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Introduction 

Search is the costly activity of gathering information on an alternative or product (Stigler 

1961). For instance, consumers spend on average 6.6 months to search for houses (Chernobai 

and Hossain 2012) and 15.26 hours to search for cameras (Bronnenberg, Kim and Mela 

2016). To reduce search costs, two-sided platforms which match sellers and buyers have 

emerged, such as comparison sites (Bakos 2001). With the advent of such platforms, new 

data and new methods are available for researchers to analyze how consumers search. For 

instance, my first essay uses new forms of data to examine the role of comparison sites in the 

consumer’s search. This new data is the consumers’ pre-search characteristics which are 

surveyed before their online search begins, and which I integrate with the consumers’ 

subsequently observed online search behavior. In my second essay, I utilize state-of-the-art 

machine learning methods to examine the interactions between a listing’s image features 

which predicts consumer’s clicks on the listing, where interactions are important for theory 

building. Image features are a relatively new form of data available to scholars and have only 

been recently studied. Below, I motivate the importance of each essay before ending with the 

overall importance of my dissertation. 

In my first essay, I examine how a consumer’s initial consideration set and 

expectations of finding a better deal affect the probability of a comparison site visit, where 

the initial consideration set is the set of alternatives which the consumer considers at the start 

of search. Since consumers visit a comparison site to discover new alternatives (Chen and 

Waldfogel 2005, Moraga-Gonzalez and Wildenbeest 2011), it seems less important for firms 

to be in the initial consideration set. Specifically, do consumers first search their initial 

consideration set before looking for new alternatives, or do they override their initial 

consideration set with information from the comparison sites? Also, if consumers search their 

initial consideration set first, would they wish to visit a comparison site? To resolve these 
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puzzles, I tap on sequential search to posit a stylized search model relating (i) initial 

consideration set and expectations of finding a better deal to comparison site visit likelihood 

(throughout search, at the start of search, and at the end of search) and the (ii) expectations of 

finding a better deal to the probability of discovering a new alternative that is not in the initial 

consideration set. 

The second essay of my dissertation examines how consumers search for listings on 

an online property platform, by systematically detecting the interactions between features 

(i.e., consumer and the listing’s characteristics) which predict the target (i.e., clicks on a 

listing), when researchers do not know a priori which interactions and their functional form 

are informative of the target. Current management literature focuses on exploring pairwise 

combinations of features with the highest importance scores as potential interaction 

candidates (Choudhury et al. 2021), where importance scores measure each feature’s relative 

influence on predicting the target. However, this approach is problematic as it (i) produces 

many interaction candidates, (ii) assumes that individually important features interact which 

is not necessarily true, and (iii) does not rank the detected interactions. To resolve these 

issues, I introduce two machine learning (ML) methods for detecting interactions from the 

ML literature, i.e., gRITs (Basu et al. 2018) and H-statistic (Friedman and Popescu 2008). I 

compare gRITs and the H-statistic against literature’s current approach and discuss possible 

differences in their ability to detect interactions, before using simulations to ascertain the best 

method for correctly detecting, ranking and inferring the directionality of the interactions. 

I apply the best method on a large scale consumer search dataset and identify the 

effect of image features on clicks, by exploiting the characteristic that listings in the same 

condominium have the same layout to hold their non-image quality constant. This study 

determines the best-performing ML method for detecting, ranking and visualizing 
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interactions and produces the substantive insights that image features interact to predict a 

listing’s click probability.  

Overall, by showing that (i) initial consideration set and expectations of finding a 

better deal predicts comparison site visit timing, and (ii) interactions between image features 

are amongst the most important interactions for predicting clicks, I deepen understanding of 

consumer search. Methodologically, I show the value of combining survey and observational 

data and demonstrate how novel machine learning techniques can help us develop richer 

search theories by exploring boundary conditions between features. 
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Essay 1 

 

On the Interplay between Initial Consideration Sets and Comparison Sites in Consumer 

Search 

 

Abstract 

Comparison sites are widely used by consumers. Theory assumes that consumers visit these 

sites to discover new alternatives, raising questions about the role of the initial consideration 

set (alternatives considered at the start of search) when comparison sites are available. Will 

consumers ignore their initial consideration set and directly explore new alternatives? Will 

consumers with large initial consideration sets avoid comparison sites? Utilizing search and 

incomplete knowledge theories, the authors intuit that consumers first search their initial 

consideration set, and visit a comparison site to reduce the search costs of doing so. If a 

suitable alternative is absent, consumers subsequently visit a comparison site to discover new 

alternatives. The authors test their expectations on unique data capturing consumers’ initial 

consideration sets and online search and find strong support. Specifically, consumers search a 

greater proportion of their initial consideration set at the start of search and are more likely to 

visit a comparison site when their initial consideration set is large. Additionally, consumers 

are more likely to visit a comparison site when they expect to find a better deal, particularly 

at the end of search. Finally, only consumers expecting to find a better deal are more likely to 

explore alternatives not in their initial consideration set. 

 

Keywords: comparison sites, search theory, digital commerce 
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1. Introduction 

Comparison sites allow consumers to compare alternatives based on price and non-price 

attributes from different sellers (Koçaş and Bohlmann 2008; Natter, Ozimec, and Kim 2015; 

Ringel and Skiera 2016; Smith 2002). For instance, Insurify offers live quotes from 102 

sellers (i.e., insurers) in 48 US states and is the largest online US marketplace for auto 

insurance (Businesswire 2016). Upon entering information requested by the site such as 

demographics and the car’s age, the site displays quotations from these sellers which are 

sorted by premiums in ascending order (refer to Figure 1).  

Figure 1. Insurify Auto Insurance Results Page 

 

On the comparison site, consumers can obtain additional information such as policy 

exclusions by clicking on each seller (refer to Figure 2). 
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Figure 2. Additional Information Shown Upon Clicking a Seller 

 

Depending on the specific comparison site, consumers may complete the transaction on the 

comparison site (Natter, Ozimec, and Kim 2015), or be directed to the seller’s site to 

complete the transaction (Smith 2002). In the UK, about 70% of Internet users visit 

comparison sites when searching for offers in utilities and financial services (Ronayne 2018) 

and, in Germany, about 50% of consumers purchase their utilities online primarily from 

comparison sites (Natter, Ozimec, and Kim 2015). The importance of comparison sites in 

consumer search is further exemplified by the high fee of approximately $60 to $85 charged 

by comparison sites in the UK for each consumer switching utilities alternatives1 (Ronayne 

2018). 

                                                           
1 We use the term ‘alternative’ to refer to a differentiated product sold by each seller on the comparison site. For 

instance, insurance products are differentiated along price attributes (premiums) and nonprice attributes (e.g., 

customer service, coverage). Similarly, utilities providers are differentiated by their prices and nonprice 

attributes such as service reliability. 
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 Existing theoretical work assumes that consumers visit comparison sites to discover 

new alternatives (e.g., Baye and Morgan 2001, Moraga-Gonazlez and Wildenbeest 2012), 

where new alternatives refer to alternatives which the consumer did not consider before 

visiting the comparison site. Congruent with this assumption, Waldfogel and Chen (2006) 

find that consumers who visit comparison sites (e.g., Pricescan) reduce their share of visits to 

well-known retailers (e.g., Amazon) and increase their share of visits to small unknown 

retailers. Hence, this literature suggests that, in the presence of comparison sites, it is less 

important for firms to be included in the consumer’s initial consideration set, i.e., the set of 

alternatives which the consumer considers at the start of search. In fact, it makes one wonder 

about the role of the initial consideration set in consumer search when consumers have access 

to comparison sites. Do consumers first search their initial consideration set before looking 

for new alternatives, or do they directly augment or override their initial consideration set 

with information from comparison sites? Additionally, assuming consumers search their 

initial consideration set first, do they have a reason to visit a comparison site? 

In this paper, we draw on optimal sequential search (Weitzmann 1979) and 

incomplete knowledge (Fox and Tversky 1995) theories to develop a stylized consumer 

search model involving initial consideration sets, comparison site visits, and the discovery of 

new alternatives. We argue that consumers first search alternatives in their initial 

consideration set and they visit comparison sites at the start of their search to efficiently 

evaluate alternatives in this set. When this initial search does not give a satisfactory outcome, 

consumers expecting to find a deal better than their current alternative, then visit comparison 

sites to explore new alternatives not in their initial consideration set. Our model thus 

integrates two different uses of comparison sites, (i) evaluating alternatives in the initial 

consideration set at the start of search and (ii) new alternative discovery at the end of search. 
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Using this model, we develop six testable expectations involving consumers’ initial 

consideration sets and comparison site use. 

Testing these expectations is challenging empirically as one needs to observe a 

consumer’s initial consideration set and online search behavior. For example, Waldfogel and 

Chen (2006) do not observe the initial consideration set and proxy new alternatives by small 

unknown retailers. However, these small unknown retailers may be in the consumer’s initial 

consideration set and thus leave unanswered the role of the initial consideration set in the 

consumer’s search when comparison sites are available. We are fortunate to have access to a 

unique dataset containing consumers’ initial consideration sets and their online search 

obtained from a survey and a browser extension. Thus, we identify truly new alternatives 

which are discovered. Further, we obviate reverse causality concerns (i.e., the comparison 

site visit affects the initial consideration set) as we observe the initial consideration set before 

consumers commence their online search.  

We have the following key findings. First, consumers search a larger proportion of 

alternatives in their initial consideration set at the start than at the end of their search, even if 

comparison sites are available. As consumers have private information and trust in their own 

information, they first assess their initial consideration set. Second, initial consideration set 

size is positively associated with comparison site visit incidence, where the association is 

relatively stronger at the start of search. Intuitively, comparison sites reduce search costs and 

this reduction scales with initial consideration set size. Third, consumers with stronger 

expectations of finding a deal better than their current alternative have a higher comparison 

site visit incidence, where the relative effect is stronger at the end of search. Finally, we find 

that consumers with stronger expectations of finding a better deal are more likely to discover 

new alternatives not in their initial consideration set.  
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Our empirical findings have important theoretical and managerial implications. 

Scholars may think that comparison sites’ presence renders the initial consideration set 

insignificant due to the richer set of alternatives displayed on these sites when compared to 

said set. However, we find that consumers with a larger initial consideration set tend to visit 

the comparison site with a higher probability, especially at the start of their search. Hence, 

scholars must recognize the dual use of comparison sites by consumers at different times of 

their search, i.e., evaluate their initial consideration set at the start and discover new 

alternatives at the end of search. Managerially, our empirical findings highlight the 

importance of being in a consumer’s initial consideration set because, even in the presence of 

comparison sites, consumers first search their initial consideration set before exploring new 

alternatives not in this set. 

In the next section, we develop our stylized search model. Thereafter, we detail our 

unique dataset and variable operationalization and introduce our model specification. We 

then present our empirical results and end with a discussion of our findings and their 

implications for scholars, practitioners, and policymakers. 

 

2. Stylized search model 

In the following sections, we develop our stylized search model involving the consumer’s 

initial consideration set and expectations of finding a better deal, by integrating search 

(Weitzmann 1979) and incomplete knowledge (Fox and Tversky 1995) theories with the 

extant comparison sites literature (e.g., Baye and Morgan 2001, Waldfogel and Chen 2006, 

Moraga-Gonzalez and Wildenbeest 2012). We derive six expectations from our stylized 

search model.  

2.1 Perspectives on consumer search  
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Two perspectives of consumer search exist in marketing (Honka and Chintagunta 2017; 

Honka, Hortaçsu, and Wildenbeest 2019). The first perspective is simultaneous search where 

consumers pre-commit to searching a set of alternatives prior to search (Stigler 1961). The 

second perspective is sequential search, where “consumers determine, after each utility 

realization, whether to continue searching or to stop” (Honka, Hortaçsu and Wildenbeest 

2019). The most general form of sequential search is analyzed by Weitzmann (1979). As 

explained by Honka, Hortaçsu, and Wildenbeest (2019), consumers calculate their 

reservation utilities for each alternative, which are the expected utilities net of search costs 

for the alternative. Next, they search alternatives in order of decreasing reservation utilities 

(i.e., selection rule). Consumers terminate their search if the maximum of the realized utilities 

amongst the searched alternatives exceeds the maximum of the reservation utilities from all 

unsearched alternatives (i.e., stopping rule), and choose the alternative with the highest utility 

(i.e., choice rule). 

Rational consumers prefer sequential search over simultaneous search as they can stop 

searching and save on search costs if a good offer is found earlier in their search (Honka and 

Chintagunta 2016). In contrast, simultaneous search requires consumers to continue searching 

the remaining alternatives that they pre-committed to even when a good offer is found early 

on in search (Honka, Hortaçsu and Wildenbeest 2019). In some situations, consumers may 

prefer using simultaneous search (Morgan and Manning 1985). As an example, if search 

outcomes are observed with a time lag, e.g., a time lag between the moment of requesting and 

receiving a quotation, and the deadline for choosing alternatives is rapidly approaching, 

consumers may use simultaneous search to gather information quickly (Morgan and Manning 

1985). However, in our study, consumers observe their search outcomes almost instantly 

which is typical in online consumer search. Thus, we assume that consumers use sequential 

search as per Weitzmann (1979) as it is more efficient for them than simultaneous search. 
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2.2 Relating initial consideration set to comparison site visit incidence 

In sequential search, consumers rank and search alternatives in declining order of their 

reservation utilities (Honka, Hortaçsu, and Wildenbeest 2019). However, consumers may 

have incomplete information about the available alternatives in the market as there are too 

many alternatives and consumers do not know all available alternatives. Consistent with this 

intuition, Fox and Tversky (1995) point out that consumers face conditions of “ignorance or 

ambiguity, where the probabilities of potential outcomes are neither specified in advance nor 

readily assessed on the basis of the available evidence”. Thus, consumers are unable to form 

alternative-specific expectations for all alternatives and can only form such expectations for 

alternatives which they do know. Within these alternatives, some alternatives will have 

higher reservation utilities than others. Thus, they start their search on those alternatives with 

higher reservation utilities. We term these alternatives which consumers consider at the start 

of their search as the initial consideration set2.  

 A critical question that arises is whether consumers immediately augment or override 

their initial consideration sets in the presence of comparison sites which rank alternatives for 

easier comparison and evaluation. For instance, consumers can utilize the ranking as a 

heuristic and only search the top few alternatives (e.g., Masatlioglu, Nakajima, and Ozbay 

2012) and ignore their initial consideration set. While attractive, there are two reasons why 

this intuition is problematic from the perspective of rational consumers. First, consumers 

possess private information (e.g., Mas-Collel, Whinston and Green 1995) about the attributes 

which matter most to them. Thus, consumers may place higher weights on some attributes 

than those assigned by a comparison site. To better reflect their own preferences, consumers 

prefer to form their initial consideration set before potentially assessing it in light of the 

                                                           
2 The initial consideration set is conceptually distinct from the awareness set which is the set of alternatives that 

consumers know of (e.g., Shapiro, MacInnis and Heckler 1997). The awareness set may contain alternatives 

with low reservation utilities which do not make it into the consumer’s initial consideration set. 
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information on comparison sites. Second, consumers trust their own information above other 

sources of information (Granovetter 1985) where said information could arise from, for 

instance, word-of-mouth or the consumer’s personal experiences. Hence, consumers utilize 

their own information to calculate and choose alternatives with higher expected utilities to 

form their initial consideration set. We thus expect that, even in the presence of comparison 

sites, consumers search a greater proportion of alternatives in their initial consideration set at 

the start than at the end of search. 

Our stylized model assumes that consumers first form their initial consideration set 

and then acquire information to reduce their attribute uncertainty for these alternatives. Since 

comparison sites display information on selected price and non-price attributes of many 

alternatives (Smith 2002), consumers visit a comparison site to reduce their search costs 

(Bakos 2001). By visiting a comparison site they incur a single search cost to, in contrast to 

paying a separate search cost for each alternative’s site visited (Baye and Morgan 2001). If 

the information shown on the comparison site is sufficient for their decision-making, 

consumers sequentially search each alternative on the comparison site, and stop when a 

suitable alternative is found. Hence, we propose that consumers visit comparison sites to 

efficiently evaluate alternatives in their initial consideration set, a use of comparison sites that 

to our knowledge has not been considered in the literature.  

If the information shown on the comparison site is insufficient for their decision-

making, consumers can visit alternatives’ sites to obtain the requisite information. These 

consumers still benefit from first visiting comparison sites. Some alternatives in the initial 

consideration set may score poorly on the attributes displayed on the comparison site and 

already yield a low utility to the consumer. If more information from the alternatives’ sites is 

insufficient to compensate for this low utility, consumers benefit by not searching these 

alternatives’ sites. As an example, a consumer may learn from a comparison site that an 
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alternative has the highest price. At the same time, the consumer expects this alternative to 

score well on corporate social responsibility initiatives. To learn about these initiatives, the 

consumer would need to visit the alternative’s site. However, if this positive utility from 

corporate social responsibility cannot compensate the disutility from high prices, consumers 

do not visit this alternative’s site.  

The savings in search costs resulting from a comparison site visit scale with the size 

of the initial consideration set. Consumers who obtain all required information from a 

comparison site only visit a single site instead of visiting k sites, where k is the number of 

alternatives considered. Consumers who require additional information from some 

alternatives’ sites only need to visit p*k sites, where (1-p) is the proportion of alternatives 

that score poorly on the attributes displayed on the comparison site such that visits to the 

alternatives’ sites becomes redundant. Hence, we expect consumers with a larger initial 

consideration set size to have a higher probability of visiting a comparison site visit. As 

argued, consumers search alternatives in their initial consideration set at the start of search. 

Even within this first stage of search, they likely visit a comparison site early. By visiting 

early, consumers reduce their search costs as they only need to visit alternatives with high 

enough expected utilities that sufficiently compensates for their low utility scores based on 

the comparison site’s information. Hence, consumers with a larger initial consideration set 

size are more likely to visit a comparison site and are more likely to do so at the start of 

search than at the end of search. 

2.3 Relating expectations of finding a better deal to comparison site visit incidence 

Since consumers have incomplete information (Tversky and Fox 1995), there is a set of 

alternatives that consumers are unable to form their alternative-specific reservation utilities 

on as they have no specific information on these alternatives. In fact, consumers may not 

even know about their existence. This is the subset of alternatives which consumers may start 
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exploring after not finding a suitable alternative in their initial consideration set. Generally, 

consumers with high expectations of finding a better deal are more likely to continue 

searching as they believe that an additional search is likely to give a better deal than their 

current alternative.3 In our stylized model, an alternative provides a better deal to consumers 

in terms of its product attributes such as price and non-price attributes. This logic is 

analogous to on-the-job search where employed workers search with higher intensity for 

other job offers if they expect better offers from other employers (Rogerson, Shimer, and 

Wright 2005).  

Comparison sites provide information on lesser-known alternatives (Waldfogel and 

Chen 2006), hence, these sites serve as a natural information channel for consumers to learn 

about these alternatives (Baye and Morgan 2001, Moraga-Gonzalez and Wildenbeest 2012). 

Moreover, with incomplete information, consumers would need to search new alternatives in 

an inefficient random order. Since comparison sites rank alternatives based on their value to 

consumers (Natter, Ozimec, and Kim 2015), consumers can benefit by using this ranking as 

input for the order in which to search the new alternatives.  

 Overall, we expect consumers with stronger expectations of finding a better deal to 

have a higher likelihood of visiting comparison sites, because these sites facilitate the 

discovery of new alternatives (e.g., Baye and Morgan 2001, Moraga-Gonzalez and 

Wildenbeest 2012). Indeed, empirical research finds that consumers who visit comparison 

sites subsequently increase their visits to lesser-known alternatives (Waldfogel and Chen 

2006). We further anticipate that consumers who expect to find a better deal are more likely 

to visit a comparison site at the end of their search as opposed to the start of search, because 

they first search their initial consideration set before proceeding to discover new alternatives. 

                                                           
3 We note that consumers do not have alternative-specific expectations but they do have expectations of finding 

a better deal that is not alternative-specific. 



 

15 
 

SMU Classification: Restricted 

Finally, we expect that consumers expecting to find a better deal are more likely to discover 

new alternatives not in this set. 

2.4 Summary and testable expectations 

In summary, our model expects consumers to search a greater proportion of alternatives in 

their initial consideration set at the start of their search even in the presence of comparison 

sites. We expect that initial consideration set size is positively associated with comparison 

site visit incidence, particularly at the start of search. Consumers visit a comparison site to 

reduce their search costs and efficiently evaluate alternatives in their initial consideration set.  

At the end of their search, consumers with stronger expectations of finding a better 

deal expect unsearched alternatives to yield higher utilities than the realized utilities of 

alternatives in their initial consideration set. To learn about new alternatives and to decide on 

the order in which to evaluate these alternatives, consumers may visit a comparison site. We 

thus anticipate higher expectations of finding a better deal to be positively associated with 

comparison site visit incidence, particularly at the end of their search. Finally, we expect 

higher expectations of finding a better deal to be positively associated with new alternative 

discovery. We summarize our expectations in Table 1. 

Table 1. Six Testable Expectations from Stylized Search Model 

Expectations 

1. A greater proportion of alternatives in the initial consideration set is searched at the start, than 

at the end of search. 

2. The larger the initial consideration set, the more likely a consumer is to visit a comparison site. 

3. The effect of initial consideration set size on comparison site visit incidence is more positive at 

the start of search than at the end of search. 

4. The higher the consumer’s expectations of finding a better deal, the more likely a consumer is 

to visit a comparison site. 

5. The effect of expectations of finding a better deal on comparison site visit incidence is more 

positive at the end of search than at the start of search. 

6. The higher the consumer’s expectations of finding a better deal, the more likely a consumer is 

to discover a new alternative. 
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3. Data and empirical setting 

3.1. Data 

To test our expectations, we need data on consumers’ pre-search characteristics (i.e., initial 

consideration set size and expectations of finding a better deal), and their online search 

activities including visit to comparison and alternatives’ sites. We are fortunate to obtain such 

unique data from a consumer panel of 2,478 panelists by GfK Netherlands which describes 

their search for a health insurance alternative. Our data contain three components: (i) pre-

search survey data (ii) online browsing data, and (iii) post-purchase survey data.  

The pre-search survey was taken by consumers in October 2013 before consumers’ 

commenced search, and we use the data from this survey to operationalize a consumer’s 

initial consideration set size and expectations of finding a better deal elsewhere. Moreover, 

the pre-search survey queries panelists on whether they have already started their search for a 

health insurance alternative.4 As our focal panelists have not started their search when filling 

out the pre-search survey, we eliminate the possibility that consumers’ search behavior drives 

their answers in the pre-search survey. Moreover, consumers’ search from previous years 

does not affect choices in the current year as alternatives update their price and non-price 

attributes annually in the Netherlands. Finally, the pre-search survey informs us about 

panelists’ tendency to search for information, as well as other information that we use to 

operationalize our control variables.  

Next, the online browsing data inform about visits to comparison and alternatives’ 

sites and cover the period of October 2013 to January 2014. Online browsing data are 

collected via a browser extension installed on the panelists’ computers. This extension 

records all web traffic, and we access web traffic data for health insurance.  

                                                           
4 Our full dataset contains information on 2,649 consumers. 171 consumers indicated to have searched prior to 

the survey. To avoid endogeneity concerns, we exclude these 171 consumers from our analysis, leaving us with 

2,478 consumers. 
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Finally, we use post-purchase survey data to determine the end of search which is the 

purchase date. This survey was conducted in January 2014. The earliest purchase was on 

October 1st, 2013 and the latest occurred on January 12th, 2014. 

Our data are single source as each panelist provides information for all three 

components, i.e., pre-search, browsing history, and post-purchase. Our data are unique in that 

we not only observe consumers’ online search behavior, but also observe their pre-search 

intentions. This unique feature of the data allows us to empirically test our stylized consumer 

search model. Below, we first elaborate on the empirical setting of our study before 

describing our variable operationalization and introducing our empirical model specification. 

3.2 Empirical setting 

In the Netherlands, health insurance is privatized, and enrolment is compulsory. Every year, 

consumers can switch to a new alternative. Consumers can choose a new alternative until 

January 31st, if they have canceled their existing insurance policy by December 31st of the 

previous year. If they do not cancel before this date, they silently renew with their current 

health insurance alternative. Each year, the Dutch government announces policy changes 

related to health insurance on the third Tuesday of September. Thereafter, insurance 

alternatives announce their new pricing policy for the year. For 2013, alternative DSW made 

the earliest announcement on September 23rd after the government’s policy announcements 

on September 21st.5 Thus, no new pricing information was released before September 23rd, 

2013, and consumers have little to no reason to start searching for next year’s health 

insurance alternative before this date. Having a fixed start date and fixed deadline provides 

the unique benefit of being able to time the pre-search survey prior to consumers’ search, and 

observe their search behavior within an exogenously determined time window. Hence, we 

                                                           
5 https://www.observantonline.nl/English/Home/Articles/articleType/ArticleView/articleId/11274/DSW-sets-

the-pace-with-health-premium-price-rise-of-nearly-10 



 

18 
 

SMU Classification: Restricted 

focus on online searches from October 1st, 2013 until the consumer’s purchase date. 

According to Verzekeringen (2013), 80% of Dutch consumers purchased health insurance 

online in 2012. The 2013 average premium for the basic plan offered by alternatives is 1280 

euros annually (Statista 2019) and consumers can add extra coverage if they wish to.  

Comparison sites in the Netherlands’ health insurance sector include all major health 

insurance alternatives. Further, comparison sites display the same prices as alternatives’ sites. 

Four basic pieces of information are requested by the comparison site when searching for 

health insurance which are age, gender, postal code, and whether insurance for family 

members is required. After entering the basic information, alternatives are shown to the 

consumer as per the results page in Figure 3. For each alternative, the comparison site shows 

its ranking, review scores, and monthly premiums. Alternatives are sorted based on the price 

and quality of the insurance plan as judged by the comparison site. For each alternative, 

consumers can click on the ‘more information’ tab to obtain more detailed information from 

either the comparison site (e.g., independer.nl) or the alternative’s site (e.g., zilvenkruis.nl), 

such as the coverage of physicians and clinics and customer service quality.6  

Figure 3. Typical Information Provided on a Comparison Site 

 

                                                           
6 Out-of-pocket expenses which are a common feature of insurance plans, are standardized into different tiers in 

the Netherlands, and most alternatives offer all tiers. Thus, out-of-pocket expenses are not a differentiating 

factor for consumers. 
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Alternatives’ sites contain information which is available from comparison sites as 

well as information which is not. In Figures 4a and 4b, we present a screenshot of the largest 

alternative in our empirical setting, which is Avero Achmea. From Figure 4a, we see that the 

first piece of information provided is the main types of plans available, together with the 

associated premiums, information that can be obtained from comparison sites as well. By 

scrolling down the screen, the consumer sees specific information not readily available from 

comparison sites such as reimbursements and the exclusions in the health insurance policy 

(Figure 4b). In total, we observe 52 alternatives and 12 comparison sites in our data. We 

observe 110,983 alternatives’ site visits7 and 1,775 comparison site visits. On average, 

consumers spend a total of 33.40 minutes on their site visits with the earliest and latest visit 

on October 1st, 2013 and January 12, 2014 respectively/ 

Figure 4a. Specific Information for an Insurance Alternative 

 

 

                                                           
7 Insurance alternatives may offer other products besides health insurance. We focus exclusively on visits to 

health insurance sites of these alternatives. 
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Figure 4b. Information Absent from Comparison Sites 

 

4 Empirical tests of expectations 

We carry out separate empirical tests for (a) expectation 1, (b) expectations 2 to 5, and (c) 

expectation 6. For each test, we first introduce our variable operationalization and then 

explain the relevant statistical model and results. 

4.1 Test of expectation 1 

Our first expectation is that consumers search a larger proportion of alternatives in their 

initial consideration set at the start of, than at the end of their search. To test this expectation, 

we operationalize two variables: (i) the consumer’s initial consideration set, and (ii) the 

alternatives searched at the start and end of search which are in the initial consideration set.  

Variable operationalization. We operationalize the initial consideration set via the 

question in the pre-search survey that asks, “Which alternatives do you consider for your 
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health insurance for 2014?” where 45 alternatives were listed, and an ‘Others’ option was 

provided to indicate an alternative that is not in the list of alternatives.  

Next, we identify the proportion of alternatives searched by the consumer which are 

in the initial consideration set at the start of search (PropConsi,start) and at the end of search 

(PropConsi,end) using the consumer’s online browsing data.8 For example, if a consumer has 

an initial consideration set size of three, searches two alternatives in this set at the start of 

search and one alternative at the end of search, PropConsi,start is 
2

3
 and PropConsi,end is 

1

3
 for 

this consumer. Next, we define the difference in the proportion of alternatives searched in the 

initial consideration set at the start and end of search as PropConsi,diff = PropConsi,start −

PropConsi,end. We define the start and end of search as the first and last 50% of the 

consumer’s site visits, with visits exactly on the 50% mark randomly assigned to either the 

start or the end of search. Analogous to Bronnenberg, Kim, and Mela (2016), we define a site 

visit as a visit to an alternative’s site or the results page of a comparison site that differs from 

the preceding site visited. Hence, browsing within a site does not generate additional visits. 

To illustrate, a consumer that reaches an alternative’s site generates a site visit. Once the 

consumer reaches the results page of a comparison site, s/he generates another site visit. Yet 

another site visit is generated if the consumer navigates to the previously visited alternative’s 

site, or the results page of another comparison site. 

Model specification. To test our first expectation that the proportion of alternatives 

searched in the initial consideration set is larger at the start than at the end of search, we 

conduct a paired-samples t-test for the proportion of alternatives searched in the initial 

consideration set at the start of search, against the end of search, i.e. we test if PropConsi,diff 

is significantly different from zero. This test is appropriate because we measure the same 

                                                           
8 In our dataset, we do not observe which specific alternatives the consumer focused on comparison sites. 

Hence, we focus on visits to alternatives’ sites. 
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variable (i.e., proportion of alternatives searched in the initial consideration set) at different 

points in time, for each consumer. By comparing the difference in the proportion at two 

moments in time within the same consumer, we control for time-invariant variables such as 

consumer characteristics. 

 Results. Our results shown in Table 2 support our first expectation. We find that the 

difference in proportions of alternatives searched in the initial consideration set between the 

start and end of search is positive and significant (i.e., PropConsi,diff = .14, p < .001). Thus, 

we find empirical support for our first expectation that consumers evaluate a larger 

proportion of their initial consideration set at the start than at the end of search. 

We set out to show that even when comparison sites are available, consumers still 

prioritize their search on the initial consideration set. However, the results reported above are 

based on the full sample of consumers, including those that do not visit a comparison site, 

either because they lack awareness or avoid these sites. Hence, our result that consumers 

prioritize searching alternatives in their initial consideration set may only hold for those who 

do not visit a comparison site. To rule out this interpretation, we implement the same t-test on 

the subset of consumers who have visited at least one comparison site. If our first expectation 

is correct, we should find a positive and significant difference in proportions (i.e., 

PropConsdiff) for this subset of consumers as well. Conditioning on at least one comparison 

site visit, the difference in proportions of alternatives searched is also positive and significant 

(i.e., PropConsdiff = .22, p < .001). Hence, consumers who have visited a comparison site 

also search a higher proportion of alternatives in their initial consideration set at the start of 

search. 
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Table 2. Results for Differences in Proportions Searched between Start and End of Search 

Variable 
Unconditional on 

comparison site visits 

Conditional on at least one 

comparison site visit  

PropConsi,start 

 

.21 

(.01) 

 

 

.28 

(.01) 

 

PropConsi,end 

 

.07 

(.00) 

 

 

.06 

(.00) 

 

PropConsi,diff 
.14** 

(.01) 

.22** 

(.02) 

Notes: (i) Numbers (resp. numbers in parentheses) are the means (resp. standard errors).  

(ii) ** denotes significance based on the 95% confidence interval. (iii) t-test which is unconditional on 

comparison site visits uses 2,478 observations, and t-test which is conditional on at least one comparison site 

visit uses 685 observations. 

 

4.2 Test of expectations 2 to 5 

In this section, we test our expectations that the consumer’s (i) initial consideration set size is 

positively associated with comparison site probability, where the effect of initial 

consideration set size on comparison site visit incidence is more positive at the start of search 

than at the end of search, and (ii) expectations of finding a better deal is positively related 

with the likelihood of visiting a comparison site, with a more positive effect on comparison 

site visit incidence at the start than at the end of search. To test these expectations, we need to 

operationalize three dependent variables (i) comparison site visit incidence, (ii) comparison 

site visit incidence at the start of search, and (iii) comparison site visit incidence at the end of 

search. Additionally, we operationalize our two independent variables (i) initial consideration 

set size, and (ii) expectations of finding a better deal. Finally, we operationalize five control 

variables (i) price dissatisfaction, (ii) nonprice dissatisfaction, (iii) political discussion, (iv) 

changes in personal health and personal situation, and (v) search tendency. 

Operationalization dependent variables. Comparison site visit incidence (CSi) takes 

the value 1 if at least one comparison site was visited by consumer i between Oct 1st 2013, 
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and the end date of search; 0 otherwise. To test our 3rd and 5th expectation, we additionally 

define comparison site visit incidence at the start the start of search (CSi,start) as a binary 

variable which takes the value 1 if consumer i visits a comparison site during the first 50% of 

visits to comparison or alternatives’ sites and 0 otherwise, where site visits are 

operationalized identically as per expectation 1’s empirical test. We define comparison site 

visit incidence at the end of search (CSi,end) analogously as a binary indicator with the value 

of 1 if consumer i visits a comparison site in the last 50% of visits to comparison or 

alternatives’ sites and 0 otherwise. 

Operationalization independent variables. We operationalize a consumer’s initial 

consideration set size using the same source question used in the test of expectation 1, and 

take the natural logarithm of the number of selected alternatives to allow for diminishing 

returns (ConsSeti). In operationalizing consumer i’s expectations of finding a better deal 

(BetterDeali), we draw on the source question which asks “To what extent do the following 

aspects play a role in your search for a new health insurance alternative?” We form a multi-

item scale based on all items capturing the various aspects by which other alternatives 

provide a better offer relative to the focal alternative. These items are (i) “I would be able to 

get better coverage with another health insurance”, (ii) “I would be able to pay a lower 

insurance premium with another health insurance”, (iii) “Another alternative offers an 

interesting promotion (to switch)”. We confirm the scale’s internal consistency by the 

Cronbach’s alpha value of .80 (Nunally and Bernstein 1994). 

Operationalization control variables. We control for five additional reasons 

underlying consumers’ comparison site visits. These are (i) non-price dissatisfaction, (ii) 

price dissatisfaction, (iii) importance of political discussions, (iv) changes in personal and 

health situation, and (v) search tendency. We derive constructs (i) to (iv) from the same pre-

search survey question used to operationalize our better-deal-elsewhere variable, “To what 
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extent do the following aspects play a role in your search for a new health insurance 

alternative?” Each item is again scored on a scale of 1 to 4, where 1 indicates no role and 4 

indicates a very important role. Construct (v) is derived from a different pre-search survey 

question that asks consumers to indicate their agreement with the statement “I always shop 

around if I need a financial product.”  

Dissatisfaction refers to the unhappiness that results when an existing product or 

service has not met the expected levels of the consumer (Swan and Combs 1976). When 

consumers are dissatisfied about the attribute(s) of their current alternative’s offering, they 

gather information on the performance of different alternatives for said attribute(s) 

(Ratchford et al. 2003). Thus, dissatisfied consumers are more likely to visit comparison sites 

when their dissatisfaction arises from attributes that are easily summarized on comparison 

sites. We distinguish two sources of dissatisfaction which are price dissatisfaction and non-

price dissatisfaction. Price dissatisfaction (DissatPricei) uses all items related to 

dissatisfaction about the price and the affordability of the current alternative. These items are: 

(i) “The insurance premium of my current alternative is (too) high”, (ii) “The insurance 

premium of my current health insurance rises too much in 2014”, and (iii) “I have troubles to 

keep paying my current health insurance.” Similarly, non-price dissatisfaction 

(DissatNonPricei) uses all items referring to dissatisfaction with non-price related 

characteristics of the current alternative. These items are: (i) “I am dissatisfied with the 

coverage of my current health insurance”, (ii) “I am dissatisfied about the service offered by 

my current health insurance alternative”, (iii) “I am dissatisfied about my current health 

insurance alternative no longer contracting (reimbursing) certain hospitals”. The Cronbach’s 

alpha for price and non-price dissatisfaction is .77 and .80, respectively, thus establishing 

convergent validity. 
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In our empirical setting (i.e., Netherlands), health insurance is fully privatized, but 

healthcare is subsidized by the government. Thus, the issue of healthcare costs frequently 

comes up as part of political discussions. Consumers who find these discussions important 

are likely to have higher involvement. More involved consumers may expend more time and 

effort to compare information on alternatives using comparison sites. Hence, we control for 

the consumer’s involvement by considering the importance of political discussion to panelists 

when they search alternatives (Politicali) which is reflected in the single item “Political 

discussions” in the same source question used to operationalize our dissatisfaction variables.  

Our penultimate control variable accounts for the possibility that panelists’ search 

may be driven by changes in their personal and health situations (Handel and Kolstad 2015). 

Thus, we construct a multi-item scale using the two items that relate to changes in the 

panelist’s personal or health situations (Changesi). These items are: (i) “Changes in my 

personal situation”, (ii) “Changes affecting my personal health”. The Cronbach’s Alpha is .74 

and provides support for convergent validity of the scale.  

Finally, consumers with a higher search tendency (SearchTendencyi) are more likely 

to compare and shop around for alternatives; a task which is facilitated on comparison sites. 

We proxy for this amount of effort expended by the consumer using SearchTendencyi. We 

measure SearchTendencyi using the source question “I always shop around if I need a 

financial product.” where the consumer’s indicated level of agreement varies from 1 to 5, 

where ‘1’ is ‘very much disagree’ and ‘5’ is ‘very much agree’.  

Discriminant validity. We tested for the discriminant validity of all constructs which 

are operationalized into independent and control variables using the same source question, 

using the mono-trait multi-trait (MTMT) method by Henseler, Ringle, and Sarstedt (2015) 

which computes the ratio of average correlations across and within each pair of constructs. 

The numerator (denominator) of this ratio is the average correlation between items across 



 

27 
 

SMU Classification: Restricted 

(within) constructs. To employ this method, at most one construct can be a single-item 

construct; thus, the MTMT ratio for two single-item constructs is undefined.  

If there is discriminant validity, we expect a lower correlation between items across 

constructs than between items within constructs. Following Henseler, Ringle, and Sarstedt 

(2015), discriminant validity is established if the ratio is below .85. All ratios satisfy this 

condition, and the constructs thus exhibit discriminant validity (Table A1 of Appendix 1). 

This conclusion is corroborated by the results from a factor analysis with Varimax rotation. 

Extracting five factors, we obtain high loadings within, and low loadings across, the 

independent and control variables (Table A2 of Appendix 2). Hence, our results indicate that 

the independent variables and control variables are sufficiently distinct. 

Data description. We provide two tables for easy reference. Table A3 in Appendix 3 

briefly describes all variables and the scale used for each variable. Next, in Table 3 we 

provide descriptive statistics, variance inflation factors (VIFs), and a full correlation matrix 

for all variables used in this study. From Table 3, we learn that about 35 in 100 consumers 

visit comparison sites. Better deal elsewhere reflects consumers’ expectations of obtaining a 

better offer than their current alternative and these expectations are relatively high with an 

average score of 2.54. Although the averages of price and non-price dissatisfaction are 

similar at 2.23 and 2.03, their correlations are relatively low at .63. Finally, we note that the 

VIFs for all independent and control variables are sufficiently low. 
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Table 3. Descriptive Statistics and Correlation Matrix for all Variables 

 

Notes: Reported numbers for variables 1-8 are based on 2,478 observations 

 Descriptive Statistics  Correlation Matrix 

Variables Mean Min Median Max Standard 

Deviation 

VIF 1. 2. 3. 4. 5. 6. 7. 8. 

1. Comparison site incidence .35 .00 .00 1.00 .48  1        

2. Consideration set (ln) .48 .00 .00 3.81 .70 1.12 .13 1       

3. Better deal elsewhere 2.54 1.00 2.67 4.00 .87 2.03 .14 .24 1      

4. Price dissatisfaction 2.23 1.00 2.33 4.00 .87 2.25 .01 .04 .61 1     

5. Non-price dissatisfaction 2.03 1.00 2.00 4.00 .92 1.90 -.02 -.03 .45 .63 1    

6. Political discussion 1.45 1.00 1.00 4.00 .76 1.21 -.01 -.05 .24 .34 .33 1   

7. Changes in personal 

situation and health 

2.04 1.00 2.00 4.00 .97 1.56 .02 .01 .37 .49 .52 .36 1  

8. Tendency to search for 

information 

3.68 1.00 4.00 5.00 .91 1.07 .10 .18 .22 .11 .05 .05 .08 1 
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Model specification for testing expectations 2 and 4. We test expectations 2 (i.e., 

initial consideration set size is positively associated with comparison site visit incidence) and 

4 (i.e., expectations of finding a better deal is positively associated with comparison site visit 

incidence) by estimating a probit model which explains comparison site visit incidence, CSi, 

from the independent and control variables introduced earlier. We define consumer i’s utility 

from a comparison site visit as: 

          Ui
∗ = zi + εi , where εi is a normally distributed error term.  (1)                     

Since utility is a latent variable, we do not observe it directly. Thus, we only observe: 

CSi =  {
1,  if Ui

∗ > 0

0,   if Ui
∗ ≤ 0 

      (2) 

When Ui
∗ > 0, we have zi + εi > 0 and thus εi > −zi. Hence, 

Prob (Ui
∗ > 0) = Prob (CSi = 1, z) = Prob (εi > −zi) 

= Prob (εi < zi) =  Φ(zi)     (3) 

where Φ is the cumulative distribution function of the standard normal distribution. In the 

above equations, zi is defined as  

zi = β0 + β1ConsSeti + β2BetterDeali +  β3DissatPricei 

+β4DissatNonPricei+β5Politicali +  β6Changesi + β7SearchTendencyi  (4) 

If expectations 2 and 4 are supported by the data, β1 and β2 should be positive and 

significant.  

Model specifications for testing expectations 3 and 5. We model comparison site visit 

incidence at the start and end of search, CSi,start and CSi,end, using the same independent and 

control variables in equation 4. Additionally, to explain CSi,end, we include CSi,start as 
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another control variable to allow the possibility that the required information is obtained from 

a comparison site visit at the start of search, which lowers comparison site visit probability at 

the end of search. We test expectations 3 and 5 by comparing the difference in the effects of 

our focal independent variables at the start and end of search for each. Because our probit 

model is nonlinear, we cannot directly compare the coefficients at the start and end and 

instead compare the uplifts in predicted comparison site visit incidence. Specifically, we first 

calculate the baseline comparison site visit probability at the start of search when all 

independent variables are at the mean: 

P̂baseline(CSstart = 1) = Φ(X̅β̂start)    (5) 

where Φ is the cumulative normal distribution, X̅ is the vector of independent variables and 

control variables set at their mean values, and a constant term and where β̂start is the vector 

of coefficient estimates. Thereafter, we add a standard deviation to each independent variable 

and obtain the updated predicted comparison site visit probabilities. For example, the 

expected comparison site visit probability at the start of search at an increased level of initial 

consideration set size is given by 

P̂ ConsSet(CSstart = 1) = Φ(X̅β̂start + β1𝜎̂ConsSet)   (6) 

Next, we denote the uplift in the expected comparison site visit probability at the start of 

search as 

Δstart,ConsSet = P̂ ConsSet(CSstart = 1) − P̂ baseline(CSstart = 1)  (7) 

Similarly, we define Δstart,BetterDeal as the uplift in the expected comparison site visit 

probability due to a one standard deviation increase in expectations of finding a better 

deal. Analogously, we determine Δend,ConsSet and Δend,BetterDeal, the uplifts at the end 

of search. Finally, we calculate the difference in uplifts at the start and end of search: 

ΔConsSet = Δstart,ConsSet − Δend,ConsSet    (8) 

ΔBetterDeal = Δstart,BetterDeal − Δend,BetterDeal   (9) 
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Expectations 3 and 5 predict a positive sign for ΔConsSet, i.e. a larger effect of initial 

consideration set size at the start than at the end of search, and a negative sign for ΔBetterDeal, 

i.e. a larger effect of expectations of a better deal elsewhere at the end than at the start of 

search. We provide all equations to obtain ΔConsSet and ΔBetterDeal in Appendix 4.  

Estimation. We estimate our three models (i.e., the overall, start-of-search and end-of-

search models) using maximum likelihood. We bootstrap the standard errors of ΔConsSetand 

ΔBetterDeal (1,000 replications) which lets us test expectations 3 and 5.  

Results from tests of expectations. In Table 4, we present our estimation results 

(coefficient estimates and 95% confidence intervals) for our three models. 

Table 4. Estimation Results for Basic, Start-of-Search and End-of-Search Models 
 

Variable CS CSstart CSend 

Constant 
-1.34** 

(-1.61, -1.07) 

-1.75** 

(-2.05, -1.46) 

-1.75** 

(-2.08, -1.41) 

CSstart   
1.13** 

(1.00, 1.27) 

Consideration set 
.12** 

(.04, .20) 

.17** 

(.08, .25) 

.03 

(-.06, .12) 

Better deal elsewhere 
.26** 

(.17, .34) 

.19** 

(.10, .28) 

.32** 

(.22, .42) 

Price dissatisfaction 
-.09* 

(-.18, .01) 

-.02 

(-.12, .07) 

-.17** 

(-.28, -.05) 

Non-price dissatisfaction 
-.08* 

(-.16, .01) 

-.09** 

(-.18, -.01) 

-.03 

(-.13, .06) 

Political discussion 
-.05 

(-.13, .02) 

-.04 

(-.12, .04) 

-.06 

(-.16, .03) 

Changes in personal situation and health 
.02 

(-.05, .09) 

.02 

(-.05, .09) 

.05 

(-.03, .13) 

Tendency to search for information 
.11** 

(.05, .17) 

.16** 

(.09, .23) 

.01** 

(-.07, .08) 

Difference in the uplifts due to an increase in initial 

consideration set size (ΔConsSet) 

.02** 

(.00, .03) 

Difference in uplifts due to an increase of better deal 

elsewhere (ΔBetterDeal) 

-.03** 

(-.06, -.01) 

Notes: (i) Numbers are the coefficient estimates (lower and upper limits for the 95% confidence interval). (ii) * 

and ** denotes significance based on the 90% and the 95% confidence intervals, respectively. (iii) Each model 

uses 2,478 observations. 
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Expectation 2 states that consumers with a larger initial consideration set size have a 

higher probability of visiting comparison sites. We find strong support for this expectation. 

Initial consideration set size has a positive and significant effect on comparison site visit 

incidence (β1 = .12; p < .01).  

Our stylized search model further intuits that consumers with a larger initial 

consideration set size have a higher probability of visiting comparison sites at the start of 

search than at the end of search (expectation 3). We find that initial consideration set size has 

a significant and positive effect on comparison site visits at the start of search (β1,start = .17; 

p < .001) but an insignificant effect at the end of search (β2,end = .03; p = .48). Consistent 

with expectation 3, the difference in the uplifts in comparison site visit probabilities due to an 

increase in initial consideration set size is positive and significant, i.e., the mean value of 

ΔConsSet .02 and its 95% confidence interval is [.00, .03]. 

 We illustrate this result in Figure 5 by showing how consumers with a baseline initial 

consideration set size (at the mean) and an increased initial consideration set size (one 

standard deviation increase to the mean), visit comparison sites with different probabilities at 

the start and at the end of search; all other variables kept at the mean. The left-hand (right-

hand) bars illustrate the probability of a comparison site visit at the start (end) of search, 

where the light (dark) bars indicate said probability for a consumer with a baseline 

(increased) initial consideration set size. The difference between dark and light bars thus 

gives us the uplift in comparison site visit probability due to an increased initial consideration 

set size set at the start of search (Δstart,ConsSet) and end of search (Δend,ConsSet). Based on our 

empirical results, we find that Δstart,ConsSet (.03) is larger than Δend,ConsSet (.02). 
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Figure 5. Relative Comparison Site Visit Probabilities for Baseline versus  

Increased Initial Consideration Set Size 

 

Note: baseline initial consideration set size is at the mean, and increased consideration set size is mean plus one 

standard deviation. 

 

With regards to expectation 4, that the expectations of obtaining a better deal are 

positively associated with comparison visit likelihood, we find that higher levels of better 

deal elsewhere are associated with a higher probability of visiting comparison sites (β2 = .26; 

p < .001), thereby confirming our fourth expectation. Our finding is in line with existing 

literature which suggests that comparison sites promote new alternative discovery (e.g., Baye 

and Morgan 2001, Moraga-Gonzalez and Wildenbeest 2012). 

 Lastly, we believe that the effect size of expectations of obtaining a better deal 

elsewhere on comparison site visit incidence is larger at the end of search than at the start of 

search (expectation 5). Expectations of obtaining a better deal has a significant and positive 

effect on comparison site visits at the start of search (β2,start = .19; p < .001), and at the end 

of search (β2,end = .32; p < .001). Next, we calculate the difference in uplifts in comparison 

site visit probabilities due to an increase in expectations of finding a better deal elsewhere. 

We find that the marginal effect at the mean is significantly larger at the end than at the start 
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of search (mean value of ΔBetterDeal is -.03; 95% confidence interval is [-.06, -.01]). Thus, 

our fifth expectation is supported. 

In Figure 6, we illustrate how consumers with a baseline level of expectation of 

obtaining a better deal versus an increased level of expectation of obtaining a better deal, visit 

comparison sites with different probabilities at the start and end of search, with all other 

variables kept at mean values. Analogous to Figure 3, the light (dark) bars in Figure 4 depict 

comparison site visit probability due to a baseline level (an increased level) of expectations of 

obtaining a better deal, where the left-hand (right-hand) bars denote site visit probabilities at 

the start (end) of search. The difference between the pairs of light and dark bars shows the 

uplift in comparison site visit probability at the start and end of search. Specifically, 

Δstart,BetterDeal has a value of .05 and Δend,BetterDeal has a larger value of .08 thus showing 

the larger uplift in comparison site visit probability at the end of search. 

Figure 6. Relative Comparison Site Visit Probabilities for Baseline versus  

Increased Expectations of Getting a Better Deal 
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Amongst our control variables, price dissatisfaction is significantly and negatively 

associated with comparison site visit likelihood in the basic and end-of-search models. One 

possible interpretation is that these consumers tend to focus on their price dissatisfaction only 

and thus shun comparison sites which compare alternatives on a wider range of attributes; 

information that these consumers wish to avoid. As expected, search tendency is positively 

associated with comparison site visit incidence in all three models; consumers who shop 

around for alternatives likely find their shopping facilitated by the information provided on 

comparison sites. Finally, nonprice dissatisfaction is associated with lower comparison site 

visit incidence in all models. Consumers desiring information on nonprice attributes may 

prefer the richer information available from alternatives’ sites. 

Robustness checks. We conduct two robustness checks to rule out competing 

explanations for our results. First, consumers may visit comparison sites because of targeted 

emails. If the targeting mechanism is correlated with our independent variables, we may bias 

our coefficient estimates of the independent and control variables in the comparison site visit 

incidence model. Since we have access to the URLs prior to any site visit, we observe which 

consumers reached comparison sites through email clicks. Only two respondents were found 

to have clicked on an email link. Hence, the influence of emails on comparison site visit 

incidence is negligible. 

Our second check rules out the possibility that consumers’ starting date of search is 

related to their pre-search motivations, thus confounding the interpretation of our findings. 

We provide the correlations between the starting date of search and independent variables in 

Appendix 5, Table A5. The highest (absolute) correlation is a mere -.07 for search tendency; 

hence, our model estimation results are not confounded by the start date of search. 
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4.2    Test of expectation 6 

In this section, we test our final expectation that the higher the consumer’s expectations of 

finding a better deal, the more likely a consumer is to discover a new alternative. Our 

dependent variable for testing this expectation is new alternative discovery, while we retain 

the same independent and control variables used in the comparison site visit incidence model 

(refer to equation 4). 

Variable operationalization. We operationalize our dependent variable, new 

alternative discovery by consumer i (Discoveri) by using the initial consideration set as 

introduced in our test of expectation 1 and the online browsing data. Specifically, we 

operationalize Discoveri as a binary variable taking the value of 1 if consumer i visited the 

site of an alternative not in the initial consideration set; else this variable takes the value of 0. 

Our two independent variables (better deal elsewhere and initial consideration set size) and 

five control variables (non-price dissatisfaction, price dissatisfaction, importance of political 

discussions, changes in personal and health situations, and search tendency) are 

operationalized identically as per the variable operationalization in our empirical test for 

expectations 2 to 5.  

Model specification. We test expectation 6 via a probit model with the dependent and 

independent variables listed in the variable operationalization section. We define consumer 

i’s utility, Wi
∗ from new alternative discovery as:  

           Wi
∗ = wi + ηi, where ηi is a normally distributed error term.  (10) 

Next, we specify                                             

                                   Discoveri =  {
1,   if Wi

∗ > 0

0,   if Wi
∗ ≤ 0 

                                                   (11) 

and define 
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wi = ν0 + ν1ConsSeti + ν2BetterDeali + ν3DissatPricei + ν4DissatNonPricei 

+ν5Politicali +  ν6Changesi +  ν7SearchTendencyi   (12) 

Results. Our results in Table 5 show that the coefficient of better deal elsewhere is 

positive and significant (ν2 = .12, p < .01). Consistent with our 6th expectation, consumers 

with higher expectations of finding a better deal than their current alternative have a higher 

probability of discovering a new alternative. Initial consideration set size is significantly and 

negatively associated with new alternative discovery (ν1 = -.22, p < .001). This negative 

association rules out an alternative interpretation of our initial consideration set size measure. 

One could argue that, instead of measuring the size of the set of alternatives with the highest 

expected utility, it could measure the consumer’s openness to receiving information (Shocker 

et al. 1991, Swait 1984). However, greater openness to receiving information would increase 

the probability of new alternative discovery which should lead to a positive association 

between initial consideration set size and new alternative discovery probability. Thus, we can 

rule out this alternative interpretation of the initial consideration set size. We provide an 

interpretation of the significant negative effect of initial consideration set size on new 

alternative discovery in the discussion section. The possibility remains that consumers with a 

(very) large initial consideration set have a low probability of discovering new alternatives, 

simply because there are few alternatives not included in their initial consideration set. To 

eliminate this interpretation, we rerun our probit model on the subset of consumers with an 

initial consideration set size of less than 4, and find substantively similar results that a higher 

level of better deal elsewhere is associated with a higher probability of new alternatives, even 

for consumers with restricted set sizes. Again, we find that a negative and significant 

coefficient on initial consideration size thus confirming our reasoning in the previous 

paragraph. 
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Table 5. Estimation results for relationship between expectations of finding a better deal and 

probability of new alternative discovery 
 

Variables New alternative discovery 
New alternative discovery, 

conditional on initial consideration set size < 4 

Constant 
.29* 

(.02, .55) 

.34* 

(.06, .62) 

Consideration set 
-.22*** 

(-.30, -.13) 

-.42*** 

(-.57, -.28) 

Better deal elsewhere 
.12** 

(.04, .21) 

.15** 

(.06, .25) 

Price dissatisfaction 
.04 

(-.06, .13) 

-.00 

(-.11, .11) 

Non-price 

dissatisfaction 

-.03 

(-.11, .06) 

-.03 

(-.12, .06) 

Political discussion 
.04 

(-.04, .12) 

-.01 

(-.08, .10) 

Changes in personal 

situation and health 

-.05 

(-.12, .02) 

-.01 

(-.09, .07) 

Search tendency 
.08** 

(.02, .15) 

.08* 

(.01, .15) 

Notes: (i) *, ** and *** denotes p < .05, p < .01 and p < .001 respectively, 

(ii) numbers in parentheses denote the lower and upper limits for 95% confidence interval,  

(iii) estimated on sample of 2,478 individuals for new discovery, and on sample of 2,144 individuals for new 

discovery conditional on having initial consideration set size <  4 

 

 

5 Discussion 

In this section, we first summarize our key findings. Next, we highlight the implications of 

our results for scholars and practitioners before concluding with limitations and future 

research directions. 

5.1    Summary of key findings 

Comparison sites are ubiquitous in consumer search. Existing research has mostly focused on 

the role of comparison sites for new alternative discovery (e.g., Baye and Morgan 2001,  

Moraga-Gonzalez and Wildenbeest 2001, Waldfogel and Chen 2006). In light of this
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alternative discovery function of comparison sites, it is unclear whether initial consideration 

set sizes are still relevant. In this study, we theoretically and empirically address the role of 

the consumer’s initial consideration set size in consumer search when comparison sites are 

available to them. We find that consumers search a greater proportion of their initial 

consideration set at the start than the end of search, also in the presence of comparison sites. 

Also, in line with a search cost argument, we find that larger consideration set sizes are 

associated with a higher probability of a comparison site visit, where the effect is more 

positive at the start of search than at the end of search. Additionally, consumers with higher 

expectations of finding a better deal are more likely to visit a comparison site, where the 

relative effect is stronger at the end of search. Finally, expectations of finding a better deal 

are positively associated with the probability of new alternative discovery, while the initial 

consideration set size shows a negative association with new alternative discovery. 

5.2    Theoretical implications 

Our work adds to the comparison site literature and search literature in general. Below, we 

discuss the two main contributions and their implications for scholars.  

 First, we complement existing literature that focuses on the alternative discovery role 

of comparison sites (e.g., Baye and Morgan 2001, Moraga-Gonzalez and Wildenbeest 2012, 

Waldfogel and Chen 2006) by considering the relationship between initial consideration set 

size and comparison site visit incidence. A priori, one might expect that a larger initial 

consideration set size lowers the need for a comparison site visit as the consumer is already 

considering many alternatives and is less likely to be in need of new alternative discovery. In 

contrast, we show that a larger initial consideration set size is positively associated with 

comparison site visit incidence, which we attribute to consumers’ desire to lower their search 

costs. We thus uncover a use of comparison site visits, evaluation of alternatives in the initial 

consideration set, not previously considered in the literature. Scholars studying the effects of 
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comparison sites should consider the dual role of comparison sites and allow for 

heterogeneity in consumers’ use of these sites. 

 Second, we contribute to the comparison site and search literature by showing that the 

initial consideration set retains relevance when comparison sites are available. Existing 

literature documents the positive effect of advertising on the probability of entering the 

consumer’s consideration set (Goree 2008, Terui, Ban and Allenby 2011). One might think 

that the initial consideration set, and thus advertising, loses its importance when alternatives 

can be easily compared and ranked on comparison sites. We rely on incomplete information 

arguments to theorize that consumers still start their search on their initial consideration set 

when comparison sites are available and we find strong empirical support for this. We further 

find that, while the initial consideration set size is positively associated with comparison site 

visit incidence, it is negatively related to new alternative discovery. While we did not 

explicitly hypothesize this result, it is fully in line with our stylized search model where 

consumers first search their initial consideration set and stop searching once  the searched 

alternatives’ realized utilities exceeds the unsearched alternatives’ maximum reservation 

utilities. All things equal, when the initial consideration set is larger, a consumer is more 

likely to find a suitable alternative in this set and stop searching without considering a new 

alternative. Scholars should ideally observe consumers’ initial consideration sets, as in our 

study, instead of relying on proxies such whether the retailer is “branded” (cf. Waldfogel and 

Chen 2006).  

5.3    Managerial implications 

Our results suggest implications for alternatives and policymakers. Alternatives must ensure 

that they exist in the consumer’s initial consideration set, even when comparison sites are 

available to consumers, because consumers are more likely to evaluate these alternatives at 

the start of search. Since advertising increases the odds of entering the consumer’s 
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consideration set (Goree 2008, Terui, Ban, and Allenby 2011), firms must not neglect their 

advertising even when listing on comparison sites. Comparison sites are important for smaller 

alternatives without the funds to invest in advertising as consumers use these sites for new 

alternative discovery. Hence, smaller alternatives which may not enter the consumer’s initial 

consideration set must invest in their product’s attributes to ensure they are ranked highly on 

comparison sites. In general, alternatives must calculate the expected benefits and costs of 

investing in advertising to enter a consumer’s initial consideration set and improving its 

product attributes to rank higher on the comparison site.  

Policymakers may believe that comparison sites increase consumers’ welfare, as these 

sites reduce the brand equity of larger firms via greater information provision on lesser-

known alternatives (Waldfogel and Chen 2006). Yet, our findings suggest that such a result 

does not apply to all consumers. Consumers may also visit comparison sites to reduce the 

costs of searching their initial consideration set, where alternatives with larger brand equity 

may be more likely to be included in this set. In contrast, consumers who did not find a 

suitable alternative in their initial consideration set and who visit a comparison site in the 

later stages of their search, are more likely to explore alternatives not in their initial 

consideration set. This segment of consumers is more likely to experience increases in their 

welfare. Hence, policymakers wishing to increase the positive consumer welfare effect from 

comparison sites should not only target those consumers that do not visit comparison sites, 

but additionally also target those that visit a comparison site only to evaluate alternatives in 

their initial consideration set.  

5.4    Limitations and future research 

We identify three main limitations of our study which suggest future research directions. 

First, we only focus on the health insurance sector in the Netherlands. Thus, future studies 

could extend our framework to a multiple-industry and multiple-country setting to uncover 
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possible country-specific and industry-specific effects. Second, we are unable to observe 

which alternatives and attributes consumers view on the comparison site. Future research 

could try to obtain this information, e.g., through eye-tracking, and provide a deeper 

understanding of consumer information acquisition on the comparison site. Third, we rely on 

observational data for this study. Future research could experimentally manipulate the initial 

consideration set size and expectations of finding a better deal in a lab (or possibly field) 

setting to determine their causal impact on comparison site visit incidence.  
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Appendices 

Appendix 1. MTMT Ratios 

Table A1. MTMT Ratios 

MTMT Ratios 1. 2. 3. 4. 5. 

1. Better deal elsewhere -     

2. Price dissatisfaction .78 -    

3. Non-price dissatisfaction .57 .81 -   

4. Political discussion .33 .28 .48 -  

5. Changes in personal situation and health .50 .38 .68 .51 - 

 

Appendix 2. Factor Loadings 

Table A2. Factor Loadings 

Items 1. 2. 3. 4. 5. 

Lower price others .840 .115 .087 .241 .027 

Better coverage by other alternatives .726 .346 .236 .095 -.082 

Promotion offered by other alternatives .828 .060 .089 .108 .195 

Premium current too high .481 .305 .122 .612 .058 

Premium rises too much .449 .319 .201 .560 .050 

Trouble paying current premiums .101 .240 .201 .828 .132 

Dissatisfied coverage current .262 .783 .170 .199 .023 

Dissatisfied with contracting of current 

alternative 

.133 .712 .266 .172 .184 

Dissatisfied with service of current alternative .106 .819 .139 .242 .078 

Political discussion .102 .160 .129 .129 .941 

Changes in personal situation .169 .189 .831 .165 .110 

Changes affecting personal health .138 .246 .825 .158 .103 

Notes: Loadings larger than .5 are printed in boldface. 
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Appendix 3. Summary Table for All Variables Used in Study 
 

Table A3. Summary Table for All Variables 
 

Source Variable Description Items Scale 

Browsing data and 

post-purchase survey 
CSi Visit to a comparison site by 

consumer i  

Visit to a comparison site by consumer i  Binary variable. 1 for yes; 0 for no 

Browsing data and 

post-purchase survey 
CSit Visit to a comparison site by 

consumer i at time t, where t is 
start of search or end of search 

Visit to a comparison site by consumer i at the start or end of search Binary variable. 1 for yes; 0 for no 

 

Pre-search survey 

 

ConsSeti 

 

Size of initial consideration set 

 

“Which of the following alternatives would you consider for your health insurance?” 

 

Natural logarithm of the number of 
alternatives considered by consumer 

 

Pre-search survey 

 

BetterDeali 

 

Various aspects by which other 
alternatives have a better deal 

than current alternative 

 

(i) “I would be able to get better coverage with another health insurance”, (ii) “I would be able 
to pay a lower insurance premium with another health insurance”, (iii) “Another alternative 

offers an interesting promotion (to switch)”. 

 

Scale from 1 to 4; where 1 = plays no role in 
search and 4 = plays a large role in search 

 
Pre-search survey 

 

DissatPricei 

 
Dissatisfaction with price related 

characteristics of current 

alternative 

 
(i) “The insurance premium of my current alternative is (too) high”, (ii) “The insurance 

premium of my current health insurance rises too much in 2014”, and (iii) “I have troubles to 

keep paying my current health insurance.” 

 
Scale from 1 to 4; where 1 = plays no role in 

search and 4 = plays a large role in search 

 

Pre-search survey 

 

DissatNonPricei 

 

Dissatisfaction with non-price 

related characteristics of current 
alternative 

 

(i) “I am dissatisfied with the coverage of my current health insurance”, (ii) “I am dissatisfied 

about the service offered by my current health insurance alternative”, (iii) “I am dissatisfied 
about my current health insurance alternative no longer contracting (reimbursing) certain 

hospitals” 

 

Scale from 1 to 4; where 1 = plays no role in 

search and 4 = plays a large role in search 

 
Pre-search survey 

 

Politicali 

 
Political discussion 

 
“Political discussion” 

 
Scale from 1 to 4; where 1 = plays no role in 

search and 4 = plays a large role in search 

 
Pre-search survey 

 

Changesi 

 
Changes in personal situation and 

health 

 
(i) “Changes in my personal situation”, (ii) “Changes affecting my personal health” 

 
Scale from 1 to 4; where 1 = plays no role in 

search and 4 = plays a large role in search 

 
Pre-search survey 

 

SearchTendencyi 

 
Tendency to search for 

information 

 
“I like to shop around when I need a new financial product” 

 
Scale from 1 to 5; where 1 is very much 

disagree and 5 is very much agree 

 
Post-purchase survey 

 

Purchasei 

 
Date of insurance purchase 

 

 
On which date did you sign your health insurance for 2014? 

 
Day, month and year 



 

 

Appendix 4. Uplifts in Comparison Site Visit Probabilities 

We provide the equations necessary to derive the uplifts in comparison site visit probabilities for the initial 

consideration set size ΔConsSet and the expectations of finding a better deal ΔBetterDeal. The baseline comparison 

site visit probability at the start of search when all independent variables are at the mean is: 

 

P̂baseline(CSstart = 1) = Φ(X̅β̂start)    (1) 

where Φ is the cumulative normal distribution, X̅ is the vector of independent variables and control variables set 

at their mean values and a constant term, and where β̂start is the vector of coefficient estimates.  

 

Thereafter, we add a standard deviation to each independent variable and obtain the updated predicted 

comparison site visit probabilities. The expected comparison site visit probability at the start of search at an 

increased level of (i) initial consideration set size, and (ii) expectations of finding a better deal are: 

 

P̂ ConsSet(CSstart = 1) = Φ(X̅β̂start + β1,start𝜎̂ConsSet)    (2) 

P̂ BetterDeal(CSstart = 1) = Φ(X̅β̂start + β2,start𝜎̂BetterDeal)   (3) 

The baseline comparison site visit probability at the end of search when all independent variables are at the 

mean is: 

 

P̂baseline(CSend = 1) = (1 − P̂ baseline(CSstart = 1)) Φ(X̅β̂end|CSstart = 0) + 

P̂baseline(CSstart = 1)Φ(X̅β̂end|CSstart = 1)   (4) 

 

where Φ is the cumulative normal distribution, X̅ is the vector of independent variables and control variables set 

at their mean values (with the exception of CSstart as explained below) and a constant term, β̂end is the vector of 

coefficient estimates.  

 

Our end-of-search comparison site visit incidence model uses CSstart as an independent variable. In equation 4, 

we thus account for the two possibilities in which a comparison site visit occurs at the end of search. The first 

possibility is the probability of a comparison site visit at the end of search conditional on no visit at the start of 

search which is reflected by the first right hand side term in equation 4, i.e., (1 − P̂ baseline(CSstart =

1)) Φ(X̅β̂end|CSstart = 0), where X̅ contains CSstart which takes the value 0. The second possibility is the 

probability of a comparison site visit at the end of search conditional on a visit at the start of search and which is 

reflected by the second right hand side term in equation 4, i.e., P̂baseline(CSstart = 1)Φ(X̅β̂end|CSstart = 1), 

where X̅ contains CSstart which takes the value 1.  

 

Similarly, we add a standard deviation to each focal independent variable and obtain the updated predicted 

comparison site visit probabilities for initial consideration set size and expectations of finding a better deal: 

P̂ ConsSet(CSend = 1) 

= (1 − P̂ ConsSet(CSstart = 1)) Φ(X̅β̂end + β1,end𝜎̂ConsSet|CSstart = 0) + 

P̂ ConsSet(CSstart = 1)Φ(X̅β̂end + β1,end𝜎̂ConsSet|CSstart = 1)   (5) 

 

P̂ BetterDeal(CSend = 1) 

= (1 − P̂ BetterDeal(CSstart = 1)) Φ(X̅β̂end + β2,end𝜎̂BetterDeal|CSstart = 0) + 

P̂ BetterDeal(CSstart = 1)Φ(X̅β̂end + β2,end𝜎̂BetterDeal|CSstart = 1)  (6)   

 5 and 6, we apply the same conditions as in equation 4. For example, in equation 5, we condition on the 

absence of a comparison site visit at the start of search, i.e., (1 − P̂ ConsSet(CSstart = 1)) Φ(X̅β̂end +

β1,end𝜎̂ConsSet|CSstart = 0) and on the presence of a comparison site visit at the start of search, i.e., 
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P̂ ConsSet(CSstart = 1)Φ(X̅β̂end + β1,end𝜎̂ConsSet|CSstart = 1), where CSstart is part of X̅ and takes the value 0 

and 1 in these two terms, respectively. The same applies to equation 6. Equations 5 and 6 thus capture the direct 

effect of an increase in the initial consideration set size and expectations of finding a better deal on the 

probability of a comparison site visit at the end of search, as well as the indirect effect through the probability of 

a comparison site visit at the start of search (an increase in the initial consideration set size and expectations of a 

finding a better deal change the probability of a comparison site visit at the start of search, which, in turn, 

impacts the probability of a comparison site visit at the end of search). 

 

We can then define the uplift in comparison site visit probability at the start of search for each variable as 

Δstart,ConsSet = P̂ ConsSet(CSstart = 1) − P̂baseline(CSstart = 1)   (7) 

Δstart,BetterDeal = P̂ BetterDeal(CSstart = 1) − P̂baseline(CSstart = 1)  (8) 

Analogously, the uplift in comparison site visit probability at the end of search for each variable is 

Δend,ConsSet = P̂ ConsSet(CSend = 1) − P̂baseline(CSend = 1)   (9) 

Δend,BetterDeal = P̂ BetterDeal(CSend = 1) − P̂baseline(CSend = 1)  (10) 

The uplift in comparison site visit probability for each variable is then given by the difference in uplifts between 

the start and end of search: 

ΔConsSet = Δstart,ConsSet − Δend,ConsSet    (11) 

ΔBetterDeal = Δstart,BetterDeal − Δend,BetterDeal   (12) 
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Appendix 5. Correlations between Start Date of Search, and the Independent Variables 

We provide the correlations between the start date of search and the independent variables. As seen from Table 

A5, only search tendency is weakly correlated with the start date of search. 

 

Table A5. Correlations between Start Date of Search and Independent Variables  

 

 

 

 

 

 

 

 

 

 

Note: * denotes significance based on α = .05, n = 2,478  

 

 

  

 Start date 

Consideration set -.01 

Better deal elsewhere -.00 

Price dissatisfaction -.01 

Non-price dissatisfaction -.01 

Political discussion .01 

Changes in personal situation and health .01 

Search tendency -.07* 
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Essay 2 

Detecting Interactions: A Machine Learning Approach  

Abstract 

Machine learning (ML) methods are increasingly popular in management and marketing 

research to discover interaction effects. Existing research focuses on features with high 

individual importance scores to construct candidates for interactions (HIMPS). However, 

HIMPS (i) detects many candidates, (ii) assumes that individually important features interact 

which is not necessarily true, and (iii) does not rank these candidates. To systematically 

detect interactions, we introduce two ML approaches where the first approach which is 

generalized Random Intersection Trees (gRITs) detects interactions through generalized 

Random Intersection Trees (RITs) applied to a random forest (RF) output. Our second 

approach detects interactions using the H-statistic, which calculates the interaction’s share of 

partial dependence to the sum of each main effect’s partial dependence. Comparing HIMPS, 

gRITs and the H-statistic conceptually and empirically using simulation studies, we find that 

the H-statistic outperforms HIMPS and gRITs for correctly detecting and ranking pre-

specified interactions. We then apply the H-statistic on a real large scale consumer search 

dataset to obtain substantive insights. Specifically, we find that images with high distortion 

and high saturation yield lower predicted click probability than images with low distortion 

and high saturation. We conclude by providing recommendations to scholars and 

practitioners. 

 

 

 

Keywords: interactions, random intersection trees, random forest, machine learning, H-

statistic
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1. Introduction 

There is a growing emphasis in management research on using machine learning (ML) 

methods to discover new and robust relationships in data (Choudhury et al. 2021) for theory 

building. Of particular interest to scholars is the discovery of (potentially nonlinear) 

interactions between features and the target9 (e.g., Cui and Curry 2005, Dzyabura and 

Narasimhan 2018, Hagen et al. 2020, Lemmens and Croux 2006, Ma and Sun 2020). 

Interactions are at the heart of social sciences (Anderson et al. 2014, Cohen et al. 2012) as 

they explain the boundary conditions of the relationship between constructs and allow 

managers to adjust their marketing policy levers (MacInnis 2001). Generally, scholars focus 

on two-way interactions “given the lack of theoretical relevance for higher-order 

interactions” (Venkatraman 1989). One popular machine learning (ML) method to detect 

these interactions is the random forest (RF) which produces feature importance scores that 

measure the relative impact of each feature on predicting the target. Thereafter, researchers 

focus on features with the highest importance scores (Breiman 2001, Choudhury et al. 2021, 

Lemmens and Croux 2006) and visualize each feature to surmise its main effect, as well as 

pairs of features to explore interaction effects. We use the term ‘high importance score 

approach’ or HIMPS (for brevity) when referring to the literature’s approach of focusing on 

features with highest importance scores as candidates for interactions. 

 While HIMPS is popular for discovering interactions (e.g., Chen et al. 2011, 

Choudhury et al. 2021, Lemmens and Croux 2006, Lunetta et al. 2004, Wei and Li 2007), it 

is potentially problematic for three reasons. First, feature importance scores indicate each 

individual feature’s relative importance but not their interaction’s importance for predicting 

the target (Darst et al. 2018, Murdoch et al. 2018). Specifically, individually unimportant 

                                                           
9 Consistent with machine learning taxonomy, we use the terms ‘feature’ and ‘target’ to denote an independent 

variable and dependent variable respectively. 
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features can interact and influence the target’s prediction (Wright et al. 2016). Second, 

looking at all possible combinations of highest-scoring features for potential interactions is 

inefficient (Shah and Meinshausen 2014, Shah 2016). For instance, focusing on the 10 

highest-scoring features gives us (10*9)/2 = 45 possible two-way interactions to explore. 

Hence, we need a more systematic manner to discover the most important interaction effects 

in the data. Third, HIMPS does not rank its detected interactions which raises the interesting 

question of which interaction is more important, e.g., the interaction between the top-scoring 

and fourth-scoring feature or the interaction between the second-scoring and the third-scoring 

feature?  

In this study, we respond to the challenges raised in our preceding discussion and 

make an important contribution towards detecting interaction effects using machine learning 

methods. We introduce two approaches for detecting interactions from the ML literature. We 

then discuss the differences between these two approaches and compare them empirically 

against each other and HIMPS to assess which approach is superior under different 

contingency scenarios. The first approach is the generalized Random Intersection Trees 

(gRITs) which detect interactions between binary and non-binary features in predicting the 

target using a RF to index active features before applying Random Intersection Trees (RITs) 

on the indexed features (Basu et al. 2018). gRITs are derived from RITs, where RITs detect 

interactions between binary features on binary targets using the presence of co-occurring 

features on a decision path from root to leaf nodes across randomly sampled observations, for 

a given target class (Shah and Meinshausen 2014). Our second approach employs the H-

statistic by Friedman and Popescu (2008) which quantifies an interaction’s strength using the 

share of variance explained by the interaction to the sum of each main effect’s partial 

dependence. We discuss the potential differences in correctly detecting, ranking, and 
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inferring the directionality of the interactions between HIMPS, gRITs, and the H-statistic 

through two contingency scenarios which are likely to occur in empirical settings.  

We ascertain which approach performs best amongst HIMPS, gRITs and the H-statistic 

using three simulation studies with a (i) baseline scenario with equally important features and 

uncorrelated interacting features, a (ii) contingency scenario 1 where there is a relatively 

more important non-interacting feature, and a (iii) a contingency scenario 2 with correlated 

interacting features, respectively. Assessing the effectiveness of these three approaches on 

correctly detecting, ranking, and inferring the directionality of pre-specified interactions, we 

find that the H-statistic outperforms both HIMPS and gRITs on all three metrics. This finding 

suggests that the H-statistic is more effective than HIMPS and gRIT and hence, we adopt H-

statistic approach for our subsequent empirical application. 

Our empirical application’s goal is to determine which features and their interactions 

predict clicks in the consumer’s online search for property listings. For instance, do 

consumers evaluate each feature individually or jointly as a combination of features for a 

given listing? Since interactions determine “the boundaries of generalizability, and as such 

constitute the range of the theory” (Whetten 1989) between a feature and target, interactions 

allow us to discern between competing theories. Further, marketers can utilize knowledge of 

boundary conditions to attain their desired marketing outcomes (MacInnis 2001). Our dataset 

is obtained from the largest property listing platform which recorded all actions taken by a 

random sample of 6,568 consumers during their browsing, and the image features and non-

image features of all condominium rental listings displayed to consumers. As each 

condominium has a fixed layout for a given number of bedroom and bathrooms, we keep 

non-image features constant by specifying dummies using a triplet of condominium-

bedroom-bathroom and study changes in image features on predicted clicks and its 

interactions with other features. Since this dataset is heavily imbalanced (i.e., 2% of 
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observations are clicked), the performance of the ML methods for predicting clicks is 

affected (Hasanin and Khoshgoftaar 2011, Japkowicz and Stephen 2002). Hence, we 

resampled this dataset by taking all clicked observations, and randomly sampling an equal 

number of unclicked observations (e.g., King and Zeng 2001). Applying our chosen approach 

to detecting and quantifying interactions on this resampled dataset, we have the following key 

findings. First, we find that four of the top five interactions detected by the H-statistic 

included interactions between image features, and only one interaction did not include image 

features. In contrast, none of the top six interactions from HIMPS included any image 

features. By applying HIMPS, we would miss out on interactions involving image features. 

Second, we detect interactions between image features where jointly higher values of 

interacting features are associated with a lower predicted click probability than jointly lower 

feature values. For instance, a listing whose image has a higher distortion and higher 

saturation is associated with a lower average predicted click probability than a listing whose 

image has a lower distortion and lower saturation. 

Our study contributes to the nascent and growing stream in machine learning methods 

used in management and marketing. First, we introduce two approaches from the ML 

literature to efficiently detect interactions which are the gRITs and H-statistic. We compare 

gRITs and H-statistic to HIMPS and discuss their potential differences before using 

simulation studies to ascertain which approach performs best under different contingencies 

for correctly detecting, ranking, and inferring the directionality of the interactions. By doing 

so, we guide users on the most appropriate approach for their empirical studies. Second, we 

show substantively that image features interact with each other in predicting clicks on 

property listings. Since listings with more attractive image features lead to higher demand 

(e.g., Zhang et al. 2017), marketers can alert users if their listing’s current combination of 

image features yields a lower average predicted click probability than other combinations of 
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image features based on the chosen ML method’s predictions. Thereafter, marketers can offer 

a premium service to users which adjusts the interacting image features jointly using 

professional photo-editing software to obtain a higher predicted click probability than the 

current predicted click probability. 

The rest of this paper proceeds as follows. We first recap the problems faced by 

researchers when trying to detect interactions using HIMPS. Thereafter, we introduce and 

compare two approaches for detecting interactions from the ML literature (i.e., gRITs and the 

H-statistic) against HIMPS and discuss potential differences in their performance for 

detecting interactions. Thereafter, we ascertain the most effective approach amongst these 

three approaches under different conditions using three simulation studies. After determining 

the most effective approach, we apply this approach on big consumer search data which is 

obtained from a large property listing platform. We end by summarizing the contributions of 

our study, and discussing avenues for further development.  

 

2. Methods and visualization 

To discover interactions, HIMPS examines interactions between pairs of features with the 

highest importance scores (e.g., Chen et al. 2011, Choudhury et al. 2021, Lemmens and 

Croux 2006, Lunetta et al. 2004, Wei and Li 2007). However, feature importance scores 

cannot detect the interactions between features (Murdoch et al. 2018) as individually 

important features do not necessarily interact with each other. To systematically detect 

interactions, a review of the machine learning (ML) literature suggests two general 

approaches. We explain each approach’s strengths to determine the conditions favoring each 

approach and guide researchers on choosing the appropriate approach.  

The first approach is tree-based where one collects all features of a randomly chosen 

observation along its decision path, and gradually removes features by taking pairwise feature 
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intersections with other randomly chosen observations (e.g., Shah and Meinshausen 2014, 

Thanei et al. 2018). In doing so, feature interactions are detected in a computationally 

efficient manner. The tree-based approach was pioneered by Shah and Meinshausen (2014) in 

the context of binary features and targets, and laid the foundations for subsequent studies 

(e.g., Thanei et al. 2018). To deal with continuous features, gRITs were derived by Basu et al. 

(2018). We implement gRITs in this study as an example of the tree-based approach as 

researchers are likely to encounter a mix of binary and continuous features. 

The second approach is target-based which quantifies the differences in average 

predicted target value with, and without interactions between features, for combinations of 

features (e.g., Friedman and Popescu 2008, Greenwell et al. 2018, Tsang et al. 2020). The H-

statistic (Friedman and Popescu 2008) is a canonical method used to quantify interaction 

strength (Oh 2019) in this approach and extended in other studies (e.g., Greenwell et al. 2018, 

Tsang et al. 2020). Hence, we implement the H-statistic as an example of the target-based 

approach in this study. 

We apply gRITs and H-statistics after fitting an RF to the dataset as gRITs convert 

continuous to binary features by fitting an RF on the original dataset and H-statistics uses the 

partial dependences from the fitted RF as an input. To fit an RF, we have two main ways 

which are (i) fitting a tuned RF (Choudhury et al. 2019) and (ii) fitting iteratively weighted 

RFs, also known as iRFs (Basu et al. 2018). In (i), researchers use a randomized search to 

tune the RF’s key parameters (i.e., maximum number of features sampled at each node, depth 

of RF, minimum number of sampled observations in the leaf node, minimum decrease in 

class impurity at each node before a split can be carried out) (Choudhury et al. 2021). In such 

a randomized search, many RFs are fit on the training dataset with each RF using a different 

combination of randomized values for the key parameters. Thereafter, these RFs’ 

performance are quantified using K-fold cross validation which splits the training dataset into 



 

58 
 

K subsets. Each RF is trained on K – 1 subsets, and its performance (e.g., area-under-curve-

precision-recall or AUC-PR) is assessed on the subset that was omitted from its training. 

Thereafter, researchers choose the best-performing RF and implement it on the test dataset. In 

(ii), the current RF’s feature importances are used as feature sampling probabilities in the 

RF’s next iteration. Hence, features which are more informative in predicting the target are 

sampled with a higher probability in the iRF than the RF, which aids in the detection of 

higher-order interactions (Basu et al. 2018). However, the iRF also increases the risks of 

detecting false positive interactions (Basu et al. 2018, supplementary information 5.1). Since 

we study two-way interactions, applying the iRF does not compensate us for the increased 

risks of detecting false positives, for instance, by detecting more true positive two-way 

interactions. Thus, we assume that researchers use the tuned RF.  

2.1 gRITs: Logic and implementation 

RITs (Shah and Meinshausen 2014) were created to detect interactions in datasets with binary 

features and binary targets. In reality, features and targets can be a mix of both binary and 

non-binary (i.e., continuous) ones. To detect interactions between features, generalized RITs 

(gRITs) map continuous features into binary features using the rules extracted from the RF’s 

application (Basu et al. 2018). We explain this procedure below in detail.  

 gRITs procedure. Suppose we have an Airbnb dataset with 100 consumers, where 

each consumer was randomly exposed to one of ten rental listings. Each listing has binary 

image features (chair-in-image, face-in-image), continuous non-image features (rank, price, 

floor area, number of bedrooms), and a binary target click with the value of 1 if the listing 

was clicked and 0 if not. Chair-in-image and face-in-image are binary features with the value 

of 1 if a chair and a face is present in the image respectively and price is the listing’s daily 

rental price. Hence, we have a total of 100 observations where 80 observations have click = 1 

and 20 observations have click = 0. Following our previous section, we assume that (i) we 
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have obtained a tuned RF and (ii) this tuned RF only has two decision trees. We visualize 

these two trees in Figure 1 and use these to explain the gRITs procedure, where the goal is to 

detect interactions which predict a listing’s clicks. 

Figure 1. First and Second Decision Trees from the Tuned RF. 

                                                   First Decision Tree   

 

                                                         Second Decision Tree   
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In step 1, we randomly sample one observation from the hypothetical dataset which is 

conditional on a given class (i.e., click = 1). Suppose that this randomly sampled observation 

is customer 1 and listing 8 with features: (i) chair-in-image = 1, (ii) face-in-image = 1, (iii) 

rank = 4, (iv) price = $100, (v) floor area = 100 square meters, (vi) number of bedrooms = 3. 

To determine this observation’s active feature sets, we use the two decision trees in Figure 1. 

From the first tree, we see that this observation is assigned to node 5 (leaf node) as its rank 

exceeds 3 and its chair-in-image is 1. As rank and chair-in-image are located on the path from 

the root node to node 5, these two features are the active features for this observation in the 

first tree. Turning our attention to the second tree in Figure 1, we see that this observation 

falls in node 3 (leaf node) as its rank is less than 5, and its price is less than $200. Thus, this 

observation has rank and price as its active features in the second tree as those features are 

situated on the path from the root node to node 3 (leaf node). Collecting the active features 

from these two paths from both decision trees, we obtain {rank, price, chair-in-image} as its 

set of active features. This set gives us the root node in the gRIT depicted in Figure 2. 
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Figure 2. First Tree in gRITs 
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In step 2, we grow another layer of nodes in the gRIT which are called child nodes. 

For each child node, one observation is randomly sampled conditional on the chosen class in 

step 1 (click = 1 in our example). Further, we assume three child nodes (i.e., nchild = 3) for 

ease-of-explanation. In each node, the gRIT collects the observation’s active features as a set 

using the same procedure as in step 1. Referring to Figure 2, we can see that these active 

feature sets are (i) {rank, lights-in-image} for node 1, (ii) {rank, chair-in-image} for node 2, 

and (iii) {rank, price} for node 3. We keep growing layers of child nodes, where each child 

node in the current layer has nchild nodes in the subsequent layer, until the pre-determined 

maximum number of layers is reached. This pre-determined maximum number of layers is 

also known as the tree depth of gRITs (D), which we set as 1 for expositional purposes in our 

example, i.e., we grow one layer of child nodes. 

 In step 3, after creating all layers of child nodes, we intersect the active feature sets on 

the path from each leaf node to the root node in the gRIT, which gives us as many intersected 

sets as there are leaf nodes. In Figure 2, we have three leaf nodes which gives us three 

intersected sets, i.e., {rank}, {rank, chair-in-image}, and {rank, price}. We then take the 

union of {rank} and {rank, chair-in-image} and obtain a set-of-sets, which is {{rank}, {rank, 

chair-in-image}}.  

 In step 4, we repeat steps 1 to 3 M times to obtain M gRITs where each of these M 

gRITs produces one set-of-sets. We take the union of these set-of-sets to obtain a final set of 

co-occurring features for these M gRITs, which we denote by U. We summarize these four 

steps in Table 1 for ease-of-reading. 
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Table 1. Four Steps in gRITs 

gRITs procedure 

1. For each tree in each tree in gRITs, starting with the tree’s root node, conditional on a 

class (e.g., class = 1) randomly choose 1 observation and collect its active features as a 

set in the root node. 

 

2. Continuously grow additional layers of child nodes, where nchild nodes are grown at 

each layer until the maximum numbers of layers (i.e., tree depth) is reached.  

 

3. For each child node, randomly choose K observations, and for each observation in each 

child node, collect its active features as a set. Intersect each of these sets with the set in 

step 2 to obtain an intersected set, then take the union of the intersected sets to obtain a 

set-of-sets for the given tree. 

 

4. Repeat steps 1 to 3 for all trees, and take the unions of the set-of-sets across all trees to 

obtain a final set detected by the M gRITs, denoted by U. 

 

Basu et al. (2018) suggest repeating steps 1 to 4 on B bootstrapped datasets which gives us B 

sets of U, that we denote as U(1), U(2), .., U(B-1), U(B). Using these B sets of U, we quantify 

the stability score of a set’s co-occurring features as the proportion of times that the set’s co-

occurring features is recovered across B bootstrapped samples. For example, suppose we set 

B = 100 and recovered the set {rank, price} in ten samples. The stability score for {rank, 

price} is therefore given by 10/100 = .1. Since Basu et al. (2018) defines a score as a stable 

score if it is at least .5, {rank, price} is therefore not stable.  

To understand why sets of co-occurring features are interpreted as interactions, 

consider an example where listings only have two binary features pool in image and balcony 

in image, which take the value of 1 is there is a pool and a balcony in the image respectively. 

We assume that pool-in-image and balcony-in-image positively interacts such that the 

probability of click = 1 is .3 when both pool-in-image = 1 and balcony-in-image = 1, and that 

the probability of click = 1 is only .1 when either pool-in-image = 1, or balcony-in-image = 1. 

By conditioning on click = 1 and randomly sampling observations, observations are three 
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times more likely to have pool-in-image = 1 and balcony-in-image = 1, as compared to either 

pool-in-image = 1 or balcony-in-image = 1. Hence, these co-occurring features are detected 

as interactions in the gRITs with a higher probability, assuming that they are stable.  

gRITs parameters. In the above example, we assumed some values for the parameters 

but Basu recommends tuning these parameters using simulations with an assumed data 

generating process (DGP) that includes pre-specified interactions, and quantifying the gRITs’ 

accuracy in detecting interactions through three metrics (i) interaction-AUC, (ii) recovery 

rate, (iii) false positive weight, where a true positive is defined as interactions of arbitrary-

order between features in the DGP. For example, Basu et al. (2018) obtains gRIT parameter 

values of M = 500, D = 5, nchild = 2, B = 30. A difficulty in applying this tuning approach is 

that scholars apply machine learning to better understand the DGP and thus may not know 

which DGP to assume in simulations. We will return to this difficulty subsequently in our 

simulation studies. 

2.2 H-statistic: Logic and implementation 

The H-statistic was derived by Friedman and Popescu (2008) and assumes features do not 

correlate. We first explicate the H-statistic’s underlying logic before elaborating on its 

empirical application. For brevity, we denote the partial dependence (PD) function by F and 

the H-statistic by H subsequently in our explanation. The PD function, F, calculates the 

average predicted target value as if all observations have the same value of a focal feature, for 

each value of the focal feature (Choudhury et al. 2021). For instance, suppose three listings 

have floor areas of 400, 800 and 1,200 square feet respectively, the PD for 400 square feet 

assumes that the two listings with a floor area of 800 and 1,200 square feet now have a floor 

area of 400 square feet, before averaging the predicted target value (i.e., click probability) 

across all three listings. Users who wish to reduce the computational time can calculate F 

using a certain number of equal-spaced values (also known as grid points) instead of all 
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observed values of the focal feature. For instance, if x is a continuous feature ranging from 

[0,100], 10 grid points gives us 10 values (i.e., 10, 20, 30, .. , 100) which is used by F to 

calculate the averaged predicted target at these 10 values. Note that F does not require actual 

observations at these 10 values because it assumes that observations have these values when 

calculating PD. 

 Logic of H-statistic. To understand the H-statistic, we draw on the hypothetical 

Airbnb dataset used to explain gRITs earlier, and assume that the number of bedrooms 

interacts with floor area to predict the average clicks on a listing. For instance, suppose listing 

3 has five bedrooms and a floor area of 1,200 square feet with an average predicted clicks of 

0.5 from our tuned RF. To calculate listing 3’s H-statistic, F first calculates the average 

predicted clicks for five bedrooms, and the average predicted clicks for 1,200 square feet 

which we assume to be 0.25 and 0.15 respectively. Since .25 and .15 sums up to 0.4, the joint 

combination of number of bedrooms and floor area, yield a higher average predicted click 

probability than the sum of average predicted clicks for each feature only. Hence, these 

features interact. Formally, the partial dependence of a pair of features for the i-th observation 

(i.e., F(xi,1, xi,2)) is the sum of each feature’s partial dependence (i.e., F(xi,1) + F(xi,2)) when 

these features do not interact (Molnar 2021). The difference between F(xi,1, xi,2) and F(xi,1) + 

F(xi,2) is therefore the PD due to the interaction between x1 and x2, for observation i. Using 

an RF, we can obtain F(xi,1, xi,2), F(xi,1), F(xi,2) and define the H-statistic as 

H(xi,1, xi,2) =  ∑
[F(xi,1,xi,2)− F(xi,1) − F(xi,2)]

2

[F(xi,1,xi,2)]
2

n
i=1     (1) 

where i indexes the observation number with n total observations in our dataset, and the 

numerator is interpreted as the share of variance in PD accounted for by the interaction 

between x1 and x2 (Friedman and Popescu 2008, Molnar 2021). While we define the H-

statistic using pairs of features, the statistic can also be derived for higher-order combinations 

of features (Molnar 2021).  
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Empirical implementation. To obtain the H-statistic, we calculate F for each 

observation. With n observations in the data for each feature, a pairwise interaction will 

require n times n calculations. Hence, calculating the H-statistic is computationally 

expensive. To reduce the computational time and resources, one could take enough small 

random samples (Molnar 2021) or reduce the number of grid points used (Greenwell 2017) 

when calculating PD in the RF. 

2.3 Two contingencies for interaction detection by HIMPS, gRITs and H-statistic  

A priori, there are two contingency scenarios which explain possible differences in how 

effectively gRITs and H-statistic detect interactions, relative to a baseline scenario where all 

features are equally important, and interactions are differentially important. In this baseline 

scenario, HIMPS is uninformative as it uses top-scoring features to construct interaction 

candidates as features are equally important. Literature suggests that gRITS detect true 

interactions effectively (Basu et al. 2018) and the H-statistic is well defined as the PD of 

differentially important interactions and the PD of each feature can be calculated, which 

suggests that gRITs and H-statistic might be better at detecting true interactions. 

 The first contingency scenario arises with the existence of a relatively more important 

feature that does not interact with other features. Since HIMPS relies on the top scoring 

features to construct interactions, it is likely to detect false positive interactions involving this 

feature. gRITs are less likely to detect false positives as it is a ML method that is specifically 

derived to detect interactions (Basu et al. 2018). The H-statistic is also less likely to detect 

false positives as the difference in PD between non-interacting features is likely to be small 

since the interaction between these features do not predict the target.  

 The second contingency scenario occurs when interacting features which predict the 

target are correlated with each other. Generally, it is hard for ML methods to recover 

interactions when interacting features are highly correlated (Basu et al. 2018) and raises the 
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possibility that the three ML methods (HIMPS, gRITS and H-statistic) are less likely to 

detect interactions. Moreover, the H-statistic calculates each feature’s PD by assuming that 

the feature is uncorrelated with other features. If the feature is instead correlated, the H-

statistic is incorrectly calculated (Molnar 2019) which lowers its effectiveness in detecting 

true interactions with correlated interacting features. 

2.4 Visualization using partial dependence plots (PDPs) 

After detecting promising top-ranked interactions from gRITs and/or H-statistics, we 

visualize the relationships between these interactions and the target. Visualization lets us 

understand how our average predicted target varies with these interactions as the RITs and H-

statistics quantifies these interactions’ stability and strength but not the directionality of the 

target’s variation with these interactions. Generally, management and marketing use PDPs to 

visualize interactions (e.g., Choudhury et al. 2021, Lemmens and Croux 2005). PDPs show 

the average predicted target value for each combination of feature values, conditional on 

other features (Hastie et al. 2009, Choudhury et al. 2021), where the same PD is used to 

calculate the H-statistic. Interpreting PDPs is relatively easy since they give the total effect of 

an interaction (Choudhury et al. 2021), i.e., the sum of the main and interaction effects.  

Settings for PDPs. The key parameter in PDPs is the number of grid points which is 

inherited from the PD function and a higher number of grid points increases the amount of 

computational time needed to generate PDPs. For instance, a dataset with N observations, K 

grid points, and J features requires KJ x N calculations for PD plots (Apley and Zhu 2020). To 

reduce computational time, researchers can lower the number of grid points (i.e., K) which 

lowers the number of feature values used in calculating PD. However, researchers should 

bear in mind that fewer grid points may obscure the finer details of the relationship between 

the feature(s) and target. 
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2.5 Software implementation: Tuning RFs, gRITs, H-statistic, and PDPs 

Except for gRITs and the H-statistic, stand-alone Python packages are available for tuning 

RFs and PDPs. gRITs are currently only available as part of the iRF package in Python (Yu 

Group 2020) while the H-statistic is only available as an R package (Molnar and Schratz 

2020). For this study, we coded up a tuned RF, gRITs and the H-statistic into one complete 

Python workflow which is available upon request. We discuss the commonly used Python 

packages for tuning RFs, and PDPs in Appendix 6 Table A6 along with the required 

commands and their key parameters for the benefit of users who wish to use these methods. 

 

3. Simulation study and design 

In the following simulation studies, we compare the ability of HIMPS, gRITs, and the H-

statistic to (i) detect all the true interactions, (ii) rank all the true interactions correctly, and 

(iii) infer the directionality of the true interactions correctly given a pre-specified data 

generating process (DGP), based on the baseline scenario and two contingency scenarios in 

section 2.3. Thereafter, we choose the best performing ML method and apply it to our 

empirical setting to detect, rank, and infer the directionality of interactions. 

3.1 Baseline scenario. Equally important and uncorrelated interacting features 

Our simulated dataset has one binary target (y) and seven uncorrelated features (x1 to x7) 

where the features follow a standard normal distribution N(0,1). We purposely generated x1 

to x4 to be equally important as HIMPS will be uninformative and potentially recover more 

false positives since it uses top-scoring features to construct pairwise interactions. When 

applying HIMPS, literature does not advise on the number of features to be used for 

constructing two-way interactions. Hence, we use the top four features in terms of their 

feature importance scores to obtain six two-way interactions. For the H-statistic, we limit our 
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attention to the top five interactions with the highest values of the statistic. Finally, we only 

focus on interactions with stability scores >= .5 from the gRITs, following Basu et al. (2018). 

 Simulation details. First, we define an intermediate variable z as 

z = −.1 + x1 + x2 + x3 − x4 + x5positive + x1x2 − 2x3x4   (2) 

where x5positive is an indicator variable taking the value of 1 if x5 > 0 and 0 otherwise. As 

evident from z, we have four linear main effects (x1 to x4), two interaction effects (x1x2 and 

x3x4), and one nonlinear main effect (x5positive). We deliberately omitted x6 and x7 from 

equation 1 so these variables have zero importance, to validate the RF’s ability for correctly 

identifying features that are uninformative for predicting the target. Also, the coefficient is 1 

for x1 to x4, which reflects the equal importance of these features as the relative coefficient 

of one feature to another indicates this feature’s relative importance on the predicted 

probability of the target taking the value of one. Second, we define the probability of a 

successful draw pr using z 

pr =  exp(z)/(1 + exp(z))     (3) 

Third, we generate y as a Bernoulli random variable taking the value of 1 with probability pr; 

we chose y as a binary target to mimic our empirical setting which observes if each consumer 

clicks on a given listing. We set β0 at the value of -.1 to ensure that pr has a mean of 

approximately .50. To facilitate ease-of-reading, we summarize the distributional 

assumptions, parameter values and the correlation structure of the features in Table 2. 

Table 2. Summary of Parameter Settings for Baseline Scenario 

Distributional Assumptions, Parameter Values and Correlation Structure 

1. x1 to x7 are distributed as standard normal variables 

2. x5positive = 1 if x5 > 0; 0 otherwise 

3. z = −.1 + x1 + x2 + x3 − x4 + x5positive + x1x2 − 2x3x4   

4. x1 to x7 are uncorrelated with each other 
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We use the settings just introduced and simulate datasets using five different seeds 

(i.e., five datasets in all) to ensure that our results are robust to the chosen seed. For each 

dataset, we tune a RF following Choudhury et al. (2021) before applying and comparing 

HIMPS, gRITs and the H-statistic on the three metrics introduced earlier (i) correctly 

detecting interactions, (ii) correctly ranking detected interactions, and (iii) correctly inferring 

the directionality of the detected interactions. To implement gRITs, we adopt the parameter 

settings in Basu et al. (2018). Alternatively, one could tune gRITs by specifying a DGP and 

testing for its accuracy in detecting interactions (Basu et al. 2018). Since researchers would 

not know the true DPG, we adopt the baseline gRIT settings from Basu et al. (2018) as a 

neutral reference point. We compare the performance of each method in correctly (i) 

detecting, (ii) ranking and (iii) inferring the directionality of interactions, using the proportion 

of datasets in which (i) to (iii) was met.  

Validation check. We validate our datasets by ranking each feature using its 

importance scores and verified that this ranking reflects the correct order of these features 

based on the DGP, where the scores are displayed in Figures 3a to 3e. From these figures, we 

see that in all but one dataset, x6 and x7 have the lowest scores and x4 has the highest scores. 

Also, x3 has the second highest score and highest score in two and one datasets respectively.  
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Figure 3a. Feature Importance for Dataset 1      Figure 3b. Feature Importance for Dataset 2 

 

 

 

 

 

 

 

Figure 3c. Feature Importance for Dataset 3        Figure 3d. Feature Importance for Dataset 4 

 

 

 

 

 

 

Figure 3e. Feature Importance for Dataset 5 

 

 

 

 

 

 

Next, Figures 4a to 4e illustrate the PDPs for the informative features (x1 to x5) which are 

consistent with how we specified x1 to x5 in the DGP. For instance, the PDP for x5 is a step 

function and the PDPs for x1 to x4 are a linear function. 
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Figure 4a. PDPs for Informative Features, Dataset 1                                Figure 4b. PDPs for Informative Features, Dataset 2 
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     Figure 4c. PDPs for Informative Features, Dataset 3                                 Figure 4d. PDPs for Informative Features, Dataset 4 
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Figure 4e. PDPs for Informative Features, Dataset 5
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Results from HIMPS, gRITs, and the H-Statistic. The performance of HIMPS, gRITs 

and the H-statistic on our three metrics (i.e., correctly detecting, ranking, and inferring the 

directionality) is given in Table 3 below, and we see that the H-statistic is the clear winner. 

Table 3. Proportion of Datasets Satisfying Each Metric in Baseline Scenario 

Metric HIMPS gRITs H-statistic 

Detection 1.0 .8 1.0 

Ranking N.A. 0 1.0 

Directionality 1.0 .8 1.0 

 

HIMPS detected both true interactions in all datasets whereas gRITs only recovered the true 

interactions for four out of five simulated datasets. Also, gRITs always ranked the true 

interactions incorrectly with x1x2 ranked higher than x3x4. Turning our attention to the H-

statistic, it detected the true interactions (x3x4 and x1x2) and ranked these two interactions 

correctly across all five datasets. Hence, HIMPS and H-statistic outperforms gRITs in 

detecting both interactions, while it was a draw between HIMPS and the H-statistic. In terms 

of correctly ranking the true interactions, H-statistic outperform gRITs and HIMPS, as gRITS 

consistently ranked the true interactions incorrectly and HIMPS cannot rank interactions. For 

our third metric, which is correctly inferring the directionality of the interactions, HIMPS ties 

with H-statistic tie as correctly inferred the directionality of the true interactions between x3 

and x4 (Figures 5a to 5e) and between x1 and x2 (Figures 6a to 6e). Readers who are 

interested in the details of the interactions detected and their rankings for each of HIMPS, 

gRITs, and the H-statistic can refer to Appendix 7, Tables A7 to A9 respectively. 
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Figure 5a. PDPs for x3 and x4, Dataset 1           Figure 5b. PDPs for x3 and x4, Dataset 2        Figure 5c. PDPs for x3 and x4, Dataset 3 

 

 

 

 

 

 

 

Figure 5d. PDPs for x3 and x4, Dataset 4            Figure 5e. PDPs for x3 and x4, Dataset 5 
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Figure 6a. PDP for x1 and x2, Dataset 1          Figure 6b. PDP for x1 and x2, Dataset 2        Figure 6c. PDP for x1 and x2, Dataset 3 

 

 

 

 

 

 

Figure 6d. PDP for x1 and x2, Dataset 4          Figure 6e. PDP for x1 and x2, Dataset 5 
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Conclusions. With equally important features and uncorrelated interacting features, 

both HIMPs and H-statistic are better at detecting, ranking and correctly inferring the 

directionality of the true interactions than gRITs. However, the H-statistic triumphs over 

HIMPS as HIMPS is unable to rank interactions whereas the H-statistic ranks interactions. 

3.2 Contingency scenario 1. A relatively more important non-interacting feature 

In this study, we zoom in on the contingency that a relatively more important feature need not 

interact with other features by creating said feature in our simulated datasets. Clearly, HIMPS 

would fail in this setting because by construction this feature ranks the highest in terms of 

feature importance scores and has the highest chance of being falsely detected as an 

interaction. But how would gRITs and the H-statistic perform in this setting?  

Simulation details. We retain the same distributional assumptions and correlation 

structure as per Study 1, and only change the coefficient on x5positive to 3 while retaining the 

other coefficients. Thus, x5positive is the relatively more important feature as the coefficient 

on x5positive (i.e., 3) is larger than the other features (i.e., 1) and our features have the same 

scale as they are drawn from an identical and independent N(0,1) distribution. Thereafter, we 

simulate five datasets and tune a RF on each dataset before applying HIMPS, gRITs and H-

statistics to detect interactions. The details of the parameters used are summarized in Table 4.  

Table 4. Summary of Parameter Settings for Contingency Scenario 1 

Distributional assumptions, parameter values and correlation structure 

1. x1 to x7 are distributed as standard normal variables 

2. x5positive = 1 if x5 > 0; 0 otherwise 

3. z = .1 + x1 + x2 + x3 − x4 + 3x5positive + x1x2 − 2x3x4   

4. x1 to x7 are uncorrelated with each other 
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To apply HIMPS, we use the top four features in terms of their feature importance scores to 

obtain six two-way interactions. When applying the H-statistic, we limit our attention to the 

top five interactions with the highest values of the statistic. Finally, we only focus on 

interactions with stability scores >= .5 from the gRITs, following Basu et al. (2018). 

Validation check. Analogous to study 1, we verify that the rankings of the feature 

importance scores and the PDPs of the features are consistent with our DGP. Specifically, we 

find that features x6 and x7 consistently have the lowest importance scores and x5 has the 

highest importance score across all simulated datasets. We also observe that the PDPs for 

each feature is consistent with the DGP, e.g., the PDP for x5 is a step function. We omit these 

the figures of these PDPs for brevity but they are available upon request. 

Results from HIMPS, gRITs, and the H-statistic. HIMPS never detected both true 

interactions as it only detected x3x4 in three of the five datasets, and only detected x1x2 in 

the other two datasets. Most of the false positive interactions detected in four out of the five 

datasets include the relatively more important feature x5. gRITs consistently recover false 

interactions with the relatively more important feature x5 in all datasets. Only in one dataset 

is the true interaction x3x4 recovered, and it is ranked below four other false interactions. In 

contrast, the H-statistic recovers both true interactions in three datasets, and only one true 

interaction in the other two datasets. The ranking of the true interactions is also correct as 

x3x4 is ranked higher than x1x2. To sum up our findings, gRITs and HIMPS fared poorly in 

terms of correctly detecting both interactions as they failed to do so in all five datasets while 

the H-statistic detected true interactions in three datasets. Also, since gRITs and HIMPS 

never recovered both true interactions, it cannot rank and infer the directionality of the true 

interactions since ranking and directionality requires the interactions to be detected. Thus, the 

H-statistic is the clear winner. We summarize the results of each method’s performance on 

the three key metrics in Table 5, which shows that the H-statistic is the clear winner. Detailed 
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output for the interactions detected and their rankings is available for each method in 

Appendix 8, Tables A10 to A12. Figures for the PDPs of the true interactions (x3x4 and 

x1x2) are also available upon request. 

Table 5. Proportion of Datasets Satisfying Each Metric in Contingency Scenario 1 

Method Detection Ranking Directionality 

HIMPS 0 N.A. N.A. 

gRITs 0 0 N.A. 

H-statistic .6 .6 .6 

 

Conclusions. The H-statistic is still effective in detecting, ranking and inferring the 

directionality of interactions even with a relatively more important feature that does not 

interact with other features, in three out of five datasets. gRITs and HIMPS performed 

abysmally as they detected false positive interactions involving the relatively more important 

feature. In empirical settings where a relatively more important feature is likely to exist, 

researchers should apply the H-statistic to lower the risk of detecting false-positive 

interactions involving said feature. 

3.3 Contingency scenario 2. Correlated interacting features 

This contingency scenario examines how correlated features which interact with each other 

affect the performance of HIMPS, gRITs and the H-statistic in detecting interactions as 

recovering interactions is difficult for any ML method when the interacting features are 

correlated with each other (Basu et al. 2018). Also, the H-statistic assumes independent 

features when calculating each feature’s PD (Molnar 2019) which might affect its ability to 

detect interactions if the interacting features are correlated. 

Simulation details. We retain the same distributional assumptions and coefficients on 

the main effects and interaction terms as per Study 1, but correlate x3 and x4 with a 

correlation of .50. To keep the mean of pr at around .50, we change the constant term to 1. 
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Thereafter, we generate five simulated datasets and tune our RF on these datasets before 

applying RITs and H-statistics to detect interactions. The details of the parameters used are 

summarized in Table 6. To apply HIMPS, we use the top four features in terms of their 

feature importance scores to obtain six two-way interactions. When applying the H-statistic, 

we limit our attention to the top five interactions with the highest values of the statistic. 

Finally, we only focus on interactions with stability scores >= .5 from the gRITs, following 

Basu et al. (2018). 

Table 6. Summary of Parameter Settings for Contingency Scenario 2 

Distributional assumptions, parameter values and correlation structure 

1.  x1 to x7 are distributed as standard normal variables 

2. x5positive = 1 if x5 > 0; 0 otherwise 

3. z = 1 + x1 + x2 + x3 − x4 + x5positive + x1x2 − 2x3x4   

4. correlation between x3 and x4 is .50, all other features uncorrelated 

 

Validation check. Similar to the previous simulation studies, we find that the ranking 

of the feature importances reflected the features which were included in z as the most 

important, followed by the features which were excluded from z as the least important. 

Finally, the shapes of the PDPs for x1 to x5 are consistent with their specification in z., we 

verify that the rankings of the feature importance scores and the PDPs of the features are 

consistent with our DGP. Specifically, we find that x4 has the highest importance score, and 

features x6 and x7 have the lowest importance scores. Additionally, the PDPs for each feature 

is consistent with the DGP and we observe that the PDP for x5 is a step function. Output for 

the validation check is available upon request.  

Results from HIMPS, gRITs, and the H-statistic. HIMPS detects both true interactions 

in four out of five datasets but it also detects more false positives detected across all datasets 

than the gRITs and H-statistic. gRITs detected both true interactions in two datasets but only 
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ranked the true interactions correctly in one dataset. The H-statistic detects both true 

interactions in four datasets and correctly ranks interactions in these four datasets. In terms of 

correctly inferring the directionality of the interactions, HIMPS ties with the H-statistic. The 

performance of each method on the three metrics is summarized in Table 7, from which we 

see that HIMPS and H-statistic outperforms gRITs for detecting the true interactions and 

correctly inferring the directionality of the true interactions, and the H-statistic dominates 

HIMPS as HIMPS is unable to rank the detected interactions. Hence, the H-statistic is the 

best performing method based on all three metrics. We provide the identities of the detected 

interactions and their rankings in Appendix 9, Tables A13 to A15 for HIMPS, gRITs and the 

H-statistic respectively. 

Table 7. Proportion of Datasets Satisfying Each Metric in Contingency Scenario 2 

Method Detection Ranking Directionality 

HIMPS .8 N.A. .8 

gRITs 0 0 N.A. 

H-statistic .8 .8 .8 

 

Conclusions. When there is a high correlation between the interacting features, both 

HIMPS and the H-statistic outperforms gRIT as both the H-statistic and HIMPS correctly 

detects and infers the directionality of both true interactions in more datasets than gRITs. H-

statistic also dominates HIMPS as the H-statistic ranks the true interactions while HIMPS is 

unable to do so. Despite our initial concerns about the H-statistic’s ability to detect both true 

interactions when interacting features are correlated, we find that the H-statistic is robust to 

this contingency as it still correctly detects, ranks, and infers the directionality in four out of 

five datasets. 
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3.4 Key findings from baseline scenario, and contingency scenarios 1 and 2 

Overall, HIMPS and H-statistic outperforms gRITs for correctly detecting and inferring the 

directionality of both true interactions in the baseline scenario, and contingency scenarios 1 

and 2. When there is a relatively more important feature (i.e., contingency scenario 1), the H-

statistic outperforms HIMPS and gRITs as HIMPS and gRITs never detected both true 

interactions whereas the H-statistic statistic detected both true interactions in all but one 

dataset. Finally, the H-statistic trumps both HIMPS and gRITs in terms of correctly ranking 

the pre-specified interactions across all scenarios. 

Ranking the detected interactions is arguably important as it allows scholars to focus on 

the more important interactions for robust theory building. Hence we recommend using the 

H-statistic over HIMPS due to availability of rankings in the H-statistic. In our subsequent 

empirical application, we adopt the H-statistic as there is a relatively more important feature 

in our empirical setting (i.e., contingency scenario 1 applies), and we cannot rule out a priori 

that interacting features are correlated with each other (i.e., contingency scenario 2 applies).  

 

4. Empirical setting, variable operationalization, descriptives, and results 

In this section, we first elaborate on the goal of our empirical study and the empirical setting 

before describing our variable operationalization. Thereafter, we provide descriptive statistics 

before applying our chosen approach (H-statistic) on the tuned RF to obtain substantive 

insights on the top five interactions between features. 

4.1. Goal of study and empirical setting 

The goal of our empirical study is to examine the interactions between features which predict 

a listing’s clicks when consumers search for listings on property listing platforms. We posit 

that interactions are important because “marketers can better understand how to manipulate 

or arrange environments so that desired outcomes can be realized” (MacInnis 2001) and 
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delimits the boundary conditions (Busse et al. 2015) where the relationship between a feature 

and a target applies. For instance, suppose that a listing’s image distortion and image 

saturation interacts. We can determine the levels of distortion and saturation that yield the 

highest predicted click probability to guide owners and agents who are renting out their 

property. We focus on property listing platforms as they are heavily used by consumers who 

wish to buy, sell and rent their properties. For instance, industry reports indicate that the top 

three platforms in the six largest Southeast Asian economies collectively have 36 million site 

visits monthly for at least 2 million properties listed for sale (Umbelina 2019). In the US, the 

top three online property listing platforms averaged 77 million site visits monthly (Statista 

2020). Thus, online search platforms are an important channel for property rentals and sales.  

In this study, we obtained a unique online consumer browsing dataset from a large 

online property listing search platform in Southeast Asia, which recorded all actions taken by 

consumers during their browsing, and the image features and non-image features of all 

listings displayed. This dataset consists of a random sample of 6,568 consumers who began 

their search in the first week of August 2018, have at least two search sessions, and viewed at 

least two sets of impressions. We followed this sample until 31st December 2018 or until the 

date of their last search session, whichever date was earlier. The platform which gave us the 

dataset observed that nearly all consumers had a maximum search duration of 3 months, 

hence, the maximum amount of time with which we followed consumers was sufficient to 

capture their search activity. Consistent with this observation, the urban economics literature 

documented a median search duration of 12 weeks for housing (Genesove and Han 2012).  

Each visitor is assigned a unique consumer ID by Google analytics and each of the search 

sessions was assigned a session ID. Within each session, we observe the set of impressions 

shown to the consumer (i.e., impressions set). We also observed whether a listing that was 

exposed was clicked by the consumer, and the timestamps of clicks. In our dataset, we 
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observe a total of 2.3 million listing exposures for private housing (i.e., condominiums) and 

public housing. In our empirical application, we focus on the condominium rental market as it 

displays more listings to consumers than public housing and property sales. Within the 

condominium rental market, we zoom in on the top 10 condominiums where we observe all 

listings belonging to each condominium. As the layout is constant for each condominium-

bedroom-bathroom unit, we can control for the unit’s objective quality by specifying condo-

bedroom-bathroom dummies. These dummies which we term as condo-unit, control for all 

listing characteristics that do not vary with time, and all listings in each condo-unit thus have 

identical quality. Because non-image quality is held constant, we can study the effect of 

image features on clicks. In total, the 6,568 consumers engaged in 14,892 search sessions and 

were exposed to a total of 175,145 listings, where the number of unique listings equals 2,515. 

As the proportion of observations with clicks = 1 is very low (i.e., .02), the RF’s ability to 

find informative features which predict observations with clicks = 1 will be adversely 

affected (Hasanin and Khoshgoftaar 2011, Japkowicz and Stephen 2002). Hence, we 

resampled this dataset using 1 to 1 resampling (King and Zeng 2001) which takes all 

observations with clicks = 1 and randomly samples an equal number of observations with 

clicks = 0. After resampling, our final dataset consists of 7,668 observations where our unit 

of observation is the consumer-listing level.  

4.2. Variable operationalization 

In this section, we outline how we use the data to operationalize our target, clicks, and 

features which are categorized into the listing’s image features, listing’s non-image features 

and consumer’s search features.  

Target. Our target is clicks (Clickijt). This is a binary target with the value of 1 if 

consumer i clicked on listing j which was shown at time t; 0 otherwise. To avoid double 

counting, we only count clicks on unique listings for each set of impressions results displayed 
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to the consumer. For instance, if a consumer clicked on the same listing twice, only the first 

click is counted. We operationalize our target using clicks as clicks reveal the attention 

allocated by the consumer (Matějka and McKay 2015) to the listing.  

Features: listing’s image features. We describe our operationalization of the seven 

image quality features used in our study. In choosing these features, we draw on extant 

literature in marketing and computer science. The first feature is distortion of listing j 

(Distortionj), which measures an image’s loss of naturalness due to disturbances such as 

blur, watermarks etc., without requiring any reference image (Mittal et al. 2012). This feature 

calculates a measure of image quality using the “scene statistics of locally normalized 

luminance coefficients to quantify possible losses of naturalness in the image.” (Mittal et al. 

2012). For each image, this evaluator calculates the empirical distribution of the mean 

subtracted contrast normalized (‘MSCN’) coefficient, and the empirical distributions of 

pairwise products of neighboring MSCN (‘MSCN-pairwise’) coefficients along four 

orientations of the image. Thereafter, the empirical distribution of MSCN coefficient and 

MSCN-pairwise coefficients are fitted to the generalized Gaussian distribution, and 

asymmetric generalized Gaussian distribution respectively to extract image attributes. These 

attributes are then mapped to a quality scores using support vector regression to calculate 

distortion. The score is bounded between [0,100] where a lower score indicates that the image 

is less distorted. 

The second feature is the asymmetry of listing j (Asymmetryj) which is the extent by 

which an image lacks symmetry. Symmetry is the ‘degree of visual balance’ (Zhang et al. 

2017) when an object is split into half along its y-axis. We operationalize asymmetry by 

transposing the image along its y-axis and calculating the information loss between the 

transposed and original images. If the image is symmetric, information loss is minimal after 

transposition. To calculate information loss, we represent each image as a sequence of 64-bit 
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integers and calculate the number of disagreeing bits between these two sequences; this 

distance metric is known as the Hamming distance. This feature is bounded in the interval [0, 

64] where 0 indicates no asymmetry and 64 indicates high asymmetry. 

Our third, fourth, and fifth image features are derived from an image’s hue, saturation, 

and value (‘HSV’). We operationalized these features by calculating the mean value of each 

feature across pixels for each image where a pixel is an image’s smallest unit area. We now 

explain how we define these three features. Hue (Huej) is the average color of an image 

across all its pixels for listing j and ranges from a value of 0 to 255, where for example, 0 to 

40 represents the red color. Generally, consumers prefer warmer colors as these colors feel 

more welcoming (Zhang et al. 2017). Saturation (Satj) is the average intensity of an image’s 

color (e.g., dull pink versus hot pink) across all its pixels, and is measured on a range of 

[0,255] where 0 indicates an extremely dull shade of the color and 255 indicates a fully 

intense shade of the color. Images with a higher saturation are more vivid and look more 

pleasing to the viewer (Zhang et al. 2017), which increases clicks on the listing. An 

alternative strand of research suggests that oversaturated images look artificial (Xu et al. 

2015), which is less attractive and may lead to lower clicks on the listing. Value indicates the 

color’s brightness where pure black has a value of 0 and pure white has a value of 255. 

Literature suggests that property listings with a higher level of brightness look bigger and 

roomier (Zhang et al. 2017, Li et al. 2019).  

Features: listing’s non-image features. Our first set of features comprises of three 

features of which the first two are listing j’s rank (Rankijt) and price (Pricej) as consumers 

are more likely to click on listings with smaller ranks (Ghose et al. 2012, Ursu 2018) and on 

lower-priced listings (Ursu 2018). As consumers prefer a larger floor area (Sirmans et al. 

2005), we included the listing’s gross floor area (Areaj) in square feet as our third feature.  
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Second, we consider a vector of dummy variables indicating the unique condo-unit 

combination (Condo_unitj) for each listing j, where we specify the dummies using a condo-

bedroom-bathroom triplet. As an example, suppose a condominium named ‘Oasis’ has 3 

different unit types which are (i) 1 bedroom and 1 bathroom, (ii) 2 bedrooms and 1 bathroom, 

and (iii) 3 bedrooms and 2 bathrooms and a second condominium ‘Allure’ has 2 different unit 

types which are (i) 1 bedroom and 1 bathroom, (ii) 3 bedrooms and 3 bathrooms. This gives 

us 5 unique condo-unit dummies. In our data, each condominium has on average 7 unique 

unit types and we identify a total of 73 condo-units, and operationalize as 73 dummy features.  

Our final set of two non-image features relate to the impressions page which displays 

said listing. The first feature is the impressions page number of the displayed listing (Pageijt) 

as consumers incur search costs when scrolling to subsequent pages (Ghose et al. 2012, Ursu 

2018). Our second feature is the number of identical condo-units shown on an impressions 

page to each consumer i for each listing j at time t (Condo_countijt) as a greater number of 

identical condo-units increases the odds of a listing being clicked due to the exposure effect. 

Features: consumer’s search features. The first feature we consider is consumer i’s 

cumulative search time (Cum_search_timeit) which is the total amount of time spent 

searching on the platform up to time t, in hours. With more time spent on search, consumers 

gain more information about a listing which increases their probability of clicks on the 

listing. Besides measuring consumer i’s search time across sessions, we also measure the 

amount of time spent searching (in hours) in a session and denote this variable as session time 

(Session_timeit).  

Our third feature is session count (Session_countit) which measures the cumulative 

session count of consumer i at time t. We include this variable as the cumulative session 

count proxies for the discrete information stock acquired by consumers during their search.  
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Turning our attention to the fourth feature, this feature is time of the day (Timeit) 

when a search was carried out by consumer i for the listings displayed at time t, coded using 

24 hourly dummies. We include this feature as consumers focus on their mobile devices as a 

coping mechanism to deal with their loss of privacy in crowded places (Andrews et al. 2018), 

which increases the probability of clicks on listings displayed during peak hours, such as the 

daily commutes to and from workplaces. 

Next, our fifth feature is the vector of dummies for the specific day of the week 

(Dayit) when consumer i carried out a search on the platform at time t. Consumers have lower 

search costs on weekends (Warner and Barsky 1995), and hence, clickthrough rates are 

higher for online advertisements on weekends than on weekdays (Narayanan and Kalyanam 

2015).  

Our penultimate feature is the vector of dummies indicating the device used by the 

consumer when visiting the online search platform (Device). There are three elements in this 

vector as consumers can use mobile phones, tablets, and desktops to access the platform. 

Since consumers face higher search costs on smaller devices (Ghose et al. 2012), their 

probability of clicks on a listing is lower for mobile devices such as mobile phones and 

tablets than desktops.  

Finally, we have the vector of dummies indicating the channel by which the consumer 

arrives at the property listing platform’s website (Channelit) with 11 entries capturing all 

channels. These 11 channels can be categorized into six broad groups, i.e., arrived directly on 

search platform, paid display advertising, referrals, search engine, social media, and 

electronic customer relationship management (‘e-CRM’). We include channel in our study as 

consumers self-select into the channel (e.g., display advertising, organic search, referrals) 

based on the perceived benefits versus costs of using said channel (Li and Kannan 2014), and 
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each consumer’s propensity to click on a listing might depend on the channel from which 

they come from. 

We provide a summary table of all variables used in this study, and their 

operationalization in Table A16 of Appendix 10 for ease of reference. 

4.3. Descriptive statistics and correlation matrix 

We present the descriptive statistics and correlation matrix of our features in Tables 8 and 9 

respectively. As we have 131 features in our dataset, we only include the non-dummy 

features to avoid clutter. 

 Descriptive statistics. The average number of clicks is .50 as our resampled data has 

an equal number of observations with click = 1 and with click = 0. The distributions of 

distortion and asymmetry are relatively symmetric as indicated by the similar mean and 

median values for each feature. The average rank of a listing that is exposed to consumers is 

21.28 and the average page exposed to consumers is the 2nd page of the impressions results. 

Because the median rank of a listing is 15 and the median page is 1, these two statistics taken 

together implies that 50% of listing exposures were on the 1st impressions page, or in the top-

20 ranks. This is unsurprising as the platform displays twenty listings on each impressions 

page as a default setting. With regards to the distribution for price and floor area, we find the 

distributions are slightly right skewed as the mean exceeds the median for these features. 

Finally, the average and median cumulative search time is 31.67 hours and 13.96 hours 

respectively. This trend is consistent with the urban economics and real estate literature 

which documents a longer average search duration than the median search duration 

(Zumpano et al. 2003). 
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Table 8. Descriptive Statistics for all Features and Target 

Note: We suppress channel dummies, condo unit dummies, time of the day dummies and day 

dummies for brevity as there are 11 channels, 73 condo unit dummies, 24 time dummies, and 

7 day dummies 

 

 Correlation table. From the correlation matrix, it is immediately apparent how weak 

each of the pairwise correlations are between the target (i.e., clicks) and the features. For 

instance, the strongest correlation (in absolute terms) is only .05 between clicks and condo-

count. The weak correlation suggests that a linear relationship between clicks and features 

may not be an accurate portrayal of their true underlying relationships. The correlations 

between features are generally weak, except for the correlation between (i) price and floor 

area (.89) and between (ii) page and rank (-.95). (i) is intuitive as listings with a larger floor 

are more costly, and (ii) is consistent with the default platform setting of 20 listings displayed 

on each impressions page, and hence ranks with a larger number appear on the later pages. 

 

 

 

 

 Descriptive Statistics 

Variables Mean Min Median Max Standard 

Deviation 

1. Click .50 .00 .50 1.00 .50 

2. Distortion 46.83 .00 45.91 100.00 11.41 

3. Asymmetry 24.62 .00 24.00 64.00 11.18 

4. Hue 50.96 .00 45.49 128.25 21.90 

5. Saturation 

6. Value 

57.75 

147.90 

.00 

27.10 

51.23 

148.55 

191.18 

247.14 

30.40 

29.50 

7. Rank 

8. Price 

9. Page 

10. Condo count 

11. Floor area 

21.28 

3561.95 

1.55 

4.83 

814.65 

1.00 

700.000 

1.00 

1.00 

100.00 

15.00 

3200.00 

1.00 

3.00 

730.00 

100.00 

17000.00 

5.00 

27.00 

4252.00 

21.11 

1583.09 

1.00 

4.87 

380.93 

12. Cum search time (hours) 31.67 .00 13.96 212.72 41.59 

13. Session search time (hours) 

14. Session count 

.45 

7.74 

.00 

1.00 

.35 

3.00 

3.67 

155.00 

.39 

13.86 



 

92 
 

Table 9. Correlation Matrix for Target and Features. 

 

 

 

 

 

 

 

 

 

 

Note: * and ** denotes significance based on p < .05 and p < .01 respectively

Target and features 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1. Click 1              

2. Distortion -.03* 1             

3. Asymmetry .02 .03* 1            

4. Hue -.01 .12** -.11** 1           

5. Saturation -.05** .05** -.02 .19** 1          

6. Value -.04** .11** -.05** -.07** -.12** 1         

7. Rank -.02** -.01 .00 -.02 -.02 -.04** 1        

8. Price -.06** -.07** -.13** -.03* .02 .01 -.05** 1       

9. Page .04** -.01 .00 -.02 -.02 -.04** .95** -.05** 1      

10. Condo unit count  .15** -.03** -.04** -.02* -.03** -.02 -.12** .01 -.13** 1     

11. Floor area -.05** -.06** -.12** -.00 .02 -.02 -.02* .89** -.03** -.00 1    

12. Cum search time .08** -.00 -.00 -.01 -.02* -.03** .11* -.00 .11** .22** .02 1   

13. Session duration .07** .01 .01 .01 -.02 -.00 .04* -.06** .04** -.01 -.05** .56** 1  

14. Session count .00 -.02 -.03** .01 -.02* -.02 .02* .04** .03* .05** .07** .11** .15** 1 
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4.4. RF tuning, HIMPS and H-statistic results 

To detect interactions between features, we first need to tune a RF. Hence, we first present 

our results for the tuned RF’s parameters where we tune the RF’s key tuning parameters 

following Choudhury et al. (2021). Conducting a sanity check on our results, we verify that 

the tuned RF recovers relationships between feature and targets, which are documented in 

extant literature. Thereafter, we illustrate the stark contrast between the interactions detected 

by HIMPS and H-statistic where none of the interactions detected in H-statistic were picked 

up in HIMPS. Finally, we visualize the effects of these two-way interactions on predicted 

clicks using PDPs. 

Results of our tuned RF. The finalized results from our RF tuning parameters are (i) 

minimum samples in leaf = 138, (ii) minimum decrease in impurity before a split occurs = 

1.23x10−4, (iii) max number of features = None, (iv) maximum depth = 10, (v) criterion for 

splitting at each node = ‘entropy’. Amongst these values, we note that the large and small 

values for minimum samples and maximum depth respectively ensure that the RF is not 

overfit to idiosyncratic noise in the training dataset (Hastie et al. 2009). Fitting the tuned RF 

to the test dataset, we obtain the top ten features based on their importance scores which is 

displayed in Table 10. From this table, we see two features (rank and price) with well-

documented main effects on click probability in the literature. 
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Table 10. Top Ten Features and Importance Scores from the Tuned RF 

Rank Feature Feature importance scores 

1 Rank .13 

2 Cumulative search time .12 

3 Session time .10 

4 Price .08 

5 Condo unit count .08 

6 Saturation .06 

7 Value .06 

8 Floor area .06 

9 Distortion .06 

10 Hue .06 

 

We conduct a sanity check on our fitted RF by visualizing the PDPs for rank and 

price. Figure 7 displays the PDP for rank which indicates a negative association between rank 

and average predicted click probability for ranks up to 20, a positive association from ranks 

20 to 30, before resuming the negative association thereafter.  

Figure 7. PDP for Rank 
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The negative association in Figure 7 is consistent with extant literature’s results that 

rank is inversely related to click probability (e.g., Ghose et al. 2012, Ursu 2018). We 

reconcile the positive association by noting that listings are displayed in a set of twenty 

listings per page as a default option and hence, listings from 20 to 30 are the top few listings 

on the second page which attracts more clicks.  

Viewing the PDP for price in Figure 8, we see a negative trend between price and 

average predicted click probability up to 3,000 dollars, and a positive trend between 4,500 

dollars to 7,000 dollars before staying relative constant thereafter. The negative trend is 

consistent with the notion that listings with higher prices are associated with lower click 

probabilities (e.g., Ursu 2018) while the positive trend is rationalized if we consider that 

higher prices signal a higher quality (e.g., Zhao 2020) of the listing. Overall, we conclude that 

the PDPs for rank and price are consistent with the relationships in extant literature. 

Figure 8. PDP for Price 

 

Interactions from the H-statistic. Table 11 documents the top five interactions 

detected by the H-statistic of which four interactions included image features. If instead, we 

had used HIMPS and constructed pairwise interactions from the top four features, we would 

have missed out on interactions involving image features since none of the top four features 

by importance scores is an image feature.  
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Table 11. Top Five Interactions (scores) from H-statistic 

Rank H-statistic 

1 Price * cumulative search time (.36) 

2 Distortion * hue (.35) 

3 Distortion * value (.29) 

4 Distortion * saturation (.25) 

5 Hue * saturation (.22) 

 

  

Visualizing top five interactions with image features from the H-statistic. We visualize 

the PDP for each interaction with an image feature in descending order of their H-statistic, 

and provide image examples to illustrate these interactions. To aid understanding, we first 

state the implications of these interactions on predicted click probabilities in Table 12, which 

shows the combinations of feature values yielding a higher average predicted click 

probability than other possible combinations of feature values. 

 

Table 12. Managerial implications from the interactions with an image feature in H-statistic 

Feature Feature Implication 

Distortion Hue 
Set images to (i) low distortion and low hue or, (ii) 

high distortion and low hue 

Distortion Saturation 
Set images to (i) low distortion and low saturation or, 

(ii) high distortion and low saturation 

Distortion Value 
Set images to (i) low distortion and low value or, (ii) 

high distortion and low value 

Hue Saturation 
Set images to (i) low hue and low saturation or, (ii) 

high hue and low saturation 
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Figure 9 shows the first PDP for the interaction between distortion and hue. In this 

figure, we find a lower average predicted click probability for images with (i) higher values 

of distortion and hue as compared to images with (ii) lower values of distortion and hue, and 

images with (iiii) lower values of hue but higher values of distortion.  

Figure 9. PDP for Distortion and Hue 

 

We illustrate (i) to (iii) using the requisite images in Figures 10, 11 and 12 

respectively. Why does (i) occur? One potential explanation is that a distorted image is 

already less attractive to consumers and attracts less attention. With high hues (cold colors), 

the image’s ability to attract attention is further dampened. Hence, average predicted click 

probability is the lowest for images with high distortion and high hue. To explain (ii), first 

note when hue is small (i.e., warm colors), images with low distortion which are more 

attractive tend to grab more attention due to the warm colors. With regards to (iii), a 

combination of small hue and large distortion possibly allows the attention-grabbing effects 

of hue to overcome the unattractiveness of distortion, which leads to a higher average 

predicted click probability than a combination of large hue and large distortion. 
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Figure 10. Image with High Distortion (i.e., 69.15) and High Hue (i.e., 75.80) 

 

 

Figure 11. Image with High Distortion (i.e., 66.78) and Low Hue (i.e., 24.30) 

 



 

99 
 

Figure 12. Image with Low Distortion (i.e., 27.72) and Low Hue (i.e., 26.61)

 

 

Our second PDP in Figure 13 visualizes the interaction between distortion and value. 

From this figure, we see that (i) higher distortion and value are associated with a lower 

average predicted click probability whereas both (ii) higher distortion and lower value and 

(ii) lower value and lower distortion is associated with a higher average predicted click 

probability.  

Figure 13. PDP for Distortion and Value 
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Figures 14 to 16 illustrate a typical image with the appropriate feature values for 

distortion and saturation, corresponding to situations (i) to (iii) respectively. From Figure 14, 

we see that high distortion and high value makes the image even more unattractive as a bright 

image (i.e., high value) makes the distortion even more salient and obvious to the viewer. In 

comparison, an image with either (i) high distortion and low value (Figure 15) or, (ii) low 

distortion and low value (Figure 16) is less attention-grabbing as low value indicates that the 

image is less bright, which makes the distortion less salient to the viewer. 

 

Figure 14. Image with High Value (i.e., 184.19) and High Distortion (i.e., 55.37) 

 

 

 

 

 

 



 

101 
 

 

Figure 15. Image with Low Value (i.e., 127.60) and High Distortion (i.e., 53.63) 

 

 

Figure 16. Image with Low Value (i.e., 129.68) and Low Distortion (i.e., 33.97) 
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Our penultimate PDP visualizes the relationship between distortion and saturation on 

average predicted click probability in Figure 17. Examining the PDP, we see that (i) higher 

values of distortion and saturation are associated with a lower average predicted click 

probability whereas both (ii) higher distortion and lower saturation and (ii) lower distortion 

and lower saturation are associated with a higher average predicted click probability.  

Figure 17. PDP for Distortion and Saturation 

 

Figures 18 to 20 illustrate a typical image with the requisite feature values for 

distortion and saturation, corresponding to situations (i) to (iii) respectively. Since saturation 

indicates the fullness of the colors, a simultaneously saturated and distorted image further 

highlights its distortion and reduces its attractiveness to consumers by an even greater extent.  
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Figure 18. Image with High Saturation (i.e., 79.06) and High Distortion (i.e., 53.17) 

 

Figure 19. Image with Low Saturation (i.e., 5.33) and High Distortion (i.e., 61.83) 
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Figure 20. Image with Low Saturation (i.e., 20.99) and Low Distortion (i.e., 27.49) 

 

 

Our final PDP examines the interaction between hue and saturation on average 

predicted click probability which is depicted in Figure 21. From Figure 21, we see that (i) 

higher values of hue and saturation are associated with a lower average predicted click 

probability whereas (ii) lower values of hue and saturation are associated with a higher 

average predicted click probability.  
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Figure 21. PDP for Hue and Saturation 

 

We provide an image with feature values satisfying (i) and (ii) in Figures 22 and 23 

respectively. As an image with cold colors is less attractive than an image with warm colors 

(Zhang et al. 2017), this image is rendered even less attractive when it is saturated as it makes 

the cold colors even more vivid. In comparison, when an image has a low hue (warm colors), 

the low saturation is less overpowering for the viewer as it is less vivid and less intense 

Figure 22. Image with High Hue (76.52) and High Saturation (75.24) 
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Figure 23. Image with Low Hue (76.52) and Low Saturation (75.24) 

 

 

5. Discussion 

In this section, we first briefly summarize our key findings. Next, we highlight the 

implications of our results for scholars and practitioners. We conclude with limitations and 

future research directions.  

5.1. Summary of key findings 

We compared the performance of HIMPS, gRITS and H-statistic using a series of simulation 

studies to ascertain their effectiveness in correctly detecting, ranking and inferring the 

directionality of the interactions. Overall, we find that the H-statistic is the most effective 

method across three scenarios. The H-statistic’s dominance over both HIMPS and gRITS 

when there is a relatively more important feature in the data that does not interact with other 

features, as both HIMPS and gRITS detects false interactions involving this feature. With 

correlated interacting features, the H-statistic ties with HIMPS for correctly detecting and 

inferring directionality of interactions although the H-statistic outperforms HIMPS in 

correctly ranking interactions as HIMPS cannot rank interactions. 
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 Applying the H-statistic to consumer search data obtained from a large online 

property listing platform, we find that four of the top five interactions detected by the H-

statistic involves image features and, none of the interactions detected by HIMPS involved 

image features. All of the top five interactions detected by the H-statistic exclude the 

relatively important feature, rank, which is detected in the top three interactions in HIMPS. 

Consistently, we find interaction effects between distortion and each of hue, value, and 

saturation, and between hue and saturation. For instance, an image with high distortion and 

high saturation has a lower average predicted click probability than an image with either (i) 

low distortion and low saturation or (ii) high distortion and low saturation. 

5.2. Implications 

Our study suggests three important implications for scholars and two implications for agents 

and managers. First, in contrast to HIMPS which detects but cannot rank interaction 

candidates, we show that the H-statistic is a superior method which not only detects but also 

ranks these interaction candidates across three scenarios, which are (i) equally important and 

uncorrelated interacting features, (ii) a relatively more important and non-interacting feature, 

(iii) correlated interacting features. As interactions facilitate theory building (MacInnis 2001), 

a desirable ML method should rank the interactions and allow users to focus on the most 

important interactions for theory building. As a robustness check, we also redid the 

simulations using an ad-hoc measure to rank interactions in HIMPS by summing the 

interacting features’ importance scores. Even after including this ad-hoc measure, we find the 

H-statistic correctly ranks interactions at least as well as HIMPS, if not better (refer to 

Appendix 11 Tables A17 to A19). Hence, the H-statistic is a truly robust ML method for 

detecting, ranking and inferring the directionality of interactions and we recommend that 

scholars employ the H-statistic. 
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Second, the presence of interacting features allows us to explore important boundary 

conditions of the relationship between a listing’s image features and the listing’s average 

predicted click probability, thus refining the relationship between a listing’s image features 

and its consumer outcomes. For instance, listings with highly saturated images are more vivid 

and capture the consumer’s attention which consequently leads to higher demand (Zhang et al 

.2017). However, an important boundary condition is the image’s distortion. With high 

distortion, the higher saturation makes the distortion even more vivid and further lowers the 

attractiveness of said image, thus lowering a listing’s predicted click probability even more as 

we see from the PDP in Figure 17.  

Third, when applying a ML method the user must recognize how the method defines 

interactions to ensure that the detected interaction is consistent with what the user is looking 

for. For instance, interactions in RITs are subsets “of all predictor variables that occur more 

often for observations in a class of interest than for other observations.” (Shah and 

Meinshausen 2014). However, this definition is arguably necessary but not sufficient as 

predictor variables which occur more often can be main effects only but not interactions. For 

instance, suppose that our hypothetical Airbnb listings dataset only has two binary features, 

chair-in-image and face-in-image which do not interact in predicting the listing’s click 

probability. Listings with either (i) chair-in-image = 1 or (ii) face-in-image = 1 have a click 

probability .2, while listings with (iii) chair-in-image = 1 and face-in-image = 1 have a click 

probability of .4. In this example, gRITs will sample an observation from (iii) twice as likely 

as an observation from either (i) or (ii) and detect these features as interactions; yet, these 

features do not interact. This rationale potentially explains why gRITs detects more false 

positive interactions when there is a relatively more important feature that does not interact 

(contingency scenario 1). The relatively more important feature has a higher chance of being 
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indexed as an active feature in the gRITs for a randomly sampled observation, for a given 

class (i.e., click = 1), and lead to it being detected as a false interaction with other features. 

 For agents posting images, our findings suggest that they should adjust interacting 

image features jointly. For instance, we show that images with a (i) high distortion (e.g., >= 

70) and high saturation (e.g., >= 45) have a lower average predicted click probability than an 

image with a (ii) high distortion (e.g., >= 50) but low saturation (e.g., <= 50), or a (iii) low 

distortion (e.g., < 50) and low saturation (e.g., <= 50). Hence, agents should edit both 

saturation and distortion jointly as opposed to editing either saturation or distortion 

individually. To facilitate this editing, platform managers can implement our machine 

learning model as a program on the platform. Based on each image feature’s value chosen by 

the agent, this program suggests values for the other image features that yield the highest 

average predicted click probability. Higher predicted click probability benefits both agents 

and managers as a click on the listing resolves the consumer’s uncertainty about the listing 

(e.g, Chen and Yao 2017) and raises the listing’s likelihood of being transacted. 

5.3. Limitations and future research 

We highlight three limitations of our study which at the same time suggest avenues for 

further development. First, we did not translate our ML method into a parametric model 

which would allow for significance testing. To do so, we need to calculate the H-statistic 

under the null hypothesis of no interactions between each pair of features, i.e., it must be 

possible to set the interaction to zero and calculate the resulting PD in the ML model (Molnar 

2021). This is an open question in the ML literature (Molnar 2021) which future research 

could address. 

 Second, we should apply our chosen ML method (H-statistic) in different empirical 

settings to ensure that the method generalizes for detecting interactions in different settings. 

As an example, consumer search for apparels might differ materially from consumer search 
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for property listings, where images potentially play a more important role since a good 

looking piece of apparel makes the wearer happier. 

 Third, we apply ML methods on observational data which is correlational instead of 

causal. Future research should consider obtaining data using field experiments where a 

listing’s image features are manipulated and randomly exposed to consumers to ascertain the 

causal impact of image features can then be ascertained. 
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Appendices 

Appendix 6. Software Implementation for Tuning RF, PDPs 

We recommend commonly used Python packages for tuning the random forest (RF), 

visualizing partial dependence (PD) plots and accumulated local effects (ALE) plots, their 

requisite commands and the key parameters for these commands in Table W1. We also 

provide guidance on using the requisite commands in these packages. 

 

Table A6. Commonly Used Packages, Commands and Key Parameters 

 

Before implementing the machine learning methods, users must specify the test and training 

dataset in the data pre-processing stage. We use the GroupShuffleSplit command in Scikit-

Learn package which randomly generates train and test indices for each observation by 

sampling at the observation level. As our dataset contains multiple listings showed to the 

same consumer, this command samples the data by restricting the same consumer to show up 

in either train or test datasets, but not both. Doing so prevents leakage of information from 

the test dataset into the train dataset and avoids artificially inflating the performance of the 

machine learning model. There are three required parameters (i) proportion of dataset 

assigned to the testing dataset (‘test_size’), (ii) seed used to generate random train and test 

indices (‘random_state’), (iii) features, target, and group variable. Following Choudhury et al. 

(2021), we set the test_size to .3 

 

We tune a RF by using the random_search command in the Scikit-Learn package. This 

command requires us to specify the (i) tuning parameters, (ii) values of parameters to be 

tuned, and (iii) number of folds (if using K-fold cross validation). Choudhury et al. (2021 

supplementary section 1.1) provides a convenient Python code workflow which uses the 

random_search command and provides recommended parameters and values for (i) to (iii).  

 

To visualize PD plots, we use the plot_partial_dependence command in the Scikit-Learn 

package. The key parameters for this command are the (i) model (e.g., a tuned RF), (ii) 

features to be plotted (e.g., single feature or combinations of features), (iii) test dataset. 

Besides the key parameters, we highlight three other optional parameters which the user 

Goal Package Requisite commands Key 

parameters 

Website 

Tune 

RF  

 

1) Scikit-

Learn 

(2021) 

2) Choudhury 

et al. (2021) 

random_search (i) model, 

(ii) tuning 

parameters,  

(iii) tuning 

values, (iv) 

number of 

folds, (v) 

training 

dataset 

1) https://scikit-

learn.org/stable/ 

 

2) 

https://tinyurl.com/3wfk8zb5 

 

 

 

     

PD 

plots  

Scikit-

Learn 

(2021) 

plot_partial_dependence (i) model, 

(ii) features 

plotted, (iii) 

test dataset 

https://scikit-

learn.org/stable/ 
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might find useful to tweak, that are kept at default settings. The first parameter is the number 

of computer cores used for plotting (n_jobs) with a default of ‘1’. To use all cores, set this 

parameter to ‘-1’ instead. The second parameter is the number of equally spaced points on the 

axes of the plots, for each target feature (grid_resolution) with a default value of ‘100’. To 

reduce computation time, users can lower the value for this parameter. The final parameter is 

the lower and upper percentile used to create the extreme values for the PD plot’s axes 

(‘percentiles’) with a default value of (.05, .95). This parameter can set to (0,1) if users wish 

the axes to include the data’s full range. 
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Appendix 7. Detected Interactions and Rankings in Baseline Scenario 

This web appendix displays the detailed output for the baseline scenario (features are equally 

important and the interacting features are uncorrelated) with regards to the detection and 

ranking of interactions for HIMPS, gRITs and the H-statistic. 

  

 

Table A7. Six Interactions from HIMPS  

Rank Dataset 1 Dataset 2 Dataset 3 Dataset 4  Dataset 5 

 x3x4  x3x4  x2x4  x3x4  x2x4  

 x1x4  x1x4  x3x4  x2x3  x3x4  

 x2x4  x1x2  x1x4  x1x3  x1x4  

 x1x3  x2x4  x2x3  x2x4  x1x2  

 x2x3  x2x3  x1x3  x1x4  x2x3  

 x1x2  x1x3  x1x2  x1x2  x1x3  

Note: HIMPS does not rank interactions 

 

Table A8. Top Five Interactions from gRITs  

Rank Dataset 1 Dataset 2 Dataset 3 Dataset 4  Dataset 5 

1 x1x4 (.73) x1x2 (.70) x1x2 (.93) x1x2 (.80) x1x2 (.60) 

2 x1x3 (.67) x2x3 (.67) x3x4 (.67) x3x4 (.73) x3x4 (.60) 

3 x2x4 (.50) x2x4 (.60) x1x3 (.63) x1x4 (.57)  

4 x2x3 (.50) x3x4 (.60) x2x3 (.60) x1x3 (.53)  

5  x2x5 (.60)  x2x4 (.53)  

Note: only interactions with scores >= .50 are listed 

 

Table A9. Top Five Interactions (Scores) from H-statistic  

Rank Dataset 1 Dataset 2 Dataset 3 Dataset 4  Dataset 5 

1 x3x4 (.82) x3x4 (.77) x3x4 (.75) x3x4 (.84) x3x4 (.83) 

2 x1x3 (.44) x1x2 (.34) x1x2 (.63) x1x2 (.36) x1x2 (.47) 

3 x1x2 (.33) x1x4 (.32) x1x3 (.34) x1x4 (.31) x1x4 (.27) 

4 x2x3 (.23) x2x3 (.30) x1x4 (.25) x5x6 (.17) x1x5 (.20) 

5 x6x7 (.22) x2x5 (.30) x2x4 (.18) x1x3 (.15) x5x6 (.16) 
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Appendix 8. Detected Interactions and Rankings in Contingency Scenario 1 

This web appendix displays the detailed output for contingency scenario 1 with regards to the 

detection and ranking of interactions for HIMPS, gRITs and the H-statistic.  

 

Table A10. Six Interactions from HIMPS 

Rank Dataset 1 Dataset 2 Dataset 3 Dataset 4  Dataset 5 

 x3x5 (.40) x4x5 (.51) x1x5 (.45) x3x5 (.43) x1x5 (.51) 

 x4x5 (.38) x3x5 (.45) x2x5 (.44) x3x4 (.41) x2x5 (.49) 

 x3x4 (.38) x3x4 (.38) x3x5 (.43) x4x5 (.41) x3x5 (.43) 

 x1x3 (.30) x1x4 (.35) x1x2 (.34) x1x5 (.36) x1x2 (.37) 

 x1x4 (.29) x1x5 (.42) x1x3 (.33) x1x6 (.36) x1x3 (.31) 

 x1x5 (.32) x1x3 (.29) x2x3 (.33) x1x4 (.34) x2x3 (.30) 

Note: HIMPS does not rank interactions 

 

Table A11. Top Five Interactions from gRITs  

Rank Dataset 1 Dataset 2 Dataset 3 Dataset 4  Dataset 5 

1 x4x5 (.97) x2x5 (.73) x2x5 (.87) x1x5 (.67) x3x5 (.83) 

2 x3x5 (.97) x1x5 (.63) x3x5 (.53) x4x5 (.63) x2x5 (.73) 

3 x2x5 (.93) x4x5 (.63) x4x5 (.50) x2x5 (.60) x1x5 (.57) 

4 x1x5 (.93)  x2x4 (.50)  x4x5 (.50) 

5 x3x4 (.80)  x1x5 (.50)   

Note: only interactions with scores >= .50 are listed 

 

Table A12. Top Five Interactions (Scores) from H-statistic 

Rank Dataset 1 Dataset 2 Dataset 3 Dataset 4  Dataset 5 

1 x3x4 (.88) x3x4 (.48) x3x4 (.56) x3x4 (.61) x1x2 (.50) 

2 x3x5 (.45) x4x5 (.38) x1x2 (.36) x2x5 (.44) x3x4 (.37) 

3 x6x7 (.43) x1x5 (.27) x4x5 (.25) x1x2 (.30) x4x5 (.23) 

4 x4x5 (.43) x2x5 (.24) x1x5 (.22) x6x7 (.26) x1x3 (.17) 

5 x1x2 (.39) x1x3 (.17) x3x5 (.19) x4x5 (.25) x1x5 (.16) 
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Appendix 9. Detected Interactions and Rankings in Contingency Scenario 2 

This web appendix displays the detailed output for contingency scenario 2 (correlated 

features which interact with each other) with regards to the detection and ranking of 

interactions for HIMPS, gRITs, and the H-statistic. 

 

Table A13. Six Interactions from HIMPS  

Rank Dataset 1 Dataset 2 Dataset 3 Dataset 4  Dataset 5 

 x3x4 x3x4 x3x4 x3x4 x2x4 

 x2x4 x2x4 x2x4 x2x4 x3x4 

 x2x3 x2x3 x1x4 x1x4 x1x4 

 x4x5 x1x4 x2x3 x2x3 x2x3 

 x3x5 x1x3 x2x3 x1x3 x1x2 

 x2x5 x1x2 x1x2 x1x2 x1x3 

Note: HIMPS does not rank interactions 

 

Table A14. Top Five Interactions (Stability Scores) from gRITs 

Rank Dataset 1 Dataset 2 Dataset 3 Dataset 4  Dataset 5 

1 x3x4 (.83) x3x4 (.70) x1x2 (.73) x1x2 (.63) x2x4 (.60) 

2  x2x4 (.60) x2x4 (.57)  x3x4 (.60) 

3   x3x4 (.53)  x1x2 (.57) 

4   x2x3 (.53)  x2x3 (.53) 

5     x2x5 (.50) 

Note: only interactions with scores >= .50 are listed 

 

Table A15. Top 5 Interactions (Scores) from H-statistic 

Rank Dataset 1 Dataset 2 Dataset 3 Dataset 4  Dataset 5 

1 x3x4 (.90) x3x4 (.75) x3x4 (.78) x3x4 (.70) x3x4 (.68) 

2 x2x4 (.36) x6x7 (.41) x1x2 (.46) x6x7 (.33) x1x2 (.49) 

3 x4x5 (.35) x2x3 (.33) x2x4 (.35) x2x3 (.25) x2x3 (.43) 

4 x1x2 (.32) x2x4 (.26) x1x4 (.33) x1x4 (.22) x2x4 (.32) 

5 x1x4 (.23) x5x7 (.25) x2x3 (.31) x1x2 (.20) x3x6 (.27) 
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Appendix 10. Summary Table 

Table A16. Summary Table for Target and All Features 

Target and Features Description Operationalization Scale 

𝐶𝑙𝑖𝑐𝑘𝑠𝑖𝑗𝑡  Did consumer click on the listing If a listing was clicked Binary; 1 for yes and 0 for no 

Image Features    

𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛𝑗  Distortion of listing; higher distortion is 

less desirable  

BRISQUE (Mittal et al. 

2012) 

0 to 100; 0 is least distorted  

𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦𝑗  Asymmetry (lack of symmetry) of 

listing; higher asymmetry less desirable  

Hamming distance between 

transposed and original 

image 

0 to 64; 0 is least asymmetric 

𝐻𝑢𝑒𝑗  Average hue (i.e., color) of listing; warm 

hues more desirable 

Mean of hue over all pixels  0 to 255; 0 is red hue 

𝑆𝑎𝑡𝑗  Average saturation (i.e., vividness) of 

listing; higher saturation more desirable 

Mean of saturation over all 

pixels  

0 to 255, 0 is unsaturated and 

255 is fully saturated 

𝑉𝑎𝑙𝑢𝑒𝑗  Average value (i.e., brightness of color) 

of listing; higher value more desirable  

Mean of value over all 

pixels  

0 to 255, 0 is pure white and 

255 is pure black 

Non-Image Features    

𝑅𝑎𝑛𝑘𝑖𝑗𝑡  Rank of listing displayed to consumer  Observed rank  Continuous from 1 to 100 

𝑃𝑟𝑖𝑐𝑒𝑗  Rental price of listing j Observed monthly rental Continuous from 700 to 

17000 

𝐹𝑙𝑜𝑜𝑟 𝑎𝑟𝑒𝑎𝑗  Floor area of listing j Observed area in squared 

meters  

Continuous from 100 to 4252 

𝐶𝑜𝑛𝑑𝑜_𝑢𝑛𝑖𝑡𝑗  Condo-bedroom-bathroom identifier for 

listing  

1 dummy for each identifier 73 dummies  

𝐶𝑜𝑛𝑑𝑜_𝑐𝑜𝑢𝑛𝑡𝑖𝑗𝑡  Total number of condo units shown on 

each page 

Count condo units for each 

listing on each page 

Continuous. 1 to 30 

𝑃𝑎𝑔𝑒𝑖𝑗𝑡  Page number of listing shown to 

consumer  

Page number of listing Continuous. 1 to 5 

Consumer’s Features    

𝐶𝑢𝑚_𝑠𝑒𝑎𝑟𝑐ℎ_𝑡𝑖𝑚𝑒𝑖𝑡  Cumulative search time by consumer Sum of total search time in 

hours  

Continuous from 1 to 

765,798 

𝑆𝑒𝑠𝑠𝑖𝑜𝑛_𝑡𝑖𝑚𝑒𝑖𝑡 Search time for each session by 

consumer 

Time spent in seconds for 

session i 

Continuous from 1 to 15,243 

𝑆𝑒𝑠𝑠𝑖𝑜𝑛_𝑐𝑜𝑢𝑛𝑡𝑖𝑡 Cumulative session count of the 

consumer  

Count number of unique 

session ids for consumer  

Continuous from 1 to 202 

𝑇𝑖𝑚𝑒𝑖𝑡  Time of day when consumer searched on 

platform 

Based on date-timestamp 

for each consumer, 1 

dummy for each hour 

24 dummies in all 

𝐷𝑎𝑦𝑖𝑡  Day of week when consumer searched 

on platform 

1 dummy for each day of 

week 

7 dummies in all  

𝐷𝑒𝑣𝑖𝑐𝑒𝑖  Device used by consumer when 

searching platform  

1 dummy for mobile, 1 

dummy for tablet, 1 dummy 

for desktop  

3 dummies in all 

𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑖𝑡  Channel from which consumer arrives 

on platform  

1 dummy for each channel 11 dummies in all 

Note: index i refers to consumer i, index j denotes listing j, index t refers to time at which listing j was exposed 

to consumer i 
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Appendix 11. Detecting, Ranking, and Directionality of True Interactions with Ad-Hoc 

Measure in HIMPS  

This appendix displays the performance of each method on the three metrics, when we 

specify an ad-hoc measure of ranking interactions detected from the gRITs using the sum of 

their feature importance scores, for the baseline scenario and contingency scenarios 1 and 2 

 

Table A17. Proportion of Datasets Satisfying Each of the Three Metrics in Baseline Scenario 

 

Metric HIMPS gRITs H-statistic 

Detection 1.0 0 1.0 

Ranking 1.0 0 1.0 

Directionality 1.0 N.A. 1.0 

Note: Ad-hoc measure in HIMPS uses sum of importance scores 

 

Table A18. Proportion of Datasets Satisfying Each of the Three Metrics in Contingency 

Scenario 1 

 

Metric HIMPS gRITs H-statistic 

Detection 0 0 .6 

Ranking 0 0 .6 

Directionality N.A. N.A. .6 

Note: Ad-hoc measure in HIMPS uses sum of importance scores 

 

Table A19. Proportion of Datasets Satisfying Each of the Three Metrics in Contingency 

Scenario 2 

 

Metric HIMPS gRITs H-statistic 

Detection .8 0 .8 

Ranking .8 0 .8 

Directionality .8 N.A. .8 

Note: Ad-hoc measure in HIMPS uses sum of importance scores 
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Discussion 

I discuss three reflections arising from both of my essays where I (i) find a dual role of 

comparison site visits in the consumer’s search in essay one and (ii) show the importance of 

image feature interactions for predicting clicks on two-sided search platforms in essay two. 

My first reflection from my dissertation is the importance of using new forms of data 

to refine and deepen theories of consumer search. For instance, in my first essay I used data 

on the consumer’s initial consideration set and expectations of obtaining a better deal where 

both constructs are measured prior to search, and the consumer’s subsequent search behavior 

to understand when and how comparison sites are used in search. Similarly, my second essay 

utilizes new data which is the image features of the listings displayed to consumers and their 

observed search behavior to determine the boundary conditions of the relationship between 

image features and the consumer’s clicks on a listing. Scholars who work on search in the 

future should continue obtaining new forms of data in order to extract new insights from 

consumer search behavior. While I used new data on previously unobserved consumer pre-

search characteristics and image features in my first and second essays respectively, scholars 

should note that other instances of new data also exist in consumer search when studying this 

phenomenon. For instance, videos are commonly used in the Facebook livestream where 

sellers introduce their products, and viewers type in their comments to the seller’s product 

introduction. Similarly, two-sided search platforms such as Taobao now allow videos to be 

uploaded in addition to a still image, which potentially allows the researcher to study how 

video features affects the consumer’s search, using video features as a new data source.  

 My second reflection is on the impact of new methods available on the possible 

movement away from theory testing and towards theory development. In my first essay, I 

developed a priori hypotheses based on the extant search literature before testing my 

hypotheses on new data using parametric methods. In my second essay, I did not develop 
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such a priori hypotheses. Instead, I utilized machine learning methods to learn from the data 

and discover interactions between image features that predict clicks on a listing. Interactions 

are important for theory building as they are used to infer the boundary conditions of a theory 

(Whetten 1989). With the increasing development and refinement of machine learning 

methods, scholars should consider using these methods to build theory, and uncover new and 

robust relationships between constructs. Arguably, such theory development is important to 

the field’s long-run vitality as it allows us to generate home-grown theories by learning from 

the data.  

 My third reflection involves the implicit functional form assumptions when scholars 

utilize existing theories to derive a priori hypotheses. Specifically, scholars tend to posit 

either a linear or a curvilinear main effect between constructs (Haans et al. 2016), and the 

moderating effect of a construct as a product term with the focal construct (Kenny 2018). 

However, there is no reason to believe that the true main effect between constructs is 

necessarily linear or curvilinear and that the moderation effect is linear. For instance, in my 

second essay I utilize machine learning methods to infer the true functional form of the 

features (i.e., a listing’s image and non-image features, and the consumer’s features) and the 

interactions between features on a listing’s predicted click probability. By doing so, I free 

myself of the implicit functional form assumptions used when developing a priori 

hypotheses. After all, as pointed out by Rumsfeld (2002) there are also “unknown unknowns 

– the ones we don’t know we don’t know.” Utilizing machine learning methods thus allow us 

to bypass the limits of our current knowledge and let us derive a more accurate and realistic 

picture of the true relationship between the constructs that are studied.  
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