024(0.037)[0.036] 0.4978(0.036) 0.5002(0.037)[0.036]

λ 0.2018(0.015) 0.1989(0.019)[0.018] 0.2020(0.015) 0.1996(0.019)[0.019] 0.2015(0.016) 0.1991(0.019)[0.018]

ρ 0.0236(0.041) 0.1997(0.044)[0.045] 0.0249(0.044) 0.1977(0.048)[0.048] 0.0242(0.043) 0.2000(0.046)[0.046]

σ2 0.7758(0.039) 0.9949(0.049)[0.051] 0.7739(0.091) 0.9918(0.117)[0.108] 0.7748(0.063) 0.9935(0.081)[0.079]

200 5 β1 1.0004(0.024) 1.0002(0.024)[0.024] 1.0009(0.024) 1.0005(0.024)[0.024] 1.0017(0.025) 1.0014(0.025)[0.024]

β2 0.4973(0.023) 0.4992(0.023)[0.024] 0.4979(0.023) 0.4997(0.023)[0.024] 0.4980(0.024) 0.4998(0.025)[0.024]

λ 0.2021(0.011) 0.2004(0.012)[0.012] 0.2024(0.011) 0.2006(0.012)[0.012] 0.2014(0.011) 0.1997(0.012)[0.012]

ρ 0.1441(0.028) 0.1996(0.026)[0.025] 0.1423(0.027) 0.1983(0.025)[0.026] 0.1428(0.028) 0.1986(0.026)[0.026]

σ2 0.8489(0.030) 0.9964(0.035)[0.034] 0.8490(0.067) 0.9966(0.079)[0.077] 0.8505(0.048) 0.9984(0.056)[0.055]

10 β1 1.0005(0.024) 1.0002(0.024)[0.023] 1.0007(0.023) 1.0005(0.023)[0.023] 1.0004(0.023) 1.0001(0.023)[0.023]

β2 0.4989(0.022) 0.5007(0.022)[0.024] 0.4982(0.023) 0.5001(0.023)[0.024] 0.4975(0.024) 0.4992(0.024)[0.024]

λ 0.2015(0.011) 0.1998(0.012)[0.012] 0.2017(0.011) 0.2000(0.012)[0.012] 0.2020(0.011) 0.2002(0.012)[0.012]

ρ 0.1430(0.027) 0.1988(0.025)[0.025] 0.1432(0.028) 0.1991(0.026)[0.026] 0.1432(0.028) 0.1991(0.026)[0.025]

σ2 0.8479(0.029) 0.9953(0.034)[0.034] 0.8490(0.067) 0.9967(0.079)[0.077] 0.8482(0.048) 0.9957(0.057)[0.055]
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3.4 Conclusion and Discussion

We consider estimation and inference for a spatial panel data (SPD) model

with time-varying network structures, which allows for endogenous interac-

tion, exogenous interactions, correlation of unobservables, and most impor-

tantly three-dimensional fixed effects. The time-varying network structures

render the orthogonal transformation inapplicable, and thus an adjusted quasi

score (AQS) is proposed, which adjusts the concentrated quasi scores (with the

fixed effects being concentrated out) to remove the effects of estimating these

incidental parameters. Although we focus on an empirically most meaning-

ful specification of the three-way fixed effects, where group-specific effects are

time-varying additive with time-invariant individual-specific effects, the pro-

posed estimation strategy can be easily extended to handle all the other pos-

sible specifications. For the statistical inferences, the main difficulty lies with

the fact that ‘consistent’ estimates of the idiosyncratic errors are unavailable

due to the incidental parameters problem. A ‘plug-in and then bias-correction’

method is proposed to give consistent estimates of the standard errors of the

AQS estimators.

The proposed methods are seen to be very general in handling the SPD

models with multi-dimensional unobserved heterogeneity and the presence of

generally time-varying spatial weight matrices without row-normalization. The

current study also sheds light on an interesting but challenging extension: dy-

namic SPD models with time-varying network structures. Especially when

T is fixed, the analysis will become much more complicated as adjustments

to the concentrated quasi score functions are required to deal with the inci-

dental parameters problems coming from both the initial condition and the

concentration. Rigorous studies on this extension can only be done in future

research.
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Appendices

Appendices for Chapter 1

We collect all the technical proofs for the main results in Chapter 1 here.

Three appendices are provided. Appendix A provides some basic lemmas that

are used in the other appendices. Appendix B and Appendix C present proofs

for results in Section 1.2 and Section 1.3, respectively.

Appendix A: Some basic lemmas

The following lemmas are essential to the proofs of the main results in this

chapter.

Lemma A.1. (Kelejian and Prucha, 1999; Lee, 2002): Let {AN} and

{BN} be two sequences of N ×N matrices that are uniformly bounded in both

row and column sums. Let CN be a sequence of conformable matrices whose

elements are uniformly O(h−1
n ). Then,

(i) the sequence {ANBN} are uniformly bounded in both row and column

sums,

(ii) the elements of AN are uniformly bounded and tr(AN) = O(N), and

(iii) the elements of ANCN and CNAN are uniformly O(h−1
n ).

Lemma A.2. (Lemma A.3, Lee, 2004): For W and AN(λ) defined in

Model (1.2), if ‖W‖ and ‖A−1
N ‖ are uniformly bounded, where ‖ · ‖ is a matrix

norm, then ‖A−1
N (λ)‖ is uniformly bounded in a neighborhood of λ0.

Lemma A.3. Under Assumptions C-E, we have

(i) QD(ρ) is uniformly bounded in both row and column sums, uniformly

in ρ ∈ ∆ρ;
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(ii) QX(ρ) is uniformly bounded in both row and column sums, uniformly

in ρ ∈ ∆ρ.

Proof of Lemma A.3: Proof is simpler using a D?
α under the constraint

α1 = 0.

Proof of (i).

Let Dµ(ρ) = BN(ρ)Dµ, Dα(ρ) = BN(ρ)D?
α, D11(ρ) = D′µ(ρ)Dµ(ρ), D12(ρ) =

D′µ(ρ)Dα(ρ), D22(ρ) = D′α(ρ)Dα(ρ) and F(ρ) = D′µ(ρ)QDα(ρ)Dµ(ρ). Using the

inverse formula of a partioned matrix, one has

[D′(ρ)D(ρ)]−1 =

D11(ρ) D12(ρ)

D′12(ρ) D22(ρ)

−1

=

 F−1(ρ) −F−1(ρ)D12(ρ)D−1
22 (ρ)

−D−1
22 (ρ)D′12(ρ)F−1(ρ) D−1

22 (ρ) +D−1
22 (ρ)D′12(ρ)F−1(ρ)D12(ρ)D−1

22 (ρ)

 .
Plugging this into QD(ρ), we obtain after some algebra,

QD(ρ) = QDα(ρ)−QDα(ρ)Dµ(ρ)[D′µ(ρ)QDα(ρ)Dµ(ρ)]−1D′µ(ρ)QDα(ρ). (A.1)

Given the special structure of Dα(ρ), one has QDα(ρ) = blkdiag(J1(ρ), . . . , JT (ρ)),

where J1(ρ) = In1 and Jt(ρ) = Int − 1
nt
Bt(ρ)lnt [

1
nt
l′ntB

′
t(ρ)Bt(ρ)lnt ]

−1l′ntB
′
t(ρ)

for t = 2, · · · , T . By Assumption D, the limit of 1
nt
l′ntB

′
t(ρ)Bt(ρ)lnt is bounded

away from zero and the elements of Bt(ρ)lntl
′
ntB

′
t(ρ) are uniformly bounded,

uniformly in ρ ∈ ∆ρ for each t. Therefore, Jt(ρ) must be uniformly bounded

in both row and column sums, uniformly in ρ ∈ ∆ρ for all t. Hence, QDα(ρ) is

also uniformly bounded in both row and column sums, uniformly in ρ ∈ ∆ρ.

We next consider the second term on the RHS of equation (A.1). We denote

it as Q̄(ρ), which can be partitioned into T ×T blocks with (s, t)th block being

Q̄s,t(ρ) = − 1
T
Js(ρ)Bs(ρ)Ds[

1
T

∑T
t=1 D

′
tB
′
t(ρ)Jt(ρ)Bt(ρ)Dt]

−1D′tB
′
t(ρ)Jt(ρ).

By assuming thatBs(ρ)Ds[
1
T

∑T
t=1 D

′
tB
′
t(ρ)Jt(ρ)Bt(ρ)Dt]

−1D′tB
′
t(ρ) is uniformly

bounded in both row and column sum norms, uniformly in ρ ∈ ∆ρ, for all s and

t, we have that the row and column sums of each Q̄s,t(ρ) must have uniform

order O(1/T ), uniformly in ρ ∈ ∆ρ. As there are T blocks in each row or in

each column of Q̄(ρ), we must have Q̄(ρ) is bounded in both row and column
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sum norms, uniformly in ρ ∈ ∆ρ. Consequently, QD(ρ) is bounded in both row

and column sum norms, uniformly in ρ ∈ ∆ρ.

Proof of (ii). Let ZN(ρ) = [ 1
N
X′(ρ)X(ρ)]−1 with its (j, k)th element being

denoted by zjk(ρ). From Assumption C(ii), ZN(ρ) converges to a finite limit

uniformly in ρ ∈ ∆ρ. Therefore, there exists a constant cz such that |zjk(ρ)| ≤

cz uniformly in ρ ∈ ∆ρ for large enough N . Note that X(ρ) = QD(ρ)BN(ρ)X.

As the elements of X are uniformly bounded (Assumption C(i)), and BN(ρ)

and QD(ρ) are bounded in both row and column sum norms, uniformly in

ρ ∈ ∆ρ, the elements of X(ρ) are also uniformly bounded, uniformly in ρ ∈

∆ρ. Hence, there exists a constant cx such that |xjk(ρ)| ≤ cx uniformly in

ρ ∈ ∆ρ, where xjk(ρ) is the (j, k)th element of X(ρ). Let pjl(ρ) be the (j, l)th

element of PX(ρ) = 1
N
X(ρ)[ 1

N
X′(ρ)X(ρ)]−1X′(ρ). It follows that uniformly in

ρ ∈ ∆ρ,
∑N

j=1 |pjl(ρ)| ≤ 1
N

∑N
j=1

∑k
r=1

∑k
s=1 |zrs(ρ)xjr(ρ)xls(ρ)| ≤ k2czc

2
x for

all l = 1, 2, . . . , N . Similarly, uniformly in ρ ∈ ∆ρ, we have
∑N

l=1 |pjl(ρ)| ≤
1
N

∑N
l=1

∑k
r=1

∑k
s=1 |zrs(ρ)xjr(ρ)xls(ρ)| ≤ k2czc

2
x for all j = 1, 2, . . . , N . That

is, PX(ρ) is bounded in both row and column sum norms, uniformly in ρ ∈ ∆ρ.

Consequently, QX(ρ) = IN − PX(ρ) is also bounded in both row and column

sum norms, uniformly in ρ ∈ ∆ρ. �

Lemma A.4. Suppose that {AN} and {BN} are two sequences of N ×N

matrices that are uniformly bounded in either row or column sums. Under

Assumptions C-E, tr[ANPX(ρ)BN ] = O(1), uniformly in ρ ∈ ∆ρ.

Proof of Lemma A.4: From the proof of Lemma A.3, the elements of

X(ρ) and the elements of [ 1
N
X′(ρ)X(ρ)]−1 are uniformly bounded, uniformly in

ρ ∈ ∆ρ. If AN and BN are bounded in row (column) sum norm, then ANBN

is also bounded in row (column) sum norm. Thus, Lemma A.6 of Lee (2004)

implies that the elements of 1
N
X′(ρ)ANBNX(ρ) are uniformly bounded. It fol-

lows that tr[ANPX(ρ)BN ] = tr[( 1
N
X′(ρ)X(ρ))−1 1

N
X′(ρ)ANBNX(ρ)] = O(1),

uniformly in ρ ∈ ∆ρ because the number of regressors k is fixed. �

Lemma A.5. (Lemma A.2, Lin and Lee, 2010; Lemma A.3, Liu and Yang,

2015): Let AN = [aij] and BN = [bij] be two square matrices of dimension N

and cN be an N × 1 vector of elements ci. Assume that innovations {vj}
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have zero mean and are mutually independent, i.e. vj ∼ inid(0, σ2
j ). Letting

H = diag{σ2
1, · · · , σ2

N} and V = (v1, · · · , vN)′, we have,

(i) E(V′ANV) = tr(HAN) =
∑N

i=1 aiiσ
2
i ,

(ii) E(V′ANV · c′NV) =
∑N

i=1 aiiciE(v3
i ),

(iii) E(V′ANV ·V′BNV) =
∑N

i=1 aiibii[E(v4
i )− 3σ4

i ] + tr(HAN)tr(HBN) +

tr(HANHB◦N),

(iv) Var(V′ANV) =
∑N

i=1 a
2
ii[E(v4

i )− 3σ4
i ] + tr(HANHA◦N).

Lemma A.6. (Lemma A.3, Lin and Lee, 2010, extended): Let {AN} be

a sequence of N × N matrices such that either ‖AN‖∞ or ‖AN‖1 is bounded.

Suppose that the elements of AN are O(h−1
n ) uniformly in all i and j. Let

innovation vector V be defined as in Lemma A.5. Let cN be an N × 1 vector

with elements of uniform order O(h
−1/2
n ). Then

(i) E(V′ANV) = O( N
hn

), (ii) Var(V′ANV) = O( N
hn

),

(iii) V′ANV = Op(
N
hn

), (iv) V′ANV − E(V′ANV) = Op((
N
hn

)
1
2 ),

(v) c′NANV = Op((
N
hn

)
1
2 ), if ‖AN‖1 is bounded.

Proof of Lemma A.6: Firstly, Lemma A.8 of Lee (2004) implies that

tr(HAN), tr(ANA
′
N), tr(HANHAN) and tr(HANHA′N) are all O( N

hn
). As∑N

i=1 a
2
ii ≤ tr(ANA

′
N), we also have

∑N
i=1 a

2
ii = O( N

hn
). These and Lemma A.5

show that E(V′ANV) = tr(HAN) = O( N
hn

) and Var(V′ANV) =
∑N

i=1 a
2
ii[E(v4

i )−

3σ4
i ] + tr[HAN(HA′N + HAN)] = O( N

hn
). As E[(V′ANV)2] = Var(V′ANV) +

E2(V′ANV) = O(( N
hn

)2), we have P (hn
N
|V′ANV| ≥M) ≤ 1

M2 (hn
N

)2E[(V′ANV)2] =

O(1), by the generalized Chebyshev’s inequality. It follows that V′ANV =

Op(
N
hn

). Moreover, by Chebyshev’s inequality, P ((hn
N

)
1
2 |V′ANV−E(V′ANV)| ≥

M) ≤ 1
M2

hn
N

Var(V′ANV) = O(1). This implies that V′ANV − E(V′ANV) =

Op((
N
hn

)
1
2 ). Finally, as the elements of cN have uniform order O(h

−1/2
n ), there

exists a constant c̄ such that |cj| ≤ c̄

h
1/2
n

for all j. Hence, we have by the

boundedness of ‖AN‖1,

Var[(hn
N

)
1
2 c′NANV] = hn

N

∑N
i=1

∑N
j=1

∑N
k=1 cjckajiakiσ

2
i

≤ c̄2( 1
N

∑N
i=1 σ

2
i )(
∑N

j=1 |aji|)(
∑N

k=1 |aki|) = O(1).

It follows that c′NANV = Op((
N
hn

)
1
2 ), by Chebyshev’s inequality. �
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Appendix B: Proofs for Section 1.2

In proving the theorems, the following facts are used: (i) the eigenval-

ues of a projection matrix are either 0 or 1; (ii) the eigenvalues of a positive

definite (p.d.) matrix are strictly positive; (iii) γmin(A)tr(B) ≤ tr(AB) ≤

γmax(A)tr(B) for symmetric matrix A and positive semi-definite (p.s.d.) ma-

trix B; (iv) γmax(A+B) ≤ γmax(A) + γmax(B) for symmetric matrices A and

B; and (v) γmax(AB) ≤ γmax(A)γmax(B) for p.s.d. matrices A and B.

The validity of Assumption E(iv) under a balanced panel:

For a balanced panel with a time-invariant and row-normalized spatial

weight matrix, we have for all t, nt = n, Dt = In, Mt = M , and Bt(ρ) = In −

ρM ≡ B(ρ). As M×ln = ln, Jt(ρ) = In− 1
n
lnl
′
n, t = 2, . . . , T . Thus, we are able

to get Bs(ρ)Ds[
1
T

∑T
t=1D

′
tB
′
t(ρ)Jt(ρ)Bt(ρ)Dt]

−1D′tB
′
t(ρ) = (In− T−1

nT
lnl
′
n)−1. As

In− T−1
nT

lnl
′
n is strictly diagonally dominant in rows and columns, its inverse is

bounded in row and column sum norms (Varah, 1975).

Derivation of the AQS functions and the Hessian matrix:

Writing the key quantity in the concentrated quasi loglikelihood function

(1.5) as Ṽ′(β, δ)Ṽ(β, δ) = [AN(λ)Y−Xβ]′B′N(ρ)QD(ρ)BN(ρ)[AN(λ)Y−Xβ],

and using the facts that for an invertible matrix A(λ), we have ∂
∂λ

ln |A(λ)| =

tr[A−1(λ) ∂
∂λ
A(λ)] and ∂

∂λ
A−1(λ) = −A−1(λ)[ ∂

∂λ
A(λ)]A−1(λ), it is straightfor-

ward to derive ScN(θ). However, the derivation of the ρ-component is compli-

cated and some intermediate results are useful. First,

∂
∂ρ

[B′N(ρ)QD(ρ)BN(ρ)]

= −M′QD(ρ)BN(ρ)−B′N(ρ)QD(ρ)M + B′N(ρ)Q̇D(ρ)QD(ρ)BN(ρ)

+ B′N(ρ)QD(ρ)Q̇D(ρ)BN(ρ),

where Q̇D(ρ) = ∂
∂ρ
QD(ρ). With ∂

∂ρ
D(ρ) = −MD = −GN(ρ)D(ρ), we have

Q̇D(ρ) = QD(ρ)GN(ρ)PD(ρ) + PD(ρ)G′N(ρ)QD(ρ). (B.1)

This leads to − ∂
∂ρ

[B′N(ρ)QD(ρ)BN(ρ)] = B′N(ρ)QD(ρ)G◦N(ρ)QD(ρ)BN(ρ) ≡

Ψ(ρ), the ρ-component of the CQS function (1.6), and the ρ-component of the

105



AQS function (1.8):

S∗ρ(θ) = 1
2σ2
v
[AN(λ)Y −Xβ]′Ψ(ρ)[AN(λ)Y −Xβ]− tr[QD(ρ)GN(ρ)]. (B.2)

This is expressed in terms of Ψ(ρ) and G◦N(ρ) to facilitate the derivations of

the ρ-related terms of the Hessian matrix ∂
∂ρ

Ψ(ρ). Again, the (ρ, ρ) term of

∂
∂ρ

Ψ(ρ) is most complicate. For a comformable vector a, we have by taking use

of (B.1) and after some tedious algebra,

a′[ ∂
∂ρ

Ψ(ρ)]a = 2a′B′N(ρ)QD(ρ)[G◦N(ρ)PD(ρ)G◦N(ρ)−G′N(ρ)GN(ρ)]QD(ρ)BN(ρ)a.

(B.3)

With the set of AQS functions S∗N(θ) given in (1.8) and (B.1)-(B.3), we obtain

the components of the Hessian matrix H∗N(θ) = ∂
∂θ′
S∗N(θ):

H∗ββ(θ) = − 1
σ2
v
X′(ρ)X(ρ),

H∗βσ2
v
(θ) = − 1

σ4
v
X′(ρ)Ṽ(β, δ) = H∗′σ2

vβ
,

H∗βλ(θ) = − 1
σ2
v
X′(ρ)Y(ρ) = H∗′λβ,

H∗βρ(θ) = − 1
σ2
v
X′(ρ)G◦N(ρ)Ṽ(β, δ) = H∗′ρβ,

H∗σ2
vσ

2
v
(θ) = − 1

σ6
v
Ṽ′(β, δ)Ṽ(β, δ) + 1

2σ4
v
N1,

H∗σ2
vλ

(θ) = − 1
σ4
v
Y′(ρ)Ṽ(β, δ) = H∗′λσ2

v
,

H∗σ2
vρ

(θ) = − 1
2σ4
v
Ṽ′(β, δ)G◦N(ρ)Ṽ(β, δ) = H∗′ρσ2

v
,

H∗λλ(θ) = − 1
σ2
v
Y′(ρ)Y(ρ)− tr[QD(ρ)BN(ρ)F2

N(λ)B−1
N (ρ)],

H∗λρ(θ) = − 1
σ2
v
Y′(ρ)G◦N(ρ)Ṽ(β, δ)− tr[FN(λ)RN(ρ)],

H∗ρλ(θ) = − 1
σ2
v
Y′(ρ)G◦N(ρ)Ṽ(β, δ),

H∗ρρ(θ) = 1
σ2
v
Ṽ′(β, δ)R1N(ρ)Ṽ(β, δ)− tr[R2N(ρ)],

(B.4)

where Y(ρ) = QD(ρ)BN(ρ)WY, RN(ρ) = B−1
N (ρ)PD(ρ)G◦N(ρ)QD(ρ)BN(ρ),

R1N(ρ) = G◦N(ρ)PD(ρ)G◦N(ρ)−G′N(ρ)GN(ρ) andR2N(ρ) = QD(ρ)GN(ρ)[PD(ρ)

G◦N(ρ) + GN(ρ)].

Proof of Theorem 1.1: By theorem 5.9 of van der Vaart (1998), we

only need to show supδ∈δ
1
N1

∥∥S∗cN (δ)− S̄∗cN (δ)
∥∥ p−→ 0 under the assumptions in

Theorem 1.1. From (1.10) and (1.12), the consistency of δ̂∗N follows from:

(a) infδ∈∆σ̄
∗2
v,N(δ) is bounded away from zero,

(b) supδ∈∆

∣∣σ̂∗2v,N(δ)− σ̄∗2v,N(δ)
∣∣ = op(1),

(c) supδ∈∆
1
N1

∣∣Y′W′B′N(ρ)V̂(δ)− E[Y′W′B′N(ρ)V̄(δ)]
∣∣ = op(1),

106



(d) supδ∈∆
1
N1

∣∣V̂′(δ)GN(ρ)V̂(δ)− E[V̄′(δ)GN(ρ)V̄(δ)]
∣∣ = op(1).

Proof of (a). From (1.11), β̄∗N(δ) = [X′(ρ)X(ρ)]−1X′(ρ)QD(ρ)CN(δ)E(Y)

as X(ρ) = QD(ρ)BN(ρ)X and QD(ρ) is idempotent. Thus, V̄(δ) = QD(ρ)CN(δ)Y−

X(ρ)β̄∗N(δ) = QX(ρ)QD(ρ)CN(δ)Y +PX(ρ)QD(ρ)CN(δ)[Y−E(Y)]. By the or-

thogonality between QD(ρ) and PD(ρ) and using Y = A−1
N (η + B−1

N V), we

have,

σ̄∗2v,N(δ) = 1
N1

E[V̄′(δ)V̄(δ)]

= 1
N1

E[Y′Q(δ)Y] + 1
N1

E
{

[Y − E(Y)]′P(δ)[Y − E(Y)]
}

(B.5)

= 1
N1

E(Y)′Q(δ)E(Y) + 1
N1

E
{

[Y − E(Y)]′[Q(δ) + P(δ)][Y − E(Y)]
}

= 1
N1

E(Y)′Q(δ)E(Y) + 1
N1

E
{

[Y − E(Y)]′C′N(δ)QD(ρ)CN(δ)[Y − E(Y)]
}

= 1
N1
η′A′−1

N Q(δ)A−1
N η +

σ2
v0

N1
tr[QD(ρ)CN(δ)],

where Q(δ) = C′N(δ)QD(ρ)QX(ρ)QD(ρ)CN(δ) and P(δ) = C′N(δ)QD(ρ)PX(ρ)

QD(ρ)CN(δ). The first term can be written in the form of a′(δ)a(δ) for an

N × 1 vector function of δ, and thus is non-negative, uniformly in δ ∈ ∆. For

the second term,

σ2
v0

N1
tr[QD(ρ)CN(δ)] ≥ σ2

v0

N1
γmin[CN(δ)]tr[QD(ρ)] = σ2

v0γmin[CN(δ)]

≥ σ2
v0γmax(A′NAN)−1γmax(B′NBN)−1γmin[A′N(λ)AN(λ)]γmin[B′N(ρ)BN(ρ)] > 0,

uniformly in δ ∈ ∆, by Assumption E(iii). It follows that infδ∈∆σ̄
∗2
v,N(δ) > 0.

Proof of (b). From (1.9), β̂∗N(δ) = [X′(ρ)X(ρ)]−1X′(ρ)QD(ρ)CN(δ)Y.

Then, V̂(δ) = QD(ρ)BN(ρ)[AN(λ)Y − Xβ̂∗N(δ)] = QX(ρ)QD(ρ)CN(δ)Y and

σ̂∗2v,N(δ) = 1
N1

Y′Q(δ)Y. From (B.5), σ̄∗2v,N(δ) = 1
N1

E[Y′Q(δ)Y]+
σ2
v0

N1
tr[C′−1

N P(δ)C−1
N ].

Thus,

σ̂∗2v,N(δ)− σ̄∗2v,N(δ) = 1
N1

[Y′Q(δ)Y − E(Y′Q(δ)Y)]− σ2
v0

N1
tr[C′−1

N P(δ)C−1
N ].

For the second term, 0 ≤ 1
N1
tr[C′−1

N P(δ)C−1
N ] ≤ 1

N1
γmax[CN(δ)]γ2

max[QD(ρ)]

tr[PX(ρ)] = o(1), because tr[PX(ρ)] = k, γmax[QD(ρ)] = 1 and, by Assump-

tion E(iii), γmax[CN(δ)] ≤ γmin(A′NAN)−1γmin(B′NBN)−1γmax[A′N(λ)AN(λ)]

γmax[B′N(ρ)BN(ρ)] < ∞. Therefore, one has supδ∈∆ |
σ2
v0

N1
tr[C′−1

N P(δ)C−1
N ]| =

o(1). For the first term, we prove the uniform convergence: supδ∈∆ | 1
N1

[Y′Q(δ)Y−

E(Y′Q(δ)Y)]| = op(1), which follows from pointwise convergence of 1
N1

[Y′Q(δ)Y−
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E(Y′Q(δ)Y)] to zero for each δ ∈ ∆ and the stochastic equicontinuity of

1
N1

Y′Q(δ)Y, according to Andrews (1992). We have,

1
N1

[Y′Q(δ)Y − E(Y′Q(δ)Y)]

= 2
N1

V′C−1′
N Q(δ)A−1

N η + 1
N1

[V′C−1′
N Q(δ)C−1

N V − σ2
v0tr(C−1′

N Q(δ)C−1
N )].

By Assumption E, and Lemmas A.1 and A.3, one shows that C−1′
N Q(δ)A−1

N and

C−1′
N Q(δ)C−1

N are bounded in both row and column sum norms, for each δ ∈ ∆.

Further, the elements of η are uniformly bounded. Thus, the pointwise con-

vergence of the first term follows from Lemma A.6 (v), and the pointwise

convergence of the second term follows from Lemma A.6 (iv). Therefore,

1
N1

[Y′Q(δ)Y − E(Y′Q(δ)Y)]
p−→ 0, for each δ ∈ ∆.

Next, let δ1 and δ2 be in ∆. We have by the mean value theorem (MVT):

1
N1

Y′Q(δ2)Y − 1
N1

Y′Q(δ1)Y = 1
N1

Y′[ ∂
∂δ′

Q(δ̄)]Y(δ2 − δ1),

where δ̄ lies between δ1 and δ2. It follows that 1
N1

Y′Q(δ)Y is stochasti-

cally equicontinuous if supδ∈∆
1
N1

Y′[ ∂
∂$

Q(δ)]Y = Op(1), $ = λ, ρ. We only

show supδ∈∆
1
N1

Y′[ ∂
∂ρ

Q(δ)]Y = Op(1) as the proof of supδ∈∆
1
N1

Y′[ ∂
∂λ

Q(δ)]Y =

Op(1) is similar and simpler. Note that

∂
∂ρ

Q(δ) = −C′N(δ)G′N(ρ)QD(ρ)QX(ρ)QD(ρ)CN(δ) + C′N(δ)Q̇D(ρ)QX(ρ)QD(ρ)CN(δ)

+ C′N(δ)QD(ρ)Q̇X(ρ)QD(ρ)CN(δ) + C′N(δ)QD(ρ)QX(ρ)Q̇D(ρ)CN(δ)

−C′N(δ)QD(ρ)QX(ρ)QD(ρ)GN(ρ)CN(δ),

where Q̇X(ρ) = ∂
∂ρ
QX(ρ). Using (B.1), we have after some algebra, Ẋ(ρ) =

∂
∂ρ
X(ρ) = GN(ρ)X(ρ) where GN(ρ) = PD(ρ)G′N(ρ)−QD(ρ)GN(ρ), which gives

Q̇X(ρ) = −PX(ρ)G′N(ρ)QX(ρ)−QX(ρ)GN(ρ)PX(ρ). (B.6)

For a comformable vector a and taking use (B.1) and (B.6), we have after some

algebra,

a′[ ∂
∂ρ

Q(δ)]a = −2a′Q̄(δ)a, (B.7)

where Q̄(δ) = Q′N(δ)GN(ρ)QN(δ) and QN(δ) = QX(ρ)QD(ρ)CN(δ). Some

rearrangements lead to Q̄(δ) = Q′N(δ)MQ̄D(ρ)Q̄X(ρ)AN(λ), where we define

Q̄D(ρ) = IN−D[D′(ρ)D(ρ)]−1D′(ρ)BN(ρ) and Q̄X(ρ) = IN−X[X′(ρ)X(ρ)]−1X′(ρ)

QD(ρ)BN(ρ). Following exactly the same way as we prove Lemma A.3, we

show that Q̄D(ρ) and Q̄X(ρ) are also uniformly bounded in both row and col-
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umn sums, uniformly in ρ ∈ ∆ρ. This implies that both ‖Q̄(δ)‖1 and ‖Q̄(δ)‖∞
are bounded uniformly in δ ∈ ∆. As Y = A−1

N (η + B−1
N V), Lemma A.1 and

Lemma A.6 imply

1
N1

Y′[ ∂
∂ρ

Q(δ)]Y = − 2
N1

Y′Q̄(δ)Y = − 2
N1

(η + B−1
N V)′A′−1

N Q̄(δ)A−1
N (η + B−1

N V)

= − 2
N1
η′A′−1

N Q̄(δ)A−1
N η − 4

N1
η′A′−1

N Q̄(δ)C−1
N V − 2

N1
V′C′−1

N Q̄(δ)C−1
N V = Op(1),

uniformly in δ ∈ ∆. Thus, supδ∈∆
1
N1

Y′[ ∂
∂ρ

Q(δ)]Y = Op(1). Following the

similar analysis, one also has supδ∈∆
1
N1

Y′[ ∂
∂λ

Q(δ)]Y = Op(1). Therefore,

supδ∈∆ |σ̂∗2v,N(δ)− σ̄∗2v,N(δ)| = op(1).

Proof of (c). By the expressions of V̂(λ) and V̄(δ) given above, we have

1
N1

Y′W′B′N(ρ)V̂(δ)− 1
N1

E[Y′W′B′N(ρ)V̄(δ)]

= 1
N1

[Y′W′B′N(ρ)QN(δ)Y − E(Y′W′B′N(ρ)QN(δ)Y)]

− σ2
v0

N1
tr[C′−1

N W′B′N(ρ)PN(δ)C−1
N ],

where PN(δ) = PX(ρ)QD(ρ)CN(δ). The first term is similar in form to 1
N1

[Y′Q(δ)Y

−E(Y′Q(δ)Y)] from (b), and its uniform convergence is shown in a similar

way. Furthermore, by Lemma A.4, it is easy to see that the second term is

o(1) uniformly in δ ∈ ∆.

Proof of (d). Again, using the expressions of V̄(δ) and V̂(δ), we have

1
N1

V̂′(δ)GN(ρ)V̂(δ)− 1
N1

E[V̄′(δ)GN(ρ)V̄(δ)]

= 1
N1

[Y′Q̄(δ)Y − E(Y′Q̄(δ)Y)]− σ2
v0

N1
tr[C′−1

N P ′N(δ)G◦N(ρ)QN(δ)C−1
N ]

− σ2
v0

N1
tr[C′−1

N P ′N(δ)GN(ρ)PN(δ)C−1
N ].

Therefore, the uniform convergence of the first term can also be shown similarly

as we do for 1
N1

[Y′Q(δ)Y − E(Y′Q(δ)Y)] since they have similar forms. By

Lemma A.4, the remaining two terms are easily seen to be o(1), uniformly in

δ ∈ ∆. �

Proof of Theorem 1.2: Applying the MVT to each element of S∗N(θ̂∗N),

we have

0 = 1√
N1
S∗N(θ̂∗N) = 1√

N1
S∗N(θ0) +

[
1
N1

∂
∂θ′
S∗N(θ)

∣∣∣
θ=θ̄r in rth row

]√
N1(θ̂∗N − θ0),

(B.8)

where {θ̄r} are on the line segment between θ̂∗N and θ0. The result of the
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theorem follows if

(a) 1√
N1
S∗N(θ0)

D−→ N [0, limN→∞ Γ∗N(θ0)],

(b) 1
N1

[ ∂
∂θ′
S∗N(θ)

∣∣
θ=θ̄r in rth row

− ∂
∂θ′
S∗N(θ0)] = op(1), and

(c) 1
N1

[ ∂
∂θ′
S∗N(θ0)− E( ∂

∂θ′
S∗N(θ0))] = op(1).

Proof of (a). From (1.13), we see that the elements of S∗N(θ0) are linear-

quadratic forms in V. Thus, for every non-zero (k+ 3)× 1 vector of constants

a, a′S∗N(θ0) is of the form:

a′S∗N(θ0) = b′NV + V′ΦNV − σ2
vtr(ΦN),

for suitably defined non-stochastic vector bN and matrix ΦN . Based on As-

sumptions A-F, it is easy to verify (by Lemma A.1 and Lemma A.3(i)) that

bN and matrix ΦN satisfy the conditions of the CLT for LQ form of Kelejian

and Prucha (2001), and hence the asymptotic normality of 1√
N1
a′S∗N(θ0) fol-

lows. By Cramér-Wold device, 1√
N1
S∗N(θ0)

D−→ N [0, limN→∞ Γ∗N(θ0)], where

elements of Γ∗N(θ0) are given in (1.15).

Proof of (b). The Hessian matrix H∗N(θ) = ∂
∂θ′
S∗N(θ) is given in (B.4). By

Assumptions D and E, and Lemma A.1 and Lemma A.3(i), RN(ρ0), R1N(ρ0)

and R2N(ρ0) are all bounded in row and column sum norms. With these

and Y = A−1
N (η + B−1

N V), Lemma A.6 leads to 1
N1
H∗N(θ0) = Op(1). Thus,

1
N1
H∗N(θ̄) = Op(1) since θ̄

p−→ θ0 due to θ̂∗N
p−→ θ0, where for ease of exposi-

tion, H∗N(θ̄) is used to denote ∂
∂θ′
S∗N(θ)

∣∣
θ=θ̄r in rth row

. As σ̄2
v

p−→ σ2
v0, we have

σ̄−rv = σ−rv0 + op(1), for r = 2, 4, 6. As σ−rv appears in H∗N(θ) multiplicatively,

1
N1
H∗N(θ̄) = 1

N1
H∗N(β̄, λ̄, ρ̄, σ2

v0) + op(1). Thus, the proof of (b) is equivalent to

the proof of
1
N1

[H∗N(β̄, λ̄, ρ̄, σ2
v0)−H∗N(θ0)]

p−→ 0,

or the proofs of 1
N1

[H∗SN (β̄, λ̄, ρ̄, σ2
v0)−H∗SN (θ0)]

p−→ 0 and 1
N1

[H∗NSN (δ̄)−H∗NSN (δ0)]
p−→ 0, where H∗SN and H∗NSN denote, respectively, the stochastic and non-

stochastic parts of H∗N .

For the stochastic part, we see from (B.4) that all the components of

H∗SN (β, λ, ρ, σ2
v0) are linear, bilinear or quadratic in β and λ, but nonlinear in ρ.

Hence, with an application of the MVT on H∗SN (β̄, λ̄, ρ̄, σ2
v0) w.r.t ρ̄ ‘variable’,
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we can write 1
N1

[H∗SN (β̄, λ̄, ρ̄, σ2
v0)−H∗SN (θ0)] as

1
N1

[ ∂
∂ρ
H∗SN (β̄, λ̄, ρ̇, σ2

v0)](ρ̄− ρ0) + 1
N1

[H∗SN (β̄, λ̄, ρ0, σ
2
v0)−H∗SN (θ0)],

where ρ̇ lies between ρ̄ and ρ0. Thus, it suffices to show (i) 1
N1

∂
∂ρ
H∗SN (β̄, λ̄, ρ̇, σ2

v0) =

Op(1), and (ii) 1
N1

[H∗SN (β̄, λ̄, ρ0, σ
2
v0)−H∗SN (θ0)] = op(1).

We select one of the most complicated components, H∗Sρλ(θ) = − 1
σ2
v
Y′(ρ)G◦N(ρ)

Ṽ(β, δ), to illustrate the general idea in the proof. We have, after some alge-

bra,

1
N1

∂
∂ρ
H∗Sρλ(β̄, λ̄, ρ̇, σ2

v0) = 2
N1σ2

v0
Y′(ρ̇)R1N(ρ̇)QD(ρ̇)BN(ρ̇)(AN(λ̄)Y −Xβ̄),

1
N1

[H∗SN (β̄, λ̄, ρ0, σ
2
v0)−H∗SN (θ0)] = 1

N1σ2
v0
Y′G◦NY(λ̄− λ0) + 1

N1σ2
v0
Y′G◦NX(β̄ − β0).

By Lemmas A.1 and A.6, it is easy to show that 1
N1

Y′G◦NY = Op(1) and

1
N1

Y′G◦NX = Op(1). Therefore, (ii) holds. To prove (i), we have

Y′(ρ̇)R1N(ρ̇)QD(ρ̇)BN(ρ̇)(AN(λ̄)Y −Xβ̄)

=(A−1
N η + C−1

N V)′HN(ρ̇)[AN(λ̄)A−1
N η + AN(λ̄)C−1

N V −Xβ̄]

whereHN(ρ̇) = W′B′N(ρ̇)QD(ρ̇)R1N(ρ̇)QD(ρ̇)BN(ρ̇). Lemma A.2 implies B−1
N (ρ̇)

embedded in HN(ρ̇) is uniformly bounded in both row and column sums since

ρ̇ − ρ0 = op(1). Therefore, it is easy to see the above equation is Op(N) by

Lemma A.6 and then result (i) follows.

For the non-stochastic part, we illustrate the proof using the most compli-

cate λλ-term. Noting that the non-stochastic part is nonlinear in both λ̄ and

ρ̄, we have by the MVT,

1
N1

[H∗NSλλ (δ̄)−H∗NSλλ (δ0)] = − 1
N1
tr[QD(ρ̄)BN(ρ̄)F2

N(λ̄)B−1
N (ρ̄)−QDBNF2

NB−1
N ]

= − (λ̄− λ0) 1
N1
tr[2QD(ρ̇)BN(ρ̇)F3

N(λ̇)B−1
N (ρ̇)]− (ρ̄− ρ0) 1

N1
tr[F2

N(λ̇)RN(ρ̇)],

where λ̇ lies between λ̄ and λ0 and ρ̇ lies between ρ̄ and ρ0. Again, by Lemma

A.2, we conclude that both A−1
N (λ̇) and B−1

N (ρ̇) are uniformly bounded in

both row and column sums. Therefore, the terms inside the trace both have

elements that are uniformly bounded. As δ̄−δ0 = op(1), we have 1
N1

[H∗NSλλ (δ̄)−

H∗NSλλ (δ0)] = op(1).

Proof of (c). Since Y = A−1
N (η + B−1

N V), the Hessian matrix at true

θ0 are seen to be linear combinations of terms linear or quadratic in V, and

constants. The constant terms are canceled out. Other terms are shown to be
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op(1) based on Lemma A.6. For example,

1
N1

[H∗ρρ(ρ0)−E(H∗ρρ(ρ0))] = 1
N1σ2

v0
[V′QDR1NQDV−E(V′QDR1NQDV)] = op(1).

�

Proof of Corollary 1.1: Note that Γ∗N(θ̂∗N) = Γ∗N(θ)|(θ=θ̂∗N ,φ=φ̂∗N ,γ=γ̂N ,κ=κ̂N ).

As θ̂∗N , γ̂N and κ̂N are consistent estimators for θ0, γ and κ, plugging these es-

timators into Γ∗N(θ) will not bring additional bias to the estimation of Γ∗N(θ0).

However, due to incidental parameters problem, the µ̂∗N component of φ̂∗N is

not consistent for the estimation of µ0 when T is fixed. The estimation bias

caused by replacing φN by φ̂∗N can be derived as follow. Recall (1.4),

φ̂N(β, δ) = [D′(ρ)D(ρ)]−1D′(ρ)BN(ρ)[AN(λ)Y −Xβ].

Thus, the unconstrained estimate of φ0 is just φ̂∗N = φ̂N(β̂∗N , δ̂
∗
N). Note AN(λ̂∗N)Y−

Xβ̂∗N = ANY −Xβ0 −WY(λ̂∗N − λ0) −X(β̂∗N − β0). Applying the MVT on

each row of Dφ̂∗N with respect to the ρ̂∗N -element, we have,

Dφ̂∗N = D[D′(ρ̂∗N)D(ρ̂∗N)]−1D′(ρ̂∗N)BN(ρ̂∗N)[AN(λ̂∗N)Y −Xβ̂∗N ] (B.9)

= B−1
N (ρ̂∗N)PD(ρ̂∗N)BN(ρ̂∗N)[AN(λ̂∗N)Y −Xβ̂∗N ]

= [B−1
N PDBN − RN(ρ̄)(ρ̂∗N − ρ0)][AN(λ̂∗N)Y −Xβ̂∗N ]

= Dφ0 + B−1
N PDV −B−1

N PDBN [WY(λ̂∗N − λ0) + X(β̂∗N − β0)]

− RN(ρ̄)[AN(λ̂∗N)Y −Xβ̂∗N ](ρ̂∗N − ρ0),

where ρ̄ lies between ρ̂∗N and ρ0 and changes over the rows of RN(ρ̄), and RN(ρ)

is given below (B.4). From its expression, Γ∗N(θ) is seen to have components

that are either linear or quadratic in Dφ. Let dN be a non-stochastic N -vector

with elements being of uniform order O(1) or O(h−1
n ). Using (B.9), the terms

of Γ∗N(θ̂∗N) linear in Dφ̂∗N can be represented as

1
N1
d′NDφ̂∗N = 1

N1
d′NDφ0 + 1

N1
d′NB−1

N PDV

− 1
N1
d′NB−1

N PDBN [WY(λ̂∗N − λ0) + X(β̂∗N − β0)]

+ 1
N1
d′NRN(ρ̄)[AN(λ̂∗N)Y −Xβ̂∗N ](ρ̂∗N − ρ0) = 1

N1
d′NDφ0 + op(1),

where the last equation holds because of the consistency of θ̂∗N and Lemma

A.6, using Y = A−1
N (η + B−1

N V). Hence, we can conclude that the terms of

Γ∗N(θ0) linear in φ0 can be consistently estimated by simply replacing φ0 with
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φ̂∗N .

The only term quadratic in φ0 is contained in Γ∗λλ(θ0), 1
N1σ2

v0
φ′0D′P ′2P2Dφ0.

Its plug-in estimator is 1
N1σ̂∗2v,N

φ̂∗′ND′(ρ̂∗N)P ′2(δ̂∗N)P2(δ̂∗N)D(ρ̂∗N)φ̂∗N . Using (B.9),

θ̂∗N − θ0 = op(1) and Lemma A.6, we show that this estimator is biased:

1
N1σ̂∗2v,N

φ̂∗′ND′(ρ̂∗N)P ′2(δ̂∗N)P2(δ̂∗N)D(ρ̂∗N)φ̂∗N

= 1
N1σ̂∗2v,N

φ′0D′(ρ̂∗N)P ′2(δ̂∗N)P2(δ̂∗N)D(ρ̂∗N)φ0

+ 1
N1σ̂∗2v,N

V′PDB−1′
N B′N(ρ̂∗N)P ′2(δ̂∗N)P2(δ̂∗N)BN(ρ̂∗N)B−1

N PDV + op(1)

= 1
N1σ2

v0
φ′0D′P ′2P2Dφ0 + 1

N1σ2
v0

V′PDP ′2P2PDV + op(1)

= 1
N1σ2

v0
φ′0D′P ′2P2Dφ0 + 1

N1
tr[P ′2P2PD] + op(1).

We see that the bias term, 1
N1
tr[P ′2P2PD], involves only the common parame-

ters that can be consistently estimated. Thus, a bias correction can easily be

made. Define

Bias∗λλ(δ) = 1
N1
tr[P ′2(δ)P2(δ)PD(ρ)]. (B.10)

This gives the bias matrix of Γ∗N(θ̂∗N), which is a matrix of the same dimension

as Γ∗N(θ̂∗N), and has the sole non-zero element Bias∗λλ(δ0) corresponding to the

Γ∗λλ(θ̂
∗
N) component. �

Proof of Corollary 1.2.

Proof of (i). Note: V = BN(ANY−η), Ṽ = QDV and V̂ = QD(ρ̂∗N)BN(ρ̂∗N)

[AN(λ̂∗N)Y −Xβ̂∗N ] with respective elements {vj}, {ṽj} and {v̂j}, and QD has

elements {qjh}, j, h = 1, . . . , N , where j and h are the combined indices for

i = 1, . . . , nt and t = 1, . . . , T .

Consistency of γ̂N . As σ̂∗v,N − σv0 = op(1) and ρ̂∗N − ρ0 = op(1), the

denominators of γ̂N and γ agree asymptotically. Thus, γ̂N is consistent if

1
N

∑N
j=1[v̂3

j − E(ṽ3
j )]

p−→ 0, or

(a) 1
N

∑N
j=1[ṽ3

j − E(ṽ3
j )]

p−→ 0, and (b) 1
N

∑N
j=1(v̂3

j − ṽ3
j )

p−→ 0.
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To prove (a), note that ṽj =
∑N

h=1 qjhvh. Thus, we have,

1
N

∑N
j=1[ṽ3

j − E(ṽ3
j )]

= 1
N

∑N
j=1

∑N
h=1 q

3
jh[v

3
h − E(v3

h)] + 3
N

∑N
j=1

∑N
l=1

∑N
m 6=l
m=1

q2
jlqjmv

2
l vm

+ 6
N

∑N
j=1

∑N
m=1

∑N
l 6=m
l=1

∑N
h 6=m,l
h=1

qjmqjlqjhvmvlvh ≡ K1 +K2 +K3.

First, consider K1 term. By Lemma A.3, QD is uniformly bounded in both

row and column sums. This implies that the elements of QD are uniformly

bounded. Therefore, there exists a constant q̄ such that |qjh| ≤ q̄ for all j

and h. Given these, we have
∑N

j=1 q
3
jh ≤

∑N
j=1 |qjh|3 ≤ q̄2

∑N
j=1 |qjh| < ∞.

Also note {vi} are iid by Assumption A. Thus, Khinchine’s weak law of large

number (WLLN) (Feller, 1968, pp. 243-244) implies that K1 converges to zero

in probability as sample size increases.

For the other two terms, we have by switching the order of summations

when needed,

K2 = 3
N

∑N
j=1

∑N
l=1

∑N
m 6=l
m=1

q2
jlqjm(v2

l − σ2
v)vm + 3

N

∑N
j=1

∑N
l=1

∑N
m 6=l
m=1

q2
jlqjmσ

2
vvm,

= 3
N

∑N
m=1(v2

m − σ2
v)(
∑N

j=1

∑m−1
l=1 q2

jmqjlvl) + 3
N

∑N
m=1 vm[

∑N
j=1

∑m−1
l=1 q2

jlqjm

(v2
l − σ2

v)] + 3
N

∑N
m=1

∑N
j=1

∑N
l 6=m
l=1

q2
jlqjmσ

2
vvm,

K3 = 18
N

∑N
m=1 vm(

∑N
j=1

∑m−1
l=1

∑m−1
h 6=l
h=1

qjmqjlqjhvlvh) ≡ 1
N

∑N
m=1 g4,m.

Therefore, we have K2 = 1
N

∑N
m=1(g1,m + g2,m + g3,m) and K3 = 1

N

∑N
m=1 g4,m,

where

g1,m = 3(v2
m − σ2

v)
∑N

j=1

∑m−1
l=1 q2

jmqjlvl,

g2,m = 3vm
∑N

j=1

∑m−1
l=1 q2

jlqjm(v2
l − σ2

v),

g3,m = 3
∑N

j=1

∑N
l 6=m
l=1

q2
jlqjmσ

2
vvm,

g4,m = vm
∑N

j=1

∑m−1
l=1

∑m−1
h 6=l
h=1

qjmqjlqjhvlvh.

Let {Gm} be the increasing sequence of σ-fields generated by (v1, · · · , vj, j =

1, · · · ,m), m = 1, · · · , N . Then, E[(g1,m, g2,m, g3,m, g4,m)|Gm−1] = 0; hence,

{(g1,m, g2,m, g3,m, g4,m)′,Gm} form a vector martingale difference (M.D.) se-

quence. As QD is bounded in row and column sum norms, by Assumption

A, it is easy to see that E|gs,m|1+ε < ∞, for s = 1, 2, 3, 4 and ε > 0. Hence,

{g1,m}, {g2,m}, {g3,m} and {g4,m} are uniformly integrable, and the WLLN of
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Davidson (1994, Theorem 19.7) applies to give K2
p−→ 0 and K3

p−→ 0.

To prove (b), using the notation Ṽ(ξ) = QD(ρ)BN(ρ)[AN(λ)Y −Xβ] in

(1.5) where ξ = (β′, δ′)′, we have Ṽ = Ṽ(ξ0) and V̂ = Ṽ(ξ̂∗N). Let S(ξ) =

∂
∂ξ′

Ṽ(ξ), we have

S(ξ) = {−X(ρ), −Y(ρ), [Q̇D(ρ)BN(ρ)−QD(ρ)M][AN(λ)Y −Xβ]},

where expressions of Y(ρ) and Q̇D(ρ) are in (B.1) and (B.4), respectively. Let

s′j(ξ) be the jth row of S(ξ). We have by the MVT, for each j = 1, 2, . . . , N ,

v̂j ≡ ṽj(ξ̂
∗
N) = ṽj(ξ0)+s′j(ξ̄)(ξ̂

∗
N−ξ0) = ṽj+ψ

′
j(ξ̂
∗
N−ξ0)+op(‖ξ̂∗N−ξ0‖), (B.11)

where ξ̄ lies between ξ̂∗N and ξ0, and ψ′j = plimN→∞s
′
j(ξ̄), which is easily

shown to be Op(1) as follow. Consider the first k (the number of regressors)

elements of ψ′j first. They are the limits of the jth row of −X(ρ̄), which

are just the jth row of −X because ρ̄
p−→ ρ0, implied by ρ̂∗N − ρ0 = op(1).

Hence, we conclude that the first k elements of ψ′j are O(1), for each j =

1, 2, . . . , N . For the remaining two elements in each ψ′j, they are the limits

of elements from the last two columns of S(ξ̄). It is easy to see the limits of

the last two columns of S(ξ̄) are just −Y and [Q̇DBN − QDM][ANY −Xβ0].

Using Y = A−1
N η + C−1

N V, we have −Y = P2BNη + P2V and [Q̇DBN −

QDM][ANY − Xβ0] = [Q̇DBN − QDM]Dφ0 + [Q̇DBN − QDM]B−1
N V. By

Lemma A.1, we have the elements of P2BNη and [Q̇DBN − QDM]Dφ0 are

uniformly bounded, and P2 and [Q̇DBN − QDM]B−1
N are uniformly bounded

in both row and column sum norms. Hence, it is easy to see each element of

−Y and [Q̇DBN −QDM][ANY−Xβ0] are Op(1), i.e., the last two elements in

ψ′j are also Op(1), for each j = 1, 2, . . . , N .

As ṽj = Op(1), ψ′j = Op(1) and ξ̂∗N − ξ0 = Op(
1√
N1

), we have by (B.11),

v̂3
j = ṽ3

j + 3ṽ2
jψ
′
j(ξ̂
∗
N − ξ0) + op(‖ξ̂∗N − ξ0‖). It follows that

1
N

∑N
j=1(v̂3

j − ṽ3
j ) = 3

N

∑N
j=1 ṽ

2
jψ
′
j(ξ̂
∗
N − ξ0) + op(‖ξ̂∗N − ξ0‖)

= 3σ2
v

N

∑N
j=1(

∑N
k=1 q

2
jkψ

′
j)(ξ̂

∗
N − ξ0) + op(‖ξ̂∗N − ξ0‖) = op(1),

as 1
N

∑N
j=1(

∑N
k=1 q

2
jkψ

′
j) = (

∑N
k=1 q

2
jk)

1
N

(
∑N

j=1 ψ
′
j) = O(1).

Consistency of κ̂N . As σ̂∗v,N −σv0 = op(1) and ρ̂∗N −ρ0 = op(1), the result

follows if 1
N

∑N
j=1[v̂4

j − E(ṽ4
j )]

p−→ 0. This amounts to show that
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(c) 1
N

∑N
j=1[ṽ4

j − E(ṽ4
j )]

p−→ 0 and (d) 1
N

∑N
j=1(v̂4

j − ṽ4
j )

p−→ 0.

To prove (c), we have

1
N

∑N
j=1 ṽ

4
j − 1

N

∑N
j=1 E(ṽ4

j )

= 1
N

∑N
j=1

∑N
h=1 q

4
jh[v

4
h − E(v4

h)] + 3
N

∑N
j=1

∑N
l=1

∑N
m 6=l
m=1

q2
jlq

2
jm(v2

l v
2
m − σ4

v)

+ 4
N

∑N
j=1

∑N
l=1

∑N
m 6=l
m=1

q3
jlqjmv

3
l vm + 6

N

∑N
j=1

∑N
l=1

∑N
m 6=l
m=1

∑N
h 6=m,l
m=1

q2
jlqjmqjhv

2
l vmvh

+ 1
N

∑N
j=1

∑N
l=1

∑N
m 6=l
m=1

∑N
h 6=m,l
m=1

∑N
p6=m,l,h
m=1

qjlqjmqjhqjpvlvmvhvp ≡
∑5

r=1 Rr.

By using WLLN of Davidson (1994, Theorem 19.7) for M.D. arrays as in

the proof of (a), we have Rr = op(1) for r = 1, 3, 4, 5. For R2, noting that

v2
l v

2
m − σ4

v = (v2
l − σ2

v)(v
2
m − σ2

v) + σ2
v(v

2
m − σ2

v) + σ2
v(v

2
l − σ2

v), we have

R2 = 6
N

∑N
l=1(v2

l − σ2
v)[
∑N

j=1

∑l−1
m=1 q

2
jlq

2
jm(v2

m − σ2
v)]

+ 6
N

∑N
l=1[
∑N

j=1

∑N
m 6=l
m=1

q2
jlq

2
jmσ

2
v(v

2
l − σ2

v)] ≡ 6
N

∑N
l=1(fl + f2,l).

Since E[fl|Gl−1] = 0 and {f2,l} are independent, it is easy to see they both form

an M.D. sequence. In addition, it is easily seen that E|fs,l|1+ε <∞, for s = 1, 2

and ε > 0, so that {fl} and {f2,l} are uniformly integrable. Therefore, the

WLLN of Davidson (1994, Theorem 19.7) also implies that 6
N

∑N
l=1 fl = op(1)

and 6
N

∑N
l=1 f2,l = op(1).

To prove (d), we have by (B.11) v̂4
j = ṽ4

j +4ṽ3
jψ
′
j(ξ̂
∗
N − ξ0)+op(‖ξ̂∗N − ξ0‖).

It follows that

1
N

∑N
j=1(v̂4

j − ṽ4
j ) = 4

N

∑N
j=1 ṽ

3
jψ
′
j(ξ̂
∗
N − ξ0) + op(‖ξ̂∗N − ξ0‖)

= 4σ3
vγ
N

∑N
j=1(

∑N
k=1 q

3
jkψ

′
j)(ξ̂

∗
N − ξ0) + op(‖ξ̂∗N − ξ0‖) = op(1).

Proof of (ii). The consistency of Σ̂∗N to Σ∗N(θ0) can be shown similarly

as what we do in the proof of Theorem 1.2 for results (b) and (c). For Γ̂∗N −

Γ∗N(θ0)
p−→ 0, we only need to show that Bias∗(δ̂∗N)−Bias∗(δ0) = op(1), based

on Corollary 1.1. That is to show

1
N1
{tr[P ′2(δ̂∗N)P2(δ̂∗N)PD(ρ̂∗N)]− tr(P ′2P2PD)} = op(1),

which can be easily proved by using the MVT as we do for 1
N1

[H∗NSλλ (δ̄) −

H∗NSλλ (δ0)] in the proof of Theorem 1.2 (b). �
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Appendix C: Proofs for Section 1.3

The validity of assumptions on ΠN(ρ) in Lemma 1.1 under a bal-

anced panel:

Following the first part in Appendix B, we have QD(ρ) = (IT −
lT l
′
T

T
) ⊗

(In − lnl′n
n

), where ⊗ denotes the Kronecker product. Thus, [QD(ρ)�QD(ρ)]−1

exists if T > 2 by Schur product theorem. Further, |(QD(ρ)�QD(ρ))ii| −∑
j 6=i |(QD(ρ)�QD(ρ))ij| = (n−1)(T−1)[(n−2)(T−2)−2]

n2T 2 > c > 0,∀i, T > 2. As

QD(ρ)�QD(ρ) is symmetric, we conclude it is strictly diagonally dominant in

both rows and columns. Hence, Theorem 1 and Corollary 1 of Varah (1975)

imply that ‖ΠN(ρ)‖1 and ‖ΠN(ρ)‖∞ are both bounded.

Derivation of the Hessian matrix for robust AQS functions:

With the set of robust AQS functions S�N(ξ) given in (1.21), we obtain the

components of the Hessian matrix H�N(ξ) = ∂
∂ξ′
S�N(ξ):

H�ββ(ξ) = −X′(ρ)X(ρ), H�βλ(ξ) = −X′(ρ)Y(ρ),

H�βρ(ξ) = −X′(ρ)G◦N(ρ)Ṽ(β, δ), H�λβ(ξ) = −Y′C′N(δ)L′λ(δ)X(ρ),

H�λλ(ξ) = −Y′(ρ)Y(ρ) + Y′W′B′N(ρ)F̄′N(δ)Ṽ(β, δ)

−Y′C′N(δ)[F̄′Nλ(δ)Ṽ(β, δ)− F̄′N(δ)Y(ρ)],

H�λρ(ξ) = −Y′(ρ)G◦N(ρ)Ṽ(β, δ)−Y′C′N(δ)[−G′N(δ)F̄′N(δ)

+F̄′Nρ(δ) + F̄′N(δ)GN(ρ)]Ṽ(β, δ),

H�ρβ(ξ) = −[AN(λ)Y −Xβ]′B′N(ρ)L′ρ(ρ)X(ρ)− Ṽ′(β, δ)Lρ(ρ)BN(ρ)X,

H�ρλ(ξ) = −Y′(ρ)G◦N(ρ)Ṽ(β, δ) + Y′W′B′N(ρ)ḠN(ρ)Ṽ(β, δ)

+[AN(λ)Y −Xβ]′B′N(ρ)ḠN(ρ)Y(ρ),

H�ρρ(ξ) = Ṽ′(β, δ)R1N(ρ)Ṽ(β, δ)− [AN(λ)Y −Xβ]′B′N(ρ)[−G′N(δ)ḠN(ρ)

+ḠNρ(ρ) + ḠN(ρ)GN(ρ)]Ṽ(β, δ),

(C.1)

where F̄′Nλ(δ) = diag[B−1′
N (ρ)F′2N(λ)B′N(ρ)QD(ρ)]diag[QD(ρ)]−1,

F̄′Nρ(δ) = diag[K1N(δ)]diag[QD(ρ)]−1 − F̄′N(δ)diag[Q̇D(ρ)]diag[QD(ρ)]−1,

K1N(δ) = F̄′N(δ)G′N(ρ)QD(ρ)− F̄′N(δ)QD(ρ)G′N(ρ) + F̄′N(δ)QD(ρ)G◦N(ρ)PD(ρ),

ḠNρ(ρ) = diag[K2N(ρ)]diag[QD(ρ)]−1 − ḠN(ρ)diag[Q̇D(ρ)]diag[QD(ρ)]−1,

K2N(ρ) = [QD(ρ)GN(ρ)PD(ρ)+PD(ρ)G′N(ρ)QD(ρ)]G◦N(ρ)QD(ρ)+QD(ρ)G2
N(ρ)QD(ρ).
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Proof of Theorem 1.3. Since the consistency of β̂�N follows almost im-

mediately that of δ̂�N under Assumptions C and E, we only need to prove that

δ̂�N is consistent to δ0. By theorem 5.9 of van der Vaart (1998), δ̂�N will be

consistent for δ0 if supδ∈∆
1
N1

∥∥S�cN (δ)− S̄�cN (δ)
∥∥ p−→ 0.

Let Lλ(δ) = QD(ρ)[F̄N(δ) − F̄N(δ)], Lρ(ρ) = QD(ρ)[Ḡ′N(ρ) − Ḡ′N(ρ)] and

NN(ρ) = IN −MN(ρ). Note that BN(ρ)[AN(λ)Y−Xβ̂�N(δ)] = MN(ρ)CN(δ)Y

and BN(ρ)[AN(λ)Y −Xβ̄�N(δ)] = MN(ρ)CN(δ)Y + NN(ρ)CN(δ)[Y − E(Y)].

Recall V̂(δ) = QN(δ)Y and V̄(δ) = QN(δ)Y + PN(δ)[Y − E(Y)]. With

Assumption G′, the consistency of δ̂�N follows if:

(i) supδ∈∆
1
N1

∣∣Y′Qh
r (δ)Y − E[Y′Qh

r (δ)Y]
∣∣ = op(1), for r = 1, 2;

(ii) supδ∈∆
σ2
v0

N1
tr[C′−1

N Ph
s (δ)C

−1
N ] = o(1), for s = 1, 2, 3;

where Qh
1(δ) = C′N (δ)L′λ(δ)QN (δ), Qh

2(δ) = C′N (δ)M′N (ρ)L′ρ(ρ)QN (δ), Ph
1(δ) =

C′N (δ)L′λ(δ)PN (δ), Ph
2(δ) = C′N (δ)L′ρ(ρ)PN (δ) and Ph

3(δ) = C′N (δ)N′N (ρ)L′ρ(ρ)QN (δ).

Note that Qh
1(δ) = C′N(δ)[F̄′N(δ) − F̄′N(δ)]QN(δ) = W′B′N(ρ)QN(δ) −

C′N(δ)F̄′N(δ)QN(δ). As F̄′N(δ) is a diagonal matrix which is naturally bounded

in both row and column sums, uniformly in δ ∈ ∆, we conclude Qh
1(δ) is

bounded in both row and column sum norms, uniformly in δ ∈ ∆, by Lemma

A.1. Similarly, Qh
2(δ) = C′N(δ)M′N(ρ)[ḠN(ρ)− ḠN(ρ)]QN(δ) = Q̄(δ)−C′N(δ)

M′N(ρ)ḠN(ρ)QN(δ) is also bounded in both row and column sum norms, uni-

formly in δ ∈ ∆. Hence, Qh
1(δ) and Qh

2(δ) have forms similar to Q(δ). The

proof of (i) thus follows that of Theorem 1.1 (b). For (ii), noting that PN(δ) =

PX(ρ)QD(ρ)CN(δ), we have supδ∈∆
σ2
v0

N1
tr[C′−1

N Ph
s (δ)C

−1
N ] = o(1), s = 1, 2, by

Lemma A.4. For the final result, we have,

1
N1
tr[C′−1

N Ph
3(δ)C−1

N ] = − 1
N1
tr[C′N(δ)N′N(ρ)L′ρ(ρ)QN(δ)Var(Y)]

= − 1
N1
tr
[
( 1
N1

X′(ρ)X(ρ))−1( 1
N1

X′B′N(ρ)L′ρ(ρ)QX(ρ)QD(ρ)ChN(δ)X(ρ))
]
.

Assumption C implies that the elements of [ 1
N1

X′(ρ)X(ρ)]−1 are uniformly

bounded for large enough N , uniformly in ρ ∈ ∆ρ. Lemma A.1 and Lemma

A.3 together imply the term between X′ and X(ρ) are uniformly bounded in

both row and column sums, uniformly in δ ∈ ∆. Hence, the elements of the

second part in the trace are also uniformly bounded. As the number of regres-
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sors k is finite, the quantity
σ2
v0

N1
tr[C′−1

N Ph
3(δ)C−1

N ] will shrink to zero as N goes

large, uniformly in δ ∈ ∆. These complete the proof of the theorem. �

Proof of Theorem 1.4. Applying the MVT on each row of S�N(ξ̂�N), we

have,

0 = 1√
N1
S�N(ξ̂�N) = 1√

N1
S�N(ξ0) +

[
1
N1

∂
∂ξ′
S�N(ξ)

∣∣∣
ξ=ξ̄r in rth row

]√
N1(ξ̂�N − ξ0),

where {ξ̄r} are on the line segment between ξ̂�N and ξ0. The result of the

theorem follows if

(a) 1√
N1
S�N(ξ0)

D−→ N [0, limN→∞Γ�N(ξ0)],

(b) 1
N1

[
∂
∂ξ′
S�N(ξ)

∣∣
ξ=ξ̄r in rth row

− ∂
∂ξ′
S�N(ξ0)

]
= op(1), and

(c) 1
N1

[
∂
∂ξ′
S�N(ξ0)− E( ∂

∂ξ′
S�N(ξ0))

]
= op(1).

Proof of (a). From (1.24), we see that the elements of S�N(ξ0) are linear-

quadratic forms in V. Thus, for every non-zero (k+ 2)× 1 vector of constants

a, a′S�N(ξ0) has form:

a′S�N(ξ0) = b′NV + V′ΦNV − σ2
vtr(ΦN),

for suitably defined non-stochastic vector bN and matrix ΦN . Again, by As-

sumptions A-F it is easy to verify that bN and matrix ΦN satisfy the con-

ditions of the CLT for LQ form of Kelejian and Prucha (2001), and hence

the asymptotic normality of 1√
N1
a′S�N(ξ0) follows. By Cramér-Wold device,

1√
N1
S�N(ξ0)

D−→ N [0, limN→∞ Γ�N(θ0)], where Γ�N(θ0) is given in (1.25).

Proof of (b). The Hessian matrix H�N(ξ) = ∂
∂ξ′
S�N(ξ) is given in (C.1). As

F̄′Nλ(δ0), F̄′Nρ(δ0) and ḠNρ(ρ0) are diagonal matrices with uniformly bounded

elements, it is easy to see that 1
N1
H�N(ξ0) = Op(1) by Lemma A.6, and hence,

1
N1
H�N(ξ̄) = Op(1). Here again for ease of exposition we simply use H�N(ξ̄)

to denote ∂
∂ξ′
S�N(ξ)

∣∣
ξ=ξ̄r in rth row

. As H�N(ξ̄) is linear or quadratic in β̄ and

nonlinear in δ̄, we have by applying the MVT on the δ̄-components:

1
N1
H�N(ξ̄)− 1

N1
H�N(ξ0) = 1

N1

∂
∂δ′
H�N(β̄, δ̇)(δ̄ − δ0) + 1

N1
[H�N(β̄, δ0)−H�N(θ0)].

Similar to the proof of Theorem 2.2 (b), we show that 1
N1

∂
∂δ′
H�N(β̄, δ̇) = Op(1).

The second term is seen to contain elements either linear or quadratic in β̄−β0
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with the matrices in the linear or quadratic terms being Op(1). Hence, the

desired result follows as ξ̄ − ξ0 = op(1).

Proof of (c). Since Y = A−1
N (η + B−1

N V), all components of H�N(ξ0) are

linear or quadratic in V. Thus, under the assumptions of the theorem the

result (c) is proved using Lemma A.6. We provide details of the proof using

the most complicate term, H�ρρ(ξ0). Let ΞN = −G′NḠN + ḠNρ + ḠNGN . By

Lemma A.1, it is easy to see that ΞN is uniformly bounded in both row and

column sums in absolute value. Hence, we have

1
N1

[H�ρ0ρ0(ξ0)− E(H�ρ0ρ0(ξ0))]

= 1
N1

[V′QDR1NQDV − E(V′QDR1NQDV)]− 1
N1

(ANY −Xβ0)′B′NΞNQDV

+ 1
N1

E[(ANY −Xβ0)′B′NΞNQDV]

= 1
N1

[V′QDR1NQDV − E(V′QDR1NQDV)]− 1
N1

[φ′0D′ΞNQDV − E(φ′0D′ΞNQDV)]

− 1
N1

[V′ΞNQDV − E(V′ΞNQDV)] = op(1).

The proofs for the other terms are done in a similar manner, and the details

are omitted. �

Proof of Corollary 1.3: Just like the homoskedasiticiy case, plugging

φ̂�N in Γ�N(ξ) induces a bias for terms quadratic in φ, and a bias correction is

necessary. From (1.25), we see that the terms of Γ�N(ξ) that are quadratic in φ

are the (λ, ρ) terms and are of the form: φ′D′(ρ)L′a(δ)HLb(δ)D(ρ)φ, a, b = λ, ρ,

recalling η = Xβ0 + Dφ0 and D(ρ)BN(ρ)D.

By applying the MVT on ρ̂�N -variable in the key quantity Dφ̂�N , we have

after some algebra,

Dφ̂�N = Dφ0 + B−1
N PDV −B−1

N PDBN [WY(λ̂�N − λ0) + X(β̂�N − β0)]

− RN(ρ̇)[AN(λ̂�N)Y −Xβ̂�N ](ρ̂�N − ρ0),

where ρ̇ lies between ρ̂�N and ρ0. Plugging Dφ̂�N and other parameter estimates
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in these quadratic terms, we have,

1
N1
φ̂�′ND′(ρ̂�N)L′a(δ̂�N)HLb(δ̂�N)D(ρ̂�N)φ̂�N

= 1
N1
φ′0D′(ρ̂�N)L′a(δ̂�N)HLb(δ̂�N)D(ρ̂�N)φ0

+ 1
N1

V′PDB−1′
N B′N(ρ̂�N)L′a(δ̂�N)HLb(δ̂�N)BN(ρ̂�N)B−1

N PDV + op(1)

= 1
N1
φ′0D′L′aHLbDφ0 + 1

N1
tr
[
HPDL′aHLbPD

]
+ op(1),

Define

Bias�ab(δ,H) = 1
N1
tr
[
HPD(ρ)L′a(δ)HLb(δ)PD(ρ)

]
,

for a, b = λ, ρ. Hence, the bias matrix for Γ�N(ξ̂�N) can be written as

Bias�φ(δ0,H) =


0 0 0

0 Bias�λλ(δ0,H) Bias�λρ(δ0,H)

0 Bias�ρλ(δ0,H) Bias�ρρ(δ0,H)

 ,
leading to the result of Corollary 1.3. �

Proof of Lemma 1.1: Using Ṽ(ξ) = QD(ρ)BN(ρ)[AN(λ)Y−Xβ] defined

in (1.5), let Ṽ = Ṽ(ξ0) and V̂ = Ṽ(ξ̂�N) and denote their elements by {ṽj} and

{v̂j}, respectively. Following (B.11), we have v̂j ≡ ṽj(ξ̂
�
N) = ṽj +ψ′j(ξ̂

�
N − ξ0) +

op(‖ξ̂�N − ξ0‖), and in vector form,

V̂ = Ṽ + ΨN(ξ̂�N − ξ0) + op(‖ξ̂�N − ξ0‖),

where ΨN = (ψ1, ψ2, . . . , ψN)′, with ψj being defined below (B.11).

Define Π̇N(ρ) = ∂
∂ρ

ΠN(ρ) = −2ΠN(ρ)[Q̇D(ρ) � QD(ρ)]ΠN(ρ). It is easy to

see that ‖Π̇N(ρ)‖1 and ‖Π̇N(ρ)‖∞ are bounded in a neighborhood of ρ0. Let

Πjh and Π̇jh be the respective elements of ΠN and Π̇N . Hence, we have by

the MVT, for each j, h = 1, 2, . . . , N , Πjh(ρ̂
�
N) = Πjh + Π̇jh(ρ̄)(ρ̂�N − ρ0) =

Πjh+ Π̇jh(ρ̂
�
N −ρ0) +op(‖ρ̂�N −ρ0‖), where ρ̄ lies between ρ̂�N and ρ0. In matrix

form, we have

ΠN(ρ̂�N) = ΠN + Π̇N(ρ̂�N − ρ0) + op(‖ρ̂�N − ρ0‖).

Define ĥ = (σ̂2
1, σ̂

2
2, . . . , σ̂

2
N)′ = ΠN(ρ̂�N)(V̂ � V̂) and h̃ = ΠN(Ṽ � Ṽ). As the

elements of Ṽ are Op(1), rows of ΨN are Op(1), elements of ΠN and Π̇N are
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O(1), and ξ̂∗N − ξ0 = Op(
1√
N1

), we have,

ĥ = h̃+ 2ΠN(Ṽ �ΨN(ξ̂�N − ξ0)) + Π̇N(Ṽ � Ṽ)(ρ̂�N − ρ0) + op(‖ξ̂�N − ξ0‖).

(C.2)

Proof of (i). Let cN = (c11, · · · , cNN)′ and h = (σ2
1, σ

2
2, . . . , σ

2
N)′. We

have,

1
N

[tr(ĤCN)− tr(HCN)] = 1
N
c′N(ĥ− h) = 1

N
c′N(ĥ− h̃) + 1

N
c′N(h̃− h).

The result follows if both terms above are op(1). For the first term, we have,

using (C.2),

1
N
c̄′N(ĥ− h̃)

= 2
N
c̄′NΠN(Ṽ �ΨN(ξ̂�N − ξ0)) + 1

N
c̄′N Π̇N(Ṽ � Ṽ)(ρ̂�N − ρ0) + op(‖ξ̂�N − ξ0‖)

= 2
N

∑N
j=1 cjj(

∑N
h=1 Πjhṽhψ

′
h)(ξ̂

�
N − ξ0) + 1

N

∑N
j=1 cjj(

∑N
h=1 Π̇jh

∑N
k=1 q

2
hkσ

2
k)(ρ̂

�
N − ρ0)

+ op(‖ξ̂�N − ξ0‖) = op(1).

For the second term, we have after some algebra,

h̃ = ΠN [(QD �QD)(V �V) + ζ] = V �V + ΠNε, (C.3)

where ε is an N × 1 vector with j-th element εj =
∑N

k=1 vkζjk, where ζjk =

2qjk
∑k−1

l=1 qjlvl, k ≥ 2, and ζj1 = 0. As ζjk is (v1, . . . vk−1)-measurable, {vkζjk}

form an M.D. sequence. Thus, each εj is a sum of M.D.s. Hence, we have

1
N
c̄′N(h̃− h) = 1

N
c̄′N(V �V − h) + 1

N
c̄′NΠNζ = op(1),

where 1
N
c̄′N(V �V − h) = op(1) by Lemma A.6(v) and 1

N
c̄′NΠNζ = op(1) by

WLLN of Davidson (1994, Theorem 19.7) for M.D. arrays.

Proof of (ii). Note that tr(HANHBN) = h′(AN �BN)h. We have,

1
N
tr(ĤANĤBN)− 1

N
tr(HANHBN) = 1

N
ĥ′(AN �BN)ĥ− 1

N
h′(AN �BN)h

= 1
N

(ĥ′(AN �BN)ĥ− h̃′(AN �BN)h̃) + 1
N

(h̃′(AN �BN)h̃− h′(AN �BN)h).

(C.4)

The first term of (C.4) can be written as

1
N

(ĥ′(AN �BN)ĥ− h̃′(AN �BN)h̃) = T1 + T2 + T3,

where T1 = 1
N

(ĥ − h̃)′(AN � BN)(ĥ − h̃), T2 = 1
N

(ĥ − h̃)′(AN � BN)h̃, and

122



T3 = 1
N

(ĥ− h̃)′(AN �BN)′h̃. Note that AN and BN are uniformly bounded in

both row and column sum norms, AN �BN is also uniformly bounded in both

row and column sum norms. Hence, using (C.2), Ṽ = Op(1), ΨN = Op(1) and

ξ̂∗N − ξ0 = Op(
1√
N1

), we can easily show that Tr = op(1), for r = 1, 2, 3, as we

show 1
N
c̄′N(ĥ − h̃) = op(1) in the proof of (i). Thus, the first term in (C.4) is

op(1).

For the second term in (C.4), we have similarly to the first term,

1
N

(h̃′(AN �BN)h̃− h′(AN �BN)h) = T4 + T5 + T6,

where T4 = 1
N

(h̃ − h)′(AN � BN)(h̃ − h), T5 = 1
N

(h̃ − h)′(AN � BN)h and

T6 = 1
N

(h̃− h)′(AN �BN)′h. For the T5 term, we have by (C.3),

T5 = 1
N

(V �V − h)′(AN �BN)h+ 1
N
ε′ΠN(AN �BN)h = op(1),

by Lemma A.6(v) and WLLN for M.D. arrays of Davidson (1994, Theorem

19.7). The T6 term is similar to T5 and the result follows, i.e., T6 = op(1).

Thus, it is left to study the limit of T4. Again, by (C.3) we have,

T4 = 1
N

(V �V − h)′(AN �BN)ΠNε+ 1
N

(V �V − h)′(AN �BN)′ΠNε

+ 1
N

(V �V − h)′(AN �BN)(V �V − h) + 1
N
ε′ΠN(AN �BN)ΠNε

≡ T4a + T4b + T4c + T4d. (C.5)

Consider first the term T4a. Denote Ω = (AN � BN)ΠN with elements {ωjk}.

We have,

T4a = 1
N

∑N
j=1

∑N
k=1 ωjkεj(v

2
k − σ2

k)

= 1
N

∑N
j=1

∑N
k=1

∑N
l=1

∑N
m 6=l
m=1

ωjkqjlqjm(v2
k − σ2

k)vlvm

= 1
N

∑N
k=1((v2

k − σ2
k)
∑N

j=1

∑k−1
l=1

∑k−1
m 6=l
m=1

ωjkqjlqjmvlvm)

+ 2
N

∑N
l=1(vl

∑N
j=1

∑l−1
k=1

∑l−1
m 6=k
m=1

ωjkqjlqjmvm(v2
k − σ2

k))

+ 2
N

∑N
k=1((v3

k − Ev3
k)
∑N

j=1

∑k−1
m=1 ωjkqjkqjmvm)

+ 2
N

∑N
m=1(vm

∑N
j=1

∑m−1
k=1 ωjkqjkqjm(v3

k − Ev3
k))

+ 2
N

∑N
m=1(vm

∑N
j=1

∑N
k 6=m
k=1

ωjkqjkqjm(Ev3
k − σ2

k)),

which is seen to be the average of M.D. sequence and thus is op(1) by Theorem

19.7 of Davidson (1994). Similarly, we show that T4b = 1
N

(V �V − h)′(AN �
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BN)′ΠNε = op(1).

For the term T4c, as E(V � V) = h, we have E(T4c) = 1
N
tr((AN �

BN)Var(V � V)) = 0. Thus, Lemma A.6(iv) implies that T4c = 1
N

(V �

V − h)′(AN �BN)(V �V − h)
p−→ 0.

Now, for the last term of (C.5), T4d = 1
N
ε′ΠN(AN � BN)ΠNε, we have by

taking the advantage that each element of ε is a sum of an M.D. sequence,

E(εε′) = 2(QDHQD)� (QDHQD)− 2(QD �QD)HH(QD �QD). (C.6)

This gives,

E(ε′ΠN(AN �BN)ΠNε) (C.7)

= 2tr((AN �BN)ΠNΛ(H)ΠN)− 2tr((AN �BN)H2),

= 2tr((AN �BN)ΠNΛ(H)ΠN),

where Λ(H) = (QDHQD) � (QDHQD), and the last equation takes use of the

fact that the diagonal elements of AN and BN are zero.

Finally, to show that T4d −E(T4d) = op(1), denote χN = ΠN(AN �BN)ΠN

with elements {χjk}. It is easy to show that {χjk} are uniformly bounded, and

let |χlm| ≤ χ̄ <∞. We have,

Var(ε′ΠN(AN �BN)ΠNε)

= 8
∑N

j=1

∑N
k=1

∑N
l=1

∑N
m=1

∑N
h=1

∑N
p6=h
p=1

∑N
s=1

∑N
r 6=s
r=1

χjkχlmqjhqjpqlhqlpqksqkrqmsqmrE(v2
hv

2
pv

2
sv

2
r)

≤ 8q̄2χ̄c
∑N

m=1(
∑N

j=1 |χjk|)(
∑N

k=1 |qkr|)(
∑N

l=1 |qlp|)(
∑N

h=1 |qlh|)

(
∑N

p=1 |qjp|)(
∑N

s=1 |qms|)(
∑N

r=1 |qmr|) = O(N),

where the inequality holds because E(v2
hv

2
pv

2
sv

2
r) equals either E(v2

hv
2
s)E(v2

pv
2
r)

or E(v2
hv

2
r)E(v2

pv
2
s) since h 6= p and s 6= r, and either of them is less than a

constant c <∞, e.g., E(v2
hv

2
r) ≤ E

1
2 (v4

h)E
1
2 (v4

r) ≤ c. Therefore, by Chebyshev’s

inequality,

P ( 1
N
|ε′ΠN(AN �BN)ΠNε− E(ε′ΠN(AN �BN)ΠNε)| ≥M)

≤ 1
M2

1
N2 Var(ε′ΠN(AN �BN)ΠNε) = o(1).

It follows that 1
N
ε′ΠN(AN�BN)ΠNε− 1

N
E(ε′ΠN(AN�BN)ΠNε)

p−→ 0. There-
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fore, we have shown that T4 = 2
N
tr((AN �BN)ΠNΛ(H)ΠN) +op(1). It follows

that

1
N
tr(ĤANĤB◦N)− 1

N
tr(HANHB◦N) =

∑6
r=1 Tr

= 2
N
tr((AN �BN)ΠNΛ(H)ΠN) + op(1),

completing the proof of Lemma 1.1. �

Proof of Corollary 1.4: The consistency of Σ̂�N to Σ�N(ξ0) is implied by

results (b) and (c) in the proof of Theorem 1.4. To show Γ̂�N − Γ�N(ξ0)
p−→ 0,

we argue as follows:

(a) The transition from Γ�N(ξ0, φ0,H) to Γ�N(ξ̂�N , φ0,H) does not incur cost

asymptotically;

(b) The cost of transition from Γ�N(ξ̂�N , φ0,H) to Γ�N(ξ̂�N , φ̂
�
N ,H) is captured

by Bias�φ(δ̂�N ,H);

(c) The effect of replacing H in 1
N1
tr(HLaHL◦b), a, b = λ, ρ, is captured by

2
N1
tr((La � L◦b)ΠNΛ(H)ΠN), a, b = λ, ρ;

(d) It is left to show that the cost of transition from Bias�φ(δ̂�N ,H) to

Bias�φ(δ̂�N , Ĥ) is captured by − 2
N1
tr((PDL′a � LbPD)ΠNΛ(H)ΠN), a, b = λ, ρ.

The non-zero entries in Bias�φ(δ0,H) are of the form 1
N1
tr(HPDL′aHLbPD),

for a, b = λ, ρ, as given in Corollary 1.3. Applying result (C.7) with AN = PDL′a
and BN = LbPD, we have,

1
N1
tr
[
PD(ρ̂�N)L′a(δ̂�N)ĤLb(δ̂�N)PD(ρ̂�N)Ĥ− PDL′aHLbPDH

]
= 1
N1
tr
[
PDL′aĤLbPDĤ− PDL′aHLbPDH

]
+ op(1) (by the MVT)

= 2
N1
tr((PDL′a � LbPD)ΠNΛ(H)ΠN) + 1

N
tr((PDL′a � LbPD)H2) + op(1),

= 2
N1
tr((PDL′a � LbPD)ΠNΛ(H)ΠN) + op(1),

for a, b = λ, ρ. Although the diagonal elements of PDL′a�LbPD may not be zero

uniformly, their magnitudes are typically small so that the second term of the

second last equation is negligible. The detail is tedious and thus is omitted.

Under balanced panel data model considered in the first part of Appendix B,

we can easily show diag(LaPD) = O( 1
n
) for a = λ, ρ. Then, it follows that

Σ̂�−1
N Γ̂�N Σ̂�−1

N − Σ�−1
N (ξ0)Γ�N(ξ0)Σ�−1

N (ξ0)
p−→ 0. �

125



Appendices for Chapter 2

All the technical proofs for the main results in Chapter 2 are collected here.

There are in total three appendices. Appendix A provides some basic lemmas

that are used throughout the other appendices. Appendix B presents proofs

for the main theorems in this chapter. These proofs rely on some technical

lemmas whose proofs are put in Appendix C.

Appendix A: Some basic lemmas

The following lemmas are essential to the proofs of the main results in this

chapter.

Lemma A.1. (Lee, 2002): Let {An} and {Bn} be two sequences of n× n

matrices that are uniformly bounded in both row and column sums. Let Cn be a

sequence of conformable matrices whose elements are uniformly O(h−1
n ). Then

(i) the sequence {AnBn} are uniformly bounded in both row and column

sums,

(ii) the elements of An are uniformly bounded and tr(An) = O(n), and

(iii) the elements of AnCn and CnAn are uniformly O(h−1
n ).

Lemma A.2. (Lemma B.4, Yang, 2015): Let {An} be a sequence of n×n

matrices that are uniformly bounded in both row and column sums. Suppose

that the elements an,ij of An are bounded uniformly in all i and j, and an,ii 6= 0

for some i. Let vn be a random n-vector of iid elements with mean zero,

variance σ2 and finite 4th moment, and bn a random n-vector independent of

vn such that {E(b2
ni)} are bounded. Then

(i) E(v′nAnvn) = O(n), (ii) Var(v′nAnvn) = O(n),

(iii) Var(v′nAnvn + b′nvn) = O(n), (iv) v′nAnvn = Op(n),

(v) v′nAnvn − E(v′nAnvn) = Op(n
1
2 ), (vi) v′nAnbn = Op(n

1
2 ).

Lemma A.3. (Lemma A.5, Yang, 2018): Let {Φn} be a sequence of n×n

matrices with row and column sums uniformly bounded, and elements of uni-

form order O(h−1
n ). Let vn = (v1, . . . , vn)′ be a random vector of inid ele-

ments with mean zero, variance σ2, and finite (4 + 2ε0)th moment for some
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ε0 > 0. Let bn = {bni} be an n × 1 random vector, independent of vn, such

that (i) {E(b2
ni)} are of uniform order O(h−1

n ), (ii) supiE|bni|2+ε0 < ∞, (iii)

hn
n

∑n
i=1[φn,ii(bni − Ebni)] = op(1) where {φn,ii} are the diagonal elements of

Φn, and (iv) hn
n

∑n
i=1[b2

ni−E(b2
ni)] = op(1). Define the bilinear-quadratic form:

Qn = b′nvn + v′nΦnvn − σ2tr(Φn),

and let σ2
Qn

be the variance of Qn. If limn→∞ h
1+2/ε0
n /n = 0 and {hn

n
σ2
Qn
} are

bounded away from zero, then Qn/σQn
D−→ N(0, 1).

Lemma A.4. (Lemma 1, Hansen, 1996): If {wi} are iid, E[Ψ(wi)] <∞,

and wi has a continuous distribution, then

sup
γ∈Γ

∥∥∥ 1

n

n∑
i=1

Ψ(wi)1{wi 6 γ} − E[Ψ(wi)1{wi 6 γ}]
∥∥∥ −→ 0 a.s.

Appendix B: Proofs of the theorems

This appendix presents proofs of the main theorems in this chapter. For

ease of exposition, notations (existing and new) frequently used in the proofs

are listed here:

• A[k] denotes the submatrix of A, consisting of the first k rows and

columns,

h[k] denotes the subvector of h, consisting of the first k elements;

• dit(γ) = 1(qit 6 γ), dt(γ) = diag{d1t(γ), . . . , dnt(γ)}, dt(γ1, γ2) = dt(γ1)−

dt(γ2);

• β = (β′1, β
′
2)′, λ = (λ1, λ2)′, φ = (β′, λ′)′, δ0 = (b′0, l0)′, φ2 = (β′2, λ2)′,

ω = (λ′, γ)′;

• At(ω) = In − λ1Wt − λ2dt(γ)Wt, Gt(ω) = WtA
−1
t (ω);

• Zt = Gt(Xtβ0 + µ0 + αt0ln), Ht = [Xt, Zt], Yt = WtYt, Vt = GtVt,

Rt = diagv(Gt);

• Π◦t (γ) = dt(γ)Πt, and Π?
t (γ1, γ2) = dt(γ1, γ2)Πt, for Πt = Xt, Zt, Ht, Vt,

Yt or Rt;

• At(γ) = [At, A
◦
t (γ)], for At = Xt, Zt, Ht,Vt or Rt.

The proof of main theorems can be greatly facilitated by Lemmas B.1−B.4
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given below. Proofs of these lemmas are lengthy, not in the central focus, and

thus are put in Appendix C.

Lemma B.1. Under the assumptions of Theorem 2.1, we have,

J1,nT (γ) = 1√
nT

∑T
t=1 H̃

◦′
t (γ)JnṼt ⇒ J1(γ),

J2,nT (γ) = 1√
nT

∑T
t=1[Ṽ ′t JnṼ◦t (γ)− T̄ σ2

0tr(Jndt(γ)Gt)] ⇒ J2(γ),

where “⇒ ” denotes weak convergence with respect to the uniform metric, and

both J1(γ) and J2(γ) are mean-zero Gaussian processes with almost surely

continuous sample paths.

Lemma B.2. Under the assumptions of Theorem 2.2, we have

FnT (v) = anT
nT

∑T
t=1 δ

′
0H̃

?′
t (γ0, γ0 + v/anT )JnH̃

?
t (γ0, γ0 + v/anT )δ0 ⇒ T̄ δ′0Mδ0f |v|,

KnT (v) = anT
nT
l20
∑T

t=1 Ṽ?′t (γ0, γ0 + v/anT )JnṼ?t (γ0, γ0 + v/anT ) ⇒ l20σ
2
0T̄ π1f |v|,

LnT (v) = anT
nT
l20
∑T

t=1 tr[(dt(γ0, γ0 + v/anT )Gt)
2] ⇒ l20π2f |v|,

where v is on a compact set Υ = [−v̄, v̄].

Lemma B.3. Under the assumptions of Theorem 2.2, we have

RnT (v) =
√
anT
[
δ′0J ?

1,nT (γ0 + v/anT , γ0) + l0J ?
2,nT (γ0 + v/anT , γ0)

]
⇒ B(v)

where v is on a compact set Υ = [−v̄, v̄], J ?
r,nT (γ1, γ2) = Jr,nT (γ1)− Jr,nT (γ2)

for r = 1, 2, B(v) =
√
σ2

0ΞfW (v) and W (v) is a standard Brownian motion.

Lemma B.4. Under the assumptions of Theorem 2.3, there exist constants

B > 0, 0 < k < ∞, and 0 < l < ∞, such that for all η > 0, and ε > 0, there

exists a v̄ <∞ such that for large enough (n, T ), NnT =
{
γ : v̄

anT
6 |γ− γ0| 6

B
}

, and r = 1, 2, 3 and s = 1, 2,

(a) P

(
inf

γ∈NnT

Dr,nT (γ)

|γ−γ0| < (1− η)k

)
6 ε, (b) P

(
sup
γ∈NnT

‖Fs,nT (γ)‖
|γ−γ0| > (1 + η)l

)
6 ε,

(c) P

(
sup
γ∈NnT

|Ks,nT (γ)|
|γ−γ0| > (1 + η)l

)
6 ε, (d) P

(
sup
γ∈NnT

|Lr,nT (γ)|
|γ−γ0| > (1 + η)l

)
6 ε,

(e) P

(
sup
γ∈NnT

‖Pr,nT (γ)‖
|γ−γ0| > η

)
6 ε, (f) P

(
sup
γ∈NnT

‖Js,nT (γ)−Js,nT (γ0)‖√
anT |γ−γ0|

> η

)
6 ε,

where D1,nT (γ) = δ′0F1,nT (γ)δ0, D2,nT (γ) = l20K1,nT (γ), D3,nT (γ) = l20L1,nT (γ),
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F1,nT (γ) = 1
nT

∑T
t=1 H̃

?′
t (γ0, γ)JnH̃

?
t (γ0, γ),F2,nT (γ) = 1

nT

∑T
t=1 H̃′t(γ0)JnH̃

?
t (γ0, γ),

K1,nT (γ) = 1
nT

∑T
t=1 Ṽ?′t (γ0, γ)JnṼ?t (γ0, γ), K2,nT (γ) = 1

nT

∑T
t=1 Ṽ′t(γ0)JnṼ?t (γ0, γ),

L1,nT (γ) = 1
nT

∑T
t=1 tr[(dt(γ0, γ)Gt)

2], L2,nT (γ) = 1
nT

∑T
t=1 tr[dt(γ0, γ)Gt],

L3,nT (γ) = 1
nT

∑T
t=1 tr[lnl

′
ndt(γ0, γ)Gt], P1,nT (γ) = 1

nT

∑T
t=1 H̃

?′
t (γ0, γ)JnṼ?t (γ0, γ),

P2,nT (γ) = 1
nT

∑T
t=1 H̃′t(γ0)JnṼ?t (γ0, γ), P3,nT (γ) = 1

nT

∑T
t=1 Ṽ′t(γ0)JnH̃

?
t (γ0, γ).

Proof of Theorem 2.1: We first prove convergence of β̂nT (λ̂nT , γ) and

σ̂2
nT (λ̂nT , γ), uniformly in γ ∈ Γ. We have, At(ω)A−1

t = In + (λ10 − λ1)Gt +

(λ20−λ2)dt(γ)Gt+λ20dt(γ0, γ)Gt, noting that A−1
t = In+λ10Gt+λ20dt(γ0)Gt.

By Yt = A−1
t (Xtβ0 + µ0 + αt0ln + Vt) and Xtβ0 = Xt(γ)β0 + X?

t (γ0, γ)β20, we

have

Yt(ω) = Xt(γ)β0 +Dt(γ)φ† + ζt(γ)λ† + µ0 + αt0ln + Vt, (B.1)

whereDt(γ) = (Zt(γ), H?
t (γ0, γ)), φ† = ((λ0−λ)′, φ′20)′, ζt(γ) = (Vt(γ),V?t (γ0, γ))

and λ† = ((λ0 − λ)′, λ20)′. Combining it with (2.6) and (2.7), we have

β̂nT (ω) = β0 + P−1
1,nT (γ)D2,nT (γ)φ† + P−1

1,nT (γ)V5,nT (γ)λ† + P−1
1,nT (γ)V4,nT (γ), and

(B.2)

σ̂2
nT (ω) = V1,nT + 2V2,nT (γ)λ† + λ†′V3,nT (γ)λ† + V ′4,nT (γ)P−1

1,nT (γ)V4,nT (γ)

+ 2V ′4,nT (γ)P−1
1,nT (γ)V5,nT (γ)λ† + λ†′V ′5,nT (γ)P−1

1,nT (γ)V5,nT (γ)λ†

+ φ†′[D1,nT (γ)−D′2,nT (γ)P−1
1,nT (γ)D2,nT (γ)]φ†

+ 2φ†′[V6,nT (γ)−D′2,nT (γ)P−1
1,nT (γ)V4,nT (γ)]

+ 2φ†′[V7,nT (γ)−D′2,nT (γ)P−1
1,nT (γ)V5,nT (γ)]λ†, (B.3)

where P1,nT (γ) = 1
n(T−1)

∑T
t=1 X̃′t(γ)JnX̃t(γ), D1,nT (γ) = 1

n(T−1)

∑T
t=1 D̃′t(γ)JnD̃t(γ),

D2,nT (γ) = 1
n(T−1)

∑T
t=1 X̃′t(γ)JnD̃t(γ), V1,nT = 1

n(T−1)

∑T
t=1 Ṽ

′
t JnṼt,

V2,nT (γ) = 1
n(T−1)

∑T
t=1 Ṽ

′
t Jnζ̃t(γ), V3,nT (γ) = 1

n(T−1)

∑T
t=1 ζ̃

′
t(γ)Jnζ̃t(γ),

V4,nT (γ) = 1
n(T−1)

∑T
t=1 X̃′t(γ)JnṼt, V5,nT (γ) = 1

n(T−1)

∑T
t=1 X̃′t(γ)Jnζ̃t(γ),

V6,nT (γ) = 1
n(T−1)

∑T
t=1 D̃′t(γ)JnṼt, V7,nT (γ) = 1

n(T−1)

∑T
t=1 D̃′t(γ)Jnζ̃t(γ).

Under Assumption B(vi), the limit of P1,nT (γ) exists and is nonsingu-

lar. In addition, we have, uniformly in γ ∈ Γ, V4,nT (γ) and V6,nT (γ) are

Op((nT )−1/2) by Lemma B.1; V5,nT (γ) and V7,nT (γ) are op(1) by Lemma A.4;

D1,nT (γ), D2,nT (γ), V2,nT (γ) and V3,nT (γ) are all Op(1) by Lemma A.4, as their

expectations are all O(1). Besides, V1,nT − σ2
0 = op(1) by Lemma A.2 and
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φ20 = O((nT )−τ ) by Assumption F. These together lead to

β̂nT (ω) = β0 + P−1
1,nT (γ)P2,nT (γ)(λ0 − λ) + op(1), and (B.4)

σ̂2
nT (ω) = σ2

0 + 2V21,nT (γ)(λ0 − λ) + (λ0 − λ)′
[
V31,nT (γ) + P3,nT (γ)

− P ′2,nT (γ)P−1
1,nT (γ)P2,nT (γ)

]
(λ0 − λ) + op(1), (B.5)

where V21,nT (γ) = 1
n(T−1)

∑T
t=1 Ṽ

′
t JnṼt(γ), V31,nT (γ) = 1

n(T−1)

∑T
t=1 Ṽ′t(γ)JnṼt(γ),

P2,nT (γ) = 1
n(T−1)

∑T
t=1 X̃′t(γ)JnZ̃t(γ), and P3,nT (γ) = 1

n(T−1)

∑T
t=1 Z̃′t(γ)JnZ̃t(γ).

These imply that

β̂nT (λ̂nT , γ) = β0 + op(1) and σ̂2
nT (λ̂nT , γ) = σ2

0 + op(1), (B.6)

uniformly in γ ∈ Γ, as long as λ̂nT = λ0 + op(1).

Therefore, to show the consistency of θ̂nT , we only need to show the consis-

tency of λ̂nT . By Theorem 2.5 of Newey and McFadden (1994), the consistency

of λ̂nT follows if

(a) sup
ω∈Λ×Γ

1
n(T−1)

|`∗cnT (ω)− ¯̀∗c
nT (ω)| = op(1),

(b) limnT→∞
1

n(T−1)
¯̀∗c
nT (ω) is uniformly equicontinuous in λ for any γ,

(c) λ0 uniquely maximizes limnT→∞
1

n(T−1)
¯̀∗c
nT (ω) over ω ∈ Λ× Γ.

Proof of (a): Note that, from (2.8) and (2.11),

1
n(T−1)

[`∗cnT (ω)− ¯̀∗c
nT (ω)] = − 1

2
[ln σ̂2

nT (ω)− ln σ̄2
nT (ω)]

+ 1
n(T−1)

∑T
t=1[ln |At(ω)| − E(ln |At(ω)|)].

For the second term, Lemma A.4 implies that supγ∈Γ
1

n(T−1)

∑T
t=1[ln |At(ω)| −

E(ln |At(ω)|)] = op(1) for any given λ. Hence, we have supω∈Λ×Γ
1

n(T−1)

∑T
t=1

[ln |At(ω)| − E(ln |At(ω)|)] = op(1). For the first term, we firstly show σ̄2
nT (ω)

is bounded away from zero uniformly in ω ∈ Λ×Γ so that we have ln σ̂2
nT (ω)−

ln σ̄2
nT (ω) = ln[1+σ̄−2

nT (ω)(σ̂2
nT (ω)−σ̄2

nT (ω))], and then prove σ̂2
nT (ω)−σ̄2

nT (ω) =

op(1) uniformly in ω ∈ Λ×Γ. From (B.1), one can also see Yt(ω) = Xt(γ)β0 +

Dt(γ)φ† + µ0 + αt0ln + At(ω)A−1
t Vt. Thus, by (2.10), we have

σ̄2
nT (ω) = n−1

n
σ2
nT (ω) + φ†′[ED1,nT (γ)− ED′2,nT (γ)E(P1,nT (γ))−1ED2,nT (γ)]φ†,

(B.7)

where σ2
nT (ω) is above Assumption G. For the second term, the quantity in
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the square bracket is a Schur complement of 1
n(T−1)

∑T
t=1 E[H̃′t(γ)JnH̃t(γ)],

where Ht(γ) = [Ht(γ), H?
t (γ0, γ)]. Thus, the quantity in the square bracket

must be positive semi-definite, using the properties of the Schur complement.

Therefore, the second term is non-negative. For the first term, we have

n−1
n
σ2
nT (ω) = σ̈2

nT (ω)− σ2
0

n2T

∑T
t=1 l

′
nAt(ω)A−1

t A′−1
t A′t(ω)ln = σ̈2

nT (ω) +Op(
1
n
),

where σ̈2
nT (ω) =

σ2
0

nT

∑T
t=1 tr(A′−1

t A′t(ω)At(ω)A−1
t ). Note that

− 1
2
[ln σ̈2

nT (ω)− ln(T̄ σ2
0)] + 1

n(T−1)

∑T
t=1[ln |At(ω)| − ln |At|]

= − 1
2

[
ln( 1

n(T−1)

∑T
t=1 tr(A′−1

t A′t(ω)At(ω)A−1
t ))

− ln(
∏T

t=1 |A
′−1
t A′t(ω)At(ω)A−1

t |)
1

n(T−1)
]
6 0,

due to the fact that arithmetic mean is no less than geometric means. As

σ2
nT (ω) = σ̈2

nT (ω) +Op(
1
n
), the above inequality implies

−1
2

lnσ2
nT (ω) 6 −1

2
lnσ2

0−1
2

ln T̄+ 1
n(T−1)

∑T
t=1[(ln |At|)−(ln |At(ω)|)]+Op(

1
n
) = Op(1).

(B.8)

Hence, we conclude that σ2
nT (ω) is bounded away from zero on Λ × Γ and so

is σ̄2
nT (ω).

Thus, it is left to show σ̂2
nT (ω)− σ̄2

nT (ω) = op(1), uniformly in ω ∈ Λ× Γ.

Firstly, using At(ω)A−1
t = In+(λ10−λ1)Gt+(λ20−λ2)dt(γ)Gt+λ20dt(γ0, γ)Gt,

we have

σ2
nT (ω) = σ2

0 +
2nσ2

0

n−1
G ′1,nT (γ)λ† +

nσ2
0

n−1
λ†′G1,nT (γ)λ†, (B.9)

where G1,nT (γ) = 1
nT

∑T
t=1[tr(JnGt), tr(Jndt(γ)Gt), tr(Jndt(γ0, γ)Gt)]

′ and

G1,nT (γ) = 1
nT

T∑
t=1


tr(JnGtG

′
t), tr(Jndt(γ)GtG

′
t), tr(Jndt(γ0, γ)GtG

′
t),

∼, tr(Jndt(γ)GtG
′
tdt(γ)), tr(Jndt(γ0, γ)GtG

′
tdt(γ)),

∼, ∼, tr(Jndt(γ0, γ)GtG
′
tdt(γ0, γ)),

 .
By plugging (B.9) into (B.7), we have

σ̄2
nT (ω) = n−1

n
σ2

0 + 2σ2
0EG ′1,nT (γ)λ† + σ2

0λ
†′EG1,nT (γ)λ†

+ φ†′[ED1,nT (γ)− ED′2,nT (γ)E(P1,nT (γ))−1ED2,nT (γ)]φ†, (B.10)

Note that elements of EG1,nT (γ) and EG1,nT (γ) are uniformly bounded on

Γ by Assumption C and D, and λ20 = O((nT )−τ ) by Assumption F. Thus,

131



corresponding to (B.5), we have

σ̄2
nT (ω) = σ2

0 + 2σ2
0EG [2]′

1,nT (γ)(λ0 − λ) + (λ0 − λ)′
[
σ2

0EG[2]
1,nT (γ) + EP3,nT (γ)

− EP ′2,nT (γ)E(P1,nT (γ))−1EP2,nT (γ)
]
(λ0 − λ) + o(1). (B.11)

It is easy to see that EV21,nT (γ) = σ2
0EG [2]′

1,nT (γ) and EV31,nT (γ) = σ2
0EG[2]

1,nT (γ).

Thus, Lemma A.4 implies that V21,nT (γ) − σ2
0EG [2]′

1,nT (γ)
a.s.−→ 0, V31,nT (γ) −

σ2
0EG[2]

1,nT (γ)
a.s.−→ 0 and Pr,nT (γ) − EPr,nT (γ)

a.s.−→ 0 for r = 1, 2, 3, uniformly

in γ ∈ Γ. These convergences are also uniform on Λ because λ appears simply

as linear or quadratic factors in these terms. Therefore, we have σ̂2
nT (ω) −

σ̄2
nT (ω) = op(1), uniformly in ω ∈ Λ× Γ.

Proof of (b): Recall from (2.11) that

1
n(T−1)

¯̀∗c
nT (ω) = −1

2
(ln 2π + 1)− 1

2
ln σ̄2

nT (ω) + 1
n(T−1)

∑T
t=1 E(ln |At(ω)|),

From (B.11), we see that the limit of σ̄2
nT (ω) are uniformly equicontinuous on Λ

given γ, as they are linear or quadratic in λ with the corresponding vector and

matrices, 2σ2
0EG [2]′

1,nT (γ), σ2
0EG[2]

1,nT (γ) and EP3,nT (γ)−EP ′2,nT (γ)E(P1,nT (γ))−1

EP2,nT (γ), being bounded. To see the uniform equicontinuity of 1
n(T−1)

∑T
t=1

E(ln |At(ω)|) on Λ, a Taylor expansion around λ0 gives,

1
n(T−1)

∑T
t=1 E(ln |At(ω)|)

= 1
n(T−1)

∑T
t=1 E[(ln |At(λ0, γ)|) + tr(Gt(λ̇, γ))(λ1 − λ10)

+ tr(dt(γ)Gt(λ̇, γ))(λ2 − λ20)],

where λ̇ lies between λ and λ0. As 1
n(T−1)

∑T
t=1 tr(Gt(λ̇, γ)) and 1

n(T−1)

∑T
t=1

tr(dt(γ)Gt(λ̇, γ)) are uniformly bounded by Assumptions C and D for any λ̇

and γ, 1
n(T−1)

∑T
t=1 E(ln |At(ω)|) is also uniformly equicontinuous on Λ for any

γ.
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Proof of (c): Letting σ̌2
nT (ω) = n−1

n
Eσ2

nT (ω), we have

1
n(T−1)

[¯̀∗cnT (ω)− ¯̀∗c
nT (ω0)]

= − 1
2
[ln σ̄2

nT (ω)− ln σ̌2
nT (ω)]− 1

2
[ln σ̌2

nT (ω)− ln σ̄2
nT (λ0, γ)]

− 1
2
[ln σ̄2

nT (λ0, γ)− ln σ̄2
nT (ω0)]

+ 1
n(T−1)

∑T
t=1 E[ln |At(ω)| − ln |At(λ0, γ)|]

+ 1
n(T−1)

∑T
t=1 E[ln |At(λ0, γ)| − ln |At|]

= − 1
2
[ln σ̄2

nT (ω)− ln σ̌2
nT (ω)]− 1

2
[ln σ̌2

nT (ω)− ln σ̄2
nT (λ0, γ)]

+ 1
n(T−1)

∑T
t=1 E[ln |At(ω)| − ln |At(λ0, γ)|] + o(1),

where the last equation holds because σ̄2
nT (λ0, γ)− σ̄2

nT (ω0) = op(1) by (B.11)

and ln |At(λ0, γ)|− ln |At| = ln |At(λ0, γ)A−1
t | = ln |In+λ20dt(γ0, γ)Gt| = op(1).

Thus, it amounts to showing that the remain three terms are always negative

for λ 6= λ0 for any γ.

For the first term, using (B.7) and φ20 = O((nT )−τ ), we have

− 1
2
[ln σ̄2

nT (ω)− ln σ̌2
nT (ω)]

=− 1
2

ln
[
1 + σ̌−2

nT (ω)φ†′(ED1,nT (γ)− ED′2,nT (γ)E(P1,nT (γ))−1ED2,nT (γ))φ†
]

=− 1
2

ln
{

1 + σ̌−2
nT (ω)(λ0 − λ)′[EP3,nT (γ)

− EP ′2,nT (γ)E(P1,nT (γ))−1EP2,nT (γ)](λ0 − λ)
}

+ o(1).

The quantity in the square bracket is the Schur complement of 1
n(T−1)

∑T
t=1

E[H̃′t(γ)JnH̃t(γ)] so that it is positive semi-definite. Thus, the limit of the

above equation is non-positive.

For the second and third terms, noting that σ̄2
nT (λ0, γ) = σ2

0 + o(1) by

(B.11), we have

− 1
2
[ln σ̌2

nT (ω)− ln σ̄2
nT (λ0, γ)] + 1

n(T−1)

∑T
t=1[E(ln |At(ω)|)− E(ln |At(λ0, γ)|)]

= − 1
2
[lnσ2

nT (ω)− lnσ2
0] + 1

n(T−1)

∑T
t=1[(ln |At(ω)|)− (ln |At(λ0, γ)|)] + op(1),

the limit of which is also non-positive by (B.8). Together, we have

1
n(T−1)

[¯̀∗cnT (ω)− ¯̀∗c
nT (ω0)]

= − 1
2

ln
[
1 + σ−2

nT (ω)(λ0 − λ)′(P3,nT (γ)− P ′2,nT (γ)P−1
1,nT (γ)P2,nT (γ))(λ0 − λ)

]
− 1

2
[lnσ2

nT (ω)− lnσ2
0] + 1

n(T−1)

∑T
t=1[(ln |At(ω)|)− (ln |At(λ0, γ)|)] + op(1).
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As discussed above, we have limnT→∞
1

n(T−1)
[¯̀∗cnT (ω)− ¯̀∗c

nT (ω0)] 6 0. From the

partition matrix formula, limnT→∞
1

n(T−1)

∑T
t=1[H̃′t(γ)JnH̃t(γ)] is non-singular

if and only if limnT→∞P1,nT (γ) and limnT→∞[P3,nT (γ)−P ′2,nT (γ)P−1
1,nT (γ)P2,nT (γ)]

are non-singular. Hence, Assumption G(i) implies limnT→∞[P3,nT (γ)−P ′2,nT (γ)

P−1
1,nT (γ)P2,nT (γ)] is positive definite so that the limit of 1

n(T−1)
[¯̀∗cnT (ω)− ¯̀∗c

nT (ω0)]

is strictly less than zero unless λ = λ0, i.e., λ0 is the unique maximizer of

1
n(T−1)

¯̀∗c
nT (ω). If Assumption G(i) fails, identification requires that the limit

of −1
2
[lnσ2

nT (ω)− lnσ2
0] + 1

n(T−1)

∑T
t=1[(ln |At(ω)|)− (ln |At(λ0, γ)|)] is strictly

less than zero for any γ and λ 6= λ0, which is equivalent to Assumption G(ii)

because σ2
nT (λ0, γ) = σ2

0 + op(1) by (B.9) and λ20 = O((nT )−τ ). �

Proof of Theorem 2.2: In this proof, we show the consistency of γ̂nT in

two steps:

(a) We derive a preliminary convergence rate for θ̂nT , (nT )τ (θ̂nT − θ0) =

Op(1);

(b) Based on the convergence rate, we then establish the consistency of

γ̂nT .

Proof of (a): For S∗θ,nT (θ, γ) given in (2.5), applying the mean value

theorem (MVT) to each element of S∗θ,nT (θ̂nT , γ̂nT ), we have

0 = S∗θ,nT (θ̂nT , γ̂nT ) = S∗θ,nT (θ0, γ̂nT )+
[
∂
∂θ′
S∗θ,nT (θ, γ̂nT )

∣∣
θ=θ̄r in rth row

]
(θ̂nT−θ0),

where {θ̄r} are on the line segment between θ̂nT and θ0. In the following argu-

ments, we use H∗nT (θ̄, γ) to denote − ∂
∂θ′
S∗θ,nT (θ, γ)

∣∣
θ=θ̄r in rth row

for simplicity.

Thus, we have

(nT )τ (θ̂nT − θ0) =
[

1
n(T−1)

H∗nT (θ̄, γ̂nT )
]−1 (nT )τ

n(T−1)
S∗θ,nT (θ0, γ̂nT ). (B.12)

Therefore, the proof of the result in (a) is equivalent to showing for any given

γ,

(i) 1
n(T−1)

[H∗nT (θ̄, γ)−H∗nT (θ0, γ)] = op(1),

(ii) 1
n(T−1)

[H∗nT (θ0, γ)− E(H∗nT (θ0, γ))] = op(1),

(iii) The limit of 1
n(T−1)

E[H∗nT (θ0, γ)] is non-singular,

(iv) (nT )τ

n(T−1)
S∗θ,nT (θ0, γ) = Op(1).

The Hessian matrix H∗nT (θ, γ) has the following components:
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H∗βθ = 1
σ2

∑T
t=1[X̃′t(γ)JnX̃t(γ), X̃′t(γ)JnỸt, X̃′t(γ)JnỸ◦t (γ), X̃′t(γ)JnṼt(φ, γ)],

H∗λ1λ1 = 1
σ2

∑T
t=1 Ỹ ′tJnỸt + T̄

∑T
t=1 tr(G2

t (ω)),

H∗λ1λ2 = 1
σ2

∑T
t=1 Ỹ ′tJnỸ◦t (γ) + T̄

∑T
t=1 tr(dt(γ)G2

t (ω)),

H∗λ1σ2 = 1
σ4

∑T
t=1 Ỹ ′tJnṼt(φ, γ),

H∗λ2λ2 = 1
σ2

∑T
t=1 Ỹ◦′t (γ)JnỸ◦t (γ) + T̄

∑T
t=1 tr[(dt(γ)Gt(ω))2],

H∗λ2σ2 = 1
σ4

∑T
t=1 Ỹ◦′t (γ)JnṼt(φ, γ),

H∗σ2σ2 = 1
2σ6 [2

∑T
t=1 Ṽ

′
t (φ, γ)JnṼt(φ, γ)− n(T − 1)σ2].

To prove (i), we note that Ỹt = Z̃t + Ṽt, Ỹ◦t (γ) = Z̃◦t (γ) + Ṽ◦t (γ) and

JnṼt(φ, γ) = JnỸt(ω)−JnX̃t(γ)β = JnX̃t(γ)(β0−β)+JnD̃t(γ)φ†+Jnζ̃t(γ)λ†+

JnṼt by (B.1). Hence, for any given γ, 1
n(T−1)

H∗nT (θ̄, γ) = Op(1) by Lemma

A.1 and A.2. As θ̂nT − θ0
p−→ 0, we have θ̄ − θ0 = op(1). Noting that σ−p

appears in H∗nT (θ) multiplicatively for p = 2, 4, 6 and σ̄−p = σ−p0 + op(1),

we have 1
n(T−1)

H∗nT (θ̄, γ) = 1
n(T−1)

H∗nT (φ̄, σ2
0, γ) + op(1). Thus, it is equivalent

to showing 1
n(T−1)

[H∗nT (φ̄, σ2
0, γ) −H∗nT (θ0, γ)]

p−→ 0. As the proofs for all the

components in H∗nT (φ̄, σ2
0, γ) are similar, we only show one of them for example,

1
n(T−1)

[H∗λ1σ2(φ̄, σ2
0, γ)−H∗λ1σ2(θ0, γ)] = 1

n(T−1)σ4
0

∑T
t=1 Ỹ ′tJn[Ṽt(φ̄, γ)− Ṽt(φ0, γ)]

=− 1
n(T−1)σ4

0

∑T
t=1(Z̃t + Ṽt)′Jn[X̃t(γ)(β̄ − β0) + (Z̃t(γ) + Ṽt(γ))(λ̄− λ0)] = op(1),

by Lemma A.1 and A.2, and θ̄ − θ0 = op(1).

To prove (ii), we note that Ỹt = Z̃t + Ṽt, Ỹ◦t (γ) = Z̃◦t (γ) + Ṽ◦t (γ)

and JnṼt(φ0, γ) = JnṼt + JnH̃
?
t (γ0, γ)φ20 + λ20JnṼ?t (γ0, γ) by (B.1). Hence,

1
n(T−1)

[H∗nT (θ0, γ) − E(H∗nT (θ0, γ))] = op(1) is directly followed by Lemma A.4

and φ20 = O((nT )−α), similar to the proof of Theorem 2.1.

To prove (iii), using the facts that λ20 = O((nT )−τ ) and the elements of

Gt(λ0, γ)dt(γ, γ0)Gt are uniformly bounded, we have 1
n(T−1)

∑T
t=1 tr[Gt(λ0, γ)−

Gt] = 1
n(T−1)

∑T
t=1 tr[Gt(λ0, γ)(In − At(λ0, γ)A−1

t )] = λ20
n(T−1)

∑T
t=1 tr[Gt(λ0, γ)

dt(γ, γ0)Gt] = Op((nT )−τ ). Meanwhile, for any n× n matrix Πt with bounded

row and column sum norms, 1
n(T−1)

∑T
t=1[tr(JnΠt)−trΠt] = Op(

1
n
) . Thus,
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one shows that 1
n(T−1)

E[H∗nT (θ0, γ)]− ΣnT (θ0, γ) = o(1) for any γ, where

ΣnT (θ0, γ) =


1
σ2
0
EP1,nT (γ), 1

σ2
0
EP2,nT (γ), 02k×1,

∼, 1
σ2
0
EP3,nT (γ) + T̄ESnT (γ), T̄

σ2
0
ESnT (γ),

∼, ∼, 1
2σ4

0
,

 ,
(B.13)

with SnT (γ) = 1
n(T−1)

T∑
t=1

[tr(GtG
s
t), tr[G◦t (γ)Gs

t ]; tr[G◦st (γ)Gt], tr[G◦t (γ)G◦st (γ)]],

SnT (γ) = 1
n(T−1)

∑T
t=1[tr(Gt), tr(G◦t (γ))]′ and G◦t (γ) = dt(γ)Gt.

Therefore, it amounts to prove the limit of ΣnT (θ0, γ) is nonsingular on Γ,

which follows if ΣnT (θ0, γ)p = 0 implies p = 0, where p = (p′1, p
′
2, p3), p1 is a

2k × 1 vector, p2 a 2 × 1 vector, and p3 a scalar. The first row block of the

linear equation system ΣnT (θ0, γ)p = 0 is p1 = −E(P1,nT (γ))−1EP2,nT (γ)p2,

while the last row shows p3 = −2σ2
0ES ′nT (γ)p2. Substituting them into the

remain equation of the linear system gives us

[ 1
σ2
0
(EP3,nT (γ)− EP ′2,nT (γ)E(P1,nT (γ))−1EP2,nT (γ)) + 1

2n(T−1)

∑T
t=1 EC[2]

t (γ)]p2 = 0,

where C[2]
t (γ) is the submatrix of Ct(γ) by deleting its third row and column.

As shown before, the first term in the square bracket is positive semi-definite.

Meanwhile, 1
n(T−1)

∑T
t=1 EC[2]

t (γ) is also positive semi-definite because

1
n(T−1)

∑T
t=1 z

′C[2]
t (γ)z = 1

2n(T−1)

∑T
t=1 tr[(z1Cs

1,t+z2Cs
2,t(γ))′(z1Cs

1,t+z2Cs
2,t(γ))] ≥ 0

for all z = (z1, z2)′ in R2. Under Assumption H, either P3,nT (γ)−P ′2,nT (γ)P−1
1,nT (γ)

P2,nT (γ) or 1
n(T−1)

∑T
t=1 EC[2]

t (γ) is strictly positive definite. Therefore, we

must have p2 = 0 from the above equation, implying both p1 = 0 and p3 = 0

by the first and last equations of the linear system. Hence, the non-singularity

of limnT→∞ΣnT (θ0, γ) follows.

To prove (iv), using Ỹt = Z̃t+Ṽt, Ỹ◦t (γ) = Z̃◦t (γ)+Ṽ◦t (γ) and JnṼt(φ0, γ) =

JnṼt+JnH̃
?
t (γ0, γ)φ20 +λ20JnṼ?t (γ0, γ), we can split S∗θ,nT (θ0, γ) into four com-

ponents,

S∗θ,nT (θ0, γ) = S∗uθ,nT (θ0, γ) +
∑3

r=1Br,nT (θ0, γ), (B.14)

where
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S∗uθ,nT (θ0, γ) =



1
σ2
0

∑T
t=1 X̃′t(γ)JnṼt,

1
σ2
0

∑T
t=1 Z̃

′
tJnṼt + 1

σ2
0

∑T
t=1[Ṽ ′tJnṼt − σ2

0T̄tr(JnGt)],

1
σ2
0

∑T
t=1 Z̃

◦′
t (γ)JnṼt + 1

σ2
0

∑T
t=1[Ṽ◦′t (γ)JnṼt − σ2

0T̄tr(Jndt(γ)Gt)],

1
2σ4

0

∑T
t=1[Ṽ ′t JnṼt − (n− 1)T̄ σ2

0],

B1,nT (θ0, γ) =



1
σ2
0

∑T
t=1 X̃′t(γ)Jn[H̃?

t (γ0, γ)φ20 + λ20Ṽ?t (γ0, γ)],

1
σ2
0

∑T
t=1(Z̃t + Ṽt)′Jn[H̃?

t (γ0, γ)φ20 + λ20Ṽ?t (γ0, γ)],

1
σ2
0

∑T
t=1[Z̃◦t (γ) + Ṽ◦t (γ)]′Jn[H̃?

t (γ0, γ)φ20 + λ20Ṽ?t (γ0, γ)]

1
2σ4

0

∑T
t=1[H̃?

t (γ0, γ)φ20 + λ20Ṽ?t (γ0, γ)]′Jn[2Ṽt + H̃?
t (γ0, γ)φ20

+λ20Ṽ?t (γ0, γ)],

B2,nT (θ0, γ) = −
(
01×2k, T̄

∑T
t=1 tr(Jn(Gt(λ0, γ)−Gt)), T̄

∑T
t=1 tr(Jndt(γ)(Gt(λ0, γ)

−Gt)), 0
)′

, and B3,nT (θ0, γ) = −
(
01×2k, T̄

∑T
t=1

1
n
l′nGt(λ0, γ)ln, T̄

∑T
t=1

1
n
l′ndt(γ)

Gt(λ0, γ)ln,
T−1
2σ2

0

)′
.

Note that (nT )τ

n(T−1)
= (nT )τ−1T

T−1
. Thus, it suffices to show that (nT )τ−1S∗uθ,nT (θ0, γ)

and (nT )τ−1Br,nT (θ0, γ) for r = 1, 2, 3 are all bounded for any γ. By Lemma

A.3 and Lemma B.1, S∗uθ,nT (θ0, γ) = Op(
√
nT ), uniformly in γ ∈ Γ. Since τ ∈

(0, 1
2
), (nT )τ−1S∗uθ,nT (θ0, γ) = (nT )τ−

1
2√

nT
S∗uθ,nT (θ0, γ) = op(1). As for B1,nT (θ0, γ),

note that φ20 = (nT )−τδ0, where δ0 = (b′0, l0)′, by Assumption F. Thus, it is

easy to see that (nT )τ−1B1,nT (θ0, γ) = Op(1) uniformly in γ ∈ Γ. We show

the third component of B1,nT (θ0, γ) for example as the others can be shown

similarly. By Lemma A.4, we have

(nT )τ−1

σ2
0

∑T
t=1[Z̃◦t (γ) + Ṽ◦t (γ)]′Jn[H̃?

t (γ0, γ)φ20 + λ20Ṽ?t (γ0, γ)]

= 1
σ2
0nT

∑T
t=1[Z̃◦t (γ) + Ṽ◦t (γ)]′Jn[H̃?

t (γ0, γ)δ0 + l0Ṽ?t (γ0, γ)]

= 1
σ2
0nT

∑T
t=1 E[Z̃◦′t (γ)JnH̃

?
t (γ0, γ)δ0 + Ṽ◦′t (γ)JnṼ?t (γ0, γ)l0] + op(1) = Op(1).

Similarly, we also have (nT )τ−1B2,nT (θ0, γ) = Op(1) uniformly in γ ∈ Γ. We

show one of the two non-zero elements in B2,nT (θ0, γ) for example, as the the

other can be shown similarly. Noting that Gt(λ0, γ) − Gt = Gt(λ0, γ)(In −
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At(λ0, γ)A−1
t ) = λ20Gt(λ0, γ)dt(γ, γ0)Gt, one has

(nT )τ−1T̄
∑T

t=1 tr(Jndt(γ)(Gt(λ0, γ)−Gt))

= l0T̄
nT

∑T
t=1 tr(Jndt(γ)Gt(λ0, γ)dt(γ, γ0)Gt) = Op(1). (B.15)

Finally, we show (nT )τ−1B3,nT (θ0, γ) = op(1). Because the nonzero ele-

ments inB3,nT (θ0, γ) is eitherO(T ) orOp(T ), the elements of (nT )τ−1B3,nT (θ0, γ)

are either O( T τ

n1−τ ) or Op(
T τ

n1−τ ). As T
n
→ a and τ ∈ (0, 1

2
), T τ

n1−τ = aτ

n1−2τ = o(1).

Thus, the desired result holds.

Proof of (b): Note that

(nT )2τ

n(T−1)
[`∗cnT (ω̂nT )− `∗cnT (ω0)] = − (nT )2τ

2
[ln σ̂2

nT − ln σ̂2
nT (ω0)]

+ (nT )2τ

n(T−1)

∑T
t=1 ln |At(ω̂nT )A−1

t |.

Let λ̂†nT = ((λ0 − λ̂nT )′, λ20)′ and φ̂†nT = ((λ0 − λ̂nT )′, φ′20)′. By (a) and As-

sumption F, φ̂†nT , λ̂
†
nT = O((nT )−τ ). Thus, using (B.3) and σ̂2

nT (ω0) = V1,nT ,

we have

σ̂2
nT − σ̂2

nT (ω0) = 2V2,nT (γ̂nT )λ̂†nT + λ̂†′nTV3,nT (γ̂nT )λ̂†nT

+ φ̂†′nT [D1,nT (γ̂nT )−D′2,nT (γ̂nT )P−1
1,nT (γ̂nT )D2,nT (γ̂nT )]φ̂†nT

+ op((nT )−2τ ),

where the first term is Op((nT )−τ ), and the second and third are Op((nT )−2τ ),

by Lemma A.4 and Lemma B.1. Then, using the Taylor expansion for the

logarithm, we have

− (nT )2τ

2
[ln σ̂2

nT − ln σ̂2
nT (ω0)]

= − (nT )2τ

2σ̂2
nT (ω0)

{
2V2,nT (γ̂nT )λ̂†nT + λ̂†′nTV3,nT (γ̂nT )λ̂†nT

+ φ̂†′nT [D1,nT (γ̂nT )−D′2,nT (γ̂nT )P−1
1,nT (γ̂nT )D2,nT (γ̂nT )]φ̂†nT

}
+ (nT )2τ

σ̂4
nT (ω0)

λ̂†′nTV ′2,nT (γ̂nT )V2,nT (γ̂nT )λ̂†nT + op(1)

= − (nT )2τ [G ′1,nT (γ̂nT )λ̂†nT + 1
2
λ̂†′nTG1,nT (γ̂nT )λ̂†nT ]

− (nT )2τ λ̂†′nTG1,nT (γ̂nT )G ′1,nT (γ̂nT )λ̂†nT

− (nT )2τ

2σ2
0
φ̂†′nT [D1,nT (γ̂nT )−D′2,nT (γ̂nT )(P1,nT (γ̂nT ))−1D2,nT (γ̂nT )]φ̂†nT + op(1),

(B.16)

because σ̂2
nT (ω0) − σ2

0 = op(1), V2,nT (γ) − σ2
0G ′1,nT (γ) = op(1) and V3,nT (γ) −
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σ2
0G1,nT (γ) = op(1), uniformly in γ ∈ Γ.

As for (nT )2τ

n(T−1)

∑T
t=1 ln |At(ω̂nT )A−1

t |, one has At(ω̂nT )A−1
t = In + (λ10 −

λ̂1,nT )Gt + (λ20 − λ̂2,nT )dt(γ̂nT )Gt + λ20dt(γ0, γ̂nT )Gt and λ̂†nT = O((nT )−τ ).

Thus, we have ln |At(ω̂nT )A−1
t | = tr[ln(At(ω̂nT )A−1

t )] = tr
[∑∞

m=1(−1)m+1

(At(ω̂nT )A−1
t −In)m

m

]
by Theorem 2.8 of Hall (2015). Therefore, we have

(nT )2τ

n(T−1)

∑T
t=1 ln |At(ω̂nT )A−1

t | = (nT )2τG ′2,nT (γ̂nT )λ̂†nT

− (nT )2τ

2
λ̂†′nTG2,nT (γ̂nT )λ̂†nT + op(1), (B.17)

where G2,nT (γ) = 1
n(T−1)

∑T
t=1[tr(Gt), tr(dt(γ)Gt), tr(dt(γ0, γ)Gt)]

′ and

G2,nT (γ) = 1
n(T−1)

T∑
t=1


tr(G2

t ), tr(dt(γ)G2
t ), tr(dt(γ0, γ)G2

t ),

∼, tr(G2
t (γ)), tr(dt(γ0, γ)Gtdt(γ)Gt),

∼, ∼, tr((dt(γ0, γ)Gt)
2),

 .
Note that G1,nT (γ) = G2,nT (γ)+Op(

1
n
) and thus (nT )τ [G1,nT (γ̂nT )−G2,nT (γ̂nT )] =

Op(
T τ

n1−τ ) = op(1). Besides, G1,nT (γ) = G3,nT (γ) +Op(
1
n
), where

G3,nT (γ) = 1
n(T−1)

T∑
t=1


tr(GtG

′
t), tr(dt(γ)GtG

′
t), tr(dt(γ0, γ)GtG

′
t),

∼, tr(dt(γ)GtG
′
t), tr(dt(γ0, γ)GtG

′
tdt(γ)),

∼, ∼, tr(dt(γ0, γ)GtG
′
t),

 .
Combining these with (B.16) and (B.17), we have

(nT )2τ

n(T−1)
[`∗cnT (ω̂nT )− `∗cnT (ω0)]

= − (nT )2τ

2
λ̂†′nT [G2,nT (γ̂nT ) + G3,nT (γ̂nT )− 2G2,nT (γ̂nT )G ′2,nT (γ̂nT )]λ̂†nT

− (nT )2τ

2σ2
0
φ̂†′nT [D1,nT (γ̂nT )−D′2,nT (γ̂nT )P−1

1,nT (γ̂nT )D2,nT (γ̂nT )]φ̂†nT + op(1).

(B.18)

Firstly, it is easy to see that G2,nT (γ) +G3,nT (γ)− 2G2,nT (γ)G ′2,nT (γ) = 1
2n(T−1)∑T

t=1 Ct(γ), which is positive semi-definite as 1
2n(T−1)

∑T
t=1 z

′Ct(γ)z = 1
2n(T−1)∑T

t=1 tr[(z1Cs
1,t+z2Cs

2,t(γ)+z3Cs
3,t(γ))′(z1Cs

1,t+z2Cs
2,t(γ)+z3Cs

3,t(γ))] ≥ 0 for all

z = (z1, z2, z3)′ in R3. Thus, the first term of (B.18) is non-positive. Secondly,

for a comformable vector d, d′[D1,nT (γ) − D′2,nT (γ)P−1
1,nT (γ)D2,nT (γ)]d can be

written into the form of a′Qa with some nT ×1 vector a and nT ×nT idempo-

tent matrix Q, so that the second term of (B.18) is also non-positive. There-

fore, we have limnT→∞
(nT )2τ

n(T−1)
[`∗cnT (ω̂nT )−`∗cnT (ω0)] 6 0. Under Assumption H(i),
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we have ρmin
(
D1,nT (γ̂nT )−D′2,nT (γ̂nT )P−1

1,nT (γ̂nT )D2,nT (γ̂nT )
)
≥ ρmin

(
1

n(T−1)

∑T
t=1

H̃′t(γ)JnH̃t(γ)
)
≥ c|γ̂nT − γ0| by Theorem 5 of Smith (1992). It follows that

lim
nT→∞

(nT )2τ

n(T−1)
[`∗cnT (ω̂nT )− `∗cnT (ω0)] 6 − 1

2σ2
0
c|γ̂nT − γ0|‖(nT )τ φ̂†nT‖2.

By the definition of ω̂nT , we have (nT )2τ

n(T−1)
(`∗cnT (ω̂nT ) − `∗cnT (ω0)) ≥ 0. Hence,

we must have that |γ̂nT − γ0| = op(1). Similarly, Assumption H(ii) can also

guarantee that γ̂nT − γ0
p−→ 0. �

Proof of Theorem 2.3: We first show that (nT )τ (θ̂nT − θ0) = op(1).

Given the results (i)-(iv) from the proof of Theorem 2.2, we only need to show

that (nT )τ−1Br,nT (θ0, γ̂nT ) = op(1) for r = 1, 2, which is directly implied by

the consistency of γ̂nT . Then, let B, k, l and NnT be defined in Lemma B.4,

and M ≡ max
(
k, l, ‖δ0‖, |l0|, 1, σ2

0

)
. Pick η, κ > 0 small enough such that

max(η, κ) < M and

M0 ≡ −1
2
k− k

σ2
0+κ

+ 1
2
(Mη+6M3κ)+ 1

σ2
0−κ

(4Mη+8M2η+18M3κ+4M4κ) < 0.

Let EnT be the joint event that (1) |γ̂nT − γ0| 6 B, (2) T τ

n1−τ < κ, (3)

(nT )τ |θ̂nT − θ0| 6 κ, (4) inf
γ∈NnT

Dr,nT (γ)

|γ−γ0| > (1 − η)k, (5) sup
γ∈NnT

‖Fs,nT (γ)‖
|γ−γ0| <

(1 + η)l, (6) sup
γ∈NnT

|Ks,nT (γ)|
|γ−γ0| < (1 + η)l, (7) sup

γ∈NnT

|Lr,nT (γ)|
|γ−γ0| < (1 + η)l, (8)

sup
γ∈NnT

‖Pr,nT (γ)‖
|γ−γ0| < η, (9) sup

γ∈NnT

‖Js,nT (γ)−Js,nT (γ0)‖√
anT |γ−γ0|

< η,

for s = 1, 2 and r = 1, 2, 3, and (10) will be established later.

Let `‡nT (γ) = `∗nT (θ̂nT , γ). We have,

`‡nT (γ)− `‡nT (γ0) = T̄
∑T

t=1 ln |At(λ̂nT , γ)| − T̄
∑T

t=1 ln |At(λ̂nT , γ0)|

− 1
2σ̂2
nT

[
∑T

t=1 Ṽ
′
t (φ̂nT , γ)JnṼt(φ̂nT , γ)−

∑T
t=1 Ṽ

′
t (φ̂nT , γ0)JnṼt(φ̂nT , γ0)].

(B.19)

We consider the difference of the first two terms at first. By Theorem 2.8 of

Hall (2015),

T̄
∑T

t=1 ln |At(λ̂nT , γ)| − T̄
∑T

t=1 ln |At(λ̂nT , γ0)|

= T̄ λ̂2,nT

∑T
t=1 tr

[
dt(γ0, γ)Gt(λ̂nT , γ0)

]
− T̄

2
λ̂2

2,nT

∑T
t=1 tr

{
[dt(γ0, γ)Gt(λ̂nT , γ0)]2

}
+ . . .

= A1(γ) +A2(γ) +A3(γ), (B.20)

whereA1(γ) = T̄ λ̂2,nT

∑T
t=1 tr

[
dt(γ0, γ)Gt

]
,A2(γ) = − T̄

2
λ̂2

2,nT

∑T
t=1 tr[(dt(γ0, γ)
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Gt)
2] and A3(γ) stands for all the remaining terms. Noting that Gt(λ̂nT , γ0)−

Gt = Gt(λ̂nT , γ0)[(λ̂1,nT − λ10)Gt + (λ̂2,nT − λ20)dt(γ0)Gt], the elements of

[dt(γ0, γ)Gt(λ̂nT , γ0)]r, r ≥ 1, are uniformly bounded by Lemma A.1, and

λ̂2,nT = Op((nT )−τ ), implied by λ̂2,nT − λ20 = op(1) and λ20 = O((nT )−τ ),

we can easily see the series of terms in A3(γ) have smaller order than A2(γ),

uniformly in γ ∈ Γ.

To simplify the last term in (B.19), we first derive

Vt(φ̂nT , γ) = Yt(λ̂nT , γ)− Xt(γ)β̂nT

= Vt + µ0 + αt0ln + Ht(γ0)(φ0 − φ̂nT ) +H?
t (γ0, γ)φ̂2,nT

+ Vt(γ0)(λ0 − λ̂nT ) + λ̂2,nTV?t (γ0, γ),

and hence∑T
t=1 Ṽ

′
t (φ̂nT , γ)JnṼt(φ̂nT , γ)−

∑T
t=1 Ṽ

′
t (φ̂nT , γ0)JnṼt(φ̂nT , γ0)

=
∑T

t=1[Ṽt(φ̂nT , γ) + Ṽt(φ̂nT , γ0)]′Jn[Ṽt(φ̂nT , γ)− Ṽt(φ̂nT , γ0)]

= 2
∑T

t=1 Ṽ
′
t JnH̃

?
t (γ0, γ)φ̂2,nT + 2λ̂2,nT

∑T
t=1 Ṽ

′
t JnṼ?t (γ0, γ)

+
∑T

t=1 φ̂
′
2,nT H̃

?′
t (γ0, γ)JnH̃

?
t (γ0, γ)φ̂2,nT

+ 2λ̂2,nT

∑T
t=1 φ̂

′
2,nT H̃

?′
t (γ0, γ)JnṼ?t (γ0, γ)

+ 2
∑T

t=1(φ0 − φ̂nT )′H̃′t(γ0)JnH̃
?
t (γ0, γ)φ̂2,nT

+ 2λ̂2,nT

∑T
t=1(φ0 − φ̂nT )′H̃′t(γ0)JnṼ?t (γ0, γ)

+ 2
∑T

t=1(λ0 − λ̂nT )′Ṽ′t(γ0)JnH̃
?
t (γ0, γ)φ̂2,nT

+ 2λ̂2,nT

∑T
t=1(λ0 − λ̂nT )′Ṽ′t(γ0)JnṼ?t (γ0, γ)

+ λ̂2
2,nT

∑T
t=1 Ṽ?′t (γ0, γ)JnṼ?t (γ0, γ) ≡

∑9
s=1 Bs(γ). (B.21)

From (B.20) and (B.21), one has

`‡nT (γ)− `‡nT (γ0)

anT (γ − γ0)
6 −

∑9
s=1 Bs(γ)− 2σ̂2

nTA1(γ)

2σ̂2
nTanT (γ − γ0)

+
A2(γ)

anT (γ − γ0)
+

A3(γ)

anT (γ − γ0)
.

(B.22)

As is shown latter, A2(γ)
anT (γ−γ0)

are uniformly bounded on the set EnT . This

implies that A3(γ)
anT (γ−γ0)

will shrink to zero as sample increase. Therefore, we

let A3(γ)
anT (γ−γ0)

6 κ be the event (10) of EnT . Fix ε > 0, one can choose v̄ for

large enough (n, T ) such that P(EnT ) > 1− ε, by Theorem 2.2, Assumption E,
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(nT )τ (θ̂nT −θ0) = op(1) shown at the beginning and Lemma B.4. Suppose γ ∈

[γ0 + v̄/anT , γ0 +B] and EnT holds. Let l̂nT = (nT )τ λ̂2,nT and b̂nT = (nT )τ β̂2,nT

so that ‖δ̂nT − δ0‖ 6 κ, where δ̂nT = (l̂′nT , b̂nT )′, by event (3). Besides, we have

σ2
0 − κ 6 σ2

0 − κ(nT )−τ 6 σ̂2
nT 6 σ2

0 + κ(nT )−τ 6 σ2
0 + κ. Given these, we are

going to study each term in the right-hand side of inequality (B.22).

By events (1), (3), (4) and (7), we have

A2(γ)

anT (γ − γ0)
=− λ2

20T̄
∑T

t=1 tr[(dt(γ0, γ)Gt)
2]

2anT (γ − γ0)

− (λ̂2,nT − λ20)(λ̂2,nT + λ20)T̄
∑T

t=1 tr[(dt(γ0, γ)Gt)
2]

2anT (γ − γ0)

6− D3,nT (γ)

2(γ − γ0)
+
|l̂nT − l0||l̂nT + l0||L1,nT (γ)|

2(γ − γ0)

6− 1

2
(1− η)k +

1

2
κ(2|l0|+ κ)(1 + η)l

6− 1

2
k +

1

2
(Mη + 6M3κ).

By events (1), (2), (3), (7) and (9), we have

− B1(γ) + B2(γ)− 2σ̂2
nTA1(γ)

2σ̂2
nTanT (γ − γ0)

=−
∑T

t=1 Ṽ
′
t JnH̃

?
t (γ0, γ)φ̂2,nT

σ̂2
nTanT (γ − γ0)

−
λ̂2,nT

{∑T
t=1 Ṽ

′
t JnṼ?t (γ0, γ)− σ2

0T̄
∑T

t=1 tr[Jndt(γ0, γ)Gt]
}

σ̂2
nTanT (γ − γ0)

+
σ2

0T̄ λ̂2,nT

∑T
t=1 tr[lnl

′
ndt(γ0, γ)Gt]

σ̂2
nTnanT (γ − γ0)

− (σ2
0 − σ̂2

nT )T̄ λ̂2,nT

∑T
t=1 tr[dt(γ0, γ)Gt]

σ̂2
nTanT (γ − γ0)

6
‖δ̂nT‖‖J1,nT (γ)− J1,nT (γ0)‖

σ̂2
nT

√
anT (γ − γ0)

+
|l̂nT |‖J2,nT (γ)− J2,nT (γ0)‖

σ̂2
nT

√
anT (γ − γ0)

+
T τ |l̂nT |σ2

0|L3,nT (γ)|
n1−τ σ̂2

nT (γ − γ0)
+
κ|l̂nT ||L2,nT (γ)|
σ̂2
nT (γ − γ0)

6
(‖δ0‖+ κ)η + (|l0|+ κ)[η + κσ2

0(1 + η)l + κ(1 + η)l]

σ̂2
nT

6
4Mη + 4M3κ+ 4M4κ

σ2
0 − κ

.
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Next, by events (1), (3), (4), and (5), we have

− B3(γ)

2σ̂2
nTanT (γ − γ0)

=−
∑T

t=1 φ
′
20H̃

?′
t (γ0, γ)JnH̃

?
t (γ0, γ)φ20

2σ̂2
nTanT (γ − γ0)

−
∑T

t=1(φ̂2,nT − φ20)′H̃?′
t (γ0, γ)JnH̃

?
t (γ0, γ)(φ̂2,nT + φ20)

2σ̂2
nTanT (γ − γ0)

6− D1,nT (γ)

2σ̂2
nT (γ − γ0)

+ ‖δ̂nT − δ0‖‖δ̂nT + δ0‖
F1,nT

2σ̂2
nT (γ − γ0)

6
−(1− η)k + κ(2‖δ0‖+ κ)(1 + η)l

2σ̂2
nT

6− k

2σ2
0 + 2κ

+
3M3κ

σ2
0 − κ

.

Similarly, we have

− B4(γ) + B6(γ) + B7(γ)

2σ̂2
nTanT (γ − γ0)

6 ‖δ̂nT‖|l̂nT |
‖P1,nT (γ)‖
σ̂2
nT (γ − γ0)

+ κ
|l̂nT |‖P2,nT (γ)‖+ ‖δ̂nT‖‖P3,nT (γ)‖

σ̂2
nT (γ − γ0)

6
(‖δ0‖+ κ)(|l0|+ κ)η + κ(|l0|+ κ)η + κ(‖δ0‖+ κ)η

σ̂2
nT

6
8M2η

σ2
0 − κ

,

by events (1), (3) and (8).

Then, we have

− B5(γ) + B8(γ)

2σ̂2
nTanT (γ − γ0)

6
κ‖δ̂nT‖‖F2,nT (γ)‖
σ̂2
nT (γ − γ0)

+
κ|l̂nT |‖K2,nT (γ)‖
σ̂2
nT (γ − γ0)

6
κ[(‖δ0‖+ κ) + (|l0|+ κ)](1 + η)l

σ̂2
nT

6
8M3κ

σ2
0 − κ

,

by events (1), (3), (5) and (6).

Finally, by events (1), (3), (4) and (7), we have

− B9(γ)

2σ̂2
nTanT (γ − γ0)

=

− [λ2
20 + (λ̂2,nT − λ20)(λ̂2,nT + λ20)]

∑T
t=1 Ṽ?′t (γ0, γ)JnṼ?t (γ0, γ)

2σ̂2
nTanT (γ − γ0)

6− D2,nT (γ)

2σ̂2
nT (γ − γ0)

+
|l̂nT − l0||l̂nT + l0||K1,nT (γ)|

2σ̂2
nT (γ − γ0)

6− k

2σ2
0 + 2κ

+
κ(2|l0|+ κ)(1 + η)l

2σ2
0 − 2κ

6− k

2σ2
0 + 2κ

+
3M3κ

σ2
0 − κ

.

Together, we can get

`‡nT (γ)− `‡nT (γ0)

anT (γ − γ0)
6M0 < 0.
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Thus, we have shown that on the set EnT with probability large than 1− ε, if

γ ∈ [γ0+v̄/anT , γ0+B], then `‡nT (γ)−`‡nT (γ0) < 0. We can similarly show that if

γ ∈ [γ0−B, γ0−v̄/anT ] then `‡nT (γ)−`‡nT (γ0) < 0. Since `‡nT (γ̂nT )−`‡nT (γ0) > 0,

this implies that |γ̂nT −γ0| 6 v̄/anT is with probability larger than 1− ε. That

is, anT (γ̂nT − γ0) = Op(1). �

Proof of Theorem 2.4: We first show (i)
√
n(T − 1)(θ̂nT−θ0)+Σ−1

nT

√
abθ,nT

D−→ N
(
0, lim

nT→∞
Σ−1
nTΩnTΣ−1

nT

)
, and then (ii)

√
n(T − 1)(θ̂nT − θ̂nT (γ0))

p−→ 0.

Proof of (i): Similar to (B.12) and (B.14), we have√
n(T − 1)(θ̂nT − θ0) =

[
1

n(T−1)
H∗nT (θ̄, γ̂nT )

]−1 1√
n(T−1)

S∗θ,nT (θ0, γ̂nT ),

where S∗θ,nT (θ0, γ̂nT ) = S∗uθ,nT (θ0, γ̂nT ) +
∑3

r=1Br,nT (θ0, γ̂nT ). From the proof of

Theorem 2.2, we see that 1
n(T−1)

H∗nT (θ̄, γ̂nT ) − ΣnT = op(1) as γ̂nT − γ0
p−→

0 and θ̄ − θ0
p−→ 0 implied by θ̂nT − θ0 = op(1). Meanwhile, Lemma A.3

and Lemma B.1 imply that 1√
n(T−1)

S∗uθ,nT (θ0, γ̂nT ) converges to a mean zero

Gaussian process with variance 1
n(T−1)

Var[S∗uθ,nT ] also because γ̂nT − γ0
p−→

0. The derivation of the covariance (VC) matrix of S∗uθ,nT is straightforward

following Lemma B.5 of Yang (2015), but is complicated when written into

summation over time. Some intermediate results are useful to derive the final

expression. We focus on the variance of one specific quadratic term, as the

derivations for the other variances or covariances are similar or less difficult.

Let QnT = (IT −
lT l
′
T

T
) ⊗ (In − lnl′n

n
), GnT = blkdiag(G1, G2, . . . , GT ) and

V = (V ′1 , V
′

2 , . . . , V
′
T )′, where⊗ stands for Kronecker product and blkdiag(· · · )

forms a block-diagonal matrix by the given submatrices. Let κ3 be the skewness

and κ4 the excess kurtosis of the idiosyncratic errors. Hence, the variance

of 1√
n(T−1)

V′QnTGnTV is just
κ4σ4

0

n(T−1)
E[diagv(QnTGnT )′diagv(QnTGnT )] +

σ4
0

n(T−1)
E[tr(QnTGnTQnTGnT + QnTGnTG′nT )] by Lemma B.5 of Yang (2015).

After some algebra, we have

1
n(T−1)

diagv(QnTGnT )′diagv(QnTGnT )

= T̄ 2

n(T−1)

∑T
t=1 diagv(JnGt)

′diagv(JnGt) = T̄ 2

n(T−1)

∑T
t=1R

′
tRt +Op(

1
n
),

1
n(T−1)

tr(QnTGnTG′nT ) = T̄
n(T−1)

∑T
t=1 tr(JnGtG

′
t)

= T̄
n(T−1)

∑T
t=1 tr(GtG

′
t) +Op(

1
n
), and
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1
n(T−1)

tr(QnTGnTQnTGnT )

= T−2
nT (T−1)

∑T
t=1 tr(JnGtJnGt) + 1

n(T−1)
tr[( 1

T

∑T
t=1 JnGt)

2]

= T̄
n(T−1)

∑T
t=1 tr(JnGtJnGt)+

1
n(T−1)

tr[( 1
T

∑T
t=1 JnGt)

2− 1
T

∑T
t=1 JnGtJnGt]

= T̄
n(T−1)

∑T
t=1 tr(JnGtJnGt) + 1

nT 2(T−1)

∑T
t=1

∑T
k=1 tr[Jn(Gt −Gk)JnGt]

= T̄
n(T−1)

∑T
t=1 tr(GtGt) + 1

nT 2(T−1)

∑T
t=1

∑T
k=1 tr[(Gt −Gk)Gt] +Op(

1
n
).

With these results, we have 1
n(T−1)

Var[S∗uθ,nT ] = ΩnT (θ0, γ0) + o(1), where

ΩnT (θ0, γ0) = ΣnT (θ0, γ0) + ΓnT (θ0, γ0). ΣnT (θ0, γ0) is given in (B.13) and

ΓnT (θ0, γ0) has the expression:
02k×2k,

T̄ κ3
σ0

ER1,nT (γ0), 02k×1

∼, 2T̄ κ3
σ0

ER2,nT (γ0) + κ4T̄
2ER3,nT (γ0) + EBnT (γ0), κ4T̄ 2

2σ2
0

ERnT (γ0)

∼, ∼, κ4T̄
4σ4

0

 ,
(B.23)

whereR1,nT (γ) = 1
n(T−1)

∑T
t=1 X̃′t(γ)JnR̃t(γ),R2,nT (γ) = 1

n(T−1)

∑T
t=1 Z̃′t(γ)JnR̃t(γ),

R3,nT (γ) = 1
n(T−1)

∑T
t=1 R′t(γ)Rt(γ), RnT (γ) = 1

n(T−1)

∑T
t=1 R′t(γ)ln,

BnT (γ) = [B11,nT , B12,nT (γ); B12,nT (γ), B22,nT (γ)],

B11,nT = 1
nT 2(T−1)

∑T
t=1

∑T
k=1 tr[(Gt −Gk)Gt],

B12,nT (γ) = 1
nT 2(T−1)

∑T
t=1

∑T
k=1 tr[(dt(γ)Gt − dk(γ)Gk)Gt],

B22,nT (γ) = 1
nT 2(T−1)

∑T
t=1

∑T
k=1 tr[(dt(γ)Gt − dk(γ)Gk)dt(γ)Gt].

Next, we see that 1√
n(T−1)

B3,nT (θ0, γ̂nT )−
√
abθ,nT

p−→ 0 as γ̂nT −γ0
p−→ 0.

Hence, it is left to show 1√
n(T−1)

Br,nT (θ0, γ̂nT ) = op(1) for r = 1, 2. For

B1,nT (θ0, γ̂nT ), we only study its third and fourth components for example,

as the other two components can be studied in a similar manner. By φ20 =

(nT )−τδ0 and λ20 = (nT )−τ l0, the third component of 1√
n(T−1)

B1,nT (θ0, γ̂nT )

equals to

(nT )τ−1/2T̄−1/2 anT
σ2
0nT

∑T
t=1[Z̃◦t (γ̂nT )+ Ṽ◦t (γ̂nT )]′Jn[H̃?

t (γ0, γ̂nT )δ0 + Ṽ?t (γ0, γ̂nT )l0].

As γ̂nT = γ0 + v̂nT/anT by Theorem 2.3, these terms in anT
nT

∑T
t=1[Z̃◦t (γ̂nT ) +

Ṽ◦t (γ̂nT )]′Jn[H̃?
t (γ0, γ̂nT )δ0 + Ṽ?t (γ0, γ̂nT )l0] have similar form to FnT (v̂nT ) or

KnT (v̂nT ) from Lemma B.2 so that we can show they are all Op(1), following

the proof of Lemma B.2. As (nT )τ−1/2 = o(1) by Assumption F, the third

component of 1√
n(T−1)

B1,nT (θ0, γ̂nT ) is op(1). Similarly, the fourth component

145



of 1√
n(T−1)

B1,nT (θ0, γ̂nT ) equals to

T̄−1/2

2σ4
0(nT )1/2

[
anT
nT

∑T
t=1 δ

′
0H̃

?′
t (γ0, γ̂nT )JnH̃

?
t (γ0, γ̂nT )δ0 + anT

nT
l20
∑T

t=1 Ṽ?′t (γ0, γ̂nT )Jn

Ṽ?t (γ0, γ̂nT ) +
2
√
anT√
nT

∑T
t=1 Ṽ

′
t JnH̃

?
t (γ0, γ̂nT )δ0 + 2anT

nT

∑T
t=1 l0Ṽ?′t (γ0, γ̂nT )Jn

H̃?
t (γ0, γ̂nT )δ0 + (nT )τ 2anT

nT

∑T
t=1 Ṽ

′
t JnṼ?t (γ0, γ̂nT )l0

]
.

The first two terms in the square bracket are Op(1) by Lemma B.2, the third

is Op(1) by Lemma B.3, and the fourth and fifth without (nT )τ can be easily

shown to be Op(1), following the proof of Lemma B.2. Therefore, the fourth

component of 1√
n(T−1)

B1,nT (θ0, γ̂nT ) is also op(1). The other components of

1√
n(T−1)

B1,nT (θ0, γ̂nT ) can be shown to be op(1) similarly.

Finally, we show all the components of 1√
n(T−1)

B2,nT (θ0, γ̂nT ) are also op(1).

Consider its second non-zero element for example, as the other can be shown

similarly. Similar to (B.15),

− 1√
n(T−1)

∑T
t=1 tr[Jndt(γ̂nT )(Gt(λ0, γ̂nT )−Gt)]

= (nT )−τ l0√
n(T−1)

∑T
t=1 tr[Jndt(γ̂nT )Gt(λ0, γ̂nT )dt(γ0, γ̂nT )Gt)]

= (nT )τ−1/2T̄−1/2 l0anT
nT

∑T
t=1 tr[Jndt(γ̂nT )Gt(λ0, γ̂nT )dt(γ0, γ̂nT )Gt] = op(1),

because (nT )τ−1/2 = o(1), and l0anT
nT

∑T
t=1 tr[Jndt(γ̂nT )Gt(λ0, γ̂nT )dt(γ0, γ̂nT )Gt]

has similar form to LnT (v̂nT ) from Lemma B.2 and thus can be shown to be

Op(1) in a similar manner. By the continuous mapping theorem (CMT), the

result in (i) follows.

Proof of (ii): When γ0 were known, it is easy to see that the QMLE

θ̂nT (γ0) is consistent to θ0. Thus, by the mean value theorem, we also have√
n(T − 1)(θ̂nT (γ0)− θ0) =

[
1

n(T−1)
H∗nT (θ̇, γ0)

]−1 1√
n(T−1)

S∗θ,nT (θ0, γ0),

where H∗nT (θ̇, γ) denotes − ∂
∂θ′
S∗θ,nT (θ, γ)

∣∣
θ=θ̇r in rth row

and {θ̇r} are on the line

segment between θ̂nT (γ0) and θ0. As θ̇ − θ0
p−→ 0 implied by θ̂nT (γ0) − θ0 =

op(1), 1
n(T−1)

H∗nT (θ̇, γ0) − ΣnT = op(1). Thus, it is equivalent to showing that

1√
n(T−1)

[S∗θ,nT (θ0, γ̂nT )− S∗θ,nT ] = op(1). Noting that S∗θ,nT = S∗uθ,nT +B3,nT , we

have

1√
n(T−1)

[S∗θ,nT (θ0, γ̂nT )− S∗θ,nT ] = 1√
n(T−1)

[S∗uθ,nT (θ0, γ̂nT )− S∗uθ,nT ] + op(1),
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because 1√
n(T−1)

Br,nT (θ0, γ̂nT ) = op(1), for r = 1, 2, shown in (i), and mean-

while 1√
n(T−1)

[B3,nT (θ0, γ̂nT )−B3,nT ] = op(1) is directly implied by γ̂nT − γ0 =

op(1). For the non-zero components of 1√
n(T−1)

[S∗uθ,nT (θ0, γ̂nT )−S∗uθ,nT ], they are

Op(
1√
anT

) by Lemma B.3, completing the proof. �

Proof of Theorem 2.5: Let QnT (v) = `‡nT (γ0 + v/anT ) − `‡nT (γ0) and

Q(v) = 1
2σ2

0
[−Ξ1f |v| + 2

√
σ2

0ΞfW (v)]. We first show QnT (v) ⇒ Q(v) on any

compact set Υ = [−v̄, v̄].

For ease of presentation, we follow the notations used in the proof of Theo-

rem 2.4 and define B∗s(v) = Bs(γ0+v/anT ), for s = 1 to 9, andA∗m(v) = Am(γ0+

v/anT ), for m = 1, 2, 3. As discussed in the proof of Theorem 2.4, the proof of

Lemma B.2 implies that F2,nT (γ0+v/anT ), K2,nT (γ0+v/anT ), L2,nT (γ0+v/anT )

and L3,nT (γ0 + v/anT ) are both Op(
1
anT

), and Pr,nT (γ0 + v/anT ) for r = 1, 2, 3

are all op(
1
anT

). Given these, we can easily see that
∑8

s=4 B∗s(v) = op(1),

since (nT )τ (φ̂nT − φ0) = op(1) and (nT )τ φ̂2,nT = Op(1). Similarly, we have

B∗3(v) = FnT (v) + op(1), B∗9(v) = KnT (v) + op(1), A∗2(v) = −1
2
T̄LnT (v) + op(1),

A∗3(v) = op(1), and finally

B∗1(v) + B∗2(v)− 2σ̂2
nTA∗1(v)

= − 2
∑T

t=1 Ṽ
′
t JnH̃

◦
t (γ0 + v/anT , γ0)φ̂2,nT − 2λ̂2,nT

∑T
t=1 Ṽ

′
t JnṼ◦t (γ0 + v/anT , γ0)

− 2σ̂2
nT λ̂2,nT T̄

∑T
t=1 tr(dt(γ0, γ0 + v/anT )Gt)

= − 2RnT (v) + 2l̂nT (nT )τ (σ2
0 − σ̂2

nT )anT T̄L2,nT (γ0 + v/anT )

− 2l̂nT
T τ

n1−τ σ̂
2
nTanT T̄L3,nT (γ0 + v/anT ) + op(1) = −2RnT (v) + op(1),

where we use T τ

n1−τ = o(1) by Assumption E.

Then, from (B.19), (B.20) and (B.21), we have

QnT (v) = − 1
2σ̂2
nT

[
∑9

s=1 B∗s(v)− 2σ̂2
nTA∗1(v)] +A∗2(v) +A∗3(v)

= − 1
2σ̂2
nT

[FnT (v) +KnT (v)− 2RnT (v)]− T̄
2
LnT (v) + op(1).

Using Lemma B.2, Lemma B.3 and σ̂2
nT −σ2

0 = op(1), we finally get QnT (v)⇒

Q(v).

By Theorem 2.3, anT (γ̂nT − γ0) = argmax
v

QnT (v) = Op(1). The functional

Q(v) is continuous and has a unique maximum; lim|v|→∞Q(v) = −∞ almost
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surely since limv→∞B(v)/v = 0 almost surely. Therefore, the conditions of

Theorem 2.7 of Kim and Pollard (1990) are satisfied, which implies

anT (γ̂nT − γ0)
D−→ argmax
−∞<v<∞

Q(v).

We make the change-of-variable v =
σ2
0

f
Ξ
Ξ2
1
r and then rewrite the asymptotic

distribution as

argmax
−∞<v<∞

Q(v) = argmax
−∞<v<∞

[−Ξ1f |v|+ 2
√
σ2

0ΞfW (v)]

=
σ2
0

f
Ξ
Ξ2
1

argmax
−∞<r<∞

[−σ2
0Ξ

Ξ1
|r|+ 2

√
σ2

0ΞfW (
σ2
0

f
Ξ
Ξ2
1
r)]

=
σ2
0

f
Ξ
Ξ2
1

argmax
−∞<r<∞

[−σ2
0Ξ

Ξ1
|r|+ 2

σ2
0Ξ

Ξ1
W (r)]

=
σ2
0

f
Ξ
Ξ2
1

argmax
−∞<r<∞

[− |r|
2

+W (r)].

�

Proof of Theorem 2.6: By Theorem 2.3, we can write γ̂nT = γ0 + v̂nT
anT

.

Note that

LRnT (γ0) = 2[`∗cnT (γ̂nT )− `∗cnT (γ0)]

= 2[`∗cnT (θ̂nT , γ̂nT )− `∗cnT (θ̂nT (γ0), γ0)]

= 2[`∗cnT (θ̂nT , γ̂nT )− `∗cnT (θ̂nT , γ0)] + op(1) (Theorem 2.4)

= 2QnT (v̂nT ) + op(1)
D−→ 2sup

v
Q(v).

This limiting distribution equals, by the change-of-variable v =
σ2
0

f
Ξ
Ξ2
1
r,

1
σ2
0
sup
v

[−Ξ1f |v|+ 2
√
σ2

0ΞfW (v)] = 1
σ2
0
sup
r

[−Ξ1f |σ
2
0

f
Ξ
Ξ2
1
r|+ 2

√
σ2

0ΞfW (
σ2
0

f
Ξ
Ξ2
1
r)]

= Ξ
Ξ1

sup
r

[−|r|+ 2W (r)] = $2 0.

To find the distribution of 0, note that 0 = 2max(01,02), where 01 =

sup
r60

[−|r|/2+W (r)] and 01 = sup
r>0

[−|r|/2+W (r)]. 01 and 02 are iid exponential

random variables with distribution function P(01 6 x) = 1 − e−x. It follows

that P(0 6 x) = P(2 max(01,02) 6 x) = P(01 6 x/2)P(02 6 x/2) =

(1− e−x)2. �

Proof of Theorem 2.7: As discussed in Section 2.3, we only show result

(i) of Theorem 2.7 as (ii) follows (i) directly. Under Assumptions B(vi) and

the alternatives, the consistency of the proposed AQS estimator θ̂�nT (γ) lies
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with that of λ̂�nT (γ), uniformly in γ. In order to show the consistency of

λ̂�nT (γ), the key step in the proof is to compare S�cθ,nT (ω) with its population

counterpart. Substituting both β̂�nT (ω) = β̂nT (ω) and σ̂2�
nT (ω) = n

n−1
σ̂2
nT (ω)

into the λ-component of AQS functions gives the concentrated AQS functions:

S�cθ,nT (ω) =


1

σ̂2�
nT (ω)

∑T
t=1[K̂�′t (ω) + V̂ �′t (ω)JnGt(ω)]JnV̂

�
t (ω)− T̄

∑T
t=1 tr[JnGt(ω)],

1
σ̂2�
nT (ω)

∑T
t=1[K̂◦�′t (ω) + V̂ �′t (ω)Jndt(γ)Gt(ω)]JnV̂

�
t (ω)

−T̄
∑T

t=1 tr[Jndt(γ)Gt(ω)].

where K̂�t (ω) = K̃t(β̂
�
nT (ω), ω), K̂◦�t (ω) = K̃◦t (β̂�nT (ω), ω) and V̂ �t (ω) = Ṽt(β̂

�
nT (ω), ω).

For each γ ∈ Γ, solving the resulted concentrated estimating equations, S�cθ,nT (ω) =

0, we obtain the M-estimator λ̂�nT (γ) of λ0. Thus the M-estimators of β and

σ2 are β̂�nT (γ) ≡ β̂�nT (λ̂�nT (γ), γ) and σ̂2�
nT (γ) ≡ σ̂2�

nT (λ̂�nT (γ), γ).

Substituting both β̄�nT (ω) = β̄nT (ω) and σ̄2�
nT (ω) = n

n−1
σ̄2
nT (ω) back into the

λ-component of S̄�θ,nT (θ, γ), we get the population counterpart of S�cθ,nT (ω) as

S̄�cθ,nT (ω) =



1
σ̄2�
nT (ω)

∑T
t=1 E{[K̄�′t (ω) + V̄ �′t (ω)JnGt(ω)]JnV̄

�
t (ω)}

−T̄
∑T

t=1 E{tr[JnGt(ω)]},

1
σ̄2�
nT (ω)

∑T
t=1 E{[K̄◦�′t (ω) + V̄ �′t (ω)Jndt(γ)Gt(ω)]JnV̄

�
t (ω)}

−T̄
∑T

t=1 E{tr[Jndt(γ)Gt(ω)]}.

where K̄�t (ω) = K̃t(β̄
�
nT (ω), ω), K̄◦�t (ω) = K̃◦t (β̄�nT (ω), ω) and V̄ �t (ω) = Ṽt(β̄

�
nT (ω), ω).

By (B.1) and (B.11), β̄�nT (ω) = β̄nT (ω) = β0 +E(P1,nT (γ))−1EP2,nT (γ)(λ0−

λ) + o(1),

σ̄2�
nT (ω) = σ2

0 + 2σ2
0EG [2]′

1,nT (γ)(λ0 − λ) + (λ0 − λ)′
[
σ2

0EG[2]
1,nT (γ)

+ EP3,nT (γ)− EP ′2,nT (γ)E(P1,nT (γ))−1EP2,nT (γ)
]
(λ0 − λ) + o(1), and

JnV̄
�
t (ω) = Jn[Ỹt(ω)− X̃t(γ)β̄�nT (ω)]

= Jn[Z̃t(γ)(λ0 − λ) + Ṽt(γ)(λ0 − λ) + Ṽt

− X̃t(γ)E(P1,nT (γ))−1EP2,nT (γ)(λ0 − λ)] + op(1).
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Hence, the first component of S̄�cθ (ω) equals to

S̄�cθ,1(ω) = lim
nT→∞

1
σ̄2�
nT (ω)

{[
EP4,nT (ω) + EP9,nT (ω)− EP5,nT (ω)E(P1,nT (γ))−1

EP2,nT (γ)
]
(λ0 − λ) + (λ0 − λ)′

[
EP6,nT (ω) + EP10,nT (ω)

+ EP ′2,nT (γ)E(P1,nT (γ))−1
(
EP4,nT (ω)− EP8,nT (ω)

)
+ EP ′2,nT (γ)E(P1,nT (γ))−1

(
EP7,nT (ω)− EP5,nT (ω)

)
E(P1,nT (γ))−1

EP2,nT (γ)
]
(λ0 − λ) + T̄ (σ2

0 − σ̄2�
nT (ω))

∑T
t=1 E[tr(JnGt(ω))]

}
,

where P4,nT (ω) = 1
nT

∑T
t=1 K̃

′
t(β0, ω)JnZ̃t(γ),P5,nT (ω) = 1

nT

∑T
t=1 K̃

′
t(β0, ω)JnX̃t(γ),

P6,nT (ω) = 1
nT

∑T
t=1 Z̃′t(γ)JnGt(ω)JnZ̃t(γ), P7,nT (ω) = 1

nT

∑T
t=1 X̃′t(γ)JnGt(ω)JnX̃t(γ),

P8,nT (ω) = 1
nT

∑T
t=1 X̃′t(γ)JnG

s
t(ω)JnZ̃t(γ), P9,nT (ω) = 1

nT

∑T
t=1 Ṽ

′
t JnG

s
t(ω)JnṼt(γ),

P10,nT (ω) = 1
nT

∑T
t=1 Ṽ′t(γ)JnGt(ω)JnṼt(γ),

and the second component equals to

S̄�cθ,2(ω) = lim
nT→∞

1
σ̄2�
nT (ω)

{
[EP◦4,nT (ω) + EP◦9,nT (ω)− EP◦5,nT (ω)E(P1,nT (γ))−1

EP2,nT (γ)](λ0 − λ) + (λ0 − λ)′[EP◦6,nT (ω) + EP◦10,nT (ω)

+ EP ′2,nT (γ)E(P1,nT (γ))−1(EP◦4,nT (ω)− EP◦8,nT (ω))

+ EP ′2,nT (γ)E(P1,nT (γ))−1(EP◦7,nT (ω)− EP◦5,nT (ω))E(P1,nT (γ))−1

EP2,nT (γ)](λ0 − λ) + T̄ (σ2
0 − σ̄2�

nT (ω))
∑T

t=1 E[tr(JnG
◦
t (ω))]

}
,

where P◦4,nT (ω) = 1
nT

∑T
t=1 K̃

◦′
t (β0, ω)JnZ̃t(γ),P◦5,nT (ω) = 1

nT

∑T
t=1 K̃

◦′
t (β0, ω)JnX̃t(γ),

P◦6,nT (ω) = 1
nT

∑T
t=1 Z̃′t(γ)JnG

◦
t (ω)JnZ̃t(γ), P◦7,nT (ω) = 1

nT

∑T
t=1 X̃′t(γ)JnG

◦
t (ω)JnX̃t(γ),

P◦8,nT (ω) = 1
nT

∑T
t=1 X̃′t(γ)JnG

◦s
t (ω)JnZ̃t(γ), P◦9,nT (ω) = 1

nT

∑T
t=1 Ṽ

′
t JnG

◦s
t (ω)JnṼt(γ),

P◦10,nT (ω) = 1
nT

∑T
t=1 Ṽ′t(γ)JnG

◦
t (ω)JnṼt(γ), G◦t (ω) = dt(γ)Gt(ω).

Clearly, S�cθ,nT (λ̂�nT (γ), γ) = 0 for any γ by construction. It is also easy to see

that S̄�cθ (λ0, γ) = 0 for any γ, implied by S̄�cθ,1(λ0, γ) = 0 and S̄�cθ,2(λ0, γ) = 0.

By Theorem 5.9 of van der Vaar (1998), λ̂�nT (γ) will be consistent for λ0 if

sup
λ∈Λ

1
nT
|S�cθ,nT (ω)−S̄�cθ,nT (ω)| = op(1) and Assumption G′. The low level condition

for Assumption G′ is either S̄�cθ,1(ω) 6= 0 for λ 6= λ0 or S̄�cθ,2(ω) 6= 0 for λ 6= λ0,

uniformly in γ ∈ Γ. Thus, it is left to show that sup
λ∈Λ

1
nT
|S�cθ,nT (ω)− S̄�cθ,nT (ω)| =

150



op(1). By (B.1), (B.4) and (B.5), β̂nT (ω) = β0+P−1
1,nT (γ)P2,nT (γ)(λ0−λ)+op(1),

σ̂2�
nT (ω) = σ2

0 + 2V21,nT (γ)(λ0 − λ) + (λ0 − λ)′
[
V31,nT (γ)

+ P3,nT (γ)− P ′2,nT (γ)P−1
1,nT (γ)P2,nT (γ)

]
(λ0 − λ) + op(1), and

JnV̂
�
t (ω) = Jn[Ỹt(ω)− X̃t(γ)β̂�nT (ω)]

= Jn[Z̃t(γ)(λ0 − λ) + Ṽt(γ)(λ0 − λ) + Ṽt

− X̃t(γ)P−1
1,nT (γ)P2,nT (γ)(λ0 − λ)] + op(1).

With these, we can show supλ∈Λ
1
nT
|S�cθ,nT (ω) − S̄�cθ,nT (ω)| = op(1) as we do for

Theorem 2.1. �

Proof of Theorem 2.8: Note thatKt(φ, γ) = Gt(λ, γ)Xt(γ)β andK◦t (φ, γ) =

dt(γ)Kt(φ, γ). Let Kt(γ) = Kt(φ0, γ), K◦t (γ) = dt(γ)Kt(φ0, γ), Kt(γ) =

[Kt(γ), K◦t (γ)] and G◦t (γ) = dt(γ)Gt.

Applying the MVT to each element of S�θ,nT (θ̂nT (γ), γ), one has

0 = S�θ,nT (θ̂nT (γ), γ) = S�θ,nT (θ0, γ)+
[
∂
∂θ′
S�θ,nT (θ, γ̂nT )

∣∣
θ=θ̄r in rth row

]
(θ̂nT (γ)−θ0),

where {θ̄r} are on the line segment between θ̂nT (γ) and θ0. In the following

arguments, we use H�nT (θ̄, γ) to denote − ∂
∂θ′
S�θ,nT (θ, γ)

∣∣
θ=θ̄r in rth row

for sim-

plicity. Thus, we have

√
nT (θ̂�nT (γ)− θ0) =

[
1
nT
H�nT (θ̄, γ)

]−1 1√
nT
S�θ,nT (θ0, γ). (B.24)

Note that θ̄−θ0
p−→ 0, implied by Theorem 2.7. Hence, based on the proof

of Theorem 2.2, we also have 1
nT
H�nT (θ̄, γ)− Σ�nT (γ, γ)

p−→ 0, where

Σ�nT (γ1, γ2) =


1
σ2
0
EP�1,nT (γ1, γ2), 1

σ2
0
EP�2,nT (γ1, γ2), 02k×1,

1
σ2
0
EP�′3,nT (γ2, γ1), 1

σ2
0
EP�4,nT (γ1, γ2) + ES�nT (γ1, γ2), T̄

σ2
0
ES�nT (γ1),

∼, T̄
σ2
0
ES�′nT (γ2), T̄

2σ4
0
,

 ,
(B.25)

with
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P�1,nT (γ1, γ2) = 1
nT

∑T
t=1 X̃′t(γ1)JnX̃t(γ2), P�2,nT (γ1, γ2) = 1

nT

∑T
t=1 X̃′t(γ1)JnZ̃t(γ2),

P�3,nT (γ1, γ2) = 1
nT

∑T
t=1 X̃′t(γ1)JnK̃t(γ2), P�4,nT (γ1, γ2) = 1

nT

∑T
t=1 K̃′t(γ1)JnZ̃t(γ2),

S�nT (γ) = 1
nT

∑T
t=1[tr(Gt), tr(G◦t (γ))]′,

S�nT (γ1, γ2) = [S�11,nT , S�12,nT (γ2); S�12,nT (γ1), S�22,nT (γ1, γ2)],

S�11,nT = 1
nT

∑T
t=1[T̄tr(Gs

tGt) + 1
T 2

∑T
k=1 tr((Gs

t −Gs
k)Gt)],

S�12,nT (γ) = 1
nT

∑T
t=1[T̄tr(Gs

tG
◦
t (γ)) + 1

T 2

∑T
k=1 tr((Gs

t −Gs
k)G

◦
t (γ))], and

S�22,nT (γ1, γ2)= 1
nT

∑T
t=1[T̄tr(G◦st (γ1)G◦t (γ2)) + 1

T 2

∑T
k=1 tr((G◦st (γ1)−G◦sk (γ1))G◦t (γ2))].

Note that JnṼt(φ0, γ) = JnṼt+Jnψ̃
?
t (γ0, γ), where ψ̃?t (γ0, γ) = H̃?

t (γ0, γ)φ20+

λ20Ṽ?t (γ0, γ). Similar to (B.14), S�θ,nT (θ0, γ) = S�uθ,nT (θ0, γ) +B�nT (θ0, γ), where

S�uθ,nT (θ0, γ) =



1
σ2
0

∑T
t=1 X̃′t(γ)JnṼt,

1
σ2
0

∑T
t=1 K̃

′
t(γ)JnṼt + 1

σ2
0

∑T
t=1[Ṽ ′t JnGt(λ0, γ)JnṼt − σ2

0T̄tr(JnGt(λ0, γ))],

1
σ2
0

∑T
t=1 K̃

◦′
t (γ)JnṼt + 1

σ2
0

∑T
t=1[Ṽ ′t Jndt(γ)Gt(λ0, γ)JnṼt

−σ2
0T̄tr(Jndt(γ)Gt(λ0, γ))],

1
2σ4

0

∑T
t=1 Ṽ

′
t JnṼt −

(n−1)(T−1)
2σ2

0
,

and B�nT (θ0, γ) has four components:

B�β,nT (θ0, γ) = 1
σ2
0

∑T
t=1 X̃′t(γ)Jnψ̃

?
t (γ0, γ),

B�λ1,nT (θ0, γ) = 1
σ2
0

∑T
t=1 K̃

′
t(γ)Jnψ̃

?
t (γ0, γ) + 1

σ2
0

∑T
t=1 ψ̃

?′
t (γ0, γ)JnGt(λ0, γ)Jnψ̃

?
t (γ0, γ)

+ 1
σ2
0

∑T
t=1 Ṽ

′
t JnG

s
t(λ0, γ)Jnψ̃

?
t (γ0, γ),

B�λ2,nT (θ0, γ) = 1
σ2
0

∑T
t=1 K̃

◦′
t (γ)Jnψ̃

?
t (γ0, γ)

+ 1
σ2
0

∑T
t=1 ψ̃

?′
t (γ0, γ)Jndt(γ)Gt(λ0, γ)Jnψ̃

?
t (γ0, γ)

+ 1
σ2
0

∑T
t=1 Ṽ

′
t Jn[dt(γ)Gt(λ0, γ) +G′t(λ0, γ)dt(γ)]Jnψ̃

?
t (γ0, γ),

B�σ2,nT (θ0, γ)= 1
2σ4

0

∑T
t=1 ψ̃

?′
t (γ0, γ)Jn[2Ṽt + ψ̃?t (γ0, γ)].

Following the proof of Lemma B.1, we can also show 1√
nT
S�uθ,nT (θ0, γ) will

converge, uniformly in γ ∈ Γ, to a Gaussian process with mean zero and

covariance Ω�nT (γ, γ). Follow the notation defined in the proof of Theorem 2.4,

one of the quadratic forms in 1√
nT
S�uθ,nT (θ0, γ) is 1√

nT
V′QnTGnT (λ0, γ)QnTV,

152



the variance of which is

κ4σ4
0

nT
E[diagv(QnTGnT (λ0, γ)QnT )′diagv(QnTGnT (λ0, γ)QnT )]

+
σ4
0

nT
E[tr(QnTGnT (λ0, γ)QnTGs

nT (λ0, γ))]

=
κ4σ4

0

nT
E[diagv(QnTGnTQnT )′diagv(QnTGnTQnT )]

+
σ4
0

nT
E[tr(QnTGnTQnTGs

nT )] + o(1),

where the equation holds because Gt(λ0, γ) − Gt = λ20Gt(λ0, γ)dt(γ, γ0)Gt

for each t and λ20 = Op((nT )−1/2) under the alternatives. In the proof of

Theorem 2.4, we have already derived the summation form of the second term.

For the first term, note that QnTGnTQnT can be partitioned into T 2 blocks

and only the T diagonal blocks are useful for diagv(QnTGnTQnT ). These T

diagonal blocks are T̄ JnG1− 1
T

(JnG1− 1
T

∑T
k=1 JnGk), . . . , T̄ JnGT − 1

T
(JnGT −

1
T

∑T
k=1 JnGk). Thus, we have

1
nT

diagv(QnTGnTQnT )′diagv(QnTGnTQnT )

= T̄ 2

nT

∑T
t=1 diagv(JnGt)

′diagv(JnGt)

− 2T̄
nT 2

∑T
t=1 diagv(JnGt)

′diagv(JnGt − 1
T

∑T
k=1 JnGk)

+ 1
nT 3

∑T
t=1 diagv(JnGt − 1

T

∑T
k=1 JnGk)

′diagv(JnGt − 1
T

∑T
k=1 JnGk)

= T̄ 2

nT

∑T
t=1R

′
tRt − 2T̄

nT 2

∑T
t=1R

′
tR̃t + 1

nT 3

∑T
t=1 R̃

′
tR̃t +Op(

1
n
).

With these, the other variances or covariances in Ω�nT (γ, γ) can derived in a

similar manner. Thus, we obtain the following expression:

Ω�nT (γ1, γ2) = Ω�1,nT (γ1, γ2) + Ω�2,nT (γ1, γ2), (B.26)

where

Ω�1,nT (γ1, γ2) =


1
σ2
0
EP�1,nT (γ1, γ2), 1

σ2
0
EP�3,nT (γ1, γ2), 02k×1,

1
σ2
0
EP�′3,nT (γ2, γ1), 1

σ2
0
EP�5,nT (γ1, γ2) + ES�nT (γ1, γ2), T̄

σ2
0
ES�nT (γ1),

01×2k,
T̄
σ2
0
ES�′nT (γ2), T̄

2σ4
0
,

 ,

Ω�2,nT (γ1, γ2) =
02k×2k,

κ3(T−2)
σ0T

ER�1,nT (γ1, γ2), 02k×1,

κ3(T−2)
σ0T

ER�′1,nT (γ2, γ1), 2κ3(T−2)
σ0T

σ0ER�2,nT (γ1, γ2) + κ4ER�3,nT (γ1, γ2), κ4T̄
2σ2

0
ER�nT (γ1),

∼, κ4T̄
2σ2

0
ER�′nT (γ2), κ4T̄ 2

4σ4
0
,

 ,
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P�5,nT (γ1, γ2) = 1
nT

∑T
t=1 K̃′t(γ1)JnK̃t(γ2),

R�1,nT (γ1, γ2) = 1
nT

∑T
t=1 X̃′t(γ1)JnR̃t(γ2),

R�2,nT (γ1, γ2) = 1
nT

∑T
t=1 K̃′t(γ1)JnR̃t(γ2),

R�nT (γ) = 1
nT

∑T
t=1[T̄R′tln − 1

T
R̃′tln, T̄R

◦′
t (γ)ln − 1

T
R̃◦′t (γ)ln]′,

R�3,nT (γ1, γ2) = [R�31,nT , R�32,nT (γ2); R�32,nT (γ1), R�33,nT (γ1, γ2)],

R�31,nT = 1
nT

∑T
t=1[T̄ 2R′tRt − 2 T̄

T
R′tR̃t + 1

T 2 R̃
′
tR̃t],

R�32,nT (γ) = 1
nT

∑T
t=1[T̄ 2R′tR

◦
t (γ)− 2 T̄

T
R′tR̃

◦
t (γ2) + 1

T 2 R̃
′
tR̃
◦
t (γ)], and

R�33,nT (γ1, γ2)= 1
nT

∑T
t=1[T̄ 2R◦′t (γ1)R◦t (γ2)− 2 T̄

T
R◦′t (γ1)R̃◦t (γ2) + 1

T 2 R̃
◦′
t (γ1)R̃◦t (γ2)].

By Lemma A.4 and under the alternatives, one shows that 1√
nT
B�nT (θ0, γ) =

[Σ�nT (γ, γ0) − Σ�nT (γ, γ)]LC + op(1). With (B.24), L′θ0 = φ20,
√
nTφ20 = C

and C = L′LC, we have

√
nTL′θ̂�nT (γ) =

√
nTL′θ0 + L′

[
1
nT
H�nT (θ̄, γ)

]−1 1√
nT
S�θ,nT (θ0, γ)

= L′LC + L′Σ�−1
nT (γ, γ) 1√

nT
S�uθ,nT (θ0, γ)

+ L′Σ�−1
nT (γ, γ)[Σ�nT (γ, γ0)− Σ�nT (γ, γ)]LC + op(1)

⇒ L′S̄(γ) + Σ̄(γ)C.

Given the uniform convergence of θ̂�nT (γ) to θ0, it is also standard to show that

Q̂nT (γ) − Σ�−1(γ, γ)Ω�(γ, γ)Σ�−1(γ, γ)
p−→ 0, based on the proof of Theorem

2.2. Therefore, we have WnT (γ)⇒ W c(γ) by the CMT. �

Proof of Theorem 2.9: Let

S�bθ,nT (γ) =



1
σ2
0

∑T
t=1 X̃′t(γ)JnṼ

b
t (γ),

1
σ2
0

∑T
t=1[β′0K̃

′
t(λ0, γ) + Ṽ b′

t (γ)JnGt(λ0, γ)]JnṼ
b
t (γ)

−T̄
∑T

t=1 tr[JnGt(λ0, γ)],

1
σ2
0

∑T
t=1[β′0K̃

◦′
t (λ0, γ) + Ṽ b′

t (γ)Jndt(γ)Gt(λ0, γ)]JnṼ
b
t (γ)

−T̄
∑T

t=1 tr[Jndt(γ)Gt(λ0, γ)],

1
2σ4

0

∑T
t=1 Ṽ

b′
t (γ)JnṼ

b
t (γ)− (n−1)(T−1)

2σ2
0

.

Thus, it suffices to show that (a) 1√
nT
Ŝ�θ,nT (γ)− 1√

nT
S�bθ,nT (γ) = op(1), uniformly

in γ ∈ Γ, and (b) 1√
nT
S�bθ,nT (γ) ⇒ 1√

nT
S�uθ,nT (θ0, γ). The proof of Theorem 2.8

implies that θ̂�nT (γ)− θ0 = Op((nT )−1/2), uniformly in γ ∈ Γ. Thus, the proof

of (a) is straightforward by applying the mean value theorem. As for (b), we
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first note that ES�bθ,nT (γ) = 0 and 1
nT

VarS�bθ,nT (γ) = Ω�nT (γ, γ) + o(1), for any

γ. So 1√
nT
S�bθ,nT (γ) is a mean-zero Gaussian process with covariance function

kernel Ω�nT (γ, γ) asymptotically. This can be extended to any finite collection

of γ to yield the convergence of finite dimensional distributions. In addition,

the stochastic equicontinuity can also be established by similar arguments to

the proof of Lemma B.1. Therefore, we have 1√
nT
S�bθ,nT (γ)⇒ 1√

nT
S�uθ,nT (θ0, γ).

�

Appendix C: Supplementary proofs

Lemma C.1 and Lemma C.2 are first established to help prove the main

results.

Lemma C.1. There is a c1 < ∞ such that for γ 6 γ1 6 γ2 6 γ̄ and

1 6 r 6 4,

(i) Ehrit(γ1, γ2) 6 c1|γ2 − γ1|, (ii) Ef rit(γ1, γ2) 6 c1|γ2 − γ1|,

(iii) Ekrit(γ1, γ2) 6 c1|γ2 − γ1|, (iv) Elrit(γ1, γ2) 6 c1|γ2 − γ1|.

where hit(γ1, γ2) = ‖hit‖|dit(γ2, γ1)|, fit(γ1, γ2) = ‖hitvit‖|dit(γ2, γ1)|,

kit(γ1, γ2) = |v2
it−σ2

0||gii,t||dit(γ2, γ1)|, lit(γ1, γ2) = |vit|
∑n

j 6=i |gij,t||vjt||dit(γ2, γ1)|.

Proof: We only show (i), as the others can be shown similarly. We have

E[Zdit(γ)] = E[E(Z|qit)dit(γ)] =

∫ γ

−∞
E(Z|qit)dF (qit)

for any random variable Z, where F (·) denotes the CDF of qit. Hence, we

have d
dγ

E[Zdit(γ)] = E(Z|qit = γ)f(γ). Thus by the Jensen inequality and

Assumption B(iii), one has

d

dγ
E(‖hit‖rdit(γ)) = E(‖hit‖r|qjt = γ)f(γ) 6 [E(‖hit‖4|qit = γ)]r/4f(γ) 6 c1+r/4.

Since djt(γ2)− djt(γ1) equals either zero or one,

E[‖hit‖r|dit(γ2)− djt(γ1)|] = E[‖hit‖rdit(γ2)]− E[‖hit‖rdit(γ1)] 6 c1|γ2 − γ1|,

for some c1 < ∞, by a first-order Taylor series expansion, establishing (i).

Assume this c1 is large enough so that results (ii)-(iv) also hold.
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Lemma C.2. There is a c2 <∞ such that for all γ 6 γ1 6 γ2 6 γ̄,

E
∣∣ 1√

nT

∑n
i=1

∑T
t=1[h2

it(γ1, γ2)− Eh2
it(γ1, γ2)]

∣∣2 6 c2|γ2 − γ1|, (C.1)

E
∣∣ 1√

nT

∑n
i=1

∑T
t=1[f 2

it(γ1, γ2)− Ef 2
it(γ1, γ2)]

∣∣2 6 c2|γ2 − γ1|, (C.2)

E
∣∣ 1√

nT

∑n
i=1

∑T
t=1[k2

it(γ1, γ2)− Ek2
it(γ1, γ2)]

∣∣2 6 c2|γ2 − γ1|, (C.3)

E
∣∣ 1√

nT

∑n
i=1

∑T
t=1[l2it(γ1, γ2)− El2it(γ1, γ2)]

∣∣2 6 c2|γ2 − γ1|. (C.4)

Proof: We only show (C.4) when r = 2, as the proofs of the others are

similar and less difficult, using Lemma C.1. As lit(γ1, γ2) are independent

across t, we have

E
∣∣ 1√

nT

∑n
i=1

∑T
t=1[l2it(γ1, γ2)− El2it(γ1, γ2)]

∣∣2
= 1

nT

∑T
t=1 E

∣∣∑n
i=1[l2it(γ1, γ2)− El2it(γ1, γ2)]

∣∣2
= 1

nT

∑T
t=1

∑n
i=1

∑n
j=1{E[l2it(γ1, γ2)l2jt(γ1, γ2)]− El2it(γ1, γ2)El2jt(γ1, γ2)}

= 1
nT

∑T
t=1

∑n
i=1{El4it(γ1, γ2)− [El2it(γ1, γ2)]2}

+ 1
nT

∑T
t=1

∑n
i=1

∑n
j 6=i{E[l2it(γ1, γ2)l2jt(γ1, γ2)]− El2it(γ1, γ2)El2jt(γ1, γ2)}

≡ I1(γ1, γ2) + I2(γ1, γ2).

It is easy to verify that I1(γ1, γ2) 6 2
nT

∑T
t=1

∑n
i=1 E[l4it(γ1, γ2)] 6 2c1|γ2 − γ1|.

Further,

I2(γ1, γ2) =
l40
nT

∑T
t=1

∑n
i=1

∑n
j 6=i
∑n

l 6=i
∑n

k 6=i
∑n

m 6=j
∑n

p 6=j

{
E(|gil,t||gik,t||gjm,t||gjp,t|)

E|dit(γ2, γ1)|E|djt(γ2, γ1)|
[
E(|v2

it||v2
lt||v2

kt||v2
jt||v2

mt||v2
pt|)

− E(|v2
it||v2

lt||v2
kt|)E(|v2

jt||v2
mt||v2

pt|)
]}
.

Consider the term with highest order in error term, i.e., l = k = m = p, as the

analyses of other terms are similar and less difficult. This term equals to

l40
nT

∑T
t=1

∑n
i=1

∑n
j 6=i
∑n

l 6=i,j E(|gil,t|2|gjl,t|2)E(|dit(γ2, γ1)||djt(γ2, γ1)|)

E|v2
it|E|v2

jt|[E|v8
lt| − (E|v4

lt|)2]

6 l40
nT

∑T
t=1

∑n
i=1 E[(

∑n
l=1 |gil,t|2)(

∑n
j=1 |gjl,t|2)]E|dit(γ2, γ1)|E|v2

it|E|v2
jt|E|v8

lt|

6 c|γ2 − γ1|,

156



for some constant c <∞. This is because we have E(|dit(γ2, γ1)||djt(γ2, γ1)|) 6

E
1
2 |dit(γ2, γ1)|E 1

2 |djt(γ2, γ1)| = E|dit(γ2, γ1)| 6 c1|γ2−γ1| based on (i) of Lemma

C.1. Let c be large enough, and hence we can similarly show all the other non-

zero terms in I2(γ1, γ2) are also bounded by c|γ2−γ1|. Thus, the desired result

follows.

Proof of Lemma B.1: Firstly, we define J1,nT (γ) = 1√
nT

∑T
t=1H

◦′
t (γ)Vt

and J2,nT (γ) = 1√
nT

∑T
t=1[V ′t V◦t (γ)−σ2

0tr(dt(γ)Gt)]. As the analysis of Js,nT (γ)

is tedious but follows the similar arguments to that of Js,nT (γ) for s = 1, 2, we

show the uniform convergences of Js,nT (γ) instead. Lemma C.1 implies that

E[‖hit‖4dit(γ)] <∞ for each γ. Meanwhile, it is easy to see that {dt(γ)Gt} are

matrices with bounded row and column sum norms by Lemma A.1. Hence,

J1,nT (γ) and J2,nT (γ) both converge pointwise to a Gaussian distribution by the

central limit theorem (CLT) in Lemma A.3. This can be extended to any finite

collection of γ to yield the convergence of the finite-dimensional distributions.

Thus, it is left to establish the tightness of Js,nT (γ) for s = 1, 2. We do

this by verifying the conditions for Theorem 15.5 of Billingsley (1968). In the

following, we claim that there are finite constants c3 and c4 such that for all

γ1 ∈ Γ, η > 0 and ϕ > (nT )−1, if
√
nT > c4/η,

P

(
sup

γ16γ6γ1+ϕ
|Js,nT (γ)− Js,nT (γ1)| > η

)
6 c3ϕ

2η−4,

Now suppose the above results are ture for s = 1, 2. Then, fix ε > 0 and η > 0,

and let ϕ = εη4/c3. The above results imply there is a large enough nT such

that for any γ1 ∈ Γ,

P

(
sup

γ16γ6γ1+ϕ
|Js,nT (γ)− Js,nT (γ1)| > η

)
6 c3ϕ

2η−4 = ϕε,

establishing the conditions for Theorem 15.5 of Billingsley (1968).

Now, we turn to show the above claim. It is easy to see that that J1,nT (γ)−

J1,nT (γ1) = 1√
nT

∑n
i=1

∑T
t=1[hitvitdit(γ, γ1)] and J2,nT (γ)−J2,nT (γ1) = J21,nT (γ)−

J21,nT (γ1), where J21,nT (γ) = 1√
nT

∑n
i=1

∑T
t=1[(v2

it−σ2
0)gii,tdit(γ, γ1)] and J22,nT (γ)−

J22,nT (γ1) = 1√
nT

∑n
i=1

∑T
t=1[vit

∑n
j 6=i gij,tvjtdit(γ, γ1)]. Thus, their proofs are

similar using the results of Lemma C.1 and C.2. We show J1,nT (γ) for exam-

ple.
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Since ϕ > (nT )−1, we can let m be an integer satisfying nTϕ/2 6 m 6

nTϕ. Set ϕm = ϕ/m. For k = 1, . . . ,m + 1, set γk = γ1 + (k − 1)ϕm,

fit,k = fit(γk, γk+1), and fit,jk = fit(γk, γj). We let FnT,k = 1
nT

∑n
i=1

∑T
t=1 fit,k,

and thus for γk 6 γ 6 γk+1,

|J1,nT (γ)− J1,nT (γ1)| 6
√
nTFnT,k 6

√
nT |FnT,k − EFnT,k|+

√
nTEFnT,k.

It follows that

sup
γ16γ6γ1+ϕ

|J1,nT (γ)− J1,nT (γ1)|

6 max
16k6m

sup
γk6γ6γk+1

|J1,nT (γk)− J1,nT (γ1) + J1,nT (γ)− J1,nT (γk)|

6 max
26k6m+1

|J1,nT (γk)− J1,nT (γ1)|+ max
16k6m

√
nT |FnT,k − EFnT,k|

+ max
16k6m

√
nTEFnT,k. (C.5)

In the following analysis, we consider to bound each term of the above

equation to show the final result. For any 1 6 j < k 6 m + 1, by the

Burkholder’s inequality (see Hall and Heyde (1980, p.23)) for some constant

c̄1 <∞,

E|J1,nT (γk)− J1,nT (γj)|4

6 c̄1E| 1
nT

∑n
i=1

∑T
t=1 f

2
it,jk|2

= c̄1E| 1
nT

∑n
i=1

∑T
t=1(f 2

it,jk − Ef 2
it,jk) + 1

nT

∑n
i=1

∑T
t=1 Ef 2

it,jk|2.

By Minkowski’s inequality, (iv) of Lemma C.1 and (C.4), the above expression

is bounded by

c̄1

[
(E| 1

nT

∑n
i=1

∑T
t=1(f 2

it,jk − Ef 2
it,jk)|2)1/2 + c1(k − j)ϕm

]2
6 c̄1[( c2(k−j)ϕm

nT
)1/2 + c1(k − j)ϕm]2 6 c̄1(c1 +

√
c2)2(k − j)2ϕ2

m,

where we use the fact that (nT )−1 6 ϕm and (k − j)1/2 6 (k − j). Given the

above result, Theorem 12.2 of Billingsley (1968, p. 94) implies that there is a

finite constant c̄2 such that

P
(

max
26k6m+1

|J1,nT (γk)− J1,nT (γ1)| > η/3
)
6 81c̄2(mϕm)2η−4 = 81c̄2ϕ

2η−4,

(C.6)

which bounds the first term of (C.5).

Next, we consider the second term of (C.5). By Lemma C.1, Lemma C.2
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and (nT )−1 6 ϕm,

E|
√
nT (FnT,k − EFnT,k)|4 = E

∣∣ 1√
nT

∑n
i=1

∑T
t=1(fit,k − Efit,k)

∣∣4
6 1

(nT )2

∑n
i=1

∑T
t=1 Ef 4

it,k + 3[ 1
nT

∑n
i=1

∑T
t=1 Ef 2

it,k]
2

6 1
nT
c1ϕm + 3c2

1ϕ
2
m 6 (c1 + 3c2

1)ϕ2
m.

By Markov’s inequality, the above inequality implies

P
(

max
16k6m

√
nT |FnT,k − EFnT,k| > η/3

)
6
∑m

k=1 P
(√

nT |FnT,k − EFnT,k| > η/3
)

6 81m(c1 + 3c2
1)ϕ2

mη
−4 6 81(c1 + 3c2

1)ϕ2η−4,

where the final equality uses mϕm = ϕ and ϕm 6 ϕ.

Finally, we consider the last term of (C.5). By (iv) of Lemma C.1 and

ϕm 6 2
nT

,

√
nTEFnT,k =

√
nTEfit,k 6

√
nTc1ϕm 6 2c1(nT )−1/2.

Aggregating the above results for the three terms of (C.5), we have if

2c1(nT )−1/2 6 η/3,

P

(
sup

γ16γ6γ1+ϕ
|J1,nT (γ)− J1,nT (γ1)| > η

)
6 81(c̄2 + c1 + 3c2

1)ϕ2η−4. (C.7)

By setting c3 = 81(c̄2 + c1 + 3c2
1) and c4 = 6c1, we achieve the desired result. �

Proof of Lemma B.2: We show the result for FnT (v), as the other two

can be shown similarly. For notation simplicity, let mit = δ′0hit and mit(v) =

δ′0hitdit(γ0, γ0 + v/anT ). Hence,

FnT (v) = anT
nT

∑n
i=1

∑T
t=1 m

2
it(v)− anT

nT 2

∑n
i=1

∑T
k=1

∑T
t=1mit(v)mik(v)

− anT
n2T

∑n
i=1

∑n
j=1

∑T
t=1mit(v)mjt(v)

+ anT
n2T 2

∑n
i=1

∑n
j=1

∑T
k=1

∑T
t=1mit(v)mjk(v) ≡

∑4
s=1Fs,nT (v).

(C.8)

Consider the case where v is positive first. Observe that since γ1 = γ0 +

v/anT → γ0,

anTP(γ0 < qit 6 γ1) = v
P(qit 6 γ1)− P(qit 6 γ0)

γ1 − γ0

→ f |v| (C.9)

as simple size increases. Symmetrically, we can show that anTP(γ1 < qit 6

γ0) → f |v|, when v is negative. In the following argument, we only consider
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the case where v is positive, as the negative case can be study symmetrically.

Thus,

EF1,nT (v) = anT
nT

∑n
i=1

∑T
t=1 E[m2

it1{γ0 < qit 6 γ1}]

= 1
nT

∑n
i=1

∑T
t=1 E(m2

it|γ0 < qit 6 γ1)anTP(γ0 < qit 6 γ1)

→ 1
nT

∑n
i=1

∑T
t=1 E(m2

it|qit = γ0)f |v| = δ′0Mδ0f |v|.

Besides, by (C.1),

E|F1,nT (v)− EF1,nT (v)|2 6 a2nT
nT
‖δ0‖4E

∣∣ 1√
nT

∑n
i=1

∑T
t=1[h2

it(γ0, γ1)− Eh2
it(γ0, γ1)]

∣∣2
6 anT

nT
‖δ0‖4c2|v| = o(1).

Hence, the Markov’s inequality implies that F1,nT (v)− δ′0Mδ0f |v|
p−→ 0.

We next consider the second term of (C.8). By (C.9), for i 6= j or t 6= k,

anTP(γ0 < qit 6 γ1, γ0 < qjk 6 γ1) = anTP(γ0 < qit 6 γ1)P(γ0 < qjk 6 γ1) →

0. Hence,

EF2,nT (v) = anT
nT 2

∑n
i=1

∑T
k=1

∑T
t=1 E[mitmik1{γ0 < qit 6 γ1}1{γ0 < qik 6 γ1}]

= 1
nT 2

∑n
i=1

∑T
k=1

∑T
t=1 E(mitmik|γ0 < qit 6 γ1, γ0 < qik 6 γ1)anT

P(γ0 < qit 6 γ1, γ0 < qik 6 γ1)

= 1
nT 2

∑n
i=1

∑T
t=1 E(m2

it|γ0 < qit 6 γ1)anTP(γ0 < qit 6 γ1) + op(1)→ 1
T
δ′0Mδ0f |v|.

Similarly, we have

E|F2,nT (v)− EF2,nT (v)|2 6 EF2
2,nT (v) =

a2nT
n2T 4

∑n
i=1

∑T
t=1 Em4

it(v) + op(1)→ 0.

Hence, the Markov’s inequality implies F2,nT (v)− 1
T
δ′0Mδ0f |v|

p−→ 0.

Similarly, we have

anT
n2T

∑n
i=1

∑n
j=1

∑T
t=1 mit(v)mjt(v) = 1

n
δ′0Mδ0f |v|+ op(1)

p−→ 0

and

anT
n2T 2

∑n
i=1

∑n
j=1

∑T
k=1

∑T
t=1mit(v)mjk(v) = 1

nT
δ′0Mδ0f |v|+ op(1)

p−→ 0.

Since FnT (v) is monotonically increasing on [0, v̄] and decreasing on [−v̄, 0],

and the limit function is continuous, the convergence is uniform over Υ. �

Proof of Lemma B.3: The uniform convergence follows if
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(a) The finite dimensional distributions of RnT (v) converge to those of

B(v);

(b) RnT (v) is tight.

We show (a) first. According to Assumptions A to D, the conditions for

the CLT in Lemma A.3 are well established. Hence, for any given v ∈ Υ, we

have RnT (v)
D−→ N(0, σ2

R(v)), where σ2
R(v) is the variance of RnT (v). Then,

it is left to show σ2
R(v) = |v|Ξf . Let Π�t (v) = dt(γ0 + v/anT , γ0)Ct for Πt = Ht,

Rt or Gt. By Lemma B.5 of Yang (2015), we have

σ2
R(v) = σ2

0EFnT (v) + 2l0σ
3
0κ3T̄

anT
nT

∑T
t=1 E[δ′0H̃

�′
t (v)JnR̃

�
t (v)]

+ T̄ 2l20σ
4
0κ4

anT
nT

∑T
t=1R

�′
t (v)R�t (v)

+ T̄ l20σ
4
0
anT
nT

∑T
t=1 tr[JnG

�
t (v)(G�t (v)Jn + JnG

�
t (v))]

+ l20σ
4
0
anT
nT 3

∑T
t=1

∑T
k=1 tr[Jn(G�t (v)−G�k(v))JnG

�
t (v)] ≡

∑5
s=1 Cs.

By Lemma B.2, we have (C1 + C4) − σ2
0Ξ1f |v|

p−→ 0. Similar to the proof of

Lemma B.2, we can also show (C2 +C3)−σ2
0Ξ2f |v|

p−→ 0 and C5
p−→ 0. Hence,

we conclude that RnT (v)
D−→ N(0,Ξf |v|). This argument can be extended to

include any finite collection [v1, . . . , vk] to yield the convergence of the finite

dimensional distributions of RnT (v) to those of B(v).

We now show (b). By Lemma B.1, for all γj ∈ Γ, η > 0 and ϕ > (nT )−1,

there exist finite constant c3 and c4 such that if η > c4/
√
nT ,

P

(
sup

γj6γ6γj+ϕ
‖δ′0(J ?

1,nT (γ, γj)) + l0(J ?
2,nT (γ, γj))‖ > η

)
6 1

η4
c3ϕ

2. (C.10)

Fix ε > 0, η1 > 0. Set ϕ1 = εη4
1/c3, ϕ = ϕ1/anT ,η = η1/

√
anT and N1 =

(max(ϕ−1/2, c4/η1))1/τ . Hence, for nT > N1, we have ϕ = εη4

nTc3
(nT )2τ >

εη4

nTϕc3
= (nT )−1 and η > c4/

√
nT . Set γ1 = γ0 + v1/anT . By (C.10), for

nT > N1,

P

(
sup

v16v6v1+ϕ1

|RnT (v)−RnT (v1)| > η1

)
= P

(
sup

γ16γ6γ1+ϕ
‖δ′0J ?

1,nT (γ, γj) + l0J ?
2,nT (γ, γ1)‖ > η

)
6 1

η41
c3a

2
nT (ϕ1/anT )2 = ϕ1ε.

As discussed in the proof of Lemma B.1, this shows that (b) holds. �
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Proof of Lemma B.4: Firstly, we show (a) when r = 1, and the proofs

of the other results in (a)-(d) are similar and thus omitted. Note that D1,nT (γ)

is just a linear transformation of D11,nT (γ) = 1
nT

∑T
t=1 δ

′
0H

?′
t (γ0, γ)H?

t (γ0, γ)δ0.

It suffices to show

P

(
sup
γ∈NnT

D11,nT (γ)

|γ − γ0|
< (1− η)k

)
6 ε.

Without loss of generality (WLOG), we assume γ > γ0, as a symmetric argu-

ment can be established for the case of γ < γ0. Hence,

dED11,nT (γ)/dγ = δ′0M(γ)f(γ)δ0.

Since δ′0M(γ)f(γ)δ0 > 0 (Assumption B(v)) and δ′0M(γ)f(γ)δ0 is continuous

at γ0 (Assumption B(iv)), then there is a B sufficiently small such that

k = min
|γ−γ0|6B

δ′0M(γ)f(γ)δ0 > 0,

Because ED11,nT (γ0) = 0, a first-order Taylor series expansion about γ0

yields

inf
|γ−γ0|6B

ED11,nT (γ) > k|γ − γ0|. (C.11)

Then, (C.1) implies

E|D11,nT (γ)− ED11,nT (γ)|2 6 ‖δ0‖4E| 1
nT

∑n
i=1

∑T
t=1[h2

it(γ1, γ2)− Eh2
it(γ1, γ2)]|2

6 ‖δ0‖4(nT )−1c2|γ − γ0|. (C.12)

For any η and ε, set

b =
1− η/2
1− η

> 1, and (C.13)

v̄ =
8‖δ0‖4c2

εη2k2(1− 1/b)
. (C.14)

We may assume that (n, T ) is large enough so that v̄
anT
6 B, else the

inequality (a) is trival. For l = 1, 2, . . . , N̄ + 1, set γj = γ0 + v̄bj−1/anT ,

where N̄ is the integer such that γN̄ − γ0 = v̄bN̄−1/anT 6 B and γN̄+1 − γ0 =

v̄bN̄/anT > B. (Note that N̄ > 1 since v̄
anT
6 B.)
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Markov’s inequality, (C.11) and (C.12) yield

P

(
sup

16j6N̄

∣∣∣D11,nT (γj)− ED11,nT (γj)

ED11,nT (γj)

∣∣∣ > η

2

)
6

4

η2

N̄∑
j=1

E|D11,nT (γj)− ED11,nT (γj)|2

|ED11,nT (γj)|2

6
4

η2

N̄∑
j=1

‖δ0‖4(nT )−1c2

k2|γj − γ0|

6 (nT )−2τ 4‖δ0‖4c2

η2k2v̄

∞∑
j=1

1

bj−1

6
4‖δ0‖4c2

η2k2v̄(1− 1/b)
=
ε

2
, (C.15)

where the final equation is based on (C.14). Thus, with probability exceeding

1−2/ε,
∣∣∣ D11,nT (γj)

ED11,nT (γj)
−1
∣∣∣ 6 η

2
for all 1 6 j 6 N̄ . So for any γ ∈ [γ0 + v̄/anT , γ0 +

B], there is some 1 6 j 6 N̄ such that γj < γ < γj+1 and

D11,nT (γ)

|γ − γ0|
>

D11,nT (γj)

ED11,nT (γj)

ED11,nT (γj)

|γj+1 − γ0|
> (1− η

2
)
k|γj − γ0|
|γj+1 − γ0|

= (1− η

2
)
k

b

with probability exceeding 1−ε/2, according to (C.15). Based on the definition

of b, (C.13), the above inequality can be simplified as
D11,nT (γ)

|γ−γ0| > (1−η)k. Since

this event has probability exceeding 1− ε/2, we have established

P

(
inf

γ∈NnT

D11,nT (γ)

|γ − γ0|
< (1− η)k

)
6
ε

2
.

A symmetric argument applies to the case −B 6 γ − γ0 6 − v̄
anT

.

Secondly, we show the results in (e). WLOG, we assume γ > γ0. Let

γj = γ0 + v̄bj−1/anT for l = 1, 2, . . . , N̄ + 1, where b and N̄ are defined as

before. By definition, it is seen that there are at most logb(anTB/v̄) + 2 points

in the interval γ − γ0 ∈ [ v̄
anT

, B], i.e., N̄ 6 logb(anTB/v̄) + 2. Then, for

r = 1, 2, 3,

P

(
sup
γ∈NnT

‖Pr,nT (γ)‖
|γ − γ0|

> η

)
= P

(
max

16j6N̄

‖Pr,nT (γj)‖
|γj − γ0|

> η

)
6

N̄∑
j=1

P

(
‖Pr,nT (γj)‖
|γj − γ0|

> η

)
.

Following the proof of Lemma C.2, for any j, we have E‖Pr,nT (γj)‖2 6 c2
nT
|γj−

γ0|. Thus, Chebyshev inequality implies that

N̄∑
j=1

P
(‖Pr,nT (γj)‖
|γj − γ0|

> η
)
6

N̄∑
j=1

E‖Pr,nT (γj)‖2

|γj − γ0|2η2
6

∞∑
j=1

c2anT
nT v̄bj−1η2

6
c2(nT )−2τ

v̄(1− 1/b)η2
→ 0.

A symmetric argument establishes a similar result for γ < γ0.

Finally, we consider the two results in (f). As their proofs follow the same
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manner, we use general notation Js,nT (γ) to denote either of them. Fix η > 0.

For j = 1, 2, . . ., set γj − γ0 = v̄2j−1/anT , where v̄ < ∞ will be determined

later. By the similar analysis as used in the proof of Lemma B.1, for all γj ∈ Γ,

η > 0 and ϕ > (nT )−1, there exist c3, c4 <∞ such that if η > c4/
√
nT ,

E‖Js,nT (γj)− Js,nT (γ0)‖2 6 c1|γj − γ0|, and (C.16)

P

(
sup

γj6γ6γj+ϕ
‖Js,nT (γ)− Js,nT (γj)‖ > η

)
6 c3ϕ

2η−4. (C.17)

Next, we do the following decomposition

sup
γ∈NnT

‖Js,nT (γ)− Js,nT (γ0)‖
√
anT |γ − γ0|

= sup
j

sup
γj6γ6γj+1

‖Js,nT (γ)− Js,nT (γ0)‖
√
anT |γj − γ0|

|γj − γ0|
|γ − γ0|

6 sup
j

sup
γj6γ6γj+1

‖Js,nT (γ)− Js,nT (γj)‖√
anT |γj − γ0|

+ sup
j

‖Js,nT (γj)− Js,nT (γ0)‖
√
anT |γj − γ0|

. (C.18)

For the first term of (C.18), we set ϕj = γj+1−γj and ηj =
√
anT |γj−γ0|η/2,

and then

P

(
sup
j

sup
γj6γ6γj+1

‖Js,nT (γ)− Js,nT (γj)‖√
anT |γj − γ0|

> η/2

)
6

∞∑
j=1

P

(
sup

γj6γ6γj+ϕj
‖Js,nT (γ)− Js,nT (γj)‖ > ηj

)
.

Note that if v̄ > 1, then ϕj > 1/anT > 1/n. In addition , if v̄ > 12c1/η, then

ηj = v̄2j−2η/
√
anT > c4/

√
anT > c4/

√
nT . Thus, if v̄ > max(1, 12c1/η), using

(C.17), the right hand side of above inequality is bounded by

∞∑
j=1

c3ϕ
2
j

η4
j

=
∞∑
j=1

16c3|γj+1 − γj|2

a2
nT |γj − γ0|4η4

=
64c3

3v̄2η4
.

For the second term of (C.18), Markov’s inequality and (C.16) imply

P

(
sup
j

‖Js,nT (γj)− Js,nT (γ0)‖
√
anT |γj − γ0|

> η/2

)
6

∞∑
j=1

P

(
‖Js,nT (γj)− Js,nT (γ0)‖

√
anT |γj − γ0|

> η/2

)

6
∞∑
j=1

4E‖Js,nT (γj)− Js,nT (γ0)‖2

anT |γj − γ0|2η2

6
∞∑
j=1

4c1|γj − γ0|
anT |γj − γ0|2η2

=
8c1

v̄η2
.
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Together, if v̄ > max(1, 12c1/η) we have

P

(
sup
γ∈NnT

‖Js,nT (γ)− Js,nT (γ0)‖
√
anT |γ − γ0|

> η

)
6

64c3

3v̄2η4
+

8c1

v̄η2
,

which can be made arbitrarily small by picking suitably large v̄. Thus, results

in (f) hold. �

Appendices for Chapter 3

We collect all the technical proofs for the main results in Chapter 3 here.

Two appendices are provided in this part. Appendix A provides some basic

lemmas that are used in the other appendix. Appendix B presents proofs for

results in Section 3.2.

Appendix A: Some basic lemmas

The following lemmas are essential to the proofs of the main results in this

chapter.

Lemma A.1. (Kelejian and Prucha, 1999; Lee, 2002): Let {AN} and

{BN} be two sequences of N ×N matrices that are uniformly bounded in both

row and column sums. Let CN be a sequence of conformable matrices whose

elements are uniformly O(h−1
n ). Then,

(i) the sequence {ANBN} are uniformly bounded in both row and column

sums,

(ii) the elements of AN are uniformly bounded and tr(AN) = O(N), and

(iii) the elements of ANCN and CNAN are uniformly O(h−1
n ).

Lemma A.2. (Lemma A.3, Lee, 2004): For W and AnT (λ) defined in

Model (3.6), if ‖W‖ and ‖A−1
nT‖ are uniformly bounded, where ‖ · ‖ is a matrix

norm, then ‖A−1
nT (λ)‖ is uniformly bounded in a neighborhood of λ0.

Lemma A.3. Under Assumptions C-E, we have

(i) QD(ρ) is uniformly bounded in both row and column sums, uniformly

in ρ ∈ ∆ρ;

(ii) QZ(ρ) is uniformly bounded in both row and column sums, uniformly

in ρ ∈ ∆ρ.
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Proof : Under Assumptions C-E, it can be shown similarly to Lemma A.3

of Chapter 1. �

Lemma A.4. (Lemma A.4, Chapter 1): Suppose that {AN} and {BN}

are two sequences of N ×N matrices that are uniformly bounded in either row

or column sums. Under Assumptions C-E, tr[ANPZ(ρ)BN ] = O(1), uniformly

in ρ ∈ ∆ρ.

Lemma A.5. (Lemma B.5, Yang 2015): Let AN and DN be N × N

matrices, bN an N × 1 vector, and εN an N × 1 random vector of iid ele-

ments with mean zero, variance σ2, skewness γ, and excess kurtosis κ. Let

QN = ε′NANεN + b′NεN and SN = ε′NDNεN . Then

(i) E(QN) = σ2tr(AN) and E(SN) = σ2tr(DN),

(ii) Var(QN) = σ4tr[AN(AN + A′N)] + σ4κa′NaN + σ2b′NbN + 2σ3γa′NbN ,

(iii) Var(SN) = σ4tr[DN(DN +D′N)] + σ4κd′NdN ,

(iv) Cov(QN , SN) = σ4tr[AN(DN +D′N)] + σ4κa′NdN + σ3γb′NdN .

where aN and dN are column vectors of diagonal elements of AN and DN ,

respectively.

Lemma A.6. (Lemma A.3, Lin and Lee, 2010, extended): Let {AN} be

a sequence of N × N matrices such that either ‖AN‖∞ or ‖AN‖1 is bounded.

Suppose that the elements of AN are O(h−1
n ) uniformly in all i and j. Let

innovation vector V be defined as in Lemma A.5. Let cN be an N × 1 vector

with elements of uniform order O(h
−1/2
n ). Then

(i) E(V′ANV) = O( N
hn

), (ii) Var(V′ANV) = O( N
hn

),

(iii) V′ANV = Op(
N
hn

), (iv) V′ANV − E(V′ANV) = Op((
N
hn

)
1
2 ),

(v) c′NANV = Op((
N
hn

)
1
2 ), if ‖AN‖1 is bounded.

Appendix B: Proofs of the theorems

In proving the theorems, the following facts are used: (i) the eigenval-

ues of a projection matrix are either 0 or 1; (ii) the eigenvalues of a positive

definite (p.d.) matrix are strictly positive; (iii) γmin(A)tr(B) ≤ tr(AB) ≤

γmax(A)tr(B) for symmetric matrix A and positive semi-definite (p.s.d.) ma-

trix B; (iv) γmax(A+B) ≤ γmax(A) + γmax(B) for symmetric matrices A and

B; and (v) γmax(AB) ≤ γmax(A)γmax(B) for p.s.d. matrices A and B.
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Derivation of the AQS functions and the Hessian matrix:

Writing the key quantity in the concentrated quasi loglikelihood (3.9) as

Ṽ′(β, δ)Ṽ(β, δ) = [AnT (λ)Y − Zβ]′B′nT (ρ)QD(ρ)BnT (ρ)[AnT (λ)Y − Zβ], and

using the facts that for an invertible matrixA(λ), ∂
∂λ

ln |A(λ)| = tr[A−1(λ) ∂
∂λ
A(λ)]

and ∂
∂λ
A−1(λ) = −A−1(λ)[ ∂

∂λ
A(λ)]A−1(λ), it is straightforward to derive ScnT (θ).

However, the derivation of the ρ-component is complicated and some interme-

diate results are useful. First, ∂
∂ρ

[B′nT (ρ)QD(ρ)BnT (ρ)] = −M′QD(ρ)BnT (ρ)−

B′nT (ρ)QD(ρ)M+B′nT (ρ)Q̇D(ρ)QD(ρ)BnT (ρ)+B′nT (ρ)QD(ρ)Q̇D(ρ)BnT (ρ), where

Q̇D(ρ) = ∂
∂ρ
QD(ρ). With ∂

∂ρ
D(ρ) = −M[Dµ,D

?
γ] = −GnT (ρ)D(ρ), we have

Q̇D(ρ) = QD(ρ)GnT (ρ)PD(ρ) + PD(ρ)G′nT (ρ)QD(ρ). (B.1)

This leads to− ∂
∂ρ

[B′nT (ρ)QD(ρ)BnT (ρ)] = B′nT (ρ)QD(ρ)G◦nT (ρ)QD(ρ)BnT (ρ) ≡

Ψ(ρ), the ρ-component of the CQS function (3.10), and the ρ-component of

the AQS function (3.12):

S∗ρ(θ) = 1
2σ2 [AnT (λ)Y−Zβ]′Ψ(ρ)[AnT (λ)Y−Zβ]− tr[QD(ρ)GnT (ρ)]. (B.2)

This is expressed in terms of Ψ(ρ) and G◦nT (ρ) to facilitate the derivations of

the ρ-related terms of the Hessian matrix ∂
∂ρ

Ψ(ρ). Again, the (ρ, ρ) term of

∂
∂ρ

Ψ(ρ) is most complicate. For a comformable vector a, we have by taking use

of (B.1) and after some tedious algebra,

a′[ ∂
∂ρ

Ψ(ρ)]a = 2a′B′nT (ρ)QD(ρ)[G◦nT (ρ)PD(ρ)G◦nT (ρ)−G′nT (ρ)GnT (ρ)]QD(ρ)BnT (ρ)a.

(B.3)

With the set of AQS functions S∗nT (θ) given in (3.12) and (B.1)-(B.3), we

obtain the components of the Hessian matrix H∗nT (θ) = ∂
∂θ′
S∗nT (θ):
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H∗ββ(θ) = − 1
σ2Z′(ρ)Z(ρ),

H∗βσ2(θ) = − 1
σ4Z′(ρ)Ṽ(β, δ) = H∗′σ2β,

H∗βλ(θ) = − 1
σ2Z′(ρ)Y(ρ) = H∗′λβ,

H∗βρ(θ) = − 1
σ2Z′(ρ)G◦nT (ρ)Ṽ(β, δ) = H∗′ρβ,

H∗σ2σ2(θ) = − 1
σ6 Ṽ

′(β, δ)Ṽ(β, δ) + 1
2σ4N1,

H∗σ2λ(θ) = − 1
σ4Y′(ρ)Ṽ(β, δ) = H∗′λσ2 ,

H∗σ2ρ(θ) = − 1
2σ4 Ṽ

′(β, δ)G◦nT (ρ)Ṽ(β, δ) = H∗′ρσ2 ,

H∗λλ(θ) = − 1
σ2Y′(ρ)Y(ρ)− tr[QD(ρ)BnT (ρ)F2

nT (λ)B−1
nT (ρ)],

H∗λρ(θ) = − 1
σ2Y′(ρ)G◦nT (ρ)Ṽ(β, δ)− tr[FnT (λ)RnT (ρ)],

H∗ρλ(θ) = − 1
σ2Y′(ρ)G◦nT (ρ)Ṽ(β, δ),

H∗ρρ(θ) = 1
σ2 Ṽ

′(β, δ)R1N(ρ)Ṽ(β, δ)− tr[R2N(ρ)],

(B.4)

where Y(ρ) = QD(ρ)BnT (ρ)WY, RnT (ρ) = B−1
nT (ρ)PD(ρ)G◦nT (ρ)QD(ρ)BnT (ρ),

R1N(ρ) = G◦nT (ρ)PD(ρ)G◦nT (ρ) −G′nT (ρ)GnT (ρ) and R2N(ρ) = QD(ρ)GnT (ρ)

[PD(ρ)G◦nT (ρ) + GnT (ρ)].

Proof of Theorem 3.1: By theorem 5.9 of van der Vaart (1998), we

only need to show supδ∈δ
1
N1

∥∥S∗cnT (δ)− S̄∗cnT (δ)
∥∥ p−→ 0 under the assumptions

in Theorem 3.1. From (3.14) and (3.16), the consistency of δ̂∗nT follows from:

(a) infδ∈∆σ̄
∗2
nT (δ) is bounded away from zero,

(b) supδ∈∆

∣∣σ̂∗2nT (δ)− σ̄∗2nT (δ)
∣∣ = op(1),

(c) supδ∈∆
1
N1

∣∣Y′W′B′nT (ρ)V̂(δ)− E[Y′W′B′nT (ρ)V̄(δ)]
∣∣ = op(1),

(d) supδ∈∆
1
N1

∣∣V̂′(δ)GnT (ρ)V̂(δ)− E[V̄′(δ)GnT (ρ)V̄(δ)]
∣∣ = op(1).

Proof of (a). From (3.15), β̄∗nT (δ) = [Z′(ρ)Z(ρ)]−1Z′(ρ)QD(ρ)CnT (δ)E(Y)

as Z(ρ) = QD(ρ)BnT (ρ)Z and QD(ρ) is idempotent. Thus, V̄(δ) = QD(ρ)CnT (δ)Y−

Z(ρ)β̄∗nT (δ) = QZ(ρ)QD(ρ)CnT (δ)Y + PZ(ρ)QD(ρ)CnT (δ)[Y − E(Y)]. By the

orthogonality between QD(ρ) and PD(ρ) and using Y = A−1
nT (η + B−1

nTV), we
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have,

σ̄∗2nT (δ) = 1
N1

E[V̄′(δ)V̄(δ)]

= 1
N1

E[Y′Q(δ)Y] + 1
N1

E
{

[Y − E(Y)]′P(δ)[Y − E(Y)]
}

(B.5)

= 1
N1

E(Y)′Q(δ)E(Y) + 1
N1

E
{

[Y − E(Y)]′[Q(δ) + P(δ)][Y − E(Y)]
}

= 1
N1

E(Y)′Q(δ)E(Y) + 1
N1

E
{

[Y − E(Y)]′C′nT (δ)QD(ρ)CnT (δ)[Y − E(Y)]
}

= 1
N1
η′A′−1

nT Q(δ)A−1
nTη +

σ2
0

N1
tr[QD(ρ)CnT (δ)],

where Q(δ) = C′nT (δ)QD(ρ)QZ(ρ)QD(ρ)CnT (δ) and P(δ) = C′nT (δ)QD(ρ)PZ(ρ)

QD(ρ)CnT (δ). The first term can be written in the form of a′(δ)a(δ) for an

N × 1 vector function of δ, and thus is non-negative, uniformly in δ ∈ ∆. For

the second term,

σ2
0

N1
tr[QD(ρ)CnT (δ)] ≥ σ2

0

N1
γmin[CnT (δ)]tr[QD(ρ)] = σ2

0γmin[CnT (δ)]

≥ σ2
0γmax(A′nTAnT )−1γmax(B′nTBnT )−1γmin[A′nT (λ)AnT (λ)]γmin[B′nT (ρ)BnT (ρ)] > 0,

uniformly in δ ∈ ∆, by Assumption E(iii). It follows that infδ∈∆σ̄
∗2
nT (δ) > 0.

Proof of (b). From (3.13), β̂∗nT (δ) = [Z′(ρ)Z(ρ)]−1Z′(ρ)QD(ρ)CnT (δ)Y.

Then, V̂(δ) = QD(ρ)BnT (ρ)[AnT (λ)Y−Zβ̂∗nT (δ)] = QZ(ρ)QD(ρ)CnT (δ)Y and

σ̂∗2nT (δ) = 1
N1

Y′Q(δ)Y. From (B.5), σ̄∗2nT (δ) = 1
N1

E[Y′Q(δ)Y]+
σ2
0

N1
tr[C′−1

nT P(δ)C−1
nT ].

Thus,

σ̂∗2nT (δ)− σ̄∗2nT (δ) = 1
N1

[Y′Q(δ)Y − E(Y′Q(δ)Y)]− σ2
0

N1
tr[C′−1

nT P(δ)C−1
nT ].

For the second term, we have, 0 ≤ 1
N1
tr[C′−1

nT P(δ)C−1
nT ] ≤ 1

N1
γmax[CnT (δ)]γ2

max[QD(ρ)]

tr[PZ(ρ)] = o(1), because tr[PZ(ρ)] = k, γmax[QD(ρ)] = 1 and, by Assumption

E(iii), γmax[CnT (δ)] ≤ γmin(A′nTAnT )−1γmin(B′nTBnT )−1γmax[A′nT (λ)AnT (λ)]

γmax[B′nT (ρ)BnT (ρ)] < ∞. Therefore, one has supδ∈∆ |
σ2
0

N1
tr[C′−1

nT P(δ)C−1
nT ]| =

o(1). For the first term, we prove the uniform convergence: supδ∈∆ | 1
N1

[Y′Q(δ)Y−

E(Y′Q(δ)Y)]| = op(1), which follows from pointwise convergence of 1
N1

[Y′Q(δ)Y−

E(Y′Q(δ)Y)] to zero for each δ ∈ ∆ and the stochastic equicontinuity of
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1
N1

Y′Q(δ)Y, according to Andrews (1992). We have,

1
N1

[Y′Q(δ)Y − E(Y′Q(δ)Y)]

= 1
N1

(η + B−1
nTV)′A′−1

nT Q(δ)A−1
nT (η + B−1

nTV)

− 1
N1

E[(η + B−1
nTV)′A′−1

nT Q(δ)A−1
nT (η + B−1

nTV)]

= 2
N1

V′C−1′
nT Q(δ)A−1

nTη + 1
N1

[V′C−1′
nT Q(δ)C−1

nTV − σ2
0tr(C−1′

nT Q(δ)C−1
nT )].

By Assumption E, and Lemmas A.1 and A.3, one shows that C−1′
nT Q(δ)A−1

nTand

C−1′
nT Q(δ)C−1

nT are bounded in both row and column sum norms, for each δ ∈ ∆.

Further, the elements of η are uniformly bounded. Thus, the pointwise con-

vergence of the first term follows from Lemma A.6 (v), and the pointwise

convergence of the second term follows from Lemma A.6 (iv). Therefore,

1
N1

[Y′Q(δ)Y − E(Y′Q(δ)Y)]
p−→ 0, for each δ ∈ ∆.

Next, let δ1 and δ2 be in ∆. We have by the mean value theorem (MVT):

1
N1

Y′Q(δ2)Y − 1
N1

Y′Q(δ1)Y = 1
N1

Y′[ ∂
∂δ′

Q(δ̄)]Y(δ2 − δ1),

where δ̄ lies between δ1 and δ2. It follows that 1
N1

Y′Q(δ)Y is stochasti-

cally equicontinuous if supδ∈∆
1
N1

Y′[ ∂
∂$

Q(δ)]Y = Op(1), $ = λ, ρ. We only

show supδ∈∆
1
N1

Y′[ ∂
∂ρ

Q(δ)]Y = Op(1) as the proof of supδ∈∆
1
N1

Y′[ ∂
∂λ

Q(δ)]Y =

Op(1) is similar and simpler. Note that

∂
∂ρ

Q(δ) = −C′nT (δ)G′nT (ρ)QD(ρ)QZ(ρ)QD(ρ)CnT (δ)

+ C′nT (δ)Q̇D(ρ)QZ(ρ)QD(ρ)CnT (δ)

+ C′nT (δ)QD(ρ)Q̇Z(ρ)QD(ρ)CnT (δ) + C′nT (δ)QD(ρ)QZ(ρ)Q̇D(ρ)CnT (δ)

−C′nT (δ)QD(ρ)QZ(ρ)QD(ρ)GnT (ρ)CnT (δ),

where Q̇Z(ρ) = ∂
∂ρ
QZ(ρ). Using (B.1), we have after some algebra, Ż(ρ) =

∂
∂ρ
Z(ρ) = GnT (ρ)Z(ρ) where GnT (ρ) = PD(ρ)G′nT (ρ) − QD(ρ)GnT (ρ), which

gives

Q̇Z(ρ) = −PZ(ρ)G′nT (ρ)QZ(ρ)−QZ(ρ)GnT (ρ)PZ(ρ). (B.6)

For a comformable vector a and taking use (B.1) and (B.6), we have after some

algebra,

a′[ ∂
∂ρ

Q(δ)]a = −2a′Q̄(δ)a, (B.7)

where Q̄(δ) = Q′nT (δ)GnT (ρ)QnT (δ) and QnT (δ) = QZ(ρ)QD(ρ)CnT (δ). Rear-
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range Q̄(δ) = Q′nT (δ)MQ̄D(ρ)Q̄Z(ρ)AnT (λ), where Q̄D(ρ) = InT−D[D′(ρ)D(ρ)]−1

D′(ρ)BnT (ρ) and Q̄Z(ρ) = InT − Z[Z′(ρ)Z(ρ)]−1Z′(ρ)QD(ρ)BnT (ρ). Following

exactly the same way as we prove Lemma A.3, we show that Q̄D(ρ) and Q̄Z(ρ)

are also uniformly bounded in both row and column sums, uniformly in ρ ∈ ∆ρ.

This implies that both ‖Q̄(δ)‖1 and ‖Q̄(δ)‖∞ are bounded uniformly in δ ∈ ∆.

As Y = A−1
nT (η + B−1

nTV), Lemma A.1 and Lemma A.6 imply

1
N1

Y′[ ∂
∂ρ

Q(δ)]Y = − 2
N1

Y′Q̄(δ)Y = − 2
N1

(η + B−1
nTV)′A′−1

nT Q̄(δ)A−1
nT (η + B−1

nTV)

= − 2
N1
η′A′−1

nT Q̄(δ)A−1
nTη − 4

N1
η′A′−1

nT Q̄(δ)C−1
nTV − 2

N1
V′C′−1

nT Q̄(δ)C−1
nTV = Op(1),

uniformly in δ ∈ ∆. Thus, supδ∈∆
1
N1

Y′[ ∂
∂ρ

Q(δ)]Y = Op(1). Following the

similar analysis, one also has supδ∈∆
1
N1

Y′[ ∂
∂λ

Q(δ)]Y = Op(1). Therefore,

supδ∈∆ |σ̂∗2nT (δ)− σ̄∗2nT (δ)| = op(1).

Proof of (c). By the expressions of V̂(λ) and V̄(δ) given above, we have

1
N1

Y′W′B′nT (ρ)V̂(δ)− 1
N1

E[Y′W′B′nT (ρ)V̄(δ)]

= 1
N1

[Y′W′B′nT (ρ)QnT (δ)Y − E(Y′W′B′nT (ρ)QnT (δ)Y)]

− σ2
0

N1
tr[C′−1

nT W′B′nT (ρ)PnT (δ)C−1
nT ],

where PnT (δ) = PZ(ρ)QD(ρ)CnT (δ). The first term is similar in form to

1
N1

[Y′Q(δ)Y − E(Y′Q(δ)Y)] from (b), and its uniform convergence is shown

in a similar way. Furthermore, by Lemma A.4, it is easy to see that the second

term is o(1) uniformly in δ ∈ ∆.

Proof of (d). Again, using the expressions of V̄(δ) and V̂(δ), we have

1
N1

V̂′(δ)GnT (ρ)V̂(δ)− 1
N1

E[V̄′(δ)GnT (ρ)V̄(δ)]

= 1
N1

[Y′Q̄(δ)Y − E(Y′Q̄(δ)Y)]− σ2
0

N1
tr[C′−1

nT P ′nT (δ)G◦nT (ρ)QnT (δ)C−1
nT ]

− σ2
0

N1
tr[C′−1

nT P ′nT (δ)GnT (ρ)PnT (δ)C−1
nT ].

Therefore, the uniform convergence of the first term can also be shown similarly

as we do for 1
N1

[Y′Q(δ)Y − E(Y′Q(δ)Y)] since they have similar forms. By

Lemma A.4, the remaining two terms are easily seen to be o(1), uniformly in

δ ∈ ∆. �

Proof of Theorem 3.2: Applying the MVT to each element of S∗nT (θ̂∗nT ),
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we have

0 = 1√
N1
S∗nT (θ̂∗nT ) = 1√

N1
S∗nT (θ0) +

[
1
N1

∂
∂θ′
S∗nT (θ)

∣∣∣
θ=θ̄r in rth row

]√
N1(θ̂∗nT − θ0),

(B.8)

where {θ̄r} are on the line segment between θ̂∗nT and θ0. The result of the

theorem follows if

(a) 1√
N1
S∗nT (θ0)

D−→ N [0, limN1→∞ Γ∗nT (θ0)],

(b) 1
N1

[ ∂
∂θ′
S∗nT (θ)

∣∣
θ=θ̄r in rth row

− ∂
∂θ′
S∗nT (θ0)] = op(1), and

(c) 1
N1

[ ∂
∂θ′
S∗nT (θ0)− E( ∂

∂θ′
S∗nT (θ0))] = op(1).

Proof of (a). From (3.17), we see that the elements of S∗nT (θ0) are linear-

quadratic forms in V. Thus, for every non-zero (k+ 3)× 1 vector of constants

a, a′S∗nT (θ0) is of the form:

a′S∗nT (θ0) = b′nTV + V′ΦnTV − σ2tr(ΦnT ),

for suitably defined non-stochastic vector bnT and matrix ΦnT . Based on As-

sumptions A-F, it is easy to verify (by Lemma A.1 and Lemma A.3(i)) that

bnT and matrix ΦnT satisfy the conditions of the CLT for LQ form of Kelejian

and Prucha (2001), and hence the asymptotic normality of 1√
N1
a′S∗nT (θ0) fol-

lows. By Cramér-Wold device, 1√
N1
S∗nT (θ0)

D−→ N [0, limN1→∞ Γ∗nT (θ0)], where

elements of Γ∗nT (θ0) are given in (3.19).

Proof of (b). The Hessian matrix H∗nT (θ) = ∂
∂θ′
S∗nT (θ) is given in (B.4).

By Assumptions D and E, and Lemma A.1 and Lemma A.3(i), RnT (ρ0),

R1N(ρ0) and R2N(ρ0) are all bounded in row and column sum norms. With

these and Y = A−1
nT (η + B−1

nTV), Lemma A.6 leads to 1
N1
H∗nT (θ0) = Op(1).

Thus, 1
N1
H∗nT (θ̄) = Op(1) since θ̄

p−→ θ0 due to θ̂∗nT
p−→ θ0, where for ease

of exposition, H∗nT (θ̄) is used to denote ∂
∂θ′
S∗nT (θ)

∣∣
θ=θ̄r in rth row

. As σ̄2 p−→ σ2
0,

we have σ̄−r = σ−r0 + op(1), for r = 2, 4, 6. As σ−r appears in H∗nT (θ) multi-

plicatively, 1
N1
H∗nT (θ̄) = 1

N1
H∗nT (β̄, λ̄, ρ̄, σ2

0) + op(1). Thus, the proof of (b) is

equivalent to the proof of

1
N1

[H∗nT (β̄, λ̄, ρ̄, σ2
0)−H∗nT (θ0)]

p−→ 0,

or the proofs of 1
N1

[H∗SnT (β̄, λ̄, ρ̄, σ2
0)−H∗SnT (θ0)]

p−→ 0 and 1
N1

[H∗NSnT (δ̄)−H∗NSnT (δ0)]
p−→ 0, where H∗SnT and H∗NSnT denote, respectively, the stochastic and non-
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stochastic parts of H∗nT .

For the stochastic part, we see from (B.4) that all the components of

H∗SnT (β, λ, ρ, σ2
0) are linear, bilinear or quadratic in β and λ, but nonlinear in ρ.

Hence, with an application of the MVT on H∗SnT (β̄, λ̄, ρ̄, σ2
0) w.r.t ρ̄ ‘variable’,

we can write 1
N1

[H∗SnT (β̄, λ̄, ρ̄, σ2
0)−H∗SnT (θ0)] as

1
N1

[ ∂
∂ρ
H∗SnT (β̄, λ̄, ρ̇, σ2

0)](ρ̄− ρ0) + 1
N1

[H∗SnT (β̄, λ̄, ρ0, σ
2
0)−H∗SnT (θ0)],

where ρ̇ lies between ρ̄ and ρ0. Therefore, we only need to show that (i)

1
N1

∂
∂ρ
H∗SnT (β̄, λ̄, ρ̇, σ2

0) = Op(1), and (ii) 1
N1

[H∗SnT (β̄, λ̄, ρ0, σ
2
0)−H∗SnT (θ0)] = op(1).

We select one of the most complicated components, H∗Sρλ(θ) = − 1
σ2Y′(ρ)G◦nT (ρ)

Ṽ(β, δ), to illustrate the general idea in the proof. We have, after some alge-

bra,

1
N1

∂
∂ρ
H∗Sρλ(β̄, λ̄, ρ̇, σ2

0) = 2
N1σ2

0
Y′(ρ̇)R1N(ρ̇)QD(ρ̇)BnT (ρ̇)(AnT (λ̄)Y − Zβ̄),

1
N1

[H∗SnT (β̄, λ̄, ρ0, σ
2
0)−H∗SnT (θ0)] = 1

N1σ2
0
Y′G◦nTY(λ̄− λ0) + 1

N1σ2
0
Y′G◦nTZ(β̄ − β0).

By Lemmas A.1 and A.6, it is easy to show that 1
N1

Y′G◦nTY = Op(1) and

1
N1

Y′G◦nTZ = Op(1). Therefore, (ii) holds. To prove (i), we have

Y′(ρ̇)R1N(ρ̇)QD(ρ̇)BnT (ρ̇)(AnT (λ̄)Y − Zβ̄)

=(A−1
nTη + C−1

nTV)′HnT (ρ̇)[AnT (λ̄)A−1
nTη + AnT (λ̄)C−1

nTV − Zβ̄]

where HnT (ρ̇) = W′B′nT (ρ̇)QD(ρ̇)R1N(ρ̇)QD(ρ̇)BnT (ρ̇). Lemma A.2 implies

B−1
nT (ρ̇) embedded in HnT (ρ̇) is uniformly bounded in both row and column

sums since ρ̇ − ρ0 = op(1). Therefore, it is easy to see the above equation is

Op(N) by Lemma A.6 and then result (i) follows.

For the non-stochastic part, we illustrate the proof using the most compli-

cate λλ-term. Noting that the non-stochastic part is nonlinear in both λ̄ and

ρ̄, we have by the MVT,

1
N1

[H∗NSλλ (δ̄)−H∗NSλλ (δ0)] = − 1
N1
tr[QD(ρ̄)BnT (ρ̄)F2

nT (λ̄)B−1
nT (ρ̄)−QDBnTF2

nTB−1
nT ]

= − (λ̄− λ0) 1
N1
tr[2QD(ρ̇)BnT (ρ̇)F3

nT (λ̇)B−1
nT (ρ̇)]− (ρ̄− ρ0) 1

N1
tr[F2

nT (λ̇)RnT (ρ̇)],

where λ̇ lies between λ̄ and λ0 and ρ̇ lies between ρ̄ and ρ0. Again, by Lemma

A.2, we conclude that both A−1
nT (λ̇) and B−1

nT (ρ̇) are uniformly bounded in

both row and column sums. Therefore, the terms inside the trace both have

elements that are uniformly bounded. As δ̄−δ0 = op(1), we have 1
N1

[H∗NSλλ (δ̄)−
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H∗NSλλ (δ0)] = op(1).

Proof of (c). Since Y = A−1
nT (η + B−1

nTV), the Hessian matrix at true

θ0 are seen to be linear combinations of terms linear or quadratic in V, and

constants. The constant terms are canceled out. Other terms are shown to be

op(1) based on Lemma A.6. For example,

1
N1

[H∗ρρ(ρ0) − E(H∗ρρ(ρ0))] = 1
N1σ2

0
[V′QDR1NQDV − E(V′QDR1NQDV)] =

op(1). �

Proof of Corollary 3.1:

Note that Γ∗nT (θ̂∗nT ) = Γ∗nT (θ)|(θ=θ̂∗nT ,φ=φ̂∗nT ,κ3=κ̂3,nT ,κ4=κ̂4,nT ). As θ̂∗nT , κ̂3,nT

and κ̂4,nT are consistent estimators for θ0, κ3 and κ4, plugging these estima-

tors into Γ∗nT (θ) will not bring additional bias to the estimation of Γ∗nT (θ0).

However, due to incidental parameters problem, the µ̂∗nT component of φ̂∗nT is

not consistent for the estimation of µ0 when T is fixed. The estimation bias

caused by replacing φnT by φ̂∗nT can be derived as follow. Recall (3.8),

φ̂nT (β, δ) = [D′(ρ)D(ρ)]−1D′(ρ)BnT (ρ)[AnT (λ)Y − Zβ].

Thus, the unconstrained estimate of φ0 is just φ̂∗nT = φ̂nT (β̂∗nT , δ̂
∗
nT ). Note

AnT (λ̂∗nT )Y−Zβ̂∗nT = AnTY−Zβ0−WY(λ̂∗nT −λ0)−Z(β̂∗nT −β0). Applying

the MVT on each row of Dφ̂∗nT with respect to the ρ̂∗nT -element, we have,

Dφ̂∗nT = D[D′(ρ̂∗nT )D(ρ̂∗nT )]−1D′(ρ̂∗nT )BnT (ρ̂∗nT )[AnT (λ̂∗nT )Y − Zβ̂∗nT ] (B.9)

= B−1
nT (ρ̂∗nT )PD(ρ̂∗nT )BnT (ρ̂∗nT )[AnT (λ̂∗nT )Y − Zβ̂∗nT ]

= [B−1
nTPDBnT − RnT (ρ̄)(ρ̂∗nT − ρ0)][AnT (λ̂∗nT )Y − Zβ̂∗nT ]

= Dφ0 + B−1
nTPDV −B−1

nTPDBnT [WY(λ̂∗nT − λ0) + Z(β̂∗nT − β0)]

− RnT (ρ̄)[AnT (λ̂∗nT )Y − Zβ̂∗nT ](ρ̂∗nT − ρ0),

where ρ̄ lies between ρ̂∗nT and ρ0 and changes over the rows of RnT (ρ̄), and

RnT (ρ) is given below (B.4). From its expression, Γ∗nT (θ) is seen to have com-

ponents that are either linear or quadratic in Dφ. Let dnT be a non-stochastic

nT -vector with elements being of uniform order O(1) or O(h−1
n ). Using (B.9),
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the terms of Γ∗nT (θ̂∗nT ) linear in Dφ̂∗nT can be represented as

1
N1
d′nTDφ̂∗nT

= 1
N1
d′nTDφ0 + 1

N1
d′nTB−1

nTPDV − 1
N1
d′nTB−1

nTPDBnT [WY(λ̂∗nT − λ0) + Z(β̂∗nT − β0)]

+ 1
N1
d′nTRnT (ρ̄)[AnT (λ̂∗nT )Y − Zβ̂∗nT ](ρ̂∗nT − ρ0) = 1

N1
d′nTDφ0 + op(1),

where the last equation holds because of the consistency of θ̂∗nT and Lemma

A.6, using Y = A−1
nT (η + B−1

nTV). Hence, we can conclude that the terms of

Γ∗nT (θ0) linear in φ0 can be consistently estimated by simply replacing φ0 with

φ̂∗nT .

The only term that is quadratic in φ0 is contained in Γ∗λλ(θ0), which is

1
N1σ2

0
φ′0D′P ′2P2Dφ0. Its plug-in estimator is 1

N1σ̂∗2nT
φ̂∗′nTD′(ρ̂∗nT )P ′2(δ̂∗nT )P2(δ̂∗nT )D(ρ̂∗nT )φ̂∗nT .

Using (B.9), θ̂∗nT − θ0 = op(1) and Lemma A.6, we show that this estimator is

biased/inconsistent:

1
N1σ̂∗2nT

φ̂∗′nTD′(ρ̂∗nT )P ′2(δ̂∗nT )P2(δ̂∗nT )D(ρ̂∗nT )φ̂∗nT

= 1
N1σ̂∗2nT

φ′0D′(ρ̂∗nT )P ′2(δ̂∗nT )P2(δ̂∗nT )D(ρ̂∗nT )φ0

+ 1
N1σ̂∗2nT

V′PDB−1′
nT B′nT (ρ̂∗nT )P ′2(δ̂∗nT )P2(δ̂∗nT )BnT (ρ̂∗nT )B−1

nTPDV + op(1)

= 1
N1σ2

0
φ′0D′P ′2P2Dφ0 + 1

N1σ2
0
V′PDP ′2P2PDV + op(1)

= 1
N1σ2

0
φ′0D′P ′2P2Dφ0 + 1

N1
tr[P ′2P2PD] + op(1).

We see that the bias term, 1
N1
tr[P ′2P2PD], involves only the common parame-

ters that can be consistently estimated. Thus, a bias correction can easily be

made. Define

Bias∗λλ(δ) = 1
N1
tr[P ′2(δ)P2(δ)PD(ρ)]. (B.10)

This gives the bias matrix of Γ∗nT (θ̂∗nT ), which is a matrix of the same dimension

as Γ∗nT (θ̂∗nT ), and has the sole non-zero element Bias∗λλ(δ0) corresponding to the

Γ∗λλ(θ̂
∗
nT ) component. �

Proof of Corollary 3.2.

Proof of (i). Note: V̂ = QD(ρ̂∗nT )BnT (ρ̂∗nT )[AnT (λ̂∗nT )Y − Zβ̂∗nT ], V =

BnT (AnTY− η), Ṽ = QDV and with respective elements {v̂j}, {vj} and {ṽj},

and QD has elements {qjh}, j, h = 1, . . . , N , where j and h are the combined
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indices for i = 1, . . . , sg, g = 1, . . . , G and t = 1, . . . , T .

Consistency of κ̂3,nT . As σ̂∗nT − σ0 = op(1) and ρ̂∗nT − ρ0 = op(1), the

denominators of κ̂3,nT and κ3 agree asymptotically. Thus, κ̂3,nT is consistent

if 1
nT

∑N
j=1[v̂3

j − E(ṽ3
j )]

p−→ 0, or

(a) 1
nT

∑N
j=1[ṽ3

j − E(ṽ3
j )]

p−→ 0, and (b) 1
nT

∑N
j=1(v̂3

j − ṽ3
j )

p−→ 0.

To prove (a), note that ṽj =
∑N

h=1 qjhvh. Thus, we have,

1
nT

∑N
j=1[ṽ3

j − E(ṽ3
j )]

= 1
nT

∑N
j=1

∑N
h=1 q

3
jh[v

3
h − E(v3

h)] + 3
N

∑N
j=1

∑N
l=1

∑N
m 6=l
m=1

q2
jlqjmv

2
l vm

+ 6
N

∑N
j=1

∑N
m=1

∑N
l 6=m
l=1

∑N
h 6=m,l
h=1

qjmqjlqjhvmvlvh ≡ K1 +K2 +K3.

First, consider K1 term. By Lemma A.3, QD is uniformly bounded in both

row and column sums. This implies that the elements of QD are uniformly

bounded. Therefore, there exists a constant q̄ such that |qjh| ≤ q̄ for all j

and h. Given these, we have
∑N

j=1 q
3
jh ≤

∑N
j=1 |qjh|3 ≤ q̄2

∑N
j=1 |qjh| < ∞.

Also note {vi} are iid by Assumption A. Thus, Khinchine’s weak law of large

number (WLLN) (Feller, 1968, pp. 243-244) implies that K1 converges to zero

in probability as sample size increases.

For the other two terms, we have by switching the order of summations

when needed,

K2 = 3
N

∑N
j=1

∑N
l=1

∑N
m 6=l
m=1

q2
jlqjm(v2

l − σ2)vm + 3
N

∑N
j=1

∑N
l=1

∑N
m 6=l
m=1

q2
jlqjmσ

2vm,

= 3
N

∑N
m=1(v2

m − σ2)(
∑N

j=1

∑m−1
l=1 q2

jmqjlvl)

+ 3
N

∑N
m=1 vm[

∑N
j=1

∑m−1
l=1 q2

jlqjm(v2
l − σ2)],

+ 3
N

∑N
m=1

∑N
j=1

∑N
l6=m
l=1

q2
jlqjmσ

2vm,

K3 = 18
N

∑N
m=1 vm(

∑N
j=1

∑m−1
l=1

∑m−1
h 6=l
h=1

qjmqjlqjhvlvh) ≡ 1
nT

∑N
m=1 g4,m.

Therefore, we have K2 = 1
nT

∑N
m=1(g1,m+g2,m+g3,m) and K3 = 1

nT

∑N
m=1 g4,m,
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where

g1,m = 3(v2
m − σ2)

∑N
j=1

∑m−1
l=1 q2

jmqjlvl,

g2,m = 3vm
∑N

j=1

∑m−1
l=1 q2

jlqjm(v2
l − σ2),

g3,m = 3
∑N

j=1

∑N
l 6=m
l=1

q2
jlqjmσ

2vm,

g4,m = vm
∑N

j=1

∑m−1
l=1

∑m−1
h 6=l
h=1

qjmqjlqjhvlvh.

Let {Gm} be the increasing sequence of σ-fields generated by (v1, · · · , vj, j =

1, · · · ,m), m = 1, · · · , N . Then, E[(g1,m, g2,m, g3,m, g4,m)|Gm−1] = 0; hence,

{(g1,m, g2,m, g3,m, g4,m)′,Gm} form a vector martingale difference (M.D.) se-

quence. As QD is bounded in row and column sum norms, by Assumption

A, it is easy to see that E|gs,m|1+ε < ∞, for s = 1, 2, 3, 4 and ε > 0. Hence,

{g1,m}, {g2,m}, {g3,m} and {g4,m} are uniformly integrable, and the WLLN of

Davidson (1994, Theorem 19.7) applies to give K2
p−→ 0 and K3

p−→ 0.

To prove (b), using the notation Ṽ(ξ) = QD(ρ)BnT (ρ)[AnT (λ)Y − Zβ]

in (3.9) where ξ = (β′, δ′)′, we have Ṽ = Ṽ(ξ0) and V̂ = Ṽ(ξ̂∗nT ). Let S(ξ) =

∂
∂ξ′

Ṽ(ξ), we have

S(ξ) = {−Z(ρ), −Y(ρ), [Q̇D(ρ)BnT (ρ)−QD(ρ)M][AnT (λ)Y − Zβ]},

where expressions of Y(ρ) and Q̇D(ρ) are in (B.1) and (B.4), respectively. Let

s′j(ξ) be the jth row of S(ξ). We have by the MVT, for each j = 1, 2, . . . , N ,

v̂j ≡ ṽj(ξ̂
∗
nT ) = ṽj(ξ0) + s′j(ξ̄)(ξ̂

∗
nT − ξ0) = ṽj + ψ′j(ξ̂

∗
nT − ξ0) + op(‖ξ̂∗nT − ξ0‖),

(B.11)

where ξ̄ lies between ξ̂∗nT and ξ0, and ψ′j = plimN1→∞s
′
j(ξ̄), which is easily

shown to be Op(1) as follow. Consider the first k (the number of regressors)

elements of ψ′j first. They are the limits of the jth row of −Z(ρ̄), which

are just the jth row of −Z because ρ̄
p−→ ρ0, implied by ρ̂∗nT − ρ0 = op(1).

Hence, we conclude that the first k elements of ψ′j are O(1), for each j =

1, 2, . . . , N . For the remaining two elements in each ψ′j, they are the limits

of elements from the last two columns of S(ξ̄). It is easy to see the limits of

the last two columns of S(ξ̄) are just −Y and [Q̇DBnT −QDM][AnTY−Zβ0].

Using Y = A−1
nTη + C−1

nTV, we have −Y = P2BnTη + P2V and [Q̇DBnT −

QDM][AnTY − Zβ0] = [Q̇DBnT − QDM]Dφ0 + [Q̇DBnT − QDM]B−1
nTV. By
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Lemma A.1, we have the elements of P2BnTη and [Q̇DBnT − QDM]Dφ0 are

uniformly bounded, and P2 and [Q̇DBnT − QDM]B−1
nT are uniformly bounded

in both row and column sum norms. Hence, it is easy to see each element of

−Y and [Q̇DBnT − QDM][AnTY − Zβ0] are Op(1), i.e., the last two elements

in ψ′j are also Op(1), for each j = 1, 2, . . . , N .

As ṽj = Op(1), ψ′j = Op(1) and ξ̂∗nT − ξ0 = Op(
1√
N1

), we have by (B.11),

v̂3
j = ṽ3

j + 3ṽ2
jψ
′
j(ξ̂
∗
nT − ξ0) + op(‖ξ̂∗nT − ξ0‖). It follows that

1
nT

∑N
j=1(v̂3

j − ṽ3
j ) = 3

N

∑N
j=1 ṽ

2
jψ
′
j(ξ̂
∗
nT − ξ0) + op(‖ξ̂∗nT − ξ0‖)

= 3σ2

N

∑N
j=1(

∑N
k=1 q

2
jkψ

′
j)(ξ̂

∗
nT − ξ0) + op(‖ξ̂∗nT − ξ0‖) = op(1),

as 1
nT

∑N
j=1(

∑N
k=1 q

2
jkψ

′
j) = (

∑N
k=1 q

2
jk)

1
nT

(
∑N

j=1 ψ
′
j) = O(1).

Consistency of κ̂4,nT . As σ̂∗nT − σ0 = op(1) and ρ̂∗nT − ρ0 = op(1), the

result follows if 1
nT

∑N
j=1[v̂4

j − E(ṽ4
j )]

p−→ 0. This amounts to show that

(c) 1
nT

∑N
j=1[ṽ4

j − E(ṽ4
j )]

p−→ 0 and (d) 1
nT

∑N
j=1(v̂4

j − ṽ4
j )

p−→ 0.

To prove (c), we have

1
nT

∑N
j=1 ṽ

4
j − 1

nT

∑N
j=1 E(ṽ4

j )

= 1
nT

∑N
j=1

∑N
h=1 q

4
jh[v

4
h − E(v4

h)] + 3
N

∑N
j=1

∑N
l=1

∑N
m 6=l
m=1

q2
jlq

2
jm(v2

l v
2
m − σ4)

+ 4
N

∑N
j=1

∑N
l=1

∑N
m 6=l
m=1

q3
jlqjmv

3
l vm + 6

N

∑N
j=1

∑N
l=1

∑N
m 6=l
m=1

∑N
h 6=m,l
m=1

q2
jlqjmqjhv

2
l vmvh

+ 1
nT

∑N
j=1

∑N
l=1

∑N
m 6=l
m=1

∑N
h 6=m,l
m=1

∑N
p6=m,l,h
m=1

qjlqjmqjhqjpvlvmvhvp ≡
∑5

r=1Rr.

By using WLLN of Davidson (1994, Theorem 19.7) for M.D. arrays as in

the proof of (a), we have Rr = op(1) for r = 1, 3, 4, 5. For R2, noting that

v2
l v

2
m − σ4 = (v2

l − σ2)(v2
m − σ2) + σ2(v2

m − σ2) + σ2(v2
l − σ2), we have

R2 = 6
N

∑N
l=1(v2

l − σ2)[
∑N

j=1

∑l−1
m=1 q

2
jlq

2
jm(v2

m − σ2)]

+ 6
N

∑N
l=1[
∑N

j=1

∑N
m 6=l
m=1

q2
jlq

2
jmσ

2(v2
l − σ2)] ≡ 6

N

∑N
l=1(fl + f2,l).

Since E[fl|Gl−1] = 0 and {f2,l} are independent, it is easy to see they both form

an M.D. sequence. In addition, it is easily seen that E|fs,l|1+ε <∞, for s = 1, 2

and ε > 0, so that {fl} and {f2,l} are uniformly integrable. Therefore, the

WLLN of Davidson (1994, Theorem 19.7) also implies that 6
N

∑N
l=1 fl = op(1)

and 6
N

∑N
l=1 f2,l = op(1).
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To prove (d), we have by (B.11) v̂4
j = ṽ4

j +4ṽ3
jψ
′
j(ξ̂
∗
nT−ξ0)+op(‖ξ̂∗nT−ξ0‖).

It follows that

1
nT

∑N
j=1(v̂4

j − ṽ4
j ) = 4

N

∑N
j=1 ṽ

3
jψ
′
j(ξ̂
∗
nT − ξ0) + op(‖ξ̂∗nT − ξ0‖)

= 4σ3κ3
N

∑N
j=1(

∑N
k=1 q

3
jkψ

′
j)(ξ̂

∗
nT − ξ0) + op(‖ξ̂∗nT − ξ0‖) = op(1).

Proof of (ii). The consistency of Σ̂∗nT to Σ∗nT (θ0) can be shown similarly

as what we do in the proof of Theorem 3.2 for results (b) and (c). For Γ̂∗nT −

Γ∗nT (θ0)
p−→ 0, we only need to show that Bias∗(δ̂∗nT )−Bias∗(δ0) = op(1), based

on Corollary 3.1. That is to show

1
N1
{tr[P ′2(δ̂∗nT )P2(δ̂∗nT )PD(ρ̂∗nT )]− tr(P ′2P2PD)} = op(1),

which can be easily proved by using the MVT as we do for 1
N1

[H∗NSλλ (δ̄) −

H∗NSλλ (δ0)] in the proof of Theorem 3.2 (b). �
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