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Abstract

Three Essays on Panel and Factor Models

Ji Feng

The dissertation includes three chapters on panel and factor models. In the first chapter, we intro­

duce a two­way linear random coefficient panel data models with fixed effects and the cross­sectional

dependence. We follow the idea of the within­group fixed effects estimator to estimate parameters

of interests. We establish the limiting distributions of the estimates and also propose the two­way

heterogeneity bias test to check the desirability of the estimation strategy. The specification tests

then are constructed to examine the existence of the slope heterogeneity and time­varyingness. We

study the asymptotic properties of the specification tests and employ two bootstrap schemes to rectify

the downward size distortion of the specification tests. We apply the specification tests to reveal the

heterogenous relationship between the unemployment rate and youth labor rate in the working­age

population. In the second chapter, we devise a simple but effective procedure to test bubbles in the

idiosyncratic components in the presence of nonstationary or mildly explosive factors in common

components in panel factor models. We study the asymptotic properties of our test. We also propose

a wild bootstrap procedure to improve the finite sample performance of our test. As an illustrative

example, we consider testing the bubbles in the idiosyncratic components of cryptocurrency prices.

In the third chapter, we propose the tests constructed from estimated common factors for detect­

ing bubbles in unobserved common factors when the idiosyncratic components follow a unit­root or

local­to­unity process. We study the asymptotic properties of our proposed tests. We show that our

proposed tests have non­trivial power to detect those bubbles in unobserved common factors under

the alternative of local­to­unity. To implement our proposed tests, we propose to use the dependent

wild bootstrap method to simulate the critical values in practice.
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Chapter 1

Estimation and Specification Tests of

Random Coefficient Panel Data Models with

Cross­Sectional Dependence

1.1 Introduction

Heterogeneity and time­varyingness are universal phenomena in the study of economic and financial

modeling. We can integrate such kind of heterogeneous effects by the panel data models with variable

coefficients. There is a long history of modeling the slope heterogeneity and time­varyingness by

random coeffcients models, see e.g, Hildreth and Houck (1968), Swamy (1970), and Hsiao (1974). In

particular, Hsiao (1974) proposes to accommodate slope heterogeneity and time­varyingness simul­

taneously as random coefficients in panel data models. However, Hsiao (1974) excludes the fixed

effects and does not study the inferential theory on the realizations of random coefficients. Besides,

their test rely upon the stringent conditions such the normality of error terms and random coeffi­

cients. Such kind of restrictions may narrow the applications of two­way linear random coefficients

panel data models. For a recent and systematic introduction to the panel data models with variable

coefficients, we refer readers to Chapter 6 in Hsiao (2014).
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This paper seeks to contribute as the good complement of studies on random coefficients panel

data models by extending the classical setups. In particular, we introduces a two­way linear random

coefficients panel data models with both time­ and individual­ specific fixed effects in the presence

of cross­sectional dependence. We take advantages of the two­way linear random coefficients to

capture the slope heterogeneity and time­varyingness, and include the time­ and individual­ fixed

effects to account for unobserved heterogeneity that can be arbitrarily correlated with explanatory

variables.

For estimation methodology, we follow the idea of the within­group estimator to obtain the es­

timates of parameters of interest. Importantly, we allow for the weak cross sectional dependence

among observations and develop the inferential theory for these estimators under the large N and

large T settings with mild conditions. We also propose the two­way heterogeneity bias test to check

the desirability of our estimation strategy, and study its asymptotic properties. furthermore, we

construct the max­type test statistics to examine the existence of the slope heterogeneity and time­

varyingness in our model, and study the null distribution and asymptotic local power properties of the

these specification test statistics. Our Monte Carlo experiments reveal that the specification tests are

too conservative under the null based on the asymptotic critical values. Thus, we suggest two boot­

strap schemes to correct the size of our specification tests, simulation results show that the bootstrap

implementations of our specification tests have proper size and decent power against the alternatives

in various scenarios.

As an illustrative application, we apply the specification tests to study the relationship between

the unemployment rate and the youth labor rate in working­age population using panel data covering

171 countries at most and 23 years from 1991 to 2013.

The two­way linear random coefficients panel data models we consider in this paper links to the

prevailing studies on panel data models as follows.

When there is no slope time­varyingness, our model relates to studies on heterogeneous panel

data models. In particular, the correlated random­coefficient (hereafter, CRC) panel data models

usually allows for the heterogeneous slopes are random and can be correlated the covariates, which

2



is also taken into account in our model for both heterogenebous and time­varying slopes. For recent

studies on the CRC penal data models, see, e.g., Gao et al. (2015), Graham et al. (2018). Besides,

we can also adopt the semi­ or non­ parametric methods to portray the slope heterogeneity and time­

varyingness in our model. There is a rapid growing literature on the the semi­ or non­ parametric

methods for panel data models in the recent past. For example, Boneva et al. (2015) introduce the

panel data models with both time­ and individual­ specific fixed effects that account for heteroge­

neous nonparametric covariate effects, and provide the estimation methodology. Gao et al. (2020)

propose several estimators and the homogeneity test for the semiparametric panel data models that

allows for slope heterogeneity and individual­specific trending function. To address the possible

existence of slope heterogeneity, many studies also focus on offering the testing procedures, see

e.g., Pesaran and Yamagata (2008), Su and Chen (2013), Juhl and Lugovskyy (2014) Ando and Bai

(2015).

When there is no slope heterogeneity, our model admits time­varying panel data models as the

special case. There are a large amount of researches on time­varying coefficients panel data models

since the seminal work by Robinson (1989). Recently, Zhu (2017) presents the estimation method­

ology and inferential theory for high­dimensional time­varying panel data models with interactive

effects while Chen and Huang (2018) consider a semiparametric panel data model to account for the

smooth slope time­varyingness and propose the generalized Hausman tests to detect smooth struc­

tural changes.

More importantly, on the theoretical side, this paper directly contributes to studies on the panel

data models with the variable slope in both the time­ and individual­ dimensions. The study of

asymptotic properties for such as panel data models will inevitably be more challenging than that

for homogeneous, heterogeneous or time­varying panel data models. Despite the tricky piece of

work, there are also growing literature on this direction recently. For example, Su et al. (2017)

study a heterogeneous time­varying coefficients panel data model with the latent group structure,

and Chernozhukov et al. (2018) bring up so­called post­SVD inference based on the nuclear norm

regularization for panel data models with variable slopes in both individual­ and time­ dimensions.

3



Keane and Neal (2020) employ a similar two­way random coefficients panel models as our model in

this paper for their empirical studies, however, they does not include the fixed effects in the model;

moreover, their inferential theory is developed under more stringent conditions and misleading. For

the very recent, Lu and Su (2021) propose the generalized fixed effects estimator for the panel data

models with the variable slope in both the time­ and individual­ dimensions with two­way fixed

effects to achieve the uniform inference.

The remainder of the paper proceeds as follows. In Section 1.2, we describe the specification of

linear random coefficients panel data models with fixed effects and propose the estimation method­

ology for the parameters of interests. Section 1.3 establishes the asymptotic distribution of the esti­

mators and presents the two­way heterogeneity bias test. In Section 1.4, we propose the specification

tests, and study the limiting null distribution and asymptotic local power properties of the specifica­

tion test statistics. We conduct Monte Carlo experiments to evaluate the finite­sample performances

of the specification tests in Section 1.5. Section 1.6 provides an empirical study to highlight the

usefulness of the specification tests. Section 1.7 concludes. All proofs are relegated to the Appendix

A.

NOTATION. For an m × n real matrix A, we denote its transpose as A′, its trace as trA, its

Frobenius norm as ∥A∥ (≡ [tr (A′A)]1/2), and its spectral norm as ∥A∥sp (≡ [φ1(AA
′)]1/2), where

≡ signifies a defintional relationship and φk(·) denotes the k­th largest eigenvalue of a real symmet­

ric matrix A by counting eigenvalues of multiplicity multiple times. We also use φmin and φmax to

stand for the minimum and maximum eigenvalues of a symmetric real matrix. Let diag(a1, . . . , am)

represent am×m diagonal matrix with entries a1, . . . , am on its diagonal. We write A ≍ B if there

exist some finite positive constantsm andM such thatm|A| ≤ B ≤M |A|. We also useM to stand

for a generic large positive constant that may vary across lines. For generic random variable vit, let

v̄·t ≡ 1
N

∑N
i=1 vit, v̄i· ≡

1
T

∑T
t=1 vit, and v̄·· ≡

1
NT

∑N
i=1

∑T
t=1 vit. Define

v̈it ≡ vit − v̄i· − v̄·t + v̄··, v̆it ≡ vit − v̄·t, and ṽit ≡ vit − v̄i·.

4



Let v∗it ≡ vit − E(vit). Let δNT ≡ min{
√
N,

√
T}. For brevity, we also use

∑
i and

∑
i,j to denote∑N

i=1 and
∑N

i=1

∑N
j=1, respectively, and

∑
t and

∑
t,s to denote

∑T
t=1 and

∑T
t=1

∑T
s=1 respectively.

The operator P→ denotes convergence in probability, d→ convergence in distribution, and plim prob­

ability limit. We use I (·) to denote the usual indicator function. Let a ∧ b ≡ min{a, b}. We use

(N, T ) → ∞ to denote that N and T pass to infinity jointly.

1.2 The Model and Estimators

In this section we introduce the model and estimates.

1.2.1 The model

We consider the following model:

yit = x′it(β + λi + γt) + ηi + ωt + uit, (1.2 .1)

where i = 1, ..., N , t = 1, ..., T , yit is a sclar dependent variable, xit is aK × 1 vector of covariates,

β, λi and γt areK× 1 vectors of unknown parameters, ηi and ωt stand for individual­ and time­ spe­

cific fixed effects (FE), respectively, and uit is the idiosyncratic error term. The sequences {xit, uit}

are allowed to be serially and cross­sectionally dependent. We observe {yit, xit} but not the other

variables in the model. Like Lu and Su (2021), λi and γt characterize the individual and time hetero­

geneity of the slope coefficients, whereas ηi and ωt has the usual individual and time fixed effects

interpretation as both of them are allowed to be correlated with the regressor xit. The central interest

is the estimation and inference of {β, λi, γt} under some weak conditions.

Lu and Su (2021) consider the estimation of the parameters in the slope coefficient, namely, β,

λi and γt together with the parameters in the intercept term, i.e., ηi and ωt jointly. Since they al­

low all both (λi, γt) and (ηi, ωt) to be correlated with the regressor xit, their call the estimates as a

generalized fixed effects (GFE) estiamtes. The estimation requires the inversion of (N + T − 1)K­
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dimension square matrix that can be computationally demanding when (N + T − 1)K is large or a

bootstrap procedure is needed for the inference. In this paper, we consider a simple estimation proce­

dure that does not require the inversion of a high dimensional matrix but some additional restrictive

assumptions.

1.2.2 Estimation

Below we consider first the estimation of β, and then that of λi and γt.

To estimate β, we consider the two­way within­group transformation to eliminate the individual

and time fixed effects ηi and ωt in (1.2 .1) to obtain

ÿit ≡ ẍ′itβ + üit + θ̈it + φ̈it, (1.2 .2)

where θit = x′itλi, φit ≡ x′itγt, and, e.g., θ̈it = θit − θ̄i· − θ̄·t + θ̄··. We will show that under some

conditions, we can üit + θ̈it + φ̈it as the composite errror terms in (1.2 .2) so that we can regress ÿit

on ẍit to obtain the two­way FE estimate of β as follows:

β̂ =

(
1

NT

∑
i

∑
t

ẍitẍ
′
it

)−1 [
1

NT

∑
i

∑
t

ẍitÿit

]
. (1.2 .3)

Obviously, β̂ is a consistent estimator under the key condition that E
[
ẍit

(
üit + θ̈it + φ̈it

)]
= 0.

Given β̂ in (1.2 .3), let ̂̈yit ≡ ÿit − ẍ′itβ̂. Then using the fact that

θ̈it =
(
θit − θ̄i·

)
−
(
θ̄·t − θ̄··

)
= (xit − x̄i·)

′ λi −
1

N

∑
l

(xlt − x̄l·)
′ λl

= x̃′it

(
N − 1

N
λi

)
− 1

N

∑
l ̸=i

x̃′ltλl

6



we have

̂̈yit = ẍ′it(β − β̂) + üit + θ̈it + φ̈it = x̃′it

(
N − 1

N
λi

)
+ eit

= x̃′itλ̃i + eit, (1.2 .4)

where λ̃i ≡ N−1
N
λi and eit ≡ ẍ′it(β− β̂) + φ̈it + üit −N−1

∑
l ̸=i x̃

′
ltλl. Based on (1.2 .4), we propose

to estimate λ̃i by running the time series OLS regression of ̂̈yit on x̃it for each i to obtain
̂̃λi = ( 1

T

∑
t

x̃itx̃
′
it

)−1
1

T

∑
t

x̃it̂̈yit. (1.2 .5)

Since ̂̃λi is estimating N−1
N
λi, we propose to estimate λi by λ̂i = N

N−1

̂̃λi.
Similarly, noting that

φ̈it = (φit − φ̄·t)− (φ̄i· − φ̄··) = (xit − x̄·t)
′ γt −

1

T

∑
r

(xir − x̄·r)
′ γt

= x̆′it

(
T − 1

T
λt

)
− 1

N

∑
r ̸=t

x̆′irγr,

we have ̂̈yit = x̆′it

(
T − 1

T
γt

)
+ νit = x̆′itγ̆t + νit, (1.2 .6)

where γ̆t ≡ T−1
T
γt and νit = ẍ′it(β − β̂) + θ̈it + üit − T−1

∑
r ̸=t x̆

′
irγr. Based on (1.2 .6), we run the

cross­section OLS regression of ̂̈yit on x̆it for each t to obtain
̂̆γt =

(
1

N

∑
i

x̆itx̆
′
it

)−1
1

N

∑
i

x̆it̂̈yit. (1.2 .7)

Since ̂̆γt estimates T−1
T
γt, the estimator of γt is given by γ̂t = T

T−1
̂̆γt.

7



1.3 Asymptotic Results

In this section, we first present a set of basic assumptions that underly our asymptotic analysis. Then

we establish the asymptotic properties of the estimators proposed in the last section.

1.3.1 Assumptions

Let vit = {x∗it, λ′ix∗it, x∗′itγt}. Let xt = (x1t, ..., xNt)
′ and X = (x′1, . . . , x

′
T )

′. We make the following

assumptions.

Assumption A1.1. For every (i, j, t, s), the following holds:

(i) The process vt = {v′1t, ..., v′Nt}′ is stationary and α­mixing, and for each i, let αi(|t−s|) be the

α ­mixing coefficient between vit and vis, αij(|t− s|) be the α ­mixing coefficient between vit

and vjs such that max
1≤i≤N

αi(|t− s|) < α(|t− s|) and max
1≤i,j≤N

αij(|t− s|) < α(|t− s|) uniformly

such that it satisfies α(τ) ≤ Mτ−κ for some C > 0 and κ > 0, where κ is some positive

constant that depends on δ1 > 0 and δ2 > 0 such thatmax
i

∑N
j=1

∑T
τ=1 αij(τ)

δ1/(4+δ1) = O(1)

andmax
i

∑N
j=1 αij(0)

δ1/(4+δ1) = O(1), for the same δ1, E∥vit∥4+δ1+ϵ1 <∞ uniformly in i and

t, where ϵ1 is positive and can be small enough. Furthermore, assume that E∥
∑

i vit∥q =

O
(
N q/2

)
for some q > 2.

(ii) E(xit) = µ, V ar(xit) = Σx such thatm < smin (Σx) ≤ smax (Σx) < M , and Cov(xit, xis) =

Γt−s.

(iii) (a) E(λi | X) = 0, (b) V ar
(
N−1/2

∑
i λi
)

= O (1),and for some positive constant m,

E ∥λi∥2+m
2 <∞ for each i.

(iv) (a) E(γt | X) = 0, (b) V ar
(
T−1/2

∑
t γt
)

= O (1), and for some positive constant m,

E ∥γt∥2+m
2 <∞ for each t.

(v) Cov (λj, γs | X) = 0 holds for any (j, s).

Assumption A1.2. For every (i, j, t, s), the following holds:

8



(i) The process ut = {u1t, ..., uNt}T is stationary and α­mixing with zero mean, and αu,i(|t− s|)

be the α­mixing coefficient between uit and uis such that max
1≤i≤N

αu,i(|t− s|) < α(|t− s|) and

max
1≤i,j≤N

αu,ij(|t − s|) < α(|t − s|), where α(.) is the same one defined in Assumption A1.1

above. And for the same δ2 > 0 in Assumption A1.1 above, E∥uit∥4+δ2+ϵ2 <∞ uniformly in i

and t, where ϵ2 is positive and can be small enough. Furthermore, assume thatE∥
∑

i uit∥q =

O
(
N q/2

)
for some q > 2.

(ii) E (uit | xjs, λj, γs) = 0 holds for all (i, j, t, s).

Assumption A1.3. As (N, T ) go to infinity simultaneously, then N/T 2 → 0 and T/N2 → 0.

Assumption A1.4. There exist constantsm > 0 small enough andM > 0 large enough such that:

(i) m < smin

(
1

NT 2

∑N
i,j=1

∑T
t,s=1EGitG∗′

js

)
≤ smax

(
1

NT 2

∑N
i,j=1

∑T
t,s=1EGλ

itGλ
js

∗′
)
< M holds

with Git ≡ x∗itx
∗′
itλi, x

∗
itx

∗′
itγt, or x∗ituit and Gjs is similarly defined.

(ii) m < min
1≤t≤T

smin

(
1
N

∑N
i,j=1EGitG′

jt

)
≤ max

1≤t≤T
smax

(
1
N

∑N
i,j=1EGitG′

jt

)
< M , where Git ≡

(x∗itx
∗′
it − Σx)λi or x∗ituit, and Gjt is similarly defined.

(iii) m < min
1≤i≤N

smin

(
1
T

∑T
t,s=1EG∗

itG∗′
is

)
≤ max

1≤i≤N
smax

(
1
T

∑T
t,s=1EG∗

itG∗′
is

)
< M, where G∗

it ≡

(x∗itx
∗′
it − Σx) γt or x∗ituit, G∗

is is similarly defined.

Assumption A1.5. Suppose following CLT­type results hold,

(i)N−1/2T−1
∑N

i=1

∑T
t=1 x

∗
itx

∗′
itλi

d→ N (0, Vλ) ,whereVλ = p limN,T→∞N−1T−2
∑N

i,j=1

∑T
t,s=1 Gλ

itGλ
js

′

with Gλ
it = x∗itx

∗′
itλi, and Gλ

jt is similarly defined.

(ii) N−1/2
∑N

i=1 (x
∗
itx

∗′
it − Σx)λi

d→ N (0,Σt,xλ) , where Σt,xλ = p limN→∞N−1
∑N

i,j=1Gλ
itGλ

jt
′

for all t with Gλ
it = (x∗itx

∗′
it − Σx)λi and Gλ

jt is similarly defined.

(iii) N−1/2
∑N

i=1 x
∗
ituit

d→ N
(
0, Σ̆t,xu

)
, where Σ̆t,xu = p limN→∞N−1

∑N
i,j=1 Gu

itGu
jt
′ for all t

with Gu
it = x∗ituit and Gu

jt is similarly defined.

Assumption A1.6. (i) Let ηi be random variables that have mean 0 and finite variance, and uncor­

related with uit for any 1 ≤ i ≤ N . (ii) Let ωt be random variables that have mean 0 and finite

variance, and uncorrelated with uit for any 1 ≤ t ≤ T .
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Assumption A1.1 requires that the sequences {vit} are stationary and strong mixing over t and

also imposes the mild assumptions for the random coefficients, which is standard in related studies.

For example, Assumption A1.1(i) incorporates Assumption A.4 in Feng et al. (2017) and Assumption

A4 in Chen et al. (2012) and extents them to our setups; Assumption A1.1(iii)­(v) extents Assump­

tion 2.2 to 2.8 Hsiao (1974) to our setups. Under Assumptions A1.1(iii)(a) and (v)(a), heterogeneous

and time­varying slopes {λi}Ni=1 and {γt}Tt=1 can correlated to xit in higher moments. Assumptions

A1.1(iii)(b) and (v)(b) allow for the correlations among the sequences {λi}Ni=1 and {γt}Tt=1 corre­

spondingly. Assumption A1.2(i) imposes similar mixing conditions on {uit} as Assumption A1.1(i).

The strict exogeneity condition in Assumption A1.2(ii) simplifies the the asymptotic analysis. It

allows for conditional heteroskedasticity, skewness, or kurtosis of unknown form in uit. Assump­

tion A1.3 indicates the rate conditions, which accommodates the case that N and T are comparable.

Assumption A1.4 assumes that the eigenvalues of referred matrices are bounded from below and

above, which is a technical assumption that is standard in related studies, see e.g., Assumption 2(iii)

in Zhu (2017). Assumption A1.5 is frequently used in related studies and can be replaced by impos­

ing some primitive assumptions; see e.g., Kuersteiner and Prucha (2013), Castagnetti et al. (2015),

and Hidalgo and Schafgans (2017). Assumption A1.6 imposes very mild restrictions on the fixed

effects..

Remark 1.1. Assumption A1.1 (ii) assumes the homoskedasticity of xit. This condition is just im­

posed to simplify the exposition of the results. From the perspective of theoretical justifications, all

results in Section 1.3 and Section 1.4 still pertain at the cost of more lengthy proofs and does not

change substantially by defining corresponding notations appropriately. We present the discussions

on the relaxation of such conditions in the Appendix A such that Exit = µi, V ar (xit) = Σi,x and

Cov (xit, xis) = Γi,t−s. For details, we refer readers to the Appendix A.

Remark 1.2. The strict exogeneity condition in Assumption A1.2 (ii) can be replaced by the sequen­

tial exogeneity condition such that E (uit | xit, λj, γs) = 0 for all (i, j, t, s) as Assumption A3(ii) in

Lu and Su (2021). In the presence of sequential exogenous but not strictly exogenous regressors,

E (x∗itujs) ̸= 0 in general for i ̸= j or t ̸= s, which can lead to the asymptotic bias. To handle the
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bias caused by the sequential exogeneity condition on xit, we can employ the half­panel jackkinfe

estimation proposed by Dhaene and Jochmans (2015), see e.g., Chudik et al. (2018) and Lu and Su

(2021).

1.3.2 Main results on β

In this subsection, we study the asympotic properties of β̂. To present the main results, define

Vλ ≡ lim
(N,T )→∞

1

NT 2

∑
i,j

∑
t,s

E
(
x∗itx

∗′
itλiλ

′
jx

∗
jsx

∗′
js

)
,

Vγ ≡ lim
(N,T )→∞

1

N2T

∑
i,j

∑
t,s

E
(
x∗itx

∗′
itγtγ

′
sx

∗
jsx

∗′
js

)
,

Vu ≡ lim
(N,T )→∞

1

NT

∑
i,j

∑
t,s

E
(
x∗ituituisx

∗′
jt

)
,

The key result is summarized in the following theorem.

Theorem 1.3.1. Suppose Assumptions A1.1­A1.5. Suppose that Vλ, Vγ , and Vu exist and are nonsin­

gular. Then as (N, T ) → ∞,

(i) ∥β̂ − β∥ = Op

(
δ−1
NT

)
;

(ii) V−1/2
β

(
β̂ − β

)
d−→ N (0K , IK),

where Vβ = 1
N
Σ−1

x VλΣ
−1
x + 1

T
Σ−1

x VγΣ
−1
x + 1

NT
Σ−1

x VuΣ
−1
x .

Theorem 1.3.1(i) reports the convergence rate of β̂. In comparison with the usual
√
NT ­rate

of convergence for the slope estimators in homogenous panels, our estimator β̂ converges to β at

the slow rate
√
N ∧

√
T when the slope coefficient has heterogeneity along both the time and in­

diviual dimensions. Theorem 1.3.1(ii) estabilishes the asymptotic normality of β̂. The asymptotic

variance Vβ , contains three components, that can be attributed to the individul heterogeneity in the

slope coefficient, the time heterogeneity in the slope coefficient, and the idiosyncractic error term in

the model, respectively. We both the individual and time heterogeneities are absent from the slope

coefficient, the first two components are vanishing so that the convergence rate of β̂ becomes the

standard (NT )−1/2­rate for two­way FE estimators of the slope cofficients in homogeneous panels.
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Note that x∗it, λi and γt are not observed in the reality, to implement the inference on β, we replace

x∗it, λi and γt with their consistent estimators. The corollary below shows the result:

Corollary 1.3.2. Under Assumptions A1.1­A1.4, let λ̂i be any consistent estimator of λi for each i,

γ̂t be any consistent estimator of γt for each t, and ûit be any consistent estimator of uit, as (N, T )

go to infinity jointly,

V̂−1/2
β

(
β̂ − β

)
d−→ N (0K , IK),

where V̂β = 1
N
Q̂−1

ẍ V̂λQ̂
−1
ẍ + 1

T
Q̂−1

ẍ V̂γQ̂
−1
ẍ + 1

NT
Q̂−1

ẍ V̂uQ̂
−1
ẍ , and Q̂ẍ = 1

NT

∑
i

∑
t ẍitẍ

′
it,

V̂λ =
1

NT 2

∑
i

∑
j

∑
t

p∑
k=−p

(
1− |k|

|p|+ 1

)
ẍitẍ

′
itλ̂iλ̂

′
jẍjt+kẍ

′
jt+k,

V̂γ =
1

NT 2

∑
i

∑
j

∑
t

p∑
k=−p

(
1− |k|

|p|+ 1

)
ẍitẍitγ̂tγ̂

′
t+kẍjtẍ

′
jt+k,

V̂u =
1

NT 2

∑
i

∑
j

∑
t

p∑
k=−p

(
1− |k|

|p|+ 1

)
ẍitûitûit+kẍ

′
jt+k.

In order to handle the serial correlation, we use HAC estimators with the Bartlett kernel in Corol­

lary 1.3.2 to implement Vβ , and p above is the truncation parameter that is user­specified. The choice

of kernel can be different in practice. Note that we account for weak cross­sectional dependence

under Assumption A1.8 in the current paper. However, if the strong cross­sectional dependence is

considered, one can also incorporate the idea of spatial HAC estimator in Kelejian and Prucha (2007)

to modify V̂λ, V̂γ and V̂u given above.

1.3.3 Main results on λi and γt

In order to obtain unbiased and
√
T ­consistent estimator of λi for each given i, we proposed following

feasible bias­corrected estimates for {λi}Ni=1,

λ̂i =
N

N − 1
̂̃λi, (1.3 .1)
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where ̂̃λi is defined in (1.2 .5). The following theorem gives the asymptotic distribution of λ̂i in

(1.3 .1).

Theorem 1.3.3. Under Assumptions A1.1­A1.5, as (N,T) go to infinity jointly, for each i,

V−1/2
λi

(
λ̂i − λi

)
d−→ N (0K , IK),

where Vλi = Σ−1
x (Vλ + Ωλi) Σ

−1
x , Vλ is the element of covariance matrix of β̂ defined in Theorem

1.3.1 above, and

Ωλi =
1

T
Σi,xγ +

1

T
Σ̃i,xu,

where the matrices Σ−1
x , Σi,xγ = lim

T→∞
1
T

∑T
t,s=1E [(x∗itx

∗′
it − Σx) γtγ

′
s (x

∗
isx

∗′
is − Σx)], and Σ̃i,xu =

lim
T→∞

1
T

∑T
t,s=1E (x∗ituituisx

∗′
is) exist and are positive definite matrix.

Remark 1.3. It is worthwhile to observe that for each i, the structure of Vλi involves three com­

ponents, namely, Vλ, Σi,xγ and Σ̃i,xu in the above formula. In particular, the existence of Σi,xγ in

the above formula exhibit the effects of time­varying slopes, and the existence of Vλ in the above

formula exhibit the effects of heterogeneous slopes {λj}j ̸=i on the efficiency of the estimator λ̂i for

each i.

Similarly, in order to obtain unbiased and
√
N ­consistent estimator of γt for each given t, we

proposed following bias­corrected estimate γ̂t for each t,

γ̂t =
T

T − 1
̂̆γt, (1.3 .2)

where ̂̆γt is defined in (1.2 .7). The following theorem gives the asymptotic distribution of γ̂t:

Theorem 1.3.4. Under Assumptions A1.1­A1.5, as (N,T) go to infinity jointly, for each t,

V−1/2
γt (γ̂t − γt)

d−→ N (0K , IK),

where Vγt = Σ−1
x (Vγ + Ωγt) Σ

−1
x , Vγ is the element of covariance matrix of β̂ defined in Theorem
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1.3.1 above, and

Ωγt =
1

N
Σt,xλ +

1

N
Σ̆t,xu,

where the matrices Σ−1
x , Σt,xλ = lim

N→∞
1
N

∑
i,j E

[
(x∗itx

∗′
it − Σx)λiλ

′
j

(
x∗jtx

∗′
jt − Σx

)]
, and Σ̆t,xu =

lim
N→∞

1
N

∑
i,j E

(
x∗ituitujtx

∗′
jt

)
exist and are positive definite matrix.

Remark 1.4. Similar to Remark 1.3, the presence of the term Σt,xλ in the structure of Vγt demon­

strates the effects of heterogeneous slopes, and the existence of Vγ reveals the effects of time­varying

slopes {γs}s ̸=t on the efficiency of the estimator γ̂t.

Note that x∗it, uit, λi and γt in Theorem 1.3.3 and Theorem 1.3.4 are not available in practice.

To implement the inference on {λi}Ni=1 and {γt}Tt=1, we have to replace x∗it, uit, λi and γt with their

consistent estimates, which leads us to the following two corollaries,

Corollary 1.3.5. Under Assumptions A1.1­A1.5, as (N,T) go to (∞,∞) jointly, for each i,

V̂−1/2
λi

(
λ̂i − λi

)
d−→ N (0K , IK),

where V̂λi = Q̂−1
x̃

(
V̂λ + Ω̂λi

)
Q̂−1

x̃ , V̂λ is an consistent estimator of covariance matrix of Vλ defined

in Corollary 1.3.2, Q̂x̃ = 1
T

∑
t x̃itx̃

′
it, and

Ω̂λi =
1

T
Σ̂i,xγ +

1

T
̂̃Σi,xu,

where Σ̂i,xγ = 1
T

∑T
t=1

∑p
k=−p

(
1− |k|

|p|+1

)(
x̃itx̃

′
it −

̂̃
ΣX

)
γ̂tγ̂

′
t+k

(
x̃it+kx̃

′
it+k −

̂̃
ΣX

)′

, γ̂t is any

consistent estimator of γt, and ̂̃Σi,xu = 1
T

∑T
t=1

∑p
k=−p

(
1− |k|

|p|+1

)
x̃it̂̃uit̂̃uit+kx̃

′
it+k, where

̂̃
ΣX =

1
T

∑
t x̃itx̃

′
it, ̂̃uit = ûit − 1

T

∑T
s=1 ûis, ûit is any consistent estimator of uit.

Remark 1.5. In order to allow for the serial correlations, we use HAC estimator of Σ̃i,xu with the

Bartlett kernel in Corollary 1.3.5 to implement Σ̃i,xu, and p is the user­specified truncation parameter.
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Corollary 1.3.6. Under Assumptions A1.1­A1.5, as (N,T) go to (∞,∞) jointly, for each t,

V̂−1/2
γt (γ̂t − γt)

d−→ N (0K , IK),

where V̂γt = Q̂−1
x̆

(
V̂γ + Ω̂γt

)
Q̂−1

x̆ , V̂γ is an consistent estimator of covariance matrix of Vγ defined

in Corollary 1.3.2, Q̂x̆ = 1
N

∑
i x̆itx̆

′
it, and

Ω̂γt =
1

N
Σ̂t,xλ +

1

N
̂̆
Σt,xu,

where Σ̂t,xλ = 1
N

∑
i,j

(
x̆itx̆

′
it −

̂̆
ΣX

)
λ̂iλ̂

′
j

(
x̆jtx̆

′
jt −

̂̆
ΣX

)′
, λ̂i is any consistent estimator of λi, and̂̆

Σt,xu = 1
N

∑
i,j x̆it

̂̆uit̂̆ujtx̆′jt, where ̂̆uit = ûit − 1
N

∑N
j=1 ûjt,

̂̃
ΣX = 1

N

∑
i x̆itx̆

′
it, and ûit is any

consistent estimator of uit for each t.

Remark 1.6. As point out earlier, if the strong cross­sectional dependence is considered, one can

also incorporate the idea of spatial HAC estimator in Kelejian and Prucha (2007) to modify Σ̂t,xλ, V̂γ

and ̂̆Σt,xu given above.

1.3.4 The two­way heterogeneous bias test

According to the analyses in the Appendix A, we can see that the consistent and unbiased estimates

of β, {λi}Ni=1, and {γt}Tt=1 crucially depend on Assumption A1.1(iii)(a), (iv)(a) and Assumption

A1.2(ii). As pointed out in Remark 1.2, if the strict exogeneity condition in Assumption A1.2(ii) is

relaxed, the asymptotic bias can be removed by employing the half­panel jackknife method.

As for Assumption A1.1(iii)(a) and (iv)(a), they imply following two conditions will hold simul­

taneously,

∑
i

E (x̆∗itx̃
∗′
itλi) = 0 holds for each t. (1.3 .3)
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and

∑
t

E (x̃∗itx̆
∗′
itγt) = 0 holds for each i. (1.3 .4)

Indeed, the validity of (1.3 .4) and (1.3 .3) indicate that the estimate of β based on (1.2 .2), the estimates

of {λi}Ni=1 based on (1.2 .4) and the estimate of {γt}Tt=1 based on (1.2 .6) still can be desirable even

if the slope heterogeneity and time­varyingness exist. Naturally, it is of practical and theoretical

interests to check the validity of (1.3 .4) and (1.3 .3). So the rest of this subsection is devoted to test

whether (1.3 .4) and (1.3 .3) holds simultaneously or not.

To test the null of hypothesis that (1.3 .3) and (1.3 .4) hold simultaneously, we propose the fol­

lowing test statistic,

JTWHB = V̂−1/2
υ

1√
T

∑
t

(
1

N
υ̂′tυ̂t − B̂υ

)
, (1.3 .5)

where υ̂t =
∑

i x̆itx̃
′
itλ̂i, B̂υ = 1

T

∑
t Ẑt,υ, V̂υ = 1

T

∑
t,s ζ̂

′
t,υ ζ̂s,υ, and we define Ẑt,υ ≡

1
N

∑
i,j λ̂

′
i

(
x̆itx̆

′
it −

̂̆
ΣX

)′ (
x̆jtx̆

′
jt −

̂̆
ΣX

)
λ̂j , ζ̂t,υ ≡ Ẑt,υ − B̂υ.

Recently, Campello et al. (2019) propose the one­way heterogeneity bias test when the slope

heterogeneity exits in panel data models. As a comparison, our two­way heterogeneity bias test aims

to check the bias possibly induced by the existence of slope heterogeneity or time­varyingness and

thus generalizes their test.

The motivation behind JTWHB is simple and intuitive. Denote υt ≡
∑

i x̆
∗
itx̃

∗′
itλi, and υi ≡∑

t x̃
∗
itx̆

∗′
itγt. If x∗it, λi and γt in (1.3 .3) and (1.3 .4) are available, ones can show that J ⋆

TWHB ≡

N−1T−1/2
∑

t υ
′
tυt + N−1/2T−1

∑
i υ

′
iυi ≡ J ⋆

TWHB,λ + J ⋆
TWHB,γ will follow the standard normal

distribution after being centered and rescaled appropriately and thus can be used to test whether

(1.3 .3) and (1.3 .4) holds simultaneously or not. Our starting point is to implement J ⋆
TWHB,λ =

N−1T−1/2υ′tυt, and it is the common practice to replace υt by its plug­in estimator υ̂t based on

{λ̂i}Ni=1 and xit. Meanwhile, the unbiasedness and consistency of λ̂i holds as long as (1.3 .3) and

(1.3 .4) holds simultaneously. Therefore, it suffices to use the proposed test JTWHB instead.
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Before we present the asymptotic null distribution of JTWHB, we impose additional assumption

as below.

Assumption A1.7. EZt,υ is a constant, where Zt,υ ≡ 1
N

∑
i

∑
j λ

′
i (x

∗
itx

∗′
it − Σx)

(
x∗jtx

∗′
it − Σx

)
λj .

Assumption A1.7 requires EZt,υ does not vary with time t such that B̂υ can be used to estimate

this population mean consistently. This condition simplifies our theoretical analysis. On the contrary,

if EZt,υ is allowed to vary with time t, ones can employ jackknife method by making full use of

cross­section observations for each given t to estimate EZt,υ consistently for each t.

The following theorem states the asymptotic null distribution of JTWHB.

Theorem 1.3.7. Under Assumptions A1.1­A1.5, in addition, A1.1(iii)(a) and (iv)(a) are replaced by

(1.3 .4) and (1.3 .3) respectively, as (N,T) go to infinity jointly,N/T 3/2 → 0, then the following hodls,

JTWHB
d−→ N (0, 1)

In practice, ones can implement JTWHB to make sure the desirability of β̂, {λ̂i}Ni=1 and {γ̂t}Tt=1

based on our estimation strategy. For the asymptotic local power properties ofJTWHB, we can follow

Su and Chen (2013) and Campello et al. (2019) to show thatJTWHB has the non­trivial power against

the local alternatives as long as (1.3 .4) or (1.3 .3) is violated. Besides, as pointed out above, JTWHB

stems from J ⋆
TWHB,λ, we can similarly devise a test statistic related to J ⋆

TWHB,γ , and the result and

corresponding theoretical justifications are very similar to those forJTWHB, which is also convenient

to implement in practice.

1.3.5 Uniform consistency on estimates of time­varying and heterogeneous

slopes

In this subsection, we establish the uniform consistency to quantify the upper bounds on themaximum

deviation of the estimates from corresponding true parameters by imposing an additional assumption.
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Specifically, we extent Assumption 1(i)­(ii) in Zhu (2017) to strengthen Assumptions A1.1 and

A1.2 to specify the behaviors of the entries of {λi, γt, xit, uit} for both individual and time dimensions

further.

Definition 1. A random variable Z is said to have an exponential­type tail with parameter (b, ν) if

∀z > 0, P (|Z| > z) ≤ exp [1− (z/b)ν ].

Assumption A1.8. Assume that the following hold:

(i) There exist constants b∗, ν∗ > 0 such that ∀(i, t) ∈ {1, . . . , n} × {1, . . . , T}, each entry of λi,

γt, xit and ui,t has an exponential­type tail with parameter (b∗, ν∗);

(ii) There exist constants c∗, ν∗∗ > 0 such that α(τ) ≤ c∗ exp (−τ ν∗∗)∀τ ≥ 1. For the same

(c∗, ν∗∗), assume thatmax
i

∑
j∈SN

αij(0) ≤ c∗ exp (−Card(SN)
ν∗∗) andmax

i

∑
j∈S̃N

αu,ij(0) ≤

c∗ exp
(
−Card(S̃N)

ν∗∗
)
, where Card(SN) and Card(S̃N) go to infinity asN goes to infinity,

SN and S̃N are subsets of {1, . . . , N}, andCard(A) stands for the cardinality of a setA; α(.),

αij(.), and αu,ij(.) are defined in Assumptions A1.1 and A1.2.

Compared with Assumption 1(ii) in Zhu (2017), we impose the additional restriction that the

cross­sectional dependence for vit and uit in Assumptions A1.1 and A1.2 decays at the exponen­

tial rate in Assumption A1.8(ii) above, and this condition will guarantee the use of Theorem 1 in

Merlevède et al. (2011) in our proofs.

Proposition 1.3.8. Under Assumptions A1.1­A1.4, and A1.8

(1) ∥λ̂− λ∥∞ = Op

(√
lnN
T

)
, where λ ≡

(
λ′1,, .., λ

′
N

)′ ∈ RNK , λ̂ ≡
(
λ̂′1,, .., λ̂

′
N

)′
∈ RNK .

(2) ∥γ̂ − γ∥∞ = Op

(√
lnT
N

)
, where γ ≡ (γ′1, .., γ

′
T )

′ ∈ RTK , γ̂ ≡ (γ̂′1, .., γ̂
′
T )

′ ∈ RTK .

This result says that {λ̂i}Ni=1 and {γ̂t}Tt=1 defined in (1.3 .1) and (1.3 .2) correspondingly are uni­

formly consistent estimators of {λi}Ni=1 and {γt}Tt=1 correspondingly under mild conditions. In par­

ticular, the logarithm terms are present in above results because of the high dimensionality of λ and

γ. The extra logarithm term is the price often paid in high­dimensional studies; see e.g., Zhu (2017)

and Wang et al. (2018).
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1.4 The specification tests

In this section, we propose two specifications tests to examine the existence of {λi}Ni=1 and {γt}Tt=1

correspondingly. We first study the asymptotic null distributions and asymptotic local power proper­

ties of the specification tests. Then, we give the implementations of our specification tests in practice.

And finally, we propose the bootstrap version of our specification tests.

1.4.1 Max­type tests for slope heterogeneity and time­varyingness

It is of practical interests in empirical studies to test whether slope heterogeneity or time­vartingnes

exist or not. To this end, we consider to test one of following two null hypotheses:

H0a: λi = 0 for all i;

H0b: γt = 0 for all t.

The corresponding alternative hypotheses are the negations of H0a and H0b shown above,

H1a: λi ̸= 0 for some i;

H1b: γt ̸= 0 for some t.

From above, we can see that underH0a, there is no slope heterogeneity, and underH0b, the slope

time­varyingess is excluded. In contrast, under the alternatives, slope may exhibit heterogeneity, or

time­varyingess, or both of them.

Now, to test H0a above, we propose to use the max­type test statistic Tλ defined below:

Tλ = max
1≤i≤N

λ̂′iV̂−1
λi λ̂i. (1.4 .1)

Similarly, to test H0b above, we propose to use the max­type test statistic Tγ defined below:

Tγ = max
1≤t≤T

γ̂′tV̂−1
γ γ̂t. (1.4 .2)
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To study the asymptotic local power of the tests proposed above, we specify the following se­

quence of Pitman local alternatives:

H1a,NT : λi =

√
lnN
T

· λ̃i for all i, and H1b,NT : γt =

√
lnT
N

· γ̃t for all t,

where λ̃i and γ̃t satisfy the corresponding conditions in Assumption A1.1.

The motivation behind our test statistics Tλ and Tγ is simple and intuitive. In a nutshell, replying

on the results in section 1.3, for instance, underH0a, we have V̂−1/2
λi λ̂i

d→ N (0K , IK), then it follows

that λ̂iV̂−1
λi λ̂i

d→ χ2
K for each i. We will show that Tλ follow standard the Gumbel distribution after

being rescaled appropriately under the null. In contrast, under H1a,NT , Tλ will deviate from the null

distribution quickly and substantially.

Denote ΠNT = ln δNT . To study the asymptotic properties of Tλ and Tγ , we further impose

following two assumptions.

Assumption A1.9. Let κ be positive but small enough,

(i) γt = Π−κ
NT ·γ̃⋆t for 1 ≤ t ≤ T , where γ̃⋆t satisfies the the corresponding conditions in Assumption

A1.1.

(ii) λi = Π−κ
NT · λ̃⋆i for 1 ≤ i ≤ N , where λ̃⋆i satisfies the the corresponding conditions in Assump­

tion A1.1.

Note that κ in Assumption A1.9(i)­(ii) can be different. Since ΠNT is the logarithmic function of

N or T , it is not stringent for the real data in empirical studies. Actually, Assumptions A1.9 imposed

above are driven by practical considerations. For such considerations, we will discuss in the next

subsection after we give the implementations of Tλ and Tγ . Meanwhile, Assumption A1.9 also has

some theoretical implications as follows: unlike studies on the CRC panel data models or time­

varying panel data models that exclude the existence of the slope time­varyingness or heterogeneity

by the model setup, Tλ can allow for the the existence of {γt}Tt=1 as long as the magnitude of {γt}Tt=1

is mild; similar implications also apply to Tγ . We can ease the exposition of proofs for Theorem
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1.4.1 and Theorem 1.4.2 under Assumption A1.9, however, we address that Assumption A1.9 can

dropped at the cost of lengthy arguments in the view of theoretical derivations.

The following two theorems state the asymptotic behaviors of Tλ defined in (1.4 .1), and Tγ de­

fined in (1.4 .2) under the null and alternatives formally.

Theorem 1.4.1. Under Assumptions A1.1­A1.5,A1.8, and A1.9(i), as (N,T) go to (∞,∞) jointly,

under H0a, it holds that

P (ANTλ ≤ x+BN) = e−e−x

, (1.4 .3)

where AN = 1
2
, and BN = lnN + (K

2
− 1) ln lnN − lnΓ(K

2
), Γ(.) here is the Gamma function.

Under the local alternative H1a,NT , if T
lnN ∥λi∥22 → ∞ holds for at least one i, it holds that

P (Tλ > cα,N) = 1, (1.4 .4)

where cα,N = 2BN − ln | ln(1− α)|2, α is the significant level selected by user.

Theorem 1.4.2. Under Assumptions A1.1­A1.5,A1.8, A1.9(ii), as (N,T) go to (∞,∞) jointly, under

H0b, it holds that

P (ATTγ ≤ x+BT ) = e−e−x

, (1.4 .5)

whereAT = 1
2
, andBT = lnT +(K

2
−1) ln lnT − lnΓ(K

2
), Γ(.) here is the Gamma function. Under

the local alternative H1b,NT , if N
lnT ∥γt∥22 → ∞ holds for at least one t, it holds that

P (Tγ > cα,T ) = 1, (1.4 .6)

where cα,T = 2BT − ln | ln(1− α)|2, α is the significant level selected by user.

Note that (1.4 .3) in Theorem 1.4.1 and (1.4 .5) in Theorem 1.4.2 say that under the null, our

specificationwill converge to theGumbel distribution after being centered and rescaled appropriately.
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As long as the consistency of our specification tests are concerned, (1.4 .4) in Theorem 1.4.1 reveals

that Tλ has nontrivial power against the local alternatives shrinking to the null at rateO
(√

lnN/T
)
,

and (1.4 .6) in Theorem 1.4.2 has the similar implication.

1.4.2 Implementations of the specification tests

In this section, we offer two algorithms to implement Tλ and Tγ respectively in practice.

Algorithm 1.1.We implement Tλ by following steps,

(1) Regress ÿit on ẍit to obtain β̂ and ̂̈yit = ÿit − ẍitβ̂ for i = 1, . . . , N and t = 1, . . . , T .

(2) Regress ̂̈yit on x̆it to obtain γ̂t for t = 1, . . . , T . Further, let ̂̈y>it = ̂̈yit − x̆′itγ̂t for i = 1, . . . , N

and t = 1, . . . , T .

(3) Regress ̂̈y∗it on x̃it to obtain λ̂i, and ̂̈uit = ̂̈y>it − x̃′itλ̂i for i = 1, . . . , N .

(4) According to Corollary 1.3.5, for each i, calculate V̂λi based on x̃it, γ̂t for t = 1, . . . , T and ̂̈uit
for i = 1, . . . , N , t = 1, . . . , T obtained in Step (3) above.

(5) Calculate Tλ based on λ̂i in step (3) and V̂λi in step (4) for i = 1, . . . , N

Particularly, in Step (2) in Algorithm 1.1, we actually calculate ̂̈y∗it = ÿit − ẍ′itβ̂ − x̆′itγ̂t, in doing

so we get the consistent estimator ̂̈uit that allows for the existence of {γt} under H0a.

Remark 1.7. (The choice of lags p) In Algorithm 1.1, we employ HAC estimator of V̂λi for i =

1, . . . , N . In practice, the selection of lags p will affect the actual size of our test Tλ. There are some

rule­of­thumbs to determine p as follows: p = ⌈0.75T 1/3⌉, p = ⌈T 1/4⌉, and p = ⌈4(T/100)2/9⌉,

where ⌈C⌉ represent the integer that is nearest to C. In our simulations, p = [4(T/100)2/9] out­

performs other two candidates, which implies suitable and longer lags will improve finite­sample

performances of the specification tests.

Algorithm 1.2. We implement Tγ by following steps,
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(1) Regress ÿit on ẍit to obtain β̂ and ̂̈yit = ÿit − ẍitβ̂ for i = 1, . . . , N and t = 1, . . . , T .

(2) Regress ̂̈yit on x̃it to obtain λ̂i for i = 1, . . . , N . Further, let ̂̈y⋆it = ̂̈yit − x̃itλ̂i for i = 1, . . . , N

and t = 1, . . . , T .

(3) Regress ̂̈y⋆it on x̆it to obtain γ̂t and and ̂̈uit = ̂̈y⋆it − x̆′itγ̂t for t = 1, . . . , T .

(4) According to Corollary 1.3.6, calculate V̂γt for each t based on x̆it, λ̂i for i = 1, . . . , N and ̂̈uit
for i = 1, . . . , N and t = 1, . . . , T obtained in Step (2) above.

(5) Calculate Tγ based on γ̂t in step 3 and V̂γt in step 4 for t = 1, . . . , T .

Similarly, in Step (2) in Algorithm 1.1, we actually calculate ̂̈uit = ÿit− ẍ′itβ̂− x̃′itλ̂i, in doing so

we get the consistent estimator ̂̈uit that allows for for the existence of λi for i = 1, . . . , N underH0b.

Remark 1.8. From Algorithm 1.1, we can see that the effects of {γt}Tt=1 are considered and removed

by its consistent estimator {γ̂t}Tt=1 when we implement Tλ in practice even if we have no prior knowl­

edge about the existence of {γt}Tt=1. It is reasonable to do so, because practitioners may worry about

the adverse effects of {γt}Tt=1 on the finite­sample properties of Tλ. Indeed, if practitioners do iterated

estimations for β , λi and γt, according to our proofs for Theorem 1.4.1, the term ζλiT + ξλNT can turn

out to be ζλiT +ξλNT = N−1/2T−1
∑

j ̸=i

∑
t x

∗
jtx

∗′
jt

(
λj − λ̂j

)
+T−1/2

∑
t (x

∗
itx

∗′
it − Σx) (γt − γ̂t). We

can show that this term is of order Op

(
N−1/2T−1/2

)
= op (1) by using Proposition 1.3.8(ii), which

is negligible for in the derivations of the null distribution of Tλ. Because of this fact, we impose

a weaker condition in Assumption A1.9(i), because the terms bounded by Op

(
N−1/2T−1/2

)
will

be dominated by the terms bounded by Op (ΠNT ). We impose a weaker condition in Assumption

A1.9(ii) by the similar considerations.

1.4.3 A bootstrap version of the specification tests

Consistent with comments in Castagnetti et al. (2015), our specification test statistics Tλ and Tγ also

suffer from the slow convergence to the Gumbel distribution. The asymptotic distribution approx­

imates the finite sample distribution poorly. As a consequence, we expect the use of asymptotic
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critical values will deteriorate the power and size of our specification tests. To rectify this issue, we

propose to use following two bootstrap schemes to improve the finite sample performance of our

specification tests. The first one is so­called block wild bootstrap (BWB) scheme and the second one

is the wild bootstrap (WB) scheme. Particularly, the BWB is an extension of the WB that handles

the serial correlations among time­series observations.

Remark 1.9. Note that we use time series data for each individual i to construct Tλ. Because As­

sumption A1.8 implies the weak dependence, it can be sufficient for practitioners to use the WB

scheme only to obtain the bootstrap p­values for both Tλ and Tγ , the WB implementations works for

both Tλ and Tγ from our simulation results in Section 1.5 even when the dependence among time­

series observations are moderate. However, for robustness checks, practitioners can further apply

the BWB scheme to Tλ to handle the unknown but possibly strong time­series persistence.

First, we present the algorithm for the implementation of Tλ under the BWB scheme.

Algorithm BWB: Block Wild Bootstrap Scheme for Tλ

1. Execute Algorithm 1.1 to the original test statistics Tλ.

2. Set a block size bT , such that 1 ≤ bT < T.Denote the blocks byBs = {(s− 1)bT + 1, . . . , sbT} ,

s = 1, . . . , LT , LT = ⌈T/bT ⌉, the number of blocks, is constructed to be an integer for the

convenience of presentation.

3. For each i = 1, 2, . . . , N , take i.i.d random draws {ξis}LT
s=1, independent of the data, from

a common distribution W, where E(W ) = 0, E (W 2) = 1. Define the auxiliary variables

wit = ξis, if t ∈ Bs, for t = 1, . . . , T , where Bs is constructed in Step 2.

4. For ecah i, obtain the bootstrap error ̂̈u∗it = ̂̈uitwit withwit defined in Step 3 for t = 1, 2, . . . , T,.

Then, we construct the bootstrap sample ̂̈y∗it = x̃′itλi+ ̂̈u∗it for i = 1, . . . , N and t = 1, 2, . . . , T

as if the null λi = 0 for all i holds.

5. Given the bootstrap sample {̂̈y∗it, xit}, re­execute Step (3)­(5) in Algorithm 1.1 above to obtain

test statistic T ∗
λ in bootstrap world.
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6. Repeat steps 2 to 5 forB times and index the bootstrap test statistics
{
T ∗
λ,b

}B
b=1

. Then calculate

the bootstrap p−value by p∗ = B−1
∑B

b=1 I
{
T ∗
λ,b > Tλ

}
.

Algorithm BWB says that we generate the bootstrap samples for each individual i under the

BWB scheme as follows: (1) divide T consecutive observations into LT blocks with bT consecutive

observations in each block. Assume LT bT = T implicitly for simplicity; (2) generate LT external

and auxiliary random variables ξil
i.i.d∼ (0, 1) with l = 1, . . . , LT , all residuals in the block l then are

multiplied by the external random variable ξil ; (3) obtain the bootstrap samples as if λi = 0 holds

for all i.

Remark 1.10. Let the block size bT = 1 in Step 2 of Algorithm BWB, we actually implement the

wild bootstrap version of Tλ.

We then provide the algorithm for the implementation of Tγ under the WB scheme.

Algorithm WB: Wild Bootstrap Scheme for Tγ

1. Execute Algorithm 1.2 stated above to obtain the test statistics Tγ .

2. For each i, take i.i.d random draws {ξit}Tt=1 independent of the data, from a common distribu­

tionW, where E(W ) = 0, E (W 2) = 1.

3. For each i = 1, 2, . . . , N and t = 1, 2, . . . , T , obtain the bootstrap error ̂̈u∗it = ̂̈uitξit with ξit
defined in Step 2. Then, we construct the bootstrap sample ̂̈y∗it = x̆′itγt+ ̂̈u∗it for t = 1, 2, . . . , T

and i = 1, . . . , N as if the null γt = 0 for t = 1, . . . , T holds.

4. Given the bootstrap sample {̂̈y∗it, xit}, re­execute Step (3)­(5) in Algorithm 1.2 presented above

to obtain test statistic T ∗
γ in bootstrap world.

5. Repeat steps 2 to 5 forB times and index the bootstrap test statistics
{
T ∗
γ,b

}B
b=1

. Then calculate

the bootstrap p−value by p∗ = B−1
∑B

b=1 I
{
T ∗
γ,b > Tγ

}
.

By comparing the details of Algorithm BWB and Algorithm WB, we can see that the BWB

scheme is a generalization of the WB scheme in the sense that the BWB scheme uses the block

structure to capture the serial correlations among time­series observations .
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Remark 1.11. For external random variables used in both Algorithm BWB and Algorithm WB, we

recommend to use so­called Rademacher sequences, namely,

ξit =

 1 with probability p = 1
2
,

−1 with probability 1− p,

with the properties Eξit = 0, Eξ2it = 1, Eξ3it = 0, and Eξ4it = 1.

The theorem below justifies the asymptotic validity of the bootstrap version of our specification

tests:

Theorem 1.4.3. (a) Suppose Assumptions A1.1­A1.5, A1.8 and A1.9 hold.

In addition, under Block Wild Bootstrap scheme, assume that 1/bT + bT/T
1/3 → 0, then, as

(N, T ) → ∞,

sup
x∈R

|P ∗ (ANT ∗
λ ≤ x+BN)− P (ANTλ ≤ x+BN)|

P ∗
→ 0,

as N, T → ∞, where P ∗ denotes probability measure induced by the wild bootstrap condi­

tional on the observed sampleWNT ≡ {(xit, yit) , i = 1, . . . , N, t = 1, . . . , T}.

(b) Similarly, under Assumptions A1.1­A1.5, A1.8 and A1.9,

sup
x∈R

∣∣P ∗ (ANT ∗
γ ≤ x+BN

)
− P (ANTγ ≤ x+BN)

∣∣ P ∗
→ 0,

as N, T → ∞, where P ∗ denotes probability measure induced by the wild bootstrap condi­

tional on the observed sampleWNT ≡ {(xit, yit) , i = 1, . . . , N, t = 1, . . . , T}.

Remark 1.12. For strong serial and cross­sectional dependence, we conjecture that the Moving

Block Bootstrap (MBB) scheme may work. Gonçalves (2011) show the validity of the MBB scheme

for a homogeneous panel data model with individual fixed effects that allows for both serial and

cross­sectional dependence. We leave this extension as future research.
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1.5 Monte Carlo Simulations

In this section we evaluate the finite sample performance of the specification tests by means of a set

of Monte Carlo experiments.

1.5.1 Wild Bootstrap Scheme

We implement the bootstrap version Tλ and Tγ under the Wild Bootstrap scheme in this subsection

to study the size and power of the bootstrap version of our specification test statistics in practice.

In particular, for the bootstrap version Tλ, we just set block size bT = 1 such that the Block Wild

Bootstrap scheme degenerates to Wild Bootstrap scheme.

We consider following data generating processes (DGPs),

DGP 1: yit = (β + γt)xit + ηi + ωt + uit,

DGP 2: yit = (β + λi)xit + ηi + ωt + uit,

DGP 3: yit = (β + λi + γt)xit + ηi + ωt + uit.

For all DGPs, {ηi}Ni=1 is drawn independently from N
(
0, σ2

η

)
, {ωt}Tt=1 is drawn independently

from N (0, σ2
ω), xit and uit follow the AR(1) process, namely

xit = ρ′xxit−1 + π (ηi + ωt) + vit,

uit = ρuuit−1 + ϵit,

where vit is drawn independently from N (0, σ2
v), ϵit is drawn independently from N (0, σ2

ϵ ) for

each i. For DGP 1, {γt}Tt=1 is drawn independently from N
(
0, σ2

γ

)
. For DGP 2, {λi}Ni=1 is drawn

independently from N (0, σ2
λ).

When we study the size and power of Tλ, we generate data fromDGP 1 andDGP 3 underH1a,NT

respectively, for {γt}Tt=1, γt = N−1/2 · γ∗t , where γ∗t is drawn independently from N
(
0, σ2

γ

)
for

t = 1, . . . , T .

When we study the size and power of Tγ , we generate data fromDGP 2 andDGP 3 underH1b,NT
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respectively, for {λi}Ni=1, λi = T−1/2 · λ∗i , where λ∗i is drawn independently from N (0, σ2
λ) for

i = 1, . . . , N .

Besides, for the power study under DGP 3, we consider the local alternatives as follows,

H1a,NT : λ̃i = C ·
√

lnN
T

· λi such that λi are i.i.d sequences with λi =


1 w.p. 1/2

−1 w.p. 1/2
, and

C ∈ {1, 2, 3}.

H1b,NT : γ̃t = C ·
√

lnT
N

· γt such that γt are i.i.d sequences with γt =


1 w.p. 1/2

−1 w.p. 1/2
, and

C ∈ {0.5, 1, 1.5}.

Now, we set fixed values for the user­specified parameters as follows: β = 0.5, ρx = ρu = 0.5,

π = 1, σ2
v = σ2

ϵ = 1, σ2
λ = {0.3, 0.5, 1}, σ2

γ = {0.3, 0.5, 1}, (σ2
η, σ

2
ω) = (0.1, 0.1). For choices of

lags p for the HAC estimators, we recommend to use p = ⌈4(T/100)2/9⌉. We define variance ratio

as vr ≡ σ2
γ/σ

2
ϵ for DGP 1 and vr ≡ σ2

λ/σ
2
ϵ for DGP 2 , which represent the signal­noise ratio.

In this subsection, we calculate Tλ by Algorithm 1.1 and the wild bootstrap version of Tλ by

Algorithm BWB with the block size bT = 1; we also obtain Tγ by Algorithm 1.2 and the bootstrap

version of Tγ by Algorithm WB. For each scenario, we conduct 500 replications with B = 250

bootstrap resamples in each replication. We consider the 5% nominal level in all cases.

1.5.2 Block Wild Bootstrap Scheme

In this subsection, we implement the block wild bootstrap version Tλ to study the effects of the degree

of serial correlations among time­series observations on the size of the block wild bootstrap version

of Tλ under the null H0a. We still assume {xit, uit} to follow the AR(1) process,

xit = ρxxit−1 + π (ηi + ωt) + vit

uit = ρuuit−1 + ϵit,
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where π is the tuning parameter that controls the degree of correlations with fixed effects, and we set

π = 1 as the default value for all cases. For each i, {vit}Tt=1 is drawn independently from N (0, 1);

for each i, {ϵit}Tt=1 is drawn independently from N (0, 1). Further, we set ρx ∈ {0.3, 0.6, 0.9} and

ρu ∈ {0.3, 0.6, 0.9} to study the effects of the degree of serial correlations among observations on

the size of the block wild bootstrap version of our specification test statistic Tλ under H0a.

We generate data by DGP 4 specified below,

DGP 4: yit = (β + γt)xit + ηi + ωt + uit with γt = N−1/2 · γ∗t for t = 1, . . . , T, where γ∗t is

drawn independently from N
(
0, σ2

γ

)
with σ2

γ = 0.3.

We set β = 0.5 as fixed in all simulations, meanwhile, for fixed effects, {ηi}Ni=1 is drawn inde­

pendently from N
(
0, σ2

η

)
with σ2

η = 0.1 and {ωt}Tt=1 is drawn independently from N (0, σ2
ω) with

σ2
ω = 0.1.

We calculate Tλ by Algorithm 1.1 and the wild block bootstrap version of Tλ by Algorithm BWB

with different block size bT shown in the related Tables. For each scenario, we conduct 1000 repli­

cations with B = 250 bootstrap resamples in each replication. We consider the 5% nominal level in

all cases.

1.5.3 Results

Table 1.1 displays empirical rejection rates of Tλ and Tγ under Wild Bootstrap scheme for each

combination of N and T with different variance ratios. The left panel of Table 1.1 shows that both

Tλ and Tγ are too conservative in most cases regardless of values of the variance ratio based on the

asymptotic critical values. These results are due to the poor approximation of asymptotic distributions

to the finite­sample distribution and consistent with our anticipations. The empirical size of the wild

bootstrap version of Tλ and Tγ in the right panel of Table 1.1 are very close to the 5% nominal level

of significance. It is noteworthy to see that in several cases, Tλ tends to be over­sized slightly. We

conjecture that the slight over­rejections originate from the moderate serial correlations in {xit, uit}

because we set ρx = ρu = 0.5.

Table 1.2 and 1.3 exhibit the power of Tλ and Tγ for each combination of N and T with different
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Table 1.1: Finite sample rejection frequency under the null hypotheses
size of Tλ under H0a

DGP N T Based on Asy. CV Based on Wild Bootstrap
vr=0.3 vr=0.5 vr=1 vr=0.3 vr=0.5 vr=1

1 30 30 0.010 0.016 0.036 0.028 0.022 0.028
50 0.030 0.016 0.034 0.050 0.046 0.044
100 0.042 0.034 0.060 0.056 0.044 0.052

1 50 30 0.002 0.000 0.004 0.020 0.024 0.022
50 0.008 0.014 0.014 0.064 0.066 0.044
100 0.016 0.022 0.022 0.054 0.052 0.062

1 100 30 0.000 0.000 0.000 0.032 0.028 0.024
50 0.000 0.000 0.002 0.070 0.060 0.066
100 0.002 0.004 0.004 0.064 0.070 0.050

size of Tγ under H0b

DGP T N Based on Asy. CV Based on Wild Bootstrap
vr=0.3 vr=0.5 vr=1 vr=0.3 vr=0.5 vr=1

2 30 30 0.056 0.066 0.068 0.040 0.044 0.050
50 0.062 0.066 0.066 0.050 0.056 0.044
100 0.068 0.076 0.070 0.042 0.050 0.050

2 50 30 0.020 0.024 0.030 0.040 0.042 0.046
50 0.032 0.042 0.032 0.060 0.058 0.046
100 0.046 0.040 0.050 0.050 0.052 0.048

2 100 30 0.016 0.006 0.010 0.054 0.054 0.054
50 0.010 0.014 0.028 0.050 0.058 0.056
100 0.022 0.022 0.022 0.054 0.062 0.050

variance ratios. The left panels of Table 1.2 and 1.3 indicate that Tλ and Tγ have very low power

against the alternatives in most cases regardless of values of the variance ratio based on asymptotic

critical values. In contrast,the right panels of Table 1.2 and 1.3 disclose that the wild bootstrap version

of Tλ and Tγ have decent power against the alternatives.

In Table 1.4, we present the empirical rejection rates with block size bT = 1 and bT =
√
T/2

under various combinations of the degree of serial correlations among {xit} and {uit} under the null.

When (ρx, ρu) = (0.3, 0.3), (ρx, ρu) = (0.6, 0.3) and (ρx, ρu) = (0.3, 0.6), Table 1.4 reveals that

Wild Bootstrap scheme and Block Wild Bootstrap scheme have almost same performances on the

empirical size. If the serial correlation is very strong, the Block Wild Bootstrap scheme outperforms

Wild Bootstrap scheme significantly and has the proper size close to the nominal level.
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Table 1.2: Finite sample rejection frequency under the local alternatives
power of Tλ under H1a,NT

Based on Asy. CV Based on Wild Bootstrap
DGP N T C=1 C=2 C=3 C=1 C=2 C=3

vr=0.3 vr=0.3
3 30 30 0.011 0.020 0.073 0.066 0.176 0.356

50 0.066 0.265 0.656 0.104 0.406 0.700
100 0.332 0.921 0.999 0.292 0.866 1.000

3 50 30 0.000 0.003 0.009 0.116 0.362 0.624
50 0.013 0.090 0.382 0.166 0.644 0.934
100 0.242 0.931 1.000 0.456 0.996 1.000

3 100 30 0.000 0.000 0.000 0.198 0.626 0.922
50 0.004 0.010 0.072 0.358 0.916 1.000
100 0.175 0.911 1.000 0.698 1.000 1.000

vr=0.5 vr=0.5
3 30 30 0.015 0.032 0.070 0.078 0.184 0.306

50 0.057 0.276 0.670 0.090 0.346 0.696
100 0.296 0.902 1.000 0.306 0.894 0.994

3 50 30 0.002 0.005 0.006 0.096 0.314 0.570
50 0.015 0.119 0.359 0.176 0.576 0.912
100 0.252 0.933 1.000 0.490 0.988 1.000

3 100 30 0.000 0.000 0.000 0.196 0.564 0.920
50 0.002 0.008 0.067 0.342 0.890 0.996
100 0.170 0.924 1.000 0.748 0.728 1.000

vr=1 vr=1
3 30 30 0.031 0.062 0.097 0.056 0.152 0.280

50 0.083 0.355 0.713 0.076 0.350 0.616
100 0.336 0.941 1.000 0.246 0.846 0.998

3 50 30 0.004 0.012 0.002 0.074 0.284 0.542
50 0.027 0.027 0.390 0.158 0.602 0.892
100 0.277 0.935 1.000 0.464 0.974 1.000

3 100 30 0.000 0.002 0.000 0.184 0.544 0.864
50 0.006 0.019 0.067 0.320 0.870 1.000
100 0.197 0.932 1.000 0.722 1.000 1.000
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Table 1.3: Finite sample rejection frequency under the local alternatives
power of Tγ under H1b,NT

Based on Asy. CV Based on Wild Bootstrap
DGP T N C=0.5 C=1 C=1.5 C=0.5 C=1 C=1.5

vr=0.3 vr=0.3
3 30 30 0.157 0.658 0.961 0.144 0.528 0.870

50 0.258 0.891 0.999 0.244 0.810 0.998
100 0.387 0.973 1.000 0.304 0.938 1.000

3 50 30 0.086 0.478 1.000 0.194 0.760 0.960
50 0.180 0.866 1.000 0.322 0.962 1.000
100 0.354 0.981 1.000 0.394 0.986 1.000

3 100 30 0.041 0.261 0.756 0.272 0.916 1.000
50 0.130 0.805 1.000 0.514 0.994 1.000
100 0.302 1.000 1.000 0.542 0.998 1.000

vr=0.5 vr=0.5
3 30 30 0.208 0.672 0.971 0.144 0.526 0.862

50 0.263 0.891 1.000 0.224 0.836 0.994
100 0.364 0.979 1.000 0.272 0.928 1.000

3 50 30 0.009 0.498 0.918 0.190 0.720 0.950
50 0.179 0.875 1.000 0.318 0.940 1.000
100 0.360 0.990 1.000 0.370 0.982 1.000

3 100 30 0.029 0.273 0.763 0.326 0.944 1.000
50 0.140 0.778 1.000 0.480 0.994 1.000
100 0.294 0.988 1.000 0.542 1.000 1.000

vr=1 vr=1
3 30 30 0.176 0.637 0.965 0.134 0.496 0.870

50 0.278 0.888 1.000 0.204 0.824 0.990
100 0.369 0.977 1.000 0.318 0.948 1.000

3 50 30 0.113 0.522 0.904 0.196 0.706 0.948
50 0.222 0.869 0.999 0.288 0.924 1.000
100 0.349 0.977 1.000 0.380 0.988 1.000

3 100 30 0.040 0.261 0.765 0.290 0.904 1.000
50 0.139 0.804 0.999 0.512 0.990 1.000
100 0.287 0.990 1.000 0.530 1.000 1.000

Table 1.4: Finite sample rejection frequency under the null hypothesis
Size of Tλ under H0a Block Wild Bootstrap

(ρx, ρu)
DGP Block Size N T (0.3,0.3) (0.3,0.6) (0.3,0.9) (0.6,0.3) (0.6,0.6)

bT = 1 30 30 0.056 0.075 0.115 0.069 0.129
4 bT =

√
T/2 30 30 0.065 0.050 0.057 0.078 0.086

bT = 1 100 100 0.061 0.073 0.086 0.060 0.149
bT =

√
T/2 100 100 0.051 0.064 0.041 0.064 0.066
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1.6 Empirical Applications

In labor and demographic economics, an important study by Shimer (2001) discloses the negative

effects of youth share of working­age population on the unemployment using U.S. state­level panel

data. Skans (2005) applies the methodology of Shimer (2001) to study the effect of age distribution

on unemployment rates and finds the reverse effects of a large share of workers aged 50­60 on the

labor market in terms of higher unemployment and lower employment. Biagi and Lucifora (2005)

use a similar empirical model to figure out the relationships among demographics, education changes

and unemployment changes.

It is interesting to revisit the relation of unemployment rates and the youth shares of working­

age population because many recent researches in labor and demographic economics concern the

heterogeneous effects. As an illustrative example, following the empirical model in Shimer (2001),

it is equivalent to apply the specification tests to check the slope heterogeneity and time­varyingness

respectively.

The generalization of the empirical model in Shimer (2001) is given as below,

log rateit = ηi + ωt + βit log shareit + ϵit, (1.6 .1)

where the dependent variable log rateit is the unemployment rate in country (or state) i and year t,

and the explanatory variable log shareit is the youth shares of working­age population. Besides, ηi

and ωt are the time­specific and individual­specific fixed effects respectively. In particular, ωt aims

to capture anymacroeconomic shocks while ηi accommodates considerable cross sectional variations

in unemployment and demographics.

In order to apply our specification test statistics, we decompose βit = β + λi + γt, thus, the

corresponding null hypotheses are:

H0a: λi = 0 for all i,

and

H0b: γt = 0 for all t.
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In our empirical study, we use panel dataset1 consisting of six groups2. For each case, we collect

annual data from 1991 to 2013 for unemployment rates and youth shares of working­age popula­

tion.3Following Shimer (2001), we also calculate the youth share of working­age population as the

ratio of population ages 16­24 over population ages 16­64. We report bootstrap p­values based on

the bootstrap resamples B = 1000.

Table 1.5: Test statistics and p­values for Empirical Study
High Income Countries(N=52, T=23)

H0a H0b

Test Statistics 8.470 9.787
Bootstrap p­value 0.002 0.230
Middle Income Countries(N=87, T=23)

H0a H0b

Test Statistics 38.647 10.158
Bootstrap p­value 0.000 0.187

Upper Middle Income Countries (N=44, T=23)
H0a H0b

Test Statistics 9.042 4.721
Bootstrap p­value 0.000 0.461

Lower Middle Income Countries(N=43, T=23)
H0a H0b

Test Statistics 13.8979 5.812
Bootstrap p­value 0.000 0.849

Low Income Countries(N=32, T=23)
H0a H0b

Test Statistics 9.2184 5.205
Bootstrap p­value 0.003 0.777

All Countries (N=171, T=23)
H0a H0b

Test Statistics 38.217 15.606
Bootstrap p­value 0.000 0.073

Table 1.5 summarizes the testing results for our specification tests. We can reject the null hy­

pothesesH0a based on bootstrap p­values at significance level 5%. Meanwhile, we fail to rejectH0b

1The data is downloaded from World Development Indicators, https://databank.worldbank.org/data/source/world­
development­indicators/preview/on,and Education Statistics, https://databank.worldbank.org/data/source/education­
statistics­%5E­all­indicators/Type/TABLE/preview/on,provided by World Bank Open Data.

2low­income countries, lower­middle­income countries, upper­middle­income countries, middle income countries,
high­income countries and all countries according to classifications in World Bank Open Data

3The countries that data are not available in each case are dropped to keep panel data balanced.
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for all cases based on bootstrap p­values at significance level 5% . Therefore, it can be more rea­

sonable to consider the random coefficients panel data models to accommodate the country­specific

slope heterogeneity when we are of practical interest to have more insight on the relationship between

unemployment rates and youth share of working­age population.

1.7 Conclusion

This paper introduces a two­way linear random coefficient panel data models with both time­ and

individual­ specific fixed effects to capture slope heterogeneity and time­varyingness, in particular,

we allow for the cross­sectional dependence in ourmodel. The fixed effects included here can be arbi­

trarily correlated with explanatory variables. Therefore, our model extents the conventional random

coefficients panel data models to accommodate both variable slopes in both time­ and individual­ di­

mensions and unobserved heterogeneity. This enlarges the potentials of applications of the random

coefficients panel data models in practice.

To estimate parameters of interests, we follow the idea of the within­group fixed effects estimator

for homogeneous panel data models with fixed effects. We then establish the limiting distributions

of these estimates in the standard large N and large T framework so that practitioners can make the

inference on parameters of interests in practice. Besides, to justify the desirability of such estimation

strategy, we propose the two­way heterogeneity bias test.

Furthermore, we construct the max­type tests to examine the existence of slope heterogeneity

and time­varyingness. Our specification tests suffer from the finite­sample size distortion associated

when we use the asymptotic critical values in many cases. To rectify this issue, we employ two

bootstrap schemes for our specification tests to correct the size of specification tests. OurMonte Carlo

experiments confirm that the bootstrap implementations of our specification tests have reasonable

size and decent power against the alternatives.

Finally, as an illustrative example, we apply our specification tests to reveal the relationship be­

tween the unemployment rates and youth shares of working­age population using panel data covering
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171 countries at most and 23 years from 1991 to 2013, and testing results are in favor of the existence

of country­specific slope heterogeneity.

We conclude the paper by pointing out some possible extensions for the current paper. First, we

can replace time­ and individual fixed effects with interactive fixed effects (IFEs) to accommodate

the factor structure in our models. Second, following papers in high­dimensional statistics, we can

impose the sparse structure on random coefficients and use some regularized estimators to revisit the

two­way linear random coefficients panel data models in the current paper. Third, the group patterns

and sparsity structure can co­exist among the random coefficients. The arguments are more lengthy

for these extensions and we leave them for future research.
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Chapter 2

Testing for Idiosyncratic Bubbles in the

Presence of Nonstationary or Mildly

Explosive Factors in Panel Data Models

2.1 Introduction

Since the pioneering works of Stock and Watson (2002a), Stock and Watson (2002b), Bai and Ng

(2002), Bai (2003) and Bai (2009), panel factor models have become more and more popular in eco­

nomics and finance. By employing a panel factor model, the variable of interest can be decomposed

into a common component plus and an idiosyncratic error component. The former corresponds to the

systematic risk, while the latter is linked to the specific risk for empirical researches in economics and

finance. In the presence of speculative bubbles in the panel data, both regulators and financial ana­

lysts concern the sources of the bubbles’ explosiveness in the panel of asset prices. That is, they have

practical incentives to know whether the bubble risk arises from the individual­specific characteris­

tics or the common component. Such concerns motivate our econometric analysis of the nature of

the explosiveness of data through panel factor models in this paper. Ideally, we want to tell whether

the explosive behavior is driven by the common component or by the idiosyctractic component, or
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both.

We provide a simple but effective procedure to test the bubbles’ explosiveness in the idiosyn­

cratic components by allowing for the presence of unit­root­type nonstationary factors or mildly

explosive factors in large dimensional panel factor models. We derive the asymptotic null distribu­

tion and the asymptotic local power property of the proposed test statistic. We also provide a wild

bootstrap scheme to improve our test’s finite­sample performance. The asymptotic local power prop­

erties imply that the proposed test can detect effectively bubbles’ explosiveness in the idiosyncratic

components by exploiting the cross­sectional information in the panel data.

On the theoretical side, our study is extremely challenging due to the nonstationary behavior of

the idiosyncractic component under the null and its mildly explosive behavior under the alternatives.

Recently, Onatski and Wang (2020) have found highly persistent idiosyncratic components may lead

to spurious factors in panel data models. These spurious factors are likely to be misidentified as

common factors by existing principal­component­based (PC­based) method. Therefore, in order to

disentangle the sources of the bubbles’ explosiveness within the framework of panel factor models, it

is of great importance to test the bubbles’ explosiveness in idiosyncratic components as the first step.

Besides, by virtue of spurious factors, the prevailing tests for the idiosyncratic bubbles can suffer from

a lack of power against some alternatives when empirical researchers over­extract common factors

in practice. In contrast, Monte Carlo simulations show that the wild bootstrap implementation of our

proposed test has an appropriate size and non­trivial power in detecting idiosyncratic bubbles despite

the issue caused by spurious factors.

As an empirical illustration, we apply the proposed test to investigate the explosiveness in the

panel of cryptocurrencies’ daily prices from November 15, 2017, to January 31, 2018. We find

no evidence of idiosyncratic bubbles’ explosiveness in the cryptocurrency prices during this period

and discover that the bubbles’ explosiveness in the first estimated factor by the classical time­series

approach.

Our paper is closely related to three lines of studies on panel data models.

First, our paper contributes to the growing literature on the panel factor models with possibly
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explosive factors. Representative works include Horie and Yamamoto (2016), Chen et al. (2019),

and Peng et al. (2020). In particular, Horie and Yamamoto (2016) and Chen et al. (2019) also discuss

the detection of the bubbles’ explosiveness within the framework of panel factor models. It is worth

mentioning that Horie and Yamamoto (2016) consider tests for the bubbles’ explosiveness in the

common factors and idiosyncratic components separately, but their tests for the idiosyncratic com­

ponents are conducted series­by­series and thus do not take advantage of the cross­section dimension

of panel data effectively. In contrast, our test for the explosiveness of the idiosyncratic component is

a panel approach and the asymptitic local power analysis of our test reveals that the cross­sectional

information indeed enhances the power of our test against the alternatives. In addition, Horie and

Yamamoto (2016) recommend determining the working number of factors by existing information

criteria. But we find that the PC­based information criteron tends to underestimate the number of

factors due to one or two overwhelming dominant factors in the real data. The under­extraction of

true factors can result in the oversize of the idiosyncratic tests in Horie and Yamamoto (2016). In

contrast, Chen et al. (2019) implement Phillips, Shi and Yu’s (2015, PSY hereafter) procedure to test

the presence of bubbles in the first estimated factor series by assuming that the idioyscrtic error term

processes are stationary. In the case where the idiosyncratic components are mildly explosive but

common factors follow unit root or stationary processes, their methodology can potentially attribute

the source of bubbles’ explosiveness to the common factors due to spurious factors caused by highly

persistent series in the idiosyncratic components. In some sense, our work complements that of Chen

et al. (2019). Only in the absence of mildly explosive and unit­root­type nonstationary behavior in

the idiosyncratic components, can their test have the right interpretation.

Second, our paper is linked with the large literature on nonstationary panel data models. Bai

(2004) shows that latent factors, factor loadings, and common components can be estimated con­

sistently by the PC method if all factors follow unit­root processes in the presence of stationary

idiosyncratic components. Bai and Ng (2004) propose a novel PANIC procedure to test the null of

unit root separately in the common and idiosyncratic components for data of interest. Breitung and

Das (2008) explore the theoretical properties and practical performances of the unit root test for panel
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factor models under various cases. Bai and Ng (2010) provide more alternative approaches to test

the null of unit root for the nonstationary panel data models. In this paper, we allow for the bubbles’

explosiveness in the common component and the idiosyncratic error component and thus extend the

methodology in Bai (2004) and Bai and Ng (2004) to explosive panel data. We show that PC esti­

mation can still yield consistent estimates of unobserved factors and factor loadings for the restricted

model under the null. Our proposed test exploits the potentials of PANIC Pool Tests (PPT ) in Bai

and Ng (2010) to test the idiosyncratic bubbles’ explosiveness.

Third, our paper is implicitly tied to panel data models with interactive fixed effects (IFEs);

see, e.g., Bai (2009), Moon and Weidner (2015), and Miao et al. (2020). After the quasi­difference

transformation of the generic model considered in the paper, the model turns out to be a dynamic

panel data model with IFEs and heterogeneous explosive coefficients. Besides, our technical lemmas

reveal that the PC estimation is still consistent for the first­differenced form of the restricted model

under the null even if the unobserved common factors are mildly explosive but fairly weak. In

contrast, Onatski (2009) studies the inconsistency of PC estimation for panel factor models when the

unobserved common factors are stationary but very weak.

The remainder of the paper is structured as follows. In Section 2.2, we formally introduce our

model, hypotheses, and estimation strategy. Section 2.3 reports the main theoretical results. Section

2.4 presents the information criterion for the determination of the working number of factors. In

Section 2.5, we conduct Monte Carlo experiments to evaluate the finite sample performance of the

proposed test. We apply the proposed test to study the cryptocurrency daily prices in Section 2.6.

Section 2.7 concludes. Proofs of themain results in the paper are relegated to the Appendix B. Further

technical details are also provided in the Appendix B.

NOTATION. Throughout the paper we adopt the following notation. For an rectangular real

matrix A ∈ Rm×n, we denote its transpose as A′, its trace as trA, its Frobenius norm as ∥A∥(
≡ [tr (A′A)]1/2

)
, and its spectral norm as ∥A∥sp

(
≡
√
φ1 (A′A)

)
, where ≡ means “is defined as”

and φk(·) denotes the k­th largest eigenvalue of a real symmetric matrix by counting eigenvalues

of multiplicity multiple times. We also use φmin and φmax to stand for the minimum and maximum
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eigenvalues of a symmetric real matrix. Let diag(a1, . . . , am) represent aRm×m diagonal matrix with

entries a1, . . . , am on its diagonal. We write A ≍ B if there exist some finite positive constants c

and C such that c|A| ≤ B ≤ C|A|. Besides, M stands for a generic large positive constant that

may vary across lines. The operator P→ denotes convergence in probability, d→ convergence in dis­

tribution, and plim probability limit. We use I (·) to denote the usual indicator function. For a full

rank N × R matrix F with N > R, we denote the corresponding orthogonal projection matrices as

PF = F (F ′F )−1 F andMF = IN − PF , where IN denotes the N ×N identity matrix. Besides,

let all the time­series observations for each individual are available from period 1 to period T.

2.2 Basic Framework

2.2.1 The model

We consider the following panel factor model

Xit = λ0′
i F

0
t + eit, (2.2 .1)

where i = 1, . . . , N, t = 1, . . . , T, Ft and λi are R0 × 1 vectors of factors and factor loadings,

respectively, and eit is the idiosyncratic error term. (2.2 .1) also can be rewritten in matrix form

X = Λ0F 0′ + e, (2.2 .2)

whereX = (Xit) denotes a N × T matrix. F 0 = (F 0
1 , . . . ,F

0
T )

′ is a T × R0 matrix of unobserved

factors, Λ0 = (λ0
1, . . . ,λ

0
N)

′ is an N × R0 matrix of factor loadings, and e represents an N × T

matrix of idiosyncratic shocks.

We assume the unobserved common factors are generated as follows:

(1− ρ0
0L)F

0
t = C(L)ut, (2.2 .3)
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whereρ0
0 =diag(ρ001, . . . , ρ00R0

),L is lag operator,C(L) = (C1(L), . . . , CR0(L)) , Cr(L) =
∑∞

j=0Cj,rL
j

with C0,r = 1 for r = 1, . . . , R0, and ut represents the error process in (2.2 .3). Throughout this pa­

per, we consider two cases: (i) ρ00,r > 1 for r = 1, . . . , R0, and (ii) {ρ00,r}
R0
r=1 are all equal to 1.

The idiosyncratic components are generated by similar autoregressive processes,

(1− ρ0iL)eit = Di(L)ϵit, (2.2 .4)

where ρ0i is the AR coefficient, Di(L) =
∑∞

j=0DijL
j with Di0 = 1 for ∀i, and ϵit represents the

error process in (2.2 .4).

2.2.2 Hypotheses and estimation of the restricted model

The null hypothesis of interest is

H0 : ρ
0
i = 1 for ∀i = 1, . . . , N. (2.2 .5)

The alternative hypothesis is

H1 : ρ
0
i > 1 for some i. (2.2 .6)

That is, we allow for explosive behavior under the alternative but not under the null. In the case of

failure to reject the null, we can conclude the explosive behavior in the data is driven by that of the

common factors. Under the alternatives, both the common factors and the idiosyncratic component

can contribute to the explosiveness of {Xit} .

To construct a residual­based test statistic for H0, we propose to estimate the factors and factor

loadings under the null and obtain the residuals based on (2.2 .1). For brevity, throughout this paper,

let Cr(L) = 1 for r = 1, . . . , R0 and Di(L) = 1 for i = 1, . . . , N . Under the null, we can rewrite
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the restricted model as follows:

Xit = λ0′
i F

0
t + eit,

F 0
t = ρ0

0F
0
t−1 + ut,

eit = ρ0i eit−1 + ϵit. (2.2 .7)

Remark 2.1. As mentioned in Section 2.1, the model under study is closely linked with panel data

models with IFEs. Note that

Xit = ρ0iXit−1 + λ0′
i F

0
t − ρ0iλ

0′
i F

0
t−1 + ϵit

= ρ0iXit−1 + δ0′
i G

0
t + ϵit, (2.2 .8)

where δ0
i = (λ0′

i , ρ
0
iλ

0′
i )

′ and G0
t = (F 0

t ,F
0′
t−1)

′. When ρi = ρ < 1 for all i and all factors in F 0
t

are stationary, the above model specifies a linear dynamic panel data model with IFEs studied by

Moon and Weidner (2015) and Lu and Su (2016), among others. When ρi > 1 or =1 and the factors

are nonstationary or mildly explosive, one may be tempted to estimate ρ0i along with the factors and

factor loadings based on (2.2 .8). But we find that it is extremely challenging, if possible at all, to

study the asymptotic properties of such estimators. In this paper, we follow Bai and Ng (2004) and

Lu and Su (2016) consider the estimation of the factors based on the first­diffference transformation

of Xit instead. We allow the possible explosiveness of factors but do not need to assume the factors

to be strong. We follow the lead of De Mol et al. (2008), Onatski (2012) and Freyaldenhoven (2019)

and define the intensity of factors via the convergence rate of cummulative factor loadings and find

that the factors can be estimated consistently as long as the intensity is not low.

Let Zit = Xit −Xit−1. Noting that under H0, we have

f 0
t ≡ F 0

t − F 0
t−1 = (ρ0 − IR0)F

0
t−1 + ut ≡ B0

t + ut, (2.2 .9)
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and

Zit = λ0′
i f

0
t + ϵit = λ0′

i B
0
t + λ0′

i ut + ϵit. (2.2 .10)

Based on (2.2 .10), we consider the PCA estimation of the factors B0
t and factor loadings λ0

i by

assuming the true number of factors R0 is known and by treating the sum, λ0′
i ut + ϵit, as a pseudo

error term. That is, we pretend to estimate B0
t instead of f 0

t in the case of explosive factors. This

will faciliate the analysis when the factors are mildly explosive so that B0
t dominates ut. But such

a treatment does not affect the immediate and final results as long as the rotation matrix for the PC

estimates of factors and factor loadings is appropriately defined. For related work, see Peng et al.

(2020) for a more general treatment for mixed and general factors in panel data models with IFEs.

We will propose an information criterion to determine the working number of factors in Section 2.4.

Let Zi = (Zi1, . . . , ZiT )
′ and Z = (Z1, . . . ,ZN)

′ . Following Bai and Ng (2004), we apply the

PC estimation to ΣZ,N ≡ N−1Z ′Z. Let (B̂, Λ̂) denote the solution to the following minimization

problem:

min
B,Λ

1

N
(Z −ΛB′)

′
(Z −ΛB′) ,

s.t. J −2
B B′B = IR0 and Λ′Λ = diagnoal matrix, (2.2 .11)

where JB is a user­specific choice normalization constant.

Remark 2.2. In the case where the factors follow a unit root process, the above PCA estimates the

stationary factor difference f 0
t (= ut) and the factor loadings, the ideal choice of JB is

√
T (see Bai

and Ng (2004)). But we allow F 0
t to be mildly explosive here. In this case, we allow JB to be any

scalar that is larger than
√
T in order (e.g., T ). As shown in Appendix B.1, the convergence rate of

factor loadings estimates will be affected by JB while the convergence rate of factor estimate is not

affected by JB for the restricted model under the null.

Given B̂ in (2.2 .11), we obtain the estimate of factor loadings λ0
i by λ̂i = (B̂′B̂)−1B̂′Zi for
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i = 1, ..., N . Define the residual ϵ̂it = Zit − λ̂′
iB̂t. Define for t = 2, . . . , T ,

êit =
t∑

s=2

ϵ̂is, and F̂t =
t∑

s=2

B̂s. (2.2 .12)

We will show that B̂t estimates f 0
t consistently up to a well­defined rotation matrixH . So F̂t serves

as an estimate of F 0
t .

2.2.3 A test statistic for detecting bubbles in the idiosyncratic components

To proceed, we add some notations. Let êi = (êi1, . . . , êiT )
′ and êi,−1 = (êi,0, . . . , êi,T−1)

′ . Let

ê = (ê1, . . . , êN)
′ and ê−1 = (ê1,−1, . . . , êN,−1)

′. Define

ρ̂ =
tr
(
ê′
−1ê
)

tr
(
ê′
−1ê−1

) , and σ4
ϵ = lim

N→∞

1

N

N∑
i=1

σ4
i , and σ2

ϵ = lim
N→∞

1

N

N∑
i=1

σ2
i ,

where σ2
i =Var(ϵit).

Following the lead of Bai and Ng (2010), we define the so­called PANIC Pooled Tests (PPT )

statistic as follows:

PPT =
σ2
ϵ

√
2
(
σ4
ϵ

)1/2√NT (ρ̂− 1) . (2.2 .13)

Under the null hypothesis H0, we will show that PPT is asymptotically standard normally dis­

tributed. This result is not surprising when both the common factors and idiosyncratic components

follow unit­root processes: Bai and Ng (2010) obtain the same limiting null distribution for such as

case. But our major focus is on the case where the common factors are mildly explosive. It is good

that we still have the standard normal limiting null distribution in this case.

The test statistic PPT in (2.2 .13) is infeasible because σ2
ϵ and σ4

ϵ are unavailable in practice. To

obtain a feasible test statistic, we can obtain the consistent estimates of σ2
ϵ and σ4

ϵ as follows:

σ̂2
ϵ =

2

NT 2

N∑
i=1

T∑
t=2

t−1∑
s=1

ϵ̂2is and σ̂4
ϵ =

2

NT 2

N∑
i=1

T∑
t=2

t−1∑
s=1

ϵ̂2isϵ̂
2
it.
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A feasible version of PPT is defined as follows:

P̃PT =
σ̂2
ϵ

√
2
(
σ̂4
ϵ

)1/2√NT (ρ̂− 1) . (2.2 .14)

P̃PT is asymptotically equivalent to PPT provided that we can establish the consistency of σ̂2
ϵ and

σ̂4
ϵ .

2.3 Asymptotic Properties

In this section, we first present a set of basic assumptions to derive the asymptotic properties of the

statistic PPT . Then we study the asymptotic null distribution and local power properties of PPT .

2.3.1 Basic assumptions

Let ϵt = (ϵ1t, . . . , ϵNt)
′ , ut = (u1t, . . . , u1R0)

′ , ϵ = (ϵ′1, . . . , ϵ
′
T )

′ and u = (u′
1, . . . ,u

′
T )

′. Let

Fu
NT,t ≡ σ

(
u1, . . . ,ut, ϵ,Λ

0
)
denote the minimal σ­algebra with

(
u1, . . . ,ut, ϵ,Λ

0
)
. Similarly,

let F ϵ,i
NT,t ≡ σ({ϵjt, . . . , ϵj1}Nj=1, {ϵj,t+1}Nj=1,j ̸=i,u,Λ

0). Let γN (s, t) =
∑N

i=1E (ϵisϵit) and ζs,t =

E
∣∣∣N−1/2

∑N
i=1 [ϵisϵit − E (ϵisϵit)]

∣∣∣4 .
Assumption A2.1. (a) The process {(ϵt,ut), t ≥ 0} is α­mixing across t with mixing coefficient

αij(|t − s|) between {ϵit} and {ϵjs} and mixing coefficient αi(|t − s|) between {(ϵit,ut)} and

{(ϵis,us)} . Assume that

N∑
i=1

N∑
j=1

T∑
t=1

(αij(t))
δ/(4+δ) = O(N),

N∑
i=1

N∑
j=1

(αij(0))
δ/(4+δ) = O(N), and max

i
αi(t) = O

(
t−θ
)
,

where δ > 0 is chosen such that E ∥ωit∥4+δ < M with ωit ∈ {λ0
i ,ut, ϵit} and θ > (4 + δ)/δ.

(b) E
(
ut | Fu

NT,t−1

)
= 0 a.s., E

(
utu

′
t | Fu

NT,t−1

)
= E (utu

′
t) = Σu, and 0 < c < φmin (Σu) ≤

φmax (Σu) < c̄ <∞ , where c and c̄ are some generic finite constants.
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(c) E
(
εit | F ϵ,i

NT,t−1

)
= 0 a.s., and E

(
ε2it | F

ϵ,i
NT,t−1

)
= E (ε2it) = σ2

i ≤ M a.s. for some finite

constantM.

(d) E ∥F 0
0 ∥

2 ≤M.

Assumption A2.2. (a) λ0
i is random such that E ∥λ0

i ∥
2 ≤ M, (b) N−pΛ0′Λ0 p→ Σλ such that such

that 0 < c < φmin (Σλ) ≤ φmax (Σλ) < c̄ <∞, (c) 1
2
< p ≤ 1.

Assumption A2.3. (a) maxt
∑T

s=1 |γN (s, t)| = O(N), (b) maxs,t ζs,t ≤ M , (c) maxiE |ei0| ≤ M ,

(d) ∥ϵ∥sp = Op(
√
N +

√
T ).

Assumption A2.4. {λ0
i } , {ut} , and {ϵjs} are three groups of mutually independent stochastic vari­

ables for every (i, j, s, t).

Assumption A2.5. (a) ρ00,r = 1 + cr
κT

for r = 1, ..., R0, where cr ≥ 0, kT → ∞, kT/T → 0 and

|cr,max − cr,min| = Op

(
κT

T

)
with cr,min = min{c1, . . . , cR0} and cr,max = max{c1, . . . , cR0} . (b)

Cr(L) = 1 for ∀r and Di(L) = 1 for ∀i.

Assumption A2.6. Υ1 ≡plim(N,T )→∞

(
B0′B̂J −1

T

)−1

(B0′B0) Λ0′Λ0

Np

(
B0′B̂J −1

T

)
(ρ0

0)
−2T exists

such that 0 < c < φmin (Υ1) < φmax (Υ1) < c̄ <∞ for all B̂ ∈ {B : J −1
B B′B = IR0}.

Assumption A2.1, A2.2, and A2.3 impose moments conditions on the error terms, factors, fac­

tor loadings. They are widely used in the literature; see, e.g., Bai and Ng (2004) and Peng et al.

(2020). In particular, the martingale difference sequence (m.d.s.) condition in Assumption A2.1(b)­

(c) simplifies our theoretical analysis. It can be removed at the cost of more complicated analysis. In

Assumption A2.2(b), the quantity p represents the strength of the factors. When p = 1, the factors

are pervasive and thus termed as strong factors. This is the case that has been widely considered in

the literature; see, e.g., Bai and Ng (2002), Bai (2003), and Fan et al. (2013). When p < 1, the factors

are coined as weak factors; see, De Mol et al. (2008), Onatski (2012), and Freyaldenhoven (2019),

among others.

Assumption A2.4 follows Assumption D in Bai and Ng (2004). Assumptions A2.5(a)­(b) are

similar to Assumption 5 in Horie and Yamamoto (2016). Assumptions A2.5(b) will allow us to
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ease the exposition of our analysis. Moreover, Assumption A2.6 is a technical assumption for the

theoretical analysis.

Remark 2.3. Assumption A2.5(a) allows for the general case that the degrees of explosiveness in

factors are different. According to the results in the next subsection and the Appendix B, {ρ00r}
R0
r=1

plays no role in the asymptotic null distribution and the asymptotic power property of the proposed

test statistic explicitly, although it plays a role in some immediate results. Thus, the different degrees

of explosiveness in the factors do not affect the first order asymptotic properties of the proposed test

statistic. However, in practice, heterogeneous explosiveness in factors will matter for the proposed

test’s finite­sample performance. The intuition behind this statement is straightforward as follows.

When the true number of factorsR0 is not available, we can obtain the working number of factors

R̂ by employing existing information criteria. Without loss of generality, under the alternatives,

we suppose {ρ00r}
R0
r=1 are widespread in the interval [1.01, 1.09] , and {ρ0i }Ni=1 are all larger than 1.

In finite samples, the sample eigenvalues from the common components can be very close to the

sample eigenvalues from idiosyncratic components. In the random matrix theory, this means that

the spikes of the covariance matrix (NT )−1Z ′Z are not well separated from the bulks. As pointed

out by Dobriban (2017), such phenomena are universal in high dimensional data. Thus, R̂ usually

will be overestimated under the alternatives. The more factors are extracted from the data under

the alternative, the more under­rejections the proposed test statistic might have. In a related study,

Onatski and Wang (2020) document that the classical left­tail unit root test for panel data models

severely overrejects the null of unit root because of the over­extraction of factors in their simulation

studies.

2.3.2 Asymptotic null distribution

To establish the null distribution of PPT , we add the following assumption.

Assumption A2.7. (a) κTN1/2/T → 0.

(b) (1) p > 1/2 if ρ00,r > 1 for all r = 1, . . . , R0, and (2) p = 1 if ρ00,r = 1 for all r = 1, . . . , R0.
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Assumption A2.7(a) impose conditions on the rates at which N and T pass to infinity. Assump­

tion A2.7(a) is not restrictive compared to N/T → 0 used in Bai and Ng (2010) and Westerlund

(2015). We can even allow N and T to pass to infinity at identical rates. For example, Horie and

Yamamoto (2016) mention that a typical form of κT is κT = T τ with 0 < τ < 1, when τ is ap­

propriately small, Assumption A2.7(a) holds obviously even if N and T pass to infinity at identical

rates. Bai and Ng (2010) and Westerlund (2015) obtain the asymptotic normality of PPT through

the asymptotics of linear processes despite they require N/T → 0 to deal with additional terms in

the the Beveridge­Nelson decomposition. Similarly, Assumption A2.7(a) above is the cost we pay

to the additional terms due to the presence the mildly explosive factors in our theoretical analysis.

Besides, ourMonte Carlo simulations in Section 2.5 show that our bootstrap­based test performs well

in terms of well­controlled size and high power against the alternatives for various combinations of

N and T .

Assumption A2.7(b) imposes the lower limit 1/2 for p when factors are mildly explosive. This

condition is necessary for deriving the null distribution of PPT . Assumption A2.7(b) implies that

the intensity of signals from the common components should be moderately strong compared to

that of signals from the idiosyncratic components, although unobserved common factors are mildly

explosive. Under Assumption A2.7(b), we do not need to distinguish whether factors are mildly

explosive or nonstationary when we implement the proposed test in practice. This greatly enlarges

the potential scope for the application of our test.

The following theorem states the asymptotic null distribution of PPT.

Theorem 2.3.1. Suppose that Assumptions A2.1–A2.7 hold. Then as (N, T ) → ∞, PPT
d−→

N (0, 1) under H0.

As a direct consequence of Theorem 2.3.1, we can readily obtain the asymptotic normality of

P̃PT in (2.2 .14). The corollary below states this result formally.

Corollary 2.3.2. Suppose that Assumptions A2.1–A2.7 hold. Then as (N, T ) → ∞, P̃PT d−→

N (0, 1) under H0.
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Given the result in Corollary 2.3.2 and noticing that our test is a one­sided test, we can reject the

null when P̃PT is sufficiently large, say larger than the associated normal critical value at a given

significance level.

2.3.3 Asymptotic power property

To analyze the asymptotic local power property of PPT , we consider the following sequence of

Pitman local alternatives:

H1NT : ρi = 1 +
ci

TN1/2
for i = 1, ..., N.

Assumption A2.8 specifies conditions on ci’s that contribute to the nontrivial local power of our test.

Assumption A2.8. (a) ci ≥ 0 for each i, (b) µ ≡ limN→∞N−1
∑N

i=1 ciσ
2
i > 0.

AssumptionA2.8(a) implies that we restrict our attention to the one­sided local laternative, namely,

we only consider mildly explosive idiosycratic error terms under the local alternative. Assumption

A2.8(b) implies that the alternatives cannot be sparse in order for the concentration parameter µ to be

positive. If there are only o (N) individual time series {eit, t ≥ 0} that exhibit mildly explosiveness

with ci > 0, the concentration parameter µ is zero and our test will lose power in this case. In the

case of such sparse alternatives, one could consider alternative supremum­type of test, or augment

our test with such a sup­test. See, e.g., Fan et al. (2015). We leave this as a future work.

Theorem 2.3.3 below studies the asymptotic local power property of our test.

Theorem2.3.3. Suppose that Assumptions A2.1­A2.8 hold. Then as (N, T ) → ∞,we have P̃PT d−→

N (µ̄, 1) under H1NT , where µ̄ = µ σ2
ϵ√

2(σ4
ϵ)

1/2 .

Theorem 2.3.3 indicates that our PPT test has nontrivial power to detect local alternative con­

verging to the null at rate T−1N−1/2. In contrast, the series­by­series test of Horie and Yamamoto

(2016) can only detect local alternatives converging to the null at rate T−1. This indicates the benefit
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of pulling all cross­section units together to conduct a joint test for the possible explosive behavior

in the idiosyncratic errors.

It is worth mentioning the non­centrality parameter µ̄ in Theorem 2.3.3 is different from that in

Westerlund (2015). The main reasons are as follows. In the current paper, {ci} are treated as the

constant, and further we allow for the Pitman’s local alternatives converging at the parametric rate

T−1N−1/2. Contrarily, Westerlund (2015) assumes {ci} are random variables, and accommodates

Pitman’s local alternatives converging at the parametric rate T−1N−v with v ≥ 0.

2.3.4 A bootstrap version of the test

The estimates of the factors and factor loadings may converge to the null slowly in the presence of

weak factors. To improve the finite sample performance of our test, we propose a bootstrap version

of our test. The test is in the spirit of fixed­regressor wild bootstrap that has been widely used in the

literature. The algorithm is given below.

Algorithm 2.1: Wild Bootstrap

1. GivenR0, obtain the PC estimator (B̂, Λ̂) under (2.2 .10), and calculate P̃PT based on (2.2 .14).

2. Obtain the bootstrap errors ϵ∗it = ϵ̂itςit for i = 1, . . . , N and t = 1, . . . , T , where ςit’s are i.i.d.

Racdmercher sequences such that ςit has a 0.5 chance of being 1 and a 0.5 chance of being−1.

Generate the bootstrap analogue Z∗
it of Zit by holding (B̂, Λ̂) as fixed in the bootstrap world:

Z∗
it = λ̂′

iB̂t + ϵ∗it for i = 1, . . . , N and t = 1, . . . , T .

3. Obtain the PC estimator (B̂∗, Λ̂
∗
) based on {Z∗

it} and calculate P̃PT
∗
, the bootstrap analogoue

of P̃PT , based on this bootstrap estimate and {Z∗
it}.

4. Repeat Step 2 and 3 B times and denote the resulting bootstrap test statistics as {P̃PT
∗
b}Bb=1.

Obtain the bootstrap p−value as p∗ = B−1
∑B

b=1 I
{
P̃PT

∗
b > P̃PT

}
,where I {·} is the usual

indicator function.
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When R0 is unknown, we can estimate it by R̂ by using Algorithm 2.2 in the next section. Then

we use R̂ to replace R0 in the above algorithm. This will not create any theoretical problem under

the null but may cause power loss under the alternative.

The following theorem establishes the asymptotic validity of the above bootstrap test.

Theorem 2.3.4. Suppose that Assumptions A2.1–A2.7 hold. Then P̃PT
∗ D∗
→ N(0, 1) in probability,

where D∗
→ denotes weak convergence under the bootstrap probability measure conditional on the

observed sample Z = {Zit}.

Theorem 2.3.4 shows that the bootstrap provides an asymptotic valid approximation to the limit

null distribution of P̃PT . This holds because we generate the bootstrap data by imposing the null

hypothesis in Step 2.

Remark 2.4. As indicated by Su andWang (2017), the fixed­design wild bootstrap schememay only

apply to the case that {eit} have no cross­sectional dependence or only exhibit weak cross­sectional

dependence. Hence, Su and Wang (2017) propose an alternative bootstrap scheme to accommo­

date mildly or strong cross­sectional dependence among {eit}. The key idea is to use Σê, defined

as Σê = 1
T

∑
t êtê

′
t, to capture the cross­sectional dependence in bootstrap world. However, such

treatment may not apply to our current study because Σê fails to intimate the original cross­sectional

dependence accurately when common factors {Ft} or idiosyncratic components {eit} follow explo­

sive processes. We leave it for our future work to extend the alternative bootstrap procedure in Su

and Wang (2017) to panel factor models with mildly explosive factors.

2.4 Determination of the Working Number of Factors

In this section, we first present an information criterion to determine the working number of factors

for the proposed test and then discuss the effects of the working number of factors on the size and

power of our proposed test.
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2.4.1 Transformed double ridge ratio criterion

To implement thePPT test in practice, one generally needs to estimate the true number of factorsR0.

We aim to propose a criterion function based on the eigenvalues associated with the first­differenced

data matrix Z. Let Rmax ≥ R0 denote the largest possible number of factors. Let cridge and δridge be

two small but positive ridge parameters.

We follow the lead of Xia et al. (2017) and Zhu et al. (2020) and propose a transformed double

ridge ratio (TDRR) criterion to determine the working number of factors. The procedure is summa­

rized in Algorithm 2.2 below.

Algorithm 2.2: Transformed Double Ridge Ratio (TDRR) Criterion

1. Let φNT,k be the k­th eigenvalue of the matrix (NT )−1∑N
i=1Z

′
iZi. Calculate

φ∗
NT,k = ln

(
1 +

φNT,k

Wk−1

)

whereWk =
∑min(N,T )

r=k+1 sNT,r.

2. Calculate

φ∗∗
NT,k =

φ∗
NT,k + cridge

φ∗
NT,k+1 + cridge

− 1 and DRRk =
φ∗∗
NT,k+1 + δridge

φ∗∗
NT,k + δridge

,

where cridge and δridge are two small positive ridge parameters to avoid devision by zero.

3. Estimate R0 by R̂ = R̃ + 1 where R̃ = argmax1≤k≤Rmax DRRk.

It is a practical challenge to avoid underestimation of the working number of factors in the cur­

rent framework. If some genuine factors are overwhelmingly strong, other geniune ones become

relatively weak so that it is extremely hard for them to be detected by some prevailing methods such

as the variants of the scree test that search for a gap separating small from large eigenvalues. Do­

briban and Owen (2019) coin this phenomenon as shadowing and indicate that shadowing is common

in financial data like stock returns. We also witness shadowing in our unreported simulations when

mildly explosive common factors {F 0
t } or idiosyncratic components {eit} are present.
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Algorithm 2.2 is motivated from the thresholding double ridge ratio (TDRR) approach of Zhu

et al. (2020). To alleviate the longstanding problem of underestimation of the dimensionality of a

model via existing eigenvalue­based criteria, Zhu et al. (2020) propose the TDRR criterion that can

proivde a consistent estimate even when there are several local minima or weak factors. A reason

behind the underestimation is that some largest estimated eigenvalues are often dominating and the

other estimated eigenvalues are close to each other in magnitude, no matter whether they are nonzero

or not at the population level. The TDRR criterion relies on the eigenvalue compression that can,

to certain extent, alleviate the eigenvalue domination effect. It can further make the ratio at the true

order be well separated from the other ratios by better exaggerating the difference beween the ratio at

the true dimension and the other ratios. In comparison with the TDRR approach in Zhu et al. (2020),

the main modification in Algorithm 2.2 lies in the monotonic transformation of eigenvalues in Step

1. Specifically, we adopt the monotonic transformation suggested by Xia et al. (2017) to narrow

the difference between adjacent eigenvalues sufficiently in the absolute magnitude. Besides, unlike

the approach in Zhu et al. (2020), we find the location of maximum value among {DDRk} because

such treatment leads to more reliable choices of the working number of factors in our unreported

simulations.

Under the null, we can prove the consistency of R̂ in Algorithm 2.2 for R0 ≥ 2 by following

the proof strategy in Zhu et al. (2020). To achieve compression, the monotonic transformation of

eigenvalues in Zhu et al. (2020) is deliberately chosen, our choice of deliberately­chosen monotonic

transformation in Algorithm 2.2 plays the same role in dealing with the effect of overwhelmingly

dominant factors. We refer the readers to Zhu et al. (2020) for details.

Remark 2.5. We have some remarks on Algorithm 2.2 as follows.

(1) The TDRR is designed to estimate the true number of factors whenR0 ≥ 2. In case ofR0 = 1,

Step 3 in Algorithm 2.2 implies R̂ ≥ 2 holds and thus R̂ > R0 for sure. But this is not a

severe issue under the null, although the over­extraction of factors is likely to spoil the power

of the proposed test statistic under the alternatives. Our Monte Carlo simulations in Section
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2.5 indicate that a wild bootstrap implementation of the proposed test statistic still exhibits

good size and power properties in almost all cases under our investigation.

(2) In our unreported simulations, except for the monotonic transformation used in Step 1 in Al­

gorithm 2.2, other monotonic transformation functions such as arctan(·) and standard normal

distribution function Φ (·) are also considered. When other functions are used, under the null,

the test statistic also has desired size and the rate of choosing R0 is very high. However, the

power of the proposed test statistic is not as satisfactory as that with the current choice of mono­

tonic transformation under the alternatives. Therefore, Algorithm 2.2 is proposed to balance

the trade­offs between the size and power of the proposed test statistic.

(3) A user­specified parameter Rmax is set to avoid outliers in DRRk for k = 1, . . . ,min(N, T )

in Algorithm 2.2 like other information criteria such as PC and IC in Bai and Ng (2002).

(4) Following Zhu et al. (2020), we recommend setting the two ridge parameters as follows:

cridge = lnT/(10
√
T ) and δridge = lnT/(5

√
T ). The optimal choices of ridge parameters

or the data­driven choices of ridge parameters are left for future research.

2.4.2 The effects of the working number of factors on the size and power of

the proposed test

In this subsection, we reason that it is unnecessary to know the true number of factors (R0) to im­

plement our proposed test in Algorithm 2.1 for detecting the bubble’s explosiveness in idiosyncratic

components in practice. When we use the working number of factors R̂ in Algorithm 2, we expect

that our proposed test still performs well with the correct size under the null and non­trivial power

against the alternatives.

Let ∆eit = eit − eit−1 = (ρi − 1)eit−1 + ϵit. Under the null hypothesis, ∆eit = ϵit and by by

(2.2 .10), thus

Zit = λ0′
i

(
B0

t + ut

)︸ ︷︷ ︸
R0 true factors

+ϵit. (2.4 .1)
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In practices, the true number of factors R0 is usually unknown. Then we can apply Algorithm 2.2 to

obtain the working number R̂ of factors. Obviously, when R̂ = R0 holds, PPT is supposed to have

desired size and non­trivial power against the alternatives. When R̂ > R0, we conjecture that we

can extend the work of Moon and Weidner (2015) and Lu and Su (2016) to our framework and show

that the null distribution of PPT is unchanged. Intuitively, when R̂ > R0, the residuals {ϵ̂it} still

maintain the same first order statistical properties as the original sequences {ϵit}, and as result, the

PPT statistic that is based on the residuals {ϵ̂it} also follows the same null distribution. On the other

hand, if R̂ < R0 is chosen under the null, as long as the factors are mildly explosive, the residuals

{êit} will contain information on omitted factors and thus tend to be mildly explosive too, leading to

the over­rejections of the test.

Under the alternative hypothesis, ρi > 1 for some i, the exact determination of the number of

true factors becomes difficult due to the occurrence of spurious factors as documented by Onatski

and Wang (2020). Note that ∆eit = (ρi − 1)eit−1 + ϵit ̸= ϵit when ρi > 1 and

Zit = λ0′
i

(
B0

t + ut

)︸ ︷︷ ︸
R0 true factors

+ ∆eit︸︷︷︸
error term with high persistency

. (2.4 .2)

It is easy to see {∆eit, t ≥ 1} may be highly persistent when {eit, t ≥ 0} is mildly explosive. This

can also be verified by regressing ∆eit on eit−1. As a result, the PC estimation suffers from the

serious issue of spurious factors. As Onatski and Wang (2020) argue, difference­stationary series

can be approximated by Wiener processes, and much of the variation in ∆eit can be captured by a

few of the trigonometric functions corresponding to the first few terms in the Karhunen­Loève (KL)

expansion. Following Onatski and Wang (2020), we can rewrite (2.4 .2) as follows

Zit = λ0′
i

(
B0

t + ut

)︸ ︷︷ ︸
R0 true factors

+ Γ′
iWt︸ ︷︷ ︸

spurious factor structure withK factors

+ spurious error terms, (2.4 .3)

whereWt represents a few of the trigonometric functions. By the extensive Monte Carlo simulations

in Onatski and Wang (2020) for highly persistent time series, K often equals to 2 or 3 in practice.
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Under the alternatives, once the working number of factors R̂ satisfies R̂ < R0 + K, the residuals

{êit} defined in (2.2 .12) are still explosive to drive the PPT test statistic to diverge to infinity.

In general, as along as R̂ < R0 + K, PPT still has non­trivial power against the alternatives.

Our simulation results in Section 2.5 imply R̂ obtained from Algorithm 2.2 typically meets such a

requirement, which ensures the good finite sample power property of our test.

2.5 Monte Carlo Simulations

In this section we evaluate the finite sample performance of the proposed test, we explore different

setups of factors, such as, mildly explosive common factors with the same degree of explosiveness,

mildly explosive factors with the different degrees of explosiveness, and factors that follow unit root

processes.

2.5.1 Data generating processes

In this section, we consider the following data generating process (DGP):

Xit = λ0′
i F

0
t + eit,

F 0
t = ρ0

0F
0
t−1 + ut,

eit = ρ0i eit−1 + ϵit (2.5 .1)

where ρ0
0 ≡ diag

(
ρ00,1, . . . , ρ

0
0,R0

)
is an R0 × R0 diagonal matrix. All data are generated by (2.5 .1)

with different settings of parameters. the nominal level is 0.05.

DGP 1 λi
i.i.d∼ N (0, 1), ϵit

i.i.d∼ N (0, 1), ut
i.i.d∼ N (0, IR0), and ρi = 1 for i = 1, . . . , N .

DGP 2 λi
i.i.d∼ N (0, 1), ϵit

i.i.d∼ N (0, 1), ut
i.i.d∼ N (0, IR0), and ρi

i.i.d∼ Uniform (1.08, 1.10) for

i = 1, . . . , N .

Apparently, DGPs 1 and 2 are used to evaluate the size and power of the PPT test respectively.

For the true number of factors, we consider two cases: (a)R0 = 3, and (b)R0 = 1, which correspond
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to the 3­factor Fama­French factor model and the 1­factor capital asset pricing model (CAPM) in

financial studies, respectively.

In case (a), we consider the following specifications of ρ0
0 in both DGPs:

(1) ρ0
0 = diag (1, 1, 1); (2) ρ0

0 = diag (1.02, 1, 02, 1, 02); (3) ρ0
0 = diag (1.04, 1.04, 1.04); (4)

ρ0
0 = diag (1.08, 1.08, 1.08); (5) ρ0

0 = diag (1.02, 1.04, 1.06); (6) ρ0
0 = diag (1.02, 1.05, 1.08).

In case (b), ρ0
0 degenerates to a scalar ρ00 and we consider the the following four specifications of

ρ0
0 in both DGPs: (1) ρ00 = 1, (2) ρ00 = 1.02, (3) ρ00 = 1.04, (4) ρ00 = 1.08.

When we estimate R0 by Algorithm 2.2, we set Rmax = 6 when R0 = 3 and Rmax = 3 when

R0 = 1. For each scenario, we conduct 500 replications with B = 300 bootstrap resamples in each

replication. We consider the 5% nominal level in all cases.

2.5.2 Simulation Results

Table 2.1: Finite sample properties of the PPT under the null and alternatives when R0 = 3 that is
taken as known.

Size of the wild bootstrap implementation of the proposed test
DGP 1 ρi = 1 for i = 1, . . . , N

ρ0
0\ (N, T ) (100,51) (100,101) (100,201) (200,51) (200,101) (200,201)

diag (1.00, 1.00, 1.00) 0.052 0.048 0.048 0.054 0.048 0.042
diag (1.02, 1.02, 1.02) 0.044 0.048 0.048 0.042 0.048 0.042
diag (1.04, 1.04, 1.04) 0.048 0.058 0.054 0.058 0.048 0.044
diag (1.08, 1.08, 1.08) 0.058 0.040 0.056 0.048 0.054 0.042
diag (1.02, 1.04, 1.06) 0.044 0.046 0.042 0.040 0.044 0.044
diag (1.02, 1.05, 1.08) 0.056 0.060 0.046 0.048 0.044 0.044

Power of the wild bootstrap implementation of the proposed test
DGP 2 ρi

i.i.d∼ Uniform (1.08, 1.10) for any i ∈ {1, . . . , N}
ρ0
0\ (N, T ) (100,51) (100,101) (100,201) (200,51) (200,101) (200,201)

diag (1.00, 1.00, 1.00) 0.878 1.000 1.000 0.990 1.000 1.000
diag (1.02, 1.02, 1.02) 0.530 0.918 1.000 0.556 0.902 1.000
diag (1.04, 1.04, 1.04) 0.506 0.930 1.000 0.544 0.930 1.000
diag (1.08, 1.08, 1.08) 0.774 0.994 1.000 0.792 0.994 1.000
diag (1.02, 1.04, 1.08) 0.470 0.916 1.000 0.590 0.950 1.000
diag (1.02, 1.05, 1.08) 0.546 0.948 1.000 0.576 0.964 1.000

Tables 2.1 and 2.3 report the performance of the PPT test under various scenarios when the true
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number of factors R0 is known and given by 3 and 1, respectively. For each setup of the common

factors, the tables exhibit the results for each combination of N and T . The results suggest that the

wild bootstrap implementation of our proposed test has decent power and well­controlled size in

all cases. It is worth mentioning that we also report the performance of the proposed test based on

the asymptotic critical value in the Appendix B, the proposed test based on the asymptotic critical

value suffers from downward size distortions in most cases. These results indicate that the bootstrap

version of the proposed test can avoid possible size distortions.

Table 2.2: Finite sample properties of the PPT under the null and alternatives when R0 = 3 that is
taken as unknown and estimated by Algorithm 2.2.

Size of the wild bootstrap implementation of the proposed test
DGP 1 ρi = 1 for i = 1, . . . , N

ρ0
0\ (N, T ) (100,51) (100,101) (100,201) (200,51) (200,101) (200,201)

diag (1.00, 1.00, 1.00) 0.046 0.046 0.048 0.046 0.052 0.054
diag (1.02, 1.02, 1.02) 0.042 0.048 0.044 0.044 0.058 0.044
diag (1.04, 1.04, 1.04) 0.050 0.052 0.044 0.044 0.046 0.044
diag (1.08, 1.08, 1.08) 0.046 0.058 0.052 0.040 0.052 0.046
diag (1.02, 1.04, 1.06) 0.044 0.044 0.050 0.044 0.040 0.052
diag (1.02, 1.05, 1.08) 0.048 0.040 0.054 0.040 0.044 0.042

Power of the wild bootstrap implementation of the proposed test
DGP 2 ρi

i.i.d∼ Uniform (1.08, 1.10) for any i ∈ {1, . . . , N}
ρ0
0\ (N, T ) (100,51) (100,101) (100,201) (200,51) (200,101) (200,201)

diag (1.00, 1.00, 1.00) 0.800 0.840 0.948 0.822 0.882 0.992
diag (1.02, 1.02, 1.02) 0.694 0.872 0.998 0.780 0.876 0.998
diag (1.04, 1.04, 1.04) 0.602 0.776 0.876 0.760 0.786 0.920
diag (1.08, 1.08, 1.08) 0.548 0.704 1.000 0.636 0.770 0.994
diag (1.02, 1.04, 1.06) 0.698 0.650 0.916 0.628 0.706 0.926
diag (1.02, 1.05, 1.08) 0.512 0.780 0.888 0.686 0.736 0.924

Tables 2.2 and 2.4 show the performance of the proposed PPT test under various scenarios

when the true number of factors R0 is estimated by Algorithm 2.2 for the cases with R0 = 3 and 1,

respectively. For each setup of the common factors, the tables present the results for each combination

ofN andT . According to these results, we see that thewild bootstrap implementation of our proposed

test still has satisfactory performances in terms of decent power and reasonable size. This implies that

the devised criterion presented in Algorithm 2.2 works well in a variety of scenarios in the context
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of the current paper. As pointed out in the remark 2.5, Algorithm 2.2 overestimates R0 for sure with

R0 = 1, however, those results in Tables 2.2 and 2.4 show the wild bootstrap implementation of our

proposed test still maintains appropriate size and has high power in most cases. In addition, even if

it is pervasive that only one common factor plays a role in economic or finance models, the results in

Table 2.4 imply our proposed test is still applicable in spite of the overestimation of the true number

of factors by Algorithm 2.2.

Table 2.3: Finite sample properties of the PPT under the null and alternatives when R0 = 1 that is
taken as known.

Size of the wild bootstrap implementation of the proposed test
DGP 1 ρi = 1 for i = 1, . . . , N

ρ00\ (N, T ) (100,51) (100,101) (100,201) (200,51) (200,101) (200,201)
1.00 0.052 0.046 0.046 0.050 0.054 0.046
1.02 0.040 0.056 0.048 0.054 0.044 0.044
1.04 0.040 0.040 0.050 0.048 0.040 0.050
1.08 0.046 0.044 0.044 0.052 0.044 0.056

Power of the wild bootstrap implementation of the proposed Test
DGP 2 ρi

i.i.d∼ Uniform (1.08, 1.10) for any i ∈ {1, . . . , N}
ρ00\ (N, T ) (100,51) (100,101) (100,201) (200,51) (200,101) (200,201)

1.00 0.478 1.000 1.000 0.566 1.000 1.000
1.02 0.430 1.000 1.000 0.452 1.000 1.000
1.04 0.558 1.000 1.000 0.606 1.000 1.000
1.08 0.438 1.000 1.000 0.520 1.000 1.000

2.6 Empirical Studies

The first cryptocurrency, namely Bitcoin, was invented by Satoshi Nakamoto during the 2008 sub­

prime crash and gainedmuch attention from the public, regulators, and academic scholars since 2010.

For this past decade, the total number of cryptocurrencies has risen to more than 2500 due to Bitcoin’s

success. The first wave of bubbles in Bitcoin price popped in 2011, and then several speculative bub­

bles in cryptocurrencies’ daily prices are observed and discussed at length. In very recent years, a

growing number of studies in finance and economics focus on the detection of bubble behaviors

in cryptocurrencies’ daily prices by utilizing time­series data of Bitcoin or other cryptocurrencies’
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Table 2.4: Finite sample properties of the PPT under the null and alternatives when R0 = 1 that is
taken as unknown and estimated by Algorithm 2.2.

Size of the wild bootstrap implementation of the proposed test
DGP 1 ρi = 1 for i = 1, . . . , N

ρ00\ (N, T ) (100,51) (100,101) (100,201) (200,51) (200,101) (200,201)
1.00 0.040 0.056 0.054 0.048 0.042 0.044
1.02 0.042 0.056 0.048 0.040 0.046 0.044
1.04 0.042 0.048 0.040 0.044 0.044 0.056
1.08 0.040 0.044 0.048 0.054 0.044 0.044

Power of the wild bootstrap implementation of the proposed test
DGP 2 ρi

i.i.d∼ Uniform (1.08, 1.10) for any i ∈ {1, . . . , N}
ρ00\ (N, T ) (100,51) (100,101) (100,201) (200,51) (200,101) (200,201)

1.00 1.000 1.000 1.000 1.000 1.000 1.000
1.02 0.904 1.000 1.000 0.982 0.998 1.000
1.04 0.898 0.952 1.000 0.934 0.950 1.000
1.08 0.780 0.998 1.000 0.952 1.000 1.000

daily prices based on the right­tail unit root test like the PWY approach proposed in Phillips et al.

(2011), and the PSY approach developed in Phillips et al. (2015). Cheung et al. (2015) identify both

short­lived and giant bubbles from 2011 to 2014. Hafner (2020) also confirms explosive speculative

bubbles in cryptocurrencies when the time­varying volatility exists. Harvey et al. (2020) locate the

staring and end date of bubbles in Bitcoin daily prices around the end of 2017 by a variant of the

PSY approach. Enoksen et al. (2020) disclose the recent bubbles in several cryptocurrencies daily

prices during the mid of November of 2017 to January of 2018. Geuder et al. (2019) also find similar

bubbles’ explosiveness in Bitcoin daily prices in such a time period.

Thus, in this section, we apply our test procedure to examine whether or not idiosyncratic bub­

bles exist during the period of bubbles’ explosiveness in cryptocurrencies’ daily prices. Enoksen

et al. (2020) point out the lack of empirical studies on the predictors of bubbles in cryptocurrencies’

prices. Therefore, it is natural to treat the fundamentals in pricing the cryptocurrencies as unobserved

common factors when we study the speculative bubbles in cryptocurrencies’ daily prices.
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2.6.1 Data

We use cryptocurrencies’ daily prices collected from Investing.com. Data consist of 26 cross­section

units covering 77 time­series observations between November 15, 2017, to January 31, 20181. The

collected cryptocurrencies are chosen from top 100 cryptocurrencies listed in investing.com based on

their total market capitalization and data availability. We list names of these cryptocurrencies in the

alphabetic order and enumerate them by numbers as follows: (1) 0x, (2) Augur, (3) Basic Attention

Token, (4) Binance Coin (5) Bitcoin Case, (6) Bitcoin Gold, (7) Bitcoin, (8) Dash, (9) DigiByte, (10)

Dogecoin, (11) EOS, (12) Ethereum, (13) ICON, (14) IOTA, (15) Litecoin, (16) Monero, (17) NEM,

(18) Neo, (19) OMG, (20) Qtum (21) Stellar, (22) Tether, (23) VeChain, (24) Waves, (25) XRP, (26)

Zcash.

As the preliminary inspect below, we present the time­series plot of daily prices for several cryp­

tocurrencies from the mid of November 2017 to the end of January 2018 in Figure 1. Moreover, we

regress ∆Priceit on Priceit−1 to obtain the AR coefficients for each cryptocurrency. These coef­

ficients range from 0.9636 to 1.0075. These initial results imply speculative explosive bubbles in

cryptocurrencies’ daily prices.

2.6.2 Testing for cryptocurrencies’ prices with existing approaches

Thanks to the contributions by Enoksen et al. (2020) and Harvey et al. (2020), we can use the PWY

approach by Phillips et al. (2011) to double­check the explosiveness in each cryptocurrency’s prices

for the given period and eliminate those cryptocurrencies that exhibit no bubbles’ behaviors in daily

prices by the series­by­series checks. Then, to verify the explosiveness for the panel of remaining

cryptocurrencies’ daily prices, we adapt the approach used in Chen et al. (2019) to have a double­

check. Specifically, we apply the PC estimation to the logarithm of the remaining eleven cryptocur­

rencies’ daily prices under the normalization condition that satisfiesN−1 Λ′Λ = I , and then use the

PWY approach again for the first component in estimated common factors F̂ .
1We follow findings in Harvey et al. (2020) and Enoksen et al. (2020) to collect cryptocurrencies’ daily prices for

such a period

62



(a) Augur’s Daily Prices (b) Bitcoin’s Daily Prices

(c) NEM’s Daily Prices (d) XRP’s Daily Prices

Figure 2.1: Cryptocurrencies’ Daily Prices

The upper part of Table 2.5 displays the values of PWY test statistics for each cryptocurrency.

We also compute and report the finite­sample 5% significance­level critical value for the collected

panel of cryptocurrencies’ daily prices based on 2000 repetitions in the last row of Table 2.5. We

use the star in the bracket behind values to indicate this value exceeds the critical value. From tests

results in the upper part of the table, we can see that 11 out of 26 cryptocurrencies’ daily prices have

bubbles’ explosiveness in the given period. The lower part of Table 2.5 shows that the data are still

explosive as the whole for the panel of remaining cryptocurrencies’ daily prices. We can then apply

our proposed test to the panel of remaining 11 cryptocurrencies’ daily prices in the next subsection.

2.6.3 Empirical results and the robustness check

Following existing studies on cryptocurrencies’ daily prices, we apply our proposed test to the loga­

rithm of daily prices. As shown in Table 2.6, we report testing results based on the working numbers
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Table 2.5: Test statistics based on the PWY approach and the finite­sample critical value
Name Order Test Statistics Name Order Test Statistics Name Order Test Statistics

(1) 1.8984(*) (10) 0.9308 (19) 1.1704
(2) 2.1408(*) (11) 0.7824 (20) 2.4668(*)
(3) 0.8557 (12) ­0.4676 (21) 1.0480
(4) 2.6428(*) (13) ­0.5231 (22) ­2.7338
(5) 0.9947 (14) 2.3078(*) (23) 2.5009(*)
(6) ­1.2213 (15) 3.1612(*) (24) 3.0959(*)
(7) 2.5281(*) (16) 0.5027 (25) 4.5272(*)
(8) 0.4006 (17) 1.4546(*) (26) 0.9568
(9) 0.9428 (18) 0.4818

critical value 1.1912 # explosive prices 11
Test Statistic of the First Factor for the Panel of Remaining 11 Cryptocurrencies’ Daily Prices

Test statistic for the first factor 1.9616(*)

of factors estimated by Algorithm 2.2. Additionally, for robustness checks, namely, to avoid over­

estimating the true number of factors, we also report results for the decreased working number of

factors. For our empirical application here, let kmax = ⌈2×min(
√
N,

√
T )⌉, where ⌈M⌉ represents

the integer that is nearest toM . Specifically, in our empirical studies, kmax = 10 when we use all 26

cryptocurrencies, and kmax = 7 when we use remaining 11 cryptocurrencies. We set the bootstrap

sample B = 1000.

According to testing results by our proposed test statistic PPT in Table 2.6, we do not reject

the null of unit root for series in idiosyncratic components. In other words, conditional on collected

data, we found no idiosyncratic bubble’s explosiveness for the panel of cryptocurrencies’ daily prices

from November 15, 2017, to January 31, 2018. Robustness checks in Table 2.6 imply the bubbles’

explosiveness in the panel of cryptocurrencies’ daily prices is driven by the fundamentals, namely,

the unobserved common factors. PC estimates of unobserved common factors are consistent in this

case, as indicated in Section 2.2.2. To verify the implication from robustness checks, we can apply

the PWY approach to estimated common factors. The testing results for the PWY test in Table 2.6

shows that bubbles’ explosiveness exists in the estimated first common factor only. Further, to show

the time­series behavior of estimated factors, we depict the time­series plot for these estimated factors

as below.
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Table 2.6: Testing Results for the panel of cryptocurrencies’ daily prices
Testing results for remaining 11 cryptocurrencies’ explosive daily prices

PPT for idiosyncratic components R̂ Robustness Checks
The Working number of factors 3 2 1 ­ ­

Test Statistics ­1.1384 ­0.8975 ­1.2157 ­ ­
Bootstrap p­value 0.7160 0.6300 0.6330 ­ ­

PWY Test Statistic of Estimated Factors
Test Statistic for the 1st Factor 2.2061(*)
Test Statistic for the 2nd Factor 0.8341
Test Statistic for the 3rd Factor ­0.1274

critical value 1.1912
Testing results for all 26 cryptocurrencies’ daily prices

PPT for idiosyncratic components R̂ Robustness Checks
The Working number of factors 5 4 3 2 1

Test Statistics ­2.8940 ­2.9098 ­2.5599 ­1.0124 ­1.8645
Bootstrap p­value 0.9770 0.9897 0.9380 0.6530 0.8350

PWY Test Statistic of Estimated Factors
Test Statistic for the 1st Factor 1.6420(*)
Test Statistic for the 2nd Factor ­2.0372
Test Statistic for the 3rd Factor 1.1589
Test Statistic for the 4th Factor 1.0344
Test Statistic for the 5th Factor 0.0763

critical value 1.1912
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(a) Estimated Factors for remaining 11 cryptocurrencies’ explosive daily prices

(b) Estimated Factors for all 26 cryptocurrencies’ daily prices

Figure 2.2: Estimated Factors

Figures 2.2(a) and 2.2(b) clearly reveal that the first estimated factor behaves explosively and

thus servers as the fundamental to trigger the explosive increases in cryptocurrencies’ daily prices

for the period we study. This is a further investigation and extension of findings in Enoksen et al.

(2020) and Harvey et al. (2020).
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2.7 Concluding Remarks

In this paper, we propose a consistent test for detecting bubbles in idiosyncratic components in the

presence of nonstationary or mildly explosive factors in common components in panel factor models.

We establish the limit null distribution, asymptotic power property, and the consistency of our test un­

der mild conditions. Monte Carlo simulations demonstrate that our proposed test has approximately

correct size and discriminatory power against the alternatives. Themost important takeaway from the

analysis in this paper is that it should be the first and essential step to test the bubbles’ explosiveness

in idiosyncratic components if researchers try to use PC estimation to disentangle the sources of the

bubbles’ explosiveness in data. Our proposed test provides a simple and effective approach to detect

bubbles’ explosiveness from idiosyncratic components by exploiting the cross­sectional information

in panel data, which is parallel with the classical panel analysis of nonstationarity in idiosyncratic

and common components. As an empirical illustration, We apply our proposed test to cryptocurren­

cies’ daily prices. We find no idiosyncratic bubbles in cryptocurrencies’ daily prices by our proposed

test and verify the bubbles’ explosiveness in unobserved common factors by the classical time­series

approach.
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Chapter 3

Detection of Bubbles in Common Factors

with Local­to­unity Errors

3.1 Introduction

Detecting the bubbles in financial assets or portfolios is of great interest for both practitioners and

researchers. The local­to­unity explosive bubbles play an essential role in related studies since the

seminal work by Phillips (1987) and Phillips (1988) over the past decades; for recent studies, see

e.g., Harvey et al. (2015), Dou andMüller (2019), Whitehouse (2019), and Bykhovskaya and Phillips

(2020). On the other hand, it is a common practice to employ panel factor models to uncover the

sources of nonstationarity of data since the high dimensional factor analysis introduced byBai (2003),

Bai (2004) and Bai and Ng (2004). We aim to bring these two lines of research together and propose

an easy­to­implement test to detect bubbles in common factors for the explosive panel data.

This paper portrays fundamentals and peculiar characteristics as common factors and idiosyn­

cratic components in the framework of large dimensional panel factor models as done in Chapter 2.

Despite that the intensity of signals from the fundamentals and individual features is similar to each

other when both the common factors and idiosyncratic components follow the local­to­unity process,

we find that we can still obtain the consistent estimator of unobserved factors and factor loadings via
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the PC estimation for the first difference form of data. Therefore, our findings enable practitioners

to delve into the local­to­unity explosive bubbles in financial and economic data in the context of

panel factor models.

Although the genuine factors are unobserved in practice, the PC estimates of common factors

motivate us to devise a bubble test for detecting local­to­unity explosiveness in fundamentals. To

be concrete, we construct the right­tailed unit root tests built upon those estimated common factors

for detecting bubbles in fundamentals when the idiosyncratic error terms can follow a unit­root or

local­to­unity process. We establish the limiting null distribution and the asymptotic local power

property of the proposed tests. In particular, we show that our tests have non­trivial power to detect

those bubbles in unobserved common factors under the alternative of local­to­unity.

However, unlike the Single­Factor model discussed in Chen et al. (2019), for the multi­factor

structure, the proposed test based on the PC estimation of common factors is generally not asymptot­

ically pivotal under the null because of an array of nuisance parameters. We show that the proposed

test involves the weighted sum of independent standard Brownian motion, where the weights rely

upon the asymptotic matrix of the rotation matrix arising from the PC estimation. The presence of

such unknown nuisance parameters is the price we pay to replace those unobserved common factors

with estimated ones. To implement the proposed test in practice, we can follow the literature and

propose using the dependent wild bootstrap (DWB) method to simulate the critical values and im­

prove our tests’ finite sample performance. We justify the DWB method’s validity in the sense of

bootstrap consistency and power under the local­to­unity explosive common factors settings.

Accordingly, our findings contribute to following two lines of current literature.

First, our paper follows lines of classical studies on factor analysis of nonstationary panel data;

see e.g., Bai (2004) and Bai and Ng (2004). In these studies, the validity of PC estimations holds

when unobserved common factors follow unit­root processes, whereas the idiosyncratic error terms

remain stationary. In particular, to disentangle the sources of nonstationarity of data, related studies

prompt the PC estimation for the first­differenced data. As a natural extension of Bai and Ng (2004)

to accommodate local­to­unity explosiveness in panel data, our paper can allow both the common
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factors and the idiosyncratic error components to follow the local­to­unity process. Furthermore,

we present the consistency of the PC estimations when both the common factors and idiosyncratic

components follow the local­to­unity process.

Second, the present paper relates to the growing literature on the high dimensional factor analysis

of the explosive data; see e.g., Horie and Yamamoto (2016), Chen et al. (2019), and Chapter 2. For

example, Chen et al. (2019) considers a Single­Factor model to use Phillips, Shi and Yu’s (2015, PSY

hereafter) procedure directly to detect speculative bubbles in the first estimated factor series when

the common factors are mildly explosive and idiosyncratic error terms are stationary. However, on

the one hand, researchers have to impose a Single­Factor model by faith and restrict their attentions

on the one fundamental only in empirical studies; on the other hand, it can be unnecessary to rule

out the presence of local­to­unity explosive bubbles in the idiosyncratic error terms. Although Feng

and Su (2020) propose to test bubbles in the idiosyncratic error terms based on the PC estimation in

the presence of unobserved nonstationary or explosive factors and use wild bootstrap to improve the

finite­sample performance of their test, the detection of bubbles in common factors is not covered

formally. As a necessary and useful complement to the bubbles detection in panel data, our current

paper concentrates on the case that both common factors and idiosyncratic error terms follow the

local­to­unity process. Therefore, this paper fills in the gap in the literature to address the impacts

of the local­to­unity explosive process on the PC estimation and bubble detection in panel factor

models.

The remainder of the paper is structured as follows. In Section 3.2, we formally introduce our

model, hypotheses, and estimation strategy. Section 3.3 reports the main theoretical results. Section

3.4 discusses the model selection issues concerning the implementation of the proposed tests. In

Section 3.5, we conduct Monte Carlo experiments to evaluate the finite sample performance of the

proposed test. Section 3.6 concludes. Proofs of the main results in the paper are relegated to the

Appendix C. Further technical details are also provided in the Appendix C.

NOTATION. Throughout the paper we adopt the following notation. For an rectangular real

matrix A ∈ Rm×n, we denote its transpose as A′, its trace as trA, its Frobenius norm as ∥A∥
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(
≡ [tr (A′A)]1/2

)
, and its spectral norm as ∥A∥sp

(
≡
√
φ1 (A′A)

)
, where ≡ means “is defined as”

and φk(·) denotes the k­th largest eigenvalue of a real symmetric matrix by counting eigenvalues

of multiplicity multiple times. We also use φmin and φmax to stand for the minimum and maximum

eigenvalues of a symmetric real matrix. Let diag(a1, . . . , am) represent aRm×m diagonal matrix with

entries a1, . . . , am on its diagonal. We writeA ≍ B if there exist some finite positive constants c and

C such that c|A| ≤ B ≤ C|A|. Besides,M stands for a generic large positive constant that may vary

across lines. The operator p→ denotes convergence in probability, ⇒ weak convergence, and plim

probability limit. We use I (·) to denote the usual indicator function. For a full rankN ×Rmatrix F

with N > R, we denote the corresponding orthogonal projection matrices as PF = F (F ′F )−1 F

andMF = IN − PF , where IN denotes the N ×N identity matrix. Besides, let all the time­series

observations for each individual are available from period 1 to period T.

3.2 Basic Framework

3.2.1 The model

We consider the following panel factor model

Xit = λ0′
i F

0
t + eit, (3.2 .1)

where i = 1, . . . , N, t = 1, . . . , T, F 0
t and λ0

i are R0 × 1 vectors of factors and factor loadings,

respectively, and eit is the idiosyncratic error term. (3.2 .1) also can be rewritten in matrix form:

X = Λ0F 0′ + e, (3.2 .2)

whereX = (Xit) denotes a N × T matrix. F 0 = (F 0
1 , . . . ,F

0
T )

′ is a T × R0 matrix of unobserved

factors, Λ0 = (λ0
1, . . . ,λ

0
N)

′ is an N × R0 matrix of factor loadings, and e represents an N × T

matrix of idiosyncratic shocks.
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We assume the unobserved common factors are generated as follows:

(1− ρ0
0L)F

0
t = ut, (3.2 .3)

where ρ0
0 =diag(ρ00,1, . . . , ρ00,R0

), L is lag operator, and ut is the error term.

The idiosyncratic components are generated by similar autoregressive processes,

(1− ρ0iL)eit = ϵit, (3.2 .4)

where {ρ0i }Ni=1 are the AR coefficients, and ϵit is the error term. Throughout this paper, for {eit}Tt=1

with i = 1, . . . , N , we focus on the following case: eit is local­to­unity explosive so that (3.2 .4) is a

near­to­unit­root model from the explosive side.

Remark 3.1. Except for the local­to­unity explosive case above, there are another two typical cases:

(i) eit has a unit root; (ii) eit is near­stationary and (3.2 .4) is a near­to­unit­root model from the

stationary side. Both of these two cases can be treated as the special cases we consider above.

3.2.2 Hypotheses and estimation of the restricted model

The null hypothesis of interest is

H0 : ρ
0
0,r = 1, for all r (3.2 .5)

The alternative hypothesis is

H1 : ρ
0
0,r > 1. for some r (3.2 .6)

That is, we allow for explosive behavior under the alternative but not under the null. In the case

of rejections of the null, we can conclude the explosive behavior in the data is driven by some of

unobserved common factors.

To construct a test statistic for H0, we propose to estimate the factors and factor loadings under

the null and obtain the residuals based on (3.2 .1). Under the null, we can rewrite the restricted model
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as follows:

Xit = λ0′
i F

0
t + eit,

F 0
t = ρ0

0F
0
t−1 + ut,

eit = ρ0i eit−1 + ϵit. (3.2 .7)

Remark 3.2. Asmentioned in Feng and Su (2020), themodel under study is closely linkedwith panel

data models with interactive fixed effects (IFEs). To see this point, we make a quasi­differencing

transformation with respect to Xit in (3.2 .7) as follows

Xit = ρ0iXit−1 + λ0′
i F

0
t − ρ0iλ

0′
i F

0
t−1 + ϵit

= ρ0iXit−1 + δ0′
i G

0
t + ϵit, (3.2 .8)

where δ0
i = (λ0′

i , ρ
0
iλ

0′
i )

′ andG0
t = (F 0

t ,F
0′
t−1)

′.When ρi = ρ < 1 for all i and all factors in F 0
t are

stationary, the above model specifies a linear dynamic panel data model with IFEs studied by Moon

and Weidner (2015) and Lu and Su (2016), among others. When ρi = 1, (3.2 .8) turns out to be a

nonstaioanry dynamic panel data model with IFEs under additional and necessary conditions, for a

closely­related study, we refer readers to Huang et al. (2020).

Throughout this paper, we focus on the local­to­unity explosiveness among {ρ0i }Ni=1 and set them

to be ρ0i = 1 + ci/T for i = 1, . . . , N with the finite and fixed parameters {ci}Ni=1. We can treat the

unit­root case as a special case with ci = 0 for all i. Following Bai and Ng (2004) and Lu and Su

(2016), we consider the PC estimation of the factors based on the first­diffference transformation of

Xit instead.

Let Zit = Xit −Xit−1,B
0
t ≡ F 0

t − F 0
t−1. Noting that under H0, we have

B0
t =

(
ρ0
0 − IR0

)
F 0

t−1 + ut = ut, (3.2 .9)
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and

Zit = λ0′
i B

0
t + eit − eit−1 = λ0′

i ut +
(
ρ0i − 1

)
eit−1 + ϵit. (3.2 .10)

Based on (3.2 .10), we consider the PC estimation of the factorsut and factor loadingsλ0
i by assuming

the true number of factors R0 is known. Particularly, under (3.2 .5), according to related studies on

panel factor models, we can obtain the consistent estimation of the common factors by employing

the PC estimation when eit in (3.2 .7) follows a unit­root model, that is, {ρ0i }Ni=1 in (3.2 .7) equal to

one; see e.g., Bai and Ng (2004). Under the alternatives (3.2 .6), if the common factors are mildly

explosive or nonstationary, Feng and Su (2020) shows that the PC estimation also can yield the

consistent estimation of the common factors when {ρ0i }Ni=1 in (3.2 .7) are in the very near vicinity of

unity. In this paper, we demonstrate that the PC estimation is still valid if both common factors and

idiosyncratic error terms in (3.2 .7) follow a local­to­unity explosive model, that is, both {ρ0i }Ni=1 and

{ρ00,r}
R0
r=1 in (3.2 .7) lie in the vicinity of unity. Detailed proofs are relegated to the Appendix C due

to space limitation.

Let Zi = (Zi1, . . . , ZiT )
′ and Z = (Z1, . . . ,ZN)

′ . Following Bai and Ng (2004), we apply the

PC estimation to ΣZ,N ≡ N−1Z ′Z. Let (B̂, Λ̂) denote the solution to the following minimization

problem:

min
B,Λ

1

N
(Z −ΛB′)

′
(Z −ΛB′) ,

s.t. T−1B′B = IR0 and Λ′Λ = diagnoal matrix, (3.2 .11)

Remark 3.3. In the case where the factors and idiosyncratic error terms follow a unit root process,

the above PC estimates the stationary factor difference B0
t (= ut) and the factor loadings, and the

rescale parameter T−1 in (3.2 .11) is necessary (e.g., see Bai (2003)). However, Feng and Su (2020)

demonstrate that the rescale parameter T−1 in (3.2 .11) can be replaced by any polynomial functions

of T when the unobserved common factors are mildly explosive. Here, we continue to set the rescale

parameter in (3.2 .11) to be T−1 because technical treatments of the local­to­unity case is similar to

those of the unit­root case in Bai and Ng (2004).
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Given B̂ in (3.2 .11), we obtain the estimate of factor loadings λ0
i by λ̂i = (B̂′B̂)−1B̂′Zi for

i = 1, ..., N . Define the residual ϵ̂it = Zit − λ̂′
iB̂t. Define for t = 2, . . . , T ,

êit =
t∑

s=2

ϵ̂is, and F̂t =
t∑

s=2

B̂s. (3.2 .12)

In the Appendix C, we will show that B̂t estimates B0
t consistently up to a well­defined rotation

matrixH . So F̂t serves as an estimate of F 0
t .

3.2.3 A test statistic for detecting bubbles in the idiosyncratic components

To proceed, we add some notations. Let B̂(r) and F̂ (r) be the r­th column of B̂ and F̂ such that

B̂(r) =
(
B̂

(r)
2 , . . . , B̂

(r)
T

)′
and F̂ (r)

−1 =
(
F̂

(r)
2 , . . . , B̂

(r)
T

)′
.

With estimated factors in (3.2 .12), we can use them to devise the following test statistic to detect

the bubbles in common factors.

Specifically, denote Tp = T − p for some 0 < p < T , let B̂(r),c
t = B̂

(r)
t − T−1

2

∑T
s=3 B̂

(r)
s−1 and

F̂
(r),c
t−1 = F̂

(r)
t−1 − T−1

2

∑T
s=3 F̂

(r)
s−1, we run time­series regression based on following equation

B̂
(r),c
t = ν̂rF̂

(r),c
t−1 + ϕt for t = 3, . . . , T (3.2 .13)

where ϕt is the regression residual, and the OLS estimator ν̂r is obtained as follows

ν̂r =

[
T2

T∑
t=3

B̂
(r)
t F̂

(r)
t−1

′ −
T∑
t=3

B̂
(r)
t

T∑
t=3

F̂
(r)
t−1

′

]

×

[
T2

T∑
t=3

F̂
(r)
t−1F̂

(r)′
t−1 −

(
T∑
t=3

F̂
(r)
t−1

)(
T∑
t=3

F̂
(r)
t−1

)′]−1

. (3.2 .14)

And we then define and calculate ϖ̂ν̂r as follows,

ϖ̂ν̂r = σ̂2
(r)

[
T∑
t=3

F̂
(r)
t−1F̂

(r)′
t−1 − T−1

2

(
T∑
t=3

F̂
(r)
t−1

)(
T∑
t=3

F̂
(r)
t−1

)′]−1

,
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where σ̂2
(r) = T−1

2

∑T
t=3

(
B̂

(r)
t

)2
.

Then, we can implement the feasible proposed test statistic for r­th estimated factor as follows,

DF (r),f = ϖ̂
−1/2
ν̂r

ν̂r. (3.2 .15)

Under H0 in (3.2 .5), we will show that for r = 1, . . . , R0, the limiting distribution of DF (r),f will

involve a weighted sum of standard Brownian motion. As a special case, when R0 = 1, our result is

consistent with that of Chen et al. (2019) in the Single­Factor model, though their setups are slightly

different. We will have more detailed discussions on limiting distributions of (3.2 .15) under the null

and alternative of local­to­unity in next section.

Furthermore, we propose to test (3.2 .5) jointly as follows. First, regressing B̂R0,c
t on F̂R0,c

t−1 ,

where B̂R0,c
t =

∑R0

r=1 B̂
(r),c
t and F̂R0,c

t =
∑R0

r=1 F̂
(r),c
t , and denote the OLS estimate of the regression

coefficient by ν̂R0 ,

ν̂R0 =

[
T2

T∑
t=3

B̂R0
t F̂R0

t−1
′ −

T∑
t=3

B̂R0
t

T∑
t=3

F̂R0
t−1

′

][
T2

T∑
t=3

F̂R0
t−1F̂

R0′
t−1 −

(
T∑
t=3

F̂R0
t−1

)(
T∑
t=3

F̂R0
t−1

)′]−1

.

Similarly, we define and calculate ϖ̂ν̂R0
as follows,

ϖ̂ν̂R0
= σ̂2

R0

[
T∑
t=3

F̂R0
t−1F̂

R0′
t−1 − T−1

2

(
T∑
t=3

F̂R0
t−1

)(
T∑
t=3

F̂R0
t−1

)′]−1

,

where σ̂2
R0

= T−1
2

∑T
t=3

(
B̂R0

t

)2
, and B̂R0

t =
∑R0

r=1 B̂
(r)
t and F̂R0

t =
∑R0

r=1 F̂
(r)
t . Finally, we can

test (3.2 .5) jointly by implementing

DFR0,f = ϖ̂
−1/2
ν̂R0

ν̂R0 . (3.2 .16)

Remark 3.4. When no serial correlation exists among {ut}, (3.2 .15) is rescaled by the estimates of

the variance of ν̂r up to a rotation matrix. In general case that allows for the serial correlation among
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{ut}, (3.2 .15) is rescaled by the estimates of contemporaneous variance of ν̂r up to the rotation

matrix. Similar arguments apply to (3.2 .16). By doing so, we can alleviate the adverse impacts of

the nuisance parameters due to the presence of asymptotic matrix of the rotation matrix in the limiting

distributions of proposed test statistics and the serial correlations in practice, which can lead to the

over­rejections of the null.

3.3 Asymptotic Properties

In this section, we first present a set of basic assumptions to derive the consistency of the PC esti­

mation and the asymptotic properties of the statistic {DF (r),f}R0
r=1 and DFR0,f . Then we study the

asymptotic null distribution and local power properties of {DF (r),f}R0
r=1 and DFR0,f .

3.3.1 Basic assumptions

Let ϵt = (ϵ1t, . . . , ϵNt)
′ , ut = (u1t, . . . , u1R0)

′ , ϵ = (ϵ′1, . . . , ϵ
′
T )

′ and u = (u′
1, . . . ,u

′
T )

′. Let

γN (s, t) =
∑N

i=1E (ϵisϵit) and ζs,t = E
∣∣∣N−1/2

∑N
i=1 [ϵisϵit − E (ϵisϵit)]

∣∣∣4 .
Assumption A3.1. (a) The process {(ϵt,ut), t ≥ 0} is α­mixing across t with mixing coefficient

αij(|t − s|) between {ϵit} and {ϵjs} and mixing coefficient αi(|t − s|) between {(ϵit,ut)} and

{(ϵis,us)} . Assume that

N∑
i=1

N∑
j=1

T∑
t=1

(αij(t))
δ/(4+δ) = O(N), max

i

N∑
j=1

(αij(0))
δ/(4+δ) = O(1), and max

i
αi(t) = O

(
t−θ
)
,

where δ > 0 is chosen such that E ∥ωit∥4+δ < M with ωit ∈ {λ0
i ,ut, ϵit} and θ > (4 + δ)/δ.

(b) E (ut) = 0, E (utu
′
t) = Σu, and 0 < c < φmin (Σu) ≤ φmax (Σu) < c̄ < ∞, where c and c̄

are some generic finite constants, and Φu = V ar
(
T−1/2

∑
t ut

)
exists and is positive definite.

(c)E (εit) = 0, andE (ε2it) = σ2
i ≤M for some finite constantM , andΦϵi = V ar

(
T−1/2

∑
t ϵit
)

exists and is positive definite.

(d) E ∥F 0
0 ∥

2 ≤M.
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Assumption A3.2. (a) λ0
i is random such that E ∥λ0

i ∥
2 ≤ M, (b) N−1Λ0′Λ0 p→ Σλ such that

0 < c < φmin (Σλ) ≤ φmax (Σλ) < c̄ <∞.

Assumption A3.3. (a) maxt
∑T

s=1 |γN (s, t)| = O(N), (b) maxs,t ζs,t ≤ M , (c) maxiE |ei0| ≤ M ,

(d) ∥ϵ∥sp = Op(
√
N +

√
T ).

Assumption A3.4. {λ0
i } , {ut} , and {ϵjs} are three groups of mutually independent stochastic vari­

ables for every (i, j, s, t).

Assumption A3.5. ρ0i = 1 + ci/T for i = 1, ..., N , where ci ≥ 0 is fixed and finite.

Assumption A3.1, A3.2, and A3.3 impose moments conditions on the error terms, factors, factor

loadings. Assumption A3.4 follows Assumption D in Bai and Ng (2004). Assumptions A3.5 ac­

commodates unit­root and local­to­unity process in the idiosyncratic error terms specified in (3.2 .7).

Assumption A3.1­A3.5 are almost the same as those assumptions in Feng and Su (2020), they are

widely used in the literature; see e.g., Bai and Ng (2004) and Peng et al. (2020).

3.3.2 Asymptotic behavior of the proposed test

Let VZ,N be the diagonal matrix with entries consisting of first R0 largest eigenvalues of sample

covariance matrix N−1Z ′Z, and the rotation matrix H ≡ (T−1VZ,N)
−1

(T−1B0′B̂)
(
N−1Λ0′Λ0

)
,

then,

Proposition 3.3.1. Suppose that Assumptions A3.1–A3.5 hold, then, H∞ ≡ lim
N,T→∞

H exists and

nonsingular.

Proposition 3.3.1 states the result on asymptotic matrix ofH asN and T pass to infinity simulta­

neously. This result is critical in deriving the limiting distribution of the proposed test under the null

and the alternative of local­to­unity when we use the estimated factors to construct the test statistics

presented in (3.2 .15) and (3.2 .16), because it is well­known that those unobserved common factors

and factor loadings are identifiable only up to a rotation matrix when we apply the PC estimation.
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Proposition 3.3.1 holds as the consequence of Assumption A3.2, Lemma C.1.1, and Lemma C.3.3 in

the Appendix C.

Furthermore, to analyze the asymptotic local power property ofDF (r),f andDFR0,f , we consider

the following sequence of Pitman’s local alternatives:

H1T : ρ00,r = 1 +
νr
T

for r = 1, ..., R0.

Namely, we consider the alternative of local­to­unity as displayed above. Besides, we also need

following technical assumption to derive the asymptotic local power of the test statistic. Denote

ν = diag (ν1, . . . , νR0),

Assumption A3.6. (a) νr ≥ 0 for each r, (b) there exist nonzero R0­dimensional vector aNT and

bNT depending on N and T such that µ ≡ limN,T→∞ a′
NTνbNT > 0.

AssumptionA3.6(a) implies that we restrict our attention to the one­sided local alternative, namely,

we only consider explosive common factors under the alternative of local­to­unity. Assumption

A3.6(b) implies that {νr}R0
r=1 under the alternatives cannot be sparse such that the concentration pa­

rameter can be positive and moderately large. As documented in related studies on unit root test for

time series data, e.g., empirical findings in Phillips and Yu (2011), unit root tests cannot discriminate

near unity root process from unit root process very well when the concentration parameter is very

small. However, in the context of high dimensional panel data we consider here, we can achieve the

enhancement of the power of the proposed test (at least in the ideal case). We will discuss such kind

of possible enhancement of power of the proposed test later.

The following theorem states the null distribution and local power properties of DF (r),f for r =

1, . . . , R0.

Theorem 3.3.2. Suppose that Assumptions A3.1–A3.5 hold. Then as (N, T ) → ∞, as long as

T/N2 → 0, for r = 1, . . . , R0

79



(a) Under H0,

DF (r),f ⇒ ψ
(r),f
0 , (3.3 .1)

where

ψ
(r),f
0 ≡

(
H ′

(r),∞ΣuH(r),∞
)−1/2{

H ′
(r),∞Σ1/2

u

[∫ 1

0

dW(r)′W(r)−W (1)

∫ 1

0

W(r)′dr
]
Σ1/2

u H(r),∞ +H ′
(r),∞ΩuH(r),∞

}
{
H ′

(r),∞Σ1/2
u

[∫ 1

0

W(r)W(r)′dr−
(∫ 1

0

W(r)′dr
)(∫ 1

0

W(r)dr
)′]

Σ1/2
u H(r),∞

}−1/2

,

where H(r),∞ is the r­th column of H∞ defined in Proposition 3.3.1; W (r) is the R­vector

standard Brownianmotion on C[0, 1] given by theweak limit of the partial sumΣ
−1/2
u T−1/2

∑[Tr]
t=1 ut,

and Ωu ≡
∑∞

k=1E
(
utu

′
t+k

)
.

(b) Furthermore, if Assumption A3.6 also holds, then under H1T , for r = 1, . . . , R0,

DF (r),f ⇒ DF (r),f
ν,∞ ≡ χ(r),f

ν + ψ(r),f
ν , (3.3 .2)

where

χ(r),f
ν ≡

(
H ′

(r),∞ΣuH(r),∞
)−1/2{

H ′
(r),∞νΣ1/2

u

[∫ 1

0

Jν(r)Jν(r)′dr−
(∫ 1

0

Jν(r)′dr
)(∫ 1

0

Jν(r)dr
)′]

Σ1/2
u H(r),∞

}
{
H ′

(r),∞Σ1/2
u

[∫ 1

0

Jν(r)Jν(r)′dr−
(∫ 1

0

Jν(r)′dr
)(∫ 1

0

Jν(r)dr
)′]

Σ1/2
u H(r),∞

}−1/2

,
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and

ψ(r),f
ν ≡

(
H ′

(r),∞ΣuH(r),∞
)−1/2{

H ′
(r),∞Σ1/2

u

[∫ 1

0

dW(r)′Jν(r)−W (1)

∫ 1

0

Jν(r)′dr
]
Σ1/2

u H(r),∞ +H ′
(r),∞ΩuH(r),∞

}
{
H ′

(r),∞Σ1/2
u

[∫ 1

0

Jν(r)Jν(r)′dr−
(∫ 1

0

Jν(r)′dr
)(∫ 1

0

Jν(r)dr
)′]

Σ1/2
u H(r),∞

}−1/2

.

where H(r),∞ stands for the r­th column of H∞ defined in Proposition 3.3.1, and Jν(r) ≡(
Jν1(r), . . . , JνR0

(r)
)

is a Ornstein­Uhlenbeck process that satisfies Jν(r) =

W (r) + ν
∫ r

0
e(r−s)cW (s)ds, Jν(0) = 0, and Ωu ≡

∑∞
k=1E

(
utu

′
t+k

)
.

Given the result in Theorem 3.3.2(a) and noticing that our test is a one­sided test, we can reject

the null when DF (r),f is sufficiently large, say larger than the associated asymptotic critical value at

a given significance level. However, the limiting null distribution ofDF (r),f is generally not pivotal

due to the presence of H(r),∞, the element of H∞. In particular, it is worthwhile to point out that

the limiting null distribution in Theorem 3.3.2(a) turns out to be pivotal in the Single­Factor model

when there is no serial correlations among {ut}, which is consistent with the result in Chen et al.

(2019).

Notably, let ν in Assumption A3.6 be the zero matrix in Theorem 3.3.2(b), the result degenerates

to the limiting null distribution of DF (r),f with the replacement of the Ornstein­Uhlenbeck process

by the standard Brownian motion in the formula. Besides, Theorem 3.3.2(b) provides two important

implications. First, under Assumption A3.6(b), Theorem 3.3.2(b) indicates that the proposed test

has nontrivial power to detect the local alternative converging to the null at rate T−1, this is because

the concentration parameter χ(r),f
ν involves the rotation matrix depending on both cross­section and

time dimensions. In this sense, cross­section information can enhance the power of the proposed test

by scaling up the concentration parameter implicitly at least in the ideal case. Second, it is worth

mentioning the concentration parameter χ(r),f
ν in Theorem 3.3.2(b) is different from the result of

Theorem 2 in Horie and Yamamoto (2016), this is because we allow for different values among {νr}
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while they exclude the heterogeneous effects of the local­to­unity explosiveness from unobserved

common factors such that ν1 = ν2 . . . = νR0 .

In the view of above discussions, there is the theoretical possibility that the heterogeneity of the

local­to­unity explosive factors and the cross­section information contained in the rotation matrix can

contribute to the discriminatory power of the proposed test between the unit root and local­to­unity

explosive process in common factors. Thus, we can benefit from employing panel factor models and

the PC estimation to detect bubbles in unobserved common factors.

Remark 3.5. It is interesting to point out that, based on our proofs for Theorem 3.3.2 and the related

analysis in Feng and Su (2020), when the unobserved common factors are mild explosive with local­

to­unity explosive idiosyncratic error terms in panel factor models, our proposed test will diverge at

a exponential rate, which is much faster than that in (3.3 .2). So, theoretically, our proposed test also

will work with much higher power in this case.

Similar to above results, we now present the asymptotic null and local power properties of the

proposed joint tests. The following theorem states the null distribution and local power properties of

DFR0,f .

Theorem 3.3.3. Suppose that Assumptions A3.1–A3.5 hold. Then as (N, T ) → ∞, as long as

T/N2 → 0, for r = 1, . . . , R0

(a) Under H0,

DFR0,f ⇒ ψR0,f
0 , (3.3 .3)

where

ψR0,f
0 ≡

(
H ′

R0,∞ΣuHR0,∞
)−1/2{

H ′
R0,∞Σ1/2

u

[∫ 1

0

dW(r)′W(r)−W (1)

∫ 1

0

W(r)′dr
]
Σ1/2

u HR0,∞ +H ′
R0,∞ΩuHR0,∞

}
{
H ′

R0,∞Σ1/2
u

[∫ 1

0

W(r)W(r)′dr−
(∫ 1

0

W(r)′dr
)(∫ 1

0

W(r)dr
)′]

Σ1/2
u HR0,∞

}−1/2

,
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whereHR0,∞ ≡
∑R0

r=1H(r),∞,W (r) is theR­vector standard Brownianmotion on C[0, 1] that

is given by the weak limit of the partial sumΣ
−1/2
u T−1/2

∑[Tr]
t=1 ut, andΩu ≡

∑∞
k=1E

(
utu

′
t+k

)
.

(b) Furthermore, if Assumption A3.6 also holds, then under H1T , for r = 1, . . . , R0,

DFR0,f ⇒ DFR0,f
ν,∞ ≡ χR0,f

ν + ψR0,f
ν , (3.3 .4)

where

χR0,f
ν ≡

{
H ′

R0,∞νΣ1/2
u

[∫ 1

0

Jν(r)Jν(r)′dr−
(∫ 1

0

Jν(r)′dr
)(∫ 1

0

Jν(r)dr
)′]

Σ1/2
u HR0,∞

}
{
H ′

R0,∞Σ1/2
u

[∫ 1

0

Jν(r)Jν(r)′dr−
(∫ 1

0

Jν(r)′dr
)(∫ 1

0

Jν(r)dr
)′]

Σ1/2
u HR0,∞

}−1/2

(
H ′

R0,∞ΣuHR0,∞
)−1/2

,

and

ψR0,f
ν ≡

(
H ′

R0,∞ΣuHR0,∞
)−1/2{

H ′
R0,∞Σ1/2

u

[∫ 1

0

dW(r)′Jν(r)−W (1)

∫ 1

0

Jν(r)′dr
]
Σ1/2

u HR0,∞ +H ′
R0,∞ΩuHR0,∞

}
{
H ′

R0,∞Σ1/2
u

[∫ 1

0

Jν(r)Jν(r)′dr−
(∫ 1

0

Jν(r)′dr
)(∫ 1

0

Jν(r)dr
)′]

Σ1/2
u HR0,∞

}−1/2

.

where HR0,∞ ≡
∑R0

r=1 H(r),∞, and Jν(r) ≡
(
Jν1(r), . . . , JνR0

(r)
)
is a Ornstein­Uhlenbeck

process such that Jν(r) = W (r)+ν
∫ r

0
e(r−s)cW (s)ds, Jν(0) = 0, andΩu ≡

∑∞
k=1E

(
utu

′
t+k

)
.

3.3.3 A bootstrap version of the test

Although Theorem 3.3.2 shows that the proposed test has non­trivial power against the alternative

of local­to­unity, the limiting null distribution of the proposed test is generally not pivotal due to the

asymptotic matrix of rotation matrix in the limiting distribution. Therefore, we cannot tabulate the
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asymptotic critical values as done in Horie and Yamamoto (2016) or Chen et al. (2019). Instead, we

employ the dependent wild bootstrap (DWB) method to simulate the critical values, which is shown

to be valid in a nonstatioanry setting in Rho and Shao (2019) recently.

Similar to Algorithm 3.1 in Rho and Shao (2019), we apply the DWB method to our proposed

test DF (r),f for r = 1, . . . , R0 below,

Algorithm 1: The Dependent Wild Bootstrap

1. Calculate the OLS estimate ν̂r by regressing B̂
(r),c
t on F̂

(r),c
t−1 , and ϕt is the corresponding re­

gression residual as shown in (3.2 .13) for t = 3, . . . , T . Calculate the proposed test statistic

DF (r),f as defined in (3.2 .15).

2. Randomly generate the l­dependent mean­zero stationary series {Wt,T}Tt=3 satisfying follow­

ing conditions:

(a) {Wt,T}nt=1 is a realization from a stationary time series withE (Wt,T ) = 0 and var (Wt,T ) =

1. {Wt,T}nt=1 are independent of the data, cov (Wt,T ,Wt′,T ) = a {(t− t′) /l} where a(·)

is a kernel function and l = lT is a bandwidth parameter that satisfies l ≍ CT κ for some

0 < κ < 1/3. Assume thatWt,T is l ­dependent and E
(
W 4

1,T

)
<∞.

(b) a : R → [0, 1] is symmetric and has compact support on [−1, 1], a(0) = 1, limx→0{1−

a(x)}/|x|q = kq ̸= 0 for some q ∈ (0, 2], and
∫∞
−∞ a(u)e−iuxdu ≥ 0 for x ∈ R.

And then generate the residuals ϕ∗
t = ϕtWt,T in the bootstrap world.

3. Generate the bootstrapped sample {B̂(r)
t

∗} by B̂(r)
t

∗ = ν̂r · F̂ (r),c
t−1 + ϕ∗

t using ϕ∗
t as if ν̂r = 0 is

true.

4. Calculate the bootstrapped OLS estimate ν̂∗r by regressing B
(r)
t

∗ on F̂
(r),c
t−1 , and calculate the

proposed test statistic D̃F
∗
(r),f by (3.2 .15).

5. Repeat Step 2 to 4 B times and denote the resulting bootstrap test statistics as {D̃F
∗
(r),f,b}Bb=1.

Obtain the bootstrap p−value as p∗ = B−1
∑B

b=1 I
{
D̃F

∗
(r),f,b > D̃F

}
, where I {·} is the

usual indicator function.
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We present the DWB scheme for the joint test as follows.

Algorithm 2: The Dependent Wild Bootstrap for The Joint Test

1. Calculate the proposed joint test statistic DFR0,f as defined in (3.2 .16).

2. Execute Step 1 to 3 in Algorithm 1 for each estimated factor separately.

3. Calculate B̂R,∗
t =

∑R0

r=1 B̂
(r),∗
t , where B̂(r),∗

t is obtained by Step 2 just above for each r. Based

on {B̂R,∗
t , F̂R

t }, calculate the proposed joint test statistic DFR0,f as defined in (3.2 .16).

4. Repeat Step 2 to 3 B times and denote the resulting bootstrap test statistics as {D̃F
∗
R0,f,b

}Bb=1.

Obtain the bootstrap p−value as p∗ = B−1
∑B

b=1 I
{
D̃F

∗
R0,f,b

> D̃F
}
, where I {·} is the

usual indicator function.

The following theorem establishes the asymptotic validity of the above bootstrap test.

Theorem 3.3.4. (Bootstrap Consistency and Power). Suppose that Assumptions A3.1–A3.6 hold.

Then, for any nonzero diagonal matrix ν = diag (ν1, . . . , νR0)with νr ≥ 0 for all r, as (N, T ) → ∞,

as long as T 1+η/N2 → 0 for some η ∈ (0, 1/3),

(a)

P
(
DF (r),f ≤ D̃F

∗
(r),f (α) | ρ0

0 = IR + ν/T
)

D∗−→ P
(
DF (r),f

ν ≤ ψ
(r),f
0 (α)

)
(3.3 .5)

where D∗
→ denotes weak convergence under the bootstrap probability measure conditional on

the observed sample X = {Zit}, and DF (r),f
ν is the random variable with the distribution

DF (r),f
ν,∞ shown in (3.3 .2), ψ(r),f

0 (α) is the α­quantiles of the limiting null distribution ψ(r),f
0

shown in (3.3 .1). D̃F
∗
(r),f (α) is the α­quantiles of {D̃F

∗
(r),f,b}Bb=1 conditional on X .

(b) Moreover, for the joint test,

P
(
DFR0,f ≤ D̃F

∗
R0,f

(α) | ρ0
0 = IR + ν/T

)
D∗−→ P

(
DFR0,f

ν ≤ ψR0,f
0 (α)

)
(3.3 .6)
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whereDF (r),f
ν is the random variable with the distributionDFR0,f

ν,∞ shown in (3.3 .2), ψR0,f
0 (α)

is the α­quantiles of the limiting null distribution ψR0,f
0 shown in (3.3 .3). D̃F

∗
(r),f (α) is the

α­quantiles of {D̃F
∗
R0,f,b

}Bb=1 conditional on X .

Wedemonstrate that the DWBmethod is applicable to the alternative of local­to­unity in Theorem

3.3.4 as a direct extension of findings on the alternative of near integration in Rho and Shao (2019).

When ν1 = . . . νR0 = 0 holds under the null, Theorem 3.3.4 shows that the bootstrap provides an

asymptotic valid approximation to the limiting null distribution of DF (r),f . This holds because we

generate the bootstrap data by imposing the null hypothesis in Algorithms 1 and 2. Since the original

test statisticDF (r),f is generally not pivotal as discussed earlier, the application of the DWBmethod

here may fail to obtain the second order asymptotic refinement from the theoretical perspective.

However, the DWB method still can be useful for better finite­sample performances of the proposed

test in practice to circumvent finite­sample problems. Similar comments also apply to the asymptotic

properties of DFR0,f .

Remark 3.6. Note that we require T 1+η/N2 → 0 for some η ∈ (0, 1/3) as (N, T ) → ∞ in Theorem

3.3.4, which is slightly stronger than T/N2 → 0 in Theorem 3.3.2 and Theorem 3.3.3. The intuition

behind such minor difference is simple: when we want to apply the DWB scheme to capture the

unknown form of serial dependence among {ut}, the additional term T η is the price we pay for this

purpose. However, we address that such technical condition is imposed for the purpose of theoretical

derivations, and not a stringent restriction in practice for empirical studies.

3.4 Discussions on model selection

In this section, we discuss two issues on the model selection such that practitioners can implement

the proposed tests in practice to analyze real data. The first one is to choose modeling data between

local­to­unity andmild explosiveness. The second one is to determine the number of common factors

used for the PC estimation.
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3.4.1 The effect of mild explosiveness in idiosyncratic components

Notice that on the one hand, as pointed out by Onatski and Wang (2020) and Feng and Su (2020), the

presence of the mild explosiveness in the idiosyncratic components can lead to the invalidity of the

PC estimation because of adverse impacts of spurious factors. Therefore, practitioners cannot test

bubbles in common factors for the mildly explosive data by applying the PC estimation because the

mild explosiveness in idiosyncratic components can possibly be misidentified as the mild explosive­

ness in common factors as argued in Feng and Su (2020). On the other hand, in the general setups,

to our best knowledge, we have no well­developed method that is robust to the presence of the mild

explosiveness in the idiosyncratic components to obtain the consistent estimations of unobserved

common factors and idiosyncratic components in panel factor models. We leave this challenging

issue for our future research.

Our theoretical arguments for the proposed test indeed can accommodate the case that no mild

explosiveness exists in the idiosyncratic components. Therefore, if we want to test the bubbles in

common factors, we have two routines to apply the proposed tests in this paper reasonably: first, we

have to choose modeling data as local­to­unity explosive data when extracting unobserved common

factors by the PC estimation; second, we canmake full use the proposed test for idiosyncratic bubbles

in Feng and Su (2020) to exclude the existence of explosive bubbles in the idiosyncratic components

in panel factor models.

3.4.2 Testing against themild explosiveness in data based on the largest eigen­

value of sample variance matrix

For the first routine mentioned in the previous subsection, the exclusion of mild explosiveness in

data is a preliminary step to implement our proposed test for detecting common bubbles in data.

In our current setups, only data matrix X = (X1, . . . ,XN)
′ with Xi = (Xi1, . . . , XiT )

′ is

observed. To distinguish between the mild and local­to­unity explosiveness in data, we have to rely
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upon following quasi­differencing transformation as discussed in Section 3.2,

Xit = ρ0iXit−1 + λ0′
i F

0
t − ρ0iλ

0′
i F

0
t−1 + ϵit

= ρ0iXit−1 + λ0′
i

(
ρ0
0 − ρ0i IR

)
F 0

t−1 + λ0′
i ut + ϵit, (3.4 .1)

According to (3.4 .1), one may followMoon andWeidner (2015) to use the iteration scheme to obtain

the consistent estimates of ρ0i and F 0
t−1. However, the explosiveness in F 0

t−1 or/and the endogeneity

caused by the relation betweenXit−1 and F 0
t−1 can yield the in consistent estimations. For example,

when both {Ft} and {eit} in (3.2 .7) are mildly explosive, by regressingXit onXit−1 series by series,

the impact of explosiveness in data on the usual estimation strategies is tricky and unclear. Therefore,

the model selection strategy such as information criteria or test statistics based on the estimates of

{ρ0i }Ni=1 and {ρ00,r}Rr=1 is not reliable to distinguish between mild explosiveness and local­to­unity

explosiveness in data.

However, the largest eigenvalue of sample covariance matrix (N−1X ′X) is significantly dif­

ferent between mild and local­to­unity explosiveness. To see this point, with out loss of generality,

consider a Single­Factor model such that R0 = 1, then, by direct calculations based on the relation

in (3.2 .7), there exist T × T matrixQi, Si, and the T ­dimensional vectorWi Vi such that

Xi = WiF
0
0 + Viϵi0 +QiU + Siϵi

Then, it follows that

Ξ = N−1

N∑
i=1

XiX
′
i = N−1

N∑
i=1

(
WiF

0
0 + Viϵi0 +QU + Sϵi

) (
WiF

0
0 + Viϵi0 +QU + Sϵi

)′
.

By simple and direct calculations, it is readily to obtain that

∥Ξ∥sp ≤

∥∥∥∥∥N−1

N∑
i=1

WiW
′
i

∥∥∥∥∥
sp

+

∥∥∥∥∥N−1

N∑
i=1

ViV
′
i

∥∥∥∥∥
sp

+

∥∥∥∥∥N−1

N∑
i=1

QiQ
′
i

∥∥∥∥∥
sp

+

∥∥∥∥∥N−1

N∑
i=1

SiS
′
i

∥∥∥∥∥
sp

+dominated terms,
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provided that E |F 0
0 | <∞ and E|ϵi0| <∞ for all i.

According to (3.4 .2), if both common factors and idiosyncratic components in (3.2 .7) follow the

unit­root process, the right­hand side of (3.4 .2) will be of order Op (T
2), so the largest eigenvalue

of sample variance matrix ∥Ξ∥sp will diverge at the rate T 2 at most; otherwise, if common factors

or idiosyncratic components in (3.2 .7) are mildly explosive, ∥Ξ∥sp will diverge at a rate much faster

than T 2.

To make full use of different divergent rates of the largest eigenvalues under the mild and local­

to­unity explosiveness in data, it is possible to distinguish different types of the explosiveness in

data. Built upon recent advances in high­dimensional time series, our feasible suggestion is to con­

struct a test statistic based on the largest eigenvalue of sample variance. In particular, Zhang et al.

(2018) and Zhang et al. (2020) show that, under fairly mild conditions, their test statistic based on

the largest eigenvalue of sample variance will follow the standard normal distribution after being

rescaled appropriately for unit root and near­to­unit­root cases in the context of high­dimensional

time series. We conjecture that their arguments and conclusions still hold with slight modifications

for the local­to­unity explosive case shown in (3.4 .1) under our assumptions. We then reject the null

of local­to­unity explosiveness in data when the test statistic is sufficiently large than the right­tailed

critical value of the standard normal distribution at a given significance level. For implementation

procedures of such feasible test statistic, we refer readers to Zhang et al. (2020). We leave the formal

justifications as future research.

3.4.3 Determinant of the numbers of common factors

The determinant of the numbers of common factors is another essential issue for model selections

when practitioners applies the PC estimation to data matrix.

When the data is mildly explosive in both common factors and idiosyncratic components, it is

very challenging to choose the true number of factors because of the adverse effects of overwhelming

dominant factors and spurious factors as remarked by Feng and Su (2020).

Fortunately, when the data is local­to­unity explosive, we can follow Bai (2004) to use the first­
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differeced form of data to estimate the number of common factors by employing PC criterion in

Bai and Ng (2002) or other improved criteria proposed in Zeng et al. (2019) and Peng et al. (2020)

recently.

3.5 Monte Carlo Simulations

In this section we evaluate the finite sample performance of the proposed test by means of Monte

Carlo simulation based on the data generating processes (DGPs) given below, which differ in how

we generate the common factors and idiosyncratic error terms.

3.5.1 Data generating processes

In this section, we consider the following data generating process (DGP):

Xit = λ0′
i F

0
t + eit,

F 0
t = ρ0

0F
0
t−1 + ut,

eit = ρ0i eit−1 + ϵit (3.5 .1)

where ρ0
0 ≡ diag

(
ρ00,1, . . . , ρ

0
0,R0

)
is an R0 × R0 diagonal matrix. All data are generated by (3.5 .1)

with different settings of parameters.

DGP 1 λi
i.i.d∼ N (0, 1), ϵit

i.i.d∼ N (0, 1), ut
i.i.d∼ N (0, IR0), ρ00,r = 1 for all r, and {ρ0i }Ni=1 follow

the uniform distribution U [a, b] with the parameters a and b to be specified.

DGP 2 λi
i.i.d∼ N (0, 1), ϵit and ut follow them­dependent process, ρ00,r = 1 for all r, and {ρ0i }Ni=1

follow the uniform distribution U [a, b] with the parameters a and b to be specified.

DGP 3 λi
i.i.d∼ N (0, 1), ϵit

i.i.d∼ N (0, 1), ut
i.i.d∼ N (0, IR0), ρ00,r > 1 for all r, and {ρ0i }Ni=1 follow

the uniform distribution U [a, b] with the parameters a and b to be specified.

DGP 4 λi
i.i.d∼ N (0, 1), , ϵit and ut follow the m­dependent process, ρ00,r > 1 for all r, and

{ρ0i }Ni=1 follow the uniform distribution U [a, b] with the parameters a and b to be specified.
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Apparently, DGPs 1 and 2 are used to evaluate the size of the proposed tests, and DGPs 3 and 4

are used to evaluate the power performances of the proposed tests.

To study the empirical size of the proposed test, we set other parameters in DGPs 1 and 2 as fol­

lows. First, we consider three types of local­to­unity explosiveness among {ρ0i }Ni=1, namely, (1) all

autoregressive coefficients are in the near vicinity of unity such that {ρi}Ni=1
i.i.d∼ U (1.001, 1.010);

(2) autoregressive coefficients lie in a wide spread of the vicinity of unity such that {ρi}Ni=1
i.i.d∼

U (1.006, 1.018); (3) autoregressive coefficients concentrate on a far vicinity of unity such that

{ρi}Ni=1
i.i.d∼ U (1.014, 1.016). Note that for all cases, we set {ρ0i }Ni=1 to range between 1 and 1.018

because the local­to­unity explosiveness in idiosyncratic components are considered in the current

paper. When these autoregressive coefficients are moderately larger than 1 such as 1.02 or 1.04, it

can be more appropriate to model the data as mildly explosive model.

We also consider two typical cases of true factors, namely, (1) the Single­Factor Model and (2)

the Three­Factors Model. We consider the Single­Factor Model because DF (r),f is theoretically

pivotal udder DGP 1 as pointed out after Theorem 3.3.2, we then can compare the performance of

the proposed test based on simulated asymptotic and bootstrapped critical values. At the same time,

we also assess the empirical size of the DWB implementation of the proposed test under the Three­

Factors Model when the asymptotic critical values cannot be tabulated by simulations.

To study the power of the proposed test under the alternative of local­to­unity, we consider that

{ρ00,r}Rr=1 are moderately large with R0 = 3 in DGPs 3 and 4 as follows:

(1) ρ0
0 = diag (0.0000, 1.0160, 1.0180) (2) ρ0

0 = diag (1.0160, 1.0170, 1.0180); (3) ρ0
0 =

diag (1.0176, 1, 0178, 1.0180); (4) ρ0
0 = diag (1.0175, 1.0180, 1.0185).

For the autoregressive coefficients {ρ0i }Ni=1, we focus on the case with a wide spread of the vicinity

of unity such that {ρ0i }Ni=1
i.i.d∼ U (1.006, 1.018), which can lead to the complicated case such that

intensity of signals generated from common factors is not significantly dominant than that from

idiosyncratic components.

In addition, in related studies on unit root test (e.g., see Müller and Elliott (2003)), the effects

of initial conditions matter for the power of related unit root tests in finite samples. Therefore, we
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consider three different initial conditions of the unobserved common factors under DGPs 3 and 4:

(1) initial values are small such thatF 0,(r)
0 = 5 for all r = 1, . . . , R0; (2) initial values are moderately

large such that F 0,(r)
0 = 20 for all r = 1, . . . , R0; and (3) initial values depend on the length of time

series, T , such that F 0,(r)
0 = c ·T 0.5−β with c = 1.2 and β = 0.02 for all r = 1, . . . , R0, where F 0,(r)

0

stands for the r­th true common factor at time 0.

Note that ϵit and ut in DGPs 2 and 4 follow the m­dependent process. For each i, we generate

eit by the m­dependent process as follows: eit =
∑m

k=0 qkξt−k with ξt−k
i.i.d∼ N (0, 1), q0 = 1 and

qk
i.i.d∼ U [0.1, 0.2] for k ≥ 1; and we also generate ut by the same style. We fix m = 5 across all

experiments.

Finally, according to Rho and Shao (2019), by employing the DWBmethod, we generate pseudo­

series {Wt,T}Tt=1from i.i.d.N(0,ΣW ), where ΣW is an T × T matrix with its (t, s)th element being

a (|t− s|/lT ) with the Bartlett kernel a(|τ |) such that a(|τ |) = (1 − |τ |) · I(|τ | ≤ 1). Besides, Rho

and Shao (2019) indicates that the moderate bandwidth lT for the DWB method works in practice.

Thus, we set lT = max
(
⌊6[T/100]1/4⌋, 6

)
, where ⌊A⌋ refers to the integer that does not exceed A,

and max(a, b) takes the larger value between a and b.

For all simulation experiments, we conduct 1000 replications with B = 500 bootstrap resamples

in each replication. For brevity, we report simulation results for the proposed test based on the first

estimated factor. The nominal level is 0.05 for all cases.

3.5.2 Simulation Results

We display the finite­sample performances of the DF (1),f when the null hypothesis holds in Tables

3.1 and 3.2. Rows of Table 3.1 exhibit the empirical rejection frequencies based on bootstrapped and

simulated asymptotic critical values for each combination ofN and T in the Single­Factor model. We

simulate the asymptotic critical values with 2000 replications. Similarly, rows of Table 3.2 report

the empirical rejection frequencies when {ρ0i }Ni=1 lie in the vicinity of unity in different types for

each combination of N and T in the Three­Factors model. Overall, the results in Tables 3.1 and 3.2

suggest that, based on the bootstrapped critical values, our proposed test has well­controlled size in
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Table 3.1: Finite sample properties of the DF (1),f under the null for the Single­Factor Model.
DGP 1 Size of the dependent wild bootstrap implementation of the proposed test

ρ00,r = 1 for all r and {ρi}Ni=1
i.i.d∼ U (1.001, 1.010)

(N,T ) (100,51) (100,101) (100,201) (200,51) (200,101) (200,201)
bootstrapped c.v. 0.051 0.058 0.057 0.060 0.053 0.048

simulated asym. c.v. 0.449 0.484 0.516 0.439 0.484 0.491
DGP 1 Size of the dependent wild bootstrap implementation of the proposed test

ρ00,r = 1 for all r and {ρi}Ni=1
i.i.d∼ U (1.006, 1.018)

(N,T ) (100,51) (100,101) (100,201) (200,51) (200,101) (200,201)
bootstrapped c.v. 0.057 0.046 0.055 0.064 0.052 0.049

simulated asym. c.v. 0.432 0.481 0.501 0.450 0.464 0.507
DGP 1 Size of the dependent wild bootstrap implementation of the proposed test

ρ00,r = 1 for all r and {ρi}Ni=1
i.i.d∼ U (1.014, 1.016)

(N,T ) (100,51) (100,101) (100,201) (200,51) (200,101) (200,201)
bootstrapped c.v. 0.061 0.053 0.060 0.057 0.049 0.056

simulated asym. c.v. 0.457 0.491 0.580 0.437 0.460 0.530

all cases. On the contrary, the results in Table 3.1 imply that the null of unit root can be rejected

too frequently if practitioners use the simulated asymptotic critical values in practice, which is the

worst case to misidentify the bubbles in the idiosyncratic components as ones in common factors. In

particular, the bottom panel of Table 3.2 implies that the DWB implementation of our proposed test

still works when error terms {ut} are weakly dependent along the time dimension.

Table 3.2: Finite sample properties of the DF (1),f under the null for the Three­Factor Model.
DGP 1 Size of the DWB implementation of the proposed test

ρ00,r = 1 for all r
(N,T ) (100,51) (100,101) (100,201) (200,51) (200,101) (200,201)

{ρi}Ni=1
i.i.d∼ U (1.001, 1.010) 0.042 0.058 0.050 0.042 0.050 0.048

{ρi}Ni=1
i.i.d∼ U (1.006, 1.018) 0.050 0.054 0.054 0.052 0.046 0.052

{ρi}Ni=1
i.i.d∼ U (1.014, 1.016) 0.060 0.050 0.056 0.050 0.046 0.058

DGP 2 Size of the DWB implementation of the proposed test
ρ00,r = 1 for all r

(N,T ) (100,51) (100,101) (100,201) (200,51) (200,101) (200,201)
{ρi}Ni=1

i.i.d∼ U (1.001, 1.010) 0.064 0.056 0.051 0.060 0.054 0.053
{ρi}Ni=1

i.i.d∼ U (1.006, 1.018) 0.064 0.059 0.053 0.053 0.054 0.055
{ρi}Ni=1

i.i.d∼ U (1.014, 1.016) 0.061 0.054 0.058 0.057 0.055 0.051

In Tables 3.3 and 3.4, we explore the power performance of the DF (1),f under various initial
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Table 3.3: Finite sample properties of theDF (1),f under the alternatives for the Three­Factor Model.
DGP 3 Power of the DWB implementation of the proposed test

ρi
i.i.d∼ U (1.006, 1.018) for any i ∈ {1, . . . , N} with F 0,(r)

0 = 5 for all r
ρ0
0\ (N,T ) (100,51) (100,101) (100,201) (200,51) (200,101) (200,201)

diag (0.0000, 1.0160, 1.0180) 0.057 0.241 0.981 0.058 0.253 0.983
diag (1.0160, 1.0170, 1.0180) 0.055 0.240 0.997 0.054 0.254 0.997
diag (1.0176, 1, 0178, 1.0180) 0.033 0.325 0.999 0.048 0.360 0.999
diag (1.0175, 1.0180, 1.0185) 0.041 0.384 1.000 0.043 0.388 1.000

DGP 3 Power of the DWB implementation of the proposed test
ρi

i.i.d∼ U (1.006, 1.018) for any i ∈ {1, . . . , N} with F 0,(r)
0 = 20 for all r

ρ0
0\ (N,T ) (100,51) (100,101) (100,201) (200,51) (200,101) (200,201)

diag (0.0000, 1.0160, 1.0180) 0.048 0.979 1.000 0.056 0.977 1.000
diag (1.0160, 1.0170, 1.0180) 0.011 0.989 1.000 0.013 0.993 1.000
diag (1.0176, 1, 0178, 1.0180) 0.013 0.998 1.000 0.010 0.998 1.000
diag (1.0175, 1.0180, 1.0185) 0.016 0.997 1.000 0.012 1.000 1.000

DGP 3 Power of the DWB implementation of the proposed test
ρi

i.i.d∼ U (1.006, 1.018) for any i ∈ {1, . . . , N} with F 0,(r)
0 = 1.2× T 0.48 for all r

ρ0
0\ (N,T ) (100,51) (100,101) (100,201) (200,51) (200,101) (200,201)

diag (0.0000, 1.0160, 1.0180) 0.056 0.766 1.000 0.067 0.763 1.000
diag (1.0160, 1.0170, 1.0180) 0.039 0.816 1.000 0.029 0.817 1.000
diag (1.0176, 1, 0178, 1.0180) 0.029 0.916 1.000 0.024 0.921 1.000
diag (1.0175, 1.0180, 1.0185) 0.026 0.943 1.000 0.032 0.947 1.000
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conditions of common factors when the alternative of local­to­unity holds. For each initial value of

the common factors, each panel of Tables 3.3 and 3.4 reports the results for each combination of N

and T .

In Table 3.3, our proposed test has high power against the alternatives in most cases. When the

initial value of the common factors is relatively small as shown in the top panel, the power of the

DWB implementation of our proposed test gains gradually as the time dimension T increases from 51

to 201. However, when the initial value of the common factors is moderately large, as shown in the

middle panel, the power of our proposed test against the alternative of local­to­unity approaches one

quickly. In addition, when the initial value is of order o
(
T 1/2

)
, the bottom panel also demonstrates

a significant step­up in the power of the DWB implementation of our proposed test against the local

alternatives.

Table 3.4: Finite sample properties of theDF (1),f under the alternatives for the Three­Factor Model.
DGP 4 Power of the DWB implementation of the proposed test

ρi
i.i.d∼ U (1.006, 1.018) for any i ∈ {1, . . . , N} with F 0,(r)

0 = 5 for all r
ρ0
0\ (N,T ) (100,51) (100,101) (100,201) (200,51) (200,101) (200,201)

diag (0.0000, 1.0160, 1.0180) 0.968 1.000 1.000 0.967 1.000 1.000
diag (1.0160, 1.0170, 1.0180) 0.945 1.000 1.000 0.952 1.000 1.000
diag (1.0176, 1, 0178, 1.0180) 0.931 1.000 1.000 0.938 1.000 1.000
diag (1.0175, 1.0180, 1.0185) 0.830 1.000 1.000 0.852 1.000 1.000

DGP 4 Power of the DWB implementation of the proposed test
ρi

i.i.d∼ U (1.006, 1.018) for any i ∈ {1, . . . , N} with F 0,(r)
0 = 20 for all r

ρ0
0\ (N,T ) (100,51) (100,101) (100,201) (200,51) (200,101) (200,201)

diag (0.0000, 1.0160, 1.0180) 0.805 1.000 1.000 0.806 1.000 1.000
diag (1.0160, 1.0170, 1.0180) 0.702 1.000 1.000 0.725 1.000 1.000
diag (1.0176, 1, 0178, 1.0180) 0.720 1.000 1.000 0.729 1.000 1.000
diag (1.0175, 1.0180, 1.0185) 0.702 1.000 1.000 0.731 1.000 1.000

DGP 4 Power of the DWB implementation of the proposed test
ρi

i.i.d∼ U (1.006, 1.018) for any i ∈ {1, . . . , N} with F 0,(r)
0 = 1.2× T 0.48 for all r

ρ0
0\ (N,T ) (100,51) (100,101) (100,201) (200,51) (200,101) (200,201)

diag (0.0000, 1.0160, 1.0180) 0.915 1.000 1.000 0.911 1.000 1.000
diag (1.0160, 1.0170, 1.0180) 0.812 1.000 1.000 0.841 1.000 1.000
diag (1.0176, 1, 0178, 1.0180) 0.849 1.000 1.000 0.861 1.000 1.000
diag (1.0175, 1.0180, 1.0185) 0.843 1.000 1.000 0.844 1.000 1.000

In Table 3.4, the DWB implementation of our proposed test has similar performance as shown in
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Table 3.3. However, when error terms are weakly dependent along the time dimension, our proposed

test has significantly higher power against the alternatives than those in Table 3.3 when T = 51.

Table 3.5: Finite sample properties of the joint test for the Three­Factor Model.
DGP 2 Size of the DWB implementation of the proposed joint test

ρ00,r = 1 for all r
(N,T ) (100,51) (100,101) (100,201) (200,51) (200,101) (200,201)

{ρi}Ni=1
i.i.d∼ U (1.001, 1.010) 0.051 0.052 0.058 0.054 0.046 0.052

{ρi}Ni=1
i.i.d∼ U (1.006, 1.018) 0.048 0.041 0.047 0.055 0.048 0.052

{ρi}Ni=1
i.i.d∼ U (1.014, 1.016) 0.058 0.054 0.060 0.049 0.050 0.049

DGP 4 Power of the DWB implementation of the proposed joint test
ρi

i.i.d∼ U (1.006, 1.018) for any i ∈ {1, . . . , N} with F 0,(r)
0 = 5 for all r

ρ0
0\ (N,T ) (100,51) (100,101) (100,201) (200,51) (200,101) (200,201)

diag (0.0000, 1.0160, 1.0180) 0.952 0.998 1.000 0.948 0.999 1.000
diag (1.0160, 1.0170, 1.0180) 0.956 1.000 1.000 0.955 1.000 1.000
diag (1.0176, 1, 0178, 1.0180) 0.957 1.000 1.000 0.966 1.000 1.000
diag (1.0175, 1.0180, 1.0185) 0.958 1.000 1.000 0.964 1.000 1.000

DGP 4 Power of the DWB implementation of the proposed joint test
ρi

i.i.d∼ U (1.006, 1.018) for any i ∈ {1, . . . , N} with F 0,(r)
0 = 20 for all r

ρ0
0\ (N,T ) (100,51) (100,101) (100,201) (200,51) (200,101) (200,201)

diag (0.0000, 1.0160, 1.0180) 0.979 1.000 1.000 0.988 1.000 1.000
diag (1.0160, 1.0170, 1.0180) 0.991 1.000 1.000 0.994 1.000 1.000
diag (1.0176, 1, 0178, 1.0180) 0.987 1.000 1.000 0.990 1.000 1.000
diag (1.0175, 1.0180, 1.0185) 0.985 1.000 1.000 0.991 1.000 1.000

DGP 4 Power of the DWB implementation of the proposed joint test
ρi

i.i.d∼ U (1.006, 1.018) for any i ∈ {1, . . . , N} with F 0,(r)
0 = 1.2× T 0.48 for all r

ρ0
0\ (N,T ) (100,51) (100,101) (100,201) (200,51) (200,101) (200,201)

diag (0.0000, 1.0160, 1.0180) 0.972 1.000 1.000 0.977 1.000 1.000
diag (1.0160, 1.0170, 1.0180) 0.985 1.000 1.000 0.985 1.000 1.000
diag (1.0176, 1, 0178, 1.0180) 0.981 1.000 1.000 0.983 1.000 1.000
diag (1.0175, 1.0180, 1.0185) 0.983 1.000 1.000 0.984 1.000 1.000

Table 3.5 summarizes the finite­sample performance of the proposed joint test, and shows that

the DWB implementation of our proposed joint test also have desirable size and good power against

the alternatives of local­to­unity.

Overall, Tables 3.1­3.5 provide evidences that the DWB implementation of our proposed tests

has asymptotic correct size and good asymptotic power properties.
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3.6 Concluding Remarks

This paper presents an easy­to­implement and effective testing procedure to detect bubbles in unob­

served common factors when data displays the local­to­unity persistence as a necessary complement

to related studies on detecting bubbles in panel data. We employ the panel factor models to extract the

unobserved common factors and idiosyncratic components by the conventional PC estimation. We

propose to construct the proposed test statistics based on the estimated common factors. We establish

the limiting null distribution, asymptotic power property, and the consistency for our proposed test

when the idiosyncratic components can allow for the local­to­unity process. To implement our test,

we further use the DWB method to simulate the critical values in practice and justify the validity of

the DWB method. The testing procedure allows us to disentangle the sources of local­to­unity ex­

plosiveness in data and identify the bubbles in common factors correctly. These theoretical findings

are supplemented with Monte Carlo studies under various scenarios, which display that our proposed

test has good finite­sample size and power against the alternative of local­to­unity.

Finally, the findings and discussions of this paper also raise some interesting topics for further

exploration. First, identifying the phase transition from local­to­unity to mildly explosive bubbles

is an interesting but underdeveloped issue to understand the nature of explosiveness in data. We

can utilize advances in statistics and random matrix theory to gain more insights into the dynamics

of explosiveness in panel data. Second, closely related to the first topic, we only consider a single

bubble in the observed period. In the observed period, unobserved common factors and idiosyncratic

components exhibit no structural change from the non­explosion to the explosion. Following the

recent studies on high­dimensional time series factor models (e.g., Liu and Chen (2020), Gao and

Tsay (2021)), there is a possibility to extend our current analysis for explosive data to such kind of

more complicated cases. We leave these topics for future research.
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Appendix A

Appendix to Chapter 1

A.1 Proofs of the Main Results in Section 1.3

Recall that δNT = min{
√
N,

√
T}.

A.1.1 Proofs of Theorems 1.3.1 and Corollary 1.3.2

In this appendix, we prove Theorem 1.3.1 and Corollary 1.3.2 in the paper. We call upon Proposition

A.1.1 below whose proof can be found in the online supplement.

Proofs of Theorem 1.3.1

(i) Note that

β̂−β =

(
1

NT

∑
i

∑
t

ẍitẍ
′
it

)−1 [
1

NT

∑
i

∑
t

ẍit

(
üit + θ̈it + φ̈it

)]
≡ A−1

1NT (B1NT +B2NT +B3NT ) ,

where

A1NT =
1

NT

∑
i

∑
t

ẍitẍ
′
it, B1NT =

1

NT

∑
i

∑
t

ẍitüit,

B2NT =
1

NT

∑
i

∑
t

ẍitx̃
′
itλi, and B3NT =

1

NT

∑
i

∑
t

ẍitx̆
′
itγt.
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By Proposition A.1.1 below,

∥∥∥β̂ − β
∥∥∥ ≤

∥∥A−1
1NT

∥∥ (∥B1NT∥+ ∥B2NT∥+ ∥B3NT∥)

= Op (1)Op((NT )
−1/2 +N−1/2 + T−1/2) = Op(δ

−1
NT ).

(ii) By (i), we can rewrite β̂ − β = A−1
1NT (B1NT +B2NT +B3NT ) . By neglecting higher­order

terms, we can show that

β̂ − β =

(
1

NT

∑
i

∑
t

x∗itx
∗′
it

)−1 [
1

NT

∑
i

∑
t

x∗itx
∗′
itλi +

1

NT

∑
i

∑
t

x∗itx
∗′
itγt +

1

NT

∑
i

∑
t

x∗ituit

]
+op

(
δ−1
NT

)
≡ A−1

1NT

(
N−1/2ξNT + T−1/2ζNT +N−1/2T−1/2ϕNT

)
+ op

(
δ−1
NT

)
,

where ξNT ≡ 1√
NT

∑
i

∑
t x

∗
itx

∗′
itλi, ζNT ≡ 1

N
√
T

∑
i

∑
t x

∗
itx

∗′
itγt, and ϕNT ≡ 1√

NT

∑
i

∑
t x

∗
ituit. By

Proposition A.1.1(i) below and the fact that Σx > 0, A−1
1NT = Σ−1

x + op (1) .

Note that Vβ ≡ 1
N
Σ−1

x VλΣ
−1
x + 1

T
Σ−1

x VγΣ
−1
x + 1

NT
Σ−1

x VuΣ
−1
x = O(δ−2

NT ). Under the stated

conditions in the theorem, we will show that ξNT
d→ N (0, Vλ), ζNT

d→ N (0, Vγ), and ϕNT
d→

N (0, Vu). Next,

Cov (ξNT , ζNT ) = E

[
1

N3/2T 3/2

∑
i,j

∑
t,s

x∗itx
∗′
itλiγ

′
sx

∗
jsx

∗′
js

]

= E

[
1

N3/2T 3/2

∑
i,j

∑
t,s

x∗itx
∗′
itCov (λi, γs | X)x∗jsx

∗′
js

]
= o (1) ,

by Assumption A1.1(v). Similarly, we can show that Cov(ϕNT , ζNT ) = o (1) and Cov(ξNT , ϕNT ) =

o (1) by the law of iterated expectations under Assumption A1.1(iii)­(iv) and Assumption A1.2(ii).

So (ξNT , ζNT , ϕNT )
d→ (ξ, ζ, ϕ), where (ξ, ζ, ϕ) is a triple­variate Gaussian random vector with

mean zero, and covariance diag{Σ−1
x VλΣ

−1
x ,Σ−1

x VγΣ
−1
x ,Σ−1

x VuΣ
−1
x }, where diag{·} represents the

(block) diagonal matrix. Then, by the almost sure representation, there exists (ξ∗NT , ζ
∗
NT , ϕ

∗
NT ) and

(ξ∗, ζ∗, ϕ∗) such that (ξ∗NT , ζ
∗
NT , ϕ

∗
NT ) has the same distribution as (ξNT , ζNT , ϕNT ), (ξ∗, ζ∗, ϕ∗) has
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the same distributions as (ξ, ζ, ϕ), then (ξ∗NT , ζ
∗
NT , ϕ

∗
NT )

d→ (ξ∗, ζ∗, ϕ∗) almost surely. It follows that

ξNT/
√
N + ζNT/

√
T

V1/2
β

d
=

ξ∗NT/
√
N + ζ∗NT/

√
T

V1/2
β

=
ξ∗/

√
N + ζ∗/

√
T

V1/2
β︸ ︷︷ ︸

N (0K ,IK)

+
ξ∗NT − ξ∗(

Σ−1
x VλΣ−1

x + T
N
Σ−1

x VγΣ−1
x + 1

N
Σ−1

x VuΣ−1
x

)1/2︸ ︷︷ ︸
a1

+
ζ∗NT − ζ∗(

N
T
Σ−1

x VλΣ−1
x + Σ−1

x VγΣ−1
x + 1

T
Σ−1

x VuΣ−1
x

)1/2︸ ︷︷ ︸
a2

d
= N (0K , IK) + oa.s.(1).

where a1 → 0 and a2 → 0 almost surely. Therefore,

V−1/2
β

(
β̂ − β

)
d−→ N (0K , IK)

Now, we are in the position to show the asymptotic normality of ξNT , ζNT and ϕNT defined

above. Then, together with continuous mapping theorem, the desired result holds immediately.

Note that ξNT
d→ N (0, Vλ) under Assumption A1.5. Next, we apply the CLT for mixing se­

quences as given in Corollary 16.3.6 in Athreya and Lahiri (2006) to ζNT = 1
N
√
T

∑
i

∑
s x

∗
isx

∗′
isγt

and ϕNT = 1√
NT

∑
i

∑
t x

∗
ituit below. Let ZNs ≡ 1

N

∑
i x

∗
isx

∗′
isγs. Then ζNT = T−1/2

∑
s ZNs and

{ZNs} is strong mixing sequence with some mixing coefficeint αZ(·). It suffices to show that (1)

E(ZNs) = 0; (2) E ∥ZNs∥4 < ∞; (3)
∑+∞

τ αZ(τ)
1/2 < ∞; (4) ΣZ ≡ lim

(N,T )→∞
Var( 1√

T

∑
s ZNs)

exists and is positive definite.

By Assumption A1.1, (1) holds. Next, E ∥ZNs∥4 < ∞ under Assumption A1.1 by direct

moments calculations for each s. Under Assumption A1.1, {x∗itγt} and {x∗it} are α­mixing se­

quences with the α­mixing coefficients that satisfy α(τ) ≤ Mτ−κ for some κ > 2. Therefore,

ZNs =
1
N

∑
i x

∗
isx

∗′
isγs is still the α­mixing sequence with the α­mixing coefficients αZ(τ) satisfying
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αZ(τ) ≤Mτ−κ for some κ > 2. Then
∑+∞

τ=1 α
1/2
Z (τ) ≤M

∑+∞
τ=1 τ

−κ
2 <∞ and (3) follows. Lastly,

ΣZ = lim
(N,T )→∞

Var(
1√
T

∑
s

ZNs) = lim
(N,T )→∞

1

N2T

∑
i,j

∑
t,s

E
[
x∗itx

∗′
itγtγ

′
sx

∗
jsx

∗′
js

]
≡ Vγ

exists and is positive definite under Assumption A1.4. Then by Corollary 16.3.6 of Athreya and

Lahiri (2006), ξNT = 1√
T

∑
t Zt

d→ N (0, Vγ). Similarly, we can show that ϕNT
d→ N (0, Vu). �

Proposition A.1.1. Suppose that Assumptions A1.1 to A1.4 hold. Then

(i) A1NT
p→ Σx,

(ii) ∥B1NT∥ = Op(δ
−2
NT ),

(iii) ∥B2NT∥ = Op(
1√
N
),

(iv) ∥B3NT∥ = O( 1√
T
).

Proofs of Corollary 1.3.2

The corollary follows from Theorem 1.3.1 and Slutsky theorem provided that V̂β is the consistent

estimator of Vβ . The latter can be shown by direct calculations. �

A.1.2 Proofs of Theorem 1.3.3 and Corollary 1.3.5

In this section, we prove Theorem 1.3.3 and Corollary 1.3.5.

Proof of Theorem 1.3.3

Recall that eit = ẍ′it(β − β̂) + φ̈it + üit − 1
N

∑N
l=1,l ̸=i x̃

′
ltλl. It is easy to see that

λ̂i − λi =
N − 1

N

(
1

T

∑
t

x̃itx̃
′
it

)−1
1

T

∑
t

x̃iteit

=
N − 1

N
A−1

2iT (−C1iT + C2iT + C3iT + C4iT ) ,
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where

A2iT =
1

T

∑
t

x̃itx̃
′
it,

C1iT =
1

T

∑
t

x̃itx̃
′
it

(
β̂ − β

)
− 1

NT

∑
l

∑
t

x̃itx̃
′
lt

(
β̂ − β

)
,

C2iT =
1

T

∑
t

x̃itx̆
′
itγt −

1

T 2

∑
t

∑
s

x̃itx̆
′
isγs,

C3iT =
1

T

∑
t

x̃it

(
ũit −

1

N

∑
l

ũlt

)
,

C4iT =
1

NT

∑
l ̸=i

∑
t

x̃itx̃
′
ltλl.

Furthermore, according to those immediate results for λ̂i−λi in Section S1, for each i, we then have

the following decomposition,

λ̂i − λi = −

( 1

NT

∑
j

∑
t

x∗jtx
∗′
jt

)−1
1

NT

∑
j

∑
t

x∗jtx
∗′
jtλj +

(
1

NT

∑
j

∑
t

x∗jtx
∗′
jt

)−1

1

NT

∑
j

∑
t

x∗jtx
∗′
jtγt

]

+

(
1

T

∑
t

x∗itx
∗′
it

)−1
1

T

∑
t

x∗itx
∗′
itγt +

(
1

T

∑
t

x∗itx
∗′
it

)−1
1

T

∑
t

x∗ituit + op
(
δ−1
NT

)
= −Σ−1

x

1

NT

∑
j ̸=i

∑
t

x∗jtx
∗′
jtλj + Σ−1

x

1

T

∑
t

(x∗itx
∗′
it − Σx) γt + Σ−1

x

1

T

∑
t

x∗ituit + op
(
δ−1
NT

)
= −Σ−1

x (ξλNT/
√
N) + Σ−1

x (ζλiT/
√
T ) + Σ−1

x (Ψλ
iT/

√
T ) + op

(
δ−1
NT

)
,

where ξλNT = 1√
NT

∑
j ̸=i

∑
t x

∗
jtx

∗′
jtλj , ζλiT = 1√

T

∑
t (x

∗
itx

∗′
it − Σx) γt, and Ψλ

iT = 1√
T

∑
t x

∗
ituit. By

applying suitable CLT’s for ξλNT , ζλiT and Ψλ
iT in the next subsection, we can show the asymptotic

normality of these partial sums of random variables under mild conditions.

Our proof strategy is outlined here: Step (i), we show that ξλNT , ζλiT and Ψλ
iT follow the normal

distribution after appropriate rescaling in turn, Step (ii), all of them are asymptotically pairwise­

independent, Step (iii), we use almost sure representation theorem again as done for proofs of The­
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orem 1.3.1 in the previous section.

Recall that

λ̂i − λi = −Σ−1
x (ξλNT/

√
N) + Σ−1

x (ζλiT/
√
T ) + Σ−1

x (Ψλ
iT/

√
T ) + op

(
δ−1
NT

)
,

where ξλNT = 1√
NT

∑
j ̸=i

∑
t x

∗
jtx

∗′
jtλj , ζλiT = 1√

T

∑
t (x

∗
itx

∗′
it − Σx) γt, and Ψλ

iT = 1√
T

∑
t x

∗
ituit.

Step (i)We will show the asymptotic normality of ξλNT , ζλiT and Ψλ
iT as below.

(ia) Under Assumptions A1.4 and A1.5, ξλNT
d→ N (0, Vλ), where Vλ exists and is nonsingular.

(ib) Note that for each i, ξλiT and Ψλ
iT can be regarded as the partial sums of mixing sequences, the

asymptotic normality is proved under Assumptions A1.1 to A1.4 by employing Corollary 16.3.6 in

Athreya and Lahiri (2006) here.

To this end, define Zit = {(x∗itx∗′it − Σx) γt, x
∗
ituit}, then {Zit} are stationary and mixing se­

quences under Assumptions A1.1 and A1.2.

In order to show the asymptotic normality for 1√
T

∑
t Zit, it is sufficient to show following four

conditions are satisfied as (N, T ) go to infinity simultaneously. In particular, these conditions are:

(1) EZit = 0; (2) E ∥Zit∥42 < ∞ for some δ ∈ (0,+∞); (3)
∑+∞

τ αZ(τ)
1/2 < ∞; (4) ΣZ =

lim
T→∞

V ar( 1√
T

∑
t Zit) exists and is positive definite matrix. Now, we are in the position to verify

these conditions under Assumptions A1.1 to A1.4.

(1) Obviously, EZit = 0 under Assumptions A1.1 and A1.2.

(2) E ∥Zit∥42 < ∞ holds for Zit = {(x∗itx∗′it − Σx) γt, x
∗
ituit} under Assumption A1.1 and A1.2

by straightforward moments calculations.

(3) Under Assumption A1.1 and A1.2, xit and uit are α­mixing sequences with the α­mixing

coefficients that satisfy α(τ) ≤ Mτ−κ for some κ > 0. Under Assumption A1.1, γt is independent

of xis for any (i, t, s). Therefore, Zit = {(x∗itx∗′it − Σx) γt, x
∗
ituit} is still the α­mixing sequence with
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the α­mixing coefficients αZ(τ) that satisfy αZ(τ) ≤Mτ−κ for some κ > 0. It follows that

+∞∑
τ=1

α
1/2
Z ≤M

+∞∑
τ=1

τ−
κ
2 <∞,

holds as long as κ > 2, which is satisfied under Assumptions imposed for Theorem 1.3.3.

(4)We verify the condition by treating Zit = (x∗itx
∗′
it − Σx) γt and Zit = x∗ituit separately below.

(4a) By direct moments calculations, we have

lim
T→∞

V ar(
1√
T

∑
t

Zit) = lim
T→∞

1

T

T∑
t,s=1

E [(x∗itx
∗′
it − Σx) γtγ

′
s (x

∗
isx

∗′
is − Σx)] ≡ Σi,xγ

exists and is nonsingular uniformly over t by Assumption A1.1 and A1.4.

(4b) By direct moments calculations, we have

lim
T→∞

V ar(
1√
T

∑
t

Zit) = lim
T→∞

1

T

∑
t,s

E (x∗ituituisx
∗′
is) = Σ̃i,xu

exists and is nonsingular by Assumptions A1.1, A1.2 and A1.4.

Hence, according to the Corollary 16.3.6 of Athreya and Lahiri (2006), we have 1√
T

∑
t Zit

d→

N(0,ΣZ), which implies

ξλiT
d→ N(0,Σi,xγ), Ψλ

iT
d→ N(0, Σ̃i,xu)

Step (ii) In this step, we want to show, as (N, T ) → ∞, {ξλNT , ζ
λ
iT ,Ψ

λ
iT} are asymptotically un­

correlated such that they are asymptotically independent by the virtue of their asymptotic normal­

ity. To see this, we recall that ξλNT = 1√
NT

∑
j ̸=i

∑
t x

∗
jtx

∗′
jtλj , ζλiT = 1√

T

∑
t (x

∗
itx

∗′
it − Σx) γt, and

Ψλ
iT = 1√

T

∑
t x

∗
ituit.

By straightforward moments calculations and the law of iterated expectations, we can readily

show that Cov(ξλNT , ζ
λ
iT ) = 0, Cov(ξλNT ,Ψ

λ
iT ) = 0, and Cov(Ψλ

iT , ζ
λ
iT ) = 0 hold as (N, T ) go

to infinity simultaneously under Assumptions A1.1 and A1.2, which is similar to corresponding

arguments of proofs for Theorem 1.3.1.
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Step (iii) Recall that

λ̂i − λi = ξλNT/
√
N + ζλiT/

√
T +Ψλ

iT/
√
T + op

(
δ−1
NT

)
.

Given that ξλNT , ζ
λ
iT andΨλ

iT follow the normal distribution, and are asymptotically pairwise­independent

as (N, T ) → ∞ jointly. It follows that as (N, T ) → ∞, {ξλNT , ζ
λ
iT ,Ψ

λ
iT}

d→
(
ξλ, ζλi ,Ψ

λ
i

)
, where(

ξλ, ξξi , ζ
λ
i

)
is multivariate Gaussian random vector with mean zero and the covariance matrix de­

fined as diag
(
Vλ,Σi,xγ, Σ̃i,xu

)
, where diag(.) represents the (block) diagonal matrix. Therefore, we

can follow corresponding arguments of proofs for Theorem 1.3.1 to employ almost sure represen­

tation theorem again. Finally, according to continuous mapping theorem, the desired result follows

immediately based on notations defined in Theorem 1.3.3. �

Proposition A.1.2. Under Assumptions A1.1 to A1.4, as (N, T ) → ∞ simultaneously, the followings

hold,

(i) A2iT
p−→ Σx,

(ii) ∥C1iT∥ = Op

(∥∥∥β̂ − β
∥∥∥),

(iii) ∥C2iT∥ = Op(
1√
T
),

(iv) ∥C3iT∥ = Op(
1√
T
),

(v) ∥C4iT∥ = Op(
1√
NT

).

Proof of Corollary 1.3.5.

Provided that V̂λi is constructed as the plug­in estimator of Vλi, its consistency can be verified by

direct calculations and the applications of Law of Large Numbers under imposed Assumptions we

impose, Theorem 1.3.4 and Proposition 1.3.8. Finally it suffices to use the Slutsky’s lemma to obtain

the desired result.

In the proofs of Theorem 1.4.1 in the later section, we give a sketch of the main arguments for the

uniform consistency of V̂λi. The details of proofs for Corollary 1.3.5 here are very similar to those

justifications. We refer readers to the corresponding arguments of proofs for Theorem 1.4.1. �
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A.1.3 Proofs of Theorem 1.3.4 and Corollary 1.3.6

In this section, we prove Theorem 1.3.4 and Corollary 1.3.6.

Proof of Theorem 1.3.4

Recall that νit = ẍ′it(β − β̂) + θ̈it + üit − 1
T

∑
r ̸=t x̆

′
irγr. Note that

γ̂t − γt =
T

T − 1

(
1

N

∑
i

x̆itx̆
′
it

)−1 [
1

N

∑
i

x̆itνit

]
=

T

T − 1
A−1

3Nt (−D1Nt +D2Nt +D3Nt +D4Nt) ,

where

A3Nt =
1

N

∑
i

x̆itx̆
′
it,

D1Nt =
1

N

∑
i

x̆itx̃
′
it

(
β̂OLS − β

)
− 1

N2

∑
i

∑
l

x̆itx̃
′
lt

(
β̂OLS − β

)
,

D2Nt =
1

N

∑
i

x̆itx̃
′
itλi −

1

N2

∑
i

∑
l

x̆itx̃
′
lsλl,

D3Nt =
1

N

∑
i

x̆it

(
ũit −

1

N

∑
l

ũlt

)
=

1

N

∑
i

x̆itũit −
1

N2

∑
l

∑
i

x̆itũlt,

D4Nt =
1

NT

∑
i

∑
t̸=s

x̆itx̆
′
isγs.

Furthermore, according to those immediate results for γ̂t− γt in Section S1, for each t, we then have
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the following decomposition,

γ̂t − γt

= −

( 1

NT

∑
i

∑
s

x∗isx
∗′
is

)−1
1

NT

∑
i

∑
s

x∗isx
∗′
isλi +

(
1

NT

∑
i

∑
s

x∗isx
∗′
is

)−1
1

NT

∑
i

∑
s

x∗isx
∗′
isγs


+

(
1

N

∑
i

x∗itx
∗′
it

)−1
1

N

∑
i

x∗itx
∗′
itλi +

(
1

N

∑
i

x∗itx
∗′
it

)−1
1

N

∑
i

x∗ituit + op
(
δ−1
NT

)
= −Σ−1

x

1

NT

∑
i

∑
s ̸=t

x∗isx
∗′
isγs + Σ−1

x

1

N

∑
i

(x∗itx
∗′
it − Σx)λi + Σ−1

x

1

N

∑
i

x∗ituit + op
(
δ−1
NT

)
= −Σ−1

x (ξγNT/
√
T ) + Σ−1

x (ζγNt/
√
N) + Σ−1

x (Ψγ
Nt/

√
N) + op

(
δ−1
NT

)
,

where ξγNT = 1
N
√
T

∑
i

∑
s̸=t x

∗
isx

∗′
isγs, ζ

γ
Nt =

1√
N

∑
i (x

∗
itx

∗′
it − Σx)λi, and Ψγ

Nt =
1√
N

∑
i x

∗
ituit. By

applying suitable CLT’s for ξγNT , ζ
γ
Nt and Ψγ

Nt in the next subsection, we can show the asymptotic

normality of these partial sums of random variables under mild conditions.

As discussed in previous subsection, the asymptotic normality of γ̂t is related to the asymptotic

normality of ξγNT , ζ
γ
Nt and Ψ

γ
Nt. Our proof strategy is outlined here: Step (i), we show that ξγNT , ζ

γ
Nt

and Ψγ
Nt follow the normal distribution after appropriate rescaling, Step (ii), all of them are asymp­

totically pairwise­independent, Step (iii), we use almost sure representation as we did for proofs of

Theorem 1.3.1 and Theorem 1.3.3 in previous sections.

In short, the details of proofs below are very similar to those for the asymptotic normality of

λ̂i − λi in the previous section. Thus, we give proofs briefly below.

Recall that

γ̂t − γt = −Σ−1
x (ξγNT/

√
T ) + Σ−1

x (ζγNt/
√
N) + Σ−1

x (Ψγ
Nt/

√
N) + op

(
δ−1
NT

)
,

where ξγNT = 1
N
√
T

∑
i

∑
s ̸=t x

∗
isx

∗′
isγs, ζ

γ
Nt =

1√
N

∑
i (x

∗
itx

∗′
it − Σx)λi, and Ψγ

Nt =
1√
N

∑
i x

∗
ituit.

Step(i)We now establish the asymptotic distribution of ξγNT , ζλNt and Ψ
γ
Nt as below.

(ia) Note that ξγNT can be regarded as the partial sums of mixing sequences that CLT for mixing
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sequences such as Corollary 16.3.6 in Athreya and Lahiri (2006) can be applied.

Define T−1/2
∑

s ̸=t ZNs,−t = T−1/2
∑

s ̸=t

(
1
N

∑
i x

∗
isx

∗′
is

)
γs, then it is straightforward to see

{ZNs,−t} are mixing sequences over s by construction. In order to show the center limit theorem

for T−1/2
∑

s ZNs,−t, we just need to show that, for each t, four conditions are satisfied, namely,

(1) EZNs,−t = 0; (2) E ∥ZNs,−t∥42 < ∞ for some δ ∈ (0,+∞); (3)
∑+∞

τ αZ(τ)
1/2 < ∞; (4)

ΣZ = lim
T→∞

V ar( 1√
T

∑
s ZNs,−t) exists and is positive definite matrix. Following corresponding ar­

guments of proofs for Theorem 1.3.1, we can readily verify these conditions under Assumptions A1.1

to A1.4.

Then, under Assumptions A1.1 and A1.4, it follows that ξγNT

d→ N (0, Vγ)

(ib) Under Assumption A1.5, ζγNt

d→ N (0,Σt,xλ) and Ψγ
Nt

d→ N
(
0, Σ̆t,xu

)
.

Step (ii)According to the definition of covariance, wewant to show, as (N, T ) → ∞, {ξγNT , ζ
λ
Nt,Ψ

λ
Nt}

are asymptotically uncorrelated such that they are asymptotically independent. To see this, we recall

ξγNT = 1
N
√
T

∑
i

∑
s̸=t x

∗
isx

∗′
isγs, ζλNt =

1√
N

∑
i (x

∗
itx

∗′
it − Σx)λi, and Ψγ

Nt =
1√
i

∑
i x

∗
ituit.

By directmoments calculations, we can readily obtain thatCov(ξγNT , ζ
λ
Nt) = 0,Cov(ξγNT ,Ψ

λ
Nt) =

0, Cov(Ψλ
Nt, ζ

λ
Nt) = 0 holds under Assumptions A1.1 and A1.2 as (N, T ) go to infinity simultane­

ously, which is similar to corresponding arguments of proofs for Theorem 1.3.1.

Step (iii) Recall that

γ̂t − γt = −Σ−1
x (ξγNT/

√
T ) + Σ−1

x (ζγNt/
√
N) + Σ−1

x (Ψγ
Nt/

√
N) + op

(
δ−1
NT

)
.

Since ξγNT , ζ
λ
Nt, andΨλ

Nt follow the normal distribution and are asymptotically pairwise­independent

as (N, T ) go to infinity jointly, it follows that
(
ξγNT , ζ

λ
Nt,Ψ

λ
Nt

) d→ (ξγ, ζγt ,Ψ
γ
t ), where (ξγ, ζ

γ
t ,Ψ

γ
t ) is

multivariateGaussian randomvector that hasmean zero and the covariancematrix diag
(
Vγ,Σt,xλ, Σ̆t,xu

)
.

We then can employ almost sure representation theorem again, which is similar to the corresponding

arguments of proofs for Theorem 1.3.1. Finally, together with continuous mapping theorem, based

on notations defined in Theorem 1.3.4, the desired result follows immediately. �
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Proposition A.1.3. Under Assumptions A1.1 to A1.4, as (N, T ) → ∞ simultaneously, the followings

hold:

(i) A3Nt
p→ Σx,

(ii) ∥D1Nt∥ = Op

(∥∥∥β̂ − β
∥∥∥),

(iii) ∥D2Nt∥ = Op

(
1√
N

)
,

(iv) ∥D3Nt∥ = Op

(
1√
N

)
,

(v) ∥D4Nt∥ = O( 1√
N2T

) +O( 1√
NT 2

).

Proof of Corollary 1.3.6

Provided that V̂γt is the plug­in estimator of Vγt by construction, its consistency can be verified

by direct calculations and the applications of Law of Large Numbers under imposed Assumptions

we impose, Theorem 1.3.3, and Proposition 1.3.8. Finally, the result holds directly by the Slutsky’s

lemma.

The details of proofs for Corollary 1.3.5 here are very similar to those justifications of uniform

consistency of V̂λi. We refer readers to the corresponding arguments of proofs for Theorem 1.4.1 in

the later section. �
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A.1.4 Proofs of Theorem 1.3.7

Note that, for υ̂t, according to the decomposition for
(
λ̂i − λi

)
in the proofs of Theorem 1.3.3 and

those immediate results in the online supplementary material, we have

1

N
υ̂t =

1

N

∑
i

x̆itx̃
′
itλ̂i =

1

N

∑
i

x̆∗itx̃
∗′
itλi +

1

N

∑
i

x̆∗itx̃
∗′
it

(
λ̂i − λi

)
=

1

N

∑
i

x̆∗itx̃
∗′
itλi −

(
1

N

∑
i

x̆∗itx̃
∗′
it

)(
1

NT

∑
j

∑
s

x∗jsx
∗′
js

)−1(
1

NT

∑
j

∑
s

x∗jsx
∗′
jsλj

)

+
1

N

∑
i

x̆∗itx̃
∗′
it

( 1

T

∑
t

x∗itx
∗′
it

)−1
1

T

∑
s

x∗isx
∗′
isγs


− 1

N

∑
i

x̆∗itx̃
∗′
it

( 1

NT

∑
j

∑
t

x∗jtx
∗′
jt

)−1
1

NT

∑
j

∑
t

x∗jtx
∗′
jtγt


+

1

N

∑
i

x̆∗itx̃
∗′
it

( 1

T

∑
t

x∗itx
∗′
it

)−1
1

T

∑
s

x∗isuis

+Op

(
N−1 + T−1

)
=

1

N

∑
i

x∗itx
∗′
itλi −

1

T

∑
j

∑
s

x∗jsx
∗′
jsλj +

1

N

∑
i

x∗itx
∗′
it

[
Σ−1

x

1

T

∑
s

(x∗isx
∗′
is − Σx) γs

]

+
1

N

∑
i

x∗itx
∗′
it

[
Σ−1

x

1

T

∑
s

x∗isuis

]
+Op

(
N−1 + T−1

)
=

1

N

∑
i

(
x∗itx

∗′
it −

1

T

∑
s

x∗isx
∗′
is

)
λi +

1

T

∑
s

(
1

N

∑
i

x∗itx
∗′
itΣ

−1
x (x∗isx

∗′
is − Σx)

)
γs

+
1

T

∑
s

(
1

N

∑
i

x∗itx
∗′
itΣ

−1
x x∗isuis

)
+Op

(
N−1 + T−1

)
≡ E1t + E2t + E3t +Op

(
N−1 + T−1

)
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Following lines in the online supplementary materials, we can readily show thatE1t = Op

(
1/
√
N
)
,

E1t = Op

(
1/
√
NT

)
and E1t = Op

(
1/
√
NT

)
, then, it follows that,

1√
N
υ̂t =

1√
N

∑
i

(
x∗itx

∗′
it −

1

T

∑
s

x∗isx
∗′
is

)
λi +Op

(
N−1/2 +N1/2T−1

)
=

1√
N

∑
i

(x∗itx
∗′
it − Σx)λi +Op

(
N−1/2 +N1/2T−1

)
It follows that

1√
T

∑
t

(
1

N
υ̂′tυ̂t − B̂υ

)
=

1

N
√
T

∑
i

∑
j

∑
t

λ′i
(
x∗jtx

∗′
jt − Σx

) (
x∗jtx

∗′
it − Σx

)
λj −

1√
T

∑
t

B̂υ +Op

(
T 1/2N−1 +NT−3/2

)
=

1√
T

∑
t

(Zt,υ − EZt,υ) +
1√
T

∑
t

(
EZt,υ − B̂υ

)
+Op

(
T 1/2N−1 +NT−3/2

)
≡ 1√

T

∑
t

ζt,υ +
1√
T

∑
t

(
EZt,υ − B̂υ

)
+Op

(
T 1/2N−1 +NT−3/2

)
where Zt,υ ≡ 1

N

∑
i

∑
j λ

′
i

(
x∗jtx

∗′
jt − Σx

) (
x∗jtx

∗′
it − Σx

)
λj .

First, by construction, {ζt,υ} are mixing sequence with zero mean, following lines in the proofs

of Theorem 1.3.1 with respect to the CLT for the mixing sequences, the asymptotic normality of
1√
T

∑
t ζt,υ follows directly. Namely,

1√
T

∑
t

ζt,υ
d→ N (0,Vυ) ,

where Vυ = 1
T

∑
t,s ζ

′
t,υζs,υ.

Then, it suffices to show that 1√
T

∑
t B̂υ = 1√

T

∑
tEZt,υ + op (1) as (N, T ) go to infinity jointly.

Note that, B̂υ is the plug­in estimator by construction, then, by direct calculations and the law of large
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numbers, we have

1√
T

∑
t

B̂υ =
1√
T

∑
t

EZt,υ +
1

N
√
T

∑
i,j

∑
t

(
λ̂j − λj

)′ (
x∗jtx

∗′
jt − Σx

)
(x∗itx

∗′
it − Σx)λi

+
1

N
√
T

∑
i,j

∑
t

λ′j
(
x∗jtx

∗′
jt − Σx

)
(x∗itx

∗′
it − Σx)

(
λ̂i − λi

)
+

1

N
√
T

∑
i,j

∑
t

(
λ̂j − λj

)′ (
x∗jtx

∗′
jt − Σx

)
(x∗itx

∗′
it − Σx)

(
λ̂i − λi

)
+ dominated terms

≡ 1√
T

∑
t

EZt,υ +H1 +H2 +H3 + dominated terms.

Thus, it suffices to boundH1,H2 andH3. ForH3, according to the decomposition for λ̂i − λi in the

proofs of Theorem 1.3.3 and those immediate results in the online supplementary material, we have

∥H3∥2 ≤ N√
T

∑
t

∥∥∥∥∥ 1

N

∑
i

(x∗itx
∗′
it − Σx)

(
λ̂i − λi

)∥∥∥∥∥
2

2

≤ N√
T

∑
t

∥∥∥∥∥
[
1

N

∑
i

(x∗itx
∗′
it − Σx)

]
Σ−1

x

[
1

NT

∑
j

∑
s

x∗jsx
∗′
jsλj

]∥∥∥∥∥
2

2

+
N√
T

∑
t

∥∥∥∥∥ 1T ∑
s

[
1

N

∑
i

(x∗itx
∗′
it − Σx) Σ

−1
x (x∗isx

∗′
is − Σx)

]
γs

∥∥∥∥∥
2

2

+
N√
T

∑
t

∥∥∥∥∥ 1T ∑
s

(
1

N

∑
i

(x∗itx
∗′
it − Σx) Σ

−1
x x∗isuis

)∥∥∥∥∥
2

2

+Op

(
T 1/2N−1 +NT−3/2

)
≡ N√

T

∑
t

(
∥H31t∥22

)
+

N√
T

∑
t

(
∥H32t∥22

)
+

N√
T

∑
t

(
∥H33t∥22

)
+Op

(
T 1/2N−1 +NT−3/2

)
.

For each t, we can follow the lines for those lemmas in the online supplementary to show that

∥H31t∥2 = Op (N
−1), ∥H32t∥2 = Op

(
N−1/2T−1/2

)
and ∥H33t∥2 = Op

(
N−1/2T−1/2

)
. Thus, it

follows that ∥H3∥2 = Op

(
T 1/2N−1 + T−1/2 +NT−3/2

)
= op (1).

ForH2, according to the decomposition for
(
λ̂i − λi

)
in the proofs of Theorem 1.3.3 and follow­

ing lines for those lemmas in the online supplementary materials, by lengthy arguments, we can show

that ∥H1∥2 = Op

(
N−1/2 + T−1/2 +N1/2T−1

)
= op (1) and ∥H2∥2 = Op

(
N−1/2 + T−1/2 +N1/2T−1

)
=

op (1) as done for ∥H3∥2 just above.
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Because V̂υ = 1
T

∑
t,s ζ̂

′
t,υ ζ̂s,υ, ζ̂t,υ = Ẑt,υ−B̂υ, and Ẑt,υ ≡ 1

N

∑
i,j

(
x̆itx̆

′
it −

̂̆
ΣX

)
λ̂iλ̂

′
j

(
x̆jtx̆

′
jt −

̂̆
ΣX

)′
,

V̂υ is also the plug­in estimator for Vυ. By direct and lengthy calculations, similar to those arguments

for B̂υ above, we also can show that V̂υ − Vυ = op (1) and omit the details here.

Finally, by the continuous mapping theorem and the CLT for the mixing sequences, the desired

result follows.

A.1.5 Proofs of Proposition 1.3.8

Proposition 3.8 states the maximal deviations of the estimates of {λi}Ni=1 and {γt}Tt=1 from the cor­

responding true values as below,

(1) ∥λ̂− λ∥∞ = Op

(√
lnN
T

)
,

(2) ∥γ̂ − γ∥∞ = Op

(√
lnT
N

)
, where λ̂ ≡

(
λ̂′1, .., λ̂

′
N

)′
∈ RNK , γ̂ ≡ (γ̂′1, .., γ̂

′
T )

′ ∈ RTK .

Uniform Consistency of γ̂t

Note that ∥γ̂−γ∥∞ = max
t
∥γ̂t−γt∥∞ ≤ max

t
∥γ̂t−γt∥2, then it suffices to bound max

t
∥γ̂t−γt∥2 The

proofs are very similar to those arguments for the uniform consistency of γ̂i in the above subsection,

and highly repeated, so here we only give proofs briefly for the ease of exposition.

Neglecting those terms that are of smaller order, we have

γ̂t − γt = −

(
1

NT

∑
i

∑
s

x∗isx
∗′
is

)−1
ξγNT√
T

+

(
1

N

∑
i

x∗itx
∗′
it

)−1(
Ψγ

Nt√
N

+
ζγNt√
N

)
+ op

(
δ−1
NT

)
,

where ξγNT = 1
N
√
T

∑
i

∑
s ̸=t x

∗
isx

∗′
isγs, ζ

γ
Nt =

1√
N

∑
i (x

∗
itx

∗′
it − Σx)λi, and Ψγ

Nt =
1√
N

∑
i x

∗
ituit

We then focus on the dominant terms below. Obviously, the first term at the right­hand side of

the above equality does not involve taking the maximum over t, and based on Theorem 1.3.1, it is of

order Op

(
T−1/2

)
, which will be the dominated term when N and T are comparable and diverge to
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infinity simultaneously. For second term at the right­hand side of the above equality, we have

(
1

N

∑
i

x∗itx
∗′
it

)−1(
Ψγ

Nt√
N

+
ζγNt√
N

)
=

(
1

N

∑
i

x∗itx
∗′
it

)−1 [
1

N

∑
i

(x∗itx
∗′
it − Σx)λi +

1

N

∑
i

x∗ituit

]
≡ Q−1

Nt (G1Nt +G2Nt) .

Then, it follows that

max
t
∥γ̂t − γt∥2 = max

i

∥∥Q−1
Nt (G1Nt +G2Nt)

∥∥
2

≤
(
max

i

∥∥Q−1
Nt

∥∥
op

)(
max

t
∥G1Nt∥2 +max

t
∥G2Nt∥2

)
≤

(∥∥Σ−1
x

∥∥
op
+max

t

∥∥Q−1
Nt − Σ−1

x

∥∥
op

)(
max

t
∥G1Nt∥2 +max

t
∥G2Nt∥2

)
.

Below, we are going to show: (i) max
t

∥∥Q−1
Nt − Σ−1

x

∥∥
op

= op(1); (ii) max
t

∥∥ 1
N

∑
i (x

∗
itx

∗′
it − Σx)λi

∥∥
2
=

Op

(√
lnT
N

)
; (iii) max

t

∥∥ 1
N

∑
i x

∗
ituit

∥∥
2
= Op

(√
lnT
N

)
.

(i) For QNt =
1
N

∑
i x

∗
itx

∗′
it , because

∥∥Q−1
Nt − Σ−1

x

∥∥
op

=
∥∥Q−1

Nt(Σx −QNt)Σ
−1
x

∥∥
op

≤
∥∥Q−1

Nt

∥∥
op
∥Σx −QNt∥op

∥∥Σ−1
x

∥∥
op

=
∥Σx −QNt∥op

smin (QNt) smin (Σx)
.

We then have

max
t

∥∥Q−1
Nt − Σ−1

x

∥∥
op

≤
max

t
∥Σx −QNt∥op

min
t
smin (QNt) smin (Σx)

≤
max

t
∥Σx −QNt∥op

smin (Σx)
(
smin (Σx)−max

t
∥Σx −QNt∥op

) = Op(1)max
t

∥Σx −QNt∥op ,

where the last equality follows under Assumption A1.4(i) if max
t

∥Σx −QNt∥F = op(1) also holds,
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which will be shown as below. Given the fact that

max
t

∥Σx −QNt∥op = max
t

∥∥∥∥∥Σx −
1

N

∑
i

x∗itx
∗′
it

∥∥∥∥∥
op

.

We now use the equivalent definition of operator norm for a symmetric K ×K matrix A, ∥A∥op =

max
v∈SK−1,∥v∥=1

∥v′Av∥2. Denote Σ̂t,x = 1
N

∑
i x

∗
itx

∗′
it , then,

∥∥∥Σ̂t,x − Σx

∥∥∥
op

≡ ∥Qt∥op = max
v∈Sk−1,∥v∥=1

|v′Qtv|.

By constructing a ϵ­net covering of SK−1, we have
∥∥∥Σ̂t,x − Σx

∥∥∥
op

≤ 1
1−2ϵ

max
z∈Nϵ

|z′Qtz|, whereNϵ de­

note the set of points within ϵ­net covering. Particularly, let ϵ = 1
4
, it follows that |Nϵ| ≤ 9K =

CK <∞ and,

∥∥∥Σ̂t,x − Σx

∥∥∥
op

≤ 2max
z∈Nϵ

|z′Qtz|

= 2 max
s∈{1,2,3,...,CK}

|z′sQtzs| ,

where {z1, ..., zCK
} is a ϵ­net covering of SK−1.Then, it suffices to bound the following quantity,

P

(
max

t

∥∥∥Σ̂t,x − Σx

∥∥∥
op

≥ 2
√
lnT√
N

)
≤ P

(
max

t
max

s∈{1,2,3,...,Ck}
|z′sQtzs| ≥

√
lnT√
T

)

≤
CK∑
s=1

P

(
max

t
|z′sQtzs| ≥

√
lnT
N

)
.

Now, we are in the position to bound the probabilities P
(
maxt |z′sQtzs| ≥

√
lnT
N

)
. For any fixed

zs ∈ SK−1,

z′sQtzs = z′s

(
Σ̂t,x − Σx

)
zs =

1

N

N∑
i=1

[
(z′sx

∗
it)

2 − z′sΣxzs

]
=

1

N

N∑
i=1

(
W 2

it − EW 2
it

)
,

whereWit = z′sx
∗
it. Thus, it is equivalent to bound P

(
maxt

∣∣∣ 1N ∑N
i=1 (W

2
it − EW 2

it)
∣∣∣ ≥√ lnT

N

)
.

Similar to arguments stated in Zhu (2017), because entries of {xit} have exponential­type tails as

assumed in Assumption A1.8, it follows, by Lemma C.3(1) in Zhu (2017), that entries of {Wit} also

have exponential­type tails with parameters that only depend on the constants in Assumption A1.8,
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and further, by Lemma C.3(3)­(4) in Zhu (2017), {W 2
it−EW 2

it} also have exponential­type tails with

parameter
(
b⋆, ν

2

)
with b⋆ ≡ 2

1
ν (b+ µ)2 (ln(∥z∥0 + 2))

2
ν +m∗ where µ ≡ Exit, ∥z∥0 represents the

total number of non­zero elements in z,m∗ ≡ E (z′x∗it)
2, and (b, ν) stated in Assumption A1.8. We

now use Theorem 1 in Merlevède et al. (2011) under Assumption A1.8, it follows that, let aT be the

bound to be determined, and γ ≡ ν/2, then, there exist positive constants C1, C2, C3, C4 and C5

depending only on b⋆, ν ∈ (0, 1),

P

(
max

t

∣∣∣∣∣
N∑
i=1

(
W 2

it − EW 2
it

)∣∣∣∣∣ > aTx

)
≤

T∑
t=1

P

(∣∣∣∣∣
N∑
i=1

(
W 2

it − EW 2
it

)∣∣∣∣∣ > aTx

)

≤ NT exp (−C1a
γ
Tx

γ) + T exp
(
− C2a

2
Tx

2

1 + C3N

)
+T exp

[
−C4a

2
Tx

2

N
exp

(
C5 (aTx)

γ/(1−γ) (log aTx)−γ
)]

.

Thus, choose aT = d∗
√
N lnT , by elementary computations, we can choose large constants a∗, b∗, d∗ >

0 such that ∀x ≥ a∗

P

((
d∗
√
N lnT

)−1

max
t

∣∣∣∣∣
N∑
i=1

(
W 2

it − EW 2
it

)∣∣∣∣∣ > x

)
= P

(
max

t

∣∣∣∣∣
N∑
i=1

(
W 2

it − EW 2
it

)∣∣∣∣∣ > anx

)
≤ b∗ exp (−xγ) .

It concludes thatmax
t

∥∥Σx − 1
N

∑
i x

∗
itx

∗′
it

∥∥
2
= Op

(√
lnT
N

)
. And thus, it follows that

∥∥∥Σ̂t,x − Σx

∥∥∥
op

=

Op

(√
lnT
N

)
, which implies that max

t

∥∥Q−1
Nt − Σ−1

x

∥∥
op

= Op

(√
lnT
N

)
= op(1).

(ii)ForG1Nt, we haveG1Nt =
1
N

∑
i (x

∗
itx

∗′
it − Σx)λi ≡ 1

N

∑
iG1it, note that {xit, λi} have exponential­

type tails as assumed inAssumptionA1.8, then, by using LemmaC.3 in Zhu (2017) again, {G1it}i∈{1,...,N}

also have have exponential­type tails by following those arguments of (i) above, and then, in the view

of proofs for (i), we can conclude that

max
t

∥∥∥∥∥ 1

N

∑
i

(x∗itx
∗′
it − Σx)λi

∥∥∥∥∥
2

= Op

(√
lnT
N

)
.

125



(iii) ForG2Nt, we haveG2Nt =
1
N

∑
i x

∗
ituit ≡ 1

N

∑
iG2it, note that {xit, uit} have exponential­type

tails as assumed in Assumption A1.8, then, by using Lemma C.3 in Zhu (2017) again, {G2it}i∈{1,...,N}

also have have exponential­type tails by following arguments for (i) and (ii) just above, and then, in

the view of proofs for (i) and (ii), we can conclude that

max
t

∥∥∥∥∥ 1

N

∑
i

x∗ituit

∥∥∥∥∥
2

= Op

(√
lnT
N

)
.

Then, Collecting the results shown in (i), (ii) and (iii) above, we then conclude that

max
t
∥γ̂t − γt∥∞ = Op

(√
lnT
N

)
.

Uniform Consistency of λ̂i

It can be seen that details of proofs for the uniform consistency of λ̂i are very similar to those shown

in the last subsection. For the completeness, we give the main steps below and omit some repeated

arguments for brevity.

Note that ∥λ̂−λ∥∞ = max
i
∥λ̂i−λi∥∞ ≤ max

i
∥λ̂i−λi∥2, then it suffices to bound max

i
∥λ̂i−λi∥2

instead. Neglecting those terms that are of smaller orders, we have

λ̂i − λi = −

(
1

NT

∑
i

∑
s

x∗isx
∗′
is

)−1
ξλNT√
N

+

(
1

T

∑
t

x∗itx
∗′
it

)−1(
Ψγ

iT√
T

+
ζγiT√
T

)
+ op

(
δ−1
NT

)
,

where ξγNT = 1√
NT

∑
j ̸=i

∑
t x

∗
jtx

∗′
jtλj , ζ

γ
iT = 1√

T

∑
t (x

∗
itx

∗′
it − Σx) γt, and Ψγ

iT = 1√
T

∑
t x

∗
ituit.

We then focus on the dominant terms below. Obviously, the first term at the right­hand side of

the above equality does not involve taking the maximum over t, and based on Theorem 1.3.1, it is of

order Op

(
N−1/2

)
, which will be the dominated term when N and T are comparable and diverge to
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infinity simultaneously. For second term at the right­hand side of the above equality, we have

(
1

T

∑
t

x∗itx
∗′
it

)−1(
Ψγ

iT√
T

+
ζγiT√
T

)
=

(
1

T

∑
t

x∗itx
∗′
it

)−1(
1

T

∑
t

(x∗itx
∗′
it − Σx) γt +

1

T

∑
t

x∗ituit

)
≡ Q−1

iT (G1iT +G2iT ) .

Then, we have

max
i
∥λ̂i − λi∥2 = max

i

∥∥Q−1
iT (G1iT +G2iT )

∥∥
2

≤
(
max

i

∥∥Q−1
iT

∥∥
op

)(
max

i
∥G1iT∥2 +max

i
∥G2iT∥2

)
≤

(∥∥Σ−1
x

∥∥
op
+max

i

∥∥Q−1
iT − Σ−1

x

∥∥
op

)(
max

i
∥G1iT∥2 +max

i
∥G2iT∥2

)
.

Our proofs below aim to show: (i)max
i

∥∥Q−1
iT − Σ−1

x

∥∥
op

= Op

(√
lnN
T

)
; (ii) max

i
∥G1iT∥2 = Op

(√
lnN
T

)
;

(iii) max
i

∥G2iT∥2 = Op

(√
lnN
T

)
.

(i) For QiT = 1
T

∑
t x

∗
itx

∗′
it , because

∥∥Q−1
iT − Σ−1

x

∥∥
op

=
∥∥Q−1

iT (Σx −QiT )Σ
−1
x

∥∥
op

≤
∥∥Q−1

iT

∥∥
op
∥Σx −QiT∥op

∥∥Σ−1
x

∥∥
op

=
∥Σx −QiT∥op

smin (QiT ) smin (Σx)
.

It follows that

max
i

∥∥Q−1
iT − Σ−1

x

∥∥
op

≤
max

i
∥Σx −QiT∥op

min
i
smin (QiT ) smin (Σx)

≤
max

i
∥Σx −QiT∥op

smin (Σx)
(
smin (Σx)−max

i
∥Σx −QiT∥op

) = Op(1)max
i

∥Σx −QiT∥op ,

where the last equality follows under Assumption A1.4(i) if max
i

∥Σx −QiT∥F = op(1) also holds,

127



which will be shown as below. Given the fact that

max
i

∥Σx −QiT∥op = max
i

∥∥∥∥∥Σx −
1

T

∑
t

x∗itx
∗′
it

∥∥∥∥∥
op

≤ max
i

∥∥∥∥∥Σx −
1

T

∑
t

x∗itx
∗′
it

∥∥∥∥∥
op

.

Use the equivalent definition of operator norm for a symmetric K × K matrix A again. Denote

Σ̂X = 1
T

∑
t x

∗
itx

∗′
it , then,

∥∥∥Σ̂X − Σx

∥∥∥
op

≡ ∥Qi∥op = max
v∈Sk−1,∥v∥=1

|v′Qiv|. By constructing a ϵ­net

covering of SK−1, we have
∥∥∥Σ̂X − Σx

∥∥∥
op

≤ 1
1−2ϵ

max
z∈Nϵ

|z′Qiz|, where Nϵ denote the set of points

within ϵ­net covering. Particularly, let ϵ = 1
4
, it follows that |Nϵ| ≤ 9K = CK <∞ and,

∥∥∥Σ̂X − Σx

∥∥∥
op

≤ 2max
z∈Nϵ

|z′Qiz| = 2 max
s∈{1,2,3,...,CK}

|z′sQizs| ,

where {z1, ..., zCK
} is a ϵ­net covering of SK−1. Then, it suffices to bound the following quantity,

P

(
max

i

∥∥∥Σ̂X − Σx

∥∥∥
op

≥ 2
√
lnN√
T

)
≤ P

(
max

i
max

s∈{1,2,3,...,Ck}
|z′sQizs| ≥

2
√
lnN√
T

)

≤
Ck∑
s=1

P

(
max

i
|z′sQizs| ≥

2
√
lnN√
T

)
.

Now, we are in the position to bound the probabilities P
(
maxi |z′sQizs| ≥ lnN√

T

)
. For any fixed zs ∈

SK−1,

z′sQizs = z′s

(
Σ̂X − Σx

)
zs =

1
T

∑T
t=1

[
(z′sx

∗
it)

2 − z′sΣxzs
]
= 1

T

∑T
t=1 (W

2
it − EW 2

it) ,

whereWit = z′sx
∗
it. Thus, it is equivalent to bound P

(
maxi

∣∣∣ 1T ∑T
t=1 (W

2
it − EW 2

it)
∣∣∣ ≥√ lnN

T

)
.

Following the arguments for (i) in the last subsection, we can readily show

max
i

∥∥∥∥∥Σx −
1

T

∑
t

x∗itx
∗′
it

∥∥∥∥∥
2

= Op

(√
lnN
T

)
.

Collecting all above immediate results, we conclude that max
i

∥∥Q−1
iT − Σ−1

x

∥∥
2
= Op

(√
lnN
T

)
.
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(ii) For G1iT , we have

max
i

∥G1iT∥2 ≤ max
i

∥∥∥∥∥ 1T ∑
t

(x∗itx
∗′
it − Σx) γt

∥∥∥∥∥
2

= Op

(√
lnN
T

)
,

where the second line follows by mimicking those arguments in (i) in the last section under Assump­

tions A1.1 and A1.8.

(iii) For G2iT = 1
T

∑
t x

∗
ituit, by mimicking those arguments in (i) in the last section under Assump­

tions A1.1, A1.2 and A1.8, it is straightforward to have max
i

∥G2iT∥2 = Op

(√
lnN
T

)
.

Collecting immediate results from (i) to (iii) above, it follows max
i
∥λ̂i − λi∥2 = Op

(√
lnN
T

)
directly.

A.1.6 Proofs of Theorem 1.4.1

In a nutshell, our proof strategy follows arguments of proofs for Theorem 3 in Castagnetti et al.

(2015). We will give main steps and arguments, and refer readers to Castagnetti et al. (2015) for

omitted details.

Part I. The asymptotic null distribution of Tλ

Note that λi = 0 for all i under H0a, we can write λ̂i = λ̂i − λi. Then, according to the decom­

position in proofs for Theorem 1.3.3, we have

λ̂i − λi = −Σ−1
x (ξλNT/

√
N) + Σ−1

x (ζλiT/
√
T ) + Σ−1

x (Ψλ
iT/

√
T ) + op

(
δ−1
NT

)
.

And for V̂λi, the consistent estimator of Vλi, we can write

V̂−1
λi = V−1

λi − V−1
λi

(
V̂λi − Vλi

)
V̂−1
λi = V−1

λi − V−1
λi

(
V̂λi − Vλi

)
V−1
λi + op

(∥∥∥V̂λi − Vλi

∥∥∥) .
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Neglecting the terms that is op
(∥∥∥V̂λi − Vλi

∥∥∥) further, under H0a, we have

(
λ̂i − λi

)′
V̂−1
λi

(
λ̂i − λi

)
=

(
λ̂i − λi

)′
V−1
λi

(
λ̂i − λi

)
+
(
λ̂i − λi

)′
V−1
λi

(
V̂λi − Vλi

)
V−1
λi

(
λ̂i − λi

)
≡

(
λ̂i − λi

)′
V−1
λi

(
λ̂i − λi

)
+ Iλi.

Now, we are in the position to show the desired results below by following four steps.

Step 1. It is straightforward to see the fact max
1≤i≤N

(
λ̂i − λi

)′
V−1
λi

(
λ̂i − λi

)
= Op(lnN) by Theorem

1.3.3 and corresponding arguments of proofs for Theorem 3 in Castagnetti et al. (2015).

Step 2. we are going to show max
1≤i≤N

Iλi = op (lnN) as below. Given that

max
1≤i≤N

Iλi ≤ max
1≤i≤N

∥∥∥∥(λ̂i − λi

)′
V−1/2
λi

∥∥∥∥2
2

max
1≤i≤N

∥∥∥V−1/2
λi

(
V̂λi − Vλi

)
V−1/2
λi

∥∥∥
F
.

It is straightforward to see that the first term at the right­hand side of the above inequality is of order

Op(lnN) as shown in Step 1 above. So it suffices to show max
1≤i≤N

∥∥∥V−1/2
λi

(
V̂λi − Vλi

)
V−1/2
λi

∥∥∥
2
=

op (1).

Given that

max
1≤i≤N

∥∥∥V−1/2
λi

(
V̂λi − Vλi

)
V−1/2
λi

∥∥∥
F

≤ max
1≤i≤N

∥∥V−1
λi

∥∥
F
max
1≤i≤N

∥∥∥V̂λi − Vλi

∥∥∥
F
.

Obviously, for ant consistent estimator of Vλi, we have V̂λi = Vλi+op (1) for each i, and the fact that

Vλi exists and is non­singular according to proofs for Theorem 1.3.3 under Assumptions imposed

for each i. By following arguments of proofs for Proposition 1.3.8, max
1≤i≤N

∥∥V−1
λi

∥∥
F
= Op (1). holds

uniformly over i immediately by simple calculations as long as max
1≤i≤N

∥∥∥V̂λi − Vλi

∥∥∥
F
= op (1) holds.

If we use the consistent estimate ofVλi defined in Corollary 1.3.5, then V̂λi = Q̂−1
x̃

(
V̂λ + Ω̂λi

)
Q̂−1

x̃ ,

V̂λ is an consistent estimator of covariance matrix of Vλ defined in Theorem 1.3.2, Q̂x̃ = 1
T

∑
t x̃itx̃

′
it,

and

Ω̂λi =
1

T
Σ̂i,xγ +

1

T
̂̃Σi,xu,
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Since Vλ has nothing to do with taking maximum over i by construction in Corollary 1.3.2, to

show max
1≤i≤N

∥∥∥V̂λi − Vλi

∥∥∥
F
= op (1) holds, it is sufficient to show that max

1≤i≤N

∥∥∥Ω̂λi − Ωλi

∥∥∥
F
= op (1)

holds. Then, by triangular inequality, it suffices to show max
1≤i≤N

∥∥∥Σ̂i,xγ − Σi,xγ

∥∥∥
F

= op (1) and

max
1≤i≤N

∥∥∥̂̃Σi,xu − Σ̃i,xu

∥∥∥ = op (1) separately. By direct calculations, and similar arguments as those

in proofs for Proposition 1.3.8, the desired result follows. We now give the sketch of proofs for

max
1≤i≤N

∥∥∥Σ̂i,xγ − Σi,xγ

∥∥∥
F
= op (1) below as the illustrative purpose.

Because Σ̂i,xγ is the HAC estimator of Σi,xγ , we can show that max
1≤i≤N

∥∥∥Σ̂i,xγ − Σ̂⋆
i,xγ

∥∥∥
F
= op (1)

with Σ̂⋆
i,xγ ≡ 1

T

∑
t,s

(
x∗jtx

∗′
it − Σx

)
γtγ

′
s (x

∗
isx

∗′
is − Σx) under mild conditions. Further, by straight­

forward calculations, we have

Σ̂i,xγ − Σ⋆
i,xγ =

1

T

∑
t,s

(
x∗jtx

∗′
it − Σx

)
γt (γ̂s − γs)

′ (x∗isx
∗′
is − Σx)

+
1

T

∑
t,s

(x∗itx
∗′
it − Σx) (γ̂t − γt) γ

′
s (x

∗
isx

∗′
is − Σx)

+
1

T

∑
t,s

(x∗itx
∗′
it − Σx) (γ̂t − γt) (γ̂s − γs)

′ (x∗isx
∗′
is − Σx) + dominated terms

≡ R1i +R2i +R3i + dominated terms.

It suffices to bound max
1≤i≤N

∥R1i∥F , max
1≤i≤N

∥R2i∥F , and max
1≤i≤N

∥R3i∥F in turns. For ∥R1i∥F , we have

∥R1i∥F ≤

∥∥∥∥∥ 1T ∑
t,s

(x∗itx
∗′
it − Σx) γtιK (x∗isx

∗′
is − Σx)

∥∥∥∥∥
op

max
1≤t≤T

∥γ̂t − γt∥2 ,

where ιK stands for K­dimensional vector with 1 as the entry for all elements. It follows that

max
1≤i≤N

∥R1i∥2 ≤ max
1≤i≤N

∥∥∥∥∥ 1T ∑
t,s

(x∗itx
∗′
it − Σx) γtιK (x∗isx

∗′
is − Σx)

∥∥∥∥∥
op

max
1≤t≤T

∥γ̂t − γt∥2

≡ max
1≤i≤N

∥∥Ř1i

∥∥
op

max
1≤t≤T

∥γ̂t − γt∥2

Then, under Assumption A1.1, by similar arguments for the proofs of Proposition 1.3.8, we can read­

ily show that max
1≤i≤N

∥∥Ř1i

∥∥
op

= Op

(√
lnN

)
, and by Proposition 1.3.8, we then have max

1≤t≤T
∥γ̂t − γt∥2 =
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Op

(√
N−1 lnT

)
, as (N, T ) go to infinity jointly, we have max

1≤i≤N
∥R1i∥ = Op

(√
N−1 lnT lnN

)
=

op (1).

By similar arguments for max
1≤i≤N

∥R1i∥, we can also show that max
1≤i≤N

∥R2i∥ and max
1≤i≤N

∥R3i∥ are

both of order op (1). Collecting these immediate results together, max
1≤i≤N

∥∥∥Σ̂i,xγ − Σi,xγ

∥∥∥
F
= op (1)

holds.

Obviously, max
1≤i≤N

∥∥∥̂̃Σi,xu − Σ̃i,xu

∥∥∥ = op (1) can be justified by mimicking above arguments with

necessary modifications.

Step 3. Now, we consider the covariance between
√
T
(
λ̂i − λi

)
and

√
T
(
λ̂j − λj

)
. Recall that

λ̂i − λi = −Σ−1
x (ξλNT/

√
N) + Σ−1

x (ζλiT/
√
T ) + Σ−1

x (Ψλ
iT/

√
T ) + op

(
δ−1
NT

)
where ξλNT = 1√

NT

∑
j ̸=i

∑
t x

∗
jtx

∗′
jtλj , ζλiT = 1√

T

∑
t (x

∗
itx

∗′
it − Σx) γt, and Ψλ

iT = 1√
T

∑
t x

∗
ituit

Under H0a and Assumption A1.9, the above decomposition simplifies to the below:

√
T
(
λ̂i − λi

)
= Σ−1

x

1√
T

∑
t

x∗ituit + op (1) ≡ ζλiT + op(1)

Neglecting those smaller­order terms, the covariance between ζλiT and ζλjT is then proportion to the

quantity, E
(

1
T

∑
t,s x

∗
ituitujsx

∗′
is

)
, and

E

(
1

T

∑
t,s

x∗ituitujsx
∗′
is

)
lnN =

1

T

∑
t,s

E
(
x∗ituitujsx

∗′
js

)
lnN → 0,

as (N, T ) go to infinity jointly under Assumption A1.8. Thus, Cov
(
ζλiT , ζ

λ
jT

)
= 0 as (N,T) goes to

infinity for all i ̸= j. It concludes that ζλiT and ζλjT are asymptotic independent for i ̸= j because of

asymptotic normality of ζλiT and ζλjT , and so
√
T
(
λ̂i − λi

)
and

√
T
(
λ̂j − λj

)
are. Meanwhile, the

above result also indicates that the Berman’s condition holds for {
√
T
(
λ̂i − λi

)
}Ni=1.

Step 4. By following corresponding arguments of proofs for Theorem 3 in Castagnetti et al. (2015),

the asymptotic distribution of Tλ is the Gumbel distribution after being rescaled appropriately as
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shown in Theorem 1.4.1.

Part II. The asymptotic local power properties of Tλ

Now, we turn to analyze the local power of Tλ under local alternatives H1a,NT . Note that under

H1a,NT , we have λ̂i = λ̂i−λi+λi. Similar toPart I above, neglecting terms that is op
(∥∥∥V̂λi − Vλi

∥∥∥),
under H1a,NT , we then have

(
λ̂i − λi + λi

)′
V̂−1
λi

(
λ̂i − λi + λi

)
=

(
λ̂i − λi + λi

)′
V−1
λi

(
λ̂i − λi + λi

)
+
(
λ̂i − λi + λi

)′
V−1
λi

(
V̂λi − Vλi

)
V−1
λi

(
λ̂i − λi + λi

)
=

(
λ̂i − λi

)′
V−1
λi

(
λ̂i − λi

)
+ λ′iV−1

λi λi + 2
(
λ̂i − λi

)′
V−1
λi λi

+
(
λ̂i − λi

)′
V−1
λi

(
V̂λi − Vλi

)
V−1
λi

(
λ̂i − λi

)′
+λ′iV−1

λi

(
V̂λi − Vλi

)
V−1
λi λi + 2

(
λ̂i − λi

)′
V−1
λi

(
V̂λi − Vλi

)
V−1
λi λi

≡
(
λ̂i − λi

)′
V−1
λi

(
λ̂i − λi

)
+ Iλ1 + Iλ2 + 2Iλ3 + Iλ4 + 2Iλ5 ,

Step 1. It is straightforward to see the fact max
1≤i≤N

(
λ̂i − λi

)′
V−1
λi

(
λ̂i − λi

)
= Op(lnN) by Theorem

1.3.3 and corresponding arguments of proofs for Theorem 3 in Castagnetti et al. (2015).

Step 2. In this step, we figure out the order of max
1≤i≤N

∥∥Iλ1 ∥∥2,..., max1≤i≤N

∥∥Iλ5 ∥∥2 in turns below.
(1) max

1≤i≤N

∥∥Iλ1 ∥∥2 ≤ max
1≤i≤N

∥λi∥22
∥∥V−1

λi

∥∥
op

≤ max
1≤i≤N

T ∥λi∥22 = O
(
T ∥λ∥2∞

)
, where ∥λ∥2∞ ≡

max1≤i≤N{∥λ1∥22 , .., ∥λN∥
2
2}, and

∥∥∥(T−1Vλi)
−1
∥∥∥
op

= O(1) holds uniformly over i by con­

struction of Vλi stated in Theorem 1.3.3 and the corresponding proofs for Theorem 1.3.3 in the

Appendix A.

(2) By the immediate results in Step 1 and (1) just above,

max
1≤i≤N

∥∥Iλ2 ∥∥2 ≤
(
max
1≤i≤N

∥∥∥V−1/2
λi

(
λ̂i − λi

)∥∥∥
2

)(
max
1≤i≤N

∥λi∥2
)(

max
1≤i≤N

∥∥∥V−1/2
λi

∥∥∥
op

)
= Op

(√
(lnN)T ∥λ∥∞

)
,

where ∥λ∥∞ ≡ max1≤i≤N{∥λ1∥2 , .., ∥λN∥2}.
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(3) max
1≤i≤N

∥∥Iλ3 ∥∥2 ≤ max
1≤i≤N

∥∥∥∥(λ̂i − λi

)′
V−1
λi

(
λ̂i − λi

)∥∥∥∥
2

max
1≤i≤N

∥∥∥(V̂λi − Vλi

)
V−1
λi

∥∥∥
F
= op (lnN)

holds by the immediate results of Setp 2 in Part I in this section and (1) just above.

(4) max
1≤i≤N

∥∥Iλ4 ∥∥2 ≤ max
1≤i≤N

∥∥Iλ1 ∥∥2 max
1≤i≤N

∥∥∥(V̂λi − Vλi

)
V−1
λi

∥∥∥
F
= op

(
T ∥λ∥2∞

)
holds because such

two terms are bounded by (1) and (3) just above.

(5) max
1≤i≤N

∥∥Iλ5 ∥∥2 ≤ max
1≤i≤N

∥∥Iλ2 ∥∥2 max
1≤i≤N

∥∥∥(V̂λi − Vλi

)
V−1
λi

∥∥∥
F
= op

(√
(lnN)T ∥λ∥∞

)
holds that

such two terms are bounded by (2) and (3) just above.

Step 3. In Step 2 above, underH1a,NT , it is obvious that last four terms are dominated by max
1≤i≤N

∥∥Iλ1 ∥∥2,
while max

1≤i≤N

∥∥Iλ1 ∥∥2 also dominates max
1≤i≤N

(
λ̂i − λi

)′
V−1
λi

(
λ̂i − λi

)
under H1a,NT . Therefore, it fol­

lows,

Tλ = max
1≤i≤N

(
λ̂i − λi

)′
V−1
λi

(
λ̂i − λi

)
+ max

1≤i≤N
Iλ1 + op

(
T ∥λ∥2∞

) d
= T 0

λ + T NC
λ ,

where T 0
λ denotes the null distribution of Tλ and T NC

λ denotes the non­centrality parameter such that

T NC
λ = Op

(
T ∥λ∥2∞

)
and diverges to infinity as long as T ∥λ∥2∞ / lnN → +∞.

Under H1a,NT , it holds that, as long as (N, T ) go to infinity jointly, P{Tλ > cα,N} = P{T 0
λ >

cα,N − T NC
λ } → 1 holds because cα,N − T NC

λ → −∞ as (N, T ) → (∞,∞) with cα,N = O(lnN).

A.1.7 Proofs of Theorem 1.4.2

The proofs of Theorem 1.4.2 are very similar to those arguments of proofs for Theorem 1.4.1 in the

previous section. So we will give the main steps and key arguments below for brevity.

Part I. The asymptotic null distribution of Tγ

UnderH0b, γ̂t = γ̂t − γt, and according to the decomposition shown in proofs of Theorem 1.3.4,

γ̂t − γt = −Σ−1
x (ξγNT/

√
T ) + Σ−1

x (ζγNt/
√
N) + Σ−1

x (Ψγ
Nt/

√
N) + op

(
δ−1
NT

)
.
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And for V̂γt, the consistent estimator of Vγt, we can write

V̂−1
γt = V−1

γt − V−1
γt

(
V̂γt − Vγt

)
V̂−1
γt = V−1

γt − V−1
γt

(
V̂γt − Vγt

)
V−1
γt + op

(∥∥∥V̂γt − Vγt

∥∥∥) .
Then, under H0b, neglecting the terms that is op

(∥∥∥V̂γt − Vγt

∥∥∥),
(γ̂t − γt)

′ V̂−1
γt (γ̂t − γt) = (γ̂t − γt)

′ V−1
γt (γ̂t − γt) + (γ̂t − γt)

′ V−1
γt

(
V̂γt − Vγt

)
V−1
γt (γ̂t − γt)

≡ (γ̂t − γt)
′ V−1

γt (γ̂t − γt) + Iγt

Now, we are in the position to show the desired results below by following four steps.

Step 1. It is straightforward to see the fact max
1≤t≤T

(γ̂t − γt)
′ V−1

γt (γ̂t − γt) = Op(lnT ) by Theorem

1.3.4 and proofs of Theorem 4 in Castagnetti et al. (2015).

Step 2. we are going to show max
1≤t≤T

Iγt = op (lnT ) as below,

max
1≤t≤T

Iγt ≤ max
1≤t≤T

∥∥∥(γ̂t − γt)
′ V−1/2

γt

∥∥∥2
2
max
1≤t≤T

∥∥∥(V̂γt − Vγt

)
V−1
γt

∥∥∥
F

Thus, it suffices to show max
1≤t≤T

∥∥∥(V̂γt − Vγt

)
V−1
γt

∥∥∥
F

= op(1), which can be shown by following

arguments for max
1≤i≤N

∥∥∥(V̂λi − Vλi

)
V−1
λi

∥∥∥ = op(1) in the previous section just above.

Step 3. We show
√
N (γ̂t − γt) and

√
N (γ̂s − γs) are asymptotically independent. Recall that

γ̂t − γt = −Σ−1
x (ξγNT/

√
T ) + Σ−1

x (ζγNt/
√
N) + Σ−1

x (Ψγ
Nt/

√
N) + op

(
δ−1
NT

)
,

where ξγiNT = 1
N
√
T

∑
i

∑
s ̸=t x

∗
isx

∗′
isγs, ζ

γ
iT = 1√

N

∑
i (x

∗
itx

∗′
it − Σx)λi, and Ψγ

iT = 1√
N

∑
i x

∗
ituit

Under H0b and Assumption A1.9, the expression of
√
N (γ̂t − γt) simplifies to the below:

√
N (γ̂t − γt) =Σ−1

x

1√
N

∑
i

x∗ituit + op (1) = ζγNt + op (1)

Then, it is straightforward to see that the covariance between ζλNt and ζλNs is proportion to the
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quantity, E
(

1
N

∑
i,j x

∗
itx

∗′
jsuitujs

)
when the smaller­order terms are ignored.

Then, let τ = t−s, under Assumption A1.1 and A1.2, lim
τ,N→∞

1
N

∑
i,j E

(
x∗ituitujt−τx

∗′
jt−τ

)
lnT =

0 as (N, T ) → ∞. It concludes ζλNt and ζλNs are asymptotically independent due to the asymptotic

normality of ζλNt and ζλNs, and so
√
N (γ̂t − γt) and

√
N (γ̂s − γs) are.

Step 4. Following corresponding arguments of proofs for Theorem 4 in Castagnetti et al. (2015),

the asymptotic distribution of Tγ under H0b will follow the Gumbel distribution after being rescaled

appropriately as shown in Theorem 1.4.2.

Part II. The asymptotic local power properties of Tγ

The analysis of the power of test under local alternatives H1b,NT is similar to those in the proof

of Theorem 1.4.1 in the previous section just above. So the sketch of proofs are given here for the

brevity. Under H1b,NT , we can write γ̂t = γ̂t − γt + γt, then, neglecting terms that are of order

op

(∥∥∥V̂γt − Vγt

∥∥∥), we then have following decomposition,
(γ̂t − γt + γt)

′ V̂−1
γt (γ̂t − γt + γt)

= (γ̂t − γt + γt)
′ V−1

γt (γ̂t − γt + γt) + (γ̂t − γt + γt)
′ V−1

γt

(
V̂γt − Vγt

)
V−1
γt (γ̂t − γt + γt)

= (γ̂t − γt)
′ V−1

γt (γ̂t − γt) + γ′tV−1
γt γt + 2 (γ̂t − γt)

′ V−1
γt γt + (γ̂t − γt)

′ V−1
γt

(
V̂γt − Vγt

)
V−1
γt (γ̂t − γt)

+γ′tV−1
γt

(
V̂γt − Vγt

)
V−1
γt γt + 2 (γ̂t − γt)

′ V−1
γt

(
V̂γt − Vγt

)
V−1
γt γt

= (γ̂t − γt)
′ V−1

γt (γ̂t − γt) + Iγ1 + Iγ2 + Iγ3 + Iγ4 + Iγ5 .

Step 1. It is straightforward to see the fact that max
1≤t≤T

(γ̂t − γt)
′ V−1

γt (γ̂t − γt) = Op(lnT ) by Theorem

1.3.4 and proofs of Theorem 4 in Castagnetti et al. (2015).

Step 2. Similar to corresponding arguments of the analyses of power properties in proofs for Theorem

1.4.1 in the previous section, we can readily obtain that

(1) max
1≤t≤T

Iγ1 = Op

(
N ∥γ∥2∞

)
, where ∥γ∥2∞ = maxt ∥γt∥22.

(2) max
1≤i≤N

Iγ2 = Op

(√
(lnT )N ∥γ∥∞

)
, where ∥γ∥∞ = maxt ∥γt∥2
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(3) max
1≤i≤N

Iγ3 = op (lnT ),

(4) max
1≤i≤N

Iγ4 = op
(
N ∥γt∥2∞

)
,

(5) max
1≤i≤N

Iγ5 = op

(√
(lnT )N ∥γ∥∞

)
.

Step 3. According to the immediate results in Step 2 just above, under H1b,NT , last four terms are

dominated by max
1≤i≤N

Iγ1 while max
1≤i≤N

Iγ1 also dominates max
1≤i≤N

(γ̂t − γt)
′ V−1

λi (γ̂t − γt) provided that

N ∥γ∥2∞ / lnT → ∞. Therefore, it follows:

Tγ = max
1≤t≤T

(γ̂t − γt)
′ V−1

γt (γ̂t − γt) + max
1≤t≤T

Iγ1 + op
(
N ∥γ∥2∞

) d
= T 0

γ + T NC
γ ,

where T 0
γ denotes the null distribution of Tγ and T NC

γ denotes the non­centrality parameter such that

T NC
γ = Op

(
N ∥γ∥2∞

)
and tends to +∞ if N ∥γ∥2∞ / lnT → +∞

UnderH1b,NT , as (N, T ) → (∞,∞), it holds that P{Tγ > cα,T} = P{T 0
γ > cα,N −T NC

γ } → 1

holds as cα,T − T NC
γ → −∞ with cα,T = O(lnT ).

A.1.8 Proofs of Theorem 1.4.3

Denote the original sample WNT ≡ {(yit, xit) , i = 1, . . . , N, t = 1, . . . , T}. Let P ∗(·) denote the

probability measure induced by the wild bootstrap conditional onWNT , and E∗(·) and V ar∗(·) de­

note the expectation and variance with respect to P ∗(·). LetOP ∗(·) and oP ∗(·) denote the probability

order under P ∗(.).

(a). We now prove that the null distribution of Tλ by T ∗
λ as below.

Part I: The Validity of Block Wild Bootstrap Scheme

Let λ̂∗i , V∗
λi and V̂∗

λi denote the bootstrap analogue of λ̂i, Vλi and V̂λi respectively. It follows that

T ∗
λ ≡ max

1≤i≤N
λ̂∗′i

(
V̂∗
λi

)−1

λ̂∗i .
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For Theorem 1.3.3, we have proved that Tλ will convergence to the Gumbel distribution after being

rescaled appropriately as N, T → ∞ under the null hypothesis and Assumptions A1.1­A1.5, A1.8

and A1.9. By Polya­Cantelli lemma, it follows that

sup
x∈R

|P (ANTλ ≤ x+BN)− Ψ(x)| P→ 0.

where Ψ(x) denotes the Gumbel distribution that location parameter equals 0 and scale parameter

equals 1. Then the desired result follows if the following statement holds

sup
x∈R

|P ∗ (ANT ∗
λ ≤ x+BN)− Ψ(x)| P→ 0

To this end, we show the desired results above by imitating the arguments of proofs for Theorem

4.1. Specifically, our proofs below consist of two parts:

(1) Show the asymptotic normality of λ̂∗i

(2) Show the asymptotic distribution of T ∗
λ ≡ max

1≤i≤N
λ̂∗′i

(
V̂∗
λi

)−1

λ̂∗i .

Part (1). Conditional on WNT , ̂̈u∗it are independent across i, and are independent of xjs for all
i, j, t, s because these objects are fixed in the fixed­design bootstrap world. Note that fore each i,

E∗
(̂̈u∗it) = ̂̈uitE∗ (wit) = 0 andE∗

[(̂̈u∗it)2] = ̂̈u∗2it E (w2
it) = ̂̈u2it, and these will simplify the proofs

in the bootstrap world.

Observing that ̂̈y∗it = x̃′itλ
∗
i + ̂̈u∗it given that λ∗i = 0 for all i because the null hypothesis is

maintained in the bootstrap world. Similar to the proofs of Theorem 1.3.3, in the bootstrap world,

we also can readily show that, for each i,

λ̂∗i − λ∗i = (T−1
∑

t x̃itx̃
′
it)

−1
(
T−1

∑
t x̃it
̂̈u∗it) ≡ (T−1

∑
t x̃itx̃

′
it)

−1 (
T−1/2ζλ∗iT

)
,

where ̂̈u∗it = ̂̈uitwit for each i = 1, . . . , N and t = 1, . . . , T , and ζλ∗iT = T−1/2
∑

t x̃it
̂̈u∗it.

It is straightforward to see 1
T

∑
t x̃itx̃

′
it = Op(1) by the law of large numbers and is bounded from
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below under under Assumption A1.1. Then, by continuous mapping theorem, we only need to show

the asymptotic normality of ζλ∗iT .

We define that, for the j­th block of the cross­section unit i,

Z∗
ij ≡ Ω∗−1/2b

−1/2
T

bT∑
l=1

x̃i,(j−1)bT+l
̂̈u∗i,(j−1)bT+l

= Ω∗−1/2b
−1/2
T

bT∑
l=1

x̃i,(j−1)bT+l
̂̈ui,(j−1)bT+lwi,(j−1)bT+l

= Ω∗−1/2b
−1/2
T

bT∑
l=1

x̃i,(j−1)bT+l
̂̈ui,(j−1)bT+lξij,

where i = 1, . . . , N and j = 1, . . . , LT , and wis = ξij if (j − 1)bT < s ≤ jbT holds by construction

as stated in Step 2 and 3 in Algorithm BWB, and

Ω∗ = T−1V ar∗

(
LT∑
j=1

bT∑
l=1

x̃i,(j−1)bT+l
̂̈ui,(j−1)bT+lξij

)
.

Then, we can write

ζλ∗iT = T−1/2
∑
t

x̃it̂̈u∗it = L
−1/2
T

LT∑
j=1

Z∗
ij,

where {Zij} are independent across j for each i conditional on WNT for j = 1, . . . , LT with

E∗ (Z∗
ij

)
= 0 and V ar(L−1/2

T

∑LT

j=1Z∗
ij) = IK by the definition of Ω∗ displayed just above.

To establish the asymptotic normality of ζλ∗iT = L
−1/2
T

∑LT

j=1 Z∗
ij , it suffices to show that the

Lyapunov condition is satisfied, namely,
∑LT

j=1E
∗
∥∥Z∗

ij/
√
LT

∥∥4
2
= o(1). By the definition of Z∗

ij

above, we have

L−2
T

LT∑
j=1

E∗ ∥Zij∥42 ≤
∥∥Ω∗−1/2

∥∥4
F
T−2

LT∑
j=1

E∗

∥∥∥∥∥
bT∑
l=1

x̃i,(j−1)bT+l
̂̈u∗i,(j−1)bT+l

∥∥∥∥∥
4

2

Note that the requirements for bT below can generalized indeed as stated in Theorem 1.4.3(a).

139



We claim that Ω∗ P→ ̂̃Σi,xu, where ̂̃Σi,xu is defined in Corollary 1.3.5, then
∥∥Ω∗−1/2

∥∥4
F
= Op(1)

holds, and prove this claim later. Thus, we only need to show remaining terms above are o(1) as

whole. Noting that

̂̈u∗i,(j−1)bT+l

=

[
uit + ẍ′it(β − β̂) + x̃′it

(
λi − λ̂i

)
− 1

N

∑
j

x̃′jt

(
λj − λ̂j

)
+ x̆′it (γt − γ̂t)−

1

T

∑
s

x̆′is (γs − γ̂s)

]
ξij.

Then, by Cr­inequality, we have that

T−2
∑LT

j=1E
∗
∥∥∥∑bT

l=1 x̃
∗
i,(j−1)bT+l

̂̈u∗i,(j−1)bT+l

∥∥∥4
2
≤ 4 (M1T +M2T +M3T +M4T +M5T +M6T ) ,

where,

M1T = 63
(
1

T

)2 LT∑
j=1

∥∥∥∥∥
bT∑
l=1

x̃i,(j−1)bT+lui,(j−1)bT+l

∥∥∥∥∥
4

2

E∗ |ξij|4 ,

M2T = 63
(
1

T

)2 LT∑
j=1

∥∥∥∥∥
bT∑
l=1

x̃i,(j−1)bT+lẍ
′
i,(j−1)bT+l(β − β̂)

∥∥∥∥∥
4

2

E∗ |ξij|4 ,

M3T = 63
(
1

T

)2 LT∑
j=1

(∥∥∥∥∥
bT∑
l=1

x̃i,(j−1)bT+lx̃
′
i,(j−1)bT+l

(
λi − λ̂i

)∥∥∥∥∥
2

)4

E∗ |ξij|4 ,

M4T = 63
(
1

T

)2 LT∑
j=1

∥∥∥∥∥ 1

N

∑
h

bT∑
l=1

x̃i,(j−1)bT+lx̃
′
h,(j−1)bT+l

(
λh − λ̂h

)∥∥∥∥∥
4

2

E∗ |ξij|4 ,

M5T = 63
(
1

T

)2 LT∑
j=1

∥∥∥∥∥
bT∑
l=1

x̃i,(j−1)bT+lx̆
′
i,(j−1)bT+l

(
γ(j−1)bT+l − γ̂(j−1)bT+l

)∥∥∥∥∥
4

2

E∗ |ξij|4 ,

M6T = 63
(
1

T

)2 LT∑
j=1

(∥∥∥∥∥ 1T ∑
s

bT∑
l=1

x̃i,(j−1)bT+lx̆
′
is (γs − γ̂s)

∥∥∥∥∥
2

)4

E∗ |ξij|4 .

Below we show thatM1T toM6T are all of order op∗(1) terms below provided thatE∗ |ξij|4 <∞

by the condition stated in Algorithm BWB and note that T = bTLT .

ForM1T , by direct moment calculations,
∥∥∥∑bT

l=1 x̃i,(j−1)bT+lui,(j−1)bT+l

∥∥∥4
2
= Op (b

4
T ) holds under
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Assumption A1.1, it followsM1T = Op (b
4
TLTT

−2) = Op (b
3
TT

−1).

ForM2T , using the fact that β̂ − β = Op

(
N−1/2 + T−1/2

)
, in bootstrap world, by direct calcu­

lation, use triangular and Cauchy­Schwartz inequality, we can readily show as below by neglecting

those terms in the expansions ofM2T that are of smaller order,

M2T = 63
(
1

T

)2 LT∑
j=1

∥∥∥∥∥
bT∑
l=1

x̃i,(j−1)bT+lx̃
′
i,(j−1)bT+l(β − β̂)

∥∥∥∥∥
4

2

E∗ |ξij|4

≤ 63
∥∥∥β − β̂

∥∥∥4
2

(
1

T

)2 LT∑
j=1

∥∥∥∥∥
bT∑
l=1

x̃i,(j−1)bT+lx̃
′
i,(j−1)bT+l

∥∥∥∥∥
4

F

E∗ |ξij|4

= op(1)Op

(
T−2LT b

4
T

)
O(1) = Op

(
b3TT

−3/2 +N−1/2b3TT
−1
)
,

where
∥∥∥∑bT

l=1 x̃i,(j−1)bT+lx̃
′
i,(j−1)bT+l

∥∥∥4
F
= Op (b

4
T ) by direct calculations under Assumption A1.1.

For M3T we can show M3T = Op (b
3
TT

−3) readily by following above arguments for M1T and

M2T .

ForM4T , we have

M4T ≤ 63
(
1

T

)2 LT∑
j=1

∥∥∥∥∥
bT∑
l=1

x̃i,(j−1)bT+lx̃
′
h,(j−1)bT+l

∥∥∥∥∥
4

F

(
1

N

∑
h̸=i

∥∥∥λh − λ̂h

∥∥∥2
2

)2

E∗ |ξij|4

= T−2LTOp

(
b4T
)
Op

(
T−2(lnN)2

)
O(1)

= Op

(
(lnN)2T−4LT b

4
T

)
= Op

(
lnN)2T−3b3T

)
,

where the second line holds because
∥∥∥∑bT

l=1 x̃i,(j−1)bT+lx
∗′
h,(j−1)bT+l

∥∥∥4
F
= O (b4T ) by direct moments

calculations under Assumption A1.1, and maxi
∥∥∥λi − λ̂i

∥∥∥ = Op

(√
lnN/T

)
by Proposition 1.3.8.

ForM5T andM6T , similar to arguments for boundingM4T above, we can readily show that

M5T = Op

(
N−2(lnT )2T−1b3T

)
, andM6T = Op

(
N−2(lnT )2T−1b3T

)
,

holds by under Assumption A1.1 and Proposition 1.3.8.
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Therefore, if bT is set to be o(T 1/3), M1T to M6T are all of order op∗(1). After verifying the

Lyapunov condition, ζλ∗iT
d→ N(0,Ω∗) follows directly by the CLT.

Now, we are in the position to show the consistency of Ω∗ constructed above. By construction,

we have

Ω∗ = T−1V ar∗

(
LT∑
j=1

bT∑
l=1

x̃i,(j−1)bT+l
̂̈ui,(j−1)bT+lξij

)

= T−1

LT∑
j=1

[
bT∑
l=1

bT∑
k=1

(
x̃i,(j−1)bT+l

̂̈ui,(j−1)bT+l

)(
x̃i,(j−1)bT+l

̂̈ui,(j−1)bT+k

)′]
E∗ (ξ2ij)

= L−1
T

LT∑
j=1

[
b−1
T

bT∑
l=1

bT∑
k=1

(
x̃i,(j−1)bT+l

̂̈ui,(j−1)bT+l

)(
x̃i,(j−1)bT+l

̂̈ui,(j−1)bT+k

)′]
(A.1.1)

By direct moments calculations,Ω∗ P ∗
→ ̂̃Σi,xu holds given that 1/bT +bT/T 1/3 → 0 as T → ∞, wherễΣi,xu is given in Corollary 1.3.5. We give the sketch of the main steps and omit the details because we

can follow the arguments for verifying the Lyapunov condition just above to get the desired result.

Recall that

̂̈u∗i,(j−1)bT+l

=

[
uit + ẍ′it(β − β̂) + x̃′it

(
λi − λ̂i

)
− 1

N

∑
j

x̃′jt

(
λj − λ̂j

)
+ x̆′it (γt − γ̂t)−

1

T

∑
s

x̆′is (γs − γ̂s)

]
ξij.

By simple calculations, it can be seen that

Ω∗ = L−1
T

LT∑
j=1

[
b−1
T

bT∑
l=1

bT∑
k=1

(
x∗i,(j−1)bT+lui,(j−1)bT+l

) (
xi,(j−1)bT+lui,(j−1)bT+k

)′]
+ dominated terms

≡ L−1
T

LT∑
j=1

Ω∗
j + dominated terms.

Intuitively, as bT → ∞, Ω∗
j

p→ Σ̃i,xu, and so does Ω∗. Meanwhile, ̂̃Σi,xu is constructed as the HAC

estimator of Σ̃i,xu. Therefore, it also can be shown that
∥∥∥Ω∗ − ̂̃Σi,xu

∥∥∥
F
= op (1).
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So the asymptotic normality of λ̂∗i holds in the view of those arguments of the proof for Theorem

3.2 in Lahiri (2013).

Part (2). Now, we derive the asymptotic distribution of T ∗
λ in bootstrap world.

To this end, we denote V̂λi ≡ T−1Q−1
x̃
̂̃Σi,xuQ

−1
x̃ , and V̂∗

λi = T−1Q−1
x̃
̂̃Σ∗

i,xuQ
−1
x̃ , where Qx̃ =

T−1
∑

t x̃itx̃
′
it,
̂̃Σ∗

i,xu is calculated by the same way as
̂̃Σi,xu, then we can follow those arguments of

proofs for Theorem 1.4.1 and just give the outline here for brevity.

V̂∗−1
λi = V̂−1

λi − V̂−1
λi

(
V̂∗
λi − V̂λi

)
V̂∗−1
λi + op

(∥∥∥V̂∗
λi − V̂λi

∥∥∥) .
Similarly, neglecting those terms that are op

(∥∥∥V̂∗
λi − V̂λi

∥∥∥),
(
λ̂∗i − λ∗i

)′
V̂∗−1
λi

(
λ̂∗i − λ∗i

)
=

(
λ̂∗i − λ∗i

)′
V̂−1
λi

(
λ̂∗i − λi

)
+
(
λ̂∗i − λ∗i

)′
V̂−1
λi

(
V̂∗
λi − V̂λi

)
V̂−1
λi

(
λ̂∗i − λ∗i

)′
≡

(
λ̂∗i − λ∗i

)′
V−1
λi

(
λ̂∗i − λ∗i

)
+ I∗λi.

By repeating the exact same arguments as those in the proofs of Theorem 1.4.1, it is straightforward

to see that max
1≤i≤N

(
λ̂∗i − λ∗i

)′
V−1
λi

(
λ̂∗i − λ∗i

)
= Op∗(lnN) holds.

Note that max
1≤i≤N

I∗λi = op (lnN) holds if the fact

max
1≤i≤N

I∗λi ≤ max
1≤i≤N

∥∥∥∥(λ̂∗i − λ∗i

)′
V−1
λi

(
λ̂∗i − λ∗i

)∥∥∥∥
2

max
1≤i≤N

∥∥∥(V̂∗
λi − V̂λi

)
V̂−1
λi

∥∥∥
2

= Op∗(lnN)op∗(1) = op∗(lnN).

holds. Again, it suffices to show max
1≤i≤N

∥∥∥(V̂∗
λi − V∗

λi

)
V∗−1
λi

∥∥∥
2
= op(1), such proofs follow the exact

same argument for Theorem 1.4.1 in the bootstrap world, and those details are not repeated here

again.

Part II: The Validity of Wild Bootstrap Scheme

Note that we construction Tλ by the observations {yit, xit}Nt=1 for each i.
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Because the wild bootstrap is the special case of the Block Wild Bootstrap when bT = 1. We just

introduce some notations here and the details can imitate the arguments in Part I just above.

Particularly, by similar notations used in Part I above, denote

Z∗
ij ≡ Ω∗−1/2x̃i,(j−1)+1

̂̈u∗i,(j−1)+1 = Ω∗−1/2x̃i,(j−1)+1
̂̈ui,(j−1)+1wit

= Ω∗−1/2x̃i,(j−1)+1
̂̈ui,(j−1)+1ξij,

for i = 1, . . . , N and j = 1, . . . , T , where Ω∗ = T−1V ar∗
(∑T

j=1 x̃i,(j−1)+l
̂̈ui,(j−1)+lξij

)
and wit =

ξij if t = j by constructions in Algorithm BWB.

Then, we can write T−1/2
∑

t x̃it
̂̈u∗it = T−1/2

∑T
j=1 Z∗

ij , where Zij are independent across j con­

ditional on WNT for j = 1, . . . , T with E∗ (Z∗
ij

)
= 0 and V ar(T−1/2

∑T
j=1Z∗

ij) = I by the con­

struction of Ω∗.

The asymptotic normality of T−1/2
∑T

j=1Z∗
ij requires to verify the Lyapunov condition, namely,∑T

j=1E
∗
∥∥∥Z∗

ij/
√
T
∥∥∥4
2
= o(1).

With these notations, the remaining steps are the same as those in Part I just above.

(b). The Validity of Wild Bootstrap Scheme

Note that we construction Tγ by the observations {yit, xit}Ni=1 for each t.

Observing that ̂̈y∗it = x̆′itγ
∗
t + ̂̈u∗it given that γ∗t = 0 for all t because the null hypothesis is

maintained in the bootstrap world. Similar to the proofs of Theorem 1.3.4, in the bootstrap world,

we also can readily show that, for each t,

γ̂∗t − γ∗t = (N−1
∑

i x̆itx̆
′
it)

−1
(
N−1

∑
i x̆it
̂̈u∗it) ≡ (N−1

∑
i x̆itx̆

′
it)

−1 (
T−1/2ζγ∗Nt

)
,

where ̂̈u∗it = ̂̈uitwit for each i = 1, . . . , N and t = 1, . . . , T , and ζγ∗Nt = N−1/2
∑

i x̆it
̂̈u∗it.

Similar to the arguments used for Part II of (a) just above, if we set block size bN = 1, then,

we can treat the wild bootstrap as the special case of block wild bootstrap. So proofs here are very

similar to arguments for the proofs in (a) shown above.
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Particularly, denote

Z∗
jt ≡ Ω∗−1/2x̆(j−1)+1,t

̂̈u∗(j−1)+1,t = Ω∗−1/2x̆(j−1)+1,t
̂̈u(j−1)+1,twit

= Ω∗−1/2x̆(j−1)+1,t
̂̈u(j−1)+1,tξjt,

for j = 1, . . . , N and t = 1, . . . , T , where Ω∗ = N−1V ar∗
(∑N

i=1 x̆i,(j−1)bT+l
̂̈ui,(j−1)bT+lξjt

)
con­

verges to ̂̆ΣXu that is defined in Corollary 1.3.6, and wit = ξjt if i = j by constructions in Algorithm

WB.

Then, we can write N−1/2
∑N

i=1 x̆it
̂̈u∗it = N−1/2

∑N
j=1 Z∗

jt, where Zjt are independent across j

conditional on WNT for j = 1, . . . , N with E∗ (Z∗
jt

)
= 0 and V ar(N−1/2

∑N
j=1Z∗

jt) = I by the

construction of Ω∗ above.

The asymptotic normality ofN−1/2
∑N

j=1Z∗
jt requires the verification of the Lyapunov condition,

namely,
∑N

j=1E
∗
∥∥∥Z∗

jt/
√
N
∥∥∥2+d

2
= o(1) for some d > 0.

The remaining steps are very similar to proofs in (a) and thus omitted here.

A.2 Proofs of Propositions in A.1

This section is composed of three parts. Section S1 contains the proofs of theorems, corollaries

and propositions in the main texts. Section S2 contains some technical lemmas that are used in the

proofs in the main texts and Section S1. Section S3 provides some discussions on the theoretical

results under the heterogeneity of xit. We continues to use the notations defined at the end of Section

1 of the paper. Let
∑

j ̸=i and
∑

t̸=s denote
∑N

i=1

∑N
j=1,j ̸=i and

∑T
t=1

∑T
s=1,t̸=s, respectively.

In this section, we prove Propositions A.1.1–A.1.3.

A.2.1 Proof of the Proposition A.1.1

To prove A.1.1, we need the following four lemmas that will be proved after we finish the proof of

the proposition.
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Lemma A.2.1. Suppose Assumption A1.1 holds. Then

(i)
∥∥ 1
NT

∑
i

∑
t x

∗
itx

∗′
it

∥∥
F
= Op(1),

(ii)
∥∥ 1
NT 2

∑
i

∑
t

∑
s x

∗
itx

∗′
is

∥∥
F
= Op(

1
T
),

(iii)
∥∥∥ 1
N2T

∑
i

∑
j ̸=i

∑
t x

∗
itx

∗′
jt

∥∥∥
F
= Op(

1
N
),

(iv)
∥∥∥ 1
N2T 2

∑
i

∑
j ̸=i

∑
t

∑
s x

∗
itx

∗′
js

∥∥∥
F
= Op(

1
NT

).

Lemma A.2.2. Suppose that Assumptions A1.1 and A1.2 hold. Then

(i)
∥∥ 1
NT

∑
i

∑
t x

∗
ituit

∥∥ = Op(
1√
NT

),

(ii)
∥∥ 1
NT 2

∑
i

∑
t

∑
s x

∗
ituis

∥∥ = Op(
1√
NT 2

),

(iii)
∥∥ 1
N2T

∑
i

∑
l

∑
t x

∗
ltuit

∥∥ = Op(
1√
N2T

),

(iv)
∥∥ 1
N2T 2

∑
i

∑
l

∑
t

∑
r x

∗
ltuir

∥∥ = Op(
1

NT
).

Lemma A.2.3. Under Assumption A1.1,

(i)
∥∥ 1
NT

∑
i

∑
t x

∗
itx

∗′
itλi
∥∥ = Op(

1√
N
),

(ii)
∥∥ 1
NT 2

∑
i

∑
t

∑
s x

∗
itx

∗′
isλi
∥∥ = Op(

1
T
)

(iii)
∥∥∥ 1
N2T

∑
l ̸=i

∑
i

∑
t x

∗
ltx

∗′
itλi

∥∥∥ = Op(
1√
N2T

),

(iv)
∥∥∥ 1
N2T 2

∑
l ̸=i

∑
i

∑
t

∑
s x

∗
ltx

∗′
isλi

∥∥∥ = Op(
1

NT
).

Lemma A.2.4. Under Assumptions A1.1,

(i)
∥∥ 1
NT

∑
i

∑
t x

∗
itx

∗′
itγt
∥∥
2
= Op(

1√
T
),

(ii)
∥∥ 1
NT 2

∑
i

∑
t

∑
r x

∗
irx

∗′
itγt
∥∥ = Op(

1√
NT 2

),

(iii)
∥∥∥ 1
N2T

∑
i

∑
l ̸=i

∑
t x

∗
ltx

∗′
itγt

∥∥∥ = Op(
1√
N2T

),

(iv)
∥∥∥ 1
N2T 2

∑
i

∑
l ̸=i

∑
t

∑
r x

∗
lrx

∗′
itγt

∥∥∥ = Op(
1

NT
).

Proof of Proposition A.1.1.

Recall that

β̂ − β =

(
1

NT

∑
i

∑
t

ẍitẍ
′
it

)−1 [
1

NT

∑
i

∑
t

ẍit

(
üit + θ̈it + φ̈it

)]
≡ A−1

1NT (B1NT +B2NT +B3NT ) ,
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where A1NT , B1NT , B2NT , and B3NT are defined in the proof of Theorem 3.1. Note that

A1NT =
1

NT

∑
i

∑
t

(
x̃it −

1

N

∑
j

x̃jt

)(
x̃it −

1

N

∑
j

x̃jt

)′

=
1

NT

∑
i

∑
t

x̃itx̃
′
it −

1

N2T

∑
i,j

∑
t

x̃itx̃
′
jt ≡ A1NT1 − A1NT2,

B1NT =
1

NT

∑
i

∑
t

(
x̃it −

1

N

∑
j

x̃jt

)(
ũit −

1

N

∑
j

ũjt

)

=
1

NT

∑
i

∑
t

x̃itũit −
1

NT

∑
i

∑
t

(
1

N

∑
j

x̃jt

)
ũit ≡ B1NT1 −B1NT2,

B2NT =
1

NT

∑
i

∑
t

(
x̃it −

1

N

∑
j

x̃jt

)(
x̃′itλi −

1

N

∑
j

x̃′jtλj

)

=
1

NT

∑
i

∑
t

x̃itx̃
′
itλi −

1

NT

∑
i

∑
t

(
1

N

∑
j

x̃jt)x̃
′
itλi ≡ B2NT1 −B2NT2,

B3NT =
1

NT

∑
i

∑
t

(
x̆it −

1

T

∑
s

x̆is

)(
x̆′itγt −

1

T

∑
r

x̆′irγr

)
=

1

NT

∑
i

∑
t

x̆itx̆
′
itγt −

1

NT 2

∑
i

∑
s,t

x̆isx̆
′
itγt ≡ B3NT1 −B3NT2. (A.2.1)

(i) Note that x̃it = x̃∗it where x̃∗it = x̃it − E (x̃it) . Then

A1NT =
1

NT

∑
i

∑
t

x̃∗itx̃
∗′
it −

1

N2T

∑
i,j

∑
t

x̃∗itx̃
∗′
jt

=
1

NT

∑
i

∑
t

x∗itx
∗′
it −

1

NT 2

∑
i

∑
t

∑
s

x∗itx
∗′
is −

1

N2T

∑
i,j

∑
t

x∗itx
∗′
jt +

1

N2T 2

∑
i,j

∑
t,s

x∗itx
∗′
js

=

(
1− 1

N

)
A1NT1 −

(
1− 1

N

)
A1NT2 − A1NT3 + A1NT4,

where the first equality holds by (A.2.1), A1NT1 ≡ 1
NT

∑
i

∑
t x

∗
itx

∗′
it , A1NT2 ≡ 1

NT 2

∑
i

∑
t,s x

∗
itx

∗′
is,

A1NT3 ≡ 1
N2T

∑
j ̸=i

∑
t x

∗
itx

∗′
jt, and A1NT4 ≡ 1

N2T 2

∑
j ̸=i

∑
t,s x

∗
itx

∗′
js. By Lemma A.2.1, A1NT1 =

Op (1), A1NT2 = Op(
1
T
), A1NT3 = Op(

1
N
), andA1NT4 = Op(

1
NT

). In addition, it is standard to show

that

A1NT1
p→ lim

(N,T )→∞

1

NT

∑
i

∑
t

E (x∗itx
∗′
it) ≡ Σx.
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Then (i) follows by the Slutsky lemma.

(ii) Note that B1NT = B1NT1 − B1NT2 by (A.2.1). So it suffices to bound B1NT1 and B1NT2 in

turn. Using x̃it = x̃∗it again, we have

B1NT1 =
1

NT

∑
i

∑
t

x̃∗itũit

=
1

NT

∑
i

∑
t

(
x∗it −

1

T

∑
r

x∗ir

)
(uit −

1

T

∑
q

uiq)

=
1

NT

∑
i

∑
t

x∗ituit −
1

NT 2

∑
i

∑
t

∑
r

x∗ituir ≡ B1NT1a +B1NT1b.

Similarly,

B1NT2 =
1

N2T

∑
i,j

∑
t

x∗jtuit −
1

N2T 2

∑
i,j

∑
t,s

x∗jtuis ≡ B1NT2a +B1NT2b.

By Lemma A.2.2, ∥B1NTa∥2 = Op(
1√
NT

), ∥B1NTb∥2 = Op(
1
T
), ∥B2NTa∥2 = Op(

1√
N2T

), and

∥B2NTb∥2 = Op(
1

NT
). Then (ii) follows.

(iii) Recall that B2NT = B2NT1 − B2NT2 by (A.2.1). Using x̃it = x̃∗it again, we have following

decompositions:

B2NT1 =
1

NT

∑
i

∑
t

x̃∗itx̃
∗′
itλi

=
1

NT

∑
i

∑
t

(
x∗it −

1

T

∑
r

x∗ir

)(
x∗it −

1

T

∑
r

x∗ir

)′

λi

=
1

NT

∑
i

∑
t

x∗itx
∗′
itλi −

1

NT 2

∑
i

∑
t,r

x∗itx
∗′
irλi,

B2NT2 =
1

NT

∑
i

∑
t

(
1

N

∑
j

x̃∗jt)x̃
∗′
itλi

=
1

N2T

∑
i,j

∑
t

(
x∗jt −

1

T

∑
r

x∗jr

)(
x∗it −

1

T

∑
r

x∗ir

)′

λi

=
1

N2T

∑
i,j

∑
t

x∗ltx
∗′
itλi −

1

N2T 2

∑
i,j

∑
t,r

x∗jtx
∗′
irλi.
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It follows that

B2NT =
N − 1

N

(
1

NT

∑
i

∑
t

x∗itx
∗′
itλi −

1

NT 2

∑
i

∑
t,r

x∗itx
∗′
irλi

)

− 1

N2T

∑
l ̸=i

∑
t

x∗ltx
∗′
itλi +

1

N2T 2

∑
l ̸=i

∑
t,r

x∗ltx
∗′
irλi

≡ N − 1

N
(B2NTa −B2NTb)−B2NTc +B2NTd.

By Lemma A.2.3, ∥B2NTa∥ = Op(
1√
N
), ∥B2NTb∥ = Op(

1
T
), ∥B2NTc∥ = Op(

1
N
), ∥B2NTd∥ =

Op(
1

NT
). Then ∥B2NT∥ = Op(

1√
N
).

(iv) Recall that B3NT = B3NT1 − B3NT2 by (A.2.1). Then, by direct calculations based on the

fact x∗it = xit − µ, and x̆it = xit −N−1
∑

i xit, we have

B3NT =
1

NT

∑
i

∑
t

x∗itx
∗
itγt −

1

NT 2

∑
i

∑
t,r

x∗irx
∗
itγt

− 1

N2T

∑
i,l

∑
t

x∗ltx
∗
itγt +

1

N2T 2

∑
i,l

∑
t,r

x∗lrx
∗
itγt

=
N − 1

N

(
1

NT

∑
i

∑
t

x∗itx
∗
itγt −

1

NT 2

∑
i

∑
t,r

x∗irx
∗
itγt

)

− 1

N2T

∑
l ̸=i

∑
t

x∗ltx
∗
itγt +

1

N2T 2

∑
l ̸=i

∑
t,r

x∗lrx
∗
itγt

≡ N − 1

N
(B3NTa −B3NTb)−B3NTc +B3NTd.

By Lemma A.2.4, ∥B3NTa∥ = Op(
1√
T
), ∥B3NTb∥ = Op(

1
T
), ∥B3NTc∥ = Op(

1
N
), ∥B3NTd∥ =

Op(
1

NT
). Then ∥B3NT∥ = Op(

1√
T
). �

Proof of Lemma A.2.1.

(i) It is suffices to show
∥∥ 1
NT

∑
i

∑
t x

∗
itx

∗′
it − Σx

∥∥
sp = op(1) with Σx = E (x∗itx

∗′
it). Define
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wit = z′x∗it, where z ∈ RK such that ∥z∥ = 1, then

∥∥∥∥∥ 1

NT

∑
i

∑
t

x∗itx
∗′
it − Σx

∥∥∥∥∥
sp

=

∥∥∥∥∥ 1

NT

∑
i

∑
t

(
w2

it − Ew2
it

)∥∥∥∥∥
≡

∥∥∥∥∥ 1

NT

∑
i

∑
t

ψit

∥∥∥∥∥ .
By construction, {ψit}Tt=1 above are still mixing sequences with weak cross­sectional dependence

under Assumption A1.1, we can readily obtain that 1
NT

∑
i

∑
t ψit = Op

(
1√
NT

)
. Therefore, the

desired result follows provided thatm ≤ φ1 (Σx) ≤ φK (Σx) ≤M .

(ii) By direct calculations, we have

E

∥∥∥∥∥ 1

NT 2

∑
i

∑
t,s

x∗itx
∗′
is

∥∥∥∥∥
2

=
1

N2T 4

∑
i

∑
t,s,r,q

E
(
x∗′iqx

∗
itx

∗′
isx

∗
ir

)
+

1

N2T 4

∑
j ̸=i

∑
t,s,r,q

E
(
x∗′isx

∗
jrx

∗′
jqx

∗
it

)
≡ a1 + a2.

For a1, we have

a1 =
1

N2T 4

∑
i

∑
t,s,r,q

E
(
x∗′iqx

∗
itx

∗′
isx

∗
ir

)
=

1

N2T 4

∑
i

E

∥∥∥∥∥∑
t

x∗it

∥∥∥∥∥
4

2

= O

(
1

NT 2

)
,

where the last equality holds because E ∥
∑

t x
∗
it∥

4
2
= O (T 2) by Lemma A.3.1 under Assumption

A1.1. Similarly,

a2 =
1

N2T 4

∑
j ̸=i

∑
t,s,r,q

E
(
x∗′isx

∗
jrx

∗′
jqx

∗
it

)
=

1

N2T 4

∑
j ̸=i

E

[(∑
s

x∗is

)′(∑
r

x∗jr

)]2

≤ 1

T 4

 1

N

∑
i

E ∥∥∥∥∥∑
s

x∗is

∥∥∥∥∥
4
1/2


 1

N

∑
j

E ∥∥∥∥∥∑
r

x∗jr

∥∥∥∥∥
4
1/2

 = O

(
1

T 2

)
,

where inequality holds byCauchy­Schwartz inequality, the final equality holds becauseE ∥
∑

t x
∗
it∥

4
2 =

O (T 2) for each i by Lemma A.3.1 under Assumption A1.1.
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(iii) By direct calculations, we have

E

∥∥∥∥∥ 1

N2T

∑
j ̸=i

∑
t

x∗itx
∗′
jt

∥∥∥∥∥
2

=
1

N4T 2

∑
j ̸=i

∑
k ̸=l

∑
t,s

E
(
x∗′jtx

∗
ksx

∗′
lsx

∗
it

)

≤ 1

N2T 2

∑
t,s

E ∥∥∥∥∥ 1√
N

∑
i

x∗it

∥∥∥∥∥
4
1/2 E ∥∥∥∥∥ 1√

N

∑
j

x∗js

∥∥∥∥∥
4
1/2

=
1

N2T 2
O
(
T 2
)
= O

(
1

N2

)
,

where the inequality holds by Cauchy­Schwarz inequality, and the final bound holds under Assump­

tion A1.1.

(iv) By direct calculations, we have

E

∥∥∥∥∥ 1

N2T 2

∑
j ̸=i

∑
t,s

x∗itx
∗′
js

∥∥∥∥∥
2

=
1

N4T 4

∑
j1 ̸=i1

∑
j2 ̸=i2

∑
t,s,r,q

E
(
x∗′j1sx

∗
i2r
x∗′j2qx

∗
i1t

)
≤ 1

N2T 4
E

∥∥∥∥∥∑
t

(
1√
N

∑
i

x∗it

)∥∥∥∥∥
4

2

=
1

N2T 4
O
(
T 2
)
= O

(
1

N2T 2

)
,

where the last line follows because E
∥∥∥∑t

(
1√
N

∑
i x

∗
it

)∥∥∥4
2
= O (T 2) by Lemma A.3.1 under As­

sumption A1.1. �

Proof of Lemma A.2.2.

Note that E(x∗ituit) = E(x∗ituis) = E(x∗ltuit) = E(x∗ltuir) = 0 under Assumption A1.2(iii).
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(i) Let δ∗ = δ1 ∨ δ2. Then, we have

E

∥∥∥∥∥ 1

NT

∑
i

∑
t

x∗ituit

∥∥∥∥∥
2

=
1

N2T 2

∑
i,j

∑
t,s

E
(
uitx

∗′
itx

∗
jsujs

)
≤ 1

N2T 2

(∑
i,j

∑
t,s

[αij(|t− s|)]δ∗/(4+δ∗)

)[
E ∥x∗it∥

(4+δ∗)E
∥∥x∗js∥∥(4+δ∗)

]2/(4+δ∗)

[
E ∥u∗it∥

(4+δ∗)E
∥∥u∗js∥∥(4+δ∗)

]2/(4+δ∗)

= O(1)
1

N2T

T∑
τ=1

∑
i,j

[αij(|τ |)]δ∗/(4+δ∗) = O

(
1

NT

)
,

where the second line holds by Davydov’s inequality, the last lines above holds under Assumptions

A1.1(i) and A1.2(i).

(ii) By moments calculations, we have,

E

∥∥∥∥∥ 1

NT 2

∑
i

∑
t,s

x∗ituis

∥∥∥∥∥
2

≤ 1

N2T 2

∑
i,j

E

[(
1√
T

∑
s

uis

)(
1√
T

∑
t

x∗it

)′][(
1√
T

∑
t

x∗jr

)(
1√
T

∑
q

ujq

)]

. 1

N2T 2

∑
i,j

α(0)δ∗/(4+δ∗) = O

(
1

NT 2

)
,

where the second line holds because {T−1
∑

t,s uis} are still α­mixing sequences with zero mean un­

der Assumptions A1.1 and A1.2, then use Davydov’s inequality and LemmaA.3.1 under Assumption

A1.1(i) and A1.2(i) sequentially; and the final bound holds under Assumption A1.1(i) and A1.2(i).

(iii)–(iv) The proof is analogous to that of (ii) and thus omitted. �

Proof of Lemma A.2.3.
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(i) Note that E
(

1
NT

∑
i

∑
t x

∗
itx

∗′
itλi
)
= 0 under Assumption A1.1, then,

E

∥∥∥∥∥ 1

NT

∑
i

∑
t

x∗itx
∗′
itλi

∥∥∥∥∥
2

= E

∥∥∥∥∥ 1

NT

∑
i

∑
t

(x∗itx
∗′
it − Σx)λi + Σxλi

∥∥∥∥∥
2

≤ 1

N2T 2

∑
i,j

E (λ′iλj)

∥∥∥∥∥∑
t

Σx

∥∥∥∥∥
2

+
1

N2T 2

∑
i,j

∑
t,s

Eλ′i (x
∗
itx

∗′
it − Σx)

(
x∗jsx

∗′
js − Σx

)
λj

≡ a3 + a4 =
1

N2T 2
O
(
NT 2

)
+

1

N2T 2
O (NT ) = O

(
1

N

)
+O

(
1

NT

)
,

where the second line follows by triangular inequality. Furthermore, a3 = O (1/N) because we have

Var
(
N−1/2

∑
i λi
)
= O (1) under Assumption A1.1(iii), ∥Σx∥2 < ∞ under Assumption A1.1. For

a4 above, let wit = λ′i (x
∗
itx

∗′
it − Σx), then, a4 = N−2T−2

∑
i,j

∑
t,switwjs and {wit} are still mixing

sequences that satisfy the Assumption A1.1(i), it follows that a4 = O(1/NT ).

(ii) Note that E
(

1
NT 2

∑
i

∑
t

∑
s x

∗
itx

∗′
isλi
)
= 0 and E (x∗itx

∗′
isλi) = 0 under Assumption A1.1,

then,

E

∥∥∥∥∥ 1

NT 2

∑
i

∑
t,s

x∗itx
∗′
isλi

∥∥∥∥∥
2

=
1

N2T 2

∑
i,j

E

(
1

T

∑
t,s

λ′ix
∗
isx

∗
it

)(
1

T

∑
r,q

x∗′jrx
∗
jqλj

)

≤ O (1)
1

N2T 2

∑
i,j

αij(0)
δ1/(4+δ1)

=
1

N2T 2
O (N) = O

(
1

NT 2

)
,

where the second line holds because {T−1
∑

t,s λ
′
ix

∗
isx

∗
it} are stillα­mixing sequences with zeromean

under Assumption A1.1, then use Davydov’s inequality and Lemma A.3.1 under Assumption A1.1

sequentially; and the final bound holds under Assumption A1.1(i).

(iii) Note that E
(

1
N2T

∑
l ̸=i

∑
t x

∗
ltx

∗′
itλi

)
= 0 and E (x∗ltx

∗′
itλi) = 0 under Assumption A1.1,
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then,

E

∥∥∥∥∥ 1

N2T

∑
l ̸=i

∑
t

x∗ltx
∗′
itλi

∥∥∥∥∥
2

=
1

N2T 2

∑
t,s

E

(
1

N

∑
l ̸=i

λ′ix
∗
itx

∗
lt

)(
1

N

∑
j ̸=k

x∗′jsx
∗
ksλk

)

≤ O (1)
1

N2T 2

∑
t,s

α(|t− s|))δ1/(4+δ1)

=
1

N2T 2
O (T ) = O

(
1

N2T

)
,

where the second line holds because {N−1
∑

i

∑
l ̸=i λ

′
ix

∗
itx

∗
lt} are still α­mixing sequences with zero

mean under Assumption A1.1, then use Davydov’s inequality and Lemma A.3.1 under Assumption

A1.1 sequentially; and the final bound holds under Assumption A1.1(i).

(iv) Note that E
(

1
N2T 2

∑
l ̸=i

∑
t,s x

∗
ltx

∗′
isλi

)
= 0 under Assumption A1.1, then,

E

∥∥∥∥∥ 1

N2T 2

∑
l ̸=i

∑
t,s

x∗ltx
∗′
isλi

∥∥∥∥∥
2

=
1

N4T 2

∑
i,j

∑
t,s,r,q

E

[
λ′ix

∗
is

(∑
l ̸=i

x∗′lt

)(∑
k ̸=j

x∗kr

)
x∗′jqλj

]

≤ 1

N4T 4
E

(∥∥∥∥∥∑
l ̸=i

∑
t

x∗lt

∥∥∥∥∥
∥∥∥∥∥∑
k ̸=j

∑
r

x∗kr

∥∥∥∥∥
∥∥∥∥∥∑

i

∑
s

x∗′isλi

∥∥∥∥∥
∥∥∥∥∥∑

j

∑
q

x∗′jqλj

∥∥∥∥∥
)

≤ 1

N2T 4

E ∥∥∥∥∥∑
t

(
1√
N

∑
j ̸=i

x∗jt

)∥∥∥∥∥
4
1/2 E ∥∥∥∥∥ 1√

N

∑
i

∑
s

x∗′isλi

∥∥∥∥∥
4
1/2

=
1

N2T 4
O (T )O (T ) = O

(
1

N2T 2

)
,

where the fourth line follows by repeating uses of Cauchy­Schwarz inequality, and the final bound

holds by Lemma A.3.1 under Assumption A1.1(i). �

Proof of Lemma A.2.4

(i) Note that E
(

1
NT

∑
i

∑
t x

∗
itx

∗′
itγt
)
= 0 under Assumption A1.1. By direct calculations, we
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have

E

∥∥∥∥∥ 1

NT

∑
i

∑
t

x∗itx
∗′
itγt

∥∥∥∥∥
2

=
1

N2T 2

∑
i,j

∑
t,s

E
(
γ′tx

∗
jtx

∗′
jtx

∗
isx

∗′
isγs
)

=
1

N2T 2

∑
i,j

∑
t,s

E
[
γ′t
(
x∗jtx

∗′
jt − Σx

)
(x∗isx

∗′
is − Σx) γs + γ′tΣxΣxγs

]
≤ 1

N2T 2

∑
i,j

∑
t,s

∥∥E [γ′t (x∗jtx∗′jt − Σx

)
(x∗isx

∗′
is − Σx) γs

]∥∥+ 1

N2T 2

∑
i,j

∑
t,s

E (γ′tΣxΣxγs)

≤ 1

N2T 2

∑
i,j

∑
t,s

∥∥Eγ′t (x∗jtx∗′jt − Σx

)
(x∗isx

∗′
is − Σx) γs

∥∥+ 1

N2T 2

∑
i,j

∑
t,s

Eγ′tγs ∥Σx∥2

=
1

N2T 2
O
(
NT +N2T

)
= O

(
1

NT

)
+O

(
1

T

)
,

where the fourth line above holds because ∥Σx∥op <∞ underAssumptionA1.1(i) andVar
(
T−1/2

∑
t γt
)
=

O (1) under Assumption A1.1(iv), besides, by construction, {γ′t
(
x∗jtx

∗′
jt − Σx

)
} are still mixing se­

quences under Assumption A1.1(i), and thus,

∑
t,s

∑
i

∑
j

∥∥Eγ′t (x∗jtx∗′jt − Σx

)
(x∗itx

∗′
it − Σx) γs

∥∥
2
≤ O (1)

∑
t

∑
i

∑
j

(αij(|t−s|))δ1/(4+δ1) = O(NT ).

holds directly under Assumption A1.1(i).

(ii) Note thatE
(

1
NT 2

∑
i

∑
t,r x

∗
irx

∗′
itγt

)
= 0 andE (x∗irx

∗′
itγt) = 0 under Assumption A1.1, then,

E

∥∥∥∥∥ 1

NT 2

∑
i

∑
t,r

x∗irx
∗′
itγt

∥∥∥∥∥
2

2

=
1

N2T 2

∑
i,j

E

(
1

T

∑
t,r

γ′tx
∗
itx

∗
ir

)(
1

T

∑
s,q

x∗′jqx
∗
jsγs

)

≤ O (1)
1

N2T 2

∑
i,j

αij(0)
δ1/(4+δ1)

=
1

N2T 2
O (N) = O

(
1

NT 2

)
,

where the second line holds because {T−1
∑

t,r γ
′
tx

∗
itx

∗
ir} are stillα­mixing sequences with zeromean

under Assumption A1.1, then use Davydov’s inequality and Lemma A.3.1 under Assumption A1.1
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sequentially; and the final bound holds under Assumption A1.1(i).

(iii) Note that E
(

1
N2T

∑
l ̸=i

∑
t x

∗
ltx

∗′
itγt

)
= 0 and E (x∗ltx

∗′
itγt) = 0 under Assumption A1.1,

then,

E

∥∥∥∥∥ 1

N2T

∑
l ̸=i

∑
t

x∗ltx
∗′
itγt

∥∥∥∥∥
2

2

=
1

N2T 2

∑
t,s

E

(
1

N

∑
l ̸=i

γ′tx
∗
itx

∗
lt

)(
1

N

∑
j ̸=k

x∗′jsx
∗
ksγs

)

≤ 1

N2T 2

∑
t,s

α(|t− s|)δ1/(4+δ1)

=
1

N2T 2
O (T ) = O

(
1

N2T

)
,

where the second line holds because {N−1
∑

i

∑
l ̸=i γ

′
tx

∗
itx

∗
lt} are still α­mixing sequences with zero

mean under Assumption A1.1, then use Davydov’s inequality and Lemma A.3.1 under Assumption

A1.1 sequentially; and the final bound holds under Assumption A1.1(i).

(iv) The desired bounds can be obtained by following similar arguments for the proofs of (i)–(iii)

above.

A.2.2 Proof of Proposition A.1.2: Stochastic Bound of λ̂i − λi

Recall that

λ̂i − λi =
N

N − 1
A−1

2iT (−C1iT + C2iT + C3iT + C4iT )

= Op (1)

[
Op

(∥∥∥β̂ − β
∥∥∥
2

)
+Op

(
1√
T

)
+Op

(
1√
T

)
+Op

(
1√
NT

)]
,
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where A2iT , C1iT , C2iT , C3iT and C4iT are defined in Section A.3.1:

A2iT ≡ 1

T

∑
t

x̃itx̃
′
it,

C1iT ≡ 1

T

∑
t

x̃it

(
x̃it −

1

N
x̃lt

)′ (
β̂ − β

)
=

1

T

∑
t

x̃itx̃
′
it

(
β̂ − β

)
− 1

NT

∑
l

∑
t

x̃itx̃
′
lt

(
β̂ − β

)
≡ C1iT1 − C1iT2,

C2iT ≡ 1

T

∑
t

x̃it

(
x̆′itγt −

1

T

∑
s

x̆′isγs

)
=

1

T

∑
t

x̃itx̆
′
itγt −

1

T 2

∑
t,s

x̃itx̆
′
isγs ≡ C2iT1 − C2iT2,

C3iT ≡ 1

T

∑
t

x̃it

(
ũit −

1

N

∑
l

ũlt

)
=

1

T

∑
t

x̃itũit −
1

NT

∑
l

∑
t

x̃itũlt ≡ C3iT1 − C3iT2,

C4iT ≡ 1

NT

N∑
l=1,l ̸=i

∑
t

x̃itx̃
′
ltλl.

To prove Proposition A.1.2, we need following four lemmas.

Lemma A.2.5. Suppose Assumption A1.1 and A1.4 hold. Then for each i, we have

(i)
∥∥ 1
T

∑
t x

∗
itx

∗′
it

∥∥
F
= Op(1),

(ii)
∥∥ 1
T 2

∑
t

∑
s x

∗
itx

∗′
is

∥∥ = Op(
1
T
),

(iii)
∥∥∥ 1
NT

∑
l ̸=i

∑
t x

∗
itx

∗′
lt

∥∥∥ = Op(
1
N
) +Op(

1√
NT

),

(iv)
∥∥∥ 1
NT 2

∑
l ̸=i

∑
t

∑
s x

∗
itx

∗′
ls

∥∥∥ = Op(
1√
NT 2

).

Lemma A.2.6. Under Assumptions A1.1, the following hold:

(i)
∥∥ 1
T

∑
t x

∗
itx

∗′
itγt
∥∥ = Op(

1√
T
),

(ii)
∥∥ 1
T 2

∑
t

∑
r x

∗
irx

∗′
itγt
∥∥ = Op(

1
T
),

(iii)
∥∥∥ 1
NT

∑
l ̸=i

∑
t x

∗
itx

∗′
ltγt

∥∥∥ = Op(
1√
N2T

),

(iv)
∥∥∥ 1
NT 2

∑
l ̸=i

∑
t

∑
r x

∗
irx

∗′
ltγt

∥∥∥ = Op

(
1√
NT 2

)
.

Lemma A.2.7. Under Assumption A1.1 and A1.2,

(i)
∥∥ 1
T

∑
t x

∗
ituit

∥∥ = Op(
1√
T
),

(ii)
∥∥ 1
T 2

∑
t

∑
r x

∗
ituir

∥∥ = Op(
1
T
),

(iii)
∥∥ 1
NT

∑
l

∑
t x

∗
itult

∥∥ = Op(
1√
NT

),
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(iv)
∥∥ 1
NT 2

∑
l

∑
t

∑
r x

∗
itulr

∥∥ = Op(
1√
NT 2

).

Lemma A.2.8. Under Assumption A1.1, the following hold:

(i)
∥∥∥ 1
NT

∑
l ̸=i

∑
t x

∗
itx

∗′
ltλl

∥∥∥ = Op(
1√
NT

),

(ii)
∥∥∥ 1
NT 2

∑
l ̸=i

∑
t

∑
r x

∗
itx

∗′
lrλl

∥∥∥ = Op(
1√
NT 2

).

Proof of Proposition A.1.2.

(i) Note that x̃it = xit − 1
T

∑
r xir, x̃∗it = x∗it − 1

T

∑
r x

∗
ir with x∗it = xit − µ, then, x̃it = x̃∗it, it

follows that:

A2iT =
1

T

∑
t

x̃itx̃
′
it =

1

T

∑
t

x̃∗itx̃
∗′
it =

1

T

∑
t

x∗itx
∗′
it −

1

T 2

∑
r1

∑
r2

x∗ir1x
∗′
ir2

≡ A2iT1 − A2iT2.

Then, by law of large number, as T → ∞, we have A2T
p−→ lim

T→∞
1
T

∑
tE (x∗itx

∗′
it) = Σx by By

Lemma A.2.5.

(ii) Note that x̃ = xit − 1
T

∑
r xir, x̃∗ = x∗it − 1

T

∑
r x

∗
ir with x∗it = xit − µ, then, x̃it = x̃∗it, it

follows that:

C1iT =

N − 1

N

 1

T

∑
t

x∗itx
∗′
it︸ ︷︷ ︸

C1iT1

− 1

T 2

∑
t

∑
r

x∗itx
∗′
ir︸ ︷︷ ︸

C1iT2

− 1

NT

∑
l ̸=i

∑
t

x∗itx
∗′
lt︸ ︷︷ ︸

C1iT3

+
1

NT 2

∑
l ̸=i

∑
t

∑
s

x∗itx
∗′
ls︸ ︷︷ ︸

C1iT4


×
(
β̂ − β

)
,

It is clear that the order of C1iT is determined by both {C1iTk}4k=1 and
(
β̂ − β

)
.

By Lemma A.2.5, ∥C1iT1∥2 = Op (1), ∥C1iT2∥2 = Op

(
1
T

)
, ∥C1iT3∥2 = Op

(
1√
NT

)
+ Op

(
1
N

)
,

∥C1iT4∥2 = Op

(
1√
NT 2

)
. Thus, the order of

(
β̂ − β

)
will determine the order of C1T .

For the sake of this fact, we denote the bound as: ∥C1iT∥2 = Op

(∥∥∥β̂ − β
∥∥∥
2

)
, which means the

order of C1iT is totally determined by the order of
∥∥∥β̂ − β

∥∥∥
2
.

(iii) Recall that C2iT = C2iT1 − C2iT2 = 1
T

∑
t x̃itx̆

′
itγt − 1

T

∑
s

(
1
T

∑
t x̃it
)
x̆′isγs. Note that
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1
T

∑
t x̃it = 0, 1

T

∑
t x̃

∗
it = 0. Then C2iT2 = 0. Thus, C2T = C2iT1, and we bound C2iT1 below,

C2iT1 =
1

T

∑
t

(
x∗it −

1

T

∑
r

x∗ir

)(
x∗it −

1

N

∑
l

x∗lt

)
γt

=
N − 1

N

[
1

T

∑
t

x∗itx
∗′
itγt −

1

T 2

∑
t,r

x∗irx
∗′
itγt

]
− 1

NT

N∑
l=1,l ̸=i

∑
t

x∗itx
∗′
ltγt +

1

NT 2

N∑
l=1,l ̸=i

∑
t,r

x∗irx
∗′
ltγt

≡ N − 1

N
(C2iTa − C2iT b)− C2iT c − C2iTd.

By Lemma A.2.6, ∥C2Ta∥2 = Op

(
1√
T

)
, ∥C2iT b∥2 = Op

(
1
T

)
, ∥C2iT c∥2 = Op

(
1√
N2T

)
, ∥C2iTd∥2 =

Op

(
1√
NT 2

)
. Hence, it follows that ∥C2iT∥2 = Op

(
1√
T

)
.

(iv) Recall that x̃it = x̃∗it, x̃ = xit− 1
T

∑
r xir, x̃∗ = x∗it− 1

T

∑
r x

∗
ir, and x∗it = xit−µ. Note that,

C3iT =
1

T

∑
t

x̃itũit −
1

NT

∑
l

∑
t

x̃itũlt

=
1

T

∑
t

x∗ituit −
1

T 2

∑
t

∑
r

x∗ituir −
1

NT

∑
l

∑
t

x∗itult +
1

NT 2

∑
l

∑
t,r

x∗itulr

= C3iTa − C3iT b − C3iT c + C3iTd.

By Lemma A.2.7, ∥C3iTa∥2 = Op

(
1√
T

)
, ∥C3iT b∥2 = Op

(
1
T

)
, ∥C3iT c∥2 = Op

(
1√
NT

)
, ∥C3iTd∥2 =

Op

(
1√
NT 2

)
. Then, the desired bound holds.

(v) Recall that x̃it = x̃∗it, x̃ = xit − 1
T

∑
r xir, x̃∗ = x∗it − 1

T

∑
r x

∗
ir, x∗it = xit − µ. By direct

calculations, we have

C4iT =
1

NT

N∑
l=1,l ̸=i

∑
t

x̃itx̃
′
ltλl =

1

NT

N∑
l=1,l ̸=i

∑
t

x̃∗itx̃
∗′
ltλl

=
1

NT

N∑
l=1,l ̸=i

∑
t

x∗itx
∗′
ltλl −

1

NT 2

N∑
l=1,l ̸=i

∑
t,r

x∗itx
∗′
lrλl ≡ C4iT1 − C4iT2.

By Lemma A.2.8, ∥C4iT1∥2 = Op

(
1√
NT

)
, ∥C4iT b∥2 = Op

(
1√
NT 2

)
. It follows that ∥C4iT2∥2 =

Op

(
1√
NT

)
�
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Proof of Lemma A.2.5.

(i) Following arguments of proofs for Lemma A.2.1(1), 1
T

∑
t x

∗
itx

∗′
it

P→ lim
T→∞

1
T

∑
tE (x∗itx

∗′
it) =

Σx holds under Assumption A1.1, 1
T

∑
t x

∗
itx

∗′
it = Op(1) follows directly Assumption A1.4.

(ii) By Cauchy­Schwarz inequality

E

∥∥∥∥∥ 1

T 2

∑
t,s

x∗itx
∗′
is

∥∥∥∥∥
2

≤ 1

T 4
E

∥∥∥∥∥∑
t

x∗it

∥∥∥∥∥
4

=
1

T 4
O
(
T 2
)
= O

(
1

T 2

)
,

where the last line holds because E ∥
∑

t x
∗
it∥

4 = O (T 2) by Lemma A.3.1 under Assumption A1.1.

(iii) Denote τil = E (x∗itx
∗′
lt) temporarily. Then

E

∥∥∥∥∥ 1

NT

N∑
l=1,l ̸=i

∑
t

x∗itx
∗′
lt

∥∥∥∥∥
2

≤ 2E

∥∥∥∥∥ 1

NT

N∑
l=1,l ̸=i

∑
t

(x∗itx
∗′
lt − τil)

∥∥∥∥∥
2

+ 2

∥∥∥∥∥ 1

NT

N∑
l=1,l ̸=i

∑
t

τil

∥∥∥∥∥
2

=
2

N2T 2

N∑
l=1,l ̸=i

N∑
k=1,k ̸=i

∑
t,s

tr (E [(x∗itx
∗′
lt − τil) (x

∗
isx

∗′
ks − τik)]) +

2

N2T 2

∥∥∥∥∥
N∑

l=1,l ̸=i

∑
t

τil

∥∥∥∥∥
2

. 1

N2T 2

N∑
l=1,l ̸=i

N∑
k=1,k ̸=i

∑
t,s

[αkl (|t− s|)]δ1/(4+δ1) +
1

N2T 2

[∑
t

[αil (0)]
δ1/(4+δ1)

]2

=
1

N2T 2
O
(
NT + T 2

)
= O

(
1

NT
+

1

N2

)
,

where we use the fact that
∥∥∥∑t

∑N
k=1,k ̸=i τik

∥∥∥ ≤
∑

t

∑N
k=1,k ̸=iO(1)αik (0)

δ1/(4+δ1) = O (T ) under

Assumption A1.1, meanwhile, by similar arguments for (28) in Gao and Hong (2008) and the co­

variance inequality for the mixing sequences, we can show that

N∑
l=1,l ̸=i

N∑
k=1,k ̸=i

∑
t

∑
s

∥E (x∗itx
∗′
lt − τil) (x

∗
isx

∗′
ks − τik)∥ .

N∑
l=1,l ̸=i

N∑
k=1,k ̸=i

∑
t

∑
s

αkl (|t− s|)δ1/(4+δ1)

= O (NT )

under Assumption A1.1. Note that the bound obtained here under Assumption A1.1 is similar to As­
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sumption A1(iv) in Li et al. (2016), which demonstrate the weak form of cross­sectional dependence

and serial dependence among the sequences.

(iv) By Cauchy­Schwarz inequality,

E

∥∥∥∥∥ 1

NT 2

∑
l ̸=i

∑
t,s

x∗itx
∗′
ls

∥∥∥∥∥ ≤ 1

N1/2T 2

E ∥∥∥∥∥∑
s

(
1√
N

∑
l

x∗ls

)∥∥∥∥∥
2
1/2 E ∥∥∥∥∥∑

t

x∗it

∥∥∥∥∥
2
1/2

=
1

N1/2T 2
O
(
T 1/2

)
O
(
T 1/2

)
= O

(
1

N1/2T

)
,

where the last line follows by Lemma A.3.1 under Assumption A1.1. �

Proof of Lemma A.2.6.

(i) Note that E
(
1
T

∑
t x

∗
itx

∗′
itγt
)
= 0 under Assumption A1.1, then, by direct moments calcula­

tions, we have

E

∥∥∥∥∥ 1T ∑
t

x∗itx
∗′
itγt

∥∥∥∥∥
2

=
1

T 2

∑
t,s

E (γ′tx
∗
itx

∗′
itx

∗
isx

∗′
isγs)

=
1

T 2

∑
t,s

E [γ′t (x
∗
itx

∗′
it − Σx) (x

∗
isx

∗′
is − Σx) γs + γ′tΣxΣxγs]

≤ 1

T 2

∑
t,s

∥E [γ′t (x
∗
itx

∗′
it − Σx) (x

∗
isx

∗′
is − Σx) γs]∥2 +

1

T 2

∑
t,s

E (γ′tΣxΣxγs)

≤ 1

T 2

∑
t,s

∥Eγ′t (x∗itx∗′it − Σx) (x
∗
isx

∗′
is − Σx) γs∥2 +

1

T 2

∑
t,s

E (γ′tγs) ∥Σx∥2sp

=
1

T 2
[O (T ) +O (T )] = O

(
1

T

)
,

where the fourth line above holds by the fact that Var
(
T−1/2

∑
t γt
)
= O (1) under Assumption

A1.1(iv) and that {γ′t (x∗itx∗′it − Σx)} are still mixing sequences under Assumption A1.1(i), and thus,

∑
t,s

∥∥Eγ′t (x∗jtx∗′jt − Σx

)
(x∗itx

∗′
it − Σx) γs

∥∥ . T
∞∑
τ=1

α(τ)δ1/(4+δ1) = O(T ).

holds directly under Assumption A1.1(i).
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(ii) Note that E
(

1
T 2

∑
t

∑
r x

∗
irx

∗′
itγt
)
= 0 under Assumption A1.1, then, by direct moments

calculations, we have

E

∥∥∥∥∥ 1

T 2

∑
t

∑
r

x∗irx
∗′
itγt

∥∥∥∥∥
2

2

≤ 1

T 4

E ∥∥∥∥∥∑
r

x∗ir

∥∥∥∥∥
4

2

1/2 E ∥∥∥∥∥∑
t

γ′tx
∗
it

∥∥∥∥∥
4

2

1/2

= O

(
1

T 2

)
,

where the second line follows by the use of Cauchy­Schwarz inequality, and the final bound holds

by Lemma A.3.1 under Assumption A1.1(i).

(iii) Note thatE
(

1
NT

∑
l ̸=i

∑
t x

∗
itx

∗′
ltγt

)
= 0 andE (x∗itx

∗′
ltγt) = 0 under Assumption A1.1, then,

E

∥∥∥∥∥ 1

NT

N∑
l=1,l ̸=i

∑
t

x∗ltx
∗′
itγt

∥∥∥∥∥
2

=
1

N2T 2

∑
t,s

N∑
l=1,l ̸=i

N∑
j=1,j ̸=i

E
[
(γ′tx

∗
itx

∗
lt)
(
x∗′jsx

∗
isγs
)]

.... center

. 1

N2T 2

∑
t,s

α(|t− s|)δ1/(4+δ1) NO

=
1

N2T 2
O (T ) = O

(
1

N2T

)
,

where the second line holds because {
∑N

l=1,l ̸=i γ
′
tx

∗
itx

∗
lt} are still α­mixing sequences with zero mean

under Assumption A1.1, then use Davydov’s inequality and Lemma A.3.1 under Assumption A1.1

sequentially; and the final bound holds under Assumption A1.1(i).
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(iv) By straightforward calculations, we have

E

∥∥∥∥∥ 1

NT 2

N∑
l=1,l ̸=i

∑
t,r

x∗irx
∗′
ltγt

∥∥∥∥∥
2

=
1

N2T 4

N∑
l=1,l ̸=i

N∑
k=1,k ̸=i

∑
t,r,s,q

E
(
γ′tx

∗
ltx

∗′
irx

∗
isx

∗′
kqγq

)
≤ 1

NT 4
E

∥∥∥∥∥∑
t

(
1√
N

∑
l

γ′tx
∗
lt

)∥∥∥∥∥
2 ∥∥∥∥∥∑

r

x∗ir

∥∥∥∥∥
2


≤ 1

NT 4

E ∥∥∥∥∥∑
r

x∗ir

∥∥∥∥∥
4

2

1/2 E ∥∥∥∥∥∑
t

(
1√
N

∑
l

γ′tx
∗
lt

)∥∥∥∥∥
4

2

1/2

=
1

NT 4
O (T )O (T ) = O

(
1

NT 2

)
,

where the third line holds by Cauchy­Schwarz inequality; and the last line follows by Lemma A.3.1

under Assumption A1.1. �

Proof of Lemma A.2.7. Note that E(x∗ituit) = E(x∗ituir) = E(x∗itult) = E(x∗itulr) = 0 under

Assumption A1.2(iii), then, the terms above are also mean zero. Thus, by Chebyshev’s inequality,

we just need to show following results:

(i) Let δ∗ = max{δ1, δ2}, which indicates the larger value between δ1 and δ2. Then, we have

E

∥∥∥∥∥ 1T ∑
t

x∗ituit

∥∥∥∥∥
2

2

=
1

T 2

∑
t

∑
s

E (uituisx
∗′
itx

∗
is)

≤ 1

T 2

(∑
t

∑
s

(α(|t− s|))δ∗/(4+δ∗)

)[
E ∥x∗it∥

(4+δ∗)E ∥x∗is∥
(4+δ∗)

]2/(4+δ∗)

[
E ∥u∗it∥

(4+δ∗)E ∥u∗is∥
(4+δ∗)

]2/(4+δ∗)

≤ O(1)
1

T 2

∑
t

∑
s

(α(|t− s|))δ∗/(4+δ∗)

= O

(
1

T

)
,

where the second line follows by Davydov’s inequality for the mixing sequence and the final line

holds under Assumption A1.1 and A1.2.
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(ii) By Cauchy­Schwarz inequality

E

∥∥∥∥∥ 1

T 2

∑
t,s

x∗ituis

∥∥∥∥∥
2

≤ 1

T 4

E ∥∥∥∥∥∑
s

uis

∥∥∥∥∥
4
1/2 E ∥∥∥∥∥∑

t

x∗it

∥∥∥∥∥
4
1/2

= O

(
1

T 2

)
,

where we use the fact that E |
∑

s uis|
4 = O(T 2) and E ∥

∑
t x

∗
it∥

4 = O(T 2) by Lemma A.3.1 under

Assumption A1.1 and A1.2.

(iii)–(iv) The proofs are similar to those of (i)–(ii) and thus omitted. �

Proof of Lemma A.2.8.

(i) The proof is analogous to that of Lemma A.2.3(iii) and thus omitted.

(ii) By direct calculations, we have

E

∥∥∥∥∥ 1

NT 2

N∑
l=1,l ̸=i

∑
t,r

x∗itx
∗′
lrλl

∥∥∥∥∥
2

=
1

N2T 4
E

[∑
t,s

(x∗′isx
∗
it)

][
N∑

l=1,l ̸=i

N∑
k=1,k ̸=i

∑
r,q

(
λ′lx

∗
lqx

∗′
krλk

)]

≤ 1

N2T 4

E ∥∥∥∥∥
N∑

l=1,l ̸=i

∑
r

λ′lx
∗
lr

∥∥∥∥∥
2 ∥∥∥∥∥∑

t

x∗it

∥∥∥∥∥
2


≤ 1

N2T 4

E ∥∥∥∥∥
N∑

l=1,l ̸=i

∑
r

λ′lx
∗
lr

∥∥∥∥∥
4
1/2 E ∥∥∥∥∥∑

t

x∗it

∥∥∥∥∥
4
1/2

=
1

N2T 4
O (NT )O (T ) = O

(
1

NT 2

)
,

where the final line holds by Lemma A.3.1 under Assumption A1.1. �

A.2.3 Proof of Proposition A.1.3: Stochastic Bound of γ̂t − γt

Recall that

γ̂t − γt =
T

T − 1
A−1

3Nt (−D1Nt +D2Nt +D3Nt +D4Nt) ,
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where A3Nt, D1Nt, D2Nt, D3Nt and D4Nt are as defined in Appendix A:

A3Nt ≡ 1

N

∑
i

x̆itx̆
′
it,

D1Nt ≡ 1

N

∑
i

x̆it

(
x̃it −

1

N
x̃lt

)′ (
β̂ − β

)
=

1

N

∑
i

x̆itx̃
′
it

(
β̂ − β

)
− 1

N2

∑
i,l

x̆itx̃
′
lt

(
β̂ − β

)
≡ D1Nt1 −D1Nt2,

D2Nt ≡ 1

N

∑
i

x̆it

(
x̃′itλi −

1

N

∑
l

x̃′ltλl

)
=

1

N

∑
i

x̆itx̃
′
itλi −

1

N2

∑
i,l

x̆itx̃
′
lsλl ≡ D2Nt1 −D2Nt2,

D3Nt ≡ 1

N

∑
i

x̆it

(
ũit −

1

N

∑
l

ũlt

)
=

1

N

∑
i

x̆itũit −
1

N2

∑
l

∑
i

x̆itũlt ≡ D3Nt1 −D3Nt2,

D4Nt ≡ 1

NT

∑
i

∑
t̸=s

x̆itx̆
′
isγs.

To prove Propositon A.1.3, we need the following four lemmas.

Lemma A.2.9. Under Assumption A1.1 and A1.4,

(i)
∥∥ 1
N

∑
i x

∗
itx

∗′
it

∥∥ = Op(1),

(ii)
∥∥∥ 1
N2

∑
i

∑
l ̸=i x

∗
itx

∗′
lt

∥∥∥ = Op(
1
N
),

(iii)
∥∥ 1
NT

∑
i

∑
r x

∗
itx

∗′
ir

∥∥ = Op

(
1√
NT

)
+Op

(
1
T

)
,

(iv)
∥∥∥ 1
N2T

∑
i

∑
l ̸=i

∑
r x

∗
ltx

∗′
ir

∥∥∥ = Op(
1√
N2T

).

Lemma A.2.10. Under Assumption A1.1,

(i)
∥∥ 1
N

∑
i x

∗
itx

∗′
itλi
∥∥ = Op(

1√
N
),

(ii)
∥∥∥ 1
N2

∑
i

∑
l ̸=i x

∗
ltx

∗′
itλi

∥∥∥ = Op(
1
N
),

(iii)
∥∥ 1
NT

∑
i

∑
r x

∗
itx

∗′
irλi
∥∥ = Op(

1√
NT

),

(iv)
∥∥∥ 1
N2T

∑
i

∑
i ̸=l

∑
r x

∗
ltx

∗′
irλi

∥∥∥ = Op(
1√
N2T

).

Lemma A.2.11. Under Assumptions A1.1 and A1.2,

(i)
∥∥ 1
N

∑
i x

∗
ituit

∥∥ = Op(
1√
N
),

(ii)
∥∥ 1
N2

∑
i

∑
l x

∗
ltuit

∥∥ = Op(
1
N
),

(iii)
∥∥ 1
NT

∑
i

∑
r x

∗
ituir

∥∥ = Op(
1√
NT

),

(iv)
∥∥ 1
N2T

∑
i

∑
l

∑
r x

∗
ltuir

∥∥ = Op(
1√
N2T

).
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Lemma A.2.12. Under Assumption A1.1,

(i)
∥∥∥ 1
NT

∑
i

∑
s ̸=t x

∗
itx

∗′
isγs

∥∥∥ = Op(
1√
NT 2

),

(ii)
∥∥∥ 1
N2T

∑
i

∑
l ̸=i

∑
s ̸=t x

∗
itx

∗′
lsγs

∥∥∥ = Op(
1√
N2T

).

Proof of Proposition A.1.3.

(i) Recall that x∗it = xit − µ. By Lemma A.2.9,

A3Nt =
1

N

∑
i

x̆itx̆
′
it

=
1

N

∑
i

(
x∗it −

1

N

∑
l1

x∗l1t

)(
x∗it −

1

N

∑
l2

x∗l2t

)′

=

(
1− 1

N

)
1

N

∑
i

x∗itx
∗′
it −

1

N2

∑
i

∑
l ̸=i

x∗itx
∗′
lt

≡ N − 1

N
A3N1 − A3N2

p→ lim
N→∞

1

N

∑
i

E (x∗itx
∗′
it) = Σx,

Obviously, A3N1
p→ lim

N→∞
1
N

∑
iE (x∗itx

∗′
it) = Σx and A3N2 =

(ii) Note that D1NT2 = 0 by the fact 1
N

∑
i x̆it = 0, then D1Nt = D1Nt1. We can decompose

D1NT1 as below,

D1Nt1 =
1

N

∑
i

x̆itx̃
′
it

(
β̂ − β

)
=

[
1

N

∑
i

(
x∗it −

1

N

∑
l

x∗lt

)
x∗′it −

1

NT

∑
i

∑
r

(
x∗it −

1

N

∑
l

x∗lt

)
x∗′ir

](
β̂ − β

)
=

[
N − 1

N

(
1

N

∑
i

x∗itx
∗′
it −

1

NT

∑
i

∑
r

x∗itx
∗′
ir

)
− 1

N2

∑
i

∑
l ̸=i

x∗ltx
∗′
it +

1

N2T

∑
i

∑
l ̸=i

∑
r

x∗ltx
∗′
ir

]
×
(
β̂ − β

)
≡

[
N − 1

N
(D1Nt11 −D1Nt12)−D1Nt13 −D1Nt14

]
×
(
β̂ − β

)
,

It is clear that the order ofD1T is determined by both {D1Nt1k}4k=1 and
(
β̂ − β

)
. By Lemma A.2.9,

∥D1Nt11∥2 = Op(1), D1Nt12 to D1Nt14 are of order op(1) as (N, T ) → ∞. So, we denote the order
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of D1N as D1N = Op

(∥∥∥β̂ − β
∥∥∥), which means the order of D1N is totally determined by the order

of
∥∥∥β̂ − β

∥∥∥.
(iii) Recall that D2Nt1 = D2Nt1 − D2Nt2 = 1

N

∑
i x̆itx̃

′
itλi − 1

N

∑
l

(
1
N

∑
i x̆it
)
x̃′lsλl Note that

1
N

∑
i x̆jt = 0 because x̆jt = 1

N

∑
j xjt, and therefore D2Nt2 = 0. Then, we can further decompose

D2Nt = D2Nt1 as below,

D2Nt =
1

N

∑
i

x̆itx̃
′
itλi =

1

N

∑
i

(
x∗it −

1

N

∑
l

x∗lt

)(
x∗it −

1

T

∑
r

x∗ir

)′

λi

=

(
1− 1

N

)[
1

N

∑
i

x∗itx
∗′
itλi −

1

NT

∑
i

∑
r

x∗itx
∗′
irλi

]
− 1

N2

∑
i

∑
l ̸=i

x∗ltx
∗′
itλi

+
1

N2T

∑
i

∑
i ̸=l

∑
r

x∗ltx
∗′
irλi

≡ N − 1

N
(D2Nt11 −D2Nt12)−D2Nt13 −D2Nt14,

According to Lemma A.2.10, ∥D2Nt11∥2 = Op(
1√
N
), ∥D2Nt12∥2 = Op(

1√
NT

),∥D2Nt13∥2 = Op(
1
N
),

∥D2Nt14∥2 = Op(
1√
N2T

). It follows that ∥D2Nt∥2 = Op(
1√
N
).

(iv) Recall that D3Nt = D3Nt1 − D3Nt2 = 1
N

∑
i x̆itũit −

1
N2

∑
l

∑
i x̆itũlt. Use the fact that

1
N
x̆it = 0 again, and thus D3Nt2 = 0, then D3Nt = D3Nt1. We can further decompose D3Nt1 as

below

D3Nt1 =
1

N

∑
i

(
x∗it −

1

N

∑
l

x∗lt

)(
uit −

1

T

∑
r

uir

)
=

1

N

∑
i

x∗ituit −
1

N2

∑
i

∑
l

x∗ltuit −
1

NT

∑
i

∑
r

x∗ituir +
1

N2T

∑
i

∑
l

∑
r

x∗ltuir

≡ D3Nt11 −D3Nt12 −D3Nt13 +D3Nt14,

According to Lemma A.2.11, ∥D3Nt11∥2 = Op(
1√
N
), ∥D3Nt12∥2 = Op(

1
N
), ∥D3Nt13∥2 = Op(

1√
NT

),

∥D3Nt14∥2 = Op(
1√
N2T

). Thus, it follows that ∥D3Nt∥2 = Op(
1√
N
).
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(v) Note that D4N ≡ 1
NT

∑
i

∑
s ̸=t x̆itx̆

′
isγs, then we can decompose D4N as follows:

D4N =
1

NT

∑
i

∑
s̸=t

(
x∗it −

1

N

∑
l1

x∗l1t

)(
x∗is −

1

N

∑
l2

x∗l2s

)′

γs

=

(
1− 1

N

)
1

NT

∑
i

∑
s ̸=t

x∗itx
∗′
isγs −

1

N2T

∑
i

∑
l ̸=i

∑
s ̸=t

x∗itx
∗′
lsγs

≡ N − 1

N
D4N1 −D4N2,

According to Lemma A.2.12, ∥D4Nt1∥2 = O( 1√
NT 2

) and ∥D4N2∥2 = O( 1√
N2T

). Then, ∥D4N∥2 =

O( 1√
N2T

) +O( 1√
NT 2

). �

Proof of Lemma A.2.9

(i) As in Lemma A.2.1(i) and A.2.5(i), we have 1
N

∑
i x

∗
itx

∗′
it

p→ lim
N→∞

1
N

∑
iE (x∗itx

∗′
it) = Σx

under Assumption A1.1. Then the result follows.

(ii) By direct calculations, we have

E

∥∥∥∥∥ 1

N2

∑
i

∑
l ̸=i

x∗itx
∗′
lt

∥∥∥∥∥
2

= E

∥∥∥∥∥ 1

N2

∑
i,l

x∗itx
∗′
lt −

1

N2

∑
i

x∗itx
∗′
li

∥∥∥∥∥
2

. 1

N2
E

∥∥∥∥∥ 1√
N

∑
i

x∗it

∥∥∥∥∥
4

+O

(
1

N2

)
= O

(
1

N2

)
.

(iii) The proof is analogous to that of Lemma A.2.5(iii).

(iv) By direct calculations, we have

E

∥∥∥∥∥ 1

N2T

∑
k ̸=i

∑
r

x∗ktx
∗′
ir

∥∥∥∥∥
2

= E

∥∥∥∥∥ 1

N2T

∑
k,i

∑
r

x∗ktx
∗′
ir −

1

N2T

∑
i

∑
r

x∗itx
∗′
ir

∥∥∥∥∥
2

. 1

N2T 2
E

∥∥∥∥∥∑
s

(
1√
N

∑
i

x∗is

)∥∥∥∥∥
2

E

∥∥∥∥∥ 1√
N

∑
i

x∗it

∥∥∥∥∥
2

+E

∥∥∥∥∥ 1

N2T

∑
i

∑
r

x∗itx
∗′
ir

∥∥∥∥∥
2

=
1

N2T 2
O (T )O (1) +O

(
1

N2T 2

)
= O

(
1

N2T

)
,
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where the last line holds by Lemma A.3.1 and Assumption A1.1. �

Proof of Lemma A.2.10

(i) Note that E
(

1
N

∑
i x

∗
itx

∗′
itλi
)
= 0 under Assumption A1.1, then,

E

∥∥∥∥∥ 1

N

∑
i

x∗itx
∗′
itλi

∥∥∥∥∥
2

= E

∥∥∥∥∥ 1

N

∑
i

(x∗itx
∗′
it − Σx)λi + Σxλi

∥∥∥∥∥
2

≤ 2

N2

∑
i,j

E (λ′iλj) ∥Σx∥2sp +
2

N2

∑
i,j

E
[
λ′i (x

∗
itx

∗′
it − Σx)

(
x∗jtx

∗′
jt − Σx

)
λj
]

=
1

N2
O (N) +

1

N2
O (N) = O

(
1

N

)
,

wherewe use the fact that Var
(
N−1/2

∑
i λi
)
= O (1) underAssumptionA1.1(iii), and {λ′i (x∗itx∗′it − Σx)}

is a mixing sequence satisfying Assumption A1.1(i).

(ii) Note that E
(

1
N2

∑
l ̸=i x

∗
ltx

∗′
itλi

)
= 0 and E (x∗ltx

∗′
itλi) = 0 under Assumption A1.1, then,

E

∥∥∥∥∥ 1

N2

∑
l ̸=i

x∗ltx
∗′
itλi

∥∥∥∥∥
2

=
1

N2
E

(
1

N

∑
l ̸=i

λ′ix
∗
itx

∗
lt

)(
1

N

∑
j ̸=k

x∗′jtx
∗
ktλk

)

. 1

N2

[
α(0)δ1/(4+δ1)

]
= O

(
1

N2

)
,

where the second line holds because {N−1
∑

l ̸=i λ
′
ix

∗
itx

∗
lt} is an α­mixing sequence with zero mean

under Assumption A1.1, then use Davydov’s inequality and Lemma A.3.1 under Assumption A1.1

sequentially; and the final bound holds under Assumption A1.1(i).

(iii) Note that E
(

1
NT

∑
i

∑
r x

∗
itx

∗′
irλi
)
= 0 and E (x∗itx

∗′
irλi) = 0 under Assumption A1.1. Then

E

∥∥∥∥∥ 1

NT

∑
i

∑
r

x∗itx
∗′
irλi

∥∥∥∥∥
2

=
1

N2T 2

∑
i,j

E

(
1

T

∑
r

λ′ix
∗
isx

∗
it

)(
1

T

∑
q

x∗′jtx
∗
jqλj

)

. 1

N2T

∑
i,j

αij(0)
δ1/(4+δ1) = O

(
1

NT

)
,

where the second line holds because {T−1
∑

r λ
′
ix

∗
irx

∗
it} are still α­mixing sequences with zero mean

under Assumption A1.1, then use Davydov’s inequality and Lemma A.3.1 under Assumption A1.1
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sequentially; and the final bound holds under Assumption A1.1(i).

(iv) Note that E
(

1
N2T

∑
i ̸=l

∑
r x

∗
ltx

∗′
irλi

)
= 0 under Assumption A1.1. Then

E

∥∥∥∥∥ 1

N2T

∑
l ̸=i

∑
r

x∗ltx
∗′
irλi

∥∥∥∥∥
2

=
1

N4T 2

∑
i,j

∑
r,q

E

[
λ′ix

∗
ir

(∑
l ̸=i

x∗′lt

)(∑
k ̸=j

x∗kt

)
x∗′jqλj

]
to be changed

≤ 1

N4T 2
E

∥∥∥∥∥∑
l

x∗lt

∥∥∥∥∥
∥∥∥∥∥∑
k ̸=j

x∗kt

∥∥∥∥∥
∥∥∥∥∥∑

i

∑
r

x∗′irλi

∥∥∥∥∥
2

∥∥∥∥∥∑
j

∑
q

x∗′jqλj

∥∥∥∥∥
2

 NO

≤ 1

N2T 2

E ∥∥∥∥∥ 1√
N

∑
j ̸=i

x∗jt

∥∥∥∥∥
4

2

1/2 E ∥∥∥∥∥ 1√
N

∑
i

∑
r

x∗′irλi

∥∥∥∥∥
4

2

1/2

=
1

N2T 2
O (1)O (T ) = O

(
1

N2T

)
,

where the fourth line follows by repeating uses of Cauchy­Schwarz inequality, and the final bound

holds by Lemma A.3.1 under Assumption A1.1(i). �

Proof of Lemma A.2.11. By Chebyshev’ inequality, we just need to show following results

(i) Note that E
(

1
N

∑
i x

∗
ituit

)
= 0 and E (x∗ituit) = 0 under Assumption A1.2(ii). Then

E

∥∥∥∥∥ 1

N

∑
i

x∗ituit

∥∥∥∥∥
2

=
1

N2

∑
i,j

E
(
x∗ituitx

∗
jtujt

)
. 1

N2

∑
i,j

αij(0)
δ∗/(4+δ∗) = O

(
1

N

)
,

where the final bound holds because {x∗ituit} are still mixing sequences under Assumptions A1.1 and

A1.2.

(ii) Note that E
(

1
N2

∑
i

∑
l x

∗
ltuit

)
= 0 and E (x∗ltuit) = 0 under Assumption A1.2(ii). Then

E

∥∥∥∥∥ 1

N2

∑
i

∑
l

x∗ltuit

∥∥∥∥∥
2

=
1

N2

E ∥∥∥∥∥ 1√
N

∑
i

x∗it

∥∥∥∥∥
4
1/2 E ∥∥∥∥∥ 1√

N

∑
l

ult

∥∥∥∥∥
4
1/2

= O

(
1

N2

)
,
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where the final bound holds under Assumptions A1.1 and A1.2.

(iii)–(iv) The proofs are similar to those of (i)–(ii) and thus omitted. �

Proof of Lemma A.2.12. By Chebyshev inequality, it suffices to show as follows:

(i) Note that E
(

1
NT

∑
i

∑T
s=1,s ̸=t x

∗
itx

∗′
isγs

)
= 0 and E (x∗itx

∗′
isγs) = 0 under Assumption A1.1,

then,

E

∥∥∥∥∥ 1

NT

∑
i

T∑
s=1,s ̸=t

x∗itx
∗′
isγs

∥∥∥∥∥
2

=
1

N2T 2

∑
i,j

E

(
T∑

r=1,r ̸=t

γ′rx
∗
irx

∗
it

)(
T∑

s=1,s ̸=t

x∗′jtx
∗
jsγs

)

≤ O (1)
1

N2T 2

∑
i,j

αij(0)
δ1/(4+δ1)

=
1

N2T 2
O (N) = O

(
1

NT 2

)
,

where the second line holds because {
∑T

s=1,s ̸=t γ
′
sx

∗
isx

∗
it} are stillα­mixing sequences with zeromean

under Assumption A1.1, and the final bound holds under Assumption A1.1(i).

(ii) The proof is similar to that of (i) and thus omitted. �

A.3 Some Technical Lemmas

In this section, we present some lemmas that are used in the proof of the technical lemmas in the last

section.

Lemma A.3.1. (Theorem 4.1, Shao et al. (1996)) Let 2 < p < r ≤ ∞, 2 < v ≤ r and {ξt, t ≥ 1} be

an α−mixing sequence of random variables with E (ξt) = 0 and ∥ξt∥r ≡ (E |ξt|r)1/r <∞. Assume

that α(s) ≤ Cs−θ for some C > 0 and θ > 0. Let ST =
∑T

t=1 ξt. Then, for any ε > 0, there exists

K = K(ε, r, p, v, θ, C) <∞ such that

E |ST |p ≤ K

(
(TCT )

p/2 max
1≤t≤T

∥ξt∥pv + T (p−(r−p)θ/r)∨(1+ε) max
1≤t≤T

∥ξt∥pr
)
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where CT =
(∑T

t=0(t+ 1)2/(v−2)α(t)
)(v−2)/v

. In particular,

E |ST |p ≤ K

(
T p/2 max

1≤t≤T
∥ξt∥pv + T 1+ε max

1≤t≤T
∥ξt∥pr

)

if θ > v/(v − 2) and θ ≥ (p− 1)r/(r − p), and

E |ST |p ≤ KT p/2 max
1≤t≤T

∥ξt∥pr

if θ ≥ pr/(2(r − p)).

The lemma is adapted from Lemma S1.2(2) in Zhu (2017), and our proof strategy is the same as

those in Zhu (2017).

Lemma A.3.2. Under Assumption A1, max
i,t,k1,k2

∑T
s=1 ∥E(xit,k1xjs,k2)∥ = O(1)

Proof. By Corollary 16.2.4 of Athreya and Lahiri (2006), |E (xit,k1xis,k2)| ≤ 4 [2α(|t− s|)]1/2C2

∀i, t, s, k1, k2. It follows that for some κ > 2,

max
i,t,k1,k2

T∑
s=1

|E (xit,k1xjs,k2)| . max
t

T∑
s=1

[α(|t− s|)]1/2 . max
t

T∑
s=1

|t− s|−κ/2

.
∞∑
τ=1

τ−κ/2 ≤ ∞. �

Lemma A.3.3. (Lemma C.3 in Zhu (2017)) The following hold.

(1) Let Z ∈ RmZ be a random vector whose jth entry is denoted by Zj . Suppose that there

exist constants b, γ > 0 such that ∀j ∈ [mZ ] , Zj has an exponential­type tail with parameter

(b, γ) Then for any nonrandom vector a ∈ Rm, a′Z has an exponential­type tail with parameter(
b∥a∥1 log1/γ (∥a∥0 + 2) , γ

)
(2) Let {Zj}mZ

j=1 be a sequence of random variables. Suppose that constants b, γ > 0 sat­

isfy that ∀j ∈ [mZ ] , Zj has an exponential­type tail with parameter (b, γ). Let q > 0 be any

nonran­ dom number. Then there exists a constant Cγ,q > 0 depending only on γ and q such that

Emax1≤j≤mZ
|Zj|q ≤ Cγ,qmZb

q and E |Zj|q ≤ Cγ,qb
q ∀j ∈ [mZ ]
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(3) LetZ1 andZ2 be two random variables having exponential­type tails with parameters (b1, γ1)

and (b2, γ2) , respectively. Then ∀γ ∈
(
0, γ1γ2 (γ1 + γ2)

−1) , Z1Z2 has an exponential­type tail with

parameter
(
21/γ0b1b2, γ0

)
, where γ0 = γ1γ2 (γ1 + γ2)

−1 .

(4) Let X have an exponential­type tail with parameter (bX , γX). Then ∀a ∈ R, X − a has an

exponential­type tail with parameter (bX + |a|, γX).

A.4 Additional Discussions on the Effects of Heterogeneity in

{xit}

In this section, we will show that the key results we established under the homogeneity of xit are still

valid with slight modifications.

We relax the homogeneity assumption on xit. Namely, we drop Assumption A1.1(ii), and instead,

assume

Assumption S1. E(xit) = µi, V ar (xit) = Σi,x and Cov (xit, xit−k) = Γi,k, which vary across i.

Besides, we denote di = µi − µ̄ such that di = O(1) in general, where µ̄ = N−1
∑

i µi.

Recall that ẍit = xit − x̄i· − x̄·t + x̄··, by simple and direct calculations, it follows ẍit = x∗it −

x̄∗i· − x̄∗·t + x̄∗·· under the heterogeneity assumption imposed above, where x∗it = xit − µi, and x̄∗i·, x̄∗·t,

and x̄∗·· are defined as before based on x∗it. Similarly, x̃it = x∗it− x̄∗i· also holds by direct calculations.

Differently, we have x̆it = x∗it − x̄∗·t + di now.

By careful calculations as those for homogeneous settings of xit, we can readily show that most

of results in the Appendix A still hold, the heterogeneity on {xit} only has impacts on the asymptotic

behavior of γ̂t for t = 1, . . . , T .

In particular, the heterogeneity of xit we consider above have no impacts on the asymptotic dis­

tribution of β̂ due to the symmetric structure of (1.2 .2). To see this point, according to results in

Section S1 and above direct calculations about ẍit and x̃it, immediate results for the A1NT , B1NT

and B2NT are the exact same as those in homogeneity case even under Assumption S1. By repeated
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and tedious derivations, we can readily show the bounds for A1NT , B1NT and B2NT in Section S1

still pertain if we impose some necessary but mild conditions as those Assumption A1.1.

We now turn to B3NT below, recall that

B3NT = B3NT1 −B3NT2 =
1

NT

∑
i

∑
t

x̆itx̆
′
itγt −

1

NT 2

∑
i

∑
s

∑
t

x̆isx̆
′
itγt.

In particular,

B3NT1 =
1

NT

∑
i

∑
t

x̆itx̆
′
itγt

=
1

NT

∑
i

∑
t

[
x∗it −

1

N

∑
j

x∗jt + di

][
x∗it −

1

N

∑
j

x∗jt + di

]′
γt

=
1

NT

∑
i

∑
t

[
x∗it −

1

N

∑
j

x∗jt

][
x∗it −

1

N

∑
j

x∗jt

]′
γt +

1

NT

∑
i

∑
t

did
′
iγt

+
2

NT

∑
i

∑
t

di

[
x∗it −

1

N

∑
j

x∗jt

]′
γt ≡ B3NT1a +B3NT1b +B3NT1c,

Following the same arguments for homogeneity case,B3NT1a = Op

(
T−1/2

)
, and by straightforward

calculations, it is easy to obtain that B3NT1b = Op

(
T−1/2

)
, and B3NT1c = Op

(
N−1/2T−1/2

)
under

some necessary but mild conditions as those Assumption A1.1. Therefore, B3NT1 = Op (T
−1) still

holds as we show in the homogeneity case. And similarly, we can show B3NT2 = op
(
T−1/2

)
, which

is the same as the homogeneity case too. Therefore, under Assumption S1, the order of B3NT does

not change. Then we can rewrite B3NT as follows,

B3NT =
1

NT

∑
i

∑
t

(x∗itx
∗′
it + did

′
i) γt + op

(
1√
T

)
.

Following arguments of proofs for Theorem 1.3.1 in theAppendixA,we can show that the asymptotic

distribution of B3NT is the normal distribution and asymptotically independent of the asymptotic

distribution of B2NT .

In summary, under heterogeneity of xit, those bounds for the related terms still can be unchanged
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as those in homogeneity case under mild conditions, and we can show the asymptotic normality of

β̂ − β by employing suitable central limit theorems and almost sure representation theorem.

Under heterogeneity case, the expansions of λ̂i−λi indeed does not change by direct calculations

and noting the fact that x̃it = x∗it − x̄∗i· still holds under Assumption S1, then, we have

λ̂i − λi

= −

( 1

NT

∑
j

∑
t

x∗jtx
∗′
jt

)−1
1

NT

∑
j ̸=i

∑
t

x∗jtx
∗′
jtλj +

(
1

NT

∑
j

∑
t

x∗jtx
∗′
jt

)−1
1

NT

∑
j

∑
t

x∗jtx
∗′
jtγt


+

(
1

T

∑
t

x∗itx
∗′
it

)−1
1

T

∑
t

x∗itx
∗′
itγt +

(
1

T

∑
t

x∗itx
∗′
it

)−1
1

T

∑
t

x∗ituit + op
(
δ−1
NT

)
.

Under Assumption S1, we can further rewrite λ̂i − λi as follows, namely,

λ̂i − λi

= −

(
1

N

∑
j

Σj,x

)−1
1

NT

∑
j ̸=i

∑
t

x∗jtx
∗′
jtλj −

(
1

N

∑
j

Σj,x

)−1
1

NT

∑
j

∑
t

(
x∗jtx

∗′
jt − Σj,x

)
γt

+Σ−1
i,x

1

T

∑
t

(x∗itx
∗′
it − Σi,x) γt +

(
1

T

∑
t

x∗itx
∗′
it

)−1
1

T

∑
t

x∗ituit + op
(
δ−1
NT

)
= −Rλ

1i −Rλ
2i +Rλ

3i +Rλ
4i.

If we treat
(
−Rλ

2i +Rλ
3i

)
as the whole, we can have similar results as shown in Theorem 1.3.3 by

using suitable notations and appropriate central limit theorems under mild conditions.

Similarly, under Assumption S1, the asymptotic normality of γ̂t − γt still holds by using suitable

notations and appropriate central limit theorems. To see this point, note that x̆it = x∗it− x̄∗·t+di under

Assumption S1 now, we can show γ̂t − γt ≍ A−1
3Nt (R

γ
1Nt +Rγ

2Nt +Rγ
3Nt) by direct calculations,
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where

A3Nt =
1

N

∑
i

x̆itx̆
′
it =

1

N

∑
i

x∗itx
∗′
it +

1

N

∑
i

did
′
i +Op

(
1√
N

)

Rγ
1Nt = −

(
1

N

∑
i

x∗itx
∗′
it +

1

N

∑
i

did
′
i

)(
1

NT

∑
i

∑
t

x∗itx
∗′
it

)−1 [
1

NT

∑
i

∑
t

x∗itx
∗′
itλi

]

+
1

N

∑
i

x∗itx
∗′
itλi +

1

N

∑
i

dix
∗′
itλi + op

(
1√
N

)

Rγ
2Nt = −

(
1

N

∑
i

x∗itx
∗′
it +

1

N

∑
i

did
′
i

)(
1

NT

∑
i

∑
t

x∗itx
∗′
it

)−1
1

NT

∑
i

∑
t

x∗itx
∗′
itγt

+
1

NT

∑
i

∑
s ̸=t

did
′
iγs + op

(
1√
N

)
Rγ

3Nt =
1

N

∑
i

x∗ituit +
1

N

∑
i

diuit + op

(
1√
N

)
.

Based on the above decomposition, we can still show thatRγ
1Nt,R

γ
2Nt, andR

γ
3Nt are asymptotically

pair­wise uncorrelated, and A−1
3Nt is nonsingular and well­defined under conditions. Following sim­

ilar proofs as those for Theorem 1.3.4 in the Appendix A, it is straightforward to show γ̂t − γt will

follow standard normal distribution by employing suitable central limit theorems and almost sure

representation theorem under mild conditions.

Thus, the asymptotic normality of β̂, λ̂i and γ̂t will still hold under mild conditions as Theorems

1.3.1, 1.3.3 and 1.3.4 under the heterogeneity {xit}. It is a standard exercise to follow proofs in

the Appendix A to show the uniform consistency of λ̂i and γ̂t, and asymptotic null distribution and

local power properties for the max­type specification tests statistics after being rescaled appropriately

under necessary but mild conditions.

176



Appendix B

Appendix to Chapter 2

B.1 Proofs of Main Results

To prove the main results in the paper, especially Theorem 2.3.1, Corollary 2.3.2, Theorem 2.3.3 and

Theorem 2.3.4, we need some technical lemmas. Below we first state the technical lemmas whose

proofs can be found on the online supplement, and then prove the main results in the paper.

B.1.1 Technical Lemmas

We first state some technical lemmas related to the consistency of the estimated mildly explosive

factors under the null. In the casewhere the factors exhibit a unit root process, the results are relatively

simple and similar to those in Bai and Ng (2004).

Consistency of the estimated mildly explosive factors under the null

LetJT = (ρ0
0)

T JB, where recall that (ρ0
0)

T ≡ diag((ρ001)
T
, . . . ,

(
ρ00R0

)T
) andJB is a normalization

constant used in the PCA estimation.

The following three lemmas hold under some mild assumptions when ρ0,r = 1+ cr
κT

with cr > 0

being finite for ∀r = 1, . . . , R0, and ρ0i = 1 for i.
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Lemma B.1.1. Suppose that Assumptions A2.1–A2.6 hold. ThenB0′B̂J −1
T is asymptotically invert­

ible.

Lemma B.1.2. Suppose that Assumptions A2.1–A2.6 hold and the null hypothesis in (3.2 .5) holds.

Then there existsH with asymptotic rank R0 such that as (N, T ) → ∞,

(a) 1
T

∑T
t=2

∥∥∥H−1B̂t − f 0
t

∥∥∥2 = Op(N
−p) +Op

([
(ρ001)

−2T
+ . . .+

(
ρ00R0

)−2T
]
T
)
;

(b)
(
H−1B̂t − f 0

t

)
= Op(N

−p/2) for each given t;

(c)
(
λ̂i −H ′−1λ0

i

)
= Op

(
J −1

B

(
1 + J −1

B N−p/2T 1/2
))

for each given i.

Lemma B.1.3. Under the assumptions of Lemma B.1.2,

max
1≤t≤T

1√
T

∥∥∥∥∥
t∑

s=2

H−1B̂s − f 0
s

∥∥∥∥∥ = Op

(
N−p/2

)
.

Remark B.1. Lemma B.1.2(a) reveals that under Assumptions A2.1­A2.6, B̂t can only estimate

f 0
t = B0

t + ut instead of Bt consistently up to a rotation matrix H . This is because the loading

matrix for both B0
t and ut are the same as shown in (2.2 .10). However, for (2.2 .10), if we allow

that Zit = λ′
B,iB

0
t + λ′

u,iut + ϵit and further assume that ∥Λ′
BΛu∥ = Op (N

υ) and υ < p, B0
t and

ut can be identified separately by following the procedure that has been recently proposed by Peng

et al. (2020).

Lemma B.1.4. Under the assumptions of Lemma B.1.2,
∥∥∥Λ0f 0′ − Λ̂B̂′

∥∥∥2 = Op (N + T ).

Lemma B.1.4 is interesting in the sense that, under the null, if factors follow mildly explosive

processes, common parts in (2.2 .10) can be estimated consistently for any p > 0 because the rate

does not involve p explicitly, which represents the intensity of factors in the current paper.

Consistency of estimated nonstationary factors under the null

In this subsection, we focus on the case with p = 1, ρ0,r = 1 for ∀r, and ρ0i = 1 for all i. In this

case, it is the similar case developed in Bai and Ng (2004), and Lemma B.1.5 and Lemma B.1.6
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are presented for completeness and can readily obtained by following proofs in Bai and Ng (2004)

directly under assumptions in the current paper.

Lemma B.1.5. Let ft be defined by (2.2 .9). Consider estimation of (2.2 .10) by the method of

principal components and suppose that Assumptions A2.1­A2.6 hold. Then there exists an H̃ with

rank R such that as N, T → ∞, under the null hypothesis (2.2 .5), and p = 1

(a) min{N, T}T−1
∑T

t=1

∥∥∥H̃−1B̂t − f 0
t

∥∥∥2 = Op(1)

(b) min
(√

N, T
)(

H̃−1B̂t − f 0
t

)
= Op(1), for each given t.

(c) min{
√
T ,N}

(
λ̂i − H̃ ′−1λ0

i

)
= Op(1), for each given i

Lemma B.1.6. Under the assumptions of Lemma B.1.5, and let p = 1, with the same H̃ in Lemma

B.1.5,

max
1≤t≤T

1√
T

∥∥∥∥∥
t∑

s=2

H̃−1B̂s − f 0
s

∥∥∥∥∥ = Op

(
N− 1

2

)
+Op

(
N− 3

4

)

B.1.2 Proofs of Theorem 3.1

Mildly Explosive Factors Case

The structure of the proof follows the proofs of Lemmas 1, 2, 3 and 6 in Bai and Ng (2010) with a

substatial amount of differences. to be emphasized. For clarity, we focus on the case where ρ0,r > 1

for r = 1, ..., R0 under the null. When ρ0,r = 1 for each r, the proof is basically done in Bai and Ng

(2010). The mixture case follows from the combination of arguments in these two separate cases.

Note that

√
NT (ρ̂− 1) =

√
NT

tr
(
ê′−1∆ê

)
tr
(
ê′−1ê−1

) =

[
1

NT 2κT

N∑
i=1

T∑
t=2

ê2it

]−1

1√
NTκT

N∑
i=1

T∑
t=2

êit−1∆êit

(B.1.1)

It suffices to prove the theorem by establishing the following results:

(i) 1
NT 2

∑N
i=1

∑T
t=2 ê

2
it =

1
NT 2

∑N
i=1

∑T
t=2 e

2
it+Op(N

1/2−p)+Op(κTN
1/2T−1) = 1

NT 2

∑N
i=1

∑T
t=2 e

2
it+

Op(N
1/2−p) + op (1) ;
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(ii) 1√
NT

∑N
i=1

∑T
t=2 êit−1∆êit =

1√
NT

∑N
i=1

∑T
t=2 eit−1∆eit+Op(N

−1/2+T−1/2)+Op(κTN
1/2T−1) =

1√
NT

∑N
i=1

∑T
t=2 eit−1∆eit + op (1) ;

(iii) 1√
NT

∑N
i=1

∑T
t=2 eit−1∆eit

d−→ N (0, 1
2
σ4
ϵ ) as (N, T ) → ∞;

(iv) 1
NT 2

∑N
i=1

∑T
t=2 e

2
it =

1
2
σ2
ϵ + op(1).

Given (i)–(iv), we have

√
NT (ρ̂− 1) =

[
1

NT 2

N∑
i=1

T∑
t=2

e2it + op (1)

]−1 [
1√
NT

N∑
i=1

T∑
t=2

eit−1∆eit + op (1)

]
d−→ N

(
0, 2

(
σ2
ϵ

)−2

σ4
ϵ

)
.

Below, we establish (i)–(iv) in order.

Step 1: We show (i).

Note that êit = eit − ei1 + λ0′
i Vt − d′

iF̂t ≡ eit + Ait where Vt =
∑t

s=2 vs,vt = H−1B̂t − f 0
t ,

di = λ̂i −H ′−1λ0
i , and Ait = −ei1 + λ0′

i Vt− d′
iF̂t. Then

1

NT 2

N∑
i=1

T∑
t=2

ê2it =
1

NT 2

N∑
i=1

T∑
t=2

e2it +
1

NT 2

N∑
i=1

T∑
t=2

A2
it +

2

NT 2

N∑
i=1

T∑
t=2

eitAit

≡ Q1 +Q2 + 2Q3.

We show in (iv) below that Q1 = 1
2
σ2
ϵ + op(1).We will show below that Q2 = op (1). Then Q3 ≤

(Q1Q2)
1/2 = op (1) and the result in (i) follows. For Q2, we have

Q2 =
1

NT 2

N∑
i=1

T∑
t=2

(
ei1 − λ0′

i Vt + d′
iF̂t

)2
≤ 3

(
1

NT

N∑
i=1

e2i1 +
1

N

N∑
i=1

∥∥λ0
i

∥∥2 1

T 2

T∑
t=2

∥Vt∥2 +
1

N

N∑
i=1

∥di∥2
1

T 2

T∑
t=2

∥∥∥F̂t

∥∥∥2)
≡ 3 (Q2,1 +Q2,2 +Q2,3) .

Under the null and Assumption A2.1(a), Q2,1 = 1
NT

∑N
i=1 e

2
i1 = Op (T

−1) by Assumption A2.3(c)
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and Markov inequality. By Lemma B.1.3 and Assumption A2.2,

Q2,2 =
1

N

N∑
i=1

∥∥λ0
i

∥∥2 1

T 2

T∑
t=2

∥Vt∥2 = Op

(
Np−1

)
Op

(
N−p

)
= Op

(
N−1

)
.

Following Lemma B.1.2(c), we can readily show that

1

N

N∑
i=1

∥di∥2 = Op

(
J −2

B

)
,

where we use the fact that J −1
B N−p/2T 1/2 = o (1) for a general choice of JB such as T 1/2 or T .

Using F̂t =
∑t

s=1 B̂s =
∑t

s=1(B̂s −Hf 0
s ) +H

∑t
s=1 f

0
s , we have

1

T 2

T∑
t=1

∥∥∥F̂t

∥∥∥2
≤ 2

T 2

T∑
t=1

∥∥∥∥∥
t∑

s=1

(
B̂s −Hf 0

s

)∥∥∥∥∥
2

+
2

T 2

T∑
t=1

∥∥∥∥∥
t∑

s=1

Hf 0
s

∥∥∥∥∥
2

≤ ∥H∥2 2

T 2

T∑
t=1

max
1≤t≤T

∥∥∥∥∥
t∑

s=1

(
H−1B̂s − f 0

s

)∥∥∥∥∥
2

+
2

T 2

T∑
t=1

∥∥∥∥∥
t∑

s=1

(
ρ0
0

)−T
f 0
s

∥∥∥∥∥
2 ∥∥∥H (

ρ0
0

)T∥∥∥2
= Op

(
J 2

B[
(
ρ001
)−2T

+ . . .+
(
ρ00R0

)−2T
]
)
Op

(
N−p

)
+Op

(
T−1κT

)
Op

(
J 2

B

)
= Op

(
J 2

BT
−1κT

)
,

where the first equality follows from (B.2.14),(B.2.10), and Lemma B.1.3,
∥∥∥∑t

s=1 (ρ
0
0)

−T
f 0
s

∥∥∥2 ≤∥∥∥(ρ0
0)

−T
κ−1
T

∑T
s=2 diag (c1, . . . , cR0)F

0
s−1

∥∥∥2 + the dominated term = Op (κT ) by following proofs

of Lemma B.3.2(b) as proofs of Lemma A5(b) in Horie and Yamamoto (2016), and Assumption

A2.1(b) and (d) when Ft follows mildly explosive processes. Then

Q2,3 =
1

N

N∑
i=1

∥di∥2
1

T 2

T∑
t=2

∥∥∥F̂t

∥∥∥2
= Op

(
J −2

B

)
Op

(
J 2

BT
−1κT

)
= Op(T

−1κT ) = op (1) .

Consequently, Q2 = op (1) .
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Step 2: We show (ii). 1√
NT

∑N
i=1

∑T
t=2 êit−1∆êit =

1√
NT

∑N
i=1

∑T
t=2 eit−1∆eit + op (1)

As in Bai and Ng (2010), we can readily show that

1

T

T∑
t=2

(
êit−1∆êit −

1

T

T∑
t=2

eit−1∆eit

)
=

1

2T

(
e2iT − ê2iT

)
− 1

2T

(
e2i1 − ê2i1

)
− 1

2T

T∑
t=2

(∆eit)
2−(∆êit)

2 .

Then it suffices to prove (ii) by establishing the follow claims:

(ii1) 1√
NT

∑N
i=1 (ê

2
i1 − e2i1) = Op

(
N1/2T−1

)
= op (1),

(ii2) 1√
NT

∑N
i=1 (ê

2
iT − e2iT ) = Op(N

1/2T−1 +N−1/2 + T−1/2) +Op

(
κTN

1/2T−1
)
= op (1) ,

(ii3) 1√
NT

∑N
i=1

∑T
t=2

[
(∆êit)

2 − (∆eit)
2] = Op(N

1/2T−1 +N−1/2) = op (1) .

(ii1) follows immediately from the proof of Lemma 3 in Bai and Ng (2010). For (ii2), recalling

that êiT = eiT + AiT , we have

1√
NT

N∑
i=1

(
ê2iT − e2iT

)
=

1√
NT

N∑
i=1

A2
iT +

2√
NT

N∑
i=1

AiT eiT ≡ B1 + 2B2.

For B1, we have

B1 ≤ 3√
NT

N∑
i=1

e2i1 +
3√
NT

N∑
i=1

∥∥λ0
i

∥∥2 ∥VT∥2 +
3√
NT

N∑
i=1

∥di∥2
∥∥∥F̂T

∥∥∥2
≡ 3 (B1,1 +B1,2 +B1,3) .

Note that B1,1 = 1√
NT

∑N
i=1 e

2
i1 = Op

(
N1/2T−1

)
by Markov inequality. By Assumption A2.2 and

the fact that ∥VT∥2 / T = Op (N
−p) due to Lemma B.1.3,

B1,2 =
1√
N

N∑
i=1

∥∥λ0
i

∥∥2 1

T
∥VT∥2 = Op

(
Np−1/2

)
Op

(
N−p

)
= Op

(
N−1/2

)
.

where the final equality holds underAssumptionA2.5 andA2.7. In addition,
∑N

i=1 ∥di∥2 = Op

(
NJ −2

B

)
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by similar arguments as used in the proof of Lemma B.1.2, note that for F̂T , we have

∥∥∥F̂T

∥∥∥2 ≤ 2
∥∥∥∑T

s=1

(
B̂s −Hf 0

s

)∥∥∥2 + 2
∥∥∥∑T

s=1 f
0
s

∥∥∥2 ∥H∥2

≤ 2 ∥H∥2 max
1≤t≤T

∥∥∥∑t
s=1

(
H−1B̂s − f 0

s

)∥∥∥2 + 2
∥∥∥∑T

s=1 (ρ
0
0)

−T
f 0
s

∥∥∥2 ∥∥∥H (ρ0
0)

T
∥∥∥2

= Op

(
N−pTJ 2

B

[
(ρ001)

−2T
+ . . .+

(
ρ00R0

)−2T
])

+Op (J 2
BκT ) = Op (J 2

BκT )

where the first inequality holds by the fact that (a + b)2 ≤ 2a2 + 2b2, and first equality holds by

Lemma B.1.3, the construction of H in (B.2.10) and Lemma B.3.2(b), and the final equality holds

when Ft follows mildly explosive processes under Assumption A2.5.

B1,3 =
1√
N

N∑
i=1

∥di∥2
1

T

∥∥∥F̂T

∥∥∥2 = Op

(
N1/2J −2

B

)
Op

(
T−1J 2

BκT
)
= Op

(
N1/2T−1κT

)
Thus, B1,3 = op (1) under Assumption A2.7(a). In sum, B1 = op (1).

Next, we study B2.We make the following decomposition:

B2 =
−1√
NT

N∑
i=1

eiT ei1 +
1√
NT

N∑
i=1

eiTλ
0′
i VT − 1√

NT

N∑
i=1

eiTd
′
iF̂T

≡ −B2,1 +B2,2 −B2,3.

Following the proof of Lemma 3 in Bai and Ng (2010), we can readily show thatB2,1 = Op

(
T−1/2

)
.

For B2,2, we have

B2,2 ≤
1√
NT

∥∥∥∥∥
N∑
i=1

T∑
t=1

λ0
i ϵit

∥∥∥∥∥ ∥VT∥√
T

= Op(N
−(1−p)/2)Op

(
N−p/2

)
= Op

(
N−1/2

)
,

where we use Lemma B.1.3 and the fact that
∥∥∥∑N

i=1

∑T
t=1 λ

0
i ϵit

∥∥∥ = Op

(
Np/2T 1/2

)
by (B.2.4). We

183



have shown ||F̂T || = Op(JBκ
1/2
T ). Below, we will show that

∥∥∥∥∥ 1

N

N∑
i=1

eiTdi

∥∥∥∥∥
= Op

(
J −1

B N−1−p/2T 3/2
[(
ρ001
)−T

+ . . .+
(
ρ00R0

)−T
])

+Op

(
J −1

B

(
N−1T 1/2 + κ

1/2
T

))
= Op

(
J −1

B

(
N−1T 1/2 + κ

1/2
T

))
, (B.1.2)

under Assumptions A2.5 and A2.7. Then, under Assumptions A2.7(a), we have

B2,3 ≤
√
N

∥∥∥∥∥ 1

N

N∑
i=1

eiTd
′
i

∥∥∥∥∥ 1

T

∥∥∥F̂T

∥∥∥ = N1/2Op

(
J −1

B

(
N−1T 1/2 + κ

1/2
T

))
Op(T

−1JBκ
1/2
T )

= Op

(
N−1/2T−1/2κ

1/2
T + κTN

1/2T−1
)

= op (1) .

It follows that B2 = Op

(
N−1/2 + T−1/2 + κTN

1/2T−1
)
= op (1) and 1√

NT

∑N
i=1(ê

2
iT − e2iT ) =

op (1) under Assumption A2.7(a).

Now, we show (B.1.2). Noting that

di = λ̂i −H ′−1λ0
i

= J −2
B H

(
B̂′H−1 − f 0

)′ (
f 0 − B̂H ′−1

)
λ0

i + J −2
B Hf 0′

(
f 0 − B̂H ′−1

)
λ0

i

+J −2
B Hf 0′ϵi + J −2

B

(
B̂H ′−1 − f 0

)′
ϵi

≡ di,1 + di,2 + di,3 + di,4 (B.1.3)

we have

1

N

N∑
i=1

dieiT =
1

N

N∑
i=1

(di,1 + di,2 + di,3 + di,4) eiT ≡ D1NT +D2NT +D3NT +D4NT .
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We bound DlNT for l = 1, 2, 3, 4 in turn by using eit =
∑t

s=1 ϵis under the null. First,

∥D1NT∥

≤ J −2
B N−1

∥∥∥B̂ − f 0H ′
∥∥∥∥∥∥f 0 − B̂H ′−1

∥∥∥∥∥∥∥∥
N∑
i=1

λ0
i eiT

∥∥∥∥∥
= J −2

B N−1Op

(
JBN

−p/2T 1/2
[(
ρ001
)−T

+ . . .+
(
ρ00R0

)−T
])
Op

(
N−p/2T 1/2

)
Op

(
Np/2T 1/2

)
= Op

(
J −1

B N−1−p/2T 3/2
[(
ρ001
)−T

+ . . .+
(
ρ00R0

)−T
])
,

where the first equality follows by (B.2.15), Lemma B.1.2(a) and the fact that E
∥∥∥∑N

i=1 λ
0
i eiT

∥∥∥2 =

O (NpT ) by Assumptions A2.1(c), A2.2 and A2.4.

For D2NT , we have D2NT = D̄2NT

∑N
i=1 λ

0
i eiT , where

∑N
i=1 λ

0
i eiT = Op

(
Np/2T 1/2

)
as studied

above, and D̄2NT = N−1J −2
B Hf 0′(B̂H ′−1 − f 0). For D̄2NT , we adopt the decomposition of B̂ −

f 0H ′ in (B.2.13) to obtain

D̄2NT

= J −2
B N−p−1

[
Hf 0′ (Λ0u′ + ϵ

)′ (
Λ0u+ ϵ

)
B̂ +Hf 0′B0Λ0′ϵB̂J −1

T +Hf 0′ϵ′Λ0B0′B̂J −1
T

]
≡ D2NTa +D2NTb +D2NTc.

Following the proof of Lemma B.1.2(c), it easy to argue that D2NTb and D2Ntc dominate D2NTa. So

we focus on D2NTb and D2NTc below. Note that the leading term in D2NTb is given by D2NTb1 =

J −2
B N−p−1HB0′B0Λ0′ϵf 0H ′J −1

T and

∥D2NTb1∥ = J −2
B N−p−1

∥∥Hf 0′B0Λ0′ϵf 0H ′J −1
T

∥∥
≤ J −2

B N−1

∥∥∥∥∥J −1
T N−p

N∑
j=1

T∑
s=2

Hf 0
s ϵjsλ

0′
j

∥∥∥∥∥
∥∥∥∥∥

T∑
t=2

B0
tB

0′
t H

′

∥∥∥∥∥
= J −2

B N−1Op

(
N−p/2

[(
ρ001
)−T

+ . . .+
(
ρ00R0

)−T
])
Op

(
JB

[(
ρ001
)T

+ . . .+
(
ρ00R0

)T])
= Op

(
J −1

B N−1−p/2
)
,
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where the first equality follows because we can show that
∥∥∥J −1

T N−p
∑N

j=1

∑T
s=2Hf 0

s ϵjsλ
0′
j

∥∥∥ =

Op

(
N−p/2

[
(ρ001)

−T
+ . . .+

(
ρ00R0

)−T
])

holds by the same arguments us used in the study of ∥A2t1∥

in the proof of LemmaB.1.2(b), and the fact that
∥∥∥∑T

t=2B
0
tB

0′
t H

′
∥∥∥ = Op

(
JB

[
(ρ001)

T
+ . . .+

(
ρ00R0

)T])
by similar arguments as used to bound ∥A3t1∥ in the proof of Lemma B.1.2(b). Similarly, the leading

term in D2NTc is given by D2NTc1 = J −2
B N−p−1HB0′ϵ′Λ0B0′B0H ′J −1

T and

D2NTc1 ≤ J −2
B N−1

∥∥∥∥∥J −1
T N−p

T∑
s=2

HB0
sB

0′
s

∥∥∥∥∥
∥∥∥∥∥

N∑
j=1

λ0
j

T∑
t=2

ϵjtB
0′
t H

′

∥∥∥∥∥
= J −2

B N−1Op(N
−p)Op

(
JBN

p/2
)

= Op

(
J −1

B N−1−p/2
)
,

where the first equality follows by the fact that
∥∥∥J −1

T N−p
∑T

s=2 HB0
sB

0′
s

∥∥∥ = Op(N
−p) by fol­

lowing from the same arguments as used to bound ∥A3t1∥ in the proof of Lemma A.2(b), and that∥∥∥∑N
j=1 λ

0
j

∑
t ϵjtB

0′
t H

′
∥∥∥ = Op

(
JBN

p/2
)
by similar arguments to bound ∥A1t3a∥ in the proof of

Lemma B.1.2(b). Consequently, D̄2NT = Op

(
J −1

B N−1−p/2
)
abd

D2NT = Op

(
Np/2T 1/2

)
Op

(
J −1

B N−1−p/2
)
= Op

(
J −1

B N−1T 1/2
)
.

For D3NT , we use eiT =
∑T

r=1 ϵir under the null to obtain

D3NT = J −2
B H

(
ρ0
0

)T ( 1

N

N∑
i=1

T∑
r=2

T∑
s=2

(
ρ0
0

)−T
f 0
s ϵisϵir

)
≡ J −2

B H
(
ρ0
0

)T D̄3NT

Under Assumption A2.1 and A2.4, we have E(D̄3NT ) = 0. In addition,

E
∥∥D̄3NT

∥∥2 = E

[
1

N2

N∑
i=1

N∑
j ̸=i

T∑
r,s,q,v=2

tr
[(
ρ0
0

)−T
f 0
s f

0′
q

(
ρ0
0

)−T
]
ϵisϵirϵjqϵjv

]

+E

[
1

N2

N∑
i=1

T∑
r,s,q,v=2

tr
[(
ρ0
0

)−T
f 0
s f

0′
q

(
ρ0
0

)−T
]
ϵisϵirϵiqϵiv

]
≡ D3NTa + D3NTb.
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For D3NTa, we have

D3NTa = E

[
1

N2

N∑
i=1

N∑
j ̸=i

T∑
s,q=2

tr
[(
ρ0
0

)−T
E(f 0

s f
0′
q )
(
ρ0
0

)−T
]
E
(
ϵ2isϵ

2
jq

)]

=

(
1

N2

N∑
i=1

N∑
j ̸=i

σ2
i σ

2
j

)
T∑

s,q=2

tr
[(
ρ0
0

)−T
E(f 0

s f
0′
q )
(
ρ0
0

)−T
]
= O (κT ) ,

where the first equality holds by Assumption A2.3(c) and the law of iterated expectations, the second

equality holds by Assumption A2.1(c) and the law of iterated expectations, and the final equality

holds because

T∑
s,q=2

tr
[(
ρ0
0

)−T
E(f 0

s f
0′
q )
(
ρ0
0

)−T
]

= E

[
T∑

s,q=2

f 0′
q

(
ρ0
0

)−T (
ρ0
0

)−T
f 0
s

]

≤ E

∥∥∥∥∥
T∑

s=2

(
ρ0
0

)−T
f 0
s

∥∥∥∥∥
2

= O (κT ) , (B.1.4)

where the first equality holds by the definition of the trace operator, and the last equality holds because∥∥∥∑t
s=2 (ρ

0
0)

−T
f 0
s

∥∥∥ ≤
∥∥∥(ρ0

0)
−T
κ−1
T

∑T
s=2 diag (c1, . . . , cR0)F

0
s−1

∥∥∥+the dominated term = Op (κT )

by following proofs of Lemma B.3.2(b) as proofs of Lemma A5(b) in Horie and Yamamoto (2016).

For D3NTb, we have

D3NTb =
2

N2

N∑
i=1

T∑
s ̸=q=2

tr
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ρ0
0

)−T
E(f 0

s f
0′
q )
(
ρ0
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)−T
]
E
(
ϵ2isϵ

2
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)
+

1

N2

N∑
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T∑
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tr
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ρ0
0

)−T
E(fsf

′
s)
(
ρ0
0

)−T
]
E
(
ϵ2isϵ

2
ir

)
+

1

N2

N∑
i=1

T∑
s=1

tr
[(
ρ0
0

)−T
E(f 0

s f
0′
s )
(
ρ0
0

)−T
]
E
(
ϵ4is
)

≤

{
1

N2

N∑
i=1

[3Tσ4
i + E

(
ϵ4is
)
]

}
E

T∑
s=1

tr
[(
ρ0
0

)−T
E(f 0

s f
0′
s )
(
ρ0
0

)−T
]

= O
(
N−1T

)
O (1) = O

(
N−1T

)
,

where the first equality holds by the m.d.s property of the sequence {ϵit} and the law of iterated
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expectations, the inequality holds by (B.1.4), and the last equality holds by the proof of Lemma

B.3.2(e). It follows that E
∥∥D̄3NT

∥∥2 = O (N−1T + κT ) and

∥D3NT∥ ≤ J −2
B

∥∥∥H (
ρ0
0

)T∥∥∥∥∥D̄3NT

∥∥
= J −2

B Op (JB)Op

(
N−1/2T 1/2 + κ

1/2
T

)
= Op

(
J −1

B

(
N−1/2T 1/2 + κ

1/2
T

))
.(B.1.5)

where the first equality follows from (B.2.10). In addition, it is easy to show thatD4NT is dominated

by D3NT .

In sum, we have

1

N

N∑
i=1

dieiT

= Op

(
J −1

B N−1−p/2T 3/2
[(
ρ001
)−T

+ . . .+
(
ρ00R0

)−T
])

+Op

(
J −1

B N−1T 1/2
)
+Op

(
J −1

B κ
1/2
T

)
= Op

(
J −1

B κ
1/2
T

)
. (B.1.6)

Now, we prove (ii3). Noting that ∆êit = ∆eit −
(
λ0′

i vt + d′
iB̂t

)
≡ ∆eit − rit, we have

1√
NT

N∑
i=1

T∑
t=2

[
(∆êit)

2 − (∆eit)
2] =

1√
NT

N∑
i=1

T∑
t=2

r2it −
2√
NT

N∑
i=1

T∑
t=2

(∆eit) rit

≡ D1 − 2D2.

By Lemma B.1.4, it is readily to see that D1 = N−1/2T−1
∑N

i=1

∑T
t=2 r

2
it = N−1/2T−1||Λ0f 0′ −

Λ̂B̂′||2 = N−1/2T−1Op (N + T ) = op (1) holds. For D2, we have

D2 =
1√
NT

N∑
i=1

T∑
t=2

∆eitλ
0′
i vt +

1√
NT

N∑
i=1

T∑
t=2

∆eitd
′
iHf 0

t +
1√
NT

N∑
i=1

T∑
t=2

∆eitd
′
i(B̂t −Hf 0

t )

≡ D2,1 +D2,2 +D2,3.
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Noting that ∆eit = ϵit under the null, by the Cauchy­Schwarz inequality, we have

∥D2,1∥ ≤

 1

T

T∑
t=2

∥∥∥∥∥N−1/2

N∑
i=1

∆eitλ
0
i

∥∥∥∥∥
2
1/2(

1

T

T∑
t=2

∥vt∥2
)1/2

=

 1

NT

T∑
t=2

∥∥∥∥∥
N∑
i=1

λ0
i ϵit

∥∥∥∥∥
2
1/2(

1

T

T∑
t=2

∥∥∥H−1B̂t − f 0
t

∥∥∥2)1/2

= Op

(
N (p−1)/2

)
Op

(
Np/2

)
= Op

(
N−1/2

)
,

where the second equality holds by (B.2.4), and Lemma B.1.2(b). Similarly,

∥D2,2∥ =
1√
NT

∥∥∥∥∥
N∑
i=1

T∑
t=2

d′
iH
(
ρ0
0

) (
ρ0
0

)−T
f 0
t ϵit

∥∥∥∥∥
≤ T−1

(
N∑
i=1

∥di∥2
)1/2

 1

N

N∑
i=1

∥∥∥∥∥
T∑
t=2

(
ρ0
0

)−T
f 0
t ϵit

∥∥∥∥∥
2
1/2 ∥∥∥(ρ0

0

)T
H
∥∥∥

= T−1Op

(
N1/2J −1

B

)
Op (1)Op (JB) = Op

(
N1/2T−1

)
.

where the second equality holds by the fact that
∑N

i=1 ∥di∥2 = Op

(
NJ −2

B

)
by Lemma B.1.2, that

1
N

∑N
i=1

∥∥∥∑T
t=2 ϵitft (ρ

0
0)

−T
∥∥∥2 = Op (1) by similar arguments as used to obtain Lemma B.3.2(c)

(see Horie and Yamamoto (2016)), and that
∥∥∥(ρ0

0)
T
H
∥∥∥ = Op (JB) as in (B.2.10). In addition,

we can readily argue that D2,3 is dominated by D2,2. Then D2 = Op

(
N−1/2 +N1/2T−1

)
and

1√
NT

∑N
i=1

∑T
t=2

[
(∆êit)

2 − (∆eit)
2] = op (1) .

Step 3: We show (iii).

Let ηNt =
∑t−1

s=1
1√
NT

∑N
i=1 ϵisϵit. Then ZNT ≡ 1√

NT

∑N
i=1

∑T
t=2

∑t−1
s=1 ϵisϵit =

∑T
t=2 ηNt. Note

that∆eit = ϵit and ei,t−1 =
∑t−1

s=1 ϵis under the null. UnderAssumptionA2.1(c),E
(
ηNt | F ϵ

NT,t−1

)
=

0 by the law of iterated expectations and we can resort to the martingale central limit theorem (CLT)

by verifying the conditions:

(1) s2T ≡ E

[(∑T
t=2 ηNt

)2]
→ 1

2
σ4
ϵ where σ4

ϵ = lim
N→∞

1
N

∑N
i=1 σ

4
i ;

(2) (s2T )
−1∑T

t=2E
[
η2Nt (|ηNt| > δsT ) | F ϵ

NT,t−1

]
→ 0 for all δ > 0;
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(3) (s2T )
−1
VT → 1 where VT ≡

∑T
t=2E

[
η2Nt | F ϵ

NT,t−1

]
.

Gvien the above conditions, the martingale CLT implies that ZNT =
∑T

t=2 ηNt
d→ N (0, 1

2
σ4
ϵ ) as

(N, T ) go to infinity jointly. We now verify conditions (1)–(3) in order.

First, by the repeated use of Assumption A2.1(c) and the law of iterated expectations, we have

s2T = E

[
T∑
t=2

T∑
r=2

ηNtηNr

]
=

1

NT 2

N∑
i=1

N∑
j=1

T∑
t=2

T∑
r=2

t−1∑
s=1

r−1∑
q=1

E (ϵisϵitϵjrϵjq)

=
1

NT 2

N∑
i=1

T∑
t=2

t−1∑
s=1

t−1∑
q=1

E
(
ϵisϵiqϵ

2
it

)
=

1

NT 2

N∑
i=1

T∑
t=2

t−1∑
s=1

t−1∑
q=1

E
[
E
(
ϵ2it|F ϵ

NT,t−1

)
ϵisϵiq

]
=

1

NT 2

N∑
i=1

σ2
i

T∑
t=2

t−1∑
s=1

E
(
ϵ2is
)
=
T − 1

2TN

N∑
i=1

σ4
i → 1

2
σ4
ϵ ,

where σ4
ϵ ≡ limN→∞

1
N

∑N
i=1 σ

4
i . This verifies condition (1).

For condition (2) above, it suffices to verify that

(
s2T
)−1−β

T∑
t=2

E |ηNt|2+β → 0 as (N, T ) → ∞ for some β > 0.

Since 1/s2T = Op (1) as shown in condition (1), it is sufficient to show that
∑T

t=2E |ηNt|4 →

0 as (N, T ) → ∞. Note that

T∑
t=2

E |ηNt|4 =
T∑
t=2

E

[
t−1∑
s=1

(
1√
NT

N∑
i=1

ϵisϵit

)]4

=
1

N2T 4

T∑
t=2

N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

∑
1≤r,s,q,v≤t−1

E (ϵisϵitϵjrϵjtϵkqϵktϵlvϵlt)

=
1

N2T 4

T∑
t=2

N∑
i=1

∑
1≤r,s,q,v≤t−1

E
(
ϵisϵirϵiqϵivϵ

4
it

)
+

3

N2T 4

T∑
t=2

N∑
i=1

N∑
j=1,j ̸=i

∑
1≤r,s,q,v≤t−1

E
(
ϵisϵirϵ

2
itϵjqϵjvϵ

2
jt

)
≡ R1 + 3R2.
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ForR1, we have

R1 =
1

N2T 3

N∑
i=1

1

T

T∑
t=2

E

( t−1∑
s=1

ϵis

)4

ϵ4it


≤ 1

N2T 3

N∑
i=1

E


 1

T

T∑
t=2

(
t−1∑
s=1

ϵis

)8
1/2 [

1

T

T∑
t=2

ϵ8it

]1/2
≤ 1

N2T 3

N∑
i=1

 1

T

T∑
t=2

E

( t−1∑
s=1

ϵis

)8


1/2 [
1

T

T∑
t=2

E
(
ϵ8it
)]1/2

≤ M

NT 3

{
1

T

T∑
t=2

t4

}1/2

= O
(
N−1T−1

)
,

where the first and second inequalities holds by Cauchy­Schwarz and Jensen inequalities, and the last

inequality holds by the fact that
∣∣∣∣ ∑
1≤s≤t−1

ϵis

∣∣∣∣8 ≤Mt4 (see, e.g., Shao et al. (1996)) under Assumption

A2.1(a). Similarly,

R2 =
1

N2T 4

T∑
t=2

N∑
i=1

N∑
j=1,j ̸=i

∑
1≤r,s,q,v≤t−1

E
(
ϵisϵirϵjqϵjvϵ

2
itϵ

2
jt

)
=

1

N2T 4

T∑
t=2

N∑
i=1

N∑
j=1,j ̸=i

E

( t−1∑
s=1

ϵis

)2( t−1∑
q=1

ϵjq

)2

ϵ2itϵ
2
jt


≤ 1

N2T 3

N∑
i,j=1

 1

T

T∑
t=2

E

( t−1∑
s=1

ϵis

)4( t−1∑
q=1

ϵjq

)4
1/2 [

1

T

T∑
t=2

E
(
ϵ4itϵ

4
jt

)]1/2

≤ M

N2T 3

N∑
i,j=1

[
1

T

T∑
t=2

t4

]1/2
= O

(
T−1

)
.

It follows that
∑T

t=2E |ηNt|4 = O (T−1) = o(1).
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To verify condition (3), note that

VT =
1

NT 2

N∑
i=1

T∑
t=2

E

[
t−1∑
s=1

t−1∑
r=1

ϵisϵirϵ
2
it|F ϵ

NT,t−1

]

=
1

NT 2

N∑
i=1

T∑
t=2

t−1∑
s=1

t−1∑
r=1

ϵisϵirE
[
ϵ2it|F ϵ

NT,t−1

]
=

1

NT 2

N∑
i=1

σ2
i

T∑
t=2

t−1∑
s=1

t−1∑
r=1

ϵisϵir.

where we use the m.d.s property of {ϵit}, the law of iterated expectations, and Assumption A2.1(c).

By the the law of iterated expectations and the arguments as used to verify condition (1),E (VT ) = s2T .

By direct moment calculations as in the verification of condition (2), we can show that Var(VT ) =

o(1). Then VT = s2T + op (1) and condition (3) follows.

Step 4: We show (iv).

Under the null, eit =
∑t

s=1 ϵis. Then

ANT ≡ 1

NT 2

N∑
i=1

T∑
t=2

e2it =
1

NT 2

N∑
i=1

T∑
t=2

t−1∑
s=1

t−1∑
r=1

ϵisϵir.

By direct moment calculations, we can readily show that

E (ANT ) =
1

NT 2

N∑
i=1

T∑
t=2

t−1∑
s=1

E
(
ϵ2is
)
=

1

NT 2

N∑
i=1

T∑
t=2

t−1∑
s=1

σ2
i =

1

2
σ2
ϵ + o(1)

where σ2
ϵ = limN→∞

1
N

∑N
i=1 σ

2
i . As in Step 3, we can also show that Var(ANT ) = O (T−1) . Then

ANT = 1
2
σ2
ϵ + op(1).

The Case of I(1)­type of Factors

Under Assumptions A2.1, when the factors follow a unit root process, the proof is a combination of

similar arguments of Steps 1–4 in the last appendix and the corresponding proof given in Bai and Ng

(2010). We omit the details for brevity.
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B.1.3 Proof of Corollary 3.2

Case 1: Factors follow mildly explosive processes

We are going to show σ̂4
ϵ and σ̂2

ϵ are the consistent estimates of σ4
ϵ and σ2

ϵ , respectively. The

desired result then follows by Theorem 2.3.1 and the Slutsky lemma. By the law of large numbers,

it suffices to show,

(a)
2

NT 2

N∑
i=1

T∑
t=2

t−1∑
s=1

ϵ̂2is =
2

NT 2

N∑
i=1

T∑
t=2

t−1∑
s=1

ϵ2is + op (1) ,

(b)
2

NT 2

N∑
i=1

T∑
t=2

t−1∑
s=1

ϵ̂2isϵ̂
2
it =

2

NT 2

N∑
i=1

T∑
t=2

t−1∑
s=1

ϵ2isϵ
2
it + op (1) .

Recall that ϵ̂it = ϵit + λ0′
i f

0
t − λ̂′iB̂t. Then, we show (a),

2

NT 2

N∑
i=1

T∑
t=2

t−1∑
s=1

ϵ̂2is ≤ 2

NT 2

N∑
i=1

T∑
t=2

t−1∑
s=1

ϵ2is +
4

NT 2

N∑
i=1

T∑
t=2

t−1∑
s=1

ϵis

∥∥∥λ0′
i f

0
s − λ̂′iB̂s

∥∥∥
+

2

NT 2

N∑
i=1

T∑
t=2

t−1∑
s=1

∥∥∥λ0′
i f

0
s − λ̂′iB̂s

∥∥∥2
≡ 2

NT 2

N∑
i=1

T∑
t=2

t−1∑
s=1

ϵ2is + 4Ga,1 + 2Ga,2.

We use the fact that Ga,2 = op (1) and verify this claim below, then, by Cauchy­Schwarz inequality,

Ga,1 = op (1). Thus, proofs for (a) are completed. To show Ga,2 = op (1), note that

Ga,2 ≤ 1

NT 2

N∑
i=1

T∑
t=2

T∑
s=1

∥∥∥λ0′
i f

0
s − λ̂′iB̂s

∥∥∥2
=

1

T

T∑
t=2

{
1

NT

N∑
i=1

T∑
s=1

∥∥∥λ0′
i f

0
s − λ̂′iB̂s

∥∥∥2}

=
1

T

T∑
t=2

∥∥∥Λ0f 0′ − Λ̂B̂′
∥∥∥2 = Op

(
N−1 + T−1

)
,

where the final result follows from Lemma B.1.4 directly.

Now, we prove (b). Recall that ϵ̂it = ϵit + λ0′
i f

0
t − λ̂′iB̂t = ϵit + λ0′

i vt − d′
if̂t ≡ ϵit + ait where
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vt = H−1B̂t−f 0
t , di = λ̂i−H ′−1λ0

i , and ait = λ0′
i vt− d′

iB̂t, or equivalently, ait = λ0′
i f

0
t −λ̂′

iB̂t.

We have

2

NT 2

N∑
i=1

T∑
t=2

t−1∑
s=1

ϵ̂2isϵ̂
2
it ≤ 2

NT 2

N∑
i=1

T∑
t=2

t−1∑
s=1

ϵ2isϵ
2
it +

4

NT 2

N∑
i=1

T∑
t=2

t−1∑
s=1

ϵ2isa
2
it +

4

NT 2

N∑
i=1

T∑
t=2

t−1∑
s=1

a2isϵ
2
it

+
2

NT 2

N∑
i=1

T∑
t=2

t−1∑
s=1

a2isa
2
it

≡ 2

NT 2

N∑
i=1

T∑
t=2

t−1∑
s=1

ϵ2is + 4Gb,1 + 4Gb,2 + 2Gb,3.

For Gb,1, note that

Gb,1 ≤ 1

NT 2

N∑
i=1

T∑
t=2

T∑
s=1

ϵ2isa
2
it

=
1

NT

N∑
i=1

T∑
t=2

(
1

T

T∑
s=1

ϵ2is

)
a2it

≤ (M + op (1))
1

NT

∥∥∥Λ0f 0′ − Λ̂B̂′
∥∥∥2 = Op

(
N−1 + T−1

)
,

where the second inequality follows by the Law of Large Numbers and Assumption A2.1, the final

equality follows from Lemma B.1.4 directly. Similarly, we can readily showGb,2 = op (1). To show

Gb,3 = op (1), following arguments involving T−1
∑T

t=2 a
2
it in proofs of Lemma A.4 in Westerlund

(2015), we have

Gb,3 ≤ 1

NT 2

N∑
i=1

T∑
t=2

T∑
s=1

a2isa
2
it

=
1

N

N∑
i=1

[
1

T

T∑
t=1

a2it
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=
1

N

N∑
i=1

{∥∥λ0′
i

∥∥2 1

T

T∑
t=2

∥∥∥B̂tH
−1 − f 0

t

∥∥∥2 + ∥∥∥λ̂i −H−1λi

∥∥∥2 1

T

T∑
t=2

∥∥∥B̂t

∥∥∥2}2

=
1

N

N∑
i=1

{
Op

(
N−p

) ∥∥λ0′
i

∥∥2 +Op

(
T−1

)}2

= Op

(
N−2p +N−pT−1 + T−2

)
,
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where the third equality follows fromLemmaB.1.2 directly, and the normalization conditionJ −2
B B̂′B̂ =

IR0 . Then, Gb,3 = op (1) holds for sure under Assumption A2.7(b) and user­specified JB like
√
T ,

T and so on.

Case 2: Factors follow unit­root­type processes

For this case, we can combine above proofs for the mildly explosive factors with arguments in

proofs of Lemma B.5 in Bai and Ng (2004) and Lemma A.4 in Westerlund (2015). We omit details

here for brevity.

B.1.4 Proof of Theorem 3.3

Case 1: Factors follow mildly explosive processes

We first present some important immediate results under the local alternative:

(1) 1
T

∑T
t=2

∥∥∥B̂tH
−1 − ft

∥∥∥2 = Op(N
−p).

(2)
(
H−1B̂t − f 0

t

)
= Op(N

−p/2), each given t.

(3)
(
λ̂i −H−1λi

)
= Op(J −1

B ), for each given i

(4) max
1≤t≤T

1√
T

∥∥∥∑t
s=2 H

−1B̂s − fs

∥∥∥ = Op

(
N− p

2

)
In order to prove above immediate results, one can follow the proofs for Lemmas 1–3 in West­

erlund (2015) and modify the proofs of Lemmas B.1.2–B.1.3 by incorporating some addtional terms

involving eit−1 under H1NT : ρi = 1 + ci
TN1/2 ∀i. It is easy to argue that such terms are dominated

by the leading terms in the proofs of Lemma B.1.2 and B.1.3 under the null. This explains why the

above immediate results remain the same as those under the null. We omit the details here for brevity.

Given (B.1.1), it suffices to prove the theorem by establishing the following results:

(i) 1
NT 2

∑N
i=1

∑T
t=2 ê

2
it =

1
NT 2

∑N
i=1

∑T
t=2 e

2
it+Op(N

1/2−p)+Op(κTN
1/2T−1) = 1

NT 2

∑N
i=1

∑T
t=2 e

2
it+

op(1);

(ii) 1√
NT

∑N
i=1

∑T
t=2 êit−1∆êit =

1√
NT

∑N
i=1

∑T
t=2 eit−1∆eit+Op(N

1/2T−1+N−1/2+T−1/2)+

Op(κTN
1/2T−1) = 1√

NT

∑N
i=1

∑T
t=2 eit−1∆eit + op(1);
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(iii) 1√
NT

∑N
i=1

∑T
t=2 eit−1∆eit

d−→ N (µ, 1
2
σ4
ϵ ) as (N, T ) → ∞whereµ = limN→∞

1
2N

∑N
i=1 ciσ

2
ϵ,i >

0 and σ2
ϵ,i = E (ϵ2it) ;

(iv) 1
NT 2

∑N
i=1

∑T
t=2 e

2
it =

1
2
σ2
ϵ + op(1).

Given (i)–(iv), we have

√
NT (ρ̂− 1) =

[
1

NT 2

N∑
i=1

T∑
t=2

e2it + op (1)

]−1 [
1√
NT
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T∑
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eit−1∆eit + op (1)

]
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(
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(
σ2
ϵ

)−2

σ4
ϵ

)
.

Step 1: We show (i).

Recall that rit ≡ λ0′
i f

0
t − λ̂′

iB̂t. Note that ∆eit = eit − eit−1 = (ρi − 1) eit−1 + ϵit and ∆êit =

Zit − λ̂′
iB̂t = rit + ∆eit = rit + (ρi − 1) eit−1 + ϵit. Without loss of generality, define êi1 = 0 to

simplify proofs below as in Bai and Ng (2010). Then

êit =
t∑

s=2

∆êis =
t∑

s=2

∆eis +
t∑

s=2

ris = eit − ei1 +Rit

whereRit = λ0′
i Vt−d′

iF̂t,Vt =
∑t

s=2 vs, vt = H−1B̂t−f 0
t , and di = λ̂i−H ′−1λ0

i . Consequently,

we have

1

NT 2

N∑
i=1

T∑
t=2

(
ê2it − e2it

)
=

1

NT 2

N∑
i=1

T∑
t=2

(
e2i1 +R2

it − 2eitei1 − 2ei1Rit + 2eitRit

)
.

Under H1NT , we can use the above stated immediate results and follow the proof of Lemma A.4 in
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Westerlund (2015) to obtain the following results:

(1a)
1

NT 2

N∑
i=1

T∑
t=2

e2i1 = Op

(
T−1

)
,

(1b)
1

NT 2

N∑
i=1

T∑
t=2

ei1eit =
1√
NT

1√
NT

N∑
i=1

T∑
t=2

ei1
eit√
T

= Op

(
N−1/2T−1/2

)
,

(1c)
1

NT 2

N∑
i=1

T∑
t=2

ei1Rit =
1

NT

N∑
i=1

ei1
1

T

T∑
t=2

Rit = Op

(
T−1/2N−p/2 + κ

1/2
T T−1

)
,

(1d)
1

NT 2

N∑
i=1

T∑
t=2

R2
it = Op

(
N−1 + κTT

−1
)
,

(1e)
1

NT 2

N∑
i=1

T∑
t=2

eitRit = Op

(
N−1/2 + κ

1/2
T T−1/2

)
, (B.1.7)

where the first line follows fromMarkov inequality and the fact thatE (e2i1) ≤M under Assumption

A2.3(c), the second line follows moment calculations under the m.d.s property of {ϵit}, the third and

fourth lines implicitly use the fact that ∥Rit∥ ≤ ∥λ0
i ∥ ∥Vt∥+ ∥di∥

∥∥∥F̂t

∥∥∥ and the above stated imme­
diate results, and the last line holds by using Cauchy–Schwarz inequality based on the result of (1d)

above and the fact that N−1T−2
∑N

i=1

∑T
t=2 e

2
it = Op (1) under Assumption A2.8. Consequently,

we have 1
NT 2

∑N
i=1

∑T
t=2 (ê

2
it − e2it) = op (1).

Step 2: We show (ii)

êit =
t∑

s=2

∆êis =
t∑

s=2

∆eis +
t∑

s=2

ris ≡ (ρi − 1)
t∑

s=2

eis−1 +
t∑

s=2

ϵis +Rit

Noting that ê2it = (êit−1 +∆êit)
2 = ê2it−1 + 2êit−1∆êit + (∆êit)

2, we have

T∑
t=2

êit−1∆êit =
1

2

T∑
t=2

ê2it −
1

2

T∑
t=2

ê2it−1 −
1

2

T∑
t=2

(∆êit)
2

=
1

2
ê2iT − 1

2
ê2i1 −

1

2

T∑
t=2

(∆êit)
2 .

By the same token,
∑T

t=2 eit−1∆eit =
1
2

∑T
t=2 e

2
it − 1

2

∑T
t=2 e

2
it−1 − 1

2

∑T
t=2 (∆eit)

2 = 1
2
e2iT − 1

2
e2i1 −
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1
2

∑T
t=2 (∆eit)

2 . It follows that

2√
NT

N∑
i=1

T∑
t=2

(êit−1∆êit − eit−1∆eit)

=
1√
NT

N∑
i=1

(
ê2iT − e2iT

)
− 1√

NT

N∑
i=1

(
ê2i1 − e2i1

)
− 1√

NT

N∑
i=1

T∑
t=2

[
(∆êit)

2 − (∆eit)
2]

≡ A1 − A2 − A3.

Since êi1 = 0 by construction, it is easy to see A2 = −1√
NT

∑N
i=1 e

2
i1 = Op

(
N1/2T−1

)
by Markov

inequality and Assumption A2.1. It remains to bound A1 and A3.

We first bound A1. Noting that êit =
∑t

s=2∆eis + Rit = eit − ei1 + Rit ≡ eit + Ait with

Ait = −ei1 +Rit, we have

A1 =
1√
NT

N∑
i=1

[
(eiT + AiT )

2 − e2iT
]
=

1√
NT

N∑
i=1

A2
iT − 2√

NT

N∑
i=1

eiTAiT ≡ A1,1 − 2A1,2.

To boundA1,1 andA1,2,most arguments are the same as those used in Step 1 of the proof of Theorem

2.3.1 by using the above stated immediate results for the local alternative case. Below we focus

on the tho terms that involve eit−1 and arise only under the local alternative. For A1,2, we write

A1,2 = − 1√
NT

∑N
i=1 eiT ei1 +

1√
NT

∑N
i=1 eiTRiT ≡ −A1,2a+A1,2b.Note that time­series observations

for each individual i for available from period 1 to period T . Therefore, we use eiT =
∑T

s=1 ϵis and

ϵi1 = ei1 again as Bai and Ng (2010) and Westerlund (2015). Then, for A1,2a, we have

A1,2a =
1√
NT

N∑
i=1

(
1 +

ci
TN1/2

)T
ϵ2i1 +

1√
NT

N∑
i=1

T∑
s=2

ϵisϵi1

≡ A1,2a1 + A1,2a2.

Note that the second term A1,2a2 is Op

(
T−1/2

)
by the m.d.s property of {ϵis} under Assumption

A2.1(c). The first termA1,2a1 isOp

(
N1/2T−1

)
byMarkov equality and the fact that it is nonnegative
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and has expectation

1√
NT

N∑
i=1

(
1 +

ci
TN1/2

)T
E
(
ϵ2i1
)

≍ 1√
NT

N∑
i=1

exp
(
ci/N

1/2
)
E
(
ϵ2i1
)

≍ 1√
NT

N∑
i=1

(
1 + ci/N

1/2
)
E
(
ϵ2i1
)
= O

(
N1/2T−1

)
.

Then A1,2a = Op

(
T−1/2

)
+ Op

(
N1/2T−1

)
. For A1,2b, we use the fact that ∆eit = (ρi − 1) ei,t−1 +

ϵit =
ci

TN1/2 ei,t−1 + ϵit to obtain

A1,2b =
1√
NT

N∑
i=1

T∑
t=2

∆eitRiT =
1

NT 2

N∑
i=1

T∑
t=2

ciei,t−1RiT +
1√
NT

N∑
i=1

T∑
t=2

ϵitRiT .

The second term in the last displayed equationwas bounded by o(1) in Step 2 of the proof for Theorem

2.3.1 and the result continues to hold by using the above stated immediate results for the case of local

alternatives. That is,

∥∥∥∥∥ 1√
NT

N∑
i=1

T∑
t=2

ϵitRiT

∥∥∥∥∥ = Op

(
N−1/2 + T−1/2 + κTN

1/2T−1
)

= op (1) ,

where the final equality holds under Assumption A2.7(a).

For the first term, we use RiT = λ0′
i VT − d′

iF̂T to obtain

∥∥∥∥∥ 1

NT 2

N∑
i=1

T∑
t=2

cieit−1RiT

∥∥∥∥∥ ≤

∥∥∥∥∥ 1

NT 2

N∑
i=1

T∑
t=2

cieit−1λ
0′
i VT

∥∥∥∥∥+
∥∥∥∥∥ 1

NT 2

N∑
i=1

T∑
t=2

cieit−1d
′
iF̂T

∥∥∥∥∥ .
(B.1.8)

By similar arguments as used in the proof of Lemma A.4 in Westerlund (2015) and the immediate

results derived in the proof of Theorem 2.3.1, we have

∥∥∥∥∥ 1

NT 2

N∑
i=1

T∑
t=2

cieit−1λ
0′
i VT

∥∥∥∥∥ ≤

∥∥∥∥∥ 1

NT 3/2

N∑
i=1

T∑
t=2

ciei,t−1λ
0′
i

∥∥∥∥∥ 1

T 1/2
∥VT∥

= Op

(
N−1+p/2

)
Op

(
N−p/2

)
= Op

(
N−1

)
,
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where we use the fact that
∥∥∥∑N

i=1

∑T
t=2 cieit−1λ

0′
i

∥∥∥ = Op

(
Np/2T 3/2

)
under Assumptions A2.1(c),

A2.2, A2.4, and A2.8 by writing that eit =
∑t

s=2 ϵis +
(
1 + ci

TN1/2

)t
ϵi1 = Op

(
T 1/2

)
, and that∥∥VT/T

1/2
∥∥ = Op

(
N−p/2

)
by the above immediate result (4) given at the beginning of this proof.

Similarly,

∥∥∥∥∥ 1

NT 2

N∑
i=1

T∑
t=2

ciei,t−1d
′
iF̂T

∥∥∥∥∥ ≤

∥∥∥∥∥ 1

NT 2

N∑
i=1

T∑
t=2

ciei,t−1d
′
i

∥∥∥∥∥∥∥∥F̂T

∥∥∥
≤

 1

N

N∑
i=1

∥∥∥∥∥ 1

T 3/2

T∑
t=2

ciei,t−1

∥∥∥∥∥
2
1/2(

1

N

N∑
i=1

∥di∥2
)1/2

1√
T

∥∥∥F̂T

∥∥∥
= Op(1)Op

(
J −1

B

)
Op

(
JBT

−1/2κ
1/2
T

)
= Op

(
T−1/2κ

1/2
T

)
,

where the second inequality follows by Cauchy­Schwarz inequality, and the first equality holds by

the facts that
∥∥∥F̂T

∥∥∥ = Op(JBκ
1/2
T ), ∥di∥ = Op (J −1) as obtained in Step 2 of the proof of Theorem

2.3.1, and T−1/2eit = Op (1) under Assumption A2.8 by similar arguments in Westerlund (2015).

Then, we have

∥∥∥∥∥ 1

NT 2

N∑
i=1

T∑
t=2

ciei,t−1RiT

∥∥∥∥∥ = Op

(
N−1 + T−1/2κ

1/2
T

)
.

In sum, we have A1,2 = Op(κ
1/2
T T−1/2 +N1/2T−1 +N−1) = op(1).

For A1,1, we have A1,1 = 1√
NT

∑N
i=1A

2
iT = Op(N

1/2T−1 + N−1/2 + κTN
1/2T−1) as obtained

in Step 2 of the proof for Theorem 2.3.1. Then, we obtain that

A1 = A1,1 − 2A1,2 = Op(N
1/2T−1 +N−1/2 + κTN

1/2T−1) = op(1),

where the final equality holds under Assumption A2.7(a).

Now, we study A3. Noting that ∆êit = ∆eit + rit, we have

1√
NT

N∑
i=1

T∑
t=2

[
(∆êit)

2 − (∆eit)
2] = 1√

NT

N∑
i=1

T∑
t=2

r2it +
2√
NT

N∑
i=1

T∑
t=2

∆eitrit ≡ A3,1 + 2A3,2.
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Following the proof of Lemma B.1.4 but with the above immediate results (2)­(3) in place, we can

show that A3,1 = Op(N
1/2T−1 +N−1/2). For A3,2, we make the decomposition

A3,2 =
1√
NT

N∑
i=1

T∑
t=2

∆eitλ
0′
i vt +

1√
NT

N∑
i=1

T∑
t=2

∆eitd
′
if̂t ≡ A3,21 + A3,22.

For A3,21, we have

∥A3,21∥ ≤ 1√
N

 1

T

T∑
t=2

∥∥∥∥∥
N∑
i=1

∆eitλ
0′
i

∥∥∥∥∥
2
1/2 [

1

T

T∑
t=2

∥vt∥2
]1/2

= N1/2Op

(
Np/2

)
Op

(
N−p/2

)
= Op

(
N−1/2

)
where we use the fact that 1

T

∑T
t=2 ∥vt∥2 = Op (N

−p) by the above immediate result (1) and that

1

T

T∑
t=2

∥∥∥∥∥
N∑
i=1

∆eitλ
0′
i

∥∥∥∥∥
2

≤ 2

T

T∑
t=2

∥∥∥∥∥
N∑
i=1

ci
TN1/2

∆ei,t−1λ
0′
i

∥∥∥∥∥
2

+
2

T

T∑
t=2

∥∥∥∥∥
N∑
i=1

ϵitλ
0′
i

∥∥∥∥∥
2

= Op

(
Np−1T−1

)
+Op (N

p) = Op (N
p)

under Assumptions A2.8, A2.2 and the m.d.s property of {ϵit} under Assumption A2.1(c). For A3,22

, we have

A3,22 =
1√
NT

N∑
i=1

T∑
t=2

∆eitd
′
iHf 0

t +
1√
NT

N∑
i=1

T∑
t=2

∆eitd
′
i

(
f̂t −Hf 0

t

)
.

It is easy to argue that the leading term of A3,22 is given by Ā3,22 = 1√
NT

∑N
i=1

∑T
t=2 ∆eitd

′
iHf 0

t .

In addition,

∥∥Ā3,22

∥∥ ≤
√
N

T

 1

N

N∑
i=1

∥∥∥∥∥
T∑
t=2

∆eitf
0′
t H

′

∥∥∥∥∥
2
1/2 [

1

N

N∑
i=1

∥di∥2
]1/2

= N1/2T−1Op (JB)Op

(
J −1

B

)
= Op

(
N1/2T−1

)
,

where we use the fact that 1
N

∑N
i=1 ∥di∥2 = Op

(
J −1

B

)
by following the proof of Lemma 3 in Bai and
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Ng (2010), and by (B.2.10) and similar arguments as used to obtain LemmaB.3.2(c), ∥
∑

t ∆eitf
0′
t H

′∥ ≤∥∥∥∑t ∆eitf
0′
t (ρ0

0)
−T
∥∥∥∥∥∥(ρ0

0)
T
H ′
∥∥∥ =

∥∥∥∑t ϵitf
0′
t (ρ0

0)
−T
∥∥∥∥∥∥(ρ0

0)
T
H ′
∥∥∥ {1 + op (1)} = Op (1)Op (JB).

In sum, A3,2 = Op

(
N−1/2 +N1/2T−1

)
and A3 = Op(N

1/2T−1 +N−1/2)

Then, 1√
NT

∑N
i=1

∑T
t=2 (êi,t−1∆êit − ei,t−1∆eit) = Op(N

1/2T−1+N−1/2+κTN
1/2T−1) = op(1)

under Assumption A2.7(a).

Step 3: We show (iii).

Noting that ∆eit = eit − ei,t−1 = (ρi − 1) ei,t−1 + ϵit, by direct and simple calculations, we can

show that

1√
NT

N∑
i=1

T∑
t=2

ei,t−1∆eit =
1√
NT

N∑
i=1

T∑
t=2

t−1∑
s=2

ϵitϵis +
1√
NT

N∑
i=1

T∑
t=2

t−1∑
s=2

(ρi − 1) (ei,s−1ϵit + ei,t−1ϵis)

+
1√
NT

N∑
i=1

T∑
t=2

t−1∑
s=2

(ρi − 1)2 ei,t−1ei,s−1

≡ A1 + A2 + A3.

By Theorem 2.3.1, A1
d→ N (0, 1

2
σ4
ϵ ). It remains to study A2 and A3.

Noting that ρi − 1 = ci
TN1/2 under H1NT ,

A2 =
1

N

N∑
i=1

ci

(
1

T 2

T∑
t=2

t−1∑
s=2

ei,t−1ϵis

)
+

1

N

N∑
i=1

ci

(
1

T 2

T∑
t=2

t−1∑
s=2

ei,s−1ϵit

)
≡ A2,1 + A2,2.

Noting that

eis = ρiei,s−1 + ϵis =
s−1∑
j=0

ρji ϵi,s−j =
s∑

r=1

ρs−r
i ϵir, (B.1.9)

we can make the following decomposition for A2,1 :

A2,1 =
1

N

N∑
i=1

ci
1

T 2

T∑
t=2

t−1∑
s=2

ρt−1−s
i ϵ2is +

1

N

N∑
i=1

ci
1

T 2

T∑
t=2

t−1∑
s=2

t−1∑
r ̸=s,r=1

ρt−1−r
i ϵirϵis

≡ A2,11 + A2,12
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It is easy to show that A2,12 = op (1) by Chebyshev inequality with the repeated uses of the m.d.s

property of the sequence {ϵit} under Assumption A2.1(c) and the mixing equality (see, e.g., Shao

et al. (1996)) under Assumption A2.1(a). To study A2,11, without loss of generality, we assume that

ci > 0 for all i. Then

A2,11 =
1

N

N∑
i=1

ci
1

T 2

T∑
t=2

t−1∑
s=2

ρt−1−s
i E

(
ϵ2is
)
+ op (1) =

1

N

N∑
i=1

ciσ
2
ϵ,i

1

T 2

T∑
t=2

t−1∑
s=2

ρt−1−s
i + op (1)

=
1

N

N∑
i=1

ciσ
2
ϵ,i

ρi − 1

1

T 2

T∑
t=2

(
ρt−2
i − 1

)
+ op (1)

=
1

N

N∑
i=1

ciσ
2
ϵ,i

(ρi − 1)2
1

T 2

[
ρT−1
i − 1− (T − 1) (ρi − 1)

]
+ op (1)

=
1

N

N∑
i=1

ciσ
2
ϵ,i(

ci
TN1/2

)2 1

T 2


[(

1 +
ci

TN1/2

)TN1/2

ci

] (T−1)ci

TN1/2

− 1− (T − 1)
ci

TN1/2

+ op (1)

=
1

N

N∑
i=1

Nσ2
ϵ,i

ci

[
exp

(
(T − 1)ci
TN1/2

)
− 1− ci

N1/2

]
+ op (1)

=
1

N

N∑
i=1

Nσ2
ϵ,i

ci

[
1

2

(
(T − 1) ci
TN1/2

)2
]
+ op (1)

=
1

2N

N∑
i=1

ciσ
2
ϵ,i + op (1)

p→ µ.

Consequently, we have A2,1
p→ µ. By (B.1.9),

A2,2 =
1

N

N∑
i=1

ci

(
1

T 2

T∑
t=2

t−1∑
s=2

s−1∑
r=1

ρs−1−r
i ϵirϵit

)

By straightforward moment calculations, we can show that E (A2,2) = 0 and Var(A2,2) = o (1)

with the repeated uses of the m.d.s property of the sequence {ϵit} under Assumption A2.1(c) and

the mixing equality (see, e.g., Shao et al. (1996)) under Assumption A1(a). Then A2,2 = op (1) and

A2 = A2,1 + A2,2 = µ+ op (1) .

For A3, it is easy to verify that E (A3) = o (1) and Var(A3) = o (1) as above for A2,11 and A2,2

by using the m.d.s property of the sequence {ϵit} under Assumption A2.1(c) and the mixing equality
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(see, e.g., Shao et al. (1996)) under Assumption A2.1(a). Then A3 = op (1) .

In sum, we have shown that 1√
NT

∑N
i=1

∑T
t=2 ei,t−1∆eit

d−→ N (µ, 1
2
σ4
ϵ ) as (N, T ) → ∞.

Step 4: We show (iv).

Noting that ∆eis = (ρi − 1) ei,s−1 + ϵis, we have

ei,t−1 − ei1 =
t−1∑
s=2

∆eis =
t−1∑
s=2

(ρi − 1) ei,s−1 +
t−1∑
s=2

ϵis

or equivalently when t ≥ 3, ei,t−1 =
∑t−1

s=2 ϵis +
∑t−1

s=2 (ρi − 1) ei,s−1 + ei1., and eit−1 = ei1 when

t = 2. Then, we have

1

NT 2

N∑
i=1

T∑
t=3

e2i,t−1 =
1

NT 2

N∑
i=1

T∑
t=3

t−1∑
s=2

t−1∑
k=2

ϵisϵik +
1

NT 2

N∑
i=1

T∑
t=3

t−1∑
s=2

t−1∑
k=2

(ρi − 1)2 ei,s−1ei,k−1

+
1

NT 2

N∑
i=1

T∑
t=2

e2i1 +
2

NT 2

N∑
i=1

T∑
t=3

t−1∑
s=2

t−1∑
k=2

ϵis (ρi − 1) ei,k−1

+
2

NT 2

N∑
i=1

T∑
t=3

t−1∑
s=2

ϵisei1 +
2

NT 2

N∑
i=1

T∑
t=3

t−1∑
s=2

(ρi − 1) ei,s−1ei1

≡ A4 + A5 + A6 + 2A7 + 2A8 + 2A9.

By Step 4 in the proof of Theorem 2.3.1, A4
p→ 1

2
σ2
ϵ . As in Step 3, we can easily show that Al =

op (1) for l = 5, 6 by straightforward expectation calculations and Markov inequality and by noting

that they are nonnegative. Then by the Cauchy­Schwarz inequality, we have A7 ≤ {A4A5}1/2 =

op (1) ,A8 ≤ {A4A6}1/2 = op (1) , andA9 ≤ {A5A6}1/2 = op (1). It follows that 1
NT 2

∑
i

∑
t e

2
it−1

p→
1
2
σ2
ϵ as (N, T ) → ∞ .

Case 2: Factors follow a unit root process

When the factors follow a unit root process, Westerlund (2015) consider the local power prop­

erty in a similar framework. The proof in this case follows essentially that in Westerlund (2015).

The detailed arguments are the combination of proofs for Case 1 and corresponding arguments in

Westerlund (2015). We omitted them for the brevity.
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B.1.5 Proofs of Theorem 3.4

Let P ∗ denote the probability measure induced by the wild bootstrap conditional on Z. Let E∗ and

V ar∗ denote the expectation and variance under P ∗ and Op∗ and op∗ the probability order under P ∗.

In view of the fact that (1) the null hypothesis, that is ρi = 1 for all i, is satisfied in the bootstrap

world, (2) ϵ∗it are independent over i and t conditional on Z and (3) both λ̂i and B̂t are fixed given

Z. Henceforth, the proofs can be adopted straightforwardly but much plain than that of Theorem

2.3.1.

The outline of proofs are presented here for brevity. Recall Z∗
it = λ̂′

iB̂t + ϵ∗it with ϵ∗it = ϵ̂itςit,

and denote λ̂∗
i and B̂∗

t as the principal component estimates of this equation in the bootstrap world

under the same normalization condition used for obtain λ̂i and B̂t.

(1) Those immediate results stated in in Lemma B.1.2 to Lemma B.1.6 still hold for λ̂∗
i and B̂∗

t .

In short, λ̂∗
i and B̂∗

t can estimate λ̂i and B̂t consistently upon to a well­defined rotation matrix

H∗ in bootstrap world, detailed proofs are very similar to proofs of Lemma B.1.2 to Lemma

B.1.6.

(2) Let ϵ̂∗it = Z∗
it − λ̂∗′

i B̂
∗
t = ϵ∗it +

(
λ̂′

iB̂t − λ̂∗′
i B̂

∗
t

)
≡ ϵ∗it + r∗it, where r∗it is defined implicitly.

Because êi1 = 0 implied by (2.2 .12), it follows ê∗it =
∑t

s=2 ϵ̂
∗
is =

∑t
s=2 ϵ

∗
is +

∑t
s=2 r

∗
is ≡∑t

s=2 ϵ
∗
is +R∗

it, and thus ∆ê∗it = ê∗it − ê∗it−1.

Let e∗it =
∑t

s=2 ϵ
∗
is, and ∆e∗it = e∗it − e∗it−1 with ϵ∗it = ϵ̂itςit, ςit are i.i.d random variables such

that ςit has a 0.5 chance of being 1 and a 0.5 chance of being −1, therefore, ϵ∗it has the same

mean and variance as those of ϵ̂it.

(3) Then, base on above facts in (1) and (2), following arguments in Step 1 and Step 2 of proofs

for Theorem 2.3.1 in above section, it can be shown

1

NT 2

N∑
i=1

T∑
t=2

(
(ê∗it)

2 − (e∗it)
2) = op(1),

1√
NT

N∑
i=1

T∑
t=2

(
ê∗it−1∆ê

∗
it − e∗it−1∆e

∗
it

)
. = op(1)
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(4) We have proved that under the null hypothesis with Assumption A2.1–A2.7, P̃PT will conver­

gence to the standard normal Distribution as N, T → ∞ in Corollary 2.3.2, by Polya­Cantelli

lemma, it follows that sup
x∈R

∣∣∣P (P̃PT ≤ x
)
− Ψ(x)

∣∣∣ P→ 0, where Ψ(x) denotes the standard

normal distribution with mean 0 and variance 1. Then the results follows if following state­

ment holds

sup
x∈R

|P ∗ (PPT ∗ ≤ x)− Ψ(x)| P→ 0.

Then, based on above arguments, the validity of bootstrap version of proposed test statistic can

be concluded because

sup
x∈Rp

∣∣∣P {P̃PT ≤ x
}
− P ∗ {PPT ∗ ≤ x}

∣∣∣→ 0,

holds. To this end, we show the asymptotic normality of PPT ∗ by imitating the Step 3 and 4

of the proofs for Theorem 2.3.1 in the previous section. Now, based on results in (3) above,

again, we have

√
NT (ρ̂∗ − 1) =

√
NT

tr
(
ê∗′−1∆̂e

∗)
tr
(
ê∗′−1ê

∗
−1

)
=

√
N tr

(
1

NT
e∗′−1∆e

∗)
1

NT 2 tr
(
e∗′−1e

∗
−1

) + op (1)

=

[
1

NT 2

N∑
i=1

T∑
t=2

(e∗it)
2

]−1

1√
NT

N∑
i=1

T∑
t=2

e∗it−1∆e
∗
it + op(1)

= K∗−1
1 K∗

2 + op(1),

where e∗it =
∑t

s=2 ϵ
∗
is =

∑t
s=s ϵ̂isςis by construction in (2) above.

Based on above facts, we claim that

√
N tr

(
1

NT
e∗′−1∆e

∗)
1

NT 2 tr
(
e∗′−1e

∗
−1

) d−→ N
(
0, 2

(
σ2
ϵ

)−2

σ4
ϵ

)
as (N, T ) → ∞.

Similar to Step 4 of proofs for Theorem 2.3.1 in previous section, by straightforward calcula­
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tions,
1

NT 2

∑N
i=1

∑T
t=2 (e

∗
it)

2 = 1
2
σ̂2
ϵ because e∗it =

∑t
s=2 ϵ

∗
is and ϵ∗is’s are i.i.d sequences with the

same mean and variance as the original sequence {ϵ̂is}.

As for the asymptotic normality of K∗
2 above, it can be proved by employing central limit

theorem for m.d.s as done in proofs of Theorem 2.3.1 in the previous section. To see this,

K∗
2 =

1√
NT

N∑
i=1

T∑
t=2

e∗it−1∆e
∗
it

=
1√
NT

N∑
i=1

e∗i,1∆e
∗
i,2 +

1√
NT

N∑
i=1

T∑
t=3

t−1∑
s=2

ϵ∗isϵ
∗
it

=
T∑
t=3

[
t−1∑
s=2

(
1√
NT

N∑
i=1

ϵ∗isϵ
∗
it

)]
≡

T∑
t=3

η∗Nt,

where the third equality holds because of facts thate∗i1 = êi1ςi1 and êi1 = 0. Then, for {ϵ∗it}

in bootstrap world and Assumption A2.1(c), we can also construct σ­algebra F ϵ,∗
NT,t−1 as the

analogy of F ϵ
NT,t−1, it can be seen that E

(
η∗Nt | F

ϵ,∗
NT,t−1

)
= 0 by the usage of law of iterated

expectations for the sequence {ϵ∗it} and the properties of i.i.d sequence ςit. Therefore, {η∗Nt}

are also martingale difference sequences with respect to F ϵ,∗
NT,t−1.

By imitating arguments in Step 3 of proofs for Theorem 2.3.1 in the previous section, and the

usage of properties of i.i.d sequence ςit, those conditions required by CLT for m.d.s also can

be verified. Then,K∗
2

d−→ N
(
0, 1

2
σ4
ϵ

)
follows immediately.

To this end, we are going to verify following conditions to apply the central limit theorem for

m.d.s, namely,

(1) s2T → 1
2
σ̂4
ϵ with s2T = E∗

[(∑T
t=3 η

∗
Nt

)2]
, and 1

2
σ̂4
ϵ = lim

N,T→∞
1

NT 2

∑N
i=1

∑T
t=3

∑t−1
s=2 ϵ̂

2
isϵ̂

2
it,

(2) (s2T )
−1∑T

t=3E
∗ [(η∗Nt)

2 1 (|η∗Nt| > δsT ) | F ϵ,∗
NT,t−1

]
→ 0 for all δ > 0,

(3) (s2T )
−1
VT → 1 where VT =

∑T
t=3E

∗ [(η∗Nt)
2 | F ϵ,∗

NT,t−1

]
.
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Then, we can conclude that

K∗
2 =

T∑
t=3

η∗Nt
d−→ N (0,

1

2
σ4
ϵ ) as (N, T ) → ∞.

For condition (1) above, we have

s2T = E∗

[
T∑
t=3

T∑
r=1

η∗Ntη
∗
Nr

]

=
1

NT 2

N∑
i=1

N∑
j=1

T∑
t=3

T∑
r=1

t−1∑
s=2

r−1∑
q=1

E∗ (ϵ∗isϵ∗itϵ∗jrϵ∗jq)
=

1

NT 2

N∑
i=1

T∑
t=3

t−1∑
s=2

t−1∑
q=1

E∗ (ϵ∗isϵ∗iq (ϵ∗it)2)
=

1

NT 2

N∑
i=1

T∑
t=3

t−1∑
s=2

t−1∑
q=1

E∗ [E∗ ((ϵ∗it)2 | F ϵ,∗
NT,t−1

)
ϵ∗isϵ

∗
iq

]
=

1

NT 2

N∑
i=1

T∑
t=3

ϵ2it

t−1∑
s=2

t−1∑
q=1

E∗ [ϵ̂∗isϵ∗iq]
=

1

NT 2

N∑
i=1

T∑
t=3

ϵ̂2it

t−1∑
s=2

E∗ [(ϵ∗is)2]
=

1

NT 2

N∑
i=1

T∑
t=3

t−1∑
s=2

ϵ̂2isϵ̂
2
it

→ lim
N,T→∞

1

NT 2

N∑
i=1

T∑
t=3

t−1∑
s=2

ϵ̂2isϵ̂
2
it =

1

2
σ̂4
ϵ ,

where the third to seventh equality hold by the independence among {ϵ∗it} over ∀(i, t) with

ϵ∗it = ϵ̂itςit, where {ςit} are i.i.d sequences with mean 0 and variance 1 by construction.

To verify condition (2) above, it suffices to show

(
s2T
)−1−β

T∑
t=3

E∗ |η∗Nt|
2+β → 0 as (N, T ) → ∞ for some β > 0.

Since s2T = O∗
p (1) shown above for condition (1), it is sufficient to show that

∑T
t=2E |η∗Nt|

4 →
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0 as (N, T ) → ∞. Note that

T∑
t=3

E∗ |η∗Nt|
4 =

T∑
t=3

E∗

[
t−1∑
s=2

(
1√
NT

N∑
i=1

ϵ∗isϵ
∗
it

)]4

=
1

N2T 4

T∑
t=3

N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

∑
2≤r,s,q,v≤t−1

E
(
ϵ∗isϵ

∗
itϵ

∗
jrϵ

∗
jtϵ

∗
kqϵ

∗
ktϵ

∗
lvϵ

∗
lt

)
= 3R1 +R2,

where

R1 =
1

N2T 4

T∑
t=3

N∑
i=1

N∑
j=1,j ̸=i

∑
2≤r,s,q,v≤t−1

E∗
[
ϵ∗isϵ

∗
ir (ϵit)

2 ϵ∗jqϵ
∗
jv

(
ϵ∗jt
)2]

R2 =
1

N2T 4

T∑
t=3

N∑
i=1

∑
2≤r,s,q,v≤t−1

E∗ [ϵ∗isϵ∗irϵ∗iqϵ∗iv (ϵ∗it)4] .
ForR2, we have the following decomposition by direct calculations,

R2 =
6

N2T 4

T∑
t=3

N∑
i=1

∑
2≤r ̸=s≤t−1

E∗ [(ϵ∗is)2 (ϵ∗ir)2 (ϵ∗it)4]+ 1

N2T 4

T∑
t=3

N∑
i=1

∑
2≤r≤t−1

E∗ [(ϵ∗ir)4 (ϵ∗it)4]
≤ 6

N2T 4

T∑
t=3

N∑
i=1

∑
2≤r ̸=s≤t−1

ϵ̂2isϵ̂
2
ir ϵ̂

4
it +

1

N2T 4

T∑
t=3

N∑
i=1

∑
2≤r≤t−1

ϵ̂4ir ϵ̂
4
it

= Op

(
N−1T−1

)
+Op

(
N−1T−2

)
where the final inequality holds by the independence among {ϵ∗it} over ∀(i, t) with ϵ∗it = ϵ̂itςit,
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where {ςit} are i.i.d sequences with mean 0 and variance 1 by construction. ForR1,

R1 =
1

N2T 4

T∑
t=3

N∑
i=1

N∑
j=1,j ̸=i

∑
2≤r,s,q,v≤t−1

E∗
[
ϵ∗isϵ

∗
ir (ϵit)

2 ϵ∗jqϵ
∗
jv

(
ϵ∗jt
)2]

=
1

N2T 4

T∑
t=3

N∑
i=1

N∑
j=1,j ̸=i

∑
2≤s,q≤t−1

E∗
[
(ϵ∗is)

2 (ϵit)
2 (ϵ∗jq)2 (ϵ∗jt)2]

=
1

N2T 4

T∑
t=3

N∑
i=1

N∑
j=1,j ̸=i

∑
2≤s,q≤t−1

E∗ (ϵ∗is)
2E∗ (ϵit)

2E∗ (ϵ∗jq)2E∗ (ϵ∗jt)2
=

1

N2T 4

T∑
t=3

N∑
i=1

N∑
j=1,j ̸=i

∑
2≤s,q≤t−1

ϵ̂2isϵ̂
2
itϵ̂

2
jq ϵ̂

2
jt

≤ 1

T

 1

T 3

T∑
t=3

[
1

N

N∑
i=1

(∑
2≤s≤t

ϵ̂2is

)
ϵ̂2it

]2 = Op

(
T−1

)
,

where the second to fourth equality hold by the independence among {ϵ∗it} over ∀(i, t) with

ϵ∗it = ϵ̂itςit, where {ςit} are i.i.d sequences with mean 0 and variance 1 by construction, the

first inequality holds by Cauchy­Schwarz inequality.

Collecting the bounds ofR1 andR2 above, it follows
∑T

t=3E
∗ |η∗Nt|

4 = op(1) directly, which

completes the verification of condition (2) stated above.

To verify the condition (3) given above, note that

VT =
T∑
t=3

E∗ [(η∗Nt)
2 | F ϵ,∗

NT,t−1

]
=

1

NT 2

N∑
i=1

T∑
t=3

E∗

[
t−1∑
s=2

t−1∑
r=2

ϵ∗isϵ
∗
ir (ϵ

∗
it)

2 | F ϵ,∗
NT,t−1

]

=
1

NT 2

N∑
i=1

T∑
t=3

t−1∑
s=2

ϵ̂2isE
∗ [(ϵ∗it)2 | F ϵ,∗

NT,t−1

]
,

where the second and third equality hold by the independence among {ϵ∗it} over ∀(i, t) with

ϵ∗it = ϵ̂itςit, where {ςit} are i.i.d sequences with mean 0 and variance 1 by construction, and

the law of iterated expectations. Obviously, E∗ (VT ) = s2T by the law of iterated expectations.
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By direct calculations of moments, it is straightforward to show E∗(V 2
T ) = s2T + o∗p (1). Thus,

condition (3) is satisfied.

Recall that, e∗it =
∑t

s=2 ϵ
∗
is, then 1

NT 2

∑N
i=1

∑T
t=3 (e

∗
it)

2 = 1
NT 2

∑N
i=1

∑T
t=3

(∑t−1
s=2 ϵ

∗
is

)2, by
direct calculations, we have

1

NT 2

N∑
i=1

T∑
t=3

(e∗it)
2 =

1

NT 2

N∑
i=1

T∑
t=3

t−1∑
s=2

t−1∑
r=2

ϵ∗isϵ
∗
ir,

then, by using the law of large numbers for the sequence {ϵit}, as (N, T ) → ∞, it follows that

lim
N,T→∞

1

NT 2

N∑
i=1

T∑
t=3

(e∗it)
2 = lim

N,T→∞

1

NT 2

N∑
i=1

T∑
t=3

t−1∑
s=2

t−1∑
r=2

E∗ (ϵ∗isϵ
∗
ir)

= lim
N,T→∞

1

NT 2

N∑
i=1

T∑
t=3

t−1∑
s=2

E∗ (ϵ∗is)
2

= lim
N,T→∞

1

NT 2

N∑
i=1

T∑
t=3

t−1∑
s=2

ϵ̂2is =
1

2
σ̂2
ϵ

Note that 1
2
σ̂2
ϵ and 1

2
σ̂4
ϵ are used in Corollary 2.3.2. By the central limit theorem for m.d.s, we

then conclude that

(
2
(
σ̂2
ϵ

)−2

σ̂4
ϵ

)−1/2
√
N tr

(
1

NT
e∗′−1∆e

∗)
1

NT 2 tr
(
e∗′−1e

∗
−1

) d−→ N (0, 1) as (N, T ) → ∞

Based on the construction of PPT ∗, the desired result follows directly.

Collecting all above arguments, the validity of the bootstrap version of test statistic is justified.

B.2 Proofs for Technical Lemmas

This section is composed of 3 parts. Section B.2.1 contains the proofs of Lemmas B.1­B.5 in

the above paper. Section B.2.2 contains some technical lemmas that are used in the proofs of

the main results and Lemmas B.1­B.5. Section S3 provides some additional simulation results.
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B.2.1 Proofs of Lemma B.1.1

The proof is similar to that of Proposition 1 in Bai (2003). The major difference is that one

needs to replace the scaling constant T−1 in Bai (2003) by J −1
T in suitable places.

B.2.2 Proofs of Lemma B.1.2

Proofs of Lemma B.1.2(a)

Note that (2.2 .10) can be written in matrix form as follows

Z = Λ0B0′ +Λ0u′ + ϵ (B.2.1)

Recall that ΣZ,N = 1
N
Z ′Z and JT = (ρ0

0)
T JB, where (ρ0

0)
T ≡ diag((ρ001)

T
, . . . ,

(
ρ00R0

)T
),

and JB is user­specified scalar in the normalization conditions for the PC estimation. By the

eigenvalue problem, we have the identity

ΣZ,NB̂ = B̂VZ,N , (B.2.2)

where VZ,N is a diagonal matrix that consists of the first R0 eigenvalues of ΣZ,N arranged in

descending order along its main diagonal line. Postmultiplying both sides of (B.2.2) by the

recalling factor J −1
T and substituting (B.2.1) into (B.2.2), we have

B̂VZ,NJ −1
T −N−1+pB0 1

Np
Λ0′Λ0(B0′B̂J −1

T )

= N−1
(
Λ0u′ + ϵ

)′ (
Λ0u′ + ϵ

)
B̂J −1

T

+N−1B0Λ0′ (Λ0u′ + ϵ
)
B̂J −1

T +N−1
(
Λ0u′ + ϵ

)′
Λ0B0′B̂J −1

T

≡ A1 + A2 + A3. (B.2.3)
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Below, we bound each term on the last line. First, for A1 we have

A1 = N−1uΛ0′Λ0u′B̂J −1
T +N−1u

(
Λ0′ϵ

)
B̂J −1

T +N−1
(
ϵ′Λ0

)
u′B̂J −1

T

+N−1ϵ′ϵB̂J −1
T

≡ A11 + A12 + A13 + A14.

For A11, we have by the sub­multiplicity of Frobenius norm,

∥A11∥ ≤ N−1+p

∥∥∥∥Λ0′Λ0

Np

∥∥∥∥ ∥u∥2 ∥∥∥J −1
B B̂

∥∥∥∥∥JBJ −1
T

∥∥
≤ N−1+pOp (T )

∥∥JBJ −1
T

∥∥ = Op

(
N−1+pT

[(
ρ001
)−T

+ . . .+
(
ρ00R0

)−T
])
,

where the second inequality by Assumptions A2.1(b) and A2.2 and the normalization condi­

tion, and the final equality holds by the fact that JT ≡ J −1
B (ρ0

0)
T . Similarly,

∥A12∥ ≤ N−1+p/2T
∥∥∥ u

T 1/2

∥∥∥∥∥∥∥ Λ0′ϵ

Np/2T 1/2

∥∥∥∥∥∥∥J −1
B B̂

∥∥∥∥∥JBJ −1
T

∥∥
≤ Op

(
N−1+p/2T

)
∥
∥∥JBJ −1

T

∥∥ = Op

(
N−1+ p

2T
[(
ρ001
)−T

+ . . .+
(
ρ00R0

)−T
])
,

where the second inequality holds byAssumptionsA2.1(b)­(c) andA2.2, and the normalization

condition. In particular,

E
∥∥Λ0′ϵ

∥∥2 = N∑
i=1

N∑
j=1

T∑
s=1

E
(
ϵisλ

0′
i λjϵjs

)
=

N∑
i=1

T∑
s=1

E
(
ϵ2isλ

0′
i λ

0
i

)
= Op (N

pT ) (B.2.4)

where the second equality holds because E
(
ϵis | {ϵjs}Nj=1,j ̸=i, {λj}Nj=1

)
= 0 by Assumption

A2.1(c), and the last holds by Assumptions A2.2, A2.3 and A2.4. By the same token,

∥A13∥ ≤ N−1+p/2T

∥∥∥∥ Λ0′ϵ

Np/2T 1/2

∥∥∥∥∥∥∥ u

T 1/2

∥∥∥∥∥∥J −1
B B̂

∥∥∥∥∥JBJ −1
T

∥∥
= N−1+p/2TOp

((
ρ001
)−T

+ . . .+
(
ρ00R0

)−T
)
,
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and

∥A14∥ ≤ N−1 ∥ϵ∥2sp
∥∥∥J −1

B B̂
∥∥∥∥∥JBJ −1

T

∥∥ = N−1 (N + T )Op

([(
ρ001
)−T

+ . . .+
(
ρ00R0

)−T
])

where we also use the that that ∥ϵ∥2sp = Op (N + T ) under Assumption A2.3(e). In sum, we

have shown that ∥A1∥ = Op

(
(N−1+pT + 1)

[
(ρ001)

−T
+ . . .+

(
ρ00R0

)−T
])
.

Next, we studyA2.Note thatA2 = N−1B0Λ0′Λ0u′B̂J −1
T +N−1B0Λ0′ϵB̂J −1

T ≡ A21+A22.

For A21, we have

A21 ≤ N−1+pT 1/2

∥∥∥∥B0
(
ρ0
0

)−T (
ρ0
0

)T Λ0′Λ0

Np

u′

T 1/2
J −1

B B̂
(
ρ0
0

)−T

∥∥∥∥
≤ N−1+pT 1/2

∥∥∥B0
(
ρ0
0

)−T
∥∥∥∥∥∥(ρ0

0

)T∥∥∥
sp

∥∥∥∥Λ0′Λ0

Np

∥∥∥∥∥∥∥∥ u′

T 1/2

∥∥∥∥∥∥∥J −1
B B̂

∥∥∥∥∥∥(ρ0
0

)−T
∥∥∥
sp

≤ N−1+pT 1/2Op (1)
∥∥∥(ρ0

0

)T∥∥∥
sp

∥∥∥(ρ0
0

)−T
∥∥∥
sp

= Op

(
N−1+pT 1/2

)
,

where the third inequality above follows by Assumptions A2.1(b) and A2.2, Lemma B.3.2(e),

and the normalization condition, and the equality follows because
∥∥∥(ρ0

0)
T
∥∥∥
sp

∥∥∥(ρ0
0)

−T
∥∥∥
sp

=

Op (1) underAssumptionA2.5(a). To see this, note that asT → ∞,
∥∥∥(ρ0

0)
T
∥∥∥
sp

=
(
1 + cr,max

κT

)T
≍

exp
(
cr,maxTκ

−1
T

)
and

∥∥∥(ρ0
0)

−T
∥∥∥
sp

=
(
1 +

cr,min

κT

)−T

≍ exp
(
−cr,minTκ

−1
T

)
, which in con­

junctionwith the requirement that |cr,max − cr,min| = Op

(
κT

T

)
, implies that

∥∥∥(ρ0
0)

T
∥∥∥
sp

∥∥∥(ρ0
0)

−T
∥∥∥
sp

=

Op(exp
(
cr,max − cr,min)Tκ

−1
T )
)
= Op (1) . Similarly,

∥A22∥ ≤ N−1+p/2T 1/2
∥∥∥B0

(
ρ0
0

)−T
∥∥∥∥∥∥(ρ0

0

)T∥∥∥
sp

∥∥∥∥ Λ0′ϵ

Np/2T 1/2

∥∥∥∥∥∥∥(J −1
B B̂

)∥∥∥∥∥∥(ρ0
0

)−T
∥∥∥
sp

= Op(N
−1+ p

2T 1/2),

where we also use (B.2.4). In sum, we have ∥A2∥ = Op

(
N−1+pT 1/2

)
.

Next, note that A3 = N−1uΛ0′Λ0B0′B̂J −1
T + N−1ϵ′Λ0B0′B̂J −1

T ≡ A31 + A32. Under
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Assumptions A2.1(b) and A2.2, and by Lemma B.1.1 and (B.2.4), we have

∥A31∥ ≤ N−1+pT 1/2
∥∥∥ u

T 1/2

∥∥∥∥∥∥∥Λ0′Λ0

Np

∥∥∥∥∥∥∥B0′B̂J −1
T

∥∥∥ = Op

(
N−1+pT 1/2

)
and

∥A32∥ ≤ N−1+p/2T 1/2

∥∥∥∥ ϵ′Λ0

Np/2T 1/2

∥∥∥∥∥∥∥B0′B̂J −1
T

∥∥∥ = Op

(
N−1+p/2T 1/2

)
.

So ∥A3∥ = Op

(
N−1+pT 1/2

)
and

∥A1 + A2 + A3∥ = Op

(
N−1+pT 1/2

)
+Op

((
N−1+pT + 1

) [(
ρ001
)−T

+ . . .+
(
ρ00R0

)−T
])
.

That is,

∥∥∥∥B̂ (N1−pVZ,NJ −1
T

)
−B0Λ

0′Λ0

Np

(
B0′B̂J −1

T

)∥∥∥∥
= Op

(
T 1/2

)
+Op

((
T +N−p+1

) [(
ρ001
)−T

+ . . .+
(
ρ00R0

)−T
])

= Op

(
T 1/2

)
,

where the last equality follows because we can readily see that

(
T +N−p+1

)
max{

(
ρ001
)−T

, . . . ,
(
ρ00R0

)−T} ≍
(
T +N−p+1

)
exp(−cr,minTκ

−1
T ) = o (1)

under Assumption A2.5. Here, cr,min = min{c1, . . . , cR0}. Then

1

T

∥∥∥∥B̂ (N1−pVZ,NJ −1
T

)
−B0Λ

0′Λ0

Np

(
B0′B̂J −1

T

)∥∥∥∥2
=

1

T

T∑
t=2

∥∥∥∥(N1−pJ −1
T VZ,N

)
B̂t −

(
B0′B̂J −1

T

)′ Λ0′Λ0

Np
B0

t

∥∥∥∥2 = Op (1) .

In addition, from above analyses ofA1 toA3, we can see thatA21 andA31 are the leading term in

the aboveMSEbound, whereA21 = N−1+pB0Λ0′Λ0

Np u′B̂J −1
T andA31 = N−1+puΛ0′Λ0

Np B0′B̂J −1
T .

Moving A21 and A31 from the right group of terms to the left group of terms with regard to
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(B.2.3), squaring both sides and then dividing by T , we can readily show that

1
T

∥∥∥B̂ (N1−pJ −1
T VZ,N

)
−B0

[
Λ0′Λ0

Np (B0′B̂J −1
T ) + Λ0′Λ0

Np u′B̂J −1
T

]
− u

[
Λ0′Λ0

Np (B0′B̂J −1
T )
]∥∥∥2

= Op (N
−p) .(B.2.5)

Now we are in a position to define the rotation matrixH . Let

Hu =
Λ0′Λ0

Np
(B0′B̂J −1

T ) andHB =
Λ0′Λ0

Np

(
B0′B̂J −1

T

)
+

Λ0′Λ0

Np
u′B̂J −1

T .

Note thatHu is nonsingular, ∥Hu∥ = Op (1) and ∥H−1
u ∥ = Op (1) by Assumption A2.2 and

B.1.1. In addition,

∥HB −Hu∥ =

∥∥∥∥∥Λ0′Λ0

Np

u′B̂

JB

√
T
J −1

T JBT
1/2

∥∥∥∥∥
≤

∥∥∥∥Λ0′Λ0

Np

∥∥∥∥∥∥∥∥ u′
√
T

∥∥∥∥∥∥∥J −1
B B̂

∥∥∥∥∥J −1
T JBT

1/2
∥∥

= Op

(
T 1/2

[(
ρ001
)−T

+ . . .+
(
ρ00R0

)−T
])
,

where the second equality holds by Assumption A2.1(b), the normalization condition, and

the fact that JT ≡ J −1
B (ρ0

0)
T . Note that ∥HB −Hu∥ = op (1) when all factors are mildly

explosive. It follows that ∥HB∥ ≤ ∥Hu∥+ ∥HB −Hu∥ = Op (1) and

∥∥H−1
B

∥∥ ≤
∥∥H−1

u

∥∥+ ∥HB −Hu∥
∥∥H−1

u

∥∥2 +Op

(
∥HB −Hu∥2

)
= Op (1) +Op

(
T 1/2

[(
ρ001
)−T

+ . . .+
(
ρ00R0

)−T
])

= Op (1) , (B.2.6)

where we use the fact that H−1
B = H−1

u − H−1
u (HB −Hu)H

−1
u + Op(∥HB −Hu∥2) by
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Fact 9.9.60 in Bernstein (2009). Then, by (B.2.5) ,

∥∥∥B̂N1−pVZ,NJ −1
T H−1

B −B0 − uHuH
−1
B

∥∥∥
≤

∥∥∥B̂N1−pVZ,NJ −1
T −B0HB − uHu

∥∥∥∥∥H−1
B

∥∥
= Op

(
N−p/2T 1/2

)
Op

(∥∥H−1
B

∥∥) = Op

(
N−p/2T 1/2

)
. (B.2.7)

In addition, noting thatHuH
−1
B = I − (HB −Hu)H

−1
u +Op

(
∥HB −Hu∥2 ∥Hu∥

)
,

∥∥HuH
−1
B − I

∥∥ = Op

(
∥HB −Hu∥

∥∥H−1
u

∥∥)+Op

(
∥HB −Hu∥2 ∥Hu∥

)
= Op

(
T 1/2

[(
ρ001
)−T

+ . . .+
(
ρ00R0

)−T
])
. (B.2.8)

Note that when 1
T
B0′B0 = Op(1), we have because ∥HB −Hu∥ = Op(1) instead of op (1).

But this is the case where all factors exhibit a unit root process that is considered in Bai and

Ng (2004) and corresponds to the case stated in Lemmas B.1.5 and B.1.6 in Section B.1.1.

Now, define (
H−1

)′
= N1−pVZ,NJ −1

T H−1
B (B.2.9)

Note that

(
H−1

)′
= [N1−p

(
ρ0
0

)−T
VZ,N

(
ρ0
0

)−T
]
(
ρ0
0

)2T J −1
T H−1

B

= [N1−p
(
ρ0
0

)−T
VZ,N

(
ρ0
0

)−T
]
(
ρ0
0

)T J −1
B H−1

B , (B.2.10)

where equality holds by the fact that VZ,N and J −1
T are both diagonal matrix and JT =

(ρ0
0)

T JB. According to Lemma B.3.3 and the fact shown above that

∥∥H−1
B

∥∥ = Op (1) +Op

(
T 1/2

[(
ρ001
)−T

+ . . .+
(
ρ00R0

)−T
])
,
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it follows directly

∥∥H−1
∥∥ = Op

(
J −1

B

[(
ρ001
)T

+ . . .+
(
ρ00R0

)T])
+Op

(
J −1

B T 1/2
)

(B.2.11)

where the latter term in above expression are of small order compared with the former terms

in above expression in the case that factors follow mildly explosive processes.

Then by (B.2.9), (B.2.8), and (B.2.7) and the fact that ∥u∥ /
√
T = Op (1), we have

∥∥∥B̂H ′−1 −
(
B0 + u

)∥∥∥ ≤
∥∥∥B̂H ′−1 −B0 − uHuH

−1
B

∥∥∥+ ∥∥u (HuH
−1
B − I

)∥∥
= Op

(
N−p/2T 1/2

)
+Op

(
T
[(
ρ001
)−T

+ . . .+
(
ρ00R0

)−T
])

= Op

(
N−p/2T 1/2

)
. (B.2.12)

That is,
1

T

∥∥∥B̂H ′−1 − (B0 + u)
∥∥∥2 = Op

(
N−p + T [(ρ001)

−2T
+ . . .+

(
ρ00R0

)−2T
]
)
. The de­

sired result follows by the fact that f 0
t = B0

t + ut.

Proofs of Lemma B.1.2(b)

By (B.2.2), (B.2.5), and Lemma B.3.3, we have that for each t,

{[
N1−p

(
ρ0
0

)−T
VZ,N

(
ρ0
0

)−T
] [(

ρ0
0

)2T J −1
T

]}′
B̂t

−
[
Λ0′Λ0

Np

(
B0′B̂J −1

T

)
+

Λ0′Λ0

Np
u′B̂J −1

T

]′
B0

t +

[
Λ0′Λ0

Np

(
B0′B̂J −1

T

)]′
ut

≡
{[
N1−p

(
ρ0
0

)−T
VZ,N

(
ρ0
0

)−T
] [(

ρ0
0

)2T J −1
T

]}′
B̂t −H ′

BB
0
t −H ′

uut

=
(
N−pJ −1

T

)
B̂′ (Λ0u′ + ϵ

)′ (
Λ0ut + ϵt

)
+
(
N−pJ −1

T

)
B̂′ϵ′Λ0B0

t +
(
N−pJ −1

T

)
B̂′B0Λ0′ϵt

≡
(
N−pJ −1

T

)
(A1t + A2t + A3t) , (B.2.13)

where we use the fact that J −1
T = (ρ0

0)
T JB and VZ,N are both diagonal matrix, implying that

VZ,NJ −1
T = J −1

T VZ,N .
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We first study A1t by making the following decomposition:

A1t = B̂′ϵ′ϵt + B̂′uΛ0′ϵt + B̂′ϵ′Λ0ut + B̂′uΛ0′Λ0ut ≡ A1t1 + A1t2 + A1t3 + A1t4.

Noting that B̂ = (B̂H ′−1 − f 0)H ′ + f 0H ′, we make further decomposition for A1t1 :

A1t1 = Hf 0′ϵ′ϵt +H
(
B̂H ′−1 − f 0

)′
ϵ′ϵt = A1t1a + A1t1b.

Noting thatH = (N1−p)−1V −1
Z,NJTH

′
B by (B.2.9), and by Lemma B.3.3, we can show that

∥H∥ =

∥∥∥∥[N1−p
(
ρ0
0

)−T
VZ,N

(
ρ0
0

)−T
]−1 (

ρ0
0

)−T JBH
′
B

∥∥∥∥
≤

∥∥∥∥[N1−p
(
ρ0
0

)−T
VZ,N

(
ρ0
0

)−T
]−1
∥∥∥∥∥∥∥(ρ0

0

)−T
∥∥∥ ∥JB∥ ∥HB∥

= Op

(
JB

[(
ρ001
)−T

+ . . .+
(
ρ00R0

)−T
])

(B.2.14)

where we use the fact that ∥HB∥ = Op (1) + Op

(
T 1/2

[
(ρ001)

−T
+ . . .+

(
ρ00R0

)−T
])

=

Op (1). Recalling that γN (s, t) =
∑N

i=1E (ϵisϵit), we make further decomposition for A1t1a :

A1t1a =
T∑

s=1

Hf 0
s γN (s, t) +

T∑
s=1

Hf 0
s

(
N∑
i=1

ϵisϵit − γN (s, t)

)
≡ A1t1a1 + A1t1a2.

Note that
∑T

s=1 |γN (s, t)|2 ≤ (maxs,t |γN (s, t)|)
∑T

s=1 |γN (s, t)| = O(N2) by Assumption

A2.3(b). In addition,

T∑
s=1

∥∥Hf 0
s

∥∥2 =
T∑

s=1

f 0′
s H

′Hf 0
s =

T∑
s=1

f 0′
s

(
ρ0
0

)−T
((

ρ0
0

)T
H ′
)((

ρ0
0

)T
H ′
)′ (

ρ0
0

)−T
f 0
s

≤
∥∥∥(ρ0

0

)T
H ′
∥∥∥2
sp

T∑
s=1

f 0′
s

(
ρ0
0

)−T (
ρ0
0

)−T
f 0
s

≤ Op

(
J 2

B

) T∑
s=1

f 0′
s

(
ρ0
0

)−T (
ρ0
0

)−T
f 0
s = Op

(
J2
B

)
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where the second inequality holds by (B.2.14) and Assumption Assumption A2.5(a), the final

equality follows by Lemma B.3.2(e). Then by the Cauchy­Schwarz inequality,

∥A1t1a1∥ =

∥∥∥∥∥
T∑

s=1

Hf 0
s γN (s, t)

∥∥∥∥∥ ≤

[
T∑

s=1

∥∥Hf 0
s

∥∥2]1/2 [ T∑
s=1

|γN (s, t)|2
]1/2

= Op (JBN) .

For A1t1a2, we have by the Cauchy­Schwarz inequality

∥A1t1a2∥ ≤

[
T∑

s=1

∥∥Hf 0
s

∥∥2]1/2  T∑
s=1

∣∣∣∣∣
N∑
i=1

[ϵisϵit − E (ϵisϵit)]

∣∣∣∣∣
2
1/2

= Op

(
JBN

1/2T 1/2
)

where we use the fact that
∑T

s=1 ∥Hf 0
s ∥ = Op (JB) and Assumption A2.3(c).

Now, write A1t1b =
∑T

s=1(B̂s −Hf 0
s )γN (s, t) +

∑T
s=1(B̂s −Hf 0

s )[
∑N

i=1 ϵisϵit − γN (s, t)]

≡ A1t1b1 + A1t1b2. By (B.2.12) and (B.2.14),

∥∥∥B̂ − f 0H ′
∥∥∥ ≤

∥∥∥B̂H ′−1 − f 0
∥∥∥ ∥H∥

= Op

(
JBN

−p/2T 1/2
[(
ρ001
)−T

+ . . .+
(
ρ00R0

)−T
])
. (B.2.15)

This, in conjunction with Cauchy­Schwarz inequality and Assumption A2.3(b), implies that

∥A1t1b1∥ ≤
∥∥∥B̂ − f 0H ′

∥∥∥[ T∑
s=1

|γN (s, t)|2
]1/2

= Op

(
JBN

−p/2T 1/2
[(
ρ001
)−T

+ . . .+
(
ρ00R0

)−T
])
Op (N) . (B.2.16)

Similarly, by Assumption A2.3(c) we have

∥A1t1b2∥ ≤
∥∥∥B̂ − f 0H ′

∥∥∥
 T∑

s=1

∣∣∣∣∣
N∑
i=1

[ϵisϵit − E (ϵisϵit)]

∣∣∣∣∣
2
1/2

= Op

(
JBN

−p/2T 1/2
[(
ρ001
)−T

+ . . .+
(
ρ00R0

)−T
])
Op

(
(NT )1/2

)
.
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In sum, we have

∥A1t1∥ = Op

(
JBN + JBN

1/2T 1/2
)

(B.2.17)

+Op

(
JBN

1/2−p/2T 1/2(N1/2 + T 1/2)
[(
ρ001
)−T

+ . . .+
(
ρ00R0

)−T
])
.

For A1t2, we have A1t2 = Hf 0′uΛ0′ϵt+H(B̂H ′−1−f 0)′uΛ0′ϵt ≡ A1t2a+A1t2b. Note that

A1t2a = H
(
ρ0
0

)T T∑
s=1

(
ρ0
0

)−T
f 0
su

′
s

N∑
i=1

λ0
i ϵit ≡ H

(
ρ0
0

)T Ā1t2a.

Note that E
(
Ā1t2a

)
= 0 under Assumptions A2.1(c) and A2.4 and

E
∥∥Ā1t2a∥

2
= Etr

[
N∑
i=1

N∑
j=1

ϵitλ
0′
i

T∑
s=1

T∑
q=1

uqf
0′
q

(
ρ0
0

)−T (
ρ0
0

)−T
f 0
su

′
sλ

0
jϵjt

]

= Etr

[
N∑
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ϵ2itλ
0
iλ

0′
i

T∑
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T∑
q=1

uqf
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q

(
ρ0
0

)−T (
ρ0
0

)−T
f 0
su

′
s

]

= Etr

[
N∑
i=1

σ2
iλ

0
iλ

0′
i

T∑
s=1

T∑
q=1

uqf
0′
q

(
ρ0
0

)−T (
ρ0
0

)−T
f 0
su

′
s

]

≤ M ·NpE

∥∥∥∥Λ0′Λ0

Np

∥∥∥∥E
∥∥∥∥∥

T∑
q=1

uqf
0′
q

(
ρ0
0

)−T

∥∥∥∥∥
2

≤ O (Np)O (1) = O (Np) ,

where the second equality holds by Assumption A2.1(c) and the law of iterated expectations,

the third equality holds by Assumptions A2.3(a) and A2.4, the first inequality holds by As­

sumption A2.3(a), the second inequality holds by Assumption A2.2, and and Lemma B.3.2(c).

In addition,
∥∥∥H ′ (ρ0

0)
T
∥∥∥ ≤ ∥H∥

∥∥∥(ρ0
0)

T
∥∥∥ = Op (JB) , where by (B.2.14) and Assumption

A2.5(a). It follows that

∥A1t2a∥ ≤
∥∥∥H (

ρ0
0

)T∥∥∥∥∥Ā1t2a

∥∥ = Op

(
JBN

p/2
)
.
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For A1t2b, we have

∥A1t2b∥ =

∥∥∥∥∥
T∑

s=1

(
B̂s −Hf 0

s

) N∑
i=1

usλ
0
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0
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2
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)
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,

where the second equality follows from (B.2.15) and the fact that
∑T

s=1

∥∥∥∑N
i=1 usλ

0
i ϵit

∥∥∥2 ≤∑T
s=1 ∥us∥2 ×

∥∥∥∑N
i=1 λ

0
i ϵit

∥∥∥2 = Op (N
pT ) by Assumption A2.1(b) and similar arguments as

used to obtain (B.2.4). In sum, we have

∥A1t2∥ = Op

(
JBN

p/2
)
+Op

(
JBT

[(
ρ001
)−T

+ . . .+
(
ρ00R0

)−T
])
.

Next, we study A1t3. Note that A1t3 = Hf 0′ϵ′Λ0ut + H(B̂H ′−1 − f 0)′ϵ′Λ0ut ≡ A1t3a +

A1t3b. Write A1t3a = H (ρ0
0)

T ∑T
s=1 (ρ

0
0)

−T
f 0
s

∑N
i=1 ϵisλ

0′
i ut ≡ H (ρ0

0)
T Ā1t3a. As in the

analysis of Ā1t2a, we have

E
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0
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(
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s ϵjs

)
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]
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N∑
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0
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(
T∑
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ϵ2isf
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s

(
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0
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0
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s
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[
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′
t

N∑
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σ2
iλ

0
iλ

0′
i

(
T∑

s=1

f 0′
s

(
ρ0
0

)−T (
ρ0
0

)−T

)]

≤ M ·Np

∥∥∥∥Λ0′Λ0
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∥∥∥∥E
{
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∥∥∥∥∥
T∑
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f 0′
s

(
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0

)−T (
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0

)−T
f 0
s

∥∥∥∥∥
}

≤ Op (N
p)

∥∥∥∥Λ0′Λ0

Np

∥∥∥∥ [E ∥ut∥4
]1/2E

∥∥∥∥∥
T∑

s=1

f 0′
s

(
ρ0
0

)−T (
ρ0
0

)−T
f 0
s

∥∥∥∥∥
2


1/2

= Op (N
p) ,

where the second equality holds byAssumptionA2.1(c) and the law of iterated expectationsand
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the fact that
∑T

s=1 ϵ
2
isf

0′
s (ρ0

0)
−T

(ρ0
0)

−T
f 0
s is a scalar, the first inequality holds by Assump­

tion A2.3(a) and the last equality holds by Assumptions A2.2 and A2.1(a), and the fact that

E
∥∥∥∑T

s=1 f
0′
s (ρ0

0)
−T

(ρ0
0)

−T
f 0
s

∥∥∥2 = O(1) by the proof of Lemma B.3.2(e). This result, along

with the probability bound for
∥∥∥H ′ (ρ0

0)
T
∥∥∥ , implies that

∥A1t3a∥ ≤
∥∥∥H (

ρ0
0

)T∥∥∥∥∥Ā1t3a

∥∥ = Op

(
JBN

p/2
)
.

For A1t3b, we have

∥A1t3b∥ ≤
∥∥∥B̂ − f 0H ′

∥∥∥
 T∑

s=1

∥∥∥∥∥
N∑
i=1

ϵisλ
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∥∥∥∥∥
2
1/2

= Op

(
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[(
ρ001
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+ . . .+
(
ρ00R0

)−T
])
Op

(
Np/2T 1/2

)
= Op

(
JBT
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ρ001
)−T

+ . . .+
(
ρ00R0

)−T
])
,

where we use (B.2.15) and the fact that

E

 T∑
s=1

∥∥∥∥∥
N∑
i=1

ϵisλ
0′
i ut

∥∥∥∥∥
2
 =

T∑
s=1

N∑
i=1

N∑
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E
(
ϵisλ

0′
i utu

′
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0
jϵjs
)
=

T∑
s=1

N∑
i=1

E
(
ϵisλ

0′
i utu

′
tλ

0
i ϵis
)

=
T∑

s=1

N∑
i=1

σ2
iE
(
λ0′

i utu
′
tλ

0
i

)
≤ M

T∑
s=1

E ∥ut∥2
N∑
i=1

E
(
λ0′

i λ
0
i

)
= Op (N

pT ) ,

where the second equality holds by Assumption A2.1(c) and the law of iterated expectations,

the third equality holds by Assumptions A2.3–A2.4, and the final equality holds by Assump­

tions A2.1(b), A2.2, and A2.4. In sum, we have shown that

∥A1t3∥ = Op

(
JBN

p/2
)
+Op

(
JBT

[(
ρ001
)−T

+ . . .+
(
ρ00R0

)−T
])
.

Now, we write A1t4 = Hf 0′uΛ0′Λ0ut +H(B̂H ′−1 − f 0)′uΛ0′Λ0ut ≡ A1t4a + A1t4b. For
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A1t4a, we have

∥A1t4a∥ =

∥∥∥∥∥
T∑

s=1

Hf 0
su

′
sΛ

0′Λ0ut

∥∥∥∥∥ ≤

∥∥∥∥∥
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Hf 0
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′
s

∥∥∥∥∥∥∥Λ0′Λ0
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0

)T∥∥∥ ∥∥∥∥∥
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Np
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p) ,

where we use Assumptions A2.1(b) and A2.2, the probability bound
∥∥∥H (ρ0

0)
T
∥∥∥ = Op (JB),

and the fact that
∥∥∥∑T

s=1 (ρ
0
0)

−T
f 0
su

′
s

∥∥∥ = Op (1) by Lemma B.3.2(c). For A1t4b, we have

∥A1t4b∥ ≤
∥∥∥B̂ − f 0H ′
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sΛ

0′Λ0ut

∥∥2]1/2 = Op

(
JBN

p/2T
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ρ001
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+ . . .+
(
ρ00R0
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])

where we use (B.2.15) and the fact that

T∑
s=1

∥∥u′
sΛ

0′Λ0ut

∥∥2 = N2ptr

(
Λ0′Λ0

Np
utu

′
t

Λ0′Λ0

Np

T∑
s=1

usu
′
s

)

≤ N2p

∥∥∥∥Λ0′Λ0

Np

∥∥∥∥2 ∥ut∥2 ∥u∥2 = Op

(
N2pT

)
,

where the final equality holds by Assumption A2.1(b) and A2.2(b). In sum, we have

∥A1t4∥ = Op (JBN
p) +Op

(
JBN

p/2T
[(
ρ001
)−T

+ . . .+
(
ρ00R0

)−T
])
.

Collecting the above results for A1tl, l = 1, 2, 3, 4, we obtain

∥A1t∥ = Op

(
JB(N +N1/2T 1/2)

)
+Op

(
JB

[
N1−p/2T 1/2 +Np/2T

] [(
ρ001
)−T

+ . . .+
(
ρ00R0
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.

Now, we studyA2t.Note thatA2t = Hf 0′ϵ′Λ0B0
t +(B̂−f 0H ′)′ϵ′Λ0B0

t ≡ A2t1+A2t2.Note

A2t1 = H (ρ0
0)

T
(ρ0

0)
−T

f 0′ϵ′Λ0B0
t = H (ρ0

0)
T Ā2t1B

0
t , where Ā2t1 = (ρ0

0)
−T

f 0′ϵ′Λ0 =
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∑N
i=1

∑T
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0
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−T
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s ϵisλ
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(
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0
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∥∥∥∥∥ = Op (N
p) ,

where the second equality holds by A2.1(c) and the law of iterated expectations, and the equal­

ity follows from Assumption A2.2, and the proof of Lemma B.3.2(e). As a result, we have
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∥∥∥∥B0
t

∥∥ = Op (JB)Op

(
Np/2

)
Op

([(
ρ001
)T

+ . . .+
(
ρ00R0

)T])
= Op

(
JBN

p/2
[(
ρ001
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,

where we use the fact that ∥B0
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T
+ . . .+

(
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)T) by direct

calculations forB0
T under Assumption A2.1 and A2.5. Similarly,
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where we also use (B.2.15). Then
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Next, we study A3t. Note that A3t = Hf 0′B0Λ0ϵt + (B̂ − f 0H ′)′B0Λ0ϵt ≡ A3t1 + A3t2.
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A3t1a + A3t1b as f 0
t = B0

t + ut.
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where the first equality holds by the fact that
∥∥∥H (ρ0

0)
T
∥∥∥ = Op (JB) , Lemma B.3.2(e), and

the fact that
∥∥∥∑N

i=1 λ
0
i ϵit

∥∥∥ = Op

(
Np/2

)
under Assumptions A2.1 and A2.2. It is easy to

see that A3t1b is dominated by A3t1a in terms of probability order. So we can conclude that
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where we use (B.2.15) and the fact that
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where the second equality holds by A2.1(c) and the law of iterated expectations, the first in­

equality holds by Assumptions A2.3–A2.4, and the last line follows by Assumption A2.2 and
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Lemma B.3.2(e). In sum, we have

∥A3t∥ = Op
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(B.2.18)

where A2t1 and A3t1 are leading terms. Then by (B.2.13),
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)
, (B.2.19)

where the first equality follows by the construction ofH ′−1 in (B.2.10), the second inequality

follows from (B.2.18) and the fact that
∥∥J −1

T N−p
∥∥ = Op

(
J −1

B N−p
[
(ρ001)

−T
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(
ρ00R0

)−T
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,

and the last equality follows from the bounds of
∥∥H−1

B

∥∥ and ∥∥HuH
−1
B − I

∥∥ derived in the
proofs of Lemma B.1.2(a).
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Proofs of Lemma B.1.2(c)

Recall that λ̂i = (B̂′B̂)−1B̂′Zi where Zi = f 0λ0
i + ϵi. By the identity that f 0 = (f 0 −

B̂H ′−1) + B̂H ′−1 and B̂ = (B̂ − f 0H ′) + f 0H ′, and the normalization condition that

J −2
B B̂′B̂ = IR0 , we have

λ̂i −H ′−1λ0
i = J −2

B H(B̂′H−1 − f 0)′(f 0 − B̂H ′−1)λ0
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+J −2
B Hf 0′ϵi + J −2

B (B̂H ′−1 − f 0)′ϵi

≡ D1i + D2i + D3i + D4i. (B.2.20)

We bound each term in the last display in turn.

First, for D1i we have
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where the first equality holds by (B.2.15) and (B.2.12). As we shall see, ∥D1i∥ is dominated

by the other terms due to the presence of Op[(ρ
0
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−T
+ . . . +

(
ρ00R0
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] in the case of mildly

explosive factors.

ForD3i,we haveD3i = J −2
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0
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B

∑T
s=1 (ρ

0
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s ϵis.

Since E
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Op(1) by replacing ϵis with ut in Lemma B.3.2(c) and using arguments as used in the proof of

Lemma B.5 in Horie and Yamamoto (2016) given that ft = κ−1
T Ft−1 + ut for t = 2, . . . , T .

Then
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For D4i, we make the following decomposition

D4i = J −2
B

{(
N−pJ −1

T

)
B̂′ (Λ0u′ + ϵ

)′ (
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)
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)
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}
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Recall that in the Proofs of Lemma B.1.2(b), A2t1 and A3t1 are the leading terms. Here, the

leading terms in D4i are closely related to A2t1 and A3t1. In addition, it is easy to see that D4ia

will be dominated by D4ib and D4ic.

For D4ib, we have
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It is easy to show that D4ib2 is dominated by D4ib1 and so we focus on D4ib1. As the analysis of

A2t1 in the proof of Lemma B.2(b), we have

∥D4ib1∥

=

∥∥∥∥∥N−pJ −1
T H

(
ρ0
0

)T N∑
j=1

T∑
s=1

(
ρ0
0

)−T
f 0
s ϵjsλ

0′
j

T∑
t=2

B0
t ϵit

∥∥∥∥∥
≤ N−p

∥∥J −1
T

∥∥∥∥∥H (
ρ0
0

)T∥∥∥∥∥∥∥∥
N∑
j=1

T∑
s=1

(
ρ0
0

)−T
f 0
s ϵjsλ

0′
j

∥∥∥∥∥
∥∥∥∥∥

T∑
t=2

B0
t ϵit

∥∥∥∥∥
= N−pOp

(
J −1

B

[(
ρ001
)−T

+ . . .+
(
ρ00R0

)−T
])
Op (JB)Op

(
Np/2

)
Op

[(
ρ001
)T

+ . . .+
(
ρ00R0

)T]
= Op

(
N−p/2

[(
ρ001
)−T

+ . . .+
(
ρ00R0

)−T
])
Op

[(
ρ001
)T

+ . . .+
(
ρ00R0

)T]
= Op

(
N−p/2

)
,

wherewe use the fact that
∥∥∥∑N

j=1

∑T
s=1 (ρ

0
0)

−T
f 0
s ϵjsλ

0′
j

∥∥∥ = Op

(
Np/2

)
and that

∥∥∥∑T
t=2B

0
t ϵit

∥∥∥ =
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Op[(ρ
0
01)

T
+ . . . +

(
ρ00R0

)T
] by following similar arguments for Lemma B.3.2(c). Similarly,

D4ic =
(
N−pJ −1

T

)
Hf 0′B0Λ0′ϵϵi +

(
N−pJ −1

T

)
(B̂ − f 0H ′)′B0Λ0′ϵϵi

=
(
N−pJ −1

T

)
HB0′B0Λ0′ϵϵi +

(
N−pJ −1

T

)
Hu′B0Λ0′ϵϵi

+
(
N−pJ −1

T

)
(B̂ − f 0H ′)′B0Λ0′ϵϵi

≡ D4ic1 + D4ic2 + D4ic3.

It is easy to show that D4ic2 and D4ic3 are dominated by D4ic1 and so we focus on D4ic1. As

the analysis ofA3t1 in the proof of Lemma B.2(b), we haveD4ic1 =
(
N−pJ −1

T

)
H (ρ0

0)
T D̄4ic1

where D̄4ic1 = (ρ0
0)

−T
f 0′B0Λ0′ϵϵi.

∥D4ic1∥ =

∥∥∥∥∥J −1
T N−p

T∑
s=1

HB0
sB

0′
s

N∑
j=1

λ0
j

∑
t

ϵjtϵit

∥∥∥∥∥
≤

∥∥∥∥∥J −1
T N−p

T∑
s=1

HB0
sB

0′
s

∥∥∥∥∥
∥∥∥∥∥

N∑
j=1

λ0
j

∑
t

ϵjtϵit

∥∥∥∥∥
= Op

(
N−p

)
Op

(
Np/2T 1/2

)
,

where the bound of
∥∥∥J −1

T N−p
∑T

s=1HB0
sB

0′
s

∥∥∥ follows directly from the same arguments as

used in the analysis ofA3t1 in the proof of LemmaB.2(b), and the bound of
∥∥∥∑N

j=1 λ
0
j

∑
t ϵjtϵit

∥∥∥
is obtained as follows:

E

∥∥∥∥∥
N∑
j=1

λ0
j

∑
t

ϵjtϵit

∥∥∥∥∥
2

=
N∑
j=1

N∑
l=1

T∑
t=2

T∑
q=1

E
(
λ0′

l λ
0
jϵjtϵitϵiqϵlq

)
=

N∑
j=1

T∑
t=2

E
(
λ0′

j λ
0
jϵ

2
jtϵ

2
it

)
=

N∑
j=1

E
(
λ0′

j λ
0
j

) T∑
t=2

E
(
ϵ2jtϵ

2
it

)
= Op (N

pT ) ,

where the second equality holds by Assumption A2.1 and the law of iterated expectations,

and the third equality holds by Assumptions A2.1(a), A2.2 and A2.4. It follows that ∥D4i∥ =

Op

(
J −2

B N−p/2T 1/2
)
.
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For D2i, we make the following decomposition.

D2i = J −2
B Hf 0′(B̂H ′−1 − f 0)λi

= J −2
B

{
N−pHf 0′ (Λ0u′ + ϵ

)′ (
Λ0u+ ϵ

)
B̂J −1

T λi +
(
N−p

)
Hf 0′B0Λ0′ϵB̂J −1

T λi

+N−pHf 0′ϵ′Λ0B0′B̂J −1
T λi

}
= D2ia + D2ib + D2ic.

As in the analysis of D4i, we can show that D2ia is dominated by D2ib and D2ic. For D2ib and ,

we have

D2ib = N−pJ −2
B Hf 0′B0Λ0′ϵB̂J −1

T λi

= N−pJ −2
B Hf 0′B0Λ0′ϵf 0H ′J −1

T λi +N−pJ −2
B Hf 0′B0Λ0′ϵ(B̂ − f 0H ′)J −1

T λi

= N−pJ −2
B

{
HB0′B0Λ0′ϵf 0H ′J −1

T λi +Hu0′B0Λ0′ϵf 0H ′J −1
T λi

+Hf 0′B0Λ0′ϵ(B̂ − f 0H ′)J −1
T λi

}
≡ D2ib,1 + D2ib,2 + D2ib,3,

where D2ib,2 and D2ib,3 are dominated by D2ib,1. Following the analysis of ∥A2t1∥ in the proof

of Lemma B.2(b), we have

∥D2ib,1∥

=

∥∥∥∥∥N−pJ −2
B λ′

iJ −1
T

N∑
j=1

T∑
s=1

Hf 0
s ϵjsλ

0′
j

T∑
t=2

B0
tB

0′
t H

′

∥∥∥∥∥
≤ J −2

B ∥λi∥

∥∥∥∥∥J −1
T N−p

N∑
j=1

T∑
s=1

Hf 0
s ϵjsλ

0′
j

∥∥∥∥∥
∥∥∥∥∥

T∑
t=2

B0
tB

0′
t H

′

∥∥∥∥∥
= J −2

B Op(1)Op

(
N−p/2

[(
ρ001
)−T

+ . . .+
(
ρ00R0

)−T
])
Op

(
JB

[(
ρ001
)T

+ . . .+
(
ρ00R0

)T])
= Op

(
J −1

B N−p/2
)
,

where
∥∥∥J −1

T N−p
∑N

j=1

∑T
s=1Hf 0

s ϵjsλ
0′
j

∥∥∥ = Op

(
N−p/2[(ρ001)

−T
+ . . .+

(
ρ00R0

)−T
]
)
holds
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by the same argument as used in the study of ∥A2t1∥ in the proof of Lemma B.2(b), and

that
∥∥∥∑T

t=2B
0
tB

0′
t H

′
∥∥∥ = Op

(
JB

[
(ρ001)

T
+ . . .+

(
ρ00R0

)T]) by arguments as used to bound
∥A3t1∥ in the proof of Lemma B.2(b). Similarly,

D2ic = N−pJ −2
B Hf 0′ϵ′Λ0B0′B̂J −1

T λi

= N−pJ −2
B

{
Hf 0′ϵ′Λ0B0′f 0H ′J −1

T λi +Hf 0′ϵ′Λ0B0′(B̂ − f 0H ′)J −1
T λi

}
= N−pJ −2

B

{
HB0′ϵ′Λ0B0′f 0H ′J −1

T λi +Hu0′ϵ′Λ0B0′f 0H ′J −1
T λi

+Hf 0′ϵ′Λ0B0′(B̂ − f 0H ′)J −1
T λi

}
≡ D2ic,1 + D2ic,2 + D2ic,3,

where D2ic,2 and D2ic,3 are dominated by D2ic,1. Note that

∥D2ic,1∥

=

∥∥∥∥∥N−pJ −2
B λ′

iJ −1
T

T∑
s=1

HB0
sB

0′
s

N∑
j=1

λ0
j

∑
t

ϵjtB
0′
t H

′

∥∥∥∥∥
≤ N−pJ −2

B

∥∥J −1
T

∥∥ ∥λi∥

∥∥∥∥∥
T∑

s=1

HB0
sB

0′
s

∥∥∥∥∥
∥∥∥∥∥

N∑
j=1

λ0
j

∑
t

ϵjtB
0′
t H

′

∥∥∥∥∥
= N−pJ −1

B Op(
(
ρ001
)−T

+ . . .+
(
ρ00R0

)−T
)Op (1)Op

(
JB

[(
ρ001
)T

+ . . .+
(
ρ00R0

)T])
Op

(
JBN

p/2
)

= Op

(
J −1

B N−p/2
)
,

where we use the fact that
∥∥∥∑N

j=1 λ
0
j

∑
t ϵjtB

0′
t H

′
∥∥∥ = Op

(
JBN

p/2
)
by similar arguments as

used to bound ∥A1t3a∥ in the proof of LemmaB.2(b). In sum, we have ∥D2i∥ = Op

(
J −1

B N−p/2
)
.

Collecting above all leading terms, namely, D2i, D3i, and D4i , it follows that:

λ̂i −H ′−1λi = Op

(
J −1

B

(
1 + J −1

B N−p/2T 1/2 +N−p/2
))
.
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B.2.3 Proofs of Lemma B.1.3

By (B.2.13) and (B.2.5), we have

{[
N1−p

(
ρ0
0

)−T
VZ,N

(
ρ0
0

)−T
] [(

ρ0
0

)2T J −1
T

]}′ q∑
s=2

B̂s

−
[
Λ0′Λ0

Np

(
B0′B̂J −1

T

)
+

Λ0′Λ0

Np
u′B̂J −1

T

]′ q∑
s=2

Bs −
[
Λ0′Λ0

Np

(
B0′B̂J −1

T

)]′ q∑
s=2

us

=
{[
N1−p

(
ρ0
0

)−T
VZ,N

(
ρ0
0

)−T
] [(

ρ0
0

)2T J −1
T

]}′ q∑
s=2

B̂s −H ′
B

q∑
s=2

B0
s −H ′

u

q∑
s=2

us

=
(
N−pJ −1

T

)
B̂′ (Λ0u′ + ϵ

)′ q∑
s=2

(
Λ0us + ϵs

)
+
(
N−pJ −1

T

)
B̂′ϵ′Λ0

q∑
s=2

B0
s

+
(
N−pJ −1

T

)
B̂′B0Λ0′

q∑
s=2

ϵs

=
(
N−pJ −1

T

)
(C1q + C2q + C3q + C4q + C5q + C6q) , (B.2.21)

where C1q to C6q are defined as follows:

C1q = Hf 0′ϵ′
q∑

s=1

ϵs +
(
B̂ − f 0H ′

)′
ϵ′

q∑
s=1

ϵs ≡ C1q1 + C1q2,

C2q = Hf 0′uΛ0′
q∑

s=1

ϵs +
(
B̂ − f 0H ′

)′
uΛ0′

q∑
s=1

ϵs ≡ C2q1 + C2q2,

C3q = Hf 0′ϵ′Λ0

q∑
s=1

us +
(
B̂ − f 0H ′

)′
ϵ′Λ0

q∑
s=1

us ≡ C3q1 + C3q2,

C4q = Hf 0′uΛ0′Λ0

q∑
s=1

us +
(
B̂ − f 0H ′

)′
uΛ′Λ0

q∑
s=1

us ≡ C4q1 + C4q2,

C5q = Hf 0′ϵ′Λ0

q∑
s=1

B0
s +

(
B̂ − f 0H ′

)′
ϵ′Λ0

q∑
s=1

B0
s ≡ C5q1 + C5q2,

C6q = Hf 0′B0Λ0′
q∑

s=1

ϵs +
(
B̂ − f 0H ′

)′
B0Λ0′

q∑
s=1

ϵs ≡ C6q1 + C6q2. (B.2.22)

We bound max1≤q≤T ∥Clq∥ for l = 1, ..., 6 below. The arguments are similar to those used in

the proof of Lemma 2 in Bai and Ng (2004). But the treatment ofH and f 0 are quite different
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because of the presence of mildly explosive factors here.

We first bound max1≤q≤T ∥C1q∥. Note that

C1q1 = Hf 0′E

(
ϵ′

q∑
s=1

ϵs

)
+Hf 0′

[
ϵ′

q∑
s=1

ϵs − E

(
ϵ′

q∑
s=1

ϵs

)]
= C1q1a + C1q1b.

Note thatC1q1a = H (ρ0
0)

T J −1
B C̄1q1a where C̄1q1a = JB (ρ0

0)
−T

f 0′E (ϵ′
∑q

s=1 ϵs) .Note that

∥∥∥(NJBκ
1/2
T )−1C̄1q1a

∥∥∥ =

∥∥∥∥∥
T∑
t=2

κ
−1/2
T

(
ρ0
0

)−T
f 0
t

q∑
s=1

[
N−1

N∑
i=1

E(ϵitϵis)

]∥∥∥∥∥
≤

∥∥∥∥∥
T∑
t=2

κ
−1/2
T

(
ρ0
0

)−T
f 0
t

∥∥∥∥∥
T∑

s=1

∥∥∥∥∥N−1

N∑
i=1

E(ϵitϵis)

∥∥∥∥∥
≤ M

∥∥∥∥∥
T∑
t=2

κ
−1/2
T

(
ρ0
0

)−T
f 0
t

∥∥∥∥∥ = Op (1) uniformly in q,

where the second inequality follows from the fact thatmax1≤s≤T

∑T
t=1

∣∣∣N−1
∑N

i=1E(ϵitϵis)
∣∣∣ ≤

M by Assumption A2.3 and last inequality follows from similar arguments as used in the proof

of Lemma B.3.2(b). This result, along with the fact that
∥∥∥H (ρ0

0)
T J −1

B

∥∥∥ = Op (1) , implies

that

max
1≤q≤T

∥C1q1a∥ ≤
∥∥∥H (

ρ0
0

)T J −1
B

∥∥∥ max
1≤q≤T

∥∥C̄1q1a

∥∥ = Op

(
NJBκ

1/2
T

)
. (B.2.23)

Let Φq,s =
1√
NT

∑N
i=1

∑q
t=2[ϵisϵit − E (ϵisϵit)]. Then

C1q1b =
√
NTH

(
ρ0
0

)T T∑
s=1

(
ρ0
0

)−T
f 0
sΦq,s.

Following Proofs of Lemma B.1.2(b) in Bai and Ng (2004), it suffices to show that for every

234



s = 1, . . . , T max
1≤q≤T

|Φq,s| = Op (1). Equivalently, we are going to prove that

P

(
max
1≤q≤T

|Φq,s| ≥ K

)
= o(1)

where K is finite and chosen to be large enough. Let φs
it = ϵisϵit − E (ϵisϵit) and ϑNq =

N2/(4+δ)q(2+4m)/(4+δ), where m > 0 and can be small enough, δ is defined in Assumption

A2.1. Let 1it = 1 {|φs
it| ≤ ϑNq}, and 1̄it = 1− 1it. Define

φs
1it = φs

it1it − E (φs
it1it) , φ

s
2it = φs

it1it, and φs
3it = E

(
φs
it1it

)
.

Apparently φs
1it + φs

2it − φs
3it = φs

it as E (φs
it) = 0.We prove the claim by showing that

(i1) P
(
max
1≤q≤T

∣∣∣ 1√
NT

∑N
i=1

∑q
t=1 φ

s
1it

∣∣∣ ≥ K

)
= o(1)

(i2) P
(
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1≤q≤T

∣∣∣ 1√
NT

∑N
i=1

∑q
t=1 φ

s
2it

∣∣∣ ≥ K

)
= o(1), and (i3) max

1≤q≤T

∣∣∣ 1√
NT

∑N
i=1

∑q
t=1 φ

s
3it

∣∣∣ =
o (1).

First, we prove (i3). Note that

max
1≤q≤T

∣∣∣∣∣ 1√
NT

N∑
i=1

q∑
t=1

φs
3it

∣∣∣∣∣ ≤ 1√
NT

max
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{
N∑
i=1

q∑
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E|φs
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}1/2{ N∑
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≤ 1√
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√
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q∑
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P (|φs
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≤ 1√
NT

max
1≤q≤T

(
√
Nq)

{
N∑
i=1

q∑
t=1

ϑ
−(4+δ)/2
Nq E|φs
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}1/2

≤ 1√
NT

max
1≤q≤T

Nqϑ
−(4+δ)/4
Nq = O

(
T−m

)
= o (1) .

where the first inequality holds due to Holder’s inequality, the second and fourth inequalities

hold because E|φs
it|(4+δ)/2 < M by the construction of φs

it under Assumption A2.1. The third

inequality holds because of Markov inequality.
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Next, we prove (i2). Noting that max
1≤q≤T

∣∣∣ 1√
NT

∑N
i=1

∑q
t=1 φ

s
2it

∣∣∣ ≥ K implies that

1√
NT
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T∑
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|φs
it| 1̄it ≥ K,

using Holder and Markov inequalities, we have,

P

(
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where the third and fourth inequalities hold because E|φs
it|(4+δ)/2 < M by the construction of

φs
it under Assumption A2.1.

To prove (i1), we consider two typical cases for q, i.e., (i1a) q ≍ T , (i1b) q is finite and. We

first prove (i1) when q ≍ T . Without loss of generality, let {aT} be a sequence of integers

such that 0 < aT < T , aT → ∞ as T → ∞, and T − aT = o(
√
T ). We have
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.
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Using Markov inequality, we bound the second term in the above display as follows,

P

(
max
1≤q≤T

∣∣∣∣∣ 1√
NT

N∑
i=1

q∑
t=aT+1

φs
1it

∣∣∣∣∣ ≥ K/2

)

≤ P

(
max
1≤q≤T

1√
T

q∑
t=aT+1

∣∣∣∣∣ 1√
N

N∑
i=1

φs
1it

∣∣∣∣∣ ≥ K/2

)

≤ P

(
1√
T

T∑
t=aT+1

∣∣∣∣∣ 1√
N

N∑
i=1

φs
1it

∣∣∣∣∣ ≥ K/2

)

≤ T−1/2

T∑
t=aT+1

E

∣∣∣∣∣N−1/2

N∑
i=1

φs
1it

∣∣∣∣∣
≤ T−1/2

T∑
t=aT+1

E

∣∣∣∣∣N−1/2

N∑
i=1

φs
it

∣∣∣∣∣ = O
(
(T − aT )T

−1/2
)
= o (1) ,

where the fourth equality holds by constructions of φs
1it, and E

∣∣∣N−1/2
∑N

i=1 φ
s
it

∣∣∣ < M by

Assumption A2.3(c). Now, we are in the position to show
∣∣∣ 1√

NT

∑N
i=1

∑aT
t=1 φ

s
1it

∣∣∣ = Op (1), to

this end, by Chebyshev’s inequality, it suffices to show E
(

1√
NT

∑N
i=1

∑aT
t=1 φ

s
1it

)2
= Op (1).

Recall φs
1it = ξit1it − E (ξit1it), and φs

it = ϵisϵit − E (ϵisϵit). Therefore, under Assumption

A2.1, {N−1/2
∑N

i=1 φ
s
1it} are still mixing sequence with zero mean. We have,

E

(
1√
NT

N∑
i=1

aT∑
t=1

φs
1it

)2

=
1

T

aT∑
t=1

aT∑
q=1

E

[
1√
N

N∑
i=1

φs
1it

1√
N

N∑
j=1

φs
1jq

]

≤ 1

T

aT∑
t=1

aT∑
q=1

(α(|t− q|))δ/(4+δ)

E ∣∣∣∣∣ 1√
N

N∑
i=1

φs
1it

∣∣∣∣∣
(4+δ)/2

4/(4+δ)

≤ 1

T

aT∑
t=1

aT∑
q=1

(α(|t− q|))δ/(4+δ)

E ∣∣∣∣∣ 1√
N

N∑
i=1

φs
it

∣∣∣∣∣
(4+δ)/2

4/(4+δ)

= O
(
aTT

−1
)
= O (1) ,

where the second equality holds by constructions of φs
1it, and E

∣∣∣N−1/2
∑N

i=1 φ
s
it

∣∣∣(4+δ)/2

< M

by Assumption A2.3(c) for some δ > 0 defined Assumption A2.1. Collecting all above proofs

for the claims (i1), (i2) and (i3), max
1≤q≤T

|Φq,s| = Op (1) holds for every s = 1, . . . , T . Besides, it
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is the trivial case to obtain max
1≤q≤T

|Φq,s| = Op (1)when q is fixed and finite by similar arguments

for the case q ≍ T . For other values of q, corresponding proofs can follow above two typical

cases with slight modifications. Then, we have

max
1≤q≤T

∥C1q1b∥ =
√
NT max

1≤q≤T

∥∥∥∥∥H (
ρ0
0

)T T∑
s=1

(
ρ0
0

)−T
f 0
sΦq,s

∥∥∥∥∥
≤

√
NT

∥∥∥H (
ρ0
0

)T∥∥∥∥∥∥∥∥
T∑

s=1

(
ρ0
0

)−T
f 0
s

∥∥∥∥∥ max
1≤q≤T

∥Φq,s∥

≤
√
NTJB

∥∥∥∥∥
T∑

s=1

(
ρ0
0

)−T
f 0
s

∥∥∥∥∥
(
max
1≤q≤T

∥Φq,s∥
)

= Op

(
N1/2κ

1/2
T T 1/2JB

)
, (B.2.24)

where the first inequality holds by sub­multiplicity of the norm operator, and second inequality

holds because ∥H (ρ0
0)∥ = Op (JB) as discussed in proofs of Lemma B.1.2(a) and (b), and

final quality holds by Lemma B.3.2(b). In sum, we have

max
1≤q≤T

∥C1q1∥ = Op

(
JBκ

1/2
T NT 1/4

)
+Op

(
N1/2κ

1/2
T T 1/2JB

)
. (B.2.25)

It is straightforward to see that max
1≤q≤T

∥C1q2∥ will be dominated by max
1≤q≤T

∥C1q1∥ by similar

arguments above for C1q1 due to the term
∥∥∥B̂ − f 0H ′

∥∥∥ in corresponding derivations.
For max

1≤q≤T
∥C2q∥ to max

1≤q≤T
∥C4q∥, by similar arguments as done above, we can see that they are

not leading terms and negligible compared with max
1≤q≤T

C5q and max
1≤q≤T

C6q. Now, we are in the

position to show the order of leading terms involving max
1≤q≤T

C5q and max
1≤q≤T

C6q.

Again, max
1≤q≤T

∥C5q2∥ in (B.2.22) will be dominated by max
1≤q≤T

∥C5q1∥ as same arguments above

for max
1≤q≤T

∥C1q∥, it is enough to bound C5q1. Note that

max
1≤q≤T

∥C5q1∥ ≤
∥∥∥H (

ρ0
0

)T∥∥∥
sp

∥∥∥∥∥(ρ0
0

)−T
∑
i

∑
r

f 0
r ϵirλ

0′
i

∥∥∥∥∥ max
1≤q≤T

∥∥∥∥∥
q∑

s=1

B0
s

∥∥∥∥∥ .
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Since the term
∥∥∥H (ρ0

0)
T
∥∥∥
sp
does not involve q and is of order Op (JB) in Frobenius norm

in proofs of Lemma B.1.2, and the term
∥∥∥(ρ0

0)
−T ∑

i

∑
r f

0
r ϵ

′
irλ

0′
i

∥∥∥ does not involve q and is
of order Op

(
Np/2

)
in Frobenius norm according to proofs of Lemma B.1.2. By the construc­

tion of mildly explosive factors, under Assumption A2.1(d) , ∥
∑q

s=1B
0
s∥ ≤

∑q
s=1 ∥B0

s∥ ≤∑T
s=1 ∥B0

s∥ = Op

(
(ρ001)

T
+ . . .+

(
ρ00R0

)T) by direct calculations. Then, based on these

facts, it follows that

max
1≤q≤T

∥C5q∥ = Op

(
JBN

p/2
[(
ρ001
)T

+ . . .+
(
ρ00R0

)T])
. (B.2.26)

Similarly, for C6q, it suffices to bound the dominant term ∥C6q1∥ = ∥Hf 0′B0Λ′∑q
s=1 ϵs∥.

Note that

max
1≤q≤T

∥C6q1∥ ≤
∥∥∥H (

ρ0
0

)T∥∥∥
sp

∥∥∥∥∥(ρ0
0

)−T
∑
r

f 0
rB

0′
r

(
ρ0
0

)−T

∥∥∥∥∥∥∥∥(ρ0
0

)T∥∥∥ max
1≤q≤T

∥∥∥∥∥∑
i

q∑
s=1

λ0
i ϵis

∥∥∥∥∥ .
where

∥∥∥H ′ (ρ0
0)

T
∥∥∥
sp

= Op (JB) by the proofs of LemmaB.1.2,
∥∥∥(ρ0

0)
−T ∑

r f
0
rB

0′
r (ρ0

0)
−T
∥∥∥ =

Op(1) by Lemma B.3.2(e), and
∥∥∥(ρ0

0)
T
∥∥∥ = Op

(
(ρ001)

T
+ . . .+

(
ρ00R0

)T) by direct calcula­

tions. These terms does not involve q. Now, we are in the position to bound max
1≤q≤T

∥
∑

i

∑q
s=1 λ

0
i ϵis∥,

to this end, we can readily obtain that, uniformly in q, E
∥∥N−p/2T−1/2

∑
i

∑q
s=1 λ

0
i ϵis
∥∥ ≤M

holds as lemma B.1(4) stated in Bai and Ng (2004). Then, we have max
1≤q≤T

∥
∑

i

∑q
s=1 λiϵis∥ =

Op

(
Np/2T 1/2

)
. We have

max
1≤q≤T

∥C6q∥ = Op

(
JBN

p/2T 1/2
[(
ρ001
)T

+ . . .+
(
ρ00R0

)T])
. (B.2.27)

Note that
∥∥N−pJ −1

T

∥∥ = Op

(
N−pJ −1

B

[
(ρ001)

−T
+ . . .+

(
ρ00R0

)−T
])
, neglecting those dom­
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inated terms, we can conclude

max
1≤q≤T

∥∥∥∥∥
q∑

s=1

(
H−1B̂s −B0

s − us

)∥∥∥∥∥
≤

∥∥H ′−1
B

∥∥ max
1≤q≤T

∥∥∥∥{[N1−p
(
ρ0
0

)−T
VZ,N

(
ρ0
0

)−T
] [(

ρ0
0

)2T J −1
T

]}′
B̂t −H ′

BB
0
t −H ′

uut

∥∥∥∥
+

∥∥HuH
−1
B − I

∥∥ max
1≤q≤T

∥∥∥∥∥
q∑

s=1

us

∥∥∥∥∥
≤

∥∥H−1
B

∥∥∥∥N−pJ −1
T

∥∥( max
1≤q≤T

∥C5q1∥+ max
1≤q≤T

∥C6q1∥
)

+
∥∥HuH

−1
B − I

∥∥ max
1≤q≤T

∥∥∥∥∥
q∑

s=1

us

∥∥∥∥∥ = Op

(
N−p/2 +N−p/2T 1/2

)
= Op

(
N−p/2T 1/2

)
.(B.2.28)

where the first inequality follows by the construction of (H−1)
′ in (B.2.10), the sub­multiplicity

of the norm and the triangular inequality. And the final equality follows by the bounds for

max
1≤q≤T

∥C5q1∥ and max
1≤q≤T

∥C6q1∥ given above, and the bounds of
∥∥H−1

B

∥∥ and ∥∥HuH
−1
B − I

∥∥
in the proofs of Lemma B.1.2(a), and the fact that max

1≤q≤T
∥
∑q

s=1 us∥ = Op

(
T 3/4

)
by similar

arguments used for C1q1a. Then, it follows max
1≤t≤T

1√
T

∥∥∥∑t
s=2H

−1B̂s − fs

∥∥∥ = Op

(
N−p/2

)
directly.

B.2.4 Proofs of Lemma B.1.4

Recall that Λ̂i = (B̂B̂′)−1B̂′Zi with Zi = f 0Λ0
i + ϵi, where Zi = (Zi1, . . . , ZiT )

′ and

ϵi = (ϵi1, . . . , ϵiT )
′. Then

∥∥∥Λ0f 0′ − Λ̂
0
B̂′
∥∥∥2 =

N∑
i=1

∥∥∥f 0Λ0
i − B̂Λ̂i

∥∥∥2 = N∑
i=1

∥∥PB̂Zi − f 0Λ0
i

∥∥2
=

N∑
i=1

∥∥PB̂

(
f 0Λ0

i + ϵi
)
− f 0Λ0

i

∥∥2 = N∑
i=1

∥∥MB̂f
0Λ0

i − PB̂ϵi
∥∥2

≤ 2
N∑
i=1

∥∥MB̂f
0Λ0

i

∥∥2 + 2
N∑
i=1

∥∥PB̂ϵi
∥∥2 ≡ 2B1 + 2B2.
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It suffices to bound B1 and B2. For B2, we have B2 ≤
∑N

i=1 ϵ
′
iPB̂ϵi = O(N + T ) by Lemma

B.3.1(a). For B1, we apply Lemma B.1.2(a) and Assumption A2.2 to obtain

B1 =
N∑
i=1

∥∥∥MB̂

(
f 0 − B̂H ′−1

)
Λ0

i

∥∥∥2 ≤ ∥∥MB̂

∥∥2
sp

∥∥∥f 0 − B̂H ′−1
∥∥∥2 N∑

i=1

∥∥Λ0
i

∥∥2
= O (1)Op

(
TN−p

)
Op(N

p) = Op (T ) .

Consequenly, ||Λ0f 0′ − Λ̂B̂′||2 = Op (N + T ).

B.2.5 Proofs of Lemmas B.5 and B.6

These results are obtained directly as a combination of the proofs for Lemma B.1.2 and Lemma

B.1.3 presented above and the corresponding arguments as used in Bai and Ng (2004) for the

unit root case.

B.3 Some Useful Lemmas

Lemma B.3.1. Suppose Assumption A2.1 to A2.3 hold. Then

(a) supF∈DP
(NT )−1

∑N
i=1 ϵ

′
iPFϵi = OP (N−1 + T−1)

(b) (NT )−1 ∥ϵϵ′∥ = OP

(
N−1/2 + T−1/2

)
and (NT )−1 ∥ϵ′ϵ∥ = OP

(
N−1/2 + T−1/2

)
where DP =

{
F ∈ RT×R

}
, and (a), (b) hold under Assumptions A2.3.

Proof. The derivations are exactly same as those in Peng et al. (2020). �

Lemma B.3.2. Suppose Assumption A2.1 and A2.5 hold. Then

(a)
∥∥∥κ−1/2

T

∑T
t=2 (ρ

0
0)

−t
ut

∥∥∥ = Op (1)

(b)
∥∥∥∑T

t=2 (ρ
0
0)

−T
F 0

t

∥∥∥ = Op

(
κTT

1/2ρ−T
0∗
)
+Op

(
κ
3/2
T

)
(c)

∥∥∥(ρ0
0)

−T
κ−1
T

∑T
t=2 F

0
t−1u

′
t

∥∥∥ = Op(1)
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(d)
∥∥∥κ−2

T

∑T
t=2 (ρ

0
0)

−T
F 0

t F
0′
t (ρ0

0)
−T
∥∥∥ = Op (1).

(e)
∥∥∥∑T

t=2 (ρ
0
0)

−T
f 0
t f

0′
t (ρ0

0)
−T
∥∥∥ = Op (1) +Op(Tρ

−2T
0∗ )

where ρ∗0 = max
{
ρ00,1, . . . , ρ

0
0,R0

}
, ρ0∗ = min

{
ρ00,1, . . . , ρ

0
0,R0

}
Proof. Proofs are similar to those derivations of Lemma B.5 in Horie and Yamamoto (2016)

despite that Horie and Yamamoto (2016) only considered univariate case such that R0 = 1.

However, when R0 > 1, all routines are similar if we define c∗ = max {c1, . . . , cR0} and then,

treat corresponding arguments as if R0 = 1 as done in Horie and Yamamoto (2016). �

The next lemma studies the asymptotic property of VZ,N .

Lemma B.3.3. Under Assumption A2.1­A2.6, as N, T → +∞,

N1−p
(
ρ0
0

)−T
VZ,N

(
ρ0
0

)−T → Υ1 (B.3.1)

where Υ1 ≡ lim
N,T→∞

(
B0′B̂J −1

T

)−1

[B0′B0] Λ
0′Λ0

Np

(
B0′B̂J −1

T

)
(ρ0

0)
−2T , which is a posi­

tively definite matrix.

Proof. Premultiplying B0′ and postmultiplying (ρ0
0)

−2T on both sides of (B.2.2), we have

B0′B̂VZ,NJ −1
T

(
ρ0
0

)−2T −N−1+pB0′B0 1

Np
Λ0′Λ0(B0′B̂J −1

T )
(
ρ0
0

)−2T

= N−1B0′ (Λ0u′ + ϵ
)′ (

Λ0u′ + ϵ
)
B̂J −1

T

(
ρ0
0

)−2T

+N−1B0′B0Λ0′ (Λ0u′ + ϵ
)
B̂J −1

T

(
ρ0
0

)−2T
+N−1B0′ (Λ0u′ + ϵ

)′
Λ0B0′B̂J −1

T

(
ρ0
0

)−2T

≡ A1 +A2 +A3.
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We bound each term below. First, note that

A1 = N−1
(
B0′u

)
Λ0′Λ0u′B̂J −1

T

(
ρ0
0

)−2T
+N−1

(
B0′u

) (
Λ0′ϵ

)
B̂J −1

T

(
ρ0
0

)−2T

+N−1
(
ϵB0

)′ (
Λ0u′) B̂J −1

T

(
ρ0
0

)−2T
+N−1

(
ϵB0

)′
ϵB̂J −1

T

(
ρ0
0

)−2T

≡ A11 +A12 +A13 +A14.

For A11, we have

∥A11∥ = N−1+pT 1/2

∥∥∥∥(B0′u
(
ρ0
0

)−T
) (

ρ0
0

)T Λ0′Λ0

Np

u′

T 1/2
J −1

B B̂JBJ −1
T

(
ρ0
0

)−2T

∥∥∥∥
≤ N−1+pT 1/2

∥∥∥B0′u
(
ρ0
0

)−T
∥∥∥∥∥∥(ρ0

0

)T∥∥∥
sp

∥∥∥∥Λ0′Λ0

Np

∥∥∥∥∥∥∥∥ u′

T 1/2

∥∥∥∥∥∥∥J −1
B B̂

∥∥∥∥∥∥(ρ0
0

)−T
∥∥∥3
sp

= N−1+pT 1/2Op (κT )
∥∥∥(ρ0

0

)T∥∥∥
sp

∥∥∥(ρ0
0

)−T
∥∥∥3
sp

= N−1+pT 1/2κTOp

(
exp

(
−2cr,minTκ

−1
T

))
,

where we use the fact thatJT = (ρ0
0)

T JB to obtain the inequality, the second equality holds by

Assumptions A2.1(b) and A2.2, Lemma B.3.2(c), and the normalization condition, and the last

equality holds by the fact that as T → ∞,
∥∥∥(ρ0

0)
T
∥∥∥
sp

=
(
1 + cr,max

κT

)T
≍ exp

(
cr,maxTκ

−1
T

)
,∥∥∥(ρ0

0)
−T
∥∥∥
sp

=
(
1 +

cr,min

κT

)−T

≍ exp
(
−cr,minTκ

−1
T

)
, and |cr,max − cr,min| = Op

(
κT

T

)
as

assumed in A2.5(a). Similarly,

∥A12∥

≤ N−1+p/2T 1/2
∥∥∥B0′u

(
ρ0
0

)−T
∥∥∥∥∥∥(ρ0

0

)T∥∥∥
sp

∥∥∥∥ Λ0′ϵ

Np/2T 1/2

∥∥∥∥∥∥∥J −1
B B̂

∥∥∥∥∥∥(ρ0
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sp

= N−1+p/2T 1/2Op (κT )Op

(
exp

(
−2cr,minTκ

−1
T

))
,
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where we use Lemma B.3.2(c), (B.2.4), and the normalization condition. Next,

∥A13∥ ≤ N−1+p/2T 1/2
∥∥∥B0′ϵ′

(
ρ0
0

)−T
∥∥∥∥∥∥(ρ0

0

)T∥∥∥
sp

∥∥∥∥ Λ0

Np/2

∥∥∥∥∥∥∥∥ u′
√
T

∥∥∥∥∥∥∥J −1
B B̂

∥∥∥∥∥∥(ρ0
0

)−T
∥∥∥3
sp

= N−1+p/2T 1/2Op

(
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) ∥∥∥(ρ0
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)T∥∥∥
sp
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0

)−T
∥∥∥3
sp

= N−1/2+p/2T 1/2Op

(
exp

(
−2cr,minTκ

−1
T

))
,

where we use Assumptions A2.1(b) and A2.2, the normalization condition, and the fact that∥∥∥B0′ϵ′ (ρ0
0)

−T
∥∥∥ = Op

(
N1/2

)
by Assumptions A2.1 and A2.4 and similar arguments as used

to obtain Lemma B.3.2(c) (c.f., Lemma B.5(c) in Horie and Yamamoto (2016)). Similarly, we

have

∥A14∥ ≤ N−1
∥∥∥B0

(
ρ0
0

)−T
∥∥∥∥∥∥(ρ0

0

)T∥∥∥
sp
∥ϵ′ϵ∥sp

∥∥∥J −1
B B̂

∥∥∥∥∥∥(ρ0
0

)−T
∥∥∥3
sp

= N−1Op (N + T )Op

(
exp

(
−2cr,minTκ

−1
T

))
,

where we use Lemma B.3.2, Assumption A2.3, and the normalization condition. It follows

that

∥A1∥ = Op

(
N−1+p

[
T 1/2κT +N1/2−p/2T 1/2 +N−p (N + T )

])
Op

(
exp

(
−2cr,minTκ

−1
T
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.

(B.3.2)

Next, we study A2. Note that

A2 = N−1B0′B0Λ0′Λ0u′B̂J −1
T

(
ρ0
0

)−2T
+N−1B0′B0Λ0′ϵB̂J −1

T

(
ρ0
0

)−2T ≡ A21 +A22.
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For A21, we have

∥A21∥ ≤ N−1+pT 1/2
∥∥∥(ρ0
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sp
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0

)−T
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sp
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sp
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exp
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,

where the first equality holds by Assumptions A2.1(b) and A2.2, Lemma B.3.2(e), the normal­

ization condition, the fact that JT = (ρ0
0)

T JB. Similarly,
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,

where the first equality holds by Lemma B.3.2(e), (B.2.4), the normalization condition, and

the fact that JT = (ρ0
0)

T JB. In sum, we have
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Now, we study A3. Note that
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where the first equality follows by Assumption A2.2, Lemma B.3.2(c) and (e), the normaliza­

tion condition, and the fact that JT = (ρ0
0)

T JB. Similarly,
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Combining (B.3.2), (B.3.3), and (B.3.4), we have
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Noting that JT ≡ (ρ0
0)

T JB, VZ,N , and (ρ0
0)

T are all R0 × R0 diagonal matrices, so they are

interchangeable, (B.3.5) implies that
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B.4 Supplementary Results for Monte Carlo Simulations

In this section, we first report the simulation results based on the asymptotic normal critical

value. Then we report the performance of the transformed double ridge ratio criterion to de­

termine the number of factors.

B.4.1 Simulation results based on the asymptotic normal critical value

In this subsection, we present simulation results of our proposed test based on the asymptotic

critical value.

Table B.1: Finite sample properties of the PPT under the null and alternatives when R0 = 3 that is
taken as known.

Size of the Proposed Test
DGP 1 ρi = 1 for i = 1, . . . , N

ρ0
0\ (N, T ) (100,51) (100,101) (100,201) (200,51) (200,101) (200,201)

diag (1.00, 1.00, 1.00) 0.056 0.052 0.042 0.062 0.038 0.034
diag (1.02, 1.02, 1.02) 0.020 0.002 0.000 0.016 0.006 0.000
diag (1.04, 1.04, 1.04) 0.002 0.000 0.000 0.006 0.000 0.000
diag (1.08, 1.08, 1.08) 0.000 0.000 0.002 0.000 0.000 0.000
diag (1.02, 1.04, 1.06) 0.000 0.002 0.000 0.000 0.000 0.000
diag (1.02, 1.05, 1.08) 0.000 0.000 0.000 0.000 0.000 0.000

Power of the Proposed Test
DGP 2 ρi

i.i.d∼ Uniform (1.08, 1.10) for any i ∈ {1, . . . , N}
ρ0
0\ (N, T ) (100,51) (100,101) (100,201) (200,51) (200,101) (200,201)

diag (1.00, 1.00, 1.00) 0.180 0.910 1.000 0.382 0.998 1.000
diag (1.02, 1.02, 1.02) 0.118 0.604 1.000 0.162 0.606 1.000
diag (1.04, 1.04, 1.04) 0.156 0.754 1.000 0.210 0.758 1.000
diag (1.08, 1.08, 1.08) 0.378 0.918 1.000 0.504 0.928 1.000
diag (1.02, 1.04, 1.06) 0.174 0.728 1.000 0.214 0.794 1.000
diag (1.02, 1.05, 1.08) 0.170 0.758 1.000 0.210 0.810 1.000

Table B.1 reports the results of the proposed PPT test based on the asymptotic critical value

when R0 = 3 is assumed to be known. From the table, we can see the proposed test suffers

from severe downward size distortions in the presence of mildly explosive factors. When the

factors follow a unit root process, it is consistent with our anticipation that our proposed test can
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have nominal size based on the asymptotic critical value. However, the power of the proposed

test is reasonably good in many cases, which is attributable to the exponential explosiveness

in the idiosyncratic components.

Table B.2: Finite sample properties of the PPT under the null and alternatives when R0 = 3 that is
taken as unknown and estimated by Algorithm 2.2.

Size of the Proposed Test
DGP 1 ρi = 1 for i = 1, . . . , N

ρ0
0\ (N, T ) (100,51) (100,101) (100,201) (200,51) (200,101) (200,201)

diag (1.00, 1.00, 1.00) 0.042 0.040 0.038 0.048 0.064 0.052
diag (1.02, 1.02, 1.02) 0.022 0.002 0.000 0.020 0.004 0.002
diag (1.04, 1.04, 1.04) 0.006 0.002 0.000 0.008 0.000 0.000
diag (1.08, 1.08, 1.08) 0.000 0.000 0.000 0.000 0.000 0.000
diag (1.02, 1.04, 1.06) 0.000 0.000 0.006 0.006 0.002 0.006
diag (1.02, 1.05, 1.08) 0.002 0.000 0.012 0.000 0.000 0.002

Power of the Proposed Test
DGP 2 ρi

i.i.d∼ Uniform (1.08, 1.10) for any i ∈ {1, . . . , N}
ρ0
0\ (N, T ) (100,51) (100,101) (100,201) (200,51) (200,101) (200,201)

diag (1.00, 1.00, 1.00) 0.288 0.478 0.940 0.544 0.506 0.990
diag (1.02, 1.02, 1.02) 0.038 0.602 0.998 0.110 0.676 0.996
diag (1.04, 1.04, 1.04) 0.072 0.544 0.474 0.168 0.598 0.548
diag (1.08, 1.08, 1.08) 0.046 0.268 1.000 0.054 0.366 0.992
diag (1.02, 1.04, 1.06) 0.112 0.440 0.754 0.116 0.542 0.776
diag (1.02, 1.05, 1.08) 0.040 0.472 0.572 0.088 0.430 0.624

Table B.2 shows the results of the proposed PPT test based on the asymptotic critical value

when R0 is estimated by Algorithm 2.2. As above, we can also see the significant downward

size distortions in the presence of mildly explosive factors except for factors. The power of

the proposed test remains good in many cases.

When R0 = 1, Tables B.3 and B.4 display similar results as those in Tables B.1 and B.2.

In summary, when the asymptotic normal critical value is used, the proposed PPT test is

undersized in the presence of mildly explosive factors. These results highlight the need of a

wild­bootstrap­based test as shown in the main text.
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Table B.3: Finite sample properties of the PPT under the null and alternatives when R0 = 1 that is
taken as known.

Size of the Proposed Test
DGP 1 ρi = 1 for i = 1, . . . , N

ρ00\ (N, T ) (100,51) (100,101) (100,201) (200,51) (200,101) (200,201)
ρ = 1.00 0.050 0.038 0.042 0.050 0.052 0.040
ρ = 1.02 0.022 0.014 0.010 0.036 0.020 0.002
ρ = 1.04 0.012 0.006 0.002 0.020 0.006 0.056
ρ = 1.08 0.008 0.000 0.000 0.004 0.000 0.000

Power of the Proposed Test
DGP 2 ρi

i.i.d∼ Uniform (1.08, 1.10) for any i ∈ {1, . . . , N}
ρ00\ (N, T ) (100,51) (100,101) (100,201) (200,51) (200,101) (200,201)
ρ = 1.00 0.120 1.000 1.000 0.172 1.000 1.000
ρ = 1.02 0.904 1.000 1.000 0.982 0.998 1.000
ρ = 1.04 0.898 0.952 1.000 0.934 0.950 1.000
ρ = 1.08 0.780 0.998 1.000 0.952 1.000 1.000

Table B.4: Finite sample properties of the PPT under the null and alternatives when R0 = 1 that is
taken as unknown and estimated by Algorithm 2.2.

Size of the Proposed Test
DGP 1 ρi = 1 for i = 1, . . . , N

ρ00\ (N, T ) (100,51) (100,101) (100,201) (200,51) (200,101) (200,201)
ρ = 1.00 0.040 0.056 0.054 0.048 0.042 0.044
ρ = 1.02 0.042 0.056 0.048 0.040 0.046 0.044
ρ = 1.04 0.042 0.048 0.040 0.044 0.044 0.056
ρ = 1.08 0.040 0.044 0.048 0.054 0.044 0.044

Power of the Proposed Test
DGP 2 ρi

i.i.d∼ Uniform (1.08, 1.10) for any i ∈ {1, . . . , N}
ρ00\ (N, T ) (100,51) (100,101) (100,201) (200,51) (200,101) (200,201)
ρ = 1.00 1.000 1.000 1.000 1.000 1.000 1.000
ρ = 1.02 0.904 1.000 1.000 0.982 0.998 1.000
ρ = 1.04 0.898 0.952 1.000 0.934 0.950 1.000
ρ = 1.08 0.780 0.998 1.000 0.952 1.000 1.000
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B.4.2 The selection frequency of transformed double ridge ratio

In this subsection, we report the selection frequency for the transformed double ridge ratio

criterion when R0 is estimated by Algorithm 2.2 described in Section 2.4. In Table B.5 we

present the correct selection frequency (R̂ = R0) under the null; In Table B.6, the selection

frequency of R̂ ≥ R0 is of interest and reported.

Table B.5: selection frequency of TDDR criterion under the null when R0 = 3 that is estimated by
Algorithm 2.2.

Correct Selection Frequency with R̂ = R0 (%)
DGP 1 ρi = 1 for i = 1, . . . , N

ρ0
0\ (N, T ) (100,51) (100,101) (100,201) (200,51) (200,101) (200,201)

diag (1.00, 1.00, 1.00) 60.4 38.4 27.0 57.2 28.8 10.2
diag (1.02, 1.02, 1.02) 58.2 47.6 73.4 54.6 43.6 67.4
diag (1.04, 1.04, 1.04) 67.8 78.0 77.2 65.8 76.2 77.4
diag (1.08, 1.08, 1.08) 84.2 80.6 80.6 85.2 81.0 75.4
diag (1.02, 1.04, 1.06) 70.8 80.8 96.2 67.6 81.0 96.6
diag (1.02, 1.05, 1.08) 79.2 88.6 96.8 79.4 92.0 99.0

Table B.5 exhibits simulation results of correct selection frequency of Algorithm 2.2. Except

for the case that factors follow unit­root processes, Algorithm 2.2 chooses R0 with high prob­

abilities in most cases for different specifications of mildly explosive factors.

Table B.6: selection fequency of TDDR criterion under the null when R0 = 3 that is estimated by
Algorithm 2.2.

Selection Frequency of R̂ ≥ R0(%)
DGP 2 ρi

i.i.d∼ Uniform (1.08, 1.10) for any i ∈ {1, . . . , N}
ρ0
0\ (N, T ) (100,51) (100,101) (100,201) (200,51) (200,101) (200,201)

diag (1.02, 1.04, 1.06) 70.8 80.8 96.2 67.6 81.0 96.6
diag (1.02, 1.05, 1.08) 79.2 88.6 96.8 79.4 92.0 99.0
diag (1.00, 1.00, 1.00) 61.4 41.6 100.0 50.6 36.2 100.0
diag (1.02, 1.02, 1.02) 70.4 40.8 100.0 59.4 29.6 100.0
diag (1.04, 1.04, 1.04) 71.6 48.2 100.0 56.0 41.0 100.0
diag (1.08, 1.08, 1.08) 89.2 48.2 100.0 89.6 54.2 100.0

However, the results in Table B.6 reveal that Algorithm 2.2 overestimates the true number of

factors with high probabilities if data are generated under the alternatives. This issue results
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from spurious factors under the alternatives. However, as analyzed in the main texts, the slight

over­extraction of factors does not lead to the total loss of the power against the alternatives

for our proposed test.
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Appendix C

Appendix to Chapter 3

C.1 Proofs of Main Results

To prove the main results in the paper, especially Theorem 3.3.2 and Theorem 3.3.4, we need

some technical lemmas. Below we first state the technical lemmas whose proofs can be found

on the online supplement, and then prove the main results in the paper.

C.1.1 Technical Lemmas

We first state some technical lemmas related to the consistency of the estimated local­to­unity

explosive factors under the alternative of local­to­unity. In the case where the factors exhibit

a unit root process, the results are relatively simple and similar to those in Westerlund (2015).

Consistency of the estimated local­to­unity explosive factors when idiosyncratic error

terms are local­to­unity explosive

The following four lemmas establish the consistency of the PC estimation for the first­differenced

form of data, they hold under some mild assumptions when ρ00,r = 1+νr/T with νr > 0 being
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finite and fixed for all r, and ρ0i = 1 + ci/T with ci ≥ 0 being finite and fixed for all i as

specified in (3.2 .7).

Lemma C.1.1. Suppose that Assumptions A3.1–A3.5 hold. Then T−1B0′B̂ is asymptotically

invertible.

Lemma C.1.2. Suppose that Assumptions A3.1–A3.5 hold and the null hypothesis in (3.2 .5)

holds. Then there existsH with asymptotic rank R0 such that as (N, T ) → ∞,

(a) T−1
∑T

t=2

∥∥∥H−1B̂t − f 0
t

∥∥∥2 = Op(N
−1);

(b)
(
H−1B̂t −B0

t

)
= Op(N

−1/2 + T−1/2 +N−1T 1/2) for each given t;

(c)
(
λ̂i −H ′−1λ0

i

)
= Op

(
T−1/2 +N−1

)
for each given i.

LemmaC.1.2 above shows that the PC estimation for the first­dfferenced form of data can yield

the consistent estimates of unobserved common factors in first difference and factor loadings,

and it is also possible to allow N and T to diverge at different rates as in Bai (2009) and Lu

and Su (2016). Lemma C.1.3 is similar to the corresponding result in Bai and Ng (2004), and

demonstrates that the cumulative sum of B̂s is uniformly close to the cumulative sum ofB0
s ,

Lemma C.1.3. Under the assumptions of Lemma C.1.2,

max
1≤t≤T

1√
T

∥∥∥∥∥
t∑

s=2

(
H−1B̂s −B0

s

)∥∥∥∥∥ = Op

(
N−1/2

)
.

Lemma C.1.4. Under the assumptions of Lemma C.1.2,
∥∥∥Λ0f 0′ − Λ̂B̂′

∥∥∥2 = Op (N + T ).

To study the asymptotic properties of the test statistic, we need the following lemma, which

is similar to Lemma B.2 in Bai and Ng (2004). Lemma C.1.5 are presented for completeness

and can readily obtained by following proofs in Bai and Ng (2004) directly based on Lemma

C.1.2­C.1.3, and assumptions in the current paper.
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Lemma C.1.5. Consider estimation of (3.2 .10) by the method of principal components. Let

B0
t be defined by (3.2 .9), and F̂t be defined by (3.2 .12). Besides, denote the sample means by

F̂ = (T − 1)−1
∑T

t=2 F̂t, F = (T − 1)−1
∑T

t=2 F
0
t . Let F̂ c = F̂t − F̂ be the demeaned series

and we define F 0,c
t similarly. Suppose that Assumptions A3.1­A3.5 hold. Then there exists an

H with rank R such that as N, T → ∞,

(i) (1/
√
T )F̂t = H(1/

√
T )F 0

t +Op

(
N−1/2 + T−1/2 +N−1T 1/2

)
uniformly in t ∈ [2, T ];

(ii) (1/T 2)
∑T

t=2 F̂tF̂
′
t = H

(
(1/T 2)

∑T
t=2 F

0
t F

0′
t

)
H ′ +Op

(
N−1/2 + T−1/2 +N−1T 1/2

)
(iii) (1/T )

∑T
t=2 B̂tB̂

′
t = H

(
(1/T )

∑T
t=2B

0
tB

0′
t

)
H ′ +Op

(
N−1/2 + T−1/2 +N−1T 1/2

)
(iv) (1/T )

∑T
t=3

(
F̂t−1B̂

′
t + B̂tF̂

′
t−1

)
= (1/T )H

∑T
t=3

(
Ft−1B

0′
t +B0

tF
0′
t−1

)
H ′

+Op

(
N−1/2 + T−1/2 +N−1T 1/2

)
(v) (1/

√
T )F̂ = (1/

√
T )HF̄ +Op

(
N−1/2 + T−1/2 +N−1T 1/2

)
(vi) (1/

√
T )F̂ c = (1/

√
T )HF c +Op

(
N−1/2 + T−1/2 +N−1T 1/2

)
(vii) (1/T 2)

∑T
t=2 F̂

c
t F̂

c′
t = H

(
(1/T 2)

∑T
t=2 F

0,c
t F 0,c′

t

)
H ′+Op

(
N−1/2 + T−1/2 +N−1T 1/2

)
(viii) (1/T )

∑T
t=3

(
F̂ c

t−1B̂
′
t + B̂tF̂

c′
t−1

)
= H

[
(1/T )
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(
F c

t−1B
0′
t +B0

tF
0,c
t−1

)]
H ′

+Op

(
N−1/2 + T−1/2 +N−1T 1/2

)

C.1.2 Proof of Theorem 3.2

In this part, we focus on the case that ρ0i = 1 + ci/T with ci > 0 for i = 1, . . . , N . The case

with ci ≤ 0 can be obtained similarly.

The Asymptotic distribution of test statistic under the null

Note that ρ00,r = 1+νr/T with νr = 0 for r = 1, . . . , R0 under the null, which can be regarded

as the special case of generic series {νr}Rr=1 such that νr ̸= 0 in general. Thus, we omit the

details of proofs here, and refer readers to the next subsection.
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The Asymptotic distribution of test statistic under the alternative of local­to­unity

Since proofs for other estimated factors are exactly same as that for the first estimated factor,

we focus on the first estimated factor for illustrations below.

Recall that F̂t =
∑t

s=2 B̂s. Let B̂(1) be the first column of B̂, and F̂ (1) be the first column of

F̂ . By regressing B̂(1)
t on F̂ (1)

t−1, we can obtain the OLS estimator ν̂1 from (3.2 .14) as follows,

ν̂1 =

[
T2

T∑
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(1)
t F̂

(1)
t−1

′ −
T∑
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t

T∑
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′

][
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(1)
t−1

)(
T∑
t=3

F̂
(1)
t−1

)′]−1

.

Because we derive the limiting distribution when T goes to infinity, T2 = T − 2 will go to

infinity as T → +∞. It follows that

T2ν̂1

=

{(
T−1
2

T∑
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t F̂
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′
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)(
T
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2
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Let H ′
(1) be the first row of H , thus H(1) is a R0 × 1 vector. Using Lemma C.1.5, for the

denominator of T2ν̂1, we have,

(
T−2
2

T∑
t=3

F̂
(1)
t−1F̂

(1)′
t−1

)
−

(
T

−3/2
2

T∑
t=3

F̂t−1

)(
T

−3/2
2

T∑
t=3

F̂t−1

)′

=

{
H ′

(1)

(
T−2
2

T∑
t=3

F 0
t−1F

0′
t−1

)
H(1) −H ′

(1)

(
T

−3/2
2

T∑
t=3

F 0
t−1

)(
T

−3/2
2

T∑
t=3

F 0
t−1

)′

H(1)

}
× [1 + op (1)] .
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Similarly, for the numerator of T2ν̂1, we have

(
T−1
2

T∑
t=3

B̂
(1)
t F̂

(1)
t−1

′

)
−

(
T

−1/2
2

T∑
t=3

B̂
(1)
t

)(
T

−3/2
2

T∑
t=3

F̂
(1)
t−1

′

)

=

{
H ′

(1)

(
T−1
2

T∑
t=3

B0
tF

0′
t−1

)
H(1) −H ′

(1)

(
T

−1/2
2

T∑
t=3

B0
t

)(
T

−3/2
2

T∑
t=3

F 0
t−1

)′

H(1)

}
× [1 + op (1)] .

Further, recall thatB0
t = T−1νF 0

t−1 +ut with ν ≡ diag(ν1, . . . , νR0) under the alternative of

local­to­unity, then, we define that

ν(1) (C.1.1)

≡

{
H ′

(1)ν

(
T−2
2

T∑
t=3

F 0
t−1F

0′
t−1

)
H(1) −H ′

(1)ν

(
T

−3/2
2

T∑
t=3

F 0
t−1

)(
T

−3/2
2

T∑
t=3

F 0
t−1

)′

H(1)

}
{
H ′

(1)

(
T−2
2

T∑
t=3

F 0
t−1F

0′
t−1

)
H(1) −H ′

(1)

(
T

−3/2
2

T∑
t=3

F 0
t−1

)(
T

−3/2
2

T∑
t=3

F 0
t−1

)′

H(1)

}−1

.

Using Lemma C.3.2 1(a)­(d), it is straightforward to see that ν(1)R = Op (1) from (C.1.2), we

then have,

T2ν̂1

=

(
ν
(1)
R +

{
H ′

(1)

(
T−1
2

T∑
t=3

utF
0′
t−1

)
H(1) −H ′

(1)

(
T

−1/2
2

T∑
t=3

ut

)(
T

−3/2
2

T∑
t=3

F 0
t−1

)′

H(1)

}
{
H ′

(1)

(
T−2
2

T∑
t=3

F 0
t−1F

0′
t−1

)
H(1) −H ′

(1)

(
T

−3/2
2

T∑
t=3

F 0
t−1

)(
T

−3/2
2

T∑
t=3

F 0
t−1

)′

H(1)

}−1


× [1 + op (1)] .

Then, letH ′
(1),∞ be the fist row ofH∞ = lim

N,T→∞
H , we further have that

T ν̂1 ⇒ ν(1)∞ +Ψ(1)
ν ,

256



where

ν(1)∞ ≡

{
H ′

(1),∞νΣ1/2
u

[∫ 1

0

Jν(r)Jν(r)′dr−
(∫ 1

0

Jν(r)′dr
)(∫ 1

0

Jν(r)dr
)′]

Σ1/2
u H(1),∞

}
{
H ′

(1),∞Σ1/2
u

[∫ 1

0

Jν(r)Jν(r)′dr−
(∫ 1

0

Jν(r)′dr
)(∫ 1

0

Jν(r)dr
)′]

Σ1/2
u H(1),∞

}−1

,

and

Ψ(1)
ν ≡

{
H ′

(1),∞Σ1/2
u

[∫ 1

0

dW(r)′Jν(r)−W (1)

∫ 1

0

Jν(r)′dr
]
Σ1/2

u H(1),∞ +H ′
(1),∞ΩuH(1),∞

}
{
H ′

(1),∞Σ1/2
u

[∫ 1

0

Jν(r)Jν(r)′dr−
(∫ 1

0

Jν(r)′dr
)(∫ 1

0

Jν(r)dr
)′]

Σ1/2
u H(1),∞

}−1

.

where Jν(r) ≡ (Jν1(r), . . . , JνR(r)) is a Ornstein­Uhlenbeck process such that Jν(0) = 0 and

Jν(r) = W (r) + ν
∫ r

0
e(r−s)cW (s)ds; besides, W (r) is the R0­vector standard Brownian

motion on C[0, 1] that is given by the weak limit of the partial sum Σ
−1/2
u T−1/2

∑[Tr]
t=1 ut.

The estimated variance of ν̂1 is calculated as

ϖ̂ν̂1 = σ̂2
(1)

[
T∑
t=3

F̂
(1)
t−1F̂

(1)′
t−1 − T−1

(
T∑
t=3

F̂
(1)
t−1

)(
T∑
t=3

F̂
(1)
t−1

)′]−1

,

where σ̂2
(1) = T−1

2

∑T
t=3 B̂

(1)
t B̂

(1)′
t . Recall thatB0

t = T−1νF 0
t−1 + ut, it is straightforward to

see that

T−1
2

T∑
t=3

B̂
(1)
t B̂

(1)′
t = T−1

2

T∑
t=3

H ′
(1)B

0
tB

0′
t H(1)

= T−1
2

T∑
t=3

H ′
(1)utu

′
tH(1) +Op

(
T−1

)

Using Lemma C.1.5 and Lemma C.3.2, we then have σ̂2
(1)

p→ H ′
(1),∞ΣuH(1),∞.
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It follows that

T 2V ar(ν̂1) = σ̂2
(1)

[
T−2

T∑
t=3

F̂
(1)
t−1F̂

(1)′
t−1 −

(
T−3/2

T∑
t=3

F̂t−1

)(
T−3/2

T∑
t=3

F̂t−1

)′]−1

⇒
(
H ′

(1),∞ΣuH(1),∞
)

×

{
H ′

(1),∞Σ1/2
u

[∫ 1

0

Jν(r)Jν(r)′dr−
(∫ 1

0

Jν(r)′dr
)(∫ 1

0

Jν(r)dr
)′]

Σ1/2
u H(1),∞

}−1

.

Collecting above immediate results, we can obtain the weak convergence of the proposed test

statistic constructed from {B̂(1)
t }Tt=2 as shown below,

DF (1),f = {T ν̂1}
{
T 2V ar(ν̂1)

}−1/2

⇒ χ(1),f
ν + ψ(1),f

ν ,

where

χ(1),f
ν ≡

(
H ′

(1),∞ΣuH(1),∞
)−1/2{

H ′
(1),∞νΣ1/2

u

[∫ 1

0

Jν(r)Jν(r)′dr−
(∫ 1

0

Jν(r)′dr
)(∫ 1

0

Jν(r)dr
)′]

Σ1/2
u H(1),∞

}
{
H ′

(1),∞Σ1/2
u

[∫ 1

0

Jν(r)Jν(r)′dr−
(∫ 1

0

Jν(r)′dr
)(∫ 1

0

Jν(r)dr
)′]

Σ1/2
u H(1),∞

}−1/2

,

and

ψ(1),f
ν ≡

(
H ′

(1),∞ΣuH(1),∞
)−1/2{

H ′
(1),∞Σ1/2

u

[∫ 1

0

dW(r)′Jν(r)−W (1)

∫ 1

0

Jν(r)′dr
]
Σ1/2

u H(1),∞ +H ′
(1),∞ΩuH(1),∞

}
{
H ′

(1),∞Σ1/2
u

[∫ 1

0

Jν(r)Jν(r)′dr−
(∫ 1

0

Jν(r)′dr
)(∫ 1

0

Jν(r)dr
)′]

Σ1/2
u H(1),∞

}−1/2

.

As shown above, we complete proofs for the limiting distribution of the proposed test statistic

under the alternative of local­to­unity.

258



Note that under the null that νr = 0 for all r, χ(1),f
ν = χ

(1),f
0 = 0, and ψ(1),f

ν turns out to be

ψ
(1),f
0 with R0­dimensional vector standard Brownian motionW (r) in place of the Ornstein­

Uhlenbeck diffusion process Jν(r).

C.1.3 Proof of Theorem 3.3

Arguments of the proofs for Theorem 3.3.3 are almost the same as those for Theorem 3.3.2

in the last section. To see this point, recall that ν̂R0 is obtained by regressing B̂R,c
t on F̂R,c

t−1 .

Then, similar to ν̂(r), we have,

ν̂R0 =

[
T2

T∑
t=3

B̂R0
t F̂R0

t−1
′ −

T∑
t=3

B̂R0
t

T∑
t=3

F̂R0
t−1

′

][
T2

T∑
t=3

F̂R0
t−1F̂

R0′
t−1 −

(
T∑
t=3

F̂R0
t−1

)(
T∑
t=3

F̂R0
t−1

)′]−1

.

Similar to (C.1.2), we have

T2ν̂R0 (C.1.2)

=

(
νR0 +

{
H ′

R0

(
T−1
2

T∑
t=3

utF
0′
t−1

)
HR0 −H ′

R0

(
T

−1/2
2

T∑
t=3

ut

)(
T

−3/2
2

T∑
t=3

F 0
t−1

)′

HR0

}
{
H ′

R0

(
T−2
2

T∑
t=3

F 0
t−1F

0′
t−1

)
HR0 −H ′

R0

(
T

−3/2
2

T∑
t=3

F 0
t−1

)(
T

−3/2
2

T∑
t=3

F 0
t−1

)′

HR0

}−1


× [1 + op (1)] .

whereHR0 ≡
∑R0

r=1 H(r), and νR0 is defined as

νR0 (C.1.3)

≡

{
H ′

R0
ν

(
T−2
2

T∑
t=3

F 0
t−1F

0′
t−1

)
HR0 −H ′

R0
ν

(
T

−3/2
2

T∑
t=3

F 0
t−1

)(
T

−3/2
2

T∑
t=3

F 0
t−1

)′

HR0

}
{
H ′

R0

(
T−2
2

T∑
t=3

F 0
t−1F

0′
t−1

)
HR0 −H ′

R0

(
T

−3/2
2

T∑
t=3

F 0
t−1

)(
T

−3/2
2

T∑
t=3

F 0
t−1

)′

HR0

}−1

.

From (C.1.2) and (C.1.3) above, we can see that T2ν̂R0 has the similar structure as T2ν̂(r) for
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r = 1, . . . , R0.

Similarly, ϖ̂ν̂R0
also has similar structure as ϖ̂ν̂1 shown in the last section.

By imitating the arguments of proofs for Theorem 3.3.2 in the last section, the desired result

follows directly.

C.1.4 Proof of Theorem 3.4

In this section, we demonstrate the consistency of dependent wild bootstrap (DWB) for the

proposed test when the alternative of local­to­unity holds, namely, ρ00,r = 1 + νr/T for

r = 1, . . . , R0. Under the null, νr = 0 holds for all r = 1, . . . , T , proofs below show the

consistency of DWB in approximating the limiting distributions under the null. We follow

proofs for Theorem 3.1 and 3.2 presented in Rho and Shao (2019). Without loss of generality,

we also focus on the first estimated as done in the proofs of Theorem 3.1, and proofs for other

estimated factors are exactly same as those for the first estimated factor presented below.

Let P ∗ denote the probability measure induced by the dependent wild bootstrap conditional

on X = {Zit}. Let E∗ and V ar∗ denote the expectation and variance under P ∗ and O∗
p and o∗p

the probability order under P ∗.

(a)Wewill follow lines in Rho and Shao (2019) to apply large­block­small­block method. Let

LT =
⌊
(T/lT )

1/2
⌋
be the length of a large­block and lT ≍M · T η with η ∈ (0, 1/3) be that of

a small­block. Our goal is to assign points t ∈ {1, 2, . . . , ⌊Tr⌋} to alternating large and small

blocks. LetKT = KT,r =
⌊
⌊Tr⌋ (LT + lT )

−1⌋ be the number of the large (small) blocks. For
0 ≤ r1 < r2 ≤ 1, K1 = KT,r1 andK1 = KT,r2 .

Define the k­th large­block Lk = {j ∈ N : (k − 1) (LT + lT ) + 1 ≤ j ≤ k (lT + LT )− lT}

for 1 ≤ k ≤ KT , the k th small­blockSk = {j ∈ N : k (LT + lT )− lT + 1 ≤ j ≤ k (lT + LT )}

for 1 ≤ k ≤ KT − 1, and SKT
= {j ∈ N : KT (LT + lT )− lT + 1 ≤ j ≤ ⌊Tr⌋}. And note

that LT → ∞ and lT = o (LT ) .
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For notation convenience, define ut,(1) ≡ H ′
(1)ut for all t. Denote the residual {ût,(1)}Tt=3 that

are obtained by regressing B̂
(1)
t on F̂

(1)
t−1. Denote the bootstrap version of ût,,(1) by u∗t,(1). In

addition, let Uk =
∑

j∈Lk
Wjuj,(1) and Vk =

∑
j∈Sk

Wjuj,(1) for k = 1, . . . , KT .

Before the proofs of Theorem 3.2, we state an important result as the lemma below used in

following proofs. Let u∗t,(r) ≡ ût,(r)Wt, then, for r = 1, . . . , R0

Lemma C.1.6. For any ρ00,r = 1 + νr/T, νr ≥ 0, then, for r­th row of the rotation matrix H ,

as (N, T ) goes to infinity simultaneously,

T−1/2

⌊Tr⌋∑
t=3

u∗t,(r) ⇒ H ′
(r),∞Σ1/2

u W (r) in probability.

Lemma C.1.6 above states that, in the bootstrap world, the functional CLT still holds for both

the null hypothesis with ρ00,r = 1 for all r and under the alternative of local­to­unity with

ρ00,r = 1 + νr/T with νr > 0 for all r.

Next, we prove the consistency of DWB for the proposed test as an application of lemma C.1.6

above.

We claim that under the local alternatives,

T−1

T∑
t=3

{(
u∗t,(1)

)2 − E∗ (u∗t,(1))2} = o∗p(1), (C.1.4)

and

T−1

T∑
t=3

{
E∗ (u∗t,(1))2 − u2t,(1)

}
= op(1). (C.1.5)

Once (C.1.4) and (C.1.5) are established, it follows that T−1
∑T

t=3

{(
u∗t,(1)

)2
− u2t,(1)

}
=

o∗p(1). Then, by repeating arguments of proofs for Theorem 3.1 shown in the previous section,
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Theorem 3.2 holds directly as an application of the continuous mapping theorem, Lemma

C.1.6, and the fact that T−1
∑T

t=3 û
2
t,(1)

p→ H ′
(1),∞ΣuH(1),∞.

To prove (C.1.5), using Lemma C.1.5, Lemma C.3.2,B0
t = T−1νF 0

t−1 + ut by construction,

and the fact that ν̂1 = Op (T
−1) justified in the proofs of Theorem 3.1, we can obtain (C.1.5)

by direct calculations as follows,

T−1

T∑
t=3

E∗ (u∗t,(1))2 = T−1

T∑
t=3

û2t,(1) (C.1.6)

= T−1

T∑
t=3

[
B̂

(1)
t − ν̂1F̂

(1)
t−1

]2
= T−1

T∑
t=3

(
B̂

(1)
t

)2
+ ν̂21T

−1

T∑
t=3

(
F̂

(1)
t−1

)2
− 2ν̂1T

−1

T∑
t=3

B̂
(1)
t F̂

(1)
t−1

=

[
H ′

(1)

(
T−1

T∑
t=3

B0
tB

0′
t

)
H(1)

]
+ ν̂21T

[
H ′

(1)

(
T−2

T∑
t=3

F 0
t−1F

0′
t−1

)
H(1)

]

−2ν̂1

[
H ′

(1)

(
T−1

T∑
t=3

B0
tF

0′
t−1

)
H(1)

]
+Op

(
N−1/2 + T−1/2 +N−1T 1/2

)
=

(
T−1

T∑
t=3

H ′
(1)u

0
tu

0′
t H(1)

)
+Op

(
T−1

)
+Op

(
N−1/2 + T−1/2 +N−1T 1/2

)
.

Now we shall prove (C.1.4). Observe that

T∑
t=3

{(
u∗t,(1)

)2 − E∗ (u∗t,(1))2} =
T∑
t=3

û2t,(1)
(
W 2

t − 1
)
.

For any δ > 0,

P ∗

{∣∣∣∣∣
T∑
t=3

û2t,(1)
(
W 2

t − 1
)∣∣∣∣∣ > Tδ

}
≤ (Tδ)−2E∗

{
T∑
t=3

û2t,(1)
(
W 2

t − 1
)}2

≤ (Tδ)−2C

{
T∑
t=3

lT∑
h=0

û2t,(1)û
2
t+h,(1)

}
,

where the second line above follows by the properties of {Wt} under the DWB scheme, and
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it remains to show T−2
∑T

t=3

∑lT
h=0 û

2
t,(1)û

2
t+h,(1) = op (1) as below.

Substitute ût,(1) = B̂
(1)
t − ν̂1F̂

(1)
t−1 into T−2

∑T
t=3

∑lT
h=0 û

2
t,(1)û

2
t+h,(1), denoteΘNT = (N−1/2+

T−1/2 +N−1T 1/2, by direct calculations, we have

T−2

T∑
t=3

lT∑
h=0

û2t,(1)û
2
t+h,(1)

=
T∑
t=3

lT∑
h=0

{(
T−1/2B̂

(1)
t − T−1/2ν̂1F̂

(1)
t−1

)2 (
T−1/2B̂

(1)
t+h − T−1/2ν̂1F̂

(1)
t+h−1

)2}

=
T∑
t=3

lT∑
h=0

{
H ′

(1)

[
T−1/2B0

t − T−1/2ν̂1F
0
t−1 + op (ΘNT )

] [
T−1/2B0

t − T−1/2ν̂1F
0
t−1 + op (ΘNT )

]′
H(1)H

′
(1)

[
T−1/2B0

t − T−1/2ν̂1F
0
t−1 + op (ΘNT )

] [
T−1/2B0

t − T−1/2ν̂1F
0
t−1 + op (ΘNT )

]′
H(1)

}
=

T∑
t=3

lT∑
h=0

{
H ′

(1)

[
T−1/2

(
T−1ν − ν̂1 · IR

)
F 0

t−1 + T−1/2ut + op (ΘNT )
]

×
[
T−1/2

(
T−1ν − ν̂1 · IR

)
F 0

t−1 + T−1/2ut + op (ΘNT )
]′
H(1)

×H ′
(1)

[
T−1/2

(
T−1ν − ν̂1 · IR

)
F 0

t+h−1 + T−1/2ut+h + op (ΘNT )
]

×
[
T−1/2

(
T−1ν − ν̂1 · IR

)
F 0

t+h−1 + T−1/2ut+h + op (ΘNT )
]′
H(1)

}
=

{
T−2

T∑
t=3

lT∑
h=0

H ′
(1)utu

′
tH(1)H

′
(1)ut+hu

′
t+hH(1)

}
[1 + op(1)] .

where the second to the last line above follows because we use following facts implicitly:

(1)B0
t = T−1νF 0

t−1 + ut,

(2) T−1/2B̂t = T−1/2HB0
t +Op

(
T−1/2ΘNT

)
,

(3) T−1/2F̂t = T−1/2HF 0
t +Op

(
T−1/2ΘNT

)
uniformly in t by Lemma C.1.5(i),

(4) ∥T−1ν − ν̂1 · IR∥ ≤ ∥T−1ν∥ + ∥ν̂1∥ = O (T−1) because ∥T−1ν∥ = O (T−1) under the

alternative of local­to­unity and ν̂1 = Op (T
−1) by Theorem 3.3.2, and

(5) T−1/2F 0
[Tr] = Op (1) by Lemma C.3.2 1(a).
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By Cauchy­Schwarz inequality, we have that

T−2

T∑
t=3

lT∑
h=0

H ′
(1)utu

′
tH(1)H

′
(1)ut+hu

′
t+hH(1)

≤ T−1lT

[
T−1

T∑
t=3

(
H ′

(1)utu
′
tH(1)

)2]1/2 T−1

T∑
t=3

(
l−1
T

lT∑
h=0

H ′
(1)ut+hu

′
t+hH(1)

)2
1/2

≤ T−1lT

(
∥H∥4 T−1

T∑
t=3

∥ut∥4
)1/2 [

∥H∥4 T−1

T∑
t=3

(
l−1
T

lT∑
h=0

∥ut+h∥2
)]1/2

= Op

(
T−1lT

)
= op(1)

where the last line above holds under Assumption A3.1. Collecting above arguments, (C.1.4)

follows directly.

Proofs of LemmaC.1.6: Note thatE∗
(
T−1/2

∑⌊Tr⌋
t=2 u∗t,(1)

)
= 0. Meanwhile, because ût,(1) =

B̂
(1)
t − ν̂1F̂

(1)
t−1, we have

T−1/2

⌊Tr⌋∑
t=2

u∗t,(1) = T−1/2

⌊Tr⌋∑
t=2

ût,(1)Wt =

⌊Tr⌋∑
t=2

(
T−1/2B̂

(1)
t − ν̂1T

−1/2F̂
(1)
t−1

)
Wt.

Weuse following facts again: B̂t =
(
B̂t −HB0

t

)
+HB0

t ,B0
t = T−1νF 0

t−1+ut, ∥T−1ν∥sp =

O (T−1) under the alternative of local­to­unity, ν̂1 = Op (T
−1), T−1/2F 0

[Tr] ⇒ Σ
1/2
u Jν(r) by

Lemma C.3.2 1(a), and the results in Lemma C.1.5. Then, by direct calculations, we have

following decompression,

T−1/2

⌊Tr⌋∑
t=2

u∗t,(1) = T−1/2

⌊Tr⌋∑
t=2

(
H ′

(1)utWt +H ′
(1)

(
T−1ν − ν̂1 · IR

)
F 0

t−1Wt

)
+T−1/2

⌊Tr⌋∑
t=2

(
B̂

(1)
t −H ′

(1)B
0
t

)
Wt + ν̂1T

−1/2

⌊Tr⌋∑
t=2

(
F̂

(1)
t−1 −H ′

(1)F
0
t−1

)
Wt

≡ I1,r + I2,r + I3,r.

Once the fact that I2,r = o∗p(1), I3,r = o∗p(1) and I1,r ⇒ W (r) are established, the proof is
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complete. To this end, we study I1,r, I2,r and I3,r in turns below.

For I2,r, note that E∗ (I2,r) = 0, using Lemma C.1.2(i)­(ii) and Cauchy­Schwarz inequality,

it follows that

E∗(I2
2,r) ≤ T−1

⌊Tr⌋∑
t=2

lT∑
h=0

∥∥∥B̂t −HB0
t

∥∥∥∥∥∥B̂t+h −HB0
t+h

∥∥∥E∗ (WtWt+h)

= T−1

⌊Tr⌋∑
t=2

lT∑
h=0

∥∥∥B̂t −HB0
t

∥∥∥∥∥∥B̂t+h −HB0
t+h

∥∥∥ a (h/lT )
= Op

(
lT
(
N−1 + T−1 +N−2T

))
= op (1) .

where the first line holds by the properties of {Wt} under the DWB scheme, and the last line

holds as long as lT/N + lT/T + lTT/N
2 → 0 as (N, T ) go to infinity jointly. Then, by

Chebyshev’s inequality, we have I2,r = o∗p (1).

For I3,r, similar to above arguments, using Lemma C.1.2 and Lemma C.1.3, we also can obtain

I3,r = o∗p (1).

For I1,r, wewrite I1,r = T−1/2
∑⌊Tr⌋

t=2 H ′
(1)utWt+T

−1/2
∑⌊Tr⌋

t=2 H ′
(1) (T

−1ν − ν̂1 · IR)F 0
t−1Wt ≡

I11,r + I12,r. Below, we are going to show that (i) I12,r = o∗p (1) and (ii) I11,r ⇒ W (r).

First, we will show I12,r = o∗p (1). To this end, our proofs follow lines in Rho and Shao (2019)

to show following two conditions holds

∣∣∣∣∣∣T−1/2

⌊Tr⌋∑
t=2

H ′
(1)

(
T−1ν − ν̂1 · IR

)
F 0

t−1Wt

∣∣∣∣∣∣ = o∗p(1) for any r ∈ [0, 1] (C.1.7)

and

E∗

∣∣∣∣∣∣T−1/2

⌊Tr2⌋∑
t=⌊Tr1⌋+2

H ′
(1)

(
T−1ν − ν̂1 · IR

)
F 0

t−1Wt

∣∣∣∣∣∣
4

= Op

(
T−2l2T + T−3l2TLT

)
= op (1)(C.1.8)

Note that ∥T−1ν − ν̂1 · IR∥ = Op (T
−1) can be deduced by proofs of Theorem 3.3.2, which
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is used explicitly in following arguments.

When r in (C.1.7) equals 0, it is trivial case to hold for sure; when r ∈ (0,1] holds in (C.1.7),

by Chebyshev’s inequality, for anyM > 0,

P ∗

∣∣∣∣∣∣T−1/2

⌊Tr⌋∑
t=2

H ′
(1)

(
T−1ν − ν̂1 · IR

)
F 0

t−1Wt

∣∣∣∣∣∣ > M


≤ M−2E∗

∣∣∣∣∣∣T−1/2

⌊Tr⌋∑
t=2

H ′
(1)

(
T−1ν − ν̂1 · IR

)
F 0

t−1Wt

∣∣∣∣∣∣
2

≡ M−2I12a,r. (C.1.9)

Below, we bound I12a,r defined above.

I12a,r ≤
∥∥T (T−1ν − ν̂1 · IR

)∥∥
sp
E∗

∣∣∣∣∣∣T−3/2

⌊Tr⌋∑
t=2

H ′
(1)F

0
t−1Wt

∣∣∣∣∣∣
2

≤ Op (1)T
−3

⌊Tr⌋∑
t=2

lT∑
h=0

H ′
(1)F

0
t−1F

0′
t+h−1H(1)a(h/lT )

= Op (1)T
−2

⌊Tr⌋∑
t=2

lT∑
h=0

H ′
(1)

(
F 0

t−1√
T

)(
F 0

t+h−1√
T

)′

H(1)a(h/lT )

≤ Op (1) ∥H∥2 T−2

⌊Tr⌋∑
t=2

lT∑
h=0

a(h/lT )

= Op

(
T−1lT

)
= op(1).

where the second line follows by the properties of {Wt} under the DWB scheme, the fourth

line holds because T−1/2F 0
[Tr] ⇒ Σ

1/2
u Jν(r) due to Lemma C.3.2 1(a), and the final line holds

by the fact ∥H∥ = Op (1) and the boundness of the kernel a(.) associated with {Wt} under

the DWB scheme. Then, based on (C.1.9), we immediately obtain that

E

P ∗

∣∣∣∣∣∣T−1/2

⌊Tr⌋∑
t=2

H ′
(1) (ν − ν̂1 · IR)F 0

t−1Wt

∣∣∣∣∣∣ > M

 = O
(
T−1lT

)
= o(1).
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Then, as claimed in Rho and Shao (2019), (C.1.7) is established.

To prove (C.1.8), we recall the constructions of large blocks and small block at the beginning

of this section. LT =
⌊
(T/lT )

1/2
⌋
is the length of a large­block and lT ≍ M · T η with

η ∈ (0, 1/3) be that of a small­block. We assign points t ∈ {1, 2, . . . , ⌊Tr⌋} to alternating

large and small blocks. KT = KT,r =
⌊
⌊Tr⌋ (LT + lT )

−1⌋ be the number of the large (small)
blocks. For 0 ≤ r1 < r2 ≤ 1, K1 = KT,r1 and K1 = KT,r2 . The k­th large­block Lk =

{j ∈ N : (k − 1) (LT + lT ) + 1 ≤ j ≤ k (lT + LT )− lT} for 1 ≤ k ≤ KT , the k th small­

block Sk = {j ∈ N : k (LT + lT )− lT + 1 ≤ j ≤ k (lT + LT )} for 1 ≤ k ≤ KT − 1, and

SKT
= {j ∈ N : KT (LT + lT )− lT + 1 ≤ j ≤ ⌊Tr⌋}. And note that LT → ∞ and lT =

o (LT ) .

Now, we make the following decomposition based on large and small blocks constructed

above,

⌊Tr2⌋∑
t=⌊Tr1⌋+2

H ′
(1)

(
T−1ν − ν̂1 · IR

)
F 0

t−1Wt

=

K2∑
k=K1+1

[∑
j∈Lk

H ′
(1)

(
T−1ν − ν̂1 · IR

)
F 0

j−1Wj

]
+

K2∑
k=K1+1

[∑
j∈Sk

H ′
(1)

(
T−1ν − ν̂1 · IR

)
F 0

j−1Wj

]

≡
K2∑

k=K1+1

Uk +

K2∑
k=K1+1

Vk

Since {Wt} are lT ­dependent, {Uk}
KT,r

k=1 are independent random variables conditional on X .

The same property holds for {Vk}
KT,r

k=1 .

Below, we first handle with terms involving large blocks. By the Cr inequality,

E∗

∣∣∣∣∣∣
⌊Tr2⌋∑

t=⌊Tr1⌋+2

H ′
(1)

(
T−1ν − ν̂1 · IR

)
F 0

t−1Wt

∣∣∣∣∣∣
4

= E∗

∣∣∣∣∣
K2∑

k=K1+1

Uk +

K2∑
k=K1+1

Vk

∣∣∣∣∣
4

≤ 23

E∗

∣∣∣∣∣
K2∑

k=K1+1

Uk

∣∣∣∣∣
4

+ E∗

∣∣∣∣∣
K2∑

k=K1+1

Vk

∣∣∣∣∣
4

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By construction, we have that E∗ (Uk) = 0 and E∗ (Vk) = 0 conditional on X , for the general

case that 0 ≤ r1 < r2 ≤ 1, we can have

E∗

∣∣∣∣∣
K2∑

k=K1+1

Uk

∣∣∣∣∣
4

=

K2∑
k=K1+1

E∗ (U4
k

)
+
∑
k ̸=k′

E∗ (U2
kU

2
k′

)
≤

K2∑
k=K1+1

E∗ (U4
k

)
+

{
K2∑

k=K1+1

E∗ (U2
k

)}2

and similarly for E∗
∣∣∣∑K2

k=K1
Vk

∣∣∣4. We follow arguments of (A.3) in Shao (2010), denote

∥A∥∗p = [E∗∥A∥p]1/p. Then, by Rosenthal inequality, we have ∥
∑

iAi∥∗4 ≤M
(
∥
∑

iAi∥∗2
)1/2.

Conditional on X , for k = 1, . . . , KT , we have

∥Uk∥∗4 ≤
2lT∑
g=1

∥∥∥∥∥∥
⌊(LT−g)/(2lT )⌋∑

j=1

H ′
(1)

(
T−1ν − ν̂1 · IR

)
F 0

j−1Wj

∥∥∥∥∥∥
∗

4

≤ M

2lT∑
g=1


∥∥∥∥∥∥
⌊(LT−g)/(2lT )⌋∑

j=1

(
H ′

(1)

(
T−1ν − ν̂1 · IR

)
F 0

g+2(j−1)l−1

)2
W 2

g+2(j−1)l

∥∥∥∥∥∥
∗

2


1/2

≤ M

2lT∑
g=1


⌊(LT−g)/(2lT )⌋∑

j=1

(
H ′

(1)

(
T−1ν − ν̂1 · IR

)
F 0

g+2(j−1)l−
)2 ∥∥W 2

g+2(j−1)lT

∥∥∗
2


1/2

≤ M

2lT∑
g=1


⌊(LT−g)/(2lT )⌋∑

j=1

(
H ′

(1)

(
T−1ν − ν̂1 · IR

)
F 0

g+2(j−1)l−1

)2
1/2

≤ M
√
lT


2lT∑
g=1

⌊(LT−g)/(2lT )⌋∑
j=1

(
H ′

(1)

(
T−1ν − ν̂1 · IR

)
F 0

g+2(j−1)l−1

)2
1/2

= M
√
lT

(∑
t∈Lk

(
H ′

(1)

(
T−1ν − ν̂1 · IR

)
F 0

t−1

)2)1/2

, (C.1.10)

where the fist line above is due to the triangle inequality, the second line above follows from

Rosenthal inequality conditional onX , the third and fourth lines hold by the basic properties of

the norm ∥·∥∗p defined above, and the last inequality is due to the Cauchy–Schwarz inequality.
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From above upper bound of ∥Uk∥∗4 for each k, it implies that

E∗ (U4
k

)
≤ Ml2T

(∑
t∈Lk

(
H ′

(1)

(
T−1ν − ν̂1 · IR

)
F 0

t−1

)2)2

≤ Ml2TLT

∑
t∈Lk

(
H ′

(1)

(
T−1ν − ν̂1 · IR

)
F 0

t−1

)4
.

Then, because ∥H∥ = Op (1), ∥T−1ν∥ = Op (T
−1), ν̂1 = Op (T

−1) by Theorem 3.3.2,

K2∑
k=K1+1

E∗ (U4
k

)
≤ Ml2TLT

K2∑
k=K1+1

∑
t∈Lk

(
H ′

(1)

(
T−1ν − ν̂1 · IR

)
F 0

t−1

)4
≤ M ∥H∥4

∥∥T (T−1ν − ν̂1 · IR
)∥∥4 T−2l2TLT

K2∑
k=K1+1

∑
t∈Lk

∥∥T−1/2Ft−1

∥∥4
= Op (1)Op

(
T−2l2TLT

)
Op (T )

= Op

(
T−1l2TLT

)
.

where the third line above holds because
∑K2

k=K1+1

∑
t∈Lk

∥∥T−1/2Ft−1

∥∥4 = Op (T ) holds that

we can use Lemma C.3.2 1(a) to obtain. Besides, we have

K2∑
k=K1+1

E∗ (U2
k

)
=

K2∑
k=K1+1

∑
t∈Lk

lT∑
h=−lT

(
H ′

(1)

(
T−1ν − ν̂1 · IR

)
F 0

t−1

) (
H ′

(1)

(
T−1ν − ν̂1 · IR

)
F 0

t+h−1

)′
E∗ (WtWt+h)

≤ ∥H∥2
∥∥T (T−1ν − ν̂1 · IR

)∥∥2 T−1

K2∑
k=K1+1

∑
t∈Lk

lT∑
h=−lT

∥∥T−1/2F 0
t−1

∥∥∥∥T−1/2F 0
t+h−1

∥∥ a (h/lT )
= Op (1)T

−1Op (lTT ) = Op (lT ) .

where the first line holds by the properties of {Wt} under the DWB scheme, and the last line

follows by the boundness of a(.) associated with {Wt} under the DWB scheme and Lemma

C.3.2 1(a).

Then,
{∑K2

k=K1+1E
∗ (U2

k )
}2

= Op (l
2
T ) holds by the above bound.
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The same arguments work for terms involving small blocks {Vk}, and note that these terms

are not leading terms by construction of large and small blocks. We omit the details here for

brevity.

Then, collecting above immediate results together, we can obtain (C.1.8).

As argued in proofs of Lemma A.11 in Rho and Shao (2019), I12,r = o∗p (1) follows when

(C.1.7) and (C.1.8) hold together.

Next, we are in the position to show I11,r ⇒ W (r) below. We decompose I11,r into large and

small blocks again as done above for (C.1.8). Namely, we have

T−1/2

⌊Tr⌋∑
t=2

H ′
(1)utWt = T−1/2

KT,r∑
k=1

[∑
j∈Lk

H ′
(1)ujWj

]
+ T−1/2

KT,r∑
k=1

[∑
j∈Sk

H ′
(1)ujWj

]

≡ T−1/2

KT,r∑
k=1

Ũk + T−1/2

KT,r∑
k=1

Ṽk ≡ I11L,r + I11S,r

By construction of Ũk and Ṽk above andE∗(.) represents the expectation condition onXn, then

E∗
(
Ũk

)
= 0 and E∗

(
Ṽk

)
= 0 hold for all k = 1, . . . , KT,r; since {Wt} are lT ­dependent,

{Ũk}KT
k=1 and {Ṽk}

KT
k=1 are independent random variables conditional on X .

We will finish the proof once we show that (i) The contribution of small blocks is negligi­

ble compared with that of large blocks, namely, I11S,r = T−1/2
∑KT,r

k=1 Vk = o∗p(1); and (ii)

The functional central limit theorem will apply to the term consisting of large blocks, namely,

I11L,r = T−1/2
∑KT,r

k=1 Uk ⇒ H ′
(1)Σ

1/2
u W (r) .
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Now, we are in the position to show I11S,r = o∗p(1). Note that

E
{
E∗
(
Ṽ 2
k

)}
= E

[ ∑
j,j′∈Sk

H ′
(1)uju

′
j′H(1) a {(j − j′) /ln}

]

≤ ∥H∥2
∑

j,j′∈Sk

[α(|j − j′|)]δ/(4+δ)
(
E ∥uj∥4+δ E ∥uj′∥4+δ

)2/(4+δ)

a ({j − j′} /ln)

≤ O(1)lT

lT−1∑
h=0

[α(h)]δ/(4+δ) a (h/ln) ≤MlT .

where the second line above holds by Davydov’s inequality under Assumption A3.1 for some

δ > 0, and the third line above holds under Assumption A3.1 and the fact that ∥H∥ = Op (1).

Then I11S,r = T−1/2
∑KT,r

k=1 Vk = o∗p(1) follows directly by using the above bound, the inde­

pendence of {Ṽk}
KT,r

k=1 conditional on X , and Chebyshev’s inequality.

Finally, we will show I11L,r ⇒ H ′
(1)Σ

1/2
u W (r) . To this end, we verify those conditions

stated in Phillips (1988). First, we have E∗
(
Ũk

)
= 0 conditional on X by the construction

Ũk. Second, note that I11L,r = T−1/2
∑KT,r

k=1 Ũk ≤ K
−1/2
T,r

∑KT,r

k=1

(
L
−1/2
T Ũk

)
, by using (A.3)

in Shao (2010) and Hölder’s inequality, for some δ > 0, we have

E∗
∣∣∣L−1/2

T Ũk

∣∣∣4+δ

≤ ML
−(4+δ)/2
T l

(4+δ)/2
T

(∑
t∈Lk

∣∣H ′
(1)ut

∣∣2)(4+δ)/2

≤ ML
−(4+δ)/2
T l

(4+δ)/2
T ∥H∥4+δ L

δ/2
T

∑
t∈Lk

∥ut∥4+δ

= Op

(
L−1
T l

(4+δ)/2
T

)
= Op

(
T−1l

(6+δ)/2
t

)
= op (1) ,

where the last line is due to the fact that LT = ⌊(T/lT )1/2⌋, lT ≍ T η with η ∈ (0, 1/3),

and E ∥ut∥4+δ = Op (1) holds under Assumption A3.1. Third, {Ũk} are independent of each

other conditional on X1. Therefore, based on such three facts, in the view of results in Phillips

(1988), the desired result follows directly.

(b) The desired result follows directly by taking advantages of the argument of proofs in (a)

above and the simple facts for the joint test statistic like (C.1.2) and (C.1.3).
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C.2 Proofs for Technical Lemmas

This section is composed of 3 parts. Section C.2.1 contains the proofs of Lemmas A.1­A.5

in the above paper. Section C.2.2 contains some technical lemmas that are used in the proofs

of the main results and Lemmas C.1­C.5. Section C.2.3 provides some additional simulation

results.

C.2.1 Proofs of Lemma C.1.1

The proof is similar to that of Proposition 1 in Bai (2003). We omit details here for brevity.

C.2.2 Some preliminary results

In this subsection, we present the bound of some terms frequently used latter in the proofs

of technical lemmas. Under Assumption A3.1 to A3.5, we can obtain the desired bound by

following lines in Feng and Su (2020) together with Lemma C.3.2 and thus omit the details of
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proofs for the brevity.

(1)
∥∥Λ0′ϵ

∥∥ = Op

(
N1/2T 1/2

)
,

(2)

∣∣∣∣∣N−1

N∑
i=1

cieit−1

∣∣∣∣∣ = Op

(
N−1/2T

)
holds for t = 2, . . . , T,

(3) T−1

T∑
s=2

∣∣∣∣∣N−1

N∑
i=1

B0′
s λiϵit

∣∣∣∣∣
2

= Op

(
N−1

)
holds for t = 1, . . . , T,

(4)

∥∥∥∥∥N−1T−1

N∑
j=1

T∑
s=2

B0
sϵjsλ

0′
j

∥∥∥∥∥ = Op

(
N−1/2T−1/2

)
,

(5)

∥∥∥∥∥T−1

T∑
t=2

B0
t ϵit

∥∥∥∥∥ = Op

(
T−1/2

)
holds for each i,

(6)

∥∥∥∥∥N−1T−1

N∑
j=1

T∑
t=1

λ0
jϵjtϵit

∥∥∥∥∥ = Op

(
N−1/2T−1/2

)
,

(7)
∥∥e′

−1 (ρN − IN)
∥∥ = Op

(
N1/2

)
,where ρN ≡ diag (1 + c1/T, . . . , 1 + cN/T ),

(8)
∥∥Λ0′ (ρN − IN) e−1

∥∥ = Op

(
N1/2

)
,

(9)
T∑

s=2

∥∥∥∥∥N−1

N∑
i=1

(ρi − 1)2 eis−1eit−1

∥∥∥∥∥
2

= Op

(
T−1

)
holds for t = 2, . . . , T.

C.2.3 Proofs of Lemma C.1.2

In this proof, we focus on the case that both common factors and idiosyncratic errors follow

the local­to­unit processes from the explosive side. Namely, we will take the local­to­unit­root

alternatives with ρ00,r = 1 + νr/T for r = 1, ..., R0 with νr > 0 for all r; and ρ00,i = 1 + ci/T

for i = 1, ..., N with ci > 0 for all i. For other cases, we have similar arguments for proofs in

the context of the alternative of local­to­unity.
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Proofs of Lemma C.1.2(a)

LetW = (ρN − IN) e−1 + ϵ and note that (3.2 .10) can be written in matrix form as follows

Z = Λ0
(
F 0 − F 0

−1

)′
+W ≡ Λ0B0′ +W (C.2.1)

Recall that ΣZ,N = N−1Z ′Z, by the eigenvalue problem, we have the identity

ΣZ,NB̂ = B̂VZ,N , (C.2.2)

where VZ,N is a diagonal matrix that consists of the first R0 eigenvalues of ΣZ,N arranged

in descending order along its main diagonal line. Premultiplying both sides of (C.2.2) by the

recalling factor T−1 and substituting (C.2.1) into (C.2.2), we have

T−1B̂VZ,N −B0
(
N−1Λ0′Λ0

) (
T−1B0′B̂

)
= N−1T−1W ′WB̂ +N−1T−1B0Λ0′WB̂ +N−1T−1W ′Λ0B0′B̂

≡ A1 + A2 + A3. (C.2.3)

Below, we bound each term on the last line. First, forA1 = N−1T−1W ′WB̂, recall that ρi =

1+ci/T for i = 1, . . . , N underAssumptionA3.5 such thatρN ≡ diag (1 + c1/T, . . . , 1 + cN/T ),

we have

A1 = N−1T−1e′
−1 (ρN − IN)

2 e−1B̂ +N−1T−1ϵ′ϵB̂ +N−1T−1e′
−1 (ρN − IN) ϵ

+N−1T−1ϵ′ (ρN − IN) e−1B̂

≡ A11 + A12 + A13 + A14.

274



For A11, we have by the sub­multiplicity of Frobenius norm,

∥A11∥ = N−1T−1
∥∥∥e′

−1 (ρN − IN)
2 e−1B̂

∥∥∥
≤ N−1T−1/2

∥∥e′
−1 (ρN − IN)

∥∥2 ∥∥∥T−1/2B̂
∥∥∥

≤ N−1T−1/2Op (N)Op (1) = Op

(
T−1/2

)
,

where the third line above follows by the normalization condition and the bound given in

Section C.2.2. Similarly, we have

∥A12∥ ≤ N−1T−1/2 ∥ϵ∥2sp
∥∥∥T−1/2B̂

∥∥∥ = N−1T−1/2Op (N + T )Op (1) = Op

(
T−1/2 +N−1T 1/2

)
where we also use the that ∥ϵ∥2sp = Op (N + T ) under Assumption A3.3(d). By Cauchy­

Schwarz inequality, it is easy to see ∥A13∥ and ∥A14∥ will not be the dominant term in com­

parison with ∥A11∥ and ∥A12∥. In sum, we have shown that ∥A1∥ = Op

(
T−1/2 +N−1T 1/2

)
.

Next, we study A2. Note that A2 = N−1T−1B0Λ0′ (ρN − IN) e−1B̂+N−1T−1B0Λ0′ϵB̂ ≡

A21 + A22. For A21, we have

A21 ≤ N−1T−1
∥∥∥B0Λ0′ (ρN − IN) e−1B̂

∥∥∥
≤ N−1

∥∥T−1/2B0
∥∥∥∥Λ0′ (ρN − IN) e−1

∥∥∥∥∥T−1/2B̂
∥∥∥

≤ N−1Op (1)Op

(
N1/2

)
Op (1) = Op

(
N−1/2

)
,

where the third line above follows by Lemma C.3.2 1(e), the normalization condition and the

bound shown in Section C.2.2. Similarly, we have

∥A22∥ ≤ N−1
∥∥T−1/2B0

∥∥∥∥Λ0′ϵ
∥∥∥∥∥T−1/2B̂

∥∥∥
= N−1Op (1)Op

(
N1/2T 1/2

)
Op (1) = Op

(
N−1/2T 1/2

)
,
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where the second line above follows by Lemma C.3.2 1(e), the normalization condition and

the bound shown in Section C.2.2. In sum, we have ∥A2∥ = Op

(
N−1/2 +N−1/2T 1/2

)
.

Next, note that A3 = N−1T−1e′
−1 (ρN − IN)Λ

0B0′B̂ + N−1T−1ϵ′Λ0B0′B̂ ≡ A31 + A32.

By the bound shown in Section C.2.2 and Lemma C.1.1, we have

∥A31∥ ≤ N−1
∥∥e′

−1 (ρN − IN)Λ
0
∥∥∥∥∥T−1B0′B̂

∥∥∥ = Op

(
N−1/2

)
,

and

∥A32∥ ≤ N−1/2T 1/2
∥∥ϵ′Λ0

∥∥∥∥∥T−1B0′B̂
∥∥∥ = N−1Op

(
N1/2T 1/2

)
Op (1) = Op

(
N−1/2T 1/2

)
.

We then have ∥A3∥ = Op

(
N−1/2 +N−1/2T 1/2

)
. Then, collecting all above immediate results,

we have

∥A1∥+ ∥A2∥+ ∥A3∥ = Op

(
N−1/2 + T−1/2 +N−1T 1/2 +N−1/2T 1/2

)
.

Then, it follows that

∥∥∥B̂ (T−1VZ,N

)
−B0

(
N−1Λ0′Λ0

) (
T−1B0′B̂

)∥∥∥
≤ ∥A1∥+ ∥A2∥+ ∥A3∥

= Op

(
N−1/2 + T−1/2 +N−1T 1/2 +N−1/2T 1/2

)
.

Consequently, we have

T−1
∥∥∥B̂ (T−1VZ,N

)
−B0

(
N−1Λ0′Λ0

) (
T−1B0′B̂

)∥∥∥2 (C.2.4)

= T−1

T∑
t=2

∥∥∥∥(T−1VZ,N

)
B̂t −

(
T−1B0′B̂

)′ (
N−1Λ0′Λ0

)
B0

t

∥∥∥∥2 = Op

(
N−1

)
.
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Now we are in a position to define the rotation matrix H . Following Bai and Ng (2004), let

HB ≡
(
N−1Λ0′Λ0

)
(T−1B0′B̂). Define

(
H−1

)′ ≡ (T−1VZ,N

)
H−1

B (C.2.5)

According to Lemma C.3.3 , and the fact that ∥HB∥ = Op (1) and
∥∥H−1

B

∥∥ = Op (1) by

constructions using Assumption A3.2 and Lemma C.1.1, we can readily show that

∥∥H−1
∥∥ = Op (1) , ∥H∥ = Op (1) . (C.2.6)

Then, by (C.2.5) and (C.2.5), we have

T−1
∥∥∥B̂H ′−1 −B0

∥∥∥2 = Op

(
N−1

)
. (C.2.7)

The desired result follows directly.

Proofs of Lemma C.1.2(b)

Using (C.2.2), (C.2.5), and Lemma C.3.3, and the fact thatHB =
(
N−1Λ0′Λ0

)
(T−1B0′B̂),

for each t, we have

{
T−1VZ,N

}′
B̂t −

[(
N−1Λ0′Λ0

) (
T−1B0′B̂

)]′
B0

t

=
{
T−1VZ,N

}′
B̂t −H ′

BB
0
t

=
(
N−1T−1

)
B̂′W ′Wt +

(
N−1T−1

)
B̂′W ′Λ0B0

t +
(
N−1T−1

)
B̂′B0Λ0′Wt

≡
(
N−1T−1

)
(A1t + A2t + A3t) , (C.2.8)

We first study A1t, recall thatW = (ρN − IN) e−1 + ϵ and thusWt = (ρN − IN) et−1 + ϵt,
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we use these facts to make the following decomposition:

A1t = B̂′ϵ′ϵt + B̂′e′
−1 (ρN − IN)

2 et−1 + B̂′e′
−1 (ρN − IN) ϵt + B̂′ϵ′ (ρN − IN) et−1

≡ A1t1 + A1t2 + A1t3 + A1t4.

Noting that B̂ = (B̂H ′−1 −B0)H ′ +B0H ′, we make further decomposition for A1t1 :

A1t1 = HB0′ϵ′ϵt +H
(
B̂H ′−1 −B0

)′
ϵ′ϵt = A1t1a + A1t1b.

Recall that γN (s, t) =
∑N

i=1E (ϵisϵit), we make further decomposition for A1t1a :

A1t1a = H
T∑

s=2

B0
sγN (s, t) +H

T∑
s=2

B0
s

(
N∑
i=1

ϵisϵit − γN (s, t)

)
≡ A1t1a1 + A1t1a2.

Note that
∑T

s=2 |γN (s, t)|2 ≤ (maxs,t |γN (s, t)|)
∑T

s=2 |γN (s, t)| = O(N2) by Assumption

A3.3(b). In addition,
∑T

s=2 ∥B0
s∥

2
= Op (T ) by Lemma C.3.2(e). Then by the Cauchy­

Schwarz inequality,

∥A1t1a1∥ = ∥H∥

∥∥∥∥∥
T∑

s=2

B0
sγN (s, t)

∥∥∥∥∥ ≤ ∥H∥

[
T∑

s=2

∥∥B0
s

∥∥2]1/2 [ T∑
s=2

|γN (s, t)|2
]1/2

= Op

(
NT 1/2

)
.

For A1t1a2, we have by the Cauchy­Schwarz inequality

∥A1t1a2∥ ≤ ∥H∥

[
T∑

s=1

∥∥B0
s

∥∥2]1/2  T∑
s=1

∣∣∣∣∣
N∑
i=1

[ϵisϵit − E (ϵisϵit)]

∣∣∣∣∣
2
1/2

= Op

(
N1/2T

)
,

where we use the fact that ∥H∥ = Op (1),
∑T

s=2 ∥B0
s∥

2
= Op (T ) stated in Lemma C.3.2 1(e)

and Assumption A3.3(b).

Now, write A1t1b =
∑T

s=1(B̂s−HB0
s )γN (s, t)+

∑T
s=1(B̂s−HB0

s )[
∑N

i=1 ϵisϵit− γN (s, t)]
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≡ A1t1b1 + A1t1b2. Because of the result in (C.2.6) and (C.2.7), we also have

∥∥∥B̂ −B0H ′
∥∥∥ ≤

∥∥∥B̂H ′−1 −B0
∥∥∥ ∥H∥ = Op

(
T 1/2N−1/2

)
. (C.2.9)

Then, using Cauchy­Schwarz inequality, (C.2.9) above and Assumption A3.3(a), we have

∥A1t1b1∥ ≤
∥∥∥B̂ −B0H ′

∥∥∥[ T∑
s=1

|γN (s, t)|2
]1/2

= Op

(
T 1/2N−1/2

)
Op (N) = Op

(
N1/2T 1/2

)
.

Similarly, by Cauchy­Schwarz inequality, (C.2.9) above, and Assumption A3.3(b) we have

∥A1t1b2∥ ≤
∥∥∥B̂ −B0H ′

∥∥∥
 T∑

s=1

∣∣∣∣∣
N∑
i=1

[ϵisϵit − E (ϵisϵit)]

∣∣∣∣∣
2
1/2

= Op

(
T 1/2N−1/2

)
Op

(
N1/2T 1/2

)
= Op (T ) .

In sum, we have

∥A1t1∥ = Op

(
NT 1/2 +N1/2T +N1/2T 1/2 + T

)
.

ForA1t2,we haveA1t2 = HB0′e′
−1 (ρN − IN)

2 et−1+H(B̂H ′−1−B0)′e′
−1 (ρN − IN)

2 et−1 ≡

A1t2a + A1t2b. For A1t2a, by expansions, we have

A1t2a = HB0′e′
−1 (ρN − IN)

(
T−1

N∑
i=1

cieit−1

)
.

It follows that

∥A1t2a∥ ≤ ∥H∥
∥∥B0′∥∥∥∥e′

−1 (ρN − IN)
∥∥ ∣∣∣∣∣T−1

N∑
i=1

cieit−1

∣∣∣∣∣
= Op (1)Op

(
T 1/2

)
Op

(
N1/2

)
Op

(
N1/2

)
= Op

(
NT 1/2

)
,
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where the second line above holds by following bounds: ∥H∥ = Op (1) as stated in (C.2.6),

∥B0∥ = Op

(
T 1/2

)
by Lemma C.3.2 1(e), T−1

∣∣∣∑N
i=1 cieit−1

∣∣∣ = Op

(
N1/2

)
holds as shown in

C.2.2 by the weak cross­sectional dependence imposed in Assumption A3.1 and the fact that

eit/T = Op (1) for each i. For A1t2b, we have

∥A1t2b∥ =

∥∥∥∥∥
T∑

s=2

(
B̂s −HB0

s

)( N∑
i=1

(
ρ0i − 1

)2
eis−1eit−1

)∥∥∥∥∥
≤

∥∥∥B̂ −B0H ′
∥∥∥
 T∑

s=2

∥∥∥∥∥
N∑
i=1

(
ρ0i − 1

)2
eis−1eit−1

∥∥∥∥∥
2
1/2

= Op

(
T 1/2N−1/2

)
Op

(
NT−1/2

)
= Op

(
N1/2

)
,

where the second line above follows because we use (C.2.9) and the result shown in Section

C.2.2. In sum, we have

∥A1t2∥ = Op

(
NT 1/2

)
.

Collecting the above results forA1tl, l = 1, 2, ∥A1t∥ = Op

(
N1/2T +NT 1/2 +N1/2T 1/2 + T

)
follows directly.

Now, we study A2t. Note that A2t = HB0′W ′Λ0B0
t + (B̂ − B0H ′)′W ′Λ0B0

t ≡ A2t1 +

A2t2. In particular, let A2t1 = HB0′W ′Λ0B0
t ≡ HĀ2t1B

0
t , where Ā2t1 = B0′W ′Λ0 =

B0′e′
−1 (ρN − IN)Λ

0 + B0′ϵ′Λ0 ≡ Ā2t1a + Ā2t1b. So Ā2t1b =
∑N

i=1

∑T
s=2B

0
seis−1λ

0′
i and

Ā2t1b =
∑N

i=1

∑T
s=2B

0
sϵisλ

0′
i . Note thatEĀ2t1b = 0 under Assumptions A3.1 and A3.4; recall
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thatB0
t = T−1νF 0

t−1 + ut for all t, and then,

E
∥∥Ā2t1b

∥∥2 = E

(
N∑
i=1

N∑
j=1

T∑
s=2

T∑
q=2

B0
sϵisλ

0′
i λ

0
jϵjqB

0′
q

)

=
N∑
i=1

N∑
j=1

E
(
λ0′

i λ
0
j

) T∑
s=2

T∑
q=2

E (ϵisϵjq)E
(
B0′

q B
0
s

)
=

N∑
i=1

N∑
j=1

E
(
λ0′

i λ
0
j

)
×

{
T∑

s=2

T∑
q=2

E (ϵisϵjq)E
[
T−2F 0

q−1ν
′νF 0

s−1 + u′
qus + T−1F 0

q−1ν
′us + T−1u′

qνF
0
s−1

]}
≡ Ā2t1b1 + Ā2t1b2 + Ā2t1b3 + Ā2t1b4 (C.2.10)

where the second line holds under AssumptionA3.4, and the {Ā2t1bh}4h=1 are defined implicitly

as above.

For Ā2t1b1 = T−2
∑N

i=1

∑N
j=1E

(
λ0′

i λ
0
j

)∑T
s=2

∑T
q=2E (ϵisϵjq)E

(
T−2F 0

q−1ν
′νF 0

s−1

)
, it fol­

lows that

Ā2t1b1 ≤ M ∥ν∥sp T
−2

N∑
i=1

N∑
j=1

T∑
s=2

T∑
q=2

αij (|s− q|)E
(
F 0

q−1F
0
s−1

)
≤ MT−2

N∑
i=1

N∑
j=1

αij (0)E

(
T∑

s=2

T∑
q=2

F 0
q−1F

0
s−1

)
= MT−2O (N)O

(
T 3
)
= O (NT ) ,

where the first line holds by the Davydov’s inequality under Assumptions A3.1 and A3.2, the

second line follows from Assumption A3.1 too, and the third line follows from Assumption

A3.1 and Lemma C.3.2 1(e). Similarly, for Ā2t1b2, we have

Ā2t1b1 ≤ MT−2

N∑
i=1

N∑
j=1

T∑
s=2

T∑
q=2

αij (|s− q|)α (|s− q|)

≤ M

N∑
i=1

N∑
j=1

T∑
s=2

T∑
q=2

αij (|s− q|) = O (NT ) ,
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where the first line holds by the Davydov’s inequality under Assumptions A3.1 and A3.2, the

second line follows from the property of mixing coefficients, and the third line follows from

Assumption A3.1. Similarly, by Cauchy­Schwarz inequality, we can readily show Ā2t1b3 =

O (NT ) and Ā2t1b4 = O (NT ). Then, by Chebyshev’s inequality, it follows that Ā2t1b =

Op

(
N1/2T 1/2

)
. For Ā2t1a,

Ā2t1a ≤
∥∥B0′e′

−1 (ρN − IN)Λ
0
∥∥

≤
∥∥B0′∥∥∥∥e′

−1 (ρN − IN)Λ
0
∥∥

= Op

(
N1/2

∥∥B0
∥∥) = Op

(
N1/2T 1/2

)
,

where the last line follows by the results given in Section C.2.2 and Lemma C.3.2 1(e). In

sum, we have

∥A2t1∥ ≤ ∥H∥
∥∥Ā2t1

∥∥∥∥B0
∥∥

= Op (1)Op

(
N1/2

∥∥B0
∥∥)Op

(∥∥B0
∥∥) = Op

(
N1/2T

)
,

where we use the fact that ∥B0
t ∥ ≤ ∥B0∥ = Op

(
T 1/2

)
by Lemma C.3.2 1(e) under Assump­

tion A3.1 and A3.5. Similarly, we have

∥A2t2∥ ≤
∥∥∥B̂ −B0H ′

∥∥∥
 T∑

s=1

∣∣∣∣∣
N∑
i=1

ϵisλi

∣∣∣∣∣
2
1/2 ∥∥B0

∥∥
= Op

(
T 1/2N−1/2

)
Op

(
N1/2T 1/2

)
Op

(∥∥B0
∥∥)

= Op

(
T 3/2

)
,

where the second line follows by (C.2.9), the result given in Section C.2.2 and Lemma C.3.2

1(e). Then, collecting immediate results, we can conclude that ∥A2t∥ = Op

(
N1/2T + T 3/2

)
.

Next, we study A3t. Note that A3t = B̂′B0Λ0′ϵt + B̂′B0Λ0′ (ρN − IN) et−1 ≡ A3t1 +
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A3t2. We have further decomposition for A3t1 as follows: A3t1 = HB0′B0Λ0′ϵt + (B̂ −

B0H ′)′B0Λ0′ϵt ≡ A3t1a + A3t1b.

∥A3t1a∥ ≤ ∥H∥

∥∥∥∥∥
T∑

s=2

B0
sB

0′
s

∥∥∥∥∥
∥∥∥∥∥

N∑
i=1

λ0
i ϵit

∥∥∥∥∥
= Op (1)Op

(∥∥B0
∥∥2)Op

(
N1/2

)
= Op

(
N1/2

∥∥B0
∥∥2) = Op

(
N1/2T

)
,

where the first equality holds by the fact that ∥H∥ = Op (1) , Lemma C.3.2 1(e), and the fact

that
∥∥∥∑N

i=1 λ
0
i ϵit

∥∥∥ = Op

(
N1/2

)
under Assumptions A3.1 and A3.2 as given in Section C.2.2.

Similarly,

∥A3t1b∥ ≤
∥∥∥B̂ −B0H ′

∥∥∥
 T∑

s=2

∣∣∣∣∣
N∑
i=1

B0′
s λiϵit

∣∣∣∣∣
2
1/2

= Op

(
T 1/2N−1/2

)
Op

(
N1/2T 1/2

)
= Op (T ) ,

where we use (C.2.9) and the result give in Section C.2.2. Obviously, A3t1b is dominated by

A3t1a. Therefore, ∥A3t1∥ = Op

(
N1/2T

)
holds.

Note that A3t2 = HB0′B0Λ0′ (ρN − IN) et−1 + (B̂ − B0H ′)′B0Λ0′ (ρN − IN) et−1 ≡

A3t2a + A3t2b. Similar to above arguments, it is easy to see that A3t2b is dominated by A3t2a

due to the term (B̂ −B0H ′). Below, we bound A3t2a,

∥A3t2a∥ ≤ ∥H∥
∥∥B0′B0

∥∥∥∥Λ0′ (ρN − IN) et−1

∥∥
= Op (1)Op (T )Op

(
N1/2

)
= Op

(
N1/2T

)
.

where the second line follows by the fact ∥H∥ = Op (1), Lemma C.3.2 1(e) and the bound

given in Section C.2.2. In sum, we have ∥A3t∥ = Op

(
N1/2T

)
. Collecting above immediate
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results for A1t, A2t, and A3t, we then have

∥A1t + A2t + A3t∥ ≤ ∥A1t∥+∥A2t∥+∥A3t∥ = Op

(
N1/2T 1/2 + T +N1/2T +NT 1/2 + T 3/2

)
.

(C.2.11)

Then, by (C.2.8) and the fact that ∥H∥ = Op (1), it follows that

∥∥∥H−1B̂t −B0
t

∥∥∥ ≤ ∥H∥
(
N−1T−1

)
(∥A1t∥+ ∥A2t∥+ ∥A3t∥)

= Op

(
N−1/2T−1/2 +N−1 +N−1/2 + T−1/2 +N−1T 1/2

)
.(C.2.12)

From above, the desired result follows directly.

Proofs of Lemma C.1.2(c)

Recall that λ̂i = (B̂′B̂)−1B̂′Zi where Zi = B0λ0
i +Wi. By the identity that B0 = (B0 −

B̂H ′−1) + B̂H ′−1 and B̂ = (B̂ − B0H ′) + B0H ′, and the normalization condition that

T−1B̂′B̂ = IR0 , we have

λ̂i −H ′−1λ0
i = T−1H(B̂′H−1 −B0)′(B0 − B̂H ′−1)λ0

i + T−1HB0′(B0 − B̂H ′−1)λ0
i

+T−1HB0′Wi + T−1(B̂H ′−1 −B0)′Wi

≡ D1i + D2i + D3i + D4i. (C.2.13)

We bound each term in the last display in turn.

First, for D1i we have

∥D1i∥ ≤ T−1
∥∥∥B̂ −B0H ′

∥∥∥∥∥∥B̂H ′−1 −B0
∥∥∥∥∥λ0

i

∥∥
= T−1Op

(
T 1/2N−1/2

)
Op

(
T 1/2N−1/2

)
Op (1)

= Op

(
N−1

)
,
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where the second line follows by (C.2.7), (C.2.9) and the Markov’s inequality under Assump­

tion A3.2.

For D2i, by substituting the expansions of (B̂H ′−1 −B0) as shown in (C.2.3), we make the

following decomposition,

D2i = T−1HB0′(B̂H ′−1 −B0)λi

= N−1T−2HB0′W ′WB̂λ0
i +N−1T−2HB0′B0Λ0′WB̂λ0

i

+N−1T−2HB0′W ′Λ0B0′B̂λ0
i

= D2ia + D2ib + D2ic.

Recall thatW = (ρN − IN) e−1 + ϵ. For D2ib, we have

D2ib = N−1T−2HB0′B0Λ0′WB̂λ0
i

= N−1T−2HB0′B0Λ0′ (ρN − IN) e−1B̂λ0
i +N−1T−2HB0′B0Λ0′ϵB̂λ0

i

= N−1T−2HB0′B0Λ0′ (ρN − IN) e−1B
0H ′λ0

i +N−1T−2HB0′B0Λ0′ϵB0H ′λ0
i

+N−1T−2HB0′B0Λ0′ (ρN − IN) e−1(B̂ −B0H ′)λ0
i

+N−1T−2HB0′B0Λ0′ϵ(B̂ −B0H ′)λ0
i

≡ D2ib,1 + D2ib,2 + D2ib,3 ++D2ib,4,

From above, it is readily to show thatD2ib,3 andD2ib,4 are dominated byD2ib,1 andD2ib,2 due to

the the term (B̂−B0H ′). Following the analysis of ∥A2t1∥ in the proofs of Lemma C.1.2(b),
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we have

∥D2ib,2∥ =

∥∥∥∥∥N−1T−2λ0′
i H

N∑
j=1

T∑
s=2

B0
sϵjsλ

0′
j

T∑
t=2

B0
tB

0′
t H

′

∥∥∥∥∥
≤

∥∥λ0
i

∥∥ ∥H∥2
∥∥∥∥∥N−1T−1

N∑
j=1

T∑
s=2

B0
sϵjsλ

0′
j

∥∥∥∥∥
∥∥∥∥∥T−1

T∑
t=2

B0
tB

0′
t

∥∥∥∥∥
= Op(1)Op

(
N−1/2T−1/2

)
Op (1)

= Op

(
N−1/2T−1/2

)
,

where the third line follows by the Markov’s inequity under Assumption A3.2, (C.2.6), the

result given in Section C.2.2 and Lemma C.3.2 1(e). Similarly, we have

∥D2ib,1∥ =

∥∥∥∥∥N−1T−2λ′
iHB0′e′

−1 (ρN − IN)Λ
0

T∑
t=2

B0
tB

0′
t H

′

∥∥∥∥∥
≤ N−1T−1 ∥λi∥ ∥H∥2

∥∥B0
∥∥∥∥e′

−1 (ρN − IN)Λ
0
∥∥∥∥∥∥∥T−1

T∑
t=2

B0
tB

0′
t

∥∥∥∥∥
= N−1T−1Op(1)Op

(
T 1/2

)
Op

(
N1/2

)
Op (1)

= Op

(
N−1/2T−1/2

)
,

In sum, it follows that D2ib = Op

(
N−1/2T−1/2

)
. For D2ic,

D2ic = N−1T−2HB0′W ′Λ0B0′B̂λi

= N−1T−2
{
HB0′W ′Λ0B0′B0H ′λi +HB0′W ′Λ0B0′(B̂ −B0H ′)λi

}
= N−1T−2HB0′ϵ′Λ0B0′B0H ′λi +N−1T−2HB0′e′

−1 (ρN − IN)Λ
0B0′B0H ′λi

+N−1T−2HB0′ϵ′Λ0B0′(B̂ −B0H ′)λi

+N−1T−2HB0′e′
−1 (ρN − IN)Λ

0B0′(B̂ −B0H ′)λi

≡ D2ic,1 + D2ic,2 + D2ic,3 + D2ic,4,

Again, it is straightforward to see D2ic,3 and D2ic,4 are dominated by D2ic,1 and D2ic,2 due to
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the the term (B̂ −B0H ′). Note that

∥D2ic,1∥ =

∥∥∥∥∥N−1T−2λ′
i

T∑
s=2

HB0
sB

0′
s

N∑
j=1

λ0
j

∑
t

ϵjtB
0′
t H

′

∥∥∥∥∥
≤ ∥λi∥ ∥H∥2

∥∥∥∥∥T−1

T∑
s=2

B0
sB

0′
s

∥∥∥∥∥
∥∥∥∥∥N−1T−1

N∑
j=1

λ0
j

∑
t

ϵjtB
0′
t

∥∥∥∥∥
= Op (1)Op

(
N−1/2T−1/2

)
= Op

(
N−1T−1/2

)
,

where the third line follows by the Markov’s inequity under Assumption A3.2, (C.2.6), the

result given in Section C.2.2 and Lemma C.3.2 1(e). Similarly,

∥D2ic,2∥ =

∥∥∥∥∥N−1T−2λ′
i

T∑
s=2

HB0
sB

0′
s Λ

0′ (ρN − IN) e−1B
0H ′

∥∥∥∥∥
≤ N−1T−1 ∥λi∥ ∥H∥2

∥∥∥∥∥T−1

T∑
s=2

B0
sB

0′
s

∥∥∥∥∥∥∥Λ0′ (ρN − IN) e−1

∥∥∥∥B0
∥∥

= N−1T−1Op (1)Op

(
N1/2

)
Op

(∥∥B0
∥∥)

= Op

(
N−1/2T−1/2

)
,

In sum, it follows that D2ic = Op

(
N−1/2T−1/2

)
.

For D2ia, similar to arguments for bounding D2ib and D2ic just above, we can readily show

that the stochastic bound of the leading termN−1T−2HB0′W ′WB0λi is Op (T
−1) by using

immediate results for bounding D2ib and D2ic.

It follows that D2i = Op

(
T−1 +N−1/2T−1/2

)
For D3i, we have D3i = T−1H {B0′ϵi +B0′ (ρ0i − 1) ei,−1} ≡ T−1H (D3ia + D3ib). Noting

thatE (D3ia) = 0 underAssumptionsA3.1(c) andA3.4, we can readily show that
∥∥∥∑T

s=2B
0
sϵis

∥∥∥ =

Op

(
T 1/2

)
by Davydov’s inequality and Lemma C.3.2 1(c) under Assumptions A3.1 and A3.4

by noting that B0
s = T−1νFt−1 + ut. So, ∥D3ia∥ = Op

(
T 1/2

)
. Similarly, we can readily
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show that ∥D3ib∥ = Op (1) = op
(
T 1/2

)
. Then, use the fact that ∥H∥ = Op (1), we have

∥D3i∥ ≤ T−1 ∥H∥ (∥D3ia∥+ ∥D3ib∥) = Op

(
T−1T 1/2

)
= Op

(
T−1/2

)

For D4i, we make the following decomposition

D4i = N−1T−2B̂′W ′WWi +N−1T−2B̂′W ′Λ0B0′Wi +N−1T−2B̂′B0Λ0′WWi

≡ D4ia + D4ib + D4ic.

Recall thatW = (ρN − IN) e−1 + ϵ. For D4ib, we have

D4ia = N−1T−2HB0′W ′WWi +N−1T−2(B̂ −B0H ′)′W ′WWi

= N−1T−2HB0′W ′Wϵi +N−1T−2HB0′W ′Wei,−1

(
ρ0i − 1

)
N−1T−2(B̂ −B0H ′)W ′Wϵi +N−1T−2(B̂ −B0H ′)W ′Wei,−1

(
ρ0i − 1

)
≡ D4ia1 + D4ia2 + D4ia3 + D4ia4.

Obviously, D4ia3 and D4ia4 are dominated by D4ia1 and D4ia2 due to the term (B̂ −B0H ′). It

then suffices to D4ia1 and D4ia2 as follows.

Note that D4ia1 = N−1T−2HB0′ [(ρN − IN) e−1 + ϵ]′ [(ρN − IN) e−1 + ϵ] ϵi ≡ D4ia1 +

D4ia11 + D4ia12 + D4ia13 + D4ia14 with

D4ia11 = N−1T−2HB0′e′
−1 (ρN − IN)

2 e−1ϵi,

D4ia12 = N−1T−2HB0′ [(ρN − IN) e−1]
′ ϵϵi,

D4ia13 = N−1T−2HB0′ϵ′ [(ρN − IN) e−1] ϵi,

D4ia14 = N−1T−2HB0′ϵ′ϵϵi.
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Note that for D4ia1,

D4ia11 ≤ N−1T−2 ∥H∥
∥∥B0

∥∥ ∥(ρN − IN) e−1∥2 ∥ϵi∥

= N−1T−2Op (1)Op

(
T 1/2

)
Op (N)Op

(
T 1/2

)
= Op

(
T−1

)
where the second line above follows by the fact that ∥H∥ = Op (1), Lemma C.3.2 1(e),

the bound given in Section C.2.2, and the fact that ∥ϵi∥2 = T (T−1
∑

t ϵ
2
it) = Op (T ) un­

der Assumption A3.1(c). Similarly, we can obtain that D4ia12 = Op

(
N−1/2T−1

)
, D4ia13 =

Op

(
N−1/2T−1

)
and D4ia14 = Op (N

−1 + T−1) by Lemma C.3.2, the results given in C.2.2,

andAssumptionsA3.1 andA3.3. Thus,D4ia1 = Op

(
N1/2T−3/2 +N−1/2T−1/2 +N−1 + T−1

)
.

By similar decomposition and arguments above,D4ia2 = Op

(
T−3/2 +N−1T−1/2 +N−1/2T−1

)
holds.

Thus, collecting above immediate results, we have D4ia = Op

(
N−1/2T−1/2 +N−1 + T−1

)
.

We would like to address that some of bounds for the terms in the decomposition of D4ia can

be improved, though they are still of smaller of order than other terms here.

For D4ib, we have

D4ib = N−1T−2HB0′W ′Λ0B0′Wi +N−1T−2(B̂ −B0H ′)′W ′Λ0B0′Wi

= N−1T−2HB0′ϵ′Λ0B0′Wi +N−1T−2HB0′e′
−1 (ρN − IN)Λ

0B0′Wi

N−1T−2(B̂ −B0H ′)′ϵ′Λ0B0′Wi +N−1T−2(B̂ −B0H ′)′e′
−1 (ρN − IN)Λ

0B0′Wi

≡ D4ib1 + D4ib2 + D4ib3 + D4ib4.

It is easy to see that D4ib3 and D4ib4 are dominated by D4ib1 and D4ib2 due to the term (B̂ −

B0H ′). So we focus on D4ib1 and D4ib2 below. BecauseWi = (ρ0i − 1) ei,−1 + ϵi. For D4ib1,

D4ib1 = N−1T−2HB0′ϵ′Λ0B0′ (ρ0i − 1
)
ei,−1 +N−1T−2HB0′ϵ′Λ0B0′ϵi

≡ D4ib11 + D4ib12
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We bound D4ib12 below firstly,

∥D4ib12∥ =

∥∥∥∥∥N−1T−2H
(
ρ0
0

)T N∑
j=1

T∑
s=2

B0
sϵjsλ

0′
j

T∑
t=2

B0
t ϵit

∥∥∥∥∥
≤ ∥H∥

∥∥∥∥∥N−1T−1

N∑
j=1

T∑
s=2

B0
sϵjsλ

0′
j

∥∥∥∥∥
∥∥∥∥∥T−1

T∑
t=2

B0
t ϵit

∥∥∥∥∥
= Op

(
N−1/2T−1/2

)
Op

(
T−1/2

)
= Op

(
N−1/2T−1

)
,

where the third line above follows by (C.2.6), and the results given in Section C.2.2. Then, we

can similarly obtain that ∥D4ib11∥ = Op

(
N−1/2T−3/2

)
because

∥∥B0′ϵ′Λ0
∥∥ = Op

(
N1/2T 1/2

)
and ∥B0′ (ρ0i − 1) ei,−1∥ = Op (1) hold according to Chebyshev’s inequality by direct mo­

ments calculations that take advantages of Lemma C.3.2 and Assumptions A3.1 and A3.4. It

follows that ∥D4ib1∥ = Op

(
N−1/2T−1

)
.

For D4ib2,

D4ib2 = N−1T−2HB0′e′
−1 (ρN − IN)Λ

0B0′ (ρ0i − 1
)
ei,−1

+N−1T−2HB0′e′
−1 (ρN − IN)Λ

0B0′ϵi

≡ D4ib21 + D4ib22

Following similar arguments for boundingD4ib1, it is readily to show that ∥D4ib2∥ = Op

(
N−1/2T−1

)
.

Thus, ∥D4ib∥ = Op

(
N−1/2T−1

)
holds. And for D4ic, we have

D4ic = N−1T−2B̂B0Λ0′ϵϵi +N−1T−2B̂B0Λ0′ (ρN − IN) e−1ei,−1

(
ρ0i − 1

)
+N−1T−2B̂B0Λ0′ (ρN − IN) e−1ϵi +N−1T−2B̂B0Λ0′ϵei,−1

(
ρ0i − 1

)
≡ D4ic1 + D4ic2 + D4ic3 + D4ic4.
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We then bound D4ic1 below. Note that

D4ic1 = N−1T−2HB0′B0Λ0′ϵϵi +N−1T−2
(
B̂ −B0H ′

)′
B0Λ0′ϵϵi ≡ D4ic11 + D4ic12.

It is easy to see that D4ic12 is dominated by D4ic11 due to the term
(
B̂ −B0H ′

)
. Thus, it

suffices to focus on bounding D4ic11. To this end, we have

∥D4ic11∥ =

∥∥∥∥∥N−1T−2

T∑
s=1

HB0
sB

0′
s

N∑
j=1

λ0
j

∑
t

ϵjtϵit

∥∥∥∥∥
≤ ∥H∥

∥∥∥∥∥T−1

T∑
s=1

B0
sB

0′
s

∥∥∥∥∥
∥∥∥∥∥N−1T−1

N∑
j=1

λ0
j

∑
t

ϵjtϵit

∥∥∥∥∥
= Op (1)Op

(
N−1/2T−1/2

)
= Op

(
N−1/2T−1/2

)
,

where the third line above follows from (C.2.6), Lemma C.3.2 1(e), and the bound is given in

Section C.2.2.

It follows that ∥D4ic1∥ = Op

(
N−1/2T−1/2

)
. Similarly, we can readily show that ∥D4ic2∥,

∥D4ic3∥ and ∥D4ic4∥ are both Op

(
N−1/2T−1/2

)
. Then, ∥D4ic∥ = Op

(
N−1/2T−1/2

)
.

From above, ∥D4i∥ = Op

(
N−1 + T−1 +N−1/2T−1/2

)
.

Collecting above all leading terms, namely, D1i, D2i, D3i, and D4i , it follows that:

λ̂i −H ′−1λi = Op

(
T−1/2 +N−1

)
.
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C.2.4 Proofs of Lemma C.1.3

By (C.2.8) and (C.2.5), we have

{
T−1VZ,N

}′ q∑
s=2

B̂s −
[(
N−1Λ0′Λ0

) (
T−1B0′B̂

)]′ q∑
s=2

Bs

=
{
T−1VZ,N

}′ q∑
s=2

B̂s −H ′
B

q∑
s=2

B0
s

=
(
N−1T−1

){
B̂′W ′

q∑
s=2

Ws + B̂′W ′Λ0

q∑
s=2

B0
s + B̂′B0Λ0′

q∑
s=2

Ws

}
=

(
N−1T−1

)
(C1q + C2q + C3q) , (C.2.14)
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where C1q to C3q are defined as follows given that W = (ρN − IN) e−1 + ϵ and B̂ =

(B̂H ′−1 −B0)H ′ +B0H ′,

C1q = HB0′ϵ′
q∑

s=2

ϵs +
(
B̂ −B0H ′

)′
ϵ′

q∑
s=2

ϵs

+HB0′e′
−1 (ρN − IN)

2
q∑

s=2

es−1 +
(
B̂ −B0H ′

)′
e′
−1 (ρN − IN)

2
q∑

s=2

es−1

+HB0′e′
−1 (ρN − IN)

q∑
s=2

ϵs +
(
B̂ −B0H ′

)′
e′
−1 (ρN − IN)

q∑
s=2

ϵs

+HB0′ϵ′ (ρN − IN)

q∑
s=2

es−1 +
(
B̂ −B0H ′

)′
ϵ′ (ρN − IN)

q∑
s=2

es−1

≡ C1q1 + C1q2 + C1q3 + C1q4 + C1q5 + C1q6 + C1q7 + C1q8,

C2q = HB0′ϵ′Λ0

q∑
s=2

B0
s +

(
B̂ −B0H ′

)′
ϵ′Λ0

q∑
s=2

B0
s

+HB0′e′
−1 (ρN − IN)Λ

0

q∑
s=2

B0
s +

(
B̂ −B0H ′

)′
e′
−1 (ρN − IN)Λ

0

q∑
s=2

B0
s

≡ C2q1 + C2q2 + C2q3 + C2q4,

C3q = HB0′B0Λ0′
q∑

s=2

ϵs +
(
B̂ −B0H ′

)′
B0Λ0′

q∑
s=1

ϵs

+HB0′B0Λ0′ (ρN − IN)

q∑
s=2

es−1 +
(
B̂ −B0H ′

)′
B0Λ0′ (ρN − IN)

q∑
s=2

es−1

≡ C3q1 + C3q2 + C3q3 + C3q4.

(C.2.15)

We bound max1≤q≤T ∥Clq∥ for l = 1, ..., 3 below. The arguments are similar to those in the

proofs of Lemma 2 in Bai and Ng (2004).

For max1≤q≤T ∥C1q∥, it suffices to bound max1≤q≤T ∥C1q1∥ to max1≤q≤T ∥C1q8∥ separately.

It is straightforward to see that max1≤q≤T ∥C1q2∥, max1≤q≤T ∥C1q4∥, max1≤q≤T ∥C1q6∥, and

max1≤q≤T ∥C1q8∥ are dominated by max1≤q≤T ∥C1q1∥, max1≤q≤T ∥C1q3∥, max1≤q≤T ∥C1q5∥,

and max1≤q≤T ∥C1q7∥ due to the term
(
B̂ −B0H ′

)
.

Hence, we focus on bounding max1≤q≤T ∥C1q1∥, max1≤q≤T ∥C1q3∥, max1≤q≤T ∥C1q5∥, and
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max1≤q≤T ∥C1q7∥ below. Note that

C1q1 = HB0′E

(
ϵ′

q∑
s=1

ϵs

)
+HB0′

[
ϵ′

q∑
s=1

ϵs − E

(
ϵ′

q∑
s=1

ϵs

)]
≡ C1q1a + C1q1b.

Note that C1q1a = HC̄1q1a where C̄1q1a = B0′E (ϵ′
∑q

s=1 ϵs) . Note that

∥∥N−1T−1/2C̄1q1a

∥∥ =

∥∥∥∥∥T−1/2

T∑
t=2

B0
t

q∑
s=1

[
N−1

N∑
i=1

E(ϵitϵis)

]∥∥∥∥∥
≤

∥∥∥∥∥T−1/2

T∑
t=2

B0
t

∥∥∥∥∥
T∑

s=1

∥∥∥∥∥N−1

N∑
i=1

E(ϵitϵis)

∥∥∥∥∥
≤ MOp (1)Op (1) = Op (1) uniformly in q,

where the third line above follows from the fact that max1≤s≤T

∑T
t=1

∣∣∣N−1
∑N

i=1E(ϵitϵis)
∣∣∣ ≤

M by Assumption A3.3 and
∥∥∥T−1/2

∑T
t=2B

0
t

∥∥∥ = Op (1)by Lemma C.3.2 given that B0
t =

T−1νFt−1 +ut for t = 2, . . . , T . This result, along with the fact that ∥H∥ = Op (1) , implies

that

max
1≤q≤T

∥C1q1a∥ ≤ ∥H∥ max
1≤q≤T

∥∥C̄1q1a

∥∥ = Op

(
NT 1/2

)
. (C.2.16)

Let Φq,s =
1√
NT

∑N
i=1

∑q
t=2[ϵisϵit − E (ϵisϵit)]. Then

C1q1b =
√
NTH

T∑
s=1

B0
sΦq,s.

Following proofs of Lemma C.1.2(b) in Bai and Ng (2004), it suffices to show that for every

s = 1, . . . , T max
1≤q≤T

|Φq,s| = Op (1). Equivalently, we are going to prove that

P

(
max
1≤q≤T

|Φq,s| ≥ K

)
= o(1)

where K is finite and chosen to be large enough. Let φs
it = ϵisϵit − E (ϵisϵit) and ϑNq =

N2/(4+δ)q(2+4m)/(4+δ), where m > 0 and can be small enough, δ is defined in Assumption
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A3.1. Let 1it = 1 {|φs
it| ≤ ϑNq}, and 1̄it = 1− 1it. Define

φs
1it = φs

it1it − E (φs
it1it) , φ

s
2it = φs

it1it, and φs
3it = E

(
φs
it1it

)
.

Apparently φs
1it + φs

2it − φs
3it = φs

it as E (φs
it) = 0.We prove the claim by showing that

(i1) P
(
max
1≤q≤T

∣∣∣ 1√
NT

∑N
i=1

∑q
t=1 φ

s
1it

∣∣∣ ≥ K

)
= o(1)

(i2) P
(
max
1≤q≤T

∣∣∣ 1√
NT

∑N
i=1

∑q
t=1 φ

s
2it

∣∣∣ ≥ K

)
= o(1), and (i3) max

1≤q≤T

∣∣∣ 1√
NT

∑N
i=1

∑q
t=1 φ

s
3it

∣∣∣ =
o (1).

First, we prove (i3). Note that

max
1≤q≤T

∣∣∣∣∣ 1√
NT

N∑
i=1

q∑
t=1

φs
3it

∣∣∣∣∣ ≤ 1√
NT

max
1≤q≤T

{
N∑
i=1

q∑
t=1

E|φs
it|2
}1/2{ N∑

i=1

q∑
t=1

P (|φs
it| > ϑNq)

}1/2

≤ 1√
NT

max
1≤q≤T

(
√
Nq)

{
N∑
i=1

q∑
t=1

P (|φs
it| > ϑNq)

}1/2

≤ 1√
NT

max
1≤q≤T

(
√
Nq)

{
N∑
i=1

q∑
t=1

ϑ
−(4+δ)/2
Nq E|φs

it|(4+δ)/2

}1/2

≤ 1√
NT

max
1≤q≤T

Nqϑ
−(4+δ)/4
Nq = O

(
T−m

)
= o (1) .

where the first inequality holds due to Holder’s inequality, the second and fourth inequalities

hold because E|φs
it|(4+δ)/2 < M by the construction of φs

it under Assumption A3.1. The third

inequality holds because of Markov inequality.

Next, we prove (i2). Noting that max
1≤q≤T

∣∣∣ 1√
NT

∑N
i=1

∑q
t=1 φ

s
2it

∣∣∣ ≥ K implies that

1√
NT

N∑
i=1

T∑
t=1

|φs
it| 1̄it ≥ K,
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using Holder and Markov inequalities, we have,

P

(
max
1≤q≤T

∣∣∣∣∣ 1√
NT

N∑
i=1

q∑
t=1

φs
2it

∣∣∣∣∣ ≥ K

)

≤ P

[
1√
NT

N∑
i=1

T∑
t=1

|φs
it| 1̄it ≥ K

]

≤
(NT )−1/2

{∑N
i=1

∑T
t=1E|φs

it|2
}1/2 {∑N

i=1

∑T
t=1 P (|φs

it| > ϑNq)
}1/2

K

≤ (NT )−1/2(NT )1/2

{
N∑
i=1

T∑
t=1

ϑ
−(4+δ)/2
Nq E|φs

it|(4+δ)/2

}1/2

≤ (NT )1/2ϑ
−(4+δ)/4
Nq = O

(
T−m

)
= o (1) .

where the third and fourth inequalities hold because E|φs
it|(4+δ)/2 < M by the construction of

φs
it under Assumption A3.1.

To prove (i1), we consider two typical cases for q, i.e., (i1a) q ≍ T , (i1b) q is finite and. We

first prove (i1) when q ≍ T . Without loss of generality, let {aT} be a sequence of integers

such that 0 < aT < T , aT → ∞ as T → ∞, and T − aT = o(
√
T ). We have

P

(∣∣∣∣∣ 1√
NT

N∑
i=1

q∑
t=1

φs
1it

∣∣∣∣∣ ≥ K

)

≤ P

(∣∣∣∣∣ 1√
NT

N∑
i=1

aT∑
t=1

φs
1it

∣∣∣∣∣+ max
1≤q≤T

∣∣∣∣∣ 1√
NT

N∑
i=1

q∑
t=aT+1

φs
1it

∣∣∣∣∣ ≥ K

)

≤ P

(∣∣∣∣∣ 1√
NT

N∑
i=1

aT∑
t=1

φs
1it

∣∣∣∣∣ ≥ K/2

)
+ P

(
max
1≤q≤T

∣∣∣∣∣ 1√
NT

N∑
i=1

q∑
t=aT+1

φs
1it

∣∣∣∣∣ ≥ K/2

)
.
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Using Markov inequality, we bound the second term in the above display as follows,

P

(
max
1≤q≤T

∣∣∣∣∣ 1√
NT

N∑
i=1

q∑
t=aT+1

φs
1it

∣∣∣∣∣ ≥ K/2

)

≤ P

(
max
1≤q≤T

1√
T

q∑
t=aT+1

∣∣∣∣∣ 1√
N

N∑
i=1

φs
1it

∣∣∣∣∣ ≥ K/2

)

≤ P

(
1√
T

T∑
t=aT+1

∣∣∣∣∣ 1√
N

N∑
i=1

φs
1it

∣∣∣∣∣ ≥ K/2

)

≤ T−1/2

T∑
t=aT+1

E

∣∣∣∣∣N−1/2

N∑
i=1

φs
1it

∣∣∣∣∣
≤ T−1/2

T∑
t=aT+1

E

∣∣∣∣∣N−1/2

N∑
i=1

φs
it

∣∣∣∣∣ = O
(
(T − aT )T

−1/2
)
= o (1) ,

where the fourth line above holds by constructions of φs
1it, and

∣∣∣N−1/2
∑N

i=1 φ
s
it

∣∣∣ = Op (1) by

Markov’s inequity under Assumption A3.3(b).

Now, we are in the position to show
∣∣∣ 1√

NT

∑N
i=1

∑aT
t=1 φ

s
1it

∣∣∣ = Op (1), to this end, by Cheby­

shev’s inequality, it suffices to show E
(

1√
NT

∑N
i=1

∑aT
t=1 φ

s
1it

)2
= Op (1). Recall φs

1it =

ξit1it−E (ξit1it), andφs
it = ϵisϵit−E (ϵisϵit). Therefore, underAssumptionA3.1, {N−1/2

∑N
i=1 φ

s
1it}

are still mixing sequence with zero mean. We have,

E

(
1√
NT

N∑
i=1

aT∑
t=1

φs
1it

)2

=
1

T

aT∑
t=1

aT∑
q=1

E

[
1√
N

N∑
i=1

φs
1it

1√
N

N∑
j=1

φs
1jq

]

≤ 1

T

aT∑
t=1

aT∑
q=1

(α(|t− q|))δ/(4+δ)

E ∣∣∣∣∣ 1√
N

N∑
i=1

φs
1it

∣∣∣∣∣
(4+δ)/2

4/(4+δ)

≤ 1

T

aT∑
t=1

aT∑
q=1

(α(|t− q|))δ/(4+δ)

E ∣∣∣∣∣ 1√
N

N∑
i=1

φs
it

∣∣∣∣∣
(4+δ)/2

4/(4+δ)

= O
(
aTT

−1
)
= O (1) ,

where the second line follows by the covariance inequality for the mixing sequences like (28)

in Gao and Hong (2008), and E
∣∣∣N−1/2

∑N
i=1 φ

s
it

∣∣∣(4+δ)/2

< M by Assumption A3.3(b) for
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some δ > 0 defined Assumption A3.1. Collecting all above proofs for the claims (i1), (i2)

and (i3), max
1≤q≤T

|Φq,s| = Op (1) holds for every s = 1, . . . , T . Besides, it is the trivial case

to obtain max
1≤q≤T

|Φq,s| = Op (1) when q is fixed and finite by similar arguments for the case

q ≍ T . For other values of q, corresponding proofs can follow above two typical cases with

slight modifications. Then, we have

max
1≤q≤T

∥C1q1b∥ =
√
NT max

1≤q≤T

∥∥∥∥∥H
T∑

s=2

B0
sΦq,s

∥∥∥∥∥
≤

√
NT ∥H∥

∥∥∥∥∥
T∑

s=2

B0
s

∥∥∥∥∥ max
1≤q≤T

∥Φq,s∥

=
√
NTOp (1)Op

(
T 1/2

)
Op (1) = Op

(
N1/2T

)
, (C.2.17)

where the third line above follows because (C.2.6), and LemmaC.3.2 given thatB0
t = T−1νFt−1+

ut for t = 2, . . . , T . In sum, we have

max
1≤q≤T

∥C1q1∥ = Op

(
N1/2T

)
+Op

(
NT 1/2

)
. (C.2.18)

Next, let C̄1q3 = e′
−1 (ρN − IN)

2∑q
s=2 es−1, we have

max
1≤q≤T

∥C1q3∥ = max
1≤q≤T

∥∥HB0′C̄1q3

∥∥
≤ ∥H∥

∥∥B0
∥∥ max

1≤q≤T

∥∥C̄1q3

∥∥
= Op (1)Op

(
T 1/2

)
Op

(
N1/2T 1/2

)
= Op

(
N1/2T

)
,

where the third line above follows by (C.2.6), ∥B0∥ = Op

(
T 1/2

)
due to LemmaC.3.2 1(e), and

we can readily show
∥∥C̄1q3

∥∥ = Op

(
N1/2T 1/2

)
holds uniformly in q via moment inequalities

for the strong­mixing random sequences, which is similar to arguments for the result (10)

in Section C.2.2. Similarly, we can readily show that max
1≤q≤T

∥C1q5∥ = Op

(
N1/2T 1/2

)
and
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max
1≤q≤T

∥C1q7∥ = Op

(
N1/2T

)
. It follows that

max
1≤q≤T

∥C1q∥ = Op

(
N1/2T +NT 1/2

)
. (C.2.19)

For C2q, we can see that max
1≤q≤T

∥C2q2∥ and max
1≤q≤T

∥C2q4∥ in (C.2.15) will be dominated by

max
1≤q≤T

∥C2q1∥ and max
1≤q≤T

∥C2q3∥ due to the term
(
B̂ −B0H ′

)
. Then, it is enough to bound

max
1≤q≤T

∥C2q1∥ and max
1≤q≤T

∥C2q3∥. Note that

max
1≤q≤T

∥C2q1∥ ≤ ∥H∥

∥∥∥∥∥∑
i

∑
r

B0
r ϵirλ

0′
i

∥∥∥∥∥ max
1≤q≤T

∥∥∥∥∥
q∑

s=1

B0
s

∥∥∥∥∥ .
Since the term ∥H∥ does not involve q and is of order Op (1) according to (C.2.6), and the

term ∥
∑

i

∑
r B

0
r ϵ

′
irλ

0′
i ∥ does not involve q and is of order Op

(
N1/2T 1/2

)
in Frobenius norm

according to the result in Section C.2.2. In addition, ∥
∑q

s=2 B
0
s∥ = Op

(
T 1/2

)
holds uniformly

in q by the same arguments for Lemma C.3.2 1(b). Then, based on these facts, it follows that

max
1≤q≤T

∥C2q1∥ = Op

(
N1/2T

)
.

Similarly, for C2q3, max
1≤q≤T

∥C2q3∥ ≤ ∥H∥ ∥B0∥
∥∥e′

−1 (ρN − IN)Λ
0
∥∥ max

1≤q≤T
∥
∑q

s=2B
0
s∥ =

Op

(
N1/2T

)
given that ∥B0∥ = Op

(
T 1/2

)
, and ∥

∑q
s=2B

0
s∥ = Op

(
T 1/2

)
holds uniformly in

q by Lemma C.3.2 given thatB0
t = T−1νFt−1 + ut for t = 2, . . . , T , meanwhile, because of

the fact
∥∥e′

−1 (ρN − IN)Λ
0
∥∥ = Op

(
N1/2

)
as shown in Section C.2.2. So we obtain that

max
1≤q≤T

∥C2q∥ = Op

(
N1/2T

)
. (C.2.20)

.

Similarly, forC3q, it suffices to bound the dominant term max
1≤q≤T

∥C3q1∥ and max
1≤q≤T

∥C3q3∥. Note
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that

max
1≤q≤T

∥C3q1∥ =

∥∥∥∥∥HB0′B0Λ′
q∑

s=1

ϵs

∥∥∥∥∥
≤ ∥H∥

∥∥∥∥∥∑
r

B0
rB

0′
r

∥∥∥∥∥ max
1≤q≤T

∥∥∥∥∥∑
i

q∑
s=1

λ0
i ϵis

∥∥∥∥∥
= Op

(
N1/2T 3/2

)
where ∥H∥ = Op (1) by (C.2.6), ∥

∑
r B

0
rB

0′
r ∥ = Op(T ) by Lemma C.3.2 1(e). These terms

does not involve q. Now, we are in the position to bound max
1≤q≤T

∥
∑

i

∑q
s=1 λ

0
i ϵis∥, to this

end, we can readily obtain that, uniformly in q, E
∥∥N−1/2T−1/2

∑
i

∑q
s=1 λ

0
i ϵis
∥∥ ≤M holds

under Assumption A3.1 by trading {N−1/2
∑

i λiϵis} as the mixing sequences over s, which

is the similar to the bound shown in Lemma C.1.1(4) stated in Bai and Ng (2004). Then, we

have max
1≤q≤T

∥
∑

i

∑q
s=1 λiϵis∥ = Op

(
N1/2T 1/2

)
.

Similarly, because max
1≤q≤T

∥C3q3∥ ≤ ∥H∥ ∥B0′B0∥ max
1≤q≤T

∥∥Λ0′ (ρN − IN)
∑q

s=2 es−1

∥∥, then,
max
1≤q≤T

∥C3q3∥ = Op

(
N1/2T 3/2

)
holds by using the fact that ∥B0∥2 = Op (T ) and noting

that
∥∥Λ0′ (ρN − IN)

∑q
s=2 es−1

∥∥ = Op

(
N1/2T 1/2

)
holds uniformly in q by direct moments

calculations under Assumptions A3.1, A3.4. We have

max
1≤q≤T

∥C3q∥ = Op

(
N1/2T 3/2

)
. (C.2.21)

Neglecting those dominated terms, from above immediate results, we then can conclude that

max
1≤q≤T

∥∥∥∥∥
q∑

s=1

(
H−1B̂s −B0

s − us

)∥∥∥∥∥
≤ N−1T−1

(
max
1≤q≤T

∥C1q∥+ max
1≤q≤T

∥C2q∥+ max
1≤q≤T

∥C3q∥
)

= Op

(
N−1T−1

) [
Op

(
N1/2T

)
+Op

(
NT 1/2

)
+Op

(
N1/2T 3/2

)]
= Op

(
N−1/2T 1/2 +N−1/2 + T−1/2

)
. (C.2.22)
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Then, it follows max
1≤t≤T

1√
T

∥∥∥∑t
s=2 H

−1B̂s −Bs

∥∥∥ = Op

(
N−1/2

)
directly.

C.2.5 Proofs of Lemma C.1.4

Recall that Λ̂i = (B̂B̂′)−1B̂′Zi with Zi = B0Λ0
i + Wi, where Zi = (Zi1, . . . , ZiT )

′ and

Wi = (Wi1, . . . ,WiT )
′. Then

∥∥∥Λ0B0′ − Λ̂
0
B̂′
∥∥∥2 =

N∑
i=1

∥∥∥B0Λ0
i − B̂Λ̂i

∥∥∥2 = N∑
i=1

∥∥PB̂Zi − f 0Λ0
i

∥∥2
=

N∑
i=1

∥∥PB̂

(
B0Λ0

i +Wi

)
−B0Λ0

i

∥∥2 = N∑
i=1

∥∥MB̂B
0Λ0

i − PB̂Wi

∥∥2
≤ 2

N∑
i=1

∥∥MB̂B
0Λ0

i

∥∥2 + 2
N∑
i=1

∥∥PB̂Wi

∥∥2 ≡ 2B1 + 2B2.

(C.2.23)

It suffices to boundB1 andB2. ForB2, we haveB2 ≤ 2
∑N

i=1 ϵ
′
iPB̂ϵi+2

∑N
i=1 (ρ

0
i − 1)

2
e′
iPB̂ei =

O(N + T ) by Lemma C.3.1(a). For B1, we apply Lemma C.1.2(a) and Assumption A3.2 to

obtain

B1 =
N∑
i=1

∥∥∥MB̂

(
B0 − B̂H ′−1

)
Λ0

i

∥∥∥2 ≤ ∥∥MB̂

∥∥2
sp

∥∥∥B0 − B̂H ′−1
∥∥∥2 N∑

i=1

∥∥Λ0
i

∥∥2
= O (1)Op

(
TN−1

)
Op(N) = Op (T ) .

Consequently, ||Λ0B0′ − Λ̂B̂′||2 = Op (N + T ).

C.3 Some Useful Lemmas

Lemma C.3.1. Suppose Assumption A3.1 to A3.3 hold. Then

(a) supF∈DP
(NT )−1

∑N
i=1 ϵ

′
iPFϵi = OP (N−1 + T−1)

(b) (NT )−1 ∥ϵϵ′∥ = OP

(
N−1/2 + T−1/2

)
and (NT )−1 ∥ϵ′ϵ∥ = OP

(
N−1/2 + T−1/2

)
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where DP =
{
F ∈ RT×R

}
, and (a), (b) hold under Assumptions A3.3.

Proof. The derivations are exactly same as those in Peng et al. (2020). �

Lemma C.3.2. Suppose Assumption A3.1 holds, it follows that

(a) Under the alternative of local­to­unity such that ρ00,r = 1 + νr/T , then,

(a) T−1/2F 0
[Tr] ⇒ Σ

1/2
u Jν(r);

(b) T−3/2
∑T

t=2 F
0
t ⇒ Σ

1/2
u

∫ 1

0
Jν(r)dr;

(c) T−2
∑T

t=2 F
0
t−1F

0′
t−1 ⇒ Σ

1/2
u

∫ 1

0
Jν(r)Jν(r)′drΣ1/2

u ;

(d) T−1
∑T

t=2 utF
0′
t−1 ⇒ Σ

1/2
u

∫ 1

0
dW(r)′Jν(r)Σ1/2

u +Ωu, whereΩu ≡
∑∞

k=1E
(
utu

′
t+k

)
;

(e)
∥∥∥T−1

∑T
t=2B

0
tB

0′
t

∥∥∥ = Op (1);

where Jν(r) ≡ (Jν1(r), . . . , JνR(r)) is aOrnstein­Uhlenbeck process such that Jν(0) =

0 and Jν(r) = W (r) + ν
∫ r

0
e(r−s)cW (s)ds; besides, W (r) is the R0­vector stan­

dard Brownian motion on C[0, 1] that is given by the weak limit of the partial sum

Σ
−1/2
u T−1/2

∑[Tr]
t=1 ut.

(b) Further, if Assumption A3.5 also holds, then, for each i

(a) T−1/2ei,[Tr] ⇒ σiJci(r);

(b) T−3/2
∑T

t=2 eit ⇒ σi
∫ 1

0
Jci(r)dr;

(c) T−2
∑T

t=2 eit−1e
′
it−1 ⇒ σ2

i

∫ 1

0
Jci(r)Jci(r)′dr;

(d) T−1
∑T

t=2 eitϵ
′
it−1 ⇒ σ2

i

∫ 1

0
Jci(r)dW(r)′ + Ωϵi, where Ωϵi =

∑∞
k=1E (ϵitϵit+k);

where Jci(r) ≡ (Jν1(r), . . . , JνR(r)) is aOrnstein­Uhlenbeck process such that Jci(0) =

0 and Jci(r) = W(r)+ ci
∫ r

0
e(r−s)cW(s)ds; besides,W(r) is the standard Brownian

motion on C[0, 1] that is given by the weak limit of the partial sum σ−1
i T−1/2

∑[Tr]
t=1 ϵit.

Proof. According to lines developed in Phillips (1987) and Phillips (1988), proofs follow

directly. �

The next lemma studies the asymptotic property of VZ,N .
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Lemma C.3.3. Under Assumption A3.1­A3.5, as N, T → +∞ jointly,

T−1VZ,N → Υ1 (C.3.1)

where Υ1 ≡ lim
N,T→∞

(
T−1B0′B̂

)−1

(T−1B0′B0)
(
N−1Λ0′Λ0

) (
T−1B0′B̂

)
, which is a posi­

tively definite matrix.

Proof. PremultiplyingB0′ and T−1 on both sides of (C.2.2), recall thatW = (ρN − IN) e−1+

ϵ and (C.2.1), we have

T−2B0′B̂VZ,N − T−1B0′B0
(
N−1Λ0′Λ

)
(T−1B0′B̂)

= N−1T−2B0′W ′WB̂ +N−1T−2B0′B0Λ0′WB̂

+N−1T−2B0′W ′Λ0B0′B̂

≡ A1 +A2 +A3.

We bound each term below. First, note that

A1 = N−1T−2B0′e′
−1 (ρN − IN)

2 e−1B̂ +N−1T−2
(
ϵB0

)′
ϵB̂

+N−1T−2B0′e′
−1 (ρN − IN) ϵB̂ +N−1T−2

(
ϵB0

)′
(ρN − IN) e−1B̂

≡ A11 +A12 +A13 +A14.

For A11, we have

∥A11∥ = N−1T−2
∥∥∥B0′e′

−1 (ρN − IN)
2 e−1B̂

∥∥∥
≤ N−1T−1

∥∥T−1/2B0′∥∥∥∥e′
−1 (ρN − IN)

2 e−1

∥∥∥∥∥T−1/2B̂
∥∥∥

= N−1T−1Op (1)Op (N)Op (1)

= Op

(
T−1

)
,
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where the third line above follows from Lemma C.3.2 1(e), the bound given in Section C.2.2

and the normalization condition. Similarly, we have

∥A12∥ ≤ N−1T−1
∥∥T−1/2B0

∥∥ ∥ϵ′ϵ∥sp ∥∥∥T−1/2B̂
∥∥∥

= N−1T−1Op (1)Op (N + T )Op (1)

= Op

(
N−1 + T−1

)
,

where the second line above follows from Lemma C.3.2, Assumption A3.3, and the normal­

ization condition. By Cauchy­Schwarz inequality, it is easy to see ∥A13∥ and ∥A14∥ will not

be the dominant term in comparison with ∥A11∥ and ∥A12∥. It follows that

∥A1∥ = Op

(
N−1 + T−1

)
. (C.3.2)

Next, we study A2. Note that

A2 = N−1T−2B0′B0Λ0′ (ρN − IN) e−1B̂ +N−1T−2B0′B0Λ0′ϵB̂

≡ A21 +A22.

We then bound A21 below,

∥A21∥ ≤ N−1T−3/2
∥∥B0′B0

∥∥∥∥Λ0′ (ρN − IN) e−1

∥∥∥∥∥T−1/2B̂
∥∥∥

= N−1T−3/2Op (T )Op

(
N1/2

)
Op (1) = Op

(
N−1/2T−1/2

)
,

where the first line above holds by Lemma C.3.2 1(e), the result given in Section C.2.2, and
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the normalization condition. Similarly,

∥A22∥ ≤ N−1/2T−3/2
∥∥B0′B0

∥∥∥∥∥∥ Λ0′ϵ

N1/2T 1/2

∥∥∥∥∥∥∥T−1/2B̂
∥∥∥

= Op

(
N−1/2

)
,

where the first line above holds by Lemma C.3.2 1(e), the bound given in Section C.2.2 and

the normalization condition. In sum, we have

∥A2∥ = Op

(
N−1/2

)
. (C.3.3)

Now, we study A3. Note that

A3 = N−1T−2B0′e′
−1 (ρN − IN)Λ

0B0′B̂ +N−1T−2B0′ϵ′Λ0B0′B̂

≡ A31 +A32.

Below, we bound A31 and A32 in turns. For A31,

∥A31∥ ≤ N−1T−1
∥∥B0′∥∥∥∥e′

−1 (ρN − IN)Λ
0
∥∥∥∥∥T−1B0′B̂

∥∥∥
≤ N−1T−1

∥∥B0
∥∥Op

(
N1/2

)
Op (1) = Op

(
N−1/2T−1/2

)
,

where the first line above follows by Lemma C.3.2 1(e), the bound given in Section C.2.2, and

Lemma C.1.1. Similarly,

∥A32∥ ≤ N−1/2T−1
∥∥ϵB0

∥∥∥∥∥∥ Λ0

N1/2

∥∥∥∥∥∥∥T−1B0′B̂
∥∥∥

= N−1/2T−1Op

(
N1/2T 1/2

)
Op (1) = Op

(
T−1/2

)
,

where the second line above holds by LemmaC.3.2 1(e), AssumptionA3.2, ∥ϵB0∥ = Op

(
N1/2T 1/2

)
according to the result given in Section C.2.2 by direct calculations, and Lemma C.1.1. In sum,
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we have

∥A3∥ = Op

(
T−1/2

)
. (C.3.4)

Combining (C.3.2), (C.3.3), and (C.3.4), and recall the fact that ∥B0∥ = Op

(
T 1/2

)
, we have

∥∥∥(T−1B0′B̂
) (
T−1VZ,N

)
− T−1B0′B0

(
N−1Λ0′Λ0

) (
T−1B0′B̂

)∥∥∥ = op (1) .(C.3.5)

Thus, (C.3.5) implies that

(
T−1B0′B̂

) (
T−1VZ,N

)
=
(
T−1B0′B0

) Λ0′Λ0

N
(T−1B0′B̂) + op(1)

and T−1VZ,N
p−→ Υ1 follows directly. �
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