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Abstract

This thesis studies the externalities in the housing market and agglomeration

economies. While knowledge-based externalities, or knowledge spillovers are one

of the most important micro-foundations of agglomeration economies, the first chap-

ter studies how knowledge spillovers from universities affect local innovation activ-

ities. In the second chapter, we propose a high-order spatiotemporal autoregression

approach to study the externalities in the housing market. The third chapter stud-

ies another important but under explored aspect of the agglomeration economies –

the role that marriage market plays in providing incentives to promote urbanization,

along with the unique feminization phenomenon during this process.

The first chapter studies the impact of universities on local innovation activity

by exploiting a unique university expansion policy in China as a quasi-experiment.

In this chapter, we take a geographic approach, empowered by geocoded data on

patents and new products at the address level, to identify knowledge spillovers as

an important channel. We obtain three main findings. First, university expansion

significantly increases universities’ own innovation capacity, which results in a dra-

matic boom of local industry patents. Second, the impact of university expansion on

local innovation activities attenuates sharply within 2 kilometers of the universities.

Third, university expansion boosts nearby firms’ new products and the number of

nearby industrial patents that cite university patents but not industry patents that cite

patents far away from universities.

In the second chapter, we propose a high-order spatiotemporal autoregression

approach for analyzing large real estate prices data. Real estate prices arrive se-

quentially on different housing units over time in a large volume. In this paper, we

propose a high-order spatiotemporal autoregressive model with unobserved clus-

ter and time heterogeneity. When the numbers of clusters (C) and time segments
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(T ) are finite and the errors are iid, quasi maximum likelihood method is used for

model estimation and inference. In the presence of unknown heteroskedasticity, or

C and/or T is large, an adjusted quasi score method is proposed for model esti-

mation and inference. Methods for constructing the space-time connectivity matri-

ces are proposed. Monte Carlo experiments are performed for assessing the finite

sample properties of the proposed methods. An empirical application is presented

using the housing transaction data in Beijing. We find that the estimation of the

spatiotemporal interaction effects are largely affected after controlling for cluster

heterogeneity at the community level.

The third chapter studies the relationship between urbanization and feminiza-

tion, where the marriage market plays an important role in connecting the two.

Previous literature studying urbanization and migration has mainly considered in-

centives arising from cross-city variation in productivity and the subsequent labour

market outcomes. In this paper, we study an important but under explored migra-

tion incentives arising from the matching outcomes in the marriage market and the

gender differences in responding to such incentives. To achieve identification, we

exploit the setup of special economic zones (SEZs) as a pull force and China’s ac-

cession to the World Trade Organization (WTO) as a push force that exogenously

trigger urbanization across locations, which leads to a unique feminization phe-

nomenon during this process. The paper highlights important distributional im-

plications on gender inequality and spatial disparity during the rapid urbanization

process.
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Chapter 1

Identifying Knowledge Spillovers

from Universities:

Quasi-experimental Evidence from

Urban China

1.1 Introduction

Economists and policy makers have long stressed the importance of higher ed-

ucation institutions in fostering economic growth (Acemoglu 1995; Redding 1996;

Andersson et al. 2004, 2009; Aghion et al. 2009). The common belief is that univer-

sities not only train high-skill labor, but also disseminate knowledge and promote

productivity in local communities (Valero and Van Reenen 2019; Andersson et al.

2009). Whereas previous research has shown the impacts of universities on the

development of certain industries and local productivity, we have limited under-

standing on the causal role that universities play in facilitating knowledge-based

externalities and on the geographic scope of such externalities (Kantor and Whalley

2014, 2019). The central challenges that have limited progress in the literature are

the endogeneity concerns and the difficulty in distinguishing knowledge spillovers

from other potential channels. This paper takes a geographic approach, combined

with a quasi-experimental setting, to resolve the challenges and identify the role of
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knowledge spillovers from universities.

We examine the causal impact of university activity on the creation of local

patents and new products by taking advantage of a unique quasi-experiment in

China that has exogenously expanded higher education institutions since 1999. We

exploit a structural break in the university-innovation relationship induced by the

policy shock to uncover the localized nature and striking geographic attenuation

of university spillovers at a very refined geographic level (within 2-3 km).1 We

achieve this goal by utilizing novel datasets that contain comprehensive information

on patents and new products of firms geocoded at the address level. The uncovered

geographic nature of the impact allows us to identify knowledge spillovers from

universities by building on the general consensus that idea flows rely heavily on

spatial proximity.2 By further merging our core datasets with patent citation infor-

mation, we also reveal direct evidence of knowledge outflows from universities and

striking spatial decay patterns of the citation links. Our findings unanimously point

to the importance of knowledge spillovers in fostering innovation in close proximity

to education and research institutions.

The evidence on knowledge spillovers from universities helps researchers better

understand the role of universities in the economic growth process. It is widely ac-

knowledged that research and development (R&D) played a central role in advanc-

ing the world technology frontier and contributed to continued economic growth

over the past 200 years (Acemoglu 2008). However, in innovation-based growth

models, the R&D production function has been taken as a reduced-form represen-

tation and the specific steps leading to practical innovations is not yet clear.3 Pre-

1While previous studies have documented the localized nature of university spillovers at the scope
of cities or counties (Jaffe 1989; Audretsch and Feldman 1996; Anselin et al. 1997; Andersson et al.
2004, 2009; Kantor and Whalley 2014; Liu 2015; Kantor and Whalley 2019; Hausman 2022), none
has studied the spillover effects at the refined geographic level as we undertake in this paper. The
extension to this geographic level is important in identifying knowledge spillovers as one of the
mechanisms that contribute to the impact of universities on local innovation.

2An extensive literature emphasizes that knowledge spillovers decay rapidly within narrowly
defined geographic space (Jaffe et al. 1993; Rosenthal and Strange 2003, 2005, 2008; Arzaghi and
Henderson 2008; Combes and Gobillon 2015; Li et al. 2022; Baum-Snow et al. 2021). This is
because gains from exchanging knowledge and information rely heavily on close-range face-to-face
contact. The geographic approach to identify the mechanisms of agglomeration externalities has
been emphasized in Rosenthal and Strange (2020) and validated in Li et al. (2022).

3Externalities from human capital and innovation had a scientific revival with the endogenous
growth models starting with Romer (1986, 1990), Lucas (1988), and Grossman and Helpman (1991).
Jaffe (1986, 1989) modeled a simple production function using industry and university research as
inputs. Both studies found significant and positive effects of university research on outputs.
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sumably, research outputs from research institutions serve as a key first step leading

to innovative ideas that are then converted into innovative products. By tracing the

impact of university activities on patents, patent citations, and new products, we

document the role of knowledge spillovers from universities in the innovation pro-

cess. This process of transforming fundamental knowledge into patentable findings

and practical products forms the cornerstone of the R&D production function that

is at the center of innovation-based economic growth theory.

Understanding the presence and the spatial scope of university spillovers in pro-

moting local innovation also has important policy implications. First, it justifies

public investments on higher education that has witnessed enormous growth in re-

cent decades (Schofer and Meyer 2005).4 Second, the extent to which education

investment spills over to benefit surrounding firms provides guidance for creating

technology hubs near education institutions. Evidenced by the salient example of

Cambridge’s Kendall Square near Harvard University and the Massachusetts Insti-

tute of Technology, policy makers have formed a general consensus that proximity

to universities is a key condition for a vibrant high-tech community. Yet, a careful

policy design requires a good understanding on how quickly the positive external-

ities decay with geographic distance. If university spillovers decay slowly, social

planners may not have to endure high congestion costs in close proximity to research

institutions to exploit the spillover benefits. If, however, the positive externalities

decay quickly, policy makers would need to carefully gauge policy parameters to

balance the spillover benefits with rising congestion costs.

Empirically, it is challenging to identify the causal impact of university spillovers

on local innovation activities. One possible endogeneity concern resides in the pres-

ence of persistent local unobserved amenities that attract both premier universities

and productive firms. In addition, business activities also reversely impact nearby

universities and academic research through collaborations with or donations to uni-

versities (Bils and Klenow 2000). We address the concerns by exploiting a unique

national university expansion policy resulted from an unanticipated economic stim-

ulus plan from the central government in China. The policy introduced an exoge-

4For example, in 2017, the Ministry of Education of China spent 1,110.9 billion yuan
(about US$170.9 billion using the exchange rate in December 2017) on higher education
(http://www.moe.gov.cn/).
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nous structural break in city-specific university capacity that is presumably indepen-

dent of local economic conditions. We make use of the kinked relationship created

by the shock to identify the impact of the university expansion in a difference-in-

differences framework, drawing on cross-sectional variations in the exposure to the

shock determined by the university capacity prior to the shock.

More important, the core element of our empirical analysis is the focus on

within-city variations to characterize the geographic nature of university spillovers

and to identify the role of knowledge spillovers. This within-city focus allows us

to adopt a triple-differences approach in which we control for a rich set of inter-

acting fixed effects to tighten our identification. Specifically, to capture the spatial

attenuating features at very refined geographical levels, we examine the impact of

university expansion on surrounding industrial innovation activities within 0.5 km,

between 0.5 km and 1 km, between 1 km and 1.5 km, and so on, extending up to 5

km or 10 km, depending on the specific model. We control for year by ring, year

by city, and city by ring fixed effects to absorb unobserved local demand shocks

or factors related to either China’s World Trade Organization (WTO) accession or

reduction in internal migration and trade costs.5 Our focus on the localized geo-

graphic nature of the impact allows us to shed light on the geographic scope and

the underlying mechanism of university spillovers. As existing studies have shown

how fast knowledge spillovers decay over space, taking the analysis to this level of

geography is essential.

In the empirical analysis to follow, we document the extent to which proxim-

ity to academic universities in China affects nearby patent generation and cross-

patent citations. We utilize detailed patent-level data between 1995 and 2007 from

the National Intellectual Property Administration of China and patent citation links

scraped from Google Patents to achieve this focus. Patenting is one of the best

proxies for innovation and is widely used to capture knowledge creations. Since

Jaffe et al. (1993), the literature has taken advantage of patent citation links to trace

the paper trails of knowledge flows.6 We rely on citation links to highlight direct

5We address further concerns on the possible presence of city- and location(distance)-specific
unobserved time-varying factors by taking advantage of information on nearby patents that cite uni-
versity patents. We elaborate on this point in Section 3.

6Although the case-control approach in Jaffe et al. (1993) faces challenges and is refined in
several follow-up efforts, the approach of following patent citations to trace knowledge flows is
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knowledge flows from universities to nearby industrial firms. Moreover, a compari-

son between nearby patents that cite university patents and those that cite patents far

away from universities helps address concerns on the possible presence of city- and

location (distance)-specific unobserved time-varying factors that may contaminate

our triple-differences identification.

Despite the benefit of detailed information on patents, patenting represents an

intermediate step rather than the final economic output in the process of convert-

ing new ideas to new products. To mitigate this concern, we take advantage of

previously under-explored information on new firm product sales reported in the

Annual Survey of Industrial Firms (ASIF). According to ASIF, “products included

in the category of new product sales are those that are new in relation to the re-

porting firm’s prior product mix.” Hence, new product sales in ASIF better reflect

the ultimate outcome of the innovation process: the commercialization of technical

ideas. Other firm-level surveys rarely capture this information on new product.7 It

provides a unique opportunity to examine the impact of university expansion on a

direct measure of downstream outputs produced using knowledge and ideas.

We obtain the following results. First, university innovation activities increase

nearby patents, and the impact decays sharply with geographic distance. In partic-

ular, we find that the level of patenting activities reduces by about 80 percent when

moving from within 0.5 km to 0.5-1 km of a university. The impact reduces by

another 65 percent when moving from 0.5-1 km to 1-1.5 km of a university. The

sharp decline stops roughly at 2 km away, and the attenuation slope flattens out

thereafter. Second, we find that the spatial attenuation of university spillovers is

ubiquitously present in different regions and industries in China but is more pro-

nounced in the Eastern region and for industries more reliant on high-skilled labor.

Third, we find that university expansion increases nearby industry patents that cite

university patents. The knowledge outflows captured by citation links also decay

quickly across space and stabilize beyond the 2 km radius. The spatial attenua-

tion pattern, however, is not present for the number of times when nearby industry

widely recognized (Thompson and Fox-Kean 2005; Thompson 2006; Murata et al. 2014; Figueiredo
et al. 2015).

7A few studies use new product announcement data from the U.S. Small Business Administration
to examine innovation (Acs and Audretsch 1988; Acs et al. 1994; Feldman and Audretsch 1999; Acs
et al. 2002). That data, however, are only available for 1982 and are also limited in scope.
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patents cite patents far away from universities. Last, further analysis suggests that

university expansion boosts new products from firms and that the impact follows

a similar spatial decay. This effect is more pronounced for high-skilled intensive

industries and private firms than for low-skilled intensive industries and state firms.

Our study contributes to two sets of literature. First, this paper joins the litera-

ture on knowledge spillovers and agglomeration economies. Since Marshall (1890),

researchers have attributed the micro-foundations of agglomeration externalities to

the sharing of goods, people, and ideas—otherwise labeled as intermediate input

sharing, labor market pooling, and knowledge spillovers (Duranton and Puga 2004;

Holmes 1999; Glaeser and Maré 2001; Moretti 2004; Ellison et al. 2010). It is also

recognized that different microfoundations are associated with different spatial at-

tenuation of agglomeration externalities (Rosenthal and Strange 2004; Combes and

Gobillon 2015; Li et al. 2022).8 Rosenthal and Strange (2020), in particular, em-

phasizes the convenience of identifying the nature of agglomeration externalities by

relying on the observed attenuation patterns. Baum-Snow et al. (2021) interprets the

micro-geographic level rapid spatial decay in productivity spillovers as explained

by learning or knowledge transfer. Hence, the fast attenuation speed documented in

our paper points to the important role of knowledge spillovers in university spillover

benefits.

Second, we contribute to the literature on the impact of research institutions and

academic research on local economic outcomes. Previous studies have focused on

a range of economic outcomes in the context of developed countries. For instance,

Jaffe (1989) and Anselin et al. (1997) examine the effects of university research on

local innovations in the United States. Andersson et al. (2004, 2009) investigate the

impact of educational investment on productivity and innovation in Sweden. Kantor

and Whalley (2019) uses historical establishment of agricultural experiment stations

in the United States to evaluate the impact of proximity to research on agricultural

productivity.9 However, the geographic unit of analysis is mostly at the city, county,

8For instance, industries that rely heavily on knowledge spillovers as the main agglomeration
force often require close-range face-to-face contact, which implies a rapid spatial decay of agglom-
eration spillovers; industries that cluster mainly because of input-output linkages could have agglom-
eration externalities decay slowly and extend to a larger spatial scale.

9Other studies in this strand of literature include Aghion et al. (2009), Kantor and Whalley
(2014), Liu (2015), Andrews (2019), and Hausman (2022).
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municipality, state, or region level, which prohibits researchers from understanding

the micro-geographic scope of university spillovers and drawing conclusions on the

channel through which the localized spillovers take place. We extend the literature

by focusing on a developing country context and documenting a sharp spatial atten-

uation of the impact of university expansion on intermediate innovation outcomes

(patents and citation links) and final output measures (new products).

The rest of the paper is organized as follows. Section 2 introduces the insti-

tutional background of the university expansion in China. Section 3 lays out the

empirical framework and identification strategies. Section 4 describes data and

variables. Section 5 presents the empirical results on patents. Section 6 presents

the results on patent citations and new products. We conclude in Section 7.

1.2 Institutional Background

In this section, we introduce China’s higher education system and discuss the

policy background of the university expansion that started in 1999.

China’s higher education system is under central planning since its establish-

ment in the 1950s. The Ministry of Education (MOE) in the central government

is the sole entity that makes admission plans for all universities based on the na-

tional economic development plan. High school graduates are admitted to different

universities based on their performance on a unified national college entrance ex-

amination. This central planning feature governs that the implementation of higher

education policies follows a top-down approach, and the intensity of the policy is

usually not responsive to economic environment at the local level.10 The radical uni-

versity expansion that started in 1999 is one such example and was unanticipated at

the time.

Before 1999, the development of China’s higher education institutions was steady

and smooth.11 However, the onset of the 1997 Asian financial crisis and the massive
10China’s higher education system is different from the systems in many Western countries, such

as the United States. or example, almost all prestigious universities in China are public universities,
whereas many prestigious universities in the United States are private. In addition, the financial
support for higher education is almost entirely provided by the MOE in China, whereas fundraising
plays a significant role in financing the universities in the United States.

11China’s higher education system went back to normal after the Cultural Revolution ended in
1976. In the 1990s, the Ministry of Education guided China’s higher education sector under a theme
called “steady development.” The number of enrolled students increased with an average growth
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layoffs resulted from the state-owned enterprise (SOE) reforms in the late 1990s

raised concerns about a recession and triggered a need to expand the higher edu-

cation sector to stimulate the domestic demand for educational services and other

related consumption.12 University expansion was also believed to postpone the en-

try of high school graduates into the labor market, which may otherwise exacerbate

the already-high unemployment rate (Che and Zhang 2018).

In June 1999, the MOE and the National Development and Planning Commis-

sion jointly announced a new higher education recruitment plan, with expected new

students of 1.53 million in 1999—a 42 percent year-on-year increase. In the mean-

time, college tuition fees increased by 15-20 percent across different regions. The

revenue from tuition became an important financial resource for universities. The

central government also shifted more resources to higher education to accommodate

the huge increase in university scale. From 1998 to 2000, the science and technol-

ogy funding and national expenditure on higher education increased from 8.2 billion

yuan to 14.3 billion yuan and from 33.6 billion yuan to 49.1 billion yuan, respec-

tively. From 1998 to 2000, the number of university teachers also rose by 55,519,

more than fourfold of the increase from 1990 to 1998.

The expansion was unanticipated by the general public and local governments.

The new plan would impose huge impacts on the college entrance examination in

July (one month later) and the new academic semester starting in September (three

months later). The time left for the government to distribute the enrollment quota

was pressing. Official documents suggest that the quota allocation across cities

mainly depended on the national expansion plan and existing universities’ physical

and logistical capacity at the city level. The quota allocation rules also present

strong inertia as the radical expansion continued in the following years. Therefore,

the expansion led to an exogenous structural break in a city’s higher education scale,

rate of 7 percent between 1977 and 1998. From 1990 to 1998, the number of university students
increased from 2.06 million to 3.41 million, and the number of university teachers rose slightly from
0.395 million to 0.407 million.

12Min Tang, a famous economist in the Development Research Center of the Asian Development
Bank, originally proposed the university expansion policy. In November 1998, Mr. Tang, along
with his wife Xiaolei Zuo, wrote an open letter to the central government, in which they appealed for
doubling the higher education enrollment in three years. They also suggested that China stop offering
free higher education and require students to pay tuition fees. They believed that those actions would
help generate demands in relevant economic sectors and stimulate the nation’s economy. The letter
can be viewed at http://finance.sina.com.cn/review/20041023/15201102716.shtml.
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and the magnitude of the structure break depended on the city’s university resources

prior to the shock.

Figure 1.1 depicts various aspects of the structural break in China’s higher ed-

ucation sector induced by the policy shock. Panels A-D present the numbers of

university teachers, university students, university entrants, and university gradu-

ates from 1990 to 2010. Before 1999, the growth rate of those numbers was low

and steady. However, a clear trend break exists in the time series of the numbers

of university teachers, university students, and university entrants in 1999 and the

number of university graduates in 2003. The scale of universities in China increased

dramatically after 1999. In particular, the number of university teachers in 2010 was

more than three times of the number in 1998. In Panel E, the national higher educa-

tion expenditure increased more than threefold from 1998 to 2006. Panel F shows

that the science and technology funding for the higher education sector increased

by a factor of over 11 from 1998 to 2010. The expansion dramatically increased the

research resources to universities, at both the aggregate and per teacher level.

In Figure 1.2, we plot the correlation between the extent of university expansion

from 1999 to 2007 and the scale of higher education before the expansion at the

city level. Specifically, in Panel A, we plot the increase in the number of univer-

sity teachers between 1999 and 2007 in each city against the number of university

teachers in each city in 1990. We do the same for the number of university stu-

dents in Panel B. There is a clear positive correlation between the expansion in

university scale and the pre-existing university students and teachers before the ex-

pansion at the city level. The pattern confirms that, during the expansion period, the

enrollment quota was allocated to different cities mainly based on the city-level pre-

existing physical and logistical capacity of the higher education sector. The increase

in enrollment quota further induces universities to gain more funding, upscale the

teachers, and eventually expand the research capacity.

In sum, the higher education expansion policy followed a top-down approach

and created a positive exogenous shock to university scale. The extent of the ex-

pansion in each city was largely determined by the national expansion plan and

existing universities’ capacity before the expansion. Several studies find support for

the exogeneity of this national policy to the local economic environment (Che and
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Zhang 2018; Li et al. 2017; Rong and Wu 2020).13 We provide similar evidence

in Appendix Figure A1 that the extent of university expansion in a city is not pre-

dicted by the growth of patents, GDP and firm TFP in the city before the expansion.

We use this policy shock to form a difference-in-differences and a triple-differences

research design.

1.3 Empirical Framework

We face three empirical challenges. The first challenge pertains to the identifi-

cation of the impact of university activity on local economic outcomes. An endo-

geneity concern arises from that university activity does not occur randomly. For

instance, there may exist location-specific unobserved characteristics that attract in-

novative firms and research-oriented universities simultaneously. Alternatively, the

nearby presence of innovative firms may reversely affect the activities of univer-

sities through knowledge spillovers from industrial firms to universities, through

donations to universities and collaborations, or through increased local demand for

a university-trained labor force.

We address the endogeneity concern by utilizing the university expansion pol-

icy in China as a quasi-experiment. As explained in Section 2, the policy created

an unanticipated structural break in the intertemporal development of universities,

which allows us to identify the causal impact of the university expansion in a

difference-in-differences framework. We examine the extent to which the policy

shock induces an expansion in university patenting and the extent to which it spills

over to affect citywide industrial patenting activities. The regression equation is

specified as follows:

Outcomec,t = β × (Treatmentc×Postt)+αc + γt + εc,t , (1.1)

where Outcomec,t represents UniversityScalec,t , the numbers of university teachers,

university students, or university patents in city c and year t, or IndustryInnoc,t , the

number of collaboration patents or industry patents in city c and year t. Treatmentc
13Che and Zhang (2018) shows that the annual growth rates of gross domestic product and annual

admission are uncorrelated at the provincial level for the period of 1995-2011. They also show
that the correlations between the growth of new college graduates in 2001-2003 and the growth of
provincial GDP and firm TFP are small and statistically insignificant.
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is the number of university teachers (or students) in city c in year 1990, a proxy for

treatment intensity. Postt is a dummy variable that equals 1 if year t is 2000 or after.

αc and γt are city and year fixed effects, and εc,t is the error term.

This identification strategy draws on cross-sectional variation in the exposure

to the shock determined by the university capacity prior to the shock. The identi-

fication assumption is that the evolution of outcome variables in cities with larger

expansions should not vary systematically from cities with smaller expansions in the

absence of the expansion, conditional on included control variables. In other words,

any pre-existing trends should be properly controlled for. We discuss the validity of

the identification assumption in more detail below. Also note that if we are willing

to make additional assumption that the expansion impacts industry innovation only

through increasing university scale, we can consider the impact of the expansion

on UniversityScalec,t as the first-stage effect, and the impact on IndustryInnoc,t as

the reduced-form effect, in a standard Wald difference-in-differences setup (Duflo

2001; Bhuller et al. 2013).14

The second empirical challenge hinges on the core of the paper—identifying

the role of knowledge spillovers as an important channel contributing to the impact

of universities. That is, even if the causal impact of university activity on local

economy is convincingly justified, it is not clear whether the impact is channeled

through knowledge spillovers. For example, an increase in university scale may

accompany an increase in the supply of college graduates if graduates prefer to

work in the area where they attend college (Card 1995). Increased high-skilled labor

could improve local economic outcomes directly (Che and Zhang 2018). Hence, the

challenge is how to safely disentangle the role of knowledge spillovers from other

mechanisms.

We tackle this challenge by focusing on the extremely localized effects of uni-

versities. Previous studies have shown that knowledge spillovers tend to decay

rapidly across space, while other benefits of agglomeration, such as labor market

pooling, operate at a much larger geographic scope (Rosenthal and Strange 2003,

14The effect of university innovation capacity on industrial innovation activities can be retrieved
by taking the ratio of the reduced-form and the first-stage estimates or by two-stage-least-squares
(2SLS) estimation with direct inference. Because the assumption of exclusion restriction is harder
to justify, we focus on the difference-in-differences model, but we also report the 2SLS estimates in
the appendix tables.
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2005; Arzaghi and Henderson 2008; Li et al. 2022). In particular, Arzaghi and

Henderson (2008) depict sharply attenuating knowledge spillovers and networking

benefits that deplete at 750 meters away. As noted in Carlino and Kerr (2015), this

spatial approach “represents an important precedent for future research related to

innovation more directly.” Indeed, the focus on the geographic nature of university

spillovers is convenient to disentangle the important role of knowledge spillovers.

It is difficult to imagine that alternative channels, such as the labor market channel,

would dissipate dramatically at a short distance away from a university.15 In the

online appendix, we present a simple conceptual framework to formalize the iden-

tification of knowledge spillovers by drawing on the localized nature of knowledge

spillovers.

We achieve this geographic focus econometrically by specifying a rich set of

concentric ring variables that capture innovation activities at various distances from

research universities. Each concentric ring spans 500 meters. We include 10 or 20

rings to cover places up to 5 km or 10 km away from a university, depending on the

specific model.16 This additional source of within-city variation allows us to iden-

tify the spatial attenuation of university spillovers in a triple-differences framework,

specified as follows:

IndustryInnoc,r,t =
9

∑
r=1

βr× (Treatmentc×Postt×Ringr)+dc,r +dc,t +dr,t + εc,r,t ,

(1.2)

where IndustryInnoc,r,t represents the number of industry patents in city c, ring r,

and year t; Treatmentc and Postt are defined the same as before; Ringr is a dummy

variable that equals 1 if the patents are in the concentric ring r and 0 otherwise (ring

10 is set as the reference group and is omitted); dc,r, dc,t , and dr,t are city by ring,

city by year, and ring by year fixed effects, respectively.

The ability to include all interactive fixed effects is crucial for identifying the

geographic nature of university spillovers. China experienced dramatic economic

15It is possible that highly innovative firms are attracted to the close proximity of research univer-
sities to draw on the spillover benefits. As a result, firms closer to universities may disproportionately
hire university graduates. However, we should be careful and not interpret the increased innovation
activities near universities as a mere consequence of disproportionately allocated high-skilled labor
since the latter is an equilibrium outcome of knowledge spillovers and serves as a channel through
which knowledge spillovers benefit nearby innovation in a self-reinforcing process.

16Section 4.2 provides a detailed explanation on the construction of the rings.
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reforms in the past few decades. For instance, since the early 2000s, the Chinese

government has undertaken policy reforms and infrastructure investments that have

substantially reduced the costs of internal migration and trade. China also joined the

WTO at the end of 2001, which led to large reductions in international trade costs.

Those reforms contributed to a significant growth in aggregate productivity and may

drive increases in innovation activities (Brandt et al. 2017; Tombe and Zhu 2019).

We address those potential confounding factors by including city by year, ring by

year, and city by ring fixed effects in a generalized triple-differences framework.

In particular, city-level time-varying unobservables, the main confounding factor

in the difference-in-differences model, are controlled for by city by year fixed ef-

fects. The remaining unobserved factors conditional on those demanding interacting

fixed effects are unlikely to systematically impact innovation activities at different

distances from universities. Thus, the triple-differences strategy relies on weaker

identification assumption than the difference-in-differences strategy.

The third empirical challenge is the measurement of innovation. Conceptually,

innovation should comprise generation of new ideas and conversion of ideas into

commercial products. The new ideas generated could sometimes result in patents.

Therefore, it is natural to use patent as a proxy for innovation. Plus, patent data are

also publicly available and contain rich details. However, two potential concerns

exist: (1) patents do not directly reflect knowledge flows and (2) they are an inter-

mediate step in the innovation process and do not capture the ultimate economic

value of the invention (Acs et al. 2002).17 Because patents and new products do not

necessarily collocate, we need to interpret the patent-based evidence with caution

(Feldman and Kogler 2010).

To mitigate measurement concerns associated with using patent counts as prox-

ies for innovation, we supplement our patent analysis with subsidiary analyses on

two additional measures: patent citation links and new commercial products. We

examine the incidences when industry patents cite university patents as direct evi-

dence of knowledge transfers from universities. We also take advantage of previ-

ously under-explored information on firms’ new commercial products to reveal the

17Based on Acs and Audretsch (1988), Griliches (1979) and Pakes and Griliches (1980), “patents
are a flawed measure (of innovative output) particularly since not all new innovations are patented
and since patents differ greatly in their economic impact.”
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impact of university spillovers on the final products.

We estimate the following triple-differences specification to capture the spatial

decay of patent citations:

Citec,r,t =
9

∑
r=1

βr× (Treatmentc×Postt×Ringr)+dc,r +dc,t +dr,t + εc,r,t , (1.3)

where Citec,r,t represents the number of cases when industry patents in city c, ring

r, and year t cite university patents. The rest variables are defined in the same way

as in Equation (1.2).

To explore the impact of university expansion on nearby new products at the

firm level, we estimate the following specification:

NewProducti,c,r,t =
9

∑
r=1

βr× (Treatmentc×Postt×Ringr)

+dc,r +dc,t +dr,t +Xi,c,r,tρ+ εi,c,r,t ,

(1.4)

where NewProducti,c,r,t represents the new commercial product ratio of firm i in city

c, ring r, and year t; Xi,c,r,t is a set of firm-specific controls, including the age of a

firm, fixed assets, a dummy for whether a firm is an SOE, and the employment size;

and εi,c,r,t is a firm-specific error term. We define the rest variables in the same way

as in Equation (1.2).

The set of differencing strategies stated above relies on the identifying assump-

tion that, conditional on included fixed effects and other controls, the evolution of

the outcome variables in cities with larger expansions should not vary systematically

from cities with smaller expansions in the absence of the expansion (difference-in-

differences setup), and, in the event that there exist systematic variations across

cities, such counterfactual differences do not vary across rings (triple-differences

setup). A natural check on the validity of such assumption is whether the pre-trends

are parallel. We perform event-study analyses to check on this assumption and also

to capture the dynamics of the treatment effects. The event-study specification for

the city-level analysis is as follows:

Outcomec,t =
1998

∑
t=1995

βt× (Treatmentc×Yeart)

+
2007

∑
t=2000

βt× (Treatmentc×Yeart)+αc + γt + εc,t ,

(1.5)

where Outcomec,t represents UniversityScalec,t or IndustryInnoc,t ; Yeart is a set of
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year dummies that equals 1 if year equals t and 0 otherwise. Year 1999 is set as

the base year and is omitted. We define the rest variables the same as in Equations

(1.1).

We also estimate event-study model for the ring-level analysis as follows:

IndustryInnoc,r,t =
9

∑
r=1

1998

∑
t=1995

βr,t× (Treatmentc×Yeart×Ringr)

+
9

∑
r=1

2007

∑
t=2000

βr,t× (Treatmentc×Yeart×Ringr)+dc,r +dc,t +dr,t + εc,r,t ,

(1.6)

where Yeart is a set of year dummies that equals 1 if year equals t and 0 otherwise.

We define the rest variables in the same way as in Equation (1.2).

However, as discussed in detail in Section 5, the event study analysis reveals that

the pre-treatment trends seem to be not sufficiently controlled for by the included

fixed effects and controls in both the city-level and ring-level analyses. This could

be explained by that cities experiencing more intensive university expansions may

also have been adopting more innovation-promoting and growth-enhancing policies

before the expansion and such efforts could be more directed towards areas close to

existing innovations than far-away areas.

We undertake a collection of efforts to address this concern. First, we exam-

ine whether the university expansion induces a slope change in variables of interest

by estimating a trend break model, following Almond et al. (2019). As the pol-

icy created an unanticipated structural break in the intertemporal development of

universities and the magnitude of the structural break is independent of unobserved

local economic conditions, we rely on a kinked relationship to identify the impact of

universities on local innovation through the channel of knowledge spillovers. The

model at the city level is specified as follows.

IndustryInnoc,t = β × (Treatmentc×Trendt)

+ γ× (Treatmentc×Trendt×Postt)+αc + γt + εc,t ,
(1.7)

where Trendt is a trend variable defined as the patent application year minus 1999;

The rest variables are defined the same as in Equation (1.1). The coefficient β mea-

sures the difference in trends associated with cities of different treatment intensity

prior to the university expansion. The coefficient γ measures the post-expansion

slope change in the outcome variable relative to the pre-expansion trend.
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The trend break model at the ring level is specified as follows.

IndustryInnoc,r,t =
9

∑
r=1

βr× (Treatmentc×Trendt×Ringr)

+
9

∑
r=1

γr× (Treatmentc×Trendt×Ringr×Postt)+dc,r +dc,t +dr,t + εc,r,t ,

(1.8)

The variables are defined the same as before. The coefficient βr measures the differ-

ence in trends for ring r associated with cities of different treatment intensity prior

to the university expansion. The coefficient γr measures the post-expansion slope

change in the outcome variable relative to the pre-expansion trend for ring r.

Second, we strip away the city-specific or city-ring-specific pre-expansion linear

time trend as a control strategy before we run difference-in-differences and triple-

differences specifications, following the approach in Bhuller et al. (2013), Monras

(2019) and Garcia-López et al. (2020).18 Specifically, we estimate a city-specific or

city-ring-specific linear trend using the pre-expansion sample (namely, 1995-1999)

for our city-level and ring-level regressions, respectively. We then extrapolate pre-

expansion time trends to the post-expansion sample and subtract out the estimated

linear trend from the observations after treatment. We use the trend-free outcome

measures as the dependent variables in the city-level and the ring-level analyses. We

re-estimate a trend-free event study model to verify that the residualized pre-trends

are parallel and also to depict the intertemporal dynamics of the impact. The event

study model further tightens our identification by leveraging on the sharp timing of

the university expansion and high frequency measurement of the outcomes.

Third, we conduct a set of robustness checks to corroborate our main results.

In the first robustness check, we follow Dobkin et al. (2018)’s parametric event

study approach to augment our baseline city-level and ring-level specifications with

city-specific and city-ring-specific linear trends, respectively. This approach is con-

ceptually the same as subtracting out the estimated linear trend elaborated above

(Goodman-Bacon 2018, 2021; Rambachan and Roth 2022). In the second robust-

ness check, we follow Rambachan and Roth (2022) to obtain robust inference after

specifying how different the post-treatment violations of parallel trends can be from

18As stated in Monras (2019), this is a valid identification strategy if in the absence of the treat-
ment the outcome variables would have evolved following the linear trend implied by the periods
preceding the treatment event.
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the pre-treatment differences in trends. This approach also allows us to conduct

sensitivity analyses showing whether a causal conclusion can be drawn under vari-

ous restrictions on possible violations of the parallel trend assumption. Details are

discussed in Section 5.

Last, we further tighten our identification by drawing on variations in different

types of citation flows. A possible argument against the identification of knowledge

spillovers even with our most sophisticated generalized triple-differences model is

that there may exist unobserved city- and location (distance)-specific time-varying

factors that are correlated with the increase in location-specific innovation activities

after the university expansion. Such a hypothetical scenario is possible but very

unlikely given the rare coincidence of multiple co-evolving factors after controlling

for a demanding set of fixed effects. Despite so, we address this concern by drawing

on the information on patent citation links to show that the spatial pattern persists

only for citation links of industry patents citing university patents but not for citation

links of industry patents citing patents far away from universities. Otherwise, if un-

observed co-evolving factors drive the spatial pattern of overall patenting activities

and citation behaviors, we would observe similar patterns for both types.

1.4 Data, Variables, and Summary Statistics

1.4.1 Data

We use four primary datasets. The first dataset is a patent database obtained from

the National Intellectual Property Administration of China (CNIPA). This dataset

covers a complete list of patents granted between 1995 and 2007 in China. The data

provide detailed information for each patent, such as inventor’s name and affiliation,

address of the patent, application date, approval date, patent ID, International Patent

Classification (IPC) number, and patent type. There are three types of patents in the

database: invention patent, utility model patent, and design patent.19 We focus on

invention patents because they represent the most innovative type. Overall, there

were 553,248 invention patents granted in China between 1995 and 2007. We use

19Invention patents require inventive technological improvements or new uses. Thus, invention
patents have the highest standard of novelty. The other two types of patents are related more to the
structure (utility model patent), shape (utility model and design patent), and design (design patent)
of an object and have fewer requirements for inventiveness.
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invention patents to measure innovation activities inside and outside of universities.

The second dataset is extracted and compiled from four different statistical year-

books of China. The first source is the China City Statistical Yearbook between

1996 and 2008 from the National Bureau of Statistics (NBS) of China. This collec-

tion provides information on various prefecture-city-level attributes by year, such as

the number of university teachers and students.20 The second source is the Educa-

tional Statistics Yearbook of China. We obtain the number of university entrants and

graduates at the provincial and national level for each year from this yearbook. The

third source is the Educational Finance Statistical Yearbook of China, which reports

the higher education expenditures from 1995 to 2006. The fourth source is the Com-

pilation of Statistical Data on University Science and Technology Resource, which

provides information on the science and technology funding for higher education

from 1991 to 2010. We use the number of university teachers and students from

the first source as proxies for university scale or research capacity. The other three

sources help us summarize aggregate trends for various aspects of the university

expansion.

The third dataset is a patent citation database that is scraped from Google Patents.

Google Patents is a search engine from Google that indexes patents and patent ap-

plications from all around the world. We searched for all patents granted in China.

For each patent, we collect its basic information and patent citations. Then, we

match the data to our patent database from CNIPA. This gives us a patent citation

matrix about whether a patent cites another patent. We treat the patent citation links

as the paper trail of knowledge flows and use them to identify knowledge spillovers

from universities.

The final dataset is the ASIF of China from 1998 to 2007. This dataset is also

from the NBS of China. The ASIF is an annual panel that covers all SOEs and the

non-SOEs with annual sales exceeding 5 million yuan.21 The data provide detailed

firm-level attributes, including firm name, firm address, legal unit code, legal repre-

sentative name, industry classification, opening year, ownership type, fixed capital,

20The statistical yearbooks report the statistics for the previous year.
21The ASIF contains many missing values after 2007. In addition, starting in 2011, the sampling

cut-off increased to 20 million yuan of annual sales, which changes the sample composition and
makes comparisons across years challenging.
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output value, and employment size, among others.22 A unique advantage of the

ASIF is the exact firm addresses provided in the data. We geocode the addresses

and pin the firms into the concentric rings that we create.

We use the previously under-explored information on firm new products in the

ASIF to measure the final commercialized outputs with new knowledge and ideas

as inputs. The NBS defines a new product as a product that is produced for the first

time at least within a province (Lu and Tao 2009). Based on an email correspon-

dence with an officer at the NBS, “products included in the category of new product

sales are those that are new in relation to the reporting firm’s prior product mix.

Products that involve the use of new principles, incorporate design improvements,

utilize new materials, or embody new techniques constitute new products; existing

products that are used for new functions or expand capabilities (e.g., production or

speed) also constitute new products. Changes in a product’s shape or minor changes

in functionality do not constitute new products” (Jefferson et al. 2003). Other firm-

level surveys rarely capture this measure of new product. It provides a unique op-

portunity to study final outputs from innovation. We use a firm’s new product ratio

as a proxy for innovation output and define it as the ratio of the dollar value of new

products to the dollar value of total outputs.

1.4.2 Variables and Summary Statistics

In this section, we describe how we prepare our data for the empirical analysis

and present the basic summary statistics. For the city-level analysis, we create a

city by year panel by matching patent counts at the city level to city-level attributes

from the statistical yearbooks. The year of patenting refers to the year when the

patent application is filed, as opposed to the year when the patent is granted. Our

goal is to trace how the flow of knowledge impacts the creation of new ideas, and

the application year is closer to the timing of new knowledge creation (Moretti

2021). We have 184 cities in the panel after removing observations with missing

information.

Table 1.1 presents the summary statistics for the numbers of university teachers,

university students, and the total and sub-classifications of patents at the city level in

22In the empirical analysis, we adjust all dollar variables using the national Consumer Price Index
(CPI) so that they are comparable across years.
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each year. Columns (2) and (3) show the average number of university teachers and

students. The city-average growth trends are similar to the national trends in Figure

1, showing a dramatic boom in university scale after 1999. Column (4) reports the

average number of patents at the city level in each year. The number of patents

also increased dramatically from 2000, which matches the timing of the university

expansion. We further decompose patents into three mutually exclusive categories.

Column (5) shows the average number of university patents, which we define as

patents filed solely by inventors affiliated with universities. Column (6) reports the

average number of collaborative patents between universities and the private sector.

Column (7) reports the average number of patents that are filed solely by inventors

from non-university entities. The three types of patents all experienced a sharp

increase from 2000.

For the ring-level analysis, we create a panel at the city-year-ring level. To con-

struct the rings, we compile a list of university locations as the centers of the rings in

three steps. First, we manually search the locations for an exhaustive list of universi-

ties that are classified as “Yiben” universities in each city.23 Second, we supplement

the list with the locations of institutions in CNIPA that are classified as universities

during our sample period.24 Third, we add to the list the locations of other institu-

tions or companies that have ever filed a joint patent application with a university

during our sample period. This third step allows us to include possible university

spin-offs in the university locations and avoids treating industry-university partner-

ships as spillovers.25

Then, we define the rings as a set of concentric rings around the universities

locations. Specifically, we define one concentric ring for every 500 meters away

from the center locations and have the rings extend up to 5 km or 10 km, depending

on the specific model.26 To identify the innovation activities within each concentric

23In China, universities are classified into several tiers. The tier of a university determines whether
the university has priority when recruiting students. In general, “Yiben” (first tier) universities have
the highest priority when recruiting students. “Yiben” universities also conduct the majority of re-
search because they have better research and teaching capacity.

24This procedure may lead to multiple locations within the same university as the address filed in
a patent application points to the exact building.

25Hall et al. (2003) documents industry-university research partnerships and suggests that the in-
volvement of universities in industrial innovation benefits the outcome. However, we recognize that
the patents generated from such partnerships should not be interpreted as spillovers from universities.

26We include 10 rings which extend up to 5 km in our baseline specifications. We include 20 rings
to cover a broader geographic scope for robustness checks.
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ring, we geocode the locations of patents and companies in CNIPA and ASIFs, and

pinpoint them to the corresponding ring area. The patents generated at the center

locations are not included in any rings. In the baseline ring-level analysis, variable

Innoc,r,t is the number of patents in city c, ring r, and year t, where ring r refers to

the concentric ring between the buffer zones r−1 and r.

We provide a graphic illustration in Appendix Figure A2 to show how we define

the rings. In this example, the two locations at C belong to university I. The three lo-

cations at D and E belong to university II. Point A stands for a non-university entity

that has direct collaboration with university I. Point B stands for a non-university

entity that has direct collaboration with university II. We treat all these locations as

the centers of a set of concentric rings. Each concentric ring spans a distance of 500

meters. The concentric rings, hence, are the outer envelopes that trace the rings of

the same distance away from the center locations.

Table 1.2 presents the summary statistics for the number of patents within differ-

ent concentric rings in each year across cities. First, we notice that the magnitude of

the patent counts in the closest ring dominates that of the outer rings. For all years,

the number of patents decays sharply as the distance to universities increases. This

suggests that the overall innovation activities around universities are more intense

than other areas. Second, a positive trend exists for all rings over time with a sharper

increase after 2000. For example, the average growth rate of patent counts in ring 1

was 21.5 percent from 1995 to 1999, but it increased to 54.6 percent from 2000 to

2007. We also found similar but more muted patterns for outer rings.

1.5 Results on New Patents

1.5.1 City-Level Analysis on Patent Growth

We first examine the impact of universities on citywide innovation activities. In

Table 1.3, we report the results from estimating Equation (1.1) when we use the

number of university teachers in 1990 as the proxy for treatment intensity. The

corresponding results when the number of university students in 1990 is used as

treatment intensity are reported in Appendix Table A1.A. Column (1) of Table 1.3

suggests that cities with 1,000 more university teachers in 1990 experienced an ad-
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ditional increase of 341 university teachers after the university expansion. Columns

(2) suggests that cities with larger university capacity in 1990 also experienced a

larger increase in the total number of patents after the expansion.27

Next, we decompose the citywide total patent counts into the numbers of patents

filed solely by inventors affiliated with universities, patents jointly filed by inven-

tors affiliated with universities and inventors from industrial firms, and patents filed

solely by industrial firms. Column (3) of Table 1.3 shows that cities with 1,000

more university teachers in 1990 experienced an additional increase of 33 university

patents on average after the expansion. This suggests the expansion indeed boosted

university innovation capacity, as represented by the number of university patents.

Columns (4) and (5) show that cities with larger university capacity in 1990 also

experienced a larger increase in collaborative patents and industry patents after the

expansion. The impact on collaborative patents represents an important form of uni-

versities’ contribution to the local economy by collaborating with other sectors.28

The impact on industry patents implies potential spillovers from universities.

As discussed in the empirical framework, we can form a structural interpretation

of the estimated coefficients in a Wald difference-in-differences setup, with addi-

tional assumptions. Specifically, dividing the reduced-form effect by the first-stage

effect produces the Wald estimator of the impact of university’s research capacity

on industry patents. For example, in Table 1.3, the impact of university teachers on

industry patents at the city level is 0.30 (101.75/341.02). Alternatively, the impact

of university patents on industry patents at the city level is 3.05 (101.75/33.32). The

magnitude of the effects is economically important: adding 100 more university

patents to the average prefecture city increases the industry patents in the city by

305.29

To check on the parallel trend assumption and also to depict the dynamics of the

treatment effects, we estimate event study models as in Equations (1.5). Appendix

Figures A3 and A4 present the estimation results. In Panel (a) of Appendix Figure

27Additional results are presented in Appendix Tables A1.B-A1.C to show robustness when we
add city-level control variables, such as the non-agricultural population, the proportion of employ-
ment in the manufacturing industries, and the proportion of employment in the service industries.

28As illustrated in Hall et al. (2003), research projects with university involvement tend to be in
areas involving new science. The social benefits from the collaborated patents can be large.

29We present the two-stage least squares estimation results in Appendix Tables A4.A and A4.B
with corresponding statistical inference.
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A3, we show the dynamic effects of the university expansion on the numbers of

university teachers and university patents using the number of university teachers in

1990 as the treatment intensity. Panel (b) shows the corresponding estimates using

the number of university students in 1990 as the treatment intensity. Two patterns

emerge. First, the university scale measured by the numbers of university teachers

and patents do not present significant responses to variation in treatment intensity

before the expansion when the number of university teachers in 1990 is used as the

treatment intensity. However, there seems to be a small upward trend in university

scale leading the expansion when the number of university students in 1990 is used

as the treatment intensity. Second, the increases in the numbers of university teach-

ers, university students, and university patents after 1999 are positively affected by

the number of university teachers or students in 1990.

Appendix Figure A4 shows the dynamic effects of university expansion on col-

laborative patents and industry patents. In both panels, the dashed line presents

the estimation results using the number of university teachers in 1990 as the treat-

ment intensity, and the solid line presents the estimation results using the number

of university students in 1990 as the treatment intensity. In both panels, there seems

to exist an upward trend in outcome variables leading the treatment year of 1999.

Starting from 2000, the numbers of both types of patents rose more dramatically,

with more pronounced effects in later years.

The deviation in pre-trends across cities with varying treatment intensity raises

concerns about potential estimation bias. We investigate and resolve this issue by

the following. First, we detect the presence of a trend break by estimating the

trend-break model in Equation (1.7), and we report the results in Table 1.4 using

the number of university teachers in 1990 as the treatment intensity.30 Across all

columns in the table, we observe statistically significant evidence of trend breaks.

The existence of a slope change in the variables of interest suggests the presence of

a causal impact of the expansion on university scale and industry patenting activities

(Almond et al. 2019).

Next, we strip away city-specific pre-expansion linear time trends following the

de-trend approach in Bhuller et al. (2013), Monras (2019), and Garcia-López et al.

30The results using the number of university students in 1990 as the treatment intensity is reported
in Appendix Table A2.
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(2020). We present the corresponding results in Table 1.5. Compared with Table

1.3, the point estimates are very similar for the number of university teachers but re-

duced a bit for the numbers of different classifications of patents. For example, after

adjusting for pre-trends, the estimates imply that cities with 1,000 more university

teachers in 1990 experienced an additional increase of 83.89 industry patents on

average. Again, the results suggest strong spillovers to local innovation activities

from universities. In general, the results show strong robustness.

Furthermore, we re-estimate event study models to verify that the parallel trend

assumption is satisfied after we strip away city-specific pre-trends. We report the

results in Figures 1.3 and 1.4.31 We do not observe significant pre-trends in the

event study estimates for both figures. This suggests that the extent to which uni-

versities expanded at the city level was not predicted by any projected changes in

local economic activities in deviation from city-specific time trends. We also find

that the impact of university expansion on industry patents is increasing over time,

suggesting dynamically increasing spillovers from universities to industry sectors.

The increasing effects could be explained by the continually increasing scale of the

higher education sector because the university expansion lasted for many years. It is

also consistent with the idea that agglomeration spillovers tend to self-amplify once

the initial shock takes place.

We conduct two additional sets of robustness checks to further corroborate our

findings. First, we follow the parametric event study approach in Dobkin et al.

(2018) and estimate the following specification:

IndustryInnoc,t = µ×Treatmentc× `+
8

∑
`=1

β`×Treatmentc×1{t = 1999+ `}

+αc + γt + εc,t ,

(1.9)

where ` indicates the year relative to 1999; µ captures the slope of the trend; β` cap-

tures year-specific treatment effect after controlling for city-specific time trend.32

The rest variables are defined the same as before. We plot the corresponding esti-

31The detailed estimation results that are used to draw Figures 3 and 4, and Appendix Figures A3
and A4 are reported in Appendix Tables A3.A and A3.B.

32We choose to include linear trends in the model because the non-parametric event study esti-
mates in Figures A3 and A4 display patterns of a linear pre-trend.
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mates in Figure 1.5. The dashed lines capture the estimated linear trends. The gap

between the crosses and red dashed line represents year-specific treatment effects

using the number of university teachers in 1990 as the treatment measure. The gap

between the circles and blue dashed line represents year-specific treatment effects

using the number of university students in 1990 as the treatment measure. The evi-

dence suggests a large effect of the expansion on industry patents. The patterns are

consistent with the lower panel of Figure 1.4. This is not surprising as the para-

metric event study approach is analogous to the de-trend approach despite small

technical variations (Goodman-Bacon 2018, 2021; Rambachan and Roth 2022).

Second, we obtain robust inference using the “honest approach” proposed in

Rambachan and Roth (2022) after specifying how different post-treatment viola-

tions of parallel trends can be from the pre-treatment differences in trends. Hence,

this approach allows us to address potential estimation bias arising from not only

the presence of linear trends but also potential deviations from linearity. It also ad-

dresses further concerns that pre-trend tests implemented in the event study setup

may fail to detect violations of parallel trends due to low statistical power or po-

tential distortions arising from selection (Roth 2022). As in Rambachan and Roth

(2022), we assume that the differential trends evolve smoothly over time (smooth-

ness) and that the possible non-linearities in the post-treatment difference in trends

are bounded by observed non-linearities in the pre-treatment difference in trends

(relative magnitude bounds). To be consistent with Rambachan and Roth (2022),

we use δt to indicate the difference in trends between the treated and control groups

and specify the restriction as follows:

∆
SDRM(M̄)=

{
δ : ∀t > 0, |(δt+1−δt)− (δt−δt−1)|6 M̄ ·max

s<0
|(δs+1−δs)− (δs−δs−1)|

}
,

(1.10)

where ∆ is a set of possible differences in trends, and M̄ governs the amount by

which the slope of δt can change after the treatment period. If M̄ = 0, it requires

the trend to be linear, which shares similar ideas as in Equations (1.7) and (1.9).

If M̄ > 0, it means that we further allow a deviation from a linear trend in the

post-treatment period, and the maximum deviation is bounded by M̄ > 0 times the

equivalent maximum in the pre-treatment period.33 We then construct robust confi-

33Applied researchers usually test the null hypothesis δpre = 0 to assess the existence of the pre-
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dence intervals of the treatment effect under the smoothness and relative magnitude

bounds assumptions using the R package provided by Rambachan and Roth (2022).

We report the findings in Figure 1.6. The figure presents robust confidence sets

for the estimated treatment effect averaged across post-treatment years, under the

restrictions of ∆SDRM(M̄). The left panel uses the number of university teachers in

1990 as the treatment intensity, and the right panel uses the number of university

students in 1990 as the treatment intensity. The blue confidence intervals are ob-

tained without making adjustments for pre-trends.34 The red confidence sets depict

the set of confidence intervals of the estimated coefficients if we allow for a devia-

tion from a linear trend with the maximum deviation specified in Equation (1.10).

We find that, even when we allow M̄ = 0.25, the estimated causal impact of uni-

versity expansion on industry patents is still statistically different from zero. The

breakdown value for a null effect is around M̄ = 0.5. Thus, even if we allow further

deviations from the pre-expansion linear trend, as long as such deviations are not

"too big", we are still able to claim the presence of a causal relationship.

1.5.2 Ring-level Analysis on Knowledge Spillovers

The key focus of this paper is to infer knowledge spillovers from the geographic

nature of university spillovers. In this section, we present estimation results from

ring-level analyses of the effects of the university expansion on industry patenting

activities in close proximity to universities. Specifically, we extend the difference-

in-differences framework by further examining whether the impact is larger in areas

near universities relative to areas farther away. This within-city variation allows for

estimating a triple-differences model, as in Equation (1.2).

Table 1.6 presents the estimation results when we use the number of university

teachers in 1990 as the proxy for treatment intensity. The results using the number

of university students in 1990 as the treatment proxy are reported in Appendix Ta-

ble A5. We limit our analysis to areas within 5 km of universities in the baseline

regressions. In Columns (1)-(3) of Table 1.6, we report results without removing

the pre-expansion linear time trend. In Columns (4)-(6), we report results after re-

treatment non-parallel trends. See Section 2.2 in Rambachan and Roth (2022) for a more detailed
discussion.

34The point estimate is the average of year-specific estimates of the treatment effect in the post-
treatment period.
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moving pre-expansion linear time trend.35 In Columns (1) and (4), we control for

city fixed effects, year by ring fixed effects, in addition to treatment by ring dummy

interactions. In Columns (2) and (5), we control for year by ring, year by city, and

city by ring fixed effects. The latter specification is a standard generalized triple-

differences model in which we treat the 4.5-5 km ring as the reference group.

The estimation results suggest that the university expansion significantly in-

creases the number of industry patents in the closest concentric rings and the effects

attenuate sharply with geographic distance. While the results are robust and con-

sistent across all specifications, we focus on the results in Column (5), which is our

preferred specification. The estimates suggest that cities with 1,000 more university

teachers in 1990 experienced an additional increase of 76.5 industry patents in the

0-0.5 km ring relative to the 4.5-5 km ring after the university expansion. This effect

reduces to 15.3 in the 0.5-1 km ring, which is smaller by a factor of 5. The effect

further reduces as we move to the outer rings and becomes statistically insignifi-

cant after the 2 km radius.36 In Column (6), we divide the coefficient estimates

in Column (5) by the average number of patents in the corresponding ring during

the pre-expansion period, which provides information on the percentage change of

industry patents in each ring because of the university expansion. Again, the atten-

uation is quite dramatic in percentage terms. In the 0-0.5 km ring, industry patents

increased by a factor of 3.12, while in 2-2.5 km ring, industry patents only increased

by 43 percent. The attenuation is muted after 2-2.5 km ring.

In Figure 1.7, we plot the dynamic effects of the university expansion on indus-

try patents in different concentric rings after we remove the pre-expansion linear

time trend.37 Panels (a) and (b) use the number of university teachers in 1990 and

the number of university students in 1990 as the treatment intensity proxy, respec-

tively. Again, the results show that the impact on the number of patents in the 0-0.5

km ring is the largest, followed by the second ring, third ring, and so on. As will

be obvious in this paper, this attenuation pattern is what we consistently find in

35The necessity of addressing potential pre-trends is evident in Appendix Figure A5, which shows
a small upward trend in the number of industry patents in the nearest ring (ring 1).

36To mitigate the concern that many patents are of low quality, we conduct a robustness check
in which we restrict our sample to patents with at least one citation. The results are qualitatively
similar. We present the results in Appendix Tables A6.A and A6.B.

37Appendix Table A7.A and A7.B. present the corresponding regression results.
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all specifications. More important, the sharp increasing trend in the 0-0.5 km ring

suggests that the long-run benefit of locating near a university could be more am-

plified than the short-run effects. The figure also shows that the pre-trends are well

controlled for, so the parallel trend assumption is not rejected in this case.

Next, we estimate a trend break model to detect the presence of a slope change

in the number of industry patents at different distances (rings) as a result of the

university expansion, as in Equation (1.8). The results are presented in Table 1.7

when we use the number of university teachers in 1990 as the treatment intensity.38

Columns (1)-(10) look at each ring separately, and Column (11) pools all rings

together and uses 4.5-5 km ring as the reference group. When studying each ring

separately, we observe statistically significant evidence of trend breaks in all rings.

Column (11) suggests that, comparing with the 4.5-5 km ring, the estimated slope

change is statistically significant for the 0-0.5 km, 0.5-1 km, 1-1.5 km, and 1.5-

2 km rings. More important, we find that the slope change is much larger in the

closer rings. The results suggest that the trajectory of industry patenting activities

experienced a trend break because of the expansion and that the causal impact of the

expansion follows a dramatic attenuation pattern over space. This pattern supports

our previous findings in Table 1.6.

As a robustness check, we present the estimation results from the parametric

event study (Dobkin et al. 2018) in Figure 1.8. Panels (a) and (b) present results

using the numbers of university teachers and students in 1990 as the proxy for treat-

ment intensity, respectively. To save space, we only present the results for rings 1,

3, 6, and 9. The dashed lines in the figures represent the estimated linear trends in

the number of industry patents (µ in Equation (5.1)). The gap between the crosses

(circles) and the dashed lines capture the treatment effects of the expansion in devi-

ation from a linear trend. Rings 1 and 6 are represented by crosses; Rings 3 and 9

are represented by circles. The figure shows that there is a significant effect of the

university expansion on nearby industry patents in deviation from a linear time trend

and that the effect is larger in closer rings to universities, a result we repetitively find

in all specifications.

We also obtain robust inference for the ring-level analysis using the “honest ap-

38The results using the number of university students in 1990 as the treatment intensity is reported
in Appendix Table A8.
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proach” proposed in Rambachan and Roth (2022), as the second robustness check.

The results are presented in Figure 1.9. The procedure is the same as what we

described for the city-level analysis, except now we estimate and present the confi-

dence intervals for each ring separately. The blue confidence intervals are obtained

without making adjustments for pre-trends, and the red confidence intervals are

obtained when we allow for a deviation from a linear trend with the maximum de-

viation specified in Equation (1.10). The general patterns are similar to the results

in city-level analysis. That is, as long as deviations from a linear trend are not

“too big", we continue to find statistically significant evidence of a causal impact

of the university expansion on innovation activities. The values contained in the

confidence intervals across rings also suggest a sharp attenuation of the impact.

In sum, we document consistent evidence across various specifications suggest-

ing that spillovers from universities are very localized and dissipate sharply with

geographic distance. We observe that the largest spillover effects take place within

2 km around the universities, and the impact on the 0-0.5 km ring is more than 30

times larger than that on the 1.5-2 km ring (Column (5) of Table 6). Similar spatial

attenuation of agglomeration externalities is also documented in other studies focus-

ing on different settings. For instance, Andersson et al. (2009) shows that between

one-third and one-half of the total effect on productivity resulted from a university

is within 5 km of the university. Rosenthal and Strange (2008) finds that the effect

of urbanization economics on worker productivity is about half as large at distances

over 8 km as it is at closer distances. Arzaghi and Henderson (2008) shows that the

effect of localization economies on the birth of advertising agencies in Manhattan is

mainly within 500 meters. Baum-Snow et al. (2021) finds that revenue and produc-

tivity spillovers that operate between firms are within 75 meter to 250 meter radius.

As similarly argued in those studies, this important geographic decay of university

spillovers suggests that knowledge spillovers play an important role in the effects of

universities on local innovation (Arzaghi and Henderson 2008). It would be hard to

reconcile such a sharp attenuation pattern with other explanations, such as improved

local infrastructure or increased supply of high-skilled labor.39

39Our results do not exclude the possibility that other mechanisms are present in the neighbor-
hoods of universities. We only claim that, without knowledge spillovers, the impact of university
activities should not display a dramatic spatial decay pattern.
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Next, we conduct a set of extension and heterogeneity analyses. In the baseline

ring-level analysis, we restrict our focus to areas within 5 km of universities. This

restriction has two implications when interpreting the estimated coefficients. First,

in the triple-differences specification, we use the 4.5-5 km ring as the reference

area. Thus, the estimated coefficients capture the impact of the university expan-

sion on the inner rings relative to the impact on the 4.5-5 km ring. Second, the

area restriction ignores the possible impact of the university expansion outside the

area. In Table 1.8 and Appendix Table A9, we extend the analysis to 10 km around

universities, which usually covers a significant share of city areas with innovation

activities. The quantitative results on spatial decay patterns are very similar. To

better visually reveal the spatial decay pattern of university spillovers, Figures 1.10

and 1.11 present the spatial decay of university spillover benefits using the impact

on the 0-0.5 km ring as the reference.40 We can clearly see the strong spatial decay

of the impact, especially within the first 2 km (4 rings) of universities. More impor-

tant, the spillovers are small and stable beyond this scope, which suggests that we

are not missing much by focusing on the 5 km areas around universities.

We further explore how knowledge spillovers from universities interact with

other complementary factors, such as industrial and skill composition. In Table 1.9,

we explore the heterogeneous effects of the university expansion across different

regions.41 It is well known that the Eastern coastal region of China is the most de-

veloped, followed by the Central region, and then the Western region. The industry

structure across those regions is quite different. The Eastern region is the most suc-

cessful in industrial transformation and upgrading, and it comprises high-tech man-

ufacturing concentrations, such as telecommunications and software. The Western

region is heavily concentrated with traditional manufacturing industries such as the

steel industry. Therefore, spillovers from universities could be different across re-

gions. The estimation results show that the impact of the university expansion is

ubiquitous but most pronounced in the Eastern region.

In Table 1.10, we explore the heterogeneous effects of the university expansion

40The corresponding regression results are presented in Appendix Tables A10.A and A10.B.
41Table 1.9 uses the number of university teachers in 1990 as the proxy for treatment intensity.

The results using the number of university students in 1990 as the proxy are reported in Appendix
Table A11.
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across industries with different human capital intensity.42 We define the human

capital intensity of an industry in the following way. We assign each patent to a

two-digit industry based on the reference table of International Patent Classifica-

tion and National Industries Classification issued by the State Intellectual Property

Office of China.43 We obtain information on the share of workers with a college

education and above from the ASIF dataset. Based on this information, we divide

industries into high, medium, and low human capital intensity industries, depending

on whether the industry-specific college employee ratio belongs to the top, middle,

or bottom one-third of the distribution.44 Finally, we separately count the number

of patents linked to the high, medium, and low human capital intensity industries in

each concentric ring. The estimation results in Table 1.10 suggest that the spatial

attenuation of university spillovers is more pronounced for industries that are more

reliant on high-skilled labor.

1.6 Results on Patent Citations and New Products

1.6.1 Patent Citations

We now present direct evidence of knowledge flows from universities to nearby

areas by examining the changes in patent citation links because of the university

expansion.

In Table 1.11, we examine the effects of university expansion on patent citation

links near universities. In Column (1), using the number of university teachers in

1990 as the treatment intensity measure, we examine the impact of university expan-

sion on the number of times when industry patents in different rings cite university

patents. We find that university patents are cited by more industry patents near

universities after the university expansion. For example, after the university expan-

sion, cities with 1,000 more university teachers in 1990 experienced an additional

42Table 1.10 uses the number of university teachers in 1990 as the proxy for treatment intensity.
The results using the number of university students in 1990 as the proxy are reported in Appendix
Table A12.

43The reference table can be found at http://www.sipo.gov.cn/gztz/1132609.htm. It is possible that
a patent can be matched with more than one industries, in which case we count this patent in all the
industries that it is linked to.

44High human capital industries include, for example, the chemical, electrical, and telecommu-
nications industries; medium human capital industries include, for example, the food and beverage
industries; and low human capital industries include, for example, the leather and wood industries.
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increase of 0.56 times when industry patents in the 0-0.5 km ring cite university

patents, relative to that in the 4.5-5 km ring. The effect attenuates fast when we

move away from the universities. The corresponding impact is 0.08 in the 0.5-1 km

ring relative to the outermost ring, which is smaller than the effect in the 0-0.5 km

ring by a factor of 7. The effect decays entirely after the 2 km radius, and the decay

speed is as sharp as what we document for the effects on new patents. It is also con-

sistent with the common perception that knowledge spillovers require close-range

communications and interactions and, hence, decay fast spatially. In Column (3),

we use the number of university students in 1990 as the proxy for treatment inten-

sity, and we find very similar patterns.

A possible argument against the identification of our triple-differences approach

is that there may exist unobserved time-varying city- and location (distance)-specific

factors that contribute to the increase in location-specific innovation activities after

the university expansion. In this case, the increased number of patents that cite uni-

versity patents in closer locations could result from the scale effect proportional to

the increase in the number of total new patents driven by the unobservables. Such

a hypothetical scenario is possible but very unlikely given the rare coincidence of

multiple co-evolving factors—those factors must have the same timing as the uni-

versity expansion and systematically impact innovation in a similar spatial pattern.

Despite being remotely plausible, we conduct a falsification test to rule out such a

possibility.

We examine the impact of university expansion on the spatial nature of the cases

where nearby industry patents cite patents far away from universities. If the pres-

ence of the unobservables, coupled with the scale effect, forms the underlying mech-

anism, then we should observe that the impact on the number of cases where nearby

patents cite patents far away from universities follows similar spatial decay patterns.

Specifically, we examine whether patents outside the 5 km radius of universities are

cited more by patents closer to universities after the university expansion. As shown

in Columns (2) and (4) of Table 1.11, we do not find a clear spatial decay pattern

of the impact. The evidence suggests that our results are not driven by unobserved

time-varying city- and ring-specific factors that coincide with the university expan-

sion and that follow a spatial attenuation pattern.
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1.6.2 New Products

While patents are informative in measuring innovation, patenting only captures

an intermediate step in converting new ideas into economic outputs. In this section,

we examine the impact of the university expansion on creation of new products

in nearby manufacturing firms by taking advantage of previously under-explored

information on firm new products reported in the ASIF. We report the summary

statistics of firm characteristics for our final regression sample in Appendix Table

A13.

Table 1.12 reports the estimated impact of university expansion on the new prod-

uct ratio of manufacturing firms in different rings when we use the number of uni-

versity teachers in 1990 as the proxy for treatment intensity.45 To capture dynamics,

we report the estimated impact separately for the years after 2000, 2002, 2004, and

2006. That is, we report the average impact of university expansion from 2000 to

2007 in Column (1), the average impact of university expansion from 2002 to 2007

in Column (2), and so on. Two patterns emerge. First, for any given column, the

impact of university expansion on nearby firms’ new product ratio decays as the dis-

tance between firms and universities increases. The attenuation pattern is clear, but

the speed of attenuation is not as fast as that for patents. Second, the impact gradu-

ally increases in later years. This increasing trend is evident when we compare the

impact across different columns.

The results in Table 1.12 supplement our analyses on patents by showing that

the university expansion also results in an increase in new commercial product sales

at nearby firms, which, to some degree, reflects the economic value of innovations.

This effect could be explained by a combination of nearby existing firms innovating

more and more innovative firms sorting into the neighborhood of universities. Table

1.12 does not intend to distinguish these two channels as they both indicate that

there must be some advantages to be in the proximity of universities. The fast decay

speed of the impact further suggests that knowledge spillover is a major underlying

driving force. We also estimate a specification with firm fixed effects. The results

are presented in Appendix Table A15. The coefficients are in general smaller than

45The results using the number of university students in 1990 as the treatment intensity are re-
ported in Appendix Table A14.
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those in Table 1.12 but the attenuation pattern is still evident. The findings suggest

that both the intensive margin and the extensive margin are in effect.

In Table 1.13, we examine the heterogeneous effects of university expansion on

new product ratio using the number of university teachers in 1990 as the proxy for

treatment intensity.46 Columns (1)–(3) show the heterogeneous impact across in-

dustries with different levels of human capital intensity. The pattern that appears

again is the attenuation of the impact over geographic distance. Moreover, we find

that potential knowledge spillovers are larger in industries with higher human cap-

ital intensity, which is consistent with complementarity between human capital and

knowledge spillovers. Columns (4)–(5) explore whether the impact varies for SOEs

versus non-SOEs. Evidence suggests that the impact is more pronounced for non-

SOE firms, which may be because non-SOEs are in general smaller in size and more

productive than SOEs.47 Thus, they are more active in the market and benefit more

from learning and exchanging information.

1.7 Conclusion

Knowledge and innovation play a central role in advancing the technology fron-

tier and promoting economic growth. Yet, despite being the center of knowledge

creation and dissemination, the explicit role of universities in contributing to the in-

novation process is still understudied (Akcigit 2017). This paper exploits a unique

quasi-experiment of university expansion in China to study the impact of univer-

sity activities on local innovation. In particular, we utilize rich geocoded data on

patent generations, patent citation links, and new products from firms to examine

the geographic nature of the university impact and to identify the role of knowledge

spillovers.

We find that the university expansion significantly increases universities’ own

innovation capacity, which results in a dramatic boom of nearby firms’ patenting

activities. More important, the impact attenuates sharply with spatial distance. For

example, the magnitude of the impact on nearby firm patenting activities reduces

46Appendix Table A16 reports the results using the number of university students in 1990 as the
treatment intensity.

47This result is consistent to Acs et al. (1994). They use new product announcement data from
the U.S. Small Business Administration and show that small firms are the recipients of nearby R&D
spillovers.

34



by about 80 percent from 0-0.5 km ring to 0.5-1 km ring around a university. There

is another 65 percent decline of the impact when moving from 0.5-1 km ring to 1-

1.5 km ring around the university. The result implies significant but very localized

knowledge spillovers from universities. Further analysis suggests that the university

expansion boosts nearby firms’ new products and induces more industry patents to

cite university patents. Those effects also follow similar spatial decay patterns.

Taken together, these findings unanimously point to the importance of knowledge

spillovers in fostering innovation in close proximity to education and research insti-

tutions. Thus, the evidence justifies the continually increasing support for research

universities as a viable policy instrument for the government to promote long-term

economic growth.

While our empirical analysis identifies and highlights the role of knowledge

spillovers, future work would benefit from further explorations on the channels

through which knowledge spillovers take place in a self-reinforcing way, as sug-

gested by the dynamic evidence that we document in this paper. For instance, to

take advantage of increased knowledge spillovers, nearby firms may hire more high-

skilled labor and explore its complementarity with knowledge. Increased human

capital increases the benefits of knowledge spillovers, which then leads to a self-

reinforcing innovation process. Alternatively, increased knowledge spillovers could

motivate firms to become more innovative and to enter the proximity of research-

oriented universities to better draw on spillover benefits. Their entry and clustering

could make it easier to use the knowledge from universities or to generate externali-

ties within the clusters. These channels also reinforce the university spillovers. In a

way, spillovers from universities can be viewed as both the “seed” and the “flower”

of innovation (Harbison and Myers 1965). Altogether, the specific mechanisms ex-

plain the dynamic process through which high-tech clusters form in close proximity

to higher education institutions.
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Figure 1.1: Various Aspects of the University Expansion

Notes: Numbers are counted in 10,000 from Panels A to D, and in 100,000,000 yuan in Panels E and
F. Data for the numbers of university teachers, university students, university entrants, and university
graduates are obtained from the Educational Statistics Yearbook of China. Data for higher education
expenditure are from the Educational Finance Statistical Yearbook of China. Data for science and
technology funding in the higher education sector are from the Compilation of Statistical Data on
University Science and Technology Resource.
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Figure 1.2: Growth in the University Scale between 1999 and 2007 in Relation to the
University Scale in 1990

Notes: The number of university teachers is counted in 1,000. The number of university students is
counted in 10,000. Data are obtained from the China City Statistical Yearbook.
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(a) No. of University Teachers in 1990 as Treatment

(b) No. of University Students in 1990 as Treatment

Figure 1.3: The Dynamic Effects of University Expansion on the Numbers of University
Teachers, Students, and University Patents

45



(a) Collaborative Patents

(b) Industry Patents

Figure 1.4: The Dynamic Effects of University Expansion on the Numbers of
Collaborative Patents and Industry Patents
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Figure 1.5: The Dynamic Effects of University Expansion on Industry Patents
— Parametric Event Study Approach in Dobkin et al. (2018)

Notes: This figure reports the results estimating Equation (1.9), which is a parametric event study
approach introduced in Dobkin et al. (2018). The dashed line in the figure represents the estimated
linear trend (the corresponding slope is µ in Equation (1.9)). The gap between the crosses (circles)
and the dashed lines capture the estimated effects of the expansion.
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Figure 1.6: “Honest" Approach — Confidence Sets for the Effects of University
Expansion on Industry Patents

Notes: This figure reports robust confidence sets for the average treatment effect across all post-
treatment periods. It is produced using the R package provided by Rambachan and Roth (2022).
The number of university teachers in 1990 is used as the treatment intensity in the left panel, and the
number of university students in 1990 is used as the treatment intensity in the right panel. The blue
confidence intervals are obtained without making adjustments for pre-trends. The red confidence
sets depict the set of confidence intervals of the estimated coefficients if we allow for a deviation
from a linear trend as specified in Equation (1.10).
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(a) No. of University Teachers in 1990 as Treatment

(b) No. of University Students in 1990 as Treatment

Figure 1.7: The Dynamic Effects of University Expansion on the Number of Industry
Patents at the Ring Level — Pre-expansion Time Trend Removed
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(a) No. of University Teachers in 1990 as Treatment

(b) No. of University Students in 1990 as Treatment

Figure 1.8: The Dynamic Effects of University Expansion on Industry Patents at the Ring
Level

— Parametric Event Study Approach in Dobkin et al. (2018)

Notes: The specification used for each ring is specified in Equation (5.1), where ` is the year
relative to 1999. We only present the results for rings 1, 3, 6, and 9 to save space. The dashed lines
in the figures represent the estimated linear trends (the corresponding slope is µ in Equation (5.1)).
The gap between the crosses (circles) and the dashed lines capture the estimated effects of the
expansion. Rings 1 and 6 are represented by crosses; Rings 3 and 9 are represented by circles.
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(a) Ring 1 - Ring 5

(b) Ring 6 - Ring 10

Figure 1.9: “Honest" Approach — Confidence Sets for the Effect of University Expansion
on Patents in Ring 1-10

Notes: This figure reports robust confidence sets for the average treatment effect across all
post-treatment periods for each ring. It is produced using the R package provided by Rambachan
and Roth (2022). The number of university teachers in 1990 is counted in 1,000, and it is used as
the measure of treatment intensity. The blue confidence intervals are obtained without making
adjustments for pre-trends. The red confidence sets depict the set of confidence intervals of the
estimated coefficients if we allow for a deviation from a linear trend as specified in Equation (1.10).
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(a) No. of University Teachers in 1990 as Treatment

(b) No. of University Students in 1990 as Treatment

Figure 1.10: Spatial Decay of University Spillovers — Relative to the Effect on Ring 1

Notes: This figure depicts the effect of the university expansion on different rings using the
de-trend method, relative to the effect on ring 1 (0-0.5 km ring). The number of university teachers
(students) in 1990 is used as the measure of treatment intensity in the top (bottom) panel. Both
variables are counted in 1,000.
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(a) No. of University Teachers in 1990 as Treatment

(b) No. of University Students in 1990 as Treatment

Figure 1.11: Spatial Decay of University Spillovers — Relative to the Effect on Ring 1
(Trend Break Model)

Notes: This figure depicts the effect of the university expansion on different rings using the trend
break model, relative to the effect on ring 1 (0-0.5 km ring). The number of university teachers
(students) in 1990 is used as the measure of treatment intensity in the top (bottom) panel. Both
variables are counted in 1,000.
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Table 1.1: City-Level Summary Statistics

(1) (2) (3) (4) (5) (6) (7)

Year Cities
University
Teachers

University
Students

Total
Patents

University
Patents

Collaborative
Patents

Industry
Patents

1995 184 2066.14 14544.88 44.11 2.56 0.30 41.26
1996 184 2092.56 15274.52 49.84 2.86 0.40 46.58
1997 184 2106.44 15928.52 53.55 2.80 0.54 50.21
1998 184 2092.70 16781.35 59.97 3.80 0.56 55.60
1999 184 2111.27 18066.50 71.42 4.97 1.13 65.32
2000 184 2199.40 21705.90 114.96 8.28 1.74 104.93
2001 184 2376.25 28130.00 139.22 12.48 2.23 124.51
2002 184 2648.45 37005.33 197.61 22.43 2.93 172.24
2003 184 3084.78 46802.86 274.86 38.29 4.01 232.56
2004 184 3653.77 58002.03 308.14 49.88 4.65 253.61
2005 184 4310.27 69309.45 404.68 68.80 6.32 329.57
2006 184 4896.28 81839.51 528.77 85.07 8.46 435.23
2007 184 5403.83 88653.08 644.54 105.72 10.63 528.19

Notes: Column (1) reports the number of cities in each year. Columns (2)–(7) report the mean of the respective city-level variable.
University patents are the patents filed solely by inventors affiliated with higher-education institutions. Collaborative patents are the
patents jointly filed by inventors affiliated with universities and inventors from the private sector. Industry patents are the patents filed
solely by inventors from the private sector.
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Table 1.2: The Average Number of Patents at the Ring Level

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Year Ring 1 Ring 2 Ring 3 Ring 4 Ring 5 Ring 6 Ring 7 Ring 8 Ring 9 Ring 10
1995 18.20 6.33 3.40 2.32 1.35 0.80 0.62 0.58 0.46 0.33
1996 20.77 6.64 3.66 2.34 1.64 1.24 0.70 0.66 0.39 0.40
1997 23.45 6.61 3.93 2.23 1.80 1.22 0.85 0.49 0.48 0.46
1998 26.47 7.81 4.25 2.57 2.10 1.44 0.97 0.70 0.43 0.48
1999 33.86 8.82 4.62 2.90 2.42 1.52 1.05 0.77 0.58 0.52
2000 65.55 12.48 6.60 3.89 2.73 1.92 1.37 0.82 0.83 0.77
2001 79.36 14.72 7.93 5.11 3.02 1.97 1.78 1.36 0.88 0.88
2002 107.49 28.36 10.57 6.20 4.92 3.30 2.64 1.71 1.30 1.24
2003 150.23 39.66 13.91 8.51 6.22 4.23 3.51 2.57 2.21 1.61
2004 167.61 44.65 16.84 10.53 6.42 4.56 3.99 3.30 2.39 2.27
2005 211.91 48.41 22.48 13.95 10.19 7.98 6.15 4.27 3.01 3.91
2006 267.29 53.45 32.04 21.36 14.08 11.53 8.41 6.78 4.24 6.33
2007 316.14 65.49 39.30 25.49 17.35 15.03 11.33 8.41 6.40 9.64

Notes: This table reports the average numbers of patents in different concentric rings in each year across
cities. Ring i refers to the concentric ring area between the buffer zones (i−1) and i, and the boundaries of
consecutive buffer zones are 500 meters apart.
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Table 1.3: Impact of University Expansion on University Scale and Innovation
— City-level Regression

(1) (2) (3) (4) (5)

Dependent Variable: No. of
University
Teachers

Total
Patents

University
Patents

Collabo-
rative

Patents
Industry
Patents

Treatment × After 341.02∗∗∗ 138.74∗∗∗ 33.32∗∗∗ 3.67∗∗∗ 101.75∗∗∗

(3.23) (5.20) (7.57) (3.95) (4.52)
Observations 2384 2392 2392 2392 2392
Year FE Yes Yes Yes Yes Yes
City FE Yes Yes Yes Yes Yes
Dependent Variable Mean 3006.14 222.44 31.38 3.38 187.68
Adj. R2 0.913 0.585 0.647 0.676 0.539

Notes: This table reports the estimates of the effects of university expansion on the numbers of
university teachers and different classifications of patents. The number of university teachers in
1990 is counted in 1,000, and it is used as the measure of treatment intensity. The number of
university teachers is considered as a proxy for university scale. t statistics based on clustered
standard errors at the city level are reported in parentheses. ∗ p< 0.10, ∗∗ p< 0.05, ∗∗∗ p< 0.01.
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Table 1.4: Impact of University Expansion on University Scale and Innovation
— City-level Analysis of Trend Break Model

(1) (2) (3) (4) (5)

Dependent Variable: No. of
University
Teachers

Total
Patents

University
Patents

Collabo-
rative

Patents
Industry
Patents

Treatment × Trend 155.40∗∗∗ 32.55∗∗∗ 10.09∗∗∗ 0.647∗∗ 21.81∗∗∗

×After 2000 (4.64) (5.59) (9.15) (2.47) (4.23)
Observations 2384 2392 2392 2392 2392
Year FE Yes Yes Yes Yes Yes
City FE Yes Yes Yes Yes Yes
Dependent Variable Mean 3006.14 222.44 31.38 3.38 187.68
Adj. R2 0.949 0.679 0.873 0.783 0.602

Notes: This table reports the estimates of the slope change in the numbers of university
teachers and different classifications patents as a result of the university expansion, using
the specification in Equation (1.7). The number of university teachers in 1990 is counted
in 1,000, and it is used as the measure of treatment intensity. t statistics based on clustered
standard errors at the city level are reported in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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Table 1.5: Impact of University Expansion on University Scale and Innovation
— City-level Regression with Pre-expansion Linear Trend Removed

(1) (2) (3) (4) (5)

Dependent Variable: No. of
University
Teachers

Total
Patents

University
Patents

Collabo-
rative

Patents
Industry
Patents

Treatment × After 346.06∗∗∗ 116.61∗∗∗ 30.27∗∗∗ 2.44∗∗∗ 83.89∗∗∗

(3.28) (4.37) (6.88) (2.63) (3.73)
Observations 2384 2392 2392 2392 2392
Year FE Yes Yes Yes Yes Yes
City FE Yes Yes Yes Yes Yes
Dependent Variable Mean 831.91 138.63 24.12 1.24 113.27
Adj. R2 0.710 0.475 0.589 0.492 0.426

Notes: This table reports the estimates of the effects of university expansion on the numbers
of university teachers and different classifications of patents. The city-specific pre-expansion
linear trend is removed for the dependent variable in the specifications. The number of
university teachers in 1990 is counted in 1,000, and it is used as the measure of treatment
intensity. The number of university teachers is considered as a proxy for university scale. t
statistics based on clustered standard errors at the city level are reported in parentheses. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 1.6: Impact of University Expansion on Industry Innovation — Ring-level Regressions

Pre-expansion Time Trend Not Removed Pre-expansion Time Trend Removed

Dependent Variable Number of Patents
(1) (2) (3) (4) (5) (6)

Treatment × 90.41∗∗∗ 89.70∗∗∗ 3.65 76.93∗∗∗ 76.52∗∗∗ 3.12
After × 0.5km (4.46) (4.44) (3.80) (3.79)
Treatment × 19.03∗∗∗ 18.33∗∗∗ 2.53 15.72∗∗∗ 15.31∗∗∗ 2.11
After × 1km (4.28) (4.27) (3.54) (3.57)
Treatment × 6.98∗∗ 6.28∗∗ 1.58 5.70∗∗ 5.29∗∗ 1.33
After × 1.5km (2.55) (2.42) (2.08) (2.04)
Treatment × 3.48∗∗∗ 2.78∗∗ 1.13 2.71∗∗ 2.30∗ 0.93
After × 2km (2.60) (2.33) (2.03) (1.93)
Treatment × 1.76∗∗ 1.06 0.57 1.21 0.81 0.43
After × 2.5km (1.98) (1.40) (1.36) (1.07)
Treatment × 1.49∗∗∗ 0.79∗ 0.64 1.05∗ 0.65 0.52
After × 3km (2.71) (1.90) (1.91) (1.55)
Treatment × 1.15∗∗ 0.44 0.53 0.75 0.34 0.41
After × 3.5km (2.13) (1.04) (1.39) (0.80)
Treatment × 0.60∗∗∗ -0.11 -0.17 0.24 -0.16 -0.26
After × 4km (2.75) (-0.65) (1.12) (-1.01)
Treatment × 0.49∗∗ -0.22 -0.46 0.18 -0.23 -0.48
After × 4.5km (2.14) (-1.31) (0.79) (-1.38)
Treatment × 0.70∗∗∗ - - 0.41∗ - -
After × 5km (3.12) - (1.81) -
Observations 23920 23920 - 23920 23920 -
Treatment × Ring Dummies Yes No - Yes No -
City FE Yes No - Yes No -
Year × Ring FE Yes Yes - Yes Yes -
Year × City FE No Yes - No Yes -
City × Ring FE No Yes - No Yes -
Dependent Variable Mean 18.21 18.21 - 10.91 10.91 -
Adj. R2 0.387 0.570 - 0.255 0.482 -

Notes: This table reports the estimated effects of university expansion on industry patents at different distances
(rings). The city-ring-specific pre-expansion time trend is removed for the dependent variable in Columns (4)-(5).
Columns (3) and (6) are obtained by dividing the coefficients in Columns (2) and (5) by the average number of
patents in the corresponding ring during the pre-expansion periods, respectively. The number of university teachers
in 1990 is counted in 1,000, and it is used as the measure of treatment intensity. t statistics based on clustered
standard errors at the city level are reported in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 1.7: Impact of University Expansion on Industry Innovation — Ring-level Regressions of Trend Break Model

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Ring 1 Ring 2 Ring 3 Ring 4 Ring 5 Ring 6 Ring 7 Ring 8 Ring 9 Ring 10 Ring 1 - 10

Treatment × Trend 17.65∗∗∗ 17.33∗∗∗

×After× 0.5km (3.54) (3.47)
Treatment × Trend 4.137∗∗∗ 3.815∗∗∗

×After× 1km (4.66) (4.56)
Treatment × Trend 2.588∗∗ 2.267∗

×After× 1.5km (2.02) (1.85)
Treatment × Trend 1.202∗∗∗ 0.881∗∗

×After× 2km (2.74) (2.29)
Treatment × Trend 0.633∗ 0.311
×After× 2.5km (1.90) (1.10)
Treatment × Trend 0.554∗∗ 0.233
×After× 3km (2.60) (1.41)
Treatment × Trend 0.388∗∗ 0.0670
×After× 3.5km (2.23) (0.50)
Treatment × Trend 0.208∗∗ -0.114
×After× 4km (2.49) (-1.41)
Treatment × Trend 0.150∗ -0.171∗

×After× 4.5km (1.80) (-1.96)
Treatment × Trend 0.321∗∗∗

×After× 5km (3.07)
Observations 2392 2392 2392 2392 2392 2392 2392 2392 2392 2392 23920
City FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No
Year × Ring FE No No No No No No No No No No Yes
Year × City FE No No No No No No No No No No Yes
City × Ring FE No No No No No No No No No No Yes
Dependent Variable Mean 114.50 26.42 13.04 8.26 5.71 4.37 3.34 2.49 1.82 2.22 18.21
Adj. R2 0.606 0.672 0.561 0.621 0.450 0.455 0.450 0.379 0.430 0.213 0.627

Notes: This table reports the estimates of the slope change in the number of industry patents at different distances (rings) as a result of the university
expansion, using the specification in Equation (3.8). The number of university teachers in 1990 is counted in 1,000, and it is used as the measure of
treatment intensity. The trend-break model is used in all specifications. t statistics based on clustered standard errors at the city level are reported in
parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 1.8: Robustness Check — Ring-level Regressions up to 10 km

Pre-expansion Time Trend Not Removed Pre-expansion Time Trend Removed

Dependent Variable Number of Patents
(1) (2) (3) (4)

Treatment × 90.41∗∗∗ 90.29∗∗∗ 77.06∗∗∗ 77.07∗∗∗

After × 0.5km (4.46) (4.46) (3.80) (3.81)
Treatment × 19.03∗∗∗ 18.92∗∗∗ 15.85∗∗∗ 15.86∗∗∗

After × 1km (4.28) (4.30) (3.57) (3.60)
Treatment × 6.98∗∗ 6.87∗∗ 5.83∗∗ 5.84∗∗

After × 1.5km (2.55) (2.55) (2.13) (2.17)
Treatment × 3.48∗∗∗ 3.37∗∗∗ 2.84∗∗ 2.85∗∗

After × 2km (2.60) (2.61) (2.12) (2.21)
Treatment × 1.76∗∗ 1.65∗ 1.35 1.36
After × 2.5km (1.98) (1.96) (1.51) (1.61)
Treatment × 1.49∗∗∗ 1.38∗∗∗ 1.18∗∗ 1.20∗∗

After × 3km (2.71) (2.74) (2.15) (2.37)
Treatment × 1.15∗∗ 1.03∗∗ 0.88 0.89∗

After × 3.5km (2.13) (2.07) (1.63) (1.78)
Treatment × 0.60∗∗∗ 0.49∗∗∗ 0.37∗ 0.39∗∗

After × 4km (2.75) (2.87) (1.73) (2.29)
Treatment × 0.49∗∗ 0.38∗∗ 0.31 0.32∗

After × 4.5km (2.14) (2.14) (1.37) (1.84)
Treatment × 0.70∗∗∗ 0.59∗∗∗ 0.54∗∗ 0.55∗∗∗

After × 5km (3.12) (3.07) (2.39) (2.86)
Treatment × 0.44∗∗∗ 0.33∗∗∗ 0.28∗∗ 0.30∗∗∗

After × 5.5km (3.25) (3.40) (2.09) (3.05)
Treatment × 0.29∗∗ 0.18∗ 0.14 0.15
After × 6km (2.06) (1.75) (0.97) (1.45)
Treatment × 0.34∗∗∗ 0.23∗∗∗ 0.20∗∗ 0.21∗∗∗

After × 6.5km (3.46) (3.94) (2.04) (3.63)
Treatment × 0.31∗∗ 0.20 0.17 0.18
After × 7km (2.32) (1.59) (1.27) (1.45)
Treatment × 0.24∗ 0.13 0.10 0.11
After × 7.5km (1.68) (0.89) (0.68) (0.75)
Treatment × 0.02 -0.09∗ -0.12∗∗ -0.11∗∗

After × 8km (0.40) (-1.69) (-2.30) (-2.04)
Treatment × 0.14∗∗∗ 0.03 0.01 0.02
After × 8.5km (2.89) (0.43) (0.15) (0.31)
Treatment × 0.68 0.57 0.53 0.55
After × 9km (1.59) (1.28) (1.26) (1.24)
Treatment × 0.11∗∗ -0.00 -0.03 -0.01
After × 9.5km (2.29) (-0.04) (-0.54) (-0.23)
Treatment × 0.11∗∗ - -0.01 -
After × 10km (2.11) - (-0.23) -
Observations 47840 47840 47840 47840
Treatment × Ring Dummies Yes No Yes No
Year × Ring FE Yes Yes Yes Yes
Year × City FE No Yes No Yes
City × Ring FE Yes Yes Yes Yes
Dependent Variable Mean 9.62 9.62 5.86 5.86
Adj. R2 0.375 0.563 0.243 0.475

Notes: This table reports the estimated effects of university expansion on industry patents at different distances
(rings) for up to 10 km. The city-ring-specific pre-expansion time trend is removed for the dependent variables in
Columns (3) and (4). The number of university teachers in 1990 is counted in 1,000, and it is used as the measure
of treatment intensity. t statistics based on clustered standard errors at the city level are reported in parentheses. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 1.9: Heterogeneity Analysis — Eastern, Central, and Western Regions

Pre-expansion Time Trend Not Removed Pre-expansion Time Trend Removed

Dependent Variable Number of Patents
(1) (2) (3) (4) (5) (6)

Eastern Central Western Eastern Central Western
Treatment × 114.89∗∗∗ 31.21∗∗∗ 26.51∗∗∗ 98.54∗∗∗ 25.05∗∗∗ 21.32∗∗∗

After × 0.5km (8.20) (7.42) (5.92) (7.03) (5.96) (4.76)
Treatment × 23.53∗∗∗ 5.74∗∗∗ 6.38∗∗∗ 20.10∗∗∗ 3.61∗∗ 4.39∗∗∗

After × 1km (4.21) (3.56) (5.19) (3.60) (2.24) (3.57)
Treatment × 7.92∗∗ 2.19∗∗∗ 2.46∗∗∗ 7.00∗ 1.05∗∗∗ 1.36∗∗

After × 1.5km (2.09) (7.28) (3.80) (1.85) (3.49) (2.10)
Treatment × 3.09∗ 1.88∗∗∗ 2.15∗ 2.61 1.37∗∗∗ 1.79
After × 2km (1.77) (8.17) (2.02) (1.50) (5.94) (1.68)
Treatment × 1.18 0.84∗∗∗ 0.50∗∗∗ 0.96 0.47∗∗∗ 0.23∗

After × 2.5km (1.07) (7.77) (4.10) (0.88) (4.37) (1.87)
Treatment × 0.91 0.36∗∗∗ 0.71∗∗∗ 0.77 0.17∗∗ 0.56∗∗∗

After × 3km (1.51) (5.25) (6.17) (1.29) (2.58) (4.84)
Treatment × 0.43 0.42∗∗∗ 0.51∗ 0.33 0.31∗∗∗ 0.37
After × 3.5km (0.71) (5.59) (1.83) (0.55) (4.09) (1.33)
Treatment × -0.24 0.18∗∗ 0.27 -0.30 0.18∗∗ 0.09
After × 4km (-1.05) (2.63) (1.52) (-1.29) (2.65) (0.53)
Treatment × -0.32 0.02 0.08 -0.33 0.02 0.03
After × 4.5km (-1.26) (0.27) (0.96) (-1.29) (0.19) (0.33)
Treatment × - - - - - -
After × 5km - - - - - -
Observations 10920 8320 4550 10920 8320 4550
Year × Ring FE Yes Yes Yes Yes Yes Yes
Year × City FE Yes Yes Yes Yes Yes Yes
City × Ring FE Yes Yes Yes Yes Yes Yes
Dependent Variable Mean 30.55 6.41 10.69 20.41 3.071 6.089
Adj. R2 0.589 0.694 0.674 0.493 0.531 0.557

Notes: This table reports the estimated effects of university expansion on industry patents across different regions
in China. The Eastern, Central and Western regions are divided according to the 7th “Five-Year Plan for the Na-
tional Economic and Social Development” of China. The city-ring-specific pre-expansion time trend is removed
for the dependent variables in Columns (4)-(6). The number of university teachers in 1990 is counted in 1,000,
and it is used as the measure of treatment intensity. t statistics based on clustered standard errors at the city level
are reported in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 1.10: Heterogeneity Analysis — Industries with High, Medium, and Low Human Capital
Intensity

Pre-expansion Time Trend Not Removed Pre-expansion Time Trend Removed

Dependent Variable Number of Patents
(1) (2) (3) (4) (5) (6)

High Medium Low High Medium Low
Treatment × 68.58∗∗∗ 14.61∗∗∗ 3.81∗∗∗ 58.27∗∗∗ 11.65∗∗∗ 2.85∗∗∗

After × 0.5km (3.72) (5.51) (4.73) (3.16) (4.39) (3.54)
Treatment × 14.14∗∗∗ 3.30∗∗∗ 1.01∗∗∗ 11.86∗∗∗ 2.51∗∗ 0.76∗∗∗

After × 1km (4.24) (3.03) (3.83) (3.55) (2.30) (2.88)
Treatment × 4.62∗∗ 1.11∗∗ 0.50∗ 3.91∗ 0.76∗ 0.40
After × 1.5km (2.19) (2.54) (1.96) (1.86) (1.74) (1.57)
Treatment × 1.61∗∗ 0.77∗ 0.26∗∗∗ 1.24∗ 0.61 0.22∗∗∗

After × 2km (2.30) (1.68) (3.44) (1.77) (1.33) (2.97)
Treatment × 0.44 0.21 0.13∗ 0.24 0.10 0.09
After × 2.5km (0.99) (1.01) (1.82) (0.54) (0.49) (1.34)
Treatment × 0.46 0.17 0.10 0.34 0.13 0.08
After × 3km (1.29) (1.28) (1.49) (0.94) (0.97) (1.16)
Treatment × 0.09 0.08 0.10∗ 0.02 0.05 0.10∗

After × 3.5km (0.28) (0.78) (1.85) (0.05) (0.47) (1.72)
Treatment × -0.32 0.06 0.03∗ -0.37∗ 0.04 0.02
After × 4km (-1.46) (0.46) (1.84) (-1.73) (0.34) (1.42)
Treatment × -0.34 -0.05 0.05 -0.35 -0.05 0.05
After × 4.5km (-1.48) (-0.64) (1.24) (-1.54) (-0.70) (1.28)
Treatment × - - - - - -
After × 5km - - - - - -
Observations 23660 23660 23660 23660 23660 23660
Year × Ring FE Yes Yes Yes Yes Yes Yes
Year × City FE Yes Yes Yes Yes Yes Yes
City × Ring FE Yes Yes Yes Yes Yes Yes
Dependent Variable Mean 14.13 3.709 1.191 8.580 2.056 0.643
Adj. R2 0.470 0.732 0.693 0.402 0.614 0.544

Notes: This table reports the estimated effects of university expansion on industry patents across industries with
different human capital intensity. We define high human capital intensity industry as the industries that rank
among the top one-third in the college employee ratio, medium as the middle one-third, and low as the rest. The
industry college employee ratio is calculated as the percentage of workers with a college education and above
using the 2004 ASIF. The city-ring-specific pre-expansion time trend is removed for the dependent variables in
Columns (4)-(6). The number of university teachers in 1990 is counted in 1,000, and it is used as the measure of
treatment intensity. t statistics based on clustered standard errors at the city level are reported in parentheses. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 1.11: Effects of University Expansion on Patent Citations — Ring-level Regressions

No. of Teachers in 1990 as Treatment No. of Students in 1990 as Treatment

(1) (2) (3) (4)

Dependent Variable: No. of
Citations to

University Patents
Citations to

Patents beyond 5km
Citations to

University Patents
Citations to

Patents beyond 5km
Treatment × 5.59e-01∗∗∗ 7.29e-02 1.14e-01∗∗ 1.52e-02
After × 0.5km (3.24) (1.15) (2.59) (0.98)
Treatment × 8.23e-02∗∗ 4.81e-03 1.85e-02∗∗ 1.03e-03
After × 1km (2.51) (0.34) (2.49) (0.30)
Treatment × 1.86e-02∗ 2.72e-02∗ 4.49e-03∗∗ 5.38e-03
After × 1.5km (1.99) (1.91) (2.20) (1.55)
Treatment × 3.04e-02∗∗∗ -1.41e-03 6.65e-03∗∗∗ 2.52e-04
After × 2km (4.96) (-0.10) (4.13) (0.08)
Treatment × 7.07e-03 8.19e-03 1.87e-03 2.13e-03
After × 2.5km (1.23) (0.96) (1.44) (1.07)
Treatment × 7.71e-03 1.64e-02 1.82e-03 3.88e-03∗

After × 3km (1.45) (1.65) (1.59) (1.71)
Treatment × 8.03e-03∗ 2.43e-02∗∗∗ 1.86e-03∗ 5.19e-03∗∗

After × 3.5km (1.81) (3.14) (1.71) (2.57)
Treatment × -1.58e-03 7.77e-03 -2.62e-04 1.81e-03
After × 4km (-0.40) (1.16) (-0.27) (1.19)
Treatment × 3.86e-03 8.22e-03 9.78e-04 1.70e-03
After × 4.5km (1.07) (1.28) (1.11) (1.08)
Treatment × - - - -
After × 5km - - - -
Observations 4500 4500 4500 4500
Year × Ring FE Yes Yes Yes Yes
Year × City FE Yes Yes Yes Yes
City × Ring FE Yes Yes Yes Yes
Dependent Variable Mean 0.32 0.46 0.32 0.46
Adj. R2 0.668 0.522 0.653 0.522

Notes: This table reports the estimates of the effects of university expansion on patent citations at different distances
(rings). The dependent variable for Columns (1) and (3) is the ring-specific number of times when industry patents cite
university patents. The dependent variable for Columns (2) and (4) is the ring-specific number of times when industry
patents cite patents beyond 5 km distance from universities. The number of university teachers (students) in 1990 is used
as the measure of treatment intensity in the left (right) panel. Both variables are counted in 1,000. t statistics based on
clustered standard errors at the city level are reported in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 1.12: Effects of University Expansion on New Product Ratio —
Ring-level Regressions

Dependent Variable New Product Ratio

(1) (2) (3) (4)
After Dummy 2000 2002 2004 2006
Treatment × 4.16e-03∗∗ 4.84e-03∗∗ 6.35e-03∗∗ 6.68e-03∗∗

After × 0.5km (2.17) (2.15) (2.19) (2.17)
Treatment × 2.74e-03∗∗ 3.32e-03∗∗ 4.26e-03∗∗∗ 4.58e-03∗∗

After × 1km (2.57) (2.59) (2.68) (2.46)
Treatment × 1.76e-03∗∗∗ 2.07e-03∗∗∗ 2.74e-03∗∗∗ 2.89e-03∗∗∗

After × 1.5km (4.98) (5.17) (4.87) (4.60)
Treatment × 1.28e-03∗∗∗ 1.47e-03∗∗∗ 1.75e-03∗∗∗ 1.77e-03∗∗∗

After × 2km (4.91) (4.80) (5.14) (4.78)
Treatment × 1.66e-03∗∗∗ 2.03e-03∗∗∗ 1.73e-03∗∗∗ 1.63e-03∗∗∗

After × 2.5km (3.65) (3.90) (3.62) (3.20)
Treatment × 1.07e-03∗∗∗ 1.31e-03∗∗∗ 1.63e-03∗∗∗ 1.68e-03∗∗∗

After × 3km (4.51) (5.10) (4.69) (4.59)
Treatment × 6.20e-04∗∗∗ 7.28e-04∗∗ 1.04e-03∗∗∗ 1.21e-03∗∗∗

After × 3.5km (2.74) (2.54) (3.12) (3.39)
Treatment × 6.66e-04∗∗∗ 7.85e-04∗∗∗ 1.24e-03∗∗∗ 1.56e-03∗∗∗

After × 4km (2.78) (2.99) (3.97) (4.31)
Treatment × 6.06e-04 6.96e-04 9.91e-04 1.14e-03∗∗

After × 4.5km (1.19) (1.24) (1.61) (2.01)
Treatment × 5.54e-04∗∗ 6.84e-04∗∗ 1.11e-03∗∗∗ 1.38e-03∗∗∗

After × 5km (2.17) (2.13) (2.84) (3.38)
Observations 1196263 996185 759980 589233
Year × Ring FE Yes Yes Yes Yes
Year × City FE Yes Yes Yes Yes
City × Ring FE Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes
Control Variables Yes Yes Yes Yes
Dependent Variable Mean 0.034 0.035 0.037 0.037
Adj. R2 0.091 0.097 0.107 0.106

Notes: This table reports the estimated effects of university expansion on firms’ new
product ratio using the number of university teachers in 1990 as the proxy for treatment
intensity. The dependent variable is firm-level new product ratio. Columns (1)–(4) report
the triple-differences estimates. The after dummy equals 1 if year is 2000 or after, 2002
or after, 2004 or after, or 2006 or after in Columns (1), (2), (3), and (4), respectively.
The after dummy equals 0 if year is before 2000 for all four columns. Observations in
the years in which the after dummy is not defined are dropped. The reference group is
the firms outside 10 km of universities. Control variables include firm age, fixed assets,
SOE status, and employment size. The number of university teachers in 1990 is counted
in 1,000. t statistics based on clustered standard errors at the city level are reported in
parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 1.13: Heterogeneity Analysis — Industries with High, Medium, and Low Human Capital
Intensity and SOE versus Non-SOE

Dependent Variable New Product Ratio

(1) (2) (3) (4) (5)
High Medium Low SOE Non-SOE

Treatment × 4.70e-03∗∗ 2.77e-03∗∗ 1.41e-03 8.92e-04 4.31e-03∗∗

After × 0.5km (2.20) (2.43) (1.13) (1.15) (1.99)
Treatment × 3.88e-03∗∗ 1.41e-03∗∗ 1.08e-03∗∗ 9.88e-04∗ 2.99e-03∗∗∗

After × 1km (2.51) (2.10) (2.53) (1.92) (2.62)
Treatment × 2.79e-03∗∗∗ 1.29e-03∗∗∗ 1.48e-04 7.21e-04∗∗∗ 1.91e-03∗∗∗

After × 1.5km (4.20) (5.00) (0.80) (2.89) (4.91)
Treatment × 1.52e-03∗∗ 8.51e-04∗∗∗ 7.62e-04∗∗∗ 5.37e-04∗ 1.44e-03∗∗∗

After × 2km (2.43) (3.29) (3.79) (1.70) (6.24)
Treatment × 2.99e-03∗∗ 5.98e-04∗∗ 6.66e-04∗∗∗ 1.36e-03∗∗∗ 1.74e-03∗∗∗

After × 2.5km (2.17) (2.30) (3.16) (4.99) (3.52)
Treatment × 1.54e-03∗∗∗ 8.52e-04∗∗ 2.58e-04 8.97e-04∗∗ 1.21e-03∗∗∗

After × 3km (3.73) (2.03) (1.29) (2.08) (5.76)
Treatment × 7.64e-04∗ 4.43e-04 2.49e-04 3.63e-05 8.57e-04∗∗∗

After × 3.5km (1.78) (1.14) (0.80) (0.08) (3.41)
Treatment × 7.00e-04 6.94e-05 6.37e-04∗∗ -1.96e-04 9.36e-04∗∗∗

After × 4km (0.67) (0.24) (2.02) (-0.41) (3.16)
Treatment × 8.83e-04∗ -2.00e-04 9.10e-04∗∗∗ -6.10e-04∗ 9.00e-04∗

After × 4.5km (1.67) (-0.34) (3.78) (-1.78) (1.89)
Treatment × -2.63e-04 5.37e-04 7.76e-04∗∗∗ 1.67e-04 8.22e-04∗∗∗

After × 5km (-0.46) (0.93) (3.12) (0.33) (3.42)
Observations 394427 385023 456632 136171 1060023
Year × Ring FE Yes Yes Yes Yes Yes
Year × City FE Yes Yes Yes Yes Yes
City × Ring FE Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes
Control Variables Yes Yes Yes Yes Yes
Dependent Variable Mean 0.059 0.025 0.020 0.046 0.033
Adj. R2 0.119 0.057 0.049 0.111 0.096

Notes: Columns (1)–(3) report the estimated effects of university expansion on firms’ new product
ratio across industries with different human capital intensity. We define high human capital intensity
industry as the industries that rank among the top one-third in the college employee ratio, medium
as the middle one-third, and low as the rest. The industry college employee ratio is calculated as the
percentage of workers with a college education and above using the 2004 ASIF. Columns (4) and (5)
report the estimates of the effects of university expansion on firms’ new product ratio for SOEs and non-
SOEs separately. The number of university teachers in 1990 is counted in 1,000, and it is used as the
treatment intensity. Control variables include firm age, fixed assets, SOE status, and employment size.
The reference group consists of the firms outside 10 km of universities. t statistics based on clustered
standard errors at the city level are reported in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Appendix

Appendix A: Figures and Tables

Figure A1: The Extent of University Expansion and Pre-expansion Growth of Patents, GDP
and TFP

Notes: Panel A shows the scatter plot of pre-expansion growth of patents against the extent of university
expansion at the city level. Panel B shows the scatter plot of pre-expansion growth of GDP against the
extent of university expansion at the city level. Panel C shows the scatter plot of pre-expansion growth of
average firm TFP against the extent of university expansion at the city level. The correlation coefficients
are -0.10, 0.24 and -0.05 respectively. The number of university teachers is counted in 1,000.
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Figure A2: Illustrative Graph for the Construction of Concentric Rings

Notes: The centers of the rings comprise the locations of universities and entities that have direct col-
laborations with universities. The two locations at C belong to university I. The three locations at D and
E belong to university II. One university can have multiple locations in the dataset because the address
filed in a patent application points to the exact building of the patent applicant. Point A stands for a non-
university entity that has direct collaboration with university I. Point B stands for a non-university entity
that has direct collaboration with university II.
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(a) No. of University Teachers in 1990 as Treatment

(b) No. of University Students in 1990 as Treatment

Figure A3: The Dynamic Effects of University Expansion on the Numbers of University
Teachers, Students, and University Patents – Pre-expansion Time Trend Not Removed
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(a) Collaborative Patents

(b) Industry Patents

Figure A4: The Dynamic Effects of University Expansion on the Numbers of Collaborative
Patents and Industry Patents – Pre-expansion Time Trend Not Removed
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(a) No. of University Teachers in 1990 as Treatment

(b) No. of University Students in 1990 as Treatment

Figure A5: The Dynamic Effects of University Expansion on the Number of Industry Patents at
the Ring Level — Pre-expansion Time Trend Not Removed
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Table A1.A: Impact of University Expansion on University Scale and and Innovation

Pre-expansion Time Trend Not Removed Pre-expansion Time Trend Removed

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Dependent Variable: No. of
University
Students

Total
Patents

University
Patents

Collabo-
rative

Patents
Industry
Patents

University
Students

Total
Patents

University
Patents

Collabo-
rative

Patents
Industry
Patents

Treatment × After 2509.57∗∗∗ 28.83∗∗∗ 7.08∗∗∗ 0.73∗∗∗ 21.02∗∗∗ 2059.45∗∗∗ 24.31∗∗∗ 6.46∗∗∗ 0.48∗∗ 17.37∗∗∗

(7.25) (4.20) (6.53) (3.20) (3.70) (5.95) (3.54) (5.96) (2.11) (3.06)
Observations 2352 2352 2352 2352 2352 2352 2352 2352 2352 2352
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
City FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Control Variables No No No No No No No No No No
Dependent Variable Mean 39387.99 222.44 31.38 3.38 187.68 20274.18 136.63 23.86 1.13 111.64
Adj. R2 0.829 0.575 0.638 0.652 0.530 0.657 0.466 0.579 0.469 0.419

Notes: This table reports the estimated effects of university expansion on the numbers of university students and different classifications of patents. The
number of university students in 1990 is counted in 1,000, and it is used as the measure of treatment intensity. The number of university students is considered
as a proxy for university scale. t statistics based on clustered standard errors at the city level are reported in parentheses. ∗ p< 0.10, ∗∗ p< 0.05, ∗∗∗ p< 0.01.
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Table A1.B: Impact of University Expansion on University Scale and and Innovation — Robustness

Pre-expansion Time Trend Not Removed Pre-expansion Time Trend Removed

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Dependent Variable: No. of
University
Teachers

Total
Patents

University
Patents

Collabo-
rative

Patents
Industry
Patents

University
Teachers

Total
Patents

University
Patents

Collabo-
rative

Patents
Industry
Patents

Treatment × After 220.99∗∗ 113.88∗∗∗ 28.83∗∗∗ 3.31∗∗∗ 81.75∗∗∗ 232.85∗∗ 93.35∗∗∗ 25.86∗∗∗ 2.11∗∗ 65.38∗∗∗

(2.28) (4.22) (7.68) (3.66) (3.44) (2.40) (3.46) (6.90) (2.34) (2.75)
Observations 2330 2338 2338 2338 2338 2330 2338 2338 2338 2338
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
City FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Control Variables Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Dependent Variable Mean 3032.32 225.23 31.93 3.43 189.87 802.97 141.56 25.38 1.66 114.52
Adj. R2 0.930 0.604 0.674 0.686 0.556 0.759 0.497 0.620 0.500 0.443

Notes: This table reports the estimated effects of university expansion on the numbers of university teachers and different classifications of patents. The
number of university teachers in 1990 is counted in 1,000, and it is used as the measure of treatment intensity. The number of university teachers is
considered as a proxy for university scale. Control variables include the non-agricultural population, the proportion of employment in the manufacturing
industries, and the proportion of employment in the service industries. t statistics based on clustered standard errors at the city level are reported in
parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A1.C: Impact of University Expansion on University Scale and and Innovation — Robustness

Pre-expansion Time Trend Not Removed Pre-expansion Time Trend Removed

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Dependent Variable: No. of
University
Students

Total
Patents

University
Patents

Collabo-
rative

Patents
Industry
Patents

University
Students

Total
Patents

University
Patents

Collabo-
rative

Patents
Industry
Patents

Treatment × After 1991.77∗∗∗ 23.06∗∗∗ 6.05∗∗∗ 0.64∗∗∗ 16.37∗∗∗ 1602.58∗∗∗ 18.87∗∗∗ 5.44∗∗∗ 0.39∗ 13.04∗∗

(5.73) (3.44) (6.35) (2.97) (2.86) (4.73) (2.81) (5.72) (1.82) (2.28)
Observations 2338 2338 2338 2338 2338 2338 2338 2338 2338 2338
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
City FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Control Variables Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Dependent Variable Mean 39659.82 225.23 31.93 3.43 189.87 19914.02 140.17 25.17 1.58 113.42
Adj. R2 0.860 0.595 0.663 0.664 0.548 0.714 0.488 0.609 0.478 0.437

Notes: This table reports the estimated effects of university expansion on the numbers of university students and different classifications of patents. The
number of university students in 1990 is counted in 1,000, and it is used as the measure of treatment intensity. The number of university students is
considered as a proxy for university scale. Control variables include the non-agricultural population, the proportion of employment in the manufacturing
industries, and the proportion of employment in the service industries. t statistics based on clustered standard errors at the city level are reported in
parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

74



Table A2: Impact of University Expansion on University Scale and Innovation
— City-level Analysis of Trend Break Model

(1) (2) (3) (4) (5)

Dependent Variable: No. of
University
Students

Total
Patents

University
Patents

Collabo-
rative

Patents
Industry
Patents

Treatment × Trend 609.1∗∗∗ 6.690∗∗∗ 2.153∗∗∗ 0.126∗∗ 4.411∗∗∗

×After 2000 (5.28) (4.33) (8.01) (2.20) (3.41)
Observations 2392 2392 2392 2392 2392
Year FE Yes Yes Yes Yes Yes
City FE Yes Yes Yes Yes Yes
Dependent Variable Mean 3006.14 222.44 31.38 3.38 187.68
Adj. R2 0.924 0.660 0.854 0.742 0.586

Notes: This table reports the estimates of the slope change in the numbers of university
students and different classifications patents as a result of the university expansion, using
the specification in Equation (3.7). The number of university students in 1990 is counted
in 1,000, and it is used as the measure of treatment intensity. t statistics based on clustered
standard errors at the city level are reported in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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Table A3.A: The Dynamic Effects of University Expansion on the Number of Teachers and Innovation

Pre-expansion Time Trend Not Removed Pre-expansion Time Trend Removed

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Dependent Variable: No. of
University
Teachers

Total
Patents

University
Patents

Collabo-
rative

Patents
Industry
Patents

University
Teachers

Total
Patents

University
Patents

Collabo-
rative

Patents
Industry
Patents

Treatment × 1995 3.97 -14.83∗∗∗ -2.04∗∗∗ -0.97∗ -11.83∗∗∗ 1.01 -1.17 -0.16 -0.21 -0.81
(0.26) (-3.73) (-4.03) (-1.80) (-3.84) (0.07) (-0.30) (-0.31) (-0.39) (-0.26)

Treatment × 1996 14.90 -12.98∗∗∗ -1.99∗∗∗ -0.91∗ -10.08∗∗∗ 12.68 -2.74 -0.58 -0.35 -1.81
(1.41) (-3.49) (-4.03) (-1.77) (-3.61) (1.20) (-0.74) (-1.17) (-0.67) (-0.65)

Treatment × 1997 10.22 -10.71∗∗∗ -1.75∗∗∗ -0.66 -8.30∗∗∗ 8.74 -3.89 -0.81∗∗ -0.28 -2.79
(1.37) (-3.14) (-4.35) (-1.16) (-3.25) (1.17) (-1.14) (-2.02) (-0.49) (-1.09)

Treatment × 1998 4.04 -7.99∗∗ -0.96∗∗∗ -0.74 -6.28∗∗ 3.30 -4.57 -0.49 -0.55 -3.53
(1.63) (-2.42) (-2.71) (-1.44) (-2.54) (1.33) (-1.39) (-1.39) (-1.07) (-1.43)

Treatment × 2000 -2.19 34.70∗∗ 3.02∗∗∗ 0.74∗∗∗ 30.95∗∗ -1.45 31.29∗∗ 2.54∗∗∗ 0.55∗∗ 28.20∗

(-0.13) (2.21) (6.58) (3.34) (2.00) (-0.09) (1.99) (5.55) (2.49) (1.83)
Treatment × 2001 21.81 43.06∗∗∗ 6.27∗∗∗ 1.09∗∗ 35.71∗∗∗ 23.29 36.24∗∗∗ 5.32∗∗∗ 0.71 30.20∗∗∗

(0.80) (4.19) (7.08) (2.36) (3.81) (0.86) (3.53) (6.01) (1.55) (3.22)
Treatment × 2002 85.72∗ 66.17∗∗∗ 14.57∗∗∗ 1.72 49.88∗∗∗ 87.94∗ 55.92∗∗∗ 13.15∗∗∗ 1.15 41.61∗∗∗

(1.86) (5.26) (7.66) (1.52) (4.74) (1.90) (4.45) (6.92) (1.02) (3.96)
Treatment × 2003 181.77∗ 99.63∗∗∗ 26.63∗∗∗ 2.37∗∗∗ 70.63∗∗∗ 184.72∗ 85.98∗∗∗ 24.75∗∗∗ 1.61∗∗ 59.61∗∗∗

(1.91) (6.80) (6.08) (3.15) (6.05) (1.94) (5.87) (5.65) (2.15) (5.11)
Treatment × 2004 333.73∗∗∗ 129.62∗∗∗ 34.66∗∗∗ 2.58∗∗∗ 92.37∗∗∗ 337.43∗∗∗ 112.54∗∗∗ 32.31∗∗∗ 1.64∗∗∗ 78.60∗∗∗

(2.67) (5.76) (6.28) (4.46) (5.11) (2.70) (5.00) (5.86) (2.83) (4.35)
Treatment × 2005 549.53∗∗∗ 177.42∗∗∗ 46.31∗∗∗ 3.74∗∗∗ 127.36∗∗∗ 553.96∗∗∗ 156.93∗∗∗ 43.49∗∗∗ 2.61∗∗ 110.83∗∗∗

(3.59) (5.16) (6.58) (3.54) (4.34) (3.62) (4.57) (6.18) (2.47) (3.77)
Treatment × 2006 726.80∗∗∗ 212.83∗∗∗ 53.51∗∗∗ 4.90∗∗∗ 154.42∗∗∗ 731.97∗∗∗ 188.93∗∗∗ 50.22∗∗∗ 3.58∗∗∗ 135.14∗∗∗

(3.93) (5.38) (8.41) (3.59) (4.45) (3.96) (4.78) (7.89) (2.62) (3.90)
Treatment × 2007 875.96∗∗∗ 273.44∗∗∗ 71.41∗∗∗ 7.00∗∗∗ 195.04∗∗∗ 881.87∗∗∗ 246.13∗∗∗ 67.64∗∗∗ 5.49∗∗ 173.00∗∗∗

(4.00) (5.06) (9.52) (3.22) (4.16) (4.03) (4.55) (9.02) (2.52) (3.69)
Observations 2344 2352 2352 2352 2352 2344 2352 2352 2352 2352
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
City FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Dependent Variable Mean 3016.79 223.97 31.74 3.41 188.82 832.77 139.57 24.41 1.26 113.91
Adj. R2 0.954 0.682 0.885 0.794 0.604 0.847 0.580 0.856 0.624 0.491

Notes: This table reports the estimates of the dynamic effects of university expansion on the number of university teachers and and different classifications of
patents. The estimates are used to plot Figure 3, Figure 4, Appendix Figure A3, and Appendix Figure A4. The number of university teachers in 1990 is used as
the treatment intensity measure, and it is counted in 1,000. The base year is 1999. t statistics based on clustered standard errors at the city level are reported in
parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A3.B: The Dynamic Effects of University Expansion on the Number of Students and Innovation

Pre-expansion Time Trend Not Removed Pre-expansion Time Trend Removed

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Dependent Variable: No. of
University
Students

Total
Patents

University
Patents

Collabo-
rative

Patents
Industry
Patents

University
Students

Total
Patents

University
Patents

Collabo-
rative

Patents
Industry
Patents

Treatment × 1995 -275.17∗∗∗ -3.11∗∗∗ -0.43∗∗∗ -0.21∗ -2.47∗∗∗ 1.64 -0.32 -0.05 -0.05 -0.22
(-12.72) (-3.23) (-3.67) (-1.73) (-3.28) (0.08) (-0.33) (-0.43) (-0.43) (-0.29)

Treatment × 1996 -215.85∗∗∗ -2.74∗∗∗ -0.42∗∗∗ -0.19∗ -2.12∗∗∗ -8.25 -0.65 -0.13 -0.08 -0.43
(-13.21) (-3.11) (-3.56) (-1.71) (-3.18) (-0.50) (-0.73) (-1.13) (-0.69) (-0.65)

Treatment × 1997 -152.82∗∗∗ -2.30∗∗∗ -0.38∗∗∗ -0.15 -1.77∗∗∗ -14.41 -0.90 -0.19∗∗ -0.07 -0.64
(-15.09) (-2.95) (-4.29) (-1.25) (-2.97) (-1.42) (-1.16) (-2.13) (-0.60) (-1.08)

Treatment × 1998 -101.87∗∗∗ -1.72∗∗ -0.21∗∗∗ -0.16 -1.35∗∗ -32.67∗∗∗ -1.02 -0.12 -0.12 -0.79
(-12.52) (-2.37) (-2.98) (-1.40) (-2.44) (-4.02) (-1.41) (-1.65) (-1.06) (-1.42)

Treatment × 2000 251.56∗∗∗ 7.36∗∗ 0.62∗∗∗ 0.15∗∗∗ 6.60∗ 182.36∗∗∗ 6.67∗ 0.52∗∗∗ 0.11∗∗ 6.04∗

(6.94) (2.10) (4.81) (2.75) (1.93) (5.03) (1.90) (4.07) (2.03) (1.76)
Treatment × 2001 702.15∗∗∗ 8.74∗∗∗ 1.32∗∗∗ 0.21∗∗ 7.22∗∗∗ 563.75∗∗∗ 7.35∗∗∗ 1.13∗∗∗ 0.13 6.09∗∗∗

(8.77) (3.41) (5.68) (2.03) (3.15) (7.04) (2.87) (4.86) (1.27) (2.66)
Treatment × 2002 1316.18∗∗∗ 13.69∗∗∗ 3.05∗∗∗ 0.31 10.33∗∗∗ 1108.57∗∗∗ 11.60∗∗∗ 2.76∗∗∗ 0.20 8.64∗∗∗

(8.66) (4.18) (5.84) (1.32) (3.84) (7.29) (3.54) (5.29) (0.83) (3.22)
Treatment × 2003 1981.72∗∗∗ 21.16∗∗∗ 5.65∗∗∗ 0.46∗∗∗ 15.04∗∗∗ 1704.92∗∗∗ 18.37∗∗∗ 5.27∗∗∗ 0.31∗ 12.79∗∗∗

(8.16) (5.40) (5.48) (2.69) (4.88) (7.02) (4.69) (5.11) (1.80) (4.15)
Treatment × 2004 2618.09∗∗∗ 27.08∗∗∗ 7.35∗∗∗ 0.52∗∗∗ 19.21∗∗∗ 2272.09∗∗∗ 23.59∗∗∗ 6.87∗∗∗ 0.33∗∗ 16.40∗∗∗

(7.76) (4.60) (5.57) (3.53) (4.13) (6.74) (4.01) (5.21) (2.22) (3.52)
Treatment × 2005 3363.46∗∗∗ 36.56∗∗∗ 9.87∗∗∗ 0.74∗∗∗ 25.95∗∗∗ 2948.25∗∗∗ 32.38∗∗∗ 9.29∗∗∗ 0.51∗∗ 22.58∗∗∗

(6.85) (4.09) (6.04) (2.92) (3.50) (6.00) (3.62) (5.69) (2.00) (3.05)
Treatment × 2006 4123.38∗∗∗ 44.23∗∗∗ 11.47∗∗∗ 0.97∗∗∗ 31.79∗∗∗ 3638.98∗∗∗ 39.35∗∗∗ 10.80∗∗∗ 0.70∗∗ 27.85∗∗∗

(6.19) (4.32) (7.88) (3.00) (3.63) (5.46) (3.84) (7.42) (2.17) (3.18)
Treatment × 2007 4465.99∗∗∗ 56.34∗∗∗ 15.12∗∗∗ 1.38∗∗∗ 39.84∗∗∗ 3912.38∗∗∗ 50.77∗∗∗ 14.35∗∗∗ 1.07∗∗ 35.34∗∗∗

(5.96) (4.03) (7.38) (2.75) (3.40) (5.22) (3.63) (7.01) (2.14) (3.02)
Observations 2352 2352 2352 2352 2352 2352 2352 2352 2352 2352
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
City FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Dependent Variable Mean 39448.11 223.97 31.74 3.41 188.82 20221.56 137.52 24.14 1.14 112.24
Adj. R2 0.926 0.662 0.865 0.750 0.587 0.830 0.558 0.834 0.571 0.474

Notes: This table reports the estimates of the dynamic effects of university expansion on the number of university students and different classifications of
patents. The estimates are used to plot Figure 3, Figure 4, Appendix Figure A3, and Appendix Figure A4. The number of university students in 1990 is
used as the treatment intensity measure, and it is counted in 1,000. The base year is 1999. t statistics based on clustered standard errors at the city level are
reported in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A4.A: 2SLS Estimates — Effects of University Innovation Capacity on Local Innovation Activities
(Pre-expansion Time Trend Not Removed)

(1) (2) (3) (4)

Panel A: No. of University Teachers in 1990 Interacted with Post-expansion Dummy as the IV

No. of University Teachers as First-Stage Dependent Variable No. of University Patents as First-Stage Dependent Variable

Dependent Variable: No. of Collaborative Patents Industry Patents Collaborative Patents Industry Patents
University Innovation Capacity 10.754∗ 298.337∗∗ 110.039∗∗∗ 3053.193∗∗∗

(1.81) (1.99) (4.40) (6.53)
Observations 2384 2384 2392 2392
First-stage F-statistics 9.616 9.616 52.902 52.902
Dependent Variable Mean 3.389 188.201 3.378 187.677
Adj. R2 0.106 0.255 0.829 0.639

Panel B: No. of University Students in 1990 Interacted with Post-expansion Dummy as the IV

No. of University Students as First-Stage Dependent Variable No. of University Patents as First-Stage Dependent Variable

Dependent Variable: No. of Collaborative Patents Industry Patents Collaborative Patents Industry Patents
University Innovation Capacity 0.292∗∗ 8.375∗∗ 103.5∗∗∗ 2969.6∗∗∗

(2.28) (2.51) (4.55) (6.63)
Observations 2392 2392 2392 2392
First-stage F-statistics 48.453 48.453 39.380 39.380
Dependent Variable Mean 3.378 187.677 3.378 187.677
Adj. R2 0.523 0.463 0.835 0.640
Year FE Yes Yes Yes Yes
City FE Yes Yes Yes Yes

Notes: This table reports the 2SLS estimates of the effects of university innovation capacity on innovation activities at the city level, using the number of university
teachers or students in 1990 interacted with the after dummy as the instrument. All the First-Stage Dependent Variables are counted in 1,000. The F-statistics is
calculated based on Montiel Olea and Pflueger (2013), which is robust to heteroskedasticity, autocorrelation, and clustering. t statistics based on clustered standard
errors at the city level are reported in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A4.B: 2SLS Estimates — Effects of University Innovation Capacity on Local Innovation Activities
(Pre-expansion Time Trend Removed)

(1) (2) (3) (4)

Panel A: No. of University Teachers in 1990 Interacted with Post-expansion Dummy as the IV

No. of University Teachers as First-Stage Dependent Variable No. of University Patents as First-Stage Dependent Variable

Dependent Variable: No. of Collaborative Patents Industry Patents Collaborative Patents Industry Patents
University Innovation Capacity 7.062 242.401∗ 80.706∗∗∗ 2771.068∗∗∗

(1.49) (1.85) (2.94) (5.29)
Observations 2384 2384 2392 2392
First-stage F-statistics 9.903 9.903 43.663 43.663
Dependent Variable Mean 1.246 113.626 1.242 113.270
Adj. R2 0.005 0.181 0.711 0.539

Panel B: No. of University Students in 1990 Interacted with Post-expansion Dummy as the IV

No. of University Students as First-Stage Dependent Variable No. of University Patents as First-Stage Dependent Variable

Dependent Variable: No. of Collaborative Patents Industry Patents Collaborative Patents Industry Patents
University Innovation Capacity 0.234 8.435∗∗ 74.679∗∗∗ 2690.238∗∗∗

(1.59) (2.07) (2.76) (5.19)
Observations 2392 2392 2392 2392
First-stage F-statistics 32.631 32.631 32.787 32.787
Dependent Variable Mean 1.127 111.641 1.127 111.641
Adj. R2 0.283 0.316 0.715 0.544
Year FE Yes Yes Yes Yes
City FE Yes Yes Yes Yes

Notes: This table reports the 2SLS estimates of the effects of university innovation capacity on innovation activities at the city level, using the number of university
teachers or students in 1990 interacted with the after dummy as the instrument. All the First-Stage Dependent Variables are counted in 1,000. The F-statistics
is calculated based on Montiel Olea and Pflueger (2013), which is robust to heteroskedasticity, autocorrelation, and clustering. The city-specific pre-expansion
time trend is removed for the dependent variable in all specifications. t statistics based on clustered standard errors at the city level are reported in parentheses. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A5: Impact of University Expansion on Industry Innovation — Ring-level Regressions

Pre-expansion Time Trend Not Removed Pre-expansion Time Trend Removed

Dependent Variable Number of Patents
(1) (2) (3) (4) (5) (6)

Treatment × 18.43∗∗∗ 18.28∗∗∗ 0.74 15.72∗∗∗ 15.64∗∗∗ 0.64
After × 0.5km (3.61) (3.60) (3.08) (3.08)
Treatment × 4.02∗∗∗ 3.87∗∗∗ 0.53 3.33∗∗∗ 3.24∗∗∗ 0.45
After × 1km (3.91) (3.89) (3.24) (3.26)
Treatment × 1.53∗∗∗ 1.38∗∗ 0.35 1.25∗∗ 1.17∗∗ 0.29
After × 1.5km (2.71) (2.58) (2.21) (2.18)
Treatment × 0.78∗∗∗ 0.63∗∗∗ 0.25 0.61∗∗ 0.52∗∗ 0.21
After × 2km (2.93) (2.65) (2.28) (2.21)
Treatment × 0.40∗∗ 0.25 0.13 0.28 0.19 0.10
After × 2.5km (2.24) (1.64) (1.53) (1.26)
Treatment × 0.33∗∗∗ 0.18∗∗ 0.14 0.23∗∗ 0.14∗ 0.12
After × 3km (2.89) (2.05) (2.00) (1.67)
Treatment × 0.26∗∗ 0.11 0.13 0.17 0.08 0.10
After × 3.5km (2.42) (1.24) (1.57) (0.99)
Treatment × 0.13∗∗∗ -0.02 -0.03 0.05 -0.03 -0.05
After × 4km (2.97) (-0.48) (1.16) (-0.83)
Treatment × 0.11∗∗ -0.05 -0.10 0.04 -0.05 -0.10
After × 4.5km (2.15) (-1.19) (0.72) (-1.25)
Treatment × 0.15∗∗∗ - - 0.08 - -
After × 5km (3.00) - (1.64) -
Observations 23920 23920 - 23920 23920 -
Treatment × Ring dummies Yes No - Yes No -
City FE Yes No - Yes No -
Year × Ring FE Yes Yes - Yes Yes -
Year × City FE No Yes - No Yes -
City × Ring FE No Yes - No Yes -
Dependent Variable Mean 18.21 18.21 - 10.59 10.59 -
Adjusted R2 0.351 0.560 - 0.228 0.479 -

Notes: This table reports the estimates of the effects of university expansion on industry patents at different dis-
tances (rings). The city-ring-specific pre-expansion time trend is removed for the dependent variable in columns
(4)-(5). Column (3) and (6) are obtained by dividing the coefficients in column (2) and (5) by the average number
of patents in the corresponding ring during the pre-expansion periods. The number of university students in 1990 is
counted in 1,000, and it is used as the measure of treatment intensity. t statistics based on clustered standard errors
at the city level are reported in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A6.A: Impact of University Expansion on Innovation — Ring Regressions (Robustness)

Pre-expansion Time Trend Not Removed Pre-expansion Time Trend Removed

Dependent Variable Number of Patents that are Cited at least Once
(1) (2) (3) (4)

Treatment × 22.79∗∗∗ 19.69∗∗ 16.80∗ 16.38∗∗

After × 0.5km (2.67) (2.59) (1.97) (2.15)
Treatment × 4.92∗∗∗ 4.43∗∗∗ 4.12∗∗∗ 3.72∗∗∗

After × 1km (5.74) (5.26) (4.81) (4.42)
Treatment × 1.51∗∗ 1.56∗∗ 1.74∗∗ 1.36∗∗

After × 1.5km (2.10) (2.56) (2.41) (2.24)
Treatment × 0.66 0.80∗∗ 1.07∗∗ 0.69∗

After × 2km (1.24) (2.06) (2.02) (1.79)
Treatment × 0.05 0.26 0.59∗ 0.22
After × 2.5km (0.16) (1.32) (1.75) (1.11)
Treatment × -0.04 0.17 0.51∗ 0.13
After × 3km (-0.14) (1.34) (1.94) (1.04)
Treatment × -0.18 0.05 0.40∗ 0.03
After × 3.5km (-0.80) (0.46) (1.73) (0.27)
Treatment × -0.29 -0.05 0.30 -0.07
After × 4km (-1.50) (-0.61) (1.58) (-0.80)
Treatment × -0.34∗ -0.10 0.26 -0.11
After × 4.5km (-1.83) (-1.31) (1.44) (-1.43)
Treatment × -0.25 - 0.37∗∗ -
After × 5km (-1.40) - (2.07) -
Observations 8600 8600 8600 8600
Treatment × Ring Dummies Yes No Yes No
City FE Yes No Yes No
Year × Ring FE Yes Yes Yes Yes
Year × City FE No Yes No Yes
City × Ring FE No Yes No Yes
Dependent Variable Mean 7.45 7.45 5.14 5.14
Adj. R2 0.246 0.473 0.158 0.410

Notes: This table reports the estimates of the effects of university expansion on industry patents with at least one
citation at different distances (rings). The city-ring-specific pre-expansion time trend is removed for the dependent
variable in columns (3)-(4). The number of university teachers in 1990 is used as the measure of treatment intensity,
and it is counted in 1,000. t statistics based on clustered standard errors at the city level are reported in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A6.B: Impact of University Expansion on Innovation — Ring Regressions (Robustness)

Pre-expansion Time Trend Not Removed Pre-expansion Time Trend Removed

Dependent Variable Number of Patents that are Cited at least Once
(1) (2) (3) (4)

Treatment × 4.49∗∗ 3.87∗∗ 3.31 3.22∗

After × 0.5km (2.25) (2.17) (1.65) (1.80)
Treatment × 1.04∗∗∗ 0.93∗∗∗ 0.87∗∗∗ 0.78∗∗∗

After × 1km (4.54) (4.17) (3.80) (3.51)
Treatment × 0.35∗∗ 0.35∗∗ 0.38∗∗ 0.30∗∗

After × 1.5km (2.32) (2.62) (2.58) (2.28)
Treatment × 0.16 0.18∗∗ 0.24∗∗ 0.16∗

After × 2km (1.50) (2.27) (2.26) (1.98)
Treatment × 0.02 0.06 0.13∗ 0.05
After × 2.5km (0.33) (1.40) (1.86) (1.17)
Treatment × 0.00 0.04 0.11∗∗ 0.03
After × 3km (0.02) (1.34) (2.04) (1.04)
Treatment × -0.03 0.01 0.09∗ 0.01
After × 3.5km (-0.64) (0.56) (1.85) (0.39)
Treatment × -0.05 -0.01 0.07 -0.01
After × 4km (-1.30) (-0.53) (1.56) -0.70)
Treatment × -0.07 -0.02 0.06 -0.02
After × 4.5km (-1.62) (-1.22) (1.39) (-1.33)
Treatment × -0.05 - 0.08∗∗ -
After × 5km (-1.22) - (2.05) -
Observations 8600 8600 8600 8600
Treatment × Ring Dummies Yes No Yes No
City FE Yes No Yes No
Year × Ring FE Yes Yes Yes Yes
Year × City FE No Yes No Yes
City × Ring FE No Yes No Yes
Dependent Variable Mean 7.45 7.45 5.13 5.13
Adj. R2 0.216 0.460 0.138 0.405

Notes: This table reports the estimates of the effects of university expansion on industry patents with at least one
citation at different distances (rings). The city-ring-specific pre-expansion time trend is removed for the dependent
variable in columns (3)-(4). The number of university students in 1990 is used as the measure of treatment intensity,
and it is counted in 1,000. t statistics based on clustered standard errors at the city level are reported in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A7.A: The Dynamic Effects of University Expansion on Industry Innovation — Ring Regressions
(No. of University Teachers in 1990 as Treatment)

Dependent Variable: Number of Patents

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Ring i Ring 1 Ring 2 Ring 3 Ring 4 Ring 5 Ring 6 Ring 7 Ring 8 Ring 9
Treatment × 1995 -3.96 0.32 0.13 0.16 -0.05 -0.04 0.04 0.01 0.08
× Ring i (-1.28) (0.54) (0.60) (1.47) (-0.61) (-0.27) (0.49) (0.08) (0.71)
Treatment × 1996 -4.67 -0.02 0.40∗ 0.17∗ 0.14 0.08 0.01 0.08 0.01
× Ring i (-1.63) (-0.05) (1.95) (1.69) (0.96) (0.78) (0.17) (0.94) (0.09)
Treatment × 1997 -4.46∗ -0.44 0.17 0.08 0.08 0.06 0.26 0.03 0.02
× Ring i (-1.88) (-1.04) (1.04) (1.08) (0.89) (0.64) (1.64) (0.53) (0.43)
Treatment × 1998 -4.17∗ -0.37 -0.08 -0.05 -0.18∗∗∗ -0.08 0.03 -0.03 -0.07
× Ring i (-1.81) (-0.84) (-0.61) (-0.41) (-2.79) (-0.97) (0.55) (-0.55) (-1.57)
Treatment × 2000 27.58∗ 2.39∗∗∗ 0.62∗∗∗ 0.16 0.10 0.22∗∗∗ 0.05 -0.08∗ -0.01
× Ring i (1.72) (3.40) (4.08) (1.12) (1.21) (3.44) (1.27) (-1.74) (-0.28)
Treatment × 2001 29.54∗∗∗ 2.92∗∗∗ 1.32∗∗∗ 0.92 0.05 0.00 0.12 0.07 0.13
× Ring i (2.89) (2.65) (4.67) (1.45) (0.26) (0.09) (1.48) (1.03) (0.69)
Treatment × 2002 36.10∗∗∗ 11.09∗∗∗ 2.24∗∗∗ 0.77∗∗ 0.23 0.32∗∗∗ 0.34 -0.02 0.03
× Ring i (3.40) (3.45) (2.77) (2.00) (1.22) (5.01) (1.06) (-0.19) (0.34)
Treatment × 2003 56.37∗∗∗ 14.37∗∗∗ 3.02∗∗∗ 1.70∗∗ 0.39 0.34∗ 0.53∗∗ 0.18 0.16
× Ring i (4.86) (2.66) (2.86) (2.25) (0.94) (1.85) (2.25) (0.97) (1.11)
Treatment × 2004 75.26∗∗∗ 20.61∗∗ 4.28∗∗∗ 2.35∗∗ 0.74 0.24 0.55∗∗ 0.08 -0.07
× Ring i (4.10) (2.58) (3.35) (2.49) (1.52) (0.99) (2.01) (0.62) (-0.45)
Treatment × 2005 104.91∗∗∗ 22.39∗∗∗ 5.15∗ 2.78∗ 1.59 1.39∗∗ 0.68 -0.26 -0.20
× Ring i (3.67) (3.22) (1.94) (1.78) (1.20) (2.30) (1.00) (-0.62) (-0.50)
Treatment × 2006 117.54∗∗∗ 23.46∗∗∗ 11.62∗∗ 5.27∗∗ 2.17 1.48∗∗ 1.00 -0.05 -0.47
× Ring i (3.86) (4.23) (2.14) (2.24) (1.46) (2.10) (1.31) (-0.10) (-0.92)
Treatment × 2007 146.65∗∗∗ 25.87∗∗∗ 15.10∗ 5.12∗ 1.11 1.17 0.05 -1.10∗ -1.32∗∗

× Ring i (3.65) (4.59) (1.75) (1.91) (0.61) (0.85) (0.05) (-1.77) (-2.58)
Dependent Variable Mean 10.59 Observations 23920 Adj. R2 0.548 Fixed Effects Yes

Notes: This table reports the estimates of the dynamic effects of university expansion on industry patents at different distances (rings).
The estimates are used to plot Panel (a) of Figure 7. Year × Ring, Year × City, and City × Ring fixed effects are included in all
regressions. The city-ring-specific pre-expansion time trend is removed for the dependent variable in all specifications. t statistics based
on clustered standard errors at the city level are reported in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A7.B: The Dynamic Effects of University Expansion on Industry Innovation — Ring Regressions
(No. of University Students in 1990 as Treatment)

Dependent Variable: Number of Patents

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Ring i Ring 1 Ring 2 Ring 3 Ring 4 Ring 5 Ring 6 Ring 7 Ring 8 Ring 9
Treatment × 1995 -0.72 0.08 0.02 0.04∗ -0.01 -0.01 0.01 -0.00 0.01
× Ring i (-1.03) (0.63) (0.51) (1.78) (-0.68) (-0.41) (0.41) (-0.14) (0.61)
Treatment × 1996 -0.89 0.00 0.08∗ 0.03 0.02 0.01 0.00 0.01 0.00
× Ring i (-1.35) (0.04) (1.71) (1.52) (0.78) (0.65) (0.02) (0.64) (0.01)
Treatment × 1997 -0.91∗ -0.08 0.03 0.02 0.01 0.01 0.05 0.00 0.00
× Ring i (-1.66) (-0.89) (0.87) (1.00) (0.69) (0.49) (1.43) (0.21) (0.37)
Treatment × 1998 -0.88∗ -0.06 -0.02 -0.00 -0.04∗∗ -0.02 0.00 -0.01 -0.01
× Ring i (-1.72) (-0.64) (-0.74) (-0.20) (-2.12) (-1.08) (0.43) (-0.66) (-1.37)
Treatment × 2000 5.88∗ 0.47∗∗∗ 0.13∗∗∗ 0.04∗ 0.02 0.05∗∗∗ 0.01 -0.02 -0.00
× Ring i (1.66) (2.82) (3.52) (1.65) (1.02) (3.06) (1.35) (-1.40) (-0.00)
Treatment × 2001 5.81∗∗ 0.62∗∗∗ 0.28∗∗∗ 0.21 0.02 0.00 0.03∗ 0.01 0.02
× Ring i (2.45) (2.65) (4.41) (1.60) (0.42) (0.14) (1.73) (0.74) (0.54)
Treatment × 2002 7.27∗∗∗ 2.32∗∗∗ 0.47∗∗ 0.18∗∗ 0.06∗ 0.07∗∗∗ 0.08 -0.01 0.00
× Ring i (2.90) (3.09) (2.59) (2.34) (1.69) (4.39) (1.17) (-0.35) (0.16)
Treatment × 2003 11.75∗∗∗ 3.15∗∗∗ 0.66∗∗∗ 0.39∗∗∗ 0.11 0.08∗∗ 0.12∗∗ 0.04 0.04
× Ring i (3.97) (2.77) (2.90) (2.73) (1.37) (2.23) (2.56) (1.08) (1.31)
Treatment × 2004 15.30∗∗∗ 4.40∗∗ 0.93∗∗∗ 0.52∗∗∗ 0.17∗ 0.06 0.12∗∗ 0.02 -0.02
× Ring i (3.38) (2.56) (3.52) (2.71) (1.75) (1.09) (2.22) (0.53) (-0.61)
Treatment × 2005 20.93∗∗∗ 4.69∗∗∗ 1.16∗∗ 0.63∗∗ 0.36 0.30∗∗ 0.15 -0.06 -0.04
× Ring i (3.02) (2.96) (2.13) (1.99) (1.26) (2.26) (1.04) (-0.70) (-0.42)
Treatment × 2006 23.54∗∗∗ 4.88∗∗∗ 2.53∗∗ 1.18∗∗ 0.48 0.30∗ 0.21 -0.02 -0.11
× Ring i (3.17) (3.62) (2.25) (2.42) (1.49) (1.82) (1.23) (-0.19) (-1.00)
Treatment × 2007 29.19∗∗∗ 5.34∗∗∗ 3.34∗ 1.19∗∗ 0.30 0.29 0.05 -0.20 -0.26∗∗

× Ring i (3.02) (3.75) (1.83) (2.29) (0.81) (1.01) (0.22) (-1.39) (-2.20)
Dependent Variable Mean 10.59 Observations 23920 Adj. R2 0.526 Fixed Effects Yes

Notes: This table reports the estimates of the dynamic effects of university expansion on industry patents at different distances (rings).
The estimates are used to plot Panel (b) of Figure 7. Year × Ring, Year × City, and City × Ring fixed effects are included in all
regressions. The city-ring-specific pre-expansion time trend is removed for the dependent variable in all specifications. t statistics
based on clustered standard errors at the city level are reported in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

84



Table A8: Impact of University Expansion on Industry Innovation — Ring-level Regressions of Trend Break Model

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Ring 1 Ring 2 Ring 3 Ring 4 Ring 5 Ring 6 Ring 7 Ring 8 Ring 9 Ring 10 Ring 1 - 10

Treatment × Trend 3.494∗∗∗ 3.425∗∗∗

×After× 0.5km (2.98) (2.93)
Treatment × Trend 0.861∗∗∗ 0.791∗∗∗

×After× 1km (3.91) (3.81)
Treatment × Trend 0.570∗∗ 0.500∗

×After× 1.5km (2.14) (1.96)
Treatment × Trend 0.269∗∗∗ 0.200∗∗∗

×After× 2km (3.10) (2.62)
Treatment × Trend 0.140∗∗ 0.0710
×After× 2.5km (2.02) (1.18)
Treatment × Trend 0.120∗∗∗ 0.0512
×After× 3km (2.67) (1.43)
Treatment × Trend 0.0862∗∗ 0.0169
×After× 3.5km (2.41) (0.59)
Treatment × Trend 0.0468∗∗∗ -0.0225
×After× 4km (2.70) (-1.18)
Treatment × Trend 0.0334∗ -0.0358∗

×After× 4.5km (1.88) (-1.76)
Treatment × Trend 0.0693∗∗∗

×After× 5km (2.95)
Observations 2392 2392 2392 2392 2392 2392 2392 2392 2392 2392 23920
City FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No
Year × Ring FE No No No No No No No No No No Yes
Year × City FE No No No No No No No No No No Yes
City × Ring FE No No No No No No No No No No Yes
Dependent Variable Mean 114.50 26.42 13.04 8.26 5.71 4.37 3.34 2.49 1.82 2.22 18.21
Adj. R2 0.584 0.660 0.565 0.632 0.457 0.456 0.455 0.383 0.433 0.212 0.607

Notes: This table reports the estimates of the slope change in the number of industry patents at different distances (rings) as a result of the university expansion,
using the specification in Equation (3.8). The number of university students in 1990 is counted in 1,000, and it is used as the measure of treatment intensity.
The trend-break model is used in all specifications. t statistics based on clustered standard errors at the city level are reported in parentheses. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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Table A9: Robustness Check — Ring-level Regressions up to 10 km

Pre-expansion Time Trend Not Removed Pre-expansion Time Trend Removed

Dependent Variable Number of Patents
(1) (2) (3) (4)

Treatment × 18.43∗∗∗ 18.41∗∗∗ 15.75∗∗∗ 15.76∗∗∗

After × 0.5km (3.61) (3.62) (3.09) (3.09)
Treatment × 4.02∗∗∗ 4.00∗∗∗ 3.36∗∗∗ 3.36∗∗∗

After × 1km (3.91) (3.92) (3.27) (3.30)
Treatment × 1.53∗∗∗ 1.51∗∗∗ 1.28∗∗ 1.28∗∗

After × 1.5km (2.71) (2.72) (2.26) (2.32)
Treatment × 0.78∗∗∗ 0.76∗∗∗ 0.64∗∗ 0.64∗∗

After × 2km (2.93) (2.96) (2.40) (2.52)
Treatment × 0.40∗∗ 0.38∗∗ 0.31∗ 0.31∗

After × 2.5km (2.24) (2.23) (1.71) (1.84)
Treatment × 0.33∗∗∗ 0.30∗∗∗ 0.26∗∗ 0.26∗∗

After × 3km (2.89) (2.96) (2.27) (2.55)
Treatment × 0.26∗∗ 0.23∗∗ 0.20∗ 0.20∗∗

After × 3.5km (2.42) (2.39) (1.86) (2.08)
Treatment × 0.13∗∗∗ 0.11∗∗∗ 0.08∗ 0.09∗∗

After × 4km (2.97) (3.20) (1.84) (2.57)
Treatment × 0.11∗∗ 0.08∗∗ 0.07 0.07∗

After × 4.5km (2.15) (2.17) (1.34) (1.88)
Treatment × 0.15∗∗∗ 0.13∗∗∗ 0.11∗∗ 0.12∗∗∗

After × 5km (3.00) (2.94) (2.25) (2.74)
Treatment × 0.10∗∗∗ 0.07∗∗∗ 0.06∗ 0.07∗∗∗

After × 5.5km (3.15) (3.26) (1.95) (2.93)
Treatment × 0.06∗∗ 0.04∗ 0.03 0.03
After × 6km (2.12) (1.84) (0.95) (1.55)
Treatment × 0.07∗∗∗ 0.05∗∗∗ 0.04 0.04∗∗∗

After × 6.5km (2.97) (3.15) (1.61) (2.91)
Treatment × 0.07∗∗ 0.04 0.03 0.04
After × 7km (2.40) (1.64) (1.22) (1.49)
Treatment × 0.05∗ 0.03 0.02 0.03
After × 7.5km (1.78) (0.95) (0.67) (0.80)
Treatment × 0.01 -0.02 -0.03∗∗ -0.02∗∗

After × 8km (0.53) (-1.65) (-2.56) (-2.03)
Treatment × 0.03∗∗ 0.00 -0.00 0.00
After × 8.5km (2.33) (0.15) (-0.44) (0.03)
Treatment × 0.12 0.10 0.09 0.09
After × 9km (1.37) (1.08) (1.00) (1.04)
Treatment × 0.02∗∗ -0.00 -0.01 -0.00
After × 9.5km (2.22) (-0.06) (-0.76) (-0.23)
Treatment × 0.02∗ - -0.01 -
After × 10km (1.91) - (-0.44) -
Observations 47840 47840 47840 47840
Treatment × Ring Dummies Yes No Yes No
Year × Ring FE Yes Yes Yes Yes
Year × City FE No Yes No Yes
City × Ring FE Yes Yes Yes Yes
Dependent Variable Mean 9.62 9.62 5.70 5.70
Adj. R2 0.338 0.552 0.215 0.473

Notes: This table reports the estimates of the effects of university expansion on industry patents at different distances
(rings) for up to 10 km. The city-ring-specific pre-expansion time trend is removed for the dependent variables in
Columns (3) and (4). The number of university students in 1990 is counted in 1,000, and it is used as the measure
of treatment intensity. t statistics based on clustered standard errors at the city level are reported in parentheses. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A10.A: Spatial Decay of University Spillovers (Relative to the Effect on Ring 1)

Pre-expansion Time Trend Not Removed Pre-expansion Time Trend Removed

Dependent Variable Number of Patents
(1) (2) (3) (4)

Treatment × - - - -
After × 0.5km - - - -
Treatment × -71.37∗∗∗ -71.37∗∗∗ -61.21∗∗∗ -61.21∗∗∗

After × 1km (-3.82) (-3.82) (-3.28) (-3.28)
Treatment × -83.43∗∗∗ -83.43∗∗∗ -71.23∗∗∗ -71.23∗∗∗

After × 1.5km (-4.18) (-4.18) (-3.57) (-3.57)
Treatment × -86.92∗∗∗ -86.92∗∗∗ -74.22∗∗∗ -74.22∗∗∗

After × 2km (-4.30) (-4.30) (-3.67) (-3.67)
Treatment × -88.64∗∗∗ -88.64∗∗∗ -75.71∗∗∗ -75.71∗∗∗

After × 2.5km (-4.39) (-4.39) (-3.75) (-3.75)
Treatment × -88.91∗∗∗ -88.91∗∗∗ -75.87∗∗∗ -75.87∗∗∗

After × 3km (-4.41) (-4.41) (-3.76) (-3.76)
Treatment × -89.26∗∗∗ -89.26∗∗∗ -76.18∗∗∗ -76.18∗∗∗

After × 3.5km (-4.40) (-4.40) (-3.75) (-3.75)
Treatment × -89.81∗∗∗ -89.81∗∗∗ -76.68∗∗∗ -76.68∗∗∗

After × 4km (-4.44) (-4.44) (-3.79) (-3.79)
Treatment × -89.92∗∗∗ -89.92∗∗∗ -76.75∗∗∗ -76.75∗∗∗

After × 4.5km (-4.46) (-4.46) (-3.80) (-3.80)
Treatment × -89.70∗∗∗ -89.70∗∗∗ -76.52∗∗∗ -76.52∗∗∗

After × 5km (-4.44) (-4.44) (-3.79) (-3.79)
Treatment × - -89.96∗∗∗ - -76.77∗∗∗

After × 5.5km - (-4.45) - (-3.80)
Treatment × - -90.12∗∗∗ - -76.92∗∗∗

After × 6km - (-4.46) - (-3.80)
Treatment × - -90.06∗∗∗ - -76.86∗∗∗

After × 6.5km - (-4.46) - (-3.81)
Treatment × - -90.09∗∗∗ - -76.89∗∗∗

After × 7km - (-4.44) - (-3.79)
Treatment × - -90.16∗∗∗ - -76.96∗∗∗

After × 7.5km - (-4.44) - (-3.79)
Treatment × - -90.38∗∗∗ - -77.18∗∗∗

After × 8km - (-4.46) - (-3.81)
Treatment × - -90.27∗∗∗ - -77.05∗∗∗

After × 8.5km - (-4.46) - (-3.81)
Treatment × - -89.73∗∗∗ - -76.52∗∗∗

After × 9km - (-4.49) - (-3.83)
Treatment × - -90.30∗∗∗ - -77.08∗∗∗

After × 9.5km - (-4.46) - (-3.80)
Observations 23920 47840 23920 47840
Year × Ring FE Yes Yes Yes Yes
Year × City FE Yes Yes Yes Yes
City × Ring FE Yes Yes Yes Yes
Dependent Variable Mean 18.21 9.62 10.91 5.86
Adj. R2 0.570 0.563 0.482 0.475

Notes: This table reports the estimates of the effects of university expansion on industry patents at different
distances (rings) for up to 5 km or 10 km. The reference group is ring 1. The estimates are used to plot Figure
10. The number of university teachers in 1990 is counted in 1,000. and it is used as the measure of treatment
intensity. t statistics based on clustered standard errors at the city level are reported in parentheses. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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Table A10.B: Spatial Decay of University Spillovers (Relative to the Effect on Ring 1)

Pre-expansion Time Trend Not Removed Pre-expansion Time Trend Removed

Dependent Variable Number of Patents
(1) (2) (3) (4)

Treatment × - - - -
After × 0.5km - - - -
Treatment × -14.41∗∗∗ -14.41∗∗∗ -12.39∗∗∗ -12.39∗∗∗

After × 1km (-3.19) (-3.19) (-2.74) (-2.74)
Treatment × -16.90∗∗∗ -16.90∗∗∗ -14.47∗∗∗ -14.47∗∗∗

After × 1.5km (-3.43) (-3.43) (-2.94) (-2.93)
Treatment × -17.65∗∗∗ -17.65∗∗∗ -15.11∗∗∗ -15.11∗∗∗

After × 2km (-3.50) (-3.50) (-3.00) (-3.00)
Treatment × -18.03∗∗∗ -18.03∗∗∗ -15.45∗∗∗ -15.45∗∗∗

After × 2.5km (-3.56) (-3.56) (-3.05) (-3.05)
Treatment × -18.10∗∗∗ -18.10∗∗∗ -15.49∗∗∗ -15.49∗∗∗

After × 3km (-3.58) (-3.58) (-3.06) (-3.06)
Treatment × -18.17∗∗∗ -18.17∗∗∗ -15.55∗∗∗ -15.55∗∗∗

After × 3.5km (-3.57) (-3.57) (-3.06) (-3.06)
Treatment × -18.30∗∗∗ -18.30∗∗∗ -15.67∗∗∗ -15.67∗∗∗

After × 4km (-3.60) (-3.60) (-3.08) (-3.08)
Treatment × -18.33∗∗∗ -18.33∗∗∗ -15.68∗∗∗ -15.68∗∗∗

After × 4.5km (-3.61) (-3.61) (-3.09) (-3.09)
Treatment × -18.28∗∗∗ -18.28∗∗∗ -15.64∗∗∗ -15.64∗∗∗

After × 5km (-3.60) (-3.60) (-3.08) (-3.08)
Treatment × - -18.34∗∗∗ - -15.69∗∗∗

After × 5.5km - (-3.61) - (-3.09)
Treatment × - -18.37∗∗∗ - -15.72∗∗∗

After × 6km - (-3.61) - (-3.09)
Treatment × - -18.36∗∗∗ - -15.71∗∗∗

After × 6.5km - (-3.62) - (-3.09)
Treatment × - -18.36∗∗∗ - -15.72∗∗∗

After × 7km - (-3.60) - (-3.08)
Treatment × - -18.38∗∗∗ - -15.73∗∗∗

After × 7.5km - (-3.60) - (-3.08)
Treatment × - -18.43∗∗∗ - -15.78∗∗∗

After × 8km - (-3.62) - (-3.10)
Treatment × - -18.41∗∗∗ - -15.76∗∗∗

After × 8.5km - (-3.62) - (-3.10)
Treatment × - -18.31∗∗∗ - -15.66∗∗∗

After × 9km - (-3.64) - (-3.11)
Treatment × - -18.41∗∗∗ - -15.76∗∗∗

After × 9.5km - (-3.61) - (-3.09)
Observations 23920 47840 23920 47840
Year × Ring FE Yes Yes Yes Yes
Year × City FE Yes Yes Yes Yes
City × Ring FE Yes Yes Yes Yes
Dependent Variable Mean 18.21 9.62 10.59 5.70
Adj. R2 0.560 0.552 0.479 0.473

Notes: This table reports the estimates of the effects of university expansion on industry patents at different
distances (rings) for up to 5 km or 10 km. The reference group is ring 1. The estimates are used to plot Figure
10. The number of university students in 1990 is counted in 1,000. and it is used as the measure of treatment
intensity. t statistics based on clustered standard errors at the city level are reported in parentheses. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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Table A11: Heterogeneity Analysis — Eastern, Central, and Western Regions

Pre-expansion Time Trend Not Removed Pre-expansion Time Trend Removed

Dependent Variable Number of Patents
(1) (2) (3) (4) (5) (6)

Eastern Central Western Eastern Central Western
Treatment × 25.44∗∗∗ 6.38∗∗∗ 5.01∗∗∗ 21.91∗∗∗ 5.14∗∗∗ 4.03∗∗∗

After × 0.5km (5.57) (7.13) (6.01) (4.80) (5.74) (4.83)
Treatment × 5.42∗∗∗ 1.20∗∗∗ 1.20∗∗∗ 4.66∗∗∗ 0.77∗∗ 0.83∗∗∗

After × 1km (4.78) (3.43) (5.12) (4.12) (2.20) (3.54)
Treatment × 1.91∗∗ 0.45∗∗∗ 0.46∗∗∗ 1.70∗∗ 0.21∗∗∗ 0.26∗∗

After × 1.5km (2.51) (7.68) (3.77) (2.23) (3.68) (2.10)
Treatment × 0.76∗∗ 0.39∗∗∗ 0.40∗ 0.65∗ 0.28∗∗∗ 0.33
After × 2km (2.11) (8.60) (2.01) (1.80) (6.29) (1.67)
Treatment × 0.31 0.17∗∗∗ 0.09∗∗∗ 0.26 0.09∗∗∗ 0.04∗

After × 2.5km (1.30) (7.89) (4.33) (1.08) (4.33) (2.03)
Treatment × 0.22∗ 0.07∗∗∗ 0.13∗∗∗ 0.19 0.03∗∗ 0.10∗∗∗

After × 3km (1.69) (4.63) (6.07) (1.45) (2.19) (4.77)
Treatment × 0.11 0.08∗∗∗ 0.10∗ 0.09 0.06∗∗∗ 0.07
After × 3.5km (0.84) (5.13) (1.84) (0.69) (3.69) (1.35)
Treatment × -0.05 0.03∗∗ 0.05 -0.06 0.03∗∗ 0.02
After × 4km (-0.88) (2.42) (1.50) (-1.09) (2.42) (0.53)
Treatment × -0.07 0.00 0.02 -0.08 0.00 0.01
After × 4.5km (-1.17) (0.21) (1.00) (-1.19) (0.15) (0.38)
Treatment × - - - - - -
After × 5km - - - - - -
Observations 10920 8320 4550 10920 8320 4550
Year × Ring FE Yes Yes Yes Yes Yes Yes
Year × City FE Yes Yes Yes Yes Yes Yes
City × Ring FE Yes Yes Yes Yes Yes Yes
Dependent Variable Mean 30.55 6.41 10.69 19.53 2.97 6.09
Adj. R2 0.582 0.697 0.675 0.491 0.533 0.557

Notes: This table reports the estimated effects of university expansion on industry patents across different regions
in China. The Eastern, Central and Western regions are divided according to the 7th “Five-Year Plan for the Na-
tional Economic and Social Development” of China. The city-ring-specific pre-expansion time trend is removed
for the dependent variables in Columns (4)-(6). The number of university students in 1990 is counted in 1,000,
and it is used as the measure of treatment intensity. t statistics based on clustered standard errors at the city level
are reported in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A12: Heterogeneity Analysis — Industries with High, Medium, and Low Human Capital
Intensity

Pre-expansion Time Trend Not Removed Pre-expansion Time Trend Removed

Dependent Variable Number of Patents
(1) (2) (3) (4) (5) (6)

High Medium Low High Medium Low
Treatment × 13.78∗∗∗ 3.03∗∗∗ 0.81∗∗∗ 11.72∗∗∗ 2.44∗∗∗ 0.62∗∗∗

After × 0.5km (3.11) (4.39) (4.36) (2.64) (3.53) (3.33)
Treatment × 2.95∗∗∗ 0.71∗∗∗ 0.22∗∗∗ 2.48∗∗∗ 0.55∗∗ 0.16∗∗∗

After × 1km (3.70) (3.13) (3.67) (3.11) (2.40) (2.78)
Treatment × 1.01∗∗ 0.25∗∗∗ 0.11∗∗ 0.86∗ 0.17∗ 0.09
After × 1.5km (2.30) (2.83) (2.05) (1.94) (1.94) (1.65)
Treatment × 0.36∗∗ 0.18∗ 0.06∗∗∗ 0.28∗∗ 0.14 0.05∗∗∗

After × 2km (2.59) (1.87) (3.82) (2.02) (1.50) (3.31)
Treatment × 0.10 0.05 0.03∗∗ 0.06 0.03 0.02
After × 2.5km (1.13) (1.24) (2.02) (0.65) (0.67) (1.51)
Treatment × 0.10 0.04 0.02∗ 0.07 0.03 0.02
After × 3km (1.24) (1.58) (1.82) (0.89) (1.20) (1.49)
Treatment × 0.03 0.02 0.02∗ 0.01 0.01 0.02∗

After × 3.5km (0.35) (0.94) (1.92) (0.14) (0.58) (1.76)
Treatment × -0.07 0.02 0.01∗ -0.08 0.01 0.00
After × 4km (-1.31) (0.56) (1.69) (-1.55) (0.43) (1.25)
Treatment × -0.07 -0.01 0.01 -0.08 -0.01 0.01
After × 4.5km (-1.40) (-0.55) (1.18) (-1.45) (-0.61) (1.21)
Treatment × - - - - - -
After × 5km - - - - - -
Observations 23660 23660 23660 23660 23660 23660
Year × Ring FE Yes Yes Yes Yes Yes Yes
Year × City FE Yes Yes Yes Yes Yes Yes
City × Ring FE Yes Yes Yes Yes Yes Yes
Dependent Variable Mean 14.13 3.71 1.19 8.37 2.00 0.65
Adj. R2 0.462 0.721 0.689 0.401 0.612 0.555

Notes: This table reports the estimated effects of university expansion on industry patents across industries with
different human capital intensity. We define high human capital intensity industry as the industries that rank
among the top one-third in the college employee ratio, medium as the middle one-third, and low as the rest. The
industry college employee ratio is calculated as the percentage of workers with a college education and above
using the 2004 ASIF. The city-ring-specific pre-expansion time trend is removed for the dependent variables in
Columns (4)-(6). The number of university students in 1990 is counted in 1,000, and it is used as the measure of
treatment intensity. t statistics based on clustered standard errors at the city level are reported in parentheses. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A13: Summary Statistics of Firm Characteristics

(1) (2) (3) (4) (5) (6) (7)
Year No. of Firms New Product Output Fixed Assets SOE Firm Age Employment
1998 125954 3934.99 33653.85 45043.08 0.29 14.55 348.68
1999 126528 4515.49 36260.19 49413.91 0.26 14.71 362.18
2000 125204 5411.33 37641.48 57134.02 0.22 14.34 336.75
2001 134677 6311.51 37539.98 60340.50 0.18 12.73 313.96
2002 146290 7186.15 37347.27 65840.98 0.15 12.06 301.97
2003 159423 8216.19 33295.39 76591.23 0.11 10.91 287.69
2004 231811 – 31756.00 72843.79 0.08 8.64 232.73
2005 224051 9814.97 36728.77 91410.37 0.06 8.78 249.65
2006 247992 11814.78 37504.38 101072.40 0.05 8.64 237.28
2007 276058 12518.99 37743.88 110539.40 0.03 8.38 229.20

Notes: Column (1) reports the number of firms in each year. Columns (2)-(7) report the means of new product value, output, fixed assets, SOE status,
firm age and employment at the firm level. New product, output, and fixed assets are counted in 1,000 yuan in the year 1998 value. Information on
new product value in 2004 is not available.91



Table A14: Effects of University Expansion on New Product Ratio —
Ring-level Regressions

Dependent Variable New Product Ratio

(1) (2) (3) (4)
After Dummy 2000 2002 2004 2006
Treatment × 8.47e-04 9.85e-04 1.30e-03 1.36e-03
After × 0.5km (1.58) (1.57) (1.60) (1.58)
Treatment × 5.77e-04∗ 6.99e-04∗ 9.03e-04∗∗ 9.59e-04∗

After × 1km (1.95) (1.96) (2.03) (1.87)
Treatment × 3.96e-04∗∗∗ 4.67e-04∗∗∗ 6.16e-04∗∗∗ 6.44e-04∗∗∗

After × 1.5km (3.14) (3.21) (3.13) (2.97)
Treatment × 2.91e-04∗∗∗ 3.35e-04∗∗∗ 4.12e-04∗∗∗ 4.10e-04∗∗∗

After × 2km (2.89) (2.87) (3.27) (2.89)
Treatment × 3.60e-04∗∗ 4.41e-04∗∗ 4.13e-04∗∗∗ 3.92e-04∗∗∗

After × 2.5km (2.44) (2.56) (3.33) (3.16)
Treatment × 2.54e-04∗∗∗ 3.10e-04∗∗∗ 3.97e-04∗∗∗ 4.06e-04∗∗∗

After × 3km (3.18) (3.41) (3.99) (3.79)
Treatment × 1.56e-04∗∗ 1.88e-04∗∗ 2.63e-04∗∗∗ 3.02e-04∗∗∗

After × 3.5km (2.34) (2.47) (2.90) (2.91)
Treatment × 1.60e-04∗ 1.92e-04∗ 2.99e-04∗∗ 3.62e-04∗∗

After × 4km (1.74) (1.89) (2.35) (2.42)
Treatment × 1.77e-04∗∗ 2.01e-04∗∗ 2.69e-04∗∗∗ 2.96e-04∗∗∗

After × 4.5km (2.50) (2.48) (2.67) (2.97)
Treatment × 1.45e-04∗ 1.77e-04∗ 2.74e-04∗∗ 3.35e-04∗∗

After × 5km (1.95) (1.94) (2.16) (2.57)
Observations 1196263 996185 759980 589233
Year × Ring FE Yes Yes Yes Yes
Year × City FE Yes Yes Yes Yes
City × Ring FE Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes
Control Variables Yes Yes Yes Yes
Dependent Variable Mean 0.034 0.035 0.035 0.037
Adj. R2 0.091 0.097 0.107 0.105

Notes: This table reports the estimated effects of university expansion on firms’ new
product ratio using the number of university students in 1990 as the proxy for treatment
intensity. Dependent variable is firm-level new product ratio. Columns (1)–(4) report the
triple-differences estimates. The after dummy equals 1 if year is 2000 or after, 2002 or
after, 2004 or after, or 2006 or after in Columns (1), (2), (3), and (4), respectively. The
after dummy equals 0 for years before 2000 for all four columns. Observations in the
years in which the after dummy is not defined are dropped. The reference group is the
firms outside 10 km of universities. Control variables include firm age, fixed assets, SOE
status, and employment size. Data on new product in 2004 is not available. The number
of university students in 1990 is counted in 1,000. t statistics based on clustered standard
errors at the city level are reported in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A15: Effects of University Expansion on New Product Ratio —
Ring-level Regressions with Firm Fixed Effects

Dependent Variable New Product Ratio

(1) (2) (3) (4)
After Dummy 2000 2002 2004 2006
Treatment × 8.08e-04∗∗ 9.10e-04∗ 1.82e-03∗∗∗ 2.20e-03∗∗

After × 0.5km (1.98) (1.81) (3.14) (2.32)
Treatment × 4.45e-04∗∗ 7.42e-04∗∗∗ 1.43e-03∗∗∗ 1.79e-03∗∗∗

After × 1km (2.38) (3.25) (6.46) (2.66)
Treatment × 6.44e-04∗∗∗ 9.24e-04∗∗∗ 1.12e-03∗∗∗ 1.15e-03∗∗

After × 1.5km (3.60) (3.63) (2.97) (2.36)
Treatment × 6.24e-04∗∗∗ 5.92e-04∗∗ 8.38e-04∗∗∗ 7.43e-04∗∗

After × 2km (3.01) (2.17) (3.28) (2.46)
Treatment × 5.63e-04∗∗∗ 7.71e-04∗∗ 1.41e-03∗∗∗ 1.04e-03∗∗

After × 2.5km (2.94) (2.39) (3.10) (2.11)
Treatment × 2.11e-04 2.26e-04 4.53e-04 3.28e-04
After × 3km (1.13) (1.22) (1.40) (0.77)
Treatment × 3.45e-04∗ 4.05e-04∗ 3.12e-04 5.03e-04
After × 3.5km (1.93) (1.90) (0.68) (0.96)
Treatment × 1.12e-04 3.08e-04 3.79e-04 -6.87e-05
After × 4km (-0.57) (-1.24) (-1.07) (-0.15)
Treatment × 2.45e-04 5.87e-04 1.07e-03 1.05e-03
After × 4.5km (-0.52) (-0.90) (-1.26) (-1.18)
Treatment × 2.99e-04∗ 2.53e-04 1.50e-04 3.57e-04
After × 5km (1.71) (0.87) (0.34) (0.54)
Observations 1099149 895751 668829 498355
Year × Ring FE Yes Yes Yes Yes
Year × City FE Yes Yes Yes Yes
City × Ring FE Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes
Control Variables Yes Yes Yes Yes
Dependent Variable Mean 0.035 0.036 0.038 0.037
Adj. R2 0.541 0.541 0.572 0.589

Notes: This table reports the estimated effects of university expansion on firms’ new
product ratio using the number of university teachers in 1990 as the proxy for treatment
intensity, with firm fixed effects. The dependent variable is firm-level new product ratio.
Columns (1)–(4) report the triple-differences estimates. The after dummy equals 1 if year
is 2000 or after, 2002 or after, 2004 or after, or 2006 or after in Columns (1), (2), (3), and
(4), respectively. The after dummy equals 0 if year is before 2000 for all four columns.
Observations in the years in which the after dummy is not defined are dropped. The
reference group is the firms outside 10 km of universities. Control variables include firm
age, fixed assets, SOE status, and employment size. The number of university teachers
in 1990 is counted in 1,000 t statistics based on clustered standard errors at the city level
are reported in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A16: Heterogeneity Analysis - Industries with High, Medium, and Low Human
Capital Intensity and SOE versus Non-SOE

Dependent Variable New Product Ratio

(1) (2) (3) (4) (5)
High Medium Low SOE Non-SOE

Treatment × 9.49e-04 5.79e-04∗ 2.62e-04 1.49e-04 8.61e-04
After × 0.5km (1.59) (1.75) (0.87) (0.66) (1.52)
Treatment × 8.13e-04∗ 2.93e-04 2.32e-04∗ 2.03e-04 6.31e-04∗∗

After × 1km (1.92) (1.58) (1.95) (1.37) (2.01)
Treatment × 6.16e-04∗∗∗ 2.93e-04∗∗∗ 3.76e-05 1.65e-04∗∗ 4.25e-04∗∗∗

After × 1.5km (2.91) (3.37) (0.73) (2.22) (3.04)
Treatment × 3.30e-04∗ 1.93e-04∗∗ 1.66e-04∗∗∗ 1.12e-04 3.32e-04∗∗∗

After × 2km (1.74) (2.39) (2.70) (1.24) (3.22)
Treatment × 6.04e-04∗ 1.41e-04∗∗ 1.61e-04∗∗∗ 3.14e-04∗∗∗ 3.75e-04∗∗

After × 2.5km (1.68) (2.03) (3.53) (3.60) (2.34)
Treatment × 3.53e-04∗∗ 2.10e-04∗∗ 5.70e-05 2.25e-04∗∗ 2.86e-04∗∗∗

After × 3km (2.43) (2.29) (1.03) (2.32) (3.35)
Treatment × 1.73e-04 1.09e-04 7.19e-05 2.55e-05 2.09e-04∗∗

After × 3.5km (1.23) (1.16) (1.14) (0.23) (2.49)
Treatment × 1.27e-04 3.26e-05 1.62e-04∗∗∗ -4.30e-05 2.19e-04∗

After × 4km (0.47) (0.47) (3.07) (-0.35) (1.88)
Treatment × 2.35e-04∗∗ -1.66e-05 2.13e-04∗∗∗ -1.40e-04 2.43e-04∗∗∗

After × 4.5km (2.52) (-0.13) (3.86) (-1.54) (4.61)
Treatment × -4.94e-05 1.50e-04 1.73e-04∗∗ 5.77e-05 1.98e-04∗∗

Observations 394427 385023 456632 136171 1060023
Year × Ring FE Yes Yes Yes Yes Yes
Year × City FE Yes Yes Yes Yes Yes
City × Ring FE Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes
Control Variables Yes Yes Yes Yes Yes
Dependent Variable Mean 0.059 0.025 0.020 0.046 0.033
Adj. R2 0.119 0.057 0.049 0.111 0.096

Notes: Columns (1)–(3) report the estimated effects of university expansion on firms’ new product
ratio across industries with different human capital intensity. We define high human capital intensity
industry as the industries that rank among the top one-third in the college employee ratio, medium
as the middle one-third, and low as the rest. The industry college employee ratio is calculated as the
percentage of workers with a college education and above using the 2004 ASIF. Columns (4) and (5)
report the estimates of the effects of university expansion on firms’ new product ratio for SOEs and non-
SOEs separately. The number of university students in 1990 is counted in 1,000, and it is used as the
treatment intensity. Control variables include firm age, fixed assets, SOE status, and employment size.
The reference group consists of the firms outside 10 km of universities. t statistics based on clustered
standard errors at the city level are reported in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Appendix B: Theoretical Model

The impact of universities on local innovation can be mediated through a collec-

tion of channels, such as an increased supply of human capital, knowledge spillovers,

or a direct demand effect (Valero and Van Reenen 2019). Most channels, such as

the human capital channel and demand effect, operate at a broad geographic scale.

For example, the human capital channel usually operates at the city level because

workers are mobile within a city. The geographic scope of knowledge spillovers,

however, is often limited. We highlight below the specific channels through which

the impact of universities is especially pronounced at close geographic distances

(within 2-3 km in general).

First, areas with better access to universities benefit from improved chances of

collaborating with universities to convert university-based knowledge to commer-

cial products. The development of the Founder Group in Zhongguancun (ZGC)

Science Park is a typical example. The Founder Group, established by Peking Uni-

versity in 1986, is now a major Chinese technology conglomerate. The company’s

take-off benefited tremendously from Professor Xuan Wang at Peking University,

who is known as the “Father of Chinese Character Laser Typesetting.” His laser

typesetting system allowed the Founder Group to earn its first pot of gold in the

early 1990s. Between 2000 and 2007, the Founder Group published 232 invention

patents, with 86 percent in collaboration with Peking University.

Second, universities may disproportionately benefit firms in close proximity

through knowledge transfers. Areas close to universities enjoy convenient access to

fundamental background knowledge and frontier technologies produced by university-

based experts and professionals. Those factors are key drivers of innovation. Theory-

based fundamental knowledge is the essential cornerstone of applicable innovations.

Frontier technologies—grown out from the development of the fundamentals—lead

to new commercializable product varieties as in Romer (1990) or upgrading of ex-

isting products through Schumpeterian creative destruction (Aghion and Howitt

1992; Grossman and Helpman 1991). The tacit part of knowledge and technolo-

gies requires lengthy face-to-face communications to disseminate. Locating close
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to universities allows nearby inventors to attend university workshops, seminars,

and conferences and offers abundant opportunities for face-to-face interactions.

Third, proximity to universities allows firms to establish and foster strong pro-

fessional and informational networks. Technology advancement is fast-evolving

and subject to uncertain dynamics. Maintaining formal and informal operational

links with universities and other research institutions to receive ceaseless updates

on new information allows innovative firms to be at the front of technology de-

velopment. A salient example is Baidu, Inc. Upon returning from Silicon Valley,

the founder and CEO of Baidu, Yanhong Li, chose ZGC Science Park to develop

his Chinese search engine empire. As he revealed in an interview, the location ad-

vantage of ZGC allows the company to maintain strong ties with experts at nearby

universities, including Peking University from which he graduated (Zhao 2018).

This idea is closely related to the networking benefits in the advertising industry as

emphasized in Arzaghi and Henderson (2008).

In sum, firms in close proximity to universities benefit from improved collab-

oration opportunities, knowledge transfers, and information networks. However,

we note a fundamental distinction between direct collaborations and the latter two

channels. Collaboration benefits do not constitute spillovers because universities

would internalize the benefits. We refer to the latter two channels as knowledge

spillovers, which is the main focus of this paper. We also explore the collabora-

tion channel quantitatively by treating innovative firms in direct collaboration with

universities differently in our empirical analysis.

Next, we outline a simple conceptual framework to formalize the identification

of knowledge spillovers by drawing on the localized nature of knowledge spillovers

documented in the literature. Note again that we focus on variations within close

geographic distances (within 2-3 km in general) to identify the fast spatial decay of

knowledge spillovers. In this framework, the number of new ideas, NI, is assumed

to be a function of the existing knowledge stock, A, and the number of researchers,

R, who spend time producing them:

NI = f (A,R). (1.11)
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Conceptually, we specify the production function for each firm, i, but i is suppressed

for simplicity. The number of new products, NP, is assumed to be a function of new

ideas, NI, and the necessary facility, equipment, and personnel, X , to convert the

new ideas into new products:

NP = g(NI,X). (1.12)

We further assume that the knowledge stock, A, is affected by a nearby uni-

versity’s scale or its innovation capacity, U , through the channel of knowledge

spillovers as well as the distance to the university, D, which captures the sharp

spatial attenuation of knowledge spillovers:

A = a(U,D). (1.13)

If nearby universities experience an increase in innovation capacity and generate

more knowledge for sharing, the knowledge stock for nearby firms will increase.

If a firm is closer to universities spatially, the firm has better access to university

knowledge and receives a larger impact when the universities experience a knowl-

edge boom. Therefore, we have ∂a
∂U > 0, ∂a

∂D < 0, and ∂ 2a
∂U∂D < 0.

Knowledge spillover is not the only channel through which universities affect

local innovation. For instance, the number of researchers, R, could also be a function

of local universities’ scale, U :

R = r(U). (1.14)

On a broad geographic scale, the number of researchers could also be a function

of the geographic distance to the university. For instance, better university access

may increase the probability that local young people attend a university, become

researchers, and seek work in the same city (Card 1995). However, in this paper,

we restrict our attention to narrow geographic scopes of 2-3 km, within which the

number of available researchers to firms are unlikely to be subject to spatial atten-

uation.48 Hence, we assume away the role of distance in driving the number of

48The argument is consistent with the general consensus in the literature that it is easier to “move”
labor than to “move” ideas (Rosenthal and Strange 2001; Ganguli et al. 2020). The chances of
meetings and conversations that enable idea exchanges are significantly reduced even at modest
distances (Arzaghi and Henderson 2008). Yet, labor market benefits are realized at a large geographic
scope—usually within the same commuting zones (Combes and Gobillon 2015).
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available researchers in nearby firms.49

Based on the conceptual setup, it is easy to see that an increase in local uni-

versity scale impacts the creation of new ideas and new products through either

knowledge spillovers or the labor market channel. However, a further difference of

the university impact along the spatial dimension helps tease out the labor market

mechanism and highlight the role of knowledge spillovers. To see this clearly, we

assume linearity for all functional forms and write the determinants of new ideas at

“close” and “far” distances as follows:

NID(close) = AD(close)+RD(close) = αD(close)U +βU, (1.15)

and

NID( f ar) = AD( f ar)+RD( f ar) = αD( f ar)U +βU, (1.16)

where NID(close) stands for the creations of new ideas at firms located sufficiently

close to a university and NID( f ar) stands for new ideas at firms located relatively

far from the university. They are determined by the knowledge stock and the num-

ber of researchers at respective locations, indexed by AD(close), AD( f ar), RD(close),

and RD( f ar). αD(close), αD( f ar), and β are the corresponding parameters that link

AD(close), AD( f ar), RD(close), and RD( f ar) to U .

Since the number of available researchers to firms are not subject to spatial at-

tenuation, as discussed earlier, we have RD(close) = RD( f ar) = βU . A comparison of

the impact of universities for locations that are close and far from universities gives

us the following.

NID(close)−NID( f ar) = AD(close)−AD( f ar) =
[
αD(close)−αD( f ar)

]
U. (1.17)

Therefore, any differences in the impact of universities across various close-range

spatial distances can be attributed to the difference in A—the varying degrees of

knowledge spillovers in promoting nearby firms’ innovation activities. We adopt a

triple-differences model to highlight this variation in our empirical analysis.

49Essentially, the labor market channel should not operate in such localized geographic scales.
However, the assumption does not preclude that, in equilibrium, firms closer to universities ben-
efit more from knowledge spillovers and disproportionately hire more university graduates as re-
searchers. This hiring is, in fact, likely if knowledge stock and the number of researchers are com-
plementary.
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Chapter 2

Analysis of Large Real Estate Prices

Data: A High-Order Spatiotemporal

Autoregression Approach

2.1 Introduction

Consider the real estate prices, collected unevenly over space and time, and ar-

rived sequentially in time order. Suppose there are overall N spatial units involved

in the data, and the observations on their response variable Y and explanatory vari-

ables X are denoted as (Yi,Xi), i = 1, . . . ,N. Note that i indexes both the spatial unit

and the time order. Let ti be the time at which the ith spatial unit is observed. Note

that in this type of data, it is typical that none of the spatial units are observed more

than once during the time of study, e.g., none of the residential units are sold more

than once within one year. Such a data is referred to in this paper as the spatiotem-

poral data, to distinguish from the regular panel or longitudinal data where a set of

spatial units are repeatedly observed a number of times.1

Using spatiotemporal data for analyzing real estate prices has two main advan-

1In the real estate price literature, the term “spatiotemporal data” has been used in the literature
to mean any data that are collected over space and time, which include the type of data just described
(Pace et al. 1998a, 2000; Sun et al. 2005), the standard panel or longitudinal data (Holly et al. 2010,
2011), and the unbalanced panel data.
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tages. First, compared with analyzing the real estate prices data by aggregating

individual transactions to form a panel, it does not suffer from the loss of informa-

tion as each individual transaction is incorporated. Also, aggregating the individual

data leads to the ecological inference problem and modifiable areal unit problem,2

as mentioned in Anselin and Cho (2002). Using spatiotemporal data instead of

aggregated data alleviates these problems. Second, compared with traditional hedo-

nic housing prices models, which usually do not consider the spatial and temporal

information,3 the usage of the additional spatial and temporal information allows

researchers to capture interaction effects between transactions along both space and

time dimensions. The richness of information in the spatiotemporal data also gives

researchers a chance to control for cluster and time heterogeneity in the model.

Despite of these merits, spatial econometric theories and methods seem lag be-

hind for sophisticated analyses of spatiotemporal data. Among a few papers which

do use spatiotemporal data to model housing prices, Pace et al. (1998a) and Pace

et al. (2000) propose a model with two different weight matrices which capture

the interaction effects in space and time dimensions separately. They show that

their model fits the housing prices data significantly better than the traditional he-

donic model. Sun et al. (2005) add another layer of spatial effects to the model,

which they call “building effects". Nappi-Choulet Pr and Maury (2009) use a sim-

ilar model to analyze the housing market in Paris. Additionally, they propose a

hybrid method for incorporating a temporal regime switch into the model, high-

lighting the fact that there may exist temporal heterogeneity. Baltagi et al. (2015)

adopt a model with nested random effects to capture the neighborhood spillover

effects in Paris. Anselin and Lozano-Gracia (2008) propose a hedonic house price

model with spatial effects to evaluate the effect of improved air quality. Dorsey et al.

(2010) adopt the hedonic house price model with spatial effects to construct better

housing price indexes. However, the literature on spatiotemporal data lacks discus-
2Ecological inference problem describes the situation when the conclusion drawn from the data

at an aggregated fails to explain individual level behaviour. The modifiable areal unit problem is
about the proper spatial scale of analysis. Both the magnitude and sign of the spatial interaction
effects can change when researchers aggregate the data at different levels.

3There is a large literature on hedonic house price studies. As mentioned in Maclennan (2012),
“For almost four decades hedonic house price studies have been used to identify the economic sig-
nificance of different, distinctive attributes of housing."
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sions on the ways to incorporate ‘cluster’ and ‘time segment’ effects into the model

and the ways of tackling the issues arising from the estimation of these effects when

they are treated as fixed effects. Also, researchers usually assume homoskedasticity

in the error term, which can potentially lead to inconsistency of the estimates, as

housing price observations are typically heteroskedastic.

In this paper, we propose a high order spatiotemporal autoregressive (STAR)

model for analyzing the spatiotemporal real estate prices data. By utilizing the

spatial and temporal information in the data, our model is able to capture the spa-

tiotemporal interaction effects between housing transactions. We develop methods

to consistently estimate the spatiotemporal effects, at the same time allowing for

various kinds of unobserved clusters and/or time segments fixed effects to control

for cluster and time heterogeneity. We first follow the well-known quasi maximum

likelihood (QML) method to estimate the model when errors are homoskedastic and

the number of clusters (C) and time segments (T ) are fixed. When C and/or T grow

with N, an adjusted quasi score (AQS) method is proposed to deal with the inci-

dental parameters problem (Neyman and Scott, 1948). Further more, potential het-

eroskedasticity in idiosyncratic errors can invalidate the QML and AQS estimates.

To deal with this issue, we propose a robust adjusted quasi score (RAQS) method.

Consistency and asymptotic normality of the QML, AQS and RAQS estimators are

established, their validity are critically discussed, and instructions are clearly given

on their practically implementations.

We present an empirical application of the proposed methods utilizing the hous-

ing transaction data in Beijing, to study the spatiotemporal interaction effects. We

find strong evidence of the existence of the positive interaction effects. These ef-

fects take place through the interaction within communities and neighbours outside

of communities.4 However, we find that the estimation of the interaction effects are

sensitive to controlling for cluster heterogeneity at the community level. It’s very

likely for us to severely underestimate the interaction effects within communities,

and overestimate the interaction effects from neighbours that are outside of com-

4In this paper, the term “community” represents xiao qu in Chinese, which is usually a relatively
independent residential area with walls.
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munities if we do not allow for community heterogeneity. When we further allow

for community heterogeneity together with heteroskedasticity in the error terms,

the similar patterns still remain, but the extent to which we over/underestimate the

interaction effects becomes smaller.

Our study contributes to the literature in threefold. First, controlling for various

kinds of fixed effects have become a standard in empirical research, as the unob-

served heterogeneity can be a source of endogeneity. To the best of our knowledge,

this is the first paper that develops a series of methods to include different kinds of

unobserved cluster and time segment fixed effects (especially when C and/or T are

large) in the STAR model, and at the same time give consistent estimates of spa-

tiotemporal interaction effects in both spatial lag and spatial error terms. Second,

researchers have documented the existence of heteroskedasticity in hedonic models.

The heteroskedasticity can be caused by dwelling age (Stevenson 2004; Goodman

and Thibodeau 1995, 1997). It is well known that in simple linear models, OLS

estimators are still consistent under heteroskedasticity, but it is not necessary the

case in spatial econometrics models. The existence of heteroskedasticity can poten-

tially make the estimation of the spatiotemporal interaction effects inconsistent. The

RAQS estimators we proposed are able to consistently estimate the spatial parame-

ters against unknown heteroskedasticity. Third, estimating the interaction effects (or

spillover effects or price reference effects) is a very important topic in the housing

literature, as it is closely related to people’s decision on house-purchase and mort-

gage defaults (Campbell et al. 2011; Gerardi et al. 2012; Honkanen and Schmidt

2017; Gupta 2019). By applying our model to real estate prices data in Beijing, we

show that estimates of the interaction effects are affected by taking into account the

community fixed effects and the heteroskedasticity in the idiosyncratic error terms.

Additionally, our detailed discussion on the construction the space-time connectiv-

ity matrices also contributes the literature on modelling interaction effects in the

housing market.

The rest of the paper goes as follows. Section 2 introduces explicitly the type of

data that we deal with in this paper, and the high-order STAR model with additive

cluster and time segment fixed effects for analyzing these data. Section 3 introduces
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the QML estimation and inference of the model with iid errors and fixed (small) C

and T . Section 4 considers the AQS estimation and inference of the model with large

C and/or T . Section 5 considers the AQS estimation and inference when there exists

unknown heteroskedasticity in the errors. Section 6 gives an extensive discussion

on the construction of space-time connectivity matrices in the context of real estate

prices. Section 7 presents the Monte Carlo results. Section 8 presents an empirical

application utilizing real estate prices data in Beijing and Section 9 concludes the

paper. Some technical details and additional results are collected in the appendix.

2.2 The High-Order Spatiotemporal Autoregressive Model

For ease of exposition, we begin by assuming that the N observations fall into

T different time segments separated by the occurrence of common shocks, and they

are classified into C clusters due to certain housing grouping/clustering features. As

housing transactions occur in time sequence, they are not grouped naturally into

clusters. To facilitate the subsequent discussions, the basic data structure is illus-

trated in the table below.

To identify which cluster that an observation falls into, we define an N ×C

cluster-membership matrix MC such that its (i,c)th element equals 1 if the ith ob-

servation belongs to cth cluster, and equals to 0 otherwise, for i = 1, . . . ,N and

c = 1, . . . ,C. Similarly, we define an N×T matrix MT such that its (i, t)th element

equals 1 if the ith observation falls into tth time segment, and equals to 0 otherwise,

for i = 1, . . . ,N and c = 1, . . . ,C. In the empirical application, we use the real estate

prices data in Beijing in 2015. The time segments can be weeks, months, or quar-

ters, and the clusters can be districts or communities. We discuss the detailed ways

of specifying clusters and time segments in Section 2.8.2.
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The Structure of Spatiotemporal Data.

Obs. Y Cluster Transaction Time Time Segment X1 · · · Xk

1 Y1 3 12.01.2015 1 X11 · · · Xk1

2 Y2 1 13.01.2015 1 X12 · · · Xk2

3 Y3 6 15.01.2015 1 X13 · · · Xk3

4 Y4 10 16.01.2015 1 X14 · · · Xk4

5 Y5 36 17.01.2015 1 X15 · · · Xk5
...

...
...

...
...

...
...

...

491 Y491 10 20.05.2015 2 X1,491 · · · Xk,491

492 Y492 5 23.05.2015 2 X1,492 · · · Xk,492

493 Y493 23 25.05.2015 2 X1,493 · · · Xk,493

494 Y494 33 26.05.2015 2 X1,494 · · · Xk,494

495 Y495 3 29.05.2015 2 X1,495 · · · Xk,495
...

...
...

...
...

...
...

...

991 Y991 15 20.11.2015 3 X1,991 · · · Xk,991

992 Y992 12 23.11.2015 3 X1,992 · · · Xk,912

993 Y993 16 25.11.2015 3 X1,993 · · · Xk,993

994 Y994 20 26.11.2015 3 X1,994 · · · Xk,994

995 Y995 6 29.11.2015 3 X1,995 · · · Xk,995
...

...
...

...
...

...
...

...

We propose a high-order spatiotemporal autoregressive (STAR) model with clus-

ter and time segment fixed effects:

AN(λ )YN = XNβ +MCµ +MT α +VN , BN(ρ)VN = εN , (2.1)

where YN is an N×1 vector of response values, XN an N× k matrix containing the

values of exogenous regressors, VN an N×1 vector of disturbances, and εN an N×1

vector of idiosyncratic errors. β is a k×1 vector of regression coefficients, µ a C×1

vector of cluster fixed effects, and α a T ×1 time segment fixed effects. AN(λ ) and

BN(ρ), are defined as

AN(λ )≡ AN(W`,λ ) = IN−∑
p
j=1 λ jW` j, (2.2)

BN(ρ)≡ Bn(We,ρ) = IN−∑
q
k=1 ρ jWek, (2.3)

which are N×N matrices capturing, respectively, the space-time lag (STL) depen-

dence of order p, and the space-time error (STE) dependence of order q. The
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vectors, λ = {λ1, . . . ,λp}′ and ρ = {ρ1, . . . ,ρq}′, are the spatiotemporal parame-

ters. The N×N matrices {W` j} and {Wek}, are the given space-time weight matri-

ces capturing various space-time effects, which are denoted collectively as W` =

{W`1, · · · ,W`p} and We = {We1, · · · ,Weq}. In this paper, we call Model (2.1) the

STAR(p,q) model to reflect the fact that the data and the spatiotemporal weight

matrices cover both space and time dimensions and to differentiate it from the com-

monly known SARAR(p,q) model for pure cross-sectional data.5 The exogenous

regressors may include spatial Durbin terms, i.e., the spatiotemporal lags of (some)

variables in XN , but this would not affect the technical results.6

Considering the fact that the degree of dependence of the spatiotemporal obser-

vations will depend on at least the ‘spatial distance’ and ‘time distance’, it is evident

that the use of spatiotemporal weight matrices (instead of spatial only) would be a

useful modeling strategy for the type of spatiotemporal data considered in this pa-

per. The type of spatial weight matrices may include within cluster interaction,

between clusters interaction, economic connectivity matrix, physical connectivity

matrix, etc.. The ‘cluster’ index in the table is essential in constructing the cluster-

membership matrix. It can also be used to construct a cluster interaction spatial

weight matrix. The transaction time together with the location of a transaction unit

can be used to construct a space-time connectivity matrix. See Section 6 for details

on the construction of the space-time connectivity matrix.

We first consider the cases where (a) the elements of εn are independent and

identically distributed (iid), and (b) the elements of εn are independent but not iden-

tically distributed (inid). The number of clusters C and the number of time segments

T can be: (i) both small, (ii)C small and T large, (iii)C large and T small, and (iv)

both large.

In case of (a) and (i), the standard quasi maximum likelihood (QML) method

can be followed for model estimation and inference. In all other cases, alterna-

tive methods are required due to the incidental parameters problem of Neyman and

Scott (1948). We propose an adjusted quasi score (AQS) method for model estima-

5See Yang (2018) and the references therein for the theory and applications of SARAR(p,q) model.
6The “spatiotemporal interaction” is captured by λ at mean level and by both λ and ρ at variance

level.

105



tion and inference. As in the regular spatial econometrics models, QML and AQS

methods will both face computational difficulties when general spatial weights ma-

trices are used in the model, in terms of computing the determinants or inverse of

these weights related matrices. In special cases where the space-time weights ma-

trices are all lower triangular, this issue disappears (Pace et al. 1998a). In this paper,

we propose a way of constructing these space-time connectivity matrices based on

fixed space window and time window, so that the constructed matrices are ‘band’

matrices and hence the corresponding computational burden is alleviated.

2.3 QML Estimation of the High-Order STAR Model

Consider first the case that the number of clusters C and the number of time seg-

ments T are both fixed when sample size N grows, and the errors are independent

and identically distributed (iid). In this case, we can merge the cluster and time

effects into the regressors matrix XN and our STAR(p,q) model can be considered as

a simple extension of the standard SARAR(p,q) model, the p-order spatial autore-

gressive (SAR) model with q-order SAR disturbances. In this case, the QML method

considered in Liu and Yang (2017) can be followed. To avoid the dummy variable

trap, we delete the first column of MT to give MT−1 and the first element of α to

give α−1. Letting XN = [XN ,MC,MT−1] and βββ = (β ′,µ ′,α2, . . . ,αT )
′, the model is

written as

AN(λ )YN = XNβββ +VN , BN(ρ)VN = εN , (2.4)

where the elements of εN are assumed to be iid, and XN is exogenously given.

The quasi Gaussian loglikelihood function for θθθ = (βββ ′,σ2,λ ′,ρ ′)′ is

`N(θθθ) =−
N
2

ln(2πσ
2)+ ln |AN(λ )|+ ln |BN(ρ)|−

1
2σ2 ε

′(βββ ,δ )ε(βββ ,δ ), (2.5)

where εN(βββ ,δ ) = BN(ρ)(AN(λ )YN −XNβββ ), and | · | denotes the determinant of a

matrix. Maximizing (2.5) gives the maximum likelihood estimator (MLE) if the

error term are indeed Gaussian, otherwise the quasi MLE (QMLE).

The maximization process can be simplified by first maximizing `N(θθθ) for a
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given δ , to give the constrained QMLEs of βββ and σ2:

β̂ββ N(δ ) = [X′(ρ)X(ρ)]−1[X′(ρ)Y(δ )], (2.6)

σ̂
2
N(δ ) =

1
NY
′(δ )Q(ρ)Y(δ ), (2.7)

where Y(δ )=BN(ρ)AN(λ )YN , X(ρ)=BN(ρ)XN , and Q(ρ)= IN−X(ρ)[X(ρ)′X(ρ)]−1X′(ρ).

Then, substituting β̂ββ N(δ ) and σ̂2
N(δ ) back into (2.5) for βββ and σ2, we obtain the

concentrated loglikelihood function for δ :

`c
N(δ ) =−

N
2
[ln(2π)+1]− N

2
ln[σ̂2

N(δ )]+ ln |AN(λ ) |+ ln |BN(ρ) | . (2.8)

Maximizing `c
N(δ ) gives the QMLE δ̂N of δ . Thus, the unconstrained QMLEs of βββ

and σ2 are β̂ββ N ≡ β̂ββ (δ̂N) and σ̂2
N ≡ σ̂2

N(δ̂N), and that of θθθ is θ̂θθ N = (β̂ββ
′
N , σ̂

2
N , δ̂

′
N)
′.

Under the regularity conditions (see Appendix A), θ̂θθ N is consistent for θθθ , and

√
N(θ̂θθ N−θθθ)

D−→ N
[
0, limN→∞ Σ

−1
N (θθθ)ΩN(θθθ)Σ

−1
N (θθθ)

]
, (2.9)

where ΣN(θθθ) =− 1
N E[ ∂ 2

∂θθθ∂θθθ
′ `N(θθθ)] and ΩN(θθθ) =

1
N E[SN(θθθ)S′N(θθθ)], with the limit of

the former being a positive definite matrix, and that of the latter simply a constant

matrix. The detailed expressions of these quantities are given below to facilitate

practical applications.

First, it is useful to give a detailed expression of the quasi score (QS) vector,

SN(θθθ) =
∂

∂θθθ
`N(θθθ), from which ΣN(θθθ) and ΩN(θθθ) are derived (using Lemma B.3,

Appendix B) and more importantly, the AQS estimation method to be considered in

the next section is developed:

SN(θθθ) =



1
σ2X′(ρ)ε(βββ ,δ )

1
2σ4 ε ′N(βββ ,δ )εN(βββ ,δ )− N

2σ2

1
σ2 ε ′N(βββ ,δ )BN(ρ)W` jYN− tr(FjN(λ )), j = 1, . . . , p,

1
σ2 ε ′N(βββ ,δ )GkN(ρ)εN(βββ ,δ )− tr(GkN(ρ)), k = 1, . . . ,q,

(2.10)

where FjN(λ )=W` jA−1
N (λ ) and GkN(ρ)=WekB−1

N (ρ), j = 1, . . . , p and k= 1, . . . ,q.

To give compact expressions for Σn(θθθ) and Ωn(θθθ), some notational conventions

are followed: {a j} forms a row vector based on the elements a j, j = 1, . . . , p (or

q), {b jk} forms a matrix based on the elements b jk, j,k = 1, . . . , p (or q), diagv(·)
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forms a column vector by the diagonal elements of a square matrix, and As = A+A′

for a matrix A. We have,

NΣN(θθθ) =


1

σ2X′X 0
{ 1

σ2X′η jN
}

0

∼ N
2σ4

{ 1
σ2 tr(F̄jN)

} { 1
σ2 tr(GkN)

}
∼ ∼

{ 1
σ2 η ′jNη j′N + tr(F̄s

jNF̄j′N)
} {

tr(Gs
kNF̄jN)

}
∼ ∼ ∼

{
tr(Gs

kNGk′N)
}

 ,

where X=X(ρ), FjN =FjN(λ ), GkN =GkN(ρ), F̄jN ≡ F̄jN(δ )=BN(ρ)FjN(λ )B−1
N (ρ),

and η jN ≡ η jN(βββ ,δ ) = BN(ρ)FjN(λ )XNβββ ; and ΩN(θθθ) = ΣN(θθθ)+ΓN(θθθ), where

NΓN(θθθ)=


0K×K

γ

2σ3X′ιN
{

γ

σ
X′ f̄ jN

} {
γ

σ
X′gkN

}
∼ Nκ

4σ4

{
κ

2σ2 tr(F̄jN)+
γ

2σ3 ι ′Nη jN
} {

κ

2σ2 tr(GkN)
}

∼ ∼
{

κ f̄ ′jN f̄ j′N + γ

σ
f̄ ′jNη j′N + γ

σ
f̄ ′j′Nη jN

} {
κ f̄ ′jNgkN + γ

σ
η ′jNgkN

}
∼ ∼ ∼

{
κg′kNgk′N

}

 ,

γ = skewness of εni, κ = excess kurtosis of εni, f̄ jN = diagv(F̄jN) and gkN =

diagv(GkN).

In real applications, ΣN(θθθ) is estimated by ΣN(θ̂θθ), and ΩN(θθθ) by ΩN(θ̂θθ). γ and

κ are estimated by the sample skewness and excess kurtosis of the QML residuals

{ε̂ni}.

2.4 AQS Estimation of the High-Order STAR Model

As sample size N increases, C or T or both may increase with N. As a result,

the number of parameters (in µ or α or both) increases with N, giving rise to the

incidental parameters problem of Neyman and Scott (1948)7. This makes the QML

method invalid. As the type of data we consider is not panel data, the standard

transformation method for standard spatial panel data (like Lee and Yu (2010a))

cannot be applied to wipe out the fixed effects. To overcome this difficulty, we

propose an adjusted quasi score (AQS) method.

Denote φ =(µ ′,α2, . . . ,αT )
′. Partition X(ρ) defined below (2.7) into [X1(ρ), X2(ρ)]≡

{BN(ρ)XN , BN(ρ)[MC,MT−1]}. Given β and δ , `N(θθθ) given in (2.5) is maximized

at
7To have a clear view of the history of incidental parameters problem, see Lancaster (2000).
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φ̂N(β ,δ ) = [X′2(ρ)X2(ρ)]
−1X′2(ρ)[Y(δ )−X1(ρ)β ], (2.11)

where Y(δ ) is defined below (2.7). Substituting φ̂N(θ) back into `N(θθθ) for φ , we

obtain the concentrated loglikelihood function of θ = (β ′,σ2,δ ′)′:

`c
N(θ) =−

N
2 ln(2πσ2)− 1

2σ2 ε̃ ′N(β ,δ )ε̃N(β ,δ )+ ln |AN(λ )|+ ln |BN(ρ)|, (2.12)

where ε̃N(β ,δ )=Q2(ρ)[Y(δ )−X1(ρ)β ] and Q2(ρ)= IN−X2(ρ)[X′2(ρ)X2(ρ)]
−1X′2(ρ).

Taking the partial derivatives of `c
N(θ) gives the concentrated quasi score func-

tion of θ . Or equivalently, solve SN,φ (θθθ) = 0 to give φ̂N(θ) and then substitute

φ̂N(θ) into SN,θ (θθθ), where SN,φ (θθθ) and SN,θ (θθθ) denote, respectively, the φ - and θ -

component of the QS function SN(θθθ) given in (2.10). The concentrated QS (CQS)

function for θ takes the form:

Sc
N(θ) =



1
σ2X′1(ρ)ε̃N(β ,δ ),

1
2σ4 ε̃ ′N(β ,δ )ε̃N(β ,δ )− N

2σ2 ,

1
σ2 ε̃ ′N(β ,δ )BN(ρ)W` jYN− tr(FjN(λ )), j = 1, . . . , p,

1
σ2 ε̃ ′N(β ,δ )GkN(ρ)ε̃N(β ,δ )− tr(GkN(ρ)), k = 1, . . . ,q,

(2.13)

and its expectation at θ (when it represents the true parameter values):

E[Sc
N(θ)] =



0,

N−(C+T−1)
2σ2 − N

2σ2 ,

tr(Q2(ρ)F̄jN(δ ))− tr(FjN(λ )), j = 1, . . . , p,

tr(Q2(ρ)GkN(ρ))− tr(GkN(ρ)), k = 1, . . . ,q,

(2.14)

where FjN(λ ), F̄jN(λ ) and GkN(ρ) are defined in Sec. 2.3.

Therefore, E[Sc
N(θ)] 6= 0 and hence the regular QMLE will incur bias. Further-

more, when C or T grows with N, it can be that limN→∞
1
N E[Sc

N(θ)] 6= 0 and that

plimN→∞
1
N Sc

N(θ) 6= 0. Subsequently, the QMLE will not be consistent (the inci-

dental parameters problem). To solve this problem, we adjust the CQS function so

that it satisfies the necessary conditions for a consistent estimation. Define the AQS
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function as S∗N(θ) = Sc
N(θ)−E[Sc

N(θ)], i.e.,

S∗N(θ) =



1
σ2X′1(ρ)ε̃N(β ,δ )

1
2σ4 ε̃ ′N(β ,δ )ε̃N(β ,δ )− N−(C+T−1)

2σ2

1
σ2 ε̃ ′N(β ,δ )BN(ρ)W` jYN− tr(Q2(ρ)F̄jN(δ )), j = 1, . . . , p,

1
σ2 ε̃ ′N(β ,δ )GkN(ρ)ε̃N(β ,δ )− tr(Q2(ρ)GkN(ρ)), k = 1, . . . ,q.

(2.15)

Correcting the concentrated quasi scores removes the effects of estimating the

incidental parameters, which are the cluster and time effects. Solving S∗N(θ) = 0

gives the AQS estimator θ̂AQS of the common parameters θ . It can be shown that

under mild regularity conditions (see Appendix A), θ̂AQS−θ
p−→ 0, and

√
N(θ̂AQS−θ)

D−→ N
[
0, limN→∞ Σ

∗−1
N (θ)Ω∗N(θ)Σ

∗′−1
N (θ)

]
, (2.16)

where Σ∗N(θ) = − 1
N E[ ∂

∂θ ′S
∗
N(θ)] and Ω∗N(θ) =

1
N E[S∗N(θ)S

∗′
N (θ)], with the former

being assumed to be invertible for large enough N, and the latter being assumed to

exist. Note that Σ∗N(θ) is asymmetric in λ and ρ elements due to the adjustments

on the CQS functions.

The process of finding the root of S∗N(θ) = 0 can be simplified by first solving

the first two components for β and σ2 to give

β̂AQS(δ ) = [X′1(ρ)Q2(ρ)X1(ρ)]
−1X′1(ρ)Q2(ρ)Y(δ ), (2.17)

σ̂
2
AQS(δ ) =

1
N− (C+T −1)

[Y(δ )−X1(ρ)β̂AQS(δ )]
′Q2(ρ)[Y(δ )−X1(ρ)β̂AQS(δ )],

(2.18)

and then substituting β̂AQS(δ ) and σ̂2
AQS(δ ) back into the last two sets of equations

for λ and ρ to give the concentrated AQS function:

S∗cN (δ )=


1

σ̂2
AQS(δ )

ε̃ ′N(β̂AQS(δ ),δ )BN(ρ)W` jYN− tr(Q2(ρ)F̄jN(δ )), j = 1, . . . , p,

1
σ̂2
AQS(δ )

ε̃ ′N(β̂AQS(δ ),δ )GkN(ρ)ε̃N(β̂AQS(δ ),δ )− tr(Q2(ρ)GkN(ρ)), k = 1, . . . ,q.

(2.19)

Solving S∗cN (δ ) = 0 gives the AQS estimator δ̂AQS of δ , which in turn gives the AQS

estimators β̂AQS = β̂AQS(δ̂AQS) and σ̂2
AQS = σ̂2

AQS(δ̂AQS) of β and σ2. Thus, θ̂AQS =

(β̂ ′AQS, σ̂
2
AQS, δ̂

′
AQS)

′.
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For conducting statistical inferences, we need to provide methods of estimat-

ing the asymptotic variance of θ̂AQS. The matrix Σ∗N(θ) can be consistently esti-

mated by 1
N H∗N(θ̂

∗
AQS), where H∗N(θ) = − ∂

∂θ ′S
∗
N(θ) is the negative Hessian matrix.

To derive H∗N(θ), note that ε̃N(β ,δ ) =Q2(ρ)[Y(δ )−X1(ρ)β ] and that ∂

∂ρk
Q2(ρ) =

Q2(ρ)GkN(ρ)P2(ρ)+P2(ρ)G′kN(ρ)Q2(ρ), where P2(ρ) = IN−Q2(ρ). Following

the notational conventions introduced in Section 2.3 and using again the short-hand

notations, e.g., X1 = X1(ρ), Q2 = Q2(ρ), ε̃N = ε̃N(β ,δ ), the elements of H∗N(θ)

are written as follows:

H∗
βθ

(θ) =
[ 1

σ2X′1Q2X1,
1

σ4X′1ε̃N ,
{ 1

σ2X′1Q2F̄jNY
}
,
{ 1

σ2X′1Q2Gs
kN ε̃N

}]
,

H∗
σ2θ

(θ) =
[ 1

σ4 ε̃ ′NX1,
1

σ6 ε̃ ′N ε̃N− N−(C+T−1)
2σ4 ,

{ 1
σ4 ε̃ ′NF̄jNY

}
,
{ 1

σ4 ε̃ ′NGkN ε̃N
}]
,

H∗
λβ

(θ) =
{ 1

σ2X′1Q2F̄jNY
}′
, H∗

λσ2(θ) =
{ 1

σ4 ε̃ ′NF̄jNY
}′
,

H∗
λλ

(θ) =
{ 1

σ2Y′F̄ ′jNQ2F̄j′NY+ tr(Q2F̄jNF̄j′N)
}
,

H∗
λρ

(θ) =
{ 1

σ2 ε̃ ′NGs
kNQ2F̄jNY+ tr(P2Gs

kNQ2F̄jN)
}
,

H∗
ρλ

(θ) =
{ 1

σ2 ε̃ ′NGs
kNQ2F̄jNY

}′
, H∗

ρβ
(θ) = H∗′

βρ
(θ), H∗

ρσ2(θ) = H∗′
σ2ρ

(θ),

H∗ρρ(θ) =
{ 1

σ2 ε̃ ′N(G
′
kNGk′N−Gs

kNP2Gs
k′N)ε̃N + tr[Q2(GkNP2Gs

k′N +Gk′NGkN)]
}
.

From the expression of H∗N(θ), the analytical expression of Σ∗N(θ) can be found but

it is not necessary to do so as H∗N(θ̂AQS) provides a consistent estimator of Σ∗N(θ)

in the sense that 1
N [H

∗
N(θ̂AQS)−Σ∗N(θ)] = op(1). Besides, Σ∗N(θ) involves φ , which

may not be consistently estimated when either C or T goes large with N proportion-

ally.

As Ω∗N(θ) does not have a simple sample analogue as does Σ∗N(θ), one may

reply on its analytical expression for a plug-in type estimation. The Ω∗N(θ) matrix,

derived using Lemma B.3 (Appendix B), has the distinct elements:

NΩ∗
βθ

(θ) =
[ 1

σ2X′1Q2X1,
γ

2σ3X′1Q2q2,
{ 1

σ2X′1Q2η jN + γ

σ
X′1Q2 f̄ jN

}
,
{

γ

σ
X′1Q2ḡkN

}]
,

NΩ∗
σ2σ2(θ) =

κ

4σ4 q′2q2 +
N−(C+T−1)

2σ4 ,
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NΩ∗
σ2λ

(θ) =
{

γ

2σ3 q′2Q2η jN + κ

2σ2 q′2 f̄ jN + 1
σ2 tr(Q2F̄jN)

}
,

NΩ∗
σ2ρ

(θ) =
{

κ

2σ2 q′2ḡkN + 1
σ2 tr(Q2GkN)

}
,

NΩ∗
λλ

(θ) =
{ 1

σ2 η ′jNQ2η j′N + γ

σ
η ′jNQ2 f̄ j′N + γ

σ
η ′j′NQ2 f̄ jN +κ f̄ ′jN f̄ j′N

+tr(Q2F̄jN(Q2F̄j′N + F̄ ′j′NQ2))
}
,

NΩ∗
λρ

(θ) =
{

γ

σ
η ′jNQ2ḡkN +κ f̄ ′jN ḡkN + tr(F̄jNQ2Gs

kNQ2)
}
,

NΩ∗ρρ(θ) =
{

κ ḡ′kN ḡk′N + tr(GkNQ2Gs
k′NQ2)

}
,

where γ and κ are defined in Section 2.3, η jN ≡ η jN(β ,δ ) = F̄jN(δ )[X1(ρ)β +

X2(ρ)φ ], Q2 =Q2(ρ), q2 = diagv(Q2), f̄ jN = diagv(Q2F̄jN), ḡkN = diagv(Q2GkNQ2).

From its analytical expression, we see that Ω∗N(θ) contains additional param-

eters, γ , κ and φ (through ηN), besides the common parameters of interest θ .

The plug-in estimator of Ω∗N(θ) therefore involves two issues: one is the consis-

tent estimation of γ and κ and the other is the effect of plugging in φ̂AQS. To

address first issue, note that the original errors εN = Y−Xβββ may not be con-

sistently estimated due to its involvement of φ , but the transformed errors ε̃N =

Q2(Y−Xβββ ) = Q2εN can be consistently estimated in general by its AQS counter-

part, ε̂AQS = Q2(ρ̂AQS)[Y(δ̂AQS)−X1(ρ̂AQS)β̂AQS]. Let q2,i j be the (i, j)th element of

Q2. Since

ṽi = q2,i1v1 +q2,i2v2 + · · ·+q2,iNvN ,

where ṽi and vi are the elements in ε̃N and εN . As

E(ṽ3
i ) = ∑

N
j=1 q3

2,i jE
(

v3
j

)
= σ3γ ∑

N
j=1 q3

2,i j,

we then have the consistent estimator for γ , which is given by

γ̂AQS =
∑

N
i=1 v̂3

AQS,i

σ̂3
AQS∑

N
i=1 ∑

N
j=1 q̂3

2,i j
.

Similarly, as

E(ṽ4
i ) = ∑

N
j=1 q4

2,i jE(v
4
j)+3σ4

∑
N
j=1 ∑

N
l=1 q2

2,i jq
2
2,il−3σ4

∑
N
j=1 q4

2,i j

= ∑
N
j=1 q4

2,i jκσ4 +3σ4
∑

N
j=1 ∑

N
l=1 q2

2,i jq
2
2,il,
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we have the consistent estimator for κ , which is given by

κ̂AQS =
∑

N
i=1 v̂4

AQS,i−3σ̂4
AQS∑

N
i=1 ∑

N
j=1 ∑

N
l=1 q̂2

2,i jq̂
2
2,il

σ̂4
AQS∑

N
i=1 ∑

N
j=1 q̂4

2,i j

Thus, we obtain a plug-in estimator Ω̂∗N by plugging θ̂AQS, γ̂AQS, κ̂AQS, and φ̂AQS into

Ω∗N(θ).

The plug-in estimator Ω̂∗N is valid when neither C nor T grows with N propor-

tionally, but may not be valid if either C or T grows with N proportionally, as in

this case consistent estimation of φ may not be achieved.8 To address the second

issue facing the plug-in estimator Ω̂∗N , note that φ appears in ΩN(θ) either linearly

or quadratically through η jN . To see the effect of replacing φ by φ̂AQS in ΩN(θ), we

note from (2.11) that (dropping the subscript AQS),

φ̂ = [X′2(ρ̂)X2(ρ̂)]
−1X′2(ρ̂)[Y(δ̂ )−X1(ρ̂)β̂ ] = φ +(X′2X2)

−1X′2εN , (2.20)

by the consistency of β̂ , ρ̂ and δ̂ . Based on this, it is not difficult to show that

µ̂c = µc +op(
1√
nc
) and α̂t = αt +op(

1√
mt
),

where µc is the cth cluster effect, nc is the number of transactions belong to cluster

c, αt is the tth period effect, and mt is the number of transactions occurred in period

t. Therefore, when {nc} are fixed, meaning that C grows with N proportionally, the

estimators {µ̂c} are not consistent. Similarly, when {mt} are fixed, meaning that T

grows with N proportionally, the estimators {α̂t} are not consistent.

From (2.20), one can easily see that for the terms linear in φ , the effect of re-

placing φ by φ̂AQS is asymptotically negligible. However, for the sole quadratic in φ

term, φ ′X′2F̄ ′jNQ2F̄j′NX2φ , which is embedded in η ′jNQ2η j′N , its plug-in estimator

8As φ is a set of incidental parameters whose dimension grows with N, its AQS estimator φ̂AQS =

φ̂N(β̂AQS, δ̂AQS) obtained through (2.11) may not be consistent, unless as N increases information on
each element of φ accumulates, i.e., both the cluster sizes nc and the number of transactions mt
occurred in period t increase with N. When C increases but {nc} are fixed, the information on each
µ-element does not accumulate and µ̂AQS is not consistent. Similarly, if T increases but {mt} are
fixed, α̂AQS is not consistent.
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is seen to be,

φ̂ ′X′2(ρ̂)F̄ ′jN(δ̂ )Q2F̄j′N(δ̂ )X2(ρ̂)φ̂

= φ
′X′2F̄ ′jNQ2F̄j′NX2φ + ε

′
NP2F̄ ′jNQ2F̄j′NP2εN +op(N)

= φ
′X′2F̄ ′jNQ2F̄j′NX2φ +σ

2tr(P2F̄ ′jNQ2F̄j′N)+op(N). (2.21)

Therefore, the plug-in estimator of the term 1
σ2 η ′jNQ2η j′N in NΩ∗N(θ) should be

bias-corrected by subtracting the plug-in estimator of tr(P2F̄ ′jNQ2F̄j′N).

2.5 AQS Estimation under Heteroskedasticity

Both the QML and AQS methods considered in the early sections are based on

the assumption that the errors {εi} are iid. The iid assumption is often question-

able for spatial data, and the inid assumption or unknown heteroskedasticity may

be more realistic in practical applications, especially for the real estate prices data.

In this case, both the methods considered above are invalid. The unknown het-

eroskedasticity (UH) brings in another set of incidental parameters. To overcome

this difficulty, we develop an AQS method that is robust against UH. The key idea

for achieving this is to adjust the quasi score functions so that thir expectations at

the true parameters remain zero under UH.

For ease of exposition, additional notational conventions are followed: diag(·)

forms a diagonal matrix based on diagonal elements of a square matrix or a vector,

to differentiate it from diagv(·) introduced earlier, and A◦ = A− diag(A) for a

square matrix A.

Assume that εN ∼ (0,HN), where HN = diag(σ2
1 ,σ

2
2 , . . . ,σ

2
N), σ2

i is the variance

of the error εi. In this section, we do not include the σ2 element of the score vector

as we cannot do inference for each σ2
i , though we can consistently estimate the

average of the error variance.

2.5.1 Case of fixed C and T

Consider first the case where C and T are both fixed as N increases. Under

heteroskedasticity, the quasi score function SN(θθθ) given in (2.10) no longer has

a zero expectation at the true parameters, and the necessary condition for consis-
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tent estimation, plimN→∞
1
N SN(θθθ) = 0, may not be satisfied. However, we notice

that its βββ component continues to have a zero expectation, and hence does not

need to be further adjusted. Write the stochastic parts of the λ -components of

SN(θθθ) as ε ′N(βββ ,δ )BN(ρ)W` jYN = ε ′N(βββ ,δ )F̄jN(δ )Y(δ ), j = 1, . . . , p. Simply replac-

ing F̄jN(δ ) by F̄◦jN(δ ) gives a set of estimating functions for λ that has the desired

property. Similarly, replacing GkN(ρ) by G◦kN(ρ) in the ρ-components of SN(θθθ)

gives a set of desired estimating functions for ρ . Thus, the set of AQS functions for

ϑϑϑ = (βββ ′,λ ′,ρ ′)′ robust against unknown heteroskedasticity is simply:

S†
N(ϑϑϑ) =


X′(ρ)ε(βββ ,δ )

ε ′N(βββ ,δ )F̄
◦
jN(δ )Y(δ ), j = 1, . . . , p,

ε ′N(βββ ,δ )G
◦
kN(ρ)εN(βββ ,δ ), k = 1, . . . ,q.

(2.22)

Similar to (2.6) and (2.7) which partially solve the QS equations formed by

(2.10), to find the root of the robust AQS functions, we first solve the βββ component

of S†
N(ϑϑϑ) = 0 to give,

β̂ββ R(δ ) = [X′(ρ)X(ρ)]−1[X′(ρ)Y(δ )], (2.23)

and then substituting β̂ββ R(δ ) back into the last two robust AQS functions in (2.22) to

give the concentrated robust AQS function:

S†c
N (δ ) =

ε ′N(β̂ββ R(δ ),δ )F̄
◦
jN(δ )Y(δ ), j = 1, . . . , p,

ε ′N(β̂ββ R(δ ),δ )G
◦
kN(δ )εN(β̂ββ R(δ ),δ ), k = 1, . . . ,q.

(2.24)

Solving S†c
N (δ ) = 0 gives the robust AQS estimator δ̂R of δ . Plugging it back into

(2.23) gives the AQS estimator β̂ββ R = β̂ββ R(δ̂R) of β , and thus, a consistent estimator

ϑ̂ϑϑR = (β̂ ′R, δ̂
′
R)
′ for ϑϑϑ .

It can be shown that under mild regularity conditions (in Appendix A) ϑ̂ϑϑR−

ϑϑϑ
p−→ 0, and

√
N(ϑ̂ϑϑR−ϑϑϑ)

D−→ N
[
0, limN→∞ Σ

†−1
N (ϑϑϑ)Ω†

N(ϑϑϑ)Σ†−1
N (ϑϑϑ)

]
, (2.25)

where Σ
†
N(ϑϑϑ) = − 1

N E[ ∂

∂θθθ
M′S†

N(ϑϑϑ)] and Ω
†
N(ϑϑϑ) = 1

N E[S†
N(ϑϑϑ)S†′

N (ϑϑϑ)], with the limit

of the former being a positive definite matrix, and that of the latter simply a con-

stant matrix. The matrix Σ
†
N(ϑϑϑ) can be consistently estimated by 1

N H†
N(ϑ̂ϑϑAQS),

115



where H†
N(ϑϑϑ) =− ∂

∂θθθ
M′S†

N(ϑϑϑ) is the negative Hessian matrix. Denoting ˙̄F◦jN,ρk
(δ ) =

∂

∂ρk
F̄◦jN(δ )= F̄jNGk−GkF̄jN−diag(F̄jNGk−GkF̄jN), by the same notational coven-

sions the elements of H†
N(ϑϑϑ) are:

H†
βϑϑϑ

(ϑϑϑ) =
[
X′X,

{
X′F̄jNY

}
,
{
X′Gs

kNεN
}]
,

H†
λβ

(ϑϑϑ) =
{
X′F̄◦jNY

}′
,

H†
λλ

(ϑϑϑ) =
{
Y′NF̄ ′j′NF̄◦jNY+ ε ′N [diag(F̄jNF̄j′N)−diag(F̄jN)F̄j′N ]Y

}
,

H†
λρ

(ϑϑϑ) =
{

ε ′N [G
′
kNF̄◦jN− ˙̄F◦jN,ρk

+ F̄◦jNGkN ]Y
}
,

H†
ρβ

(ϑϑϑ) =
{
X′(G◦kN +G◦′kN)εN

}′
,

H†
ρλ

(ϑϑϑ) =
{

ε ′N(G
◦
kN +G◦′kN)F̄jNY

}′
,

H†
ρρ(ϑϑϑ) =

{
ε ′N [G

′
kNGk′N−2diag(GkN)+diag(GkNGk′N)]εN

}
.

Using the special case of Lemma B.3 where the diagonal elements of the ma-

trices involved are zero, we obtain the VC matrix NΩN(ϑϑϑ), having the distinct

elements:

NΩ
†
βϑϑϑ

(ϑϑϑ) =
[
X′HNX,

{
X′HNF̄◦jNXβββ

}
,
{

0
}]
,

NΩ
†
λλ

(ϑϑϑ) =
{

tr
(
HNF̄◦jN(HNF̄◦j′N +HNF̄◦

′
j′N)
)
+βββ

′X′F̄◦′jNHNF̄◦j′NXβββ
}
,

NΩ
†
λρ

(ϑϑϑ) =
{

tr
(
HNF̄◦jN(HNG◦kN +HNG◦′kN)

)}
,

NΩ
†
ρρ(ϑϑϑ) =

{
tr
(
HNG◦kN(HNG◦k′N +HNG◦′k′N)

)}
.

The fact that the diagonal elements of the matrices in linear-quadratic forms

makes the terms involving skewness and excess kurtosis vanish, left with only the

heteroskedasticity matrix HN . Therefore, it is still possible to obtain a consistent

estimator of ΩN(ϑϑϑ) by plug-in method. Specifically, diagv(HN) can be estimated

by ε̂R� ε̂R, where ε̂R is the plug-in estimator of εN and � represents the Hadamard

product.

2.5.2 Case of large C or T

Consider now the cases where C or T or both grow with N. For the CQS function

Sc
N(θ) given in (2.13), it is easy to see that its β and σ2 components have zero

expectations whether the errors are homoskedastic or heteroskedastic, and therefore
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they do not need to be further adjusted. As in Liu and Yang (2015, 2020), we make

adjustments on the stochastic terms of the λ and ρ components, so that the adjusted

functions become unbiased under unknown heteroskedasticity. We exclude the part

related to σ2 in inference for the same reason as in section 2.5.1, and denote the

remaining parameters as ϑ = (β ′,λ ′,ρ ′)′.

For the λ elements of Sc
N(θ), note that ε̃ ′N(β ,δ )BN(ρ)W` jYN = ε ′NQ2F̄jNY at the

true parameter values. We have E(ε ′NQ2F̄jNY)= tr(HNQ2F̄jN)= tr[HNdiag(Q2F̄jN)]=

tr[HNQ2×

diag(Q2)
−1diag(Q2F̄jN)]=E(ε ′NQ2F̄d

jNY), where F̄d
jN = diag(Q2)

−1diag(Q2F̄jN).

Taking the difference between the terms inside the first and the last expectations, we

obtain AQS functions for the λ elements robust against HN :

ε̃
′
N(β ,δ )[F̄jN(δ )− F̄d

jN(δ )]Y(δ ), j = 1, . . . , p.

For the ρ elements of Sc
N(θ), note that at the true parameters, ε̃ ′N(β ,δ )GkN(ρ)ε̃N(β ,δ )=

ε ′NQ2GkNQ2εN = ε ′NQ2GkNQ2(Y−X1β ). We have E(ε ′NQ2GkNQ2εN)= tr(HNQ2GkNQ2)=

tr[HNdiag(Q2GkNQ2)] = E(ε ′NQ2diag(Q2)
−1diag(Q2GkNQ2)(Y−X1β )). Simi-

larly, we obtain AQS functions for the ρ elements robust against HN :

ε̃ ′N(β ,δ )[ḠkN(ρ)− Ḡd
kN(ρ)](Y(δ )−X1(ρ)β ), k = 1, . . . ,q,

where ḠkN = GkNQ2 and Ḡd
kN = diag(Q2)

−1diag(Q2ḠkN).

These together give the robust AQS function for ϑ = (β ′,λ ′,ρ ′)′:

S�N(ϑ) =


X′1(ρ)ε̃N(β ,δ ),

ε̃ ′N(β ,δ )F̄
�
jN(δ )Y(δ ), j = 1, . . . , p,

ε̃ ′N(β ,δ )Ḡ
�
kN(ρ)(Y(δ )−X1(ρ)β ), k = 1, . . . ,q,

(2.26)

where F̄�jN(δ )= F̄jN(δ )−F̄d
jN(δ ), and Ḡ�kN(ρ)= ḠkN(ρ)−Ḡd

kN(ρ). Solving S�N(ϑ)=

0 gives the robust AQS estimator ϑ̂R of ϑ . This can again be done by first solving

analytically for β :

β̂R(δ ) = [X′1(ρ)Q2(ρ)X1(ρ)]
−1[X′1(ρ)Q2(ρ)Y(δ )], (2.27)

and then solving for λ and ρ numerically in the concentrated equations.

It can be shown under mild regularity conditions (in Appendix A) that θ̂R−

117



θ
p−→ 0 and

√
N(ϑ̂R−ϑ)

D−→ N
[
0, limN→∞ Σ

�−1
N (ϑ)Ω�N(ϑ)Σ�−1

N (ϑ)
]
, (2.28)

where Σ�N(ϑ) = − 1
N E[ ∂

∂θM′S�N(ϑ)] and Ω�N(ϑ) = 1
N E[S�N(ϑ)S�′N (ϑ)], with the limit

of the former being a positive definite matrix, and that of the latter simply a constant

matrix.

Again, Σ�N(ϑ) can be estimated by its sample counterpart, 1
N H�N(ϑ̂AQSH), where

H�N(ϑ)=− ∂

∂θM′S�N(ϑ) is the negative Hessian. Note ∂

∂ρk
diag(Q2)

−1 =−diag(Q2)
−2×

diag( ∂

∂ρk
Q2(ρ)), where ∂

∂ρk
Q2(ρ) = Q2(ρ)GkN(ρ)P2(ρ) +P2(ρ)G′kN(ρ)Q2(ρ).

Denote ∂

∂ρk
Q2(ρ) =Q2,ρk(ρ) , and Ad = diag(Q2)

−1diag(Q2A) for a square ma-

trix A. The elements of H�N(ϑ) are:

H�
βϑ

(ϑ) =
[
X′1Q2X1,

{
X′1Q2F̄jNY

}
,
{
X′1Q2Gs

kN ε̃N
}]
,

H�
λβ

(ϑ) =
{
X′1Q2F̄�jNY

}′
,

H�
λλ

(ϑ) =
{
Y′[F̄ ′j′NQ2F̄�jN ]Y+ ε̃ ′N [(F̄jNF̄j′N)

d− F̄d
jNF̄j′N ]Y

}
,

H�
λρ

(ϑ) =
{

ε̃ ′N [G
s
kNQ2F̄�jN− F̄d

jNGkN +GkNF̄d
jN−2(GkNP2)

dF̄d
jN

+diag(Q2)
−1diag(G′kNQ2F̄jN +Q2F̄jNGkN−Q2Gs

kNQ2F̄jN)]Y
}
,

H�
ρβ

(ϑ) =
{
X′1Q2Ḡ�kN(Y−X1β )+ ε̃ ′NḠ�kNX1

}′
,

H�
ρλ

(ϑ) =
{
Y′[F̄ ′jNQ2Ḡ�kN ](Y−X1β )+ ε̃ ′N [Ḡ

�
kNF̄jN ]Y

}
,

H�ρρ(ϑ) =
{

ε̃ ′N [(G
s
k′NQ2−Gk′N)Ḡ�kN−GkN(Gk′NQ2 +Q2,ρk′ )−2(Gk′NP2)

dḠd
kN

+(Gs
kNQ2,ρk′ +GkNGk′NQ2)

d + Ḡ�kNGk′N ](Y−X1β )
}
.

Again, using the special case of Lemma B.3, we obtain the VC matrix Ω�N(ϑ),
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having the following distinct elements,

NΩ�
βϑ

(ϑ) =
[
X′1Q2HNQ2X1,

{
X′1Q2HNQ2F̄�jNXβββ

}
,
{
X′1Q2HNQ2Ḡ�kNX2φ

}]
,

NΩ�
λλ

(ϑ) =
{

tr
(
HNQ2F̄�jN(HNQ2F̄�j′N +HNF̄�′j′NQ2)

)
+ βββ

′X′F̄�′jNQ2HNQ2F̄�j′NXβββ
}
,

NΩ�
λρ

(ϑ) =
{

tr
(
HNQ2F̄�jN(HNQ2Ḡ�kN +HNḠ�′kNQ2)

)
+ βββ

′X′F̄�′jNQ2HNQ2Ḡ�kNX2φ
}
,

NΩ�ρρ(ϑ) =
{

tr
(
HNQ2Ḡ�kN(HNQ2Ḡ�k′N +HNḠ�′k′NQ2)

)
+ φ ′X′2Ḡ�′kNQ2HNQ2Ḡ�k′NX2φ

}
.

Similar to the case of fixed C and T , the VC matrix involves again only HN . To

find a consistent estimator for HN , note that similar to Section 2.4, ε̃N = Q2(Y−

Xβββ ) =Q2εN can be consistently estimated in general by its RAQS counterpart that

ε̂R = Q2(ρ̂R)[Y(δ̂R)−X1(ρ̂R)β̂R]. Since E(ε̃N � ε̃N) = (Q2�Q2)diagv(HN), an

estimator for diagv(HN) is given by [Q2(ρ̂R)�Q2(ρ̂R)]
−(ε̂R� ε̂R), where [·]− is the

generalized inverse.

Finally, to consistently estimate Ω�N(ϑ), we also need to do a bias-correction

similar to the large C or T case of the AQS estimation under homoskedastic errors.

Terms that are quadratic in φ need to be bias-corrected, which are φ ′X′2F̄�′jNQ2HNQ2F̄�j′NX2φ ,

φ ′X′2F̄�′jNQ2HNQ2Ḡ�kNX2φ , and φ ′X′2Ḡ�′kNQ2HNQ2Ḡ�k′NX2φ . These terms are em-

bedded in the last elements of NΩ�
λλ

(ϑ), NΩ�
λρ

(ϑ), and NΩ�ρρ(ϑ) separately. The

plug-in estimator of the first term is seen to be

φ̂ ′X′2F̄�′jNQ2HNQ2F̄�j′NX2φ̂

= φ
′X′2F̄�′jNQ2HNQ2F̄�j′NX2φ + ε

′
NP2F̄�′jNQ2HNQ2F̄�j′NP2εN +op(N)

= φ
′X′2F̄�′jNQ2HNQ2F̄�j′NX2φ + tr(HNP2F̄�′jNQ2HNQ2F̄�j′NP2)+op(N). (2.29)

Therefore, the plug-in estimator of the term βββ
′X′F̄�′jNQ2HNQ2F̄�j′NXβββ in NΩ�

λλ
(ϑ)

should be substracted for tr(HNP2F̄�′jNQ2HNQ2F̄�j′NP2). Similarly, we need to sub-

tract

tr(HNP2F̄�′jNQ2HNQ2Ḡ�kNP2), and tr(HNP2Ḡ�′kNQ2HNQ2Ḡ�k′NP2) for the plug-in es-

timators of the last elements in NΩ�
λρ

(ϑ), and NΩ�ρρ(ϑ).
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2.6 Construction of Space-Time Connectivity Matrices

A crucial step in modelling the spatiotemporal data may be the construction of

the space-time connectivity/weight matrices. There are interesting proposals and

discussions in the literature (Pace et al. 1998a,b, 2000; Sun et al. 2005), but it is

obvious that more rigorous ways for constructing these matrices are desired. As

pointed out in the introduction, the real estate prices data are typically subject to

dependence over space and time, cluster specific effects, and economic shocks over

time. The space-time dependence typically decays with distance and time, a cluster

may be a building or a neighborhood, and a economic shock may be a policy change

or a financial crisis.

We view that non-negligible dependence between two spatial units exists only

when they are ‘nearby’ in both space and time. Let δ be the distance threshold

within which the spatial dependence is considered non-negligible, and τp and τc are

the ‘past’ and ‘current’ time limits within which the temporal dependence is con-

sidered non-negligible.9 Recall that ti, i = 1, . . .N, the times at which the prices are

collected. Let di j be the distance between units i and j. Define a space-dominated

space-time connectivity matrix Wd with elements:

wi j = fd(di j)1{di j ≤ δ}1{|ti− t j| ≤ τc or τc ≤ ti− t j ≤ τp}, (2.30)

where 1{·} is the indicator function. Similarly, we can also define a time-dominated

space-time connectivity matrix Wt with elements:

wi j = ft(|ti− t j|)1{di j ≤ δ}1{|ti− t j| ≤ τc or τc ≤ ti− t j ≤ τp}, (2.31)

where fd(·) and ft(·) are functions capturing the attenuation patterns.10

In our empirical application, we consider two different space-dominated space-

time connectivity matrices that help capture the spatiotemporal interaction effects

between housing transactions. The first connectivity matrix Wd,cmty aims to cap-

ture the interdependence within a community. Figure 2.4 shows the transactions by

9Another reason to assume a fixed space and time window is to make the space-time connectivity
matrix a ‘band’ matrix, so that the computation burden is alleviated, as mentioned in Section 2.2.

10Different functional forms can be used such as exponential distance weights, power distance
weights and inverse distance weights.

120



communities in the dataset. As the location information of the housing transactions

are up to the community level, it is natural that we construct Wd,cmty using transac-

tions that are located in the same community. Suppose the wcmty,i j is an elements

in Wd,cmty. A non-zero wcmty,i j indicates that there exists interdependence between

unit i and j. We set two criteria for wcmty,i j to be non-zero as in (2.30).11 First,

transaction i and j are within the same community. This captures the interaction

along the spatial dimension. Second, transaction j takes place before or after trans-

action i within one month time. This captures the interaction along the the temporal

dimension. Thus, we define

wcmty,i j = fd,cmty(di j)1{Cmty(i) =Cmty( j)}1{−30≤ ti− t j ≤ 30},

where fd,cmty(di j) is set to be 1 as the location information is only up to the com-

munity level. Cmty(i) gives the community of transaction i, and ti represents the

calendar day in 2015 that transaction i took place.

The second connectivity matrix Wd,nbr is designed to capture the interdepen-

dence between a housing unit and its neighbours outside of communities, e.g., 5

nearest neighbours (5NN) that are within 5 kilometers as our applications.12 Thus

wnbr,i j is defined as

wnbr,i j = fd,nbr(di j)1{5 Nearest Neighbours o f i within 5 km}1{−30≤ ti−t j≤ 30},

where fd,nbr(di j) is set to be a function of inverse distance fd,nbr(di j)= 1/distance(i, j).

Figure 2.5 shows the nearest 5 neighbors outside of communities.

2.7 Monte Carlo Study

Monte Carlo experiments are conducted to investigate the finite sample perfor-

mance of the QML, AQS, and RAQS estimators of the parameters in the STAR(p,q)

model, with different sample sizes, different ways of including cluster and time

effects, different error distributions, and homoskedasticity or heteroskedasticity.

11In the application, the space-time connectivity matrix is further row normalized. A non-zero
element wcmty,i j equals to 1/ni, where ni is the number of non-zero elements in row i, which represents
the number of transactions that have effects on transaction i.

12We also considered the cases of 10NN and 15NN. The results are presented in Figure 2.8 and
Figure 2.9.
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For the data generating process (DGP), we adopt a STAR model (as in (2.4)) of

order 2 for both spatial lag and spatial error:

AN(λ )YN = XNβββ +VN , BN(ρ)VN = εN ,

where AN(λ ) = IN−∑
2
j=1 λ jW` j and BN(ρ) = IN−∑

2
k=1 ρkWek.

We set the coefficients β to be (1,2,3)′, the spatial lag parameters λ ′=(0.5,0.3),

and the spatial error parameters ρ ′ = (0.2,0.4). We assume εi
i.i.d∼ (0,1) for models

of homoskedastic errors, and εi
i.n.i.d∼ (0,hN,i) for models of heteroskedatic errors.

Sample size N takes values from {400,800,1200}. XN = [XN ,MC,MT−1]. In the

simulation, XN are fixed regressors drawn from standard normal distribution. The

number of clusters/time segments are assumed to be fixed or to increase with sample

size. Each set of Monte Carlo results is based on 2,000 Monte Carlo samples. The

processes of generating space-time connectivity matrices, and the way we assign

clusters and time segments to observations are described below.

Space-Time Connectivity Matrices: Under homoskedasticity, we first con-

struct the space-time connectivity matrices based on the queen and rook contiguity,

where queen contiguity is followed for constructing Wl1 and We1, and rook contigu-

ity for constructing Wl2 and We2. Under heteroskedasticity, we use a group interac-

tion scheme as in Lin and Lee (2010) for constructing Wl j and queen contiguity for

constructing Wek.

Cluster-membership Matrix for Model with Additive Fixed Effects: We

consider two scenarios for number of clusters/time segments included in the model.

One is when the number of clusters and time segments are relatively small and do

not grow with sample size (fixed), while the other is when the number of clusters

and time segments are large and grow with sample size. Assume the probability that

a individual transactions belongs to a cluster follows a multinomial distribution. If

we further assume each observation belongs to a cluster with equal probability, and

we assign each observation to C potential clusters, we will have N/C observations

in each cluster. We also assume the the time segments are equally sized. For ex-

ample, suppose there are 3 time segments, the first third of the sample belongs to

the first time segment, the second third of the sample belongs to the second time
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segment, and the last third of the sample belongs to the third segment.

Below is an example showing what matrix MC and MT look like when sample

size is 6 and there are 3 clusters and 2 time segments.

MC =



0 1 0

0 0 1

1 0 0

0 1 0

1 0 0

0 0 1


, MT =



1 0

1 0

1 0

0 1

0 1

0 1


Error Distribution: For the estimation of the QMLE and AQSE under ho-

moskedasticity, we consider three error distributions: (i) ε follows an i.i.d. N(0,1)

distribution, (ii) ε follows a mixture normal distribution, and (iii) ε follows an chi-

squared distribution. The normal mixture still gives an symmetric distribution, but it

is leptokurtic. The chi-squared distribution is both skewed and leptokurtic.13 Since

we know that QML/AQS estimators are robust against non-normality, we expect the

simulation results to be consistent in all three scenarios when clusters and time seg-

ments are small/large. For the estimation of the robust AQSE under heteroskedas-

ticity, the idiosyncratic errors are generated in a similar fashion as in Lee and Yu

(2010b).14. The simulation results are reported from Table 2.1 to Table 2.3.B.

Simulation Results: Table 2.1 presents partial Monte Carlo results for the QML

estimation of the STAR(2,2) model, where the number of clusters and time segments

are fixed and the errors are homoskedastic. The results show excellent performance

of the QML estimators of the model parameters. The consistency of the QML esti-

mators are clearly demonstrated.

Table 2.2 presents partial Monte Carlo results the for the QML and AQS esti-

mators of the STAR(2,2) model, where the number of clusters and time segments

13The normal mixture random variates are generated through εi =

((1−ξi)Zi +ξiτZi)/
(
1− p+ p∗ τ2

)0.5, where Zi ∼ N(0,1), and ξi ∼ Bernoulli(p) indepen-
dent of Zi. The standardized chi-squared variates are given by εi = (Qi−3)/60.5, where Qi follows
a chi-squared distribution with degree of freedom 3. We choose p = 0.1, meaning that 90% of
the random variates are from standard normal and the remaining 10% are from another normal
population with standard deviation τ . We set τ = 4 in our Monte Carlo experiments.

14If the group size is larger than the average group size, the variance is set to be the same as the
group size, otherwise, the variance is the square of the inverse of the group size

123



increase with sample size and the errors are homoskedastic. When the number of

clusters and time segments increase with sample, the regular QML estimators are no

longer consistent. This is clearly demonstrated by the results in Table 2.2, in partic-

ular the QMLEs of the spatial parameters as shown in Table 2.2.A and the QMLE of

the error variance as shown in Table 2.2.B. In contrast, the AQS estimator addresses

the incidental parameters problem by adjusting the concentrated quasi score func-

tions, and therefore they are consistent and its excellent finite sample performance

is clearly demonstrated in Table 2.2.

Table 2.3 presents partial Monte Carlo results for the AQS and RAQS estimators

of the STAR(2,2) model where the number of clusters and time segments increase

with sample size and the errors are heteroskedastic. The results show an excellent

finite sample performance of the RAQS estimators in terms of Monte Carlo bias,

sd and the estimated se. In this case, the finite sample performance of the AQS

estimators seems fine in terms of bias, but not in terms of standard error estimation.

The standard error estimation under AQS framework seems to be worse for the

spatial parameters as seen in Table 2.3.A than for the regression coefficients and

error variance as seen in Table 2.3.B.

Addtional Monte Carlo results (unreported for brevity) show that the QMLE

performs well only when C and T are fixed and the errors are homskedastic, AQSE

performs well in general when errors are homoskedastic, and the RAQSE performs

well in all situations considered whether C and T are small or large, and whether the

errors are homoskedastic or heteroskedastic. In case of homoskedastic errors, the

AQSE has an advantage of being able to conduct inference (estimation, confidence

interval and test) for the error variance.

2.8 An Empirical Application

We provide an application using the resale housing transaction data in Beijing in

2015. The dataset has detailed information on housing transactions such as the exact

location of the house/apartment at the community level, type of the building, age of

the building, transaction date, etc. These detailed information allows us to define
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the clusters and time segments from different dimensions, thus enables us to have a

good design of the space-time connectivity matrices to capture the spatiotemporal

effects and to have flexibla ways of controlling cluster and time effects. These

features greatly fit into our specification setup.

2.8.1 Data, Variables and Summary Statistics

We collect the resale housing transaction data from Lianjia.com.15 Our dataset

consists of 103149 micro-data of the housing transactions in 11 out of the 16 dis-

tricts in Beijing. It covers 52.2% of all the resale housing transactions in Beijing in

that year. Figure 2.1 shows the map of Beijing together with the districts covered

by the data set.

We have information about price, location, and housing attributes such as living

area, number of bedroom/kitchen/bathroom, decoration, and age. It also includes

the building characteristics such as building type, the structure type, and whether a

building has an elevator or not.16 Table 2.4 provides the summary statistics for the

variables in the data set.

2.8.2 Clusters and Time Segments

The existence of the heterogeneity across clusters and time segments are evi-

dent, which gives good justification for including cluster and time segment effects.

Figure 2.2 shows the district level monthly average transaction housing prices in

Beijing. We can see that districts closer to the city center have higher housing

prices. Also, note that housing prices are different across time segments, and dif-

ferent districts show different trends. These evidence inspires us to include District

× Month effects to control for the district-month heterogeneity. In this scenario,

15Lianjia Real Estate Agency Co. Ltd is the largest real estate agency in China. In China, most
of the transactions are conducted via real estate agencies, where Lianjia takes up the largest mar-
ket share. In 2018, Lianjia takes up 49% of the resale housing market in Beijing (China Galaxy
Securities 2019)(http://pdf.dfcfw.com/pdf/H3_AP201907071337986075_1.pdf).

16Tower-type and Slab-type are the two major tall-building types for the apartments in China. For
tower-type buildings, there are usually more than four or five housing units surrounding the elevators
placed in the center of a building, and thus the units are usually not north-south transparent. Slab-
type buildings are in shape of rectangles and usually north-south transparent. Typically apartments
in slab-type buildings have higher prices. Structure type can be brick-concrete, steel-concrete or
mixed.
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11 districts and 12 months gives 11 × 12 = 132 clusters, which is relatively small

compared to our sample size. Figure 2.3 shows heterogeneity of the housing prices

across communities. Larger bubbles in Figure 2.3 are associated with higher hous-

ing prices. Consistent with what is shown in Figure 2.2, communities that are closer

to the city center usually have higher housing prices, which makes it plausible to

include community fixed effects. In the dataset, we have around 5,000 communities

in 2015, and around 2,400 of them have more than 10 transactions.17 The number

of communities are relatively large compared to the sample size. In this case, we

adopt the AQS and the RAQS estimators discussed in the section 2.4 and 2.5 to

obtain consistent estimates of the spatiotemporal interaction effects, controlling for

large community fixed effects and unknown heteroskedasticity.

2.8.3 Space-Time Connectivity Matrices

The general ways of constructing the space-time connectivity matrices have

been discussed in Sec. 2.6 in connection to this data.

2.8.4 STAR Model Specification

We consider the STAR(1,0), STAR(2,0), and STAR(2,2) models in this section.

We adopt different estimation methods to guarantee consistency, depending on the

ways of including cluster and time segment effects.

First, we consider the specifications with district effects and week effects. It is

similar to Equation (2.1), taking the following form:

AN(λ )YN = XNβ +Mdist µ +Mweekα +VN , BN(ρ)VN = εN , (2.32)

where for STAR(1,0), BN(ρ)= IN , and AN(λ )= IN−λcmtyWd,cmty or IN−λnbrWd,nbr;

for STAR(2,0), BN(ρ) = IN , and AN(λ ) = IN − λcmtyWd,cmty− λnbrWd,nbr; and for

STAR(2,2), AN(λ ) = BN(ρ) = IN−λcmtyWd,cmty−λnbrWd,nbr.

In this empirical study, YN is the log of total price. Following the literature of he-

donic housing models, XN are the housing attributes including living area, squared

living area, number of bedrooms, living rooms, kitchens, bathrooms, and the deco-

17In the application, we consider community fixed effects for communities with more than 10
transactions.
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ration, age, etc., as shown in Table 2.4. Mdist is the district membership matrix, and

µ are the district fixed effects. Mweek is the week membership matrix, and α are

the week fixed effects. Wd,cmty and Wd,nbr are defined in Section 2.6. In the case of

including district and week effects, the number of clusters are small relative to the

sample size, thus QML method is able to provide us with the consistent estimates.

Second, we consider the specification with community and week fixed effects.

The specification is given by

AN(λ )YN = XNβ +Mcmtyµ +Mweekα +VN , BN(ρ)VN = εN . (2.33)

µ are the community fixed effects. Other terms are the same as in (2.32). Since

the number of communities (around 2,400) are large relative to the sample size,

we adopt the AQS estimators. We further adopt the RAQS estimators to address

that εN can potentially be heteroskedastic. Unfortunately, using the whole sample

(about 10,000 × 10,000) causes memory problems and the computation can be

very slow. For this reason, we run regression after re-grouping the data every two

months and produce the results separately.18 After re-grouping the data, we are

able to conduct all the analysis using a computer with 64 GB of RAM. Another

advantage of doing this re-grouping is that it enables us to check the robustness of

our estimation method, which we will discuss in section 2.8.5

2.8.5 Results

Under specification (2.32) and (2.33), we first obtain the estimation results for

the spatialtemporal interaction effects within communities (λcmty) estimated from

the STAR(1,0) and STAR(2,0) models, as shown in Figure 2.6.A. The estimation

results of λcmty are all significant. However, there are huge difference between

the two estimates. If we do not control for community fixed effects, λcmty will

be severely underestimated. On average, the magnitude of the AQS estimates of

λcmty are about 1.5 times larger than the QML estimates. Note that in Figure 2.6.A,

we assume there is no heterskedasticity in the model. If we further allow for the

18We do not use the data in January and February, because the sample size in these two months
are significantly smaller than the rest, and 10 days of the data in February are missing. There is no
missing data problem from March onward. Table 2.10 reports the sample size in each month.
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existence of the unknown heteroskedasticity, we have the RAQS estimates in Figure

2.6.B. There are still significant difference between the QML and RAQS estimates.

Figure 2.7.A and Figure 2.7.B are the estimation of the spatiotemporal interac-

tion effects from 5 nearest neighbours outside of communities (λnbr). Figure 2.7.A

shows that we will sometimes slightly overestimate λnbr if we do not control for the

community fixed effects, e.g. with May-Jun and Jul-Aug samples.19 Figure 2.7.B

shows that the estimation of λnbr will be much (around 40%) lower if we do not

allow for unknown heteroskedasticity.

Comparing Panel A and Panel B in Figure 2.6.A – Figure 2.7.B, we can see that

the estimation results are very robust across the STAR(1,0) and STAR(2,0) specifi-

cations.

Table 2.5 reports the above mentioned figure plots of λcmty and λnbr of the

STAR(1,0), STAR(2,0) models in a table, with additional results from STAR(2,2)

model. We also reports the coefficients for other housing attributes in the Table 2.6

– Table 2.9.

2.8.6 Computational Notes

Estimating the parameters and implementing the inference procedures can be

very time-consuming when dealing with large data. The most time-consuming ma-

trix operations are the inversion and multiplication. Here we share some experience

on the ways to speed up the computations. We use Matlab 2021a for the empirical

application, but the experience should also apply to other programming languages.

First, we need to utilize the sparsity of the space-time connectivity matrices, and

try to avoid the calculation of the inverse of large dense matrices. We suggest to use

the user-written function pseudoinverse20 to calculate the generalized inverse ma-

trix. It implements the Moore-Penrose pseudoinverse factorization on a matrix that

is later used for matrix multiplications. The good features of this function are that

it can deal with the pseuinverse of a sparse matrix, and it does not involve singular

19We find similar patterns when we define the connectivity matrix using 10 or 15 nearest neigh-
bours. The estimation results are very robust, which are presented in Figure 2.8 and Figure 2.9.

20For the documentation of this function, please refer to
https://www.mathworks.com/matlabcentral/f-
ileexchange/25453-pseudo-inverse
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value decomposition, which are different from the build-in matrix-pseudoinverse

function pinv. This makes the calculation much faster. For example, the compu-

tation time of the pseudoinverse of AN in the STAR(2,0) model (for March-April

sample with around 18,000 observations, see Table 2.10) using pseudoinverse

function is around 2.3 seconds, while it takes more than 2,800 seconds if we use

pinv.

Second, we should try to minimize the frequency of calculating dense matrix

multiplications, which appear frequently in the model inference parts. The multipli-

cation of large dense matrices are also very time-consuming. For this we offer three

tips:

(i) Avoid repetitive computation. Some matrix multiplications in the elements of

the Hessian matrix and VC matrix appear repeatedly. We should pre-define

them, do the calculation and store the multiplications first, instead of doing

repetitive calculation everytime they appear. Second,

(ii) Avoid the use of the build-in trace function if the goal is to obtain the trace of

a matrix multiplication. This is because we only need the diagonal elements to

calculate the trace. For example, to calculate the trace of the multiplication of

two matrices A and B, one should use the Matlab command sum(sum(A′.∗B))

instead of trace(A∗B), where the former takes around 12 seconds and the

latter takes around 236 seconds when the sizes of A and B are around 18,000

× 18,000.

(iii) Use element-wise product of vectors instead of matrix multiplication when

calculating the product of two diagonal matrices, as the results only depend

on the product of the diagonal elements. This is relevant when implementing

the inference procedures of the RAQS method.

Lastly, we note that storing the large matrices created in the intermediate steps

takes up large memory space. To save memory space, first, do not store a product of

matrices as a new matrix if it only appears once, and second, clean up the matrices

that are no longer in use in the later steps. For the empirical applications considered
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in this paper, the largest sample size is around 24,000 (November-December sam-

ple), which requires close to 60GB of RAM. All the results can be produced using

a workstation with 64GB of RAM.

2.9 Conclusion and Discussion

Estimating the interaction effects or spillover effects is an very important topic

in the housing literature. Yet, despite the great features of spatiotemporal data, spa-

tial econometric theories and methods seem lag behind for sophisticated analyses of

spatiotemporal data. In this paper, we propose a high-order spatiotemporal autore-

gressive (STAR) model with unobserved cluster and time heterogeneity to study

the spatiotemporal interaction effects in the housing market. We propose an ad-

justed quasi score (AQS) method that allows us to have consistent estimates and

asymptotic normality for inference when the clusters and/or time segments grow

with sample size. When there exists unknown heteroskedasticity, a robust adjusted

quasi score (RAQS) method is proposed.

Our Monte Carlo results demonstrates an excellent finite sample performance of

the QML, AQS and RAQS estimators when the number of clusters (C) and the num-

ber of time segements (T ) are fixed and the errors are homoskedastic, an excellent

finite sample performance of the AQS and RAQS estimators when C and/or T grow

with sample size N the errors are homoskedastic, and an excellent finite sample per-

for of the RAQS estimator when the errors are heteroskedastic. We can see the AQS

and RAQS estimators are especially useful when we have large unobserved cluster

and time heterogeneity, and when there exists heteroskedasticity in the error terms.

Our proposed estimation and inference methods are applied to the housing trans-

action data in Beijing to study the spatiotemporal interaction effects. We find that

there exists significant positive interaction effects, through both within communi-

ties transactions and neighbours outside of communities. However, the estimation

of the interaction effects are largely affected after controlling for cluster heterogene-

ity at the community level. If we do not allow for community heterogeneity, we are

likely to underestimate the interaction effects within communities, and overestimate
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the interaction effects from neighbours that are outside of communities. If we fur-

ther allow for heteroskedasticity in the errors, the difference between RAQSE and

QMLE are especially large for the interaction effects from neighbours that are out-

side of communities. These finds provides good justifications for using AQS/RAQS

methods for estimating the spatiotemproal interaction effects when there exists un-

observed cluster and time heterogeneity and unknown heteroskedasticity.

While our empirical analysis illustrates the importance of allowing for cluster

and time heterogeneity in the STAR model, future work would benefit from further

explorations on the relationship between the bias and the unobserved cluster and

time heterogeneity. Taking a closer look at this question will help us understand the

reason why we would over/underestimate the spatiotemporal interaction effects.
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Table 2.1: Empirical Mean(sd)[ŝe] of QMLE: STAR(2,2) Model, C = T = 10, Homoskedasticity

n δ0 = (λ0,ρ0)
′ Normal Normal Mixture Chi-Squared

Spatiotemporal Effects
400 λ1 = 0.5 0.498 (0.018) [0.017] 0.498 (0.018) [0.017] 0.499 (0.018) [0.017]

λ2 = 0.3 0.298 (0.016) [0.015] 0.298 (0.015) [0.015] 0.299 (0.015) [0.015]
ρ1 = 0.2 0.188 (0.080) [0.074] 0.188 (0.081) [0.074] 0.186 (0.082) [0.075]
ρ2 = 0.4 0.409 (0.062) [0.056] 0.408 (0.063) [0.056] 0.407 (0.060) [0.056]

800 λ1 = 0.5 0.499 (0.014) [0.013] 0.499 (0.014) [0.013] 0.499 (0.014) [0.013]
λ2 = 0.3 0.299 (0.012) [0.012] 0.299 (0.012) [0.012] 0.299 (0.012) [0.012]
ρ1 = 0.2 0.193 (0.055) [0.053] 0.195 (0.056) [0.053] 0.194 (0.054) [0.053]
ρ2 = 0.4 0.405 (0.042) [0.040] 0.403 (0.040) [0.040] 0.405 (0.041) [0.040]

1200 λ1 = 0.5 0.499 (0.010) [0.010] 0.499 (0.010) [0.010] 0.499 (0.010) [0.010]
λ2 = 0.3 0.300 (0.009) [0.009] 0.300 (0.009) [0.009] 0.300 (0.009) [0.009]
ρ1 = 0.2 0.196 (0.045) [0.044] 0.194 (0.045) [0.044] 0.196 (0.046) [0.044]
ρ2 = 0.4 0.403 (0.033) [0.033] 0.402 (0.032) [0.033] 0.403 (0.034) [0.033]

Covariate Coefficients and Error Variance
400 β1 = 1 1.000 (0.073) [0.070] 1.000 (0.072) [0.070] 1.000 (0.075) [0.070]

β2 = 2 2.000 (0.067) [0.065] 1.999 (0.068) [0.065] 2.001 (0.067) [0.065]
β3 = 3 2.998 (0.075) [0.071] 3.001 (0.074) [0.071] 3.000 (0.075) [0.071]
σ2 = 1 0.931 (0.070) [0.067] 0.932 (0.162) [0.147] 0.930 (0.116) [0.106]

800 β1 = 1 1.000 (0.049) [0.047] 0.999 (0.048) [0.047] 1.001 (0.050) [0.047]
β2 = 2 1.999 (0.048) [0.047] 1.999 (0.046) [0.047] 2.003 (0.048) [0.047]
β3 = 3 2.999 (0.052) [0.050] 3.000 (0.050) [0.050] 3.000 (0.051) [0.050]
σ2 = 1 0.965 (0.051) [0.049] 0.967 (0.118) [0.113] 0.966 (0.083) [0.082]

1200 β1 = 1 1.000 (0.041) [0.039] 1.002 (0.040) [0.039] 0.999 (0.040) [0.039]
β2 = 2 2.000 (0.040) [0.039] 2.002 (0.039) [0.039] 2.000 (0.040) [0.039]
β3 = 3 2.999 (0.040) [0.040] 3.001 (0.040) [0.040] 3.000 (0.041) [0.040]
σ2 = 1 0.978 (0.041) [0.041] 0.975 (0.096) [0.094] 0.977 (0.068) [0.068]

Notes: Number of cluster and time segments are set to be fixed. Queen Contiguity for Wl1 and We1

and Rook Contiguity for Wl2 and We2. Replication = 2000.
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Table 2.2.A: Empirical Mean(sd)[ŝe] of QMLE and AQSE: STAR(2,2) Model, C = T = n/10,
Homoskedasticity

n δ0 = (λ0,ρ0)
′ Normal Normal Mixture Chi-Squared

Spatiotemporal Effects: QMLE
400 λ1 = 0.5 0.499 (0.017) [0.015] 0.499 (0.017) [0.015] 0.498 (0.017) [0.015]

λ2 = 0.3 0.299 (0.016) [0.013] 0.299 (0.015) [0.013] 0.300 (0.016) [0.013]
ρ1 = 0.2 0.204 (0.104) [0.070] 0.200 (0.106) [0.071] 0.200 (0.109) [0.070]
ρ2 = 0.4 0.467 (0.073) [0.052] 0.464 (0.073) [0.052] 0.468 (0.073) [0.052]

800 λ1 = 0.5 0.499 (0.014) [0.012] 0.499 (0.014) [0.012] 0.499 (0.014) [0.012]
λ2 = 0.3 0.299 (0.012) [0.010] 0.299 (0.012) [0.010] 0.299 (0.012) [0.010]
ρ1 = 0.2 0.222 (0.070) [0.050] 0.223 (0.070) [0.050] 0.220 (0.071) [0.050]
ρ2 = 0.4 0.473 (0.052) [0.037] 0.475 (0.050) [0.037] 0.474 (0.050) [0.037]

1200 λ1 = 0.5 0.499 (0.011) [0.010] 0.499 (0.011) [0.010] 0.499 (0.011) [0.010]
λ2 = 0.3 0.300 (0.011) [0.009] 0.299 (0.011) [0.009] 0.299 (0.011) [0.009]
ρ1 = 0.2 0.222 (0.059) [0.041] 0.219 (0.059) [0.041] 0.225 (0.057) [0.041]
ρ2 = 0.4 0.475 (0.041) [0.030] 0.478 (0.040) [0.030] 0.475 (0.040) [0.030]

Spatiotemporal Effects: AQSE
400 λ1 = 0.5 0.500 (0.017) [0.017] 0.500 (0.017) [0.016] 0.498 (0.017) [0.017]

λ2 = 0.3 0.299 (0.016) [0.016] 0.300 (0.014) [0.015] 0.300 (0.016) [0.016]
ρ1 = 0.2 0.194 (0.091) [0.095] 0.191 (0.095) [0.095] 0.192 (0.096) [0.095]
ρ2 = 0.4 0.394 (0.066) [0.070] 0.388 (0.075) [0.072] 0.392 (0.071) [0.070]

800 λ1 = 0.5 0.499 (0.014) [0.014] 0.499 (0.014) [0.014] 0.499 (0.015) [0.014]
λ2 = 0.3 0.300 (0.012) [0.012] 0.300 (0.011) [0.011] 0.299 (0.012) [0.012]
ρ1 = 0.2 0.197 (0.062) [0.066] 0.194 (0.063) [0.066] 0.197 (0.064) [0.066]
ρ2 = 0.4 0.395 (0.048) [0.049] 0.396 (0.053) [0.049] 0.396 (0.048) [0.049]

1200 λ1 = 0.5 0.499 (0.011) [0.011] 0.499 (0.011) [0.011] 0.500 (0.012) [0.011]
λ2 = 0.3 0.300 (0.011) [0.011] 0.300 (0.009) [0.009] 0.299 (0.011) [0.011]
ρ1 = 0.2 0.197 (0.053) [0.053] 0.196 (0.054) [0.053] 0.197 (0.053) [0.053]
ρ2 = 0.4 0.397 (0.037) [0.040] 0.397 (0.043) [0.040] 0.397 (0.040) [0.040]

Notes: Number of cluster and time segments increase. Queen Contiguity for Wl1 and We1 and Rook
Contiguity for Wl2 and We2. Replication = 2000.
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Table 2.2.B: Empirical Mean(sd)[ŝe] of QMLE and AQSE: STAR(2,2) Model, C = T =
n/10, Homoskedasticity

n (β ′0,σ
2
0 )
′ Normal Normal Mixture Chi-Squared

Covariate Coefficients and Error Variance: QMLE
400 β1 = 1 1.001 (0.082) [0.071] 1.001 (0.082) [0.071] 1.000 (0.081) [0.070]

β2 = 2 1.999 (0.080) [0.067] 2.001 (0.078) [0.067] 2.001 (0.077) [0.067]
β3 = 3 2.999 (0.081) [0.071] 2.996 (0.082) [0.071] 2.999 (0.081) [0.071]
σ2 = 1 0.762 (0.065) [0.055] 0.763 (0.134) [0.106] 0.760 (0.099) [0.079]

800 β1 = 1 1.000 (0.057) [0.049] 0.998 (0.056) [0.049] 1.001 (0.056) [0.049]
β2 = 2 2.000 (0.055) [0.048] 2.001 (0.054) [0.047] 2.002 (0.053) [0.047]
β3 = 3 3.001 (0.059) [0.051] 3.002 (0.058) [0.051] 3.001 (0.057) [0.051]
σ2 = 1 0.768 (0.047) [0.040] 0.770 (0.096) [0.077] 0.767 (0.070) [0.058]

1200 β1 = 1 1.000 (0.046) [0.040] 0.997 (0.045) [0.040] 1.001 (0.045) [0.040]
β2 = 2 2.001 (0.045) [0.039] 1.997 (0.044) [0.039] 2.000 (0.044) [0.039]
β3 = 3 2.999 (0.047) [0.041] 2.999 (0.046) [0.040] 2.999 (0.046) [0.040]
σ2 = 1 0.773 (0.038) [0.033] 0.770 (0.079) [0.064] 0.773 (0.060) [0.048]

Covariate Coefficients and Error Variance: AQSE
400 β1 = 1 1.000 (0.082) [0.081] 1.000 (0.083) [0.081] 1.000 (0.080) [0.081]

β2 = 2 1.998 (0.079) [0.077] 2.000 (0.079) [0.077] 1.999 (0.078) [0.077]
β3 = 3 2.998 (0.081) [0.082] 3.000 (0.083) [0.081] 2.999 (0.082) [0.082]
σ2 = 1 0.975 (0.074) [0.081] 0.978 (0.161) [0.165] 0.975 (0.113) [0.121]

800 β1 = 1 0.999 (0.057) [0.056] 0.998 (0.056) [0.056] 1.001 (0.056) [0.057]
β2 = 2 2.000 (0.055) [0.054] 1.998 (0.055) [0.056] 2.002 (0.055) [0.054]
β3 = 3 3.001 (0.059) [0.058] 2.999 (0.057) [0.057] 3.004 (0.058) [0.058]
σ2 = 1 0.988 (0.053) [0.058] 0.991 (0.114) [0.121] 0.989 (0.081) [0.089]

1200 β1 = 1 1.000 (0.047) [0.045] 0.999 (0.046) [0.045] 1.000 (0.046) [0.045]
β2 = 2 2.000 (0.045) [0.045] 2.001 (0.047) [0.047] 1.999 (0.045) [0.045]
β3 = 3 2.999 (0.047) [0.046] 3.002 (0.047) [0.047] 2.999 (0.047) [0.046]
σ2 = 1 0.994 (0.043) [0.048] 0.990 (0.093) [0.099] 0.993 (0.067) [0.073]

Notes: Number of cluster and time segments increase. Queen Contiguity for Wl1 and We1 and
Rook Contiguity for Wl2 and We2. Replication = 2000.
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Table 2.3.A: Empirical Mean(sd)[ŝe] of AQSE and RAQSE: STAR(2,2) Model, C = T = n/10,
Heteroskedasticity

n δ0 = (λ0,ρ0)
′ Normal Normal Mixture Chi-Squared

Spatiotemporal Effects: AQSE
400 λ1 = 0.5 0.500 (0.013) [0.013] 0.500 (0.014) [0.012] 0.500 (0.014) [0.013]

λ2 = 0.3 0.301 (0.013) [0.012] 0.301 (0.013) [0.012] 0.300 (0.013) [0.012]
ρ1 = 0.2 0.182 (0.107) [0.102] 0.180 (0.098) [0.101] 0.182 (0.098) [0.101]
ρ2 = 0.4 0.386 (0.083) [0.086] 0.380 (0.088) [0.085] 0.382 (0.083) [0.084]

800 λ1 = 0.5 0.501 (0.009) [0.011] 0.500 (0.010) [0.015] 0.500 (0.009) [0.011]
λ2 = 0.3 0.302 (0.010) [0.010] 0.301 (0.010) [0.013] 0.301 (0.010) [0.012]
ρ1 = 0.2 0.199 (0.087) [0.134] 0.194 (0.117) [1.172] 0.199 (0.072) [0.526]
ρ2 = 0.4 0.390 (0.079) [0.217] 0.400 (0.107) [0.462] 0.391 (0.071) [0.354]

1200 λ1 = 0.5 0.500 (0.008) [0.016] 0.501 (0.009) [0.010] 0.500 (0.008) [0.011]
λ2 = 0.3 0.301 (0.008) [0.013] 0.301 (0.008) [0.010] 0.301 (0.008) [0.011]
ρ1 = 0.2 0.217 (0.126) [0.969] 0.203 (0.094) [0.505] 0.210 (0.121) [0.651]
ρ2 = 0.4 0.404 (0.061) [1.301] 0.397 (0.061) [0.681] 0.401 (0.057) [1.527]

Spatiotemporal Effects: RAQSE
400 λ1 = 0.5 0.496 (0.037) [0.036] 0.500 (0.014) [0.013] 0.497 (0.036) [0.035]

λ2 = 0.3 0.300 (0.031) [0.030] 0.299 (0.013) [0.013] 0.300 (0.029) [0.030]
ρ1 = 0.2 0.196 (0.095) [0.097] 0.193 (0.098) [0.098] 0.195 (0.096) [0.095]
ρ2 = 0.4 0.393 (0.079) [0.080] 0.397 (0.080) [0.076] 0.395 (0.079) [0.079]

800 λ1 = 0.5 0.499 (0.027) [0.027] 0.500 (0.009) [0.009] 0.498 (0.028) [0.027]
λ2 = 0.3 0.300 (0.023) [0.023] 0.300 (0.010) [0.010] 0.300 (0.024) [0.023]
ρ1 = 0.2 0.198 (0.067) [0.068] 0.196 (0.067) [0.066] 0.199 (0.067) [0.067]
ρ2 = 0.4 0.395 (0.057) [0.057] 0.397 (0.060) [0.056] 0.397 (0.057) [0.056]

1200 λ1 = 0.5 0.499 (0.021) [0.021] 0.500 (0.009) [0.009] 0.499 (0.021) [0.021]
λ2 = 0.3 0.300 (0.018) [0.018] 0.300 (0.008) [0.008] 0.300 (0.018) [0.018]
ρ1 = 0.2 0.200 (0.055) [0.055] 0.201 (0.054) [0.054] 0.199 (0.053) [0.054]
ρ2 = 0.4 0.399 (0.046) [0.046] 0.399 (0.047) [0.046] 0.400 (0.045) [0.045]

Notes: Number of cluster and time segments increase. Group Interaction for Wl1 and We1 and Rook
Contiguity for Wl2 and We2. Replication = 2000.
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Table 2.3.B: Empirical Mean(sd)[ŝe] of AQSE and RAQSE: STAR(2,2) Model, C = T = n/10,
Heteroskedasticity

n δ0 = (λ0,ρ0)
′ Normal Normal Mixture Chi-Squared

Covariate Coefficients and Error Variance: AQSE
400 β1 = 1 1.001 (0.080) [0.078] 0.999 (0.078) [0.077] 0.999 (0.079) [0.078]

β2 = 2 1.998 (0.088) [0.087] 1.992 (0.091) [0.086] 2.001 (0.092) [0.086]
β3 = 3 3.002 (0.084) [0.079] 2.998 (0.085) [0.078] 3.000 (0.084) [0.079]
σ2 = 1 0.979 (0.105) [0.121] 0.972 (0.236) [0.227] 0.973 (0.169) [0.173]

800 β1 = 1 0.997 (0.056) [0.064] 0.996 (0.059) [0.107] 1.000 (0.055) [0.068]
β2 = 2 2.000 (0.054) [0.063] 2.001 (0.057) [0.103] 1.999 (0.055) [0.062]
β3 = 3 2.999 (0.054) [0.058] 2.998 (0.055) [0.099] 2.999 (0.052) [0.065]
σ2 = 1 0.988 (0.075) [0.124] 0.987 (0.163) [0.254] 0.983 (0.115) [0.137]

1200 β1 = 1 1.000 (0.045) [0.092] 1.000 (0.047) [0.066] 0.999 (0.044) [0.069]
β2 = 2 1.998 (0.044) [0.066] 1.999 (0.049) [0.064] 2.000 (0.045) [0.108]
β3 = 3 3.002 (0.045) [0.084] 2.999 (0.045) [0.063] 3.002 (0.046) [0.088]
σ2 = 1 0.994 (0.060) [0.250] 0.990 (0.136) [0.256] 0.992 (0.099) [0.418]

Covariate Coefficients: RAQSE
400 β1 = 1 0.994 (0.299) [0.294] 1.001 (0.078) [0.077] 0.998 (0.282) [0.291]

β2 = 2 1.996 (0.325) [0.323] 2.001 (0.087) [0.086] 2.003 (0.325) [0.321]
β3 = 3 3.010 (0.290) [0.291] 3.002 (0.085) [0.083] 2.994 (0.288) [0.290]

800 β1 = 1 0.993 (0.225) [0.224] 0.998 (0.057) [0.055] 1.006 (0.213) [0.210]
β2 = 2 2.001 (0.216) [0.217] 2.000 (0.054) [0.054] 1.992 (0.217) [0.215]
β3 = 3 3.004 (0.215) [0.213] 3.000 (0.055) [0.053] 3.000 (0.214) [0.214]

1200 β1 = 1 0.998 (0.170) [0.168] 1.000 (0.043) [0.043] 0.999 (0.169) [0.174]
β2 = 2 1.996 (0.166) [0.172] 2.000 (0.044) [0.044] 1.997 (0.175) [0.173]
β3 = 3 3.002 (0.180) [0.179] 3.000 (0.047) [0.046] 2.998 (0.177) [0.177]

Notes: Number of cluster and time segments increase. Group Interaction for Wl1 and We1 and Rook
Contiguity for Wl2 and We2. Replication = 2000.
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Table 2.4: Variables and Summary Statistics

(1) (2) (3) (4) (5)
Variable Mean SD Min Max

Total price (10,000 RMB) 296.77 173.19 10.00 4370.00
Living area (square meters) 84.72 35.17 10.00 460.24
Age 15.51 8.66 -1 65
Number of bedrooms 2.04 0.75 0 8
Number of living rooms 1.19 0.52 0 5
Number of kitchens 1.00 0.08 0 3
Number of bathrooms 1.19 0.42 0 7
1(Ground Floor) 8.1% 0.27 0 1
1(Low Floor) 19.8% 0.40 0 1
1(Middle Floor) 38.1% 0.49 0 1
1(High Floor) 21.8% 0.41 0 1
1(Top Floor) 11.8% 0.32 0 1
1(Tower-type) 23.6% 0.42 0 1
1(Slab-type) 57.5% 0.49 0 1
1(Tower-slab Combined) 18.6% 0.39 0 1
1(Rough House) 2.6% 0.16 0 1
1(Simple Decoration) 33.3% 0.47 0 1
1(Fine Decoration) 51.5% 0.50 0 1
1(Other) 12.6% 0.33 0 1
1(Brick-concrete Structure) 1.6% 0.12 0 1
1(Steel-concrete Structure) 57.1% 0.49 0 1
1(Mixed Structure) 41.2% 0.49 0 1
1(Elevator) 57.0% 0.50 0 1

Notes: Tower-type and slab-type are two major tall-building types for
apartments in China. For tower-type buildings, there are usually more
than four or five housing units surrounding the elevators placed in the
center of a building, thus units are usually not north-south transparent.
Slab-type buildings are in shape of rectangles and usually north-south
transparent. Typically, apartments in slab-type buildings have higher
prices.
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Table 2.5: Estimation Results of the STAR(1,0), STAR(2,0) and STAR(2,2) Models

λcmty λnbr

Model Sample QMLE AQSE RAQSE QMLE AQSE RAQSE
(1) (2) (3) (4) (5) (6)

STAR(1,0) Mar-Apr 0.016140 0.030085 0.013593 0.255369 0.254184 0.424507
(0.001185) (0.001713) (0.002267) (0.005048) (0.007884) (0.018394)

May-Jun 0.021735 0.029397 0.012139 0.299928 0.277599 0.480418
(0.001218) (0.001785) (0.002314) (0.005178) (0.010033) (0.016619)

Jul-Aug 0.014790 0.024073 0.007465 0.305316 0.279621 0.504543
(0.001267) (0.001815) (0.002376) (0.005514) (0.010244) (0.017119)

Sep-Oct 0.016604 0.021193 0.007946 0.302217 0.287274 0.503541
(0.001231) (0.001876) (0.002400) (0.005760) (0.011207) (0.015403)

Nov-Dec 0.027112 0.041902 0.018454 0.297106 0.294556 0.498481
(0.001244) (0.001758) (0.002550) (0.004474) (0.008558) (0.012669)

STAR(2,0) Mar-Apr 0.011237 0.022579 0.008611 0.251363 0.245867 0.41715
(0.001103) (0.001297) (0.001540) (0.005034) (0.008149) (0.018107)

May-Jun 0.015589 0.025389 0.010673 0.293912 0.268285 0.471669
(0.001113) (0.001357) (0.001485) (0.005145) (0.010379) (0.016391)

Jul-Aug 0.010400 0.019965 0.006877 0.302333 0.273531 0.499347
(0.001157) (0.001339) (0.001538) (0.005500) (0.010504) (0.01701)

Sep-Oct 0.011224 0.017827 0.006454 0.297600 0.280702 0.497848
(0.001125) (0.001344) (0.001489) (0.005753) (0.011490) (0.015227)

Nov-Dec 0.019270 0.034716 0.014624 0.290305 0.280418 0.48675
(0.001131) (0.001372) (0.001660) (0.004442) (0.009001) (0.012521)

STAR(2,2) Mar-Apr -0.004653 0.017244 -0.002205 0.002437 0.124535 0.013425
(0.001037) (0.001610) (0.000968) (0.006205) (0.020092) (0.021115)

May-Jun 0.001415 0.019328 0.000538 0.147218 0.138294 -0.02137
(0.001063) (0.002015) (0.001079) (0.006550) (0.020068) (0.03076)

Jul-Aug 0.015776 0.013718 -0.000701 0.213803 0.136857 -0.03741
(0.001113) (0.001888) (0.001368) (0.007166) (0.020553) (0.025788)

Sep-Oct 0.000994 0.013345 -0.000473 -0.016390 0.149845 -0.05325
(0.001193) (0.001707) (0.001207) (0.007913) (0.022015) (0.034732)

Nov-Dec 0.000325 0.027002 0.002953 0.100034 0.136576 -0.01241
(0.000996) (0.002327) (0.001685) (0.005914) (0.017337) (0.031196)

Notes: This table reports the coefficients of the spatiotemporal interaction effects estimated using STAR(1,0),
STAR(2,0) and STAR(2,2) Models. Standard errors are reported in parentheses.
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Figure 2.1: Map of Municipal Districts of Beijing

Notes: The shadow areas are the municipal districts covered in the dataset. These districts are more
urbanized than the peripheral districts in Beijing.

142



Figure 2.2: Average Price by Month for Different Districts

Notes: This figure illustrates the trends of the average housing transaction prices for different
districts in Beijing. The prices are counted in 10,000 RMB.
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Figure 2.3: Community Level Average Price

Notes: Each bubble in the figure is a community in Beijing. Larger bubbles represents higher
transaction prices.
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Figure 2.4: Locations of Housing Transactions by Communities

Notes: Each bubble is a community in Beijing. Larger bubbles represents more housing
transactions in a community. We define the Wd,cmty in Section 2.6 based on transactions in the same
communities.
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Figure 2.5: 5 Nearest Neighbours outside of Communities

Notes: This figure shows the connectivity of a housing transaction to its 5 nearest neighbours
(5NN) one month before or after the transaction takes place.
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Figure 2.6.A: Spatiotemporal Interaction Effects within Communities: QMLE and AQSE

Notes: The solid points are estimates of the spatiotemporal interaction effects within communities.
The hollow points represent the 90% confidence intervals. The QML estimates (no community fixed
effects) are in red, while the AQS estimates (allow for community fixed effects) are in blue. The
dash lines are the average of the estimates.
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Figure 2.6.B: Spatiotemporal Interaction Effects within Communities: QMLE and RAQSE

Notes: The solid points are estimates of the spatiotemporal interaction effects within communities.
The hollow points represent the 90% confidence intervals. The QML estimates (no community fixed
effects) are in red, while the RAQS estimates (allow for community fixed effects and heteroskedas-
ticity) are in blue. The dash lines are the average of the estimates.

148



Figure 2.7.A: Effects of 5 Nearest Neighbours outside of Communities: QMLE and AQSE

Notes: The solid points are estimates of the spatiotemporal interaction effects of 5 nearest neighbours
outside of communities. The hollow points represent the 90% confidence intervals. The QML
estimates (no community fixed effects) are in red, while the RAQS estimates (allow for community
fixed effects) are in blue. The dash lines are the average of the estimates.
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Figure 2.7.B: Effects of 5 Nearest Neighbours outside of Communities: QMLE and
RAQSE

Notes: The solid points are estimates of the spatiotemporal interaction effects of 5 nearest neighbours
outside of communities. The hollow points represent the 90% confidence intervals. The QML
estimates (no community fixed effects) are in red, while the RAQS estimates (allow for community
fixed effects and heteroskedasticity) are in blue. The dash lines are the average of the estimates.
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Figure 2.8: Effects of 10 and 15 Nearest Neighbours outside of Communities: QMLE and
AQSE

Notes: The solid points are estimates of the spatiotemporal interaction effects of 10 and 15 near-
est neighbours outside of communities. The hollow points represent the 90% confidence intervals.
The QML estimates (no community fixed effects) are in red, while the AQS estimates (allow for
community fixed effects) are in blue. The dash lines are the average of the estimates.
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Figure 2.9: Effects of 10 and 15 Nearest Neighbours outside of Communities: QMLE and
RAQSE

Notes: The solid points are estimates of the spatiotemporal interaction effects of 10 nearest neigh-
bours outside of communities. The hollow points represent the 90% confidence intervals. The QML
estimates (no community fixed effects) are in red, while the RAQS estimates (allow for community
fixed effects and heteroskedasticity) are in blue. The dash lines are the average of the estimates.
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Table 2.6: Coefficients of Housing Attributes Obtained from STAR(1,0) Model

QMLE AQSE RAQSE

Sample Variables Coefficients SE Coefficients SE Coefficients SE
(1) (2) (3) (4) (5) (6)

Mar-April λcmty 0.016140 (0.00119) 0.030085 (0.00171) 0.013593 (0.00227)
Living area (square meters) 0.013556 (0.00024) 0.013606 (0.00030) 0.013640 (0.00054)

Living area2 -2.5E-05 (8.3E-07) -2.5E-05 (1.0E-06) -2.5E-05 (2.3E-06)
Age 0.002745 (0.00030) 0.010394 (0.00038) 0.010078 (0.00049)

Number of bedrooms 0.042552 (0.00397) 0.050244 (0.00486) 0.049366 (0.00560)
Number of living rooms 0.060587 (0.00462) 0.031546 (0.00559) 0.033277 (0.00561)

Number of kitchens 0.155386 (0.02503) 0.185019 (0.02908) 0.184932 (0.06025)
Number of bathrooms -0.00775 (0.00637) -0.00267 (0.00771) -0.00142 (0.00936)

May-Jun λcmty 0.021735 (0.00122) 0.029397 (0.00179) 0.012139 (0.00231)
Living area (square meters) 0.013926 (0.00022) 0.013924 (0.00029) 0.013862 (0.00055)

Living area2 -2.5E-05 (7.6E-07) -2.3E-05 (9.4E-07) -2.3E-05 (2.2E-06)
Age 0.003237 (0.00030) 0.012872 (0.00039) 0.012379 (0.00049)

Number of bedrooms 0.037893 (0.00399) 0.024583 (0.00495) 0.024422 (0.00580)
Number of living rooms 0.057006 (0.00444) 0.034071 (0.00544) 0.035439 (0.00559)

Number of kitchens 0.233417 (0.02239) 0.256634 (0.02642) 0.259964 (0.07168)
Number of bathrooms -0.00223 (0.00605) -0.00251 (0.00741) -0.00103 (0.00964)

Jul-Aug λcmty 0.014789 (0.00127) 0.024073 (0.00182) 0.007465 (0.00238)
Living area (square meters) 0.012624 (0.00023) 0.012569 (0.00029) 0.012557 (0.00049)

Living area2 -2.1E-05 (7.5E-07) -2.0E-05 (9.0E-07) -2.0E-05 (1.9E-06)
Age 0.002799 (0.00033) 0.013577 (0.00042) 0.013108 (0.00051)

Number of bedrooms 0.049736 (0.00421) 0.040871 (0.00517) 0.040600 (0.00587)
Number of living rooms 0.067692 (0.00473) 0.045072 (0.00570) 0.047075 (0.00592)

Number of kitchens 0.229921 (0.02327) 0.279473 (0.02706) 0.283940 (0.05622)
Number of bathrooms -0.00667 (0.00641) -0.00190 (0.00775) -0.00074 (0.00933)

Sep-Oct λcmty 0.016604 (0.00123) 0.021193 (0.00188) 0.007946 (0.00240)
Living area (square meters) 0.012574 (0.00025) 0.01193 (0.00032) 0.011975 (0.00058)

Living area2 -2.1E-05 (8.1E-07) -1.8E-05 (1.0E-06) -1.8E-05 (2.3E-06)
Age 0.001739 (0.00034) 0.012457 (0.00044) 0.012099 (0.00053)

Number of bedrooms 0.060072 (0.00440) 0.059404 (0.00565) 0.058888 (0.00668)
Number of living rooms 0.069108 (0.00501) 0.047100 (0.00627) 0.047890 (0.00666)

Number of kitchens 0.115660 (0.02369) 0.088895 (0.02890) 0.090886 (0.05187)
Number of bathrooms -0.02247 (0.00695) -0.00963 (0.00872) -0.00885 (0.01007)

Nov-Dec λcmty 0.027112 (0.00124) 0.041902 (0.00176) 0.018454 (0.00255)
Living area (square meters) 0.012695 (0.00019) 0.012823 (0.00024) 0.012851 (0.00046)

Living area2 -2.2E-05 (6.4E-07) -2.1E-05 (7.6E-07) -2.1E-05 (1.8E-06)
Age 0.001460 (0.00028) 0.012470 (0.00036) 0.011984 (0.00046)

Number of bedrooms 0.057713 (0.00351) 0.046227 (0.00426) 0.045648 (0.00507)
Number of living rooms 0.068831 (0.00392) 0.038626 (0.00467) 0.039813 (0.00489)

Number of kitchens 0.143363 (0.01939) 0.138595 (0.02236) 0.138510 (0.03367)
Number of bathrooms -0.02011 (0.00551) -0.01228 (0.00660) -0.01059 (0.00765)

Other Control Variables Yes Yes Yes
District Fixed Effects Yes No No
Community Fixed Effects No Yes Yes
Week Fixed Effects Yes Yes Yes

Notes: This table reports the coefficients of housing attributes obtained from the STAR(1,0) specification of (2.32) and (2.33).. Other control
variables include indicator variables for floors, building types, decoration condition, building structures, and elevator. Standard errors are
reported in parentheses.
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Table 2.7: Coefficients of Housing Attributes Obtained from STAR(1,0) Model

QMLE AQSE RAQSE

Sample Variables Coefficients SE Coefficients SE Coefficients SE
(1) (2) (3) (4) (5) (6)

Mar-April λnbr 0.255369 (0.00505) 0.254184 (0.00788) 0.424510 (0.01839)
Living area (square meters) 0.013886 (0.00022) 0.013774 (0.00026) 0.013844 (0.00049)

Living area2 -2.6E-05 (7.7E-07) -2.6E-05 (8.8E-07) -2.7E-05 (2.2E-06)
Age 0.002529 (0.00028) 0.007957 (0.00034) 0.006710 (0.00040)

Number of bedrooms 0.042031 (0.00369) 0.050634 (0.00423) 0.051969 (0.00468)
Number of living rooms 0.051684 (0.00430) 0.031200 (0.00487) 0.028853 (0.00494)

Number of kitchens 0.166888 (0.02328) 0.179775 (0.02534) 0.176370 (0.05553)
Number of bathrooms -0.01544 (0.00592) -0.00876 (0.00672) -0.01436 (0.00827)

May-Jun λnbr 0.299928 (0.00518) 0.277599 (0.01003) 0.480420 (0.01662)
Living area (square meters) 0.013904 (0.00021) 0.013929 (0.00025) 0.014010 (0.00052)

Living area2 -2.5E-05 (7.0E-07) -2.4E-05 (8.0E-07) -2.5E-05 (2.2E-06)
Age 0.003304 (0.00028) 0.009884 (0.00035) 0.008314 (0.00050)

Number of bedrooms 0.044993 (0.00366) 0.032442 (0.00423) 0.038384 (0.00514)
Number of living rooms 0.049153 (0.00406) 0.033177 (0.00464) 0.030821 (0.00453)

Number of kitchens 0.257202 (0.02047) 0.262958 (0.02255) 0.263430 (0.07452)
Number of bathrooms -0.01648 (0.00553) -0.01027 (0.00633) -0.01779 (0.00883)

Jul-Aug λnbr 0.305316 (0.00551) 0.279621 (0.01024) 0.504540 (0.01712)
Living area (square meters) 0.012542 (0.00021) 0.012505 (0.00025) 0.012467 (0.00046)

Living area2 -2.1E-05 (6.9E-07) -2.1E-05 (7.7E-07) -2.1E-05 (1.9E-06)
Age 0.002116 (0.00030) 0.010094 (0.00038) 0.007840 (0.00042)

Number of bedrooms 0.056805 (0.00385) 0.047979 (0.00444) 0.054014 (0.00496)
Number of living rooms 0.062068 (0.00432) 0.045507 (0.00488) 0.043522 (0.00503)

Number of kitchens 0.244876 (0.02124) 0.280156 (0.02317) 0.275500 (0.05243)
Number of bathrooms -0.01654 (0.00585) -0.00640 (0.00664) -0.01137 (0.00839)

Sep-Oct λnbr 0.302217 (0.00576) 0.287274 (0.01121) 0.503540 (0.01540)
Living area (square meters) 0.012473 (0.00023) 0.011991 (0.00027) 0.011983 (0.00060)

Living area2 -2.1E-05 (7.4E-07) -1.9E-05 (8.6E-07) -1.9E-05 (2.5E-06)
Age 0.001820 (0.00031) 0.009236 (0.00039) 0.007242 (0.00048)

Number of bedrooms 0.065956 (0.00402) 0.063545 (0.00477) 0.067284 (0.00568)
Number of living rooms 0.057970 (0.00458) 0.044087 (0.00529) 0.040867 (0.00561)

Number of kitchens 0.129663 (0.02163) 0.099862 (0.02441) 0.105720 (0.04844)
Number of bathrooms -0.03451 (0.00635) -0.01756 (0.00738) -0.02447 (0.00871)

Nov-Dec λnbr 0.297106 (0.00447) 0.294556 (0.00856) 0.498480 (0.01267)
Living area (square meters) 0.012866 (0.00018) 0.012921 (0.00021) 0.012953 (0.00044)

Living area2 -2.3E-05 (5.8E-07) -2.2E-05 (6.5E-07) -2.3E-05 (1.8E-06)
Age 0.001432 (0.00025) 0.009254 (0.00032) 0.007629 (0.00037)

Number of bedrooms 0.058071 (0.00319) 0.048328 (0.00362) 0.050498 (0.00428)
Number of living rooms 0.059344 (0.00357) 0.037316 (0.00396) 0.034941 (0.00409)

Number of kitchens 0.166940 (0.01765) 0.142462 (0.01897) 0.145250 (0.03333)
Number of bathrooms -0.02625 (0.00501) -0.01380 (0.00560) -0.01695 (0.00683)

Other Control Variables Yes Yes Yes
District Fixed Effects Yes No No
Community Fixed Effects No Yes Yes
Week Fixed Effects Yes Yes Yes

Notes: This table reports the coefficients of housing attributes of the STAR(2,2) specification of (2.32) and (2.33). Other control variables
include indicator variables for floors, building types, decoration condition, building structures, and elevator. Standard errors are reported in
parentheses.
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Table 2.8: Coefficients of Housing Attributes Obtained from STAR(2,0) Model

QMLE AQSE RAQSE

Sample Variables Coefficients SE Coefficients SE Coefficients SE
(1) (2) (3) (4) (5) (6)

Mar-April λcmty 0.011237 (0.00110) 0.022578 (0.00130) 0.008611 (0.00154)
λnbr 0.251363 (0.00503) 0.245867 (0.00815) 0.417150 (0.01811)

Living area (square meters) 0.013826 (0.00022) 0.013671 (0.00026) 0.013803 (0.00050)
Living area2 -2.6E-05 (7.7E-07) -2.6E-05 (8.8E-07) -2.7E-05 (2.2E-06)

Age 0.002691 (0.00028) 0.008358 (0.00035) 0.006893 (0.00041)
Number of bedrooms 0.042481 (0.00368) 0.052080 (0.00424) 0.052488 (0.00469)

Number of living rooms 0.050494 (0.00429) 0.028967 (0.00488) 0.028059 (0.00493)
Number of kitchens 0.166349 (0.02322) 0.179381 (0.02540) 0.176300 (0.05571)

Number of bathrooms -0.01622 (0.00591) -0.01046 (0.00674) -0.01487 (0.00829)

May-Jun λcmty 0.015589 (0.00111) 0.025389 (0.00136) 0.010673 (0.00148)
λnbr 0.293912 (0.00515) 0.268285 (0.01038) 0.471670 (0.01639)

Living area (square meters) 0.013891 (0.00021) 0.013975 (0.00025) 0.014028 (0.00052)
Living area2 -2.5E-05 (6.9E-07) -2.4E-05 (8.0E-07) -2.5E-05 (2.1E-06)

Age 0.003611 (0.00028) 0.010583 (0.00036) 0.008646 (0.00050)
Number of bedrooms 0.045398 (0.00364) 0.033208 (0.00424) 0.038565 (0.00514)

Number of living rooms 0.048020 (0.00404) 0.031647 (0.00465) 0.030234 (0.00452)
Number of kitchens 0.252282 (0.02037) 0.256731 (0.02259) 0.260810 (0.07452)

Number of bathrooms -0.01719 (0.00551) -0.01203 (0.00634) -0.01835 (0.00881)

Jul-Aug λcmty 0.010400 (0.00116) 0.019965 (0.00134) 0.006877 (0.00154)
λnbr 0.302333 (0.00550) 0.273531 (0.01050) 0.499350 (0.01701)

Living area (square meters) 0.012510 (0.00021) 0.012481 (0.00025) 0.012459 (0.00046)
Living area2 -2.1E-05 (6.9E-07) -2.0E-05 (7.7E-07) -2.1E-05 (1.9E-06)

Age 0.002333 (0.00030) 0.010658 (0.00039) 0.008065 (0.00043)
Number of bedrooms 0.057020 (0.00385) 0.048531 (0.00445) 0.054120 (0.00496)

Number of living rooms 0.060904 (0.00431) 0.043461 (0.00489) 0.042845 (0.00502)
Number of kitchens 0.242895 (0.02119) 0.275676 (0.02324) 0.274020 (0.05289)

Number of bathrooms -0.01698 (0.00584) -0.00767 (0.00666) -0.01174 (0.00842)

Sep-Oct λcmty 0.011224 (0.00112) 0.017827 (0.00134) 0.006454 (0.00149)
λnbr 0.297600 (0.00575) 0.280702 (0.01149) 0.497850 (0.01523)

Living area (square meters) 0.012389 (0.00023) 0.011869 (0.00027) 0.011938 (0.00061)
Living area2 -2.0E-05 (7.4E-07) -1.8E-05 (8.6E-07) -1.9E-05 (2.5E-06)

Age 0.001982 (0.00031) 0.009635 (0.00040) 0.007417 (0.00048)
Number of bedrooms 0.066683 (0.00401) 0.064868 (0.00478) 0.067705 (0.00569)

Number of living rooms 0.057010 (0.00456) 0.042652 (0.00530) 0.040397 (0.00562)
Number of kitchens 0.128645 (0.02156) 0.099201 (0.02446) 0.105390 (0.04859)

Number of bathrooms -0.03464 (0.00633) -0.01830 (0.00739) -0.02463 (0.00873)

Nov-Dec λcmty 0.019270 (0.00113) 0.034716 (0.00137) 0.014624 (0.00166)
λnbr 0.290305 (0.00444) 0.280418 (0.00900) 0.486750 (0.01252)

Living area (square meters) 0.012764 (0.00018) 0.012817 (0.00021) 0.012909 (0.00045)
Living area2 -2.3E-05 (5.8E-07) -2.1E-05 (6.5E-07) -2.2E-05 (1.8E-06)

Age 0.001705 (0.00025) 0.009891 (0.00032) 0.007944 (0.00037)
Number of bedrooms 0.058756 (0.00317) 0.049642 (0.00363) 0.050991 (0.00426)

Number of living rooms 0.058190 (0.00354) 0.036443 (0.00397) 0.034640 (0.00408)
Number of kitchens 0.164822 (0.01754) 0.141038 (0.01902) 0.144570 (0.03346)

Number of bathrooms -0.02731 (0.00498) -0.01653 (0.00561) -0.01801 (0.00682)

Other Control Variables Yes Yes Yes
District Fixed Effects Yes No No
Community Fixed Effects No Yes Yes
Week Fixed Effects Yes Yes Yes

Notes: This table reports the coefficients of housing attributes of the STAR(2,0) specification of (2.32) and (2.33). Other control variables
include indicator variables for floors, building types, decoration condition, building structures, and elevator. Standard errors are reported in
parentheses.
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Table 2.9: Coefficients of Housing Attributes Obtained from STAR(2,2) Model

QMLE AQSE RAQSE

Sample Variables Coefficients SE Coefficients SE Coefficients SE
(1) (2) (3) (4) (5) (6)

Mar-April λcmty -0.00465 (0.00104) 0.017244 (0.00161) -0.00221 (0.00097)
λnbr 0.002437 (0.00620) 0.124535 (0.02009) 0.013425 (0.02111)
ρcmty 0.579368 (0.01105) 0.251791 (0.03149) 0.462609 (0.02270)
ρnbr 0.269303 (0.00951) 0.144149 (0.03235) 0.476467 (0.02249)

Living area (square meters) 0.015513 (0.00017) 0.014703 (0.00023) 0.015625 (0.00051)
Living area2 -3.2E-05 (5.5E-07) -2.9E-05 (7.6E-07) -3.2E-05 (2.3E-06)

Age -0.00440 (0.00027) 0.004748 (0.00033) -0.00383 (0.00041)
Number of bedrooms 0.038607 (0.00267) 0.044913 (0.00373) 0.037900 (0.00340)

Number of living rooms 0.034234 (0.00294) 0.029209 (0.00418) 0.030376 (0.00315)
Number of kitchens 0.137752 (0.01529) 0.156796 (0.02187) 0.140728 (0.05273)

Number of bathrooms -0.02883 (0.00403) -0.02100 (0.00573) -0.03055 (0.00652)

May-Jun λcmty 0.001414 (0.00106) 0.019328 (0.00202) 0.000538 (0.00108)
λnbr 0.147218 (0.00655) 0.138294 (0.02007) -0.02137 (0.03076)
ρcmty 0.540120 (0.01057) 0.256729 (0.03647) 0.415456 (0.02816)
ρnbr 0.330225 (0.00962) 0.142117 (0.03071) 0.530048 (0.02934)

Living area (square meters) 0.016588 (0.00016) 0.015270 (0.00023) 0.016256 (0.00051)
Living area2 -3.5E-05 (5.4E-07) -2.9E-05 (8.3E-07) -3.4E-05 (2.1E-06)

Age -0.00335 (0.00028) 0.006848 (0.00033) -0.00308 (0.00047)
Number of bedrooms 0.031392 (0.00270) 0.031848 (0.00378) 0.032329 (0.00395)

Number of living rooms 0.032461 (0.00286) 0.029432 (0.00402) 0.028674 (0.00300)
Number of kitchens 0.298551 (0.01386) 0.272176 (0.01930) 0.293797 (0.06571)

Number of bathrooms -0.01676 (0.00391) -0.01515 (0.00546) -0.01916 (0.00665)

Jul-Aug λcmty 0.015776 (0.00111) 0.013718 (0.00189) -0.00070 (0.00137)
λnbr 0.213803 (0.00717) 0.136857 (0.02055) -0.03741 (0.02579)
ρcmty 0.521496 (0.01084) 0.253569 (0.03183) 0.397460 (0.02511)
ρnbr 0.343574 (0.01008) 0.149156 (0.02845) 0.562784 (0.02613)

Living area (square meters) 0.014861 (0.00017) 0.013595 (0.00022) 0.014340 (0.00054)
Living area2 -2.7E-05 (5.1E-07) -2.3E-05 (6.9E-07) -2.6E-05 (2.3E-06)

Age -0.00477 (0.00031) 0.006635 (0.00036) -0.00418 (0.00041)
Number of bedrooms 0.040316 (0.00295) 0.042903 (0.00396) 0.041173 (0.00410)

Number of living rooms 0.043482 (0.00315) 0.040437 (0.00425) 0.039604 (0.00350)
Number of kitchens 0.252999 (0.01511) 0.259863 (0.02020) 0.245021 (0.05318)

Number of bathrooms -0.02969 (0.00423) -0.01847 (0.00584) -0.02907 (0.00706)

Sep-Oct λcmty 0.000994 (0.00119) 0.013345 (0.00171) -0.00047 (0.00121)
λnbr -0.01639 (0.00791) 0.149845 (0.02202) -0.05325 (0.03473)
ρcmty 0.577041 (0.01116) 0.224911 (0.02871) 0.375436 (0.02804)
ρnbr 0.279090 (0.01003) 0.159910 (0.02566) 0.574905 (0.02933)

Living area (square meters) 0.013959 (0.00018) 0.012978 (0.00025) 0.013785 (0.00066)
Living area2 -2.5E-05 (5.5E-07) -2.1E-05 (7.8E-07) -2.5E-05 (2.7E-06)

Age -0.00454 (0.00031) 0.005885 (0.00038) -0.00451 (0.00046)
Number of bedrooms 0.050790 (0.00304) 0.055550 (0.00428) 0.049712 (0.00472)

Number of living rooms 0.039543 (0.00327) 0.040360 (0.00472) 0.041181 (0.00420)
Number of kitchens 0.134800 (0.01532) 0.118975 (0.02156) 0.131567 (0.04658)

Number of bathrooms -0.02855 (0.00456) -0.02134 (0.00652) -0.02912 (0.00712)

Nov-Dec λcmty 0.000325 (0.00100) 0.027002 (0.00233) 0.002953 (0.00168)
λnbr 0.100034 (0.00591) 0.136576 (0.01734) -0.01241 (0.03120)
ρcmty 0.551367 (0.00988) 0.290670 (0.03673) 0.465579 (0.02907)
ρnbr 0.311276 (0.00873) 0.135637 (0.02822) 0.503385 (0.02959)

Living area (square meters) 0.014518 (0.00013) 0.013742 (0.00019) 0.014269 (0.00055)
Living area2 -2.8E-05 (4.1E-07) -2.5E-05 (6.0E-07) -2.7E-05 (2.3E-06)

Age -0.00507 (0.00025) 0.005477 (0.00030) -0.00423 (0.00041)
Number of bedrooms 0.043774 (0.00230) 0.045463 (0.00316) 0.045426 (0.00346)

Number of living rooms 0.039471 (0.00244) 0.034677 (0.00353) 0.035428 (0.00307)
Number of kitchens 0.139307 (0.01162) 0.124396 (0.01615) 0.123489 (0.03095)

Number of bathrooms -0.02403 (0.00344) -0.02360 (0.00480) -0.02609 (0.00546)

Other Control Variables Yes Yes Yes
District Fixed Effects Yes No No
Community Fixed Effects No Yes Yes
Week Fixed Effects Yes Yes Yes

Notes: This table reports the coefficients of housing attributes using the STAR(2,2) specification of (2.32) and (2.33). Other control variables
include indicator variables for floors, building types, decoration condition, building structures, and elevator. Standard errors are reported in
parentheses.
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Table 2.10: Sample Size by Month

(1) (2) (3)
Month Sample Size Percent

1 4,915 4.76%
2 2,764 2.68%
3 8,755 8.49%
4 9,735 9.44%
5 9,436 9.15%
6 9,712 9.42%
7 9,170 8.89%
8 8,929 8.66%
9 7,277 7.05%
10 8,462 8.20%
11 10,042 9.74%
12 13,952 13.53%

Total 103,149 100%
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Appendix

Appendix A: Technical Assumptions

To discuss the asymptotic properties of the proposed QML, AQS and RAQS

estimators of the STAR(p,q) model, it is convenient to denote the true value of a

parameter by adding a subscript ‘0’. A set of conditions under which our asymptotic

results hold are listed below.

Assumption A1: The true value δ0 of the vector of spatial parameters is in the

interior of a compact parameter set ∆ = ∆λ ×∆ρ .21

Assumption A2: {εN,i} are iid(0,σ2
0 ), and E|εN,i|4+ε < ∞ for some ε > 0.

Assumption A2∗: εN ∼ (0,σ2
0 HN), where HN = diag(hN,1, . . . ,hN,N), hN,i >

0,∀i and 1
N ∑

N
i=1 hN,i = 1, and E|εN,i|4+η < c for some η > 0 and constant c for all

N and i.22

Assumption A3: C and T are fixed. The elements of XN(ρ0) are uniformly

bounded for all N, XN(ρ0) has the full rank k+C+T−1, and lim
n→∞

1
NX
′
N(ρ0)XN(ρ0)

exists and is non-singular.

Assumption A3∗: C and/or T grows with N. The elements of X1(ρ0) are uni-

formly bounded for all N, X1(ρ0) has the full rank k, and lim
n→∞

1
NX
′
N(ρ0)Q2(ρ0)X1(ρ0)

exists and is non-singular.

Assumption A4: The spatial weights matrices W` j and Wek are uniformly bounded

in both row and column sum norms and their diagonal elements are zero.

Assumption A5: The matrix AN(λ0) and BB(ρ0) are non-singular and A−1
N (λ0)

and B−1
N (ρ0) are uniformly bounded in both row and column sum norms. Further,

21For the log-likelihood function to be well defined, the parameter space ∆ must be such that An(λ )
and Bn(ρ) are non-singular ∀δ ∈∆. Lee and Liu (2010) show that since ‖∑

p
j=1 λ jW` j‖≤ (∑

p
j=1 |λ j|) ·

max j=1,...,p ‖W` j‖, a viable parameter space for λ j is such that ∑
p
j=1 |λ j| < (max j=1,...,p ‖W` j‖)−1,

which simplifies to ∑
p
j=1 |λ j| < 1 when W` j are row-normalised. However, Elhorst et al. (2012)

argue that this parametrisation is too restrictive and give an alternative procedure to determine exact
boundaries which depends on the specification of W` j. Similar arguments apply for the parameter
space of {ρk}.

22For generality, we allow hN,i to depend on N for each i, which is sensible as heteroskedasticity
may depend on the degree of spatial interaction, e.g., number of neighbours. This parametrisation
is a non-parametric version of Breusch and Pagan (1979) and allows the estimation of the average
scale parameter.
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A−1
N (λ ) and B−1

N (ρ) are uniformly bounded in either row sum norms or column sum

norm, uniformly in λ ∈ ∆λ and ρ ∈ ∆ρ .

The above are standard regularity conditions, extending directly those for the

higher-order spatial autoregressive models of Liu and Yang (2017). What is left

is the identification uniqueness conditions. The cases of fixed C and T fit into the

framework of Liu and Yang (2017) and their Assumption 6 (for homoskedastic case)

and Assumption 6∗ (for the heteroskedastic case) can be used. These conditions can

be modified to suit our large C and/or T cases. The details are available from the

authors upon request.
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Appendix B: Some Technical Details

Lemmas B.1-B.5 below are the extended versions of the selected lemmas from

Lee (2004), Kelejian and Prucha (2001) and Lin and Lee (2010).

Lemma B.1. Let Xn(ρ) be defined in Sec. 3. Let PN(ρ)=XN(ρ)[X′N(ρ)XN(ρ)]
−1X′N(ρ)

and QN(ρ) = IN −PN(ρ) be two projection matrices. Under Assumptions A1,A3

and A4, for each ρ ∈ ∆ρ , PN(ρ) and MN(ρ) are uniformly bounded in both row

and column sum norms.

Lemma B.2. Let AN and BN be two N×N matrices, uniformly bounded in both

row and column sum norms. Then for QN(ρ) defined in Lemma B.1, we have for

each ρ ∈ ∆ρ ,

(i) tr(Am
N) = O(n) for m≥ 1,

(ii) tr(A′NAN) = O(N),

(iii) tr((QN(ρ)AN)
m) = tr(Am

N)+O(1) for m≥ 1,

(iv) tr((A′NQN(ρ)AN)
m) = tr((A′NAN)

m)+O(1) for m≥ 1,

(v) ANBN is uniformly bounded in both row and column sum norms,

(vi) tr(ANBN) = tr(BNAN) = O(N) uniformly.

Lemma B.3. (Moments and Limiting Distribution of Quadratic Forms): For

a given process of innovations {εN,i}, assume εN,i ∼ inid(0,σ2
0 hN,i), where hN,i >

0 and ∑
N
i=1 hN,i = N. Let HN = diag(hN,1, . . . ,hN,N), DrN be N ×N matrices of

elements drN,i j, and crN N×1 vectors of elements crN,i. For QrN = ε ′NDrNεN +c′rNεN

where r = 1, . . . ,R, we have,

(i) E(QrN) = σ2
0tr(HNDrN),

(ii) Var(QrN) = σ4
0tr[HNDrN(HNDrN +HND′rN)]+σ2

0 c′rNHNcrN

+∑
n
i=1(σ

4
N,id

2
rN,iiκN,i +2σ3

N,idrN,iicN,iγN,i)

(iii) Cov(QrN ,QsN) = σ4
0 tr(HNDrN(HNDsN +HND′sN))+σ2

0 c′rNHNcsN

+∑
N
i=1[σ

4
N,idrN,iidsN,iiκN,i +σ3

N,i(drN,iicsN,i +dsN,iicrN,i)γN,i],

where σN,i = σ0
√

hN,i, γN,i = skewness of εN,i, and κN,i = excess kurtosis of εN,i.

Lemma B.4. Under Lemma B.3, if further DrN is uniformly bounded in either
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row or column sum norm, then, we have, for r = 1, . . . ,m,

(i) E(QrN) = O(N), (ii) Var(QrN) = O(N),

(iii) QrN = Op(N), (iv) 1
n [QrN−E(QrN)] = Op(N−

1
2 ).

Lemma B.5. Under Lemma B.3, let QN = (Q1N , . . . ,QmN)
′ and ΣN = Var(Qn).

Assume Σ−1
N exists and denote its square-root matrix by Σ

−1/2
N . If further DrN is

uniformly bounded in both row and column sum norms, and Assumptions 2∗ holds

for {εNi}, then we have,

(i) QrN−E(Qrn)√
Var(QrN)

D−→N (0,1), r = 1, . . . ,m, and (ii)Σ−1/2
N (QN −E(QN))

D−→

N (0, IN).
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Chapter 3

Urbanization, Feminization, and the

Marriage Market

3.1 Introduction

Starting from Marshall (1890), researchers have put numerous efforts into the

area of agglomeration economies, whereby the cluster of firms and workers gen-

erates positive externalities to other firms and workers (Duranton et al. 2015). It

is very natural that majority of the research focusing on the micro-foundation or

the benefits of agglomeration economies is more about the gain in productivity and

the subsequent labour market outcomes (Duranton and Puga 2004). The incentives

arising from the matching outcomes in the marriage market have attracted less at-

tention, although it can be an equally important channel for the process of urbaniza-

tion. In this paper, we study this under explored migration incentives via utilizing

the quasi-experimental settings created by the setup of Special Economics Zones

(SEZs) in China, and China’s accession to the World Trade Organization (WTO).

We combined information of the quasi-experiments wih individual level data on mi-

gration and marital status obtained from the Population Census in China to achieve

the identification.

Understanding the migration incentives arising from the matching outcomes in

the marriage market, especially the heterogeneous responses between females and
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males to the incentives is crucial. The phenomenon of “missing women” resulting

from sex-selective abortion, neglect or infanticide in China and other developing

counties has been well documented (Qian 2008; Almond et al. 2019; Duflo 2012;

Lin et al. 2014; Barcellos et al. 2014). The gender imbalance in rural ares is partic-

ularly severe. The imbalance would be further strengthened if females in the rural

areas are more likely to migrate to urban areas than males, which will eventually

affect the marriage market outcomes. As the marriage market outcomes have non-

negligible influences on fertility, inequality and income redistribution (Fernández

and Rogerson 2001), it justifies the importance to figure out the explicit migration

incentives for males and females. Moreover, studying this question also helps to

better understand the insights of the marital matching. On the one hand, the pos-

itive marital assortative matching based on income or education is documented to

raise inequality (Greenwood et al. 2014; Hryshko et al. 2017). On the other hand,

females are usually easier to “marry up” to persons whose socio-economic origins

are higher than themselves, compared with their males counterparts (Edlund 2005;

Charles and Luoh 2010; Qian 2008). Thus, if the setup of SEZs increase the match-

ing outcomes of the rural-urban female migrants, it may function as a channel that

reduces the inequality.

We examine the causal impacts of the changes of the incentives created by the

setup of SEZs and China’s WTO accession on individuals’ migration patterns, espe-

cially the heterogeneous effects across different genders. We investigate this ques-

tion by utilizing the quasi-experiment of the establishment of the Special Economic

Zones in China since 1980s that exogenously changed the incentives for migration,

attributing to the increased work opportunities and probability to meet up with other

people. The setup of SEZs can be viewed as a pull force that attract migrant workers

to the places where SEZs were granted. To consolidate our findings, we also exploit

another exogenous variations in tariff reductions that caused by China’s accession

to the WTO. We construct a variable using the tariff reductions together with pre-

WTO-accession migration flows to measure the shock from China’s accession to

the WTO as a push force, which makes people have larger tendency to leave their

hometown.
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We conduct the analysis in three steps. We first examine the impacts of the

establishment of SEZs on the number of in-bound migrants at the county level.

We then further study the heterogeneous effects on migration patterns for males

and females by utilizing the individual level Census data. Finally, we examine the

impacts on the marriage market together with the heterogeneity across genders.

Our findings provide evidence for the existence of the incentives arising from the

marriage market which has attracted less attention in the literature.

We obtain the following results. First, we find that the setup of SEZs increase the

population of the counties where SEZs are located. On average, there exists a 3.1%

increase in total population. In particular, the increase in population can be largely

attributed to the increase in in-bound migrants. The number of in-bound migrants

increase by 17%. Moreover, the impacts are heterogeneous on male and female

migrants. We find a sharp and significant increase (up to 40%) of young single fe-

male migrants, while the magnitude for young single males is 14%. These results

are obtained from using the classic staggered difference-in-differences model with

two-way fixed effects. The results remain when we adopt the methods proposed

in Callaway and Sant’Anna (2021) and Sant’Anna and Zhao (2020). Second, em-

powered by the individual level Population Census data, we verify that there is a

unique feminization phenomenon during this process. Among all single migrants,

the proportion of single female migrants increases significantly by 3% due to the

SEZ establishment. We further find that the effects are only for those who are

single and less educated, but not for migrants who are married or with higher edu-

cational levels. This finding is robust when we use China’s accession to the WTO

as the exogenous shock. Third, we find that there are indeed positive and significant

effects on the marriage market outcomes, where female migrants gain advantages

in the marriage market. The setup of SEZs make it easier for them to get married

than their male counterparts.

This paper contributes to the literature on three grounds. First, this paper joins

the literature on the benefits of agglomeration economies. Starting from Marshall

(1890), researchers have reached the consensus over time that cities offer many

benefits for workers, firms, and consumers including higher efficiency and better
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opportunities. Cities are usually associated with higher productivity, wages, and bet-

ter amenities (Rosenthal and Strange 2004; Combes and Gobillon 2015; Diamond

2016; Couture and Handbury 2017). These benefits are created from the sharing

of goods, people and ideas (Duranton and Puga 2004; Holmes 1999; Glaeser and

Mare 2001; Moretti 2004; Ellison et al. 2010). At the same time, these benefits

trigger urbanization and provide incentives for people to migrant. In our paper, we

document the benefits and incentives arising from the better matching outcomes

in the marriage market. We show that it is also an important factor that triggers

urbanization.

Second, we contribute to the literature on the matching patterns in the marriage

market by documenting a unique feminization phenomenon. As stated in Browning

et al. (2014), “Marriages are not formed randomly. Rather, individuals sort them-

selves into marriage based on the attributes of both partners because interactions

in individual attributes generate mutual gains from marriage”. Many studies have

documented the phenomenon of assortative matching on different characteristics in-

cluding income, wages, education, personality traits or even body shapes (Becker

1991; Grossbard-Schectman and Grossbard-Shechtman 1993; Browning et al. 2014;

Choo and Siow 2006; Pencavel 1998; Chiappori et al. 2012; Dupuy and Galichon

2014). The positive marital assortative matching on income and education typically

raises inequality (Greenwood et al. 2014; Hryshko et al. 2017). However, on the

other hand, the fecundity of young women makes them relatively scarce in the mar-

riage market. As a result, they can potentially enjoy the scarcity rents to “marry up”

with persons whose socio-economic origins are higher than them (Edlund 2005;

Hamilton and Siow 2007). Our findings of the unique feminization phenomenon

that young female migrants have advantages in obtaining better outcomes in the

marriage market is in line with this theory.

Third, we contribute to the literature on place-based policies. It is inconclu-

sive whether a place-based policy is effective or not (Neumark and Simpson 2015;

Glaeser and Gottlieb 2008; Elvery 2009; Ham et al. 2011; Lynch and Zax 2011;

Neumark and Kolko 2010). In the context of place-based policies in developing

countries such as China, many researchers find that the experiments of setting up
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SEZs since the late 1970s greatly increased the FDI, together with the local la-

bor market outcomes such as output, employment, wages, and productivity (Wang

2013; Alder et al. 2016; Lu et al. 2019; Xu 2011). Our paper investigate the impacts

of the setup of SEZs from a different angle. We study how the changes in incentives

resulted from SEZ establishment triggered urbanization, and the heterogeneous ef-

fects across genders.

The remainder of the paper is organized as follows. Section 2 discusses the

historical background of the SEZs and China’s accession to the WTO. Section 3

provides the empirical framework for the analysis. Section 4 describes the data and

variables. It also provides some relevant summary statistics. Section 5 reports the

impacts of SEZs and WTO accession on population and migration patterns. Section

6 concludes.

3.2 Background

In this section, we briefly introduce the historical background of the two quasi-

experimental settings we utilize in this paper – the establishment of the Special

Economic Zones in China since the late 1970s and China’s accession to the WTO

in 2001.

3.2.1 The Establishment of Special Economic Zones

The establishment of Special Economic Zones was in a context of China’s “re-

form and opening up” since 1978. The central government of China started the pro-

gram of economic reforms in December 1978 to revitalize the disrupted economy

after the Cultural Revolution, which gradually transformed the Soviet-type centrally

planned economy into a market economy (Shirk et al. 1993).

The experiment of setting up SEZs is one of the most important components

in the economic reforms.1 The first four SEZs, located in two coastal provinces

(Guangdong and Fujian), were formally approved by the central government to be

established in summer 1979 (Crane 1990).
1There are other well-known parts of the reform such as the implementation of the Household

Responsibility System (HRS) (Xu 2011).
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As the experiment of setting up SEZs turned out to be successful, the central

government further granted SEZs to fourteen coastal cities and the South China

island of Hainan in 1984, and to the Pearl River Delta region, Yangtze River Delta

region, and southern Fujian in 1985 (Shirk et al. 1993). Later, SEZs were granted to

other regions in China on a regular basis, and were expanded from coastal areas to

inland areas. Figure 3.5 shows the trajectory of establishing the Special Economic

Zones. Figure 3.6 displays the numbers of SEZs established in each year from 1984

to 2017. There are significantly more SEZs established since 1990. The number of

new SEZ setups fluctuated, and the number peaked in 1992-1993, 2003-2003, 2006,

and 2010-2012. By 2017, 1915 counties in our dataset has at least one SEZ, which

takes up around 67% of all the counties in China.

As the direct purpose of setting up SEZs is to attract foreign direct investment

(FDI) and expand international trade (Shirk et al. 1993; Cai et al. 2008; Xu 2011),

privileges such as concessionary customs and tax treatment were granted to these

SEZs by the government. The first detailed legal rules on SEZs named “the Regula-

tion for Guangdong SEZs" were issued in 1980.2 Details about the preferential poli-

cies for foreign investors were listed in the third chapter of the regulation, including

(1) preferential policies about land-use terms and fees; (2) import duty exemptions

of raw materials, intermediates, and capital equipment for firms in the SEZs; (3)

preferential corporate income tax at 15%, while the rates for firms outside of the

SEZs were 33%; etc.3

As a result, these SEZs greatly increased the FDI, together with the local labor

market outcomes such as output, employment, wages, and productivity (Wang 2013;

Alder et al. 2016; Lu et al. 2019; Xu 2011). Moreover, it is equally important

that the agglomeration economy arising from SEZs may also create better matching

outcomes. It can potentially provide incentives to workers just like the labor market.

2The regulation is available at https://zh.wikisource.org/zh-
hant/%E5%B9%BF%E4%B8%9C%E7%9C%81%E7%BB %8F%E6%B5%8E%E7%89%B9
%E5%8C%BA%E6%9D%A1%E4%BE%8B.

3Wang (2013), Lu et al. (2019) and Alder et al. (2016) have detailed discussions about the pref-
erential policies for SEZs.
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3.2.2 The Accession to the World Trade Organization

The accession to the WTO in 2001 is another milestone in the process of China’s

“reform and opening up”. Related to what has been discussed in the last session,

Figure 3.6 shows that many SEZs were established from 1980 to 2000. Concur-

rently, to meet the conditions of the WTO accession, the preferential policies grad-

ually reduced tariff and non-tariff barriers unilaterally, which laid the groundwork

for the entry into the WTO (Brandt et al. 2017; Lu and Yu 2015).

China’s accession to the WTO further reduced the tariffs and non-tariff barriers.

The unweighted average tariffs dropped by 20% from 15.3% in 2001 to 12.3% in

2004 (Lu and Yu 2015). More specifically, China’s import tariffs on intermediate

inputs fell sharply from around 14% in 2001 to 8% in 2004 (Ma et al. 2019). China

also started to remove the non-tariff barriers by signing the WTO accession protocol,

such as quotas, licenses and tendering requirements, by the end of 2004 (Imbruno

2016). It greatly reduced the trade policy uncertainties besides tariffs.

The reduced tariff and trade policy uncertainties had greatly promoted the eco-

nomics growth in China. There were rapid increases in both exports and imports

(Imbruno 2016; Yu et al. 2020). Total exports increased seven-fold from 2001 to

2016. The productivity growth was rapid since then (Brandt et al. 2012), Closely

related to the productivity growth, firms’ patent applications increased as well (Liu

and Ma 2020).

Moreover, it also had significantly positive impacts on the outcomes in the la-

bor market. The WTO accession created a vast amount of jobs, especially in the

manufacturing industry, and in coastal and urban areas. As a result, a lot of workers

move from rural, less developed inland areas to urban and coastal areas. The mag-

nitude of the internal migration in China was unprecedented. Figure 3.1 shows the

number of migrants reported in different census waves, where the total number of

migrants almost doubled from around half a million in 2000 to more than one mil-

lion in 2005.4 Similar to the impacts arising from SEZs, the accession to the WTO

can potentially create agglomeration economy, which provides another source of

4The migrants are defined as inter-county movers who are above 16, and whose residential ad-
dress is different from the Hukou address.
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incentives to the workers in the marriage market, and the responses to the incentives

may be heterogeneous across genders.

3.3 Empirical Framework

We are interested in two key questions. First, do people respond to the changes

of the incentives in the labor and the marriage markets? Second, are the effects

the same for males and females? Our key identification strategy is to exploit the

setup of SEZs and China’s accession to the WTO as a pull force and push force that

exogenously trigger urbanization across locations. These policy changes and events

provide us with exogenous variation of the incentives that affect people’s migration

decisions. It enables us to investigate the effects on the migrants patterns, and check

if there exists heterogeneity between males and females.

Next, we list the specifications we use to analyze the effects of SEZs and China’s

accession to the WTO. For the effects of SEZs, we adopt a staggered difference-in-

differences model with two-way fixed effects. The base line specification at the

county level is given by

yc,t = β1(SEZc,t)+αc +αp,t + εc,t , (3.1)

where yc,t is the outcome variable, including the logarithm of number of population

and migrants at the county level. 1(SEZc,t) captures the treatment status, where it is

equal to 1 if county c has at least one SEZ at year t. β is our parameter of interest,

representing the effects of SEZ setup. αc and αp,t are the county and province-by-

year fixed effects, respectively.

To investigate whether females respond more to the shocks, we further conduct

the analysis at the individual level, where the specification is as follows.

1(Female)i,c,t = λ1(SEZc,t)+αc +αage +αp,t + εi,c,t (3.2)

where 1(Female)i,c,t is a gender indicator, which equals to 1 if an individual is a

female. λ captures the heterogeneous effects of SEZ establishment across genders.

If females and males share the same level of responses to the shocks caused by

SEZs, λ will be 0. αage are the age fixed effects. 1(SEZc,t), αc, and αp,t are the
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same as in equation (3.1).

We also utilize the exogenous shock created by China’s accession to WTO as a

push force to reassure the findings in Equation 3.2. The regression is specified as

follows.

1(Female)i,c,t = λ ×WTOshockcy×Postt +αc +αage +αp,t + εi,c,t , (3.3)

where 1(Female)i,c,t is a gender indicator as in Equation 3.2. WTOshockcy is

a proxy for treatment intensity, which is to measure the exposure to the shock.

Note that WTOshockcy is constructed at the prefecture-city level (the subscript of

WTOshockcy represents “city"). We will elaborate the way we construct this vari-

able in the next section. Postt is a dummy variable that equals 1 if the year t is 2001

or after. αc, and αp,t are the same as before.

Finally, to examine the impacts on the marriage market, we adopt the following

regression specification:

1(Married)i,c,t = λ1(SEZc,t)+ γ1(SEZc,t)×1(Femalei)+αc +αage +αp,t + εi,c,t .

(3.4)

The parameter γ is the parameter of interest, which represents the difference be-

tween male and female migrants in the probability of getting married. Besides

1(Married)i,c,t , we also investigate other outcome variables such as the dummy vari-

able for marrying with a local resident, as a proxy for the marriage market outcomes.

3.4 Data, Variables and Summary Statistics

3.4.1 Data

We use three primary datasets. We first collect the data of the SEZ establish-

ments from the National Development and Reform Commission of China.5 It con-

5There are two versions of the lists of SEZs published by the National Development
and Reform Commission of China. The first version was published in 2006, which cov-
ered SEZs established by that year. There was an updated version later in 2018. In this
paper, we combine the two versions to have a full list of SEZs together with their setup
year from 1984 to 2017. There is also information about the size, level and main in-
dustries in a SEZ. The lists can be found at http://www.gov.cn/zhengce/zhengceku/2018-
12/31/5434045/files/6eea5e4b78a645c1a27c231b152792ef.pdf, and
https://www.ndrc.gov.cn/xxgk/zcfb/gg/200704/W020190905487497735524.pdf.
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tains the names of the SEZs together with the year of establishments. To match a

SEZ with the county where it is located in, we crape the data using the name of

a SEZ or the name of a SEZ’s management committee from Baidu Maps (a main

mapping service application in China).

The second dataset we use is the National Population Census in China. There

are six waves of the National Population Census (1982, 1990, 2000, 2005 and 2010)

covered in this paper. We obtain individuals’ gender, age, marital status, occupa-

tion, and industry from the Census. It also provides us with information about the

population if we aggregate the individual data. Moreover, we are able to find in-

formation about people’s residential status from the 2000 Census onward, through

which we can define the internal migrants in China and investigate the migration

patterns.

The third dataset is the exposure to trade shocks caused by China’s accession

to the WTO. Following Yu et al. (2020), we combine three source to construct the

metrics for measuring the exposure to trade shock, which are the 2002-2013 World

Bank Trade Analysis and Information System (TRAINS) dataset, the Annual Sur-

vey of Industrial Firms (ASIF), and the 2000 Population Census.

3.4.2 Variables and Summary Statistics

In this section, we describe how we prepare our data for the empirical analysis

and present the basic summary statistics.

Figure 3.2 plots the the sex ratio of migrants and local residents, which is defined

as number of males divided by number of females. It is worth noting that the sex

ratio of migrants plunges for young migrants. However, we do not observe such

pattern for local residents. Moreover, we take a closer investigation on the numbers

of female and male migrants, which are shown in Figure 3.3. There are more female

migrants than male migrants if we compare migrants aged between 14 and 20. This

pattern flips for older migrants. Figure 3.4 is the self-reported marriage rate by age

of female and male migrants, showing that the gap of married rates between female

and male migrants peak at around 25 years old. These summary statistics indicate

that there may exist different incentives that make the migration decisions differ
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across genders.

For analyzing the impacts of SEZs on migration, we create a list of SEZs to-

gether with the setup year, and match them with the corresponding counties. Table

3.1 reports the number of total population, migrants and and sex ratios across years

in the counties that ever had one SEZ established. It shows that there was an in-

crease in the number of total population and migrants. At the same time, sex ratios

in these counties decreased.

For analyzing the impacts of China’s accession to the WTO, we construct a

prefecture-city level6 variable to measure cities’ exposure to the shocks caused by

the WTO accession. This variable is designed to be a proxy representing the extend

to which the accession to the WTO provides a push force that encourages people

to move to other cities to work. It is constructed in three steps. First, we calculate

the prefecture-city-year specific tariff reduction over 2003-2013. It measures how

attractive a city is to workers. Greater tariff reduction are usually associated with

more job opportunities, as the tariff reduction is a direct measure of the trade shock.

Second, for each prefecture-city-year, we calculate the sum of the tariff reduction

of all other cities that have migration flow between the two cities, weighted by the

share of the migration flow. The migrantion flow data are from the 2000 Population

Census, which is the pre-WTO-accession period. Then we sum them up across years

to obtain our measure of WTO shocks. Equation (3.5) shows how we construct the

metric, where mi is city i’s total number of outbound migrants, and mi j is the number

of city i’s outbound migrants that work in city j.7

WTOShockit = ∑
j 6=i

tari f f jt×
mi j

mi
,

WTOShocki =
2013

∑
t=2003

WTOShockit .

(3.5)

6The counties (or county-level cities) are sub-units of prefecture-level cities in China’s adminis-
trative hierarchy (Qin and Zhang 2014).

7See Yu et al. (2020) for a more detailed discussion of constructing the exposure to the WTO
accession.
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3.5 Results

3.5.1 The Impacts of SEZs on Population

We first examine the impacts of SEZs on population and number of migrants

at the aggregate level (county level). Table 3.2 reports the standard two-way fixed

effects (TWFE) estimation results of the effects of SEZs on population and migrants

from estimating Equation (3.1). Column (1) of Table 3.2 suggests that on average,

counties experienced a 3.1% increase in the total population.

To take a closer investigation on the components of the increase in population,

we further restrict our samples to (all) migrants, female migrants, and male mi-

grants, respectively. It enables us to compare the magnitudes of the effects of the

SEZs across different groups of people, and figure out the potential key drivers of

the population growth illustrated in column (1). Column (2)-(4) report the effects of

SEZs on number of young migrants. We choose the dependent variables to be young

migrants aged between 16-25, as they are most likely to be facing marital decisions,

and are probably the most responsive to the incentives in the marriage market, as

shown in Figure 3.4.8 Column (2) suggests that there is a 17% increase in number

of inbound migrants after the SEZ establishment. Column (3) and (4) compares the

magnitudes of the effects for single female and male migrants. We find a 40% in-

crease in single female migrants, while the effect for single male migrants are only

14% and insignificant.

Figure 3.7 plots the dynamic effects of SEZs on the number of single female and

male migrants. There are two main findings. First, we do not observe evidence for

pre-treatment non-parallel trends. Second, not surprisingly, the magnitudes of the

effects for single female migrants are larger than that of male migrants.

Panel B.1 and Panel B.2 of Table 3.2 report the results using the method pro-

posed by Callaway and Sant’Anna (2021) and Sant’Anna and Zhao (2020). Their

estimation procedures for the staggered DiD setups are designed to circumvent the

8The legal marriageable age in China is 22 for males and 20 for females. There exists married
people younger than the marriageable age in Figure 3.4, because the marital status in the census is
self-reported. Early marriage is more prevalent in developing countries, especially for less developed
countries and rural areas (Singh and Samara 1996).
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“negative weighting problem” discussed in Goodman-Bacon (2021).9 Thus, we are

able to obtain more credible results of the effects on migrants. Panel B1 shows the

results of using “not-yet-treated” groups as the control groups. The magnitudes of

the effects on total population remain almost the same as the TWFE results. Col-

umn (2) shows that the magnitude of the effect of SEZs on all migrants are much

larger compared with the TWFE results. There is a 48% increase in the number of

migrants for the treatment group. The results of single female migrants and single

male migrants in column (3) and (4) also show the same pattern. It is worth noting

that the effects on single male migrants become significant, but the magnitude is

still smaller than that of female migrants. Panel B.2 is the estimation results using

“never-treated” groups as the control groups. The results are similar as in Panel

B.1. Figure 3.8 plots the corresponding dynamic effects of the SEZs on population

and migrants. Panel A shows that the effects on population is not very salient in

the next few years after the establishment of SEZs. The effects for migrants, single

female migrants and male migrants are shown in Panel B, C and D. There are clear

patterns that SEZs increase number of inbound migrants, and the magnitudes grow

with time.

3.5.2 The Impacts of SEZs on Gender Balance

There are suggestive results in Table 3.2 showing that single female migrants

are more responsive to the incentives of SEZs. In this section, we further investigate

the differential effects of SEZs on single male and female migrants by estimating

a model at individual level. Specifically, we use the dummy variable for female as

the dependent variable. It allow us to estimate a DiD model at the individual level

as in Equation (3.2) to investigate the changes in gender balance before and after

a SEZ establishment. Moreover, we present the estimation results of individuals

with different education level and marital status to have a clearer understanding

of the potential channels through which the SEZs affect young people’s migration

decisions. It also enables us to verify if the marriage market is playing a role.

9The idea is to choose proper control groups that are free from the “negative weighting prob-
lems”, and identify the disaggregated “group-time average treatment effects”.
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To check the changes in gender balance before and after a SEZ establishment,

we first estimate a staggered DiD model at individual level as in Equation (3.2). The

results are presented in Table 3.3. Column (1) shows that the effects of SEZs on the

female indicator are positive and significant. It means conditional on young single

migrants, the percentage of females tend to increase after the SEZ establishment.10

However, we do not obtain the same results for married migrants, as shown in col-

umn (4), which indicates that the pattern in column (1) can potentially be attributed

to the incentive in the marriage market. As a result, we observe that single migrants

are more responsive.

Next, we further divide our sample in column (1) into two groups – migrants

with low education and high education.11 The results are presented in column (2)

and (3). It shows that although the magnitude of the effects are almost the same for

migrants with low education and high education, the results are more significant for

the former group. This finding is also in line with the prediction in Edlund (2005)

and Hamilton and Siow (2007). We conduct additional robustness checks by adding

migrants’ working industry and occupation fixed effects. Our finding remains, and

the results are presented in Table 3.4.

3.5.3 The Impacts of China’s Accession to the WTO

In Section 3.5.1 and 3.5.2, we exploit the setup of special economic zones as a

pull force that triggers the urbanization process. We observe that females, especially

young single females are more responsive than their male counterparts. We now

present the evidence of the differential responses to the incentives across genders

from another perspective. In this section, we utilize China’s accession to the WTO

as a push force to further consolidate our findings.

Again, we examine the impacts on gender balance by using the female dummy

as our outcome variable. Our analysis in this section differs from Section 3.5.2 in

two respects. First, the shock induced by China’s accession to the WTO are used

10We focus on migrant workers who are from rural areas (with a rural Hukou).
11Migrants with low education are defined as people who have a junior high school education

or below, while migrants with high education are defined as people who have a senior high school
education or above.
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as a push force that triggers migrants to move to other cities. On the contrary, the

establishment of SEZs are a pull force that attract migrants. As a results, we expect

a larger decrease in population after the WTO accession for places that received

larger shocks, while we observe a larger increase after the shock of SEZs. Second,

the shocks induced by China’s accession to the WTO in this section are measured

at the prefecture-city level due to the issue of data availability, while county level

shocks are used in Section 3.5.1.

We adopt a similar regression specification as in Section 3.5.2 from estimating

Equation (3.3). Column (1) in Table 3.5 shows that the effects of the WTO ac-

cession on the female indicator are positive and significant, which indicates single

females are more responsive than their male counterparts. On the other side, there

are no significant effects for married migrants as shown in column (4). If we fur-

ther decompose the sample used in column (1) into single migrants with different

educational levels, the results are reported in columns (2) and (3). It shows that

low educated single females are affected more than high educated ones. Lastly, we

further include industry and occupation fixed effects into the model. The results are

presented in Table 3.6. The findings remain the same.

3.5.4 The Impacts on the Marriage Market Outcomes

We have documented the phenomenon that the females are more responsive to

the incentives created by the SEZs or the WTO accession. We argue that the reason

can be that migrants move not only because of the incentives in the labor market,

but also the incentives in the marriage. Moreover, female migrants have advantages

over male migrants as predicted and documented by Edlund (2005), Hamilton and

Siow (2007), and Qian and Qian (2017). In this section, we examine the impacts of

the SEZ establishment on the marriage market outcomes to check if the empirical

findings support the hypothesis that females are more responsive because they have

advantages in the marriage market.

Table 3.7 presents the results from estimating Equation 3.4. The dependent

variable for column (1) and (2) is a dummy variable indicating the marital status

of an individual. The parameter of interest is γ in Equation (3.4), which is the
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coefficient of the triple difference-in-differences estimator that measures the het-

erogeneous effects of SEZs on the probability of being married. It shows that the

SEZ establishments are indeed having an positive effect for females, and the effect

is significantly larger than male migrants. Column (3) and (4) reports the results of

using the dummy variable of marrying to a local resident as the dependent variable.

We also find that it is easier for female migrants to be married and/or marry to local

residents than males.12 The agglomeration economy not only provides incentives in

the marriage market to female migrants that make them move to places with SEZs,

but also improved the matching results.

3.6 Conclusion

The incentives for urbanization and migration arising in productivity gains and

the subsequent labour market outcomes improvements has been studied intensively

in the literature. However, there is less attention on understanding the incentives

in the marriage market. In this paper, we study this under explored migration in-

centives via utilizing the quasi-experimental settings created by the setup of Special

Economics Zones in China, and China’s accession to the World Trade Organiza-

tion. We combine them with individual level data on migration and marital status

obtained from the Population Census in China to identify the differential impacts

between males and females.

We find that the setup of SEZs increases the population of the counties where

SEZs are located. In particular, the increase in population can be largely attributed

to the increase in in-bound migrants. Moreover, the impacts are heterogeneous on

male and female migrants. We find larger increase of young single female migrants

than males. Also, empowered by the individual level Population Census data, we

verify that there is a unique feminization phenomenon during this process. Among

all single migrants, the proportion of single female migrants increases significantly

due to the SEZ establishment. We further find that the effects are only for those who

are single and less educated, but not for migrants who are married or with higher

12The coefficient γ in the column (4) is marginally significant, where the p-value is 0.11.
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educational level. This finding is robust when we use China’s accession to the WTO

as the exogenous shock. Lastly, we find that there are indeed positive and significant

effects on the marriage market outcomes, where female migrants gain advantages

in the marriage market. The setup of SEZs make it easier for them to get married

than their male counterparts. Taken together, these findings point to the existence of

the incentives for urbanization and migration arising from the potentially improved

outcomes in the marriage market. Specifically, the incentives are larger for females

compared with males.

While our findings highlights the role of incentives arsing from the marriage

market. Future work would benefit from carrying out a welfare analysis for different

groups of people who experienced the shocks of the SEZ establishment.
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Figure 3.1: Total Number of Migrants

Notes: This figure shows the total number of migrants who are above 16 in each census year. Mi-
grants are defined as inter-county movers whose residential address is different from his/her Hukou
address. The numbers are counted in 1 million.
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Figure 3.2: Sex Ratio by Age of Migrants and Local Residents

Notes: The sex ratio is defined as total number of males divided by number of females in the National
Population Census of China.
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Figure 3.3: Number of Single Migrants

Notes: Number of migrants are counted in 10,000. Data are obtained by aggregating number of
migrants across all six waves of the National Population Census of China.
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Figure 3.4: Marriage Rate by Age of Female and Male Migrants

Notes: Data are obtained by aggregating marital status of migrants across all six waves of the Na-
tional Population Census of China.
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Figure 3.5: Establishment of SEZs
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Figure 3.6: Numbers of SEZs established by Year
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Figure 3.7: Time-Varying Effects of SEZ on Migrants -County Level (TWFE)

Notes: This figure reports the estimated effects of SEZ on innbound single female (Panel A) and
male (Panel B) migrants who are aged between 16 and 25. The effects of years relative to SEZ
establishment are plotted, along with bars representing the 95% confidence intervals.

190



Figure 3.8: Time-Varying Effects of SEZ on Population - County Level Analysis (DiD)

Notes: The dynamic ATT’s are plotted using the staggered DiD model, based on Callaway and
Sant’Anna (2021) and Sant’Anna, Pedro, and Zhao (2020). The control group consists of the coun-
ties that were never-treated during our sample period. Panel A reports the effects on total population.
Panel B, C and D report the effects on migrants aged between 16 and 25.
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Table 3.1: Summary of Statistics – County Level

Mean SD Min Max N
Treated Year (as of 2015) 2,003.65 7.63 1,984.00 2,015.00 1768
log(Treated Area) (as of 2015. Unit: ha) 956.53 1,533.37 5.30 31,337.84 1768
log(Population) in 1990 13.49 0.81 9.93 15.45 1338
log(Population) in 2000 13.56 0.66 10.71 15.34 1508
log(Population) in 2010 13.61 0.70 10.00 16.07 1702
log(Migrants) in 1990 8.14 2.37 0.00 14.00 1338
log(Migrants) in 2000 9.77 1.36 0.00 14.16 1508
log(Migrants) in 2010 10.94 1.62 0.00 15.38 1702
Sex ratio (Males to Females) in 1990 1.06 0.15 0.76 3.81 1338
Sex ratio (Males to Females) in 2000 1.05 0.05 0.81 1.36 1508
Sex ratio (Males to Females) in 2010 1.04 0.11 0.69 2.83 1702

Note: The sample includes all counties that ever had a SEZ established during our sample period.
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Table 3.2: Average Effects of SEZ on Population and Inbound Migrants – County Level

Total
Population

All
Migrants

Single Female
Migrants

Single Male
Migrants

Panel A (1) (2) (3) (4)

Treatment × After 0.031** 0.170* 0.399*** 0.141
(0.013) (0.099) (0.122) (0.121)

Observations 9200 9200 9200 9200
Adjusted R2 0.804 0.453 0.483 0.473
Mean of Dep. Variable 13.539 7.421 4.848 5.433
County FE Yes Yes Yes Yes
Province × Year FE Yes Yes Yes Yes

Panel B.1

Treatment × After 0.036* 0.476*** 0.686*** 0.557***
(0.019) (0.106) (0.126) (0.127)

Method DiD DiD DiD DiD
Control Group Not-yet Not-yet Not-yet Not-yet

Panel B.2

Treatment × After 0.033* 0.437*** 0.669*** 0.561***
(0.020) (0.105) (0.125) (0.127)

Method DiD DiD DiD DiD
Control Group Never Never Never Never

Note: Treatment status 1(SEZ) equals 1 starting from the year of SEZ establishment. Col-
umn (1) reports the effects of the SEZ establishment on total population. Column (2)–(4)
reports the effects on inbound migrants who are aged between 16 and 25 (inclusive). Stan-
dard errors in parentheses are corrected for heteroskedasticity and clustered at the county
level. Asterisks ***/**/* denote p<0.01, p<0.05, p<0.1.
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Table 3.3: Average Effects of SEZ on Female Indicator – Individual Level

Single
Migrants

Single Migrants
with Low Education

Single Migrants
with High Education

Married
Migrants

(1) (2) (3) (4)
Dependent Variable 1(Female) 1(Female) 1(Female) 1(Female)

1(SEZ) 0.030** 0.031** 0.032 -0.011
(0.013) (0.014) (0.022) (0.012)

Observations 136311 96100 39910 48515
Adjusted R2 0.061 0.080 0.077 0.071
Mean of dep. var 0.449 0.440 0.459 0.650
County FE Yes Yes Yes Yes
Province × Year FE Yes Yes Yes Yes
Age FE Yes Yes Yes Yes

Note: The dependent variable is 1(Female), which equals 1 if an individual is female and 0 otherwise. Individuals are located in counties that ever had
SEZ during our sample period. Across all columns, we focus on individuals who are aged between 16 and 25 (inclusive) and are originally from rural
Hukou. We use weights in the estimation to adjust for the different sampling sizes across census years. Standard errors in parentheses are corrected for
heteroskedasticity and clustered at the county level. Asterisks ***/**/* denote p<0.01, p<0.05, p<0.1
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Table 3.4: Average Effects of SEZ on Female Indicator with Ind and Occ FE – Individual Level

Single
Migrants

Single Migrants
with Low Education

Single Migrants
with High Education

Married
Migrants

(1) (2) (3) (4)
Dependent Variable 1(Female) 1(Female) 1(Female) 1(Female)

1(SEZ) 0.033*** 0.033** 0.034 -0.013
(0.012) (0.014) (0.022) (0.010)

Observations 136310 96100 39909 48514
Adjusted R2 0.100 0.136 0.104 0.265
Mean of dep. var 0.449 0.440 0.459 0.650
County FE Yes Yes Yes Yes
Province × Year FE Yes Yes Yes Yes
Age FE Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes
Occupation FE Yes Yes Yes Yes

Note: The dependent variable is 1(Female), which equals 1 if an individual is female and 0 otherwise. Individuals are located in counties that ever had
SEZ during our sample period. Across all columns, we focus on individuals who are aged between 16 and 25 (inclusive) and are originally from rural
Hukou. We use weights in the estimation to adjust for the different sampling sizes across census years. Standard errors in parentheses are corrected for
heteroskedasticity and clustered at the county level. Asterisks ***/**/* denote p<0.01, p<0.05, p<0.1
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Table 3.5: Average Effects of the WTO Accession on Female Indicator – Individual Level

Single
Migrants

Single Migrants
with Low Education

Single Migrants
with High Education

Married
Migrants

(1) (2) (3) (4)
Dependent Variable 1(Female) 1(Female) 1(Female) 1(Female)

WTOshock × Post 0.014** 0.025*** 0.007 0.008
(0.006) (0.009) (0.009) (0.009)

Observations 90725 72819 17779 18439
Adjusted R2 0.103 0.136 0.116 0.117
Mean of dep. var 0.468 0.494 0.427 0.586
County FE Yes Yes Yes Yes
Province × Year FE Yes Yes Yes Yes
Age FE Yes Yes Yes Yes

Note: The dependent variable is 1(Female), which equals 1 if an individual is female and 0 otherwise. Years 2000 and 2015 are used. Across all columns,
we focus on individuals who are aged between 16 and 25 (inclusive) and are originally from rural Hukou. We use weights in the estimation to adjust
for the different sampling sizes across census years. Standard errors in parentheses are corrected for heteroskedasticity and clustered at the county level.
Asterisks ***/**/* denote p<0.01, p<0.05, p<0.1
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Table 3.6: Average Effects of the WTO Accession on Female Indicator – with Ind and Occ FE

Single
Migrants

Single Migrants
with Low Education

Single Migrants
with High Education

Married
Migrants

(1) (2) (3) (4)
Dependent Variable 1(Female) 1(Female) 1(Female) 1(Female)

WTOshock × Post 0.012** 0.024*** 0.007 -0.001
(0.006) (0.009) (0.009) (0.009)

Observations 90725 72819 17779 18439
Adjusted R2 0.138 0.182 0.142 0.280
Mean of dep. var 0.468 0.494 0.427 0.586
County FE Yes Yes Yes Yes
Province × Year FE Yes Yes Yes Yes
Age FE Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes
Occupation FE Yes Yes Yes Yes

Note: The dependent variable is 1(Female), which equals 1 if an individual is female and 0 otherwise. Years 2000 and 2015 are used. Across all columns,
we focus on individuals who are aged between 16 and 25 (inclusive) and are originally from rural Hukou. We use weights in the estimation to adjust
for the different sampling sizes across census years. Standard errors in parentheses are corrected for heteroskedasticity and clustered at the county level.
Asterisks ***/**/* denote p<0.01, p<0.05, p<0.1
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Table 3.7: Average Effects of SEZ on Marriage – Individual Level

(1) (2) (3) (4)
1(Married) 1(Married) 1(Married to Local) 1(Married to Local)

1(SEZ) × 1(Female) 0.114*** 0.133*** 0.004** 0.003
(0.005) (0.003) (0.002) (0.002)

1(SEZ) -0.064*** -0.076*** -0.006 -0.005
(0.009) (0.006) (0.007) (0.007)

Observations 283977 283977 85466 85466
Adjusted R2 0.080 0.470 0.276 0.277
Mean of dep. var 0.421 0.421 0.054 0.054
County FE Yes Yes Yes Yes
Province × Year FE Yes Yes Yes Yes
Age FE No Yes No Yes

Note: This table reports the effects of SEZ on marriage for rural-urban migrants. The dependent variable is 1(Married) for column (1) and (2), which
equals 1 a migrant is married. The dependent variable is 1(Married to Local) for column (3) and (4), which equals 1 if a migrant is married to a local
resident. Across all columns, we focus on migrants who are aged between 16 and 30 (inclusive) and are originally from rural Hukou. We use weights
in the estimation to adjust for the different sampling sizes across census years. Standard errors in parentheses are corrected for heteroskedasticity and
clustered at the county level. Asterisks ***/**/* denote p<0.01, p<0.05, p<0.1
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Appendix

Figure A1: Exposure to China’s Accession to the WTO

Notes: This figure plots the exposure to China’s accession to the WTO, constructed using Equation
(3.5). Darker colors represent stronger push force to migrant workers, which makes them have lager
tendency to leave.
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Figure A2: Origin Counties

Notes: This figure plots the origin counties used in Table 3.6.
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