Singapore Management University

Institutional Knowledge at Singapore Management University

Dissertations and Theses Collection (Open

Access) Dissertations and Theses

7-2022

Finding top-m leading records in temporal data

Yiyi WANG
Singapore Management University, yiyiwang.2019@phdcs.smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/etd_coll

O‘ Part of the Databases and Information Systems Commons, and the Data Storage Systems Commons

Citation
WANG, Yiyi. Finding top-m leading records in temporal data. (2022).
Available at: https://ink.library.smu.edu.sg/etd_coll/422

This Master Thesis is brought to you for free and open access by the Dissertations and Theses at Institutional
Knowledge at Singapore Management University. It has been accepted for inclusion in Dissertations and Theses
Collection (Open Access) by an authorized administrator of Institutional Knowledge at Singapore Management
University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd
https://ink.library.smu.edu.sg/etd_coll?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F422&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F422&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/261?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F422&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

FINDING TOP-M LEADING RECORDS IN

TEMPORAL DATA

WANG YIYI

SINGAPORE MANAGEMENT UNIVERSITY

2022

Finding Top-m Leading Records in Temporal Data

WANG Yiyi

Submitted to School of Computing and Information
Systems in partial fulfillment of the requirements for the
Degree of Master of Philosophy in Information Systems

Master’s Thesis Committee:

Kyriakos MOURATIDIS (Supervisor / Chair)
Associate Professor of Information Systems
Singapore Management University

FANG Yuan
Assistant Professor of Computer Science
Singapore Management University

LI Yuchen
Assistant Professor of Computer Science
Singapore Management University

Singapore Management University
2022
Copyright (2022) WANG Yiyi

I hereby declare that this Master’s thesis is my original
work and it has been written by me in its entirety.
I have duly acknowledged all the sources of information
which have been used in this thesis.

This Master’s thesis has also not been submitted for any
degree in any university previously.

24

WANG Yiyi
7 July 2022

Finding Top-m Leading Records in Temporal Data

WANG Yiyi

ABSTRACT

A traditional top-k query retrieves the records that stand out at a certain point in time.
On the other hand, a durable top-k query considers how long the records retain their
supremacy, i.e., it reports those records that are consistently among the top-k in a
given time interval. In this thesis, we introduce a new query to the family of durable
top-k formulations. It finds the top-m leading records, i.e., those that rank among the
top-k for the longest duration within the query interval. Practically, this query assesses
the records based on how long they stay ahead of competition. We perform a case
study with real NBA data to demonstrate the value of the query. In addition, we
present a meaningful problem variant for the special scenario where the data are
sparse. We propose a first-cut algorithm for solving the problem, which we later
enhance with an early termination condition. We compare the two versions of the
algorithm and demonstrate their practicality using synthetic and real datasets.

TABLE OF CONTENTS

U

INTRODUCTION ...ttt sttt sttt st sbesresre s ne e e e e e enesnesrennen 1
RELATED WORK ..ottt sttt be s s s 4
PROPOSED SOLUTIONccutitiiiieteinteesesese ettt e b sresre s s sneseesesneenes 6
A MEANINGFUL VARIANT ..ottt sttt s s seesrennens 10
NBA CASE STUDY .ottt ettt sb e sr e sa e eesesnesnennes 12
EXPERIMENTS ...ttt sttt st s s s ene e 13
6.1 EXperimental SELHINEccecvererierieiieie sttt sttt st 13
6.2 Experimental RESUILScccoviriiiiiiiieie sttt st 14
6.2.1 VAFYIRG T ettt sttt 14
6.2.2 VAPVITG A oottt st sttt st sttt sbeeeesbeennens 15
6.2.3 VAPVITLZ K vttt sttt 16
6.2.4 VAFYIRG T .ottt et st st e e 17
6.2.5 Varying number Of tiMESIAMPScccuevvueeesierieeiesiesiesiesieeniesteentesieseessesseensens 18
6.2.6 Experiments With NBA dQtASetccouveeeiieecininienenieseseesiesiessesiessenens 19
FUTURE WORK ...ttt ettt b s s 21

ACKNOWLEDGEMENT

I would first like to express my deepest gratitude to my advisor Professor Dr.
Kyriakos MOURATIDIS for the continuous support of my research. Your patience,
enthusiasm and immense knowledge have inspired and motivated me throughout the
whole journey. Your guidance has helped me in all the time of research and writing of
this thesis. Your advice on both my research and my life have been invaluable.

Besides my advisor, I would also like to thank my committee members, Professor Dr.
FANG Yuan and Professor Dr. LI Yuchen for serving on my thesis committee. Your
support, brilliant comments and questions have made my defense an enjoyable
moment. Your suggestions have brought in threads of thought that made my thesis so
much richer.

Finally, I must express my very profound gratitude to my family for providing me

with unfailing support and continuous encouragement throughout my life.

1. INTRODUCTION

Top-k queries are well-studied to retrieve a small set of records that best match users’
preferences, from a large database. Temporal data, referring to objects that change
over time, are pervasive in a variety of domains. Therefore, researchers devote many
efforts to query such data recently. In this case, traditional top-k queries only filter the
records standing out at a certain point-in-time without considering how long they
retain the supremacy. Extending top-k search to temporal databases, durable top-k
queries are proposed to return the top objects with durable quality over time. In
general, a durable top-k query finds the set of objects that are consistently in the top-k
results throughout a given time interval. Durable top-k queries have many variants
and applications. For example, with stock price data, a durable top-k query may
retrieve the stocks whose price-to-earning ratios are among the lowest 10 in the tech
industry for more than 80% of the time over the past year [3]. As a more complex
example, with NBA player performance statistics, a recent paper extends durable
queries to support the durability claims, such as: “Since 2006, Kobe’s 81 points

scoring performance has yet to be broken as of today.” [5]

In this paper, we consider the problem of finding the top-m leading records, which is a
variant of durable top-k query with practical significance. When we assess the ability
of some people or the value of products, their ranking is definitely the most
straightforward metric. However, it is also important for the top-ranking records to

stay ahead. For example, some advertising statement emphasizes, “The product is

1

among the top-3 for continuous 10 years”, to show that it has the leading position in
the industry. In real life, we always recognize a product to be the market leader when
it is always among the top few in the industry. For this paper, in order to find the
leading records, given a historical temporal dataset, we are intended to retrieve the
records that rank among the top & for the longest duration within the query interval. A

more formal problem definition is given below.

PROBLEM DEFINITION. Consider a dataset P with n records, where each record p
€ P has d time-varying attributes, and a discrete time domain of interest 7' = {1,
2, ..., I}. At a timestamp ¢#;, a top-k query asks for the k£ records having the highest
score with respect to a user specified monotone scoring function f. For dataset P,
given a query interval I: [t, t.] € T, an integer k and m as inputs, a top-m leading
records query returns the set of m records, remaining in the top-k between ¢, and ¢. for

the longest duration (i.e., for the most timestamps) in /.

The top-m leading records query has numerous practical applications in different

domains, as illustrated next.

EXAMPLE 1. For some review and rating applications (e.g., Yelp, Agoda, etc.),
multi-criteria ratings of different objects are updated from time to time. Each user can
assign a set of weights representing his/her own preference on the attributes using

preference tools (e.g., a sliding bar). With weighted sum scoring function, it is easy to

find the best choice at that time for different users. However, some frauds (e.g., click
farming') have huge impact on the outcome of this approach. In order to have an
immediate effect on the ratings, a large number of fake reviews are always generated
together within a short period. In this case, a top-m leading records query only
recommends users the choices which keep ranking at the top, and filter out those
short-lived sensations. The result ranking is hardly affected by temporary malicious

manipulation.

EXAMPLE 2. Estimating the value of different stocks is always worth studying for
investors. By integrally analyzing multiple attributes (e.g., open price, close price,
volume, etc.), investors can evaluate a stock more accurately. Besides, it is also a wise
choice to invest in stable stocks, which keep superior to others for the most time.

Therefore, the top-m leading records query caters well for such application.

EXAMPLE 3. NBA statistics (e.g., points, rebounds, assist, blocks, and steals per
game) are fairly intuitive to estimate various abilities of players. However, such
simple data are not enough to evaluate a player and his influence over years
comprehensively. Therefore, given the NBA statistics for recent years, a top-m leading
records query finds the leading players who have the highest aggregate scores for the
most time. Such query identifies those players with a certain dominance over world

basketball.

1 Click farming is typically launched by multiple fake or compromised accounts which are used to generate fake
reviews to boost or diminish the ratings of listed products and services [14].
3

2. RELATED WORK

A time series is a sequence of real numbers, each number representing a value at a
time point. They have been studied in various database applications, while relatively
little efforts have been made for time series of multidimensional data. However, such
type of data are currently of growing importance in a wide variety of applications.
With major time series related tasks including indexing, clustering, classification,
prediction, anomaly detection, and so on, time series data is related to every field of

human activities [15, 16, 17].

Most existing related papers focus on the similarity search problem, which searches a
database to find multidimensional data sequences that are similar to a given query
sequence [7]. Several works propose techniques to compute the similarity between
trajectories of moving objects [8, 9], which is the basis of many interesting
applications (e.g., determining migration patterns of certain groups of animals). The
notion of time series similarity is also essential for many other mining tasks, e.g.,
clustering, pattern matching, prediction, and anomaly detection. Laftchiev and Liu [10]
present the problem of finding the top-k matches to a multidimensional query pattern
in a multidimensional time series dataset, which is important for the localization of
abnormal patterns in very long time series. Other than that, some papers aim to
identify the motifs and anomalies to better predict future trends [11, 12]. Last but not

least, Jiang et. al [13] present a work on continuous multidimensional top-k query

4

processing in wireless sensor networks. They believe that the recent development of
sensor networks has made it possible for people to search information not only in the
cyber space, but also in the physical world, someday in the future. In this case, the
top-k search should be not only multidimensional, but also across the time domain.
Also, with multidimensional sensor data, as many queries as the number of user
requests have to be posed since each user could assign a set of weights representing
his own preference. They develop a framework which effectively monitors user
queries and incorporates a special data structure, the dominant graph, to maintain
top-k query results. They declare that this is the first work for continuous

multidimensional top-k query processing in sensor networks.

This thesis is inspired by the durable top-k queries presented in [5], which find the
records that are among the top-k within a surrounding time window. Effectively, they
look back in a fixed length window ending at the arrival time of the record, and check
whether it has the top score among all other records within this window. Therefore,
given a query interval /” and a durability threshold z, they check whether every record
arriving during /” remains in the top-k for at least 7 timestamps ending at its arrival
time. However, our proposed problem focuses on the whole time series and looks for

the leading records overall.

Gao et. al [3] also propose the problem of finding durable top-k objects, whose values

are among the top-k for at least some fraction of the time during a given interval. This

is a one-dimensional time series problem, aiming to retrieve all records considering a
given time constraint regardless of the ranking, which is different from ours. All of
their solutions must compute for each record whether it is among top-k at every
timestamp and compare the sum with a threshold. Since every record only has one
time-varying attribute, selection algorithm, which selects the k-th largest value from
all records, is used to compute the membership of each record in the top-k. Therefore,
it is meaningless to adapt their solution to our problem, which computes which

records are among the top-k per timestamp and then rank them to find the final result.

3. PROPOSED SOLUTION

Our basic solution is to retrieve the top-k results at each timestamp according to the
user specified scoring function. For each object in those top-k results, we compute the
total count of timestamps when it is among the top-k, in order to generate the final
top-m leading result set. Such solution has two modules: (i) an algorithm for the
computation of the top-k results at every timestamp, and (ii)) a method which

integrates all the top-k results to obtain the final result.

Algorithm 1 Top-m leading records

Input: a query interval /: [#,, t.], an R-tree (RT,) on the dataset for every timestamp ¢;
within the query interval /, a scoring function £, an integer k, an integer m
Output: resultset C

1. initiate a result set C with size m

2. initiate a top-k result set L, for each timestamp ¢, with size k

3. for each timestamp #;in /

4. retrieve the top-£ list L; by calling Algorithm 2 with input: RT,, f, k

5. integrate all the top-k results by calling Algorithm 3 with input: all Z,, m, [
6. returnC

end

There are various techniques aiming to answer top-k queries and most of them assume
monotone scoring functions. The Branch-and-bound search (BBS) [19] is a good
choice for this baseline method. For each timestamp, the data are indexed with an
R-tree [20,21], which groups nearby objects and encloses them with their minimum
bounding rectangle (MBR) in the parent node. MBRs at the same level are recursively
bounded into nodes at the higher level and the leaves of the tree contain pointers to
the database objects. Based on R-tree, BBS traverses the tree nodes using the best-first
search technique, which maintains a heap H containing the entries of nodes visited so
far in descending order of their maxscore. For a data point, maxscore equals its score
of /- The maxscore of an intermediate entry equals the largest score of any point that
may lie in the subtree of it. At each step, BBS de-heaps the entry having the largest
maxscore and en-heaps all the entries in its child node. When it reaches a leaf node,
the corresponding data point definitely has the largest score among all the records that
have not been visited. Therefore, it can be returned as one of the top-k records. The

algorithm terminates when & records are reported.

Algorithm 2 BBS

Input: R7, 1, k

Output: resultset L,

1. initiate a candidate heap H

2. initiate a result set L, with size &

3. load the root of RT;

4. for each entry e in the root

5. calculate the maxscore of its MBR (e.maxscore) according to f
6

7

8

en-heap (e, e.maxscore) into H
while (L, contains less than & records)
de-heap the entry e having the largest maxscore
9. if e’ is a leaf node, then add it to L,
10. else en-heap all the entries in its child node with their maxscores
11. return/,
end

After executing the first module, a set L; containing & objects is generated for each
timestamp # in the given interval /. The remaining process is to aggregate the
timestamp counts for all the candidates in these sets and obtain the top-m leading
objects with the most counts. We create a hash table A7, which maps each candidate
to its duration counts. Starting with the top-k set L, of the first timestamp ¢, we iterate
over each top-k set. Every time we encounter a candidate object, we look it up in HT.
If this object is visited for the first time, we add it to HT with a value of 1. Otherwise,
we increase its value by 1. Meanwhile, we also maintain candidate set C that contains
the current m leading objects, the m-th largest value my.. in C, and largest value 7uax
among the remaining objects, which are not included in C. As traversing top-k sets,
we keep updating HT, C, Mmar, and 7pa. At the timestamp ¢, if t. - t; < Mpax, We can
stop adding new entries to HT, because if an object has not occurred in HT so far, it is
impossible to have a longer duration than current candidates in C. This algorithm

terminates when: (i) all top-k sets are visited, or (i1) 7max + (Ze - ;) < Mmax, Which means
8

there is no chance for the rest objects to surpass the m-th candidate in C, even if they

are in the top-k for all the remaining timestamps.

Algorithm 3 Integrate all top-k lists

Input: L, € [L;, ..., L.],m, [t; € [1;, t.]
Output: resultset C
1. initiate a duration count cnt

2. initiate a result set C with size m

3. initiate m,,,, = 0 to maintain the m-th largest duration count in C

4. initiater,,, = 0 to maintain the largest duration count outside C

5. initiate a hash table HT /* HT maps object o to its cnt in the form (o, o.cnt)*/
6. while (not all L, has been visited and r,,,. + (¢, - t;) > n1,,,,)

7. for cach L,

8. for each object o in L,

9. if o isnot in HT and m,,,. < (¢, - t;), then add (o, 1) to HT

10. else o.cnt++

11. if there are less than m objects in C, then add o to C

12. else if o.cnt > m,,,,, then replace the m-th object with o and m,,,, = 0.cnt
13. elseifo.cnt>r,,., thenr,, . = o.cnt

14. return C

end

Algorithm 4 Optimized top-m leading records

Input: a query interval I: [7,, t,], an R-tree (RT;) on the dataset for every timestamp ¢,
within the query interval /, a scoring function £, an integer k, an integer m
Output: resultset C

1. initiate a result set C with size m

2. initiate a top-k result set L, for each timestamp ¢, with size k

3. initiate a duration count cnt

4. 1initiate m,,,, = 0 to maintain the m-th largest duration count in C

5. initiater,,,, = 0 to maintain the largest duration count outside C

6. initiate a hash table H7 /* HT maps object o to its cnt in the form (o, 0.cnt)*/
7. while (v, + (,-t,)>m,,)

8. for each timestamp ¢;,in /

0. retrieve the top-k list L, by calling Algorithm 2 with input: R7,, /, k

10. for each object o in L,

9. if o is not in HT and m,,,. < (¢, - t;), then add (o, 1) to HT

10. else o.cnt++

11. if there are less than m objects in C, then add o to C

12. else if o.cnt > m,,,,, then replace the m-th object with o and m,,,, = o.cnt
13. elseif o.cnt>r,,,,, thenr,,, =o.cnt

14. return C

End

The algorithm retrieves top-k lists for every timestamp and integrates them thereafter.
With the early termination condition, we may reduce the time cost of integrating
process by skipping some of these lists. Therefore, we optimize the algorithm by
checking the termination condition before computing top-k results of each timestamp,
as shown in Algorithm 4. In such setting, the computation time of retrieving

unnecessary top-k lists is saved.

4. A MEANINGFUL VARIANT

In a special scenario, for some tuples, there may be no data in some timestamps. It is
unfair to compare such records with those which have data in every timestamp.

Intuitively, a record, which is among the top-k in most of its timestamps, is considered

10

a leading record. Thus, we propose a variant of top-m leading records problem as

follows.

VARIANT PROBLEM DEFINITION. Consider a dataset P with n records, where
each record p € P has d time-varying attributes, and a discrete time domain of
interest 7= {1, 2, ..., [}. At a timestamp ¢, a top-k query asks for the k records having
the highest score with respect to a user specified monotone scoring function f. In
dataset P, given a query interval I [#, t.] & T, for each record p, we compute the
number of timestamps 7, that p has data during /. Given an integer k and m as inputs, a
variant top-m leading records query returns the set of m records, remaining in the

top-k for the highest percentage of 7.

Adapting the basic algorithm to solve this problem, the first module is the same. After
generating the top-k lists, for each record p in the lists, we search it in each timestamp
and compute the total number of timestamps 7, where it occurs. Similarly, we create a
hash table HT, which maps each candidate to its duration counts divided by z,. Every
time we encounter a candidate object, we look it up in H7. Instead of increasing its
value by 1 every time, we increase it by 1/z7,. Meanwhile, we also maintain candidate
set C that contains the current m leading objects, the m-th largest value muq. in C. As
traversing top-k sets, we keep updating H7, C and mua. This algorithm terminates

when: (i) all top-£ sets are visited, or (i1) mmax = 1.

11

A weakness of this definition is that if a tuple has data for only one (or just a few)
timestamps in / where it ranks high, it will be included in the result although other
tuples with slightly lower percentages but much longer durations would be omitted. In
applications where so sparse data are possible, the variant’s definition could be
enhanced with the extra condition that 7, must be at least 8 (where 6 is a problem

parameter between 1 and the length of the query interval /).

5. NBA CASE STUDY

We use a real-life dataset (NBA?), containing the performance per game of each NBA
player in each season from 1973 to 2021. Each record has 5 numeric attributes:
rebounds, assists, steals, blocks and points. A function f = 0.2*rebounds + 0.2*assists
+ 0.2%steals + 0.2*blocks + 0.2*points is used to assess the overall abilities of each

player.

With input 7 =[1973, ..., 2021], £ = 10 and m = 10, the query returns {LeBron James,
Karl Malone, Shaquille O'Neal, Kobe Bryant, Michael Jordan, Hakeem Olajuwon,
Charles Barkley, Kevin Durant, Allen Iverson, Magic Johnson} as the top-10 leading
NBA players who are among the top-10 for the most times. All the 10 players
retrieved are representative figures, who are included in the official list® of the

greatest 75 players in NBA history. When it comes to achievements in the NBA, the

2 Collected from https://www.basketball-reference.com/

3 ESPN's ranking of the NBA's Top 75 Players:

https://www.espn.com.sg/nba/story/ /id/32432119/nba-75-greatest-players-all-complete-list
12

championship ring has the greatest impact on player honor. Some of them (e.g.,
LeBron James, Shaquille O'Neal, Kobe Bryant, Michael Jordan, etc.) have won
multiple NBA championships, and are famous even to people who have never
watched NBA competitions. Moreover, the results also give recognition to the
well-known uncrowned kings* (i.e., Karl Malone, Charles Barkley and Allen Iverson).
With the function averagely considering the five attributes, the query recommends the

players showing the greatest overall aptitude, regardless of their positions and awards.

6. EXPERIMENTS

In this set of experiments, we examine the efficiency (in elapsed running time) of the
top-m leading records algorithm (TLR) and its optimization (OTLR) using Uniform

(UNI) synthetic datasets.

6.1 Experimental setting

All generated values of attributes range from 0 to 1. In UNI datasets, values are
uniformly distributed. The datasets are indexed by R-trees and kept in memory. Note
that building R-trees belongs to the pre-computation process in our setting. Thus, the
running time of that process is excluded. The techniques are implemented in C++ and
the experiments run on a machine with Intel 17-8750H CPU at 2.20GHz and 16Gb

RAM.

4 The 12 uncrowned kings in NBA history, who do you think is the most regrettable?:
https://daydaynews.cc/en/nba/876241.html

13

Table 1 lists the problem parameters along with their tested values. The default values
for the input parameters are n = 10K, d = 3, k£ = 50, m =10, and the number of
timestamps is 30. In each experiment, we fix four parameters to their default values

and vary the value of the fifth one.

Name Tested value

Synthetic dataset size for each timestamp (n) 1K, 5K, 10K, 30K, 50K, 100K, 200K

of attributes (d) 2,3,4,6,8

k 5, 10, 50, 100, 300, 500

m 1, 10, 50, 100. 200, 300, 500
of timestamps 5, 10, 30, 50, 100

Table 1: Tested parameters and their ranges (with default values in bold)

6.2 Experimental Results

6.2.1 Varying n

In the first experiment, we study the effect of data size on the computation time of the
proposed algorithms. As shown in Figure 1 below, as n increases, the running time of

both TLR and OTLR increases, since fetching more records to retrieve the top-k

results costs more time. Also, as expected, OTLR is faster than TLR.

14

120

100

80

60

40

Running time (ms)

20

—o—TIR
——OTLR

0 20 40 60 80 100 120 140 160 180 200
n (X 1000)

Figure 1: Effect of n

6.2.2 Varying d

Figure 2 shows how a growing number of dimensions affects computation time. The
trends become increasingly sharp, which means the performance of both algorithms
degrades. The curse of dimensionality occurs due to the spatial nature of our problem

and index (R-tree) [22].

15

25

23

21

19

17

15

13

Running time (ms)

11

7 ——T[R
——OTLR

1 2 3 4 5 6 7 8 9
d

Figure 2: Effect of d

6.2.3 Varying k
Naturally, the running time increases with &k in general, because both algorithms
retrieve more top-k results and finding m leading records from more candidates cost

more time.

16

17

15

13

11

Running time (ms)

—o—TLR
——OTLR

0 100 200 300 400 500 600
k

Figure 3: Effect of k
6.2.4 Varying m
Comparing with the effect of k, varying m has little impact on the computation time,
which proves that repeated top-k operations are the most time-consuming processes.

The default value of k£ is 50 and the number of timestamps is 30. With the fixed

number of candidates, as m increases, the trend tends to flatten out.

17

8.5

7.5

6.5

Running time (ms)

55 ——TLR

——OTLR

0 50 100 150 200 250 300 350 400 450 500
m

Figure 4: Effect of m

6.2.5 Varying number of timestamps

More timestamps is essentially the same as larger cardinality, i.e., n, because an R-tree
is built on the data of each timestamp. More timestamps mean more R-trees to
traverse. As there are more timestamps, the difference between the running time of
TLR and OTLR increases. Since TLR runs a top-k query for every timestamp anyway,
more timestamps naturally implies greater gains for OTLR from the avoidance of

more unnecessary top-k computations.

18

N
o

20

10

Running time (ms)

o

—o—TIR
——OTLR

0 20 40) 60 80 100
of timestamps

Figure 5: Effect of # of timestamps

6.2.6 Experiments with NBA dataset

As elaborated in Section 5, the data size for each timestamp and the number of
dimensions are fixed. The default values for the input parameters are £ = 50, m =10,
and the number of timestamps equals 30. In each experiment, we fix two parameters
to their default values and vary the value of the third one. Since only the data from

1973 to 2021 are complete, the number of timestamps is at most 49.

The experimental results below demonstrate that OTLR is more efficient than TLR.
As shown in Figure 6, the running time of TLR grows faster than OTLR with &,
because a larger k raises the time cost of top-£ lists maintenance for TLR. In Figure 7,
similar to our previous experiments in Figure 4, the running time of both TLR and

OTLR is insignificantly affected by m. Comparing Figures 8 and 5, the difference

19

between the running time of TLR and OTLR increases much faster for NBA dataset.
That is because for real-life dataset, OTLR has a high probability of meeting the early
termination condition when there is a continuity in the position of the tuples in

consecutive timestamps.

20

18

16

14

12

10

Running time (ms)
) o~ [o2] co
\
vl

0 50 100 150 200 250 300 350 400 450 500
k

Figure 6: Effect of kK (NBA)

w

Running time (ms)
B (&2 ()] ~

1 ——T|R
——OTLR
0
0 50 100 150 200 250 300 350 400 450 500
m

Figure 7: Effect of m (NBA)

20

w

Running time (ms)

——T[R
——OTLR

[w)
w

10 15 20 25 30 35 40 4
of timestamps

Figure 8: Effect of # of timestamps (NBA)

wl
[s)]
o

7. FUTURE WORK

The methods presented in this thesis perform numerous top-k computations, namely
for every and for many, respectively, timestamps. In addition to taking considerable
time, that also creates many unnecessary elements in the hash table. A direction for
future work is to improve performance by sharing computations among repetitive top-
computations and passing information from one top-k query to another. Such

considerations are worth a think-through in future research.

References

[1] H. Wang, Y. Cai, Y. Yang, S. Zhang, and N. Mamoulis. Durable queries over
historical time series. TKDE, 26(3):595-607, 2014.

[2] H. Leong, N. Mamoulis, K. Berberich, and S. Bedathur. Durable top-k search in
document archives. In Proc. of the ACM SIGMOD Conf., 2010.

[3] J. Gao, P. K. Agarwal, and J. Yang. Durable top-k queries on temporal data.
PVLDB, 11(13), 2018.

[4] F. Li, K. Yi, and W. Le. Top-k queries on temporal data. In VLDBJ, 2010.

[5] J. Gao, S. Sintos, P. K.Agarwal, and J. Yang. Durable top-k instant-stamped
temporal records with user-specified scoring functions. In /CDE, 2021.

[6] K. Mouratidis, S. Bakiras, and D. Papadias. Continuous monitoring of top-k
queries over sliding windows. In SIGMOD, 2006.

[7] S.-L. Lee, S.-J. Chun, D.-H. Kim, J.-H. Lee, and C.-W. Chung. Similarity Search
for Multidimensional Data Sequences. In Proceedings of ICDE, pages 599—608, 2000.
[8] M. Vlachos, G. Kollios, and D. Gunopulos. Discovering similar multidimensional
trajectories. In Proc. ICDE, 2002.

[9] L. Chen, M. T. Ozsu, and V. Oria. Robust and fast similarity search for moving
object trajectories. In SIGMOD Conference, 2005.

[10] E. Laftchiev and Y. Liu. Finding multidimensional patterns in multidimensional

time series. In KDD Workshop on MiLeTS, 2018.

22

[11] M. Jones, D. Nikovski, M. Imamura, and T. Hirata. Anomaly detection in
real-valued multidimensional time series. In International Conference on
Bigdata/Socialcom/Cybersecurity, 2014.

[12] A. McGovern, D. Rosendahl, R. Brown, and K. Droegemeier. Identifying
predictive multi-dimensional time series motifs: an application to severe weather
prediction. DMKD, 22, 2011.

[13] H. Jiang, J. Cheng, D. Wang, C. Wang, and G. Tan. Continuous
multidimensional top-k query processing in sensor networks. In Proceedings of IEEE
INFOCOM, 2011.

[14] N. Li, S. Du, H. Zheng, M. Xue and H. Zhu. Fake reviews tell no tales?
dissecting click farming in content-generated social networks. China Communications,
2018.

[15] Philippe Esling and Carlos Agon. Time-series data mining. ACM Computing
Surveys (CSUR), 2012.

[16] Chotirat Ann Ralanamahatana, Jessica Lin, Dimitrios Gunopulos, Eamonn
Keogh, Michail Vlachos, and Gautam Das. Mining time series data. In Data mining
and knowledge discovery handbook. Springer, 10691103, 2005.

[17] J. Paparrizos, C. Liu, A. J. Elmore, and M. J. Franklin. Debunking four
long-standing misconceptions of time-series distance measures. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data, pages

1887-1905, 2020.

23

[18] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for
middleware. In PODS, 2001.

[19] Tao, Y., Hristidis, V., Papadias, D., and Papakonstantinou, Y. 2007.
Branch-and-bound processing of ranked queries. Information Systems 32, 3, 424-445.
[20] A. Guttman, R-trees: a dynamic index structure for spatial searching, ACM
SIGMOD, 1984.

[21] N. Beckmann, H. Kriegel, R. Schneider, B. Seeger, The R*- tree: an efficient
and robust access method for points and rectangles, ACM SIGMOD, 1990.

[22] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is “nearest

neighbor” meaningful? International Conference on Database Theory, 1999.

24

	Finding top-m leading records in temporal data
	Citation

	Finding Top-m Leading Records in Temporal Data

