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Abstract

Due to increased aging populations and changes in lifestyles, we have witnessed an

increased prevalence of various chronic and acute diseases and a drastic rise in health-

care expenditures in recent years. It is of paramount importance for public health to

promote regular screening and close monitoring to detect the early onset of diseases.

On the other hand, the increasing availability of healthcare data and advancement

in data analytics offer a huge potential to facilitate this goal. We can analyze the

vast amount of data and recommend more personalized diagnostic tests after receiving

results and signals from screening tests and monitoring systems, which are critical de-

cisions for the effective and efficient implementation of such screening programs and

monitoring systems. Meanwhile, it is also necessary to consider human behavioral

issues and their impact in making the recommendations. In particular, individual ad-

herence to the recommended diagnostic tests can significantly affect the effectiveness

and efficiency of the programs. This dissertation aims to integrate predictive analyt-

ics, optimization techniques, and behavioral models to improve risk monitoring and

decision-making in patient monitoring systems and population screening programs.

This dissertation first studies the real-time risk monitoring problem for patients in

intensive care units (ICUs). We identify a critical lag in the provision of information

due to the long lead time to measure some laboratory test variables (e.g., creatinine,

platelets, and bilirubin) used in calculating the Sequential Organ Failure Assessment

(SOFA) score, a well-established and important risk measure for patients in ICUs.

We develop machine learning models to estimate such variables using easily mea-
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sured bedside variables, the rate of changes in bedside variables, and time lag from

the previous laboratory test, which mimics how physicians assess patient conditions

in practice. Then the predicted laboratory test variables can be used to calculate an

estimate of the real-time SOFA score. We further take advantage of the estimated

standard deviations from these models to construct intervals of the real-time SOFA

scores. We hypothesize that the estimated score intervals could capture the uncer-

tainty in patient condition since the previous test and provide valuable information

in a new dimension that complements the nominal SOFA scores. Using a dataset

collected from an ICU in a tertiary hospital in Singapore, we calibrate our model

and validate the hypothesis by comparing the prognostic accuracy of the proposed

approach on patients’ 24-hour mortality and 30-day readmission with those from the

SOFA score calculated using the conventional approaches. The proposed methodol-

ogy could be applied to other risk measures to improve their prognostic accuracy and

provide more reliable early warning for timely intervention.

The methodologies developed in the previous chapter can help raise a warning

of potential deterioration in a patient’s health condition, but the exact problem still

has to be confirmed through follow-up diagnostic tests, which are typically more in-

vasive and expensive. Medical resource overuse has become increasingly common in

recent years and caused diverse problems, including unnecessary and risky diagnos-

tic tests and overly intensive or expensive treatments. There is a growing call for

more evidence-based decisions to reduce unnecessary diagnostic tests. The next part

of the thesis dives into this problem to optimize the prescription of diagnostic tests

during the health monitoring process, leveraging the improved risk monitoring tools

developed in the previous chapter. In particular, we develop a finite-horizon, partially

observable Markov decision process model to optimize the time to initiate a diagnostic

test. Our model captures both measured and estimated clinical variables (including

estimated intervals) in real-time to update the belief on a patient’s underlying health
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condition. We apply the model to monitor patients’ blood glucose levels to detect

hyperglycemia, a common complication of critical illness. We calibrate the model

using the same ICU dataset as in the previous chapter and demonstrate that the new

approach can advance the detection time with fewer diagnostic tests. The method-

ology can also be applied to many other health monitoring systems, especially those

powered by smart wearable health devices for chronic diseases. However, to optimally

design the warning signals and recommend the diagnostic tests for such a monitoring

system, one must consider the impact of human behavioral issues, especially indi-

viduals’ perception of the warning signals and adherence to the recommendations.

We address this challenge in the next chapter in the optimal design of population

screening programs for cancer surveillance and screening.

Cancer remains one of the leading causes of human death, while early detection

enables timely intervention and reduction in mortality rate. Two-stage screening

programs are broadly implemented in practice among large average-risk populations

to effectively and efficiently detect cancer in the early stages. Individuals receiving

positive results in first-stage (initial) tests are recommended to undergo second-stage

tests for further diagnosis. Notably, individuals’ adherence to the second-stage tests,

which is closely associated with the initial test design (sensitivity and specificity) and

personal characteristics, varies considerably across individuals and leads to different

cancer detection rates and demands for second-stage tests. We adopt a Bayesian

persuasion framework to model the optimal initial test design problem in the context

of colorectal cancer screening. Our goal is to balance the trade-off between test effec-

tiveness (i.e., detection rates of cancer incidences) and test efficiency (i.e., demands

for second-stage tests), considering individuals’ adherence behavior. We conduct a

nationwide survey in Singapore to calibrate the individual’s response to changes in

the test design. With the embedded behavioral model, we next optimize the threshold

selection in the initial test design (which decides the test sensitivity and specificity).
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We characterized the structural properties of an optimal initial test design. Using

various data and information collected locally in Singapore and from the literature,

we demonstrate that a well-designed initial test can detect more cancer incidences

with fewer second-stage tests than the current practice. We further explore the ben-

efits of using heterogeneous initial tests for different sub-populations and use the

interpretable clustering technique to search for implementable rules to partition the

population. We find that customized tests with simply an age-gender partition rule

could bring significant extra benefits.

To conclude, this thesis studies the optimal design of real-time patient monitoring

systems and population screening programs, using a combination of techniques from

machine learning, optimization, game theory and survey design. By analyzing the

comprehensive datasets collected from various sources, we showcase that well-designed

monitoring systems and screening programs can benefit individuals, healthcare ser-

vice providers, and health systems through improved effectiveness and efficiency in

healthcare service delivery.
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Chapter 1

Introduction

Over the last decades, the increase in aging populations and the adoption of unhealthy

lifestyles (e.g., physical inactivity, unhealthy diets and excessive alcohol consumption)

have contributed to a rapid rise in the prevalence of numerous diseases. For exam-

ple, the number of adults with diabetes has risen from 108 million in 1980 to 422

million in 2014; and the instances of cancer have reached 18.1 million in 2018 and

are projected to rise to 29.5 million in 2040 (Zhou et al. 2016, Are et al. 2020). The

increasing prevalence of diseases has resulted in a drastic surge in healthcare ex-

penditures. According to the World Health Organization, the worldwide healthcare

expenditure has continually risen between 2000 and 2018 and reached US $8.3 tril-

lion in 2018, accounting for 10% of global GDP (Vrijburg and Hernández-Peña 2020).

This unsustainable phenomenon has raised global attention to promote regular health

screening and close monitoring to detect the early onset of diseases effectively and

efficiently. In recent years, the expanding volume of healthcare data and advances in

data analytics provides tremendous potential to facilitate this goal. We can explore

the vast amount of information hidden in the data to provide individuals with more

personalized diagnostic tests after receiving risk alerts and signals from screening

programs and monitoring systems. Meanwhile, it is also crucial to consider human

behavioral factors, as individual compliance with recommended diagnostic tests can
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greatly affect the effectiveness and efficiency of the programs. This dissertation aims

to improve risk monitoring and decision-making in patient risk monitoring systems

and population screening programs using a combination of techniques from predictive

analytics, optimization, and behavioral models.

Chapter 2 looks into the decade-long challenges in the real-time risk monitoring

and limitations of the existing early warning systems. It has long been recognized as

challenging and essential to providing early identification of evolving illness and timely

life-saving interventions prior to the occurrence of unexpected adverse events for pa-

tients, especially for critically ill patients in the intensive care unit (ICU) (Shickel

et al., 2019). With the widespread use of electronic health record systems, patients’

dynamic physiological data can be easily tracked and recorded. Moreover, the rapid

development of machine learning and predictive modeling techniques has provided

researchers with technical supports to delve into this problem using the recorded

data (Solares et al., 2020). A number of early warning systems have already been

developed to track patients’ real-time health conditions in ICUs, such as Sequential

Organ Failure Assessment (SOFA) score, Multiple Organ Dysfunction Score (MODS)

and Logistic Organ Dysfunction Score (LODS) (Rapsang and Shyam, 2014). How-

ever, most existing scoring systems are calculated using long lead-time physiological

variables; for example, the three laboratory test variables used to calculate the SOFA

score (e.g., creatinine, platelets, and bilirubin) are not updated frequently, making

the SOFA score unable to describe patients’ real-time conditions and trigger early

warnings sufficiently ahead of time for physicians to initiate effective and timely in-

tervention. In addition, the existing scoring systems only give a score that typically

fails to capture the uncertainty and ambiguity in the risk assessment. To address these

issues, we develop a new framework to enhance any existing real-time early warning

scoring systems based on the physicians’ practice. The key component of the new

framework is to predict the uncertainty in those long lead-time variables using vari-
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ables and information easily obtained at the bedside. The framework then derives

the real-time risk score and calculates an interval for the risk score that captures the

uncertainty in patient condition, which provides another dimension of information

for real-time patient risk monitoring. We validate the association of the estimated

real-time scores and uncertainty intervals on 24-hour mortality and 30-day readmis-

sion, and we demonstrate that the new framework is able to improve the prognostic

accuracy of the nominal scores significantly. Moreover, we develop a refined patient

risk classification based on real-time estimated risk levels and the new dimension of

uncertainty in risk assessment and further propose general guidelines for patient risk

monitoring under the new classification.

Chapter 3 further studies how to leverage the methodologies developed in Chap-

ter 2 to prescribe more personalized and evidence-based diagnostic tests. Diagnostic

test results account for 60% to 70% of all critical decisions, including medications,

further testing and discharges (Forsman, 1996). According to a recent report, the

global clinical diagnostic service market size reached $200.3 billion in 2020, represent-

ing a significant component of healthcare spending (Grand View Research, 2021).

However, about 20% to 30% of diagnostic tests have been identified as inappropriate

(Zhi et al., 2013a). In addition, diagnostic tests may lead to a number of negative

consequences, such as unnecessary patient discomfort, excessive utilization of phle-

botomy and additional blood transfusions (Eaton et al., 2017). It has drawn increas-

ing interest amid a growing emphasis on improving the effectiveness and efficiency

of diagnostic tests. Despite enormous attention and efforts that have been invested

in the medical field, there are no studies in operations management that address the

overutilization problem of diagnostic tests using real-time predictive analytics. In

this chapter, we propose a finite-horizon, partially observable Markov decision pro-

cess (POMDP) model to optimize the prescription of diagnostic tests in the detection

of acute diseases. Specifically, we build a real-time predictive model that incorporates
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frequently updated clinical information to estimate individuals’ disease progressions,

and we further employ the uncertainty interval to capture the ambiguity of the risk

assessment. We then embed the predictive model in the POMDP framework and

use the predictions and uncertainty intervals as observations for health belief updates

and decision-making support. We evaluate the performance of our model through

simulations and case studies in the ICU setting. Our results show that the proposed

framework is able to advance the detection time with fewer diagnostic tests. Our

analysis provides a new framework for hospitals, smart healthcare service providers

and governments to design optimal diagnostic testing policies, which plays a vital role

in managing medical resources and improving patients’ health outcomes.

Chapter 4 further considers human behavioral factors. Heterogeneity in individu-

als’ adherence to medications, medical interventions, and disease screening programs

has long been noted in healthcare, and numerous works have identified that individ-

ual behavioral factors contribute substantially to this phenomenon (e.g., Osterberg

and Blaschke, 2005, Morgan et al., 2015, Robiner, 2005). For example, Golman et al.

(2017) discuss several behavior factors that lead to information avoidance behav-

ior, including “optimism maintenance” (i.e., people are optimistic about their health

states and tend to dismiss the unwarranted information) and “risk, loss, and disap-

pointment aversion” (i.e., aversion of possible perceived disappointment or loss). In

this regard, it is crucial to incorporate individuals’ endogenous behavioral responses

when designing screening tests. In this chapter, we study the optimal initial test

design problem in the context of CRC screening. To detect cancer in the early stages,

two-stage screening programs are widely implemented in practice, where individuals

receiving positive outcomes in first-stage (initial) tests are recommended to under-

going second-stage tests for further diagnosis. The design of the initial test, i.e.,

selecting cut-off points for generating test outcomes, is crucial for screening effec-

tiveness and efficiency. In addition, it is observed that not all individuals receiving
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positive outcomes would follow up with the second-stage test; and the adherence

behavior is closely associated with the initial test cut-off point selection as it may

influence individuals’ trust on the test (Plumb et al., 2017, Lee and Lee, 2018). We

aim to balance the trade-off between test effectiveness (i.e., cancer detections) and

test efficiency (i.e., economic costs), considering individuals’ guideline adherence be-

havior. We adopt a Bayesian persuasion framework with information avoidance to

characterize the initial test design and the response from individuals to the screening

guideline and then leverage a nationwide survey conducted in Singapore to calibrate

the individual’s behavior. We show that under certain conditions, an initial test

with a binary outcome (i.e., a dichotomous test) is optimal for screening effective

maximization, and a continuous test is optimal for screening compliance maximiza-

tion. We further explore the benefits of using heterogeneous initial tests to different

sub-populations and apply the interpretable clustering technique to search for imple-

mentable rules in partitioning the population. We demonstrate that a well-designed

initial test is able to detect more cancer incidences with fewer second-stage tests

compared to current practice, and customized tests with an age-gender partition rule

would bring substantial benefits.

5



Chapter 2

Real-time Estimated SOFA Score with Intervals:

Improved Risk Monitoring with Estimated

Uncertainty in Health Condition for Patients in

ICU

2.1 Introduction

Sepsis, an inflammatory response to infection, is the leading cause of hospital deaths

(Hall et al. 2011, Liu et al. 2014, Paoli et al. 2018) and is a major component of

worldwide healthcare expenditures (Adhikari et al. 2010, Vincent et al. 2014, Rudd

et al. 2018). Sepsis accounted for more than $24 billion (13%) of total US hospital

expenses in 2013, and the number of sepsis cases is still on the rise (Paoli et al.

2018). SOFA score was designed to quantify organ dysfunction in sepsis (Vincent

et al. 1996, 1998), and it was later validated as a predictive marker of patients’

mortality in the ICU (Ferreira et al. 2001, Holder et al. 2017). SOFA score measures

the level of dysfunction for six organ systems: respiratory, cardiovascular, hepatic,

coagulation, renal, and neurological systems, and it contains 13 variables, including

vital signs, laboratory results, and medications. According to the new definition

of Sepsis 3 (Singer et al. 2016), organ dysfunction can be identified as an acute
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change in the SOFA score of 2 or more points, which is associated with an in-hospital

mortality greater than 10%. The definition emphasizes the paramount importance

and substantial benefits of timely updating the SOFA score.

However, since three components of the SOFA score—creatinine, platelets, and

bilirubin—require laboratory tests that are less frequently conducted than vital signs

(Singer et al. 2016, Kumwilaisak et al. 2008), it would be difficult to capture patients’

organ dysfunction in time. Although increasing the frequency of laboratory tests may

allow relatively early detection of deterioration, it could impose heavy financial bur-

dens on both patients and the health systems. It might also lead to over-utilization of

phlebotomy, decreased hemoglobin value, and, consequently, hospital-acquired ane-

mia (Raith et al. 2017, Finkelsztein et al. 2017). On the contrary, numerous in-

terventions have been implemented across multiple institutions to reduce laboratory

tests (Keehan et al. 2015, Tsujita et al. 2010). For example, an initiative of the ABIM

Foundation, Choosing Wisely, aims to decrease unnecessary medical tests, treatments,

and procedures (Salisbury et al. 2011). Furthermore, the turnaround time of a labo-

ratory test—the time between submitting the laboratory specimen and receiving the

results—could range from several hours to days (May et al. 2006, Eaton et al. 2017),

further increasing the difficulty of updating patients’ SOFA score in time. As a result,

SOFA scores calculated using lagged information are subject to the uncertainties in

the changes of patient conditions since the previous test. This partially contributed to

the criticism on the effectiveness of the SOFA score as a risk monitoring tool (Marik

and Taeb 2017, Freund et al. 2017).

To address this issue, a new measure named quick SOFA (qSOFA)—which only

uses bedside measurable variables including respiratory rate, mental status and sys-

tolic blood pressure—was proposed to act as a proxy of SOFA for early detection of

suspected sepsis (Singer et al. 2016). However, it was noted that qSOFA was less

robust than SOFA due to its simplicity (Singer et al. 2016), and there were also con-
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troversial views on the effectiveness of the qSOFA score (Marik and Taeb 2017, Hwang

et al. 2018). This chapter tries to develop an alternative approach to estimate SOFA

scores in real-time by leveraging machine learning techniques to mimic physicians’

practice. The idea is to construct machine learning models to estimate the real-time

values of less frequently updated laboratory test variables—in particular, creatinine,

platelets, and bilirubin—(for simplicity, we would refer to these variables as “test

variables”) using easily measured bedside variables (for simplicity, we would refer to

these variables as “bedside variables”). Then the predicted test variables would be

used to calculate an estimate of the real-time SOFA score. The proposed approach

can be viewed as an enhanced version of qSOFA that used machine learning models

to quantify the link between bedside variables and test variables. We also incorporate

the rate of changes in bedside variables and time lag from the previous test into these

machine learning models. This mimics how physicians assessed patient conditions in

practice and quantified the practice in a modeling framework to improve existing risk

monitoring systems.

The new approach not only provides a point estimate of the real-time SOFA

score, but we also take advantage of the estimated standard errors from these models

to construct intervals of the real-time test variables and SOFA scores. We hypothe-

size that such intervals could capture the uncertainty in patients’ health conditions

since the previous test and provide valuable information from a new dimension that

complements the point estimates of the SOFA scores. Based on the estimated un-

certainty in health conditions—which would be a new dimension of information that

complements the nominal risk level measured by the score—we could develop a more

refined risk classification for patients and provide more precise recommendations for

decision-making. Specifically, higher levels of estimated uncertainty could serve as a

piece of evidence to administer necessary diagnostic tests, which would help address

the issue of overtesting widely reported in practice (Clouzeau et al. 2019, Zhi et al.
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2013b). Using a dataset collected from an ICU from a tertiary hospital in Singapore,

we calibrate our model and validate the hypothesis by comparing the prognostic accu-

racy of the proposed approach on patients’ 24-hour mortality and 30-day readmission

with those from the SOFA score calculated using the conventional approach as well as

qSOFA. The proposed methodology could be applied to other risk scores to improve

their prognostic accuracy and improve their effectiveness in patient risk monitoring.

We also calibrate our models to improve MODS and LODS.

2.2 Materials and Methods

2.2.1 Data

Patients’ records are collected from the Cardiothoracic Intensive Care Unit (CTICU)

in the National University Hospital (Singapore) from March 2010 to October 2016.

The CTICU used the IntelliSpace Critical Care and Anesthesia (ICCA, a digital

tracking system provided by Philips) system to track patients’ clinical records in real-

time automatically. We collect patients’ demographic and clinical records throughout

the ICU stay, including vital signs, laboratory tests, medications, electrocardiography

(ECG), and nursing notes. This study is approved by the National Healthcare Group

(NHG) Domain Specific Review Board (DSRB) (Reference number: 2016/00062).

2.2.2 Outcomes and Measures

The primary outcome of the study is 24-hour mortality, and the 30-day readmis-

sion is also measured. The prognostic accuracy of the scores is assessed from two

perspectives: discriminative power and reclassification improvement. Discriminative

power refers to the model’s capability of differentiating patients with different risk

categories. We adopt Nagelkerke’s R Square and the area under the receiver oper-

ating characteristic (ROC) curve (AUC) to assess a model’s discriminative power.

Reclassification measures how well a new model reclassifies patients with different
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outcomes into correct risk categories than the benchmark model. We evaluate the

reclassification improvement by constructing a reclassification table and deriving the

Net Reclassification Improvement (NRI).

2.2.3 Models

We construct three ordinary least squares (OLS) models, using changes in bedside

variables, rates of changes in bedside variables, and the time lag since the last labora-

tory test to estimate real-time values of test variables—i.e., creatinine, platelets and

bilirubin—used in calculating SOFA scores. Let Xt denote bedside variables measured

at time t, and Yt denote a target test variable measured at time t. We use Figure 1 to

illustrate the process of the variable updating and the scheme of our models. Figure 1

depicts a timeline with five time points in consideration, t = t1, t2, t3, t4 and t5. Note

that these time points are not necessary separated by equal intervals. Since Xt are

easily measurable bedside variables, they could be updated at a high frequency (at

any time point with real-time monitoring systems), which is represented in Figure

1 that we could observe Xt at t = t1, t2, t3, t4 and t5. However, Yt is a laboratory

test variable that could only be updated when a test is conducted, so it is usually

updated at a lower frequency compared to Xt. For example, in Figure 1, we could

only observe Yt at t = t1 and t4, but we don’t observe the values of Yt at t = t2, t3,

and t4. We use ∆t to denote the time interval between the current time point t and

the last time when the test variable was updated, e.g., ∆t2 = t2 − t1, ∆t3 = t3 − t1

(because the latest update in the test variable before t3 happens at t1). ∆Xt denotes

the changes in bedside variables from the last time when the test variable is updated

to the current time point t, e.g., ∆Xt2 = Xt2 − Xt1 , ∆Xt3 = Xt3 − Xt1 . We define

∆Yt similarly, but note that we do not observe ∆Yt for all t.

Our models aims to predict ∆Yt using changes in bedside variables ∆Xt, rates of

changes in bedside variables ∆Xt
∆t

, and the time lag since the last laboratory test ∆t

10



Figure 2.1: Process of variable updating and scheme of predictive models
Note: In this figure, X updates at every checking point. Y is updated only at time
points t1 and t4. The model presented is built to predict Y at other time points.

to predict the change in the test variable ∆Yt, which could be used to estimate the

current value of Yt and then calculate an estimate of the current SOFA score for the

patient. Our models are summarized in the following equation:

∆Yt = α + β∆Xt + γ
∆Xt

∆t
+ τ∆t+ ε,

where α, β, γ and τ are regression coefficients, and ε is the random error term that

captured the unobservable factors that affect the changes in the test variables. The

models also provided confidence intervals (CIs) for estimated ∆Yt, from which we

could calculate the CIs and lengths of CIs (LoCIs) for estimated Yt.

We further derive CIs and LoCIs for estimated SOFA scores. If multiple test

variables are estimated at the same time point, we take the conservative approach

when calculating the LoCIs for the estimated SOFA score, i.e., the worst values

from the estimated CI of each test variable are taken to compute the worst value

of the estimated SOFA score, and the best values from the estimated CI of each

test variable are taken to compute the best value of the estimated SOFA score. In

this approach, we estimate the longest possible LoCI of the estimated SOFA score.

Specifically, we ignore correlations among the test variables1 and use 98.3% CI of the

three test variables and the conservative approach above to construct the 95% CI of

the estimated SOFA score (98.3%3 = 95%). All the reported CIs in this paper are

1The correlation coefficient of creatinine and bilirubin, of creatinine and platelets and of bilirubin
and platelets are -0.06, 0.01 and 0.2, respectively.

11



95% CI of the estimated variables or scores.

2.3 Results

A total of 5,351 patients are enrolled in our study. Among these patients, the mean

age is 59.9 years, and 3,960 (74.0%) are male. Of the study cohort, 263 (4.9%) died in

the hospital, and 197 (3.7%) were readmitted within 30 days. Table 2.1 summarizes

the demographics of the study population.

Characteristics Values

No. of patients 5,351
Age, mean (SD) [range], year 59.9 (13.6) [13, 99]
Male, n (%) 3,960 (74.0)
Race, n (%)
Chinese 3,504 (65.5)
Malay 807 (15.1)
Indian 434 (8.1)
Others 606 (11.3)
Died in hospital, n (%) 263 (4.9)
Readmitted in 30 days, n (%) 197 (3.7)

SD: standard deviation

Table 2.1: Demographics of the study population

We use a wide range of variables that could be easily measured or obtained at the

bedside to predict test variables, including vital signs, results from bedside arterial

blood gas (ABG) tests, bedside electrocardiograms, medication, and other readily

available variables in real-time. In the study ICU, the turnaround time of ABG using

point-of-care testing is less than 5 minutes. Note that we don’t require all of these

variables to be measured in real-time. Instead, our methods could be applied to

update the real-time SOFA score and estimate intervals as long as one or more of

these are updated. The list of complete beside variables is provided in the appendix.

We extract 746,357 time points of data when the beside variables are updated.

Among these time points, creatinine is updated 27,872 times (5.11%), platelets 28,936

times (5.31%), and bilirubin 6,049 times (1.11%). The average intervals between
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consecutive measurements are 22.12 hours, 21.28 hours, 40.83 hours for creatinine,

platelets, and bilirubin, respectively. More summary statistics of the test variables

were provided in Appendix A.1. For each test variable, we carry out 5-fold cross-

validation to select the combination of bedside variables that produces the lowest root

mean squared error in predicting the test variable. Next, we retrain the predictive

model for each test variable using the complete dataset. The final predictive models

for all the test variables are provided in Appendix A.2.

When testing the performance of our proposed approach to construct point esti-

mates and LoCI for real-time SOFA scores, we select the 445,753 time points of data

when all the test variables are estimated as the test set. These data points represent

the most challenging cases for the predictive models as only bedside variables are

available, and the real-time SOFA scores have to rely on a lot of estimated values

of the test variables. Among these test data points, 8,698 experienced in-hospital

mortality within 24 hours, and 197 were readmitted to the ICU within 30 days.

We first check whether the estimated LoCIs are predictive of 24-hour in-hospital

mortality. Table 2.2 summarizes the estimated LoCIs for all the test variables and

the estimated real-time SOFA score among different patient groups. The p-values are

derived from Welch’s t-tests. The estimated LoCIs of creatinine, platelets and SOFA

score are significantly larger (p < 0.001) among patients who died within 24 hours

than those who survived after 24 hours. These results show that the estimated LoCIs

are indicative of patient conditions, and larger intervals are associated with worse

outcomes in terms of 24-hour mortality. Before presenting the multivariate analyses

to confirm the benefits of using estimated LoCI to monitor patient conditions, we

plot the score trajectories of two typical patients during their ICU stays in Figure

2.2—one survived (Figure 2.2a), but the other died in the hospital (Figure 2.2b)—to

illustrate the value of constructed score intervals.

Figure 2.2a shows that the patient’s SOFA score calculated from the conventional
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All Patients Survived ≥ 24 h Died < 24 h
p-value

(n = 445,753) (n = 437,055) Died (n = 8,698)

LoCI of estimated Creatinine 3.193 3.155 5.102 < 0.001∗∗∗

LoCI of estimated Platelets 3.306 3.268 5.249 < 0.001∗∗∗

LoCI of estimated Bilirubin 5.232 5.218 5.935 < 0.01∗∗

LoCI of estimated SOFA score 0.342 0.341 0.408 < 0.001∗∗∗

LoCI: length of confidence interval; SOFA: sequential organ failure assessment
(Significance Level: 0 ’***’; 0.001 ‘**’; 0.01 ‘*’)

Table 2.2: Estimated LoCIs of test variables and SOFA score among all patients,
patients survived ≥ 24 hours, and patients died < 24 hours
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Figure 2.2: Trajectories of SOFA scores and estimated real-time SOFA scores with
intervals during two patients’ ICU stays
Conventional Value: SOFA score calculated from the conventional approach without
using estimated test variables
Upper Bound: constructed upper bound of the estimated real-time SOFA score.
Lower Bound: constructed lower bound of the estimated real-time SOFA score.
LoCI: length of confidence interval (LoCI) of the estimated real-time SOFA score,
i.e., Upper Bound – Lower Bound.
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approach is quite stable towards the end of the ICU stay, but the patient eventually

died, which indicates that the SOFA score fails to provide a warning before the ad-

verse event. However, the constructed intervals for the estimated SOFA score from

our approach fluctuate during the patient’s ICU stay and increases significantly to-

wards the end of the stay. This demonstrates how the constructed intervals could

identify the uncertainty in patient conditions when the laboratory tests are not con-

ducted and provide early warning when the conventional SOFA calculation fails. For

another patient showed in Figure 2.2b, the estimated intervals stay zero throughout

the patient’s ICU stay, which indicates our confidence in the real-time SOFA score,

and the patient condition was truly stable.

To demonstrate the values of our proposed approach to estimate real-time SOFA

scores and construct the intervals, we compare five logistic regression models in pre-

dicting patients’ 24-hour mortality with different sets of predictors: (1) SOFA score

calculated with the conventional method (for simplicity, we would refer to this as

SOFA score below); (2) SOFA score and LoCI of estimated real-time SOFA score; (3)

estimated real-time SOFA score and its LoCI; (4) estimated real-time SOFA score

and estimated test variables’ LoCIs; (5) qSOFA score. We refer to these models as

Model 1, Model 2, Model 3, Model 4, and Model 5, respectively, and Model 1 is the

base model. Table 2.3 summarizes the regression coefficients for these models.

We observe that in Models 2-4, the odds ratio of the LoCIs for estimated SOFA

scores and test variables are all significantly greater than 1 (p < 0.05), implying

that larger LoCIs were associated with a higher risk of 24-hour mortality. In Models

2 and 3, even after controlling for the SOFA score and estimated SOFA score, the

LoCI of the estimated SOFA score is still statistically significant in predicting 24-hour

mortality. This result confirms that the constructed intervals provide additional value

in capturing patient health conditions, as hypothesized before. The LoCIs for the test

variables also provide such additional values.
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Coefficients Std. Error Odds ratios p-value
(n = 445,753) (n = 437,055) Died (n = 8,698)

Model 1
SOFA score 0.3860 0.0033 1.4712 < 0.001∗∗∗

Model 2
SOFA score 0.3935 0.0034 1.4822 < 0.001∗∗∗

LoCI of estimated SOFA score 0.3714 0.0185 1.4497 < 0.001∗∗∗

Model 3
Estimated SOFA score 0.3983 0.0034 1.4894 < 0.001∗∗∗

LoCI of estimated SOFA score 0.2711 0.0184 1.3115 < 0.001∗∗∗

Model 4
Estimated SOFA score 0.3854 0.0034 1.4703 < 0.001∗∗∗

LoCI of estimated Creatinine 0.0954 0.0028 1.1001 < 0.001∗∗∗

LoCI of estimated Platelet 0.0997 0.0023 1.1049 < 0.001∗∗∗

LoCI of estimated Bilirubin 0.0014 0.0005 1.0014 < 0.05∗

Model 5
qSOFA score 1.2465 0.0132 3.4782 < 0.001∗∗∗

LoCI: length of confidence interval; SOFA: sequential organ failure assessment; qSOFA: quick
SOFA
(Significance Level: 0 ’***’; 0.001 ‘**’; 0.01 ‘*’)

Table 2.3: Regression coefficients of models on predicting patients’ 24-hour mortality

To assess the first four models’ predictive power, we first conduct the likelihood

ratio tests (Steyerberg et al. 2012, Deeks and Altman 2004) to determine if the ob-

served difference in the model fit is statistically significant. We find that Models 2, 3,

and 4 exhibit significant deviance reductions (p < 0.001) compared to the base model

(i.e., Model 1), in which the SOFA score is the only predictor. Next, we calculate

these five model’s Nagelkerke’s R-squareds, which measure the goodness of fit of the

logistic regression model to the data. We observe that Nagelkerke’s R-squareds in-

crease in the first four models (Table 3), indicating that using the estimated real-time

SOFA score and adding the constructed intervals for the score and test variables im-

prove the models’ fit to the data. Model 5’s Nagelkerke’s R-squared is significantly

worse (p < 0.001) than the other four models, indicating that the qSOFA score does

not fit well in our study population and is inferior to the proposed approach leverag-

ing bedside variables to estimate the real-time SOFA score. To assess these models’
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discriminative power, we generate their ROC curves (Figure 2.3) and compare their

AUCs (Table 2.4). Model 4—which uses estimated real-time SOFA score and test

variables’ LoCIs—has the highest AUC. Again, qSOFA has the worst discriminative

power in our study population.

Model 1 Model 2 Model 3 Model 4 Model 5

Nagelkerke’s R square 0.185 0.189 0.197 0.224 0.125
AUC 0.843 0.844 0.844 0.870 0.778

Model 1: using SOFA (sequential organ failure assessment) score only; Model
2: using SOFA score and LoCI (length of confidence interval) of estimated
real-time SOFA score; Model 3: using estimated real-time SOFA score and
its LoCI; Model 4: using estimated real-time SOFA score and estimated test
variables’ LoCIs; Model 5: using qSOFA (quick SOFA) score; AUC: area
under the receiver operating characteristic curve

Table 2.4: Performance comparison between models on predicting patients’ 24-hour
mortality

Next, we focus on Model 4 and investigate its reclassification improvement over

the base model. NRI is a popular measure to evaluate improved discrimination by

a new model versus the benchmark model (Pencina et al., 2011, Steyerberg et al.,

2012, Leening et al., 2014, Alba et al., 2017). We consider three risk levels for 24-

hour mortality, 0–5%, 5–10%, and > 10%, and develop the reclassification table as

shown in Table 4. Among 8,698 data points in which patients died within 24 hours,

Model 4 correctly reclassifies 2,101 (= 755 + 396 + 950) cases from lower risk levels

to higher risk levels compared to the predictions from the base model; while it only

makes 501 (= 301 + 0 + 200) worse predictions. Among 437,055 data points in which

patients survived 24 hours, Model 4 makes 10,080 improved reclassifications and 9,965

worsened reclassifications. Overall, 18.42% cases are correctly reclassified by Model

4, i.e., NRI = 0.1842 (p < 0.001). We also calculate continuous NRI, which does

not depend on the choice of risk-level cut-offs but captured the proportion of changes

in predicted risk in the correct direction versus the proportion of changes in the

wrong direction. The continuous NRI is 0.6960 (95% CI, 0.6751–0.7169, (p < 0.001)),
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Figure 2.3: ROC curves of models on predicting patients’ 24-hour mortality
Model 1: using SOFA (sequential organ failure assessment) score only; Model 2: using
SOFA score and LoCI length of confidence interval) of estimated real-time SOFA
score; Model 3: using estimated real-time SOFA score and its LoCI; Model 4: using
estimated real-time SOFA score and estimated test variables’ LoCIs; Model 5: using
qSOFA (quick SOFA) score; AUC: area under the receiver operating characteristic
curve

which indicates the significantly improved discriminative capability of our model. We

further compute the integrated discrimination improvement (IDI), which integrates

the NRI over all possible risk-level cut-offs and is mathematically equivalent to the

difference in discrimination slopes of the two models in comparison (identical to the

difference in Pearson R-squared) (Pencina et al., 2012). The IDI is 0.0344 (95% CI,

0.0325–0.0363, (p < 0.001)), which further confirms the superiority of Model 4 over

the base model.

We carry out the same comparison between the models for 30-day readmission,

which is known to be a tough outcome to predict for ICU patients (Desautels et al.

2017). From Table 2.6, it is observed that 30-day readmission is indeed challenging

to predict, but our method, especially Model 4, significantly improves the model fit

and discriminative power over the base model. The results confirm the importance

of capturing the uncertainty in patient conditions through the estimated intervals for
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Predicted risk from Model 4, %

Predicted risk from Model 1, % 0-5 5-10 >10 Total

Died < 24 h
0-5 3,267 755 396 4418
5-10 301 1,094 950 2345
>10 0 200 1,735 1935
Total 3,568 2,049 3,081 8698

Survived ≥ 24 h
0-5 394,258 5,749 1,496 387898
5-10 6,362 12,978 2,720 18023
>10 1 3,717 9,774 39832
Total 400,621 22,444 13,990 437055

Model 1: using SOFA (sequential organ failure assessment) score only;
Model 4: using estimated real-time SOFA score and estimated test
variables’ LoCIs (lengths of confidence intervals); Dark grey shaded
numbers indicated improved reclassification by Model 4 over Model
1; Light grey shaded numbers indicated worsened reclassification by
Model 4 over Model 1.

Table 2.5: Reclassification table (risk categories: 0 – 5%, 5 – 10%, > 10%)

lagged test variables. We also consider other outcome measures, including 12- and

36-hour mortality. The findings are consistent with other outcomes and confirm the

superior performance of Model 4. Detailed results are presented in Table 2.7.

To validate that our method can improve other risk scores, we consider another

two commonly used scores in ICUs, MODS and LODS. The test variables used in

MODS are the same as SOFA, but LODS uses three more test variables, urea, white

blood cell and prothrombin time. We carry out the same procedure to train the

models to predict the new test variables, and the final models are presented in the

appendix. Next, we conduct the same comparison between four logistic regression

models to predict the outcomes using different sets of predictors: (1) the original score

(either MODS or LODS) calculated with the conventional method (for simplicity, we

would refer to this as the original score below); (2) the original score and LoCI of the

estimated real-time score; (3) estimated real-time score and its LoCI; (4) estimated
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Model 1 Model 2 Model 3 Model 4 Model 5

Nagelkerke’s R Square 0.002 0.002 0.002 0.041 0.001
AUC 0.550 0.550 0.550 0.663 0.518

Model 1: using SOFA (sequential organ failure assessment) score only; Model
2: using SOFA score and LoCI (length of confidence interval) of estimated
real-time SOFA score; Model 3: using estimated real-time SOFA score and
its LoCI; Model 4: using estimated real-time SOFA score and estimated test
variables’ LoCIs; Model 5: using qSOFA (quick SOFA) score; AUC: area under
the receiver operating characteristic curve.

Table 2.6: Performance comparison between models on predicting 30-day readmission

Prediction Evaluation Model 1 Model 2 Model 3 Model 4 Model 5

12-hour mortality
Nagelkerke’s R Square 0.190 0.199 0.211 0.255 0.129

AUC 0.866 0.866 0.872 0.898 0.801

36-hour mortality
Nagelkerke’s R Square 0.188 0.192 0.197 0.228 0.124

AUC 0.833 0.833 0.833 0.856 0.766

Model 1: using SOFA (sequential organ failure assessment) score only; Model 2: using SOFA
score and LoCI (length of confidence interval) of estimated real-time SOFA score; Model 3: using
estimated real-time SOFA score and its LoCI; Model 4: using estimated real-time SOFA score and
estimated test variables’ LoCIs; Model 5: using qSOFA (quick SOFA) score; AUC: area under the
receiver operating characteristic curve

Table 2.7: Performance comparison between models on predicting patients’ 12-hour,
36-hour mortality

real-time score and estimated test variables’ LoCIs. The detailed results are presented

in Table 2.8. We observe the same findings—using the estimated real-time score

with constructed intervals for test variables (i.e., Model 4) performed the best in all

outcomes and significantly improved the base model (i.e., Model 1) for both MODS

and LODS.

2.4 Discussion

The onset of organ dysfunction is associated with higher mortality and complication

rates, making timely detection of deterioration and intervention crucial to critically ill

patients. The SOFA score has been validated as an effective risk measure of patient

conditions and is widely adopted in clinical practice for risk monitoring. Nevertheless,
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Score Prediction Evaluation Model 1 Model 2 Model 3 Model 4

MODS

12-hour mortality
Nagelkerke’s R Square 0.210 0.210 0.218 0.238

AUC 0.872 0.873 0.878 0.897

24-hour mortality
Nagelkerke’s R Square 0.205 0.206 0.209 0.231

AUC 0.852 0.852 0.854 0.874

36-hour mortality
Nagelkerke’s R Square 0.211 0.212 0.214 0.234

AUC 0.845 0.845 0.846 0.964

30-day readmission
Nagelkerke’s R Square 0.003 0.003 0.003 0.012

AUC 0.552 0.551 0.549 0.647

LODS

12-hour mortality
Nagelkerke’s R Square 0.258 0.261 0.267 0.339

AUC 0.894 0.895 0.919 0.920

24-hour mortality
Nagelkerke’s R Square 0.242 0.244 0.249 0.297

AUC 0.870 0.871 0.874 0.892

36-hour mortality
Nagelkerke’s R Square 0.235 0.237 0.243 0.280

AUC 0.856 0.857 0.860 0.876

30-day readmission
Nagelkerke’s R Square 0.005 0.004 0.005 0.121

AUC 0.578 0.581 0.584 0.666

Model 1: using the original score score only; Model 2: using the original score and LoCI (length
of confidence interval) of estimated real-time score; Model 3: using estimated real-time score and
its LoCI; Model 4: using estimated real-time score and estimated test variables’ LoCIs; AUC: area
under the receiver operating characteristic curve

Table 2.8: Performance comparison between models on predicting different outcomes
for MODS and LODS

the effectiveness of the SOFA score as a risk monitoring tool has been questioned,

partially because some key clinical variables (creatinine, bilirubin and platelets) used

in calculating the SOFA score are typically not frequently tested in clinical practice.

Hence, it is essential to establish a risk monitoring system that captures patient

conditions in real-time for organ function surveillance (Ferreira et al. 2001). qSOFA

was proposed to address this issue using a handful of bedside variables and easy

calculation. Its simplistic structure, however, rendered its effectiveness in capturing

patient conditions. We identifies this critical time lag in calculating SOFA scores and

potentially many other risk scores. To address this issue, we develop a framework

to mimic how physicians assessed patient conditions in practice and develop machine

learning models to estimate the real-time values of the test variables using easily

obtained bedside variables and information. We further leverage these models to
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construct intervals for test variables to quantify the uncertainty in conditions a patient

might have developed since the previous test.

Shickel et al. (2019)) and Aşuroğlu and Oğul 2021 recently demonstrated that us-

ing latent and frequently updated clinical information to predict the real-time SOFA

score could improve the effectiveness of the SOFA score under deep learning frame-

works. Our study goes a step further, showing that capturing the uncertainty in

patient conditions can also be critical for risk monitoring systems. Without real-time

laboratory tests, a patient’s true condition is uncertain and could only be partially

reflected by other observable information. In practice, physicians attend to the pa-

tients and assess their conditions using information available at the bedside as well

as lagged laboratory test reports. The physicians might form some estimates about

the real-time value of those unobservable variables—which, even if tested, could only

be available after some time—and make decisions based on their estimates. Dur-

ing such a process, the physicians are aware of the uncertainty in their estimates

and would certainly take such uncertainty or confidence of their estimates into their

decision-making process. Our proposed modeling framework mimick such processes

and quantify both the estimates and the uncertainties in the estimates of test vari-

ables through constructed confidence intervals. We demonstrate that these intervals

could accurately reflect the uncertainties in patient conditions and provide additional

value in real-time patient risk monitoring.

With enhanced patient monitoring systems that quantify the uncertainties in risk

assessment, we can refine the guidelines for decision-making interventions. Figure 2.4

proposes a refined patient classification based on real-time estimated risk score (e.g.,

SOFA, MODS, LODS) and estimates uncertainties in risk assessment, which could

be obtained from constructed intervals from our approach. This is an exemplary

scheme, and one could certainly have more granular stratification in each dimension.

For patients in different risk groups (Figure 2.4), we propose recommended decisions

22



correspondingly. If a patient is assessed with low risk and low uncertainty, the patient

is in relatively good and stable condition; physicians can continue to monitor the

patient as usual, and such a patient could be considered for discharge from ICU. If

a patient is assessed with low risk but high uncertainty, the patient’s condition is

not stable, and there is a nonnegligible chance that the patient’s actual condition

is worse; physicians are advised to prescribe relevant tests to find out the actual

condition based on the variables which have large estimated intervals; the patient

should not be considered for discharge. If a patient is assessed with high risk and low

uncertainty, physicians can confirm that the patient is in poor condition with known

issues revealed by the score, and necessary interventions should be taken immediately.

If a patient is assessed with high risk and high uncertainty, the actual condition

could be even worse, and there could be unknown organ dysfunctions; the immediate

recommendation is to prescribe relevant tests to confirm the exact organ dysfunctions

and initiate some interventions; at the same time, the patient should be monitored

closely, and appropriate adjustments to the interventions should be taken if necessary

depending on the test outcomes.

Figure 2.4: Intervene instructions

Leveraging the estimated uncertainty in patient conditions, this chapter sheds
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light on the clinical practice regarding when to order laboratory tests. In practice,

many laboratory tests are conducted routinely in ICU to monitor patient conditions.

For example, in our study ICU, a renal panel is usually performed once a day. It could

be performed more frequently (e.g., twice a day) for relatively high-risk patients but

with fixed and equally spread intervals throughout the day. Moreover, it is widely

reported that many laboratory tests are inappropriately used in practice (Clouzeau

et al. 2019). For example, 20%-30% of diagnostic tests are identified as inappropriate

in a meta-analysis (Zhi et al. 2013b). Our methods could be viewed as a tool to trigger

on-demand laboratory tests for patients with estimated high uncertainties in their

conditions. With the integration of real-time clinical information, the enhanced risk

monitoring system could provide validated real-time risk assessment with validated

uncertainties in such assessment to the physicians. The need for any (additional)

laboratory tests would then be based on quantified and validated evidence, which can

reduce unnecessary and repeated testing.

Our study has the following limitations. First, our results are based on analyzing

the data from a single center. Although the methodology is general enough to enhance

any risk scores, the improvement might differ in other units. Second, we only test the

enhancement for a few risk scores, i.e., SOFA, MODS and LODS. There are many

other risk scores developed in the literature and implemented in practice, which we

could not exhaust in this study. Finally, the study is based on a retrospective patient

cohort. A prospective randomized clinical trial would be required to confirm and

validate the benefits of enhanced risk monitoring systems.

2.5 Conclusion

This chapter proposes a new framework to estimate the real-time values of risk as-

sessment scores for patient monitoring in ICUs. We develop machine learning models

to estimate the real-time values of the laboratory test variables used to calculate
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the scores and then compute estimates of real-time score values. We leverage the

estimated confidence intervals in the test variables to quantify the uncertainty in

patients’ health conditions from the previous tests. We validate that such intervals

provide significant additional values for risk monitoring in real-time. The proposed

method provides a foundation for finer patient risk classification and decision recom-

mendation. In particular, the estimated uncertainty in patients’ health conditions

could be used to trigger on-demand laboratory tests. External validation and clinical

tries are warranted to confirm the benefits of enhanced risk monitoring systems.
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Chapter 3

A Predictive and Prescriptive Method to Reduce

Repetitive Tests

3.1 Introduction

The global healthcare expenditure has risen drastically in recent years, yielding a

higher annual growth rate relative to Gross National Product (Hernández-Peña,

2019). Due to this unsustainable phenomenon, there is a growing interest in pro-

moting high-value medical care initiatives, in which the overuse of diagnostic tests

has attracted significant attention (Eaton et al. 2017). Notably, the global clinical

diagnostic service market size has reached $200.3 billion in 2020 and is expected to

expand at a compound annual growth rate of 4.7% from 2021 to 2028 (Grand View

Research 2021), while 20% to 30% of all diagnostic tests are identified as inappro-

priate (Zhi et al. 2013a). In addition to the heavy financial burden that the overuse

problem imposes on patients and the healthcare system, it also results in many neg-

ative consequences such as unnecessary patient discomfort, excessive utilization of

phlebotomy, decreased hemoglobin values, and hospital-acquired anemia, which fur-

ther leads to additional blood transfusions, increased mortality, and prolonged length

of stay (LOS) for hospitalized patients (Eaton et al. 2017, Cheng et al. 2019). There-

fore, it is crucial to address the diagnostic overutilization issue from both economic
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and health considerations.

The overutilization of diagnostic tests, most of which are in the form of unneces-

sary repetitive tests, is particularly prevalent in intensive care units (ICUs) (Beriault

et al. 2021). ICUs cater to critically ill patients who are in need of close monitor-

ing, imminent intervention, and life-sustaining treatment to restore or maintain organ

function. In ICUs, timely tracking of patient physiologic indicators is essential for

physicians to identify potential organ dysfunction and acute deterioration of patients.

For example, systolic blood pressure at or below 90 mmHg or diastolic blood pressure

at or below 60 mmHg is typically considered hypotension, which leads to inadequate

blood flow to body organs and may contribute to stroke, heart attack, kidney failure

and shock if not promptly intervened (Chalmers et al., 2008, Feldstein and Weder,

2012). Glucose level serves as a key indicator of hyperglycemia, that if a patient’s

glucose level is above 10 mmol/L, insulin therapy should be initiated immediately

in case of increased mortality and hyperglycemia-associated complication rates (Ichai

and Preiser, 2010). Although patients’ basic physiological parameters (e.g., blood

pressure, respiratory rate) can be tracked bedside with the real-time monitoring sys-

tem, there are still various critical indicators that require invasive or expensive di-

agnostic tests (e.g., white blood cell counts, glucose level). In fact, diagnostic test

results leverage 60% to 70% of all critical decisions, including medications, further

testing and discharges (Forsman, 1996). Repetitive tests enable physicians to identify

patients’ physical problems and confirm their condition, while failure in the timely

update of key indicators may adversely contribute to delayed treatments, prolonged

LOS and higher mortality rate (Ong et al., 2018).

In addition, the overutilization of diagnostic tests also stems from the smart

healthcare system. With the advancement of information technology, the smart

healthcare market has been rapidly emerging in recent years. Smart healthcare,

which aims to provide more convenient and personalized healthcare services as well
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as achieve efficient and effective utilization of healthcare resources, has gained exten-

sive attention owing to the growing demand for early detection of diseases and pre-

ventive care (Tian et al. 2019). For example, the Singapore government contracted

with Fitbit, Inc., which is a smart healthcare provider, to provide health trackers and

services to up to one million Singapore citizens as part of the development of the

smart city ecosystem (Reuters, 2019). Serving as an essential pillar in the modern

concept of smart city, smart wearable health devices (WHDs) have evolved to respond

to the demands of early detection and preventive care by providing real-time health

status monitoring services (Aziz et al., 2016). For instance, Apple Watch provides

early notification for atrial fibrillation by real-time tracking the user’s heart rate and

heart rate variability using photoplethysmography; HeartGuide, which is also a smart

WHD, provides early notification of hypertension by real-time tracking users’ blood

pressure. Individuals who receive early warnings of deterioration may subsequently

seek further medical assistance. However, as pointed out by Baig and Gholamhosseini

(2013) and Vogt et al. (2019), the false positive (FP) rates of smart WHDs are very

high, which could consequently give rise to hospital congestion and waste of medical

resources.

Thus motivated, we aim to balance the trade-off between the overutilization of

diagnostic tests and the delayed identification of individuals’ deterioration. In this

chapter, we adopt a POMDP framework to characterize the optimal time to prescribe

a diagnostic test. Specifically, we focus on acute diseases and put our sights on real-

time health monitoring contexts, where inpatients or users continuously or frequently

receive routine, harmless, and cheap (or free) medical tests (e.g., heart rate and

blood pressure tests). Given that the individual’s critical clinical indicators may not

be frequently updated, the true progression of the patient’s status cannot be fully

observed in real-time. Utilizing all frequently updated physiological parameters as

predictors, we propose a real-time prediction model to estimate key indicators for
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some acute diseases (e.g., glucose levels for hyperglycemia) and calculate an interval

to capture the uncertainty of the prediction. We further embed the predictive model

into the modeling framework to determine whether to order a diagnostic test in each

decision epoch.

We illustrate the performance of our framework through comprehensive simula-

tions and case studies. Specifically, we study the optimal testing policy for detecting

hyperglycemia in an ICU with real data. We demonstrate the benefits of the pro-

posed model compared to practical benchmark policies across multiple metrics (e.g.,

the number of diagnostic tests, detection time).

This chapter makes the following key contributions:

(1) To the best of our knowledge, this is the first work in operations management

to address the overutilization problem of diagnostic tests in healthcare services using

real-time predictive analytics. We propose a POMDP framework that incorporates a

prediction model to characterize the optimal prescription diagnostic tests.

(2) In contrast to the static or age-specific information matrices (also known as

observation matrices) that are extensively applied in the disease screening literature,

we develop a prediction model that integrates the time lag of key indicators (i.e., the

time elapsed from the last testing epoch) and the dynamic changes in patient phys-

iological parameters to construct the observation consisting of a predicted outcome

and an uncertainty interval. We then estimate the information matrices with respect

to the time lag to capture the time effect of the prediction. In addition, we consider

a maximum allowed time lag in the modeling framework (i.e., patients are required

to receive at least one diagnostic test within a given time period). All these features

differentiate our study from conventional POMDP models and render it more in line

with real practices.

(3) Based on results from simulation and the case study, we demonstrate the

significant benefits of the optimal testing policy generated by our modeling framework
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compared with some practical benchmark policies. Specifically, our framework can

advance the detection time with few tests in hyperglycemia detection.

3.2 Literature Review

Our work, which adopts predictive and prescriptive methods to reduce repetitive

diagnostic tests, is closely related to the literature on optimizing diagnostic testing

policy in both medical and management areas.

There are extensive researches on reducing unnecessary diagnostic tests for acute

diseases in the medical area. Most of them focus on deriving heuristic policies that

are easy to implement to tackle the overuse problem. For example, Le Maguet et al.

(2015), Iturrate et al. (2016) and Dhanani et al. (2018) address the overutilization

of diagnostic testing problem by changing the culture of tests ordering and/or the

features of electronic ordering systems, and they illustrate the effectiveness of the

proposed methods by experimental studies. Medical researchers also adopt simula-

tion methods to derive the diagnostic testing policy by evaluating the performance

of various routine and heuristic testing policies. However, they focus on the utiliza-

tion of diagnostic testing in the context of chronic disease. For example, to balance

the mortality rate, life-years gained, and relevant cost, Boer et al. (1998) propose a

computer simulation model to evaluate the performances of different breast screening

policies. Michaelson et al. (1999) develop a simulation model to determine the opti-

mal screening policy by comparing the cost-benefit consequences of different screening

intervals. McLay et al. (2010) develop a simulation-optimization model which sug-

gests age-based screening optimal policies for cervical cancer under a cost-effectiveness

framework. They state that their proposed dynamic policy can approximately achieve

the same health benefit with fewer scheduled screenings when compared with the rec-

ommended policy. For a comprehensive review of medical papers on the proper use

of diagnostic tests, please refer to Bindraban et al. (2018) and Koleva-Kolarova et al.
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(2015). Our work is greatly different from these researches as we focus on optimiz-

ing diagnostic testing strategies with analytical optimization models in acute disease

contexts.

Operations research and optimization techniques have also been widely applied in

developing diagnostic testing strategies with analytical models. To the best of our

knowledge, most prior works on diagnostic testing in the operations research litera-

ture focus on optimizing screening tests for chronic disease. For example, Lee and

Pierskalla (1988) investigate the diagnostic screening problem for contagious diseases

by developing a screening optimization model with little or no latent periods. They

derive the optimal screening policy by minimizing the average number of infected

people in the population. Özekici and Pliska (1991) study the optimal inspection

problem with a delayed Markov process. Their objective is to minimize the total

expected cost associated with the sensitivity and specificity of the test. Assuming

stationary disease aggression, they apply their model to a cancer screening setting

and derive the optimal screening policy. Parmigiani (1993) propose a continuous-

time non-Markovian stochastic model to analyze the diagnostic testing problem with

error-free tests and derive the optimal inspection policy from the cost minimization

perspective. For breast cancer biopsy based on mammography observations, Chhat-

wal et al. (2010) use a Markov decision process to model the problem and compute

the optimal screening policy by maximizing the expected quality-adjusted life years

(QALYs). However, this chapter focuses on the overuse of repetitive diagnostic tests

in acute disease settings where patients are in emergent status and usually require lots

of diagnostic tests for assessment. Our work further differs by modeling the diagnostic

testing problem with a predictive model embedded POMDP framework.

A substream of the literature that is closely related to our work is about the use

of POMDP in developing optimal screening policies for various cancers. Utilizing

the sensitivity and specificity of mammography as observation probabilities, Maillart
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et al. (2008) evaluate some age-dependent screening policies using a POMDP model

with sample-path enumeration in a breast cancer screening problem. They try to

identify efficient screening policies for different patient groups to balance the associ-

ated mortality risk of breast cancer and the implementation effort of screening. Ayer

et al. (2012) propose a POMDP approach to personalize mammography screening de-

cisions based on patients’ historical screening results and risk characteristics. Given

that mammography screening has high potential risks (e.g., high FP rate), in their

paper, they try to maximize the total expected QALY for each patient by considering

the costs associated with the QALY losses of underuse and overuse of mammography

screening. Under a similar setting, Ayer et al. (2016) further incorporate imperfect

and heterogeneous adherence behaviors and breast cancer risk in their model to derive

the optimal screening policy. Similarly, Zhang et al. (2012) and Erenay et al. (2014)

develop POMDP models to address the screening problem for prostate cancer and

colorectal cancer, respectively. They derive the optimal screening policies by maxi-

mizing the expected QALYs by considering the QALYs loss associated with one-time

screening and long-term benefits. We refer the readers to Alagoz (2011) for a more

comprehensive review of the application of POMDP in screening problems.

In line with this stream of literature, we also develop a POMDP framework to ad-

dress the overuse of medical tests problem. However, our work differs from these works

in one or more critical ways. First, instead of studying the screening problems under

chronic disease settings, we focus on acute disease contexts. Second, we consider a

maximum allowed test interval in the testing policy, which renders it more in line with

real practices and greatly differentiates it from conventional POMDP models. Third,

we embed a predictive model with real-time patients’ risk data in the POMDP frame-

work and construct the information matrices based on the predictions. However, the

mentioned POMDP application literature usually constructs the information matrix

considering the specificity and sensitivity of diagnostic tests. Moreover, as pointed
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out by Jenkins et al. (2018), clinical prediction models are quickly becoming outdated

and less accurate over time due to accumulated uncertainty. We consider this new

feature in our predictive model. As a result, our information matrices are also time-

dependent, which further distinguishes our model from other conventional POMDP

models.

Our work is also related to the literature on developing predictive and prescriptive

methods for optimal diagnostic testing control. For example, To address the proper

use of lab testing problems in the hospital, Cismondi et al. (2013) develop a binary

classifier using fuzzy modeling to determine whether a lab test should be adminis-

tered or not based on the information gain from the predicted lab results. However,

they do not optimize the decision based on the predictive information. Cheng et al.

(2019) consider the optimal diagnostic testing problem with an MDP—Reinforcement

Learning (RL) framework. They first adapt the multi-output Gaussian process to de-

rive the hourly predictions of non-frequent update clinical variables. Second, they

use MDP to model patient trajectories by using the predictions as the state. In

their model, they construct a vector-valued reward function to address the trade-off

among different objectives. Finally, they use the reinforcement learning method to

derive the lab testing policy. Our work critically differs from Cheng et al. (2019) in

the following aspects. First, we use a POMDP analytical framework to model the

problem with considering patients’ states are partially observable. Second, instead of

only considering the time lag in the state space, we further consider its impact on pre-

diction accuracy. Last but not the least, they apply a vector-valued reward function

to address the trade-off between the over-ordering and under-ordering of any given

lab test; however, we focus on a one dimension reward function. This chapter also

broadly relates to literature on developing predictive and prescriptive framework for

healthcare services, e.g., Bertsimas et al. (2016), Spencer et al. (2014), Xu (2015), and

Xu and Chan (2016) use predictive information to optimize healthcare decisions in
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different contexts. Similar to these works, we aim to incorporate real-time predictive

information into dynamic prescriptive analytics to provide real-time decision support

on recommending diagnostic tests. Our model features the dynamic change in the ac-

curacy of predictive information and captures the practice of maximum recommended

test interval, and thus differs from the methodologies developed in the above papers.

Outline of this chapter : The rest of the paper is organized as follows. Relevant

literature is reviewed in Section 3.2. We describe the problem setting and framework

with the POMDP model in Section 3.3. In Section 3.4, we convert the optimality

equations of the POMDP model into an alternative form and propose a modified

pruning algorithm based on the new representation. In Section 3.5, we present ex-

tensive numerical experiments to evaluate the performance of the proposed model

and policy. Section 3.6 applies our framework to blood glucose monitoring in an ICU

and evaluates the model’s performance using real data. We conclude our work with

a discussion of limitations in section 3.7.

3.3 Model

In ICUs, while patients’ vital signs can be monitored in real-time at the bedside via

electronic monitoring systems, indicators that require diagnostic tests (e.g., glucose

level, creatinine level) cannot be directly observed, that physicians need to order di-

agnostic tests to learn the exact health status of patients (e.g., have hyperglycemia or

not). However, some of these indicators serve as key signs for some acute diseases that

require timely initiation of interventions (e.g., glucose levels for hyperglycemia, cre-

atinine levels for acute kidney disease). As noted earlier, frequent diagnostic testing

may increase patients’ financial burden and clinical risk, while the underuse of diag-

nostic tests may delay the detection of disease progression and subsequently lead to

delayed treatment. To balance the trade-off between test overutilization and delayed

treatment, we formulate it as a sequential decision model based on a discrete-time
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Figure 3.1: Event Flow

finite-horizon POMDP framework.

Suppose the true value of the key indicator, which reflects a patient’s health status,

is known before the process starts. Physicians hold prior beliefs about patients’ health

status. In the following epochs, physicians have to determine whether to order a

diagnostic test to update the key indicator based on frequently updated information

and patients’ historical information. Specifically, we leverage such information to

predict the key indicator and introduce an interval to capture the uncertainty of the

prediction. Notably, the time lag from the last testing epoch could possibly influence

the prediction accuracy; therefore, we also incorporate this feature in our framework,

and we further introduce a maximum allowed time lag (i.e., patients are required

to receive at least one diagnostic test within a given time period). After observing

the predictive information, physicians will update their beliefs about patients’ health

conditions and subsequently decide whether to prescribe a diagnostic test. If a test

is ordered and the result suggests the necessity of treatment, the patient will receive
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the treatment and the system transits to the absorbing state. Otherwise, the system

state and information will be updated, and the system will progress to the next epoch

until the end of the time horizon. Concretely, we illustrate the brief event flow in

Figure 3.1 and define the notations of the POMDP model as follows.

Time horizon: t ∈ T , where T = {0, 1, 2, 3, ..., T}.

Action space: ut ∈ U , where U = {0, 1}. ut = 1 denotes the decision to order

a diagnostic test in epoch t, and ut = 0 denotes the decision to wait until the next

decision epoch. Specifically, we assume that all patients receive a diagnostic test in

epoch 0 prior to their admissions into ICUs, i.e., u0 = 1.

State space: Let rt denote the true value of the key indicator of patients in

epoch t, and we classify patients into one of Y classes based on rt. If a patient is

under treatment, we use A to denote the clinical class. Without loss of generality,

let yt ∈ Y = {1, 2, ..., Y, A} denote patients’ clinical class in epoch t, where class 1

represents the best health condition while class Y corresponds to the worst health

condition.

We define a patient’s state as st, where st ∈ S ≡ {(yt, δt)|yt ∈ Y , δt ∈ ∆}.

δt ∈ ∆ = {1, 2, ..., |∆|} represents the time lag from the last testing epoch, i.e.,

δt = t − t∗, where t∗ = max
k=0,1,2,...,t−1

{k|uk = 1}. Specifically, we assume that when

δt = |∆|, patient will receive a mandatory diagnostic test, which is consistent with

current practice that patients are recommended to receive at least one diagnostic

test in a given time period (e.g., annual physical examination, routine blood tests

in ICUs). Note that δ and A are completely observable, whereas yt ∈ Y\{A} is not

completely observable.

Suppose ȳ is the predefined intervention threshold, that if a diagnostic test is

conducted and finds that the patient’s true clinical class yt is not better than ȳ (i.e.,

yt ≥ ȳ), physicians will intervene immediately with appropriate treatment, and the

patient state will move to the absorbing state (A, 1) in the next epoch. We assume
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that at the last epoch t = T , patients will undergo a mandatory diagnostic test if

they are not in the absorbing state, i.e., uT = 1 if sT 6= (A, 1). We conclude that the

set of possible actions in core state st ∈ S (t < T ) is as follows:

Ut =


{0} if st = (A, 1)

{1} if st 6= (A, 1), δt = |∆|

{0, 1} otherwise.

Belief state: πt ∈ Π ≡ {π|
∑

i π(i) = 1, π(i) ≥ 0, i ∈ Y}. πt denotes the

probability distribution over the space of the patient’s clinical class. For i ∈ Y , πt(i)

represents the probability that the patient’s clinical class is A in epoch t. Because

the absorbing state is observable, we have either πt(A) = 1 or πt(A) = 0.

Observation space: As mentioned earlier, we can not know a patient’s key

indicator rt without performing a diagnostic test. However, the fluctuations of clinical

results could potentially be associated with changes in some intensively monitored

variables, such as heart rate, blood pressure and respiratory rate. Thus, we use the

changes in the frequently updated variables and rates of changes in these variables,

which reflect or partially reflect the disease progression, to predict the change in the

key indicator. Moreover, to capture the time effect of information, we also incorporate

δt into the prediction model. The prediction is based on an ordinary least squares

(OLS) model:

r̂t = f(rt∗ , δt,xt∗ ,xt) = rt∗ + a
′
(xt − xt∗) + b

′ (xt − xt∗)
δt

+ cδt + d,

where rt∗ denotes the latest measurement of the key indicator prior to epoch t and xt∗

denotes the latest measurement of predictive variables. Based on the predicted result

r̂t and the predefined classification of the key indicator, we can obtain ŷt, which serves

as an observation in our model. In addition, we introduce the confidence interval of

the OLS model, denoted by cit, to measure the uncertainty of the predicted result.

We classify the uncertainty interval into |Θ| levels, and use θt ∈ Θ = {1, 2, ..., |Θ|}
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to denote the uncertainty level of the predictive result in epoch t, where level 1

corresponds to the minimum uncertainty level while level |Θ| represents the maximum

uncertainty level.

With all the information presented above, the observation space is then denoted

by O={ŷ, θ|ŷ ∈ Y , θt ∈ Θ}. In summary, our approach captures the essential change

in patients’ health status by incorporating not only the changes in the frequently

updated information but also the time effect of such information. Moreover, we

include an interval in the observation space to capture the predictive ambiguity. All

these features distinguish our model from conventional POMDP models.

Transition probability: Let p(yt+1 = j|yt = i, ut = u) denote the transition

from clinical class yt to yt+1 with action ut, and let p
′
(st+1|st, ut) represent the tran-

sition from state st to st+1 with action ut. Concretely, we have

p
′
(st+1|st, ut = 0) =


p(yt+1|yt) if yt 6= A, δt+1 = δt + 1

1 if yt = A, yt+1 = A, δt+1 = 1

0 otherwise,

p
′
(st+1|st, ut = 1) =


p(yt+1|yt) if yt 6= A, yt < ȳ

1 if (yt = A or yt ≥ ȳ) and yt+1 = A, δt+1 = 1

0 otherwise.

We use Pi,j(u) = {p(yt+1 = j|yt = i, ut = u)} to denote the transition matrix of

clinical class.

Information matrix: Let q(ŷt, θt|st) denote the probability of observing ŷt and
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θt at the beginning of epoch t given that the patient’s state is st. Concretely,

q(ŷt, θt|st) =


1 if yt = A, ŷt = A

q(ŷt, θt|yt, δt) if yt 6= A, ŷt 6= A

0 otherwise.

Given a specific δ = δ
′
, we use Bi,(j,k)(δ

′
) = {q(ŷ = j, θ = k|y = i, δ = δ

′
)} to

denote the information matrix.

Update matrix: Assume diagnostic tests are error-free and let ỹt denote a pa-

tient’s true clinical class based on the test result. Therefore, given the clinical class

is yt, the probability of observing ỹt after performing a test is

lt(ỹt|yt) =


1 if ỹt = yt

0 otherwise.

We use Li,j = {l(ỹ = j|y = i)} to denote the update matrix.

Cost function: Suppose a patient is in state st in epoch t, and an action ut is

taken. Then an immediate cost ct(yt, ut) will be incurred, which takes the following

form if t 6= T :

ct(yt, ut) =


d(yt) if ut = 0, yt 6= A

k + h(yt) if ut = 1, yt 6= A

0 if yt = A,

and the terminal cost cT (yT ) is defined as:

cT (yT ) =


k + h(yT ) if yT 6= A

0 if yT = A.

Here, k represents the cost of receiving a diagnostic test; d(yt) denotes the cost of

delaying a diagnotic test to the next epoch, and we assume d(yt) is nondecreasing in

yt, i.e., a worse clinical class is associated with a higher delay cost; h(yt) represents

the intervention cost, which is nondecreasing in yt. Since treatment is initiated only if

a diagnostic test is ordered and the test result indicates yt ≥ ȳ, so h(yt) = 0 if yt < ȳ.
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In the last epoch T , if the patient’s state is A—which indicates that he/she is already

under treatment—no additional costs will be incurred; otherwise, a diagnostic test

with cost k will be ordered and the corresponding intervention cost h(yT ) will be

incurred.

We use ct(ut) to denote the cost vector over the belief state πt ∈ Π in epoch t

if t < T , with the i-th element equals to ct(yt = i, ut = u), and cT to denote the

terminal cost vector with the i-th element equals to cT (yT = i).

Belief update:

If ut = 0, in epoch t + 1, given the new observation ŷt+1, θt+1 and time lag δt+1,

the Bayesian update of the belief state πt is computed as follows:

πt+1 = T (πt, δt+1, ut, ŷt+1, θt+1) =
B̃ŷt+1,θt+1(δt+1)P

′
(ut)πt

ft(ŷt+1, θt+1|πt, δt+1, ut)
,

where B̃ŷt+1,θt+1(δt+1) = diag
(
B1,(ŷt+1,θt+1)(δt+1), ..., BY,(ŷt+1,θt+1)(δt+1), BA,(ŷt+1,θt+1)(δt+1)

)
and

ft(ŷt+1, θt+1|πt, δt+1, ut) = 1
′

Y+1B̃ŷt+1,θt+1(δt+1)P
′
(ut)πt

=
∑

yt+1∈Y

q(ŷt+1, θt+1|yt+1, δt+1)
∑
yt∈Y

p(yt+1|yt, ut)πt(yt),

which is the conditional probability of observing ŷt+1 and θt+1 given πt, δt+1 and

ut. Note that the i-th element of πt+1 equals to

q(ŷt+1, θt+1|yt+1 = i, δt+1)
∑
yt∈Y

p(yt+1 = i|yt, ut = 0)πt(yt)

ft(ŷt+1, θt+1|πt, δt+1, ut)
.

If ut = 1, which indicates a diagnostic test is ordered in epoch t, we can observe

the patient’s true clinical class ỹt and update the belief state to π̃t,

π̃t = T̃ (πt, ỹt) =
L̃ỹtπt

f̃t(ỹt|πt)
,

where L̃ỹt = diag(L1,ỹt , ..., LY,ỹt , LA,ỹt) and f̃t(ỹt|πt) = 1
′
Y+1L̃ỹtπt =

∑
yt∈Y

lt(ỹt|yt)πt(yt) =

πt(ỹt), which is the conditional probability of observing ỹt if a diagnostic test is or-

dered and finds the patient clinical class is ỹt. Note that π̃t is a unit vector with

π̃t(ỹt) equals 1.
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Then, in epoch t+ 1, the Bayesian update of the belief state is computed by

πt+1 = T (π̃t, δt+1, ut = 1, ŷt+1, θt+1).

Discount factor: We use ρ ∈ (0, 1] to denote the discount factor.

Optimality Equations: If a patient is under treatment (i.e., π(A) = 1), no extra

costs will be incurred; otherwise, let Qt(πt, δt, ut) denote the total expected cost and

vt(πt, δt) represent the minimum total expected cost of a patient. Then

Qt(πt, δt, ut = 0) = c
′

t(ut)πt + ρ
∑

ŷt+1∈O

∑
θt+1∈Θ

vt+1(πt+1, δt+1) · ft(ŷt+1, θt+1|πt, δt+1, ut)

= c
′

t(ut)πt + ρ
∑

ŷt+1∈O

∑
θt+1∈Θ

vt+1(T (πt, δt+1, ut, ŷt+1, θt+1), δt + 1)

· ft(ŷt+1, θt+1|πt, δt+1, ut),

Qt(πt, δt, ut = 1) =c
′

t(ut)πt + ρ
∑
ỹt∈O

f̃t(ỹt|πt)
∑

ŷt+1∈O

∑
θt+1∈Θ

vt+1(T (π̃t, δt+1, ut, ŷt+1, θt+1), δt+1 = 1)·

ft(ŷt+1, θt+1|π̃t, δt+1, ut)

and

vt(πt, δt) = min
ut∈Ut

Qt(πt, δt, ut).

To summarize, for t < T ,

vt(πt, δt) =


0 if πt(A) = 1

min
ut∈Ut

Qt(πt, δt, ut) if πt(A) 6= 1, δt < |∆|

Qt(πt, δt, ut = 0) otherwise.

The terminal cost v(πT ) is represented by

v(πT ) = c
′

TπT .
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3.4 Equivalent Optimality Equations and Modi-

fied Algorithm

In this section, we first present an alternative equivalent representation for the opti-

mality equations in Section 3.4.1, and discuss a modified incremental pruning algo-

rithm in Section 3.4.2.

3.4.1 An Alternative Representation for the Optimality Equa-

tions

POMDP is a continuous state space Markov decision process (MDP) due to infinitely

many states, and classical backward induction in MDP cannot be directly applied to

solve the problem. Pioneering work by Smallwood and Sondik (1973) show that the

value function of a POMDP is piecewise linear and concave (pwlc) with respect to

the belief space.

However, our proposed POMDP model differs from the conventional POMDP

models in two aspects. First, if a diagnostic test is performed, we need to “renew”

our belief vector based on the test result. Concretely, if a diagnostic test is conducted

in epoch t and the test result suggests a clinical class ỹt, belief πt should be updated

by π̃t =
L̃ỹtπt

f̃t(ỹt|πt)
; and in epoch t+ 1, πt+1 will be updated based on π̃t rather than πt.

Moreover, our model considers a maximum allowed time lag |∆| such that patients will

receive a mandatory test when δ = |∆|. These new features make the preservation of

pwlc property under our model remains unclear. In the following theorem, we prove

that the optimal value function in our model still preserves the pwlc property.

Theorem 3.1. Given a specific δt, vt(πt, δt) is pwlc with respect to πt ∈ Π; that is,

vt(πt, δt) = min
γ∈Γt(δt)

γ
′
πt,

where Γt(δt) is a finite set of (Y + 1)-dimensional vectors.

We next explore the benefits of including uncertainty intervals in the observation
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space. For ease of expression, we refer to the POMDP model that includes (does not

include) uncertainty intervals in the observation space as POMDP-UI (POMDP-B).

We present the structure of POMDP-B in Appendix B.1.

Theorem 3.2. The minimum total expected cost of POMDP-UI is less than or equal

to that of POMDP-B.

Theorem 3.2 demonstrates the superiority of including the uncertainty interval.

Relative to POMDP-B, POMDP-UI combines predictions and uncertainty intervals

that capture the uncertainty in patient condition, which provides another dimension

of information for real-time patient risk monitoring and gives rise to an equal or lower

total expected costs for patients.

3.4.2 Algorithm

In this part, we propose an algorithm to construct Γt(δt) in the pwlc function. When

ut = 0 and πt(A) = 0, δt+1 = δt + 1, similar to Krishnamurthy (2016).The set

Γt(δ, u = 0) can be constructed as follows:

Γt(δt, ut, ŷt+1, θt+1) = { ct(ut)

(Y + 1)|Θ|
+ ρP (ut)B̃ŷt+1,θt+1(δt+1)γt+1|γ ∈ Γt+1(δt+1)}

Γt(δt, ut) = +Oŷt+1,θt+1
Γt(δt, ut, ŷt+1, θt+1),

where +O denotes the cross-sum operator, and A+OB consists of all pairwise additions

of vectors from these two sets.

When ut = 1, δt+1 = 1, the set Γt(δt, ut = 1) can be constructed as follows:

Γt(δt, ut, ỹt, ŷt+1, θt+1) = { ct(ut)

(Y + 1)2|Θ|
+ρL̃ỹtP (ut)B̃ŷt+1,θt+1(δt+1)γt+1|γt+1 ∈ Γt+1(δt+1)}

Γt(δt, ut, ỹt) = +Oŷt+1,θt+1
Γt(δt, ut, ỹt, ŷt+1, θt+1)

Γt(δt, ut) = +Oỹt
Γt(δt, ut, ỹt).

Then Γt(δt) can be constructed as Γt(δt) = ∪ut∈UtΓt(δt, ut).

We further present a modified incremental pruning algorithm (MIPA) to compute
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Algorithm 1 MIPA
Input: Γt+1(δt+1), δt+1 ∈ ∆t+1

Output: Γt(δt), δt ∈ ∆t

1: for each δt ∈ ∆t do
2: ut = 0
3: for each ŷt+1 ∈ O, θt+1 ∈ Θ do

4: Γt(δt, ut = 0, ŷt+1, θt+1)←− prune({ ct(ut)
(Y+1)|Θ|+ρP (ut)B̃ŷt+1,θt+1(δt+1)γt+1|γt+1 ∈

Γt+1(δt+1)})
5: Γt(δt, ut = 0)←− prune(Γt(δt, ut = 0) +OΓt(δt, ut = 0, ŷt+1, θt+1))
6: end for
7: Γt(δt) = prune(Γt(δt) ∪ Γt(δt, ut = 0))
8: ut = 1
9: for each ỹt ∈ O do

10: for each ŷt+1 ∈ O, θt+1 ∈ Θ do

11: Γt(δt, ut = 1, ỹt, ŷt+1, θt+1) ←− prune({ ct(ut)
(Y+1)2|Θ| +

ρL̃ỹtP (ut)B̃ŷt+1,θt+1(δt+1)γt+1|γt+1 ∈ Γt+1(δt+1)})
12: Γt(δt, ut = 1, ỹt)←− prune(Γt(δt, ut = 1, ỹt) +OΓt(δt, ut = 1, ỹt, ŷt+1, θt+1))
13: end for
14: Γt(δt, ut = 1)←− prune(Γt(δt, ut = 1) +OΓt(δt, ut = 1, ỹt))
15: end for
16: Γt(δt) = prune(Γt(δt) ∪ Γt(δt, ut = 1))
17: end for

Γt(δt) in Algorithm 1, which is based on the incremental pruning algorithm introduced

in Cassandra et al. (1997). Note that δt is the time elapsed from the last test period,

so the upper bound of δt (denoted as ∆t) in epoch t should be min{t, |∆|}. Concretely,

∆t = {1, 2, ..., t} if t < |∆|, otherwise, ∆t = ∆.

As for the ”prune” function, since our optimal value function preserves the pwlc

property, suppose there is a γ ∈ Γk such that ∀π ∈ Π, γ
′
π ≥ γ̃

′
π for all vectors

γ̃ ∈ Γt − {γ}. Then γ dominate all the other vectors in the belief space, and the

prune function would eliminate such vectors. Specifically, we introduce the following

linear programming, that if α yields a solution α < 0, then γ dominate other vectors

and can be eliminated.
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maximize α

subject to (γ̃ − γ)
′
π ≥ α ∀γ̃ ∈ Γt − {γ}

π(i) ≥ 0 i ∈ Y

1
′
Y+1π = 1

3.5 Numerical Experiments

In this section, we conduct a set of numerical experiments using synthetic examples

to evaluate the performance of the proposed model (POMDP-UI). We describe the

setting and parameters in Section 3.5.1, and illustrate the main results in Section

3.5.2.

3.5.1 Experimental Settings and Parameters

Consider the status of a patient across a planning horizon of 48 hours, then T = 48

if we use 1 hour as the decision epoch. Let rt denote the value of the key indicator

in epoch t. We adopt a random walk to mimic patients’ progression. Specifically,

we assume rt = rt−1 + wt, where wt is a Gaussian white noise process with mean

0 and variance 1 (case with a high disease incidence rate; denoted by H-case) or

variance 0.5 (case with a low incidence prevalence rate; denoted by L-case). We

simulate 3,000 patients, for each of whom the starting r0 is assumed to be uniformly

distributed on the interval [0, 10). We classify patients into three clinical classes.

Patients with r < 10 are classified into normal class, i.e., y = 0; the abnormal class

y = 1 contains patients with r ≥ 10; the absorbing class includes patients under

treatment. Specifically, we assume that a patient will receive treatment if and only

a diagnostic test is performed, and the result suggests r ≥ 10. |∆| is set to 8,

i.e., individuals have to receive at least one diagnostic test in 8 epochs. Then the

system state can be defined accordingly based on Section 3.3. The transition matrix

between three clinical classes can be estimated from the simulated data (cf. Appendix
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B.3.1 for the details), and the transition probabilities among different states can be

specified according to Section 3.3. We randomly generate the information matrices for

both POMDP-UI and POMDP-B (cf. Appendix B.3.1 for the details). We assume

delay cost d(yt) = 0 for patients with yt = 0 and d(yt) = 10 for patients with

yt = 1; intervention cost h(yt) = 8 for patients with yt = 1; and terminal cost

cT (πT ) = [0, 30, 0]. Test cost k is from the set {0, 0.2, 0.5, 1, 1.5, 2, 3, 5}. Discount

factor ρ is assumed to be 1.

For ease of expression, we refer to the optimal policies derived from POMDP-UI

and POMDP-B as OP-POMDP-UI and OP-POMDP-B, respectively. We evaluate the

performance of the proposed model by comparing OP-POMDP-UI to four benchmark

testing policies with different fixed testing intervals—i.e., conducting a diagnostic test

every 2 hours, 3 hours, 4 hours, and 6 hours as policy R2, policy R3, policy R4, and

policy R6, respectively. We further compare OP-POMDP-UI with OP-POMDP-B to

examine whether there are any additional benefits to incorporating the uncertainty

interval into the modeling framework.

3.5.2 Numerical Results

We compare OP-POMDP-UI to the benchmark policies and OP-POMDP-B for H-

case in terms of multiple metrics: Number of Tests, Detection Time, and Missed

Periods. Number of Tests is the total number of diagnostic tests performed, Detec-

tion Time denotes the epoch in which the disease is detected, and Missed Periods

represents the total number of epochs during which patients are in the abnormal

state until the disease is detected. Specifically, to evaluate each policy, we count the

number of tests performed for all patients and use the average value as a proxy for

Number of Tests. We next collect the detection time of the patients detected by the

policy and adopt the average value as a measure for Detection Time. Then, we sum

up the missed periods for all individuals, including those not detected by the policy,
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and use the average value as a measure for Missed Periods.
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Figure 3.2: Trade-off between Number of Tests and Detection Time in numerical
experiments (H-case)

Figure 3.2 illustrates the trade-off between Number of Tests and Detection Time.

Note that the Number of Tests for policy R2, R3, R4, and R6 are 12.2, 8.5, 6.6, and 4.5

times, respectively; and the Detection Time for policy R2, R3, R4, and R6 are 16.7,

17.5, 18.3 and 19.1, respectively. OP-POMDP-UI is able to achieve earlier detection

with fewer tests compared with Policy R2, R3, and R4. For example, OP-POMDP-UI

can detect patients’ deterioration at time 14.9 with 4.8 tests, which reduces Number

of Tests by 60.7%, 43.5%, and 27.3%, and advances the Detection Time by 10.8%,

14.9%, and 18.6% compared with Policy R2, R3, and R4. In comparison to policy R6,

OP-POMDP-UI can advance the detection time by 22% with little sacrifice in Number

of Tests. In addition, we find that the performance of OP-POMDP-UI is superior to

OP-POMDP-B with respect to Detection Time and Number of Tests, the observation

further addresses the benefit of considering the uncertainty of the estimation.

The trade-off between Number of Tests and Missed Periods is shown in Figure

3.3. We find that Missed Periods for policy R6, R4, R3, R2, OP-POMDP-U and the

OP-POMDP-UI is in a descending order, which is consistent with the early detec-
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tion capability discussed above. Notably, Missed Periods is 0.5 for policy R2 that

conducts a diagnostic test every 2 hours; OP-POMDP-UI can reduce Missed Periods

to 0.32 with 5.2 tests. The improvement is even greater compared with policy R3,

R4, and R6, with Missed Periods of 1.0, 1.4, and 2.2, respectively. In terms of per-

centages, OP-POMDP-UI can reduce Missed Periods by 36.0%, 68.0% and 77.1%,

and reduce Number of Tests by 57%, 38.9%, and 21.2% compared to R2, R3 and R4.

Furthermore, it can reduce Missed Periods by 85%, with a 16% increase in Number of

Tests compared to R6. Besides, we observe that the performance of OP-POMDP-UI

is superior to OP-POMDP-B with respect to Missed Periods and Number of Tests.
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Figure 3.3: Trade-off between Number of Tests and Missed Periods in numerical
experiments (H-case)

In summary, OP-POMDP-UI greatly outperforms four benchmark policies in

terms of Detection Time and Missed Periods. Furthermore, it enables earlier de-

tection with fewer tests compared to R2, R3, R4 and OP-POMDP-B. The results

for L-case are similar to the results we discussed above. We relegate all the relative

results in Appendix B.3.2.
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3.6 Case Study

To further evaluate the performance of the proposed model in practical environments,

we conduct a case study in this section. We apply our model to a cardiothoracic ICU

of a national hospital to optimize the prescription of diagnostic tests in blood glucose

monitoring. We introduce the background of blood glucose monitoring in Section

3.6.1, followed by the data selection process and summary statistics in Section 3.6.2.

We calibrate the model settings and parameters based on the real data in Section

3.6.3, and present the numerical results in Section 3.6.4.

3.6.1 Background

Broad observational studies (e.g., Barsheshet et al., 2006, Capes et al., 2000) have

shown that hyperglycemia is associated with higher morbidity and mortality in hos-

pitalized patients, and it’s essential to provide prompt treatment for these patients.

Langley and Adams (2007) conduct a systematic review and conclude that main-

taining normoglycaemia and treatment with insulin-based regimens is beneficial for

limiting organ damage and significantly reduces both morbidity and mortality in crit-

ically ill patients who require intensive treatments. In recent decades, point of care

testing (POCT) for blood glucose levels has developed steadily, and glucose meters

are widely used in ICUs for POCT (Tonyushkina and Nichols, 2009). In contrast to

other diagnostic tests, which require that the specimen be sent from the point of care,

followed by waiting for results, POCT yields prompt test results for patients’ glucose

levels. However, frequent testing with a glucose meter requires finger pricking and

increases patients’ anxiety and discomfort (Ong et al., 2014), while delays in testing

may lead to delayed treatment and adverse health outcomes. Thus, in this part, we

aim to investigate the optimal time to administer a blood glucose test in ICUs.

Our partner hospital recommends testing blood glucose levels every 6—8 hours

for patients not receiving insulin treatments. However, in the data, the average test-
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ing interval between two consecutive glucose tests is 4.5 hours, which indicates more

frequent orderings than the guideline. We apply the proposed model developed in

Section 3.3 to address the diagnostic overutilization problem in blood glucose moni-

toring.

3.6.2 Data Selection and Summary Statistics

Of all 5,351 ICU patients in our dataset, we first eliminate patients who didn’t have

glucose testing records and who had diabetes or hypoglycemia prior to their admission

(N = 477). Moreover, we do not consider patients who had abnormal blood glucose

levels at the first blood glucose test or who were on insulin therapy before their

first tests. (N = 551). Note that the average LOS for all patients is 3.9 days. We

further remove patients with ICU LOS longer than 10 days (N = 265), as they may

have different or complicated conditions. The data points recorded at mealtimes

are also excluded. We provide summary statistics for the study sample in terms of

demographics and clinical variables in Table 3.1.

3.6.3 Model Setting and Parameter

We next calibrate model settings and discuss the details of parameter estimation.

Time horizon: For each patient, the time horizon is from the first testing time to

the discharge time, so the time horizon differs from patient to patient. The decision

epoch is 1 hour for all patients. We use Ti = {1, 2, 3, ..., Ti} to denote the time horizon

for patient i.

State space: According to the protocol in our partner hospital, patients with

glucose levels no less than 10 mmol/L should be intervened with insulin treatment.

The cut-off point of 10 mmol/L is also in line with the medical literature (Ichai and

Preiser, 2010). Thus, we classify patients into three clinical classes: normal (glucose

level is less than 10 mmol/L), abnormal (glucose level is no less than 10 mmol/L) and

absorbing. We suppose |∆| = 12, i.e., patients must receive at least one diagnostic
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Variable Mean SD Variable Count Percentage

Demographics
Age, year 59.9 13.4 Gender: male 3,225 75.5
Weight, kg 65.5 14.7 Race

Chinese 2,840 66.5
Malay 618 14.6
Indian 344 8.1
Other 470 10.8

Clinical Variables Mean SD
HR, beats/min 83.8 15.9
RR, times/min 19.1 6.0
Temperature, ◦C 36.5 0.9
SpO2, % 98.6 3.0
Mean arterial BP, mmHg 78.6 13.9
Systolic BP, mmHg 117.8 20
Diastolic BP, mmHg 59.8 13
CVP, mmHg 9.0 5.7
GCS 12.8 3.8
Arterial pCO2, mmHg 40.3 7.4
Arterial pH 7.4 0.1
Arterial SaO2, % 93.3 12.3
FiO2, % 39.9 9.0
Urine volume, mL 42.8 82.7
Glucose, mmol/L 7.9 2.2

SD: standard deviation; HR: heart rate; RR: respiratory rate; GCS: Glasgow Coma Scale;
BP: blood pressure; CVP: central venous pressure.

Table 3.1: Summary statistics in blood glucose monitoring case

test every healf day. The system state can be defined accordingly.

Transition probability: Since the decision period is 1 hour, we extract all

glucose records for each patient and identify all consecutive tests that were performed

within 1 hour. Based on the selected data, we use maximum likelihood estimation to

derive the transition probabilities between patients’ clinical classes p(yt+1 = j|yt =

i, u), which is shown below.
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P (u = 0) =


0.92 0.08 0

0.20 0.80 0

0 0 1

 , P (u = 1) =


0.92 0.08 0

0 0 1

0 0 1


Hence, p

′
(st+1|st, u) can be easily generated according to the definition in Section 3.3.

Observation space: We adopt an OLS model introduced in Section 3.3 to con-

struct the observations. To select variables, we first perform 5-fold cross-validation

and select the combination of variables that yields the lowest average mean squared

error. Then, we incorporate all selected variables into the OLS model, and the final

model is presented in Appendix B.4. Based on the final model, we can predict the

individuals’ indicators and calculate confidence intervals for the predicted outcomes

r̂. If r̂ < 10, the predicted outcome will be classified as normal; if r̂ ≥ 10, it will be

classified as abnormal. we further divide confidence intervals into two levels based

on the criteria of whether the confidence interval covers both normal and abnormal

classes, i.e., if the lower bound of the confidence interval is categorized as normal

and the upper bound is categorized as abnormal, then the uncertainty level is “high”;

otherwise, the uncertainty level is “low”. In addition, patients’ absorbing state can

be observed directly.

Information matrix: Based on individuals’ true clinical classes, time lags, the

predicted clinical classes and uncertainty levels, we construct the information matrices

using maximum likelihood estimation (cf. Appendix B.4 for the details).

Cost: Due to the lack of relevant data, we are unable to estimate the associated

costs. We assume a delay cost of 0 for patients with blood glucose level < 10mmol/L

and 10 for patients with blood glucose level ≥ 10mmol/L; intervention cost of 8 for

the patients with abnormal classes and terminal cost of [0, 30, 0]. Test cost k is from

the set {0, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 1.2, 1.5, 2, 3, 5}.

Remark 1: At some epochs, our optimal policy may suggest a test action, while
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in reality, blood glucose may not be tested in those epochs. Therefore, we cannot

determine whether treatments should be initiated using incomplete real data. To

address this problem, we sample 100 groups of blood glucose levels from a normal

distribution, with the mean being the predicted blood glucose level and the standard

error being the standard error of prediction.

3.6.4 Numerical Results

We compare OP-POMDP-UI with OP-POMDP-B and the practical policy adopted

in our partner ICU in terms of Number of Tests, Detection Time and Missed Periods.
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Figure 3.4: Trade-off between Number of Tests and Detection Time in glucose mon-
itoring

Figure 3.4 illustrates the trade-off between Number of Tests and Detection Time.

The Number of Tests and the Detection Time for the practical policy is 4.1 and 10.7,

respectively. OP-POMDP-UI is able to detect patients’ deterioration at time 7.4

with 2.9 tests, which greatly reduces Number of Tests by 29.7% and advances the

Detection Time by 30.8% relative to the practical policy. It is worth noting that the

mean onset of hyperglycemia is 6.6, and OP-PODMP-UI detects the symptoms with

little delay. Compared to OP-POMDP-B, OP-POMDP-UI is able to achieve slightly

earlier detection with fewer tests. The improvement is subtle, suggesting that the
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inclusion of predictive information is capable of bringing significant benefits in this

case.
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Figure 3.5: Trade-off between Number of Tests and Missed Periods in glucose moni-
toring

The trade-off between Number of Tests and Missed Periods is presented in Figure

3.5. The Missed Periods is 5.8 for the practical policy; OP-POMDP-UI can signif-

icantly reduce Missed Periods to 0.4 with 2.5 tests. Besides, we observe that OP-

POMDP-UI outperforms OP-POMDP-B with respect to Missed Periods and Number

of Tests.

In summary, the proposed policy can achieve earlier detection with fewer tests.

Furthermore, the proposed policy can also significantly reduce the delay time in de-

tection with fewer tests.

3.7 Conclusion

The overuse of diagnostic tests is an emerging and critical problem in the development

of the healthcare ecosystem. However, the existing researches have not explicitly

addressed the overutilization problem of repetitive tests in acute diseases contexts. On

the one hand, physicians need frequently administer diagnostic tests to track patients’

54



health conditions as delay in tests may lead to delay in detection and treatment, which

violates people-centric philosophy in healthcare service delivery; on the other hand,

overuse of diagnostic tests may result in financial burden and negative health effect on

the patient, moreover, it also incurs huge medical resources waste. In this chapter, we

propose a POMDP framework to optimize the prescription of diagnostic tests under

real-time monitoring contexts where people undergo frequent routine, unharmful, and

cheap medical tests. Based on the high-frequency updated clinical information, we

develop a predictive model, whose accuracy depends on the time lag of diagnostic

tests, to predict the patient’s clinical results. We further embed the predictions in

the POMDP framework for information update and decision support. We propose

a modified incremental pruning algorithm to derive the optimal policy and evaluate

the performance of the proposed model for glucose monitoring in ICUs. Our results

show that the proposed framework can achieve early detection of deterioration with

fewer diagnostic tests compared with the practical policy. The framework can also be

applied to many other health monitoring systems, especially those powered by smart

wearable health devices for acute and chronic diseases.

This chapter has several limitations. First, we have not theoretically explored the

specific value of imperfect predictive information and uncertainty intervals. Second,

we assume that the diagnostic tests for key indicators are perfect. However, in reality,

these diagnostic tests are also subject to errors. We believe it will not influence our

main insights, and we can incorporate it in our model if the relevant data is available.

Besides, in our numerical experiments and case studies, as the real cost data is not

available, we use hypothetical cost data to derive the optimal policy and evaluate the

performance of the proposed model. We leave these problems for future research.
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Chapter 4

Optimizing Initial Screening for Colorectal Cancer

Detection with Adherence Behavior

4.1 Introduction

Cancer is the second leading cause of death globally. In 2021, more than 1.9 million

new cancer diagnoses are expected in the United States (Siegel et al., 2021). Despite

that cancer is a fatal disease, cancer-related mortality has been declining steadily.

The five-year relative survival rate for all cancers has increased from 49% in 1975-

1977 to 69% in 2009-2015 (Siegel et al., 2020). Much of this reduction in mortality

can be attributed to the efforts in detecting cancers early and advances in cancer

treatment (Berry et al., 2005, Office for National Statistics, 2019). Take colorectal

cancer (CRC) as an example; the 5-year relative survival rates for CRC are 90%, 71%,

and 14% at the local, regional, and distant stages, respectively (American Cancer

Society 2020a). Starting the treatment before it progresses to advanced stages would

significantly reduce the number of death. However, early detection of cancer remains

a challenge mostly due to the asymptomatic nature of certain cancers at an early

stage. Therefore, regular public cancer screening becomes essential.

According to the World Health Organization, the aim of a cancer screening pro-

gram is to “identify individuals with abnormalities suggestive of specific cancer or
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pre-cancer who have not developed any symptoms and refer them promptly for di-

agnosis and treatment”. The targeted population is average-risk individuals without

medical history and family history of cancer. A well-designed screening guideline

would be able to effectively detect individuals at risk with the consideration of the

resulting economic costs of the screening protocol. In practice, many health systems

introduce cancer screening protocols in the form of two-stage medical tests. Examples

include screenings for CRC, breast cancer, and prostate cancer. Our study specifically

focuses on the two-stage CRC screening program.

CRC is the third most diagnosed cancer and the second leading cause of death for

cancer patients worldwide (Sung et al., 2021). It is a cancer developed from abnormal

cells in the colon or rectum. There are three CRC stages, namely local, regional and

distant stages (American Cancer Society, 2020a). Approximately 4.4% of men and

4.1% of women will be diagnosed with CRC in their lifetime (Siegel et al., 2020).

Most of the countries and regions adopt two-stage CRC screening programs for early

detection. Individuals above a certain age (e.g., 45 in the US; 50 in Singapore) are

advised to do the fecal immunochemical test (FIT) annually, followed by a colonoscopy

if any positive outcome is received from the FIT (American Cancer Society, 2020b,

Singapore Health Hub, 2011). Typically, the first stage of the screening (i.e., an initial

screening/test) uses a less invasive, less costly, but less accurate test, whereas the

second-stage tests are more invasive, more expensive, but usually considered gold-

standard with almost 100% accuracy. Having an initial screening before the gold-

standard test aims to make the screening guideline more accessible to the public,

inducing a higher acceptance level and take-up rate. Additionally, second-stage tests

would be performed on a smaller group of individuals who have already received risk

alarms from the initial test and, therefore, gives rise to a considerate economic saving.

Given that a screening program is a complex public health intervention, the design

of the initial tests would significantly affect the performance of two-stage screening
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programs. Most initial tests compare the biomarker concentrations or estimated risk

levels to a pre-specified cut-off point to report a positive or negative result. FIT

screens for occult (hidden) blood in the stool sample. The fecal-hemoglobin (f-Hb)

concentration of the sample is compared with a cut-off value (e.g., 20 µg/g for the test

kit used in Singapore) so that a concentration value higher (lower) than this cut-off

point will trigger a positive (negative) outcome. The choice of cut-off points can result

in different test sensitivity and specificity. The sensitivity of the test kit is defined as

the probability that an individual with CRC receives a positive outcome; specificity

is the probability that a healthy individual receives negative outcome. Given the

hemoglobin concentration distributions for healthy individuals and individuals with

CRC (Figure 4.1), a higher cut-off point will decrease test sensitivity and increase

specificity.

There are two forms of FIT kits adopted in practice, qualitative FIT and quan-

titative FIT. Qualitative FIT uses fixed pre-specified threshold values chosen by the

manufacturers. When it is used by the health system, only binary outcomes (positive

or negative) are reported. Quantitative FIT, on the other hand, directly reports the

values of f-Hb concentrations (Fraser, 2011). Heath systems can adjust the test cut-

off points and control the test sensitivity and specificity. It is heatedly debated in the

medical community on the different impacts of these two types of FIT kits (Fraser

et al., 2012, Allison et al., 2014b) because the selection of the initial test cut-off point

would directly impact both the effectiveness and efficiency of the two-stage screen-

ing program. Tests with higher sensitivity can detect more cancer incidences and

thus contribute to the screening effectiveness; however, higher sensitivity is usually

accompanied by lower specificity (a higher false-positive rate), leading to unneces-

sary second-stage tests and a higher economic burden. In fact, colonoscopy is an

expensive procedure, most countries do not have sufficient resources to screen the

entire target population, and in some regions, patients may suffer from long waiting
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times to get tested (Kolata, 2003, Yu et al., 2008, Hubers et al., 2020). On the other

hand, colonoscopy resource is overused within some regions because of a high rate of

inappropriate recommendations for patients with low risk (Zorzi et al., 2016, Kruse

et al., 2015, Murphy et al., 2016). Hence, many research works advocate the benefits

of quantitative tests so that health systems have higher flexibility in designing their

own FIT according to different practical considerations (Fraser et al., 2012, Robert-

son et al., 2017). According to the 5th meeting of the World Endoscopy Organization

CRC screening committee, the primary concern of the selection of the cut-off point

in the quantitative FIT test is to balance the trade-off between test effectiveness and

test efficiency (Allison et al., 2014a). For example, Spain used 20 µg/g as the cut-off

point to encourage more follow-ups from CRC patients but was experiencing pressure

on colonoscopy resource; the Netherlands has increased the cut-off point of the FIT

they used for CRC screening from 15 µg/g to 47 µg/g due to insufficient colonoscopies

(Allison et al., 2014a, Toes-Zoutendijk et al., 2020).
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Figure 4.1: Probability density function

In addition, the actual demand for the second-stage test also depends on individ-

uals’ adherence to the protocol. The screening program advises all individuals receiv-

ing positive outcomes from the initial test follow up with doctors for the second-stage
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test. However, in practice, not all individuals would comply, and in some countries,

the adherence rates are far below desired. For example, evidence from prior liter-

ature regarding CRC screening programs highlights that the adherence rate to the

second-stage colonoscopy after receiving positive FIT outcomes varies from 54.8% to

92.5% in different countries (Navarro et al., 2017). Based on the national-wide survey

(n = 3, 920) we conducted in Singapore, among individuals who are tested positive

(n = 274) in the first-stage FIT, more than 28% (n = 77) did not follow up with

a colonoscopy. The challenge of low adherence to screening guidelines is well docu-

mented in the medical literature. Reasons behind the low adherence rate are related

to various behavioral factors such as the lack of knowledge about the disease and

screening, anxiety about getting bad news, etc (Bynum et al., 2012, Gimeno Garcia,

2012). More importantly, in real practice, the initial test accuracy information de-

termined by the cut-off points is revealed to the public and the public can access it

through the website or inquiring healthcare professionals. It is reported that the ini-

tial test with different cut-off points, which directly affect the accuracy of the initial

tests, would lead to various adherence behavior, possibly due to individuals’ trust on

test (Plumb et al., 2017, Lee and Lee, 2018). Therefore, it is crucial to incorporate in-

dividuals’ endogenous behavioral responses when designing the initial tests to balance

the screening effectiveness and the economic implication with a limited second-stage

test capacity.

4.1.1 Research Questions and Methodology

Despite all the discussions, no systematic approach has been proposed to address the

initial test design problem, taking all the mentioned considerations into account. In

this chapter, we aim to fill this gap by proposing an optimization framework that

selects the cut-off value in the initial screening (i.e., FIT) to balance the trade-off

between test effectiveness (i.e., detecting more cancer incidences) and the second-
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stage test (i.e., colonoscopy) demand, considering individuals’ adherence behavior.

The problem involves two sequential decisions —the health system designs a FIT by

strategically choosing the cut-off point to maximize the number of cancer incidences

detected while controlling the colonoscopy demand; given the designed FIT, individ-

uals who received positive outcomes decide whether to follow up with a colonoscopy.

We summarize our model and methodology in Figure 4.2.

Figure 4.2: Model framework

We adopt a Bayesian persuasion framework to model interactions between the

health system and the targeted population (eligible average-risk individuals). Bayesian

persuasion paradigm proposed in Kamenica and Gentzkow (2011) is an information

model where a sender chooses a signal to reveal to a receiver, who then takes an

action that affects both players’ payoff. The sender’s problem is to maximize its

payoff by designing information shared with the receiver in the form of signals to

influence/persuade the receiver to take certain action; the receiver would choose ac-

tions that maximize his/her payoff after observing the signals. In our context, given

each individual’s prior belief of the health state (i.e., with or without cancer), the

initial test serves as a natural signaling mechanism influencing the belief updating

process. The selection of cut-off points explicitly dictates the likelihood of generat-

ing positive/negative outcomes, which, in turn, alters the individual’s posterior belief

of the health state. This would affect individual’s decision to follow up with the
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second-stage test.

To model individuals’ follow-up decisions and adherence behavior, we adopt a

novel concept well-received in the economic literature, information avoidance. A

growing theoretical and experimental literature suggests that information may di-

rectly enter the agent’s utility function. This can create an incentive to avoid in-

formation, even when it is useful, free, and independent of strategic considerations

(Golman et al., 2017). Given that the gold-standard second-stage test can confirm

the health state accurately, individuals still choose to avoid the information. Golman

et al. (2017) discuss several behavior factors that lead to information avoidance be-

havior. The most relevant ones include “optimism maintenance” and “risk, loss, and

disappointment aversion”. Optimism maintenance states that people are optimistic

about their health states and choose to hold these optimistic beliefs; those whose

beliefs conflict with the information tend to dismiss the information and question

the source’s quality or impartiality (Brunnermeier and Parker, 2005). Risk, loss, and

disappointment aversion refer to the perception that the possible perceived disap-

pointment or loss might overweight the benefit of knowing the actual health states

(Golman et al., 2017). Several utility models are proposed in the literature to capture

information avoidance behavior. In this chapter, we adopt one of the most applicable

utility models, “optimal expectation” proposed by Brunnermeier and Parker (2005)

to express an individual’s follow-up utility. Specifically, individuals’ expected utility

is a weighted summation of an objective utility and a subjective utility. The objective

utility is the expected utility with respect to the actual risk of developing cancer. The

subjective utility highly relies on an individual’s self-belief of their risk of developing

cancer and the perceived cost of follow-up, which can be significantly different from

the objective ones. When individuals are optimistic, or the perceived cost of receiving

“bad news” is high, they would not follow up with a second-stage test if they trust

their beliefs more than the objective information. In our survey data, we indeed ob-
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serve that participants’ subjective beliefs of having CRC after receiving positive FIT

outcome were significantly smaller than the posterior objective risks (with a p-value

less than 0.05), suggesting that individuals are overly optimistic about their health

status, which may lead to non-follow-up decisions. The optimal expectation model

assumes that the subjective belief is also rationally optimized to maximize the total

utility. Given that we have the leverage of obtaining the subjective beliefs from real

data, we relax this assumption and directly use the calibrated subjective beliefs.

By incorporating the information avoidance utility model into the Bayesian per-

suasion framework, we can explicitly capture the key elements of the problem of

interest. Furthermore, we conduct a nationwide survey in Singapore to study the

people’s perceptions of CRC cancer screening guideline and their adherence behav-

ior. The survey targets Singapore residents aged 50 and above. It covers various

CRC and CRC screening-related questions, including the respondents’ CRC knowl-

edge and screening awareness, risk attitude and perceptions, factors influencing their

screening adherence decisions, heath literacy, life satisfaction, etc. With other data

on demographic and personal information, we have, in total, 7,899 variables from

3,920 respondents. This large-scale survey data facilitates the learning of individuals’

subjective perceptions and calibration of the expected utility function. The optimal

screening guideline obtained from our model gives rise to insightful and practical

implications for the CRC screening design in Singapore.

Moving beyond the current practice of CRC screening, we leverage our framework

to further investigate two extensions. Firstly, the current FIT is dichotomous (i.e.,

adopting a single cut-off point that generates positive or negative test results). We

study alternative ways of reporting the first-stage test outcomes, in particular, using

multiple cut-off points to generate different degrees of risk warnings. These types of

tests are called ordinal tests, for example, a test with two cut-off points reporting three

confidence ratings for the presence of disease - high risk, medium risk, low risk. When

63



the biomarker concentration value is directed reported, the tests are called continuous

tests, (e.g., the test of WBS count, and blood glucose level. We are interested to see

whether a more refined risk stratification of the FIT would bring significant benefits.

Secondly, we further explore the practice of using heterogeneous FIT kits for different

sub-populations. It has been well acknowledged in the medical domain that the

performance of the same FIT kit varies among different groups of individuals in

terms of detection rates, adherence rate, etc. The benefits of population-cased FITs

are discussed in the medical literature (Khalid-de Bakker et al., 2011, McDonald

et al., 2012, Toes-Zoutendijk et al., 2020). In this chapter, we would further explore

the optimal partitioning of the population and adopting heterogeneous cut-off points

for each sub-population. We aim for an implementable population-cased practice that

could be easily adopted by the health systems.

4.1.2 Key Results and Contributions

We summarize our main results and contributions below. Firstly, we obtain the

optimal cut-off point for the FIT by balancing the trade-off between the number of

CRC cases detected and demand for colonoscopy considering individuals’ adherence

behavior to the screening protocol. Intuitively, with a fixed adherence rate (i.e., a

fixed proportion of positive cases would follow up with colonoscopy), a high- (low-)

sensitivity FIT will detect more (fewer) CRC cases but result in high (low) demand

for colonoscopy. Cut-off selection purely depends on the health system’s cost-benefit

trade-off, and every cut-off point will give rise to a FIT on the efficient frontier.

However, via incorporating the practical observation that the individuals’ adherence

behavior endogenously depends on the design of FIT, we found that the trade-off is

more involved. A well-chosen cut-off point can detect more cancer incidences with

fewer colonoscopies. The conventional wisdom of pursuing high-sensitivity FITs that

gives rise to a huge demand for colonoscopy could backfire and detect even fewer
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cancer incidences.

Secondly, our analysis contributes to the debate in the medical domain regarding

the adoption of the quantitative test versus the qualitative test. The discussion is cur-

rently limited to qualitative arguments on the different implications of the two types

of tests. We build an analytical tool to quantify the exact benefit of the quantitative

test, which allows the health system to optimize the cut-off point. Our results fur-

ther support its adoption and provide foundations for further investigation in clinical

trials.

Thirdly, via modeling the initial test with possibly multiple cut-off points, we

obtain the optimal structure of the test. Under some technical conditions, we show

that when the health system has sufficient colonoscopy capacity and aims for all

positive cases to follow up with colonoscopy, a FIT with a single cut-off point is

optimal. This confirms the practice of using binary outcomes for the first-stage test.

Under some other technical conditions, we also find that when the health system aims

to maximize the detection rate, a continuous FIT that reports the hemoglobin values

to individuals is optimal, which implies the potential benefits a continuous test might

bring to cancer screening.

Finally, in our numerical study using the survey data of the Singapore population,

we explore the benefits of using heterogeneous FIT kits to different sub-populations.

We apply our framework to determine the optimal partitioning of the population

and obtain the corresponding optimal cut-off point for each sub-population. When

restricted to two sub-population groups, the optimal partitioning gives rise to one

group with relatively high risk, which is assigned to a high-sensitivity FIT, and the

other relatively low-risk group, which is assigned to a low-sensitivity FIT. We show

that by using two different FIT kits customized to two sub-populations, significantly

more CRC cases can be detected with fewer colonoscopies than a universal FIT test.

To obtain a practical population-based screening policy, we further apply the inter-
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pretable clustering technique to search for implementable rules in partitioning the

population. We find that by simply adopting an age-gender rule, we can recover the

optimal partition.

It is worth mentioning that CRC generally starts with a polyp, a noncancerous

growth developing in the colon or rectum’s mucosal layer (American Cancer Society,

2020a). Polyps can also be detected by a two-stage CRC screening but with relatively

low sensitivity. For instance, the sensitivity of seven different FIT brands fluctuates

from 6% to 44% (Gies et al., 2018) for polyps. In this chapter, we only focus on

applying the model framework to CRC detection, which, however, can also be gener-

alized to study both polyps and CRC detection. We present this general case as an

extension in Appendix C.6.

4.2 Literature Review and Related Studies

We divide the related studies on cancer screening into two main categories, studies

in the operations management (OM) domain and those from medical literature. This

is followed by a detailed review of the concepts and methodologies applied in our

framework, information avoidance and Bayesian persuasion.

4.2.1 Operations Research and Management Science Studies

on Cancer Screening

Designing cancer screening policies has received great attention in the OM field.

Studies are conducted to optimize the screening protocol for various cancers, such as

CRC (e.g., Erenay et al. (2014), Güneş et al. (2015)), breast cancer (e.g., Ayer et al.

(2012) and Ayer et al. (2016), Cevik et al. (2018), Ayvaci et al. (2012)), and prostate

cancer (e.g., Zhang et al. (2012)). A detailed review can be found from Alagoz (2011)

and Alagoz et al. (2010).

For example, Ayer et al. (2012) built a POMDP model on the initial screening
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decisions of the breast cancer (i.e., either undergo a mammogram or wait). With the

assumption that once the initial mammogram is positive, individuals will follow up

with a perfect second-stage test (i.e., a biopsy), the authors found that individualiz-

ing mammography screening policy based on women’s risk characteristics is crucial to

maximizing the expected Quality-Adjusted Life-Years (QALYs). Erenay et al. (2014)

investigated the optimal interval of performing a colonoscopy without the consider-

ation of initial tests. With the objective of maximizing the expected QALYs, they

developed a POMDP model and determined the optimal personalized CRC screen-

ing policy by incorporating age, gender, and risk of having CRC into the screening

decisions. Different from the above-mentioned papers, which assume unlimited test

capacity, Güneş et al. (2015) further incorporated the colonoscopy resource constraint

into a dynamic compartmental model with the objectives of minimizing mortality or

incidence rates when analyzing the optimal colonoscopy allocation policy for screening

and diagnosis of colorectal cancer.

The studies mentioned above adopt multi-period decision models and aim to

design screening policies for cancer prevention and surveillance from the perspec-

tive of the optimal screening frequency and starting/ending age of underdoing biop-

sies/colonoscopies. The key decisions involve whether to perform tests at each decision

epoch, with test sensitivity and specificity fixed and given in advance. This chapter

is a high-level test design problem, and we consider adjustable test sensitivity and

specificity by optimizing the cut-off selection to balance the trade-off between test

effectiveness and screening capacity.

Most OM literature assumes perfect adherence to the guideline (Ayer et al. 2012,

Zhang et al. 2012). Erenay et al. (2014) and Ayer et al. (2016) acknowledged the issue

of imperfect adherence in designing optimal screening policy. In Erenay et al. (2014),

they numerically explored how different levels of adherence rates impact the optimal

design of screening guidelines. Ayer et al. (2016) examined the effect of imperfect
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adherence in the initial mammography test for breast cancer by formulating a new

POMDP model that sheds some light on the trade-offs inherent in different breast

cancer screening policies. They concluded that screening strategies might be adjusted

in clinical practice based on the adherence rate. However, the adherence rates remain

fixed and exogenous, and the individual’s adherence decision is disentangled from the

policy design. Unlike the literature, in this chapter, we endogenize the individual’s

adherence decision to capture the screening policy’s impact on adherence behavior.

4.2.2 Medical Studies on Screening Adherence and Cut-off

Point Selection

In screening programs worldwide, the adherence rate to colonoscopy after receiving

an abnormal FIT result is relatively low, with 65.7% in Taiwan, 58.6% in Chile, and

70.5% in France (Navarro et al. 2017, Pellat et al. 2018, Jen et al. 2018). According

to numerous descriptive qualitative studies, many factors can influence individuals’

follow-up decisions, such as economic status, education level, awareness of CRC, fear

and anxiety about the colonoscopy procedures, the embarrassment of undergoing a

colonoscopy, encouragement from family and friends, fear of being diagnosed with

cancer, concerns about the accuracy of the initial test, health literacy and lack of

assistance in making an appointment (Schneider et al. 2020, Wang et al. 2013, Plumb

et al. 2017). Various interventions have been recommended to promote individual

follow-up behaviors, such as helping individuals schedule appointments, providing

concrete education about what the colonoscopy entails, proactively communicating

costs and offering financial assistance (Schneider et al. 2020). This chapter does not

focus on understanding the reasons behind imperfect adherence or propose inter-

ventions that can alter individuals’ behavior. We aim to design the screening tests

incorporating the adherence behavior into the model leveraging the survey data. We

contribute to the medical literature by modeling the dependence between individuals’
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adherence decisions and the design of the screening guideline. We focus on using the

initial test design as a lever to improve the overall screening effectiveness considering

the strategic adherence behavior.

Regarding the selection of cut-off points, Itoh et al. (1996), Chen et al. (2007),

Wong et al. (2004), Wilschut et al. (2011) and Hernandez et al. (2014) focused on

improving test accuracy and effectiveness. These medical papers applied the existing

decision rule in selecting the cut-off point. For example, Itoh et al. (1996) proposed

three methods to find the optimal cut-off point: (1) choose the cut-off point with

the highest positive predictive value; (2) choose the cut-off point that maximizes the

sum of sensitivity and specificity (Youden’s J index); (3) choose the cut-off point

that minimizes the cost of effectiveness. The second method is widely used by re-

searchers because of its simplicity but without considering the economic impact of the

second-stage screening capacity. There are numerous studies considering the initial

test designs under the constraint of second-stage screening resources. Some papers

highlight that the policymaker can adjust the cut-off value based on the available

colonoscopies resource as required for second-stage screening, and thus, avoid overex-

tending the available endoscopic resources (Grazzini et al. 2009, Navarro et al. 2017,

Toes-Zoutendijk et al. 2020). However, these papers do not consider the impact of

individuals’ adherence behavior on the demand for second-stage tests. We propose

a holistic model to optimize the cut-off points considering the limited second-test

capacity with imperfect adherence behavior.

There are also extensive studies that recommend customized cut-offs for subpop-

ulations. By distinguishing subpopulations by age or gender, many medical papers

advocate the use of personalized cut-offs (Khalid-de Bakker et al. 2011, McDonald

et al. 2012, Toes-Zoutendijk et al. 2020). We also propose a population-based test

scheme. Our optimization model is able to analytically partition the population and

optimize the cut-off points for each sub-population.

69



4.2.3 Studies on Information Avoidance Behavior

A growing literature adopts the information avoidance concept to explain/analyze an

individual’s healthcare decisions. A detailed review can be found in Golman et al.

(2017). Most recently, Li et al. (2020) discovered evidence in their field experiment for

information avoidance in the context of testing for diabetes and cancer. Several belief-

based utility models are applied to explain information avoidance. Following from Li

et al. (2020), these utility models can be divided into three categories: the optimal

expectations model (Brunnermeier and Parker 2005, Oster et al. 2013), the attention

model (Karlsson et al. 2009, Golman and Loewenstein 2018, Golman et al. 2019,

Ganguly and Tasoff 2017), and the curvature model (Caplin and Leahy 2001, Caplin

and Eliaz 2003, Kőszegi 2003, Eliaz and Spiegler 2006). All three models assume

that people derive anticipatory utility: beliefs about future events and outcomes

affect current utility. In this chapter, we borrow the optimal expectations model

to develop individuals’ utility model. The optimal expectations model allows for

self-manipulation of beliefs: Individuals can maintain biased beliefs to generate high

anticipatory utility, thus avoiding the tests. We use the survey data to calibrate

the utility function and characterize individual’s follow-up decision. Most of the

works mentioned above discuss information avoidance behavior in a conceptual way to

provide high-level insights. Our work contributes to information avoidance literature

by demonstrating its applicability in modeling the individual’s healthcare decision in

cancer screening. We use the real data to show that the information avoidance utility

model can well represent the actual screening adherence behavior.

4.2.4 Studies on Bayesian Persuasion

Kamenica and Gentzkow (2011) has a seminal contribution by posing the “Bayesian

persuasion” problem, in which a single informed principal (sender) chooses which in-

formation to collect and communicate to an uninformed agent (receiver) to motivate
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her to act in the desired way. They later extended the model to large state spaces

and multiple agents (Gentzkow and Kamenica 2016, 2017). More recently, this ba-

sic framework has been developed for different domains with applications including

price discrimination (Bergemann et al. 2015), monopoly pricing (Roesler and Szentes

2017), auctions (Bergemann et al. 2017), unobserved queuing system (Lingenbrink

and Iyer 2019), and medical testing or treatment (Schweizer and Szech 2018, Xiang

2020). Specifically, (Schweizer and Szech (2018)) studied optimal information rev-

elation scheme motivated by Huntington’s Disease. They aimed to show revealing

partial information of test outcome is beneficial compared with conventional tests,

which always report precise outcomes. Xiang (2020) focused on physician-patient

interaction in cervical spondylosis treatment decisions. She characterized this inter-

action in a Bayesian persuasion framework and test model implication using health

insurance claims data. Our work also applies the Bayesian persuasion framework to

the medical testing design; however, focusing on a concrete context of cancer screening

program design to balance the trade-off between screening effectiveness and economic

burden. Among all the known papers adopting this framework, we are the first one

using real data to showcase the applicability power of Bayesian persuasion.

Outline of this chapter: The rest of the paper is organized as follows. Section

1.3 details the problem setup and the two-stage optimization model for the initial

test design problem. Section 1.4 presents the theoretical results of the optimal test

structure. In Section 1.5, we conduct a case study in the context of Singapore CRC

screening and evaluate the performance of the optimal initial tests. We conclude our

research by highlighting the major findings and show an outlook on future research

in Section 1.6. All the proofs are relegated to Appendix C.2.

71



4.3 Model

In this work, following the Bayesian persuasion paradigm, we propose a two-stage

optimization framework to study the initial test design problem in the context of CRC

screening. In the first stage, the health system aims to maximize the overall expected

probability of follow-up from individuals with CRC and simultaneously control the

total expected demand for colonoscopy by strategically designing the FIT. In the

second stage, based on the designed initial test, individuals’ goal is to maximize

their total expected utility by choosing whether to follow up with a colonoscopy after

receiving FIT results. For easy reference, all the notations are presented in Appendix

C.1.

4.3.1 Initial Test

Let s ∈ S = {0, 1} denote the CRC state for individuals, where s = 1 (s = 0) repre-

sents a health state with (without) CRC. We use ζ to denote f-Hb concentration level

tested from FIT. Conditioning on the individual’s health state, ζ follows different dis-

tributions. Let H1(·) (H0(·)) and h1(·) (h0(·)) be the cumulative distribution function

(CDF) and probability density function (PDF) of f-Hb concentration for individuals

with (without) CRC (Figure 4.1). Suppose the range of f-Hb concentration is [ζ, ζ̄].

We assume that h0(ζ), h1(ζ) > 0 and are continuous in ζ for ζ ∈ [ζ, ζ̄].

To design a quantitative test, the health system chooses a set of cut-off points

from the feasible range [ζ, ζ̄]. Denote the test design decision variable as a pair

(T, CT ), where T refers to number of cut-off points selected, and CT as the set of

cut-off point values, i.e., CT = {c1, c2, .., cT |ct ∈ [ζ, ζ̄], c1 < c2 < ... < cT}. Given

(T, CT ), the health system reports the test outcome after observing f-Hb value, ζ.

(T, CT ) gives rise to T + 1 test outcomes in outcome set ΓCT = {0, 1, 2, ..., T}: test

outcome is 0 if ζ ≤ c1, t if ct < ζ ≤ ct+1, t ∈ {1, 2, ..., T − 1}, or T if ζ > cT .

Note that when T = 1, we have a dichotomous test which generates positive (1)
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or negative (0) outcomes. T > 1 corresponds to ordinal tests. We define σCT (t|s)

as the likelihood of receiving test outcome t if individual’s state is s. Given the

distribution functions of f-Hb concentrations for healthy and sick individuals, we have,

for s ∈ {0, 1}, σCT (0|s) = Hs(c1), σCT (t|s) = Hs(ct+1)−Hs(ct) if t ∈ {1, 2, ..., T − 1}

and σCT (T |s) = 1 − Hs(cT ). This information is announced to the public. Based

on the likelihood of receiving each test outcome, individuals will update their belief

of having cancer. Figure 4.3 gives an illustrative example of an initial test with two

cut-off points. Once (T, CT ) is determined, we can fully characterize the initial test

in terms of the test outcomes and likelihoods. We will omit the dependence on CT in

the notations if it is clear from the context.

In practice, a well-designed cancer screening initial test should possess a property

that individuals with cancer are more likely to receive severe test outcomes than

healthy individuals. This property can be represented by the “Monotone Likelihood

Ratio (MLR)” stochastic order condition: A random variable X (with probability

mass function q1) is said to dominate Y (with probability mass function q0) in the

sense of MLR if q1(·)
q0(·) is an increasing function (Eeckhoudt et al. 2011). Given that

the test outcomes of individuals with and without CRC are two random vectors of

dimension T + 1 with probability mass function σCT (·|0) and σCT (·|1), we define an

initial test that possesses this nice property as a “MLR-feasible” initial test.

Property 1. An initial test (T, CT ) is MLR-feasible if σCT (t|1)

σCT (t|0)
is increasing in t,

t ∈ ΓCT .

Property 1 implies that if an initial test is MLR-feasible, then individuals with

CRC are more likely to receive severe outcomes than healthy individuals. In the rest

of this chapter, we restrict our study to MLR-feasible initial test.
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Figure 4.3: An initial test with two cut-off points
The left curve and the right curve present PDFs of biomarker concentrations for
healthy and sick individuals. Suppose CT = {c1, c2}, where c1 < c2. The test outcome
set is ΓCT = {0, 1, 2}. Based on the definition of σCT (t|s), the left shaded area denotes
the likelihood of healthy individuals receiving test outcome 0, and the right one
presents the likelihood of sick individuals receiving test outcome 2.

4.3.2 Individual’s Follow-Up Problem

Individual’s belief updating process.

We consider a population of size N . For an individual i, i ∈ {1, 2, ..., N}, the prior

risk of developing CRC is denoted by p0
i . After receiving a test outcome t ∈ Γ, the

risk of developing CRC is updated to psi (t) (i.e., the posterior risk) following Bayesian

updating process. Let λi(t) denote the total probability of receiving test outcome t,

i.e., λi(t) = σ(t|0)(1− p0
i ) + σ(t|1)p0

i , ∀t ∈ Γ, i ∈ {1, 2, ..., N}. We have

psi (t) =
σ(t|1)p0

i

λi(t)
, i ∈ {1, 2, ...N}, t ∈ Γ.

The following lemma establishes the monotonicity of psi (t) for an MLR-feasible initial

test.

Lemma 4.1. The posterior risk of developing CRC after taking a MLR-feasible initial

test, psi (t), increases in t.

Lemma 4.1 implies that individuals have higher posterior risks of having cancer if

receiving worse test outcomes.
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Individuals’ utility model.

We denote individual i’s follow-up action observing initial test outcome t as ai(t) ∈

{0, 1}, where ai(t) = 1 refers to a follow-up with the second-stage test and ai(t) = 0

indicates the opposite. We use ui(si, ai(t)) to denote the utility for individual i if

his/her health state is si and the follow-up action is ai(t). Following the convention in

healthcare practice, we adopt QALYs as the performance measure of the individual’s

utility. QALYs is a generic measure of the value of health outcomes, including both

the quality and the length of life lived. Mathematically, it is the product of the length

of life in years and quality of life, where the quality of life is measured on a scale of

0 to 1, with 1 indicating perfect health and 0 indicating death.

Adapted from the utility model in information avoidance literature (Brunnermeier

and Parker 2005, Oster et al. 2013), we construct the individual’s utility function when

making a follow-up decision as a weighted sum of an subjective utility and a objective

utility by incorporating both the subjective beliefs and objective risks of their health

status, subtracted by an expected perceived disutility of taking a colonoscopy if he/she

follows up.

Subjective utility and objective utility. We denote the weighting parameters

of subjective and objective utility by δi and 1−δi, respectively. Recall that individual’s

objective risk of developing CRC after receiving a test outcome t from the initial test

is the posterior risk, psi (t). We define a subjective counterpart, denoted as, πsi (t), to

represent individual i’s subjective belief of having CRC after receiving a test outcome

t from the initial test. Therefore, we have first two components of the total expected

utility given as follows:

δiE[ui(si, ai(t))|πsi (t)] + (1− δi)E[ui(si, ai(t))|psi (t)].

Note that to obtain above expected utility, we need to know the individuals’ subjective

posterior belief, πsi (t), for any given t ∈ Γ. However, in the current practice, the

dichotomous test with binary test outcomes, i.e., t ∈ {0, 1}, is being used. In order to
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obtain the subjective belief for any initial test design with possibly more than two test

outcomes, we model individual i’s subjective belief πsi (t) as a function of the objective

risk psi (t), i.e., πsi (t) = Φ(psi (t)), t ∈ Γ, where function Φ is carefully calibrated using

the survey data. The correlation between objective risk and subjective belief can be

well-interpreted. For instance, if an individual maintains a good (bad) lifestyle and

has a lower (higher) posterior risk of having CRC, the self-belief of having CRC is also

likely to be low (high). Moreover, in classic information avoidance literature (Oster

et al. 2013), the researchers analyze the relationship between individuals’ subjective

beliefs and objective risk and find that the optimal subjective belief is a linear function

of objective risk.

Expected perceived disutility of follow-up. There is a cost incurred if an

individual chooses to follow up and takes a colonoscopy. The cost stems not only from

the possible adverse effect from taking the colonoscopy, such as the risk of perforation

or even death, but also other personal resistance and concerns individual have towards

taking a colonoscopy and the follow-up treatment if confirmed with CRC, such as their

age, medical history, family support, trust on doctors, perception on the discomfort

and embarrassment of taking a colonoscopy, etc. We refer to the overall cost as the

“perceived disutility” of the follow-up action, denoted as di(si) for individual i if the

health state is si. Because it is only incurred when ai(t) = 1, we omit the dependence

on ai(t) in the notation. If individual i follows up, the expected perceived disutility

is E[di(si)|πsi (t)]. Note that the subjective belief of developing CRC is used as the

probability distribution of s given that the disutility is an individual’s perceived factor

other than an objective evaluation.

To summarize, the total expected utility of participant i for action ai(t) is given

as follows:

Ui(ai(t) = 0) =δiE[ui(si, ai(t) = 0)|πsi (t)] + (1− δi)E[ui(si, ai(t) = 0)|psi (t)] + ε0i ,

Ui(ai(t) = 1) =δiE[ui(si, ai(t) = 1)|πsi (t)] + (1− δi)E[ui(si, ai(t) = 1)|psi (t)]− E[di(si)|πsi (t)] + ε1i .
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Where εaii is a random error term that captures the impact of all unobservable

factors which affect the utility of choosing action ai by individual i.

Individual’s follow-up decision.

In the context of cancer screening, an individual’s follow-up decision does not solely

rely on the utility of different choices. For some specific test outcomes, individuals

would automatically not follow up with a second-stage test. Take a dichotomous

FIT test as an example. When an individual receives a negative outcome (0) which

indicates a by-default health state, he/she will not follow up. In the case of a positive

outcome, the follow-up decision would be made by weighing the utility of different

actions. To reflect this additional feature, we obtain the following condition that

determines individuals’ follow-up behavior.

ai(t) =


1 if t 6= 0 and Ui(ai(t) = 1) > Ui(ai(t) = 0),

0 if t = 0 or Ui(ai(t) = 0) ≥ Ui(ai(t) = 1).

Specifically, we add one additional condition that if an individual receives the best

test outcome (i.e., t = 0), he/she would not follow up. Given that the total utility

Ui(ai(t)) is random, for an individual i with an initial test outcome t, the probability

of following up with the second-stage test, fi(t), is expressed as follows:

fi(t) =


0 if t = 0,

Prob(Ui(ai(t) = 1) > Ui(ai(t) = 0)) otherwise.

(4.1)

Since the subjective belief πsi (t) is a function of the objective risk psi (t), individuals’

follow-up probability can be written as a function of psi (t) if t 6= 0. In the rest of the

paper, we denote this by function W (psi (t)).

fi(t) =


0 if t = 0,

W (psi (t)) otherwise.

(4.2)
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4.3.3 Health System Test Design Problem

The health system’s objective is to maximize the expected follow-up probability from

individuals with CRC and control the total expected demand for colonoscopy by se-

lecting the set of cut-off points. Given CT is the decision variable denoting a set

of cut-off points with the corresponding test outcome set ΓCT and likelihood set

{σCT (t|s)|t ∈ ΓCT , s ∈ S}, we formulate the health system’s problem as follows.

maxT,CT
N∑
i=1

∑
t∈ΓCT

[fi(t)σ
CT (t|1)p0

i − τfi(t)σCT (t|0)(1− p0
i )]

s.t. fi(t) satisfying (4.2)

(4.3)

Specifically, the first term in the objective function represents the follow-up rate from

individuals with CRC; the second term corresponds to the follow-up rate from healthy

individuals. We introduce a multiplier τ in front of the second term to capture the

“cost” of extra colonoscopy demand from healthy individuals. Adjusting values of τ

would give rise to different levels of control over colonoscopy demand.

4.4 Optimal Initial Test Design

There are two challenges in analyzing Problem (4.3). First, the space of feasible

designs of the initial test is large, where, essentially, any value between [ζ, ζ̄] is a

feasible cut-off point value. Given that the health system can adopt a test with

multiple cut-off points, there are exponentially many feasible solutions even with

discretized feasible space. Secondly, the test likelihood functions σ and the best

response follow-up probability functions, f , are highly nonconvex.

To address those challenges, we first study two special cases and explore the op-

timal structure of the initial tests theoretically. Specifically, we investigate (1) how

many cut-off points should be utilized and (2) the optimal values of the cut-off points.

The first special case is that the health system aims to encourage all individuals re-

ceiving risk alarms to follow up with the second-stage tests. This scenario refers to

achieving a full screening guideline compliance where all individuals receiving alarms
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are not differentiated and should confirm their health status via a second-stage test.

With this goal, the capacity of colonoscopy is not a primal concern. Mathematically,

it corresponds an objective function with τ = −1. We refer to this scenario as the

“compliance maximization case”. The second special case relates to enhancing the

screening guideline’s effectiveness by maximizing the expected follow-ups of individ-

uals with CRC. This corresponds to an objective function with τ = 0. We call this

scenario the “effectiveness maximization case”.

For a general objective function with an arbitrary value of τ , answering how many

cut-off points should be selected is challenging. We restrict our analysis to finding

the optimal cut-off point value for a dichotomous initial test from a pre-specified

discretized set of cut-off candidates. We then solve Problem (4.3) analytically via an

integer programming reformulation.

4.4.1 Compliance Maximization Case

For most of the two-stage CRC screening guidelines in practice, individuals receiving

positive FIT outcomes are all encouraged to follow up with a second-stage test. This

guideline aims to achieve higher individuals’ compliance without differentiating these

individuals based on their potential risk of developing CRC. In this section, we par-

ticularly focus on this initiative and characterize the optimal initial test design (i.e.,

τ = −1).

Specifically, we say an initial test outcome, t, is a risk alarm for an individual i

if t 6= 0. The health system aims to maximize the total follow-up probability for all

individuals receiving risk alarms (Problem (4.4)).

maxT,CT
N∑
i=1

∑
t∈ΓCT

[
fi(t)σ

CT (t|1)p0
i + fi(t)σ

CT (t|0)(1− p0
i )
]

s.t. fi(t) satisfying (4.2)

(4.4)

Notice that in Problem (4.4), the follow-up probability is summed over all the test
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outcomes t ∈ ΓCT . If t is not a risk alarm, i.e., t = 0, the follow-up probability is

0. Hence, Problem (4.4) is equivalent to only maximizing the follow-up probability

of individuals receiving risk alarms. The following theorem presents the optimal

structure of the initial test.

Theorem 4.2. For the compliance maximization case, if W (psi (t)) is concave in psi (t),

a dichotomous initial test with cut-off point value ζ is optimal.

Theorem 4.2 confirms the current practice of adopting a dichotomous initial test.

In terms of selecting cut-off values, it is suggested in the literature that a lower cut-off

value should be applied for FIT screening to achieve a higher detection rate without

considering the high false-positive rate and the demand for unnecessary colonoscopies

(Hol et al. 2009). Our result further supplements this claim by showing that high

sensitivity FIT can be optimal under certain conditions, even considering the adverse

impact of a high false-positive rate on adherence behavior.

We also consider the case when W (·) is not a concave function and analyze the

performance of adopting the dichotomous FIT with the highest sensitivity. We found

that the performance gap between such a FIT test with the optimal test design is

bounded by a finite value measured by the “modulus of concavity” of W (·). The

detailed analysis is relegated to Appendix C.3.

4.4.2 Effectiveness Maximization Case

In this section, we examine the optimal initial test design when the health system

aims to enhance the effectiveness of CRC screening by maximizing the overall follow-

up probability from individuals with CRC. This corresponds to an objective with

τ = 0, which gives the following health system’s optimization problem.

maxT,CT
N∑
i=1

∑
t∈ΓCT

fi(t)σ
CT (t|1)p0

i

s.t. fi(t) satisfying (4.2)

(4.5)
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The following theorem establishes the optimal initial test for the effectiveness

maximization case.

Theorem 4.3. For the effectiveness maximization case, if W (psi (t)) is convex and

nondecreasing in psi (t), it’s optimal to adopt the continuous initial test which directly

report individuals’ f-Hb values.

In the proof, we establish the optimally of a continuous test by firstly show that for

any initial test with a finite number of cut-off points, the objective value of Problem

(4.5) is nondecreasing if arbitrarily adding one more cut-off point from [ζ, ζ̄]. Then

we prove that if we uniformly add infinitely many cut-off points, the objective value

of Problem (4.5) converges to that of the continuous test1. We note that in practice,

continuous tests are adopted in certain health screenings (e.g., blood glucose, WBC

count). Our result sheds light on the potential benefits a continuous test might bring

to cancer screening.

4.4.3 Analytical Model for the Initial Test Design

In this section, we investigate the initial test design under a general setting where

the adjusting term τ can take any arbitrary value. We restrict our analysis to design-

ing an optimal dichotomous initial test given a pre-specified candidate set of cut-off

points, denoted by Vm ≡ {v1, v2, ..., vm|vj ∈ [ζ, ζ̄], v1 < v2 < ... < vm}. Apart from

tractability, the reason that we introduce a candidate set is due to practical consider-

ations. In practice, biomarker measurements usually come with precision issues, and

the displayed biomarker values are generally not continuous. In addition, professional

practitioners are likely to have a set of preferred cut-off values, and discretized cut-off

point values are more interpretable than continuous values.

In the following content, we study the initial test designs under two different

1For the continuous CRC test, it should possess a similar property that individuals with cancer
are more likely to receive severe outcomes than healthy individuals. The belief updating process is
similar to the ordinal test. We relegate all the descriptions in Appendix C.2.3.
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settings: the universal test and the customized test. For a universal initial test, the

health system adopts a one-FIT-all test in which the same FIT kit is used for all

individuals. For a customized initial test, different subgroups of the population are

assigned to different FIT kits (i.e., FIT kits with different cut-off points).

Universal dichotomous test design

To design the universal test for all N individuals, the health system chooses one cut-

off from the candidate set Vm. We use a binary variable xj to denote whether cut-off

value vj is selected, j ∈ {1, 2, ...,m}. If vj is chosen, xj equals 1; otherwise xj equals

0. For each candidate cut-off point value, say vj, follow-up probability, f ji (t) and

likelihood, σj(t|s), can be evaluated. We have the health system’s design problem

formulated as an integer programming problem as follows.

maxx

N∑
i=1

m∑
j=1

f ji (1)[σj(1|1)p0
i − τσj(1|0)(1− p0

i )]xj

s.t.
m∑
j=1

xj = 1

x ∈ {0, 1}

(4.6)

Customized dichotomous test design

In this section, we consider customized tests for different individuals and optimize

the values of cut-off points for each test to elicit the highest objective value. Suppose

no more than L types of dichotomous tests are designed for all participants N , where

L << N . Given the candidate set Vm, we use binary variables xj to denote whether

a FIT kit with cut-off point vj is selected, and binary variable qij to denote whether

the FIT kit with cut-off point vj is assigned to individual i. The initial test design
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problem again can be formulated as an integer programming problem.

maxx,q

N∑
i=1

m∑
j=1

f ji (1)[σj(1|1)p0
i − τσj(1|0)(1− p0

i )]qij

s.t.
m∑
j=1

qij = 1, ∀i ∈ [N ]

m∑
j=1

xj ≤ L

qij ≤ xj, ∀j ∈ [m], i ∈ [N ]

x ∈ {0, 1},q ∈ {0, 1}

(4.7)

Data-driven interpretable clustering test design

Notably, the output of the customized test design gives rise to the optimal cut-off

points for L initial tests and a partition of the population into L clusters that max-

imizes the health system’s objective. However, in most cases, the obtained clusters

are not partitioned based on factors that can be easily interpreted and the partition

cannot be easily implemented.

We further propose another method that designs customized initial tests to L

sub-populations that are well-partitioned based on demographic features that are

observable to the health system. We adopt the interpretable clustering framework

(Bertsimas and Kallus 2020, Mundru 2019) which is a two-step method composed of

prediction and optimization. A decision-tree model is firstly trained using individuals’

demographic data given the cluster of each individual obtained from the customized

test design (Problem (4.7)). The obtained decision tree generates a new partition of

the population which only depends on the demographic information. The optimal

initial tests are then obtained via solving the optimal universal test model (Problem

(4.6)) for each cluster obtained from the new partition.

4.5 CRC Screening Test Design in Singapore

With increasing advocacy on CRC screening, the Health Promotion Board in Sin-

gapore launched the national CRC screening programme in July 2011 to encourage
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regular screenings for Singaporean or permanent residents (PRs) aged 50 and above

(Singapore Health Hub 2011). FIT kits are distributed free of charge at the Singapore

Cancer Society and can also be purchased through participating stores such as phar-

macy outlets at an affordable price. Individuals are taught how to collect the stool

samples and are required to return the kits within a week. Results will be ready in a

month from the submission of the kits to the testing lab, and should there be positive

results, the health system staff will contact participants and help them make an ap-

pointment with a hospital for further testing. Singapore has adopted two-sample FIT

initial test scheme where individuals are required to collect two stool samples on two

seperate days, and if at least one positive outcome is reported, a second-stage test

is recommended. Two-sample FIT scheme has been shown to increase sensitivity by

potentially detecting CRC that has been missed in one-sample FIT (Lim et al. 2020,

Chew et al. 2009). In this section, we conduct a comprehensive study to explore the

optimal initial test design in Singapore.

4.5.1 Survey and Data

The data used in our numerical study is mainly from nationwide survey data we

collected in Singapore, public data sources and related literature. In this section, we

mainly present the details of the survey data. Other relevant data will be introduced

when they are used in the model calibration.

Survey The survey was conducted through the Singapore Life Panel (SLP), a

high-frequency survey panel involving elderly participants aged from 50 years and

above, which coincides with our research target audience. Each month, the panel is

surveyed on their demographics, lifestyle, insurance information, health and probabil-

ity literacy, life satisfaction, etc. Our survey on CRC screening is an added module of

one of the monthly surveys, which consists of questions related to past CRC screening

experiences, CRC and CRC screening knowledge, perception over test accuracy, and
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factors influencing adherence behavior, etc. The participation of our survey module

is on a voluntary basis, and those who complete the whole module are rewarded with

a five-dollar voucher. The study was approved by the Institutional Review Board at

Singapore Management University.

SLP invited 7,539 participants and there is a total of 3,920 responses in our survey

module. Given that the target population of CRC screening guideline is individuals

with average risks of CRC (Ministry of Health Singapore 2020b), we exclude individ-

uals with a family history of CRC and medical history of CRC or polyps (n = 638).

Thus, we end up with a total number of 3,282 data points. Out of the 3,282 partic-

ipants, 1,400 participants have undergone FIT screening, and 202 of them have ever

received a positive FIT result. However, only 72% of the participants with positive

FIT results (n = 145) followed up with the second-stage tests.

Survey data pre-processing There are two potential issues with the survey

data, missing values and selection bias. We treat these missing values through mul-

tiple imputations using the multivariate imputation by chained equations given that

missing values accounted for less than 5% for every question. Selection bias can stem

from two sources, the initial selection of SLP, and the subsequent participation of our

survey module, which is on a voluntary basis. Given that the survey data is used

in optimizing the initial test design applied to the entire Singapore population, it is

essential to address these two sources of potential bias. For the first source, according

to Vaithianathan et al. (2018), the SLP is capable of representing Singapore’s elderly

population. We further compare the demographics of the SLP with the Singapore

census of population data (Statistics Singapore 2018), and find a close match in terms

of age, gender, marital status, ethnicity, education, labor force status, income and ex-

penditure. For the second source of selection bias, we apply a response propensity

weight adjustment introduced by Brick (2013) by taking the inverse of the estimated

propensities of the respondents.
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4.5.2 Parameter Estimation

The key inputs that need careful calibrations include f-Hb concentration distribution

functions for individuals with and without CRC, h1 and h0; and individual’s follow-

up utility function, Ui. Specifically, the establishment of Ui requires learning of the

subjective belief of having CRC given any test outcome t, QALYs estimation for utility

term ui(si, ai(t)), constructing the perceived disutility when individual i follows up,

di(si), and determining the weighting parameter δi. The specific functional forms of

h1 and h0 are extracted from Peng et al. (2019), as for the other variables, we present

the estimation details, and a summary of estimation methods and data required is

given in Table 4.1.

Parameter/ Function
Estimation

Method
Data

Ui(ai(t))

πsi (t) = Φ(psi (t)) Regression Survey data

ui(si, ai(t)) Simulation
Medical literature

Public data
δi MLE∗

Survey data
Medical literaturedi(si)

∗ MLE refers to maximum likelihood estimation.

Table 4.1: A summary of estimation methods and data sources

Subjective belief estimation

Recall that an initial test outcome is a risk alarm if it is not the best outcome. Given

that individuals who do not receive risk alarms will not follow up, we only need to

focus on the subjective belief estimation for those receiving risk alarms. Following

the literature (Oster et al. 2013), the linear form between the subjective belief and

objective risk is assumed. Specifically, the relationship between the subjective belief

of having CRC and objective posterior risk, i.e., πsi (t) = Φ(psi (t)), is linear and same

for any test outcome t(6= 0). Given the data pair of ps and πs for each participant i

in our survey, we can, therefore, calibrate Φ using a linear regression. The obtained

relationship is πsi (t) = 0.89 × psi (t) − 0.0042. The coefficients are significant at 1%
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level.

Estimation of ui(si, ai(t))

We use individuals’ expected remaining QALYs as a measure of utility, u(s, a(t)).

To obtain the expected QALY, we build a simulation model of the natural progress

of CRC for an individual with CRC screening intervention at individualized risk for

CRC, adopted from the model in Ladabaum et al. (2001).

An individual without CRC will receive the full expected remaining QALYs2.

The expected remaining QALYs vary by age and gender and are calculated via data

extracted from Singapore life table (Department of Statistics 2019). We assume the

individuals participating in the FIT are asymptomatic; otherwise, they would bypass

the CRC screening and directly consult their physicians for further treatment, and

therefore, are not our study audience. Hence, for an individual with CRC, he/she is

possibly staying in the localized or regional CRC stage. Following Ladabaum et al.

(2001), we assume that CRC cases progress from localized to regional (2 years in

each state) to distant unless symptoms lead to diagnosis and treatment. If this occurs,

patients will enter postcancer surveillance. If an individual with CRC follows up after

receiving a positive FIT outcome, they will receive cancer treatment; if not, they will

only receive treatment until the presentation of symptoms, and they may experience

natural death during the CRC progression process. Data used in calculating QALYs

for CRC individuals are from the public database and medical literature. Please refer

Appendix C.4.1 for the detailed simulation model and QALYs derivation.

Utility functional form estimation

In this part, we present the estimation of the weighting parameter of the subjective

utility (i.e., δi), the perceived disutility if individuals follow up with the second-stage

2Note the follow-up decision does not affect the health individual’s QALYs calculation in this
part because the QALYs loss from a colonoscopy if he/she follows up is incorporated in the disutility
function di.
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test (i.e., di(si)).

δi and δ-features People with different characteristics demonstrate various at-

titudes towards screening guidelines and may exhibit drastic differences in their ob-

jectivity towards test outcomes, captured by the weighting parameter δi. We utilize

the demographics and personal characteristics data from the survey to calibrate the

heterogeneity in δ. Specifically, from a total 7,899 variables in the survey data, we

perform an initial variable selection (cf. Appendix C.4.2 for the details). We refer

to all the selected variables as δ-features. Specifically, δ-features contain individuals’

age, knowledge about colonoscopy, knowledge about CRC incidence rate, whether

they have private insurance, and frequency of taking FIT. δi is modeled as a linear

function of the δ-features.

di and d-features The perceived disutility of follow-up consists of two compo-

nents: the QALYs loss due to a colonoscopy and a perceived cost due to concerns

about the colonoscopy and treatment if detected with CRC. Firstly, colonoscopy is

accompanied by a certain risk of perforation, which may further lead to perforation-

related death. This QALYs loss is estimated similarly to the QALYs estimation in

Section 4.5.2 with details relegated in Appendix C.4.2. Secondly, individuals generally

have various personal concerns over the follow-up decision. In our survey, we asked

individuals about the factors they were concerned about when deciding whether to

follow up. After an initial variable selections (cf. Appendix C.4.2 for the details), the

following key factors are identified, medical history, age (i.e., too old for treatment),

trust on doctors, whether they want to know health condition, price of a colonoscopy

and family support. Together with QALYs loss, all the factors are termed as d-

features. Perceived disutility is modeled as a linear function of the d-features.

Maximum likelihood estimation (MLE) of utility function. We assume

the random noises ε0i and ε1i follow Gumbel distribution with location parameter 0 and

scale parameter 1. As a result, the follow-up probability given positive test outcomes
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follows a multinomial logit choice model. We then perform MLE to estimate the

linear coefficients of δ-features and d-features (cf. Appendix C.4.2 for the details).

Performance evaluation of the utility model

To assess the performance of our proposed utility model, we first test the capability

of our model in predicting individuals’ follow-up behavior using the average AUC

from 3-fold cross-validation as a performance measurement. Due to the imbalanced

dataset (the number of follow-ups is 145 and the number of non-follow-ups is 57), we

adopt the resampling method to generate a balanced dataset (145 follow-ups and 145

non-follow-ups). The average AUC is 0.82.

In addition, we compare the performance with a logistic regression model, which

directly predicts individuals’ follow-up behaviors using variables in the survey data.

We perform stepwise logistic regression (cf. Appendix C.4.3) for variable selection and

its average AUC of 3-fold cross-validation is 0.82, which is same as the performance

of our structural model.

Although we can employ regression models to characterize individuals’ follow-up

decisions, our utility model is superior to the logistic model in two regards. First,

using the structural model, we can capture the belief updating process and endogenize

the behavior response to the test design, which allows us to further investigate the

optimal test design. This is not achievable with a regression model. Second, we

are able to capture individuals’ information avoidance behavior and to understand

how individuals evaluate subjective and objective utility, which enables us explicitly

identify the impact of individualized factors on their adherence behavior.

4.5.3 Optimal FIT Design

In this section, we apply our framework to design FIT test kits in the context of

Singapore CRC screening given the parameters and estimates obtained. Our study

sample is the propensity-adjusted whole participant cohort. Notably, one-sample and
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two-sample FIT are widely adopted in different national screening programs. As pre-

viously introduced, the two-sample FIT is performed in Singapore as it can detect

more CRC patients relative to the one-sample test. In some other regions and coun-

tries (e.g., Taiwan, Spain), the one-sample FIT is recommended. The U.S. Preventive

Services Task Force also suggests a one-sample annual FIT screening (Robertson et al.,

2017). There is a growing debate on how many samples should be utilized in the FIT

test screening programs (van Roon et al., 2011, Goede et al., 2013). In the following,

we explore the optimal FIT design for both one-sample and two-sample cases. The

design outcomes would contribute to the performance comparison of the two cases

in terms of screening effectiveness and colonoscopy demand. For the sake of brevity,

the details of how we construct the candidate set of cut-off points are presented in

Appendix C.4.4.

One-sample FIT design

In this section, we focus on the design of one-sample FIT. We specifically study

dichotomous test design and explore the options of universal test, customized test

and interpretable clustering test.

Universal dichotomous test

We consider a population base of 10,000 individuals, of which 14.23 individuals

have CRC on expectation based on the CRC incidence rate. We obtain the optimal

universal dichotomous test for various values of adjusting term, τ , from -1 to 1. We

present the optimal cut-off point and other related performance metrics in Table 4.2.

Firstly, we observe that when the adjusting term τ increases from −1 to 1, the op-

timal cut-off value increases, and the corresponding sensitivity (specificity) decreases

(increases). This is an intuitive result that if the follow-up penalty for healthy indi-

viduals is high, the health system should reduce the false-positive rate, which can be

accomplished by increasing the cut-off value.

Secondly, given that sensitivity (specificity) decreases (increases) as the cut-off
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Adjusting term (τ) -1 -0.05 -0.02 -0.005 0 0.005 0.01 0.05 1

The optimal cut-off point, µg/g 10 13 27 31 33 35 38 50 75
Sensitivity, % 87.48 85.55 78.64 77.06 76.30 75.58 74.53 69.38 63.38
Specificity, % 84.15 89.88 98.50 99.10 99.30 99.45 99.62 99.95 100.00

Expected number of positives ∗ 1594.98 1023.09 160.78 100.76 80.72 65.26 48.33 14.95 9.34
Expected number of positives from CRC patients∗ 12.45 12.18 11.19 10.97 10.86 10.76 10.61 9.87 9.02
Expected number of positives from healthy individuals∗ 1582.53 1010.91 149.59 89.79 69.86 54.50 37.72 5.08 0.32

Expected colonoscopy demand∗ 344.47 340.63 136.78 95.47 78.59 64.43 48.10 14.95 9.34
Expected number of follow-ups from CRC patients∗ 3.18 4.48 10.14 10.68 10.73 10.71 10.60 9.87 9.02
Expected number of follow-ups from healthy individuals∗ 341.29 336.15 126.64 84.79 67.86 53.72 37.50 5.08 0.32

∗ The population base is assumed to be 10,000, of which 14.23 individuals have CRC and 9985.77 do not.

Table 4.2: The optimal universal dichotomous test (one-sample FIT)

point value becomes larger, the expected number of positive outcomes from both

individuals with and without CRC decline. This trend implies that under the as-

sumption of a constant adherence (i.e., a fixed proportion of the individuals receiving

positive outcomes will follow up and demand a colonoscopy), higher test effectiveness,

which, in this case, corresponds to more positive outcomes from CRC individuals, is

always accompanied by a higher demand for colonoscopies. Each cut-off point would

correspond to a FIT kit on the efficient frontier. On the contrary, by considering

the imperfect test-dependent adherence behavior, the expected number of the actual

follow-ups from CRC individuals is not monotone. This observation is an outcome

of two opposing effects when cut-off point values change. On the one hand, FIT’s

sensitivity decreases when the cut-off point value increases, and therefore, fewer CRC

patients are detected. On the other hand, as the cut-off value increases, individuals

are more likely to follow up after receiving a positive outcome due to higher posterior

CRC risk and belief. In particular, we find that when the optimal cut-off point value

is less than 33 µg/g , the impact on follow-up probability dominates. The FIT kits in

this domain (i.e., high-sensitivity FIT kits) are no longer on the efficient frontier. A

FIT with a larger cut-off point value can detect more CRC cases with fewer colono-

scopies. When the optimal cut-off point value is higher or equal to 33 µg/g, the

impact on detection rate dominates, and the trade-off between test effectiveness and

colonoscopy demand appears. Our results shed light on the criticality of considering
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the strategic imperfect adherence behavior. The wrong assumption on constant ad-

herence rate would recommend a FIT kit with high sensitivity (e.g., cut-off point is 10

µg/g) when colonoscopy capacity is relatively sufficient. This FIT kit will essentially

fail in practice, not only by creating excessive unnecessary colonoscopy demand but

also by causing much fewer CRC cases being detected.

Customized dichotomous test

Customized FIT would provide additional flexibility to the health system in im-

proving the effectiveness of CRC screening. While adopting a large number of different

types of test kits is not practical, we explore the benefit of promoting two types of the

dichotomous FITs to two subpopulations (i.e., L = 2 in Problem (4.7)). The optimal

design of three-type case (i.e., L = 3) is also obtained with details given in Appendix

C.5.1. Table 4.3 presents the optimal two-type customized dichotomous test with the

adjusting term τ equals 0.0063.

Cluster 1 Cluster 2 Total Cluster 1& Cluster 2& Total& Current practice

Number of individuals∗ 4022.48 5977.52 10000 4022.48 5977.52 10000 10000
Expected number of CRC patients∗ 9.18 5.05 14.23 9.18 5.05 14.23 14.23

The optimal cut-off point, µg/g 31 39 - - - 33 20
Sensitivity, % 77.06 74.20 - - - 76.30 81.77
Specificity, % 99.10 99.67 - - - 99.30 96.22

Expected number of positives∗ 43.17 23.72 66.89 35.09 45.63 80.72 389.37
Expected number of positives from CRC patients∗ 7.08 3.74 10.82 7.01 3.85 10.86 11.64
Expected number of positives from healthy individuals∗ 36.09 19.98 56.07 28.08 41.78 69.86 377.73

Expected colonoscopy demand∗ 43.12 23.56 66.68 35.09 43.50 78.59 227.01
Expected number of follow-ups from CRC patients∗ 7.07 3.74 10.81 7.01 3.72 10.73 7.21
Expected number of follow-ups from healthy individuals∗ 36.05 19.82 55.87 28.08 39.78 67.86 219.80

∗ The population base is assumed to be 10,000, of which 14.23 individuals have CRC and 9985.77 do not.
& The results are from the universal test when the adjusting term τ equals 0.

Table 4.3: The optimal customized dichotomous test when τ = 0.006 and L = 2
(one-sample FIT)

It is worthwhile to examine the population features of the obtained two clusters.

We present the key feature variables that differentiate the two clusters in Appendix

(Table C.6). Overall, the sub-population in Cluster 1 has more CRC individuals and

more elderly males who are of higher risks to develop CRC (National Registry of

3We present the result of τ = 0.006 to show a case of a high follow-up rate from the CRC patients
with a low total colonoscopy demand. The performance of the test designs under different adjusting
terms is presented as efficient frontiers in the latter part of the numerical discussion (Figure 4.5).
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Diseases Office, 2015) compared with Cluster 2. This would help explain the optimal

test design for the two clusters.

We compare the optimal customized tests to the optimal universal test to show the

benefit of customization4. To facilitate the comparison, for the optimal universal test

with τ = 0, we further get the expected number of positive outcomes and colonoscopy

demands for the same two clusters (columns with superscript & in Table 4.3).

We first observe that the optimal customized test design suggests a higher sensi-

tivity FIT for Cluster 1 (adjusting the cut-off from 33 µg/g to 31 µg/g). An increase

in the FIT sensitivity will enhance the test effectiveness for this cluster that contains

more CRC individuals. In addition, due to the higher risk of developing CRC, the

sub-population in this cluster have a relatively higher follow-up probability after re-

ceiving positive test outcomes. This inherent high follow-up probability leaves room

for strategically choosing a cut-off point such that the increase in the sensitivity only

slightly reduces the adherence level (7.07 out of 7.08 v.s. 7.01 out of 7.01 in the univer-

sal test). The overall effect from a higher cut-off point benefits the test effectiveness

for this cluster.

Secondly, for Cluster 2 that contains more relatively lower risk individuals, a

lower sensitivity FIT is suggested compared with the optimal universal FIT (altering

the cut-off point from 33 µg/g to 39 µg/g). Interestingly, we not only reduce the

demand for colonoscopies but also enhances the screening effectiveness in terms of

detecting more CRC individuals. Despite the fact that we raise fewer positive cases

for CRC individuals in Cluster 2 under the customized test due to low sensitivity

(3.74 v.s. 3.85 in the universal test), the resulting lower false positive rate increases

the adherence rate (from 3.72 out of 3.85 in the universal test to 3.74 out of 3.74) for

CRC individuals. Overall, we have more follow-ups from CRC individuals (3.74 v.s.

3.72 in the universal test).

4we compare with the universal test with τ = 0 as this case generates the highest follow-up rate
from CRC patients
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Interpretable clustering dichotomous test

We further apply the interpretable clustering method to design two customized

tests based on the clusters generated from the customized test design result. Specif-

ically, the demographic data used to train the decision tree model to predict the

individuals’ clusters include age, gender and marital status that is easily accessible

to the health system. The decision tree obtained is shown in Figure 4.4 and the av-

erage AUC of 5-fold cross-validation is 0.99, where age and gender are two important

splitting variables.

Figure 4.4: Decision tree (one sample)

We note that individuals who are male (female) and older than 60 (70) years old

are classified in Cluster 1, and the remaining individuals are included in Cluster 2. As

the elderly and males have higher risks of developing CRC, Cluster 1 contains high

risk individuals. We further observe that 94.04% (3782.91 of 4022.48) individuals who

originally belonged to Cluster 1 in the customized test design result remain in Cluster

1, and 100% (5977.52 of 5977.52) individuals who previously were part of Cluster 2

remain in Cluster 2. The decision tree based clustering which is purely based on age

and gender can recover the optimal partition in the customized test design.

For each newly generated cluster, we solve the optimal cut-off value and report
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the expected number of positive results and follow-ups in the two clusters in Table

C.8. The optimal cut-off values in the two clusters are 31 µg/g and 39 µg/g, which

are exactly the same as the ones obtained from the customized test design.

The interpretable clustering initial test design is able to propose an implementable

customized screening policy that only depends on age and gender. The partition

rule of the population is not only interpretable but also aligns with the CRC risk

profile that is well understood by healthcare practitioners. By simply partition the

population into two groups, a substantial improvement of the screening effectiveness

and efficiency can be materialized.

Two-sample FIT design

We further explore the optimal initial test design if the health system utilizes the two-

sample FIT in the screening program. Singapore has adopted two-sample FIT in the

national CRC screening programme, that a positive result will be reported once the

hemoglobin concentration in any of the two samples exceeds the pre-determined cut-

off point. We assume independence between the two FIT kits as they are collected

on two different days. Under the independence assumption, the aggregate level of

two-sample FIT’s sensitivity and specificity can be calculated. Note that we can also

incorporate any correlation between two FIT kits if relevant data is available. We

also verify that two-sample dichotomous FIT initial tests are MLR-feasible if each

test kit is MLR-feasible (cf. Appendix C.4.4).

Similar to one-sample FIT design, optimal cut-offs are obtained for the universal

dichotomous test, customized dichotomous test, and interpretable clustering test. The

optimal cut-offs are much higher than those of one-sample FIT because two-sample

test induces higher overall test sensitivity and lower specificity. The main findings

and insights are similar to those in one-sample FIT. For the universal test, a FIT with

high sensitivity is again not desirable. By considering two heterogeneous FIT kits, one

high risk group and one low risk group are identified. Furthermore, the interpretable
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clustering method shows that by simply partition the population by an age threshold

of 60, we can recover the two clusters generated from optimal customized test design.

We relegate the detailed results in Appendix C.5.2.

Practical implication

Currently, Singapore adopts a FIT test kit with the cut-off point value of 20 µg/g.

For ease of expression, we refer to the choice of 20 µg/g as the current practice.

To compare the our optimal designs with the current practice for both one-sample

and two-sample cases, we plot the efficient frontiers of each optimal design in Figure

4.5 (one point on each line represents a design for a particular adjustment term, τ).

As already discussed in previous sections, the customized tests and the interpretable

clustering tests are superior to the universal test. The customized test with three

heterogeneous test kits is superior to the customized test with two test kits, but the

benefit is modest. Should a universal test be adopted, a test with a well-chosen cut-

off point significantly dominates the current practice and achieves higher screening

effectiveness with fewer demand for the second-stage colonoscopy.
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Figure 4.5: Trade-off between test effectiveness and test efficiency
The grey dotted line connects the cut-off points that generate the highest detection
rates under different screening designs, and all strategies that lie on the right-hand
side of this line are not on the efficient frontiers.
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To further demonstrate the benefit of optimal designs, we present the test perfor-

mance of one point on the efficient frontier for each design in Table 4.4, and compare

them with the current practice. The values presented in the table correspond to a

population base equals to the actual Singapore population.

One-sample FIT Two sample-FIT

Current Universal test Customized test Interpretable test Current Universal test Customized test Interpretable test
practice (τ = 0) (τ = 0.006, L = 2) (τ = 0.007) practice (τ = 0) (τ = 0.0035, L = 2) (τ = 0.0035)

Cut-off point 20 33 31,39 31,39 20 39 37, 45 37, 45

Sensitivity , % 81.77 76.30 77.06, 74.20 77.06, 74.20 96.68 93.34 93.69, 92.31 93.69, 92.31

Specifiity , % 96.22 99.30 99.10, 99.67 99.10, 99.67 92.58 99.33 99.15, 99.67 99.15, 99.67

Expected number of positives∗ 55,793 11,566 9,584 9,388 108,174 11,459 9,586 9,406

Expected number of positives
1,668 1,556 1,550 1,549 1,972 1,903 1,901 1,900

from CRC patients∗

Expected number of positives
54,125 10,010 8,034 7,839 106,202 9,556 7,685 7,506

from healthy individuals∗

Expected colonoscopy demand∗ 32,528 11,261 9,555 9,359 48,170 11,319 9,569 9,387

Expected number of follow-ups
1,033 1,537 1,549 1,547 927 1,896 1,900 1,899

from CRC patients∗

Expected number of follow-ups
31,495 9,724 8,006 7,812 47,243 9,423 7,669 7,488

from healthy individuals∗

Total cost of colonoscopies for
35.98 12.45 10.57 10.35 53.28 12.52 10.58 10.38

citizens/PRs∗, million
Total cost of colonoscopies for

59.95 20.75 17.61 17.25 88.78 20.86 17.64 17.30
the government∗, million

∗ The population base of Singapore is 1,432,897, of which 2,039 individuals have CRC and 1,430,858 do not.

Table 4.4: Performance comparision of screening designs

Regarding the one-sample FIT, our optimal initial test design result suggests an

optimal universal test that alters the cut-off point from 20 µg/g (current practice)

to 33 µg/g. This optimal test is able to identify 504 more CRC incidences and,

at the same time, reduce 21,267 colonoscopy demand from the whole population5.

In particular, one colonoscopy costs the government an average of S$1,843 in terms

of subsidizing the procedure, and an individual an average of S$1,106 (Ministry of

Health Singapore (2020a)). The reduction in the colonoscopy demand could help

the Singapore government reduce healthcare expenditure by S$39.20 million and also

save Singapore citizens/permanent residents’ spending by S$23.53 million. In addi-

tion, heterogeneous test kits tailored to different subgroups of populations could help

the health system detect 516 more CRC incidences and simultaneously reduce 22,973

5According to Statistics Singapore (2018), there are 1,432,897 individuals aged 50 and above
in Singapore. We obtained the two numbers by rescaling the results in Table 4.2 which assumes a
10,000 population base.
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colonoscopies from the Singapore population, which leads to a reduction in health-

care expenditure by S$42.34 million and a saving in Singaporean/PR expenses by

S$25.41 million. The interpretable clustering test could help to detect 514 more CRC

incidences and reduce 23,168 colonoscopy demand, which amounts to a reduction

of government healthcare expenditure by S$42.70 million and a saving of healthcare

spending by S$25.63 million for citizens/PRs.

For the two-sample FIT, the improvement over the current practice with two-

sample FIT is also significant. We omit the details here. In addition, the two sample

FIT optimal design outperforms one-sample FIT in terms of test efficiency and test

effectiveness under specific adjusting terms.

4.6 Conclusion

In this chapter, we focus on a two-stage CRC screening program and develop an opti-

mization framework to design the initial test that balance the screening effectiveness

and efficiency considering individuals’ adherence behavior. The optimal design results

suggest that a well designed initial test would be able to detect more CRC cases with

fewer colonoscopies. Besides, we also show that adopting customized dichotomous

tests or interpretable clustering dichotomous tests for different subpopulations could

provide additional benefits.

Several interesting future research topics are worth to mention. Our work does not

consider the first-stage adherence problem that not all the individuals will take up the

intital test as suggested by the screening guideline. In practice, both the initial FIT

take rate and the repeat screening rate among FIT-negative patients are far below

desired. For instance, in one observational study, Nielson et al. (2019) show that the

proportion of FIT tests completed was 46% in the patients’ first year and 41% in

the patients’ second year. One interesting avenue to further extend our research is to

incorporate individuals’ first-stage decisions into the optimal test design. Moreover, it
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would be interesting to develop a multi-period model to investigate the optimal cut-off

point considering the repeating screening behavior among FIT-negative individuals.

Moreover, we have discussed with healthcare professionals regarding the application

of our results in real practice. With possible integration of our suvery data and clinical

data, we can future incorporate the post-colonoscopy CRC treatment into the study.
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Chapter 5

Conclusion

Promoting effective and sustainable healthcare service delivery has become critical

due to the increasing trend of the aging population, the rising incidence of various

diseases, and the surge in health care expenditures. This dissertation integrates a

combination of techniques from machine learning, optimization, game theory and

survey design to improve the real-time patient monitoring systems and population

screening programs.

Chapter 2 proposes a new framework to estimate real-time values of risk moni-

toring scores and uncertainties in risk assessment. We demonstrate that integrating

predictive information into existing scoring systems can significantly improve the

prognostic accuracy and discriminative ability on various predictive outcomes (e.g.,

24-hour mortality, 30-day readmission). The proposed approach provides the basis for

more detailed patient risk classification and decision recommendations. Moreover, the

estimates of uncertainty in patient health status can be used to trigger evidence-based

on-demand laboratory testing. It’s worth noting that our results are based on the

analysis of data from one medical center. Although the method is sufficiently generic

to improve any risk scores, the improvement may differ in other units. In addition, ex-

ternal validation and clinical tries are warranted to confirm the benefits of enhanced

risk monitoring systems. What’s more, with the advancement of natural language
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processing, image recognition, video analysis and deep learning techniques, we can

collect more data from different sources (e.g., electronic health records, spontaneous

reporting databases, mobilized health records) in different formats (e.g., text, audio,

video) to improve risk monitoring of patients. We leave these for future research.

Chapter 3 embeds the predictive model proposed in Chapter 2 to characterize the

optimal prescription of diagnostic tests in the detection of acute diseases. We theoret-

ically demonstrate that considering uncertainty in risk measurement can contribute

to lower expected costs for patients. Utilizing the data from a medical center, we

show that the proposed optimal strategy is able to advance the detection of diseases

with fewer tests in an ICU context. Several interesting future research topics are

worth mentioning. First, we can theoretically explore the specific value of predictive

information and uncertainty measures. Second, we can consider the accuracy of diag-

nostic tests and incorporate it into our framework. Moreover, since reducing overuse

of healthcare resources is a complicated and crucial issue, it is worthwhile to combine

medical practices, machine learning techniques and optimization model to further ex-

plore such problems and validate the effectiveness of the proposed frameworks using

more comprehensive healthcare data.

Chapter 4 focuses on a two-stage CRC screening program and further considers

individual behavioral factors. We establish an optimization framework with infor-

mation avoidance to optimize the initial test design, with the aim of balancing the

trade-off between effectiveness and efficiency of the second-stage screening tests. We

show that the proposed initial test design is able to detect more CRC cases with

fewer second-stage screening tests. In addition, we show that the employment of cus-

tomized dichotomous tests or interpretable clustered dichotomous tests for different

subpopulations can provide additional benefits. This chapter does not consider indi-

viduals’ adherence to the first-stage tests. Besides, it’s also interesting to develop a

multi-period model to investigate the repeating screening behavior among individuals
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receiving negative results from the initial tests. Furthermore, it is also critical to con-

sider human behavioral factors in other health screening programs and medications

(e.g., insulin therapy for diabetes, antiretroviral therapy for people with HIV). We

can further investigate these potential research topics.

To summarize, by analyzing comprehensive datasets collected from multiple sources,

this dissertation demonstrates that well-designed monitoring systems and screening

programs can benefit individuals, health care providers, and health systems by im-

proving the effectiveness and efficiency of healthcare delivery. Using more healthcare

data from diverse sources and implementing more advanced technologies in informa-

tion systems and operations management, we can further explore these directions

and come up with more evidence-based frameworks to improve healthcare delivery in

future studies.
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Kőszegi, B. (2003). Health anxiety and patient behavior. Journal of health economics,

22(6):1073–1084.

Krishnamurthy, V. (2016). Partially Observed Markov Decision Processes. Cambridge

University Press.

Kruse, G. R., Khan, S. M., Zaslavsky, A. M., Ayanian, J. Z., and Sequist, T. D.

(2015). Overuse of colonoscopy for colorectal cancer screening and surveillance.

Journal of general internal medicine, 30(3):277–283.

Kumwilaisak, K., Noto, A., Schmidt, U. H., Beck, C. I., Crimi, C., Lewandrowski,

K., and Bigatello, L. M. (2008). Effect of laboratory testing guidelines on the

utilization of tests and order entries in a surgical intensive care unit. Critical care

medicine, 36(11):2993–2999.

Ladabaum, U., Chopra, C. L., Huang, G., Scheiman, J. M., Chernew, M. E., and

Fendrick, A. M. (2001). Aspirin as an adjunct to screening for prevention of spo-

radic colorectal cancer: a cost-effectiveness analysis. Annals of internal medicine,

135(9):769–781.

114



Ladabaum, U. and Mannalithara, A. (2016). Comparative effectiveness and cost

effectiveness of a multitarget stool dna test to screen for colorectal neoplasia. Gas-

troenterology, 151(3):427–439.

Langley, J. and Adams, G. (2007). Insulin-based regimens decrease mortality rates

in critically ill patients: a systematic review. Diabetes/metabolism research and

reviews, 23(3):184–192.

Le Maguet, P., Asehnoune, K., Autet, L.-M., Gaillard, T., Lasocki, S., Mimoz, O., De-

meure Dit Latte, D., Gergaud, S., Morcet, J., Seguin, P., et al. (2015). Transition-

ing from routine to on-demand test ordering in intensive care units: a prospective,

multicentre, interventional study. BJA: British Journal of Anaesthesia, 115(6):941–

942.

Lee, H. L. and Pierskalla, W. P. (1988). Mass screening models for contagious diseases

with no latent period. Operations research, 36(6):917–928.

Lee, J. K., Liles, E. G., Bent, S., Levin, T. R., and Corley, D. A. (2014). Accuracy

of fecal immunochemical tests for colorectal cancer: systematic review and meta-

analysis. Annals of internal medicine, 160(3):171–181.

Lee, S.-Y. and Lee, E. E. (2018). Cancer screening in koreans: a focus group approach.

BMC public health, 18(1):254.

Leening, M. J., Vedder, M. M., Witteman, J. C., Pencina, M. J., and Steyerberg,

E. W. (2014). Net reclassification improvement: computation, interpretation, and

controversies: a literature review and clinician’s guide. Annals of internal medicine,

160(2):122–131.

Li, Y., Meng, J., Song, C., and Zheng, K. (2020). Information avoidance and medical

screening: A field experiment in china. Management Science.

115



Lim, T.-Z., Lau, J., Wong, G. J., and Tan, K.-K. (2020). Colorectal cancer in pa-

tients with single versus double positive faecal immunochemical test results: A

retrospective cohort study. medRxiv.

Lingenbrink, D. and Iyer, K. (2019). Optimal signaling mechanisms in unobservable

queues. Operations research, 67(5):1397–1416.

Liu, V., Escobar, G. J., Greene, J. D., Soule, J., Whippy, A., Angus, D. C., and

Iwashyna, T. J. (2014). Hospital deaths in patients with sepsis from 2 independent

cohorts. Jama, 312(1):90–92.

Maillart, L. M., Ivy, J. S., Ransom, S., and Diehl, K. (2008). Assessing dynamic

breast cancer screening policies. Operations Research, 56(6):1411–1427.

Marik, P. E. and Taeb, A. M. (2017). Sirs, qsofa and new sepsis definition. Journal

of thoracic disease, 9(4):943.

May, T. A., Clancy, M., Critchfield, J., Ebeling, F., Enriquez, A., Gallagher, C.,

Genevro, J., Kloo, J., Lewis, P., Smith, R., et al. (2006). Reducing unnecessary

inpatient laboratory testing in a teaching hospital. American journal of clinical

pathology, 126(2):200–206.

McDonald, P. J., Strachan, J. A., Digby, J., Steele, R. J., and Fraser, C. G. (2012).

Faecal haemoglobin concentrations by gender and age: implications for population-

based screening for colorectal cancer. Clinical Chemistry and Laboratory Medicine

(CCLM), 50(5):935–940.

McLay, L. A., Foufoulides, C., and Merrick, J. R. (2010). Using simulation-

optimization to construct screening strategies for cervical cancer. Health Care

Management Science, 13(4):294–318.

116



Michaelson, J. S., Halpern, E., and Kopans, D. B. (1999). Breast cancer: com-

puter simulation method for estimating optimal intervals for screening. Radiology,

212(2):551–560.

Ministry of Health Singapore (2020a). Cost of a colonoscopy. https://www.moh.

gov.sg/cost-financing/fee-benchmarks-and-bill-amount-information/.

Ministry of Health Singapore (2020b). Definition of average risk. https://www.

healthhub.sg/live-healthy/106/screening_colorectal_cancer_nuhs.

Morgan, C., McBeth, J., Cordingley, L., Watson, K., Hyrich, K. L., Symmons, D. P.,

and Bruce, I. N. (2015). The influence of behavioural and psychological factors on

medication adherence over time in rheumatoid arthritis patients: a study in the

biologics era. Rheumatology, 54(10):1780–1791.

Mundru, N. (2019). Predictive and prescriptive methods in operations research and

machine learning: an optimization approach. PhD thesis, Massachusetts Institute

of Technology.

Murphy, C. C., Sandler, R. S., Grubber, J. M., Johnson, M. R., and Fisher, D. A.

(2016). Underuse and overuse of colonoscopy for repeat screening and surveillance

in the veterans health administration. Clinical Gastroenterology and Hepatology,

14(3):436–444.

National Registry of Diseases Office (2015). Singapore cancer registry annual

registry report 2015. https://www.nrdo.gov.sg/docs/librariesprovider3/

Publications-Cancer/cancer-registry-annual-report-2015_web.pdf?

sfvrsn=10.

Navarro, M., Nicolas, A., Ferrandez, A., and Lanas, A. (2017). Colorectal cancer

population screening programs worldwide in 2016: An update. World journal of

gastroenterology, 23(20):3632.

117

https://www.moh.gov.sg/cost-financing/fee-benchmarks-and-bill-amount-information/
https://www.moh.gov.sg/cost-financing/fee-benchmarks-and-bill-amount-information/
https://www.healthhub.sg/live-healthy/106/screening_colorectal_cancer_nuhs
https://www.healthhub.sg/live-healthy/106/screening_colorectal_cancer_nuhs
https://www.nrdo.gov.sg/docs/librariesprovider3/Publications-Cancer/cancer-registry-annual-report-2015_web.pdf?sfvrsn=10
https://www.nrdo.gov.sg/docs/librariesprovider3/Publications-Cancer/cancer-registry-annual-report-2015_web.pdf?sfvrsn=10
https://www.nrdo.gov.sg/docs/librariesprovider3/Publications-Cancer/cancer-registry-annual-report-2015_web.pdf?sfvrsn=10


Nielson, C. M., Vollmer, W. M., Petrik, A. F., Keast, E. M., Green, B. B., and

Coronado, G. D. (2019). Factors affecting adherence in a pragmatic trial of annual

fecal immunochemical testing for colorectal cancer. Journal of general internal

medicine, 34(6):978–985.

Office for National Statistics (2019). Cancer survival in England: adult, stage at

diagnosis and childhood - patients followed up to 2018. DANDY BOOKSELLERS

Limited.

Ong, M.-S., Magrabi, F., and Coiera, E. (2018). Delay in reviewing test results

prolongs hospital length of stay: a retrospective cohort study. BMC health services

research, 18(1):369.

Ong, W. M., Chua, S. S., and Ng, C. J. (2014). Barriers and facilitators to self-

monitoring of blood glucose in people with type 2 diabetes using insulin: a quali-

tative study. Patient preference and adherence, 8:237.

Oster, E., Shoulson, I., and Dorsey, E. (2013). Optimal expectations and limited

medical testing: evidence from huntington disease. American Economic Review,

103(2):804–30.

Osterberg, L. and Blaschke, T. (2005). Adherence to medication. New England

journal of medicine, 353(5):487–497.
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Appendix A

Appendix of Chapter 1

A.1 Data and List of Bedside Variables

Table A.1 summarizes the basic statistics of the laboratory test variables in our

dataset. Note that the last three test variables, urea, white blood cell (WBC) and

prothrombin time (PT), are used in the multiple organ dysfunction score (MODS)

and the logistic organ dysfunction score (LODS).

Median (IQR)
Average time interval between
two consecutive updates, hours

Creatinine, µmol/L 93 (84) 22.1
Platelets, 109/L 175 (112) 21.3
Bilirubin, µmol/L 13 (13) 40.8
Urea, mmol/L 7.3 (5) 22.2
WBC, 109/L 11.9 (6.5) 21.3
PT, seconds 15 (2.5) 18.9

WBC: white blood cell; PT: prothrombin time; IQR: interquartile range.

Table A.1: Summary statistics of laboratory test values of the study population

The bedside variables we considered include vital signs, results from bedside ar-

terial blood gas (ABG) tests, a set of indicators on cardiac rhythm from bedside

electrocardiograms, medication, and other readily available variables in real-time.

We categorize and list all the beside variables used below.
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Vital signs ABG Cardiac Rhythm Medication Others

Temperature (C) Arterial pO2 Asystole Adrenaline Cumulative urine
Diastolic BP Arterial pCO2 Sinus rhythm Nor-adrenaline GCS
Systolic BP Arterial pH Sinus bradycardia Dobutrex CVP
Mean Arterial BP Arterial SaO2 Sinus tachycardia MV
SpO2 Chloride Atrial fibrillation FiO2
Respiration rate Potassium Atrial flutter Total Braden
Heart rate Sodium Heart block

Junctional rhythm
Ventricular fibrillation
Ventricular tachycardia
Paced rhythm

ABG: arterial blood gas; BP: blood pressure; SpO2: oxygen saturation (measured by pulse oximeter);
pO2: partial pressure of oxygen; pCO2: partial pressure of carbon dioxide; SaO2: oxygen saturation
(measured by blood gas analysis); GCS: Glasgow Coma Scale; CVP: central venous pressure; MV:
under mechanical ventilation; FiO2: the fraction of inspired oxygen.

Table A.2: Bedside variables

A.2 Prediction Models for Each Test Variable

Five-fold cross-validation is conducted to select the combination of bedside variables

that produces the lowest root mean squared error in predicting each test variable.

Next, the coefficients are obtained by retraining the selected model using the whole

dataset. Note that the last three test variables, urea, white blood cell and prothrombin

time, are used in the multiple organ dysfunction score (MODS) and the logistic organ

dysfunction score (LODS).

For creatinine, there are 27,872 updated data points. The cross-validated RMSE

and R-square of the model are 49.22 and 0.072, respectively.

For platelets, there are 28,936 updated data points. The cross-validated RMSE

and R-square of the model are 45.12 and 0.177, respectively.

For bilirubin, there are 6,049 updated data points. The cross-validated RMSE

and R-square of the model are 22.41 and 0.011, respectively.

For urea, there are 22,536 updated data points. The cross-validated RMSE and

R-square of the model are 3.02 and 0.123, respectively.

For WBC, there are 23,660 updated data points. The cross-validated RMSE and
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Coefficients Std. Error p-value

∆Diastolic BP -0.1143 0.0025 < 0.001∗∗∗

∆Temperature 1.2331 0.2377 < 0.001∗∗∗

∆Heart rate -1.5570 0.0022 < 0.001∗∗∗

∆Arterial pCO2 -1.2813 0.0071 < 0.001∗∗∗

∆Arterial pH -164.4317 7.3071 < 0.001∗∗∗

∆Chloride -0.6080 0.0939 < 0.001∗∗∗

∆Potassium 16.5072 0.5499 < 0.001∗∗∗

∆Sodium -0.6707 0.1005 < 0.001∗∗∗

∆ indicates changes in respective variable since the pre-
vious test; BP: blood pressure; pCO2: partial pressure of
carbon dioxide.
(Significance Level: 0 ‘***’; 0.001 ‘**’; 0.01 ‘*’; 0.05 ‘.’)

Table A.3: Model for predicting creatinine

Factors Coefficients Std. Error p-value

∆Diastolic BP 0.1904 0.0232 < 0.001∗∗∗

∆Respiration rate 0.3282 0.0468 < 0.001∗∗∗

∆Heart rate 0.2017 0.0203 < 0.001∗∗∗

∆Arterial pO2 -0.0558 0.0037 < 0.001∗∗∗

∆Arterial pH -38.6486 4.7171 < 0.001∗∗∗

∆Potassium 6.6602 0.4879 < 0.001∗∗∗

∆Sodium -1.2316 0.1127 < 0.001∗∗∗

∆Paced rhythm -16.0756 1.3672 < 0.001∗∗∗

∆t 0.3428 0.0175 < 0.001∗∗∗

∆ indicates changes in respective variable since the previous
test; BP: blood pressure; pO2: partial pressure of oxygen; ∆t
is the time duration for two consecutive updates of platelets.
(Significance Level: 0 ‘***’; 0.001 ‘**’; 0.01 ‘*’; 0.05 ‘.’)

Table A.4: Model for predicting platelets

R-square of the model are 4.08 and 0.107, respectively.

For PT, there are 3,320 updated data points. The cross-validated RMSE and

R-square of the model are 2.68 and 0.118, respectively.
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Factors Coefficients Std. Error p-value

∆Mean arterial BP 0.0948 0.0289 < 0.01∗∗

∆Total braden -0.6067 0.2210 < 0.001∗∗∗

∆Paced rhythm 5.4178 1.5086 < 0.001∗∗∗

∆Atrial fibrillation 2.9466 1.6518 < 0.1.

∆GCS -0.4293 0.1794 < 0.05∗

∆Arterial pO2 -0.0809 0.0463 < 0.1.

∆GCS/∆t 5.0459 3.0309 < 0.1.

∆t -0.0157 0.0057 < 0.01∗∗

∆ indicates changes in respective variable since the previous
test; BP: Blood pressure; GCS: Glasgow Coma Scale; pO2:
partial pressure of oxygen; ∆t is the time duration for two
consecutive updates of bilirubin.
(Significance Level: 0 ‘***’; 0.001 ‘**’; 0.01 ‘*’; 0.05 ‘.’)

Table A.5: Model for predicting bilirubin

Factors Coefficients Std. Error p-value

∆Heart rate -0.0179 0.0014 < 0.001∗∗∗

∆Arterial pO2 -0.0011 0.0002 < 0.001∗∗∗

∆Chloride -0.0204 0.0061 < 0.001∗∗∗

∆Potassium 0.6359 0.0347 < 0.001∗∗∗

∆Sodium -0.0656 0.0063 < 0.001∗∗∗

∆Cumulative urine 0.0001 0.0000 < 0.001∗∗∗

∆ indicates changes in respective variable since the previous
test; pO2: partial pressure of oxygen.
(Significance Level: 0 ‘***’; 0.001 ‘**’; 0.01 ‘*’; 0.05 ‘.’)

Table A.6: Model for predicting urea
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Coefficients Std. Error p-value

∆Heart rate 0.0216 0.0018 < 0.001∗∗∗

∆Arterial pO2 0.0064 0.0003 < 0.001∗∗∗

∆Arterial pCO2 - 0.0874 0.0058 < 0.001∗∗∗

∆Arterial pH - 19.5523 0.5817 < 0.001∗∗∗

∆Paced rhythm 1.6318 0.1091 < 0.001∗∗∗

∆GCS 0.0238 0.0069 < 0.001∗∗∗

∆t - 0.0194 0.0002 < 0.001∗∗∗

∆ indicates changes in respective variable since the previ-
ous test; pO2: partial pressure of oxygen; pCO2: partial
pressure of carbon dioxide; GCS: Glasgow Coma Scale; ∆t
is the time duration for two consecutive updates of WBC.
(Significance Level: 0 ‘***’; 0.001 ‘**’; 0.01 ‘*’; 0.05 ‘.’)

Table A.7: Model for predicting white blood cell

Coefficients Std. Error p-value

∆Diastolic BP -0.0103 0.0014 < 0.001∗∗∗

∆Arterial pO2 0.0033 0.0002 < 0.001∗∗∗

∆Arterial pCO2 -0.0884 0.0004 < 0.001∗∗∗

∆Arterial pH -11.1302 0.3955 < 0.001∗∗∗

∆Arterial SaO2 -0.0098 0.0018 < 0.001∗∗∗

∆Sodium 0.0544 0.0048 < 0.001∗∗∗

∆Paced rhythm 1.2264 0.0734 < 0.001∗∗∗

∆FiO2 0.0190 0.0018 < 0.001∗∗∗

∆ indicates changes in respective variable since the pre-
vious test; BP: Blood pressure; pO2: partial pressure of
oxygen; pCO2: partial pressure of carbon dioxide; SaO2:
oxygen saturation; FiO2: the fraction of inspired oxygen.
(Significance Level: 0 ‘***’; 0.001 ‘**’; 0.01 ‘*’; 0.05 ‘.’)

Table A.8: Model for predicting prothrombin time
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Appendix B

Appendix of Chapter 2

B.1 POMDP-B

In POMDP-B, the observation probability differs from that of POMDP-UI. let qUIt+1(ŷt+1|yt+1, δt+1)

denote the probability of observing ŷt+1 given state yt+1 and time lag δt+1. Given a

specific δ = δ
′
, we use BUI

i,j (δ
′
) = {qUI(ŷ = j|y = i, δ = δ

′
)} to denote the information

matrix. We next introduce the belief updating process and the optimality equations

for POMDP-B.

Belief update (POMDP-B):

Let fUIt (ŷt+1, θt+1|πt, δt+1, ut = 0) stand for the conditional probabilty of observing

ŷt+1 given πt, δt+1 and ut = 0. Then

fUIt (ŷt+1|πt, δt+1, ut = 0) =
∑

yt+1∈Y

qUI(ŷt+1|yt+1, δt+1)
∑
yt∈Y

p(yt+1|yt, ut = 0)πt(yt).

If ut = 0, in epoch t + 1, given the new observation ŷt+1 and time lag δt+1, the

Bayesian update of the belief state πt is computed as follows:

πt+1 = TUI(πt, δt+1, ut, ŷt+1) =
B̃UI
ŷt+1

(δt+1)P
′
(ut)πt

fUIt (ŷt+1, θt+1|πt, δt+1, ut = 0)
,

where B̃UI
ŷt+1

(δt+1) = diag
(
BUI

1,ŷt+1
(δt+1), ..., BUI

Y,ŷt+1
(δt+1), BUI

A,ŷt+1
(δt+1)

)
and

fUIt (ŷt+1, θt+1|πt, δt+1, ut = 0) = 1
′

Y+1B̃
UI
ŷt+1

(δt+1)P
′
(ut)πt

=
∑

yt+1∈Y

qUI(ŷt+1|yt+1, δt+1)
∑
yt∈Y

p(yt+1|yt, ut = 0)πt(yt).
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Note that the i-th element of πt+1 equals to

qUIt+1(ŷt+1|yt+1 = i, δt+1)
∑
yt∈Y

p(yt+1 = i|yt, ut = 0)πt(yt)

fUIt (ŷt+1|πt, δt+1, ut = 0)
.

If ut = 1, which indicates a diagnostic test is ordered in epoch t, we can observe

the patient’s true clinical class ỹt and update the belief state to π̃t =
L̃ỹtπt

f̃UIt (ỹt|πt)
, Then,

in epoch t+ 1, the Bayesian update of the belief state is computed by

πt+1 = TUI(π̃t, δt+1, ut, ŷt+1).

Optimality Equations (POMDP-B): If a patient is under treatment (i.e.,

π(A) = 1), no extra costs will be incurred; otherwise, let QUI
t (πt, δt, ut) denote the

total expected cost and vUIt (πt, δt) represent the minimum total expected cost of a

patient. Then

QUI
t (πt, δt, ut = 0) = c

′

t(ut)πt + ρ
∑

ŷt+1∈O

vUIt+1(πt+1, δt+1) · fUIt (ŷt+1|πt, δt+1, ut)

= c
′

t(ut)πt + ρ
∑

ŷt+1∈O

vUIt+1(TUI(πt, δt+1, ut, ŷt+1), δt + 1) · fUIt (ŷt+1|πt, δt+1, ut),

QUI
t (πt, δt, ut = 1) =c

′

t(ut)πt + ρ
∑
ỹt∈O

f̃UIt (ỹt|πt)
∑

ŷt+1∈O

vUIt+1(TUI(π̃t, δt+1, ut, ŷt+1), δt+1 = 1)

· fUIt (ŷt+1|π̃t, δt+1, ut)

and

vUIt (πt, δt) = min
ut∈Ut

QUI
t (πt, δt, ut).

To summarize, for t < T ,

vUIt (πt, δt) =


0 if πt(A) = 1

min
ut∈Ut

QUI
t (πt, δt, ut) if πt(A) 6= 1, δt < |∆|

QUI
t (πt, δt, ut = 0) otherwise.

The terminal cost vUI(πT ) is represented by

vUI(πT ) = c
′

TπT .
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B.2 Technique Proofs

B.2.1 Proof of Theorem 1.

We prove Theorem 1 using backward induction.

(i): First, we prove vT (πT ) is pwlc with respective to πT .

Note that vT (πT ) = c
′
TπT . Let ΓT (δT ) = {cT} for ∀δT ∈ ∆. Then v(πT ) =

min
γT∈ΓT (δT )

γ
′
TπT , which is pwlc with respect to the belief state πT .

(ii): Second, we prove that for t ∈ {1, 2, ..., T − 1}, if vt+1(πt+1, δt+1) is pwlc with

respect to πt+1, then vt(πt, δt) is pwlc with respect to πt.

Suppose vt+1(πt+1, δt+1) is pwlc with respect to πt+1, i.e.: vt+1(πt+1, δt+1) =

min
γt+1∈Γt+1(δt+1)

γ
′
t+1πt+1.

(a): If πt(A) = 1, then Γt+1(δt+1) = 0, Γt(δt) = 0, so the conclusion holds.

(b): If ut = 0 and πt(A) = 0, then δt+1 = δt + 1, we have

Qt(πt, δt, ut) =c
′

t(ut)πt + ρ
∑

ŷt+1∈O

∑
θt+1∈Θ

vt+1(T (πt, δt+1, ut, ŷt+1, θt+1), δt+1) · ft(ŷt+1, θt+1|πt, δt+1, ut)

=c
′

t(ut)πt + ρ
∑

ŷt+1∈O

∑
θt+1∈Θ

vt+1

( B̃ŷt+1,θt+1(δt+1)P
′
(ut)πt

ft(ŷt+1, θt+1|πt, δt+1, ut)
, δt+1

)
· ft(ŷt+1, θt+1|πt, δt+1, ut)

=c
′

t(ut)πt +
∑

ŷt+1∈O

∑
θt+1∈Θ

min
γt+1∈Γt+1(δt+1)

ργ
′

t+1B̃ŷt+1,θt+1(δt+1)P
′
(ut)πt

=
∑

ŷt+1∈O

∑
θt+1∈Θ

min
γt+1∈Γt+1(δt+1)

( ct(ut)

(Y + 1)|Θ|
+ ρP (ut)B̃ŷt+1,θt+1(δt+1)γt+1

)′
πt,

which is a summation of finite pwlc functions, so Qt(πt, δt, ut) is pwlc.
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(c): If ut = 1, then δt+1 = 1, we have

Qt(πt, δt, ut) =c
′

t(ut)πt + ρ
∑
ỹt∈O

∑
ŷt+1∈O

∑
θt+1∈Θ

vt+1(T (π̃t, δt+1, ut, ŷt+1, θt+1), δt+1)

· ft(ŷt+1, θt+1|π̃t, δt+1, ut)f̃t(ỹt|πt)

=c
′

t(ut)πt + ρ
∑
ỹt∈O

∑
ŷt+1∈O

∑
θt+1∈Θ

vt+1(
B̃ŷt+1,θt+1(δt+1)P

′
(ut)π̃t

ft(ŷt+1, θt+1|π̃t, δt+1, ut)πt(ỹt)
, δt+1)

· ft(ŷt+1, θt+1|π̃t, δt+1, ut) · f̃t(ỹt|πt)

=c
′

t(ut)πt + ρ
∑
ỹt∈O

∑
ŷt+1∈O

∑
θt+1∈Θ

min
γt+1∈Γt+1(δt+1)

γ
′

t+1

B̃ŷt+1,θt+1(δt+1)P
′
(ut)π̃t

ft(ŷt+1, θt+1|π̃t, δt+1, ut)πt(ỹt)

· ft(ŷt+1, θt+1|π̃t, δt+1, ut) · f̃t(ỹt|πt)

=c
′

t(ut)πt + ρ
∑
ỹt∈O

∑
ŷt+1∈O

∑
θt+1∈Θ

min
γt+1∈Γt+1(δt+1)

γ
′

t+1B̃ŷt+1,θt+1(δt+1)P
′
(ut)

· L̃ỹtπt

1
′
Y+1L̃ỹtπt

· 1′Y+1L̃ỹtπt

=
∑
ỹt∈O

∑
ŷt+1∈O

∑
θt+1∈Θ

min
γt+1∈Γt+1(δt+1)

(
ct(ut)

(Y + 1)2|Θ|
+ ρL̃ỹtP (ut)B̃ŷt+1,θt+1(δt+1)γt+1)

′
πt,

which is the summation of finite pwlc functions, so Qt(πt, δt, ut) is pwlc. In addition,

since vt(πt, δt) = min
ut∈Ut

Qt(πt, δt, ut) and the minimization preserves the pwlc property,

so vt(πt, δt) is pwlc with respect to πt.

B.2.2 Proof of Theorem 2.

We aim to prove that given specific πt and δt, vt(πt, δt) ≤ vUIt (πt, δt). Specifically, we

prove it by backward induction.

(i): When t = T , v(πT ) = vUI(πT ) = c
′
TπT .

(ii): For t ∈ {1, 2, ..., T − 1}, suppose vt+1(πt+1, δt+1) ≤ vUIt+1(πt+1, δt+1). We next

prove vt(πt, δt) ≤ vUIt (πt, δt).

If ut=0,

Qt(πt, δt, ut) = c
′

t(ut)πt + ρ
∑

ŷt+1∈O

∑
θt+1∈Θ

vt+1(T (πt, δt+1, ut, ŷt+1, θt+1), δt + 1) · ft(ŷt+1, θt+1|πt, δt+1, ut)

(B.1)
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and

QUI
t (πt, δt, ut) = c

′

t(ut)πt + ρ
∑

ŷt+1∈O

vUIt+1(TUI(πt, δt+1, ut, ŷt+1), δt + 1) · fUIt (ŷt+1|πt, δt+1, ut).

(B.2)

Since

ft(ŷt+1, θt+1|πt, δt+1, ut) =
∑

yt+1∈Y

q(ŷt+1, θt+1|yt+1, δt+1)
∑
yt∈Y

p(yt+1|yt, ut = 0)πt(yt)

(B.3)

and

fUIt (ŷt+1|πt, δt+1, ut)
∑

yt+1∈Y

qUI(ŷt+1|yt+1, δt+1)
∑
yt∈Y

p(yt+1|yt, ut = 0)πt(yt), (B.4)

under these two models, qUI(ŷt+1|yt+1, δt+1) =
∑

θt+1∈Θ

q(ŷt+1, θt+1|yt+1, δt+1); thus,

given the exactly same πt, δt, and ut, patients should have equal probability of ob-

serving ŷt+1 in epoch t+ 1, that is

fUIt (ŷt+1|πt, δt+1, ut) =
∑

θt+1∈Θ

ft(ŷt+1, θt+1|πt, δt+1, ut). (B.5)

Recall that the i-th element of T (πt, δt+1, ut, ŷt+1, θt+1) equals

q(ŷt+1, θt+1|yt+1 = i, δt+1)
∑
yt∈Y

p(yt+1 = i|yt, ut)πt(yt)

ft(ŷt+1, θt+1|πt, δt+1, ut)
(B.6)

and the i-th element of TUI(πt, δt+1, ut, ŷt+1) equals

qUI(ŷt+1|yt+1 = i, δt+1)
∑
yt∈Y

p(yt+1 = i|yt, ut)πt(yt)

fUIt (ŷt+1|πt, δt+1, ut)
. (B.7)

Let α(i) = ft(ŷt+1,θt+1|πt,δt+1,ut)

fUIt (ŷt+1|πt,δt+1,ut)
. According to Equality (1),

∑
i∈Θ

α(i) = 1. Since the

i-th element of
∑
i∈Θ

α(i)T (πt, δt+1, ut, ŷt+1, θt+1 = i) equals∑
i∈Θ

q(ŷt+1, θt+1|yt+1 = i, δt+1)
∑
yt∈Y

p(yt+1 = i|yt, ut)πt(yt)

fUIt (ŷt+1|πt, δt+1, ut)

=

qUI(ŷt+1|yt+1 = i, δt+1)
∑
yt∈Y

p(yt+1 = i|yt, ut)πt(yt)

fUIt (ŷt+1|πt, δt+1, ut)
.

Which is also equal to the i-th element of TUI(πt, δt+1, ut, ŷt+1). Thus,∑
i∈Θ

α(i)T (πt, δt+1, ut, ŷt+1, θt+1 = i) = TUI(πt, δt+1, ut, ŷt+1).
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According to the concavity of Qt, we have∑
θt+1∈Θ

vt+1(T (πt, δt+1, ut, ŷt+1, θt+1), δt + 1) · ft(ŷt+1, θt+1|πt, δt+1, ut)

fUIt (ŷt+1|πt, δt+1, ut)

≤vt+1(
T (πt, δt+1, ut, ŷt+1, θt+1) · ft(ŷt+1, θt+1|πt, δt+1, ut)

fUIt (ŷt+1|πt, δt+1, ut)
, δt + 1)

=vt+1(TUI(πt, δt+1, ut, ŷt+1), δt + 1)

=⇒
∑

θt+1∈Θ

vt+1(T (πt, δt+1, ut, ŷt+1, θt+1), δt + 1) · ft(ŷt+1, θt+1|πt, δt+1, ut)

≤ vt+1(TUI(πt, δt+1, ut, ŷt+1), δt + 1) · fUIt (ŷt+1|πt, δt+1, ut).

Since vt+1(πt+1, δt+1) ≤ vUIt+1(πt+1, δt+1), so vt+1(TUI(πt, δt+1, ut, ŷt+1), δt + 1) ≤

vUIt+1(TUI(πt, δt+1, ut, ŷt+1), δt + 1). According to Equality (B.1) and Equality (B.2),

Qt(πt, δt, ut = 0) ≤ QUI
t (πt, δt, ut = 0) holds.

Similarly, we can prove that Qt(πt, δt, ut = 1) ≤ QUI
t (πt, δt, ut = 1) (the proof

is similar and therefore ommited). Then based on the definition of vt(πt, δt) and

vUIt (πt, δt), we finally reach the conclusion that vt(πt, δt) ≤ vUIt (πt, δt).

B.3 Numerical Experiments

B.3.1 H-case

The transition matrix between the clinical classes are presented as follows:

P (u = 0) =


0.94 0.06 0

0.09 0.91 0

0 0 1

 , P (u = 1) =


0.94 0.06 0

0 0 1

0 0 1

 .

The information matrices for POMDP-B are shown as below:

B(δ = 1) =


0.91 0.09 0

0.10 0.90 0

0 0 1

 , B(δ = 2) =


0.83 0.17 0

0.19 0.81 0

0 0 1

 ,
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,

B(δ = 3) =


0.75 0.25 0

0.27 0.73 0

0 0 1

 , B(δ = 4) =


0.63 0.37 0

0.36 0.64 0

0 0 1

 ,

B(δ = 5) =


0.56 0.44 0

0.45 0.55 0

0 0 1

 , B(δ = 6) =


0.50 0.50 0

0.51 0.49 0

0 0 1

 ,

,

B(δ = 7) =


0.43 0.57 0

0.56 0.44 0

0 0 1

 , B(δ = 8) =


0.38 0.62 0

0.62 0.38 0

0 0 1

 .

The information matrices for POMDP-UI are shown as below:

B(δ = 1) =


0.81 0.10 0.01 0.08 0

0.01 0.09 0.83 0.07 0

0 0 0 0 1

 , B(δ = 2) =


0.72 0.11 0.02 0.15 0

0.03 0.16 0.68 0.13 0

0 0 0 0 1

 ,

,

B(δ = 3) =


0.58 0.17 0.05 0.20 0

0.06 0.21 0.55 0.18 0

0 0 0 0 1

 , B(δ = 4) =


0.44 0.19 0.11 0.26 0

0.11 0.25 0.45 0.19 0

0 0 0 0 1

 ,

,

B(δ = 5) =


0.34 0.22 0.18 0.26 0

0.17 0.28 0.34 0.21 0

0 0 0 0 1

 , B(δ = 6) =


0.28 0.22 0.22 0.28 0

0.23 0.28 0.27 0.22 0

0 0 0 0 1

 ,

,

B(δ = 7) =


0.23 0.20 0.27 0.30 0

0.30 0.26 0.21 0.23 0

0 0 0 0 1

 , B(δ = 8) =


0.16 0.22 0.35 0.27 0

0.37 0.25 0.15 0.23 0

0 0 0 0 1

 .
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B.3.2 L-case

The transition matrix between the clinical classes are presented as follows:

P (u = 0) =


0.98 0.02 0

0.10 0.90 0

0 0 1

 , P (u = 1) =


0.98 0.02 0

0 0 1

0 0 1

 .

The information matrices of POMDP-B and POMDP-UI are the same as those

in the H case.

The trade-off between Number of Tests and Detection time and the trade-off

between Number of Tests and Missed Periods are presented as follows (Table B.1).

The insights are similar to those in the H case, and we omit the discussion.
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Figure B.1: Trade-off between Number of Tests and Detection time and trade-off
between Number of Tests and Missed Periods in numerical experiments (L-case)

B.4 Case Study

B.4.1 Prediction Models for Blood Glucose Level

The regression model for blood glucose level is presented in Table B.1.
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Coefficients Std. Error p-value

∆Diastolic BP -0.01 0.00 < 0.001∗∗∗

∆Total Braden -0.06 0.01 < 0.001∗∗∗

∆GCS 0.02 0.01 < 0.001∗∗∗

∆Heart Rate 0.01 0.00 < 0.001∗∗∗

∆Chloride -0.03 0.00 < 0.001∗∗∗

∆Arterial pCO2 -0.03 0.00 < 0.001∗∗∗

∆Arterial pH -7.24 0.31 < 0.001∗∗∗

∆Arterial SaO2 0.01 0.00 < 0.001∗∗∗

∆FiO2 -0.02 0.00 < 0.001∗∗∗

∆t -0.01 0.00 < 0.001∗∗∗

∆ indicates changes in respective variable since the pre-
vious test; BP: Blood pressure; pCO2: partial pressure of
carbon dioxide; SaO2: oxygen saturation; FiO2: the frac-
tion of inspired oxygen; ∆t is the time duration for two
consecutive updates of blood glucose level.
(Significance Level: 0 ‘***’; 0.001 ‘**’; 0.01 ‘*’; 0.05 ‘.’)

Table B.1: Model for predicting blood glucose level

B.4.2 Information Matrices

The information matrices for POMDP-B are shown as below:

B(δ = 1) =


0.95 0.05 0

0.35 0.65 0

0 0 1

 , B(δ = 2) =


0.89 0.11 0

0.27 0.73 0

0 0 1

 ,

,

B(δ = 3) =


0.88 0.12 0

0.34 0.66 0

0 0 1

 , B(δ = 4) =


0.85 0.15 0

0.33 0.67 0

0 0 1

 ,

,

B(δ = 5) =


0.88 0.12 0

0.46 0.54 0

0 0 1

 , B(δ = 6) =


0.90 0.10 0

0.48 0.52 0

0 0 1

 ,
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,

B(δ = 7) =


0.92 0.08 0

0.64 0.36 0

0 0 1

 , B(δ = 8) =


0.96 0.04 0

0.79 0.21 0

0 0 1

 ,

,

B(δ = 9) =


0.95 0.05 0

0.5 0.5 0

0 0 1

 , B(δ >= 10) =


0.97 0.03 0

0.59 0.41 0

0 0 1

 .

The information matrices for POMDP-UI are shown as below:

B(δ = 1) =


0.95 0.00 0.04 0.01 0

0.34 0.01 0.64 0.01 0

0 0 0 0 1

 , B(δ = 2) =


0.88 0.01 0.11 0.00 0

0.26 0.01 0.72 0.01 0

0 0 0 0 1

 ,

,

B(δ = 3) =


0.87 0.01 0.12 0.00 0

0.33 0.01 0.64 0.01 0

0 0 0 0 1

 , B(δ = 4) =


0.84 0.01 0.14 0.0.01 0

0.29 0.04 0.65 0.02 0

0 0 0 0 1

 ,

,

B(δ = 5) =


0.88 0.00 0.12 0.00 0

0.46 0 0.52 0.02 0

0 0 0 0 1

 , B(δ = 6) =


0.89 0.01 0.10 0.00 0

0.47 0.01 0.52 0 0

0 0 0 0 1

 ,

,

B(δ = 7) =


0.92 0.00 0.07 0.01 0

0.63 0.01 0.34 0.02 0

0 0 0 0 1

 , B(δ = 8) =


0.96 0 0.04 0.00 0

0.75 0.04 0.19 0.02 0

0 0 0 0 1

 ,

,

B(δ = 9) =


0.94 0.01 0.04 0.01 0

0.45 0.05 0.5 0 0

0 0 0 0 1

 , B(δ ≥ 10) =


0.97 0.00 0.03 0.00 0

0.59 0 0.39 0.02 0

0 0 0 0 1

 .

.
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Appendix C

Appendix of Chapter 3

C.1 Notations

The notations we used in the model is summarized in Table C.1.

Notation Description

Initial test

s ∈ S = {0, 1} Individuals’ CRC state, where s = 1
(s = 0) represents a health state with
(without) CRC

ζ f-Hb concentration level tested from
FIT

[ζ, ζ̄] The range of f-Hb concentration

H1(·) (H0(·)) The CDF of f-Hb concentration for in-
dividuals with (without) CRC

h1(·) (h0(·)) The PDF of f-Hb concentration for in-
dividuals with (without) CRC

T Number of cut-off points selected
CT = {c1, c2, .., cT |ct ∈ [ζ, ζ̄], c1 < c2 < ... < cT } The set of cut-off point values

(T, CT ) Initial test design
ΓCT = {0, 1, 2, ..., T} The set of test outcomes if the initial

test design is (T, CT )
σCT (t|s) The likelihood of receiving test out-

come t if individual’s state is s and the
initial test design is (T, CT )
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Individual’s follow-up problem

N Population size
i ∈ {1, 2, ..., N} Individual index
λi(t) The total probability of receiving

test outcome t for individual i
p0
i Individual i’s prior risk of developing

CRC
psi (t) Individual i’s posterior risk of devel-

oping CRC given test outcome t
πsi (t) Individual i’s subjective belief of

having CRC given test outcome t
ai(t) ∈ {0, 1} Individual i’s follow-up action given

test outcome t, where ai(t) = 1
refers to a follow up with the second-
stage test; ai(t) = 0, otherwise.

ui(si, ai(t)) The utility for individual i given
CRC state si and follow-up action
ai(t)

di(si) Perceived disutility of the follow-up
action for individual i with health
state si

εaii A random error term that captures
the impact of all unobservable fac-
tors that affect the utility of choos-
ing action ai by individual i

τ An adjusting term that captures the
“cost” of extra colonoscopy demand
from healthy individuals

fi(t) The probability of following up with
the second-stage test for an individ-
ual i with an initial test outcome t

Φ(·) Function capturing the relationship
between πsi (t) and psi (t) when t 6= 0,
i.e., πsi (t) = Φ(psi (t))

W (psi (t)) The probability of following up with
the second-stage test for an individ-
ual i with an initial test outcome t if
t 6= 0

Analytical model

Vm ≡ {v1, v2, ..., vm|vj ∈ [ζ, ζ̄], v1 < v2 < ... < vm} A pre-specified candidate set of cut-
off points

W (psi (t)) The probability of following up with
the second-stage test for an individ-
ual i with an initial test outcome t if
t 6= 0
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xj A binary variable that denotes whether cut-off value vj is selected, where xj = 1
if vj is chosen; xj = 0, otherwise.

f ji (t) If vj is chosen, the probability of following up with the second-stage test for an
individual i with an initial test outcome t

σj(t|s) The likelihood of receiving test outcome t if vj is chosen given individual’s state
is s

L The maximal number of test types
qij A binary variable that denotes whether the FIT kit with cut-off point vj is

assigned to individual i

Table C.1: Model notation

C.2 Technique Proofs

C.2.1 Proof of Lemma 4.1.

Since

psi (t) =
σ(t|1)p0

i

λi(t)
=

σ(t|1)p0
i

σ(t|0)(1− p0
i ) + σ(t|1)p0

i

=
p0
i

σ(t|0)
σ(t|1)

(1− p0
i ) + p0

i

,

according to Property 1 that for MLR-feasible test, σ(t|1)
σ(t|0)

increases in t, we conclude

that psi (t) increases in t.

C.2.2 Proof of Theorem 4.2.

We prove this theorem via two steps: (1) we first prove that when W (·) is concave in

psi (t), a dichotomous test is optimal; (2) we then prove that the optimal cut-off point

value is ζ.

Let (T,CT ) be an initial test that has more than one cut-off point. That is T > 1

and CT = {c1, c2, .., cT |ct ∈ [ζ, ζ̄], c1 < c2 < ... < cT}. The corresponding test outcome

set is ΓCT = {0, 1, 2, ..., T} and the likelihood of receiving test outcome t given state

si is σCT (t|si), t ∈ ΓCT , si ∈ S.

Let λCTi (t) denote the total probability of receiving test outcome t, i.e., λCTi (t) =

σCT (t|0)(1 − p0
i ) + σCT (t|1)p0

i . Then for an individual i, the expected following up
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probability under (T, CT ) is∑
t∈ΓCT

λCTi (t)fi(t) =
∑

t∈ΓCT \{0}

λCTi (t)W (psi (t)). (C.1)

Consider another initial test that has one cut-off point, and the value is c1. That

is T = 1, C1 = {c1} and ΓC1 = {0, 1}. By construction, we have σC1(0|si) =

σCT (0|si), σC1(1|si) =
∑

t∈ΓCT \{0}
σCT (t|si). Let λC1i (j) denote the probability of receiving

test outcome j (j ∈ ΓC1), then λC1i (0) = λCTi (0), λC1i (1) =
∑

t∈ΓCT \{0}
λCTi (t). Let f̂i(t)

denote individual i’s probability of following up under (1, C1). Then for an individual

i, the expected follow up probability under (1, C1) is

∑
j∈ΓC1

λC1i (j)f̂i(j) = λC1i (1)f̂i(1) =
∑

t∈ΓCT \{0}

λCTi (t)W
( ∑
t∈ΓCT \{0}

λCTi (t)psi (t)∑
t∈ΓCT \{0}

λCTi (t)

)
. (C.2)

Followed by the concavity of W (·) is concave in psi (t), that is,

W
( ∑
t∈CT \{0}

λCTi (t)psi (t)∑
t∈CT \{0}

λCTi (t)

)
≥

∑
t∈CT \{0}

λCTi (t)W (psi (t))∑
t∈CT \{0}

λCTi (t)
. (C.3)

Therefore, the initial test design (1, C1) induces an equal or higher probability of

following up than (T, CT ) for any individual i (i ∈ {1, 2, ..., N}). A dichotomous test

is optimal.

To prove (2), consider a dichotomous test with cut-off point ζ and another with

cut-off point c
′

where ζ < c
′ ≤ ζ̄.
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Given the concavity of W (·), we have

W
( ∫ ζ̄

ζ
h1(ζ) · p0

i dζ∫ ζ̄
ζ
h1(ζ) · p0

i + 0(ζ) · (1− p0
i )dζ

)
≥
∫ ζ̄
c′
h1(ζ)p0

i + h0(ζ)(1− p0
i )dζ∫ ζ̄

ζ
h1(ζ)p0

i + h0(ζ)(1− p0
i )dζ

(C.4)

·W

( ∫ ζ̄
c′
h1(ζ) · p0

i dζ∫ ζ̄
c′
h1(ζ) · p0

i + h0(ζ) · (1− p0
i )dζ

)

+

∫ c′
ζ
h1(ζ)p0

i + h0(ζ)(1− p0
i )dζ∫ ζ̄

ζ
h1(ζ)p0

i + h0(ζ)(1− p0
i )dζ

(C.5)

·W


∫ c′
ζ
h1(ζ) · p0

i dζ∫ c′
ζ
h1(ζ) · p0

i + h0(ζ) · (1− p0
i )dζ


(C.6)

Therefore, we can establish that the follow-up probability of any individual i under

the test with cut-off point ζ is higher than that under the test with cut-off point c′

via the following.[ ∫ ζ̄

ζ

(
h1(ζ)p0

i + h0(ζ)(1− p0
i )
)
dζ
]

︸ ︷︷ ︸
Probability of receiving outcome 1

(cut-off point = ζ)

·W
( ∫ ζ̄

ζ
h1(ζ) · p0

i dζ∫ ζ̄
ζ
h1(ζ) · p0

i + 0(ζ) · (1− p0
i )dζ

)
︸ ︷︷ ︸

Follow-up probablity if receiving outcome 1
(cut-off point = ζ)

≥
∫ ζ̄

c′

(
h1(ζ)p0

i + h0(ζ)(1− p0
i )
)
dζ ·W

( ∫ ζ̄
c′
h1(ζ) · p0

i dζ∫ ζ̄
c′
h1(ζ) · p0

i + h0(ζ) · (1− p0
i )dζ

)

+

∫ c
′

ζ

(
h1(ζ)p0

i + h0(ζ)(1− p0
i )
)
dζ ·W


∫ c′
ζ
h1(ζ) · p0

i dζ∫ c′
ζ
h1(ζ) · p0

i + h0(ζ) · (1− p0
i )dζ


>
[ ∫ ζ̄

c′

(
h1(ζ)p0

i + h0(ζ)(1− p0
i )
)
dζ
]

︸ ︷︷ ︸
Probability of receiving outcome 1

(cut-off point = c′)

·W
( ∫ ζ̄

c′
h1(ζ) · p0

i dζ∫ ζ̄
c′
h1(ζ) · p0

i + h0(ζ) · (1− p0
i )dζ

)
︸ ︷︷ ︸

Follow-up probablity if receiving outcome 1
(cut-off point = c′)

This completes the proof.
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C.2.3 Proof of Theorem 4.3.

We prove this theorem via two steps: (1) we first show that for any initial test with

a finite number of cut-off points, the objective value will not decrease by arbitrarily

adding one more cut-off point from [ζ, ζ̄]; (2) we prove that if we uniformly add

infinitely many cut-off points, the objective value converges to that of the continuous

test.

To prove (1), we first establish the following result.

Corollary C.1. If
aj
bj

and wj are both nondecreasing in j, where aj, bj and wj are

positive variables, j ∈ {1, 2, ..., J}. Then

J∑
j=1

ajwj

J∑
j=1

aj

≥

J∑
j=1

(aj+bj)wj

J∑
j=1

(aj+bj)

.

Proof. Because aj, bj and xj are positive variables, so it’s equivalent to prove
J∑
j=1

bj

J∑
j=1

aj

≥

J∑
j=1

bjwj

J∑
j=1

ajwj

. (C.7)

Let k1 = b1
a1

and kj =
bj
aj
− bj−1

aj−1
for j ∈ {2, 3, ..., J}. Then we have

bj
aj

=
j∑
l=1

kl and

bj =
j∑
l=1

klaj. Thus,

J∑
j=1

bj

J∑
j=1

aj

=

J∑
j=1

j∑
l=1

klaj

J∑
j=1

aj

= k1 + k2

J∑
j=2

aj

J∑
j=1

aj

+ k3

J∑
j=3

aj

J∑
j=1

aj

+ ...+ kJ

J∑
j=J

aj

J∑
j=1

aj

.

We also have
J∑
j=1

bjwj

J∑
j=1

ajwj

=

J∑
j=1

j∑
l=1

klajwj

J∑
j=1

ajwj

= k1 + k2

J∑
j=2

ajwj

J∑
j=1

ajwj

+ k3

J∑
j=3

ajwj

J∑
j=1

ajwj

+ ...+ kJ

J∑
j=J

ajwj

J∑
j=1

ajwj

.

Since
aj
bj

is nondecreasing in j; therefore, kj =
bj
aj
− bj−1

aj−1
≤ 0 for j ∈ {2, 3, ..., J}.

Thus, to prove (C.7), it’s sufficient to prove that for l ∈ {1, 2, ..., J}, the following
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inequality holds:
J∑
j=l

aj

J∑
j=1

aj

≤

J∑
j=l

ajwj

J∑
j=1

ajwj

. (C.8)

To prove (C.8), it’s equivalent to prove

J∑
j=l

aj

J∑
j=l

ajwj

≤

J∑
j=1

aj

J∑
j=1

ajwj

. Consequently, it’s

sufficient if we can prove that for l ∈ {2, 3, ..., J},
J∑
j=l

aj

J∑
j=l

ajwj

≤

J∑
j=l−1

aj

J∑
j=l−1

ajwj

. (C.9)

Note that

(C.9)⇐⇒

J∑
j=l

aj

J∑
j=l−1

aj

≤

J∑
j=l

ajwj

J∑
j=l−1

ajwj

⇐⇒ 1−

J∑
j=l

aj

J∑
j=l−1

aj

≥ 1−

J∑
j=l

ajwj

J∑
j=l−1

ajwj

⇐⇒ al−1

J∑
j=l−1

aj

≥ al−1wl−1

J∑
j=l−1

ajwj

⇐⇒ 1
J∑

j=l−1

aj

≥ 1
J∑

j=l−1

aj
wj
wl−1

. (C.10)

Because wj is increasing in j for j ∈ {1, 2, ..., J}, so (C.10) holds. Thus, we conclude

that

J∑
j=1

ajwj

J∑
j=1

aj

≥

J∑
j=1

(aj+bj)wj

J∑
j=1

(aj+bj)

. �

We then show that for any initial test with a finite number of cut-off points, the

objective value will not decrease by arbitrarily adding one more cut-off point from

[ζ, ζ̄].

Let (T,CT ) be an initial test with T cut-off points and CT = {c1, c2, .., cT |ct ∈

[ζ, ζ̄], c1 < c2 < ... < cT}. The corresponding test outcome set is denoted as Γ and
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the likelihood of receiving test outcome t given state si is σ(t|si), t ∈ Γ, si ∈ S.

The total probability of receiving test outcome t for an individual i is denoted as

λi(t),∀t ∈ CT .

The overall expected follow-up probability from CRC patients equals
N∑
i=1

∑
t∈Γ

σ(t|1)p0
i fi(t),

which is also equal to
N∑
i=1

∑
t∈Γ\{0}

σ(t|1)p0
iW
(
psi (t)

)
. (C.11)

Suppose we arbitrarily add one cut-off point, c′ ∈ [ζ, ζ̄] that is not in CT . Adding

one more cut-off point will split one test outcome, say k, to two, denoted by k1 and

k2. We denote the likelihood of receiving test outcome k1 and k2 given state s as

σ̂(j|s), j = k1, k2. By construction, σ(k|s) = σ̂(k1|s) + σ̂(k2|s). For the new initial

test, the overall follow-up probability from CRC patients is

N∑
i=1

 ∑
t∈Γ\{k}

σ(t|1)fi(t) +
∑

j∈{k1,k2}

σ̂(j|1)fi(j)

 p0
i . (C.12)

We next compare the values of (C.11) and (C.12) in the following two cases.

Case 1: If k = 0,

(C.12) =
N∑
i=1

∑
t∈Γ\{0}

σ(t|1)p0
iW
(
psi (t)

)
+

N∑
i=1

∑
j∈{k1,k2}

σ̂(j|1)p0
i fi(j) ≥ (C.11).

Case 2: If k > 0, by construction, k1 > 0 and k2 > 0.

(C.12) =
N∑
i=1

∑
t∈Γ\{0,k}

σ(t|1)p0
iW
(
psi (t)

)
+

N∑
i=1

∑
j∈{k1,k2}

σ̂(j|1)p0
i fi(j)

=
N∑
i=1

∑
t∈Γ\{0,k}

σ(t|1)p0
iW
(
psi (t)

)
+

N∑
i=1

∑
j∈{k1,k2}

σ̂(j|1)p0
iW
(
p̂si (j)

)
. (C.13)

Where p̂si (j) is the posterior risk of CRC given the test outcome j(∈ {k1, k2}) under

the new initial test. Thus, to prove (C.13) ≥ (C.11), it’s equivalent to prove
N∑
i=1

∑
j∈{k1,k2}

σ̂(j|1)p0
iW
(
p̂si (j)

)
≥

N∑
i=1

σ(k|1)p0
iW
(
psi (k)

)
. (C.14)

Note that σ(k|s) =
∑

j∈{k1,k2}
σ̂(j|s),∀s ∈ {0, 1}. Let the total probability of

receiving test outcome j for an individual i under the new test be λ̂i(j). Then,
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λi(k) =
∑

j∈{k1,k2}
λ̂i(j). Therefore psi (k) =

σ(k|1)p0i
λi(k)

=

∑
j∈{k1,k2}

σ̂(j|1)p0i∑
j∈{k1,k2}

λ̂i(j)
=

∑
j∈{k1,k2}

λ̂i(j)p̂
s
i (j)∑

j∈{k1,k2}
λ̂i(j)

.

To prove Inequality (C.14), it’s sufficient to prove that for each individual i, the

following inequality holds:

∑
j∈{k1,k2}

σ̂(j|1)W
(
p̂si (j)

)
≥ σ(k|1)W

(
psi (k)

)
=

∑
j∈{k1,k2}

σ̂(j|1)W
( ∑
j∈{k1,k2}

λ̂i(j)p̂
s
i (j)∑

j∈{k1,k2}
λ̂i(j)

)

=⇒

∑
j∈{k1,k2}

σ̂(j|1)W
(
p̂si (t)

)
∑

j∈{k1,k2}
σ̂(t|1)

≥ W
( ∑
j∈{k1,k2}

λ̂i(j)p̂
s
i (j)∑

j∈{k1,k2}
λ̂i(j)

)
. (C.15)

Since W (·) is nondecreasing , then following from Corollary C.1 and Property 1,

we have ∑
j∈{k1,k2}

σ̂(j|1)W
(
p̂si (j)

)
∑

j∈{k1,k2}
σ̂(j|1)

≥

∑
j∈{k1,k2}

λ̂i(j)W
(
p̂si (j)

)
∑

j∈{k1,k2}
λ̂i(j)

. (C.16)

Following from the convexity of W (·), we have∑
j∈{k1,k2}

λ̂i(j)W
(
p̂si (j)

)
∑

j∈{k1,k2}
λ̂i(j)

≥ W
( ∑
j∈{k1,k2}

λ̂i(j)p̂
s
i (j)∑

j∈{k1,k2}
λ̂i(j)

)
. (C.17)

Combining Inequality (C.16) with Inequality (C.17), we conclude Inequality (C.15)

holds. Thus, it’s always optimal to add one more cut-off point to the original set of

cut-off points.

Before proceeding to prove (2), we first introduce the Bayesian updating process

and the property of the continuous test.

Continuous CRC test Under continuous test, an individual receives a test out-

come ζ ∈ [ζ, ζ̄], which is the exact f-Hb concentration. The property that CRC

patients are more likely to receive worse results than healthy individuals should per-

sist in the continuous test. This suggests that h1(ζ)
h0(ζ)

increases in ζ for ζ ∈ [ζ, ζ̄].

Similar to the ordinal CRC test, for the continuous test which directly reports

individuals’ f-Hb concentrations, if individual i receives a test outcome ζ, the posterior
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probability density of having CRC, denoted by p̌si (ζ), becomes:

p̌si (ζ) =
h1(ζ)p0

i

h1(ζ)p0
i + h0(ζ)(1− p0

i )
, i ∈ {1, 2, ...N}, ζ ∈ [ζ, ζ̄].

Let f̌i(ζ) denote the follow-up probability density for individual i when adopting

the continuous test, and f̌i(ζ) = W (p̌si (ζ)). Given the range of fecal hemoglobin

concentration is [ζ, ζ̄], the overall follow-up probability for all individuals with CRC

under continuous test can be written as
N∑
i=1

∫ ζ̄

ζ

f̌i(ζ)h1(ζ)pi0dζ.

To bridge the link between continuous and ordinal CRC tests, we establish the

following corollary.

Corollary C.2. For an ordinal CRC test, if policymakers uniformly choose infinitely

many cut-off points from [ζ, ζ̄], the overall follow-up probability from individuals with

CRC is the same as that under continuous test.

Proof. The overall follow-up probability from individuals with CRC under the

continuous test can be written as
N∑
i=1

∫ ζ̄

ζ

f̌i(ζ)h1(ζ)pi0dζ (C.18)

=
N∑
i=1

lim
J→∞

J∑
j=0

[f̌i(ζ +
(ζ̄ − ζ)j

J
)h1(ζ +

(ζ̄ − ζ)j

J
)pi0] ·

ζ̄ − ζ
J

. (C.19)

Define an ordinal test (T, CT ), where

CT ≡ {c1, c2, .., cT |c1 = ζ, ct+1 = ct +
ζ̄ − ζ
T − 1

,∀t = 1, ..., T − 1}.

Define ∆c(T ) =
ζ̄−ζ
T−1

. Then, ct+1 = ct + ∆c(T ) = ζ +
(ζ̄−ζ)t
T−1

,∀t = 1, ..., T − 1. The

overall follow-up probability for individuals with CRC under this ordinal test is
N∑
i=1

∑
t∈ΓCT

fi(t)σ
CT (t|1)p0

i

=
N∑
i=1

∑
t∈ΓCT \{0}

W
(
psi (t)

)
σCT (t|1)p0

i

=
N∑
i=1

T−1∑
t=1

W

(
(H1(ct+1)−H1(ct))p

0
i

(H1(ct+1)−H1(ct))p0
i + (H0(ct+1)−H0(ct))(1− p0

i )

)(
H1(ct+1)−H1(ct)

)
p0
i .
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BecauseW (.) is continuous on R, and lim
T→∞

Hs(ct+1)−Hs(ct)
∆c(T )

= lim
T→∞

Hs(ct+∆c(T ))−Hs(ct)
∆c(T )

=

hs(ct) for s ∈ {0, 1}, t = 1, ..., T−1. When T goes to infinity, the follow-up probability

from CRC individuals becomes
N∑
i=1

lim
T→∞

T−1∑
t=1

W

(
(H1(ct+1)−H1(ct))p

0
i

(H1(ct+1)−H1(ct))p0
i + (H0(ct+1)−H0(ct))(1− p0

i )

)(
H1(ct+1)−H1(ct)

)
p0
i

N∑
i=1

lim
T→∞

T−1∑
t=1

W
( h1(ct)p

0
i

h1(ct)p0
i + h0(ct)(1− p0

i )

)
h1(ct)p

0
i ·∆c(T )

=
N∑
i=1

lim
T→∞

T−1∑
t=1

[f̌i(ct)h1(ct)p
0
i ] ·∆c(T )

=
N∑
i=1

lim
T→∞

T−1∑
t=1

[f̌i(ζ +
(ζ̄ − ζ)t

T − 1
)h1(ζ +

(ζ̄ − ζ)t

T − 1
)pi0] ·

ζ̄ − ζ
T − 1

=(C.19).

Thus, if the policymaker uniformly choose infinitely many cut-off points from [ζ, ζ̄],

the overall follow-up probability is the same as that under a continuous test. �

Combining the result from (1) and (2), we complete the proof.

C.3 Performance Gap

In Theorem 4.2, we demonstrate that for the compliance maximization case, ifW (psi (t))

is concave in psi (t), then a dichotomous initial test should be selected, with the opti-

mal cut-off being the one with the highest sensitivity. In real practice, W (·) may not

be a concave function. We next show that when W (psi (t)) is not concave in psi (t), if

policymakers select ζ as the only cut-off point, the performance gap between such a

FIT and the optimal test is bounded by a finite value. We start by introducing two

concepts: concave envelope and the “modulus of non-concavity”.

Definition C.1. (Udell and Boyd, 2013) The tightest concave approximation to W (·),

denoted as Ŵ (·), is a concave envelope of the function W (·), which is defined as the

pointwise infimum over all concave functions that are greater than or equal to W (·).
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Definition C.2. (Aubin, 2007, Udell and Boyd, 2016) Let W : X → R be a function

defined on a convex set X, and Ŵ (·) be a concave envelope of the function W (·). We

define the “modulus of non-concavity” of W (·), denoted as ρ(W ), as below.

ρ(W ) = sup
x∈X

(
Ŵ (x)−W (x)

)
We then show the performance gap between a dichotomous test design with cut-

off point value ζ} and the optimal test design is bounded by a finite value measured

by the “modulus of non-concavity”.

Theorem C.1. For the compliance maximization case, the total expected follow-up

probability for all the N individuals between test design (1, C1 = {ζ}) and the optimal

test design is bounded by Nρ(W ), where ρ(W ) = sup
x∈[0,1]

(
Ŵ (x) −W (x)

)
and Ŵ (·) is

a concave envelope of W (·).

Proof. We first prove that the optimal set of cut-off points includes ζ by showing

that we can always get an equal or higher probability of following up by adding ζ

into any set of cut-off points.

Let CT = {c1, c2, .., cT |ct ∈ (ζ, ζ̄], c1 < c2 < ... < cT} be an arbitrary set of T (> 1)

cut-off points. The expected follow-up probability for an individual i is
T∑
t=1

λCTi (t)fi(t).

Consider adding ζ as a new cut-off point, and CT+1 = {ζ, c1, c2, .., cT |ct ∈ (ζ, ζ̄], c1 <

c2 < ... < cT}. Let p̌si (t) and f̌i(t) denote individual i’s posterior risk and follow-up

probability after receiving test outcome t under this new test, respectively. Note for

1 ≤ t ≤ T , because the cut-off point in CT remains in CT+1, and the test outcome

labels are simply shifted by 1, we have σCT+1(t+ 1|1) = σCT (t|1), thus λ
CT+1

i (t+ 1) =

σCT+1(t + 1|0)(1 − p0
i ) + σCT+1(t + 1|1)p0

i = σCT (t|0)(1 − p0
i ) + σCT (t|1)p0

i = λCTi (t),

p̌si (t+ 1) =
p0i

σ
CT+1(t+1|0)
σ
CT+1(t+1|1)

(1−p0i )+p0i
=

p0i
σCT (t|0)
σCT (t|1)

(1−p0i )+p0i
= psi (t) and f̌i(t+ 1) = fi(t).

Therefore, the expected follow-up probability for individual i under the new test

design
T+1∑
t=1

λ
CT+1

i (t)f̌i(t) = λ
CT+1

i (1)f̌i(1) +
T∑
t=1

λCTi (t)fi(t) ≥
T∑
t=1

λCTi (t)fi(t).
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We conclude that the optimal set of cut-off points includes ζ.

Let C∗T = {c1, c2, .., cT |ct ∈ [ζ, ζ̄], ζ = c1 < c2 < ... < cT} denote the optimal cut-off

set with T (T > 1) cut-off points. For an individual i, the expected probability of

following up under the optimal test design (T, CT ) equals
T∑
t=1

λ
C∗T
i (t)W (psi (t)).

Consider the dichotomous test with cut-off point C1 = {ζ}. Let p̂si (t) denote

individual i’s posterior risk after receiving test outcome t under the dichotomous

test. Thus, for individual i, the expected probability of following up under equals

λC1i (1)W (p̂si (1)). (C.20)

Since λC1i (1) =
T∑
t=1

λ
C∗T
i (t), p̂si (1) =

σC1 (1|1)p0i

λ
C1
i (1)

=

T∑
t=1

σC
∗
T (t|1)p0i

T∑
t=1

λ
C∗
T
i (t)

=

T∑
t=1

λ
C∗T
i (t)psi (t)

T∑
t=1

λ
C∗
T
i (t)

. Conse-

quently, (C.20) equals
T∑
t=1

λ
C∗T
i (t)W

( T∑
t=1

λ
C∗T
i (t)psi (t)

T∑
t=1

λ
C∗
T
i (t)

)
.

Therefore, the performance gap between test design (T, C∗T ) and (1, C1) equals

T∑
t=1

λCTi (t)W (psi (t))−
T∑
t=1

λCTi (t)W
( T∑
t=1

λCTi (t)psi (t)

T∑
t=1

λCTi (t)

)
. (C.21)

Let Ŵ (·) be a concave envelope of W (·). Given the concavity of Ŵ (·), we have

T∑
t=1

λCTi (t)Ŵ
( T∑
t=1

λCTi (t)psi (t)

T∑
t=1

λCTi (t)

)
≥

T∑
t=1

λCTi (t)Ŵ (psi (t)) ≥
T∑
t=1

λCTi (t)W (psi (t)). (C.22)

Combining inequality (C.21) with (C.22), we have

(C.21) ≤
T∑
t=1

λCTi (t)Ŵ
( T∑
t=1

λCTi (t)psi (t)

T∑
t=1

λCTi (t)

)
−

T∑
t=1

λCTi (t)W
( T∑
t=1

λCTi (t)psi (t)

T∑
t=1

λCTi (t)

)
. (C.23)

Note that
T∑
t=1

λCTi (t) ≤ 1. Thus, performance gap for all the N individuals is

bounded by
N∑
i=1

sup
x∈[0,1]

(
Ŵ (x)−W (x)

)
= Nρ(W ).
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C.4 Parameter Estimation

C.4.1 Utility Estimation

Figure C.1: CRC progression

We refer to the model constructed by Ladabaum et al. (2001) for the natural his-

tory of CRC in the average-risk population without CRC screening (Figure C.1). Indi-

viduals transition between principal health states of normal, localized CRC, regional

CRC or distant CRC, and dead in 1-year cycles. The states for patients who survived

CRC treatment (post-localized-CRC surveillance and post-regional-CRC surveillance)

are also shown. As presented in Figure C.1, individuals could remain in the current

state or transit to other states at the end of every cycle. The ovals without solid

borders represent intermediate states associated with the symptomatic presentation

of CRC. Specifically, individuals with distant CRC are symptomatic, whereas for in-

dividuals with localized or regional CRC, the associated symptoms may present with

certain probabilities. We suppose that individuals with symptomatic presentation

will consult doctors and receive the treatment. Typically, normal individuals may de-

velop localized CRC. CRC cases progress from localized to regional (2 years in each

stage) to distant unless symptoms lead to diagnosis and treatment. If individuals are

diagnosed and treated, they will enter post-cancer surveillance.

Because the expected remaining life years vary widely among individuals with
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different ages, genders and CRC states, and the second-stage screening could detect

CRC at an earlier stage when the treatment is usually more successful. Therefore,

individuals’ expected remaining QALYs differ by age, gender, CRC state and follow-

up decision. Next, we present the estimation of the expected remaining QALYs for

individuals with different aforementioned attributes. We use uk,g(s, a) to denote the

expected remaining QALYs for individuals with age k, gender g, state s and follow-up

action a. We next decribe the calculation of uk,g(s, a).

1. uk,g(0, 0): Following from Ladabaum et al. (2001), we suppose the quality of life

for individuals without CRC is 1, and we use the expected remaining life years

from the complete life tables for the Singapore resident population (Department

of Statistics 2019) as a proxy of the expected remaining QALYs.

2. uk,g(0, 1): Notably, the QALYs loss from a colonoscopy is incorporated in the

perceived cost of the follow-up action; therefore, we have uk,g(0, 1) = uk,g(0, 0).

3. uk,g(1, 1): For asymptomatic CRC patients who follow up with the second stage

tests, they will be diagnosed and treated. For those who survive CRC treatment,

they will have high risks of post-treatment mortality in the initial 5 years; after

the initial 5 years of post-cancer surveillance, the recurrence of CRC becomes

less common (Caso et al., 2020), and we suppose the expected remaining QALYs

of survivors are the same as those of normal individuals with the same age and

gender. Then, we can derive uk,g(1, 1) according to the collected parameters.

4. uk,g(1, 0): For asymptomatic CRC patients who don’t follow-up with the second-

stage tests, they will be detected if the associated symptoms appear; otherwise,

they will progress all the way to distant CRC or dead. In line with Ladabaum

et al. (2001), we suppose there is a loss of quality for CRC patients who do

not receive treatment. Besides, these patients may experience natural death

(mortality not from CRC) during the process.
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The values of all the aforementioned parameters are listed in Table C.2.

Parameters

The expected remaining QALYs for healthy individuals age-gender-specific Department of Statistics (2019)
Distribution of CRC stages stage-specific Howlader et al. (2018)
Symptomatic presentation of localized CRC, % 22/year over 2 years Ladabaum and Mannalithara (2016)
Symptomatic presentation of regional CRC, % 40/year over 2 years Ladabaum and Mannalithara (2016)
Mortality rate from treated localized CRC, % 1.74/year in first 5 years Ladabaum and Mannalithara (2016)
Mortality rate from treated regional CRC, % 8.6/year in first 5 years Ladabaum and Mannalithara (2016)
Mean survival from distant CRC, year 1.9 Ladabaum and Mannalithara (2016)
Mortality rate from CRC treatment, % 2 Ladabaum and Mannalithara (2016)
Mortality rate not from CRC, % age-gender-specific Department of Statistics (2019)
Qualiy of life of localized CRC 0.90 Ladabaum and Mannalithara (2016)
Qualiy of life of regional CRC 0.80 Ladabaum and Mannalithara (2016)
Qualiy of life of distant CRC 0.76 Ladabaum and Mannalithara (2016)

Table C.2: Input parameters

C.4.2 Utility Functional Form Estimation

Variable selection

In this section, we introduce the variable selection process of δ-features and d-features.

δ-features and d-features To examine determinants and barriers towards CRC

adherence behavior, we first divide the data points into two groups based on whether

individuals followed up with the second-stage tests. We perform univariate statistical

comparisons of the two groups by applying Welch’s t-test and select the variables

with p-value less than 0.1. The comparison result is presented in Table C.3. Then we

adopt all significant variables as candidate variables for δ.

Besides, we inquired individuals about the factors they were concerned about

when deciding whether to follow up in our survey. All these variables and the QALYs

loss from a colonoscopy are initially selected as d-features. We then perform 3-fold

cross-validation to choose the combinations of variables that produce the highest

average AUC in predicting individuals’ follow-up behaviors. The selected variable

combinations are finally adopted as δ-features and d-features.
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Variable Mean of Group 0 Mean of Group 1 p-value

Age 62.68 64.21 < 0.1
Married 0.74 0.86 < 0.1
Own apartment 0.88 0.96 < 0.1
Own more than one apartment 0.14 0.24 < 0.1
Tobacco consumption 4.29 18.87 < 0.1
Have private insurance 0.84 0.71 < 0.05
Screening knowledge 2.18 2.57 < 0.05
Colonoscopy knowledge 0.89 1.12 < 0.01
Knowledge about CRC incidence rate 0.89 0.77 < 0.05
Real risk of having CRC 0.001 0.002 < 0.1
Frequency of receiving FIT 2.67 3.27 < 0.001

Table C.3: Univariate statistical comparisons

Estimation of the QALYs loss from a colonoscopy

We consider the possibility of colonoscopy perforation and perforation-related mor-

tality rate. Let ωk,g(s) denote the QALYs loss from a colonoscopy for individuals

with age k, gender g and state s, then

ωk,g(s) = uk,g(s, 1)× p(perforation probability)× p(perforation-related mortality).

MLE estimation

We use zi ≡ {z1
i , z

2
i , .., z

J
i } and yi ≡ {y1

i , y
2
i , ..., y

R
i } to denote δ-features and d-

features, respectively. Where yRi represents the QALYs loss from a colonoscopy for

individual i.

In particular, we propose a multivariate linear model for δi, which takes the form:

δi = α0 +
J∑
j=1

αjzji .

Where α0 denotes the constant and αj (j ∈ {1, 2, ..., J}) denotes the coefficient for

zji .

In addition, we suppose di(si = 0) and di(si = 1) take the following functional
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forms:

di(0) = β0 +
R∑
r=1

βryri ,

di(1) = γ0 +
R∑
r=1

γryri .

Where β0 and γ0 are constants, βr and γr denote the coefficients of yri in the two

respective functions, r ∈ {1, 2, ..., R}.

Note individuals will experience a loss of utility from the colonoscopy; therefore,

we suppose βR, γR ≥0. For individuals who don’t believe in having the disease, they

will expend a utility loss from the follow-up action. Thus, we assume that βr ≥ 0 if

r ∈ {1, 2, ..., R − 1}. Conversely, for individuals who believe they have the disease,

they can benefit from the subsequent diagnosis and treatment. Therefore, we assume

that γr ≤ 0 if r ∈ {1, 2, ..., R− 1}.

Let ei denote individual i’s actual follow-up decision. For individual i, the like-

lihood of choosing action ei ∈ {0, 1} after receiving a positive test outcome (t = 1)

equals

Pi(ai(1) = ei) =
eUi(ai(1)=ei)

eUi(ai(1)=0) + eUi(ai(1)=1)
.

Our purpose is to derive the parameters that maximize the log-likelihood function

subject to the constraints of δi, β
r and γr. We formulate the parameter estimation

problem as the following convex optimization problem:

max
αj ,βr,γr

N∑
i=1

log(Pi(ai(1) = ei))

s.t. 0 ≤ δi ≤ 1 i ∈ {1, 2, ..., N}

βr ≥ 0 r ∈ {1, 2, ..., R}

γr ≤ 0 r ∈ {1, 2, ..., R− 1}

γR ≥ 0

The descriptions of the estimated parameters are shown in Table C.4.
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δ-features (z) α

Age 0.02
Have private insurance 0.07
Screening knowledge -0.22
Colonoscopy knowledge -0.06
Frequency of receiving FIT -0.08

d-features (y) β γ

Concerns about the medical history 0.00 -100.29
Concerns about age 0.31 -194.10
Trust in doctors 0.02 -5180.09
Want to know health condition 0.00 -320.64
Concerns about the price of a colonoscopy 0.29 0.00
Support from family 46.87 -12857.20
Disutility from a colonoscopy 0.00 7.69

Table C.4: Descriptions of the estimated parameters

C.4.3 Logistic Regression Result

We perform stepwise logistic regression in the balanced dataset, and the regression

result is shown in Table C.5.

C.4.4 Construction of the Discretized Candidate Set

The candidate set of cut-off points is selected to (1) cover the commonly adopted

cut-off points in practice and also to (2) ensure that the initial test kits are MLR-

feasible. Firstly, according to numerous systematic reviews (e.g., Lee et al. (2014),

Robertson et al. (2017)), thresholds greater than 10 µg/g and smaller than 100 ug/g

are commonly adopted in real practice. Therefore, we choose to construct a discretized

set from 10 µg/g to 100 µg/g. Specifically, according to Figure 4.1, when the cut-off

value increases from 10 µg/g to 40 µg/g, the corresponding changes in test outcome

probabilities are relatively large, which requires more granular increments. When the

cut-off value is greater than 40, the changes are subtle. The candidate set, therefore,

includes cut-off values from 10 µg/g to 40 µg/g in steps of 1 and from 40 µg/g to 100

µg/g in steps of 5.
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Coefficient Standard error p-value

δ-features

Own apartment 0.62 0.22 < 0.01
Have private insurance -1.29 0.30 < 0.01
Screening knowledge 1.17 0.25 < 0.01
Colonoscopy knowledge 0.95 0.33 < 0.01
Frequency of receiving FIT -0.64 0.30 < 0.05

d-features

Concerns about the medical history 2.55 0.72 < 0.01
Concerns about age 2.04 0.53 < 0.01
Trust in doctors 1.89 0.88 < 0.05
Want to know health condition 2.99 0.53 < 0.01
Concerns about the price of a colonoscopy -1.64 0.66 < 0.05
Support from family 1.84 1.11 < 0.1

Constant -1.14 0.36 < 0.01

No. of observations 290
Pseudo R-squared 0.58
Prob > Chi-square <0.01

Table C.5: Logistic regression result

We next show that if the initial test kit are MLR-feasible, the two-sample dichoto-

mous FIT initial tests are also MLR-feasible. To ensure the two-sample dichotomous

FIT is MLR-feasible, it’s sufficient if we have 1−σ2(0|1)
1−σ2(0|0)

> σ2(0|1)
σ2(0|0)

. The condition is

equivalent to σ(0|0) > σ(0|1). We next show this condition holds when the initial

test kit are MLR-feasible by contradiction. Suppose σ(0|0)
σ(0|1)

≥ 1, then σ(1|0)
σ(1|1)

> σ(0|0)
σ(0|1)

≥ 1.

Therefore, 1 = σ(1|0) + σ(0|0) > σ(1|1) + σ(0|1) = 1, which can not hold. Thus, we

conclude that the the two-sample dichotomous FIT initial tests are MLR-feasible if

the initial test kit are MLR-feasible.
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C.5 Other Supplementary Numerical Results

C.5.1 One-sample FIT Design

For one-sample FIT, the features in the two clusters are presented in Table C.6. Since

CRC risk serves as an input in the utility model and varies by gender and age, we

also present the description of gender in the two clusters.

Cluster 1 Cluster 2 p-value
The optimal cut-off point, µg/g 31 39 -

δ-features

Age 67.37 59.11 < 0.01
Have private insurance 0.67 0.81 < 0.01
Screening knowledge 2.44 2.43 0.77
Colonoscopy knowledge 0.88 0.89 0.55
Frequency of receiving FIT 2.00 1.92 0.11

d-features

Medical history 0.19 0.18 0.47
Age 0.33 0.27 < 0.01
Trust doctor 0.17 0.19 0.14
Want to know health condition 0.28 0.29 0.58
Price of a colonoscopy 0.22 0.24 0.18
Support from family 0.06 0.07 0.22

Other features

δ 0.62 0.62 0.68
Risk 0.0023 0.0007 < 0.01
Male 0.81 0.25 < 0.01

Table C.6: Variable description in different clusters of customized dichotomous test
when τ = 0.003 and L = 2 (two-sample FIT)

The optimal design of three-type customized dichotomous test (i.e., L = 3) with

the adjusting term τ equals 0.006 is presented in Table C.7.

For the interpretable clustering dichotomous test, the optimal cut-off value and

the expected number of positive results and follow-ups are presented in Table C.8.

C.5.2 Two-sample FIT Design

We present the optimal cut-off point and other related performance metrics for the

two-sample FIT design in the following. The findings and insights under different
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Cluster 1 Cluster 2 Cluster 3 Total Cluster 1& Cluster 2& Cluster 3& Total& Current practice

Number of individuals∗ 884.60 3137.88 5977.52 10000 884.60 3137.88 5977.52 10000 10000
Expected number of CRC patients∗ 3.01 6.17 5.05 14.23 3.01 6.17 5.05 14.23 14.23

The optimal cut-off point, µg/g 28 32 40 - - - - 33 20
Sensitivity, % 78.24 76.68 73.86 - - - - 76.30 81.77
Specificity, % 98.68 99.21 99.70 - - - - 99.30 96.22

Expected number of positives∗ 13.96 29.57 21.43 64.96 8.47 26.62 45.63 80.72 389.37
Expected number of positives from CRC patients∗ 2.35 4.74 3.73 10.82 2.30 4.71 3.85 10.86 11.64
Expected number of positives from healthy individuals∗ 11.61 24.83 17.70 54.14 6.17 21.91 41.78 69.86 377.73

Expected colonoscopy demand∗ 13.96 29.55 21.31 64.82 8.47 26.62 43.50 78.59 227.01
Expected number of follow-ups from CRC patients∗ 2.35 4.73 3.73 10.81 2.30 4.71 3.72 10.73 7.21
Expected number of follow-ups from healthy individuals∗ 11.61 24.82 17.58 54.01 6.17 21.91 39.78 67.86 219.80

∗ The population base is assumed to be 10,000, of which 14.23 individuals have CRC and 9985.77 do not.
& The results are from the universal test when the adjusting term τ equals 0.

Table C.7: The optimal customized dichotomous test when τ = 0.006 and L = 3
(one-sample FIT)

Cluster 1 Cluster 2 Total Total& Current practice

Number of individuals∗ 3782.91 6217.09 10000 10000 10000
Expected number of CRC patients∗ 8.74 5.49 14.23 14.23 14.23

The optimal cut-off point, µg/g 31 39 - 33 20
Sensitivity, % 77.06 74.20 - 76.30 81.77
Specificity, % 99.10 99.67 - 99.30 96.22

Expected number of positives∗ 40.68 24.84 65.52 80.72 389.37
Expected number of positives from CRC patients∗ 6.74 4.07 10.81 10.86 11.64
Expected number of positives from healthy individuals∗ 33.94 20.77 54.71 69.86 377.73

Expected colonoscopy demand∗ 40.63 24.69 65.32 78.59 227.01
Expected number of follow-ups from CRC patients∗ 6.73 4.07 10.80 10.73 7.21
Expected number of follow-ups from healthy individuals∗ 33.90 20.62 54.52 67.86 219.80

∗ The population base is assumed to be 10,000, of which 14.23 individuals have CRC and 9985.77 do not.
& The results are from the universal test when the adjusting term τ equals 0.

Table C.8: The optimal interpretable clustering dichotomous test when τ = 0.007
(one-sample FIT)

screening protocols are the same as those in the one-sample FIT; therefore, we don’t

discuss them in detail.

Universal dichotomous test

As shown in Table C.9, the cut-off point that induces the highest follow-ups from

CRC patients is 39 µg/g, which is considerably different from the practice (20 µg/g).

In addition, it is higher than the optimal cut-off value (33 µg/g) in one-sample FIT

(Table C.9). This is because that in the two-sample test, a positive result is reported

once the hemoglobin concentration in any sample is greater than the predefined cut-

off value. Thus, compared with one-sample test, it comes with a higher false-positive

rate and lower false-negative rate under the same cut-off value.

Customized dichotomous test We further explore the performance of pro-
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Adjusting term (τ) -1 -0.05 -0.02 -0.01 0 0.005 0.01 0.05 1

The optimal cut-off point, µg/g 13 17 32 35 39 45 50 65 90
Sensitivity, % 97.91 97.21 94.56 94.04 93.34 92.31 91.46 88.98 85.05
Specificity, % 80.78 88.89 98.42 98.91 99.33 99.67 99.82 99.97 100.00

Expected number of positives ∗ 1933.41 1123.21 171.19 122.08 79.97 45.66 31.11 15.95 12.33
Expected number of positives from CRC patients∗ 13.93 13.83 13.46 13.38 13.28 13.14 13.02 12.66 12.11
Expected number of positives from healthy individuals∗ 1919.48 1109.38 157.73 108.70 66.69 32.52 18.09 3.29 0.22

Expected colonoscopy demand∗ 392.39 387.11 151.01 115.82 78.99 45.53 31.07 15.95 12.33
Expected number of follow-ups from CRC patients∗ 3.35 5.22 12.52 13.04 13.23 13.12 13.02 12.66 12.11
Expected number of follow-ups from healthy individuals∗ 389.04 381.89 138.49 102.78 65.76 32.41 18.05 3.29 0.22

∗ The population base is assumed to be 10,000, of which 14.23 individuals have CRC and 9985.77 do not.

Table C.9: The optimal universal dichotomous test (two-sample FIT)

moting customized dischotomous test to two subpopulations (i.e, L = 2). The results

are presented in Table C.10 with τ equals 0.0035.

Cluster 1 Cluster 2 Total Cluster 1& Cluster 2& Total& Current practice

Number of individuals∗ 4022.48 5977.52 10000 4022.48 5977.52 10000 10000
Expected number of CRC patients∗ 9.18 5.05 14.23 9.18 5.05 14.23 14.23

The optimal cut-off point, µg/g 37 45 - - - 39 20
Sensitivity, % 93.69 92.31 - - - 93.34 96.68
Specificity, % 99.15 99.67 - - - 99.33 92.58

Expected number of positives∗ 42.79 24.11 66.90 35.37 44.60 79.97 754.93
Expected number of positives from CRC patients∗ 8.61 4.66 13.27 8.57 4.71 13.28 13.76
Expected number of positives from healthy individuals∗ 34.18 19.45 53.63 26.80 39.89 66.69 741.17

Expected colonoscopy demand∗ 42.78 24.00 66.78 35.38 43.61 78.99 336.17
Expected number of follow-ups from CRC patients∗ 8.60 4.66 13.26 8.58 4.65 13.23 6.47
Expected number of follow-ups from healthy individuals∗ 34.18 19.34 53.52 26.80 38.96 65.76 329.70

∗ The population base is assumed to be 10,000, of which 14.23 individuals have CRC and 9985.77 do not.
& The results are from the universal test when the adjusting term τ equals 0.

Table C.10: The optimal customized dichotomous test when τ = 0.0035 and L = 2
(two-sample FIT)

Interpretable clustering dichotomous test Similarly, we apply the inter-

pretable decision tree to predict individuals’ clusters generated from the customized

test design result. The decision tree obtained is exacly the same as the one in on-

sample FIT case.

We derive the optimal cut-off value and the other metrics with the adjusting term

τ equals 0.0035 in Table C.11.

C.6 Model Extension

In this section, we extend our model to study both colorectal polyps and CRC detec-

tion.
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Cluster 1 Cluster 2 Total Total& Current practice

Number of individuals∗ 3782.91 6217.19 10000 10000 10000
Expected number of CRC patients∗ 8.74 5.49 14.23 14.23 14.23

The optimal cut-off point, µg/g 37 45 - 39 20
Sensitivity, % 93.69 92.31 - 93.34 96.68
Specificity, % 99.15 99.67 - 99.33 92.58

Expected number of positives∗ 40.34 25.30 65.64 79.97 754.93
Expected number of positives from CRC patients∗ 8.19 5.07 13.26 13.28 13.76
Expected number of positives from healthy individuals∗ 32.15 20.23 52.38 66.69 741.17

Expected colonoscopy demand∗ 40.33 25.19 65.31 78.99 336.17
Expected number of follow-ups from CRC patients∗ 8.19 5.07 13.25 13.23 6.47
Expected number of follow-ups from healthy individuals∗ 32.14 20.12 52.26 65.76 329.70

∗ The population base is assumed to be 10,000, of which 14.23 individuals have CRC and 9985.77 do not.
& The results are from the universal test when the adjusting term τ equals 0.

Table C.11: The optimal decision-tree-based clustering when τ = 0.0035 (two-sample
FIT)

Initial test: Let ŝ denote individuals’ state ŝ ∈ Ŝ = {0, 1, 2}. Where ŝ = 1

represents a heath state with colorectal polyps and ŝ = 2 indicates a heath state

with CRC. ζ is used to denote f-Hb concentration level tested from FIT. Let Ĥ0(ĥ0),

Ĥ1(ĥ1) and Ĥ2(ĥ2) denote the cumulative distribution function (probability density

function) of f-Hb concentration for healthy individuals, individuals with colorectal

polyps and CRC, respectively. The range of f-Hb concentration is [ζ, ζ]. We assume

that ĥ0(ζ), ĥ1(ζ), ĥ2(ζ) and are continuous in ζ for ζ ∈ [ζ, ζ].

A test design (T, CT ) gives rise to T + 1 test outcomes in set ΓC = {0, 1, 2, ..., T}.

We define σCT (t|ŝ) as the likelihood of receiving test outcome t if individual’s state

is ŝ, such that for ŝ ∈ {0, 1, 2}, σCT (0|ŝ) = Ĥŝ(c1), σCT (t|ŝ) = Ĥŝ(ct+1) − Ĥŝ(ct) if

t ∈ {1, 2, ..., T − 1} and σCT (T |ŝ) = 1 − Ĥŝ(cT ). In real practice, the initial cancer

screening test should possess a property that individuals with CRC are more likely

to receive severe test outcomes than individuals with polyps. Similarly, we define an

initial test that possesses this nice property as a “MLR-feasible” initial test.

Property 2. An initial test (T, CT ) is MLR-feasible if σCT (t|2)

σCT (t|1)
and σCT (t|1)

σCT (t|0)
are increas-

ing in t, t ∈ ΓC.

Indiviudal’s follow-up problem: For each individual i, the prior risk of de-
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veloping polyps and CRC are denoted by p1
i and p2

i , where i ∈ {1, 2, ..., N}. After

a participant obtains a test outcome t ∈ Γ, the risk of having polyps or CRC is up-

dated to ps1i (t) and ps2i (t), following Bayesian updating process. The total probability

of receiving test outcome t becomes λ̂i(t) = σ(t|0)(1− p1
i − p2

i ) + σ(t|1)p1
i + σ(t|2)p2

i ,

t ∈ Γ, i ∈ {1, 2, ..., N}. We have

ps1i (t) =
σ(t|1)p1

i

λi(t)
=

p1
i

1 + σ(t|2)
σ(t|1)

p2
i + σ(t|0)

σ(t|1)
(1− p1

i − p2
i )
, i ∈ {1, 2, ...N}, t ∈ Γ;

ps2i (t) =
σ(t|2)p2

i

λi(t)
=

p2
i

1 + σ(t|1)
σ(t|2)

p1
i + σ(t|0)

σ(t|2)
(1− p1

i − p2
i )
, i ∈ {1, 2, ...N}, t ∈ Γ.

According to Property 2, given an “MLR-feasible” initial test, ps2i (t) is always

increasing in t, while ps1i (t) may not have the same trend. Intuitively speaking, with

the increase of t, the posterior risk of having polyps will firstly increase. However,

as t becomes larger, individuals will have a higher risk of having CRC, and the

posterior risk of having polyps will decrease since the posterior risk of having cancer

will dominate.

We use ai(t) ∈ {0, 1} as individual i ’s follow-up decision, and ui(ŝi, ai(t)) as the

individual’s utility function. Let πs1i (t) and πs2i (t) represent individual’s subjective

belief of having polyps and CRC after receiving a test outcome t from the initial test.

The total expected utility of participant i under action ai(t) is given as follows.

Ui(ai(t) = 0) =δiE[ui(si, ai(t) = 0)|(πs1i (t), πs2i (t))] + (1− δi)E[ui(si, ai(t) = 0)|(ps1i (t), ps2i (t))] + ε0i ,

Ui(ai(t) = 1) =δiE[ui(si, ai(t) = 1)|(πs1i (t), πs2i (t))] + (1− δi)E[ui(si, ai(t) = 1)|(ps1i (t), ps2i (t))]

− E[di(si)|(πs1i (t), πs2i (t))] + ε1i .

We assume that indiviudals will not follow up if they receive the best test outcome.

Thus, the conditions which decide individual i’s follow-up behavior can be written as

follows:

ai(t) =


1 if t 6= 0 and Ui(ai(t) = 1) > Ui(ai(t) = 0),

0 if t = 0 or Ui(ai(t) = 0) ≥ Ui(ai(t) = 1).
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Similar to the base model, we assume that for any individual i with test outcome

t, individual’s subjective belief πs1i (t) (πs2i (t)) is a function of ps1i (t) (ps2i (t)). Thus,

the probability of follow-up becomes a function of ps1i (t) and ps2i (t) if t 6= 0. We use

W
(
ps1i (t), ps2i (t)

)
to denote this function. Therefore, we have the following result:

fi(t) =


0 if t = 0,

W
(
ps1i (t), ps2i (t)

)
otherwise.

(C.24)

Health system test design problem: Given CT is the selected set of cut-off

points with the corresponding test outcome set ΓCT , we formulate the health system’s

problem as follows.

maxT,CT
N∑
i=1

∑
t∈ΓCT

[fi(t)σ
CT (t|2)p2

i + τ1fi(t)σ
CT (t|1)p1

i − τ0fi(t)σ
CT (t|0)(1− p1

i − p2
i )]

s.t. fi(t) satisfying (C.24)

(C.25)

Specifically, the first term in the objective function represents the follow-up rate

from individuals with CRC. It is controversial whether the screening policy should

recommend individuals with polyps to follow up with a colonoscopy or not. Western

countries remove all colorectal polyps, except for rectosigmoid hyperplastic polyps

≤ 5 mm in size. However, in Asian countries, the treatment strategy for colorectal

serrated polyps is still not established (Sano et al., 2020). In addition, Vleugels

et al. (2017) showed that the estimated progression rate of small (6-9 mm) colorectal

polyps to advanced adenoma or CRC is very low, so individuals with diminutive and

small polyps may experience potential “harm” of polypectomy in the colonoscopy.

Therefore, we introduce a multiplier τ1 ∈ [0, 1] in front of the second term , which

indicates the percentage of such individuals that the health system encourages to

follow up. In addition, we use τ0 to denote the “cost” of a colonoscopy demand from

healthy individuals.

We first explore the optimal structure of the initial tests in the compliance max-

imization case (τ1 = 1 and τ0 = −1) and effectiveness maximization case (τ1 ∈ [0, 1]

and τ0 = 0), respectively. We have the following results.
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Theorem C.2. For the compliance maximization case, if W
(
ps1i (t), ps2i (t)

)
is concave

in ps1i (t) and ps2i (t), a dichotomous initial test with cut-off point value ζ is optimal.

Proof. Proof of Theorem C.2. We prove this theorem by two steps: (1) we first prove

that when W (·) is concave in ps1i (t) and ps2i (t), a dichotomous test is optimal; (2) we

then prove that the optimal cut-off point value is ζ.

Let (T, CT ) be an initial test with more than one cut-off point, where T > 1 and

CT ≡ {c1, c2, .., cT |ct ∈ [ζ, ζ̄], c1 < c2 < ... < cT}. The corresponding test outcome set

is ΓCT = {0, 1, 2, ..., T} and the likelihood of receiving test outcome t under state ŝi

is σCT (t|ŝi), t ∈ ΓCT , ŝi ∈ Ŝ. Let λCTi (t) denote the total probability of receiving test

outcome t, i.e., λ̂CTi (t) = σCT (t|0)(1− p1
i − p2

i ) + σCT (t|1)p1
i + σCT (t|2)p2

i . Then for any

individual i, the expected probability of follow-up under τ1 = 1 and τ0 = −1 can be

written as ∑
t∈ΓCT

λ̂CTi (t)fi(t) =
∑

t∈ΓCT \{0}

λ̂CTi (t)W
(
ps1i (t), ps2i (t)

)
. (C.26)

We next propose another initial test which contains only one cut-off point c1. That

is T = 1, C1 = {c1} and ΓC1 = {0, 1}. By construction, we have σC1(0|ŝi) = σCT (0|ŝi)

and σC1(1|ŝi) =
∑

t∈ΓCT \{0} σ
CT (t|ŝi). Similarly, for individual i, the probability of

receiving test outcome 0 or 1 becomes λ̂C1i (0) = λ̂CTi (0), λ̂C1i (1) =
∑

t∈ΓCT \{0}
λ̂CTi (t). Let

f̂i(t) denote individual i’s follow-up probability under (1,ΓC1). Then, the expected

probability of follow-up for individual i is

λ̂C1i (1)f̂i(1) =
∑

t∈ΓCT \{0}

λ̂CTi (t)W (p̂s1i (1), p̂s2i (1)) (C.27)

=
∑

t∈ΓCT \{0}

λ̂CTi (t)W


∑

t∈ΓCT \{0}
λ̂CTi (t)ps1i (t)∑

t∈ΓCT \{0}
λ̂CTi (t)

,

∑
t∈ΓCT \{0}

λ̂CTi (t)ps2i (t)∑
t∈ΓCT \{0}

λ̂CTi (t)

 .

Since W (·) is concave in ps1i (t) and ps2i (t), following by the concavity, we have

W


∑

t∈ΓCT \{0}
λ̂CTi (t)ps1i (t)∑

t∈ΓCT \{0}
λ̂CTi (t)

,

∑
t∈ΓCT \{0}

λ̂CTi (t)ps2i (t)∑
t∈ΓCT \{0}

λ̂CTi (t)

 ≥
∑

t∈ΓCT \{0}
λ̂CTi (t)W

(
ps1i (t), ps2i (t)

)
∑

t∈ΓCT \{0}
λ̂CTi (t)

.
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Therefore, the initial test design (1, C1) indeed induces an equal or higher probability

of following up than (T, CT )for any individual i (i ∈ {1, 2, ..., N}). A dichotomous

test is optimal.

To prove (2), consider a dichotomous test with cut-off point ζ and another with

cut-off point c
′

where ζ < c
′ ≤ ζ̄.

Suppose ζ induces two test outcomes denoted by 0ζ and 1ζ , we have σ(1ζ |ŝi) =

1− Ĥŝi(ζ) and λ̂i(1ζ) = σ(1ζ |0)(1−p1
i −p2

i )+σ(1ζ |1)p1
i +σ(1ζ |2)p2

i . Another dichoto-

mous test with cut-off point c
′

have two test outcomes denoted by 0c′ and 1c′ , and

σ(1c′ |ŝi) = 1− Ĥŝi(c
′
). For the sake of proof, we introduce an “invisible test outcome

01” and define σ(01|ŝi) = Ĥŝi(c
′
) − Ĥŝi(ζ). So we can obtain the following relation-

ships: σ(1ζ |ŝi) = σ(1c′ |ŝi) + σ(01|ŝi), λ̂i(1ζ) = λ̂i(1c′ ) + λ̂i(0
1), ps1i (1ζ) =

σ(1ζ |1)p1i

λ̂i(1ζ)
=

λ̂i(1c′ )p
s1
i (1

c
′ )+λ̂i(01)ps1i (01)

λ̂i(1c′ )+λ̂i(0
1)

and ps2i (1ζ) =
σ(1ζ |2)p2i

λ̂i(1ζ)
=

λ̂i(1c′ )p
s2
i (1

c
′ )+λ̂i(01)ps2i (01)

λ̂i(1c′ )+λ̂i(0
1)

.

The expected follow-up probability for individual i under ζ or c
′

can be expressed

by λ̂i(1ζ)W
[
ps1i (1ζ), p

s2
i (1ζ)

]
and λ̂i(1c′ )W

[
ps1i (1c′ ), p

s2
i (1c′ )

]
. According to the con-

cavity of W (·), we have

W
[
ps1i (1ζ), p

s2
i (1ζ)

]
= W

[ λ̂i(1c′ )ps1i (1c′ ) + λ̂i(0
1)ps1i (01)

λ̂i(1c′ ) + λ̂i(01)
,
λ̂i(1c′ )p

s2
i (1c′ ) + λ̂i(0

1)ps2i (01)

λ̂i(1c′ ) + λ̂i(01)

]
≥
λ̂i(1c′ )W

[
ps1i (1c′ ), p

s2
i (1c′ )

]
λ̂i(1c′ ) + λ̂i(01)

+
λ̂i(0

1)W
[
ps1i (01), ps2i (01)

]
λ̂i(1c′ ) + λ̂i(01)

=
λ̂i(1c′ )W

[
ps1i (1c′ ), p

s2
i (1c′ )

]
+ λ̂i(0

1)W
[
ps1i (01), ps2i (01)

]
λ̂i(1ζ)

.

Therefore, we can establish that the follow-up probability of any individual i under

the test with cut-off point ζ is higher than that under the test with cut-off point c′

via the following.
N∑
i=1

λ̂i(1ζ)W
[
ps1i (1ζ), p

s2
i (1ζ)

]
≥

N∑
i=1

λ̂i(1c′ )W
[
ps1i (1c′ ), p

s2
i (1c′ )

]
+

N∑
i=1

λ̂i(0
1)W

[
ps1i (01), ps2i (01)

]
>

N∑
i=1

λ̂i(1c′ )W
[
ps1i (1c′ ), p

s2
i (1c′ )

]
.

We can conclude that the optimal cut-off point is ζ.
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Theorem C.3. For the effectiveness maximization case, if W
(
ps1i (t), ps2i (t)

)
is convex

in ps1i (t) and ps2i (t) and nondecreasing in t, it’s optimal to adopt the continuous initial

test which directly report individuals’ f-Hb values.

Proof. Proof of Theorem C.3. We prove this theorem via two steps: (1) We first

show that for any initial test with a finite number of cut-off points, the objective

value under τ1 ∈ (0, 1) and τ0 = 0 will not decrease by arbitrarily adding one more

cut-off point from [ζ, ζ̄]. (2) We prove that if we uniformly add infinitely many cut-off

points, the objective value converges to that of the continuous test.

Given an initial test (T, CT ) with T cut-off points, where CT = {c1, c2, ..., cT |ct ∈

[ζ, ζ̄], c1 < c2 < ... < cT}, the test outcome set is denoted as ΓCT = {0, 1, ..., T} and

the likelihood of receiving test outcome t given state ŝi is σ(t|ŝi), t ∈ ΓCT , ŝi ∈ Ŝ.

The probability of receiving test outcome t for an individual i is λi(t), t ∈ ΓCT .

The overall expected follow-up probability from individuals with CRC or polys

equals
N∑
i=1

∑
t∈ΓCT

[σ(t|2)p2
i + τ1σ(t|1)p1

i ]fi(t) =
N∑
i=1

∑
t∈ΓCT \0

[σ(t|2)p2
i + τ1σ(t|1)p1

i ]W
[
ps1i (t), ps2i (t)

]
.

(C.28)

Suppose we arbitrarily add one cut-off point, c′ ∈ [ζ, ζ̄] that is not in CT . Adding

one more cut-off point will split one test outcome, say k, to two, denoted by k1 and

k2. For any individual i, We denote the likelihood of receiving test outcome k1 and

k2 given state ŝi as σ̂(j|ŝi), j = k1, k2. By construction, σ(k|ŝi) = σ̂(k1|ŝi) + σ̂(k2|ŝi).

For the new initial test, the overall follow-up probability from patients with CRC or

polyps is
N∑
i=1

∑
t∈∪ΓCT \{k}

[σ(t|2)p2
i + τ1σ(t|1)p1

i ]fi(t) +
∑

j∈{k1,k2}

[σ̂(j|2)p2
i + τ1σ̂(j|1)p1

i ]fi(j).

(C.29)

We next compare the values of (C.28) and (C.29) in the following two cases.
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Case 1 : If k = 0:

(C.29) =
N∑
i=1

∑
t∈∪ΓCT \{0}

[σ(t|2)p2
i + τ1σ(t|1)p1

i ]W
[
ps1i (t), ps2i (t)

]
+

∑
j∈{k1,k2}

[σ̂(j|2)p2
i + τ1σ̂(j|1)p1

i ]fi(j) ≥ (C.28).

Case 2 : If k 6= 0, by construction, k1 > 0 and k2 > 0:

(C.29) =
N∑
i=1

∑
t∈∪ΓCT \{0}

[σ(t|2)p2
i + τ1σ(t|1)p1

i ]W
[
ps1i (t), ps2i (t)

]
+

∑
j∈{k1,k2}

[σ̂(j|2)p2
i + τ1σ̂(j|1)p1

i ]fi(j)

=
N∑
i=1

∑
t∈∪ΓCT \{0}

[σ(t|2)p2
i + τ1σ(t|1)p1

i ]W
[
ps1i (t), ps2i (t)

]
+

∑
j∈{k1,k2}

[σ̂(j|2)p2
i + τ1σ̂(j|1)p1

i ]W
[
p̂s1i (j), p̂s2i (j)

]
Where p̂s1i (j) and p̂s2i (j) are the posterior risk of having polyps and CRC given the

test outcome j(∈ {k1, k2}) under the new initial test. To show (C.29) ≥ (C.28), it is

sufficient to prove∑
j∈{k1,k2}

[σ̂(j|2)p2
i + τ1σ̂(j|1)p1

i ]W
[
p̂s1i (j), p̂s2i (j)

]
≥ [σ(k|2)p2

i + τ1σ(k|1)p1
i ]W

[
ps1i (k), ps2i (k)

]
.

(C.30)

Note that σ(k|ŝi) = σ̂(k1|ŝi) + σ̂(k2|ŝi). Let the total probability of receiving test

outcome j for an individual i under the new test be λ̂i(j). Then, λi(k) =
∑

j∈{k1,k2}
λ̂i(j).

Thus, ps1i (k) =

∑
j∈{k1,k2}

λ̂i(j)p̂
s1
i (j)∑

j∈{k1,k2}
λ̂i(j)

and ps2i (k) =

∑
j∈{k1,k2}

λ̂i(j)p̂
s2
i (j)∑

j∈{k1,k2}
λ̂i(j)

. To prove Inequality

(C.30), it is equivalent to show that∑
j∈{k1,k2}

[τ1σ̂(j|1)p1
i + σ̂(j|2)p2

i ]W
(
p̂s1i (j), p̂s2i (j)

)
∑

j∈{k1,k2}
τ1σ̂(j|1)p1

i + σ̂(j|2)p2
i

≥ W


∑

j∈{k1,k2}
λ̂i(j)p̂

s1
i (j)∑

j∈{k1,k2}
λ̂i(j)

,

∑
j∈{k1,k2}

λ̂i(j)p̂
s2
i (j)∑

j∈{k1,k2}
λ̂i(j)

 .

(C.31)

BecauseW (·) is non-decreasing, and it is easy to check that
τ1σ̂(j|1)ps1i +σ̂(j|2)ps2i

(1−τ1)σ̂(j|1)ps1i +σ̂(j|0)(1−ps1i −ps2i )

is increasing in j. Then following from Corollary C.1, we have∑
j∈{k1,k2}

[τ1σ̂(j|1)p1
i + σ̂(j|2)p2

i ]W
(
p̂s1i (j), p̂s2i (j)

)
∑

j∈{k1,k2}
τ1σ̂(j|1)p1

i + σ̂(j|2)p2
i

≥

∑
j∈{k1,k2}

λ̂i(j)W
(
p̂s1i (j), p̂s2i (j)

)
∑

j∈{k1,k2}
λ̂i(j)

.

(C.32)
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Following from the convexity of W (·), we have∑
j∈{k1,k2}

λ̂i(j)W
(
p̂s1i (j), p̂s2i (j)

)
∑

j∈{k1,k2}
λ̂i(j)

≥ W


∑

j∈{k1,k2}
λ̂i(j)p̂

s1
i (j)∑

j∈{k1,k2}
λ̂i(j)

,

∑
j∈{k1,k2}

λ̂i(j)p̂
s2
i (j)∑

j∈{k1,k2}
λ̂i(j)

 .

(C.33)

Thus, according to above two inequalities, we conclude Inequality (C.31) holds.

Thus, it’s always optimal to add one more cut-off point to the original set of cut-off

points.

Before proceeding to prove (2), we first introduce the Bayesian updating process

and the property of the continuous test: under the continuous test, an individual

receive a test outcome ζ ∈ [ζ, ζ̄], which is the exact f-Hb concentration. For any

individual i with test outcome ζ, the posterior risk of having polyps or CRC is denoted

by p̌s1i (ζ) and p̌s2i (ζ), where:

p̌s1i (ζ) =
ĥ1(ζ)p1

i

ĥ2(ζ)p2
i + ĥ1(ζ)p1

i + ĥ0(ζ)(1− p1
i − p2

i )
, i ∈ {1, 2, ...N}, ζ ∈ [ζ, ζ̄];

p̌s2i (ζ) =
ĥ2(ζ)p2

i

ĥ2(ζ)p2
i + ĥ1(ζ)p1

i + ĥ0(ζ)(1− p1
i − p2

i )
, i ∈ {1, 2, ...N}, ζ ∈ [ζ, ζ̄].

Let f̌i(ζ) denote the follow-up probability for individual i when adopting the con-

tinuous test, where f̌i(ζ) = W (p̌s1i (ζ), p̌s2i (ζ)). Given the range of possible fecal

hemoglobin concentration [ζ, ζ̄], the overall follow-up probability for all individuals

with CRC or polyps can be written as:
N∑
i=1

∫ ζ̄

ζ

f̌i(ζ)[ĥ2(ζ)p2
i + τ1ĥ1(ζ)p1

i ]dζ (C.34)

=
N∑
i=1

lim
J→∞

J∑
j=0

f̌i(ζ +
(ζ̄ − ζ)j

J
)[ĥ2(ζ +

(ζ̄ − ζ)j

J
)p2
i + τ1ĥ1(ζ +

(ζ̄ − ζ)j

J
)p1
i ] ·

(ζ̄ − ζ)j

J

Next, we will show that in ordinal CRC tests, if policymakers uniformly choose

infinitely many cut-off points from [ζ, ζ̄], the overall adjusted follow-up probability is

the same as the value under continuous tests.

Define an ordinal test (T, CT ) with T cut-off points and test outcome set ΓCT =
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{0, 1, 2, ...T − 1}, where

CT ≡ {c1, c2, .., cT |c1 = ζ, ct+1 = ct +
ζ̄ − ζ
T − 1

,∀t = 1, ..., T − 1}.

Let ∆c(T ) =
ζ̄−ζ
T−1

. Then, ct+1 = ct + ∆c(T ) = ζ +
(ζ̄−ζ)t
T−1

,∀t = 1, ..., T − 1. The overall

follow-up probability for individuals with CRC or polyps under this ordinal test is
N∑
i=1

∑
t∈ΓCT

fi(t)[σ
CT (t|2)p2

i + τ1σ
CT (t|1)p1

i ] =
N∑
i=1

∑
t∈ΓCT \0

W
(
ps1i (t), ps2i (t)

)
[σCT (t|2)p2

i + τ1σ
CT (t|1)p1

i ].

(C.35)

Since for t ∈ ΓCT \0 and ŝ ∈ {0, 1, 2}, σCT (t|ŝ) = Ĥŝ(ct+1)−Ĥŝ(ct) = Ĥŝ(ct+∆c(T ))−

Ĥŝ(ct). Based on the definition of ∆c(T ), we have limT→∞ σ
CT (t|ŝ) = ĥŝ(ct)∆c(T ).

Thus, when T goes to infinity, we have

lim
T→∞

ps1i (t) =
ĥ1(ct)p

1
i

ĥ2(ct)p2
i + ĥ1(ct)p1

i + ĥ0(ct)(1− p1
i − p2

i )
= p̌s1i (ct),

lim
T→∞

ps2i (t) =
ĥ2(ct)p

2
i

ĥ2(ct)p2
i + ĥ1(ct)p1

i + ĥ0(ct)(1− p1
i − p2

i )
= p̌s2i (ct).

Because W (·) is continuous on R2, Equation (C.35) can be rewritten as:

(C.35) =
N∑
i=1

lim
T→∞

T−1∑
t=1

W
(
p̌s1i (ct), p̌

s2
i (ct)

)
[ĥ2(ct)p

2
i + τ1ĥ1(ct)p

1
i ] ·∆c(T )

=
N∑
i=1

lim
T→∞

T−1∑
t=0

f̌i(ct)[ĥ2(ct)p
2
i + τ1ĥ1(ct)p

1
i ] ·∆c(T )

=
N∑
i=1

lim
T→∞

T−1∑
t=0

f̌i(ζ +
(ζ̄ − ζ)t

T − 1
)[ĥ2(ζ +

(ζ̄ − ζ)t

T − 1
)p2
i + τ1ĥ1(ζ +

(ζ̄ − ζ)t

T − 1
)p1
i ] ·

(ζ̄ − ζ)t

T − 1
= (C.34).

Thus, if policymakers uniformly choose infinitely many cut-off points from [ζ, ζ̄], the

overall adjusted follow-up probability is the same under a continuous tests.

C.7 Survey

Purpose of this survey: This survey is to understand your perception of colorectal

cancer and its screening guidelines. The information you provide in this survey will

be used to understand the current awareness level of colorectal cancer and further

help design screening guidelines to improve public health.
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Part 1: Background for Colorectal Cancer and Its Screening

1. Colorectal cancer, also known as bowel cancer, colon cancer, or rectal cancer, is

any cancer that affects the colon and the rectum. Colorectal cancer can develop from

a ”polyp”, a nonspecific term to describe a growth on the inner surface of the colon.

This survey aims to understand your awareness and opinions towards colorectal cancer

and its screening process.

Which of the following apply to you? Please tick all that apply.

a. I have a medical history of colitis (inflammation of the inner lining of the colon)

b. I have a medical history of polyps

c. I have a medical history of colorectal cancer

d. I have a close relative with colorectal cancer (parents, siblings, or children)

e. I have 2 or more close relatives with colorectal cancer (parents, siblings, or

children)

f. I have a close relative with other cancers (parents, siblings, or children)

g. None of the above

2. A fecal occult blood test (FOBT) looks at a sample of your stool (feces) to check

for hidden (occult) blood that you can’t see with the naked eye. The Faecal Immuno-

chemical Test (FIT) is an advanced version of FOBT. These tests are preliminary

tests that are used to estimate the chance of having polyps or bowel cancer by detect-

ing occult blood in the stool sample. We are interested in your views on the accuracy

of these tests.

If 100 people who have colorectal cancer take a FOBT/FIT test, how many do you

think will incorrectly be classified as not having colorectal cancer?

3. Now consider the opposite scenario: If 100 people who do not have colorectal

cancer take a FOBT/FIT test, how many do you think will incorrectly be classified
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as having colorectal cancer?

4. Have you ever done a FOBT/FIT before? If yes, how many times?

a. No, never

b. Yes, once in the past

c. Yes, more than once, but not regularly

d. Yes, regularly, but less than once a year

e. Yes, regularly, once a year

5. If Yes in Q4, have you received a positive result (indicating the presence of blood

in your sample) from an FOBT/FIT test? If yes, how many times?

a. No b. Yes, once c. Yes, more than once

6. If No in Q5, imagine you received a positive result from an FOBT/FIT test, and

the doctor recommended that you have a colonoscopy. Which of the following factors

would you consider when deciding whether to follow the doctor’s recommendations?

Please check all that apply

a. My medical history

b. My age

c. How confident I am about my health condition

d. How much I trust my doctor

e. Accuracy of FOBT/FIT

f. How much I want to know my actual health condition

g. Embarrassment of doing a colonoscopy

h. Comfort of a colonoscopy

i. Price of a colonoscopy

j. How supportive my family/friends were
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k. None of the above

Please check questions Q9-Q16 based on your option in Q6.

7. If Yes in Q5, did you consult any doctors after receiving the positive result? Please

check all that apply.

a. No, I did not consult any doctors

b. Yes, A doctor I consulted recommended waiting

c. Yes, A doctor I consulted recommended a follow-up colonoscopy

d. Yes, A doctor I consulted recommended another FOBT/FIT

e. Yes, A doctor I consulted recommended a different test other than FOBT/FIT

or colonoscopy

8. If Yes in Q7, which of the following factors did you consider when deciding whether

to follow the doctor’s recommendations? Please check all that apply

a. My medical history

b. My age

c. How confident I am about my health condition

d. How much I trust my doctor

e. Accuracy of FOBT/FIT

f. How much I want to know my actual health condition

g. Embarrassment of doing a colonoscopy

h. Comfort of a colonoscopy

i. Price of a colonoscopy

j. How supportive my family/friends were

k. None of the above

Please check questions Q9-Q16 based on your option in Q8.
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9. If you choose ”My age” in Q6/Q8, which of the following statements best describes

how you felt about your age?

a. I thought I was too old for a colonoscopy b. I did not think I was too old

for a colonoscopy

10. If you choose ”How confident I am about my health condition” in Q6/Q8, which

of the following statements best describes how you felt about your health condition?

a. I was extremely confident that I was healthy

b. I was somewhat confident that I was healthy

c. I was a bit worried

d. I was very pessimistic

11. If you choose ”How much I trust my doctor” in Q6/Q8, which of the following

statements best describes how you felt about your doctor?

a. I did not trust the doctor at all

b. I did not trust the doctor very much

c. I was neutral about the doctor

d. I trusted the doctor somewhat

e. I trusted the doctor completely

12. If you choose ”How much I wanted to know my actual health condition” in

Q6/Q8, how much did you want to know your actual health condition?

a. I was very eager to know my actual health condition

b. I wanted to know my actual health condition

c. I was afraid to know my actual health condition

13. If you choose ”Embarrassment of doing a colonoscopy” in Q6/Q8, which of the fol-
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lowing statements best describes how embarrassed you felt about doing a colonoscopy?

a. I felt very embarrassed of doing a colonoscopy

b. I felt somewhat embarrassed of doing a colonoscopy

c. I didn’t feel embarrassed of doing a colonoscopy

14. If you choose ”Comfort of a colonoscopy” in Q6/Q8, before the colonoscopy, how

comfortable did you expect that the procedure would be?

a. I expected that the colonoscopy would be uncomfortable

b. I expected that the colonoscopy would be manageable

c. I expected that the colonoscopy would be enjoyable

15. If you choose ”Price of a colonoscopy” in Q6/Q8, which of the following state-

ments best describes how you felt about the price of the colonoscopy?

a. I thought colonoscopy was costly

b. I thought colonoscopy was affordable

c. I thought colonoscopy was cheap

16. If you choose ”How supportive my family/friends were” in Q6/Q8, which of the

following statements best describes the support of your family/friends?

a. My family/friends were very supportive of me doing a colonoscopy

b. My family/friends were somewhat supportive of me doing a colonoscopy

c. My family/friends were not supportive of me doing a colonoscopy

d. My family/friends were against me doing a colonoscopy

17. We are interested in your understanding of the facts relating to colorectal cancer.

Please indicate whether you think that each of the following statements is True or

False.
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a. Colorectal cancer is the most diagnosed cancer in Singapore and the second

most common cause of cancer-related deaths. Every day, around five Singaporeans

are diagnosed with colorectal cancer and two die of it.

b. Even if colorectal cancer is detected at an early stage, it can only be controlled

and is unlikely to be cured.

c. If colorectal cancer is detected at stage 1 the survival rates can be as high as

92%, compared to 11% for stage 4.

d. Few instances of colorectal cancer begin as polyps. So even if polyps are re-

moved in a timely manner, patients can still develop colorectal cancer from other

sources.

e. Early-stage polyps or colorectal cancer cannot be detected by regular screening.

f. If polyps are detected during a colonoscopy, the patient needs to make another

appointment for a procedure to remove the polyps.

g. Colonoscopy is very accurate (almost 100%), but it is very costly and has po-

tential serious side effects.

h. The nationwide Screen for Life (SFL) programme offers affordable and conve-

nient screening for colorectal cancer.

i. Singaporeans and PRs aged 50 and above can obtain FOBT/FIT kits for free

from the Singapore Cancer Society (SCS), once a year.

j. FOBT/FIT should be done once every year. If the result is positive, colonoscopy

is strongly recommended.

Part 2: General Information

18. What is your age?

19. What is your current marital situation?

a. Married b. Single (never married) c. Separated d. Divorced e.
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Widowed

20. Do you have any other health insurance plans such as insurance through em-

ployer, a business, or health insurance you buy for yourself?

a. Yes b. No

21. Do you own or partly own the house or apartment in which you live?

a. Yes b. No

22. If Yes in Q21, aside from the apartment in which you live, do you own (or co-own)

any other real estate, such as residential properties, rental real estate, or land? Please

do not include business property, that is any property that is used by a business that

you might own.

a. Yes b. No

23. What is your monthly consumption of tobacco?
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