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Bayesian and Machine Learning Methods with
Applications in Asset Pricing

YAOHAN CHEN

Abstract

The dissertation consists of three essays on asset pricing by constructing new data

set and developing new methodologies. In the first chapter, we conduct empirical

studies on the volatility-managed portfolios in the Chinese stock market. Using data

from the Chinese stock market, we have found that the main empirical findings in

Moreira and Muir (2017) break down. Based on the empirical findings, we exploit a

comprehensive set of 99 equity strategies in the Chinese stock market to analyze the

value of managed portfolios. Based on these 99 equity trading strategies, we find that

there exists no systematic gain from scaling the original portfolios using volatility.

Our empirical results suggest that one should be careful to use volatility-managed

portfolios in practice as the expected performance gains are rather limited.

In the second chapter, we review a Bayesian interpretable machine-learning

method proposed by Kozak, Nagel, and Santosh (2020). We show how the method

can link two strands of literature, namely the literature on empirical asset pricing

and the literature on statistical learning. Based on a recently developed data-cleaning

technique, we obtain 123 financial and accounting cross-sectional equity characteris-

tics in the Chinese stock market. When applying the method of Kozak, Nagel, and

Santosh (2020) to the Chinese stock market, we find that it is futile to summarize

the stochastic discount factor (SDF) in the Chinese stock market as the exposure of

several dominant cross-sectional equity characteristics in-sample. A cross-validated

out-of-sample analysis further supports this finding.

In the third chapter, we propose several alternative parametric models for spot

volatility in high frequency, depending on whether or not jumps, seasonality, and

announcement effects are included. Together with these alternative parametric



models, nonlinear non-Gaussian state-space models are introduced based on the fixed-

k theory of Bollerslev, Li, and Liao (2021). According to Bollerslev, Li, and Liao

(2021), the log fixed-k estimator of spot volatility equals the true log spot volatility

plus a non-Gaussian random variable. Bayesian methods are introduced to estimate

and compare these alternative models and to extract volatility from the estimated

models. Simulation studies suggest that the Bayesian methods can in general work

well. Empirical studies using high-frequency market indexes and individual stock

prices reveal several important results. As an application of extracting volatility, we

quantify the strategic value of information.
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Chapter 1

Do Volatility-Managed Portfolios

Work? Empirical Evidence from the

Chinese Stock Market

1.1 Introduction

Volatility played a vital role in financial decision making, including, for instance,

derivatives pricing, portfolio selection, and risk management (Engle, 2004). Early

studies such as Fleming, Kirby, and Ostdiek (2001) and Fleming, Kirby, and Ostdiek

(2003) document the advantage of using volatility information to improve the port-

folio performance. More recent studies further document the gain associated with

volatility-managed portfolios of trading strategies (for instance, Ang, 2014; Barroso

and Santa-Clara, 2015; Daniel and Moskowitz, 2016; Moreira and Muir, 2017, 2019;

Eisdorfer and Misirli, 2020).

The basic idea of the volatility-managed portfolio is to scale the original portfolios

(strategies) by taking conservative positions in the underlying factors when volatility

was high and taking more aggressively levered positions following periods of low

volatility. This idea can be generally understood from the global minimum variance

portfolio in the conventional optimal portfolio theory (see Basak, Jagannathan, and

1



Ma, 2009).

Let Σ denote the variance-covariance matrix of assets and µ denote the corre-

sponding expected returns of assets. Then the optimal portfolio theory suggests

that the optimal allocation weights, w, assigned to assets contained in the global

minimum variance portfolio is proportional Σ−1µ. If µ is fixed, then the magnitude

of each element in w is proportional to Σ−1. Consequently, volatility management

can be heuristically interpreted as putting smaller weights on assets with greater

volatility and larger weights on those with less volatility.

However, all these documented successes of using volatility to manage portfolios

are mainly restricted to one or a few strategies (factors). Specifically, those portfolios

studied in Ang (2014) are mainly about conventional benchmark factors (Fama-

French factors) while both the discussions in Barroso and Santa-Clara (2015) and

Daniel and Moskowitz (2016) are restricted to momentum-related trading strategies.

By contrast, Moreira and Muir (2017) make the corresponding discussions mainly

based on 10 leading factors that are widely used in empirical asset pricing literature

by adding some recently proposed strategies such as the betting-against-beta strategy

in Frazzini and Pedersen (2014). In this regard, those empirical findings fail to

provide a broad view demonstrating how general these volatility-managed portfolios

can perform improvements in comparison to the unmanaged ones.

This issue has been noticed in Cederburg, O’Doherty, Wang, and Yan (2020). In

particular, Cederburg, O’Doherty, Wang, and Yan (2020) accentuate that, although

using the set of leading factors as anomaly portfolios (as in Moreira and Muir,

2017) for analysis reconciles well with the leading asset pricing models, it fails to

accommodate the recent findings from some machine learning methods that a larger

set of anomalies (firm-level characteristics) is needed to be jointly studied (see Kelly,

Pruitt, and Su, 2019; Kozak, Nagel, and Santosh, 2020; Kozak, 2020). In other words,

although there exists a widely acknowledged base for volatility-managed portfolios,

their performance is far from reaching a consensus.

Other than the debate between Moreira and Muir (2017) and Cederburg,

2



O’Doherty, Wang, and Yan (2020), Barroso and Detzel (2021) further point out

that the documented extra gain from managing equity portfolios via volatility-timing

vanishes once transaction costs of specific forms are accounted (for instance, the

look-ahead bias considered in Liu, Tang, and Zhou, 2019). Last but not least, all the

existing studies on this topic mainly focus on using data constructed from the U.S.

stock market. Rarely is there any empirical analysis on whether this volatility-based

strategy works in other stock markets.

We begin this chapter by applying the market volatility-timing strategy in Moreira

and Muir (2017) to the Chinese stock market. To our surprise, we find that some

documented empirical findings for the U.S. market do not hold in the Chinese stock

market. As a result, our research motivation naturally stems from asking to what

extent shall we support using information associated with volatility for portfolio

management for gaining performance improvement? Or put it in another way, is

volatility management as a portfolio management strategy still broadly applicable to

other markets even without accounting for some recently proposed explanations (for

instance those interpretations made from accommodating trading costs, Liu, Tang,

and Zhou, 2019; Barroso and Detzel, 2021) for the controversial performance of

volatility-managed portfolios?

Regarding the measurement for portfolio performance, Barroso and Santa-Clara

(2015) and Daniel and Moskowitz (2016) assess whether investors can improve

anomaly portfolios’ performances by scaling holding positions of the original portfo-

lios based on comparing the Sharpe ratios of “volatility-managed” portfolios with

those earned by the corresponding unscaled strategies. This is the so-called direct

comparison. We follow this approach as in Cederburg, O’Doherty, Wang, and Yan

(2020) to compare the volatility-managed portfolios with the un-managed ones

directly. Specifically, we construct a relative comprehensive 99 equity (anomaly)

portfolios using data collected from the Chinese stock market and the associated 99

volatility-managed anomaly portfolios. We find that for these 99 volatility-managed

anomaly portfolios, only 14 of them can generate statistically significant Sharpe ratio

3



differences, which suggests that there exists no systematic evidence to support that

investors can earn performance improvements from scaling the original anomaly

portfolios using the volatility of previous period.

Apart from the direct comparison using the Sharpe ratios, we also apply another

empirical method using spanning regression to check whether we can obtain perfor-

mance gain by adjusting the holding positions via lagged volatility. In comparison

to measuring performance gain using the Sharpe ratios directly, spanning regres-

sion was initially suggested in Moreira and Muir (2017). The essence is rooted

in the appraisal ratio closely related to the asset pricing model test or comparison

(see Gibbons, Ross, and Shanken, 1989; Barillas and Shanken, 2018). The main

objective of this spanning regression methodology is to check whether there exists

a statistically significant alpha by running univariate time-series regression using

monthly excess returns (we will come back on this and discuss it more in detail

both in Section 1.2 and Section 1.4). Given this objective associated with spanning

regression, we can see that the major implication of spanning regression is whether

investors can construct a new portfolio with higher Sharpe ratio by combining the

volatility-managed portfolio with the original un-managed portfolio. This is why it is

usually referred to the combination strategy in the literature. By applying spanning

regression on our constructed broader sample of anomaly portfolios (99 equity trad-

ing strategies) in the Chinese stock market, we find 71 out of 99 volatility-managed

anomaly portfolios earn positive alphas but with only 16 of them are statistically

significant at a generally acceptable significance level. Besides, we also find another

8 volatility-managed portfolios earn significantly negative in-sample alpha generated

from spanning regression. Thus, we have 24 anomaly portfolios in all that can be

acceptably regarded as gaining performance improvement by combing the original

ones with the ones scaled via volatility.

The rest of this chapter is summarized as follows: In Section 1.2, we review some

basic concepts about volatility-managed portfolios and some technical details that

have been discussed in literature. In Section 2.3, we discuss how we collect, clean,

4



and construct anomaly portfolios in the Chinese stock market. In Section 1.4, we

conduct the empirical analysis of this chapter to check the performance of volatility-

managed portfolios. Finally, Section 1.5 concludes this chapter.

1.2 Volatility-managed Portfolios: A Review

1.2.1 Construction of volatility-managed portfolios

As suggested in Moreira and Muir (2017), the basic idea for constructing volatility-

managed portfolios is scaling an excess return by the inverse of its conditional

variance. Thus, in each month the volatility-managed strategy increases or decreases

risk exposure to the volatility-managed portfolio according to the conditional vari-

ance. The managed portfolio is then1

fσ
t+1 =

c

σ̂2
t (f)

ft+1, (1.1)

where ft+1 is the buy-and-hold portfolio excess return, σ̂2
t (f) is a proxy for the

portfolio’s conditional variance with σ̂2
t (f) constructed by using previous month’s

realized variance defined by

σ̂2
t (f) = RV 2

t (f) =
1∑

d=1/22

(
ft+d −

∑1
d=1/22 ft+d

22

)2

. (1.2)

In practice, when there are no 22 trading days in a month, we may the use the

alternative proxy for conditional variance suggested in Cederburg, O’Doherty, Wang,

and Yan (2020) as follows

σ̂2
t (f) =

22

Jt

Jt∑
j=1

(
f j
t

)2
. (1.3)

where j = 1, . . . , Jt index days in month t and f j
t is the excess return for a given

portfolio (factor) on day j of month t. The constant c in (1.1) controls the average

1Since ft+1 generally refers to factors, which are usually constructed as portfolios based on
the cross-sectional sort on asset-specific characteristics, the volatility-managed portfolio can be
alternatively interpreted as “PoP”, namely the portfolio of portfolios. Besides, we also emphasize that
we directly apply realized volatility to scale excess returns.
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exposure of the strategy. It is selected to make the managed portfolio, fσ
t+1, have the

same unconditional standard deviation as the un-managed portfolio, ft+1. In this

chapter, we use the method of Cederburg, O’Doherty, Wang, and Yan (2020) (i.e.

(1.3)) to calculate realized volatility.

To see the role of c in (1.1), first note that the unconditional variance of fσ
t+1 can

be calculated as follows

Var
[
fσ
t+1

]
= E

{
Vart

[
fσ
t+1

]}
= E

[
c2

σ̂4
t (f)

σ̂2
t+1(f)

]
= Var [ft+1] .

Thus, if both the unconditional variances of fσ
t+1 and ft+1 are fixed at a specific value,

say σ2(f), then the scaling constant c is the solution to the following equation

E
[

c2

σ̂4
t (f)

σ̂2
t+1(f)

]
= σ2(f).

Since the realized volatility measures the integrated volatility, by replacing σ̂2
t with

the integrated volatility σ2
t we have

E
[

c2

σ4
t (f)

σ2
t+1(f)

]
= σ2(f).

To pin down the scaling constant c in practice, we can simply use the empirical

measure as the probability measure. In particular, we can calculate the sample vari-

ance of the original factors, ft+1 and the sample variance of the volatility-managed

counterpart (unscaled by c), ft+1/σ̂
2
t (f). Then we set c to ensure the following

equation hold

V̂ar [ft+1] = c2V̂ar
[
ft+1/σ̂

2
t (f)

]
, (1.4)

where V̂ar[·] denotes the sample variance.

In our setting, we always assume that investors have access to the risk-free

asset. This is to facilitate the use of the excess returns for constructing portfolios

6



using arbitrary combination weights. To see this, recall the classical portfolio

selection theory (Markowitz, 1952), where we usually adopt a vector denoted by

w to represent the portfolio weights. Thus, If there are n assets (including both

the risky and the risk-free assets), then w = (w1, . . . , wn)
⊤. In the literature we

usually impose a restriction
∑n

i=1wi = 1. This restriction is not necessary if we

focus on returns of the risky assets in excess of returns of the risk-free asset. Without

loss of generality, we may assume that the n-th asset is the risk-free asset. Then

for the remaining (n − 1) risky assets, we can specify the corresponding weights

arbitrarily and then set the weight of the risk-free asset, wn, to ensure the restriction

(i.e.
∑n

i=1wi = 1) satisfied. In other words, for any risky asset indexed by i for

i = 1, . . . , n − 1, the excess return Re
i = Ri − Rf can be combined to construct

portfolios using arbitrary weights (w1, . . . , wn−1)
⊤. In subsection 2.3.1, we will

discuss more in detail how we construct zero-investment long-short portfolios based

on cross-sectional characteristics (i.e. wn = 1).

1.2.2 Motivation from the stylized fact about market portfolio

In this section, we use the market portfolio as an illustration of some stylized effects

in the U.S. market and the Chinese stock market. Based on the data-cleaning

technique of Jensen, Kelly, and Pedersen (2022), we find the empirical result, found

by Moreira and Muir (2017) in the U.S market and used as the intuition for justifying

volatility-managed portfolios, does not necessarily hold in the Chinese stock market.

These empirical findings motivate the analysis in Section 1.4 for checking whether

volatility management helps improve portfolio performance in the Chinese stock

market.

Specifically, for the U.S. market, Moreira and Muir (2017) find that there is a

strong (positive) relationship between the lagged volatility and the current volatility

and that the mean-variance trade-off (measured as the average return divided by the

variance) of the current period is negatively related to the volatility in the previous
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period. We can replicate these empirical findings via the following implementation.

First, for each month contained in the data sample, we calculate realized volatility

associated with the market portfolio (i.e. the value-weighted return) using daily data.

Then, we group months by the previous month’s realized volatility and plot volatility

and mean-variance trade-off over the subsequent month. This is summarized as

follows,

[Place Figure 1.1 about here]

As we can see from Figure 1.1, for the U.S. market, we observe a positive

relationship (as in Moreira and Muir, 2017) between the volatility of the current

period and the volatility of the previous month, and the negative relationship between

the mean-variance trade-off of the current period and the volatility of the previous

month. However, when we apply the same procedure to the Chinese stock market we

find that, while the positive relationship between the volatility of the current month

and the volatility of the previous month still exists, the mean-variance trade-off of the

current month is not negatively correlated with the volatility of the previous month.

In addition to this, we also compare the cumulative market return of the U.S. market

and that of the Chinese stock market. This is summarized in Figure 1.2. Specifically,

in Figure 1.2a we plot the cumulative value-weighted return of the U.S. market from

1926; in Figure 1.2b, we plot the cumulative value-weighted return of the U.S. market

from 1991, which also is the beginning of the sample period of the Chinese stock

market. In Figure 1.2c we plot the cumulative value-weighted market return of the

Chinese stock market. Figure 1.2a and Figure 1.2b jointly imply that for investments

made in the U.S. equity market, in the long run, it pays to scale the market portfolio

via volatility by decreasing the risk exposure when the market is volatile. However,

Figure 1.2c implies that the advantage of the scaled market portfolio vanishes in the

Chinese stock market. The value-weighted return of one-unit money invested in the

Chinese stock market starting from 1991 generates a higher payoff in the long run

than that from the volatility-managed counterpart.
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[Place Figure 1.2 about here]

Given these empirical findings for the market portfolio, the empirical success of

the volatility-managed portfolio in other stock markets is questionable.

1.3 Data

In cross-sectional asset pricing studies, it is important for researchers to carefully

construct cross-sectional equity characteristics. In this section, we first briefly discuss

the recent literature on constructing cross-sectional equity characteristics for asset

pricing studies and explain how we use the existing methods to construct equity

characteristics in the Chinese stock market. Then we discuss how characteristic-

managed portfolios are constructed based on daily returns of individual assets in the

Chinese stock market. We use these constructed characteristic-managed portfolios

as the proxy for anomaly portfolios.

1.3.1 Individual equity characteristic data

Following Harvey and Liu (2014, 2015); Harvey, Liu, and Zhu (2016); Mclean and

Pontiff (2016); Green, Hand, and Zhang (2017); Hou, Xue, and Zhang (2018); Gu,

Kelly, and Xiu (2020); Demiguel, Martı́n, Nogales, and Uppal (2020); Freybergerk,

Neuhierl, and Weber (2019); Kozak, Nagel, and Santosh (2020); Kozak (2020), we

obtain firm-level equity characteristic data. Several standard data-cleaning routines

are available in the literature. The method of Chen and Zimmermann (2020) is a

successful response to the call for transparency and cooperation (Welch, 2019). Be-

sides, Jensen, Kelly, and Pedersen (2022) provides a more comprehensive analysis by

constructing a global dataset in response to the recent discussions on the replication

crisis in empirical asset pricing studies.2 We combine both the data cleaning routines

in Chen and Zimmermann (2020) and Jensen, Kelly, and Pedersen (2022) to replicate

2Jensen, Kelly, and Pedersen (2022) also makes their replication procedures and data publicly
available at https://github.com/bkelly-lab/ReplicationCrisis.

9

https://github.com/bkelly-lab/ReplicationCrisis


99 finance and accounting anomaly variables in the Chinese stock market from 1996

to 2020. All the data (including returns and accounting data) are obtained from the

Center for Research in Security Prices (CRSP), Compustat, and the China Stock

Market & Accounting Research (CSMAR) database, all of which can be downloaded

from the Wharton Research Data Service (WRDS). These anomaly variables are

normalized as in Freybergerk, Neuhierl, and Weber (2019) so that each characteristic

is normalized over the cross-sectional dimension to take a value between 0 and 1.

More precisely,

rc s
i,t =

rank
(
c s
i,t

)
nt + 1

, (1.5)

where c s
i,t denotes the originally unscaled firm-level equity characteristic (indexed

by superscript s) associated with stock i at time t and nt denotes the total num-

ber of individual assets available for observations at time t. rank(·) denotes the

cross-sectional ranking order of specific variable. Then, for each rank-transformed

characteristic rcis,t, we center it around the cross-sectional mean and divide it by the

sum of average deviations from the cross-sectional mean for available stocks. Hence,

we have,

z s
i,t =

(
rc s

i,t − rc s
t

)∑nt

i=1

∣∣rc s
i,t − rc s

t

∣∣ , (1.6)

where

rc s
t =

1

nt

nt∑
i=1

rc s
i,t.

Each column of Zt is
(
zs1,t, . . . , z

s
nt,1

)⊤
. It is known in practice that individual

characteristic data is imbalanced panel dat. For this reason, we exploit nt rather than

N to emphasize the time-varying cross-sectional dimension.3

3This also implicitly suggests that for each cross-section we only use those individual assets
available as observations both for the corresponding returns and specific characteristics (indexed by
s).
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1.3.2 Characteristic-managed portfolios

Annual accounting data is realigned with monthly return data based on the following

annual rebalancing rule. Returns at the monthly frequency from July of year t to

June of year t + 1 are matched to the annual accounting variables in December

of t − 1. This is also the mechanism in which we realign data to construct cross-

sectional equity characteristic data. For monthly rebalancing to construct the daily

characteristic-managed portfolios, a similar scheme applies. That is, to construct

the daily characteristic-managed portfolios in month t + 1 based on equity s, re-

turns at the daily frequency are matched with the normalized characteristics z s
i,t in

month t and z s
i,t are used as the weights for constructing the daily characteristic-

managed portfolios. Characteristics normalized as in (2.19) ensure the managed

portfolios, to some extent, mimic the long-short trading strategies so that we can

use the normalized characteristics as the weights for constructing portfolios. These

normalized variables are then used to construct 99 characteristic-managed portfolios.

Specifically, characteristic-managed portfolio s (or factor s) is given as

fs,t+1 =
nt∑
i=1

zsi,tR
e
i,t+1, (1.7)

where Re
i,t+1 refers to the excess return of individual stock i. Monthly portfolios will

be mainly used for comparison analysis such as calculating the IS Sharpe ratios and

running univariate spanning regression; while daily managed portfolios will be used

for calculating realized volatility for each month. More comprehensive descriptions

of these anomaly variables are listed in the appendix along with acronyms used in

our replication procedure. The corresponding studies, where these anomaly variables

were initially proposed, are listed in the appendix as well.

Following the cutting-edge data cleaning technique, we can approximately con-

struct 400 anomaly variables with approximately 153 of them are regarded as the

representative factor-related variables. In another paper, Chen (2022) selects 123

anomaly variables from 1995 to 2020 to construct characteristic-managed portfolios

by requiring that those selected anomaly variables should overall keep at least 80% of
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the sample as observations and the corresponding observations with missing anomaly

variables are directly discarded. However, in this chapter, we want to keep data as

informative as possible about the cross-sectional information and hence select those

anomaly variables without missing observations from 1996 to 2020, which finally

shrinks the anomaly universe from 123 anomaly variables to 99 anomaly variables.

We construct the 99 characteristic-managed portfolios (or equity strategies) used for

analysis in the main context with this filtered anomaly universe.

1.4 Empirical Analysis

1.4.1 Direct comparison on anomaly augmented portfolios

Using 99 equity strategies based on the cross-sectional characteristics in the Chinese

stock market, we make following comparison by calculating and comparing the

in-sample mean of returns and Sharpe ratios for both the original anomaly long-

short portfolios and the associated volatility-managed portfolios. The results are

summarized as follows

[Place Figure 1.3 about here]

[Place Figure 1.4 about here]

To assign statistical meaning to the corresponding comparison, we use the method

of Wright, Yam, and Yung (2014), which improves the procedure using the Sharpe

ratios for comparing portfolio performance (see Jobson and Korkie, 1981; Lo, 2002;

Ledoit and Wolf, 2008; Leung and Wong, 2008) by accommodating richer statistical

properties of excess returns under more general assumptions. More technical details

can either be referred via the original paper of Wright, Yam, and Yung (2014) or Pav

(2021, 2022). We summarize the results as follows,

[Place Table 1.1 about here]
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As we can see from Table 1.1, among all the 99 anomaly-based strategies we have

checked for the Chinese stock market, the performances of 60 trading strategies are

seemingly improved by readjusting the holding positions via the lagged volatility

given that the in-sample absolute values of the Sharpe ratios of these 60 volatility-

managed portfolios increase (∆SR > 0) in comparison to those of original anomaly

portfolios. However, for these 60 anomaly portfolios whose performance can be

seemingly improved by scaling the holding positions using lagged volatility, only 11

of them enjoys statistically significant improvements in the Sharpe ratios (based on

the methodology in Wright, Yam, and Yung, 2014). By contrast, the remaining 39

anomaly portfolios cannot directly enjoy improvements in the Sharpe ratios (∆SR <

0) via managing lagged volatility. Besides, for these 39 anomaly portfolios, we can

only see statistically different performance differences (based on the increments in

the absolute value of the Sharpe ratios) between the original anomaly portfolios and

the volatility-managed ones. Finally, we summarize 14(= 11 + 3) anomalies for

which the original anomaly portfolios or volatility-managed ones witness statistically

significant differences in the absolute value of the Sharpe ratios in the following

table.

[Place Table 1.2 about here]

1.4.2 Spanning regression approach for comparison

The empirical methodology exploited in Moreira and Muir (2017) is based on

following time-series regression of the volatility-managed portfolio on the original

factors,

fσ
t+1 = α + βft+1 + ϵt+1. (1.8)

Regression (1.8) is a straightforward empirical methodology with the empirical

implication as follows: a positive intercept (α) implies that volatility timing increases
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the Sharpe ratios relative to the original factors (Moreira and Muir, 2017). How-

ever, the increment in the Sharpe ratios suggested from spanning regression must

correspond to a new portfolio combining both the volatility-managed portfolio and

un-managed portfolio. Alpha alone does not necessarily imply the increment in

the Sharpe ratio of fσ
t+1 in direct comparison to ft+1. This viewpoint involves the

following discussion about the connection between alpha and the Sharpe ratio of a

single unscaled portfolio (i.e. ft+1 alone) and the connection between alpha and the

Sharpe ratio of the augmented portfolio that combines both the scaled portfolio and

the unscaled portfolio (i.e. fσ
t+1 and ft+1).

Cederburg, O’Doherty, Wang, and Yan (2020) hold the opinion that a positive

alpha in (1.8) is a lower bar for declaring success of managed portfolio relative to the

Sharpe ratio difference. Recall our main target for comparison: managed portfolio

fσ
t+1 and the original anomaly portfolio ft+1. Intuitively, this can be interpreted as

follows: a significant (positive) alpha in (1.8) only requires that f̄σ
t+1 > β̂f̄t+1, where

f̄σ
t+1 and f̄t+1 refer to sample time-series mean of volatility-managed portfolios and

sample time-series mean of original volatility portfolios respectively; β̂ refers to

estimation of correlation coefficient between fσ
t+1 and ft+1 by running OLS using

(1.8). However, this requirement is not enough for guaranteeing |f̄σ
t+1| > |f̄t+1|,

which is essentially the requirement for having an improved IS Sharpe ratio by using

volatility to scale the original anomaly portfolios.4 Specifically, suppose we obtain

β̂ from running spanning regression in (1.8) as β̂ = 0.7 while at the same time

f̄σ
t+1 = 0.9× f̄t+1, which suggests that

α̂ = f̄σ
t+1 − β̂f̄t+1 = 0.9× f̄t+1 − 0.7× f̄t+1 = 0.2× f̄t+1,

then the volatility-managed portfolio still fails to generate IS increment in the Sharpe

4This is because by construction fσ
t+1 and ft+1 share the same unconditional (sample) standard

deviation.
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ratio. Besides, note that

β̂ =

∑
t+1

(
fσ
t+1 − f̄σ

t+1

) (
ft+1 − f̄t+1

)∑
t+1

(
ft+1 − f̄t+1

)2 ,

α̂ = f̄σ
t+1 − β̂f̄t+1,

and that

ρ̂fσ
t+1,ft+1 =

∑
t+1

(
fσ
t+1 − f̄σ

t+1

) (
ft+1 − f̄t+1

)√∑
t+1

(
fσ
t+1 − f̄σ

t+1

)2√∑
t+1

(
ft+1 − f̄t+1

)2 ,
where ρ̂fσ

t+1,ft+1 denotes the sample correlation between fσ
t+1 and ft+1. Since, by

construction, fσ
t+1 and ft+1 have the same sample correlation, β̂ = ρ̂fσ

t+1,ft+1 . We

calculate all the sample correlations between fσ
t+1 and ft+1 for the 99 anomaly port-

folios and summarize the distribution of the sample correlations as follows. We can

Distribution of sample correlation

Sample correlation

F
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0.2 0.3 0.4 0.5 0.6 0.7

0
5

10
15

see from the figure that for the 99 equity anomaly portfolios, the sample correlations

between the original ones and the volatility-managed ones range approximately from

0.21 to 0.72, which suggests obtaining statistically significant alpha from spanning

regression and having a relatively low absolute value for the IS Sharpe ratios of

volatility-managed portfolios is possible.
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A statistically significant alpha indicates that the optimal ex post combination

of scaled and unscaled factors expands the mean-variance frontier relative to the

original factor. This combination strategy allows investors to allocate wealth both

in the volatility-managed portfolios and the original anomaly portfolios. Gibbons,

Ross, and Shanken (1989) and Barillas and Shanken (2018) link the intercept (alpha)

with the Sharpe ratio by taking the ratio of the estimated alpha to the standard error

in linear regression (i.e. the so-called appraisal ratio, AR = α̂/σ̂ϵ) and show that

the appraisal ratio can be used to characterize the extent to which the augmented

portfolios can increase the slope of the mean-variance frontier. This argument can

be directly applied in the volatility-managed portfolio setting for discussing the

connection between statistically significant alpha and the performance gain measured

as the increment in the Sharpe ratio that is obtained from the combination strategy,

as noted in Cederburg, O’Doherty, Wang, and Yan (2020). Specifically, for the

investor who has the access to the risk-free security, under the standard optimal

portfolio allocation theory as in Markowitz (1952), his optimal ex post allocation rule

is proportional to Σ̂−1µ̂, where Σ̂ is 2× 2 matrix as the sample variance-covariance

matrix of
[
fσ
t+1, ft+1

]⊤ and µ̂ is a 2 × 1 vector with each entry denoting the time-

series sample mean of fσ
t+1 and ft+1 respectively, thus µ̂ =

[
f̄σ
t+1, f̄t+1

]⊤. Since, by

construction, fσ
t+1 and ft+1 have the same sample standard deviation, we show that

Σ̂ =

 σ̂2(f) ρ̂fσ
t+1,ft+1σfσ

t+1
σft+1

ρ̂fσ
t+1,ft+1σfσ

t+1
σft+1 σ̂2(f)



= σ̂2(f)

 1 ρ̂fσ
t+1,ft+1

ρ̂fσ
t+1,ft+1 1

 ,
and correspondingly

Σ̂−1 =
[
σ̂2(f)

(
1− ρ̂2fσ

t+1,ft+1

)]−1

 1 −ρ̂fσ
t+1,ft+1

−ρ̂fσ
t+1,ft+1 1

 .
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Then we have the optimal ex post allocation rule associated with the volatility-

managed portfolio is

x∗σ =
f̄σ
t+1 − ρ̂fσ

t+1,ft+1 f̄t+1

σ̂2(f)
(
1− ρ̂2fσ

t+1,ft+1

) =
α̂

σ̂2(f)
(
1− ρ̂2fσ

t+1,ft+1

) . (1.9)

Equation (1.9) has the direct implication that α̂ obtained from spanning regression

determines the wealth allocated to the scaled portfolios. Besides,

AR2 = SR2 (fσ, f)− SR2 (f) , (1.10)

where SR2 (fσ, f) refers to the IS squared Sharpe ratio of combination strategy

comprising both fσ (managed portfolio) and f (original portfolio).

We run time-series spanning regression of the form in (1.8) and report both the

estimated coefficients and the associated Newey and West (1987) t-statistics with

three lags (Kelly, Moskowitz, and Pruitt, 2021). We summarize the results from

univariate spanning regression in Table 1.3 and more detailed spanning regression

estimation results in Table 1.4 for those anomaly portfolios with significant estimated

alpha.

[Place Table 1.3 about here]

[Place Table 1.4 about here]

Given the results summarized in Table 1.3 and Table 1.4, we find that among all

the 99 anomaly portfolios, 71 volatility-managed portfolios have a positive estimate

of alpha in univariate spanning regression while the remaining 28 volatility-managed

portfolios have a negative estimate of alpha in univariate spanning regression. How-

ever, since all the original anomaly portfolios are constructed as the long-short

portfolios based on the univariate sort on the associated equity characteristic, the sign

associates with the negative alpha can readily shifted to positive by taking revere

holding positions. In other words, the main implication of spanning regression is

whether an investors can obtain an increment in the Sharpe ratio by combining the
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volatility-managed portfolios and the original anomaly portfolios. This increment

can be reflected in the appraisal ratio associated with alpha. Accordingly, whether the

estimated alpha in the univariate spanning regression is statistically significant or not

matters more for evaluating the corresponding performance gain. For this purpose,

we see from Table 1.3 and Table 1.4 that among all the 99 anomaly portfolios we

investigate, only 24 of them generate statistically significant alpha in the univariate

spanning regression. This low ratio (24/99 ≈ 24%) suggests that scaling the holding

positions of the original portfolios using the lagged volatility is not a successful

strategy for improving the portfolio performance.

1.5 Conclusion

This chapter examines the performance of volatility-managed portfolios in the Chi-

nese stock market. Using the standard empirical methods to collect, clean, and

construct data from the Chinese stock market, we apply the standard empirical strate-

gies to investigate whether an investor can adjust the holding positions of portfolios

based on volatility to improve the performance of the original anomaly portfolios in

the Chinese stock market. Our empirical results are similar to those in Cederburg,

O’Doherty, Wang, and Yan (2020) for the U.S. equity market . That is, the perfor-

mance of volatility-managed portfolios degrades within a broad sample of anomaly

portfolios (103 trading strategies in the U.S. equity market). Based on our analysis

of the Chinese stock market using 99 equity trading strategies, we also find that there

exists no desired performance gain systematically by scaling anomaly portfolios

using the lagged volatility as suggested in Moreira and Muir (2017).
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Figures and Tables

Figure 1.1

(a) The U.S. Market
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(b) The Chinese Market
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Note: In the figure above, we demonstrate results generated from sorting on the previous month’s volatility

both for the U.S. market (a) and the Chinese stock market (b). Specifically, we use (1.3) to calculate the

realized volatility for each month. With the monthly time series of realized volatility, we sort all the months

into five buckets based on realized volatility of the previous month. Then for each bucket, we calculate the

average volatility (on the left for each panel) and the ratio of the average return over the average volatility as the

mean-variance trade-off (on the right for each panel).
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Figure 1.2

(a) The U.S. Market
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(b) The U.S. Market from 1991
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Figure 1.3
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Note: In the figure above, we summarize the results of comparing IS (in-sample) mean of original anomaly

portfolios and the associated volatility-managed portfolios. Both the original anomaly portfolios and the volatility-

managed portfolios are at monthly frequencies and data spans from January 1996 to December 2020 (i.e. 25

years in total). As we have discussed in the main context, we use ft+1 to denote the original portfolio in month

t+ 1 and fσ
t+1 = c

σ̂2
t (f)

ft+1 to denote the volatility-managed portfolio in month t+ 1. c is a constant chosen so

that ft+1 and fσ
t+1 have the same sample unconditional standard deviation over the full sample period. There

are three kinds of bars in this figure: the blue bars indicate the original factors (portfolios), the red bars indicate

the volatility-managed factors (portfolios) that exhibit larger absolute value of IS mean in comparison to the

corresponding original factors (portfolios), and the pink bars indicate the volatility-managed factors that exhibit

smaller absolute value of IS mean in comparison to the corresponding original factors (portfolios).
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Figure 1.4
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Note: In the figure above, we summarize the results of comparing the IS (in-sample) Sharpe ratio of the original

anomaly portfolios and the associated volatility-managed portfolios. Both the original anomaly portfolios and the

volatility-managed portfolios are at monthly frequencies and data spans from January 1996 to December 2020

(i.e. 25 years in total). As we have discussed in the main context, we use ft+1 to denote the original portfolio in

month t+ 1 and fσ
t+1 = c

σ̂2
t (f)

ft+1 to denote the volatility-managed portfolio in month t+ 1. c is a constant

chosen so that ft+1 and fσ
t+1 have the same sample unconditional standard deviation over the full sample

period. There are three kinds of bars in this figure: the blue bars indicate the original factors (portfolios), the red

bars indicate the volatility-managed factors (portfolios) that exhibit larger absolute value of IS Sharpe ratio in

comparison to the corresponding original factors (portfolios), and the pink bars indicate the volatility-managed

factors that exhibit smaller absolute value of IS Sharpe ratio in comparison to the corresponding original factors

(portfolios).
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Table 1.1

Sharpe ratio difference
Sample Total ∆SR > 0 [Signif.] ∆SR < 0 [Signif.]
All trading strategies 99 60[11] 39[3]

Note: In the table above, ∆SR refers to the difference between absolute value of the Sharpe ratios associated

with the original anomaly portfolios (ft+1) and the volatility-managed portfolios (fσ
t+1). We demonstrate the

number of the absolute value of the Sharpe ratios differences that are positive, negative and significant at 5%

level (in square brackets).

Table 1.2

Anomaly Types ∆SR p-value

Market beta [Low Risk] 0.1382 0.0232
Net stock issues [Value] -0.0449 0.0029
Change in current liabilities [Investment] 0.1660 0.0081
Coefficient of variation for dollar trading volume [Profitability] 0.1330 0.0176
Return on net operating assets [Profitability] 0.0097 0.0354

Profit margin [Profit Growth] -0.0834 0.0395
Gross profits-to-assets [Quality] 0.0986 0.0358
Intrinsic-value [Value] -0.1079 0.0003
Change in quarterly return on equity [Profit Growth] 0.1408 0.0230
Taxable income-to-book income [Seasonality] 0.0393 0.0105

Price momentum t− 12 to t− 7 [Momentum] 0.1196 0.0115
Share turnover [Low Risk] 0.1269 0.0179
Coefficient of variation for share turnover [Profitability] 0.1216 0.0478
Number of zero trades with turnover as tiebreaker (6 months) [Low Risk] 0.1273 0.0179
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Table 1.3

Univariate spanning regression
Sample Total α > 0 [Signif.] α < 0 [Signif.]
All trading strategies 99 71[16] 28[8]

Note: This table summarizes results from spanning regressions for 99 anomaly trading strategies in the Chinese

stock market. The spanning regression is the one that we have discussed in the main context, given by

fσ
t+1 = α + βft+1 + ϵt+1, where fσ

t+1(ft+1) is the monthly return for the volatility-managed (original)

portfolio. For each regression, this table reports the number of alphas that are positive, positive and significant

approximately at 2.5% level (i.e. we set critical value for the corresponding t-stat as 2), negative, and negative

and significant at the 2.5% level. We assess the statistical significance of alpha using Newey and West (1987)

adjusted standard errors.

Table 1.4

Anomaly Types α̂ t-stat(α̂) β̂ t-stat(β̂) R2 AR2

Firm age [Low Leverage] 0.0043 2.4911 0.3260 5.6823 0.1033 0.0193
Market beta [Low Risk] -0.0049 -2.7247 0.3948 3.4379 0.1530 0.0252
Frazzini-Pedersen market beta [Low Risk] -0.0033 -2.0269 0.4978 4.2988 0.2453 0.0109
Change in current liabilities [Investment] 0.0027 3.2492 0.3859 2.8768 0.1461 0.0398
Cash-based operating profits-to-book assets [Quality] 0.0017 2.6395 0.5866 6.6950 0.3419 0.0262

Change in current operating working capital [Accruals] -0.0015 -2.2617 0.4246 2.9854 0.1775 0.0133
Dividend yield [Value] 0.0029 2.0264 0.4342 4.6806 0.1858 0.0121
Dollar trading volume [Size] -0.0034 -2.8954 0.4768 3.9751 0.2248 0.0287
Return on net operating assets [Profitability] 0.0018 2.0774 0.7038 8.1265 0.4937 0.0126
Equity duration [Value] -0.0029 -2.0033 0.4429 4.0892 0.1935 0.0146

Equity net payout [Value] 0.0014 2.2130 0.5512 5.4834 0.3015 0.0140
Gross profits-to-assets [Quality] 0.0022 2.5263 0.6172 7.1965 0.3788 0.0178
Idiosyncratic volatility from the CAPM (252 days) [Low Risk] -0.0039 -2.4611 0.5827 7.1438 0.3373 0.0170
Change in quarterly return on equity [Profit Growth] 0.0036 2.9183 0.2465 2.9236 0.0576 0.0268
Change in quarterly return on equity [Profit Growth] 0.0046 3.3454 0.2598 2.8428 0.0644 0.0367

Taxable income-to-book income [Seasonality] 0.0013 2.5581 0.5083 6.9227 0.2559 0.0186
Price momentum t− 12 to t− 7 [Profit Growth] 0.0035 2.8083 0.6086 5.5528 0.3683 0.0256
Asset turnover [Quality] 0.0016 2.5226 0.5651 4.7138 0.3171 0.0197
Sale to market [Value] 0.0050 2.8300 0.3464 3.5571 0.1171 0.0273
Year 1-lagged return, annual [Profit Growth] 0.0029 2.4769 0.4581 3.5126 0.2072 0.0186

Share turnover [Low Risk] -0.0039 -3.1728 0.5469 3.9528 0.2968 0.0303
Coefficient of variation for share turnover [Profitability] -0.0032 -2.5662 0.4076 3.3853 0.1634 0.0227
Number of zero trades (6 months) [Low Risk] 0.0039 3.1689 0.5451 3.9584 0.2948 0.0303
Number of zero trades (12 months) [Low Risk] 0.0038 2.6714 0.5318 4.2990 0.2804 0.0224

Note: This table summarizes detailed estimation results from univariate spanning regression for anomaly

portfolios with statistically significant alpha. R2 refers to the adjusted R-square as the measure of IS regression

fitting. AR2 refers to the squared appraisal ratio with AR = α̂/σ̂ϵ and σ̂ϵ refers to the standard deviation of

residuals in univariate spanning regression.
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Chapter 2

Sparse Structure of Stochastic

Discount Factor in the Chinese Stock

Market: A Bayesian Interpretable

Machine-learning Approach

2.1 Introduction

One of our central themes is that if assets are priced rationally, variables

that are related to average returns, such as size and book-to-market

equity, must proxy for sensitivity to common (shared and thus and undi-

versifiable) risk factors in returns.

Fama and French (1993)

We have a lot of questions to answer: First, which characteristics really

provide independent information about average returns? Which are

subsumed by others? Second, does each new anomaly variable also

correspond to a new factor formed on those same anomalies? ... Third,
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how many of these new factors are really important?

Cochrane (2011)

As the two quotes cited above suggest, a formidable challenge faced within the

community of financial researchers is how to handle the high-dimensionality in

the potential predictors for the expected return. There are at least two difficulties

associated with high-dimensionality in the potential predictors. First, whether or not

there exists a sparse exposure structure of stochastic discount factor (SDF) is difficult

to know. Second, what should be a reasonable functional relationship between the

expected return and intrinsically useful predictors.

The first difficulty has attracted a great deal of attentions in recent years, given that

a huge number of firm-level characteristics have been proposed to be the predictors

in the literature. Many studies rely on the p-value of the standard test statistics

(such as the t statistic) as the evidence to support or be against the use of firm-level

characteristics. However, Harvey, Liu, and Zhu (2016) points out the so-called

p-hacking issue in the conventional statistical test. They further propose an adjusted

p-value to check the statistical evidence of the usefulness of firm-level characteristics.

To deal with the second difficulty, one way is to allow for nonlinear relationships

between the expected return and predictors in the model specification. This is the

exact reason why nonparametric methods have becomes increasingly popular in

this literature. With the development of modern computational power and statis-

tical algorithms, some advanced nonparametric methods have been proposed (see

Freybergerk, Neuhierl, and Weber, 2019). Machine-learning methods are one of the

popular nonparametric techniques.

Studies that employ machine-learning methods to study return predictability

can be divided into three groups. The first group of studies aims to use and design

machine-learning methods to generate good out-of-sample performance. These

methods usually are flexible given the generic nonparametric feature in the methods.

Gu, Kelly, and Xiu (2020) compare many machine-learning methods in terms of
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their predictive power of the U.S. equity returns. It is found that neural network and

regression trees perform relatively well. Other studies that use machine learning

method to analyse cross-sectional returns include but not restricted to (Freybergerk,

Neuhierl, and Weber, 2019; Chinco, Clark-Joseph, and Ye, 2019; Han, He, Rapach,

and Zhou, 2019; Chen, Pelger, and Zhu, 2019).

The second group of studies assume that there exists a factor structure in the

potentially useful predictors. The number of factors is usually much lower than the

number of available characteristics. This approach has been an important part of

the literature ever since the seminar works of Fama and French (1992, 1993, 1996).

Generally there are two alternative ways to introduce a factor structure in this rather

extensive literature. The first one uses pre-specified and observed factors based on

the prior knowledge about the cross-sectional accounting information. Many factors

have been established for explaining the cross-sectional variations associated with

asset returns; see, for example, Fama and French (1993), Fama and French (2015),

Hou, Xue, and Zhang (2015). More references can be found in two recent excellent

surveys, that is, Hou, Xue, and Zhang (2018) and Chen and Zimmermann (2020).

The second one assumes that factors are latent variables. In this case, statistical

factor analysis techniques, such as principal component analysis (PCA), are used

to extract factors and factor loadings simultaneously. Studies of this kind can be

traced back at least to Connor and Korajczyk (1986) and Chamberlain and Rothschild

(1983). Recently, the latent factor approach has been employed in Fan, Liao, and

Wang (2016); Kozak, Nagel, and Santosh (2018); Kelly, Pruitt, and Su (2019); Kozak

(2020); Lettu and Pelger (2020a,b) to study stock returns.

The third group of studies focuses directly on addressing the high-dimension

problem. These studies use model selection and variable selection techniques to

select useful firm-level characteristics. Since many machine-learning methodologies

inherit ideas from statistical theory (Vapnik, 1998; Hastie, Tibshirani, and Friedman,

2001; Catoni, 2004, 2007), some machine-learning methodologies designed for

handling the high-dimension problem are essentially statistical learning methods.
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Among all the methods of this type, the most representative ones are LASSO, ridge

regression and elastic net. These are also the major statistical learning methods

mostly applied in economics and finance literature: Rapach, Strauss, and Zhou

(2010), Messmer and Audrino (2017), Giannone, Lenza, and Primiceri (2021) and

Bakalli, Guerrier, and Scaillet (2021) discuss how LASSO is applied in selecting

useful predictors for making predictions in economics and finance when there are

a slew of predictors; Gabauer, Gupta, Marfatia, and Miller (2020) establishes a

high-dimensional vector autoregressive model with L2-penalty (i.e. it essentially

belongs to ridge regression) for estimating price network connectedness in the U.S.

housing market; Kim and Swanson (2014) provides empirical evidence of how elastic

net is applied in the high-dimension problem setting for forecasting financial and

macroeconomic variables. Huang, Li, and Wang (2021) applies elastic net as one

intermediate step for aggregating cross-sectional information of equities to construct

the disagreement index in the U.S market. Bali, Goyal, Huang, Jiang, and Wen

(2021) discusses the application of elastic net in addressing bond return predictability

in the setting where the individual bond is cross-sectionally exposed to the high-

dimensional information vector. It is known in literature (Zou and Hastie, 2005) that

in comparison to LASSO as the dimension reduction method for variable selection,

elastic net combines LASSO and ridge penalties and produces a model with more

flexibilities and good out-of-sample prediction accuracy.

A useful addition to this group of studies is Linero (2018) where a Bayesian

additive regression trees (BART) method is found to perform well. In the BART

method of Linero (2018), a sparsity-inducing Dirichlet hyper-prior is used to solve

the high-dimension problem. This method is empirically successful in selecting

relevant variables that can yield good out-of-sample prediction accuracy, and is later

theoretically justified by Ročková (2019), Ročková and Saha (2019), and Ročková

and van der Pas (2019). However, it naturally inherits the major disadvantage of

Chipman, George, and McCulloch (2010), which is computationally heavy in com-

parison to LASSO, ridge regression, or elastic net, mainly due to its underlying
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MCMC sampling scheme. Besides, for all the existing machine-learning methodolo-

gies, rarely is there any discussion on whether or not these methodologies can be

interpreted through the lens of existing economic theories.

Another Bayesian method to address the high-dimension problem is the Bayesian

interpretable machine-learning method proposed in Kozak, Nagel, and Santosh

(2020). There are a number of good features in this methods. First, the modelling

framework is parsimonious but still powerful in characterizing the key asset-pricing

structure. Second, it reconciles well with economic theory through the Bayesian

lens (that is the reason why it is referred to as a Bayesian interpretable method) as

well as with the statistical learning theory (which facilitates implementation and

computation). Basically, by imposing an economically motivated prior on SDF, it

is possible to show how the machine-learning methods (specifically, the penalized

regression such as the ridge regression with the objective function being the Hansen-

Jagannathan distance or the elastic net method with dual penalty) are related to the

SDF-based asset pricing theory. Because of these attractive features, in this chapter,

we apply it to analyze the returns of the Chinese stock market. In particular, we use

the method to check whether or not there exists a sparse exposure structure of SDF to

several dominant cross-sectional equity characteristics in the Chinese stock market.

The rest of this chapter is structured as follows: In Section 2.2, we review the

theoretical modelling framework for the SDF-based linear asset pricing theory and

explain how the economic theory is related to some of the machine-learning methods

so that the machine-learning methods are interpretable through the Bayesian lens. In

Section 2.3, we discuss how cross-sectional anomaly variables (or equivalently firm-

level characteristics) are constructed. In Section 2.4, we report the main empirical

findings. Finally Section 2.5 concludes this chapter.
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2.2 Basic Modelling Framework

2.2.1 SDF and cross-sectional asset pricing

In much of the finance literature, the central goal is to explain the differences in

returns in the cross-sectional dimension. Specifically for individual stock, denote

Rt+1,i as the return of asset i at t + 1. The fundamental no-arbitrage condition is

closely related to the existence of SDF derived from the first-order condition of

the Euler equation. That is, for any return in excess of the risk-free rate Re
t+1,i =

Rt+1,i −Rf
t+1, the following key pricing formula (conditional) holds

Et

[
Mt+1R

e
t+1,i

]
= 0. (2.1)

Following the convention in the literature (see Hansen and Jagannanthan, 1991;

Haugen and Baker, 1996) and without loss of generality, we can assume that the SDF

is of a linear functional form as

Mt+1 = 1− ω⊤
t

(
Re

t+1 − EtR
e
t+1

)
,

where ωt is a N × 1 vector of SDF coefficients with N being the number of firms

cross-sectionally.1 This specification implies that we normalize the excess return by

the corresponding conditional mean, EtR
e
t+1.

To see how it is connected with the factor-modeling framework, considering the

following construction,

ωt = Ztω, (2.2)

where Zt is an N × L matrix of asset characteristics and ω is an L × 1 vector of

time-invariant coefficients. Usually the entries of matrix Zt in (2.2) collects the

information of firm-level characteristics (specifically, each row i of Zt collects the

1As pointed in Kozak, Nagel, and Santosh (2018), the ground for a linear factor-based represen-
tation of SDF is essentially the law of one prices (LOP). As long as LOP holds, the factors used to
represent SDF are a linear combination of asset payoffs.
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characteristic information of firm i at time t). As documented in empirical asset

pricing literature, usually researchers search for new measurable asset characteristics

that approximately span ωt. For example, Fama and French (1993) use two charac-

teristics, market capitalization and the book-to-market equity ratio. Similarly, by

plugging this equation into the fundamental pricing equation (2.1), we have

Mt+1 = 1− ω⊤
t

(
Re

t+1 − EtR
e
t+1

)
= 1− ω⊤Z⊤

t

(
Re

t+1 − EtR
e
t+1

)
.

We can then define L multi-factors as

Ft+1 = Z⊤
t R

e
t+1, (2.3)

which simply leads to the normalized representation of SDF as following

Mt+1 = 1− ω⊤ (Ft+1 − Z⊤
t EtR

e
t+1

)
= 1− ω⊤ (Ft+1 − EtFt+1) . (2.4)

Note that Ft+1 is essentially assets in a portfolio form. Hence, it is possible to plug it

into the key pricing formula as in (2.1). Without loss of generality we can replace

the conditional mean of factors, EtFt+1 with the unconditional mean EFt+1 (i.e.

Mt+1 = 1−ω⊤ (Ft+1 − EFt+1)). We can then have following unconditional pricing

formula for the managed portfolios,

Et

[
Mt+1F

⊤
t+1

]
= 0 ⇒ E

[
Mt+1F

⊤
t+1

]
= 0,

which implies that

EF⊤
t+1 − ω⊤E

[
(Ft+1 − EFt+1)F

⊤
t+1

]
= EF⊤

t+1 − ω⊤E
[
(Ft+1 − EFt+1) (Ft+1 − EFt+1)

⊤
]
= 0.
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Hence we have

EFt+1 = E
[
(Ft+1 − EFt+1) (Ft+1 − EFt+1)

⊤
]
ω. (2.5)

This constant specification imposed on the managed portfolio processes implicitly

suggests that we focus on unconditional asset pricing. It brings convenience using

the corresponding sample moment over the time-series dimension to estimate EFt+1

and E
[
(Ft+1 − EFt+1) (Ft+1 − EFt+1)

⊤
]
, denoted by µ (managed portfolio’s time-

series mean) and Σ (variance-covariance matrix), respectively, for the following

discussion. It will be seen in the following discussion that, the time-series analogue of

the managed portfolios µ̄ and Σ̄ can be regarded as the data used for constructing the

posterior to update the prior information. This constant specification reconciles well

with the empirical Bayes logic. See the corresponding discussion in Remark 2.3.

2.2.2 Interpretation from a Bayesian perspective

In this section, we discuss how SDF is connected with penalized cross-sectional

regression from a Bayesian perspective. The discussions follow the main ideas from

Kozak, Nagel, and Santosh (2020) but are more detailed than those in Kozak, Nagel,

and Santosh (2020). Essentially the Bayesian prior structure is imposed on µ as

follows (assuming Σ is known, and we will discuss how to obtain Σ in Remark 2.3).

µ ∼ N
(
0,
κ2

τ
Ση

)
, (2.6)

where

τ = Tr [Σ] ,

and κ, η are tuning parameters to be discussed later.

Remark 2.1 µ is L × 1 vector that collects the expected return of each managed

portfolio over the time-series dimension. The cross-sectional heterogeneity is cap-

tured by the prior (2.6). Thus, the prior captures investors’ ex-ante belief about the
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expected return of individual managed portfolio. Integrating µ out of µ⊤Σ−1µ (the

squared Sharpe ratio) (i.e., integrating out the ex-ante uncertainty associated with

µ) yields the root expected Sharpe ratio under the prior distribution,

E
[
µ⊤Σ−1µ

]1/2
= E

[
Σ−1Tr

(
µµ⊤)]1/2

=
{
Σ−1Tr

(
E
[
µµ⊤])}1/2

= Tr

(
Σ−1κ

2

τ
Ση

)1/2

=

{
κ2

τ
Tr
(
Ση−1

)}1/2

.

It is κ if η = 2 so that we can use κ to capture investors’ belief about the root

expected Sharpe ratio of the managed portfolios.

Given the previous discussion, the prior imposed on µ as in (2.6) also implies that

the prior information for ω should be

ω = Σ−1µ ∼ N
(
0,
κ2

τ
IL

)
, with η = 2,

where IL refers to an identity matrix of dimension L. The matrix representation is

Ft
L×1

= µ
L×1

+ ε
L×1
, ε ∼ (0,Σ) . (2.7)

or equivalently in the stacked matrix form

f
LT×1

=


F1

...

FT

 = (1T ⊗ IL)︸ ︷︷ ︸
X

µ
L×1

+ ε̃
LT×1

, ε̃ ∼ (0,Ξ) , (2.8)

Ξ = IT ⊗ Σ.
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The structure of Σ̃ implies that there is no time-series correlation. Recall the usual

conjugate posterior for µ under the linear model framework, denoted by µ̂, is

µ̂ =
(
Ξ−1
0 +X⊤Ξ−1X

)−1 (
Ξ−1
0 µ0 +X⊤Ξ−1f

)
.

In the case for (2.8), by construction we have

µ0 = 0, Ξ0 =
κ2

τ
Ση, X = 1T ⊗ IL.

Hence,

µ̂ =
(
Ξ−1
0 +X⊤Ξ−1X

)−1
X⊤Ξ−1f.

Note that

X⊤Ξ−1X = (1T ⊗ IL)
⊤ Σ̃−1 (1T ⊗ IL)

= (1T ⊗ IL)
⊤ (IT ⊗ Σ)−1 (1T ⊗ IL)

=
(
1⊤
T ⊗ IL

) (
IT ⊗ Σ−1

)
(1T ⊗ IL)

=
(
1⊤
T ⊗ Σ−1

)
(1T ⊗ IL)

= 1⊤
T 1T ⊗ Σ−1 = TΣ−1,

X⊤Ξ−1f = (1T ⊗ IL)
⊤ (IT ⊗ Σ)−1 f

=
(
1⊤
T ⊗ IL

) (
IT ⊗ Σ−1

)
f

=
(
1⊤
T ⊗ Σ−1

)
f

= vec
(
Σ−1f̃1T

)
,
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where

f = vec
(
f̃
)
, f̃ =

(
F1 · · · FT

)
L×T

, f̃1T = T µ̄.

Thus,

X⊤Ξ−1f = vec
(
Σ−1T µ̄

)
= Σ−1T µ̄.

Finally

µ̂ =
(
Ξ−1
0 + TΣ−1

)−1
TΣ−1µ̄.

Consequently,

ω̂ = Σ−1µ̂

= Σ−1
(
Ξ−1
0 + TΣ−1

)−1
TΣ−1µ̄

=
[
T−1Σ

(
Ξ−1
0 + TΣ−1

)
Σ
]−1

µ̄

=
[
T−1Σ

τ

κ2
Σ−ηΣ + Σ

]−1

µ̄

=
[
T−1 τ

κ2
Σ2−η + Σ

]−1

µ̄

=
[ τ

Tκ2
Σ2−η + Σ

]−1

µ̄. (2.9)

If η = 2, we have

ω̂ = (γIL + Σ)−1 µ̄, γ =
τ

Tκ2
. (2.10)

Similarly, the posterior covariance of µ̂ is

Var (µ̂) =
(
Ξ−1
0 +X⊤Ξ−1X

)−1
=
( κ
τ 2

Σ−η + TΣ−1
)−1

.
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The posterior covariance matrix can expressed as

Var (ω̂) = Σ−1
( τ
κ2

Σ−η + TΣ−1
)−1

Σ−1

=
[
Σ
( τ
κ2

Σ−η + TΣ−1
)
Σ
]−1

=
[( τ
κ2

Σ2−η + TΣ
)]−1

=
1

T

[ τ

Tκ2
Σ2−η + Σ

]−1

.

Since η = 2, we have

Var (ω̂) =
1

T
(γIL + Σ)−1 , (2.11)

where Var (ω̂) can be used to construct the confidence interval or t-statistic.

Remark 2.2 (Connection with penalized estimator) The proposed Bayesian esti-

mator is closely related to the penalized estimator. Consider the following cases

where each penalized estimator is constructed based on different objective function

(i) The objective function is constructed to maximize the cross-sectional R2 with

the penalty imposed on the model implied Sharpe ratio,

E(F ) = Σω and (Σω)⊤Σ−1 (Σω) = ω⊤Σω.

Then,

ω̂ = argmin
ω

{
(µ̄− Σω)⊤(µ̄− Σω) + γω⊤Σω

}
. (2.12)

(ii) The objective function is constructed to minimize the HJ distance,

ω̂ = argmin
ω

{
(µ̄− Σω)⊤Σ−1(µ̄− Σω) + γω⊤ω

}
. (2.13)

(iii) The objective function is constructed as that in the ridge regression,

ω̂ = argmin
ω

{
(µ̄− Σω)⊤(µ̄− Σω) + γω⊤ω

}
. (2.14)
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(i) and (ii) share the same solution and the solution is the same as the case when

η = 2. (iii) is the same as the case η = 3. This is because the first order condition

with respect to ω in (2.14) yields

−Σ (µ̄− Σω) + γω = 0.

Solving this equation, we have

ω̂ =
(
Σ + γΣ−1

)−1
µ̄,

which is the case implied by (2.9) when η = 3. For (ii), when η = 2, we can regard

(2.13) as the L2-norm penalized cross-sectional regression with the HJ distance as

the objective function (alternatively, it can be understood as the extension of the

ridge regression with the objective function being the HJ distance). Consequently, the

tuning parameter associated with the L2-norm penalized cross-sectional regression,

γ is closely related with the root expected Sharpe ratio (under the prior), κ (implied

from (2.10)). In this regard, the imposed Bayesian prior structure (2.6) brings the

corresponding economic theory to the tuning procedure.

Remark 2.3 The justification of the Bayesian interpretation of SDF is essentially

given by the prior imposed on µ conditional on the fact that investors update their

knowledge about the cross-sectional variance-covariance structure via the observed

returns. This maps well to the robust estimator for a relatively large variance-

covariance matrix in the literature (Ledoit and Wolf, 2004a,b). This connection can

be easily seen from the Wishart prior imposed on the precision matrix (in general, the

inverse of variance-covariance matrix, i.e., P = Σ−1) commonly used for Bayesian

analysis. Suppose we have the following prior for the precision matrix

Σ−1 ∼ W (U0, ϖ0) ,
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where U0 a L × L positive definite matrix with ϖ0 degrees of freedoms such that

ϖ0 > L− 1. Let x follow a multivariate normal distribution with mean zero. The

conditional density function is given by

p(x | P ) = (2π)−L/2 |P |1/2 exp
(
−1

2
x⊤Px

)
.

Since the probability density function of the Wishart distribution is

p (P ) =
|P |(ϖ0−L−1)/2 exp

[
−Tr

(
U−1
0 P

)
/2
]

2
ϖ0L
2 Γ (ϖ0/2) |U0|ϖ0/2

,

the posterior distribution given X = (x1, . . . ,xT ) is

p (P | X) ∝ p (P ) (X | P )

∝
T∏
i=1

[
|P |1/2 exp

(
−1

2
x⊤
i Pxi

)]
|P |(ϖ0−L−1)/2 exp

[
− tr

(
U−1
0 P

)
/2
]

= |P |(T+ϖ0−L−1)/2 exp

{
−1

2
Tr
[(
TS+ U−1

0

)
P
]}

,

where

S =
1

T

T∑
i=1

xix
⊤
i ,

is the sample counterpart of the variance-covariance matrix. This suggests that the

posterior distribution of P is also a Wishart distribution such that

P | X ∼ W
((
TS+ U−1

0

)−1
, T +ϖ0

)
.

To make it connected to our discussion in the main context, replacing U0 and ϖ0

with 1
L
Σ−1

0 and L, we have

Σ−1 ∼ W
(
1

L
Σ−1

0 , L

)
.

38



Replacing X with the demeaned return over the time-series dimension and the

variance-covariance matrix with S = ΣT , we have

Σ−1 | X ∼ W
(
(TΣT + LΣ0)

−1 , T + L
)
.

The expected value (posterior) is

E
[
Σ−1 | X

]
= (T + L) (TΣT + LΣ0)

−1 =

[(
L

T + L

)
Σ0 +

(
T

T + L

)
ΣT

]−1

.

The typical choice for Σ0 is Σ0 =
1
L
Tr (ΣT ) IL where IL is the L×L identity matrix.

Consequently, we use

Σ̄ =

(
L

T + L

)
Σ0 +

(
T

T + L

)
ΣT . (2.15)

to replace Σ in all relevant formulas in this chapter.

2.2.3 Dual-penalty in combination of two norms

We discussed a key insight of Kozak, Nagel, and Santosh (2020) in detail, that is,

the L2-norm penalty imposed on the cross-sectional regression has a nice Bayesian

interpretation, which is grounded on economics theory. However, a more strict

shrinkage penalty can also be used. In our empirical analysis, for example, we also

consider the following dual L1-L2 penalized cross-sectional regression by adding

the following L1-norm penalty term

ω̂ = argmin
ω

(µ̄− Σω)⊤Σ−1(µ̄− Σω) + γ2ω
⊤ω + γ1

L∑
i=1

|ωi|. (2.16)

This choice is related to the elastic-net method proposed in Zou and Hastie (2005),

with the objective function slightly modified to be the HJ distance. The objective

function for cross-validation is the cross-sectional R2 defined by

R2
oos = 1−

(
µ̄O − Σ̄Oω̂

)⊤ (
µ̄O − Σ̄Oω̂

)
µ̄⊤

O µ̄O

. (2.17)

This is similar to the standard routine in the statistical learning literature where

the whole sample is divided into K sub-samples. In each fold of cross-validation,
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K − 1 sub-samples are used as training samples to calculate the sample mean and

variance-covariance matrix (over time-series dimension), denoted by µ̄I and Σ̄I, while

the remained samples are used as the testing samples to calculate the sample mean

and variance-covariance matrix (over time-series dimension), denoted by µ̄O and Σ̄O.

For the penalized cross-sectional regression with the L2-norm penalty, ω is estimated

using (2.12) or (2.13). For the penalized cross-sectional regression with the dual

L1-L2-norm penalty, ω is estimated using (2.16).

2.3 Data

In this section, we first briefly discuss the recent literature on constructing cross-

sectional equity characteristics for asset pricing studies and explain how we use the

existing methods to construct equity characteristics in the Chinese stock market. Then

we discuss how characteristic-managed portfolios are constructed based on daily

returns of individual assets in the Chinese stock market. Discussions contained in this

section share much in common with that in Chapter 1. To make the corresponding

discussions self-contained within this chapter, we still briefly summarize the key

steps for cleaning and constructing data.

2.3.1 Individual equity characteristic data

As we have discussed in Chapter 1, we combine both the data cleaning routines in

Chen and Zimmermann (2020) and Jensen, Kelly, and Pedersen (2022) to replicate

123 finance and accounting anomaly variables in the Chinese stock market from 1995

to 2020. All the data (including returns and accounting data) are obtained from the

Center for Research in Security Prices (CRSP), Compustat, and the China Stock

Market & Accounting Research (CSMAR) database, all of which can be downloaded

from the Wharton Research Data Service (WRDS). These anomaly variables are

normalized as in Freybergerk, Neuhierl, and Weber (2019) so that each characteristic

is normalized over the cross-sectional dimension to take a value between 0 and 1.
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More precisely,

rc s
i,t =

rank
(
c s
i,t

)
nt + 1

, (2.18)

where c s
i,t denotes the originally unscaled firm-level equity characteristic (indexed

by superscript s) associated with stock i at time t and nt denotes the total num-

ber of individual assets available for observations at time t. rank(·) denotes the

cross-sectional ranking order of specific variable. Then, for each rank-transformed

characteristic rcis,t, we center it around the cross-sectional mean and divide it by the

sum of average deviations from the cross-sectional mean for available stocks. Hence,

we have,

z s
i,t =

(
rc s

i,t − rc s
t

)∑nt

i=1

∣∣rc s
i,t − rc s

t

∣∣ , (2.19)

where

rc s
t =

1

nt

nt∑
i=1

rc s
i,t.

Each column of Zt is
(
zs1,t, . . . , z

s
nt,1

)⊤
. It is known in practice that individual

characteristic data is imbalanced panel dat. For this reason, we exploit nt rather than

N to emphasize the time-varying cross-sectional dimension.2

2.3.2 Characteristic-managed portfolios

Annual accounting data is realigned with monthly return data based on the following

annual rebalancing rule. Returns at the monthly frequency from July of year t to

June of year t + 1 are matched to the annual accounting variables in December

of t − 1. This is also the mechanism in which we realign data to construct cross-

sectional equity characteristic data. For monthly rebalancing to construct the daily

characteristic-managed portfolios, a similar scheme applies. That is, to construct the

daily characteristic-managed portfolios in month t+ 1 based on equity s, returns at

2This also implicitly suggests that for each cross-section we only use those individual assets
available as observations both for the corresponding returns and specific characteristics (indexed by
s).
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the daily frequency are matched with the normalized characteristics z s
i,t in month

t and z s
i,t are used as the weights for constructing the daily characteristic-managed

portfolios. Characteristics normalized as in (2.19) ensure the managed portfolios,

to some extent, mimic the long-short trading strategies so that we can use the nor-

malized characteristics as the weights for constructing portfolios. These normalized

variables are then used to construct 123 characteristic-managed portfolios (either in

the monthly or daily frequency, and portfolios constructed at the daily frequency

will be mainly used for the empirical analysis). More comprehensive descriptions of

these anomaly variables are listed in the appendix along with acronyms used in our

replication procedure. The corresponding papers in which these anomaly variables

were initially proposed are listed in the appendix as well.

2.4 Empirical Findings

We now apply this Bayesian interpretable machine-learning method in analyzing the

sparse structure of cross-sectional exposure of SDF using the data for the Chinese

stock market constructed above. Our main empirical finding is that, in general, it is a

futile effort to summarize the SDF as the exposure to several dominant cross-sectional

characteristics in the Chinese stock market.

We first demonstrate results generated from imposing the L2-norm penalty on

cross-sectional regression (i.e., ridge regression with H-J distance as the objective

function, which is also nicely interpretable from the Bayesian perspective). As we

have discussed in the previous section that the tuning parameter (γ2) associated with

the L2-penalized cross-sectional regression is closely related to the expected Sharpe

ratio under the Bayesian prior (κ), we plot both IS (in-sample)/OOS (out-of-sample)

R2 across different κ values in the following figure

[Place Figure 2.1 about here]

In the following figure, we plot the coefficient path associated with the L2-norm-
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penalized regression across different root expected Sharpe ratios under the Bayesian

prior (κ), that is, different strengths of the L2-penalty imposed on the cross-sectional

regression.

[Place Figure 2.2 about here]

Next, we summarize both the estimated coefficients ω̂ and the associated absolute

value of the t-statistic calculated using (2.10) and (2.11).

[Place Table 2.1 about here]

The main implication from Table 2.1 is that although there is rarely any redun-

dancy of the cross-sectional equity characteristics to summarize SDF in the Chinese

stock market since absolute values of the SDF coefficients associated with the leading

SDF factors (among 123 SDF factors) listed in Table 2.1a are not close to zero. How-

ever, according to Table 2.1b, there are 2 to 3 leading latent factors (i.e., principal

components) that are statistically significant with relatively large estimated SDF

coefficients. Based on the classification in Jensen, Kelly, and Pedersen (2022), it is

not surprising to see that Size, Value and Investment related equity characteristics

matter for SDF in the Chinese stock market. This empirical result is not far away

from that in the U.S stock market. The t-statistics reported in Table 2.1a are calcu-

lated using (2.11). These reported t-statistics are for reference since, in general, the

joint selection matters more for the penalized regression with the L2-norm penalty

than the single selection.

Finally, we discuss how this Bayesian interpretable machine-learning algorithm

(i.e., single L2-norm penalized cross-sectional regression with objective function

adjusted as HJ-distance) can be extended to the cross-sectional regression with a

dual-penalty by adding additional L1-norm penalty for accommodating shrinkage

purpose.

[Place Figure 2.3 about here]
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Figure 2.3 essentially provides the main conclusion of this chapter. It is obvious

from this figure that the optimal tuning parameter pair (γ1, γ2) (or equivalent (γ1, κ))

leading to the highest OOS R2 resides in the area with relatively smaller γ1 and γ2

(or equivalently reflected in the number of variables retained in the SDF, over y-axis

and the root expected Sharpe ratio, over x-axis) in Figure 2.3. This cross-validated

out-of-sample analysis implies that it is futile to summarize SDF in the Chinese stock

market as the exposure to several dominant cross-sectional equity characteristics.

2.5 Conclusion

In this chapter, we review an interpretable machine-learning method that features an

economic-theory-based foundation from a Bayesian perspective. The cross-sectional

regression with the L2-norm penalty (the ridge regression with H-J distance as the

objective function) has interpretation with the economic grounds from the Bayesian

perspective. Given the attractive property of the methodology proposed in Kozak,

Nagel, and Santosh (2020), we apply this methodology to analyze whether there

exists a sparse structure of the SDF in the Chinese stock market. From the empirical

perspective, we follow the cutting-edge data cleaning routine that is in response to

recent discussions about the replication crisis in the empirical cross-sectional asset

pricing literature to successfully replicate and construct 123 finance and accounting

characteristics of individual assets in the Chinese stock market and hence construct

the corresponding characteristics (anomalies) managed portfolios. Based on these

constructed characteristics (anomalies)-managed portfolios, we apply both the pure

L2-penalized cross-sectional regression (the ridge regression with the H-J distance as

the objective function) and the extended L1-L2 penalized cross-sectional regression

(elastic-net regularization) to check whether there is a sparse exposure of SDF in

the Chinese stock market. Our empirical study suggests that staying within the

123 cross-sectional equity characteristic universe, it is still hard to characterize the

SDF in the Chinese stock market using a few dominant characteristics, although
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our empirical analysis may suggest that there exist several dominant latent factors

(principal components) to summarize the SDF in the Chinese stock market.
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Figures and Tables

Figure 2.1
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Note: In the figure above, we apply the Bayesian interpretable machine-learning method to the Chinese stock

market by constructing characteristic-managed portfolios based on 123 anomaly variables. All characteristic-

managed portfolio returns are constructed at the daily frequency. As we have discussed in the main context

about the relationship between the root maximum squared Sharpe Ratio (κ) and the penalty parameter γ, in this

figure we demonstrate cross-sectional R2 and κ (both in-sample (dashed blue line) and out-of-sample (solid red

line)). The standard-error (dotted red line) is calculated based on the split sample for cross-validation (3-folds

cross-validation is used for this implementation).
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Figure 2.2

(a)
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Note: In the figure above, we apply the Bayesian interpretable machine-learning method in the Chinese

stock market by constructing characteristic-managed portfolios based on 123 anomaly variables. This plot

demonstrates coefficient paths associated with the penalized cross-sectional regression with the L2-norm penalty:

ω̂ as estimated SDF coefficients across different κ in (a) and corresponding t-statistics (using equation (2.10)

and (2.11)) in (b). All the corresponding variables are sorted according to the absolute values. Vertical dashed

lines both in (a) and (b) indicate the optimal tuning parameter based on cross-validation, i.e. κ associated with

the highest OOS R2.
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Table 2.1

(a)

ω t-stat
Dollar trading volume [Size] -0.6815 1.8792
Year 1-lagged return, annual [Profit Growth] 0.5474 1.5867
Intrinsic-value [Value] -0.5456 1.5178
21 Day high-low bid-ask spread [Low Leverage] -0.5164 1.4670
Amihud measure [Size] 0.4863 1.3422
Number of zero trades (1 month) [Low Risk] 0.4722 1.3180
Maximum daily return [Low Risk] -0.4390 1.2135
Short-term reversal [Size] -0.4446 1.2103
Years 2-5 lagged returns, nonannual [Investment] -0.4271 1.2017
Long-term reversal [Investment] -0.4283 1.2013

(b)

ω t-stat
PC 7 1.0265 3.3041
PC 8 1.0365 3.2092
PC 3 0.4018 2.0319
PC 6 0.4594 1.6777
PC 11 0.5407 1.6288
PC 24 0.5201 1.4496
PC 28 -0.4708 1.3003
PC 17 0.4283 1.2330
PC 1 -0.1212 1.1643
PC 13 -0.3400 1.0087

Note: In the table above, we summarize corresponding results obtained from applying the Bayesian interpretable-

machine learning method to the Chinese stock market by constructing characteristic-managed portfolios based

123 anomaly variables. In (a) we summarize estimated coefficients ω̂ at the optimal L2-norm penalty tuning

parameter γ2 (or equivalently the root expected Sharpe ratio κ under the prior distribution (based on cross-

validation)). There 123 anomaly portfolios in all. In (b), anomaly portfolios returns are rotated into principal

component (PC) space and corresponding estimated coefficients are demonstrated there. Coefficients are sorted

descending on the absolute t-statistic values.
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Figure 2.3
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Note: In the figure above, we apply the Bayesian interpretable machine-learning method to the Chinese stock

market by constructing characteristic-managed portfolios based 123 anomaly variables. This plot demonstrates

OOS R2 associated with the L1-L2-penalized cross-sectional regression discussed in the main context. L2-

penalty is tuned via γ2, which is closely related to the root expected Sharpe ratio κ (over x-axis) under prior

distribution; L1-penalty is tuned via γ1 and is in general proportional to the reciprocal of the number nonzero

coefficients in cross-sectional regression. Hence, we use the number of nonzero coefficients (i.e. number of

variables retained in SDF) to characterize the strength associated with L1-penalty (over y-axis). Both axes are

plotted on logarithmic scale. Yellow color depicts the higher OOS R2 while the dark blue area depicts (γ1, γ2)

pair for which the corresponding OOS R2 is low.
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Chapter 3

Alternative Parametric Models for

Spot Volatility in High Frequency: A

Bayesian Approach

3.1 Introduction

Financial market volatility as the measure of risk plays a vital role both in finance

theory and applications of asset pricing theory in practice (Engle, 2004). Acknowl-

edging the fact that daily volatilities are time-varying, a strand of literature focuses

on modeling daily volatility parametrically based on daily returns. Examples include

the ARCH model of Engle (1982), the GARCH model of Bollerslev (1986), and the

stochastic volatility model of Taylor (1982). As a by-product of volatility modeling,

an estimate of daily volatility can be obtained after the model is estimated.

In a more recent strand of literature, daily realized volatilities (RVs) are used to

estimate daily integrated volatility (IV). Daily RV is a nonparametrical method that

is based on intraday returns, usually 5-minute returns; see Andersen and Bollerslev

(1997) and Andersen, Bollerslev, Christoffersen, and Diebold (2013). By exploiting

intraday information, 5-minute returns can estimate daily volatility more accurately

than daily returns. Subsequently, considerable efforts have been made to find a
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reasonable model for daily RV, which is then used to forecast future daily RV; see

Andersen, Bollerslev, Diebold, and Ebens (2001); Andersen, Bollerslev, Diebold,

and Labys (2001, 2003); Gatheral, Jaisson, and Rosenbaum (2018); Wang, Xiao, and

Yu (2022). Other than providing a more accurate estimate to IV, RV has been found

a wide range of applications. For example, in an interesting paper, Bollerslev and

Zhou (2002) use RVs, obtained from 5-minute returns, to construct GMM estimators

for parameters in several parametric diffusion models.

However, most parametric models for daily volatilities (either RV or spot volatil-

ity) are not suitable for modeling spot volatilities in high frequencies. This is not

surprising as spot volatilities in high frequencies have more complicated behavior

than what a standard parametric diffusion model can generate.

Based on 5-minute returns on S&P500 index futures from March 11, 2007,

through March 9, 2012, Stroud and Johannes (2014) proposes a high-frequency

model where the total volatility has a multiplicative specification, including tradi-

tional autoregressive stochastic volatility components, seasonal components, and

announcement components. They introduce a Bayesian method to estimate parame-

ters in the model and find that all three components are important in the model.

The attempt to build a high-frequency model is important to enhance our under-

standing of the intraday behavior in volatility. It has potential important implications

for asset pricing, volatility forecasting, trading, risk management. However, the

criticism to the use of daily returns as opposed to daily RV also applies here. That

is, the use of 5-minute returns is less efficient than that based on returns in a higher

frequency.

Apart from the literature where the quantity of interest is the daily RV, there

is another strand of growing literature that tries to estimate spot volatility from

ultra-high frequency data. For example, in a recent study, Bollerslev, Li, and Liao

(2021) establishes a new theory for the conduct of nonparametric inference about

the latent spot volatility. Unlike the theories that assume the number of observations

in local estimation blocks go to infinite, the new theory treats the estimation block
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size k as fixed. As a result, the estimation error in the spot volatility estimator can

be characterized by a scaled chi-square random variable. Bollerslev, Li, and Liao

(2021) carry out an empirical application based on the intraday S&P 500 equity index.

One of important empirical results suggest that there exist jumps at FOMC news

announcement times. However, this study makes no attempt to model the dynamics

of spot volatility in high frequencies.

In this chapter we propose several high-frequency models for the spot volatility

based on the theory of Bollerslev, Li, and Liao (2021). All alternative specifications

can be expressed as a nonlinear non-Gaussian state-space model. In particular, in all

the alternative models, the observation equation, where the fixed-k estimator of spot

volatility and the true spot volatility are linked, comes directly from by the theory of

Bollerslev, Li, and Liao (2021). The difference of the alternative models lies in how

the dynamics in the latent spot volatility is specified.

We then conduct the Bayesian analysis of all the alternative models using Markov

chain Monte Carlo (MCMC), including obtaining the posterior distributions for

each parameter and each latent spot volatility. In particular, the posterior mean of

latent spot volatility is the smoothed estimate of spot volatility. In addition, we

make a Bayesian model comparison of alternative specifications via the Deviance

Information Criterion (DIC).

The rest of the chapter is organized as follows. In section 3.2 relevant preliminary

mathematical concepts are introduced. In section 3.3 the fix-k theory of Bollerslev, Li,

and Liao (2021) is reviewed and used to motivate our modelling strategy. Section 3.4

introduces alternative volatility models. We also discuss the Bayesian methods for

parameter estimation method, volatility extraction, and model comparison method. In

section 3.5 Monte Carlo experiments are designed to demonstrate that our proposed

Bayesian methods in general works well. Section 3.6 contains empirical studies.

Finally, section 3.7 concludes this chapter and briefly discusses the agenda for future

work. More comprehensive discussions of technical details about MCMC and other

additional results are contained in the appendix.
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3.2 Mathematical Foundation

Before we introduce our high-frequency volatility models, we first clarify some

relevant mathematical notations and related concepts. For all the following dis-

cussions, all random variables are defined on a fixed (complete) probability space

(Ω,F,P). Besides, for two random sequences an and bn, we write an ≍ bn, if

an/C ≤ bn ≤ Can for some finite constant C ≥ 1.

3.2.1 Basic mathematical results

Definition 1 (Sample Paths) For stochastic process X defined over probability

space (Ω,F,P), for each fixed ω ∈ Ω, the function t 7→ Xt(ω) that maps from [0,∞)

into R is called the sample path of stochastic process X .

Definition 2 (Hitting Time) Let X be a stochastic process and Λ be Borel set in R.

Define

T (ω) = inf{t > 0 : Xt ∈ Λ}. (3.1)

Then, T is called the hitting time of Λ for X .

Definition 3 (Stopping Time) Let (Ft)t∈T be a filtration on Ω, a random variable

τ taking values from T ∪ {∞} is a stopping time for the filtration (Ft)t if event

{τ ≤ t} ∈ Ft for every t ∈ T.

Definition 4 (càdlàg and càglàd) A stochastic process is said to be càdlàg if it has

sample paths, which are right continuous with left limits almost surely. Similarly,

a stochastic process X is said to be càglàd if it has sample paths, which are left

continuous with right limits almost surely.

Definition 5 Let X be stochastic process and T be a random time. XT is said to be

the process stopped at T if XT
t = Xt∧T . Furthermore, if X is adapted and càdlàg

and if T is a stopping time, then

XT
t = Xt∧T = Xt1{t<T} +XT1{t≥T}. (3.2)
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Definition 6 (Local Martingale) A process is said to be local martingale if it is

locally right-continuous martingale. That is, if there is a sequence of stopping

times τn almost surely increasing to infinity and such that the stopped processes

1{τn>t0}X
τn are martingales. Equivalently, 1{τn>t0}X

τn is integrable and

1{τn>t0}Xτn∧s = E
[
1{τn>t0}Xτn∧t | Fs

]
(3.3)

for all s < t ∈ T, where a ∧ b = min{a, b} and 1{·} is an indicator function.

All the above definitions are prepared to define semimartingale, a concept that

lays the foundation for modeling asset price in the continuous-time setting.

Definition 7 (Semimartingale) In general, semimartingale is the stochastic process

that can be decomposed as the sum of local martingale and an adapted finite-

variation process. That is, in general, we have as in Revuz and Yor (2004)

Xt =Mt + At, (3.4)

where Mt is a local martingale and At is an adapted finite-variation process.

With the above mathematical concepts, Following Andersen, Bollerslev, Diebold,

and Labys (2001) we adopt the assumption that logarithmic asset prices follow a

univariate diffusion. In particular, for the asset indexed by i, the logarithmic return is

modeled as

pi(t)− pi(t− 1) ≡ rk(t) =

∫ t

t−1

µi(s)ds+

∫ t

t−1

σi(s)dW (s), (3.5)

where W (s) stands for the standard Wiener process and hence, the corresponding

volatility measure is based on the quadratic variation process, denoted by Qvari(t),

which yields

Qvari(t) = [pi, pi]t − [pi, pi]t−1 =

∫ t

t−1

σ2
i (s)ds. (3.6)

This is commonly referred to as the integrated volatility in the literature.

According to Andersen, Bollerslev, Diebold, and Labys (2001) and Barndorff-

Nielsen and Shephard (2002), the integrated volatility over non-trivial time interval,

54



such as a day, is an important quantity of interest in finance. Many nonparametric

estimators for daily IV have been proposed. Arguably, the most widely used estimator

is the daily RV based on 5-minute returns.

With the increasing availability of data sampled at ultra high frequencies, how to

estimate the spot volatility, that is σ2
i (t), has drawn a growing interest in the literature.

Based on the mathematical foundation just laid out, we focus on the following model

for (log) price process as in the literature,

Xt = X0 +

∫ t

0

bsds+

∫ t

0

σsdWs + Jt. (3.7)

This is a continuous-time Itô semimartingale process with drift, diffusion and jump.

3.3 Fixed-k Estimator of Spot Volatility

When the logarithmic price of an asset is characterized by the continuous-time Itô

semimartingale process, Jacod, Li, and Liao (2020) suggests a way to estimate “spot

covariance”, ck(t) = σk(t)σk(t)
⊤, nonparametrically and uniformly as follows

ĉn,j ≡
1

kn,j∆n

∑
i∈In,j

∆n
iX∆n

iX
⊤1{∥∆n

i X∥≤un}, (3.8)

where

∆n : T/n.

∆n
iX : Xi∆n −X(i−1)∆n .

un : truncation threshold satisfying un ≍ ∆ϖ
n .

In,j : set collecting indices of consecutive increments in j-th block,

such that {1, . . . , n} =
⋃mn

j=1 In,j and |In,j| = kn,j .

Tn,j : Correspondingly, [0, T ] can be dissected as [0, T ] =
⋃mn

j=1 Tn,j

t(n, j) ≡ (min In,j − 1)∆n,

and

Tn,j ≡

[t(n, j), t(n, j + 1)) if 1 ≤ j < mn

[t(n,mn), T ] if j = mn.
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kn,j denotes the block size. The issue of whether kn,j should be fixed or not

is discussed in Bollerslev, Li, and Liao (2021). While it is commonly assumed

kn,j → ∞, Bollerslev, Li, and Liao (2021) advocates a way of making inference for

spot volatility with kn,j = k fixed. To see the link between the setting of Bollerslev,

Li, and Liao (2021, henceforth BLL2021QE) and ours, note that BLL2021QE set

In,j ≡ {(j − 1)k + 1, . . . , jk}

Tn,j ≡ [(j − 1)k∆n, jk∆n) .

This setting is a special case of ours with kn,j = k.

Essentially (ĉn,j)1≤j≤mn
serves as the functional estimator of (ct)t∈[0,T ]. More

specifically, (ĉn,j)1≤j≤mn
is identified with t-indexed functional estimator (ĉn,t)t∈[0,T ]

such that

ĉn,t ≡ ĉn,j for t ∈ Tn,j and j ∈ {1, . . . ,mn}. (3.9)

The following theorem, which comes from Jacod, Li, and Liao (2020), develops

the properties of the estimator when kn,j → ∞.

Theorem 1 (Jacod, Li, and Liao (2020)) Under the ASSUMPTION 1 and ASSUMP-

TION 2 imposed in Jacod, Li, and Liao (2020) and kn,j ≍ ∆−ρ
n uniformly

for all j ∈ {1, . . . ,mn} and un ≍ ∆ϖ
n such that ρ ∈ (r, 1/2) and ϖ ∈

((1− ρ/2)/(2− ρ), 1/2). The following statements hold for some constant ϵ > 0.

(a) With

Un,j ≡ k
−1/2
n,j

∑
i∈In,j

(
∆n

iW∆n
iW

⊤/∆n − Id
)

for each 1 ≤ j ≤ mn, we have

max
1≤j≤mn

sup
t∈Tn,j

∥∥∥k1/2n,j (ĉn,t − ct)− σt(n,j)Un,jσ
⊤
t(n,j)

∥∥∥ = op (∆
ϵ
n) . (3.10)

(b) If ASSUMPTION 2 holds, the following approximation result holds uniformly

max
1≤j≤mn

sup
t∈Tn,j

|k1/2n,j (f(ĉn,j)− f(ct))−tr[∂f(ct(n,j))σt(n,j)Un,jσ
⊤
t(n,j)]| = op (∆

ϵ
n) .(3.11)
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According to Theorem 9.3.2 of Jacod and Protter (2012), kn,j → ∞ and

kn,j∆n → 0 are needed to ensure the consistency of ĉn,t. The required condi-

tions for the consistency is intuitive as they require the local estimation block contain

an increasing number of observations (i.e. kn,j → ∞), while at the same time the

size of local estimation block shrinks to zero asymptotically (i.e. kn,j∆n → 0).

Although this double asymptotic scheme theoretically justifies the consistency

of the nonparametric estimation of the spot volatility, it requires a carefully chosen

tuning sequence kn,j , as manifest in the above theorem. The fixed-k theory estab-

lished in BLL2021QE alleviates the concern about mimicking the double-asymptotic

scheme. We are now in a position to review the fixed-k theory of BLL2021QE.

3.3.1 Fixed k-inference for volatility

BLL2021QE suggests a way to nonparametrically infer latent spot volatility of

asset prices characterized by continuous-time Itô semimartingale process. The main

contribution of BLL2021QE lies in that the

By setting the estimation block size k fixed, the resulting spot volatility estimator

of BLL2021QE is not consistent, easy-to-calculate pointwise confidence intervals

are available at any given point in time.

In the univariate case, ct = σ2
t is estimated by ĉn,j where, for t ∈ Tn,j and

j ∈ {1, . . . ,mn},

ĉn,t ≡ ĉn,j. (3.12)

The only difference between (3.12) and (3.9) is that in (3.12) a fixed block size

kn,j = k is used. Thus,

ĉn,t ≡ ĉn,j =
1

k∆n

∑
i∈In,j

(∆n
iX)2 1{|∆n

i X|≤un}. (3.13)

The following main theorem comes from BLL2021QE.

Theorem 2 (Bollerslev, Li, and Liao (2021)) Suppose that the ASSUMPTION 1 im-

posed in BLL2021QE holds, then for any finite subset M ⊆ {1, . . . ,mn}, there exists
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a collection of independent random variables
(
S̄j

)
j∈M such that for any j ∈ M and

t ∈ Tn,j ,

ĉn,t
ct

− S̄j = Op

(
∆(2−r)ϖ∧(1/2)

n

)
= op(1), (3.14)

where

M ⊆ {1, . . . ,mn} = (k∆n)
−1
∑
i∈In,j

(
Wi∆n −W(i−1)∆n

)2
,

is a χ̄2
k-distributed random variable. The χ̄2

k refers to the scaled chi-square distribu-

tion such that

χ̄2
k ≡ Zk/k, with Zk ∼ χ2

k. (3.15)

In companion with this definition, we have the scaled inverse-chi-square distribution

χ̄−2
k ≡ k/Zk, with Zk ∼ χ2

k. (3.16)

With k fixed, (3.14) suggests that ĉn,t

ct
can be approximated by a scaled chi-square

distributed random variable, that is,

ĉn,t
ct

d→ χ̄2
k (3.17)

as n→ ∞ (hence ∆n → 0). Taking the log transformation, we have

ln ĉn,t − ln ct = ln χ̄2
k = lnZk − ln k. (3.18)

Definition 8 (Log chi-square distribution) Let Zk denotes the log chi-square dis-

tribution, that is

Zk = lnZk = lnχ2
k.

By Lee (2012, page 379), we have the following results for the log chi-square

distribution.1

1For notational simplicity, we suppress the degrees-of-freedom parameter k in the expressions.
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• For the density function, we have2

p (Z) =
1

2k/2Γ(k/2)
exp

{
1

2
kZ− 1

2
exp (Z)

}
(−∞ < Z <∞) .

• For the moment generating function, we have

MGF(t) = 2tΓ (t+ (k/2)) /Γ (k/2) .

• For the mean and variance, we have

E [Z] = ln 2 + ψ (k/2) ,

V [Z] = ψ′ (k/2) ,

where

ψ(z) =
d

dz
log Γ(z) =

Γ′(z)

Γ(z)
.

Remark 3.1 It is well-known that Γ(z + 1) = zΓ(z). If we differentiate both sides

of the equation, we have Γ′(z + 1) = Γ(z) + zΓ′(z). If we then divide both sides of

the equation by z and substitute Γ(z) by Γ(z + 1)/z, we have

ψ(z + 1) =
1

z
+ ψ(z).

This formula suggests that variance of the log chi-square distribution decreases as k

increases. In particular, it can be shown that

d2

dz2
log Γ(z) =

d

z
ψ(z) = ψ′(z) =

∞∑
j=0

1

(z + j)2
.

This result has the implication for the choice of the fixed local estimation block

size (i.e. k). The larger the local estimation block size is, the less the variance
2It is easy to show that

log p (Z) = −k

2
log 2− log Γ (k/2) +

1

2
kZ− 1

2
exp (Z) .

This formula plays an important role our acceptance-rejection sampling algorithm in the context of
the algorithm of Kim, Shephard, and Chib (1998).
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of the estimated spot volatility. This is consistent with the usual “bias-variance”

trade-off (see Jacod, Li, and Liao, 2020; Bollerslev, Li, and Liao, 2021). According

to the trade-off, a small k results in a more noisy but a less biased nonparametric

estimate of the spot volatility. To make this “bias-variance” trade-off more formally,

Bollerslev, Li, and Liao (2021) show that∥∥ĉn,j − c(j−1)k∆n

∥∥
2
≤ K

(
k−1/2 + (k∆n)

κ) , (3.19)

where ĉn,j is the nonparametric estimation of spot volatility over the jth block of

length k∆n, ∥·∥2 is the standard L2-norm, and κ is the “smoothness” parameter of

the volatility process. (3.19) directly implies the “bias-variance” trade-off. In the

following discussion, we mostly focus on the case where the local estimation window

size is fixed at k = 5 and the price data is sampled at the frequency of every one

minute within one day. Thus, ∆n = 1/390 ≈ 0.002.

Although unobserved spot volatility is indexed continuously in our model, to

facilitate nonparametric estimation of spot volatility, following (3.12), we assume

there exists a surjective function that maps t ∈ [0, T ] to j ∈ {1, . . . ,mn}.3 To ensure

our notations to be consistent wit those in the literature (such as Chernov, Ronald

Gallant, Ghysels, and Tauchen (2003)), we split each day into M disjoint blocks and

the size of each block is fixed as k. If T represents the total number of investigated

trading days, then n = k(MT ) and ∆n = T/n = 1/(kM). In this case, the total

number of blocks for the T trading days is mn =MT . Alternatively, we may have

the following representation. For any t ∈ [0, T ] and r ∈ (0, 1] or the corresponding

discretized counterpart t◦ ∈ [0, T ] and r◦ ∈ {1/M, 2/M, . . . ,M/M = 1},

t = ⌊t−⌋+ r,

and

t◦ = ⌊t−⌋+ r◦,

3As implied by the fixed-k inference theory, instead of estimating ln cn,t for t ∈ [0, T ], we
estimate ln cn,j sampled at discrete time points with j ∈ {1, . . . ,mn}. In the state-space framework,
therefore, we assume t is uniquely mapped to j ∈ {1, . . . ,mn} where mn is the number of local
estimation blocks.
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where ⌊x−⌋ denotes the greatest integer less than x.

Based on the fixed k-inference theory, we set up the following class of state-space

model 
ln (ĉn,t◦) = ln (cn,t◦) + ϵt◦ , ϵt◦ ∼ ln χ̄2

k,

ln (cn,t◦) = alternative models.

(3.20)

(3.21)

Clearly, the observation equation comes from the fix-k theory. Since ϵt◦ is not a

Gaussian variable, a model in this class is a nonlinear non-Gausian state-space model.

Alternative model specifications will be introduced in the next section.

3.4 Alternative Model Specifications

We now specify several alternative models for the latent log spot volatility, ln (cn,t◦).

Following Stroud and Johannes (2014), in our most general specification, we assume

that ln (cn,t◦) can be decomposed into several components:

ln (cn,t◦) = µ+ ht◦ + st◦ + at◦ , (3.22)

where ht◦ is stochastic volatility process, st◦ the seasonal component, at◦ the an-

nouncement component. By shutting down different components in ln (cn,t◦) or

having different specification for ht◦ , we end up with alternative models.

3.4.1 Alternative models

Model 1

If we shut down at◦ and st◦ in (3.22) and impose AR(1) structure for ht◦ with

associated intercept µ, we have our first model – the benchmark model. That is,

ln (cn,t◦) = µ+ ht◦

ht◦ , = ϕht◦−1/M + et◦ , et◦ ∼ N
(
0, σ2

e

)
.
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In this model, data is contained in {ln ĉn,t◦} with {ht◦} being latent variables.

The parameters of the model are {ϕ, µ, σ2
e}. For simplicity, we call this benchmark

model – Model 1. To ensure the {ht◦} process to be stationary, we assume ϕ ∈ (0, 1)

and the distribution for the initial state is

ln(cn,0) ∼ N
(
µ,

σ2
e

1− ϕ2

)
. (3.23)

The above model is different from the log square transformation of the lognormal

stochastic volatility model widely studied in the literature; see, for example Harvey,

Ruiz, and Shephard (1994). The lognormal stochastic volatility model is given by

rt = σexp(ht/2)ϵt, ϵt ∼ N (0, 1), (3.24)

ht = ϕht−1 + σhηt, ηt ∼ N (0, 1). (3.25)

When applying the log square transformation to (3.24), we have

ln r2t = µ+ ht + ln ϵ2t . (3.26)

Clearly, ln ϵ2t is a log chi-square random variable. This is contrast with the scaled

chi-square random variable used in Model 1.

For the prior specification, we first introduce the auxiliary parameters ϕ∗ and σ∗2
e

respectively as in Kim, Shephard, and Chib (1998),

ϕ = 2ϕ∗ − 1

σe = exp

(
1

2
lnσ∗2

e

)
,

and then use the following priors:

ϕ∗ ∼ Beta (αϕ∗ , βϕ∗)

σ∗2
e ∼ I.G.

(
ασ∗

e
, βσ∗

e

)
µ ∼ N (0, 100)
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where αϕ∗ , βϕ∗ , ασ∗
e
, βσ∗

e
are hype-parameters.

MCMC is applied to obtain the correlated random draws from the posterior

distributions of µ, ϕ∗ and ln (σ∗2
e ). These draws can be regarded as correlated

random draws from the original parameters. Based on the MCMC draws, we can

obtain the posterior mean, quantiles, variance for each parameter.

Model 2

Model 2 extends the benchmark model by combining the AR(1) structure and a

discrete jump component in ht◦ . Specifically, Model 2 is given by

ln (cn,t◦) , = µ+ ht◦

ht◦ = ϕht◦−1/M + et◦ + Jt◦ηt◦ , et◦ ∼ N
(
0, σ2

e

)
, ηt◦ ∼ N

(
µη, σ

2
η

)
,

where Jt◦ is a jump indicator, defined by

Jt◦ =

1 with probability κ

0 with probability 1− κ,

with κ being the jump probability, and ηt◦ determines the jump size.

In this model, data is contained in {ln ĉn,t◦} with {ht◦} , {Jt◦} being latent

variables. The parameters of the model are
{
ϕ, µ, σ2

e , κ, µη, σ
2
η

}
.

Following Chib, Nardari, and Shephard (2002), we assume the following conju-

gate priors for parameters in the jump component

κ ∼ Beta (ακ, βκ) ,

µη ∼ N
(
µ̃η, σ̃

2
η

)
,

σ2
η ∼ I.G.

(
αση , βση

)
,

where I.G. denotes the Inverse-Gamma distribution.
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Model 3

In Model 3 we add the seasonal component to the benchmark model. The seasonal

component for intraday volatility is used to capture the diurnal U-shaped patterns

in high frequency financial data. There are several methods for modeling diurnal

patterns, namely, the Fourier representation and a deterministic spline. Based on

using 5-minute square return, when using a deterministic spline, Aı̈t-Sahalia and

Jacod (2014) and Christensen, Hounyo, and Podolskij (2018) document evidence of

larger fluctuations near the opening and closing of the exchange than around lunch

time. The model is given by

ln (cn,t◦) = µ+ ht◦ + st◦ ,

ht◦ = ϕht◦−1/M + et◦ , et◦ ∼ N
(
0, σ2

e

)
,

st◦ ≡ s̃r◦ = 12 (1− b)

(
r◦ − 1

2

)2

+ b, r◦ = t◦ − ⌊t−⌋, t ∈ [0, T ].

The quadratic function s̃r = 12(1− b)
(
r − 1

2

)2
+ b, is the only function within

the class f(r) = c(r − a)2 + b that satisfies (i)
∫ 1

0
(c(r − a)2 + b) dr = 1; (ii)

argminr c(r − a)2 + b = 1
2
. The first condition is imposed for identification. The

second condition assumes that the diurnal pattern reaches the minimum in the middle

of a trading day, an empirical regularity that has been found in the literature.4 There

is a restriction in using the quadratic function. That is, it implies a symmetric diurnal

pattern. In a recent study, Christensen, Hounyo, and Podolskij (2018) propose a

nonparametric method to estimate the diurnal patten and find an asymmetric diurnal

pattern. However, our approach can be easily extended to cover more complicated

deterministic functions for diurnal pattern.

In this model, data is contained in {ln ĉn,t◦} with {ht◦} being latent variables.

4To satisfy the condition that argminr c(r−a)2+ b = 1
2 , we have c > 0 and a = 1

2 . Substituting
a = 1

2 into
∫ 1

0

(
c(r − a)2 + b

)
dr = 1 yields 1

12c + b = 1 ⇒ c = 12(1 − b). Thus, the quadratic
function is uniquely determined by single parameter b. The larger the value of b is, the less pronounce
the quadratic volatility pattern.
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The parameters of the model are {ϕ, µ, σ2
e , b}.

Since Model 3 and Model 1 share the same AR(1) specification for {ht◦}, we

use the same priors on {ϕ, µ, σ2
e} as before. For parameter b, we assume a flat prior

on [0, 1], that is, b ∼ U(0, 1).

Model 4

Different from Model 3 that includes the component to capture the diurnal pattern,

Model 4 includes the component to capture macroeconomic news announcement

effects. The motivation for incorporating announcement effects comes from recent

empirical finance sdudies, for instance Lucca and Moench (2015) and Bernile, Hu,

and Tang (2016). The specification of Model 4 is given by

ln (cn,t◦) = µ+ ht◦ + at◦ ,

ht◦ = ϕht◦−1/M + et◦ , et◦ ∼ N
(
0, σ2

e

)
,

at◦ =

Q∑
q=1

L∑
l=0

1t◦qlαql,

where 1t◦ql is an indicator for news type q at time t◦ with l = 0, 1, . . . , L (i.e.,

1t◦ql = 1 if it is within l periods after type q announcement made at time t◦ − l
M

and

0 otherwise), αql is the announcement effect for news type q at l periods after the

announcement.

Again, since the specification for ln ĉn,t◦ in Model 4 is the same as that in Model

1, we use the same priors for parameters {ϕ, µ, σ2
e}. Parameters {αql}q=1,...,Q;l=1,...,L

characterize announcement effects. The dimension of these parameters is Q × L,

and hence, it increases as Q and/or L increases. For instance, if L = 5 and Q = 3,

we will have L×Q = 15 parameters to determine the announcement effects. This

would impose a great deal of computational challenges to the Bayesian analysis.

To alleviate the computational burden, we assume the announcement effects decay

over time according to the following pattern, αql = α̃q exp
{
−β̃ql

}
. This is relatively
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a parsimonious specification that significantly reduces the dimension of the parameter

space associated with announcement effects. The imposed decaying structure for the

announcement effects is consistent with the intuition and the empirical evidence in

the literature (see Stroud and Johannes, 2014; Lucca and Moench, 2015; Bernile,

Hu, and Tang, 2016). Under this specification, the parameters are collected in{
α̃q, β̃q

}Q

q=1
. When L = 5 and Q = 3, the number of parameters in connection to

announcement effects reduce from 15 to 2×Q(= 3) = 6. The following priors are

used for the new parameters,

α̃q ∼ N
(
0, σ̃2

q

)
for q = 1, · · · , Q,

β̃q ∼ E
(
−λ̃q

)
for q = 1, · · · , Q,

where N (·, ·) and E (·) denote normal distribution and exponential distribution

respectively. Accordingly, in this model, data is contained in {ln ĉn,t◦} with {ht◦}

being latent variables. The parameters of the model are
{
ϕ, µ, σ2

e , α̃q, β̃q

}
.

Model 5

In Model 5, we consider the model specification by combining all the specifications

of Models 1-3. Thus, we have both jumps and diurnal patterns included in the model

specification. In other words, Model 5 nests Models 1-3. We summarize the model

structure of Model 5 as follows with detailed explanations for notations kept in the

description of Models 1-3.

ln (cn,t◦) = µ+ ht◦ + st◦ ,

ht◦ = ϕht◦−1/M + et◦ + Jt◦ηt◦ , et◦ ∼ N
(
0, σ2

e

)
, ηt◦ ∼ N

(
µη, σ

2
η

)
,

st◦ ≡ s̃r◦ = 12 (1− b)

(
r◦ − 1

2

)2

+ b, r◦ = t◦ − ⌊t−⌋, t ∈ [0, T ].

The parameters of nested Model 6 are
{
ϕ, µ, σ2

e , κ, µη, σ
2
η, b
}

.
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Model 6

Recall (3.22) for our general specified functional form of latent volatility process.

By shutting down (or opening up) different components, we can obtain different

model specifications. Models 1-4 discussed in the previous subsections are about

adding different components (i.e. jumps, diurnal components, and announcement

effect components) respectively onto the single factor volatility model, Model 1.

Alternatively speaking, built upon the benchmark model specification in Model

1, by combining different specifications in Models 2-4, we can at most obtain

C0
3 +C

1
3 +C

2
3 +C

3
3 = 1+3+3+1 = 8 different models. Models 1-4 are about the

subset of combinations (i.e. C0
3 + C1

3 ). We refer to the most comprehensive model

specification that includes all the components as Model 6. Thus Model 6 nests all

the specifications in Models 1-4. We summarize the model structure of Model 6 as

follows with detailed explanations for notations kept the same as in the description

of Models 1-4.

ln (cn,t◦) = µ+ ht◦ + st◦ + at◦

ht◦ = ϕht◦−1/M + et◦ + Jt◦ηt◦ , et◦ ∼ N
(
0, σ2

e

)
, ηt◦ ∼ N

(
µη, σ

2
η

)
,

st◦ ≡ s̃r◦ = 12 (1− b)

(
r◦ − 1

2

)2

+ b, r◦ = t◦ − ⌊t−⌋, t ∈ [0, T ],

at◦ =

Q∑
q=1

L∑
l=0

1t◦qlαql.

The parameters of nested Model 6 are
{
ϕ, µ, σ2

e , κ, µη, σ
2
η, b, α̃q, β̃q

}
.

3.4.2 Bayesian analysis

MCMC sampling from posterior

The generic logic of Bayesian analysis is to make all the corresponding analyses

about information that we want to learn from data based on the posterior distribution.
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That is, suppose we have data denoted as y in general and let ϑ denote the parameter

space (it may include all the parameters associated with specific model and the

corresponding latent variables if we apply data augmentation techniques), then the

general Bayes’ rule suggests that posterior analysis should based on the relation

p (ϑ | y) = p (y | ϑ) p (ϑ)∫
p (y | ϑ) p (ϑ) dϑ

, (3.27)

where p (y | ϑ) and p (ϑ) refer to conditional likelihood and prior distribution respec-

tively. The main difficulty in obtaining posterior distribution as suggested in (3.27)

arises from the required integration in the denominator. This integration in general

is not available for closed-form solution (for instance, the nonlinear non-Gaussian

state-space models in our setting summarized in (3.20) and (3.21)).

MCMC as the leading modern Bayesian technique is quite suitable for making

posterior sampling from the target posterior associated with the state-space model

with latent structure. The general idea of MCMC method can be understood as a

combination of various sampling algorithms such as the Metropolis-Hastings (M-

H) algorithm, acceptance-rejection algorithm, Gibbs sampler, and the substitution

sampler (see data augmentation algorithm in Tanner and Wong, 1987) by making

draws from conditional distributions associated with the target posterior. It can

be theoretically justified that as long as we can let the Markov chain run long

enough, those draws taken from blocks of conditional distributions constitute the

target posterior distribution. Accordingly, we can use these draws to summarize the

posterior mean (or mode) as the estimation of target parameters and latent variables.

Gilks, Richardson, and Spiegelhalter (1995), Bolstad (2009), and Gelman, Carlin,

Stern, Dunson, Vehtari, and Rubin (2013) are all good references for technical details

of MCMC methods. We exploit h to denote the sequence of ht◦ , J to denote all

the jump indicators, and η to denote all the jump sizes. For the sake of description

simplicity, we let h̃ = h + µ. Meanwhile, we use y to denote the sequence of

log transformation of nonparametric estimator of volatility, that is the sequence

of ln (ĉn,t◦). The designed MCMC algorithms associated with Models 1-6 are
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summarized as follows respectively.

• Model 1

(1) Initialize {h, ϕ, µ, σ2
e}.

(2) Sample h̃ | ϕ, µ, σ2
e ,y.

(3) Sample {ϕ, µ, σ2
e} | h̃.

(4) Go to (2).

• Model 2

(1) Initialize
{
h,J ,η, ϕ, µ, σ2

e , κ, µη, σ
2
η

}
.

(2) Sample h̃ | J ,η, ϕ, µ, σ2
e , κ, µη, σ

2
η,y.

(3) Sample {ϕ, µ, σ2
e} | h̃,J ,η.

(4) Sample J | h, ϕ, µ, σ2
e , κ, µη, σ

2
η .

(5) Sample η | h,J , ϕ, µ, σ2
e , µη, σ

2
η .

(6) Sample
{
κ, µη, σ

2
η

}
| J ,η.

(7) Go to (2).

In step (2) above, we need
{
κ, µη, σ

2
η

}
to obtain the initial condition of h.

• Model 3

(1) Initialize {h, ϕ, µ, σ2
e , b}.

(2) Sample h̃ | ϕ, µ, σ2
e , b,y.

(3) Sample {ϕ, µ, σ2
e} | h̃.

(4) Sample b | h, µ,y.

(5) Go to (2).

In step (4) above, we insert one M-H algorithm for sampling b.

• Model 4
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(1) Initialize
{
h, ϕ, µ, σ2

e , α̃q, β̃q

}
.

(2) Sample h̃ | ϕ, µ, σ2
e , α̃q, β̃q,y.

(3) Sample {ϕ, µ, σ2
e} | h̃.

(4) Sample
{
α̃q, β̃q

}
| h, µ,y.

(5) Go to (2).

In step (4) above, we insert one M-H algorithm for sampling
{
α̃q, β̃q

}
.

• Model 5

This is a model nesting all the specifications from Models 1-3. The corre-

sponding MCMC loop is summarized as follows

(1) Initialize
{
h,J ,η, ϕ, µ, σ2

e , κ, µη, σ
2
η, b
}

.

(2) Sample h̃ | J ,η, ϕ, µ, σ2
e , κ, µη, σ

2
η, b,y.

(3) Sample {ϕ, µ, σ2
e} | h̃,J ,η.

(4) Sample J | h, ϕ, µ, σ2
e , κ, µη, σ

2
η .

(5) Sample η | h,J , ϕ, µ, σ2
e , µη, σ

2
η .

(6) Sample
{
κ, µη, σ

2
η

}
| J ,η.

(7) Sample b | h, µ,y.

(8) Go to (2).

• Model 6

This is the largest model nesting all the components that are expected to obtain

from MCMC. The MCMC loop is summarized as follows,

(1) Initialize
{
h,J ,η, ϕ, µ, σ2

e , κ, µη, σ
2
η, b, α̃q, β̃q

}
.

(2) Sample h̃ | J ,η, ϕ, µ, σ2
e , κ, µη, σ

2
η, b, α̃q, β̃q,y.

(3) Sample {ϕ, µ, σ2
e} | h̃,J ,η.

(4) Sample J | h, ϕ, µ, σ2
e , κ, µη, σ

2
η .
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(5) Sample η | h,J , ϕ, µ, σ2
e , µη, σ

2
η .

(6) Sample
{
κ, µη, σ

2
η

}
| J ,η.

(7) Sample
{
b, α̃q, β̃q

}
| h, µ,y.

(8) Go to (2).

DIC for model comparison

Deviance Information Criterion (DIC), proposed and well-discussed in Spiegelhalter,

Best, Carlin, and van der Linde (2002, 2014), is a popular method for model selection

when MCMC output is ready. There are a few nice features about DIC. First, DIC

is applicable to a wide range of statistical models. Second, it does not suffer from

Jeffreys-Lindley-Barlett’s paradox. Third, it can be obtained even under improper

priors. Finally, Li, Yu, and Zeng (2021) justify DIC by showing that DIC is an

asymptotically unbiased estimator of the Kullback-Leibler divergence between the

data generating process and the plug-in predictive distribution. DIC in general is

given as follows

DIC = D
(
ϑ̄
)
+ 2PD, (3.28)

where

D(ϑ) = −2 ln p (y | ϑ)

PD = −2

∫
[ln p(y | ϑ)− ln p(y | ϑ̄)]p(ϑ | y)dϑ.

ϑ̄ refers to the posterior mean of parameter ϑ and y generically denote observable

data. Specifically, for the DIC definition in (3.28), D(ϑ̄) as the product of a negative

number (−2) and log-observed-data likelihood evaluated at the posterior mean of

parameters could be interpreted as the measure of model fit and hence it is expected

to be minimized for fitting data purpose. While PD as the second term in (3.28)

could be interpreted as the product of a negative number (−2) and the posterior
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expected deviance between log-observed-data likelihood evaluated at different pa-

rameter values over parameter space and log-observed-data likelihood evaluated at

the posterior mean. The corresponding expectation is taken with respect to posterior

distribution p (ϑ | y). Since PD is increasing with ln p
(
y | ϑ̄

)
, there exists trade-off

between these two terms D
(
ϑ̄
)

and PD, therefore the objective to minimize DIC

is reconciled with the goal of achieving balance between “model fit” and “model

complexity”. This also corresponds to the opinion that DIC can be understood

as the Bayesian version of AIC. Computing DIC using conditional likelihood is

straightforward based on posterior sampling from MCMC: (i) for D
(
ϑ̄
)
, we just

make D (ϑ) evaluated at posterior mean ϑ̄; (ii) and pD is calculated using posterior

sample mean from MCMC.

3.5 Monte Carlo Experiments

In this section, we conduct several Monte Carlo experiments to check the per-

formance of the proposed Bayesian method in estimating parameters, extracting

volatility estimates, and in comparing alternative models. Several data generation

processes, which match with different alternative model specifications in the previous

section, have been used to simulate data.

3.5.1 Experiment 1

In the first experiment, we simulate data according to,

dXt = exp (ht/2) dWt,

dht = κh (µh − ht) dt+ σhdBt

E [WtBt, ] = ρ = 0.
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Specifically we simulate discrete data by setting dt := ∆n
i = 1/390, which implies

that price data is sampled every one minute, leading to 6.5 × 60 = 390 returns as

we assume there are 6.5 trading hours. Parameter specification for this experiment

is as follows: κh = 0.2, µh = −5, ρ = 0, σh = 0.4. For notational simplicity, we

write ln(cn,t) as ht. When extracting latent volatility, we focus our attention on the

one-month interval (i.e., T = 22, assuming that there are 22 trading days within one

month). In total we have n = 22× 390 = 8580 returns.5

First, to check the performance of the Bayesian method in estimating model

parameters, we report the posterior means, posterior standard errors for all parameters.

The corresponding results are summarized in the following figures with the vertical

red dashed lines indicating the location of posterior means.

[Place Figure 3.1 about here]

Remark 3.2 (From DGP Dynamic to Block Dynamic) Recall that in general

data is generated from the following dynamic system, if we treat dht = ht+1 − ht of

the second equation above, we are able to rewrite the second equation characterizing

5We simulate price-level data using the described DGP each for a specific experiment. It works
fine for different replicate experiments. Besides, we simulate price-level data by only accounting
for diffusion process. This DGP scheme does not distort our general target since our approach
relies on the distribution of the difference between the log fixed-k estimator of spot volatility and
the true unobserved latent volatility. The derived distribution in BLL2021QE generally applies to
continuous Itô semimartingale and therefore any fixed-k estimator of volatility associated price-
level data generated from continuous Itô semimartingale does not affect the nonlinear non-Gaussian
state-space model we establish. Similar DGP scheme has also been used in literature such as Xiu
(2010).
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latent spot volatility dynamics as follows

ht+1 − ht = κh (µh − ht) dt+ σhdBt

⇔

(ht+1 − µh)− (ht − µh) = −κhdt(ht − µh) + σhdBt

⇒

ht+1 − µh = (1− κhdt)︸ ︷︷ ︸
ϕh

(ht − µh) + σhdBt︸ ︷︷ ︸
εt+1

Given the property of Brownian motion, σhdBt ∼ N (0, σ2
hdt). Data is generated

from this continuous setting. But to apply nonparametric estimation of spot volatility

in our established framework, we have to select k consecutive time intervals (dt ≡

∆n
i ) to construct “local estimation window”. This implies that we have to move from

“observation” dynamics to “block” dynamics. If we simulate data from system given

above, we are modeling following dynamics (let h̃̃t = ht − µh denote the demeaned

latent spot volatility)

h̃̃t+k = ϕhh̃̃t+k−1 + εt+k

= ϕh

(
ϕhh̃̃t+k−2 + εt+k−1

)
+ εt+k

= ϕh(ϕh(ϕhh̃̃t+k−3 + εt+k−2) + εt+k−1) + εt+k

· · ·

= ϕk
hh̃̃t +

(
ϕk
hεt + · · ·+ εt+k

)
.

Thus the “block” dynamics should be given as follows

h̃̃j+1 = ϕk
hh̃̃j + ej+1. (3.29)

This could be interpreted as that h̃̃j is regarded as constant spot volatility within the

j-th block constructed by every k intervals. Variance of ej+1 = ϕk
hεt + · · ·+ εt+k is
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given as follows

σ2
e =

σ2
hdt(1− ϕ

2(k+1)
h )

1− ϕ2
h

.

For instance, if dt := ∆n
i = 1/390, σh = 0.4, k = 5, and κh = 0.2, then ϕh =

1− κhdt ≈ 0.9995, ϕk
h ≈ 0.9974 and√

σ2
hdt(1− ϕ

2(k+1)
h )

1− ϕ2
h

≈ 0.0496.

These quantities should be reasonably compared with posterior means summarized

from MCMC outputs.

Second, to check the performance of the smoothing and filtering methods in

extracting latent volatility, we plot the simulated (true) volatility, fixed-k estimation

of volatility, and smoothed volatility in figures:

[Place Figure 3.2 about here]

[Place Figure 3.3 about here]

For the results demonstrated above, the local estimation window size is fixed at

k = 5. In this regard, we treat the unobserved latent volatility as constant every 5

minutes, and accordingly for this fixe-k scheme we have M = 390/5 = 78 local

estimation blocks each day and 22× 78 = 1716 local estimation blocks for 22 days.
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3.5.2 Experiment 2

In this experiment, we simulate data according to,

dXt = exp
(
h̃t/2

)
dWt,

h̃t = µh + ht,

dht = −κhhtdt+ σhdBt + 1{t=t◦}Jtηt,

E [WtBt] = ρ = 0,

Jt ∼ Bernoulli(κ),

ηt ∼ N
(
µη, σ

2
η

)
.

Specifically we simulate discrete data by setting dt := ∆n
i = 1/390, which implies

that price data is sampled every one minute, leading to 6.5× 60 = 390 returns as we

assume there are 6.5 trading hours. Parameter specification for this experiment is

as follows: κh = 0.2, µh = −5, ρ = 0, σh = 0.4, κ = 0.0025, µη = 0.8, ση = 1.2.

For notational simplicity, we write ln(cn,t) as ht. κ = 0.0025 ≈ 1/(78× 5) suggests

that we assume approximately there is one jump each week. When extracting latent

volatility, we focus our attention on the one-month interval (i.e., T = 22, assuming

that there are 22 trading days within one month). In toal we have n = 22× 390 =

8580 returns. Besides, the jump component is incorporated in the transition dynamics

of the volatility process using 1{t=t◦} to ensure that latent spot volatility transition

dynamics in DGP are reconciled with corresponding specifications in Model 2. In

other words, we only consider jumps that happen at the end of each local estimation

block.

First, to check the performance of the Bayesian method in estimating model

parameters, we report the posterior means, posterior standard errors for all parameters.

The corresponding results are summarized in the following figures with the vertical
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red dashed lines indicating the location of posterior means.

[Place Figure 3.4 about here]

Second, to check the performance of the smoothing and filtering methods in

extracting latent volatility, we plot the simulated (true) volatility, fixed-k estimation

of volatility, and smoothed volatility in figures:

[Place Figure 3.5 about here]

3.5.3 Experiment 3

In this experiment, we simulate data according to,

dXt = exp
(
h̃t/2

)
dWt,

h̃t = µh + ht + st,

dht = −κhhtdt+ σhdBt,

E [WtBt] = ρ = 0,

st = 12(1− b)

(
t− ⌊t−⌋ − 1

2

)2

+ b,

where st takes the quadratic functional form as described for Model 3, thus

st = 12(1− b)

(
t− ⌊t−⌋ − 1

2

)2

+ b.

All the parameters except for the parameter that specifies intraday volatility pattern

inherit from Experiment 1. We specify b for different cases: one for b = 0.4, which

represents the case when daily volatility exhibits relatively strong diurnal U-shaped

patterns; while the other for b = 0.8, which represents the case when daily volatility

exhibits relatively weak diurnal U-shaped patterns.
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First, to check the performance of the Bayesian method in estimating model

parameters, we report the posterior means, posterior standard errors for all parameters.

The corresponding results are summarized in the following figures with the vertical

red dashed lines indicating the location of posterior means.

[Place Figure 3.6 about here]

[Place Figure 3.7 about here]

Second, to check the performance of the smoothing and filtering methods in

extracting latent volatility, we plot the simulated (true) volatility, fixed-k estimation

of volatility, and smoothed volatility in figures:

[Place Figure 3.8 about here]

3.5.4 Experiment 4

In this experiment, we simulate data according to,

dXt = exp
(
h̃t/2

)
dWt,

h̃t = µh + ht + at◦ ,

dht = −κhhtdt+ σhdBt,

E [WtBt] = ρ = 0,

at◦ =

Q∑
q=1

L∑
l=0

1t◦qlαql,

αql = α̃q exp
{
−β̃ql

}
,

where at◦ inherits the corresponding specification directly from Model 4 such that

at◦ =

Q∑
q=1

L∑
l=0

1t◦qlαql.
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where 1t◦ql is indicator for news type q at t◦ with l = 0, 1, . . . , L (i.e., 1t◦ql = 1

if it is l periods after type q announcement made at time t◦ − l
M

and 0 otherwise).

We currently focus on the single-type announcement effect, thus Q = 1 in this

experiment. Besides, L is the parameter capturing the longest length of periods

for which the announcement effect survives once it is made. L is set equal to

5 in this experiment. To simulate announcement indicators, we assume that the

announcement happens at a rate approximately equal to 0.004 ≈ 1/(78 × 3). We

specify the announcement effects by setting α̃q = 0.8, β̃q = 0.1.

First, to check the performance of the Bayesian method in estimating model

parameters, we report the posterior means, posterior standard errors for all parameters.

The corresponding results are summarized in the following figures with the vertical

red dashed lines indicating the location of posterior means.

[Place Figure 3.9 about here]

Second, to check the performance of the smoothing and filtering methods in

extracting latent volatility, we plot the simulated (true) volatility, fixed-k estimation

of volatility, and smoothed volatility in figures:

[Place Figure 3.10 about here]
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3.5.5 Experiment 5

In this experiment, we simulate data by accommodating all the components in

Experiments 1-3.

dXt = exp
(
h̃t/2

)
dWt,

h̃t = µh + ht + st,

dht = −κhhtdt+ σhdBt + 1{t=t◦}Jtηt,

E [WtBt] = ρ = 0,

Jt ∼ Bernoulli(κ),

ηt ∼ N
(
µη, σ

2
η

)
,

st = 12(1− b)

(
t− ⌊t−⌋ − 1

2

)2

+ b.

All the corresponding notations inherit directly those in Experiments 1-3 and the

values assigned to these parameters as well.

First, to check the performance of the Bayesian method in estimating model

parameters, we report the posterior means, posterior standard errors for all parameters.

The corresponding results are summarized in the following figures with the vertical

red dashed lines indicating the location of posterior means.

[Place Figure 3.11 about here]

Second, to check the performance of the smoothing and filtering methods in

extracting latent volatility, we plot the simulated (true) volatility, fixed-k estimation

of volatility, and smoothed volatility in figures:

[Place Figure 3.12 about here]
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3.5.6 Experiment 6

In this experiment, we simulate data by accommodating all the components in

Experiments 1-4 via following data generating process

dXt = exp
(
h̃t/2

)
dWt,

h̃t = µh + ht + st + at◦ ,

dht = −κhhtdt+ σhdBt + 1{t=t◦}Jtηt,

at◦ =

Q∑
q=1

L∑
l=0

1t◦qlαql,

αql = α̃q exp
{
−β̃ql

}
.

All the corresponding notations inherit directly those in Experiments 1-4 and the

values assigned to these parameters as well.

First, to check the performance of the Bayesian method in estimating model

parameters, we report the posterior means, posterior standard errors for all parameters.

The corresponding results are summarized in the following figures with the vertical

red dashed lines indicating the location of posterior means.

[Place Figure 3.13 about here]

Second, to check the performance of the smoothing and filtering methods in

extracting latent volatility, we plot the simulated (true) volatility, fixed-k estimation

of volatility, and smoothed volatility in figures:

[Place Figure 3.14 about here]
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3.5.7 Discussions on model comparison for Model 1-4

For Experiments 1-4 associated with Model 1-4, we summarize model comparison

results using DIC in the following table, where Model i=1,2,3,4 and DGP i=1,2,3,4

refer to model specifications and data generating processes discussed in the previous

subsections respectively. For each data generating process DGP i=1,2,3,4, DIC

based on conditional likelihood is reported along with the decomposed components

in (3.28). In general, the model with a relatively smaller DIC (highlighted in bold)

should be preferred to the model with a relatively larger DIC. It is possible to see

from this Monte Carlo experiment that standard deviance information criterion can in

general select the alternative model associated with the true data generating process.

Since for DGP i=1,2,3, it is by design that there is no observed announcement

indicators, hence we do not compare Model 4 with Model i=1,2,3 for DGP i=1,2,3.

[Place Table 3.1 about here]

3.6 Empirical Study

This section discusses the empirical applications of our proposed estimation method

to spot volatility. We see from earlier discussions that a prominent feature associated

with spot volatility estimation by fixing the local estimation window size is the

“noise” introduced, which motivates our proposed methodology using the MCMC

techniques to extract the spot volatility from the noise nonparametric estimate.

We first demonstrate some applications of the proposed methodology in tracking

volatilities associated with individual assets. Then we discuss an application to

quantify the economic value of the private information closely connected with the

return volatility in high frequency in the studies of financial microstructure.
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3.6.1 Extracting spot volatility for individual asset

Data used for our empirical study is collected mainly from two sources. For the

data corresponding to the U.S. equity market, we mainly collect it from the NYSE

TAQ database (Trade and Quote database).6 We follow the procedure suggested

in Barndorff-Nielsen, Hansen, Lunde, and Shephard (2009), which has been en-

compassed in highfrequency package maintained at CRAN (Boudt, Kleen, and

Sjørup, 2021). This procedure aims to eliminate non-zero trades and filter for valid

sales conditions.7 Aside from that, we merge trade entries that have the same times-

tamp into a single one. That is, if there are multiple observations available for a

specific timestamp, we take the median of these multiple observations as the corre-

sponding observation associated with that timestamp. For the Chinese stock market,

we mainly use one-minute price-level data of CSI 300 index futures.8

For the sake of mitigating the effect of microstructure “noise”, it is a common

practice to use price data sampled at the one-minute sampling frequency, (see Zhang,

Mykland, and Aı̈t-Sahalia, 2005). For the one-minute sampling scheme, we calculate

the corresponding one-minute return within trading hours each day from 9:30 to

16:00 by taking close-open return (i.e. close-open log price difference) as return

from the interval from 9:30 to 9:31 and close-close return (i.e. close-close log price

difference) as the return for the following sampling intervals up till to 16:00, which
6This database contains intraday transactions data (trades and quotes). Generally there are 3 kinds

of data products: Trade & Quote Daily Product (09/10/2003-present), Trade & Quote Monthly
Product (01/01/1993-12/31/2014) and NYSE Reg Sho Data (01/01/2005-07/31/2007). In general,
The TAQ Daily and Monthly data products are nearly identical whereas the key difference arises from
that Monthly Data Product is delivered a whole month at a time, typically 60-90 days after the last
trading day of the month. Daily Data Product is delivered one day at a time, hours after trading
stops, and is available on WRDS the next day. We retain our focus on using Trade & Quote Daily
Product as it is actively maintained and is of relatively higher quality in the sense that sampling
intervals are more refined for the Trade & Quote Daily Product such that timestamps are provided
at milliseconds (10−3 secs) granularity through March 2015, and in microseconds (10−6 secs)
starting in April 2015.

7For more about sales conditions, readers may refer to NYSE online documentation about daily
TAQ trade files at https://www.nyse.com/publicdocs/nyse/data/Daily_TAQ_
Client_Spec_v3.3.pdf. By implementing this procedure, we essentially retain our focus on
stocks exchanged in a single exchange market (for instance, T/Q refers to the NASDAQ exchange
market).

8More details are summarized in http://www.cffex.com.cn/en_new/CSI300Inde
xFutures.html.
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is usually the ending trading hours each day.9 More specifically, we should expect

391 observed data at price level and accordingly 6.5× 60 = 390 one-minute returns

per day. We use two market indices (S&P 500 index ETF representing the U.S.

market and CSI 300 index futures representing the Chinese market respectively)

and one individual stock (Apple Inc.) as the data source. We demonstrate both the

extracted volatility (red dashed line) and the corresponding nonparametric estimation

of volatility (blue solid line) with local estimation block size fixed (i.e. fixed k = 5,

every 5-minutes) as follows10

S&P 500 index ETF from TAQ in November 2015

[Place Figure 3.15 about here]

Apple Inc. Stock Price in August 2017

[Place Figure 3.16 about here]

CSI 300 Index futures in January 2020

[Place Figure 3.17 about here]

CSI 300 Index futures in August 2020

[Place Figure 3.18 about here]

For each index, the extracted volatility is based on Model 5, the nested model includ-

ing all the specifications of Models 1-3. For all the applications above, we apply the

truncation technique in Mancini (2001) based on the suggestion in BLL2021QE for

applying fixed-k inference theory in practice. Specifically, our truncation threshold

un is selected as satisfying un ≍ ∆ϖ
n with ϖ ∈ (0, 1/2). We choose un = Cσ̄∆ϖ

n

such that C = 3 and ϖ = 0.49, where the preliminary estimator of volatility, σ̄, can

9Timing scheme for trading hours corresponding to CSI 300 index futures. From 2010 to 2015,
we have pirce-level data sampled at one-minute frequency from 9:15 to 15:15 each day; while from
2016 to 2021, we have data sampled at one-minute frequency from 9:30 to 15:00 each day.

10The extracted volatility is referred to as the smoothed volatility in this thesis. One may also
extract volatility as the filtered volatility.
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be chosen as the bipower variation estimator of Barndorff-Nielsen and Shephard

(2004). Besides, for all the results summarized from Figure 3.15 to Figure 3.18, we

use the blue solid line to indicate the fixed-k estimator (k = 5) of spot volatility

and use the red dashed line to indicate the smoothed volatility using our proposed

methodology.

We also make a model comparison across Models 1-3 based on DIC to check

whether we need to extend the benchmark model specification (Model 1) to incorpo-

rate either jumps in the volatility dynamics or the diurnal pattern of latent volatility

process. Specifically for each year (S&P 500 index ETF in 2015, Apple Inc. Stock

Price in 2017 and CSI 300 Index futures in 2020) and each month we apply our pro-

posed methodology to extract volatility based on model specification corresponding

to Model 1, Model 2, and Model 3. Results are summarized in Table 3.2, Table 3.3,

and Table 3.4 respectively.

[Place Table 3.2 about here]

[Place Table 3.3 about here]

[Place Table 3.4 about here]

These results suggest that for most cases, we need to allow for the jump specifi-

cations in modeling the latent volatility process and that is why we apply Model 5

that nests both the jump specifications and intraday diurnal pattern specification for

extracting volatility. We also summarize the posterior mean and standard deviations

of parameter MCMC draws as follows.

[Place Table 3.5 about here]

[Place Table 3.6 about here]

[Place Table 3.7 about here]
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By comparing the posterior mean of b summarized in the last column of Table 3.5,

Table 3.6, and Table 3.7, we find that: the volatility of individual stock return

exhibits a relatively stronger (lower b) diurnal pattern while the volatility associated

with market indices exhibits a relatively weaker (higher b) diurnal pattern in the

corresponding periods.

3.6.2 Spot volatility, liquidity, and strategic value of information

In this section, we specifically focus on one application of our proposed methodology

for extracting volatility to study the financial market microstructure, and hence, to

obtain the economic value of information in strategic trading.

Volatility plays a vital role in modern financial market microstructure studies.

Essentially all the studies about the financial market structure are about recovering

insiders’ private trading information in comparison to relatively uninformed liquidity

traders. In other words, the central question is what the value of asset-specific

information is to a strategic trader and how to practically quantify such a kind of

value, which is also the amount investors would pay for information. The idea for

quantifying the value of information is to use two components: (i) the extent to

which specific information can offer speculator the reduction in uncertainty; (ii)

liquidity associated with assets for which the acquired information can be used to

trade quickly without generating adverse effects on the assets’ prices. Inspired by

Grossman and Stiglitz (1980) and the subsequent studies in Kyle (1985) and Back

(1992), this idea has been justified using the ratio of uncertainty about the asset’s

fundamentals and the asset’s illiquidity measure.

Given the recent finding in empirical literature (Collin-Dufresne and Fos, 2015;

Kacperczyk and Pagnotta, 2019; Akey, Grégoire, and Martineau, 2022) that private

information is hardly reflected by equity prices, Kadan and Manela (2021) extends the

modeling framework of Kyle (1985) and Back (1992) (comprehensively summarized

in Back (2017)) and proposes that in equilibrium the ex-ante dollar expected profits
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of informed trader over a specific interval indexed from 0 to 1 can serve as the

measure of value of information to strategic trader, which is given by11

Ω =
σ2
v

λ
P0, (3.30)

where σ2
v characterizes volatility associated with private information of informed

traders and P0 refers to the initial price of the specific asset over this timing interval.

Besides, we follow the convention in literature as in Back (2017) assuming that

private information is denoted by ṽ and follows log-normal distribution such that

ln ṽ ∼ N (µ, σ2
v). In (3.30), λ is widely known as Kyle’s Lambda, initially proposed

in Kyle (1985), as the measure of sensitivity of assets’ return to share order flow

(Lee and Ready, 1991; Ellis, Michaely, and O’Hara, 2000; Holden and Jacobsen,

2014). Kyle’s lambda serves as an alternative measure reflecting financial market

turbulence, which is usually high during periods in which the whole financial market

is exposed to a systematic crisis such as the 2008 financial depression and more

recent years Covid-19 global pandemic crisis. As we can see from (3.30) that σ2
v

as the major component characterizing the value of information to strategic trader

also measures the magnitude of reduction in uncertainty that speculator would have

if had acquired corresponding information. More importantly, as we will see in

the following discussion that although σ2
v is originally the measure of uncertainty

associated with information (for instance, at price level), it can be directly used as

the measure of volatility associated with the logarithmic return of asset.

In the literature on financial market microstructure, it is usually assumed that ob-

served cumulative share orders in the continuous-time modeling framework, denoted

by Yt, can be decomposed into cumulative share orders of informed trader, denoted

by Xt; and cumulative share orders of uninformed trader, denoted by Zt, thus

Yt = Xt + Zt. (3.31)

Dynamics specified for is directly characterized via Brownian motion as dZt =

11Alternatively, it is possible to interpret 0 as the starting point of specific interval while 1 as the
ending point of specific interval.
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σzdBt. Then results contained in Theorem 3 and Example 2 in Back (1992) and

Back (2017) suggest that in equilibrium

dPt

Pt

= λdYt and dXt =
ln v̄−µ

λ
− Yt

1− t
dt, v̄ = E [ṽ] , (3.32)

where Pt refers to price process associated with target asset in equilibrium. Then it

is straightforward to see

dPt

Pt

= λdYt

= λdXt + λdZt

= λdXt +
σv
σz
σzdBt

= λ
ln ṽ−µ

λ
− Yt

1− t
dt+ σvdBt,

which yields one important implication for the empirical strategy that σ2
v as the

measure of volatility associated with private information can be used as the proxy

for volatility associated with logarithmic return. Specifically, for two consecutive

asset prices Pτi and Pτi−1
, by applying log-linearization we have

ri := ln

(
Pτi

Pτi−1

)
≈
Pτi − Pτi−1

Pτi−1

,

where the right-hand side of the equation above can be regarded as the discretized

approximation of dPt

Pt
.

The general idea for quantifying strategic value of information is simple: suppose

we have a specific way to estimate Kyle’s lambda, denoted by λ̂, then we can

construct a spot information value associated with informed traders by using our

proposed spot volatility estimation as the proxy of asset return volatility over each

tiny interval using Bayesian techniques based upon the fixed-k inference theory.

Thus,

Ω̂ =
σ̂2
v

λ̂
P0. (3.33)
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This is a more desirable method than the widely used integrated volatility (i.e.

annualized realized volatility) method. This is because the model developed in Back

(1992) is naturally a continuous-time extension of the discrete-time model of Kyle

(1985). Accordingly, spot volatility is preferred to integrated volatility. In practice,

a feasible method to estimate λ is to regress the asset’s return on share order flow

over the interval. The theoretical justification for using regression to back out λ

originated from modeling insider trading in the continuous-time setting proposed by

Back (1992). Recently, this idea is discussed more comprehensively in Back (2017)

and Kadan and Manela (2021), that is,

ri = λyi + εi, (3.34)

where ri = pτi − pτi−1
= lnPτi − lnPτi−1

(log-return of assets over specific interval

indexed by i) and yi = Yτi − Yτi−1
(share order flow over specific interval indexed

by i).12

Construction of the proxy for share order flow is an active research area. In the

literature on financial market microstructure, this is usually achieved by designing

trade classification algorithms to identify trading direction. We borrow the ideas

from Holden and Jacobsen (2014) by using following “order imbalance” as the proxy

of share order flow,13

Order Imbalance =
Buys− Sells

Buys+ Sells
, (3.35)

where the trading classification scheme to identify the trading direction, Buys (+1)

and Sells (−1), is inherited from Chakrabarty, Li, Nguyen, and Van Ness (2007) and

Holden and Jacobsen (2014). The estimated private information value associated

insider trading is demonstrated as follows based on Model 5.

[Place Figure 3.19 about here]

Specifically, for each day we use univariate regression to estimate Kyle’s lambda

by regressing one-minute log-return of S&P 500 ETF on corresponding share order
12τi refers to the continuous timing index associated with interval i.
13We are grateful to Professor Craig W. Holden for kindly sharing their SAS codes.
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flow over each active trading day; spot volatility is estimated by fixing k = 5 (i.e,

every 5-minutes, so that would be 390/5 = 78 locally estimated spot volatilities in

each trading day and hence 78 locally quantified private information).

3.7 Conclusion

One of the main contributions from BLL2021QE is to establish the fixed-k inference

theory for time-varying spot volatility. In this chapter, we build several parametric

models for spot volatility in high frequency based on the fix-k theory. All our models

can be cast into a nonlinear non-Gaussian state space form. We then develop Bayesian

techniques to estimate alternative model specifications, extract spot volatility, and

compare alternative models. Simulation studies show that the proposed Bayesian

methods work well. To empirically demonstrate how our proposed method works in

practice, we apply it to S&P 500 index ETF, Apple Inc. stock, and CSI 300 Index

futures respectively. We first extract spot volatility. We then discuss how volatility is

connected with the strategic value of information for the informed trader (i.e. insider)

in the financial market more in detail.
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Figure 3.2

0.00
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0 500 1000 1500
Time

Estimated Volatility

Simulated Volatility

Smoothed Volatility

Note: In the figure above we jointly plot the estimated volatility from fixed-k inference (blue solid line), the

smoothed volatility from MCMC (cyan dashed line), and the true simulated volatility (red solid line) based

on the DGP of Experiment 1 described in section 3.5. The sampling interval is ∆n = 1/390. The number

of observations contained in each local estimation block is k = 5. Thus, for every 5 minutes we obtain the

corresponding locally estimated volatility. Besides, for this sampling scheme we have 390/5 = 78 local

estimation blocks per day. For this experiment, we run totally 1000000 MCMC loops with the initial 100000

loops as burn-in samplings. Every 20 MCMC samples are saved for posterior analysis.
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Figure 3.5
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Smoothed Volatility

Note: In the figure above we jointly plot the estimated volatility from fixed-k inference (blue solid line), the

smoothed volatility from MCMC (cyan dashed line). and true simulated volatility (red solid line) based on the

DGP of Experiment 2 described in section 3.5. The sampling interval is ∆n = 1/390. We use k = 5. For

this experiment, we run totally 1100000 MCMC loops with the initial 100000 loops as burn-in samplings to be

discarded. Every 100 samples are saved for posterior analysis.
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Figure 3.8

(a) Intraday-pattern parameter b := 0.4
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(b) Intraday-pattern parameter b := 0.8
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Note: In the figure above we jointly plot the estimated volatility from fixed-k inference (blue solid line), the

smoothed volatility from MCMC (cyan dashed line), and the true simulated volatility (red solid line) based on

the DGP of Experiment 3 described in section 3.5. The sampling interval is ∆n = 1/390. We use k = 5.
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Figure 3.10
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Note: In the figure above we jointly plot the estimated volatility from fixed-k inference (blue solid line), the

smoothed volatility from MCMC (cyan dashed line), and the true simulated volatility (red solid line) based on

the DGP of Experiment 4 described in section 3.5. The sampling interval ∆n = 1/390. We use k = 5.
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Figure 3.12
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Note: In the figure above we jointly plot the estimated volatility from fixed-k inference (blue solid line), the

smoothed volatility from MCMC (cyan dashed line), and the true simulated volatility (red solid line) based on

the DGP of Experiment 5 described in section 3.5. The sampling interval is ∆n = 1/390. We use k = 5.
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Figure 3.14
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Note: In the figure above we jointly plot the estimated volatility from fixed-k inference (blue solid line), the

smoothed volatility from MCMC (cyan dashed line), and the true simulated volatility (red solid line) based on

the DGP of Experiment 6 described in section 3.5. The sampling interval is ∆n = 1/390. We use k = 5.

Table 3.1

DGP 1 DGP 2 DGP 3 DGP 4
DIC D(ϑ) pD DIC D(ϑ) pD DIC D(ϑ) pD DIC D(ϑ) pD

Model 1 -3310.18 -3470.29 80.05 1222718.45 1209944.77 6386.84 -3243.91 -3745.30 250.69 -3243.12 -3444.81 100.85
Model 2 -3308.32 -3498.27 94.98 -3210.47 -3568.32 178.92 -3241.08 -3749.67 254.30 -3243.14 -3469.41 113.13
Model 3 -3297.71 -3473.93 88.11 56578.51 54348.87 1114.82 -3329.11 -3470.51 70.70 -3242.52 -3446.71 102.10
Model 4 – – – – – – – – – -3272.01 -3496.99 112.49
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Table 3.2

Date Model DIC D (ϑ) pD
January 2015 1 -2727.40 -3282.86 277.73
February 2015 2 -2066.28 -2907.14 420.43
March 2015 1 -2498.42 -3200.40 350.99
April 2015 2 -2133.17 -2876.71 371.77
May 2015 2 -2250.85 -3043.06 396.10
June 2015 2 -2283.65 -3422.16 569.25
July 2015 1 -2257.16 -2885.81 314.33
August 2015 1 -2830.98 -3445.31 307.16
September 2015 3 -2982.72 -3332.93 175.10
October 2015 1 -3080.86 -3598.36 258.75
November 2015 1 -2606.25 -3096.89 245.32
December 2015 1 -2849.65 -3422.49 286.42

Note: Model selected for S&P 500 Index ETF in 2015 across Model 1-3.

Table 3.3

Date Model DIC D (ϑ) pD
January 2017 2 -1714.08 -2551.75 418.83
February 2017 2 -1233.57 -1793.62 280.03
March 2017 2 -1821.20 -2678.98 428.89
April 2017 2 -1631.22 -2231.49 300.14
May 2017 2 -2631.12 -3648.79 508.83
June 2017 2 -2731.98 -3771.19 519.61
July 2017 2 -2327.21 -3295.71 484.25
August 2017 2 -2709.67 -3644.26 467.30
September 2017 2 -2318.04 -3247.47 464.72
October 2017 2 -2704.97 -3748.87 521.95
November 2017 2 -2342.86 -3292.15 474.65
December 2017 1 -2377.74 -3633.71 627.98

Note: Model selected for Apple Inc. Stock Price in 2017 across Model 1-3.
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Table 3.4

Date Model DIC D (ϑ) pD
January 2020 1 -1367.30 -1595.93 114.32
February 2020 1 -1747.86 -2071.24 161.69
March 2020 1 -1809.46 -2192.64 191.59
April 2020 1 -1711.00 -2061.63 175.32
May 2020 2 -1568.94 -1856.89 143.98
June 2020 2 -1713.23 -2274.82 280.79
July 2020 1 -2126.11 -2472.58 173.24
August 2020 2 -1785.07 -2146.15 180.54
September 2020 1 -1874.93 -2230.75 177.91
October 2020 2 -1298.32 -1720.46 211.07
November 2020 2 -1749.23 -2343.43 297.10
December 2020 2 -1797.38 -2286.43 244.53

Note: Model selected for CSI 300 Index in 2020 across Model 1-3.
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Table 3.5

ϕ µ
√
σ2
e κ µη

√
σ2
η b

January 2015
0.9314 -10.6814 0.2327 0.0023 0.4756 0.7925 0.6505
0.0145 0.0920 0.0213 0.0031 1.0793 0.3836 0.0592

February 2015
0.8630 -11.8068 0.4635 0.0127 0.9162 0.7700 0.6232
0.0250 0.1109 0.0367 0.0133 0.7617 0.2799 0.0843

March 2015
0.9205 -11.7109 0.2670 0.0029 1.2659 0.8791 0.6716
0.0163 0.0907 0.0268 0.0031 0.8765 0.3713 0.0629

April 2015
0.8234 -11.8096 0.4126 0.0085 0.3941 0.7304 0.5651
0.0310 0.0742 0.0348 0.0115 0.8503 0.3124 0.0658

May 2015
0.8987 -12.1515 0.3722 0.0054 1.2657 0.9002 0.5700
0.0189 0.1060 0.0310 0.0061 0.9199 0.3801 0.0790

June 2015
0.7930 -11.9509 0.4837 0.0155 1.4376 0.8143 0.6031
0.0321 0.0748 0.0395 0.0109 0.5847 0.2466 0.0621

July 2015
0.9416 -11.9417 0.2564 0.0025 1.5408 0.9219 0.6165
0.0137 0.1257 0.0259 0.0024 0.9558 0.3958 0.0708

August 2015
0.9846 -10.9692 0.2260 0.0025 1.0233 0.8391 0.3343
0.0052 0.7358 0.0179 0.0025 0.8693 0.3647 0.0694

September 2015
0.9659 -10.4311 0.1523 0.0012 0.5647 0.8383 0.5911
0.0083 0.1180 0.0153 0.0014 1.1843 0.4297 0.0473

October 2015
0.9555 -11.1649 0.1888 0.0022 0.7109 0.7978 0.8046
0.0099 0.1095 0.0180 0.0021 0.8601 0.3648 0.0532

November 2015
0.9414 -11.4897 0.2135 0.0018 0.4866 0.8158 0.6810
0.0138 0.1020 0.0215 0.0024 1.1374 0.4057 0.0600

December 2015
0.9698 -11.0310 0.1868 0.0021 0.9683 0.8345 0.7201
0.0080 0.2104 0.0187 0.0019 0.9039 0.3597 0.0570

Note: Posterior summary of parameters in Model 5 for S&P 500 ETF
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Table 3.6

ϕ µ
√
σ2
e κ µη

√
σ2
η b

January 2017
0.8336 -11.6393 0.4606 0.0175 1.6388 0.7839 0.4773
0.0283 0.0999 0.0374 0.0099 0.5376 0.2390 0.0799

February 2017
0.8363 -11.5400 0.4528 0.0164 1.2551 0.8021 0.5053
0.0311 0.1226 0.0438 0.0149 0.7643 0.2800 0.1041

March 2017
0.8005 -11.4342 0.4771 0.0153 1.1766 0.7884 0.5941
0.0296 0.0846 0.0360 0.0136 0.6884 0.2618 0.0697

April 2017
0.8148 -11.2624 0.4239 0.0132 0.6342 0.7379 0.5785
0.0377 0.0872 0.0408 0.0149 0.7696 0.2943 0.0730

May 2017
0.8907 -11.2462 0.4094 0.0119 0.9838 0.7432 0.3568
0.0196 0.1115 0.0307 0.0103 0.6161 0.2369 0.0768

June 2017
0.9145 -10.8191 0.3869 0.0109 1.0729 0.7394 0.3435
0.0152 0.1269 0.0300 0.0085 0.5542 0.2337 0.0785

July 2017
0.8456 -11.1228 0.4563 0.0148 0.6327 0.6979 0.4765
0.0241 0.0975 0.0312 0.0153 0.6697 0.2468 0.0749

August 2017
0.8947 -10.6961 0.3686 0.0083 0.7524 0.7393 0.4341
0.0185 0.1015 0.0273 0.0088 0.7337 0.2872 0.0711

September 2017
0.9123 -10.8906 0.4057 0.0110 1.3838 0.8018 0.4142
0.0165 0.1400 0.0305 0.0077 0.5950 0.2513 0.0876

October 2017
0.8673 -11.3134 0.4316 0.0108 0.7922 0.7307 0.4636
0.0177 0.0951 0.0261 0.0110 0.7128 0.2624 0.0742

November 2017
0.9202 -11.0970 0.4336 0.0141 1.2448 0.7748 0.2424
0.0172 0.1767 0.0323 0.0100 0.5673 0.2356 0.1010

December 2017
0.8127 -11.1758 0.5669 0.0078 1.9642 3.1212 0.6861
0.0207 0.0839 0.0286 0.0038 0.9528 0.8653 0.0767

Note: Posterior summary of parameters in Model 5 for Apple Inc. Stock.
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Table 3.7

ϕ µ
√
σ2
e κ µη

√
σ2
η b

January 2020
0.9461 -10.6461 0.2139 0.0031 0.5133 0.8219 0.8715
0.0207 0.2011 0.0340 0.0040 1.1557 0.4347 0.0583

February 2020
0.8404 -9.9389 0.3371 0.0063 1.9077 2.9523 0.9678
0.0318 0.0763 0.0260 0.0033 1.0855 0.9737 0.0276

March 2020
0.9532 -9.3718 0.2260 0.0047 1.1011 0.8282 0.9262
0.0131 0.1693 0.0242 0.0040 0.7615 0.3338 0.0455

April 2020
0.8893 -10.7519 0.2662 0.0043 0.5160 0.7759 0.8996
0.0315 0.0872 0.0370 0.0058 0.9981 0.3499 0.0505

May 2020
0.9174 -11.0502 0.2159 0.0029 0.4834 0.8201 0.8263
0.0208 0.0978 0.0280 0.0036 1.1455 0.4057 0.0558

June 2020
0.7761 -11.0128 0.3640 0.0118 0.7256 0.7275 0.7924
0.0339 0.0677 0.0300 0.0112 0.6980 0.2619 0.0534

July 2020
0.9430 -9.2816 0.2159 0.0023 0.5143 0.8143 0.9107
0.0142 0.1233 0.0210 0.0030 1.1364 0.3920 0.0469

August 2020
0.9091 -9.8210 0.2396 0.0031 0.4617 0.8025 0.8289
0.0291 0.0936 0.0350 0.0042 1.1146 0.3946 0.0547

September 2020
0.9013 -10.3231 0.2362 0.0031 0.5099 0.8049 0.8579
0.0250 0.0814 0.0287 0.0040 1.0755 0.3928 0.0509

October 2020
0.7939 -10.6007 0.3586 0.0114 0.7909 0.7751 0.8349
0.0485 0.0794 0.0439 0.0123 0.7867 0.3156 0.0620

November 2020
0.7933 -10.6782 0.3498 0.0116 1.1399 0.7755 0.8509
0.0393 0.0655 0.0344 0.0087 0.5798 0.2553 0.0520

December 2020
0.8011 -10.7099 0.3386 0.0072 0.5606 0.7650 0.9509
0.0467 0.0626 0.0405 0.0094 0.8860 0.3544 0.0352

Note: Posterior summary of parameters in Model 5 for CSI 300 Index Futures.
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Figure 3.19
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Note: In the figure above, we report the estimated private information value associated with insider trading based

on the estimated spot volatility from Model 5. Results demonstrated in this figure correspond to November 2020.
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Chapter 4

Appendices

4.1 Anomaly variables used in Chinese stock market

We summarize the main cross-sectional equity characteristics (firm-level characteris-

tics) used in the empirical analysis of Chapter 1 and Chapter 2 in this section. We

follow the cutting-edge data-cleaning routine proposed in Chen and Zimmermann

(2020) and Jensen, Kelly, and Pedersen (2022) to construct following 123 equity

characteristics in Chinese stock market. In each item, we list the brief descriptions of

corresponding anomaly variables with the acronym (in typewriter format collected in

parenthesis) and in general the category (in bold collected square brackets) it belongs

to in finance and accounting literature. We also list the corresponding literature

that initially proposes equity characteristics. The corresponding information and

description inherit directly from Jensen, Kelly, and Pedersen (2022) and readers

should refer to documentation released along with Jensen, Kelly, and Pedersen (2022)

for more about construction details.

1. Firm age (age) [Low Leverage], Jiang, Lee, and Zhang (2005).

2. Liquidity of book assets (aliq at) [Investment], Ortiz-Molina and Phillips

(2014).

3. Liquidity of market assets (aliq mat) [Low leverage], Ortiz-Molina and

115



Phillips (2014).

4. Amihud measure (ami 126d) [Size], Amihud (2002).

5. Book leverage (at be) [Low leverage], Fama and French (1992).

6. Asset growth (at gr1) [Investment], Cooper, Gulen, and Schill (2008).

7. Assets-to-market (at me) [Value], Fama and French (1992).

8. Capital turnover (at turnover) [Quality], Haugen and Baker (1996).

9. Change in common equity (be gr1a) [Investment], Richardson, Sloan, Soli-

man, and İrem Tuna (2005).

10. Book-to-market equity be me [Value], Rosenberg, Reid, and Lanstein (1985).

11. Market beta (beta 60m) [Low Risk], Fama and Macbeth (1973).

12. Dimson beta (beta dimson 21d) [Low Risk], Fowler and Rorke (1983).

13. Frazzini-Pedersen market beta (betabab 1260d) [Low Risk], Frazzini and

Pedersen (2014).

14. Downside beta (betadown 252d) [Low Risk], Ang, Hodrick, Xing, and

Zhang (2006).

15. Book-to-market enterprise value (bev mev) [Value], Penman, Richardeson,

and Tuna (2007).

16. 21 Day high-low bid-ask spread (bidaskhl 21d) [Low Leverage], Corwin

and Schultz (2012).

17. Cash-to-assets (cash at) [Low Leverage], Palazzo (2012).

18. Net stock issues (chcsho 12m) [Value], Pontiff and Woodgate (2008).

19. Change in current operating assets (coa gr1a) [Investment], Richardson,

Sloan, Soliman, and İrem Tuna (2005).
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20. Change in current liabilities (col gr1a) [Investment], Richardson, Sloan,

Soliman, and İrem Tuna (2005).

21. Cash-based operating profits-to-book assets (cop at) [Quality], Haugen and

Baker (1996).

22. Cash-based operating profits-to lagged book assets (cop atl1) [Quality],

Ball, Gerakos, Linnainmaa, and Nikolaev (2016).

23. Market correlation (corr 1260d) [Seasonality], Asness, Frazzini, Gormsen,

and Pedersen (2020).

24. Coskewness (coskew 21d) [Seasonality], Harvey and Siddique (2000).

25. Change in current operating working capital (cowc gr1a) [Accruals],

Richardson, Sloan, Soliman, and İrem Tuna (2005).

26. Net debt issuance (dbnetis at) [Net debt issuance], Bradshaw, Richardson,

and Sloan (2006).

27. Growth in book debt (3 years) (debt gr3) [Debt Issuance], Lyandres, Sun,

and Zhang (2008).

28. Debt-to-market (debt me) [Value], Bhandari (1988).

29. Change gross margin minus change sales (dgp dsale) [Quality], Abarbanell

and Bushee (1998).

30. Dividend yield (div12m me) [Value], Litzenberger and Ramaswamy (1979).

31. Dollar trading volume (dolvol 126d) [Size], Brennan, Chordia, and Sub-

rahmanyam (1998).

32. Coefficient of variation for dollar trading volume (dolvol var 126d) [Prof-

itability], Chordia, Subrahmanyam, and Anshuman (2001).
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33. Change sales minus change inventory (dsale dinv) [Profit Growth], Abar-

banell and Bushee (1998).

34. Change sales minus change receivables (dsale drec) [Profit Growth],

Abarbanell and Bushee (1998).

35. Change sales minus change SG&A (dsale dsga) [Profit Growth], Abar-

banell and Bushee (1998).

36. Earnings variability (earnings variability) [Low Risk], Francis, La-

Fond, Olsson, and Schipper (2004).

37. Return on net operating assets (ebit bev) [Profitability], Soliman (2008).

38. Profit margin (ebit sale) [Profit Growth], Soliman (2008).

39. Ebitda-to-market enterprise value (ebitda mev) [Value], Loughran and

Wellman (2011).

40. Equity duration (eq dur) [Value], Dechow, Sloan, and Soliman (2004).

41. Equity net payout (eqnpo 12m) [Value], Daniel and Titman (2006).

42. Pitroski F-score (f score) [Profitability], Piotroski (2000).

43. Change in financial liabilities (fnl gr1a) [Debt Issuance], Richardson,

Sloan, Soliman, and İrem Tuna (2005).

44. Gross profits-to-assets (gp at) [Quality], Novy-Marx (2013).

45. Gross profits-to-lagged assets (gp atl1) [Quality], Novy-Marx (2013).

46. Intrinsic-value (intrinsic value) [Value], Frankel and Lee (1998).

47. Inventory growth (inv gr1) [Investment], Belo and Lin (2012).

48. Inventory change (inv gr1a) [Investment], Thomas and Zhang (2002).
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49. Idiosyncratic skewness from the CAPM (iskew capm 21d) [Skewness],

Bali, Engle, and Murray (2016).

50. Idiosyncratic volatility from the CAPM (21 days) (ivol capm 21d) [Low

Risk], Ali, Hwang, and Trombley (2003).

51. Idiosyncratic volatility from the CAPM (252 days) (ivol capm 252d) [Low

Risk] Ali, Hwang, and Trombley (2003).

52. Change in long-term net operating assetsn (lnoa gr1a) [Investment], Fair-

field, Whisenant, and Yohn (2003).

53. Change in long-term investments (lti gr1a) [Seasonality], Richardson,

Sloan, Soliman, and İrem Tuna (2005).

54. Market equity (market equity) [Size], Banz (1981).

55. Mispricing factor: Management (mispricing mgmt) [Investment], Stam-

baugh and Yuan (2016).

56. Mispricing factor: Performance (mispricing perf) [Quality], Stam-

baugh and Yuan (2016).

57. Change in noncurrent operating assets (nroa gr1a) [Investment], Richard-

son, Sloan, Soliman, and İrem Tuna (2005).

58. Change in noncurrent operating liabilities (ncol gr1a)) [Debt Issuance],

Richardson, Sloan, Soliman, and İrem Tuna (2005).

59. Net debt-to-price (netdebt me) [Low Leverage], Penman, Richardeson,

and Tuna (2007).

60. Change in net financial assets (nfna gr1a) [Debt Issuance], Richardson,

Sloan, Soliman, and İrem Tuna (2005).
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61. Earnings persistence (ni ar1) [Debt Issuance], Francis, LaFond, Olsson,

and Schipper (2004).

62. Return on equity (ni be) [Profitability], Haugen and Baker (1996).

63. Number of consecutive quarters with earnings increases (ni inc8q) [Qual-

ity], Barth, Elliott, and Finn (1999).

64. Earnings volatility (ni ivol) [Low Leverage], Francis, LaFond, Olsson, and

Schipper (2004).

65. Earnings-to-price (ni me) [Value], Basu (1983).

66. Quarterly return on assets (niq at) [Quality], Balakrishnan, Bartov, and

Faurel (2010).

67. Change in quarterly return on assets (niq at chg1) [Profit Growth], Abar-

banell and Bushee (1998).

68. Quarterly return on equity (niq be) [Profitability], Hou, Xue, and Zhang

(2015).

69. Change in quarterly return on equity (niq be chg1) [Profit Growth], Abar-

banell and Bushee (1998).

70. Standardized earnings surprise (niq su) [Profit Growth], Foster, Olsen, and

Shevlin (1984).

71. Change in net noncurrent operating assets (nncoa gr1a) [Investment],

Richardson, Sloan, Soliman, and İrem Tuna (2005).

72. Net operating assets (noa at) [Debt Issuance], Hirshleifer, Hou, Teoh, and

Zhang (2004).

73. Change in net operating assets (noa gr1a) [Investment], Hirshleifer, Hou,

Teoh, and Zhang (2004).
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74. Operating accruals (oaccruals at) [Accruals], Sloan (1996).

75. Percent operating accruals (oaccruals ni) [Accruals], Hafzalla, Lund-

holm, and Winkle (2011).

76. Operating cash flow to assets (ocf at) [Profitability], Bouchaud, Krüger,

Landier, and Thesmar (2019).

77. Change in operating cash flow to assets (ocf at chg1) [Profit Growth],

Bouchaud, Krüger, Landier, and Thesmar (2019).

78. Operating cash flow to market (ocf me) [Value], Bouchaud, Krüger, Landier,

and Thesmar (2019).

79. Operating cash flow to assets (ocf at) [Profitability], Bouchaud, Krüger,

Landier, and Thesmar (2019).

80. Operating profits-to-lagged book assets (op atl1) [Quality], Ball, Gerakos,

Linnainmaa, and Nikolaev (2016).

81. Operating profits to book equity (ope be) [Profitability], Fama and French

(2015).

82. Operating profits to lagged book equity (ope bel1) [Profitability], Fama

and French (2015).

83. Operating leverage (opex at) [Quality], Novy-Marx (2010).

84. Taxable income-to-book income (pi nix) [Seasonality], Lev and Nissim

(2004).

85. Change PPE and Inventory (ppeinv gr1a) [Investment], Lyandres, Sun,

and Zhang (2008).

86. Price and share (prc) [Size], Miller and Scholes (1982).

121



87. Current price to high price over last year (prc highprc 252d) [Momen-

tum], George and Hwang (2004).

88. Quality minus Junk: Composite (qmj) [Quality], Asness, Frazzini, and Peder-

sen (2019).

89. Quality minus Junk: Growth (qmj growth) [Quality], Asness, Frazzini, and

Pedersen (2019).

90. Quality minus Junk: Profitability (qmj prof) [Quality], Asness, Frazzini,

and Pedersen (2019).

91. Quality minus Junk: Safety (qmj safety) [Quality], Asness, Frazzini, and

Pedersen (2019).

92. Short-term reversal (ret 1 0) [Size], Jegadeesh (1990).

93. Price momentum t− 12 to t− 1 (ret 12 1) [Momentum], Jegadeesh and

Titman (1993).

94. Price momentum t− 12 to t− 7 (ret 12 7) [Profit Growth], Novy-Marx

(2012).

95. Price momentum t − 3 to t − 1 (ret 3 1) [Momentum], Jegadeesh and

Titman (1993).

96. Price momentum t − 6 to t − 1 (ret 6 1) [Momentum], Jegadeesh and

Titman (1993).

97. Long-term reversal (ret 60 12) [Investment], De Bondt and Thaler (1985).

98. Price momentum t − 9 to t − 1 (ret 9 1) [Momentum], Jegadeesh and

Titman (1993).

99. Maximum daily return (rmax1 21d) [Low Risk], Bali, Cakici, and Whitelaw

(2011).
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100. Highest 5 days of return (rmax5 21d) [Low Risk], Bali, Brown, and Tang

(2017).

101. Highest 5 days of return scaled by volatility (rmax5 rvol 21d) [Skewness],

Asness, Frazzini, Gormsen, and Pedersen (2020).

102. Total skewness (rskew 21d) [Skewness], Bali, Engle, and Murray (2016).

103. Return volatility (rvol 21d) [Low Risk], Ang, Hodrick, Xing, and Zhang

(2006).

104. Asset turnover (sale bev) [Quality], Soliman (2008).

105. Sale growth (1 year) (sale gr1) [Investment], Lakonishok, Shleifer, and

Vishny (1994).

106. Sale growth (3 years) (sale gr3) [Investment], Lakonishok, Shleifer, and

Vishny (1994).

107. Sale to market (sale me) [Value], William C. Barbee, Mukherji, and Raines

(1996).

108. Sale growth (1 quarter) (saleq gr3) [Investment], Lakonishok, Shleifer,

and Vishny (1994).

109. Year 1-lagged return, annual (seas 1 1an) [Profit Growth], Heston and

Sadka (2008).

110. Year 1-lagged return, nonannual (seas 1 1na) [Momentum], Heston and

Sadka (2008).

111. Years 2-5 lagged returns, annual (seas 2 5an) [Seasonality], Heston and

Sadka (2008).

112. Years 2-5 lagged returns, nonannual (seas 2 5na) [Investment], Heston

and Sadka (2008).
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113. Change in short-term investments (sti gr1a) [Seasonality], Heston and

Sadka (2008).

114. Total accruals (taccruals at) [Accruals], Richardson, Sloan, Soliman,

and İrem Tuna (2005).

115. Percent total accruals (taccruals ni) [Accruals], Hafzalla, Lundholm,

and Winkle (2011).

116. Asset tangibility (tangibility) [Low Leverage], Hahn and Lee (2009).

117. Tax expense surprise (tax gr1a) [Profit Growth], Thomas and Zhang

(2002).

118. Share turnover (turnover 126d) [Low Risk], Datar, Y. Naik, and Radcliffe

(1998).

119. Coefficient of variation for share turnover (turnover var 126d) [Prof-

itability], Chordia, Subrahmanyam, and Anshuman (2001).

120. Altman Z-score (z score) [Low Leverage], Dichev (1998).

121. Number of zero trades with turnover as tiebreaker (6 months)

(zero trades 126d) [Low Risk], Liu (2006).

122. Number of zero trades with turnover as tiebreaker (1 month)

(zero trades 21d) [Low Risk], Liu (2006).

123. Number of zero trades with turnover as tiebreaker (12 months)

(zero trades 252d) [Low Risk], Liu (2006).
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AKEY, P., V. GRÉGOIRE, AND C. MARTINEAU (2022): “Price revelation from insider
trading: Evidence from hacked earnings news,” Journal of Financial Economics, 143(3),
1162–1184.

ALI, A., L.-S. HWANG, AND M. A. TROMBLEY (2003): “Arbitrage risk and the book-to-
market anomaly,” Journal of Financial Economics, 69(2), 355–373.

AMIHUD, Y. (2002): “Illiquidity and stock returns: cross-section and time-series effects,”
Journal of Financial Markets, 5(1), 31–56.

ANDERSEN, T. G., AND T. BOLLERSLEV (1997): “Heterogeneous Information Arrivals
and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns,”
The Journal of Finance, 52(3), 975–1005.

ANDERSEN, T. G., T. BOLLERSLEV, P. F. CHRISTOFFERSEN, AND F. X. DIEBOLD (2013):
“Chapter 17 - Financial Risk Measurement for Financial Risk Management,” vol. 2 of
Handbook of the Economics of Finance, pp. 1127–1220. Elsevier.

ANDERSEN, T. G., T. BOLLERSLEV, F. X. DIEBOLD, AND H. EBENS (2001): “The
distribution of realized stock return volatility,” Journal of Financial Economics, 61(1),
43–76.

ANDERSEN, T. G., T. BOLLERSLEV, F. X. DIEBOLD, AND P. LABYS (2001): “The
Distribution of Realized Exchange Rate Volatility,” Journal of the American Statistical
Association, 96(453), 42–55.

ANDERSEN, T. G., T. BOLLERSLEV, F. X. DIEBOLD, AND P. LABYS (2003): “Modeling
and Forecasting Realized Volatility,” Econometrica, 71(2), 579–625.

ANG, A. (2014): Asset Management: A Systematic Approach to Factor Investing. Oxford
University Press.

ANG, A., R. J. HODRICK, Y. XING, AND X. ZHANG (2006): “The Cross-Section of
Volatility and Expected Returns,” The Journal of Finance, 61(1), 259–299.

ASNESS, C., A. FRAZZINI, N. J. GORMSEN, AND L. H. PEDERSEN (2020): “Betting
against correlation: Testing theories of the low-risk effect,” Journal of Financial Eco-
nomics, 135(3), 629–652.

125



ASNESS, C. S., A. FRAZZINI, AND L. H. PEDERSEN (2019): “Quality minus junk,” Review
of Accounting Studies, 24(1), 34–112.

BACK, K. (1992): “Insider Trading in Continuous Time,” The Review of Financial Studies,
5(3), 387–409.

BACK, K. E. (2017): Asset pricing and portfolio choice theory. Oxford University Press.

BAKALLI, G., S. GUERRIER, AND O. SCAILLET (2021): “A penalized two-pass regression
to predict stock returns with time-varying risk premia,” Swiss Finance Institute Research
Paper Series 21-09, Swiss Finance Institute.

BALAKRISHNAN, K., E. BARTOV, AND L. FAUREL (2010): “Post loss/profit announcement
drift,” Journal of Accounting and Economics, 50(1), 20–41.

BALI, T., A. GOYAL, D. HUANG, F. JIANG, AND Q. WEN (2021): “Different Strokes:
Return Predictability Across Stocks and Bonds with Machine Learning and Big Data,”
Working paper.

BALI, T. G., S. J. BROWN, AND Y. TANG (2017): “Is economic uncertainty priced in the
cross-section of stock returns?,” Journal of Financial Economics, 126(3), 471–489.

BALI, T. G., N. CAKICI, AND R. F. WHITELAW (2011): “Maxing out: Stocks as lotteries
and the cross-section of expected returns,” Journal of Financial Economics, 99(2), 427–
446.

BALI, T. G., R. F. ENGLE, AND S. MURRAY (2016): Empirical Asset Pricing: The Cross
Section of Stock Returns. John Wiley & Sons, Hoboken, NJ.

BALL, R., J. GERAKOS, J. T. LINNAINMAA, AND V. NIKOLAEV (2016): “Accruals, cash
flows, and operating profitability in the cross section of stock returns,” Journal of Financial
Economics, 121(1), 28–45.

BANZ, R. W. (1981): “The relationship between return and market value of common stocks,”
Journal of Financial Economics, 9(1), 3–18.

BARILLAS, F., AND J. SHANKEN (2018): “Comparing Asset Pricing Models,” The Journal
of Finance, 73(2), 715–754.

BARNDORFF-NIELSEN, O. E., P. R. HANSEN, A. LUNDE, AND N. SHEPHARD (2009):
“Realized kernels in practice: trades and quotes,” The Econometrics Journal, 12(3), C1–
C32.

BARNDORFF-NIELSEN, O. E., AND N. SHEPHARD (2002): “Econometric Analysis of
Realized Volatility and Its Use in Estimating Stochastic Volatility Models,” Journal of the
Royal Statistical Society. Series B (Statistical Methodology), 64(2), 253–280.

(2004): “Power and Bipower Variation with Stochastic Volatility and Jumps,”
Journal of Financial Econometrics, 2(1), 1–37.

BARROSO, P., AND A. DETZEL (2021): “Do limits to arbitrage explain the benefits of
volatility-managed portfolios?,” Journal of Financial Economics, 140(3), 744–767.

BARROSO, P., AND P. SANTA-CLARA (2015): “Momentum has its moments,” Journal of
Financial Economics, 116(1), 111–120.

126



BARTH, M. E., J. A. ELLIOTT, AND M. W. FINN (1999): “Market Rewards Associated
with Patterns of Increasing Earnings,” Journal of Accounting Research, 37(2), 387–413.

BASAK, G. K., R. JAGANNATHAN, AND T. MA (2009): “Jackknife Estimator for Tracking
Error Variance of Optimal Portfolios,” Management Science, 55(6), 990–1002.

BASU, S. (1983): “The relationship between earnings’ yield, market value and return
for NYSE common stocks: Further evidence,” Journal of Financial Economics, 12(1),
129–156.

BELO, F., AND X. LIN (2012): “The Inventory Growth Spread,” The Review of Financial
Studies, 25(1), 278–313.

BERNILE, G., J. HU, AND Y. TANG (2016): “Can information be locked up? Informed
trading ahead of macro-news announcements,” Journal of Financial Economics, 121(3),
496–520.

BHANDARI, L. C. (1988): “Debt/Equity Ratio and Expected Common Stock Returns:
Empirical Evidence,” The Journal of Finance, 43(2), 507–528.

BOLLERSLEV, T. (1986): “Generalized autoregressive conditional heteroskedasticity,” Jour-
nal of Econometrics, 31(3), 307–327.

BOLLERSLEV, T., J. LI, AND Z. LIAO (2021): “Fixed-k inference for volatility,” Quantitative
Economics, 12(4), 1053–1084.

BOLLERSLEV, T., AND H. ZHOU (2002): “Estimating stochastic volatility diffusion using
conditional moments of integrated volatility,” Journal of Econometrics, 109(1), 33–65.

BOLSTAD, W. M. (2009): Understanding Computational Bayesian Statistics. New Jersey:
John Wiley & Sons, Inc.
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