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Abstract

Three Essays on Panel and Factor Models

Ji Feng

The dissertation includes three chapters on panel and factor models. In the first chapter, we intro-
duce a two-way linear random coefficient panel data models with fixed effects and the cross-sectional
dependence. We follow the idea of the within-group fixed effects estimator to estimate parameters
of interests. We establish the limiting distributions of the estimates and also propose the two-way
heterogeneity bias test to check the desirability of the estimation strategy. The specification tests
then are constructed to examine the existence of the slope heterogeneity and time-varyingness. We
study the asymptotic properties of the specification tests and employ two bootstrap schemes to rectify
the downward size distortion of the specification tests. We apply the specification tests to reveal the
heterogenous relationship between the unemployment rate and youth labor rate in the working-age
population. In the second chapter, we devise a simple but effective procedure to test bubbles in the
idiosyncratic components in the presence of nonstationary or mildly explosive factors in common
components in panel factor models. We study the asymptotic properties of our test. We also propose
a wild bootstrap procedure to improve the finite sample performance of our test. As an illustrative
example, we consider testing the bubbles in the idiosyncratic components of cryptocurrency prices.
In the third chapter, we propose the tests constructed from estimated common factors for detect-
ing bubbles in unobserved common factors when the idiosyncratic components follow a unit-root or
local-to-unity process. We study the asymptotic properties of our proposed tests. We show that our
proposed tests have non-trivial power to detect those bubbles in unobserved common factors under
the alternative of local-to-unity. To implement our proposed tests, we propose to use the dependent

wild bootstrap method to simulate the critical values in practice.
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Chapter 1

Estimation and Specification Tests of
Random Coefficient Panel Data Models with

Cross-Sectional Dependence

1.1 Introduction

Heterogeneity and time-varyingness are universal phenomena in the study of economic and financial
modeling. We can integrate such kind of heterogeneous effects by the panel data models with variable
coefficients. There is a long history of modeling the slope heterogeneity and time-varyingness by
random coeffcients models, see e.g, Hildreth and Houck (1968), Swamy (1970), and Hsiao (1974). In
particular, Hsiao (1974) proposes to accommodate slope heterogeneity and time-varyingness simul-
taneously as random coefficients in panel data models. However, Hsiao (1974) excludes the fixed
effects and does not study the inferential theory on the realizations of random coefficients. Besides,
their test rely upon the stringent conditions such the normality of error terms and random coefti-
cients. Such kind of restrictions may narrow the applications of two-way linear random coefficients
panel data models. For a recent and systematic introduction to the panel data models with variable

coefficients, we refer readers to Chapter 6 in Hsiao (2014).



This paper seeks to contribute as the good complement of studies on random coefficients panel
data models by extending the classical setups. In particular, we introduces a two-way linear random
coefficients panel data models with both time- and individual- specific fixed effects in the presence
of cross-sectional dependence. We take advantages of the two-way linear random coefficients to
capture the slope heterogeneity and time-varyingness, and include the time- and individual- fixed
effects to account for unobserved heterogeneity that can be arbitrarily correlated with explanatory
variables.

For estimation methodology, we follow the idea of the within-group estimator to obtain the es-
timates of parameters of interest. Importantly, we allow for the weak cross sectional dependence
among observations and develop the inferential theory for these estimators under the large N and
large T settings with mild conditions. We also propose the two-way heterogeneity bias test to check
the desirability of our estimation strategy, and study its asymptotic properties. furthermore, we
construct the max-type test statistics to examine the existence of the slope heterogeneity and time-
varyingness in our model, and study the null distribution and asymptotic local power properties of the
these specification test statistics. Our Monte Carlo experiments reveal that the specification tests are
too conservative under the null based on the asymptotic critical values. Thus, we suggest two boot-
strap schemes to correct the size of our specification tests, simulation results show that the bootstrap
implementations of our specification tests have proper size and decent power against the alternatives
in various scenarios.

As an illustrative application, we apply the specification tests to study the relationship between
the unemployment rate and the youth labor rate in working-age population using panel data covering
171 countries at most and 23 years from 1991 to 2013.

The two-way linear random coefficients panel data models we consider in this paper links to the
prevailing studies on panel data models as follows.

When there is no slope time-varyingness, our model relates to studies on heterogeneous panel
data models. In particular, the correlated random-coefficient (hereafter, CRC) panel data models

usually allows for the heterogeneous slopes are random and can be correlated the covariates, which



is also taken into account in our model for both heterogenebous and time-varying slopes. For recent
studies on the CRC penal data models, see, e.g., Gao et al. (2015), Graham et al. (2018). Besides,
we can also adopt the semi- or non- parametric methods to portray the slope heterogeneity and time-
varyingness in our model. There is a rapid growing literature on the the semi- or non- parametric
methods for panel data models in the recent past. For example, Boneva et al. (2015) introduce the
panel data models with both time- and individual- specific fixed effects that account for heteroge-
neous nonparametric covariate effects, and provide the estimation methodology. Gao et al. (2020)
propose several estimators and the homogeneity test for the semiparametric panel data models that
allows for slope heterogeneity and individual-specific trending function. To address the possible
existence of slope heterogeneity, many studies also focus on offering the testing procedures, see
e.g., Pesaran and Yamagata (2008), Su and Chen (2013), Juhl and Lugovskyy (2014) Ando and Bai
(2015).

When there is no slope heterogeneity, our model admits time-varying panel data models as the
special case. There are a large amount of researches on time-varying coefficients panel data models
since the seminal work by Robinson (1989). Recently, Zhu (2017) presents the estimation method-
ology and inferential theory for high-dimensional time-varying panel data models with interactive
effects while Chen and Huang (2018) consider a semiparametric panel data model to account for the
smooth slope time-varyingness and propose the generalized Hausman tests to detect smooth struc-
tural changes.

More importantly, on the theoretical side, this paper directly contributes to studies on the panel
data models with the variable slope in both the time- and individual- dimensions. The study of
asymptotic properties for such as panel data models will inevitably be more challenging than that
for homogeneous, heterogeneous or time-varying panel data models. Despite the tricky piece of
work, there are also growing literature on this direction recently. For example, Su et al. (2017)
study a heterogeneous time-varying coefficients panel data model with the latent group structure,
and Chernozhukov et al. (2018) bring up so-called post-SVD inference based on the nuclear norm

regularization for panel data models with variable slopes in both individual- and time- dimensions.



Keane and Neal (2020) employ a similar two-way random coefficients panel models as our model in
this paper for their empirical studies, however, they does not include the fixed effects in the model;
moreover, their inferential theory is developed under more stringent conditions and misleading. For
the very recent, Lu and Su (2021) propose the generalized fixed effects estimator for the panel data
models with the variable slope in both the time- and individual- dimensions with two-way fixed
effects to achieve the uniform inference.

The remainder of the paper proceeds as follows. In Section 1.2, we describe the specification of
linear random coefficients panel data models with fixed effects and propose the estimation method-
ology for the parameters of interests. Section 1.3 establishes the asymptotic distribution of the esti-
mators and presents the two-way heterogeneity bias test. In Section 1.4, we propose the specification
tests, and study the limiting null distribution and asymptotic local power properties of the specifica-
tion test statistics. We conduct Monte Carlo experiments to evaluate the finite-sample performances
of the specification tests in Section 1.5. Section 1.6 provides an empirical study to highlight the
usefulness of the specification tests. Section 1.7 concludes. All proofs are relegated to the Appendix
A.

NOTATION. For an m X n real matrix A, we denote its transpose as A’, its trace as trA, its
Frobenius norm as ||A]| (= [tr (A’A)]"/?), and its spectral norm as 1Al (= (o1 (AAN)]?), where
= signifies a defintional relationship and ¢ (-) denotes the k-th largest eigenvalue of a real symmet-
ric matrix A by counting eigenvalues of multiplicity multiple times. We also use ¢uin and @may to
stand for the minimum and maximum eigenvalues of a symmetric real matrix. Let diag(ay, . .., an,)
represent a m x m diagonal matrix with entries a4, . . ., a,, on its diagonal. We write A < B if there
exist some finite positive constants m and M such that m|A| < B < M|A|. We also use M to stand

for a generic large positive constant that may vary across lines. For generic random variable v;;, let

_ 1 N _ 1 T _ 1 N T
Ut = 5 2oy Vits Ui = 7 2 y—q Vit and 0. = 57 > 5501 Dy U Define

Vit = Vi — Uj. — Vg + V.., Uy = Uiy — Vg, and Vit = Vit — Us..



Let v}, = vt — E(vit). Let Syr = min{+/N,/T'}. For brevity, we also use Y, and >_;, to denote
SV and 3N Z;V:p respectively, and ), and } _, _ to denote ST and Y 27 respectively.
The operator L denotes convergence in probability, KN convergence in distribution, and plim prob-
ability limit. We use I (-) to denote the usual indicator function. Let a A b = min{a, b}. We use

(N,T) — oo to denote that N and 7" pass to infinity jointly.

1.2 The Model and Estimators

In this section we introduce the model and estimates.

1.2.1 The model

We consider the following model:
Yir = Ty (B + N+ %) + 0+ wr + (1.2 1)

where: =1,..., N, t =1,...,T, y; is a sclar dependent variable, x;; is a K x 1 vector of covariates,
B, A\; and 7, are K x 1 vectors of unknown parameters, 7; and w; stand for individual- and time- spe-
cific fixed effects (FE), respectively, and u;; is the idiosyncratic error term. The sequences {x;;, u;; }
are allowed to be serially and cross-sectionally dependent. We observe {y;;, x;;} but not the other
variables in the model. Like Lu and Su (2021), \; and ~; characterize the individual and time hetero-
geneity of the slope coefficients, whereas 7); and w; has the usual individual and time fixed effects
interpretation as both of them are allowed to be correlated with the regressor z;;. The central interest
is the estimation and inference of {3, \;, 7:} under some weak conditions.

Lu and Su (2021) consider the estimation of the parameters in the slope coefficient, namely, 3,
A; and ~; together with the parameters in the intercept term, i.e., 7; and w, jointly. Since they al-
low all both (\;,7:) and (7;,w;) to be correlated with the regressor x;, their call the estimates as a

generalized fixed effects (GFE) estiamtes. The estimation requires the inversion of (N +7 — 1) K-



dimension square matrix that can be computationally demanding when (N + T — 1) K is large or a
bootstrap procedure is needed for the inference. In this paper, we consider a simple estimation proce-
dure that does not require the inversion of a high dimensional matrix but some additional restrictive

assumptions.

1.2.2 Estimation

Below we consider first the estimation of 3, and then that of A\; and ~,.
To estimate 3, we consider the two-way within-group transformation to eliminate the individual

and time fixed effects n; and w; in (1.2 .1) to obtain
it = 23 + gy + bit + i, (1.2 .2)

where 6;; = zi,\;, i = L1, and, e.g., 0, = 0; — 0, — 6., + ... We will show that under some
conditions, we can i;; + 9it ~+ ; as the composite errror terms in (1.2 .2) so that we can regress ¥j;;

on #; to obtain the two-way FE estimate of /3 as follows:

~1
S 33

L Z Z Titlit | - (1.2.3)
NT £ -

Obviously, E is a consistent estimator under the key condition that £ [wzt (ult + (% + gbit>] =0.

Given B\ in (1.2 .3), let @n = Uit — xété . Then using the fact that

. 1
O = (00— 0:) — (00— 0.) = (wir — 70) N — ~ > (- 3)' N



we have

~ . ~ .. 5 .. ., (N—-1
Ju = (B —B) + i + i + Pur = T (TAO + e

= Tyl + e, (1.2 .4)

where \; = %/\i and e;; = 7, (8 — B) + G+l — N1 Zl# Zj, A\ Based on (1.2 .4), we propose

to estimate \; by running the time series OLS regression of @t on z;; for each 7 to obtain
—1
/5\\.: lej’ lng/\ (1.2.5)
? T - itligt T t Yt [

Since 5\2 is estimating %)\i, we propose to estimate \; by /)\\Z = %5\1

Similarly, noting that

. _ _ 1 _
i = (i —@1) — (@i — ) = (v — fL’-t),’Yt —m Z (Tir — Z)

T
T—-1 1
— N Sl
= Ty (T)\t) N TZ#Q:W%,

T

we have

-~ o (T —1 oL
Ji = Ty ( T ’Yt) + Vi = Tiye + Vi, (1.2.6)

where ¥, = %% and vy = &, (8 — B) 4+ 0 + ity — T1 Zr# T, ~y,. Based on (1.2 .6), we run the

cross-section OLS regression of ¢, on Z;; for each ¢ to obtain

-1
< 1 vy 1 v
Y, = (N Z xit:v;t> N Z Tit Y- (1.2.7)

Since ¥, estimates T=1+,, the estimator of 7, is given by 7, = %%t



1.3 Asymptotic Results

In this section, we first present a set of basic assumptions that underly our asymptotic analysis. Then

we establish the asymptotic properties of the estimators proposed in the last section.

1.3.1 Assumptions

Let vy = {z}, Noaf,, x5y }. Letzy = (214, ..., xn¢) and X = (2], ..., 2.)". We make the following

)

assumptions.

Assumption Al.1. For every (i, j, 1, s), the following holds:

(i) The process vy = {v},, ...,V } is stationary and a-mixing, and for each i, let o;(|t — s|) be the
« -mixing coefficient between vy, and v;s, ;i (|t — s|) be the o -mixing coefficient between v;;
and v;s such that 1r§zé>§vai(|t —s|) < a(|t —s|) and 1£?§N%j(|t —s|) < a(|t — s|) uniformly
such that it satisfies a(1) < MT7~" for some C' > 0 and k > 0, where k is some positive
constant that depends on 61 > 0 and 65 > 0 such that max Zj\le Zle a; (7)) = O(1)
and max Zjvzl ;(0)9/ 490 = O(1), for the same &y, E||vy||*T°1¢1 < oo uniformly in i and
t, where €, is positive and can be small enough. Furthermore, assume that E|| ", vy||?9 =

O (Nq/Q)for some q > 2.

(ii) E(xy) =, Var(zy) = X, such thatm < Spin (322) < Smaz (22) < M, and Cov(xy, xi5) =
I'_..

(ii) (@) E(\; | X) = 0, () Var (N"Y23°,N)) = O(1),and for some positive constant m,

E|N|5T™ < oo for each i

(iv) (@) E(v | X) = 0, () Var (T7Y23, %) = O(1), and for some positive constant m,

E|v|2™™ < oo for each t.
(v) Cov (\j,7s | X) = 0 holds for any (3, s).

Assumption A1.2. For every (i, j, 1, s), the following holds:

8



(i) The process uy = {uy, ..., un: }? is stationary and a-mixing with zero mean, and v, ; (|t — s|)

be the a-mixing coefficient between u;; and ;s such that max_ ayi(|t —s]) < a(|t —s|) and
AN

max_a, ([t —s|) < a(|t —s

 fax ), where a(.) is the same one defined in Assumption Al.1

above. And for the same 5, > 0 in Assumption A1.1 above, E||u;||*t°2*2 < oo uniformly in i
and t, where €, is positive and can be small enough. Furthermore, assume that E|| )", u||? =

O (N9/2) for some q > 2.
(ii) E (ui | xjs, \j,vs) = 0 holds for all (i, j,t, s).
Assumption A1.3. 4s (N, T) go to infinity simultaneously, then N /T? — 0 and T /N?* — 0.

Assumption Al1.4. There exist constants m > 0 small enough and M > 0 large enough such that:
) m < Smin (5 20051 et BGuGL) < smae (i Sy Xt BRAGL™) < M holds
with Giy = xxi N, w525, or Thuy and G is similarly defined.

(ii)) m < 1I§ignT$mm <% Z” , EG,G), ) < X Smar (% Z”  EG,G/, > < M, where G;; =
(xhxl — X)) N or wiuy, and G, is similarly defined.

(iii) m < 11Sr21i§nNsmm (% S et EG;}G;‘;) < M S ( S et EG;}G{Q) < M, where G}, =

(xjy) — X5) v or xjuy, G is similarly defined.

Assumption A1.5. Suppose following CLT-type results hold,

@) N~ SN ST ar e, —>N(O Vi) ,whereVy = plimy ., N7'T"~ 22” 1Zt8 1 G263
with G = x}xy N, and G, is similarly defined.

(i) N7 SN (ahay) — B0) A 5 N (0,Di00) , where Sypp = plimy_, N7V YN GAGY
for all t with G}, = (xj,x} — 3,) N; and G, is similarly defined.

(iii) N~/ ZZ LT U AN (O ) m) , Where imu = plimy_,  N7! ijzl GuGy/ forall t

with G, = x}yuy and GY, is similarly defined.

Assumption A1.6. (i) Let n; be random variables that have mean 0 and finite variance, and uncor-
related with u; for any 1 < i < N. (ii) Let w; be random variables that have mean 0 and finite

variance, and uncorrelated with u; forany 1 <t < T.



Assumption Al.1 requires that the sequences {v;; } are stationary and strong mixing over ¢ and
also imposes the mild assumptions for the random coefficients, which is standard in related studies.
For example, Assumption A1.1(i) incorporates Assumption A.4 in Feng et al. (2017) and Assumption
A4 in Chen et al. (2012) and extents them to our setups; Assumption Al.1(ii1)-(v) extents Assump-
tion 2.2 to 2.8 Hsiao (1974) to our setups. Under Assumptions A1.1(iii)(a) and (v)(a), heterogeneous
and time-varying slopes {\;}Y, and {v;}Z_, can correlated to x;; in higher moments. Assumptions
Al.1(iii)(b) and (v)(b) allow for the correlations among the sequences {\;}, and {v;}1, corre-
spondingly. Assumption A1.2(i) imposes similar mixing conditions on {u; } as Assumption A1.1(i).
The strict exogeneity condition in Assumption A1.2(ii) simplifies the the asymptotic analysis. It
allows for conditional heteroskedasticity, skewness, or kurtosis of unknown form in u;;. Assump-
tion A1.3 indicates the rate conditions, which accommodates the case that /N and 7" are comparable.
Assumption Al.4 assumes that the eigenvalues of referred matrices are bounded from below and
above, which is a technical assumption that is standard in related studies, see e.g., Assumption 2(iii)
in Zhu (2017). Assumption A1.5 is frequently used in related studies and can be replaced by impos-
ing some primitive assumptions; see e.g., Kuersteiner and Prucha (2013), Castagnetti et al. (2015),
and Hidalgo and Schafgans (2017). Assumption A1.6 imposes very mild restrictions on the fixed

effects..

Remark 1.1. Assumption Al.1 (ii) assumes the homoskedasticity of x;;. This condition is just im-
posed to simplify the exposition of the results. From the perspective of theoretical justifications, all
results in Section 1.3 and Section 1.4 still pertain at the cost of more lengthy proofs and does not
change substantially by defining corresponding notations appropriately. We present the discussions
on the relaxation of such conditions in the Appendix A such that Ex;; = p;, Var (zy) = ¥;, and

Cov (x4, x45) = I';1—s. For details, we refer readers to the Appendix A.

Remark 1.2. The strict exogeneity condition in Assumption A1.2 (ii) can be replaced by the sequen-
tial exogeneity condition such that £ (u;; | x4, Aj,vs) = 0 for all (4, j, ¢, s) as Assumption A3(ii) in
Lu and Su (2021). In the presence of sequential exogenous but not strictly exogenous regressors,

E (z}u;s) # 0 in general for i # j or t # s, which can lead to the asymptotic bias. To handle the
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bias caused by the sequential exogeneity condition on z;;, we can employ the half-panel jackkinfe
estimation proposed by Dhaene and Jochmans (2015), see e.g., Chudik et al. (2018) and Lu and Su
(2021).

1.3.2 Main results on

In this subsection, we study the asympotic properties of 3 . To present the main results, define

o= NMNTQZZE LN
,] t,s

vV, = (NT)—>oo N2T ZJ ; E P ]8 ]S) |
Vu = NT)HOO NT ZJ Zs E Ztu“ulsxﬁ)

The key result is summarized in the following theorem.

Theorem 1.3.1. Suppose Assumptions A1.1-A1.5. Suppose that Vy, V,, and V,, exist and are nonsin-
gular. Then as (N,T) — oo,

115 = Il = 0, (O51) :

(i) V; (ﬁ . 5) Ly N0k, I),
where Vg = wX1V\E T + 28V B0 4+ XV, B

Theorem 1.3.1(1) reports the convergence rate of 3 . In comparison with the usual v/ NT-rate
of convergence for the slope estimators in homogenous panels, our estimator B\ converges to (3 at
the slow rate v/N A +/T when the slope coefficient has heterogeneity along both the time and in-
diviual dimensions. Theorem 1.3.1(ii) estabilishes the asymptotic normality of B . The asymptotic
variance V3, contains three components, that can be attributed to the individul heterogeneity in the
slope coefficient, the time heterogeneity in the slope coefficient, and the idiosyncractic error term in
the model, respectively. We both the individual and time heterogeneities are absent from the slope
coefficient, the first two components are vanishing so that the convergence rate of B becomes the

standard (N T)_l/ ?_rate for two-way FE estimators of the slope cofficients in homogeneous panels.
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Note that x,, \; and 7, are not observed in the reality, to implement the inference on 3, we replace

it

A; and 7, with their consistent estimators. The corollary below shows the result:

zt’

Corollary 1.3.2. Under Assumptions Al.1-A1.4, let /):1 be any consistent estimator of \; for each i,
i be any consistent estimator of 7y for each t, and U be any consistent estimator of uy, as (N, T)
go to infinity jointly,

V2 (B = 8) 5 N0k, T,

where )75 = %@ WV @ + %@;1‘77@;1 + ﬁ@;l‘/}u@;l, and @m = ﬁ Do Do Ty,
V= ﬁ ‘ ( ) T NN 1T s
V= NT2 Z Z Xt: kZ ( \p[ ) T i VeV 1 e 504 g

In order to handle the serial correlation, we use HAC estimators with the Bartlett kernel in Corol-
lary 1.3.2 to implement Vg, and p above is the truncation parameter that is user-specified. The choice
of kernel can be different in practice. Note that we account for weak cross-sectional dependence
under Assumption A1.8 in the current paper. However, if the strong cross-sectional dependence is
considered, one can also incorporate the idea of spatial HAC estimator in Kelejian and Prucha (2007)

to modify \A/,\, \A/7 and 17; given above.

1.3.3 Main results on \; and

In order to obtain unbiased and v/T-consistent estimator of \; for each given 7, we proposed following

feasible bias-corrected estimates for {\;}¥,,

= ——N\, (1.3 .1)
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where )\; is defined in (1.2.5). The following theorem gives the asymptotic distribution of XZ in
(1.3 .1).

Theorem 1.3.3. Under Assumptions A1.1-A1.5, as (N,T) go to infinity jointly, for each i,
Vi (Ri= ) =5 N0k I,

where Vy; = X1 (Vi + Q) 3,1, V) is the element of covariance matrix ofg defined in Theorem
1.3.1 above, and
1 1=

>\ T 7’Y+T ’

where the matrices Y., Eigy = Tlim %Zthzl E(zhx — X)) vyl (ehxll — 3,)], and imu =
—00 ’

. T . .. . .
Thm 15 st E (xhyusuisx]l) exist and are positive definite matrix.
—00 ’

Remark 1.3. It is worthwhile to observe that for each 7, the structure of V,; involves three com-
ponents, namely, V), X; ., and f]i,m in the above formula. In particular, the existence of %J; ,, in
the above formula exhibit the effects of time-varying slopes, and the existence of V) in the above
formula exhibit the effects of heterogeneous slopes {); },; on the efficiency of the estimator Xz for

each 1.
Similarly, in order to obtain unbiased and v/ N-consistent estimator of 7; for each given ¢, we

proposed following bias-corrected estimate 7, for each t,

~ r -

= TT%’ (1.3.2)

where %t is defined in (1.2 .7). The following theorem gives the asymptotic distribution of 7;:

Theorem 1.3.4. Under Assumptions A1.1-A1.5, as (N,T) go to infinity jointly, for each t,

V’ﬁl/2 (j}/\t - ’yt) L N<0K7 [K)J

where V., = X1 (V, + Q) XYV, is the element of covariance matrix of B defined in Theorem
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1.3.1 above, and

1 1.
Nyt — NZt,x)\ + Nzt,xua

Q
where the matrices ¥,', 3 ) = hm < Z” E [(zhay — Sa) NN (252l — 22) ], and Yiou =

*/ . . . . .
]\}gr(l)o ~ Z ( Ztuitujta:jt) exist and are positive definite matrix.

Remark 1.4. Similar to Remark 1.3, the presence of the term 3, . in the structure of V,; demon-
strates the effects of heterogeneous slopes, and the existence of V, reveals the effects of time-varying

slopes {7;}s» on the efficiency of the estimator 7.

Note that =}, u;, A; and 7, in Theorem 1.3.3 and Theorem 1.3.4 are not available in practice.
To implement the inference on {\;})¥, and {7;}._,, we have to replace x7;, u;;, \; and ~; with their

consistent estimates, which leads us to the following two corollaries,

Corollary 1.3.5. Under Assumptions A1.1-A1.5, as (N,T) go to (00, 00) jointly, for each i,
D (K= ) =5 N0k Ii),

where Vy; = Q7 ! (V,\ +Q ,\Z-> Q;l, V\\ is an consistent estimator of covariance matrix of V) defined

in Corollary 1.3.2, @\x = %Zt Tyl and

~ —~ /
S o RN - < = ~ .
where ¥y = 7 Zt 1 k—_p< 1 ) \ Tt — 2x ) VVign | Tit+kTipy, — 2x |, e IS any

||

consistent estimator of v, and Zmu =z Zt L k_fp (1 — ‘p|+1> Tt Ui Uitk Ty, Where Nx =

~ ~ -~ —~ T ~ o~ . . .
% Do Ty, Uy = Uy — % Y e1 Wis, Wiy 1S any consistent estimator of w;.

Remark 1.5. In order to allow for the serial correlations, we use HAC estimator of f],-w with the

Bartlett kernel in Corollary 1.3.5 to implement f]ivw, and p is the user-specified truncation parameter.
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Corollary 1.3.6. Under Assumptions A1.1-A1.5, as (N,T) go to (0o, 00) jointly, for each t,
V_1/2< ’}/t) HN(OK,[K)

where V., = (V + Qvt> , is an consistent estimator of covariance matrix of V., defined

in Corollary 1.3.2, Q3 = ~ > Tkl and

1~ 12
Nt = Nzt,az)\ + NZt Tus

~

~ ! ~
where 3,y = T, —Yx |\ /\ T, — x|, N\ is any consistent estimator of \;, and
t,z\ — N t it Jtr 5t
v U T v/ = o~ 1 N ~ = 1 vy ~ .
Emu = N Z” Tipllp ey, Where Uy = Uiy — ijl Uj, Yx = 7 2; Taly, and wy is any

consistent estimator of u; for each t.

Remark 1.6. As point out earlier, if the strong cross-sectional dependence is considered, one can
also incorporate the idea of spatial HAC estimator in Kelejian and Prucha (2007) to modify f]m o XA/7

and Y, ,,, given above.

1.3.4 The two-way heterogeneous bias test

According to the analyses in the Appendix A, we can see that the consistent and unbiased estimates
of 3, {\}Y,, and {7}, crucially depend on Assumption Al.1(iii)(a), (iv)(a) and Assumption
A1.2(i1). As pointed out in Remark 1.2, if the strict exogeneity condition in Assumption A1.2(ii) is
relaxed, the asymptotic bias can be removed by employing the half-panel jackknife method.

As for Assumption Al.1(iii)(a) and (iv)(a), they imply following two conditions will hold simul-

taneously,

Z E (;,2;;\;) =0 holds for each t. (1.3.3)

7
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and
Z E (z5%v) =0 holds for each i. (1.3 .4)

Indeed, the validity of (1.3 .4) and (1.3 .3) indicate that the estimate of 5 based on (1.2 .2), the estimates
of {\;}Y, based on (1.2 .4) and the estimate of {7;}._; based on (1.2 .6) still can be desirable even
if the slope heterogeneity and time-varyingness exist. Naturally, it is of practical and theoretical
interests to check the validity of (1.3 .4) and (1.3 .3). So the rest of this subsection is devoted to test
whether (1.3 .4) and (1.3 .3) holds simultaneously or not.

To test the null of hypothesis that (1.3 .3) and (1.3 .4) hold simultaneously, we propose the fol-

lowing test statistic,

Jrwap =V, 1/2\/— Z ( 0,0y — gv) ; (1.3.5)

where U, = >, iiti*;txi, B, = O ZAt,U, y, = T Dot Z’t’w@w, and we define ZAt’v =
~ 1 ~
& Sy N (#atly = Sx) (Fy = 3x) Ay G = 2o = B

Recently, Campello et al. (2019) propose the one-way heterogeneity bias test when the slope
heterogeneity exits in panel data models. As a comparison, our two-way heterogeneity bias test aims
to check the bias possibly induced by the existence of slope heterogeneity or time-varyingness and
thus generalizes their test.

The motivation behind Jrwpp is simple and intuitive. Denote v, = >, &5/ \;, and v; =
Yo Tnaiy. If xf, A; and 7, in (1.3 .3) and (1.3 .4) are available, ones can show that J7, 55 =
N7IT=V237 vpoy + N7VPTEN0 vl = Tfwupa + Tfwus., Wil follow the standard normal
distribution after being centered and rescaled appropriately and thus can be used to test whether
(1.3.3) and (1.3 .4) holds simultaneously or not. Our starting point is to implement J7y, 5, =
N~YT=1/2yl,, and it is the common practice to replace v; by its plug-in estimator ¥, based on

{Xl}f\il and x;;. Meanwhile, the unbiasedness and consistency of \: holds as long as (1.3 .3) and

(1.3 .4) holds simultaneously. Therefore, it suffices to use the proposed test Jr 5 instead.
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Before we present the asymptotic null distribution of J7yw 55, we impose additional assumption

as below.

Assumption A1.7. EZ,, is a constant, where Z;,, = ~ >, >N (@hai — ) (z5,23 — X0) Ay

jt

Assumption A1.7 requires £ Z, ,, does not vary with time ¢ such that EU can be used to estimate
this population mean consistently. This condition simplifies our theoretical analysis. On the contrary,
if £Z,, is allowed to vary with time ¢, ones can employ jackknife method by making full use of

cross-section observations for each given ¢ to estimate £/ Z; ,, consistently for each ¢.

The following theorem states the asymptotic null distribution of Jry 5.

Theorem 1.3.7. Under Assumptions Al.1-A1.5, in addition, A1.1(iii)(a) and (iv)(a) are replaced by

(1.3 .4) and (1.3 .3) respectively, as (N, T) go to infinity jointly, N /T%? — 0, then the following hodls,
Trwin —— N(0,1)

In practice, ones can implement Jryy 3 to make sure the desirability of 3, {)TZ}ZNzl and {7, }L,
based on our estimation strategy. For the asymptotic local power properties of Jrw 15, we can follow
Su and Chen (2013) and Campello et al. (2019) to show that 77y i 5 has the non-trivial power against
the local alternatives as long as (1.3 .4) or (1.3 .3) is violated. Besides, as pointed out above, Jrwun
stems from J7y, ;5 5, We can similarly devise a test statistic related to J7yy 55 ,» and the result and
corresponding theoretical justifications are very similar to those for Jrw 5 5, which is also convenient

to implement in practice.

1.3.5 Uniform consistency on estimates of time-varying and heterogeneous

slopes

In this subsection, we establish the uniform consistency to quantify the upper bounds on the maximum

deviation of the estimates from corresponding true parameters by imposing an additional assumption.
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Specifically, we extent Assumption 1(i)-(i1) in Zhu (2017) to strengthen Assumptions Al.1 and
A1.2 to specify the behaviors of the entries of { \;, ¢, T, ui } for both individual and time dimensions

further.

Definition 1. A random variable Z is said to have an exponential-type tail with parameter (b, v) if

Vz>0,P(|Z] > z) <exp[l— (z/b)"].
Assumption A1.8. Assume that the following hold:

(i) There exist constants b, v, > 0 such thatV(i,t) € {1,...,n} x {1,...,T}, each entry of \;,

Ve, Ty and w;; has an exponential-type tail with parameter (b, v,),

(ii) There exist constants c,, V., > 0 such that a(1) < c.exp (—7"*)V1T > 1. For the same
(Cs, Vix ), assume thatm?x Y jesy @ii(0) < coexp (—Card(Sy)"*) andmzax > es, uii(0) <
Cy €XP (—Card(%)”**), where Card(Sy) and C’ard(gv) go to infinity as N goes to infinity,
Sy and Sy are subsets of {1, ..., N}, and Card(A) stands for the cardinality of a set A; a(.),

a;i(.), and o, ;;(.) are defined in Assumptions A1.1 and A1.2.

Compared with Assumption 1(ii) in Zhu (2017), we impose the additional restriction that the
cross-sectional dependence for v;; and wu;; in Assumptions Al.1 and A1.2 decays at the exponen-
tial rate in Assumption A1.8(ii) above, and this condition will guarantee the use of Theorem 1 in

Merlevede et al. (2011) in our proofs.

Proposition 1.3.8. Under Assumptions Al.1-A1.4, and A1.8

o~ ~ ~ o~ /
() A= Nw=0, (, /%) Swhere A= (X, ., Ny) € RVE X = (/\’17, XN> € RVK,
@) 17 =lloe = Oy ({/BE) , where v = (3, 74) €RTX, 7 = (3, ., 7)) € RTX.

This result says that {Xi}izl and {7;}_, defined in (1.3 .1) and (1.3 .2) correspondingly are uni-
formly consistent estimators of {\;}%¥, and {~;}._, correspondingly under mild conditions. In par-
ticular, the logarithm terms are present in above results because of the high dimensionality of A and
. The extra logarithm term is the price often paid in high-dimensional studies; see e.g., Zhu (2017)

and Wang et al. (2018).
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1.4 The specification tests

In this section, we propose two specifications tests to examine the existence of {\;}¥, and {v;}L,
correspondingly. We first study the asymptotic null distributions and asymptotic local power proper-
ties of the specification tests. Then, we give the implementations of our specification tests in practice.

And finally, we propose the bootstrap version of our specification tests.

1.4.1 Max-type tests for slope heterogeneity and time-varyingness

It is of practical interests in empirical studies to test whether slope heterogeneity or time-vartingnes

exist or not. To this end, we consider to test one of following two null hypotheses:
Hy,: A\ = 0 forall ¢;
Hyy: v = 0 for all ¢.
The corresponding alternative hypotheses are the negations of H, and Hy, shown above,
Hi,: N\ # 0 for some 7;
Hyp: v # 0 for some .

From above, we can see that under Hy,, there is no slope heterogeneity, and under Hy,, the slope
time-varyingess is excluded. In contrast, under the alternatives, slope may exhibit heterogeneity, or
time-varyingess, or both of them.

Now, to test Hy, above, we propose to use the max-type test statistic 7, defined below:

1N

A (1.4 .1)
Similarly, to test Hy;, above, we propose to use the max-type test statistic 7, defined below:

T, = max7,V;'7,. (1.4 .2)

1<t<T
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To study the asymptotic local power of the tests proposed above, we specify the following se-

quence of Pitman local alternatives:

N ~ nT _
Hla,NT;Ai:,/nT-Ai for all 4, and Hl,,,NT;%:\/nT-% for all ¢,

where )\; and ~; satisfy the corresponding conditions in Assumption A1.1.

The motivation behind our test statistics 7, and 7, is simple and intuitive. In a nutshell, replying
on the results in section 1.3, for instance, under H,, we have 9&1/ 2Xi A N(0g, I), then it follows
that /)\\217;11/); N X3 for each 7. We will show that 7, follow standard the Gumbel distribution after
being rescaled appropriately under the null. In contrast, under Hy, n7, 7 will deviate from the null
distribution quickly and substantially.

Denote IIyr = Indny. To study the asymptotic properties of 7, and 7., we further impose

following two assumptions.

Assumption A1.9. Let k be positive but small enough,

(i) v =I5 f forl <t < T, where~; satisfies the the corresponding conditions in Assumption

Al 1

(ii) i =11y - XZ* forl <i < N, where Xl* satisfies the the corresponding conditions in Assump-

tion A1.1.

Note that x in Assumption A1.9(i)-(i1) can be different. Since Il is the logarithmic function of
N or T, it is not stringent for the real data in empirical studies. Actually, Assumptions A1.9 imposed
above are driven by practical considerations. For such considerations, we will discuss in the next
subsection after we give the implementations of 7, and 7,. Meanwhile, Assumption A1.9 also has
some theoretical implications as follows: unlike studies on the CRC panel data models or time-
varying panel data models that exclude the existence of the slope time-varyingness or heterogeneity
by the model setup, 7, can allow for the the existence of {~y;}_, as long as the magnitude of {~;}7_,

is mild; similar implications also apply to 7. We can ease the exposition of proofs for Theorem
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1.4.1 and Theorem 1.4.2 under Assumption A1.9, however, we address that Assumption A1.9 can
dropped at the cost of lengthy arguments in the view of theoretical derivations.
The following two theorems state the asymptotic behaviors of 7, defined in (1.4 .1), and 7 de-

fined in (1.4 .2) under the null and alternatives formally.

Theorem 1.4.1. Under Assumptions Al.1-A1.5,A1.8, and A1.9(i), as (N,T) go to (0o, c0) jointly,

under H,, it holds that

z

P(ANTA\ <z +By)=¢e"° ", (1.4.3)

where Ay = 3, and By = InN + (5 — 1)InlnN — InI(%), T(.) here is the Gamma function.

Under the local alternative Hy, n, if % IBY, H; — 00 holds for at least one i, it holds that

P (T, > can) =1, (1.4 .4)

2.« is the significant level selected by user.

where ¢, y = 2Bx —In|In(1 — )

Theorem 1.4.2. Under Assumptions A1.1-A1.5,A1.8, A1.9(ii), as (N,T) go to (00, o) jointly, under

Ha, it holds that

T

P(ArT, <x+Br)=e° ", (1.4 .5)

where A = %, and By = InT+ (X —1)InInT —In['(%), I'(.) here is the Gamma function. Under

the local alternative Hy, N, if 2= 7¢]|5 — oo holds for at least one t, it holds that
P(T, > car) =1, (1.4 .6)

where ¢, 7 = 2B — In|In(1 — «)|?, a is the significant level selected by user:

Note that (1.4 .3) in Theorem 1.4.1 and (1.4 .5) in Theorem 1.4.2 say that under the null, our

specification will converge to the Gumbel distribution after being centered and rescaled appropriately.
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As long as the consistency of our specification tests are concerned, (1.4 .4) in Theorem 1.4.1 reveals
that 7, has nontrivial power against the local alternatives shrinking to the null at rate O (\ /InN/T > ,

and (1.4 .6) in Theorem 1.4.2 has the similar implication.

1.4.2 Implementations of the specification tests

In this section, we offer two algorithms to implement 7, and 7, respectively in practice.

Algorithm 1.1.We implement 7, by following steps,
(1) Regress 4;; on Z;; to obtain Eand@-t = Uit — In,/ﬁ\ fori=1,...,Nandt=1,...,T.
(2) Regress @t on I;; to obtain 7, fort = 1,...,T. Further, let @: = @t — iy fori=1,...,N

andt=1,...,T.

(3) Regress /y\:t on T;; to obtain :\\i, and Eu = Q: — j;tXZ fori=1,...,N.

(4) According to Corollary 1.3.5, for each ¢, calculate ﬁm‘ based on Z;, 7, fort = 1,...,T and an

fort=1,...,N,t=1,...,T obtained in Step (3) above.

(5) Calculate 7, based on \; in step (3) and 17M instep(4)fori=1,..., N

Particularly, in Step (2) in Algorithm 1.1, we actually calculate @Z = Ui — Tl 3 — I, in doing

so we get the consistent estimator iy that allows for the existence of {74} under Hy,.

Remark 1.7. (The choice of lags p) In Algorithm 1.1, we employ HAC estimator of 17/\1‘ fori =
1,..., N. Inpractice, the selection of lags p will affect the actual size of our test 7. There are some
rule-of-thumbs to determine p as follows: p = [0.75T'/3], p = [TY*], and p = [4(T/100)*/],
where [C] represent the integer that is nearest to C. In our simulations, p = [4(7°/100)%*] out-
performs other two candidates, which implies suitable and longer lags will improve finite-sample

performances of the specification tests.

Algorithm 1.2. We implement 7., by following steps,
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(1) Regress j;; on I;; to obtain Band@t = Uy — :'zfitgforz' =1,...,Nandt=1,...,T.

(2) Regress @Zt on Z;; to obtain /):Z for: = 1,..., N. Further, let @*t = @t — jitxi fori=1,...,N

andt=1,...,T.
(3) Regress @; on #; to obtain ¥, and and ii;; = @; — &y fort=1,...,T.

(4) According to Corollary 1.3.6, calculate 17% for each ¢ based on z;, Xz fori=1,..., N and ﬂzt

fortr =1,...,Nandt =1,...,T obtained in Step (2) above.
(5) Calculate 7., based on 7, in step 3 and ]77,5 instep4 fort=1,...,7T.

Similarly, in Step (2) in Algorithm 1.1, we actually calculate azt = Ui — Ty B - 55;@, in doing so

we get the consistent estimator ﬂlt that allows for for the existence of \; for? =1, ..., N under H,.

Remark 1.8. From Algorithm 1.1, we can see that the effects of {7; }7_, are considered and removed
by its consistent estimator {7; } ., when we implement 7}, in practice even if we have no prior knowl-
edge about the existence of {v;}Z_,. It is reasonable to do so, because practitioners may worry about
the adverse effects of {,}_, on the finite-sample properties of 7. Indeed, if practitioners do iterated
estimations for 5, \; and 7, according to our proofs for Theorem 1.4.1, the term i)‘T + &7 can turn
outto be (p+&xyy = N~V D i 2t T ()‘j - ;\\J> FT2Y0 (g — 20) (v — ). We
can show that this term is of order O, (N~/2T~1/2) = o, (1) by using Proposition 1.3.8(ii), which
is negligible for in the derivations of the null distribution of 7,. Because of this fact, we impose
a weaker condition in Assumption A1.9(i), because the terms bounded by O, (N~V/2T-1/2) will
be dominated by the terms bounded by O, (IIx7). We impose a weaker condition in Assumption

A1.9(ii) by the similar considerations.

1.4.3 A bootstrap version of the specification tests

Consistent with comments in Castagnetti et al. (2015), our specification test statistics 7, and 7T, also
suffer from the slow convergence to the Gumbel distribution. The asymptotic distribution approx-

imates the finite sample distribution poorly. As a consequence, we expect the use of asymptotic
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critical values will deteriorate the power and size of our specification tests. To rectify this issue, we
propose to use following two bootstrap schemes to improve the finite sample performance of our
specification tests. The first one is so-called block wild bootstrap (BWB) scheme and the second one
is the wild bootstrap (WB) scheme. Particularly, the BWB is an extension of the WB that handles

the serial correlations among time-series observations.

Remark 1.9. Note that we use time series data for each individual ¢ to construct 7,. Because As-
sumption Al.8 implies the weak dependence, it can be sufficient for practitioners to use the WB
scheme only to obtain the bootstrap p-values for both 7, and 7, the WB implementations works for
both 7, and 7, from our simulation results in Section 1.5 even when the dependence among time-
series observations are moderate. However, for robustness checks, practitioners can further apply

the BWB scheme to 7, to handle the unknown but possibly strong time-series persistence.

First, we present the algorithm for the implementation of 7, under the BWB scheme.

Algorithm BWB: Block Wild Bootstrap Scheme for 7,
1. Execute Algorithm 1.1 to the original test statistics 7.

2. Setablocksize by, suchthat 1 < by < T. Denotethe blocksby B, = {(s — 1)br + 1,...,sbr},
s=1,...,Ly, Ly = [T/br], the number of blocks, is constructed to be an integer for the

convenience of presentation.

3. Foreachi = 1,2,..., N, take i.i.d random draws {&; SL:Tl, independent of the data, from

a common distribution W, where E(1W) = 0, E (W?) = 1. Define the auxiliary variables

wy = &5, 1ft € By, fort = 1,...,T, where By is constructed in Step 2.

4. For ecah i, obtain the bootstrap error E; = aitwit with w;; definedin Step3 fort =1,2,...,T..
Then, we construct the bootstrap sample Qzﬁt = Th\ —i—@; fori=1,...,Nandt=1,2,...,T

as if the null \; = O for all 7 holds.

5. Given the bootstrap sample {@;, x; }, re-execute Step (3)-(5) in Algorithm 1.1 above to obtain

test statistic 7," in bootstrap world.
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6. Repeat steps 2 to 5 for B times and index the bootstrap test statistics {7;* b}f: .- Then calculate

the bootstrap p—value by p* = B30 T{T;, > To.}.

Algorithm BWB says that we generate the bootstrap samples for each individual ¢ under the
BWB scheme as follows: (1) divide 7" consecutive observations into Ly blocks with by consecutive
observations in each block. Assume Lybyr = T implicitly for simplicity; (2) generate L, external
and auxiliary random variables &;; e (0,1) withl = 1,..., Ly, all residuals in the block [ then are
multiplied by the external random variable &; ; (3) obtain the bootstrap samples as if A\; = 0 holds

for all 4.
Remark 1.10. Let the block size by = 1 in Step 2 of Algorithm BWB, we actually implement the
wild bootstrap version of 7.

We then provide the algorithm for the implementation of 7, under the WB scheme.

Algorithm WB: Wild Bootstrap Scheme for 7,

1. Execute Algorithm 1.2 stated above to obtain the test statistics 7.

2. For each i, take i.i.d random draws {&;;}._, independent of the data, from a common distribu-

tion W, where E(W) = 0, E (W?) = 1.

3. Foreach: = 1,2,...,Nandt = 1,2,...,T, obtain the bootstrap error a; = Eit&t with &;
defined in Step 2. Then, we construct the bootstrap sample i/\; = T}, +ﬁ; fort =1,2,...,T

and:=1,...,Nasifthenully, =0fort=1,...,7T holds.

4. Given the bootstrap sample {&;, xy }, re-execute Step (3)-(5) in Algorithm 1.2 presented above

to obtain test statistic 7. in bootstrap world.
5. Repeat steps 2 to 5 for B times and index the bootstrap test statistics {’Z:b}f: ,- Then calculate
the bootstrap p—value by p* = B! Z{il I {7;*b > 7;}

By comparing the details of Algorithm BWB and Algorithm WB, we can see that the BWB
scheme is a generalization of the WB scheme in the sense that the BWB scheme uses the block

structure to capture the serial correlations among time-series observations .

25



Remark 1.11. For external random variables used in both Algorithm BWB and Algorithm WB, we

recommend to use so-called Rademacher sequences, namely,

¢ 1 with probability p = 3,
it =
—1  with probability 1 — p,

with the properties E&;; = 0, E€2 = 1, E€} = 0, and EEL = 1.

The theorem below justifies the asymptotic validity of the bootstrap version of our specification

tests:

Theorem 1.4.3. (a) Suppose Assumptions A1.1-A1.5, A1.8 and A1.9 hold.

In addition, under Block Wild Bootstrap scheme, assume that 1/bp + br/ T3 — 0, then, as

(N, T) = o0,

sup |[P* (AnT; < 2+ By) — P(AxTh < 2+ By)| 50,

zeR

as N, T — oo, where P* denotes probability measure induced by the wild bootstrap condi-

tional on the observed sample Wyt = {(xy,yi),i=1,... , Nt =1,..., T}

(b) Similarly, under Assumptions A1.1-A1.5, A1.8 and A1.9,

sup |P* (ANT* <&+ By) — P(ANT, <+ By)| 5 0,

z€R

as N, T" — oo, where P* denotes probability measure induced by the wild bootstrap condi-

tional on the observed sample Wyt = {(xi, yi),i=1,... ,N,t =1,..., T}

Remark 1.12. For strong serial and cross-sectional dependence, we conjecture that the Moving
Block Bootstrap (MBB) scheme may work. Gongalves (2011) show the validity of the MBB scheme
for a homogeneous panel data model with individual fixed effects that allows for both serial and

cross-sectional dependence. We leave this extension as future research.
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1.5 Monte Carlo Simulations

In this section we evaluate the finite sample performance of the specification tests by means of a set

of Monte Carlo experiments.

1.5.1 Wild Bootstrap Scheme

We implement the bootstrap version 7, and 7., under the Wild Bootstrap scheme in this subsection
to study the size and power of the bootstrap version of our specification test statistics in practice.
In particular, for the bootstrap version 7, we just set block size by = 1 such that the Block Wild
Bootstrap scheme degenerates to Wild Bootstrap scheme.

We consider following data generating processes (DGPs),

DGP I: Yie = (B + ) Tae + 0 + Wi + wa,

DGP 2: Yie = (B + o) xir + 15 + wi + g,

DGP 3: Yie = (B + N + %) Tag + 15 + Wi + Uy

For all DGPs, {n;}, is drawn independently from N (0,07), {w;}/_, is drawn independently

from AV (0, 02), z;; and u;; follow the AR(1) process, namely

Ty = Pyt + (0 + wp) + vit,

Ui = Pullit—1 + Eit,

where v;; is drawn independently from N (0, 02), ¢; is drawn independently from A (0, 0?) for
each i. For DGP 1, {y}{, is drawn independently from AV (0,02). For DGP 2, {\;}/, is drawn
independently from A (0, %).

When we study the size and power of 7, we generate data from DGP I and DGP 3 under Hy, nr
respectively, for {v,}7_;, % = N~Y2 .4}, where +; is drawn independently from N (0,02) for
t=1,...,T.

When we study the size and power of 7., we generate data from DGP 2 and DGP 3 under Hy, nr
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respectively, for {\;}¥,, \; = T2 . \*, where \! is drawn independently from N (0,03) for

1=1,...,N.
Besides, for the power study under DGP 3, we consider the local alternatives as follows,
(
~ 1 w.p. 1/2
Hignr: Ni = C - % - \; such that \; are i.i.d sequences with \; = , and
-1 wp. 12
\
Ce{l1,2,3}.
(
1 w.p. 1/2
Hyynr: 70 = C - h‘TT - 7 such that ~, are i.i.d sequences with v, = , and
-1 wp. 12
\
C €{0.5,1,1.5}.

Now, we set fixed values for the user-specified parameters as follows: 5 = 0.5, p, = p, = 0.5,
T =10, =0 =1,0; = {03,051}, 02 = {0.3,0.5,1}, (07,02) = (0.1,0.1). For choices of
lags p for the HAC estimators, we recommend to use p = [4(7'/100)%/]. We define variance ratio
as vr = o2 /o? for DGP I and vrr = 03 /o? for DGP 2 , which represent the signal-noise ratio.

In this subsection, we calculate 7, by Algorithm 1.1 and the wild bootstrap version of 7, by
Algorithm BWB with the block size by = 1; we also obtain 7, by Algorithm 1.2 and the bootstrap
version of 7, by Algorithm WB. For each scenario, we conduct 500 replications with B = 250

bootstrap resamples in each replication. We consider the 5% nominal level in all cases.

1.5.2 Block Wild Bootstrap Scheme

In this subsection, we implement the block wild bootstrap version 7 to study the effects of the degree
of serial correlations among time-series observations on the size of the block wild bootstrap version

of 7, under the null Hy,. We still assume {x;;, u;; } to follow the AR(1) process,

Tit = PaTit—1 + T (N + W) + vyt

Uit = PuUit—1 T €it,
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where 7 is the tuning parameter that controls the degree of correlations with fixed effects, and we set
7 = 1 as the default value for all cases. For each 4, {v;;}L_, is drawn independently from N (0, 1);
for each 4, {¢;}1_, is drawn independently from N (0,1). Further, we set p, € {0.3,0.6,0.9} and
pu € {0.3,0.6,0.9} to study the effects of the degree of serial correlations among observations on
the size of the block wild bootstrap version of our specification test statistic 7 under Hy,.

We generate data by DGP 4 specified below,

DGP 4: yy = (B4 v) Tt + mi + w; + ugy withy, = N~Y2 .y fort = 1,..., T, where 7} is
drawn independently from N (0, 02) with o2 = 0.3,

We set 5 = 0.5 as fixed in all simulations, meanwhile, for fixed effects, {n; éil is drawn inde-
pendently from N (0,07) with o2 = 0.1 and {w;}{_, is drawn independently from N (0,02) with
02 =0.1.

We calculate 7, by Algorithm 1.1 and the wild block bootstrap version of 7, by Algorithm BWB
with different block size b shown in the related Tables. For each scenario, we conduct 1000 repli-
cations with B = 250 bootstrap resamples in each replication. We consider the 5% nominal level in

all cases.

1.5.3 Results

Table 1.1 displays empirical rejection rates of 7, and 7, under Wild Bootstrap scheme for each
combination of N and T with different variance ratios. The left panel of Table 1.1 shows that both
7T, and T, are too conservative in most cases regardless of values of the variance ratio based on the
asymptotic critical values. These results are due to the poor approximation of asymptotic distributions
to the finite-sample distribution and consistent with our anticipations. The empirical size of the wild
bootstrap version of 7 and 7, in the right panel of Table 1.1 are very close to the 5% nominal level
of significance. It is noteworthy to see that in several cases, 7, tends to be over-sized slightly. We
conjecture that the slight over-rejections originate from the moderate serial correlations in {x;;, u;; }
because we set p, = p, = 0.5.

Table 1.2 and 1.3 exhibit the power of 7, and 7, for each combination of N and T with different
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Table 1.1: Finite sample rejection frequency under the null hypotheses
size of T under Hy,

DGP N T Based on Asy. CV Based on Wild Bootstrap

vr=0.3 vr=0.5 vr=1 | vr=0.3 vr=0.5 vr=1

1 30 30 | 0.010 0.016 0.036 | 0.028 0.022 0.028
50 | 0.030 0.016 0.034 | 0.050 0.046 0.044

100 | 0.042 0.034 0.060 | 0.056 0.044 0.052

1 50 30 0.002 0.000 0.004 | 0.020 0.024 0.022
50 | 0.008 0.014 0.014 | 0.064 0.066 0.044

100 | 0.016 0.022 0.022 | 0.054 0.052 0.062

1 100 30 | 0.000 0.000 0.000 | 0.032 0.028 0.024
50 0.000 0.000 0.002 | 0.070 0.060 0.066

100 | 0.002 0.004 0.004 | 0.064 0.070 0.050

size of 75 under Ho,
DGP T N Based on Asy. CV Based on Wild Bootstrap

vr=0.3 vr=0.5 vr=1 | vr=0.3 vr=0.5 vr=1

2 30 30 0.056 0.066 0.068 | 0.040 0.044 0.050
50 0.062 0.066 0.066 | 0.050 0.056 0.044

100 | 0.068 0.076 0.070 | 0.042 0.050 0.050

2 50 30 | 0.020 0.024 0.030 | 0.040 0.042 0.046
50 | 0.032 0.042 0.032 | 0.060 0.058 0.046

100 | 0.046 0.040 0.050 | 0.050 0.052 0.048

2 100 30 0.016 0.006 0.010 | 0.054 0.054 0.054
50 0.010 0.014 0.028 | 0.050 0.058 0.056

100 | 0.022 0.022 0.022 | 0.054 0.062 0.050

variance ratios. The left panels of Table 1.2 and 1.3 indicate that 7, and 7, have very low power
against the alternatives in most cases regardless of values of the variance ratio based on asymptotic
critical values. In contrast,the right panels of Table 1.2 and 1.3 disclose that the wild bootstrap version
of 7, and T, have decent power against the alternatives.

In Table 1.4, we present the empirical rejection rates with block size by = 1 and by = /T /2
under various combinations of the degree of serial correlations among {z;; } and {u;; } under the null.
When (p., p,) = (0.3,0.3), (pz, pu) = (0.6,0.3) and (p., p,) = (0.3,0.6), Table 1.4 reveals that
Wild Bootstrap scheme and Block Wild Bootstrap scheme have almost same performances on the
empirical size. If the serial correlation is very strong, the Block Wild Bootstrap scheme outperforms

Wild Bootstrap scheme significantly and has the proper size close to the nominal level.
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Table 1.2: Finite sample rejection frequency under the local alternatives

power of 7 under H1, N7

Based on Asy. CV Based on Wild Bootstrap
DGP N T C=1 C=2 C=3 | C=1 C=2 C=3
vr=0.3 vr=0.3

3 30 30 | 0.011 0.020 0.073 | 0.066 0.176 0.356
50 | 0.066 0.265 0.656 | 0.104 0.406 0.700

100 | 0.332 0.921 0.999 | 0.292 0.866 1.000

3 50 30 | 0.000 0.003 0.009 | 0.116 0.362 0.624
50 | 0.013 0.090 0.382 | 0.166 0.644 0.934

100 | 0.242 0.931 1.000 | 0.456 0.996 1.000

3 100 30 | 0.000 0.000 0.000 | 0.198 0.626 0.922
50 | 0.004 0.010 0.072 | 0.358 0.916 1.000

100 | 0.175 0.911 1.000 | 0.698 1.000 1.000

vr=0.5 vr=0.5

3 30 30 | 0.015 0.032 0.070 | 0.078 0.184 0.306
50 | 0.057 0.276 0.670 | 0.090 0.346 0.696

100 | 0.296 0.902 1.000 | 0.306 0.894 0.994

3 50 30 | 0.002 0.005 0.006 | 0.096 0.314 0.570
50 | 0.015 0.119 0.359 | 0.176 0.576 0912

100 | 0.252 0.933 1.000 | 0.490 0.988 1.000

3 100 30 | 0.000 0.000 0.000 | 0.196 0.564 0.920
50 | 0.002 0.008 0.067 | 0.342 0.890 0.996

100 | 0.170 0.924 1.000 | 0.748 0.728 1.000

vr=1 vr=1

3 30 30 | 0.031 0.062 0.097 | 0.056 0.152 0.280
50 | 0.083 0.355 0.713 | 0.076 0.350 0.616

100 | 0.336 0.941 1.000 | 0.246 0.846 0.998

3 50 30 | 0.004 0.012 0.002 | 0.074 0.284 0.542
50 | 0.027 0.027 0.390 | 0.158 0.602 0.892

100 | 0.277 0.935 1.000 | 0.464 0.974 1.000

3 100 30 | 0.000 0.002 0.000 | 0.184 0.544 0.864
50 | 0.006 0.019 0.067 | 0.320 0.870 1.000

100 | 0.197 0.932 1.000 | 0.722 1.000 1.000
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Table 1.3: Finite sample rejection frequency under the local alternatives

power of 7, under Hyp, nT

Based on Asy. CV Based on Wild Bootstrap
DGP T N | C=0.5 C=1 C=1.5 | C=05 C=1 C=1.5
vr=0.3 vr=0.3

3 30 30 | 0.157 0.658 0.961 | 0.144 0.528 0.870
50 | 0.258 0.891 0.999 | 0.244 0.810 0.998

100 | 0.387 0.973 1.000 | 0.304 0.938 1.000

3 50 30 | 0.086 0.478 1.000 | 0.194 0.760 0.960
50 | 0.180 0.866 1.000 | 0.322 0.962 1.000

100 | 0.354 0.981 1.000 | 0.394 0.986 1.000

3 100 30 | 0.041 0.261 0.756 | 0.272 0.916 1.000
50 | 0.130 0.805 1.000 | 0.514 0.994 1.000

100 | 0.302 1.000 1.000 | 0.542 0.998 1.000

vr=0.5 vr=0.5

3 30 30 | 0.208 0.672 0.971 | 0.144 0.526 0.862
50 | 0.263 0.891 1.000 | 0.224 0.836 0.994

100 | 0.364 0.979 1.000 | 0.272 0.928 1.000

3 50 30 | 0.009 0.498 0.918 | 0.190 0.720 0.950
50 | 0.179 0.875 1.000 | 0.318 0.940 1.000

100 | 0.360 0.990 1.000 | 0.370 0.982 1.000

3 100 30 | 0.029 0.273 0.763 | 0.326 0.944 1.000
50 | 0.140 0.778 1.000 | 0.480 0.994 1.000

100 | 0.294 0.988 1.000 | 0.542 1.000 1.000

vr=1 vr=1

3 30 30 | 0.176 0.637 0.965 | 0.134 0.496 0.870
50 | 0.278 0.888 1.000 | 0.204 0.824 0.990

100 | 0.369 0.977 1.000 | 0.318 0.948 1.000

3 50 30 | 0.113 0.522 0.904 | 0.196 0.706 0.948
50 | 0.222 0.869 0.999 | 0.288 0.924 1.000

100 | 0.349 0.977 1.000 | 0.380 0.988 1.000

3 100 30 | 0.040 0.261 0.765 | 0.290 0.904 1.000
50 | 0.139 0.804 0.999 | 0.512 0.990 1.000

100 | 0.287 0.990 1.000 | 0.530 1.000 1.000

Table 1.4: Finite sample rejection frequency under the null hypothesis

Size of T, under Hy, Block Wild Bootstrap
(P, Pu)
DGP Block Size N T |(0.3,0.3) (0.3,0.6) (0.3,0.9) (0.6,0.3) (0.6,0.6)
br =1 30 30 0.056 0.075 0.115 0.069 0.129
4 br = \/T/Q 30 30 0.065 0.050 0.057 0.078 0.086
br=1 100 100 | 0.061 0.073 0.086 0.060 0.149
br = \/7/2 100 100 | 0.051 0.064 0.041 0.064 0.066
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1.6 Empirical Applications

In labor and demographic economics, an important study by Shimer (2001) discloses the negative
effects of youth share of working-age population on the unemployment using U.S. state-level panel
data. Skans (2005) applies the methodology of Shimer (2001) to study the effect of age distribution
on unemployment rates and finds the reverse effects of a large share of workers aged 50-60 on the
labor market in terms of higher unemployment and lower employment. Biagi and Lucifora (2005)
use a similar empirical model to figure out the relationships among demographics, education changes
and unemployment changes.

It is interesting to revisit the relation of unemployment rates and the youth shares of working-
age population because many recent researches in labor and demographic economics concern the
heterogeneous effects. As an illustrative example, following the empirical model in Shimer (2001),
it is equivalent to apply the specification tests to check the slope heterogeneity and time-varyingness
respectively.

The generalization of the empirical model in Shimer (2001) is given as below,
lograte;; = n; + w; + Bi; log share;; + €4, (1.6 .1)

where the dependent variable log rate;; is the unemployment rate in country (or state) ¢ and year ¢,
and the explanatory variable log share;; is the youth shares of working-age population. Besides, 7;
and w; are the time-specific and individual-specific fixed effects respectively. In particular, w; aims
to capture any macroeconomic shocks while 7; accommodates considerable cross sectional variations
in unemployment and demographics.

In order to apply our specification test statistics, we decompose 3;; = 5 + A; + ¥, thus, the
corresponding null hypotheses are:

Hy,: \; = 0 for all 7,
and

Hoyy: v = 0 for all ¢.
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In our empirical study, we use panel dataset! consisting of six groups?. For each case, we collect
annual data from 1991 to 2013 for unemployment rates and youth shares of working-age popula-
tion.*Following Shimer (2001), we also calculate the youth share of working-age population as the
ratio of population ages 16-24 over population ages 16-64. We report bootstrap p-values based on

the bootstrap resamples B = 1000.

Table 1.5: Test statistics and p-values for Empirical Study

High Income Countries(N=52, T=23)

H Oa H, 0b
Test Statistics 8.470 9.787
Bootstrap p-value | 0.002 0.230
Middle Income Countries(N=87, T=23)
HOa HOb
Test Statistics 38.647 10.158
Bootstrap p-value | 0.000 0.187

Upper Middle Income Countries (N=44, T=23)

HOa HOb
Test Statistics 9.042 4.721
Bootstrap p-value | 0.000 0.461

Lower Middle Income Countries(N=43, T=23)

HOa HOb
Test Statistics 13.8979 5.812
Bootstrap p-value | 0.000 0.849

Low Income Countries(N=32, T=23)

HOa H()b
Test Statistics 9.2184 5.205
Bootstrap p-value | 0.003 0.777

All Countries (N=171, T=23)

HOa HOb
Test Statistics 38.217 15.606
Bootstrap p-value | 0.000 0.073

Table 1.5 summarizes the testing results for our specification tests. We can reject the null hy-

potheses Hy, based on bootstrap p-values at significance level 5%. Meanwhile, we fail to reject Hy,

'The data is downloaded from World Development Indicators, https://databank.worldbank.org/data/source/world-
development-indicators/preview/on,and Education Statistics, https://databank.worldbank.org/data/source/education-
statistics-%5E-all-indicators/Type/TABLE/preview/on,provided by World Bank Open Data.

low-income countries, lower-middle-income countries, upper-middle-income countries, middle income countries,
high-income countries and all countries according to classifications in World Bank Open Data

3The countries that data are not available in each case are dropped to keep panel data balanced.
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for all cases based on bootstrap p-values at significance level 5% . Therefore, it can be more rea-
sonable to consider the random coefficients panel data models to accommodate the country-specific
slope heterogeneity when we are of practical interest to have more insight on the relationship between

unemployment rates and youth share of working-age population.

1.7 Conclusion

This paper introduces a two-way linear random coefficient panel data models with both time- and
individual- specific fixed effects to capture slope heterogeneity and time-varyingness, in particular,
we allow for the cross-sectional dependence in our model. The fixed effects included here can be arbi-
trarily correlated with explanatory variables. Therefore, our model extents the conventional random
coefficients panel data models to accommodate both variable slopes in both time- and individual- di-
mensions and unobserved heterogeneity. This enlarges the potentials of applications of the random
coefficients panel data models in practice.

To estimate parameters of interests, we follow the idea of the within-group fixed effects estimator
for homogeneous panel data models with fixed effects. We then establish the limiting distributions
of these estimates in the standard large N and large T framework so that practitioners can make the
inference on parameters of interests in practice. Besides, to justify the desirability of such estimation
strategy, we propose the two-way heterogeneity bias test.

Furthermore, we construct the max-type tests to examine the existence of slope heterogeneity
and time-varyingness. Our specification tests suffer from the finite-sample size distortion associated
when we use the asymptotic critical values in many cases. To rectify this issue, we employ two
bootstrap schemes for our specification tests to correct the size of specification tests. Our Monte Carlo
experiments confirm that the bootstrap implementations of our specification tests have reasonable
size and decent power against the alternatives.

Finally, as an illustrative example, we apply our specification tests to reveal the relationship be-

tween the unemployment rates and youth shares of working-age population using panel data covering
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171 countries at most and 23 years from 1991 to 2013, and testing results are in favor of the existence
of country-specific slope heterogeneity.

We conclude the paper by pointing out some possible extensions for the current paper. First, we
can replace time- and individual fixed effects with interactive fixed effects (IFEs) to accommodate
the factor structure in our models. Second, following papers in high-dimensional statistics, we can
impose the sparse structure on random coefficients and use some regularized estimators to revisit the
two-way linear random coefficients panel data models in the current paper. Third, the group patterns
and sparsity structure can co-exist among the random coefficients. The arguments are more lengthy

for these extensions and we leave them for future research.
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Chapter 2

Testing for Idiosyncratic Bubbles in the
Presence of Nonstationary or Mildly

Explosive Factors in Panel Data Models

2.1 Introduction

Since the pioneering works of Stock and Watson (2002a), Stock and Watson (2002b), Bai and Ng
(2002), Bai (2003) and Bai (2009), panel factor models have become more and more popular in eco-
nomics and finance. By employing a panel factor model, the variable of interest can be decomposed
into a common component plus and an idiosyncratic error component. The former corresponds to the
systematic risk, while the latter is linked to the specific risk for empirical researches in economics and
finance. In the presence of speculative bubbles in the panel data, both regulators and financial ana-
lysts concern the sources of the bubbles’ explosiveness in the panel of asset prices. That is, they have
practical incentives to know whether the bubble risk arises from the individual-specific characteris-
tics or the common component. Such concerns motivate our econometric analysis of the nature of
the explosiveness of data through panel factor models in this paper. Ideally, we want to tell whether

the explosive behavior is driven by the common component or by the idiosyctractic component, or
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both.

We provide a simple but effective procedure to test the bubbles’ explosiveness in the idiosyn-
cratic components by allowing for the presence of unit-root-type nonstationary factors or mildly
explosive factors in large dimensional panel factor models. We derive the asymptotic null distribu-
tion and the asymptotic local power property of the proposed test statistic. We also provide a wild
bootstrap scheme to improve our test’s finite-sample performance. The asymptotic local power prop-
erties imply that the proposed test can detect effectively bubbles’ explosiveness in the idiosyncratic
components by exploiting the cross-sectional information in the panel data.

On the theoretical side, our study is extremely challenging due to the nonstationary behavior of
the idiosyncractic component under the null and its mildly explosive behavior under the alternatives.
Recently, Onatski and Wang (2020) have found highly persistent idiosyncratic components may lead
to spurious factors in panel data models. These spurious factors are likely to be misidentified as
common factors by existing principal-component-based (PC-based) method. Therefore, in order to
disentangle the sources of the bubbles’ explosiveness within the framework of panel factor models, it
is of great importance to test the bubbles’ explosiveness in idiosyncratic components as the first step.
Besides, by virtue of spurious factors, the prevailing tests for the idiosyncratic bubbles can suffer from
a lack of power against some alternatives when empirical researchers over-extract common factors
in practice. In contrast, Monte Carlo simulations show that the wild bootstrap implementation of our
proposed test has an appropriate size and non-trivial power in detecting idiosyncratic bubbles despite
the issue caused by spurious factors.

As an empirical illustration, we apply the proposed test to investigate the explosiveness in the
panel of cryptocurrencies’ daily prices from November 15, 2017, to January 31, 2018. We find
no evidence of idiosyncratic bubbles’ explosiveness in the cryptocurrency prices during this period
and discover that the bubbles’ explosiveness in the first estimated factor by the classical time-series
approach.

Our paper is closely related to three lines of studies on panel data models.

First, our paper contributes to the growing literature on the panel factor models with possibly
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explosive factors. Representative works include Horie and Yamamoto (2016), Chen et al. (2019),
and Peng et al. (2020). In particular, Horie and Yamamoto (2016) and Chen et al. (2019) also discuss
the detection of the bubbles’ explosiveness within the framework of panel factor models. It is worth
mentioning that Horie and Yamamoto (2016) consider tests for the bubbles’ explosiveness in the
common factors and idiosyncratic components separately, but their tests for the idiosyncratic com-
ponents are conducted series-by-series and thus do not take advantage of the cross-section dimension
of panel data effectively. In contrast, our test for the explosiveness of the idiosyncratic component is
a panel approach and the asymptitic local power analysis of our test reveals that the cross-sectional
information indeed enhances the power of our test against the alternatives. In addition, Horie and
Yamamoto (2016) recommend determining the working number of factors by existing information
criteria. But we find that the PC-based information criteron tends to underestimate the number of
factors due to one or two overwhelming dominant factors in the real data. The under-extraction of
true factors can result in the oversize of the idiosyncratic tests in Horie and Yamamoto (2016). In
contrast, Chen et al. (2019) implement Phillips, Shi and Yu’s (2015, PSY hereafter) procedure to test
the presence of bubbles in the first estimated factor series by assuming that the idioyscrtic error term
processes are stationary. In the case where the idiosyncratic components are mildly explosive but
common factors follow unit root or stationary processes, their methodology can potentially attribute
the source of bubbles’ explosiveness to the common factors due to spurious factors caused by highly
persistent series in the idiosyncratic components. In some sense, our work complements that of Chen
et al. (2019). Only in the absence of mildly explosive and unit-root-type nonstationary behavior in
the idiosyncratic components, can their test have the right interpretation.

Second, our paper is linked with the large literature on nonstationary panel data models. Bai
(2004) shows that latent factors, factor loadings, and common components can be estimated con-
sistently by the PC method if all factors follow unit-root processes in the presence of stationary
idiosyncratic components. Bai and Ng (2004) propose a novel PANIC procedure to test the null of
unit root separately in the common and idiosyncratic components for data of interest. Breitung and

Das (2008) explore the theoretical properties and practical performances of the unit root test for panel

39



factor models under various cases. Bai and Ng (2010) provide more alternative approaches to test
the null of unit root for the nonstationary panel data models. In this paper, we allow for the bubbles’
explosiveness in the common component and the idiosyncratic error component and thus extend the
methodology in Bai (2004) and Bai and Ng (2004) to explosive panel data. We show that PC esti-
mation can still yield consistent estimates of unobserved factors and factor loadings for the restricted
model under the null. Our proposed test exploits the potentials of PANIC Pool Tests (P PT’) in Bai
and Ng (2010) to test the idiosyncratic bubbles’ explosiveness.

Third, our paper is implicitly tied to panel data models with interactive fixed effects (IFEs);
see, e.g., Bai (2009), Moon and Weidner (2015), and Miao et al. (2020). After the quasi-difference
transformation of the generic model considered in the paper, the model turns out to be a dynamic
panel data model with IFEs and heterogeneous explosive coefficients. Besides, our technical lemmas
reveal that the PC estimation is still consistent for the first-differenced form of the restricted model
under the null even if the unobserved common factors are mildly explosive but fairly weak. In
contrast, Onatski (2009) studies the inconsistency of PC estimation for panel factor models when the

unobserved common factors are stationary but very weak.

The remainder of the paper is structured as follows. In Section 2.2, we formally introduce our
model, hypotheses, and estimation strategy. Section 2.3 reports the main theoretical results. Section
2.4 presents the information criterion for the determination of the working number of factors. In
Section 2.5, we conduct Monte Carlo experiments to evaluate the finite sample performance of the
proposed test. We apply the proposed test to study the cryptocurrency daily prices in Section 2.6.
Section 2.7 concludes. Proofs of the main results in the paper are relegated to the Appendix B. Further
technical details are also provided in the Appendix B.

NOTATION. Throughout the paper we adopt the following notation. For an rectangular real
matrix A € R™*", we denote its transpose as A’, its trace as trA, its Frobenius norm as || Al
<E [tr (A/A)]m), and its spectral norm as || Alfs, (E 01 (A’A)), where = means “is defined as”
and () denotes the k-th largest eigenvalue of a real symmetric matrix by counting eigenvalues

of multiplicity multiple times. We also use @i, and @, to stand for the minimum and maximum
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eigenvalues of a symmetric real matrix. Letdiag(a, .. ., a,,) represent a R™*"™ diagonal matrix with
entries ag, . .., a,, on its diagonal. We write A < B if there exist some finite positive constants ¢
and C such that ¢|A| < B < C|A|. Besides, M stands for a generic large positive constant that
may vary across lines. The operator L denotes convergence in probability, KN convergence in dis-
tribution, and plim probability limit. We use I (-) to denote the usual indicator function. For a full
rank N x R matrix F' with N > R, we denote the corresponding orthogonal projection matrices as
Pr=F (F’F)f1 F and My = Iy — Pg , where Iy denotes the NV x NN identity matrix. Besides,

let all the time-series observations for each individual are available from period 1 to period 7.

2.2 Basic Framework

2.2.1 The model

We consider the following panel factor model
Xit = /\?,Fto + €4, (2.2.1)

where s = 1,..., N, t = 1,...,T, F; and \; are Ry x 1 vectors of factors and factor loadings,

respectively, and e;; is the idiosyncratic error term. (2.2 .1) also can be rewritten in matrix form

X =A"FY te, (2.2 .2)

where X = (X;;) denotes a N x T matrix. F* = (F°,... F?) isaT x R, matrix of unobserved
factors, A = (A?,...,A%) is an N x R, matrix of factor loadings, and e represents an N x T
matrix of idiosyncratic shocks.

We assume the unobserved common factors are generated as follows:

(1 - POL)EY = C(L)u, (22.3)
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where p{ =diag(pg;, . . -, P, ), Lis lagoperator, C(L) = (C\(L), ..., Cry(L)),Cr(L) = 3372, Cj . L7
with Cy, = 1forr =1,..., Ry, and u, represents the error process in (2.2 .3). Throughout this pa-
per, we consider two cases: (i) pg’r >1forr=1,..., Ry, and (ii) {pg’r fﬁl are all equal to 1.

The idiosyncratic components are generated by similar autoregressive processes,
(1—piL)ey = Di(L)ey, (2.2 .4)

where p! is the AR coefficient, D;(L) = Z;‘;O D;; L’ with D;y = 1 for Vi, and €;, represents the

error process in (2.2 .4).

2.2.2 Hypotheses and estimation of the restricted model

The null hypothesis of interest is
Ho:p)=1forVi=1,...,N. (2.2 .5)

The alternative hypothesis is

H, : p? > 1 for some 3. (2.2.6)

That is, we allow for explosive behavior under the alternative but not under the null. In the case of
failure to reject the null, we can conclude the explosive behavior in the data is driven by that of the
common factors. Under the alternatives, both the common factors and the idiosyncratic component
can contribute to the explosiveness of { X;;} .

To construct a residual-based test statistic for H, we propose to estimate the factors and factor
loadings under the null and obtain the residuals based on (2.2 .1). For brevity, throughout this paper,

let C,.(L) =1forr =1,...,Ryand D;(L) = 1 fori = 1,..., N. Under the null, we can rewrite
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the restricted model as follows:

Xy = AE) + ey,
F) = poF) | +uy,

€t = p?eit_l + €. (2.2.7)

Remark 2.1. As mentioned in Section 2.1, the model under study is closely linked with panel data

models with IFEs. Note that

Xit = p?Xitfl + )\?/Fto - p?)‘?/Fto—l + €t

= P} X1+ 8)'G) + e, (2.2 .8)

where 67 = (AY, pAY) and GV = (F?, FY,)". When p; = p < 1 for all i and all factors in F
are stationary, the above model specifies a linear dynamic panel data model with IFEs studied by
Moon and Weidner (2015) and Lu and Su (2016), among others. When p; > 1 or =1 and the factors
are nonstationary or mildly explosive, one may be tempted to estimate p along with the factors and
factor loadings based on (2.2 .8). But we find that it is extremely challenging, if possible at all, to
study the asymptotic properties of such estimators. In this paper, we follow Bai and Ng (2004) and
Lu and Su (2016) consider the estimation of the factors based on the first-diffference transformation
of X;; instead. We allow the possible explosiveness of factors but do not need to assume the factors
to be strong. We follow the lead of De Mol et al. (2008), Onatski (2012) and Freyaldenhoven (2019)
and define the intensity of factors via the convergence rate of cummulative factor loadings and find

that the factors can be estimated consistently as long as the intensity is not low.

Let Z;; = X;; — X;z_1. Noting that under H,, we have

fto = -Fto - F:to—l = (pO - IRO) Flto—l tu = Bz[t) + Uy, (2'2 9)
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and

Zit = AZOIftO + €Eit — A?,BE + A?,Ut ‘l— €it- (2.2 .IO)

Based on (2.2 .10), we consider the PCA estimation of the factors B and factor loadings A{ by
assuming the true number of factors R, is known and by treating the sum, )\?’ u; + €;, as a pseudo
error term. That is, we pretend to estimate B instead of f in the case of explosive factors. This
will faciliate the analysis when the factors are mildly explosive so that BY dominates u;. But such
a treatment does not affect the immediate and final results as long as the rotation matrix for the PC
estimates of factors and factor loadings is appropriately defined. For related work, see Peng et al.
(2020) for a more general treatment for mixed and general factors in panel data models with IFEs.
We will propose an information criterion to determine the working number of factors in Section 2.4.

Let Z; = (Zu,...,Zy) and Z = (Z,, ..., Zy)" . Following Bai and Ng (2004), we apply the
PC estimation to ¥z y = N"'Z'Z. Let (E, .//i) denote the solution to the following minimization

problem:

. ]- N/ /
min— (2 — AB) (Z - AB'),

s.t. J5°B'B = I, and A’A = diagnoal matrix, (2.2 .11)

where Jp is a user-specific choice normalization constant.

Remark 2.2. In the case where the factors follow a unit root process, the above PCA estimates the
stationary factor difference f°(= u,) and the factor loadings, the ideal choice of Jp is v/T (see Bai
and Ng (2004)). But we allow F} to be mildly explosive here. In this case, we allow Jp to be any
scalar that is larger than /7 in order (e.g., 7). As shown in Appendix B.1, the convergence rate of
factor loadings estimates will be affected by 5 while the convergence rate of factor estimate is not

affected by Jp for the restricted model under the null.

Given B in (2.2 .11), we obtain the estimate of factor loadings A? by A = (ﬁ’ ﬁ)*lﬁ/ Z; for
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1 =1,..., N. Define the residual ¢;; = Z;; — X;ﬁt Define fort =2,...,T,

t t
it = E €is and F, = E B;. (2~2 -12)
5=2

s=2

We will show that Et estimates f! consistently up to a well-defined rotation matrix H . So I?’t serves

as an estimate of F.

2.2.3 A test statistic for detecting bubbles in the idiosyncratic components

. A A~ N / A~ N A /
To proceed, we add some notations. Let &; = (€;1,...,€;r) and é;_; = (€;0,...,€;7-1) . Let
~ ~ A / ~ N A /
é=(éy,...,éy) andé_; = (é;_1,...,éy_1). Define
SV N N
. tr(e e) . _ A . )
p=———"+,and o} = hm—E o;, and 07 = hm—E o5,
tr (6/_1671) N—oo N 4= —oo N —

where 07 =Var(e;).

Following the lead of Bai and Ng (2010), we define the so-called PANIC Pooled Tests (PPT)
statistic as follows: -

PPT = U—EW\/NT (p—1). (2.2 .13)
V2 ()

Under the null hypothesis Hjy, we will show that PPT' is asymptotically standard normally dis-
tributed. This result is not surprising when both the common factors and idiosyncratic components
follow unit-root processes: Bai and Ng (2010) obtain the same limiting null distribution for such as
case. But our major focus is on the case where the common factors are mildly explosive. It is good
that we still have the standard normal limiting null distribution in this case.

The test statistic P PT in (2.2 .13) is infeasible because 0_2 and a_ﬁ are unavailable in practice. To

obtain a feasible test statistic, we can obtain the consistent estimates of o2 and % as follows:
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A feasible version of PPT is defined as follows:

~

—— (e}

PPT = —jm\/ﬁT (p—1). (2.2 .14)
Va(a)

PPT s asymptotically equivalent to PPT provided that we can establish the consistency of o2 and

-~

ot
oz

2.3 Asymptotic Properties

In this section, we first present a set of basic assumptions to derive the asymptotic properties of the

statistic P PT'. Then we study the asymptotic null distribution and local power properties of PPT'.

2.3.1 Basic assumptions

Lete, = (euy...oen) s uy = (uyy, ..., u1g,) , € = (€),...,€x) and u = (u},...,u})". Let

Nry = o (u,...,uy, €, A%) denote the minimal o-algebra with (wy, ..., u;, €, A°). Similarly,
let F]i}im = o({€t, - e tiin, {6 ey i s AY). Let vy (s,t) = Zf\il E (€;s€;) and (5; =
E ‘N_W Sy [eis€i — E (€iseir)] '

Assumption A2.1. (a) The process {(€;,u;),t > 0} is a-mixing across t with mixing coefficient
a;j(|t — s|) between {e;} and {€;s} and mixing coefficient o;(|t — s|) between {(€;,us)} and

{(€is, us)} . Assume that

N N T N N
ZZZ (ayj(t NERD — O(N), ZZ (0;(0 NYED) — O(N), and max oy (t) = O (t,

i=1 j=1 t=1

where § > 0 is chosen such that E |jwy || < M with wy; € {0, uy, €5} and 0 > (4 + 6) /0.
) B (w | Firyy) =0as., E(wauy | Fiip, ) = E(wu;) = Sy, and 0 < ¢ < @min (Sy) <

Omax (Xy) < € < 00, where ¢ and ¢ are some generic finite constants.
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(© E (et | Fypyor) = 0as., and E (% | Fyp,_1) = E(e3) = 0} < M a.s. for some finite
constant M.

(d) E|FY|* < M.

Assumption A2.2. (@) X? is random such that E | X°||* < M, (b)) N"PAYA® B S, such that such

that 0 < ¢ < Pmin (E3) < Pmax (E2) < €< 00, (¢) 3 <p < 1.

Assumption A2.3. (a) max, Zstl 7w (s,t)] = O(N), (b) max,; (s: < M, (¢) max; E |e;o] < M,
@ lelly, = Op(VN +VT).

Assumption A2.4. {A\}, {w,}, and {¢;s} are three groups of mutually independent stochastic vari-

ables for every (i, j, s, t).

Assumption A2.5. (a) p87r =1+ 2—;f0r r=1,..., Ry, where ¢, > 0, ky — oo, kr/T — 0 and
KT

|Crmaz — Cromin| = Op (T) With Cpmin, = min{cy, ..., cr,} and ¢ max = max{ci,...,cr,} . (b)

C.(L) =1 for¥r and D;(L) = 1 for Vi.

= -1 ’ iy _
Assumption A2.6. T; =plim 7)o (BO'BJT*) (B"BY) AYA° (BO/BJ;l) (p9) ™27 exists
such that 0 < ¢ < @min (T1) < Ymax (T1) < €< ooforallﬁ €{B: jB_lB’B = Ip, }

Assumption A2.1, A2.2, and A2.3 impose moments conditions on the error terms, factors, fac-
tor loadings. They are widely used in the literature; see, e.g., Bai and Ng (2004) and Peng et al.
(2020). In particular, the martingale difference sequence (m.d.s.) condition in Assumption A2.1(b)-
(c) simplifies our theoretical analysis. It can be removed at the cost of more complicated analysis. In
Assumption A2.2(b), the quantity p represents the strength of the factors. When p = 1, the factors
are pervasive and thus termed as strong factors. This is the case that has been widely considered in
the literature; see, e.g., Bai and Ng (2002), Bai (2003), and Fan et al. (2013). When p < 1, the factors
are coined as weak factors; see, De Mol et al. (2008), Onatski (2012), and Freyaldenhoven (2019),
among others.

Assumption A2.4 follows Assumption D in Bai and Ng (2004). Assumptions A2.5(a)-(b) are

similar to Assumption 5 in Horie and Yamamoto (2016). Assumptions A2.5(b) will allow us to
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ease the exposition of our analysis. Moreover, Assumption A2.6 is a technical assumption for the

theoretical analysis.

Remark 2.3. Assumption A2.5(a) allows for the general case that the degrees of explosiveness in
factors are different. According to the results in the next subsection and the Appendix B, { pgr}fﬁl
plays no role in the asymptotic null distribution and the asymptotic power property of the proposed
test statistic explicitly, although it plays a role in some immediate results. Thus, the different degrees
of explosiveness in the factors do not affect the first order asymptotic properties of the proposed test
statistic. However, in practice, heterogeneous explosiveness in factors will matter for the proposed
test’s finite-sample performance. The intuition behind this statement is straightforward as follows.
When the true number of factors Ry is not available, we can obtain the working number of factors
R by employing existing information criteria. Without loss of generality, under the alternatives,
we suppose {p).}, are widespread in the interval [1.01,1.09] , and {p?}Y, are all larger than 1.
In finite samples, the sample eigenvalues from the common components can be very close to the
sample eigenvalues from idiosyncratic components. In the random matrix theory, this means that
the spikes of the covariance matrix (N T)_1 Z'Z are not well separated from the bulks. As pointed
out by Dobriban (2017), such phenomena are universal in high dimensional data. Thus, R usually
will be overestimated under the alternatives. The more factors are extracted from the data under
the alternative, the more under-rejections the proposed test statistic might have. In a related study,
Onatski and Wang (2020) document that the classical left-tail unit root test for panel data models
severely overrejects the null of unit root because of the over-extraction of factors in their simulation

studies.

2.3.2 Asymptotic null distribution
To establish the null distribution of P PT', we add the following assumption.
Assumption A2.7. (a) kpN'Y?/T — 0.

() (Yp>1/2ifpy, > 1forallr =1,... Ry, and (2) p=1ifpy, = 1forallr =1,..., Ry
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Assumption A2.7(a) impose conditions on the rates at which NV and 7" pass to infinity. Assump-
tion A2.7(a) is not restrictive compared to N /T — 0 used in Bai and Ng (2010) and Westerlund
(2015). We can even allow N and T to pass to infinity at identical rates. For example, Horie and
Yamamoto (2016) mention that a typical form of kp i1s kp = 77 with 0 < 7 < 1, when 7 is ap-
propriately small, Assumption A2.7(a) holds obviously even if IV and 7" pass to infinity at identical
rates. Bai and Ng (2010) and Westerlund (2015) obtain the asymptotic normality of P P71 through
the asymptotics of linear processes despite they require N /7" — 0 to deal with additional terms in
the the Beveridge-Nelson decomposition. Similarly, Assumption A2.7(a) above is the cost we pay
to the additional terms due to the presence the mildly explosive factors in our theoretical analysis.
Besides, our Monte Carlo simulations in Section 2.5 show that our bootstrap-based test performs well
in terms of well-controlled size and high power against the alternatives for various combinations of
NandT.

Assumption A2.7(b) imposes the lower limit 1/2 for p when factors are mildly explosive. This
condition is necessary for deriving the null distribution of PPT'. Assumption A2.7(b) implies that
the intensity of signals from the common components should be moderately strong compared to
that of signals from the idiosyncratic components, although unobserved common factors are mildly
explosive. Under Assumption A2.7(b), we do not need to distinguish whether factors are mildly
explosive or nonstationary when we implement the proposed test in practice. This greatly enlarges
the potential scope for the application of our test.

The following theorem states the asymptotic null distribution of PPT.

Theorem 2.3.1. Suppose that Assumptions A2.1-A2.7 hold. Then as (N,T) — oo, PPT N
N(0,1) under H.

As a direct consequence of Theorem 2.3.1, we can readily obtain the asymptotic normality of

PPT in (2.2 .14). The corollary below states this result formally.

Corollary 2.3.2. Suppose that Assumptions A2.1-A2.7 hold. Then as (N,T) — oo, PPT -4
N (0, 1) under H.
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Given the result in Corollary 2.3.2 and noticing that our test is a one-sided test, we can reject the
null when PPT is sufficiently large, say larger than the associated normal critical value at a given

significance level.

2.3.3 Asymptotic power property

To analyze the asymptotic local power property of PPT, we consider the following sequence of

Pitman local alternatives:

Ci ,
HlNT:pi: 1+Wfor2: 1,...7N.

Assumption A2.8 specifies conditions on ¢;’s that contribute to the nontrivial local power of our test.
Assumption A2.8. (a) c; > 0 for each i, (b) pn = limy_,oo N ¢ Z,fil cio? > 0.

Assumption A2.8(a) implies that we restrict our attention to the one-sided local laternative, namely,
we only consider mildly explosive idiosycratic error terms under the local alternative. Assumption
A2.8(b) implies that the alternatives cannot be sparse in order for the concentration parameter j: to be
positive. If there are only o (N) individual time series {e;;, t > 0} that exhibit mildly explosiveness
with ¢; > 0, the concentration parameter y is zero and our test will lose power in this case. In the
case of such sparse alternatives, one could consider alternative supremum-type of test, or augment
our test with such a sup-test. See, e.g., Fan et al. (2015). We leave this as a future work.

Theorem 2.3.3 below studies the asymptotic local power property of our test.

Theorem 2.3.3. Suppose that Assumptions A2.1-A2.8 hold. Thenas (N,T) — oo, we have PPT -4
- . o2

N (fi, 1) under H n7, where i = uW.

Theorem 2.3.3 indicates that our PPT test has nontrivial power to detect local alternative con-

verging to the null at rate 7' N~/2. In contrast, the series-by-series test of Horie and Yamamoto

(2016) can only detect local alternatives converging to the null at rate 7~ *. This indicates the benefit
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of pulling all cross-section units together to conduct a joint test for the possible explosive behavior
in the idiosyncratic errors.

It is worth mentioning the non-centrality parameter z in Theorem 2.3.3 is different from that in
Westerlund (2015). The main reasons are as follows. In the current paper, {c;} are treated as the
constant, and further we allow for the Pitman’s local alternatives converging at the parametric rate
T~'N~1/2. Contrarily, Westerlund (2015) assumes {c;} are random variables, and accommodates

Pitman’s local alternatives converging at the parametric rate 7~ N~ with v > 0.

2.3.4 A bootstrap version of the test

The estimates of the factors and factor loadings may converge to the null slowly in the presence of
weak factors. To improve the finite sample performance of our test, we propose a bootstrap version
of our test. The test is in the spirit of fixed-regressor wild bootstrap that has been widely used in the
literature. The algorithm is given below.

Algorithm 2.1: Wild Bootstrap

1. Given Ry, obtain the PC estimator (ﬁ , _/A\) under (2.2 .10), and calculate PPT basedon (2.2 .14).

2. Obtain the bootstrap errors €}, = €, fori =1,..., Nandt =1,...,T, where ¢;’s are i.i.d.
Racdmercher sequences such that ¢;; has a 0.5 chance of being 1 and a 0.5 chance of being —1.
Generate the bootstrap analogue 7, of Z;; by holding (E, K) as fixed in the bootstrap world:

Z5=NB,+e fori=1,...,Nandt=1,...,T.

3. Obtain the PC estimator (B*, JAX*) based on { Z},} and calculate ﬁ*, the bootstrap analogoue

of PPT, based on this bootstrap estimate and {Z}, }.

4. Repeat Step 2 and 3 B times and denote the resulting bootstrap test statistics as {Z%Z}le.
Obtain the bootstrap p—value as p* = B~ Y7 |1 {F]\D/T Z > PPT } , where I[ {-} is the usual

indicator function.
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When Ry is unknown, we can estimate it by R by using Algorithm 2.2 in the next section. Then
we use R to replace R, in the above algorithm. This will not create any theoretical problem under
the null but may cause power loss under the alternative.

The following theorem establishes the asymptotic validity of the above bootstrap test.

Theorem 2.3.4. Suppose that Assumptions A2.1-A2.7 hold. Then PPT 2N (0, 1) in probability,
where 25 denotes weak convergence under the bootstrap probability measure conditional on the

observed sample Z = {Z;}.

Theorem 2.3.4 shows that the bootstrap provides an asymptotic valid approximation to the limit
null distribution of PPT. This holds because we generate the bootstrap data by imposing the null

hypothesis in Step 2.

Remark 2.4. As indicated by Suand Wang (2017), the fixed-design wild bootstrap scheme may only
apply to the case that {e;; } have no cross-sectional dependence or only exhibit weak cross-sectional
dependence. Hence, Su and Wang (2017) propose an alternative bootstrap scheme to accommo-
date mildly or strong cross-sectional dependence among {e;;}. The key idea is to use Xz, defined
as Y = %Zt é.€;, to capture the cross-sectional dependence in bootstrap world. However, such
treatment may not apply to our current study because X.; fails to intimate the original cross-sectional
dependence accurately when common factors { F;} or idiosyncratic components {e;;} follow explo-
sive processes. We leave it for our future work to extend the alternative bootstrap procedure in Su

and Wang (2017) to panel factor models with mildly explosive factors.

2.4 Determination of the Working Number of Factors

In this section, we first present an information criterion to determine the working number of factors
for the proposed test and then discuss the effects of the working number of factors on the size and

power of our proposed test.
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2.4.1 Transformed double ridge ratio criterion

To implement the P PT test in practice, one generally needs to estimate the true number of factors R.
We aim to propose a criterion function based on the eigenvalues associated with the first-differenced
data matrix Z. Let R,,,,, > R, denote the largest possible number of factors. Let ¢, 45 and 6,44 be
two small but positive ridge parameters.

We follow the lead of Xia et al. (2017) and Zhu et al. (2020) and propose a transformed double

ridge ratio (TDRR) criterion to determine the working number of factors. The procedure is summa-

rized in Algorithm 2.2 below.

Algorithm 2.2: Transformed Double Ridge Ratio (TDRR) Criterion

1. Let @n7, be the k-th eigenvalue of the matrix (N7) ™ Zf\il Z!Z,. Calculate

PNTk
S 1+_v)
SDNT,/C ( Wk—l

min(N,T)
where Wy, = > .00 sy

2. Calculate

* *kk
ONT ) T Cridge ONT k1 T Oridge
O = : —land DRR,, = Z2*F

)
ONT k1 T Cridge ONTE T Oridge

where ¢;iqge and 0,44 are two small positive ridge parameters to avoid devision by zero.

3. Estimate Ry by R = R + 1 where R = arg Maxi<k<R,,.. DRERE.

It is a practical challenge to avoid underestimation of the working number of factors in the cur-
rent framework. If some genuine factors are overwhelmingly strong, other geniune ones become
relatively weak so that it is extremely hard for them to be detected by some prevailing methods such
as the variants of the scree test that search for a gap separating small from large eigenvalues. Do-
briban and Owen (2019) coin this phenomenon as shadowing and indicate that shadowing is common
in financial data like stock returns. We also witness shadowing in our unreported simulations when

mildly explosive common factors { F’} or idiosyncratic components {e;; } are present.
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Algorithm 2.2 is motivated from the thresholding double ridge ratio (TDRR) approach of Zhu
et al. (2020). To alleviate the longstanding problem of underestimation of the dimensionality of a
model via existing eigenvalue-based criteria, Zhu et al. (2020) propose the TDRR criterion that can
proivde a consistent estimate even when there are several local minima or weak factors. A reason
behind the underestimation is that some largest estimated eigenvalues are often dominating and the
other estimated eigenvalues are close to each other in magnitude, no matter whether they are nonzero
or not at the population level. The TDRR criterion relies on the eigenvalue compression that can,
to certain extent, alleviate the eigenvalue domination effect. It can further make the ratio at the true
order be well separated from the other ratios by better exaggerating the difference beween the ratio at
the true dimension and the other ratios. In comparison with the TDRR approach in Zhu et al. (2020),
the main modification in Algorithm 2.2 lies in the monotonic transformation of eigenvalues in Step
1. Specifically, we adopt the monotonic transformation suggested by Xia et al. (2017) to narrow
the difference between adjacent eigenvalues sufficiently in the absolute magnitude. Besides, unlike
the approach in Zhu et al. (2020), we find the location of maximum value among { DD Ry} because
such treatment leads to more reliable choices of the working number of factors in our unreported
simulations.

Under the null, we can prove the consistency of R in Algorithm 2.2 for Ry > 2 by following
the proof strategy in Zhu et al. (2020). To achieve compression, the monotonic transformation of
eigenvalues in Zhu et al. (2020) is deliberately chosen, our choice of deliberately-chosen monotonic
transformation in Algorithm 2.2 plays the same role in dealing with the effect of overwhelmingly

dominant factors. We refer the readers to Zhu et al. (2020) for details.

Remark 2.5. We have some remarks on Algorithm 2.2 as follows.

(1) The TDRR is designed to estimate the true number of factors when Ry > 2. In case of Ry = 1,
Step 3 in Algorithm 2.2 implies R > 2 holds and thus R > R, for sure. But this is not a
severe issue under the null, although the over-extraction of factors is likely to spoil the power

of the proposed test statistic under the alternatives. Our Monte Carlo simulations in Section
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3)

(4)

2.5 indicate that a wild bootstrap implementation of the proposed test statistic still exhibits

good size and power properties in almost all cases under our investigation.

In our unreported simulations, except for the monotonic transformation used in Step 1 in Al-
gorithm 2.2, other monotonic transformation functions such as arctan(-) and standard normal
distribution function @ (-) are also considered. When other functions are used, under the null,
the test statistic also has desired size and the rate of choosing Ry is very high. However, the
power of the proposed test statistic is not as satisfactory as that with the current choice of mono-
tonic transformation under the alternatives. Therefore, Algorithm 2.2 is proposed to balance

the trade-offs between the size and power of the proposed test statistic.

A user-specified parameter R, is set to avoid outliers in DRRy for k = 1,... min(N,T)

in Algorithm 2.2 like other information criteria such as PC and IC in Bai and Ng (2002).

Following Zhu et al. (2020), we recommend setting the two ridge parameters as follows:
Cridge = InT'/ (10\/7) and 6,49 = InT'/ (5\/7) The optimal choices of ridge parameters

or the data-driven choices of ridge parameters are left for future research.

2.4.2 The effects of the working number of factors on the size and power of

the proposed test

In this subsection, we reason that it is unnecessary to know the true number of factors () to im-

plement our proposed test in Algorithm 2.1 for detecting the bubble’s explosiveness in idiosyncratic

components in practice. When we use the working number of factors Rin Algorithm 2, we expect

that our proposed test still performs well with the correct size under the null and non-trivial power

against the alternatives.

Let Ae;y = ey — e—1 = (pi — 1)e—1 + €. Under the null hypothesis, Ae; = ¢; and by by

(2.2 .10), thus

Zyy = A (B] + w) +ei. (2.4 .1)
————

Ry true factors
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In practices, the true number of factors R, is usually unknown. Then we can apply Algorithm 2.2 to
obtain the working number R of factors. Obviously, when R = Ry holds, PPT is supposed to have
desired size and non-trivial power against the alternatives. When R > Ry, we conjecture that we
can extend the work of Moon and Weidner (2015) and Lu and Su (2016) to our framework and show
that the null distribution of PPT is unchanged. Intuitively, when R > Ry, the residuals {é;} still
maintain the same first order statistical properties as the original sequences {¢; }, and as result, the
P PT statistic that is based on the residuals {¢;; } also follows the same null distribution. On the other
hand, if R < Ry is chosen under the null, as long as the factors are mildly explosive, the residuals
{é;} will contain information on omitted factors and thus tend to be mildly explosive too, leading to
the over-rejections of the test.

Under the alternative hypothesis, p; > 1 for some ¢, the exact determination of the number of
true factors becomes difficult due to the occurrence of spurious factors as documented by Onatski

and Wang (2020). Note that Ae;; = (p; — 1)ey—1 + € # €;; when p; > 1 and

or 0
Ziy =N (B + u) + Aeyy (2.4 .2)
—_——— ~~
Ry true factors error term with high persistency

It is easy to see {Ae;, t > 1} may be highly persistent when {e;;, ¢ > 0} is mildly explosive. This
can also be verified by regressing Ae;; on e;_1. As a result, the PC estimation suffers from the
serious issue of spurious factors. As Onatski and Wang (2020) argue, difference-stationary series
can be approximated by Wiener processes, and much of the variation in Ae;; can be captured by a
few of the trigonometric functions corresponding to the first few terms in the Karhunen-Loéve (KL)

expansion. Following Onatski and Wang (2020), we can rewrite (2.4 .2) as follows

Ziy =X} (B +w) + r;w, + spurious error terms, (2.4 3)
———— ——
Ry true factors spurious factor structure with K factors

where W, represents a few of the trigonometric functions. By the extensive Monte Carlo simulations

in Onatski and Wang (2020) for highly persistent time series, K often equals to 2 or 3 in practice.
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Under the alternatives, once the working number of factors R satisfies R < Ry + K, the residuals
{é;;} defined in (2.2 .12) are still explosive to drive the PPT test statistic to diverge to infinity.
In general, as along as R < Ry + K, PPT still has non-trivial power against the alternatives.
Our simulation results in Section 2.5 imply R obtained from Algorithm 2.2 typically meets such a

requirement, which ensures the good finite sample power property of our test.

2.5 Monte Carlo Simulations

In this section we evaluate the finite sample performance of the proposed test, we explore different
setups of factors, such as, mildly explosive common factors with the same degree of explosiveness,
mildly explosive factors with the different degrees of explosiveness, and factors that follow unit root

Processes.

2.5.1 Data generating processes

In this section, we consider the following data generating process (DGP):

Xig = /\?,F;O‘f‘eit,
F) = poFY |+,

€ip = P?Git—l + € (2.5.1)

where pf) = diag (pf) ,, ..., p) g,) is an Ry x Ry diagonal matrix. All data are generated by (2.5 .1)
with different settings of parameters. the nominal level is 0.05.

DGP 1), " N(0,1), e "% N(0,1), w, “P N(0,Ip,),and p; = 1fori=1,...,N.

DGP 2 )\, "% N(0,1), e & N(0,1), wy "% N(0, Ig,), and p; ‘%" Uniform (1.08,1.10) for
i=1,...,N.

Apparently, DGPs 1 and 2 are used to evaluate the size and power of the P PT test respectively.

For the true number of factors, we consider two cases: (a) Ry = 3, and (b) Ry = 1, which correspond
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to the 3-factor Fama-French factor model and the 1-factor capital asset pricing model (CAPM) in
financial studies, respectively.

In case (a), we consider the following specifications of pJ in both DGPs:

(1) p§ = diag (1,1,1); (2) pS = diag (1.02,1,02,1,02); (3) pd = diag (1.04,1.04,1.04); (4)
pY = diag (1.08,1.08,1.08); (5) p) = diag (1.02,1.04,1.06); (6) p) = diag (1.02,1.05,1.08).

In case (b), p) degenerates to a scalar p)) and we consider the the following four specifications of
pY in both DGPs: (1) p§ = 1, (2) p) = 1.02, (3) p§ = 1.04, (4) pJ = 1.08.

When we estimate R, by Algorithm 2.2, we set Ry.x = 6 when Ry = 3 and R.x = 3 when
Ry = 1. For each scenario, we conduct 500 replications with B = 300 bootstrap resamples in each

replication. We consider the 5% nominal level in all cases.

2.5.2 Simulation Results

Table 2.1: Finite sample properties of the P PT under the null and alternatives when Ry = 3 that is
taken as known.

Size of the wild bootstrap implementation of the proposed test

DGP 1 p=1fori=1,....N
P\ (N, T) (100,51) | (100,101) | (100,201) | (200,51) | (200,101) | (200,201)
diag (1.00,1.00,1.00) | 0.052 0.048 0.048 0.054 | 0.048 0.042
diag (1.02,1.02,1.02) | 0.044 | 0.048 0.048 0.042 0.048 0.042
diag (1.04,1.04,1.04) | 0.048 0.058 0.054 | 0.058 0.048 0.044
diag (1.08,1.08,1.08) | 0.058 0.040 0.056 | 0.048 0.054 0.042
diag (1.02,1.04,1.06) | 0.044 | 0.046 0.042 | 0.040 | 0.044 0.044
diag (1.02,1.05,1.08) | 0.056 | 0.060 0.046 | 0.048 0.044 0.044

Power of the wild bootstrap implementation of the proposed test

DGP 2 pi "~ Uniform (1.08,1.10) forany i € {1,...,N}

P\ (N, T) (100,51) | (100,101) | (100,201) | (200,51) | (200,101) | (200,201)
diag (1.00,1.00,1.00) | 0.878 | 1.000 1000 | 0990 | 1.000 1.000
diag (1.02,1.02,1.02) | 0.530 | 0.918 1.000 | 0556 | 0.902 1.000
diag (1.04,1.04,1.04) | 0.506 | 0.930 1000 | 0544 | 0930 1.000
diag (1.08,1.08,1.08) | 0.774 | 0.994 1.000 | 0.792 | 0.994 1.000
diag (1.02,1.04,1.08) | 0470 | 0.916 1.000 | 0590 | 0.950 1.000
diag (1.02,1.05,1.08) | 0.546 | 0.948 1.000 | 0576 | 0.964 1.000

Tables 2.1 and 2.3 report the performance of the P PT test under various scenarios when the true
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number of factors Ry is known and given by 3 and 1, respectively. For each setup of the common
factors, the tables exhibit the results for each combination of N and 7". The results suggest that the
wild bootstrap implementation of our proposed test has decent power and well-controlled size in
all cases. It is worth mentioning that we also report the performance of the proposed test based on
the asymptotic critical value in the Appendix B, the proposed test based on the asymptotic critical
value suffers from downward size distortions in most cases. These results indicate that the bootstrap
version of the proposed test can avoid possible size distortions.

Table 2.2: Finite sample properties of the P P under the null and alternatives when Ry = 3 that is
taken as unknown and estimated by Algorithm 2.2.

Size of the wild bootstrap implementation of the proposed test
DGP 1 pi=1lfort=1,...,N
PO\ (N, T) (100,51) | (100,101) | (100,201) | (200,51) | (200,101) | (200,201)
diag (1.00,1.00,1.00) | 0.046 0.046 0.048 0.046 0.052 0.054
diag (1.02,1.02,1.02) | 0.042 0.048 0.044 0.044 0.058 0.044
diag (1.04,1.04,1.04) | 0.050 0.052 0.044 0.044 0.046 0.044
diag (1.08,1.08,1.08) | 0.046 0.058 0.052 0.040 0.052 0.046
diag (1.02,1.04,1.06) | 0.044 0.044 0.050 0.044 0.040 0.052
diag (1.02,1.05,1.08) | 0.048 0.040 0.054 0.040 0.044 0.042
Power of the wild bootstrap implementation of the proposed test
DGP 2 pi % Uniform (1.08,1.10) forany i € {1,..., N}
PO\ (N, T) (100,51) | (100,101) | (100,201) | (200,51) | (200,101) | (200,201)
diag (1.00,1.00,1.00) | 0.800 0.840 0.948 0.822 0.882 0.992
diag (1.02,1.02,1.02) | 0.694 0.872 0.998 0.780 0.876 0.998
diag (1.04,1.04,1.04) | 0.602 0.776 0.876 0.760 0.786 0.920
diag (1.08,1.08,1.08) | 0.548 0.704 1.000 0.636 0.770 0.994
diag (1.02,1.04,1.06) | 0.698 0.650 0.916 0.628 0.706 0.926
diag (1.02,1.05,1.08) | 0.512 0.780 0.888 0.686 0.736 0.924

Tables 2.2 and 2.4 show the performance of the proposed PPT test under various scenarios
when the true number of factors Ry is estimated by Algorithm 2.2 for the cases with Ry = 3 and 1,
respectively. For each setup of the common factors, the tables present the results for each combination
of N andT'. According to these results, we see that the wild bootstrap implementation of our proposed
test still has satisfactory performances in terms of decent power and reasonable size. This implies that

the devised criterion presented in Algorithm 2.2 works well in a variety of scenarios in the context
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of the current paper. As pointed out in the remark 2.5, Algorithm 2.2 overestimates R, for sure with
Ry = 1, however, those results in Tables 2.2 and 2.4 show the wild bootstrap implementation of our
proposed test still maintains appropriate size and has high power in most cases. In addition, even if
it is pervasive that only one common factor plays a role in economic or finance models, the results in
Table 2.4 imply our proposed test is still applicable in spite of the overestimation of the true number
of factors by Algorithm 2.2.

Table 2.3: Finite sample properties of the P PT under the null and alternatives when Ry, = 1 that is
taken as known.

Size of the wild bootstrap implementation of the proposed test
DGP 1 pi=1fori=1,... N

PO\ (N, T) | (100,51) | (100,101) | (100,201) | (200,51) | (200,101) | (200,201)
1.00 0.052 0.046 0.046 0.050 0.054 0.046
1.02 0.040 0.056 0.048 0.054 0.044 0.044
1.04 0.040 0.040 0.050 0.048 0.040 0.050
1.08 0.046 0.044 0.044 0.052 0.044 0.056

Power of the wild bootstrap implementation of the proposed Test
DGP 2 pi % Uniform (1.08,1.10) forany i € {1,..., N}

PO\ (N, T) | (100,51) | (100,101) | (100,201) | (200,51) | (200,101) | (200,201)
1.00 0.478 1.000 1.000 0.566 1.000 1.000
1.02 0.430 1.000 1.000 0.452 1.000 1.000
1.04 0.558 1.000 1.000 0.606 1.000 1.000
1.08 0.438 1.000 1.000 0.520 1.000 1.000

2.6 Empirical Studies

The first cryptocurrency, namely Bitcoin, was invented by Satoshi Nakamoto during the 2008 sub-
prime crash and gained much attention from the public, regulators, and academic scholars since 2010.
For this past decade, the total number of cryptocurrencies has risen to more than 2500 due to Bitcoin’s
success. The first wave of bubbles in Bitcoin price popped in 2011, and then several speculative bub-
bles in cryptocurrencies’ daily prices are observed and discussed at length. In very recent years, a
growing number of studies in finance and economics focus on the detection of bubble behaviors

in cryptocurrencies’ daily prices by utilizing time-series data of Bitcoin or other cryptocurrencies’
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Table 2.4: Finite sample properties of the P PT under the null and alternatives when Ry = 1 that is
taken as unknown and estimated by Algorithm 2.2.

Size of the wild bootstrap implementation of the proposed test
DGP 1 pi=1fori=1,....N
PO\ (N, T) | (100,51) | (100,101) | (100,201) | (200,51) | (200,101) | (200,201)
1.00 0.040 0.056 0.054 0.048 0.042 0.044
1.02 0.042 0.056 0.048 0.040 0.046 0.044
1.04 0.042 0.048 0.040 0.044 0.044 0.056
1.08 0.040 0.044 0.048 0.054 0.044 0.044
Power of the wild bootstrap implementation of the proposed test
DGP 2 pi % Uniform (1.08,1.10) forany i € {1,..., N}
po\ (N, T) | (100,51) | (100,101) | (100,201) | (200,51) | (200,101) | (200,201)
1.00 1.000 1.000 1.000 1.000 1.000 1.000
1.02 0.904 1.000 1.000 0.982 0.998 1.000
1.04 0.898 0.952 1.000 0.934 0.950 1.000
1.08 0.780 0.998 1.000 0.952 1.000 1.000

daily prices based on the right-tail unit root test like the PWY approach proposed in Phillips et al.
(2011), and the PSY approach developed in Phillips et al. (2015). Cheung et al. (2015) identify both
short-lived and giant bubbles from 2011 to 2014. Hafner (2020) also confirms explosive speculative
bubbles in cryptocurrencies when the time-varying volatility exists. Harvey et al. (2020) locate the
staring and end date of bubbles in Bitcoin daily prices around the end of 2017 by a variant of the
PSY approach. Enoksen et al. (2020) disclose the recent bubbles in several cryptocurrencies daily
prices during the mid of November of 2017 to January of 2018. Geuder et al. (2019) also find similar
bubbles’ explosiveness in Bitcoin daily prices in such a time period.

Thus, in this section, we apply our test procedure to examine whether or not idiosyncratic bub-
bles exist during the period of bubbles’ explosiveness in cryptocurrencies’ daily prices. Enoksen
et al. (2020) point out the lack of empirical studies on the predictors of bubbles in cryptocurrencies’
prices. Therefore, it is natural to treat the fundamentals in pricing the cryptocurrencies as unobserved

common factors when we study the speculative bubbles in cryptocurrencies’ daily prices.
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2.6.1 Data

We use cryptocurrencies’ daily prices collected from Investing.com. Data consist of 26 cross-section
units covering 77 time-series observations between November 15, 2017, to January 31, 2018!. The
collected cryptocurrencies are chosen from top 100 cryptocurrencies listed in investing.com based on
their total market capitalization and data availability. We list names of these cryptocurrencies in the
alphabetic order and enumerate them by numbers as follows: (1) 0x, (2) Augur, (3) Basic Attention
Token, (4) Binance Coin (5) Bitcoin Case, (6) Bitcoin Gold, (7) Bitcoin, (8) Dash, (9) DigiByte, (10)
Dogecoin, (11) EOS, (12) Ethereum, (13) ICON, (14) IOTA, (15) Litecoin, (16) Monero, (17) NEM,
(18) Neo, (19) OMG, (20) Qtum (21) Stellar, (22) Tether, (23) VeChain, (24) Waves, (25) XRP, (26)
Zcash.

As the preliminary inspect below, we present the time-series plot of daily prices for several cryp-
tocurrencies from the mid of November 2017 to the end of January 2018 in Figure 1. Moreover, we
regress APrice; on Price; 1 to obtain the AR coefficients for each cryptocurrency. These coef-
ficients range from 0.9636 to 1.0075. These initial results imply speculative explosive bubbles in

cryptocurrencies’ daily prices.

2.6.2 Testing for cryptocurrencies’ prices with existing approaches

Thanks to the contributions by Enoksen et al. (2020) and Harvey et al. (2020), we can use the PWY
approach by Phillips et al. (2011) to double-check the explosiveness in each cryptocurrency’s prices
for the given period and eliminate those cryptocurrencies that exhibit no bubbles’ behaviors in daily
prices by the series-by-series checks. Then, to verify the explosiveness for the panel of remaining
cryptocurrencies’ daily prices, we adapt the approach used in Chen et al. (2019) to have a double-
check. Specifically, we apply the PC estimation to the logarithm of the remaining eleven cryptocur-
rencies’ daily prices under the normalization condition that satisfies N~! A’A = I, and then use the

PWY approach again for the first component in estimated common factors F.

'"We follow findings in Harvey et al. (2020) and Enoksen et al. (2020) to collect cryptocurrencies’ daily prices for
such a period
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Figure 2.1: Cryptocurrencies’ Daily Prices

The upper part of Table 2.5 displays the values of PWY test statistics for each cryptocurrency.
We also compute and report the finite-sample 5% significance-level critical value for the collected
panel of cryptocurrencies’ daily prices based on 2000 repetitions in the last row of Table 2.5. We
use the star in the bracket behind values to indicate this value exceeds the critical value. From tests
results in the upper part of the table, we can see that 11 out of 26 cryptocurrencies’ daily prices have
bubbles’ explosiveness in the given period. The lower part of Table 2.5 shows that the data are still
explosive as the whole for the panel of remaining cryptocurrencies’ daily prices. We can then apply

our proposed test to the panel of remaining 11 cryptocurrencies’ daily prices in the next subsection.

2.6.3 Empirical results and the robustness check

Following existing studies on cryptocurrencies’ daily prices, we apply our proposed test to the loga-

rithm of daily prices. As shown in Table 2.6, we report testing results based on the working numbers
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Table 2.5: Test statistics based on the PWY approach and the finite-sample critical value

Name Order | Test Statistics | Name Order Test Statistics Name Order | Test Statistics
(1) 1.8984(*) (10) 0.9308 (19) 1.1704
2) 2.1408(*) (11) 0.7824 (20) 2.4668(*)
3) 0.8557 (12) -0.4676 2D 1.0480
4 2.6428(*) (13) -0.5231 (22) -2.7338
(5) 0.9947 (14) 2.3078(*) (23) 2.5009(*)
(6) -1.2213 (15) 3.1612(%) (24) 3.0959(*)
@) 2.5281(*) (16) 0.5027 (25) 4.5272(*)
®) 0.4006 17 1.4546(*) (26) 0.9568
9) 0.9428 (18) 0.4818

critical value 1.1912 # explosive prices 11

Test Statistic of the First Factor for the Panel of Remaining 11 Cryptocurrencies’ Daily Prices
Test statistic for the first factor \ 1.9616(*)

of factors estimated by Algorithm 2.2. Additionally, for robustness checks, namely, to avoid over-
estimating the true number of factors, we also report results for the decreased working number of
factors. For our empirical application here, let ke = [2 x min(v/N, /T)], where [ M] represents
the integer that is nearest to M. Specifically, in our empirical studies, k,,,, = 10 when we use all 26
cryptocurrencies, and k,,,, = 7 when we use remaining 11 cryptocurrencies. We set the bootstrap
sample B = 1000.

According to testing results by our proposed test statistic 2 P71 in Table 2.6, we do not reject
the null of unit root for series in idiosyncratic components. In other words, conditional on collected
data, we found no idiosyncratic bubble’s explosiveness for the panel of cryptocurrencies’ daily prices
from November 15, 2017, to January 31, 2018. Robustness checks in Table 2.6 imply the bubbles’
explosiveness in the panel of cryptocurrencies’ daily prices is driven by the fundamentals, namely,
the unobserved common factors. PC estimates of unobserved common factors are consistent in this
case, as indicated in Section 2.2.2. To verify the implication from robustness checks, we can apply
the PWY approach to estimated common factors. The testing results for the PWY test in Table 2.6
shows that bubbles’ explosiveness exists in the estimated first common factor only. Further, to show
the time-series behavior of estimated factors, we depict the time-series plot for these estimated factors

as below.
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Table 2.6: Testing Results for the panel of cryptocurrencies’ daily prices

Testing results for remaining 11 cryptocurrencies’ explosive daily prices

PPT for idiosyncratic components R Robustness Checks
The Working number of factors 3 2 1 - -
Test Statistics -1.1384 | -0.8975 | -1.2157 - -
Bootstrap p-value 0.7160 | 0.6300 | 0.6330 - -

PWY Test Statistic of Estimated Factors

Test Statistic for the 1st Factor 2.2061(*)

Test Statistic for the 2nd Factor 0.8341

Test Statistic for the 3rd Factor -0.1274
1.1912

critical value

Testing results for all 26 cryptocurrencies’ daily prices

PPT for idiosyncratic components R Robustness Checks
The Working number of factors 5 4 3 2 1
Test Statistics -2.8940 | -2.9098 | -2.5599 | -1.0124 | -1.8645
Bootstrap p-value 0.9770 | 0.9897 | 0.9380 | 0.6530 0.8350
PWY Test Statistic of Estimated Factors
Test Statistic for the 1st Factor 1.6420(*)
Test Statistic for the 2nd Factor -2.0372
Test Statistic for the 3rd Factor 1.1589
Test Statistic for the 4th Factor 1.0344
Test Statistic for the 5th Factor 0.0763
1.1912

critical value
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Figures 2.2(a) and 2.2(b) clearly reveal that the first estimated factor behaves explosively and
thus servers as the fundamental to trigger the explosive increases in cryptocurrencies’ daily prices

for the period we study. This is a further investigation and extension of findings in Enoksen et al.

(b) Estimated Factors for all 26 cryptocurrencies’ daily prices

Figure 2.2: Estimated Factors

(2020) and Harvey et al. (2020).
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2.7 Concluding Remarks

In this paper, we propose a consistent test for detecting bubbles in idiosyncratic components in the
presence of nonstationary or mildly explosive factors in common components in panel factor models.
We establish the limit null distribution, asymptotic power property, and the consistency of our test un-
der mild conditions. Monte Carlo simulations demonstrate that our proposed test has approximately
correct size and discriminatory power against the alternatives. The most important takeaway from the
analysis in this paper is that it should be the first and essential step to test the bubbles’ explosiveness
in idiosyncratic components if researchers try to use PC estimation to disentangle the sources of the
bubbles’ explosiveness in data. Our proposed test provides a simple and effective approach to detect
bubbles’ explosiveness from idiosyncratic components by exploiting the cross-sectional information
in panel data, which is parallel with the classical panel analysis of nonstationarity in idiosyncratic
and common components. As an empirical illustration, We apply our proposed test to cryptocurren-
cies’ daily prices. We find no idiosyncratic bubbles in cryptocurrencies’ daily prices by our proposed
test and verify the bubbles’ explosiveness in unobserved common factors by the classical time-series

approach.
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Chapter 3

Detection of Bubbles in Common Factors

with Local-to-unity Errors

3.1 Introduction

Detecting the bubbles in financial assets or portfolios is of great interest for both practitioners and
researchers. The local-to-unity explosive bubbles play an essential role in related studies since the
seminal work by Phillips (1987) and Phillips (1988) over the past decades; for recent studies, see
e.g., Harvey etal. (2015), Dou and Miiller (2019), Whitehouse (2019), and Bykhovskaya and Phillips
(2020). On the other hand, it is a common practice to employ panel factor models to uncover the
sources of nonstationarity of data since the high dimensional factor analysis introduced by Bai (2003),
Bai (2004) and Bai and Ng (2004). We aim to bring these two lines of research together and propose
an easy-to-implement test to detect bubbles in common factors for the explosive panel data.

This paper portrays fundamentals and peculiar characteristics as common factors and idiosyn-
cratic components in the framework of large dimensional panel factor models as done in Chapter 2.
Despite that the intensity of signals from the fundamentals and individual features is similar to each
other when both the common factors and idiosyncratic components follow the local-to-unity process,

we find that we can still obtain the consistent estimator of unobserved factors and factor loadings via
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the PC estimation for the first difference form of data. Therefore, our findings enable practitioners
to delve into the local-to-unity explosive bubbles in financial and economic data in the context of
panel factor models.

Although the genuine factors are unobserved in practice, the PC estimates of common factors
motivate us to devise a bubble test for detecting local-to-unity explosiveness in fundamentals. To
be concrete, we construct the right-tailed unit root tests built upon those estimated common factors
for detecting bubbles in fundamentals when the idiosyncratic error terms can follow a unit-root or
local-to-unity process. We establish the limiting null distribution and the asymptotic local power
property of the proposed tests. In particular, we show that our tests have non-trivial power to detect
those bubbles in unobserved common factors under the alternative of local-to-unity.

However, unlike the Single-Factor model discussed in Chen et al. (2019), for the multi-factor
structure, the proposed test based on the PC estimation of common factors is generally not asymptot-
ically pivotal under the null because of an array of nuisance parameters. We show that the proposed
test involves the weighted sum of independent standard Brownian motion, where the weights rely
upon the asymptotic matrix of the rotation matrix arising from the PC estimation. The presence of
such unknown nuisance parameters is the price we pay to replace those unobserved common factors
with estimated ones. To implement the proposed test in practice, we can follow the literature and
propose using the dependent wild bootstrap (DWB) method to simulate the critical values and im-
prove our tests’ finite sample performance. We justify the DWB method’s validity in the sense of
bootstrap consistency and power under the local-to-unity explosive common factors settings.

Accordingly, our findings contribute to following two lines of current literature.

First, our paper follows lines of classical studies on factor analysis of nonstationary panel data;
see e.g., Bai (2004) and Bai and Ng (2004). In these studies, the validity of PC estimations holds
when unobserved common factors follow unit-root processes, whereas the idiosyncratic error terms
remain stationary. In particular, to disentangle the sources of nonstationarity of data, related studies
prompt the PC estimation for the first-differenced data. As a natural extension of Bai and Ng (2004)

to accommodate local-to-unity explosiveness in panel data, our paper can allow both the common
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factors and the idiosyncratic error components to follow the local-to-unity process. Furthermore,
we present the consistency of the PC estimations when both the common factors and idiosyncratic
components follow the local-to-unity process.

Second, the present paper relates to the growing literature on the high dimensional factor analysis
of the explosive data; see e.g., Horie and Yamamoto (2016), Chen et al. (2019), and Chapter 2. For
example, Chen et al. (2019) considers a Single-Factor model to use Phillips, Shi and Yu’s (2015, PSY
hereafter) procedure directly to detect speculative bubbles in the first estimated factor series when
the common factors are mildly explosive and idiosyncratic error terms are stationary. However, on
the one hand, researchers have to impose a Single-Factor model by faith and restrict their attentions
on the one fundamental only in empirical studies; on the other hand, it can be unnecessary to rule
out the presence of local-to-unity explosive bubbles in the idiosyncratic error terms. Although Feng
and Su (2020) propose to test bubbles in the idiosyncratic error terms based on the PC estimation in
the presence of unobserved nonstationary or explosive factors and use wild bootstrap to improve the
finite-sample performance of their test, the detection of bubbles in common factors is not covered
formally. As a necessary and useful complement to the bubbles detection in panel data, our current
paper concentrates on the case that both common factors and idiosyncratic error terms follow the
local-to-unity process. Therefore, this paper fills in the gap in the literature to address the impacts
of the local-to-unity explosive process on the PC estimation and bubble detection in panel factor

models.

The remainder of the paper is structured as follows. In Section 3.2, we formally introduce our
model, hypotheses, and estimation strategy. Section 3.3 reports the main theoretical results. Section
3.4 discusses the model selection issues concerning the implementation of the proposed tests. In
Section 3.5, we conduct Monte Carlo experiments to evaluate the finite sample performance of the
proposed test. Section 3.6 concludes. Proofs of the main results in the paper are relegated to the
Appendix C. Further technical details are also provided in the Appendix C.

NOTATION. Throughout the paper we adopt the following notation. For an rectangular real

matrix A € R™*", we denote its transpose as A’, its trace as trA, its Frobenius norm as || Al
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<E [tr (A’A)]W), and its spectral norm as || A, (E ©1 (A’A)), where = means “is defined as”
and () denotes the k-th largest eigenvalue of a real symmetric matrix by counting eigenvalues
of multiplicity multiple times. We also use ¢min and ¢,y to stand for the minimum and maximum
eigenvalues of a symmetric real matrix. Letdiag(ay, . . ., a,,) represent a R™*™ diagonal matrix with
entries aq, . . ., a,, on its diagonal. We write A < B if there exist some finite positive constants ¢ and
C'such that c|A| < B < C|A|. Besides, M stands for a generic large positive constant that may vary
across lines. The operator — denotes convergence in probability, = weak convergence, and plim
probability limit. We use I (-) to denote the usual indicator function. For a full rank NV x R matrix F’
with N > R, we denote the corresponding orthogonal projection matrices as Pp = F' (F’ F)_l F
and Mr = Iy — Pg , where Iy denotes the NV x NN identity matrix. Besides, let all the time-series

observations for each individual are available from period 1 to period 7.

3.2 Basic Framework

3.2.1 The model

We consider the following panel factor model
Xit = )\?/EP + €t (32.1)

where i = 1,...,N, t = 1,...,T, F? and A} are Ry x 1 vectors of factors and factor loadings,

respectively, and e;; is the idiosyncratic error term. (3.2 .1) also can be rewritten in matrix form:

X =A"F" te, (3.2 .2)
where X = (X;;) denotes a N x T matrix. FO = (F? ... F2) isaT x R, matrix of unobserved
factors, A° = (X?,... A%) is an N x R, matrix of factor loadings, and e represents an N x T

matrix of idiosyncratic shocks.
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We assume the unobserved common factors are generated as follows:

(1— pOL)F = uy, (32.3)

where p{ =diag(p,,. ... p0 g, ), L is lag operator, and u; is the error term.

The idiosyncratic components are generated by similar autoregressive processes,

(1—p)L)ey = €, (3.2 .4)

where {p?}Y | are the AR coefficients, and ¢, is the error term. Throughout this paper, for {e;},_,
withi = 1,..., N, we focus on the following case: e;; is local-to-unity explosive so that (3.2 .4) is a

near-to-unit-root model from the explosive side.

Remark 3.1. Except for the local-to-unity explosive case above, there are another two typical cases:
(1) e;; has a unit root; (ii) e;; is near-stationary and (3.2 .4) is a near-to-unit-root model from the

stationary side. Both of these two cases can be treated as the special cases we consider above.

3.2.2 Hypotheses and estimation of the restricted model

The null hypothesis of interest is

Hy : pgm =1, forallr (3.2 .5)

The alternative hypothesis is

Hj : pj, > 1. for some r (3.2.6)

That is, we allow for explosive behavior under the alternative but not under the null. In the case
of rejections of the null, we can conclude the explosive behavior in the data is driven by some of
unobserved common factors.

To construct a test statistic for Hj, we propose to estimate the factors and factor loadings under

the null and obtain the residuals based on (3.2 .1). Under the null, we can rewrite the restricted model
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as follows:

Xy = AE) + ey,
F) = poF) | +uy,

€ix = p?eit_l + €. (3.2.7)

Remark 3.2. As mentioned in Feng and Su (2020), the model under study is closely linked with panel
data models with interactive fixed effects (IFEs). To see this point, we make a quasi-differencing

transformation with respect to X; in (3.2 .7) as follows

Xi = p?Xit—l + )\?/Fto — p?)\?'Fto_l + €

= P?Xz‘t—l + 5?,G? + €it, (3-2.8)

where 8) = (AY, p?AY) and G? = (F?, F”,)'. When p; = p < 1 for all i and all factors in F} are
stationary, the above model specifies a linear dynamic panel data model with IFEs studied by Moon
and Weidner (2015) and Lu and Su (2016), among others. When p; = 1, (3.2 .8) turns out to be a
nonstaioanry dynamic panel data model with IFEs under additional and necessary conditions, for a

closely-related study, we refer readers to Huang et al. (2020).

Throughout this paper, we focus on the local-to-unity explosiveness among { o)} , and set them
tobe p) =1+ ¢;/T fori = 1,..., N with the finite and fixed parameters {c;}~ ;. We can treat the
unit-root case as a special case with ¢; = 0 for all . Following Bai and Ng (2004) and Lu and Su
(2016), we consider the PC estimation of the factors based on the first-diffference transformation of
X instead.

Let Zy; = Xy — Xi_1, BY = F? — F |. Noting that under H,, we have

By = (py — Ir,) F +up = uy, (3.2.9)
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and

Ziy =X)B) + ey — €1 = XN'us + (p) — 1) €1 + €. (3.2 .10)

Based on (3.2 .10), we consider the PC estimation of the factors u, and factor loadings A) by assuming
the true number of factors R, is known. Particularly, under (3.2 .5), according to related studies on
panel factor models, we can obtain the consistent estimation of the common factors by employing
the PC estimation when e;; in (3.2 .7) follows a unit-root model, that is, {p{}X¥, in (3.2 .7) equal to
one; see e.g., Bai and Ng (2004). Under the alternatives (3.2 .6), if the common factors are mildly
explosive or nonstationary, Feng and Su (2020) shows that the PC estimation also can yield the
consistent estimation of the common factors when {p?}¥ | in (3.2 .7) are in the very near vicinity of
unity. In this paper, we demonstrate that the PC estimation is still valid if both common factors and
idiosyncratic error terms in (3.2 .7) follow a local-to-unity explosive model, that is, both {p?}¥ | and
{ pgﬂ, Mo in (3.2 .7) lie in the vicinity of unity. Detailed proofs are relegated to the Appendix C due
to space limitation.

Let Z, = (Z;,..., Zi) and Z = (Z,,..., Zy) . Following Bai and Ng (2004), we apply the
PC estimation to Xz y = N 'Z'Z. Let (ﬁ, _/AX) denote the solution to the following minimization

problem:

1

. N/ /
IJIBI,IIIXIN(Z AB'Y (Z - AB'),
st. T7'B'B = Iy, and A'A = diagnoal matrix, (3.2 .11)

Remark 3.3. In the case where the factors and idiosyncratic error terms follow a unit root process,
the above PC estimates the stationary factor difference B (= u;) and the factor loadings, and the
rescale parameter 7! in (3.2 .11) is necessary (e.g., see Bai (2003)). However, Feng and Su (2020)
demonstrate that the rescale parameter 7! in (3.2 .11) can be replaced by any polynomial functions
of T" when the unobserved common factors are mildly explosive. Here, we continue to set the rescale
parameter in (3.2 .11) to be 7! because technical treatments of the local-to-unity case is similar to

those of the unit-root case in Bai and Ng (2004).
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Given B in (3.2 .11), we obtain the estimate of factor loadings AV by A= (ﬁ’ ﬁ)_lﬁ’ Z; for

1 =1, ..., N. Define the residual ¢;; = Z;; — :\;ﬁt Define fort =2,...,T,
= @ andF,=) B, (32.12)

In the Appendix C, we will show that B, estimates BY consistently up to a well-defined rotation

matrix H. So F; serves as an estimate of F}.

3.2.3 A test statistic for detecting bubbles in the idiosyncratic components

To proceed, we add some notations. Let B™ and F( be the r-th column of B and F such that
BO = (BY,.. BY) ad FY) = (B, BY)

With estimated factors in (3.2 .12), we can use them to devise the following test statistic to detect
the bubbles in common factors.

Specifically, denote T, = T' — p for some 0 < p < T, let B = B — ;' " . B, and

A~

Ft(f)lc = PA’t@l — Tt ZSTZS I?S(i)l, we run time-series regression based on following equation

A~

B =0 F" 4 ¢ fort =3,...,T (3.2 .13)

where ¢ is the regression residual, and the OLS estimator 7, is obtained as follows

T T T
DR D
t=3 t=3 t=3
T T T Sl
rymmr- () (S| o e
t=3 t=3 t=3
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here 52 — T-15°T (B
where 0—(,’,) - T2 Zt:3 (Bt > .
Then, we can implement the feasible proposed test statistic for r-th estimated factor as follows,

DFS = &1 (3.2 .15)

Vr

Under Hj in (3.2 .5), we will show that for r = 1,..., Ry, the limiting distribution of DF :F will
involve a weighted sum of standard Brownian motion. As a special case, when Ry = 1, our result is
consistent with that of Chen et al. (2019) in the Single-Factor model, though their setups are slightly
different. We will have more detailed discussions on limiting distributions of (3.2 .15) under the null

and alternative of local-to-unity in next section.

Furthermore, we propose to test (3.2 .5) jointly as follows. First, regressing EtR > on Eliol,c,
where B¢ = S0 B and Ffo¢ = SR BV and denote the OLS estimate of the regression

coefficient by Ug,,

T T T -1

T,) BREY - BMY FY

t=3 t=3 t=3

T T T !
i - ny reit - (yoa) (oA |
t=3

t=3 t=3

Similarly, we define and calculate z%gRO as follows,

7= —1

T T T

~ 2 SRy P Ro/ -1 73 Ro 73 Ro

Wor, = Ry E F5F™ -1, E F.= § F= )
t=3 t=3 t=3

N2 N . ~ ~
where 6%, = Ty ' S, (Bf()) ,and Bft = Y, B and Fo = S F”. Finally, we can

test (3.2 .5) jointly by implementing
DFFRof _ @;Rlo/ Dy (3.2 .16)

Remark 3.4. When no serial correlation exists among {u;}, (3.2 .15) is rescaled by the estimates of

the variance of 7, up to a rotation matrix. In general case that allows for the serial correlation among
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{u;}, (3.2 .15) is rescaled by the estimates of contemporaneous variance of 7, up to the rotation
matrix. Similar arguments apply to (3.2 .16). By doing so, we can alleviate the adverse impacts of
the nuisance parameters due to the presence of asymptotic matrix of the rotation matrix in the limiting
distributions of proposed test statistics and the serial correlations in practice, which can lead to the

over-rejections of the null.

3.3 Asymptotic Properties

In this section, we first present a set of basic assumptions to derive the consistency of the PC esti-
mation and the asymptotic properties of the statistic {DF (r).f fzol and DF7/ Then we study the

asymptotic null distribution and local power properties of { DF (r).f Vo and DF oS,

3.3.1 Basic assumptions

Let €, = (e1,...,ene), w = (ur,...,wp,) , € = (€),...,€) and u = (u},..., u}). Let

4
TN (87 t) = sz\il E (Eiseit) and Cs,t = FE|N~1/2 Zfil [Eiseit - FE (Gisﬁz‘t)]

Assumption A3.1. (a) The process {(€;,u;),t > 0} is a-mixing across t with mixing coefficient
a;;(|t — s|) between {e;} and {€;s} and mixing coefficient o;(|t — s|) between {(e;y,w;)} and

{(€is, us)} . Assume that
SO (a7 = o), max S ((0)40 = 0(1), and maxa(t) = 0 (1)

where § > 0 is chosen such that E |Jwy || < M with wy € {0, uy, €5} and 6 > (4 + 6)/0.

(b) E(u;) =0, E(wu)) =3, and 0 < ¢ < @min (X)) < @max (X)) < € < 00, where c and ¢
are some generic finite constants, and ¢, = Var (T‘l/ 25, ut) exists and is positive definite.

(c) E (e4) = 0, and E (%) = 07 < M for some finite constant M, and ; = Var (T2, €;)
exists and is positive definite.

(d) E|FY|* < M.
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Assumption A3.2. (@) A is random such that E | X0||> < M, (b)) N"'AYA° % %, such that

0 < ¢ < @min (X)) < Omax (X)) < € < o0

Assumption A3.3. (@) max, Y., |yw (s,t)] = O(N), (b) max,, sy < M, (c) max; E |e| < M,
(@) ||el,, = Op(VN +VT).

Assumption A3.4. {\?} {u,}, and {¢;s} are three groups of mutually independent stochastic vari-

ables for every (i, j, s, t).
Assumption A3.5. 00 =1+ ¢;/T fori=1,..., N, where c; > 0 is fixed and finite.

Assumption A3.1, A3.2, and A3.3 impose moments conditions on the error terms, factors, factor
loadings. Assumption A3.4 follows Assumption D in Bai and Ng (2004). Assumptions A3.5 ac-
commodates unit-root and local-to-unity process in the idiosyncratic error terms specified in (3.2 .7).
Assumption A3.1-A3.5 are almost the same as those assumptions in Feng and Su (2020), they are

widely used in the literature; see e.g., Bai and Ng (2004) and Peng et al. (2020).

3.3.2 Asymptotic behavior of the proposed test

Let Vz n be the diagonal matrix with entries consisting of first R largest eigenvalues of sample

covariance matrix N~'Z'Z, and the rotation matrix H = (T~'Vyy) ' (T *B"B) (N7TAYA?),

then,

Proposition 3.3.1. Suppose that Assumptions A3.1-A3.5 hold, then, H., = NlTim H exists and
T—00

nonsingular.

Proposition 3.3.1 states the result on asymptotic matrix of H as N and T pass to infinity simulta-
neously. This result is critical in deriving the limiting distribution of the proposed test under the null
and the alternative of local-to-unity when we use the estimated factors to construct the test statistics
presented in (3.2 .15) and (3.2 .16), because it is well-known that those unobserved common factors

and factor loadings are identifiable only up to a rotation matrix when we apply the PC estimation.
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Proposition 3.3.1 holds as the consequence of Assumption A3.2, Lemma C.1.1, and Lemma C.3.3 in
the Appendix C.
Furthermore, to analyze the asymptotic local power property of DF")f and DFF/ | we consider

the following sequence of Pitman’s local alternatives:
0 Uy
HIT : pO,T‘ =1+ T forr = 1, ...,Ro.

Namely, we consider the alternative of local-to-unity as displayed above. Besides, we also need
following technical assumption to derive the asymptotic local power of the test statistic. Denote

v =diag (v1,...,VR,),

Assumption A3.6. (a) v, > 0 for each r, (b) there exist nonzero Ry-dimensional vector anr and

byt depending on N and T such that n = limy 7,00 @by > 0.

Assumption A3.6(a) implies that we restrict our attention to the one-sided local alternative, namely,
we only consider explosive common factors under the alternative of local-to-unity. Assumption
A3.6(b) implies that {Vr}fzol under the alternatives cannot be sparse such that the concentration pa-
rameter can be positive and moderately large. As documented in related studies on unit root test for
time series data, e.g., empirical findings in Phillips and Yu (2011), unit root tests cannot discriminate
near unity root process from unit root process very well when the concentration parameter is very
small. However, in the context of high dimensional panel data we consider here, we can achieve the
enhancement of the power of the proposed test (at least in the ideal case). We will discuss such kind
of possible enhancement of power of the proposed test later.

The following theorem states the null distribution and local power properties of DF ™/ for rr =

1,..., Ry

Theorem 3.3.2. Suppose that Assumptions A3.1-A3.5 hold. Then as (N,T) — oo, as long as
T/N? =0, forr =1,..., Ry
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(a) Under Hy,
DFOS =y, (33.1)

where

—-1/2

O = (HY,y o SuH () o)

1 1
{H(’,,) »L/2 { / dW(r)W(r) — W(1) /0 W(r)’dr] E}L/QH(T),OO+H{T)’OOQUH(T)7OO}

{ Sl [/ wiwoyar— ([ wovar) ([ W) E%HW}W’

where H ;) « is the r-th column of H, defined in Proposition 3.3.1; W (r) is the R-vector

standard Brownian motion on C|0, 1] given by the weak limit of the partial sum 2., 2p-1/2 ZETZ] uy,

and Q, = 377, E (wul,,).

(b) Furthermore, if Assumption A3.6 also holds, then under Hyr, forr =1,..., Ry,
DFO = DF =¥ 40, (332)

where

(r),00
1 1 1 /
I_'l-(,r),ooyzvi/2 / JV(T)JV<T)/dr — (/0 Jy(T)’dI') </0 JI,(T’)dI) E}/QH(T) 0o
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and

wl(/r),f = (HET),OOEUH(T)@O) —-1/2

1 1
{0 | [ awiy ) = W) [ ayar| S H o By 0
0 0

{H(/r),oole/2 [/OlJu(T)Jy(r)'dr - (/OlJ,,('r)'dr> (/OlJu(r)dr>/ o

where H ) o, stands for the r-th column of H defined in Proposition 3.3.1, and J,(r) =

S/’ H <r>,oo}

(JVI(T),...,JVRO(T)) is a Ornstein-Uhlenbeck process that satisfies J,(r) =

W (r)+v [ "W (s)ds, J,(0) = 0, and Q, = 3.7, E (ueuy, ).

Given the result in Theorem 3.3.2(a) and noticing that our test is a one-sided test, we can reject
the null when DF ")/ is sufficiently large, say larger than the associated asymptotic critical value at
a given significance level. However, the limiting null distribution of DF ™)/ is generally not pivotal
due to the presence of H ;) .., the element of H.. In particular, it is worthwhile to point out that
the limiting null distribution in Theorem 3.3.2(a) turns out to be pivotal in the Single-Factor model
when there is no serial correlations among {u, }, which is consistent with the result in Chen et al.
(2019).

Notably, let v in Assumption A3.6 be the zero matrix in Theorem 3.3.2(b), the result degenerates
to the limiting null distribution of DF ") with the replacement of the Ornstein-Uhlenbeck process
by the standard Brownian motion in the formula. Besides, Theorem 3.3.2(b) provides two important
implications. First, under Assumption A3.6(b), Theorem 3.3.2(b) indicates that the proposed test
has nontrivial power to detect the local alternative converging to the null at rate 7, this is because
the concentration parameter ")/ involves the rotation matrix depending on both cross-section and
time dimensions. In this sense, cross-section information can enhance the power of the proposed test
by scaling up the concentration parameter implicitly at least in the ideal case. Second, it is worth
mentioning the concentration parameter X"/ in Theorem 3.3.2(b) is different from the result of

Theorem 2 in Horie and Yamamoto (2016), this is because we allow for different values among {v, }
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while they exclude the heterogeneous effects of the local-to-unity explosiveness from unobserved
common factors such that 1y = vy ... = vp,.

In the view of above discussions, there is the theoretical possibility that the heterogeneity of the
local-to-unity explosive factors and the cross-section information contained in the rotation matrix can
contribute to the discriminatory power of the proposed test between the unit root and local-to-unity
explosive process in common factors. Thus, we can benefit from employing panel factor models and

the PC estimation to detect bubbles in unobserved common factors.

Remark 3.5. It is interesting to point out that, based on our proofs for Theorem 3.3.2 and the related
analysis in Feng and Su (2020), when the unobserved common factors are mild explosive with local-
to-unity explosive idiosyncratic error terms in panel factor models, our proposed test will diverge at
a exponential rate, which is much faster than that in (3.3 .2). So, theoretically, our proposed test also

will work with much higher power in this case.

Similar to above results, we now present the asymptotic null and local power properties of the
proposed joint tests. The following theorem states the null distribution and local power properties of

DFfof,

Theorem 3.3.3. Suppose that Assumptions A3.1-A3.5 hold. Then as (N,T) — oo, as long as
T/N? =0, forr =1,..., Rg

(a) Under H,
DFfl =y, (333)

where

Rof_(H/ 1/2

Ro,c0

SuHpy o)

{ ROOOE}P{ dW(r)W(r) — W /w dr] S *Hpy oo + Hp, QUHRO,OO}
0

e ([ o) [ o)
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where Hp, oo = S5 H, (r),00» W (1) is the R-vector standard Brownian motion on C|0, 1] that

is given by the weak limit of the partial sum N AT Zg’"l] w, andQ, =% o B (utug+k).

(b) Furthermore, if Assumption A3.6 also holds, then under Hyr, forr =1,..., Ry,
DF = DFS =X + ¢, (3.3 4)

where

i, = {H;%muzi/? [ /0 1J,,(7")Jl,(r)'dr— ( /0 1Jl,(7")’dr> ( /0 1 J,,(r)dr) ] E}/QHROW}

—-1/2

z;/QHRO,OO}

and

Vil = (Hyy  SuHpy o)

Rp,c0

1 1
{H§%07002i/2 { / dW(r)J,(r) — W (1) / J,,(r)’dr} SV2HR o + Hj%o,ooQuHRom}
0 0

{H}go,mZ}/? [AlJV(r)JV(r)’dr_ (/OlJV(T)’dr) (/OlJu(r)dr), _1/2

where Hp, oo = S0 H) o, and 3,(r) = (1,,(r),...,] . (r)) is a Ornstein-Uhlenbeck

Y YUR,

25/2HR0,W}

process suchthatJ,(r) = W (r)+v [ e" W (s)ds, J,(0) = 0, and 0, = > ;7| E (wpuy, ).

3.3.3 A bootstrap version of the test

Although Theorem 3.3.2 shows that the proposed test has non-trivial power against the alternative
of local-to-unity, the limiting null distribution of the proposed test is generally not pivotal due to the

asymptotic matrix of rotation matrix in the limiting distribution. Therefore, we cannot tabulate the

&3



asymptotic critical values as done in Horie and Yamamoto (2016) or Chen et al. (2019). Instead, we
employ the dependent wild bootstrap (DWB) method to simulate the critical values, which is shown
to be valid in a nonstatioanry setting in Rho and Shao (2019) recently.

Similar to Algorithm 3.1 in Rho and Shao (2019), we apply the DWB method to our proposed

test DF" forr =1,..., Ry below,
Algorithm 1: The Dependent Wild Bootstrap
1. Calculate the OLS estimate 7, by regressing B\ on F\"}°, and ¢, is the corresponding re-

gression residual as shown in (3.2 .13) for ¢ = 3,..., 7. Calculate the proposed test statistic

DF")f as defined in (3.2 .15).

2. Randomly generate the [-dependent mean-zero stationary series {Wt,T}fzg satisfying follow-

ing conditions:

(a) {W,r};_,isarealization from a stationary time series with E' (W, r) = O and var (W, ) =
1. {W,r};_, are independent of the data, cov (W, 1, Wy ) = a {(t —t') /I} where a(-)
is a kernel function and [ = [ is a bandwidth parameter that satisfies [ =< C'T" for some

0 < k < 1/3. Assume that W, 1 is [ -dependent and F (WﬁT) < 00.
(b) a : R — [0, 1] is symmetric and has compact support on [—1, 1], a(0) = 1, lim, _,o{1—
a(z)}/|z|? =k, # 0 for some ¢ € (0,2], and [~ a(u)e ™" du > 0 for z € R.

And then generate the residuals ¢] = ¢, W, 1 in the bootstrap world.

3. Generate the bootstrapped sample {B\"*} by B{"* = 7, - F\"}° + ¢} using ¢} as if U, = 0 is

true.

4. Calculate the bootstrapped OLS estimate 7 by regressing Bt(r)* on 1?}(2)1’6, and calculate the

proposed test statistic 23.7—'2;)7 7 by (3.2 .15).

5. Repeat Step 2 to 4 B times and denote the resulting bootstrap test statistics as {1/)\]/-" ;)7 f,b}le.
Obtain the bootstrap p—value as p* = B! 25:1 I {Zf)\f?ﬂ’f’b > 25?} , where T{-} is the

usual indicator function.
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We present the DWB scheme for the joint test as follows.

Algorithm 2: The Dependent Wild Bootstrap for The Joint Test

1.

Calculate the proposed joint test statistic DF >/ as defined in (3.2 .16).
Execute Step 1 to 3 in Algorithm 1 for each estimated factor separately.

Calculate ﬁtR * ZRO ﬁ *, where Et(r)’* is obtained by Step 2 just above for each r. Based

on {ﬁf ™ ﬁR}, calculate the proposed joint test statistic DF "/ as defined in (3.2 .16).

Repeat Step 2 to 3 B times and denote the resulting bootstrap test statistics as {2/)\‘/7-";07 Fotbet
Obtain the bootstrap p—value as p* = B~13 7 T {7/37:;07]0,17 > 7/)7:} , where [{-} is the

usual indicator function.

The following theorem establishes the asymptotic validity of the above bootstrap test.

Theorem 3.3.4. (Bootstrap Consistency and Power). Suppose that Assumptions A3.1-A3.6 hold.

Then, for any nonzero diagonal matrix v = diag (v1, ..., Vg,) withv, > 0 forallr, as (N,T) — oo,

as long as T /N? — 0 for some n € (0,1/3),

(@)

P (DFO <DF) ()| o) = In+v/T) 25 P (DFOY <4 (a))  G3.9)

where 2 denotes weak convergence under the bootstrap probability measure conditional on
the observed sample X = {Z}, and DF" is the random variable with the distribution
DF,(]:ggf shown in (3.3 .2), wér)’f(a) is the a-quantiles of the limiting null distribution w((f)’f

shown in (3.3 .1). 5]/-"2),]@(&) is the a-quantiles of{lf?\f:ﬂ’f’b}f:l conditional on X.

(b) Moreover, for the joint test,

P (DfRo’f < ﬁ//—_;ovf(a) | p8 =1Ip+ I//T) &) P (D./—"foﬁf < ¢§07f(a)) (3.3.6)
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where DF"I is the random variable with the distribution DF ,’jg;jf shown in (3.3 .2), wé% 0.f ()
is the a-quantiles of the limiting null distribution wé%o’f shown in (3.3 .3). 237-":7,”(04) is the

a-quantiles of{Y/D\./F;OJ,b}f:l conditional on X.

We demonstrate that the DWB method is applicable to the alternative of local-to-unity in Theorem
3.3.4 as a direct extension of findings on the alternative of near integration in Rho and Shao (2019).
When v; = ...vgp, = 0 holds under the null, Theorem 3.3.4 shows that the bootstrap provides an
asymptotic valid approximation to the limiting null distribution of DF ")/, This holds because we
generate the bootstrap data by imposing the null hypothesis in Algorithms 1 and 2. Since the original
test statistic DF ")/ is generally not pivotal as discussed earlier, the application of the DWB method
here may fail to obtain the second order asymptotic refinement from the theoretical perspective.
However, the DWB method still can be useful for better finite-sample performances of the proposed
test in practice to circumvent finite-sample problems. Similar comments also apply to the asymptotic

properties of DF 0/

Remark 3.6. Note that we require 777 /N? — 0 for some ) € (0,1/3) as (N,T) — oo in Theorem
3.3.4, which is slightly stronger than 7'/N? — 0 in Theorem 3.3.2 and Theorem 3.3.3. The intuition
behind such minor difference is simple: when we want to apply the DWB scheme to capture the
unknown form of serial dependence among {u, }, the additional term 7" is the price we pay for this
purpose. However, we address that such technical condition is imposed for the purpose of theoretical

derivations, and not a stringent restriction in practice for empirical studies.

3.4 Discussions on model selection

In this section, we discuss two issues on the model selection such that practitioners can implement
the proposed tests in practice to analyze real data. The first one is to choose modeling data between
local-to-unity and mild explosiveness. The second one is to determine the number of common factors

used for the PC estimation.
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3.4.1 The effect of mild explosiveness in idiosyncratic components

Notice that on the one hand, as pointed out by Onatski and Wang (2020) and Feng and Su (2020), the
presence of the mild explosiveness in the idiosyncratic components can lead to the invalidity of the
PC estimation because of adverse impacts of spurious factors. Therefore, practitioners cannot test
bubbles in common factors for the mildly explosive data by applying the PC estimation because the
mild explosiveness in idiosyncratic components can possibly be misidentified as the mild explosive-
ness in common factors as argued in Feng and Su (2020). On the other hand, in the general setups,
to our best knowledge, we have no well-developed method that is robust to the presence of the mild
explosiveness in the idiosyncratic components to obtain the consistent estimations of unobserved
common factors and idiosyncratic components in panel factor models. We leave this challenging
issue for our future research.

Our theoretical arguments for the proposed test indeed can accommodate the case that no mild
explosiveness exists in the idiosyncratic components. Therefore, if we want to test the bubbles in
common factors, we have two routines to apply the proposed tests in this paper reasonably: first, we
have to choose modeling data as local-to-unity explosive data when extracting unobserved common
factors by the PC estimation; second, we can make full use the proposed test for idiosyncratic bubbles
in Feng and Su (2020) to exclude the existence of explosive bubbles in the idiosyncratic components

in panel factor models.

3.4.2 Testing against the mild explosiveness in data based on the largest eigen-

value of sample variance matrix
For the first routine mentioned in the previous subsection, the exclusion of mild explosiveness in
data is a preliminary step to implement our proposed test for detecting common bubbles in data.
In our current setups, only data matrix X = (X,...,Xy) with X; = (Xi1,..., X;p) is

observed. To distinguish between the mild and local-to-unity explosiveness in data, we have to rely
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upon following quasi-differencing transformation as discussed in Section 3.2,

X = pXaa+N'F) —p)N)'F | + e

= M Xu1+ A (p) — pVIR) F)y 4 Ay + €, (3.4 1)

According to (3.4 .1), one may follow Moon and Weidner (2015) to use the iteration scheme to obtain
the consistent estimates of p? and F; ;. However, the explosiveness in F | or/and the endogeneity
caused by the relation between X;; 1 and F? | can yield the in consistent estimations. For example,
when both { F}} and {e;; } in (3.2 .7) are mildly explosive, by regressing X;; on X;;_; series by series,
the impact of explosiveness in data on the usual estimation strategies is tricky and unclear. Therefore,
the model selection strategy such as information criteria or test statistics based on the estimates of
{p?}X, and {p§,}, is not reliable to distinguish between mild explosiveness and local-to-unity
explosiveness in data.

However, the largest eigenvalue of sample covariance matrix (N1 X’X) is significantly dif-
ferent between mild and local-to-unity explosiveness. To see this point, with out loss of generality,
consider a Single-Factor model such that R, = 1, then, by direct calculations based on the relation

in (3.2 .7), there exist 7' x T' matrix Q;, S;, and the T-dimensional vector W; V; such that
X; = Wil + Viey + QiU + Sie;

Then, it follows that

N N
=N" ZXzXz/ =N! Z (VVz'F(? + Vieoo + QU + Sei) (VViF(? + Vieio + QU + Sei)/.
i=1

i=1

[1]

By simple and direct calculations, it is readily to obtain that

1=l = +

sp
+dominated terms,

+

sp

+

N
N—l Z VVZVVZ/
i=1

N
N—l Z ‘/z‘/z/
=1

N
Ny QiQ;
i=1

N
Ny SS)
=1

sp sp



provided that F'|F{| < oo and E|e;| < oo for all 4.

According to (3.4 .2), if both common factors and idiosyncratic components in (3.2 .7) follow the
unit-root process, the right-hand side of (3.4 .2) will be of order O, (T?), so the largest eigenvalue
of sample variance matrix ||=[|,, will diverge at the rate 7% at most; otherwise, if common factors
or idiosyncratic components in (3.2 .7) are mildly explosive, ||=||,, will diverge at a rate much faster
than 77,

To make full use of different divergent rates of the largest eigenvalues under the mild and local-
to-unity explosiveness in data, it is possible to distinguish different types of the explosiveness in
data. Built upon recent advances in high-dimensional time series, our feasible suggestion is to con-
struct a test statistic based on the largest eigenvalue of sample variance. In particular, Zhang et al.
(2018) and Zhang et al. (2020) show that, under fairly mild conditions, their test statistic based on
the largest eigenvalue of sample variance will follow the standard normal distribution after being
rescaled appropriately for unit root and near-to-unit-root cases in the context of high-dimensional
time series. We conjecture that their arguments and conclusions still hold with slight modifications
for the local-to-unity explosive case shown in (3.4 .1) under our assumptions. We then reject the null
of local-to-unity explosiveness in data when the test statistic is sufficiently large than the right-tailed
critical value of the standard normal distribution at a given significance level. For implementation
procedures of such feasible test statistic, we refer readers to Zhang et al. (2020). We leave the formal

justifications as future research.

3.4.3 Determinant of the numbers of common factors

The determinant of the numbers of common factors is another essential issue for model selections
when practitioners applies the PC estimation to data matrix.

When the data is mildly explosive in both common factors and idiosyncratic components, it is
very challenging to choose the true number of factors because of the adverse effects of overwhelming
dominant factors and spurious factors as remarked by Feng and Su (2020).

Fortunately, when the data is local-to-unity explosive, we can follow Bai (2004) to use the first-
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differeced form of data to estimate the number of common factors by employing PC criterion in
Bai and Ng (2002) or other improved criteria proposed in Zeng et al. (2019) and Peng et al. (2020)

recently.

3.5 Monte Carlo Simulations

In this section we evaluate the finite sample performance of the proposed test by means of Monte
Carlo simulation based on the data generating processes (DGPs) given below, which differ in how

we generate the common factors and idiosyncratic error terms.

3.5.1 Data generating processes

In this section, we consider the following data generating process (DGP):

Xi = N'F +eq,
FY = pyFl +

€t = p?eit—l + €t (3.5.1)

where py = diag (p871, ey pg’ Ro) is an Ry X R, diagonal matrix. All data are generated by (3.5 .1)
with different settings of parameters.

DGP 1 )\, % N(0,1), e ' N(0,1), wy "~ N(0, I, ), 5, = 1 for all 7, and {p)} Y, follow
the uniform distribution U[a, b] with the parameters a and b to be specified.

DGP 2 )\, "%’ N(0,1), e;; and u, follow the m-dependent process, Py, = 1forallr,and {p?} X,
follow the uniform distribution U [a, b] with the parameters a and b to be specified.

DGP 3 ), ' N(0,1), e "~ N(0,1), wp "~ N(0, Iny), p3, > 1 forall 7, and {0}, follow
the uniform distribution U [a, b] with the parameters a and b to be specified.

DGP 4 ), SV (0,1), , €; and u; follow the m-dependent process, pgm > 1 for all r, and

{p0}, follow the uniform distribution U a, b] with the parameters a and b to be specified.
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Apparently, DGPs 1 and 2 are used to evaluate the size of the proposed tests, and DGPs 3 and 4
are used to evaluate the power performances of the proposed tests.

To study the empirical size of the proposed test, we set other parameters in DGPs 1 and 2 as fol-
lows. First, we consider three types of local-to-unity explosiveness among {pY}¥,, namely, (1) all

i.1.d

autoregressive coefficients are in the near vicinity of unity such that {p;}¥, "~" U (1.001,1.010);

N i.1.d
=1 "

(2) autoregressive coefficients lie in a wide spread of the vicinity of unity such that {p;}
U (1.006, 1.018); (3) autoregressive coefficients concentrate on a far vicinity of unity such that
{pi}¥, Wy (1.014,1.016). Note that for all cases, we set {p)} ¥, to range between 1 and 1.018
because the local-to-unity explosiveness in idiosyncratic components are considered in the current
paper. When these autoregressive coefficients are moderately larger than 1 such as 1.02 or 1.04, it
can be more appropriate to model the data as mildly explosive model.

We also consider two typical cases of true factors, namely, (1) the Single-Factor Model and (2)
the Three-Factors Model. We consider the Single-Factor Model because DF ")/ is theoretically
pivotal udder DGP 1 as pointed out after Theorem 3.3.2, we then can compare the performance of
the proposed test based on simulated asymptotic and bootstrapped critical values. At the same time,
we also assess the empirical size of the DWB implementation of the proposed test under the Three-
Factors Model when the asymptotic critical values cannot be tabulated by simulations.

To study the power of the proposed test under the alternative of local-to-unity, we consider that
{ph, }, are moderately large with Ry = 3 in DGPs 3 and 4 as follows:

(1) pd = diag (0.0000,1.0160,1.0180) (2) pJ = diag(1.0160,1.0170,1.0180); (3) p) =
diag (1.0176,1,0178,1.0180); (4) py = diag (1.0175,1.0180, 1.0185).

For the autoregressive coefficients {p9 })¥ |, we focus on the case with a wide spread of the vicinity

oy (1.006, 1.018), which can lead to the complicated case such that

of unity such that {p}¥,
intensity of signals generated from common factors is not significantly dominant than that from
idiosyncratic components.

In addition, in related studies on unit root test (e.g., see Miiller and Elliott (2003)), the effects

of initial conditions matter for the power of related unit root tests in finite samples. Therefore, we

91



consider three different initial conditions of the unobserved common factors under DGPs 3 and 4:
(1) initial values are small such that F(? () = 5 forallr = 1,..., Rp; (2) initial values are moderately
large such that F(? (") = 20 for all r = 1,..., Rp; and (3) initial values depend on the length of time
series, 7', such that F(;)’(T) =c- T Bwithc=12and 5 =0.02forallr =1,..., Ry, where F(?’(T)
stands for the r-th true common factor at time 0.

Note that ¢;; and u, in DGPs 2 and 4 follow the m-dependent process. For each i, we generate

e;+ by the m-dependent process as follows: e;; = > /" qi&e—y With &y, ESiYe (0,1), go = 1 and

Qr Wy [0.1,0.2] for £ > 1; and we also generate u; by the same style. We fix m = 5 across all
experiments.

Finally, according to Rho and Shao (2019), by employing the DWB method, we generate pseudo-
series {W; r}I_, from i.i.d.N (0, Xy ), where Xy is an T' x T matrix with its (¢, s)th element being
a (|t — s|/lr) with the Bartlett kernel a(|7|) such that a(|7|) = (1 — |7|) - I(|7| < 1). Besides, Rho
and Shao (2019) indicates that the moderate bandwidth [ for the DWB method works in practice.
Thus, we set [ = max (|6[7/100]*/*],6), where [ A] refers to the integer that does not exceed A,
and max(a, b) takes the larger value between a and b.

For all simulation experiments, we conduct 1000 replications with B = 500 bootstrap resamples

in each replication. For brevity, we report simulation results for the proposed test based on the first

estimated factor. The nominal level is 0.05 for all cases.

3.5.2 Simulation Results

We display the finite-sample performances of the DF M/ when the null hypothesis holds in Tables
3.1 and 3.2. Rows of Table 3.1 exhibit the empirical rejection frequencies based on bootstrapped and
simulated asymptotic critical values for each combination of NV and 7’ in the Single-Factor model. We
simulate the asymptotic critical values with 2000 replications. Similarly, rows of Table 3.2 report
the empirical rejection frequencies when {p9}Y | lie in the vicinity of unity in different types for
each combination of N and T in the Three-Factors model. Overall, the results in Tables 3.1 and 3.2

suggest that, based on the bootstrapped critical values, our proposed test has well-controlled size in
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Table 3.1: Finite sample properties of the DF Y/ under the null for the Single-Factor Model.

DGP 1 \ Size of the dependent wild bootstrap implementation of the proposed test
pY, = 1forallrand {p;}}, "' U (1.001,1.010)
(N, T) (100,51) | (100,101) | (100,201) | (200,51) | (200,101) | (200,201)
bootstrapped c.v. 0.051 0.058 0.057 0.060 0.053 0.048
simulated asym. c.v. | 0.449 0.484 0.516 0.439 0.484 0.491

DGP 1 ‘ Size of the dependent wild bootstrap implementation of the proposed test
0, =1forall rand {p;}V, %" U (1.006,1.018)
(N, T) (100,51) | (100,101) | (100,201) | (200,51) | (200,101) (200,201)
bootstrapped c.v. 0.057 0.046 0.055 0.064 0.052 0.049
simulated asym. c.v. | 0.432 0.481 0.501 0.450 0.464 0.507

DGP 1 ‘ Size of the dependent wild bootstrap implementation of the proposed test
pd, = 1forallr and {p;}¥, "y (1.014,1.016)
(N, T) (100,51) | (100,101) | (100,201) | (200,51) | (200,101) | (200,201)
bootstrapped c.v. 0.061 0.053 0.060 0.057 0.049 0.056
simulated asym. c.v. | 0.457 0.491 0.580 0.437 0.460 0.530

all cases. On the contrary, the results in Table 3.1 imply that the null of unit root can be rejected

too frequently if practitioners use the simulated asymptotic critical values in practice, which is the

worst case to misidentify the bubbles in the idiosyncratic components as ones in common factors. In

particular, the bottom panel of Table 3.2 implies that the DWB implementation of our proposed test

still works when error terms {u, } are weakly dependent along the time dimension.

Table 3.2: Finite sample properties of the DF Y/ under the null for the Three-Factor Model.

DGP 1 \ Size of the DWB implementation of the proposed test
Py, =1forallr
(N, T) (100,51) | (100,101) | (100,201) | (200,51) | (200,101) | (200,201)
(o}, & U (1.001,1.010) | 0.042 0.058 0.050 | 0.042 0.050 0.048
{p:}Y, A" U(1.006,1.018) | 0.050 0.054 0.054 | 0.052 | 0.046 0.052
{3V, "% U(1.014,1.016) | 0.060 | 0.050 0.056 | 0.050 | 0.046 0.058
DGP 2 \ Size of the DWB implementation of the proposed test
Py, =1forallr
(N, T) (100,51) | (100,101) | (100,201) | (200,51) | (200,101) | (200,201)
(i}, & U (1.001,1.010) | 0.064 | 0.056 0.051 0.060 | 0.054 0.053
{pi}Y, &7 U(1.006,1.018) | 0.064 0.059 0.053 0.053 0.054 0.055
{p:}Y, &' U(1.014,1.016) | 0.061 0.054 0.058 | 0.057 | 0.055 0.051

In Tables 3.3 and 3.4, we explore the power performance of the DF "/ under various initial
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Table 3.3: Finite sample properties of the DF >/ under the alternatives for the Three-Factor Model.

DGP 3

‘ Power of the DWB implementation of the proposed test

pi % U (1.006,1.018) forany i € {1,..., N} with F"") = 5 for all
PO\ (N, T) (100,51) | (100,101) | (100,201) | (200,51) | (200,101) | (200,201)
diag (0.0000,1.0160,1.0180) | 0.057 0.241 0.981 0.058 0.253 0.983
diag (1.0160,1.0170,1.0180) | 0.055 0.240 0.997 0.054 0.254 0.997
diag (1.0176,1,0178,1.0180) | 0.033 0.325 0.999 0.048 0.360 0.999
diag (1.0175,1.0180,1.0185) | 0.041 0.384 1.000 0.043 0.388 1.000
DGP 3 ‘ Power of the DWB implementation of the proposed test
pi %1 U (1.006,1.018) forany i € {1,..., N} with F"") = 20 for all r
PO\ (N, T) (100,51) | (100,101) | (100,201) | (200,51) | (200,101) | (200,201)
diag (0.0000,1.0160,1.0180) | 0.048 0.979 1.000 0.056 0.977 1.000
diag (1.0160,1.0170,1.0180) | 0.011 0.989 1.000 0.013 0.993 1.000
diag (1.0176,1,0178,1.0180) | 0.013 0.998 1.000 0.010 0.998 1.000
diag (1.0175,1.0180,1.0185) | 0.016 0.997 1.000 0.012 1.000 1.000

DGP 3

|

Power of the DWB implementation of the proposed test

pi %1 U (1.006,1.018) forany i € {1,..., N} with F"") = 1.2 x 7048 for all

PO\ (N, T) (100,51) | (100,101) | (100,201) | (200,51) | (200,101) | (200,201)
diag (0.0000, 1.0160,1.0180) | 0.056 | 0.766 1.000 | 0.067 | 0.763 1.000
diag (1.0160,1.0170,1.0180) | 0.039 | 0.816 1.000 | 0.029 | 0817 1.000
diag (1.0176,1,0178,1.0180) | 0.029 | 0916 1.000 | 0.024 | 0921 1.000
diag (1.0175,1.0180,1.0185) | 0.026 | 0.943 1.000 | 0.032 | 0.947 1.000
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conditions of common factors when the alternative of local-to-unity holds. For each initial value of
the common factors, each panel of Tables 3.3 and 3.4 reports the results for each combination of NV
and 7.

In Table 3.3, our proposed test has high power against the alternatives in most cases. When the
initial value of the common factors is relatively small as shown in the top panel, the power of the
DWB implementation of our proposed test gains gradually as the time dimension 7" increases from 51
to 201. However, when the initial value of the common factors is moderately large, as shown in the
middle panel, the power of our proposed test against the alternative of local-to-unity approaches one
quickly. In addition, when the initial value is of order o (Tl/ 2), the bottom panel also demonstrates
a significant step-up in the power of the DWB implementation of our proposed test against the local

alternatives.

Table 3.4: Finite sample properties of the DF W)/ under the alternatives for the Three-Factor Model.

DGP 4 ‘ Power of the DWB implementation of the proposed test
pi "% U (1.006,1.018) forany i € {1,..., N} with F""”) = 5 for all r
PO\ (N, T) (100,51) | (100,101) | (100,201) | (200,51) | (200,101) | (200,201)
diag (0.0000,1.0160,1.0180) | 0.968 1.000 1.000 0.967 1.000 1.000
diag (1.0160,1.0170,1.0180) | 0.945 1.000 1.000 0.952 1.000 1.000
diag (1.0176,1,0178,1.0180) | 0.931 1.000 1.000 0.938 1.000 1.000
diag (1.0175,1.0180,1.0185) | 0.830 1.000 1.000 0.852 1.000 1.000
DGP 4 ‘ Power of the DWB implementation of the proposed test
pi i U (1.006,1.018) forany i € {1,..., N} with F(?’(T) =20 forall r
PO\ (N, T) (100,51) | (100,101) | (100,201) | (200,51) | (200,101) | (200,201)
diag (0.0000,1.0160,1.0180) | 0.805 1.000 1.000 0.806 1.000 1.000
diag (1.0160,1.0170,1.0180) | 0.702 1.000 1.000 0.725 1.000 1.000
diag (1.0176,1,0178,1.0180) | 0.720 1.000 1.000 0.729 1.000 1.000
diag (1.0175,1.0180,1.0185) | 0.702 1.000 1.000 0.731 1.000 1.000
DGP 4 ‘ Power of the DWB implementation of the proposed test
pi ved U (1.006,1.018) forany i € {1,..., N} with F(?’(T) = 1.2 x T%48 for all r
PO\ (N, T) (100,51) | (100,101) | (100,201) | (200,51) | (200,101) | (200,201)
diag (0.0000,1.0160,1.0180) | 0.915 1.000 1.000 0.911 1.000 1.000
diag (1.0160,1.0170,1.0180) | 0.812 1.000 1.000 0.841 1.000 1.000
diag (1.0176,1,0178,1.0180) | 0.849 1.000 1.000 0.861 1.000 1.000
diag (1.0175,1.0180,1.0185) | 0.843 1.000 1.000 0.844 1.000 1.000

In Table 3.4, the DWB implementation of our proposed test has similar performance as shown in
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Table 3.3. However, when error terms are weakly dependent along the time dimension, our proposed

test has significantly higher power against the alternatives than those in Table 3.3 when 7" = 51.

Table 3.5: Finite sample properties of the joint test for the Three-Factor Model.

DGP 2 \ Size of the DWB implementation of the proposed joint test
Py, =1forallr

(N, T) (100,51) | (100,101) | (100,201) | (200,51) | (200,101) | (200,201)
{pi}N, iy (1.001,1.010) 0.051 0.052 0.058 0.054 0.046 0.052
{pi}¥, Wy (1.006,1.018) 0.048 0.041 0.047 0.055 0.048 0.052
{p:}Y, "% U (1.014,1.016) | 0.058 0.054 0.060 0.049 0.050 0.049

DGP 4 \ Power of the DWB implementation of the proposed joint test

pi % U (1.006,1.018) forany i € {1,..., N} with F"") = 5 for all r
PO\ (N, T) (100,51) | (100,101) | (100,201) | (200,51) | (200,101) | (200,201)

diag (0.0000,1.0160, 1.0180) 0.952 0.998 1.000 0.948 0.999 1.000
diag (1.0160,1.0170, 1.0180) 0.956 1.000 1.000 0.955 1.000 1.000
diag (1.0176,1,0178,1.0180) | 0.957 1.000 1.000 0.966 1.000 1.000
diag (1.0175,1.0180, 1.0185) 0.958 1.000 1.000 0.964 1.000 1.000

DGP 4 \ Power of the DWB implementation of the proposed joint test

pi % U (1.006,1.018) forany i € {1,..., N} with Fo""”) = 20 for all r
PO\ (N, T) (100,51) | (100,101) | (100,201) | (200,51) | (200,101) | (200,201)

diag (0.0000, 1.0160, 1.0180) 0.979 1.000 1.000 0.988 1.000 1.000
diag (1.0160,1.0170, 1.0180) 0.991 1.000 1.000 0.994 1.000 1.000
diag (1.0176,1,0178,1.0180) | 0.987 1.000 1.000 0.990 1.000 1.000
diag (1.0175,1.0180, 1.0185) 0.985 1.000 1.000 0.991 1.000 1.000

DGP 4

|

Power of the DWB implementation of the proposed joint test

pi % U (1.006,1.018) forany i € {1,..., N} with F"") = 1.2 x 7048 for all r

I\ (N, T) (100,51) | (100,101) | (100,201) | (200,51) | (200,101) | (200,201)
diag (0.0000, 1.0160,1.0180) | 0.972 | 1.000 1.000 | 0977 | 1.000 1,000
diag (1.0160,1.0170,1.0180) | 0.985 | 1.000 1.000 | 0985 | 1.000 1.000
diag (1.0176,1,0178,1.0180) | 0.981 1.000 1.000 | 0.983 1.000 1.000
diag (1.0175,1.0180,1.0185) | 0.983 1.000 1.000 | 0984 | 1.000 1.000

Table 3.5 summarizes the finite-sample performance of the proposed joint test, and shows that
the DWB implementation of our proposed joint test also have desirable size and good power against
the alternatives of local-to-unity.

Overall, Tables 3.1-3.5 provide evidences that the DWB implementation of our proposed tests

has asymptotic correct size and good asymptotic power properties.
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3.6 Concluding Remarks

This paper presents an easy-to-implement and effective testing procedure to detect bubbles in unob-
served common factors when data displays the local-to-unity persistence as a necessary complement
to related studies on detecting bubbles in panel data. We employ the panel factor models to extract the
unobserved common factors and idiosyncratic components by the conventional PC estimation. We
propose to construct the proposed test statistics based on the estimated common factors. We establish
the limiting null distribution, asymptotic power property, and the consistency for our proposed test
when the idiosyncratic components can allow for the local-to-unity process. To implement our test,
we further use the DWB method to simulate the critical values in practice and justify the validity of
the DWB method. The testing procedure allows us to disentangle the sources of local-to-unity ex-
plosiveness in data and identify the bubbles in common factors correctly. These theoretical findings
are supplemented with Monte Carlo studies under various scenarios, which display that our proposed
test has good finite-sample size and power against the alternative of local-to-unity.

Finally, the findings and discussions of this paper also raise some interesting topics for further
exploration. First, identifying the phase transition from local-to-unity to mildly explosive bubbles
is an interesting but underdeveloped issue to understand the nature of explosiveness in data. We
can utilize advances in statistics and random matrix theory to gain more insights into the dynamics
of explosiveness in panel data. Second, closely related to the first topic, we only consider a single
bubble in the observed period. In the observed period, unobserved common factors and idiosyncratic
components exhibit no structural change from the non-explosion to the explosion. Following the
recent studies on high-dimensional time series factor models (e.g., Liu and Chen (2020), Gao and
Tsay (2021)), there is a possibility to extend our current analysis for explosive data to such kind of

more complicated cases. We leave these topics for future research.
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Appendix A

Appendix to Chapter 1

A.1 Proofs of the Main Results in Section 1.3

Recall that §yp = min{v/N,/T}.

A.1.1 Proofs of Theorems 1.3.1 and Corollary 1.3.2

In this appendix, we prove Theorem 1.3.1 and Corollary 1.3.2 in the paper. We call upon Proposition
A.1.1 below whose proof can be found in the online supplement.
Proofs of Theorem 1.3.1

(1) Note that

= Alng (Bint 4 Bant + Bsnt)

—1
B\_ﬁ = (% Z Zt: xztx;t>

—E E i it + O + 1)
NT 2 Tit | Uit t T Pit

where

Ay = % > iaily, Binr = % DO,
% t % t

Bonr = % Z Z Ty, N, and Byyr = % Z Z Tyt
it it
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By Proposition A.1.1 below,

IN

18-85 < lawel QBivrl + 1 Bawrl + | Barl)

= Op (1> Op<<NT>71/2 + N71/2 + T71/2> = Op((Sz?/lT)'

(i1) By (i), we can rewrite B — B8 = A{yr (Bint + Bant + Bsnr) . By neglecting higher-order

terms, we can show that

35 = (5 ;;x;x;) RS I) DEEINTUS DI TR ) DTS

o, (Onr) = Afwp (NTY2¢5p + TV2Cyp + N7V2T v %bm) +0, (Onr)

where Enr = o2 30 3w, (vr = WT S aha v, and oy = ﬁ S > A By
Proposition A.1.1(i) below and the fact that 3, > 0, A v = 3.1 + 0, (1).

Note that V5 = X 'V\S;! + 257V E T 4+ 280V, B0 = O(6y7). Under the stated
conditions in the theorem, we will show that &y AN (0, V), Cnr AN (0,V;), and ¢nr A
N(0,V,,). Next,

Cov (gNT7 QNT) = I N3/2T3/2 Z Z xztx:(t,AZ’}/s ]S jS]
ij t,s

S

= b N3/2T3/2 ZZ%#ZCOV (Niy7s | X) ;s Js] =o(l),
ij

by Assumption A1.1(v). Similarly, we can show that Cov(¢ 7, (nr) = 0 (1) and Cov(EnT, dnr) =
o (1) by the law of iterated expectations under Assumption A1.1(iii)-(iv) and Assumption A1.2(ii).
So (EnT, CNTy ONT) L (&,¢, ¢), where (£, C, ¢) is a triple-variate Gaussian random vector with
mean zero, and covariance diag{>_'VAX 1, X 1V X0 S0V, Y0, where diag{-} represents the
(block) diagonal matrix. Then, by the almost sure representation, there exists ({x+, Chr, @) and

(&%, C*, ¢*) such that ({57, Chps @yr) has the same distribution as (En7, (nr, OnT), (€5, CF, ¢*) has
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the same distributions as (&, ¢, ¢), then (X1, Chry ) KN (&*,C*, ¢*) almost surely. It follows that

Ent/VN + e /NT  a Er/VN + Cyr/VT

VE/Q VE/Q
_ ENVNHCNVT Gir = &
vy (S, A + L8V 5t 4 Lty non) 2
) N (O Tx) o a1 ’

+ vy — 67

az

Il

N (OKa IK) + Oa.s.(]-)'
where a; — 0 and ay — 0 almost surely. Therefore,
v, 2 (B— 5) Ly N (0, Ix)

Now, we are in the position to show the asymptotic normality of {n7, (ny7 and ¢y defined
above. Then, together with continuous mapping theorem, the desired result holds immediately.

Note that {yp % N (0, V) under Assumption Al.5. Next, we apply the CLT for mixing se-
quences as given in Corollary 16.3.6 in Athreya and Lahiri (2006) to (y7 = WT Do D TET Y,
and oy = \/% > > @y below. Let Zy, = + Y 27,270y, Then (v = T2 Zy, and
{Zns} is strong mixing sequence with some mixing coefficeint az(-). It suffices to show that (1)
E(Zys) = 0; 2) E||Zns|* < 003 3) 5™ az(1)? < o0; (4) ¥z = (N’I%rim\/ar(\/if > Zys)
exists and is positive definite.

By Assumption Al.1, (1) holds. Next, E ||Zy,||* < oo under Assumption Al.1 by direct
moments calculations for each s. Under Assumption Al.1, {237} and {z}} are a-mixing se-

quences with the a-mixing coefficients that satisfy a(7) < M7~" for some x > 2. Therefore,

Lns =+ >; ThTivys s still the a-mixing sequence with the a-mixing coefficients oz (7) satisfying
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az(t) < M7t~ forsome x > 2. Then > 1% 1/2( ) < MY 72773 < ooand (3) follows. Lastly,

= (N,lii“?loovar \/_ ZZNS - NT )—o0 NQT Zz]: Z E ’Ltm@t%’ysxjs JS] =V,

S

exists and is positive definite under Assumption Al.4. Then by Corollary 16.3.6 of Athreya and
Lahiri (2006), Enr = <= Y, Z¢ 5 N(0, V). Similarly, we can show that ¢z < A0, V,). M

Proposition A.1.1. Suppose that Assumptions Al.1 to A1.4 hold. Then
(i) Ainr 5 5,
(ii) [| Binr| = Op(057),
(iii) || Banr |l = Op( ).
() || Bsnr || = O( 7).
Proofs of Corollary 1.3.2

The corollary follows from Theorem 1.3.1 and Slutsky theorem provided that ]75 is the consistent

estimator of V. The latter can be shown by direct calculations. I

A.1.2  Proofs of Theorem 1.3.3 and Corollary 1.3.5

In this section, we prove Theorem 1.3.3 and Corollary 1.3.5.
Proof of Theorem 1.3.3

Recall that e;; = &, (5 — B\) + Gip + Uy — % Zf\;#i 2, A Tt is easy to see that

-1
/):i -\ = (T Z ﬂfzt%t> % ; T4

N -1
= TA;T (—=Chir + Cour + Csir + Cuir)
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where

1 I

Agir = T xztx;ta
t
o 1 R

ClzT I Z mztxzt (5 5) - ﬁ ; Z xztxlt (ﬂ B) 9

1 . 1 -
Cor = T JUztx;t% T2 Z TitL;sYs,

t s

t
Cair = % Z Tt <ut - % Z fm) :
Cuir = ~ Z Z xztﬂflt)\l

l;éz t

Furthermore, according to those immediate results for Xl — \; In Section S1, for each i, we then have

the following decomposition,

1
b\ 1 * %
Ni— AN = — (ﬁ??%ﬂbé) NTZZQ:Jt:C Aj+ <NTZZIth )
EOD R
-1 -1
+ (% Z J}:tl’:t/> % Z T3y + ( Z xftxft’) ! Z T + 0p (5&1T)
t

1 * % 41 * —
= —leNT;;x]t:U Y —|—Zx1TZ(xit:1:i£—Ex)fyt—kxxlfgxituit—l—op (5N1T)

= =S /VN) + NG /NVT) + SN /VT) + op (OnT) 5

where {yr = ﬁ D i 2ot TG f > (Thai — Xa) v, and W = \/%7 > Thua. By
applying suitable CLT’s for %7, (7 and \Ifg\T in the next subsection, we can show the asymptotic
normality of these partial sums of random variables under mild conditions.

Our proof strategy is outlined here: Step (i), we show that {3, (- and W7 follow the normal
distribution after appropriate rescaling in turn, Step (ii), all of them are asymptotically pairwise-

independent, Step (iii), we use almost sure representation theorem again as done for proofs of The-
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orem 1.3.1 in the previous section.

Recall that
A=A o= =S NN/ VN) + ST CGH/VT) + SN /VT) + 0, (O3k)
where & = fT Zﬁéz 2 RGN, \f >0 (@hay = ¥g) v, and Wy = % Dt Tiylit-

Step (i) We will show the asymptotic normality of 37, (7 and U7 as below.
(ia) Under Assumptions A1.4 and A1.5, &3 AN (0, V)), where V), exists and is nonsingular.

(ib) Note that for each i, £ and W2, can be regarded as the partial sums of mixing sequences, the
asymptotic normality is proved under Assumptions Al.1 to A1.4 by employing Corollary 16.3.6 in
Athreya and Lahiri (2006) here.

To this end, define Z;; = {(x}z} — X,) v, xjuy}, then {Z;} are stationary and mixing se-
quences under Assumptions Al.1 and A1.2.

In order to show the asymptotic normality for \/LT >+ Zy, it is sufficient to show following four
conditions are satisfied as (N, T") go to infinity simultaneously. In particular, these conditions are:
() FZy = 0, Q) E ||Zut||2 < oo for some 6 € (0,4+00); (3) ZH’O 2(T)V? < o0; (4) Bz =

lim Var(\/%? > Zy) exists and is positive definite matrix. Now, we are in the position to verify

T—o0

these conditions under Assumptions Al.1 to Al.4.
(1) Obviously, EZ;; = 0 under Assumptions Al.1 and A1.2.

() E ||Zy|); < oo holds for Z;; = {(x}a% — $,) Y, 2%u; } under Assumption Al1.1 and A1.2

by straightforward moments calculations.

(3) Under Assumption Al.1 and A1.2, x;; and u;; are a-mixing sequences with the a-mixing
coefficients that satisfy a(7) < M7~" for some £ > 0. Under Assumption Al.1, ; is independent

of z;s for any (i,t, s). Therefore, Z;; = {(x},x — X.) Vi, xfuy }t is still the a-mixing sequence with
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the c-mixing coefficients vz (7) that satisfy az(7) < M7~" for some x > 0. It follows that

“+o0
1/2<J\/[2:7' 2 < 00,

=1 T=1

holds as long as x > 2, which is satisfied under Assumptions imposed for Theorem 1.3.3.
(4) We verify the condition by treating Z;, = (x},x} — ¥X,) v, and Z;; = x},u;; separately below.

(4a) By direct moments calculations, we have
. 1 * */ —
Ilglgo V(l’f’(ﬁ zt: th) = jlglgo m Z E zt‘rzt )’yt,}/s ( LisTis — EI)] = Zi@W

exists and is nonsingular uniformly over ¢ by Assumption Al.1 and A1.4.

(4b) By direct moments calculations, we have

T—oo T—o0 T

1
lim Var(ﬁ ZZ“) = lim — Z E (x}uyuisxll) = Ez -
t

exists and is nonsingular by Assumptions Al.1, A1.2 and A1.4.
Hence, according to the Corollary 16.3.6 of Athreya and Lahiri (2006), we have \/LT > Ziy KN
N(0, ¥z), which implies
Er HNO, i), U 5 N0, 510

Step (ii) In this step, we want to show, as (N,T) — oo, {&xg, (o, W2} are asymptotically un-

correlated such that they are asymptotically independent by the virtue of their asymptotic normal-

ity. To see this, we recall that {3 = \FT Dii 2ot T = \F o (xhal — ;) v, and
‘I’?T = \/_T > TilUit.

By straightforward moments calculations and the law of iterated expectations, we can readily
show that Cov(&xp, o) = 0, Cov(Eng, ¥2r) = 0, and Cov(¥2, () = 0 hold as (N, T) go
to infinity simultaneously under Assumptions Al.1 and A1.2, which is similar to corresponding

arguments of proofs for Theorem 1.3.1.
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Step (iii) Recall that
A=A = Er/VN + VT + U NT + 0, (Onr) -

Given that 31, (- and U2, follow the normal distribution, and are asymptotically pairwise-independent
as (N, T) — oo jointly. It follows that as (N, T) — 00, {7, Clry Uk} 5 (€3, ¢}, U2), where
(§ A, {f , Cf‘) is multivariate Gaussian random vector with mean zero and the covariance matrix de-
fined as diag (VA, iz imu) , where diag(.) represents the (block) diagonal matrix. Therefore, we
can follow corresponding arguments of proofs for Theorem 1.3.1 to employ almost sure represen-
tation theorem again. Finally, according to continuous mapping theorem, the desired result follows

immediately based on notations defined in Theorem 1.3.3. W

Proposition A.1.2. Under Assumptions Al.1to A1.4, as (N,T) — oo simultaneously, the followings
hold,

(1) Agir 5 T

(i) | Cuir | = 0, (|3 = 5])).

(i) ||Coir || = Op( 7).

() | Cair|l = Op( ),

W) |Curll = Op( 7).

Proof of Corollary 1.3.5.

Provided that lAiM- is constructed as the plug-in estimator of V,;, its consistency can be verified by
direct calculations and the applications of Law of Large Numbers under imposed Assumptions we
impose, Theorem 1.3.4 and Proposition 1.3.8. Finally it suffices to use the Slutsky’s lemma to obtain
the desired result.

In the proofs of Theorem 1.4.1 in the later section, we give a sketch of the main arguments for the
uniform consistency of 17,\1-. The details of proofs for Corollary 1.3.5 here are very similar to those

justifications. We refer readers to the corresponding arguments of proofs for Theorem 1.4.1.
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A.1.3 Proofs of Theorem 1.3.4 and Corollary 1.3.6

In this section, we prove Theorem 1.3.4 and Corollary 1.3.6.
Proof of Theorem 1.3.4

Recall that vy, = i, (8 — B) + by + itgy — T D pst Liy e Note that

-1
~ T 1 o 1 y
TtV = —T— 1 <N EZ $itx;t> [N % TitVit

T
= ﬁA:aNt (—=Dint + Dant + Dani + Dyne)

where

1 N
Asne = N Z TitTyy,
1 oo ~
Dine = N intﬂﬂ;t (BOLS - ) -3 Z%t%t ( oLs — 5)
o - 1 o
Doyt = — Z Tty N2 Z Z %tﬂ?;s)\l,

I
Dyne = % Z Z TipdYs-

i t#s

Furthermore, according to those immediate results for 7, — ~; in Section S1, for each ¢, we then have
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the following decomposition,

e —’Yt

= — (NT Z Z Lis zs) Z Z ZL‘ZSZL‘Z/\ + (NT Z Z Z;sT zs) Z Z ZEZSI’ZS’}/S
—1
+ % Z xfta?;k{) N Z TN + (N Z T ;’) ]1[ Z Ui + 0p (5&;)

= _Za: ' NT Z Z xzsx2878 + E ' N Z ;ktx:t/ )\ + E ' Z x;‘ktuit +0p ((5;7}11)
i s#L i

= =S &/ VT) + 5.1/ VN) + 21T, /VN) + 0, (337)

where £y = N\f > Zs;ét T3 i s Curp = \ﬁ > (@i — Eg) A, and Wy, = \/_IN > Thui. By
applying suitable CLT’s for £}, (3, and ¥}, in the next subsection, we can show the asymptotic
normality of these partial sums of random variables under mild conditions.

As discussed in previous subsection, the asymptotic normality of 7; is related to the asymptotic
normality of £37, (3, and ¥},,. Our proof strategy is outlined here: Step (i), we show that £}, (3
and U7}, follow the normal distribution after appropriate rescaling, Step (ii), all of them are asymp-
totically pairwise-independent, Step (iii), we use almost sure representation as we did for proofs of
Theorem 1.3.1 and Theorem 1.3.3 in previous sections.

In short, the details of proofs below are very similar to those for the asymptotic normality of
Xi — ); in the previous section. Thus, we give proofs briefly below.

Recall that
Fo—mn = =SNG/ VT) + 2N G/ VN) + 57V, /VN) + 0, (037

where {37 = N\f D Dot TisTis Vs Sy = \ﬁ > (@hwf — X)) Ai, and Wy, = \/_lﬁ D Tt
Step(i) We now establish the asymptotic distribution of £}, (3, and ¥}, as below.

(ia) Note that £} can be regarded as the partial sums of mixing sequences that CLT for mixing
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sequences such as Corollary 16.3.6 in Athreya and Lahiri (2006) can be applied.

Define T-V23"  Zns v = T2 L, (% 2o: #55) Vs, then it is straightforward to see
{ZnNs —+} are mixing sequences over s by construction. In order to show the center limit theorem
for T—1/2 >« Zns,—t, We just need to show that, for each ¢, four conditions are satisfied, namely,
(1) EZys+ = 0; (2) E||Zns, |3 < oo for some § € (0,+00); 3) 5% az(1)/? < oo; (4)
Yz = Tlgl;o Var(\/—f > . Zns ) exists and is positive definite matrix. Following corresponding ar-
guments of proofs for Theorem 1.3.1, we can readily verify these conditions under Assumptions A1.1
to Al.4.

Then, under Assumptions Al.1 and A1.4, it follows that £}, LN (0,V,)

(ib) Under Assumption A15, ¢, 5 N (0, 2,.0,) and T, 5 A (0, ztu)

Step (ii) According to the definition of covariance, we want to show, as (N, T') — o0, {&X7, Cgs U
are asymptotically uncorrelated such that they are asymptotically independent. To see this, we recall
Sor = 5 D S T Gy = e X0, (@il — $0) Ay and W, = L3, el

By direct moments calculations, we can readily obtain that Cov (&7, Cay) = 0, Cov(Elp, UN,) =
0, Cov(¥A,, Ca;) = 0 holds under Assumptions Al.1 and A1.2 as (N, T)) go to infinity simultane-

ously, which is similar to corresponding arguments of proofs for Theorem 1.3.1.

Step (iii) Recall that
o= = =5 (Eer/VT) + 21 Gee/ VN) + 57 (W /VN) + 0, (37) -

Since £}7, Cav4» and WY, follow the normal distribution and are asymptotically pairwise-independent
as (N, T) go to infinity jointly, it follows that (37, (4. Uay) A (€7,¢],¥)), where (€7, ¢/, ¥)) is
multivariate Gaussian random vector that has mean zero and the covariance matrix diag ( Vi X, f)t@u) .
We then can employ almost sure representation theorem again, which is similar to the corresponding
arguments of proofs for Theorem 1.3.1. Finally, together with continuous mapping theorem, based

on notations defined in Theorem 1.3.4, the desired result follows immediately. B
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Proposition A.1.3. Under Assumptions Al.1to A1.4, as (N,T) — oo simultaneously, the followings
hold:

(i) Asne = s,

(i) [ Divell = O, (||7 - 8])).

(iii) || Dane || = (%)
i) | Daxill = 0, (F).
W) | Daniell = O( ) + O o)-

Proof of Corollary 1.3.6

Provided that 17% is the plug-in estimator of V., by construction, its consistency can be verified
by direct calculations and the applications of Law of Large Numbers under imposed Assumptions
we impose, Theorem 1.3.3, and Proposition 1.3.8. Finally, the result holds directly by the Slutsky’s
lemma.

The details of proofs for Corollary 1.3.5 here are very similar to those justifications of uniform
consistency of V. We refer readers to the corresponding arguments of proofs for Theorem 1.4.1 in

the later section. M
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A.14

Proofs of Theorem 1.3.7

~

Note that, for U;, according to the decomposition for ()\Z- — )\i> in the proofs of Theorem 1.3.3 and

those immediate results in the online supplementary material, we have

%At :% FuFihs anfi‘t’ Z%fft/( =
—1
o3 Ea - ( 2 :z’> ( 2275 ) ( 2.2 i )
]. Uk ~x/ 1 * _x/
+N Ty T ; L4y Z .Z‘zSZL’ZS’}/s

i

_% Z G % Z Z xjtﬁ) NT Z Z T3
i Jot

-1
+% Z i |\ 7 Z x;m:l’) - Z v | + Oy (NTV+T7Y)
r T Z (xzsxzs - Ex) 73]

% 2N = g Z Z Ti TN + Z vy |2

Eglf Z 1‘;'&@'8

% - <x:tx;kt, szs zs) Z ( sztx;ktlz LisLis — E$)> Vs
T Z (N Z iy T xiluis> +0, (N1 +T7

B+ E2t + E3 + O, (N Lt T_l)

+ 0, (NT'+T71)
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Following lines in the online supplementary materials, we can readily show that &y, = O, (1 /NN ) ,

By =0, (1 /\/NT) and By, = O, (1 /\/NT), then, it follows that,

\/LN@ = \/L_ Z (x;“tx;‘t’ wa ) Ai + O, (N2 4 NY2771)

B \/— Z 2Ll — ) A+ O, (N2 4 NV2T )
It follows that
\/— > (—a;at )
- N—\/T Z Z Z N (@525 — B) () — Ba) A — % Xt: B, + 0, (TY2N~" + NT-%2)

- \/_Z (Zw— EZ,.) + \/_Z<EZM— ) + Oy (THANT! 4 NT52)

) +0, (TN~ + NT-3/?)

Il
“M
L
M
~—
=
N
[

where 2, = & 20, D0, A (a5 — B2) (25,03 — 32) Ay
First, by construction, {(;,, } are mixing sequence with zero mean, following lines in the proofs
of Theorem 1.3.1 with respect to the CLT for the mixing sequences, the asymptotic normality of

\/%7 >, G0 follows directly. Namely,

=G BN OD).

where V,, = % Zt,s (i oG-
Then, it suffices to show that \/LT o B, = \/LT Y EZ ,+0,(1)as (N, T) go to infinity jointly.

Note that, EU is the plug-in estimator by construction, then, by direct calculations and the law of large
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numbers, we have

1 . 1 1 N ’
—NB, = =SBz, +—— (A» - A-) (2,27 — ) (zhal — ) A
ﬁ Zt: \/T Xt: Nﬁ lz’]: Xt: J ) jtr gt tVit
1 ~
+N—\/T Z Z )\;- (x]*tx;‘ft — Zx) (xfxf, — X2) ()\i — )\i>
2,J t
+N—\/T Y (XJ — )\j>/ (x5 — So) (232} — o) (XZ — )\i> + dominated terms
ij  t

1
ﬁ Z EZ,, + Hi + Ha + Hsz + dominated terms.
t

Thus, it suffices to bound H 1, Hs and H3. For H3, according to the decomposition for /):Z — \; in the

proofs of Theorem 1.3.3 and those immediate results in the online supplementary material, we have

2

sl < 23 | 3 it =2 (3= )
=3 [NZ (@il ] x
v w2 T
+% 3 %Z (% PICEADS 2u> 2
\/_Z | Hanel12) \/_Z 1 see]13) \rZ [Haully) + Oy (TN 4 NT-92).

2

NT Z Z TG TGN ]

IN
|

* K/ 71 *x %/
NE TipLiy — ac (xisxis_zl“) Vs

2
2

+ 0, (T'PN~! + NT—*7?)

For each t, we can follow the lines for those lemmas in the online supplementary to show that
[Hsielly = Op (N7Y), | Hazell, = Op (N7Y2T7Y2) and ||Hszl|, = O, (N"Y2T71/2). Thus, it
follows that | Hs]|, = O, (TV2?N~' + T~1/2 + NT%?%) = 0, (1).

For H,, according to the decomposition for (XZ — )\i> in the proofs of Theorem 1.3.3 and follow-
ing lines for those lemmas in the online supplementary materials, by lengthy arguments, we can show
that [|H1]l, = O, (N~V2 + T71V2 4 NV2T1) = 0, (1) and |Hal|, = O, (N2 + T71/2 4 NV2T-1) =

0, (1) as done for || H3]|, just above.
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Because V, = =z LS, s Ct UCS vs Ct v = Bv, and Zt v = N (fitigt — g:x) Xﬁ; (x]tx]t
9@ is also the plug-in estimator for V,,. By direct and lengthy calculations, similar to those arguments
for gy above, we also can show that 91} — V, = 0, (1) and omit the details here.

Finally, by the continuous mapping theorem and the CLT for the mixing sequences, the desired

result follows.

A.1.5 Proofs of Proposition 1.3.8

Proposition 3.8 states the maximal deviations of the estimates of {\;}Y, and {;}]_, from the cor-

responding true values as below,

MR-l =0, (y/5).

-~ o~ o~ !/
@ 7=l =0y ('57). where X = (¥ ) € RYF = 5 52 € BRI

Uniform Consistency of 7;

Note that |7 — || = mzax||§t —Yilloo < mtaX||% — 7¢||2, then it suffices to bound mtax||§t —¢||2 The
proofs are very similar to those arguments for the uniform consistency of 7; in the above subsection,
and highly repeated, so here we only give proofs briefly for the ease of exposition.

Neglecting those terms that are of smaller order, we have

i (S Tar) S (A ) (Ys Ge) v

where £ = WT D Zs;ét T T i s Cre = \/> > (@hayl — ) A, and Uy, = \/Lﬁ > T
We then focus on the dominant terms below. Obviously, the first term at the right-hand side of

the above equality does not involve taking the maximum over ¢, and based on Theorem 1.3.1, it is of

order O, (T‘l/ 2) , which will be the dominated term when N and 7' are comparable and diverge to
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infinity simultaneously. For second term at the right-hand side of the above equality, we have

<NZx;: :z) (Thas i) (%Zﬁ [NZ il =S\ D

vai (Gint + Gant) -

Then, it follows that

max|[y; — vz = m;chHQXé(GWt—FGWt)HQ
< (max |[Qxil,, ) (max IGinell, + max Gl
< (I, +max @z = 2, ) (max [ Guvl, + max|Ganell, )

* */

Below, we are going to show: (i) max |Qn: — =2 ||0p = 0,(1); (ii) max |+ >, (252 —

O, (\/E> (iii) max HN ix;‘tuitHz =0, (\/%)

(i) For Qn: = & Y, x,z}, because

o ==Y, = [lQv(S. - @n)s Y,
B _ ||Ea: - QNtHo
< HQN}EHop 122 — @uill,, HZ‘Ule’P " Suin (QNt) Smin (pEx).
We then have
71 B mtaX ||Er - QNtHop
max Qi — I, < mtinsmm (Qnt) Smin ()
. mtax Hzm - QNtHop

Smin (Za) (smin (Z2) = max [, = Quill, )

= Op(l)mtax 1222

I)/\’iH2 -

—Quill,,

where the last equality follows under Assumption A1.4(i) if max X — @nell = 0p(1) also holds,
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which will be shown as below. Given the fact that

§ : * k)
xztxlt

max 132 = Qnell,, = max

op

We now use the equivalent definition of operator norm for a symmetric K x K matrix A, [|Al|,, =

= HQtHop = max |U/QtrU"

’ ST */
max  |[v'Av||,. Denote ¥, , = & >, 7z}, then, L

veSK—L |ju]|=1

— Z:c
op

By constructing a e-net covering of S¥~1, we have Him

|| < 2zmax |2’ Q,z|, where N, de-
—4€
op IS\

note the set of points within e-net covering. Particularly, let ¢ = %, it follows that |N.| < 9% =

Cg < o0 and,

Hit,m - E:E

< 2max |2’ Q;z|
op zENe

= 2  max |20 Qy 2]
s€{1,2,3,...Cx’ }

where {z1, ..., z¢,. } is a e-net covering of Sk _;.Then, it suffices to bound the following quantity,

~ 2v/InT vInT
P maxHZm—Em > 1 < P|max max |z,Qz| > n
¢ op VN t se{123,..Ci} VT
<

InT
ZP(max|z Qizs| > 1/ IJIV )

Now, we are in the position to bound the probabilities P (maxt |22 Q25| > 4/ %) For any fixed

2, € SE-1
2 Quzs =2 (im - JC) = 1 Z [ z'Exzs] = 1 Z W2 EVV2
s s ) N s zt s N it zt

i=1 =1
LN, V- EWR)| > /1),

Similar to arguments stated in Zhu (2017), because entries of {x;; } have exponential-type tails as

svit”

where W;; = z/x%,. Thus, it is equivalent to bound P (maxt

assumed in Assumption A1.8, it follows, by Lemma C.3(1) in Zhu (2017), that entries of {IV;;} also

have exponential-type tails with parameters that only depend on the constants in Assumption A1.8,
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and further, by Lemma C.3(3)-(4) in Zhu (2017), {W2 — EW2} also have exponential-type tails with
parameter (b*, %) with b* = 2+ (b+ p)? (In(||z]|o + 2))% +m* where = Ex, ||2]|o represents the
total number of non-zero elements in z, m* = E (z'z%)?, and (b, v) stated in Assumption A1.8. We
now use Theorem 1 in Merlevede et al. (2011) under Assumption A1.8, it follows that, let a be the
bound to be determined, and v = v/2, then, there exist positive constants C'1, C2, C'3, C4 and C}

depending only on b*, v € (0,1),

(o]

C 2 .2 \
< NTexp(—Ciayz”) + T exp (—ﬂ)

2 .2

+T exp [— 04?\?x exp <C5 (arz)"" (log aTx)'Y)} :

Thus, choose ar = d.v/ N InT', by elementary computations, we can choose large constants a,, b*, d, >

< eXP( 7).
-0, (. /%). And thus, it follows that Hit -5,

0, (ﬁ) which implies that max |Qn: — ;1Hop =0, (@) = 0,(1).

(i) For Gini, wehave Giye = + >, (w2 — S2) Ay = & >, G, note that {z;, \;} have exponential-

0 such that Vz > a,

N

> (wi—Ewg)| >

=1

N
-1
P ((d*\/NlnT> max N (W2 EW)
t
=1

Itconcludes that max 12 — & 2wy,
op

,,,,,

also have have exponential-type tails by following those arguments of (i) above, and then, in the view

InT
220p< T)

of proofs for (i), we can conclude that

max
t

1 * *.
N Z (T — Xa) A

i
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(iii) For Gany, we have Gony = ~ Y, @fuy = + >_; Gou, note that {x;,, u; } have exponential-type
tails as assumed in Assumption A1.8, then, by using Lemma C.3 in Zhu (2017) again, {Gait }ic1,...,n}
also have have exponential-type tails by following arguments for (i) and (ii) just above, and then, in

the view of proofs for (1) and (ii), we can conclude that

(%)

Then, Collecting the results shown in (i), (ii) and (iii) above, we then conclude that

~ InT
mtaXH’Vt ~Yelloo = Op (\/ T) .

E X tuzt

Uniform Consistency of XZ

It can be seen that details of proofs for the uniform consistency of Xz are very similar to those shown
in the last subsection. For the completeness, we give the main steps below and omit some repeated
arguments for brevity.

Note that HX— Moo = m?xH/):Z- —Ailloo < mZaxHXZ — Ai|2, then it suffices to bound mZaxHXZ —Nill2

instead. Neglecting those terms that are of smaller orders, we have

-1 -1
N 5])\\IT 1 ’ <\IﬂT Zf ) 1
>\2_)\z - ’LS 15 —= Tt T I.;kx;k z +Z_ +o 6
(T T ) S (p3uet) (B4 S2) o)
where {37 = \FT ZH&Z > T35 A, \f > (@hay — Xu) i, and Wi = % D Tt

We then focus on the dominant terms below. Obviously, the first term at the right-hand side of
the above equality does not involve taking the maximum over ¢, and based on Theorem 1.3.1, it is of

order O, (N -l 2) , which will be the dominated term when /N and 7" are comparable and diverge to
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infinity simultaneously. For second term at the right-hand side of the above equality, we have

-t v v
<T Zx:t ;kt/> (111/12 + \/ﬂ;> = (% zx:txf{> <T Z (s — Ba) v+ T sztult)

= QZ-_Tl (Grir + Gair) .
Then, we have

m?XHXi—)\in = m?XHQi_Tl (Guir + Gair) |,

IN

(max [[Q]l,) (max|Garl, + max | Gair )

(=21, + max | @z = £2|,,) (max [Grirll, + max [[Gairll,)

IN

Our proofs below aim to show: (i) max HQle - Zs?lnop =0, (\/ lnN) (11)max I1Girll, = Oy (V %)’
(iii) max |Gairlly, = Oy ( lnTN>'

(i) For Qir = 7 >, x,a};, because

ler ==, = QzE: - Q)= ],

B Hzx - QiT”o
S ||Q ‘ QiTHOp HZIIHOP - Smin (QzT) Smin (pzl‘) .

‘op

It follows that

max ||233 - QiTHop
:

max [| Qi — X, |

IN

minsmm (QlT) Smin (EI)

max HESE - QiTHop
i

Smin (Em) <3min (Ex) - m;c’lX Hzx - QiT”op)

IN

— Op(:l)mzax sz - QiTHOp )

where the last equality follows under Assumption A1.4(i) if max ||3, — Qir||» = 0,(1) also holds,
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which will be shown as below. Given the fact that

max |3, — Qirl,, = max|X < max
(2 (2

E .T}ltl’

1
%kl
- f § :‘rztxlt
t

op op

Use the equivalent definition of operator norm for a symmetric X' x K matrix A again. Denote

_ 1 */
Yy = th xhay, then,

= ||Qill,, = max [0'Q;v[. By constructing a e-net
D veSk—1 |jv]|=1

covering of SE~1, we have HZX —

< —-max |2'Q;z|, where N, denote the set of points
7 T4€2eN,

within e-net covering. Particularly, let e = 1, it follows that | N,| < 9% = Cj < oo and,

HiX_Ex

< 2max |Z/Q;z| =2  max 20,z
op zeN€| @ | se{1,2,3,...,CK}| SQZ S|’

where {z1, ..., zc, } is a e-net covering of Sk _;. Then, it suffices to bound the following quantity,

= 2vIn N
P maxHZX—Ex > 1
i op \/T

2vVIn N
P (max max  |z2.Q;zs| > ~ )
i se{1,2,3,,Cr} VT

C

2vIn N
Z]P’ (max|z§@izs| > l ) :
s=1 ! \/T

IN

Now, we are in the position to bound the probabilities P (maxl 12LQizs| > TN) For any fixed z; €
SK -1

Z;szs = <2X - ) Zs =T Zt 1 [( Zg zt) - Z;ZJCZS} - %Z?zl (VVZ% - EVVz%)’

7 2 (Wi = EWY)

svit”

where W;; = z/x%,. Thus, it is equivalent to bound P (maxi

Following the arguments for (i) in the last subsection, we can readily show

oy

Collecting all above immediate results, we conclude that max ||Q; — X1, = O, (, / %)

* %/
E xztxzt

max
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(ii) For G'1;7, we have

AN
8
)
>

max |Gt |,

2

where the second line follows by mimicking those arguments in (i) in the last section under Assump-

tions Al.1 and A1.8.

(iii) For Go;7 = % > Thuy, by mimicking those arguments in (i) in the last section under Assump-

tions Al.1, A1.2 and A1.8, it is straightforward to have max ||Gar||, = O, <, / %)

Collecting immediate results from (i) to (iii) above, it follows max||\; — A||ls = O, (\ ik )

directly.

A.1.6 Proofs of Theorem 1.4.1

In a nutshell, our proof strategy follows arguments of proofs for Theorem 3 in Castagnetti et al.
(2015). We will give main steps and arguments, and refer readers to Castagnetti et al. (2015) for

omitted details.

Part 1. The asymptotic null distribution of 7,
Note that \; = 0 for all 7 under H,, we can write /):Z = XZ — \;. Then, according to the decom-

position in proofs for Theorem 1.3.3, we have
X=X = =S R /VN) + 57 G /VT) + 57 (W /VT) + 0, (03]) -
And for )7,\@ the consistent estimator of V,;, we can write

Vil =V =V (D= V) DRt =Vt = ot (D= o) Vil o, (HﬁM —Vy

).
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Neglecting the terms that is o, (Hlj)\z — Vi

) further, under H,,, we have

(omn) Bt (hmn) = (R vt (R a) o+ (B a) it (- vt (=)

Py Ai) + 1.

1
>
|
>
N———
o
i
VRS

Now, we are in the position to show the desired results below by following four steps.

o~ / ~
Step 1. 1t is straightforward to see the fact max ()\i — )\Z-) V/\’i1 ()\i — >\i> = O,(In N) by Theorem

1<i<N
1.3.3 and corresponding arguments of proofs for Theorem 3 in Castagnetti et al. (2015).

Step 2. we are going to show max I; = 0, (In N) as below. Given that

max Iy; max
1<i<N 1<z<N

(Xi _ /\,-> v;}”

1<z<N

o 95 ()i

It is straightforward to see that the first term at the right-hand side of the above inequality is of order

O,(In N) as shown in Step I above. So it suffices to show max HV;L-I/2 ()7M — V,\i) V_1/2
2

1<i<N
op (1).

Given that

max HV/\_il/Q (ﬁm — V,\i> V/\_-l/Z‘

1<i<N v

< max ||V, max HT)M—VM .

F 1<i<N HF 1<i<N

Obviously, for ant consistent estimator of V;, we have ﬁm' = Vi +0, (1) for each 7, and the fact that
Vi exists and is non-singular according to proofs for Theorem 1.3.3 under Assumptions imposed
for each 7. By following arguments of proofs for Proposition 1.3.8, 1r<1lag< HV/\zl H »

= hold
B = 0, (1) holds.

= O, (1). holds

uniformly over ¢ immediately by simple calculations as long as 1maX HVM Vi

If we use the consistent estimate of VV; defined in Corollary 1.3.5, then VM- = Qi (VA +Q M) = -1

V\ is an consistent estimator of covariance matrix of V), defined in Theorem 1.3.2, Q); = % > Ty,

and



Since V), has nothing to do with taking maximum over ¢ by construction in Corollary 1.3.2, to

show 1r<rlzg( HVM VM = 0, (1) holds, it is sufficient to show that max HQM QM =0, (1)
holds. Then, by trlangular inequality, it suffices to show 1121%\[ Him — iz = op( ) and

max Hi”u — imu = 0, (1) separately. By direct calculations, and similar arguments as those

1<i<N

in proofs for Proposition 1.3.8, the desired result follows. We now give the sketch of proofs for

max HElx"/ — Eiw’y

= 0, (1) below as the illustrative purpose.
F

1<i<N
Because ZZ 2~ 1s the HAC estimator of ¥, ,,, we can show that 121%\[ Hi,m Ejm ’ =0, (1)
% F
with Ejm = 7 2 (@523 — Ba) Wit (z7,27, — ;) under mild conditions. Further, by straight-

forward calculations, we have

« * 1 * % * %
Ei@’Y - Ei,xw = f Z (ajjtxit/ - ZI) Tt (’7 78) ( LisT z; - Eﬂ?)
t,s
1 "
+f Z (xztxzt/ - Ex) (’Yt 715) 75 ( isLis — Eﬁ)
t,s

1
+5 Z (‘r;ktxrt/ - ECE) (’Y 715) (7 ’YS) ( Lislis — El") + dominated terms

t,s

R1; + Ra; + Ra; + dominated terms.

It suffices to bound max ||Ry;||z, max |Ryllz, and max ||Rs;|| in turns. For | R4;|| ., we have
1<i<N 1<i<N 1<i<N

Rl T Z Ty — Xo) wr (2w — Se) || max |7 — villy

1<t<T
op

where ¢ stands for K -dimensional vector with 1 as the entry for all elements. It follows that

1
g Rl < ma 7 D (el = B s (alals = B ma e = el
S op
= 112%\/“}% HoplgltiXT”% Vil

Then, under Assumption A 1.1, by similar arguments for the proofs of Proposition 1.3.8, we can read-

ily show that max | Ry Hop =0, <\/ In N ) , and by Proposition 1.3.8, we then have max, 17 — Yelly =
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O, ( N1 lnT> ,as (N, T') go to infinity jointly, we have max Rl = O, (\/N—1 InT In N) =

op (1).

By similar arguments for max IR 1]|, we can also show that max, | Ro;|| and max_ | R3] are
AN

s op (1)

both of order o, (1). Collecting these immediate results together, max, Him — i 2y
K3

holds.

~

Yieu — Zizu|| = 0p (1) can be justified by mimicking above arguments with

Obviously, max
1<i<N

necessary modifications.

Step 3. Now, we consider the covariance between VT (XZ - )\Z-) and /T (Xj — )\j>. Recall that

X — S ENT/VN) + 571 (G /VT) + 571 (B /VT) + o (OnT)
where £ = ﬁ Zj;éi Do T35 s \F S (@hay — %) i, and Wy = \/LT D Tiylit

Under H, and Assumption A1.9, the above decomposition simplifies to the below:
vT (j\\z - Ai) =X, \/— sztuzt +0, (1) = G +0p(1)

Neglecting those smaller-order terms, the covariance between (2 and Gr 2 is then proportion to the

. 1 /
quantity, &/ (7 Do Sc;-‘tuitujsxfs>, and

! 1
E (T ;x;uz‘twsxfé> InN = 7 ; E (zjuiujsal,) In N — 0,

as (N, T) go to infinity jointly under Assumption A1.8. Thus, Cov (¢, () = 0 as (N,T) goes to
infinity for all 4 # j. It concludes that (7 and C > are asymptotic independent for ¢ # j because of
asymptotic normality of (- and JT, and so VT (Ai — )\i> and VT ()\j — )\j> are. Meanwhile, the

above result also indicates that the Berman’s condition holds for {v/T <X2 - )\Z-) W,

Step 4. By following corresponding arguments of proofs for Theorem 3 in Castagnetti et al. (2015),

the asymptotic distribution of 7, is the Gumbel distribution after being rescaled appropriately as
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shown in Theorem 1.4.1.

Part I1. The asymptotic local power properties of 7,

Now, we turn to analyze the local power of 7, under local alternatives ;, yr. Note that under

)

Hy, n7,wWehave /):Z = Xz — i+ ;. Similar to Part I above, neglecting terms that is o, (Hﬁm 2y

under H;, y7, we then have

(%= 2+ ) Dt (R = 2+ 1)
= <Xz -\ + )\i)/ V)Tz-l ()\\Z - N+ )\i> + (:\\z -\ + /\Z.)/ V}\—il (i})\z _ VM) V/\_il (3\‘2 A >\i>
= </)\\Z - /\z‘>/ V/\_il (//\\Z - )\i) + /\;]})\—il)\i +2 (XZ _ )\i>/ V)Til)\i

(R v (D) vt (- )

-~

At (D =) vita 2 (K - /\> Vi (D= V) Vit

~ / ~
= ()\i - /\Z-> Vi ! (Ai . )\i) SN I 2D+ I 12D,

~ / ~
Step 1. 1t is straightforward to see the fact max ()\i — )\i> Vi ()\i — )\Z-) = O,(In N) by Theorem

1<i<N L

1.3.3 and corresponding arguments of proofs for Theorem 3 in Castagnetti et al. (2015).

max || 12|, in turns below.

Step 2. In this step, we figure out the order of max HI A g5eees
1<i<N 1<i<N

() max 12, < max NIV, < max IS = O(TINIL), where NI, =

max;<;<n{[IM 5, -, A3}, and H(T”VM)_l = O(1) holds uniformly over i by con-

op
struction of V,; stated in Theorem 1.3.3 and the corresponding proofs for Theorem 1.3.3 in the

Appendix A.

(2) By the immediate results in Step / and (1) just above,

—1/2 [ —1/2
max 120 < ((ma 5 (3=, ) (e, I ) (s, o5

1<i<N 1<i<N

= 0, (VI NT L)

)

where [[A[| = maxicion{[[Milly, - [AN]lo}
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3) max ||}, < max
312
1<i<N 1<i<N

max H (ﬁm — V,\Z-> V/\_Z-l

1<i<N

= In N
» op (In V)

(%= ) vt (A=) 2

holds by the immediate results of Setp 2 in Part I in this section and (1) just above.

) max |13, < max |1}

max H <17>\Z - VM> Vi

1<i<N H2 1<i<N

=0 (T ||)\||io) holds because such

two terms are bounded by (1) and (3) just above.

(5) max |2, < max 2], max [[(Va— i) i

1<i<N 1<i<N <i<N

=0 (/A N)T |A]L. ) holds that

such two terms are bounded by (2) and (3) just above.

Step 3. In Step 2 above, under 1, n7, it is obvious that last four terms are dominated by 121%)& HI f
_z_

2’

~ / ~
while max H[f”2 also dominates max ()\i — )\Z-) Vit ()\i - )\i> under Hy, 7. Therefore, it fol-
1<i<N 1<i<N

lows,
_ o) v (K \ 2y 4 NC
To= max (%= A) Vi (A= A) + max 2+ o, (TINE) £ 70+ 75

where T denotes the null distribution of 7, and T, denotes the non-centrality parameter such that
TNC =0, (T H)\Hio) and diverges to infinity as long as T | A||>, /In N — 4-o0.
Under Hy, n7, it holds that, as long as (N, T') go to infinity jointly, P{7} > can} = P{T >

can — T,Y¢} — 1 holds because ¢,y — TN — —cc as (N, T) — (00, 00) with ¢, v = O(In N).

A.1.7 Proofs of Theorem 1.4.2

The proofs of Theorem 1.4.2 are very similar to those arguments of proofs for Theorem 1.4.1 in the

previous section. So we will give the main steps and key arguments below for brevity.

Part I. The asymptotic null distribution of 7,

Under Hy,, 7s = 7+ — 4, and according to the decomposition shown in proofs of Theorem 1.3.4,

B == =S (EQr/VT) + S /VN) + 57 (3, /VN) + 0, (O37) -
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And for ﬁyt, the consistent estimator of VV,;, we can write

B =it () B = () v 0 [P

v v ¥ vt vt
)

@ =)' Vi Ge— ) = G —n) Vi G =w) + G =) Vi (Vvt - erf) Vi (3 =)

).

A~

Then, under Hy, neglecting the terms that is o, (‘ Vit — Vit

= —7) V’;fl (Ve = ) + Ly

Now, we are in the position to show the desired results below by following four steps.
Step 1. 1t is straightforward to see the fact max e — 1) V%l (7t — ) = O,(InT) by Theorem
1.3.4 and proofs of Theorem 4 in Castagnetti et al. (2015).

Step 2. we are going to show max_ L = 0, (InT) as below,

1<t<T 1<t<T

i max H (17% — Vme) V!

2 1<t<T 7t

max [, < max H@e - %)/Vw_tm

F

Thus, it suffices to show max H (17% - VW) V!

1<t<T v

= 0,(1), which can be shown by following
F

arguments for max H (%Z — VM) V;il = 0,(1) in the previous section just above.

1<i<N

Step 3. We show VN (3, — ) and v/'N (7, — ~,) are asymptotically independent. Recall that
e =1 = =5 (R /VT) + ZH G/ VN) + 271 (W /VN) + 0, (O37)

vy 1 * K/ vy o1 * okl ) v 1 LT
where /v = NVT > ZS# TisTisVss i = JN Do @y — X)) Ay, and U = N 2 Tilit

Under Hyy, and Assumption A 1.9, the expression of v/ N (7 — 7:) simplifies to the below:
~ 1 .
VN (Ve — 1) =%, 1\/_N Z Tyt + 0p (1) = Ry + 0, (1)
Then, it is straightforward to see that the covariance between (3, and (3, is proportion to the
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quantity, £ (% i xz‘tx;‘»;uitujs> when the smaller-order terms are ignored.
Then, let 7 = ¢ —s, under Assumption Al.Tand A1.2, lim ¥ i B (whuiujas )InT =

0as (N,T) — oo. It concludes (3, and (3, are asymptotically independent due to the asymptotic

normality of (3, and (3, and so v'N (3, — ;) and /N (3, — ) are.

Step 4. Following corresponding arguments of proofs for Theorem 4 in Castagnetti et al. (2015),
the asymptotic distribution of 7, under Hy, will follow the Gumbel distribution after being rescaled

appropriately as shown in Theorem 1.4.2.

Part I1. The asymptotic local power properties of 7,
The analysis of the power of test under local alternatives Hy;, yr 1s similar to those in the proof
of Theorem 1.4.1 in the previous section just above. So the sketch of proofs are given here for the

brevity. Under Hy, yr, We can write 7; = 7 — v + 7, then, neglecting terms that are of order

o (|

~

Vit — Vi

), we then have following decomposition,

(Fe =+ ) 17%1 (e =7+ 1)

= M=+ Ve Ge—v+w+ G — v+ V) (ﬁvt - Vw) Vo (e — v+ 7)

= T =)'V Ge—v) Vi v +2 G — ) Vil + (G — ) V! (ﬁvt - Vw) Vo (e =)
+’Y£Vfﬁ1 <17wt - V7t> V';tl,yt +2(F — ’Yt),V;tl (ﬁ/t - th) Vaﬁl%

= =)'V =)+ 0+ L+ 1+ 10+ 13

Step 1. It is straightforward to see the fact that max_ (3 — 1) Vit (% — 1) = Op(InT) by Theorem
st<

1.3.4 and proofs of Theorem 4 in Castagnetti et al. (2015).
Step 2. Similar to corresponding arguments of the analyses of power properties in proofs for Theorem

1.4.1 in the previous section, we can readily obtain that

2 2 2
(1) max 1 = O, (N [[7]1%), where [[7][5 = max; [[7:]l3-

@) max 1§ = 0, (VInT)N . ), where |[7]|. = max, ||l

1<i<N

136



(3) 1222\[[37 =0, (InT),

(4) max I} = o, (N [1%]1%),

(5) max I3 = o, (VI TN ).,

1<i<

Step 3. According to the immediate results in Step 2 just above, under H;; n7, last four terms are

. ~ . o . ~ / _41 ~ .
dominated by 12‘?1(\/ 1] while 11%1%)](\[ 1] also dominates 1132;}}(\[ (Ve — )V, (3¢ — 1) provided that
N 7|12 /InT — oo. Therefore, it follows:

¥ (7 2\ d NC
T, = [max (3 — %)’V,ytl (e —m) + gltangIlV +o, (N[Iy]1%) £ 7;0 LT

where 7'70 denotes the null distribution of 7, and 7;N ¢ denotes the non-centrality parameter such that
TNC = 0, (N ||7]1%,) and tends to +oo if N [|v]|%, /InT — +o00
Under Hyp nr, as (N, T) — (00, 00), itholds that P{T, > co 1} = P{T? > can — TN} — 1

holds as co,7 — TN — —oo with ¢ 7 = O(InT).

A.1.8 Proofs of Theorem 1.4.3

Denote the original sample Wyt = {(yit, i) ,i =1,...,N,t =1,...,T}. Let P*(-) denote the
probability measure induced by the wild bootstrap conditional on Wy, and E*(-) and Var*(-) de-
note the expectation and variance with respect to P*(+). Let Op«(+) and op+(+) denote the probability

order under P*(.).

(a). We now prove that the null distribution of 7, by 7" as below.

Part I: The Validity of Block Wild Bootstrap Scheme

Let Xf, V5, and 17;1 denote the bootstrap analogue of :\\,-, Y\ and ﬁM respectively. It follows that

T = max A ()7,“\2) B AL

1<i<N *
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For Theorem 1.3.3, we have proved that 7, will convergence to the Gumbel distribution after being
rescaled appropriately as NV, T" — oo under the null hypothesis and Assumptions Al1.1-A1.5, A1.8
and A1.9. By Polya-Cantelli lemma, it follows that

sup |P (AnTy <z + Bn) — ¥(z)| 5o,

zeR

where ¥(z) denotes the Gumbel distribution that location parameter equals 0 and scale parameter

equals 1. Then the desired result follows if the following statement holds

sup |[P* (ANT; < a0+ By) — ()| 5 0

z€R

To this end, we show the desired results above by imitating the arguments of proofs for Theorem

4.1. Specifically, our proofs below consist of two parts:

(1) Show the asymptotic normality of X;k

B N P
(2) Show the asymptotic distribution of 7, = max Ay <V§Z> Aj.

Part (1). Conditional on Wy, a;’; are independent across 7, and are independent of x;, for all
1,7, t, s because these objects are fixed in the fixed-design bootstrap world. Note that fore each i,
E* (ﬂ;) — @iy B* (wy) = 0 and E* [(E;) 2] = a;fE (W) = ai, and these will simplify the proofs
in the bootstrap world.

Observing that j/g\; = TN+ E; given that \} = 0 for all 7 because the null hypothesis is
maintained in the bootstrap world. Similar to the proofs of Theorem 1.3.3, in the bootstrap world,

we also can readily show that, for each 1,

~

NN = (O ) T (T ) = (07X Fadl) (TGN

ok o . _ ~ X
where ii;, = iiywy foreachi=1,... ., Nandt=1,...,T,and ¢} = T2, Zuii,,.

It is straightforward to see % > ZaZi, = O,(1) by the law of large numbers and is bounded from
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below under under Assumption Al.1. Then, by continuous mapping theorem, we only need to show
the asymptotic normality of (¥
We define that, for the j-th block of the cross-section unit ¢,

o~k

* _ *—1/2 71/2 ~
z; = Oy T4 (j-1)br+1U (-1 )byt
=1

br

x—1/2 —-1/2 ~ o
QO 0y T4, (= 1)bp+1 Wi, (j—1)bp+H Wi, (j— 1)+
=1

$— —1/2 ~ -~
Q 1/2bT / Zl‘i,(j71)bT+lUi,(j—1)bT+l€ij7

=1

wherei=1,...,Nandj=1,..., Ly, and w;s = &; if (j — 1)by < s < jbr holds by construction

as stated in Step 2 and 3 in Algorithm BWB, and

Ly br
QO =T"Var <ZZ% = 1)bT+le G— 1)bT+l§zg> :

7j=1 [=1

Then, we can write

zT - § :‘rltuzt - L 'Lj?

where {Z;;} are independent across j for each ¢ conditional on Wy for j = 1,..., Ly with
E* (2}) = 0and Var(L; L2 ZLT Z;;) = Ik by the definition of Q* displayed just above.
To establish the asymptotic normality of (3 = L_l/ 2 ZLT Zj], it suffices to show that the

Lyapunov condition is satisfied, namely, ZLT b

2:/vV/Lr||, = o(1). By the definition of Z;;

above, we have

g 951 (— 1bT+lU ,(G=1)bp+1

Lt
LY B |Z,ls < |2 T QZE*
j=1

2

Note that the requirements for b below can generalized indeed as stated in Theorem 1.4.3(a).
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n= Op(l)

We claim that Q* 5 i zu» Where ., is defined in Corollary 1.3.5, then ||Q**1/2||F

holds, and prove this claim later. Thus, we only need to show remaining terms above are o(1) as
whole. Noting that

A~k

Ui (j—1)bp+1

Uit+5fgt(5—5)+%< - '>——Z ( >+%(% ) __szs =) | &ij-

Then, by C).-inequality, we have that

o~k

s

— L * "’*
? Z LE 1T1 i, )b+, (j—1)br+1 H < 4 (M & Mo + Moz + Mar & Moz + Mor)
where,
1 2 Lt || br 4
My = 6° (T) Zjiﬁ(j—l)bwlui,(y‘—l)bﬁl B |£ij‘4’
j=1 || 1=1 2
1 2 Lt || br *
- . > . 4
My = 62 (?) Zxi,(j—l)bT+l$;7(j_1)bT+l(/B = B)|| E" &1,
j=1 |l 1=1 2
1 2 Lt br !
- - N « 4
My = 6 (T) D Ei Gt 1)y <)‘i - )\i> > I
j=1 =1 2
- - N . 4
Myr = 6° (?) N Z Zxiv(j—l)bTJrlx;L,(j—l)bT“ ()\h B Ah) Bl
Jj=1 h 1=1 2
1 2 Lt by !
~ [V ~ ES 4
Myp = 6° (f) Zffi,(jfl)bT+l$§,<j—1>bT+l (Vv = Ag-vpr+) | B[l
=1 || 1=1 2
4
1V A (1 =& , ~ 4
Mer = (T) T Z Z Ti (- 1)br+1T55 (Vs — Ts) E* &5
—1 =1 2

Below we show that M7 to Mgy are all of order 0,+ (1) terms below provided that £* |, |4 < 00

by the condition stated in Algorithm BWB and note that T" = b L.

4
For M, by direct moment calculations, bil T, ()b +1Wa, (= )b+l Hz = O, (b+) holds under
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Assumption Al.1, it follows My = O, (b5LrT~%) = O, (b3T71).

For My, using the fact that 3 — 3 = O, (N~1/2 4+ T=1/2), in bootstrap world, by direct calcu-
lation, use triangular and Cauchy-Schwartz inequality, we can readily show as below by neglecting

those terms in the expansions of Moy that are of smaller order,

4
1 2 Lt . 4
MQT = 63 (T) Z sz(j 1bT+lx (G- 1bT+l(B ﬁ) E |£ZJ|
7=1 = 2
4/ 2 Lt *
o~ ~ - « 4
< 6o~ 2<T) 2 Z%<J‘—l>bT+l~”"’?<jfl>bT+l &1
j=1 || i=1 F

= 0,(1)0, (T2 Lyb7) O(1) = O, (B3T3 + N7V250.771)

4
where HZ?; T (= 1)br+HT (1 )byt HF = O, (b}) by direct calculations under Assumption Al.1.

For Msr we can show Mspr = O, (b3TT_3) readily by following above arguments for M, and

Myr.

For M,r, we have

“(r) %3

= T*LyO, (by) op (T~*(InN)*) O(1)

M4T

IN

E Ty (j— 1bT+l~Th L(G—1)br+

(Elp-sl) e

= O, ((InN)*T~*Lyb7) = O, (InN)*T%b}.)

. b ~
where the second line holds because HZZL Ti,(j—1)br+Thy (- 1)bp 4l H
’ F

-0, (N/ln N/T> by Proposition 1.3.8.

For M5 and Mgr, similar to arguments for bounding M, above, we can readily show that

= O (b%}) by direct moments

calculations under Assumption Al.1, and max; ||\; — /):Z

Msr = O, (N*Q(ln T)szlb%) , and Mgr = O, (N*2(ln T)2T*1b3T) ,
holds by under Assumption A1l.1 and Proposition 1.3.8.
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Therefore, if by is set to be o(T/?), Myr to Mgy are all of order o,-(1). After verifying the

Lyapunov condition, —> N(0,Q*) follows directly by the CLT.

Now, we are in the position to show the consistency of €2* constructed above. By construction,

we have

Lt br
O =T Var* <Z Z izi,(j1)bT+liii,(j1)bT+l§ij>

=1 =1
Lty [ br R ,
=Ty ZZ (332 (= 1)br-1lii - 1>bT+Z) (fi,(j—l)bT+lﬂi,(j—1>bT+k) E* (&)
j=1 Li=1 k=1
Lt br R ,
= L'y le (fC (= 1)br 11k () 1>bT+Z> (fi,(j—l)bT+ziii,(j—1>bT+k> (A.LL)
=1 L =1 k=1

By direct moments calculations, 2* L 33; 2 holds given that 1/bp+bp /T3 — 0as T — oo, where

-~

>;.zu 1s given in Corollary 1.3.5. We give the sketch of the main steps and omit the details because we
can follow the arguments for verifying the Lyapunov condition just above to get the desired result.
Recall that

o~k

Wi (5—1)bp+1

i + &, (6 — 5)"’55;15( - >__Z ( >+x — Y __szs

By simple calculations, it can be seen that

br
o= T Z [b ZZ (G=1)bp+1 Wi, (5 — 1)bT'H) (xi7(j_1)bT+lui7(j_1)bT+k;)/

I=1 k=1
LT

= L;'> Q + dominated terms.
=1

Intuitively, as by — oo, Q; N f]i,m, and so does 2*. Meanwhile, imu is constructed as the HAC

r op (1).

~

estimator of iwu Therefore, it also can be shown that HQ* — ZNIZ»,W

142

+ dominated terms

NE



So the asymptotic normality of X;-‘ holds in the view of those arguments of the proof for Theorem

3.2 in Lahiri (2013).

Part (2). Now, we derive the asymptotic distribution of 7," in bootstrap world.
To this end, we denote Vy, = T7'Q;'%,,,Q; ", and Vi, = T7'Q;'%,,,Q; !, where Q; =

T3, fitigt,f]i’m is calculated by the same way as f}i,m, then we can follow those arguments of

proofs for Theorem 1.4.1 and just give the outline here for brevity.
Vit = V=0 (V= D) Vi o (95 - D

).

).

Similarly, neglecting those terms that are o, ( Hﬁ;l —Vu

(v =) vt (3 - )

= (=) W (e =)+ (e =x) ot (B -0 ot (R )

~ ! ~
= (M=) vt (- x)

By repeating the exact same arguments as those in the proofs of Theorem 1.4.1, it is straightforward

~ / ~
to see that max ()\j — )\;‘) Vi ()\;k — Af) = O,+(In N) holds.

1<i<N
Note that max [}; = o, (In V) holds if the fact
1<i<N

max I}, < max

o~ !/ e
(i =x) vt (= x)
1<i<N 1<i<N

= Op(InN)op(1) = 0+ (InN).

S\ ol
max H(VM_VM> X ||,

1<i<N

2

holds. Again, it suffices to show max H (9;“@ - V§i> Vit H = 0,(1), such proofs follow the exact
<3< 2
same argument for Theorem 1.4.1 in the bootstrap world, and those details are not repeated here

again.

Part II: The Validity of Wild Bootstrap Scheme

Note that we construction 7, by the observations {y;;, 33it}i\i1 for each .

143



Because the wild bootstrap is the special case of the Block Wild Bootstrap when b = 1. We just
introduce some notations here and the details can imitate the arguments in Part I just above.

Particularly, by similar notations used in Part I above, denote

~%k ~

* — Ox—1/2~ — O*1/2z i
Zij:Q Li,(j-1)+1U5 (j—1)+1 = Q Li,(j—1)+1Ui,(j—1)+1 Wit

*—1/2~, =
QY2 oyt on s

fori =1,...,Nandj = 1,...,T, where Q* = T"'Var* <2]T:1 ii,(j_1)+lai,(j_1)+l€ij> and w;; =
&i;j if t = j by constructions in Algorithm BWB.

Then, we can write T~Y/2 Y, &yt = T—/? Zle Zr

+;» where Z;; are independent across j con-

ditional on Wy for j = 1,...,T with E* (Z};) = 0 and Var(T~'/? Z;F:l 25) = I by the con-
struction of €2*.

The asymptotic normality of 7°~1/2 Z]'T:1 Z;; requires to verify the Lyapunov condition, namely,
S B Z]/\/TH;L = o(1).

With these notations, the remaining steps are the same as those in Part I just above.

(b). The Validity of Wild Bootstrap Scheme

Note that we construction 7, by the observations {y;, xit}fil for each ¢.

Observing that }J\; = T + E; given that 7; = 0 for all ¢ because the null hypothesis is
maintained in the bootstrap world. Similar to the proofs of Theorem 1.3.4, in the bootstrap world,

we also can readily show that, for each ¢,

== (N ) T (N i) = (VU i) (TG

A~k

where i, = fijwy foreachi=1,... ., Nandt=1,...,T,and Q= N"Y2y :zna;
Similar to the arguments used for Part II of (a) just above, if we set block size by = 1, then,
we can treat the wild bootstrap as the special case of block wild bootstrap. So proofs here are very

similar to arguments for the proofs in (a) shown above.
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Particularly, denote

~% ~

* — )x—1/2 5, — *—1/2, Y
2= TR Gonyantlgonyse = 7 TR G+ 1 UG- 1) 41,4 Wit

~

*—1/2 %, -
Q28 1y 114Gy

forj=1,...,Nandt = 1,...,T, where Q* = N~ 'Var* (Zfil :Eiy(j_1),,T+15i,(j_1)bT+l§ﬁ> con-
verges to ZCI xv that is defined in Corollary 1.3.6, and w;; = §;; if i = j by constructions in Algorithm
WB.

Then, we can write N~1/237 Figtly, = N71/2 Zjvzl Z, where Z;, are independent across j
conditional on Wy for j = 1,..., N with E* (2,) = 0 and Var(N"Y23°Y | Z%) = I by the
construction of 2* above.

The asymptotic normality of N—1/2 Zjvzl Z7, requires the verification of the Lyapunov condition,

2+d
namely, Zjvzl E* Z;-‘t/\/NH2 = o(1) for some d > 0.

The remaining steps are very similar to proofs in (a) and thus omitted here.

A.2 Proofs of Propositions in A.1

This section is composed of three parts. Section S1 contains the proofs of theorems, corollaries
and propositions in the main texts. Section S2 contains some technical lemmas that are used in the
proofs in the main texts and Section S1. Section S3 provides some discussions on the theoretical
results under the heterogeneity of x;;. We continues to use the notations defined at the end of Section

1 of the paper. Let ), and >, denote SN Zjvzl i and ST ZST:u 5> Tespectively.

In this section, we prove Propositions A.1.1-A.1.3.

A.2.1 Proof of the Proposition A.1.1

To prove A.1.1, we need the following four lemmas that will be proved after we finish the proof of

the proposition.
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Lemma A.2.1. Suppose Assumption Al.1 holds. Then

(i) ||NT Z Zt ;ktx:t/ = 0,(1),
(i1) HW Z Zt x:‘t:v*’ = Op( )
(ii) Hmz Yia S| = Ol

=0,

(ZV) H N2T? Z Z]#z Zt s x:t’r*l

Lemma A.2.2. Suppose that Assumptions Al.1 and A1.2 hold. Then
() || 97 305 20w | = Op(#»
(ii) || 5 220 200 o wittis| | = Op( 7
(iii) || b7 o3 o0 oy whe|| =
) |3 2 0 220 2, xltuw«H

\_/\_/

(%7
Lemma A.2.3. Under Assumption Al.1,

W) || 57 X X wiiihi]| = ﬁ%

(i) || = 320 00 s whrtidil| = On()

() || 57 S 21 s wtaine]| = Ol 759

i) || 77 Lo i 0 S witihs| = Onl )
Lemma A.2.4. Under Assumptions Al.1,

@) |57 20 X whaiinl |, = Opw%),

() || 5z 325 20 s whaiin| = Oul i

() | 7 321 Sos Eewisaiin|| = O <ﬁ>,

(iv) ‘ﬁ > Zz# Dot D BT = Op(ﬁ)'

Proof of Proposition A.1.1.

Recall that
—1
B—p = <% ZZ: Zt: fUztiU;t) % XZ: Xt: Tt (uzt + 0 + Sbit)

Alng (Bint + Bont + Bant)
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where A N1, Bint, Bont, and B3yt are defined in the proof of Theorem 3.1. Note that

/
Ay = % Z Z (ast - % Z @) (mt - % > aty-t>
- : -
= Z Z Ty — NQT Z Z TuZl = Ainr1 — Ainre,
t

2
sl e (ﬂit—%&t)
Buvr = 523 > (:x Z x) ( 7, Z ng.tAj>
_ % Z Xt: FoE A — ﬁ Z Z:(N S )@ = Bavr = Bavr,
o = r 2 (g ) ()
— % SN dadm - ﬁ > 2; Tis¥Y = Bsnr1 — Banto. (A.2.1)
l iy

(i) Note that z;; = 7, where 7}, = Z;; — E (Z;) . Then

Aiyr = NT Z Z B — NﬁT Z Z 5
k 1 * * * *
= ZZ ;kt ;(t, NTQZZZ :t zg_m;zt: ztx/+N2T2%:2;xzt$j;

1 1

= (1 - N) AlNTl - (1 - N) AINT2 - AINTS + AINT47

where the first equality holds by (A.2.1), Ain11 = 57 2o; Doy T, AINT2 = o2 D01 D s Thhe
AINTS = ﬁ Z];éz Zt ;‘tx;k;, and AlNT4 = ﬁ Z];éz Zt,s x;*ta:;‘g By Lemma AZI, AlNTl =
O, (1), Ainra = Op(73), Aints = Op(+), and Aynry = Op(w7)- In addition, it is standard to show

that

* >|<l —
ol S5 Bl =
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Then (i) follows by the Slutsky lemma.

(11) Note that BlNT = BlNTl — BlNTQ by (A2l) So it suffices to bound BlNTl and BlNTQ in

turn. Using 2;; = 2}, again, we have

Bint1 = % Z Z Th Uiy
it
1 .1 ) 1
- WZ; (%‘t‘f?%f) (uit_fzq:uiq)
= % Z ; T Ui — ﬁ Z ; Z T = BinTia + BinTip-

Similarly,

BINTZ

N2T Z Z Tjyhis — N2T2 Z Z T Uis = Binraa + Binra.

i,j t,s

By Lemma A.2.2, || Binrall, = O( =), IBiveoll, = Op(5), [1Banrall, = Oy ), and

1
VNT
| Banrsly = Op(57)- Then (ii) follows.

(111) Recall that B2NT = B2NT1 — B2NT2 by (A21) Using jit = 57;5 again, we have following

decompositions:

Bonm = Z Z THiH N
1 1 1 /
- WZZ (%Z‘t—fzxi‘r> (@t—fgﬁr> Ai
= Z Z THTH A — NTQ Z Z TN
Bonta2 = W Z Z(ﬁ Z T3 T35 A
) t J .
1 1 1
- NeT Z Z <x;t T Z x?) (ZE;} T Z xj’”) A
ij ot
- NiT Z Z T Ai — N2T2 Z Z xitx*/)\
ij t

i tr
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It follows that

BQNT = (NT Z Z SL’Ztl’:}/)\i NT2 Z Z xzt'r*//\ )
NQT Z Z TR\ + s N2T2 Z Z LTI

I#i t I#i t,r

N -1
= N (Banta — Bants) — Bante + Banra.
By Lemma A.2.3, || Bontall = Op(): [|1Banmoll = Op(7), | Banrell = Op(5): | Banrall =

Op(x7)- Then || Bonr|| = Op(5)-

(iv) Recall that Bsyr = Bsnr1 — Bsnr2 by (A.2.1). Then, by direct calculations based on the

fact 2}, = wy — p, and Ty = x5y — N1, 2, we have

Bsnr = Z Z THTi Ve — NlTQ Z Z Tip it Ve
N2T Z Z TuTiYe + e N2T2 Z Z it Ve

il ot

N —
= Tl (% ZZ: ; THTi Ve — W ZZ: Z xfﬂfﬂt)
_NET Z Z e T e N2T2 Z Z T Ve

I#i t I#i t,r

N -1
N

(Bsnta — Bsnty) — Banre + Banrd.

By Lemma A.24, || Banrall = Op(77)s |Bsnmsll = Op(7)s [|Banrell = Op(5), |Banrall =

O,(5=). Then || Bsyr || = n

Op(77)-
Proof of Lemma A.2.1.

(i) It is suffices to show || gr 3=, 3, afaf) — Buf| ) = 0p(1) with ¥, = E (¢}a})). Define
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wy = 2'x}, where 2 € RY such that ||z]| = 1, then

it

NT Z Z Ty — = Z Z szt

1
ﬁzgwit

sp

By construction, {1 }/_; above are still mixing sequences with weak cross-sectional dependence
. . . 1 1
under Assumption Al.1, we can readily obtain that = Yoid i = O, (ﬁ) Therefore, the

desired result follows provided that m < ¢y (2,) < vk (X,) < M.

(i1) By direct calculations, we have

— */ >k */ * */ % */ *

o N2T4 Z § : zq T3y Lis Zr N2T4 E E ZEZSZEJT:EM:L’”)
i t,s,1,q G#i t,5,7,q

= aj + as.

NT2 Z Z I,;ktx*/

For a,, we have

) 1
~o(xr);

2

1
ay = N2T4 Z Z *,l’:th’jsl ;kr) - W Z E

i 1,8,1,q

*
§ Ty
t

where the last equality holds because E ||>, m;‘tH; = O (T?) by Lemma A.3.1 under Assumption
Al.1. Similarly,
1 */ ok */ *
2. = Joqi Z Z (wisafionss) = N2T4 ZE

() ()]

41 1/2 47 1/2

1
N2
J

IN

s

1 1
A

where inequality holds by Cauchy-Schwartz inequality, the final equality holds because E || >, z5;

O (T?) for each i by Lemma A.3.1 under Assumption Al.1.
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(111) By direct calculations, we have

= e 0 S B (i)

j#i k#lL t,s

N2T Z Z a:;ktx*’

JFL T

IN

1/2 47 1/2
1 *
N2T2 H\/_let E' \/_NZ%

1 1

= 270 (TQ) =0 (ﬁ) ,

J
where the inequality holds by Cauchy-Schwarz inequality, and the final bound holds under Assump-

tion Al.1.

(iv) By direct calculations, we have

1
N2T2 sz:tx*/ - NAT4 Z Z Z x]lsxzzrxquut)

J#i s J1#i1 joFin t,5,1,q
4
— 2 4 / 1t
N2T t N % 2

1 1
- 0 =0(5ap).

i it

4
where the last line follows because £ HZt <% > :E*> ‘2 = O (T?) by Lemma A.3.1 under As-

sumption Al.1. l

Proof of Lemma A.2.2.

Note that E(x}fuy) = E(xfus) = E(xfui) = E(xju;) = 0 under Assumption A1.2(iii).
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(1) Let 0, = 61 V 0. Then, we have

2

1 1
NT 2 2l = Fam 2 DB (waiagug)
7 t i, t,8

1 O O . 5.
= v (ZZ[aij<lt—s|>] o >) Bl B

ij ts

E

. 11(446,) 2/(446x)
:I;js }

o (A4 o |8 2/ 4F0)
(Bl |45 B [fu [
RN o S ey
N2T b= &= NT )’

where the second line holds by Davydov’s inequality, the last lines above holds under Assumptions

Al.1(i) and A1.2(1).
(i) By moments calculations, we have,

2
E

1
NT?2 Z Z Tiglis

it

1 1 1 Y 1 ) ]

< o 2| () (G5 [Grme) (5
1 8.0/ (446,) _ 1

< gz 200! )_O<NT2)’

Z‘?j

where the second line holds because {7~' >", _ w;s} are still a-mixing sequences with zero mean un-
der Assumptions Al.1 and A1.2, then use Davydov’s inequality and Lemma A.3.1 under Assumption

A1.1(1) and A1.2(i) sequentially; and the final bound holds under Assumption A1.1(i) and A1.2(i).
(111)—(iv) The proof is analogous to that of (ii) and thus omitted. ll

Proof of Lemma A.2.3.
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(i) Note that E (7 >, >, 5,23/ \:) = 0 under Assumption A1.1, then,

2

NT Z Z it A ~7 Z Z R YR DURE
N2T2 Z B

N2T2 Z Z E)\/ ;ktl‘;kt/ ) (xjsxjs - Zw) )\]
,j s

1 1 1 1

IA

where the second line follows by triangular inequality. Furthermore, a3 = O (1/N) because we have
Var(N~'/2%".)\;) = O (1) under Assumption Al.1(iii), |2, |I> < oo under Assumption Al.1. For
* */

ay above, let wy, = X (zj2f] — ¥,), then, ay = N7*T2 37, 37, wiqw;s and {w;;} are still mixing

sequences that satisfy the Assumption A1.1(i), it follows that ay = O(1/NT).

(i) Note that £ (5= D_; 2o 2o 2525 A;) = 0 and E (z},z,);) = 0 under Assumption Al.1,

then,

NT2 Z Z xltm*’k

1 1 o
= N2T2 ZE ( Z)\’L LisT zt) (f ij:“m]q)\ )
(2% rq
1
O (1) agm D_ g (0)7/ %
i?j

1 1
= yf =0 (NT?) ’

IN

where the second line holds because {7! > 1.s NiTis Ty, } are still a-mixing sequences with zero mean
under Assumption Al.1, then use Davydov’s inequality and Lemma A.3.1 under Assumption Al.1

sequentially; and the final bound holds under Assumption A1.1(i).

(iii) Note that F <ﬁ Dt Dot 1’7#3}\1) = 0 and E (z},2{\;) = 0 under Assumption Al.1,
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then,

2
Bl 03 whaiin

£t

l;éz j;ék
1
O0Q1) 327 D a(lt — s))
t,s

1 1
= vl =0 (N?T) ’

IN

where the second line holds because { N~ >~ >~ . Njzj,aj; } are still a-mixing sequences with zero
mean under Assumption Al.1, then use Davydov’s inequality and Lemma A.3.1 under Assumption

Al.1 sequentially; and the final bound holds under Assumption A1.1(1).

(iv) Note that £/ (ﬁ Dt Dots THTioA: > = 0 under Assumption Al.1, then,

2

N2T2 Z Z xftx*/)\

l#i t,s

. -
= WZ Z E | Nz, (Z 932}’) (sz,) 5o

4,J 1,879 I#£i k+#j ]

1
< WE( ;;zft ;Z% szw 5, )
’ 47 1/2 41 1/2
—1 *.

oz ] Pl

_ ﬁomom:c)(@)?

where the fourth line follows by repeating uses of Cauchy-Schwarz inequality, and the final bound

holds by Lemma A.3.1 under Assumption A1.1(i). l

Proof of Lemma A.2.4

(1) Note that £ (ﬁ did jtx;‘t’%) = 0 under Assumption Al.1. By direct calculations, we
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have

2

o S S i
4 t

1
= WZZB 77& jtx;x:(sxzsfys)

i, t,s

1
i, 1,8

1 1

i, t,s i, t,s

1 * % *
W;;HM (w55 = 52) (ks — o) | + N2T2;§;Ems||z P

1 o 1 1
= WO(NT+NT)_O(NT)+O(T)

where the fourth line above holds because || X, |, < oo under Assumption A1.1(i) and Var (T2 7, ;) =

IN

IN

O (1) under Assumption A1.1(iv), besides, by construction, {v; (3,23 — X,)} are still mixing se-

]t

quences under Assumption A1.1(i), and thus,

2.2 2 1 (e = Ba) (il — Bl < O 323 3 (eusesl)) /1 = O(NT).
t,s 1 i

holds directly under Assumption A1.1(i).

(ii) Note that £/ (ﬁ Di Dt T lt%) = 0and E (z}.x}/7:) = 0 under Assumption Al.1, then,

NT2 Z Z xzrxzt Tt

i

1 * 0k 1 * o x
= N2T2 Z ( Z%{/ ztxzr> (szj;xjsfys>
S7q
O (1) W Z R ORUSEY
12

1 1
= O =0 (NT2) !

2

IN

where the second line holds because {7~' >,  ~/x},z} } are still a-mixing sequences with zero mean

under Assumption Al.1, then use Davydov’s inequality and Lemma A.3.1 under Assumption Al.1
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sequentially; and the final bound holds under Assumption A1.1(i).

(iii) Note that £ ( NTT Dii Dt xu%t%) = 0 and F (x},x/v;) = 0 under Assumption Al.1,

then,

NQT Z Z TV

l# t

= ﬁz ( Z% :ﬁﬁ) (%Zx;gx::s%>

l#i J#k

1
o Z a(|t _ Sl)él/(4+61)

t,s

1 1
= ve? =0 (N2T) ’

IA

where the second line holds because {N~' 37, >~ via7,aj; } are still a-mixing sequences with zero
mean under Assumption Al.1, then use Davydov’s inequality and Lemma A.3.1 under Assumption

A1l.1 sequentially; and the final bound holds under Assumption A1.1(1).

(iv) The desired bounds can be obtained by following similar arguments for the proofs of (i)—(iii)

above.

A.2.2 Proof of Proposition A.1.2: Stochastic Bound of XZ — N\

Recall that

Xi -\ = 1A sir (—Crir + Cor + Cair + Cuir)

= o or (sl o () v () w0 ()|

156



where Ay, Crir, Coir, Csir and Cy,;r are defined in Section A.3.1:

_ 1 . 1 -
T Z Tit ( Tyt — %s’Ys) = T Z %‘t?ﬁ;t% - ﬁ Z Dfiﬂ;ﬂs = Cyr1 — Core,
t t t,s

E E Tty = Csir1 — Clira,
T

1 -
Agir = f : xit'r;tu
ol (. 1_Y\v/» l—_ _, /= 1 O
Cur = T t Tit it — let (5 - 5) = T zt:%:xit (5 - 5) - ﬁ zl: zt:l“z‘tﬂ?u (5 - 5)
= C1ZT1 Chira,
Cur =
1 5 5 1 N 1 o 1
Cyr = T ;xit (uit - N ;U1t> = T ;xituit - W
1 N
Cur = NT Z Ziitﬁt}\l.

I=1,1#i t

To prove Proposition A.1.2, we need following four lemmas.

Lemma A.2.5. Suppose Assumption Al.1 and A1.4 hold. Then for each i, we have

Q) [|3 >,z ||, = 0u(1),

(i) |7 20 . wieid]| = On($),
(it Hﬁz#izt | = 0ol >+o<f>
1) || 5 S X1 S| = Onl i)

Lemma A.2.6. Under Assumptions Al.1, the following hold:

W) |7 X whaiinl| = O

(i) || 7= 22, 2, whafinl| = O

(i) || 7 S S wiwiin]| = Onl 75izp)

) || 5 Cope 0 S, wiain| = 0, (7))
Lemma A.2.7. Under Assumption Al.1 and A1.2,

0 [|F 3w = Onl ).

(i) || 72 20 3, whuie || = Ou(3),

(iii) || 57 320 2 ]| = O3,
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(iv) Hﬁ D rx;ktulr” = Op(N#Tz)-

Lemma A.2.8. Under Assumption Al.1, the following hold:
(1) Hﬁ Zl;éz‘ > mfthgAl" = Op(\/%%
(i) || 5 s 0 2, wiiih|| = Onl i)

Proof of Proposition A.1.2.
(i) Note that Z;y = x4 — + >, @y, Tfy = T}y — 7 >, 4}, With xf, = x4 — p, then, Z;, = T}, it

T o

follows that:

~ ~ E * %/ § E
AQ’LT - 7 E :xlt'xzt - E Ly = E Ly — TQ ‘Z.zrl zrz = A2iT1 - A2’5T2'
t

T1 T2

Then, by law of large number, as 7' — oo, we have Ayp — Tlim L5, E(zhxy) = X, by By

— 00 T
Lemma A.2.5.
(i) Note that & = @y — £ >, Ty, T° = xf, — 7 >, @}, with 2}, = 4 — p, then, Ty = T}, it
follows that:

N—-11]1
Cur = N T E : TitLiz — TQ § : § :wzt‘T § : E :xztxlt NT2 § : § E LitLis
t l;ﬁz t I#i t
CriT1 Clsz C1iT3 C1iT4

J/

It is clear that the order of C1;7 is determined by both {Cl;7 }1_, and (B — 5).

By Lemma A.2.5, [[Cuiril, = Oy (1), |Cuir2ll, = O, (7). [Crirslly = Op ( ) + 0y (%)
|Chirally = Oy (ﬁ) Thus, the order of (ﬂ — B) will determine the order of C7.

For the sake of this fact, we denote the bound as: ||Cy;r|, = O, (H B-8 H2> , which means the

order of C';r is totally determined by the order of H B —p H
2
(111) Recall that CQZ‘T = CQZ‘Tl — CQiTQ = %Zt jitjf;t”}/t — %Es (% Zt izt) jﬁ‘;s’)/s. Note that
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% Zt Li'it = 0, % Et :E'Z-t = 0. Then CQ/L'TQ =0. Thus, CQT = CQ@'TI, and we bound C2iT1 below,

Coir = %Z (952 - %Z@?) (1173: - %Zﬁ:) Tt
t T l

I=1,1#i ¢ I=1,1#i t,r

N -1
N (Coira — Cairp) — Caire — Caira.

By Lemma A.2.6, [[Corall, = Oy () [ Caimslly = O (5. [ Carrelly = O (7 )+ [ Caurll, =

Op <\/ﬁ> HCHCC, it follows that ||CQZ‘T||2 = p <%

v

(iv) Recall that 7;, = 7, & = &y — 7 LS Ty, T = 1, T x}., and xf, = x;; — p. Note that,

Cair = = Z Tilit — Z Z Ty
1 1
= T ; x;‘tuit - ,_ZTQ 2 2 x;‘tuir - W ; ; l’:tUlt + W ; t,zr .T;ktuh«

= Csirq — Csiry — Caire + Csira.

By Lemma A.2.7, [|Csirally = O (7 )» 1Csirsll, = Op (3), ICsirelly = O (7 ) I Coirall, =
O, (ﬁ) Then, the desired bound holds.
(v) Recall that Z;y = T}, & = @y — 7 2, Tir, T* = T}, — 7 2., Th, Ty = Ty — p. By direct

calculations, we have

N N
_1 I ]' ~k o~k
Cur = NT Z 'intw;m =~T Z 'Z:L‘l-tmlt’)\l
I=1,1#i t I=1,l#i t
1 & 1 X
- NT Z ijtxzﬁt/)‘l T NTZ Z Zﬁtﬁﬁ)\l = Cuir1 — Cura.
I=1l#i t I=1,l#i tr

By Lemma A.2.8, ||Cyrill, = O, ( ) [Caizoll, = Oy (

0, (/7)™

\/W) It follows that ||Cyirall, =

159

N N
=S it - Tzzx@rm] o 3 S waint o O S whait
t



Proof of Lemma A.2.5.
(i) Following arguments of proofs for Lemma A.2.1(1), + Y, z},x} KR Tll_t}lgo I3 B () =

3, holds under Assumption Al.1, = >°, 27,2}/ = O,(1) follows directly Assumption Al.4.

(i1) By Cauchy-Schwarz inequality

4
. 1 1

* */
T2 g T Ty

where the last line holds because E |3, x7, |* = O (T?) by Lemma A.3.1 under Assumption A1.1.
(iii) Denote 7;; = E (z},x;/) temporarily. Then

2

;N
NT Z Z:E;ktx?t/

I=1i#i t
1 & i 1 & i
* x/
< NT Z‘Z(zitlﬁlt—m) +2 NT Z‘ZT“
I=1,1#1 t I=1,1#1 t

S Yn

I=1,1#i ¢

Z [Oéil (0)]51/(44-51)]

t

N N
~ N°T? Z Z Ztr (B [(wr) — 7a) (wf,2ks — 7)) + N2T2

=1 l;éi k=1 k;éi t,s

1
S N2T2 Z Z Z g ( 61/(4+61)+N2T2

I=1,l#i k=1,k#i t,s

1 ) 1 1

where we use the fact that HZt SN i Tik

<> Z;V:Lk# O(1)ay, (0)61/(4+61) = O (T') under
Assumption Al.1, meanwhile, by similar arguments for (28) in Gao and Hong (2008) and the co-

variance inequality for the mixing sequences, we can show that

N N N N
DD DD NE @ — ) (e — )|l S Z Z ZZ% Ry

I=1,l#i k=1k#i t s

= 0 ( )
under Assumption Al.1. Note that the bound obtained here under Assumption A1.1 is similar to As-
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sumption A1(iv) in Li et al. (2016), which demonstrate the weak form of cross-sectional dependence

and serial dependence among the sequences.
(iv) By Cauchy-Schwarz inequality,

97 1/2 97 1/2

IN

o S S

I#i t,s

*
it

1 1 .
i |72 (5 5)

1 1
— RO ()0 (1) =0 ().

where the last line follows by Lemma A.3.1 under Assumption A1.1. B

Proof of Lemma A.2.6.
(i) Note that £ (£ >, z},x}/~:) = 0 under Assumption Al.1, then, by direct moments calcula-

tions, we have

1 * *
E T Xt: ffitxit/%

1
_ _2 : 1ok k%
- T2 E /yt ztIztxzsxzsfyS>
t,s

1 * %

IN

1 . 1
t,s

IN

* K/ * K/ 1 /
Z HEPYt Liglip — :r) (xisxis o 296) ’}/SH2 + ﬁ Z E (%5’75) Hzmng
t,s
1 1
= Slom+o@=0(z).

where the fourth line above holds by the fact that Var(T*I/ 23, %) = O (1) under Assumption

Al.1(iv) and that {~, (x}z}/ — ¥,)} are still mixing sequences under Assumption A1.1(i), and thus,
DB (st = £a) (w5 = Sa) ) S TZ )7/ = O(T).
t,s =1

holds directly under Assumption A1.1(i).
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(i) Note that E (75 >, >, 2;,};) = 0 under Assumption Al.1, then, by direct moments

calculations, we have

4 1/2 4 1/2

1
T4

()

where the second line follows by the use of Cauchy-Schwarz inequality, and the final bound holds

IN
|

E

*
E Ly

T

T2 Z Z xzr‘rzt/yt

2
2

2

by Lemma A.3.1 under Assumption A1.1(1).

(iii) Note that £ (ﬁ Dt 2ot T %> = 0and E (x},x}{7:) = 0 under Assumption A1.1, then,

2

5> AL )
t,s 1=1,1#i j=1,j#i
.. center

1 01/(4461)
——= > a(lt—s|)" NO
N?T »

1 1
- W()(T):O(w)’

T
NT Z Zﬁtl’z%

I=1,1#i ¢

where the second line holds because {Z 1=112 VT ), } are still a-mixing sequences with zero mean
under Assumption Al.1, then use Davydov’s inequality and Lemma A.3.1 under Assumption Al.1

sequentially; and the final bound holds under Assumption A1.1(i).
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(iv) By straightforward calculations, we have

2

N
* */
E E :xir%%

NT?

I=1,l#i t,;r
1
< E
- NT* ‘
1
< NTi E ;x

1
NT*

*
r

O(T)O(T):O(

N2T4 Z Z ZE %%I; :sxk;’YQ)

I=1,l#i k=1,k#i t,r,s,q

(4 z) 2

ir

J(imed]

1 1/2 12

2
1
NT?

) ,

where the third line holds by Cauchy-Schwarz inequality; and the last line follows by Lemma A.3.1

under Assumption Al.1. H

Proof of Lemma A.2.7. Note that E(z},u;) = E(zju,) = E(ziuy) = E(ziw,) = 0 under

Assumption A1.2(iii), then, the terms above are also mean zero. Thus, by Chebyshev’s inequality,

we just need to show following results:

(i) Let 6, = max{dy, 62}, which indicates the larger value between d; and d,. Then, we have

2
1 *
FE ?;lﬂituit ;

7% Z Z E (uiguisiiey,)
t s
= (E X

IN

2/(4+6x)
[E i |45 B g, | 4+ >]

IN

T2ZZ

°(z)

a(ft — s

5* (4+9d4)

A5, (4+6. 2/(4+64)
E ||| B ||, || )

o)

«/(4404)

where the second line follows by Davydov’s inequality for the mixing sequence and the final line

holds under Assumption Al.1 and A1.2.
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(i1) By Cauchy-Schwarz inequality

9 47 1/2 47 1/2

T2§ xtuzs E Uis

*
it

<_
- Tt

where we use the fact that F |3, us|* = O(T?) and E |32, 24||* = O(T?) by Lemma A.3.1 under
Assumption Al.l1 and A1.2.

(111)—(1v) The proofs are similar to those of (1)—(i1) and thus omitted. Il

Proof of Lemma A.2.8.
(1) The proof is analogous to that of Lemma A.2.3(ii1) and thus omitted.

(i1) By direct calculations, we have

2

N N
NT2 Z Z:Eztl‘lr = N21T4E Z(If;xft)] [ Z Z Z ()\la:qukr)\k)]
I=1,1#i t,r t,s I1=1,1£i k=1,k#i 74
1 N 2 2
S N2T4 B l%:# Xr: N, Zt: Ty
) i N 47 1/2 41 1/2
S N2T4 _E lﬂ;#i Z Agmzkr E ; m;'kt

~ SHOWNT)O(T) =0 (NlTQ) :

where the final line holds by Lemma A.3.1 under Assumption Al.1. B

A.2.3 Proof of Proposition A.1.3: Stochastic Bound of 7, — ;

Recall that

N T
Ye— Ve = ﬁASNt (=Dint + Dont + D3yt + Dane)
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where Asny, Dine, Dant, D3y and Dy, are as defined in Appendix A:

A3Nt

Dy

S
g
1

S
w
3
Il

S

'y

=
I

l—. (. 1Y L .
N Lit ( it — let> ( ) Zfﬂztw;t < ) anwit ( )

Dthl - DthQa

% Za“cit (:f:'t)\i - % 371t ) N Z Tl N N2 Z T2 N = Danyt — Do,
% Z Ty <l~bit — %Z alt) = %Z Tiplly — % Z Z Tty = Dang — Danga,

b ] i D
LT Z Z ‘%iti‘;sfys'

i t#s

To prove Propositon A.1.3, we need the following four lemmas.

Lemma A.2.9. Under Assumption Al.1 and Al .4,

AT
(i) ” N  THTY

(i) || s S0 i i

= OP(1>7

= Op(%)?

(i) | 5 32 S, it = O () + 0n (3).

(iv) Hﬁ > Zz;ﬁz > THT

Lemma A.2.10. Under Assumption Al.1,

(@) ”% RN H = x/l_N>’

(i) |3 2 Copsaiariin]| = 04().

(iii) || 57 X1 X, iy \ H = ﬁ—TL

i) || 57 2 S X, i ]| = Onl 759

Lemma A.2.11. Under Assumptions A1.1 and Al.2,

W |5

1x;ktu’ltH = OP<\/1_N)7

(i) H% D i x?tuitH =0
(iii) H% Zz Zr xftuirH = Op(\/%)a
(iv) Hﬁ Zz Zl Zr x?tuirH = Op(\/ﬁ)-
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Lemma A.2.12. Under Assumption A1.1,

(1) H T2 Zs;ﬁt THTTs

(ii) ’W D Diti D et Tt Tl Vs

=0 (;),

NT?

Proof of Proposition A.1.3.

(1) Recall that 2}, = z;; — p. By Lemma A.2.9,

1
Asne = —E Ty
N vt
i

/
= % Z (‘T;kt - % Z x;t) (-73;5 - %Z ﬁQt)
= (1-§) ¥ Dt - m X et

i i l#i
_ N - 1 D, : 1 * %/
= Azt — Asne — z\;glgo N Z E(xjx) = X,

N

Obviously, Azy1 = lim 3. B (z}z) = X, and Azny =
N—00

(i1) Note that Dy n7o = 0 by the fact % > ;& = 0, then Dy = Diny. We can decompose

DlNTl as bCIOW,

Dthl

Ly (-
:N; (i“ Zfﬂu) i NlTZZ <x Z%) ] (3-5)
% (% DT = Z Z xfﬂfﬁ) — 3 2 DT T NQT VY x;;x;’]

i il i U#i v

x(5-8)

[N —1 -
RN (Dthll - DthlQ) - Dth13 - Dthl4 X B - B )
N

It is clear that the order of D;7 is determined by both { Dy }i_, and (3 — 6). By Lemma A.2.9,

| Dinuills = Op(1), Dingia to Dinga are of order o,(1) as (N,T') — oo. So, we denote the order
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of Diny as Diy = O, <‘ 5 —
of |34}

), which means the order of D,y is totally determined by the order

(111) Recall that D2Nt1 = D2Nt1 — Dthg = % Zz fzti';t)\z — % Zl (% Zl izt) f;s)\l Note that
% >, Zjt = 0 because T, = % > ;i Tt and therefore Dynyo = 0. Then, we can further decompose

Daont = Dopy as below,

/
1 v~ 1 * 1 * * 1 *
Doy = N l’iﬂ?/it)\i = N Z (Iit — N Z xu) <x7;t - T Z xir) Ai
l r

7 7

- (1 - N) [N DY ZA] LY s

1 l#

N -1
T <D2Nt11 - D2Nt12) - DZNtlS - D2Nt147

According to Lemma A.2.10, || Doy, = Op( ) | Daniazlly = O ( ) | Daniaslly = O (]lv),

| Danrall, = O (\/—) It follows that || Do, = O ( ).

(iv) Recall that Dsny = Dsny — Danee = % 2 Tallie — 7z 9y 0; Latiye. Use the fact that
%iyt = 0 again, and thus D3y = 0, then D3ny = Dspyy. We can further decompose Dsyyy as

below

Dsyy = %Z (xft - %szkt) (uit - %Zuzr>
i l .
1 . 1 . 1 i} 1 .
= N zl: LipUit — m EZ: zl: T Uie — ﬁ XZ: ET: T Ui + m XZ: zl: XT: Ty Uy

Dsnii1 — Dsnii2 — Daniig + Daniias

According to Lemma A.2.11, || Dyl = Op(%ﬁ), | Dsniizlly = Op(2)s | Danersll, = O (T)

| Dsnirally = Op( AIZQT). Thus, it follows that || Dan||, = O,(—%).

VN
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(v) Note that Dy = ﬁ doids 4t Ty X} ,7vs, then we can decompose Dy as follows:

/
b = X% (s y D) (s i) o
l2

i st
: ( ISP DELIELS DM RS
i s#t i l£i s#t
= N]\_f 1D4N1 — Dyno,
According to Lemma A.2.12, [[Dinu ||, = O(575) and || Danally = O(557)- Then, [|Dayl|, =
O(W) + O(W)' [ ]
Proof of Lemma A.2.9

P

(i) As in Lemma A.2.1(i) and A.2.5(i), we have + >z} = hm ~ > E(zhay) = 5,
under Assumption Al.1. Then the result follows.

(i1) By direct calculations, we have

z :E : E Y
2 Lty

1 1

1
* K/ * %/
N2 § Ty — N2 § Lty
i,

o(#)-o(k)

1

1 *
NaP IR

(iii) The proof is analogous to that of Lemma A.2.5(ii1).

(iv) By direct calculations, we have

2

2
£ | Z S

k#i r

1 1
1 1 . ’
NQTZE HZ (\/_N Z Izs)
2
1
T ; Z x;ktx*/

- @O(T)O( )+0(N21T2> :O(N12T>’
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where the last line holds by Lemma A.3.1 and Assumption Al.1. B

Proof of Lemma A.2.10

(1) Note that £ (% PR )\i) = 0 under Assumption Al.1, then,

2

1

= E N Z (@hay — So) A + Sa s

2 : */
Iztxzt >\7«

IN

= WO(N)JFWO(N):O(%)’

where we use the fact that Var(N /2 3. \;) = O (1) under Assumption A1.1(iii), and { ] (z},z}] — £,)}
is a mixing sequence satisfying Assumption A1.1(1).

(ii) Note that F (% D T )\i) = 0and E (z,x}{\;) = 0 under Assumption Al.1, then,

2
_ ( S )( St )
1#1 i#£k

1 1
2 [a<0)51/(4+51)] =0 (m) ’

where the second line holds because {N~' 3", Nz}, z};} is an a-mixing sequence with zero mean

s/
N2 § xltxzt Ai

1#1

S

under Assumption Al.1, then use Davydov’s inequality and Lemma A.3.1 under Assumption Al.1

sequentially; and the final bound holds under Assumption A1.1(i).

(iii) Note that £ (= >, >° ahxji ) = 0 and E (2,2} ;) = 0 under Assumption A1.1. Then

2

NT Z Z TN

1 1 -
N2T2 Z < Z >\z T;isT zt) (f Z x;tquAj>
q

1 51/(4+61) _ 1
N2T Z Qij (O) =0 NT |’

1,J

AN

where the second line holds because {7~ >~ N} x7 } are still a-mixing sequences with zero mean

under Assumption Al.1, then use Davydov’s inequality and Lemma A.3.1 under Assumption Al.1
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sequentially; and the final bound holds under Assumption A1.1(i).
(iv) Note that £ ( NIT Ditd Dr THT A ) = 0 under Assumption Al.1. Then

2

N2T Z Z TN

l#i r

1

= NAT2 Z Z B | N, <Z x}*{) (Z :Uzt> :Cj-;)\j] to be changed
hJ T I#i k#j

1 ) *

S Nt Z% > Tk ‘ A ZZx’)\ NO
k#j 2
47 1/2 47 1/2

1 *

= N2T2 L \/— ;xﬂ T\
v 2

- @mmmﬂ:c)(NﬁT),

where the fourth line follows by repeating uses of Cauchy-Schwarz inequality, and the final bound

holds by Lemma A.3.1 under Assumption Al.1(i). H

Proof of Lemma A.2.11. By Chebyshev’ inequality, we just need to show following results

(i) Note that £ (& >, zjyu;) = 0 and E (z}u;) = 0 under Assumption A1.2(ii). Then

— N2 Z E tultl' tu]t)

1
5* (4+8+)
N2 Z ai; (0 =0 (N) ’

2
LI P
N xitult
)

AN

where the final bound holds because {x},u; } are still mixing sequences under Assumptions A1.1 and
Al.2.
(i) Note that E (5 >, >, 2jyuie) = 0 and E (2,u;) = 0 under Assumption A1.2(ii). Then

1
E'T

N Zl:ult

41 1/2 41 1/2

ofk)

*
it

2
I
i l

AR
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where the final bound holds under Assumptions Al.1 and A1.2.

(ii1)—(iv) The proofs are similar to those of (i)—(ii) and thus omitted. l

Proof of Lemma A.2.12. By Chebyshev inequality, it suffices to show as follows:
(i) Note that £ (NT > ZS bt jtﬁé%) = 0 and E (z},2}lvs) = 0 under Assumption Al.1,

T
( 7 ird zt) < Z w;;x;‘s%>
r=1,r#t s=1,s7#t
61/(4+61)
272 ZaU(O)
N=2T ¥

1 1
= Y (N)=0 (NT2> ’

then,

2

T
G S i,

i s=1,s7#t

- N2T2 Z
1

o)

IN

where the second line holds because {ZS 1stt VeTisT a}, } are still a-mixing sequences with zero mean
under Assumption Al.1, and the final bound holds under Assumption A1.1(i).

(i1) The proof is similar to that of (i) and thus omitted.

A.3 Some Technical Lemmas

In this section, we present some lemmas that are used in the proof of the technical lemmas in the last

section.

Lemma A.3.1. (Theorem 4.1, Shao et al. (1996)) Let2 <p <r < 00,2 <v <rand{&, t > 1} be

1
" < 0. Assume

an a—mixing sequence of random variables with E (&) = 0 and ||&||, = (E |&]|")
that a(s) < Cs™%  forsome C > 0and > 0. Let Sp = Zthl &:. Then, for any € > 0, there exists

K =K(e,r,p,v,0,C) < oo such that

E|Sel < K ((mw max (&[5 + T/ ma H&Hp)

1<t<T
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(v—2)/v
where Cr = (ZtT:o (t+ 1)2/(”_2)a(t)) . In particular,

BIsl < & (17 max 612+ 7 max 1)
<t<T

1<t<T

if0>v/(v—2)and 0 > (p— 1)r/(r — p), and

E|SrP < KT max ||&]|”

1<t<T

if 0 = pr/(2(r —p)).
The lemma is adapted from Lemma S1.2(2) in Zhu (2017), and our proof strategy is the same as
those in Zhu (2017).

Lemma A.3.2. Under Assumption Al, max Z;F:l | E(it gy Tisks) || = O(1)
i,t,k1,ko

Proof. By Corollary 16.2.4 of Athreya and Lahiri (2006), |E (2.4, Zis,)| < 4 [2a(]t — s|)]*/* C2

Vi, t, s, ki, ko. It follows that for some x > 2,

max ZUE (Tit g Tiss)| S maxz )2 <maxZ|t 5|~/

i,t,k1,ko
g 7752 < o.M
T=1

AN

Lemma A.3.3. (Lemma C.3 in Zhu (2017)) The following hold.

(1) Let Z € R™% be a random vector whose jth entry is denoted by Z;. Suppose that there
exist constants b,y > 0 such that Vj € [my], Z; has an exponential-type tail with parameter
(b,7) Then for any nonrandom vector a € R™, a'Z has an exponential-type tail with parameter
(bllall 10" (llalls +2) . ~)

(2) Let {ZJ};Z be a sequence of random variables. Suppose that constants b,y > 0 sat-
isfy that Vj € |[my|,Z; has an exponential-type tail with parameter (b,7y). Let ¢ > 0 be any
nonran- dom number. Then there exists a constant C., , > 0 depending only on ~y and q such that

Emaxi<j<m, |Z;|? < Cygmzb? and E|Z;|* < C, b1Vj € [my]
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(3) Let Zy and Z5 be two random variables having exponential-type tails with parameters (b, v1)
and (b, y2) , respectively. Then ¥y € (0, MY (11 + 72)71) , Z1Zo has an exponential-type tail with
parameter (21/701)1()2, 70) , where o = 172 (71 + 72)_1 .

(4) Let X have an exponential-type tail with parameter (bx,~vx). Then Va € R, X — a has an

exponential-type tail with parameter (bx + |a|, vx)-

A.4 Additional Discussions on the Effects of Heterogeneity in

{zu}

In this section, we will show that the key results we established under the homogeneity of x;; are still
valid with slight modifications.
We relax the homogeneity assumption on z;;. Namely, we drop Assumption A1.1(i1), and instead,

assume

Assumption S1. E(z;) = p;, Var (xy) = i, and Cov (v, xy—i) = Ly, which vary across i.

Besides, we denote d; = p; — ji such that d; = O(1) in general, where i = N™* 3. ;.

Recall that z;; = x4 — Z;, — T+ + Z.., by simple and direct calculations, it follows Z;; = z}, —
Z; — x%, + x* under the heterogeneity assumption imposed above, where z}, = x;; — 1;, and z7, 7,
and 77 are defined as before based on z},. Similarly, z;; = x, — z} also holds by direct calculations.
Differently, we have z;; = z}, — =¥, + d; now.

By careful calculations as those for homogeneous settings of x;;, we can readily show that most
of results in the Appendix A still hold, the heterogeneity on {;; } only has impacts on the asymptotic
behavior of 7, fort = 1,...,T.

In particular, the heterogeneity of z;; we consider above have no impacts on the asymptotic dis-
tribution of B due to the symmetric structure of (1.2 .2). To see this point, according to results in
Section S1 and above direct calculations about Z;; and Z;;, immediate results for the A;n7, BinT

and By y7 are the exact same as those in homogeneity case even under Assumption S1. By repeated
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and tedious derivations, we can readily show the bounds for A;nr, Biy7 and Boy7 in Section S1
still pertain if we impose some necessary but mild conditions as those Assumption Al.1.

We now turn to B3y below, recall that

Bsnr = Bsnt1 — Bante = % ; ; LTy Ve — ﬁ ; ; ; Tisiy V-
In particular,
1
B = — Tl
3NT1 NT XZ: zt: LitLig Nt
- !/
= %ZZ Tt — %Zm}%—di Tt — %Zx;ﬁdi
it L J J
- /
- I [x;—%zx;t X S
it L j J
lT Z Z d; [95 Z %t] Yt = Bsnria + Bsnrie + Bsnrie,
it

Following the same arguments for homogeneity case, Bsy71, = O, (T -V 2) , and by straightforward
calculations, it is easy to obtain that Byy71, = O, (T~/?), and Bsyric = O, (N~V/*T~1/2) under
some necessary but mild conditions as those Assumption Al.1. Therefore, Bsyr1 = O, (T—1) still
holds as we show in the homogeneity case. And similarly, we can show Bsnre = o, (T‘l/ 2) , which
is the same as the homogeneity case too. Therefore, under Assumption S1, the order of Bsyr does

not change. Then we can rewrite B3yt as follows,

1
BSNT—_ZZ Ty + didy) 7t+0p(ﬁ>'

Following arguments of proofs for Theorem 1.3.1 in the Appendix A, we can show that the asymptotic
distribution of Bsy7 is the normal distribution and asymptotically independent of the asymptotic
distribution of By

In summary, under heterogeneity of x;;, those bounds for the related terms still can be unchanged
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as those in homogeneity case under mild conditions, and we can show the asymptotic normality of
B — (3 by employing suitable central limit theorems and almost sure representation theorem.
Under heterogeneity case, the expansions of Xz — )\; indeed does not change by direct calculations

and noting the fact that 7;, = ], — z; still holds under Assumption S1, then, we have

N =\

1
= - (ﬁ;mtwﬁ) NTZZ%x At (NTZZmth ) NTZZx]tx]t%

J#FLt

1 1 1
+ T Z ‘r:tx;kt,> Z THT e + (T Z xjt‘x:t,) T Z Tilit + Op (5;[1T) :
t t t

Under Assumption S1, we can further rewrite XZ — \; as follows, namely,

YT

-1
1 1 1
o (N 2 Em“”) NT 2 2 i <N 2 E”) N7 2 2 (i = Zia)
j N / it
1

1 1
+2;, ; T Z (Thay — Ziz) v + ( Z T3 ) Z TiUit + Op (513%“)
t

= _Rli - RQi + Ré\i + R4i‘

If we treat (—R3; + R3;) as the whole, we can have similar results as shown in Theorem 1.3.3 by
using suitable notations and appropriate central limit theorems under mild conditions.

Similarly, under Assumption S1, the asymptotic normality of 7, — -, still holds by using suitable
notations and appropriate central limit theorems. To see this point, note that 7,, = z}, — 7, +d; under

Assumption S1 now, we can show 7, — v < Azy, (R]n; + Ran, + Ray:) by direct calculations,
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where

Asne = % Z Bty = % Z iy + % Z d;d; + O, (\/_IN)
-1
Rive = - (% YIRS did;) (% > sz;a:;::>
i 7 i t
+% > ahanh + % > dia\i+o, (\/LN)
i i B
Rive = - (% il did;> (% )3 xz-;x;;’) N7 2 i
1 1
+ T Y didiys + o, (ﬁ)

i Ss#t

R a:;;x;‘m]
7 t

1 . 1 1
RgNt = N Z XUt + N Z diuz‘t + Op (\/_N> .

Based on the above decomposition, we can still show that R ,, RJy,, and R3], are asymptotically
pair-wise uncorrelated, and A;; +, is nonsingular and well-defined under conditions. Following sim-
ilar proofs as those for Theorem 1.3.4 in the Appendix A, it is straightforward to show 7; — ~; will
follow standard normal distribution by employing suitable central limit theorems and almost sure
representation theorem under mild conditions.

Thus, the asymptotic normality of ,/6\ , /):Z and 7; will still hold under mild conditions as Theorems
1.3.1, 1.3.3 and 1.3.4 under the heterogeneity {x;}. It is a standard exercise to follow proofs in
the Appendix A to show the uniform consistency of XZ and 7;, and asymptotic null distribution and
local power properties for the max-type specification tests statistics after being rescaled appropriately

under necessary but mild conditions.
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Appendix B

Appendix to Chapter 2

B.1 Proofs of Main Results

To prove the main results in the paper, especially Theorem 2.3.1, Corollary 2.3.2, Theorem 2.3.3 and
Theorem 2.3.4, we need some technical lemmas. Below we first state the technical lemmas whose

proofs can be found on the online supplement, and then prove the main results in the paper.

B.1.1 Technical Lemmas

We first state some technical lemmas related to the consistency of the estimated mildly explosive
factors under the null. In the case where the factors exhibit a unit root process, the results are relatively

simple and similar to those in Bai and Ng (2004).

Consistency of the estimated mildly explosive factors under the null

Let 7r = (p0)" Jg, where recall that (p0)" = diag((0%)" ..., (pgRO)T) and Jp is a normalization
constant used in the PCA estimation.
The following three lemmas hold under some mild assumptions when py, = 1 + 2—; with ¢, > 0

being finite for Vir = 1,..., Ry, and py; = 1 for 7.
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Lemma B.1.1. Suppose that Assumptions A2.1-A2.6 hold. Then B” ﬁjT’ Yis asymptotically invert-
ible.

Lemma B.1.2. Suppose that Assumptions A2.1-A2.6 hold and the null hypothesis in (3.2 .5) holds.

Then there exists H with asymptotic rank Ry such that as (N, T) — oo,

~ 2 _ _
HilBt - .fto = Op(Nip> + Op ([(pgl) = +.o+ (pgRo) QT} T) ;

(a) % 23:2

(b) (H‘lﬁt - fto) = O,(N7?/2) for each given t;
(c) (XZ — H’*l)\?> =0, (J5"' (1 + T 'N~P2TY?)) for each given i.

Lemma B.1.3. Under the assumptions of Lemma B.1.2,

Remark B.1. Lemma B.1.2(a) reveals that under Assumptions A2.1-A2.6, B, can only estimate
f? = B + w, instead of B, consistently up to a rotation matrix H . This is because the loading
matrix for both BY and w; are the same as shown in (2.2 .10). However, for (2.2 .10), if we allow
that Z;; = N By + X, ;u; + €; and further assume that |[AB A, || = O, (NV) and v < p, By and
u, can be identified separately by following the procedure that has been recently proposed by Peng
et al. (2020).

2

Lemma B.1.4. Under the assumptions of Lemma B.1.2, HAOfO’ —AB| = O,(N+T).

Lemma B.1.4 is interesting in the sense that, under the null, if factors follow mildly explosive
processes, common parts in (2.2 .10) can be estimated consistently for any p > 0 because the rate

does not involve p explicitly, which represents the intensity of factors in the current paper.

Consistency of estimated nonstationary factors under the null

In this subsection, we focus on the case with p = 1, po, = 1 for Vr, and pp; = 1 for all <. In this

case, it is the similar case developed in Bai and Ng (2004), and Lemma B.1.5 and Lemma B.1.6
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are presented for completeness and can readily obtained by following proofs in Bai and Ng (2004)

directly under assumptions in the current paper.

Lemma B.1.5. Let f, be defined by (2.2 .9). Consider estimation of (2.2 .10) by the method of
principal components and suppose that Assumptions A2.1-A2.6 hold. Then there exists an H with

rank R such that as N, T" — oo, under the null hypothesis (2.2 .5), and p = 1

(@) min{ N, T}T~ 1Zt L 1Bt—ft = 0,(1)

(b) min (\/_ T) ( 1B, — ft) = 0,(1), for each given t.
(c) min{/T, N} (5\z — ﬁ"U@) = O,(1), for each given i

Lemma B.1.6. Under the assumptions of Lemma B.1.5, and let p = 1, with the same H in Lemma

=0, (N#) +0, (N

B.1.5,
Z H'B,— f°| =

Y
N——

max ——
1<t<T+/T

B.1.2 Proofs of Theorem 3.1

Mildly Explosive Factors Case

The structure of the proof follows the proofs of Lemmas 1, 2, 3 and 6 in Bai and Ng (2010) with a
substatial amount of differences. to be emphasized. For clarity, we focus on the case where pg, > 1
forr =1, ..., Ry under the null. When p,, = 1 for each r, the proof is basically done in Bai and Ng
(2010). The mixture case follows from the combination of arguments in these two separate cases.

Note that

tr (¢, A€)

tr(e e )

) 1 T ) -1 N T ~
\/NT (p - 1) = \/NT NT2kp Z Z ezzt] \/—TFLT Z Z 148

(B.1.1)

It suffices to prove the theorem by establishing the following results:

(1) NTz Zz 1Zt o 63 = NT2 Zz 1Zt 2 €410 (N'/2= P)+0, (ke NY2T™1) = NT2 Zz 1Zt 2t

Op(N'27P) + 0, (1)
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(ii) ﬁ Efil ZtT=2 ir10ey = ﬁ Zz]il Ethz eitflAeit"‘Op(N_l/Q"‘T_l/Q)"‘Op(“TNlﬂT_l) =
ﬁ sz\; Zthz eit-18¢e; + 0p (1) ;

(ii)) A= Y0, Y, ei1Aey — N (0, 507) as (N, T) — oo;

(V) 7= Zz ek = = 302+ 0y(1).

Given (i)—(iv), we have

N T -1 N T
. 1 1
VNT (p—1) = NT? Zzeft—i-op(l)] szeifflAeit"’_Op(l)
i=1 t=2 i=1 t=2
J N2
— N (0,2 (03) ol
Below, we establish (i)—(iv) in order.
Step 1: We show (i).
Note that €;; = e;; — e;1 + AYV, — dgﬁ} = e; + A;; where V, = 2222 Vg, Uy = 1Bt I

d; =X — H''X% and A;, = —e;1 + A”V,— dF,. Then

1 NI , N
NTQZZe?t - NT2ZZ ”+NT2ZZA +NTQZZ€itAit

i=1 t=2 i=1 t=2
Qi + @2 + 2@3-

We show in (iv) below that Q; = %0_3 + 0,(1). We will show below that Q2 = o0, (1). Then Q3 <

(Q1Q2)'/? = 0, (1) and the result in (i) follows. For Q,, we have

N T

1 N 2

Q = NTQE E <€i1—)\?/Vt+d;Ff,>
i—1

1 0 - 2 1 - 2 1 -
Sy DN g s 3 e |

3(Qqg1 + Q2,2 + Q2,3) .

F,

VAN
w

)

Under the null and Assumption A2.1(a), Qy,; = w7 SV €4 = 0, (T") by Assumption A2.3(c)
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and Markov inequality. By Lemma B.1.3 and Assumption A2.2,
1 1 «
02 2 -1 - -1
Q2= D [N 75 D IVilFF = 0, (N"71) O, (N7) = 0, (N 7).
i=1 =2
Following Lemma B.1.2(c), we can readily show that
|
2 —
~ 2 lldil* =0, (757) .
i=1

where we use the fact that J5 ' NP/2T%2 = (1) for a general choice of J such as T%/2 or T .

Using I/*'\’t = 22:1 ﬁs = Zzzl(ﬁs ~-HfHY+H 22:1 0 we have

1 2
T2 F,
t=1
9 T t R 2 9 t 2
< S (B-HE)| + 5> |> o HS
t=1 s=1 t=1 s=1
9 T t 2 9 T t . 2 .
2 _ _
< IHI 730 ma |3 (BB - 22)| + X500 )[R ()|

= Oy (TE) ™ + o+ () ™1) O (N7) + 0, (T ir) O, (T3)

2
<

22:1 (Pg)_T 1o

+ the dominated term = O, (k7) by following proofs

where the first equality follows from (B.2.14),(B.2.10), and Lemma B.1.3,

onN-T 15T g o |7
H(p0> Kp Zs:2dlag (Cla"cho)stl

of Lemma B.3.2(b) as proofs of Lemma A5(b) in Horie and Yamamoto (2016), and Assumption

A2.1(b) and (d) when F; follows mildly explosive processes. Then

. 112
Fi

1 & 1 <&
Qo3 = N ;:1 Ild;]| T2 ;2 ‘
= 0,(J5%) Op (TET " kr) = Op(T k) = 0, (1).

Consequently, Q2 = 0, (1) .
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Step 2: We show (ii). 237", 370, @ 1A% = A= 30 3o, e 1 Qe + 0, (1)

As in Bai and Ng (2010), we can readily show that

T

1 ~ R 1 r 1 N 1 N 1 T R
T ; <6“1A€“ T ; eitlAe#) = o7 (eir — e?T)_ﬁ (ef — e?l)—ﬁ Z (Aey)?—(Aey)” .

Then it suffices to prove (i1) by establishing the follow claims:
(i) A7 oL, (@ — ) = O, (NV2T71) = 0, (1),
(i2) A7 Sy (@ — efp) = Op(NY2T™' 4 N7V2 4 T712) 1+ O, (ke N'VPT™!) = 0, (1),

(ii3) g 2oty Yo [(A€)” = (Aew)’] = Op(N'PT 4 N712) = 0, (1).
(iil1) follows immediately from the proof of Lemma 3 in Bai and Ng (2010). For (ii2), recalling

that é;7 = e;r + A;7, we have
N N

1 L 1
TZ;(G?T_G?T):\/NTZ zT+ Z ZTeiTEB1+2B2.

=1

For B;, we have

3 al 3 N 2 9 3 ZN 9 2
v S g ot e ANV o D il
= 3(Bi1+Bia+ Bigs).

Note that By ; = SN €% = 0, (N*T-1) by Markov inequality. By Assumption A2.2 and

1
VNT
the fact that || V||* / T = O, (NP) due to Lemma B.1.3,

By = \/_ZHAU\ Lz =o, (NP712) 0, (N7?) = 0, (N7

where the final equality holds under Assumption A2.5 and A2.7. Inaddition, >~ ||d;||* = O, (NT5?)
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by similar arguments as used in the proof of Lemma B.1.2, note that for Fr, we have

5 |12 T o) 0 2 T 02 2
FT SQ 23:1 Bs_Hfs +2 Zs:lfs HHH

t -1 0 2 T 0\—T ¢0 2
<2||H|” max ||, (H'B, - 1) | +2 (L o) " A

2

1<t<T

= 0y (NPTTE (o) + .+ (br,) "] ) + Oy (Thir) = O, (Thir)

H (o))"

where the first inequality holds by the fact that (a + b)? < 2a? + 20?, and first equality holds by
Lemma B.1.3, the construction of H in (B.2.10) and Lemma B.3.2(b), and the final equality holds

when F; follows mildly explosive processes under Assumption A2.5.
N
LSNP EE] =0, (v 0, (17 T2kr) = O, (N1
\/NZH zHT T = p( B) p( B"‘?T)* p( “T)
i=1

Thus, B; 3 = 0, (1) under Assumption A2.7(a). In sum, By = o0, (1).

Next, we study Bs. We make the following decomposition:

B, = — erein + — €; /\?’V —-— eird, F
’ \/NTZZTIJNTZT T\/NTZTT
= —DBy1+ Bys— Bys.

Following the proof of Lemma 3 in Bai and Ng (2010), we can readily show that B, ; = O, (Tfl/ 2) .

For B 5, we have

BT = 0,v-002)0, (N712) = 0, (V).

t=1

22_\/—

where we use Lemma B.1.3 and the fact that HZfil ST Aeyy

= O, (N?/2T"/?) by (B.2.4). We
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have shown ||ﬁT|| = O,(J, BﬁlT/ ?). Below, we will show that

1 N
N Zz:; eird,;
= Oy (T NPT () 4 (0,) T]) O, (T (VT2 4 k1))
- 0, (jB—l (N‘1T1/2 + il 2)) , (B.1.2)

under Assumptions A2.5 and A2.7. Then, under Assumptions A2.7(a), we have

By 3

IN

N
—| 1 1A e _
NHNZaTdi 7| Bl =820, (75" (N 4 %)) 0T Tl
=1

= 0y (NPT V2 4 oy NPT

= 0,(1).

It follows that By = O, (N~1/2 + T2 4 g N'2T1) = 0, (1) and A= 370, (€% — ) =

0p (1) under Assumption A2.7(a).

Now, we show (B.1.2). Noting that

di = A—H™N
~ / ~ ~
— J;’H (B/H—l _ fo) (fo _ BH/A) A0+ T2 H <f0 _ BH’*1> A

~ /
+j§2Hf0/€i + j§2 (B_Hlfl o f0> €;

dii+dio+dizs+d;y (B.1.3)

we have
N

N
1 1
N 2 dieir = N Z (dix +dis+dis+d;4)eir = Dinr + Dant + Dsnr + Danr.

i=1
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We bound Dy for [ = 1,2, 3,4 in turn by using e;; = 22:1 €;s under the null. First,

[ Dinr||

B - f°H’

IN

jBfZNfl

Hf(] - EHlfl

N
|Z A?Q’T
i=1
= Jz°N7'0, (jBN—p/2T1/2 [(pgl)*T +...+ (pgRO)*TD O, (N7P2TY2) O, (NP/>T%/?)

o (T ) ) )
-

For Danr, we have Doygy = Doy Yo Aeir, where S8 Aer = O, (NP/2T%/2) as studied

where the first equality follows by (B.2.15), Lemma B.1.2(a) and the fact that £ Hsz\il ANe;r

O (NPT) by Assumptions A2.1(c), A2.2 and A2.4.

above, and Doyr = NfljB_QHj’O’(ﬁH’*1 — £9). For Dy, we adopt the decomposition of B —
fOH' in (B.2.13) to obtain

Donr
= J;*NP! [Hfm (A%u + 6)/ (A’u + €) B+ Hf"B°A%BJ;' + Hf"¢ \’B"BJ;"
= DZNTa + DQNTb + DZNTC'
Following the proof of Lemma B.1.2(c), it easy to argue that Dy, and Dy dominate Doypy. SO

we focus on Dy 7y and Doyt below. Note that the leading term in Doy 1S given by Doyryy =

TN HBYB°AYef°H' 7" and

HD2NTb1H — ngN_p_l HHfOIBOAO/EfOH/j:FlH
N T T

< jB_QN—l jT_lN_pZZHfgejs)‘?/ ZB?B?/H/
j=1 s=2 =9

= N0, (N2 () + o+ (b)) O (T8 [(08)T -+ (b))

- 0,75 N ),
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where the first equality follows because we can show that HJT_ NP Zévzl S H o A

O, ( N-P/2 [( o)+ (0 _T} ) holds by the same arguments us used in the study of || Ag ||

T
=0p (JB [(p&)T +. o+ (Pom,) ])
by similar arguments as used to bound || A3 || in the proof of Lemma B.1.2(b). Similarly, the leading

in the proof of Lemma B.1.2(b), and the fact that ‘ ‘ S, B'BY"H’

term in Doy, is given by Donrer = T3 NP THBY¢ A"BYB°H' 7! and

T
Donra < Jg N7 ijlN*pZHBgBS’

T
0 or /
9> euBY'H
t=2

= J5’NO,(N7?)O, (TpN*'?)

— Op (jB—lN—l—p/Q) ’

where the first equality follows by the fact that HJT_ NS HB’BY

= O,(N?) by fol-
lowing from the same arguments as used to bound ||Aj; || in the proof of Lemma A.2(b), and that
= NS e BYH
Lemma B.1.2(b). Consequently, Doyr = O, (J5 N ~'77/2) abd

= O, (JpN?/?) by similar arguments to bound ||As3,]|| in the proof of

Dowr = Oy (NPTY2) O, (T3 N-172) = 0, (T3 'N-1T2)
For D31, we use e;r = 23:1 ¢;» under the null to obtain
1 -7 _ T =
Dove - 75°H () (N HHACE f> = 75H (o) D
Under Assumption A2.1 and A2.4, we have E(Dsyr) = 0. In addition,

B|Dowr | =

N N T
Z Z Z tr [ fOfO/ (Po) T} €z‘s€i'r€jq€jv]

1 j#i r,s,q,0=2

L NI .
F Z Z tr [ fOfO/ (Po) ] €is€ir€z’q€m]

= Dsnre + ]D3NTb-
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For D3n7., we have

H])?)NTa

Elmy > w[(o) " ESF) (08) 7] B ()
- (NL >3 aga§> > [ (o) B (00| = Ok,

where the first equality holds by Assumption A2.3(c) and the law of iterated expectations, the second
equality holds by Assumption A2.1(c) and the law of iterated expectations, and the final equality

holds because

T T
S ue[(e) B )] = B ) T () fg]
$,4=2 s,;:Q )
< BN ()" £ =0r), (B.1.4)
s=2

where the first equality holds by the definition of the trace operator, and the last equality holds because

[ b " 2 < | oh) T ! L diag (ens o) B ) (rr)

by following proofs of Lemma B.3.2(b) as proofs of Lemma A5(b) in Horie and Yamamoto (2016).

For D3N, we have

Doy = 530 O e [(6) B () 7] E ()

i=1 s#£q=2

b D0 w0 TEGEA) (o) 7] B ()
i=1 s#r=2

+$ZZU‘ [(0) " B (00) "] B (L)

IN

{%ima +E (e }EZtr[ o)) Y (o))"

= ON'T)O(1)=0(N"'T),

where the first equality holds by the m.d.s property of the sequence {¢; } and the law of iterated
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expectations, the inequality holds by (B.1.4), and the last equality holds by the proof of Lemma
B.3.2(e). It follows that &/ H@g,NTHz =O(N7'T + k) and

IN

IDovell < 757 | B (68)"| 1P|

= J320,(J5) 0, <N—1/2T1/2 I “1T/2> ~0, (jgl <N—1/2T1/2 n H1T/2))(B.1.5)

where the first equality follows from (B.2.10). In addition, it is easy to show that D,y 1s dominated

by D3NT-

In sum, we have

SRR () T L ()] ) O (T NTITYR) 4 0, (5 )

1 1“) . (B.1.6)

(
(75

Il
o©z|

Now, we prove (ii3). Noting that Ae;; = Ae; — (Ag’vt + d;Bt> = Ae;; — 14, we have

1 N T 2 9 B 1 N T ) 9 N T
WZZ[(A%) — (Aen)?] = m;;rﬁ—m;;(m#m

= D1 - 2D2

By Lemma B.1.4, it is readily to see that D; = N~Y/27-15°N ST 42 — N-127-1|A0 O —
K§/||2 = N~Y2T710, (N + T) = 0, (1) holds. For D,, we have

N T N T N T
1 1 1
Dy = —==> > AeaXNvi+—=—> > AeydHf) +—== > Acyd(B,— Hf)
Tzth NTi:lt:Q NTith

= D1+ Doy + Dys.
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Noting that Ae;; = €;; under the null, by the Cauchy-Schwarz inequality, we have

L 1/2
2
(33 10r)
t=2
1/2

1/2
T /

1
[D2all < fz

t=2
T 1/2 1 T N
0 (3l n
=2 t=2

NE=U2) 0, (NP?) = O, (N717),

N
N2 3 Aey Al
=1

N 2
E 0

i=1

1
NT
where the second equality holds by (B.2.4), and Lemma B.1.2(b). Similarly,

N T
[ D2l = ZZ ' flen
=1 t=2

T

(id|>12 i

i=1

o\ 1/2

(e ]

T
Z (Pg)iT ftoeit

t=2

IA
2|~

= 0, (N'275") 0, (1) O, (Tg) = O, (N'/2T71) .

where the second equality holds by the fact that S~ | [|d,||* = O, (NJ;?) by Lemma B.1.2, that
~ PR Hthzz €it Jr (pg)TH2 = O, (1) by similar arguments as used to obtain Lemma B.3.2(c)
(see Horie and Yamamoto (2016)), and that H(pg)T H H = 0, (Jp) as in (B.2.10). In addition,
we can readily argue that D3 is dominated by Dso. Then Dy = O, (N~Y/2 + N'/?T~1) and
SN ST (A — (Ae)?] = 0, (1),

Step 3: We show (iii).

Let nn: = 22;11 ﬁ Zf\il €is€it. Then Zyy = ﬁ Zfil 23:2 Zﬁ 11 €isCit = Zt 5 INt- Note
that Ae;, = e ande;; 1 = S.'_! ¢;, under the null. Under Assumption A2.1(c), E (nve | Fyreor) =
0 by the law of iterated expectations and we can resort to the martingale central limit theorem (CLT)

by verifying the conditions:

2 _
(1) s2=F [(Zfz nNt> ] % ot where o4 = 11m sz Lol
(2) (<‘32T)_1 ZtT=2 E [7712\& (|7e] > ds7) | ‘F]EVT,t—l] — 0 for all § > 0;
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(3) (<‘32T)_1 Vr — 1 where Vp = Ethz E [7712Vt ‘ ‘Flg\fT,tfl] .

Gvien the above conditions, the martingale CLT implies that Zy; = Zthg NNt 4N (0,%0%) as
(N, T) go to infinity jointly. We now verify conditions (1)—(3) in order.

First, by the repeated use of Assumption A2.1(c) and the law of iterated expectations, we have

T T 1 N N T T t-1r-1
sp = FE Z ZﬁNﬂ)Nr] = NTZ Z Z Z Z ZE (€is€it€ir€iq)
t=2 r=2 i=1 j=1 t=2 r=2 s=1 g=1
1 N T t—1 t—1 1 N T t—1 t—1
= Y7 Z Z Z E (€is€igey) = N2 Z Z E[E (612t|f]€VT,t—1> €is€iq]
i=1 t=2 s=1 ¢=1 i=1 t=2 s=1 ¢=1
1 N T t—1 T_1 N 1
= NTQZUZQZ E(EZZS) _WZU?—)§J?’
=1 t=2 s=1 =1

where 0! = limy_,oc 7 > ;_; 0; . This verifies condition (1).

For condition (2) above, it suffices to verify that

T
(5%)_1_5 Z E |77Nt\2+'8 —0 as (N,T) — oo for some 3 > 0.

t=2

Since 1/s% = O, (1) as shown in condition (1), it is sufficient to show that 3., E [nn.|* —

0 as (N,T) — oo.Note that

T T
> Bl = ) E
t—2

1 T N

= E E E E(e- €ir€iq€i 64)

N2T4 isCirCiqCivtit
2 i=1 1<r,s,q,v<t—1

3 T N N

2 2
+—N2T4 E E g g E (eiseireitejqejvejt)
t=2 i=1 j=1,j%#i 1<r,s,q,v<t—1

Ri + 3Rs.
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For R, we have

1 N T t—1 4
Ry = N2T3 Z T Z B ( 6"5) E?t
i=1 =2 s=1
1 N 1 T t—1 g7 1/2 1 T 1/2
= Nop ZE TZ Cis Tzﬁft]
=1 t=2 s=1 ] t=2
L N[z -1 87 /2 | T 1/2
< N2T3Z{TZE €is TZE(E?t)
=1 t=2 s=1 ] t=2
u . 1/2
1 4 _ -1
< NTg{T;t} =0 (N'T™)

where the first and second inequalities holds by Cauchy-Schwarz and Jensen inequalities, and the last
8

inequality holds by the fact th
A2.1(a). Similarly,

at

< Mt* (see, e.g., Shao et al. (1996)) under Assumption

€is

2

1<s<t—1

T N N
Ry = N2T4 ZZ Z Z E(Eiseirejqejveiteit)
t=2 i=1 j=1,j7#i 1<r,s,q,v<t—1
T N N [ /i1 2 /41 2
- N2T4 2.0 D E (Z 6i8> (Z qu> €5t
t=2 i=1 j=1,j#i | s=1 q=1
1 N -1 T t—1 4 i1 41742 L I 1/2
< N2T3 T ZE ZQ‘s) ( qu> T ZE (G?ﬁ?t)]
ig=1 " t=2 s=1 a=1 t=2
- 1/2
M L1 B
< o7 T;t”‘ =0 (T7)
ij=1 L~ t=
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To verify condition (3), note that

t—1 t—1

N T
Vy = N12ZZE Zzezsezrezt|f]6\/Tt 1

=1 t=2 s=1 r=1

T —
ZZZEZSEW ztl"rJeVTt 1}
=1

where we use the m.d.s property of {¢;; }, the law of iterated expectations, and Assumption A2.1(c).
By the the law of iterated expectations and the arguments as used to verify condition (1), E (V) = s2.
By direct moment calculations as in the verification of condition (2), we can show that Var(Vy) =

o(1). Then Vi = s% + o0, (1) and condition (3) follows.

Step 4: We show (iv).

Under the null, e;; = 22:1 €;s. Then

;| Nz ;] NI
Anr = NT? Zzei ~NT2 ZZ €isCir-

i=1 t=2 i=1 t=2 s=1 r=1
By direct moment calculations, we can readily show that
t—1

T t— ) | NI , 1
ZZE(%) = NT2ZZZUi :§JE+0(1)

1 t=2 s=1 i=1 t=2 s=1

1
NT?

WE

E (Anr) =

where ? = limy_ % Zf\il o?. As in Step 3, we can also show that Var(Ay7) = O (T!). Then
ANt = %_52 + Op(l)
The Case of I(1)-type of Factors

Under Assumptions A2.1, when the factors follow a unit root process, the proof is a combination of
similar arguments of Steps 14 in the last appendix and the corresponding proof given in Bai and Ng

(2010). We omit the details for brevity.
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B.1.3 Proof of Corollary 3.2

Case 1: Factors follow mildly explosive processes
We are going to show o and o2 are the consistent estimates of o and o2, respectively. The
desired result then follows by Theorem 2.3.1 and the Slutsky lemma. By the law of large numbers,

it suffices to show,

9 N T t-1 9 N T t-1
(a) NT2 ;;;éi = NT2 ;;;6?5 +0p (1)
9 N T t-1 9 N T t-1
(b) NT2 Z é?sézt NT2 Z Z €is zt + Op (1)
i=1 t=2 s=1 i=1 t=2 s=1

Recall that é; = ¢ + AV f — X;ﬁt Then, we show (a),

9 N T t-1 9 N T t—1 4 N t—1
~2 2 o g0 N7
DIPIPILARIE D BD DB D DD DB b ARl 22
NT i=1 t=2 s=1 NT i=1 t=2 s=1 NT i=1 t=2 s=1
9 N T t-1 N
e D) )] ITETS
2 1 Js 1
NT i=1 t=2 s=1
9 N T t-1
= NT2ZZ 5128+4Ga1+2Ga2
i=1 t=2 s=1

We use the fact that G, » = 0, (1) and verify this claim below, then, by Cauchy-Schwarz inequality,

Ga1 = 0, (1). Thus, proofs for (a) are completed. To show G, » = 0, (1), note that

1 N T T
Goz < g2 2 0 [N -NB
i=1 t=2 s=1
1 T 1 N T ‘ 2}
N - fO )\l
T
_ ZHAOfO’ AB| =0, (N 4T,
t=2

where the final result follows from Lemma B.1.4 directly.
Now, we prove (b). Recall that ¢;; = €;; + AY £ — X;Et = € + AVv; — d; ft = ¢;; + a;; where
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= H_lét_ftoadi = Xi_

U
We have
N T t—1
2 § : 2 : ~2 A2
NT2 €is€it

i=1 t=2 s=1

For G} 1, note that

Gy

IN

IN

H'7'XY and a;; = AVv;— d;ﬁt, or equivalently, a; = AY f — X;Et

9 N T A N T A N T
< e+ e2al +
NT2 ; tZQ s=1 t NT2 ; t22 s=1 t NT2 ; tZQ s=1
9 N T t—1
+NT2 Z Z azQsath
i=1 t=2 s=1
9 N T t-1
= NT2ZZ 6125+4Gb1+4G52+2Gb3
i=1 t=2 s=1
1 N T T
NT?2 Z Z Z e?sa?t
i=1 t=2 s=1
1 L& (1
2
NT Z Z T Z 6is> Qg
i=1 t=2 s=1
(M + 0, (1)) % (Aofo’ AB|| =0, (Nt +TY),

where the second inequality follows by the Law of Large Numbers and Assumption A2.1, the final

equality follows from Lemma B.1.4 directly. Similarly, we can readily show G2 = 0, (1). To show

Ghys = 0, (1), following arguments involving 7-' "/ a2 in proofs of Lemma A.4 in Westerlund

(2015), we have

G,

IN

—N—

{op (N7) HA?'W 10, (1)}

-

212”& }2

Op (N"# + NPT~ 4 T77),
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where the third equality follows from Lemma B.1.2 directly, and the normalization condition 75 °B'B =
Ig,. Then, G, 3 = o0, (1) holds for sure under Assumption A2.7(b) and user-specified 75 like VT,

T and so on.

Case 2: Factors follow unit-root-type processes
For this case, we can combine above proofs for the mildly explosive factors with arguments in
proofs of Lemma B.5 in Bai and Ng (2004) and Lemma A.4 in Westerlund (2015). We omit details

here for brevity.

B.1.4 Proof of Theorem 3.3

Case 1: Factors follow mildly explosive processes

We first present some important immediate results under the local alternative:

~ 2
Bt_H_1 - ft - OP<N_p).

(1) +30

) (H”ﬁt - ff) = 0,(N~7/2), each given .

(3) (5\1 — H‘l)\i> = 0,(Jg"), for each given i

(4) max L ‘2@22 H'B, - f.| =0, (N

In order to prove above immediate results, one can follow the proofs for Lemmas 1-3 in West-
erlund (2015) and modify the proofs of Lemmas B.1.2-B.1.3 by incorporating some addtional terms

involving e;; 1 under Hiy1 : p; = 1 + Vi. It is easy to argue that such terms are dominated

TN
by the leading terms in the proofs of Lemma B.1.2 and B.1.3 under the null. This explains why the
above immediate results remain the same as those under the null. We omit the details here for brevity.
Given (B.1.1), it suffices to prove the theorem by establishing the following results:
() y= Zfil ZtT=2 & = Nr= Zi\il ZtT:2 O (N2 P) 40, (ke NPT ™) = Efil Zthz ef+
op(1);
(i) A= Doty Do G 1 A8 = A= Do Dy e 1 Ay + Op(NV2T 14 N7V2 4 T712) 4
O, (kp NY2T71) = \FT Zl . Zt 5 €it—1Ae; + 0,(1);
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(iii) ﬁ sz\il Z:ZFZQ ei—10\e; SN N (p, %J_f) as (N,T) — cowhere u = limy_, % Zfil ciaii >
0 and ‘752,1' = FE(é%);

. N T —
(iv) ﬁ Doimt Do € = % 02+ op(1).

Given (i)—(iv), we have

VNT (p—1)

Step 1: We show (i).

Recall that 7y = A f? — X;ﬁt Note that Ae;; = ey — €1 = (pi — 1) €1 + € and Aey =
Zig — :\;ﬁt =ry+ Aey =1y + (pi — 1) €1 + €. Without loss of generality, define e;; = 0 to
simplify proofs below as in Bai and Ng (2010). Then

t t t
€it = E Ae;s = E Ae;s + E Tis = €t — €i1 + Rt
s=2 s=2 s=2

where R;; = AY'V, — d’E, V="' v, = H‘lﬁt—fto, and d; = Xi—H’_l)\?. Consequently,

we have

T

L ~ | N7
NT2 Z Z (@ —e) = NT2 Z Z e + R — 2eieq — 26 Rig + 2e4 Ryy)

i=1 t= 1=1 t=2

Under H;y7, we can use the above stated immediate results and follow the proof of Lemma A.4 in
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Westerlund (2015) to obtain the following results:

N T
(1a) NITQ ;‘ ;efl =0, (T,
(1b) ! ZN:ET:G' NS S Y LG ~1/2p—1/2
NT?2 o i1€it = JNT NT;tz_;eﬂﬁ =0, (N T )7
1 N T 1 N 1 T
(1c) NT2 ZZ:; tz;eilRit = NT ;eilf tz; Ry =0, (T_l/QN_p/2 + H%F/QT_1> ,

N T
1
(Le) Y S ewRi=0, (N*W + kY 2T*1/2> , (B.1.7)

where the first line follows from Markov inequality and the fact that F (¢ ) < M under Assumption
A2.3(c), the second line follows moment calculations under the m.d.s property of {¢;; }, the third and

fourth lines implicitly use the fact that || Ry || < || A || VZ| + [|ds| Hﬁt and the above stated imme-

diate results, and the last line holds by using Cauchy—Schwarz inequality based on the result of (1d)

above and the fact that N='723"F S°T" ¢2 — O, (1) under Assumption A2.8. Consequently,
we have ﬁ Zz]\il 23;2 (€ —ef) = 0p (1)
Step 2: We show (ii)

t

t
/e\it = Z Aezs Z Aezs + Z Tis = i Z €is—1 T Z €is T th
s=2

s=2

Noting that €2, = (€;;_1 + Aat)Q =% |+ 26y 1Ay + (Aé}t)Q, we have

~

g 1 < 1 &
e-1Ae = 5 D e 3 D - 3 > (A

t=2 =2 t=2 t=2
1 1 1<
o~ ~ -~ 2
= 5612T & — 2 Z (Ae:)

T 1T 2 1T 2 17T 2_ 1.2 1.2
By the same token, thz ei—10e; = 3 thz €t — 3 thz €it—1 73 thz (Aey)” = 26 — 361 —
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% 2322 (Ae,-t)2 . It follows that

5 N T
s Z Z (€it—1A€; — ej—10e4)

i=1 t=2
1 N 1 N 1 T
\/NT ; (ezT ezT) \/NT — (ezl ezl) \/NT ; ; 6 t e t) ]
= Al — AQ — Ag

Since €;; = 0 by construction, it is easy to see Ay = \}TlT SN ek =0, (NY2T~1) by Markov

zlz

inequality and Assumption A2.1. It remains to bound A; and As.

We first bound A;. Noting that €;; = 22:2 Ae;s + Ry = ey — e + Ry = e + Ay with

Ait = —€;1 + Rita we have
1 U R 72 &
Al = — eir + Air)? — eip] = —— A% — —— e Air = A1 — 244 5.
1 NT ; [( T T) T} 'NT ; T NT ; AT 1,1 1,2

To bound A, ; and A, 2, most arguments are the same as those used in Step 1 of the proof of Theorem
2.3.1 by using the above stated immediate results for the local alternative case. Below we focus
on the tho terms that involve e;_; and arise only under the local alternative. For A;,, we write
Ao = —ﬁ vazl €iTeil —|—ﬁ Zf\il eirRir = — Ay 24+ A 2. Note that time-series observations
for each individual 7 for available from period 1 to period 7'. Therefore, we use e;;7 = 23:1 €;s and

€1 = e;1 again as Bai and Ng (2010) and Westerlund (2015). Then, for A, 5., we have

1 N C' T 1 N T
P YPURI LIRS 5 SV

= Aiga1 + A 200

Note that the second term A; 5,5 is O, (T~'/?) by the m.d.s property of {e;s} under Assumption

A2.1(c). The first term A; 941 is O, (N 1/ 2T_1) by Markov equality and the fact that it is nonnegative
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and has expectation

1 N C; T 1 N
VNT > (1% gyms) B = VNT D_exp (/N E (ch)

=1 i—1

1 N

< o (ke NY) B () = 0 (VAT Y.

Then A5, = O, (T7'/?) + O, (N'/2T~"). For Aj 2, we use the fact that Ae;; = (p; — 1) €;,-1 +

€it = 7 N1 =72 €ijt—1 T+ € to obtain

Al ,2b — \/_T Z Z ztRzT NT2 Z Z Ci€it— leT + T Z Z EztRzT

i=1 t=2 i=1 t=2 th2

The second term in the last displayed equation was bounded by o(1) in Step 2 of the proof for Theorem
2.3.1 and the result continues to hold by using the above stated immediate results for the case of local

alternatives. That is,

_ Op (N—1/2 —|—T_1/2 ‘I‘K,TNl/QT_l)

1 N T
Hm ZZ ztRzT

= 0,(1),

where the final equality holds under Assumption A2.7(a).

For the first term, we use R;r = AYV; — d;ﬁT to obtain

By similar arguments as used in the proof of Lemma A.4 in Westerlund (2015) and the immediate

results derived in the proof of Theorem 2.3.1, we have

NT3/2 chlelt A 1Vrll

T1/2
i=1 t=2
= O, (N0, (N*?) =0, (N,

i=1 t=2

HNT2 chzezt 1A VT
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where we use the fact that Hzlj\i ST e

= O, (NP/>T3/?) under Assumptions A2.1(c),
A2.2, A2.4, and A2.8 by writing that e, = ', €; + (14 =%7) en = O, (T"/?), and that
|Vr/T*?|| = O, (N~7/?) by the above immediate result (4) given at the beginning of this proof.

Similarly,

"NT2 chzezt 1d FT

i=1 t=2

|

9\ 1/2

IA
==

1 < S
vl = |F]

_ Op(l)Op (jB—l) Op (jBTil/ZK,;/z) _ Op <T71/2/€;/2> ’

where the second inequality follows by Cauchy-Schwarz inequality, and the first equality holds by

the facts that ‘

FTH = 0,(Tsr), |di|| = O, (T 1) as obtained in Step 2 of the proof of Theorem
2.3.1, and T~2¢;; = O, (1) under Assumption A2.8 by similar arguments in Westerlund (2015).

Then, we have

_ _ 1/2
:Op<N Ly 1/2/§T/).

HNT2 chzezt 1RZT

i=1 t=2

In sum, we have A1 5 = O, (kb *T~Y2 + NV2T=1 4 N=1) = o,(1).
For A1, we have A;; = =~ SOV A% = O, (NY2T1 4 N=V/2 4 kg NV2T-1) as obtained

in Step 2 of the proof for Theorem 2.3.1. Then, we obtain that
Ay = Ay — 2415 = Op(NYPT7 + N7V2 4 kp NY2T7Y) = 0,(1),

where the final equality holds under Assumption A2.7(a).

Now, we study As. Noting that Ae;; = Ae; + 75, we have

1 N L 1 N T 9 N T
TNT D> 1A — (Aen)’] = T — > N i+ T STN T Aeqri = Agy + 244,

i=1 t=2 i=1 t=2 i=1 t=2
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Following the proof of Lemma B.1.4 but with the above immediate results (2)-(3) in place, we can

show that A3, = O,(NY/2T~1 + N~/2). For A3 ,, we make the decomposition
| N ;| T R
Azg = ——— Aey A vy + ——— Aeyd,fi = Azo + Ason.
3,2 \/NT Zz_l: tg; t t \/NT ; tZ:; t ft 3,21 3,22

For As 91, we have

27 1/2 . 1/2

T
1|1 1 )
Ml < = |1y —znvtn]
N Tt:2 Tt:2

N0, (N712) 0, (N2) = 0, (N11)

N
> Aey A

i=1

where we use the fact that & Zt 2 vt H = O, (NP) by the above immediate result (1) and that

2 2

1 I
T2

t=2

T

)

t=2

5 T
fz ZTNl/er” A

t=2 || i=1

- Op(Np T )+Op(Np):Op(Np)

IN

§ : (%

=1

N 2
E Aey; N

(24
=1

under Assumptions A2.8, A2.2 and the m.d.s property of {¢;; } under Assumption A2.1(c). For Aj 59

, we have

A322_\/_TZZAend’Hft \/_ ZZAeztd< - Hf).

i=1 t=2 i=1 t=2
It is easy to argue that the leading term of A3 o, is given by Az = ﬁ Zf\il 23:2 Aeyd;H fP.
In addition,
27 1/2 . 1/2
2
A Yar
i=1

N1/2T*10p (JT5) Oy (jl;l) ~0, (Nl/QTfl) 7

T
Z AEﬂit ftOIH,

t=2

] < YV L5

i=1

where we use the fact that = " | ||d;||* = O, (J75") by following the proof of Lemma 3 in Bai and
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Ng (2010), and by (B.2.10) and similar arguments as used to obtain Lemma B.3.2(c), ||>_, Ae, fY H'|| <

|52 it )| || B|| = [t (o) 7| || (o) B[ {1+ 0, (1)} = 0, (1) O, ().
Insum, As» = O, (N~ + N'V2T71) and A3 = O,(N'/2T~1 + N~1/2)

Then,ﬁ Zfil 2522 (11108 — eis10ei) = Op(NV2T 1 N7V2 4o NY2T71) = 0,(1)
under Assumption A2.7(a).
Step 3: We show (iii).

Noting that Ae;; = ey — e;4—1 = (p; — 1) €;41—1 + €, by direct and simple calculations, we can

show that
;| NI 1 T t-1 | N T
— eir—10ey = —— €it€is + —F—— (pi — 1) (i s—1€it + €;1—16€is)
1 N T t-1
+— i_126i—eis—
\/NTiZ_:t—2 s=2 (p ) R
= Al + AQ + A3.
By Theorem 2.3.1, A, KN N(0, %a_ﬁ). It remains to study A, and Ag.
Noting that p; — 1 = ﬁ under Hnr,
| N | Lot N A
> 1 £ % WEATATES S (5 3) S
i=1 t=2 s=2 i=1 t=2 s=2
= AZ,I + AQQ.
Noting that
s—1 s
€is = Pi€is—1 T €is = Z p{ei,s_j = Z p; " €ir, (B.1.9)
7=0 r=1
we can make the following decomposition for A, ; :
LA A T A
— L t—1—s 2 - o t—1—1r
T D30 ) WAL R 3) D DA
i=1 t=2 s=2 1=1 t=2 s=2 r#s,r=1
= Ao +Agp
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It is easy to show that A, 12 = 0, (1) by Chebyshev inequality with the repeated uses of the m.d.s
property of the sequence {¢; } under Assumption A2.1(c) and the mixing equality (see, e.g., Shao
et al. (1996)) under Assumption A2.1(a). To study A, ;;, without loss of generality, we assume that

¢; > 0 for all 2. Then

1 N 1 T t—1 N T +—-1
T 5355 S SSICINPUEE S SRR 3) panm et
i=1 t=2 s=2 i=1 t=2 s=2
N 2 T
1 co;; 1
= v 2 (=)0
o i t=2
1 N CZ'O'Q- 1 T—1
= <) = lr 1T =1)(pi—1)] +0,(1)
Nizl(ﬂi—l)Q 7 | [ +op

(T-1)¢4

TN1/2

Cs - TN1/2
<1+W> —1—(T—1)TN1/2 +o, (1)

By straightforward moment calculations, we can show that £ (Ay5) = 0 and Var(Ay5) = o(1)
with the repeated uses of the m.d.s property of the sequence {¢;;} under Assumption A2.1(c) and
the mixing equality (see, e.g., Shao et al. (1996)) under Assumption Al(a). Then Ay = 0, (1) and
Ay =Ag 1 +Ass=p+0,(1).

For A, it is easy to verify that £ (A3) = o (1) and Var(A3) = o(1) as above for Ay ;; and A,

by using the m.d.s property of the sequence {¢;; } under Assumption A2.1(c) and the mixing equality
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(see, e.g., Shao et al. (1996)) under Assumption A2.1(a). Then Az = o0, (1) .
In sum, we have shown that —~ ZZ ST e Aey Ly N, Lo lo%) as (N,T)— oo.
Step 4: We show (iv).
Noting that Ae;s = (p; — 1) ; s—1 + €5, we have
t—1

t—1
€it—1 — €i1 = g Ae’LS = E 1) ei,sfl—i_ E €is
s=2

s=2

or equivalently when ¢t > 3, ¢;,_1 = ZS 5 €is + Z ( —1)e; -1+ €i1., and e;;—1 = e;; when

t = 2. Then, we have

1 L& 1 ML= ;] NI )
NT?2 Z Z eitfl - NT2 Z Z Z €is€ik + NT? Z Z (pi — 1) € s-1€5 k-1

i=1 t=3 =1 t=3 s=2 k=2 i=1 t=3 s=2 k=2
1 N T 9 N T t—1 t-1
2
DI IR DI cis (pi = 1) €
=1 t=2 i=1 t=3 s=2 k=2
9 T t—1 9 T t—1
15C1 7 1 ,8 7

Ay + As 4+ Ag + 2A7 + 2Ag + 2A,.

By Step 4 in the proof of Theorem 2.3.1, A, 5 %a_z As in Step 3, we can easily show that A; =
o, (1) for I = 5, 6 by straightforward expectation calculations and Markov inequality and by noting
that they are nonnegative. Then by the Cauchy-Schwarz inequality, we have A; < {A4A5}l/ 2 =
0p (1), Ag < {A4Ac}* =0, (1),and Ag < {A5A¢}"* = 0, (1). Itfollows that 11 5, 37, €%, 5
s02as (N,T) —
Case 2: Factors follow a unit root process

When the factors follow a unit root process, Westerlund (2015) consider the local power prop-
erty in a similar framework. The proof in this case follows essentially that in Westerlund (2015).

The detailed arguments are the combination of proofs for Case 1 and corresponding arguments in

Westerlund (2015). We omitted them for the brevity.
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B.1.5 Proofs of Theorem 3.4

Let P* denote the probability measure induced by the wild bootstrap conditional on Z. Let £* and

Var* denote the expectation and variance under P* and O, and o, the probability order under P*.

In view of the fact that (1) the null hypothesis, that is p; = 1 for all ¢, is satisfied in the bootstrap

world, (2) €}, are independent over ¢ and ¢ conditional on Z and (3) both X; and B, are fixed given

Z. Henceforth, the proofs can be adopted straightforwardly but much plain than that of Theorem

2.3.1.

The outline of proofs are presented here for brevity. Recall Z; = X/ B, + ¢, with ¢, = &;<ur,

and denote 5\;" and ﬁf as the principal component estimates of this equation in the bootstrap world

under the same normalization condition used for obtain 5\i and Bt.

(1)

2)

3)

Those immediate results stated in in Lemma B.1.2 to Lemma B.1.6 still hold for 5\;‘ and Bt*.
In short, 5\;?‘ and B;f can estimate 5\i and Bt consistently upon to a well-defined rotation matrix

H* in bootstrap world, detailed proofs are very similar to proofs of Lemma B.1.2 to Lemma

B.1.6.

Letés, = Z: — AVBr = ¢, + (X;Bt - X;/B:) = ¢, + 17, where 17, is defined implicitly.
Because ¢;; = 0 implied by (2.2 .12), it follows 5, = >\ &, = S0 Jer, + 30 rf, =
> ems €5 + Ry, and thus A€, = &5, — &,y

t . ~ .. .
Lete, = > ._, €, and Aej, = ef, — el,_; with €}, = €;G;1, ;1 are i.i.d random variables such

that ¢;; has a 0.5 chance of being 1 and a 0.5 chance of being —1, therefore, €}, has the same

mean and variance as those of €;;.

Then, base on above facts in (1) and (2), following arguments in Step 1 and Step 2 of proofs

for Theorem 2.3.1 in above section, it can be shown




(4) We have proved that under the null hypothesis with Assumption A2.1-A2.7, PPT will conver-
gence to the standard normal Distribution as N, 7" — oo in Corollary 2.3.2, by Polya-Cantelli
lemma, it follows that sup | P (ﬁ < ZE) - lI/(x)‘ 0, where W (z) denotes the standard
normal distribution witfle]riean 0 and variance 1. Then the results follows if following state-

ment holds

sup |P* (PPT* < z) — W(z)| 5 0.

zeR

Then, based on above arguments, the validity of bootstrap version of proposed test statistic can

be concluded because

sup
xcRP

P{Fﬁgx}—P*{PPT*gaz} 0,

holds. To this end, we show the asymptotic normality of P PT™ by imitating the Step 3 and 4
of the proofs for Theorem 2.3.1 in the previous section. Now, based on results in (3) above,

again, we have

VNT (5 =1) = \/NT<€_—

| N -1 ;| NI
NT? Z Z <€;’kt)2] W Z Z ei1Ae; + op(1)

t t ~ . .
where e, = > _, el = > __€sSs by construction in (2) above.

)

Based on above facts, we claim that

VNt (et A) o (o,z (o—_z)_gﬁ) as (N, T) — co.

i tr (eyery) ‘
Similar to Step 4 of proofs for Theorem 2.3.1 in previous section, by straightforward calcula-
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tions,

1 N T 2 _ 155 t . .
2 Dic1 2o (€5)" = 502 because e, = ) and €!.’s are i.i.d sequences with the

5215

same mean and variance as the original sequence {¢;,}.

As for the asymptotic normality of K3 above, it can be proved by employing central limit

theorem for m.d.s as done in proofs of Theorem 2.3.1 in the previous section. To see this,

, NT
Kj = — A
2 \/NTZ;et 186
X , N7
= WZGfJA@ZQﬂLWzZ €€t

t—1 1 N T
(m Z 5:562‘;)] = Z NNt

s=2 i=1

where the third equality holds because of facts thate];, = ¢é;1¢;; and é;; = 0. Then, for {¢},}
in bootstrap world and Assumption A2.1(c), we can also construct o-algebra F7., ; as the
analogy of F§,,_;, it can be seen that E (1}, | .7:]6\}}775_1) = 0 by the usage of law of iterated
expectations for the sequence {¢},} and the properties of i.i.d sequence ;. Therefore, {1}, }

are also martingale difference sequences with respect to Fiy7, ;.

By imitating arguments in Step 3 of proofs for Theorem 2.3.1 in the previous section, and the
usage of properties of 1.i.d sequence ¢;;, those conditions required by CLT for m.d.s also can

be verified. Then, K3 N (0 04> follows immediately.

1927 €
To this end, we are going to verify following conditions to apply the central limit theorem for

m.d.s, namely,

(1) s7 — 3ol withsj. = B {(Z?s 777Vt> ] and ;0! = NIQI,IB NTE Yo Y Do €
) (s3) ZtT::), L [(777\71&) L(|nje| > 0s7) | Frs— \] = Oforalld > 0,

(3) (s2)™' Vp — Lwhere Ve = S B [(n3)” | Fireea)-
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['hen, we can conclude that
T 1
d —
K = E N — N(0,=0%) as (N,T)— oc.
2 - U ( 9 ) ( )

For condition (1) above, we have

T T
* * *
sp = B ZZUNWM«
t=3 r=1
1 N N T T t—1 r—1
_ ® kK k%
= NEL2 22 DGR
=1 j=1 t=3 r=1 s=2 g=1
N T t—1 t—1
_ 1 E* * % *\2
- NT?2 (ezsezq (ezt) )
i=1 t=3 s=2 q=1
1 N T t—1 t—1
_ * * *\2 €, % x ok
~ NT2 Z Z ZE [E ((Eit> | ]:NT,tq) eis€iq]
i=1 t=3 s=2 g=1
1 N T t—1 t—1
_ 2 * [~%x %
- ONT?2 Z Z €it Z B [Elsezq}
i=1 t=3 s=2 g=1
1 N T t—1
_ ~2 * * \2
T NT? ZZEN? L [<Ezs) }
i=1 t=3 s=2
N T t—1
1 ~2 A2
- LyySas
i=1 t=3 s=2
N T t—1
] 1 00 15
- N%Illoo NTQ Ezsezt Ue?
i=1 t=3 s=2

where the third to seventh equality hold by the independence among {e,} over V(i,t) with

€l = €uSit, where {g;;} are i.i.d sequences with mean 0 and variance 1 by construction.

To verify condition (2) above, it suffices to show

T
(5%)71% Z E* n&,)”™® =0 as (N,T) — oo for some 3 > 0.
=3

Since s7. = O} (1) shown above for condition (1), it is sufficient to show that ST E gl —

208



0 as (V,T) — oo. Note that

T T
ZE*|7]7V1€|4 = ZE*
t=3 t=3 1
1 N N N
T2 D Z Z E <e* €€ Erg i el)

where

N

1 T N
Rim o o2 2 2 Elad @)’ a6 ()]

t=3 i1=1 j=1,j#i2<r,s,q,v<t—1

T N
) DD DI A C AN

t=3 i=1 2<r,s,q,v<t—1

For R, we have the following decomposition by direct calculations,

6 T N 1 T N
Ry = N2T4 Z Z E [@:)2 (e,)” (G:t)ﬂ T NeTa ZZ E* (e
t=3 i=1 2<r#s<t—1 =3 i=1 2<r<i—1
6 T N 1 T N
< N2T4 Z Z SRR N2T4 Z Z & e

where the final inequality holds by the independence among {€,} over V(i, t) with €,
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where {¢;;} are i.i.d sequences with mean 0 and variance 1 by construction. For R,

Ri = N21T4ZZ,Z

*
o
CA*
o
3
—
a
)
&~
S~—
©
)
Sk
S
)
. ¥
<
—~
2
<
~~
N—"
©
| S

A
N~
3~
]~

where the second to fourth equality hold by the independence among {¢},} over V(i,t) with
€, = €uSiu, where {¢;;} are i.i.d sequences with mean 0 and variance 1 by construction, the

first inequality holds by Cauchy-Schwarz inequality.

Collecting the bounds of R, and R, above, it follows ZtT:?) E* |, |* = 0,(1) directly, which

completes the verification of condition (2) stated above.

To verify the condition (3) given above, note that

T
Vi = ZE* [(777\/02 | fje\’f*T,th

t=3
N T t—1 t—1
1
_ E* * *(*)QIFG,*
- NT? €isCir (€t NT,t—1
i=1 t=3 s=2 r=2
1 N T t-1
— E E ~2 1% *\2 €,%
- NT2 6’LSEW [(elt> ‘ ‘FNT,tfl] ?
i=1 t=3 s=2

where the second and third equality hold by the independence among {¢};} over V(i,t) with
€, = €usi», where {¢;} are i.i.d sequences with mean 0 and variance 1 by construction, and

the law of iterated expectations. Obviously, E* (V) = s by the law of iterated expectations.
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By direct calculations of moments, it is straightforward to show £*(V7) = s7. 4 0} (1). Thus,

condition (3) is satisfied.

" t " N T £\2 t—1 4\2
Recall that, e}, = 25:2 €;s> then ﬁ Zi:l Zt:B (ef)” = T2 Zz 1 Zt 3 (Z =2 zs) , by

direct calculations, we have

N T t—

T
(6;)2 = NlTvg Z Z Ezsezrv

i=1 t=3 i=1 t=3 s T

._.
-
I
—

I|
o
[|
)

then, by using the law of large numbers for the sequence {¢;; }, as (IV,T') — o0, it follows that

N T t-1 t-1

| NI ) )
NI%IEOONWZZ(@“)Q - NT%ONWZZZZE €is€ir)

=1 t=3 1=1 t=3 s=2 r=2
N T t-1
= Jim X.D.D FE
N,T— o0 NT2 ’S
i=1 t=3 s=2
N T t-1 N
= lim g &2 = —g2
N,T—oco NT7? oo 9re
i=1 t=3 s=2

Note that 02 and 04 are used in Corollary 2.3.2. By the central limit theorem for m.d.s, we

then conclude that

(2 (ﬁ)zﬁ) o ‘/_tr(L S8¢) 4 n01) as (N.T) o0

NT2 tr (e et 1)

Based on the construction of P PT™, the desired result follows directly.

Collecting all above arguments, the validity of the bootstrap version of test statistic is justified.

B.2 Proofs for Technical Lemmas

This section is composed of 3 parts. Section B.2.1 contains the proofs of Lemmas B.1-B.5 in
the above paper. Section B.2.2 contains some technical lemmas that are used in the proofs of

the main results and Lemmas B.1-B.5. Section S3 provides some additional simulation results.
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B.2.1 Proofs of Lemma B.1.1

The proof is similar to that of Proposition 1 in Bai (2003). The major difference is that one
needs to replace the scaling constant 7! in Bai (2003) by 7 * in suitable places.

B.2.2 Proofs of Lemma B.1.2

Proofs of Lemma B.1.2(a)

Note that (2.2 .10) can be written in matrix form as follows
Z =AN'BY + AU + € (B.2.1)

Recall that X v = +2Z'Z and Jr = (p])" T, where (p3)" = diag((08)" ..., (p0r,)")>
and Jp is user-specified scalar in the normalization conditions for the PC estimation. By the

eigenvalue problem, we have the identity
Y,nB = BVyz, (B.2.2)

where Vz n is a diagonal matrix that consists of the first R eigenvalues of X, x arranged in
descending order along its main diagonal line. Postmultiplying both sides of (B.2.2) by the

recalling factor J ! and substituting (B.2.1) into (B.2.2), we have

~ _ _ 1 ~
BVZ,NJTI — N 1+pBomAOIAO(BO/B\7T1)
= N1 (Aou’ + e)/ (Aou’ + e) E’jT_l

+N—IBOAO/ (Aou’+e) ﬁj:r_l +N_1 (Aou’+e)/AOBO’§jT_1

Ap+ Ay + A, (B.2.3)
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Below, we bound each term on the last line. First, for A; we have

Ay = N WAYAUBJ + N7'u (M%) BJ; ' + N7t (€A%) w'BJ;

+N'¢eBJ;"

A+ A + A3 + A

For Ay;, we have by the sub-multiplicity of Frobenius norm,

AO/AO

| Azl NPl ———

IN

lull? |75 B [|757: |

< N—”pOp (1) [T | = Op (N7 [ (66) "+ + (b))

where the second inequality by Assumptions A2.1(b) and A2.2 and the normalization condi-

tion, and the final equality holds by the fact that 77 = J5 ( pg)T. Similarly,

A .
1Al < N—1+P/2THT"1‘/2 mefl/z HjB‘lBH 1 7s7:|
< O, (N2 ||| 7575 Y| = Oy <N vy [(pm)*T ot (pgRo)fTD ,

where the second inequality holds by Assumptions A2.1(b)-(c) and A2.2, and the normalization

condition. In particular,

N N T N T
E|A%)7 =33 "N B (@ Nes) =YD E(EAYNY) = 0, (NPT)  (B.2.4)
=1 j=1 s=1 i=1 s=1

where the second equality holds because E (e | {€;s}72; ;i {A;}21) = 0 by Assumption
A2.1(c), and the last holds by Assumptions A2.2, A2.3 and A2.4. By the same token,

| Azl NPT

IN

HNP/2T1/2 HT1/2 Hjélﬁu HJBJ{“

— N-UTQ, ((pol)_T +.F (PgRo)_T> ;
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and

— 2
[Awll < N7 ell,

Bl = 0 )0, ([0 )]

where we also use the that that ||e||§p = O, (N + T) under Assumption A2.3(e). In sum, we

have shown that |4, = O, (N=4T + 1) [(8) "+ ...+ (o) "] .

Next, we study A,. Note that A, = N_lBOAO/AO'U/EJ,ITl +N‘1BOAO’e§jfl = Ao+ Ass.

For Ay, we have

AO/AO ’U,,

Ay < N—1+pTl/2 B° (pg) -T (pg)T ijglﬁ (pg)fT
B AO/AO
< N | o () TH H(”g)T w || NP HTW HjBlBH H o) |,
< NTWPTV20 (1) H (p?))TH H (pg)—T = 0, (N~1r71/2)
sp sp

where the third inequality above follows by Assumptions A2.1(b) and A2.2, Lemma B.3.2(e),

and the normalization condition, and the equality follows because H (p8)T

L e,

T
o (14 )
Sp T

-T
Cr min - -1 : :
= <1 + T) = exp (—Cr,mmT K ) , which in con-

O, (1) (P9)

exp (CmaTr7') and H(p8)_TH

junction with the requirement that |¢, ez — Crmin] = O, (%T) , implies that H (PS)TH H (p0)~
sp

O,(exp (c,ﬂ,magC — cnmm)T/ﬁ;l)) = O, (1) . Similarly,

AO
| Al

IN

N-1Hp/271/2 HBO (pg)—TH H (pg)

|(7aB)] et)”

sp

= OP(N71+%T1/2)7

where we also use (B.2.4). In sum, we have || 45| = O, (N~ T"/2) .

Next, note that A3 = N_1uAO’AOBO’§jT_1 + N‘lcs’ADBO’EjT_1 = As; + Asy. Under
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Assumptions A2.1(b) and A2.2, and by Lemma B.1.1 and (B.2.4), we have

HA31|| S N71+pT1/2

— p (N71+pT1/2)

H OIAO

HBO/BJT

T1/2

and
€A

—1+p/21/2
HA32H < NPT NP/2T1/2

”BO/EJCFlH -0, (N—1+p/2T1/2) _

So || 45| = O, (N~**T"/2) and
[ Ay + A+ Ag]| = O, (NTHT2) 4 0, (N7 +1) [ (o) "+ + (o) | )

That is,

AO/AO ‘
NP
= 0, () + 0, (T+ N7 [(8) "+ + () "] ) = 0, (T2),

HB (NP VynJit) — B = (BO’BJT )

where the last equality follows because we can readily see that
(T+ N7 max{ (o) - (Br,) 3= (T4 N7 exp(—crminTrir') = 0 (1)

under Assumption A2.5. Here, ¢; i, = min{cy, ..., cg, }. Then

AO/AO

S (B

11 ~
T HB (N'"PVnTrt) -

| 7
— TZ
=2

AOIAO
NP

2
(N'* T Vo) B~ (BYBI: ) 50-BY| =0,01).

In addition, from above analyses of A; to A3, we can see that Ay; and A3, are the leading term in
the above MSE bound, where Ay = N‘lﬂ’Bo%u’ﬁj{l and Az = N‘”pu%Bo’ﬁjT’l.

Moving Ay and Ag; from the right group of terms to the left group of terms with regard to
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(B.2.3), squaring both sides and then dividing by 7', we can readily show that

1
T

ﬁ (Nl_pjjjle,N) _ B |:AD’AO (BO/BjT ) AO AO /BjT ] B [AO/A0 BOIBJ ]H

=0, (N7 (B.2.5)

Now we are in a position to define the rotation matrix H. Let

AO/AO R AO/AO 0/ A0 .
o (B"BJ; ) and Hp = = (BO’BJT ) A ‘;} WBJ

H, =

Note that H,, is nonsingular, | H,|| = O, (1) and ||H'|| = O, (1) by Assumption A2.2 and
B.1.1. In addition,
AYA° w'B

NP JB\/_
HAO/AO

|1Hp — Hu| = ———=Jr T

7B 197" 7ur”|

= O (T2 |(oh) ™"+ (b))

where the second equality holds by Assumption A2.1(b), the normalization condition, and
the fact that Jr = J5" (pg)T. Note that |[Hp — H,|| = 0, (1) when all factors are mildly
explosive. It follows that | Hg|| < |H,| + |[Hg — H,|| = O, (1) and

[EH < |+ s — B [+ O, (11 — HLP)

= 0, +0, (T [(4) "+ .+ (64) "]) =0, (1), B26)

where we use the fact that H5' = H;' — H,' (Hp — H,) H;' 4+ O,(|Hz — H,|*) by
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Fact 9.9.60 in Bernstein (2009). Then, by (B.2.5),

HE}NHVZ,NJT*H; ~ B" — uH,Hj'

< HJ_?;J\IH’VZ,NJT*1 — B'Hj — uH,

15|

0, (NPTV) 0, (|| H5||) = 0, (NPT (B2.7)
In addition, noting that H, H;' = I — (Hz — H,) H,;' + O, (|Hp — H,| | H.|),

|HH' —I| = O, (I1Hs — Hu|l |H;'(|) + O, (IHs — H.|I"| H.l)

O
-7 -7

O, (T2 (o) ™"+ + (b)) '] (B.2.8)

Note that when 7B”B" = O,(1), we have because || Hg — H,|| = O,(1) instead of 0, (1).

But this is the case where all factors exhibit a unit root process that is considered in Bai and

Ng (2004) and corresponds to the case stated in Lemmas B.1.5 and B.1.6 in Section B.1.1.

Now, define
(H—l)/ _ Nl_pVZ,NjT_l.Hgl (B29)
Note that
(H™) = [N (o) Vo (00) 1 (00)™ 77 " H
= [N ()" Vi (p3) 1 (P0)" T3 H, (B.2.10)

where equality holds by the fact that V; 5 and 7 1 are both diagonal matrix and Jr =

( p8)T Jp. According to Lemma B.3.3 and the fact shown above that

|| = 0, (1) + 0 (T2 (08) ™" + o+ (b)) | )
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it follows directly

|H™'| =0, (jgl [(pgl)T ot (pSRO)T]) +0, (T5'T"7?) (B.2.11)

where the latter term in above expression are of small order compared with the former terms

in above expression in the case that factors follow mildly explosive processes.

Then by (B.2.9), (B.2.8), and (B.2.7) and the fact that ||u|| /v/T = O, (1), we have

|BEH - (B'+w)| < |BH- B - uH,.H;'

= 0y (VR ) 4.0, (T [() "4+ () )

= O, (N7PPTV2). (B.2.12)

(H.H;' - 1I)|

2T

1A 2 ) )
Thatis,?“BH’*l—(B0+u)” ~0, (N*p—kT[(pgl) + o4 (R, 2T]).Thede.

sired result follows by the fact that f = BY + u;.

Proofs of Lemma B.1.2(b)

By (B.2.2), (B.2.5), and Lemma B.3.3, we have that for each ¢,

[ () Vo (o) ] [0 2]} B
_ {Aj\'fi}o (BO/ﬁjfl) . Aj\;ﬁou’éJTl]/B? N [A;’[_Qo (BO/EJTl)Tut

{[N1 P (08) " Vi (08) " [(00) 7]} B~ HBY — Hiu,
(V™
(N™

DB (A% +¢€) (A'u, +¢) + (N P71 BeA’B° + (NP 71) B'B°A,
T t T

) (Are 4+ Age + Agy) (B.2.13)

where we use the fact that J ' = ( pg)T Jp and V y are both diagonal matrix, implying that

VynTs ' =TI V.
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We first study Ay; by making the following decomposition:
Alt = ﬁ'e'et -+ E/'U,AOIGt + EIGIAOUt -+ .§IUA0/AO’U,t = Altl -+ Altg -+ A1t3 + A1t4.
Noting that B = (BH'~' — f°)H’ + f°H’, we make further decomposition for Ay, :

—~ !
Altl = HfO/EIGt -+ H (.BI‘I/_1 — f0> 6/€t = Alﬂa + Altlb.

Noting that H = (N'~?)~'V, \ Jr H}, by (B.2.9), and by Lemma B.3.3, we can show that

] = [ o) Ve (o) ] (6) T
< ) v ] H o) 17l 1
- 0, (jB [(pgl)‘T+. -+ (Por,) D (B.2.14)

where we use the fact that |Hg|| = O, (1) + O, <T1/2 [(pgl)_T — (pgRo)fTD =

O, (1). Recalling that vy (s,t) = vazl E (€;s€it), we make further decomposition for Ay, :

T T N
A = Z HfSVN (57 t) + Z Hff (Z €is€it — YN (57 t)) = At1a1 + Arpia2.

i=1

Note that -7 |y (s, ) < (max.; |y (s,)]) S, [ (5, )] = O(N?) by Assumption
A2.3(b). In addition,

S ER = S srEE =3 0) T () =) (o) H) ()" £
2 & T -7
< [|d) =S (o) () A
s=1

T
< O, (TB) DV () (0) " £ =0, (J3)
s=1
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where the second inequality holds by (B.2.14) and Assumption Assumption A2.5(a), the final

equality follows by Lemma B.3.2(e). Then by the Cauchy-Schwarz inequality,

|Avpa1] = ZHfOVN s, 1)

s=1

T 1/2
[ZHHJ"“H] [Zm(s,t)lQ] — 0, (JN).

For A1142, we have by the Cauchy-Schwarz inequality

97 1/2

— Op (jBN1/2T1/2)

N
Z €is€it — E’LS Eit)]

=1

T 1/2 T
Al < [z HHfSW] 5
s=1

s=1

where we use the fact that Zstl |H f2|| = O, (Jp) and Assumption A2.3(c).

Now, write Ay = S0 (B, — Hf")yw (s.1) + X7, (B, — HF)SY, civeir — 1w (5.1)]
= A1yt + Arppe. By (B.2.12) and (B.2.14),

HE_fOHI

< |BE" - 57| 18]

= Oy (TN TPTV () (b)) T]) - (B215)

This, in conjunction with Cauchy-Schwarz inequality and Assumption A2.3(b), implies that

1/2
|l < |B-5°H'

T
S b (s, 1)
s=1

= Oy (NPT ()" 4 () ) O (V). (B2.16)

Similarly, by Assumption A2.3(c) we have

97 1/2

N
Z €is€it — Ezseit)]

=1

= 0y (TaNTPTV2[(04) T+ (b)) ) Op (NT)'2).

>

s=1

[[Averse|

IN

o
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In sum, we have

Al = O, (JgN + JpNY2T'?) (B.2.17)

40, (jBNl/Q*WTW(Nl/Q + T/2) [(pgl)_T +...+ (pgRO)‘T]) :

For A4y, we have Ay = Hf"uA"¢, + H(B BH'! — fOYuA"€, = Ayy9q + Aoy Note that

T N
Ay = H (Pg)T Z (98)_T ffu; Z )\?eit =H (pg)TAtha-
i=1

s=1

Note that £ (A1s,) = 0 under Assumptions A2.1(c) and A2.4 and

TN N T T
E HAHZQH > — FEtr Z Z €AY Z Z uqu' (pg)fT (pg)fT Fou!, )\Oe]t]

L i=1 j=1 s=1 ¢=1

N T T T
= Btr |3 EXAYS S w7 (o) (08) 7 £oul
L i=1

s=1 g=1

[ N T T
= Btr | oI YD uafy () () £
Li=1

s=1 g=1

Zuqu Po B

O(NP)O(1) = O(Np),

AO/AO

IN

Mo |2

IN

where the second equality holds by Assumption A2.1(c) and the law of iterated expectations,
the third equality holds by Assumptions A2.3(a) and A2.4, the first inequality holds by As-
sumption A2.3(a), the second inequality holds by Assumption A2.2, and and Lemma B.3.2(c¢).

In addition,

(pg)TH < |H| H(pg)TH = 0, (Jp), where by (B.2.14) and Assumption
A2.5(a). It follows that

A1 < HH po) H |Aviaa|| = O, (TNP'?).
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For A9, we have

1/2
T o7 1/

[Avasl] = B, HfO)ZusA%n |B—fH|

N
< Zus)\?eit

s= =1
= 0, (j NP/271/2 [(pgl)‘T +...+ (pgRo)‘T]) O, (N?*17'/2)
(72

[ P01 + S (pgRo)_T]) )

s=1

= p

2
where the second equality follows from (B.2.15) and the fact that ", 1'111 usAey|| <

2
T 2 N
S sl x| 2 A

used to obtain (B.2.4). In sum, we have

= O, (N?T') by Assumption A2.1(b) and similar arguments as

|As|| = O, (TuN""?) + O, (JBT [(pgl)‘T +oo+ (pSRO)_TD :

Next, we study Ay5. Note that A3 = H V€' Au, + H(]§I{’*1 — Y €A u; = Aqys, +
Avgy. Write Ayz, = H (p0)" 27 (00" oSN 66X, = H (p))" Aysa. As in the

analysis of A;5,, we have

[ N N T T
EHAlt?)aHQ = ELtr Zzu;)‘? (Zzezqu po ) po) Tf36j8> )‘?/ut]
L i=1 j=1 s=1 g=1
T
= FEtr Zut)\oko’ut (Zes ()~ )Tfs(])]
s=1
B T
= FEtr utu'tZof)\?A?' (Z £ ()" (Pg)_T>]
L i=1 s=1
0/ A0
< ATA { B >—Tf3}
AO/AO T 2 2
< 0, [ (Bt L B S g ) (o) T
s=1
= Oy (Np>v

where the second equality holds by Assumption A2.1(c) and the law of iterated expectationsand
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the fact that 57, €2 f9 (p0) ™" (p0) " f9 is a scalar, the first inequality holds by Assump-
tion A2.3(a) and the last equality holds by Assumptions A2.2 and A2.1(a), and the fact that
- - 2
BT £ (o) (o)
with the probability bound for HH (p0)T

= O(1) by the proof of Lemma B.3.2(e). This result, along

, implies that
[Asa < HH p0) H |Asal| = jBNp/Z)

For A3, we have

. 97 1/2
2

s=1

N
2 : or
€is )‘z Uy

=1

|l < |B- B

= 0, (TN T (o) "+t () T]) O, (NPT

= 0, (o [(ah) " k) ).

where we use (B.2.15) and the fact that

T T N N T N
2 : § :§ :E : 0r /%0 § :E : or /40
€is i = E (EisAi ututAjEjs) = E (eisAi 'u,tut)\i 61'5)
s=1 = s=1 1=1 j=1 s=1 =1
T N
_ E E 2 or 740
s=1 =1

T

N
MY Bl B (W) = 0, ('),
s=1 =1

IN

where the second equality holds by Assumption A2.1(c) and the law of iterated expectations,
the third equality holds by Assumptions A2.3—A2.4, and the final equality holds by Assump-
tions A2.1(b), A2.2, and A2.4. In sum, we have shown that

|Ays]| = O, (jBNp/Q) + Oy <jBT [(p81>7T +...+ (PgRo)iT}> '

Now, we write A1,y = H fOuA”Au, + H(B BH'"! — FOYuAYAuy = Ayyyq + Aqygy. For
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A1t44, We have

[Arpall = < [[AYAL[] [

T
> H fou A” A,
s=1

T
> Hf,
s=1

AO/AO
NP

< NP

T
H (of)" HZ (p) " foul el = 0, (TsN7)
s=1

where we use Assumptions A2.1(b) and A2.2, the probability bound HH ( pB)TH = 0, (IB),

and the fact that stTzl (P0) " foul|| = O, (1) by Lemma B.3.2(c). For Ay, we have

. 1/2
el < | B~ 5o [Z Hu;AO’AOutHQI =0, (ToN"2T [ (o) "+ o+ (8,) )
s=1

where we use (B.2.15) and the fact that

u
Np Tt N
2

el [ull® = O, (N*T),

T (N opr0 T
ZHU;AO'AOutW = N (A A 'u,’A A Zu;ué)
s=1 s=1
AO/AO
NP

N2

IN

where the final equality holds by Assumption A2.1(b) and A2.2(b). In sum, we have
[41ll = 0y (TsN") + 0, (ToN""T [(oh) " 4+ (0m) ])

Collecting the above results for Ay, [ = 1,2, 3,4, we obtain

sl = Oy (Jo(N + NV212) 10, (T [N' 2172 4 N721] [(0) ™ 4+ (ob) 7]

Now, we study Ay,;. Note that Ay, = H f¥€'A°BY + (ﬁ —f°H') €A’ BY = Ay +Agyy. Note

Aoy = H (Pg)T (Pg)_T fY¢A°B) = H (PS)T Agn By, where Ay = (Pg)_T fUEN’ =
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Ei]\il ZST:1 (pg)_T FleiAY.
A 2 oS - 0\~T g0 070 o =T
Elban|” = B [ 3553 (69) 7 oA Nes, £ (o)

i=1 j=1 s=1 g=1

T
— Etr (Z FEIAAYS T () LY (98)T>
=1 s=1
T
ST )T (09) "

s=1

0/ A0
AAE

< MNP-EH =0, (N?),

where the second equality holds by A2.1(c) and the law of iterated expectations, and the equal-

ity follows from Assumption A2.2, and the proof of Lemma B.3.2(e). As a result, we have

| Ao ||

IN

| # o8 1| 1821 = 0 (T5) 05 (N72) 0, ([ (8" + -+ (68m,)"])

= 0, («713]\713/2 [(Pgl)T Tt <pgRo)T]> ’

where we use the fact that ||B?|| < O(|BY|)) = O, <(p81)T +.oF (pgRo)T> by direct

calculations for B} under Assumption A2.1 and A2.5. Similarly,

. 97 1/2
2 1B

s=1

[Agp| < Hé—fOH'

N
g €is\i
1

1=

= 0y (U)o () 1) O (08 4+ (68)).

where we also use (B.2.15). Then

max ||Ax|| = O, <jBNP/2 [(pgl)T+...+(pgRo)TD

- {0, (T [(6) T+ () T) Y0 ()" . (6h)")

Next, we study As;. Note that Ay, = H f”B°A%;, + (ﬁ — f°H'YB°A’,; = Az + Agpo.
Agn = Z?:l H,stB; Zf\il )‘geit = 2?:1 H/Bng, Zi\il A?Eit"‘zzzl H'u,B, Zi\il )‘?Eit =
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Agp1 + Agyp as fto = B? + uy.

sl <[ H ()" |32 (o) BIBY ()"

Z)\ €t
= 0,0, (10, ()" + ...+ (p&%)T) 0, (7
= 0y (TN ()" + .+ () "]) -

where the first equality holds by the fact that HH PY) H = 0, (Jp), Lemma B.3.2(e), and

the fact that Hzizl Aeil| = O, (N?/?) under Assumptions A2.1 and A2.2. It is easy to

see that Ag;p; is dominated by Ag;y, in terms of probability order. So we can conclude that

Az || = O, (;719]\“”/2 [(pgl)T +...+ (PgRO)TD . Similarly,

| Ao

IN

HE_fOH/

T N
07
E E BS i€t
s=1 | i=1

= 0, (T [(6) "+ (b)) 0w ((6)" 4+ (0)")

where we use (B.2.15) and the fact that

2

N
E Z ZBSIAiEit
s=1 |i=1
T N N T N
= ZZZE /AeztethB :ZZE B AEZtEnAB)
s=1 =1 j=1 s=1 i=1
T N
S IET N X) Jewpaenpelsme
s=1 i=1
= 0O Np) Op ((,081 2 (p()RO>2T> )

where the second equality holds by A2.1(c) and the law of iterated expectations, the first in-

equality holds by Assumptions A2.3—A2.4, and the last line follows by Assumption A2.2 and
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Lemma B.3.2(e). In sum, we have

I4al = 0 (TaN72 [ ()" +--+ (ob,) ]

+0, (T2 [ (o) "+ () T ]) O ((00) "+ -+ () ") -

and

|Are + Aoy + Asy|| < [|[Ave]| + [|Age]] + [[Ase]| < O, {jBNp/z[(pgl)T 4.+ (PgRo)T]} )
(B.2.18)

where Ay and Ay are leading terms. Then by (B.2.13),

“H_l_ét — B? — Uy

= e { [ (o) Ve (o) ] ()7 ) B B0 -

[0 ) Ve )] [ 527]) B 0

+ | HLH ' = T[] ||

< [[H|

= HI‘Ing {Nﬁpjfl (A + Ay + A3t)} + ||HuH§1 - IH [l |
< G 0, (T N7 (o) ot (b)) O { TN+ ()1}
|| EH = 1]

= 0, (N—P/Z) ’ (B.2.19)

where the first equality follows by the construction of H'~! in (B.2.10), the second inequality
follows from (B.2.18) and the fact that || 7 ' N ?|| = O, (jglN‘p [(pgl)fT +... 4 (AR, _T] ) ,
and the last equality follows from the bounds of ||H = || and HHUH ST H derived in the

proofs of Lemma B.1.2(a).
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Proofs of Lemma B.1.2(c)

Recall that \; = (B'B)~'B'Z; where Z; = f°A? + ¢,. By the identity that f* = (f° —
BH'"')+ BH'"' and B = (B — f°H') + f°H’, and the normalization condition that
j§2§’§ = Iy,, we have

Xi _H/—lA? _ j§2H(§’H_1 _ fo)/<fo _ EH/—I)A?+jB—2Hf0/(fO _ EH’_I))\?

+T5 Hf" + J5*(BH'™ — f)'e;

Dy; + Do; + D3; + Dy,. (B.2.20)

We bound each term in the last display in turn.

First, for D; we have

Dyl < J5°||B- f°H’
— jl;QOp (jBN—P/2T1/2 [(pgl)—T 4+ ...+ (pgRO)—T}> 0, (N_p/2T1/2)

o ([ 5t )]

Jre

where the first equality holds by (B.2.15) and (B.2.12). As we shall see, ||Dy;|| is dominated

by the other terms due to the presence of O,[(p,) ™" + ... + (p0r,) "] in the case of mildly

explosive factors.

For Ds;, we have Ds; = J52H 27| fO¢;, = H (p))" Dy;, where Ds; = 752527 (09) 7 fOé;s.
ZST:1 (pg)iT fleis

O,(1) by replacing ¢;; with u, in Lemma B.3.2(c) and using arguments as used in the proof of

Since E (D3;) = 0 holds under Assumptions A2.1(c) and A2.4,

Lemma B.5 in Horie and Yamamoto (2016) given that f; = k' F,_; +u; fort = 2,...,T.
Then
T _ _
IDsil| < |[H (68)" || 1Dsil] = Oy (T) On( T 1) = Op(T5")

where we use the fact that HH (pg)TH = 0, (JIp).
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For D;, we make the following decomposition

D, = j§2 {(prijl) EI (Aou’ + 6)/ (Aoul + 6) €; + (prijl) E/EIAOBOIQ
+ (NI ) BBAee: |

j§2 {Dyiq + Dyip + D } -

Recall that in the Proofs of Lemma B.1.2(b), Ay, and Ag;; are the leading terms. Here, the
leading terms in Dy; are closely related to Ay, and As;. In addition, it is easy to see that Dy,

will be dominated by Dy;, and Dy;,.

For Dy;,, we have
D4ib — (N*pijl) HfO/E/AOBO/GZ' + (N*pijl) (é o fOH/)/GIAOBUIEi = D4ib1 + ID)4ib2-

It is easy to show that D ;5 1s dominated by Dy;,; and so we focus on D ;1. As the analysis of

Ay in the proof of Lemma B.2(b), we have

[ Dgir [

N T T
) HN P H (pf) TZZ(r)B)*TfSejsA?’ZB?w

FTl SZIN T )
< N | B )| 0D (00) T oAy

j=1 s=1

= N0, (751 [(081)_T +o (pBRo)_TD Oy UB) O, (N”/z) Oy [(ﬂ&)T +o (PgRo)T}
= Oy (N7 () o+ () ) On [(8) -+ ()]

= 0Op (N_p/2) ’

where we use the fact that HZjV:l ST ()" Flej Ay

= O, (N?/?) and that HZtT:z B¢,
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OLl(0)" +... + () RO)T] by following similar arguments for Lemma B.3.2(c). Similarly,

Dy. = (NPJ;%) Hf"B°A%e; + (N*J;) (B — f°H'Y B°A ¢,
= (N?7;") HB"B°A”€€; + (N 77; ") Hu'B'A"€¢;
+(NPJ:1) (B — f°H'Y B°A"ee;

= Duicr + Daico + Dajes.

It is easy to show that D ;> and Dy;.3 are dominated by Dy;.; and so we focus on Dy;.1. As
the analysis of A in the proof of Lemma B.2(b), we have Dy;e; = (N 77, ") H ( P0)" Dyicy
where Dy;.; = (pg)fT fYBAee;.

T N
IDiier| = | T'NTYHBIBY Y XY e
s=1 = t

N
0

E }\jE €;t€it

j=1 t

IN

T
Jr'N> HB!BY

= O, (N7) Oy (NP2T"72) |

where the bound of HJT_ N HB'BY

follows directly from the same arguments as

used in the analysis of A3;; in the proof of Lemma B.2(b), and the bound of H Zjvzl )\? > Ejt€it

is obtained as follows:

2

N N T T N T
?Zejteit = ZZZZE ()\?IAgethitEiqelq) = ZZE )‘0,)‘0 jtezt
t j=1 l=1 t=2 ¢=1 j=1 t=2
N T
= Y EXYX)D E(&e) = 0,(N'T),
j=1 t=2

where the second equality holds by Assumption A2.1 and the law of iterated expectations,
and the third equality holds by Assumptions A2.1(a), A2.2 and A2.4. It follows that | Dy|| =
O, (J5>N—PI2TV2) .
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For D,;, we make the following decomposition.

Dy = jBfQHfOI(EH/fl N fo))\z
= T {NTHPY (A + €)' (Au+ ) BTN+ (N7) HFYB°AYeBJ; '\,
+NTH fo’e’AoBo’ﬁjT’l)\i}

= Dgjig + Daip + Doe.

As in the analysis of Dy4;, we can show that Dy, is dominated by Dy;;, and Ds;.. For Dy, and |

we have

Do = N7 °Hf"B°A"eBJ; '\,
= prjB*QHfO/BOAOIGfOH/j,ITl)\i 4 prjl;QHfO/BOAO/e(ﬁ . fOH/)jITlAz
= N7 {HB"B°A"efH'J; '\ + Hu” B°A" e f'H' 77\,

+Hf0/B0A0/€(.§ o foH,)jflAl}

Doip1 + Dajp2 + Doy 3,

where Dy;;, o and Dy, 3 are dominated by Dy, ;. Following the analysis of || Ay || in the proof

of Lemma B.2(b), we have

D1 |
N T T
= HN—pj;A;jT—l SN HfY A B!BYH
j=1 s=1 t=2
N T T
< TNl || Te NP Y CHPGN | |D BYBYH'
j=1 s=1 t=2

= T520,00, (N2 [(04) "+ (88,)]) O (T [ (68) "+ -+ ()" ])

- OP (jglN—P/Q) )

where HJT_lN_p Zjvzl ST Hfle; AV = O, <N—p/2[(p81)_T +...+ (pSRO)_T]) holds
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by the same argument as used in the study of ||Ay; || in the proof of Lemma B.2(b), and

that HthZQ B'BVH'

=0, (JB [(p81)T +...+ (pgRO)TD by arguments as used to bound

||As1|| in the proof of Lemma B.2(b). Similarly,

Dy, = N_ij_QHfO,EIAOBO/EjT_IAi
— N7?7;° {Hfo'e’AOBOIfOH’jT_l)\i n HfOIEIAOBOI(E B -fOHl)jT_lAi}
= N7*J5°{HB"¢A°B" f°H' J;'A\;i + Hu"¢ A°B” f°H' ;' \;

+Hf0/€/AOBOI(§ . fOH/)jT—IAZ}

Daic1 + Daje o + Daje 3,
where Dy;. o and Dy, 3 are dominated by Ds;. ;. Note that

| Daic, |

|
T N
= HijBz}\;jTl > HB!BYY )Y ¢,B/H'

s=1 j=1 t
T N

< NI NS HBYBY| 1SS e B H'
s=1 7=1 t

= NPIFOA) T+t () 10, (100, (T [(68)” + -+ () "]) O (T5N2)

= OP (jB_lNip/Q) )

where we use the fact that HZ;VZI XS e BYH'

= O, (JpNP/?) by similar arguments as

used to bound || A3, | in the proof of Lemma B.2(b). Insum, we have | Dy || = O, (J5 ' N~7/?).

Collecting above all leading terms, namely, D;, D3;, and Dy; , it follows that:

3\\1 —H '\ = O, (jlgl (1 + jglN*p/QTl/Q + N*P/Q)) _

232



B.2.3 Proofs of Lemma B.1.3

By (B.2.13) and (B.2.5), we have

[V ()7 Vo ()] [0 7]} S B

p—
_ [Aj\’;}o (BO’EJT‘1> 4 A;i}ou'éjgl]lé]gs _ [Aj\'fi}o (Bo’ffj;l)}lz:us
() TV (o) 7] [0 ) S B - E S B - LY
5=2 s=2 5=2
= (N*F7Y) B (AW +¢€) q (A'u, + €) + (NPT E’e’AOiBg
o =
+(N?7;Y) B'B°A” zq: €
= (NPT (Cig + Cy j—égq + Cyy +Csy + Cs,) (B.2.21)

where C,, to Cg, are defined as follows:

q R , 4
Ci, = HfYS e+ (B - fOH’> €S €, =Cip +Cp,
s=1 s=1
q N ’ q
Coy = HfuA”S e + (B - fOH’> uA” S €, = Capr + Caga,
s=1 s=1
q . ’ q
Cs, = HFfYA° Zus + <B — fOH’) €A’ ZUS = Csp1 + Cypo,
s=1 s=1
q N , q
Ciy = HF"uA"A"> u,+ (B = f°H') wA'A’ Y u, = Cigr + Capa,
s=1 s=1

q . ’ q
Cs, = Hf"¢AY B+ <B - fOH’> €A"S " B = Csp1 + Csga,
s=1 s=1

q R , q
Co = HFYBA”S e+ (B . fOH’> BYA” €, = Co + Copa. (B222)

s=1 s=1

We bound max;<,<r ||Cy,|| for I = 1, ..., 6 below. The arguments are similar to those used in

the proof of Lemma 2 in Bai and Ng (2004). But the treatment of H and f° are quite different

233



because of the presence of mildly explosive factors here.

We first bound max;<,<r ||Cy,||. Note that

Ciy = HfYE (e’ies) + HfY [(—:' 2‘7: €, — F (e’ Zq:es)]
s=1 s=1 s=1

= Cigta + Cignp

Note that Cy1, = H (pg)T J5 ' Ciy10 where Cy 10 = Jp (pg)_T FYE (€Y7 €,) . Note that

H (NJBR;“/Q)_I@Iqla

- gm;m(p‘é)_ Z[ ZE%QS]

s=1
T
S /{;1/2 Z E Eztezs
=2 -
T
< M Z K;l/z (pg)fT Il = 0, (1) uniformly in g,
t=2

N E(enes)| <

M by Assumption A2.3 and last inequality follows from similar arguments as used in the proof

where the second inequality follows from the fact that max; < <p Zthl

of Lemma B.3.2(b). This result, along with the fact that HH (P Tt

= 0, (1), implies

that

max ||Cyy1a]| < HH(pg)TjBfl‘ max || Cigua|| = <NjB/<;1T/2>. (B.2.23)

1<q<T 1<q<T

Let q)q,s = \/% Zf\i] 2322[€Z'S€it —F (eiseit)]- Then

T
Cigv=VNTH (Pg)T Z (Pg)iT ff@w.

s=1

Following Proofs of Lemma B.1.2(b) in Bai and Ng (2004), it suffices to show that for every
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s=1,...,T 1rgle1<xT\<I>q,s] = O, (1). Equivalently, we are going to prove that
9=

P ( max |, | > K) =o(1)

1<q<T

where K is finite and chosen to be large enough. Let ¢f, = €560 — E (€5€;) and Uy, =
N2/(440) o(24+4m)/(440) " \where m > 0 and can be small enough, ¢ is defined in Assumption

A2.1. Let 1, = 1 {|¢%,| < VIny},and 1 = 1 — 1;,. Define
Ol = Py Lic — B (@5 1it) , 05 = Softiib and p3; = F (QthLt) .

Apparently 5, + 05, — 05, = 5 as E (¢5;) = 0. We prove the claim by showing that

. N s

i) P (mos [ A7 S S et 2 K )=o)

. N s : N s

(i2) P (II%EEXT ‘_\/11\77 D i1 Di1 Pait| = K) = 0(1), and (i3) lfgnanXT _\/]{TT Doimt 21 Plit| =

o(1).

First, we prove (i3). Note that

max
1<¢<T

1 N gq 1/2 N ¢ 1/2
— 5|2 s
= \/NTlranasxT{ZzEWit’ } {ZZP(|%t| >?9Nq)}

i=1 t=1 i=1 t=1

1

i=1 t=1

INA
%‘
~
=
)
A
=
=2
——
M=
)=
=
5,
\VJ
)
Z
—_——
=

IN
=
o
o

. N ¢ 1/2
—(4+48)/2 s
\/NT1<q<T( Nq) {ZZﬁNEzJF / E|%’t|(4+6)/2}

INA
=}
I~
>
=
<
2L
RN
+
)
~
N
|
Q
=
3
Il
@)
=

where the first inequality holds due to Holder’s inequality, the second and fourth inequalities
hold because E|¢3,|(“+%/2 < M by the construction of 5, under Assumption A2.1. The third

inequality holds because of Markov inequality.
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Next, we prove (i2). Noting that 121qa<XT ‘ﬁ Zf\;l 7 5| > K implies that

T
ZZ ‘Soft| Lt > K,

=1 t=1

3-
~

using Holder and Markov inequalities, we have,

- )

- 1/2 1/2
(N2 S Bl S S P Ul > v |
K

i=1 t=1

P | max
1<q<T

1 N
T

t

|<Pft| 1, > K

1 L
szwgit
T
P
1

N T 1/2
_ — 6 s
< (NT)TVHNT)Y {ZZ%” WErsoit\““)/?}

i=1 t=1

< (NT)Po "M = 0(T7m) = 0(1).

where the third and fourth inequalities hold because E|ip5,|(4*9)/2 < M by the construction of

3, under Assumption A2.1.

To prove (il), we consider two typical cases for ¢, i.e., (ila) ¢ < T, (ilb) ¢ is finite and. We
first prove (il) when ¢ =< T'. Without loss of generality, let {ar} be a sequence of integers

such that 0 < ap < T, ap — oo as T — oo, and T — ap = o(v/T). We have

1 - .
P WZZSOW ZK)

i=1 t=1

N ar
]' S
< Pl 2 2 v+ max,

i=1 t=1

IN
s

N ar
1
S‘ >
VNT Z 2 | > K/2> P <1I%lqasXT

i=1 t=1
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Using Markov inequality, we bound the second term in the above display as follows,

. m)

1 L
WZZ@iit

=1 t=ar+1

P | max
1<q<T

1 &K1 &
< P max — — Tl >K/2
~ <1<Q<TﬁtaZT+1 \/N;@lzt - / )
1 - |1 &
< (g3 [ sal s nn)
<\/Tt=aT+1 VN i=1
T N
< TTVE Y EINTEY o,
t=ar+1 i=1
T N
< T2 Y ENT2Y @ =0 (T —an)T7?) = 0(1),
t=ar+1 =1
where the fourth equality holds by constructions of ¢5;,, and E ‘N 125N gsl < M by
Assumption A2.3(c). Now, we are in the position to show ’\/% Zf\i DO ol =0, (1),t0

2
this end, by Chebyshev’s inequality, it suffices to show E (\/% SV e gofit) =0, (1).
Recall ¢3;, = &1y — F (Eulir), and ©f, = €;5€;4 — F (€;5€;1). Therefore, under Assumption

A2.1, {N"V2 32N 5.} are still mixing sequence with zero mean. We have,

1 N ar 2 1 ar ar 1 N 1 N

p —fzzwa) Y [—zsozt—zsozq]
( NT =1 t=1 T t=1 gq=1 \/N =1 \/N j:l

(4+8)/2\ 4/(4+9)

1 o~ 5/(4+6 1
< D (allt— gl E\/_NZSOW
t=1 ¢g=1 i=1
| ar ar ;X (4+8)/2\ 4/(4+0)
< 2> (allt—a) T E|l—=> "
TS g=1 VN i=1

= 0(arT ) =0(1),

(4+6)/2
<M

where the second equality holds by constructions of ¢3,,, and £ ’N —1/2 Zfil O3

by Assumption A2.3(c) for some § > 0 defined Assumption A2.1. Collecting all above proofs

for the claims (i1), (i2) and (i3), 1r<na<xT|<I>q,s] = O, (1) holds forevery s = 1,...,T. Besides, it
RS
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is the trivial case to obtain 1IEla<XT| ®, 5| = O, (1) when ¢ is fixed and finite by similar arguments
4>
for the case ¢ < T'. For other values of ¢, corresponding proofs can follow above two typical

cases with slight modifications. Then, we have

T
T 0\—T po
max [|Cigul| = VNT max || H (p) 2(!’0) Fi0,,
< 0
< VNT|H (o) | max (@
0\~ ¢o
< VNTJy ;(po) I <1r<na<XTH<I>qs||>
= 0, (Nl/leT/QTl/QJB>, (B.2.24)

where the first inequality holds by sub-multiplicity of the norm operator, and second inequality
holds because ||H (p))| = O, (Jz) as discussed in proofs of Lemma B.1.2(a) and (b), and
final quality holds by Lemma B.3.2(b). In sum, we have

max_||Cyy = <j KY2N T1/4) +0, (Nl/%lT/?Tl/?jB) . (B.2.25)

1<q<T

It is straightforward to see that max, ||(C1q2\| will be dominated by max, |Cy41]| by similar
<q<

arguments above for C,,; due to the term — f°H’

in corresponding derivations.

For max, |Cqql| to max |Cyql|, by similar arguments as done above, we can see that they are

not leadlng terms and neghglble compared with maxT(C5q and ma<xT(C6q Now, we are in the
<g<

position to show the order of leading terms involving max Cs, and max Cg,.
1<q<T 1<q<T

Again, max ||Cs,2|| in (B.2.22) will be dominated by max ||Cs, || as same arguments above
1<q¢<T 1<q¢<T

for max, |C14]|, it is enough to bound C;,;. Note that
4>

max
1<q<T

max ||Csp| < HH(pB)THSp

1<q<T

- Z Z froeir)‘?/

> B
s=1
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Since the term HH (pY)"

does not involve ¢ and is of order O, (Jp) in Frobenius norm
sp

in proofs of Lemma B.1.2, and the term H (pd) " o>, flel AVY|| does not involve ¢ and is

Tt e

of order O, (N r/ 2) in Frobenius norm according to proofs of Lemma B.1.2. By the construc-
tion of mildly explosive factors, under Assumption A2.1(d), [|>°7_, BY|| < >°7_, |BY|| <
STIBY = 0, ((pgl)T +..+ (pgRO)T> by direct calculations. Then, based on these

facts, it follows that

T T

max [[Csyl| = O, (ToN"2 [ (64)" + ..+ (dba,)"]) - (B.2.26)

1<g<T
Similarly, for Cg,, it suffices to bound the dominant term ||Ce1|| = ||Hf”B°A’ Y7, €.
Note that

q
0\ T 0y~ T 0o ( 0\~ T 0\T 0

max (ot < || B (6)"|| 11e0)™" D0 £2BY (08) ™" || (6)"| max, >3 A

where HH’ (pY)"

= O, (Jg) by the proofs of LemmaB.1.2, ‘(pg)fT > f'BY (pg)*TH —
O,(1) by Lemma ;3.2(6), and H(pg)TH =0, ((pgl)T +...+ (pgRO)T> by direct calcula-
tions. These terms does not involve g. Now, we are in the position to bound max 130527 Negsl,
to this end, we can readily obtain that, uniformly ing, £ H N=PRTY23° 57 ey, H <M
holds as lemma B.1(4) stated in Bai and Ng (2004). Then, we have 12’1anXT 15570 Nes|l =

O, (N?/*T"/%). We have

max_ 1Ceqll = O, <\73Np/2T1/2 [(,ogl)T +...+ (pgRO)TD . (B.2.27)

1<g¢<

Note that |N?7: " = O, <N‘p.7§1 [(pgl)_T +..+ (pgRO)_T]), neglecting those dom-
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inated terms, we can conclude

q

Z (H‘lﬁs — BS — us>

max
1<¢<T

[N (08) " Vi (08) ] [0 7]} B~ HBY — Hiu,
q
>
s=1
<l Iy (max [Coal + manTncﬁqln)

>

< HH 1H max
1<q<T

HHUH_ IH max

1<q<T

|H,Hz" — I| max =0, (NP + NP2T'?) = O, (N"?/*T"/*)(B.2.28)

1<q<T

where the first inequality follows by the construction of (H ')’ in (B.2.10), the sub-multiplicity
of the norm and the triangular inequality. And the final equality follows by the bounds for

max |Cs41|| and max |Ceq1| given above, and the bounds of |Hy'|| and | H H;" — I||

in the proofs of Lemma B.1.2(a), and the fact that max 17wl = O, (T*/*) by similar
1 — /2
arguments used for C,41,. Then, it follows rgagg[ \F HZS o H™ B —fsll = O, (N )

directly.

B.2.4 Proofs of Lemma B.1.4

Recall that Kz = (ﬁﬁ/)—lﬁ/zi with Z@ = fOA? + €, where Zz = (Zih ey ZiT)/ and

€, = (Ez’l; . 7€iT)/- Then

HAOfO/ _ KOE/ 2

N R N
= > [ar- =3 |1PsZi — A
=1 =1

N N
= D[P (F°AY + &) — £OAY = 3 [ MpfOAY - Pae”
i=1 i=1

IN

N N
23 Mg oAl + 2 ||Pae|” = 28, + 28..

i=1 i=1
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It suffices to bound B; and B5. For Bsy, we have By < Zf\il €;Pge; = O(N +T') by Lemma

()

B.3.1(a). For B, we apply Lemma B.1.2(a) and Assumption A2.2 to obtain

fU - BHlfl

N
Bo= 3 |ag (50— BET)AY < |larg),
=1

9 N
>[Il
i=1

= 0(1)0, (TN_p) Op(NP) = O, (T) .

Consequenly, [|A’f” — AB'||2 = 0, (N +T).

B.2.5 Proofs of Lemmas B.5 and B.6

These results are obtained directly as a combination of the proofs for Lemma B.1.2 and Lemma
B.1.3 presented above and the corresponding arguments as used in Bai and Ng (2004) for the

unit root case.

B.3 Some Useful Lemmas

Lemma B.3.1. Suppose Assumption A2.1 to A2.3 hold. Then

(a) sup]‘[,ﬂe]D)P(]\fT)_1 Zf\; € Pre;=Op (N7 +T71)

(b) (NT)7'||e€'|| = Op (N2 +T7Y2) and (NT)7" ||€'e|| = Op (N2 + T-1/2)

where Dp = {F € R™ "}, and (a), (b) hold under Assumptions A2.3.

Proof. The derivations are exactly same as those in Peng et al. (2020). B
Lemma B.3.2. Suppose Assumption A2.1 and A2.5 hold. Then
(@ |rr'* 30y (p) "

(b) | Sr, (p}) " FY

-T _
© |[(p9) " Kt S, F

=0, (1>

=0, (/iTTl/?pa*T) + O, </1?}/2>

= Op(l)
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@ |w® S (o) EORY (o) | = O
@ | (o) 2212 ()| = 00 (1) + 0T

x _ 0 0 _ min {0 0
where p; = max {90,17 e ,p07R0}, Pox = Min {Po,p e ,pQRO}

Proof. Proofs are similar to those derivations of Lemma B.5 in Horie and Yamamoto (2016)
despite that Horie and Yamamoto (2016) only considered univariate case such that Ry = 1.
However, when R, > 1, all routines are similar if we define ¢* = max {cy, ..., cg, } and then,

treat corresponding arguments as if Ry = 1 as done in Horie and Yamamoto (2016). B

The next lemma studies the asymptotic property of Vz n.

Lemma B.3.3. Under Assumption A2.1-A2.6, as N, T — 400,
1-p ( 0\~ T 0\~T
N (Po) Vzn (Po) — T (B.3.1)

~ -1 , ~ —
where T1 = lim (BO’BJT’I) (BB ATA° (BO’Bj:Fl> (pQ) %", which is a posi-

N, T—oc0
tively definite matrix.

Proof. Premultiplying B” and postmultiplying (p?) >" on both sides of (B.2.2), we have

—2T

~ _ _ 1 ~ —orT
BBV, 7 (i) — N BY B AV BB (o)

-2T

= N 'B” (A% + e)/ (AU + €) ﬁjT_l (p0)

—-2T

_i_NleO/Bvo; (Aou' + 6) EJT_l (pg) + N-1BY (Aou’ + e)’AOBO/ﬁjT—l (pg)

A+ Ay + As.
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We bound each term below. First, note that

A = N7Y(BYu) A"AWBI;" (pf) " + N7 (B"u) (A%) B (p))
+N7 (eB®) (M%) BJ; ! (pf) " + N7' (eB°) eBJ; (pf)
= A11+A12+A13+A14‘
For Ay, we have
B AO/AO / - _
lAull = N7 (B (o)) (pS)TWT"f/QJ;BJBJF (o) ™"
. AYAO 3
S e L [ e | e
— N-URTU20 ( H ) H H(pg)— ’
sp sp

_ N—1+pT1/2/£TOp (exp (—QCr,mmTH;l)) ’

where we use the fact that 7 = ( p8)T Jp to obtain the inequality, the second equality holds by

Assumptions A2.1(b) and A2.2, Lemma B.3.2(c), and the normalization condition, and the last

T
. Cr.mazx — —1
o = (1 + T) = eXp (Cr,mamT’fT ) s

)"

) =T
H<p8) r L= (1 + %) = exp (—CrminTk7"), and [ maz — Crmin| = Op (5£) as

assumed in A2.5(a). Similarly,

A
0 o\—T T A€ 3
B"u (o) " |[ || (o))", |5

_ N,Hp/le/Qop (KJT) Op (exp (—QCr,mmT"‘?;l)) ’

N-L+p/21/2

IN

|7 B[ (ed) ™

sp
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where we use Lemma B.3.2(c), (B.2.4), and the normalization condition. Next,

0 /
—1+p/271/2 || RO o1 T A u H 71’\HH on-T|*
I e o | T o | e B (O
= voeerzo, (v e[ led
sp sp

N0 (exp (—2¢,minTr7"))

where we use Assumptions A2.1(b) and A2.2, the normalization condition, and the fact that
HBO’ € (pg)_TH = O, (N'/?) by Assumptions A2.1 and A2.4 and similar arguments as used
to obtain Lemma B.3.2(c) (c.f., Lemma B.5(c) in Horie and Yamamoto (2016)). Similarly, we

have

3

| A4l

IN

o

= N0, (N+T)0, (exp (~260minTr7")).

7 B[ teh)

€e
el '

where we use Lemma B.3.2, Assumption A2.3, and the normalization condition. It follows
that

| AL = O, (N7 [TY25p + NV2PPTY2 4 NP (N + T)]) O, (exp (—2¢, minTrz")) -
(B.3.2)

Next, we study .A,. Note that

Ay = NT'BYBAYAW B (p]) 7 + NT'BYBAYeBI; (p]) Y = A + As.
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For Ay, we have

||A21|| S NflerTl/Q (pg)T (pg)—T BO/BO (pg) —TH H (pg)T ;
AO/AO 3
H i HJBlBH [ed ],
_ —14p1/2 nT||? n-T|? _ AT—1l4p1/2 . . -1
— 720, (1) || (p0) . (p0) W= N=HPTV20, (exp (—crminThr))

where the first equality holds by Assumptions A2.1(b) and A2.2, Lemma B.3.2(e), the normal-

ization condition, the fact that Jr = ( pg)T Jp. Similarly,

[l < N ) o) BB (o))
AO/ B 7 3
|| 8] e
T 2 =T 3 4
= noero, ) (o) [[eh) || = N0, (exp (<))
sp sp

where the first equality holds by Lemma B.3.2(e), (B.2.4), the normalization condition, and

the fact that 77 = (p0)" J5. In sum, we have

| A || = N=PTY20, (exp (—CrminTr7")) - (B.3.3)

Now, we study .43. Note that
Ay = N—IBO/UAO/AOBO/Ej:Fl <p8)*2T + N—IBO/EIAOBO/EJT—I (pg) —2T _ Asy + Asy.
For A3, we have

[ Az ||

AO/AO 3

< N—l+p

|7 B[ (eb) ™"

(b)) B”

@), (o)

< NP0, (kr) H (0) ij H (Po)

o) " B2

_7l3

sp

= N_H—pliTOp (eXp (_Cr,minT’f;l)) )

sp

sp
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where the first equality follows by Assumption A2.2, Lemma B.3.2(c) and (e), the normaliza-

tion condition, and the fact that J = ( p8)T Jp. Similarly,

| Asz ||

< NP2 H (p3)"

(Po) EBOH ‘ NPp/2

2 -3 —1/2+4p -1
(oh)"[ (07| = 7270, (exp (—enmn i)

sp

(b)) B”

[(eh”

sp sp

< N—1+p0p (NI/Q)

where the equality holds by Lemma B.3.2(¢e), Assumption A2.2, the normalization condition,

the fact that 7, = (p0)” T, and the fact that H(pg)fT eBOH = O, (N'/?) used above. In

sum, we have
[As|| = N7 (kg + NYV2722) O, (exp (—crmnThz")) - (B.3.4)
Combining (B.3.2), (B.3.3), and (B.3.4), we have

R _ AO/AO
HB("BVZ,NJT‘1 (o) " = NTBYB =2 (BYBI; ) (o)

_ (N—H-p [T1/2I{T + N1/2-p/271/2 + NP (N "’T)D Op (exp (—20r,mmT/i}1))

FNTH(TY? 4 p 4 N1/2_p/2)0p (exp (_CrvmmTK;l))

= o,(1). (B.3.5)

Noting that Jr = (pg)T Js, Vzn, and (pg)T are all Ry x Ry diagonal matrices, so they are
interchangeable, (B.3.5) implies that

<BO’§jfl> <N17p <p8)—T Viw (pg)_T> _ [B"B"] Aj\’TAU (BYBI) (p)) 2T, (1)

and N7 (p0) " Vyn (p0) T 1.1
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B.4 Supplementary Results for Monte Carlo Simulations

In this section, we first report the simulation results based on the asymptotic normal critical
value. Then we report the performance of the transformed double ridge ratio criterion to de-

termine the number of factors.

B.4.1 Simulation results based on the asymptotic normal critical value

In this subsection, we present simulation results of our proposed test based on the asymptotic

critical value.

Table B.1: Finite sample properties of the P PT under the null and alternatives when Ry = 3 that is
taken as known.

Size of the Proposed Test
DGP 1 pi=1fori=1,....N
PO\ (N, T) (100,51) | (100,101) | (100,201) | (200,51) | (200,101) | (200,201)
diag (1.00,1.00,1.00) | 0.056 0.052 0.042 0.062 0.038 0.034
diag (1.02,1.02,1.02) | 0.020 0.002 0.000 0.016 0.006 0.000
diag (1.04,1.04,1.04) | 0.002 0.000 0.000 0.006 0.000 0.000
diag (1.08,1.08,1.08) | 0.000 0.000 0.002 0.000 0.000 0.000
( )
( )

diag (1.02,1.04,1.06 0.000 0.002 0.000 0.000 0.000 0.000
diag (1.02,1.05,1.08 0.000 0.000 0.000 0.000 0.000 0.000

Power of the Proposed Test

DGP 2 pi "% Uniform (1.08,1.10) forany i € {1,..., N}

o\ (N, T) (100,51) | (100,101) | (100,201) | (200,51) | (200,101) | (200,201)
diag (1.00,1.00,1.00) | 0.180 | 0.910 1.000 | 0382 | 0.998 1.000
diag (1.02,1.02,1.02) | 0.118 | 0.604 1.000 | 0.162 | 0.606 1.000
diag (1.04,1.04,1.04) | 0.156 | 0.754 1.000 | 0210 | 0.758 1.000
diag (1.08,1.08,1.08) | 0378 | 0.918 1.000 | 0.504 | 0.928 1.000
diag (1.02,1.04,1.06) | 0.174 | 0.728 1.000 | 0214 | 0.794 1.000
diag (1.02,1.05,1.08) | 0.170 | 0.758 1.000 | 0210 | 0.810 1.000

Table B.1 reports the results of the proposed P PT test based on the asymptotic critical value
when Ry = 3 is assumed to be known. From the table, we can see the proposed test suffers
from severe downward size distortions in the presence of mildly explosive factors. When the

factors follow a unit root process, it is consistent with our anticipation that our proposed test can
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have nominal size based on the asymptotic critical value. However, the power of the proposed
test is reasonably good in many cases, which is attributable to the exponential explosiveness
in the idiosyncratic components.

Table B.2: Finite sample properties of the P PT under the null and alternatives when Ry = 3 that is
taken as unknown and estimated by Algorithm 2.2.

Size of the Proposed Test
DGP 1 pi=1fort=1,...,N

PO\ (N, T) (100,51) | (100,101) | (100,201) | (200,51) | (200,101) | (200,201)
diag (1.00,1.00,1.00) | 0.042 0.040 0.038 0.048 0.064 0.052
diag (1.02,1.02,1.02) | 0.022 0.002 0.000 0.020 0.004 0.002
diag (1.04,1.04,1.04) | 0.006 0.002 0.000 0.008 0.000 0.000
diag (1.08,1.08,1.08) | 0.000 0.000 0.000 0.000 0.000 0.000

( )

( )

diag (1.02,1.04,1.06 0.000 0.000 0.006 0.006 0.002 0.006

diag (1.02,1.05,1.08 0.002 0.000 0.012 0.000 0.000 0.002
Power of the Proposed Test
DGP 2 pi "~ Uniform (1.08,1.10) forany i € {1,..., N}

PO\ (N, T) (100,51) | (100,101) | (100,201) | (200,51) | (200,101) | (200,201)
diag (1.00,1.00,1.00) | 0.288 0.478 0.940 0.544 0.506 0.990
diag (1.02,1.02,1.02) | 0.038 0.602 0.998 0.110 0.676 0.996
diag (1.04,1.04,1.04) | 0.072 0.544 0.474 0.168 0.598 0.548
diag (1.08,1.08,1.08) | 0.046 0.268 1.000 0.054 0.366 0.992
diag (1.02,1.04,1.06) | 0.112 0.440 0.754 0.116 0.542 0.776
diag (1.02,1.05,1.08) | 0.040 0.472 0.572 0.088 0.430 0.624

Table B.2 shows the results of the proposed P PT test based on the asymptotic critical value
when Rj is estimated by Algorithm 2.2. As above, we can also see the significant downward
size distortions in the presence of mildly explosive factors except for factors. The power of

the proposed test remains good in many cases.
When Ry = 1, Tables B.3 and B.4 display similar results as those in Tables B.1 and B.2.

In summary, when the asymptotic normal critical value is used, the proposed PPT test is
undersized in the presence of mildly explosive factors. These results highlight the need of a

wild-bootstrap-based test as shown in the main text.
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Table B.3: Finite sample properties of the P PT under the null and alternatives when Ry = 1 that is
taken as known.

Size of the Proposed Test

DGP 1 pi=1fori=1,....N

po\ (N, T) | (100,51) | (100,101) | (100,201) | (200,51) | (200,101) | (200,201)
p=1.00 0.050 0.038 0.042 0.050 0.052 0.040
p=1.02 0.022 0.014 0.010 0.036 0.020 0.002
p=1.04 0.012 0.006 0.002 0.020 0.006 0.056
p=1.08 0.008 0.000 0.000 0.004 0.000 0.000

Power of the Proposed Test
DGP 2 p: % Uniform (1.08,1.10) forany i € {1,..., N}

PO\ (N, T) | (100,51) | (100,101) | (100,201) | (200,51) | (200,101) | (200,201)
p = 1.00 0.120 1.000 1.000 0.172 1.000 1.000
p=1.02 0.904 1.000 1.000 0.982 0.998 1.000
p=1.04 0.898 0.952 1.000 0.934 0.950 1.000
p=1.08 0.780 0.998 1.000 0.952 1.000 1.000

Table B.4: Finite sample properties of the P PT under the null and alternatives when Ry = 1 that is
taken as unknown and estimated by Algorithm 2.2.

Size of the Proposed Test

DGP | pi=1fori=1,....N

PO\ (N, T) | (100,51) | (100,101) | (100,201) | (200,51) | (200,101) | (200,201)
p=1.00 0.040 0.056 0.054 0.048 0.042 0.044
p=1.02 0.042 0.056 0.048 0.040 0.046 0.044
p=1.04 0.042 0.048 0.040 0.044 0.044 0.056
p=1.08 0.040 0.044 0.048 0.054 0.044 0.044

Power of the Proposed Test
DGP 2 pi "% Uniform (1.08,1.10) forany i € {1,..., N}

PO\ (N, T) | (100,51) | (100,101) | (100,201) | (200,51) | (200,101) | (200,201)
p=1.00 1.000 1.000 1.000 1.000 1.000 1.000
p=1.02 0.904 1.000 1.000 0.982 0.998 1.000
p=1.04 0.898 0.952 1.000 0.934 0.950 1.000
p=1.08 0.780 0.998 1.000 0.952 1.000 1.000
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B.4.2 The selection frequency of transformed double ridge ratio

In this subsection, we report the selection frequency for the transformed double ridge ratio

criterion when R, is estimated by Algorithm 2.2 described in Section 2.4. In Table B.5 we

present the correct selection frequency (I% = Rp) under the null; In Table B.6, the selection

frequency of R > Ry is of interest and reported.

Table B.5: selection frequency of TDDR criterion under the null when Ry = 3 that is estimated by
Algorithm 2.2.

Correct Selection Frequency with R = Ry (%)
DGP 1 pi=1fori=1,....N
PO\ (N, T) (100,51) | (100,101) | (100,201) | (200,51) | (200,101) | (200,201)
diag (1.00,1.00, 1.00) 60.4 38.4 27.0 57.2 28.8 10.2
diag (1.02,1.02,1.02) 58.2 47.6 73.4 54.6 43.6 67.4
diag (1.04,1.04,1.04) 67.8 78.0 77.2 65.8 76.2 77.4
diag (1.08,1.08,1.08) 84.2 80.6 80.6 85.2 81.0 75.4
diag (1.02,1.04, 1.06) 70.8 80.8 96.2 67.6 81.0 96.6
diag (1.02,1.05,1.08) 79.2 88.6 96.8 79.4 92.0 99.0

Table B.5 exhibits simulation results of correct selection frequency of Algorithm 2.2. Except

for the case that factors follow unit-root processes, Algorithm 2.2 chooses Ry with high prob-

abilities in most cases for different specifications of mildly explosive factors.

Table B.6: selection fequency of TDDR criterion under the null when R, = 3 that is estimated by

Algorithm 2.2.
Selection Frequency of R > Ry(%)
DGP 2 pi "% Uniform (1.08,1.10) forany i € {1,..., N}
PO\ (N, T) (100,51) | (100,101) | (100,201) | (200,51) | (200,101) | (200,201)
diag (1.02,1.04,1.06) 70.8 80.8 96.2 67.6 81.0 96.6
diag (1.02,1.05,1.08) 79.2 88.6 96.8 79.4 92.0 99.0
diag (1.00,1.00, 1.00) 61.4 41.6 100.0 50.6 36.2 100.0
diag (1.02,1.02,1.02) 70.4 40.8 100.0 59.4 29.6 100.0
diag (1.04,1.04,1.04) 71.6 48.2 100.0 56.0 41.0 100.0
diag (1.08,1.08,1.08) 89.2 48.2 100.0 89.6 54.2 100.0

However, the results in Table B.6 reveal that Algorithm 2.2 overestimates the true number of

factors with high probabilities if data are generated under the alternatives. This issue results
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from spurious factors under the alternatives. However, as analyzed in the main texts, the slight
over-extraction of factors does not lead to the total loss of the power against the alternatives

for our proposed test.
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Appendix C

Appendix to Chapter 3

C.1 Proofs of Main Results

To prove the main results in the paper, especially Theorem 3.3.2 and Theorem 3.3.4, we need
some technical lemmas. Below we first state the technical lemmas whose proofs can be found

on the online supplement, and then prove the main results in the paper.

C.1.1 Technical Lemmas

We first state some technical lemmas related to the consistency of the estimated local-to-unity
explosive factors under the alternative of local-to-unity. In the case where the factors exhibit

a unit root process, the results are relatively simple and similar to those in Westerlund (2015).

Consistency of the estimated local-to-unity explosive factors when idiosyncratic error

terms are local-to-unity explosive

The following four lemmas establish the consistency of the PC estimation for the first-differenced

form of data, they hold under some mild assumptions when p . = 1+ ,./T with ;. > 0 being
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finite and fixed for all r, and p? = 1+ ¢;/T with ¢; > 0 being finite and fixed for all i as

specified in (3.2 .7).

Lemma C.1.1. Suppose that Assumptions A3.1-A3.5 hold. Then T~'B" B is asymptotically

invertible.

Lemma C.1.2. Suppose that Assumptions A3.1-A3.5 hold and the null hypothesis in (3.2 .5)

holds. Then there exists H with asymptotic rank Ry such that as (N,T) — oo,

2

(a) T ZtT=2 HH_lﬁt - fto = Op(N_1)§

(b) (H_lﬁt - Bf) = O,(N~Y2 4+ T=12 4 N=ITY2) for each given t;

(c) (3\, - H’*l)\?> =0, (T7Y2 + N7') for each given i.

Lemma C.1.2 above shows that the PC estimation for the first-dfferenced form of data can yield
the consistent estimates of unobserved common factors in first difference and factor loadings,
and it is also possible to allow N and 7' to diverge at different rates as in Bai (2009) and Lu
and Su (2016). Lemma C.1.3 is similar to the corresponding result in Bai and Ng (2004), and

demonstrates that the cumulative sum of B, is uniformly close to the cumulative sum of BY,

Lemma C.1.3. Under the assumptions of Lemma C.1.2,

¢
1 -1 0 _ -1/2
g [ (B m)| o,
~~ 112
Lemma C.1.4. Under the assumptions of Lemma C.1.2, ||[A°f¥ — AB’'|| = O, (N +T).

To study the asymptotic properties of the test statistic, we need the following lemma, which
is similar to Lemma B.2 in Bai and Ng (2004). Lemma C.1.5 are presented for completeness
and can readily obtained by following proofs in Bai and Ng (2004) directly based on Lemma

C.1.2-C.1.3, and assumptions in the current paper.
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Lemma C.1.5. Consider estimation of (3.2 .10) by the method of principal components. Let
B? be defined by (3.2 .9), and 1?} be defined by (3.2 .12). Besides, denote the sample means by
F= (T-1)"'7, F,F=(T-1)" ST FL. Let Fe=F,— F be the demeaned series
and we define Fto’C similarly. Suppose that Assumptions A3.1-A3.5 hold. Then there exists an
H with rank R such that as N, T — oo,

() (1/VT)F, = H(1/VT)F? + O, (N=Y2 4+ 1712 4 N=YTVY2) uniformly int € [2,T);

(i) (1/T%) X0, BF, = H ((1/T%) 1, FOFY ) H' 40, (N7V2 4 7712 4 NTIT2)
(i) (1)T)Y}, BB, =H ((1 /TS, BgBQ’) H'+ 0, (N2 4 T-12 4 N7IT/?)

) (1T)SL (FaBi+ BF.,) =  (UDHLL, (R By + BIFY,) H'
+Op (N7V2 47712 4 N7IT2)

o) (1/VT)F = (1)VT)HF + O, (N-Y/? + T-V/? 4 N-1T1/2)
wi) (1/VT)F¢ = (1/VT)HF® + 0, (N2 + 7712 4 N-1T1/?)
wii) (1)T?) ", FeFe = H ((1 /)", 1;;0151;;076’) H'+0, (N~V2 4 T-V2 4 N71T1/2)
wiii) (1)T) 1, (ff_lﬁ{ + étﬁfh) = H [(UT) >is (Fe By + B?Efo—cl)} H'
+0, (N71/2 T2 N*1T1/2)

C.1.2 Proof of Theorem 3.2

In this part, we focus on the case that p? = 1 + ¢;/T with ¢; > 0 fori = 1,..., N. The case

with ¢; < 0 can be obtained similarly.

The Asymptotic distribution of test statistic under the null

Note that pgm =14, /T withy, = 0forr = 1,..., Ry under the null, which can be regarded
as the special case of generic series {v,}% | such that v, # 0 in general. Thus, we omit the

details of proofs here, and refer readers to the next subsection.
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The Asymptotic distribution of test statistic under the alternative of local-to-unity

Since proofs for other estimated factors are exactly same as that for the first estimated factor,

we focus on the first estimated factor for illustrations below.

Recall that F, = St B.. Let B be the first column of B, and F(!) be the first column of

F. By regressing ét(l) on 1?;(_1)1, we can obtain the OLS estimator 7; from (3.2 .14) as follows,

-1

t=3

T T T !
~(1) (1 (1 (1
ny roR - () (i) |
t=3 t=3

Because we derive the limiting distribution when 7' goes to infinity, 75 = 1" — 2 will go to

infinity as 1" — +o0. It follows that

Tz/l/\l
T T T
_ - (1 —1/2 S(1 —3/2 (1
A(myarny)- (nee) (s ay)|
t=3 t=3 t=3
T T T Iy 1
_ (1) (1 —3/2 (1 —3/2 (1
{ (TQ 3 ;m“;) _ (n e F;a) (TQ e Fsa) }
t=3 t=3 t=3

Let H(’l) be the first row of H, thus H(;) is a Ry x 1 vector. Using Lemma C.1.5, for the

denominator of T57;, we have,

T T T !

(royomeie) - (noe5m ) (m0y 6
t=3 t=3 t=3

T T T /
_ ~3/2 ~3/2
A () m - (e ) (3 )
t=3 =3

X [14 o0, (1)] .:
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Similarly, for the numerator of 757, we have

T T T
B ~ ~ _ - —-3/2 (1
<T2 5y jBPFﬁ’) - (T2 2y B§”> <T2 73 jF}{’)
t=3 t=3

=3
T T T !
_ —1/2 —3/2
= {H(/l) (TQ IZB?EO—/l) H, _H(ll) <T2 / ZB?) (T2 / Z'Fto—l) H(l)}
=3 =3 =3
X [1 40, (1)].
Further, recall that BY = T"'wF? | + u; with v = diag(vy, . .., vg,) under the alternative of

local-to-unity, then, we define that

7 (C.1.1)

T T T !
_ ~3/2 —3/2
= {H(Il)’/ <T2 221;;:0—11’_;:0—,1> H) - H(II)V (TQ / ZF;&O—I) <T2 / ZE:0—1> H(l)}

t=3 t=3 t=3

T T T ! -1

_ ~3/2 —3/2
{Hzn (n ZFF) He -~ Hy, (n 3 F) (TQ 3 F) H(l)}
t=3 t=3

t=3

Using Lemma C.3.2 1(a)-(d), it is straightforward to see that yg) = 0, (1) from (C.1.2), we

then have,
Tov,
T T T !
- (7%) + {H(/1) <T21 Zutthl) Hq) — Hél) (Tzl/z ZW) <T23/2 Z Ft01> H(l)}
t=3 t=3 t=3
T T T ! -1
_ —3/2 —3/2
{H(ll) (Tz QZEO—1E0—,1> Hq) — H(,l) <T2 / ZFtO—1> <T2 / ZFtO—1> H(l)}
t=3 t=3 t=3
X [+ 0p (1)].

Then, let H él) -, be the fist row of H,, = NlTim H , we further have that
’ ,I'—00

0, = 7 + M),
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where

1 1
v = {H(’l)mZ}/? { /O dW(r)J,(r) — W (1) /0 J,,(T)’dr} 5P Hy oo + Hiyy S0 H }

{HE””W [/ol"”(”"”“"’/dr‘ ([ oy (/olt'wmdr)/ z;/mmfo}_l

where J,(r) = (J,,(r),...,]

(r)) is a Ornstein-Uhlenbeck process such that J,,(0) = 0 and

VR

J,(r) = W(r) + v [] e" =)W (s)ds; besides, W (r) is the Ro-vector standard Brownian

motion on C[0, 1] that is given by the weak limit of the partial sum ¥, V2p-1/2 ELZ] u
The estimated variance of 7; is calculated as
T T -t
1) @1y _ (1 (1
B =, [z myy-r (L) ()|
t=3 t=3
where 77y =Ty 'S T BB Recall that B = T'wF? | + uy, it is straightforward to
see that
T T
Tzil Z Bt(l)Bt(l)/ = Tzil Z H(ll)B?B?/H(I)
t=3 =3

T
= Ty Z H(/l wu,Hpy + 0, (Tﬁl)

t=

Using Lemma C.1.5 and Lemma C.3.2, we then have & 0 —> H’ o2 H (1) 50
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It follows that

-1
T*Var(v,) = 8

T T !
—2 ZE ) 1)/ (T_3/2 Zl’ﬁtl) (T—3/2 ZE1> ]
t=3 t=3
= (Hél),ooEuH(l)aoo>

" {H(ll),ooz’ll/2 [/OlJV(r)JV(r)’dr — </01Ju(7“)'dr) (/OlJu(r)dr) ,] 211/211(1)700}_1

Collecting above immediate results, we can obtain the weak convergence of the proposed test

statistic constructed from {Et(l)}tT:2 as shown below,

DFOS = {To {TVar(my)}

= X+l

where
_ ~1/2
Xz(/l) f = (Hél),ooEuH(l),oo) /
1 1 1 !
{Hénmvzi/? [ Caemya= ([ aera) ([ ) ] 25/2H<1>,m}
1 1 1 / —1/2
{H<’> SiE [ [ wmieya— ([ nora) ([ s EJ/QHm,oo} ,
and
¢£1)7f = (fI(ll)poEuI{(l)po)71/2

1 1
{2 | [ aowWornn) - W) [ n0a] SV o Y00 )
0 0

{H&),mzi/? [ / ()3, (e — ( / 1 J,,<r>'dr) ( / 1 Jymdr)/ zi/2H<1>,oo}1/2 -

As shown above, we complete proofs for the limiting distribution of the proposed test statistic

under the alternative of local-to-unity.
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Note that under the null that v, = 0 for all r, Y()/ = Y(()l)’f = 0, and 1/)1(,1)’]0 turns out to be
[()1)’f with Ry-dimensional vector standard Brownian motion W (r) in place of the Ornstein-

Uhlenbeck diffusion process J,,(r).

C.1.3 Proof of Theorem 3.3

Arguments of the proofs for Theorem 3.3.3 are almost the same as those for Theorem 3.3.2
in the last section. To see this point, recall that Vg, is obtained by regressing ﬁf “ on I?’ﬁf .
Then, similar to 7/, we have,

T2 Z BROFRO / Z BRQ Z FROI

VRO =

T T !
ny aeit - (i) (i) |
t=3 t=3
Similar to (C.1.2), we have

TyDr, (C.1.2)

T T T !
= (ﬁRO + {H;?o <T2_1 Zutﬂo—,1> Hp, — Hll?o <T2—1/2 Zut> <T2_3/2 ZEO_1> HRO}
t=3 t=3 t=3

T T T / -1
{H;%O <T22 ZEO_IEO_’1> Hp, — H;_zo <T23/2 ZEO—1> (TZS/QZE&O—1> HRO}
t=3

X [140,(1)].

where Hp, = 31 H,), and 7' is defined as

pho

(C.1.3)
T ‘ T r T /
= {HI,%OV <T2_2 > Ff—lﬂo—,1> Hp, — Hp v (T;S/Q > Eto—1> (T2_3/2 > Eso—l) HRO}
t=3 t=3 =3
T T T / -1
- —3/2 —3/2
{H;%O (TQ 22Ft011?t0/1> HR() - H;«IO (T2 / ZFIEOl) <T2 / ZE01> HRO}
t=3 t=3 t=3

From (C.1.2) and (C.1.3) above, we can see that 15V, has the similar structure as 757, for
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r = 1, N R()-
Similarly, Y%pRO also has similar structure as @y, shown in the last section.

By imitating the arguments of proofs for Theorem 3.3.2 in the last section, the desired result

follows directly.

C.1.4 Proof of Theorem 3.4

In this section, we demonstrate the consistency of dependent wild bootstrap (DWB) for the
proposed test when the alternative of local-to-unity holds, namely, pgm = 1+ v,/T for
r = 1,..., Ryg. Under the null, v, = 0 holds for all » = 1,...,T, proofs below show the
consistency of DWB in approximating the limiting distributions under the null. We follow
proofs for Theorem 3.1 and 3.2 presented in Rho and Shao (2019). Without loss of generality,
we also focus on the first estimated as done in the proofs of Theorem 3.1, and proofs for other

estimated factors are exactly same as those for the first estimated factor presented below.

Let P* denote the probability measure induced by the dependent wild bootstrap conditional
on X = {Z;}. Let £* and Var* denote the expectation and variance under P* and O and oy,

the probability order under P*.

(a) We will follow lines in Rho and Shao (2019) to apply large-block-small-block method. Let
Ly = L(T/ZT)UQJ be the length of a large-block and Iz < M - T" with 5y € (0, 1/3) be that of
a small-block. Our goal is to assign points ¢ € {1,2,..., |Tr]} to alternating large and small
blocks. Let Ky = K7, = ||Tr] (Lt + lT)flj be the number of the large (small) blocks. For

0<r<ryg <1, K, = KTJ’l and K| = KT,T‘Z'

Define the k-th large-block £y, = {j e N: (k= 1) (Lr +lr)+1<j <k(lr + Ly) — I}
for1 < k < Kr, the k thsmall-block S, = {j € N: k (Ly +1r) —lp +1 < j < k (Ip + L)}
forl1 <k< Kr—1,and Sk, = {j e N: Ky (Lyr +lr) —lr+1 <35 < |Tr]}. And note

that Lr — o0 and lT =0 (LT) .
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For notation convenience, define u, 1y = H, (’l)ut for all ¢. Denote the residual {u; (1) }/_5 that
are obtained by regressing ﬁt(l) on 1?}(_1)1 Denote the bootstrap version of @, (1) by uf 4y In

addition, let Uy, = > Wiuj iy and V, = des Wiujq) fork =1,..., Kr.

JEL
Before the proofs of Theorem 3.2, we state an important result as the lemma below used in

following proofs. Let u;(r) = Uy )Wy, then, forr =1,... Ry

Lemma C.1.6. For any pgﬂ, =1+ v,./T,v, > 0, then, for r-th row of the rotation matrix H,

as (N, T) goes to infinity simultaneously,

LTr)

-1/ Zut H, Zl/QW( ) in probability.

Lemma C.1.6 above states that, in the bootstrap world, the functional CLT still holds for both
the null hypothesis with pgm = 1 for all » and under the alternative of local-to-unity with

po, = 14 v /T with v, > 0 for all 7.

Next, we prove the consistency of DWB for the proposed test as an application of lemma C.1.6

above.
We claim that under the local alternatives,
T
T3 { (i)’ = B (i)} = op(0). (C.1.4)
t=3
and
T

Ty {E (4 ) uim} = 0,(1). (C.1.5)

t=3

2
Once (C.1.4) and (C.1.5) are established, it follows that 7'~! 23:3 { (“:,(1)) — u?,(l)} =

05(1). Then, by repeating arguments of proofs for Theorem 3.1 shown in the previous section,
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Theorem 3.2 holds directly as an application of the continuous mapping theorem, Lemma

C.1.6, and the fact that 7~ 121: S U —>H’

(1), Eulg—(l),oo

To prove (C.1.5), using Lemma C.1.5, Lemma C.3.2, BY = T"'wvF? | + u; by construction,
and the fact that 7; = O,, (T~) justified in the proofs of Theorem 3.1, we can obtain (C.1.5)

by direct calculations as follows,

T
T Z £ (“2(1))2 =T Z Uy (1) (C.1.6)

t=3 t=3 t=3
T T
= |H}, (T ZB,?BS’) Hg)| + 9T |H| ( N R 1Ft0/1> H(l)]
t=3 t=3
T
_2/1/\1 [H(ll) (T—IZBEE()/l) H +O ( 1/2 +T_1/2 +N 1T1/2)
t=3

Now we shall prove (C.1.4). Observe that

T T
Z{ uy (1) - E (u;(l))Z} = Zﬁiu) (W7 —1).

t=3 t=3

For any 6 > 0,

> T5} < (T6)°E* {iaﬁm (W2 — 1)}

N
~
Nt
S
Q
—
(]~
[+
)
0
=
+w
=
——

where the second line above follows by the properties of {1V, } under the DWB scheme, and
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it remains to show 77237, S0 U7 1)Uz 1) = 0p (1) as below.

~

Substitute U, 1) = BY — 5, FY into T2 S U} 1)Uz p (1> denote Oy = (N~V2 4

T-Y2 + N-'T'/2 by direct calculations, we have

t=3 h=0
T Ir R 9
- S (ea e ) (a1 ) )
t=3 h=0
T 1
= ) {an [T712B) = T~Y?0,F  + 0, (Oxr)] [T72B) = T™*0,FY | + 0, (On7)]
t=3 h=0
HoHy,) [T7'°B) =T V0 F) | +0,(Onr)] [T7°B) = T"'?0iF | +o, (@NT)},H(U}
T Ir
S [ (L) EL T oy 600)
t=3 h=0

X [T_l/Q (T_lV — I//\l : IR> F;:O_I + T_1/2Ut + Op (@NT)}/H(I)

><}I(ll) [T_l/Q (T_l’/ — - IR) F;grh—l + T_l/QuH-h + 0p (QNT)]

where the second to the last line above follows because we use following facts implicitly:
(1) By = T7'wF, +uy,

2)T-'2B, = T-'*HB? + O, (T~"*0y7),

(3)T-V2F, = T-'2HF? + O, (T2 y7) uniformly in ¢ by Lemma C.1.5(i),

W [T v — vy - Ig|| < [T 'v| + ||71]| = O (T71) because |7~ v = O (T!) under the

alternative of local-to-unity and 7; = O, (T"!) by Theorem 3.3.2, and

(5) T~ F,; = O, (1) by Lemma C.3.2 1(a).
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By Cauchy-Schwarz inequality, we have that

T I
T Z Z H{ywew H iy Hiyyuepuy, Hiy
t=3 h=0
i T 1/2 T Ir 27 1/2
t=3 t=3 =

IN

T 1/2 T Iy 1/2
Ty HHH4T12HWH4> [|!H|!4T1Z<lleHut+hH2>]
t=3 t=3 h=0

= 0, (T ') = 0,(1)

where the last line above holds under Assumption A3.1. Collecting above arguments, (C.1.4)

follows directly.

Proofs of Lemma C.1.6: Note that £* (Tfl/2 tLTgJ uyp )> = 0. Meanwhile, because Uy (1) =

Et(l) — Dlﬁ;(})l, we have

L7 v 1Tv)
TPy ey = TP W= (1B - nr PR ) W
=2 s pars

We use following facts again: B, = (ﬁt - HB§>+HB§, B =T 'WF) +u, [T V|, =
O (T~") under the alternative of local-to-unity, 71 = O, (T"), T"'?*F}},, = 223, (r) by
Lemma C.3.2 1(a), and the results in Lemma C.1.5. Then, by direct calculations, we have

following decompression,

|Tr| |Tr]
TRy iy = T (Hiyw Wi+ Hiy) (T7'v =01 - Ip) FL W)
= t=2
|Tr| N |Tr| R
+TH2Y (B§1> - Hgl)a?) W+ 772y (Fﬁ{ - Hgl)ﬁf’_l) W,
t=2 t=2

= Il,r + IQ,T + IS,T'

Once the fact that Z,, = 05(1), Z3, = 0;(1) and Z;, = W/(r) are established, the proof is
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complete. To this end, we study 7, ,, 7, , and Z3 , in turns below.

For Z,,, note that E* (Z,,) = 0, using Lemma C.1.2(i)-(ii) and Cauchy-Schwarz inequality,

it follows that

E*(13,)

IA

~ HB{,|| B (W)

JlT

Yy

= Op(lT(N + T+ N7?T)) =0,(1).

\Bt -

~ HB,||a(h/ir)

where the first line holds by the properties of {I¥;} under the DWB scheme, and the last line
holds as long as I7/N + I7/T + I7T/N? — 0 as (N,T) go to infinity jointly. Then, by

Chebyshev’s inequality, we have Z,, = o5 (1).

For Z3 ,., similar to above arguments, using Lemma C.1.2 and Lemma C.1.3, we also can obtain

ForZy,,wewriteZ;, = T~ Y/2 S\ 0 HY u, Wi T2 SO T0 HY (T-1w — By - Tp) B, W, =
Zi1y + Tha,- Below, we are going to show that (i) Zy2,, = o5, (1) and (ii) Zy1» = W (r).
First, we will show Zy5, = 0}, (1). To this end, our proofs follow lines in Rho and Shao (2019)

to show following two conditions holds

|77
TN " Hyy) (T7'w — 0y - Ig) FY W, | = o5(1) forany r € [0, 1] (C.1.7)

and

| Trs) 4

E* T—1/2 Z H(/l) (T_ll/ _ /V\l . IR) EO—IWt — Op (1"_2l%1 + T_3Z%LT) = Op (ng)
t= \_TT’1J+2

Note that |7~ 'v — vy - Ig|| = O, (T~!) can be deduced by proofs of Theorem 3.3.2, which
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is used explicitly in following arguments.

When 7 in (C.1.7) equals 0, it is trivial case to hold for sure; when r € (0,1] holds in (C.1.7),

by Chebyshev’s inequality, for any M > 0,

[Tr]
p | |12 ZH(,I) (T—ly — 7 - IR) Fto,th > M
=2

2

|Tr]
S M_QE* T—1/2 Z H(ll) (T—IV _ l//\l . IR) EO_1Wt
t=2
= M_2112a,7" (C19)

Below, we bound 75, , defined above.

2

[Tr]
Tioar < ||T(T7w =01 Ip)||,, E¥|T72 Y H{yFYL,W,
t=2
|Tr] Ip
< O,()T Z Z H( F) F}, Hgua(h/lr)
=2 h—0
LTT‘J lT FO FO /
- oSS () (T
p (1) ;; W\ T JT wma(h/lr)
\Tr] 1p
2
< O,()IHPT S Y alh/ir)
=2 h=0

== Op (T_llT) == Op(]_).

where the second line follows by the properties of {IV;} under the DWB scheme, the fourth
line holds because T~ '/*Fj,; = /23, (r) due to Lemma C.3.2 1(a), and the final line holds
by the fact | H|| = O, (1) and the boundness of the kernel a(.) associated with {I¥;} under

the DWB scheme. Then, based on (C.1.9), we immediately obtain that

|77
EQ P (|77 H{y(v =0y - Ig) FL Wi\ > M | 3 =0 (T 'Ip) = o(1).
t=2
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Then, as claimed in Rho and Shao (2019), (C.1.7) is established.

To prove (C.1.8), we recall the constructions of large blocks and small block at the beginning
of this section. Ly = {(T /i)Y QJ is the length of a large-block and Ir =< M - T" with
n € (0,1/3) be that of a small-block. We assign points ¢ € {1,2,...,|Tr]|} to alternating
large and small blocks. K7 = K, = HTTJ (Lt + lT)_IJ be the number of the large (small)
blocks. For 0 < r; < ry <1, Ky = Kp,, and K; = Kr,,. The k-th large-block £; =
{jeN:(k—1)(Lr+Ilr)+1<j<k(lp+ Ly)—Ir} for 1 < k < Kr, the k th small-
block Sy = {j e N:k(Lr+1lr)—lr+1<j<k(lp+Ly)} forl < k < Ky — 1, and
Sk, ={jeN: Ky (Lr+lr)—Ilr+1<7<|Tr|}. And note that Ly — oo and I; =

o (LT> .

Now, we make the following decomposition based on large and small blocks constructed

above,
|_T7’2J
> Hyy(T7'v -5 Ip) F)W,
t:LTT1J+2
K2 KZ
- Z LZ Hy,) (T™'v =0y Ip) F},Wj | + Z ['Z H,, (T"'v =0y - Ip) F}"\ W,
k=K1+1 LjeLs k=K1+1 Ljesy
Ky Ky
= Y ur Y
k=K1+1 k=Ki+1

Since {W;} are Ip-dependent, {U; k}kK:T{ are independent random variables conditional on X'.

The same property holds for {V}, szi’".

Below, we first handle with terms involving large blocks. By the C,. inequality,

| Tr2 ) 4 Ko Ko 4
EY Y H,(T'w—o-Ip) FL W = B > Ui+ Y Vi
t=|Tr|+2 k=Ki+1 k=Ki1+1
Ko 4 K> 4
< PE DY Ul +E D> W
k=Ki+1 k=Ki;+1
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By construction, we have that £* (Uy) = 0 and E* (V}) = 0 conditional on X, for the general

case that 0 < r; < ry < 1, we can have

Ko 4
2. U
k=Ki+1

- i E (UY) + Y E* (URUE) < i E* (Ué)+{ i E” (U;?)}

k=Ki;+1 k#£k’ k=K;+1 k=Ki+1

4
and similarly for £* Vk‘ . We follow arguments of (A.3) in Shao (2010), denote

IA||* = [E*||A["]"/”. Then, by Rosenthal inequality, we have || 3, 4|l < M (/|3 Adl5) ">

Conditional on X, for k = 1,..., Kr, we have

oty || L(Er—g)/ i) ’

lod; < S|l Y Hy (T - Ip) FOW,

g=1 7j=1 4
ot [ |[L(Lr—g)/2i0)) ; e
< MZ Z (H(ll) (T_IV iz IR) Fg+2(J 1)l— 1) Wg2+2(j—1)l
g—1 j=1 )
1/2

2070 [ l(Lr—g)/(2iT)]

(H()(T v—1p- IR) g+2(j—1)1— ) || g+2(j— 1)l

=
\g

5
g=1 j=1
2 L(Lr—g)/2lr)] ) 1/2
< MZ Z <H(/1) (Tily - IR) F9+2(J 1)i— 1)
g=1 =
1/2

20y [(Lr—g)/(2lr)]

< M+/Iy Z Z (H}y) (T7' =01 - Ig) FLpoy 1)
1/2
= M\/lr (Z (H{, (T—ly—ﬁl-IR)p;O_l)2> , (C.1.10)
teLy

where the fist line above is due to the triangle inequality, the second line above follows from
Rosenthal inequality conditional on X, the third and fourth lines hold by the basic properties of

the norm ||-|| defined above, and the last inequality is due to the Cauchy—Schwarz inequality.
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From above upper bound of || Uy ||; for each £, it implies that

E* (UF)

AN

2
M (Z (i (T =71 1) Ff—1>2>

teLy

< MELr Y (Hpy) (T7'v =1 - Ip) F2,)"

teLy

Then, because |H|| = O, (1), |T"'v| = O, (T™'), v, = O, (T~') by Theorem 3.3.2,

K>
> B (UY) < MBLy Z S (HY (T =1 In) B

k=Ki1+1 k=K1+1teLy

K>
< MH|'|T(T v =0, - Ip)|'T?BLy Y ZHT‘l/zF’t_lH4
k=K1+1t€Ck

= 0,(1)0, (T *l3Ly) O, (T)

= O, (T '7Ly).

where the third line above holds because 32 1 S, ||T7Y2Fioy H4 = O, (T) holds that

we can use Lemma C.3.2 1(a) to obtain. Besides, we have

Z E* (U;)
= Z > Z (T7'v =01+ 1) F2L) (H{yy (T7'v = Dy In) FLy ) E* (WiWign)

k=Ki+1teLy h=—Ip

Ko I
< NPT T SS Y S [T R [T R e /1)

k=K1+1 te[,k h=—Ir

= 0,(NT 0, (IxT) = 0, (Ir).

where the first line holds by the properties of {I¥;} under the DWB scheme, and the last line
follows by the boundness of a(.) associated with {W;} under the DWB scheme and Lemma

C.32 1(a).

2
Then, { e B (U,?)} = O, (I2) holds by the above bound.
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The same arguments work for terms involving small blocks {V}}, and note that these terms
are not leading terms by construction of large and small blocks. We omit the details here for

brevity.
Then, collecting above immediate results together, we can obtain (C.1.8).
As argued in proofs of Lemma A.11 in Rho and Shao (2019), Z;5, = o} (1) follows when

(C.1.7) and (C.1.8) hold together.

Next, we are in the position to show Z;; , = W (r) below. We decompose Z;; , into large and

small blocks again as done above for (C.1.8). Namely, we have

K,
+ T2 ZT: [Z H(’l)ujwj-]

k=1 €Sk

|Tr] Kt

e = S
t=2 k=1 €LY

KT,T KT,T

= T2 Z Up + T2 Z Vi = Tiicy +Ziisy
k=1 k=1

By construction of Uy and Vj, above and E*(.) represents the expectation condition on X, then
E* (ﬁk;) = 0 and E* (%) = O hold forall k = 1,..., K7,; since {IV,} are Ip-dependent,

(U KT and {(Vi.} 7 are independent random variables conditional on .

We will finish the proof once we show that (i) The contribution of small blocks is negligi-

ble compared with that of large blocks, namely, Z;;5, = T~%/2 ijl Vi = 03(1); and (ii)

The functional central limit theorem will apply to the term consisting of large blocks, namely,

KT,T

Tiig, = T2 00 U = H NP W (r)
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Now, we are in the position to show Z;;s, = 05(1). Note that

e (W)=

> H{juul Hyyaf{(j - j') /ln}]

33" €Sk

‘ YR 2/(4+9) . y
< JHI Y falli = 7D (B gl B g |70) T a (4= 5} /)
7,J' €Sk
lT—l
< Ol Y [a(h))“* a(h/l,) < Ml
h=0

where the second line above holds by Davydov’s inequality under Assumption A3.1 for some

0 > 0, and the third line above holds under Assumption A3.1 and the fact that || H || = O, (1).

Then 7115, =T —1/2 ZkK:T{ Vi = 0;(1) follows directly by using the above bound, the inde-

pendence of {Vk}kK:Tf conditional on X', and Chebyshev’s inequality.

Finally, we will show Zy,,, = H {1)211/ QW(T) . To this end, we verify those conditions

stated in Phillips (1988). First, we have E* ([7,0 = 0 conditional on X by the construction

KT,T

U,. Second, note that T, = T2 Zf:T{ U, < K;;/Q P <L;1/2(7k>, by using (A.3)
in Shao (2010) and Holder’s inequality, for some 6 > 0, we have

E*

~ |4+8
L;l/QUk‘

(4+9)/2
S ML;(4+5)/2Z§%+5)/2 (Z }H(,l)’u,t‘2>

teELy

< ML;(4+5)/2Z£;1+5)/2 ||H||4+5 Lg/? Z ||ut||4+5

teLly

= 0, (L7'6%) = 0, (TH) =0, (1),

where the last line is due to the fact that Ly = |(T'/Ip)"/?], I < T" with n € (0,1/3),
and E [|Ju,||*"" = O, (1) holds under Assumption A3.1. Third, {Uy,} are independent of each
other conditional on X;. Therefore, based on such three facts, in the view of results in Phillips

(1988), the desired result follows directly.

(b) The desired result follows directly by taking advantages of the argument of proofs in (a)

above and the simple facts for the joint test statistic like (C.1.2) and (C.1.3).
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C.2 Proofs for Technical Lemmas

This section is composed of 3 parts. Section C.2.1 contains the proofs of Lemmas A.1-A.5
in the above paper. Section C.2.2 contains some technical lemmas that are used in the proofs
of the main results and Lemmas C.1-C.5. Section C.2.3 provides some additional simulation

results.

C.2.1 Proofs of Lemma C.1.1

The proof is similar to that of Proposition 1 in Bai (2003). We omit details here for brevity.

C.2.2 Some preliminary results

In this subsection, we present the bound of some terms frequently used latter in the proofs
of technical lemmas. Under Assumption A3.1 to A3.5, we can obtain the desired bound by

following lines in Feng and Su (2020) together with Lemma C.3.2 and thus omit the details of
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proofs for the brevity.

(1) HAO/GH _ Op (N1/2T1/2) ’

N
(2) ‘lecieitl =0, (N'*T) holds for t=2,...,T,
=1

2

=0, (N "holds for t=1,...,T,

5=2 1=1
N T
(4) N—lT—l Z ZBSEJSASI _ Op (N—l/QT—l/Q) ’
j=1 s=2
T
(5) ||T7* Z Be,|| =0, (T‘l/z) holds for each i,
t=2
N T
©) [N TS ST Nepea|| = 0, (VT2
j=1 t=1

(1) ||e"y (pn — In)|| = O, (N'2) ,where py = diag (1 +c1/T,...,1+cn/T),
) A% (pn —Tnyes]| = 0, (N'72).

T 2

—

=0, (T ")holdsfor t=2,...,T.

N
N~! Z (pi — 1)2 Cis—1Cit—1
i1

S

C.2.3 Proofs of Lemma C.1.2

In this proof, we focus on the case that both common factors and idiosyncratic errors follow
the local-to-unit processes from the explosive side. Namely, we will take the local-to-unit-root
alternatives with p . = 1 + 1, /T forr = 1, ..., Ry with v, > 0 for all 7; and pfj; = 1+ ¢;/T
fori =1, ..., N with ¢; > 0 for all 7. For other cases, we have similar arguments for proofs in

the context of the alternative of local-to-unity.
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Proofs of Lemma C.1.2(a)
Let W = (py — Iy) e_; + € and note that (3.2 .10) can be written in matrix form as follows

/

Z=AN (F'-F)+W=AB"+W (C.2.1)

Recall that 7 y = N~'Z'Z, by the eigenvalue problem, we have the identity
Y, nB = BVzy, (C.2.2)

where Vz v i1s a diagonal matrix that consists of the first 12, eigenvalues of ¥,  arranged
in descending order along its main diagonal line. Premultiplying both sides of (C.2.2) by the

recalling factor 7-! and substituting (C.2.1) into (C.2.2), we have

T"'BV,y - B"(N"'A"A%) (T'B"B)

— N T 'WWB+N T 'BA"WB+ N 'T-'W'A°B"B

Ay + Ay + A (C.2.3)

Below, we bound each term on the last line. First, for A, = N~'T-'W'W B, recall that pi =
14¢;/T fori = 1,..., N under Assumption A3.5 such that py = diag (1 +¢1/T,..., 1+ ¢cn/T),

we have

Ay = N'T'e | (py — IN)2 e,lﬁ TN T 'eB + N'T e | (py — In)e€
+N'T e (pn — Iy) e B

= An + A+ Az + A
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For Ay;, we have by the sub-multiplicity of Frobenius norm,

Ay = N7IT

e (py — In)’ e,lﬁH

< NUITU2 e’y (px — IN)H2 T—1/2§H

< N7'T7V20,(N)O, (1) = 0, (T7V?),

where the third line above follows by the normalization condition and the bound given in

Section C.2.2. Similarly, we have

1ALl < NTT7V2 el

‘T71/2§H = N7'T7Y20, (N +T) 0, (1) = 0, (T2 + N='T"/2)

where we also use the that H(—:Hip = O, (N +T) under Assumption A3.3(d). By Cauchy-
Schwarz inequality, it is easy to see || A13|| and ||Ay4]| will not be the dominant term in com-

parison with || A1 | and ||Ay2]. In sum, we have shown that || A, || = O, (T~'/* + N~'T"/2) .

Next, we study Ay. Note that Ay = N"'T'B°AY (py — Iy) e B+ N'T-'B'AYB =

A21 —+ AQQ. For AQl, we have

Aoy N7t

IA

B°A” (px — Iy) ef11§H

IA

N [TV A" (o~ Ix) e

T71/2§H

< N7'0,(1)0, (NV?) 0, (1) = 0, (N2,

where the third line above follows by Lemma C.3.2 1(e), the normalization condition and the

bound shown in Section C.2.2. Similarly, we have

[| Agz ||

IN

N B A 7B

— N'0,(1)0, (NY2TY2) 0, (1) = O, (N"V2T"/?)
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where the second line above follows by Lemma C.3.2 1(e), the normalization condition and

the bound shown in Section C.2.2. In sum, we have |4, | = O, (N~V/2 + N=1/271/2) .

Next, note that A3 = N='T'e’ , (py — Iy) A’BYB + N'TL¢A°BYB = Ay, + As,.

By the bound shown in Section C.2.2 and Lemma C.1.1, we have
At || < N7|ely (py — In) AY|| HT—lBO'éH =0, (N"12),
and
|Ass| < N-V272 || € AY|| HT‘lBO’E’H = N0, (N'2TY2) 0, (1) = O, (N~/2T/2) |

We then have || A3]| = O, (N~'/2 4+ N~/2T"/2)_ Then, collecting all above immediate results,

we have
| A1l + || A2l + | 43]| = 0, (N—1/2 Y2 N2 N—1/2T1/2) .
Then, it follows that

|B (V) - B* (V'A% (7' BYB) |

IN

[ Al + [l A2 + || As]]

— Op (N—1/2 +T_1/2 +N_1T1/2 +N_1/2T1/2) ]

Consequently, we have

A~

—~ 2
T- HB(T W) - B"(NT'AYAY) (T'BYB) | (C.2.4)
2

T'V,x) B~ (T7'BYB) (N'AYAY) BY| =0, (N7).
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Now we are in a position to define the rotation matrix H. Following Bai and Ng (2004), let

Hp = (N"'AYA% (T-'BYB). Define
(H™) = (T7'Vun) H' (C.2.5)

According to Lemma C.3.3 , and the fact that |Hg| = O, (1) and ||H;'|| = O, (1) by

constructions using Assumption A3.2 and Lemma C.1.1, we can readily show that
|H Y| =0,(1), [H|=0,(1). (C.2.6)
Then, by (C.2.5) and (C.2.5), we have
7! HJ§H’—1 — BOH2 —0,(NY). (C.2.7)
The desired result follows directly.

Proofs of Lemma C.1.2(b)

Using (C.2.2), (C.2.5), and Lemma C.3.3, and the fact that Hz = (N~'A”A°) (T-'BYB),

for each ¢, we have

{T"'Vzn} B [(NT'AYA) (TlBO’ﬁ)}/BS
= {T7'Vyn} B, — H;B!

= (N'TYBW'W, + (N'T') BW'AB? + (N~'T') B'B"A"W,

(NT'T7Y) (A + Ay + Agy) (C.2.8)

We first study Ay, recall that W = (py — In) e_; + e and thus W, = (py — In) €1 + €,
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we use these facts to make the following decomposition:

Ay = Bée+ E’eLl (py — IN)2 e_1+ §’6L1 (py — Iy) e + B¢ (py —Iy) ey

= A+ Ao+ Az + A
Noting that B = (EH =1 — B H' + B°H’, we make further decomposition for A :
- /
A = HB"¢e, + H (BH"1 - B0> e = Ao + Ay,

Recall that yy (s,t) = Zf\il E (€;s€it), we make further decomposition for Ay, :

T N
Ae=H Z By (s, t)+ H Z B (Z €is€it — IN (5, 75)) = Arnar + Avrraz.
5=2 =
Note that 327, |y (s, 1) < (max., |y (s, 1)) S5, [ (5, )] = O(N?) by Assumption
A3.3(b). In addition, >, IB°||> = O, (T) by Lemma C.3.2(¢). Then by the Cauchy-

Schwarz inequality,

|Asiar ]| = [ H||

ZBS’YN s, t)

s=2

T 1/2 - 1 1/2
<) [ZHBS\f] [Zm w?] o, (7).

For Ay142, we have by the Cauchy-Schwarz inequality

5 1/2

= Op (N1/2T) 5

N

61,5 €it — Ezs 6it>]
=1

T 1/2 T
[Arnal < |H| [Z HBSW] >

s=1 s=1

where we use the fact that | H|| = O, (1), Zstz | BY||* = O, (T') stated in Lemma C.3.2 1(e)
and Assumption A3.3(b).

Now, write Ay, = S0 (By — HB)y (s,t) + 3.0 (B, — HBY) [N, €506 — v (5,1)]
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= Aq1p1 + Aqi1p2. Because of the result in (C.2.6) and (C.2.7), we also have

HE—BOH'

< HLA?H’*I - BOH |H|| = 0, (TV2N-Y/?) (C.2.9)

Then, using Cauchy-Schwarz inequality, (C.2.9) above and Assumption A3.3(a), we have

|l < ||B - B°H'

T 1/2
[Z [ (s, t)‘2] =0y (T1/2N71/2) Op (N) =0, (N1/2T1/2) :
s=1

Similarly, by Cauchy-Schwarz inequality, (C.2.9) above, and Assumption A3.3(b) we have

97 1/2

Z l€is€it — B (€is€it)]

=1

>

s=1

[[Avepo]|

IN

HE;—BOH’

= 0, (T'*N"'1%) 0, (NV*T'?) = 0, (T).
In sum, we have
A = O, (NTl/2 + NV2p 4 N2 4 T).

For A4, wehave Ay = HBYe' | (pn — IN)2 et,l—i—H(ﬁH’_l—BO)’e’_l (py — IN)2 e =

Aqo, + Aqgop. For Aqys,, by expansions, we have

N
Ao, = HBO/€/_1 (PN - IN) (T_l Z Cieit1> .
i=1
It follows that

|l < IHI|B|| el (on — Tn)]

N
T Z Ci€it—1
i=1
= 0,(1)0, (I'?) 0, (N'?) O, (N'7?)

= 0, (NT'?),

279



where the second line above holds by following bounds: | H|| = O, (1) as stated in (C.2.6),
|B°|| = O, (T'"/?) by Lemma C.3.2 1(e), 7" ‘Zfil c,-eit_l‘ = O, (N'/?) holds as shown in
C.2.2 by the weak cross-sectional dependence imposed in Assumption A3.1 and the fact that

eir/T = O, (1) for each i. For A4, we have

T N
HAlt%” = Z <-§5 - HBS) (P? - 1)2 eis—leit—1> ’
=1

s=2 3
2_ 1/2

B - B°H’

N
Z (p) — 1)2 €is—1€it—1

i=1

IN

T
s=2

= 0, (1N 0, (NTT) = 0, (V')

where the second line above follows because we use (C.2.9) and the result shown in Section

C.2.2. In sum, we have

Al = O, (NT'?).

Collecting the above results for Ay, I = 1,2, |Ay|| = O, (NY*T + NTV? + NV2TV2 4+ T)

follows directly.

Now, we study Ay, Note that Ay, = HB"W'A°B? + (ﬁ — B°H'YW'A’BY = Ay +
Ago. In particular, let Ay, = HBYW'A’BY = HA,, B?, where Ay, = B"W'A° =
BOlel_l (pN — IN) AO + BOIGIAO = AQtla + AQtlb. So AQtlb = sz\il ZZ:Q Bgeis_l)\?’ and

Aoy = N 2T B2%;, AY. Note that FAyy, = 0 under Assumptions A3.1 and A3.4; recall
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that BY = T-'vF? | + u, for all ¢, and then,

Il

Z
+

=]
+

'
+

s
T

(C.2.10)

where the second line holds under Assumption A3.4, and the { Ay, }+_, are defined implicitly

as above.

For Aoy = T2 30 S8 E(AYAY) S0, 570, E (eisejo) E (T2F2 W/'vF? ), it fol-

lows that

Agn < MHVHSPT_QZZZZ%J |s—q])E(Fq071F3071)
i=1j
N N T T
< MT?Y ) o (0)E (ZZFqO—lFsO—l)
O

i=1 j=1

= MT?0(N)O(T?) =

where the first line holds by the Davydov’s inequality under Assumptions A3.1 and A3.2, the
second line follows from Assumption A3.1 too, and the third line follows from Assumption

A3.1 and Lemma C.3.2 1(e). Similarly, for Agi1po, we have

) N N T T
Agpip < MT_QZZZZO%”S—Q|)O‘(|3—Q|)
g=2

i=1 j=1 s=2 q=
T

MZZZZ%US—QDIO(NT%

=1 j=1 s=2 ¢=2

IA
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where the first line holds by the Davydov’s inequality under Assumptions A3.1 and A3.2, the
second line follows from the property of mixing coefficients, and the third line follows from
Assumption A3.1. Similarly, by Cauchy-Schwarz inequality, we can readily show Ay1p3 =
O (NT) and Ayps = O (NT). Then, by Chebyshev’s inequality, it follows that Ay, =
O, (N'2T"2). For Ag1q,

AQtla

IN

1BV (px = In) A”)|

IN

1Bl €21 (o = In) A7

Op (N2 B°]]) = 0, (N'/2T2),

where the last line follows by the results given in Section C.2.2 and Lemma C.3.2 1(e). In

sum, we have

| A |

IN

|| A ]| ]| B°]

= 0,(1) 0, (N[ B]]) 0, (|| B°[]) = Op (N2 ,

where we use the fact that | BY|| < || B°|| = O, (I'""/?) by Lemma C.3.2 1(e) under Assump-
tion A3.1 and A3.5. Similarly, we have

97 1/2

lAzell < ||B - B°H |8

T | N
g g €is\i
s=1 |i=1

= O, (T'ANT%) 0, (N'2T'2) O, (|| BY|))

= 0O (TS/Z) )

where the second line follows by (C.2.9), the result given in Section C.2.2 and Lemma C.3.2

1(e). Then, collecting immediate results, we can conclude that ||Ay|| = O, (NY/2T + T?/?).

Next, we study Asz;. Note that Az = B'B°A%, + B'B°A" (py —Iy)ei 1 = Az +
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Agso. We have further decomposition for Agy as follows: As; = HBYBOA¢, + (ﬁ —
BOH/)/BOAO/Gt = AStla + AStlb-

[Asnall < [|H]|

T N
E : 0 RO/ E : 0
BS BS A’L Eit
s=2 i=1

= 0,0, (1) 0, (3)

= 0, (N2||B"|[") = 0, (N"*1).

where the first equality holds by the fact that || H|| = O, (1), Lemma C.3.2 1(e), and the fact
that HZfV: L A%

= O, (N'/?) under Assumptions A3.1 and A3.2 as given in Section C.2.2.

Similarly,

1/2
T 27 Y/

2

s=2

N
Z BS’Aieit

=1

lAssll < ||B - B°H'

= 0, (T1/2N*1/2) 0, <N1/2T1/2) =0, (1),
where we use (C.2.9) and the result give in Section C.2.2. Obviously, As;1, is dominated by
Agp1,. Therefore, [|Az || = O, (N'/?T) holds.

Note that Ay, = HBYBOA” (py —Iy) e,y + (B — B°H'YBAY (py — Iy) e, =
Asio, + Agpop. Similar to above arguments, it is easy to see that Ag;o; is dominated by Agso,

due to the term (ﬁ — BYH’). Below, we bound Ao,

| Azl

IN

IH| || B”B°|| [|[A” (pn — In) €|
= Op (1> Op (T> Op (N1/2)

= 0,(N'?T).

where the second line follows by the fact | H| = O, (1), Lemma C.3.2 1(e) and the bound

given in Section C.2.2. In sum, we have ||Az| = O, (N'/2T). Collecting above immediate
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results for Ay;, Ay, and As;, we then have

[Ave + Ay + Age|| < [|Aw||+[Ase||+]|Ase|| = O (NV2TY? + T + NY2T + NT'? 4+ T5/2) |
(C.2.11)
Then, by (C.2.8) and the fact that | H|| = O,, (1), it follows that

HH‘lﬁt _ B

< ||H]| (N_IT_I) (|A1e]| + [|Age]] + [[Asel])

= O, ((NTVPT2 4 NTH g N2 7712 4 NTITV2YC2.12)
From above, the desired result follows directly.

Proofs of Lemma C.1.2(¢c)

Recall that X; = (B'B)~'B'Z; where Z; = B°A? + W,. By the identity that B® = (B° —
BH'"')+ BH''and B = (B — B°H’) + B'H’, and the normalization condition that
T'B'B = Iy, we have

A\—H '\ = T7'"H(BH '- B"Y(B -~ BH )\’ + T"'"HB"(B° — BH'"")\!
+T—1HBOIM + T_I(EH,_I o BO),“/Z‘

We bound each term in the last display in turn.

First, for D;; we have

IDyl| < T77'|B-B°H’ [N

HEHH _B°

= 7710, (TY2N-12) 0, (TV*N-1/2) 0, (1)

= 0,(N7"),
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where the second line follows by (C.2.7), (C.2.9) and the Markov’s inequality under Assump-
tion A3.2.

~

For Dy;, by substituting the expansions of (BH'~! — BY) as shown in (C.2.3), we make the

following decomposition,

Dy, = T 'HBY(BH''— B\,
= N'T?2HB"W'WBX! + N"'T>HB”B°A"W B\’
+N'T>HB"W’'A’B” B\

= Doiq + Daspy + Doy
Recall that W = (py — Iy) e_1 + €. For Dy, we have

Doy = N'T2HBYB°A”W B!
— N'T2HB"B°A” (py — Iy)e_1BA) + N"'T2HB”B°A” e B\
= N 'THBYB°A” (py — Iy)e B°H'A) + N"'T2HB"B°A"eB°H’)\)
+N'T2HBYB°A” (py — Iy)e_(B — B°H')\

+N'T2HBYB°A"¢(B — B"H')\"

Doy 1 + Dajp o + Do 3 + +Daip 4,

From above, it is readily to show that Dy;; 3 and Dy, 4 are dominated by Dy, 1 and Dy, 2 due to

the the term (B — B°H'). Following the analysis of || Aoy || in the proofs of Lemma C.1.2(b),
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we have

N T T
|Dopal = HNlTQ)\?/H Z Z BS%A?’ Z B'B)H’
j=1 s=2 t=2
N T T
< N IEPPNTTY DS OBl Y| (TS BYBYY
j=1 s=2 t=2

= 0,(1)0, (N"'2T712) 0, (1)

= 0, (N*1/2T*1/2) ’

where the third line follows by the Markov’s inequity under Assumption A3.2, (C.2.6), the

result given in Section C.2.2 and Lemma C.3.2 1(e). Similarly, we have

T
Do || = HNlTQ)\;HBO’e/_l (pv —In)A°Y  B)BYH'

t=2

< NN HIP 1B [l (px — In) A°|

T
7'y BB
t=2

= N'T7'0,(1)0, (T'?) 0, (N'?) 0, (1)

- 0, (N*1/2T*1/2) 7
In sum, it follows that Dy, = O, (N~/2T71/2). For Dy,

Dy = N 'T2HB"W'A°BYBA),
— N7 {HBO’W’AOBO’BOH’)\Z» + HB"W'AB%(B — BOH’)AZ}
= N 'T?HBY¢A"B"B°H'\; + N"'T?*HB"€e' | (py — INn)A"B"B°H’ )\,
+N'T>HB"¢A°B”(B — B°H')\

+N'T2HBY | (py — In) A’BY(B — B'H')

Doic1 + Dajca + Dajc g + Dajc 4,

Again, it is straightforward to see Dy;. 3 and Dy;. 4 are dominated by Dy;.; and Dy;. 2 due to
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the the term (B — B°H’). Note that

T N
[Dyical] = HN1T—2>\;ZHBQBS'Z>\§?ZeﬁBf’H’

s=2 ]:1 t

IN

T
INIE|P T BIBY
s=2

N
SN
j=1 t

= 0, (1) Oy (NTPT71?) = O, (NT'T1?)

where the third line follows by the Markov’s inequity under Assumption A3.2, (C.2.6), the

result given in Section C.2.2 and Lemma C.3.2 1(e). Similarly,

T
IDaicall = HN*T—%ZHBSBS/AO’ (pn —Iv) e \B°H'

s=2

< NN H? A (py — In) e || || BY||

T
T-1 Z B’BY
s=2

= NT'T710,(1)0, (NV2) 0, (| BY))

= 0, (N71/2T71/2) 7

In sum, it follows that Dy;. = O, (N~/2T~1/2),

For Ds;,, similar to arguments for bounding Dy;;, and Ds;. just above, we can readily show
that the stochastic bound of the leading term N 'T2H BY"W'W B\, is O, (T~') by using

immediate results for bounding Dy;;, and Dy;...

It follows that Dy; = O, (T~ + N~1/27-1/2)

For ]D)gi, we have ]D)Sz = T_IH {BO/Gi + BO, (p? — 1) €i7_1} = T_IH (Dgia -+ ]D)gib). Noting

that £/ (Ds;,) = 0 under Assumptions A3.1(c) and A3.4, we can readily show that H Z:f:? B¢,

O, (Tl/ 2) by Davydov’s inequality and Lemma C.3.2 1(c) under Assumptions A3.1 and A3.4

by noting that B = T-'wF,_; + u;. So, || D3l = O, (T'/?). Similarly, we can readily
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show that [|Ds;|| = O, (1) = 0, (I™/?). Then, use the fact that | H|| = O, (1), we have

D3| < T~ | HI| (I Dsia ]l + [IDsis]]) = O, (T’lTl/Q) =0, (T*1/2)

For D4;, we make the following decomposition

Dy = NI :BW'WW, + N 'T2BW'A’B"W, + N"'T>B'B°A"WW,

Dyiq + Dasp + D

Recall that W = (py — In) e_1 + €. For Dy;;,, we have

Dy, = N 'T?HB"WWW,+ N 'T"*(B— B°"H)W'WW,
= N 'T°HB"W'We¢;, + N 'T?HB"W'We,_ (p} — 1)
N7'T%(B - B°HYW'We, + N'T*(B - BPH)W'We; , (00 — 1)

Dyia1 + Daig2 + Daigs + Dajga.

Obviously, Dy;,3 and Dy;,4 are dominated by Dy;,; and Dy;,9 due to the term (ﬁ — B°H'). 1t
then suffices to Dy4;,; and Dy, as follows.
Note that ]D4ia1 = N_IT_QHBO/ [(pN — IN) e_ 1+ 6], [(pN — IN) e_ 1+ G] €, = D4ia1 +

Daia11 + Dajar2 + Daiars + Daq14 with

Dajg11 = N_lT_QHBO/BI_1 (pN — IN)2 e_1€;,
Dyja12 = N 'T?HB" [(py — Iy) e_1] €€,
]D)4ia13 = N_lT_2HBOIGI [(pN — IN) 6_1] €;,

]D)4ia14 = N_lT_QHBOIGIEEZ‘.
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Note that for Dy;,1,

IN

Dyar < N'T2|H| || B°|| l(ox — In) el &l

= N7'T720,(1) O, (T"?) O, (N) O, (T"?) = 0, (T™")

where the second line above follows by the fact that |[H|| = O, (1), Lemma C.3.2 1(e),
the bound given in Section C.2.2, and the fact that ||;||° = T (T3, ¢%) = O, (T) un-
der Assumption A3.1(c). Similarly, we can obtain that Dyq12 = O, (N7V2T71), Dyjrs =
O, (N72T71) and Dyja1s = O, (N1 + T7') by Lemma C.3.2, the results given in C.2.2,
and Assumptions A3.1 and A3.3. Thus, Dy = O, (NY/2T=3/2 4 N-V27-1/2 4 N=1 4+ T71),
By similar decomposition and arguments above, Dyjo0 = O, (T—%/% + N~1T-1/2 + N=1/27-1)
holds.

Thus, collecting above immediate results, we have Dy, = O, (N STV NS T,
We would like to address that some of bounds for the terms in the decomposition of D;, can

be improved, though they are still of smaller of order than other terms here.
For D4;;,, we have
Dy = N'T2HB"W'A’B"W, + N'T"%(B — B'H')W'A°B"W,

— N—lT—QHBO/elAOB(]/m + N—IT_QHBO/CLI (PN . IN) AOBO/M

N™'T~%(B — B’H'Y¢A’B"W, + N"'T%(B — B’H")'e"_, (px — Iy) A’>B"W;

Dyiv1 + Daspo + Dyips + Daipa.

It is easy to see that D3 and Dy are dominated by Dy and Do due to the term (ﬁ —

BYH’). So we focus on Dy;;; and D2 below. Because W, = (p) — 1) e; 1 + €;. For Dy,

Dy = N 'T?HBYEA’B” (p) —1)e; 1+ N 'T>HB"¢A°B;
= Dyipi1 + Daipao
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We bound D ;12 below firstly,

N T
Dagrz]| = '|N—1T—2H PS> B! eJSAO'ZB%,t
j=1 s=2 t=2
N T T
< |H] HN ZZ XY | |77 ) Blea
j=1 s= t=2
— Op (N 1/2T 1/2) ( 1/2) — (Nfl/QTfl)’

where the third line above follows by (C.2.6), and the results given in Section C.2.2. Then, we
can similarly obtain that | Dy || = O, (N /2T 73/2) because || B"€'A°|| = O, (NV2T*/?)
and ||BY (p) — 1) e; _1]| = O, (1) hold according to Chebyshev’s inequality by direct mo-
ments calculations that take advantages of Lemma C.3.2 and Assumptions A3.1 and A3.4. It

follows that | Dy || = O, (N~V/2T71).
For Dyipa,
Dye = N 'T?HB"€ , (py —In)A’B” (p) — 1) e; 4

+N'T2HB"Ye | (px — In) A°B"¢;

= Dyipor + Daipoo

Following similar arguments for bounding D51, it is readily to show that || Dype| = O, (N -1/ 2T‘l) .

Thus, ||Dai|| = O, (N~*T") holds. And for Dy;., we have

Dy, = N-'T- QBBOAO’EQ + N“'72BBOAY (pn —In)e_1e; 1 (P‘ - 1)
+NTIT2BBOAY (py — Iy) e+ N'T2BB°A%e; _, (p! — 1)

= Dyict + Daico + Daiez + Dijea.
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We then bound Dy;.; below. Note that
~ /
Dy = N 'T2HBYB°AV¢; + N~'T2 (B _ BOH’) B°A%e€; = Dyjtt + Dot

It is easy to see that D15 is dominated by Dy;.1; due to the term (E — B'H’ ) Thus, it

suffices to focus on bounding Dy;.1;. To this end, we have

T N
Daienr || = HNlTQZHBgBS/Z)‘?Zeﬁ%
s=1 j=1 t
T N
< )|y Bp \N*T-lzwzeﬁeﬁ
s=1 j=1 t

= 0,(1)0, (NV2T-12) = 0, (N-V27-1/2) |

where the third line above follows from (C.2.6), Lemma C.3.2 1(e), and the bound is given in

Section C.2.2.

It follows that ||Dye1|| = O, (N~Y/27~'/2) . Similarly, we can readily show that || D],
||]D4ic3|| and ||D4ic4|| are both Op (N71/2T71/2). Then, ||]D)4zc|| = Op <N71/2T71/2).

From above, | Dy|| = O, (N~' + Tt + N~V21-1/2),
Collecting above all leading terms, namely, Dy;, Dy;, D3;, and Dy; , it follows that:

Xi—H7I\=0,(T7V*+N1).
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C.2.4 Proofs of Lemma C.1.3

By (C.2.8) and (C.2.5), we have

q

(T Y i B, - [(N"'A”A) (T*lBO’ﬁ)]'Z B,
s=2 5=2
= {17V} zq: B, — H), Xq: B!
s=2 s=2

q q q
— (NT'T7Y) {E'W' > W.+BWA*Y B+ BBA"Y WS}
s=2 s=2 s=2

= (N7'T7Y) (Cig + Coq + C3y) (C.2.14)
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where Cy, to Cs, are defined as follows given that W = (py — In)e_; + € and B =
(BH'"' — B")H' + B"H',

g . /
Cy, = HBO'G'ZES+ (B—BOH') GIZGS
s=2 5=2
q

q - /
+HBY | (py — In)*Y e, 1 + (B - BOH’> ¢ (py— IS ey

s=2 s=2
q N , q
+HB" | (py —In) Y e+ <B - BOH’> e on—In)Y e,
s=2 5=2
q R , q
+HB" (py — In) Y eor + (B - BOH') ¢ (pn—In)Y e
s=2 s=2

Cigt + Cipo + Ciys + Cipu + Cigs + Cryo + Cigr + Cugs,

q N , q
Cs = HBY¢A°Y B+ (B - BOH’) €AY B
s=2 s=2
q

q ~ /
+HB" | (py — In)A°Y BY + <B - BOH’> e\ (px —In)A*S B!
5=2 5=2
Cog1 + Cogo + Cygz + Copa,

q . ’ q
Cy, = HBYB'A"Y e + (B - BOH’> B°A” e,
5s=2 s=1

q N , q
+HBYBAY (py — In) Y e, 1 + (B - BOH’) B°A” (py —In) Y e,
s=2

s=2

ng1 + (ngz + ngg + C3q4.

(C.2.15)

We bound max;<,<7 ||Cyl| for I = 1,...,3 below. The arguments are similar to those in the

proofs of Lemma 2 in Bai and Ng (2004).

For maxi<,<7 ||C1,l|, it suffices to bound max;<,<7 ||Ciq1|| to max;<,<r |[|Ci4s]| separately.
It is straightforward to see that max;<,<r ||Clg2||, maxi<,<7 ||Ciqal|, max;<,<7 ||Ci4l, and
maxi<q<r ||Crgs|| are dominated by max;<q<r [|Crgr ||, maxi<q<r || Crgs|l, maxi<qer [|Crgs |l

and max;<,<7 ||C147|| due to the term (E — BOH’>.
Hence, we focus on bounding max;<,<7 ||Cig1(|, maxi<,<r |[|Cigsll, maxi<,<r ||Cigsl|, and
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max;<,<7 ||C147|| below. Note that

q q q
C,y1 = HBYE (e/z es) + HB” [e' Z e, — F <e'z es> = Cig10 + Cigu
s=1

s=1 s=1

Note that Clqla = H@lqla where (jlqla = BOIE (GI ;1:1 65) . Note that

T q N
INT'T2Chqal| = T2 _BY) [N‘1 > E(eiteis)]
t=2 i=1

=1

T T N

< T_l/QZB? Z N1 ZE(%QS)
=2 s=1 i=1

< MO, (1)O, (1) = O, (1) uniformly in g,

where the third line above follows from the fact that max;<,<p 23:1 ’N -1 Zf\il E(eqeis)| <

M by Assumption A3.3 and HT‘l/2 ST, BY|| = O, (1)by Lemma C.3.2 given that B? =

T 'wF, 1 +w, fort =2,...,T. This result, along with the fact that || H|| = O, (1) , implies
that

max ||Cyg10|| < || H|| max |Cig1a|| = O, (NT'?). (C.2.16)

1<q<T

Let (I)q,s = \/% Zi\il 22122[61'56“ —F (62‘36”)]. Then
T
Cin = VNTH ) B)®,..
s=1

Following proofs of Lemma C.1.2(b) in Bai and Ng (2004), it suffices to show that for every

s=1,...,T 1rila<xT|¢q,s| = O, (1). Equivalently, we are going to prove that
9>

P ( max |®, | > K) =o(1)

1<q<T

where K is finite and chosen to be large enough. Let ¢}, = €56 — E (€i5€;) and Uy, =

N2/(4408)(2+4m)/(449) " \where m > 0 and can be small enough, § is defined in Assumption
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A3.1. Let 1, = 1 {|¢%,| < VIny},and 1, = 1 — 1;,. Define

Ol = PiLae — E (03 Lat) s 05 = Spftiib and p3; = F (Spftiit) .

Apparently 5, + 05, — 05, = 5 as E (¢5,) = 0. We prove the claim by showing that

. N s

i) P (mos [ A7 S S et 2 K )=o)

. N s : N s

(i2) P (12?ng ‘_\/11\77 D i1 D1 Pait| = K) = o(1), and (i3) lfgnanXT _\/]{TT Doimt Doi1 Plit| =

o(1).

First, we prove (i3). Note that

max
1<q<T

IN

1 A 20N ¢ 1/2
vNTlrgqaLXT{ZZEWft]Q} {ZZPU‘P;SA >79Nq)}

i=1 t=1 =1 t=1

1

i=1 t=1

INA
~
=
)
A
=
=
——
N
)=
=
5,
\VJ
)
Z
—_——
=

N g 1/2
—1 —(449)/2 4468
< max (/N 9 Bt |(4+0)/2
RV NTlﬁqST( 9) {121; Ngq |it]
E— (449)/4 _m
< — p—
< e max Nady M = 0/ (T7") = o(1)

where the first inequality holds due to Holder’s inequality, the second and fourth inequalities
hold because E|¢3,|(“+%)/2 < M by the construction of 5, under Assumption A3.1. The third

inequality holds because of Markov inequality.

Next, we prove (i2). Noting that 1rglqa<xT ‘\/%TT Zfi O s, | > K implies that

N

T
ZZ [ 1 > K,

=1 t=1

3-
~
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using Holder and Markov inequalities, we have,

- )

1/2 1/2
(VTS S Bl ) { S S Pl > v |
K

1 L
WZZ@%#

i=1 t=1

P | max
1<q<T

P

1 N T
S Y Tz K
NT;Z Pitl Lit

t=1

IN

N T 1/2
_ — 6 s
< (NT)TVHNT)Y {ZZ%” WErsoit\““)/?}

i=1 t=1

< (NT)29 0 = 0 (T7™) = 0(1).

where the third and fourth inequalities hold because E|5,|4*9)/2 < M by the construction of

¢z, under Assumption A3.1.

To prove (il), we consider two typical cases for ¢, i.e., (ila) ¢ < T, (ilb) ¢ is finite and. We
first prove (il) when ¢ =< T. Without loss of generality, let {ar} be a sequence of integers

such that 0 < ap < T, ap — oo as T — oo, and T — ap = o(v/T). We have

1 &,
P WZZ%% ZK)

i=1 t=1

N ar N q
1 1
< Pl||—= 1| + max > K
1 N ar 1 N q
o 9) D ERTEY R PNELESS ol ol EREEY

i=1 t=1 i=1 t=ap+1
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Using Markov inequality, we bound the second term in the above display as follows,

1 - o

=1 t=ar+1

> m)

P | max
1<q<T

1 < 1 <
< P| max — — S >K/2
< <1<q<T\/TtazT:+1 m;@m = /)
1 |1 &
< Pl—7= Y =) ¥ zK/2>
<ﬁ t=ap+1 \/N =1
T N
< TP YL BINTYEY o,
t:llT+1 =1
T N
< T2 Y ENT2Y @ =0 (T —an)T7?) = 0(1),
t=ar+1 =1

= O, (1) by

where the fourth line above holds by constructions of ¢,,, and ‘N D DAIRTH
Markov’s inequity under Assumption A3.3(b).

, L 1 N sar g
Now, we are in the position to show ‘ﬁ Yo > b

= O, (1), to this end, by Cheby-

2
shev’s inequality, it suffices to show E (ﬁ SN e gpfit> = O, (1). Recall 5, =
Exli—E (E41y), and @5, = €;465—F (€i5€51). Therefore, under Assumption A3.1, {N=1/2 3% .1

are still mixing sequence with zero mean. We have,

1 N ar 2 1 ar ar 1 N 1 N
E(—m;;%u> = T;;E [\/—N;%it\/_N;Sﬁjq]

ar ar N (4+8)/2\ 4/(4+9)

1 /(4496 1 s
< TZZ(O‘(H_QD)/H—) E\/_Nz(plit
t=1 ¢g=1 i=1
1 o, or LN (4+8)/2\ 4/(4+0)
< 22 D> (at—g) "Bl =) v
T t=1 q=1 N3

= O(arT ) =0(1).

where the second line follows by the covariance inequality for the mixing sequences like (28)

. N (4+3)/2
in Gao and Hong (2008), and E ‘N’lm S iy P

< M by Assumption A3.3(b) for
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some & > 0 defined Assumption A3.1. Collecting all above proofs for the claims (il), (i2)

and (i3), 1r<na<xT|(I>q,75| = O, (1) holds for every s = 1,...,T. Besides, it is the trivial case
9>

to obtain 121;1<XT|CI)‘1’5| = O, (1) when ¢ is fixed and finite by similar arguments for the case
AR

q < T'. For other values of ¢, corresponding proofs can follow above two typical cases with

slight modifications. Then, we have

T
— A/ 0
1r§nqa§XTHClqlb” - NTll'SIIanXT HZQBsq)q,s
T
< VNT|H]| |3 B!
s=2

élanXT ||(I)q7s |

= VNTO,(1)0,(T"*) 0,(1) =0, (N'?T),  (C.2.17)

where the third line above follows because (C.2.6), and Lemma C.3.2 giventhat BY = T v F,_ |+

u; fort =2,...,T. In sum, we have

max ||Ciq1]| = O, (N'?*T) + O, (NT'?). (C.2.18)

1<q<T
Next, let C13 = €, (py — In)> > %, e, 1, we have

max |[Cigs| = max |[HB"Cygll

1<q<T 1<q<T

I#2) | B mas, /s

IN

= 0,(1)0, (T"?) 0, (N'*1T'?) = 0, (N'*T),

where the third line above follows by (C.2.6), || B’|| = O,, (T""/?) due to Lemma C.3.2 1(e), and
we can readily show ||Cyg3|| = O, (N'/2T"/?) holds uniformly in ¢ via moment inequalities
for the strong-mixing random sequences, which is similar to arguments for the result (10)

in Section C.2.2. Similarly, we can readily show that max |Cigs]| = O, (NY2T"/?) and
9>
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max_ H(Chﬂﬂ = O, (N'2T). It follows that

1<q

max | Cy,|| = O, (N'*T + NT'/?). (C.2.19)

1<q¢<T

For C,,, we can see that [nax |Cay2]| and [nax, |Caqal| in (C.2.15) will be dominated by

max |Caq1]| and max HCquH due to the term (ﬁ — B'H’ > Then, it is enough to bound

max |Can || and max ||C2q3|| Note that

max

(4
r EiTAi
1<q<T

max |
1<q<T

> B
s=1

Since the term || H || does not involve ¢ and is of order O, (1) according to (C.2.6), and the
term |3, ", B, AY|| does not involve ¢ and is of order O, (N'/2T"/?) in Frobenius norm
according to the result in Section C.2.2. Inaddition, || Y>-7_, BY|| = O, (T""/?) holds uniformly
in ¢ by the same arguments for Lemma C.3.2 1(b). Then, based on these facts, it follows that

max_ ||(C2q1|| =0, (N'T).

1<q

. 0 0 —
Similarly, for Cags, max [|Cogsll < [IH]|[|B°] ey (pn — In) A max 1325, Blll =
O, (N'/2T) given that | B’|| = O, (T'"/?), and || >_?_, BY|| = O, (T"/?) holds uniformly in
g by Lemma C.3.2 given that B = T-'vF,_, 4+ u, fort = 2, ..., T, meanwhile, because of
the fact ||e’_; (pn — Iy) A°|| = O, (N'/?) as shown in Section C.2.2. So we obtain that

max_[Cyol| = O, (N'/?T). (C.2.20)

1<q<T

Similarly, for Cs,, it suffices to bound the dominant term max ||Cs,1 || and max ||Cs,3|. Note
1<q<T 1<q<T
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that

q
_ 0/ RO A/
max [[Copl = HHB BAZ;GS
sS=
q
0 RO/ 0
< |[H][|>_ B'B|| max Zzl&-eis
' S=

7

= 0, (N1/2T3/2)

where || H|| = O, (1) by (C.2.6), ||, B’BY|| = O,(T) by Lemma C.3.2 1(¢). These terms
does not involve q. Now, we are in the position to bound Jmax 157,529 Aes ||, to this
end, we can readily obtain that, uniformly ing, E H N-1/2p-1/2 ZZ Zgzl )\?GisH < M holds
under Assumption A3.1 by trading { N —1/2 > Ai€is + as the mixing sequences over s, which
is the similar to the bound shown in Lemma C.1.1(4) stated in Bai and Ng (2004). Then, we
have max 15 300, Ness|| = O, (NPT,

. < o’ PO (V4 o q
Similarly, because 1]%’lqa§XTHC3q3” < |H| |B”B°| 1?q5‘§XT”A (py —IN) Y1, €5

max [|Csys]| = O, (N/>T%?) holds by using the fact that |B°|* = O, (T) and noting

1<q<T
that ||A” (py — In) 3!, €,1]| = O, (N'/>T"/2) holds uniformly in ¢ by direct moments

, then,

calculations under Assumptions A3.1, A3.4. We have

max || Cs|| = O, (N'/?T3/2) . (C.2.21)

1<q<T

Neglecting those dominated terms, from above immediate results, we then can conclude that

max
1<q<T

i (H‘lﬁs B’ u3>

< N7 (s )+ ma [Cal + max [Ca] )
1<q<T 1<q<T 1<q<T

= 0, (N7 [0, (NV2T) + 0, (NTY2) + 0, (NY2T%/2)]

= O, (NP2 4 N~V2 4 7712) (C.2.22)
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. 1 t -1 _
Then, it follows 1rgtanT 7T HZS:Q H 'B, — B,

= 0, (N~1/2) directly.

C.2.5 Proofs of Lemma C.1.4

Recall that A; = (BB')"'B'Z; with Z; = B°A? + W;, where Z; = (Za, ..., Zir) and
W, = (Wi, ..., Wir). Then

2

HAOBO’ s

N
=1

9 N
= ||PaZi - f°A?
i=1

N N
= > [|Pg (B°AY+ Wi) = BUAY| = 3 | MpB A} - PaWi

i=1 =1

N N
23" | MgBAY|” + 2 || PgWi|” = 2B, + 2B..

=1 i=1

IN

(C.2.23)

It suffices to bound B, and B,. For By, wehave By < 23N €/ Pge+23 N | (0) — 1)° e;Pge; =
O(N + T) by Lemma C.3.1(a). For B;, we apply Lemma C.1.2(a) and Assumption A3.2 to
obtain

“< M) |BY - BE

B = il |M5 (B~ BH') Al

N
2
0112
> 17
i=1

= 0(1)0, (TN"") 0,(N) = 0, (T).

Consequently, [|A’B” — AB'||> = O, (N +T).

C.3 Some Useful Lemmas

Lemma C.3.1. Suppose Assumption A3.1 to A3.3 hold. Then
(@) $Uppep, (NT) ' Yo, € Pre; = Op (N7 +T71)
(b) (NT)™'||le€'|| = Op (N2 +T712) and (NT)7" ||€'e|| = Op (N2 + T-1/2)
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where Dp = {F € R™*%}, and (a), (b) hold under Assumptions A3.3.

Proof. The derivations are exactly same as those in Peng et al. (2020). B

Lemma C.3.2. Suppose Assumption A3.1 holds, it follows that

(a) Under the alternative of local-to-unity such that pgﬁ, =1+ uv,/T, then,
@ TP Fy) = 53,(r);
(B) TR, FY = 53/ [ 3, (r)dr;
(© T2 XL, FLFY = 5 [ 0,03, (r) e,
@) TS wEY = 5/ [ AW ()3, (r) 2y +Q,, where Q, = S50, B (wal, )

@ |r sl BBY| = 0,0

whered,(r) = (J,,(7), ..., J,,(r)) is a Ornstein-Uhlenbeck process such that J,,(0)
0andJ,(r) = W(r)+v [ e"°W (s)ds, besides, W (r) is the Ro-vector stan-
dard Brownian motion on C|0, 1] that is given by the weak limit of the partial sum
DI AR T
(b) Further, if Assumption A3.5 also holds, then, for each i

(a) T*1/2ei7[Tﬂ = 0., (1),

) T3 e = o3 [ Jo,(r)dr;

(c) T2 ZtT:Q Cit_1€5 | = o} fol Je, (r)Je, (r)'dr;

(d) TS ey = 02 [1 3 ()dW(r) + Qui, where Qi = S5 | B (€i€ivsr)s

wherel.,(r) = (J,,(r), ..., 1., (1)) is a Ornstein-Uhlenbeck process such that J ., (0)

0andJ.,(r) = W(r)+c¢; [ e"°W(s)ds; besides, W(r) is the standard Brownian

motion on C|0, 1] that is given by the weak limit of the partial sum o; *T~/? ,[21] €it-

Proof. According to lines developed in Phillips (1987) and Phillips (1988), proofs follow

directly. B

The next lemma studies the asymptotic property of Vz n.
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Lemma C.3.3. Under Assumption A3.1-A3.5, as N, T" — +o0 jointly,
TﬁlVZ,N — Tl (C31)

~\ —1 ~
where Ty = lim (T"'BYB) (I"'B"B") (N"'A"A") (TB"B), which is a posi-

N, T—oc0
tively definite matrix.

Proof. Premultiplying B” and T~! on both sides of (C.2.2), recall that W = (py — In)e_;+
e and (C.2.1), we have

T—2BO/§VZ’N _ 7 1Y Rgo (N—IAO/A) (T_IBO/E)
= N'T?B"W'WB+ N 'T?B"B°A"WB

+N_1T_2BO/W/AOBOI.§

Ay + Ay + As.
We bound each term below. First, note that

Al _ N_lT_QBOIGI_I (pN o IN)2 8_1§ + N—lT—2 <€BO)/€§

~

+N'T2BY | (py — Iy)eB + N"'T2 (eB°) (py — In)e_, B

A+ Aig + Az + Aua.

For A;;, we have

JAul| = N7'T7?

B%¢' | (py — In)’ e,léu
< NTTHTRBY| el (o — ) e ||| 7B
= NﬁlT?lOp (1) Op (N) O, (1)

= 0, (T,
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where the third line above follows from Lemma C.3.2 1(e), the bound given in Section C.2.2

and the normalization condition. Similarly, we have

Al < NT'TTTH|TTVPBY|| | €ell,

T_1/2-§H
- N_lT_lOp (1) Oy (N+T)0, (1)

= O, (N7'+T71),

where the second line above follows from Lemma C.3.2, Assumption A3.3, and the normal-
ization condition. By Cauchy-Schwarz inequality, it is easy to see ||.A13|| and ||.A14]| will not

be the dominant term in comparison with ||.A;1|| and || A;2||. It follows that

A =0, (NP +T7). (C.3.2)

Next, we study A,. Note that

Ay = N'T2BYB°A” (py —Iy)e_ B+ N'T>B”"B°A"¢B

= Ay + Ay,
We then bound A5; below,

o < N7 BB A" oy ~ Ty e 2B

— NTITH20,(T) 0, (NV2) 0, (1) = O, (N2T712),

where the first line above holds by Lemma C.3.2 1(e), the result given in Section C.2.2, and
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the normalization condition. Similarly,

||A22H < N1/2T3/2||B0/B0HHL
N N1/2T1/2

|75

= 0, (N*1/2> 7

where the first line above holds by Lemma C.3.2 1(e), the bound given in Section C.2.2 and

the normalization condition. In sum, we have

A = O, (N71/?) . (C.3.3)

Now, we study .43. Note that

A; = N'T2BY | (py — Iy)A’B"B + N"'T>B"¢A°B"B

= Az + As.
Below, we bound A3; and Ass, in turns. For Aj;,

s < N7 BY| |l€-, (oy — In) A HT—lBOﬁH

IN

N7'TH|B|| O, (NY?) 0, (1) = O, (NV?T71/?)

where the first line above follows by Lemma C.3.2 1(e), the bound given in Section C.2.2, and
Lemma C.1.1. Similarly,
AO

N1/2
N7V2T10, (NYPTV?) 0, (1) = 0, (T7?),

[| Asz ||

IN

N |

|7 55

where the second line above holds by Lemma C.3.2 1(e), Assumption A3.2, |[eB°|| = O, (N'/2T"/?)

according to the result given in Section C.2.2 by direct calculations, and Lemma C.1.1. In sum,
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we have

I As]| = O, (T7'?). (C3.4)

Combining (C.3.2), (C.3.3), and (C.3.4), and recall the fact that | B®|| = O, (T"/2), we have

H (T—lBO/§> (T—1VZ7N) —T7-'BYBO (N_lAO’AO) (T_1B0’§> H — 0, (1(C3.5)
Thus, (C.3.5) implies that

AO/AO

(T'B"B) (T'Vzy) = (T"'B"B") (T7'B"B) + 0,(1)

and T~V y -2 T follows directly.
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