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Essays on Social Choice and Implementation Theory

Paulo Daniel Salles Ramos

Abstract

We present here three essays. The first two are about Social Choice Theory

and explore under what domain restrictions is possible to obtain a Social

Choice Function that is Well Behaved as well as Monotonic, and what other

characteristics can be inferred about such functions on that domain. The last essay

is about Implementation Theory and explore how to obtain a more compelling

form of implementation than pure Nash Equilibrium for finite environments using

finite mechanisms.
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Chapter 1

The Model

This Chapter presents the basic model and notations that will be used in Chapters

2 and 3. Chapter 4 deals with a separate model and contains its own framework

and notations.

1.1 Basic Framework

Let N = {1, ...,n} be the finite set of voters, with n ≥ 2, and A be a finite set with

m ≥ 3 alternatives. Voters have strict preference relations over A. An individual

voter’s preference is denoted by Pi, and for any two distinct elements x,y ∈ A,

the notation xPiy reads as ”x is strictly preferred to y according to the preference

relation Pi”. The set of all admissible preference relations is denoted by D and

is called the preference domain. A profile P = (P1, ...,Pn) is a list of preference

relations, one for each voter. For a given preference relation Pi, we say that an

alternative a is s-th ranked in Pi if |{x ∈ A|aPix}|= m− s for s = 1, ...,m, and we

use the notation rs(Pi) to denote the s−th ranked alternative in Pi. In particular,
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we call the 1st ranked (or top-ranked) alternative for a given voter a vote, and the

expression ”number of votes for an alternative” means the number of voters that

had that alternative ranked at the top of their preferences in a given profile. We

will use the notation v(a,P) to denote the number of votes alternative a has at

profile P.

A Social Choice Function (SCF) is a mapping f : Dn → A that assigns for

each profile P an alternative f (P). In this paper, we are interested in SCFs that

satisfy a set of properties: anonymity, unanimity and tops-only. An unanimous

SCF has the property that f (P) = a whenever v(a,P) = n. A SCF is said

to be anonymous whenever f (P) = f (P′) where P′ is any permutation 1 of

the preferences in the profile P. Finally, a SCF has the tops-only property if

f (P) = f (P′) whenever r1(Pi) = r1(P′
i ) for every voter i = 1, ...,n; that is, the

outcome of the SCF is completely determined by the top-ranked alternatives in

each preference of the profile. Any SCF that satisfies these three properties is said

to be a Well Behaved SCF.

Well Behaved SCFs possess an important property that will be extensively

explored in later sections of this manuscript. The outcome of such SCFs can be

entirely determined by the number of votes for each alternative in a profile, with

profiles that have an identical distribution of votes across alternatives sharing the

same outcome.

Property WB: Assume that f is a Well Behaved SCF. Then, if ∀ a∈A, v(a,P)=

v(a,P′), we must have f (P) = f (P′)

1P′ is said to be a permutation of P if and only if there is a bijection h : N → N such that for
every i = 1, ...,n, Pi = P′

h(i).
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We will restrict our attention to Well Behaved SCFs that satisfy one additional

property, commonly called Maskin Monotonicity (MM). In order to define

Maskin Monotonicity we need to introduce an intermediary concept first. Let

Pi,P′
i ∈ D be any two preference relations and a ∈ A an arbitrary alternative. We

then say that a maintains its position from Pi to P′
i if, for every alternative x,

aPix ⇒ aP′
i x holds, and we use the following notation Pi 7→a P′

i denote that a

maintains its position from Pi to P′
i . We can extend this notion to profiles and say

that a maintains its position from P to P′ if for every voter i = 1, ...,n, Pi 7→a P′
i

holds, in which case, we use the notation P 7→a P′. Then, we say that the SCF

is monotonic (or, alternatively, that it satisfies MM) if [P 7→a P′ ∧ f (P) = a] ⇒

f (P′) = a. In the appendix, however, we will provide another expression of this

concept, one that takes advantage of our other assumptions and provides a more

convenient condition to work with.

Related to the concept of MM, we have a few characteristic sets for both the

domain and the SCF. First, define the set Â as the subset of A2 such that the two

coordinates are different: Â = {(x,y) ∈ A2 : x ̸= y}. Then, call the set W a
D the set

of all pairs (Pi,P′
i ) ∈ D2 such that Pi 7→a P′

i . Call the subset Da of D the subset of

all orderings Pa
i such that a is the top-ranked alternative in Pa

i .

Finally, define the set Ma
D as the set of all pairs (b,c) ∈ Â such that there exists

at least one Pb
i ∈ Db and one Pc

i ∈ Dc so that the pair (Pb
i ,P

c
i ) ∈W a

D. In words, the

pair (b,c) is in Ma
D if there is a way to change a vote from b to c while making

alternative a maintain its position in this change. Conversely, a pair (b,c) is not

in the set Ma
D if for every pair of preferences Pb

i ∈ Db and Pc
i ∈ Dc there exists at

least one alternative x such that aPb
i x and xPc

i a. We call this - an instance where

(b,c) /∈ Ma
D - a reversal for alternative a.

3



Another concept related to Monotonicity is that of pivotal changes. A pair

(b,c) is called a pivotal change for a if there is at least one profile P such that,

by changing the vote of a single voter from b to c at that profile, the outcome of

the SCF changes from a to something else. We can specify the set of all pivotal

changes for an alternative as follows. First, for a social choice function f , define

the set C f as the subset of A×Dn× Â×Dn such that every element [a,P,(b,c),P′]

satisfies the following properties:

1. f (P) = a and f (P′) ̸= a;

2. v(b,P) = v(b,P′)+1;

3. v(c,P) = v(c,P′)−1;

4. v(d,P) = v(d,P′),∀d ̸= b,c

Then, fix an alternative a and define the set Ca
f as:

Ca
f = {(b,c) ∈ Â|∃P,P′ ∈ D : [a,P,(b,c),P′] ∈C f }

Ca
f is the set of all pivotal changes that can occur when the outcome of the

SCF is a. Ma
D and Ca

f are two sets that share some similarities. Firstly, they are

both defined over the same space Â2, that is, they are both sets of pairs of distinct

alternatives. The first one, Ma
D, however, is delimited by the domain D alone

and is related to possible ways in which alternative a maintains its position after a

change of votes. The second, set Ca
f , depends crucially on f and describes changes

of votes that cause a change in the outcome of the SCF from a to something else.

As we shall see in the appendix, Monotonicity will require these two sets to be

disjoint for every alternative a.
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1.2 Graphs

Let G = ⟨A,E A⟩ denote an undirected graph where A is the set of nodes and E A ⊂

A2 is the set of edges. We say that two nodes in a graph are adjacent if there is an

edge on the graph connecting the two. If x is an arbitrary node of G, we use the

notation α(x) to describe the set of adjacent nodes of x; that is, y ∈ α(x) if and

only if (x,y) ∈ E A. A node in a graph is an extreme node if it is adjacent to only

one other node.

In our theory, we will work primarily with tree graphs. We say that a graph

is a tree if it is a connected acyclic graph. For this kind of graph, there are a few

concepts, definitions and results that will be extensively used in the next sections.

If the graph is a tree, and hence the path 2 connecting any two nodes is unique,

we will employ the notation ⟨a,b⟩ to describe the set of nodes in the unique path

connecting nodes a and b. Because of this, ⟨a,b⟩ = ⟨b,a⟩ in this case. We also

define a maximal path as any path that contains exactly two extreme nodes.

A second class of sets that are possible to be defined on a tree graph are the

spans of a node, capturing the notion of the set of nodes in a tree graph that ”stem”

from a given node from a certain direction. Let y,z be nodes on a tree graph G.

We call the set ξ (y,z) the span of y from z. It is the set of all nodes such that

x ∈ ξ (y,z)⇔ y ∈ ⟨x,z⟩. So the span of y from z is the set of nodes that includes y

on their path to z.

Given a tree graph G and a set of nodes B ⊂ G, we can define the subgraph

G(B) as the unique connected induced subgraph that satisfies:

2A path is formally defined as a sequence of distinct nodes (a1,a2, ...,ak) such that for any
j = 1, ...,n−1, the pair (a j,a j+1) constitutes an edge on the graph.

5



• The set of nodes in G(B) contains B.

• Let x,y ∈ B. The graph G(B) has an edge (x,y) only if (x,y) has an edge in

G.

• G(B) is connected.

• y ∈ G(B) if and only if y ∈ ⟨x,z⟩ where x,z ∈ B.

In essence, a subgraph is formed by a collection of nodes B of G and all the

paths that connect the nodes of B. In particular, any path ⟨a,b⟩ is a subgraph for

B = {a,b}.

Another important concept that will be used in our work related to tree graphs

is the concept of projection of a node x in a subgraph G(B). Formally, given a

subgraph G(B)⊂G and a node x /∈G(B), the projection of x on G(B) is the unique

node βx(B) ∈ G(B) such that for every node y ∈ G(B) we have βx(B) ∈ ⟨y,x⟩. For

x ∈ G(B) the projection of x on G(B) is x itself.

A tree graph G where the set of nodes is equal to the set of alternatives of a

Domain and a fixed node t ∈ G together compose what we will call an admissible

pair, denoted (G, t) for that Domain. Admissible pairs allow us to define a series

of projections, which will be useful later on.

1.3 Richness Condition

We are interested in Domains that possess a minimal richness condition called

MD-Connectedness. We first state the definition of MD-Connectedness for two

alternatives a,b. We say these two alternatives are MD-connected in D if, for

every alternative c ̸= a,b there are sequence of alternatives {x j}k
j=1 and {y j}l

j=1

such that x1 = yl = a, y1 = xk = b and for every j < k we have (x j,x j+1) ∈ Mc
D

6



and for every j < l we have (y j,y j+1) ∈ Mc
D. We use the notation a ≈ b to denote

that a and b are MD-connected.

Now consider a graph whose nodes are the elements of A. Two nodes in this

graph constitute an edge if and only if they are MD-connected. Call this graph

the Connectivity Graph of domain D. We can now define the MD-Connected

property for D in terms of its Connectivity Graph.

Definition: The domain D has the MD-Connected property if its Connectivity

Graph is connected.

We call to attention that this richness condition does not require for the

Connectivity Graph to be a tree, only for it to be a connected graph. Some of

our results rely on only a much weaker version of this richness condition, called

Minimal Richness. We say that a domain is minimally rich when Da is non-

empty for all a ∈ A.

Remark 1: The MD-Connectedness condition was inspired by the strate-

gyproofness literature. Many notions of connectivity between alternatives are

used in that area. One in particular is a stronger version of MD-connectedness,

Strong Path-Connectedness. In this condition, we say that two alternatives a,b

are (strongly) connected if there are orderings Pi,P′
i ∈ D such that a is ranked first

and b in Pi, b is ranked first and a is ranked second in P′
i and every other alternative

except for a and b is ranked exactly the same in both Pi and P′
i . The notion of

connectedness for a domain from the connectedness between two alternatives is

then constructed exactly in the same fashion as above; that is, we say that a domain

is Strong Path-Connected if the Connectivity Graph (constructed using strong

7



connectivity between alternatives, rather than MD-connectivity) is connected. We

can check that if two alternatives are strongly connected, they will also be MD-

connected, as every other alternative c ̸= a,b maintains its position when going

from Pi to P′
i and from P′

i to Pi. However, this could be achieved by using

other preference orderings, possibly involving lengthy chain of orderings rather

than only two. As such, MD-connectedness is a much weaker restriction than

Strong Path-Connectedness, particularly for domains that contain a reasonably

large number of orderings. ■

Remark 2: Unfortunately, however, one of the main drawbacks of Strong

Path-Connected domains remains with MD-Connectedness: this condition is

incompatible with many forms of multidimensional domains. In particular,

they do not work with top-separable multidimensional domains. We will try to

illustrate the issue with these types of domains with an example. Suppose that

a preference on computers could be decomposed into two components, software

and hardware. There are many choices of software and many choices of hardware

and alternatives are formed of exactly one element of the set of softwares and one

element of the set of hardwares. If we think that, for each preference, the top

element of a preference is composed of the ”best” elements in each component,

and that somehow these characteristics are transferrable, then a bundle that has

the best hardware (and some software) is always preferrable to a bundle that has

the same software, but some other hardware.

The main issue that this causes with MD-Connected preferrences is that

the restriction implied by top-separability will in turn imply many reversals.

Imagine two alternatives, one given by (a,a) and another given by (a,b),

8



and two preferences, P(c,a)
i which has (c,a) as his top-ranked alternative, and

preference P(c,b)
i , which has (c,b) as his top-ranked alternative. In preference

P(c,a)
i , alternative (a,a) is preferred to alternative (a,b), whereas in preference

P(c,b)
i , (a,b) is preferred to (a,a). As such, bundle (a,a) does not maintain its

position when going from any preference with (c,a) on top to any preference with

(c,b) on top; similarly, (a,b) does not maintain its position when going from

any preference with (c,b) on top to any preference with (c,a) on top Hence,

[(c,a),(c,b)] /∈ M(a,a)
D . While this is not in itself a problem, any top-separable

domain has enough reversals like this to the point where the Connectivity Graph

of the domain becomes no longer a connected graph. ■

1.4 Our additional condition

Lastly, we define the most important concept for our work before we state our

results. We call it the Minimal Reversals Condition for a given MD-Connected

domain.

The Minimum Reversals Condition: Given a tree Graph G, denote by A∗
G the

set of all alternatives that are not extreme nodes in G. We say that a domain

satisfies the Minimum Reversals condition if there is an admissible pair (G, t)

such that, for every b ∈ A∗
G, every pair a,c ∈ α(b), a ̸= c and every pair x ∈

ξ (a,b), y ∈ ξ (c,b) we have t /∈ ξ (c,b)⇒ (y,x) /∈ Mb
D.

The Minimum Reversals Condition is a holistic condition on the domain. It

relates whether each alternative maintains its position through every possible

change of preferences to its relative position on a tree graph G and a special node

9



t. As such, it cannot be fully summarized in terms of restrictions on individual

preferences on the domain.

Remark 3: A given domain might satisfy the Minimum Reversals Condition for

potentially several different admissible pairs. In fact, Single-Peaked Domains are

an example of Domains that are compatible with several admissible pairs, as any

node in the Connectivity Graph of a Single Peaked domain can play the role of t

for the admissible pair. Thus, there would be as many admissible pairs compatible

with the Minimum Reversals Condition for a Single Peaked domain as there are

alternatives. ■

Remark 4: As a corollary of the first remark, a given domain might have many

more pairs (x,y) that do not belong to the set Mb
D (i.e. more reversals) for some

alternative b besides the ones specified by the Condition. As the name suggests,

this is just a minimal condition. ■

1.4.1 Verifying the Minimum Reversals Condition

We show now an example on how the Condition can be verified, illustrating its

functioning.

Let the diagram in figure 1.1 illustrate an admissible pair, where the node in

green plays the role of alternative t for the admissible pair. Pick then an alternative

and its corresponding node in the Graph to play the role of alternative b in the

definition of the Condition. This alternative will divide the Graph into a number

of subgraphs equal to the number of edges that node had. Each of these subgraphs

corresponds to a span of the form ξ (a,b), where a ∈ α(b). Figure 1.2 illustrates

10



Figure 1.1: An admissible pair

Figure 1.2: Reversals for t
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this for the case where alternative t also plays the role of b, where the Graph

is divided into three subgraphs. Pick now a pair of preferences, such that the

top ranked alternative of each one comes from a different subgraph, for example,

(p,q). It is evident that t itself is not a part of any of these subgraphs, and thus,

by the Minimal Reversals Condition, alternative t cannot maintain its position

when changing from either preference to the other; that is, (p,q),(q, p) /∈ Mt
D.

Note that the condition is silent about what happens between pairs in the same

subgraph, like (q,s). For these cases, t can either maintain its position or not

between preferences.

Now, let’s consider a different case. Pick alternative x, as illustrated by Figure

1.3. This time, it divides the graph into two different subgraphs. Once more, we

are concerned only with changes involving alternatives represented by nodes lying

in different subgraphs, in this case, the single node in subgraph 1 (which we are

also calling node 1, with some abuse in notation) and any of the nodes in subgraph

2, for example, s. We can easily see that node t is not in the same subgraph as node

1 and hence, for any preference whose top-ranked alternative lies in subgraph 2,

say, s, we have (1,s) /∈ Mx
D. Note, however, that the pair (s,1) can belong to

the set Mx
D, as t belongs to the subgraph 2, and so on this direction there are no

implications made by the Minimal Reversals Condition. In other words, t can

maintain its position when going from a preference whose top is s to a preference

whose top is 1, but not the other way around.

We aggregate now both cases in a single example on Figure 1.4. In this case,

t belongs to the subgraph 3. Thus, if we choose a pair of alternatives where one

comes from subgraph 1, like x and the other comes from subgraph 2, like q we

have that both (x,q),(q,x) /∈ My
D. Similarly, a pair of preferences such that the

12



Figure 1.3: Reversals for x

Figure 1.4: Reversals for y
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top of the first one comes from either subgraph 1 or 2 and the top of the second

one comes from subgraph 3 would also require alternative y to not maintain its

position. For example, consider once more the pair (q, p). From that, we can

readily infer that (q, p) /∈ My
D. Similar arguments hold for the pair (x, p), for

example. However, note that we cannot say anything about the pairs (p,x) or

(p,q). As the first preference has a top-ranked alternative that is in the same

subgraph as t, the Minimal Reversals Condition does not state anything about this

case.

1.5 Single-Peaked Domains and its Generalizations

We will present here two generalizations of the class of Single-Peaked domains

that will be used in this work, as well as an alternative (equivalent) formulation of

Single-Peaked domains.

Starting with the most general to the most restrictive, we have:

Definition: We say that a Domain D is a Weak Semi-Single-Peaked Domain if

there is an admissible pair (G, t) such that, for all Pi ∈D and every maximal path

δ ∈ P(G) with r1(Pi) ∈ δ we have :

• [ar,as ∈ δ such that ar,as ∈ ⟨r1(Pi),βt(δ )⟩ and ar ∈ ⟨r1(Pi),as⟩] ⇒ [arPias].

• [ar ∈ δ ∩α(βt(δ )) and βt(δ ) ∈ ⟨r1(Pi),ar⟩] ⇒ [βt(δ )Piar]

Definition: We say that a Domain D is a Semi-Single-Peaked Domain if there

is an admissible pair3 (G, t) such that, for all Pi ∈ D and every maximal path

3The original definition of a Semi-Single-Peaked domain in Chatterji et al. (2013) uses a
slightly different notion of an admissible pair, where the pair is defined as a tree graph and the set
of projections of a specific node on all the maximal paths of the graph, rather than a graph and a
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δ ∈ P(G) with r1(Pi) ∈ δ we have :

• [ar,as ∈ δ such that ar,as ∈ ⟨r1(Pi),βt(δ )⟩ and ar ∈ ⟨r1(Pi),as⟩] ⇒ [arPias].

• [ar ∈ δ and βt(δ ) ∈ ⟨r1(Pi),ar⟩] ⇒ [βt(δ )Piar]

Definition: We say that a Domain D is a Single-Peaked Domain (on a tree)

if there is a tree graph G such that, for every t ∈ A, the domain D is a Weak

Semi-Single-Peaked domain with respect to the admissible pair (G, t).

Corollary: For every preference Pi in a Single-Peaked domain and every pair of

nodes ar,as ∈ A such that ar ∈ ⟨r1(Pi),as⟩, we must have arPias.

The comparison of SSP domains and WSSP should be clear: the WSSP

domains weaken the requirements for how the preferences behave on any path

after βt(δ ) for that path. On SSP domains, those alternatives that are located

away from the peak and after βt(δ ) must be ranked below βt(δ ). On the WSSP

domains, the preferences between the peak and βt(δ ) must decrease similarly to

what we see in SSP domains, but after βt(δ ) only the alternative adjacent to βt(δ )

must be ranked lower than it. For the case of Single-Peaked domains, since every

node can be taken as a part of an admissible pair, we have that the preferences

are always decreasing along the path from the peak of the preference to any other

alternative. This is essentially an extension of Single-Peaked domains on linear

orders - which are tree graphs with a single path - to more general structures. This

particular formulation in terms of a Weak Semi-Single-Peaked domain simply

makes the comparison with the other two domains more clear. Additionally, it

node. We adapted such notion to be compatible with the rest of our work.
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will also make some properties of Single-Peaked domains more prominent on

later sections.

1.6 Generalized Median Rules

We provide now a formal definition of a median function (with phantoms) on a

tree, which will henceforth be called simply by ”median function” or ”median

rule”. This definition has been adapted from the concept of median functions on

a tree to serve as Social Choice Function.

Definition: A SCF f is a median function on a tree G if it satisfies all of the

following properties:

• For each node x ∈ G, there is a number fx ≥ 0 associated with it. We call

this number the number of phantoms at node x.

• ∑x∈G fx = n−1.

• if f (P) = x, then ∑z∈ξ (y,x) v(z,P)+ fz < n, for all y ∈ α(x).

We call the number fx associated with a given node x the number of phantoms

(or, equivalently, the number of phantom voters) on node x. For instance, if fx =

3, we interpret this as meaning that the median function has 3 phantom voters

casting votes for alternative x. Essentially, a median rule is a median of a set of

2n− 1 nodes, n− 1 of which are fixed and n that are taken as an input to the

function. As with any median function, the median point is chosen as the point

that minimizes the sum of distances from itself to every one of the other 2n− 1

nodes. As 2n− 1 is always odd, the result not only exists, but it is also always

uniquely determined. The last property from the list above is simply an equivalent
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(and, for our purposes, more convenient) way of stating this for a set with an odd

number of nodes, as the only node that minimizes the sum of distances will be the

one in which the sum of votes and phantoms on each of its spans adds to less than

n 4; see ORTEGA and KRISTON (2013) for more details. Lastly, an important

property of median rules to take note is that, due to its construction, such rules are

always Well Behaved, though not always Monotonic.

Examples We seek to illustrate now how median rules on a tree work, by

showing how a particular rule selects the outcome of two different preference

profiles. The rule has 10 voters and 9 phantoms. The black letters symbolize the

alternative names, the notation in red P = x represents that a given node has x > 0

phantom votes for that node (this is omitted for nodes with 0 phantoms), while the

notation in green V = y represents that a given node has y > 0 votes (again, we

omit nodes with 0 votes). The figures below illustrate this same SCF, but different

profiles of preferences.

We claim that in Example 1, the outcome of the SCF for that profile is

alternative D. To verify that this is true, according to the last property of median

rules, we then need to have that the sum of votes (both from phantoms and voters)

in each of these sets must be less than 10: {E,F}, {K, I}, {A,B,C,G,H,J}.

These three sets represent the three spans of nodes adjacent to node D. Indeed,

the sum of votes in the set {E,F} is 5, the sum of votes in set {K, I} is 4, and the

sum of votes in set {A,B,C,G,H,J} is 9. The reader can verify that node D is the

only node such that the span of adjacent nodes has a sum of votes less than 10,

4Essentially, if a particular span has n or more votes and phantoms, then it is always possible
to minimize the sum of distances by moving towards that span, as this will decrease the distance
to n nodes or more, but only increase the distance of n−1 nodes or less.
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Figure 1.5: Example 1

Figure 1.6: Example 2

so that the outcome is indeed unique. For instance, node C has two sets of spans:

{A,B,G,H,J} and {D,E,F, I,K}. In this second set, the sum of votes is exactly

10, and hence, C cannot be the outcome of the SCF at that profile, according to

the last property of a median rule.

Example 2 represents the same SCF, as it can be seen from the placement of

phantom votes remaining unchanged, but with a different profile, as seen from

the change of the numbers in green. For this profile, the outcome of the SCF

is alternative B. Once more, this node has three spans: {A}, {G,H,J} and

{C,D,E,F, I,K}. We can readily verify that in each of these three sets the sum

of votes is below 10. Once more, this is the only node with such property. For

instance, any node in the set {C,D,E,F, I,K} will have a span that contains both

the set {G,H,J} and node A. As node A alone has 9 votes and node G has another

3, it is impossible for any alternative in the set {C,D,E,F, I,K} to be the outcome

of the SCF at that profile.
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1.7 Eligible Thresholds

An important concept related to the Minimum Reversals Condition is the set

of eligible thresholds for a MD-Connected domain that satisfies the Condition.

Essentially, since a given domain might satisfy the MRC for multiple admissible

pairs, the set of eligible thresholds give us an idea of how many admissible

pairs are compatible with the MRC for a given domain. To make such a

characterization, we fix the graph component of the admissible pair as the

Connectivity Graph of the domain, and call the node component of such pair a

threshold. The set of eligible thresholds is then the set of all nodes that can act as

a threshold for the MRC along the Connectivity Graph of that domain. As it will

be seen in later section, such set has important implications for the shape of the

domain.

Definition Let D be an MD-Connected domain and the set τD ⊂ A be defined

as the set of all alternatives t such that domain D satisfies the Minimal Reversals

Condition for the admissible pair (G, t) formed by alternative t and the Connec-

tivity graph of D . We call the set τD the set of eligible thresholds for D .

Examples: For all Single-Peaked domains, τD = A, that is, every node is an

eligible threshold. This is formally proved in Proposition 2 of Chapter 2. We

check one more example of a domain and its associated set τD. Consider the

domain below, composed of five alternatives, A,B,T,X ,Y . We will identify the

preferences on the Domain by numbers.
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1 A > B > Y > T > X 2 B > A > Y > T > X

3 B > T > A > Y > X 4 T > B > A > Y > X

5 T > X > A > Y > B 6 X > T > A > Y > B

7 X > Y > A > T > B 8 Y > X > A > T > B

We can easily check that the Domain is Strong Path-Connected, (and thus, MD-

Connected as well) and the Connectivity Graph is rather simple: A ≈ B ≈ T ≈

X ≈ Y . We also observe that (t,a) ∈ Mb
D and (t,y) ∈ Mx

D. Now, we try to verify

the Minimum Reversals Condition for each of the five possible admissible pairs

involving G: (G,a),(G,b),(G, t),(G,x) and (G,y). We verify quite easily that the

Minimum Reversals Condition requires (t,a) /∈ Mb
D for both the admissible pairs

(G,a) and (G,b), so neither a nor b belong to the set τD. Next, we also verify that

the Minimum Reversals Condition requires (t,y) /∈ Mx
D for the both the admissible

pairs (G,x) and (G,y), so neither x nor y belong to the set τD as well. The only

remaining possible alternative is t, and indeed, the Minimum Reversals Condition

holds for the admissible pair (G, t) 5. Thus, for the domain above, τD = {t}.

5This is verified in detail in section 2.4.2.
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Chapter 2

Domains for Well Behaved

Monotonic Social Choice Functions

We present here a set of necessary and sufficient conditions for an MD-

Connected Domain to support a Well Behaved Monotonic Social Choice Function.

We require the domain to have a minimal number of preferences in which a pair

of alternatives flips their relation, and these reversals must occurr in accordance

to a tree graph. While this condition cannot be summarized by a set of restrictions

on individual preferences, we provide two alternative characterizations that can,

one that is necessary and another that is sufficient.

2.1 Introduction

In this paper we look into the problem of characterizing domains that allow us

to define Social Choice Functions (SCF) that satisfy some desirable properties.

Our main property of interest is Maskin Monotonicity (often abbreviated to
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Monotonicity or just MM). This property has, first and foremost, a strong intuitive

appeal. Muller and Satterthwaite (1977) introduced it as an axiom representing a

desirable (if also somewhat intuitive) property in a SCF that casting more votes

for an alternative in a ballot would never cause that alternative to be dropped once

it has already been selected. Besides this intuitive appeal, there are also some

methodological reasons to be interested in exploring under what conditions can

Monotonic functions be obtained. In the paper that ended up naming the property,

Maskin (1999) showed that Monotonicity is of fundamental importance to Nash

Implementation. More recent work suggests that Monotonicity might play an

important role in other implementation concepts as well, as seen on the work of

Bergemann, Morris, and Tercieux (2011). Thus, this is a condition that has not

only an appeal to common sense, but also is of importance to the literature.

As known from the Muller-Satterthwaite Theorem (Muller and Satterthwaite

(1977)), this assumptions is not without a cost, and it will demand that some

preferences must be excluded from the universe of possible preference relations

held by the agents (also known as the preference domain) 1. In fact, the more

restricted the domain is, the easier it gets to formulate SCFs that satisfy almost

any properties of interest, to the point where it becomes trivial in an environment

where agents can only have one preference. To ensure that the domains being

considered in our analysis are useful, we impose a richness condition that ensures

that the domains we are considering allow for a rich representation of different

points of view held by agents in a given framework. The richness condition

chosen is MD-Connectedness, a condition that is based on the notion of sets
1The Theorem shows that Monotonicity, along with Unanimity, implies Dictatorship in the

Universal domain. Thus, if one wishes to avoid Dictatorship, but retain Monotonicity and
Unanimity, domain restrictions become necessary.
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in which a given alternative maintain its position. Loosely speaking, for each

alternative x in the Domain, it is required that it exists a few pair of preferences,

with specific alternatives on top, such that alternative x maintain its position

between these two preferences. This condition is a generalization of the Strong

Path-Connectedness presented in Chatterji, Sanver, and Sen (2013). It draws from

notions of connection between alternatives that appeared in both Aswal, Chatterji,

and Sen (2003), and Chatterji and Sen (2011).

A second axiom we will impose on the SCFs studied in this paper is that they

must be Well Behaved. This axiom requires the functions to satisfy three distinct

properties: Anonymity, Unanimity and Tops-Only. Once again, there are both

normative as well as methodological reasons to impose this axiom. Unanimity

has a very intuitive appeal for any rule that seeks to be used in collective decision

making. Anonymity is another often invoked property of such contexts, with

appeals to fairness and equity. In particular, Anonymity implies a stronger version

of non-dictatorship. These first two assumptions are broadly adopted in many

branches of the literature on Social Choice. Lastly, Tops-Onlyness is a property

that greatly simplifies the informational requirements for the application of any

decision rule, as the rule depends exclusively on the top ranked alternative of

each agent. On a methodological level, these properties make the analysis simpler

and the problem tractable. Anonymity and Tops-Onlyness both introduce sources

of ”rigidity” on the SCF (understood as a measure of how much the output of

the function is unaffected by a change in the inputs) that, in conjunction with

Monotonicity, allows us to pin down what are the critical profiles where the SCF

must change the output in order to satisfy Unanimity. As we will explain in greater

detail below and in subsequent sections, this is of fundamental importance to our
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analysis.

The first fundamental step in our approach is to take advantage of the

assumptions adopted in our setup and rewrite the expression of Monotonicity in a

more convenient way that makes it explicit the way the SCF and the domain need

to interact with one another for the condition to be upheld. We can summarize it as

saying that the richer a domain is, the less responsive the SCF needs to be in order

for it to satisfy Monotonicity. Our approach to the problem can then be described

as trying to find the minimum level of responsiveness that is presumed from the

existence of a Well Behaved SCF and, from them, deriving the restrictions that

must be placed on the domain in order for the SCF to be Monotonic while still

allowing for the domain to be MD-Connected.

The final set of restrictions, collectively called the Minimum Reversals

Condition in this paper, is expressed using the same language for the alternative

expression of Monotonicity. This highlights the importance of that step in our

analysis. The Minimum Reversals Condition involves arranging the preferences

of the domain according to a tree graph and then placing constraints on which

alternatives are allowed to maintain their positions when the preferences change

from one area of the graph to another.

As the Minimum Reversals Condition is a condition that is expressed in terms

of the domain as whole, rather than something that can be checked from properties

on the individual preferences, it can be hard to verify. We then provide a set

of necessary (but not sufficient) conditions that is based on constraints over the

individual preferences. We call the class of domains satisfying this condition

Weak Semi-Single-Peaked domains, as the conditions found are a weaker version

of the requirements on preferences in a Semi-Single-Peaked domain. We also
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provide a way to strengthen a Weak Semi-Single-Peaked domain such that we

obtain a set of sufficient (but not necessary) conditions that is also easier to express

than the Minimal Reversals Condition.

The rest of the paper is organized as follows: section 2 presents the framework

we will adopt for our work, introducing the basic notations and definitions used.

Section 3 contains the main results of our analysis, the set of necessary and

sufficient conditions for a domain to admit a Well Behaved Monotonic SCF, as

well as a necessary condition for individual preferences. Section 4 illustrates these

ideas by providing examples, highlighting the differences between Semi-Single-

Peaked domains, the domains that satisfy the Minimum Reversals Condition and

the Weak Semi-Single Peaked domains. Section 5 concludes, with the proofs of

the results left for the appendix.

2.1.1 Related Literature

This paper is situated in a broad literature that investigates what sort of domain

restrictions can yield positive results in the face of the known Impossibility

Theorems. While the possibilities of Single Peaked domains have been known

even before 1950 (see Black (1948)), the earliest attempts of characterizing

possible domain restrictions that ensure the existence of rules satisfying a set of

properties date back to 1977, with the work of Kalai and Muller (1977).

Our paper focuses specifically on domains that admit Monotonic rules. Bochet

and Storcken (2010) started by investigating the possibilities for a Pareto-Optimal,

Monotonic and Anonymous SCF to exist by placing restrictions on a single agent’s

preferences; their work differs from ours as we impose identical restrictions on the
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preferences of each agent. These different restrictions yield considerably different

results for the shape of the domain. Kutlu (2009) followed a different approach

and examined the conditions under which the only Unanimous and Monotonic

SCFs are the dictatorial ones, hence delimiting a set of necessary restrictions to be

placed on domains if one expects to find non-dictatorial rules. Our work is able

to provide necessary and sufficient conditions for the case of Well Behaved SCFs.

Klaus and Bochet (2013) examined under what restrictions Monotonicity and

Strategy-Proofness are equivalent, thus allowing the branch of the literature that

explores Monotonic rules to borrow some results from the more extensive branch

on Strategy-Proof rules. Our work takes this literature forward by providing

positive results on a class of problems yet unexplored, while also developing a

new approach that highlights how the properties of the SCF interact with the shape

of the domain on which they are defined.

We adopt some of the methodology of the literature on Strategy-Proof SCFs.

Chatterji, Sanver, and Sen (2013) examine a similar problem to ours, but with a

stronger richness condition and swapping Monotonicity for Strategy-Proofness.

While our sufficiency results are similar, the necessity part of our work differs

substantially from theirs. Not only our richness condition is weaker, but on

a restricted domain environment with strict preferences, Monotonicity is also

a weaker condition than Strategy-Proofness, and thus, the characterization of

necessary conditions becomes harder. 2

2Other notable works on the branch of Strategy-Proof domains are Chatterji and Massó (2018),
Aswal, Chatterji, and Sen (2003), Demange (1982) and Moulin (1980)
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Figure 2.1: A property of Single-Peakedness.

2.2 A Preliminary Illustration

Before presenting the results, we would like to offer an heuristic example to help

the reader understand the nature of our findings, as well as to relate the results to

other more familiar concepts.

Consider a Single-Peaked domain over some arbitrary linear order, for

instance, the linear order shown in Figure 2.1. One of its properties is that, for

any d that is not an extreme node, and any f ,b that lie on opposite sides of d,

we will have ( f ,b),(b, f ) /∈ Md
D. This property guarantees that any median voter

SCF (which, by design, are Well Behaved functions) are Monotonic on a Single-

Peaked domain. To see why, suppose that the outcome of the SCF at a given

profile is d. Then, any profile involving a permutation of votes of the same side

of d (say, changing a vote for a to a vote for b) will not alter the position of the

median. The only way to change the outcome of the SCF from d to something else

is to move votes across alternatives at different sides of d, like from f to b. But,

as we saw, for any of these changes, alternative d does not maintain its position,

and thus Monotonicity is always preserved.

However, as convenient as the property of Single-Peakedness is for guaran-
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teeing that Monotonicity will hold for any median rule (which, by construction,

are also always Well Behaved as well), this imposes heavy restrictions on the

domains. Since we don’t require that all Well Behaved rules be Monotonic, but

rather, finding a domain that has a single Well Behaved rule that is also Monotonic

is enough for our purpose, we wonder if it is possible to somehow relax the

restrictions while still preserving Monotonicity for at least one median rule. If

we can find such a relaxation that still preserves Monotonicity for one of these

rules, we will have found a domain that is larger than a Single Peaked domain

and in which we can still define a Monotonic, Well Behaved SCF, given by that

median rule.

It turns out, this is possible if we pick a SCF that exhibits Veto Power in at

least some of its sections. Consider the median rule for three players that has two

phantoms, one at d and one at e, depicted in Figure 2.2. Alternative c can veto

alternative b, as a single vote for c is enough to make it impossible for the outcome

of the SCF to be b, even when all the other voters vote for b. This implies that

whenever alternative b is selected as the outcome, there is no (non-phantom) voter

voting for any alternative to the right of b. Since there will never be a voter voting

for c when b is selected, we don’t need to worry about a change of votes coming

from that node - for instance, changing a vote from c to a - violating Monotonicity.

In turn, this allows us to have (c,a) ∈ Mb
D without violating Monotonicity for that

function. For instance, we could have in the domain a pair of preferences like

Pi = a > b > c > d > e > f and P′
i = c > a > d > e > f > b, such that b maintain

its position when going from preference Pi to preference Pi. For a different SCF

- say, one where the phantoms are located at nodes a and f , so that there are

no alternatives that can be vetoed - such pair of preferences could be a problem,
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Figure 2.2: A Median Rule.

because it is possible to find a scenario where Monotonicity is violated using these

preferences. For instance, if the phantoms are at nodes a and f , then we could pick

a profile where player 1 has a preference with a on top, player 2 has a preference

with b on top and player 3 has preference P′
i . The outcome of such profile would

be b. However, if player 3 changes his preference from P′
i to Pi (while the other

two players keep the same preferences), the outcome of this SCF would change

from b to a, even though alternative b would maintain its position from one profile

to the other. In the case where alternative b can be vetoed by alternative c, we

know that such a scenario can never happen, since whenever b is selected as the

outcome, there are no agents voting for c, and so a preference like P′
i does not

cause any issues. We have successfully identified a form to relax the domain from

Single-Peaked to something more general without losing Monotonicity for that

particular SCF.

We call each of the relaxations in the form (y,x) ∈ Mb
D (where x and y are

two nodes lying on opposite sides of b) a breach 3. As each breach represents

a deviation from the constraints of Single-Peakedness, mapping the set of all

3In the proof section we will give an equivalent, but slightly different definition for a breach,
one that it is more formal and more suited for our proofs, rather than for exposition.
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possible breaches is equivalent to mapping the possibilities for a domain to deviate

from a Single-Peaked one. Our proof follows this logic, first exploiting the fact

that each breach is associated with an occurrence of Veto Power in a SCF to

draw properties on how each breach must be placed on a graph. For instance,

if alternative a can veto alternative b, then alternative b cannot veto alternative a.

Similarly, we also find that if a can veto b and b can veto c, then a will also be

able to veto c. As the number of alternatives is finite, this suggests that there must

be at least one alternative that cannot be vetoed by any other alternative. In turn,

characterizing the set of alternatives that cannot be vetoed by any other alternative

is equivalent to characterizing the set of alternatives that can be vetoed, as the two

sets are complements. All of these properties have counterparts as implications for

the placement of breaches. For instance, we are able to conclude that there must

exist (at least) one node from which we can derive the position of every breach in

the domain, characterizing this set of breaches. Moreover, since we characterize

the set of breaches by defining its complement, our characterization will also look

like a set of statements of the form (y,x) /∈ Mb
D, rather than (y,x) ∈ Mb

D

This insight is also further generalized and explored on Chapter 3. There, we

show that, similarly to what Moulin have proved for Single-Peaked domains, the

Social Choice Functions that are Well Behaved and Monotonic (and are defined

on an MD-Connected domain) must also be median functions of some sort,

exactly as it must be the case for Single-Peaked domains. However, since we are

departing from Single-Peaked domains, there is an extra condition that is placed

on these functions. The extra condition that these SCFs must satisfy is to exhibit

Veto Power (which imply restrictions on the placement of phantoms) exactly

in conformity with the segments where the domain deviates from a traditional
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Single-Peaked one, as defined above.

2.3 Results

2.3.1 Necessary and Sufficient Conditions

We state now our main result.

Theorem 1: If an MD-Connected domain admits a Well Behaved Monotonic

SCF, then there must be an admissible pair (G, t) such that the domain satisfies

the Minimum Reversals Condition for that admissible pair. Moreover, any domain

that that satisfies the Minimum Reversals Condition for some admissible pair

(G, t) admits a Well Behaved Monotonic SCF.

We leave the proof to the appendix.

The Minimum Reversals Condition is then necessary and sufficient for an

MD-Connected domain to admit a Well Behaved Monotonic function. While the

proof will be presented later, we would like to call to attention that the sufficiency

result relies on an identical version of the generalization of the median voter rule

for a tree that was used on Chatterji, Sanver, and Sen (2013). Similarly to their

result, MD-Connectedness is not needed for the sufficiency part of the result. The

necessity part, while more convoluted, is also related to their work. As we will

show next, the conditions for a domain to admit a Well Behaved Strategy Proof

SCF imply the conditions for a domain to admit a Well Behaved Monotonic SCF

within our richness condition. This is not a surprise, as Klaus and Bochet (2013)

have shown that for domains with only strict preferences, Strategy Proofness
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implies MM.

We also want to emphasize a point made by Chatterji, Sanver, and Sen

(2013) about the tree structure that emerges for the Connectivity graph. This

was not imposed as a primitive to the model, but rather something that emerged

endogenously. In principle, the Connectivity graph could assume the shape of any

connected graph, like a complete graph.

2.3.2 Additional Characterization Results

The class of domains that satisfy the Minimum Reversals Condition has a

complicated characterization, as it requires checking for each alternative the

changes of preferences where that alternative maintains its position. It would be

desirable to have a more convenient characterization of the domain, one that could

be expressed in terms of restrictions on individual preferences, so that it could

shed a light on how those preferences would have to behave. This is possible, if

we strengthen our richness condition to Strong Path-Connectedness. When we do

so, we are able to find a few properties that every individual preference in a domain

that satisfies the Minimum Reversals Condition must exhibit. These properties are

related to the Weak Semi-Single-Peaked domains that were presented earlier. We

summarize these findings in the following Proposition:

Proposition 1: If a Strong Path-Connected domain satisfies the Minimum

Reversals Condition for an admissible pair (G, t), then it is a Weak Semi-Single-

Peaked domain.
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Remark 5: Not all Weak Semi-Single-Peaked domains will satisfy the Mini-

mum Reversals Condition, even when they are Strong Path-Connected. This is

illustrated on a further section through examples. As such, the class of Strong

Path-Connected domains that are Weak Semi-Single-Peaked is larger than (and

contains) the class of Strong Path-Connected domains that satisfy the Minimum

Reversals Condition.

Remark 6: Proposition 2 requires Strong-Path Connectedness instead of MD-

Connectedness. We need a stronger version of the richness condition than the

one used in Theorem 2 because MD-Connectedness is a much weaker property,

with few implications on the preferences of a domain, whereas Strong Path-

Connectedness allows us to make inferences about the way certain alternatives

must be ranked within each preference with a particular alternative on top. As

such, it is possible to have a domain that satisfies the Minimum Reversals

Condition, but is not a Weak Semi-Single-Peaked domain, if such domain is

not rich enough to be Strong Path-Connected. Nonetheless, for domains that

have enough variety in preferences to satisfy this stronger richness condition, this

Proposition gives useful properties that individual preferences of such domains

must exhibit. In turn, these properties allow us to state a few more results.

Proposition 2: If a domain is Single-Peaked on the tree G, then it satisfies

the Minimum Reversals Condition for all admissible pairs (G, t) that include G.

Moreover, if the domain is Strong Path-Connected with Connectivity Graph G and

satisfies the Minimum Reversals Condition for all admissible pairs that include G,

then the domain is Single-Peaked.
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Proposition 3: If a Strong Path-Connected domain satisfies the Minimum

Reversals Condition for an admissible pair (G, t) and it is not a Single-Peaked

domain, then any Well Behaved and Monotonic SCF defined on that domain

violates No Veto Power

Proposition 2 makes the connection between Single-Peaked domains and

the flexibility in selecting an admissible pair to satisfy the Minimum Reversals

Condition more evident. As we see here, the key difference between a Single-

Peaked domain and a richer domain that still satisfies the Minimum Reversals

Condition lies on having a smaller set of alternatives that can function as an

admissible pair. Proposition 3, in turn, links this with the presence of Veto

Power on the Well Behaved and Monotonic SCFs for that domain, as we have

alluded on our preliminary illustration of the results. Lastly, we have an additional

characterization result that is related to the previous two:

Proposition 4: Let D be an MD-Connected domain that satisfies the Minimum

Reversals Condition and τD ∈ A its associated set of eligible thresholds. If x,z are

two distinct nodes such that x,z ∈ τD, then for every y ∈ ⟨x,y⟩ we also have y ∈ τD.

The idea behind this last result draws on the relation of Veto Power, departures

from the Single-Peaked domain and the shrinking of the set of eligible thresholds.

As seen, every time that a domain deviates from a Single-Peaked domain, two

things happen: i) we are able to find a set of alternatives that can be vetoed in all

(Well Behaved and Monotonic) SCFs defined on that domain; ii) the set of eligible

thresholds decreases in size. These two things are not unrelated: if an alternative
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can be vetoed by all SCFs on that domain, then that alternative cannot be an

eligible threshold. As one set expands, the other set contracts. This proposition

then essentially says that all the alternatives that can be vetoed by either x or z will

also be vetoed by y, and so y will also be in the set of eligible thresholds. Hence,

the set of eligible thresholds is ”convex” in the sense that if two distinct nodes, x

and z are part of the set, then every node y in between them must also be a part

of the set τD. This helps painting a clearer picture on how domains that satisfy

the Minimal Reversals Condition must look like - something useful, given how

elusive a characterization of such domains tends to be.

2.4 Examples

2.4.1 The Case of Single Peaked Domains

Our first example is a Single Peaked domain (though, for simplicity reasons,

not the full Single-Peaked domain), to serve as a simple illustration of the ideas

presented so far.

Let the set of alternatives be {ak}4
k=1. The preferences on the domain are

shown in the table below, with the numbers on the first column being used to

identify each preference:

1 a1 > a2 > a3 > a4 2 a2 > a1 > a3 > a4

3 a2 > a3 > a1 > a4 4 a3 > a2 > a1 > a4

5 a3 > a4 > a2 > a1 6 a4 > a3 > a2 > a1

This is an MD-Connected (and in particular a Strong Path-Connected) domain
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and a Single Peaked domain for the linear order a1 > a2 > a3 > a4. To verify

the Minimum Reversals Condition, we need to specify first an admissible pair.

For this, consider the graph given by the Connectivity Graph of this domain: a1 ≈

a2 ≈ a3 ≈ a4, along with node a1 as threshold. The Minimum Reversals Condition

for this admissible pair then requires the following:

• Alternative a2 cannot maintain its position when going from preferences 4,

5 or 6 to preference 1.

• Alternative a3 cannot maintain its position when going from preference 6 to

preferences 1, 2, or 3.

As it can be easily verified, these conditions are met. However, we could also

use the admissible pair given by the same Connectivity Graph, but taking node a3

instead. In this case, the Minimum Reversals Condition would then require the

following:

• Alternative a3 cannot maintain its position when going from preference 6 to

preferences 1, 2 or 3, or when going from preferences 1, 2 or 3 to preference

6.

• Alternative a2 cannot maintain its position when going from preference 1 to

preferences 4, 5 or 6.

These conditions are also met. In fact, alternatives a2 and a4 could also be

picked to create an admissible pair together with the Connectivity Graph that

would also satisfy the Minimum Reversals Condition. We could even use a

different graph, say, permuting the positions of a2 and a3 on the graph. This

shows that some domains might be compatible with different thresholds for the

same path. This is not a problem, and our Theorem requires only that there must

exist at least one admissible pair such that the Minimum Reversals Condition is
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satisfied for that domain to be compatible with the existence of a Well Behaved

Monotonic SCF. More generally, we have that any Single-Peaked domain satisfies

the Minimal Reversals Condition, as seen in Proposition 2.

2.4.2 Weak SSP as a superset of SSP domains

We show now one example of a Weak Semi-Single-Peaked domain that is not a

Semi-Single-Peaked domain. This example will also highlight a distinctive feature

of this new class of domains, which is that we can find a SCF that satisfies MM

without being strategy proof.

The Domain

The Domain is composed of five alternatives, A,B,T,X ,Y . We will identify the

preferences on the Domain by numbers.

1 A > B > Y > T > X 2 B > A > Y > T > X

3 B > T > A > Y > X 4 T > B > A > Y > X

5 T > X > A > Y > B 6 X > T > A > Y > B

7 X > Y > A > T > B 8 Y > X > A > T > B

We can easily check that the Domain is Strong Path-Connected, (and thus, MD-

Connected as well) and the Connectivity Graph is rather simple: A ≈ B ≈ T ≈

X ≈ Y . However, this is not a semi-single-peaked Domain. We can see that by

checking that there is no alternative that can act as a threshold for the domain.

For a semi-single-peaked domain, there must be an admissible pair that uses the
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Connectivity Graph of the domain 4, so we need only to check for thresholds on

that graph, rather than checking all possible graphs.

• Alternative A cannot be the threshold, as preference 8 would violate

the condition that alternatives decrease in ranking from the peak to the

threshold, since A > T .

• Alternative B cannot be the threshold, as preference 5 would violate the

condition that alternatives beyond the threshold must be ranked lower than

the threshold.

• Alternative T cannot be the threshold, as preference 1 would violate the

condition that alternatives beyond the threshold must be ranked lower than

the threshold.

• Alternative X cannot be the threshold, as preference 1 would violate the

condition that alternatives beyond the threshold must be ranked lower than

the threshold.

• Alternative Y cannot be the threshold, as preference 1 would violate

the condition that alternatives decrease in ranking from the peak to the

threshold, since Y > T .

Nonetheless, we can verify the following in this domain:

• B does not maintain its position when going from preference 1 to prefer-

ences 4,5,6,7,8, as B > T in 1, but T > B in 4,5,6,7,8.

• X does not maintain its position when going from preference 8 to prefer-

ences 1,2,3,4,5, as in 8 we have X > T and T > X in 1,2,3,4,5

4This comes from the fact that if a domain is Semi-Single-Peaked, it admits a Well Behaved
strategy-proof SCF, and, conversely, if it is a Strong Path-Connected domain that admits a Well
Behaved and strategy-proof SCF, then there must be an admissible pair using the Connectivity
Graph such that the domain is Semi-Single-Peaked with relation to that admissible pair.
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• T does not maintain its position when going from 1, 2 or 3 to either 6, 7 or

8, as T > X in the first three, but X > T in the last three. Conversely, it also

does not maintain its position when going from 6,7,8 to 1,2,3, as T > B in

6,7,8, but B > T in 1,2,3.

This is enough to check the Minimal Reversals Condition, using the Con-

nectivity Graph and node T as an admissible pair. For this admissible pair, the

Condition requires the following:

• {(A,T ),(A,X),(A,Y )} /∈ MB
D

• {(Y,T ),(Y,B),(Y,A)} /∈ MX
D

• {(A,X),(A,Y ),(B,X),(B,Y ),(X ,A),(X ,B),(Y,A),(Y,B)} /∈ MT
D

As we have just seen, these conditions are met for this domain. Thus, by

Proposition 1, the domain is a Weak SSP domain, despite not being a SSP domain.

The SCF

The SCF is a simple one, with only two players and it takes the form of a median

voter rule with a phantom voter at alternative T and the linear order of A > B >

T > X > Y . Hence f (Pi,Pj) = median(r1(Pi),r1(Pj),T ). We can see quite easily

that this function is Well Behaved.

Monotonic, but not Strategy-Proof

First we check that the function does not satisfy strategy-proofness. Indeed, look

at the profile where the first player has preference 1 and the second has preference

8. In this scenario, the first player has an incentive to report having preference 8

instead, since the outcome when he reports truthfully is T , but the outcome of the

misrepresentation is Y , which is preferred to T under his true preference. This is
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expected, as there can be no strategy-proof and Well Behaved rule on this domain,

as it is Strong Path-Connected, but not Semi-Single-Peaked.

Nonetheless, this SCF does satisfy MM. To check it, we need to look at the

pivotal scenarios.

• First, note that whenever the SCF changes because the alternative selected

loses a vote, this does not violate MM. It is clear that changing a preference

from one where the alternative was the top-ranked one to anything else it

can’t be the case that the alternative maintains its position, so the change is

warranted.

• Hence, any changes when the outcome is either A or Y never violate MM,

as these alternatives are only selected when they get both votes, so the only

way to move away from them is by changing a vote for them to another

alternative.

• For alternative B, it is possible to change the outcome of the SCF by

changing a vote for A to either T,X or Y (while keeping the other vote in B).

But as we saw earlier, B does not maintain it’s position in these cases.

• A similar argument applies for the case where X is the outcome of the SCF.

That can only happen when either X loses a vote or when a vote changes

from Y to either A,B or T , and in none of this scenarios X maintain it’s

position.

• Finally, when the outcome of the SCF is T , it means that the profile is not

one of the following: (1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2),

(3,3), (6,6), (6,7), (6,8), (7,6), (7,7), (7,8), (8,6), (8,7), (8,8). Then, for

the SCF to change from T to another outcome, it must involve going from

one of the profiles not listed above to a profile that was listed. All these
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changes involve one of three scenarios: i) a change from a preference 4 or 5

to another preference, which imply a loss of votes for T , so a valid change;

ii) changing a preference from 1,2,3 to 6,7,8, which as seen before imply

that T also does not maintain its position; or iii) changing a preference from

6,7,8 to 1,2,3, which again, as seen before, also imply that T does not

maintain its position.

Hence, the SCF satisfies MM on this Domain.

2.4.3 Weak SSP and the Minimum Reversals Condition

To illustrate the subtlety of the Minimum Reversals Condition, we will present two

examples of Weak Semi-Single-Peaked domains, one that violates the Minimum

Reversals Condition and one that satisfies it.

The first example is a domain composed of six alternatives, A, B, C, T, X , Y.

Once more, we identify the preferences on the Domain by numbers:

1 A > Y > B >C > T > X 7 T >C > X > B > A > Y

2 A > B >C > T > X > Y 8 T > X >C > B > A > Y

3 B > A >C > T > X > Y 9 X > T >C > B > A > Y

4 B >C > T > X > A > Y 10 X > Y > T >C > B > A

5 C > B > T > X > A > Y 11 Y > X > T >C > B > A

6 C > T > X > B > A > Y 12 Y > B > X > A > T >C

We can check easily that this is a Strong Path-Connected (and thus, an MD-

Connected) domain whose Connectivity Graph is given by A ≈ B ≈C ≈ T ≈ X ≈

Y . Moreover, using T as the threshold of the unique path of this graph, we can also
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easily verify this is a Weak Semi-Single-Peaked domain. Nonetheless, it violates

the Minimum Reversals Condition since alternative B maintains its position when

going from preference 1 to preference 12. As A ∈ ξ (A,B),T /∈ ξ (A,B) and Y ∈

ξ (C,B) we have that (A,Y ) ∈ MB
D violates the Minimum Reversals Condition.

Our second example involves eight alternatives, A, B, C, T, X , Y, O, P. The

individual preferences of this domain are:

1 A > Y > B >C > T > X > O > P 9 X > T >C > B > A > Y > O > P

2 A > B >C > T > X > Y > O > P 10 X > Y > T >C > B > A > O > P

3 B > A >C > T > X > Y > O > P 11 Y > X > T >C > B > A > O > P

4 B >C > T > X > A > Y > O > P 12 Y > P > B > X > A > T >C > O

5 C > B > T > X > A > Y > O > P 13 P > O > T >C > B > A > X > Y

6 C > T > X > B > A > Y > O > P 14 O > P > T >C > B > A > X > Y

7 T >C > X > B > A > Y > O > P 15 O > T >C > B > A > X > Y > P

8 T > X >C > B > A > Y > O > P 16 T > O >C > B > A > X > Y > P

This is once more an example of Weak Semi-Single-Peaked domain. The

Connectivity Graph of this domain is composed of three maximal paths: A ≈ B ≈

C ≈ T ≈ X ≈ Y ; A ≈ B ≈C ≈ T ≈ O ≈ P; and O ≈ P ≈ T ≈ X ≈ Y . Alternative

T acts as the threshold in all three paths.

This domain not only satisfies the Minimum Reversals Condition, but it has an

unusual connection with the last example: along the path A ≈ B ≈C ≈ T ≈ X ≈Y

every alternative is ordered the same as in the last domain. In fact, if we erase

alternatives O and P, the first 12 preferences of this new domain are identical to
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the 12 preferences of the previous one. However, here a move from preference 1 to

preference 12 does not violate the Minimum Reversals Condition, and the reason

for it is that alternative B beats alternative P on preference 1, but is beaten by it on

preference 12. Thus, it was an alternative that is not on the same path that contains

alternatives A, B and Y that made possible for that change of preferences to satisfy

the Minimum Reversals Condition. This shows how it is necessary to look at the

domain as whole, rather than at how individual preferences are restricted, even

along a particular path.

Strengthening Weak Semi-Single-Peaked domains

As seen above, the restrictions implied by Weak Semi-Single-Peaked domains are

also implied by the Minimal Reversals Condition, but the latter is stronger than

the former, demanding more. A natural question is to ask if there is a way to

strengthen the conditions of Weak SSP domains, so that they are now sufficient to

guarantee that the Minimal Reversals Condition hold. Alternatively, we could also

ask if we can somewhat relax the conditions on SSP domains - which do contain

the Minimal Reversals - , so that we include more preferences while not losing the

existence of a Well Behaved Monotonic SCF.

Indeed, it is possible to find an intermediary between both. Let DWSSP
(G,t) and

DSSP
(G,t) denote the sets of Weak SSP domains compatible with the admissible pair

(G, t) and the set of all the SSP domains compatible with the admissible* pair

(G,βt(δ )), where βt(Bδ ) is the function that assigns the projection of t onto every

maximal path δ of G 5. We can then state the following proposition:

5This is the original definition of admissible pair of Chatterji, Sanver, and Sen (2013), which
we are here calling an admissible* pair. On their work, they define an admissible pair as a tree
graph and the set of projections of a specific node on every maximal path of that graph. We opted
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Proposition 5: Take any DSSP ∈ DSSP
(G,t), and any DWSSP ∈ DWSSP

(G,t) . Fix some

p ∈ A,q ∈ α(p) and let Dp,Dq ⊂ DWSSP be the subset of all orderings Pp
i and Pq

i

such that p and q are the top-ranked alternatives in Pp
i and Pq

i , respectively, as

defined in section 2. Then the domain D = DSSP ∪Dp ∪Dq satisfies the Minimal

Reversals Condition.

While we defer the proof to the appendix once more, we note that Proposition

5 corroborates our broader point on the Minimal Reversals Condition being

a holistic condition that cannot be expressed solely on terms of preferences

restrictions. Indeed, as shown by Proposition 5, any preference Pa
i that is

compatible with a Weak SSP domain can be a part of a domain that satisfies

the Condition, by choosing the appropriate set Da and a suitable SSP domain

to append it. The Condition is only violated when many of such preferences are

found on the same domain.

2.5 Conclusion

In this paper we have attempted to characterize (rich) domains of preferences that

admit Well Behaved and Monotonic social choice functions. These domains are

shown to be related other variants of single-peaked domains. Unlike traditional

variants of single-peaked domains, however, this new class of domains cannot

be fully described by a set of restrictions on individual preferences. Instead, the

characterization is more holistic and requires relating each preference to every

other in the domain.

to define it based on the node itself, instead of its projections, and gave the original definition a
slightly different name to avoid confusions.
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To reach this characterization, we developed a new methodology. We

translated the expression of Maskin Monotonicity to a property that links certain

features of the domain to features of the social choice function. This allows us

to work primarily with the social choice functions, which are objects easier to

manipulate than preference domains. Once the properties of the social choice

function are uncovered, we can translate them back as restrictions on the domain.

This is different from the approach adopted by Chatterji, Sanver, and Sen (2013).

Their method involves mapping the (even) N-agent case to a 2-agent case. With

only two agents, Unanimity implies that in every profile where the two agents

disagree there is a way to change the outcome of the SCF, by having a single

agent to change its vote to agree with the other. In other words, with only two

agents, every profile is either unanimous or pivotal (or both). This makes it much

easier to check if the more classic definition of MM (as opposed to the alternative

one we employed in our proofs) holds for each profile. In contrast, our approach

is more transparent, as we work directly with the properties of the existent social

choice functions, instead of relying on a two-player representation of them. We

believe that our approach, when adapted to express strategy-proofness (instead of

Monotonicity) as a set of joint restrictions on domains and SCFs, could also be

applied to solve the unresolved case of an odd number of players on that paper.

We conjecture that there is a connection between the number of possible

admissible pairs and the SCF. The more admissible pairs a domain has that satisfy

the Minimal Reversals Condition, the greater is the number of SCFs that will

be Well Behaved and monotonic on that domain. For example, for generalized

median voter rules, we believe that the phantom voters can only be placed on

alternatives such that there is an admissible pair where that alternative plays the
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role of t. This is expected, as more admissible pairs compatible with the domain

means that there are many reversals on that domain, which in turn implies that

there are less restrictions placed on the shape of the SCFs for that domain, via the

relation between the MD and C f sets. Moreover, the Lemmas in the appendix

reveal already some properties that the SCF must exhibit. For instance, any

Well Behaved Monotone SCF defined on such a domain must behave similarly

to a median rule in the sense that changing votes between alternatives that lie on

the same ”side” of the outcome (which, on a tree graph, it would correspond to

alternatives lying on the same subgraph) does not change the outcome of the SCF.

While the necessity part of our paper deviated substantially from Chatterji,

Sanver, and Sen (2013), the proof of sufficiency employed exactly the same SCF.

The expression of that SCF is convenient for the properties we wanted to check

on that section, but it could also be expressed as a particular version of a median

voter rule on a tree. Once more, given how single-peakedness and median rules

are related, this is unsurprising. In fact, all the additional properties of the SCFs

that were implied by Lemmas 1, 2, 3 and 7 are properties shared by median rules

on a tree.

Lastly, in this paper we also described a way to express the holistic restrictions

implied by the Minimal Reversals Condition in terms of a restriction on individual

preferences. We found that some of the restrictions implied by the Condition can

be expressed by a set of of properties of each preference relation, naming the class

of domains where these restrictions hold Weak Semi-Single-Peaked domains.

However, the restrictions implied by these domains are not sufficient to enforce

the Minimal Reversals Condition. We provided then a method to create domains

that are compatible with the Condition that involves checking restrictions only
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on the individual preferences, by combining some preferences that came from a

Weak Semi-Single-Peaked domain with preferences that satisfy the more stringent

requirements of Semi-Single-Peaked domains.

47



Chapter 3

Characterizing Well Behaved

Monotonic Social Choice Functions

3.1 Introduction

In this paper, we seek to characterize anonymous, unanimous, tops-only (hence-

forth referred collectively as Well Behaved) and Monotonic Social Choice

Functions for domains that satisfy a particular richness condition. In a previous

work (Ramos 2022), a complete characterization of the domains that can support

the existence of a Social Choice Function (SCF) exhibiting the aforementioned

properties was provided. This paper is a counterpart to that work, now providing

a characterization for the (Well Behaved and Monotonic) SCFs that exist on such

domains.

This problem is an expansion of the work done by Moulin (1980) on Single-

Peaked domains. In that paper, the author looks at the problem of characterizing

the SCFs that satisfy tops-onlyness, anonymity, efficiency and strategy-proofness
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on a Single-Peaked domain. Here, we are relaxing those hypothesis in a number

of ways. On the side of the SCF, we are relaxing efficiency for unanimity and

strategy-proofness for monotonicity 1. On the side of the domain, we are relaxing

the assumption of Single-Peakedness by instead assuming only that the domain

satisfies a particular richness condition, as well as the necessary conditions for the

existence of a Well Behaved and Monotonic SCF, as outlined in Chapter 2.

Our results are that the universe of possible SCFs satisfying our criteria does

not expand as we relax these assumptions, but rather, it contracts. For Single-

Peaked domains, any median rule retains the property of monotonicity, and they

are the only Well Behaved rules to exhibit that property in such domains 2. In

contrast, for domains that are not Single-Peaked, only a few of those median rules

still keep the property of Monotonicity. This exemplifies the nature of the trade-

off between flexibility of the SCF and the richness of the domain encapsulated by

Monotonicity, as seen in Chapter 2. Thus, by relaxing the assumption of Single-

Peaked domains, we limit the number of Well Behaved rules that keep the property

of being Monotonic. We show in this paper that the exact form which the median

rules must take depends intrinsically on how Single-Peakedness was relaxed.

The rest of the paper is organized as follows: Section 2 outlines the model

for our work, defining most concepts that will be used in our work, as well as the

notation. Section 3 contains the main result of the paper, the characterization

of the SCFs that have the desired properties. Section 4 concludes with some

applications of those results. All proofs are left for the Appendix.

1See Klaus and Bochet (2013) for a demonstration that strategy-proofness implies
monotonicity when preferences are strict

2This is a corolary of Proposition 2 of the previous chapter, as well as Theorem 2, proved in
this chapter
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3.2 A Preliminary Illustration

We want to illustrate the main ideas in this paper through an example. Consider

the following domain, composed of six alternatives, a, b, c, d, e, f , and with

individual preferences identified by numbers:

1 a > b > e > c > d > f 6 d > c > e > f > b > a

2 b > a > e > c > d > f 7 d > e > c > b > a > f

3 b > c > f > d > a > e 8 e > d > c > b > a > f

4 c > b > f > d > a > e 9 d > f > c > b > e > a

5 c > d > e > f > b > a 10 f > d > c > b > e > a

We can see easily that this is a Strong Path-Connected domain, with a forked

Connectivity Graph that has three maximal paths: a ≈ b ≈ c ≈ d ≈ e, a ≈ b ≈

c ≈ d ≈ f and e ≈ d ≈ f . Using this Connectivity Graph, we can also see that

the domain is not a Single-Peaked domain, but it is a Weak Semi-Single-Peaked

domain for either of the thresholds a, b, c. By following the steps outlined in

Chapter 2, we can also verify that this domain satisfies the Minimum Reversals

Condition, and the set of admissible thresholds is τD = {a,b,c}. By Theorem 1,

then, there is at least one Well Behaved and Monotonic SCF for this domain. We

seek now to further uncover some more properties for such functions.

One way to uncover many features of the Well Behaved and Monotonic

functions on that domain is to exploit the relationship between MD and C f sets

implied by Monotonicity, as seen in Appendix A1. Since we need only the domain

to characterize the MD sets, this allows us to have at least a partial characterization
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on what pairs cannot be on each C f set, which in turn, tells us sections where any

of the (Monotonic and Well Behaved) SCFs for that domain cannot change its

outcome. Thus, we once more look into the MD sets for this domain, this time

seeking which pairs do belong to those sets.

Strong Path-Connectedness gives us an easy start to this task. We know that if

two alternatives, x and y, are strongly connected, then the pairs (x,y),(y,x) belong

to the set Mz
D for each other alternative z on that domain. Thus, for instance, on

the set Ma
D we have the following pairs: (b,c), (c,b), (c,d), (d,c), (d,e), (e,d),

(d, f ), ( f ,d). This list is not exhaustive; there are more pairs that also belong to

the Ma
D set, like (c,e). However, for the purposes of characterizing the pairs that

cannot belong to the set Ca
f , this list is enough. The reason for this is as follows:

(b,c) not being on the set Ca
f implies that, when the outcome of the SCF is a,

no change of votes from alternative b to alternative c will ever alter the outcome

of the SCF. Similarly, the pair (c,d) not being on that set means that when the

outcome is a, we can also change votes from c to d without altering the outcome.

But then, essentially, this means that we could change a vote from b to d without

altering the outcome as well, if we first change it from b to c and then, since the

outcome is still a, from c to d. Even if the pair (b,d) is not on the set Ma
D, it is

enough that the pairs (b,c) and (c,d) are on that set to conclude that the pair (b,d)

must not be on the set Ca
f . In other words, if the path between any two alternatives

x,y does not contain alternative z, then (x,y),(y,x) /∈ Cz
f , even if we don’t have

(x,y),(y,x) ∈ Mz
D. When this is applied to an extreme node, like a, we are able to

conclude for any two alternatives x,y different from a, we have (x,y),(y,x) /∈Ca
f :

this means that no change of votes between any alternatives that are not a can

change the outcome from a to anything else; the only way the outcome can be
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changed from a to something else is if some voters change their votes from a to

some other alternative.

This logic holds for any of the other extreme alternatives, like f and e:

whenever these alternatives are selected, permutations of votes between other

alternatives will not impact the outcome. We can also apply the same logic for

interior alternatives, like c. Take any two alternatives that are on the same side of

c, like a and b or f and e, but not b and d. Strong Path-Connectedness will imply

that these pairs, like (e, f ) and ( f ,e), do not belong to Cc
f . Hence, once more, no

permutation between votes for these alternatives will change the outcome of the

SCF from c to something else. This is a property that is shared by median rules

with phantoms: the outcome of these rules is always given by the alternative that

is in a certain position in a profile. Any permutation of votes does not change the

outcome of these rules, unless the permutation also changes which alternative is

in a certain position (like the median) for that profile.

However, not every median rule will be compatible with our domain. Once

more, look at the set Md
D. We check that besides the pairs implied by Strong

Path-Connectedness, the following pairs belong to this set: (a,e), (b,e), (b, f )

and (c, f ). Besides the direct implications of this to the set Cd
f , we can apply

the same reasoning outlined above to draw more conclusions about this set. For

instance, even though (a, f ) does not belong to the set Md
D, this pair cannot

belong to Cd
f either, since the pairs (a,b) and (b, f ) belong to Md

D. Hence, in

this domain, the outcome of any Monotonic median rule cannot change from d

when there is a change of votes from a, b or c to either e or f . This excludes a

few possible median rules. For instance, let f be the median rule for two players

that has one phantom at node d. Then, the outcome of the profile where the
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first voter has preference 1 and the second voter has preference 8, f (1,8), is d,

while f (8,8) = e. This would violate Monotonicity, as alternative d maintains its

position when going from preference 1 to preference 8, and hence, such SCF is

not compatible with the domain above. The key to understand which SCFs are

compatible lies in Proposition 3, as well as on the ideas presented on section 2.2:

since this domain is not Single-Peaked, we must have that every SCF (that is Well

Behaved and Monotonic) on this domain must exhibit a particular form of Veto

Power. Specifically, alternative d must be vetoed by alternatives a, b or c. Only

when this happens we can be sure that any time that alternative d is the outcome

there will be no voters able to change their votes from a, b or c to e or f (which

could cause the outcome of the SCF to change from d to something else). To

achieve this, we cannot have any phantoms to be placed on alternatives d, e or

f , since this would prevent alternative d from being vetoed by alternatives a, b

and c. The only nodes where phantoms can be placed end up being the nodes in

the set τD: a, b and c. Hence, we can conclude that the SCFs that exhibit the

desired properties on our domain must be median rules where the phantoms are

only placed on the nodes of the set τD. As it will be seen in Theorem 2, these are

not features exclusive to the domain we selected, but rather to all domains that are

MD-Connected and satisfy the Minimum Reversals Condition.

3.3 Results

We state now our main result:
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Theorem 2: Let D be an MD-Connected domain that satisfies the Minimum

Reversals Condition and τD ∈ A its associated set of eligible thresholds. Then, the

following two statements are equivalent:

• The SCF f is Well Behaved and Monotonic on D .

• The SCF f is a median function with phantoms on the Connectivity Graph

of D , and for all x /∈ τD we have fx = 0.

The proof is left to the Appendix. This result establishes formally a link that

was suggested in the previous Chapter between median rules and the domains

that satisfy the Minimal Reversals Condition. It is also useful to contrast it with

the pioneering results of Moulin (1980) for Single Peaked Domains. When the

domain is Single-Peaked, any median rule will be Monotonic when defined on

that domain, and similarly, any Well Behaved and Monotonic rule defined on

such domain will be a median rule of some variety. As such, it is no surprise that

when we relax some of the restrictions of Single-Peaked domains (as long as the

domain is still MD-Connected), the only Well Behaved and Monotonic rules are

still medians. However, not all median rules will be Monotonic on such domains.

As we relax some of the restrictions, the only rules that still preserve that property

are the ones where the phantom voters are placed in particular alternatives.

3.4 Applications

Some applications of the main result.
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3.4.1 More Comprehensive Necessary Conditions for Strategy-

Proofness

An important implication of these results is that, for domains with only strict pref-

erences, as strategy-proofness implies Monotonicity (Klaus and Bochet (2013)),

then for Semi-Single-Peaked domains that are also MD-Connected the only

Well Behaved and Strategy-Proof SCF are also median rules following the same

restrictions on the placement of phantom voters. Since MD-Connectedness

is itself a more general restriction than Strong Path-Connectedness, this result

complements the findings of Chatterji, Sanver, and Sen (2013) for Semi-Single-

Peaked domains and strategy-proofness. In particular, it allows us to provide

necessary conditions for strategy-proofness that work both for odd and even

number of players.

Proposition 6: Let D be a Strong Path-Connected domain, with Connectivity

Graph given by G. If there is a t ∈ A such that D satisfies the Minimum Reversals

Condition for the admissible pair (G, t), but no t ∈ A such that D is a Semi-Single-

Peaked domain with respect to (G, t), then every median rule that is Monotonic in

D is not Strategy-Proof.

Corollary: Semi-Single-Peakedness is a necessary condition for a Strong Path-

Connected domain to exhibit any SCF that is Well Behaved and Strategy Proof.

The proof of Proposition 6 is left for the Appendix. As for the Corollary,
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it comes from a series of other results. First, assume, by way of contradiction,

that there exist a domain D that has only strict preferences, is Strong Path-

Connected, not Semi-Single-Peaked and on which you can define a Well Behaved

and strategy-proof rule f . First, because you have only strict preferences, due to

Klaus and Bochet (2013), we know that strategy-proofness implies Monotonicity,

so f is also Monotonic. Secondly, as Strong Path-Connectedness implies MD-

Connectedness, we can apply Theorem 1 and conclude that D satisfies the

Minimum Reversals Condition. Then, we can apply Theorem 2 and conclude

that f is a median rule with phantoms. However, that contradicts Proposition

6, as there is no median rule with phantoms that is strategy-proof on a domain

that is not Semi-Single-Peaked. Hence, Semi-Single-Peakedness is a necessary

condition for strategy-proofness.

The notable feature of such result is that it no longer requires the number

of players to be even, something that was necessary for the original result in

Chatterji, Sanver, and Sen (2013). We are able to improve on their results thanks

to the additional information pertaining the characterization of the SCFs on the

domain. With this characterization, we are able to construct a particular profile

where there is an opportunity for manipulation, regardless of the number of

players.

3.4.2 Implications for Single-Peaked Domains

Given the relevance of Single-Peaked domains for the literature, we discuss now

in detail the implications of Theorem 2 for such domains. First, we have that

any median rule is Monotonic on a Single-Peaked domain. This is a direct
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consequence from the fact that the set of eligible thresholds for a Single-Peaked

domain is equal to the entire set of alternatives, τD = A, but such conclusion could

also be reached from the classic result of Moulin (1980) on strategy-proofness

and the result from Klaus and Bochet (2013) that strategy-proofness (under strict

preferences) implies Monotonicity.

The novelty comes when we strengthen the assumptions on the domain. If in

addition to Single-Peakedness we also assume that the domain is MD-Connected,

then, by Theorem 2, median rules are the only kinds of Well Behaved rules that

are also Monotonic on such domains, giving us a version of Moulin’s result for

Monotonicity instead of strategy-proofness. Moreover, if we further strengthen

the richness condition to Strong Path-Connectedness, then, by Propositions 2

and 3, we have that Single-Peaked domains are the only domains where every

median rule is Monotonic. Under that richness condition, any deviation from

Single-Peakedness will result in Monotonicity requiring particular alternatives to

be vetoed by other alternatives, which in turn will exclude certain median rules

from the universe of Monotonic, Well Behaved SCFs for that domain.

3.5 Conclusion

In this paper, we characterized the set of Monotonic and Well Behaved Social

Choice Functions on MD-Connected domains. These functions must all be

median rules with phantoms. Moreover, the placement of the phantoms must

coincide with the set of admissible thresholds of a domain that satisfies the

Minimum Reversals Condition (and all domains that possess a function with such

characteristics satisfy it). Lastly, we showed that any median rule with phantoms
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satisfying this condition will be Monotonic on Minimum Reversal domains. These

results are achieved by exploiting the connections between breaches and veto

power, as well as building up on many properties of the SCF uncovered in the

previous chapter.

This result extend the findings of Moulin (1980) on strategy-proofness on

Single-Peaked domains to also include Monotonicity. We also go one step further

and show that Single-Peaked domains are the only class of domains where every

median rule with phantoms is Monotonic, under the assumption of Strong Path-

Connectedness. These results build upon the similarity between Monotonicity and

strategy-proofness when only strict preferences are considered.

Lastly, we are also able to exploit this connection between the two aforemen-

tioned properties to obtain another result on the literature of strategy-proofness.

As Strong Path-Connectedness implies MD-Connectedness and strategy-proofness

implies Monotonicity, we are able to invoke the results of Theorem 2 to show

that Semi-Single-Peakedness is a necessary condition for a domain to admit a

Well Behaved and strategy-proof SCF, regardless of the number of agents. This

expands the earlier results of Chatterji, Sanver, and Sen (2013), which covered

only the case of an even number of agents.
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Chapter 4

Compellingness in Nash

Implementation

4.1 Introduction

This last Chapter presents a model that is independent from the framework devel-

oped in the previous three Chapters. It is a stand-alone essay on implementation

theory, and it was co-authored with Shurojit Chatterji and Takashi Kunimoto.

The theory of implementation attempts to answer two questions. First, can one

design a mechanism that successfully structures the interactions of agents in such a

way that, in each state of the world, they always choose actions which result in the

socially desirable outcomes for that state? Second, if agents possess information

about the state and interact through a given mechanism, what properties do

the resulting outcomes, viewed as a map from states to outcomes (and called

social choice function (henceforth, SCFs), possess? In answering these, the
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consequences of a given mechanism are predicted through the application of game

theoretic solution concepts.

In this paper we adopt Nash equilibrium as a solution concept, consider

complete information environments with two agents, and ask if a SCF is

implementable, i.e., when we can design a mechanism in which “every” Nash

equilibrium outcome induces outcomes consistent with the SCF. Although the

literature claims to care about all equilibria, it often ignores mixed strategy

equilibria and only focuses on pure strategy equilibria. Jackson (1992) provides

the most forceful argument for why the omission of mixed strategy equilibria

brings about a serious consequence. In his Example 4, Jackson (1992) constructs

a two-person environment and a SCF such that (i) there is a finite mechanism

that pure Nash implements the SCF; and (ii) every finite pure Nash implementing

mechanism always has a mixed strategy equilibrium that gives a lottery that

is preferred by both agents to the outcome of the SCF. Thus, if we insist on

using finite mechanisms, which is to be anticipated in an environment with finite

number of alternatives and agents, we must question why agents would limit

themselves to playing only pure strategies, particularly when there is a mixed

strategy equilibrium that would be strictly preferred by both of them than any

pure strategy equilibrium. We call such a mixed strategy equilibrium compelling.

We consider a two-person finite environment with respect to an SCF on which

we impose Condition P+M, which delineates a set of conditions where it is

always possible to construct a finite mechanism which pure Nash implements

the SCF without compelling mixed strategy equilibria. We call such a notion

of implementation compelling implementation. Importantly, compelling imple-

mentation might admit other mixed equilibria which result in outcomes that are
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not consistent with the those induced by the SCF. However, since such a mixed

strategy equilibrium is not compelling, at least one agent will be worse off with

any pure strategy equilibrium outcome. Hence, compelling implementation is

considered a compromise between pure Nash implementation where only pure

strategy equilibria considered and mixed Nash implementation where all mixed

strategy equilibria are fully considered.

Our solution has several notable features: In addition to the information

about the agents’ ordinal strict preferences, what is required is the information

regarding the smallest difference in cardinal utilities between any two distinct

alternatives. We can think of such information as the smallest unit in which the

agents’ utilities are measured. As long as that unit of measure is positive, we

can construct a mechanism that compellingly implement the SCF. In this sense,

while our compelling implementation is not completely ordinal, it can be made

ordinal as much as it can possibly be. Our mechanism is finite so that it does

not use the integer games which are often considered a questionable devise in the

literature.1 The use of transfers can completely be dispensable, which exhibits a

stark contrast with Chen, Kunimoto, Sun, and Xiong (2022) who establish mixed

Nash implementation by a finite mechanism in environments with transfers and

lotteries.

We organize the rest of the paper as follows: Section 2 presents the environ-

ment, notation, mechanism and solution concepts, as well as a small discussion

on Maskin Monotonicity. Section 3 revisits Example 4 of Jackson (1992), which

motivates our inquiry. Section 4 slightly modifies the environment in Section

1In the integer game, each agent announces some integer and the person who announces the
highest integer gets to name his favorite outcome.
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3 and presents an illustration of the main result. Section 5 contains the main

result of the paper together with a specific family of mechanisms that can achieve

compelling implementation under Condition P+M. Section 6 shows that part of

Condition P+M is necessary for pure Nash Implementation and the other part of

Condition P+M is indispensable for compelling implementation in the sense that

our mechanism fails to achieve compelling implementation when the other part

of Condition P+M are not satisfied. Section 7 compares our mechanism with the

canonical mechanism of Moore and Repullo (1990), showing that there is a class

of environments in which the canonical mechanism of Morre and Repullo (1990)

admits a compelling mixed strategy equilibrium. Lastly, section 8 concludes.

4.2 Preliminaries

Throughout the paper, we consider an environment in which there are only two

agents. Let Θ be the finite set of states. It is assumed that the underlying state

θ ∈ Θ is commonly certain among the agents. This is the complete information

assumption. Let A denote the set of social alternatives, which are assumed to be

independent of the information state. We shall assume that A is finite, and denote

by ∆(A) the set of probability distributions over A. Associated with each state θ is

a preference profile ⪰θ= (⪰θ
i )i∈N where ⪰θ

i is agent i’s preference relation over

A at θ . We write a ⪰θ
i a

′
when agent i weakly prefers a to a

′
in state θ . We also

write a ≻θ
i a

′
if agent i strictly prefers a to a

′
in state θ and a ∼θ

i a
′

if agent i is

indifferent between a and a
′
in state θ . We can now define an environment as E =(

{1,2},A,Θ,(⪰θ
i )i∈{1,2},θ∈Θ

)
, which is implicitly understood to be commonly

certain among the agents. Throughout the paper, we assume that the environment
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E admits strictly preferences only, that is, for any i ∈ N, θ ∈ Θ, and a,a
′ ∈ A, it

follows that either a ≻θ
i a

′
or a

′ ≻θ
i a.

We assume that any preference relation ⪰θ
i is representable by a von Neumann-

Morgenstern utility function ui(·,θ) : ∆(A)→R. We say that ui(·,θ) is consistent

with ⪰θ
i if, for any a,a

′ ∈ A, ui(a,θ) ≥ ui(a
′
,θ) ⇔ a ⪰θ

i a
′
. We denote by U θ

i

the set of all possible cardinal representations ui(·,θ) that is consistent with ⪰θ
i .

We formally define U θ
i as follows:

U θ
i =

ui(·,θ) ∈ [0,1]|A|

∣∣∣∣∣∣∣
ui(·,θ) is consistent with ⪰θ

i ; mina∈A ui(a,θ) = 0;

and maxa∈A ui(a,θ) = 1

 ,

where |A| denotes the cardinality of A. Let U θ ≡ ×i∈NU θ
i and U ≡ ×θ∈ΘU θ .

We denote any subset of U θ
i by Û θ

i and any subset of U θ by Û θ , respectively

The planner’s objective is specified by a social choice function (henceforth,

SCF) f : Θ → ∆(A) a social choice function. Although many papers deal with

multi-valued social choice correspondences in the literature of Nash implementa-

tion, we focus only on single-valued SCFs.

4.2.1 Mechanism and Solution Concepts

Let Γ = ((Mi)i∈{1,2},g) be a two-person finite mechanism where Mi is a nonempty

finite set of messages available to agent i; g : M → A (where M ≡×i∈NMi) is the

outcome function. At each state θ ∈ Θ and profile of representations u ∈ U ,

the environment and the mechanism together constitute a game with complete

information which we denote by Γ(θ ,u). By Γ(θ) we mean the game in which

the preference profile (⪰θ
i )i∈N is commonly certain among the agents so that any
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representation u ∈ U is admissible. Note that the restriction of Mi to a finite set

rules out the use of integer games (See, for example, Maskin (1999)).

Let σi ∈ ∆(Mi) be a mixed strategy of agent i in the game Γ(θ ,u). A

strategy profile σ = (σ1,σ2) ∈ ∆(M1)× ∆(M2) is said to be a mixed-strategy

Nash equilibrium of the game Γ(θ ,u) if, for all agents i ∈ {1,2} and all messages

mi ∈ supp(σi) and m′
i ∈ Mi, we have

∑
m j∈M j

σ j(m j)ui(g(mi,m j),θ)≥ ∑
m j∈M j

σ j(m j)ui(g(m′
i,m j),θ).

A pure-strategy Nash equilibrium is a mixed-strategy Nash equilibrium σ such

that each agent i’s mixed-strategy σi assigns probability one to some mi ∈ Mi. Let

NE(Γ(θ ,u)) denote the set of mixed-strategy Nash equilibria of the game Γ(θ ,u)

and pureNE(Γ(θ)) denote the set of pure strategy Nash equilibria of the game

Γ(θ). As far as we are only concerned with pure strategy equilibria, we only need

ordinal preferences so that we can write pureNE(Γ(θ)). We also define

NE(Γ(θ)) =
⋃

u∈U θ

NE(Γ(θ ,u))

as the set of all Nash equilibria of the class of games Γ(θ ,u) across all possible

representation u∈U θ . Since it does not depend upon cardinal utilities, NE(Γ(θ))

is defined only in terms of ordinal preferences. We introduce the notion of pure

strategy Nash implementation.

Definition 1 An SCF f is pure Nash implementable if there exists a finite

mechanism Γ = (M,g) such that for every state θ ∈ Θ, (i) pureNE(Γ(θ)) ̸= /0;

and (ii) m ∈ pureNE(Γ(θ))⇒ g(m) = f (θ).
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For each θ ∈ Θ, define

supp(NE(Γ(θ)))=
{

m ∈ M| ∃u ∈ U θ such that ∃σ ∈ NE(Γ(θ ,u)) with σ(m)> 0
}

as the set of message profiles which can be played with positive probability in a

Nash equilibrium of the game Γ(θ ,u) associated with some u ∈ U θ . We next

introduce a notion of mixed strategy Nash implementation.

Definition 2 An SCF f is mixed Nash implementable if there exists a finite

mechanism Γ = (M,g) such that for every state θ ∈ Θ, (i) pureNE(Γ(θ)) ̸= /0;

and (ii) m ∈ supp(NE(Γ(θ)))⇒ g(m) = f (θ).

This definition is proposed by Maskin (1999) but it is different in that Maskin

(1999) allow for infinite mechanisms. The notion of mixed Nash implementation

is stronger than that of pure Nash implementation because the former guarantees

that every message profile that can be played with positive probability in a Nash

equilibrium results in the outcome specified by the SCF. Since it is extremely

demanding to take care of all mixed strategy equilibria, we propose a notion of

compellingness, which singles out the class of mixed equilibria on which we give

a serious consideration.

Definition 3 Fix θ ∈Θ and u∈U θ . We say that σ is a compelling mixed strategy

equilibrium of the game Γ(θ ,u) if, for any m ∈ pureNE(Γ(θ)) and i ∈ {1,2},

∑
m̃∈M

σ(m̃)ui(g(m̃),θ)≥ ui(g(m),θ),

with at least one strict inequality for some i ∈ {1,2}.
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For each θ ∈ Θ, we denote by Û θ an arbitrary subset of U θ . We write

Û ≡ ×θ∈ΘÛ θ . We now introduce what we call compelling implementation

which takes Û as the set of admissible cardinal utilities explicitly. The basic tenet

underlying our notion of Nash implementation is that we ignore mixed strategy

equilibria which are “not” compelling, while we take compelling mixed strategy

equilibria seriously.

Definition 4 Let Û ⊆ U . An SCF f is compellingly implementable (C-

implementable) with respect to Û if there exists a finite mechanism Γ = (M,g)

such that for every state θ ∈ Θ, (i) pureNE(Γ(θ)) ̸= /0; (ii) m ∈ pureNE(Γ(θ))⇒

g(m)= f (θ); and (iii) for any u∈ Û θ , the game Γ(θ ,u) has no compelling mixed

strategy equilibria.

Our notion of compelling implementation strengthens the definition of pure

Nash implementation with the following additional requirement: there be no

compelling mixed strategy equilibria within the class of games Γ(θ ,u) across

all representation u ∈ Û θ . On the other hand, our notion of compelling im-

plementation weakens the definition of mixed Nash implementation by allowing

the following possibilities: (i) there might exist a state θ ∈ Θ and a message

profile m ∈ supp(NE(Γ(θ)) such that g(m) ̸= f (θ) and (ii) there might exist

θ ∈ Θ, u ∈ U θ\Û θ , and σ ∈ NE(Γ(θ ,u)) such that σ is compelling. The

first possibility means that our implementing mechanism might admit a bad

Nash equilibrium that is not compelling. The second possibility means that our

implementing mechanism might admit a compelling equilibrium if we allow a

possible representation u to be outside of Û .
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4.2.2 Maskin Monotonicity

We now restate the definition of Maskin monotonicity that Maskin (1999)

proposes for Nash implementation.

Definition 5 An SCF f satisfies Maskin monotonicity if, for every pair of states

θ̃ and θ with f (θ̃) ̸= f (θ), some agent i ∈ I and some allocation a ∈ A exist

such that

f (θ̃)⪰θ̃
i a and a ≻θ

i f (θ̃). (4.1)

To show that Maskin monotonicity a necessary condition for compelling

implementation, suppose that the SCF f is C-implementable by a mechanism

Γ = (M,g). When θ̃ is the true state, there exists a pure-strategy Nash equilibrium

m ∈ M in Γ(θ̃) which induces f (θ̃). If f (θ̃) ̸= f (θ) and θ is the true state, then m

cannot be a Nash equilibrium, i.e., there exists some agent i who has a profitable

deviation. Suppose that the deviation induces outcome a, i.e., agent i strictly

prefers a to f (θ̃) at state θ . Since m is a Nash equilibrium at state θ̃ , such a

deviation cannot be profitable in state θ̃ ; that is, agent i weakly prefers f (θ̃) to a

at state θ̃ . In other words, a belongs to agent i’s lower contour set at f (θ̃) of state

θ̃ , whereas it belongs to the strict upper-contour set at f (θ̃) of state θ . Therefore,

Maskin monotonicity is a necessary condition for compelling implementation; in

fact, it is a necessary condition even for pure Nash implementation.
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4.3 Example 4 of Jackson (1992)

We start from describing Example 4 of Jackson (1992) which motivates our

inquiry immensely. Consider the environment with two agents. Suppose that

there are four alternatives A = {a,b,c,d} and two states Θ = {θ ,θ ′}. Suppose

that agent 1 has the state-independent preference a ≻1 b ≻1 c ∼1 d and agent 2

has the preference a ≻θ
2 b ≻θ

2 d ≻θ
2 c at state θ and preference b ≻θ ′

2 a ≻θ ′
2 c ∼θ ′

2 d

at state θ ′. Consider the SCF f such that f (θ) = a and f (θ ′) = c.

First, Jackson (1992) constructs a finite mechanism Γ = (M,g) (described in

the table below) that implements the SCF f in pure-strategy Nash equilibria:

g(m) Agent 2

m1
2 m2

2 m3
2

m1
1 c d d

Agent 1 m2
1 d a b

m3
1 d b a

There are two pure strategy Nash equilibria, (m2
1,m

2
2) and (m3

1,m
3
2), in the

game Γ(θ), both of which result in outcome a. In the game Γ(θ
′
), the unique

pure-strategy Nash equilibrium is (m1
1,m

1
2), which results in outcome c. Thus,

the SCF f is implementable by the above finite mechanism in pure-strategy Nash

equilibria. Due to the necessity of Maskin monotonicity for Nash implementation,

we know that the SCF f satisfies Maskin monotonicity. However, in the game

Γ(θ
′
), there is a mixed-strategy Nash equilibrium, where each agent i plays m2

i
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and m3
i with equal probability, which results in outcomes a and b, each with

probability 1/2. Both agents strictly prefer any outcome of the mixed-strategy

equilibrium to the outcome of the pure-strategy equilibrium. Thus, according to

our terminology, this mixed strategy Nash equilibrium is compelling. Note that

there is a conflict of interests between the two agents over a and b in state θ
′
,

i.e., while agent 1 prefers a to b, agent 2 prefers b to a. This conflict of interests

allows us to have the unique pure strategy Nash equilibrium in the game Γ(θ
′
),

which results in outcome c. At the same time, this logic for the uniqueness of

the pure-strategy equilibrium is extremely dubious because outcomes a and b are

strictly better for both agents than outcome c.

Jackson (1992) further shows that his argument applies to any finite imple-

menting mechanism. That is, for any finite mechanism which implements the

SCF f in pure-strategy Nash equilibria, there must also exist a compelling mixed-

strategy Nash equilibrium such that at state θ ′, the equilibrium outcome differs

from c with positive probability. Therefore, the SCF f is “not” C-implementable

with respect to U , which is the set of “all” representations. It thus follows that

the identified compelling mixed strategy equilibrium persists independently of any

cardinal representation.

4.4 Illustration of the Main Result

One crucial feature Jackson’s Example 4 has is that its argument seems to rely

heavily on the extreme inefficiency of the SCF, i.e., the SCF f assigns the common

worst outcome in state θ
′
.2 To investigate how robust Jackson’s argument is, we

2Jackson (1992, p.770) is well aware of this point.

69



only make the following modification: both agents now strictly prefer c to d in

state θ
′
, i.e., c ≻θ

′

i d for each i = 1,2. Recall that this modification is consistent

with our setup, as the environment we consider in this paper only admits strict

preferences.

We summarize the basic setup. Agent 1 has the state-independent preference

a ≻1 b ≻1 c ≻1 d and agent 2 has the preference a ≻θ
2 b ≻θ

2 d ≻θ
2 c at state θ

and preference b ≻θ ′
2 a ≻θ ′

2 c ≻θ ′
2 d at state θ ′. Consider the same SCF f such

that f (θ) = a and f (θ ′) = c. This way the SCF never assigns the worst outcome

for any agent in either state (a feature that will also be implied by our sufficient

condition).

With this modification, we are able to construct a mechanism that not only

implements the SCF in pure-strategy Nash equilibrium, while we guarantee that

all mixed-strategy equilibria of the constructed mechanism give each agent the

expected payoff arbitrarily close to that of d, which is worse than that of c, the

outcome induced by the SCF f at state θ ′. Hence, we essentially overturn the

implication of Jackson’s Example 4 by assuming that there is a uniform bound for

the utility difference.

For each integer k ≥ 2, we define Γk = (Mk,gk) as a mechanism with the

following properties: (i) for each i ∈ N, Mk
i = {0,1, . . . ,k} and (ii) the outcome

function gk : Mk → A is given by the following rules: for each m ∈ Mk,

• If m = (k,k), then gk(m) = c;

• If there exists an integer h with 0 ≤ h ≤ k − 1 such that m = (h,h), then

gk(m) = a;

• If there exists an integer h with 0 ≤ h ≤ k − 1 such that m = (h,(h +

1 mod k)), then gk(m) = b; and
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• Otherwise, gk(m) = d.

We illustrate this mechanism as follows:

gk(m) Agent 2

k k−1 k−2 k−3 · · · 3 2 1 0

k c d d d · · · d d d d

k−1 d a d d · · · d d d b

k−2 d b a d · · · d d d d

k−3 d d b a · · · d d d d

Agent 1
...

...
...

...
... . . . ...

...
...

...

3 d d d d · · · a d d d

2 d d d d · · · b a d d

1 d d d d · · · d b a d

0 d d d d · · · d d b a

When k = 2, our mechanism is reduced to the one introduced by Jackson

(1992) where we set m1
i = 2;m2

i = 1; and m3
i = 0 for each i ∈ {1,2}.

g(m) Agent 2

2 1 0

2 c d d

Agent 1 1 d a b

0 d b a

For each θ ∈ Θ, i ∈ {1,2}, and ε > 0, we define U θ ,ε
i as a subset of U θ

i as
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follows:

U θ ,ε
i =

{
ui ∈ U θ

i

∣∣∣ |ui(a,θ)−ui(a
′
,θ)| ≥ ε, ∀a ∈ A,∀a

′
∈ A\{a}, ∀θ ∈ Θ

}
.

Let U θ ,ε ≡×i∈NU θ ,ε
i and U ε ≡×θ∈ΘU θ ,ε . We observe that U ε possesses the

following monotonicity:

ε > ε
′
> 0 ⇒ U ε ⊊ U ε

′
⊆ U ⊆ U 0.

Loosely speaking, if we choose ε > 0 small enough, we can approximate U by

U ε to an arbitrary degree. We are now ready state the main result of this section.

Proposition 1 For any ε > 0, there exists K ∈ N large enough such that the SCF

f is C-implementable with respect to U ε by the mechanism ΓK .

Proof: The proof is completed by a series of lemmas. For the moment, we

fix k in the proof and we ignore the dependence of the mechanism on k. The

following lemma is our key result characterizing the set of Nash equilibria of the

mechanism Γk in state θ
′
.

Lemma 1 The mechanism Γk implements the SCF in pure-strategy Nash Equilib-

rium.

Proof: The message profile (1,1) is a Nash equilibrium of the game Γk(θ), as

it yields a which is their most preferred outcome for both agents so that no agent

can find a profitable deviation. We claim that a is the unique Nash equilibrium

outcome of the game Γk(θ). Let m be a message profile such that g(m) ̸= a. We

will show that m is “not” a Nash Equilibrium in the game Γk(θ):

72



• If g(m) = b, there exists an integer h with 0 ≤ h ≤ k − 1 such that m =

(h,(h+ 1 mod k)). Then agent 1 has an incentive to send a message h+

1 mod k so that outcome a is induced.

• If g(m) = c, then m = (k,k). Then, agent 2 has an incentive to send any

message other than k so that outcome d is induced, as he strictly prefers

outcome d to outcome c at state θ .

• If g(m) = d, then we have m = (m1,m2) where m1 ̸= m2. Then, agent 1 has

an incentive to deviate from m1 to m2 so that outcome a is induced.

We next claim that (k,k) is a Nash Equilibrium of the game Γk(θ
′
) because

any unilateral deviation from (k,k) yields d, which is inferior to c induced by

(k,k) for both agents. Moreover, no other outcome can be a Nash Equilibrium

in this game: every message profile m = (m1,m2) where m2 < k and g(m) ̸= a

has a profitable deviation for player 1 at m′
1 = m2, while every message profile

m = (m1,m2) where m1 < k and g(m) ̸= b has a profitable deviation for player 2 at

m′
2 = m1+1 mod k. Since g(m) = a implies m1 < k and g(m) = b implies m2 < k,

we have that there is no possible Nash Equilibrium with either m1 < k or m2 < k.

Thus, the only possible Nash Equilibrium in pure strategies for this game is (k,k).

■

Lemma 2 For each i ∈ {1,2}, let σi = (σi(0),σi(1), ...,σi(k)) denote agent i’s

strategy and for each x ∈ {0,1, . . . ,k}, let σi(x) denote the probability that agent

i chooses x. If σ = (σ1,σ2) is a Nash equilibrium in the game Γk(θ
′
), then,

for each i ∈ {1,2}, there is a number pi ∈ [0,1] such that σi(x) = pi/k for each

x ∈ {0, . . . ,k−1}. Moreover, p1 = 0 if and only if p2 = 0.
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Proof: Recall that we set ui(d;θ
′
) = 0 for each ui ∈U θ

′

i and i ∈ {1,2}. Let σ

be a Nash equilibrium of the game Γk(θ
′
). If σi(k) = 1 for each i ∈ {1,2}, such pi

in the lemma is guaranteed to exist by setting pi = 0. Thus, we assume that there

exists i ∈ {1,2} for whom σi(k) < 1. We divide the proof into a series of steps,

whose proofs will be found in the appendix:

Step 1a: If there exists x ∈ {0, . . . ,k−1} such that σ1(x)> 0, then σ2(x)> 0.

Step 1b: If there exists x ∈ {1, . . . ,k−1} such that σ2(x)> 0, then σ1(x−1)> 0.

Moreover, if σ2(0)> 0, then σ1(k−1)> 0.

Step 1c: If there exist i ∈ {1,2} and x
′ ∈ {0, . . . ,k−1} for whom σi(x

′
)> 0, then

σ1(x)> 0 and σ2(x)> 0 for all x ∈ {0, . . . ,k−1}.

Step 2: If there exist i ∈ {1,2} and x,x
′ ∈ {0, . . . ,k− 1} such that σi(x) > 0 and

σi(x
′
)> 0, then σi(x) = σi(x

′
).

It follows from both Steps 2 and 1c that σi(x) = σi(x
′
) for every x,x

′ ∈

{0, . . . ,k−1} and i ∈ {1,2}. Thus, we can set pi = ∑
k
x=1 σi(x). Since we assume

σi(k)< 1 for each i ∈ {1,2}, we have pi > 0. This completes the proof of Lemma

2. ■

As we can easily see in the proof of Lemma 1, there are no (compelling)

mixed strategy Nash equilibria of the game Γk(θ) because, in state θ , the unique

Nash equilibrium outcome is a, which is the best outcome for both agents. It thus
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remains to prove that there exists no compelling mixed strategy equilibria in the

game Γk(θ
′
).

If k ≥ 3, we let σ k be a nontrivial mixed-strategy Nash equilibrium in the game

Γk(θ
′
). Then, the resulting outcome distribution induced by σ k is given by

g◦σ
k =



c w.p. (1− p1)(1− p2)

a w.p. (p1 p2)/k

b w.p. (p1 p2)/k

d w.p. ((k−2p1 p2)/k)− ((1− p1)(1− p2)),

where p1, p2 ∈ (0,1] and pi = ∑
k
x=1 σi(x) for each i ∈ {1,2}. Recall the following

pieces of notations:

U θ
′

1 =
{

u1(·;θ
′
) ∈ [0,1]A

∣∣ 1 = u1(a;θ
′
)> u1(b;θ

′
)> u1(c;θ

′
)> u1(d;θ

′
) = 0

}
;

U θ
′

2 =
{

u2(·;θ
′
) ∈ [0,1]A

∣∣ 1 = u2(b;θ
′
)> u2(a;θ

′
)> u2(c;θ

′
)> u2(d;θ

′
) = 0

}
.

Let U θ
′
≡ U θ

′

1 ×U θ
′

2 . For each ε ∈ (0,1), we have

U θ
′
,ε

1 =
{

u1(·;θ
′
) ∈ U θ

′

1
∣∣ u1(c;θ

′
)≥ ε

}
;

U θ
′
,ε

2 =
{

u2(·;θ
′
) ∈Uθ

′

2
∣∣ u2(c;θ

′
)≥ ε

}
.

Similarly, let U θ
′
,ε ≡ U θ

′
,ε

1 ×U θ
′
,ε

2 .

By the lemma below, we show that for each ε > 0, there exists K ∈ N large

enough so that, for any u ∈ U θ
′
,ε , the game ΓK(θ

′
,u) has no compelling mixed

strategy equilibria.
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Lemma 3 For each ε > 0, there exists an integer K ∈ N large enough so that for

any k ≥ K, i ∈ {1,2}, and (u1(·,θ
′
),u2(·;θ

′
)) ∈ U θ

′
,ε ,

Ui(σ
k;θ

′
)≤ ui(c;θ

′
),

where Ui(σ
k;θ

′
) = ∑

k
x=0 σ k

1 (x)∑
k
x′=0

σ k
2 (x

′
)ui(g(x,x

′
);θ

′
).

Proof: Fix ε > 0 and i ∈ {1,2}. We compute

Ui(σ
k;θ

′
) =

p1 p2

k
[ui(a;θ

′
)+ui(b;θ

′
)]+(1− p1)(1− p2)ui(c;θ

′
).

For each (p1, p2) ∈ [0,1]2, we define

k(p1, p2) =
ui(a;θ ′)+ui(b;θ ′)

ui(c;θ ′)

[
1
p1 +

1
p2 −1

]−1

.

In the rest of the proof, we make use of the following properties of k(p1, p2):

• k(·, ·) is strictly increasing in both arguments over [0,1]2.

• k(p1
h, p2

h) converges to zero no matter how the sequence {(p1
h, p2

h)}∞
h=1

approaches (0,0). Thus, k(0,0)≡ lim(p1,p2)→(0,0) k(p1, p2) = 0.

• k(1,1) = [ui(a;θ ′)+ui(b;θ ′)]/ui(c;θ ′) = max(p1,p2)∈[0,1]2 k(p1, p2).

• We can conveniently rewrite k(p1, p2) as

k(p1, p2) =
ui(a;θ ′)+ui(b;θ ′)

ui(c;θ ′)

p1 p2

[1− (1− p1)(1− p2)]
.

We set K = min{k ∈N|k ≥ 2/ε}. As 2/ε ≥ [ui(a;θ ′)+ui(b;θ ′)]/ui(c;θ ′) for
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any ui(·;θ
′
) ∈U θ

′

i [ε], we have that K ≥ k(1,1). Due to the strict monotonicity of

k(p1, p2) with respect to p1 and p2, we have that K ≥ k(p1, p2) for any (p1, p2) ∈

[0,1]2. Hence, for any k ≥ K:

Ui(σ
k;θ

′
) =

p1 p2

k
[ui(a;θ

′
)+ui(b;θ

′
)]+(1− p1)(1− p2)ui(c;θ

′
)

≤ p1 p2

k(p1, p2)
[ui(a;θ

′
)+ui(b;θ

′
)]+(1− p1)(1− p2)ui(c;θ

′
)

(∵ k ≥ K ≥ k(p1, p2) ∀(p1, p2) ∈ [0,1]2)

= ui(c;θ
′)[1− (1− p1)(1− p2)]+(1− p1)(1− p2)ui(c;θ

′
)

= ui(c;θ
′
).

This completes the proof of Lemma 3. ■

Combining Lemmas 2, 1, and 3 together, we complete the proof of Proposition

1. ■

4.5 The Main Result

We generalize Proposition 1 of the previous section. First, we introduce a notion

of acceptability.

Definition 6 Given two subsets of alternatives A ,B ⊆ A, we say that alternative

x is (A ,B)-acceptable at state θ if x ∈ A ∪B and the following two conditions

hold:
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• There is no alternative a ∈ A such that a ≻θ
1 x.

• There is no alternative b ∈ B such that b ≻θ
2 x.

The property that x is (A ,B)-acceptable at state θ guarantees that A is

contained in agent 1’s lower contour set at x in state θ and B is contained agent

2’s lower contour set at x in state θ . In the rest of the argument below, we write

Θ = {θ0,θ1, . . . ,θJ} where J = |Θ|−1. So, we are now ready to introduce the key

condition for our characterization.

Definition 7 The environment E =
(
{1,2},A,Θ,(⪰θ

i )i∈{1,2},θ∈Θ

)
satisfies Con-

dition P+M with respect to the SCF f if there exist a function z : {0, . . . ,J}×

{0, . . . ,J}→ A with image Z, and two collections of subsets {A j}J
j=0,{B j}J

j=0 ⊆

A such that

1. z( j1, j2) ∈ A j2 ∩B j1 for all ( j1, j2) ∈ {0, . . . ,J}×{0, . . . ,J};

2. For each state θ ∈ Θ and each pair ( j1, j2) ∈ {0, . . . ,J} × {0, . . . ,J}, if

f (θ) ̸= z( j1, j2), there exists either a( j1, j2) ∈ A j2 such that a( j1, j2) ≻
θ
1

z( j1, j2) or b( j1, j2) ∈ B j1 such that b( j1, j2) ≻
θ
2 z( j1, j2);

3. For every j ∈ {0, . . . ,J}, f (θ j) is (A j,B j)-acceptable at state θ j;

4. For every θ ∈ Θ and every j ∈ {0, . . . ,J}, if there exists x ∈ A such that x is

(A j,B j)-acceptable at θ , then x = f (θ),

5. For each θ ∈ Θ, if f (θ) ∈ Z, there exists no x ∈
⋃J

j=0 A j ∪B j such that

x ≻θ
i f (θ) for all i ∈ {1,2}.

6. For each θ ∈ Θ, if f (θ) /∈ Z, then f (θ)≻θ
i z for all i ∈ {1,2} and z ∈ Z.

In what follows, Properties 1, 2, 3, and 4 in Condition P+M are collectively

called Condition P and Properties 5 and 6 in Condition P+M are collectively

called Condition M, respectively. By “Condition P,” we mean the property
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concerning “pure” Nash implementation and by “Condition M,” we mean the

property concerning “mixed” Nash implementation.

We recall the following notation. For each ε > 0, θ ∈ Θ, and i ∈ {1,2}, we

have

U θ ,ε
i =

{
ui ∈ U θ

i

∣∣∣ |ui(a,θ)−ui(a
′
,θ)| ≥ ε, ∀a ∈ A,∀a

′
∈ A\{a}, ∀θ ∈ Θ

}

We let U θ ,ε = U θ ,ε
1 ×U θ ,ε

2 and U ε =×θ∈ΘU θ ,ε .

Theorem 1 Let f be an SCF. Suppose that the finite two-person environment E =(
{1,2},A,Θ,(⪰θ

i )i∈{1,2},θ∈Θ

)
satisfies Condition P+M with respect to the SCF f .

Then, for any ε > 0, the SCF f is C-implementable with respect to U ε .

Proof: Suppose that the finite two-person environment E =
(
{1,2},A,Θ,(⪰θ

i )i∈{1,2},θ∈Θ

)
satisfies Condition P+M with respect to the SCF f . For each integer k ≥ 2, we

construct a mechanism Γk = (Mk,gk) as follows: For each i ∈ {1,2}, we set

Mk
i = {0,1, . . . ,(J + 1)k − 1}×A, i.e., each message mi = (oi,xi) agent i sends

to the mechanism is composed of a pair of an integer which lies between 0 and

(J+1)k−1 and an alternative in A.

Define the function nk : {0, . . . ,(J+1)k−1}→ {0, . . . ,J} as follows: for each

oi ∈ {0, . . . ,(J+1)k−1},

nk(oi) = max{n ∈ N| n× k ≤ oi}.

In words, we first compute oi/k, then round the computed number down to the

nearest integer, and finally set the obtained integer as nk(oi). For example, if

oi = 13 and k = 5, we have n5(13) = 2.

79



To define the outcome function below, we introduce the following permutation

πk : {0, . . . ,(J+1)k−1}→ {0, . . . ,(J+1)k−1}: for each õ ∈ {0, . . . ,(J+1)k−

1},

π
k(k̃) =

 nk(õ)k if õ = (nk(õ)+1)k−1,

õ+1 otherwise.

We can interpret πk as a series of J + 1 cycles which moves õ to õ+ 1 for all

õ ∈ {nk(õ)k, . . . ,(nk(õ)+ 1)k− 2}, while moves (nk(õ)+ 1)k− 1 to nk(õ)k. The

outcome function gk : Mk → A is dictated by the following three rules: for each

m ∈ Mk where m = (m1,m2) = ((o1,x1),(o2,x2)),

Rule 1: If o1 = o2 and x1 ∈ Ank(o1)
, then gk(m) = x1.

Rule 2: If o2 = πk(o1)
3 and x2 ∈ Bnk(o2)

, then gk(m) = x2.

Rule 3: For all other cases, gk(m) = z(nk(o1),nk(o2)).

We describe how the mechanism Γk can be played as follows: first, each agent

selects a number between 0 and J (represented in the mechanism by the values

of nk(o1) for agent 1 and nk(o2) for agent 2). If nk(o1) ̸= nk(o2), the outcome

is given by z(nk(o1),nk(o2)). If nk(o1) = nk(o2), then they proceed to play a

particular form of modulo game: each announces a second number between 0 and

k− 1. If they both select the same number, which implies o1 = o2, agent 1 wins

and he can select any outcome from the set Ank(o1)
. If agent 2 picks a number

o2 that is higher than the number o1 picked by agent 1 exactly by one unit (or

picks 0, in case agent 1 picks k− 1) but still nk(o1) = nk(o2), then agent 2 wins

3We note that this implies both o1 ̸= o2 and nk(o1) = nk(o2), as these properties will be
exploited later.
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Figure 4.1: Table for the game

and can pick any outcome from the set Bnk(o2)
. In any other case, the outcome

is, once again, given by z(nk(o1),nk(o1)). This is illustrated in Figure 1, which

depicts only the integer part of the messages. To represent the alternatives, we use

function a( j), which is equal to x1 if x1 ∈ A j (and equal to z( j, j) otherwise) and

function b( j), which is equal to x2 if x2 ∈ B j (also equal to z( j, j) otherwise).

We complete the rest of the proof in a series of lemmas.

Lemma 4 If Condition P is satisfied, Γk pure Nash implements f .

Proof of Lemma 4: Fix j ∈ {0, . . . ,J}. By Property 3 in Condition P, f (θ j) is

(A j,B j)-acceptable at state θ j. This implies that f (θ j) ∈ A j ∪B j. Assume first

that f (θ j) ∈ A j. We then define m = (m1,m2) = (( jk, f (θ j)),( jk,z( j, j))). By

construction, m induces Rule 1 in the mechanism Γk so that we have g(m)= f (θ j).

We consider m
′
1 as an arbitrary deviation strategy of agent 1 and argue that m

′
1

never be a better reply than m1 against m2. If (m
′
1,m2) induces Rule 1, by Property

3 of Condition P, m
′
1 is not a profitable deviation. If (m

′
1,m2) induces Rule 2, then

we have g(m
′
1,m2) = z( j, j), which, by Property 1, is also a part of A j and thus,

by Property 3, not a profitable deviation either. If (m
′
1,m2) induces Rule 3, there

81



exists j1 ∈ {0, . . . ,J} such that g(m
′
1,m2) = z( j1, j). By Property 1, z( j1, j) ∈ A j

and thus by Property 3 in Condition P, m
′
1 is not a profitable deviation.

We next consider m
′
2 as an arbitrary deviation strategy of agent 2 and argue

that m
′
2 never be a better reply than m2 against m1. If (m1,m

′
2) induces Rule

1, we have g(m1,m
′
2) = g(m1,m2) so that m

′
2 is not a profitable deviation. If

(m1,m
′
2) induces Rule 2, then g(m1,m

′
2) ∈ B j and it follows from Property 3 of

Condition P that m
′
2 is not a profitable deviation, since f (θ j) being (A j,B j)-

acceptable at that state means there can be no element in B j that is preferred

to f (θ j) by agent 2. Finally, if (m1,m
′
2) induces Rule 3, there exists ( j, j2) ∈

{0, . . . ,J}×{0, . . . ,J} such that g(m1,m
′
2) = z( j, j2). It follows from Property 1

that z( j, j2) ∈ B j and from Property 3 of Condition P that m
′
2 is not a profitable

deviation. Thus, (m1,m2) = (( jk, f (θ j),( jk,z( j, j)) is a Nash equilibrium of the

game Γk(θ j) in this case.

Finally, consider the scenario when f (θ j) /∈ A j, which, by the definition of

acceptability, must imply that f (θ j) ∈ B j. Then, we define m = (m1,m2) =

(( jk,z( j, j)),( jk + 1, f (θ j)). This message induces Rule 2 and results in f (θ j)

as the outcome, as desired. To check that there are no profitable deviations,

consider first m′
1 as an arbitrary deviation by agent 1. If (m′

1,m2) induces Rule 1,

by Property 3 this is not a profitable deviation. If it induces Rule 2, the outcome

is unchanged, so again, no benefit for the agent. Finally, if it induces Rule 3, then

there is a ( j1, j) such that g(m′
1,m2) = z( j1, j), but as z( j1, j) ∈ A j according to

Property 1, we can once more invoke Property 3 to conclude that this is not a

profitable deviation either.

We move on to deviation strategies attempted by agent 2, denoting by m′
2 an

arbitrary deviation. As above, Property 3 ensures that any deviation that induces
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Rule 2 cannot be profitable. If (m1,m′
2) induces Rule 3 instead, then we can find

a ( j, j2) such that g(m′
1,m2) = z( j, j2), but as z( j, j2) ∈ B j according to Property

1, we can once more invoke Property 3 to conclude that this is not a profitable

deviation either. Lastly, if it induces Rule 1, the outcome must be z( j, j) and then

by Properties 1 and 3 this cannot be a profitable deviation either.

Fix θ ∈ Θ. We shall show that m ∈ pureNE(Γk(θ)) implies g(m) = f (θ).

We assume by way of contradiction that there exists m ∈ pureNE(Γk(θ)) such

that g(m) ̸= f (θ). We write m = (m1,m2) = ((o1,x1),(o2,x2)). We complete the

proof by considering the following separate cases.

Case 1: m induces Rule 1

Assume that m induces Rule 1. Then, we have g(m) = x1. Since x1 ̸=

f (θ) from our hypothesis, Property 4 of Condition P implies that for every

j = {0, . . . ,J}, x1 is not (A j,B j)-acceptable. As x1 ∈ Ank(o2)
, this implies that

there must exist either a ∈ Ank(o2)
such that a ≻θ

1 x1 or b ∈ Bnk(o2)
such that

b ≻θ
2 x1. Assume it is the former. Then m′

1 = (o1,a) is a profitable deviation for

agent 1. If it is the latter, then m′
2 = (πk(o1),b) is a profitable deviation for agent

2.

Case 2: m induces Rule 2

Assume that m induces Rule 2. Then, we have g(m) = x2. Since x2 ̸=

f (θ) from our hypothesis, Property 4 of Condition P implies that for every

j = {0, . . . ,J}, x1 is not (A j,B j)-acceptable. As x2 ∈ Bnk(o1)
, this implies that

there must exist either a ∈ Ank(o2)
such that a ≻θ

1 x1 or b ∈ Bnk(o2)
such that

b ≻θ
2 x1. Assume it is the former. Then m′

1 = (o2,a) is a profitable deviation for

agent 1. If it is the latter, then m′
2 = (o2,b) is a profitable deviation for agent 2.
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Case 3: m induces Rule 3

If m induces Rule 3, we have g(m)= z( j1, j2) where ( j1, j2)= (nk(o1),nk(o2)).

By assumption, z( j1, j2)) ̸= f (θ), then we can invoke Property 2 and find either

a( j1, j2) ∈ A j2 such that a( j1, j2) ≻
θ
1 z( j1, j2) or b( j1, j2) ∈ B j1 such that b( j1, j2) ≻

θ
2

z( j1, j2). Assume it is the former; then agent 1 has a profitable deviation strategy

in m′
1 = (o2,a( j1, j2)). If it is the latter, than agent 2 has a profitable deviation

strategy in m′
1 = (πK(o1),b( j1, j2)). ■

Next, we show that if f (θ) ∈ Z, there are no compelling mixed strategy

equilibria in the game.

Lemma 5 Assume that Condition P+M holds. If f (θ)∈ Z, then, for any u ∈U θ ,

the game Γk(θ ,u) has no compelling mixed strategy equilibria.

Proof of Lemma 5: Fix u ∈ U θ . Suppose by way of contradiction that there

is a compelling mixed strategy Nash equilibrium σ of the game Γk(θ ,u). As

Γk = (Mk,gk) pure Nash implements the SCF f under Condition P by Lemma 4,

we have that for each i ∈ {1,2},

∑
m̃∈M

σ(m̃)ui(gk(m̃),θ)≥ ui( f (θ),θ),

with at least one strict inequality for some i ∈ {1,2}. This implies that there exist

i ∈ {1,2} and m ∈ supp(σ) such that

ui(gk(m),θ)> ui( f (θ),θ).
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We write m=(m1,m2)= ((o1,x1),(o2,x2)). If m induces Rule 1, we have gk(m)=

x1 and x1 ∈ Ank(o1)
. This contradicts Property 5 of Condition M. If m induces

Rule 2, we have gk(m) = x2 and x2 ∈ Bnk(o2)
. This also contradicts Property 5

of Condition M. If m induces Rule 3, we have gk(m) = z(nk(o1),nk(o2)). By

Property 1 of Condition P, we have z(nk(o1),nk(o2)) ∈ Ank(o2)
. This contradicts

Property 5 of Condition M. ■

It remains now for us to show that when f (θ) /∈ Z, for any ε > 0, there exists

K ∈ N such that for any u ∈ U ε , the game ΓK(θ ,u) has no compelling mixed

strategy equilibria. The proof of this case requires us to take a series of steps.

For each j ∈ {0, . . . ,J} and θ ∈ Θ, let aθ
j be the best outcome for player 1

within A j at state θ , and bθ
j the best outcome for player 2 within B j at state θ ,

respectively. In the rest of the proof, we fix θ ∈ Θ throughout.

Lemma 6 Consider the mechanism Γk = (Mk,gk). For each message m1 =

(o1,x1) ∈ Mk
1 , we can define the following message m∗

1(m1) = (o1,aθ

nk(o1)
) ∈ Mk

1

(possibly m∗
1(m1) = m1) such that gk(m∗

1,m2) ⪰θ
1 gk(m1,m2) for each m2 ∈ Mk

2 .

Moreover, if gk(m∗
1,m2) ̸= gk(m1,m2) for some m2 ∈ Mk

2 , then gk(m∗
1(m1),m2)≻θ

1

gk(m1,m2). Similarly, for each message m2 = (o2,x2) ∈ Mk
2 , we can define the

following message m∗
2(m2) = (o2,bθ

nk(o2)
) ∈ Mk

2 (possibly m∗
2(m2) = m2) such that

gk(m1,m∗
2(m2))⪰θ

2 gk(m1,m2) for each m1 ∈ Mk
1 . Moreover, if gk(m1,m∗

2(m2)) ̸=

gk(m1,m2) for some m1 ∈ Mk
1 , then gk(m1,m∗

2(m2))≻θ
2 gk(m1,m2).

Proof of Lemma 6: Let m1 = (o1,x1) denote player 1’s a generic message in
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the mechanism Γk. We define the following partition over Mk
2 given m1:

M1
2(m1) =

{
m2 ∈ Mk

2| (m1,m2) induces Rule 1
}
,

M2
2(m1) =

{
m2 ∈ Mk

2| (m1,m2) induces Rule 2
}
,

M3
2(m1) =

{
m2 ∈ Mk

2| (m1,m2) induces Rule 3
}
.

By construction, we have M1
2(m1)∪M2

2(m1)∪M3
2(m1) = Mk

2 . Define m∗
1(m1) =

(o1,aθ

nk(o1)
). When either Rule 2 or Rule 3 is induced, player 1’s announcement

about alternatives is irrelevant. So, by construction of m∗
1(m1), we obtain the

following property: for any m2 ∈ M2
2(m1)∪M3

2(m1),

g(m1,m2) = g(m∗
1(m1),m2)⇒ g(m∗

1(m1),m2)∼θ
1 g(m1,m2).

When (m1,m2) induces Rule 1, by its construction, (m∗
1(m1),m2) also induces

Rule 1. Under Rule 1, we know that player 1’s announcement about alternatives

solely dictates the outcome. Once again, by construction of m∗
1, along with the

fact that we have strict preferences, we obtain the following property: for any

m2 ∈ M1
2(m1),

g(m1,m2) ̸= g(m∗
1,m2)⇒ g(m∗

1,m2)≻θ
1 g(m1,m2).

This completes the argument for player 1.

Let m2 = (o2,x2) be a generic message agent 2 sends to the mechanism Γk.
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We define the following partition over Mk
1 given m2:

M1
1(m2) =

{
m1 ∈ Mk

1| (m1,m2) induces Rule 1
}
,

M2
1(m2) =

{
m1 ∈ Mk

1| (m1,m2) induces Rule 2
}
,

M3
1(m2) =

{
m1 ∈ Mk

1| (m1,m2) induces Rule 3
}
.

By construction, we have M1
1(m2)∪M2

1(m2)∪M3
1(m2) = Mk

1 . Define m∗
2(m2) =

(o2,bθ

nk(o2)
). When either Rule 1 or Rule 3 is induced, player 2’s announcement

about alternatives is irrelevant. So, by construction of m∗
2, we obtain the following

property: for any m1 ∈ M1
1(m2)∪M3

1(m2),

g(m1,m∗
2(m2)) = g(m1,m2)⇒ g(m1,m∗

2(m2))∼θ
2 g(m1,m2).

When (m1,m2) induces Rule 2, by its construction, (m1,m∗
2(m2)) also induces

Rule 2. Under Rule 2, we know that player 2’s announcement about alternatives

solely dictates the outcome. Once again, by construction of m∗
2(m2) along with

the fact that we have strict preferences, we obtain the following property: for any

m1 ∈ M2
1(m2),

g(m1,m∗
2(m2)) ̸= g(m1,m2)⇒ g(m1,m∗

2(m2))≻θ
2 g(m1,m2).

This completes the argument for player 2. ■

We introduce the following notation in the mechanism Γ = (M,g): for any

agent i ∈ {1,2} and mixed strategy σi ∈ ∆(Mi), we can define another mixed
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strategy σ∗
i [σi] as follows: for each mi ∈ Mi,

σ
∗
i [σi](mi) = ∑

m̃i:mi=m∗
i (m̃i)

σi(m̃i).

Then, we establish the following lemma.

Lemma 7 Fix u ∈ U θ and σ ∈ NE(Γ(θ ,u)). Then, σ∗[σ ] ∈ NE(Γ(θ ,u)).

Moreover, if σ is compelling in the game Γ(θ ,u), σ∗[σ ] is also compelling in

the same game Γ(θ ,u).

Proof of Lemma 7: This follows directly from Lemma 6. ■

Define

NE∗(Γ(θ ,u))≡
⋃

σ∈NE(Γ(θ ,u))

{σ
∗[σ ]} .

By Lemma 7, we have NE∗(Γ(θ ,u)) ⊆ NE(Γ(θ ,u)). The contrapositive form

of Lemma 7 says that if σ∗ is not a compelling mixed strategy equilibrium, σ

is also not a compelling mixed strategy equilibrium. This implies that there is

no loss of generality to focus on NE∗(Γ(θ ,u)), as far as we are concerned with

the nonexistence of compelling mixed strategy equilibria in the game Γ(θ ,u). If

we only focus on NE∗(Γ(θ ,u)), we can only focus on mixed strategies where

the players randomize only on the integers the choose (the first component of

the message), with the alternative (second component) being always the most

preferred alternative from their choice set associated.

With this specific structure of mixed strategies, we introduce the following

notation. Let m1(o1) = (o1,aθ

nk(o1)
) for each o1 ∈ {0, . . . ,(J + 1)k − 1} and

m2(o2)= (o2,bθ

nk(o2)
) for each o2 ∈{0, . . . ,(J+1)k−1}. Then, for each i∈{1,2},
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denote by σi the strategy that assigns probability σi(oi) to message mi(oi), with

∑
(J+1)k−1
oi=0 σi(oi) = 1.

Lemma 8 Suppose that Condition P+M holds and f (θ) /∈ Z. Let u ∈ U θ and

σ = (σ1,σ2) ∈ NE∗(Γk(θ ,u)) be a compelling mixed strategy equilibrium. Then,

for each i ∈ {1,2} and j ∈ {0, . . . ,J − 1} such that aθ
j ≻θ

1 f (θ) or bθ
j ≻θ

2 f (θ),

there is a number pi
j ∈ [0,1] such that σi(x) = pi

j/k for each x such that nk(x) = j.

Proof of Lemma 8: For the sake of notation, we denote ua
i = ui(aθ

j ;θ), ub
i =

ui(bθ
j ;θ), uz

i = ui(z( j, j);θ), and σ
j

i =∑x:nk(x)= j σi(x) for i = 1,2. Lastly, for each

i ∈ {1,2}, define sets Smax
i and Smin

i as

Smax
i = arg max

nk(x̃)=nk(x)
σi(x̃) and Smin

i = arg min
nk(x̃)=nk(x)

σi(x̃)

We further divide the proof into a series of substeps:

Step 8a: If Smax
2 ̸= Smin

2 , then σ1(x) = 0 for each x ∈ Smin
2 .

Proof of Step 8a:

Assume Smax
2 ̸= Smin

2 and take x ∈ Smax
2 , x′ ∈ Smin

2 . We want to show that

message σ1(x′) is dominated by message σ1(x), and thus is never sent with

positive probability in an equilibrium. There are two cases to consider: either

ua
1 > ub

1 > uz
1 or ua

1 > uz
1 > ub

1. We start with the first case, where ub
1 > uz

1.

The expected payoff for agent 1 of sending integer x
′

against σ2 in the game

89



Γk(θ) is given by

U1(m(x
′
),σ2;θ) = σ2(x

′
)ua

1 +σ2(π
k(x

′
))ub

1 +(σ
j

2 −σ2(x
′
)−σ2(π

k(x
′
)))uz

1 + ẑσ2

1

On the other hand, The expected payoff for agent 1 of sending message x against

σ2 in the game Γk(θ) is given by

U1(m(x),σ2;θ) = σ2(x)ua
1 +σ2(π

k(x))ub
1 +(σ

j
2 −σ2(x)−σ2(π

k(x)))uz
1 + ẑσ2

1

Taking the difference between the two, we compute

U1(x,σ2;θ)−U1(x
′
,σ2;θ)

= [σ2(x)−σ2(x
′
)]ua

1 +[σ2(π
k(x))−σ2(π

k(x′))]ub
1 +[σ2(x)−σ2(x

′
)+σ2(π

k(x))−σ2(π
k(x′))]U z

1

= [σ2(x)−σ2(x
′
)](ua

1 −uz
1)+ [σ2(π

k(x))−σ2(π
k(x′))](ub

1 −uz
1)

≥ [σ2(x)−σ2(x
′
)](ua

1 −uz
1)− [σ2(x)−σ2(x

′
)](ub

1 −uz
1)

(∵ [σ2(π
k(x))−σ2(π

k(x′))]≥−[σ2(x)−σ2(x
′
)],ub

1 > uz
1)

= [σ2(x)−σ2(x
′
)](ua

1 −ub
1)

> 0.

This implies that a message with integer x is a strictly better response for agent

1 against σ2 than x
′

in the game Γk(θ). Thus, message σ(x′) is never sent with

positive probability in an equilibrium if ub
1 > uz

1.

We move to the next case, where uz
1 > ub

1. Take again x′ ∈ Smin
2 . To choose

x, we use now the following procedure: take first x1 such that πk(x1) = x′. If

x1 /∈ Smin
2 , then x = x1. If x1 ∈ Smin

2 , then take x2 such that πk(x2) = x1 and check
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if x2 ∈ Smin
2 . If it is not in the set, then x = x2, else we iterate the argument. As

Smin
2 ̸= Smax

2 , eventually we will find an x such that x /∈ Smin
2 , but πk(x) ∈ Smin

2 . We

then compute the difference in expected payoffs between these two messages:

U1(x,σ2;θ)−U1(x
′
,σ2;θ)

= [σ2(x)−σ2(x
′
)]ua

1 +[σ2(π
k(x))−σ2(π

k(x′))]ub
1 +[σ2(x)−σ2(x

′
)+σ2(π

k(x))−σ2(π
k(x′))]U z

1

= [σ2(x)−σ2(x
′
)](ua

1 −uz
1)+ [σ2(π

k(x′))−σ2(π
k(x))](uz

1 −ub
1)

> 0.

(∵ [x′,πk(x) ∈ Smin
2 ; x /∈ Smin

2 ],ua
1 > uz

1 > ub
1)

This shows that message σ(x′) is also never sent with positive probability in

an equilibrium if uz
1 > ub

1. ■

Step 8b: If Smax
1 ̸= Smin

1 , then σ2(π
k(x)) = 0 for each x ∈ Smin

1 .

Proof of Step 8b: Assume Smax
1 ̸= Smin

1 and take x ∈ Smax
1 , x′ ∈ Smin

1 . We want

to show that message σ2(π
k(x′)) is dominated by message σ1(π

k(x)), and thus

is never sent with positive probability in an equilibrium. There are two cases to

consider: either ub
2 > ua

2 > uz
2 or ub

2 > uz
2 > ua

2. We start with the first case, where

ua
2 > uz

1.

The expected payoff for agent 2 of sending message πk(x
′
) against σ1 in the

game Γk(θ) is given by

U2(σ1,m(πk(x
′
));θ)=σ1(π

k(x
′
))ua

2+σ1(x
′
)ub

2+(σ
j

1 −σ1(π
k(x

′
))−σ1(x

′
))uz

2+ ẑσ1

2
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On the other hand, the expected payoff for agent 2 of sending message πk(x)

against σ1 in the game Γk(θ) is given by

U2(σ1,m(πk(x));θ) = σ1(π
k(x))ua

2+σ1(x)ub
2+(σ

j
1 −σ1(π

k(x))−σ1(x))uz
1+ ẑσ1

2

Taking the difference between the two, we compute

U2(σ1,m(πk(x));θ)−U2(σ1,π
k(x

′
);θ)

= [σ1(π
k(x))−σ1(π

k(x
′
))]ua

2 +[σ1(x)−σ1(x′)]ub
2 +[σ1(π

k(x))−σ1(π
k(x

′
))+σ1(x)−σ1(x′)]uz

2

= [σ1(π
k(x))−σ1(π

k(x
′
))](ua

2 −uz
2)+ [σ1(x)−σ1(x′)](ub

2 −uz
2)

≥ [σ1(x)−σ1(x
′
)](ub

2 −uz
2)− [σ1(x)−σ1(x

′
)](ua

2 −uz
2)

(∵ [σ1(π
k(x)) −σ1(π

k(x′))]≥−[σ1(x)−σ1(x
′
)],ua

2 > uz
2)

= [σ1(x)−σ1(x
′
)](ub

2 −ua
2)

> 0.

This implies that message σ(πk(x)) is a strictly better response for agent 2

against σ1 than σ(πk(x
′
)) in the game Γk(θ

′
). Thus, message σ(πk(x

′
)) is never

sent with positive probability in an equilibrium if ua
2 > uz

2.

We move to the next case, where uz
2 > ua

2. Take again x′ ∈ Smin
1 and choose x

such that x /∈ Smin
1 , but πk(x) ∈ Smin

1 . Since Smin
1 ̸= Smax

1 , such x must exist. We

then compute the difference in expected payoffs between these two messages:
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U2(σ1,m(πk(x));θ)−U2(σ1,π
k(x

′
);θ)

= [σ1(π
k(x))−σ1(π

k(x
′
))]ua

2 +[σ1(x)−σ1(x′)]ub
2 +[σ1(π

k(x))−σ1(π
k(x

′
))+σ1(x)−σ1(x′)]uz

2

= [σ1(π
k(x

′
))−σ1(π

k(x))](uz
2 −ua

2)+ [σ1(x)−σ1(x′)](ub
2 −uz

2)

> 0.

(∵ [x′,πk(x) ∈ Smin
1 ; x /∈ Smin

1 ],ub
2 > uz

2 > ua
2)

This shows that message σ(πk(x′)) is also never sent with positive probability

in an equilibrium if uz
2 > ua

2. ■

Step 8c: σ1(x) = 0 for every x such that nk(x) = j if and only if σ2(x) = 0 for

every x such that nk(x) = j.

Proof of Step 8c: Assume that σ1(x) = 0 for every x such that nk(x) = j.

Then, the expected payoff σ2(x) for any x such that nk(x) = j is the same and

equal to

U2(σ1,σ2(x);θ) = ∑
l∈{0,...,J}/ j

∑
y:nk(y)=l

σ2(y)u1(z( j,nk(y)),θ)

.

From Property 6, we know that f (θ) ≻θ
2 z for any z ∈ Z, and thus, we must

have u( f (θ)) > U2(σ1,σ2(x);θ). However, since every message that receives

positive probability in a strategy that is a part of a mixed-strategy equilibrium must

offer the same expected payoff as other messages of that strategy, having σ2(x)
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be sent with positive probability implies that σ is not a compelling equilibrium,

contradicting our earlier assumption. Thus, σ1(x)= 0 for every x such that nk(x)=

j only if σ2(x) = 0 as well. A similar argument shows that the reverse must hold

as well.

Step 8d: For each i = {1,2}, Smax
i = Smin

i .

Proof of Step 8d: Assume by way of contradiction that Smax
2 ̸= Smin

2 . We can

then apply Step 8a to conclude that σ1(x) = 0 for each x ∈ Smin
2 . As 0 = minσ1(x̃),

this in turn implies that Smin
2 ⊂ Smin

1 . Moreover, Smax
2 ̸= Smin

2 implies that σ2(x)> 0

for some x such that nk(x) = j, which, by Step 8c, implies that σ1(x)> 0 for some

x in the same range and thus, Smax
1 ̸= Smin

1 as well. Then we apply Step 8b to show

that σ2(π
k(x)) = 0 for each x ∈ Smin

1 . Since 0 = minσ2(x̃) and for no value of x

we have πk(x) = x, we must either have x ∈ Smin
2 but not in Smin

1 , contradicting

Smin
2 ⊂ Smin

1 , or we must have σ1(x) = 0 for every x such that nk(x) = j, which is

also a contradiction. Thus, we cannot have Smax
2 ̸= Smin

2 .

If, on the other hand, we have Smax
1 ̸= Smin

1 , then we start by noting that this

implies σ1(x) > 0 for some x such that nk(x) = j. Then, we apply Step 8c to

conclude that σ2(x)> 0 for some x in the same range. Next, we apply Step 8b to

show that σ2(π
k(x)) = 0 for each x ∈ Smin

1 . Since 0 = minσ2(x̃), we must have

Smax
2 ̸= Smin

2 . Then we can apply the same arguments as above and complete the

proof of this step. ■

It follows from Step 8.d that σi(x) = σ(x′) for every x,x′ with nk(x) = nk(x′) =

j and i ∈ {1,2}. Thus we can set pi
j = ∑

( j+1)k−1
x= jk σi(x). This completes the proof

of Lemma 8. ■
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Lemma 8 needs to assume that there exists j ∈ {0, . . . ,J−1} such that aθ
j ≻θ

1

f (θ) or bθ
j ≻θ

2 f (θ) to characterize the structure of compelling mixed strategy

equilibria. If such a condition is not satisfied, we do not know the structure of

compelling equilibria by Lemma 8. Therefore, the next lemma guarantees that the

premise for Lemma 8 is nonvacous.

Lemma 9 Suppose that Condition P+M holds and f (θ) /∈ Z. Let u ∈ U θ and

σ = (σ1,σ2) ∈ NE∗(Γk(θ ,u)) be a compelling mixed strategy equilibrium. Then,

there exists a j ∈ {0, . . . ,J−1} such that aθ
j ≻θ

1 f (θ) or bθ
j ≻θ

2 f (θ).

Proof of Lemma 9: Fix u ∈ U θ and σ ∈ NE∗(Γk(θ ,u)). Assume that σ is a

compelling mixed strategy equilibrium of the game Γk(θ ,u). As we know from

Lemma 5 that Γk = (Mk,gk) pure Nash implements the SCF under Condition P,

we have that for each i ∈ {1,2},

∑
m̃∈M

σ(m̃)ui(gk(m̃),θ)≥ ui( f (θ),θ),

with at least one strict inequality for some i ∈ {1,2}. This implies that there exist

i ∈ {1,2} and m ∈ supp(σ) such that

ui(gk(m),θ)> ui( f (θ),θ).

We can write m = (m1,m2) = ((o1,aθ

nk(o1)
),(o2,bθ

nk(o2)
)). By Properties 5 and 6

of Condition M, m induces either Rule 1 or Rule 2 so that there must exist a

j ∈ {0, . . . ,J − 1} such that gk(m) ∈ A j ∪B j. More specifically, if m induces

Rule 1, then gk(m) = aθ
j ∈ A j where j = nk(o1), while if m induces Rule 2, then

gk(m) = bθ
j ∈ B j where j = nk(o2). Thus, for some i, we have either aθ

j ≻θ
i
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f (θ) or bθ
j ≻θ

i f (θ). This implies four possible different scenarios, with two

immediately completing our proof. It remains to show that the last two scenarios,

where aθ
j ≻θ

2 f (θ) or bθ
j ≻θ

1 f (θ), will also result in either aθ
j ≻θ

1 f (θ) or bθ
j ≻θ

2

f (θ).

Assume first that aθ
j ≻θ

2 f (θ) and f (θ) ≻θ
2 bθ

j both hold. This implies that

aθ
j ̸= f (θ) and aθ

j is (A j,B j)-acceptable at state θ , which would contradict

Property 4 of Condition P. Hence, aθ
j ≻θ

2 f (θ) implies bθ
j ≻θ

2 f (θ) A similar

argument holds to show that bθ
j ≻θ

1 f (θ) implies aθ
j ≻θ

1 f (θ). Thus, we have

found a j such that aθ
j ≻θ

1 f (θ) or bθ
j ≻θ

2 f (θ), completing the proof. ■

Lemma 10 Suppose that Condition P+M holds and f (θ) /∈ Z. Then, for any ε >

0, there exists K ∈ N such that there are no compelling mixed strategy equilibria

of the game ΓK(θ ,u) for all u ∈ U ε .

Proof of Lemma 10: We prove this by contradiction. That is, there exists

ε > 0 such that for any k ∈ N, there exist u ∈ U ε and σ k ∈ NE∗(Γk(θ ,u)) for

which σ k is a compelling mixed strategy equilibrium of the game Γk(θ ,u). We

fix k large enough so that by our hypothesis, we can fix u ∈ U ε and a compelling

mixed strategy equilibrium σ k ∈ NE∗(Γk(θ ,u)). When we determine the exact

size of k later, we guarantee that such k potentially depends on ε but not on u.

Since σ k is compelling in the game Γk(θ ,u) and the mechanism Γk pure Nash

implements the SCF f under Condition P by Lemma 4, we have that, for each

i ∈ {1,2},

∑
m̃∈M

σ
k(m̃)ui(gk(m̃),θ)≥ ui( f (θ),θ),

with at least one strict inequality for some i ∈ {1,2}. This implies that there exist
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i ∈ {1,2} and m ∈ supp(σ k) such that

ui(gk(m),θ)> ui( f (θ),θ).

Fix such i ∈ {1,2}. We introduce the following partition over supp(σ k):

{{M+},{M0},{M−}}= supp(σ k) such that

M+ = {m ∈ Mk| ui(gk(m),θ)> ui( f (θ),θ)},

M0 = {m ∈ Mk| ui(gk(m),θ) = ui( f (θ),θ)},

M− = {m ∈ Mk| ui(gk(m),θ)< ui( f (θ),θ)}.

By construction, we have M+ ̸= /0. Using the characterization of compelling

mixed strategy equilibria in NE∗(Γk(θ ,u)) obtained by Lemmas 8 and 9, σ k

induces Rule 3 with positive probability. By Property 6 of Condition M, we also

have M− ̸= /0. Define the following notation:

u+ ≡ max
m∈M+

ui(g(m),θ),

u− ≡ max
m∈M−

ui(g(m),θ).

By construction, we have u+ > u− and ui( f (θ),θ)> u−. We now define

K ≡ min
{

k ∈ N
∣∣∣ k >

2(1− ε)

ε

}
.

We fix k = K. Since σ k ∈ NE∗(Γk(θ ,u)), by the definition of NE∗(Γk(θ ,u)), no

agents randomize over alternatives. Since we assume f (θ) /∈ Z, by Property 6 of

Condition M, we have that m ∈ M+ only if m induces either Rule 1 or Rule 2.
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Furthermore, using the characterization of compelling mixed strategy equilibria

in NE∗(Γk(θ ,u)) by Lemmas 8 and 9 and the construction of the mechanism Γk,

we conclude that the probability that σ k induces messages in M+ is “at most”

2/k. Moreover, by the construction of the mechanism Γk, we have that m ∈ M−

if m induces Rule 3. Once again as f (θ) /∈ Z, by Property 6 of Condition M and

the construction of the mechanism Γk, we conclude that the probability that σ k

induces messages in M− is “at least” 1−2/k. Then,

Ui(σ
k,θ) = ∑

m∈M+

σ
k(m)ui(gk(m),θ)+ ∑

m∈M0

σ
k(m)ui(gk(m),θ)+ ∑

m∈M−
σ

k(m)ui(gk(m),θ)

≤ u+× 2
k
+u−×

(
1− 2

k

)
(

∵ M+ ̸= /0, M− ̸= /0, ∑
m∈M+∪M0

σ
k(m)ui(gk(m),θ)≤ u+× (2/k) and

∑
m∈M−

σ
k(m)ui(gk(m),θ)≤ u−× (1−2/k)

)
=

2
k
(u+−u−)+u−,

which we define as h(k). Since u ∈ U ε , we have

2(u+−u−)
ui( f (θ),θ)−u−

≤ 2(1− ε)

ε
< K.

As h(k) is strictly decreasing in k, we have

h(K)< h
(

2(1− ε)

ε

)
≤ h

(
2(u+−u−)

ui( f (θ),θ)−u−

)
= ui( f (θ),θ).
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Therefore, when k = K, we have

Ui(σ
K,θ)≤ h(K)< ui( f (θ),θ).

This contradicts the hypothesis that σK is a compelling mixed strategy equilibrium

of the game ΓK(θ ,u). ■

The proof of Theorem 1 is completed as follows. By Lemma 4, the mechanism

Γk pure Nash implements the SCF f . When f (θ) ∈ Z, by Lemma 5, for any

u ∈ U , the game Γk(θ ,u) has no compelling mixed strategy equilibria. When

f (θ) /∈ Z, by Lemma 10, there exists K ∈ N large enough so that for any u ∈ U ,

the game ΓK(θ ,u) has no compelling mixed strategy equilibria. Thus, f is C-

implementable with respect to U by the mechanism Γk. ■

4.6 Indispensability of Condition P+M

While our result deals only with sufficient - rather than necessary - conditions, one

can inquire if it is possible to make the same argument with weaker assumptions.

In other words, if the collection of subsets {A j}J
j=0,{B j}J

j=0 and the function z :

{0, . . . ,J}×{0, . . . ,J}→ A does not satisfy Condition P+M, will any mechanism

in the class of mechanisms constructed from these elements as outlined in

Theorem 1 still achieve compelling implementation? We seek to show below that

if any of the properties in Condition P+M is missing, then no mechanism in the

class Γk will C-implement the SCF f for the environment E . In this sense, we say

that all of the properties in Condition P+M are indispensable for our argument.
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4.6.1 Condition P is Necessary for pure Nash implementation

Lemma 11 Suppose that the SCF f is pure Nash implementable. Then, there exist

two collections of subsets of alternatives {A j}J
j=0,{B j}J

j=0 ⊆ A and a function

z : {0, . . . ,J}×{0, . . . ,J}→ A such that Condition P holds.

Proof: Let J = |Θ| − 1, the number of possible states of the world, minus

one, and let j : Θ → {0, . . . ,J} be a bijection that indexes each of the possible

states of the world. For example, if Θ = {θt}J
t=0, then j(θt) = t. Let Γ = (M,g)

be a mechanism that pure Nash implements f . For each θ ∈ Θ, we define mθ =

(mθ
1 ,m

θ
2 ) as a pure strategy Nash equilibrium of the game Γ(θ). The existence of

mθ is guaranteed by by our hypothesis that f is pure Nash implementable by the

mechanism Γ. Then we can define sets A j(θ),B j(θ) as follows:

A j(θ) = {a ∈ A | ∃ m1 ∈ M1 such that g(m1,mθ
2 ) = a},

and

B j(θ) = {a ∈ A | ∃ m2 ∈ M2 such that g(mθ
1 ,m2) = a}.

Let j−1 be the inverse function of j, which is a bijective mapping from Θ

to {0, . . . ,J}. For each ( j1, j2) ∈ {0, . . . ,J}× {0, . . . ,J}, we define z( j1, j2) =

g(m j−1( j1)
1 ,m j−1( j2)

2 ). We can see clearly from the definition of the sets A j(θ),B j(θ)

above that point 1 (of condition P+N) is satisfied.

We claim now that message mθ is a pure strategy Nash Equilibrium of Γ(θ)

if and only if it is (A j(θ),B j(θ))-acceptable at state θ . Indeed, if mθ is a Nash

Equilibrium, then there is no other message (mi,mθ
−i) such that g(mi,mθ

−i) ≻θ
i
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g(mθ ), which due to the way that the sets were constructed, implies that g(mθ )

is (A j(θ),B j(θ))-acceptable. Similarly, if mθ is not a Nash Equilibrium of Γ(θ)

in pure strategies, then there must be some message m′ and some player i such

that g(m′)≻θ
i g(mθ ), which once again, due to the way the sets were constructed,

implies that g(mθ ) is not a Nash Equilibrium of the game. Having established

that, the proof for points 3 and 4 being satisfied follows from the definition of

implementation in pure strategies: for each state θ , there is a message mθ such

that mθ is a NE of the game and g(mθ ) = f (θ). Additionally, if m is a Nash

Equilibrium in pure strategies, then g(m) = f (θ).

Finally, for point 2, if for some state θ there exists a pair ( j1, j2) such

that z( j1, j2) ≻θ
1 a for each a ∈ A j2 and z( j1, j2) ≻θ

2 b for each b ∈ B j1 , then

(m j−1( j1)
1 ,m j−1( j2)

2 ) must be a Nash Equilibria of the implementing mechanism,

and thus, by the definition of function z above, f (θ) ∈ Z. Hence, if f (θ) /∈ Z,

there must be for each pair ( j1, j2) ∈ {0, . . . ,J}2 either an a( j1, j2) ∈ A j2 such

that a( j1, j2) ≻
θ
1 z( j1, j2) or a b( j1, j2) ∈ B j1 such that b( j1, j2) ≻

θ
2 z, which are the

requirements of point 2. ■

The lemma above shows that Condition P is a necessary condition for

pure Nash implementation when there are two players. Indeed, they are exact

counterparts of the conditions identified by Moore and Repullo (1990) for pure

Nash implementation for the case of two players. It follows from their work that

these conditions are also sufficient (which is already verified in Lemma 4).
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4.6.2 Indispensability of Condition M

We show now that if the environment does not satisfy either of the properties

in Condition M it is possible to find a compelling equilibrium in our class of

mechanisms, regardless of the value of k is chosen. In this way, both properties in

Condition M are indispensable for our C-implementation.

We start with Property 6. Indeed, Jackson’s Example 4 illustrates an

environment where all properties of Condition P+M are satisfied, with the

exception of Property 6. Properties 1 to 4 are satisfied since, as seen, they are

necessary for pure Nash implementation. We can verify that they imply J = 1,

z( j1, j2) = d ∀( j1, j2) ∈ {0,1}2, A0 = B0 = {c,d}, A1 = B1 = {a,b,d}. In this

case, Property 5 is vacuously satisfied, as there f (θ̃) ̸= d for θ̃ ∈ {θ ,θ ′}. As such,

properties 1 to 5 are satisfied, and yet, it is known that no finite mechanism can

C-implement the SCF in this environment. Thus, all of the mechanisms in the Γk

class of mechanism will have a compelling mixed-equilibrium at θ ′.

For the indispensability of Property 5, consider the same environment as

Section 4. However, rather than defining the function z as it would be implicitly

defined by the mechanism of that section - that is, a constant function z( j1, j2)= d,

we instead define it incorrectly in a way to violate Property 5 alone. Formally, take

J = 1, A0 = B0 = {c,d}, A1 = B1 = {a,b,d}, and define function z( j1, j2) as

z(1,1) = c, z(1,0) = z(0,1) = z(0,0) = d. We can check easily that properties

1 to 4, as well as Property 6 are still satisfied. Nonetheless, as Property 5 fails,

every mechanism of the class Γk created by these sets and the function z( j1, j2)

in the manner described by Theorem 1 will have a compelling mixed-strategy

equilibrium at state θ ′. Such equilibrium occurs when both agents randomize
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uniformly over the integers in the interval {k, . . . ,2k − 1}, with agent 1 always

selecting a as the second component of his messages and agent 2 always selecting

b as his second component of his messages. In this mixed equilibrium, outcome

d is realized with probability zero and both a and b are realized with positive

probabilities, thus, the expected utility of the outcome is always strictly above the

utility of the socially optimal outcome for both agents.

4.7 Comparison with the Canonical Mechanism of

Moore and Repullo (1990)

We compare the mechanism introduced in this paper and the natural finite version

of the canonical mechanism developed by Moore and Repullo (1990). We will

show that when applied to the setting of our modified version of Example 4

of Jackson (1992), the finite version of the canonical mechanism still admit a

compelling mixed strategy equilibrium. In contrast, we know that this problem

ceases to exist if we use our mechanism.

Suppose that agent 1 has the state-independent preference a ≻1 b ≻1 c ≻1 d

and agent 2 has the preference a ≻θ
2 b ≻θ

2 d ≻θ
2 c at state θ and preference b ≻θ ′

2

a ≻θ ′
2 c ≻θ ′

2 d at state θ ′. Consider the SCF f such that f (θ) = a and f (θ ′) = c.

The natural finite adaptation of the canonical mechanism that pure Nash

implements an SCF is obtained by replacing the integer game with a modulo game

instead. The modulo game is regarded as a finite version of the integer game in

which agents announce integers from a finite set. The agent who matches the

modulo of the sum of the integers gets to name an allocation.
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We formally define this canonical mechanism adapted for our finite setting

(and the fact that we are using a function, rather than a correspondence) as

follows: ΓMR = (M,g) is a mechanism composed of a message space Mi =

{(θi,bi,ni) ∈ {θ ,θ ′}× {a,b,c,d}× {0,1,2}} identical for both agents, and an

outcome function g : M →{a,b,c,d} defined by the following rules:

• If θ1 = θ2 = θ , then g(m) = f (θ).

• If θ1 ̸= θ2 and either n1 = 0 or n2 = 0, then g(s) = d.

• If θ1 ̸= θ2 and n1 = n2 ∈ {1,2}, then g(m) = b2.

• If θ1 ̸= θ2 and n1 ̸= n2, with n1,n2 > 0, then g(m) = b1.

This mechanism is similar to the one presented in the section of Example 4. In

particular, it still features the same mixed strategy equilibrium at state θ ′, where

player 1 randomizes uniformly between messages (θ ,1,a) and (θ ,2,a), while

player 2 randomizes uniformly between messages (θ ′,1,b) and (θ ′,2,b). This

yields an outcome that dominates the outcome of the SCF for state θ ′. However,

the mechanism proposed at section 5 does not suffer from this problem.

In particular, we can verify that Condition P+M is satisfied for this setting quite

easily. Take J = 1, z( j1, j2)= d ∀( j1, j2)∈{0,1}2, A0 =B0 = {c,d}, A1 =B1 =

{a,b,d}. Property 1 of the Condition is verified as d ∈A0,A1,B0,B1. Property 5

of P+M is vacuously satisfied, as there is no θ ′′ ∈Θ such that f (θ)= d. Property 2

is verified as a ∈A0 and c ∈A1. Property 3 is verified as a is (A1,B1)-acceptable

in state θ and c is (A0,B0)-acceptable in state θ ′; moreover, these are the only

alternatives that are (A j,B j)-acceptable for some j = 0,1 in each state. This

verifies Property 4 as well. Lastly, Property 6 is verified as both players prefer a

to d in state θ and c to d in state θ ′. Thus, all properties in Condition P+M hold.

With Condition P+M satisfied, we can invoke Theorem 1 and have that there
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is some k such that all the mixed strategies in the mechanism Γk do not dominate

f (θ ′′) for any θ ′′ ∈ Θ. This sheds some light on the importance of selecting the

implementing mechanism carefully, particularly once one starts thinking about

potentially disruptive mixed equilibria. As seen in this example, even canonical

mechanisms can fail to withstand this plausability check posed by Jackson. While

in his original example such problem was unavoidable, in many contexts this

problem can be circumvented with a more careful selection of the implementing

mechanism, as seen in this section.

4.8 Conclusion

This paper presented a concept of compelling implementation, by which we

strengthen the requirement of pure-strategy Nash implementation by taking care

of what we call compelling mixed strategy equilibria, but ignoring other mixed

strategy equilibria. We call a mixed strategy equilibrium compelling if its outcome

Pareto dominates any pure strategy equilibrium.

The main contribution of this paper is to provide Condition P+M under which

compelling implementation is possible by finite mechanisms in environments with

two agents. We also show that Condition P+M is indispensable for our result. Our

implementing mechanism has desirable properties: transfers are not needed at all;

only finite mechanisms are used; integer games are not invoked; and agents’ risk

attitudes do not matter.

We conclude this paper with possible extensions. First, we assume throughout

the paper that agents have strict preferences over alternatives. A slight relaxation

of this assumption can be made, as we only rely on the best alternative for each
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agent in each choice set A j and B j to be unique. However, since the SCF

determines the choice of both collection of sets, this places domain restrictions

which depend upon the chosen SCF. Thus, indifferences must be allowed on a

case by case basis.

Second, our analysis covers only the case of two agents. It is well known in

the literature of implementation that the analysis for two agents is very different

from that for three or more agents. The main reason for our focus on two-agent

environment comes from the following technical difficulty: A crucial step we

exploit by Lemmas 6 and 7 to characterize the structure of compelling mixed

equilibria is to argue that there is no loss of generality to focus on mixed strategies

where agents only randomize over integers in our mechanism. Extending these

results to the case of more than two agents is challenging because we then have no

a priori clear way of obtaining a simple characterization of compelling equilibria

such as Lemmas 6 and 7. Furthermore, we also do not know how to establish the

counterpart of Lemma 8. Despite all the difficulties outlined, this is an important

open question we pursue in our future research.
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Chatterji, S., Massó, J., 2018. On strategy-proofness and the salience of single-

peakedness. International Economic Review 59.

Chatterji, S., Sanver, R., Sen, A., 2013. On domains that admit well-behaved

strategy-proof social choice functions. Journal of Economic Theory 148.

Chatterji, S., Sen, A., 2011. Tops-only domains. Economic Theory 46.

Demange, G., 1982. Single-peaked orders on a tree. Mathematical Social Sciences

3.

Kalai, E., Muller, E., 1977. Characterization of domains admitting nondictatorial

social welfare functions and nonmanipulable voting procedures. Journal of

Economic Theory 16.

107



Klaus, B., Bochet, O., 2013. The relation between monotonicity and strategy-

proofness. Social Choice and Welfare 40.

Kutlu, L., 2009. A dictatorial domain for monotone social choice functions.

Economics Letters 105.

Maskin, E., 1999. Nash equilibrium and welfare optimality. Review of Economic

Studies 66.

Moulin, H., 1980. On strategy-proofness and single peakedness. Public Choice

35, 437–455.

Muller, E., Satterthwaite, M. A., 1977. The equivalence of strong positive

association and strategy-proofness. Journal of Economic Theory 14.

Nehring, K., Puppe, C., 2007. The structure of strategy-proof social choice - part

i: General characterization and possibility results on median spaces. Journal of

Economic Theory 135.

ORTEGA, O., KRISTON, G., 2013. The median function on trees. Discrete

Mathematics, Algorithms and Applications 05, 1350033.

Saijo, T., 1988. Strategy space reduction in maskin’s theorem: Sufficient

conditions for nash implementation. Econometrica 56.

108



Appendix A

Appendix A covers all of the proofs in Chapter 2. Section A.1 covers the

cornerstone of the analysis, an alternative way to express Monotonicity that

takes advantage of our other assumptions. Section A.2 gives a simple sketch of

the necessity part of the proof, with section A.2.2 explaining many of the key

properties and ideas that will be exploited in the necessity part of the proof of

Theorem 1. Section A.3 presents the complete proofs of the results in Chapter 2,

with Theorem 1 being broken down into several Lemmas.

A.1 An Alternative Expression of Maskin’s Mono-

tonicity

Our problem can be understood, in a broad sense, as an analogous to a constrained

maximization problem, as we are seeking to find the largest domains that can still

sustain a SCF that is Monotonic and Well Behaved. This is a complex problem

to solve. Fortunately, there is an alternative formulation of this problem that is

more tractable. In this alternative formulation, the problem is expressed in terms

of the SCF, which not only is an object that is easier to work with, but also is now
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compatible with the way the restrictions of the problem are expressed. To make

this alternative formulation, we first need to express the Monotonicity condition

in a way that is more convenient for us.

We can think of MM as a rule that broadly says ”if certain inputs are provided

to the SCF and certain outputs are obtained as a result, this rule is violated”. Thus,

if the rule is to not be violated, then we can either exclude the problematic inputs,

so that they never happen, or change the outputs associated with those inputs, so

that they are now acceptable. While this logic stands on its own, regardless of

other assumptions, when we pair it with the properties of Well Behaved functions,

we can make a precise formulation of it by using the MD and C f sets:

Claim: A Well Behaved Social Choice Function f satisfies MM for the domain

D if and only if for every alternative a ∈ A, the intersection Ca
f ∩Ma

D is empty.

Proof: Assume that there are alternatives a,b,c such that (b,c) ∈ Ca
f ∩Ma

D. As

(b,c) ∈ Ca
f , that means that there are profiles P,P′ such that a is the alternative

selected by the SCF at P, but not the alternative selected at P′, and the votes

between the two profiles differ only by a single voter (assume that it is the first

voter; by Anonymity, this is without loss of generality) flipping its vote from

b to c. Because f satisfies Anonymity and Tops-Only, we can specify that P =

(P1b,P2,P3, . . . ,Pn) and P′ = (P1c,P2,P3, . . . ,Pn), where P1b and P1c are preferences

with b and c ranked first, respectively. Now, because the pair (b,c) belongs to

Ma
D, we can also find preferences P̂1b and P̂1c where b and c are also ranked first,

respectively, but such that P̂1b 7→a P̂1c. Then, we can specify the profiles P̂ =

(P̂1b,P2,P3, . . . ,Pn) and P̂′ = (P̂1c,P2,P3, . . . ,Pn). By Tops-Only of f , we must

have f (P̂) = a and f (P̂′) ̸= a, which violates MM as P̂ 7→a P̂′. Thus, whenever
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Ca
f ∩Ma

D ̸= /0, MM is violated.

For the suffiency part, assume that MM is violated, that is, there are two

profiles P0 = (P1,P2,P3, . . . ,Pn) and Pn = (P′
1,P

′
2,P

′
3, . . . ,P

′
n) such that f (P0) = a,

f (Pn) ̸= a and P0 7→a Pn. Let profile P1 be defined as (P′
1,P2,P3, . . . ,Pn). If

P0 7→a Pn, then we must have P0 7→a P1. Assume that f (P1) ̸= a. Then,

because f satisfies Tops-Only, we must have that the top ranked alternatives

in P1 and P′
1 are different, call them b and c, respectively. We then have that

P0 7→a P1 ⇒ P1 7→a P′
1 ⇒ (b,c) ∈ Ma

D. Similarly, as P0 and P1 differ in a single

vote, we will have that (b,c) also belongs to Ca
f , as it is a pivotal change when

the outcome of the SCF is a. This imples that (b,c) ∈ Ca
f ∩Ma

D. If f (P1) = a,

we proceed to the next voter, constructing profile P2 in a similar fashion as

P2 = (P′
1,P

′
2,P3, . . . ,Pn). Because P0 7→a Pn, we will have that P1 7→a P2 and,

more generally, between any two profiles P j−1,P j constructed in this way we

will have P j−1 7→a P j. Similarly, because f (Pn) ̸= a, we know that there will be

an index j = 1, . . . ,n that f (P j−1) = a and f (P j) ̸= a. Then we can apply the

same reasoning illustrated above to that case. Thus, whenever MM is violated,

Ca
f ∩Ma

D ̸= /0. ⋆

This alternative definition allows us to translate some of the properties of the

SCF into properties for the domain of the function and vice-versa. As functions

are easier to analyze, this is extensively used in our proofs.

111



A.2 Sketch of Proof

A.2.1 General Overview

To prove the necessity part, we need to establish three things: i) find a tree graph

G whose set of nodes matches the set of alternatives for the domain in question;

ii) among the nodes of this graph, pick one node t to form an admissible pair

with G; iii) verify that the Minimal Reversals Condition holds for this choice of

admissible pair. Hence, our proof for this is also divided in three blocks. The

first block, composed by Lemmas 1 to 6, deals with proving that the Connectivity

Graph of the domain is a tree graph. We do so by proving that any cycle in

the connectivity graph implies a contradiction for the SCF. The second block,

composed of Lemmas 7 to 12, deals with proving the existence of a special node

(called the threshold) in the Connectivity Graph with some useful properties,

which will be our choice for t. This is achieved by showing that all the breaches

(a concept that will be presented later on) must be oriented in such a way that

implies a common origin point. Finally, the third block, composed of Lemmas 13

to 15, proves that the Minimal Reversals Condition is indeed verified when taking

the Connectivity Graph and the threshold as an admissible pair. We do this by

exploiting the properties of the threshold found.

A.2.2 An Illustration

We provide now a small illustration of the most important properties exhibited by

the domains and SCFs that we are studying. They are derived from the Lemmas

in the necessity part and understanding them provides a good overview of the
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Figure A.1: A Connectivity Graph

reasoning behind that proof. This illustration will be based off a domain with the

following Connectivity Graph:

• Take any two alternatives, say x and z. Since the graph is connected, there

must be at least one path from x to z. Pick now a third alternative, say,

s. Our first property is the following: whenever the outcome of the SCF

is s for some profile P, if there is a path connecting x and z that does not

include s, then we can take all of the votes for alternative x at profile P

and give them to alternative z (creating a new profile, P′) without changing

the outcome of the SCF; i.e, at profile P′, the outcome must still be s. We

could also do the reverse and transfer all the votes from z to x, the direction

is not important. All that matters is that there is a path between the two

alternatives that does not pass through the outcome. So, for instance, if the

outcome were c instead we would not be able to do this procedure between

z and x - but would still be able to transfer these votes between x and a, for

example. When we can move votes freely between two alternatives without

altering the outcome of the SCF, we say that x and z share votes under s.

This property is similar to what happens in generalized median rules, and

it comes from Lemmas 1, 2 and 5. This is the essence of our approach,

and it translates properties from the domain (like the Connectivity Graph)
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into implications about the (Well Behaved and Monotonic) SCFs on that

domain.

• Conversely, alternatives that lie on opposite sides of a particular node, like

x and z relative to c, must not share votes under c. One way transfer, like

from z to x under c, but not the other way around, is still allowed, but we

cannot have both x transferring votes to z and z transferring votes to x under

c at the same time. This is explained in Lemmas 4 and 5.

• The Connectivity Graph must be a tree. This comes essentially from the

two properties above. If a cycle is allowed - say, alternatives y and b are

both connected to s - then we could find a path from x to z without passing

through c. By the first property, x and z would share votes, but by the second

they would not. The only way to keep consistency is by having no cycles in

the graph.

• The possibilities of vote transferring can be ”added” together to form longer

paths. For instance, if y can transfer votes to b under c, then essentially z

can transfer votes to x under c: from z to y, then from y to b, then from b

to x. Similarly, if it just so happens that x can transfer votes to d under s

(something that is possible, even if not shown in the Connectivity Graph),

then as a consequence r will be able to transfer votes to c under s, by going

from r to d, then from d to x, then from x to c.

• Take a pair of adjacent alternatives, like w and r. If alternative w can transfer

votes under r to some other alternative on the opposite side of r, like s, then

we say that (r,w) forms a breach.

• A domain might not exhibit any breaches. If such is the case, then any node

can be picked as a threshold node.
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Figure A.2: Several breaches represented by arrows.

• If a domain does exhibit at least one breach, say, (r,w), then we can draw

an arrow representing that breach, starting from the second node of the pair

towards the first node (for example, the arrow would start at w and have

the arrowhead at r). If there are any more breaches in a domain, no two

arrows must be pointing towards the same node. Figure 8 illustrates this.

All the breaches represented by the arrows in green are compatible with one

another, but the breach (c,y), represented by the red arrow, is not compatible

with the rest, at it points towards the arrow representing breach (c,s). This

is explained in Lemma 8.

• As all breaches must follow the same orientation and the number of nodes in

the graph is finite, there must be at least one node serving as an origin point

for all breaches. In our example (ignoring the breach in red), that would be

node t. This is explained in Lemmas 7, 8, 9, 10, 11 and 12. We call this

origin point of the breaches the threshold node.

The last step of the proof is essentially combining all of the properties above to

identify which alternatives cannot share votes and translate this set of restrictions

for the SCF back into a set of restrictions for the domain. For instance, assume

that we have breaches as depicted in Figure 8 (ignoring the one in red). It follows

that it is not possible to transfer votes from x to z under c, since this movement
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would imply the existence of a breach (c,b) and this breach goes against the other

green breaches, similarly to what happened with the breach (c,s) represented by

the red arrow. This restriction for the SCF, in turn, implies that alternative c

must not maintain its position when going from any preference with x on top

to any preference with z on top (i.e., some reversals must occur between these

preferences).

A.3 Complete proofs

Our starting point is a simple well known fact related to MM: changing a vote from

any other alternative to alternative a makes a maintain its position and as such, if

a was the social choice before, a must still be the social choice after receiving

more votes, by MM. Then, by using the notation developed in the Model section,

we have:

Fact 1: Let f satisfy MM. Fix any alternative a. In any minimally rich domain,

(b,a) /∈Ca
f ∀b ̸= a.

Assume henceforth that f is a Well Behaved SCF satisfying MM.

Lemma 1: If f (P) = a and (b,c) /∈ Ca
f , then f (P′) = a for all profiles P′

satisfying:

1. v(b,P′) = v(b,P)− k, k ≤ v(b,P);

2. v(c,P′) = v(c,P)+ k

3. v(d,P′) = v(d,P), ∀d ̸= b,c
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Proof: When k = 1, the result is immediate from the definition of the set Ca
f : as

(b,c) is not a part of this set, then f (P) = f (P′) = a. For k greater than one, we can

proceed as follows. First, rearrange profile P such that the first k voters all vote b

in P. This is allowed by Anonymity. Then, define profile P1 as being identical to

profile P, with the only difference that the first voter in P1 votes for c instead of b.

By the argument above, f (P1) = a. Now construct profile P2 in a similar fashion,

with it being identical to profile P, except that now the first two voters vote for

c instead of b. By the same logic, we must have f (P2) = a. Proceed with this

construction, until you reach Pk. We must have that f (Pk) = a. We also have that

the total of votes in Pk is exactly the same as in P′, for every alternative. Then we

can use Anonymity once again to rearrange the voters in Pk to the configuration

in P′ and have that f (P′) = a. ⋆

Definition: We say that alternative b transfers votes to alternative c under

a whenever there is a sequence of alternatives {x j}k
j=1 such that x1 = b, xk = c

and for any j < k, we have (x j,x j+1) ∈ Ma
D. We also say that alternatives b and

c share votes under a whenever b transfers votes to c and c transfers votes to b

under a.

An important remark about the two definitions above is that the sequences

implied by those definitions need not to form a path in the Connectivity Graph.

Lemma 2: Let λ ∈ A be a subset of alternatives such that any two alternatives

in λ share votes under a. Then if f (P) = a we have that f (P′) = a for all profiles

P′ satisfying:

• ∑ j∈λ v( j,P′) = ∑ j∈λ v( j,P)
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• v(d,P′) = v(d,P), ∀d /∈ λ

Proof: We proceed by induction on the number of alternatives in λ . First, we

will show that when there are only two alternatives, the result holds. Call these

two alternatives in λ b and c. We assume that b and c share votes under a, which

translates into the existance of two sequences: the first is a sequence of alternatives

such that the first element is b, the last element is c, and every pair of sucessive

elements in the sequence, (x j,x j+1) is in the set Ma
D; the second is a sequence

with the same properties as the first, except that the first element is c and the last

element is b.

Since under our assumptions when a pair (x j,x j+1) belongs to Ma
D then the

same pair does not belong to Ca
f , the conditions for Lemma 1 are satisfied and we

can apply it multiple times. Let k = v(b,P′)− v(b,P) and assume first that k is

negative, i.e., the initial profile P has more votes for b then the desired profile P′.

Use Anonymity to rearrange profile P by making the first k voters all vote for b.

From the assumption that b shares votes with c, there is an alternative x2 such that

(b,x2) ∈ Ma
D. By MM of f , then (b,x2) /∈ Ca

f . Then we can apply Lemma 1 to

change those k votes from b to x2 without changing the outcome of the SCF. We

now can repeat this process again with alternatives x3, . . . ,c within the sequence

implied by the assumption that b and c share votes, until those first k voters all

vote for c. By repeatedly applying Lemma 1, the outcome of the SCF at this new

profile must still be a. Finally, by Anonymity, we can then rearrange back the

order of the voters to match P′. For the case where k is negative, we do the inverse

procedure, starting with the first k voters all voting for c and applying Lemma 1

along the alternatives in the sequence implied by the assumption that b and c share

118



votes, until we have that the first k voters are all voting for b.

That shows that the result is valid for λ with only two alternatives. Now

assume that this is true for any subset of A containing l alternatives or less, and let

λ contain l+1 alternatives. Take λ ′ as an arbitrary subset of λ with l alternatives,

and let b ∈ λ ′ and c ∈ λ −λ ′. Define k = v(c,P′)− v(c,P) and assume first that

k is negative. Then, because b and c share votes, we can apply the case for 2

alternatives to create a profile P1 that is identical to P, except that k voters that

had voted for c in P now vote for b in P1 and we still have f (P1) = a. Now, we

have that v(c,P1) = v(c,P′) and hence ∑ j∈λ ′ v( j,P1) = ∑ j∈λ ′ v( j,P′), v(d,P1) =

v(d,P′), ∀d /∈ λ ′ and we can now apply the induction hypothesis to go from P1 to

P′ without changing the outcome of the SCF. For the case where k is positive, note

first that ∑ j∈λ v( j,P′) = ∑ j∈λ v( j,P) and k = v(c,P′)− v(c,P) positive implies

∑ j∈λ ′ v( j,P) = ∑ j∈λ ′ v( j,P′)+ k. Now use the induction hypothesis to create a

profile P1 such that v(b,P1) = v(b,P′)+ k and the votes of every alternative other

than b and c in P1 matches the votes for those alternatives in P′. Then we apply

again the case for two alternatives to change the votes of k voters that voted for b

at P1 to votes for c, arriving at P′. ⋆

Lemma 3: Let λ ∈ A denote a subset of alternatives, and let P(λ ) denote the

set of all profiles such that P ∈ P(λ ) if and only if v(a,P) = 0 for all a /∈ λ . Let

also alternative x ∈ λ be such that for every p,q ∈ λ , p,q ̸= x, we have that p

and q share votes under x. Then there is a number v∗x(λ ) such that for any profile

P ∈ P(λ ), f (P) = x ⇔ v(x,P)≥ v∗x(λ ).
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Proof: Let the set Φx ⊂ N be defined as vx ∈ Φx ⇔ ∃P′ ∈ P(λ ) : v(x,P′) = vx

and f (P′) = x. By Unanimity, the set Φx is not empty and because there is a finite

number of voters, there is a minimal element to this set, call it v∗x(λ ).

Assume first that P is a profile in λ with v(x,P) = v∗x(λ ). By the definition

of λ , we have that ∑y∈λ−{x} v(y,P) = n− v(x,P) = n− v∗x(λ ) - that is, the sum

of votes for every alternative other than x is equal to the total number of votes,

minus the votes that x received in this profile, v∗x(λ ). From the definition of v∗x(λ )

there is a profile P′ such that ∑y∈λ−{x} v(y,P′) = n− v∗x(λ ), that is, a profile P′

where x has the same number of votes than in P and thus, the number of votes for

every alternative other than x is also the same as in P. Hence, if v(x,P) = v∗x(λ ),

∑y∈λ−{x} v(y,P′) = ∑y∈λ−{x} v(y,P) and because f (P′) = x we can then apply

Lemma 2 to have that f (P) = x in this case.

The case where v(x,P) > v∗x(λ ) comes then from Fact 1 and Lemma 1. Take

the profile P′ implied by v∗x(λ ), and select any number of alternatives in λ such

that their total number of votes is at least equal to v(x,P)− v∗x(λ ) (which should

exist, since by the definition of P′ ∈ P(λ ), no other alternatives receive any

votes). By Fact 1, for any alternative a, (a,x) ∈ Cx
f , and then, by Lemma 1,

we can convert the votes from each of those alternatives into votes for x without

altering the outcome of the SCF. Call this new profile P′′. Then we will have that

∑y∈λ−{x} v(y,P′′) = ∑y∈λ−{x} v(y,P) and f (P′′) = x, so we can proceed as above

and apply Lemma 2 to have that f (P) = x.

This proves the sufficiency part of the result. For the necessity part, it comes

from the definition of v∗x(λ ) as the minimal element of the set Φx. ⋆
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Lemma 4: Let f be a Well Behaved SCF satisfying MM. Let also a, b, and c

be alternatives in A such that:

• b and c share votes under a.

• b and a share votes under c

• if |A|> 3, then a, b, and c share votes under any other alternative d ̸= a,b,c.

Then alternatives a and c cannot share votes under b.

Proof: We divide the proof into a series of steps. Define the set λ = {a,b,c}

and the set P(λ ) again as the set of profiles P such that v(d,P) = 0 for any d /∈ λ

(for a domain with only three alternatives, this distinction is not meaningful and

P(λ ) is the set of all possible profiles). Then, we can proceed to the first step.

Step 1: For any P ∈P(λ ), f (P)∈ λ . This is trivial for the case where there are

only three alternatives, so we will check the case where there are four or more. We

will make a proof by contradiction, so assume the above statement is false. Then

we can find a profile P ∈P(λ ) such that f (P) = d ̸= a,b,c. However, the sum of

votes for alternatives a,b,c in P(λ ) is equal to n, and the three alternatives share

votes under d. Then we can transfer all the votes to, say, alternative a. By Lemma

2, the SCF in this unanimous profile should not change from d, but this violates

Unanimity. Hence, the outcome of the SCF for any profile in P(λ ) must be one

of the three alternatives a,b,c.

Step 2: There is a number v∗a(λ ) such that for any P ∈ P(λ ), f (P) = a if and

only if v(a,P) ≥ v∗a(λ ). A number v∗c(λ ) also exists for alternative c. This is just

an application of Lemma 3, as we assume that b and c share votes under a, and b

and a share votes under c.
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Step 3: Assuming that a and c share votes under b implies a contradiction. If a

and c share votes under b, we have that v∗a(λ )+v∗c(λ )= n+1. To see this, consider

the case where v∗a(λ )+ v∗c(λ ) < n+ 1. Then for the profile P∗ where v(a,P∗) ≥

v∗a(λ ), v(c,P∗) ≥ v∗c(λ ) and v(d,P∗) = 0, ∀d ̸= a,c, we have that the SCF must

select both a and c, which is a contradiction. For the case where v∗a(λ )+ v∗c(λ )>

n + 1, we can construct a profile P∗ in P(λ ) such that v(a,P∗) = v∗a(λ )− 1,

v(c,P∗) = n− v(a,P∗) and the SCF cannot select either a or c, so it must select

b as the outcome. However, this together with the assumption that a and c share

votes under b allows us to transfer all the votes from c to a by using Lemma 2,

which will imply by Unanimity that the outcome of the SCF is also a as well as b,

another contradiction. So we must have v∗a(λ )+ v∗c(λ ) = n+1.

Then consider profile P ∈P(λ ) where v(a,P) = v∗a(λ )−1, v(c,P) = v∗c(λ )−

1 and v(b,P) = 1. By Step 2, the outcome of the SCF at P cannot be either a

or c. By Step 1, it also cannot be any other alternative outside a,b,c, and hence,

we must have f (P) = b. Without loss of generality, assume that v∗a(λ ) ≥ v∗c(λ )

(so that v(a,P) ≥ 1). If a and c share votes under b, then we can transfer one

vote from a to c without changing the outcome of the SCF. Call this new profile

P′. So by Lemma 2 it must be the case that f (P′) is still equal to b. However,

v(c,P′) = v∗c(λ ) , which by Step 2 also implies that f (P′) = c . Hence, we cannot

have that a and c can share votes under b. ⋆

Lemma 5: Assume that D is a MD-Connected domain with Connectivity Graph

G and there is a set of alternatives {a j}k
j=1 such that they form a path in the

Connectivity Graph ⟨a1,ak⟩ Then the following two properties hold:

1. a1 and ak share votes under any alternatives that are not a part of the path
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⟨a1,ak⟩.

2. For any j, 1 < j < k, we have that alternatives a j−1 and a j+1 cannot share

votes under a j.

Proof: We start with the first statement. It comes immediately from the

definitions of MD-Connectedness and vote sharing that if two alternatives are

MD-connected, they share votes under every other alternative. Thus, if alternative

b is not a part of path ⟨a1,ak⟩, each alternative in this path shares votes with the

alternatives that are adjacent to it under b. If we append each of the sequences

implied by this fact, we can form two sequences, one that transfers votes from a1

to ak under b and another that transfers votes ak to a1 under b, thus showing that

the two alternatives share votes under b.

For the second part, just use the result above to check the conditions for

Lemma 4. Under any alternative other than a j−1,a j or a j+1, the three alternatives

share votes, as we saw above. Under a j+1, a j and a j−1 share votes (just take a sub

segment of the original path that does not include a j+1). The same happens for a j

and a j+1 under a j−1. Then, by Lemma 4, the other two alternatives cannot share

votes under a j. ⋆

Lemma 6: There can be no cycles in the Connectivity Graph of a domain that

admits a Well Behaved Social Choice Function satisfying MM.

Proof: Assume that there is a cycle between the alternatives in the set {a j}k
j=1.

Since they form a cycle, between any two alternatives in the set, there are two

entirely distinct paths connecting them, such that there are no nodes in common

between these two paths, other than the starting and ending nodes. Hence, for any
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two alternatives in the set, and a third distinct alternative, it is possible to find a

path between the first two that does not contain the third. Then, we can take any

three arbitrary alternatives, say a1,a2 and a3 and by the first statement of Lemma

5 we will have that a2 share votes with a3 under a1, a2 share votes with a1 under

a3 and that a1 and a3 share votes under a2. This then creates a contradiction,

according to Lemma 4. ⋆

Definition: Given a Domain D that is MD-Connected and admits a Well

Behaved SCF satisfying MM (and hence, whose Connectivity Graph is a tree)

and a triple of adjacent nodes (a,b,c) with a,c ∈ α(b), a ̸= c we will say that the

pair (b,c) is a breach if c transfer votes to a under b. Additionally, whenever we

refer to the span of a breach (b,c), we are referring to the span ξ (b,c).

Finally, we will employ the following notation in the arguments below:

P(a1 = v1,a2 = v2, . . . ,ak = vk) describes the profile where alternatives in the

set {a j}k
j=1 get votes equal to {v j}k

j=1, with ∑
k
j=1 v j = n (which implies that

any alternative outside of {a j}k
j=1 gets zero votes). In other words, v(a j,P(a1 =

v1,a2 = v2, . . . ,ak = vk)) = v j.

Lemma 7 Let δ = ⟨a1,am⟩ be a maximal path in G, and (a j,a j+1) ∈ δ be

a breach such that a1 ∈ ξ (a j,a j+1). Then f (P(a1 = n− 1,a j+1 = 1)) = a j+1.

Moreover, if ai ∈ ξ (a j,a j+1)∩δ , we have that f (P(a1 = n−1,ai = 1)) = ai.

Proof: Let â ∈ α(a j) be the node such that a j+1 transfers votes to â under a j,

implied by the definition of a breach. Importantly, we do not assume that â belongs

to δ . Start with λ = {â,a j,a j+1} and P(λ ) as defined previously. We now

proceed in a series of steps.
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Step 1: for any P in P(λ ), f (P) ∈ λ . This is similar to Step 1 of Lemma 4.

If f (P) = d /∈ λ , by the first statement of Lemma 5 â,a j and a j+1 all share votes

under d and since P∈P(λ ) we can use Lemma 3 to imply that f (P(a j = n)) = d,

which is a contradiction with the Unanimity assumption of f .

Now, apply Lemma 3 to alternative â and to alternative a j+1, defining the

numbers v∗â(λ ) = v1 and v∗a j+1
(λ ) = v2.

Step 2: Show that v1 + v2 = n+ 1. This is also similar to Step 3 of Lemma 4.

If v1 + v2 < n+ 1, the SCF must have two outcomes at profile P(â = v1,a j+1 =

n− v1), a contradiction. If, on the other hand v1 + v2 > n+ 1, we will have that

f (P(â = v1 − 1,a j+1 = n+ 1− v1)) = a j (this comes from Step 1 and v2 > n+

1− v1) but then we can use the assumption that (a j,a j+1) is a breach and apply

Lemma 2 to have that f (P(â = n)) = a j, another contradiction. Hence, we must

have that v1 + v2 = n+1.

Step 3: Show that v2 = 1. First notice that by the definition of v2 from Lemma 3,

it is impossible to have v2 = 0, as this would imply a violation of Unanimity. Then,

as v2 > 0, we have that f (P(â = v1 − 1,a j = 1,a j+1 = v2 − 1)) = a j. From here

we can use the assumption that (a j,a j+1) is a breach to apply Lemma 2 and get

that f (P(â = n−1,a j = 1)) = a j, which then implies that v1 = n, and in turn, that

v2 = 1, as we claimed. Note that this implies f (P(a j = n−1,a j+1 = 1)) = a j+1.

Step 4: Show that f (P(a1 = n− 1,a j+1 = 1)) = a j+1. As a1 ∈ ξ (a j,a j+1)⇒

a j+1 /∈ ⟨a1,a j⟩, we can apply Lemma 5 to have that a1 and a j share votes under

a j+1. Then we can apply Lemma 2 to have that f (P(a j = n− 1,a j+1 = 1)) =

a j+1 ⇒ f (P(a1 = n−1,a j+1 = 1)) = a j+1
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Step 5: Show that for all ai ∈ ξ (a j,a j+1)∩ δ , f (P(a1 = n− 1,ai = 1)) = ai.

Assume that f (P(a1 = n − 1,ai = 1)) = x. By the same reasoning of Step 1,

we must have that x ∈ ⟨a1,ai⟩, as if it is not, we can apply the first statement

of Lemma 5 and Lemma 2 to get a contradiction at f (P(a1 = n)) = x. Then,

assuming that x ̸= ai, we have that x /∈ ⟨ai,a j+1⟩, which allow us to use Lemma

5 once more to have that ai and a j+1 share votes under x and then Lemma 2 to

have that f (P(a1 = n−1,a j+1 = 1)) = x, which contradicts the earlier result that

f (P(a1 = n−1,a j+1 = 1)) = a j+1. Therefore, f (P(a1 = n−1,ai = 1)) = ai. This

proves the statement. ⋆

Lemma 8 at first has a somewhat abstract formulation, but its implication is

easily understood via drawings. It says that if we take all breaches (y,z) and

for each breach we draw an arrow, starting the arrow at the last component of the

ordered pair, z, and placing the arrowhead at the first component, y, then there will

be no two arrows pointing at one another. In the language of the Lemma, (ai,ai−1),

in this order, could not be a breach because the arrow drawn in this fashion would

point in the opposite direction from the one drawn at breach (a j,a j+1). Hence,

in a sense, all breaches must ”point” away from a common origin point, rather

than go against one another. This common origin point will be formally proved in

Lemma 12.

Lemma 8: Let δ = ⟨a1,am⟩ be a maximal path in G, (a j,a j+1) be a breach

with a j,a j+1 ∈ δ and (ai,ai−1) be a pair of adjacent nodes with ai−1,ai ∈ δ ∩

ξ (a j,a j+1). If a j+1 ∈ ξ (ai,ai−1), then (ai,ai−1) cannot be a breach.
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Proof: Assume it is not the case. Let (ai,ai−1) be a breach and a j+1 ∈

ξ (ai,ai−1). Assume without loss of generality that a1 ∈ ξ (a j,a j+1), which

implies am /∈ ξ (a j,a j+1), since a j,a j+1 ∈ δ . Then ai−1,ai ∈ δ ∩ ξ (a j,a j+1)

implies that ai−1,ai ∈ ⟨a1,a j+1⟩. Finally, ai−1,ai ∈ ⟨a1,a j+1⟩ together with

a j+1 ∈ ξ (ai,ai−1) implies that am ∈ ξ (ai,ai−1). So, we have a clear picture of

the placement of the nodes on the path δ : a1, ...,ai−1,ai, ...,a j,a j+1, ...,am.

By the first part of Lemma 7, we have that f (P(a1 = n−1,a j+1 = 1)) = a j+1.

By the first part of Lemma 5, a1 share votes under a j+1 with any alternative in

⟨a1,a j⟩ hence we can use Lemma 2 to have f (P(ai = n− 1,a j+1 = 1)) = a j+1.

By Fact 1, we have that (ai,a j+1) /∈C
a j+1
f and by Lemma 1, we have that f (P(ai =

1,a j+1 = n− 1)) = a j+1. Applying Lemma 7 for the breach (ai,ai−1), we have

that f (P(am = n−1,ai = 1)) = ai. As ai /∈ ⟨a j+1,am⟩, by the first part of Lemma 5

am and a j+1 share votes under ai and hence by Lemma 2 we have that f (P(a j+1 =

n− 1,ai = 1)) = ai, which then contradicts our earlier conclusion that f (P(ai =

1,a j+1 = n−1)) = a j+1. Hence, (ai,ai−1) cannot be a breach ⋆.

Lemma 9: Let (b,c) be a breach. Then, if there is a node d such that (c,d) is

also a breach, we must have d ̸= b .

Proof: This proof follows an argument very similar to the one of Lemma 8.

Assume it is not the case, that is, both (b,c) and (c,b) are breaches. Let a1,am

be a pair of extreme nodes, with a1 ∈ ξ (b,c) and am ∈ ξ (c,b). By Lemma 7 on

the breach (b,c), we must have f (P(a1 = n− 1,c = 1)) = c. Applying Lemmas

5 and 2, we have f (P(b = n−1,c = 1)) = c. Applying Fact 1 and Lemma 1, we

further have f (P(b = 1,c = n− 1)) = c. Now apply Lemma 7 once more, using
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breach (c,b) this time to have f (P(am = n−1,b = 1)) = b. We can once more use

Lemmas 5 and 2 to get f (P(c = n−1,b = 1)) = b, which contradicts our earlier

conclusion. Thus, we cannot have (b,c) and (c,b) to be both breaches. ⋆

Lemma 10: Let (b,c) and (y,z) be breaches in G. Then,

1. y ∈ ⟨c,z⟩ ⇒ b /∈ ⟨c,z⟩

2. ξ (b,c)⊂ ξ (y,z)⇔ c ∈ ξ (y,z).

3. ξ (b,c)⊂ ξ (y,z)⇒ z /∈ ξ (b,c)

Proof: We start by proving the first statement.

Assume that b,y ∈ ⟨c,z⟩, but ⟨b,y⟩ ̸= ⟨c,z⟩ (which must be true, since by

Lemma 9 we cannot have (b,c) = (z,y)). Then we can make a maximal

path that includes b,c,y and z by taking any extreme nodes p ∈ ξ (c,b) and

q ∈ ξ (z,y). Hence, the path ⟨p,q⟩ will contain these nodes in the following

order: p,(...),c,b,(...),y,z,(...),q. Moreover, we then have that b,c ∈ ξ (y,z) and

y,z∈ ξ (b,c), which, by Lemma 8, implies that either (b,c) or (y,z) is not a breach,

a contradiction to the assumption that both are breaches.

Now we move to the second statement.

First, we have that ⟨c,z⟩ ⊂ ⟨b,z⟩ ∪ {c}, as c ∈ α(b). Thus, y ∈ ⟨c,z⟩ ⇔ y ∈

⟨b,z⟩. Then, c ∈ ξ (y,z) ⇔ b ∈ ξ (y,z). As b ∈ ξ (b,c), we have that ξ (b,c) ⊂

ξ (y,z)⇒ b ∈ ξ (y,z)⇒ c ∈ ξ (y,z). This proves the first part.

For the second part, by the first statement already proven, c ∈ ξ (y,z) ⇒ y ∈

⟨c,z⟩ ⇒ b /∈ ⟨c,z⟩ ⇒ z /∈ ξ (b,c), and, as y is adjacent to z, we also have that

y /∈ ξ (b,c). Hence, we have that for any a ∈ ξ (b,c), we must have x,y /∈ ⟨a,c⟩.

Moreover, we must have b ∈ ⟨a,z⟩, as b /∈ ⟨a,z⟩⇒ b /∈ ⟨a,c⟩ ⊂ ⟨a,z⟩∪⟨z,c⟩⇒ a /∈
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ξ (b,c). But then, since c is adjacent to b, the path ⟨a,z⟩ must also contain c and

thus can be split into ⟨a,c⟩ and ⟨c,z⟩. Since y ∈ ⟨c,z⟩, we have that y ∈ ⟨a,z⟩ ⇒

a ∈ ξ (y,z).

Now, for the third statement, by the second part of this Lemma we have

ξ (b,c)⊂ ξ (y,z)⇒ c ∈ ξ (y,z)⇒ y ∈ ⟨c,z⟩. Then, by the first part of this Lemma,

y ∈ ⟨c,z⟩ ⇒ b /∈ ⟨c,z⟩ ⇒ z /∈ ξ (b,c). ⋆.

Lemma 11: Let (b,c),( j,k),(y,z) be breaches on G, with c ∈ ξ ( j,k) and k ∈

ξ (y,z). Then c ∈ ξ (y,z).

Proof: By the second statement of Lemma 10, k ∈ ξ (y,z)⇒ ξ ( j,k)⊂ ξ (y,z)⇒

c ∈ ξ (y,z). ⋆.

We prove the next Lemma by showing that any sequence of breaches

{(bk,ck)}T
k=0 in G such that for every k > 0 we have that ck−1 is in the span

of (bk,ck) must have a finite T < ∞. As every of such sequences is finite, there

is a last element that is not in the span of any other breach. Indeed, by Lemmas

10 and 11, we have a semblance of transitivity among the spans of breaches that

allow us to make such claim when the number of alternatives is finite.

Lemma 12: For any subtree G(B) containing at least one breach there is a

breach (y,z) ∈ G(B) such that y is not in the span of any other breach in G(B).

Proof: Let {(bk,ck)}T
k=0 be a sequence of breaches in G such that for every

k > 0 we have that ξ (bk−1,ck−1) ⊂ ξ ((bk,ck)). Start with ξ (b0,c0)
C. As the

set of nodes of G is equal to the set of alternatives, A, which is finite, any
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subtree of G will also have finite nodes, and thus, ξ (b0,c0)
C must also be a

finite set. Next, we have that for any k > 0 by the third statement of Lemma

10, ck ∈ ξ (bk−1,ck−1)
C, and by the second statement of that Lemma, ck−1 ∈

ξ (bk,ck). Recall that for any span ξ (bk−1,ck−1), we have ck−1 /∈ ξ (bk−1,ck−1), so

ξ (bk,ck) ̸⊂ ξ (bk−1,ck−1). That, together with Lemma 11, which allow us to state

that ξ (b0,c0) ⊂ ξ (b1,c1) ⊂ ...ξ (bk−1,ck−1) ⊂ ξ (bk,ck) let us conclude that the

sets ξ (bk,ck) are expanding as k increases, incorporating at least one new element

in each new set. Conversely, the sets ξ (bk,ck)
C are shrinking, becoming smaller

and smaller with each interaction. As they are all subsets of a finite set, the process

itself is finite, meaning that for some k, there is no ck+1 ∈ ξ (bk,ck)
C. Then any

sequence must be finite, with T < m < ∞. Let the last element of the largest of

such sequences be a breach (y,z) such that z is not in the span of any other breach

in this largest sequence. The last step of our analysis is to argue that z cannot be in

the span of any other breach. Indeed, as we assumed that (y,z) is the last element

of the largest of such sequences, if z were to be in the span of any other breach,

then by the second statement of Lemma 10 we would have that the span of (y,z)

is also contained in the span of this new breach, which contradicts the assumption

that (y,z) was the last element of the largest sequence. Hence, z must not be in the

span of any other breach. ⋆.

Corollary I: For any maximal path δ ∈ G containing at least one breach there

is a breach (q,r)∈ δ such that r is not in the span of any other breach in δ . This is

achieved by setting G(B) = δ . Moreover, if G has any breaches, there is a breach

(y,z) ∈ G such that z is not in the span of any other breach in G. This is achieved

by setting G(B) = G.
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In light of Lemma 12, we introduce now a new definition. We say that a node

t on graph G is a threshold node if there are no breaches (b,c) ∈ G such that

t ∈ ξ (b,c).

Lemma 13 For any x ∈ G and y ∈ α(x), ξ (x,y)C = ξ (y,x).

Proof: First, we show that ξ (y,x)∩ξ (x,y) = /0. Without loss of generality, start

with a node a ∈ ξ (x,y). Then, a ∈ ξ (x,y)⇒ x ∈ ⟨a,y⟩ ⇒ y /∈ ⟨a,x⟩ ⇒ a /∈ ξ (y,x).

The argument is symmetrical for the case where a ∈ ξ (y,x).

Now, we show that ξ (x,y)∪ξ (y,x) = G. First, because x ∈ α(y), for any node

a we have ⟨a,x⟩ ⊂ ⟨a,y⟩∪{x}. Without loss of generality, start with a /∈ ξ (x,y).

Then x /∈ ⟨a,y⟩, which, by the above argument, implies ⟨a,x⟩= ⟨a,y⟩∪{x}⇒ y ∈

⟨a,x⟩ ⇒ a ∈ ξ (y,x). Thus, a /∈ ξ (x,y) ⇒ a ∈ ξ (y,x). A symmetrical argument

shows that a /∈ ξ (y,x) ⇒ a ∈ ξ (x,y), which establishes ξ (x,y) ∪ ξ (y,x) = G,

completing the proof. ⋆

Lemma 14: Let b ∈ G be an arbitrary, non-extreme node on G with a and c

being two distinct nodes adjacent to b. If there are alternatives x ∈ ξ (a,b) and

y ∈ ξ (c,b) such that y transfers votes to x under b, then (b,c) is a breach.

Proof: We start first by proving the following claim: any two nodes p,q such

that either p,q ∈ ξ (a,b) or p,q ∈ ξ (c,b) then p and q share votes under b. This

can be verified as follows: without loss of generality, assume that they are both in

ξ (a,b). Then from the definition of p ∈ ξ (a,b) we have a ∈ ⟨p,b⟩ ⇒ b /∈ ⟨p,a⟩

and similarly b /∈ ⟨q,a⟩. Hence, b /∈ ⟨p,q⟩ ⊂ ⟨p,a⟩∪ ⟨a,q⟩. Then, by the first part

of Lemma 5, p and q share votes.
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We now assume that y transfer votes to x. By the above proposition, we have

that, under b, a and x share votes, as do c and y. By the definitions of vote sharing

and vote transference, we have that there are three sequences { f j}p
j=1, {g j}q

j=0

and {h j}r
j=0 such that f1 = c, fp = g0 = y, gq = h0 = x and hr = a and for any two

sucessive members in either sequence we have ( f j, f j+1),(g j,g j+1),(h j,h j+1) ∈

Mb
D. We can then construct a single sequence {w j}p+q+r

j=1 such that, for j ∈ [1, p],

w j = f j, for j ∈ [0,q], wp+ j = g j and finally, for j ∈ [0,r], hp+q+ j = z j. This last

sequence reads as {c, f1,(...),y,g1,(...),x,h1,(...),a}. Then, there is a sequence

starting from c and ending at a such that for any two sucessive members of this

sequence we have (w j,w j+1) ∈ Mb
D. It follows that c transfers votes to a under b

and hence (b,c) is a breach. ⋆

Lemma 15: Let b be an arbitrary node in G with two distinct adjacent nodes,

a,c. Let x ∈ ξ (a,b) and y ∈ ξ (c,b) and t be a threshold for G. If t /∈ ξ (c,b), then

(y,x) /∈ Mb
D

Proof: Assume t /∈ ξ (c,b) and (y,x) ∈ Mb
D. By Lemma 14, (y,x) ∈ Mb

D implies

that (b,c) is a breach. And by Lemma 13, t /∈ ξ (c,b) implies t ∈ ξ (b,c). But that

contradicts the assumption that t is a threshold. ⋆

This concludes the necessity part of the proof. The next Lemma deals with the

sufficiency part.

Lemma 16: It is always possible to define a Well-Behaved SCF satisfying MM

in a domain that satisfies the Minimum Reversals Condition.
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Proof: To show the desired result, we will first construct a particular Social

Choice Function. Then, we will argue that this SCF satisfies MM. We will use

the expression of MM outlined in section A.1 of the appendix to verify if MM

holds for that SCF. Thus, we need to only find the pivotal changes of this SCF for

each alternative (that is, the pairs in the set Ca
f for each a ∈ A) and verify if that

pair is also in the set Ma
D. If the intersection of the two sets is empty, we know

that MM holds. To verify that this intersection is always empty, we will invoke

the Minimal Reversals Condition to show that whenever we have (b,c) ∈Ca
f this

implies (b,c) /∈ Ma
D as well.

First let (G, t) denote an admissible pair for which the domain satisfies the

Minimal Reversals Condition. For any profile P ∈ Dn, let {r1(P)} denote the set

of all first ranked alternatives in the profile P, i.e. {r1(P)} = {a j ∈ A|r1(Pi) for

some i ∈ N}, and G({r1(P)}) the subgraph containing this set. Then, we can

define the SCF f : Dn → A as follows:

f (P) = βt(G({r1(P)}))

This is the same SCF used in Chatterji, Sanver, and Sen (2013) and it follows

from the construction of f that it is anonymous, unanimous and tops-only. We

will now show that f also satisfies MM. We proceed now by analyzing in what

ways the outcome of f can be changed by a single voter, and showing that in all

the cases that the outcome of f can be changed, the changes don’t violate MM.

Before going in depth about this changes, we would like to bring to attention the

fact that the only way this SCF can change its outcome at any given profile is if a

voter changes its vote for some other alternative that lies on an opposite side of the
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outcome, akin to a median rule (this SCF is indeed identical to generalized median

rule). As we will see, this allows us to invoke the Minimal Reversals Condition,

which also deals with changes that involve pairs of alternatives lying at different

sides of a focal alternative in the connectivity graph. We now explore these ideas

in a more formal way.

Fix a profile P. Assume first that f (P) = t. Then we have one of two

scenarios. Either P has some voters voting for t, or there are voters i, j such that

t ∈ ⟨r1(Pi),r1(Pj)⟩. Assume the first case holds. As f (P′) = t for any P′ where

v(t,P′) > 0, we have that the pivotal changes associated with this profile are of

the kind (t,a), for some other a ∈ A, that is, changes where one voter changes his

vote from t to some other alternative. These kinds of change never violate MM.

Assume now that the second case holds. We want to look at the pivotal changes

involving player i, as defined above (since the choice of which is player i on

that pair is arbitrary, this is without loss of generality). The only pivotal changes

possible are those such that t /∈ ⟨r1(P′
i ),r1(Pj)⟩. Call now a,c the adjacent nodes of

t such that r1(P′
i ),r1(Pj) ∈ ξ (a, t) and r1(Pi) ∈ ξ (c, t). These nodes always exist,

as we can simply take r1(Pi) and r1(Pj) (or r1(P′
i )) if they happen to be adjacent

to t. Moreover, they are necessarily distinct, since t ∈ ⟨r1(Pi),r1(Pj)⟩. We can

check easily from the definition of the span of a node that t /∈ ξ (c, t). Thus, by

the Minimal Reversals Condition 1, (r1(Pi),r1(P′
i )) /∈ Mt

D and it follows that MM

is not violated for any of these pivotal changes. This case is depicted by Figure 9.

Node t plays the role of threshold, node i plays the role of both r1(Pi) and c, node

a plays the role of a, node i′ plays the role of r1(P′
i ), and node j plays the role of

1We have here that node t is playing the role of b as well, and that (r1(Pi),r1(P′
i )) play the role

of (y,x), with nodes a and c playing the exact same roles as in the statement of the Condition.
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Figure A.3: An example for Lemma 16

r1(Pj). If we have only two players, then function f functions exactly as a median

rule, taking the median (on a tree) between t,r1(Pi) and r1(Pj).

Now assume that f (P) ̸= t, which then implies f (P) = βt(G({r1(P)})). Pivotal

changes including individuals such that r1(Pi) = f (P) are ignored since these

changes never violate MM. Thus, we will consider pivotal changes where an

individual i with r1(Pi) ̸= f (P) changes its vote from r1(Pi) to some other r1(P′
i ).

In particular, as r1(Pi) ̸= f (P), we can find a node c adjacent to f (P) such that

r1(Pi) ∈ ξ (c, f (P)). We depict one of such scenario in Figure 10. There, node

t plays again the role of threshold, B is the outcome of the SCF, f (P), nodes i,

i′ and j play the role of r1(Pi),r1(P′
i ) and r1(Pj) (for some j), respectively, and

finally nodes a and c will play the roles of alternatives a and c, mentioned below

and used for the Minimal Reversals Condition. The nodes in blue represent the

set ξ (c, f (P)). Once more, if we have only two players, then function f functions

exactly as a median rule, taking the median (on a tree) between t,r1(Pi) and r1(Pj).

We now make two claims:

Claim 1: t /∈ ξ (c, f (P)).

To see this, assume, by the way of contradiction, that both t,r1(Pi) ∈
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Figure A.4: Another example for Lemma 16

ξ (c, f (P)). Then we have that f (P) /∈ ⟨c, t⟩ 2 as well as f (P) /∈ ⟨c,r1(Pi)⟩ (by

the same reasoning). We can then use both of these results to conclude that

f (P) /∈ ⟨t,r1(Pi)⟩ 3. It follows then that f (P) ̸= βt(G({r1(P)}))], as by definition,

the projection of t must be a part of the path from every node of G({r1(P)}) to t.

This is a contradiction, so t /∈ ξ (c, f (P)) must be true.

Claim 2: if f (P′
i ,P−i) ̸= f (P) then r1(P′

i ) /∈ ξ (c, f (P)).

This can be verified easily from a diagram or from the knowledge that f

mimics a general median rule on a tree, but we can also formally check it in

two steps. The first step is to show that if f (P′
i ,P−i) ̸= f (P), then f (P) /∈

⟨r1(P′
i ), t⟩. This comes from the fact that both f (P) = βt(G({r1(P)})) and

f (P′
i ,P−i) = βt(G({r1(P′

i ,P−i)})). Thus, if f (P′
i ,P−i) ̸= f (P), the two projections

must be different. As f (P) = βt(G({r1(P)})) implies already that f (P) ∈ ⟨x, t⟩

for every x ∈ {r1(P−i)} and the only difference between {r1(P′
i ,P−i)} and {r1(P)}

is r1(P′
i ), we must have f (P) /∈ ⟨r1(P′

i ), t⟩, else we would have βt(G({r1(P)})) =

βt(G({r1(P′
i ,P−i)})).

2t ∈ ξ (c, f (P)) implies that c is in the middle of the path between t and f (P), which further
implies that f (P) is outside the path between t and c.

3This follows from the fact that ⟨t,r1(Pi)⟩ ⊂ ⟨t,c⟩∪ ⟨c,r1(Pi)⟩.
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The second step is to show that if r1(P′
i ) ∈ ξ (c, f (P)) then f (P) ∈ ⟨r1(P′

i ), t⟩.

This can be verified from [t /∈ ξ (c, f (P)) ∧ r1(P′
i ) ∈ ξ (c, f (P))]⇒ ⟨r1(P′

i ), t⟩ =

⟨r1(P′
i ), f (P)⟩∪ ⟨ f (P), t⟩ ⇒ f (P) ∈ ⟨r1(P′

i ), t⟩. Together, these steps show that if

f (P′
i ,P−i) ̸= f (P) then r1(P′

i ) /∈ ξ (c, f (P)).

Thus, from the two claims above, we can invoke the Minimal Reversals

Condition4 and state that if f (P′
i ,P−i) ̸= f (P), then (r1(Pi),r1(P′

i )) /∈ M f (P)
D and

thus MM is not violated . We conclude that MM holds for every change in the

outcome of the SCF constructed. ⋆

Proof of Proposition 1 We separate this proof into two Lemmas. Lemma 17

establishes a relation between the projection of the threshold node and breaches

containing it, while Lemma 18 completes the remaining steps of the proof.

Lemma 17: Let t be a threshold for G, δ be a maximal path not containing

t, (b,c) ∈ δ a pair of adjacent nodes and βt(δ ) the projection of t onto δ . Then

βt(δ ) ∈ ξ (b,c)⇒ t ∈ ξ (b,c).

Proof: First, fix δ = ⟨p,q⟩ and without loss of generality, assume that p /∈

ξ (b,c), as well as βt(δ ) ∈ ξ (b,c). Then by the definition of ξ (b,c) we have

that b ∈ ⟨βt(δ ),c⟩ and as b is adjacent to c and on the path δ , we have that

b,c ∈ ⟨p,βt(δ )⟩ (which should read as p,(...),c,b,(...),βt(δ )). Next, consider

the path ⟨p, t⟩. As p ∈ δ and βt(δ ) is the projection of t onto δ , this implies that

βt(δ ) ∈ ⟨p, t⟩. But then ⟨p, t⟩= ⟨p,βt(δ )⟩∪⟨βt(δ ), t⟩ and thus b,c ∈ ⟨p, t⟩. Since

p /∈ ξ (b,c)⇒ b /∈ ⟨p,c⟩ this implies b ∈ ⟨c, t⟩ ⇒ t ∈ ξ (b,c). ⋆.

4To use the Condition here, node f (P) plays the role of b, (r1(Pi),r1(P′
i )) play the role of (y,x),

c plays the same role as in the statement of the Condition, and the node adjacent to f (P) in the
path ⟨r1(P′

i ), f (P)⟩ plays the role of a.
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By our Theorem, we have that there is an alternative t in A such that together

with the Connectivity Graph G of the domain they form an admissible pair. Thus,

all that remains is to prove the statement below:

Lemma 18: Let D be a Strong Path-connected domain admitting a Well Behaved

SCF satisfying MM. Then, for all Pi ∈ D and for every path δ such that r1(Pi) ∈ δ

and βt(δ ) is a threshold node of δ we have:

• [ar,as ∈ δ such that ar,as ∈ ⟨r1(Pi),βt(δ )⟩ and ar ∈ ⟨r1(Pi),as⟩] ⇒ [arPias].

• [ar ∈ δ , βt(δ )≈ ar and ar /∈ ⟨r1(Pi),βt(δ )⟩] ⇒ [βt(δ )Piar]

Denote by a1,am the extreme nodes of δ , such that δ = ⟨a1,am⟩, as con-

ventioned so far. We start now the proof of the first statement by assuming

its conditions, that is, ar,as ∈ δ such that ar,as ∈ ⟨r1(Pi),βt(δ )⟩ and ar ∈

⟨r1(Pi),as⟩. Without loss of generality, assume that r1(Pi) ∈ ⟨a1,βt(δ )⟩. It

can then be easily verified that the alternatives in δ are arranged as follows:

a1, ...,r1(Pi), ...,ar, ...,as, ...,βt(δ ), ...,am. Now, index the alternatives in ⟨as,ar⟩

as {b j}k
j=0 with b0 = as, bk = ar and for every j < k, b j+1 is adjacent to b j and

to its left, so ⟨ar,as⟩ = ar,bk−1, ...,b1,as. We will now verify the conditions of

Lemma 15, as follows: let b1 play the role of alternative b in Lemma 15, r1(Pi)

play the role of y, b2 play the role of c and as play the role of a and x. We have

that βt(δ ) ∈ ξ (as,b1), which, by Lemma 17, implies that t ∈ ξ (as,b1) and, by

Lemma 13, t /∈ ξ (b1,as). Thus, all the conditions for Lemma 15 are verified and

we have (r1(Pi),as) /∈ Mb1
D . Hence, there must be at least one alternative ranked

below b1 in Pi that is not ranked below b1 in every preference that has as on top.

However, since the domain is Strong Path-Connected and b1 ≈ as, we know that

there is a preference with as on top where b1 is ranked second. Therefore, every
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other alternative except for as itself is ranked below b1 in this preference and thus,

we must have b1Pias. Now move to b2. Once more, we can invoke Lemmas 17,13

and 15 in an almost identical fashion to conclude that (r1(Pi),b1) /∈ Mb2
D , which,

by the same argument, should imply that b2Pib1 and thus b2Pias. We can repeat

these steps for every b j in the sequence and conclude that arPias. The arguments

for the case where r1(Pi) ∈ ⟨βt(δ ),am⟩ are mirrored for the case presented. This

completes the proof for the first property. The proof for the second property

follows the same idea: by Lemmas 17, 13 and 15, (r1(Pi),ar) /∈ Mβt(δ )
D , so there

must be at least one alternative ranked below βt(δ ) in Pi that is not ranked below

βt(δ ) in every preference that has ar on top. By the argument above, βt(δ ) ≈ ar

implies that this alternative must be ar and hence, βt(δ )Piar, concluding the proof.

⋆

Proof of Proposition 2: We start with the first part, that if a domain is Single-

Peaked on the tree G, then it satisfies the Minimum Reversals Condition for all

admissible pairs (G, t) that include G. As such, assume that we have an MD-

Connected domain that is Single-Peaked, and G denotes its Connectivity Graph.

Take any three distinct alternatives x,y,b with the property that b ∈ ⟨x,y⟩, and

let Px
i denote an arbitrary preference with r1(Px

i ) = x and Py
i its equivalent for

an arbitrary preference with y on top. Then the property from Single-Peakedness

implies that bPx
i y and bPy

i x. This, together with the fact that xPx
i b and yPy

i b implies

that (x,y),(y,x) /∈ Mb
D. Since x,y and b were picked arbitrarily, we have that for

any choice of t, the domain will satisfy the Minimum Reversals Condition.

The second part of the statement comes from Proposition 1: if the domain

is Strong Path-Connected with Connectivity Graph G and satisfies the Minimum
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Reversals Condition for a given admissible pair (G, t), then the domain is a Weak

Semi-Single-Peaked domain for that admissible pair. Thus, if the domain satisfies

the Minimum Reversals Condition for every admissible pair (G, t), this makes it

a Weak Semi-Single-Peaked domain with respect to all these admissible pairs,

which is the definition of a Single-Peaked domain on the graph G. ⋆

Proof of Proposition 3: From Proposition 2, if a domain is Strong Path-

Connected, satisfies the Minimum Reversals Condition of an admissible pair (G, t)

and is not a Single-Peaked domain, then there must be at least one node z ̸= t

such that the domain does not satisfy the Minimum Reversals Condition for the

admissible pair (G,z). Given the definition of a threshold node, this must mean

that there exists a breach (y,x) such that z ∈ ξ (y,x). Then, by Lemma 7, we can

show that any Well Behaved and Monotonic SCF defined on that domain must

violate No Veto Power. ⋆

Proof of Proposition 4: Let D be an MD-Connected domain that satisfies the

Minimum Reversals Condition and τD ∈ A its associated set of eligible thresholds,

with x,z being two distinct nodes such that x,z ∈ τD. Assume now that we have a

node y such that y ∈ ⟨x,z⟩, and, furthermore, assume that y ̸= x,z (else the proof

becomes trivial). Since G is a tree, we must have that, for any node c ∈ G, either

⟨x,c⟩ = ⟨x,y⟩∪ ⟨y,c⟩ or ⟨z,c⟩ = ⟨z,y⟩∪ ⟨y,c⟩. Thus, any node b ∈ ⟨y,c⟩ will also

belong to either ⟨x,c⟩ or ⟨z,c⟩. But since both x,z ∈ τD, this means that there is no

breach (b,c) such that b ∈ ⟨x,c⟩ or b ∈ ⟨z,c⟩. Hence, for every breach (b,c), we

cannot have b ∈ ⟨y,c⟩. This means that y is also not in the span of any breach, and

thus, y ∈ τD as well. ⋆
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Proof of Proposition 5: We want to verify that the domain D =DSSP∪Dp∪Dq

satisfies the Minimal Reversals Condition. First, note that, since SSP domains

have stronger restrictions on the preferences of the domain than Weak SSP

domains, whenever we can say that aPib for all Pi in some DWSSP ∈ DWSSP
(G,t) , it

will also be true that aPib for all Pi in DSSP ∈ DSSP
(G,t), that is, all preferences of

a SSP domain that has a matching admissible* pair. Thus, if there is no pair

Pi ∈DWSSP,P′
i ∈DSSP such that Pi 7→a P′

i , then there is no pair P′
i ,P

′′
i ∈DSSP such

that P′′
i 7→a P′

i .

Assume now, by the way of contradiction, that D does not satisfy the

Minimal Reversals Condition. Then there must be a pair of preferences Px
i ,P

y
i ,

with r1(Px
i ) = x,r1(P

y
i ) = y and a triple of adjacent nodes a,b,c such that x ∈

ξ (a,b), y ∈ ξ (c,b), t /∈ ξ (c,b) and Py
i 7→b Px

i .

Next, we claim that if Py
i ∈DWSSP, then Px

i ∈DSSP, as x ∈ ξ (a,b), y ∈ ξ (c,b)

implies that x and y cannot be adjacent, and, by assumption, p and q are adjacent

and if r1(Px
i ) ̸= p,q, then Px

i /∈ DWSSP. Similarly, if Px
i ∈ DWSSP, then Py

i ∈ DSSP,

by the same argument.

Another consequence of x ∈ ξ (a,b), y ∈ ξ (c,b) is that b ∈ ⟨x,y⟩. Let then

δ be a maximal path in G containing ⟨x,y⟩, and βt(δ ) be the projection of the

threshold on path δ . There are exactly two possibilities for the relative disposition

of nodes x,y,a,b,c,βt(δ ) on the path δ , as, per Lemma 17, t /∈ ξ (c,b) implies

βt(δ ) /∈ ξ (c,b). The first is that we have βt(δ ), ...,x, ...,a,b,c, ...,y, and the second

is that we have x, ...,βt(δ ), ...,a,b,c, ...,y.

Assume first that we have βt(δ ), ...,x, ...,a,b,c, ...,y, and, additionally, that

Py
i ∈ DWSSP, which, as shown above, implies that Px

i ∈ DSSP. By the properties

of Weak SSP domains, we have bPy
i x, while by the definition of Px

i we also have
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xPx
i b. Thus, b does not maintain its position in this case. Now assume that Px

i ∈

DWSSP and Py
i ∈ DSSP. Since bPy

i x held for Py
i ∈ DWSSP, as discussed above,

this should still hold for Py
i ∈ DSSP. Similarly, xPx

i b also holds in this scenario,

and we can reach the same conclusion as before. Lastly, the case where both

Px
i ,P

y
i ∈ DSSP, as discussed above, is handled by the first case. Thus, for all

possible properties of Px
i and Py

i , we have that alternative b does not maintain its

position here.

Next, assume that we have now x, ...,βt(δ ), ...,a,b,c, ...,y, and, additionally,

that Py
i ∈ DWSSP, which, once more, implies that Px

i ∈ DSSP. By the properties

of Weak SSP domains, we have that bPy
i βt(δ ). Similarly, by the properties of

SSP domains, we have that βt(δ )Px
i b. So, b does not maintain its position in

this scenario. As argued above, this conclusion also holds for the case where both

Px
i ,P

y
i ∈DSSP. Now, consider the last possible scenario, where Px

i ∈DWSSP. Then,

by the properties of SSP domains, bPy
i x, while by the definition of Px

i , we have

xPx
i b. This implies that b does not maintain its position in all possible scenarios.

Hence, assuming that D does not satisfy the Minimal Reversals Condition

imply a contradiction, concluding the proof. ⋆
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Appendix B

Appendix B covers the proofs for Chapter 3. We start with Lemmas 19 to 25

covering the necessity part, Lemma 26 proves the relation between veto power

and eligible thresholds, Lemma 27 covers the sufficiency part of the result and

finally we have the proof of Proposition 6.

Lemma 19: For any x ∈ G and y ∈ α(x), ξ (x,y) is a connected subgraph.

Proof: For any a ∈ ξ (x,y), we have that ⟨a,x⟩ ⊂ ξ (x,y), since b ∈ ⟨a,x⟩ ∩

ξ (x,y)C ⇒ x /∈ ⟨b,y⟩ (by definition of ξ (x,y)) and x /∈ ⟨a,b⟩ (by uniqueness

of ⟨a,x⟩). But that implies that x /∈ ⟨a,y⟩ ⊂ ⟨a,b⟩ ∪ ⟨b,y⟩, which contradicts

a ∈ ξ (x,y).

Now take any pair of alternatives a,b ∈ ξ (x,y). By the above statement,

⟨a,x⟩,⟨b,x⟩ ⊂ ξ (x,y). Hence, ⟨a,b⟩ ⊂ ⟨a,x⟩∪ ⟨x,b⟩ ⊂ ξ (x,y), which shows that

indeed for any two alternatives in ξ (x,y), the path between them is also in ξ (x,y),

i.e., ξ (x,y) is a connected subgraph. ⋆

Lemma 20: Given a set of alternatives λ , let v(λ ,P) =∑k∈λ v(k,P). For any x∈

A and y ∈ α(x), given f , there is a number v∗f (ξ (y,x)) such that f (P) ∈ ξ (y,x)⇔
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v(ξ (y,x),P)≥ v∗f (ξ (y,x)).

Proof: Let the set Φyx ⊂ N be defined as vyx ∈ Φx ⇔ ∃P′ : v(ξ (y,x),P′) = vyx

and f (P′) ∈ ξ (y,x). By Unanimity, the set Φyx is not empty and because there is

a finite number of voters, there is a minimal element to this set, call it v∗f (ξ (y,x)).

Fix an arbitrary profile P with v(ξ (y,x),P) = v∗f (ξ (y,x)), and let P′ be one of

the profiles implied by the definition of v∗f (ξ (y,x)), such that f (P′) ∈ ξ (y,x). We

want to show that f (P) is also inside ξ (y,x). To do so, we will first construct an

intermediate profile, P∗ that yields the same outcome as P′. First, since the sum of

votes of alternatives in ξ (y,x) is the same both in P and P′, this means that the sum

of the alternatives outside of ξ (y,x) is also the same in both profiles. Then let the

profile P∗ be such that v(a,P∗) = v(a,P′) for any a∈ ξ (y,x) and v(b,P∗) = v(b,P)

for any b /∈ ξ (y,x). Next, by Lemmas 13 and 19, all the alternatives that are

not part of ξ (y,x) are connected, and then by (the first part of) Lemma 5, these

alternatives share votes under any alternative in ξ (y,x). We can then apply Lemma

2 to have that f (P∗) = f (P′), as we wanted. To establish that f (P) ∈ ξ (y,x) and

complete the proof, we will show that whenever this is not true, we must have

f (P) = f (P∗), contradicting the fact that f (P∗) is also inside ξ (y,x). This can

be verified as follows: by Lemma 19, ξ (y,x) is a connected set, then by Lemma

5 the alternatives in ξ (y,x) share votes under any alternative outside of ξ (y,x)

(such as f (P)). Finally, since the sum of votes for alternatives in the set ξ (y,x)

is equal across P and P∗, we can apply Lemma 2 to have that f (P∗) = f (P),

which contradicts the earlier finding that f (P∗) ∈ ξ (y,x). Thus, we must have

f (P) ∈ ξ (y,x).

The case where v(ξ (y,x),P)≥ v∗f (ξ (y,x)) follows a similar argument used for
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this step in Lemma 3. Since we already have a profile that selects an alternative in

ξ (y,x) with v∗f (ξ (y,x)) votes among those alternatives, if we have even more votes

we can simply use Fact 1 and Lemma 1 to pass these extra votes to alternative

f (P′) without altering the outcome. Thus, we can establish a profile f (P′′) with

f (P′′) = f (P′) and v(ξ (y,x),P′′) = v(ξ (y,x),P), then follow the steps above to

prove that f (P) = f (P′′).

This establishes sufficiency part of the result. The necessity part comes from

the definition of v∗f (ξ (y,x)) as the minimal element of the set Φyx. ⋆

Lemma 21: Let Ξ = {ξ | ∃ x ∈ G,y ∈ α(x) : ξ = ξ (x,y)}. Then, for any ξ ∈ Ξ,

v∗f (ξ )+ v∗f (ξ
C) = n+1.

Proof: This proof is similar to what is shown in Step 3 of Lemma 4. Assume first

that v∗f (ξ )+v∗f (ξ
C)> n+1. Then we can find a profile P with v(ξ ,P)< v∗f (ξ ) and

v(ξC,P)< v∗f (ξ
C), such that f (P) is empty. Similarly, if v∗f (ξ )+ v∗f (ξ

C)< n+1

then we can find a profile P where v(ξ ,P) > v∗f (ξ ) and v(ξ X ,P) > v∗f (ξ
C) and

f (P) has two values. Neither scenario is allowed for a function, and thus the sum

v∗f (ξ )+ v∗f (ξ
C) must be equal to n+1. ⋆

Definition: For a given ξ ∈ Ξ (as defined above), let the number fξ (the number

of phantoms in ξ for SCF f ) be given by fξ = n− v∗f (ξ ).

Lemma 22: For any ξ ∈ Ξ, fξ + fξC = n−1.

Proof: This is a direct consequence of Lemma 21: fξ + fξC = n− v∗f (ξ )+n−

v∗f (ξ
C) = 2n− (v∗f (ξ )+ v∗f (ξ

C)) = 2n− (n+1) = n−1.
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Definition: For any node x ∈ G, let fx (the number of phantoms at node x for

SCF f ) be given by fx = n−1−∑y∈α(x) fξ (y,x)

Lemma 23: The following statements are true:

• fξ = ∑ j∈ξ f j.

• ∑x∈G fx = n−1.

Proof: We will start with the first point, and do a proof by induction on the

number of elements of the set ξ .

Assume the set ξ contains a single element, and call it x. As ξ ∈ Ξ ⇒ ξ =

ξ (x,y) for some y ∈ α(x), we must have that x is an extreme node. This comes

from the fact that any other node adjacent to x would belong to ξ (x,y). Then

fξ = fx = n−1− fξ (y,x). By Lemma 22, n−1− fξ (y,x) = fξ (x,y) = fξ , proving the

result.

Now assume that we have established that fξ ∗ = ∑ j∈ξ ∗ f j for any set ξ ∗ with k

elements or less. Consider now the case where ξ has k+1 elements. Once more,

because ξ ∈ Ξ,we have that there exists a pair of nodes (y,x) that are adjacent to

one another such that the set ξ is of the form ξ (y,x). This set can then be partioned

into ξ (y,x) = y∪ξ (z1,y)∪ ...∪ξ (z j,y), where the set {zi} j
i=1 = α(y)∩ξ (y,x) is

the set of nodes adjacents to y, excluding x (which we know is not empty, since

ξ has at least two elements). Since each ξ (zi,y) is a subset of ξ , they all have k

elements or less; moreover, they are all disjoint ξ (zp,y)∩ξ (zq,y) = /0 ∀p,q∈ [1, j]

and y is not a member of any of them.

Using the definition fy, we have then fy = n−1− fξ (y,x)−∑
j
i=1 fξ (zi,y). Using

Lemma 13 and 22, we have fy = fξ −∑
j
i=1 fξ (zi,y). Rearranging, we get fξ =
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fy+∑
j
i=1 fξ (zi,y). Using the induction hypothesis, we reach fξ = fy+∑ j∈ξ−y f j =

fξ = ∑ j∈ξ f j, concluding the proof.

The second statement now comes immediately from the first statement of this

Lemma and Lemma 22. ⋆.

Definition: A SCF f is a generalized median function on a tree G if it satisfies

all of the following properties:

• For each node x ∈ G, there is a number fx > 0 associated with it (called the

number of phantoms at node x).

• ∑x∈G fx = n−1.

• if f (P) = x, then ∑z∈ξ (y,x) v(z,P)+ fz < n, for all y ∈ α(x).

Lemma 24: Any SCF f defined on a MRC domain that is Well Behaved and

Monotonic is a generalized median function, with the tree corresponding to the

graph G used in the MRC.

Proof: The previous Lemmas proved already the first two properties. To

verify the last one, assume that f (P) = x and for some y ∈ α(x) we have

∑z∈ξ (y,x) v(z,P)+ fz ≥ n. Using Lemma 23, rewrite this expression as v(ξ (y,x),P)+

fξ (y,x) ≥ n. Rearrange it into v(ξ (y,x),P)≥ n− fξ (y,x). Now use the definition of

fξ (y,x) to get v(ξ (y,x),P) ≥ v∗f (ξ (y,x)). From the definition of v∗f (ξ (y,x)), this

implies f (P) ∈ ξ (y,x), which contradicts f (P) = x /∈ ξ (y,x). Hence, we cannot

have ∑z∈ξ (y,x) v(z,P)+ fz ≥ n. ⋆

Definition Let the set τD ⊂ A be defined as the set of all alternatives t such that

there is a graph G for which (G, t) is an admissible pair and domain D satisfies
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the Minimal Reversals Condition for that admissible pair. We call the set τD the

set of eligible thresholds for D.

Lemma 25 Let f be a generalized median function that is Monotonic on domain

D, which satisfies the MRC. Then, for all x /∈ τD we must have fx = 0.

Proof: Assume that x /∈ τD. Then, there is a breach (a j,a j+1) such that x ∈

ξ (a j,a j+1). Let a1 ∈ ξ (a j,a j+1) be any extreme node in ξ (a j,a j+1), and assume

now that fx > 0. By Lemma 7, we must have f (P(a1 = n−1,a j+1 = 1)) = a j+1,

but that contradicts the third property of a generalized median function on a tree,

as both a1,x∈ ξ (a j,a j+1) and thus v(a1,P(a1 = n−1,a j+1 = 1))+ fx ≥ n. Hence,

fx must be equal to 0. ⋆

Lemma 26 Let (b,c) be a breach in D and x ∈ ξ (b,c) be a node on the span

of that breach. Then there exists another alternative y ̸= x such that f (P(x =

n−1,y = 1)) ̸= x.

Proof: Let y ∈ ξ (c,b). By Lemma 25, for all z ∈ ξ (b,c) we have fz = 0. Thus,

we must have that fξ (c,b) = n− 1. As fξ (c,b)+ v(y,P(x = n− 1,y = 1)) = n we

have f (P(x = n−1,y = 1))∈ ξ (c,b). The conclusion then follows from ξ (c,b) =

ξ (b,c)C. ⋆

Corollary: If an alternative cannot be vetoed, then that alternative must be in

the set of eligible thresholds for D, τD.

Lemma 27: If f is a generalized median function on the tree G and D is a

domain that satisfies the Minimum Reversals Condition for every admissible pair
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(G, t) such that ft > 0, then f is Monotonic on D .

Proof: We prove this Lemma by showing that, for every profile P such that the

outcome f (P) can be changed by a single voter changing his vote, that change

does not violate Monotonicity, as defined in Claim 1.

Thus, assume that we have a profile P and a profile P′ such that r1(P1) ̸=

r1(P′
1), Pi = P′

i for every i > 1, and f (P) ̸= f (P′). Furthermore, to make notation

easier, call r1(P1) = y and r1(P′
1) = x. So, at profile P, the first voter votes for y

and the outcome is f (P), but if he changes his vote to x (and all other voters keep

their votes the same), the outcome changes to f (P′).

First, we take care of a simple case, where y = f (P). Clearly, f (P) does not

maintain its position in this change of preferences, and thus, Monotonicity is not

violated here. Hence, assume from now on that f (P) ̸= y.

Now, since f is a generalized median rule on G, there must be nodes c,a ∈

α( f (P)), a ̸= c such that x ∈ ξ (a, f (P)) and y ∈ ξ (c, f (P)). Furthermore, since

∑z∈ξ (c, f (P)) fz = n−1 would imply ∑z∈ξ (c, f (P)) v(z,P)+ fz ≥ n (contradicting the

assumption that f is a generalized median function) we must have at least one

node t such that ft > 0 and t /∈ ξ (c, f (P)). By assumption, ft > 0 implies that

the domain D satisfies the Minimum Reversals Condition for the admissible pair

(G, t). In turn, t /∈ ξ (c, f (P)) implies that (y,x) /∈ M f (P)
D . Hence, f (P) must

not maintain its position when going from any preference with y on top to any

preference with x on top. Thus, f is Monotonic on domain D . ⋆.

Proof of Proposition 6: We proceed in a series of steps.

Step 1: If D is not a SSP domain for any (G, t), then for every t ∈ τD we must
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have a preference Pi and a node q, q ̸= r1(Pi) with the following properties:

• If δ is a maximal path containing both r1(Pi) and q, then, βt(δ )∈ ⟨r1(Pi),q⟩.

• q /∈ α(βt(δ )).

• qPiβt(δ ).

Since D is a Strong Path-Connected domain and satisfy the MRC for the

admissible pair (G, t), according to Proposition 1 of Ramos (2022), D is also a

Weak Semi-Single-Peaked domain with regard to (G, t). Comparing the properties

of a WSSP and a SSP domain, it must be the case that if D is not a SSP domain

for (G, t), there must be some preference Pi and some node q such that all three

statements above are true.

Step 2: Let δ be an arbitrary maximal path, and x,y,b,c nodes with the

following properties: x,y ∈ δ , c /∈ δ , b ∈ α(c) and x ∈ ξ (b,c). Then y ∈ ξ (b,c).

We decompose ⟨x,c⟩ as ⟨x,βc(δ )⟩ ∪ ⟨βc(δ ),c⟩. Hence, x ∈ ξ (b,c) implies

b ∈ ⟨x,βc(δ )⟩ or b ∈ ⟨βc(δ ),c⟩. Assume it is the first case. Then, as b ∈ α(c)

we must have b = βc(δ ), which implies b ∈ ⟨y,c⟩ and thus y ∈ ξ (b,c), as desired.

Consider now the second case, b ∈ ⟨βc(δ ),c⟩. Then, as we can also decompose

⟨y,c⟩ into ⟨y,βc(δ )⟩∪⟨βc(δ ),c⟩, b∈ ⟨βc(δ ),c⟩ also implies that b∈ ⟨y,c⟩ and thus

y ∈ ξ (b,c), completing the proof.

Fix a generalized median function f on G that is Monotonic on D , and pick

one node t such that ft > 0. From Theorem 2, we must have t ∈ τD. From Step

1, we must have a preference Pi and a node q with the three properties described

on that Step. Take now a profile in which the first voter has preference Pi and all

other voters have preferences with q on top and call it P.
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Step 3: Show that f (P) ∈ δ , where δ is a maximal path containing both q and

r1(Pi).

Assume that f (P) is not on δ , and let b be any node adjacent to f (P) such that

q ∈ ξ (b, f (P)). Then, by Step 2 above, we also have r1(Pi) ∈ ξ (b, f (P)). But as

the sum of votes between q and r1(Pi) is n, this violates one of the properties of

the generalized median functions on a tree, preventing that node from being the

outcome of f at profile P. Thus, we must have have f (P) ∈ δ .

Step 4: Show that f (P) ̸= q.

Assume that f (P) = q. Then, there must be some node t ′ such that ft ′ > 0 and

q ∈ ⟨βt ′(δ ),r1(Pi)⟩, else q cannot be the outcome of f at profile P. As βt(δ ) ∈

⟨q,r1(Pi)⟩, this also implies that βt(δ ) ∈ ⟨βt ′(δ ),r1(Pi)⟩. By the same arguments

used in Step 1, we must have that t ′ ∈ τD and thus, as D is a WSSP domain that

is also compatible with the admissible pair (G, t ′), we must have βt(δ )Piq, which

contradicts the earlier assumption that qPiβt(δ ). Thus, we must have f (P) ̸= q.

Step 5: Show that f (P) ∈ ⟨βt(δ ),q⟩/q.

Let δ0,δ1 be the extreme nodes (endpoints) of the maximal path δ . We can

decompose δ into ⟨δ0,q⟩∪⟨q,βt(δ )⟩∪⟨βt(δ ),δ1⟩. By Step 3, f (P) must be inside

one of these three segments. Assume first f (P) ∈ ⟨δ0,q⟩. As we know f (P) ̸= q

from Step 4, this implies we can find some node b ∈ α( f (P)) such that both

q,r1(Pi) ∈ ξ (b, f (P)). However, as seen on Step 3, this contradicts one of the

properties of generalized median functions on a tree. So this case is ruled out.

Now consider the case where f (P) ∈ ⟨βt(δ ),δ1⟩, with f (P) ̸= βt(δ ). Then, we

can find another b∈α( f (P)) such that q,βt(δ )∈ ξ (b, f (P)), which by Lemma 17,
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implies q, t ∈ ξ (b, f (P)). Since ft > 0, this again violates one of the properties of

generalized median functions on a tree. Thus, we must have f (P) ∈ ⟨βt(δ ),q⟩/q.

Step 6: Show that there is a node t ′ such that ft ′ > 0 and f (P) = βt ′(δ ).

If f (P) = βt(δ ), our proof is done, hence, assume f (P) ̸= βt(δ ). By Step 5

and the properties of the outcome of a generalized median on a tree, this means

that there must be another node t1 such that ft1 > 0 and βt1(δ ) ∈ ⟨q,βt(δ )⟩. As

this is true for every other node between βt(δ ) and βt1(δ ), none of them can be

f (P) either. We then check if f (P) = βt1(δ ). If it is, our proof again is complete.

If it is not, then once more there must exist another node t2 such that ft2 > 0 and

βt2(δ ) ∈ ⟨q,βt1(δ ). Again, as this will be true for every node between βt1(δ ) and

βt2(δ ), none of them can be f (P) either. So we check if f (P) = βt2(δ ). If it is our

proof again is complete. If not, we iterate this argument. As it can be seen, the

only suitable candidates for f (P) in the interval ⟨βt(δ ),q⟩/q are nodes which are

projections of a node t ′ with ft ′ > 0, and since this process must be finite, there

will be eventually a node that matches the desired criteria.

Step 7: Show that qPi f (P).

First, f (P) ∈ ⟨βt(δ ),q⟩/q and βt(δ ) ∈ ⟨q,r1(Pi)⟩ together imply that βt(δ ) ∈

⟨ f (P),r1(Pi)⟩. Let now t ′ be the node implied by Step 6. Next, since ft ′ > 0, we

have, by Theorem 2, that t ′ ∈ τD and thus D is a WSSP domain with respect to

the admissible pair (G, t ′). Then, βt(δ )∈ ⟨ f (P),r1(Pi)⟩, along with f (P) = βt ′(δ )

implies βt(δ )Pi f (P). This, together with the assumption that qPiβt(δ ) implies

that qPi f (P), as desired.
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Step 8: Show that if f is a generalized median function on G that is Monotonic

on D , then f is not Strategy-Proof.

Fix a generalized median function f on G that is Monotonic on D , and pick

one node t such that ft > 0. From Theorem 2, we must have t ∈ τD. From Step

1, we must have a preference Pi and a node q with the three properties described

on that Step. Take now a profile in which the first voter has preference Pi and all

other voters have preferences with q on top and call it P. If all agents report their

true preferences at P, the outcome if f (P). However, if instead of announcing

his true preference, the first voter announces that q is his top-ranked alternative as

well (while all the other voters still announce their true preferences), the outcome

changes to q, as this is now an unanimous profile. By Step 7, qPi f (P), and thus,

this is a profitable manipulation for the first voter, showing that Strategy-Proofness

is violated for this profile. ⋆
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Appendix C

Appendix C covers the proof of Lemma 2 in Chapter 4. These steps are similar to

those involved in Lemma 8, except that since Lemma 2 deals with one particular

environment, the structure of the proofs is slightly less abstract. Step 1a: If there

exists x ∈ {0, . . . ,k−1} such that σ1(x)> 0, then σ2(x)> 0.

Proof of Step 1a: Assume by way of contradiction that there exists an integer

x ∈ {0, . . . ,k − 1} such that σ1(x) > 0 and σ2(x) = 0. Then, there are two

possibilities: either there exists x
′ ∈ {0, . . . ,k − 1}\{x} such that σ2(x

′
) > 0 or

σ2(k) = 1.

In the first case, let x
′ ∈ argmaxx′′∈{0,...,k−1}\{x}σ2(x

′′
). The expected payoff

for agent 1 when sending message x is

U1(x,σ2;θ
′
) =

 σ2(x+1)u1(b;θ
′
) if x < k−1

σ2(0)u1(b;θ
′
) if x = k−1,

where we take into account that ui(d;θ
′
) = 0. On the other hand, the expected
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payoff for agent 1 when sending message x
′
is given by

U1(x
′
,σ2;θ

′
) =

 σ2(x
′
)u1(a;θ

′
)+σ2(x

′
+1)u1(b;θ

′
) if x

′
< k−1

σ2(x
′
)u1(a;θ

′
)+σ2(0)u1(b;θ

′
) if x

′
= k−1

As u1(a,θ
′
) > u1(b,θ

′
) and σ2(x

′
) ≥ σ2(x + 1), sending message x

′
is strictly

better for agent 1 than sending x against σ2, thus contradicting the hypothesis that

message x is played with positive probability in the Nash equilibrium σ .

Consider the second possibility where agent 2 sends k with probability 1.

Then, agent 1’s expected payoff of sending message x is U1(x,σ2;θ
′
) = 0, while

agent 1’s expected payoff of sending message k is U1(σ2;k;θ
′
) = u1(c,θ

′
) > 0,

contradicting the hypothesis that message x is played with positive probability in

the Nash equilibrium σ . ■

Proof of Step 1b: Assume by way of contradiction that there exists x ∈

{0, . . . ,k−1} such that σ2(x)> 0 and σ1(x−1) = 0 if x ≥ 1 and σ1(k−1) = 0 if

x = 0. Then we decompose our argument into the following two cases: (i) there

exists x
′ ∈ {0, . . . ,k−1} such that σ1(x

′
)> 0 or (ii) σ1(k) = 1.

We first consider Case (i). We assume without loss of generality that x
′ ∈

argmaxx′′∈{0,...,k−1}σ1(x
′′
). Agent 2’s expected payoff of sending message x

against σ1 in the game Γ(θ
′
) is given by

U2(σ1,x;θ
′
) = σ1(x)u2(a;θ

′),

while agent 2’s expected payoff of sending message (x
′
+ 1 mod k) against σ1 in
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the game Γ(θ
′
) is given by

U2(σ1,x
′
+1 mod k;θ

′
)=

 σ1(x
′
)u2(b;θ

′
)+σ1(x

′
+1)u2(a;θ

′
) if x

′
< k−1

σ1(x
′
)u2(b;θ

′
)+σ1(0)u2(a;θ

′
) if x

′
= k−1,

where we take into account that u2(d;θ
′
) = 0. Since u2(b;θ

′
)> u2(a;θ

′
)> 0, due

to the way x
′

is defined, we have U2(σ1,x
′
+ 1 mod k;θ

′
) > U2(σ1,x;θ

′
), which

contradicts the hypothesis that message x is sent with positive probability in the

Nash equilibrium σ .

We next consider Case (ii). Agent 2’s expected payoff of sending message x

against σ1 in the game Γ(θ
′
) is given by

U2(σ1,x;θ
′
) = 0,

where we take into account that u2(d;θ
′
) = 0. On the contrary, agent 2’s expected

payoff of sending message k against σ1 in the game Γ(θ
′
) is given by

U2(σ1,k;θ
′
) = u2(c;θ

′
).

Since u2(c;θ
′
)> u2(d;θ

′
) = 0, we have U2(σ1,k;θ

′
)>U2(σ1,x;θ

′
), contradict-

ing the hypothesis that message x is sent with positive probability in the Nash

equilibrium σ in the game Γ(θ
′
). ■

Proof of Step 1c: Assume first that i= 1; that is, there exists x
′ ∈{0, . . . ,k−1}

such that σ1(x
′
) > 0. By Step 1a, we first have that σ2(x

′
) > 0. Second, by Step

1b, σ2(x
′
) > 0 implies σ1(x

′ − 1) > 0 if x
′ ≥ 1 and σ1(k) > 0 if x

′
= 0. Third,
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using Step 1a once again, we conclude that σ2(x
′ −1)> 0 if x

′ ≥ 1 and σ2(k)> 0

if x
′
= 0. Finally, iterating this argument, we are able to conclude that σ1(x) > 0

and σ2(x)> 0 for all x ∈ {0, . . . ,k−1}.

The case where i = 2 is analogous to the previous one, only that we start the

loop by applying Step 1b first, before Step 1a. This completes the proof of Step

1c. ■

Proof of Step 2: Assume by way of contradiction that there exist i ∈ N and

x,x
′ ∈ {0, . . . ,k − 1} such that σi(x) > σi(x

′
) > 0. By Step 1c, we know that

σi(x̃) > 0 for all x̃ ∈ {0, . . . ,k− 1}. Then, we can choose x and x
′

satisfying the

following property:

x ∈ arg max
x̃∈{0,...,k−1}

σi(x̃) and x
′
∈ arg min

x̃∈{0,...,k−1}
σi(x̃).

By Step 1c, we also know that σ j(x̃) > 0 for each x̃ ∈ {0, . . . ,k− 1}, where j ∈

{1,2}\{i}.

Assume that i = 2. The expected payoff for agent 1 of sending message x
′

against σ2 in the game Γ(θ
′
) is given by

U1(x
′
,σ2;θ

′
) =

 σ2(x
′
)u1(a;θ

′
)+σ2(x

′
+1)u1(b;θ

′
) if x

′
< k−1

σ2(x
′
)u1(a;θ

′
)+σ2(0)u1(b;θ

′
) if x

′
= k−1

On the other hand, The expected payoff for agent 1 of sending message x against
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σ2 in the game Γ(θ
′
) is given by

U1(x,σ2;θ
′
) =

 σ2(x)u1(a;θ
′
)+σ2(x+1)u1(b;θ

′
) if x < k−1

σ2(x)u1(a;θ
′
)+σ2(0)u1(b;θ

′
) if x = k−1.

We compute

U1(x,σ2;θ
′
)−U1(x

′
,σ2;θ

′
)

= [σ2(x)−σ2(x
′
)]u1(a;θ

′
)+ [σ2(x+1 mod k)−σ2(x′+1 mod k)]u1(b;θ

′
)

≥ [σ2(x)−σ2(x
′
)]u1(a;θ

′
)− [σ2(x)−σ2(x

′
)]u1(b;θ

′
)

(∵ [σ2(x+1 mod k)−σ2(x′+1 mod k)]≥−[σ2(x)−σ2(x
′
)],u1(b;θ

′
)> 0)

= [σ2(x)−σ2(x
′
)](u1(a;θ

′
)−u1(b;θ

′
)

> 0.

This implies that message x is a strictly better response for agent 1 against σ2 than

x
′
in the game Γ(θ

′
), contradicting the hypothesis that σ1(x

′
)> 0.

We next assume i = 1. The expected payoff for agent 2 of sending message

x
′
+1 against σ1 in the game Γ(θ

′
) is given by

U2(σ1,x
′
+1;θ

′
) =

 σ1(x
′
+1)u2(a;θ

′
)+σ1(x

′
)u1(b;θ

′
) if x

′
< k−1

σ1(0)u2(a;θ
′
)+σ1(x′)u1(b;θ

′
) if x

′
= k−1

On the other hand, The expected payoff for agent 2 of sending message x+ 1
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against σ1 in the game Γ(θ
′
) is given by

U2(σ1,x+1;θ
′
) =

 σ1(x+1)u1(a;θ
′
)+σ1(x)u2(b;θ

′
) if x < k−1

σ1(0)u1(a;θ
′
)+σ1(x)u2(b;θ

′
) if x = k−1.

We compute

U2(σ1,x+1;θ
′
)−U2(σ1,x

′
+1;θ

′
)

= [σ1(x+1)−σ1(x
′
+1)]u2(a;θ

′
)+ [σ1(x)−σ1(x′)]u2(b;θ

′
)

≥ [σ1(x+1)−σ1(x
′
+1)]u2(b;θ

′
)− [σ1(x)−σ1(x

′
)]u2(a;θ

′
)

(∵ [σ1(x+1 mod k)−σ1(x′+1) mod k)]≥−[σ1(x)−σ1(x
′
)],u2(a;θ

′
)> 0)

= [σ1(x)−σ1(x
′
)](u2(b;θ

′
)−u2(a;θ

′
))

> 0.

This implies that message x+1 is a strictly better response for agent 2 against σ2

than x
′
+ 1 in the game Γ(θ

′
), contradicting the hypothesis that σ2(x

′
+ 1) > 0.

This completes the proof of Step 2. ■
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