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Abstract

This dissertation consists of three essays that contribute to the theory of

nonstationary time-series analysis.

The first chapter explores the inference procedures for predictive regressions

with time-varying characteristics. We extend the self-generated instrumenta-

tion, called IVX, to incorporate persistent regressors of functional local-to-

unity, functional mildly explosive, and functional mildly stationary roots. The

asymptotic distributions of IVX estimators under time-varying parameters are

novel and nonpivotal but lead to pivotal distributions of the corresponding

Wald statistics that are robust across various roots. The numerical experi-

ments justify the robustness of IVX testing procedures in finite samples. We

also verify the existence of time-varying coefficients and the predictability of

fundamentals with such unstable parameters using the S&P 500 data.

The second chapter proposes a functional local-to-unity model with au-

toregressive coefficients that vary smoothly over time. Two sieve estimators,

namely a time series and a panel autoregression estimators, are considered

to estimate the local-to-unity function. The property of consistency is estab-

lished. Besides, a consistent specification test to detect parameter instability

is proposed. Numerical simulations demonstrate the finite sample performance

of the specification test. Finally, we apply the panel estimator and specifica-

tion test to the price index of China’s real estate market and obtain significant

empirical results in measuring time-varying growth rates in the data.

The third chapter discusses about time-varying predictive regressions, which

are useful in the applications of empirical finance. The relevant theory in

this area is mainly restricted to the case in which the model contains the

local-to-unity (LUR) or locally stationary regressors only. It is not universal

as the prevalent evidence indicates the existence of both time-varying pre-

dictability and the mixed-root phenomenon. We investigate a nonparametric

predictive regression model with mixed-root regressors and time-varying co-
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efficients, evolving smoothly over time. Further, we present a new variant of

the self-generated instrument, called Sieve-IVX, which attains robust inference

irrespective of various degrees of persistence. We establish its consistency and

provide a Wald test to detect the temporary predictability of economic funda-

mentals. Numerical simulations show satisfactory finite-sample performances,

which support our results.
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Chapter 1

Robust Inference with Functional Devi-

ations from Unity in Predictive Regres-

sion

1.1 Introduction

The predictability of asset returns is one of the most debatable issues in em-

pirical finance (see Campbell, 2008). The efficient market hypothesis supports

the unpredictability of asset returns, whereas empirical evidence shows the

predictive power of economic fundamentals for stock returns. Till now, there

is little consensus on the topic of predictability, which leads to the stock return

predictability puzzle (see Campbell and Thompson, 2008; Welch and Goyal,

2008; Rapach et al., 2010). To address this puzzle, the linear time-invariant

predictive regression that relates stock returns to lagged fundamental variables

has become a benchmark model to discuss predictability phenomena.

However, size distortions may arise when conventional inference procedures

are applied to predictive regressions. These size distortions are due to endo-

geneity generated by the persistence in economic fundamentals. To eliminate

size distortions, Campbell and Yogo (2006) propose a simulation-based like-

lihood ratio test (CY-Q test, hereafter) and construct its confidence interval

by reverting the limit distribution. Nonetheless, the success of this procedure
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sacrifices the robustness for various roots and multiple regressors. Elliott et

al. (2015) establish a nearly optimal test for predictive regressions when nui-

sance parameters exist in the probability limit. Similarly, this test relies on

both numerical algorithms and a local-to-unity (LUR, hereafter) formulation.

To address the abovementioned defects, Phillips and Magdalinos (2009, PM

hereafter) propose a robust inference procedure called IVX and apply it to

the mildly stationary root (MSR, hereafter) and LUR cases. They show the

pivotal distribution under the null hypothesis of no predictability. Extensions

of IVX are considered in Phillips and Lee (2013, 2016, PL hereafter) and Lee

(2016).

Extensive studies on asset returns suggest evidence of time-varying dynam-

ics due to changes in monetary policy, fluctuations in market sentiment, etc.

(see Bossaerts and Hillion, 1999; Bekaert et al. 2007). Nevertheless, Pesaran

and Timmerman (2002) highlight the need to develop econometric procedures

for the model uncertainty issue of predictive regressions. A popular strategy

to characterize model uncertainty is to use a predictive regression model with

time-varying parameters. In this paper, we model the time-varying roots of

economic fundamentals (e.g. persistent regressors) in terms of functional de-

viations from unity, including functional local-to-unit root (FLUR, hereafter),

functional mildly explosive root (FMER, hereafter), and functional mildly sta-

tionary root (FMSR, hereafter). Bykhovskaya and Phillips (2018) propose

the FLUR process and show that the power envelopes of standard unit root

statistics are weakened with functional departure from unity. Bykhovskaya

and Phillips (2020) employ FMER and FMSR models to discuss the bound-

ary limit theory on the FLUR process. Parameter instability induced by the

above time-varying roots presents a significant challenge to conventional in-

ference procedures of predictive regressions since traditional methods, such as

least-squares or simulated methods, are no longer applicable.

This study considers IVX inference procedures on predictive regressions
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with persistent regressors modeled by FLUR, FMER, and FMSR processes.

We prove that the IVX estimators of predictive regressions are of asymptotic

normality, and the corresponding Wald statistics follow a pivotal chi-square

distribution. Monte Carlo simulations examine the finite sample performance

of the IVX-based Wald test. In addition, we apply the IVX procedure to S&P

500 data and justify the predictability of several economic fundamentals.

The rest of this chapter is organized as follows. Section 2 presents the model

setup and discusses the size distortions of conventional statistics. Section 3

shows the limit theory of IVX estimates and corresponding tests under FLUR,

FMER, and FMSR cases. Section 5 reports simulation findings. Section 6

applies the IVX procedure to financial data sets. Section 6 concludes. The

proofs and technical details are given in the appendix.

Throughout the paper, we use the following notation. For some arbitrary

matrixM, we use ‖M‖1, ‖M‖2 , ‖M‖∞ , and ‖M‖ to denote the L1, L2, L∞ and

spectral norms. The symbol Et−1 (·) := E(·|Ft−1) denotes conditional expecta-

tion with respect to the filtration Ft−1. The symbol =d denotes equivalence in

distribution. The notation⇒ signifies weak convergence in function space and

Euclidean space according to context. The symbol
d→ denotes convergence in

distribution.

1.2 Model Setup and Size Distortion

This section defines the model setup and assumptions. We demonstrate

the size distortion of t-statistics in predictive regression models with FLUR

regressors. The existence of size distortions justifies the necessity for IVX.

1.2.1 Model setup

The standard predictive regression model is given as

yt = β0 + β
′

1xt−1 + u0t, with E(u0t|Ft−1) = 0, (1.1)
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where β1 is an n × 1 vector and Ft−1 is a natural filtration. A vector of

predictors xt−1 follows an autoregressive process with roots in a circle of unity,

as follows:

xt = RTtxt−1 + uxt, RTt = In +
C(t/T )

Tα
, (1.2)

where T is the sample size and C (·) := diag{c1(·), c2(·), ..., cn(·)}. The pair

of (α,C (·)) represents persistence in the multiple predictors of unknown func-

tional forms. We allow for more general types of persistence: When C (·) is a

time-varying function, functional autoregressive roots exist. We eliminate the

case of unbounded C (·), since diverging distance parameters generate station-

arity or explosiveness (see Phillips, 1987) and persistence disappears. There-

fore, we impose regularity conditions on C (·) as the following assumption.

Assumption 1.1. (i) For each i = 1, 2, ..., n, the distance parameter ci(r) is

a deterministic function with bounds as

0 < inf
1≤i≤n

|ci (r)| 6 |ci (r)| 6 sup
1≤i≤n

|ci (r)| < +∞,

where r ∈ [0,∞) .

(ii) For each i = 1, 2, ..., n, we have

sup
1≤i≤n

∫ ∞
0

|ci (r)|2 dr < +∞,

with r ∈ [0,∞) .

In particular, xt belongs to one of the following persistence categories:

(i) FMSR, if α ∈ (0, 1) and C(r) < 0 for each r ∈ [0,∞);

(ii) FLUR, if α = 1;

(iii) FMER, if α ∈ (0, 1) and C(r) > 0 for each r ∈ [0,∞).

The innovation structure allows for a linear process with intertemporal

dependence for uxt and u0t, and incorporates an assumption of conditionally

homoskedastic martingale difference sequence (mds) for u0t. Detailed assump-

tions on innovations are given below.
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Assumption 1.2.

ut =

u0t (1× 1)

uxt (n× 1)

 =
∞∑
j=0

Fjεt−j,

where

εt ∼ mds(0,Σ), E ‖ε1‖q <∞ for some q ≥ 4,

F0 = I1+n,
∞∑
j=0

j ‖Fj‖ <∞, F (1) =
∞∑
j=0

Fj > 0,

Fj =

F0j

Fxj

 , F0j =


[I1 : 01×n] for j = 0

0n×(1+n) for j ≥ 1

.

Based on Phillips and Solo (1992, PS hereafter), Beveridge–Nelson decom-

position accommodates our model as,

ut = F (1)εt −∆ε̃t, ε̃t =
∞∑
j=0

F̃jεt−j, F̃j =
∞∑

s=j+1

Fs and F (z) =
∞∑
j=0

Fjz
j. (1.3)

PS verify that
∑∞

i=0 i ‖F (i)‖ <∞ is a sufficient assumption for
∑∞

i=0

∥∥∥F̃ (i)
∥∥∥ <

∞. Therefore, {F (1)εt}Tt=1 is the only leading term of {ut}Tt=1 . We further de-

note the two-sided long-run covariance as

Ω =
∞∑

j=−∞

E(utu
′

t−h) = F (1) ΣF (1)′ ,

where

F (1) =

F0 (1)

Fx (1)

 =

[I1 : 01×n]

Fx (1)

 ,
In addition,

Ω =

Ω00 Ω0x

Ωx0 Ωxx

 ,
where Ω00 = E(u2

0t), Ω0x =
∑∞

j=−∞ E(u0tu
′

x,t−h) = ΣF
′
x(1), and Ωxx =

∑∞
j=−∞ E(uxtu

′

x,t−h) =

Fx(1)ΣF
′
x(1).

Based on (1.3), the functional central limit theorem applies in the following
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manner.

1√
T

[Ts]∑
j=1

uj =
1√
T

[ns]∑
j=1

u0j

uxj

⇒
B0(s)

Bx(s)

 = BM

Ω00 Ω0x

Ωx0 Ωxx

 ,

where BM is a Brownian motion. Moreover, Bykhovskaya and Phillips (2018a)

provide the following functional laws as

1√
T
x[Tr] ⇒ Kc(r) =

∫ r

0

exp

(∫ r

s

C(k)dk

)
Ω

1
2
xxdBx(s),

where Kc(r) follows the functional-coefficient Ornstein–Uhlenbeck process as

dKc(r) = C(r)Kc(r)dr + Ω
1
2
xxdBx(r).

1.2.2 Size distortion

We demonstrate the size distortions of t-statistics when considering pre-

dictive regression models with FLUR regressors. By convention, the centered

least squares estimator of β := (β0, β1) is

β̂OLS − β =

(
T∑
t=1

Xt−1X
′
t−1

)−1( T∑
t=1

Xt−1u0t

)
, (1.4)

where Xt−1 :=
(
1, x

′
t−1

)
includes both the intercept and FLUR regressors in

(1.2). To discuss size distortions, we decompose u0t into two orthogonal com-

ponents (Phillips, 2007): one is vertical to uxt, while the other is proportional

to uxt. The decomposition is as follows,

dB0 (r) = dB0|x (r) + Ω0xΩ
−1
xxdBx (r) , (1.5)

where B0|x (·) =dBM
(
0,Ω0|x

)
. In the single-regressor case (n = 1), we have the

following limit theory for the least squares estimator,

T (β̂1 − β1) ⇒
∫ 1

0
Kc(r)dB0|x(r)∫ 1

0
K

2

c(r)dr

=

∫ 1

0
Kc(r)dB0|x(r)∫ 1

0
K

2

c(r)dr
+ Ω0xΩ

−1
xx

∫ 1

0
Kc(r)dBx(r)∫ 1

0
K

2

c(r)dr
,
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where Kc(r) := Kc(r) −
∫ 1

0
Kc(r)dr. When the estimated standard error is

given as s.e.(β̂1) = Ω̂00

{∑T
t=1(xµt−1)2

}− 1
2

with xµt−1 := xt−1− 1
T

∑T
t=1 xt−1, and

the estimator Ω̂00 represents any consistent estimate for Ω00, the t-statistic

under the null hypothesis H0 : β1 = 0 is justified as

tβ̂1−β1 =
β̂1 − β1

s.e.(β̂1)
⇒

[
1−

Ω0|x

ΩxxΩ00

]
N (0, 1) +

Ω0|x

ΩxxΩ00

∫ 1

0
Kc(r)dBx(r)∫ 1

0
K

2

c(r)dr

=
[
1− λ2

] 1
2 Z + λ · η(c), (1.6)

where Z =d N (0, 1), λ := Ω0|x/ΩxxΩ00 and η(c) :=
∫ 1
0 Kc(r)dBx(r)∫ 1

0 K
2
c(r)dr

. The non-

zero factor λ in (1.6) reveals the presence of size distortion in the test for

predictability.

1.3 IVX Method

The main intuition of IVX is filtering xt to generate instruments z̃t with

MSR persistence. In this way, we can eliminate the asymptotic dependence

between the numerator and denominator of IVX estimates. We define z̃t as

z̃t = RTz z̃t−1 + ∆xt with RTz = In +
Cz
T γ

,

where γ ∈ (0, 1), Cz = czIn, cz < 0 and z̃0 = 0. We choose the values of

parameters γ and cz. Consequently, the self-generated instrument is an inter-

temporal summation of first-differenced regressors ∆xt as z̃t =
∑t−1

j=1R
t−j
Tz ∆xj.

By (1.2), the decomposition of z̃t is

z̃t−1 =
t−1∑
j=1

Rt−j−1
Tz uxj +

1

Tα

t−1∑
j=1

Rt−j−1
Tz C

(
j + 1

T

)
xj

= zt−1 +
1

Tα
η

(1)
T,t−1, (1.7)

where the latent instrument zt−1 :=
∑t−1

j=1R
t−j−1
Tz uxj, and IVX residual η

(1)
T,t−1 :=∑t−1

j=1 R
t−j−1
Tz C

(
j+1
T

)
xj.

As the instrument is constructed, we have the centered IVX estimator as
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follows

β̂IV X − β =

(
T∑
t=1

Z̃ ′t−1Xt−1

)−1( T∑
t=1

Z̃ ′t−1u0t

)
,

where Z̃t−1 :=
(
1, z̃′t−1

)
.

1.3.1 Functional local-to-unity regressors

For FLUR regressors where α = 1, the IVX instrument (1.7) has the fol-

lowing decomposition,

z̃t−1 = zt−1 +
1

Tα
η

(1)
T,t−1.

In the literature, PM proved that

sup
1≤t≤T

‖zt−1‖ = Op

(
T
γ
2

)
, (1.8)

while we show

sup
1≤t≤T

∥∥∥η(1)
T,t−1

∥∥∥ = Op

(
T
γ
2

+1
)

. (1.9)

Based on (1.8) and (1.9), we provide the asymptotic approximations to IVX

estimates with FLUR regressors.

Lemma 1.1. Let Assumptions 1.1 and 1.2 hold. As T →∞, the approxima-

tions to IVX estimates are given by

(i)
1

T
1+γ
2

T∑
t=1

z̃t−1u0t =
1

T
1+γ
2

T∑
t=1

zt−1u0t + op (1) ,

(ii)
1

T 1+γ

T∑
t=1

z̃t−1z̃
′
t−1 =

1

T 1+γ

T∑
t=1

zt−1z
′
t−1 + op (1) ,

(iii)
1

T 1+γ

T∑
t=1

z̃t−1x
′
t−1 =

1

T 1+γ

T∑
t=1

zt−1x
′
t−1 +

1

T 2+γ

T∑
t=1

η
(1)
T,t−1x

′
t−1.

Lemma 1.1 reveals the asymptotic behavior of sample moments in (i) and

(iii). In the numerator, the term
∑T

t=1 zt−1u0t with the latent instrument zt−1

dominates
∑T

t=1 η
(1)
T,t−1u0t of IVX residual η

(1)
T,t−1. For the denominator, both∑T

t=1 zt−1x
′
t−1 and

∑T
t=1 η

(1)
T,t−1x

′
t−1 affect the probability limit. Although the

abovementioned approximation of FLUR regressors coincides with the LUR

8



case, our IVX estimate of interest still demonstrates novel limit distributions.

We collect asymptotic results of the IVX estimate in the following theorem.

Theorem 1.1. Let Assumptions 1.1 and 1.2 hold. As T → ∞, the limit

behaviors of the IVX estimate is given by

(i)
1

T
1+γ
2

T∑
t=1

z̃t−1u0t
d→ N

(
0,

∫ +∞

0

erCzΩxxe
rCzdr

)
,

(ii)
1

T 1+γ

T∑
t=1

z̃t−1x
′
t−1

⇒ −
(∫ 1

0

dBx(r)K
′
c (r) +

∫ 1

0

C (r)Kc (r)K ′c (r) dr + Ωxx

)
C−1
z =: Φ,

(iii) T
1+γ
2

(
β̂ − β

)
⇒MN

(
0,Φ−1

∫ +∞

0

erCzΩxxe
rCzdrΦ′−1

)
.

Compared with PM, the significant difference is that the functional-coefficient

processKc (r) rather than Ornstein–Uhlenbeck process Jc(r) determines asymp-

totic behaviors. However, the limiting distribution of the IVX estimate still fol-

lows mixed normality and lays down the foundation for pivotal tests. Note that

the mixed normality depends on the asymptotic independence between two

Gaussian variables,
∑T

t=1 z̃t−1u0t and
∑T

t=1 z̃t−1x
′
t−1, and the order reductions

of latent instrument z̃t. Since the scale parameter γ ∈ (0, 1), the mds sequences{
T−

γ+1
2 zt−1εt, T

− 1
2Fx(1)εt

}T
t=1

are asymptotically independent. Moreover, we

can show that the Wald statistic follows a standard χ2 distribution under the

null hypothesis of no predictability.

Theorem 1.2. Let Assumptions 1.1 and 1.2 hold. Under H0 : Hβ = h, as

T →∞,

WT :=
(
Hβ̂ − h

)′ {
H
[
(X ′Pz̃X)

−1
Ω̂00

]
H ′
}−1 (

Hβ̂ − h
)

d→ χ2 (n) ,

where (X ′Pz̃X) :=

[(
T∑
t=1

xt−1z̃
′
t−1

)(
T∑
t=1

z̃t−1z̃
′
t−1

)−1( T∑
t=1

xt−1z̃
′
t−1

)′]
.

As u0t is a mds sequence, a simple consistent estimator for Ω00 is Ω̂00(
:= 1

T

∑T
t=1 û

2
0t

)
where û0t = yt − β̂xt−1 and β̂ is an IVX estimate. For a co-

integrating system with serial correlations, a heteroskedasticity and autocorre-

9



lation consistent (HAC) estimator (Andrews, 1991b) can consistently estimate

Ω00.

According to the asymptotic results, IVX procedures have obvious advan-

tages. Unlike Campbell and Yogo (2006), our IVX statistic is robust across

various model formulations as the WT test for FLUR regressors is identical to

the case of LUR regressors (PM 2009). Moreover, we do not need to simulate

critical values as the pivotal distribution χ2 is free of nuisance parameters.

These features demonstrate the flexibility of IVX statistics.

1.3.2 Functional mildly explosive regressors

Different from the predictive regression model with FLUR regressors, the

asymptotic theory for FMER regressors is more complicated. Although the

asymptotic approximations of the FMER case are consistent with PL, the limit

theory is novel as provided for the first time. In the FMER case, the remainder

term 1
Tα
η

(1)
T,t−1 contains explosive roots of exponential rates and dominates the

latent instrument zt−1 in the IVX estimator. To consistently approximate

sample moments, the pointwise convergence is insufficient, as our results should

accommodate a wide range of α. Instead, the Skorokhod embedding theorem

is employed to establish the uniform convergence.

To simplify our discussion, we define an intermediate argument, x̃t, as,

x̃t :=
t∑

j=1

[
exp

(
− 1

Tα

t∑
l=t−j+1

C

(
t− l + 1

T

))]
Fx(1)εj.

With this auxiliary term, we obtain the asymptotic behavior of FMER

regressors, xt.

Lemma 1.2 (Pointwise Approximations). Let Assumptions 1.1 and 1.2 hold.

Define x̄kT = 1
Tα/2

x̃kT with kT = [Tr]. When Tα

kT
+ kT

T
→ 0, the limit process of

xt is given by

x̄kT
d→ XC(0) =d N

(
0,

∫ +∞

0

e−C(1)pΩxxe
−C(1)pdp

)
.

10



The pointwise limiting theory for any t ∈ {1, 2, ..., T} is insufficient for

approximating the sample moments over a wide range of α. Therefore, a

uniform approximation to the stabilized FMER process is indispensable. We

illustrate the formal statement of the Skorokhod embedding theorem in the

following lemma.

Lemma 1.3 (Uniform Approximations). Let rate restriction αq > 2 hold.

With the same kT defined in Lemma 1.2, there exists a suitably expanded prob-

ability space, such that

sup
kT≤j−1≤T

∥∥∥∥∥ ˆ̄Xj−1

Tα/2
−XC(0)

∥∥∥∥∥ = oa.s. (1) ,

where ˆ̄Xj−1 := exp

[
− 1
Tα

j−1∑
i=1

C
(
j
T

)]
xj−1, and XC(0) =d N

(
0,
∫ +∞

0
e−C(1)pΩxxe

−C(1)pdp
)

.

Condition, αq > 2, ensures the applicability of the Skorokhod embedding

theorem for FMER regressors. Besides, the IVX residual 1
Tα
η

(1)
T,t also contains

explosive roots and dominates the latent instrument zt−1. Therefore, a similar

uniform approximation applies to 1
Tα
η

(1)
T,t.

Lemma 1.4. Let Assumptions 1.1 and 1.2 hold. Assume that kT satisfies

the following conditions: (i) Tα

kT
+ T γ

kT
→ 0; (ii) T−kT

T γ
+ T−kT

Tα
→ 0. For all

t ∈ [kT , T ], we have

1

T
α
2

+(α∧γ)
exp

(
− 1

Tα

t∑
i=1

C

(
i

T

))
η

(1)
T,t = CαγXC(0) + op (1) ,

where

Cαγ :=


−C−1

z

C (0)−1

[C (1)− Cz]−1

if α > γ,

if α < γ,

if α = γ.

The adjustment rate of IVX residuals η
(1)
T,t is exponential and involves pa-

rameters α and γ from MSR and FMER autoregressive coefficients. This ex-

ponential adjustment rate ensures the asymptotic dominance of IVX residuals

over the latent instrument. Combining the asymptotics of 1
Tα
η

(1)
T,t, and xt, we
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show the asymptotic theory of the IVX estimate.

Lemma 1.5. Let Assumptions 1.1 and 1.2 hold.

(i) For the IVX numerator, as T →∞,

1

T (α∧γ)

T∑
j=1

u0tz̃
′
t−1 exp

[
− 1

Tα

T∑
j=1

C

(
j

T

)]
⇒MN (0, V ) ,

where V :=
∫ +∞

0
e−pC(1)CαγXC(0)X

′
C(0)Cαγe

−pC(1)dp · Ω00.

(ii) For the IVX denominator, as T →∞,

1

Tα+(α∧γ)

T∑
t=1

exp

[
− 1

Tα

T∑
j=1

C

(
j

T

)]
z̃t−1x̃

′
t−1 exp

[
− 1

Tα

T∑
j=1

C

(
j

T

)]
⇒ Φ,

where Φ :=
∫ +∞

0
e−pC(1)XC(0)X

′
C(0)e

−pC(1)dp · Cαγ.

(iii) For the IVX estimator, as T →∞,

Tα exp

[
− 1

Tα

T∑
j=1

C

(
j

T

)](
β̂ − β

)
⇒MN

(
0,Φ−1V Φ′−1

)
.

Lemma 1.5 (i) verifies that
∑T

t=1 zt−1u0t vanishes in the probability limit,

whereas 1
Tα

∑T
t=1 η

(1)
T,t−1u0t contributes to the mixed normality due to the ex-

ponential rate of IVX residuals. In Lemma 1.5 (ii), 1
Tα

∑T
t=1 η

(1)
T,t−1x

′
t−1 dom-

inates
∑T

t=1 zt−1x
′
t−1 in the denominator. The limiting distribution for the

IVX estimator with FMER regressors follows mixed normality, since the self-

generated instrument eliminates the asymptotic dependence between numera-

tor
∑T

t=1 z̃t−1u0t and denominator
∑T

t=1 z̃t−1x
′
t−1. Based on the asymptotic nor-

mal distribution of the IVX estimator, the IVX-based Wald test is χ2−distributed.

Theorem 1.3. Let Assumptions 1.1 and 1.2 hold. As T → ∞, under H0 :

Hβ = h,

WT =
(
Hβ̂ − h

)′ {
H
[
(X ′Pz̃X)

−1
Ω̂00

]
H ′
}−1 (

Hβ̂ − h
)

d→ χ2 (n) ,

where

(X ′Pz̃X)
−1

:=

( T∑
t=1

xt−1z̃
′
t−1

)(
T∑
t=1

z̃t−1z̃
′
t−1

)−1( T∑
t=1

xt−1z̃
′
t−1

)′−1

,
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Ω̂00 := 1
T

∑T
t=1 û

2
0t with û0t := yt − β̂xt−1 and β̂ is an IVX estimator.

An essential feature of the IVX instrumentation is that the complexity in

the limiting distributions does not affect the pivotal distribution of the Wald

test. It relies on the self-normalizing property in the test statistics. Combin-

ing our results with those of PL, we can claim that regardless of whether the

parameters of the mildly explosive regressors are time-invariant or not, the uni-

fied framework of IVX always generates pivotal test statistics. The robustness

of the IVX limit theory benefits empirical work in which there is inevitable

uncertainty about the degree of persistence and parameter instability.

1.3.3 Functional mildly stationary regressors

When ci (·) < 0 for each i ∈ {1, 2, 3, . . . , n}, the persistent regressor xt−1

belongs to the category of the FMSR process. The discussion for FMSR re-

gressors comprises two scenarios: (i) γ < min {α, 1}; (ii) γ ≥ α. If γ < α, we

can apply the same derivations as in the FLUR case. The main results are

summarized in the following lemma without proof.

Lemma 1.6. Let Assumptions 1.1 and 1.2 hold. As T →∞,

sup
1≤t≤T

E
∥∥∥η(1)

T,t−1

∥∥∥2

= Op

(
T (α∨γ)+2(α∧γ)

)
.

If γ < α, the term related to latent instrument zt−1 dominates in the

IVX numerator. However, both the latent instrument and IVX residual affect

the limit behavior of the denominator. The abovementioned results establish

foundations for the asymptotic analysis when γ < α.

Theorem 1.4. Let Assumptions 1.1 and 1.2 hold. When γ < α, as T →∞,

(i)
1

T
1+γ
2

T∑
t=1

z̃t−1u0t
d→ N

(
0,

∫ +∞

0

erCzΩxxe
rCzdr

)
,

(ii)
1

T 1+γ

T∑
t=1

z̃t−1x
′
t−1 ⇒ −C−1

z Ωxx =: Ψ,

(iii) T
1+γ
2

(
β̂ − β

)
⇒ N

(
0,Ψ−1

∫ +∞

0

erCzΩxxe
rCzdr

(
Ψ−1

)′)
.
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When γ ≥ α, by summations by parts,

z̃t =
t∑

j=1

Rt−j
Tz ∆xj = xt −Rt

Tzx0 −
t∑

j=1

(∆RTz)
t−j xj−1

= xt −Rt
Tzx0 +

Cz
T γ
η

(1)
Tt .

The intuition for this step is that when γ ≥ α, xt−1 is more persistent than

zt−1. The persistent regressor xt−1 replaces zt−1 and becomes the new latent

instrument. Under this case, the endogeneity still vanishes asymptotically as

the persistence disappears. The following lemma summarizes the main results

of asymptotic approximations when α ∈ (0, γ).

Lemma 1.7. Let Assumptions 1.1 and 1.2 hold. When α ∈ (0, γ), as T →∞,

(i)
1

T
1+α
2

T∑
t=1

z̃t−1u0t =
1

T
1+α
2

T∑
t=1

xt−1u0t + op (1) ,

(ii)
1

T 1+α

T∑
t=1

z̃t−1x
′
t−1 =

1

T 1+α

T∑
t=1

xt−1x
′
t−1 + op (1) ,

(iii)
1

T 1+α

T∑
t=1

z̃t−1z̃
′
t−1 =

1

T 1+α

T∑
t=1

xt−1x
′
t−1 + op (1) ,

where both 1
T 1+α

∑T
t=1 z̃t−1x

′
t−1 and 1

T 1+α

∑T
t=1 z̃t−1z̃

′
t−1 converge to

Vxx :=
∫ 1

0

[∫∞
0
ezC(r)Ωxxe

zC(r)dz
]
dr.

When α < γ, the term associated with the latent instrument xt dominates

the one of IVX residual 1
Tα
η

(1)
T,t. Nonetheless, the latent instrument xt−1 in

the denominator dominates the IVX residual when α < γ, different from the

discussions when α ≥ γ. Based on these approximations, we provide the

asymptotic theory for the IVX estimate.

Theorem 1.5. Let Assumptions 1.1 and 1.2 hold. When α ≤ γ, as T →∞,

(i)
1

T
1+α
2

T∑
t=1

z̃t−1u0t
d→ N (0, Vxx) ,

(ii)
1

T 1+α

T∑
t=1

z̃t−1x
′
t−1 ⇒ Vxx,

(iii) T
1+α
2

(
β̂ − β

)
d→ N

(
0, V −1

xx

)
.
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We check that when α < γ, the limiting distribution of the IVX estimate

is a Gaussian process and contributes to the pivotal Wald statistic without

any modifications. Combining the results of α ≤ γ and α > γ, we have the

following theorem.

Theorem 1.6. Let Assumptions 1.1 and 1.2 hold. As T → ∞, under H0 :

Hβ = h,

WT =
(
Hβ̂ − h

)′ {
H
[
(X ′Pz̃X)

−1
Ω̂00

]
H ′
}−1 (

Hβ̂ − h
)

d→ χ2 (n) ,

where

(X ′Pz̃X)
−1

:=

( T∑
t=1

xt−1z̃
′
t−1

)(
T∑
t=1

z̃t−1z̃
′
t−1

)−1( T∑
t=1

xt−1z̃
′
t−1

)′−1

,

Ω̂00 := 1
T

∑T
t=1 û

2
0t with û0t := yt − β̂xt−1 and β̂ is an IVX estimator.

Kostakis et al. (2014) discuss the predictability of the economic fundamen-

tals of time-invariant coefficients. They also prove the pivotal distribution of

the IVX test under the null hypothesis of no predictive phenomenon. Even

if parameter instability exists, our testing statistics remain robust with a χ2

distribution. This property of robustness confirms the broad applicability of

IVX procedure. Moreover, the IVX procedure provides a unified approach

for verifying predictability: The WT statistic can identify the predictability of

persistent regressors of various persistence and unstable parameters, including

FLUR, FMER, FMSR processes.

1.4 Monte Carlo Simulation

In this section, we conduct numerical simulations to evaluate the finite

sample performance of IVX test with FLUR regressors. The data generating
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process is as follows:

yt = β
′

1xt−1 + u0t, (1.10)

xt = RTtxt−1 + uxt,

where RTt = In + C(t/T )
T

and

ut =

 u0t

uxt

 ∼ iid
(
0(1+n),Σ(1+n)×(1+n)

)
. (1.11)

We consider both normal and heavy-tailed innovations. In the single-regressor

(n = 1) case, the covariance matrix of innovations is parameterized as

Σ =

 1 −0.95

−0.95 1

 . (1.12)

The negative value of covariance between u0t and uxt is consistent with the

empirical findings in the financial market.

The instruments are constructed as in (1.7). We set Cz = −5 and γ = 0.9

to observe the size and local power of the Wald statistics in various forms of

functional persistence. We set the sample size T as 250 and the number of

simulation paths as 2,500.

To investigate the performance of IVX method in terms of size and local

power, we adopt a sequence of Pitman’s local alternatives as Hβ1n : β1n =

b
T

with integer values of b ∈ [0, 20]. We evaluate the empirical size by the

frequency of rejections under H0 : β1 = 0 (b = 0 equivalently). The empirical

power is the frequency of rejections under H1 : β1 6= 0 (b 6= 0 equivalently).

The nominal size is 0.05. Moreover, we employ the Bonferroni Q-test (CY-Q

test, hereafter) and power-enhanced Q-test (modified CY-Q test, hereafter) of

Campbell and Yogo (2006) as benchmarks for efficiency comparisons.

We provide simulated results in Figures 1.1-1.4. Figures 1.1 and 1.2 give

the size and power performance of IVX inferences, when C(t/T ) is piecewise

constant. We consider cases in which regressors switch between different non-
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stationary regimes. Figure 1.1 shows the simulation results when α = 1 (LUR).

The IVX method outperforms simulation-based tests when regressors change

from a stationary regime to an explosive regime and from a unit-root region

to an explosive region. When structural breaks occur between stationary and

unit root regimes, IVX slightly underperforms in terms of power. Figure 1.2

shows the superiority of IVX inferences when α = 0.5 (mildly integrated or

mildly explosive cases). The test based on IVX method performs better than

the CY-Q and modified CY-Q test statistics when there are structural breaks

in the distance parameters of LUR regressors.

To verify the robustness of the IVX procedures, Figures 1.3 and 1.4 present

the performance of the Wald statistics when C(t/T ) are trigonometric func-

tions. In Figure 1.3 (α = 1), the IVX method performs better in both size and

power when C(t/T ) takes the form of 5
√
t/T , 15 sin (t/T ), 15 cos (t/T ), and

−15 cos (t/T ). The performance of IVX is nearly identical to CY-Q when

C(t/T ) is −15 sin (t/T ). When C(t/T ) belongs to the stationary domain

as −5
√
t/T , IVX slightly underperforms in terms of power. In Figure 1.4

(α = 0.5), IVX performs better in terms of size and power throughout all

functional forms as 5
√
t/T , −5

√
t/T , 15 sin (t/T ), −15 sin (t/T ), 15 cos (t/T ),

and −15 cos (t/T ) .

Since the IVX inference procedure outperforms in most of the cases, nu-

merical simulations verify the applicability of IVX procedures to the case of

parameter instability. Besides, the simulated results show the robustness of

the IVX procedure. We can conclude that the self-generated instrument is

friendly to empirical studies when there is uncertainty about the functional

forms or degrees of persistence in the regressors.
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1.5 Empirical Illustrations

The predictability puzzle on stock return has been a controversial topic for

years. In conventional prediction models, the coefficients of persistent regres-

sors are time-invariant, as

xt = RTxt−1 + uxt with RT = In +
C

T
,

where C is a constant matrix. In this study, we generalize C to be a time-

varying function. To detect the predictability of economic fundamentals on

stock returns, we employ the updated dataset of Welch and Goyal (2008). In

the empirical practice, the full sample period is from January 1927 to December

2017.

The persistent regressors belong to the following two categories:

1) Characteristics of stocks: dividend–price ratio (d/p), earnings–price ra-

tio (e/p), book-to-market ratio (b/m), stock variance (svar), dividend–payout

ratio (d/e), and net equity expansion(ntis);

2) Interest-related variables: 3-month treasury bill rate (tbl), term spread(tms),

long-term government bond return (ltr), default yield spread (dfy), default re-

turn spread (dfr), and inflation (infl).

The empirical analysis has two parts. First, we estimate the slope in (1.2)

by kernel estimation and demonstrate the existence of parameter instability

(see Appendix A). Second, we use the IVX procedure to show the predictability

of the selected economic fundamentals.

1.5.1 Kernel estimation

To accommodate time-varying coefficients, we conduct kernel estimations

on potential regressors and plot the estimated paths of slopes. The asymptotic

theory of kernel estimation is given in Appendix A; see also recent works by

Phillips et al. (2017), Li et al. (2016), and Li et al. (2020) on cointegrating
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regression with functional coefficients. Under the framework of FLUR, the

distance parameter is not consistently estimated, and the standard testing

procedures fail for both the distance parameter and the slope.

Figure 1.5 plots the estimated paths of slopes and displays the unstable

slopes in regressors, such as svar, ntis, tms, dfr, and infl. We find that variables

such as d/e and tbl show time-varying features in specific sub-periods. There

are also slight fluctuations in b/m and dfy, but they are not as significant as

those of variables mentioned before. The kernel estimation results verify the

existence of parameter instability in the potential predictors.

1.5.2 IVX inference

We employ IVX inferences to test the predictability of economic variables

on the S&P 500 index return. Based on the univariate predictive regression

model, we provide the estimated values of β1 and corresponding IVX-based t-

statistics in Table 1.1. For the sample period from January 1927 to December

2017, the variable b/m, with time-varying slope, shows significant predictive

power on the asset return. Since Campbell and Yogo (2006) and Kostakis et al.

(2012) claim that the predictability for stock return appears to be weaker for

post-1952 data, we test a subsample period from January 1952 to December

2017. Within the subsample period, there are more predictors with statistical

significance, which are svar, tbl, and tms. From kernel estimates, we know

that the slopes of svar and tms are time-varying. If we apply simulation-based

methods on these variables with time-varying roots, we are likely to obtain

misleading results.

Furthermore, we discuss the predictability of multivariate regressors based

on the results of the univariate case. We combine the predictors that have pre-

dictive power under the criteria of IVX statistics. To avoid strong correlations

between the predictors, we choose regressors from different categories, char-

acteristics of stock, or interest-related variables. In Table 1.2, we provide the
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empirical results for both the full sample and subsample periods. The results

show that the combination of b/m and tbl provides predictive powers for both

the full sample and subsample. Other combinations, such as (svar, tbl), and

(svar, tms), also can predict S&P 500 returns significantly in the post-1952

periods.

The model setup in this study helps to deal with predictors with time-

varying parameters. We find that some of the widely used fundamentals, such

as b/m and tms, have predictive power on stock returns. The empirical study

also shows that the IVX-based inference procedure is a robust tool to verify

the predictability of regressors with potential parameter instability.

1.6 Conclusion

This study shows that the IVX method developed in PM is robust under

functional-deviated regressors characterized as FLUR, FMER, and FMSR. An

essential feature of IVX is that it can apply to regressors with different per-

sistence, including the case of deterministic departure from unity (PM and

PL), and the case of time-varying roots discussed in this paper. Unlike the

methods based on numerical simulations, we do not need to identify the type

of persistence and the existence of time-varying roots. These advantages offer

substantial convenience to empirical studies in macroeconomics and finance.

According to the simulation results, the method from Campbell and Yogo

(2006) tends to yield a slight size distortion in the local-to-unity case. The

existence of size distortions means that we still reject the true model with a high

frequency. By comparison, the IVX method appears to control size distortions

better and accommodates more general types of regressors. The empirical

results based on IVX estimation verify the predictability of some economic

fundamentals on stock returns. We also specify the time-varying patterns in

these potential predictors by consistent kernel estimations. This application
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demonstrates the usefulness of our study and confirms the robustness of IVX

instruments.

A future research direction is to increase the local power of IVX estimation

in this work. According to the Neyman–Pearson lemma, the likelihood-ratio

test is the most powerful. The simulation-based test proposed by Campbell

and Yogo (2006) is a type of likelihood ratio test which demonstrates desir-

able power behavior. Comparing the power function of the IVX instrument

with the likelihood ratio test of stationary regressors, we observe slight un-

derperformance of IVX in the finite sample. It is possibly unrealistic for IVX

to be the best method in every perspective since there seems to be a trade-

off between robustness and efficiency. However, the phenomenon illustrates a

possible direction for enhancing the IVX inference procedure.

Tables and Figures
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Table 1.2: Empirical results for multivariate regressions

b/m, tbl b/m, tms svar, tbl svar, tms

1927:01–2017:12

β̂1,1 1.19 1.26 -17.33 -26.30

β̂1,2 -21.77 -0.35 -13.29 16.34

Wald-stat 9.87 4.58 3.67 2.27

1952:01–2017:12

β̂1,1 0.95 0.64 -96.65 -120.67

β̂1,2 -25.45 14.75 -19.77 26.09

Wald-stat 13.20 4.63 17.06 15.27
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Chapter 2

Nonparametric Estimation and Inference

for Functional Local-to-unity Processes

2.1 Introduction

Extensive studies on asset prices suggest evidence of time-varying dynamic

properties. A popular strategy to model time-varying dynamic properties is to

use a model with time-varying parameters. For example, Plazzi et al. (2010)

demonstrate the existence of time-varying parameters in the real estate market.

In the literature, economic reasons have been provided to explain why time-

varying parameters are needed. For example, Bossaerts and Hillion (1999) and

Bekaert et al. (2007) characterize the model instability in the stock market

caused by changes in market sentiment and monetary policy.

To estimate models with time-varying parameters, traditional methods,

such as least-squares, may no longer be applicable. More sophisticated estima-

tion methods are upon request. Moreover, the validity of standard inference

procedures, which are developed for models with constant parameters, may

fail to work for models with time-varying parameters.

In this paper, we investigate the dynamics in economic variables with inter-

temporal self-dependence. If the self-relationship is linear and time-invariant,

the most widely used autoregressive model is the AR(1) model. Given that

many economic time series have wandering around behavior, AR models with
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the exact unit root and a local-to-unit root (LUR) have been extensively em-

ployed in practice; see Chan and Wei (1987), Phillips (1987, 1988). To allow

for a time-varying property in the context of the LUR model, Bykhovskaya and

Phillips (2020, BP hereafter) propose a functional local-to-unit root (FLUR)

model, whose slope is a function of time. BP show how to construct the point

optimal FLUR tests by generalizing the LUR asymptotics to cases where the lo-

calized departure from unity is a time-varying function rather than a constant.

In this paper, we test for the functional departure from unity by developing

nonparametric inferences.

In the nonparametric literature, two classes of nonparametric estimation

methods co-exist. The first is the class of local approximation methods, while

the second type is a class of global approximation methods. Local approxi-

mation methods, such as the Nadaraya-Watson or local polynomial estimates,

have been used for functional co-integration by Juhl and Xiao (2005), Wang

and Phillips (2009a, 2009b), Li et al. (2020), and Phillips et al. (2017). Global

approximation methods, based on the trigonometric basis, have been used by

Phillips (1998), Park and Hahn (1999), Cai et al. (2009), Bierens and Martins

(2010, BM hereafter), and Martins (2018). The sieve method that approxi-

mates time-varying parameters by basis functions with diverging dimensions is

easier to compute than local approximation methods. For computational con-

venience, we use the sieve method to estimate unknown functional departures

from unity. We show that the proposed estimator for slope is consistent as the

dimension of the orthogonal basis increases. We also develop the asymptotic

distribution of the estimator. It is established that the asymptotic distribu-

tion, being the ratio of stochastic integrals, is nonstandard. Moreover, we show

that the time-unstable distance parameters cannot be estimated consistently.

In model specifications, we establish the consistent estimate of the distance

parameter by grouping homogeneous cross-sectional units. Under conditions of

joint convergence, the panel estimator of the distance parameter is consistent
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and normally distributed. We also provide a Wald-type statistic to detect

the time-varying patterns. We establish the joint asymptotics and the power

envelope of the Wald statistic. To illustrate our proposed test, we conduct

an empirical study using the price index of China’s real estate market. For

the group of large- and medium-sized cities, we find substantial evidence of

time-varying rates of growth in the price index.

The remainder of this chapter is organized as follows. Section 2 introduces

the model setup and assumptions. Section 3 presents the preliminary results

of the orthogonal basis. Section 4 demonstrates an asymptotic theory of the

time-series estimator. Section 5 discusses panel FLUR autoregressions and

shows the consistency of the specification statistic. Section 6 shows numerical

simulations. Section 7 applies the specification test to China’s real estate

markets. Section 8 concludes. The appendix collects the technical proofs of

the theorems.

Throughout the paper, we use the following notation. For an arbitrary

matrix M , we use ‖M‖∞, ‖M‖2 and ‖M‖ to denote the L∞, L2 and the

spectral norms of matrix M . We use⇒,
p→,

d→ to denote a weak convergence in

a functional space, convergence in probability, and convergence in distribution,

respectively. Finally, equality in distribution is represented by =d.

2.2 Model and Assumptions

Following BP, the model setup is given as

yt = RTtyt−1 + uxt, (2.1)

with RTt = exp

(
C(t/T )

T

)
and t = 1, 2, ..., T,

where {yt}Tt=1 is a sequence of n×1 random vectors, RTt(:= RT (t/T )) is an n×n

matrix of time-varying parameters, and C(t/T ) = diag {c1(t/T ), c2(t/T ), . . . , cn(t/T )}

(:= CTt), with cj (·) being a smooth function defined on [0, 1] for all j. By sat-

isfying the rational expectation hypothesis, the persistence of economic vari-
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ables, like real-estate prices, is similar to the LUR process. It is too restrictive

to assume the autoregressive root is stable across time. Therefore, we em-

ploy the model (2.1) with time-varying slopes to approximate economic fun-

damentals; for instance, the prices of housing markets. To conduct further

investigations, we impose the following assumptions.

Assumption 2.1. (i) {uxt}∞t=0 is a martingale difference sequence with the

second moment Σ(:= E
(
uxtu

′
xt

)
) and the finite pth moment for some p ≥ 4;

(ii) There exist c and c, such that c < ci(·) < c for any i = 1, 2, ..., n, where

−∞ < c < c <∞.

Assumption 1 (i) imposes a martingale property for the innovations. These

innovations can be generalized as a stationary linear process

uxt =
∞∑
i=0

Φx(i)εt−i,

where {εt}∞t=0 is a sequence of martingale difference processes with a second

moment Σε := E
(
εtε
′
t

)
and a finite pth moment for some p ≥ 4. The Beveridge-

Nelson-Phillips decomposition implies that

uxt = u∗xt + (ũx,t−1 − ũxt) ,

where u∗xt = Φx(1)εt, and ũxt =
∑∞

i=0 Φ̃x(i)εt−i with Φ̃x(i) =
∑∞

j=i+1 Φx(j).

Phillips and Solo (1992, PS hereafter) show that
∑∞

i=0 i ‖Φx(i)‖ < ∞ is suffi-

cient to justify the condition that
∑∞

i=0

∥∥∥Φ̃x(i)
∥∥∥ < ∞. Then, the dominating

term u∗xt is also a martingale difference sequence. This generalization will re-

serve for the future research. Assumption 1 (ii) assumes bounded ranges for

each entry of C(t/T ).

Assumption 2.2. (i) C(t/T ) is qth-order differentiable with bounded deriva-

tives on [0, 1] for some q ≥ 1;

(ii) 2
2q−1

< p−2
3p

and 1
k

+ T
2

2q−1

k
+ k

T p−2
3p

→ 0.

Assumption 2.2 (i) assumes the differentiability of the FLUR coefficients. If

p ≥ 4, then Assumption 2.2 (ii) requires the smallest integer value for q to be 4.
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Consequently, C(·) needs to be at least 4th-order differentiable. According to

BM, linear combinations of the orthogonal basis can approximate an unknown

slope RTt at the rate of O(k−q). As a result, when the dimensions of the

orthogonal basis diverge at an appropriate speed, the approximation bias is

negligible.

2.3 Orthogonal Basis and Sieve Estimator

We consider a pointwise trajectory,
∏
RT := (RT (r1), RT (r2), ..., RT (rd))

′
,

where {ri}di=1 are selected grid points on [0, 1]. To approximate
∏
RT , we use

a sequence of orthogonal basis {φi(·)}ki=1. We assume that the dimension of

the orthogonal basis, k, diverges under the restrictions of Assumption 2.2 (ii).

For RT (·), the k-dimensional approximation R
(k)
T (·) has the form of

R
(k)
T (·) :=

k∑
i=1

βkiφi(·), (2.2)

where βki is an n × n diagonal matrix. To simplify notations, we combine

{βki}ki=1 into an nk × n coefficient matrix βk so that βk := (βk1, βk2, ..., βkk)
′.

We merge a k-dimensional orthogonal basis {φi(·)}ki=1 into a vector so that

fk(·) := (φ1(·), φ2(·), ..., φk(·))′. Hence, we can rewrite (2.2) as

R
(k)
T (·) := (f ′k (·)⊗ In×n) βk.

Similarly, the pointwise trajectory
∏
R

(k)
T has the representation of

∏
R

(k)
T =

[
(fk(r1), fk(r2), ..., fk(rd))

′ ⊗ In×n
]
βk = Skβk,

where Sk := (fk(r1), fk(r2), ..., fk(rd))
′ ⊗ In×n. Therefore, the problem of esti-

mating the infinite-dimensional argument RT (·) degenerates into the estima-

tion of a finite-dimensional coefficient matrix βk.

Define a consistent estimator for βk to be β̂k. Based on β̂k, the estimators
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of R
(k)
T (·) and

∏
R

(k)
T have the following expressions

R̂
(k)
T (·) :=

k∑
i=1

β̂kiφi(·),

and ∏
R̂

(k)
T :=

[
(fk(r1), fk(r2), ..., fk(rd))

′ ⊗ In×n
]
β̂k.

For our model, it is natural to consider the least-squares estimator β̂Tk as,

β̂Tk :=
(
Y ′Tk,−1YTk,−1

)−1
Y
′

Tk,−1YT = βk +
(
Y ′Tk,−1YTk,−1

)−1
Y
′

Tk,−1Uxk, (2.3)

where YTk,−1 := (yk0, yk1, ..., yk,T−1)′, Uxk := (uxk,1, uxk,2, ..., uxk,T )′, yk,t−1 :=

fk
(
t
T

)
⊗ yt−1, and uxk,t := uxt +

(
RT −R(k)

T

) (
t
T

)
yt−1. Equivalently, the ex-

pression (2.3) comes from the fitted equation as follows:

yt = βkyk,t−1 + uxk,t. (2.4)

Following Elliot (1964), we adopt the Chebyshev basis as an orthogonal

basis. The orthogonal basis is defined as,

φ0

(
[Tr]

T

)
= 1 and φj

(
[Tr]

T

)
=
√

2 cos

(
jπ

(
[Tr]

T

))
,

where r ∈ [0, 1] and j = 1, 2, ..., k. Orthogonality comes from the cosine

functions as

2

∫ 1

0

φi(r)φj(r)dr =


0 i 6= j

π i = j 6= 0

2π i = j = 0

.

Based on the orthogonal property, Elliot (1964) demonstrates that {φi (·)}∞i=1

form a set of basis functions in the Hilbert space L2 [0, 1] . With any square-

integrable function RT (r) on [0, 1] , we have its orthogonal decomposition as

RT

(
[Tr]

T

)
=
∞∑
i=1

βT,iφi

(
[Tr]

T

)
, (2.5)

where βT,i :=
∫ 1

0
RT

(
[Tr]
T

)
φi

(
[Tr]
T

)
dr. In this paper, we define the approxima-

tion for RT

(
[Tr]
T

)
as R

(k)
T

(
[Tr]
T

)
. The k-dimensional approximation R

(k)
T

(
[Tr]
T

)
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has the expression of

R
(k)
T

(
[Tr]

T

)
:=

k∑
i=1

βTk,iφi

(
[Tr]

T

)
, (2.6)

where βTk,i := βT,i as in (2.5). To asymptotically eliminate the distance be-

tween (2.5) and (2.6), we need to show

lim
T→∞

1

T

T∑
t=1

∥∥∥∥RT

(
[Tr]

T

)
−R(k)

T

(
[Tr]

T

)∥∥∥∥2

→ 0,

as illustrated in the following lemma.

Lemma 2.1. Let Assumptions 2.1 and 2.2 hold. For any k ≥ 1, we have

lim
T→∞

1

T

T∑
t=1

∥∥∥∥RT

(
[Tr]

T

)
−R(k)

T

(
[Tr]

T

)∥∥∥∥2

= Op(k
−2q).

BM bound the approximation error by the following inequality:

lim
T→∞

1

T

T∑
t=1

∥∥∥∥RT

(
[Tr]

T

)
−R(k)

T

(
[Tr]

T

)∥∥∥∥2

≤

∫ 1

0

∥∥∥R(q)
T (r) dr

∥∥∥
π2q(k + 1)2q

,

where R
(q)
T (r) is the qth-order derivative of RT (r). When the dimension of basis

functions diverges, the approximation error diminishes asymptotically.

Denote

K∗T,c(r) :=
1√
T

[Tr]∑
t=1

exp

 1

T

[Tr]∑
j=t

C

(
j

T

)uxt.

The stochastic process Kc(r) follows dKc(r) = C(r)Kc(r)dr + Σ
1
2dWx(r). For

asymptotic derivations, we need a uniform approximation of K∗T,c(r) to Kc(r)

as the functional central limit theorem developed by BM is insufficient. The

modified Skorokhod embedding theorem ensures the following uniform approx-

imation.

Lemma 2.2. Let Assumptions 2.1 and 2.2 hold. Define α := p−2
2p

. As T →∞,

we have

sup
0≤r≤1

∥∥K∗T,c(r)−Kc(r)
∥∥ = Op(T

−α).
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2.4 Asymptotic Theory for Sieve Estimator

Following (2.3), the least-squares estimator for βk has the decomposition

β̂Tk = βk +
(
Y ′Tk,−1YTk,−1

)−1
Y
′

Tk,−1Uxk

= βk +
(
Y ′Tk,−1YTk,−1

)−1
Y
′

Tk,−1

(
UxT + YTk,−1

(
RT −R(k)

T

)( t

T

))
= βk +

(
Y ′Tk,−1YTk,−1

)−1
Y
′

Tk,−1UxT +(
Y ′Tk,−1YTk,−1

)−1
Y
′

Tk,−1YTk,−1

(
RT −R(k)

T

)( t

T

)
,

where the term
(
Y ′Tk,−1YTk,−1

)−1
Y
′

Tk,−1UxT contributes to the nonstandard

limiting distribution, and
(
Y ′Tk,−1YTk,−1

)−1
Y
′

Tk,−1YTk,−1

(
RT −R(k)

T

) (
t
T

)
rep-

resents the dominated approximation error. According to Assumption 2.2 and

Lemma 2.1, both the approximation error and the asymptotic error are dimin-

ishing as T → ∞. The negligibility of these errors justifies the consistency of

our sieve estimates.

Theorem 2.1. Let Assumptions 2.1 and 2.2 hold. As T →∞, we have

∏
R̂

(k)
T =

∏
RT +Op

(
kT−1

)
+Op

(
k−q
)
.

The asymptotic error term is of order Op (kT−1), and the approximation

bias decreases at the rate of Op (k−q). Further, we define the sample moment

as

ATk := Sk

(
Y
′

Tk,−1YTk,−1

)−1

Sk.

Based on ATk, we have the following limiting distribution of the time-series

sieve estimator.

Theorem 2.2. Let Assumptions 2.1 and 2.2 hold. As T →∞, we have

A
− 1

2
Tk

(∏
R̂

(k)
T −

∏
RT

)
⇒ Z,
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where

Z = lim
k→∞

[
Sk

(∫ 1

0

(
fk(r)f

′

k(r)
)
⊗
(
Kc(r)K

′

c(r)
)
dr

)−1

Sk

]− 1
2

×

Sk

(∫ 1

0

(
fk(r)f

′

k(r)
)
⊗
(
Kc(r)K

′

c(r)
)
dr

)−1(∫ 1

0

fk(r)⊗Kc(r)dW
′

x(r)

)
,

and Wx(·) is a standard Brownian motion.

Remark 2.1. In the appendix A, we show that the kernel estimate of FLUR is

consistent and asymptotically normal. According to Theorem 2.2, the sieve es-

timator of FLUR is also consistent but not of normality anymore. The reason

for the asymptotic non-normality is that 1√
T

∑[Tr]
t=1 uxt and K∗T,c(r) are asymp-

totically correlated.

Remark 2.2. As the sample moment is diverging of the rate Op (T/k), the

convergence rate for the sieve estimate is Op (k/T ). Similarly, the convergence

rate of the kernel method is Op

(
1

T
√
h

)
in appendix A. For the time-invariant

case, Phillips (1987) shows that the least-squares estimate converges at the rate

of Op

(
1
T

)
, faster than that of the sieve estimate.

2.5 Panel Specification Test

Based on (2.1), the failure of a specification test happens due to the in-

consistent estimations on C(·). To resolve this problem, we consider the panel

autoregressions as in Moon and Phillips (2004). The primary benefit of the

panel approach is that slope homogeneity can massively enhance the powers

of the tests. Assumptions of homogeneity across individuals can either be de-

duced by economic theory or be verified by the machine learning algorithm.

Therefore, without introducing additional complexity, we obtain the theoreti-

cal results by imposing a homogeneity assumption.

We consider the scalar case, where n = 1. We collect M homogeneous time

series in (2.1). For each individual, there are T observations. With m being
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the index for cross-sectional identity, we have

ymt = RTtym,t−1 + umx,t, (2.7)

where RTt = exp
(
C(t/T )
T

)
for each m = 1, 2, ...,M , and t = 1, 2, ..., T .

We assume that {ymt}Tt=1 and {umx,t}Tt=1 follow Assumptions 2.1 and 2.2.

In addition, we impose Assumption 2.3.

Assumption 2.3. (i) Innovations {umx,t}Tt=1 are independent across m ∈

{1, 2, ...,M} ;

(ii) k√
M
→ 0.

When n = 1, we define the panel sieve estimator as

β̂Tk =

(
M∑
m=1

Y
′

mTk,−1YmTk,−1

)−1( M∑
m=1

Y
′

mTk,−1YmTk

)
, (2.8)

where YmTk,−1 = (ymk,0, ymk,1, ..., ymk,T−1)′, Umxk = (umxk,1, umxk,2, ..., umxk,T )′,

ymk,t−1 = fk
(
t
T

)
⊗ ym,t−1, and umxk,t = umxt +

(
RT −R(k)

T

) (
t
T

)
ym,t−1. The

estimated pointwise trajectory on the chosen grid {r1, r2, ..., rd} ⊆ [0, 1] is

∏
R̂

(k)
T =

[
(fk(r1), fk(r2), ..., fk(rd))

′ ⊗ In×n
]
β̂Tk.

We justify the asymptotic normality of the panel sieve estimator for the

scalar FLUR process.

Theorem 2.3. Let Assumptions 2.1-2.3 hold. As (M,T )→∞,

A
− 1

2
MTk

(∏
R̂

(k)
T −

∏
RT

)
d→ N (0, Id) ,

where Id is d-dimensional identity matrix and AMTk := Sk

(
M∑
m=1

Y
′

mTk,−1YmTk,−1

)−1

S
′

k.

Remark 2.3. The convergence rate of the panel estimator Ĉ(·) is Op

(
k√
M

)
.

When parameters are time-invariant, Moon and Phillips (2004) show that the

convergence rate is Op

(
1√
M

)
, which is is faster.

Remark 2.4. The cross-sectional least-squares estimator for each t ∈ {1, 2, ..., T}

is an alternative estimator. However, the cross-sectional estimator may suffer
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from inconsistency when M diverges at a slower speed than T . Moreover, the

cross-sectional least-squares estimator is less efficient than our panel estimate

under the joint limit framework.

With asymptotic normality, we propose a consistent Wald statistic to test

parameter instability.

Theorem 2.4. Let Assumptions 2.1-2.3 hold. Under the null hypothesis, H0 :

RTt is time-invariant, as (M,T )→∞,(∏
R̂

(k)
T −

∏
R̃T

)′
A−1
MTk

(∏
R̂

(k)
T −

∏
R̃T

)
Σ̂

d→ χ2 (d) , (2.9)

where Σ̂ := 1
MT

∑M
m=1

∑T
t=1 û

2
mx,t with ûmx,t = ymt − R̂

(k)
Tt ym,t−1 for m =

1, 2, ...,M and t = 1, 2, ..., T . The pooled least-squares estimator is denoted by

R̃T . Under the alternative hypothesis, H1 : RTt is time-varying, as (M,T ) →

∞, (∏
R̂

(k)
T −

∏
R̃T

)′
A−1
MTk

(∏
R̂

(k)
T −

∏
R̃T

)
Σ̂

= Op

(
M

k

)
→∞.

2.6 Monte Carlo Simulations

This section investigates the finite sample performance of the sieve statistic

in the panel FLUR. We examine the following data generating process as

ymt = exp

(
C (t/T )

T

)
ym,t−1 + umx,t.

The functional time-varying slopes are defined as

Model 1: C (t/T ) = 20 cos (2πt/T ) ;

Model 2: C (t/T ) = 12
√
t/T ;

Model 3: C (t/T ) = 5t/T + 5 |sin (4πt/T )| ;

Model 4: C (t/T ) = 15 sin (t/T ) .
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The innovations follow either normal distributions or heavy-tail t-distributions

with 3 degrees of freedom. Noise is set to be independent across individuals.

The homoscedastic variance is set as 2. The numbers of time-series observa-

tions are 100 and 200. The dimensions for the cross-sectional units are chosen

as 20, 50 and 80. The simulation is conducted with 2,000 replications. Sieve ba-

sis functions are selected as either orthogonal trigonometric basis (Chebyshev

basis) or as B-splines. The B-splines are employed to justify the robustness of

our approach. To satisfy Assumptions 2.1-2.3, we select k as 5T
1
4 and d as 1

with rd = 0.5.

The plots of C (t/T ) and Ĉ (t/T ) are given in Figure 2.1. From theoret-

ical derivations, we know that the convergence rate for C (t/T ) estimates is

O
(

k√
M

)
. This feature is essential, as the validity of the specification tests relies

heavily on the consistency of estimates. When the cardinality of cross-sectional

units is as small as 20, the estimates are close to the true values. These results

demonstrate the excellent finite sample performance of our estimates. Besides,

the robustness of this approach is shown by various functional slopes.

The powers of specification tests are shown in Tables 2.1-2.4. Tables 2.1

and 2.2 represent cases with normally distributed errors, and Tables 2.3 and

2.4 refer to performances with t(3) distributions. We evaluate the powers by

applying two sieve functions, the orthogonal basis and the B-spline. The simu-

lated results show that cross-sectional asymptotics improve powers. With the

larger cardinality of individuals, the precision of the estimates and the powers

of specification tests are upgraded. Besides, with an identical model setup, the

powers of specification tests with B-splines are nearly the same as those with

an orthogonal basis. Excellent performances with B-splines demonstrate the

robustness of our asymptotic theory. Tables 2.5-2.8 display the empirical sizes

when the nominal level is set at 5%. Regardless of whether the residuals are

normal or heavy-tailed, the empirical sizes are well controlled around 5% with

both sieve approximations.
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2.7 Empirical Illustrations

We apply sieve inferences on the data concerning China’s real estate mar-

ket. Su and Ju (2018) use classification algorithms on the housing prices in

China’s large- and medium-sized cities. They identify three latent groups.

With identical slopes in each group, they illustrate that the growth rates of

real estate prices are more persistent in large cities. In this paper, following

the membership in Su and Ju (2018), we detect the time-varying patterns in

annualized growth rates using the price index (PI hereafter) on the 33 Tier-1

and Tier-2 cities. Table 2.10 shows the list of these cities. Fang et al. (2016)

construct real estate PIs for 120 major Chinese cities from 2003 m1 to 2013

m3, based on sequential sales of new homes.

First, we follow the membership structures in Su and Ju (2018), where

they apply C-Lasso method to group the 69 cities in China according to their

housing price. The results show that the housing price in the group of big cities

show similar characteristics in terms of persistence. In this paper, we merge

33 Tier-1 and Tier-2 cities into a panel model. The plots of the annual growth

rates are provided in Figure 2.2. We can observe the common behaviors in

the cities of interest, which support the construction of homogeneous panel

autoregression.

Second, we apply panel sieve inferences on RTt. To verify our conjecture

on time-varying slopes, we conduct the panel specification test. We select the

grid points as 0.2, 0.4, 0.6, and 0.8, and compute the statistics on all grid

points. The resulting statistics are reported in Table 2.9. From these results,

we can observe that all statistics are higher than critical values. These findings

provide strong evidence for time-varying patterns. The results also verify the

usefulness of the proposed specification statistics.
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2.8 Conclusion

In this paper, we propose a sieve inference procedure built on an orthogo-

nal trigonometric basis. Time-series sieve estimators on slopes are consistent,

and they converge to the ratios of stochastic integrals. We provide a panel

specification test with excellent finite-sample performance, which is supported

by numerical simulations. In addition, we apply panel specification tests to

assess China’s real estate market and obtain significant empirical results.

The sieve basis functions that we use are the orthogonal trigonometric ba-

sis. Other basis functions, such as splines or father and mother wavelets, are

also widely used in the literature, especially the B-splines. We prefer orthog-

onal trigonometric basis to B-splines, due to their smoothness. In stationary

time series analysis, the sample moment converges to its non-random popu-

lation moment. However, the probability limit of the sample moment in the

FLUR model involves a stochastic integral. In the proof, we implement an

integration-by-part formula, which requires the differentiability of basis func-

tions. If smoothness is not necessary for theoretical justifications, then the B-

spline becomes applicable. Indeed, the extensive numerical simulations verify

our conjectures and demonstrate the usefulness of B-splines in FLUR models.

Tables and Figures

Figures and tables on numerical experiments and empirical illustrations are

given.

Monte Carlo simulations

42



Table 2.1: Powers of Specification Test (Orthogonal Trigonometric Basis) with
Normality

Model M=20, T=100 M=20, T=200 M=50,T=100 M=50,T=200 M=80,T=100 M=80,T=200

Model 1 0.8855 0.8725 0.9115 0.887 0.973 0.9665

Model 2 0.844 0.811 0.91 0.8835 0.983 0.977

Model 3 0.8335 0.8225 0.9335 0.8905 0.9785 0.98

Model 4 0.8415 0.8459 0.9455 0.9185 0.9885 0.9865

Table 2.2: Powers of Specification Test (B-spline) with Normality
Model M=20, T=100 M=20, T=200 M=50,T=100 M=50,T=200 M=80,T=100 M=80,T=200

Model 1 0.879 0.8545 0.9485 0.9005 0.995 0.9205

Model 2 0.8565 0.8705 0.9555 0.9095 0.997 0.95

Model 3 0.874 0.8455 0.9535 0.915 0.9955 0.9555

Model 4 0.8889 0.8715 0.9685 0.927 0.998 0.9725

Table 2.3: Powers of Specification Test (Orthogonal Trigonometric Basis) with
t(3)

Model M=20, T=100 M=20, T=200 M=50,T=100 M=50,T=200 M=80,T=100 M=80,T=200

Model 1 0.8515 0.849 0.867 0.8648 0.9515 0.9385

Model 2 0.8295 0.8315 0.921 0.8785 0.984 0.9815

Model 3 0.837 0.836 0.9375 0.9 0.987 0.985

Model 4 0.862 0.8455 0.9315 0.9175 0.983 0.9815

Table 2.4: Powers of Specification Test (B-spline) with t(3)
Model M=20, T=100 M=20, T=200 M=50,T=100 M=50,T=200 M=80,T=100 M=80,T=200

Model 1 0.8475 0.8395 0.8715 0.868 0.966 0.962

Model 2 0.861 0.849 0.9525 0.9115 0.9965 0.933

Model 3 0.882 0.855 0.96 0.925 0.9965 0.95

Model 4 0.844 0.846 0.9585 0.937 0.992 0.9645

Table 2.5: Sizes of Specification Test (Orthogonal Trigonometric Basis) with
Normality

Model M=20, T=100 M=20, T=200 M=50,T=100 M=50,T=200 M=80,T=100 M=80,T=200

C=-5 0.064 0.06 0.0663 0.0607 0.0671 0.0625

C=5 0.0422 0.0425 0.0512 0.0395 0.0601 0.0471

C=-10 0.0666 0.0625 0.0608 0.0605 0.0631 0.0559

C=10 0.0422 0.044 0.0538 0.0401 0.0606 0.0476

Table 2.6: Sizes of Specification Test (Orthogonal Trigonometric Basis) with
t(3)

Model M=20, T=100 M=20, T=200 M=50,T=100 M=50,T=200 M=80,T=100 M=80,T=200

C=-5 0.0567 0.0527 0.0649 0.0573 0.0565 0.0604

C=5 0.0482 0.0461 0.0519 0.0396 0.0526 0.0544

C=-10 0.0548 0.0506 0.0578 0.052 0.0545 0.0549

C=10 0.0466 0.0473 0.0545 0.0393 0.0485 0.0482
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Table 2.7: Sizes of Specification Test (B-spline) with Normality
Model M=20, T=100 M=20, T=200 M=50,T=100 M=50,T=200 M=80,T=100 M=80,T=200

C=-5 0.064 0.06 0.0663 0.0607 0.0671 0.0625

C=5 0.0422 0.0425 0.0512 0.0395 0.0601 0.0471

C=-10 0.0666 0.0625 0.0608 0.0605 0.0631 0.0559

C=10 0.0422 0.044 0.0538 0.0401 0.0606 0.0476

Table 2.8: Sizes of Specification Test (B-spline) with t(3)
Model M=20, T=100 M=20, T=200 M=50,T=100 M=50,T=200 M=80,T=100 M=80,T=200

C=-5 0.064 0.06 0.0663 0.0607 0.0671 0.0625

C=5 0.0422 0.0425 0.0512 0.0395 0.0601 0.0471

C=-10 0.0666 0.0625 0.0608 0.0605 0.0631 0.0559

C=10 0.0481 0.0405 0.0637 0.041 0.0536 0.0516

Figure 2.1: Plots of sieve estimates and true values of C(t/T) using the or-
thogonal trigonometric basis (Chebyshev polynomial)
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Empirical illustrations

Time series plots on annual growth rates of a real-estate price index (PI

thereafter) for 33 China’s Tier-1 and Tier-2 cities are given in the Figure 2.2.

The period is from January 2003 to March 2013.

Figure 2.2: Real estate PIs for 33 Tier1 and Tier 2 cities in China (2003m1 -
2013 m3)

Model specification tests on China’s real estate markets are implemented

for FLUR panel autoregressions as shown in the following table.

Table 2.9: Constancy Specification Test based on Chinese Real-estate Market

Grid 0.2 0.4 0.6 0.7 0.8

Test -8.2648 8.501 2.9358 7.6516 2.2192

Table 2.10: List of the cities
Tier 1 Beijing, Shanghai, Guangzhou, Shenzhen

Tier 2 Tianjin, Shijiazhuang, Hohhot, Shenyang, Dalian, Changchun, Harbin,

Nanjing, Wuxi, Suzhou, Hangzhou, Ningbo, Wenzhou, Hefei, Fuzhou,

Xiamen, Nanchang, Jinan, Qingdao, Zhengzhou,Changsha, Nanning,

Haikou, Chongqing, Chengdu, Kunming, Xi’an, Xining,Urumq
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Chapter 3

Predictive Regression with Time-varying

Parameters: A Sieve-IVX Approach

3.1 Introduction

The empirical finance literature has a long history of discussing the pre-

dictive regression models in which the stock return is regressed on the lagged

value of the fundamental variables. A wide range of macroeconomic and finan-

cial variables are considered as potential predictors (e.g., the dividend-price

ratio, the default-yield spread, etc.). The earlier empirical studies, including

Fama (1981), Campbell & Shiller (1988a,b), Fama & French (1988, 1989), and

Fama (1990), adopt the framework of parametric predictive regression models

in which the slope coefficients are time-invariant.

However, due to significant changes in market sentiments, the burst of

speculative bubbles, rare disasters, and regime switches in monetary and debt

management policies, the assumption of constant coefficients is highly suspi-

cious. A series of recent empirical studies have recognized the limitations of

time-invariant models and start to accommodate the unstable parameters in

their discussions. For instance, Timmermann (2008) suggests that the local

predictability is detected while the asset returns are not predictable for most

periods. Dangl et al. (2012) evaluate the time-varying predictive regression

models in a comprehensive Bayesian framework and show that the models
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with time-varying coefficients dominate those with constant coefficients. Pyun

(2019) introduces an out-of-sample forecasting strategy for monthly market

returns using the time-varying predictive regression model. Besides, the pre-

dictive regression model with time-varying coefficients employs current infor-

mation to forecast future stock returns. It has been widely applied to study

the lack of predictability in the field of empirical asset pricing (Ang & Be-

haert, 2007; Avramov, 2002; Lettau & Van Nieuwerburgh, 2008; Dangel et al.,

2012; Henkel et al., 2011). These time-varying approaches have led to some

novel stylized facts on the predictability of stock returns. However, the above

attempts initiated by the empirical researchers illustrate the necessity of con-

sidering the parameter instability in predictive regression model. But they still

demonstrate several shortcomings to be resolved. The adopted procedures are

more interested in estimation and forecast, while lack solid theoretical foun-

dations to facilitate rigorous inference procedures. The statistical theory of

the abovementioned procedure is also underdeveloped, which requires more

asymptotic treatments.

The above empirical studies motivate us to consider the following pre-

liminary simulated experiment in the presence of time-varying predictability.

We simulate 1, 000 sample paths from the data generating process (DGP)

yt = B
(
t
T

)
xt−1 + u0t, xt = xt−1 + uxt, in which a variety of functional forms

in B (·) are explored. Assume u0t

uxt

 ∼ N

 0

0

 ,

 1 −0.95

−0.95 1


 .

We further consider the OLS-Wald test under the null hypothesisHa
0 : B (0.5) =

0. The empirical rejection rate under the null hypothesis Ha
0 with nominal size

5% is given in Table 3.1. It is evident that the parametric inference approach

produces severe size distortions when the true model contains time-varying

coefficients. When we test Ha
0 using the OLS-Wald test, the empirical size is
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Table 3.1: Empirical size for OLS estimator with univariate regressor

B (t/T ) T = 25 T = 50 T = 75 T = 100 T = 150 T = 200

0 0.096 0.066 0.066 0.069 0.071 0.066
t
T
− 1

2
0.553 0.684 0.736 0.782 0.835 0.862

cos
(
πt
T

)
0.627 0.724 0.792 0.818 0.856 0.882

sin
(
πt
T

)
− 1 0.625 0.828 0.936 0.973 0.995 0.999

distant from its nominal level of 5%. It will lead to spurious predictability for

most cases. The observation is not surprising as the OLS estimation fails to

consider the instability in slopes. The experiment also illustrates the risk of

imposing the piecewise-constant coefficients. Even though the time-invariant

parameters are assumed for a short horizon (e.g., T ≤ 50), the perturbation

will produce the over-rejection phenomenon and ruin the validity of the para-

metric inference procedures in the model with structural breaks.

Therefore, a time-varying coefficient regression model is a more suitable

candidate for detecting predictability, which calls upon the non-/semi-parametric

estimation methods. However, the econometric development of the time-

varying predictive phenomenon is only considered by assuming the piecewise

constancy in parameters accompanied with multiple structural breaks or the

piecewise Lipschitz-continuous functions over small open balls (Gonzalo &

Pitarakis, 2012; Demetrescu et al., 2020; Georgiev et al., 2020; Georgiev et

al., 2021). In contrast, this paper proposes a semi-parametric predictive re-

gression model with a time-varying slope evolving smoothly over time and we

allow for regressors with different degrees of persistence. Without imposing

constant assumption in parameters across arbitrary time horizons, our model

has the flexibility to test for time-varying predictability. The modeling strat-

egy intends to reduce the size distortion caused by parameter instability. This

paper employs the nonparametric sieve method to estimate the proposed pre-

dictive regression model. The sieve method can be conducted via various basis

functions (e.g., polynomials, B-splines, etc.). It can also extend to the multi-

variate model without introducing the degenerate signal matrix.
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The literature of nonlinear and nonparametric cointegration models is closely

related to our discussions of time-varying predictive regression model. Specif-

ically, various nonlinear and nonparametric cointegration models have been

estimated via kernel methods (Park & Phillips, 2001; Cai et al., 2009; Wang

& Phillips, 2009ab; Xiao, 2009; Gao & Phillips, 2013; Li et al., 2016; Phillips

et al., 2017). Unfortunately, the usual asymptotic theory of kernel estima-

tion completely breaks down for non-/semi-parametric cointegration model

(Phillips et al., 2017). The failure is due to the singular signal matrix induced

by kernel smoothing and nonstationary regressors. Instead, the sieve method

via global approximation is employed as an alternative in the cointegration

models. For instance, the trigonometric basis functions (Park & Hahn, 1999)

and Hermite polynomials (Dong & Gao, 2019; Dong, Gao & Peng, 2019, 2020;

Dong & Linton, 2018; Dong, Linton & Peng, 2020) are considered for non-

/semi-parametric estimations in the multivariate models with nonstationary

regressors. However, the available results of cointegration models cannot be

applied directly in this paper, since they only consider the unit root behaviors.

Most of the research works containing time-varying coefficients adopt highly

restrictive model setups, as only local-to-unity regressors (Cai et al., 2014;

Georgiev et al., 2018) or locally stationary regressors (Yousuf et al., 2020)

are considered. Comparatively, it is widely recognized that the mixed-root

phenomenon exists in the predictive regression model (Phillips, 2014, 2015;

Kostakis et al., 2015; Phillips & Lee, 2013, 2016; Yang et al., 2020; Lin

& Tu, 2020; Tu & Wang, 2021). Correspondingly, this paper discusses the

semi-parametric predictive regression model with mixed-root regressors. We

propose a new variant of the self-generated instrument, called the Sieve-IVX

instrument, to estimate the time-varying slope. Considering the square inte-

grability of the slope coefficient, a set of basis functions (e.g., polynomials,

splines, wavelet) can achieve consistent approximation when the dimension

of basis functions increases. Therefore, the weights of basis functions can be
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estimated using the standard IVX estimation (Phillips & Magdalinos, 2009),

which help establish the nonparametric estimation. This paper shows the con-

sistency of the Sieve-IVX estimator in various norms. Based on the pointwise

convergence asymptotics, this paper also provides the Sieve-IVX-Wald test for

predictability and model specification at a finite set of time points. Under the

null hypothesis of no predictability, the Sieve-IVX-Wald tests converge to the

chi-square distributions as T goes to infinity.

The simulation results show the finite-sample performance of the Sieve-

IVX-Wald test in terms of empirical size and power. In both univariate and

multivariate predictive regression models, the Sieve-IVX-Wald test excellently

controls the empirical size around the nominal level. Although the power

performance is sacrificed in some sense, its power function still approaches

unity when the local alternative deviates from the null hypothesis. Compara-

tively, severe size distortions are observed for the OLS-Wald and the IVX-Wald

tests, corresponding to the primary motivation to capture the time-varying

predictability in this paper.

The remainder of this chapter is structured as follows. Section 2 presents

the model setup and assumptions. Section 3 introduces the Sieve-IVX estima-

tor based on the arbitrary basis functions. Section 4 provides the asymptotic

theory of the proposed estimator and the corresponding Sieve-IVX-Wald tests.

Section 5 shows simulated results. Section 6 concludes.

Throughout the paper, we employ the following notations. The n × n

dimensional identity matrix is defined as In. For some arbitrary matrix M , we

use ‖M‖∞, ‖M‖2 and ‖M‖ to denote the L∞, L2 and spectral norms of matrix

M . We employ →p to denote convergence in probability. We employ  to

denote the weak convergence in Euclidean and functional spaces. Equivalence

in distribution is denoted by =d. If A ≤ c · B for some real value c, then

A . B. The minimum value between the two arguments is denoted by ∧, e.g.,

α ∧ γ = min{α, γ}.
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3.2 Model Setup

The preditive regression model with time-varying coefficient is given as

yt = B′
(
t

T

)
xt−1 + u0t, t = 1, 2, ..., T, (3.1)

where B
(
t
T

)
is an n-dimentional vector

(
B1

(
t
T

)
, ..., Bn

(
t
T

))′
with each entry

Bj

(
t
T

)
being a time-varying smooth function defined on [0, 1] for all j. The

predictor xt is an n-dimentional persistent regressor, and u0t is a stationary

error term. T denotes the sample size.

The data generating process (DGP) of (3.1) extends the predictive regres-

sion model of the time-invariant parameters by allowing for the time-varying

coefficients for predictors. In the existing literature, standard predictive re-

gression model accommodates a constant slope coefficient such as B
(
t
T

)
= B

for all t = 1, 2, ..., T . The usual interest is to test the null hypothesis that yt is

unpredictable by xt−1 with a time-invariant parameter across the whole time

horizon, that is H0 : B = 0 against the alternative hypothesis that H1 : B 6= 0.

In contrast, the proposed model contains the time-varying parameter that

changes smoothly over time. Comparatively, this paper discusses the tempo-

rary predictive phenomenon on the chosen grid points. We are intended to test

the null hypothesis

H0,t? : B

(
t?

T

)
= 0,

on the grid time points t?. Correspondingly, the alternative hypothesis con-

sidered in this paper follows

H1,t? : B

(
t?

T

)
6= 0,

on at least one point of the chosen grids t?.

Several restrictions need to be imposed on B (·) to ensure that the identifi-

cation and inference procedures that will be formalized. The assumptions for

the coefficients B (·) are provided in the following Assumption 3.1.
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Assumption 3.1.

(i) The slope coefficient Bj (·) is bounded on the support [0, 1]: there exist

constant values B and B, such that B ≤ Bj (·) ≤ B for any j;

(ii) Bj (·) is qth-order differentiable with bounded derivatives on the support

[0, 1]: B ≤ Bs
j (·) ≤ B for any 1 ≤ j ≤ n and 1 ≤ s ≤ q, where Bs

j (·) is

the sth order derivative.

Assumption 3.1 provides the boundedness and smoothness conditions for

the time-varying coefficient and facilitates the sieve expansion which will be

discussed later.

To characterize the mixed-root phenomenon in regressors, the n-dimentional

vector of predictors xt follows the autoregressive process with roots in the vicin-

ity of unity, as follows:

xt = RTxt−1 + uxt, RT = In +
C

Tα
, (3.2)

where C (:= diag{c1, c2, ..., cn}) is an n×n diagonal matrix, α (:= diag{α1, α2, ..., αn})

is an n × n diagonal matrix with each diagonal element αj ∈ (0, 1], and uxt

is a n-dimensional stationary linear processe. The DGP of (3.2) considers the

mixed-root phenomenon that incorporates four types of persistent regressors

as defined in the following assumption.

Assumption 3.2.

(i) Unit Root (UR): αj > 1 or cj = 0, for any 1 ≤ j ≤ n;

(ii) Local-to-Unity Root (LUR): αj = 1 and cj ∈ (−∞,∞), for any 1 ≤ j ≤

n;

(iii) Mildly Integrated Root (MIR): αj ∈ (0, 1) and cj ∈ (−∞, 0), for any

1 ≤ j ≤ n;

(iv) Stationary Root (I(0)): αj = 0 and cj ∈ (−∞, 0), for any 1 ≤ j ≤ n.
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The exact degrees of persistence of the fundamental variables cannot be

trivially specified. To the best knowledge of us, there is no theoretical estab-

lishment in distinguishing among UR, LUR, MIR, and stationary regressors.

Moreover, Phillips & Lee (2013, 2016) show that the spurious relationship

generated by the persistent regressors induces the endogeneity problem and

further leads to a severe size distortion. The size distortions caused by the

persistent regressors and the time-varying slope coefficients can dramatically

undermine the validity of the inference procedure based on OLS estimation.

Therefore, we need a robust treatment irrespective of the exact type of under-

lying persistence.It perfectly suits the discussions of possible misspecifications.

Moreover, this paper imposes a flexible assumption for regression errors.

We assume that the innovation of the predictive regression model of (3.1), u0t,

follows a conditional heteroskedastic GARCH process, and the errors of the

predictors, uxt, admit the stationary linear processes. The detailed discussions

of the innovations are formally presented in Assumption 3.3 below.

Assumption 3.3.

(i) Let εt = (ηt, e
′
t)
′, with ηt and et as in (3.4) and (3.5), denote an Rn+1-

valued martingale difference sequence with respect to the natural filtration

Ft = σ (εt, εt−1, . . .) satisfying

EFt−1 [εtε
′
t] = Σε a.s. and sup

t∈Z
E ‖εt‖2s <∞, (3.3)

for some s > 1, where Σε is a positive definite matrix.

(ii) The process {u0t}t∈Z admits the following GARCH(p1,p2) representation,

u0t = H
1/2
t ηt, Ht = ϕ0 +

p1∑
i=1

ϕ1iu
2
0,t−i +

p2∑
k=1

ϕ2kHt−k, (3.4)

where {ηt}t∈Z is a matigale difference sequence with respect to Ft, ϕ0 is a

constant vector, ϕ1i and ϕ2k are nonnegative for all i, k, and
∑p1

i=1 |ϕ1i|+∑p2
k=1 |ϕ2k| < 1.
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(iii) The process {uxt} follows a stationary linear process,

uxt =
∞∑
j=0

Fjet−j, (3.5)

where {Fj}j≥0 is a sequence of constant matrices such that F0 = In,∑∞
j=0 Fj has full rank, and

∑∞
j=0 ‖Fj‖ <∞.

Assumption 3.3(i) imposes conditional homoskcedasticity on the martingale

difference sequence εt. Assumption 3.3(ii) allows conditional heteroskedasticity

for the prediction error u0t. The conditional heteroskedasticity characterized

by the stationary GARCH process suits the setup of most empirical appli-

cations. Therefore, Assumption 3.3(ii) facilitates the asymptotic development

under the framework of a quite general and realistic setup. Assumption 3.3(iii)

accommodates a stationary linear process for uxt.

Based on our model setup, this paper intends to provide a robust inference

procedure for testing predictability to solve the over-rejection problems in pre-

dictive detection. In the following sections, we construct a Sieve-IVX estimator

for the time-varying coefficient in the predictive regression model (3.1) with

mixed-root predictors. Based on the proposed estimator, we also derive the

corresponding asymptotic properties, including the uniform convergence rate

and asymptotic normality.

3.3 Sieve-IVX Estimator

To construct a sieve estimator for B (t/T ), we consider the approximation

using a sequence of basis functions {φi (·)}ki=1. The k-dimensional approxi-

mation denoted by B(k) (·) can be constructed by
∑k

i=1 βk,iφi (·), where βk,i

is an n × 1 vector. To simplify the notations, we further combine {βk,i}ki=1

into an nk × 1 coefficient matrix βk expressed as
(
β′k,1, β

′
k,2, ..., β

′
k,k

)′
. We also

rewrite the k-dimensional basis functions {φi (·)}ki=1 as a vector fk (·), which

takes the form of (φ1 (·) , φ2 (·) , ..., φk (·))′. Therefore, it is equivalent to write
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the k-dimensional approximation as B(k) (·) := (f ′k (·)⊗ In) βk.

Define xk,t−1 = fk
(
t
T

)
⊗xt−1. The time-varying predictive regression model

(3.1) can be rewritten as

yt = β′kxk,t−1 + u0k,t, (3.6)

where u0k,t := u0t +
(
B −B(k)

)′ ( t
T

)
xt−1. Therefore, the sieve estimator is

equivalent to the OLS estimator of model (3.6), and it can eliminate the size

distortion problem in the corresponding inference procedure.

Next, we intend to remove the other source of size distortions generated by

the persistent regressors via the IVX instrument. The main intuition of the

IVX instrument is filtering xt to generate instruments z̃t with MIR persistence

(Phillips & Magdalinos, 2009). The idea of the standard filtering method is to

filter the persistent regressor xt to generate z̃t as

z̃t = F z̃t−1 + ∆xt,

where F is a filtering coefficient and the ∆xt is first-differenced regressor. When

F = 0n×1, then z̃t = ∆xt and the first-differenced operator is applied to re-

move the persistence in xt. The above approach can eliminate the endogeneity

problem induced by the spurious relationship but it sacrifices the efficiency of

estimation by reducing the signal-to-noise ratio. Comparatively, when F = In,

the level data is kept without filtering. In this way, the estimation efficiency is

preserved while the endogeneity problem jeopardizes the estimating accuracy.

The IVX instrument derives the MIR persistence between the first-differenced

and level data. It ultimately attains the balance between the estimation effi-

ciency and bias control.The instrument, z̃t, is defined as

z̃t = RTz z̃t−1 + ∆xt with RTz = In +
Cz
T γ

, (3.7)

where γ ∈ (0, 1), Cz = czIn, cz < 0, and z̃0 = 0. To implement the IVX in-

strument, we have the flexibility of choosing the parameters γ and cz. Usually,

we choose γ = 0.7, 0.8, or 0.9, and cz = −1, −10. By the definition (3.7), the
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self-generated instrument is an intertemporal summation of first-differenced

regressors ∆xt as z̃t =
∑t−1

j=1R
t−j
Tz ∆xj. By applying z̃t−1 as an instrument (IV)

for xt−1, we can remove the persistence of the regressors and further eliminate

the asymptotic dependence between the numerator and denominator of the

estimates (Phillips & Magdalinos, 2009).

However, the original IVX instrument cannot be applied directly to the

semi-parametric model setting in (3.1). Instead, considering the model (3.6)

in which the regressors are persistent and large-dimensional (e.g., k → ∞), a

modified IVX procedure is applicable to eliminate the nonstandard distribu-

tion generated by the latent persistency in xt, which ensures that the pivotal

distribution of the testing statistics still works in the new setting (3.6).

Since the regressor has the format xk,t−1 = fk
(
t
T

)
⊗ xt−1 in (3.6), we

design a Sieve-IVX approach using the following variant of the IVX instrument

z̃k,t−1 = fk
(
t
T

)
⊗ z̃t−1. In this way, z̃k,t−1 can be used as the IV for xk,t−1 in

model (3.6). It is natural to consider the Sieve-IVX estimator for βk, which is

defined as follows,

β̂k =
(
Z̃ ′k,−1Xk,−1

)−1

Z̃ ′k,−1Y = βk +
(
Z̃ ′k,−1Xk,−1

)−1

Z̃ ′k,−1U0k, (3.8)

where Xk,−1 = (xk,0, xk,1, ..., xk,T−1)′, Z̃k,−1 = (z̃k,0, z̃k,1, ..., z̃k,T−1)′, and Y =

(y1, y2, ..., yT )′.

Correspondingly, the Sieve-IVX estimator of the time-varying coefficient

B (t/T ) in the predictive regression model (3.1) can be defined as

B̂(k)

(
t

T

)
=

(
f ′k

(
t

T

)
⊗ In

)
β̂k. (3.9)

Further, in order to establish the asymptotic properties of the Sieve-IVX

estimator B̂ (·), we impose Assumptions 3.4 and 3.5 in the following discussion.

Assumption 3.4.

(i) Assume the smallest eigenvalues λmin (fk (r) f ′k (r)) and λmax (fk (r) f ′k (r))
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are bounded away from zero uniformly in k and r ∈ [0, 1],

0 < c
¯ Φ ≤ λmin (fk (r) f ′k (r)) ≤ λmax (fk (r) f ′k (r)) ≤ c̄Φ <∞.

(ii) Assume the approximation error to the nonparametric function B (t/T )

satisfies the uniform convergence rate as follows,

sup
0≤r≤1

∥∥B (r)−B(k) (r)
∥∥ = O

(
k−q
)
,

where q is the order of smoothness for the slope coefficient B (·).

(iii) There exists a sequence of constants ζ (k) such that sup
0≤r≤1

‖fk (r)‖ ≤ ζ (k).

Assumption 3.5. As T → +∞, we assume that k → +∞, ζ2 (k) · k
T 1+(α∧γ) →

0, and T 1+(α∧γ)

k2q
→ 0.

Assumption 3.4 is typically assumed in the literature of sieve method

(Newey, 1997; Chen & Chirstensen, 2015, 2018; Belloni et al., 2015). In par-

ticular, the parameter q is related to the smoothness of function B (·) and

determines the accuracy of the corresponding sieves approximation. Besides,

as Newey (1997) shows, ζ (k) = O
(
k1/2

)
for B-splines and ζ (k) = O (k) for

power series. Assumption 3.5 imposes the rate restrictions on the parameters

k and ζ (k), which depend on the parameters α, γ, and q.

3.4 Asymptotic Theory for Sieve-IVX Estima-

tor

The asymptotic theory for the Sieve-IVX estimator B̂(k) (t/T ) relies on the

properties of β̂k defined in (3.8). We can rewrite β̂k as the following decompo-
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sition:

β̂k = βk +
(
Z̃ ′k,−1Xk,−1

)−1

Z̃ ′k,−1U0k

= βk +
(
Z̃ ′k,−1Xk,−1

)−1

Z̃ ′k,−1U0 +
(
Z̃ ′k,−1Xk,−1

)−1
T∑
t=1

z̃k,t−1x
′
t−1

(
B −B(k)

)( t

T

)
= βk + A1 + A2,

where U0k = (u0k,1, u0k,2, ..., u0k,T )′ and U0 = (U01, U02, ..., U0T )′. The two bias

terms are defined as:

A1 : =
(
Z̃ ′k,−1Xk,−1

)−1

Z̃ ′k,−1U0,

A2 : =
(
Z̃ ′k,−1Xk,−1

)−1
T∑
t=1

z̃k,t−1x
′
t−1

(
B −B(k)

)( t

T

)
,

where the term A1 contributes to the estimation error, while the term A2

contributes to the approximation error. The convergence rate for A1 and A2

are summarized in the following proposition.

Proposition 3.1. Let Assumptions 3.1∼3.5 hold. Then,

(i) the estimation error: ‖A1‖ = Op

(√
k

T 1+α∧γ

)
;

(ii) the approximation error: ‖A2‖ = Op (k−q);

(iii) the bias order for β̂k: ‖β̂k − βk‖ = Op

(√
k

T 1+α∧γ + k−q
)

.

As expected, the estimation error increases as the number of the sieve

basis functions, k, increases. In contrast, the approximation error decreases

exponentially as k increases. This comparison illustrates the trade-off between

controlling the estimation error and reducing the approximation error. In ad-

dition, the estimation error also depends on the scaling parameters α and γ.

When γ < α, the Sieve-IVX instrument reduces the persistence in the regressor

xt and generates the convergence rate
√
k/T 1+γ for the estimator β̂k; When

γ ≥ α, the regressor xt has a lower order of persistence and generates the

convergence rate
√
k/T 1+α in estimating the pseudo-true value βk. Compara-

tively, the fact that the convergence rate of the Sieve-IVX estimator is slower
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than the rate of the parametric IVX estimator, as
√

1/T 1+α∧γ, shows that the

estimating efficiency is sacrificed for the robust model specifications. Finally,

the convergence rate of the Sieve-IVX estimator for βk follows immediately

from Proposition 3.1 (i) and (ii).

The asymptotic negligibility of both terms is sufficient to prove the con-

sistency of the Sieve-IVX estimators. Following Newey (1997), we provide the

results of the mean-square and uniform convergence rates of the Sieve-IVX

estimator in the following theorem.

Theorem 3.1. Let Assumptions 3.1∼3.5 hold. As T →∞,

(i) 1
T

∑T
t=1

∥∥∥B̂(k)
(
t
T

)
−B

(
t
T

)∥∥∥2

= Op

(
k

T 1+α∧γ + k−2q
)
,

(ii) sup
1≤t≤T

∥∥∥B̂(k)
(
t
T

)
−B

(
t
T

)∥∥∥ = Op

(
ζ (k)

(√
k

T 1+α∧γ + k−q
))

.

The mean-square rate obtained here is different than that of Newey (1997).

First, since the variable that influences the value of the slope coefficient is

the time index, t, we justify the L2-rate for the sample mean square error

(MSE) of the slope coefficient rather than the population MSE. Also, the

derived convergence rate of the Sieve-IVX estimator depends on the nuisance

parameters α and γ, a unique property for the Sieve-IVX estimators.

The uniform convergence rate is derived based on Newey (1997) and cannot

attain the optimal rate of the sieve estimations. Comparatively, some more

recent results, such as Belloni et al. (2015) and Chen & Christensen (2015,

2018), establish the optimal uniform rate for the sieve estimators and discuss

the types of basis functions that can attain such optimal rate. As far as our

concern is to ensure that the convergence result still holds under the supreme

norm, the technical tools of Newey (1997) are sufficient for our discussions.

Moreover, considering the functional coefficients that vary over time, the

predictability needs to be tested on the grid points of a time-series path. To test

for the predictive ability of the regressors, we consider a pointwise trajectory,

∏
B := (B′ (r1) , B′ (r2) , ..., B′ (rd))

′
,
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where {rj}dj=1 are the selected grid points on [0, 1]. The pointwise trajectory,∏
B(k) is represented as

∏
B(k) =

(
B(k) ′ (r1) , B(k) ′ (r2) , ..., B(k) ′ (rd)

)′
=

[
(fk (r1) , fk (r2) , ..., fk (rd))

′ ⊗ In
]
βk

= Pkβk,

where Pk := (fk (r1) , fk (r2) , ..., fk (rd))
′ ⊗ In. Therefore, the pointwise trajec-

tory
∏
B is the argument of interest in establishing the inference procedures

for testing predictability.

The convergence rate for
∏
B̂(k) follows directly from Theorem 3.1 and is

shown in the following corollary.

Corollary 3.1. Let Assumptions 3.1∼3.5 hold. As T →∞,

∏
B̂(k) −

∏
B = Op

(√
k

T 1+α∧γ + k−q

)
,

for a finite number of grid points {rj}dj=1.

To state the aymptotic normality results for
∏
B̂(k), it is useful to define

the components of the asymptotic variance formula. Let

Mk := Pk

(
Z̃ ′k,−1Xk,−1

)−1 (
Z̃ ′k,−1Z̃k,−1

)(
X ′k,−1Z̃k,−1

)−1

P ′k,

and Σ00 := E [u2
0t]. Following Newey (1997), this paper provides the pointwise

asymptotic normality of the Sieve-IVX estimator in the following theorem.

Theorem 3.2. Let Assumptions 3.1∼3.5 hold. As T →∞, it is shown that

M
− 1

2
k

(∏
B̂(k) −

∏
B
)
 N (0,Σ00 · Ind) ,

for a finite number of grid points {rj}dj=1.

Theorem 3.2 includes the pointwise test as a specific case, in which we

just need to choose one point r ∈ [0, 1]. When the null hypothesis holds

as H0 : B (r) = 0, the corresponding Sieve-IVX-Wald test induces a pivotal

distribution in testing predictability at the given time point r ∈ [0, 1]. In ad-
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dition, we can also establish the Hausman-type model specification test with a

pivotal distribution under the corresponding null hypothesis. The abovemen-

tioned Sieve-IVX-Wald statistics are discussed in Theorems 3.3 and 3.4.

Theorem 3.3 (Sieve-IVX-Wald Test for Testing Predictability). Let Assump-

tions 3.1∼3.5 hold. Under null hypothesis H0 :
∏
B = 0, the test statistic(∏

B̂(k)
)′ (

Σ̂00Mk

)−1 (∏
B̂(k)

)
 χ2 (nd) ,

where T →∞, and Σ̂00 is any consistent estimator for Σ00.

Theorem 3.4 (Sieve-IVX-Wald Test for Model Specification). Let Assump-

tions 3.1∼3.5 hold. Under null hypothesis H0 :
∏
B = B · Id, the test statistic(∏

B̂(k) − B̂IV X · Id
)′ (

Σ̂00Mk

)−1 (∏
B̂(k) − B̂IV X · Id

)
 χ2 (nd) ,

where T →∞, B̂IV X is the parametric IVX estimation for the slope, and Σ̂00

is any consistent estimator for Σ00.

Theorems 3.3 and 3.4 have the potentials to detect the temporary local

predictability and conduct model specifications on a finite set of grid points.

Unfortunately, the pointwise convergence is sometimes insufficient for the em-

pirical analysis as the finite number of grid points have zero measure on the

whole time horizon. The ideal method is to develop a uniform inference proce-

dure to detect the predictability based on the whole time interval. Some recent

papers provide results for uniform inference procedures based on the nonpara-

metric series estimators under the independent errors or the mixingales of the

time-series settings (see Belloni et al., 2015; Li & Liao, 2020). However, the

existing approaches do not allow trivial extensions to the Sieve-IVX estima-

tor. The concerns are given as follows. In the cases of the independent and

identically distributed errors, or the stationary mixingales, the nonparamet-

ric estimators have the signal matrices with nonrandom limits. The strong

approximation is only needed for the Gaussian process of the nonparametric

numerator. However, in the nonparametric predictive regression with per-
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sistent regressors, both the numerator and denominator converge weakly to

nonstandard distributions. A new methodology that employs the empirical

process theory is called upon for incorporating this new scenario. Further

developments on the uniform inference procedures for the time-varying predic-

tive regression model remain still an open question and will be left for future

research.

The number of basis functions k, namely the tuning parameter, has to

be appropriately chosen. If not selected properly, the Sieve-IVX estimator

becomes inconsistent or derives a slower convergence rate. The requirements

for choosing the tuning parameter, k, are given in the following way. First, the

number k needs to be large enough; Otherwise, the approximation error will

dominate the Gaussian-distributed estimation error. Meanwhile, the number

k needs to diverge at a slower speed than the parametric convergence rate.

Thus, the rate restriction for k should satisfy the following conditions:

k

T 1+α∧γ +
T

1+α∧γ
2q+1

k
→ 0,

where the parameter γ is selected by researchers. Theoretically, the optimal

choice of the tunning parameter k is given by

k � T
1+α∧γ
2q+1 , (3.10)

where the notation A � B denotes the case in which A = Op (B).

Unfortunately, the optimal choice for k is unavailable since the parame-

ter α is usually latent and unobserved. To facilitate the empirical discussion,

we follow the convention and employ the leave-one-out cross-validation (CV),

which minimizes the asymptotic mean-squared-error (AMSE) criterion func-

tion to choose the optimal k. A similar procedure has been used in the kernel

estimations of the semi-parametric time-varying predictive regression model

(Li et al., 2016). In the next section, extensive simulation results also verify

the validity of the leave-one-out CV approach.
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3.5 Simulation Results

We conduct simulations to evaluate the finite-sample performances of Sieve-

IVX-Wald test statistics on predictability detections.

3.5.1 Univariate regression

For the univariate case, the data generating process is defined as follows

yt = B (t/T )xt−1 + u0t,

xt = RTxt−1 + uxt, RT = 1 +
C

Tα
, (3.11)

where yt and xt are scalars. For t = 1, ..., T , the innovation sequence u0t admits

a GARCH (1,1) representation:

u0t = H
1/2
t ηt, Ht = ϕ0 + ϕ1u

2
0,t−1 + ϕ2Ht−1 (3.12)

where ηt
i.i.d.∼ N (0, 1). We set ϕ0 = 1, ϕ1 = 0.2 and ϕ2 = 0.3, respectively.

The innovation sequence for xt is also assumed to follow a standard normal

distribution, uxt
i.i.d.∼ N (0, 1). Denote the contemporaneous correlation coef-

ficient between ηt and uxt to be ρ (:= E [ηtuxt]). In the simulation study, we

consider the case in which the correlation coefficient ρ = −0.95, whose value

is consistent with the empirical findings in the financial market.

To compare with the parametric estimators, we employ a class of functional

forms B (t/T ). Both the time-invariant coefficient (Model 1) and time-varying

coefficients (Models 2 and 3) are considered in our simulation study:

Model 1: B (t/T ) = 0,

Model 2: B (t/T ) =
t

T
− 1

2
,

Model 3: B (t/T ) = sin

(∏ t

T

)
− 1.

This section conducts the Monte Carlo simulation using 1, 000 repetitions

with values C ∈ {0,−10}, α = 0.7, ρ = −0.95, different functional form of
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coefficient B (t/T ) (e.g., Models 1∼3), and the sample size T = 200.

For each of the simulated paths, we obtain the Sieve-IVX estimator by

applying the k-dimensional series to approximate the time-varying function

B (t/T ). The IVX instrument is constructed as in equation (3.7) by nor-

malizing the parameter Cz to be −10. The IVX rate parameter γ is set as

{0.5, 0.6, 0.7, 0.8, 0.9} respectively. The optimal bandwidth k is chosen by min-

imizing the leave-one-out Cross-Validation (CV). Since this section intends to

demonstrate the superiority of the proposed Sieve-IVX estimator over the com-

peting counterparts, this paper applies the Sieve-IVX, Sieve-OLS, IVX, and

OLS estimators for model comparisons in Models 1∼3.

To evaluate the performance of the Sieve-IVX-Wald test, we focus on test-

ing the predictability at the midpoint of time (i.e., B(0.5)). To be more specific,

we employ the null hypothesis H0: B (0.5) = b, where b = 0 in Models 1∼3.

The simulation results regarding the empirical size with a univariate regressor

are shown in Table 3.2. In all the simulation studies, we choose the nominal

size to be 0.05.

First, we observe for the unit root case (C = 0). The Sieve-IVX-Wald test

in which γ ≤ 0.8 has excellent size controls across all the functional forms of

B (·). In the MIR case (C = −10, α = 0.7), the size distortions are relatively

lower and can be entirely eliminated by choosing a smaller value of γ, say

γ = 0.5.

Next, we consider the comparison of size performance between Wald tests

based on Sieve-IVX and IVX estimators. Evidently, the Sieve-IVX procedure

demonstrates huge advantages of size control over its counterpart under the

null hypothesis across different functional forms. For all choices of B(t/T ) and

γ, the empirical sizes of the Sieve-IVX -Wald tests are close to 0.05. However,

the IVX-Wald tests only have size control for the time-invariant coefficient case

(B(t/T ) = 0). They show severe size distortions for the time-varying models,

which range from 0.1 to 0.9. The findings are not surprising as the parameter
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instability will inevitably lead to high rejection rates under the null. The above

comparison corresponds to the motivation of this paper, considering the time-

varying features of predictability. When the parameter instability cannot be

omitted, the Sieve-IVX procedure will reduce the chance of making Type I

error and obtain more reliable decisions of predictability. Besides, the Sieve-

OLS-Wald test also exhibits size distortions, especially when the regressor has

high persistency (C = 0).

In all, this paper finds that the Sieve-IVX-Wald test shows evident im-

provements over the size controls under the null hypothesis of both parameter

instability and persistent property. The above numerical experiment again

demonstrates the necessity of proposing the doubly robust method with both

the self-generated instrument and the nonparametric estimation.

This paper also examines the following sequence of local alternatives to

show the power performance of the Sieve-IVX-Wald tests:

B (0.5) =
δ

T
, for δ ∈ [−10, 10].

This section computes the local power of the Sieve-IVX-Wald tests given the

above local alternatives. It is obvious that δ = 0 implies B (0.5) = 0, which

corresponds to the empirical size of each test. Here, Figure 3.1 presents the

local power plot for the time-varying coefficient B (t/T ) = sin (πt/T ) − 1 in

which the parameters C = 0, ρ = −0.95, and sample size T = 200. The plot

includes the power comparison for different values of γ ∈ {0.5, 0.6, 0.7, 0.8, 0.9}.

The results show that as γ increases, the power of the Sieve-IVX-Wald test

improves. Since the tests have slight size distortions for the case in which γ

is large, this paper recommends a moderate value of γ in the empirical study,

say γ = 0.7 or 0.8.

65



3.5.2 Multivariate regression

This subsection further explores the finite sample performance of the Sieves-

IVX Wald test under the multivariate case. In the following discussion, we

assume the number of predictors to be three. Particularly, the data generating

process is imposed as follows

yt = B′ (t/T )xt−1 + u0t,

xt = RTxt−1 + uxt, RT = I3 +
C

Tα
, (3.13)

where yt is a scalar and xt is a 3×1 vector which denotes the three-dimensional

predictors. In the simulation study, we consider the unit roots case (C =

diag (0, 0, 0)) and mixed roots case (C = diag (0,−10,−50), corresponding

to the case of a unit root, a MIR, and a stationary predictor). We choose

α = 0.7 · I3 for both cases. The innovation u0t admits the same GARCH

(1,1) reprentation defined in (3.12). Denote the collection of the error term

ζ = [η, u′xt]
′, which is assumed to follow N (0,Σ). In the simulaiton study, we

set the variance of each error term to be unity and the correlation coefficients

Σ12 = −0.75, Σ13 = −0.75, Σ14 = −0.75, Σ23 = 0.7, Σ24 = 0.5 and Σ34 =

0.5. The coefficient of the predictive regression B (t/T ) is a three-dimensional

function. Similar to the univariate case, we employ a class of functional forms

for each element of the slope coefficient.

We conduct the Monte Carlo simulation using 1, 000 repetitions with differ-

ent values of C, different functional forms of time-varying coefficient B (t/T ),

and sample size T = 600. For each of the simulated datasets, we examine

the empirical size for the Wald test of coefficient at the midpoint of time. To

be specific, we consider the joint Wald test under the null hypothesis that all

three coefficients are jointly equal to zero at the midpoint of time. That is, H0:

B (0.5) = (0, 0, 0). The Wald tests are constructed based on four estimators,

including the proposed Sieve-IVX, Sieve-OLS, IVX, and OLS estimators.

Table 3.3 presents the empirical size of the Wald tests in the multivariate
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regression model. First, we focus on the Sieve-IVX-Wald test with various

choices of γ. With the unit-root regressors (C = diag (0, 0, 0)), the size distor-

tions caused by the I(1) persistence are relatively lower and can be entirely

removed by choosing a smaller value of γ. When the mixed-root regressors

(C = diag (0,−10,−50) are considered, we also find a slight oversizing phe-

nomenon when γ is large. The empirical rejection rate peaks around 12% and

doubles the chance of rejecting the null hypothesis. Therefore, this paper sug-

gests choosing the value of γ to be 0.5 to cure the size distortion. On the other

hand, even with a small value of γ, the IVX-Wald test only has size controls

in the case of the time-invariant coefficient but becomes extremely oversized

in the case of the time-varying coefficients, e.g., B (t/T ) = sin
(
πt
T

)
− 1. Sim-

ilarly, the Sieve-OLS-Wald test also exhibits size distortions, especially when

including more persistence regressors.

We also examine the power performance of the Sieve-IVX-Wald tests. Un-

der the joint null hypothesis H0: B (0.5) = (0, 0, 0), we consider the following

sequence of local alternatives to show the power performance of the Sieve-IVX-

Wald tests:

B (0.5) =
δ√
T

(1, 1, 1) , for δ ∈ [−10, 10], (3.14)

with δ = 0 corresponding to the empirical size of the test. Local power func-

tions are computed with three I(1) regressors and the sample size T = 600.

Figure 3.2 presents the local power plots of the Sieve-IVX-Wald tests. The

plot includes the power function for different values of γ and shows a similar

pattern as in the univariate case.

3.6 Conclusion

Recent research has suggested that the stock return predictability via eco-

nomic fundamentals shows time-varying feature. So the inference procedures

dealing with constant parameters or piecewise-constant parameters can re-
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sult in severe size distortions. Our motivation for this paper is to establish a

predictability test, which is robust in terms of the parameter instability and

the mixed-root phenomenon in regressors. In order to eliminate the spurious

predictability induced by model misspecification and the endogenous regres-

sors, our Sieve-IVX approach that combines the IVX estimation and the sieve

approximation shows robust property. The tests rely on the self-generated in-

strument (Phillips & Magdalinos, 2009) and the sieve estimation (Andrews,

1991a; Newey, 1997; Phillips, 1998, 2002, 2007; Chen, 2007; Phillips & Liao,

2012; Belloni et al., 2015; Chen & Christensen, 2015, 2018; Dong & Gao,

2019; Dong et al., 2019, 2020; Li & Liao, 2020). Intuitively, the endogene-

ity problem of the predictive regression results from the spurious relationship

induced by the near-unity persistent regressors, while the self-generated in-

strument eliminates the problem by controlling the persistence of fundamental

variables. The employed sieve method attains the standard asymptotic nor-

mality. Since the limiting distributions of the corresponding statistics follow

the pivotal distributions, the critical values of the chi-square distribution can

be used for predictability inference. The above asymptotic theory holds for a

broad class of innovations. Monte Carlo simulation results demonstrate that

the proposed tests show size controls with finite sample, as well as satisfactory

power performance in detecting temporary predictability.

This paper concludes with two suggestions for future research. First, the

uniform inference procedure is called upon for testing predictability as the

current method is capable of testing a finite set of grid points whose measure

is zero on the whole time interval [0, 1]. Unfortunately, the extension from

the predictive regression models with stationary regressors (Li & Liao, 2020)

to those with the nonstationary regressors is not trivial, since the strong ap-

proximation to the non-Gaussian distribution is still an open question to the

best knowledge of us. Second, the current framework only incorporates a fi-

nite number of regressors, while the discussion of large-dimensional regressors
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is of general interest. Very recently, few papers (Koo et al., 2020; Fan et al.,

2021; Lee et al., 2020) provide relevant results of the large-dimensional predic-

tive regression. Currently, the available results of large-dimensional predictive

regression consider the mixed-root phenomenon where only the dimension of

stationary regressors diverges, while the dimension of nonstationary regressors

is fixed. The abovementioned results can be further strengthened by enlarging

the dimensions of both stationary and nonstationary regressors and applying

the sparsity restriction in parameters. This proposal again raises the technical

difficulty of providing a strong approximation to non-Gaussian approxima-

tion. Therefore, to push the frontier of the predictive regression models in the

context of the large-dimensional predictors, the strong approximation for the

non-Gaussian argument of a diverging dimension remains to be developed.

Tables and Figures
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Table 3.2: Empirical size under the univariate case (d = 1) and sample size
T = 200

β (t/T ) Parameter Est. IVX OLS

γ = 0.5 γ = 0.6 γ = 0.7 γ = 0.8 γ = 0.9

C = 0 Sieves 0.029 0.043 0.046 0.046 0.066 0.148

0 Linear 0.053 0.068 0.07 0.073 0.065 0.064

C = −10 Sieves 0.048 0.059 0.072 0.082 0.084 0.121

α = 0.7 Linear 0.067 0.082 0.088 0.081 0.074 0.068

C = 0 Sieves 0.032 0.044 0.058 0.059 0.076 0.183
t
T
− 1

2
Linear 0.126 0.215 0.339 0.468 0.562 0.867

C = −10 Sieves 0.050 0.059 0.073 0.080 0.086 0.130

α = 0.7 Linear 0.050 0.065 0.085 0.113 0.167 0.345

C = 0 Sieves 0.031 0.044 0.058 0.058 0.062 0.121

sin
(
π t
T

)
− 1 Linear 0.496 0.694 0.798 0.863 0.897 0.998

C = −10 Sieves 0.068 0.081 0.071 0.074 0.080 0.083

α = 0.7 Linear 0.605 0.820 0.933 0.981 0.987 0.997

Table 3.3: Empirical size under multivariate case (d = 3) and sample size
T = 600

β (t/T ) Parameter Est. IVX OLS

γ = 0.5 γ = 0.6 γ = 0.7 γ = 0.8 γ = 0.9

C = 0 Sieves 0.013 0.030 0.047 0.073 0.095 0.442

0 Linear 0.034 0.049 0.062 0.071 0.074 0.166

C = −10 Sieves 0.036 0.050 0.061 0.064 0.078 0.147

α = 0.7 Linear 0.039 0.050 0.056 0.059 0.070 0.082

C = 0 Sieves 0.018 0.034 0.058 0.089 0.120 0.530
t
T
− 1

2
Linear 0.636 0.834 0.928 0.982 0.993 0.999

C = −10 Sieves 0.038 0.056 0.059 0.066 0.081 0.176

α = 0.7 Linear 0.317 0.502 0.670 0.800 0.869 0.977

C = 0 Sieves 0.038 0.079 0.107 0.151 0.181 0.337

sin
(
π t
T

)
− 1 Linear 0.891 0.967 0.99 0.997 0.999 1.000

C = −10 Sieves 0.057 0.076 0.097 0.117 0.124 0.166

α = 0.7 Linear 0.947 0.969 0.977 0.990 0.995 1.000
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Figure 3.1: Local power function for testing with univariate unit root regressor

Figure 3.2: Local power function for testing with multivariate regressors
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Appendix A

Technical Results for Chapter 1

Proof of the main results

In this appendix We show the technical proofs for IVX method under FLUR,

FMER and FMSR cases.

Proof for FLUR

Lemma A.1. If Assumptions 1.1 and 1.2 hold, as T →∞,

sup
1≤t≤T

E
∥∥∥η(1)

T,t−1

∥∥∥2

= Op

(
T 2γ+1

)
.

Proof of Lemma A.1: Set x0 = 0. The inter-temporal summation of

innovations is given as

xj−1 =

j−2∑
k=1

(
j−1∏

m=k+1

RTm

)
uxk + ux,j−1.

Based on the inter-temporal accumulations, we have∥∥∥η(1)
T,t−1

∥∥∥2

= tr

{
t−1∑
i,j=1

Rt−i−1
Tz C

(
i

T

)(
xi−1x

′
j−1

)
C

(
j

T

)
Rt−j−1
Tz

}

≤ M

t−1∑
i,j=1

j∑
k=1

i∑
l=1

∥∥∥∥Rt−j−1
Tz C

(
i

T

)∥∥∥∥
∞

∥∥∥∥Rt−i−1
Tz C

(
j

T

)∥∥∥∥
∞

∥∥∥R(j−k)
Tt

∥∥∥
∞

∥∥∥R(i−l)
Tt

∥∥∥
∞
‖uxku′xl‖ ,
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where

R
(j−k)
Tt :=

j∏
m=k+1

RTm and R
(i−l)
Tt :=

i∏
m=l+1

RTm,

and some M < ∞. If Assumptions 1.1 and 1.2 hold for any i ∈ {1, 2, ..., n},

we have

1

T γ

T∑
j=1

∥∥∥∥RT−j−1
Tz C

(
j

T

)∥∥∥∥
∞

=

∫ +∞

0

∥∥erCzC (r)
∥∥
∞ dr + o (1) < +∞.

Therefore we justify the stochastic order of the term as,

sup
1≤t≤T

t∑
j=1

∥∥∥∥Rt−j−1
Tz C

(
j

T

)∥∥∥∥
∞

= Op (T γ) .

Similarly, by Assumptions 1.1 and 1.2, we have

1

T
sup

1≤t≤T

t−1∑
j=1

∥∥∥R(t−j)
T,t−1

∥∥∥
∞

= sup
0≤r≤1

1

T

[Tr]∑
j=1

∥∥∥R([Tr]−j)
T,t−1

∥∥∥
∞

=
1

T
sup

0≤r≤1

[Tr]∑
j=1

∥∥∥∥∥∥exp

 [Tr]∑
m=j+1

C
(m
T

)∥∥∥∥∥∥
∞

= sup
0≤r≤1

[Tr]∑
j=1

1

T

∥∥∥∥∥∥exp

 [Tr]∑
m=1

C
(m
T

)∥∥∥∥∥∥
∞

∥∥∥∥∥exp

(
−

j∑
m=1

C
(m
T

))∥∥∥∥∥
∞

= sup
0≤r≤1

∥∥∥∥exp

(∫ r

0

C (s) ds

)∥∥∥∥
∞
·
∥∥∥∥∫ r

0

exp

(∫ p

0

C (q) dq

)
dp

∥∥∥∥
∞

+ op (1) <∞,

and

sup
1≤t≤T

t∑
j=1

∥∥∥R(t−j)
T,t−1

∥∥∥
∞

= Op (T ) .

According to the formulation of innovations, we have

+∞∑
l=−∞

‖Γux (l)‖ < +∞,

where Γux (l) = E
(
uxtu

′
xt−l
)
. Combining the asymptotic results above, the
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stochastic order of IVX residual is justified as

sup
1≤t≤T

E
∥∥∥η(1)

T,t−1

∥∥∥2

≤

(
sup

1≤t≤T

t−1∑
j=1

∥∥∥∥Rt−j−1
Tz C

(
j

T

)∥∥∥∥
)2(

sup
1≤t≤T

t∑
k=1

∥∥∥R(t−k)
Tt

∥∥∥) +∞∑
l=−∞

‖Γux (l)‖

= Op

(
T 1+2γ

)
.

�

Proof of Lemma 1.1: (i) According to Lemma A.1 and the mds property

of u0t, it is easy to verify that

T∑
t=1

zt−1u0t = Op

(
T

1+γ
2

)
and

T∑
t=1

η
(1)
T,t−1u0t = Op

(
T 1+γ

)
.

(ii) Based on Lemma A.1,

T∑
t=1

zt−1z
′
t−1 = Op

(
T 1+γ

)
and

T∑
t=1

η
(1)
T,t−1

(
η

(1)
T,t−1

)′
= Op

(
T 2+2γ

)
,

as T →∞. For the covariance term, we have∥∥∥∥∥
T∑
t=1

zt−1

(
η

(1)
T,t−1

)′∥∥∥∥∥ ≤
(

T∑
t=1

‖zt−1‖2
2

) 1
2
(

T∑
t=1

∥∥∥η(1)
T,t−1

∥∥∥2

2

) 1
2

= Op

(
T

3γ+3
2

)
,

by Cauchy-Schwarz inequality. Therefore we have
∑T

t=1 zt−1

(
η

(1)
T,t−1

)′
= Op

(
T

3γ+3
2

)
.

By combining above results, we can verify that

1

T 1+γ

T∑
t=1

z̃t−1z̃
′
t−1 =

1

T 1+γ

T∑
t=1

zt−1z
′
t−1 +

1

T 2+γ

[
T∑
t=1

zt−1

(
η

(1)
T,t−1

)′
+

T∑
t=1

η
(1)
T,t−1z

′
t−1

]

+
1

T 3+γ

T∑
t=1

η
(1)
T,t−1η

(1)′
T,t−1

=
1

T 1+γ

T∑
t=1

zt−1z
′
t−1 + op(1).

(iii) We can decompose the IVX denominator into two terms. The first part

follows the derivations as,

ztx
′
t = RTzzt−1x

′
t−1RTt +RTzzt−1uxt + uxtx

′
t−1RTt + uxtu

′
xt.
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By taking summations across time horizon,[
−Cz
T γ

+ o

(
1

T γ

)] T∑
t=1

zt−1x
′
t−1

= RTzz0x
′
0 − zTx′T +RTz

T∑
t=1

zt−1uxt +
T∑
t=1

uxtx
′
t−1 +

T∑
t=1

uxtu
′
xt.

Therefore, we have the following approximation as,

1

T 1+γ

T∑
t=1

zt−1x
′
t−1 = −

[
1

T

T∑
t=1

uxtx
′
t−1 +

1

T

T∑
t=1

uxtu
′
xt + op (1)

]
C−1
z .

Similarly, for the second term involving η
(1)
T,t−1,

η
(1)
T,t−1x

′
t−1 = RTzη

(1)
T,t−1x

′
t−1RTt+RTzη

(1)
T,t−1u

′
xt+C

(
t

T

)
xt−1x

′
t−1RTt+C

(
t

T

)
xt−1u

′
xt.

We take summations across time horizon as[
−Cz
T γ

+ o

(
1

T γ

)] T∑
t=1

η
(1)
T,t−1x

′
t−1

= RTzη
(1)
T,0x

′
0 − η

(1)
T,Tx

′
T +RTz

T∑
t=1

η
(1)
T,t−1uxt +

T∑
t=1

C

(
t

T

)
xt−1x

′
t−1 +

T∑
t=1

C

(
t

T

)
xt−1u

′
xt.

Finally, we derive a similar approximation as follows,

1

T 2+γ

T∑
t=1

η
(1)
T,t−1x

′
t−1 = −

T∑
t=1

C

(
t

T

)
xt−1x

′
t−1C

−1
z + op (1) .

�

Proof of Theorem 1.1: (i) is verified by PM;

(ii) can be obtained by applying Lemma 1.1. As T →∞,

1

T 1+γ

T∑
t=1

zt−1x
′
t−1 = −

[
1

T

T∑
t=1

uxtx
′
t−1 +

1

T

T∑
t=1

uxtu
′
xt + op (1)

]
C−1
z

⇒ −
(∫ 1

0

dBx(r)K
′
c (r) dr + Ωxx

)
C−1
z ,

and

1

T 2+γ

T∑
t=1

η
(1)
T,t−1x

′
t−1 = −

[
1

T 2

T∑
t=1

C

(
t

T

)
xt−1x

′
t−1 + op (1)

]
C−1
z

⇒ −
∫ 1

0

C (r)Kc (r)K ′c (r) drC−1
z .

(iii) is easily derived based on (i) and (ii); (iv) is a natural extension of (iii).
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�

Proof for FMER

Proof of Lemma 1.2: Since εj is assumed to be mds, we can apply the

martingale central limit theorem.

(i) Stability condition: When kT
T

+ 1
kT
→ 0,

E

∥∥∥∥∥ 1

Tα/2

kT∑
j=1

[
exp

(
− 1
Tα

kT∑
l=kT−j+1

C

(
kT − l + 1

T

))]
Fx(1)εj

∥∥∥∥∥
2


= Etr

{
1

Tα

kT∑
j=1

Fx(1)εjε
′

jF
′

x(1)

[
exp

(
− 2
Tα

kT∑
l=kT−j+1

C

(
kT − l + 1

T

))]}

≤ 1

Tα

kT∑
j=1

∥∥∥∥∥exp

(
− 2
Tα

kT∑
l=kT−j+1

C

(
kT − l + 1

T

))∥∥∥∥∥
∞

· ‖Ωxx‖

=

∫ [Tr]/Tα

1/Tα

∥∥∥∥exp

(
−2

∫ z

0

C

(
x
kT
T

)
dx

)∥∥∥∥
∞
dz · ‖Ωxx‖+ op (1)

→
∫ +∞

0

‖exp (−2zC (0))‖∞ dz · ‖Ωxx‖ .

Therefore, we have

1

Tα
x̃kT x̃

′
kT
⇒
∫ +∞

0

e−C(0)pΩxxe
−C(0)pdp,

where
∫ +∞

0
e−C(0)pΩxxe

−C(0)pdp is a constant matrix. We show the stability

condition.

87



(ii) Lindeberg condition: For arbitrary δ > 0, as T → +∞,

1

Tα

kT∑
j=1

E



∥∥∥∥∥exp

(
− 1
Tα

kT∑
l=kT−j+1

C
(
kT−l+1

T

))
Fx (1) εj

∥∥∥∥∥
2

·1

[
‖εj‖ > δT

α
2 exp

(
1
Tα

kT∑
l=kT−j+1

C
(

[Tr]−l+1
T

))]


≤ 1

Tα

kT∑
j=1

∥∥∥∥∥exp

(
− 2

Tα

kT∑
l=kT−j+1

C

(
kT − l + 1

T

))∥∥∥∥∥
∞

E ‖εj‖2

1

{
‖εj‖ > δTα/2 exp

[
1

Tα

kT∑
l=kT−j+1

C

(
kT − l + 1

T

)]}

≤ 1

Tα

kT∑
j=1

∥∥∥∥∥exp

(
− 2

Tα

kT∑
l=kT−j+1

C

(
kT − l + 1

T

))∥∥∥∥∥
∞

E ‖εj‖2 1
[
‖εj‖ > δTα/2

]
≤ T

Tα
1

T

[Tr]∑
j=1

∥∥∥∥∥∥exp

− 2

Tα

[Tr]∑
l=[Tr]−j+1

C

(
T [r]− l + 1

T

)∥∥∥∥∥∥
∞

E ‖εj‖2 1
[
‖εj‖2 > δ2Tα

]
=

T

Tα

∫ r

0

∥∥∥∥exp

(
−2T

Tα

∫ s

0

C (a) da

)∥∥∥∥
∞
ds · E ‖εj‖2 1

[
‖εj‖ > δ2Tα

]
+ op (1)

≤ 1

2 ‖C (0)‖∞
E
[
‖εj‖2 1

(
‖εj‖2 > δ2Tα

)]
→ 0.

Therefore we successfully verify the Lindeberg condition. Summarizing (i) and

(ii), we apply the martingale central limit theorem and have the following limit

theory

x̄kT
d→ N

(
0,

∫ +∞

0

e−C(0)pΩxxe
−C(0)pdp

)
.

�

Proof of Lemma 1.3: The proof follows PL. For kT ≤ j − 1 ≤ T ,

x̄j−1 =
1

Tα/2
ˆ̄xj−1 =

1

Tα/2

j−1∑
i=1

exp

[
− 1

Tα

j−1∑
l=j−i

C

(
j − l
T

)]
ux,i−1, (A.1)

where

ˆ̄xj−1 := exp

[
1

Tα

j−1∑
i=1

C

(
i

T

)]
xj−1. (A.2)

By (A.1), (A.2) and Beveridge-Nelson decomposition in Phillips and Solo

88



(1992), we get the following expansion,

1

Tα/2
xj−1 =

j−1∑
i=1

1

Tα/2
exp

[
− 1

Tα/2

j−1∑
i=j−i

C

(
j − l
T

)]
Fx (1) εi−1

− 1

Tα/2

j−1∑
i=1

exp

[
− 1

Tα/2

j−1∑
i=j−i

C

(
j − l
T

)]
∆ε̃i−1.

We define φT (r) := 1√
T
S[Tr] = 1√

T

∑[Tr]
i=1 εi. According to Zaitsev (1998), for

some q ≥ 4, there is a Brownian motion adapted to the expanded probability

space by a strong approximation. We construct a Brownian motion B (r) for

some q ≥ 4 with the following uniform approximations

sup
0≤r≤1

(∥∥∥∥ 1√
T
S[Tr] −B (r)

∥∥∥∥) = Oa.s.

(
T−

1
2

+ 1
q

+ε
)

.

For each t = 1, 2, ..., T , we define

et√
T

:= B

(
t

T

)
−B

(
t− 1

T

)
and dt = RTtdt−1 + vt,

where vt = Fx (1) et −∆ẽt. Similarly, we have

1

Tα/2
exp

[
− 1

Tα

j−1∑
i=1

C

(
i

T

)]
dj−1

=

j−1∑
i=1

1

Tα/2
exp

[
− 1

Tα/2

j−1∑
l=j−i

C

(
j − l
T

)]
Fx (1) ei−1 −

j−1∑
i=1

1

Tα/2
exp

[
− 1

Tα/2

j−1∑
l=j−i

C

(
j − l
T

)]
∆ẽi−1.

By triangle inequality, we bound the difference between the empirical process

and its limiting process as follows,
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∥∥∥∥ ˆ̄xj−1

Tα/2
−XC(0)

∥∥∥∥
≤

∥∥∥∥∥∥∥∥∥∥
j−1∑
i=1

1
Tα/2

exp

[
− 1
Tα

j−1∑
l=j−i

C
(
j−l
T

)]
Fx (1) εi−

j−1∑
i=1

1
Tα/2

exp

[
− 1
Tα

j−1∑
l=j−i

C
(
j−l
T

)]
Fx (1) ei

∥∥∥∥∥∥∥∥∥∥
+

∥∥∥∥∥
j−1∑
i=1

1

Tα/2
exp

[
− 1

Tα

j−1∑
l=j−i

C

(
j − l
T

)]
Fx (1) ei −XC(0)

∥∥∥∥∥
+

∥∥∥∥∥ 1

Tα/2

j−1∑
i=1

exp

[
− 1

Tα

j−1∑
l=j−i

C

(
j − l
T

)]
∆ε̃i

∥∥∥∥∥
+

∥∥∥∥∥ 1

Tα/2

j−1∑
i=1

exp

[
− 1

Tα

j−1∑
l=j−i

C

(
j − l
T

)]
∆ẽi

∥∥∥∥∥
= : (B.1) + (B.2) + (B.3) + (B.4) .

(i) For the term of (B.1), we intend to show

sup
kT≤j−1≤T

∥∥∥∥∥ 1

Tα/2

j−1∑
i=1

exp

[
− 1

Tα

j−1∑
l=j−i

C

(
j − l
T

)]
(Fx (1) εi − Fx (1) ei)

∥∥∥∥∥ = oa.s (1) .

First, for the empirical process, we have

1

Tα/2

j−1∑
i=1

exp

[
− 1

Tα

j−1∑
l=j−i

C

(
j − l
T

)]
Fx (1) εi

=
1

T
α−1
2

j−1∑
i=1

exp

[
− 1

Tα

j−1∑
l=j−i

C

(
j − l
T

)]
Fx (1)

[
φT

(
i

T

)
− φT

(
i− 1

T

)]

=

√
T

Tα/2

j−1∑
i=1

exp

[
− 1

Tα

j−1∑
l=j−i

C

(
j − l
T

)]
Fx (1)φT

(
i

T

)

−
√
T

Tα/2

j−2∑
i=1

exp

[
− 1

Tα

j−1∑
l=j−i+1

C

(
j − l
T

)]
Fx (1)φT

(
i

T

)

=

√
T

Tα/2
exp

[
− 1

Tα

j−1∑
l=1

C

(
j − l
T

)]
Fx (1)φT

(
j − 1

T

)

+

√
T

Tα/2

j−2∑
i=1

exp

[
− 1

Tα

j−1∑
l=j−i+1

C

(
j − l
T

)]{
exp

[
1

Tα
C

(
i− 1

T

)]
− In

}
Fx (1)φT

(
i

T

)
.
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Second, for the limiting process, we have

1

Tα/2

j−1∑
i=1

exp

[
− 1

Tα

j−1∑
l=j−i

C

(
j − l
T

)]
Fx (1) ei

=

√
T

Tα/2
exp

[
− 1

Tα

j−1∑
l=1

C

(
j − l
T

)]
Fx (1)B

(
j − 1

T

)

+

√
T

Tα/2

j−2∑
i=1

exp

[
− 1

Tα

j−1∑
l=j−i+1

C

(
j − l
T

)]{
exp

[
1

Tα
C

(
i− 1

T

)]
− In

}
Fx (1)B

(
j

T

)
.

Therefore, the distance between empirical process and limiting process is bounded

as follows,∥∥∥∥∥ 1

Tα/2

j−1∑
i=1

exp

[
− 1

Tα

j−1∑
l=j−i

C

(
j − l
T

)]
[Fx (1) εi − Fx (1) ei]

∥∥∥∥∥
≤
√
T

Tα/2
‖Fx (1)‖∞

[
sup

0≤r≤1
‖φT (r)−B (r)‖

]
·

j−2∑
i=1

∥∥∥∥∥exp

[
− 1

Tα

j−1∑
l=j−i+1

C

(
j − l
T

)]
·
{

exp

[
1

Tα
C

(
i

T

)]
− In

}∥∥∥∥∥
∞︸ ︷︷ ︸

(B.1.1)

+

√
T

Tα/2
‖Fx (1)‖∞

[
sup

0≤r≤1
‖φT (r)−B (r)‖

] ∥∥∥∥∥exp

[
− 1

Tα

j−1∑
l=1

C

(
j − l
T

)]∥∥∥∥∥
∞︸ ︷︷ ︸

(B.1.2)

.

When kT ≤ j − 1 ≤ T , for the term of (B.1.1), we have

j−2∑
i=1

∥∥∥∥∥exp

[
− 1

Tα

j−1∑
l=j−i+1

C

(
j − l
T

)][
exp

[
C (i/T )

Tα

]
− In

]∥∥∥∥∥
∞

=

j−2∑
i=1

∥∥∥∥∥exp

[
− 1

Tα

i−1∑
l=1

C

(
l

T

)][
exp

[
C (i/T )

Tα

]
− In

]∥∥∥∥∥
∞

≈
∫ j−2

Tα

0

∥∥∥∥exp

[
−
∫ z

0

C

(
x
Tα

T

)
dx

]
C

(
zTα

T

)∥∥∥∥
∞
dz + o (1)

≈
∫ +∞

0

∥∥∥∥exp

[
−
∫ z

0

C (0) dx

]
C (0)

∥∥∥∥
∞
dz

=

∫ +∞

0

‖exp [−zC (0)]C (0)‖∞ dz = O (1) , (A.3)
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where j − 1 > Tα holds. Similarly, we have∥∥∥∥∥exp

[
− 1

Tα

j−1∑
l=1

C

(
j − l
T

)]∥∥∥∥∥
∞

∼
∥∥∥∥exp

[
−
∫ +∞

0

C

(
zTα

T

)
dz

]∥∥∥∥
∞

= O (1) ,

(A.4)

due to the rate restriction j − 1 > Tα. Moreover, with rate restriction αq > 2,

the Skorohod embedding theorem illustrates the uniform approximations of

Brownian motion as

√
T

Tα/2

[
sup

0≤r≤1
‖φT (r)−B (r)‖

]
= oa.s. (1) . (A.5)

Combining (A.3) (A.4) and (A.5), we can justify that (B.1) = oa.s. (1).

(ii) We are supposed to check that the following two arguments, (B.3) and

(B.4), are asymptotically negligible as,

sup
kT≤j−1≤T

∥∥∥∥∥ 1

Tα/2

j−1∑
i=1

exp

[
− 1

Tα

j−1∑
l=j−i

C

(
j − l
T

)]
∆ε̃i−1

∥∥∥∥∥ = oa.s. (1) ,(A.6)

sup
kT≤j−1≤T

∥∥∥∥∥ 1

Tα/2

j−1∑
i=1

exp

[
− 1

Tα

j−1∑
l=j−i

C

(
j − l
T

)]
∆ẽi−1

∥∥∥∥∥ = oa.s. (1) .(A.7)

Since (A.7) and (A.6) share identical derivations, without loss of generality,

we concentrate on (A.6). We decompose

sup
kT≤j−1≤T

∥∥∥∥∥ 1

Tα/2

j−1∑
i=1

exp

[
− 1

Tα

j−1∑
l=j−i

C

(
j − l
T

)]
∆ε̃i−1

∥∥∥∥∥ ,

into three terms as (C.1), (C.2) and (C.3) as,

1

Tα/2

j−1∑
i=1

exp

[
− 1

Tα

j−1∑
l=j−i

C

(
j − l
T

)]
∆ε̃i−1

=
1

Tα/2

j−1∑
i=1

{
exp

[
− 1

Tα

j−1∑
l=j−i

C

(
j − l
T

)]
− exp

[
− 1

Tα

j−1∑
l=j−i+1

C

(
j − l
T

)]}
ε̃i

+
1

Tα/2
exp

[
− 1

Tα

j−1∑
l=j−i

C

(
j − l
T

)]
ε̃j−1 −

1

Tα/2
exp

[
− 1

Tα
C

(
1

T

)]
ε̃0

= (C.1) + (C.2)− (C.3) .

For (C.3) , based on the summability assumptions on innovations, we have

P

(∥∥∥∥ 1

Tα/2
ε̃t

∥∥∥∥ > ε

)
≤ E ‖ε̃t‖q

Tαq/2εq
= O

(
1

Tαq/2

)
= o (1) .

92



With αq > 2, Borel-Cantelli lemma applies as

∞∑
t=1

Pr

(∥∥∥∥ 1

Tα/2
ε̃t

∥∥∥∥ > ε

)
≤

∞∑
t=1

O

(
1

Tαq/2

)
<∞. (A.8)

Based on the fact that
∥∥exp

[
− 1
Tα
C
(

1
T

)]∥∥ = o(1) and (A.8), we have the

following argument∥∥∥∥exp

[
− 1

Tα
C

(
1

T

)]
1

Tα/2
ε̃0

∥∥∥∥ = oa.s. (1) .

Similarly, for (C.2), with Tα ≤ kT ≤ j − 1 ≤ T , we have

exp

[
− 1

Tα

j−1∑
l=1

C

(
j − l
T

)]
= o (1) .

By Borel-Cantelli lemma, the following argument holds∥∥∥∥∥ 1

Tα/2
exp

[
− 1

Tα

j−1∑
l=1

C

(
j − l
T

)]
ε̃j−1

∥∥∥∥∥ = oa.s. (1) .

For (C.1), if kT ≤ j − 1 ≤ T holds, we have∥∥∥∥∥ 1

Tα/2

j−1∑
i=1

{
exp

[
− 1

Tα

j−1∑
l=j−i

C

(
j − l
T

)]
− exp

[
− 1

Tα

j−1∑
l=j−i+1

C

(
j − l
T

)]}
ε̃i

∥∥∥∥∥
=

∥∥∥∥∥ 1

Tα/2

j−1∑
i=1

{
exp

[
− 1

Tα

j−1∑
l=j−i+1

C

(
j − l
T

)][
exp

(
1

Tα
C

(
i

T

))
− In

]}
ε̃i

∥∥∥∥∥
∼

∥∥∥∥∥ 1

T 3α/2

j−1∑
i=1

{
exp

[
− 1

Tα

j−1∑
l=j−i+1

C

(
j − l
T

)]
C

(
i

T

)}
ε̃i

∥∥∥∥∥
∼ oa.s.(1), (A.9)

where the following fact holds,

1

Tα

j−1∑
i=1

{
exp

[
− 1

Tα

j−1∑
l=j−i+1

C

(
j − l
T

)]
C

(
i

T

)}
∼
∫ +∞

0

exp [−qC (0)]C (0) dq < +∞.

Similarly, if kT ≤ j − 1 ≤ T , it shows that∥∥∥∥∥ 1

T 3α/2

j−1∑
i=1

{
exp

[
− 1

Tα

j−1∑
l=j−i+1

C

(
j − l
T

)]
C

(
i

T

)}
ε̃i−1

∥∥∥∥∥ ∼ Oa.s.

(
1

Tα/2

)
.

(A.10)
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Combining (A.9) and (A.10), we have the aysmptotic negligible term as

sup
kT≤j−1≤T

∥∥∥∥∥ 1

Tα/2

j−1∑
i=1

exp

[
− 1

Tα

j−1∑
l=j−i

C

(
j − l
T

)]
∆ε̃i−1

∥∥∥∥∥ = oa.s. (1) .

Similar derivations apply for ∆ẽi−1 as

sup
kT≤j−1≤T

∥∥∥∥∥ 1

Tα/2

j−1∑
i=1

exp

[
− 1

Tα

j−1∑
l=j−i

C

(
j − l
T

)]
∆ẽi−1

∥∥∥∥∥ = oa.s. (1) .

(iii) To prove that

sup
kT≤j−1≤T

∥∥∥∥∥
j−1∑
i=1

1

Tα/2
exp

[
− 1

Tα

j−1∑
l=j−i

C

(
j − l
T

)]
Fx (1) ei −XC(0)

∥∥∥∥∥ = oa.s. (1) ,

where the martingale central limit theorem can be applied to show pointwise

convergence. Based on pointwise convergence, the uniform approximations can

be justified as what we did for Lemma 1.2. �

Proof of Lemma 1.4: For IVX residual η
(1)
T,t =

∑t
j=1RTzC

(
j+1
T

)
xj, we

justify the following uniform approximation as

1

T
α
2

+(α∧γ)
exp

(
− 1
Ta

t∑
i=1

C

(
i

T

))
η

(1)
T,t

=
1

T
α
2

+(α∧γ)
exp

(
− 1
Ta

t∑
i=1

C

(
i

T

)) t∑
j=kT+1

Rt−j
Tz C

(
j

T

)
xj−1 + op (1) ,

where the following asymptotic negligibility holds as,∥∥∥∥∥ 1

T
α
2

+(α∧γ)
exp

(
− 1
Ta

t∑
i=1

C

(
i

T

)) kT∑
j=1

Rt−j
Tz C

(
j

T

)
xj−1

∥∥∥∥∥
≤ sup

j−1

∥∥∥∥∥ 1

Tα/2
exp

(
− 1

Tα

j−1∑
i=1

C

(
i

T

))
xj−1

∥∥∥∥∥ 1

Tα∧γ

∥∥∥∥∥
kT∑
j=1

Rt−j
Tz exp

(
− 1

T a

t∑
i=j

C

(
i

T

))∥∥∥∥∥
∞

≤ sup
j−1

∥∥∥∥∥ 1

Tα/2
exp

(
− 1

Tα

j−1∑
i=1

C

(
i

T

))
xj−1

∥∥∥∥∥ 1

Tα∧γ

∥∥∥∥∥
kT∑
j=1

Rt−j
Tz R

t−j

∥∥∥∥∥
∞

= op(1), (A.11)

and R := exp
(
C
Tα

)
with C = c · In and ci < c for all i = 1, 2, ..., n. The last

line of asymptotic negligibility in (A.11) is due to the following two facts:

sup
j−1

∥∥∥∥∥ 1

Tα/2
exp

(
− 1

Tα

j−1∑
i=1

C

(
i

T

))
xj−1

∥∥∥∥∥ = Op (1) ,
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and∥∥∥∥∥
kT∑
j=1

Rt−j
Tz R

t−j

∥∥∥∥∥
∞

= O

(
1

Tα∧γ
‖RTz‖t−1

∞ ‖R‖
−t
∞
‖RTz‖kT∞ ‖R‖

kT
∞ − 1

‖RTz‖−1
∞ ‖R‖

−1
∞

)

= O

(
‖RTz‖t−kT−1

∞ ‖R‖kT−t∞ − ‖R‖−t∞ ‖RTz‖t−1
∞

Tα∧γ
(
‖RTz‖−1

∞ ‖R‖
−1
∞ − 1

) )
= o (1) . (A.12)

We discuss the validity of (A.12) as follows: When Tα

kT
+ T γ

kT
→ 0, we have

‖R‖−kT∞ → 0, ‖RTz‖kT∞ → 0, and

Tα∧γ
(
‖RTz‖−1

∞ ‖R‖∞ − 1
)

= Tα∧γ
( 1

Tα
max ci − 1

T γ
max czi

1 + 1
T γ

max czi

)

→


−max (czi)

max (ci)

max (ci)−max (czi)

if α > γ,

if α < γ,

if α = γ.

Therefore we verify the boundedness of the denominator in (A.12). To jus-

tify the asymptotic negligibility of the numerator in (A.12), we introduce the

following decomposition as

‖RTz‖t−kT∞ ‖R‖kT−t∞ = O

(
exp

(
max (czi)

t− kT
T γ

)
exp

(
−max (ci)

t− kT
Tα

))
,

where the following rate restriction t−kT
T γ

+ t−kT
Tα
→ 0 holds. Therefore, for any

t ∈ [kT , T ], we have ‖RTz‖t∞ ‖R‖
−t
∞ = o (1) and ‖RTz‖t−kT∞ ‖R‖kT−t∞ = o (1).

Based on the arguments above, we justify the asymptotic negligibility of (A.11)

as

T−
α+2(α∧γ)

2 exp

[
− 1

Tα

t∑
i=1

C

(
i

T

) kT∑
j=1

C

(
j + 1

T

)
xj

]
= op (1) . (A.13)

Based on (A.13), we apply the approximation and justify the asymptotics of
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IVX residuals. We provide details as follows,

1

T
α
2

+(α∧γ)
exp

[
− 1

Tα

t∑
i=1

C

(
i

T

)]
η

(1)
T,t

=
1

T
α
2

+(α∧γ)
exp

[
− 1

Tα

t∑
i=1

C

(
i

T

)] t∑
j=kT+1

Rt−j
Tz C

(
j

T

)
xj−1 + op (1)

=
1

T
α
2

+(α∧γ)
exp

[
− 1

Tα

t∑
i=1

C

(
i

T

)] t∑
j=kT+1

Rt−j
Tz C

(
j

T

)
exp

[
1

Tα

j−1∑
i=1

C

(
i

T

)]

·

{
exp

[
− 1

Tα

j−1∑
i=1

C

(
i

T

)]
xj−1

}
+ op (1)

=
1

T (α∧γ)
exp

[
− 1

Tα

t∑
i=1

C

(
i

T

)] t∑
j=1

Rt−j
Tz C

(
j

T

)
exp

[
1

Tα

j−1∑
i=1

C

(
i

T

)]
XC(0) + op (1) .

Note that

1

T (α∧γ)
exp

[
− 1

Tα

t∑
i=1

C

(
i

T

)] t∑
j=1

Rt−j
Tz C

(
j

T

)
exp

[
1

Tα

j−1∑
i=1

C

(
i

T

)]

=
1

T (α∧γ)
diag


t∑

j=1

exp
(
cz
T γ

)t−j
exp

[
− 1
Tα

t∑
i=1

c1

(
i
T

)]
c1

(
j
T

)
exp

[
1
Tα

j−1∑
i=1

c1

(
i
T

)]
, . . . ,

t∑
j=1

exp
(
cz
T γ

)t−j
exp

[
− 1
Tα

t∑
i=1

cn
(
i
T

)]
cn
(
j
T

)
exp

[
1
Tα

j−1∑
i=1

cn
(
i
T

)]
 .

For any persistent regressor 1 ≤ m ≤ n, we have

1

T (α∧γ)

t∑
j=1

exp
( cz
T γ

)t−j
exp

[
− 1

Tα

t∑
i=1

cm

(
i

T

)]
cm

(
j

T

)
exp

[
1

Tα

j−1∑
i=1

cm

(
i

T

)]

=
1

T (α∧γ)

t∑
j=1

exp

[
(t− j) cz

T γ

]
cm

(
j

T

)
exp

[
− 1

Tα

t∑
i=j

cm

(
i

T

)]

=
1

T (α∧γ)

t∑
j=1

exp

[
1

Tα+γ

(
(t− j) czTα − T γ

t∑
i=j

cm

(
i

T

))]
cm

(
j

T

)
.

(i) If α > γ,

1

T (α∧γ)

t∑
j=1

exp

[
1

Tα+γ

(
(t− j) czTα − T γ

t∑
i=j

cm

(
i

T

))]
cm

(
j

T

)

=
1

T (α∧γ)

t∑
j=1

exp

[
(t− j) cz

T γ
−O

(
t− j
Tα

)]
cm

(
j

T

)

∼ 1

T (α∧γ)

t∑
j=1

exp

[
(t− j) cz

T γ

]
cm

(
j

T

)
=

t/T (α∧γ)∑
j=1/T (α∧γ)

exp

[
(t− j) cz

T γ

]
cm

(
j

T

)
.(A.14)
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Since 1
T (α∧γ) ≤ j ≤ t

T (α∧γ) holds, we have cm
(
j
T

)
→ cm (0) as T →∞. Equation

(A.14) can be computed as,

t/T (α∧γ)∑
j=1/T (α∧γ)

exp

[
(t− j) cz

T γ

]
cm

(
j

T

)
∼

t/T (α∧γ)∑
j=1/T (α∧γ)

exp

[
(t− j) cz

T γ

]
cm (0)→ −cm (0)

cz
.

(ii) If α < γ,

1

T (α∧γ)

t∑
j=1

exp

[
1

Tα+γ

[
(t− j) czTα − T γ

t∑
i=j

cm

(
i

T

)]]
cm

(
j

T

)

=
1

T (α∧γ)

t∑
j=1

exp

[
O

(
t− j
T γ

)
− 1

Tα

t∑
i=j

cm

(
i

T

)]
cm

(
j

T

)

∼ 1

T (α∧γ)

t∑
j=1

exp

[
− 1

Tα

t∑
i=j

cm

(
i

T

)]
cm

(
j

T

)

∼
t/T (α∧γ)∑

j=1/T (α∧γ)

exp

[
− 1

Tα

t∑
i=j

cm

(
i

T

)]
cm (0)

=

t/T (α∧γ)∑
j=1/T (α∧γ)

exp

− t/Tα∑
i=j/Tα

cm

(
i

T

) cm (0)

=

t/T (α∧γ)∑
j=1/T (α∧γ)

exp

− (t−j)/Tα∑
i=0

cm

(
t− i
T

) cm (0)

=

(t−1)/T (α∧γ)∑
j=1/T (α∧γ)

exp

− (t−j)/Tα∑
i=0

cm

(
t− i
T

) cm (0)

=

∫ (t−1)/T (α∧γ)

0

exp

[∫ j

0

cm

(
t

T
z

)
dz

]
dj · cm (0) + o (1)

→
∫ ∞

0

exp
[
−j · cm (0)

]
dj · cm (0) =

cm (0)

cm (0)
,

where we have cm
(
j
T

)
→ cm (0) due to the following rate restriction 1

T (α∧γ) ≤

j ≤ t
T (α∧γ) .

(iii) If α = γ,

1

Tα

t∑
j=1

exp

[
1

Tα

[
(t− j) cz −

t−j∑
i=0

cm

(
t− i
T

)]]
cm

(
j

T

)

=

∫ (t−1)/T (α∧γ)

0

exp

[
j · cz −

∫ j

0

cm

(
t

T
z

)
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]
dj · cm (0) [1 + o (1)]

→
∫ ∞

0

exp [j · cz − j · cm (0)] dj · cm (0) =
cm (0)

−cz + cm (1)
,
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where we have cm
(
j
T

)
→ cm (0) due to the following rate restriction 1

T (α∧γ) ≤

j ≤ t
T (α∧γ) . We conclude this proof. �

Proof of Lemma 1.5: Due to the dominance of IVX residual in numer-

ator and denominator, with kT defined in Lemma 1.4, we have the following

approximation

1

T (α∧γ)

T∑
t=1

u0tz̃
′
t−1 exp

[
− 1

Tα

T∑
j=1

C

(
j

T

)]
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1

Tα+(α∧γ)
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u0tη
(1)′
T,t−1 exp

[
− 1

T a

T∑
j=1

C

(
j

T
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+ op (1)

=
1

Tα+(α∧γ)

T∑
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u0tη
(1)′
T,t−1 exp

[
− 1

T a

T∑
j=1

C

(
j

T

)]
+ op (1) . (A.15)

The first equality comes from the dominance of the IVX residual in the nu-

merator. The second equality is due to the following derivation∥∥∥∥∥ 1

Tα+(α∧γ)
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T,t−1 exp
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C

(
j
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)]∥∥∥∥∥
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∥∥∥∥∥ 1
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1
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C

(
j

T
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C

(
j

T

)]∥∥∥∥∥
≤ sup
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∥∥∥∥∥ 1
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η

(1)′
T,t−1 exp
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C

(
j
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· 1
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C

(
j

T
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1
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− 1
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C

)∥∥∥∥∥
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1
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T∑
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C
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(
1
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t∑
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C

)∥∥∥∥∥
∞
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(
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C

)∥∥∥∥
∞

)
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where we define C := c · In with inf1≤i≤n infr∈[0,∞) ci(r) > c . As kT−T
Tα
→ −∞,

we have
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(
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∥∥∥∥exp

(
kT − T
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C

)∥∥∥∥
∞

)
= o (1) .
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Therefore,

1
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= op (1) .

(i) Based on (A.15), we have
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T

)]
+ op (1)

=
1

Tα/2

T∑
t=kT

u0t

{
1

Tα/2+(α∧γ)
exp

[
− 1

T a

t−1∑
j=1

C

(
j

T

)]
η

(1)
T,t−1

}′
exp

[
− 1

T a

T∑
j=t

C

(
j

T

)]
+

op (1)

=
1

Tα/2

T∑
t=kT

u0t

[
CαγXC(0) + op (1)

]′
exp

[
− 1

T a

T∑
j=t

C

(
j

T

)]
+ op (1)

=
1

Tα/2

T∑
t=kT

u0t

[
CαγXC(0)

]′
exp

[
− 1

T a

T∑
j=t

C

(
j

T

)]
+ op (1)

=
1

Tα/2

T∑
t=1

u0t

[
CαγXC(0)

]′
exp

[
− 1

T a

T∑
j=t

C

(
j

T

)]
+ op (1)

=
1

Tα/2

T∑
t=1

u0t

[
CαγXC(0)

]′
exp

[
− 1

T a

T−t∑
j=0

C

(
T − j
T

)]
+ op (1)

⇒ MN (0, V ) ,

where 0 ≤ j ≤ T−t
Tα

and 1− T−t
Tα+1 ≤ T−j

T
≤ 1. The variance matrix V follows

V :=

∫ +∞

0

e−pC(1)CαγXC(0)X
′
C(0)Cαγe

−pC(1)dp · Ω00.

(ii) Since the IVX denominator follows the decomposition as,

T∑
t=1

z̃t−1x
′
t−1 =

T∑
t=1

zt−1x
′
t−1 +

1

T a

T∑
t=1

η
(1)
T,t−1x

′
t−1.

By the dominance of exponential rate in IVX residual, we have the following

approximation
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1

Tα+(α∧γ)

T∑
t=1

exp

[
− 1

Tα

T∑
j=1

C

(
j

T

)]
z̃t−1x

′
t−1 exp

[
− 1

Tα

T∑
j=1

C

(
j

T

)]

=
1

Tα+(α∧γ)

T∑
t=1

exp

[
− 1

Tα

T∑
j=1

C

(
j

T

)]
zt−1x

′
t−1 exp

[
− 1

Tα

T∑
j=1

C

(
j

T

)]
+

1

T 2α+(α∧γ)

T∑
t=1

exp

[
− 1

Tα

T∑
j=1

C

(
j

T

)]
η

(1)
T,t−1x

′
t−1 exp

[
− 1

Tα

T∑
j=1

C

(
j

T

)]

=
1

T 2α+(α∧γ)

T∑
t=1

exp

[
− 1

Tα

T∑
j=1

C

(
j

T

)]
η

(1)
T,t−1x

′
t−1 exp

[
− 1

Tα

T∑
j=1

C

(
j

T

)]
+ op (1) .

For the leading term, we have

1

T 2α+(α∧γ)

T∑
t=1

exp

[
− 1

Tα

T∑
j=1

C

(
j

T

)]
η

(1)
T,t−1x

′
t−1 exp

[
− 1

Tα

T∑
j=1

C

(
j

T

)]

=
1

Tα

T∑
t=kT

exp

[
− 1

Tα

T∑
j=t

C

(
j

T

)]{
exp

[
− 1

Tα

t−1∑
j=1

C

(
j

T

)]
xt−1

Tα/2

}

·

{
exp

[
− 1

Tα

t−1∑
j=1

C

(
j

T

)]
η

(1)
T,t−1

Tα/2+(α∧γ)

}′
exp

[
− 1

Tα

T∑
j=t

C

(
j

T

)]
+ op (1)

=
1

Tα

T∑
t=1

exp

[
− 1

Tα

T−t∑
j=0

C

(
T − j
T

)]
XC(0)X

′
C(0) exp

[
− 1

Tα

T−t∑
j=0

C

(
T − j
T

)]
Cαγ + op (1)

=

∫ T/Tα

1/Tα
exp

[
−
∫ p

0

C

(
q
T − Tα

T

)
dq

]
XC(0)X

′
C(0) exp

[
−
∫ p

0

C

(
q
T − Tα

T

)
dq

]
Cαγdp+

op (1)

⇒
∫ +∞

0

e−pC(1)XC(0)X
′
C(0)e

−pC(1)dp · Cαγ =: Φ.

(iii) is proved by continuous mapping theorem based on (i) (ii). �

Proof for FMSR

Proof of Lemma 1.6: Denote the autocovariance matrix of uxt as

Γux (h) = E
(
uxtu

′
xt−h

)
.

We have

E (xjx
′
i) =

j∑
k=2

i∑
l=2

R
(j−k)
Tt Γux (k − l)R(i−l)

Tt ,
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where

R
(j−k)
Tt :=

j∏
m=k+1

RTm and R
(i−l)
Tt :=

i∏
m=l+1

RTm.

The asymptotic upper bound of IVX residual is as

E
∥∥∥η(1)

T,t−1

∥∥∥2

= Etr

{
t−1∑
i,j=1

Rt−i−1
Tz C

(
i

T

)(
xi−1x

′
j−1

)
C

(
j

T

)
Rt−j−1
Tz

}

≤
t−1∑
i,j=1

j∑
k=2

i∑
l=2

∥∥∥∥Rt−j−1
Tz C

(
j

T

)∥∥∥∥
∞

∥∥∥∥Rt−i−1
Tz C

(
i

T

)∥∥∥∥
∞

∥∥∥R(j−k)
Tt

∥∥∥
∞∥∥∥R(i−l)

Tt

∥∥∥
∞
‖Γux (k − l)‖ .

If Assumptions 1.1 and 1.2 hold, we have

1

T γ

t∑
j=1

∥∥∥∥Rt−j−1
Tz C

(
j

T

)∥∥∥∥
∞

=

∫ +∞

0

∥∥erCzC (r)
∥∥
∞ dr + op (1)

≤
(∫ +∞

0

∥∥erCz∥∥2

∞ dr

)1/2(∫ +∞

0

‖C (r)‖2
∞ dr

)1/2

< +∞.

Similarly, we have

1

Tα
sup

0≤r≤1

t∑
j=1

∥∥∥R(t−j)
Tt

∥∥∥
∞

= sup
0≤r≤1

[Tr]/Tα∑
j=1/Tα

∥∥∥∥∥∥exp

[Tr]−j∑
l=1

1

Tα
C

(
[Tr]− l + 1

T

)∥∥∥∥∥∥
∞

≤ 1

Tα
sup

0≤r≤1

[Tr]−[
√
Tα+1]−1∑

j=1

∥∥∥∥∥∥exp

 1

Tα

[Tr]−j∑
l=1

C

(
[Tr]− l + 1

T

)∥∥∥∥∥∥
∞

+
1

Tα
sup

0≤r≤1

[Tr]∑
j=[Tr]−[

√
Tα+1]

∥∥∥∥∥∥exp

 1

Tα

[Tr]−j∑
l=1

C

(
[Tr]− l + 1

T

)∥∥∥∥∥∥
∞

= : (D.1) + (D.2) .

For (D.1), if j ≤ [Tr]−
[√

Tα+1
]
, we have∥∥∥∥∥∥exp

 1

Tα

[Tr]−j∑
l=1

C

(
[Tr]− l + 1

T

)∥∥∥∥∥∥
∞

≤
∥∥∥exp

(
−
√
T 1−αC

)∥∥∥
∞
,
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where C := cIn with c := sup1≤m≤n sup1≤t≤T cm( t
T

) . Due to the dominant

exponential rate, we have

1

Tα

[Tr]−[
√
Tα+1]−1∑

j=1

∥∥∥∥∥∥exp

 1

Tα

[Tr]−j∑
l=1

C

(
[Tr]− l + 1

T

)∥∥∥∥∥∥
∞

≤
[Tr]−

[√
Tα+1

]
Tα

∥∥∥exp
(
−
√
T 1−αC

)∥∥∥
∞

= op(1),

as T → +∞. Next, we consider the second term. If j ≥ [Tr] −
√
Tα+1holds,

then we have j+1
T
≥ [Tr]−

√
Tα+1

T
∼ r. The term C

(
[Tr]−l+1

T

)
∼ C (r) holds

uniformly for any l = 1, 2, . . . , [Tr]− j. Therefore, for (D.2), we have

1

Tα

[Tr]∑
j=[Tr]−[

√
Tα+1]

∥∥∥∥∥∥exp

 1

Tα

[Tr]−j∑
l=1

C

(
[Tr]− l + 1

T

)∥∥∥∥∥∥
∞

∼ 1

Tα

[Tr]∑
j=[Tr]−[

√
Tα+1]

∥∥∥∥exp

[
2C (r)

[Tr]− j
Tα

]∥∥∥∥
∞

∼
∫ √

Tα+1

Tα

0

‖exp [C (r) z]‖∞ dz

→
∫ +∞

0

‖exp [C (r) z]‖∞ dz < +∞.

It illustrates that

sup
1≤t≤T

t−1∑
j=1

∥∥∥R(j−k)
Tt

∥∥∥
∞

= Op (Tα) .

Therefore we discuss the stochastic order of IVX residual in the following two

cases : (i) γ < α; (ii) γ > α. If γ < α holds, then we have

sup
1≤t≤T

E
∥∥∥η(1)

T,t

∥∥∥2

≤

(
sup

1≤t≤T

t∑
i=1

‖RTz‖t−i∞

)2(
sup

1≤t≤T

i∑
k=1

∥∥∥R(j−k)
Tt

∥∥∥
∞

)
+∞∑
l=−∞

‖Γux (l)‖

= Op

(
Tα+2γ

)
.

If γ > α holds, letting j − k = m, we have

sup
1≤t≤T

E
∥∥∥η(1)

T,t

∥∥∥2

≤
t∑

i,j=1

j−2∑
m=0

i∑
l=1

‖RTz‖2t−j−i
∞

∥∥∥R(j−k)
Tt

∥∥∥
∞

∥∥∥R(i−l)
Tt

∥∥∥
∞
‖Γux (k − l)‖ .

102



By the fact that ‖RTz‖t−j ≤ 1,

sup
1≤t≤T

E
∥∥∥η(1)

T,t

∥∥∥2

≤

(
sup

1≤t≤T

t∑
i=1

‖RTz‖t−i∞

)(
sup

1≤t≤T

t−1∑
j=1

∥∥∥R(j−k)
Tt

∥∥∥
∞

)2 +∞∑
l=−∞

‖Γux (l)‖

= Op

(
T 2α+γ

)
.

We complete the proof. �

Proof of Lemma 1.7 : Since
〈

1√
Tα
x[Tr]

〉
→
∫∞

0
ezC(r)Ωxxe

zC(r)dz holds,

we have

1

T 1+α

T∑
t=1

xt−1x
′
t−1 ⇒

∫ 1

0

[∫ ∞
0

ezC(r)Ωxxe
zC(r)dz

]
dr.

(i) According to the decomposition of z̃t−1 with rate restriction α < γ, if x0 = 0

holds, we have

1

T
1+α
2

(
T∑
t=1

z̃t−1u0t −
T∑
t=1

xt−1u0t

)
=

1

T
1+α
2

T∑
t=1

(
Cz
T γ
η

(1)
T,t−1 −R

t
Tzx0

)
u0t

=
1

T
1+α
2

T∑
t=1

Cz
T γ
η

(1)
T,t−1u0t −

1

T
1+α
2

T∑
t=1

Rt
Tzx0u0t

=
1

T
1+α
2

T∑
t=1

Cz
T γ
η

(1)
T,t−1u0t + op (1)

=
1

T
1+α
2

+γ

T∑
t=1

Czη
(1)
T,t−1u0t + op (1) . (A.16)

The leading term of (A.16) is asymptotically negligible, since∥∥∥∥∥ 1

T
1+α
2

+γ

T∑
t=1

η
(1)
T,t−1u0t

∥∥∥∥∥ ≤ sup
1≤t≤T

∥∥∥∥ u0t√
T

∥∥∥∥
∞

sup
1≤t≤T

∥∥∥∥∥η
(1)
T,t−1

Tα+ γ
2

∥∥∥∥∥ 1

T
γ−α
2

= Op

(
1

T
γ−α
2

)
= op (1) .

(ii) By the decomposition of z̃t−1 with rate restriction α < γ, if x0 = 0, we

have the following argument for the sample moment

1

T 1+α

(
T∑
t=1

z̃t−1x
′
t−1 −

T∑
t=1

xt−1x
′
t−1

)

=
1

T 1+α

[
Cz
T γ

T∑
t=1

η
(1)
T,t−1x

′
t−1 −

T∑
t=1

Rt
Tzx0x

′
t−1

]

≤ Cz
T 1+α+γ

T∑
t=1

η
(1)
T,t−1x

′
t−1 +Op

(
1

T 1−γ+α
2

)
. (A.17)

For the leading term of (A.17), we achieve the asymptotic upper bound as
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follows∥∥∥∥∥
T∑
t=1

η
(1)
T,t−1x

′
t−1

∥∥∥∥∥ ≤
T∑
t=1

(
E
∥∥∥η(1)

T,t−1

∥∥∥2
)1/2 (

E ‖xt−1‖2)1/2
= Op

(
T 1+α+ γ

2
+α

2

)
.

Therefore, Cz
T 1+α+γ

∥∥∥∑T
t=1 η

(1)
T,t−1x

′
t−1

∥∥∥ = Op

(
1

T
γ−α
2

)
= op (1) .

(iii) The sample moment,
∑T

t=1 z̃t−1z̃
′
t−1, follows the decomposition as,

1

T 1+α

T∑
t=1

z̃t−1z̃
′
t−1

=
1

T 1+α

T∑
t=1

(
xt−1 −Rt

Tzx0 +
Cz
T γ
η

(1)
T,t−1

)(
xt−1 −Rt

Tzx0 +
Cz
T γ
η

(1)
T,t−1

)′

=
1

T 1+α

T∑
t=1


xt−1x

′
t−1 +Rt

Tzx0x
′
0R

t
Tz + Cz

T 2γ η
(1)
T,t−1η

(1)′
T,t−1Cz

−xt−1x
′
0R

t
Tz + xt−1η

(1)′
T,t−1

Cz
T γ
−Rt

Tzx0x
′
t−1

−Rt
Tzx0η

(1)′
T,t−1

Cz
T γ

+ Cz
T γ
η

(1)
T,t−1x

′
t−1 − Cz

T γ
η

(1)
T,t−1x

′
0R

t
Tz

 .(A.18)

It is sufficient to show that the spectral norm of each term in (A.18) above is

op (1) . Therefore it is sufficient to show
∥∥∥ 1
T 1+α

∑T
t=1R

t
Tzx0x

′
0R

t
Tz

∥∥∥ , ∥∥∥ 1
T 1+α

∑T
t=1R

t
Tzx0x

′
0R

t
Tz

∥∥∥ ,∥∥∥ 1
T 1+α+2γ

∑T
t=1 η

(1)
T,t−1η

(1)′
T,t−1

∥∥∥ and the remaining terms to be asymptotically neg-

ligible by Cauchy-Schwarz inequality.

For
∥∥∥ 1
T 1+α

∑T
t=1 R

t
Tzx0x

′
0R

t
Tz

∥∥∥, we have∥∥∥∥∥ 1

T 1+α

T∑
t=1

Rt
Tzx0x

′
0R

t
Tz

∥∥∥∥∥ ≤ ‖x0‖2
∞

1

T 1+α

T∑
t=1

‖RTz‖2t = Op

(
1

T 1+α−γ

)
.

For

∥∥∥∥ 1
T 1+α+γ

T∑
t=1

η
(1)
T,t−1x

′
0R

t
Tz

∥∥∥∥, we have

∥∥∥∥∥ 1

T 1+α+γ

T∑
t=1

η
(1)
T,t−1x

′
0R

t
Tz

∥∥∥∥∥ ≤ ‖x0‖∞

∥∥∥η(1)
T,t−1

∥∥∥
Tα+ γ

2

1

T 1+ γ
2

T∑
t=1

∥∥Rt
Tz

∥∥
∞ = Op

(
1

T
1−γ
2

)
.

Similarly, we have∥∥∥∥∥ 1

T 1+α+2γ

T∑
t=1

η
(1)
T,t−1η

(1)′
T,t−1

∥∥∥∥∥ = Op

(
1

T γ−α

)
.

Then we complete the proof. �
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Kernel Estimation

For simplicity, we adopt a scalar FLUR model in the scalar form (n = 1),

xs = RTsxs−1 + uxs,

where rs := s
T

, RTs := exp
(
C(rs)
T

)
and s = 1, 2, ..., T . We intend to estimate

RTt for any t = 1, 2, ..., T as

R̂Tt = arg min
RTt

T∑
s=1

(xs −RTtxs−1)2Kh(rs − r), (A.19)

where rs := s
T

, r := t
T

and Kh(·) := 1
h
K
( ·
h

)
. We define h as the bandwidth

for local average. To establish consistent estimation for RTt, we impose the

following assumptions.

Assumption A.1. (i) The distance function C(r) is 2nd-order differentiable

in r for all r ∈ [0, 1].

(ii) The kernel function K(·) is symmetric and bounded with a compact

support [−1, 1]. The kernel function is Lipschitz continuous.

(iii) Bandwidth h→ 0 has the rate restriction T
√
h→∞.

(iv) The error term uxt follows a stationary linear process as

uxt =
∞∑
j=0

Fxjεt−j with
∞∑
j=0

j |Fxj| <∞,

where εt ∼i.i.d.(0,Σ) with finite p ≥ 4 moment. The two-sided long-run vari-

ance Ωxx :=
(∑∞

j=0 Fxj

)
Σ
(∑∞

j=0 Fxj

)
.

(v) We define ν(K) :=
∫
K(v)dv and µj(K) :=

∫
vjK(v)dr.

We provide several remarks here: First, we employ the symmetric kernel

function K(·). The symmetry of kernel functions results in the fact
∫
vK(v) =

0 as a standard requirement for discussing the approximation bias. Second,

different from stationary cases which require Th→∞, we impose T
√
h→∞

for our discussions. Smaller bandwidth results from the instability of nonsta-

tionarity.
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By minimizing (A.19), we define the estimator for the slope as,

R̂Tt −RTt =

(
T∑
s=1

x2
s−1Kh(rs − r)

)−1 T∑
s=1

xs−1uxsKh(rs − r)

+

(
T∑
s=1

x2
s−1Kh(rs − r)

)−1 T∑
s=1

x2
s−1Kh(rs − r) (RTs −RTt)

= : (SnT,t)
−1 TnT,t + (SnT,t)

−1RnT,t,

where SnT,t :=
∑T

s=1 x
2
s−1Kh(rs − r), TnT,t :=

∑T
s=1 xs−1uxsKh(rs − r) and

RnT,t :=
∑T

s=1 x
2
s−1Kh(rs − r) (RTs −RTt). We can prove the consistency of

R̂Tt by the following theorem.

Theorem A.1. Let Assumption A.1 hold. As T →∞, for any t,

T
√
h
(
R̂Tt −RTt

)
⇒MN

(
0,

Ωxxν (K)

rK2
c (1)

)
,

where Kc(r) follows the stochastic process as dKc(r) = C(r)Kc(r)dr+Ω
1
2
xxdWx(r).

We perceive that for each t ∈ {1, 2, .., T} , R̂Tt is converging to RTt at a

slower rate than the rate of least squares. Different from the time-invariant

case in Phillips (1987), the asymptotic normality of R̂Tt locates at the ori-

gin. The reason why asymptotic normality happens is due to the fact that√
h
T

∑T
s=1 Kh(rs−r)uxs is asymptotically orthogonal to 1√

T

∑T
s=1 uxs. Surpris-

ingly, serial correlations of innovations do not introduce asymptotic bias.

For the stationary case, there exists an asymptotically non-negligible term

of the order Op(h
2), which contributes to the approximation bias. For a nonsta-

tionary time series model as FLUR, the asymptotic bias of order min{Op

(√
h
T

)
,

Op

(
T−

3
2

+ 1
q

+δ
)
} is diminishing at a rate faster than the limiting normality,

Op

(
1

T
√
h

)
. Therefore, no bias-corrected procedure is on request.

For the given h, we define the standard leave-one-out estimate as

R̂Tt(φ|h) =

[
T∑

s=1,s 6=t

y2
s−1Kh (rs − φ)

]−1 [ T∑
s=1,s 6=t

ys−1ysKh (rs − φ)

]
.
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The cross-validation function is then written as

CVT (h) =
1

T

T∑
t=1

[
yt − R̂Tt(

t

T
|h)yt−1

]2

.

We can find an optimal bandwidth by mininmizing the cross-validation func-

tion,

ĥCV = arg min
h

CVT (h).

We collect technical proofs for kernel estimations in the following lemmas.

Lemma A.2. Let Assumption A.1 hold. As T →∞, we have

1

T 2
SnT,t ⇒ rK2

c (1).

Proof of Lemma A.2: Define r(T ) := [(r − h)T ]. We have,

T∑
s=1

x2
s−1Kh (rs − r) =

T∑
s=1

x2
r(T )Kh (rs − r) + 2

T∑
s=1

xr(T )

(
xs−1 − xr(T )

)
Kh (rs − r)

+
T∑
s=1

(
xs−1 − xr(T )

)2
Kh (rs − r) . (A.20)

For the first term of (A.20), according to Bykhovskaya and Phillips (2018),

1

T 2

T∑
s=1

x2
r(T )Kh (rs − r) =

r(T )

T

(
x2
r(T )

r(T )

)
1

T

T∑
s=1

Kh (rs − r)

⇒ rK2
c (1)

∫
K (v) dv

= rK2
c (1), (A.21)

where the condition
∫
K (v) dv = 1 holds. For the second term of (A.20),

xs−1 − xr(T ) =
s−1∑

i=r(T )+1

(
s−1∏

m=i+1

exp

(
C(m/T )

T

))
uxi, (A.22)

where s ∈ [r(T )− [hT ], r(T ) + [hT ]] holds. Based on (A.22),

sup
r(T )−[hT ]≤s−1≤r(T )+[hT ]

∣∣∣∣∣xs−1 − xr(T )√
2[hT ]

∣∣∣∣∣
= sup

r(T )−[hT ]≤s−1≤r(T )+[hT ]

∣∣∣∣∣∣
∑s−1

i=r(T )+1

(∏s−1
m=i+1 exp

(
C(m/T )

T

))
uxi√

2[hT ]

∣∣∣∣∣∣
⇒ sup

0≤d≤1
|Kc(d)| . (A.23)
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Equivalently, we have

sup
r(T )−[hT ]≤s−1≤r(T )+[hT ]

∣∣xs−1 − xr(T )

∣∣ = Op

(√
[hT ]

)
.

By Assumption A.1 (ii) and the fact that Kh (·) is defined on a compact sup-

port, we can justify the asymptotic negligibility as,∣∣∣∣∣
T∑
s=1

xr(T )

(
xs−1 − xr(T )

)
Kh (rs − r)

∣∣∣∣∣
≤

∣∣xr(T )

∣∣ ∣∣xs−1 − xr(T )

∣∣ ∣∣∣∣∣∣
r(T )+[hT ]∑

s=r(T )−[hT ]+1

Kh (rs − r)

∣∣∣∣∣∣
= Op

(√
T
)
×Op (T )×Op

(√
Th
)

= Op

(√
T 4h

)
= op

(
T 2
)
. (A.24)

Similarly, for the third term of (A.20),∣∣∣∣∣
T∑
s=1

(
xs−1 − xr(T )

)2
Kh (rs − r)

∣∣∣∣∣
≤

∣∣xs−1 − xr(T )

∣∣2 ∣∣∣∣∣∣
r(T )+[hT ]∑

s=r(T )−[hT ]+1

Kh (rs − r)

∣∣∣∣∣∣
≤ Op

(√
Th
)
×Op

(√
Th
)
×Op (T )

= Op

(
T 2h

)
= op

(
T 2
)
. (A.25)

Combining (A.21), (A.24) and (A.25), we prove the lemma. �

Lemma A.3. Let Assumption A.1 hold. As T →∞,

(i)
√

h
T

∑T
s=1Kh(rs − r)uxs

p→ Zx := N (0,Ωxxν(K)).

(ii)
√

h
T

∑T
s=1Kh(rs − r)uxs is asymptotically orthogonal to 1√

T

∑T
s=1 uxs.

Proof of Lemma A.3: (i) Following the steps in Proposition A.2 of

Phillips et al. (2017), we complete the proof.

(ii) We have justified the asymptotic normality of
√

h
T

∑T
s=1Kh(rs− r)uxs.

By Beveridge-Nelson-Phillips decomposition in Phillips and Solo (1992), 1√
T

∑T
s=1 uxs

asymptotically converges to a Gaussian process. Therefore, the asymptotical
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orthogonality between two Gaussian processes is given by

E

(√
h

T

T∑
s=1

Kh(rs − r)uxs
1√
T

T∑
t=1

uxt

)

= E

(√
h

T

T∑
s=1

T∑
t=1

Kh(rs − r)uxsuxt

)

=

√
h

T

T∑
s=1

∞∑
l=−∞

Kh(rs − r)E (uxsux,s−l)

=

(
1

T

T∑
s=1

Kh(rs − r)

)(
∞∑

l=−∞

E (uxsux,s−l)

)
√
h

= Op

(√
h
)
,

where
∑∞

l=−∞ E (uxsux,s−l) = Op(1) due to Assumption A.1 (iv). �

Lemma A.4. Let Assumption A.1 hold. As T →∞,√
h

T
TnT,t ⇒

√
rKc(1)Zx,

where Zx =d N (0,Ωxxν(K)) .

Proof of Lemma A.4: Asymptotically, we have the approximations as√
h

T

T∑
s=1

xs−1uxsKh(rs − r)

=

√
h · r(T )

T

T∑
s=1

xr(T )√
r(T )

uxsKh(rs − r) (A.26)

+

√
h · r(T )

T

T∑
s=1

xs−1 − xr(T )√
r(T )

uxsKh(rs − r)

=

√
h · r(T )

T

xr(T )√
r(T )

T∑
s=1

uxsKh(rs − r) +Op(
√
h)

⇒
√
rKc(1)Zx. (A.27)

For the second equality of (A.27), we apply the following argument∣∣∣∣∣
√
h · r(T )

T

T∑
s=1

xs−1 − xr(T )√
r(T )

uxsKh(rs − r)

∣∣∣∣∣
≤ r (1 + o(1))

√
1

hT 2
×Op(

√
Th)Op(

√
Th)

= Op(
√
h).
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For the last line, we employ Lemma B.2 and Bykhovskaya and Phillips (2018).

�

Lemma A.5. Let Assumption A.1 hold. As T →∞ and h→ 0,

1

T
RnT,t ⇒

rh2

2
K2
c (1)µ2(K)C(2)(r) +Op(T

− 1
2

+ 1
q

+δ) +Op(
√
h),

where C(2)(·) is the 2nd-order derivative of C(·).

Proof of Lemma A.5: It is shown that

1

T

T∑
s=1

x2
s−1Kh(rs − r) (RTs −RTt)

=
1

T 2

T∑
s=1

x2
s−1Kh(rs − r) (C(rs)−C(r))

=
1

T 2

T∑
s=1

x2
r(T )Kh(rs − r) (C(rs)−C(r))

+
1

T 2

T∑
s=1

(
x2
s−1 − x2

r(T )

)
Kh(rs − r) (C(rs)−C(r))

=
1

T 2

T∑
s=1

x2
r(T )Kh(rs − r) (C(rs)−C(r)) +Op(

√
h)

= rK2
c (1)

∫
Kh(rs − r) (C(rs)−C(r)) drs +Op(T

− 1
2

+ 1
q

+δ) +Op(
√
h)

= rK2
c (1)

∫
Kh(v) (C(r + hv)−C(r)) dv +Op(T

− 1
2

+ 1
q

+δ) +Op(
√
h)

= rK2
c (1)

∫
Kh(v)

(
C(r)−C(r)+C(1)(r)hv +

1

2
C(2)(r)h2v2 +O(h3)

)
dv +

Op(T
− 1

2
+ 1
q

+δ) +Op(
√
h)

=
rh2

2
K2
c (1)µ2(K)C(2)(r) +Op(T

− 1
2

+ 1
q

+δ) +Op(
√
h)

= Op(T
− 1

2
+ 1
q

+δ) +Op(
√
h).

The third equality is due to (A.23). The fourth equality is due to the uniform

strong approximation to Brownian motions for each δ > 0 (See Lemma 3.1

of Phillips (2007)). The last equality is due to the symmetry of the kernel

function. �

Proof of Theorem A.1: Compared with the stationary case, the esti-

mation bias in this model is of lower order. It diminishes at a faster rate than
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the limiting normality,∑T
s=1 x

2
s−1Kh (rs − r) (RTs −RTt)∑T
s=1 x

2
s−1Kh (rs − r)

= min

{
Op

(
h

T

)
, Op

(
T−

3
2

+ 1
q

+δ
)}

<< Op

(
1

T
√
h

)
.

Therefore the asymptotical normality dominates. We complete our proof. �
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Appendix B

Technical Results for Chapter 2

Proof of the main results

Orthogonal basis

Proof of Lemma 2.1: (a) We deal with term, 1√
T

∑[Tr]
t=1 exp

(∑[Tr]
j=t C(j/T )

T

)
uxt.

By a strong approximation, we can enlarge the original probability space and

construct a Brownian motion vector as ω := BM (Σ). With E ‖uxt‖p <∞, we

have

sup
0≤r≤1

‖ηT (r)− ω(r)‖ = Oa.s.

(
T−α

)
,

where ηT (r) := 1√
T

∑[Tr]
t=1 uxt. Define et√

T
= ω

(
t
T

)
−ω

(
t−1
T

)
, whose distribution

is i.i.d. normal with E
(
ete
′
t

)
= Σ. We generate another FLUR process zt as

zt = RTtzt−1 + et, t = 1, 2, ..., T.

For each r ∈ [0, 1], as T →∞, we have

1√
T

[Tr]∑
t=1

exp

(∑[Tr]
j=t C (j/T )

T

)
et ⇒ Kc(r).
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For ηT (r), we have

1√
T

[Tr]∑
t=1

exp

(∑[Tr]
j=t C (j/T )

T

)
uxt

=

[Tr]∑
t=1

exp

(∑[Tr]
j=t C (j/T )

T

)(
ηT

(
t

T

)
− ηT

(
t− 1

T

))

=

[Tr]∑
t=1

exp

(∑[Tr]
j=t C (j/T )

T

)
ηT

(
t

T

)
−

[Tr]∑
t=1

exp

(∑[Tr]
j=t C (j/T )

T

)
ηT

(
t− 1

T

)
= exp

(
C ([Tr]/T )

T

)
ηT

(
[Tr]

T

)
+

[Tr]−1∑
t=1

(
exp

(∑[Tr]
j=t C (j/T )

T

)
− exp

(∑[Tr]
j=t+1C (j/T )

T

))
ηT

(
t

T

)

= exp

(
C ([Tr]/T )

T

)
ηT

(
[Tr]

T

)
+

[Tr]−1∑
t=1

exp

(∑[Tr]
j=t+1 C (j/T )

T

)
C (t/T )

T
ηT

(
t

T

)
.

Similarly, for ω(·), we justify that

1√
T

[Tr]∑
t=1

exp

(∑[Tr]
j=t C (j/T )

T

)
et

= exp

(
C ([Tr]/T )

T

)
ω

(
[Tr]

T

)
+

[Tr]−1∑
t=1

exp

(∑[Tr]
j=t+1C (j/T )

T

)
C (t/T )

T
ω

(
t

T

)
.

Then we can argue that

sup
0≤r≤1

∥∥∥∥∥∥ 1√
T

[Tr]∑
t=1

exp

(∑[Tr]
j=t C (j/T )

T

)
uxt −

1√
T

[Tr]∑
t=1

exp

(∑[Tr]
j=t C (j/T )

T

)
et

∥∥∥∥∥∥
≤ sup

0≤r≤1
‖ηT (r)− ω(r)‖ sup

0≤r≤1

∥∥∥∥exp

(
C ([Tr]/T )

T

)∥∥∥∥
∞

+ sup
0≤r≤1

∥∥∥∥∥∥
[Tr]−1∑
t=1

exp

(∑[Tr]
j=t+1C (j/T )

T

)
C (t/T )

T

(
ηT

(
t

T

)
− ω

(
t

T

))∥∥∥∥∥∥
≤ M sup

0≤r≤1
‖ηT (r)− ω(r)‖+ sup

0≤r≤1

∣∣∣∣∫ r

0

exp

(∫ r

p

cda

)
cdp

∣∣∣∣ sup
0≤r≤1

‖ηT (r)− ω(r)‖

= Op

(
T−α

)
,

where M(> 0) is some constant. The notation ‖·‖∞ denotes the infinity norm.

The proof for Lemma 2.1 concludes. �

The Proof of Lemma 2.2: According to Lemma 1 in Bierens and Martins

(2010), we have g(t)
(
:= g

(
t
T

))
which is a qth-order differentiable function with
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g(q)(x) = dqg(x)
(dx)q

and
∫ 1

0

∥∥g(q)(x)
∥∥2
dx <∞. For any k ≥ 1, we have

lim
T→∞

1

T

T∑
t=1

‖g(t)− gk,T (t)‖2 ≤
∫ 1

0

∥∥g(q)(x)
∥∥2
dx

π2q (k + 1)2q .

Here gk,T (·) is a k-dimensional approximation to g(·) using orthogonal polyno-

mials. �

Time-series estimator

Lemma B.1. Let Assumptions 2.1 and 2.2 hold. As T →∞, we have

(a)

1

T 2

T∑
t=1

yk,t−1y
′

k,t−1

=

∫ 1

0

[(
fk

(
[Tr]

T

)
f
′

k

(
[Tr]

T

))
⊗
(
K∗T,c(r)K

∗′

T,c(r)
)]

dr;

(b)

1

T 3/2

T∑
t=1

yk,t−1 =

∫ 1

0

[
fk

(
[Tr]

T

)
⊗K∗T,c(r)

]
dr;

(c)

1

T

T∑
t=1

yk,t−1u
′

xk,t =

∫ 1

0

[
fk

(
[Tr]

T

)
⊗K∗T,c(r)

]
dW

′

xT (r) ;

(d)

1

T

T∑
t=1

yk,t−1 (uxk,t − uxt)
′

=

∫ 1

0

[
fk

(
[Tr]

T

)
⊗
(
K∗T,c(r)K

∗′
T,c(r)

)](
RT

(
[Tr]

T

)
−R(k)

T

(
[Tr]

T

))
dr.

The Proof of Lemma B.1: We define t = [Tr]. For (a), we have the
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following argument as

1

T 2

T∑
t=1

[
fk

(
[Tr]

T

)
⊗ yt−1

] [
fk

(
[Tr]

T

)
⊗ yt−1

]′

=
1

T

T∑
t=1

(
fk

(
[Tr]

T

)
f
′

k

(
[Tr]

T

))
⊗

(
yt−1√
T

y
′
t−1√
T

)

=

∫ 1

0

[(
fk

(
[Tr]

T

)
f
′

k

(
[Tr]

T

))
⊗
(
K∗T,c (r)K∗

′

T,c (r)
)]

dr.

The argument for (b) is trivial. For (c), we have

1

T

T∑
t=1

[
fk

(
[Tr]

T

)
⊗ yt−1

]
u
′

xt

=
1√
T

T∑
t=1

[
fk

(
[Tr]

T

)
⊗ yt−1

]
u
′
xt√
T

=

∫ 1

0

[
fk

(
[Tr]

T

)
⊗K∗T,c (r)

]
dW

′

xT (r) ,

where W
′
xT (r) is the empirical process driven by 1√

T

∑T
t=1 u

′
xt. For (d), we have

1

T 2

T∑
t=1

fk

(
[Tr]

T

)
⊗ yt−1 (uxk,t − uxt)

′

=
1

T 2

T∑
t=1

fk

(
[Tr]

T

)
⊗ yt−1y

′

t−1

(
RT

(
t

T

)
−R(k)

T

(
t

T

))
=

∫ 1

0

[
fk

(
[Tr]

T

)
⊗
(
K∗T,c (r)K∗

′

T,c (r)
)](

RT

(
[Tr]

T

)
−R(k)

T

(
[Tr]

T

))
dr.

�

We define the following sample moments. For each value of k, T , we have

MTk : =

∫ 1

0

[(
fk

(
[Tr]

T

)
f
′

k

(
[Tr]

T

))
⊗
(
K∗T,c(r)K

∗′
T,c(r)

)]
dr;

NTk : =

∫ 1

0

[
fk

(
[Tr]

T

)
⊗K∗T,c(r)

]
dW

′

xT (r) ;

OTk : =

∫ 1

0

[
fk

(
[Tr]

T

)
⊗
(
K∗T,c(r)K

∗′
T,c(r)

)](
RT

(
[Tr]

T

)
−R(k)

T

(
[Tr]

T

))
dr.
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If k is finite, as T →∞, we have

Mk : =

∫ 1

0

[(
fk (r) f

′

k(r)
)
⊗
(
Kc(r)K

′

c(r)
)]
dr;

Nk : =

∫ 1

0

[fk (r)⊗Kc(r)] dW
′

x (r) ;

Ok : =

∫ 1

0

[
fk (r)⊗

(
Kc(r)K

′

c(r)
)](

RT (r)−R(k)
T (r)

)
dr.

Based on the above notations, we can justify the following intermediate results.

Lemma B.2. Let Assumptions 2.1 and 2.2 hold. Note that α is defined in

Lemma 2.2. As T →∞, we have

(a)

‖Mk‖ = Op(1),
∥∥M−1

k

∥∥ = Op(1), Mk = Op(1),

M−1
k = Op(1), and ‖Mk −MTk‖ = Op(T

−αk);

(b)

‖Nk‖ = Op(
√
k) and ‖Nk −NTk‖ = Op(T

−α
√
k);

(c)

‖Ok‖ = Op(k
1
2
−q) and ‖OTk‖ = Op(k

1
2
−q).

The Proof of Lemma B.2: This proof follows the approach in Park

and Hahn (1999). If we want to prove Mk = Op (1), it is equivalent to justify

that

sup
k≥1

∫ 1

0

(
fk(r)f

′

k(r)
)
⊗
(
Kc(r)K

′

c(r)
)
dr = Op(1).

By orthogonality of cosine functions, we can verify that

M ≤ λmin

(∫ 1

0

fk(r)f
′

k(r)dr

)
≤ λmax

(∫ 1

0

fk(r)f
′

k(r)dr

)
≤M,

for some constantM <∞ andM <∞. Define smax := sup1≤i≤n sup0≤r≤1 |Kc,i(r)|.

By Cauchy-Schwarz inequality, we can derive that

λmax

(∫ 1

0

(
fk(r)f

′

k(r)
)
⊗
(
Kc(r)K

′

c(r)
)
dr

)
≤ s2

maxM, ∀k ≥ 1.
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To show that M−1
k = Op (1), it is sufficient to show Mk > 0 asymptotically.

For any δ > 0, we define Kδ
c (·) :=

(
Kδ
c,1(·), Kδ

c,2(·), ..., Kδ
c,n(·)

)
and Kδ

c,j(r) :=

Kc,j(r)1{|Kc,j(r)|>δ} + δ1{|Kc,j(r)|≤δ}. Thus it is shown that

λmin

(∫ 1

0

(
fk(r)f

′

k(r)
)
⊗
(
Kδ
c (r)K

δ′

c (r)
)
dr

)
≥ δ2M.

Define Jδ = {r ∈ [0, 1] | inf1≤j≤n |Kc,j(r)| ≤ δ}. Based on the definition of Jδ,

we can derive the following argument as,∫ 1

0

(
fk(r)f

′

k(r)
)
⊗
(
Kδ
c (r)K

δ′

c (r)
)
dr −

∫ 1

0

(
fk(r)f

′

k(r)
)
⊗
(
Kc(r)K

′

c(r)
)
dr

≤ 2

∫
Jδ

(
fk(r)f

′

k(r)
)
⊗
(
Kc(r)K

′

c(r)
)
dr.

Additionally, for each i ∈ {1, 2, ..., n}, we have sup0≤r≤1 |ci(r)| < c and the

differentiability of ci(·). Based on Lou and Ouyang (2017), the occupation

formula holds with

lim inf
ε↓0

1

δ

∫
I⊆[0,1]

Pr {‖Kc (s)−Kc (u)‖ ≤ δ} ds <∞ a.s.

for any u ∈ I. Besides, ∀i = 1, 2, ..., n, the local time Li(1, 0) exists almost

surely due to Lou and Ouyang (2017). Therefore, we have

lim inf
δ↓0

Σi

2δ

∫ 1

0

1{|Kc,i(r)|≤δ}dr = Li (1, 0) a.s., (B.1)

where Σi is the variance of driven Brownian motion in the ith entry. Based on

(B.1), the following two equations hold:

1

δ

∫ 1

0

1(Jδ) = O(1),

and ∥∥∥∥∫
Jδ

(
fk(r)f

′

k(r)
)
dr

∥∥∥∥ = Op (δ) .
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Therefore for any δ > 0, we have

λmin

(∫ 1

0

(
fk(r)f

′

k(r)
)
⊗
(
Kc(r)K

′

c(r)
)
dr

)
= λmin

(∫ 1

0

(
fk(r)f

′

k(r)
)
⊗
(
Kδ
c (r)K

δ′

c (r)
)
dr

)
+Op

(
δ3
)

≥ δ2 (1 + op(1)) > 0.

These arguments show that Mk is bounded from zero. This shows M−1
k =

Op (1).

If we impose norm operators, it is trivial to have

‖Mk‖ = Op(1),
∥∥M−1

k

∥∥ = Op(1).

To justify that ‖MTk −Mk‖ = Op(kT
−α), we apply the Skorohod embed-

ding theorem and obtain∫ 1

0

φi

(
[Tr]

T

)
φj

(
[Tr]

T

)
K∗T,c(r)K

∗′
T,c(r)dr =

∫ 1

0

φi(r)φj(r)Kc(r)K
′

c(r)dr+Op

(
T−α

)
,

uniformly in i, j ∈ {1, 2, ..., k}. The proof for (a) is complete.

For (b), notice that∥∥∥∥∫ 1

0

φi

(
[Tr]

T

)
φj

(
[Tr]

T

)
K∗Tc(r)

〈
dWxT (r), dW

′

xT (r)
〉
K∗

′

Tc(r)

∥∥∥∥ = Op (k) ,

uniformly in i, j ∈ {1, 2, ..., k}. Then we have∥∥∥∥∫ 1

0

φi

(
[Tr]

T

)
K∗Tc(r)dW

‘
xT (r)

∥∥∥∥ = Op

(√
k
)
,

uniformly in i ∈ {1, 2, ..., k}. For the asymptotic distance between NTk and

Nk, it suffices to establish that∥∥∥∥∫ 1

0

φi

(
[Tr]

T

)
K∗Tc(r)dW

′
xT (r)−

∫ 1

0

φi (r)Kc(r)dW
′
x(r)

∥∥∥∥ = Op

(√
kT−α

)
,
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uniformly in i ≥ 1. It directly follows∥∥∥∥∫ 1

0

φi

(
[Tr]

T

)
K∗Tc(r)dW

′
xT (r)−

∫ 1

0

φi (r)Kc(r)dW
′
x(r)

∥∥∥∥
≤

∥∥∥∥∫ 1

0

(
φi

(
[Tr]

T

)
K∗Tc(r)− φi (r)Kc(r)

)
dW ′

xT (r)

∥∥∥∥︸ ︷︷ ︸
(I.1)

+

∥∥∥∥∫ 1

0

φi (r)Kc(r) (dW ′
x(r)− dW ′

xT (r))

∥∥∥∥︸ ︷︷ ︸
(I.2)

.

Following Lemma 3.1, we have (I.1) = Op

(√
kT−α

)
. Following Lemma 2.1,

for (I.2), we have∥∥∥∥∫ 1

0

φi(r)Kc(r)dW
′

xT (r)−
∫ 1

0

φi(r)Kc(r)dW
′

x(r)

∥∥∥∥
=

∥∥∥φi(1)Kc (1)
(
W
′

xT (1)−W ′

x(1)
)∥∥∥+

∥∥∥∥∫ 1

0

φi (r) (Wx(r)−WxT (r)) dK
′

c(r)

∥∥∥∥
+

∥∥∥∥∫ 1

0

(
W
′

xT (r)−W ′

x(r)
)
Kc (r) dφi(r)

∥∥∥∥
= Op

(√
kT−α

)
,

uniformly in i ∈ {1, 2, ..., k}.

For (c), we follow the previous notations as smax = sup1≤j≤n sup0≤r≤1 |Kc,i (r)|.

We have the following argument,∥∥∥∥∫ 1

0

φi(r)Kc(r)K
′

c(r)
(
RT (r)−R(k)

T (r)
)
dr

∥∥∥∥
≤ Op

(√
k
)(∫ 1

0

∥∥∥RT (r)−R(k)
T (r)

∥∥∥2

dr

) 1
2

= Op

(
k

1
2
−q
)
,

uniformly in i ∈ {1, 2, ..., k} . �

Remark: The proof of Lemma B.2 illustrates the necessity of smoothness

on basis function since the integration-by-part formula is applied.

Lemma B.3. (Stochastic order of estimation bias) Let Assumptions 2.1 and

2.2 hold. As T →∞, we have
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(a) ∏
R̂

(k)
T =

∏
R

(k)
T +Op(T

−1k);

(b)

A
− 1

2
Tk

(∏
R̂

(k)
T −

∏
R

(k)
T

)
=
(
SkM

−1
k S

′

k

)− 1
2
SkM

−1
k Nk + op(1).

The Proof of Lemma B.3: This paper follows the proof of Park and

Hahn (1999). Define M o
Tk =

YTk,−1Y
′
Tk,−1

T 2 and N o
Tk =

Y
′
Tk,−1Uxk

T
. We have

T
(∏(

R̂
(k)
T

)
−
∏(

R
(k)
T

))
= TSk

(
β̂Tk − βk

)
= Sk (M o

Tk)
−1N o

Tk. (B.2)

For (a), it is enough to justify that Sk (M o
Tk)
−1N o

Tk = SkM
−1
k Nk+Op (T−αk2)+

Op (Tk1−q). It follows

∥∥(M o
Tk)
−1 − (Mk)

−1
∥∥ ≤ ∥∥(M o

Tk)
−1
∥∥∥∥(Mk)

−1
∥∥ ‖(M o

Tk −Mk)‖

= Op (1)Op (1)Op

(
T−αk

)
= Op

(
T−αk

)
, (B.3)

and

‖M o
Tk −Mk‖ ≤ ‖M o

Tk −MTk‖+ ‖MTk −Mk‖ = Op

(
T−αk

)
,

as illustrated in Lemma B.1 and B.2. Since
∥∥(Mk)

−1
∥∥ = Op (1) and ‖MTk −Mk‖ =

op(1), we have
∥∥(MTk)

−1
∥∥ = Op (1) . Similarly, for the numerator, we have

‖N o
Tk −Nk‖ ≤ ‖N o

Tk −NTk‖+ ‖NTk −Nk‖ = Op

(√
kT−α

)
+Op

(
k

1
2
−qT

)
.

(B.4)

Combining (B.3) and (B.4), we have

∥∥Sk (M o
Tk)
−1N o

Tk − SkM−1
k Nk

∥∥
=

∥∥Sk (M o
Tk)
−1N o

Tk − SkM−1
k N o

k + SkM
−1
k N o

k − SkM−1
k Nk

∥∥
≤ ‖Sk‖

(∥∥(M o
Tk)
−1 − (Mk)

−1
∥∥ ‖N o

Tk‖+
∥∥(Mk)

−1
∥∥ ‖N o

Tk −NTk‖
)

= Op

(√
k
)(

Op

(
T−αk

)
Op

(√
k
)

+Op (1)Op

(
T−αk−1

)
+Op (1)Op

(
k

1
2
−qT

))
= Op

(
T−αk2

)
+Op

(
Tk1−q) . (B.5)
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For (b), at first, we show that

(
T 2ATk

)− 1
2 =

(
Sk (M o

Tk)
−1 S

′

k

)− 1
2

=
(
Sk (Mk)

−1 S
′

k

)− 1
2

+Op

(
T−αk

1
2

)
.

(B.6)

This argument is based on the following facts

λmin

(
Sk (M o

Tk)
−1 S

′

k

)
≥
λmin

(
SkS

′

k

)
λmax (M o

Tk)
≥ kM

λmax (M o
Tk)

,

and

λmin

(
Sk (Mk)

−1 S
′

k

)
≥
λmin

(
SkS

′

k

)
λmax (Mk)

≥ kM

λmax (Mk)
.

Therefore we have (
Sk (M o

Tk)
−1 S

′

k

)− 1
2

= Op

(
k−

1
2

)
,

and (
Sk (Mk)

−1 S
′

k

)− 1
2

= Op

(
k−

1
2

)
.

It is shown that∥∥∥Sk ((M o
Tk)
−1 − (Mk)

−1)S ′k∥∥∥ ≤ ‖Sk‖2
∥∥(M o

Tk)
−1 − (Mk)

−1
∥∥

= Op (k)Op

(
T−αk

)
= Op

(
T−αk2

)
.

Therefore, it is easily derived that(
Sk (M o

Tk)
−1 S

′

k

)− 1
2 −

(
Sk (Mk)

−1 S
′

k

)− 1
2

=
(
Sk (M o

Tk)
−1 S

′

k

)− 1
2

Sk
 (Mk)

−1

− (M o
Tk)
−1

S
′

k


 (

Sk (Mk)
−1 S

′

k

) 1
2

+
(
Sk (M o

Tk)
−1 S

′

k

) 1
2


−1

·

(
Sk (Mk)

−1 S
′

k

)− 1
2

= Op

(
T−αk

1
2

)
.

Based on (B.2) and (B.6), we have

Sk (Mk)
−1 S

′

k = Op(k),
(
Sk (Mk)

−1 S
′

k

)− 1
2

= Op(k
− 1

2 ).
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To ensure (b), we need the following asymptotic negligibility conditions,

T−1k = o (1) , Tk
1
2
−q = o (1) , T−α

(√
k
)3

= o (1) , T−αk
1
2 = o (1) .

These are guaranteed by Assumption 2.2 (ii). Then (b) follows directly (B.6),

(B.5) and rate restrictions in Assumption 2.2 (ii). �

Lemma B.4. (Stochastic order of approximation error) Let Assumptions 2.1

and 2.2 hold. As T →∞, we have

(a) ∏
R

(k)
T =

∏
RT +Op(k

−q);

(b)

A
− 1

2
Tk

(∏
R

(k)
T −

∏
RT

)
= Op(Tk

−q−1) = op(1).

The Proof of Lemma B.4: (a) can be derived easily since the approx-

imation error is diminishing; For (b), note that

A
− 1

2
Tk = Op

(
T√
k

)
,

where ATk := Sk
(
Y
′

Tk,−1YTk,−1

)−1
S
′

k. It is essential for the derivations. By

Assumption 2.2 (ii), we have Op (Tk−q−1) = op(1). The proof for Lemma B.4

is complete. �

The Proof of Theorem 2.1: As illustrated in Lemma B.3 and B.4, the

estimation bias has a higher order than approximation error. With triangle

inequality, we prove that∥∥∥∏ R̂
(k)
T −

∏
RT

∥∥∥ ≤ ∥∥∥∏ R̂
(k)
T −

∏
R

(k)
T

∥∥∥+
∥∥∥∏R

(k)
T −

∏
(RT )

∥∥∥
= Op

(
kT−1

)
+Op

(
k−q
)

= op(1).
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Besides,

A
− 1

2
Tk

∥∥∥∏ R̂
(k)
T −

∏
RT

∥∥∥ ≤ A−1
Tk

∥∥∥∏ R̂
(k)
T −

∏
R

(k)
T

∥∥∥+ A−1
Tk

∥∥∥∏R
(k)
T −

∏
(RT )

∥∥∥
= Op (1) +Op

(
Tk−q−1

)
,

where the Assumption 2.2 ensures Op (Tk−q−1) = op(1). Therefore, we have

the following approximation for (b) as

A
− 1

2
Tk

(∏
R̂

(k)
T −

∏
RT

)
=
(
SkM

−1
k S

′

k

)− 1
2
SkM

−1
k Nk + op(1). (B.7)

�

The Proof of Theorem 2.2: Based on the approximation (B.7), we

have

A
− 1

2
Tk

(∏
R̂

(k)
T −

∏
RT

)
=
(
SkM

−1
k S

′

k

)− 1
2
SkM

−1
k Nk + op(1).

If Assumptions 2.1 and 2.2 hold, as T →∞, we have

A
− 1

2
Tk

(∏
R̂

(k)
T −

∏
RT

)
⇒ Z,

where

Z : = lim
k→∞

[
Sk

(∫ 1

0

(
fk(r)f

′

k(r)
)
⊗
(
Kc(r)K

′

c(r)
)
dr

)−1

Sk

]− 1
2

·Sk
(∫ 1

0

(
fk(r)f

′

k(r)
)
⊗
(
Kc(r)K

′

c(r)
)
dr

)−1(∫ 1

0

fk(r)⊗Kc(r)dW
′

x(r)

)
.

�
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Panel estimation and test

The Proof of Theorem 2.3: Let Assumptions 2.1-2.3 hold. According

to the definition of panel sieve estimator, we have

A
− 1

2
MTk

(∏
R̂

(k)
T −

∏
RT

)
=

Sk( 1

M

M∑
m=1

Y
′

mTk,−1YmTk,−1

)−1

S
′

k

− 1
2
Sk( 1

M

M∑
m=1

Y
′

mTk,−1YmTk,−1

)−1


·

[
1√
M

M∑
m=1

Y
′

mTk,−1Umxk

]

=

Sk( 1

MT 2

M∑
m=1

Y
′

mTk,−1YmTk,−1

)−1

S
′

k

− 1
2
Sk( 1

MT 2

M∑
m=1

Y
′

mTk,−1YmTk,−1

)−1


·

[
1√
MT

M∑
m=1

Y
′

mTk,−1Umxk

]
+ op (1) .

Rate restrictions in Assumption 2.1-2.3 make sure that approximation error is

dominated by estimation error. When Assumption 2.1-2.3 hold, as (M,T )seq →

∞, we have

A
− 1

2
MTk

(∏
R̂

(k)
T −

∏
RT

)
⇒

Sk( 1

M

M∑
m=1

∫ 1

0

(
fk (r) f

′

k (r)
)
⊗
(
K2
mc (r)

)
dr

)−1

S
′

k

− 1
2

·

Sk( 1

M

M∑
m=1

∫ 1

0

(
fk (r) f

′

k (r)
)
⊗
(
K2
mc (r)

)
dr

)−1
 ·

1√
M

M∑
m=1

∫ 1

0

fk (r)⊗Kmc (r) dW
′

x (r)

d→ N (0, Id) .

For large T asymptotics, we apply the invariance principle. For largeM asymp-

totics, we apply the Lindeberg-Lévy central limit theorem. To justify

A
− 1

2
MTk

(∏(
R̂T

)
−
∏

RT

)
d→ N (0, Id) , as (M,T )→∞,
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we are supposed to verify the following arguments. If Assumptions 2.1-2.3

hold, as (M,T )→∞, we need to show that

(1)

Sk
MT 2

(
M∑
m=1

Y
′

mTk,−1YmTk,−1

)−1

S
′

k

p→ Sk

(
E lim
k→∞

∫ 1

0

(
fk (r) f

′

k (r)
)
⊗
(
K2
mc (r)

)
dr

)−1

S
′

k;

(2)

Sk
MT 2

(
M∑
m=1

Y
′

mTk,−1YmTk,−1

)−1

p→ Sk

(
E lim
k→∞

∫ 1

0

(
fk (r) f

′

k (r)
)
⊗
(
K2
mc (r)

)
dr

)−1

;

(3)

1√
MT

(
M∑
m=1

Y
′

mTk,−1Umxk

)
d→ N

(
0,Σ · E lim

k→∞

∫ 1

0

(
fk (r) f

′

k (r)
)
⊗
(
K2
mc (r)

)
dr

)
.

For (1), we need to show the sequential limit as (M,T )seq → ∞ and ver-

ify the sufficient conditions in Theorem 1 of Phillips and Moon (1999, PM

hereafter). Obviously,

Sk

(
1

MT 2

M∑
m=1

Y
′

mTk,−1YmTk,−1

)−1

S
′

k

⇒

(
1

M

M∑
m=1

∫ 1

0

(
fk (r) f

′

k (r)
)
⊗
(
K2
mc (r)

)
dr

)−1

S
′

k

p→ Sk

(
E
∫ 1

0

(
fk (r) f

′

k (r)
)
⊗
(
K2
mc (r)

)
dr

)−1

S
′

k,

as (M,T )seq →∞. For Theorem 1 (i) in PM, we show it by

lim sup
M,T

1

MT 2

M∑
m=1

E
(
Y
′

mTk,−1YmTk,−1

)
= lim sup

M,T

1

M

M∑
m=1

∫ 1

0

(
fk (r) f

′

k (r)
)
⊗ E

(
K∗mT,c (r)

)2
dr = Op (1) ,

where t = [Tr] and K∗mT,c (r) is the m-th entry of term K∗T,c (r). For Theorem
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1 (ii) in PM, we have

lim sup
M,T

1

M

M∑
m=1

∥∥∥∥∥E
(
Y
′

mTk,−1YmTk,−1

)
T 2

−
∫ 1

0

(
fk (r) f

′

k (r)
)
⊗ E (Km,c (r))2 dr

∥∥∥∥∥
= lim sup

M,T

1

M

M∑
m=1

∥∥∥∥∥∥∥
∫ 1

0

(
fk

(
[Tr]
T

)
f
′

k

(
[Tr]
T

))
⊗ E

(
K∗mT,c (r)

)2
dr

−
∫ 1

0

(
fk (r) f

′

k (r)
)
⊗ E (Km,c (r))2 dr

∥∥∥∥∥∥∥
≤ lim sup

M,T

1

M

M∑
m=1

∥∥∥∥∫ 1

0

(
fk (r) f

′

k (r)
)
⊗
[
E
(
K∗mT,c (r)

)2 − E (Km,c (r))2
]
dr

∥∥∥∥
+ lim sup

M,T

1

M

M∑
m=1

∥∥∥∥∫ 1

0

(
fk

(
[Tr]

T

)
f
′

k

(
[Tr]

T

)
−
(
fk (r) f

′

k (r)
))
⊗ E (KmT,c (r))2 dr

∥∥∥∥
= Op

(
T−α

)
+Op

(
kT−1

)
for any k > 1. For Theorem 1 (iii) in PM, for any η > 0, we have

lim sup
M,T

1

M

M∑
m=1

∥∥∥∥∫ 1

0

(
fk

(
[Tr]

T

)
f
′

k

(
[Tr]

T

))
⊗ E

(
K∗mT,c (r)

)2
dr

∥∥∥∥
·1
{∥∥∥∥∫ 1

0

(
fk

(
[Tr]

T

)
f
′

k

(
[Tr]

T

))
⊗ E

(
K∗mT,c (r)

)2
dr

∥∥∥∥ > Mη

}
≤ lim sup

M,T
B1 sup

0≤r≤1

∥∥∥E (K∗mT,c (r)
)2
dr
∥∥∥1

{
B1 sup

0≤r≤1

∥∥∥E (K∗mT,c (r)
)2
dr
∥∥∥ > Mη

}
= op (1) ,

where B1 is some finite positive constant value and K∗mT,c (r) is stochastically

bounded for each r ∈ [0, 1]. Similarly, for Theorem 1 (iv) in PM, we have

lim sup
M,T

1

M

M∑
m=1

∥∥∥∥∫ 1

0

(
fk (r) f

′

k (r)
)
⊗ E (Km,c (r))2 dr

∥∥∥∥
·1
{∥∥∥∥∫ 1

0

(
fk (r) f

′

k (r)
)
⊗ E (Km,c (r))2 dr

∥∥∥∥ > Mη

}
= op (1) ,

for any k > 1. Combining (i) (ii) (iii) and (iv) of Theorem 1, we have

Sk
MT 2

(
M∑
m=1

Y
′

mTk,−1YmTk,−1

)−1

S
′

k

p→ Sk

(
E
∫ 1

0

(
fk (r) f

′

k (r)
)
⊗
(
K2
mc (r)

)
dr

)−1

S
′

k,

under joint convergence framework. Since the difference between Sk
MT 2

(∑M
m=1 Y

′

mTk,−1YmTk,−1

)−1

S
′

k

and Sk
MT 2

(∑M
m=1 Y

′

mTk,−1YmTk,−1

)−1

is a non-random value, the joint conver-

gence of Sk
MT 2

(∑M
m=1 Y

′

mTk,−1YmTk,−1

)−1

can be demonstrated in a similar way
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as Sk
MT 2

(∑M
m=1 Y

′

mTk,−1YmTk,−1

)−1

S
′

k.

For (3), under the convergence framework, we are supposed to justify

1√
MT

[
Sk

(
E
∫ 1

0

(
fk (r) f

′

k (r)
)
⊗
(
K2
mc (r)

)
dr

)−1

S
′

k

]− 1
2

·Sk
(
E
∫ 1

0

(
fk (r) f

′

k (r)
)
⊗
(
K2
mc (r)

)
dr

)−1
(

M∑
m=1

Y
′

mTk,−1Umxk

)
d→ N (0, Id) ,

under Assumptions 2.1-2.3. Following the Theorem 2 of PM, we firstly show

the sequential limit and then justify uniform integrability in Theorem 2 of PM.

In order to simplify the notation, we define Γk := Elimk→∞
∫ 1

0

(
fk (r) f

′

k (r)
)
⊗

(K2
mc (r)) dr. If Assumptions 2.1-2.3 hold, under sequential asymptotics (M,T )seq →

∞, we have

1√
MT

[
SkΓ

−1
k S

′

k

]− 1
2
SkΓ

−1
k

(
M∑
m=1

Y
′

mTk,−1Umxk

)
d→ N (0, Id) . (B.8)

Equation (B.8) holds due to the invariance principle and Lindeberg-Lévy cen-

tral limit theorem. For any η > 0, we have

1

MT 2

∥∥∥∥∥∥∥∥
[
SkΓ

−1
k S

′

k

]− 1
2 SkΓ

−1
k E

[(∑M
m=1 Y

′

mTk,−1Umxk

)(∑M
m=1 Y

′

mTk,−1Umxk

)′]
·
{[
SkΓ

−1
k S

′

k

]− 1
2 SkΓ

−1
k

}′
∥∥∥∥∥∥∥∥

·1
{∥∥∥∥[SkΓ−1

k S
′

k

]− 1
2
SkΓ

−1
k

(
Y
′

mTk,−1Umxk

)∥∥∥∥ > √MTη

}
≤ 1

MT 2
B2

M∑
m=1

E
∥∥∥Y ′mT,−1YmT,−1

∥∥∥1

{∥∥∥∥∥B2

(
Y
′
mT,−1√
T

YmT,−1√
T

)∥∥∥∥∥ > MTη

}
= op (1) ,

for some positive constant B2 < ∞, where YmT := (ym1, ym2, ..., ymT )′ and

YmT,−1 := (ym0, ym0, ..., ym0)′. The inequality is based on the invariance prin-

ciple in BM and the continuous mapping theorem as (M,T )→∞. Therefore,

the joint convergence coincides with sequential asymptotics. We conclude the

proof.

�

The Proof of Theorem 2.4: We need to justify the following three
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results:

(1) the consistency of the variance estimator Σ̂;

(2) the stochastic boundness of proposed test statistics under the null hy-

pothesis;

(3) the asymptotic divergence of the test statistics under the alternative

hypothesis.

First, we collect sieve regression residuals ûmt = ymt − R̂(k)
Tt ym,t−1 for t =

1, 2, ..., T and m = 1, 2, ...,M . The sieve estimator R̂
(k)
Tt is based on orthogonal

trigonometric basis. Under joint asymptotics, we have

Σ̂ =
1

MT

M∑
m=1

T∑
t=1

û2
mt

=
1

MT

M∑
m=1

T∑
t=1

((
RTt − R̂(k)

Tt

)
ym,t−1 + umt

)2

=
1

MT

M∑
m=1

T∑
t=1

(umt)
2 +

1

MT

(
RTt − R̂(k)

Tt

)2
M∑
m=1

T∑
t=1

(ym,t−1)2 +

2
(
RTt − R̂(k)

Tt

)
MT

M∑
m=1

T∑
t=1

ym,t−1umt

=
1

MT

M∑
m=1

T∑
t=1

(umt)
2 +Op

(
k2

T

)
+Op

(
k√
MT

)

=
1

MT

M∑
m=1

T∑
t=1

(umt)
2 + op (1)

p→ Σ.

Second, with the time-invariant term
∏
RT as the true value under H0, we

show that

∏
R̂

(k)
T −

∏(
R̃T

)
=

(∏
R̂

(k)
T −

∏
RT

)
−
(∏(

R̃T

)
−
∏

RT

)
= Op

(
k√
MT

)
+Op

(
1√
MT

)
.
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Then we have

A
− 1

2
MTk

∏
R̂

(k)
T −

∏(
R̃T

)
= A

− 1
2

MTk

(∏
R̂

(k)
T −

∏
RT

)
− A−

1
2

MTk

(∏(
R̃T

)
−
∏

RT

)
= Op (1) +Op

(
1

k

)
.

Under the alternative hypothesis, we have

∏
R̂

(k)
T −

∏(
R̃T

)
=

(∏
R̂

(k)
T −

∏
RT

)
−
(∏(

R̃T

)
−
∏

RT

)
=

(∏
R̂

(k)
T −

∏
RT

)
−
(∏(

R̃T

)
−
∏

RT

)
−
(∏

RT −
∏

(RT )
)

= Op

(
k√
MT

)
+Op

(
1√
MT

)
+Op

(
1

T

)
,

where
∏
RT is the pseudo-true value for the probability limit of pooled least

square estimator
∏(

R̃T

)
. Then,

A
− 1

2
MTk

∏
R̂

(k)
T −

∏(
R̃T

)
= A

− 1
2

MTk

(∏
R̂

(k)
T −

∏
RT

)
− A−

1
2

MTk

(∏(
R̃T

)
−
∏

RT

)
− A−

1
2

MTk

(∏
(R∗T )−

∏
(RT )

)
= Op (1) +Op

(
1

k

)
+Op

(√
M

k

)
.

By Assumption 2.3, we have k/
√
M → 0. So the test statistics diverge under

the alternative hypothesis, which illustrates the consistency. We conclude the

proof.

�
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Appendix C

Technical Results for Chapter 3

Proof of the main results

Theoretical derivations are all collected here.

Proof of Proposition3.1.

β̂k = βk+
(
Z̃ ′k,−1Xk,−1

)−1

Z̃ ′k,−1U0+
(
Z̃ ′k,−1Xk,−1

)−1
T∑
t=1

z̃k,t−1x
′
t−1

(
B −B(k)

)( t

T

)
.

(C.1)

Define

A1 : =

(
T∑
t=1

z̃k,t−1x
′
k,t−1

)−1 T∑
t=1

z̃k,t−1u0t,

A2 : =

(
T∑
t=1

z̃k,t−1x
′
k,t−1

)−1 T∑
t=1

z̃k,t−1x
′
t−1

(
B −B(k)

)( t

T

)
.

(i) For the term A1,
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‖A1‖2

=

∥∥∥∥∥∥
(

T∑
t=1

z̃k,t−1x
′
k,t−1

)−1 T∑
t=1

z̃k,t−1u0t

∥∥∥∥∥∥
2

= tr

( T∑
t=1

z̃k,t−1x
′
k,t−1

)−1( T∑
t=1

z̃k,t−1z̃
′
k,t−1u

2
0t

)(
T∑
t=1

xk,t−1z̃
′
k,t−1

)−1


= tr


(

1
T 1+α∧γ

∑T
t=1 z̃k,t−1x

′
k,t−1

)−1 (
1

T 2+2(α∧γ)

∑T
t=1 z̃k,t−1z̃

′
k,t−1u

2
0t

)
·
(

1
T 1+α∧γ

∑T
t=1 xk,t−1z̃

′
k,t−1

)−1


≤ c

¯
−2
Φ c̄Φλmax

(
1

T 1+α∧γ

T∑
t=1

z̃t−1z̃
′
t−1

)
λmin

(
1

T 1+α∧γ

T∑
t=1

z̃t−1x
′
t−1

)−2

·

∥∥∥∥∥ 1

T 1+α∧γ

(
Z̃ ′k,−1Z̃k,−1

)− 1
2

(
T∑
t=1

z̃k,t−1u0t

)∥∥∥∥∥
2

,

where c
¯Φ and c̄Φ are defined in Assumption 3.4 (i), λmin(·) and λmax(·) denote

the minimun and maximun eigenvalues respectively.

By Phillips and Magdalinos (2009), we have

λmax

(
1

T 1+α∧γ

T∑
t=1

z̃t−1z̃
′
t−1

)
= Op(1) and λmin

(
1

T 1+α∧γ

T∑
t=1

z̃t−1x
′
t−1

)
= Op(1).
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Further, we apply the properties of the GARCH process and show that

E

∥∥∥∥∥∥
(

T∑
t=1

z̃k,t−1z̃
′
k,t−1

)− 1
2
(

T∑
t=1

z̃k,t−1u0t

)∥∥∥∥∥∥
2

= E

tr

( T∑
t=1

z̃k,t−1z̃
′
k,t−1Et−1

[
u2

0t

])( T∑
t=1

z̃k,t−1z̃
′
k,t−1

)−1


= Σ00E
[
tr

((
Z̃ ′k,−1Z̃k,−1

)(
Z̃ ′k,−1Z̃k,−1

)−1
)]

+E

tr

( T∑
t=1

z̃k,t−1z̃
′
k,t−1 (Ht − Σ00)

)(
T∑
t=1

z̃k,t−1z̃
′
k,t−1

)−1


≤ Σ00 tr (In ⊗ Ik) + E

 sup
1≤t≤T

|Ht − Σ00| tr

( T∑
t=1

z̃k,t−1z̃
′
k,t−1

)(
T∑
t=1

z̃k,t−1z̃
′
k,t−1

)−1


= Σ00 tr (In ⊗ Ik) + E
[

sup
1≤t≤T

|Ht − Σ00| · tr (In ⊗ Ik)
]

= Op (k) + op (k) .

By Markov inequality, we have,∥∥∥∥∥ 1

T 1+α∧γ

(
Z̃ ′k,−1Z̃k,−1

)− 1
2

(
T∑
t=1

z̃k,t−1u0t

)∥∥∥∥∥
2

= Op (k) .

Combining the above results, we have ‖A1‖ = Op

(√
k

T 1+α∧γ

)
.

(ii) For the term A2,

‖A2‖ =

∥∥∥∥∥∥
(

T∑
t=1

z̃k,t−1x
′
k,t−1

)−1 T∑
t=1

z̃k,t−1x
′
t−1

(
B −B(k)

)( t

T

)∥∥∥∥∥∥
≤

∥∥∥∥∥∥
(

T∑
t=1

z̃k,t−1x
′
k,t−1

)−1
∥∥∥∥∥∥
∥∥∥∥∥

T∑
t=1

z̃k,t−1x
′
t−1

(
B −B(k)

)( t

T

)∥∥∥∥∥
≤ c

¯
−1
Φ

[
λmin

(
1

T 1+α∧γ

T∑
t=1

Ik ⊗
(
z̃t−1x

′
t−1

))]−1

· c̄1/2
Φ λmax

(
1

T 1+α∧γ

T∑
t=1

Ik ⊗
(
z̃t−1x

′
t−1

))
sup

0≤r≤1

∥∥(B −B(k)
)

(r)
∥∥ ,

where c
¯Φ and c̄Φ are defined in Assumption 3.4(i), λmin(·) and λmax(·) denote

the minimum and maximum eigenvalues respectively.
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By Phillips and Magdalinos (2009), we have

λmin

(
1

T 1+α∧γ

T∑
t=1

Ik ⊗
(
z̃t−1x

′
t−1

))
= λmin

(
1

T 1+α∧γ

T∑
t=1

z̃t−1x
′
t−1

)
= Op (1) and,

λmax

(
1

T 1+α∧γ

T∑
t=1

Ik ⊗
(
z̃t−1x

′
t−1

))
= λmax

(
1

T 1+α∧γ

T∑
t=1

z̃t−1x
′
t−1

)
= Op (1) .

By Assumption 3.4(ii), sup0≤r≤1

∥∥(B −B(k)
)

(r)
∥∥ = Op (k−q) under the smooth-

ness condition. Combining the above results, we have ‖A2‖ = Op (k−q).

(iii) By combining results in Proposition 3.1 (i) and (ii), we have∥∥∥β̂k − βk∥∥∥ ≤ ‖A1‖+ ‖A2‖ = Op

(√
k

T 1+α∧γ + k−q

)
.

Proof of Theorem 3.1.

(i) By Proposition 3.1,

1

T

T∑
t=1

∥∥∥∥B̂k

(
t

T

)
−B

(
t

T

)∥∥∥∥2

=
1

T

T∑
t=1

∥∥∥∥(f ′k ( t

T

)
⊗ In

)(
β̂k − βk

)
+

(
B(k)

(
t

T

)
−B

(
t

T

))∥∥∥∥2

≤ 2

T

T∑
t=1

∥∥∥∥(β̂k − βk)′ [In ⊗ fk ( t

T

)][
f ′k

(
t

T

)
⊗ In

](
β̂k − βk

)∥∥∥∥
+

2

T

T∑
t=1

∥∥∥∥B(k)

(
t

T

)
−B

(
t

T

)∥∥∥∥2

≤ 2
∥∥∥β̂k − βk∥∥∥2

· sup
1≤t≤T

λmax

(
fk

(
t

T

)
f ′k

(
t

T

))
+ 2 sup

1≤t≤T

∥∥∥∥(B −B(k)
)( t

T

)∥∥∥∥2

= Op

(
k

T 1+α∧γ + k−2q

)
,

provided that 0 < sup0≤r≤1 λmax

(
fk
(
t
T

)
f ′k
(
t
T

))
<∞ under Assumption 3.4(i).
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(ii) We intend to bound that

sup
1≤t≤T

∥∥∥∥B̂k

(
t

T

)
−B

(
t

T

)∥∥∥∥
= sup

1≤t≤T

∥∥∥∥(f ′k ( t

T

)
⊗ In

)(
β̂k − βk

)
+

(
B(k)

(
t

T

)
−B

(
t

T

))∥∥∥∥
= sup

1≤t≤T

∥∥∥∥fk ( t

T

)∥∥∥∥ · ∥∥∥β̂k − βk∥∥∥+ sup
1≤t≤T

∥∥∥∥(B −B(k)
)( t

T

)∥∥∥∥
= ζ (k)Op

(√
k

T 1+α∧γ + k−q

)
+Op

(
k−q
)

= ζ (k)Op

(√
k

T 1+α∧γ + k−q

)
.

As the B-spline is considered, ζ (k) .
√
k. Then the proof is complete. �

Proof of Corollary 3.1. The proof follows Theorem 3.1 naturally. �

Proof of Theorem 3.2.

Without losing generality, we consider one grid point, d = 1. The proof of

d ≥ 2 follows a similar proving strategy. For the chosen t∗ = bTr∗c, note the

fact that

B̂(k)

(
t∗

T

)
−B

(
t∗

T

)
= f ′k

(
t∗

T

)
⊗ In

(
β̂k − βk

)
+

(
B(k)

(
t∗

T

)
−B

(
t∗

T

))
,

where
(
β̂k − βk

)
can be expressed as formula (C.1). Define

A3 : = M
− 1

2
k

[
f ′k

(
t∗

T

)
⊗ In

](
Z̃ ′k,−1Xk,−1

)−1

Z̃ ′k,−1U0,

A4 : = M
− 1

2
k

[
f ′k

(
t∗

T

)
⊗ In

](
Z̃ ′k,−1Xk,−1

)−1
(

T∑
t=1

z̃k,t−1x
′
t−1

(
B −B(k)

)( t

T

))
,

A5 : = M
− 1

2
k

(
B(k)

(
t∗

T

)
−B

(
t∗

T

))
.

Suppose Assumptions 3.1 to 3.5 hold, it is sufficient to show that (a) A3  

N (0,Σ00); (b) A4 = op (1); (c) A5 = op (1).

For part (a), let Vt := M
− 1

2
k

[
f ′k
(
t∗

T

)
⊗ In

] (
Z̃ ′k,−1Xk,−1

)−1

z̃k,t−1u0t, so that
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A3 =
∑T

t=1 Vt. For each t, Vt is a martingale difference sequence. Therefore the

martingale central limit theorem can applied to show the limiting distribution.

We first show the conditional stability condition holds. For any n dimen-

sional δ ∈ Rn
+,

T∑
t=1

E
[
(δ′Vt)

2 |Ft−1

]
=

T∑
t=1

E [tr (δδ′VtV
′
t ) |Ft−1] = tr

(
δδ′M

− 1
2

k MkM
− 1

2
k Σ00

)
= Σ00δ

′δ.

In addition, the Lindeberg condition can be proved in the following way. For

any ε > 0,

T∑
t=1

Et−1

[
(δ′Vt)

2
1 (|δ′Vt| > ε)

]
= ε2

T∑
t=1

Et−1

[(
δ′Vt
ε

)2

1

(∣∣∣∣δ′Vtε
∣∣∣∣ > 1

)]

≤ ε2

T∑
t=1

Et−1

[(
δ′Vt
ε

)4
]

≤ δ′δ

ε2

[
λmin

(
1

T 1+α∧γ

T∑
t=1

z̃k,t−1z̃
′
k,t−1

)]−2 T∑
t=1

‖z̃k,t−1‖4 Et−1u
4
0t ·

ζ2 (k)

T 2+2(α∧γ)

. Op

(
ζ2 (k)

k

T 1+α∧γ

)
= op (1) .

By combining the above results and applying the martingale central limit the-

orem (Proposition 3.1, Hall & Heyde, 2014), we can show that

A3  N (0,Σ00) .

For part (b), we consider A4:

‖A4‖ =

∥∥∥∥∥M− 1
2

k

[
f ′k

(
t∗

T

)
⊗ In

](
Z̃ ′k,−1Xk,−1

)−1
[

T∑
t=1

z̃k,t−1x
′
t−1

(
B −B(k)

)( t

T

)]∥∥∥∥∥
≤ c

¯

− 1
2

Φ c̄
1
2
Φ

[
λmin

(
1

T 1+α∧γ

T∑
t=1

z̃t−1z̃
′
t−1

)]− 1
2

λmax

(
1

T 1+α∧γ

T∑
t=1

z̃t−1x
′
t−1

)

T
1+α∧γ

2 sup
1≤t≤T

∥∥∥∥(B −B(k)
)( t

T

)∥∥∥∥
= Op

(
T

1+α∧γ
2 k−q

)
= op (1) .
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Similarly as part (b), an identical proving strategy applies and (c). We can

show that,

‖A5‖ = Op

(
T

1+α∧γ
2 k−q

)
= op (1) .

The proof of Theorem 3.2 is complete. �

Proofs of Theorems 3.3 and 3.4. The derivations follow the limiting nor-

mality of Theorem 3.2 and the asymptotic independence between the numer-

ator and the denominator as shown in Phillips & Magdalinos (2009). �
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