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Abstract

The code hosting platform GitHub has gained immense popularity worldwide

in recent years, with over 200 million repositories hosted as of June 2021. Due

to its popularity, it has great potential to facilitate widespread improvements

across many software projects. Naturally, GitHub has attracted much research

attention, and the source code in the various repositories it hosts also provide

opportunity to apply techniques and tools developed by software engineering

researchers over the years. However, much of existing body of research ap-

plicable to GitHub focuses on code quality of the software projects and ways

to improve them. Fewer work focus on potential ways to improve quality

of GitHub repositories through other aspects, although quality of a software

project on GitHub is also affected by factors outside a project’s source code,

such as documentation, the project’s dependencies, and pool of contributors.

The three works that form this dissertation focus on investigating aspects

of GitHub repositories beyond the code quality, and identify specific potential

improvements that can be applied to improve wide range of GitHub reposi-

tories. In the first work, we aim to systematically understand the content of

README files in GitHub software projects, and develop a tool that can pro-

cess them automatically. The work begins with a qualitative study involving

4,226 README file sections from 393 randomly-sampled GitHub repositories,

which reveals that many README files contain the “What” and “How” of

the software project, but often do not contain the purpose and status of the

project. This is followed by a development and evaluation of a multi-label clas-

sifier that can predict eight different README content categories with F1 of

0.746. From our subsequent evaluation of the classifier, which involve twenty

software professionals, we find that adding labels generated by the classifier to

README files ease information discovery.

Our second work focuses on characteristics of vulnerabilities in open-source

libraries used by 450 software projects on GitHub that are written in Java,



Python, and Ruby. Using an industrial software composition analysis tool, we

scanned every version of the projects after each commit made between Novem-

ber 1, 2017 and October 31, 2018. Our subsequent analyses on the discovered

library names, versions, and associated vulnerabilities reveal, among others,

that “Denial of Service” and “Information Disclosure” vulnerability types are

common. In addition, we also find that most of the vulnerabilities persist

throughout the observation period, and that attributes such as project size,

project popularity, and experience level of commit authors do not translate to

better or worse handling of vulnerabilities in dependent libraries. Based on the

findings in the second work, we list a number of implications for library users,

library developers, as well as researchers, and provide several concrete recom-

mendations. This includes recommendations to simplify projects’ dependency

sets, as well as to encourage research into ways to automatically recommend

libraries known to be secure to developers.

In our third work, we conduct a multi-region geographical analysis of gender

inclusion on GitHub. We use a mixed-methods approach involving a quanti-

tative analysis of commit authors of 21,456 project repositories, followed by

a survey that is strategically targeted to developers in various regions world-

wide and a qualitative analysis of the survey responses. Among other find-

ings, we discover differences in diversity levels between regions, with Asia and

Americas being highest. We also find no strong correlation between gender

and geographic diversity of a repository’s commit authors. Further, from our

survey respondents worldwide, we also identify barriers and motivations to

contribute to open-source software. The results of this work provides insights

on the current state of gender diversity in open source software and potential

ways to improve participation of developers from under-represented regions

and gender, and subsequently improve the open-source software community in

general. Such potential ways include creation of codes of conduct, proximity-

based mentorship schemes, and highlighting of women / regional role models.
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Chapter 1

Introduction

In this chapter, we discuss the motivation of the problems addressed by this

dissertation. We also provide a summary of works completed, as well as the

structure of this dissertation.

1.1 Background and Motivation

GitHub is a code hosting platform for version control and collaboration1.

Project artifacts on GitHub are hosted in repositories which can have many

branches and are contributed to via commits. Issues and pull requests are the

primary artifacts through which development work is managed and reviewed.

Over the years, GitHub has gained immense popularity worldwide, with over

200 million repositories hosted2 as of June 2021. The software projects it hosts

range from small-scale personal projects to projects by large organizations such

as Adobe, Twitter, and Microsoft3.

While users and developers of software projects hosted on GitHub often

focus on the code hosted on the repository, such code is also associated with

other elements, such as documentation and dependencies, that also affect over-

all quality of the project. A project whose documentation is missing various

1https://guides.github.com/activities/hello-world/
2https://github.com/about
3https://github.com/collections/open-source-organizations
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CHAPTER 1. INTRODUCTION

key information may cause problems during usage and thus is not likely to

be considered of high quality. Similarly, a project which uses libraries known

to be vulnerable will not likely be considered as having high quality, even if

the portion of code written by the project owners is secure. Beyond this, a

GitHub project also exists within a social context, where people other than

the repository owner may contribute to the project. Obstacles preventing ca-

pable people from contributing, such as biases against developers from certain

gender, can also hinder improvements to a project’s quality.

In the past few decades there has been much research on code quality of

software projects and ways to improve them. Such research cover topics such

as defect prediction [216, 189, 184], fault localization [219, 111, 118], code

smells [151, 124, 208], and API recommendation [144, 166, 199]. The results

of such research are typically applicable to software projects on GitHub as

well. However, there has been less research attention on potential quality

improvements in documentation, dependency, and social context of GitHub

projects. This situation motivates the body of work described here.

1.2 Contribution Summary

In this dissertation, we focus on analyzing several aspects of software project

repositories on GitHub, namely their README files, vulnerabilities in the

projects’ dependencies, and diversity of their contributors. In addition to an-

alyzing the current state of GitHub with respect to those aspects, we also

propose a tool and concrete recommendations to improve GitHub projects

based on the result of our analyses.

Categorizing the Content of GitHub README Files. README

files play an important role in introducing a software project to potential users

and contributors, and the quality of a project’s README file affect their im-

pression of the project, for example, whether the project is meant to be a “toy”

2



CHAPTER 1. INTRODUCTION

project, whether it is still actively developed, and whether it is well-managed.

Further, quality of a project’s README file also affects how easily users and

potential contributors can start using and contributing to the project. While a

number of studies have been done on artifacts containing software development

knowledge (including API documentation [121], development blogs [154, 201],

and StackOverflow [142, 202]), there had not been a systematic study on the

content of README files on GitHub and how to automatically process them.

Our first work addresses this gap. This work comprises two parts. The first

part is an investigation into characteristics and distribution of types of content

in GitHub README files. The findings of the first part are used in the sec-

ond part of the work to develop a multi-label, multi-class classifier for GitHub

README file section content. This second part also includes experiments con-

ducted to measure the classifier’s performance, along with a survey to evaluate

how actual developers perceive the usefulness of the classifier’s result.

Study of Vulnerabilities of Open-Source Dependencies of GitHub

Projects. Currently, software developers frequently make use of open-source

libraries to speed up their development process. The practice even extends

to using what is termed by Abdelkareem et al. as “trivial” packages [2] in-

stead of writing the equivalent simple functionalities. However, this reliance on

open-source libraries, which themselves often depend on other libraries, makes

it more difficult for developers to understand the entire dependency network

of their software. Worse, while developers may conduct code reviews on their

own code, Kula et al. found that developers often do not scrutinize third-party

libraries they use [102]. From security perspective, this means developers are

less likely to be aware of any security vulnerabilities introduced by those de-

pendencies into their software project. This has resulted in several high-profile

security incidents in recent years that are caused by attackers exploiting vul-

nerabilities in popular libraries45. Unfortunately, while cyber-security has been

4https://www.wired.com/story/equifax-breach-no-excuse/
5https://thehackernews.com/2018/01/electron-js-hacking.html/
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an active research area for decades, characteristics of vulnerabilities in depen-

dent libraries did not gain much research attention until recently. In addition,

existing works often focus on very specific set of libraries, such as those in

Javascript’s npm [44, 227], libraries used by popular websites [110], or libraries

most commonly used in a particular organization’s projects [156]. In Chap-

ter 4, we conduct a broader study by examining open-source dependencies

of 450 GitHub projects of various types that are written in three popular

languages (Java, Python, and Ruby) to characterize their vulnerabilities and

investigate their correlations with project and commit attributes. Among oth-

ers, we identify vulnerability types that are common across languages. We

also discover that most vulnerabilities in dependent libraries are persistent,

that the vulnerability counts do not correlate strongly with commit attributes

and most of the project attributes.

Diversity of contributors of OSS projects. The issue of gender diver-

sity in open source software is a long-standing, widespread issue. In a study

on popular open source software projects, Bosu and Sultana finds that in all

projects analyzed, less than 10% of the core developers are women [18]. A

number of other studies report similar findings regarding low gender diversity

and prevalence of gender bias [212, 197, 100]. As gender diversity improves

productivity of software project teams [147], a lack of diversity will hinder a

software project’s potential to improve. While gender diversity in software en-

gineering has increasingly gained research attention, existing studies typically

treat the set of projects being studied uniformly. This is despite the possi-

bility of difference in motivation, participation level of women, and barrier to

contribute between different parts of the world. As software engineering field

becomes increasingly globalized, we believe this lack of analysis at regional

level becomes increasingly important, and we seek to address this gap. Our

work presented in this chapter delves into the cross-section of geography and

gender diversity of GitHub repositories. The work analyzes gender diversity

4
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of GitHub contributors in different regions, the change in gender diversity in

various regions over time, barriers hindering women to contribute, as well as

important factors that motivate or hinder participation of potential contribu-

tors in different parts of the world. In addition to reporting the diversity levels,

changes, motivations, and barriers, we also provide a number of concrete rec-

ommendations that project owners and researchers can implement to promote

diversity.

1.3 Structure of The Dissertation

In the remainder of this dissertation, we will first review related work that focus

on GitHub in Chapter 2. We subsequently present our work on categorization

of GitHub README file content in Chapter 3. Afterwards, we present our

work on vulnerability analysis of open-source dependencies of GitHub projects

in Chapter 4. We present our third work, which focuses on intersection between

geographic and gender diversity, in Chapter 5. Finally, we present the summary

of contributions as well as our plans for future work in Chapter 6.
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Chapter 2

Related Works

2.1 Categorizing the Content of GitHub README

Files

Efforts related to our work on categorization of GitHub README file content

can be divided into three categories:

1. Research on categories of software development knowledge

2. Research on classifiers of textual content related to software engineering

3. Studies on the information needs of software developers

2.1.1 Categorizing software development knowledge

Knowledge-based approaches have been extensively used in software develop-

ment for decades [48], and many research efforts have been undertaken since

the 1990s to categorize the kinds of knowledge relevant to software develop-

ers [54, 77, 139].

More recently, Maalej and Robillard identified 12 types of knowledge con-

tained in API documentation, with functionality and structure being the most

prevalent [121]. Because the authors focused on API documentation, the types
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of knowledge they identified are more technical than ours (e.g., containing API-

specific concepts such as directives), however, there is some overlap with our

categorization of GitHub README files (e.g., in categories such as ‘Refer-

ences’). Similar taxonomies have been developed by Monperrus et al. [136]

and Jeong et al. [85]. Some of the guidelines identified by Jeong et al. apply to

our work as well (e.g., “include ‘how to use’ documentation”) whereas other

guidelines are specific to the domain of API documentation or to the user in-

terface through which documentation is presented (e.g., “Effective Search”).

Documentation in GitHub README files is broader than API documentation,

and the documentation format and its presentation is at least partly specified

by the GitHub markdown format.

In addition to API documentation, researchers have investigated the cate-

gories of knowledge contained in development blogs [150, 153, 154, 201] and on

Stack Overflow [9, 142, 202]. However, these formats serve different purposes

compared to GitHub README files, and thus lead to different categories of

software development knowledge.

2.1.2 Classifying software development text

The work most closely related to ours in terms of classifying the content of soft-

ware documentation is OntoCat by Kumar and Devanbu [104]. Using Maalej

and Robillard’s taxonomy of knowledge patterns in API documentation [121],

they developed a domain independent technique to extract knowledge types

from API reference documentation. Their system, OntoCat, uses nine different

features and their semantic and statistical combinations to classify different

knowledge types. Testing OntoCat on Python API documentation, the au-

thors showed the effectiveness of their system. As described above, one major

difference between work focused on API documentation and work on GitHub

README files is that API documentation tends to be more technical. Similar

to our work, Kumar and Devanbu also employed keyphrases for the classifica-
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tion, among other features. The F1 scores they report are in a similar range

to the ones achieved by our classifier: Their weakest performance was for the

categories of Non-Info (0.29) and Control Flow (0.31), while their strongest

performance was for the categories of Code Examples (0.83) and Functionality

and Behaviour (0.77). In our case, the lowest F1 scores were for the categories

of ‘Other’ (0.303) and ‘Reference’ (0.605) while the highest scores were for

‘How’ (0.861) and ‘Contribution’ (0.814).

In other work focusing on automatically classifying the content of software

documentation, Treude and Robillard developed a machine learning classifier

that determines whether a sentence on Stack Overflow provides insight for a

given API type [204]. Similarly, classifying content on Stack Overflow was the

target of Campos et al. [24] and de Souza et al.’s work [41]. Following on

from Nasehi et al.’s categorization [142], they developed classifiers to identify

questions belonging to different categories, such as ‘How-to-do-it’. Also using

data from Stack Overflow, Correa and Sureka introduced a classifier to predict

deleted questions [35].

Researchers have also applied text classification to bug reports and devel-

opment issues. For example, Chaparro et al. presented an approach to detect

the absence of expected behaviour and steps to reproduce in bug descriptions,

aiming to improve bug description quality by alerting reporters about missing

information at reporting time [29]. Text classification has also been employed

with the goal of automated generation of release notes: Moreno et al. devel-

oped a system which extracts changes from source code, summarizes them, and

integrates them with information from versioning systems and issue trackers

to produce release notes [137]. Abebe et al. used machine learning techniques

to automatically suggest issues to be included in release notes [4].

Text classification has also been applied to the information captured in

other artifacts created by software developers, including change requests [7], de-

velopment emails [190], code comments [155], requirements specifications [122],

8
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and app reviews [31, 71, 105, 120].

2.1.3 Information needs of software developers

Although there has not been much work on the information needs of software

developers around GitHub repositories, there has been work on information

needs of software developers in general. Early work focused mostly on program

comprehension [53, 88]. Nykaza et al. investigated what learning support pro-

grammers need to successfully use a software development kit (SDK) [145], and

they catalogued the content that was seen as necessary by their interviewees,

including installation instructions and documentation of system requirements.

There is some overlap with the codes that emerged from our analysis, but

some of Nykaza et al.’s content suggestions are SDK-specific, such as “types

of applications that can be developed with the SDK”.

Other studies on the information needs of software developers have analyzed

newsgroup questions [82], questions in collocated development teams [98, 203],

questions during software evolution tasks [185, 186], questions that focus on

issues that occur within a project [65], questions that are hard to answer [109],

and information needs in software ecosystems [72]. Information needs related

to bug reports have also attracted the attention of the research community:

Zimmermann et al. [229] conducted a survey to find out what makes a good bug

report and revealed an information mismatch between what developers need

and what users supply. Davies and Roper investigated what information users

actually provide in bug reports, how and when users provide the information,

and how this affects the outcome of the bug [40]. They found that sources

deemed highly useful by developers and tools such as stack traces and test

cases appeared very infrequently.

The goal of Kirk et al.’s study [97] was understanding problems that occur

during framework reuse, and they identified four problems: understanding

the functionality of framework components, understanding the interactions
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between framework components, understanding the mapping from the problem

domain to the framework implementation, and understanding the architectural

assumptions in the framework design. These problems will arguably apply to

frameworks hosted on GitHub, but not necessarily to other GitHub projects.

Our categorization is broader by analyzing the content of GitHub README

files for any type of software project. Future work might investigate README

files that belong to particular kinds of projects.

2.2 Study of Vulnerabilities of Open-Source

Dependencies of GitHub Projects

Research related to our work on vulnerabilities of open-source dependencies of

GitHub projects can be categorized as follows:

1. Research into characteristics of vulnerabilities

2. Research into relationship between software metrics and vulnerabilities

3. Research into vulnerable dependencies of software projects

2.2.1 Characteristics of Vulnerabilities

Security vulnerabilities of software projects have been a subject of a number

of empirical studies. For example, Shahzad et al. [179] performed analysis on

a data set of software vulnerabilities from 1988 to 2011, focusing on seven as-

pects related to their life cycle. Among other findings, they noted that Denial

of Service, Buffer Overflow, and remote code execution are the three most ex-

ploited forms of vulnerabilities, but SQL injection, cross-site scripting (XSS),

and PHP-specific vulnerabilities were also on the rise. Our findings indicate

that at the time of the writing, SQL injection, XSS, and Denial of Service

also rank highly among common vulnerability types, although with the ex-

ception of Denial of Service, this is not universal across languages. Camilo et

10
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al. [22] performed statistical analyses on bugs and vulnerabilities mined over

five releases of Chromium project to examine the relationship between the two

groups, and discovered that bugs and vulnerabilities are empirically dissimi-

lar. Ozment and Schechter [149] performed a study on code base of OpenBSD

operating system and compiled a database of vulnerabilities identified within

a 7.5 year period, and discovered, among others, that 62% of vulnerabilities

identified during the period are foundational, i.e. the vulnerabilities are al-

ready present in the source code at the beginning of the study. Our analysis

regarding persistence of vulnerabilities in the sample projects’ OSS depen-

dencies found similar vulnerability persistence issues across languages. More

recently, Zahedi et al. [221] performed a study on security-related issues from

a sample of 200 repositories on GitHub, and discovered that most security is-

sues reported are related to identity management and cryptography, and that

security issues comprise only about 3% of all reported issues. We found that in

case of vulnerability in OSS dependencies, there is variation across languages.

For example, while cryptography-related vulnerabilities ranks among top five

in Java, it is not so in other languages. In contrast to the above-mentioned

works however, our work focuses on vulnerabilities in the sample projects’ OSS

dependencies instead of vulnerabilities in the sample projects’ source code.

Beyond this, there have also been studies that focus on code and pro-

gramming practice descriptions in StackOverflow posts. For example, Meng et

al. [132] conducted an empirical study on 497 StackOverflow posts related to

Java security to understand challenges faced by Java developers in attempt-

ing to write secure code. They discovered issues that hinder secure coding

practices such as complexity of cryptography APIs and Spring security con-

figuration methods, as well as vulnerabilities in code blocks within accepted

answers. Rahman et al. [163] studied code blocks contained in 44,966 Python-

related answers on StackOverflow, and found 7.1% of them to contain one or

more insecure coding practice, with code injection being the most frequent
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type of issue. They also found no relation between user reputation and pres-

ence of insecure coding practice in the answer provided by the user. While the

scope of our work does not include StackOverflow post, we believe all these

factors contribute to spread and persistence of vulnerabilities observed in our

study. If a language’s security features are difficult to use, and example code

in that language commonly contain vulnerabilities, library developers may not

be aware of the proper way to write secure code in that language.

2.2.2 Relationship between Software Metrics and Vul-

nerabilities

A number of work investigate the relationship between the presence of vul-

nerabilities and various software metrics. Many of those works also propose

vulnerability prediction models based on software metrics. For example, Zim-

merman et al. [228] investigated whether software metrics that are commonly

used in defect prediction (such as code churn and complexity) are useful for

predicting vulnerabilities in Windows Vista. They found that using such met-

rics achieves high precision but low recall. Meneely and Williams [130, 131]

examined correlations between vulnerabilities in several open-source software

projects and various developer activity metrics, such as number of commits

made to a file and number of developers who had changed a file. Among other

findings, they found that files that have been changed by six or more developers

were four times more likely to contain vulnerability compared to files changed

by five or fewer developers. Shin and Williams [182] examined potential usage

of execution complexity metrics (such as frequency of function calls) collected

from common usage pattern, for predicting software components that may con-

tain vulnerability. They compared the performance between static complexity

metrics and the combination of both sets of metrics. They found that the effec-

tiveness of prediction of vulnerable code location using execution complexity

metrics vary between the software projects analyzed, with good result for one
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of the projects (Firefox) but no significant discriminative ability and low recall

in the other (Wireshark).

Other than works focusing on relationship between software metrics and

vulnerable part of source code, a number of works use software metrics to iden-

tify vulnerability-contributing commits. For example, Bosu et al. [17] analyzed

code review requests from 10 open source projects to identify characteristics

of changes that are more likely to contain vulnerabilities. They found, among

others, that larger number of changed lines correspond to higher likelihood

of vulnerability, and that new files are less likely to contain vulnerabilities

compared to modified files. Another example is Perl et al.’s work [158] in

which they performed mapping between CVEs and GitHub commits of 66

open-source projects and subsequently experimented with using combination

of software repositories metadata and software metrics to train a classifier for

vulnerability-contributing commit identification. They found that the combi-

nation enabled significant reduction of false positives by 99% compared to the

then state-of-the-art approach, while maintaining level of recall.

Our work differs from the above-mentioned works since our focus is on

vulnerabilities in OSS dependencies of software projects, instead of vulnera-

bilities in the project code itself. In consequence, our metrics differ. We use

project-level metrics and metrics related to software dependencies, instead of

file-level metrics. Furthermore, our objective is not vulnerability prediction,

but rather investigation into characteristics of projects known to contain OSS

dependency vulnerabilities.

2.2.3 Vulnerable Dependencies

There has been several works that discuss vulnerable dependencies in the con-

text of library updatability or migrations. Derr et al. [46] conducted a large-

scale library updatability analysis on Android applications along with a survey

with developers from Google Play, and reported that among the actively-used
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libraries with known security vulnerability, 97.8% can actually be updated

without changing application code. They found that reasons for not updating

dependencies include lack of incentive to update (since existing versions work

as intended), concern regarding possible incompatibility and high integration

effort, as well as lack of awareness regarding available updates. Zimmerman et

al. [227] conducted a study on security risks in the npm ecosystem, and found

that single points of failure exists within the ecosystem due to the dependency

network structure. The main issues include possibility of vulnerability in single

libraries to impact large parts of npm ecosystem, and possibility of very small

number of package maintainers to introduce vulnerability to large part of the

ecosystem. Decan et al. [44] studied the evolution of vulnerabilities in npm

dependency network using 400 security reports from a 6-year period. Among

their findings, they reported that dependency constraints prevented more than

40% of package releases with vulnerable dependencies from being fixed auto-

matically by switching to newer version of the dependencies. Kula et al. [102]

conducted a study on impact of security advisories on library migration on

4,600 software projects on GitHub and discovered, among others, that many

developers of studied systems do not update vulnerable dependencies and are

not likely to respond to a security advisory. Our findings related to persis-

tence of vulnerabilities (Findings 7 and 9 from Chapter 4, Section 4.4) confirm

their findings regarding prevalence of significant delay in updating vulnerable

dependencies.

Related to the usage of vulnerable dependencies, Cadariu et al. [21] inves-

tigated the prevalence of usage of dependencies with known security vulnera-

bilities in 75 proprietary Java projects built with Maven. They found that 54

of the projects use at least 1 (and up to 7) vulnerable libraries. Lauinger et

al. [110] analyzed the usage of Javascript libraries by websites in top Alexa do-

mains as well as random sample of .com websites, and found that around 37%

of them include at least one library known to contain vulnerability. Paschenko
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et al. [156] performed a study on instances of 200 Java libraries that are most

often used in SAP software, and found that about 20% of affected dependencies

are not actually deployed, and 81% of vulnerable dependencies can be fixed by

simply updating the library version. Dashevskyi et. al. [39] identified three dif-

ferent cost models to estimate the amount of security maintenance effort (e.g.

vulnerability fixes) required when using open-source components in propri-

etary software products. They analyzed usage of 166 open-source components

in SAP products and found that open-source component size (measured as

lines of code) and age are the main factors influencing security maintenance

effort.

Our study on vulnerability in open-source dependencies of GitHub projects

uses a larger and more diverse dataset compared to the existing works on

vulnerable dependency usage. Our dataset comprises software projects with

different characteristics (type, language, authors, organization, etc.), which im-

proves generalizability of our findings. In addition, the software composition

analysis tool we use includes a database which includes details on vulnerabil-

ities such as type labels, enabling more systematic grouping and analyses of

vulnerability by their characteristics. This allows us to derive insights related

to the popularity of different vulnerability types, which has not been analyzed

in [21, 110, 156]. Further, the database also includes a number of non-CVE

vulnerabilities in addition to publicly-known vulnerabilities in CVE list, which

improves comprehensiveness of the scan results. In addition, we scan the de-

pendency graphs of the projects’ code bases directly to obtain information on

its open-source dependencies and associated vulnerabilities. This approach en-

ables higher accuracy compared to reliance on proxies such as text content of

reported issues. Finally, the commit-level granularity of our analysis enables

the identification of general changes in the one-year observation period as well

as the relationship between vulnerabilities and commit attributes.
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2.3 Diversity of contributors of OSS projects

Success of open source software projects is attributed to its developers. This in-

spired a series of studies exploring reasons for open source engagement. These

studies include motivations for developer participation [172], barriers to par-

ticipation [193], and how developers contribute to open source [230]. These

studies help understand and optimize the opportunities to retain community

participation. It also prepares projects to avoid or mitigate situations that

causes contributors to leave projects.

This chapter is inspired by and extends works on motivation and barriers

to participation in open source software projects along the lines of diversity

in terms of gender and region of contributors in software projects. Next, we

present important studies that have shaped this area of research.

2.3.1 Motivation to contribute to open source software.

Motivation in software engineering has been subject to numerous studies, in-

cluding several systematic reviews [11, 63, 64]. The existing body of works

include a number of studies focusing specifically on motivation of OSS contrib-

utors. For example, in a 2002 study, Hars and Ou [6] surveyed open source

developers and found that their motivation for contributing are diverse – while

students and hobbyists tend to be internally motivated, there are also a large

number of developers who are motivated by external rewards. Lakhani and

Wolf [106] surveyed 684 OSS developers and found that the strongest type of

motivation among the respondents are enjoyment-based intrinsic motivation.

Von Krogh et al. [215] examined prior literature on OSS developers’ motivation

to contribute, and proposed 10 clusters of motivation types categorized into in-

trinsic motivation, internalized extrinsic motivation, and extrinsic motivation.

Barcomb et al.[10] surveyed episodic (non-habitual) OSS volunteers and found

that intention to remain are positively associated with social norms, satisfac-
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tion, and community commitment. Further, they also found some differences

based on participants’ gender. Most recently, a study by Gerosa et al. [67]

investigated how main motivations of OSS contributors as a group change over

the years and how OSS contributors’ individual motivations change as they

become more experienced. They found that among OSS contributors, some

motivations related to social aspect have gained popularity in recent years.

They also found that experienced OSS contributors tend to be motivated by

intrinsic factors such as altruism, unlike new contributors who tend to place

higher importance on factors such as career and learning. These studies facili-

tate better understanding of what drives people to contribute to OSS projects,

what approaches project owners can take to attract contributors, and how

these contributors can be retained.

2.3.2 Barriers to participation in open source.

A number of studies investigate barriers that can prevent developers from

participating to open source. These barriers have been identified in tools, pro-

cesses [128], and social collaborations [193]. For example, a study by Terrell

et al. [197] found that while women have higher overall acceptance rate of

pull requests, their acceptance rate is lower than men when their gender are

identifiable and they are not insiders to a project. Another study by Ras-

togi et al. [168], which analyzes pull requests from 17 countries, found that

acceptance rate of contributions can vary significantly depending on the con-

tributor’s country of origin, and are higher when when they are evaluated by

developers from the same country. The study however does not analyze gender

as a factor, as they noted that including only pull requests for which gender

data can be obtained will result in sample size that is too small. Other stud-

ies examine barriers such as those affecting acceptance of contribution from

newcomers [193] or those affecting underrepresented communities [61]). These

studies not only help in raising awareness of existence of such barriers, but they

17



CHAPTER 2. RELATED WORKS

also help in identifying the source of problem. Further, studies such as [194]

also propose solutions that can be adopted by OSS community to mitigate

such barriers.

2.3.3 Diversity in open source software projects.

In line with increasing awareness regarding the importance of diversity in

broader work context, diversity in open source software projects has gained

increasingly widespread attention. Starting from the awareness of diversity

and particularly the demographic attributes of developers [210, 173], today

improving diversity is seen as a goal for fairness [197] as well as improved pro-

ductivity [211]. Many studies relating to gender diversity and the lack thereof

followed, discussing its relevance [197], state of diversity among popular OSS

projects [18], male and female OSS contributors’ perceptions of other contrib-

utors [112], perceptions of women core developers in OSS projects [25], and

the impediments to improve gender diversity [84].

All these studies identify challenges and needs of underrepresented commu-

nities. We conduct a comparison outlining the distinction between our work

and closely-related prior work in Tables A.1 and A.2 in Appendix A.

Our study has common elements to the developer survey on Stack Overflow

users [230] but their report does not provide empirical data to support the full

scope of motivations and how they persist across genders or regions. Our work

provides novelty by conducting an analysis of the activity and experiences at

the intersection of gender and global geographic region. Taking research on

the subject a step further, in this work we study gender diversity in different

regions and how factors relating to gender and region can potentially explain

why developers join open source software projects, select a project, continue

participation. Such factors can potentially also explain barriers and reasons to

leave a project.

18



Chapter 3

Categorizing the Content of

GitHub README Files

3.1 Introduction and Motivation

The README.md file for a repository on GitHub is often the first project docu-

ment that a developer will see when they encounter a new project. This first

impression is crucial, as Fogel [57] states: “The very first thing a visitor learns

about a project is what its home page looks like. [...] This is the first piece

of information your project puts out, and the impression it creates will carry

over to the rest of the project by association.”

With more than 25 million active repositories at the end of 20171, GitHub

is the most popular version control repository and Internet hosting service for

software projects. When setting up a new repository, GitHub prompts its users

to initialize the repository with a README.md file which by default only contains

the name of the repository and is displayed prominently on the homepage of

the repository.

A recent blog post by Christiano Betta2 compares the README files of

four popular GitHub repositories and stipulates that these files should (1)

1https://octoverse.github.com/
2https://betta.io/blog/2017/02/07/developer-experience-github-readmes/
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inform developers about the project, (2) tell developers how to get started, (3)

document common scenarios, and (4) provide links to further documentation

and support channels. In its official documentation3, GitHub recommends

that a README file should specify “what the project does, why the project

is useful, how users can get started with the project, where users can get

help with your project, and who maintains and contributes to the project”.

Brian Doll of GitHub claimed in a recent interview for IEEE Software that

“the projects with good README files tend to be the most used, too, which

encourages good README writing behavior” [12].

In the research literature, GitHub README files have been used as a

source for automatically extracting software build commands [75], developer

skills [70, 76], and requirements [159]. Their content has also played a role in

cataloguing and finding similar repositories [180, 223] as well as in analyzing

package dependency problems [43].

However, up to now and apart from some anecdotal data, little is known

about the content of these README files. To address this gap, our first re-

search question RQ1 asks, What is the content of GitHub README files?

Knowing the answer to this question would still require readers to read an en-

tire file to understand whether it contains the information they are looking for.

Therefore, our second research question RQ2 investigates, How accurately can

we automatically classify the content of sections in GitHub README files?. To

understand a README file’s most defining features, our third research ques-

tion RQ3 asks, What value do different features add to the classifier?. Finally,

to evaluate the usefulness of the classification, our last research questions RQ4

investigates, Do developers perceive that the automated classification makes it

easier to discover relevant information in GitHub README files?

To answer our research questions, we report on a qualitative study of a

statistically representative sample of 393 GitHub README files containing a

3https://help.github.com/articles/about-readmes/
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total of 4,226 sections. Our conclusions regarding the frequency of section types

generalize to the population of all GitHub README files with a confidence

interval of 4.94 at a confidence level of 95%. Our annotators and ourselves

annotated each section with one or more codes from a coding schema that

emerged during our initial analysis. This annotation provides the first large-

scale empirical data on the content of GitHub README files. We find that

information discussing the ‘What’ and ‘How’ of a repository is common while

information on purpose and status is rare. These findings provide a point of

reference for the content of README files that repository owners can use to

meet the expectations of their readers as well as to better differentiate their

work from others.

In addition to the annotation, we design a classifier and a set of features to

predict categories of sections in the README files. This enables both quick

labeling of the sections and subsequent discovery of relevant information. We

evaluated the classifier’s performance on the manually-annotated dataset, and

identify the most useful features for distinguishing the different categories of

sections. Our evaluation shows that the classifier achieves an F1 score of 0.746.

Also, the most useful features are commonly related to some particular words,

either due to their frequency or their unique appearance in sections’ headings.

In our survey to evaluate the usefulness of the classification, the majority

of twenty software professionals perceived the automated labeling of sections

based on our classifier to ease information discovery in GitHub README files.

We make the following contributions:

• A qualitative study involving the manual annotation of the content of

4,226 sections from 393 randomly selected GitHub README files, es-

tablishing a point of reference for the content of a GitHub README

file. We distinguish eight categories in the coding schema that emerged

from our qualitative analysis (What, Why, How, When, Who, References,

Contribution, and Other), and we report their respective frequencies and
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associations.

• We design and evaluate a classifier that categorizes README sections,

based on the categories discovered in the annotation process.

• We design and conduct a survey to evaluate the usefulness of the classifi-

cation by (i) using the automatically determined classes to label sections

in GitHub README files using badges and (ii) showing files with and

without these badges to twenty software professionals.

We describe background materials on GitHub and README files of reposi-

tories hosted there in Section 3.2. We describe our manual annotation method-

ology in Section 3.3 and the results of the annotation in Section 3.3.4. Sec-

tion 3.5 introduces the classifier we built for sections of GitHub README files,

which we evaluate in Section 3.6. We discuss the implications of our work in

Section 3.7 and present the threats to validity associated with this work in

Section 3.8. We conclude the work in Section 3.9.

3.2 Background

GitHub is a code hosting platform for version control and collaboration.4

Project artifacts on GitHub are hosted in repositories which can have many

branches and are contributed to via commits. Issues and pull requests are the

primary artifacts through which development work is managed and reviewed.

Due to GitHub’s pricing model which regulates that public projects are

always free5, GitHub has become the largest open source community in the

world, hosting projects from hobby developers as well as organizations such as

Adobe, Twitter, and Microsoft.6

Each repository on GitHub can have a README file to “tell other people

why your project is useful, what they can do with your project, and how

4https://guides.github.com/activities/hello-world/
5https://github.com/open-source
6https://github.com/collections/open-source-organizations
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Figure 3.1: An excerpt from D3’s GitHub README file

they can use it.”7 README files on GitHub are written in GitHub Flavored

Markdown, which offers special formatting for headers, emphasis, lists, images,

links, and source code, among others.8 Figure 3.1 shows the README file

of D3, a JavaScript library for visualizing data using web standards.9 The

example shows how headers, pictures, links, and code snippets in markdown

files are represented by GitHub.

With 1 billion commits, 12.5 million active issues, and 47 million pull re-

quests in the last 12 months, GitHub plays a major role in today’s software

development landscape.10 In 2017, 25 million active repositories were compet-

ing for developers’ attention, and README files are among the first documents

that a developer sees when encountering a new repository.

To gain an understanding of readers’ expectations about README files,

7https://help.github.com/articles/about-readmes/
8https://guides.github.com/features/mastering-markdown/
9https://github.com/d3/d3

10https://octoverse.github.com/
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in our survey to evaluate our classifier, we asked participants what content

they expect to find in the README file of a GitHub repository and what

single piece of information they would consider most important to be included.

Twenty professionals answered our survey—we refer readers to Section 3.6.7 for

details on survey design and participant demographics. Here, we summarize

the responses we received regarding readers’ expectations about the content of

GitHub README files.

In response to the open-ended question “What content do you expect to

find in the README file of a GitHub repository?”, participants mentioned

usage instructions (five participants), installation instructions (three partici-

pants), prerequisites (three participants), repository license (two participants),

purpose of the repository and target audience (two participants), known bugs

and trouble-shooting tips (two participants), coding style (one participant),

contribution guidelines (one participant), change log (one participant), and

screenshots (one participant). For example, one participant answered “Infor-

mation about the program, how to use it, parameters (if applicable), trouble-

shooting tips (if applicable)” and another indicated “I expect to see how to

install and run the program successfully”. Nine of the twenty participants

provided generic answers, such as “More technical information and guidance”

and “updates”.

In response to “What single piece of information would you consider most

important to be included in a GitHub README file?”, we also received twenty

responses. Usage instructions (e.g., “How to use the features or components of

the repository”) and license information (e.g., “With my job it’s most impor-

tant to know the licensing information”) were identified as most important by

three participants each. Two participants indicated known bugs and trouble-

shooting tips as being most important, while the other participants mentioned

a variety of types of information including target audience, coding style, con-

tribution guidelines, testing information, prerequisites, screenshots and demos,
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and project type.

In this work, we study and classify the content of README files on GitHub

to investigate the extent to which these expectations are met.

3.3 Research Methodology

In this section, we present our research questions and describe the methods for

data collection and analysis.

3.3.1 Research Questions

Our work was guided by four research questions, which focus on categorizing

the content of GitHub README files and on evaluating the performance and

usefulness of our classifier:

RQ1 What is the content of GitHub README files?

Answers to this question will give insight to repository maintainers and

users about what a typical README file looks like. This can serve as a

guideline for repository owners who are trying to meet the expectations of their

users, and it can also point to areas where owners can make their repositories

stand out among other repositories.

RQ2 How accurately can we automatically classify the content of sections in

GitHub README files?

Even after knowing what content is typically present in a GitHub README

file, readers would still have to read an entire file to understand whether it

contains the kind of information they are looking for. An accurate classifier

that can automatically classify sections of GitHub README files would render

this tedious and time-consuming step unnecessary. From a user perspective,

an automated classifier would enable a more structured approach to searching

and navigating GitHub README files.
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RQ3 What value do different features add to the classifier?

Findings to our third research question will help practitioners and re-

searchers understand the content of README files in more detail and shed

light on their defining features. These findings can also be used in future work

to further improve the classification.

RQ4 Do developers perceive that the automated classification makes it easier

to discover relevant information in GitHub README files?

The goal of our last research question is to evaluate the usefulness of the

automated classification of sections in GitHub README files. We use the

automatically determined classes to label sections in unseen GitHub README

files using badges, and we show GitHub README files with and without

these labels to developers and capture their perceptions regarding the ease of

discovering relevant information in these files.

3.3.2 Data Collection

To answer our research questions, we downloaded a sample of GitHub README.md

files11 by randomly selecting GitHub repositories until we had obtained a sta-

tistically representative sample of files that met our selection criteria. We

excluded README files that contained very little content and README files

from repositories that were not used for software development. We describe

the details of this process in the following paragraphs.

To facilitate the random selection, we wrote a script that retrieves a random

GitHub repository through the GitHub API using the repositories API call in

form of https://api.github.com/repositories?since=<number>. In this

case, <number> is the repository ID and was replaced with a random num-

ber between 0 and 100,000,000, which was a large enough number to capture

11We only consider README.md files in our work since these are the ones that GitHub
initializes automatically. GitHub also supports further formats such as README.rst, but
these are much less common and out of scope for this study.
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Table 3.1: Number of repositories excluded from the sample

Reason for Exclusion Repositories

Software, but small README file, i.e., < 2 KB 429
Not software, but large enough README file 127
Not software and small README file 196

README file not in English 48

Number of repositories included in the sample 393

Total number of repositories inspected 1,193

all possible repositories at the time of our data collection. We repeated this

process until we had retrieved a sufficient number of repositories so that our

final sample after filtering would be statistically representative. We excluded

repositories that did not contain a README file in the default location.

Following the advice of Kalliamvakou et al. [90], we further excluded repos-

itories that were not used for software development by inspecting the program-

ming languages automatically detected for each repository by GitHub. If no

programming language was detected for a repository, we excluded this reposi-

tory from our sample.

We manually categorized the README files contained in our samples as

end-user applications, frameworks, libraries, learning resources, and projects

related to UI. The majority of our README files were related to end-user

applications (i.e., 42%) which includes client/server applications, apps/games,

plugins, engines, databases, extensions, etc. The second largest category of

files was related to libraries (27.9%). Our sample also contained README files

related to programming learning resources (17.4%) such as tutorials, assign-

ments, and labs. The remaining files were categorized as frameworks (7.3%)

and user interfaces (5.4%) such as CSS styles and images.

We also excluded repositories for which the README file was very small.

We considered a file to be very small if it contained less than two kilobytes

of data. This threshold was set based on manual inspection of the files which

revealed that files with less than two kilobytes of content typically only con-
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Figure 3.2: Number of sections per README file in our sample

tained the repository name, which is the default content of a new README

file on GitHub.

During the manual annotation (see Section 3.3.4), we further excluded

README files if their primary language was not English. Table 3.1 shows

the number of repositories excluded based on these filters. Our final sample

contains 393 README files, which results in a confidence interval of 4.94 at a

confidence level of 95% for our conclusions regarding the distribution of section

types in the population of all GitHub repositories, assuming a population of

20 million repositories.

We then used GitHub’s markdown12 to extract all sections from the README

files in our sample, yielding a total of 4,226 sections distributed over the

393 README files. GitHub’s markdown offers headers at different levels

(equivalent to HTML’s h1 to h6 tags) for repository owners to structure their

README files. Figure 3.2 shows the distribution of the number of sections

per README file. The median value is seven and 50% of the files contain

between five and twelve sections.

3.3.3 Coding schema

We adopted ‘open coding’ since it is a commonly used methodology to identify,

describe, or categorize phenomena found in qualitative data [34]. In order

to develop a coding scheme, we manually classified a random sample of fifty

README files into meaningful categories (known as codes [134]). Our findings

from this examination consist of a tentative list of seven categories (e.g. what,

why, how) and sub categories (e.g., introduction, background). After defining

12https://guides.github.com/features/mastering-markdown/
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initial codes, we trialed them on 150 README sections using two annotators.

For this round of coding, we obtained inter-rater reliability of 76%. Following

this trial, we refined our codes until we reached agreement on a scheme that

contained codes for all of the types of README sections we encountered.

Finally, we define the ‘other’ category only when all other possibilities have

been exhausted. Table 3.2 shows the finalized set of categories as well as

example section headings for each category found in this initial sample of

README files. The categories roughly correspond to the content of README

files that is recommended by GitHub (cf. Introduction).

We identified the first category (‘What’) based on headings such as ‘Intro-

duction’ and ‘About’, or based on the text at the beginning of many README

files. We found that either a brief introduction or a detailed introduction is

common in our dataset. Conversely, category two (‘Why’) is rare in README

files. For instance, some repositories compare their work to other repositories

based on factors such as simplicity, flexibility, and performance. Others list

advantages of their project in the introduction.

The most frequent category is ‘How’ since the majority of README files

tend to include instructions on how to use the project such as programming-

related content (e.g., configuration, installation, dependencies, and errors/bugs).

Table 3.2 lists a sample of section headings that belongs to the ‘How’ category.

Further, it is also important to the reader of a README file to be familiar

with the status of the project, including versions as well as complete and in-

progress functionality. We categorize this kind of time-related information into

the fourth code (‘When’).

We categorize sections as ‘Who’ content when they include information

about who the project gives credit to. This could be the project team or ac-

knowledgements of other projects that are being reused. This category also

includes information about licence, contact details, and code of conduct. The

second most frequent category is ‘References’. This category includes links to
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Table 3.2: README section coding reference

# Category Example section headings

1 What Introduction, project background

2 Why
Advantages of the project,
comparison with related work

3 How

Getting started/quick start, how to run,
installation, how to update, configuration,
setup, requirements, dependencies,
languages, platforms, demo,
downloads, errors and bugs

4 When
Project status, versions,
project plans, roadmap

5 Who
Project team, community,
mailing list, contact, acknowledgement,
licence, code of conduct

6 References
API documentation, getting support,
feedback, more information,
translations, related projects

7 Contribution Contributing guidelines

8 Other

further details such as API documentation, getting support, and translations.

This category also includes ‘related projects’, which is different from the ‘com-

parison with related projects’ in category ‘Why’ due to the lack of an explicit

comparison. Our final category is ‘Contribution’, which includes information

about how to fork or clone the repository, as well as details on how to con-

tribute to the project. Our manual analysis indicated that some repositories

include separate CONTRIBUTING.md files which contain instructions on how to

get involved with the project. We do not consider CONTRIBUTING.md files in

this study. In addition, we included a category called ‘Other’ which is used for

sections that do not belong to any of the aforementioned seven categories.
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3.3.4 Manual annotation

We initially used two annotators to code the dataset. One of the annotators

was a PhD candidate specializing in Software Engineering while the other one

is an experienced Software Engineer working in industry. Each annotator spent

approximately thirty hours to annotate the dataset. The task of an annotator

is to read the section headings and contents and assign a code based on the

coding reference. The annotators assign codes from the eight available codes

(Table 3.2). Each section of a README file can have one or more codes.

We measured the inter-rater agreement (i.e. Kappa) between the two an-

notators and obtained an agreement of 0.858. We used a third annotator to

rectify the sections which had no agreement. For this, we annotated the re-

maining sections that had no agreement. For all cases, we then used a majority

vote to determine the final set of codes for each section, i.e., all codes that had

been used by at least two annotators for a section were added to the final set

of codes for that section.13 In very few cases, there was still no agreement on

any set of codes after considering the codes from three annotators. These cases

were manually resolved by discussion.

We manually examined the instances where the annotators disagree. Anno-

tators were likely confused when the README file includes ‘Table Of Contents

(TOC)’ as they have provided inconsistent codes in these instances. Since TOC

is included at the beginning of the file, one annotator considers it as category

‘What’ while the other one placed it in the references. However, the third

annotator categorized TOC into ‘Other’, which is what we used in the final

version of the annotated dataset. Another common confusion occurred when

categorizing ‘community-related’ content. Our coding reference (Table 3.2)

suggests that community-related information should be placed in the ‘Who’

category. However, one annotator identified it in the ‘Contribution’ category.

We generally resolved ‘community-related’ disagreements by placing them into

13In cases where there was perfect agreement between the two annotators, the majority
vote rule simply yields the codes that both annotators agreed on.
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the ‘Who’ category, in accordance with our coding guide.

We also noticed that our annotators are reluctant to place content into the

‘Other’ category. Instead, they attempted to classify README contents into

the other seven categories. Further, one of the main reasons for disagreement

was the inclusion of external links as section titles or contents. For example,

one README file listed the middleware available to use with their project

as section titles. However, these section titles include “Apache” and “Ng-

inx”.14 One annotator categorized these sections into ‘How’ while the other

placed them in additional resources (code ‘References’) since they have exter-

nal links. There can be multiple headings which depend on this decision. For

instance, one README file contained 36 headings about configurations. They

are categorized into ‘How’ by one annotator while the other one placed them

in additional resources since they have URLs. Resolving this disagreement

affected many sections at once.

Further, some README files include screenshots or diagrams to provide

an overview or demonstrations. These are expected to be classified in ‘Other’.

However, annotators have occasionally assigned codes such as ‘What’, ‘How’,

and ‘References’ to image contents. Another challenging decision occurs when

repositories include all the content under a single heading. This causes the

annotators to assign multiple codes which possibly do not overlap between

annotators. In addition, we sometimes found misleading headings such as

‘how to contribute’ where the heading would suggest that the content belongs

to category ‘Contribution’. However, in a few cases, the content of this section

included information on ‘how to use the project’ (i.e., download, install, and

build).

14https://github.com/microlv/prerender
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Table 3.3: Distribution of README categories; App: end-user applications;
Lib: libraries; Frame: frameworks; Learn: learning resources, UI: user inter-
faces

# Category # Sections # Files App Lib Frame Learn UI
(%) (%) (%) (%) (%) (%) (%)

1 What 707 381 14.0 14.2 12.3 22.6 9.6
(16.7%) (97.0%)

2 Why 116 101 2.6 2.4 3.2 2.6 0.3
(2.7%) (25.7%)

3 How 2,467 348 49.5 45.0 52.9 52.9 65.6
(58.4%) (88.5%)

4 When 180 84 5.8 2.5 4.4 0.6 1.3
(4.3%) (21.4%)

5 Who 322 208 6.6 9.5 5.9 3.7 6.3
(7.6%) (52.9%)

6 References 858 239 18.4 22.2 17.2 13.5 10.3
(20.3%) (60.8%)

7 Contribution 122 109 2.4 2.7 3.2 1.6 2.6
(2.9%) (27.8%)

8 Other 58 27 0.5 1.4 0.7 2.3 3.9
(1.4%) (6.9%)

- Exclusion 696

3.4 The content of GitHub README files

Table 3.3 demonstrates the distribution of categories based on the human

annotation (column 3 on ‘sections’) and the README files in our sample

(column 4 on ‘files’). Based on manually annotated sections, the most frequent

category is ‘How’ (58.4%), while the least frequent was ‘Other’ (1.4%). As

mentioned previously, as part of the coding, our annotators also excluded non-

English content that had not been detected by our automated filters (code ‘-’).

The same applies to parts of README files that had been incorrectly detected

as sections by our automated tooling.

Based on the consideration of files in our sample (fourth column of Ta-

ble 3.3), 97% of the files contain at least one section describing the ‘What’ of

the repository and 88.5% offer some ‘How’ content. Other categories, such as

‘Contribution’, ‘Why’, and ‘Who’, are much less common.
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Table 3.4: Quantity of codes per section

# Codes # Sections

5 2
4 6
3 40
2 498
1 3,680

Total 4,226

The last five columns of Table 3.3 demonstrate the distribution of codes

across various file types (e.g., end-user applications, libraries). The most com-

mon code among all file types is ‘How’ while ‘What’ and ‘References’ are

common in all file types except README files related to ‘user interfaces’.

Further, learning related resources such as assignments and tutorials rarely

contain information related to ‘When’ and ‘Contribution’.

Further, we report the distribution of number of codes across the sections of

GitHub README files in our sample (Table 3.4). The sections that are anno-

tated using four or five codes mostly stem from README files that only con-

tain a single section. Interestingly, the majority of these files include ‘What’,

‘Who’, and ‘References’. Also, 92% of the sections which are annotated using

three codes include ‘What’. Unsurprisingly, the most popular combination of

two codes was ‘How’ and ‘References’, enabling access to additional informa-

tion when learning ‘how to use the project’. These relationships are further

explored in the following section.

3.4.1 Relations between codes

As with any qualitative coding schema, there may be some overlap between

the different types of sections outlined in our coding reference (cf. Table 3.2).

For example, API documentation, which the coding reference shows as an

example for ‘References’ is often also related to ‘How’ or could be related

to ‘Contribution’. To systematically investigate the overlap between different
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Table 3.5: Association rules at section level

Rule Support Confidence

{Why, How} ⇒ {What} 0.002 1.00
{Why, References} ⇒ {What} 0.003 0.93

Table 3.6: Association rules at file level

Rule Support Confidence

{Who} ⇒ {What} 0.52 0.98
{How, References} ⇒ {What} 0.54 0.98
{References} ⇒ {What} 0.59 0.97
{How} ⇒ {What} 0.86 0.97
{References} ⇒ {How} 0.55 0.91
{What, References} ⇒ {How} 0.54 0.91
{What} ⇒ {How} 0.86 0.89

section types based on the manually annotated data, we applied association

rule learning [5] to our data using the arules package in R. To find interesting

rules, we grouped the data both by sections (i.e., each section is a transaction)

and by files (i.e., each file is a transaction).

Table 3.5 shows the extracted rules at section level. We only consider rules

with a support of at least 0.0013 (i.e., the rule must apply to at least five

sections) and a confidence of at least 0.8. Due to the small number of sections

for which we assigned more than one code, only two rules were extracted:

Sections that discuss the ‘Why’ and ‘How’ are likely to also contain information

on the ‘What’. Similarly, sections that discuss the ‘Why’ of a project and

contain ‘References’ are also likely to contain information on the ‘What’.

At file level, we were able to find more rules, see Table 3.6. For these rules,

we used a minimum support of 0.5 and a minimum confidence of 0.8. We chose

a minimum support of 0.5 to limit the number of rules to the most prevalent

ones which are supported at least by half of the README files in our dataset.

The rules extracted with these parameters all imply ‘What’ or ‘How’ content

to be present in a README file. For example, we have a 98% confidence that

a file that contains information about ‘Who’ also contains information about
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the ‘What’ of a project. This rule is supported by 52% of the README files

in our dataset.

3.4.2 Examples

In this section, we present an example for each of the categories to illustrate

the different codes.

What. The leading section of the GitHub README file of the ParallelGit

repository15 by GitHub user jmilleralpine is a simple example of a section

that we would categorize into the ‘What’ category. The section header simply

restates the project name (“ParallelGit”) and is followed by this brief descrip-

tion: “A high performance Java JDK 7 nio in-memory filesystem for Git.”

Since this is an introduction to the project, we assign the code ‘What’.

Why. The README file of the same repository (ParallelGit) also contains

a section with the heading “Project purpose explained” which we categorize

into the ‘Why’ category. This section starts with a list of four bullet points out-

lining useful features of Git, followed by a brief discussion of the “lack of high

level API to efficiently communicate with a Git repository”. The README file

then goes on to explain that “ParallelGit is a layer between application logic

and Git. It abstracts away Git’s low level object manipulation details and

provides a friendly interface which extends the Java 7 NIO filesystem API.”

Since this section describes the purpose of the project and motivates the need

for it, we assign the code ‘Why’.

How. The same README file also contains a section with the heading “Ba-

sic usages”, which we classify into the ‘How’ category. It provides two short

code snippets of seven and eight lines, respectively, which illustrate the use

cases of “Copy a file from repository to hard drive” and “Copy a file to repos-

15https://github.com/jmilleralpine/ParallelGit
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itory and commit”. We assign the code ‘How’ because this section explains

how to run the software.

When. An example of a section discussing the ‘When’ aspect of a project is

given by the section with the heading “Caveats” of the Sandstorm repository16

by GitHub user solomance. The project is a self-hostable web app platform.

In its “Caveats” section, the README file states “Sandstorm is in early beta.

Lots of features are not done yet, and more review needs to be done before

relying on it for mission-critical tasks. That said, we use it ourselves to get

work done every day, and we hope you’ll find it useful as well.” Since this

section describes the project status, we assign the code ‘When’.

Who. Going back to the README file of the ParallelGit repository, it

concludes with a section with the heading “License” and the following text:

“This project is licensed under Apache License, Version 2.0.” A link to the

license text is also included. We categorized this section under ‘Who’ since it

contains licence information (see Table 3.2).

References. The previously mentioned README file of the Sandstorm repos-

itory also contains sections that we categorized as ‘References’, e.g., the section

with the heading “Using Sandstorm”. This section only contains the state-

ment “See the overview in the Sandstorm documentation” which links to more

comprehensive documentation hosted on https://docs.sandstorm.io/. We

assign the code ‘References’ since the section does not contain any useful con-

tent apart from the link to more information. This section showcases one

of the challenges of classifying the content of sections contained in GitHub

README files: While the section header suggests that the section contains

‘How’ information, the body of the section reveals that it simply contains a

link.

16https://github.com/solomance/sandstorm
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Contribution. The README file of Sandstorm also contains a section with

the heading “Contribute” which we categorized under ‘Contribution’. The

section states “Want to help? See our community page or get on our discussion

group and let us know!” and contains links to a community page hosted

on https://sandstorm.io/ as well as a discussion group hosted on Google

Groups.17 We assign the code ‘Contribution’ rather than ‘References’ since

this section contains information other than links, i.e., the different ways in

which contributions can be made. Arguably, this is a corner case in which the

code ‘References’ would also be justifiable.

Other. An example of a section that we were not able to categorize using any

of the previous seven categories is the last section in the README file of the

Blackjack repository18 by GitHub user ChadLactaoen. The section does not

contain any content and simply consists of the section heading “Have fun!” In

this case, the section feature of GitHub markdown was used for highlighting

rather than for structuring the content of the README file. We therefore

categorized the section as ‘Other’.

Finding 1: Section content of GitHub README files can be catego-

rized into eight types, with the ‘What’ and ‘How’ content types being

very common and information on project status being rare.

3.5 A GitHub README Content Classifier

In this section, we describe our automated classification approach for classi-

fying GitHub README content. We first describe the overall framework of

our approach and then explain each of its steps. For the development of this

classifier, we use the set of sections associated with one of 8 classes along with

sections labeled ‘Exclusion’, and split the dataset into two, a development set

17https://groups.google.com/
18https://github.com/ChadLactaoen/Blackjack
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comprising 25% of the data, and an evaluation set comprising 75% of the data.

We analyze and use the development set to design features for the classifier,

such as heuristics based on language patterns (see Section 3.5.2.2). The evalu-

ation set is the hold out set that is used for evaluation of the classifier through

ten-fold cross-validation. A similar process of dividing a dataset into two –

one for manual analysis for feature identification, and another for evaluation

– has been done in prior studies (e.g., [152]) to improve reliability of reported

results. Our code, dataset, along with scripts for the experiments as well as

a README file containing information on how to use them are available at

https://github.com/gprana/READMEClassifier

3.5.1 Overall Framework

Feature Extraction
Classifier 
Learning

Validation

Statistical Features

Heuristic Features

1) 2) 3)

Annotated README

Figure 3.3: The overall framework of our automated GitHub README content
classifier.

We present the overall framework of our automated classification approach

in Figure 3.3. The framework consists of the following steps:

1. Feature Extraction: From each section of the annotated GitHub README

files, we extract meaningful features that can identify categories of a

section’s content. We extract statistical and heuristic features. These

features are output to the next step for learning.
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2. Classifier Learning: Using features from the previous step, we learn a

classifier that can identify the categories that the content of each section

belongs to. Since each section can belong to many categories, we use a

multi-label classifier, which can output several categories for each section.

3. Validation: To choose our classifier setting, we need to validate our

classifier performance on a hold out set. We experiment with different

settings and pick the classifier that performs the best on the hold out

set.

We explain details of the above steps in the next subsections.

3.5.2 Feature Extraction

From the content of each section, we extract two sets of features: statistical

features and heuristic features.

3.5.2.1 Statistical Features

These features compute word statistics of a README section. These features

are constructed from combination of both heading and content of the section.

To construct these features, the section’s content and heading are first prepro-

cessed. We perform two preprocessings: content abstraction and tokenization.

Content abstraction abstracts contents to their types. We abstract the fol-

lowing types of section content: mailto link, hyperlink, code block, image,

and numbers. Each type is abstracted into a different string (@abstr mailto,

@abstr hyperlink, @abstr code section, @abstr image and @abstr number, re-

spectively). Such abstraction is performed since for classification, we are more

interested in existence of those types in a section than its actual content. For

example, existence of a source code block in a section may indicate that the

section demonstrates usage of the project, regardless of the source code. With

abstraction, all source code blocks are converted to the same string, and sub-
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sequently, into the same statistical feature. This abstraction is followed by

tokenization, which converts a section into its constituent words, and English

stop word removal. For the stop word removal, we use the stop words provided

by scikit-learn [157].

After preprocessing, we count the number of times a word appears in each

section. This is called the Term Frequency (TF) of a word in a section. If there

are n words that appear in the set of sections used for training the classifier

(after preprocessing), we would have n statistical features for each section. If

a word does not appear in a section, then its TF is zero. We also compute

the Inverse Document Frequency (IDF) of a word. IDF of a word is defined

as the reciprocal of the number of sections in which the word appears. We

use a multiplication of TF and IDF as an information retrieval feature for a

particular word.

3.5.2.2 Heuristic Features

There has been work such as Panichella et al. [152] which exploits recurrent

linguistic patterns within a category of sentences to derive heuristics that can

aid classification. Given this, we manually inspected the content of various

sections in the development set to try to identify patterns that may be useful

to distinguish each category. The following are the resulting heuristic features

that we use for the classifier.

1. Linguistic Patterns: This is a binary feature that indicates whether

a particular linguistic pattern exists in a section. We discover linguistic

patterns by looking at words/phrases that either appear significantly

more in one particular category or are relatively unique to a particular

category. A linguistic pattern is tied to either a section’s heading or

content. A pattern for heading is matched only to the section’s heading.

Similarly, a pattern for content is matched only to the section’s content.
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There are 55 linguistic patterns that we identified.19

2. Single-Word Non-English Heading: This is a binary feature that

indicates whether a section’s heading is a single word non-English head-

ing. An example is a method name, which may be used as heading in

a section describing the method and usually belongs to the ‘How’ cate-

gory. This check is performed by checking the word against the wordlist

corpora from NLTK [14].

3. Repository Name: This is a binary feature that indicates whether any

word in the repository name is used in a section’s heading. This is based

on the observation that the README section that provides an overview

of the project likely contains common words from the project name. For

example, a repository of a project called ‘X’ will contain ‘X’ in its name,

and the README section providing an overview of the project may be

given a heading along the lines of ‘About X’, ‘Overview of X’, or ‘Why

X’. This is different, for example, from README sections containing

licence information or additional resources.

4. Non-ASCII Content Text: This is a binary feature that indicates

whether a section contains any non-ASCII character. It is based on

the observation that README sections containing text written in non-

ASCII characters tend to be categorized as ‘Exclusion’, although they

often also contain parts (e.g., technical terms or numbers) written in

ASCII characters.

3.5.3 Classifier Learning

Given the set of features from the previous step, we construct a multi-label

classifier that can automatically categorize new README sections. We use

19The linguistic patterns are available in https://github.com/gprana/

READMEClassifier/blob/master/doc/Patterns.ods.
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a binary relevance method for multi-label classification [119]. This method

transforms the problem of multi-label classification into a set of binary classifi-

cations, with each binary classification performed for one label independently

from the other labels. Due to the small number of entries in the ‘Why’ category,

combined with the fact that a large proportion of content in this category is also

assigned to the ‘What’ category, we combined the two categories. We therefore

ended up with eight categories including ‘Exclusion’, and subsequently created

eight binary classifiers, each for a particular category.

A binary classifier for a particular label considers an instance that contains

the label as a positive instance, otherwise it is a negative instance. As such, the

training set for the binary classifier is often imbalanced. Thus, we balance the

training set by performing oversampling. In this oversampling, we duplicate

instances of minority classes and make sure that each instance is duplicated

roughly until we have the same number of positive and negative instances in

the set.

3.5.4 Validation

In this step, we determine the classifier setting by performing ten-fold cross val-

idation. The setting that leads to the highest classifier performance is selected

as final setting.

3.6 Evaluation of the Classifier

We conduct experiments with our SVM-based classifier on the dataset anno-

tated in Section 3.4. We evaluate the classifier on the evaluation set using

ten-fold cross validation. We follow our framework in Section 3.5 to construct

our classifier. For evaluation, the TF-IDF vocabulary is constructed from the

evaluation set, and is not shared with the development set. The size of this

vocabulary created from the evaluation set is 14,248. We experiment with
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the following classification algorithms: Support Vector Machine (SVM), Ran-

dom Forest (RF), Logistic Regression (LR), Naive Bayes (NB), and k-Nearest

Neighbors (kNN). We use implementations of the classification algorithms from

scikit-learn [157]. To evaluate the usefulness of the classification, we used the

automatically determined classes to label sections in GitHub README files

using badges and showed files with and without these badges to twenty software

professionals.

3.6.1 Evaluation metric

We measure the classification performance in terms of F1 score. F1 score for

multi-label classification is defined below.

F1 =

∑
l∈Lwl × F1l

|L|

F1l =
2× Precisionl ×Recalll
Precisionl +Recalll

where wl is the proportion of the actual label l in all predicted data. F1l

is the F1 score for label l, L is the set of labels, Precisionl is precision for

label l, and Recalll is the recall for label l. When computing precision/recall

for label l, an instance having label l is considered as a positive instance,

otherwise it is a negative instance. Precision is the proportion of predicted

positive instances that are actually positive while recall is the proportion of

actual positive instances that are predicted as positive.

For this work we consider both precision and recall as equally important.

Taking into account that each section can have a different mix of content, our

goal is to maximize completeness of the label set assigned to a section while

avoiding clutter that can result from assigning less relevant labels.
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Table 3.7: Results for Different Classifiers

Classifier F1

SVM 0.746
RF 0.696
NB 0.518
LR 0.739
kNN 0.588

Table 3.8: Effectiveness of Our SVM-based Classifier

Category F1 Precision Recall

What and Why 0.615 0.627 0.604
How 0.861 0.849 0.874
When 0.676 0.669 0.683
Who 0.758 0.810 0.711
References 0.605 0.606 0.603
Contribution 0.814 0.857 0.774
Other 0.303 0.212 0.537
Exclusion 0.674 0.596 0.775

Overall 0.746 0.742 0.759

3.6.2 Evaluation results

The results of our evaluation are shown in Table 3.7. Our experimental results

show that our SVM-based classifier can achieve an F1 score of 0.746 on the

evaluation set using ten-fold cross validation. We also experiment with using

SMOTE [30] on the best performing (SVM-based) classifier to compare its

effectiveness with the oversampling approach, and found that it resulted in a

lower F1 of 0.738.

The per category F1 obtained from the SVM-based classifier is shown in

Table 3.8.

In addition to F1, we measured the performance of our classification using

Kappa [108], ROC AUC [55], and MCC [19]. Our classifier can achieve a

weighted average Kappa of 0.831, a weighted average ROC AUC of 0.957, and

a weighted average MCC of 0.844. As prior work (e.g., [115, 161, 174, 220])

consider F-measure and/or AUC of 0.7 or higher to be reasonable, we believe
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the evaluation result demonstrates that the SVM-based classifier design has

sufficiently good performance.

Finding 2: We can automatically classify content of sections in GitHub

README files with F1 of 0.746

3.6.3 Speed

We evaluate the speed of the best performing SVM-based classifier using a

test machine with the following specifications: Intel Core i7-4710HQ 2.50 GHz

CPU, 16 GB RAM laptop with SSD storage and Windows 10 64-bit. For this

part of the evaluation, input data comprise the combined set README files

from development and evaluation sets. We find that training of the classifier on

this combined set takes 181 seconds. Afterwards, the classifier is able to label

sections in a given input README file in less than a second. This indicates

that the classifier is fast enough for practical use.

3.6.4 Multi-category sections vs. single-category sections

We expect that classifying multi-category sections is harder than classifying

single-category sections. To confirm this, we exclude sections that belong

to more than one category. We perform a similar experiment using ten-fold

cross validation. Our experimental results show that our SVM-based classifier

achieves an F1 score of 0.773, which confirms that classifying single-category

sections is indeed easier, although not by a significant margin.

3.6.5 Usefulness of statistical vs. heuristic features

To investigate the value of a set of features, we remove the set and observe the

classifier performance after such removal. Table 3.9 shows the classifier per-

formance when we remove different sets of features. We observe performance

reduction when removing any set of features. Thus, all sets of features are
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Table 3.9: Contribution of Different Sets of Features

Set of Features Used F1

Only Heuristic 0.584
Only Statistical 0.706

valuable for classifying README sections. Among the sets of features, the

statistical features are more important since their removal reduces F1 far more

as compared to removing heuristic features.

3.6.6 Usefulness of particular features

We are also interested in identifying which particular feature is more useful

when predicting different categories. Using an SVM classifier, usefulness of a

feature can be estimated based on the weight that the classifier assigns to the

feature. For each category in the testing data, we consider an instance belong-

ing to the category as a positive instance, otherwise it is a negative instance.

We learn an SVM classifier to get the weight of each feature. To capture sig-

nificantly important features, we perform the Scott-Knott ESD (Effect Size

Difference) test [196]. For the purpose of this test, we perform ten times ten-

fold cross validation where each cross validation generates different sets. Thus,

for each category and feature pair, we have 100 weight samples. We average

the weights and run Scott-Knott ESD test on the top-5 features’ weights. We

present the result for each category in Figure 3.4. Features grouped by the

same color are considered to have a negligible difference and thus have the

same importance.

Based on the observation, heuristics based on sections’ headings appear to

be useful in predicting categories. For example, heur h k 012 (check whether

a lower cased heading contains the string ‘objective’) is the second most use-

ful features for predicting the ‘What and Why’ category, while heur h k 006

(check whether a lower cased heading contains the string ‘contrib’) is the third

most useful feature for predicting the ‘Contribution’ category. For the ‘Who’
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Figure 3.4: Top Features for Each Category. Features starting with heur refer
to heuristic features while the remaining features refer to statistical features
(see Section 4.2).
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category, heur h k 007 (check whether a lower cased heading contains ‘credit’)

is the fifth most useful feature for prediction. Abstraction also appears to be

useful, with @abstr number being the fifth ranking feature for predicting the

‘When’ category. A possible reason is that the ‘When’ category covers ver-

sion history, project plans, and project roadmap, which often contain version

number, year, or other numbers.

Finding 3: Overall, statistical features are more useful than heuristics,

but heuristics based on section headings are useful to predict certain

categories

3.6.7 Perceived usefulness of automatically labeling sec-

tions in GitHub README files

A potential use case for our work is to automatically label sections in GitHub

README files. To evaluate the perceived usefulness of such an effort, we

conducted a survey with 20 professional software developers (19 indicated to

develop software as part of their job, 1 indicated to be an IT support spe-

cialist). We recruited participants using Amazon Mechanical Turk, specifying

“Employment Industry - Software & IT Services” as required qualification.

As part of the survey, we showed each participant two versions of a ran-

domly selected GitHub README file which we sampled using the criteria

listed in Table 3.1. Note that the README files used for the survey were

‘unseen’ files, i.e., files that had not been used as part of the previously intro-

duced development or evaluation sets. We prepared two README files that

we selected using this sampling strategy by producing two versions of each file:

one version was the original README file, the other version used badges [207]

next to each section header to indicate the labels that our classifier had auto-

matically assigned to the section. Table 3.10 shows the questions asked in the

survey and examples of our prepared README files are available in Figure 3.5

49



CHAPTER 3. CATEGORIZING THE CONTENT OF GITHUB README FILES

Figure 3.5: An excerpt from a GitHub README file with visual labels, original
version at https://github.com/alt-blog/alt-blog.github.io

and online.20

All participants indicated to have been developing software for several

years, with a median of five years development experience (minimum: 2 years).

All but two participants indicated having a GitHub account and having con-

tributed to more than 20 repositories on average. Only 4 of the 20 participants

indicated to have never contributed to a GitHub README file.

Table 3.11 shows the results we obtained about the perceived usefulness

of the automated labeling of sections. The majority of participants (60%)

20Original: https://github.com/readmes/alt-blog.github.io/blob/master/

README1.md, Modified: https://github.com/readmes/alt-blog.github.io/blob/

master/README2.md
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Table 3.10: Questions asked in the survey to determine perceived usefulness
of automatically generated section labels

1 Is developing software part of your job?
2 What is your job title?
3 For how many years have you been developing software?
4 What is your area of software development?
5 Do you have a GitHub account?
6 Approximately how many repositories have you contributed

to on GitHub?
7 Have you ever contributed to the GitHub README file for

a repository?
8 What content do you expect to find in the README file of

a GitHub repository?
9 What single piece of information would you consider most

important to be included in a GitHub README file?
10 Is your decision to use or contribute to a GitHub project

influenced by the availability of README files?
11 Please take a look at the following two README files.

Which one makes it easier to discover relevant information,
in your opinion? Note that only the badges next to sections
titles are different.

12 Please justify your answer
13 Do you have any further comments about GitHub README

files or this survey?

indicated that the files with our labels made it easier to discover relevant in-

formation, some participants did not have a preference, and only 2 participants

preferred the unlabeled file. In general participants liked the labels, e.g., one

participant wrote “I really like the Who, what, where, and why tags. It makes

it easier to find relevant information when I only need to look for a certain

section.” Similarly another participant noted: “The what/when/how labels

allow easier access to the information I am looking for.” On the negative side,

a minority of participants thought that the labels were not necessary: “the

Table 3.11: Survey results about the perceived usefulness of automatically
labeled GitHub README sections

prefer labeled file 12
neutral 6
prefer unlabeled file 2

sum 20
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extra buttons aren’t really needed”.

Finding 4: The majority of participants perceives the automated la-

beling of sections based on our classifier to ease information discovery in

GitHub README files

3.7 Implications

The ultimate goal of our work is to enable the owners of software repositories

on sites such as GitHub to improve the quality of their documentation, and to

make it easier for the users of the software held in these repositories to find

the information they need.

The eight categories of GitHub README file content that emerged from

our qualitative analysis build a point of reference for the content of such

README files. These categories can help repository owners understand what

content is typically included in a README file, i.e., what readers of a README

file will expect to find. In this way, the categories can serve as a guideline for a

README file, both for developers who are starting a new project (or who are

starting the documentation for an existing project) and developers who want

to evaluate the quality of their README file. Even if all the content is in

place, our coding reference provides a guide on how to organize a README

file.

In addition, the categories along with their frequency information that we

report in this chapter highlight opportunities for repository owners to stand

out among a large crowd of similar repositories. For example, we found that

only about a quarter of the README files in our sample contain information

on the ‘Why’ of a repository. Thus, including information on the purpose of

a project is a way for repository owners to differentiate their work from that

of others. It is interesting to note that out of all the kinds of content that

GitHub recommends to include in a README file (cf. Introduction), ‘Why’ is
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the one that is the least represented in the README files of the repositories

in our sample.

In a similar way, README content that refers to the ‘When’ of a project,

i.e., the project’s current status, is rare in our sample. In order to instill

confidence in its users that they are dealing with a mature software project

and to possibly attract users to contribute to a project, this information is

important. However, our qualitative analysis found that less than a quarter of

the repositories in our random sample included ‘When’ information.

The ratio of repositories containing information about how to contribute

was slightly higher (109/393), yet surprisingly low given that all of the repos-

itories in our sample make their source code available to the public. Given

recent research on the barriers experienced by developers interested in joining

open source projects [195], our findings provide another piece of evidence that

software projects have room for improvement when it comes to making a good

first impression [57] and explaining how developers can contribute.

The classifier we have developed can automate the task of analyzing the

content of a README file according to our coding reference, a task that would

otherwise be tedious and time-consuming. Our classifier can take any GitHub

README file as input and classify its content according to our codes with

reasonable precision and recall.

In addition to automatically classifying the content, our classifier could en-

able semi-structured access to the often unstructured information contained in

a GitHub README file. For example, users particularly interested in finding

mature projects could automatically be brought to the ‘When’ sections of a

README file, and developers looking to contribute to open source could be

shown the ‘Contribution’ guidelines of a repository.

The results from our survey show evidence which indicates that visually

labeling sections using the labels predicted by our classifier can make it easier

to find information in GitHub README files: The majority of participants
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perceived the automated labeling of sections based on our classifier to ease

information discovery. Visually labeling sections is only one use case of the

classifier: Our classifier could also easily be used to help organize README

files, e.g., by imposing a certain order in which sections should appear in a

README file. README sections that have been detected as discussing the

‘What’ and ‘Why’ of a project could automatically be moved to the beginning

of a README file, followed by sections discussing the ‘How’.

Our analysis of the usefulness of features for predicting the categories of

a section implies that heuristic features on the sections’ headings are useful,

and are better suited than heuristic features on the sections’ contents. This is

apparent from the fact that none of the heuristic features for sections’ contents

are ranked among the top-5 most useful features for any of the categories.

This suggests that the vocabulary commonly used in section headings is more

uniform than that used in section content. However, we note that the 4,226

sections in our dataset use 3,080 distinct headings, i.e., only few of the sections

share the same heading.

3.8 Threats to Validity

Similar to other empirical studies, there are several threats to the validity of

our results.

Threats to the construct validity correspond to the appropriateness of the

evaluation metrics. We use F1 as our evaluation metric. F1 has been used

in many software engineering tasks that require classification [96, 165, 141,

26, 164]. Thus, we believe threats to construct validity are minimal. In our

survey, we measured perceived usefulness of the visual labels added to GitHub

README files, which may not correspond to actual usefulness in a software

development task. Future work will have to investigate this in more detail.

Threats to the internal validity compromise our confidence in establishing
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a relationship between the independent and dependent variables. It is possible

that we introduced bias during the manual annotation of sections from GitHub

README files. We tried to mitigate this threat by using two annotators, and

by manually resolving all cases in which the two annotators disagreed. We did

however notice a small number of cases where annotators mistakenly treated

non-sections (e.g., content that had been commented out) as sections.

Threats to external validity correspond to the ability to generalize our

results. While our sample of 393 GitHub README files is statistically repre-

sentative, it is plausible that a different sample of files would have generated

different results. We can also not claim generalizability to any other format

of software documentation. We excluded README files that were small (less

than 2 KB in size), README files that belonged to repositories not used for

software development, and README files not in English. Different filtering

criteria might have led to different results. Our findings may also have been

impacted by our decision to divide README files into sections. A different

way of dividing README files (e.g., by paragraphs or sentences) might also

have produced different results. Our survey was answered by twenty software

professionals. We cannot claim that we have captured all possible opinions

regarding the usefulness of the visual labels. All survey participants were ulti-

mately self-selected individuals within our target populations, and individuals

who did not respond to our invitations may have different views on some of the

questions that we asked. Also, creating visual labels is only one use case of our

classifier, and we cannot make claims of the usefulness of other applications

based on our survey results.

3.9 Conclusions and Future Work

A README file is often the first document that a user sees when they en-

counter a new software repository. README files are essential in shaping the
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first impression of a repository and in documenting a software project. De-

spite their important role, we lack a systematic understanding of the content

of README files as well as tools that can automate the discovery of relevant

information contained in them.

In this chapter, we have reported on a qualitative study which involved the

manual annotation of 4,226 sections from 393 README files for repositories

hosted on GitHub. We identified eight different kinds of content, and found

that information regarding the ‘What’ and ‘How’ of a repository is common

while information on the status of a project is rare. We then designed a

classifier and a set of features to automatically predict the categories of sections

in README files. Our classifier achieved an F1 score of 0.746 and we found

that the most useful features for classifying the content of README files

were often related to particular keywords. To evaluate the usefulness of the

classification, we used the automatically determined classes to label sections

in GitHub README files using badges and showed files with and without

these badges to twenty software professionals. The majority of participants

perceived the automated labeling of sections based on our classifier to ease

information discovery.

Our findings provide a point of reference for repository owners against

which they can model and evaluate their README files, ultimately leading

to an improvement in the quality of software documentation. Our classifier

will help automate these tasks and make it easier for users and owners of

repositories to discover relevant information.

In addition to improving the precision and recall of our classifier, our future

work lies in exploring the potential of the classifier to enable a more structured

approach to searching and navigating GitHub README files. In particular,

we plan to employ the classifier in a search interface for GitHub repositories and

we will explore the feasibility of automatically reorganizing the documentation

contained in GitHub README files using the structure that emerged from
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our qualitative analysis.
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Chapter 4

Study on Vulnerabilities in

Open Source Software

Dependencies

4.1 Introduction

Modern software is typically built using a large amount of third-party code

in the form of external libraries to save development time. Such third-party

components are often used as is [116], and even for trivial functions, developers

often choose to use an external library instead of writing their own code [2].

Centralized repositories (such as Maven Central and PyPI) and their asso-

ciated dependency management tools make it easy for software developers to

download and include open-source libraries in their projects, further improving

the developers’ productivity.

However, such third-party libraries may contain varying amount of security

vulnerabilities. While developers may get their own code reviewed by peers or

checked for bugs or security issues by using static analysis tools [99], Kula et al.

found that developers often do not review the security of third-party libraries,

citing it as extra effort [102]. Since a software project may depend on a number
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of open-source libraries, which may in turn depend on many other libraries in

a complex package dependency network, analysis on a software project’s entire

dependency tree can become very complex. Unchecked project dependencies

may introduce security vulnerabilities into the resulting software, which may

be hard to detect. An example of this is the buffer overread in OpenSSL

library that resulted in Heartbleed vulnerability [50], which was introduced

in 2012 but remained undetected until 2014. Another high-profile example is

the unpatched CVE-2017-5638 vulnerability in Apache Struts that resulted in

the 2017 Equifax data breach. More recently, CVE-2018-1000006 vulnerability

that was discovered in the popular Electron framework in January 2018 affected

a number of Windows applications built using the framework, such as Skype

and Slack.

As the usage of open-source libraries grows, it becomes increasingly im-

portant to understand the risks associated with vulnerabilities in the libraries.

This motivates us to investigate the prevalence of vulnerabilities in open-source

libraries, the types and persistence of the vulnerabilities, along with relation-

ships between their prevalence and project as well as commit attributes. Such

an investigation can answer several open questions, for example: What are

common types of dependency vulnerabilities library users should be aware of?

Is it sufficient for a library developer to fix vulnerabilities in their library and

release a new version as soon as possible? How often are vulnerable dependen-

cies left unchanged due to actual lack of newer versions? How effectively can

we reduce risk due to vulnerable dependencies by adding more personnel to the

project? We believe that the result of such an investigation would be helpful

to library users, library developers, and security researchers in a number of

ways. Library developers can benefit from understanding the prevalence of

persistent vulnerabilities as well as the prevalence of outdated dependencies,

as they can signify the need to encourage updates and make updates easier.

Library users can benefit from understanding common types of vulnerabili-
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ties since such knowledge can help them to anticipate and guard against these

common vulnerabilities. This is important as vulnerabilities in libraries may

not become publicly known immediately and there may also be latency before

library developers provide a fix. They can also benefit from understanding

whether factors such as number and experience of contributors translate into

better handling of vulnerable dependencies, since this can affect personnel al-

location decisions, among others. In addition, the result of such investigation

can also help researchers to identify directions of research that are more likely

to benefit the widest range of software projects.

There are several open-source tools such as OWASP Dependency Check 1,

Bundler-audit2, and RetireJS 3 that can assist development teams to check

for publicly-known security vulnerabilities in their open-source dependencies.

Since November 2017, GitHub has also provided a service4 that scans depen-

dencies of a given project in several supported languages for publicly known

vulnerabilities. Beyond this, several vendors, such as Sonatype, Synopsys, Ve-

racode, and WhiteSource, also offer software composition analysis (SCA) tools

that can identify open-source libraries used in a given software project, vul-

nerabilities associated with those libraries (including those not yet in public

vulnerability databases), associated licenses, and other metrics. Such SCA

tools enable development teams to identify vulnerable dependencies and other

potential issues such as outdated dependencies and license issues.

In this work, we use Veracode Software Composition Analysis (SCA) tool

to perform an empirical study on a sample of projects and their associated

commits on GitHub. We use Veracode SCA as it is available to us, includes a

database of open-source libraries maintained by Veracode security researchers

along with categorized list of associated vulnerabilities (as well as their severity

scores), and supports the three languages investigated in this study (Java,

1https://www.owasp.org/index.php/OWASP Dependency Check
2https://github.com/rubysec/bundler-audit
3http://retirejs.github.io/retire.js/
4https://help.github.com/en/articles/about-security-alerts-for-vulnerable-dependencies

60



CHAPTER 4. STUDY ON VULNERABILITIES IN OPEN SOURCE SOFTWARE DEPENDENCIES

Python, and Ruby). This enables systematic investigation and comparison of

detected vulnerabilities in sampled projects’ open-source dependencies. For

our dataset, we sampled 450 software projects on GitHub that are written

in Java, Python, and Ruby and have at least 5 commits during the 1-year

period between November 1, 2017 to October 31, 2018. Being larger and more

diverse than datasets of earlier works on vulnerability dependency usage [21,

110, 156]), our dataset enables better generalizability of analysis results. We

subsequently checked out all commits made to the sampled projects during the

1-year period, and used Veracode SCA to scan the complete project version

after each commit. Afterwards, we analyzed the scan results, which include

vulnerability details such as CVE identifier, type, and severity. We examined

a variety of aspects related to characteristics of the discovered vulnerabilities

in the sampled projects’ open-source dependencies, including common types,

frequency, persistence, as well as the relationship between the vulnerabilities

with project as well as commit attributes. In summary, we intend to answer

the following research questions:

• RQ1: What are the common types and prevalence of dependency vulner-

abilities in open-source software, and how persistent are they?

Understanding common types, prevalence, and persistence of dependency

vulnerabilities would help us assess the severity of the problem as well as

shed light on ways to resolve or mitigate the vulnerabilities. This serves

as our motivation to answer this research question. Among others, we

found that such vulnerabilities are persistent and take months to fix. We

also found common vulnerability types across languages.

• RQ2: What are the relationships between vulnerabilities in a project’s

open source dependencies with the attributes of the project and its com-

mits?

Many open-source developers and users hold the view that more review-

ers result in improved software quality. This view is phrased as “many
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eyes make all bugs shallow” by Eric Raymond and is known as Linus’

Law [170] and has been investigated in several studies (e.g. [130, 131]).

The argument is that larger size of community working on and using

a particular software will make it more likely for any quality issues to

be discovered and fixed. We are interested in examining whether this

view holds true for dependency vulnerability count. Further, there has

also been various works in vulnerability prediction (e.g. [140, 143, 228,

181, 224, 87]) that utilizes different types of metrics such as complexity,

churn, and developer activity to predict vulnerability in the project’s own

code. Given this, we believe that it is worthwhile to examine possible

correlations between some of the metrics with vulnerabilities resulting

from the projects’ open-source dependencies, in addition to comparing

the correlation between vulnerabilities and the counts of project’s direct

and transitive dependencies. Direct dependencies refer to dependencies

that are referenced by the project’s code directly, while transitive de-

pendencies refer to libraries that are referred to by other dependencies.

We found that the vulnerability counts correlate more strongly with the

project’s total dependency counts compared to the project activity level,

popularity, scale of commit, and experience level of the developer making

a commit. This suggests, for example, that reducing the total number

of dependencies (which may lack tests and have many dependencies on

their own [2]) will be more effective in mitigating such vulnerabilities

than recruiting additional developers into the project.

There have been several works focusing on the usage of vulnerable depen-

dencies [21, 110, 156] as well as works that include discussion of vulnerable

dependencies in context of library migration [46, 44, 102]. We expand on

the earlier set of works by analyzing larger and more diverse set of software

projects. In addition, the vulnerability details in the database of the Veracode

SCA tool that we use enables investigation into some aspects not covered in
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the above works, such as prevalence of different vulnerability types. Finally,

we perform a scan on each commit made to the sampled projects within the

1-year observation period, enabling analyses related to persistence of the vul-

nerabilities and the correlation between vulnerabilities with commit attributes.

The chapter is structured as follows: Section 4.2 presents an overview of Ve-

racode SCA tool used in our study. Section 4.3 discusses the dataset collection

method, overview of the dataset, and our methodology. Section 4.4 presents

the results of our empirical study. Section 4.5 discusses the implications of

our findings to library users, developers, as well as researchers. Section 4.6

discusses threats to validity of our study. Section 4.7 concludes our work and

presents future directions.

4.2 Overview of Veracode SCA

Veracode SCA5 is a software composition analysis (SCA) tool from Veracode.

SCA tools are typically used by developers and organizations to identify open-

source components used by their software projects as well as various infor-

mation associated with those components, including their respective licenses,

known vulnerabilities, and latest available versions. Such tools help their users

to prevent or mitigate security and legal issues, in addition to providing better

visibility into their software projects.

Veracode SCA supports analysis in several languages (Java, Python, .NET,

Ruby, JavaScript, PHP, Scala, Objective C, and Go), and works as follows:

given a project code base, if necessary, it builds the project with the build sys-

tem used by the project (e.g. Maven) and generates dependency graph from

the result. It subsequently analyzes the graph to identify the open-source li-

braries used in the project. Afterwards, it matches the identified open-source

libraries and their specific versions against a database containing information

of open-source libraries obtained from variety of sources (e.g. Maven Central,

5https://www.veracode.com/products/software-composition-analysis
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Ruby Gems, public sources of vulnerability information, as well as in-house

research efforts). Based on this, Veracode SCA subsequently reports open-

source libraries used by the project, the specific versions of the detected li-

braries, their licenses, associated vulnerabilities, as well as usage of outdated

libraries, as shown in Figure 4.1. Veracode SCA includes static checking mech-

anism to aid library updates [59] as well as Security Graph Language [58], a

domain-specific language that is designed to describe and represent vulnera-

bilities. The language supports efficient queries involving relations between

open-source libraries, their file contents (such as methods and classes), and

vulnerabilities.

Veracode SCA is also able to detect publicly-known vulnerabilities in Com-

mon Vulnerabilties and Exposures (CVE) list6 in addition to a number of vul-

nerabilities that have not yet been assigned CVE identifiers. As of 27 June

2019, the Veracode SCA vulnerability database7 contains 2,027,092 libraries

from all supported languages (not counting different versions), and 11,364 dis-

tinct vulnerabilities. The library information are retrieved from various open

source package repositories. For the languages used in this work (Java, Python,

and Ruby), the Veracode SCA vulnerability database statistics are shown in

Table 4.1.

Table 4.1: Veracode SCA vulnerability database information for languages
used in this work. Note: Distinct vulnerability corresponds to a CVE for
publicly-known vulnerabilities, or Veracode SCA artifact ID for non-publicly-
known vulnerabilities.

Language Libraries
Distinct

Vulnerability
Source of library information

Java 240,015 1,484
search.maven.org, repo1.maven.org
(for Maven)

Python 178,633 788 pypi.python.org
Ruby 138,082 648 rubygems.org

As source of vulnerability data, Veracode SCA makes use of both publicly-

6https://cve.mitre.org/
7https://sca.analysiscenter.veracode.com/vulnerability-database/search
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known vulnerability information from National Vulnerability Database8, as

well as in-house research efforts to discover vulnerabilities that are not yet

publicly known. Figure 4.2 provides high-level overview of the workflow. Iden-

tification of new vulnerabilities for inclusion into the database is achieved by

Veracode security researchers through a variety of approaches, such as appli-

cation of natural language processing and machine learning model to iden-

tify vulnerability-related commits and bug reports. The machine learning

model [226] achieved precision of 0.83 and recall of 0.74 during validation at

Veracode SCA production system in March 2017 - May 2017 and was able to de-

tect more actual vulnerabilities than the number reported in CVE in the same

period (349 vs 333). It outperformed the SVM-based classifier [158], one of the

state-of-the-art approaches for vulnerability detection from commit messages

as well as from bug reports. For instance, it achieved 54.55% higher precision

with the same recall for commit messages. Beyond this, prior to publishing

into the Veracode SCA database, each vulnerability is reviewed and researched

by at least two Veracode security analysts. In addition to this, Veracode also

keeps track of customer feedback regarding the vulnerability database. These

factors support our confidence in the tool’s detection capability. These factors

support our confidence in the tool’s detection capability.

By default, as part of its scan result, Veracode SCA reports Common Vul-

nerability Scoring System security score of vulnerabilities along with the fol-

lowing corresponding rating:

• 0.1 - 3.9 : Low

• 4.0 - 6.9 : Medium

• 7.0 - 8.9 : High

• 9.0 - 10.0 : Critical

8https://nvd.nist.gov/
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Figure 4.1: Part of result of a Veracode SCA scan

Figure 4.2: Overview of Veracode SCA workflow

Each detected vulnerability is also associated with at least one tag (such as

“Authentication” or “Cross-site Scripting (XSS)”). The complete list of tags

used in Veracode SCA database is shown in Table 4.2.

Overall, Veracode SCA’s scan features and details in its scan results fa-

cilitate our analysis for characterizing the vulnerabilities in the open-source

dependencies of the projects that we sampled. As our study involves multi-

ple languages (Java, Python, and Ruby), Veracode SCA’s language support

also put it in an advantage compared to popular open-source alternatives such

as Bundler-audit (which only supports Ruby Gems) or OWASP Dependency

Check (which supports Java but has only experimental support for Ruby and
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Table 4.2: List of vulnerability tags used by Veracode SCA

Authentication Mass-assignment
Authorization OS Command Injection
Buffer Overflows Phishing attack
Business Logic Flaws Race Conditions
Configuration Remote DOS
Cross Site Scripting (XSS) Remote Procedure Calls
Cryptography Session Management
Data at Rest Source code disclosure
Denial of Service SQL Injection
EL execution Transport Security
File I/O Trojan Horse
Information Disclosure XML Injection
Injection Vulnerabilities XPath Injection
Man-in-the-middle Other

Python).

4.3 Dataset & Methodology

4.3.1 Dataset Collection

We use GitHub as the source of software projects for this study. Since many

GitHub repositories do not actually contain software projects [91], as starting

point we used the reaper dataset from Munaiah et al. [138] which provides a

list of repositories likely to contain software projects. We believe the benefit

of performing sampling on this pre-filtered list of repositories outweighs the

potential downside of missing newer repositories, and at the time the data

collection began (December 2018) we were not aware of newer dataset of similar

type. We set the following criteria for sampling the projects:

1. The project is written in Java, Python, or Ruby, based on information

from the reaper dataset.

2. The project repository commit log lists at least five commits between

November 1, 2017 and October 31, 2018.

3. The project satisfies the prerequisites to be scanned by the Veracode
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SCA tool, i.e. its content indicates that it uses a build tool supported by

Veracode SCA, and it is actually buildable. For Java projects, we focused

on Maven projects to reduce the potential complexity of troubleshooting

build issues. For Python projects, we look for the existence of one of the

following files in the project’s root directory: setup.py, requirements.txt,

requirements-dev.txt, or dev-requirements.txt. For Ruby projects, we look

for the existence of Gemfile in the project root directory.

The criteria are set to ensure that the resulting set of the sample projects

comprises actively-maintained software projects written in popular languages,

which should subsequently improve generalizability of our analysis results. In

addition, the choice of selecting projects from multiple programming languages

instead of collecting a larger set from a single language is meant to enable

investigation into potential differences in characteristics of vulnerabilities in

different languages.

After filtering for projects that match the criteria, we randomly sampled

450 software projects. This corresponds to 150 for each programming language

(out of 462,182 Java projects, 331,883 Python projects, and 363,801 Ruby

projects on reporeaper). Afterwards, we extracted the list of all commits made

between November 1, 2017 and October 31, 2018. We subsequently scan the

projects using Veracode SCA to identify its open-source dependencies as well as

the type of each dependency (i.e. direct, transitive, or both). The statistics of

the sampled projects are shown in Table 4.3. Table 3 shows that the number of

transitive dependencies of the sampled projects are generally much higher than

that of direct dependencies, consistent with observation of Decan et al. [45].

In addition to this, Figure 4.3 shows the relationship between commit au-

thor count and direct dependency count of the sample projects, while Figure 4.4

shows the relationship between commit author counts and transitive depen-

dency counts. Table 4.4 shows the correlation (computed using Spearman’s

rank correlation test [192]) between commit author count and commit count,
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as well as between commit author count and dependency counts. Following

scale of interpretation of ρ used by Camilo et al. [22] (± 0.00 - 0.30: Negligi-

ble, ± 0.30 - 0.50: Low, ± 0.50 - 0.70: Moderate, ± 0.70 - 0.90: High, and ±

0.90 - 1.00: Very high), we note that there is low to moderate correlation be-

tween commit author count and commit count, but no statistically significant

correlation between commit author count and dependency count.

Table 4.3: Statistics of the sampled projects at latest commit in the observation
period.

Metric Java Python Ruby

Commits in target period

Min 5 5 5
Max 4579 2471 1802
Median 23.0 20.5 16.0
Mean 104.6 76.4 56.9
Std. dev. 371.4 196.7 165.9

Commit authors in target period

Min 1 1 1
Max 22 51 43
Median 2 3 2
Mean 3.9 4.7 4.1
Std. dev. 4.4 6.3 5.7

Direct open-source software (OSS)
dependency

Min 0 0 0
Max 81 29 99
Mean 8.8 3.5 15.7
Median 5 2 8
Std. dev. 12.0 4.5 20.4

Transitive OSS dependency
Min 0 0 0
Max 254 191 280
Mean 29.6 7.0 53.2
Median 9.5 1 43
Std. dev. 44.1 18.2 49.0

Projects with no detected OSS dependency 16 35 2

Table 4.4: Correlation between commit author count and commit count, as
well as between commit author count and dependency counts

Language
Number of Commits Dependency Count

Direct Transitive
ρ p ρ p ρ p

Java 0.484 0.000 0.072 0.378 0.062 0.449
Python 0.587 0.000 0.080 0.333 -0.054 0.512
Ruby 0.367 0.000 -0.075 0.364 -0.047 0.565
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Figure 4.3: Relationship between sample projects’ commit author count and
direct dependency count

Figure 4.4: Relationship between sample projects’ commit author count and
transitive dependency count

4.3.2 Methodology

After selecting the GitHub projects and downloading their commit history, we

checked out each commit and performed a scan on the full project versions

after each commit using Veracode SCA agent. The tool reports total counts of

direct and transitive open-source dependencies in the specific project version

scanned, list of detected vulnerabilities (including description, severity score,

and specific libraries that contain them), as well as other information such as

license information of the libraries. We subsequently use the information on

vulnerable open-source dependencies and their associated vulnerabilities for

subsequent analyses.

For the purposes of counting distinct vulnerabilities, there are two cases

to be considered: The first case is the vulnerabilities that have been assigned

Common Vulnerabilities and Exposures (CVE) identifier. The CVE identifier

points to a specific publicly-known vulnerability in the CVE list. The other
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case relates to vulnerabilities that have not yet been assigned CVE identifier

after their discovery by Veracode security researchers. Since the Veracode SCA

vulnerability database assigns one artifact ID for each distinct vulnerability

(with or without CVE), we use this artifact ID instead of CVE identifier.

For subsequent analyses, we count a combination of software project, library

version, and artifact ID as individual vulnerability instance.

In this work, we use “first commit” or “earliest commit” as a shorthand for

first commit in the observation period (i.e. first commit in November 2017).

Similarly, “last commit” or “latest commit” refers to latest commit in the

observation period (i.e. latest commit in October 2018).

4.4 Empirical Study Results

In this section we discuss the results of our investigation into the characteristics

of vulnerabilities in the sampled projects’ open-source dependencies, as well as

the vulnerabilities’ relationship with project and commit attributes.

4.4.1 RQ1: What are the common types and prevalence

of dependency vulnerabilities in open-source soft-

ware, and how persistent are they?

4.4.1.1 Dependency vulnerability counts

Table 4.5 shows the distribution of the total counts of detected vulnerabilities

in open-source dependencies of the sampled projects. The data shown is based

on scan result at the time of the latest commit in the observed period, and is

split into data on vulnerabilities with CVE (i.e. publicly-known vulnerabilities,

including those for which CVE ID has been reserved at the time of scan)

and vulnerabilities without CVE (i.e. non-publicly-known vulnerabilities). It

shows that the Java sample set has the largest overall range and variation of
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vulnerability counts, followed by the Ruby sample set.

Table 4.5: Overview of sample projects’ vulnerability counts

Vulnerabilities with CVE
Language Min Max Mean Median Std.dev.
Java 0 98 9.0 1.0 15.6
Python 0 30 0.9 0.0 3.5
Ruby 0 42 4.4 1.0 7.2

Non-CVE Vulnerabilities
Language Min Max Mean Median Std.dev.
Java 0 19 1.9 0.0 3.3
Python 0 6 0.1 0.0 0.5
Ruby 0 31 3.0 1.0 5.2
Percentage of dependencies with vulnerability
Language Min Max Mean Median Std.dev.
Java 0.0 100.0 12.3 11.7 14.5
Python 0.0 100.0 7.8 0.0 18.4
Ruby 0.0 28.6 5.3 3.3 6.3

In addition to the total counts, we examine the breakdown of the vulnerabil-

ities by dependency type. Specifically, we are interested in finding the average

percentages of vulnerabilities that are associated with a project’s direct depen-

dencies, transitive dependencies, and dependencies that are used both directly

and transitively. We perform this analysis at the latest commit of each project

for which at least one dependency vulnerability is found. This gives us the

most up-to-date information of the projects’ vulnerability characteristics. The

breakdown of vulnerability by dependency type is shown in Table 4.6. It shows

that distribution of vulnerability counts by dependency type corresponds to

relative proportion of dependency types. For Python projects, most of the

dependency vulnerabilities are in the projects’ direct dependencies, which are

more visible to the project developers and more easily updated compared to

transitive dependencies. On the other hand, given the higher percentage of

vulnerabilities in Java and Ruby projects’ transitive dependencies, developers

using those languages will benefit more from careful scrutiny of their projects’

transitive dependencies.
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Table 4.6: Per-project vulnerability percentage distribution by dependency
type. ’Both’ denotes dependencies that are used both directly and transi-
tively. Includes only projects with at least one vulnerability. Percentages of
dependency by type (‘Dep.‘) included for comparison.

Java Python Ruby

CVE
Non-
CVE

Dep. CVE
Non-
CVE

Dep. CVE
Non-
CVE

Dep.

D
ir

ec
t

Min 0.0 0.0 0.0 0.0 0.0 15.05 0.0 0.0 1.2
Max 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 41.9
Mean 30.3 36.7 29.2 85.0 50.0 51.4 10.0 16.3 18.2
Median 4.0 19.5 15.7 100.0 50.0 44.4 0.0 0.0 19.6
Std.dev 40.6 42.3 26.9 33.7 54.8 27.3 24.3 26.3 10.3

T
ra

n
si

ti
ve

Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 54.6
Max 100.0 100.0 100.0 100.0 100.0 85.0 100.0 100.0 98.8
Mean 58.6 60.3 64.4 15.0 50.0 48.6 84.5 73.4 77.9
Median 76.3 69.7 69.2 0.0 50.0 55.6 100.0 82.6 76.5
Std.dev 42.8 41.6 23.4 33.7 54.8 27.3 27.1 31.8 11.7

B
ot

h

Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Max 100.0 75.0 100.0 0.0 0.0 0.0 100.0 100.0 23.5
Mean 11.1 3.1 6.5 0.0 0.0 0.0 5.5 10.3 3.9
Median 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.7
Std.dev 27.3 11.9 14.6 0.0 0.0 0.0 15.0 20.3 3.6

Finding 1: Proportion of vulnerability counts by dependency type

varies by programming language, corresponding to relative proportion

of dependency types

4.4.1.2 Most common dependency vulnerability types

To identify common types of dependency vulnerabilities in each language, we

combine scan results of latest commits of each language’s sample set and count

all the detected vulnerabilities. For this analysis, we count each combination of

library version, vulnerability, and project separately. That is, if a particular li-

brary version with two vulnerabilities of “Denial of Service” type is used by two

projects, this is counted as four instances of “Denial of Service”. If a project

uses three libraries containing one “Denial of Service” type of vulnerability

each, this is counted as three instances of “Denial of Service” vulnerability.

We use tags associated with each vulnerability in the Veracode SCA database
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for the categorization. The list of tags is shown in Table 4.2. Table 4.7 shows

the total instances.

Table 4.7: Summarized count of dependency vulnerability instances at latest
commit. Non-CVE vulnerabilities are identified by Veracode SCA artifact ID

Java Python Ruby

Total vulnerability instances
CVE 1354 131 657
Non-CVE 282 12 455

Distinct vulnerabilities
(CVE / artifact ID)

CVE 212 51 80
Non-CVE 56 9 74

Afterwards, we identify the tags associated with each vulnerability instance,

count the total for each tag, and shortlist the ones with highest counts. Ta-

ble 4.8 shows the top five results for each language. The result indicates some

commonalities between the kinds of dependency vulnerabilities in each lan-

guage, with “Denial of Service” and “Information Disclosure” being two com-

mon top issues across the three languages. This suggests that improvement

of practices or tools to combat those vulnerability types (by both open-source

library developers and security researchers) would bring significant benefits to

a wide range of software projects.

Finding 2: “Denial of Service” and “Information Disclosure” are com-

mon across programming languages.

4.4.1.3 Distribution of severity scores

In addition to number of vulnerabilities, we are also interested in the severity of

the vulnerabilities detected in the sampled projects’ open-source dependencies.

Table 4.9 shows the distribution of severity according to the default rating

scale, i.e. CVSS score of 0.1 - 3.9 : Low, 4.0 - 6.9 : Medium, 7.0 - 8.9 : High,

9.0 - 10.0 : Critical. Table 4.10 shows the distribution of the severity score

for the top vulnerability types. The distribution of severity shows that most

of the vulnerabilities in the sampled projects’ open-source dependencies are

not critical. This is also the case for the two types of vulnerability that are
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Table 4.8: Most common dependency vulnerability tags in each language.
”CVE” and ”non-CVE” indicate publicly-known and non-publicly-known vul-
nerabilities, respectively. Instance count and percentage denote count and
percentage across the sample set of the programming language. Note that one
vulnerability may have more than one tag.

Language Tag
Total

instances
% of all

instances

CVE
vuln.

instances

Non-CVE
vuln.

instances

Java

Other 749 46.0 665 84
Denial of Service 272 17.0 205 67
Information Disclosure 147 9.0 125 22
Cryptography 145 9.0 130 15
Remote Procedure Calls 133 8.0 105 28

Python

Other 70 49.0 69 1
Information Disclosure 24 17.0 21 3
Configuration 23 16.0 23 0
Denial of Service 21 15.0 17 4
Cross Site Scripting (XSS) 15 10.0 14 1

Ruby

Denial of Service 281 25.0 97 184
Other 280 25.0 105 175
Cross Site Scripting (XSS) 274 25.0 182 92
Information Disclosure 175 16.0 109 66
SQL Injection 122 11.0 122 0

common across languages (“Denial of Service” and “Information Disclosure”),

which is reassuring. However, there are higher percentages of high-severity

vulnerabilities in the dependencies of the Java and Python projects. While

it is possible that the variance in sample projects’ code quality contributes

to the difference in severity distribution, Ray et al. [169] reported that the

effect size of the association between programming language and code quality

is small. This implies that the difference in severity distributions cannot be

fully explained by potential code quality difference across the three languages.

Overall, the difference suggests that Java and Python developers will benefit

more from timely dependency updates.

Finding 3: Most detected dependency vulnerabilities are of medium

severity, however, there is noticeable variation in severity distribution

across programming languages.
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Table 4.9: Distribution of severity of vulnerability instances. Percentages are
of all vulnerability instances in the respective programming language group
(both CVE and non-CVE).

Severity
Java Python Ruby

% instances % instances % instances

CVE

Low 0.8 13 1.4 2 4.5 50
Medium 46.3 757 63.0 90 46.6 518
High 34.9 571 23.8 34 8.0 89
Critical 0.8 13 3.5 5 0 0

Non-CVE

Low 1.3 21 0.7 1 0.8 9
Medium 15.2 249 6.29 9 33.9 377
High 0.7 12 1.4 1.4 1.6 18
Critical 0 0 0 0 4.59 51

4.4.1.4 Vulnerable libraries affecting largest number of sampled

projects

To see whether the vulnerabilities in the sampled projects originate from a

few widely-used libraries, or many libraries that affect few projects each, we

investigate the number of projects affected by each vulnerable library. For this

analysis we list vulnerabilities discovered at the latest commit of the sampled

projects, spanning both vulnerabilities with and without CVE identifier. Af-

terwards, we identify the library name associated with the vulnerability, and

counted the number of repositories affected by each library. For the purpose

of this analysis, we do not distinguish specific library version used, and we dis-

regard the specific number of vulnerabilities associated with the library. That

is, a library with five detected vulnerabilities and another library with two

detected vulnerabilities will both count as one if they are used by one project.

The top five result is shown in Table 4.11.

We note that a vulnerable library also affects the security of the entire

package ecosystem through other libraries that depend on it (see e.g. Zimmer-

man et al.’s work on npm [227]). Therefore, for context, we also computed

the average number of libraries impacted by a library, measured as average

out-degree of the transitive closure in the dependency graph of the different

package ecosystems (Maven for Java, PyPI for Python, Gem for Ruby). The
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Table 4.10: Distribution of severity of top vulnerability types. Percentages are
of all vulnerability instances in the respective programming language group
(both CVE and non-CVE).

Language Tag Type
Percentage of all instances

Low Medium High Critical

Java

Other
CVE 0.4 13.6 25.8 0.8
Non-CVE 0.2 4.5 0.4 0.0

Denial of Service
CVE 0.0 10.5 2.0 0.0
Non-CVE 0.4 3.5 0.2 0.0

Information Disclosure
CVE 0.1 7.2 0.3 0.0
Non-CVE 0.6 0.7 0.0 0.0

Cryptography
CVE 0.0 7.5 0.5 0.0
Non-CVE 0.1 0.9 0.0 0.0

Remote Procedure Calls
CVE 0.0 3.4 3.1 0.0
Non-CVE 0.0 1.7 0.0 0.0

Python

Other
CVE 0.0 23.8 21.7 2.8
Non-CVE 0.0 0.7 0.0 0.0

Information Disclosure
CVE 0.7 13.3 0.7 0.0
Non-CVE 0.7 1.4 0.0 0.0

Configuration
CVE 0.0 4.2 11.9 0.0
Non-CVE 0.0 0.0 0.0 0.0

Denial of Service
CVE 0.0 11.2 0.7 0.0
Non-CVE 0.0 2.8 0.0 0.0

Cross Site Scripting (XSS)
CVE 0.0 7.7 0.0 2.1
Non-CVE 0.0 0.7 0.0 0.0

Ruby

Denial of Service CVE 0.0 6.2 2.5 0.0
Non-CVE 0.5 10.2 1.3 4.6

Other
CVE 0.3 6.7 2.4 0.0
Non-CVE 0.0 9.7 1.4 0.0

Information Disclosure
CVE 0.2 7.8 1.8 0.0
Non-CVE 0.1 5.9 0.0 0.0

Cross Site Scripting (XSS)
CVE 3.8 12.6 0.0 0.0
Non-CVE 0.0 8.3 0.0 0.0

SQL Injection
CVE 0.0 9.7 1.3 0.0
Non-CVE 0.0 0.0 0.0 0.0

counts at the time data collection begins (December 2018) is 81.9 for Java, 10.3

for PyPI, and 62.2 for Gem. This indicates that the higher number of projects

affected by the top vulnerable Java and Ruby libraries in the sample set is due

to inherent wider impact of average library in Maven and Gem ecosystems.

This in turn indicates that improving security in these ecosystems will benefit

wider range of projects.
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Table 4.11: Top vulnerable libraries by projects affected. Project count in-
cludes projects using any version of the specified library.

Language Library Projects

Java

Guava: Google Core Libraries for Java 45
Apache Commons IO 33
Spring Web 30
jackson-databind 30
Apache Commons Collections 28

Python

numpy 23
PyYAML 9
Django 7
requests 4
Pillow 2

Ruby

rack 59
nokogiri 51
loofah 42
activejob 41
activerecord 30

Finding 4: Top vulnerable libraries in Java and Ruby affect relatively

larger number of projects, in line with wider average impact of libraries

in their package ecosystems.

4.4.1.5 Non-CVE dependency vulnerabilities as discovered by Ve-

racode SCA

There are differing views regarding how soon vulnerabilities should be publicly

disclosed, taking into account factors such as potential vendor and attacker

responses [8]. As a result, there is often a lag between the discovery of a

vulnerability by researchers and the inclusion of the vulnerability in the CVE

list. Due to this lag, there is a risk that developers may miss some of vul-

nerabilities in their project dependencies even if they actively monitor and

respond to CVE updates. We investigate the extent of such risk by evaluating

the average percentage of dependency vulnerabilities in the latest commits of

sampled projects that have not been assigned CVE IDs at the time of scan.

Table 4.12 shows the average percentage breakdown of CVE and non-CVE
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dependency vulnerabilities, along with top tags associated with the non-CVE

dependency vulnerabilities. It suggests that while most dependency vulner-

abilities discovered in a project are CVE vulnerabilities, developers may still

miss a significant percentage of vulnerabilities in their projects’ dependencies

if they rely on CVE list alone.

Table 4.12: Percentage and top tags for non-CVE vulnerabilities

Language Percentage of Non-CVE Vulnerability Top non-CVE Tags

Java

Min 0.0
Other
Denial of Service
Cross Site Scripting (XSS)

Max 100.0
Mean 21.9

Median 18.2
Std.dev 24.1

Python

Min 0.0
Denial of Service
Information Disclosure
Buffer Overflows

Max 100.0
Mean 5.0

Median 0.0
Std.dev 17.3

Ruby

Min 0.0
Denial of Service
Other
Cross Site Scripting (XSS)

Max 100.0
Mean 41.5

Median 37.5
Std.dev 28.2

Finding 5: Relying solely on public vulnerability database may cause

developers to miss significant percentage of dependency vulnerabilities.

4.4.1.6 Overall persistence of dependency vulnerabilities

Persistence of dependency vulnerabilities is another aspect that we are inter-

ested in, and it is affected by two factors. One factor is how long it takes for the

library developers to fix the vulnerability. A number of CVEs affect more than

one version of a library, making them persistent despite library updates. An

example of this is CVE-2019-17267, which affects the jackson-databind library

from version 2.0.0 to 2.9.9.4. Another factor is how fast a vulnerable depen-

dency is updated to non-vulnerable version (or removed altogether), since there

is often latency in adopting the latest version of libraries [101, 102].
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To obtain a general idea regarding the persistence of vulnerabilities across

the period of interest, we compute per-project percentage of distinct CVEs (or

Veracode SCA artifact IDs in case of non-CVE vulnerabilities) that exist at

both the time of the earliest commit and the time of the latest commit in the

observation period. Table 4.13 shows the percentage of persistent vulnerabili-

ties for each language grouped by CVSS rating, along with top libraries by the

count of persistent CVEs/artifact IDs. We found no clear relationship between

survival of vulnerabilities found at first commit and their risk rating. For ex-

ample, as a group, the vulnerabilities with “Low” rating are least persistent in

Java and Python sample projects, but most persistent in Ruby sample projects.

This suggests that the high overall persistence is not caused by project owners

prioritizing resolution of high-risk vulnerabilities while deferring updates to

resolve low-risk vulnerabilities.

Table 4.13: Per-project survival percentages of vulnerabilities present at first
commit, grouped by vulnerability risk rating.

Language
CVE Non-CVE

Crit. High Med. Low Crit. High Med. Low

Java

Projects 13 71 92 13 0 12 75 13
Min 0.0 0.0 0.0 0.0 N.A. 0.0 0.0 100.0
Max 100.0 100.0 100.0 100.0 N.A. 100.0 100.0 100.0
Mean 92.3 81.1 80.7 76.9 N.A. 83.3 85.1 100.0
Median 100.0 100.0 100.0 100.0 N.A. 100.0 100.0 100.0
Std.dev 27.7 33.6 34.7 43.9 N.A. 38.9 31.2 0.0
Top libraries
(overall)

jackson-databind, Data Mapper for Jackson, Spring Web,
Spring Web MVC, Bouncy Castle Provider

Python

Projects 3 29 20 3 0 3 7 2
Min 100.0 100.0 0.0 0.0 N.A. 0.0 0.0 0.0
Max 100.0 100.0 100.0 100.0 N.A. 100.0 100.0 100.0
Mean 100.0 100.0 84.2 66.7 N.A. 66.7 71.4 50.0
Median 100.0 100.0 100.0 100.0 N.A. 100.0 100.0 50.0
Std.dev 0.0 0.0 34.0 57.7 N.A. 57.7 48.8 70.7
Top libraries
(overall)

Django, numpy, Pillow, PyYAML, requests

Ruby

Projects 0 38 82 45 51 25 77 11
Min N.A. 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Max N.A. 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Mean N.A. 61.5 64.4 92.2 88.2 38.3 61.6 54.6
Median N.A. 100.0 67.4 100.0 100.0 0.0 66.7 100.0
Std.dev N.A. 45.9 36.7 23.7 32.5 47.9 40.0 52.2
Top libraries
(overall)

nokogiri, activerecord, loofah, rack, actionpack
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For context, we also investigate the percentage of dependencies that are not

updated or removed since the first commit in the observation period, with the

result shown in Table 4.14. In addition, we also conducted survival analysis

using Kaplan-Meier method [92] on the library versions found at first commit.

As different projects may update their dependencies at different times, for the

survival analysis we treat each combination of project and library version as

one instance. The result of this analysis is shown in Figure 4.5. Both Table 4.14

and Figure 4.5 show that in many cases, libraries that exist at the beginning

of the observation period are not changed by project owners throughout the

period. To investigate whether this is due to lack of a newer version of said

libraries, we examine per-project percentages of unchanged dependencies for

which newer versions already exist. As shown in Table 4.15, in most cases the

unchanged dependencies are outdated, yet not replaced. In addition to this,

we also investigated vulnerabilities that persist throughout the observation pe-

riod despite the update of the associated dependencies, with the result shown

in Table 4.16. We find that in most of the projects, such vulnerabilities form

only a small part of persistent vulnerabilities. Our findings indicate that the

persistence of vulnerabilities are caused more by project owners’ latency in up-

dating dependencies instead of the vulnerabilities themselves being persistent

across library versions.

Table 4.14: Per-project percentages of dependencies in first commit that re-
mains unchanged throughout the observation period. Median and mean com-
mit counts are shown as indicators of sample projects’ activity levels.

Min Max Mean Median Std.dev
Median
commit
count

Mean
commit
count

Java 4.8 100.0 79.6 96.9 27.8 23.0 104.6
Python 20.0 100.0 94.2 100.0 15.7 20.5 76.4
Ruby 2.7 100.0 79.5 100.0 30.8 16.0 56.9
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Figure 4.5: Kaplan-Meier curve of vulnerable and non-vulnerable libraries de-
tected at first commit.

Table 4.15: Per-project percentage of unchanged dependencies for which newer
version already existed at latest commit. Percentages are of all unchanged
dependencies in the same project.

Min Max Mean Median Std.dev
Java 0.0 100.0 75.4 80.0 24.0
Python 0.0 100.0 77.6 80.0 21.0
Ruby 0.0 100.0 58.0 57.4 23.4

Table 4.16: Per-project percentage of vulnerabilities that persist despite up-
date of associated dependency. Percentages shown are that of all persistent
vulnerabilities in the same project.

Min Max Mean Median Std.dev
Java 0.0 100.0 18.4 0 31.9
Python 0.0 100.0 7.4 0 25.8
Ruby 0.0 100.0 36.7 6 43.4

Finding 6: Dependencies are not frequently updated or changed by

project owners despite availability of updated libraries, and therefore

any vulnerabilities contained will persist.

4.4.1.7 Change of number of dependency vulnerabilities over the

period of observation

To examine whether the sampled projects generally become less vulnerable or

more over the observation period, we computed the dependency vulnerability

counts of each of the 450 projects at their first commits in the observation

period (i.e. first commit in November 2017) as well as the latest commits

in the period (i.e. latest commit in October 2018). We subsequently apply

Wilcoxon signed-rank test on the vulnerability counts at the first and the
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latest commits to investigate whether they are significantly different. Since

the number of dependencies of a project may also change during the same

1-year period, we also performed the same analysis on dependency counts for

comparison. Table 4.17 shows that dependency vulnerability counts tends to

decrease despite increase in the number of dependencies in the 1-year period.

Table 4.17: Vulnerability and dependency count changes during observation
period. T denotes T statistic of Wilcoxon signed-rank test.

Java Python Ruby

CVE
Non-
CVE

CVE
Non-
CVE

CVE
Non-
CVE

Dependency
vulnerability
counts

T 162.0 25.0 12.0 0.0 0.0 36.0
p-value 0.000 0.001 0.389 0.046 0.000 0.000
Min at first commit 0 0 0 0 0 0
Min at last commit 0 0 0 0 0 0
Max at first commit 99 19 30 6 46 31
Max at last commit 98 19 30 6 42 31
Mean at first commit 9.8 2.1 0.9 0.1 6.6 5.1
Mean at last commit 9.0 1.9 0.9 0.1 4.4 3.0
Median at first commit 2.0 1.0 0.0 0.0 1.5 1.0
Median at last commit 1.0 0.0 0.0 0.0 1.0 1.0
Std.dev at first commit 15.8 3.5 3.6 0.6 9.9 7.7
Std.dev at last commit 15.6 3.3 3.6 0.5 7.2 5.2

Dependency
counts

T 450.0 124.0 388.0
p-value 0.011 0.005 0.000
Min at first commit 0 0 0
Min at last commit 0 0 0
Max at first commit 270 196 241
Max at last commit 287 196 356
Mean at first commit 35.8 9.6 63.2
Mean at last commit 36.0 10.4 66.2
Median at first commit 15.5 4 49.5
Median at last commit 17 4 50.5
Std.dev at first commit 47.6 19.6 54.2
Std.dev at last commit 47.5 20.3 61.9

Finding 7: Dependency vulnerability counts do not increase over the

1-year study period, despite slight increase in number of dependencies.
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4.4.1.8 Time required to resolve dependency vulnerabilities

To analyze the time to resolve dependency vulnerabilities, we listed the differ-

ent dependency vulnerabilities detected in a repository during the observation

period. Afterwards, we identify the commit C1 where the dependency vul-

nerability is first detected in the repository during the period, as well as the

commit C2 in which the dependency vulnerability is last detected in the same

repository. We subsequently identify commit C3 which is the first commit

after C2 in the repository. For dependency vulnerabilities that already exist

at first commit in the period of interest, we use the time of first commit as

starting time. We exclude dependency vulnerabilities that still exist at the

latest commits. We define the time to fix the dependency vulnerability (i.e.

by updating the project’s dependency to non-vulnerable version or removing

the dependency altogether) as the difference between committer timestamp of

C3 and C1.

We compute the figure for each repository containing the dependency vul-

nerability, and subsequently compute the min, max, mean, median, as well

as standard deviation of the values. Table 4.18 show the result, broken down

into vulnerabilities with and without CVE. We find that on average, the fixed

vulnerabilities take 3-5 months to fix. Our finding suggests that dependency

vulnerabilities not only tend to be persistent, but even the ones that are re-

solved take a long time to fix.

Table 4.18: Time taken to fix vulnerabilities in days

Vulnerabilities with CVE
Min Max Mean Median Std.dev

Java 0.0 361.0 145.3 126.0 125.2
Python 0.1 238.7 134.5 174.5 80.7
Ruby 0.0 364.8 98.8 81.3 99.3

Non-CVE Vulnerabilities
Min Max Mean Median Std.dev

Java 0.0 361.0 136.3 150.2 104.3
Python 21.6 228.2 101.3 75.2 79.0
Ruby 0.0 364.8 94.1 69.2 102.1
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Finding 8: On average, resolved dependency vulnerabilities take 3-5

months to fix. For vulnerabilities with CVE, average resolution times

are 145.3, 134.5, and 98.8 days for our Java, Python, and Ruby datasets

respectively. For vulnerabilities without CVE, the average times are

136.3 days for Java, 101.3 days for Python, and 94.1 days for Ruby.

4.4.2 RQ2: What are the relationships between depen-

dency vulnerabilities in a project’s open-source

dependencies with the attributes of the project

and its commits?

4.4.2.1 Project attributes

A popular view regarding open-source software development is reflected in

Linus’ Law as formulated by Eric Raymond [170]: “Given enough eyeballs, all

bugs are shallow”. A larger community of developer and reviewers (official

testers as well as users) is often expected to improve ability to discover bugs in

a software project, including vulnerabilities. This is often used to argue that

open source software is more secure [79, 218]. On the other hand, some hold

the view that having too many developers can be detrimental (following the

notion that “too many cooks spoil the broth”), and there have been studies

by Meneely and Williams [130, 131] investigating these opposing views and

the extent at which larger number of developers starts to correlate with more

vulnerabilities.

Other than the two studies, a number of other works have investigated

relationship between the presence of vulnerabilities and various combination

of metrics related to software, developer activity, and execution complexity

(e.g. [228, 181, 182, 183]), typically with the overall objective of predicting

location of vulnerability in a software project’s source code. While the focus of
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our study is different, considering the view regarding Linus’ Law, and another

view that higher project complexity and larger project size tend to result in

the project being more prone to bugs, we decide to examine whether OSS

dependency vulnerability correspond to some project-level metrics: project

popularity, complexity, and size. As a proxy for the project’s popularity, we use

number of commit authors as well as its GitHub stargazers count. As measure

of project complexity, we use counts of direct and transitive dependencies of

the project, since we are interested strictly in the vulnerabilities resulting from

the dependencies instead of the vulnerabilities in the project’s own code. Our

hypothesis is that larger network of project dependencies will make it more

difficult for project maintainers to track and update all dependencies to avoid

vulnerable versions.

To investigate the relationship between project attributes and total count

of vulnerabilities in its open-source dependencies, we constructed a nega-

tive binomial regression model [78]. We chose this regression model because

it is more suitable than standard linear regression for non-negative count

data [66], and it has also been used in several works in software engineering

domain [13, 148, 206, 217]. For this analysis, we use the number of dependency

vulnerabilities at the time of latest commit in the observation period as well

as the following project attributes:

• Age: Project’s age, measured as difference between timestamps of project’s

last commit in the observation period and the first commit in the project

repository, in days.

• Commits: Total number of commits.

• Commit authors: Total number of distinct commit authors.

• Repository total LOC: Total LOC in repository excluding test code.

Tests are omitted for consistency as Veracode SCA scans ignore test de-

pendencies. Filtering is done by directory, i.e. for Java samples (which
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are Maven projects), we exclude src/test/ which is the typical test lo-

cation in Maven project structure. For Python and Ruby, we exclude

subdirectories named test/ and tests/.

• Stargazers count: Number of stars the repository have, as a measure

of its popularity.

• Direct dependencies: Number of direct dependencies.

• Transitive dependencies: Number of transitive dependencies.

We use statsmodels [178] implementation of the negative binomial regres-

sion, and the results are shown in Table 4.19.

Table 4.19: Negative binomial regression results on project attributes. Shaded
cells indicate attributes with statistically significant contribution to depen-
dency vulnerability count.

Variable
Java Python Ruby

coef P > |z| coef P > |z| coef P > |z|
Age 0.000 0.218 0.000 0.596 -0.001 0.007
Commits 0.000 0.922 0.001 0.868 -0.001 0.220
Commit authors -0.015 0.668 0.072 0.191 -0.030 0.179
LOC 0.000 0.488 0.000 0.254 0.000 0.520
Stargazers 0.000 0.962 0.000 0.079 0.000 0.170
Direct dependencies 0.013 0.109 0.145 0.002 0.031 0.000
Transitive dependencies 0.016 0.000 -0.046 0.006 -0.005 0.103

The results show that the project’s age, number of commits, number of

developers, popularity, and project size has negligible effect on the dependency

vulnerability counts. This suggests that frequent commits, involvement of more

developers in a project, and the project’s popularity do not translate into better

or worse handling of vulnerable dependencies. Possible reasons for the lack

of improved handling include lack of awareness regarding the vulnerabilities

as well as the presence of dependency constraints that hinder developers from

updating project dependencies or switching to a different library (even if there’s

known vulnerability in the currently-used versions). On the other hand, most

direct dependency counts have more statistically significant effects.
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Overall, the results suggest that dependency vulnerabilities can likely be

managed more effectively through reduction of number of direct dependencies

than through recruitment of additional personnel. This reduction can for ex-

ample be achieved by replacing multiple small libraries with single library that

is known to have good security track record.

Finding 9: To mitigate risk from dependency vulnerabilities, managing

dependencies will be more effective compared to increasing number of

contributors, project activity level, or managing the project’s size.

4.4.2.2 Commit attributes

Beside works that focus on predicting vulnerability location using various met-

rics, a number of works in the field of vulnerability prediction focus on identi-

fying vulnerability-contributing commits [129, 17, 158]. Among other findings,

larger changes and developer inexperience have been found to be associated

with higher likelihood of a commit introducing vulnerability. Given this, we

are also interested in investigating whether experience of developer making the

commit or the scale of change caused by a commit correspond with number

of dependency vulnerabilities detected after the particular commit. For this

analysis, we consider three types of commits:

1. Commits that increase vulnerability count (e.g. due to introduction of

vulnerable dependency)

2. Commits that decrease vulnerability count (e.g. due to removal or update

of vulnerable dependency)

3. Commits that do not change vulnerability count

The breakdown of the three types of commits for the three programming

languages is shown in Table 4.20. As for the commit attributes, we examine

the following attributes in this analysis:
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• Developer experience: We use the number of prior commits in the

project as a proxy, since it is not possible to objectively measure and

compare actual experience of commit authors directly.

• Number of affected files: Total count of files affected by the commit,

regardless of operation type (line addition, line deletion etc.).

• Churn: Total number of added and deleted lines in the commit.

• Total LOC of affected files: Sum of number of lines of code of files

affected by the commit, as a measure to distinguish commits affecting

small files versus commits affecting large ones.

• Total Complexity of affected files: Sum of cyclomatic complex-

ity [127] of files affected by the commit, as a measure to distinguish

commits affecting simple files versus commits affecting complex ones.

With the exception of developer experience calculation, we use PyDriller [191]

to obtain the metrics. We constructed a logistic regression model using statsmod-

els [178] implementation, and examined the resulting coefficients for the dif-

ferent attributes. The result, shown in Table 4.21, indicates that there is no

clear relationship between dependency vulnerabilities with all attributes being

examined. A possible explanation is that the dependency changes often occur

together with a variety of other changes, such as addition of a large module, a

small fix, or deletion of deprecated code. These changes that involve addition

or removal of dependencies are diverse in size, for example, a library update

from vulnerable versions to non-vulnerable version may only involve changing

one line. In addition, as vulnerabilities in dependencies are less visible to de-

velopers than issues in their own code, developer experience do not necessarily

translate to better handling of security risk from dependencies. In view of

this, it seems discouraging large changes on each commit or assigning more

experienced developers will not be an effective way to manage security risk
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from dependencies. It may be better, for example, for the development team

to instead maintain a list of “known-good” libraries that each developer can

use as they see fit.

Table 4.20: Counts of the three categories of commits for Java, Python, and
Ruby samples

Java Python Ruby
Commits that decreases vulnerability count 69 12 231
Commits that increases vulnerability count 28 8 94
Commits that causes no count change 3936 6125 8901

Table 4.21: Logistic regression results on commit attributes. Shaded cells
indicate attributes with statistically significant contribution to dependency
vulnerability count.

Attribute
Java Python Ruby

coef. P > |z| coef. P > |z| coef. P > |z|
Vulnerability-increasing commits
Affected files 0.0069 0.448 0.0291 0.590 -0.0040 0.643
Churn 0.0001 0.026 -0.0010 0.875 -3.004e-06 0.885
LOC -8.63e-05 0.694 -0.0038 0.177 1.803e-05 0.639
Complexity -0.0002 0.847 0.0010 0.487 0.0002 0.660
Author experience -0.0017 0.105 -0.0309 0.123 -0.0002 0.039
Vulnerability-decreasing commits
Affected files -0.0051 0.723 0.0237 0.353 0.0012 0.178
Churn 0.0002 0.087 -0.0019 0.644 -2.682e-05 0.042
LOC -2.865e-06 0.941 -0.0009 0.330 3.784e-05 0.040
Complexity -0.0010 0.242 0.0005 0.650 -4.729e-05 0.279
Author experience -0.0010 0.050 -0.0023 0.144 -9.916e-05 0.058

Finding 10: There is no clear relationship between dependency vulner-

ability count with attributes of the commit including author experience.

4.5 Discussion and Implications

Our results indicate that dependency vulnerability issue affects a wide range

of projects, and that such vulnerabilities tend to be persistent, despite overall

tendency for the count to decrease.
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4.5.1 Implications for library users

Examination of the dataset shows that most libraries used by sampled projects

are used transitively, and the number of transitive dependencies is typically

much larger than those of direct dependencies. Further, Finding 1 highlights

the importance for development teams to perform checks beyond their own

code and direct dependencies, and Finding 6 reinforces the need for developers

to be vigilant of potential dependency vulnerability beyond those in public

database. Finding 7 suggests importance of monitoring and applying updates

to project dependencies. Overhead of such effort can be reduced by integrating

vulnerability scanning tools or comprehensive software composition analysis

tools into the development team’s Continuous Integration workflow. In view

of typical latency before vulnerabilities become publicly known and additional

latency before a fix is available, understanding of common vulnerability types

(Finding 2) enables library users to anticipate security risks from such vulner-

abilities when designing their software or production environment, for example

by applying relevant recommendations from organizations such as OWASP9.

Finding 9 suggests that there is value in attempting to simplify a project’s

dependency set to reduce vulnerabilities. Relating our finding to the findings

of Abdalkareem et al. [2] regarding prevalent usage of libraries that implement

simple tasks but lack tests and introduce many dependencies of their own,

one practical step library users can try is to reduce their projects’ dependency

on such libraries. This can be done, for example, by replacing a group of

such libraries with single library that covers the same set of functions and

has a good security track record. Beyond this, library users will likely also

benefit by selecting a set of libraries that share a common set of dependencies

(including the specific version numbers) for their projects.

9https://cheatsheetseries.owasp.org/index.html
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4.5.2 Implications for library developers

The update latency related to vulnerable dependencies, which contributes to

dependency vulnerability persistence (as per Finding 6) and long resolution

time (as per Finding 8), suggests that it is important for library developers to

make library updates easier, as well as to encourage library users to perform

timely update of their projects’ dependencies. Given that library users’ be-

liefs regarding potential risks of updating will be strongly affected by personal

experience [47], it will be useful to allay library users’ concerns about poten-

tial risks of update by providing comprehensive tests and documentation, in

addition to maintaining good communication with library users.

4.5.3 Implications for researchers

The update latency related to vulnerable dependencies, which result in high

persistence of dependency vulnerabilities and long resolution time (Findings 6

and 8), suggests the need for better dependency monitoring and update ap-

proaches. One line of work that needs to be explored further is automatic

program transformation to allow client code to catch up with the latest up-

dates [56, 107, 200]. Such technique will facilitate smoother dependency up-

date, however, accuracy of existing works is not perfect, and they tend to be

limited to particular set of API (e.g. Android APIs). Related to this, our work

also demonstrates the value of research into automated techniques to detect

breaking changes in library updates, particularly those that are generalizable,

as existing works [86, 133, 135] focus on specific language and package ecosys-

tem (Veracode SCA itself supports detection of whether an update is likely to

break a build, but supported languages are currently limited to Java, Python,

and Ruby).

The findings also demonstrate the value in researching approaches to rec-

ommend libraries known to be secure to developers starting new projects, as

developers may not readily update or change their project’s dependency set af-
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terwards, even after the discovery of vulnerabilities. In addition, over lifetime

of a project, some of its dependencies may cease to be actively maintained,

and those dependencies may subsequently become less secure compared to

contemporary alternatives. Detection of such situation and recommendation

of alternatives may help project developers keep their work secure. Some tools

such as WhiteSource and Veracode SCA are able to detect outdated libraries

and automatically generate pull request for updates to newer version of the

same libraries10,11. However, to our knowledge, currently SCA tools do not

provide alternative library recommendations based on security track record

and update frequency.

Lastly, the prevalence of certain types of dependency vulnerabilities across

different languages (e.g. “Denial of Service” and “Information Disclosure”)

as per Finding 2 indicates potential widespread benefit from research into

the resolution or mitigation of such vulnerabilities. It will also be beneficial

to conduct future research into common root causes of frequently-discovered

vulnerability types, and methods to prevent or detect such issues in library

code.

4.6 Threats to Validity

4.6.1 Threats to internal validity

Threat to internal validity stems from limitations related to data and analysis

capability of the Veracode SCA tool and its associated platform database. It

makes no claim of complete identification of libraries and associated informa-

tion, and is affected by information in the files it analyzes. We attempt to

mitigate this threat by focusing on software projects developed using popu-

lar programming languages. Another threat to validity, which affects analyses

10https://help.veracode.com/reader/hHHR3gv0wYc2WbCclECf A/EDLOi6PYdFYDvenrK 0vCQ
11https://help.github.com/en/github/managing-security-vulnerabilities/about-security-

alerts-for-vulnerable-dependencies
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related to correlation between vulnerability and project attributes, originates

from the time difference between the latest commit analyzed and the extraction

time of the project metadata from GitHub, during which there may be change

in attribute’s values. Regarding the correlation between the vulnerability and

the commit attributes, a threat to internal validity stems from difficulty to ac-

curately measure and compare the experience levels of the commit authors. In

this work we used the number of prior commits in the same project as a proxy.

The next threat to internal validity, which affects computation of average time

needed to fix dependency vulnerabilities, originate from vulnerabilities that

have already existed in sample projects since before beginning of the observa-

tion period, as well as vulnerabilities that are not yet fixed by the end of the

observation period.

4.6.2 Threats to external validity

Generalizability of our findings may be affected by two factors. First, different

software projects may use different open-source libraries, which may in turn

have different kinds of vulnerabilities and licenses. We attempt to mitigate this

threat by performing random selection from reaper dataset without regard to

project type. Another external threat to validity comes from the fact that the

sampled repositories contain projects that have existed for a few years and

are still actively developed. While our results indicate no strong correlation

between the number of commits in the period of interest and the number of

vulnerabilities, there may still be differences between characteristics of the

sampled projects with, for example, those of recently started projects that are

more likely to use the latest library versions from the beginning.

94



CHAPTER 4. STUDY ON VULNERABILITIES IN OPEN SOURCE SOFTWARE DEPENDENCIES

4.7 Conclusions and Future Work

In this chapter we conducted an empirical study on open-source dependencies

of 450 GitHub projects written in three popular programming languages. We

scanned the commits made to those projects between November 1, 2017 and

October 31, 2018, and identified common vulnerability types, as well as vul-

nerable libraries that affect the most projects. We also found evidence that

number of vulnerabilities associated with open-source dependencies tend to be

higher in Java and Ruby projects, indicating opportunity to improve software

security by improving open-source libraries, notification of vulnerability dis-

covery, and ease of library update in those languages. Our results indicate

that significant percentage of vulnerable dependency issues are persistent, and

among the issues that are fixed, the average time taken is about 4-5 months.

Related to project and commit attributes, we found that number and experi-

ence of contributors, project activity level, and size do not appear to correlate

with better handling of vulnerable dependencies. Rather, vulnerability counts

correlate more strongly with the number of direct and transitive dependencies.

This highlights to library users the importance of managing the number of their

projects’ dependencies carefully, in addition to performing timely updates.

A potential direction of future work is expansion of the scale of the study to

cover projects written in other programming languages supported by Veracode

SCA, as well as investigation of commits from longer time period. Beyond this,

our future work lies in investigation into associations between dependency vul-

nerability types as well as the factors that promote or mitigate them. Another

element of potential future work related to our study is the identification of

characteristics of projects with track record of resolving dependency vulnera-

bilities quickly and how the characteristics can be emulated in other projects.

In addition, we are also interested in investigating the techniques to automat-

ically identify and update vulnerable dependencies in project codebase.
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Chapter 5

Understanding Opportunities

and Challenges of Geographic

Gender-Inclusion in Open

Source Software

5.1 Introduction

The gender gap in the software industry is alarming, garnering attention world-

wide. IT companies in India reportedly have women concentration in lower

career levels [162]. In the United States, women earning computing degrees

rose since the mid-1990s, yet they comprise a quarter of computing profession-

als [49]. An estimate by the European Commission [33] suggests that if more

women enter the digital job market, it could create an annual EUR 16 billion

GDP boost for the European economy.

Similar investigations in open source software systems show that despite

no significant differences between the work practices of men and women [25]

and improved team performance in gender-diverse teams [147], women make

up less than 10% of core contributors [18]. Further, horizontal and vertical
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segregation exist [25].

In open source, explorations on gender diversity are univariate, implicitly

assuming that the problem remains the same irrespective of the population

and project characteristics. However, in this approach, we are likely to miss

local achievements in promoting gender diversity and/or problems unique to

others. One factor to consider is the geographical region. A study conducted

within the European Union shows a disparity in women’s participation in dig-

ital economies, with Finland and Sweden scoring the highest while Greece and

Italy the lowest [33]. This example suggests that digital and online engagement

can shift across geographic regions in addition to genders. Thus, inspiring us to

ask how this difference in engagement can manifest in open source, specifically.

Our study presents the largest exploration into gender diversity in open

source software projects in different parts of the world. We investigate active

and collaboratively developed software projects hosted on GitHub to answer:

RQ1: What are the gender and geographic diversity characteristics of open

source software projects on GitHub?

The first question is exploratory, presenting the state-of-the-practice on

gender diversity and substantiating the need for exploration. Further, we ask

questions to open source software contributors to understand:

RQ2: What factors potentially contribute to the differences in gender and

geographic-based developer participation?

Our analysis is based on 21,456 carefully selected software projects on

GitHub. We use a sequential mixed-methods approach. First, we quanti-

tatively analyze archived software engineering data of the selected projects

to show the state-of-practice of gender diversity worldwide. Next, we survey

1,562 contributors, strategically identified from the selected projects based on

gender and geography. We solicit their response in search of factors that can

potentially contribute to the differences in developer participation based on

gender and geography worldwide.
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Our analyses of a decade of development activities on GitHub show small

but significant improvements in gender diversity in the last five years. While

we celebrate the positive change, it is important to remember that we are far

from reaching gender balance. Our study further shows that gender diversity

changes over time have not been the same across regions. Some regions such as

Eastern Asia and Northern America are (relatively) ahead in gender diversity,

while others such as Eastern Europe and Sub-Saharan Africa are still catching

up. These differences are also reflected in our investigation of gender and

regional related motivations and challenges.

This comprehensive guide of gender-geographic challenges and opportuni-

ties can direct future in-depth explorations catering to sub-population needs.

For example, one of the opportunity identified here is having a code of con-

duct. Having a code of conduct can support a two-pronged approach of: 1)

allowing lurkers interested in contributing (e.g., including women and other

marginalized developers) to feel more comfortable in contributing since they

know there are guidelines that can protect them from toxic interactions and 2)

signal to developers who are already in the community (e.g., including those

that may have been inciting toxic interactions) that there will be repercus-

sions for their actions. Solutions such as these can have a long-term impact to

minimize gender gap and uplifting society.

Our contributions are as follows:

1. We present an analysis of the activity and experiences at the intersection

of gender and global geographic region.

2. Large-scale global analysis of regional gender diversity spanning 21,456

active GitHub repositories and 70,621 commit authors.

3. Global survey of factors that contribute to the differences in gender and

geographic-based developer participation, with 122 respondents across 5

large geographic regions and across genders.
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4. A discussion of actionable implications of how to support OSS sub-

communities across gender and geographic regions.

5. A publicly available dataset to encourage further investigations.

5.2 Methodology

We used a convergent mixed-methods study approach to answer our research

questions [37]. We identified active OSS projects that are likely to be non-toy

projects, resolved the gender as well as location of the project contributors,

and then distributed a survey to understand their motivations and challenges.

The following subsections describe each of these steps in detail.

5.2.1 Identification of Suitable GitHub Repositories

5.2.1.1 Initial Set of Repositories

We chose to use GHTorrent data as it has been widely used in software engi-

neering research, including in works related to diversity (e.g. [211, 147, 197]).

Using the latest GHTorrent database dump (1 June 2019), we begin by fil-

tering for repositories that are active, are not toy repositories, and involve

collaboration between different developers. We use the following repository

criteria:

• The repository has existed for at least 180 days (measured using differ-

ence of updated at and created at columns in the GHTorrent data). This

is to reduce probability that the project is a “toy” repository (e.g., a

user trying a programming tutorial) or a student programming assign-

ment (which usually lasts less than a semester).

• The repository has at least one commit from the beginning of 2018 or

later. This is to reduce probability that the project is inactive.
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• The repository has at least 10 commits from 4 or more distinct commit

authors, none of which are marked ‘fake’ or ‘deleted’ GHTorrent.

• The repository is not a fork. We chose not to evaluate forks since we

are interested in “core” contributors of a project. In addition, contri-

butions to forks are not always integrated back to the original project

and there may also be redundant development between forks and original

projects [225].

The above criteria were set to reduce probability of including “toy” projects

while avoiding potential elimination of active non-toy projects. Considering

rapid growth of GitHub in recent years, we believe the criteria still allows

newer OSS projects, for example those created in 2018, to be included in the

study.

5.2.1.2 Location Resolution of Commit Authors

We subsequently attempt to resolve the location of the commit authors. As

GHTorrent data does not include personal information, we collect additional

information through the GitHub API prior to location and gender resolution.

For location, resolution is based on value of country code field of the commit

author’s user information, if available. If the field is empty, location resolution

is attempted using other fields in the following order:

1. location field. For example, if the commit author specifies “Seattle” as

their location, the country assigned will be USA. If they specify “Tokyo”,

the country assigned will be “Japan”.

2. Latitude and longitude (lat and long fields in GHTorrent data, respec-

tively).

3. company field. For example, “Argonne National Lab” or “Puget Sound

Regional Council” are considered as evidence that the commit author is
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based in the USA. “German National Library” is considered as evidence

that the author is based in Germany. Where possible, we attempt to

resolve an organization’s location using its website and LinkedIn page.

In case of multinational organizations, the author’s location is considered

unresolved unless more specific information such as branch name is pro-

vided. For example, “RedHat” will be considered as unresolved location,

whereas “RedHat UK” will be considered as evidence that the location

is the UK.

4. email field. For example, if the author’s email address uses an Australian

government domain, the country assigned will be Australia.

Considering differences in culture and other factors that may exist within

a region (for example, North American countries versus Latin American coun-

tries, Western European countries versus Eastern European countries), we also

assign three levels of region information to each commit author based on the

taxonomy of regions specified by United Nations Statistics Division1. For ex-

ample, if the commit author’s resolved location is Kenya, the assigned region

information will be “Africa” (region level 1), “Sub-saharan Africa” (region

level 2), and “Eastern Africa” (region level 3). Our intention is to facilitate

analyses at finer granularity instead of treating a continent (e.g. America,

Asia, Europe) as a unit.

5.2.1.3 Gender Resolution of Commit Authors

For the commit authors’ gender, resolution is attempted by identifying first

name portion of the commit author’s name. This is followed by resolution

of gender using genderize.io2, which has been reported to have high accu-

racy [177, 93] and has been used in various studies related to gender represen-

tation (e.g. [80, 198, 175]) as well as in the media3 For this part, titles (e.g.

1https://unstats.un.org/unsd/methodology/m49/
2http://www.genderize.io
3https://genderize.io/use-cases
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“Dr.”) are ignored, and if the commit author does not use Latin alphabet

to specify their name, the name is first converted to Latin alphabet using a

combination of CC-CEDICT4 (for Chinese characters) and Google Translate5.

As an additional measure to evaluate genderize.io’s accuracy, we randomly

selected five sample repositories for manual validation. The repositories are as-

sociated with a total of 57 contributors from different regions (15 from Amer-

icas, 12 from Asia, 18 from Europe, 4 from Oceania, and 8 with unknown

region). Each repository is assigned to a person, and each person subsequently

attempt manual gender resolution using public information sources (the con-

tributor’s GitHub page, LinkedIn page, Twitter profile, etc.). The result is

subsequently compared to gender prediction result from genderize.io. We find

that overall the manual analysis results match genderize.io’s results 89.5% of

the time, with 100% match on European and Oceanian contributors, 91.7% on

Asian contributors, 80% on contributors from Americas. In case of contribu-

tors whose location is unresolvable, there is 75% agreement between manual

resolution and genderize.io’s prediction based on contributors’ names.

5.2.1.4 Final Selection of Repositories

Following this, we apply further filtering for repositories for which both gender

and location can be resolved for at least 75% of the commit authors. Consid-

ering that not all repositories on GitHub are software project repositories [91],

we also exclude repositories for which GitHub detects no primary language.In

all, after the entire process, 21,456 repositories are shortlisted, with the break-

down of filtering result at various stages shown in Table 5.1. We also extract all

commit authors associated with the shortlisted repositories. Tables 5.2 and 5.3

show the statistics of the dataset.

4https://cc-cedict.org/wiki/
5https://translate.google.com/
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Table 5.1: Result of project repository filtering steps.

Filtering step Count
Initial number of repositories 125,485,095
Repositories with commits
newer than January 1, 2018

31,947,039

Repositories that have existed
for at least 180 days
and are not marked as “deleted

4,393,507

Repositories with at least 10 commits,
and are not a fork

2,129,448

Repositories remaining with no commit authors
marked “fake” or “deleted”

97,989

Repositories with 75% commit authors
having resolvable gender and location

21,456

Table 5.2: Statistics of shortlisted repositories and associated commit authors.

Shortlisted Repositories
Min Max Mean Median

No. of Commit Authors 4 109 6.16 5
No. of Commits 22 301692 363.27 170
Creation year 2008 2018 2014.63 2015

Commit Authors of Shortlisted Repositories
Total commit authors count 70,621
Commit authors with resolvable location 58,498
Commit authors with resolvable gender 65,132
Commit authors with resolvable gender and location 56,866

5.2.1.5 Calculating Gender Diversity of Commit Authors

To measure the gender diversity of commit authors from different regions, we

use the Blau diversity index [15] which has also been used in several works in

software engineering domain [211, 212, 28]. In simple terms, the index specifies

the probability that two randomly-selected members of a group would belong

to different categories. It is defined as 1−
∑

i∈{m,f} p
2
i , where p2i are proportion

of men and women (“M” and “F”, respectively) among commit authors.

During calculation, we disregard unknown values. For example, if a region

is associated with five commit authors, and four of them are identified as men

while one is unknown, the gender diversity index will be 0. Similarly, if a set of

commit authors from a region comprise two men, two women, and one person
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Table 5.3: Commit author region and gender in shortlisted repositories, sorted
by Region Level 1.

Region
Level 1

Region
Level 2

Count
Percentage

Man Woman Un-
known

Africa Northern Africa 91 91.21 5.49 3.33
Africa Sub-Saharan Africa 273 92.67 3.66 3.66
Americas Latin America and

the Caribbean
2547 93.29 4.75 1.96

Americas Northern America 24055 90.27 7.47 2.25
Americas Others 5 80.00 0.00 20.00
Asia Central Asia 34 88.24 2.94 8.82
Asia Eastern Asia 2585 80.46 10.10 9.44
Asia South-eastern Asia 686 87.90 6.85 5.25
Asia Southern Asia 1463 91.46 5.47 3.08
Asia Western Asia 529 93.19 3.40 3.40
Europe Eastern Europe 3858 94.35 2.90 2.75
Europe Northern Europe 7541 92.71 5.38 1.91
Europe Southern Europe 2314 94.77 3.11 2.12
Europe Western Europe 10637 92.94 3.88 3.18
Oceania Australia and

New Zealand
1870 92.62 5.13 2.25

Oceania Melanesia 5 80.00 0.00 20.00
Oceania Polynesia 5 100.00 0.00 0.00
Unknown Unknown 12123 61.96 6.22 31.82

with unidentified gender, the gender diversity index will be 0.5, which is the

maximum value.

To check whether the diversity of commit authors is independent from re-

gion, we apply the Chi-squared test to analyze distribution of the two genders

across regions, and subsequently computed Cramér’s V [36] to measure as-

sociation strength between gender and region at both region levels. For this

analysis, we include commit authors whose location and gender are resolvable

(56,866 commit authors comprising 53,426 men and 3,440 women). Exclusion

of commit authors with unknown gender is done for consistency with Blau

diversity index computation, while exclusion of commit authors with unknown

location is done since we are interested in variation between regions worldwide.

Since we note that most projects (70.27%) have a majority region at re-

gion level 1, i.e. level 1 region from which more than half commit authors
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originate, we also performed a repository-oriented diversity analysis to pro-

vide additional perspective. To do this, we first associate a repository to a

location based on the most common identified location of the commit authors.

For example, if five commit authors contribute to a repository, and their lo-

cations are {“Europe”, “Americas”, “Americas”, “Americas”, “Asia”}, then

the repository will be associated with Americas. Afterwards, we compute the

diversity index of each repository. To test statistical significance and effect size

of the difference, we first apply Kruskal-Wallis H test on groups of repositories

associated with each level 1 regions. We subsequently applied Mann-Whitney

U test [123] with Bonferroni correction [3] to compare different pairs of region

level 1. Afterwards, we computed Cliff’s Delta [32] on level 1 region pairs6

with statistically significant difference to discover the effect size.

Both the region- and repository-oriented analyses demonstrate low gender

diversity worldwide, with similar ordering of regions from least to most diverse.

The detailed results are discussed in Section 5.3.1.1.

After we conducted our initial analysis on the commit authors, we also

considered following the line of research of Trinkenreich et al. [205] by investi-

gating activities of non-technical contributors. We extracted data of GitHub

users who had never authored a commit to the shortlisted sample repositories

but had created, changed, or commented on issues and merged pull requests

associated with the sample repositories. We excluded user IDs that are marked

“fake” and “deleted” in GHTorrent. We found 299,159 users that are not also

commit authors. Out of this group, 30.59% has both unresolvable gender and

location. Beyond this, 21.56% has unresolvable location although their genders

are resolvable, and 9.54% has unresolvable gender although their locations are

resolvable. Table 5.4 shows the breakdown of this non-author group by region

level 1, along with the Blau index of the users in this group whose gender is

resolvable. We note that for members of this group with resolvable gender and

6We use https://github.com/neilernst/cliffsDelta implementation for Cliff’s Delta test
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location, the vast majority is male, and like the case with commit authors,

there is low diversity in the various regions studied. However, due to the large

percentage of users with unknown gender and/or location among this group,

we decided not to analyze this group and to focus our analysis solely on commit

authors.

Table 5.4: Diversity and counts of contributors other than commit authors by
region level 1. Entries are ordered by non-decreasing Blau index value. Blau
index of 0.5 indicate maximum diversity (50% men, 50% women)

Region
Level 1

Count
%

Blau
indexM W Unknown Total

Europe 43873 1402 10303 55578 18.6 0.06
Oceania 3359 121 1022 4502 1.5 0.07
Americas 44859 2430 8909 56198 18.8 0.10
Africa 1432 87 387 1906 0.6 0.11
Asia 15424 1351 7860 24635 8.3 0.15
Unknown 59486 4857 91428 155771 52.2 0.14

5.2.1.6 Examining Correlation between Geographic and Gender

Diversity

We are also interested in whether a repository’s gender diversity correlates

with its geographic diversity. As the Blau index values of repositories’ contrib-

utor gender and location diversity are not normally distributed (D’Agostino’s

K2 test [38] yields p=0.00 for gender diversity index values as well as region

diversity index for all levels of regional grouping), we analyze this by comput-

ing Spearman’s rank correlation test [81] between repositories’ gender diversity

index values and geographic diversity index values at different regional group-

ings. We use SciPy [214] implementation of these statistical tests, and follow

scale of interpretation of ρ used by Camilo et al. [22] (± 0.00 - 0.30: Negligi-

ble, ± 0.30 - 0.50: Low, ± 0.50 - 0.70: Moderate, ± 0.70 - 0.90: High, and ±

0.90 - 1.00: Very high). We found no strong correlation between gender and

geographic diversity, with the details discussed in Section 5.3.1.2.
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5.2.1.7 Examining Gender Diversity Changes over Time

Beyond state of gender diversity based on latest GHTorrent data, we are also

interested in how gender diversity changes over time. Considering rapid ex-

pansion of GitHub in recent years (it has grown from 10 million repositories

by end of 2013 to more than 100 million repositories by November 2018 [68]),

we decide to focus our analyses of change on the period from 2014 onwards.

To create a baseline for comparison, we use the GHTorrent commit data

to identify a set of GitHub users who have authored at least one commit to

shortlisted projects by 2014. We subsequently apply the same approach used

for RQ1 to compute diversity index values for different regions in 2014. We

then perform Kruskal-Wallis H test to evaluate the statistical significance of

the difference in diversity between 2014 and latest state. Afterwards, we cal-

culate the effect size using Cliff’s Delta. The result of this analysis, detailed in

Section 5.3.1.3, indicates a global increase in gender diversity in OSS projects.

5.2.1.8 Examining Gender Diversity of Older versus Newer Ac-

counts

An additional aspect we are interested in is whether, among commit authors,

there is difference in gender balance between older and newer accounts. We

investigate this by looking at the account creation years of all commit au-

thors of the shortlisted projects, and compute gender composition for each

year between 2014-2018 (the latest year for which GHTorrent has complete

data). We find that the percentage of accounts created by women remained

low throughout the period, with the breakdown shown in Section 5.3.1.4.
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5.2.2 Globally-Distributed Developer Survey

5.2.2.1 Protocol

To understand motivations and challenges faced by developers of different gen-

ders in various regions when joining and leaving software projects, we designed

and distributed an online survey. The survey comprised three section of ques-

tions. The first section solicits the motivation of developers to contribute,

frequency of participation, reasons for selecting a particular project, continue

participation, as well as barriers and reasons they have abandoned a soft-

ware project. We build upon previous surveys on barriers and experiences

in online programming communities to develop our survey questions in this

section [113, 62, 230]. To help participants ground their responses, we asked

them to answer the above questions for one of the software projects we identi-

fied them from. The second section of our survey included questions about how

relevant the gender and region of co-contributors is when selecting a project

to contribute to. This section of questions is inspired by how peer parity can

encourage participation of people from a shared background or identity [60].

Relating to region, we ask how challenging it is to contribute with people

who speak a different language and the usefulness of translation tools to sup-

port that interaction. Likewise, we asked about the ease of contributing to

projects that have contributors with same gender identity and their advice to

encourage women participation in GitHub. Finally, in this section we asked

all respondents about what should be done to encourage more women in OSS

which is aligned with previous surveys [25, 62]. In asking all respondents, we

understand better how to approach interventions that not only serve women,

but also those of other marginalized identities across geographic regions. In

the third section of our survey, we asked demographic questions about their

gender identity and the geographic region they contribute to open source from.

All questions were optional and presented as either a Likert scale, multiple-

choice, or open response question. The survey was designed to be completed
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in approximately 7 minutes.

5.2.2.2 Participants

We identified survey participants from our GHTorrent sample. Our sample

comprised all contributors from the selected projects for whom we can in-

fer region, gender, and email address to contact them. The distribution of

contributors was skewed towards some regions (e.g., Northern America was

over-represented while Micronesia was underrepresented). We observed this

skew also in the distribution of men and women across regions.

To gather a representative sample spanning multiple regions, we selected

50 men and 50 women from each region. For over-represented groups such

as men and Northern America, we randomly identified 50 participants, while

for underrepresented groups (with participants less than 50), we selected all

contributors. Overall, we identified 1,562 contributors, of which 1,527 email

addresses were valid and did not have an out-of-office reply message. The

distribution at region level 2 is shown in Table 5.5, while the total for each

region level 1 is shown in Table 5.6.

We received 120 responses (out of 1,527 emails sent; approximately 8% re-

sponse rate) in three weeks. On reviewing the responses, we manually analyzed

the survey responses for anti-patterns (e.g., all responses are empty or have

the same value for all questions). We found two responses with all empty val-

ues which we discarded from analysis. We did not observe any other patterns

in survey responses. We used 118 responses after discarding the two empty

responses.

Our survey garnered approximately one response from a woman (total:

23) for every four responses from men (total: 90). Although provided with an

option, no participants in our sample identified their gender as non-binary. Our

participants have contributed to open source from around the world, including

Europe (46), Asia (29), Americas (21), Africa (12), and Oceania (4), with an
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Table 5.5: Distribution of surveyed commit authors at region level 2.

Region
Level 1

Region
Level 2

M W Unknown

Africa Northern Africa 50 3 1
Africa Sub-Saharan Africa 50 2 2
Americas Latin America and

the Caribbean
50 50 17

Americas Northern America 50 50 50
Americas Others 3 0 0
Asia Central Asia 22 0 1
Asia Eastern Asia 50 50 50
Asia South-eastern Asia 50 30 9
Asia Southern Asia 50 50 15
Asia Western Asia 50 11 5
Europe Eastern Europe 50 49 20
Europe Northern Europe 50 50 20
Europe Southern Europe 50 39 7
Europe Western Europe 50 50 50
Oceania Australia and

New Zealand
50 39 10

Oceania Melanesia 3 0 0
Oceania Polynesia 4 0 0
Unknown Unknown 50 50 50

Table 5.6: Distribution of surveyed commit authors at region level 1.

Region Level 1 M W Unknown
Africa 100 5 3
Americas 103 100 67
Asia 222 141 80
Europe 200 188 97
Oceania 57 39 10
Unknown 50 50 50

overall distribution shown in Table 5.7. Some participants preferred not to

disclose either gender or geographic region; hence the total count in Table 5.7

is lower than the number of responses received.

5.2.2.3 Analysis

We had two types of responses: Likert scale and open-ended. To process

Likert scale responses, we transformed an ordinal scale into a nominal scale.

For example, a 5-point Likert scale of ‘Very important, Important, Neutral,
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Table 5.7: Distribution of survey responses based on gender and region.

Region Men Women Total
Europe 35 10 45
Asia 25 4 29
Americas 13 7 20
Africa 11 1 12
Oceania 3 0 3
Total 87 22 109

Less important, and Not at all important’ was converted into ‘Important’

(combining ‘Very important’ and ‘Important’ into one), ‘Neutral’, and ‘Not

Important’ (combining ‘Less important’ and ‘Not at all important’ into one).

This way it is easier to (statistically) distinguish factors deemed important

from not important, in addition to the overall distribution. Similarly, other

Likert scale questions were processed.

The transformed nominal scale was fed as input to the Chi-square test to

test statistically significant differences in the responses. All tests were con-

ducted in R and reported at p<0.05. For data analysis, we analyze aggregates

for which we can draw meaningful inferences. Since gendered responses from

Oceania are fewer in the count, we remove them from statistical analysis.

For open response survey questions, we conducted a thematic analysis of

participant’s motivations to contribute, barriers to contribution, and reasons to

abandon projects on GitHub. In this analysis, we start with first-cycle descrip-

tive coding [176] (i.e., summarizing the topic of each response as code) on each

open-ended response, followed by axial coding (i.e., relating the codes to each

other) to connect core experiences respondents had in OSS [23]. This analysis

reveals the most important factors to encourage and maintain participation in

projects, such as goal alignment and the existence of a welcoming community.

Our analysis also identifies differences in how women and men view the impor-

tance of factors such as shared gender identity with other project contributors,

and how the common motivations to contribute to OSS projects vary among

regions. Section 5.3.2 discusses the analysis results in more detail.
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5.3 Results

5.3.1 RQ1: What are the Gender and Geographic Di-

versity Characteristics of OSS Projects on GitHub?

5.3.1.1 Regional Variations

We find that gender diversity of repositories’ commit authors are generally

low worldwide, as shown in Tables 5.8 and 5.9. Through Chi-squared test,

we found relationship between gender and region (p=6.25e-56 at region level 1

and p=1.30e-78 at region level 2) but negligible association strength (Cramér’s

V result of 0.07 at region level 1 and 0.08 at region level 2).

Table 5.8: Gender diversity (or Blau) index arranged in non-decreasing order
by region (level 1). Blau index of 0.5 indicate maximum diversity (50% men,
50% women).

Region Blau index Commit authors (% distribution)
Africa 0.08 364 (1%)
Europe 0.08 24350 (34%)
Oceania 0.10 1880 (3%)
Americas 0.14 26607 (38%)
Asia 0.15 5297 (7%)
Unknown 0.17 12123 (17%)

The result of our repository-oriented additional analysis at region level 1,

shown in Table 5.10, demonstrates similar ordering from least to most diverse

regions. We find that this approach produce overall result that is consistent

with result of our previous, region-oriented approach. There is statistically

significant difference among regions overall, (p=3.89e-115 in Kruskal Wallis H

test). We found three pairs with statistically significant difference in Mann-

Whitney U test (Americas versus Europe, Asia versus Oceania, and Asia versus

Europe, all of which have p<0.001). However, we observe negligible effect sizes

on Cliff’s Delta test (δ of 0.098 for Americas versus Europe, 0.088 for Asia

versus Oceania, and 0.132 for Asia versus Europe).
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Table 5.9: Gender diversity index values arranged in non-decreasing order by
region (level 2). Blau index of 0.5 indicate maximum diversity (50% men, 50%
women).

Region
Level 1

Region
Level 2

Blau
Index

Commit authors

Americas Others 0.00 5
Oceania Melanesia 0.00 5
Oceania Polynesia 0.00 5
Asia Central Asia 0.06 34
Europe Eastern Europe 0.06 3858
Europe Southern Europe 0.06 2314
Africa Sub-Saharan Africa 0.07 273
Asia Western Asia 0.07 529
Europe Western Europe 0.08 10637
Americas Latin America and

the Caribbean
0.09 2547

Europe Northern Europe 0.10 7541
Oceania Australia and

New Zealand
0.10 1870

Africa Northern Africa 0.11 91
Asia Southern Asia 0.11 1463
Asia South-eastern Asia 0.13 686
Americas Northern America 0.14 24055
Asia Eastern Asia 0.20 2585
Unknown Unknown 0.17 12123

Table 5.10: Gender diversity index values by region level 1, computed by
associating project with most frequent contributor location.

Region Mean Median Std. dev. Min Max
Europe 0.06 0.00 0.13 0.00 0.50
Africa 0.07 0.00 0.16 0.00 0.50
Oceania 0.08 0.00 0.15 0.00 0.50
Americas 0.09 0.00 0.16 0.00 0.50
Asia 0.11 0.00 0.17 0.00 0.50

Finding 1: Gender diversity is low worldwide, and while there is appar-

ent difference in diversity across regions (with Asia and Americas being

highest), statistically the difference is not substantial.
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5.3.1.2 Correlation between Geographic and Gender Diversity

The result of our analysis of correlation between geographic and gender di-

versity, shown in Table 5.11, shows negligible to small negative correlation

between gender diversity and geographic diversity. This suggests that project

teams that accept contributors from different regions may still be homoge-

neous in terms of gender, and vice versa, indicating that different approaches

are needed to promote each type of diversity.

Table 5.11: Spearman’s ρ between repositories’ gender diversity and geographic
diversity. * indicates p-value <0.001

Regional Grouping ρ p-value
Level 1 (e.g. ‘Africa’) -0.06 0.00*
Level 2 (e.g. ‘Sub-Saharan Africa’) -0.10 0.00*
Level 3 (e.g. ‘Eastern Africa’) -0.10 0.00*
Location (e.g. ‘Ethiopia’) -0.11 0.00*

Finding 2: There is no strong correlation between gender and geo-

graphic diversity.

5.3.1.3 Gender Diversity Changes Over Time

Table 5.12 shows the change in Blau index at region level 2, while Figures 5.1

and 5.2 show the map visualization. We note that there is general trend of

improvement, with most regions showing increase in Blau index value, and none

show a decrease. We found that the difference between 2014 Blau index values

of the various regions and the latest values is statistically significant (p=0.03),

and Cliff’s Delta calculation indicate large effect size (δ=0.47). However, as

shown in Table 5.12, in terms of absolute value, there is still much room for

improvement; most regions see an increase in Blau index values of less than

0.10 since 2014, with the exception of Northern Africa, which improved by

0.11.
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Table 5.12: Changes in gender diversity of commit authors between 2014 and
latest GHTorrent date - region level 2. N.A. indicates regions for which Blau
index cannot be computed since there are no users at the time.

Region
Level 2

Diversity Index Users
2014 Latest Change 2014 Latest

Northern Africa 0.00 0.11 0.11 9 91
Sub-Saharan Africa 0.00 0.07 0.07 55 273
Latin America and
the Caribbean

0.04 0.09 0.05 563 2547

Northern America 0.09 0.14 0.05 7250 24055
Americas (Others) N.A. 0.00 N.A. 0 5
Central Asia 0.00 0.06 0.06 6 34
Eastern Asia 0.18 0.20 0.02 772 2585
South-eastern Asia 0.12 0.13 0.01 159 686
Southern Asia 0.08 0.11 0.03 207 1463
Western Asia 0.02 0.07 0.05 113 529
Eastern Europe 0.03 0.06 0.03 962 3658
Northern Europe 0.08 0.10 0.02 2128 7541
Southern Europe 0.05 0.06 0.01 562 2314
Western Europe 0.05 0.08 0.03 2963 10637
Australia and
New Zealand

0.08 0.10 0.02 573 1870

Melanesia 0 0.00 0.00 2 5
Polynesia N.A. 0.00 N.A. 0 5
Unknown 0.11 0.17 0.06 2439 12123

Figure 5.1: Gender diversity at region level 2 as of 2014. Darker shade indicates
higher diversity.
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Figure 5.2: Gender diversity at region level 2 as per latest data. Darker shade
indicates higher diversity.

Finding 3: Globally, the increase in gender diversity in OSS projects is

statistically significant with large effect size, however there is still much

room for improvement.

5.3.1.4 Gender Diversity of Older versus Newer Accounts

Figure 5.3 shows the breakdown of commit author accounts by creation year

and gender. The percentages indicate that the number of GitHub accounts

created by women has remained low throughout the period. This suggests a

need to encourage participation of women.

Finding 4: Among commit authors with identifiable gender, yearly

percentage of account creation by women is around 10%, suggesting

that encouragement of participation is still needed.
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Figure 5.3: Gender percentage of commit authors by account creation year,
2014-2018.

5.3.2 RQ 2: What Factors Potentially Contribute to

The Differences in Geographic- and Gender-based

Developer Participation?

We received a range of survey responses from participants that include impor-

tant factors such as the projects impact, how they are motivated by project

alignment, and how they have been inhibited by the community culture. In

this section we report the results of our analysis which was done at two lev-

els: globally and regionally. Our objective is to obtain both a global view of

factors affecting developer participation, as well as view of any region-specific

characteristics that can be utilized to promote participation from particular

regions.

5.3.2.1 Global Findings

Overall, we find that the majority of survey respondents contribute to GitHub

monthly (79), followed by weekly (22), daily (12) and hourly (4) with no dif-

ferences in contribution pattern across gender and regions.
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Project Selection Factors. A majority of developers believe that alignment

of project goal to their own is the most important factor for selecting a project.

Approximately, 96% of the respondents consider this factor as important while

the remaining 4% do not consider it important [χ2 (1 df) = 86.6, p<0.001].

Other factors deemed important are how welcoming the project is (83% im-

portant), how easy it is to join the project (81%), and the opportunity to be

a part of how software is built (79%).

Although the majority of participants said they did not select a project be-

cause they saw it on social media (94% not important) or that their friends or

colleagues contribute to that project (67% not important), few acknowledged

how other social dynamics did matter. For example, some participants men-

tioned how important it was to them that a project “supports social equity

(P97)” while providing “up-to-date code for others learning (P125).”

Finding 5: To encourage participation in a project, goal alignment and

creation of welcoming community will be more effective than promotion

in social media.

Motivations To Contribute. Participants primarily pursued open source

software development as their hobby (69 responses), volunteer in the commu-

nity for free (63), to learn something new (63) or it is their full time job (54)

Other less prominent reasons are to get a job (22), meet new people (21), as a

part of school or university project (8), and to get paid (6).

From our open responses, participants described their interest in volun-

teerism as an opportunity to reciprocate what they received from the commu-

nity in a “socially relevant (P71)” way. One participant goes on to say, “I get

so much from the community that I feel where I can I need to give back when

I can (P114).”

Motivations to Continue Participation. Once developers have joined a project

there are many reasons for developers to continue participation. The factor

that is considered most important is interactions with welcoming contributors
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(91% of participants consider this important). This is followed by availability of

exciting tasks (considered important by 85%) and the global connections they

build worldwide (78% important). Low stress level (considered important by

76%) is another common consideration to continue participation.

Finding 5: While developers may participate in a project for variety

of reasons, ensuring continued participation requires project owners to

maintain welcoming community, ensuring availability of exciting tasks,

and minimizing stress to contributors.

Barriers to Contribution. From our analysis, we identified 116 barrier

statements referring to reasons contributors have decided not participated in

some projects or discontinued contributing from others. From these statements

we identified 6 themes.

Lack Of Resources. Participants acknowledged that they had limited resources

at their disposal to make significant contributions to a project. These resources

included time allocation, the lack of project funding, and challenges balancing

time spent on projects for a full time job with projects a hobbyist. One par-

ticipant goes on to describe his work-hobby balance: “I do not do this as a

full time job, I just try to commit meaningful changes that helped me in my

own projects (P114).” Another describes their funding challenges: “At times

I would like to contribute more but it comes down to a lack of funding to put

more hours in. (P112)”

Goal Alignment Shift. As contributors grow in their expertise so do their

interests and their professional work. For instance, some participants described

how there was a pre-determined end of their “short-lived project (P26)”, but

also that they, “have abandoned some open source projects because they have

been superseded by other projects or because better options for doing the same

thing came along (P13).” Participants did not find useful to stay on a project

that was no longer a priority.
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Inactivity on Projects. Changing project goals often result in projects being

abandoned and eventually becoming inactive. Participants described the signs

of dying project: “Decrease in the regularity of contributions from project

contributors (P70).” This inactivity on the project went beyond who was con-

tributing. Participants also described significant delay in the code review pro-

cess from maintainers as a barrier: “In general, having no frequent experienced

contributors would make me stop contributing because reviews from experi-

enced developers is one of my main motives to contribute (P118).” Contribu-

tors are very interested in contributing to projects a as a learning experience,

but when the common experience is, “maintainer just stopped reviewing PRs

and abandoned the project (P94),” contributors lose value in participating.

Poor Engineering Environment. Factors related to the engineering environ-

ment discouraged contributors. Specifically, participants reported being inhib-

ited by the“complex installation process (P71)”, “complex code architecture

(P70)”, “lack of documentation (P71)”, and the “lack of a proper roadmap

(P110).” Without proper documentation and a clear roadmap of what the

north star of a project is contributors will be misguided like P79 who had a

challenge finding the best opportunities to help: “On most [projects I’m] not

having a clear understanding of what features would be helpful to work on.”

Poor Working Environment. Participants disgruntled by their challenges also

recalled the toxic work environments some projects can have: “Sure I have

stopped contributing to projects when the maintainers are jerks to me or

others. Other thing that have curtailed or stopped me from working on a

project are racism, misogynous behavior or unprofessional conduct by main-

tainers (P43).” A few participants went on to to discuss their 1:1 encounters

with project leadership: “The big upstream dependency of this project is main-

tained by a jerk, so I mostly just maintain the project now, rather than actively

add new features (P43).” Although these experiences have been described in

low frequency, it is important to note that these experiences can influence how
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developers decide to contribute like in P43’s case.

Unclear Onboarding. The lack of official onboarding documentation processes

from maintainers was also discouraging to our participants: “My contribution

there was very small, as we did not use it a lot. But I guess this is a good

example of the not very well documented project. this is the main obstacle

for me when I would like to get involved in some project - not very clear

README, missing documentation regarding code discipline for a particular

project, not clear rules on how to get involved. That would be for me the main

blocker (P98).” When participants reflected on their past experiences with

their first project they recalled how challenging it was to join some projects:

“The first contact is always the hardest, I mean the totally new newbies always

find it intimidating to find and join their first project. (P95)” In short, new

contributors to a project have a hard time finding how to get involved.

5.3.2.2 Gender and Regional Related Motivations and Challenges

We found that women developers place high importance on social aspects re-

lated to OSS projects as an aspect to consider before participating. Women

value selecting a project with friends and colleagues more than men (64% of

women participants consider this important, compared to only 25% of men).

Beyond this, 37% of women developers believe that shared gender identity

with fellow contributors as important, while only 1% of men consider it im-

portant. Analysis across regions showed that same gender identity is not at all

important for developers from Africa (0%) while it does hold some relevance

for other regions: Americas (17%), Europe (11%), and Asia (4%). Beyond the

social aspect, we also found that being paid is a greater incentive for women

(64% find it important) compared to men (35% find it important).

We also asked participants about what they think can encourage partic-

ipation among women on GitHub. We found that some men across regions

were very dismissive to this question saying, “Ask the women. I’m not stop-
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ping them (P9).” On the opposition, we also did find some men suggesting

how explicit visibility can inspire others, “There were several women highly

qualified for any type of project. But if you need any encouragement, perhaps

more women will take the initiative to start new open source projects. Maybe

it’s contagious (P26).” Likewise, we find that most women were interested

in women encouraging other women, but through leadership: “More women

reviewers. More women acting directly on the governance of large open source

projects (P52).” Additional details about this finding can be found in the

Appendix

Finding 6: Shared gender identity, working with friends and colleagues,

and being paid is more important for women than men.

5.3.2.3 Regional Variation in Motivations and Challenges

Motivation to Participate in OSS Projects. Table 5.13 shows the de-

velopers’ motivation to participate in OSS projects, broken down by region.

We find that motivation to contribute to OSS as a full-time job is less com-

mon outside of Europe and the Americas. In addition, developers from Africa

placed a relatively higher importance on networking (i.e., “meeting new peo-

ple”) compared to developers from other regions.

Table 5.13: Motivation of developers to participate in open source software
projects across regions. Each cell reports the percentage of developers moti-
vated by the following factors.

Europe Asia Americas Africa
my full-time job 26.00 11.00 21.00 8.00
my hobby 21.00 28.00 15.00 19.00
volunteer for free 26.00 20.00 17.00 22.00
learn something new 15.00 24.00 25.00 22.00
school/university project 2.00 1.00 8.00 0.00
help get a job 3.00 8.00 8.00 11.00
meet new people 5.00 6.00 6.00 14.00
get paid 2.00 1.00 0.00 3.00
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Motivation to Continue Participation in OSS Projects. Table 5.14

shows the developers’ motivation to continue their participation in OSS projects,

broken down by region. We note that there are regional variations regarding

importance of various factors. For example, while exciting and challenging

tasks are important for all regions, they are more important for developers

from Asia and Africa. On the other hand, connecting with people worldwide

is not a big motivation for developers from Europe and Americas to continue

participation.

We also found regional differences between what motivates developers to

participate and what motivates developers to continue participation. This

difference is in line with Gerosa et al.’s finding [67] regarding shift in moti-

vation of OSS contributors as these contributors gain tenure. For instance,

as shown in Table 5.13, the percentage of African developers who participate

in OSS as full-time job, to help get a job, or to get paid is relatively small.

However, Table 5.14 shows that being paid is an important consideration for

African developers to continue participation, much more so than it is for de-

velopers from Europe, Asia, and America. This suggests that while African

developers may start participating in OSS projects as a hobby, to volunteer,

or to learn something new, monetary rewards are important to maintain long-

term participation. As another example, while a small percentage of Asian

developers stated “meeting new people” as a reason to participate in OSS

projects, 89% reported connecting with people worldwide as a reason to con-

tinue participation—a percentage similar to developers in Africa (86%).

Finding 7: Some form of funding for participation in OSS projects can

be particularly effective to promote continued participation of developers

from Africa.

Relevance of Shared Regional and Linguistic Identity. Overall, having

contributors from same geographic region in the project is not important for

contribution, albeit subtle differences exist across regions. Having contributors
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Table 5.14: Reasons to continue participation in open source software projects
across regions. Each cell reports the percentage of developers that find the
following factors important or not important.

Europe Asia Americas Africa
Interactions with welcoming contributors

Important 86 96 94 100
Not important 14 4 6 0

Connects with people worldwide
Important 67 89 77 86
Not important 32 11 23 14

Exciting tasks
Important 75 100 77 92
Not important 25 0 23 8

Challenging tasks
Important 84 100 82 100
Not important 16 0 18 0

Being paid
Important 34 38 21 71
Not important 66 62 79 29

from the same geographic region is least important for Europe, followed by

Americas, Asia and somewhat important for the developers from Africa (see

Table 5.15 for details).

We also solicited challenges in working with people who speak a different

language, and noticed that while overall differences are not discernible, at re-

gional level, the responses are quite divided. Developers from Europe who

happen to see no value in having contributors from same region also do not

find it challenging working with developers who speak a different language.

Developers from Africa, on the other hand, not only find it relatively more

important to have fellow developers from the same region in the project, but

also have difficulty in interacting with contributors who speak a language dif-

ferent from theirs. Meanwhile, developers in Asia and America are evenly split

in their responses (see Table 5.15 for details). We also found that develop-

ers overall hold mixed opinion on the usefulness of translation tools, with no

differences across regions. However, there is a difference across genders. We

found that 76% of women developers find translation tools helpful, but only
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55% of men developers do so.

Table 5.15: Relevance of shared regional identity and language across geo-
graphic regions.

Europe Asia Americas Africa
Contributors from same geographic region

Important 9 19 15 40
Not important 91 81 85 60
Working with people who speak a different language
Challenging 26 50 50 80
Not challenging 74 50 50 20

Finding 8: Provision of better translation tools will be particularly

helpful to encourage participation of women developers worldwide, as

well as participation of developers from Africa.

5.4 Discussion

5.4.1 Summary of Findings

Our result for RQ1 did not show substantial difference across different ge-

ographic regions. We note that the set of commit authors with unresolved

location has higher apparent Blau index compared to sets from known regions.

A factor that contributes to this is the high percentage of users in the set whose

gender is also unresolved (31.82%, as shown in Table 5.3). Since the Blau in-

dex calculation ignores “Unknown” gender, and majority of commit authors

are probably men (based on proportions of commit authors whose gender and

location can be resolved), we believe the high percentage of unknowns increases

apparent women-to-men ratio in favor of women. This subsequently increases

the Blau index of the group with unknown location.

As for the observed diversity improvement during the period analyzed in

this work, we believe it is influenced by a combination of factors. Firstly, in

recent years there has been increasing interest in promotion of diversity in
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computing. This includes efforts by non-profit organizations (such as Girls

Who Code7, Women Who Code 8, NCWIT9, and ACM-Women 10), programs

targeted at school students [83, 209], initiatives by universities to improve

diversity in their own programs [16, 103, 171], as well as efforts by various or-

ganizations worldwide to hire more diverse staff. This occurs along the growth

of the software industry including in previously underrepresented regions such

as Africa [94], with GitHub itself seeing a drastic increase in popularity out-

side the United States11. These factors help attract more diverse talents into

computing, including women from underrepresented regions. Nevertheless, as

the data shows, there is still much room for improvement.

Related to RQ2, survey responses from our participants encourage us to

consider what mechanisms can support contributors from specific regions. In

summary, our findings highlight three approaches that should be utilized to

better support inclusion across gender and geographic regions. They are:

1. Development of friendlier communities, especially towards newcomers.

2. Highlighting of role models from marginalized communities.

3. Augmentation of existing automated software engineering techniques to

incorporate social factors.

5.4.2 Opportunities Ahead

5.4.2.1 Development of Friendlier Communities

There are several ways to encourage development of friendlier, more welcoming

communities. Creation and enforcement of codes of conduct are an example

of a way to promote a safe environment that can support inclusion [187, 51,

61]. Having a code of conduct can support a two-pronged approach of: 1)

7https://girlswhocode.com/
8https://www.womenwhocode.com/
9https://www.ncwit.org/

10https://women.acm.org/
11https://github.blog/2018-11-08-100m-repos/
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allowing lurkers interested in contributing (e.g., including women and other

marginalized developers) to feel more comfortable in contributing since they

know there are guidelines that can protect them from toxic interactions and 2)

signal to developers who are already in the community (e.g., including those

that may have been inciting toxic interactions) that there will be repercussions

for their actions. Unfortunately, less than 10% of the top OSS projects actually

have one [188]. Participants in our survey also acknowledged that one thing

that would encourage inclusion is “Promoting use of and enforcement of code

of conduct (P94).” Even fewer projects are transparent about how they enforce

these guidelines, if at all.

One approach to enforcing code of conduct usage is rewarding projects that

have one. For example, GitHub can offer donation through sponsors program

as a reward for projects that have code of conduct. This will provide main-

tainers with more resources to devote to their role, encourage them to make

sure their project is inclusive, and signal to new contributors that a project is

safe. Comparatively, this presents a missed opportunity by the projects that

have not provided an enforceable code of conduct and thus incentivize those

projects to adhere to a new norm. A risk of this approach is the possibility of

project maintainers creating token codes of conduct just to satisfy conditions

to receive rewards. This approach should therefore be coupled with evalua-

tion of the code of conduct to ensure that it is both meaningful and actually

enforced.

Beyond code of conduct, other potential ways to promote development of

friendlier communities are usage of social metrics for community self-evaluation

and improvement. A example may be drawn from sites that show employer

reviews such as GlassDoor12 and various job search portals. In OSS con-

text, ability to provide and show contributor reviews as well as other metrics

such as distribution of contributor tenure can help developers evaluate poten-

12https://www.glassdoor.com/
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tial projects to join, and also provide an OSS project community a means

to evaluate what they have or have not done well and how to improve their

community.

Challenge: Many communities currently do not have or enforce code of

conduct, and aspiring contributors also can’t easily evaluate community

quality of a given OSS project.

Opportunity: Improvements can be done by promoting creation and

usage of codes of conduct across communities, and to provide set of social

metrics to help aspiring contributors evaluate quality of community they

consider joining.

5.4.2.2 Mentorship and Highlighting of Role Models

Highlighting of Regional / Women Developers as Role Models. From

the responses, contributors from underrepresented OSS regions are not neces-

sarily resentful. Rather, they would like to empower people from their region to

take part in the opportunity to be a builder of software that people around the

world use [20, 1]. One participant from Sub-Saharan Africa went as far as to

state “Open-source software is a solution for Africa to progress as a continent

as quickly as possible while spending less money (P23)”.

To support and further activate opportunities such as these, we propose

a proximity-based mentorship where mentors and mentees are relatively close

in region or even close in cultural dimension (e.g., survival vs. self expres-

sion [146]). This experience can take advantage of being in the same shared

region by conducting guidance through offline interventions [42]. The dual-

ity of fostering both the same community online based on a personal offline

experience can further support inclusion.

Another approach that can be used is to highlight role models from un-

derrepresented demographics. For example, our survey results indicate that

women developers are interested in mechanisms that highlight the contribu-
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tion of women. Such mechanisms can be implemented both online and offline.

Online mechanisms can be in the form of updates to pages such as GitHub Ex-

plore [69] to add sections that highlight rising or top developers from underrep-

resented communities. For offline implementation of this mechanism, developer

communities can for example organize and encourage technical presentations

and talks by experienced developers from underrepresented demographics.

Challenge: There is lack of mechanism to highlight contribution of

developers from underrepresented demographics.

Opportunity: Mechanisms that highlight developers that are popular

globally can be augmented to also highlight top or popular developers

from more specific demographics.

5.4.2.3 Diversity Promotion via Automated Software Engineering

Tools

Some barriers appear to present opportunities for applying automated software

engineering approaches to attract diverse contributors to OSS projects. Exist-

ing works [27, 73] highlight the importance of prior social links with existing

contributors in developers’ decision to join an OSS project, and this can be

exploited to promote diversity by augmenting existing approaches with social

considerations. We discuss some specific categories of tools in the following

paragraphs.

Automated project recommenders can be augmented to take into account

social considerations. A small number of recent project recommenders [117,

125] factor in developer’s social ties, and GitHub itself takes into account

which developers a user “follows” when recommending projects in its GitHub

Explore [69] page. However, to promote diversity or participation from par-

ticular gender/region, these can be further augmented with additional metrics

based on recommendations in the survey responses, for example:
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• Metrics related to quality of community. For example, typical tenure of

contributors (as a proxy of how much contributors enjoy being in the

community), reputation of current contributors, and range of current

contributors’ experience levels (as a proxy of how welcoming the project

is to beginners).

• Number of current contributors known to be from similar region as the

developer considering to join the project.

• Diversity of current set of active contributors with known gender and/or

location.

Automated documentation improvement can be employed more widely

to reduce barriers to contribution. This can include application and enhance-

ment of automated document localization techniques to overcome language

barriers and support local languages from regions with large numbers of po-

tential contributors. This may be coupled with application of automated tech-

niques to improve readability, completeness and/or quality of artifacts such

as README files [160] and release notes [137]. Usage of automated docu-

ment generation of source code summary [126] and tracking of outdated API

names [114] can further reduce time required from potential contributors. This

will be valuable especially in regions where OSS projects are more commonly

treated as hobby or volunteer work, since reduced time barrier will enable more

people to contribute even without monetary rewards.

Automated developer assignment mechanisms can be updated to dis-

tribute exciting / challenging tasks more widely to motivate continued par-

ticipation. This may be in form of modification to existing automated bug

assignment techniques such as [89] and [222], that currently are usually used

to speed up resolution process [231] instead of to spreading interesting tasks

to team members.
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Challenge: Current automated software engineering tools tend to focus

on technical aspects and similarity between developers (homophily) when

making recommendations.

Opportunity: There’s opportunity to augment existing tools to enable

selection of target social objectives, such as maintenance of contribu-

tor interest (by making more even distribution of challenging tasks) or

encouraging participation from certain underrepresented communities.

5.5 Threats to Validity

Construct Validity. Our study has two parts: a large scale data analysis

and a survey. During the study design, we made choices that can potentially

influence the outcome. Regarding repository selection, the filtering criteria we

use still leaves some possibility of including repositories of academic projects

that run beyond 6 months, however, we believe that those are also likely to be

a more serious endeavor instead of simple programming assignments. Another

factor is the accuracy of gender and location resolution. While many factors

can cause incorrect gender and location resolution (e.g., incorrect information

on GitHub profile, decision to make accounts private), we tried mitigating this

threat in two ways. First, we choose a tool that has reportedly reasonable

accuracy for multiple regions such as Asia and Eastern Europe [177, 93] and

has been used in various studies related to gender representation [80, 198, 175].

Prior to full-scale analysis, we also performed validation by manually check-

ing a subset of the data to increase our confidence in the gender prediction.

We also limited our analysis to commit authors, who are more likely to be a

code-contributing part of the project team (compared to, for example, issue

reporters) and are also more likely to provide information which can be used to

resolve their gender and location. Finally, we eliminated projects for whom we

could not infer gender and location of at least 75% of commit authors. While it
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is also possible to perform additional validation after the survey by comparing

self-reported gender and geography in the response to the information inferred

from data analysis, we did not do so as we did not ask prior permission from

survey participants for such data usage. This is in compliance with the GDPR

and broader research ethical considerations.

We also note that the tool that we use (genderize.io) is not reflective of a

broad gender spectrum. While analysis of non-binary identities is a research

challenge that has received increasing research attention [74, 95], we are cur-

rently unaware of methods to reliably assess this in software systems at a large

scale. Future research should investigate this deeper. As none of our survey

respondents identified themselves as non-binary, we believe this limitation of

genderize.io does not pose a significant threat to the validity of our subsequent

analyses.

With respect to our survey, the underrepresentation of women and a broader

set of commit authors poses a threat to validity. We attempted to mitigate

this by using stratified survey sampling based on gender and location, instead

of performing a random sampling of the entire population. For focused survey

responses, we asked each participant questions relating to a specific project

which we hope provide more concrete response based on the participant’s own

experience, although there is still some validity risk if the participant has not

worked on the project recently.

Internal Validity. Our analysis indicates regional and gender-based differ-

ences for open source participants on GitHub. To improve the internal validity

of our data analysis, we calculated diversity at different times using two met-

rics. Our results point in the same direction. Likewise, our survey borrows

elements from literature (corroborating with its findings) and builds on it. Us-

ing strategic sampling techniques we tried to gather a representative sample

to offer a worldwide view.

External Validity. The representatives of our findings is defined by the range
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of software projects studied. We selected a wide variety of software projects,

nevertheless, we might have systematically missed projects which did not meet

our prerequisites (e.g., infer gender and location).

Likewise, due to our methodology and scope of respondents at the inter-

section of both marginalized genders and underrepresented countries in OSS,

we miss the opportunity to provide broad insight into the challenges of hav-

ing an intersectional identity [167]. Further intersectional methodologies and

frameworks should be adopted to explore and amplify the voices of developers

in the margins.

5.6 Conclusion and Future Work

In this chapter, we report findings from our large scale empirical study leverag-

ing quantitative data from GitHub and qualitative data for a targeted survey

of developers to report on the gender differences across geographies. Our study

finds that there is low diversity across regions worldwide, and although there is

some variation among regional diversity, the difference is not substantial. Since

2014, there has been small and statistically significant improvement of gender

diversity amongst software contributors in North America and South-Eastern

Asia but negligible change elsewhere. We observe that among commit authors

with identifiable gender, yearly percentage of account creation by women re-

mains low. A qualitative analysis shows that many of the barriers and mo-

tivations for contributing converge across different geographic regions ranging

from lack of resources, goal alignment shift to poor working environments and

unclear on boarding.

There are two underlying themes we hope this study will achieve. The

first is quantifying and setting baseline of current state of GitHub regarding

intersection of gender and geography. This will help other researchers build

on it and quantify changes in coming years. The second is to create awareness
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of this problem and hopefully encourage further research by the community

towards reducing the gender gap and make software contributions possible

by everyone, everywhere. Towards this goal, we are working with people in

GitHub and Stack Overflow to help drive some of the concrete observations

from our study to alleviate diversity-related issues in the coming years.

Finally, we also believe it will be helpful if researchers from the different

parts of the world perform more in-depth study of gender differences in their

own regions. We believe that with better understanding of and connections

with local developer communities (including developers who are not active

on GitHub), local researchers will likely be able to collect more responses.

Further, they will also be able to customize their survey to better focus on any

region-specific issues they are aware of.

5.7 Dataset Availability

In the interest of encouraging others to replicate and build upon our work, we

are sharing our data. The data for this study can be found at:
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Chapter 6

Conclusion and Future Work

6.1 Summary of Contribution

The increasing popularity of GitHub brings about certain benefits to software

engineering community, such as wider range of projects to use and follow.

It also reveals several opportunities to bring about widespread improvement

to software engineering. Through the works presented in this dissertation’s

chapters, we examine the quality of software project repositories on GitHub

from several aspects. Based on our findings, we also propose ways to create

widespread quality improvement of GitHub repositories. Our contributions are

summarized below:

• Categorizing The Content of GitHub README Files: The first

part of our work in Chapter 3 examines the current state of README

files in GitHub software project repositories. The findings from the

first part add to the body of knowledge regarding the characteristics

of GitHub projects, particularly regarding their documentation. These

findings can also help project owners to improve the quality of their doc-

umentation and make it easier for users and potential contributors to find

the information they need. The second part of this chapter describes a

README file content classifier we have developed, which achieves F1
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score of 0.746. The classifier can be used to automate the task of an-

alyzing the content of a README file and support downstream tasks

such as generation of labels for README section headers to indicate

information type in the section, or identify information types that are

still missing from a README file. To encourage further research, we

have made the classifier and our dataset available.

• Study on Vulnerabilities in Open Source Software Dependen-

cies: This work, presented in Chapter 4, is an empirical study on open-

source dependencies of 450 GitHub projects written in three popular

programming languages. Through our analyses of the projects’ commits

over one year, we identified common vulnerability types in their depen-

dencies. Our subsequent examination of the characteristics of the de-

pendency vulnerabilities reveals that significant percentage of vulnerable

dependency issues are persistent, and even those that are fixed took 4-5

months on average to resolve. We also found that vulnerability counts

correlate more strongly with the number of dependencies instead of as-

pects such as project size, project popularity, and contributor experience.

Based on our findings, we provide specific recommendations for library

users, library developers, as well as researchers to prevent and mitigate

such vulnerabilities.

• Understanding Opportunities and Challenges of Geographic Gender-

Inclusion in Open Source Software: Our third work, discussed in

detail in Chapter 5, presents result of large-scale analysis of regional

gender diversity spanning 21,456 active GitHub repositories and 70,621

commit authors. In addition, through strategically-targeted global sur-

vey and qualitative analysis of the result, in this work we also present

motivation and barriers that affect gender and geographic-based devel-

oper participation in various regions. Further, based on the findings,

we also present a set of recommendations on possible approaches to en-
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courage contribution from different genders and geographic regions. To

encourage further investigations, we have also made our dataset publicly

available.

6.2 Future Directions

The huge number of repositories on GitHub and its rapid growth of popularity

worldwide introduces several challenges including identifying well-documented

projects, addressing security concerns, and identifying factors that may moti-

vate or hinder good potential contributors from different genders and regions.

The works done as part of this dissertation try to address these challenges, and

can subsequently be expanded in several directions.

The README file content classifier described in Chapter 3 can be im-

proved to yield higher precision and recall. Beyond this, it can also be used

as part of a larger system to enable structured approach to searching and

navigating GitHub README files. An example of this would be a search in-

terface to find GitHub repositories that meet certain standards of README

quality (e.g. “contains information on basic usage and project status”). Com-

bined with research on other GitHub documentation artifacts such as license

information [213] or contribution guidelines [52], this work can also be used to

develop approaches to reorganize README files or automatically add relevant

content using other artifacts as source of information.

With regard to the work on dependency vulnerability described in Chap-

ter 4, a potential future direction is to conduct a larger-scale study involving

more projects and programming languages, which may lead to more general-

izable findings regarding common characteristics of, and differences between,

dependency vulnerabilities in different types of programming languages. Be-

yond this, our work can contribute towards research into library developers and

users’ behaviour related to dependency vulnerabilities. Yet another potential
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research direction related to this work is investigation into software projects

whose owners have good track record of managing dependency vulnerabilities,

and identification of “best practices” that can be emulated by owners of other

projects.

Finally, our work on geographic gender-inclusion described in Chapter 5

can form a basis for more in-depth studies of gender diversity in different

parts of the world. We hope our work can motivate researchers from different

regions to conduct such studies, utilizing their deeper understanding of local

context to examine region-specific issues as well as potential solutions. Our

work can also be used to inform future research efforts related to how OSS

project teams can attract and retain contributors from diverse genders and

regions, be it through technical approach (such as incorporation of diversity-

promoting features to existing recommendation techniques) or through social

approach (such as defining and implementing codes of conduct).
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List of Publications

The works performed as part of this dissertation have resulted in the following

publications:

1. Prana, G. A. A., Treude, C., Thung, F., Atapattu, T., and Lo, D.

(2019). “Categorizing The Content of Github Readme Files”. Empirical

Software Engineering, 24(3), 1296-1327.

2. Prana, G. A. A., Sharma, A., Shar, L. K., Foo, D., Santosa, A. E.,

Sharma, A., and Lo, D. (2021). “Out of Sight, Out of Mind? How Vul-

nerable Dependencies Affect Open-Source Projects”. Empirical Software

Engineering, 26(4), 1-34.

3. Prana, G. A. A., Ford, D., Rastogi, A., Lo, D., Purandare, R., and

Nagappan, N. (2021). “Including Everyone, Everywhere: Understanding

Opportunities and Challenges of Geographic Gender-Inclusion in OSS”.

IEEE Transactions on Software Engineering.

139



Bibliography

[1] Adewale Abati. Made in nigeria, 2017. Retrieved March 5, 2020 from

https://www.madeinnigeria.dev/.

[2] Rabe Abdalkareem, Olivier Nourry, Sultan Wehaibi, Suhaib Mujahid,

and Emad Shihab. Why do developers use trivial packages? an empirical

case study on npm. In Proceedings of the 2017 11th Joint Meeting on

Foundations of Software Engineering, pages 385–395. ACM, 2017.
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and Yann-Gaël Guéhéneuc. Is it a bug or an enhancement?: A text-based

140

https://www.madeinnigeria.dev/


BIBLIOGRAPHY

approach to classify change requests. In Proceedings of the Conference

of the Center for Advanced Studies on Collaborative Research: Meeting

of Minds, pages 23:304–23:318, New York, NY, USA, 2008. ACM.

[8] Ashish Arora and Rahul Telang. Economics of software vulnerability

disclosure. IEEE security & privacy, 3(1):20–25, 2005.

[9] Muhammad Asaduzzaman, Ahmed Shah Mashiyat, Chanchal K. Roy,

and Kevin A. Schneider. Answering questions about unanswered ques-

tions of Stack Overflow. In Proceedings of the 10th Working Conference

on Mining Software Repositories, pages 97–100, Piscataway, NJ, USA,

2013. IEEE Press.

[10] Ann Barcomb, Klaas-Jan Stol, Dirk Riehle, and Brian Fitzgerald. Why

do episodic volunteers stay in floss communities? In 2019 IEEE/ACM

41st International Conference on Software Engineering (ICSE), pages

948–959. IEEE, 2019.

[11] Sarah Beecham, Nathan Baddoo, Tracy Hall, Hugh Robinson, and He-

len Sharp. Motivation in software engineering: A systematic literature

review. Information and software technology, 50(9-10):860–878, 2008.

[12] Andrew Begel, Jan Bosch, and Margaret-Anne Storey. Social networking

meets software development: Perspectives from GitHub, MSDN, Stack

Exchange, and TopCoder. IEEE Software, 30(1):52–66, 2013.

[13] Robert M. Bell, Thomas J. Ostrand, and Elaine J. Weyuker. The lim-

ited impact of individual developer data on software defect prediction.

Empirical Software Engineering, 18(3):478–505, Jun 2013.

[14] Steven Bird, Ewan Klein, and Edward Loper. Natural language pro-

cessing with Python: analyzing text with the natural language toolkit.

O’Reilly Media, Inc., 2009.

141



BIBLIOGRAPHY

[15] Peter Michael Blau. Inequality and heterogeneity: A primitive theory of

social structure, volume 7. Free Press New York, 1977.

[16] Valeria Borsotti. Sigsoft distinguished paper-barriers to gender diversity

in software development education: Actionable insights from a danish

case study. In 2018 IEEE/ACM 40th International Conference on Soft-

ware Engineering: Software Engineering Education and Training (ICSE-

SEET), pages 146–152. IEEE, 2018.

[17] Amiangshu Bosu, Jeffrey C Carver, Munawar Hafiz, Patrick Hilley, and

Derek Janni. Identifying the characteristics of vulnerable code changes:

An empirical study. In Proceedings of the 22nd ACM SIGSOFT In-

ternational Symposium on Foundations of Software Engineering, pages

257–268, 2014.

[18] Amiangshu Bosu and Kazi Zakia Sultana. Diversity and inclusion in open

source software (oss) projects: Where do we stand? In 2019 ACM/IEEE

International Symposium on Empirical Software Engineering and Mea-

surement (ESEM), pages 1–11. IEEE, 2019.

[19] Sabri Boughorbel, Fethi Jarray, and Mohammed El-Anbari. Optimal

classifier for imbalanced data using matthews correlation coefficient met-

ric. PloS one, 12(6):e0177678, 2017.

[20] Zev Brodsky. 7 chinese open source projects you should

know about, 2018. Retrieved March 5, 2020 from https:

//resources.whitesourcesoftware.com/blog-whitesource/

7-chinese-open-source-projects-you-should-know-about.

[21] Mircea Cadariu, Eric Bouwers, Joost Visser, and Arie van Deursen.

Tracking known security vulnerabilities in proprietary software systems.

In 2015 IEEE 22nd International Conference on Software Analysis, Evo-

lution, and Reengineering (SANER), pages 516–519. IEEE, 2015.

142

https://resources.whitesourcesoftware.com/blog-whitesource/7-chinese-open-source-projects-you-should-know-about
https://resources.whitesourcesoftware.com/blog-whitesource/7-chinese-open-source-projects-you-should-know-about
https://resources.whitesourcesoftware.com/blog-whitesource/7-chinese-open-source-projects-you-should-know-about


BIBLIOGRAPHY

[22] Felivel Camilo, Andrew Meneely, and Meiyappan Nagappan. Do bugs

foreshadow vulnerabilities?: a study of the chromium project. In Proceed-

ings of the 12th Working Conference on Mining Software Repositories,

pages 269–279. IEEE Press, 2015.

[23] John L. Campbell, Charles Quincy, Jordan Osserman, and Ove K. Ped-

ersen. Coding in-depth semistructured interviews. Sociological Methods

& Research, 42(3):294–320, aug 2013.

[24] Eduardo Cunha Campos and Marcelo de Almeida Maia. Automatic

categorization of questions from Q&A sites. In Proceedings of the 29th

Annual ACM Symposium on Applied Computing, pages 641–643, New

York, NY, USA, 2014. ACM.

[25] Edna Dias Canedo, Rodrigo Bonifácio, Márcio Vinicius Okimoto,
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[157] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent

Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Pret-

tenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Ma-

chine learning in python. Journal of Machine Learning Research,

12(Oct):2825–2830, 2011.

[158] Henning Perl, Sergej Dechand, Matthew Smith, Daniel Arp, Fabian Ya-

maguchi, Konrad Rieck, Sascha Fahl, and Yasemin Acar. Vccfinder:

Finding potential vulnerabilities in open-source projects to assist code

audits. In Proceedings of the 22nd ACM SIGSAC Conference on Com-

puter and Communications Security, pages 426–437, 2015.

[159] Roxana Lisette Quintanilla Portugal and Julio Cesar Sampaio

do Prado Leite. Extracting requirements patterns from software reposi-

tories. In Proceedings of the 24th International Requirements Engineer-

ing Conference Workshops, pages 304–307, Piscataway, NJ, USA, 2016.

IEEE.

161



BIBLIOGRAPHY

[160] Gede Artha Azriadi Prana, Christoph Treude, Ferdian Thung, Thushari

Atapattu, and David Lo. Categorizing the content of github readme files.

Empirical Software Engineering, 24(3):1296–1327, 2019.

[161] Philips Kokoh Prasetyo, David Lo, Palakorn Achananuparp, Yuan Tian,

and Ee-Peng Lim. Automatic classification of software related mi-

croblogs. In Software Maintenance (ICSM), 2012 28th IEEE Interna-

tional Conference on, pages 596–599. IEEE, 2012.

[162] Parvati Raghuram, Clem Herman, Esther Ruiz-Ben, and Gunjan Sondhi.

Women and it scorecard-india. https://www.nasscom.in/knowledge-

center/publications/women-and-it-scorecard-2017.

[163] Akond Rahman, Effat Farhana, and Nasif Imtiaz. Snakes in paradise?:

insecure python-related coding practices in stack overflow. In Proceedings

of the 16th International Conference on Mining Software Repositories,

pages 200–204. IEEE Press, 2019.

[164] Foyzur Rahman and Premkumar Devanbu. How, and why, process met-

rics are better. In Proceedings of the 2013 International Conference on

Software Engineering, pages 432–441. IEEE Press, 2013.

[165] Foyzur Rahman, Daryl Posnett, and Premkumar Devanbu. Recalling

the imprecision of cross-project defect prediction. In Proceedings of the

ACM SIGSOFT 20th International Symposium on the Foundations of

Software Engineering, pages 61:1–61:11. ACM, 2012.

[166] Mohammad Masudur Rahman, Chanchal K Roy, and David Lo. Rack:

Automatic api recommendation using crowdsourced knowledge. In 2016

IEEE 23rd International Conference on Software Analysis, Evolution,

and Reengineering (SANER), volume 1, pages 349–359. IEEE, 2016.

162



BIBLIOGRAPHY

[167] Yolanda A. Rankin and Jakita O. Thomas. Straighten up and fly right:

Rethinking intersectionality in hci research. Interactions, 26(6):64–68,

October 2019.

[168] Ayushi Rastogi, Nachiappan Nagappan, Georgios Gousios, and André
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Appendix A

Literature Tables

Table A.1: Comparison of research questions, goals, and findings of closely
related literature on gender and geographic diversity.

Research questions or
goals

Findings

Geographic,
Gender
Inclusion
(Our Work)

Identify how gender di-
versity has changed over
time and across regions.
Identify gender-based and
geographic-based developer
participation

Noticeable differences across gender di-
versity in regions specifically, Asia and
Americas being the highest
Barriers and motivations to contribut-
ing converge across geographic regions
No strong correlation between gender
and geographic diversity

The Shifting
Sands of Mo-
tivation [67]

Identify what motivates
OSS contributors and
how contributors’ moti-
vation changes as OSS
matured (e.g., contributors
themselves gaining tenure)

Main motivations differ between novice
contributors and experienced ones
Motivations such as learning and knowl-
edge sharing remained important over-
time. While altruism increased in
importance and self-serving usage de-
creased in importance.

Women Core
Develop-
ers [25]

Identify the gender diver-
sity and work practices
of core developers in OSS
communities

OSS has horizontal and vertical segrega-
tion
No significant differences between work
practices of men v. women

Diversity,
Where
Do We
Stand [18]

Determine the level of gen-
der diversity among popu-
lar OSS projects

Women make up less than 10% of core
contributors
No significant difference among men vs.
women on selected projects

Diversity
Teams
Study [147]

Understand the impact of
gender and nationality di-
versity on team productiv-
ity and collaboration qual-
ity

Higher gender diversity→ lower team
average issue fixing time
Nationality diversity → lower team po-
liteness
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Table A.2: Comparison of research methods, population / initial sample, and
participants’ data of closely related literature on gender and geographic diver-
sity.

Research methods Population / initial
sample

Participants /
data

Geographic,
Gender In-
clusion (Our
Work)

Mixed methods study
of GitHub projects
over time and con-
ducting a purposefully
sampled survey with
developers across ge-
ographic regions and
identifiable genders
(men, women and
unidentifiable)

125,485,095 projects
from GHTorrent

21,456 repositories,
70,621 commit au-
thors, 122 survey
respondents across
5 large geographic
regions and across
genders

The Shifting
Sands of Mo-
tivation [67]

Survey of OSS contrib-
utors recruited from
social media sites (e.g.,
Twitter, Facebook,
Reddit, LinkedIn, and
Hackernews, through
groups related to OSS
development, and
personal contacts

Open to all self-
reported OSS con-
tributors. Filtered on
reported experience
and response validity

242 responses from
5 different conti-
nents. Includes
82% men, 81%
coders, 26% report
being paid for
contributions

Women Core
Develop-
ers [25]

Mixed methods study
of mining software
repositories, iden-
tifying gender of
contributors and inter-
viewing women core
developers

Top 100 most popu-
lar projects written in
the top 15 most pop-
ular programming lan-
guages

711 projects, 35
women core devel-
opers

Diversity,
Where
Do We
Stand [18]

Mined code review
repositories of the
top 10 popular OSS
project on GitHub

Top 10 OSS Projects
using Gerrit and had
at least 15,000 code re-
views

683,865 pull
requests, 4543 non-
casual contributors

Diversity
Teams
Study [147]

Built regression mod-
els comparing collabo-
ration in issues and di-
alogue of politeness

2014 GHTorrent
dataset scoped to
closed issues with 2
comments

33,673 issues with
71,423 comments
posted by 13,872
developers
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Appendix B

Survey Results: Encouraging

Women

We asked all survey respondents(regardless of identified gender) about what

they think can encourage more women in GitHub and received 73 responses

to this questions. We qualitatively analyzed responses to this question via

open coding and axial coding process which included iterative review of our

themes. We grouped response according to regions, but despite using our

strategic sampling approach, we did not have a critical mass of responses across

regions and genders to make meaningful conclusions. We provide summaries

of responses by the following themes below supplemented with quotes.

B.1 Encouragement through awareness

We received several broader responses about how to encourage women through

providing awareness via several activities. “Awareness will go a long way in

encouraging women to participate. A lot of people would love to participate but

wasn’t sure where to start.” (P14)

One activity mentioned was making education more accessible: “Acces-

sible education. I think many women and girls don’t realise they have the
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skills needed to contribute to programming & software projects. Teaching young

women that they have the potential to do this is really important.” (P13)

We also see several quotes about fostering a more welcoming community

that includes fewer misogynistic developers and more overall encouragement:

“Fewer misogynistic developers.” (P25) “De-stigmatize programming as a male

dominated profession” (P86)

Although strategies in this category were rather general, they indicated that

respondents are familiar with challenges some women face in OSS communities.

B.2 Creating opportunities

Respondents also indicated concrete recommendations on what may support

encouraging women on GitHub. Some of these recommendations include adding

events that specifically support women such as having women-centered events

or even amplifying the presence of women that are active in the community:

“A women support circle is nice, I’ve seen effort and took part in some but I

find women are more comfortable and more encouraged within the same gen-

der group. ” (P17) “Show what women who are working with this are doing

and how is their experience, do projects/workshops.” (P35) “More women re-

viewers. More women acting directly on the governance of large open source

projects.” (P52)

Likewise other participants mentioned that the community should empha-

size use of existing mechanisms such as project codes of conduct: “Enforce

codes of conduct” (P79) “more welcoming in projects, a well-defined code of

conduct to make them feel more comfortable” (P101) “Giving more visibility

and fighting against bad behaviors by other men” (P87)

We also had participants cite that encouraging women to be apart of a

transparent developer sprint and workshops which will provide more clarity

to the multiple phases of the contribution process: “Encourage more open de-

176



APPENDIX B. SURVEY RESULTS: ENCOURAGING WOMEN

vsprints and workshops to help women get started easily. More hands-on ses-

sions on upstream contributions.” (P37) “Creating awareness among women

contributors and building confidence, by conducting interactive sessions on

open source and contributions” (P47)

Other broader recommendations participants made were to fund developers

making contributions,“Getting paid” (P19), and being more transparent in

the code review process, “being more articulate about feelings and motivation

behind some critique that could come up for example in code review” (P51).

B.3 Outside of GitHub

Many respondents reported that this solution is more of a broader issue that is

broader than GitHub. Some participants reported that there should be a focus

beyond computer science and on STEM fields in general: “I guess you need

help more women go to colleges and learn STEM, and make sure they will not

be rejected from some professional jobs in the STEM field after graduation.”

(P96) “We just need more women in programming overall, and I think school

outreach programs are the best thing.” (P64)

Another set of respondents indicated that changing the bro-culture of tech-

nology in the software world: “Don’t see why Github has anything to do with

women’s participation. In general, low participation to oss from women’s may

be related to they being minority in the whole bro cultured software world.”

(P88) “Men should know how to interact with women without an air of au-

thority and welcoming. ..” (P31)

Some respondents described that there are broader global issues that persist

outside of work: “Global women’s rights, not in IT only.” (P34) “Treating

women as equals” (P33)

These findings indicate that respondents were aware of challenges in tech

but also it made sense to address issues at a wider scale.
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B.4 The “I Don’t Care”s

Finally, we did receive several responses that either dismissed this focus on

experience of women in OSS, were unclear on the challenges that women face

or actively responded with a negative tone to this question (as opposed to

simply leaving this optional question blank). As we have not seen in previous

literature where this negative sentiment towards empowering a marginalized

group has been acknowledge, we found it imperative to share the responses we

received here: “It is naturally that women are less interesting in technologies

than men. I don’t see any barrier to prevent women to participating in Github.”

(P109) “I don’t know why this is even a thing.” (P41) “Ask the women. I’m

not stopping them.” (P9)

We also had several toxic recommendations suggesting women look into

“Sex reassignment surgery” (P53) and that “Good engineers should help them-

selves” (P24). We highlight these responses not to amplify these biased per-

spectives, but to show that there are OSS contributors in the community who

do not understand that there is an issue with the gender diversity. It is not

the job of the marginalized contributors to ’fix’ the community—it is up to

everyone to create an inclusive environment. Future work should explore in-

terventions that create a broader awareness of why it is important for everyone

to be inclusive along gender and regional diversity.

We hope that these responses encourage researchers to study a variety

of gender experiences (including non-binary genders) to capture rich-region

specific diversity issues. Having more region-specific studies will allow us to

provide bespoke solutions that take into the cultural nuance of each region.
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