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Learning to interpret knowledge from software Q&A sites

Bowen Xu

Abstract

Software question and answer (SQA) data has become a treasure for software

engineering as it contains a huge volume of programming knowledge. That

knowledge can be interpreted in many di↵erent ways to support various soft-

ware activities, like code recommendation and program repair. In this disser-

tation, we interpret SQA data by addressing three novel research problems.

The first research problem is about linkable knowledge unit prediction. In

this problem, a question and its answers within a post in Stack Overflow are

considered as a knowledge unit (KU). KUs often contain semantically rele-

vant knowledge, and thus linkable for di↵erent purposes. Being able to classify

di↵erent classes of linkable knowledge units would support more targeted infor-

mation needs when users search or explore the linkable knowledge. Compare

with the prior approaches, we design a relatively simpler but more e↵ective

machine learning model to address the problem. Moreover, we discover the

limitation of the dataset used in the previous works and construct a new one

with a larger size and higher diversity. Our experimental result shows that our

model outperforms the state-of-the-art approaches significantly.

The second research problem is about distributed representation for Stack

Overflow posts. Past studies have proposed solutions that analyze Stack Over-

flow content to help users find desired information or aid various downstream

software engineering tasks. We find that a common step performed by those

solutions is to extract suitable representations of posts. Intuitively, the qual-

ity of the representations of posts determines the e↵ectiveness of the solutions

in performing the respective tasks. In this dissertation, to aid existing stud-

ies that analyze Stack Overflow posts, we propose a specialized deep learning



architecture Post2Vec which extracts distributed representations of Stack

Overflow posts. Post2Vec is aware of di↵erent types of content present

in Stack Overflow posts, i.e., title, description, and code snippets, and inte-

grates them seamlessly to learn post representations. To evaluate the quality of

Post2Vec’s deep learning architecture, we first investigate its end-to-end ef-

fectiveness in tag recommendation task. We observe that Post2Vec achieves

significant improvement on the e↵ectiveness at a lower computational cost than

the state-of-the-art approaches. Moreover, to evaluate the value of representa-

tions learned by Post2Vec, we use them for three other tasks, i.e., relatedness

prediction, post classification, and API recommendation. We demonstrate that

the representations can be used to boost the e↵ectiveness of state-of-the-art

solutions for the three tasks by substantial margins.

The third research problem is about answer summary generation for tech-

nical questions. Although search engines can return a list of questions relevant

to a user query of some technical question, the abundance of relevant posts

and the sheer amount of information in them makes it di�cult for developers

to digest them and find the most needed answers to their questions. Thus,

we aim to help developers who want to quickly capture the key points of sev-

eral answer posts relevant to a technical question before they read the details

of the posts. We formulate the task as a query-focused multi-answer-posts

summarization task for a given technical question. Our proposed approach

AnswerBot contains three main steps : 1) relevant question retrieval, 2)

useful answer paragraph selection, 3) diverse answer summary generation. We

conduct user studies to evaluate the quality of the answer summaries gener-

ated by our approach, and the e↵ectiveness of its relevant question retrieval

and answer paragraph selection components. The results demonstrate those

answer summaries generated by AnswerBot are relevant, useful, and diverse;

moreover, the two components can e↵ectively retrieve relevant questions and

select salient answer paragraphs for summarization.
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Chapter 1

Introduction

1.1 Motivation

In recent years, software question and answer (SQA) sites have grown rapidly

and nowadays they already become an essential part of developers’ day-to-day

work for various purposes, e.g., problem-solving and self-learning. Particularly,

Stack Overflow is the most popular and also the largest SQA site1. According

to the latest developers survey of SO2, as of July 2020, it already has over 13

million registered users and 20 million questions. Moreover, about 50 million

people visit Stack Overflow each month and more than 7.5 thousand questions

are raised every day. The huge amount of data in SQA sites constitutes a core

knowledge asset for the software engineering domain. At the same time, based

on the data in SQA sites, a large number of machine learning approaches have

been proposed to interpret and make use of the knowledge from those sites. For

example, some works aim to boost SQA sites by improving relevant question

retrieval [118, 20], post classification [3, 10], and tag recommendation [114,

105]. Also, there are various works that propose solutions to automate software

development activities by leveraging SQA data, e.g., program repair [65, 132],

refactoring [98, 112], etc.

1
https://stackoverflow.com

2
https://insights.stackoverflow.com/survey/2020

1



n this dissertation, extending on the body of work that analyzes SQA,

we propose the following three new angles to interpret knowledge from SQA

sites: knowledge linking, representation, and summarization. We refer to a

Stack Overflow thread consisting of a question along with all its answers as

a knowledge unit. As shown in Figure 1.1, knowledge representation focuses

on producing meaningful distributed representation for individual knowledge

units, knowledge linking aims to identify the relatedness between any pair of

knowledge units, and knowledge summarization is mainly about generating

summary based on a cluster of related knowledge units. For each of them, we

raise a specific research problem as follows.

Representation

Linking

Summarization

Knowledge Unit

Figure 1.1: Three Angles to Interpret Knowledge Units in Software Q&A Sites

1. Knowledge linking. The research problem for knowledge linking is

about linkable knowledge unit prediction. In this problem, following [126],

we consider a question and its answers within a post in Stack Overflow

as a knowledge unit. Knowledge units often contain semantically relevant

knowledge, and thus linkable for di↵erent purposes. Being able to clas-

sifying di↵erent classes of linkable knowledge units would support more

targeted information needs when users search or explore the linkable



knowledge. For example, duplicate questions allow users to understand

a problem from di↵erent aspects, directly linkable questions help explain

concepts or sub-steps of a complex problem, while indirectly-linkable

questions provide extended knowledge. Prior works [94, 75] focus on bi-

nary relatedness (i.e., related or not), and are not robust to recognize

di↵erent classes of semantic relatedness when linkable knowledge units

share few words in common. In [119], Xu et al. used a deep neural

network (DNN) technique to classify the degree of relatedness between

two knowledge units (question-answer threads) on Stack Overflow. More

recently, extending Xu et al.’s work, Fu and Menzies proposed a sim-

pler classification technique based on a fine-tuned support vector ma-

chine (SVM) that achieves similar performance but in a much shorter

time [29]. Thus, they suggested that researchers need to compare their

sophisticated methods against simpler alternatives. However, we found

that both Xu et. al. [119], and Fu and Menzies [29] perform experiments

on a small dataset that contains only 8,000 pairs of knowledge units.

Thus, it motivates us to further extend the research problem and aim to

replicate the previous studies and further investigate the validity of Fu

and Menzies’ claim by evaluating the DNN- and SVM-based approaches

on a larger dataset.

2. Knowledge representation. The research problem for knowledge rep-

resentation is about distributed representation for Stack Overflow posts.

Past studies have proposed solutions that analyze Stack Overflow con-

tent to help users find desired information or aid various downstream

software engineering tasks. We found that a common step performed by

those solutions is to extract suitable representations of posts; typically, in

the form of meaningful vectors. These vectors are then used for di↵erent

tasks, for example, tag recommendation [114, 105], relatedness predic-

tion [119, 29], and post classification [10, 2]. Intuitively, following the



“garbage in, garbage out” principle, the quality of the vector representa-

tions of posts determines the e↵ectiveness of the solutions in performing

the respective tasks. It inspires us to propose an approach that learns

distributed representations of posts. Once the post representations are

learned, they can be used to boost the e↵ectiveness of many supervised

learning tasks, especially those rely only on a limited set of labeled data.

3. Knowledge summarization. The research problem for knowledge

summarization is about answer summary generation for technical ques-

tions. Although search engines can return a list of questions relevant to

a user query of some technical question, the abundance of relevant posts

and the sheer amount of information in them makes it di�cult for devel-

opers to digest them and find the most needed answers to their questions.

We survey 72 developers in two IT companies with two questions: (1)

whether you need a technique to provide direct answers when you post

a question/query online and why? and (2) what is your expectation of

the automatically generated answers, e.g., must the answers be accurate?

All the developers agree that they need some automated technique to

provide direct answers to a question/query posted online. The reasons

they give include (1) sometimes it is hard to describe the problem they

meet, so some hints would be useful, (2) there is too much noisy and

redundant information online, (3) the answers in long posts are hard to

find, and (4) even the answer they found may cover only one aspect of

the problem. Developers expect the answer generation tool to provide

a succinct and diverse summary of potential answers, which can help

them understand the problem and refine the queries/questions. Our sur-

vey reveals a great need to provide improved techniques for information

retrieval and exploration. Motivated by the survey result, we develop

an automated technique for generating answer summary to developers’

technical questions, instead of merely returning answer posts.



1.2 Contribution

The contributions of this dissertation are as follows:

• Linkable knowledge prediction. We replicate two prior studies on

predicting relatedness of Stack Overflow knowledge units using a much

larger and cleaner dataset [119, 29]. Our study confirms some findings

reported in prior works, highlights and explains some discrepancies, and

points out to challenges unsolved by prior works. To address one of the

challenges (i.e., high runtime cost of Xu et al.’s and Fu and Menzies’ ap-

proaches), we investigate the value of an alternative lightweight method

(SimBow). We demonstrate that it can outperform prior baselines in

terms of runtime cost by a large margin, while achieving a similar accu-

racy.

• Representations of Stack Overflow posts. We propose a specialized

deep learning architecture Post2Vec that learns vector representations

of SQA posts. To the best of our knowledge, this work is the first to

explore the learning of generic representation of SQA posts. We focus

on Stack Overflow posts, but the solution presented here can be easily

adapted for posts from other SQA sites. We empirically compare end-to-

end Post2Vec with the state-of-the-art neural network based approach

for tag recommendation task based on a 10 million posts dataset, and

demonstrate that Post2Vec can achieve 11-20% improvements and also

complete the learning process around 19 hours faster. We empirically in-

vestigate the benefit of considering code snippets for post representation,

by implementing a reduced version of Post2Vec that ignore code snip-

pets in posts (i.e., Post2Vec
�Code). The experimental results show that

the consideration of code snippets improves the quality of the learned

post representation. We empirically investigate the value of integrating

the post vectors generated by Post2Vec and feature vectors used by



two state-of-the-art approaches of two tasks (relatedness prediction and

post classification) and demonstrate substantial improvements.

• Answer summary generation for technical questions. We con-

duct a formative study to assess the necessity of automated question an-

swering techniques to provide answer summary to developers’ technical

questions. We formulate the problem of automated question answering

as a query-focused multi-answer-posts summarization task for an input

technical question. We propose a three-stage framework to solve the

task, i.e., 1) relevant question retrieval, 2) answer paragraphs selection,

3) answer summary generation. We conduct user studies to evaluate the

e↵ectiveness of our approach and its components, and identify several

areas for future improvements.

1.3 Dissertation Structure

The remaining part of this dissertation is as follows. We first review related

works in Chapter 2. Chapter 3 presents our work on linkable knowledge unit

prediction which we systematically compare traditional machine learning and

deep learning approaches. Chapter 4 describes our work on the distributed

representation of Stack Overflow posts. Chapter 5 presents our work on an-

swer summary generation for technique questions by leveraging Stack Overflow

data. Finally, we summarize our works and describe future research directions

(Chapter 6).



Chapter 2

Related Work

2.1 Overview of Interpreting Knowledge in SQA

In the literature, there are plenty of research works that have been done which

aim to interpret knowledge in SQA for software development. These works

analyze SQA knowledge for various purposes. For simplicity’s sake, we divide

all the purposes into two categories, “SQA knowledge design and usage” and

“SQA knowledge-based applications”. Next, we introduce related works for

the two categories respectively.

SQA knowledge design and usage. Many works aim to understand and

discover the SQA knowledge in a deeper way to indirectly serve for developers.

Ye et al. observed that due to the cross-reference of questions and answers

via URL, knowledge is di↵used in the Q&A site, forming a large knowledge

network [126]. And they further performed quantitative analysis to study the

structural and dynamic properties of the emergent knowledge network in Stack

Overflow. Through this study, they obtained an in-depth understanding of the

knowledge di↵usion process in Stack Overflow and exposed the implications of

URL sharing behavior for SQA site design, developers who use crowdsourced

knowledge in Stack Overflow, and future research on knowledge representation

and search. One of the most common reasons that two posts are linked in SQA

7



sites is because they are duplicate and many approaches have been proposed

for duplicate posts detection, e.g., [3, 89, 131]. For example, Ahasanuzzaman

et al. found that the top-3 reasons on why the duplicate posts are submitted

are (1) questioners do not search before they ask, (2) the title of the duplicate

questions do not match their questions, (3) compare with previous questions,

the question is for a di↵erent application or domain category [6]. And based on

the result, Ahasanuzzaman et al. proposed a classification approach that uses

a number of handcrafted features to identify duplicate questions. Moreover,

various types of analysis on SQA data have been performed on knowledge

sharing [31, 119], learning [129, 130], and searching [62, 18].

SQA knowledge-based applications. A large number of studies focus

on leveraging the knowledge in SQA for certain software tasks. Take code

search by leveraging SQA knowledge as an example, Mohammad and Chanchal

proposed a technique that automatically identifies relevant and specific API

classes from SQA sites for a programming task written as a natural language

query [82]. Similarly, Sirres et al. proposed a code search engine on top of

Stack Overflow and Github [90]. There are also many works that utilize SQA

knowledge for bug fixing. For example, Islam et al. studied 415 repairs from

Stack Overflow and Github to understand challenges in repairs and bug repair

patterns [47]. Moreover, they also contributed a benchmark of 667 deep neural

network (bug, repair) instances. Gao et al. proposed an automatic approach

to fix recurring crash bugs via analyzing SQA sites [30]. By extracting queries

from crash traces and retrieving a list of SQA posts, they analyze the pages

and generate edit scripts. Then they apply these scripts to target source code

and filter out the incorrect patches.

The three research topics of this dissertation cover both two above men-

tioned categories. More specifically, knowledge summarization aims to directly

serve developers while knowledge linking and representation target better man-

age the knowledge.



2.2 Knowledge Linking

Ye et al. defined a question and its answers on Stack Overflow as a knowledge

unit [126]. They found that knowledge units often contain semantically rele-

vant knowledge, and thus linkable for di↵erent purposes. Recognising di↵erent

classes of linkable knowledge would support more targeted information needs

when programmers search or explore the knowledge base. Naturally, the link-

able knowledge prediction problem is formulated as a multi-class classification

problem.

Xu et al. firstly demonstrate that being able to classify di↵erent classes

of linkable knowledge units would support more targeted information needs

when users search or explore the linkable knowledge [119]. For example, two

knowledge units will be labeled as duplicate if they talk about the same tech-

nical problems but in di↵erent ways. Then they divided all the relationships

between two knowledge units into four categories based on the relatedness,

duplicate, direct, indirect, and isolated. To identify related content, a convo-

lutional neural network (CNN) model can be trained to predict the relatedness

between knowledge unit pairs. The model first utilizes word embedding tech-

nique [71] to capture word-level semantics and represent knowledge units into

vectors. Then, the vectors are fed to a basic CNN which is used to capture the

sentence-level semantics. More recently, extending Xu et al.’s work, Fu and

Menzies proposed a simpler classification technique based on a fine-tuned sup-

port vector machine (SVM) that achieves similar performance but in a much

shorter time [29]. They adopt di↵erential evolution [95] as the tuning algo-

rithm for the SVM. Thus, they suggested that researchers need to compare

their sophisticated methods against simpler alternatives.

Previous approaches measure the text similarity between the content of

knowledge units and then map the similarity to a particular level of related-

ness. Thus, the problem is related to the pairwise multi-class document clas-

sification in the field of natural language processing (NLP). There are many



document similarity measurements that have been proposed in the NLP do-

main. Typically, the documents are represented as numeral features that can

be calculated directly, e.g., bag-of-words model. And then, distance measures

are used to compute the similarity, e.g., cosine distance. The most related

work is that Ostendor↵ et al. built a new dataset for predicting the rela-

tionships (e.g., country of citizenship, di↵erent from) between pairs of main

entities in Wikipedia articles into nine categories based on their content [76].

And they investigated a series of techniques, such as GloVe [78], Paragraph-

Vectors [57], vanilla BERT [25], and vanilla XLNet [122]. They find that

vanilla BERT achieves the best performance. The above mentioned and more

recent approaches should be taken into consideration as baselines for linkable

knowledge units prediction in the future works.

To tackle the problem, the approach we proposed in this dissertation aims

to not achieve better e↵ectiveness but also be more scalable than the exist-

ing approaches. To achieve this, we design more e↵ective handcraft feature

representation for knowledge units and utilize a scalable variant of SVM clas-

sifiers at the same time. For more details, please refer to Chapter 3 (Linkable

Knowledge Prediction).

2.3 Knowledge Representation

To serve certain tasks, knowledge in SQA sites are represented in various ways

which are designed to carry meaningful features. Intuitively, the better repre-

sentation for the knowledge tends to better performance of approaches.

One of the most common means for knowledge representation is treating

knowledge (or knowledge units) as text and applying various text representa-

tion techniques from the field of natural language processing. For example,

Xia et al. proposed a tag prediction approach for Stack Overflow posts named

TagCombine. It uses the bag-of-words (BOW) model to represent posts [114].



Another example is relevant question retrieval in Stack Overflow, Xu et al.

propose an approach that represents a Stack Overflow question as a set of key-

words [118]. Fischer et al. utilized the TF-IDF model to represent code snip-

pets in Stack Overflow and evaluated their security score by using a stochas-

tic gradient descent classifier [28]. The above-mentioned text representation

techniques belong to a family of the text representation techniques named dis-

crete text representation, i.e., words are represented by their corresponding

indexes to their position in a dictionary from a larger corpus. The advantage

of discrete text representation is that it is easy to understand, implement,

and interpret. More recently, distributed text representations have gained

great attention which is typically learned by deep learning approaches. For

example, Zhou et al. have proposed four di↵erent deep learning approaches,

TagCNN, TagRNN, TagHAN and TagRCNN, which are based on convolutional

neural networks (CNN), recurrent neural networks (RNN), hierarchical atten-

tion networks (HAN), and recurrent convolutional neural network (RCNN),

respectively [133]. All four approaches concatenate the text in the title and

description of posts as the input data and then represent each post as a dis-

tributed vector to predict the posts’ tags. Chen et al. proposed an approach

based on word embeddings and convolutional neural network (CNN) to cap-

ture word and sentence-level semantics [20]. The approach was trained based

on pairs of posts with labeled relevance, each of the posts is represented as a

vector and the two vectors of the posts are mapped in a dual vector space. The

labeled relevance is used to guide the approach to embed semantically similar

posts close in vector space.

Di↵erent with above mentioned works, we propose a deep learning-based

approach to represent posts in a more general way. Thus, the learned represen-

tation can be further leveraged to serve multiple downstream tasks, e.g., API

recommendation. Moreover, to learn the knowledge representation with high

quality, we consider the knowledge units (i.e., posts) as structured data units



with multiple components and utilize di↵erent neural networks to learn the

representation of each component separately. Furthermore, we also address

several limitations of the existing approaches for knowledge representation.

For more details, please refer to Chapter 4 (Distributed Knowledge Represen-

tation).

2.4 Knowledge Summarization

In the field of NLP, there are many text summarization techniques that have

been proposed. There are two main forms of them, extractive and abstrac-

tive [74]. A typical extractive text summarization technique finds the most

informative sentences within a large body of text which are used to form a

summary (e.g., LexRank [27]) while a typical abstractive technique generates

concise phrases that are semantically consistent with the large body of text

(e.g., encoder-decoder recurrent neural network [73]).

In the literature, there are many works that focus on knowledge summa-

rization for SQA data, e.g., summarization for API and code snippets. For

API summarization, to investigate the usefulness of the APIs, Gias and Foutse

developed an extractive summarization approach that presents summaries of

opinions based on Stack Overflow [101]. Specifically, based on the API re-

views from developers in Stack Overflow, the approach generates summaries

of opinions for an API from a set of pre-defined aspects (e.g., performance,

security). For each aspect, a corresponding classifier (i.e., SVM) is built to

predict whether a given review belongs to the aspect. Another example is

code summarization, Peddamail et al. investigated the performance of two ab-

stractive code summarization approaches (Codenn [48] and DeepCom [44]) on

a dataset constructed based on Stack Overflow data [77]. The dataset is in the

form of a set of pairs and each pair corresponds to a natural language question,

code solution. Codenn uses an end-to-end generation system to perform con-



tent selection and surface realization jointly. The core component of Codenn

is a LSTM-based recurrent neural network with an attention mechanism [66],

which models the probability of a natural language summary conditioned on

the given code snippet. DeepCom is built upon advances in Neural Machine

Translation (NMT) by considering generating summaries in natural language

as a variant of the NMT problem, where code snippets written in a program-

ming language needs to be translated to text in natural language.

The knowledge summarization task formulated in this dissertation is dif-

ferent from the above mentioned tasks from several perspectives. First, we

focus on generating answer summaries for technical questions in general. In

other words, the query can be a mixture of text and code. Second, the above

mentioned works do not consider the redundancy across the di↵erent descrip-

tions of knowledge. In our approach design, we remove the redundancy by

calculating the similarity between knowledge description candidates and apply

a text summarization technique by Maximal Marginal Relevance (MMR) [14]

to select a most representative subset of them. For more details, please refer

to Chapter 5 (Automated Knowledge Summarization).



Chapter 3

Linkable Knowledge Prediction

3.1 Introduction

Using machine learning techniques in software engineering research has been

commonplace, such as [50, 96, 119] to name few. The applicability of machine

learning techniques depends on the hypothesis class that can be represented

by them. That is, the functions that they can represent. For examples, linear

regression models are very e↵ective for linearly separable problems (i.e., classes

can be separated with a single decision surface), but they cannot be used for

problems with higher complexity.

Neural networks constitute a powerful class of machine learning models

with large hypothesis class. For example, a multilayer feed-forward network is

called a universal approximator [42]; that is, it can essentially represent any

function. Deep neural networks methods are representation learning methods

that allow a method to use raw data and extract the representation of the

data [58]; it can substantially reduce the burden of feature engineering. Deep

learning has produced promising results in complex tasks such as object de-

tection [97], natural language understanding [87], text classification [56] and

many more.

Nowadays, there has been a surge in adoption of deep learning1 in software

1
We use two terms deep learning, and deep neural networks interchangeably.
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engineering research. It has been applied successfully to problems such as

[119, 35, 128]. A common issue raised in the application of deep learning

techniques is that sometimes deep neural networks are applied to problems

that do not require the rich, complex hypothesis class that deep learning o↵ers,

and simpler techniques can be used as e↵ectively instead. The simplicity of

models is desirable for two main reasons. First, simpler models are easier to

interpret and comprehend and comprehension of relations between variables

can a↵ord useful insights about the underlying phenomena. Second, simpler

models can be trained more e�ciently, and potentially with smaller dataset.

Recently, Xu et al. [119] and Fu and Menziess [29] investigated the problem

of predicting relatedness between Stack Overflow knowledge units. Xu et al.

use deep neural networks (DNN) for the task, while Fu and Menzies [29] use

a support vector machine (SVM) tuned by using di↵erential evolution (DE).

Fu and Menzies reported benefits of using the simpler model; that is, similar

accuracy can be achieved with lower runtime cost. In this paper, we replicate

the evaluation of the two techniques on the same software engineering task,

but using a much larger dataset. Our goal in this study is to evaluate the

consistency of claims made by these prior studies. Replication studies are often

instrumental to assess the validity of previous findings, uncover new insights,

as well as investigate the impact of some threats to validity a↵ecting prior

work [9].

In our experiments, we find that the dataset used to evaluate both ap-

proaches has a number of shortcomings. Once we addressed those shortcom-

ings, by creating a larger dataset that is subjected to a more thorough data

cleaning step, we observed that the performance of the both techniques (eval-

uated using F1-score) drops sharply by more than 20%. We found that still

Fu and Menzies’ SVM-based model performs slightly better than Xu et al.’s

DNN-based model – consistent with the findings in [29]. However, in terms

of time e�ciency, the runtime cost required to tune SVM using DE grows



by a large amount when the dataset is increased in size. As a result, the

performance benefit of using Fu and Menzies’ SVM-based model is no longer

observed when it is evaluated on the new dataset. Addressing this drawback,

we adapt a lightweight award-winning SVM-based model named SimBow [17]

for the task and evaluate its e↵ectiveness. We demonstrate that SimBow re-

quires much less runtime cost as compared to Xu et al. and Fu and Menzies

approaches, while achieving similar accuracy.

The contributions of this work are as follows:

• We replicate two previously presented studies on predicting relatedness of

Stack Overflow knowledge units using a much larger and cleaner dataset.

Our study confirms some findings reported in prior works, highlights

and explains some discrepancies, and points out to challenges unsolved

by prior works.

• To address one of the challenges (i.e., high runtime cost of Xu et al.’s and

Fu and Menzies’ approaches), we investigate the value of an alternative

lightweight method (SimBow). We demonstrate that it can outperform

prior baselines in terms of runtime cost by a large margin, while achieving

a similar accuracy.

3.2 Task and Evaluation Metrics

3.2.1 Predicting Relatedness in Stack Overflow

Software developers must solve numerous programming, algorithmic, and sys-

tem problems to write, maintain, or deploy programs. Knowledge about these

problems is dispersed in many books and user manuals that are hard to lo-

cate and use. Therefore, developers often use technical forums to use crowd’s

knowledge and seek solutions to those problems.

Among technical forums, Stack Overflow is the most popular resource for



programming related discussions. Stack Overflow reputation system has at-

tracted many developers to participate actively and contribute to this forum.

Most Stack Overflow questions are answered within 11 minutes after posting

them [68]. Stack Overflow allows users to search, post, or answer questions. It

also allows users to vote up and down questions and answers. Nowadays, Stack

Overflow is an indispensable tool for programmers; a recent study shows that

about 50 million developers visit it monthly, and over 85% users visit Stack

Overflow more than four times a week.2

Following Xu et al. [119], we refer to a Stack Overflow thread consisting of

a question along with all its answers as a knowledge unit (KU). Despite Stack

Overflow’s vibrant community, knowledge in Stack Overflow is disconnected

and developers must search for related knowledge units that provide additional

insights about their problem and possible solutions that can be very time-

consuming.

Figure 3.1: Linked Knowledge Units by URL Sharing

Identifying relatedness of knowledge units would accelerate developer’s abil-

2
Stack Overflow 2018 Developer Survey, https://insights.stackoverflow.com/

survey/2018/

https://insights.stackoverflow.com/survey/2018/
https://insights.stackoverflow.com/survey/2018/


Table 3.1: Classes of Knowledge Unit Pairs

Link Type Definition
Duplicate Two knowledge units discuss the same question in dif-

ferent ways, and can be answered by the same answer.
Direct One knowledge unit can help solve the problem in the

other knowledge unit, for example, by explaining certain
concepts, providing examples, or covering a sub-step for
solving a complex problem.

Indirect One knowledge unit provides related information, but
it does not directly answer the question in the other
knowledge unit.

Isolated The two knowledge units are not semantically related.

ity in navigating the rich and yet diverse information in Stack Overflow. Thus,

Stack Overflow encourages developers to link related knowledge units by URL

sharing [93]. Figure 3.1 shows a real example of how two knowledge units

are linked by developers. A network of linkable knowledge units constitutes

a knowledge unit network over time through URL sharing [125]. As shown

in Table 3.1, Xu et al. divided all the relationship between two knowledge

units into four categories based on relatedness, i.e., duplicate, direct, indirect

and isolated [119]. To identify related contents, a model can be trained to

predict the relatedness between KU pairs. There are multiple challenges for

predicting relatedness of KUs in Stack Overflow. First, there is informal, re-

dundant, irrelevant information in KUs. Secondly, in addition to natural text,

KUs contain source code, which is of a di↵erent nature. Thirdly, di↵erent de-

velopers exhibit di↵erent discursive habits in posting questions and answers;

e.g., some questions or answers are very terse, while some are very long and

tend to include much information.

Table 3.2 shows real examples of pairs of knowledge units with di↵erent

degrees of relatedness. The original knowledge unit is talking about String

comparison in Java. Another knowledge unit on Stack Overflow is labeled as

duplicate with the original knowledge unit because they actually talk about the

same problem but in di↵erent ways. Thus, the answers of original knowledge

unit and duplicate knowledge unit can be shared. Another knowledge unit



talks about a similar but not identical problem, i.e., how does == works in

case of String concatenation in Java. Thus, based on the definition, there is

a direct relationship between the two knowledge units. Consider yet another

knowledge unit that discusses memory change during string concatenation in

Java. We regard it as an indirect knowledge unit to the original knowledge unit,

because it is directly linked to one of the direct knowledge units of the original

knowledge unit. The order of semantic relatedness between two knowledge

units is: Duplicate > Direct > Indirect > Isolated. For the details of dataset

building, please refer to Section 3.4.

3.2.2 Evaluation Metrics

To evaluate the performance of the proposed approaches in the prediction

of relatedness between knowledge units, we use the same metrics as used in

previous works [119, 29], i.e., precision, recall and f1-score. In this task, the

classifier has to classify each pair of knowledge units into four classes. Table 3.3

depicts the confusion metrics when we have four classes.

Base on the confusion matrix, the definitions of precision, recall and F1-

score are as below:

Precision for a class i is the proportion of knowledge-unit pairs correctly clas-

sified as the class i among all pairs classified as the class i.

Precisionj =
CiiP

1jK
Cji

Recall for a class i is the percentage of knowledge-unit pairs correctly classified

as the class i compared with the number of ground truth label Li in the dataset.

Recalli =
CiiP

1jK
Cij



Table 3.2: Example of Duplicate, Direct, Indirect Knowledge Units Pairs

[Original KU] (https://stackoverflow.com/questions/513832)
Title How do I compare strings in Java?

Description

I’ve been using the == operator in my program to compare all my
strings so far.
However, I ran into a bug, changed one of them into .equals() in-
stead, and it fixed the bug.
Is == bad? When should it and should it not be used? What’s the
di↵erence?

[Duplicate KU] (https://stackoverflow.com/questions/3281448)
Title Strings in Java : equals vs ==

Description

String s1 = "andrei";

...

System.out.println((s1==s2) + " " + (s2==s3));

Giving the following code why is the second comparison s2 == s3
true ? What is actually s2.toString() returning ?
Where is actually located (s2.toString()) ?

[Direct KU] (https://stackoverflow.com/questions/34509566)
Title “==” in case of String concatenation in Java

Description

String a = "devender";

...

System.out.println(a == e); //case 3: o/p false

a & b both are pointing to the same String Literal in string constant
pool. So true in case 1

String d = "dev" + "ender";

should be internally using something like -

String d = new StringBuilder().append("dev")

.append("ender").toString();

How a & d are pointing to the same reference & not a & e ?
[Indirect KU] (https://stackoverflow.com/questions/11989261)
Title Does concatenating strings in Java always lead to new strings being

created in memory?

Description

I have a long string that doesn’t fit the width of the screen. For eg.

String longString = "This string is very long...";

To make it easier to read, I thought of writing it this way -

String longString = "This string is very long..."

+ "This string is very long..." + ...;

However, I realized that the second way uses string concatenation
and will create 5 new strings in memory and this
might lead to a performance hit. Is this the case? Or would the
compiler be smart enough to figure out that all I need
is really a single string? How could I avoid doing this?

https://stackoverflow.com/questions/513832
https://stackoverflow.com/questions/3281448
https://stackoverflow.com/questions/34509566
https://stackoverflow.com/questions/11989261


Table 3.3: Confusion Matrix

Predicted as
C1 C2 C3 C4

Actual Label

C1 C11 C12 C13 C14

C2 C21 C22 C23 C24

C3 C31 C32 C33 C34

C4 C41 C42 C43 C44

F1-score for a class i is a harmonic mean of precision and recall for that class.

F1i =
2⇥ Precisioni ⇥Recalli

Precisioni +Recalli

3.3 Replication

This section overviews the techniques for predicting relatedness. The tech-

niques are as follows, we refer to Xu et al., Fu and Menzies, and SimBow

techniques as CNN Model, Tuning SVM, and SoftSVM, respectively.

• CNN Model, Xu et al. [119]: Appeared in ASE 2016.

• Tuning SVM, Fu and Menzies [29]: Appeared in FSE 2017.

• SoftSVM, SimBow [17]: Appeared in SemEval-2017 Task 3: Commu-

nity Question Answering.

3.3.1 Xu et al.’s Study (CNN Model)

At ASE 2016, Xu et al. [119] presented the task of predicting relatedness of

knowledge units, and proposed a deep learning approach for it. In this section,

we briefly review their approach. For more technical details, please refer to

the original paper [119].

Deep learning is a class of machine learning techniques that can be used

for classification or regression tasks. Deep learning has produced impressive

results in domains such as image processing and natural language processing

where feature engineering has been traditionally challenging.



Deep learning trains a weighted neural network for the learning task. A

neural network comprises a group of interconnected neurons organized in mul-

tiple layers. A neuron is the smallest unit of computation in the networks.

Each neuron performs a dot product on the input vector X and weights vector

W , then, it adds the bias b; finally, it applies the activation function f (or

non-linearity) to the result.

ASE2016     03/09/2016 - 07/09/2016

Approach – ConvNet

1

Figure 3.2: CNN Architecture in CNN Model

Overview of Approach To predict the relatedness between knowledge units,

Xu et al. built a convolutional neural network (CNN) model [59] using a

word embedding trained on Stack Overflow data to capture low- and high-

level representations of KU pairs.

To extract low level (i.e., word-level) semantic features, each word is rep-

resented by a 200-dimension vector by utilizing a word2vec model [71]. The

word2vec model is created using a corpus of 100,000 Java knowledge units

(i.e., posts tagged with “java”). And continuous skip-gram model [71] is used

to learn domain-specific word embeddings from the corpora. The embeddings

for the words were initialized using the trained word embeddings. Zero vector

is used for padding the shorter sequences and representing the missing words

in the pre-trained vectors.

Then, a convolutional neural network model is built on top of that to ex-

tract high level (i.e., document-level) semantic features. The convolutional



neural network is a class of deep learning techniques, feed-forward artificial

neural networks. A convolutional neural network consists of an input and an

output layer, as well as hidden layers. The hidden layer’s parameters consist

of a set of learnable filters. Figure 3.2 shows the overview of the CNN model

which is fed by pairs of knowledge units as input and then uses CNN to extract

features from a knowledge unit (in the form of a sequence of word vectors).

The filters of five di↵erent window sizes (the number of adjacent words con-

sidered jointly, in their case, i.e., 1, 3, 5, 7, 9) are utilized to capture the most

informative n-grams in the text. For each window size, there are 128 filters to

learn complementary features from the same word windows. Relu is used as

activation function (i.e., Relu(x) = max(0, x)) and Max Pooling is used in the

sampling process.

The input of the model is two high-dimensional text vectors of two given

knowledge units and the output are two low-dimensional semantic feature vec-

tors. The relatedness between two knowledge units are computed as the fol-

lowing equation:

Relatedness(KUx, KUy) =
fvx · fvy

kfvxk kfvyk

where fvx and fvy denote two low-dimensional (in this case, 50-dimension)

feature vectors generated by CNN. Then, the loss is computed as the absolute

di↵erence between cosine similarity of two feature vectors and ground truth

relatedness.

Replication To replicate the experiments described in [119], we use the

source code released by Xu et al. 3 and apply it to our dataset. Although

the neural networks are usually trained using GPUs, the implementation of

this approach is CPU-based. In our replication, we ran the experiment on

a MacBook Pro with Intel(R) Core(TM) i7-4870HQ 2.5 GHz, 16GB RAM,

running macOS High Sierra(64-bit).

3https://github.com/XBWer/ase16-CNN

https://github.com/XBWer/ase16-CNN


3.3.2 Fu and Menzies’ Study (Tuning SVM)

In FSE 2017, Fu and Menzies [29] proposed a di↵erent technique for predicting

relatedness of pairs of knowledge units. This section provides a brief overview

of their technique.

Fu and Menzies argue that CNN models described in the Section 3.3.1 is

computationally too expensive for the task of predicting relatedness of knowl-

edge units. They propose tuned support vector machines for this problem.

Feature representation To represent a pair of knowledge units, Fu and

Menzies first build a corpus with 100,000 knowledge units and then train a

word embedding model. By querying the trained model, each word is converted

to its vector representation. Next, the whole knowledge unit is represented by

the mean of the word embeddings of the words in a knowledge unit.Then, a

pair of knowledge units is represented by the mean of the two knowledge unit

vectors which is used as the input data to SVM.

SVMs Support Vector Machines (SVMs) are supervised learning models

used mainly for classification. In their basic form, SVMs learn linear threshold

function. These learners seek to minimize misclassification errors by select-

ing a boundary or hyper-plane that leaves the maximum margin between two

classes [51].

Parameter Tuning Fu and Menzies [29] use word2vec representation [71] as

features and SVM as a classifier in this study. The word2vec model is trained

on 100,000 Java knowledge units in Stack Overflow using the skip-gram model.

They use di↵erential evolution (DE) [95] to tune the conventional support

vector machine model. Authors use the same training and testing knowledge

unit pairs as in Xu et al.’s study [119], where 6,400 pairs of knowledge units for

training and 1,600 pairs for testing. During the parameter tuning procedure,

10-fold cross-validation is performed to reduce the potential variance caused

by how the original training data is divided. Therefore, all the performance

scores used for tuning are averaged values over 10 runs. They use F1-score



to score the candidate parameters because it controls the trade-o↵s between

precision and recall.

Replication We carefully followed the steps outlined in [29] to replicate the

study. We used the source code released for Tuning SVM
4 and apply it to

our dataset. That is, we use the same word2vec as theirs and we also apply

DE to find the optimal parameters for the SVM training. The objective of the

parameter optimization is to maximize the F1-score of the underlying SVM.

Then the SVM model with optimal parameters is evaluated on testing data.

Unfortunately, Fu and Menzies’s implementation spent more than one week

without returning any result. We found that the approach executes through

10 pre-trained word2vec models with di↵erent seeds and perform 10 fold-cross

validation for each model. Thus, to further improve the time e�ciency, we

modify the code to execute the code on ten word2vec instances in parallel. We

deploy it on an HPC cluster with Intel Xeon E5-2680 v2 2.8 GHz CPUs, and

64 GB RAM nodes.

3.3.3 SimBow: A Lightweight Alternative (SoftSVM)

In this section, we describe the paper ”SimBow at SemEval-2017 Task 3: Soft-

Cosine Semantic Similarity between Questions for Community Question An-

swering” (SimBow). Author’s proposed approach is a supervised combination

of di↵erent unsupervised textual similarities such as soft-cosine similarity. Un-

like two previous system, this system is a re-ranking problem and is evaluated

on natural text from Qatar living forum. The task aims at re-ranking 10 re-

lated questions proposed by a search engine, regarding the relevance to the

original question.

Soft-Cosine Similarity Measure Classic cosine similarity measure be-

tween 2 vectors is directly related to the number of words which are in com-

mon in both which texts are represented by a vector of TF-IDF coe�cients

4https://github.com/WeiFoo/EasyOverHard

https://github.com/WeiFoo/EasyOverHard


(Equation 3.1).
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The problem with traditional cosine similarity is that when there are no words

in common between texts a and b, cosine similarity is null. However, two

texts can semantically convey the similar meaning by using di↵erent words.

This problem occurs repeatedly in our case where two semantically similar

questions are depicted in di↵erent ways. Therefore, cosine similarity alone

cannot be enough here.

Hence authors propose to take into account word-level relations by intro-

ducing the soft-cosine similarity formula with computing a relation matrix M,

as suggested in equation 3.2.
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where M is a matrix whose element mi,j expresses some relation between word

i and word j. When computing this metric, the similarity between two texts

is not null when the texts share related words, even if they have no words

in common. Di↵erent ways are suggested for computing the matrix M . To

obtain relevant semantic relations between words, authors compute soft-cosine

similarity features based on two pre-trained word embeddings (Qatar living

word2vec andWikipedia word2vec) and one based on the Edit distance. Matrix

M can be computed in di↵erent ways. Authors use the following equation(3.3)

for computing soft-cosine similarity based on word embedding.

mij = max(0, cosine(vi, vj))
2 (3.3)

where vi stands for the word2vec representation of word wi. Grounding to 0 is

to avoid having negative cosines between words and is obtained empirically.

Likewise, for Edit distance-based measure, the matrix M is calculated as



follows:

mij = ↵ ⇤ (1�
Levenshtein(wi, wj)

max(||wi||, ||wj||)
)� (3.4)

Where ||w|| is the number of characters of the word, ↵ is a weighting factor

relatively to diagonal elements, and � is a factor that enables to emphasize the

score dynamics. Authors set ↵ = 1.8 and � = 5 empirically.

SimBow for Relatedness Prediction We followed several simple, prepro-

cessing steps: We replaced URLs and numbers with URL and CC respectively.

Stop words and punctuations are removed and all letters are converted to low-

ercase. There are many technical terms in Stack Overflow so we need to have

more data specific preprocessing steps. Therefore besides mentioned prepro-

cessing steps, we split words by underline and capital letters. We also removed

characters like <, >, ( and ).

We re-implement the SimBow’s features from scratch on Stack Overflow

data. In total four di↵erent features are extracted from the text. Cosine

similarity, soft-cosine similarity based on Stack Overflow data (soft-SO), soft-

cosine similarity based on pre-trained Google word2vec (soft-Google) [71] and

soft-cosine similarity based on Levenshtein distance (soft-Edit).

For soft-cosine similarity features based on word embedding and based on

Edit distance, we follow the same formulations as in SimBow. To compute soft-

cosine similarity based on Stack Overflow data (soft-SO), we train a word2vec

model on 223,466 knowledge units tagged with java from Stack Overflow posts

table (include titles, bodies and answers). The skip-gram model [72] is used

with vectors dimension 200 and only the words with a minimum frequency of

20 are taken into account.

We apply the same algorithm suggested for weighting the word2vec vectors

with TF-IDF, where IDF is derived from the train and development sets.

We train a SVM model to classify question pairs into four classes. We

tune the regularization parameter (C) using grid search technique over the

best feature combination that includes all of the four extracted features. We



Table 3.4: Precision, Recall and F1-Score of CNN Model and Tuning SVM

on Original Dataset

Duplicate
Direct
Link

Indirect
Link

Isolated Overall

Precision
Xu et al. CNN Model 0.89 0.75 0.84 0.89 0.84
Fu et al. Tuning SVM 0.88 0.85 0.94 0.90 0.89

Recall
Xu et al. CNN Model 0.89 0.90 0.77 0.79 0.842
Fu et al. Tuning SVM 0.86 0.82 0.99 0.90 0.89

F1-Score
Xu et al. CNN Model 0.89 0.82 0.80 0.84 0.84
Fu et al. Tuning SVM 0.87 0.84 0.96 0.90 0.89

use the best parameter value (C=100) with the linear kernel for training the

model with all the training and development data and used that model for

predicting the labels in the test data. This system is performed on Intel(R)

Xeon(R) CPU E5-2667 v4 @ 3.20GHz. We report the runtime of this system

on the Stack Overflow dataset to be around 1.5h for feature extraction and

1.5h for tuning the parameters.

3.4 Data

Both Xu et. al. [119], and Fu and Menzies [29] perform experiments on a small

dataset that we call OriginalDataset. OriginalDataset contains only

8,000 pairs of Java knowledge units (i.e., tagged with “Java”): 2,000 pairs of

knowledge units for each type of relationships, among them, 1,600 pairs are

used for training and 400 pairs are used for testing.

3.4.1 Creating LargeDataset

To further evaluate the e↵ectiveness of the techniques proposed, we created a

larger dataset that we refer to as LargeDataset. Note that the relatedness

(i.e., label) between knowledge units cannot be directly extracted from Stack

Overflow, further processing is required. Figure 3.3 depicts the process of

creating the new dataset by an example; it includes three main steps:

1. extracting duplicate and direct link pairs from Stack Overflow data dump,



2. building a knowledge units network (KUN) using the link information,

3. extracting relations between all pairs of knowledge units in the knowledge

network.

First, the experiment data is from Stack Overflow data dump 5. Specifically,

a table named PostLinks includes duplicate and direct knowledge units pairs.

Similar to OriginalDataset, only Java knowledge units are considered in

LargeDataset. Then, duplicate and direct links information is used to create

a knowledge unit network (KUN). The KUN is used to extract the relationships

between any two knowledge units.Direct and duplicate relations are readily

extracted from the information in the PostLinks. The relation between a pair

of knowledge unit is indirect if two knowledge units are connected in the KUN

with a certain range of distance (in this case, length of shortest path 2 [2,5]),

but the relationship between them belongs neither to duplicate nor direct. Two

knowledge units are isolated if they are not connected in the KUN (i.e., they

belong to di↵erent clusters).

3.4.2 Characteristics of the new dataset

We followed the steps outlined in Section 3.4.1 and created a new, larger

dataset (LargeDataset). More specifically, the new dataset contains 40,000

pairs of knowledge units which is five times the small dataset. We applied

Latent Dirichlet Allocation (LDA) to investigate the top-50 topic distribution

of two datasets. Figures 3.4 and 3.5 shows the graphical distribution of top-

ics in OriginalDataset and LargeDataset, respectively. As is shown,

compared to LargeDataset, OriginalDataset covers fewer topics.

5
Stack Overflow data dump, https://archive.org/download/stackexchange

https://archive.org/download/stackexchange


PostLinks Table
KU KU Relationship

KU1 KU2 Duplicate
KU1 KU4 Direct
KU3 KU4 Duplicate
KU5 KU7 Direct
KU5 KU6 Duplicate
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T1: Duplicate, T2: Direct, T3: Indirect, T4: Isolated

Figure 3.3: Dataset Building Process

3.5 Research Questions and Results

3.5.1 Research Questions

We seek to address the following four research questions.

• RQ1: How well do CNN Model and Tuning SVM perform in pre-

dicting relatedness of knowledge units on LargeDataset?

• RQ2: What is the run-time cost of CNN Model and Tuning SVM

in LargeDataset?

• RQ3: Is there any major di↵erence between performance of CNN Model

and Tuning SVM on LargeDataset and their performance in Orig-

inalDataset?

• RQ4: Does SoftSVM perform better than CNN Model and Tuning

SVM on LargeDataset?

RQ1 and RQ2 seek to investigate the performance of the prediction tech-

niques on LargeDataset. Specifically, we are interested to learn if the high
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performance of those models stems from the characteristics of the dataset that

they used. In other words, we investigate a more realistic situation by having

more instances and covering more topics available in LargeDataset.

RQ3 is concerned with the consistency of performance of techniques be-

tween the OriginalDataset and LargeDataset. RQ4 addresses the ques-

tion whether an SVM model with fewer but more e↵ective textual features can

perform better than other techniques.

3.5.2 Results

In this section, we present the results of our experiments. Consistent with the

previous studies, we use precision, recall and F1-score as performance metrics

of models.

RQ1: Performance of CNN Model and Tuning SVM on LargeDataset

Table 3.5 depicts performance of models trained by CNN Model and

Tuning SVM and SoftSVM for individual classes along with the overall
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scores. Overall, Tuning SVM outperforms CNN Model system almost by

10 percentage points. In all classes except Direct, Tuning SVM outperforms

CNN Model, as it seems that the Direct class is the hardest class for Tuning

SVM to predict. On the other hand, Duplicate class is the hardest class for

CNN Model to classify. Across all metrics, Isolated class obtains the highest

score, which means identification of this class is easier than the rest.

Table 3.5: Performance of Three Systems on Large Dataset

Duplicate
Direct
Link

Indirect
Link

Isolated Overall

Precision
CNN Model Word Embedding + CNN 0.55 0.33 0.32 0.79 0.50
Tuning SVM DE + SVM 0.49 0.33 0.49 0.68 0.49
SoftSVM Tuned SVM+ Soft-cosine 0.51 0.45 0.42 0.75 0.53

Recall
CNN Model Word Embedding + CNN 0.21 0.62 0.39 0.41 0.41
Tuning SVM DE + SVM 0.59 0.22 0.56 0.67 0.51
SoftSVM Tuned SVM+ Soft-cosine 0.48 0.21 0.58 0.90 0.54

F1-Score
CNN Model Word Embedding + CNN 0.31 0.43 0.35 0.54 0.41
Tuning SVM DE + SVM 0.54 0.26 0.52 0.68 0.50
SoftSVM Tuned SVM+ Soft-cosine 0.50 0.29 0.49 0.82 0.52

RQ2: Computation cost of CNN Model and Tuning SVM on Large-

Dataset

Table 3.6 compares the time e�ciency of building classification models in



each approach. Note that, in interpreting the results, the heterogeneous com-

puting infrastructure may have a moderate impact on the computation time.

The Table 3.6 shows that Tuning SVM takes considerably more compu-

tation time than other techniques—around 2.5x and 12.5x more than CNN

Model and SoftSVM, respectively. We find that this is due to the fact

that TuningSVM uses a large number of features, adapts several kernels and

C parameters one by one to tune the SVM. Also, some kernels (such as RBF

kernel) used in TuningSVM are not suitable for the large dataset because the

time cost will increase exponentially when the number of features becomes

large [43]. Training model in SoftSVM was by far the faster than others.

Table 3.6: Training Time in Di↵erent Techniques

Approach Time

CNN Model.
Word Embedding + CNN

(CPU-based)
15h 21m 24s

Tuning SVM
DE + SVM
(CPU-based)

38h 24m 46s

SoftSVM
Tuned SVM+ Soft-cosine

(CPU-based)
2h 54m

RQ3: Discrepancies between the performance of techniques on Original-

Dataset and LargeDataset Note that in this research question, we aim

to investigate whether the conclusion of Fu and Menzies [29] still holds on

the large dataset. Thus, we analyze the performance of CNN Model and

Tuning SVM on both OriginalDataset and LargeDataset.

Comparison of performance Table 3.4 compares the performance of CNN

Model and Tuning SVM on OriginalDataset. CNN Model achieved

0.84 F1-score, 0.84, 0.84 precision and recall, respectively. Tuning SVM

achieves 0.89 F1-score, 0.89 and 0.89 precision and recall, respectively.

Performance of CNN Model and Tuning SVM on LargeDataset are

shown in Table 3.5. CNN Model achieves 0.41 F1-score, 0.50, 0.41 precision

and recall, respectively. Tuning SVM achieves 0.50 F1-score, 0.49 and 0.51

precision and recall, respectively.



By comparing the same approach on OriginalDataset and Large-

Dataset, we find that the e↵ectiveness of both CNN Model and Tuning

SVM, as measured by F1-score, drop sharply, around 40 percentage points. By

comparing the performance of CNN Model and Tuning SVM on the same

dataset, our experimental results confirm that the conclusion of Fu and Men-

zies [29] still holds on the LargeDataset, i.e., CNN Model and Tuning

SVM can achieve similar (and sometimes better) results.

Comparison of training computation cost According to the data reported

in [119, 29], training CNN Model and Tuning SVM on OriginalDataset

take almost 14 hours, and 10 minutes, respectively, on regular machines. Ta-

ble 3.6 shows the training time of approaches on LargeDataset. Training

time of all techniques increases on LargeDataset, but with di↵erent slopes.

For example, computation time for training in Tuning SVM from 10 minutes

on theOriginalDataset, jumps to 38 hours on LargeDataset, while com-

putation cost of training a model using CNN Model increases from 14 hours

to 15.3 hours, on OriginalDataset and LargeDataset, respectively.

Comparing to each other, Tuning SVM (>38 hours) spends 2.5x as much

time as CNN Model (>15 hours). We find that this is due to the fact

that Tuning SVM approach by using a large number of features, adapts

several kernels and C parameters one by one to tune the SVM. To reduce

the potential variance caused by how the original training data, this process

repeats 10 times. Also, some kernels (such as RBF kernel) used in Tuning

SVM is not suitable for LargeDataset because the time cost will increases

exponentially when the number of features becomes large [43]. On the other

hand, when using LargeDataset, there is only a slight increase in the run-

time of CNN Model approach which proves that the scale of the dataset has

slight impacts on the runtime of the technique.

RQ4: Performance of SoftSVM

Performance Rows corresponding to SoftSVM in Table 3.5 contain per-



formance of SoftSVM, i.e., 0.52 F1-score, 0.53, 0.54 precision and recall,

respectively. The results show that SoftSVM achieves better overall perfor-

mance than Tuning SVM and CNN Model in terms of F1-score, precision,

and recall.

Comparing results of individual classes, it is clearly visible that SoftSVM

has a performance advantage in predicting the Isolated class over the other

methods. In other three classes, SoftSVM performs better than at least

one of Tuning SVM and CNN Model. For example, for Duplicate class it

achieves 0.04 F1-score worse than Tuning SVM but 0.19 better than CNN

Model; for Direct class, achieves 0.03 F1-score better than Tuning SVM

and 0.14 lower than CNN Model.

Comparison of computation time In terms of time e�ciency, SoftSVM

spends much less time than the other two approaches. As shown in Table 3.6,

SoftSVM needs only less than 3 hours for training on LargeDataset, while

CNN Model and Tuning SVM require 5x and 12x more time for training.

3.6 Discussion

3.6.1 Shortcomings of the original dataset

We found that the dataset used in previous studies have several limitations.

First, we found that in the creation of the OriginalDataset, clusters larger

than a certain size KUNet has been removed mistakenly (creators of the Orig-

inalDataset confirmed this mistake), which results in only a small set of

clusters with limited topic distribution. Second, we found that the Origi-

nalDataset covers far fewer topics than LargeDataset. There is also a

larger overlap among topics covered by knowledge units inOriginalDataset.

Therefore, we believe that the results on LargeDataset are more reliable

than the results reported on OriginalDataset in previous studies.



3.6.2 Performance of techniques

Our results on LargeDataset show that, consistent with the [29], Tuning

SVM keeps its performance advantage over CNN Model. Our reproducibil-

ity study confirms that, in this task, Tuning SVM performs better than deep

learning technique. However, as the number of instances for tuning increases in

OriginalDataset, Tuning SVM’s e�ciency is diminished and it becomes

slower than CNN Model deep learning techniques.

Our results also suggest that an SVM model with lightweight features,

i.e. SoftSVM, can outperform CNN Model and Tuning SVM. On the

other hand, previous results showed high performances of techniques (F1-score

as high as 0.88) which leaves little room for improvement. In this work, we

improved the quality of the dataset by covering more topics, adding more in-

stances and correcting improper preprocessing process. Our results on Large-

Dataset, shows that, contrary to previous results, the performance of tech-

niques are as low as F1-score=0.41.

Low performance of models suggests that proposed prediction models, our

approach is still highly inadequate for large, diverse dataset. An alternative

interpretation of low performance on LargeDataset can be that the rela-

tions between knowledge units are purely stochastic and there is no feature to

capture any relation.

Table 3.7: Feature Scale and Performance of the Considered Approaches

Approach Feature Scale Feature Extraction Technique E↵ectiveness E�ciency
CNN Model 640 CNN model The worst Intermediate
TuningSVM 200 Word embedding Intermediate The worst
SoftSVM 4 TF-IDF + Word embedding, Edit distance The best The best

Moreover, we are also interested in the potential relationship between fea-

ture scale and performance of the considered approach. As shown in Table 3.7,

the order of feature scale is CNN model > TuningSVM > SoftSVM. While the

e↵ectiveness rank is SoftSVM > TuningSVM > CNN model and the e�ciency

rank is SoftSVM > CNN model > TuningSVM. The results of e↵ectiveness



indicate that the feature used by SoftSVM is not only low-scale but also e↵ec-

tive. And in terms of the e�ciency comparison, we can find that the feature

scale is not directly related to e↵ectiveness in our task.

3.7 Threats to Validity

There are several threats that may potentially a↵ect the validity of our ex-

periments. Threats to internal validity relate to errors in our experimental

data and tool implementation. To mitigate this threat for the new dataset,

i.e., LargeDataset, we manually checked the selected knowledge units in the

dataset to ensure that they are really tagged with “java” and correctly labeled.

Another threat to internal validity is modifications to Tuning SVM to make

it parallel. However, we note the implementation of Tuning SVM is simple,

and we only execute each fold in parallel without modify any internal imple-

mentation. Threats to external validity relate to the generalizability of our

results. In this study, we followed the same steps as previous work [119] to cre-

ate LargeDataset. Thus, only the knowledge units tagged with “Java” are

considered. The threat is limited by the fact that “Java” has been consistently

on the top-5 list of most popular tags on Stack Overflow 6.

3.8 Conclusion and Future Work

In this paper, we performed a reproducibility study of multiple techniques pro-

posed for predicting relatedness of knowledge units on Stack Overflow. We find

that there are several limitations in the original dataset used in the previous

studies, thus we created a new dataset to address these limitations. We ob-

served that performance of proposed approaches (as measured using F1-score)

drop sharply on the new dataset, however similar to the previous finding, per-

formance of SVM-based approaches (Fu and Menzies’ approach and SimBow)

6
https://stackoverflow.com/tags



are slightly better than the DNN-based approach, however, contrary to the

previous findings, Fu and Menzies’ approach runs much slower than DNN-

based approach on the larger dataset – its runtime grows sharply with increase

in dataset size.

We conclude that, for this task, simpler approaches based on SVM performs

similarly to DNN-based approach. We also illustrate the challenges brought

by the increased size of data and show the benefit of a lightweight SVM-based

approach for this task.

In the future, we plan to investigate an ordinal classification algorithm for

the task as the categorical labels of the relatedness are naturally ordinal. Thus,

we believe ordinal classification algorithms have a great potential to perform

better than classic ones.



Chapter 4

Distributed Knowledge

Representation

4.1 Introduction

Presently, software question and answer (SQA) sites are an essential part of

developers’ day-to-day work for problem-solving and self-learning. A SQA site

(such as Stack Overflow) is a collection of posts where a post contains sev-

eral components, e.g., title, body, and tags as illustrated in Figure 4.1. To

help developers navigate SQA sites and find relevant information e�ciently,

many solutions have been proposed. They address concrete tasks such as

recommending tags to posts (aka. tag recommendation) [114, 105, 133], iden-

tification of related posts (aka. relatedness prediction) [119, 29, 115, 70], post

classification [86, 4, 10], and many more. A common step in previous works

is to extract a suitable vector to represent a post for further processing. In-

tuitively, following “garbage in, garbage out” principle, the quality of a post’s

vector representation plays a major role in determining the eventual outcomes.

In this work, to boost the e↵ectiveness of existing solutions that analyze

SQA site contents, we want to learn distributed representations of posts that

can be used for a number of downstream tasks. We propose a new deep learning
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architecture named Post2Vec that can e↵ectively embed posts in a space

where the distance between similar posts is small. Specifically, considering the

nature of tags, i.e., semantic labels provided by developers and shared by many

posts, we utilize them to supervise the learning of post representations.

Intuitively, this problem is challenging because it requires learning a corre-

spondence between the entire content of a post and only a few semantic labels

among hundreds of thousands of candidates. That is, it requires associating

contents from di↵erent components of a post, which typically include hundreds

of words and several pieces of code snippets, into a few descriptive labels. More-

over, to develop a robust and useful post representation, Post2Vec needs to

address the following three limitations of prior works:

• Posts from a particular SQA site typically follow a standard structure,

which consists of di↵erent components (e.g., title and body) carrying

information at di↵erent levels of detail. The title summarizes a specific

problem, while the body expands the title with more details. However,

we found that many prior studies, e.g., [119, 133], simply treated the

di↵erent components equally and represented a post by concatenating

content of the various components together into one single piece of text.



• Many previous works, e.g., [99, 120, 107], have removed code snippets

during the preprocessing step due to these code snippets are short, have

poor structure, and are written in di↵erent programming languages.

However, from Figure 4.1 we can see that if we consider the code snip-

pets, it becomes e↵ortless to identify that the post is Python related even

though the user does not mention Python in the title and description.

Thus, intuitively, code snippets should be considered while learning an

e↵ective post representation. Moreover, we found that for more than 70%

posts in the Stack Overflow data dump (dated September 5, 2018), their

body contained at least one code snippet. In other words, code snippets

are vital sources of information if they can be properly captured while

learning representations of posts.

• Early attempts [114, 105] focused only on extracting text from posts and

then used the text to create well known but simplistic representations

such as bag-of-words (BOW). A BOW representation of a post is a multi-

set of words that appear in the post. However, BOW ignores the semantic

relation between words.

Post2Vec uses Word2Vec [72] to map words with similar meaning to vec-

tors with small distances between them. Additionally, Post2Vec leverages

not only the natural language content (i.e., title and description) presented

in the post but also the code snippets. Individually, title, description, and

code snippets are considered as three components and they are fed into three

di↵erent neural network models to produce three fixed length feature vectors.

Finally, considering the nature of tags, we utilize them to supervise the learn-

ing of post representations from the three feature vectors. More specifically,

Post2Vec optimizes the vector representations of posts to predict appropri-

ate tags that are assigned to the respective posts by learning the relationship

between the vectors and tags.

Once the post representations are learned, they can be used to boost the



e↵ectiveness of many supervised learning tasks, especially those rely only on

a limited set of labeled data. Although Stack Overflow data is vast, many

prior studies only made use of a subset of posts that are labeled [119, 10]. By

using the learned post representations, in e↵ect, we are using the power of vast

unlabeled data to help in a particular supervised learning task (aka. semi-

supervised learning). Additionally, many prior approaches, e.g., [115, 116],

proposed handcrafted features for a specific task and represented a post by

a low dimensional feature vector. The e↵ectiveness of those approaches may

benefit from the post representations that are pre-trained based on a large

dataset. Such representations can be used to embellish the low dimensional

feature vector to boost e↵ectiveness potentially.

The closest work to ours is by Zhou et al. [133], who proposed a deep neural

network architecture to predict tags that are assigned to SQA posts. Our work

is di↵erent from them in the following aspects. First, the main goal of our work

and theirs di↵er; Zhou et al. aim to improve tag recommendation, while we aim

to produce representations of posts that can be used for multiple downstream

tasks. Second, the components considered in our work and theirs di↵er; Zhou

et al. only utilize title and description while we consider code snippets as well.

Consider many tasks (e.g., tag prediction [105, 133], similar post detection [29,

115], etc) are expected to be performed as soon as the post is created, hence

our approach is designed to construct vector representations of newly created

posts, i.e., those without answers and comments. With this design, we can

immediately infer the vector representations of posts once they are created, and

directly use the representations for other tasks. Third, the way the components

are processed di↵er too; Zhou et al. concatenate title and description to a piece

of text in the data preprocessing step while we feed di↵erent components to

di↵erent models separately. Another closely related work is Doc2Vec [57] that

generates a vector representation for textual documents; however, there are

significant di↵erences between “flat” textual documents considered in Doc2Vec



and posts. We consider a post as a structured document with three components

(i.e., title, description, and code snippets). Moreover, di↵erent from Doc2Vec,

we use tags as guides in the generation of post representations.

To evaluate Post2Vec, we first investigate the e↵ectiveness of our ap-

proach in the tag recommendation task and compare it with the state-of-the-

art approach [133]. Post2Vec achieves 11-20% improvement in terms of F1-

score@5. Moreover, we further evaluate the value of the representation learned

by Post2Vec in two other tasks, i.e., relatedness prediction [119] and post

classification [10]. We found that these state-of-the-art approaches are im-

proved by integrating our post representation, i.e., 11% and 9% for relatedness

prediction and post classification, respectively.

The main contributions of this work are as follows:

• We propose a specialized deep learning architecture Post2Vec that

learns vector representations of SQA posts. To the best of our knowledge,

this work is the first to explore the learning of generic representation of

SQA posts. We focus on Stack Overflow posts, but the solution presented

here can be easily adapted for posts from other SQA sites.

• We empirically compare end-to-end Post2Vec with the state-of-the-art

neural network based approach for tag recommendation task based on a

10 million posts dataset, and demonstrate that Post2Vec can achieve

15-25% improvements and also complete the learning process by up to

1.5 days faster.

• We empirically investigate the benefit of design decision from three as-

pects. For each aspect, we implement and compare pairs of Post2Vec

variants. The experimental results show that, (1) CNN-basedPost2Vec

outperform Lstm-based Post2Vec significantly and consumes fewer

computing resources during model training, (2) consideration of code

snippets can boost e↵ectiveness but consumes more computing resources



during model training, (3) considers di↵erent post components separately

significantly boosts the performance but consumes more computing re-

sources than considers di↵erent components together during model train-

ing.

• We empirically investigate the value of integrating the post vectors gen-

erated by Post2Vec and feature vectors used by two state-of-the-art

approaches of three tasks (relatedness prediction, post classification, and

API recommendation) and demonstrate substantial improvements.

The rest of this paper is organized as follows. Section 4.2 elaborates the

design of our approach Post2Vec. Section 4.3 presents our experiments that

compare Post2Vec with the state-of-the-art tag recommendation approach

and their results. Section 4.4 investigates the value of our learned post rep-

resentations to aid in the two downstream tasks (relatedness prediction and

post classification). Section 4.5 presents a qualitative study and some threats

to validity. We conclude and mention future work in Section 4.6.



4.2 Proposed Approach

4.2.1 Framework Overview
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Figure 4.2: The overall framework of Post2Vec.

Figure 4.2 illustrates the overall framework of Post2Vec that takes Stack Over-

flow (SO) posts as input and outputs their distributed representations in the

form of post vectors. More specifically, Post2Vec consists of four parts:

• Preprocessing : This part extracts three pieces of information from a

SO post (i.e., title, description, and code snippets), cleans them, and

represents each of them as a sequence of tokens.

• Input layer : This part encodes the sequences of tokens corresponding to

the title, description, and code snippets of posts into two-dimensional

matrices as inputs to the NNs in the feature extraction layers.



• Feature extraction layers : This part extracts the embedding vectors (aka.

features) of the title, description, and code snippets. These embedding

vectors are then concatenated to form the post vector representation of

the input SO post.

• Feature fusion and tag prediction layers : This part maps the post vector

to a tag vector; the tag vector indicates the probabilities of various tags

being assigned to the SO post.

Post2Vec leverages the tags assigned to SO posts to guide the learning of

suitable post vectors. And then, the learned vectors are used as the distributed

representations of SO posts. We use tags as a guide since they are semantic

labels provided by developers and shared by many posts. Specifically, we define

a learning task to construct prediction function f : P ! Y , where yi 2 Y

indicates a list of tags of the post pi 2 P . The prediction function f is learned

by minimizing the di↵erences between predicted and actual tags assigned to

posts. After the prediction function f is learned, for each post, we can obtain

its post vector from the intermediate output between the feature extraction

and feature fusion layers (see Figure 4.2). We explain the details of each part

of Post2Vec in the following subsections.

4.2.2 Preprocessing

We process the title, description, and code snippets of each post by the follow-

ing four steps that are applied one after the other:

1. Separate description and code snippets from the body. Code

snippets in the body of a post are enclosed in a pair of HTML tags

“hpreihcodei” and “h\codeih\prei” [116, 119]. Hence, we use a regular

expression “hpreihcodei([\s\S]*?)h\\codeih\\prei” to extract those code

snippets. We concatenate all code snippets in a post into one document,

and the remaining parts of the post into another document.



2. Remove HTML tags. We remove HTML tags that appear in the

extracted code snippets and description documents. These HTML tags

typically correspond to formatting instructions that may not carry much

semantic meaning [119]. To achieve this, we utilize a popular HTML

parser Beautiful Soup1.

3. Tokenize title, description, and code snippets. At this step, we

would like to split each title, description, and code snippet into a sequence

of tokens. To do this step, we employ a popular tool named NLTK2. More

precisely, the function word tokenize was used in our implementation.

4. Construct component-specific vocabulary. Based on the posts in

training data, we build three vocabularies VT, VD, VC; each vocabulary

corresponds to a set of tokens along with their occurrence frequencies

in the collection of title, description and code snippet, respectively. A

common practice for constructing a vocabulary from large scale data is

to discard the tokens that occur less than k times [72]. In this work,

we set k equals to 50 which is a common threshold used in prior works,

e.g., [61].

At the end of the preprocessing steps, title, description, and code snippets

of each post are extracted as three sequences of tokens. These sequences are

fed to the input layer of our proposed framework for further processing.

4.2.3 Input Layer

The input layer performs three main steps:

1. Indexing and padding. We convert each component of a post out-

put by the preprocessing step (which is a sequence of tokens of arbitrary

length) to a fixed length sequence of token indices. To achieve this, we

1
Beautiful Soup, https://www.crummy.com/software/BeautifulSoup.

2
NLTK Tokenizer, https://www.nltk.org/api/nltk.tokenize.html.

https://www.crummy.com/software/BeautifulSoup
https://www.nltk.org/api/nltk.tokenize.html


first replace each token in each sequence by its index in the corresponding

vocabulary (if it exists in the vocabulary; otherwise we skip the token).

For example, given a title as a sequence of tokens T = [w1, . . . , w|T|], we

convert it to [index1, . . . , index|T|], where |T| is a length of the sequence of

tokens and indexi is the index of wi in V
T. Since components of di↵erent

posts contain di↵erent numbers of tokens, and CNN requires each input

to be represented in the same way for the purpose of parallelization, we

perform padding or truncating which is a standard solution. Specifically,

we set three parameters LT , LD, and L
C to be the target length of the se-

quence of tokens in the title, description, and code snippets respectively.

For each sequence belonging to a component (i.e., title, description, or

code snippets), if its length is smaller than the predefined length (i.e.,

L
T , LD, or LC), we add a special token3 (one or more times) so that all

sequences have the same length. If the length of a sequence belonging

to a component is longer than the predefined length, we truncate it to

only its first LT , LD, or LC tokens. We calculate the distribution of the

number of tokens from each component among all posts. And we found

that by setting the value of LT , LD, LC as 100, 1,000, and 1,000, we can

preserve more than 95% of the original tokens for each component. In

other words, more than 95% posts’ title, description and code length are

smaller than 100, 1,000, and, 1,000. Thus only a minimal loss of data is

incurred while keeping the representation to a smaller size, for a boost

in performance (esp. training time).

2. Token representation. We represent each token as a vector of d values.

By default, we set d to be 128. We initialize the d values randomly and

they will be updated and learned during the training process.

3. Component representation. We encode the title, description, and

code snippets of a post as two-dimensional matrices (i.e., XT, XD, and

3
We use zero as the padded token.



X
C). For example, given a title as a sequence of tokens T, we construct

its matrix representation X
T
2 RLT⇥d, where d is the dimension of the

token representation. At the end, the input layer outputs XT, XD, and

X
C and these matrices are used as an input to the feature extraction

layers.

4.2.4 Feature Extraction Layers

Under the framework of Post2Vec, we utilize NN models to extract feature

from posts. Specifically, we input X
T, XD, and X

C, which are the encoded

data of the title, description, and code snippets, for each Stack Overflow (SO)

post to three independent NN models. The NN models produce embedding

vectors zT, zD, and zC, which represent the features extracted from each

component of the SO post, respectively. Considering code snippets in Stack

Overflow are short, have poor structure, and are written in di↵erent program-

ming languages [99, 120, 107], the existing code representation techniques are

unable to be applied as they are applicable for either a single type of program

language (e.g., [108, 100]) or the code should be at least a complete function or

method (e.g., [100, 16]). Hence, Post2Vec processes code snippets and other

two textual components (i.e., title and description) in the same way. Noted

that di↵erent types of NN models can be used as feature extractors. And we

investigate the performance of widely used NN models in our experiment and

corresponding hyperparameters in Section 4.3.3.

4.2.5 Feature Fusion and Tag Prediction Layers

Figure 4.3 shows the details of the part of the architecture shown inside the

red dashed box in Figure 4.2. The inputs of this part are the three embedding

vectors (i.e., zT, zD, and zC) which represent the features extracted from the

title, description, and code snippets respectively. These embedding vectors

are concatenated to construct a new embedding vector representing a Stack
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Figure 4.3: The details of the red dashed box in Figure 4.2. zT, zD, and zC are
the embedding vectors of the title, description, and code snippet, respectively.
z is the post vector and is fed to a fully-connected layer (FC) to produce the
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Overflow post.

We put the embedding vector z into a fully connected (FC) layer to produce

a vector h:

h = ↵(wh · z+ bh) (4.1)

where wh is the weight matrix used to connect the embedding vector z with

the FC layer, · is the dot product between wh and z, and bh is the bias value.

Finally, the vector h is passed to a tag prediction layer to produce the following:

t = �h ·wt (4.2)

where wt is the weight matrix between the FC layer and the tag prediction

layer, and t 2 RT⇥1 (T is a total number of tags). We then apply the sigmoid

function [40] to get the probability distribution over tags as follows:

p(ti|pi) =
exp(ti)

exp(ti) + 1
(4.3)

where ti 2 t is the score of the i
th tag and pi is the post for which we want to

recommend tags to.



4.2.6 Parameters Learning

Post2Vec aims to learn the following parameters: the embedding matrices

of the title, description, and code snippets of each SO post, the convolutional

layers’ matrices, and the weights matrices and bias values of the fully connected

layer and the tag prediction layer. After these parameters are learned, the post

vector of each SO post can be determined. These parameters of Post2Vec

are learned by minimizing the following objective function:

O =
X

yi2y
yi ⇥ (� log(p(ti|pi))) + (1� yi)

⇥ (� log(1� p(ti|pi))) +
�

2
k✓k

2

2

(4.4)

where p(ti|pi) is the predicted tag probability defined in Equation 4.3, yi =

{0, 1} indicates whether the i
th tag is assigned to the post pi, and ✓ contains

all parameters our model. The term �

2
k✓k

2

2
is used to prevent overfitting in

the training process [15]. The dropout technique [92] is employed to improve

the robustness of Post2Vec. We use Adam [55] to minimize the objective

function since Adam has been shown to be computationally e�cient and it

requires low memory consumption as compared to other optimization tech-

niques [55, 6, 7]. We also use backpropagation [38], a simple implementation

of the chain rule of partial derivatives, to e�ciently compute parameter up-

dates during the training process.

4.3 Post2Vec for tag recommendation

To evaluate Post2Vec’s performance, we investigate its performance for tag

recommendation task. The problem formulation of tag recommendation task is

as follows: given a set of existing software posts that are labeled with tags, how

to automatically predict a set of appropriate tags for a new unseen software



post. Arguably, if Post2Vec can learn good embeddings, its end-to-end

performance for the task of learning suitable tags to be assigned to Stack

Overflow posts should be high. In this section, we conduct experiments to

mainly answer the following three research questions:

RQ1: Compared with the state-of-the-art approach, how e↵ective and e�cient

is Post2Vec in tag recommendation?

Recently, Zhou et al. [133] proposed deep learning based tag recommendation

approaches. To demonstrate the value of Post2Vec for tag recommendation

task, we compare our approach with theirs.

RQ2: What is the impact of di↵erent types of NNs as feature extractors?

One of the novelties of Post2Vec over the state-of-the-art tag recommen-

dation approaches is the NNs used for extracting features can be replaced by

other types. Here, we want to investigate the impact of di↵erent types of NNs

on the performance of Post2Vec.

RQ3: Does Post2Vec benefit from code snippets?

One novelty of Post2Vec over the state-of-the-art tag recommendation ap-

proaches is the consideration of code snippets. Considering the fact that code

snippets in Stack Overflow are incomplete, have poor structure, and are written

in di↵erent programming languages, it is unclear if their consideration can be a

net benefit to Post2Vec. Furthermore, many previous works, e.g., [99, 107],

remove the code snippets when analyzing posts. In this research question, we

want to investigate if code snippets boost (or harm) Post2Vec performance.

RQ4: What is the impact of handling post components separately rather than

combining them?

Another novelty of Post2Vec over the state-of-the-art tag recommendation

approaches is the deep learning architecture that considers di↵erent post com-

ponents (title, description, and code snippets) separately using three di↵erent

NN models (i.e., NNtitle, NNdescription, and NNcode). Here, we would like to

investigate if handling post components separately can boost the performance



Table 4.1: Di↵erences between Variants of Post2Vec

Approach Used NN Model
Considered Components

Architecture
Title Description Code Snippets

Post2VecLSTM,All,Sep BiLSTM X X X Multiple LSTMs for di↵erent components
Post2VecCNN,�Code,Sep CNN X X Multiple CNNs for di↵erent components
Post2VecCNN,All,Com CNN X X X Single CNN model
Post2VecCNN,All,Sep CNN X X X Multiple CNNs for di↵erent components

of Post2Vec.

4.3.1 Baseline Approaches

To answer RQ1, we compare the Post2Vec with the state-of-the-art tag rec-

ommendation approach proposed by Zhou et al. [133]. In particular, they

proposed four types of neural network based approaches, TagCNN, TagRNN,

TagHAN, and TagRCNN, which were based on convolutional neural network

(CNN) [54], recurrent neural network (RNN) [64], hierarchical attention net-

work (HAN) [123], and recurrent convolutional neural network (RCNN) [56],

respectively. Moreover, they also compared the four proposed approaches with

the three traditional approaches, EnTagRec [106], TagMulRec [134], and Fast-

TagRec [63]. Their experimental results showed that TagCNN and TagRCNN

were the top-2 best performers in terms of e↵ectiveness. Moreover, Zhou et

al. also concluded that TagCNN and TagRCNN are practical for use on the

various-scale datasets. Thus, we use both TagCNN and TagRCNN as our

baseline approaches. To replicate Zhou et al.’s approach, we carefully use

their released source code4.

Moreover, we raise three research questions (i.e., RQ2, RQ3, RQ4) eval-

uating the impact of Post2Vec design decisions: RQ2 investigates the im-

pact of using di↵erent type of NN models in Post2Vec. RQ3 investigates

the impact of inclusion or exclusion of code snippets in the post components

considered by Post2Vec. RQ4 investigates the impact of concatenating or

separating di↵erent post components. To answer these three research ques-

tions, we implement four variants of Post2Vec. Table 4.1 summarizes the

4https://pan.baidu.com/s/1pKCpodP.

https://pan.baidu.com/s/1pKCpodP


di↵erences between all investigated variants considering three perspectives:

used NN models, used components, and architecture. To answer RQ2, we

compare the performance of pairs of variants that are only di↵erent on used

NN models, i.e., Post2VecLSTM,All,Sep and Post2VecCNN,All,Sep. We con-

sider two kinds of NNs to serve as feature extractors, i.e., convolutional neu-

ral network (CNN) and bidirectional long short term memory (BiLSTM). We

pick these two because the e↵ectiveness of both CNN [133, 119] and BiL-

STM [32, 104] have been demonstrated in prior works on processing Stack

Overflow textual data. Thus, we investigate these two types of NN models

in our experiment. Noted that they can be replaced by other NN models

and we leave it for future work. To answer RQ2, we compare the perfor-

mance of a pair of variants that are only di↵erent on used NN models, i.e.,

Post2VecCNN,All,Sep and Post2VecLSTM,All,Sep. Similarly, to answer RQ3

and RQ4, we implement and compare pairs of variants of Post2Vec that

are only di↵erent in terms of considered components (with or without code

snippets, i.e., Post2VecCNN,All,Sep and Post2VecCNN,�Code,Sep) and archi-

tecture (single NN model or multiple NN models with di↵erent components,

i.e., Post2VecCNN,All,Com and Post2VecCNN,All,Sep).

4.3.2 Dataset

In this work, we use a snapshot from the Stack Overflow data dump following

prior studies [80, 127, 79]. Zhou et al. [133] also use this dataset in the evalu-

ation of their deep learning solutions. However, after careful investigation, we

find that the dataset used by Zhou et al. has some limitations:

1. Zhou et al. only used the posts before July 1, 2014. However, this dataset

is too old (more than four years ago) to demonstrate the e↵ectiveness of

tag recommendation approaches on the recent posts, especially due to

the rapid growth of Stack Overflow in recent years.



2. In the experiments performed by Zhou et al., posts in test data were

randomly selected from the whole Stack Overflow dataset without con-

sideration of when the posts were made. In other words, some of the

newer posts were used to train the model while some older posts were

used in the test dataset which introduced bias for evaluation.

3. While millions of posts were considered by Zhou et al. in their experi-

ments, only 10,000 (i.e., less than 0.1%) of them were selected to form

the test set. Thus, the proportion of test data may not be representative

enough to evaluate the approaches properly.

To address these limitations, we construct a more comprehensive dataset

in this work. To address the first limitation, we use the version of Stack Over-

flow data dump released on September 5, 20185. A commonly used first data

preprocessing step in tag recommendation studies [133, 114, 105] is to identify

the rare tags. A tag is rare if it appears less or equal to a predefined thresh-

old ts. Rare tags are less important and less useful to serve as representative

tags to be recommended to users [114]. Following the same setting as Zhou et

al., we set the value to the threshold ts as 50. Using this setting, we identify

29,357 rare tags. We also obtain 10,379,014 posts after removing the posts

that only contain rare tags. To address the second limitation, we sort all the

posts by the attribute creation date. To avoid the bias, we use the latest posts

as test data and the earlier posts as training data. Lastly, to address the third

limitation, the latest 100,000 posts are selected as test data which is 20 times

larger than the size of test data considered by Zhou et al. In this way, we build

a new dataset; it has 10,279,014 posts as training data, and 100,000 posts as

test data. Moreover, in the preprocessing step mentioned in Section 4.2.2, we

also construct a vocabulary for each component. They are, VT (title’s vocabu-

lary), VD (description’s vocabulary), and V
C (code snippets’ vocabulary) that

include 28,213, 119,190, and 502,466 unique tokens respectively.

5https://archive.org/download/stackexchange.

https://archive.org/download/stackexchange


4.3.3 NNs and Hyperparameter Setting

We employ independent NN models (i.e., NNtitle, NNdescription, and NNcode in

Figure 4.2) to extract features from the title, description, and code snippets.

In our experiment, we investigate two types of NN models, i.e., CNN and BiL-

STM. For a fair comparison, both CNN and BiLSTM represent posts in the

same dimension. Moreover, we use Adam as the optimization algorithm [55]

and shu✏ed mini-batches to train them [60]. And we set the number of epochs

as 16. The parameter setting is widely used in many deep learning based

approaches for software engineering tasks, e.g., [37, 21, 34]. Next, we de-

scribe the specific hyperparameter settings for both CNN- and BiLSTM-based

Post2Vec.

Convolutional Neural Network (CNN) based Post2Vec. Each CNN

model includes a convolutional layer with multiple filters and a non-linear

activation function (i.e., RELU). Each filter, followed by a RELU activation

function, is employed to a window of k tokens to extract the corresponding

features of this window. We apply a max pooling operation [12] to obtain the

highest feature value of this window. Post2Vec uses multiple filters (with

K di↵erent window sizes) to obtain features from each component. Following

prior works (e.g., [37]), we follow a parameter tuning step to estimate good val-

ues of these parameters. We set aside 10% of the training data as a validation

set (10%), while the remainder of the data is used by Post2Vec to learn post

representation. We use the validation set for the parameter tuning procedure.

Specifically, we vary di↵erent values of the parameters and measure the corre-

sponding performance on the validation set. Take learning rate as an example;

we try setting it as 0.01, 0.001, or 0.0001. And then, we measure the perfor-

mance of our models with di↵erent learning rates and find that Post2Vec

achieves the best performance when the training rate is set to 0.0001. In a

similar way, we identify the optimal values of some other parameters. As a re-

sult of this parameter tuning step, we set the learning rate as 0.0001, the batch



size as 128, and the number of filters as 100 for each of the CNN models [54].

We set window sizes (K ) as 1, 2, 3 for title and description and 2, 3, 4 for code

snippets (see Section 4.2.4). In this way, Post2Vec represents each compo-

nent (i.e., title, description, or code snippets) of a post as a 300-dimensional

(3⇥ 100) vector, while each post is represented as a 900-dimensional vector.

Bidirectional Long Short Term Memory (BiLSTM) based Post2Vec.

Each BiLSTM model includes a recurrent layer with a hidden state. We set

the number of features in the hidden state to 300. As a result, each component

is represented as a 300-dimensional vector while each post is represented as a

900-dimensional vector.

4.3.4 Evaluation Metrics

To evaluate the performance of their proposed approaches, Zhou et al. [133]

used Precision@k, Recall@k, and F1-score@k. The 3 metrics are defined as

the averages of Precision@ki, Recall@ki, and F1-score@ki for each post pi

respectively. The latter metrics are defined below:

Precision@ki is the percentage of a post’s ground truth tags GTi that are in

the top-k recommended list TRk

i
, formally defined as:

Precision@ki =

��TRk

i
\GTi

��
k

(4.5)

Recall@ki is the percentage of tags in the top-k recommended list TRk

i
that are

among the set of ground truth tags GTi. However, Recall@ki value disfavors

small k [63, 133]. For example, for a post pi with 2 ground truth tags, even if

the first 2 recommended tags are correct, the Recall@1i value is still 50% (i.e.,

1/2). Hence, we follow the definition of Recall@ki that was used to evaluate

the state-of-the-art tag recommendation approach by Zhou et al. [133]. In

Zhou et al.’s work, if the number of ground truth tags of a post is larger than

k, the value of Recall@ki is computed using the same formula as Precision@ki.

In this way, for the aforementioned example, Recall@1i will be 100%. This



perfect score better reflects the correctness of the recommended tags at top-1

position (as it is the best result possible). Zhou et al.’s Recall@ki is formally

defined as:

Recall @ki =

8
>><

>>:

|TR
k
i \GTi|

k
, |GTi| > k

|TR
k
i \GTi|

|GTi| , |GTi|  k

(4.6)

F1-score@ki is a harmonic mean of Precision@ki and Recall@ki, and it is for-

mally defined as:

F1-score@ki = 2⇥
Precision@ki ⇥ Recall @ki

Precision@ki + Recall @ki
(4.7)

Note that, based on the definition of Precision@k (Equation 4.5), Recall@k

(Equation 4.6), and F1-score@k (Equation 4.7), their values will always be the

same when k equals to 1; this is the case because each post is labeled by at

least one tag, and thus |GTi| = k, when k = 1. Moreover, the value of Zhou et

al.’s Recall@ki formula may not always increase with an increase in the value

of k because of the second subformula in Equation (4.6).

Zhou et al. [133] used Precision@k, Recall@k, and F1-score@k, where k

2 {5, 10}. However, we find that Stack Overflow only allows users to assign at

most 5 tags for each post. Thus, in this work, we use more proper settings of

k, i.e., k 2 {1, 2, 3, 4, 5}. Similar to Zhou et al.’s work, we regard F1-score@k

as the main evaluation metric as it takes into consideration both Precision@k

and Recall@k6.

4.3.5 Experimental Result

E↵ectiveness Comparison Table 4.2 shows a comparison in terms of ef-

fectiveness. The results show that Post2VecCNN,All,Sep achieves the best

performance among all variants and baselines on all evaluation metrics. And

6
In this work, by default, we use the evaluation metrics that were used to evaluate the

state-of-the-art approach [133].



Table 4.2: E↵ectiveness of Post2Vec and its baselines

Precision@1 Precision@2 Precision@3 Precision@4 Precision@5
TagRCNN 0.68 0.53 0.42 0.34 0.29
TagCNN 0.70 0.56 0.45 0.37 0.32

Post2VecLSTM,All,Sep 0.78 0.62 0.50 0.41 0.35
Post2VecCNN,�Code,Sep 0.74 0.59 0.48 0.40 0.34
Post2VecCNN,All,Com 0.77 0.62 0.50 0.41 0.35
Post2VecCNN,All,Sep 0.79 0.63 0.51 0.42 0.36

Recall@1 Recall@2 Recall@3 Recall@4 Recall@5
TagRCNN 0.68 0.57 0.53 0.52 0.54
TagCNN 0.70 0.60 0.56 0.56 0.58

Post2VecLSTM,All,Sep 0.78 0.67 0.62 0.63 0.65
Post2VecCNN,�Code,Sep 0.74 0.64 0.60 0.61 0.63
Post2VecCNN,All,Com 0.77 0.66 0.62 0.63 0.65
Post2VecCNN,All,Sep 0.79 0.68 0.64 0.64 0.66

F1-score@1 F1-score@2 F1-score@3 F1-score@4 F1-score@5
TagRCNN 0.68 0.54 0.46 0.40 0.36
TagCNN 0.70 0.57 0.49 0.43 0.39

Post2VecLSTM,All,Sep 0.78 0.63 0.54 0.48 0.44
Post2VecCNN,�Code,Sep 0.74 0.61 0.52 0.46 0.42
Post2VecCNN,All,Com 0.77 0.63 0.54 0.48 0.43
Post2VecCNN,All,Sep 0.79 0.64 0.55 0.49 0.45

Post2VecLSTM,All,Sep achieves the second best performance, while TagRCNN

performs the worst. Post2VecCNN,All,Sep outperformsPost2VecLSTM,All,Sep,

Post2VecCNN,�Code,Sep, Post2VecCNN,All,Com, TagCNN, and TagRCNN by

2%, 7%, 5%, 15%, and 25% in terms of F1-score@5, respectively.

E�ciency Comparison For a fair comparison, all the approaches were run on

the same machine: a 64-bit, 14.04.4 LTS GPU server with Tesla P100-SXM2-

16GB7. Table 4.3 shows the comparison in terms of training time cost; we ob-

served that all approaches cost more than 5 days to train the model due to the

large dataset. Specifically, TagRCNN requires 8.5 days, TagCNN requires 7.1

days, Post2VecCNN,All,Sep requires 7 days, Post2VecLSTM,All,Sep requires

12.7 days, Post2VecCNN,�Code,Sep requires 6.9 days, andPost2VecCNN,All,Com

requires 5.4 days. Although the training time takes days, the time these ap-

proaches take to recommend a set of tags to a post (i.e., model application

time) is very fast. It took each approach 0.08 seconds per post on average.

Note that training can be done once in a long while.

7https://www.nvidia.com/en-us/data-center/tesla-p100.

https://www.nvidia.com/en-us/data-center/tesla-p100


Table 4.3: Training time cost comparison

Approach Time cost (Mins)
TagRCNN 12,287
TagCNN 10,278

Post2VecLSTM,All,Sep 18,233
Post2VecCNN,�Code,Sep 9,916
Post2VecCNN,All,Com 7,811
Post2VecCNN,All,Sep 10,130

4.3.6 Research Questions and Analysis

We perform further analysis to answer the three research questions.

RQ1: Compared with the state-of-the-art approach, how e↵ective and e�cient

is Post2Vec in tag recommendation?

To answer RQ1, we compare Post2Vec with the state-of-the-art tag rec-

ommendation approaches (i.e., TagCNN and TagRCNN). In terms of e↵ective-

ness, our experimental results show that Post2Vec largely outperforms the

baseline approaches, i.e., it improves over TagCNN and TagRCNN in terms

of F1-score@5 by 15% and 25%, respectively. Moreover, in terms of e�ciency,

Post2Vec costs 0.1 day less than TagCNN and 1.5 days less than TagRCNN

in terms of model training time. In terms of model application time (i.e., the

time it takes to recommend tags to a new SO post), all approaches take a

fraction of a second.
Post2Vec outperforms the state-of-the-art approaches in terms of both e↵ec-

tiveness (by 15-25% in terms of F1-score@5) and e�ciency (by up to 1.5 days

in terms of model training time).

RQ2: What is the impact of di↵erent types of NNs as feature extractors?

To answer RQ2, we compare the performance of a pair of Post2Vec’s vari-

ants that only di↵er in the way of used NN model, i.e., Post2VecCNN,All,Sep

andPost2VecLSTM,All,Sep. From Table 4.2, we find thatPost2VecCNN,All,Sep

outperforms Post2VecLSTM,All,Sep by 3% in term of F1-score@5. We apply

the Wilcoxon Signed Rank Test [110] at a 95% confidence level (i.e., p-value

< 0.05) on the paired data which corresponds to the F1-score@5 of CNN-



and LSTM-based Post2Vec. We find that CNN-based Post2Vec (i.e.,

Post2VecCNN,All,Sep) significantly outperforms LSTM-basedPost2Vec (i.e.,

Post2VecLSTM,All,Sep). From Table 4.3, we find that Post2VecLSTM,All,Sep

costs 5.6 more days than Post2VecCNN,All,Sep for model training.

CNN-based Post2Vec outperforms LSTM-based Post2Vec significantly

and consumes fewer computing resources during model training.

RQ3: Does Post2Vec benefit from code snippets?

To answer RQ3, we compare the performance of Post2VecCNN,All,Sep and

Post2VecCNN,�Code,Sep since the only di↵erence between them is the consider-

ation of code snippets. The experimental results show thatPost2VecCNN,All,Sep

outperforms Post2VecCNN,�Code,Sep in terms of e↵ectiveness (7% better) but

requires more time to train (0.1 day more). Post2VecCNN,�Code,Sep is faster

to train than Post2VecCNN,All,Sep since Post2VecCNN,�Code,Sep has a simi-

lar but simpler architecture (i.e., it ignores the code snippets).

Consideration of code snippets can boost e↵ectiveness (i.e., a boost in F1-

score@5 by 7%) but consumes more computing resources during model training.

RQ4: What is the impact of handling post components separately rather than

combining them together?

To answer RQ4, we compare the performance of Post2VecCNN,All,Com

and Post2VecCNN,All,Sep because both of them utilized title, description,

and code snippets as input data but Post2VecCNN,All,Sep separately em-

ploys three CNN models for the title while description, and code snippets,

Post2VecCNN,All,Com concatenates them as one document and feed it to a

single CNN model. The experimental results show that Post2VecCNN,All,Sep

outperforms Post2VecCNN,All,Com over all the evaluation metrics; in terms of

F1-score@5, Post2VecCNN,All,Com is 5% better than Post2VecCNN,All,Com.

We apply the Wilcoxon Signed Rank Test [110] at a 95% confidence level (i.e.,

p-value < 0.05) on the paired data which corresponds to the F1-score@5 and we



find thatPost2VecCNN,All,Sep significantly outperformsPost2VecCNN,All,Com.

But Post2VecCNN,All,Com is 22% more e�cient.

Post2Vec’s architecture that considers di↵erent post components (i.e., title,

description, and code snippets) separately significantly boosts the performance

by 5% in terms of F1-score@5 but consumes more computing resources than

considers di↵erent components together during model training.
For the rest of the dissertation, we refer the variant Post2VecCNN,All,Sep

to Post2Vec.

4.4 Post2Vec for Downstream Tasks

As stated earlier, the goal of this work is to build a Stack Overflow post rep-

resentation that can be useful for multiple downstream tasks. In the training

phase, our approach uses tag as a guide to aid the learning of post representa-

tion. A tag is a word or phrase that is attached to a post as a result of a crowd

sourced process and serves as a semantic label of the post. Downstream tasks

that are poised to benefit more by representations learned by our approach

are those where: (1) the downstream task can benefit from an abstraction of

the post; (2) the tags in our training data capture suitable semantics that are

needed for the task. In this section, we pick three tasks that satisfy the above

two criteria.

4.4.1 Baseline Approaches

We first compare against state-of-the-art techniques proposed by Xu et al. [115]

and Beyer et al. [10] for relatedness prediction and post classification tasks,

respectively. Furthermore, we also compare the performance of our approach

with two deep learning based techniques, i.e., TagCNN [133] and Doc2Vec [57],

that can also be used to generate post representations.

TagCNN forms a single output vector (i.e., post vector) in the penultimate

layer, and subsequently pass the vector to a fully connected softmax layer to



compute the probability distribution over tags. Thus, we fed the posts used

in the downstream tasks to the TagCNN model which was trained for the tag

recommendation task (refer to Section 4.3) and collected the corresponding

vectors of those posts. Moreover, as posts are also documents, we use Doc2Vec

(i.e., a document embedding algorithm) as another baseline approach. We fol-

low the Doc2Vec setting used in [116] as they also use Doc2Vec to analyze

Stack Overflow posts. We use Gensim [84] to implement the Doc2Vec model.

For a fair comparison, the same training dataset is used to build Post2Vec,

TagCNN, and Doc2Vec models, i.e., the training dataset used for the tag rec-

ommendation task.

4.4.2 Task 1: Relatedness Prediction

The task of automatically identifying such related posts or knowledge units is

described as relatedness prediction, aka., linkable knowledge prediction. It can

support developers for di↵erent purposes; for example, searching for related

solutions to better solve a particular problem, or gathering new knowledge by

browsing related SQA posts [119, 115].

4.4.2.1 Problem Formulation

The relatedness prediction is formulated as a multi-class classification problem.

Given a set of pairs of software posts, labels are assigned to them to describe

how related they are. The labels are based on the order of relatedness from

most to least related, i.e., Duplicate > Direct > Indirect > Isolated. There is

only one possible relatedness label between two posts. For more details, please

refer to Chapter 3.

4.4.2.2 State-of-the-art Approach

The state-of-the-art relatedness prediction approach named SoftSVM was pro-

posed by Xu et al. [115]. SoftSVM introduced a soft-cosine similarity which



is able to capture the degree of relatedness when the text of posts share re-

lated words. To measure the degree of relatedness, SoftSVM constructs a

four-dimensional vector which corresponds to four types of features, 1) cosine

similarity based on Stack Overflow data cosSO , 2) soft-cosine similarity based

on Stack Overflow data softSO , 3) soft-cosine similarity based on pre-trained

Google word2vec softGoogle , and 4) soft-cosine similarity based on Levenshtein

distance softEdit . For more details on these four features, please refer to [115].

To summarize, for a given pair of posts, a four-dimensional feature vector

FVSoftSVM is constructed where each dimension corresponds to each feature

value, i.e., hcosSO , softSO , softGoogle , softEditi.

4.4.2.3 Dataset

We use the same dataset used in the state-of-the-art work [115]. The dataset

contains 40,000 pairs of posts with the four types of relatedness. Detailedly,

each type of relatedness corresponds to 10,000 pairs of posts, i.e., the dataset

is balanced with respect to class.

4.4.2.4 Experimental Setting

We hypothesize that there is a correlation between the post vector distance

and the relatedness, i.e., the smaller the distance between two generated post

vectors, the more related these two posts are. To evaluate the post repre-

sentation generated by the three approaches (i.e., Post2Vec, TagCNN and

Doc2Vec), we consider post vector distance as an extra feature and combine it

with the features used in the state-of-the-art relatedness prediction approach.

In particular, we add the Euclidean distance [85] (see Equation 4.8) between

two post vectors as an additional feature, namely Dist .

Dist(p,q) = Dist(q,p) =

vuut
DimensionX

i=1

(qi � pi)
2 (4.8)

Next, we append Dist to the feature vector used by the state-of-the-art ap-



Table 4.4: Performance Comparison for Relatedness Prediction

Feature Vector Duplicate Direct Indirect Isolated Overall

Precision

FVSoftSVM 0.47 0.41 0.43 0.73 0.51
FVSoftSVM+D2V 0.48 0.41 0.44 0.73 0.51

FVSoftSVM+TagCNN 0.53 0.44 0.46 0.76 0.55
FVSoftSVM+P2V 0.53 0.45 0.48 0.77 0.56

Recall

FVSoftSVM 0.54 0.19 0.49 0.91 0.53
FVSoftSVM+D2V 0.50 0.23 0.50 0.91 0.54

FVSoftSVM+TagCNN 0.52 0.33 0.49 0.91 0.56
FVSoftSVM+P2V 0.61 0.31 0.48 0.91 0.58

F1-score

FVSoftSVM 0.51 0.26 0.46 0.81 0.51
FVSoftSVM+D2V 0.49 0.30 0.47 0.81 0.52

FVSoftSVM+TagCNN 0.52 0.38 0.47 0.83 0.55
FVSoftSVM+P2V 0.57 0.36 0.48 0.83 0.56

proach. In this way, we construct a five-dimensional feature vector FVSoftSVM+Dist

for each pair of posts, i.e., hcosSO , softSO , softGoogle , softEdit , Disti. We name

the feature vector based on Post2Vec, TagCNN, Doc2Vec as FVSoftSVM+P2V ,

FVSoftSVM+TagCNN , and FVSoftSVM+D2V , respectively. To facilitate comparison,

we feed the feature vector FVSoftSVM+Dist to the same kind of traditional ma-

chine learning classifier (i.e., SVM) with the same setting as described in [115].

Implementation-wise, we reuse the source code released by Xu et al.8 and

modify the feature vector part. Then, ten times ten-fold cross-validation is

performed to evaluate predictive models.

4.4.2.5 Evaluation Metrics

We use precision, recall, and F1-score, which were also used by Xu et al.

as evaluation metrics. For the definitions of precision, recall, and F1-score,

please refer to Section 3.2.2. Higher values of the above metrics indicate better

performance. Following [115], F1-score is regarded as the main metric.

4.4.2.6 Experimental Result

Table 4.4 shows the performance obtained using the feature vector FVSoftSVM

and FVSoftSVM+Dist generated by the three approaches. The results of the

8https://github.com/XBWer/ESEM2018.

https://github.com/XBWer/ESEM2018


experiment show that FVSoftSVM+P2V achieves the best performance. And

FVSoftSVM+TagCNN achieves the second best, and FVSoftSVM achieves worst

in terms of precision, recall, and F1-score. We also find that when using

FVSoftSVM+P2V as feature vector, in terms of overall F1-score, it outperforms

FVSoftSVM+TagCNN , FVSoftSVM+D2V , and FVSoftSVM by 2%, 8%, and 10%, re-

spectively. We apply the Wilcoxon Signed Rank Test [110] at a 95% significance

level (i.e., p-value < 0.05) on the paired data which corresponds to the F1-score

of our approach, i.e., Post2Vec, and the best performing baseline approach, i.e.,

TagCNN. We find that Post2Vec significantly outperforms TagCNN in terms

of F1-score.

Overall, we are able to boost the performance of the state-of-the-art re-

latedness prediction approach by leveraging the post vectors generated by

Post2Vec.

4.4.3 Task 2: Post Classification

Beyer et al. [10] presented a taxonomy for Android-related Stack Overflow (SO)

posts and manually labeled 500 posts. The taxonomy includes seven categories

in which an Android post can be classified, namely, API change, API usage,

Conceptual, Discrepancy, Learning, Errors, and Review.

4.4.3.1 Problem Formulation

The post classification problem is formulated as a multi-label classification

problem. Given a set of software question and answer posts that are already

labeled with one or multiple categories, a new post needs to be classified into a

set of appropriate categories (i.e., API change, API usage, Conceptual,

Discrepancy, Learning, Errors, and Review).



4.4.3.2 State-of-the-art Approach

To classify posts into multiple categories, Beyer et al. [10] constructed a bi-

nary classifier for each category. To construct a classifier, they considered 82

di↵erent configurations based on, e.g., whether data balancing is performed,

which classifier is used, whether parts-of-speech tags are included in the feature

vector representing a post, etc. The best configuration is then determined for

each category, and the corresponding results reported.

4.4.3.3 Dataset

To facilitate comparison, we have used the same dataset used by Beyer et

al. [10]. The dataset contains 500 posts which have been manually labeled,

with 30, 206, 145, 129, 79, 30, and 93 posts labeled as API change, API

usage, Conceptual, Discrepancy, Learning, Errors, and Review,

respectively.

4.4.3.4 Experimental Setting

Our goal is to investigate whether leveraging post representation generated

using Post2Vec, TagCNN, and Doc2Vec can boost the e↵ectiveness of Beyer

et al.’s state-of-the-art approach. Thus, we reuse most of Beyer et al.’s pro-

posed architecture that considers the 82 configurations and determines the best

one. We refer to Beyer et al.’s original approach as FVSTOA. The only change

that we made is to enhance the feature vector that FVSTOA uses to represent a

post. Specifically, we construct a new feature vector for each post by appending

FVSTOA’s feature vector with the corresponding post’s representation that is

learned by using either Post2Vec, TagCNN or Doc2Vec. We refer to the ap-

proaches that use the feature vectors enhanced with post representation learned

using Post2Vec, TagCNN or Doc2Vec as FVSTOA+P2V , FVSTOA+TagCNN ,

and FVSTOA+D2V respectively. Implementation-wise, we reused the source



code released by Beyer et al.9 and only modified the feature vector part.

Beyer et al. divided their manually-labeled set of 500 posts into training

and test sets, with 90% (i.e., 450) of the posts used for training and 10% (i.e.,

50) for testing. Since the dataset is unbalanced, random stratified sampling [53]

is applied to ensure that the test set contains 10% or at least three posts of

each category. The experiment is repeated 50 times using the random stratified

sampling, and the average scores of the evaluation metrics (described below)

are reported.

4.4.3.5 Evaluation Metrics

We use precision, recall, and F1-score, which were also used as evaluation

metrics by Beyer et al. For each category, these metrics are defined for both

sides of the classification: whether a post is classified correctly as belonging to

the category (classT ) and whether a post is classified correctly as not belonging

to the category (classF ). For all of the above metrics, higher values indicate

better performance. F1-score for classT (denoted as fT ) is regarded as the

main metric since the dataset is unbalanced and the minority is classT (i.e.,

belonging to a category).

4.4.3.6 Experimental Result

Table 4.5 shows the performance of the post classification task focusing on fT

and the other two metrics used to derive it (preT and recT ). The experimental

results show that FVSTOA+P2V achieves the best average number of fT and also

the best performance for the most number of categories. Specifically, across the

7 categories, on average FVSTOA+P2V outperforms FVSTOA by 7% in terms of

fT . We apply the Wilcoxon Signed Rank Test [110] at a 95% significance level

(i.e., p-value < 0.05) on the paired data which corresponds to the fT of the

feature vector based on our approach, i.e., FVSTOA+P2V , and the best perform-

9https://github.com/icpc18submission34/icpc18submission34.

https://github.com/icpc18submission34/icpc18submission34


ing baseline approach, i.e., FVSTOA. We find that FVSTOA+P2V significantly

outperforms FVSTOA in terms of fT . Moreover, we find that FVSTOA+D2V and

FVSTOA+TagCNN perform worse than FVSTOA. Also, none of them achieve the

best performance for a single category. It indicates that Post2Vec’s learned

representation enhances the original feature vector, while the same cannot be

said for representations learned by TagCNN and Doc2Vec.

Table 4.5: Performance Comparison for Post Classification. preT , recT , fT =
precision, recall and F1-score for classT .

Category
preT

FVSTOA FVSTOA+D2V FVSTOA+TagCNN FVSTOA+P2V

API CHANGE 0.59 0.60 0.74 0.67
API USAGE 0.91 0.82 0.94 0.88

CONCEPTUAL 0.59 0.47 0.62 0.58
DISCREPANCY 0.41 0.46 0.48 0.53

DOCUMENTATION 0.56 0.35 0.40 0.64
ERRORS 0.88 0.86 0.56 0.93
REVIEW 0.42 0.38 0.47 0.53
Average 0.62 0.56 0.60 0.68

recT
FVSTOA FVSTOA+D2V FVSTOA+TagCNN FVSTOA+P2V

API CHANGE 0.95 0.76 0.73 0.77
API USAGE 0.78 0.58 0.58 0.71

CONCEPTUAL 0.62 0.74 0.46 0.68
DISCREPANCY 0.87 0.63 0.69 0.76

DOCUMENTATION 0.55 0.27 0.18 0.38
ERRORS 0.33 0.21 0.34 0.70
REVIEW 0.54 0.49 0.25 0.48
Average 0.66 0.53 0.46 0.64

fT
FVSTOA FVSTOA+D2V FVSTOA+TagCNN FVSTOA+P2V

API CHANGE 0.71 0.65 0.71 0.68
API USAGE 0.84 0.68 0.71 0.78

CONCEPTUAL 0.59 0.57 0.52 0.62
DISCREPANCY 0.56 0.53 0.56 0.62

DOCUMENTATION 0.53 0.28 0.24 0.45
ERRORS 0.46 0.33 0.37 0.79
REVIEW 0.46 0.42 0.31 0.48
Average 0.59 0.49 0.49 0.63



4.4.4 Task 3: API Recommendation

According to a survey conducted by Huang et al. [45], API recommendation

approach is desired and Stack Overflow is an important resource for developers.

4.4.4.1 Problem Formulation

In the literature, the API recommendation problem is formed as given a query

in natural language that describes a technical question, recommending a cer-

tain API or API sequence to answer the question [83, 35, 45]. Depending

on the granularity of the recommended API, the problem is divided into two

categories, method- and class-level API recommendation.

4.4.4.2 State-of-the-art Approach

Huang et al. [45] focus on the API recommendation at the method level and

present an approach named BIKER which recommends API based on Stack

Overflow data. The framework of BIKER mainly contains three stages. First,

given a query and Stack Overflow data dump, BIKER collects the top k most

similar questions for the query by measuring the similarity between the ques-

tions and the given query. Second, it extracts API from the answers of the k

similar questions and ranks them by computing similarity between each API

candidate and the query. Third, BIKER selects the top 5 most similar APIs

and summarizes them by considering multiple sources, e.g., the information

in the o�cial description, title of the similar questions, and the code snippets

exist in the answers of the similar questions.

4.4.4.3 Experimental Setting

In the first stage of BIKER, it computes the similarity between each question

in the Stack Overflow data dump and the query based on a word IDF (inverse

document frequency) vocabulary and a word embedding model. Based on the

similarity, all the questions are ranked and top k of them are selected as similar



questions to the query.

To investigate whether leveraging the post representation generated by us-

ing Post2Vec, TagCNN, and Doc2Vec can boost the e↵ectiveness of BIKER,

we embed the post representation into the rank list of the similar questions

based on a new perspective, i.e., considering similarity between questions based

on the post representation. Given a query, we first collect the rank list with

top k most similar questions and their similarities to the query returned by

BIKER, i.e.,

RankList = {TQ1 : {SimhTQ1, Queryi},

TQ2 : {SimhTQ2, Queryi},

...,

TQk : {SimhTQk, Queryi}}

And then we collect 5 questions in the data dump with the least euclidean

distance to each of the similar questions TQi based on the post representation,

i.e.,

TQi ) TQSimQsi = {TQSimQ
1

i
,

TQSimQ
2

i
,

...,

TQSimQ
5

i
}

We set the similarity between two questions as SimhQi, Qji = 1/(1+disthQi, Qji).

Last, we add the top 5 questions (i.e., TQSimQs) to the rank list RankList.

For each question TQSimQ
j

i
, we set its similarity to the query by multiply-

ing two similarities, (1) similarity between the corresponding top question and

query, (2) similarity between the corresponding top question and the question,

i.e.,

SimhTQSimQ
j

i
, Queryi = SimhQi, Queryi

⇥SimhTQi, TQSimQ
j

i
i

In this way, the rank list of similar questions is expanded and its top k questions



are fed to the next stage of BIKER. We follow the same setting in [45] and set

k as 50.

4.4.4.4 User Study

To investigate whether BIKER can help developers find the appropriate APIs

more e�ciently and accurately in practice, Huang et al. conducted a user

study [45]. Thus, we conduct a user study to evaluate the performance of two

versions of BIKER, i.e., before and after integrating the post representation.

Experimental queries and ground-truth APIs. In [45], 10 queries are

selected as experimental queries. In this work, we randomly select 50 queries

which are 5 times more. And for each query, we collect its corresponding API

or API sequence which is regarded as the ground truth.

Participants. We recruited 8 participants from the first author’s university,

1 postdoc, 3 PhDs, and 4 research engineers. The years of their developing

experience vary from 3 to 7 years, with an average of 4.6 years.

Experimental groups. We divided the participants uniformly based on years

of development experience into four groups, (1) BIKER: the full-feature of

original BIKER, (2) BIKER+D2V: the enhanced BIKER which integrated

the post representation learned by doc2vec, (3) BIKER+TagCNN: the en-

hanced BIKER which integrated the post representation learned by TagCNN,

(4) BIKER+Post2Vec: the enhanced BIKER which integrated the post rep-

resentation learned by Post2Vec.

Evaluation metrics. To measure the accuracy of BIKER, two evaluation

metrics have been used in [45], correctness and time cost. Correctness is used

to evaluate whether a participant can find the correct APIs. For a query that

only needs one API method, correctness is 1 if the participant submitted only

one API and it’s correct, otherwise, it is 0. For a query that needs an API

sequence, correctness is the proportion of the correct APIs submitted by the

participant among all APIs in the correct API sequence. Time cost evaluates



how fast a participant can answer a question.

Result analysis. From Table 4.6, we find that BIKER+Post2Vec achieves

the best performance, BIKER achieves the second-best, BIKER+TagCNN per-

forms the worst, in terms of both correctness and time cost. We find that the

correctness of BIKER is improved by 10% and the time cost is reduced by

18% after integrating the post representation learned by Post2Vec. More-

over, we also find that only the representation learned by Post2Vec boosts

the performance of BIKER and the other two baselines harm the performance.

Table 4.6: Performance Comparison for API Recommendation

Correctness Time Cost (in Seconds)
BIKER 0.40 67

BIKER+D2V 0.39 80
BIKER+TagCNN 0.37 108
BIKER+P2V 0.44 55

Table 4.7 presents the recommendation result returned by BIKER and

BIKER+Post2Vec for an experimental query, Converting a time String to

ISO 8601 format. We find that the correct API (i.e., java.time.Instant.toString())

does not exist in all the APIs recommended by BIKER but it is ranked first

by BIKER+Post2Vec. It indicates that BIKER+Post2Vec successfully

identifies similar questions which cover the ground truth but BIKER fails.

Thus, the result shows that integrating the post representation learned by

Post2Vec can boost the performance of BIKER.

4.5 Discussion

4.5.1 Qualitative Analysis

Recall that the goal of Post2Vec is to embed posts to a vector space where it

is easy to compute meaningful distances. Ideally, the distance measure between

closely related posts should be small to capture the perception of similarity.

Also recall that, for the relatedness prediction task, there are four relatedness



Table 4.7: Recommendation returned by BIKER and BIKER+Post2Vec for
an experimental query

Query: Converting a time String to ISO 8601 format

1st Rec-
ommen-
dation

BIKER BIKER+Post2Vec

API java.lang.String.format java.time.Instant.toStringX
Java Doc Returns a formatted string using

the specified format string and ar-
guments.

A string representation of this in-
stant using ISO-8601 representation.

Relevant
SO Ques-
tions

1.Convert String to UUID
formatted string (25895225*)
2.String.format runtime
formatting (19803405*)
3.Formatting: String cannot be
converted to String[]
(35702926*)

1.Format Instant to
String (25229124*)

Code Snip-
pets

/***code snippet1***/
String plain = ”...”;
String uuid = String.format(”...”,
plain.substring(0,7));

/***code snippet2***/
int width = ...;
String fmt = String.format(”...”,
width);
String formatted = String.format
(fmt, ”Hello”, ”World”);

/***code snippet3***/
dataArray += String.format(”...”,
b.getTitle(), b.getIsbn());

/***code snippet1***/
DateTimeFormatter formatter =
DateTimeFormatter.ofPattern(”...”);
String text = date.toString(formatter);
LocalDate date = LocalDate.parse(text,
formatter);

*: Unique question Id in Stack Overflow.

types among pairs of posts, and the order of relatedness from most to least

related is Duplicate > Direct > Indirect > Isolated. The experimental results

in Section 4.4.3 show that the state-of-the-art approach is improved by adding

distance between post vectors as an additional feature.

To further investigate the capability of Post2Vec, we visualize the vector

space of randomly selected 20 pairs of posts with di↵erent types of relatedness

labels (details are shown in Table 4.8) and collected their corresponding post

vectors. Figure 4.4 presents the post vector space learned by Post2Vec,

visualized in a two-dimensional space using the t-SNE dimensionality reduction

technique [67]. Specifically, Figures 4.4a, 4.4b, 4.4c, and 4.4d present vector



(a) Duplicate Pairs (b) Direct Pairs

(c) Indirect Pairs (d) Isolated Pairs

Figure 4.4: Vector Space of Post2Vec on Relatedness Prediction

space of Post2Vec for pairs of post with di↵erent types of relatedness labels,

duplicate, direct, indirect, and isolated, respectively. The figures show that the

rank list of average distance between pairs of posts which belong to the same

type of relatedness is: duplicate (Figure 4.4a) < direct (Figure 4.4b) < indirect

(Figure 4.4c) < isolated (Figure 4.4d). In other words, post vectors are closer

to each other when the corresponding pair of posts are more related. This

further demonstrates the quality of post vectors generated by Post2Vec.

4.5.2 Quantitative Analysis

4.5.2.1 Stability of Post2Vec Representation

We find that the performance rankings of di↵erent post representations for

di↵erent downstream tasks are not always consistent. Take TagCNN as an

example, it performs second-best in relatedness prediction but performs worst

in post classification and API recommendation. Moreover, after integrating

the post representation learned by D2V and TagCNN into the state-of-the-



Table 4.8: Pairs in Figure 4.4a, 4.4b, 4.4c, and 4.4d

pairId id1 id2 label
0 10499846 10499780 duplicate
1 41995162 41985606 duplicate
2 25265734 25269382 duplicate
3 12399031 12399168 duplicate
4 21347995 21579452 duplicate
0 9701688 9690628 direct
1 4807299 27781975 direct
2 46692249 43321202 direct
3 12884573 40770990 direct
4 16821771 13944155 direct
0 24791298 27667086 indirect
1 7183010 37101318 indirect
2 32147303 23247539 indirect
3 36966266 40257154 indirect
4 23018048 29306473 indirect
0 25441021 45652298 isolated
1 42996077 35741584 isolated
2 25335343 22510809 isolated
3 25763556 2081159 isolated
4 40324266 33151168 isolated

art approaches, the performance becomes worse for the post-classification (see

Table 4.5) and API recommendation (see Table 4.6) tasks. It demonstrates

that the performance could be even harmed when integrating unsuitable post

representation. Overall, the experimental result demonstrates that the post

representation learned by Post2Vec is not only higher quality but also more

stable than others.

4.5.2.2 Robustness of Post2Vec Representation

Recall that there are four handcrafted features proposed in the original work

of relatedness prediction and we append the distance between posts’ vec-

tors generated by Post2Vec (denoted by P2VDist) to boost the features (Sec-

tion 4.4.2.4). In this way, we construct a five-dimensional feature vector (FV )

for each pair of posts, i.e., hcosSO , softSO , softGoogle , softEdit , P2VDisti.

To measure the relative importance of the feature generated by Post2Vec,

we remove each component of FV one-at-a-time and measure the correspond-



ing performance (in terms of F1-score; which is the summary metric). The

most important feature should result in the largest drop in performance when

it is removed. As shown in Table 4.9, we find that F1-score decreases the most

when Dist (the feature generated by Post2Vec) is removed. This shows

that the representation learned by Post2Vec is the most important feature

among the five. The rank of the relative importance of the five features is

P2VDist > softSO > softGoogle > cosSO = softEdit.

Table 4.9: Related Importance of Di↵erent Combinations of Features for Re-
latedness Prediction

Feature Vector Duplicate Direct Indirect Isolated Overall

Precision

FVw/o cosSO
0.53 0.45 0.48 0.77 0.55

FVw/o softSO
0.53 0.45 0.46 0.69 0.53

FVw/o softGoogle
0.53 0.44 0.48 0.76 0.55

FVw/o softEdit
0.53 0.45 0.48 0.77 0.55

FVw/o P2VDist
0.47 0.41 0.43 0.73 0.51

FVall 0.53 0.45 0.48 0.77 0.56

Recall

FVw/o cosSO
0.60 0.31 0.48 0.91 0.57

FVw/o softSO
0.60 0.32 0.38 0.93 0.55

FVw/o softGoogle
0.61 0.31 0.47 0.91 0.57

FVw/o softEdit
0.60 0.30 0.48 0.91 0.57

FVw/o P2VDist
0.54 0.19 0.49 0.91 0.53

FVall 0.61 0.31 0.48 0.91 0.58

F1-score

FVw/o cosSO
0.56 0.37 0.48 0.83 0.56

FVw/o softSO
0.57 0.37 0.42 0.79 0.53

FVw/o softGoogle
0.57 0.37 0.47 0.83 0.55

FVw/o softEdit
0.56 0.36 0.48 0.83 0.56

FVw/o P2VDist
0.51 0.26 0.46 0.81 0.51

FVall 0.57 0.36 0.48 0.83 0.56

4.5.3 Vector Space Visualization

To further investigate the clustering quality of post vectors learned by Post2Vec,

we randomly sample a subset of posts with a significant number from the

dataset of relatedness prediction and visualize the vector space learned by

Post2Vec. Out of the 51,918 posts from the dataset, we randomly consider

8,105 posts (i.e., the exact number provided by the Sample Size Calculator10

10https://www.surveysystem.com/sscalc.htm

https://www.surveysystem.com/sscalc.htm


Figure 4.5: Vector Space

*: The numbers represent posts’ Ids in Stack Overflow.

Figure 4.6: An Jackson-related Cluster (#1) of Posts in Figure 4.5

using 95% for the confidence level). Di↵erent from the vector space visual-

ization for the relatedness prediction in Section 4.5.1, we omit the relatedness

labels between posts. We utilize the t-SNE dimensionality reduction tech-

nique [67] to visualize the vector space learned by our approach. We find that



*: The numbers represent posts’ Ids in Stack Overflow.

Figure 4.7: An Apache POI -related Cluster (#2) of Posts in Figure 4.5

the learned vector space contains di↵erent sizes of clusters. Furthermore, we

arbitrarily pick two clusters (as shown in Figure 4.6 and Figure 4.7) and man-

ually read all the included posts. We find that posts in a cluster are related as

they are mainly about one or a few specific technologies. For example, all the

posts in cluster #1 (i.e., Figure 4.6) are related to a Java API named Jack-

son while most of the posts (except one) in cluster #2 are related to another

API called Apache POI. To some extent, it also explains that the boundaries

between clusters are not always clear as the posts may be related to multiple

technologies instead of only one.

Within a cluster, we find that the closer two posts’ vectors are, the more

sentiment similar they are. Take a pair of posts in cluster #1 as an example

(i.e., Figure 4.6), the two posts (Id = 9300191 and 12468764) are close to

each other in the vector space but far from others. The reason is that only

these two posts are related to deserializing enumeration by using Jackson. The

same observation can also be found in cluster #2 which is related to another

technology named Apache POI. Within cluster #2, the pair of posts that most



close to each other (i.e., Id = 28564045 and 16768328) are related to version

3.9 of the API Apache POI and the usage of API function calls for editing

sheets. Above all, two posts’ vectors are likely to be close to each other in the

vector space learned by our approach if they are similar semantically.

4.5.4 Threats to Validity

A threat to internal validity relates to our assumption that tags are labeled

correctly by users in Stack Overflow; however, mislabeling could happen some-

times. Still, we believe that Stack Overflow e↵ective crowdsourcing process

helps to reduce the number of such cases. Also, some works utilize a vali-

dation dataset to tune hyperparameters during training to reduce overfitting

likelihood. However, similar to many prior works [41, 46], for e�ciency rea-

son, we did not tune the hyperparameters. Tuning them can potentially boost

Post2Vec e↵ectiveness. Still, the experimental results have demonstrated

that Post2Vec can improve the e↵ectiveness of state-of-the-art approaches

in several tasks, which suggests that the learned post representation does not

overfit training data.

One threat to external validity relates to the generality of the distributed

representation generated by Post2Vec. Related works like fun2vec [24] and

code2vec [5], that aim to generate a representation for functions and methods,

only consider at most one downstream task. In this work, we have reduced

this threat by considering two downstream tasks. Another threat to external

validity is that the e↵ectiveness of our distributed representation depends on

the richness of the tags. We observed that there are more than 58k tags in

Stack Overflow on August 2019 and on average every post is labeled with 3

tags. Moreover, Stack Overflow encourages users to label their questions with

existing tags and requires them to avoid meta-tags (i.e., generic tags that do

not describe the content of the question, e.g., beginners) when creating new



tags. 11 The aforementioned facts suggest that the tags in Stack Overflow are

commonly used to characterize posts and they are meaningful for capturing the

contents of posts. In the future, we will explore other potential information (in

addition to the tags) that can also be used to guide the representation learning

process.

Threats to construct validity relate to the evaluation metrics that we con-

sider. We reuse the evaluation metrics that were used in the original tag

prediction, relatedness prediction, and post classification work that we extend.

Most of the metrics are also well-known. Thus, we believe that this threat is

minimal.

4.6 Conclusion and Future Work

In this work, we present a novel neural network based architecture, namely

Post2Vec, which learns distributed representation of Stack Overflow posts

by using the tags assigned by users to such posts as a guide. Post2Vec

architecture takes advantage of code snippets and handles di↵erent components

(i.e., title, description, and code snippets) separately.

To evaluate the quality of Post2Vec’s deep learning architecture, we first

investigate its end-to-end e↵ectiveness in tag recommendation task. The ex-

perimental results showed that Post2Vec outperforms the best performing

state-of-the-art deep learning based tag recommendation approaches, suggest-

ing its ability to learn better post representations. Furthermore, to evaluate

the value of representation learned using Post2Vec, we integrated the gener-

ated post representations into the learning pipeline of three downstream tasks,

i.e., relatedness prediction, post classification, and API recommendation. We

found that the post representation learned using Post2Vec can boost the

e↵ectiveness of state-of-the-art approaches’ performance by a substantial mar-

gin.

11
Users guide on tags in Stack Overflow, https://stackoverflow.com/help/tagging.

https://stackoverflow.com/help/tagging


In the future, we would like to explore the potential improvements of post

representation by integrating more information, e.g., comments and answers.

We also plan to investigate the e↵ectiveness of other deep neural network

models (beyond CNN and RNN) to be used in the feature extraction layer of

Post2Vec. We are also interested in investigating di↵erent (component) combi-

nation strategies to further boost the performance. Moreover, we plan to fur-

ther investigate the e↵ectiveness of post representation learned by Post2Vec

in additional downstream tasks. It would also be interesting to investigate the

applicability of Post2Vec to additional software question and answer sites

beyond Stack Overflow.



Chapter 5

Automated Knowledge

Summarization

5.1 Introduction

Answers on Stack Overflow have become an important body of knowledge for

solving developers’ technical questions. Typically, developers formulate their

questions as a query to some search engine, and the search engine returns a

list of relevant posts that may contain answers. Then, developers need to read

the returned posts and digest the information in them to find the answers to

their questions. Information seeking is rendered di�cult by the sheer amount

of questions and answers available on the Q&A site.

We survey 72 developers in two IT companies (i.e., Hengtian and Insigma

Global Service) with two questions: (1) whether you need a technique to pro-

vide direct answers when you post a question/query online and why? and (2)

what is your expectation of the automatically generated answers, e.g., must the

answers be accurate? All the developers agree that they need some automated

technique to provide direct answers to a question/query posted online. The

reasons they give include (1) sometimes it is hard to describe the problem they

meet, so some hints would be useful, (2) there is too much noisy and redundant
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information online, (3) the answers in long posts are hard to find, and (4) even

the answer they found may cover only one aspect of the problem. Developers

expect the answer generation tool to provide a succinct and diverse summary

of potential answers, which can help them understand the problem and refine

the queries/questions.

Our survey reveals a great need to provide improved techniques for informa-

tion retrieval and exploration. In this work, we aim to develop an automated

technique for generating answer summary to developers’ technical questions,

instead of merely returning answer ports containing answers. Many develop-

ers’ technical questions are non-factoid questions [91], for example, what are

di↵erences between HashTable and HashMap?, How do I write logs and display

them realtime in Java Swing? For such non-factoid technical questions, multi-

ple sparse and diverse sentences may make up the answer summary together.

We formulate our task as a query-focused multi-answer-posts summariza-

tion task for a given input question. This task is closely related to question

answering task [102, 49, 8], which aims to find information from a huge text

base to answer a question. An answer summary from the text base should

provide related information with respect to the query question. However, the

answer sentences and the query question are highly asymmetric on the infor-

mation they convey. They may not share lexical units. Instead, they may

only be semantically related (see examples in Table 5.1 and Table 5.2). The

inherent lexical gap between the answer sentences and the questions imposes

a major challenge for the non-factoid question answering task.

To tackle this challenge, we develop a three-stage framework to achieve the

goal of generating an answer summary for a non-factoid technical question. In

the first stage, we retrieve a set of relevant questions based on the question ti-

tles’ relevance to a query question. The question titles and the query question

are “parallel text” whose relevance is easier to determine. However, the ques-

tion titles and the query question often still have lexical gaps. Inspired by the



recent success of word embeddings in handling document lexical gaps [121], we

learn word embeddings from a large corpus of Stack Overflow posts to encode

the question titles and the query question and measure their relevance.

In the second stage, we collect all the answers of the relevant questions

retrieved in the first stage. We extract answer paragraphs from the collected

answers. We develop a multi-criteria ranking method to select a small subset

of relevant and salient answer paragraphs for summarization, based on query-

related, user-oriented, and paragraph content features. In the third stage,

given a set of answer paragraphs to be summarized, the generated answer

summary needs to cover as much diverse information as possible. To generate

a diverse summary, we measure novelty and diversity between the selected

answer paragraphs by Maximal Marginal Relevance (MMR) [14].

We build a question repository of 228,817 Java questions and their cor-

responding answers from Stack Overflow. We randomly select another 100

Java questions as query questions and use our approach to generate an answer

summary for each query question. Our user studies confirm the relevance,

usefulness and diversity of the generated summary, and the e↵ectiveness of

our approach’s relevant question retrieval and answer paragraphs selection

components. Our error analysis identifies four main challenges in generating

high-quality answer summary: vague queries, lexical gap between query and

question description, missing long code-snippet answers, and erroneous answer

paragraph splitting, which reveal the future enhancements of our automated

answer generation technique.

The main contributions of this paper are the following:

• We conduct a formative study to assess the necessity of automated question

answering techniques to provide answer summary to developers’ technical

questions.

• We formulate the problem of automated question answering as a query-

focused multi-answer-posts summarization task for an input technical ques-



tion.

• We propose a three-stage framework to solve the task, i.e., 1) relevant ques-

tion retrieval, 2) answer paragraphs selection, 3) answer summary genera-

tion.

• We conduct user studies to evaluate the e↵ectiveness of our approach and

its components, and identify several areas for future improvements.

5.2 Formative Study of Answer Summary

Table 5.1: The top 5 ranked Stack Overflow questions by Google Search Engine
for the query “di↵erences HashMap HashTable Java”

No. Question Id Title #Answers #Words
1 40471 Di↵erences between HashMap and Hashtable? 37 4135
2 8875680 Di↵erence between Hashtable and Collections.synchronizedMap(HashMap) 5 847
3 36313817 What are the di↵erences between hashtable and hashmap? (Not specific to Java) 3 747
4 32274953 Di↵erence between HashMap and HashTable purely in Data Structures 3 565
5 30110252 What are the di↵erences between Hashmap vs Hashtable in theory? 3 477

We contacted 120 developers by emails in two IT companies. We received

72 replies which help us understand the developers’ di�culties in the current

information retrieval (IR) practice and assess the necessity of automated ques-

tion answering techniques. Some comments we received are listed as follows:

• “Google will return a number of “relevant” links for a query, and I have to click into

these links, and read a number of paragraphs ... It is really time-consuming ... Some links

Table 5.2: Desirable Answer Summary with Relevant, Salient and Diverse
Information

No. Answer Id Content Aspect
1 764418 HashMap is non synchronized whereas Hashtable is synchronized. Synchronization/Thread Safety
2 25526024 Hashmap can store one key as null. Hashtable can’t store null. Null Keys/ Null Values

3 22491742
Second important di↵erence between Hashtable and HashMap is performance,
since HashMap is not synchronized it perform better than Hashtable.

Performance

4 16018266 HashTable is a legacy class in the jdk that shouldn’t be used anymore. Evolution History

5 20519518
Maps allows you to iterate and retrieve keys, values, and both key-value
pairs as well, Where HashTable don’t have all this capability.

Iteration

Table 5.3: Examples of Irrelevant and Low-quality Answer Paragraphs

No. Type Answer Id Example

1 Irrelevant 42003464
The explaination between hashmap and hashtable is quite correct as it also fits to the header of a string
hash map implementated in strmap. c where thestringmap is a hashtable for strings satisfying the properties
of a key,value-structure. Here it says : /...code.../

3 Low-quality 36325577

The interviewer may have been looking for the insight that.
A hash table is a lower-level concept that doesn’t imply or necessarily support any distinction or separation of
keys and values...even if in some implementations they’re always stored side by side in
memory, e.g. members of the same structure / std::pair<>...

http://stackoverflow.com/questions/40471/differences-between-hashmap-and-hashtable
http://stackoverflow.com/questions/8875680/
http://stackoverflow.com/questions/36313817/
http://stackoverflow.com/questions/32274953/
http://stackoverflow.com/questions/30110252/
http://stackoverflow.com/a/764418/
http://stackoverflow.com/a/25526024/
http://stackoverflow.com/a/22491742/
http://stackoverflow.com/a/16018266/
http://stackoverflow.com/a/20519518/
http://stackoverflow.com/a/42003464/
http://stackoverflow.com/a/36325577/


Table 5.4: Redundant Answer Paragraphs

Aspect Set of Redundant Answers’ Id Example
40512,
30108941,

40878,
42622789,

764418,
10372667,

39785829,
20519518,

[764418] HashMap is non synchronized whereas Hashtable is synchronized.

Synchronization/
Thread Safety

17815037,
34618895,

28426488,
41454,

27293997,
25348157,

8876192,
22084149,

[40512] Hashtable is synchronized, whereas HashMap isn’t. That makes
Hashtable slower than Hashmap.

8876289,
14452144,

8876205,
25526024,

42315504,
11883473

22491742,
[39785829] HashTable is internally synchronized. Whereas HashMap
is not internally synchronized.

40878, 7644118, 40548, 10372667, [25526024] Hashmap can store one key as null. Hashtable can’t store null.
Null Keys/
Null Values

39785829,
20519518,

14452144,
25526024,

17815037,
34618895,

28426488,
42622789,

[40878] Hashtable does not allow null keys or values. HashMap allow sone
null key and any number of null values.

25348157, 30108941
[10372667] HashTable can only contain non-null object as a key or as a value.
HashMap can contain one null key and null values.

13797704, 40848, 30108941, 39785829,
[40848] For threaded apps, you can often get away with ConcurrentHashMap-
depends on your performance requirements.

Performance 22491742, 34618895, 28426488, 24583680
[22491742] Second important di↵erence between Hashtable and HashMap is
performance, since HashMap is not synchronized it perform better than Hashtable.
[34618895] As HashMap is not synchronized it is faster as compared to Hashtable.

1041798, 22629569, 40522, 10372667, [16018266] HashTable is a legacy class in the jdk that shouldn’t be used anymore.

Evolution History 30108941, 39785829, 16018266, 14627155,
[39785829] HashMap extends AbstractMap class where as HashTable extends
Dictionary class which is the legacy class in java.

34618895, 42315504
[42315504] Second di↵erence is HashMap extends Map Interface and whether
HashSet Dictionary interface.

40878,
7344090,

7644118,
41454,

8832544,
10372667,

40483,
30108941,

[30108941] Iterating the values: Hashmap object values are iterated by using iterator.
HashTable is the only class other than vector which uses enumerator to iterate the
values of HashTable object.

Iteration 39785829, 20519518, 14452144, 34618895,
[20519518] Maps allows you to iterate and retrieve keys, values, and both key-value
pairs as well, Where HashTable don’t have all this capability.

42622789 [42622789] Iterator in HashMap is fail-fast. Enumerator in Hashtable is not fail-fast.

even contain viruses. A tool which generates potential answers can save my time wasted on

reading a lot of irrelevant content. If the generated answer accurately solves my question,

it is good. But I think it would be di�cult. Anyway, I believe it is no harm to use an answering

tool, at least I can get some hints to solve my problem.”

• “Sometimes I cannot accurately describe my questions, which made it hard to find the

answer. I have to browse a number of posts online to learn how to refine my query, and

search again. Thus, I expect that the answer generation tool can help me understand the

information space better, so I can refine my query faster without browsing those

noisy posts.”

• “I notice even the best answers in Stack Overflow often answer the questions only in one

aspect. Sometimes I need to know a diversity of aspects to understand the problem better,

but they cannot be found in a single best answer. Thus, I expect the tool should provide a

diversity of potential answers, even if some answers are not accurate. ”

• “... Some questions received too many long answers, and many of these answers have redun-

dant content. I expect the answer generation tool should return succinct answers which

covers many aspects of potential solutions. So I could have a high-level understand-

ing of the question I posted. ”

• “Even if the accuracy of the tool is only 10%, I will still use it. In the worst case, I

will use your tool first, and then search on Google again to find the solutions.”

We use a real-world example to illustrate the di�culties mentioned in the

developers’ replies and the desirable properties of automated answer generation

tool. Assume a developer was interested in the di↵erences between HashMap

and HashTable in Java. He used Google to search for Stack Overflow posts and

Table 5.1 lists the top 5 ranked Stack Overflow questions returned by Google.
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The question titles are very relevant to the developer’s information need and he

should be able to find the needed information in the answers to these questions.

However, information overload can be detrimental to the developer. There are

51 answers which have 6,771 words in total. Reading all these answers may

take 30 minutes (based on the average readers’ reading speed of 200 words per

minute [52]). Even just reading the best answers (i.e., the accepted answers)

or top-voted answers may still take some time.

It would be desirable to have a answer summary extracted from the answers

to the top 5 ranked questions, as the one shown in Table 5.2. This answer

summary helps the developer quickly capture the key points of the answers

relevant to his technical question. These points reveal the salient and diverse

di↵erences between HashMap and HashTable. They may help the developer

decides which API is more appropriate for his task, or provide information

scents for guiding the developer performing further search or learning [111].

However, manually generating this answer summary is not an easy task.

First, there is much low-quality and irrelevant information [113]. Table 5.3

shows two examples (eight answers in total). The first example discusses

HashMap and HashTable in C. The second example discusses how to answer

HashMap and HashTable related interview questions. These answers are valid

in a particular questions context, but have nothing to do with the developer’s

technical question.

Another issue is information redundancy. As shown in Table 5.4, the same

aspect may be mentioned in many answer posts. The information redundancy

and diversity creates a dilemma for the developer. If he reads every post, he is

likely to come across the same information again and again, which is a waste

of time. If he skips some posts, he risks missing some important aspects he has

not seen. Reading only the best answers can address the information overload

issue, but not the information redundancy and diversity. For example, the best



answer1 to the 1st ranked question in Table 5.1 discusses only three aspects

(Synchronization or Thread Safety, Null Keys and Null Values, and Iteration)

listed in Table 5.2. To tackle the above information relevance, redundancy and

diversity issues for finding answers to developers’ technical questions, we need

an e↵ective technique to generate an answer summary with relevant, salient

and diverse information from unstructured text of answer posts.

5.3 Proposed Approach

As shown in Figure 5.1, our approach (called AnswerBot) takes as input a

software-engineering-related technical question as a query from the user, and

produces as output an answer summary for the question. Next, we describe

the three components of our approach, i.e., relevant question retrieval, useful

answer paragraphs selection, and diverse answer summary generation.

5.3.1 Relevant Question Retrieval

The relevant question retrieval component takes a technical question as an

input query q and ranks all questions Q in a large question repository (e.g.,

questions from Q&A sites like Stack Overflow). The questions that are ranked

at the top are more likely to have answers that can answer the input technical

question. We combine word embedding technique and traditional IDF metric

to measure the relevance between the input query and the questions in the

repository. Word embedding has been shown to be robust in measuring text

relevance in the presence of lexical gap [119]. IDF metric helps to measure the

importance of a word in the corpus.

To train the word embedding model and compute the word IDF metrics, we

build a domain-specific text corpus using the question title and body of Stack

Overflow questions. Each question is considered as a document in the corpus.

1http://stackoverflow.com/a/40878

http://stackoverflow.com/a/40878
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Figure 5.1: The Framework of AnswerBot

As the text is from the website, we follow the text cleaning steps commonly

used for preprocessing web content [19]. We preserve textual content but

remove HTML tags. We remove long code snippets enclosed in HTML tag

hprei, but not short code fragments in hcodei in natural language paragraphs.

We use software-specific tokenizer [124] to tokenize the sentence. This tokenizer

can preserve the integrity of code-like tokens and the sentence structure. We

use Gensim (a Python implementation of the word2vec model [84]) to learn

the word embedding model on this domain-specific text corpus. To compute

the word IDF metrics, we build a vocabulary from the text corpus by removing

stop words based on the list of stop words for English text2 and using a popular

stemming tool [11] to reduce each word to its root form. We then compute the

IDF metric of each word in the vocabulary over the text corpus.

Given a query q and the title of a question Q in the repository, our relevance

calculation algorithm computes their relevance based on an IDF-weighted word

embedding similarity between the query and the question title. We use ques-

tion title in relevance calculation because query and question title are “parallel

text” [20]. The query and the question title are transformed into a bag of words,

respectively, following the same text preprocessing steps described above. Let

Wq be the bag of words for the query q and WQ be the bag of words for the

2http://snowball.tartarus.org/algorithms/english/stop.txt

http://snowball.tartarus.org/algorithms/english/stop.txt


title of the question Q. An asymmetric relevance rel(Wq ! WQ) is computed

as:

rel(Wq ! WQ) =

P
wq2Wq

rel(wq,WQ) ⇤ idf(wq)P
wq2Wq

idf(wq)
(5.1)

where idf(wq) is the IDF metric of the word wq, rel(wq,WQ) is maxwQ2WQ rel(wq, wQ),

and rel(wq, wQ) is the cosine similarity of the two word embeddings wq and

wQ. Intuitively, the word embedding similarity of a more important word in

the query and the words in the question title carries more weight towards the

relevance measurement between the query and the question title. An asym-

metric relevance rel(WQ ! Wq) is computed in the same way. Then, the

symmetric relevance between the query q and the question Q is the average of

the two asymmetric relevance between Wq and WQ, i.e., rel(q,Q) = (rel(Wq !

WQ) + rel(WQ ! Wq))/2.

Based on the symmetric relevance between the query and each question

in the repository, the questions in the repository are ranked and the top N

ranked questions are returned as the relevant questions for the query.

5.3.2 Useful Answer Paragraphs Selection

Given a ranked list of relevant questions, all the answer paragraphs (split by

HTML tag hpi) in the answers to these questions are collected. We decide to

use the granularity of answer paragraphs because they are the logical text units

that answerers create when writing the posts. To select relevant and salient

answer paragraphs for summarization, our approach ranks answer paragraphs

based on three kinds of features, i.e., query related features, paragraph content

features and user oriented features.

Query related features measure the relevance between an answer paragraph

and the query.

• Relevance to query. As the query and the answer paragraphs usually have

lexical gap between the information they convey, it is hard to directly mea-



sure their relevance. In this work, we set the relevance between a query and

an answer paragraph as the relevance between the query and the question

from which the answer paragraph is extracted.3 The underlying intuition

is that the more relevant the question is to the query, the more likely the

answers to the question contain relevant answer paragraphs.

• Entity overlap. If an answer paragraph contains software-specific entities

mentioned in the query, it is very likely that the paragraph is relevant to

the query. For example, all desirable answer paragraphs in Table 5.2 con-

tain HashMap and/or HashTable mentioned in the query. Software-specific

entities can be programming languages, libraries/frameworks, APIs, data

format, and domain-specific concepts [124]. In this work, we consider tags

and tag synonyms on Stack Overflow as entities. We identify entity mentions

in a query or answer paragraph by matching words in the query or answer

paragraph with tag names and tag synonyms. Let Eq and Eap be the set

of entities mentioned in the query and the answer paragraph, respectively.

The entity overlap between the query and the answer paragraph is computed

as |Eq

T
Eap| / |Eq| (|Eq| 6= 0). If the query does not mention any entities

(|Eq| = 0), we set entity overlap at 0.

Paragraph content features measure the salience of an answer paragraph’s

content.

• Information entropy. Salient answer paragraphs would contain high-entropy

words. A word with higher IDF metric indicates that the word is less com-

mon in the corpus (i.e., higher entropy). Thus, we sum the IDF metrics of

words (after removing stop words and stemming) in a paragraph to repre-

sent the paragraph’s entropy. Using this feature, many paragraphs with low

information entropy, e.g., “I cannot agree more.”, will be filtered out.

3
The relevance between the query and question is calculated during the relevant question

retrieval process – see Section 5.3.1.



Table 5.5: Semantic Patterns For Salient Information

No. Pattern No. Pattern
1 Please check XX 7 In short, XX
2 Pls check XX 8 The most important is XX
3 You should XX 9 I’d recommend XX
4 You can try XX 10 In summary, XX
5 You could try XX 11 Keep in mind that XX
6 Check out XX 12 I suggest that XX

• Semantic patterns. We observe that there are certain sentence patterns that

often indicate recommendation or summarization of salient information in

Stack Overflow discussions (see Table 5.5 for examples). For example, a

question on Stack Overflow asks “Array or List in Java. Which is faster?”.

The best answer to this question is “I suggest that you use a profiler

to test which is faster.”. In this work, we summarize 12 sentence patterns

based on our empirical observations of 300 randomly selected best answers

on Stack Overflow. If an answer paragraph contains at least one of the

sentence patterns, we set the paragraph’s pattern value at 1, otherwise 0.

• Format patterns. We observe that HTML tags are often used to emphasize

salient information in the discussions. For example, hstrongi highlights some

text by bold font and hstrikei points out some incorrect information. If an

answer paragraph contains such HTML tags, we set its format pattern score

at 1, otherwise 0.

User oriented features select summary and high-quality answer paragraphs

based on user behavior patterns.

• Paragraph position. We observe that when answerers write answer posts,

they usually start with some summary information and then go into de-

tails. For example, a question asks “How do I compare strings in Java?”,

The first three paragraphs of the best answer of this question present “==

for reference equality”, “.equals() for value equality”, and “Objects.equals()

checks for nulls”. Therefore, we set a paragraph’s summary value to be

http://stackoverflow.com/questions/716597/
http://stackoverflow.com/a/716619/
http://stackoverflow.com/a/716619/
http://stackoverflow.com/questions/513832


inversely proportional to the paragraph’s position in the post for the first m

paragraphs, i.e., summary = 1/pos (1  pos  m) (m = 3 in our current

implementation). The summary values of the subsequent (beyond the m
th)

paragraphs are set at 0.

• Vote on answer. Answers with higher vote indicate that the community be-

lieves that they contain high-quality information to answer the corresponding

question. In this work, we set an answer paragraph’s vote as the vote on the

answer post from which the paragraph is extracted.

Based on the above seven features, an overall score is computed for each

answer paragraph by multiplying the normalized value of each feature. To

avoid the feature scores being 0, all the feature scores are normalized to (0,1]

by adding a smooth factor 0.0001 [22]. Answer paragraphs are ranked by

their overall scores and the top M ranked answer paragraphs are selected as

candidate answer paragraphs for summarization.

5.3.3 Diverse Answer Summary Generation

As shown in Table 5.4, there are often many redundant answer paragraphs from

the answers to relevant questions. The generated answer summary should avoid

such redundant information. Given a list of candidate answer paragraphs, max-

imal marginal relevance (MMR) algorithm is used to select a subset of answer

paragraphs in order to maximize novelty and diversity between the selected an-

swer paragraphs [14]. MMR first builds a similarity matrix between each pair

of candidate answer paragraphs. The similarity is computed as the symmetric

relevance between the two answer paragraphs as described in Section 5.3.1. It

then iteratively selects K candidate answer paragraphs with maximal marginal

relevance. The selected answer paragraphs form an answer summary to the

user’s technical question.



5.4 Experiments & Results

We conduct three user studies to answer the following three research questions,

respectively:

RQ1 How e↵ective is our approach in generating answer summaries with rele-

vance, useful and diverse information for developers’ technical questions?

RQ2 How e↵ective is our approach’s relevant question retrieval component?

RQ3 How e↵ective is our approach’s answer paragraph selection component?

In this section, we first describe our repository of questions and answers and

tool implementation. We then describe our experimental query questions, and

how we select participants and allocate tasks in our user studies. Finally, we

elaborate the motivation, approach and results for the three research questions.

5.4.1 Question Repository and Tool Implementation

We collect 228,817 Java questions (i.e., questions tagged with Java) and their

corresponding answers from Stack Overflow Data Dump of March 2016. These

questions have at least one answer. To ensure the quality of question repository,

we require that at least one of the answers of the selected questions is the

accepted answer or has vote> 0. When collecting questions, we avoid duplicate

questions of the already-selected questions, because duplicate questions discuss

the same question in di↵erent ways and can be answered by the same answer.

We use these Java questions and their answers as a repository for answering

Java-related technical questions. We build a text corpus using the title and

body of these Java questions to train the word embedding model and build

the word IDF vocabulary. Considering the conciseness of the generated answer

summary and the fact that searchers tend to browse only the top ranked search

results [1], our current implementation returns top 5 relevant questions for a



query and selects top 10 candidate answer paragraphs for summarization. The

generated answer summary contains 5 answer paragraphs.

5.4.2 Experimental Queries

We randomly select another 100 questions4 and use the titles of these questions

as query questions. We ensure that our question repository does not contain

these 100 query questions and their duplicate questions. The randomly selected

100 query questions cover a diversity of aspects of Java programming. For ex-

ample, some of them are related to language features, such as multi-threading

(e.g., How does volatile actually work? ) and I/O (e.g., Can Bu↵eredReader

read bytes? ), while others are related to many third-party libraries, such as

TEST-Assertions (e.g., Testing API which returns multiple values with JU-

nit) and REST (e.g., Is there an equivalent to ASP.NET WEB API in JAVA

world? ). Some of the query questions are easy to answer (e.g., How to convert

String into DateFormat in java? ), while others are di�cult (e.g., How does

volatile actually work? ). The diversity of these 100 questions can improve the

generality of our study, and reduce the bias that our approach might be only

e↵ective for a specific type of questions. We index these 100 questions as Q1

to Q100.

5.4.3 Participant Selection and Task Allocation

We recruited participants through our school’s mailing lists and select 2 post-

doctoral fellows (P1 and P2) and 6 PhD students (D1 to D6) to join our user

study. All the selected participants have industrial experience on Java devel-

opment, and they have used Java to develop commercial projects in their work

before they went to graduate school. The years of their working experience

on Java are vary from 2 to 8 years, with an average 4.6 years. The diversity

of these participants’ working experience on Java can improve the generality

4
See our replication package at http://bit.ly/2qBEUhi

http://stackoverflow.com/questions/2694439/
http://stackoverflow.com/questions/22216398/
http://stackoverflow.com/questions/22216398/
http://stackoverflow.com/questions/6243242/
http://stackoverflow.com/questions/6243242/
http://stackoverflow.com/questions/23057456/
http://stackoverflow.com/questions/23057456/
http://stackoverflow.com/questions/23218025/how-to-convert-string-into-dateformat-in-java
http://stackoverflow.com/questions/23218025/how-to-convert-string-into-dateformat-in-java
http://stackoverflow.com/questions/2694439/
http://stackoverflow.com/questions/2694439/
http://bit.ly/2qBEUhi


Table 5.6: Task Allocation to Participants

RQs Group 1 (P1, D1, D2, D3) Group 2 (P2, D4, D5, D6)

RQ1 Q1-Q50 Q51-Q100
RQ2 Q51-Q100 Q1-Q50
RQ3 Q51-Q100 Q1-Q50

of our results. In practice, our tool aims to help all levels of developers, from

novice to senior developers. During our user study, no participants report

being unable to understand the query questions and answers.

We divided the eight participants into two groups, i.e., P1, D1, D2 and D3

in Group1 and P2, D4, D5 and D6 in Group2. Furthermore, we divided the

100 questions into two tasks, i.e., Q1-Q50 in Task1 and Q51-Q100 in Task2.

Table 5.6 present the task allocation to the two participant groups. For RQ1,

Group1 worked on Task1 questions, while Group2 worked on Task2 questions.

For RQ2 and RQ3, Group1 worked on Task2 questions, while Group2 worked

on Task1 questions. All four participants in these two groups were required to

review the answers of the assigned 50 questions independently. With this task

allocation, we have all 100 query questions evaluated for the three research

questions. As RQ1 evaluates the overall performance of our approach, and

RQ2 and RQ3 evaluates its components, using the same set of query questions

to evaluate RQ1 and RQ2/RQ3 may bias the participants’ results. However,

since RQ2 and RQ3 evaluates the two components independently and the

two components deal with completely di↵erent input/output, using the same

questions would have little impact on the participants’ results. We asked the

participants to complete the study in three 2-hour sessions; the first session

evaluates RQ1, while the second and third evaluate RQ2 and RQ3 respectively.

5.4.4 Research Questions

RQ1: E↵ectiveness of the overall approach and the relevance, use-

fulness and diversity of answer summary

Motivation. In the current IR practice, developers retrieve relevant questions



by entering their technical questions to a search engine. Then they have to

manually browse the answers of the returned relevant questions to find the

needed information. In contrast, our approach can automatically generate

an answer summary of the key points in the answers of the returned relevant

questions. We would like to investigate the overall performance of our approach

in terms of the relevance, usefulness and diversity of the generated summary,

compared with manual information seeking.

Approach. We compare our approach against two baselines built based on

Google search engine and Stack Overflow search engine, respectively. We

add “site:stackoverflow.com” to the query of Google search engine so that it

searches only posts on Stack Overflow. For a query question, we use the first

ranked Stack Overflow question returned by a search engine as the most rele-

vant question. We assume that a developer would read the best answer (i.e.,

the accepted answer) or the answer with the highest vote if there is no accepted

answer of the relevant question. We refer to the collected best or highest-vote

answer of the two baseline approaches as the Baseline Google answer summary

and the Baseline SO answer summary, respectively.

For each query question, we provide the participants the answer summary

generated by Baseline Google, Baseline SO and our approach, respectively.

The participants do not know which answer summary is generated by which

approach. They are asked to score the three answer summaries from three as-

pects, i.e., relevance, usefulness and diversity. Relevance refers to how relevant

the generated summary is to the query. Usefulness refers to how useful the

generated summary is for guiding the developer’s further search or learning.

Diversity refers to whether the generated summary involves diverse aspects of

information. The score is a 5 point likert scale, with 1 being “Highly Irrele-

vant/Useless/Identical” and 5 being “Highly Relevant/Useful/Diverse”.

Results. Table 5.7 shows the mean of relevance, usefulness and diversity

scores of our approach and the two baselines. The result shows that our ap-



Table 5.7: Mean of Relevance, Usefulness and Diversity of Our Approach and
the Baseline Approaches (RQ1)

Relevance Usefulness Diversity
Our Approach 3.450 3.720 3.830
Baseline Google 3.440 3.480* 2.930***
Baseline SO 2.576*** 2.712*** 2.305***

***p<0.001, **p<0.01, *p<0.05

proach achieves the best performance in all three aspects, while the Base-

line SO achieves the worst performance. Our approach and Baseline Google

have comparable relevance score, but our approach has higher score in useful-

ness and diversity, especially diversity. The average number of paragraphs in

Baseline Google and Baseline SO answer summaries are 4.18 and 4.09, respec-

tively.

We use Wilcoxon signed-rank test [109] to evaluate whether the di↵erences

between our approach and the baseline approaches are statistically significant.

The improvement of our approach over the Baseline SO is statistically signif-

icant on all three aspects at the confidence level of 99.9%. The improvement

of our approach over the Baseline Google on usefulness and diversity is sta-

tistically significant at the confidence level of 95%. We use the best answer

of the most relevant question returned by Google as the Baseline Google’s an-

swer for the query. Considering the Google’s capability, it is not surprising the

di↵erence in relevance is not statistically significant. However, our approach

achieves statistically significant better performance on usefulness and diver-

sity (especially diversity). This indicates that the best or highest-vote answers

may not cover as diverse information as the developers need. Therefore, it

is worth reading more answer posts to summarize more complete information.

Our approach automates this summarization process for a diversity of answers.

RQ2: The E↵ectiveness of relevant question retrieval

Motivation. An answer summary is generated from the answers of some

questions relevant to a query question. If the retrieved questions are not rel-

evant to the query question, it is unlikely to generate a high-quality answer



summary for the query question. Our question retrieval approach combines

word embeddings with traditional IDF metrics. We would like to investigate

the e↵ectiveness of our method, compared with the traditional TF-IDF based

methods and other word- or document-embedding based methods.

Approach. We build three baseline approaches: TF-IDF based IR [39], word-

embedding based document retrieval [121], and document-to-vector (Dov2Vec)

based document retrieval [57]. TF-IDF is a traditional IR metric that is often

used to rank a document’s relevance to a user query in software engineering

tasks, such as question retrieval [13] and code search [88]. Yang et al. [121]

average word embeddings of words in a document to obtain a document vector

which can be used to measure document relevance. Dov2Vec learns document

embeddings together with the underlying word embeddings using a neural

network and is also applied to measure document relevance [57].

For each query question, we collect the top-10 ranked questions retrieved by

our question retrieval approach or one of the baseline approaches. We ask the

participants to identify the relevant questions in the top-10 ranked questions.

The participants do not know which approach generates which list of top-10

ranked questions. We use the following metrics in comparison of di↵erent

approaches.

Top-K Accuracy: Given a query question q, if at least one of the top-k

ranked questions is relevant, we consider the retrieval to be successful, and

set the value Success(q, top � k) to 1. Otherwise, we consider the retrieval

to be unsuccessful, and set the value Success(q, top � k) to 0. Given a set of

queries, denoted as qs, its top-k accuracy Top@k is computed as: Top@k(qs) =
P

q2qs Success(q, top-k)/|qs|. The higher the top-k accuracy score is, the better

a relevant question retrieval approach ranks the first relevant question. In this

paper, we set k = 1, 5 and 10.

Mean Reciprocal Rank: Given a query question, its reciprocal rank is the

multiplicative inverse of the rank of the first relevant question in a ranked list of



Table 5.8: Top@k Accuracy and MRR of Our Approach and the Baseline
Approaches in Relevant Question Retrieval (RQ2)

Top@1 Top@5 Top@10 MRR
Our Approach 0.460 0.610 0.660 0.520

Doc2Vec 0.180*** 0.580 0.650 0.335***
Word Embeddings 0.340* 0.520 0.550* 0.408*

TF-IDF 0.320* 0.490* 0.530** 0.388*
***p<0.001, **p<0.01, *p<0.05

questions. Mean Reciprocal Rank (MRR) is the average of the reciprocal ranks

of all queries in a set of queries: MRR(qs) = 1

|qs|
P

q2qs
1

Rank(q)
. We denote qs as

the set of queries. Rank(q) refers to the position of the first relevant question in

the ranked list of questions returned by a relevant question retrieval approach

for a query. The higher the MRR is, the higher the first relevant questions is

ranked for a set of queries.

Results. Table 5.8 shows the Top@k and MRR metrics of our approach and

the three baseline approaches for retrieving relevant questions for the 100 query

questions. We notice that our approach achieves the best performance in all

the evaluated metrics, especially for Top@1 and MRR. The Doc2Vec baseline

achieves comparable performance as our approach on Top@5 and Top@10, but

it has the worst performance on Top@1 and MRR. The word-embedding base-

line performs slightly better than the TF-IDF baseline in Top@k and MRR.

The di↵erences between the three baseline approaches actually indicate that

the traditional TF-IDF based method and the word or document-embedding

based methods can complement each other. In fact, our approach that com-

bines word embeddings and IDF metrics achieves the best performance than

either TF-IDF or word/document embedding alone.

We apply Wilcoxon signed-rank test to test the statistical significance of

the di↵erences between our approach and the baseline approaches. The im-

provement of our approach over the TF-IDF baseline is statistically signifi-

cant on all the metrics at the confidence level of 95%. Compared with the

word-embedding and Doc2Vec baselines, our approach is statistically signifi-



Table 5.9: Top@k Accuracy and MRR of Feature Ablation for Answer Para-
graph Selection (RQ3)

Top@1 Top@5 Top@10 MRR
all features 0.660 0.990 1.000 0.803

w/o query related 0.610* 0.970 1.000 0.758**
w/o user oriented 0.500*** 0.980 1.000 0.699***

w/o paragraph content 0.570* 1.000 1.000 0.744**
***p<0.001, **p<0.01, *p<0.05

cant better on Top@1 and MRR at the confidence level of 95%. Although the

di↵erences between our approach and the word-embeddings and Doc2Vec base-

lines on Top@5 and Top@10 are not statistically significant, the significantly

better MRR indicates that our approach can rank relevant questions higher

than the other two baselines.

RQ3: The E↵ectiveness of answer paragraph selection

Motivation. To select the most relevant and salient answer paragraphs for

summarization, our approach considers three types of features of answer para-

graphs, i.e., query-related, user-oriented and paragraph content features. We

would like to investigate the impact of di↵erent types of features on the results

of answer paragraphs selection.

Approach. We remove one type of features at a time from the full feature

set and reserve the other two types. Thus, three baseline approaches are built,

i.e., without (w/o) query-related features, w/o user-oriented features, and w/o

paragraph content features. We let each approach output a ranked list of 10

answer paragraphs with the highest overall score. We take the union of the 40

answer paragraphs selected by our approach (with all features) and the three

baselines. Participants are asked to judge whether the selected paragraphs

contain salient information relevant to the query question. They do not know

which answer paragraph is selected by which approach. We use Top@k accu-

racy and MRR in the top 10 ranked candidate answer paragraphs to evaluate

the performance of answer paragraph selection with and without certain type

of features.



Results. Table 5.9 presents Top@k and MRR metrics of using all features

or adopting certain type of features for answer paragraph selection. Using all

features achieves the best performance in all metrics compared with adopting

certain type of features. This suggests that all types of features are useful

for answer paragraph selection. Using query-related features achieves better

performance than adopting the other two types of features, and using user-

oriented features achieves the worst performance. This suggests that user-

oriented features play the most important role for answer paragraph selection,

paragraph content features take a second place, and query-related features are

relatively less important.

Wilcoxon signed-rank test shows that the improvement of using all features

over adopting certain type of features is statistically significant on Top@1 and

MMR at the confidence level of 95%. Top@5 and Top@10 results in Table 5.9

show that there is almost always at least one relevant answer paragraph in the

top 5 or 10 ranked list of candidate answer paragraphs. This demonstrates the

general e↵ectiveness of our answer paragraph selection features. Therefore, the

di↵erences between using all features and adopting certain type of features on

Top@5 and Top@10 are not statistically significant.

5.5 Discussion

In this section, we qualitatively compare our question answering approach

with community question answering practice. We then discuss cases where our

approach is ine↵ective, followed by some threats to validity.

5.5.1 Comparison with Community Question Answer-

ing

In community question answering, developers post their questions on a Q&A

site like Stack Overflow and wait for answers from the community of developers.



To understand the di↵erences between the community-provided answers to

a technical question and the answer summary that our approach generates

from answers of relevant questions, we manually compare the best answers of

the questions we use as queries and the answer summary that our approach

generates for these questions.

Table 5.10 presents two examples. The query question in first example is

“calculating time di↵erence” in which the developer runs into some errors in

using getT ime() to calculate time di↵erence. The best answer of this question

suggests to use long to store getT ime()’s return value, rather than casting it

to int. For this query question, our generated answer summary consists of

five paragraphs from the four answers of two relevant questions. Except for

the fifth paragraph “You can try this” (due to the limitation of paragraph

splitting, see Section 5.5.2), the other four paragraphs provide two alternative

solutions (using System.nanoT ime() or currentT imeMillis()) to calculate

time di↵erence. They also describe the reason and cautions of using the two

APIs, such as System.nanoT ime() is more precise, System.nanoT ime() must

not be used as a wall clock, currentT imeMillis() may not be a good method

for time due to method overhead.

The query question in the second example is about hostname mismatch

problem in HTTPClient. The best answer provides a solution and explains

the advantage of the provided solution. Our answer summary consists of

five paragraphs from the five answers of four relevant questions. Except for

the fifth paragraph from the fourth question (about a fact of Amazon AWS

service), the other four paragraphs provide valuable information which can

complement the best answer of the query question. The third and fourth

paragraphs provide two di↵erent solutions for solving the problem, i.e., using

HttpClientBuilder.create().build() or using a fixed version of HTTPClient

instead of the buggy version. Although the first and second paragraphs do

not provide direct solutions, they point out some important aspects related



Table 5.10: Comparison of the Best Community-Provided Answers and the
Answer Summary Generated by Our Approach

#1 Query Question: Calculating time di↵rence
Relevant Questions

Best Answer of Query Question(Id: 18575058) Answer Summary Generated by Our Approach
Id Title

[9707986] Try this
long start time = System.nanoTime();
resp = GeoLocationService.getLocationByIp(ipAddress);
long end time = System.nanoTime();
double di↵erence = (end time - start time)/1e6;

Try changing
int di↵=(int)d2.getTime()-(int)d1.getTime();
to long di↵=d2.getTime()-d1.getTime();
Explicit typecasting from long to int

[9707972] No, it doesn’t mean it’s taking 0ms - it shows it’s taking
a smaller amount of time than you can measure with currentTimeMillis().
That may well be 10ms or 15ms. It’s not a good method to call for timing;
it’s more appropriate for getting the current time.

9707938 Calculating time di↵erence in Milliseconds

will cause precision loss and may result in
a negative value on subtraction.
long a = 90000000000000L;
long b = 10000001000000L;
a>b (int)a-(int)b=>negative value

[9707972] To measure how long something takes, consider using
System.nanoTime instead. The important point here isn’t that the
precision is greater, but that the resolution will be greater...
but only when used to measure the time between two calls.
It must not be used as a ”wall clock”.
[9707982] Since Java 1.5, you can get a more precise time value with
System.nanoTime(), which obviously returns nanoseconds instead.
[24907491] You can try this : 24907002 Calculating Time Di↵erence in Java

#2 Query Question: Android HttpClient - hostname in certificate didn’t match <example.com>!= <*.example.com>
Relevant Questions

Best Answer of Query Question(Id: 3136980) Answer Summary Generated by Our Approach
Id Title

[15497467] Important - if you are allowing all hosts (that is, disabling
host name verification), then it is certainly NOT safe. You shouldn’t be
doing this in production.

15497372
Java HTTP post using HTTPS
Confusion - javax.net.ssl.SSLException:
hostname in certificate didn’t match

This is my (edited) solution:
/...code.../
It has the advantage of not changing the

[7257060] The certificate verification process will always verify the
DNS name of the certificate presented by the server, with the hostname
of the server in the URL used by the client.

7256955
Java SSLException: hostname in
certificate didn’t match

default behavior unless there is a wildcard
domain, and in that case it revalidates as
though the 2 part domain (e.g., someUrl.com)

[24526126] This HttpClientBuilder.create().build() will return
org.apache.http.impl.client.InternalHttpClient. It can handle the this
hostname in certificate didn’t match issue.

were part of the certificate, otherwise the
original exception is rethrown. That means
truly invalid certs will still fail.

[34494091] This problem is described in Apache HttpClient resolving
domain to IP address and not matching certificate. It appears to be a
bug in the version of HTTPClient you are using, where it compares the
target IP instead of the target hostname with the subject certificate.
Please use a fixed version of HTTPClient instead.

34493872
SSLException: hostname in certificate
didn’t match
<50.19.233.255>!=<*.heroku.com>

[12755039] Buckets whose name contains periods can now be correctly
addressed again over HTTPS.

12755038
SSL problems with S3/AWS using the Java
API: hostname in certificate didn’t match

to the hostname mismatch problem, such as avoiding the action which allows

all hosts without any verification, checking the DNS name of the certificate

presented by the server.

As the above two examples show, community answers to a technical ques-

tion usually focus on a specific aspect technical issue in the question. Our

generated answer summary derived from answers of several relevant questions

can well complement community answers to a technical question by providing

more alternative solutions and/or broader information useful for further search

and learning.

5.5.2 Error Analysis

Through the analysis of the cases in which our approach generates a low-quality

even unrelated answer summary, we identify four main challenges in generat-

ing high-quality answer summary: vague queries, lexical gap between query

and question description, answers involving long code snippet, and erroneous

answer paragraph splitting.

http://stackoverflow.com/q/18575022
http://stackoverflow.com/a/18575058
http://stackoverflow.com/a/9707986
http://stackoverflow.com/a/9707972
http://stackoverflow.com/questions/9707938
http://stackoverflow.com/a/9707972
http://stackoverflow.com/a/9707982
http://stackoverflow.com/a/24907491
http://stackoverflow.com/questions/24907002
http://stackoverflow.com/q/3135679
http://stackoverflow.com/a/3136980
http://stackoverflow.com/a/15497467
http://stackoverflow.com/questions/15497372
http://stackoverflow.com/a/7257060
http://stackoverflow.com/questions/7256955
http://stackoverflow.com/a/24526126
http://stackoverflow.com/a/34494091
http://stackoverflow.com/questions/34493872
http://stackoverflow.com/questions/12755039
http://stackoverflow.com/questions/12755038


In our study, we randomly select 100 Stack Overflow questions and use

their titles as queries to search the question repository. However, question

titles are short and some of them are vague, e.g., “Why is this code work-

ing without volatile?”, “Fast processing of data”. It is hard to understand

such question titles without looking into the question bodies. Furthermore,

the lexical gap between query question and titles of questions in the reposi-

tory makes it di�cult to measure their semantic relevance. Due to these two

challenges, our relevant question retrieval component fails to retrieve at least

one relevant question in the top 10 results for 34 of the 100 query questions.

The low-quality question retrieval results directly result in the low quality of

the generated answer summary. To improve relevant question retrieval, we

will consider question bodies which contain richer information and adopt deep

neural network [20] which are more robust for handling lexical gaps in text.

Our current approach keeps short code fragments (enclosed in HTML tag

hcodei) in natural language paragraphs but removes long code snippets (en-

closed in HTML tag hprei). However, for some query questions, such as “How

to send an Image from Web Service in Spring’ ’, “How to implement a db lis-

tener in Java” and “XML to Json using Json-lib”, relevant answers are code

snippets, rather than natural language paragraphs. Thus, to generate high-

quality answer summary for this type of questions, we must take into account

long code snippets.

Our current approach splits the text in an answer post into answer para-

graphs by HTML tag hpi. This simple strategy may sometimes break the logic

relationships between several consecutive physical paragraphs. For example,

people often write some introductory paragraph like “Try with the following:

”, “From here you can go to”, and “There are many solutions to this prob-

lem”, followed by a separate paragraph explaining the details. To generate

more sensible answer summary, an introductory paragraph and the following

detailed explanation should be treated as a whole, using more robust paragraph

http://stackoverflow.com/questions/30956461
http://stackoverflow.com/questions/30956461
http://stackoverflow.com/questions/21398631
http://stackoverflow.com/questions/8656085
http://stackoverflow.com/questions/8656085
http://stackoverflow.com/questions/12618915
http://stackoverflow.com/questions/12618915
http://stackoverflow.com/questions/16509777
http://stackoverflow.com/a/10450054
http://stackoverflow.com/a/10450054
http://stackoverflow.com/a/7213383
http://stackoverflow.com/a/5260527
http://stackoverflow.com/a/5260527


splitting method.

5.5.3 Threats to Validity

Threats to internal validity are related to experimental bias of participants

in manual examination of relevant questions and answer summaries. First, the

participants’ lack of knowledge on Java may a↵ect their judgements about

question/answer’s relevance and usefulness. This threat is limited by selecting

only participants who have at least 2 years industrial experience on Java de-

velopment. Still, there could be errors because an experienced Java developer

is not necessarily familiar with all Java frameworks and APIs. On the other

hand, the participants’ degree of carefulness and e↵ort in manual examination

may a↵ect the validity of judgements. We minimize this threat by choosing

participants who express interests in our research, and giving the participants

enough time to complete the evaluation tasks.

Threats to external validity are related to the generalizability of our re-

search and experiments. Stack Overflow questions are related to many domains

other than Java (e.g. Python, Eclipse, database), or combinations of multiple

domains. Our approach is general, but considering the background knowledge

of available participants for the user studies, we use only Java questions in

this work. Furthermore, as user studies require significant human e↵orts, we

only use 100 query questions in this study. In the future, we will use more

queries, larger question repository, and questions of more domains to reduce

these threats.

Threats to construct validity are related to the suitability of our evaluation

metrics. Relevance [81], usefulness [26] and diversity [69] are widely used to

evaluate summarization tasks in software engineering, Both relevant question

retrieval and answer paragraphs selection are ranking problems. Thus, we use

Top@k accuracy (k=1, 5, 10) and MRR. These two metrics are the most widely

used metrics for evaluating IR techniques [118, ?, 117].



5.6 Conclusion and Future Work

Our formative study indicates that developers need some automated answer

generation tools to extract a succinct and diverse summary of potential an-

swers to their technical questions from the sheer amount of information in

Q&A discussions. To meet this need, we propose a three-stage framework for

automated generation of answer summary. Our user studies demonstrate the

relevance, usefulness and diversity of our automated generated answer sum-

maries.

In the future, we will investigate more robust relevant question retrieval

algorithms, and explore more features for answer paragraph selection. We will

develop our approach into practical tools (e.g., browser plugins) to provide

developers with direct answers and extended suggestions to help them find

the needed information more e�ciently on the Internet. Moreover, considering

our approach is three-stage (relevant post retrieval, useful information identi-

fication and answer summarization), we will compare the performance of each

stage with the (NLP) techniques which aim the same/similar goal. Particu-

larly, considering the similarity between the query and every single question in

the repository need to be measured and the size of the repository could be big,

we also plan to improve its e�ciency from two directions. First, as the similar-

ity measurement is independent across the repository, the computation could

be implemented under the framework of parallel computing, such as MapRe-

duce [23]. Second, intuitively, if two questions are semantically equivalent (i.e.,

duplicate questions), then the query only needs to compute the similarity with

one of them. Thus, following this spirit, it is also worthy to investigate the fea-

sibility of pre-computing the similarity between questions in the repository and

then leverage the information to reduce the online computation cost. More-

over, besides MMR [14], we plan to investigate more automated summarization

algorithms (such as LexRank [27]) in the stage of answer summary generation.



Chapter 6

Conclusion, Impact, and Future

Work

6.1 Conclusion

As SQA data grows significantly in both size and complexity, leveraging it

to support various software activities becomes challenging, time-consuming,

and very costly. This dissertation focuses on analyzing SQA sites to save

developers’ time and e↵ort in several ways. Specifically, we propose solutions

for three tasks: linkable knowledge prediction, knowledge representation, and

answer summarization. The contributions of this dissertation are as follows:

1. We introduce a low-complexity but more e↵ective machine learning model,

namely SoftSVM, to predict relatedness between knowledge units in

Stack Overflow. SoftSVM takes four feature vectors from di↵erent

perspectives as its input and employs a linear kernel for the support

vector machine.

2. We propose a deep learning framework Post2Vec to learn the dis-

tributed representation of posts in SQA sites. It not only considers the

textual data from posts but also leverages the code snippets inside the

posts. Once the model is trained, the learned representation can be used
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for many software engineering tasks based on the SQA data.

3. We design an end-to-end approach (named AnswerBot) to automati-

cally generate a summary for a given technical question. AnswerBot

is capable to retrieve the relevant questions, and identify the useful para-

graphs from the answers to the relevant questions, and produce a sum-

mary based on the useful paragraphs.

6.2 Impact

We summarize the impact of this dissertation to the whole area of the mining

crowd-knowledge platforms from three aspects as follows.

• Reproducibility study should be more advocated for the re-

search of mining crowd-knowledge. Typically, in the area of the

mining crowd-knowledge platforms, researchers demonstrate their ap-

proaches on a single dataset. Di↵erently, in the work of linkable knowl-

edge units prediction, we conducted a reproducibility study on how

well the traditional machine learning-based and deep learning-based ap-

proaches perform over di↵erent scales of datasets. The experimental re-

sult demonstrates that the performance of traditional machine learning-

based and deep learning-based approaches are not persistent. More

specifically, we find that although the traditional machine learning ap-

proach achieves better performance than deep learning-based approach

on a small dataset, it achieves much worse e�ciency when we increase

the size of the dataset. Inspired by this finding, we advocate researchers

should always carefully take the characteristic (e.g., complexity) of their

datasets into consideration to propose an appropriate approach design.

More importantly, we encourage more reproducibility studies in the whole

area of the mining crowd-knowledge platforms to improve the generaliz-

ability of research findings. Inspired by our work, Guo et al. propose an



approach for identifying self admitted technical debt and the experimen-

tal results show that their approach is not only e↵ective but also with

low complexity [36].

• Crowd-knowledge platforms should not be treated as informa-

tion silos. Instead, knowledge is linkable and can be leveraged for many

software tasks. In this dissertation, both works of knowledge linking

and representation show that knowledge units in SQA are linkable and

provide two di↵erent ways to measure their relatedness. In the work of

knowledge linking, the relatedness is divided into four categories, i.e.,

duplicate, directly link, indirectly link, and isolated. While in the work

of knowledge representation, knowledge units are mapped into a vector

space and the relatedness between them can be measured by the dis-

tance of their corresponding vectors. More importantly, we show that by

leveraging the relationship between knowledge units, the performance of

many software tasks can be boosted, e.g., API recommendation.

• Knowledge summarization for crowd-knowledge platforms is

desired. In the work of knowledge summarization, we demonstrate that

developers are su↵ering from a large amount of redundant information

and it barriers them to identify the relevant information. Moreover,

based on the result of our survey, we find that a relevant, useful, and

diverse summary for their queries are desired. Thus, we proposed our

approach AnswerBot for automatic answer summary generation. Mo-

tivated by our work AnswerBot, Huang et al. proposed an approach

which not only recommends API but also summarizes API description

and code examples in Stack Overflow posts to help developers select the

APIs that are most relevant to their tasks [45]. Gao et al. proposed

an answer recommendation approach which follows the same question

retrieval method of AnswerBot to search for similar questions [33].

Wang et al. migrated the idea of AnswerBot for automatic solution



summarization for crash bugs [103].

6.3 Future Work

In this dissertation, we have proposed several machine learning-based models

to interpret the SQA data. The experimental results demonstrate that they

perform well in terms of both e↵ectiveness and e�ciency. As future work, we

want to investigate the following directions.

• Explainable program repair by leveraging SQA data. Many

automated program repair approaches have been proposed to generate

patches for given buggy programs. However, digesting and verifying gen-

erated patches is non-trivial as it requires programmers to equip a deep

understanding of the patches. Thus, an explainable program repair ap-

proach is desired to save programmers’ time. To achieve the goal, SQA

data becomes a precious resource to be considered as it naturally contains

solutions for many certain types of bugs with clear explanation. For ex-

ample, a question with buggy code in Stack Overflow is titled as Prevent

SQL injection attacks in a Java program1. The corresponding accepted

answer2 contains a correct patch by using the class PreparedStatement.

More importantly, it also explains how does PreparedStatement work and

why it can be used to prevent injection attacks. With such informative

explanation, programmers can easily judge the correctness of the patch.

Motivated by the above observations, we plan to propose an explainable

program repair approach by leveraging SQA data.

• Domain-Specific Search Engine. Inspired from AnswerBot, we

find that general search engines (e.g., Google) fail in many instances to

return the desired results, and they are not fulfilling all needs. Thus,

1
https://stackoverflow.com/questions/9516625

2
https://stackoverflow.com/a/9516672/5022378



developing domain-specific search engines is one solution to help address

the limitations of general search engines for a software-engineering re-

lated search. Such a domain-specific search engine should understand

software engineering terminologies and concepts, and be able to disam-

biguate query terms and website contents based on these terminologies

and concepts. It should also automatically identify useful software infor-

mation sites, and prioritize results from these sites while ignoring sites

that are irrelevant to software development. Although AnswerBot

has demonstrated it can achieve better performance than general search

engines, we observe that AnswerBot can be further improved by cap-

turing the semantic links among software concepts, e.g., both JQuery

and Servlet are two related techniques which correspond to front-end

and back-end of java web development. To develop a more advanced

version of AnswerBot, we plan to do the following work:

– Domain-Specific knowledge graph construction. Software en-

gineering has its own terminologies and concepts. To identify their

relationships, the first step is to construct a domain-specific knowl-

edge graph from various software information sites like Stack Over-

flow and GitHub. We plan to leverage techniques from natural lan-

guage processing and ontology construction to build the knowledge

graph.

– Domain-Specific semantic search. We plan to use the knowl-

edge graph to refine the search queries proposed by developers, and

the semantic links between di↵erent software engineering concepts

to improve the accuracy of search results, e.g., by integrating se-

mantic links into a language model and proposing a domain-specific

semantic language model.

– Automated answer generation. Developers’ goal in using search

engines is to find desired answers to their questions. General search



engines typically return a list of relevant posts, and developers have

to manually check these posts to find the desired answers. By lever-

aging a knowledge graph, the domain-specific search engine can

identify not only a list of more relevant posts but also the semantic

relationship between these posts. We plan to apply and extend text

summarization techniques to generate the answers from the posts.

• Automatic summarization for developers’ activities. Inspired by

the work of knowledge summarization, we realize that many software

activities may also need a promising summary to improve the developers’

productivity. Hence, we plan to do the following work to further expand

this idea:

– User study on potential applicable scenarios for knowl-

edge/information summarization. To understand how sum-

marization techniques can better serve developers and also develop

practical summarization tools, we plan to conduct an open survey.

More specifically, we want to recognize what activities need sum-

marization techniques the most and the least. Moreover, it’s also

useful to know what the expected summary looks like in developers’

minds.

– Multi-resource software knowledge summarization. Inspired

by the work of API summarization done by Gias et al., developers

expect the API summary can be generated based on multiple re-

sources, e.g., API documentation and SQA [101]. Intuitively, con-

sidering multiple resources provides a big potential to improve the

quality of the generated summary. Thus, to achieve this, we plan

to develop a more advanced approach. Note that the task is non-

trivial as the data from di↵erent resources may carry various data

structures and styles.
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Jacques Klein, Kisub Kim, and Yves Le Traon. Augmenting and struc-

turing user queries to support e�cient free-form code search. Empirical

Software Engineering, 23(5):2622–2654, 2018.

[91] Hongya Song, Zhaochun Ren, Shangsong Liang, Piji Li, Jun Ma, and

Maarten de Rijke. Summarizing Answers in Non-Factoid Community

Question-Answering.

[92] Nitish Srivastava, Geo↵rey Hinton, Alex Krizhevsky, Ilya Sutskever, and

Ruslan Salakhutdinov. Dropout: a simple way to prevent neural net-

works from overfitting. The Journal of Machine Learning Research,

15(1):1929–1958, 2014.

[93] StackOverflow. How to ask a good question?, http://stackoverflow.

com/help/how-to-ask, 2018.

[94] stackoverflow.com. Why are some questions marked as duplicate?, 2018.

[95] Rainer Storn and Kenneth Price. Di↵erential evolution–a simple and

e�cient heuristic for global optimization over continuous spaces. Journal

of global optimization, 11(4):341–359, 1997.

[96] Yan Sun, Celia Chen, Qing Wang, and Barry W. Boehm. Improving

missing issue-commit link recovery using positive and unlabeled data. In

Proceedings of the 32nd IEEE/ACM International Conference on Auto-

mated Software Engineering, ASE 2017, Urbana, IL, USA, October 30 -

November 03, 2017, pages 147–152, 2017.

[97] Christian Szegedy, Alexander Toshev, and Dumitru Erhan. Deep neu-

ral networks for object detection. In Advances in neural information

processing systems, pages 2553–2561, 2013.

[98] Amjed Tahir, Aiko Yamashita, Sherlock Licorish, Jens Dietrich, and

Steve Counsell. Can you tell me if it smells? a study on how developers

http://stackoverflow.com/help/how-to-ask
http://stackoverflow.com/help/how-to-ask


discuss code smells and anti-patterns in stack overflow. In Proceedings

of the 22nd International Conference on Evaluation and Assessment in

Software Engineering 2018, pages 68–78, 2018.

[99] Christoph Treude and Markus Wagner. Predicting good configurations

for github and stack overflow topic models. In 2019 IEEE/ACM 16th

International Conference on Mining Software Repositories (MSR), pages

84–95. IEEE, 2019.

[100] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta,

Martin White, and Denys Poshyvanyk. Deep learning similarities from

di↵erent representations of source code. In 2018 IEEE/ACM 15th In-

ternational Conference on Mining Software Repositories (MSR), pages

542–553. IEEE, 2018.

[101] Gias Uddin and Foutse Khomh. Automatic summarization of api reviews.

In 2017 32nd IEEE/ACM International Conference on Automated Soft-

ware Engineering (ASE), pages 159–170. IEEE, 2017.

[102] Christina Unger, Lorenz Bühmann, Jens Lehmann, Axel-Cyrille

Ngonga Ngomo, Daniel Gerber, and Philipp Cimiano. Template-based

question answering over RDF data. In Proceedings of the 21st interna-

tional conference on World Wide Web, pages 639–648. ACM, 2012.

[103] Haoye Wang, Xin Xia, David Lo, John Grundy, and Xinyu Wang. Au-

tomatic solution summarization for crash bugs. In 2021 IEEE/ACM

43rd International Conference on Software Engineering (ICSE), pages

1286–1297. IEEE, 2021.

[104] Liting Wang, Li Zhang, and Jing Jiang. Detecting duplicate questions in

stack overflow via deep learning approaches. In 2019 26th Asia-Pacific

Software Engineering Conference (APSEC), pages 506–513. IEEE, 2019.



[105] Shaowei Wang, David Lo, Bogdan Vasilescu, and Alexander Serebrenik.

Entagrec: An enhanced tag recommendation system for software infor-

mation sites. In IEEE International Conference on Software Mainte-

nance and Evolution (ICSME), pages 291–300, 2014.

[106] Shaowei Wang, David Lo, Bogdan Vasilescu, and Alexander Serebrenik.

Entagrec: An enhanced tag recommendation system for software infor-

mation sites. In 30th IEEE International Conference on Software Main-

tenance and Evolution, Victoria, BC, Canada, September 29 - October

3, 2014, pages 291–300. IEEE Computer Society, 2014.

[107] Shaowei Wang, David Lo, Bogdan Vasilescu, and Alexander Serebrenik.

Entagrec++: An enhanced tag recommendation system for software in-

formation sites. Empirical Software Engineering, 23(2):800–832, 2018.

[108] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshy-

vanyk. Deep learning code fragments for code clone detection. In Pro-

ceedings of the 31st IEEE/ACM International Conference on Automated

Software Engineering, pages 87–98. ACM, 2016.

[109] Frank Wilcoxon. Individual comparisons by ranking methods. Biomet-

rics bulletin, 1(6):80–83, 1945.

[110] Frank Wilcoxon. Individual comparisons by ranking methods. In Break-

throughs in statistics, pages 196–202. Springer, 1992.

[111] Wan-Ching Wu. How far will you go?: characterizing and predicting on-

line search stopping behavior using information scent and need for cog-

nition. In Proceedings of the 36th international ACM SIGIR conference

on Research and development in information retrieval, pages 1149–1149.

ACM, 2013.



[112] Yuhao Wu, Shaowei Wang, Cor-Paul Bezemer, and Katsuro Inoue. How

do developers utilize source code from stack overflow? Empirical Soft-

ware Engineering, 24(2):637–673, 2019.

[113] Xin Xia, Lingfeng Bao, David Lo, Pavneet Singh Kochhar, Ahmed E

Hassan, and Zhenchang Xing. What do developers search for on the

web? Empirical Software Engineering, pages 1–37, 2017.

[114] Xin Xia, David Lo, Xinyu Wang, and Bo Zhou. Tag recommendation

in software information sites. In Proceedings of the 10th Working Con-

ference on Mining Software Repositories, pages 287–296. IEEE Press,

2013.

[115] Bowen Xu, Amirreza Shirani, David Lo, and Mohammad Amin Alipour.

Prediction of relatedness in stack overflow: deep learning vs. svm: a

reproducibility study. In Proceedings of the 12th ACM/IEEE Interna-

tional Symposium on Empirical Software Engineering and Measurement,

page 21. ACM, 2018.

[116] Bowen Xu, Zhenchang Xing, Xin Xia, and David Lo. Answerbot: auto-

mated generation of answer summary to developersź technical questions.
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