
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Dissertations and Theses Collection (Open
Access) Dissertations and Theses

5-2021

Flexible resource allocation for service and production systems Flexible resource allocation for service and production systems

Peng WANG
Singapore Management University

Follow this and additional works at: https://ink.library.smu.edu.sg/etd_coll

 Part of the Business Administration, Management, and Operations Commons, and the Operations and

Supply Chain Management Commons

Citation Citation
WANG, Peng. Flexible resource allocation for service and production systems. (2021). 1-138.
Available at:Available at: https://ink.library.smu.edu.sg/etd_coll/332

This PhD Dissertation is brought to you for free and open access by the Dissertations and Theses at Institutional
Knowledge at Singapore Management University. It has been accepted for inclusion in Dissertations and Theses
Collection (Open Access) by an authorized administrator of Institutional Knowledge at Singapore Management
University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd
https://ink.library.smu.edu.sg/etd_coll?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F332&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/623?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F332&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1229?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F332&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1229?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F332&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

FLEXIBLE RESOURCE ALLOCATION FOR

SERVICE AND PRODUCTION SYSTEMS

PENG WANG

SINGAPORE MANAGEMENT UNIVERSITY

2021

https://business.smu.edu.sg/sites/business.smu.edu.sg/files/business/phdstudents/phdstudentsCV/Wang%20Peng_140720.pdf
https://business.smu.edu.sg/sites/business.smu.edu.sg/files/business/phdstudents/phdstudentsCV/Wang%20Peng_140720.pdf
https://business.smu.edu.sg/sites/business.smu.edu.sg/files/business/phdstudents/phdstudentsCV/Wang%20Peng_140720.pdf
https://www.smu.edu.sg

Flexible Resource Allocation for

Service and Production Systems

Peng Wang

A thesis submitted to Lee Kong Chian School of Business

in partial fulfillment of the requirements for the Degree of

Doctor of Philosophy in Business

Dissertation Committee:

Yun Fong Lim (Supervisor/Chair)
Associate Professor of Operations Management

Singapore Management University

Zhichao (Daniel) Zheng
Associate Professor of Operations Management

Singapore Management University

Yini (Sarah) Gao
Assistant Professor of Operations Management

Singapore Management University

Melvyn Sim
Professor of Analytics & Operations

National University of Singapore

Singapore Management University

2021

I hereby declare that this dissertation is my original work
and it has been written by me in its entirety.

I have duly acknowledged all the sources of information
which have been used in this dissertation.

This dissertation has also not been submitted for any degree
in any university previously.

Peng Wang
31 May 2021

Abstract

Resource flexibility hedges against uncertainty in service and production

systems. However, flexibility also brings complexity and di�culty in allo-

cating resources. The thesis mainly studies managing flexible resources in

two scenarios. The first scenario is a type of coordination of workers in a

production or assembly line – bucket brigade. Specifically, the study shows

how to manage a stochastic bucket brigade with discrete work stations.

The second scenario is a service system with flexible service resources. The

study proposes a distributive decision rule for the allocation of the resources

under both supply and demand uncertainty.

Chapter 2 studies a J-station, I-worker bucket brigade with preemptible

work content. The time duration for each worker to serve a job at a station

is exponentially distributed with a rate that depends on the station’s work

content and the worker’s work speed. We analytically derive the throughput

and the coe�cient of variation (CV) of the inter-completion time. We study

the system under three cases. (i) If the work speeds depend only on the

workers, the throughput gap between the stochastic and the deterministic

systems can be up to 47% when the number of stations is small. (ii) If the

work speeds depend on the workers and the stations such that the workers

may not dominate each other at every station, the asymptotic throughput

can be expressed as a function of two factors. (iii) If the work speeds depend

on the workers, the stations, and the jobs, there is a trade-o↵ between the

intensification of the learning experience and the diversification of the skills.

Chapter 3 further studies a J-station, I-worker bucket brigade with non-

preemptible work content. If the work content is non-preemptible, the work

on each station can not be preempted and has to be processed by the same

worker. We properly denote the waiting workers, re-analyze the state of

the system, and the transition probability matrix of the reset vectors. Fi-

nally, we derive the average throughput. In the numerical experiments, we

first verify the theoretical results by simulations. Then we compare the

throughput di↵erence between a non-preemptible line and a preemptible

line. If the workers are sequenced slowest-to-fastest, the preemptible line

dominates the non-preemptible line. However, if the workers are sequenced

fastest-to-slowest, the non-preemptible line can possibly dominate the pre-

emptible line. As such, the management needs to consider about the actual

setting to enhance the performance.

Chapter 4 studies a resource allocation problem, where the planner needs

to decide simultaneously on both the supply and the allocation policy to

fulfill the uncertain demand over a multi-period horizon. We introduce a

distributive decision rule, which decides on the proportion of jobs awaiting

dispatch to each of the possible resource supply pools. Our model has a

convex reformulation that can be solved e�ciently. Through simulations,

we illustrate that the optimal solution evolves with changes in service dis-

tribution, initial conditions, temporal fluctuations in demand and resource

availability. At last, we benchmark our model against the static rule and

a fluid model. In doing so, we justify the adaptivity of the proposed dis-

tributive decision rule and show the robustness of our model to di↵erent

settings.

Contents

Acknowledgements iii

1 Introduction 1

2 Stochastic Bucket Brigades with Preemptible Work Con-

tent 4

2.1 Introduction . 4
2.2 Literature review . 8

2.2.1 Bucket brigade assembly lines 8
2.2.2 Dynamic server assignment on stochastic systems . . 10

2.3 Assumptions and notation 12
2.4 Performance measures and asymptotic behavior 14
2.5 Case I: The work speeds depend only on the workers 19

2.5.1 The distribution of the hand-o↵ station vector 19
2.5.2 Comparing with the deterministic system 20
2.5.3 Maximizing the throughput 24
2.5.4 Minimizing the CV of the inter-completion time . . . 26

2.6 Case II: The work speeds depend only on the workers and
the stations . 28
2.6.1 Average work speeds and asymptotic expected blocked

times . 29
2.6.2 Throughput determining factors: capacity and e�-

ciency ratio . 31
2.7 Case III: The work speeds depend on the workers, the sta-

tions, and the jobs . 32
2.7.1 A modified exponential model 33
2.7.2 A bucket brigade with partially cross-trained workers 35
2.7.3 Diversification and intensification of skills 37

2.8 Robustness of the results . 43
2.9 Conclusion . 44

i

3 Stochastic Bucket Brigades with Non-preemptible Work

Content 49

3.1 Introduction . 49
3.2 Notation and assumptions 50
3.3 Performance measures and asymptotic behavior 51

3.3.1 State of the system 52
3.3.2 Transition probability matrix of the reset vectors . . 54
3.3.3 The throughput of the line 55

3.4 Numerical results . 56
3.5 Conclusion . 57

4 Distributive Decision Rule in Resource Allocation Prob-

lems 59

4.1 Introduction . 59
4.1.1 Key approaches in literature 61
4.1.2 Approach and contributions 65

4.2 An distributive model for allocation problems 67
4.2.1 Model and formulation 72

4.3 Numerical experiments . 84
4.3.1 Understanding the dynamics of our model 84
4.3.2 Insights on partially connected networks 93
4.3.3 Comparisons . 96

4.4 Conclusion . 100

5 Conclusion 102

A Appendix for Chapter 2 104

B Appendix for Chapter 3 113

C Appendix for Chapter 4 116

Bibliography 123

ii

Acknowledgements

I would like to express my deep and sincere gratitude to my research super-

visor, Professor Yun Fong Lim, for providing me invaluable guidance and

support throughout the years. His dedication and keen interest to help his

students had been solely and mainly responsible for completing my thesis.

His timely advice, meticulous scrutiny, and scholarly advice have inspired

me to a very great extent to conduct the research and accomplish this task.

I especially thank his unyielding determination to push, drag, and carry

me forward whenever I ran o↵ the rails.

I own a deep sense of gratitude to Professor Gar Goei Loke for factually

co-advising me on Chapter 4 of the thesis. His inspirations, suggestions,

enthusiasm and dynamism have widened my research scope and enriched

the content of the thesis. I would also like to thank Professor Melvyn

Sim, Professor Zhichao Zheng, and Professor Yini Gao, for their valuable

suggestions and questions which incentivized me to improve the thesis from

various perspectives. My thanks also goes to the rest of the faculty in our

department for their guidance and help on my study.

I would like to thank my peers, He Yan, Luo Qian, and Nicholas Yeo, for

the fun time we shared together, and the continuing support and help we

gave to each other. My Ph.D. life would not have been complete without

their company.

I am extremely grateful to my parents for their love, caring and sacrifices

for educating and preparing me for my future. I deeply thank them for the

freedom they allowed me to pursue my own interests in my life.

iii

“I have never looked upon ease and happiness as ends in themselves – this

critical basis I call the ideal of a pigsty. The ideals that have lighted my

way, and time after time have given me new courage to face life cheerfully,

have been Kindness, Beauty, and Truth.”

—Einstein, Albert

To my late grandma

iv

Chapter 1

Introduction

Resource flexibility hedges against uncertainty in service and production

systems. However, flexibility also brings complexity and di�culty in allo-

cating resources. The thesis mainly studies managing flexible resources in

two scenarios. The first scenario is a type of coordination of workers in a

production or assembly line – bucket brigade. Specifically, the thesis shows

how to manage a stochastic bucket brigade with discrete work stations.

The second scenario is a service system with flexible service resources. The

study proposes a distributive decision rule for the allocation of the resources

under both supply and demand uncertainty.

Chapter 2 studies a J-station, I-worker bucket brigade with preemptible

work content. The time duration for each worker to serve a job at a station

is exponentially distributed with a rate that depends on the station’s ex-

pected work content and the worker’s work speed. Our goal is to maximize

the system’s productivity or to minimize its inter-completion time variabil-

ity. We analytically derive the throughput and the coe�cient of variation

(CV) of the inter-completion time. We study the system under three cases.

(i) If the work speeds depend only on the workers, the throughput gap

between the stochastic and the deterministic systems can be up to 47%

when the number of stations is small. Either maximizing the throughput

or minimizing the CV of the inter-completion time, the slowest-to-fastest

worker sequence always outperforms the reverse sequence for the stochastic

1

bucket brigade. To maximize the throughput, more work content should be

assigned to the stations near the faster workers. In contrast, to minimize

the CV of the inter-completion time, more work content should be allocated

to the stations near the slower workers. (ii) If the work speeds depend on

the workers and the stations such that the workers may not dominate each

other at every station, the asymptotic throughput can be expressed as a

function of the average work speeds and the asymptotic expected blocked

times of the workers, and can be interpreted as the sum of the e↵ective

production rates of all the workers. (iii) If the work speeds depend on the

workers, the stations, and the jobs, there is a trade-o↵ between the intensi-

fication of the learning experience and the diversification of the skills. We

find that if the workers have similar initial work speeds, then it is more

productive to intensify their learning over a narrower work zone. Other-

wise, it is crucial to mitigate the negative e↵ect of the bottleneck (slowest)

worker by cross-training the workers over a wider work zone.

Chapter 3 further studies a J-station, I-worker bucket brigade with non-

preemptible work content. If the work content is non-preemptible, the work

on each station can not be preempted and has to be processed by the same

worker. When one worker walks back to his predecessor, he can not take

over the job immediately, but has to wait for his predecessor to finish her

job at the current station, and then he continues to process the job from

the next station. the status of a worker can be not only working or being

blocked, but can also be waiting for his predecessor to finish his job at a

station. As such, it complicates the analysis in a few perspectives. (1) The

waiting workers need to be well defined. (2) The inter-completion times and

the relation between the reset vectors and the states of the system have to

be re-analyzed. (3) The transitions of the states have to be analyzed case by

case. To address these issues, we properly denote the waiting workers, re-

analyze the state of the system, and the transition probability matrix of the

reset vectors. Finally, we derive the average throughput for a bucket brigade

with non-preemptible work content. In the numerical experiments, we first

compare the average throughput derived from the theorem to the sample

paths based on simulations. We see that the throughputs converge as the

2

number of jobs increases. Then we compare the throughput di↵erence

between a non-preemptible line and a preemptible line. If the workers

are sequenced slowest-to-fastest, the preemptible line dominates the non-

preemptible line. However, if the workers are sequenced fastest-to-slowest,

the non-preemptible line can possibly dominate the preemptible line. As

such, the management needs to consider about the actual setting to enhance

the performance.

Chapter 4 proposes a distributive decision rule in resource allocation prob-

lems with the following five features: (i) supply is replenishable after some

random time, (ii) supply can be partially controlled, (iii) both demand and

supply is partitioned into disjoint homogeneous sources, (iv) demand can

wait and need not be fully fulfilled, and (v) allocation values are known.

Under this setting, the goal of the planner is to decide simultaneously on

both the supply and the allocation policy to fulfill the uncertain demand

over a multi-period horizon. Such settings emerge in problems such as

ride-sharing, fleet re-positioning, and patient management in healthcare.

We introduce a distributive decision rule, which decides on the proportion

of jobs awaiting dispatch to each of the possible resource supply pools. Our

model has a convex reformulation that can be solved e�ciently. Through

simulations, we illustrate that the optimal solution evolves with changes

in service distribution, initial conditions, temporal fluctuations in demand

and resource availability. We further provide insights on such behaviour.

In addition, we also illustrate insights on network design and the impact

of connectivity on the optimal policy. At last, we benchmark our model

against two models: (1) The static rule; (2) The fluid model. To benchmark

against the static rule, we justify the adaptivity of the proposed distribu-

tive decision rule; To benchmark against the state-of-the-art fluid model,

we show the robustness of our model to di↵erent settings.

3

Chapter 2

Stochastic Bucket Brigades

with Preemptible Work

Content

2.1 Introduction

To boost an assembly line’s productivity, it is crucial to coordinate workers

on the line such that their production capacity is e↵ectively used. A well-

known strategy is to coordinate the workers on the line as a bucket brigade

(Bartholdi III, Eisenstein, 1996b,a). When the workers are organized as

a bucket brigade, each of them simultaneously assembles a single job (an

instance of the product) along the line. Each worker carries and works on

his job from work station to work station until either he hands o↵ his job

to a downstream co-worker or he completes his job at the end of the line.

The worker then walks back to get another job, either from his co-worker

upstream or from a bu↵er at the beginning of the line.

Bucket brigades are notably used in warehouses and distribution centers

to coordinate workers for order-picking (Bartholdi III et al., 2001). Com-

panies that adopt the strategy include Ford, The Gap, and Walgreen’s

(Bartholdi III, Eisenstein, 1996a). Bucket brigades are also applied to

4

manufacturing environments where workers assemble jobs on discrete work

stations. Examples include United Technologies Automotive (Villalobos

et al., 1999a,b), Mitsubishi Consumer Electronics America, and Subway

(Bartholdi III, Eisenstein, 1996a). Bucket brigades are attractive in prac-

tice because they only require the workers to follow simple rules and the

work-in-process is strictly under control by the number of workers.

More importantly, bucket brigades possess a self-balancing dynamic behav-

ior that is first studied by Bartholdi III, Eisenstein (1996b). In their nor-

mative model, they assume the work content is deterministic. Each worker

proceeds forward with a deterministic, finite work velocity, and walks back

instantaneously (with an infinite velocity). The authors proved that if

the workers are sequenced from slowest to fastest in the production-flow

direction based on their work velocities, then the hand-o↵s between any

two adjacent workers will converge to a fixed location. As a result, every

worker will repeatedly work on a fixed segment of the line eventually. This

self-balancing behavior helps boost the productivity (in some cases, very

significantly) of the implemented systems mentioned above (Bartholdi III,

Eisenstein, 1996a). Furthermore, it also allows a bucket brigade to sponta-

neously adapt to disruptions and seasonality.

Most papers in the literature study deterministic models of bucket brigades.

However, many systems in practice exhibit a certain level of randomness in

the service (or processing) times at work stations (Hopp, Spearman, 2011).

To the best of our understanding, only two papers have analytically studied

stochastic models of bucket brigades. Bartholdi III et al. (2001) consider an

assembly line with stochastic work content at work stations. The authors

assume that the work content at each station is exponentially distributed

with a common mean and each worker has a constant work speed. They

show that when the number of stations approaches infinity, the dynamics

and throughput of the stochastic system will be similar to that of a de-

terministic system. In practice, many manufacturing systems have only a

few work stations (Hopp, Spearman, 2011) and all order-picking lines in

warehouses have a finite number of rack sections (Bartholdi III, Hackman,

2019). Thus, it is worthwhile and important to study a line with a small

5

(finite) number of discrete work stations. Bukchin et al. (2018) consider a

stochastic two-worker model with continuous work content along the line.

They assume that upon each hand-o↵, the work speed of each worker is

randomly re-generated from a distribution function, and the worker main-

tains this speed until the next hand-o↵. They find that a fastest-to-slowest

sequence may be optimal as long as the standard deviation of the fastest

worker’s speed is su�ciently large.

If the service times at work stations are stochastic, will a bucket brigade

converge to some “stationary state”? Will the system “balance” itself on a

line with a finite number of stations as observed in the deterministic model?

If the work speed of each worker varies over the stations, then how should

we characterize the e�ciency of each worker along the line? What is the

e↵ective production rate of each worker that contributes to the throughput

of the line? If the workers become faster as they learn over the jobs, should

we only partially cross-train the workers to intensify their learning on a

subset of stations, instead of fully cross-training them over all the stations?

These issues are not well studied in the literature.

In this paper, we consider a stochastic bucket brigade line with J stations

and I workers. We assume that the time duration for each worker to serve a

job at a station is exponentially distributed with a rate that depends on the

station’s expected work content and the worker’s work speed. We analyti-

cally derive the system’s average throughput and the coe�cient of variation

(CV) of the inter-completion time. If the work speeds are independent of

the jobs, we prove that the stations where hand-o↵s occur follow a sta-

tionary probability distribution as the number of jobs approaches infinity.

Furthermore, the average throughput and the CV of the inter-completion

time converge to a constant.

We make other contributions by investigating the following three cases:

i The work speeds depend only on the workers. We assume the

workers can be ranked from slowest to fastest. Interestingly, in this

situation, the stationary probability distribution of the hand-o↵ sta-

tions is analogous to the dynamic behavior of a deterministic model.

6

Although the throughput di↵erence between the stochastic and the

deterministic systems gets closer as the number of stations increases,

the di↵erence can be quite significant if the number of stations is

small. Either maximizing the throughput or minimizing the CV of

the inter-completion time, the slowest-to-fastest sequence always out-

performs the reverse sequence for the stochastic bucket brigade. Fur-

thermore, to maximize the throughput, more work content should be

assigned to the stations near the faster workers. In contrast, to mini-

mize the CV of the inter-completion time, more work content should

be assigned to the stations near the slower workers.

ii The work speeds depend on the workers and the stations.

Given that the workers may not dominate each other along the en-

tire line, it becomes non-trivial to characterize the e�ciency of each

worker. We define the average work speed of each worker as a weighted

average of his work speeds at all the stations. We also derive the ex-

pected blocked time of each worker along the line. The throughput

of the stochastic bucket brigade can be expressed as a function of the

average work speeds and the expected blocked times of the workers.

Furthermore, the throughput can be interpreted as the sum of the ef-

fective production rates of all the workers. We develop a methodology

to select the best system configuration (where should the specialist

specialize and how to sequence the workers), and identify the factor

that causes one system configuration more productive than another.

iii The work speeds depend on the workers, the stations, and

the jobs. We assume the workers become faster as they learn over

the jobs. When the workers learn, is a bucket brigade with fully

cross-trained workers more productive than a bucket brigade with

each worker only partially cross-trained on a subset of stations? In

the former setting, the workers are more flexible but their learning

e↵ect can be diluted because of their wider work zones. In contrast,

although constrained to a subset of stations, each worker in the latter

setting can intensify their learning in a narrower work zone. Thus, it

is non-trivial to determine which bucket brigade is more productive.

7

We find that if the workers have similar initial work speeds, then it

is more productive to intensify their learning over a narrower work

zone. Otherwise, it is crucial to mitigate the negative e↵ect of the

bottleneck (slowest) worker by cross-training the workers over a wider

work zone.

Section 2.2 discusses the relevant literature. Section 2.3 specifies the as-

sumptions and notation of our stochastic bucket brigade model. Section 2.4

derives the average throughput and the CV of the inter-completion time,

and determines the system’s asymptotic behavior as the number of jobs

approaches infinity. Sections 2.5, 2.6 and 2.7 study the above three cases in

detail. Section 2.8 checks the robustness of the result. Section 2.9 provides

some concluding remarks. All proofs can be found in Appendix A.

2.2 Literature review

This paper is related to two streams of research: (i) bucket brigade assembly

lines and (ii) dynamic server assignment on stochastic systems. We discuss

each stream of work as follows.

2.2.1 Bucket brigade assembly lines

Bartholdi III, Eisenstein (1996b) introduce a deterministic bucket brigade

model. The authors find that an assembly line under the bucket brigade

protocol can balance itself: If the workers are sequenced from slowest to

fastest in the direction of the production flow, then the system always con-

verges to a state where each worker repeatedly works on a fixed segment

of the line. Furthermore, if the work content is continuous along the line,

then the system’s throughput reaches a maximum level. Bartholdi III et al.

(1999) analyze the dynamics of a bucket brigade with two or three workers,

and each worker has a constant work speed. For a two-worker line, they

find that under the fastest-to-slowest worker sequence, the hand-o↵s be-

tween the two workers converge to a 2-cycle periodic state. Bartholdi III,

8

Eisenstein (2005) consider a model where each worker spends a constant

walk-back time and a constant hand-o↵ time to get work from his upstream

colleague. They assume the worker’s constant walk-back time is indepen-

dent of his upstream colleague. They find that the system will still balance

itself if the workers are sequenced from slowest to fastest. Bartholdi III

et al. (2009) generalize the bucket brigade protocol by allowing the workers

to overtake and pass their colleagues. They show that a two-worker line

may exhibit a chaotic behavior in which the hand-o↵ locations never repeat

on the line.

Most of the above results are based on a line with continuous work con-

tent. Lim, Yang (2009) study a bucket brigade on discrete work stations.

For a given work-content distribution on the stations, the authors iden-

tify the best cross-training and worker-sequencing strategy to maximize

the system’s throughput. They find that fully cross-training the workers

and sequencing them from slowest to fastest may not be optimal. Other

researchers generalize the model in di↵erent ways. Armbruster, Gel (2006)

consider a two-worker bucket brigade in which workers’ speeds do not dom-

inate each other along the entire line. The authors present conditions under

which bucket brigades are e↵ective. Bartholdi III et al. (2006) extend the

ideas of bucket brigades to a network of sub-assembly lines so that all the

sub-assembly lines are synchronized to produce at the same rate, and jobs

are completed at regular, predictable time intervals. Webster et al. (2012)

examine the performance of a bucket brigade order-picking system by vary-

ing the distribution of products along an aisle. Through simulations, the

authors identify conditions in which the product distribution has large im-

pact on the throughput.

Lim (2011) introduces a cellular bucket brigade, where each worker works

on one side of an aisle when he proceeds in one direction and works on

the other side of the aisle when he proceeds in the reverse direction. The

idea is to eliminate the unproductive walk-back inherent in a traditional,

serial bucket brigade. The author proposes extended rules to coordinate the

workers under the new design, and identifies a su�cient condition for the

cellular bucket brigade to self balance. Lim (2012) assesses the performance

9

of cellular bucket brigades for warehouse order-picking using data from

a distribution center in North America. Lim (2017) analyzes a cellular

bucket brigade in which any two adjacent workers may spend di↵erent

time durations in a hand-o↵ between them. Even with significant hand-o↵

times, the cellular bucket brigade remains substantially more productive

than a traditional bucket brigade especially if the team size is small and

the workers’ work speeds are close to their walk speed. Lim, Wu (2014)

maximize the productivity of a cellular bucket brigade on a U-shape line

with discrete work stations. They find conditions for the system to self

balance.

Some papers study stochastic bucket brigade models. Bartholdi III et al.

(2001) assume that the time duration for a worker to serve a job at a station

follows an exponential distribution with a rate that depends only on the

worker. The authors prove that as the number of stations increases, the

moment-to-moment behavior and the throughput of this stochastic model

will increasingly resemble that of a deterministic model. Bukchin et al.

(2018) consider a stochastic two-worker bucket brigade model with con-

tinuous work content. Immediately after each hand-o↵, they randomly

re-generate each worker’s work speed from a distribution function. The

worker maintains this speed until the next hand-o↵. In contrast to these

two papers, we assume that the time duration for each worker to serve a

job at a station is exponentially distributed with a rate that depends on the

station’s expected work content and the worker’s work speed. Furthermore,

the work speed may depend on the worker, the station, and the job.

2.2.2 Dynamic server assignment on stochastic sys-

tems

Another stream of research studies dynamic server assignment on stochastic

systems. Some papers in this streamminimize holding costs of systems with

two stations. These include Harrison, López (1999), Williams (2000), Bell

et al. (2001), Ahn et al. (2004), and Mandelbaum, Stolyar (2004), which

study flexible servers in parallel queues. Other examples are Rosberg et al.

10

(1982), Farrar (1993), Iravani et al. (1997), Duenyas et al. (1998), Kaufman

et al. (2005), and Armony et al. (2018), which study flexible servers in

tandem queues. In contrast, our objective is to maximize the throughput

or to minimize the CV of the inter-completion time.

Some papers find dynamic server assignment policies to maximize through-

put of tandem lines with finite bu↵ers. Andradóttir et al. (2001) consider

a two-station, two-server Markovian system with service rates that are in-

dependent of the jobs. They identify an optimal policy that maximizes the

long-run average throughput, and propose near-optimal heuristics for larger

systems. Andradóttir, Ayhan (2005) study the optimal policies for two-

station Markovian systems with more servers than the stations. Kırkızlar

et al. (2010) show that the policies in Andradóttir et al. (2001) and An-

dradóttir, Ayhan (2005) can also be e↵ective for non-Markovian systems.

Andradóttir et al. (2003) and Andradóttir et al. (2007a) study general

queueing networks with infinite bu↵ers, without or with server and station

failures. Kırkızlar et al. (2014) consider the trade-o↵ between throughput

and holding costs. They maximize the long-run average profit of a serial

system with finite bu↵ers by finding an optimal server assignment policy.

Işık et al. (2016) study dynamic server allocation for a tandem system with

non-collaborative servers. They derive an optimal policy for Markovian sys-

tems with two servers and two stations, and propose heuristics for larger

systems. In contrast to the above papers, we focus on the bucket brigade

policy. Furthermore, we assume the service rates may depend on the jobs.

Some researchers investigate the benefits of partial flexibility in tandem sys-

tems. For example, Andradóttir et al. (2007b) study a Markovian system

with two stations, and demonstrate that making only one server flexible

when the bu↵er is su�ciently large can attain most of the benefits of full

flexibility. Kırkızlar et al. (2012) study flexible servers in understa↵ed lines.

They prove that the best possible production rate with full server flexibility

and infinite bu↵ers can be attained with partial flexibility and zero bu↵ers.

Hopp et al. (2004) consider a system with the same number of stations

and servers under a constant work-in-process policy. They show that a

skill-chaining strategy with two skills per server can outperform a “cherry

11

picking” strategy that cross-trains some servers at bottleneck stations. In

contrast, we assume each worker is fully cross-trained in our stochastic

bucket brigade model. For a comprehensive review on cross-trained work-

force, see Hopp, Oyen (2004).

2.3 Assumptions and notation

We consider a bucket brigade assembly line with work stations sequenced

as j = 1, . . . , J . Workers are sequenced as i = 1, . . . , I in the direction of

the production flow. We call workers i�1 and i+1 the predecessor and the

successor, respectively, of worker i. There are K jobs to be processed by

the assembly line. Let Z(k)
i,j denote the time duration for worker i to serve

(or process) job k at station j. We assume Z(k)
i,j follows an exponential

distribution with rate µ(k)
i,j , for i = 1, . . . , I, j = 1, . . . , J , and k = 1, . . . , K.

We define the rate µ(k)
i,j =

⇣
sj/v

(k)
i,j

⌘�1

, where sj represents the expected

work content of station j and v(k)i,j represents the work speed of worker i

at station j on job k. We normalize the total expected work content such

that
PJ

j=1 sj = 1. We assume that all the workers are fully cross-trained

such that v(k)i,j > 0, for all i, j, and k.

Defining the service (or processing) rates in this manner allows us to in-

vestigate the e↵ects of the stations’ expected work contents and the work

speeds of the workers separately. Note that the expected work content sj

of station j is independent of job k. On the other hand, the work speed of

worker i at station j may vary across the jobs. For example, some jobs are

easier to process than other jobs because of the di↵erence in the complexity

levels or the material of the items. It is worth noting that the work speed

v(k)i,j is the inverse of the expected time to finish a unit work content at

station j, whereas the service rate µ(k)
i,j is the inverse of the expected time

to finish a job at station j.

When worker i is working at any station, we assume the station’s work

content is preemptible such that worker i + 1 can interrupt and take over

the former’s job. Worker i is blocked in front of a station if his job is ready

12

to enter the station but some worker is still working at the station. We

assume the workers spend negligible time when they move from one station

to another and when they walk back to get more work. When the last

worker I completes job k at the last station J , the system has its kth reset :

Worker I walks back to take over the job of worker I�1, who in turn walks

back to take over the job of worker I�2, and so on, until worker 1 initiates

a new job at the beginning of the line. Since the workers spend negligible

time to walk back, each reset is instantaneous.

Let T (k) denote the time point when worker I completes job k at the last

station J . Let H(k)
i denote the station where worker i is working at imme-

diately before T (k), for i = 1, . . . , I � 1. If worker i is blocked in front of

station j immediately before T (k), then we set H(k)
i = j. Thus, we have

1  H(k)
1  . . .  H(k)

I�1  J . Since worker i hands o↵ his job to worker

i + 1 at station H(k)
i in the kth reset, we call H(k)

i the kth hand-o↵ sta-

tion between workers i and i + 1. Define H
(k) =

⇣
H(k)

1 , . . . , H(k)
I�1

⌘
as the

kth hand-o↵ station vector, for k = 1, . . . , K � 1. We set T (0) = 0 and

H
(0) = (1, . . . , 1), which means that at time 0, worker I starts working

on job 1 at station 1, while the first I � 1 workers are blocked in front

of station 1 (at the start of the line). Since the service times Z(k)
i,j are ex-

ponentially distributed and independent of each other, for all i, j, and k,

the probability distribution of H(k) can be determined by H
(k�1). Thus,

�
H

(k), k = 1, . . . , K � 1

is a Markov process.

Define H = {h = (h1, . . . , hI�1)|1  h1  . . .  hI�1  J} as a set of

all possible hand-o↵ station vectors. It is straightforward to show that the

cardinality of H is |H| =
�
I+J�2
I�1

�
. For any a, b 2 H, we say a < b if

and only if there exists some m such that am < bm and an = bn, for n =

m+1. . . . , I�1. We order the vectors in H such that h1 < h
2 < . . . < h

|H|,

where h
1 = (1, . . . , 1). For each h

n
2 H, define ⇡(k)

n = Pr
�
H

(k) = h
n

as the probability of h
n being the kth hand-o↵ station vector. Define

⇡
(k) as an |H|-dimensional vector with its nth entry equals ⇡(k)

n . Note

that ⇡(k) represents the probability distribution of the kth hand-o↵ station

vector H
(k). Since H

(0) = (1, . . . , 1), we have ⇡
(0) = (1, 0, ..., 0). For

h,h0
2 H, define p(k)h,h0 = Pr

�
H

(k) = h
0
|H

(k�1) = h

as the probability

13

of h0 being the kth hand-o↵ station vector, conditioned on h being the

(k � 1)st hand-o↵ station vector. Let P
(k) =

⇣
p(k)h,h0

⌘

|H|⇥|H|

denote the

corresponding transition probability matrix.

2.4 Performance measures and asymptotic

behavior

To derive the transition probability p(k)h,h0 , we need to analyze the movements

of the I workers between the (k� 1)st and the kth resets. Let X(i) denote

the station where worker i is located, for i = 1, . . . , I. We set X(I) = J +1

when worker I finishes his job at station J . Define a state of the system

as X = (X(1), X(2), . . . , X(I)). Recall that H(k)
i represents the kth hand-

o↵ station between workers i and i + 1. Immediately after T (k�1), the

state of the system is X =
⇣
1, H(k�1)

1 , . . . , H(k�1)
I�1

⌘
. The workers keep

working forward until T (k) when worker I finishes his job at station J ,

and the system’s state becomes X =
⇣
H(k)

1 , . . . , H(k)
I�1, J + 1

⌘
. We call

a state with X(I)  J a transient state, and a state with X(I) = J +

1 an absorbing state. Thus, immediately after the (k � 1)st reset, the

system progresses from one transient state to another transient state until

it reaches an absorbing state when the kth reset occurs. Define X = {x =

(x(1), . . . , x(I))|1  x(1)  x(2)  . . .  x(I � 1)  J, x(I � 1)  x(I) 

J + 1} as a set of all possible states between any two resets. Similar to H,

the cardinality of X is |X | =
�
I+J�1

I

�
+
�
I+J�2
I�1

�
.

Between the (k�1)st and the kth resets, instead of keeping track of the sys-

tem’s state continuously, we only need to consider the epochs when a worker

finishes his job at a station. Given that the service times are exponentially

distributed, the probability that more than one worker finish their jobs at

their respective stations at the same time is 0. For any transient state x,

suppose there are N(x) workers that are not blocked. Let l1, . . . , lN(x) de-

note these N(x) workers from upstream to downstream. Note that worker

I is never blocked, which implies lN(x) = I. Thus, we have

14

1  x(1) = . . . = x(l1) < x(l1 +1) = . . . = x(l2) < . . . = x(lN(x)�1) < x(lN(x)�1 +1) = . . . = x(I)  J.

Among the N(x) workers that are not blocked, one of them, say worker

ln, will finish his job in the next epoch. Let xn denote the new state

immediately after worker ln finishes his job. We have xn(ln) = x(ln) + 1,

xn(i) = x(i), for i 6= ln, 1  i  I. Between the (k�1)st and the kth resets,

the system progresses from state x to another state x
0. Let q(k)x,x0 denote a

one-step transition probability from x to x
0. For any transient state x, we

have

q(k)x,x0 =

8
<

:
µ(k+I�ln)
ln,x(ln)

/
PN(x)

m=1 µ
(k+I�lm)
lm,x(lm) , if x

0 = xn, n = 1, . . . , N(x),

0, otherwise.

For any absorbing state x, we set

q(k)x,x0 =

8
<

:
1, if x

0 = x,

0, otherwise,

such that the system stays in the absorbing state x. LetQ(k) =
⇣
q(k)x,x0

⌘

|X |⇥|X |

denote the corresponding one-step transition probability matrix. Starting

from any state x, the system will take at most (J �1)I+1 epochs to reach

an absorbing state. Let R(k) =
�
Q

(k)
�JI�I+1

, and let r(k)x,x0 denote the x-x0

entry of R(k). As the system transitions from the hand-o↵ station vector

h immediately after the (k� 1)st reset to the hand-o↵ station vector h0 at

the kth reset, the system’s state progresses from (1,h) to (h0, J+1). Thus,

we have the following lemma.

Lemma 1. The probability of h
0 being the kth hand-o↵ station vector,

conditioned on h being the (k � 1)st hand-o↵ station vector is

p(k)h,h0 = r(k)(1,h),(h0,J+1).

Since ⇡
(0) is given and ⇡

(k) = ⇡
(k�1)

P
(k), we can derive the probability

distribution of H (k) as ⇡(k) = ⇡
(0)
P

(1) . . .P (k), for k = 1, . . . , K � 1.

15

Define E
⇥
T (K)

⇤
as the expected makespan of a bucket brigade assembly

line with K jobs. To derive E
⇥
T (k)

⇤
, we define Y (k) = T (k)

� T (k�1) as

the inter-completion time between job k � 1 and job k, which equals the

total service time of worker I on job k. Suppose H
(k�1) = h, we have

Y (k) =
PJ

j=hI�1
Z(k)

I,j . Thus, we have

E
⇥
Y (k)|H(k�1) = h

⇤
=

JX

j=hI�1

1

µ(k)
I,j

, h 2 H. (2.1)

Define z
(k) as an |H|-dimensional column vector with its nth component

equals E
⇥
Y (k)|H (k�1) = h

n
⇤
, for n = 1, . . . , |H|. From Equation (2.1), we

have

E [Y (k)] =
|H|X

n=1

E
⇥
Y (k)|H(k�1) = h

n
⇤
⇡(k�1)
n = ⇡

(k�1)
z
(k). (2.2)

Define the average throughput of a bucket brigade assembly line with K

jobs as ⇢(K) = K/E
⇥
T (K)

⇤
. The following theorem determines the average

throughput.

Theorem 1. The average throughput of a bucket brigade assembly line with

K jobs is

⇢(K) = K
�
E
⇥
T (K)

⇤
= K

,
KX

k=1

⇡
(0)
P

(1)
· · ·P

(k�1)
z
(k) . (2.3)

Given ⇡
(0) and z

(k), we can determine the average throughput of the line

using the transition probability matrices P
(k), for k = 1, . . . , K � 1. The

bold solid line in Figure 2.1(a) represents the average throughput ⇢(k) of a

bucket brigade assembly line up to job k determined by Equation (2.3). We

set I = 2, J = 3, s1 = s2 = s3 = 1/3, K = 1, 000, and v(k)i,j = i + j + k/K,

for i = 1, 2, j = 1, 2, 3, and k = 1, . . . , K. The dashed line and the thin

solid line represent two sample paths of the actual throughput k/T (k) based

on simulations.

16

Job index k
0 200 400 600 800 1000

T
h

ro
u

g
h

p
u
t

0.5

1

1.5

2

2.5

3
Average throughput
Sample 1 throughput
Sample 2 throughput

(a)

Total number of jobs K
0 500 1000 1500 2000

A
ve

ra
g

e
 t

h
ro

u
g

h
p

u
t

1

1.5

2

2.5

3

3.5

4

Scenario (i)
Scenario (ii)
Scenario (iii)

(b)

Figure 2.1: The throughput of a stochastic bucket brigade assembly line

For a special case in which the workers’ service rates are independent of

the jobs, we can drop the superscripts such that µ(k)
i,j = µi,j, P (k) = P , and

z
(k) = z. Then,

�
H

(k), k = 1, . . . , K � 1

becomes a homogeneous Markov

process. Theorem 2 shows that, for this special case, the distribution of

the kth hand-o↵ station vector converges to a stationary distribution and

the average throughput converges to a constant as the number of jobs

approaches infinity. Let e denote an |H|-dimensional unit column vector.

Theorem 2. If the workers’ service rates are independent of the jobs, then

lim
k!1

⇡
(k) = ⇡, where ⇡ is a unique stationary distribution that satisfies the

equations ⇡P = ⇡ and ⇡e = 1. Furthermore, the asymptotic throughput

⇢1 = lim
K!1

⇢(K) = 1/(⇡z), where ⇡z represents the asymptotic expected

inter-completion time.

It is interesting to see that the convergence to the stationary distribution is

independent of the sequence of the workers. While we need to sequence the

workers from slowest to fastest in the direction of the production flow for

the deterministic bucket brigade to self balance (Bartholdi III, Eisenstein,

1996b), we do not need such a worker sequence for the stochastic bucket

brigade to converge to the stationary distribution.

Figure 2.1(b) shows an example with I = 3, J = 5, s1 = s2 = 0.1, s3 =

s4 = 0.3, and s5 = 0.2. We consider three di↵erent scenarios: (i) v1,j = 1,

17

v2,j = 2, v3,j = 3, (ii) v1,j = v2,j = v3,j = 2, and (iii) v1,j = 3, v2,j = 2, v3,j =

1. The average throughput ⇢(K) for each scenario converges to a constant

as K increases, which is consistent with Theorem 2. Furthermore, the

average throughput decreases as the worker sequence changes from slowest-

to-fastest (scenario (i)) to fastest-to-slowest (scenario (iii)). Section 2.5.2

demonstrates that the slowest-to-fastest sequence is always more productive

than the reverse sequence for the stochastic bucket brigade.

Using the probability distribution ⇡
(k) of the kth hand-o↵ station vector,

we can also derive the variance of the inter-completion time Y (k). Let hn
i

denote the ith component of hn.

Lemma 2. The variance of the inter-completion time Y (k) can be deter-
mined as

V ar (Y (k)) =

|H|X

n=1

⇡
(k�1)
n

JX

j=hn
I�1

0

@ 1

µ
(k)
I,j

1

A
2

+

|H|X

n=1

⇡
(k�1)
n

0

B@
JX

j=hn
I�1

1

µ
(k)
I,j

1

CA

2

�

0

B@
|H|X

n=1

⇡
(k�1)
n

JX

j=hn
I�1

1

µ
(k)
I,j

1

CA

2

.

(2.4)

We define the coe�cient of variation (CV) of the inter-completion time

Y (k) as CV =
p

V ar (Y (k)) /E [Y (k)], where E [Y (k)] and V ar (Y (k))

are determined by Equations (2.2) and (2.4) respectively. Note that a

small CV of the inter-completion time ensures a more predictable output

process of the line, which facilitates planning of the downstream processes

of the supply chain. Lemma 2 implies the following theorem.

Theorem 3. If the service rates are independent of the jobs, and ⇡ is
the stationary distribution of the hand-o↵ station vectors. The asymptotic
variance of the inter-completion time is

lim
k!1

V ar (Y (k)) =

|H|X

n=1

⇡n

JX

j=hn
I�1

✓
1

µI,j

◆2

+

|H|X

n=1

⇡n

0

B@
JX

j=hn
I�1

1

µI,j

1

CA

2

�

0

B@
|H|X

n=1

⇡n

JX

j=hn
I�1

1

µI,j

1

CA

2

.

(2.5)

The asymptotic CV of the inter-completion time equals

lim
k!1

p
V ar (Y (k))

E [Y (k)]
=

1

⇡z

2

64
|H|X

n=1

⇡n

JX

j=hn
I�1

✓
1

µI,j

◆2

+

|H|X

n=1

⇡n

0

B@
JX

j=hn
I�1

1

µI,j

1

CA

2

�

0

B@
|H|X

n=1

⇡n

JX

j=hn
I�1

1

µI,j

1

CA

23

75 .

18

2.5 Case I: The work speeds depend only on

the workers

In this section, we consider a special case in which v(k)i,j = vi, for all i, j, and

k.

2.5.1 The distribution of the hand-o↵ station vector

Since each worker’s service time at each station is stochastic, the hand-o↵s

between any two neighboring workers will not converge to a fixed location

(station) as observed in the deterministic model studied by Bartholdi III,

Eisenstein (1996b). Instead, Theorem 2 shows that the probability dis-

tribution of the kth hand-o↵ station vector H
(k) always converges to a

stationary distribution ⇡ as k goes to infinity, independent of the worker

sequence.

Figure 2.2(a) shows the stationary distribution of a ten-station two-worker

line with sj = 0.1, j = 1, . . . , 10. The workers are sequenced from slowest

to fastest with v1 = 1 and v2 = 2. Interestingly, the stationary distribution

of the hand-o↵ station is unimodal with a single peak at station 3. This

is analogous to the behavior of the deterministic model in which the hand-

o↵s between the two workers converge to a fixed location (Bartholdi III,

Eisenstein, 1996b).

Figure 2.2(b) shows the stationary distribution of the hand-o↵ station when

the workers are sequenced from fastest to slowest with v1 = 2 and v2 = 1.

The stationary distribution has two peaks at stations 1 and 10. This is

analogous to the dynamic behavior of the deterministic model studied by

Bartholdi III et al. (1999) in which the hand-o↵s converge to a 2-cycle.

19

Hand-off-station
1 2 3 4 5 6 7 8 9 10

P
ro

b
a
b
ili

ty

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(a) v1 = 1, v2 = 2

Hand-off-station
1 2 3 4 5 6 7 8 9 10

P
ro

b
a
b
ili

ty

0

0.05

0.1

0.15

0.2

0.25

0.3

(b) v1 = 2, v2 = 1

Figure 2.2: The stationary distributions of the hand-o↵ station for a line

with ten stations and two workers

2.5.2 Comparing with the deterministic system

To examine the e↵ect of the random service times, we compare the stochas-

tic system with the deterministic system with discrete work stations. We

consider two workers with work speeds equal to 1 and 2. The expected work

content is identical for all the stations such that sj = 1/J, j = 1, . . . , J . We

compare four di↵erent settings: A deterministic system with a slowest-

to-fastest worker sequence (denoted as DS), a stochastic system with a

slowest-to-fastest worker sequence (denoted as SS), a deterministic system

with a fastest-to-slowest worker sequence (denoted as DF), and a stochas-

tic system with a fastest-to-slowest worker sequence (denoted as SF). We

examine the asymptotic throughput of each setting as the number of jobs

K approaches infinity. The asymptotic throughput of each stochastic sys-

tem is determined by Theorem 2, and the asymptotic throughput of each

deterministic system can be derived analytically. Figure 2.3 shows the

asymptotic throughput of each setting as the number of stations J varies

from 4 to 50. As J increases, the throughput di↵erence between the de-

terministic and the stochastic systems becomes smaller for both worker

sequences. This is consistent with the result of Bartholdi III et al. (2001).

The DS setting achieves the maximum throughput v1 + v2, but the SS set-

ting cannot always achieve the maximum throughput because of blocking.

20

However, the SS setting’s performance approaches that of the DS setting

as J increases.

Figure 2.3: The asymptotic throughput of the deterministic and the

stochastic systems for di↵erent numbers of stations

Under the fastest-to-slowest worker sequence, the asymptotic throughput

of the DF setting decreases with J , whereas the asymptotic throughput

of the SF setting first increases and then slightly decreases with J . Note

that under the fastest-to-slowest sequence, the stochastic system (SF) may

outperform the deterministic system (DF). For J � 4, the DF setting

converges to a period-2 cycle asK ! 1 with hand-o↵s alternating between

2/J and (J � 1)/J . Thus, the asymptotic throughput equals 2+2/(J � 1),

which approaches 2 as J increases. Note that the asymptotic throughput

approaches two times of the slower worker’s speed as J increases because the

line is becoming more like a continuous line and the faster worker upstream

is constantly blocked by the slower worker downstream. In contrast, the SF

setting su↵ers from severe blocking if J is small. Its asymptotic throughput

is lower than 2 when J = 4. As J increases, blocking is mitigated and the

SF setting can achieve a throughput greater than 2. However, as J further

increases, the stochastic system resembles the deterministic system, and

the throughput drops to 2.

From the above comparison between the stochastic and the deterministic

models with discrete work stations, we obtain the following insights. Under

the slowest-to-fastest sequence, the deterministic system is more productive

than the stochastic system. This suggests that the stochastic service times

21

cause throughput loss for a bucket brigade line with discrete work stations

under the slowest-to-fastest sequence. However, under the reverse sequence,

the stochastic system may outperform the deterministic system (see Figure

2.3). For both worker sequences, the performance di↵erence between the

stochastic and the deterministic systems gets closer as J increases, which

is consistent with the finding of Bartholdi III et al. (2001).

Figure 2.4 shows the asymptotic throughput of each setting for di↵erent

work-content distributions. We consider three stations and two workers

with work speeds 1 and 2. Under each worker sequence, the deterministic

system always outperforms the stochastic system.

Figure 2.4: The asymptotic throughput of the deterministic and the

stochastic systems for di↵erent work-content distributions

For the deterministic system, the relative performance of the slowest-to-

fastest and the reverse sequences depends on the work-content distribution:

If s1 = s2 = 1/3, both sequences achieve the maximum throughput 3. If

s1 = 1/3 and s2 = 7/12, only the slowest-to-fastest sequence (DS) achieves

the maximum throughput. If s1 = 1/12 and s2 = 7/12, only the fastest-

to-slowest sequence (DF) achieves the maximum throughput. If s1 = 1/12

and s2 = 5/6, both sequences cannot achieve the maximum throughput.

In contrast, for the stochastic system, we show in the following that the

slowest-to-fastest sequence (SS) always outperforms the reverse sequence

(SF) under all work-content distributions.

Lemma 3. For a three-station two-worker line, if v1+ v2 = c, where c is a

constant, the asymptotic throughput of the stochastic bucket brigade system

increases with v2.

22

Lemma 3 implies the following corollary.

Corollary 1. For a three-station two-worker stochastic bucket brigade sys-

tem, the slowest-to-fastest sequence is always more productive than the

fastest-to-slowest sequence.

Figure 2.4 and Lim, Yang (2009) show that the slowest-to-fastest sequence

can be outperformed by the reverse sequence for a deterministic three-

station line (see Figure 6(a) of Lim, Yang (2009)). However, for a three-

station line with stochastic service times, Corollary 1 shows that the slowest-

to-fastest sequence is always more productive.

We further test numerically that whether the result of Corollary 1 continues

to hold for a line with more work stations and workers. Figure 2.5 shows

the asymptotic throughput under both worker sequences for 3, 4, and 5

workers, and the number of work stations J varies from 4 to 20. In each

graph, we set the work speeds of the I workers equal 1, 2, . . . , I. We consider

evenly distributed work content such that sj = 1/J , j = 1, 2, . . . , J . We

observe that the slowest-to-fastest sequence is always more productive than

the reverse sequence in these larger systems with stochastic service times.

J
5 10 15 20

A
sy

m
p

to
tic

 t
h

ro
u

g
h

p
u

t

2.5

3

3.5

4

4.5

5

5.5

6

Slowest-to-fastest
Fastest-to-slowest

(a) I = 3

J
5 10 15 20

A
sy

m
p

to
tic

 t
h

ro
u

g
h

p
u

t

3

4

5

6

7

8

9

10

Slowest-to-fastest
Fastest-to-slowest

(b) I = 4

J
5 10 15 20

A
sy

m
p

to
tic

 t
h

ro
u

g
h

p
u

t

2

4

6

8

10

12

14

Slowest-to-fastest
Fastest-to-slowest

(c) I = 5

Figure 2.5: The asymptotic throughput for di↵erent numbers of workers

As suggested by Figures 2.3 and 2.4, if the number of stations is small, the

throughput di↵erence between the stochastic and the deterministic systems

can be quite significant (the gap is up to 47%). Furthermore, Corollary 1

and Figure 2.5 show that the slowest-to-fastest sequence is more productive

than the reverse sequence for the stochastic system. However, this result

23

may not hold for a deterministic system (see Figure 6(a) of Lim, Yang

(2009)). Thus, it is important to study the stochastic bucket brigade model

especially for a line with a small number of stations.

2.5.3 Maximizing the throughput

Theorem 2 allows us to maximize the asymptotic throughput of the stochas-

tic bucket brigade by optimizing the expected work contents s1, . . . , sJ ,

and the sequence of the workers. For illustration purposes, we assume

sj/sj�1 = �, j = 2, . . . , J . We define � = sJ/s1 = �J�1. If � > 1, the

work content sj is increasing in j. If � = 1, the work content is evenly

distributed over the stations. If � < 1, the work content sj is decreasing in

j.

Figure 2.6(a) shows the asymptotic throughput of a line with J = 8 stations

and I = 4 workers. We assume the work speeds of the workers are 3, 4,

5 and 6. The slowest-to-fastest sequence (solid line) always outperforms

the reverse sequence (dashed line). Under each worker sequence, an overly

skewed work-content distribution over the stations (when � is too small or

too large) is not productive because of severe blocking. As a result, for each

worker sequence in Figure 2.6(a), the asymptotic throughput is unimodal in

�. For the slowest-to-fastest sequence, the asymptotic throughput reaches

the maximum when � = 1.45, corresponding to the top graph of Figure

2.6(b) where the work content sj increases with j. For the fastest-to-slowest

sequence, the maximum asymptotic throughput occurs at � = 0.69, which

corresponds to the bottom graph of Figure 2.6(b) where the work content

decreases from upstream to downstream. Figure 2.6(b) suggests that to

maximize the asymptotic throughput, more work content should be assigned

to the stations near the faster workers.

To test the robustness of the above results, we vary the number of stations,

the number of workers, and the di↵erence in the work speeds of the workers.

In Figure 2.7(a), we consider the same team of four workers in Figure 2.6.

We vary the number of stations J from 6 to 10. For each J , we identify the

24

β
10-1 100 101

A
sy

m
p
to

tic
 t

h
ro

u
g

h
p

u
t

8

9

10

11

12

13

14

15

Slowest-to-fastest
Fastest-to-slowest

Stations
1 2 3 4 5 6 7 8

W
o

rk
 c

o
n

te
n

t

0

0.05

0.1

0.15

Stations
1 2 3 4 5 6 7 8

W
o

rk
 c

o
n

te
n

t

0

0.05

0.1

0.15

(a) (b)

Figure 2.6: (a) Asymptotic throughput of a line with eight stations and

four workers

(b) Work-content distributions with � = 1.45 (top) and � = 0.69 (bot-

tom)

best � for both the slowest-to-fastest and the reverse sequences. We find

that the best � for the slowest-to-fastest sequence is always greater than 1,

implying that the work content sj increases with j. In contrast, the best �

for the reverse sequence is always less than 1, implying that sj is decreasing

in j.

J
6 7 8 9 10

B
e

s
t
β

0.5

1

1.5

2

Slowest-to-fastest
Fastest-to-slowest

(a) Best � for di↵erent

values of J

I
2 3 4 5

B
e
s
t
β

0.5

1

1.5

2

Slowest-to-fastest
Fastest-to-slowest

(b) Best � for di↵erent

values of I

δ v
0.5 1 1.5 2

B
e

s
t
β

0.5

1

1.5

2

2.5

Slowest-to-fastest
Fastest-to-slowest

(c) Best � for di↵erent

values of �v

Figure 2.7: Best � for maximizing the asymptotic throughput under

di↵erent parameter settings

Figure 2.7(b) shows the best � by varying the number of workers I from

2 to 5. To be comparable with Figure 2.6, we consider eight stations and

assume V ⌘
PI

i=1 vi = 18, where vi = V/I � (I + 1)/2 + i for the slowest-

to-fastest sequence, and vi = V/I + (I + 1)/2� i for the fastest-to-slowest

sequence, for i = 1, . . . , I. Thus, �v ⌘ |vi � vi�1| = 1, i = 2, . . . , I, for both

sequences. We find that for each I, the best � for the slowest-to-fastest

25

sequence is always greater than 1. Furthermore, the best � increases with

I (the skewness of the work-content distribution increases with I) because

the gap between the work speeds of the first and the last workers increases

with I. In contrast, the best � for the fastest-to-slowest sequence is always

less than 1, and the best � decreases with I because of the same reason.

Figure 2.7(c) shows the best � by varying the work-speed di↵erence �v. We

consider eight stations and four workers with
P4

i=1 vi = 18. We find that

the best � for the slowest-to-fastest sequence is always greater than 1. The

best � increases with �v because the gap between the work speeds of the

first and the last workers increases with �v. On the other hand, the best

� for the fastest-to-slowest sequence is always less than 1 and it decreases

with �v because of the same reason.

To further investigate the impact of �v, Figure 2.8 shows the asymptotic

throughput of each worker sequence for �v = 0.5, 1, and 2, with J = 8,

I = 4, and
PI

i=1 vi = 18. We see that the gap between the asymptotic

throughputs of the two sequences becomes larger as �v gets larger.

β
10-1 100 101

A
sy

m
p

to
tic

 t
h

ro
u

g
h

p
u

t

4

6

8

10

12

14

16

18

Slowest-to-fastest
Fastest-to-slowest

(a) �v = 0.5

β
10-1 100 101

A
sy

m
p

to
tic

 t
h

ro
u

g
h

p
u

t

4

6

8

10

12

14

16

18

Slowest-to-fastest
Fastest-to-slowest

(b) �v = 1

β
10-1 100 101

A
sy

m
p

to
tic

 t
h

ro
u

g
h

p
u

t

4

6

8

10

12

14

16

18

Slowest-to-fastest
Fastest-to-slowest

(c) �v = 2

Figure 2.8: The gap between the two sequences’ asymptotic throughputs

becomes larger as �v increases

2.5.4 Minimizing the CV of the inter-completion time

Theorem 3 enables us to minimize the CV of the inter-completion time

by optimizing the work-content distribution over the stations. Based on

the same definition of � = sJ/s1 = �J�1 as in Section 2.5.3, Figure 2.9(a)

26

shows the asymptotic CV of the inter-completion time under the same set-

ting as in Figure 2.6(a). The slowest-to-fastest sequence (solid line) always

has a smaller asymptotic CV of the inter-completion time than the reverse

sequence (dashed line). Moreover, for each worker sequence the CV is

unimodal in �. This suggests that an overly skewed work-content distribu-

tion (when � is too small or too large) causes severe blocking, resulting in a

higher CV of the inter-completion time. For the fastest-to-slowest sequence,

the asymptotic CV of the inter-completion time reaches the minimum when

� = 4.37. This corresponds to the top graph of Figure 2.9(b), where the

work content sj increases with j. For the slowest-to-fastest sequence, the

minimum asymptotic CV of the inter-completion time occurs at � = 0.58,

corresponding to the bottom graph of Figure 2.9(b), where the work con-

tent decreases from upstream to downstream. Figure 2.9(b) suggests that

we can minimize the CV of the inter-completion time by allocating more

work content to the stations near the slower workers.

β
10-1 100 101

A
s
y
m

p
to

ti
c
 C

V

0.7

0.8

0.9

1

1.1

1.2
Fastest-to-slowest
Slowest-to-fastest

Stations
1 2 3 4 5 6 7 8

W
or

k
co

nt
en

t

0

0.05

0.1

0.15

0.2

0.25

Stations
1 2 3 4 5 6 7 8

W
or

k
co

nt
en

t

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(a) (b)

Figure 2.9: (a) Asymptotic CV of the inter-completion time of a line with

8 stations and 4 workers (b) Work-content distributions with � = 4.37
(top) and � = 0.58 (bottom)

To test the robustness of the above results, we vary the number of stations,

the number of workers, and the di↵erence in the work speeds of the workers.

In Figure 2.10(a), we consider the same team of four workers as in Figure

2.9. We vary the number of stations J from 6 to 10. For each J , we identify

the best � for both the slowest-to-fastest and the reverse sequences. We

find that the best � for the slowest-to-fastest sequence is always less than 1,

and the best � decreases with J . In contrast, the best � for the fastest-to-

slowest sequence is always greater than 1, and it increases with J . Similarly,

27

Figure 2.10(b) identifies the best � by varying the number of workers I from

2 to 5. The setting is the same as Figure 2.7(b). Figure 2.10(c) shows the

best � by varying the work-speed di↵erence �v. The setting is the same as

Figure 2.7(c). We find similar behavior of the best � as I or �v increases.

J
6 7 8 9 10

B
e
s
t
β

0

1

2

3

4

5

6

7

8

Fastest-to-slowest
Slowest-to-fastest

(a) Best � for di↵erent

values of J

I
2 3 4 5

B
e
s
t
β

0

1

2

3

4

5

6

7
Fastest-to-slowest
Slowest-to-fastest

(b) Best � for di↵erent

values of I

δ v
0.5 1 1.5 2

B
e
s
t
β

0

2

4

6

8

10

12

Fastest-to-slowest
Slowest-to-fastest

(c) Best � for di↵erent

values of �v

Figure 2.10: Best � for minimizing the asymptotic CV of the inter-

completion time under di↵erent parameter settings

Combining the results in Sections 2.5.3 and 2.5.4, we obtain the follow-

ing managerial insights. Either maximizing the asymptotic throughput or

minimizing the asymptotic CV of the inter-completion time, the slowest-to-

fastest sequence always outperforms the reverse sequence for the stochastic

bucket brigade. Furthermore, to maximize the asymptotic throughput,

more work content should be assigned to the stations near the faster work-

ers (see Figure 2.6(b)). However, to minimize the asymptotic CV of the

inter-completion time, more work content should be assigned to the stations

near the slower workers (see Figure 2.9(b)).

2.6 Case II: The work speeds depend only

on the workers and the stations

In this section, we assume the work speed of each worker depends on the

worker and the stations, but is independent of the jobs such that v(k)i,j = vi,j,

for all k, i = 1, . . . , I, j = 1, . . . , J . It is challenging to analyze this case

because a worker i may not dominate another worker i0 along the entire

line. That is, worker i is faster at some stations, but slower at other stations

28

than worker i0. In this situation, it is not clear how we should sequence the

workers along the line.

2.6.1 Average work speeds and asymptotic expected

blocked times

As the work speed of each worker may vary across the stations, we define

the average work speed of worker i along the entire line as

⌫i =

PJ
j=1 fi,jsjPJ

j=1 fi,jsj/vi,j
, (2.6)

where fi,j represents the probability of worker i finishing his job at station

j between two consecutive resets under the stationary distribution ⇡. Note

that if vi,j = vi, we have ⌫i = vi. Recall that hn
i denotes the ith component

of hn. For convenience, we set hn
0 = 1 and hn

I = J + 1. Let f (k)
i,j denote the

probability of worker i finishing his job at station j between the (k � 1)st

and the kth resets. The following lemma determines f (k)
i,j and fi,j.

Lemma 4. The probability of worker i finishing his job at station j between

the (k � 1)st and the kth resets can be obtained as

f (k)
i,j =

X

n=1,...,|H|

hn
i �j+1

⇡(k)
n �

X

n=1,...,|H|

hn
i�1�j+1

⇡(k�1)
n . (2.7)

As k approaches infinity, the probability of worker i finishing his job at

station j between two consecutive resets under the stationary distribution

⇡ can be obtained as

fi,j =
X

n=1,...,|H|

hn
i �j+1

⇡n �

X

n=1,...,|H|

hn
i�1�j+1

⇡n. (2.8)

Define the expected blocked time of worker i as the expected total time

that worker i is blocked between two consecutive resets. Let Bi denote the

asymptotic expected blocked time of worker i asK approaches infinity. Since

29

worker I is never blocked, we have BI = 0. Recall that the inter-completion

time Y (k) = T (k)
� T (k�1). Let Y1 = lim

k!1

E[Y (k)] denote the asymptotic

inter-completion time of jobs. According to Theorem 2, Y1 = ⇡z = 1/⇢1.

Lemma 5. The asymptotic expected blocked time of worker i can be ex-

pressed as

Bi = Y1 �

JX

j=1

fi,j
µi,j

, i = 1, . . . , I � 1. (2.9)

The following theorem expresses the asymptotic throughput of the line as

a function of the average work speeds and the asymptotic expected blocked

times of the workers.

Theorem 4. If the work speeds of the workers are independent of the jobs,

the asymptotic throughput of a stochastic bucket brigade can be expressed

as

⇢1 =
IX

i=1

Y1 � Bi

Y1

⌫i. (2.10)

Equation (2.10) can be interpreted as follows. The term Y1�Bi
Y1

represents

the fraction of the inter-completion time that worker i is not blocked on

the line, and Y1�Bi
Y1

⌫i represents the e↵ective production rate of worker i

without being blocked. The asymptotic throughput of the line is the sum

of the e↵ective production rates of all the workers.

Define ⌫ =
PI

i=1 ⌫i as the capacity of the system, and define

� =
⇢1
⌫

(2.11)

as an e�ciency ratio that measures how much capacity of the system is

e↵ectively used for production. Note that � is decreasing in Bi/Y1, for

i = 1, . . . , I � 1. As Bi/Y1 approaches 1 for i = 1, . . . , I � 1, � approaches

⌫I/⌫, corresponding to an extreme case in which the first I � 1 workers

are always blocked and only worker I contributes to the throughput. As

Bi/Y1 approaches 0 for i = 1, . . . , I � 1, � approaches 1, corresponding to

a case in which all the workers contribute fully to the throughput of the

line. Thus, the e�ciency ratio � represents the degree of no blocking in the

system.

30

2.6.2 Throughput determining factors: capacity and

e�ciency ratio

We illustrate the decisive role of the capacity and the e�ciency ratio on

the system’s asymptotic throughput. We consider a team of workers that

consists of generalists, who have a constant work speed 1 at all the stations,

and a specialist, who is faster at his specialized stations but slower at other

stations than the generalists. Specifically, for the specialist, we assume

that the total work content of all his specialized stations is s̄ < 1. His

work speed at these specialized stations is 1 + ✓, where ✓ represents the

specialization intensity. We assume his work speed at his non-specialized

stations is 1� ⌧✓, where ⌧ satisfies

s̄

1 + ✓
+

1� s̄

1� ⌧✓
= 1. (2.12)

Equation (2.12) ensures that the expected time for the specialist to com-

plete a job by himself along the line is 1, identical to that of the generalists.

In contrast to the previous section, the workers do not dominate each other

in terms of the expected time to complete a job along the line. This allows

us to investigate the impact of worker specialization. Note that the average

work speed ⌫i of each generalist i is always 1, while the average work speed

⌫i0 of the specialist i0 depends on how frequent he works at his specialized

stations.

We use a five-station three-worker line, where there are two generalists and

a specialist, to illustrate why one system configuration is more productive

than another. We assume that the work content is equally distributed at

all the five stations, and set the specialization intensity ✓ = 1. Figure 2.11

shows the capacity and the e�ciency ratio of di↵erent system configura-

tions. A system configuration is defined by the specialized station of the

specialist and the worker sequence. The first digit of each legend in Figure

2.11 represents the specialized station. The following letters SGG, GSG,

or GGS represent the worker sequence with the letters “G” and “S” corre-

spond to a generalist and the specialist respectively. For example, “1SGG”

31

corresponds to a line with the specialist specializing at station 1 and being

the most upstream worker.

Figure 2.11 also shows contour lines of the asymptotic throughput. A

contour line that is closer to the upper-right corner has a higher asymptotic

throughput. By comparing the contour lines in Figure 2.11, we can tell

which system configuration is more productive than another and why. For

example, the line 1SGG (far right) is more productive than 1GGS (far left).

This is because the former configuration has a larger capacity ⌫ due to the

larger average work speed of the specialist. In other words, the specialist in

the 1SGG configuration works more often at his specialized station, making

the line more productive. Note that although the line 1SGG has more

blocking (with a lower e�ciency ratio �) compared to the line 1GGS, the

e↵ect of capacity dominates such that the former is still more productive

than the latter. Likewise, the line 5GGS is more productive than 5SGG

because of the same reason.

In contrast, the line 3GGS is more productive than 3SGG because the

former has less blocking (with a higher e�ciency ratio �). Note that in

this case, although the line 3GGS has a smaller capacity ⌫, the negative

e↵ect of blocking in 3SGG is so large that it makes 3SGG less productive

than 3GGS. Using Figure 2.11, we are able to compare the throughput of

any system configurations and select the best one. We can further identify

the factor (the capacity or the e�ciency ratio) that causes one system

configuration more productive than another.

2.7 Case III: The work speeds depend on

the workers, the stations, and the jobs

In this section, we assume the work speed v(k)i,j of each worker depends on job

k. Specifically, the work speeds may increase with k as the workers learn.

(We can also consider the case in which the work speeds may decrease with

k as the workers get fatigued.)

32

ν
2.8 2.9 3 3.1 3.2 3.3

γ

0.69

0.695

0.7

0.705

0.71

0.715

0.72

0.725

0.73

1
.9

5
2

2

2
.0

5

2
.0

5

2
.0

5

2
.1

2
.1

2
.1

2
.1

5

2
.1

5

2
.1

5

2
.2

2
.2

2
.2

2
.2

5

2
.2

5

2
.2

5

2
.3

2
.3

2
.3

5

5SGG

3GGS

2GSG

3GSG

4SGG

2GGS

4GGS

3SGG

2SGG

5GGS

4GSG

1GGS

1GSG

1SGG

5GSG

Figure 2.11: Contour lines of the throughput for a five-station three-

worker line

2.7.1 A modified exponential model

We first consider an exponential model (Mazur, Hastie, 1978) to capture

the changes in the work speeds. Specifically, for i = 1, . . . , I, j = 1, . . . , J ,

and k = 1, . . . , K, we set

v(k)i,j = vi,j +
�
vi,j � vi,j

� ⇣
1� e�↵i,jn

(k)
i,j

⌘
, (2.13)

where vi,j and vi,j represent, respectively, the lower and upper limits of

the work speed of worker i at station j, ↵i,j represents the learning rate

of worker i at station j, and n(k)
i,j represents the number of times worker

i finishes a job at station j prior to working on job k. Given that the

hand-o↵ stations are random, n(k)
i,j is generally a random variable, except

for n(k)
I,J = k � 1 (because worker I finishes every job at the last station).

Thus, the work speeds v(k)i,j in Equation (2.13) are generally path dependent.

Instead of studying the system using a large number of samples, we adopt

the following modified exponential model to determine the work speeds:

v(k)i,j = vi,j +
�
vi,j � vi,j

�✓
1� e

�↵i,jE
h
n
(k)
i,j

i◆
, (2.14)

for i = 1, . . . , I, j = 1, . . . , J , and k = 1, . . . , K.

33

To determine v(k)i,j , we first calculate the expected value of n(k)
i,j in Equation

(2.14). Define I(k)i,j as an indicator function that equals 1 if worker i finishes

job k at station j, and equals 0 otherwise. Then, we have n(k)
i,j =

Pk�1
k0=1 I

(k0)
i,j .

Given that the system begins with worker I working on job 1, worker

I � 1 working on job 2, and so on, worker i does not work on jobs 1 to

I � i. Thus, we have E
h
I(k

0)
i,j

i
= 0, for k0 = 1, . . . , I � i, and E

h
I(k

0)
i,j

i
=

Pr {worker i finishes job k0 at station j} = f (k0�I+i)
i,j , for k0 > I � i. Thus,

we have the following equation:

E
h
n(k)
i,j

i
=

k�1X

k0=1

E
h
I(k

0)
i,j

i
=

k�1X

k0=I�i+1

f (k0�I+i)
i,j =

k�1�I+iX

k0=1

f (k0)
i,j . (2.15)

Note that f (k0)
i,j is determined in Equation (2.7).

Equations (2.15) and (2.7) imply that determining E
h
n(k)
i,j

i
requires the

probability distributions ⇡
(0), . . . ,⇡(k�1) of the hand-o↵ station vectors.

These probability distributions depend on the work speeds of the workers

for the previous jobs 1, . . . , k� 1 (see Section 2.4). We determine the work

speeds for each job k = 1, . . . , K through a procedure described in Section

A.7.1 of Appendix A. After obtaining the work speeds v(k)i,j , for k = 1, . . . , K,

we determine the expected makespan from Equation (2.3).

Figure 2.12 compares the average throughput under the modified exponen-

tial model (2.14) with that under the exponential model (2.13). We set

I = 3, J = 5, vi,j = 1, vi,j = 2, and ↵i,j = 0.01, for i = 1, . . . , I and

j = 1, . . . , J . For the exponential model, we run n = 1, 000 experiments to

estimate the average throughput. In each experiment, for each job k, we

first determine the work speeds based on Equation (2.13) and then perform

a simulation using these work speeds. We observe n(k+1)
i,j in the simulation,

which will be used to determine the work speeds for the next job k+1. The

average throughput up to job k under the exponential model (dashed line in

Figure 2.12) is estimated as k/
⇣Pn

m=1 T
(k)
m /n

⌘
, where T (k)

m represents the

completion time of job k at the last station J in experiment m. Figure 2.12

shows that the average throughput under the modified exponential model

(2.14) (solid line) almost overlaps with that under the exponential model

34

(2.13). This suggests that the modified exponential model (2.14) serves as

a good approximation for determining the work speeds.

Job index k
0 200 400 600 800 1000

T
h
ro

u
g
h
p
u
t

1

1.5

2

2.5

3

3.5

4
Modified exponential model
Exponential model

Figure 2.12: The modified exponential model (2.14) serves as a good

approximation of the exponential model (2.13)

When the workers learn, is a bucket brigade with fully cross-trained workers

more productive than a bucket brigade with each worker only partially

cross-trained on a subset of work stations? Each worker in the former

setting is more flexible but his learning e↵ect can be diluted because of his

wider work zone. In contrast, although each worker in the latter setting is

constrained to a subset of stations, he can learn faster in a narrower work

zone. Thus, it is non-trivial to determine which bucket brigade is more

productive for a given number of jobs K. To obtain useful insights, we

focus on a line with I = 2 workers. However, our methodology can be used

to analyze a line with a general number of workers. We first analyze the

bucket brigade with partially cross-trained workers, and then compare it

with the bucket brigade with fully cross-trained workers.

2.7.2 A bucket brigade with partially cross-trained

workers

We consider a J-station 2-worker line. Worker 1 is partially cross-trained

from station 1 to station j1, while worker 2 is partially cross-trained from

35

station j2 to station J . We assume j1 + 1 � j2 such that each station can

be served by at least one worker.

Each worker carries a job and works from station to station until he hands

o↵ his job to his successor or completes the job at the end of the line.

Worker 1 is halted if he finishes his job at station j1 before he can hand o↵

his job to worker 2. If worker 1 is halted, he remains idle until worker 2

takes over his job. After completing a job, worker 2 walks back upstream to

take over a job from worker 1, who then initiates a new job at the beginning

of the line. Worker 2 is starved if he walks back to station j2 before worker

1 can hand o↵ a job to him. If worker 2 is starved, he remains idle until he

takes over a job from worker 1.

Let Ĥ(k) denote the station where worker 1 is working at immediately before

time T (k). Since worker 1 cannot work beyond station j1, we set Ĥ(k) =

j1 + 1 if he finishes his job at station j1 before time T (k). Thus, Ĥ(k)
2

{1, . . . , j1+1}. Note that in the partially cross-trained team, worker 1 may

not hand o↵ his job to worker 2 at station Ĥ(k) in the kth reset. This is

because if Ĥ(k) < j2, then worker 2 is starved and he will wait until worker 1

finishes a job at station j2�1. The next hand-o↵ occurs at station j2. Define

⇡̂(k)
j = Pr

n
Ĥ(k) = j

o
, for j = 1, . . . , j1+1. Let ⇡̂(k) =

⇣
⇡̂(k)
1 , ⇡̂(k)

2 , .., ⇡̂(k)
j1+1

⌘

denote the probability distribution of Ĥ(k), where
Pj1+1

j=1 ⇡̂(k)
j = 1. Define

the transition probability p̂(k)h,h0 = Pr
n
Ĥ(k) = h0

|Ĥ(k�1) = h
o
. Let P̂

(k) =
⇣
p̂(k)h,h0

⌘

(j1+1)⇥(j1+1)
denote the corresponding transition probability matrix.

We benchmark the partially cross-trained team against a bucket brigade

with fully cross-trained workers, where the work speed of each worker on

each job at each station is identical to that of the partially cross-trained

team. Note that p(k)h,h0 in Lemma 1 reduces to p(k)h,h0 when I = 2. We derive

p̂(k)h,h0 based on p(k)h,h0 in Section A.8 of Appendix A.

To derive the expected makespan of the partially cross-trained team, we

first determine the inter-completion time between two successive resets.

Define ẑ(k)j = E
h
T (k)

� T (k�1)
|Ĥ(k�1) = j

i
, for j = 1, . . . , j1 + 1. The

following lemma determines ẑ(k)j .

36

Lemma 6. The expected inter-completion time between the (k � 1)st and

the kth resets, conditioned on Ĥ(k�1) = j can be determined as

ẑ(k)j =

(Pj2�1
j0=j 1/µ

(k)
1,j0 +

PJ
j0=j2

1/µ(k)
2,j0 , if j < j2;PJ

j0=j 1/µ
(k)
2,j0 , if j � j2;

for j = 1, . . . , j1 + 1.

Define ẑ(k) as a (j1+1)-dimensional vector with its jth element equals ẑ(k)j .

We set ⇡̂(0) = (1, 0, . . . , 0). The following theorem determines the expected

makespan E
⇥
T (K)

⇤
of the partially cross-trained team. We omit its proof

because it is similar to the proof of Theorem 1.

Theorem 5. The expected makespan of a bucket brigade with partially

cross-trained workers for K jobs is

E
⇥
T (K)

⇤
=

KX

k=1

⇡̂
(0)
P̂

(1)
· · · P̂

(k�1)
ẑ
(k). (2.16)

2.7.3 Diversification and intensification of skills

We compare a bucket brigade with fully cross-trained workers and a bucket

brigade with partially cross-trained workers. The skills of each worker in the

former setting are more diversified (the workers are more flexible), but his

learning e↵ect can be diluted because of his wider work zone. In contrast,

although each worker in the latter setting is constrained to a subset of

stations, his learning is intensified (thus, his work speeds increase faster) in

this narrower work zone. We investigate the performance of these di↵erent

cross-training strategies under di↵erent initial work speeds of the workers.

We first consider a case where the workers have an identical initial work

speed at each station. After that we consider a line with one worker that

has a smaller initial work speed than another worker at each station.

37

2.7.3.1 Identical workers with di↵erent cross-training strategies

We consider a twenty-station two-worker line, where the work content is

evenly distributed on all the stations. We set j1 = j⇤ and j2 = J + 1 � j⇤

such that each worker is cross-trained over j⇤ stations. Since j1 + 1 � j2,

we have J/2  j⇤  J . Specifically, for J = 20, we have 10  j⇤  20. If

j⇤ = 10, the line corresponds to a dedicated system where workers 1 and 2

are partially cross-trained over the first and last ten stations respectively.

If 11  j⇤  19, the work zones of the two workers overlap from station

21� j⇤ to station j⇤. If j⇤ = 20, the system becomes a bucket brigade with

fully cross-trained workers. We consider three cases: j⇤ = 10, 15, and 20,

which correspond to a dedicated system, a partially cross-trained system,

and a fully cross-trained system respectively. We set the initial work speed

of each worker at each station as 1, and his learning rate at each station in

his work zone as 0.001.

If the workers do not learn over the jobs (that is, v(k)i,j does not change

with k), then it is not surprising to see that fully cross-training the workers

attains the largest average throughput. However, the results become more

interesting if the workers learn over the jobs. Figures 2.13(a)-(c) show the

work-speed profile of each worker on job K = 1, 000 for j⇤ = 10, 15, and 20

respectively.

Figure 2.13(a) shows that the work speed on job K = 1, 000 of each worker

in the dedicated system (j⇤ = 10) maintains at a constant over his work

zone. This is because each worker finishes every job at every station within

his work zone. Given the same initial work speed and learning rate, the

work speeds increase to the same value as k approaches 1,000 (see Equa-

tion (2.14)). Moreover, since E
h
n(k)
i,j

i
reaches its maximum value in the

dedicated system for K = 1, 000, the work speeds of the dedicated team

are the upper bounds of the work speeds of the partially (j⇤ = 15) and the

fully (j⇤ = 20) cross-trained systems.

Figure 2.13(b) shows that for the partially cross-trained system (j⇤ = 15),

the work speeds of worker 1 on job K = 1, 000 maintain at the upper bound

38

Work station
2 4 6 8 10 12 14 16 18 20

W
o

rk
 s

p
e

e
d

0

1

2

3

4

5

6

7

8

9

10
Worker 1
Worker 2

(a) j⇤ = 10

Work station
2 4 6 8 10 12 14 16 18 20

W
o

rk
 s

p
e

e
d

0

1

2

3

4

5

6

7

8

9

10
Worker 1
Worker 2

(b) j⇤ = 15

Work station
2 4 6 8 10 12 14 16 18 20

W
o

rk
 s

p
e

e
d

0

1

2

3

4

5

6

7

8

9

10
Worker 1
Worker 2

(c) j⇤ = 20

Total number of jobs K
0 200 400 600 800 1000

T
h

ro
u

g
h

p
u

t

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

j*=10
j*=15
j*=20

(d) The average throughput

Figure 2.13: The performance of di↵erent cross-training strategies with

worker learning

at stations 1 to 5, but decrease from station 6 to station 15 in his work zone.

This is because worker 1 can be preempted by worker 2 at stations 6 to

15, and the frequency that worker 1 finishes his job at a station decreases

from the upstream to the downstream in his work zone. Due to the same

reason, the work speeds of worker 2 on job K = 1, 000 increase as he moves

downstream in his work zone. The work speeds of worker 2 attain the upper

bound at stations 16 to 20. We observe similar work-speed profiles for the

fully cross-trained system (j⇤ = 20) shown in Figure 2.13(c). Note that

Figure 2.13(c) suggests that for the fully cross-trained system, the work

speeds of worker 1 at stations 1 to 5 are lower than the upper bound. This

is because worker 2 can take over the job from worker 1 at stations 1 to 5

in the fully cross-trained system, the frequency that worker 1 finishes his

job at these stations cannot reach its maximum value for K = 1, 000.

Figure 2.13(d) shows that for K < 52, the partially (j⇤ = 15) and the

39

fully (j⇤ = 20) cross-trained systems have the largest average throughput.

For 52  K  247, the partially cross-trained system surpasses the fully

cross-trained system to become the most productive cross-training strategy.

Surprisingly, for K > 247, the dedicated system (j⇤ = 10) achieves the

highest average throughput, followed by the partially cross-trained system,

and the fully cross-trained system becomes the least productive. This is

because each worker of the dedicated system focuses on his dedicated work

zone, which intensifies his learning e↵ect. This helps each worker to achieve

the highest work speed (upper bound) as shown in Figure 2.13(a), and

boosts the system’s average throughput. In contrast, the workers’ learning

is not su�ciently intensified for the partially and the fully cross-trained

systems (see Figures 2.13(b) and (c)). As we will see in the next section, if

the workers have di↵erent initial work speeds, the dedicated system (which

intensifies the workers’ learning) is no longer the most productive strategy.

2.7.3.2 Non-identical workers with di↵erent cross-training strate-

gies

We now consider a slower worker and a faster worker with initial work

speeds 1 and 2, respectively, at all the stations. We define a policy as a

combination of the cross-training strategy and the sequence of the workers.

We use two capital letters to represent a policy with the first letter de-

notes the cross-training strategy and the second letter denotes the worker

sequence. Specifically, for the first letter, let “D” represent the dedicated

system, “P” represent the partially cross-trained system, and “F” repre-

sent the fully cross-trained system. For the second letter, let “S” represent

the slowest-to-fastest sequence and “F” represent the fastest-to-slowest se-

quence based on the workers’ initial work speeds. For example, the DS

policy corresponds to the dedicated system with the slowest-to-fastest se-

quence of the workers. Likewise, the PF policy corresponds to the partially

cross-trained system with the fastest-to-slowest worker sequence.

Figure 2.14(a) shows the average throughput of the six policies: DS, DF,

PS, PF, FS, and FF without worker learning. The relative performance

40

Total number of jobs K
0 200 400 600 800 1000

T
h

ro
u

g
h

p
u

t

1

1.5

2

2.5

3

FS
PS
PF
FF
DS
DF

(a) Without learning

Total number of jobs K
0 200 400 600 800 1000

T
h

ro
u

g
h

p
u

t

1

2

3

4

5

6

7

PS
FS
DS

(b) With learning

Figure 2.14: The performance of di↵erent policies without and with

worker learning

of the policies is as follows: ⇢FS > ⇢PS > ⇢PF > ⇢FF > ⇢DS = ⇢DF .

Without learning, the FS policy is the most productive because the fully

cross-trained system is more flexible and the slowest-to-fastest sequence

has less blocking. The DS and the DF policies have the lowest average

throughput because the slower worker becomes the bottleneck of the line.

Under the DS policy, the faster worker at the downstream is often starved,

whereas under the DF policy, the faster worker at the upstream is often

halted. Interestingly, under the fastest-to-slowest sequence, the partially

cross-trained system outperforms the fully cross-trained system (⇢PF >

⇢FF). This is because in the fully cross-trained system, the faster worker

upstream under the FF policy is constantly preempted and is subsequently

blocked by the slower worker. Note that for the fully and the partially cross-

trained systems, the slowest-to-fastest sequence outperforms the fastest-to-

slowest sequence (⇢FS > ⇢FF and ⇢PS > ⇢PF) because the former sequence

has less blocking. This observation still holds if the workers learn over the

jobs. Thus, we focus on the slowest-to-fastest sequence when we compare

the di↵erent cross-training strategies with worker learning in the following

paragraphs.

Figure 2.14(b) shows the average throughput of di↵erent cross-training

strategies with the slowest-to-fastest sequence when the workers learn. In

contrast to Section 2.7.3.1, the dedicated system becomes the least produc-

tive for a line with a slower worker and a faster worker. This is again due to

41

the fact that the slower worker is the bottleneck of the line. We also observe

that when the number of jobs is small (K < 431), the fully cross-trained

system has the largest average throughput, which resembles the no-learning

case (see Figure 2.14(a)). In this situation, the line is more productive if the

workers’ skills are diversified (if the workers are fully cross-trained). How-

ever, for a large number of jobs (K � 431), the PS policy outperforms the

FS policy. In this situation, the e↵ect of the intensification of learning in

the partially cross-trained system becomes dominant. Figures 2.14(a) and

(b) suggest that for a line with a worker that is slower than his colleague,

the productivity of the line is limited by the slower worker. One way to

overcome this issue is to diversify the workers’ skills by cross-training such

that the faster worker can help the slower worker (see Figure 2.14(a)). How-

ever, if the workers learn over the jobs, then the intensification of learning

can also boost the productivity (see Figure 2.14(b)). Thus, an appropriate

mix of the diversification of the workers’ skills and the intensification of

their learning becomes crucial for maximizing the productivity of the line.

Comparing Figures 2.13(d) and 2.14(b), the relative performance of the

di↵erent cross-training strategies changes with the ratio v2/v1, which is

the relative initial work speed of worker 2 to worker 1. If v2/v1 = 1,

the dedicated system is the most productive for a large number of jobs

K (see Figure 2.13(d)). This suggests that if the workers are identical,

then the e↵ect of intensified learning dominates. In contrast, if v2/v1 = 2,

then the partially cross-trained system becomes the most productive for a

large number of jobs K (see Figure 2.14(b)). As the initial work speeds

become more di↵erent, diversifying the workers’ skills makes the line more

productive. This is because by cross-training each worker over a wider

zone, the negative e↵ect of the bottleneck worker (the slowest worker) can

be mitigated.

Figure 2.15 shows the best cross-training strategies (represented by the

best j⇤ on the x-axis) for di↵erent values of v2/v1 (shown on the y-axis).

If v2/v1 equals 1, the dedicated system is the most productive because the

intensification of learning boosts the line’s productivity. On the other hand,

if v2 is significantly larger than v1, the fully cross-trained system (j⇤ = 20)

42

j∗
2 4 6 8 10 12 14 16 18 20

v 2
/v

1

1

1.5

2

2.5

3

Figure 2.15: The best cross-training strategies for di↵erent relative ini-

tial work speeds

becomes the most productive. This is because diversifying the skills of the

workers o↵ers more flexibility to the line, and mitigates the negative e↵ect

of the bottleneck (slowest) worker. Lastly, if v2 is moderately larger than

v1, then the partially cross-trained system (j⇤ = 15) performs the best.

This is because by moderately (partially) cross-training the workers, the

line achieves a balance between the diversification of the workers’ skills and

the intensification of worker learning. This delicate balance maximizes the

productivity of the line in this situation.

2.8 Robustness of the results

In this section, we examine the robustness of the findings in Section 2.7.3 for

other settings using simulations. Figure 2.16 shows the relative performance

of the di↵erent cross-training strategies for a line with uniformly-distributed

service times. We use the same parameter values in Figures 2.13(d) and

2.14(b) for Figures 2.16(a) and (b) respectively. Figure 2.16 shows that

the main findings in Section 2.7.3 still hold for uniformly-distributed ser-

vice times. We also observe similar results for normally-distributed service

times.

Likewise, Figure 2.17 shows the relative performance of the di↵erent cross-

training strategies for a model in which the workers walk with finite speeds

43

Total number of jobs K
0 200 400 600 800 1000

T
h
ro

u
g
h
p

u
t

0

1

2

3

4

5

6

7
j*=10
j*=15
j*=20

(a) Two identical workers

Total number of jobs K
0 200 400 600 800 1000

T
h
ro

u
g
h
p

u
t

1

2

3

4

5

6

7

8
PS
FS
DS

(b) Two non-identical workers

Figure 2.16: The performance of di↵erent cross-training strategies with

uniformly-distributed service times

from one station to another station. We set the forward and the backward

walk speeds as 20 and 40, respectively, for each worker. We use the same

parameter values in Figures 2.13(d) and 2.14(b) for Figures 2.17(a) and

(b) respectively. Compared to Section 2.7.3, Figure 2.17 shows that the

relative performance of the di↵erent cross-training strategies remain the

same when the workers walk with finite speeds.

Total number of jobs K
0 200 400 600 800 1000

T
h
ro

u
g
h
p
u
t

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
j*=10
j*=15
j*=20

(a) Two identical workers

Total number of jobs K
0 200 400 600 800 1000

T
h
ro

u
g
h
p
u
t

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

PS
FS
DS

(b) Two non-identical workers

Figure 2.17: The performance of di↵erent cross-training strategies with

finite walk speeds

2.9 Conclusion

The literature of bucket brigades with stochastic service times is very lim-

ited. To the best of our understanding, Bartholdi III et al. (2001) is the only

44

paper that analytically studies bucket brigades on discrete work stations

with stochastic service times. The authors assume that the work speed of

each worker at each station depends only on the worker. In this chapter,

we extend the work of Bartholdi III et al. (2001) by assuming that the

work speed of each worker at each station on a job depends not only on the

worker, but also on the station and the job. Thus, the workers may not

dominate each other at all the stations, and their work speeds may change

with the jobs. We consider a bucket brigade line with J stations and I

workers. We assume the time duration for each worker to finish a job at

each station is exponentially distributed with a rate that depends on the

station’s expected work content and the work speed of the worker.

By observing the Markov property of the hand-o↵ stations and analyzing

the transition from one hand-o↵ station vector to the next, we are able to

derive the system’s average throughput (Theorem 1) and the CV of the

inter-completion time (Lemma 2). We prove that if the work speeds of

the workers are independent of the jobs, then the probability distribution of

the hand-o↵ station vector will converge to a unique stationary distribution

as the number of jobs approaches infinity (Theorem 2). Furthermore, the

average throughput and the CV of the inter-completion time converge to a

constant that depends on the stationary distribution (Theorems 2 and 3).

We first study a case where each worker’s work speeds depend only on the

worker. For a two-worker system in which one worker has a larger speed

than the other at all the stations, we find that the probability distribution

of the hand-o↵ station is analogous to the behavior of the deterministic

model. If the workers are sequenced from slowest to fastest, the probability

distribution has a peak in the middle of the line. It is interesting to note

that this result is consistent with that of the deterministic model in which

the hand-o↵s converge to a fixed location (Bartholdi III, Eisenstein, 1996b).

However, if the workers are sequenced from fastest to slowest, the proba-

bility distribution has two peaks at the two ends of the line. This result is

analogous to that of the deterministic model studied by Bartholdi III et al.

(1999) in which the hand-o↵s converge to a 2-cycle.

45

We further compare the throughput of our stochastic model with the de-

terministic model with discrete work stations. Under the slowest-to-fastest

sequence, the deterministic system is more productive than the stochastic

system. This suggests that the stochastic service times cause throughput

loss for a bucket brigade line with discrete work stations under the slowest-

to-fastest sequence. However, under the reverse sequence, the stochastic

system may outperform the deterministic system. For both worker se-

quences, the performance di↵erence between the stochastic and the deter-

ministic systems gets closer as the number of stations J increases, which is

consistent with the finding of Bartholdi III et al. (2001).

However, if the number of stations is small, the throughput di↵erence be-

tween the stochastic and the deterministic systems can be quite significant

(the gap is up to 47%). Furthermore, for a stochastic system, the slowest-

to-fastest sequence is more productive than the reverse sequence (see Corol-

lary 1 and Figure 2.5). It is worth noting that this result may not hold

for a deterministic system (see Figure 6(a) of Lim, Yang (2009)). Thus, it

is worthwhile and important to study the stochastic bucket brigade model

especially for a line with a small number of stations.

To maximize the asymptotic throughput, the manager can optimize both

the worker sequence and the work-content distribution over the stations.

We demonstrate that the slowest-to-fastest sequence always outperforms

the reverse sequence (Figure 2.6(a)). Furthermore, under the slowest-to-

fastest sequence, the asymptotic throughput is maximized if the expected

work content of the stations increases in the direction of the production

flow. In contrast, under the fastest-to-slowest sequence, the asymptotic

throughput is maximized if the work content decreases from upstream to

downstream. These results also hold when we vary the number of stations,

the number of workers, or the di↵erence in the work speeds of the workers.

In terms of minimizing the asymptotic CV of the inter-completion time,

we also find that the slowest-to-fastest sequence always outperforms the

reverse sequence. For the fastest-to-slowest sequence, the asymptotic CV

is the minimum when the expected work content increases from upstream to

46

downstream. However, for the slowest-to-fastest sequence, the asymptotic

CV reaches the minimum when the expected work content decreases in the

direction of the production flow. The above results are robust when we

vary the number of stations, the number of workers, or the di↵erence in the

work speeds of the workers.

From the above results, we obtain the following important managerial in-

sights. Either maximizing the asymptotic throughput or minimizing the

asymptotic CV of the inter-completion time, the slowest-to-fastest sequence

always outperforms the reverse sequence for the stochastic bucket brigade.

Furthermore, to maximize the asymptotic throughput, more work content

should be assigned to the stations near the faster workers (Figure 2.6(b)).

In contrast, to minimize the asymptotic CV of the inter-completion time,

more work content should be assigned to the stations near the slower work-

ers (Figure 2.9(b)).

We then analyze another case where the work speeds depend on the workers

and the stations. Given that the workers may not dominate each other

along the entire line, we define the average work speed of each worker as a

weighted average of his work speeds at all the stations (Equation (2.6)). We

also derive the asymptotic expected blocked time of each worker (Equation

(2.9)). The asymptotic throughput of the stochastic bucket brigade can

be expressed as a function of the average work speeds and the asymptotic

expected blocked times of the workers, and can be interpreted as the sum

of the e↵ective production rates of all the workers (Theorem 4).

Finally, we study the general case where the work speed v(k)i,j of worker i

at station j on job k depends on the worker, the station, and the job. We

assume each worker learns over the jobs such that the more often he visits

a station, the faster he becomes at that station. We propose a modified

exponential model and a procedure to determine the work speeds. To

boost the line’s productivity, a manager can diversify each worker’s skills

by cross-training them over more work stations. Although each worker is

more flexible under this strategy, his learning e↵ect can be diluted because

of his wider work zone. In contrast, a worker that is constrained to work

47

at a smaller set of stations, albeit less flexible, can intensify his learning.

Thus, when the workers learn, it is non-trivial to determine whether a

bucket brigade with fully cross-trained workers is more productive than a

bucket brigade with each worker only partially cross-trained on a subset

of stations. To obtain useful insights, we focus on a line with J = 20

stations and I = 2 workers. We find that if v2/v1 (the relative initial work

speed of worker 2 to worker 1) equals 1, the dedicated system is the most

productive because of intensified learning (see Figure 2.15). On the other

hand, if v2 is significantly larger than v1, the fully cross-trained system

becomes the most productive. This is because diversifying the skills of

the workers o↵ers more flexibility to the line, and mitigates the negative

e↵ect of the bottleneck (slowest) worker. Lastly, if v2 is moderately larger

than v1, then the partially cross-trained system performs the best. This

is because by moderately (partially) cross-training the workers, the line

achieves a balance between the diversification of the workers’ skills and

the intensification of worker learning. This delicate balance maximizes the

line’s productivity in this situation.

Our main findings from the model with exponential service times continue

to hold for uniformly- or normally-distributed service times. Furthermore,

we observe similar results when the workers walk with finite speeds.

48

Chapter 3

Stochastic Bucket Brigades

with Non-preemptible Work

Content

3.1 Introduction

There are di↵erent designs of a bucket brigade line catering for di↵erent as-

sembly or production settings, such as a serial bucket brigade (Bartholdi III,

Eisenstein, 1996b,a, Bartholdi III et al., 2001), a bucket brigade on in-tree

assembly networks (Bartholdi III et al., 2006), a cellular bucket brigade

(Lim, 2011) and so on. Even if the design of a serial bucket brigade is

chosen for the assembly or production, the management needs to consider

whether the work content is preemtpbile. If the work content is preemptible,

the work that is processed by one worker on a station can be interrupted

or preempted and continues to be processed by another worker; If the work

content is non-preemptible, the work on each station can not be preempted

and has to be processed by the same worker.

In this chapter, we continue to study a J-station, I-worker bucket brigade

line. However, we assume that the work content of any station is non-

preemptible. As such, when one worker walks back to his predecessor, he

49

can not take over the job immediately, but has to wait for his predecessor

to finish her job at the current station, and then he continues to process

the job from the next station. Similar to the assumptions in Chapter 2,

we assume that the time duration for each worker to process a job at each

station follows an independent exponential distribution with a rate that

depends on the stations work content and the workers work speed. We also

assume that the workers work speed may depend on the worker, the station,

and the job. In a non-preemptible bucket brigade, a hand-o↵ occurs when

a worker finishes his job at a station and at the same time his successor

is waiting to take over the job. This di↵ers from the preemptible system

introduced in Chapter 2.

3.2 Notation and assumptions

We consider a bucket brigade assembly line with work stations sequenced as

j = 1, . . . , J . There are I workers sequenced as i = 1, . . . , I in the direction

of the production flow. We call workers i� 1 and i+1 the predecessor and

the successor, respectively, of worker i. There are K jobs to be processed

by the assembly line. Worker i is blocked in front of station j if his job is

ready to enter station j but his successor is still working at station j. When

worker i is working at any station, we assume the station’s work content

is non-preemptible such that worker i + 1 needs to wait for the former to

finish his job at a station before he can take over the former’s job.

We assume the workers spend negligible time when they move from one

station to another. Let Z(k)
i,j denote the time duration for worker i to serve

(or process) job k at station j. We assume Z(k)
i,j follows an exponential

distribution with rate µ(k)
i,j , for i = 1, . . . , I, j = 1, . . . , J , and k = 1, . . . , K.

We define the rate µ(k)
i,j =

⇣
sj/v

(k)
i,j

⌘�1

, where sj represents the expected

work content of station j and v(k)i,j represents the work speed of worker i

at station j on job k. We normalize the total expected work content such

that
PJ

j=1 sj = 1. We assume that all the workers are fully cross-trained

such that v(k)i,j > 0, for all i, j, and k.

50

Let T (k) denote the time point when worker I completes job k at the last

station J . Let H(k)
i denote the station where worker i is working at imme-

diately before T (k), for i = 1, . . . , I � 1. If worker i is blocked in front of

station j immediately before T (k), we set H(k)
i = j. If worker i is waiting for

his predecessor to finish his job immediately before T (k), we set H(k)
i = 0.

Define H
(k) =

⇣
H(k)

1 , . . . , H(k)
I�1

⌘
as the kth reset vector. We set T (0) = 0

and H
(0) = (1, . . . , 1). Define H(I, J) as a set of all possible reset vectors

for a non-preemptible bucket brigade with J stations and I workers.

Lemma 7. An (I�1)-dimensional vector h = (h1, h2, . . . , hI�1) belongs to

H(I, J) if and only if it satisfies:

1. 0  hi  J for i = 1, 2, . . . , I � 1. h1 6= 0.

2. If hi�1 6= 0, then hi � hi�1, or hi = 0, for i = 2, . . . , I � 1.

3. If hi 6= 0, and hi+1 = hi+2 . . . = hi+l = 0, then hi+l+1 > hi or

hi+l+1 = 0, for i = 1, . . . , I � 3, and 1  l  I � 2� i.

3.3 Performance measures and asymptotic

behavior

In this section, we calculate the throughput of the system by calculating

the expected time for completing K jobs, E[T (k)]. Let Y (k) = T (k)
�T (k�1)

denote the inter-completion time between job k � 1 and job k. Lemma 8

shows the method of calculating Y (k) by tracking the working time and

waiting time of worker I.

Lemma 8. Suppose H
(k�1) = h, Y (k) can be calculated based on three

scenarios:

1. If 1  hI�1  J � 1, Y (k) = Z(k)
I�1,hI�1

+
PJ

j=hI�1+1 Z
(k)
I,j .

2. If hI�1 = J , Y (k) = Z(k)
I,J .

51

3. If hI�i > 0, and hI�i+1 = hI�i+2 = . . . hI�1 = 0, for 2  i  I � 1,

Y (k) = Z(k)
I�i,hI�i

+
PJ

j=hI�i+1 Z
(k)
I,j .

Lemma 8 shows that the inter-completion time can be determined by the

reset vector. Thus, it is essential to study the transitions of the reset vector

between two consecutive resets to calculate the inter-completion time. The

transition behavior the reset vector can be determined by observing the

movements of the I workers between the (k � 1)st and kth resets.

3.3.1 State of the system

Between the (k � 1)st and kth resets, let X(i) denote the station where

worker i is located, for i = 1, . . . , I. If worker i is blocked in front of

station j, we set X(i) = j. If worker i is waiting for his predecessor, we set

X(i) = 0. We set X(I) = J + 1 when worker I finishes his job at station

J . Define a state of the system as X = (X(1), X(2), . . . , X(I)). We call a

state with X(I)  J a transient state, and a state with X(I) = J + 1 an

absorbing state. Define X (I, J) as a set of all possible states between any

two resets. Lemma 9 shows the relation of the cardinality of X (I, J) and

that of H(I, J).

Lemma 9. The cardinality of X can be obtained by:

|X (I, J)| = |H(I, J)|+ |H(I + 1, J)|

Between the (k � 1)st and the kth resets, instead of keeping track of the

system’s state continuously, we only need to consider the epochs when a

worker finishes his job at a station. Given that the service times are expo-

nentially distributed, the probability that more than one worker finish their

jobs at their respective stations at the same time is 0. For any transient

state x, suppose there are N(x) workers that are working. Let l1, . . . , lN(x)

denote these N(x) workers from upstream to downstream.

Lemma 10. For a transient state x, worker i (1  i  I � 1) is working

if and only if it satisfies the following two conditions,

52

1. xi 6= 0.

2. xi+1 = 0, or xi+1 > xi.

Between the (k� 1)st and the kth resets, let kn denote the job that worker

ln is working on. The following lemma determines kn.

Lemma 11. Between the (k� 1)st and the kth resets, for a transient state

x, the job that worker ln is working on can be determined by:

kn = k +
IX

i=ln

I{x(i) 6= 0}

Among the N(x) workers that are working, one of them, say worker ln, will

finish his job in the next epoch. Let xn denote the new state immediately

after worker ln finishes his job, we have:

Lemma 12. xn is determined according to four senarios:

1. If ln = I, we have xn = (x(1), x(2), . . . , x(I � 1), x(I) + 1).

2. If 1  ln  I � 1, and x(ln + 1) > x(ln), we have xn(ln) = x(ln) + 1,

and xn(i) = x(i), for i 6= ln, 1  i  I.

3. If 2  ln  I � 1, x(ln + 1) = x(ln + 2) = . . . = x(ln +m) = 0, and

x(ln +m + 1) 6= 0, we have xn(ln) = 0, xn(ln +m) = x(ln) + 1, and

xn(i) = x(i), for i 6= ln, i 6= ln +m, 1  i  I.

4. If ln = 1, x(2) = x(3) = . . . = x(m) = 0, and x(m+ 1) 6= 0, we have

xn(1) = . . . = xn(m � 1) = 1, xn(m) = x(1) + 1, and xn(i) = x(i),

for m+ 1  i  I.

Between the (k� 1)st and the kth resets, the system progresses from state

x to another state x
0. Let q(k)x,x0 denote a one-step transition probability

from x to x
0. For any transient state x, we have

q(k)x,x0 =

8
<

:
µ(kn)
ln,x(ln)

/
PN(x)

m=1 µ
(km)
lm,x(lm), if x

0 = xn, n = 1, . . . , N(x),

0, otherwise.

53

For any absorbing state x, we set

q(k)x,x0 =

8
<

:
1, if x

0 = x,

0, otherwise,

Let Q
(k) =

⇣
q(k)x,x0

⌘

|X |⇥|X |

denote the corresponding one-step transition

probability matrix of the states.

3.3.2 Transition probability matrix of the reset vec-

tors

Starting from any state x, the system will take at most I(J�1)+1 epochs

to reach an absorbing state. Let R
(k) =

�
Q

(k)
�I(J�1)+1

, and r(k)x,x0 denote

the x-x0 entry of R(k). Suppose the (k � 1)st reset vector is h. Let xh

denote the state of the system immediately after the (k � 1)st reset. The

following lemma determines xh.

Lemma 13. xh is determined as below:

1. If hI�1 < J , x(h) = (h, 0).

2. If hI�m = . . . = hI�1 = J , hI�m�1 6= J for 1  m  I � 2, then

xh(I) = J , xh(I�m) = 0, and xh(i) = hi for i 6= I�m, 1  i  I�1.

3. If h1 = . . . = hI�1 = J , xh = (1, J, . . . , J).

As the system transitions from the reset vector h immediately after the

(k � 1)st reset to the reset vector h
0 at the kth reset, the system’s state

progresses from xh to (h0, J + 1). Let P
(k) =

⇣
p(k)h,h0

⌘

|H|⇥|H|

denote the

transition probability matrix of the reset vectors. We have the following

lemma.

Lemma 14. The probability of h0 being the kth reset vector, conditioned

on h being the (k � 1)st reset vector is

p(k)h,h0 = r(k)xh,(h0,J+1).

54

3.3.3 The throughput of the line

Define z
(k) as an |H|-dimensional column vector with its nth component

equals E
⇥
Y (k)|H (k�1) = h

n
⇤
, for n = 1, . . . , |H|.

E [Y (k)] =
|H|X

n=1

E
⇥
Y (k)|H(k�1) = h

n
⇤
⇡(k�1)
n = ⇡

(k�1)
z
(k).

Define the average throughput of a bucket brigade assembly line withK jobs

as ⇢(K) = K/E
⇥
T (K)

⇤
. The following theorem determines the expected

makespan E
⇥
T (K)

⇤
, and ⇢(K).

Theorem 6. The expected makespan of a bucket brigade assembly line with

K jobs is

E
⇥
T (K)

⇤
=

KX

k=1

⇡
(0)
P

(1)
· · ·P

(k�1)
z
(k).

We have

⇢(K) = K
�
E
⇥
T (K)

⇤
= K

,
KX

k=1

⇡
(0)
P

(1)
· · ·P

(k�1)
z
(k) . (3.1)

The proof of Theorem 6 is similar to Theorem 1. From Theorem 6 we see

that given ⇡
(0) and z

(k), we can determine the average throughput of the

line using the transition probability matrices P (k), for k = 1, . . . , K � 1.

Let e denote an |H|-dimensional unit column vector.

Theorem 7. If the workers’ service rates are independent of the jobs, then

lim
k!1

⇡
(k) = ⇡, where ⇡ is a unique stationary distribution that satisfies the

equations ⇡P = ⇡ and ⇡e = 1. Furthermore, the asymptotic throughput

⇢1 = lim
K!1

⇢(K) = 1/(⇡z), where ⇡z represents the asymptotic expected

inter-completion time.

55

3.4 Numerical results

We set I = 4, J = 8, s1 = s2 = . . . = s8 = 1/8, K = 1000, and v1 = 1, v2 =

2, v3 = 3, v4 = 4. The bold solid line in Figure 3.1 represents the average

throughput ⇢(k) of a non-preemptible bucket brigade assembly line up to

job k. The dashed line and the thin solid line represent two sample paths

of the actual throughput k/T (k) based on simulations.

Job index k
0 200 400 600 800 1000

T
h
ro

u
g
h
p
u
t

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

Average throughput
Sample 1 throughput
Sample 2 throughput

Figure 3.1: The throughput of a non-preemptible bucket brigade line

with four workers.

Figure 3.2 compares the average throughput of a non-preemptible system to

that of a preemptible system and their upper limit. We set v1+v2+v3+v4 =

10. Figure 3.2(a) depicts the case where v1 = 1, v2 = 2, v3 = 3, v4 = 4.

That is, the workers are sequenced from slowest to fastest. We see that

there is a significant throughput gap between the non-preemptible line and

the preemptible line. This is because in a non-preemptible line, the faster

worker at the downstream has to wait for the slower worker at upstream

when the downstream worker finishes his work and walks back. It hurts

the productivity of the line. Figure 3.2(b) depicts the case where there are

four identical workers, each with work speed 2.5 at all the stations. The

throughput gap between the two systems becomes smaller. Figure 3.2(c)

depicts the case where v1 = 4, v2 = 3, v3 = 2, v4 = 1. That is, the workers

are sequenced from fastest to slowest. We see that the non-preemptible line

outperforms the preemptiblle line! This is because in a non-preemptible

line, the faster worker upstream is not preempted by the slower worker

56

downstream. The work content continues to be processed by the faster

worker. However, in a preemptible line, the work content is preempted by

the slower worker downstream. This may cause more blocking, thus hurting

the throughput. From above, we see that there are significant di↵erences

in managing the non-preemptible and the preemptible lines. It is essential

for the management to consider about the actual setting to enhance the

performance of the system.

Job index k
0 200 400 600 800 1000

T
h
ro

u
g
h
p
u
t

2

3

4

5

6

7

8

9

10

11

Upper limit
Preemptible
Non-preemptible

(a) Slowest-to-fastest

sequence

Job index k
0 200 400 600 800 1000

T
h
ro

u
g
h
p
u
t

2

3

4

5

6

7

8

9

10

11

Upper limit
Preemptible
Non-preemptible

(b) Identical workers

Job index k
0 200 400 600 800 1000

T
h
ro

u
g
h
p
u
t

2

3

4

5

6

7

8

9

10

11

Upper limit
Non-preemptible
Preemptible

(c) Fastest-to-slowest

sequence

Figure 3.2: The throughputs of a non-preemptible and a preemptible

lines and their upper limit.

3.5 Conclusion

In this chapter, we study a stochastic bucket brigade line with non-preemptible

work content. The main methodologies in Chapter 2 can be carried over

to the analysis of this system. However, the status of a worker can be not

only working or being blocked, but can also be waiting for his predecessor

to finish his job at a station. As such, it complicates the analysis in a few

perspectives. (1) The waiting workers need to be well defined. (2) The

inter-completion times and the relation between the reset vectors and the

states of the system have to be re-analyzed. (3) The transitions of the

states have to be analyzed case by case. In Section 3.2 and Section 3.3,

we properly denote the waiting workers, re-analyze the state of the sys-

tem, and the transition probability matrix of the reset vectors. Finally, we

57

derive the average throughput for a bucket brigade with non-preemptible

work content.

In Section 3.4, we first compare the average throughput derived from The-

orem 6 to the sample paths based on simulations. We see that the through-

puts converge as K increases. Then we compare the throughput di↵erence

between a non-preemptible line and a preemptible line. If the workers

are sequenced slowest-to-fastest, the preemptible line dominates the non-

preemptible line. However, if the workers are sequenced fastest-to-slowest,

the non-preemptible line can dominate the preemptible line. As such, the

management needs to consider about the actual setting to enhance the

performance of the system.

58

Chapter 4

Distributive Decision Rule in

Resource Allocation Problems

4.1 Introduction

Resource allocation problems are a traditional area of Operations Research

(Karp et al., 1990, Reeves, Sweigart, 1982, Riedel, 1999), in which the plan-

ner has to allocate a finite amount of resources to meet sources of demand

with di↵erent requirements. Often, there is uncertainty in the demand,

especially in time. The goal of the planner is to maximize a function of

revenue arising from a successful allocation (e.g. clickthroughs in the ad-

vertising setting), or to minimize the cost of not matching (e.g. waiting

time before allocation). Resource allocation problems have a variety of ap-

plications such as in online advertising (Jaillet, Lu, 2011), freight allocation

(Spivey, Powell, 2004), and appointment scheduling (Gupta, Wang, 2008).

There is renewed interest of late in service management problems in the

area of shared economy, platform services and distributed networks, such as

cloud computing, online ride-hailing or ride-sharing (Tang et al., 2020, Shu

et al., 2013) and last-mile delivery (Qi et al., 2018). Due to the short re-

sponse time and the high variability in the state and the demand, these set-

tings require adaptive policies that respond to the state and the uncertainty

59

in the demand. Another key feature is the ability of the decision-maker to

simultaneously control the matching between supply and demand, and the

allocation of supply amongst di↵erent supply pools. For example, this oc-

curs in the ride-hailing industry where the decision-maker has incentive to

re-position vehicles (Ghosh et al., 2017).

In this paper, we are interested in studying resource allocation problems

under such a context. Exhaustively, we list down the features that we are

interested in:

1. Replenishable supply: When allocated, the supply is occupied for a

random period of time, after which it is freed up. For example, in call

centers, each receptionist is occupied for a random length of service,

until the call ends and she becomes available again.

2. Control over allocation and supply: To increase the flexibility of the

setting considered, we assume the decision-maker can control how

the supply is distributed over supply sources, while simultaneously

controlling the allocation of demand to supply. For example, in vehi-

cle re-positioning in the ride-hailing context, the decision-maker can

bring excess supply in one area to another, under limitations of costs

and delay in re-positioning.

3. Disjoint demand and supply sources: We consider situations where

demand and supply are partitioned into disjoint, but homogeneous

sources. The demand has known arrival distribution, which can be

estimated or inferred from data. However, demand can be non-time-

homogeneous and can be highly variable (as Serna et al., 2017, dis-

cusses to be common in such contexts).

4. Demand need not be immediately fulfilled: Demand that is not imme-

diately served, will remain in the system and can incur some known

costs. This is broad enough to model lost demand, as well. For ex-

ample, in a ride-hailing platform, the customer may not be served

immediately, but will wait for a match with an available driver. If

60

after some time, the customer decides to leave, the platform incurs

lost sales.

5. Known allocation value: Critical in the context that we are consider-

ing, the value of the allocation is known, be it the revenue from each

allocation or the costs of failure to match. For example, in platform

services, monetization occurs at the point where a match is secured;

and in cloud computing, known cost is incurred in terms of delay, but

where all demand must be served at some point.

The above features do permit a large class of problems, especially those

pertaining to service provisions, such as online platforms of cloud comput-

ing clusters, ride-hailing and call centers. We, however, exclude settings

where the reward or cost of the matching is unknown, such as exploration-

exploitation in online advertising, those in which the resources are not

renewable and are exhausted, such as advanced booking or scheduling, and

those where the demand and/or supply are highly heterogeneous, such as

personalized services. Our model is also not suitable for platforms that be-

have like a market wherein the allocation is decided by demand and supply

forces, as opposed to the central planner, e.g. in the case of Airbnb.

These features describe a doubly stochastic nature of demand and the re-

plenishment of the supply, which induces complex dynamics. Moreover, the

state of the system is highly variable, and is potentially faced with large

uncertainties in the demand and service time. The culmination is that

this setting dictates the need for allocation and supply distribution policies

that are adaptive and state-dependent. The challenge is to solve for such

policies tractably.

4.1.1 Key approaches in literature

There are three streams of literature that address the dynamics of the

problems under similar settings, namely, queuing, stochastic programming

and learning.

61

Queuing network: Posing the problem as a queuing network is a common

and natural approach to address such problems – the queue and server

system can model the matching of the demand with the supply; and arrivals

and service time distributions can be modelled naturally in this setting.

Arguably, this is the most commonly seen approach. For example, Armony,

Ward (2010) propose a threshold policy to determine server pool priority in

a call center with server pools of di↵erent skill levels. Véricourt, Jennings

(2011) studies the nurse sta�ng problem by constructing a M/M/s//n

model, and compared their policy against a fixed nurse-to-patient policy.

Yom-Tov, Mandelbaum (2014) studies a queueing network with reentrant

customers which they call as Erlang-R.

To arrive at a decision, we observe one of two methods in the literature.

In the first instance, the steady state dynamics of the queueing network is

derived as a function of the decisions, upon which the performance metrics

are optimized. For example, Puha, Ward (2019) studies a multi-class many-

server queueing network with impatient customers, and use the restricted

fluid model to approximately solve the scheduling control problem. Most

related to our work is that by Chan et al. (2021), who examine the dynamic

assignment of servers in a multiclass queueing system. By assuming Poisson

arrivals and exponential service times, the authors construct a deterministic

discrete and finite time fluid control approximation, which is asymptotically

optimal.

We find it challenging to apply this method to our problem setting because,

one, our problem is fundamentally posed in the transient setting (and which

later, in our numerical experiments, we shall provide the evidence to justify

that there are significant consequences in ignoring the transient nature of

the problem), and two, in some cases, the fluid approximation does not

lead to state-dependent solutions.

In the second instance, to derive state-dependent solutions, the authors

often models the problem in a dynamic programming framework. For ex-

ample, Martonosi (2011) studies whether dynamically reassigning servers

62

to parallel queues in response to queue imbalances can reduce average wait-

ing time in those queues by approximate dynamic programming method.

They observe that dynamically reallocating servers can substantially re-

duce waiting time in some circumstances. Most relevant to our work is

that by Dai, Shi (2019), who study the inpatient overflow problem to de-

cide how patients should be assigned to non-primary wards when their

original primary ward are fully occupied. The authors model the prob-

lem as a multiclass, multipool parallel-server queuing system in a Markov

decision process framework, and also considered the interplay between pa-

tient length-of-stay and the discharge process. They eventually employ an

approximate dynamic programming approach to solve the model.

Stochastic programming: There is another stream of literature that models

the problem under a stochastic programming framework. Most relevant

is the work by Lyu et al. (2019), who address the multi-objective online

ride-matching problem by online convex optimization techniques. Setting

the platform revenue, pick-up distance, and service quality as the multiple

objectives, the authors prove that their policy can achieve an optimal so-

lution that is closest to any pre-determined multi-objective target. Also,

Guo et al. (2018) study the virtual machine scheduling problem in cloud

computing systems, and propose several online algorithms that they illus-

trate to yield good performance. Jaillet, Lu (2014) examine the online

stochastic bipartite matching problem for advertising applications. Based

on the solution of simple linear programs of maximum flow problems, the

online algorithm in the paper is shown to be computationally e�cient with

better bounds for the competitive ratio. Correia et al. (2018) consider a

two-stage modeling framework for the multi-period stochastic capacitated

multiple allocation hub location problem. Works like Youssef et al. (2021)

and Rostami et al. (2021) also examine a similar context.

Learning: The other stream that is gaining prominence of late is the learn-

ing approach. This can be broadly described in two parts, static learning

and online learning. For the static learning literature, we see work such

as Dai, Gluzman (2020), who employ the advanced policy gradient policy

framework in deep reinforcement learning to a large-size multiclass queueing

63

network with parallel servers. The algorithm consistently generates control

policies that outperform state-of-art heuristics. He et al. (2019) develop

a data-driven robust framework to study the patient scheduling problem

in an emergency department balancing o↵ the patients’ door-to-provider

times and lengths of stay. Their hybrid robust-stochastic approach is com-

putationally e�cient. Some works, such as Batt et al. (2019), who study

the e↵ects of work shifts of care providers on the performance of emergency

departments using regression models, focus specifically on understanding

and correctly modelling the dynamics of the system.

The online learning approach is also seen in the literature as it is able to

make use of the sequentially available data to make here-and-now decisions.

Johari et al. (2021) consider the problem faced by a service platform that

needs to match limited supply with demand, where the demand type is

unknown. The planner needs to learn the type of the demand over time

to maximize the payo↵. Fershtman, Pavan (2015) study the dynamics

of mediated many-to-many matching allocation in a two-sided market, in

which agents’ preferences evolve over time. However, they do not consider

the stochastic entry or departure of agents. Özkan, Ward (2020) propose

matching policies for ride-sharing, based on a continuous linear program

that accounts for the di↵ering arrival rates of customers and drivers in

di↵erent areas of the city, the customers’ and the drivers’ willingness to

wait. They consider time-varying factors. When pricing a↵ects customer

and driver arrival rates and parameters are time homogeneous, they show

that asymptotically optimal joint pricing and matching decisions lead to

fully utilized drivers under mild conditions.

Summary: In a broad sense, our approach lies within the intersection of

the queueing and the stochastic approaches. We shall apply the Pipeline

Queue paradigm (Bandi, Loke, 2018), which can be viewed as using robust

optimization and stochastic techniques to solve for specially constructed

discrete queueing dynamics. The learning literature is less relevant to our

work as in the problem setting we have described, we assume that the

decision-maker possesses su�cient data and moreover, the value of the al-

location is known, along with the source of the demand or the supply.

64

4.1.2 Approach and contributions

In this paper, to deal with the complex dynamics of the state and the

uncertainties arising from the double stochastic nature of demand and sup-

ply, and also the need to solve for state-dependent policies in the transient

setting, we appeal to the Pipeline Queue paradigm introduced in (Bandi,

Loke, 2018). There, the authors propose a model that sought to reduce

waiting times in queueing networks via an optimization model that decides

on the flow of jobs within the network. This is applicable in our context as

the flow of jobs here is represented by the allocation of demand to supply.

Moreover, in Bandi, Loke (2018), their model allows capacity to enter into

the decision variables, and this in our context, would allow us to optimize

for the distribution of supply across sources. This paradigm has seen sub-

sequently works such as Zhou et al. (2021) and Tang et al. (2020) in the

areas of intraday patient scheduling and vehicle re-positioning respectively.

These works indicate good out-of-sample performance against traditional

methodologies such as sample average approximations (SAA) and fluid ap-

proximations.

Unfortunately, the Pipeline Queue model cannot be directly applied to the

resource allocation setting. This is primarily due to the way the Pipeline

Queue model defines the allocation between demand and supply as a static

variable. In our later simulations, we numerically illustrate the dangers of

directly applying the Pipeline Queue model to our problem. As such, we

shall attempt, in this paper, to exploit the structure of the demand and

supply to construct a new framework for the resource allocation problem

under the context we defined, while preserving core ideas in the Pipeline

Queue paradigm.

Key contributions

In this paper, we present a wholly new model that simultaneously decides

on the allocation of incoming demand to existing server pools, and the

distribution of supply across the server pools, under a doubly stochastic

65

demand and service time. Our policy is adaptive, which we term the ‘dis-

tributive decision rule’, and can be tractably solved. In the numerical

section, we illustrate insights on how the optimal policy changes as service

distribution, initial conditions, temporal fluctuations in demand, resource

availability, and network connectivity are varied. Our model turns out to

be very dynamic and responses to these varying conditions. We then pro-

ceed to compare our model against the original Pipeline Queue model and

a state-of-the-art model proposed in Chan et al. (2021). We find our model

dominating in the practical settings we defined above.

Aside from the key contribution of this paper to the resource allocation

setting, the paper also advances the growing literature in Pipeline Queues,

by introducing new methodologies. In particular, it is the first illustration

of the pipeline decision rule as applied on queues, as opposed to servers.

The additional benefit is that it allows some independence requirements,

assumed in Bandi, Loke (2018), to be avoided.

Organization of the paper

We first formally introduce the problem in Section 4.2 and describe the

model that we propose. This will be accompanied by proofs detailing the

model reformulation. In Section 4.3, we shall perform numerical experi-

ments by exploring how the model varies under di↵erent conditions in the

service time distribution, arrivals, initial conditions, and other factors. We

also compare our model against other models in the literature. Finally, we

conclude with some remarks in Section 4.4.

Notation. We use the calligraphic font (e.g., A) to denote sets, and bold-

face lowercase letters for vectors (e.g., ✓). We use [N] to denote the running

index {1, 2, 3, . . . , N} for a known integer N . We adopt the convention that

inf ; = +1, where ; is the empty set. We also use Bin(n, p) to refer to the

Binomial random variable of n independent trials, each with probability p.

66

4.2 An distributive model for allocation prob-

lems

We consider a formulation for the allocation problem as follows: Given

a finite time horizon T := {0, 1, 2, . . . , T}, define a bipartite graph G, as

shown in Figure 4.1, with two partitions, representing a demand set I :=

{1, 2, . . . , I} and a supply set J := {1, 2, . . . , J} respectively, and edges

(i, j) for i 2 I and j 2 J depicting that supply source j can serve demand

type i.

Figure 4.1: The bipartite structure of allocation problems.

At the start of every time period, new jobs arrive at each demand node

i. This can be deterministic, stochastic, or a combination of both. They

then enter the queue. Each supply node represents a team of finite number

of servers. Each job can be serviced by one server. The time duration

that each server in a team finishes a job can be deterministic, stochastic,

or a combination of both. As capacity is freed up in the supply nodes,

the decision-maker decides which of the supply nodes should service the

demand from which demand node. As such, the decisions are the flows on

the edges (i, j) across all time t 2 {1, 2, . . . , T}. The decision-maker might

also have the flexibility to decide the capacity on the supply nodes, subject

to some constraints (such as budget).

In what ensues, we shall attempt to imbue into this model the five distinc-

tive contexts of the problem class that we want to consider:

67

1. Replenishable supply : Supply is modelled as servers uncertain service

times. They are freed up after a random period of time.

2. Control over allocation and supply : We shall define decisions on both

the edges linking demand to supply and the capacity.

3. Disjoint demand and supply sources : This is modelled by the di↵erent

demand and supply nodes.

4. Demand need not be immediately fulfilled : We shall model this as

waiting cost in the queue.

5. Known allocation value: We shall define known costs in the edges.

Discrete time model

Before introducing our model formally, we present a simpler version to mo-

tivate our model formulation. Let xt
i denote the number of jobs of demand

of type i that has not yet been dispatched to any supply nodes at time t.

This can be interpreted as the queue for jobs of type i. Similarly, let ytj
denote the number of units that are currently in service at supply node j

at time t. At the start of each time period t, �t
i (drawn from some distri-

bution ⇤t
i) units of new jobs arrive at demand node i. The decision-maker

then decides to dispatch some wt
i,j of the demand from demand node i into

supply node j. Certainly, wt
i,j = 0 if (i, j) is not an edge in G. As such, the

dynamics in the demand nodes i are as follows:

xt+1
i = xt

i + �t
i �

X

j2J

wt
i,j. (4.1)

Simultaneously, some jobs in each supply node are completed and leave the

system. Let the number of them be ztj for supply node j at time t. The

dynamics in the supply nodes j are as follows:

yt+1
j = ytj +

X

i2I

wt
i,j � ztj. (4.2)

68

While this formulation is simple, the key di�culty is in modelling ztj accu-

rately. Objectively, we would want ztj := zj(ytj) to be some random function

of ytj. However, at this point, we have not tracked any information regard-

ing the current time under service of each unit. As such, it is di�cult to

define ztj accurately. Indeed, suppose a server in supply node j takes exactly

5 units of time to complete a job. Then ztj will vary drastically depending

on how long the units in supply node j have spent, specifically whether or

not they have spent 5 units of time in node j or not.

Such di�culties in modelling the service time distribution is, arguably, one

of the drawbacks of the queuing approach in modelling transient systems

such as these. Certainly, ztj can be modelled by a stationary distribution

in the steady-state as in the fluid approximation approach. However, our

problems are fundamentally posed in the transient setting, and this would

not be tenable. Moreover, although this formulation is able to track the

queue lengths in the demand nodes, it can not tell how many periods each

job has waited for, which is related to the queuing cost.

Introducing present delay s

The Pipeline Queues paradigm (Bandi, Loke, 2018) attempts to directly

solve this problem by defining the dynamics with the additional dimension

of time spent in the node. Reusing earlier notation, let xt,s
i denote the

number of units of demand of type i that at time t, have been awaiting

dispatch for s amount of time since they arrived. We can think of s as

tracking the currently experienced waiting time, or present delay, for these

demand units. Upon this base, wt,s
i,j jobs that have waited in demand node

i for s periods are routed at time t to supply node j. Similarly, yt,sj denotes

the number of units that have already been in service at supply node j for

s amount of time at time period t. Hence, for the servers, s represents the

currently experienced service time. As before, �t
i gives the new demand of

type i. This leads to the dynamics in the demand nodes i, for all times

69

t � 0:

xt+1,0
i = �t+1

i (4.3)

xt+1,s+1
i = xt,s

i �

X

j2J

wt,s
i,j , 8s � 0. (4.4)

To accurately define the dynamics on job completion, let qt,sj denote the

probability that a unit, having, at time t, been in service in supply node j

for s periods, will not complete in period t.

Assumption 1. The probability of job completion of any job, conditioned

on the amount of time that they have been served, is independent of any

other job (and their completion).

Independence here could be understood as supply node j being modelled

as a group of identical parallel servers. The capacity of this supply node is

interpreted as the number of parallel servers. This interpretation is partic-

ular intuitive in the setting of vehicle repositioning, say, where each parallel

server represents a vehicle. As such, the number of job completions at each

supply node follows a Binomial distribution. Indeed, this can represent

any general discrete time distribution on job completion (Dai, Shi, 2017).

Then, the dynamics in the supply node j is:

yt+1,0
j =

X

i2I

X

s

wt,s
i,j (4.5)

yt+1,s+1
j = Bin(yt,sj , qt,sj) 8s � 0, (4.6)

where the Binomial distribution models the completion of units as a trial
on yt,sj units with success probability 1 � qt+1,s+1

j . Denote x0,s
i (for i 2 I

and s � 0) and y0,sj (for j 2 J and s � 0) as the initial conditions at period
0. The dynamics (4.6) simplifies to

yt+1,s+1
j =

8
<

:
Bin(yt�s,0

j , pt+1,s+1
j), t > s

Bin(y0,s�t
j , pt+1,s+1

j), t  s
, where pt+1,s+1

j =

8
<

:
qt�s,0
j , . . . , qt,sj , t > s

q0,s�t
j , . . . , qt,sj , t  s

(4.7)

with pt,sj representing the cumulative survival probability of not completing

service before s time periods at time t.

70

Assumption 2. Demand arrivals are exogenous with finite support. Fur-

thermore, the arrivals at di↵erent time points t = 1, . . . , T and to di↵erent

demand nodes i = 1, . . . , I are also independent of each other.

Ostensibly, one would have a well-defined dynamics at this point. However,

the key di�culty lies in modelling the decision variables wt,s
i,j . There are two

core di�culties. The first is with regards to the static or adaptive nature

of wt,s
i,j . If one chooses to model wt,s

i,j as static, the model could potentially

be conservative with longer time horizon T . Moreover, they would not

be adaptive. However, if one demands that wt,s
i,j := wt,s

i,j (x
t,yt), then the

solution space is potentially very large and the resulting model is likely

intractable.

The second di�culty lies in how to enforce constraints such as
P
j2J

wt,s
i,j 

xt,s
i , where the right-hand side is a random variable. The solution to the

second di�culty was proposed in the Pipeline Queue framework by utiliz-

ing a proportion-based decision rule. This also partially addresses the first

di�culty as it reduces the solution space sharply. However, as it stands,

Pipeline Queues do not permit such decisions rules to be applied on queues.

Instead, ‘dispatch variables’, which represented flow out of queues, were

modelled as static variables. For example, in Tang et al. (2020), the au-

thors used static variables to model the assignment of passengers to cars in

a vehicle repositioning problem, which falls under the umbrella of resource

allocation problems that we are considering. Critically, if these dispatch

variables were forcibly modelled as proportion-based decision rules, then

to the best of our knowledge, there is no way to maintain the tractability

of the model, which is by far, one of the most attractive features of the

Pipeline Queues framework. Indeed, even for the servers, on which the

proportion-based decision rules were used, there are strict conditions, for

example, the nodes that these edges are adjacent to may only be recipi-

ent to maximally one of such flows. These conditions ensured that their

construction remained tractable.

71

4.2.1 Model and formulation

The key insight is to realize that the proportion-based decision rule can in

fact be adapted to the resource allocation problem, as we have defined, due

to its unique structure as a bipartite graph. Nonetheless, this would require

some new techniques to be worked through in the reformulation process,

that eventually arrives at a wholly new framework. Here, we present our

fully adaptive, but tractable formulation for the resource allocation prob-

lem.

Variables, dynamics and constraints

We retain all of the previous notation of x, y, �, and q (resp. p) to de-

note the state variables for the demand nodes, supply nodes, the arrival of

new demand and the completion probabilities (resp. cumulative probabil-

ities) for the supply nodes. Instead, we transform the additive dynamics

xt+1,s+1
i = xt,s

i �
P
j2J

wt,s
i,j via the distributive decision rule:

wt,s
i,j = xt,s

i

↵t+1,s+1
i,j

�t,s
i

. (4.8)

This is akin to simply just the multiplicative rule wt,s
i,j = xt,s

i �t,s
i,j , except

that we have expressed �t,s
i,j as a fraction for purposes of tractability. It also

a↵ords us the flexibility of normalizing �t,0
i and �0,s

i at a later convenient

point. For now, we shall only assume for the latter:

�0,s
i = x0,s

i . (4.9)

This has the e↵ect of transforming the dynamics to the following form:

yt+1,0
j =

X

i2I

X

s

xt,s
i

↵t+1,s+1
i,j

�t,s
i

, (4.10)

72

Consequently, the dynamics on the outflow from the demand nodes i would

be expressed as

xt,s
i � xt+1,s+1

i = xt,s
i

X

j

↵t+1,s+1
i,j /�t,s

i . (4.11)

This preserves the flow balance between the demand and supply nodes, i.e.,

ensuring that the total jobs dispatched from the demand nodes equate to

the total jobs dispatched into the supply nodes. This is not always desirable.

For example, it may be desirable to reject some jobs when the system

becomes overloaded. Alternatively, it may also be desirable to commit to

doing more jobs than there are at present in the system, as this creates

flexibility.

With this in mind, we adopt the following representation with the option

to relate ↵ with �:

xt+1,s+1
i = xt,s

i

�t+1,s+1
i

�t,s
i

, (4.12)

There are three possible options for relating ↵ to � to describe the di↵erent

forms of flow balance:

a) Exact balance: If
P

j2Ji
↵t+1,s+1
i,j + �t+1,s+1

i = �t,s
i , exact flow balance

is maintained. In this option, however, it is not clear whether the

ensuing formulation will be convex.

b) Overloading commitment: If
P

j2Ji
↵t+1,s+1
i,j +�t+1,s+1

i � �t,s
i , then the

sum of jobs entering the server nodes is greater than the number of

jobs released from the demand node. This is equivalent to committing

to doing more jobs than necessary. Nonetheless, overcommitting jobs

to the servers will only increase the chance of their capacity being

exceeded. As such, in the optimal case, this constraint ought to be

tight. Thus, this can be viewed as a convex relaxation of the exact

balance case. Notice that it is necessary to accompany this constraint

with �t+1,s+1
i  �t,s

i , to ensure that no new jobs are created within

the demand node itself.

73

c) Controlled rejection: If
P
j
↵t+1,s+1
i,j + �t+1,s+1

i  �t,s
i , then there is a

loss of jobs from the system. This can be viewed as a decision to

reject jobs (see Jaillet et al., 2019, for an analogous example on firing

employees). It would be necessary, however, to control the number of

jobs rejected. This might take the form of the following constraint:

X

i2I

X

s

�t,s
i �

P
j2J ↵t+1,s+1

i,j � �t+1,s+1
i

�t,s
i

xt,si usi  U t, (4.13)

where the left-hand side represents the total cost of rejecting the

demand units at time t, scaled by some us
i that depends on the time

duration s they have waited for before being rejected and the demand

type i.

As we shall soon see, the nature of allocation problems being posed as

a bipartite graph allows this distributive rule to be tractable, despite the

mixture of additive and multiplicative forms in Equation 4.10. The totality

of variables defined are summarized in Table 4.1.

Parameters and known quantities
T : Time horizon {1, . . . , T}
I : The set of all the types of demands, {1, . . . , I}
J : The set of all the types of supplies, {1, . . . , J}
Ij : The subset of all the demand types that can be served by team j.
Ji : The subset of all the supply types that are capable of serving demand type i
K

t : The capacity of all the supply teams at time t, (Kt
1, . . . ,K

t
J)

�t
i : The new arrivals of demand type i at the beginning of period t

qt,sj : The survival probability of a job at supply node j which has been served for s periods at time t.
pt,sj : The accumulative survival probability.

State and decision variables
X

t,s
i : The set of demand of type i that have been awaiting dispatch for s periods at time t.

Y
t,s
j : The set of the jobs that have stayed in supply node j for s periods at time t

xt,s
i : The number of units of demand of type i that have been awaiting dispatch for s periods at time t.

yt,sj : The number of demands that have stayed in supply node j for s periods at time t
↵t,s
i,j : The fraction of X t,s

i that is dispatched to supply node j at period t
�t,s
i : The fraction of X t,s

i that are retained in the demand node i at period t.
wt,s

i,j : The number of jobs in X
t,s
i that is allocated to team j in period t.

Table 4.1: List of Parameters and Variables

With the dynamics, we can now describe the constraints. In particular,

there are four types of constraints that we shall define.

X

s

yt,sj  K
t
j , 8j 2 J , 8t > 0 (Capacity)

74

X

s

bt,si xt,s
i  Ct

i

X

s

xt,s
i , 8i 2 I, 8t > 0 (Cost)

X

i

X

j

X

s

at,si,jx
t,s
i

↵t+1,s+1
i,j

�t,s
i

 At, 8t � 0 (Allocation)

�t,s
i Q �t+1,s+1

i +

X

j

↵t+1,s+1
i,j , 8i 2 I, 8t, s > 0 (Flow balance)

Capacity constraints limit the supply K
t
j on each of the supply nodes j at

time t. We allow this capacity to vary with time t. If it is desired that Kt
j

is a decision variable, then additional constraints limiting K
t
j, for example

P
j
K

t
juj  K describing a cost constraint on capacity allocation, may be

required. The second type of constraint pertains to cost constraints, here

phrased as an average cost constraint. In particular, this is very helpful in

defining service level guarantees, such as average waiting time (see Bandi,

Loke, 2018, for more details on the options available and the expressibility

of this constraint). The third type of constraint refers to the revenue or

cost associated with making an allocation at time t. at,si,j represents the

unit cost of dispatching one job from demand node i that has waited for

s periods to supply node j at time t, and At is the total budget at time

t (or �at,si,j and �At in the case of revenue). Finally, as described earlier,

there is a choice on how the decision-maker would like the flow balance to

be modelled.

Model and Reformulation

The pipeline queues paradigm proceeds by transforming these constraints

under the entropic value of risk. This procedure, akin to risk-correcting

the constraints, yields probabilistic guarantees against constraint viola-

tion. The resultant model would turn out to be tractable as long as the

constraints under the entropic value of risk operator have convex reformu-

lations. In the ensuing discussion, we emulate this procedure to describe

our model and to obtain its equivalent reformulation under the pipeline

framework.

75

Notice first that the capacity and cost constraints, including the rejection

constraint (Inequality 4.13), contain random variables x and y, but are

linear in these variables. As such, consider the following versions of these

constraints under the entropic value at risk:

k logE exp

X

s

yt,sj �K
t
j

!,
k✓t1,j

!
 0, 8j 2 J , 8t > 0 (Capacity0)

k logE exp

X

s

(bt,si � Ct
i)x

t,s
i

!,
k✓t2,i

!
 0, 8i 2 I, 8t > 0 (Cost0)

k logE exp

0

@

0

@
X

i

X

j

X

s

at,si,jx
t,s
i

↵t+1,s+1
i,j

�t,s
i

�At

1

A
,

k✓t3

1

A  0, 8t � 0. (Allocation0)

where ✓ are parameters to tighten the risk aversion idiosyncratic to each

constraint. For example, capacity constraints should never be violated

and are hard constraints, whereas cost constraints are soft constraints that

represent targets to be aimed for.

These constraints yield probabilistic guarantees against constraint viola-

tion:

Proposition 1. If k obeys k logE exp (X/k✓)  0, for any � > 0, we have

P(X � �)  exp(��/k✓).

Proof. Proof k logE exp (X/k✓)  0 is equivalent to E [exp(X/k✓)]  1. By

Markov’s inequality, we have

P[X � �] =P [exp(X/k✓) � exp(�/k✓)] (4.14)

 E [exp(X/k✓)]/ exp(�/k✓)

 exp(��/k✓).

As such, the decision-maker may choose to minimize these guarantees

against constraint violation by minimizing the risk level k. From Proposi-

tion 1 above, we can see that as the bounds on the chance of violation are

monotone in k. This leads to the proposed model:

76

minimize k (4.15)

subject to k logE exp

X

s

yt,sj �K
t
j

!,
k✓t1,j

!
 0, 8j 2 J , 8t > 0

k logE exp

X

s

⇣
bt,si � Ct

i

⌘
xt,s
i

!,
k✓t2,i

!
 0, 8i 2 I, 8t > 0

k logE exp

0

@

0

@
X

i

X

j

X

s

at,si,jx
t,s
i

↵t+1,s+1
i,j

�t,s
i

�At

1

A
,

k✓t3

1

A  0, 8t � 0

+ Choice of flow balance constraint

�t,s
i  �t�1,s�1

i

�t,s
i � 0, ↵t,s

i,j � 0

with dynamics xt,0
i = �t

i, 8t > 0

xt,s
i = xt�1,s�1

i �t,s
i /�t�1,s�1

i , 8t, s > 0

yt,0j =
X

i2Ij

X

s

xt�1,s
i

↵t,s+1
i,j

�t�1,s
i

, 8t > 0

yt,sj ⇠ Bin(yt�1,s�1
j , qt�1,s�1

j), 8t, s > 0

The crux of the problem now is whether the three entropic value-at-risk

constraints (Capacity0), (Cost0) and (Allocation0) have convex reformula-

tions. We start with the cost reformulation first:

Proposition 2 (Cost Reformulation). Let gti(!) = logE[e!�t
i] represent the

log-moment generating function of ⇤t
i. Then,

i. For a given t, the state variables in set {xt,s
i : i 2 I, s} are indepen-

dent.

ii. Let b̃t,si = bt,si � Ct
i , and the cost constraint may be reformulated as

follows:

k logE exp

"
X

s

b̃t,si xt,s
i

!,
k✓t2,i

#
= k

t�1X

s=0

gt�s
i

b̃t,si �t,s

i

�t�s,0
i k✓t2,i

!
+
X

s�t

b̃t,si �t,s
i

,
✓t2,i (4.16)

Proof. Proof of Proposition 2.

i. For a given t, we have:

xt,si =

8
>>>><

>>>>:

xt�1,s�1
i

�t,s
i

�t�1,s�1
i

= . . . = �t�s
i

�t,s
i

�t�s,0
i

s < t

xt�1,s�1
i

�t,s
i

�t�1,s�1
i

= . . . = x0,s�t
i

�t,s
i

�0,s�t
i

s � t

77

As we assume the demand arrivals are independent for all t and

I, x0,s
i are constants for all s and I, and all �t,s

i , �t,s
i are decision

variables, we can conclude that {xt,s
i : i 2 I, s} are independent.

ii. As xt,s
i are independent across all s, we get that:

k logE exp

"
X

s

b̃t,si xt,s
i

!,
k✓t2,i

#
=
X

s

k logE exp
⇣
b̃t,si xt,s

i

.
k✓t2,i

⌘

=
t�1X

s=0

k logE exp

b̃t,si �t,s

i

�t�s,0
i k✓t2,i

�t�s
i

!
+
X

s�t

b̃t,si �t,s
i

�0,s�t
i ✓t2,i

x0,s�t
i

= k
t�1X

s=0

gt�s
i

b̃t,si �t,s

i

�t�s,0
i k✓t2,i

!
+
X

s�t

b̃t,si �t,s
i

✓t2,i

Here, it is most critical to notice that the expression in Equation 4.16 is

jointly convex in the decision variables � and k. Note first that �t�s,0
i is

not part of the decision variables, and is a degree of freedom a↵orded to

us by the definition of the distributive decision rule. One may set �t�s,0
i as

any value here, but in practice, the empirical mean of the arrivals is chosen

(see Remark 4.1 later). Next, notice that gt�s
i (·) is a convex function –

indeed, the logarithm of any moment generating function is convex. Hence,

the expression k · gt�s
i (⇣�t,s

i /k) is jointly convex in both k and �t,s
i for any

⇣. This convexity will enable us to solve for Equation 4.16 e�ciently later,

as we discuss in the next subsection.

Remark 4.1. The expression gt�s
i

✓
b̃t,si �t,s

i

�t�s,0
i k✓t2,i

◆
in Equation 4.16 might ap-

pear to be unwieldy. If the family of distribution of ⇤t�s
i is known, then

there are potential simplifications. Indeed, if ⇤t�s
i is Poisson-distributed

with mean µt�s
i , then we have that

gt�s
i

b̃t,si �t,s

i

�t�s,0
i k✓t2,i

!
= logE exp

b̃t,si �t,s

i

�t�s,0
i k✓t2,i

�t�s
i

!
= µt�s

i · exp

b̃t,si �t,s

i

�t�s,0
i k✓t2,i

� 1

!
.

Here, if we set �t�s,0
i = µt�s

i , then notice that the expression becomes a

perspective in µt�s
i ! This means that it is possible to allow even µt�s

i to

78

enter the decision variables. In some problem settings, this might be useful,

for example, if the decision-maker is able to control the inflow with some

cost. A similar situation also occurs for other distributions such as the

Gamma distribution.

A similar reformulation exists for the (Allocation0) constraint:

Proposition 3 (Allocation Reformulation). The allocation constraint may
be reformulated as follows, and is jointly convex in k and decision variables
↵t,s
i,j :

k logE exp

0

@

0

@
X

i

X

j

X

s

at,si,jx
t,s
i

↵t+1,s+1
i,j

�t,s
i

1

A
,

k✓t3

1

A (4.17)

= k
t�1X

s=0

X

i

gt�s
i

0

@
X

j

at,si,j↵
t+1,s+1
i,j

�t�s,0
i k✓t3

1

A+

X

s�t

X

i

X

j

at,si,j↵
t+1,s+1
i,j

,
✓t3

Proof. Proof of Proposition 3. The proof is analogous to Proposition 2 and

is omitted for brevity.

The reformulation of (Capacity0) is not straightforward. In particular, un-

like the derivation in Proposition 2, yt,sj are not independent across s for

fixed t and j. The jobs arriving in the same cohort may be dispatched to

the same supply node j at di↵erent time periods. As a result, the jobs com-

ing from the same demand node may have been served for di↵erent time

duration at the same supply node j at time t. This is the key di↵erence

where our proposed formulation departs from pipeline queues. It turns out,

that (Capacity0) can nonetheless still be evaluated.

Theorem 4.1 (Capacity Reformulation). The general capacity constraint

on the supply nodes j has the following reformulation:

k logE exp

"
X

s

yt,sj �K
t
j

!,
k✓t1,j

#

=

X

s:s�t

krt,sj (k✓t1,j)y
0,s�t
j + k

X

i2Ij

t�1X

t0=1

gt
0

i

t�t0X

⌧=1

rt,t�t0�⌧
j (k✓t1,j)↵

t0+⌧,⌧
i,j

�t0,0
i

!

+

X

i2Ij

t�1X

s=0

X

⌧�t�s

krt,sj (k✓t1,j)↵
t�s,⌧
i,j �K

t
j/✓

t
1,j (4.18)

79

where rt,sj (·) = log
�
1� pt,sj + pt,sj exp (1/ ·)

�
. Moreover, (4.18) is convex

in the decision variables ↵.

Proof. Proof of Theorem 4.1.

k logE exp

"
X

s

yt,sj �K
t
j

!,
k✓t1,j

#

=k logE exp

"
t�1X

s=0

yt,sj

,
k✓t1,j)

#
+ k logE exp

2

4
X

s�t

yt,sj

,
k✓t1,j

3

5�K
t
j/✓

t
1,j

(4.19)

Equation (4.19) is because if s � t, yt,sj is the number of jobs that are still

in service at time t coming from Y
0,s�t
j . Since y0,s�t

j is the initial state of

the system,
t�1P
s=0

yt,sj and
P
s�t

yt,sj are thus independent.

For the second term in (4.19), we have:

k logE exp

2

4
X

s�t

yt,sj

,
k✓t1,j

3

5

=k logE exp

2

4
X

s�t

Bin

⇣
y0,s�t
j , pt,sj

⌘,
k✓t1,j

3

5

=

X

s�t

k logE exp

h
Bin(y0,s�t

j , pt,sj)

.
k✓t1,j

i

=

X

s�t

rt,sj (k✓t1,j)y
0,s�t
j

For the first term in (4.19) we have:

k logE exp

"
t�1X

s=0

yt,sj

,
k✓t1,j

#

=k logE
"
E
"
exp

"
t�1X

s=0

Bin(yt�s,0
j , pt,sj)

!,
k✓t1,j

#����� y
t�s,0
j , s = 1, . . . , t� 1

##

=k logE
"
t�1Y

s=0

E
h
exp

⇣
Bin(yt�s,0

j , pt,sj)

.
k✓t1,j

⌘��� yt�s,0
j , s = 1, . . . , t� 1

i#
(4.20)

=k logEn
yt0,0
j

ot

t0=1

"
t�1Y

s=0

exp

⇣
rt,sj (k✓t1,j)y

t�s,0
j

⌘#

80

=k logE
{�t0

i }
t

t0=1

"
exp

"
t�1X

s=0

rt,sj (k✓t1,j)y
t�s,0
j

##
(4.21)

=k logE

2

4exp

2

4
t�1X

s=0

0

@rt,sj (k✓t1,j)
X

i2Ij

0

@
t�s�1X

⌧=1

�t�s�⌧
i

↵t�s,⌧
i,j

�t�s�⌧,0
i

+

X

⌧�t�s

x0,⌧�s+t
i

↵t�s,⌧
i,j

�0,⌧�s+t
i

1

A

1

A

3

5

3

5

=

X

i2Ij

k logE
"
exp

"
t�1X

s=0

t�s�1X

⌧=1

rt,sj (k✓t1,j)�
t�s�⌧
i

↵t�s,⌧
i,j

�t�s�⌧,0
i

##
+

X

i2Ij

t�1X

s=0

X

⌧�t�s

krt,sj (k✓t1,j)↵
t�s,⌧
i,j .

(4.22)

The critical part of this derivation is the conditioning on the inflows
n
yt

0,0
j

ot

t0=1
,

which we have emphasized for salience. This results in (4.20) – indeed,

each Binomial term is a function of the inflows yt
0,0
j , which is mutually

conditionally independent, as such, the sum within the exponential can be

decomposed into a product of expectations. The second critical step is in

(4.21), where it is important to realize that the �-algebras generated byn
yt

0,0
j

ot

t0=1
, and by

�
�t0
i

 t
t0=1

, conditional on all decisions ↵t,s
i,j and �t,s

i , and

initial conditions, coincide. This is because the former is a linear function

of the latter, as a result of the distributive decision rule (as illustrated in

Figure 4.2). As such, this allows the subsequent re-representation of the

dynamics of the inflow in the server, in terms of the dynamics of the queue.

Figure 4.2: The timeline of the allocation process

For the first term in (4.22) we have:

k logE
"
exp

"
t�1X

s=0

t�s�1X

⌧=1

rt,sj (k✓t1,j)�
t�s�⌧
i ↵t�s,⌧

i,j /�t�s�⌧,0
i

##

=k logE
"
exp

"
t�1X

t0=1

t0X

⌧ 0=1

rt,t
0
�⌧ 0

j (k✓t1,j)�
t�t0

i ↵t�t0+⌧ 0,⌧ 0

i,j /�t�t0,0
i

##

=

t�1X

t0=1

k logE
"
exp

"
�t�t0

i

t0X

⌧ 0=1

rt,t
0
�⌧ 0

j (k✓t1,j)↵
t�t0+⌧ 0,⌧ 0

i,j /�t�t0,0
i

##

=k
t�1X

t0=1

gt
0

i

t�t0X

⌧=1

rt,t
0
�⌧

j (k✓t1,j)↵
t�t0+⌧,⌧
i,j

�t�t0,0
i

!

81

=k
t�1X

t0=1

gt
0

i

t�t0X

⌧=1

rt,t�t0�⌧
j (k✓t1,j)↵

t0+⌧,⌧
i,j

�t0,0
i

!
.

Similar to Proposition 2, the expression for the reformulation (4.18) is also

jointly convex in k, ↵ and � for the same reasons – �t0,0
i being a degree of

freedom and gt
0

i being convex, allowing its perspective to be jointly convex

in the arguments.

Theorem 4.2. The model (4.15) can be solved via a sequence of convex

programs.

Proof. Proof of Theorem 4.2. Notice that each of the constraint reformula-

tions in Proposition 2 and Theorem 4.1 is monotone in k. As such, we can

solve (4.15) via interval bisection on k, where each sub-problem evaluates

the feasibility of the constraints under that given k. By Proposition 2 and

Theorem 4.1, these constraints are jointly convex in the decision variables

↵ and �.

This is a critical tractability result. Propositions 2, 3 and Theorem 4.1

indicate that every entropic constraint can be reformulated into just one

convex constraint. In other words, (4.15) reduces to a convex program with

O(|I||J |T) constraints. This is interesting for a few reasons. One, it does

not grow exponentially in time window T , and hence avoids the curse of

dimensionality that is faced by many other methodologies that consider

multi-period problems. Additionally, the complexity does not depend on

the maximum queue length or the server capacity, as might one expect

in a Dynamic Programming framework, due to the need to solve for the

policy as a function of the state. The culmination of these factors allows

our model to be far more scalable than other existing methodologies.

Solving for the log moment generating function term

While in Remark 4.1, we have discussed the situation where the family

of distribution of the arrivals is known, in general, that is not the case.

82

Instead, what the decision-maker might have is a dataset of past obser-

vations on the arrivals D
t
i := {�t

i,l}
N
l=1. In this case, we propose that the

log-mgf terms be evaluated via Sample Average Approximations (SAA).

More specifically, we evaluate

k · gt�s
i (⇣�t,s

i /k) ⇡ k log

NX

l=1

exp

✓
⇣
�t,s
i

k
�t�s
i,l

◆!
.

At this point, this expression is still jointly convex in �t,s
i and k. Nonethe-

less, it is still not easy to optimize for �t,s
i (notice that it is less critical for k

as we are already solving for it using interval bisection, so in each feasibility

problem, k is fixed). As such, we propose a successive cutting plane algo-

rithm to estimate this. Suppose the dataset is ordered: �t
i,1  . . .  �t

i,N .

Then we can initiate the problem by replacing this term by its two asymp-

totes, ⇣�t
i,1�

t,s
i and ⇣�t

i,N�
t,s
i , where the direction depends on the sign of ⇣.

Subsequently, we declare a threshold for the accuracy of the estimation of

this term. Whenever the feasibility problem is soluble and the threshold

is not met, a cutting plane can be generated at the present solution of the

problem, proceeding till either the threshold is satisfied or the problem is

shown to be infeasible. This computational methodology as applied in the

Pipeline Queue setting can be similarly referenced in Bandi, Loke (2018)

and Jaillet et al. (2019).

Here, we make a quick remark that despite this, SAA can be a poor

estimate for the log moment generating function. Indeed, if gt�s
i cor-

responds to a Poisson distribution, then in Remark 4.1, we know that

k · gt�s
i (⇣�t,s

i /k) = k(exp(⇣�t,s
i /k)� 1), which cannot possibly be estimated

by a function that is asymptotically linear. Hence, insofar as the distribu-

tional family is known, it should be used instead, and other convex solution

methodologies appealed to, such as exponential conic solvers in this partic-

ular case.

83

4.3 Numerical experiments

In this section, we present the results of our numerical experiments. This

is done in three parts. In the first subsection, we shall introduce the core

features of our model applied on a simple network to build basic intu-

ition about how our model works and to draw some quick insights. In the

second stream, we look specifically at partially connected networks, and

extend to the question of (flexible) capacity allocation. In the third sub-

section, we perform comparisons in performance of our model against some

benchmarks.

4.3.1 Understanding the dynamics of our model

In this section, we first start with a simple network with just one demand

node and three supply nodes, all of which can satisfy the demand. The

structure is shown in Figure 4.3.

Figure 4.3: One demand node and three supply nodes

We consider a modelling horizon of T = 12. In the most basic set-up,

we assume that the inflow of the arrivals at the demand node is time-

homogeneous and follows a scaled Beta distribution ⇤t
1 ⇠ 30�(3, 3), 8t.

This amounts to a mean of 15 jobs per time period. We assume that the

capacity of the three supply nodes are 20 each, and for now, we shall assume

that their service distributions are homogeneous and follow an Geometric

distribution with a probability of 1/3 completing a job at any point in time.

84

Finally, we assume that all nodes are initially empty at time period 0. In

what ensues, we shall sequentially alter the service time distribution of the

supply nodes, the initial conditions, the inflow pattern, and the capacity of

the servers; and examine their impact on the optimal policy.

To obtain the optimal policy, we first generate data for the inflow distri-

bution. This would help us to estimate the moment generating function of

the arrivals using the SAA methodology explained at the end of §3. For

the service completion probabilities 1� qt,sj , we used the true assumed dis-

tribution, which we shall vary in the subsequent analysis. From here, we

solve the problem (4.15) where the choice of the flow balance constraint is

taken as overloading commitment. The cost constraint is specified as an

average waiting time constraint with average Ct
i = 1.2t, for t = 1, . . . , T .

The raising of the power to t is to simulate a discounting in time. We did

not include the allocation constraint for the purposes of this modelling.

To solve (4.15), the convex part, which arises wholly out of the log mo-

ment generating function term gti(·) are evaluated in sample. We employ

successive cutting plane algorithm to sequentially estimate the accuracy of

the constraint till a fixed tolerance is met. On the overall, the model was

solved on a MacBook Pro Early 2015 with 2.7 GHz Dual-Core Intel Core

i5 processor, programmed with Gurobi in Python / Jupyter Notebook. On

average, each instance of the model solved in around 90 seconds. Where

we conduct simulations, we generate sample paths of data size 1000 and

evaluate the performance of policies over this data set.

The e↵ects of di↵erent service time distribution

In this section, we test the impact of the service time distributions of the

supply nodes on the dispatch decisions. We shall conduct 4 experiments in

this section:

a) Geometric: Service distribution in all supply nodes are homogeneous

and obey a geometric distribution with probability of 1/3 of job com-

pletion.

85

b) Deterministic (one-point): All supply nodes complete jobs in exactly

3 time periods.

c) Two-point distribution: All supply nodes have a 50% chance of com-

pleting jobs in exactly 1 and 5 time periods.

d) Mixed: The three supply nodes are heterogeneous and have service

distributions corresponding to each of the above distributions.

Most importantly, the average service time in all these cases are identically

3. In Figure 4.4, we plot the expected number of jobs that are dispatched

to each team for each time period, according to the optimal policy that is

solved by our model.

(a) Geometric (b) Deterministic (one-point)

(c) Two-point (d) Mixed

Figure 4.4: The dispatch decisions under di↵erent service time distribu-

tions

Not surprisingly, we find the number of jobs allocated to each team is iden-

tical in Figures 4.4 (a)–(c)). This is because the teams are homogeneous.

Nonetheless, the allocation policy di↵ers with service time distribution.

Specifically, the geometric distribution (Figure 4.4 (a)) records a constant

policy. Because the probability of job completion is the same no matter

86

how long the job has been processed for, a constant policy ensures a con-

stant inflow of jobs into the server, which balances with the rate of job

completion. There is nonetheless a dip in the policy between periods 5

and 6, corresponding to the empty initial conditions of the supply nodes

so more jobs are served at the start without waiting. For the deterministic

case (Figure 4.4 (b)), the periodic nature of the allocation policy is due to

the periodic nature of job completion. In fact, the period of 3 coincides

with the service time. For the two-point distribution (Figure 4.4 (c)), a

much more chaotic behaviour is observed. There is a loose 5-period cycle,

which may potentially coincide with 5 being the longest service time re-

quired for job completion. Most notably, these three optimal policies di↵er

significantly despite possessing the same mean service time, indicating that

mean service time alone is insu�cient to characterize the optimal policy.

In the last instance (Figure 4.4 (d)), where the supply nodes are hetero-

geneous, we observe that each node retains its previous structure – the

one with geometric distribution eventually stabilizes into a constant pol-

icy; the one with the deterministic service time retains its periodic nature.

Despite retaining its structure, however, the optimal policy for each of the

distributions take di↵erent parameters from before – the constant policy

now stabilizes at 3 jobs per period instead of 4; the periodic allocation

fluctuates between 1 and 7 jobs now, instead of 2 and 5 previously.

In summary, we have identified that (i) service distributions significantly

alter the structure of the optimal policy and considering mean service time

is insu�cient, (ii) the optimal policy in some cases can be chaotic, and

(iii) with server heterogeneity, it is possible for the structure of the op-

timal policy to be preserved, but the actual values taken will depend on

the other supply nodes. These insights are interesting for a few reasons.

First, this identifies the existence of optimal policies that do not converge

(for example, the periodic policy), and hence can never be obtained un-

der certain methodologies, e.g. steady-state or state-independent policies.

Second, there are complex interactions between service time distributions.

These interactions are potentially complicated to the point that it may be

87

di�cult to analytically solve for, and might only be gleaned through the

solution of an optimization problem.

The e↵ects of di↵erent initial conditions

In this experiment, we examine the impact of di↵erent initial conditions

on the optimal policy. In particular, we make the supply nodes homoge-

neous (all possessing a geometric distribution with the same probability).

However, we initiate the system with the three supply nodes being fully

occupied, partially occupied and fully unoccupied at time 0 respectively.

In Figure 4.5 below, we plot the optimal policy over time for two instances,

where in Figure 4.5 (a), the demand nodes are initiated empty, and in

Figure 4.5 (b), the demand nodes have existing jobs (15) in the queue.

(a) Queue is empty at period
0.

(b) Queue is partially packed
at period 0.

Figure 4.5: Di↵erent initial conditions with geometric service time dis-

tribution

In this case, we can see two distinct epochs, a transient epoch and a steady

state epoch. In the steady state, the shape of the optimal policy from

Figure 4.4 is recovered. In the transient state, the allocation of the jobs

depends both on the availability of spare capacity in the supply nodes,

which is evident in both instances, and the current accumulation of jobs in

the queue at time 0, a↵ecting the urgency of the jobs to be dispatched in

the first few time periods.

In the next experiment, we change the service distribution in the supply

nodes to one with deterministic service times. The initial conditions that

88

we prescribe on the demand and supply nodes are as follows: First, the

demand nodes is initiated with (15) jobs waiting to be served. Second,

for the three supply nodes, they are fully occupied at time 0. However,

the time spent by the present jobs in each of the nodes are 0, 1, 2 periods

respectively. The results are presented below in Figure 4.6. What we see

is that the optimal policy reacts to the initial distribution, by preserving

its periodic pattern, but are staggered and out-of-phase from each other,

as they are reacting to the expected time of job completion of the existing

jobs.

Figure 4.6: Di↵erent initial conditions with deterministic service time

distribution

In summary, what we have seen here is that the initial conditions can have

both a short-term impact on the transient nature of the optimal policy (as

in the first case) and long-term impact on the optimal policy, such as its

structure (as in the second case). As such, models that fundamentally do

not react to the transient nature of the problem or are unable to adapt to

the changing initial conditions may potentially be sub-optimal.

The e↵ects of time-varying demand

In this experiment, we examine the impact of time-varying demand on

the optimal policy. Specifically, we return the model to its initial set-up

(geometric service distribution, zero initial conditions), but consider a non-

time-homogeneous arrival distribution at the demand nodes.

In the first case, we examine a surge in the demand. Specifically, we model

a surge at time period 6, amount to increasing the expected number of cases

89

by three times. The arrival then falls back to the usual rate after the surge.

Notice that as the arrival distribution is a model input, information of the

surge is privy to the model. We present the results in Figure 4.7. In the

Figure, we took the results from Figure 4.4 and aggregated the total jobs

across the three servers into the grey broken line. This is then compared

against the total jobs under the model with the surge (blue line). Detailed

breakdowns are available in Appendix C.1 (Figure C.1).

(a) Geometric (b) Deterministic (one-point)

(c) Two-point (d) Mixed

Figure 4.7: The dispatch decision where there is a surge of demand at

period 6

We observe that where previously the model has avoided dispatching the

maximum number of jobs into the supply nodes, which is 15 jobs per time

period after around period 4 or 5, the model now does so, in anticipation

of the surge, which will kick in at time period 6 and e↵ected at time period

7. Moreover, in some cases, features of the original optimal policy are still

seen, for example, the deterministic case having a 3 period pattern after

the surge, and to a less extent, for the two-point distribution.

In the next case, we replicate the above result, except that we consider an

arrival pattern where there is a significant increase in arrivals consistently

after period 6. Specifically, the average demand is raised by 1.25 of the

90

(a) Geometric (b) Deterministic (one-point)

(c) Two-point (d) Mixed

Figure 4.8: The dispatch decision where there is a lift of demand from

period 6

original mean of 15 from period 6 onwards. The same figure is drawn in

Figure 4.8 where the grey broken line is the same comparison against the

initial policy in Figure 4.4. Once again, detailed breakdowns are available

in Appendix C.1 (Figure C.2). Here, the structure of the original optimal

policy is preserved more strongly, with only some uplifting. This is most

salient in Figures 4.8(b) and 4.8(d). Moreover, this uplifting occurs far

earlier than the expected time of the increase of demand, as earlier as

period 3.

In conclusion, the above identifies that our model is anticipatory of expected

surges or increased demand. However, the way this takes shape in the

optimal policy is not a priori known.

The e↵ects of di↵erent supply capacities

In this last experiment on the basic model, we alter the capacities in the

supply nodes. Here, we increase the capacity of the final supply node 40,

specifically, where K1 = 20, K2 = 20, K3 = 40. Notice that K1 +K2 = K3.

91

If we consider only expectations, then the allocation of jobs to the first two

nodes should sum to the third. In what ensues, we will vary K1 and K2

but keep their sum the same. The detailed plots of the optimal policy is

deferred to Appendix C.1 (Figure C.3). Instead, we plot the cumulative

number of jobs that have been allocated to the supply nodes in Figure 4.9

below. Jobs to the first two nodes are summed as a comparison against the

third.

(a) K1 = 5, K2 = 35. (b) K1 = 10, K2 = 30.

(c) K1 = 15, K2 = 25. (d) K1 = 20, K2 = 20.

Figure 4.9: Capacity pooling

The primary observation is the risk-pooling e↵ect, where the total allocated

jobs to the third supply node is larger than the sum of allocated jobs to

the first two nodes, despite having the same total capacity. Second, this

risk-pooling e↵ect increases as the di↵erential in the capacities between the

first and second supply nodes decreases. This is due to the convex nature

of the risk measure considered – that is, the total amount of risk that can

be borne by a pair of nodes with capacity K1 = 15 and K2 = 25 is larger

than that with capacity K1 = K2 = 20.

92

Summary

What we have seen in the above four experiments is that the service dis-

tribution, the initial conditions, the arrival distribution and the capacity

can change the structure of the optimal policy in very dynamic ways, that

are intuitive, but di�cult to ascertain theoretically. In the new context

of demand and supply uncertainty, such problems can be very di�cult to

solve, especially in practical settings. Failure to consider any of these as-

pects could easily lead to sub-optimality. In this regard, this also justifies

why we constructed our model to encompass all these features.

4.3.2 Insights on partially connected networks

In this subsection, we consider bipartite but incomplete graphs, in order to

study the implications of a network that is not fully connected. We hope to

be able to illustrate insights about capacity planning and allocation policies

within these settings, so as to advise on how networks are designed.

Managing spare capacity

We consider a graph with two demand nodes and three supply nodes, as

in Figure 4.10 below. Such a graph represents two dedicated supply nodes,

and one node (Supply 2 in the Figure) that represents a spare capacity that

can flexibly serve either of the demand pools. Such a setting may be more

reasonably seen in service operations, or healthcare operations, and much

has been studied about them (Yan et al., 2018). In many of these settings,

there may be higher costs for utilizing the spare capacity, but we shall not

take that into consideration in this experiment. As before, we return to the

geometric service time and scaled beta arrivals setting.

In what ensues, we will slowly increase the capacity of the spare node

(Supply 2) while keeping the total capacity across the three supply nodes

unchanged. In Figure 4.11, we plot on the left the largest queuing cost

93

Figure 4.10: Network with two demand and three supply nodes

observed at any one point in time in any demand node, which is aggregated

over 1, 000 simulations, and on the left, we plot the risk level k of the

optimal policy. The two charts should relate to each other, which is a

result of Proposition 1.

(a) Queuing cost (b) Optimal risk level

Figure 4.11: Di↵erent capacity of supply node 2

Surprisingly, the chart does not yield a monotonically decreasing trend.

As one might expect, the greater the spare capacity, the more flexible the

allocation of jobs may be and hence the lower the risk. However, what is

observed here is that the risk first increases, before it starts to decrease.

The reasoning behind this might be that when the spare capacity is small,

it cannot reasonably handle a large number of jobs. As the total capacity

is fixed, this e↵ectively is a diversion of capacity away from both of the

dedicated supply nodes, thus reducing their ability to serve their respective

demand. In other words, there is a critical point where the gains from

94

possessing spare capacity is sizeable compared to the loss in service at the

dedicated nodes.

Load sharing

Let us look at another structure as shown in Figure 4.12. Here, with three

demand nodes and only two supply nodes, there will exist a non-trivial

allocation issue, especially for jobs from demand source 2. Specifically, this

models the setting where both supply nodes have a dedicated demand that

they need to serve, and a common work pool arising out of demand source

2 that they need to load share. In this context, we seek the best allocation

of capacity between the servers. To this end, we stick to the geometric

service time setting with scaled beta arrivals. However, we let the arrivals

be such that �1 = �3 ⇠ n�(3, 3), and �2 ⇠ (30� 2n)�(3, 3). Here, altering

n would not change the overall expected demand, but will skew the relative

ratio of dedicated to shared work load. We further assume K1 +K2 = 60.

Figure 4.12: Network with 3 demand and 2 supply nodes

Figure 4.13(a) shows the optimal capacity of supply node 1, as demands

1 and 3, i.e. the dedicated jobs, are increased. By definition, the optimal

capacity of supply node 2 is 60 less this number. Here, the optimal capacity

allocation between supply nodes is distributed more and more even as the

expected dedicate jobs increase. Figure 4.13(b) examines more closely how

the optimal capacity is obtained in Figure 4.13(a), by examining how the

95

level of risk k against di↵erent choices of capacity for three specific config-

urations of inflow, n = 0, 3 and 6. When n = 0, risk k is monotone, as

splitting the capacity between two servers decreases the risk-pooling e↵ect.

When n = 3, k first decreases and then increases with capacity; here, the

trade-o↵ between having su�cient bandwidth to deal with its own dedi-

cated jobs and enough risk-pooling to handle the shared jobs is evident.

Eventually the latter overwhelms the former and this is what is observed

for n = 6.

(a) Optimal capacity of supply
node 1

(b) Optimal k for di↵erent
inflows

Figure 4.13

Taking this experiment further, we now allow the capacity allocation to

change with time, that is, not just having K1 and K2 as decision variables,

but allowing Kt
1,K

t
2 to both be decided at every time period with constraint

K
t
1 + K

t
2 = 60. Figure 4.14 plots the savings obtained from doing so, in

terms of the lower risk levels, which translates at the end of the day to

shorter waiting times.

Further work we did on network connectivity, for the sake of brevity, is

deferred to Appendix C.1.

4.3.3 Comparisons

In this subsection, we examine the comparisons we performed against other

policies. First, we conducted a comparison against the static decision rule,

under the same Pipeline Queue framework. This is done for two purposes.

96

(a) Queuing cost (b) Optimal risk level

Figure 4.14: Maximum cost and optimal k for fixed and time-varying

capacity allocation

One, it illustrates the gains obtained from having an adaptive policy. Two,

works in the literature, such as Tang et al. (2020) and Zhou et al. (2021),

primarily utilize the static decision policy and already perform substantially

better than the policies which they compared against. As such, the static

decision rule is a reasonable benchmark for comparison. For the sake of

brevity, we have placed the derivation of the static model, the set-up of the

comparison and detailed discussion of the comparison in Appendix C.3.

To compare the performance of the static decision with the adaptive de-

cision rules, we return to the original simple network of Figure 4.3, under

geometric service times. We summarize the comparison in Table 4.2. For

actual cumulative histograms, please refer to Table C.1 in Appendix C.3.

In terms of the cost, the adjusted static model experiences a higher proba-

bility of violation and level of violation as evidenced by the median and 90th

percentile violations than both the vanilla static model and our proposed

adaptive model. Between our adaptive model and the vanilla static model,

while they appear to have similar probabilities of constraint violation, the

extent of the violation is on di↵erent scales, i.e. if violations occur, the

latter will experience violations of around 30 – 40 times larger violations.

Moreover, while the vanilla static model appears to have better perfor-

mance in terms of cost minimization than its adjusted static counterpart,

the compensation it pays is in terms of the violation of the ‘no-underflow

constraint’, which is reflected as the auxiliary constraint in the Table. In

fact, around two-thirds of the time the model dictates dispatching more

97

jobs than there are available! The adjusted static model does not violate

this constraint in simulation. For the adaptive model, this is guaranteed,

by design.

Metric Adaptive Vanilla Static Adjusted Static
Auxiliary
constraint
violation

P[violation] � 65.5% 0
Median violation � 0.908 0
90th percentile � 0.908 0

Cost
constraint
violation

P[violation] 40.8% 45.8% 90.1%
Median violation 0.158 5.008 6.677
90th percentile 0.338 12.888 13.835

Table 4.2: Comparison between adaptive and static decision rules

In summary, our proposed fully adaptive model enjoys the best of both

worlds. It is able to achieve low violations in the cost constraints, while

averting the unsavoury potential outcome of dispatching more jobs than

there are available, which arguably is the Achilles’ Heel of the static model.

Comparison against a fluid model

In what ensues we shall compare the performance of our model against a

state-of-the-art model in the literature. Specifically, we examine Chan et al.

(2021), where the authors study a capacity allocation problem. For brevity,

we shall refer to their model as the ‘benchmark model’ from here on. The

setting is posed as follows: Suppose there are I di↵erent types of jobs, and

correspondingly, there are J = I teams of workers who are to be assigned

to work on these jobs. Within a finite time horizon of T , the decision-

maker can reallocate the workers between the teams at fixed time points

(shifts) t = `⌧ for ` = 1, 2, . . ., which form the decision variables, so as to

minimize the total queue length in all of the queues over the horizon. To

solve this problem, the authors considered Poisson arrivals and Exponential

service times, and constructed a deterministic fluid approximation for the

problem. As such, given a capacity policy, the dynamics between every

decision point `⌧ and (`+ 1)⌧ reduces to an ordinary di↵erential equation,

which they provide explicit solutions for. Based on this, the authors are

98

able to compute the state and the cost at every decision point `⌧ as a

function of the previous state and the capacity policy. This reduces to a

dynamic programming formulation over T where each time step is each

decision point `⌧ . The authors showed that their proposed solution is

asymptotically optimal, that is, the deterministic fluid approximation and

its proposed policy is optimal for the original stochastic problem.

Here, we set up the comparison as follows: We considered T = 12, with

shift lengths ⌧ = 3. For simplicity, we considered I = J = 2 types of jobs,

with a total capacity of 60 to be allocated between the two teams. The

arrival rates for the jobs were both fixed at 10 per period and their average

service times were 3.3 and 2.5 periods. Under our model, the above setting

would be modelled by a two demand and server complexes representing two

dedicated queues and servers (see Figure 4.15), but where the sum of their

capacities is constrained under the total capacity: K1 +K2  60. We only

use the capacity decisions when testing our model. For further details about

how the parameters of the constraints and the tightening ✓-parameters were

fixed, please refer to our more detailed write-up in Appendix C.3. As before,

to compute the simulated results, we generated 1, 000 sample paths for the

system and simulated the policies over these sample paths. The models

are solved over a rolling horizon basis. Note that this does not change the

solution of the the benchmark model as it is the solution of a dynamic

program.

Figure 4.15: Network with 2 demand and 2 supply nodes

In the Table 4.3 below, we present the comparative results between our

model and the benchmark under two situations. In the first case, we use

the original setting of Poisson arrivals and Exponential service times. In

the second case, we keep the mean arrival rate and service time the same,

but change both of their distributions to two-point distributions. Since the

99

benchmark model uses only the parameters of mean arrival rate and mean

service time, the policy obtained is the same.

Queue length
Original setting Two-point distribution

Our model Benchmark Our model Benchmark

Queue 1
Average 11.51(�21%) 14.59 25.54(�14%) 29.73
90th percentile 30(�19%) 37 56(�26%) 76

Queue 2
Average 8.03(+16%) 6.94 9.64(�6%) 10.29
90th percentile 24(+20%) 20 25(�7%) 27

Total
Average 19.54(�9%) 21.54 35.18(�12%) 40.02
90th percentile 47(�10%) 52 76(�15%) 89

Table 4.3: Comparison between our model and benchmark

We noticed that our model reduces overall queue lengths by around 9% in

the original setting. This does, however, come at the cost of having longer

queue lengths in one of the queues. The reason why our model outperforms

in this case is likely due to the spreading of the risk out between the two

queues. In the benchmark model, only total service time is computed, and

this might have an e↵ect of generating longer service times in one queue

over the other. Moreover, our model also uses information about the present

delay, i.e. how long the job has waited in the queue and more critically,

how long the job has already been served for in the server. Instead, the

benchmark model only uses information about the number of jobs present

in the queue. The reduction is larger (12%) when the Poisson arrival and

Exponential service time distribution assumptions are not satisfied. In this

case, we even see shortening of queue lengths in both queues. This indicates

that the distributional assumptions were critical to the benchmark model.

However, it is immediately clear if the benchmark model can be easily

extended to general distributions, since it does depend on critical statistics

like the mean arrival rate and service time.

4.4 Conclusion

In this paper, we address the resource allocation problem where the uncer-

tainties come from demand arrivals, service times and service availability.

100

Here, we proposed a tractable and adaptive model for the resource allo-

cation problem posed in this setting. Our model is an adaptation of the

earlier Pipeline Queue paradigm (Bandi, Loke, 2018), and involves new

techniques and derivations not seen previously. In this setting, the service

distribution, the initial conditions, the arrival distribution and the capacity

can all be very dynamically evolving. Our numerical simulations further

illustrate that neglecting them would easily lead to sub-optimality.

In future work, we intend to pursue applications of this framework on actual

problem settings, to better understand itself e↵ectiveness in the face of real

data. Theoretically, we are interested to examine two aspects of our model.

First, the definition of the dynamics permits the modelling of drop-outs

in the demand nodes via a similar Binomial distributed dynamics as what

happens in the servers. The entropic constraints should still be reformulable

and this should not alter the tractability and the convex nature of the

problem, though there might be challenges introduced into how to proceed

with the solution of the convex problem. Second, the relatively simpler

structure of our model vis-à-vis the Pipeline Queue framework allows an

easier analysis of the duality of the model, which might be able to point

to the shadow costs of capacity decisions. This might help in explaining

the structure of the risk-based results that we saw in the numerical section,

involving the capacity of the system.

101

Chapter 5

Conclusion

This thesis investigates the flexible resource allocation in service and pro-

duction systems. Chapters 2 and 3 study the stochastic bucket brigades

with preemptible and non-preemptible work content respectively. Chapter

4 studies the resource allocation problem in a service system under both

supply and demand uncertainty.

The literature of bucket brigades with stochastic service times is very lim-

ited. To the best of our understanding, Bartholdi III et al. (2001) is the

only paper that analytically studies bucket brigades on discrete work sta-

tions with stochastic service times. In Chapters 2 and 3, we extend the

work of Bartholdi III et al. (2001) by assuming that the work speed of

each worker at each station on a job depends not only on the worker, but

also on the station and the job. We consider a bucket brigade line with

J stations and I workers. We assume the time duration for each worker

to finish a job at each station is exponentially distributed with a rate that

depends on the station’s expected work content and the work speed of the

worker. By observing the Markov property of the hand-o↵ stations (reset

vector) and analyzing the transition from one hand-o↵ station vector (reset

vector) to the next, we are able to derive the system’s average throughput.

We prove that if the work speeds of the workers are independent of the

jobs, then the probability distribution of the hand-o↵ station vector (reset

vector) will converge to a unique stationary distribution as the number of

102

jobs approaches infinity. The throughput will also converge to a value that

depends on the stationary distribution.

Chapter 4 addresses the online resource allocation problem where the un-

certainties come from demand arrivals, service times and service availabil-

ity. We decide upon the resource allocation as well as the dynamic capac-

ity allocation. This model has broad applications in ride-sharing, service

scheduling and last-mile delivery. We introduce an distributive decision

rule, which decides on the proportion of jobs awaiting dispatch to each

of the possible resource supply pools. Our model has a convex reformu-

lation that can be solved e�ciently. Our model is an adaptation of the

earlier Pipeline Queue paradigm (Bandi, Loke, 2018), and involves new

techniques and derivations not seen previously. In this setting, the service

distribution, the initial conditions, the arrival distribution and the capacity

can all be very dynamically evolving. Our numerical simulations further

illustrate that neglecting them would easily lead to sub-optimality. The

benchmarking justifies the adaptivity of the proposed distributive decision

rule and shows the robustness of our model to di↵erent settings.

103

Appendix A

Appendix for Chapter 2

A.1 Proof of Theorem 1

The expected makespan forK jobs can be obtained by summing up E
⇥
T (k)

� T (k�1)
⇤

from k = 1 to k = K:

E
h
T (K)

i
=

KX

k=1

E
h
T (k)

� T (k�1)
i

=

KX

k=1

⇡
(k�1)

z
(k)

=

KX

k=1

⇡
(0) . . .P (k�1)

z
(k).

So we have:

⇢(K) = K
.
E
h
T (K)

i
= K

,
KX

k=1

⇡
(0)

P
(1)

· · ·P
(k�1)

z
(k) .

104

A.2 Proof of Theorem 2

If the processing rates of the workers are independent of the jobs, then

from Lemma 1, p(k)h,h0 = ph,h0 , for h,h0
2 H. This implies that {H (k), k =

0, 1, 2, . . .} is an irreducible aperiodic homogeneous Markov chain with a

finite number of states. Since there is only a finite number of states and all

of them communicate, all the states are positive recurrent. Recall that we

set ⇡(0) = (1, 0, ..., 0). According to the definition of ⇡(k)
n , we have

lim
k!1

⇡(k)
n = lim

k!1

Pr
n
H

(k)
= h

n
o

= lim
k!1

|H|X

m=1

⇡(0)
n Pr

n
H

(k)
= h

n
|H

(0)
= h

m
o

= lim
k!1

Pr
n
H

(k)
= h

n
|H

(0)
= h

1
o

= ⇡n

The last equality is due to Theorem 4.3.3 of Ross et al. (1996), which also

guarantees that ⇡ =
�
⇡1, . . . , ⇡|H|

�
is the only stationary distribution of the

Markov chain. This stationary distribution can be obtained by solving the

equations ⇡P = ⇡ and ⇡e = 1.

Thus, we have

lim
K!1

1

⇢(K)
= lim

K!1

E
⇥
T (K)

⇤

K

= lim
K!1

PK
k=1E

⇥
T (k)

� T (k�1)
⇤

K

= lim
K!1

PK
k=1 ⇡

(k�1)
z

K

= ⇡z

The last equality is implied by Section 3 of Chapter 1 of Lyusternik, Yan-

pol’Skii (1965). Therefore, limK!1 ⇢(K) = 1/(⇡z).

105

A.3 Proof of Lemma 2

We denote the cumulative distribution function (CDF) of Y (k) as F (k)(·).

Let Yn(k) denote the inter-completion time between the (k � 1)st and the

kth resets, conditioned on H
(k�1) = h

n. Let F (k)
n (·) denote the CDF of

Yn(k). Recall that ⇡
(k�1) =

⇣
⇡(k�1)
1 , . . . , ⇡(k�1)

|H|

⌘
is the probability distri-

bution of the (k � 1)st hand-o↵ station vector H(k�1). The CDF of Y (k)

can be expressed as a mixture distribution F (k)(·) =
P

|H|

n=1 ⇡
(k�1)
n F (k)

n (·).

According to Proposition 5.2 of Ross (2014), the variance of Y (k) can be

obtained as follows:

Var (Y (k)) =

|H|X

n=1

⇡(k�1)
n Var (Yn(k))+

|H|X

n=1

⇡(k�1)
n (E [Yn(k)])

2
�

0

@
|H|X

n=1

⇡(k�1)
n E [Yn(k)]

1

A
2

.

(A.1)

Note that Yn(k) is the sum of the processing times of worker I on job k

from station hn
I�1 to station J . Since these processing times are independent

exponential random variables, we have

E [Yn(k)] =
JX

j=hn
I�1

E
h
Z(k)

I,j

i
=

JX

j=hn
I�1

1/µ(k)
I,j , (A.2)

and

V ar (Yn(k)) =
JX

j=hn
I�1

V ar
⇣
Z(k)

I,j

⌘
=

JX

j=hn
I�1

⇣
1/µ(k)

I,j

⌘2
. (A.3)

Substituting Equations (A.2) and (A.3) into Equation (A.1), we obtain

Lemma 2.

A.4 Proof of Lemma 3

We assume v1 + v2 = c, where c is a constant. We have

1/⇢1 =
�
v71s

2
2s

5
3 + 4v61v2s1s

2
2s

4
3 + 2v61v2s1s2s

5
3 + 2v61v2s

3
2s

4
3 + 2v41v

3
2s

3
1s

2
2s

2
3+

3v41v
3
2s

2
1s

3
2s

2
3 + 3v41v

4
2s

2
1s

2
2s

3
3 + 6v41v

2
2s

2
1s2s

4
3 + v41v

2
2s

2
1s

5
3 +

106

2v41v
2
2s1s

4
2s

2
3 + 5v41v

2
2s1s

3
2s

3
3 + 4v41v

2
2s1s

2
2s

4
3 + v41v

2
2s

5
2s

2
3 +

2v31v
3
2s

3
1s

4
3 + 2v31v

3
2s

2
1s

4
2s3 + 6v31v

3
2s

2
1s

3
2s

2
3 + 8v31v

3
2s

2
1s

2
2s

3
3 +

2v31v
3
2s

2
1s2s

4
3 + 2v31v

3
2s1s

5
2s3 + 2v31v

3
2s1s

4
2s

2
3 + v21v

4
2s

5
1s

2
3 +

2v21v
4
2s

4
1s

2
2s3 + 3v21v

4
2s

3
1s

3
2s3 + 3v21v

4
2s

3
1s

2
2s

2
3 + 3v21v

4
2s

3
1s2s

3
3 +

v21v
4
2s

2
1s

5
2 + 4v21v

4
2s

2
1s

4
2s3 + 2v1v

5
2s

5
1s2s3 + 2v1v

5
2s

3
1s

4
2 + v62s

5
1s

2
2

�
/

[7v2
�
v31s2s

2
3 + 2v21v2s1s2s3 + v21v2s1s

2
3 + v21v2s

2
2s3 + v1v

2
2s

2
1s3+

v1v
2
2s1s

2
2 + v1v

2
2s1s2s3 + v32s

2
1s2
�
].

Taking the derivative of 1/⇢1 with respect to v1, we have

d(1/⇢1)

dv1
=

�
v61s

2
2s

5
3 + 4v51v2s1s

2
2s

4
3 + 2v51v2s1s2s

5
3 + 2v51v2s

3
2s

4
3 + 2v41v

2
2s

3
1s

2
2s

2
3+

3v41v
2
2s

2
1s

3
2s

2
3 + 3v41v

2
2s

2
1s

2
2s

3
3 + 6v41v

2
2s

2
1s2s

4
3 + v41v

2
2s

2
1s

5
3 +

2v41v
2
2s1s

4
2s

2
3 + 5v41v

2
2s1s

3
2s

3
3 + 4v41v

2
2s1s

2
2s

4
3 + v41v

2
2s

5
2s

2
3 +

2v31v
3
2s

4
1s2s

2
3 + 2v31v

3
2s

3
1s

3
2s3 + 2v31v

3
2s

3
1s

2
2s

2
3 + 2v31v

3
2s

3
1s2s

3
3 +

2v31v
3
2s

3
1s

4
3 + 2v31v

3
2s

2
1s

4
2s3 + 6v31v

3
2s

2
1s

3
2s

2
3 + 8v31v

3
2s

2
1s

2
2s

3
3 +

2v31v
3
2s

2
1s2s

4
3 + 2v31v

3
2s1s

5
2s3 + 2v31v

3
2s1s

4
2s

2
3 + v21v

4
2s

5
1s

2
3 +

2v21v
4
2s

4
1s

2
2s3 + 3v21v

4
2s

3
1s

3
2s3 + 3v21v

4
2s

3
1s

2
2s

2
3 + 3v21v

4
2s

3
1s2s

3
3 +

v21v
4
2s

2
1s

5
2 + 4v21v

4
2s

2
1s

4
2s3 + 2v1v

5
2s

5
1s2s3 + 2v1v

5
2s

3
1s

4
2 + v62s

5
1s

2
2

�
/

[v22
�
v31s2s

2
3 + 2v21v2s1s2s3 + v21v2s1s

2
3 + v21v2s

2
2s3 + v1v

2
2s

2
1s3+

v1v
2
2s1s

2
2 + v1v

2
2s1s2s3 + v32s

2
1s2
�2
].

Since d(1/⇢1)/dv1 > 0, as v2 increases (v1 decreases), 1/⇢1 decreases,

which means ⇢1 increases.

A.5 Proof of Lemma 4

Recall that f (k)
i,j denote the probability of worker i finishing his job at station

j between the (k � 1)st and kth resets. For convenience, we set H(k)
0 = 1,

107

and H(k)
I = J + 1, for all k. We have

f (k)
i,j = Pr

n
H(k�1)

i�1  j,H(k)
i � j + 1

o

= Pr
n
H(k)

i � j + 1
o
� Pr

n
H(k�1)

i�1 � j + 1, H(k)
i � j + 1

o

= Pr
n
H(k)

i � j + 1
o
� Pr

n
H(k�1)

i�1 � j + 1
o

=
X

n=1,...,|H|

hn
i �j+1

⇡(k)
n �

X

n=1,...,|H|

hn
i�1�j+1

⇡(k�1)
n .

(A.4)

Note that the third equality holds because H(k�1)
i�1 � j + 1 implies H(k)

i �

j + 1. Equation (2.8) in Lemma 4 is obtained by setting k to infinity in

Equation (A.4).

A.6 Proof of Lemma 5

Recall that Z(k)
i,j denotes the time duration for worker i to process job k

at station j, which follows an exponential distribution with rate µ(k)
i,j =⇣

sj/v
(k)
i,j

⌘�1

= (sj/vi,j)
�1 = µi,j. Let F (·) denote the CDF of Z(k)

i,j . Define

D(k)
i,j as the time duration from the time point when worker i starts working

at station j on job k+ I � i after the (k� 1)st reset to the time point T (k).

Between the (k � 1)st and kth resets, we set D(k)
i,j = 0 if worker i does not

work at station j on job k + I � i. Let G(k)(·) denote the CDF of D(k)
i,j .

Between the (k�1)st and kth resets, the time duration that worker i spends

working at station j on job k+ I � i is min
⇣
Z(k+I�i)

i,j , D(k)
i,j

⌘
. Condition on

D(k)
i,j = t, we have

E
h
min

⇣
Z(k+I�i)

i,j , D(k)
i,j

⌘
|D(k)

i,j = t
i
=

Z t

0

xµi,je
�µi,jxdx+ t

Z
1

t

µi,je
�µi,jxdx

=� te�µi,jt +

Z t

0

e�µi,jxdx+ te�µi,jt

=
1

µi,j

Z t

0

µi,je
�µi,jxdx

=
1

µi,j
F (t).

108

So, we have

E
h
min

⇣
Z(k+I�i)

i,j , D(k)
i,j

⌘i
=E

D
(k)
i,j

h
E
h
min

⇣
Z(k+I�i)

i,j , D(k)
i,j

⌘
|D(k)

i,j

ii

=E
D

(k)
i,j

h
F
⇣
D(k)

i,j

⌘i

=
1

µi,j

Z
1

0

F
⇣
D(k)

i,j

⌘
dG(k)

⇣
D(k)

i,j

⌘

=f (k)
i,j /µi,j,

where f (k)
i,j denotes the probability of worker i finishing his job at station

j between the (k � 1)st and kth resets. The expected inter-completion

time E[Y (k)] between the (k � 1)st and kth resets equals the sum of
PJ

j=1 f
(k)
i,j /µi,j and the expected blocked time of worker i between the

(k�1)st and kth resets. Setting k to infinity, we obtain Equation (2.9).

109

A.7 Proof of Theorem 4

We can obtain the following equation

IX

i=1

⌫i (Y1 �Bi) =

IX

i=1

 PJ
j=1 fi,jsjPJ

j=1 fi,jsj/vi,j
(Y1 �Bi)

!

=

IX

i=1

 PJ
j=1 fi,jsjPJ

j=1 fi,j/µi,j

(Y1 �Bi)

!

=

IX

i=1

0

@
JX

j=1

fi,jsj

1

A

=

JX

j=1

sj

IX

i=1

fi,j

!

=

JX

j=1

0

BBB@
sj

IX

i=1

0

BBB@
X

n=1,...,|H|

hn
i �j+1

⇡n �

X

n=1,...,|H|

hn
i�1�j+1

⇡n

1

CCCA

1

CCCA

=

JX

j=1

0

BBB@
sj

0

BBB@
X

n=1,...,|H|

hn
I �j+1

⇡n �

X

n=1,...,|H|

hn
0�j+1

⇡n

1

CCCA

1

CCCA

=

JX

j=1

(sj · 1)

=1.

(A.5)

The third equality is due to Equation (2.9). The fifth equality is due

to Equation (2.8). Substituting 1 = ⇢1Y1 into Equation (A.5), we have

Theorem 4.

A.7.1 Procedure to determine v(k)i,j

1. Set v(I�i+1)
i,j = vi,j, for i = 1, . . . , I and j = 1, . . . , J . Set ⇡

(0) =

(1, 0, . . . , 0).

2. For k = 1, 2, . . . , K � 1:

110

(a) Determine P
(k) with v(I�i+k)

i,j for i = 1, . . . , I and j = 1, . . . , J .

Compute ⇡
(k) = ⇡

(k�1)
P

(k), and compute f (k)
i,j using Equation

(2.7).

(b) Compute

v(I�i+k+1)
i,j = vi,j + (vi,j � vi,j)

✓
1� e�↵i,j

Pk
k0=1 f

(k0)
i,j

◆
, (A.6)

for i = 1, . . . , I and j = 1, . . . , J .

A.8 Derivation of the transition probability

p̂(k)h,h0

Lemma 15. The transition probability p̂(k)h,h0 can be determined as

p̂(k)h,h0 =

8
>>>><

>>>>:

p(k)j2,h0 , h < j2, h0
 j1;PJ

j=j1+1 p
(k)
j2,j, h < j2, h0 = j1 + 1;

p(k)h,h0 , h � j2, h0
 j1;PJ

j=j1+1 p
(k)
h,j , h � j2, h0 = j1 + 1.

(A.7)

Proof. If h < j2, then worker 2 is starved until he takes over the job of

worker 1 at station j2 in the (k�1)st reset. The probability of transitioning

from H(k�1) = h to H(k) = h0 is the same as the probability of transitioning

from H(k�1) = j2 to H(k) = h0, for h0 = 1, . . . , j1 + 1. That is, p̂(k)h,h0 = p̂(k)j2,h0 ,

for h < j2. There are two cases:

1. If h0
 j1, then the transition probability of the partially cross-trained

team is equivalent to that of the fully cross-trained team. That is,

p̂(k)h,h0 = p̂(k)j2,h0 = p(k)j2,h0 , for h < j2 and h0
 j1.

2. If h0 = j1 + 1, then worker 1 is halted before the kth reset. This

corresponds to the case where h0 > j1 for the fully cross-trained team.

That is, p̂(k)h,h0 = p̂(k)j2,h0 =
PJ

j=j1+1 p
(k)
j2,j, for h < j2 and h0 = j1 + 1.

111

If h � j2, then worker 2 takes over the job of worker 1 at station h in the

(k � 1)st reset. There are two cases:

1. If h0
 j1, then the transition probability of the partially cross-trained

team is equivalent to that of the fully cross-trained team. That is,

p̂(k)h,h0 = p(k)h,h0 , for h � j2 and h0
 j1.

2. If h0 = j1 + 1, then worker 1 is halted before the kth reset. This

corresponds to the case where h0 > j1 for the fully cross-trained team.

That is, p̂(k)h,h0 =
PJ

j=j1+1 p
(k)
h,j , for h � j2 and h0 = j1 + 1.

112

Appendix B

Appendix for Chapter 3

B.1 Proof of Lemma 7

Condition 1 means that all the front I�1 workers are working at, blocked or

waiting at the stations, while worker 1 does not wait for any worker because

he is at the beginning of the line and has no predecessor. Condition 2 means

that if the predecessor of worker i is working or blocked at a station, worker

i should be working or blocked at the same station or a downstream station,

or waiting for his predecessor. Condition 3 means that if the predecessor of

worker i is waiting, worker i should be working or blocked at a downstream

station, or waiting for his predecessor.

B.2 Proof of Lemma 8

If worker I�1 is working at station 1 to J�1 when worker I completes job

k�1 at the last station, worker I will walk back to wait for worker I�1 to

finish job k at station hI�1 and then continue to work on job k from station

hI�1+1 until the last station. If worker I � 1 is blocked in front of the last

station when worker I completes job k�1 at the last station, worker I will

take over job k from worker I�1 and completes the job at the last station.

If worker I � 1 is waiting when worker I completes job k � 1 at the last

113

station, there will be consecutive workers from worker i+1 to worker I� 1

that wait for worker i. Worker I will also walk back to wait for worker i to

finish job k at station hi. Then worker i hands o↵ the job to worker i, and

worker i hands o↵ the job to worker i+ 1 . . . , until worker I take over the

job and work on job k from station hi + 1 to station J .

B.3 Proof of Lemma 9

Assume the set of all transient states of a J-station I-worker line as Xt(I, J),

and the set of all absorbing states as Xa(I, J). Then we have X (I, J) =

Xa(I, J)
S

Xt(I, J). For any absorbing state x, x(I) = J+1, (x(1), . . . , x(I�

1)) can be seen as an element in H(I, J). So |Xa(I, J)| = |HI, J |. Similarly,

for any transient state x, it can be seen as a reset vector for a J-station

(I + 1)-worker line. So |Xt(I, J)| = |H(I + 1, J)|.

B.4 Proof of Lemma 10

For any transient state, a worker is working if and only if he is not waiting

or blocked. By definition, Condition 1 implies that worker i is not waiting.

Condition 2 considers two scenarios based on the location of worker i+ 1.

If xi+1 = 0, worker i+1 is waiting; If xi+1 6= 0, worker i+1 is also working,

he does not block worker i if and only if xi+1 > xi.

B.5 Proof of Lemma 11

After the (k � 1)st reset, the workers work on job k onwards from down-

stream to upstream. Note that both the blocked workers and working

workers are carrying jobs. So the job that worker ln is working on should

count all the non-waiting workers from the downstream.

114

B.6 Proof of Lemma 12

Scenarios 1 and 2 correspond to the case that there are no successors of

worker ln waiting in front of him. So after worker ln finishes his job at

station x(ln), he walks to the next station, while the other workers keep

their current states. Scenario 3 and 4 corresponds to case where there are

successors of worker ln waiting in front of him. If ln = 2, . . . , I � 1, the job

will eventually hand o↵ to the last worker who is waiting for him and he

walks back to wait for his predecessor. If ln = 1, the job will also eventually

hand o↵ to the last worker who is waiting for him, and then he walks back

to take a new job and hands it o↵ to the second-to-last worker. All the

predecessors of this worker will be blocked at station 1.

B.7 Proof of Lemma 13

If hI�1 < J , worker I � 1 is working. Worker I has to wait for him after

he completes job k � 1. If hI�m = . . . = hI�1 = J , hI�m�1 6= J for

1  m  I � 2, worker I � m, . . . , I � 1 are waiting in front of the last

station. They will hand o↵ their jobs to their predecessor, and worker

worker I �m will walk back to wait for worker I �m� 1.

115

Appendix C

Appendix for Chapter 4

C.1 More simulation results

(a) Geometric (b) Deterministic (one-point)

(c) Two-point (d) Mixed

Figure C.1: The dispatch decision where there is a surge of demand at

period 6

116

(a) Geometric (b) Deterministic (one-point)

(c) Two-point (d) Mixed

Figure C.2: The dispatch decision where there is a lift of demand from

period 6

C.2 Additional discussion on network con-

nectivity

In this next analysis, we consider a network as shown in Figure C.4. The

service time distributions in all the supply nodes are geometric. In this

case, the capacities of all the supply nodes are equal, however, for the

arrivals at the demand nodes are not. Specifically, ⇤t
1 ⇠ 18.33�(3, 3),

⇤t
2 ⇠ 8.33�(3, 3), and ⇤t

3 ⇠ 3.33�(3, 3). These constants are chosen in such

a way such that, on average, we should expect each supply node to receive

the same number of jobs from each demand node that it may be allocated

jobs from.

In Figure C.5, we plot the optimal policy in terms of the total number of

jobs allocated to each of the supply nodes in (a). To make the analysis

clearly, we further broke down the number of jobs arriving at each of the

supply nodes to their source demand node in (b) – (d).

117

(a) K1 = 5, K2 = 35. (b) K1 = 10, K2 = 30.

(c) K1 = 15, K2 = 25. (d) K1 = 20, K2 = 20.

Figure C.3: Capacity pooling and allocation decisions

Figure C.4: Network Structure

Observe that the number of jobs allocated to each team on the overall is

almost the same, as earlier explained. This is confirmed when we examine

the source of the allocated jobs in Figure C.5 (b)–(d). However, supply

node 3, being the most connected of the three supply nodes is allocated

marginally more than supply node 2, and in turn, supply node 1. In other

words, the model is able to encode and take into consideration the reduction

in the risk as a result of the flexibility in the network structure.

118

(a) Total number of jobs.

(b) Supply node 1. (c) Supply node 2. (d) Supply node 3.

Figure C.5: The numbers of dispatched jobs for a partially flexible struc-

ture.

C.3 Comparison against static policy

Here, we first present the derivation of the static policy model under the

Pipeline Queue paradigm.

Most primarily, the key change is to modify our model (4.15) to the dy-

namics written using wt,s
i,j , and setting them as the decision variables. In

such a case, the no-underflow constraints, i.e. ensuring that no more jobs

are dispatched out of the demand nodes than there are actual jobs in the

nodes, is no longer guaranteed (previously, this was guaranteed as we were

always considering a fraction of jobs from the demand nodes):

X

j

wt,s
i,j � xt,s

i  0 8i 2 I, t � 0, s � 0

If t  s, this constraint can be reformulated as a linear constraint by writing

xt,s
i = x0,s�t

i �
P
j

t�1P
t0=0

wt0,s�t+t0

i,j . However, if t  s, xt,s
i is a random variable.

119

We can transform it as an entropy constraint, that is:

k logE exp

"
X

j

wt,s
i,j � xt,s

i

!,
k✓t,s3,i

#
 0

The overall optimization model for the static decision rule can be written

as follows:

minimize k (C.1)

subject to k logE exp

X

s

yt,sj �K
t
j

!,
k✓t1,j

!
 0, 8j 2 J , 8t > 0

k logE exp

X

s

⇣
bt,si � Ct

i

⌘
xt,si

!,
k✓t2,i

!
 0, 8i 2 I, 8t > 0

k logE exp

2

4

0

@
X

j

wt,s
i,j � xt,si

1

A
,

k✓t,s3,i

3

5  0, 8i 2 I, 8t > s

X

j

tX

t0=0

wt0,s�t+t0

i,j � x0,s�t
i  0, 8i 2 I, 8t  s

wt,s
i,j � 0,

with dynamics xt,0i = �t
i, 8t > 0

xt,si = xt�1,s�1
i �

X

j

wt�1,s�1
i,j , 8t, s > 0

yt,0j =

X

i2Ij

X

s

wt�1,s
i,j , 8t > 0

yt,sj ⇠ Bin(yt�1,s�1
j , qt�1,s�1

j), 8t, s > 0

If t > s, the no-underflow constraint can be reformulated as:

k logE exp

2

4

0

@
X

j

wt,s
i,j � xt,si

1

A
,

k✓t,s3,i

3

5 =

X

j

sX

t0=0

wt�s+t0,t0

i,j + kgt�s
i

�

1

k✓t,s3,i

!

We can see that the constraint is linear in the decision variables wt,s
i,j .

Similarly, the capacity constraints and the queuing cost constraints can be

reformulated to linear expressions in wt,s
i,j .

120

Detailed results

To compare the performance of the static decision with the adaptive de-

cision rules, we return to the original simple network of Figure 4.3, un-

der geometric service times. We changed the arrival pattern to ⇤t
⇠

(15 � n) + 2n�(3, 3), in other words, its mean is 15, and its support is

[15�n, 15+n]. The parameter n here, adjusts the variance in the arrivals;

if n = 0, the arrival is deterministic, and if n = 15, the arrival recovers the

scaled beta distribution we had previously used.

Here, we shall compare the performance of three models, the first being

the adaptive model (4.15). For the static models, note first that there is a

new constraint, termed the ‘no-underflow constraints’ (see Appendix C.3 for

more details), which is a hard constraint. The hardness of this constraint is

controlled by the ✓-parameter, specifically, ✓t,s3,i at all times t and s. Here, we

attempt two models. The first uses ✓t,s3,i = 1, thereby e↵ectively treating the

constraint as a soft constraint and having no guarantees against dispatching

more jobs than there are. We term this the ‘vanilla static’ model. The

second uses ✓t,s3,i = 0.1, which models it as a hard constraint, but in exchange,

would increase the overall risk of the model, since the model now needs to

work harder to ensure constraint satisfaction. We term this the ‘adjusted

static’ model. We plot the resultant risk levels k for di↵erent choices of

parameter n in Figure C.6.

From Figure C.6, we see that for all models, the risk level scales up with

variability in demand n. Moreover, both static models experience much

higher risk levels k than our proposed fully adaptive model. The core

reason for this is because it is increasingly di�cult to prevent constraint

violation the longer the modelling time with purely static decisions. Also,

explained earlier, the tighter constraint requirement for the Adjusted static

model results in a higher risk level k than its Vanilla static counterpart.

121

Figure C.6: Optimal value of k for adaptive and static decisions

Auxiliary constraint viola-
tion

Cost constraint violation

Adaptive
decision

Static deci-
sion

Adjusted
static
decision

Table C.1: Comparison between adaptive and static decision rules

122

Bibliography

Ahn Hyun-Soo, Duenyas Izak, Zhang Rachel Q. Optimal control of a flexible
server // Advances in Applied Probability. 2004. 139–170.

Andradóttir Sigrún, Ayhan Hayriye. Throughput maximization for tandem
lines with two stations and flexible servers // Operations Research. 2005.
53, 3. 516–531.

Andradóttir Sigrún, Ayhan Hayriye, Down Douglas G. Server assignment
policies for maximizing the steady-state throughput of finite queueing
systems // Management Science. 2001. 47, 10. 1421–1439.

Andradóttir Sigrún, Ayhan Hayriye, Down Douglas G. Dynamic server
allocation for queueing networks with flexible servers // Operations Re-
search. 2003. 51, 6. 952–968.

Andradóttir Sigrún, Ayhan Hayriye, Down Douglas G. Compensating for
failures with flexible servers // Operations Research. 2007a. 55, 4. 753–
768.

Andradóttir Sigrún, Ayhan Hayriye, Down Douglas G. Dynamic assign-
ment of dedicated and flexible servers in tandem lines // Probability in
the Engineering and Informational Sciences. 2007b. 21, 4. 497.

Armbruster Dieter, Gel Esma S. Bucket brigades revisited: Are they always
e↵ective? // European Journal of Operational Research. 2006. 172, 1.
213–229.

Armony Mor, Chan Carri W, Zhu Bo. Critical care capacity management:
Understanding the role of a step down unit // Production and Operations
Management. 2018. 27, 5. 859–883.

Armony Mor, Ward Amy R. Fair dynamic routing in large-scale
heterogeneous-server systems // Operations Research. 2010. 58, 3. 624–
637.

Bandi C., Loke G.G. Exploiting Hidden Convexity for Optimal Flow Con-
trol in Queueing Networks // Extracted from SSRN 3190874. 2018.

123

Bartholdi III John J, Bunimovich Leonid A, Eisenstein Donald D. Dynam-
ics of two-and three-worker bucket brigade production lines // Opera-
tions research. 1999. 47, 3. 488–491.

Bartholdi III John J, Eisenstein Donald D. The bucket brigade web page.
1996a.

Bartholdi III John J, Eisenstein Donald D. A production line that balances
itself // Operations Research. 1996b. 44, 1. 21–34.

Bartholdi III John J, Eisenstein Donald D. Using bucket brigades to mi-
grate from craft manufacturing to assembly lines // Manufacturing &
Service Operations Management. 2005. 7, 2. 121–129.

Bartholdi III John J, Eisenstein Donald D, Foley Robert D. Performance
of bucket brigades when work is stochastic // Operations research. 2001.
49, 5. 710–719.

Bartholdi III John J, Eisenstein Donald D, Lim Yun Fong. Bucket brigades
on in-tree assembly networks // European Journal of Operational Re-
search. 2006. 168, 3. 870–879.

Bartholdi III John J, Eisenstein Donald D, Lim Yun Fong. Deterministic
chaos in a model of discrete manufacturing // Naval Research Logistics
(NRL). 2009. 56, 4. 293–299.

Bartholdi III John J, Hackman Steven T. Warehouse and Distribution
Science. 2019.

Batt Robert J, Kc Diwas S, Staats Bradley R, Patterson Brian W. The
e↵ects of discrete work shifts on a nonterminating service system //
Production and operations management. 2019. 28, 6. 1528–1544.

Bell Steven L, Williams Ruth J, others . Dynamic scheduling of a system
with two parallel servers in heavy tra�c with resource pooling: Asymp-
totic optimality of a threshold policy // Annals of Applied Probability.
2001. 11, 3. 608–649.

Bukchin Yossi, Hanany Eran, Khmelnitsky Eugene. Bucket brigade with
stochastic worker pace // IISE Transactions. 2018. 50, 12. 1027–1042.

Chan Carri W, Huang Michael, Sarhangian Vahid. Dynamic server assign-
ment in multiclass queues with shifts, with applications to nurse sta�ng
in emergency departments // Operations Research. 2021.

Correia Isabel, Nickel Stefan, Gama Francisco Saldanha-da. A stochas-
tic multi-period capacitated multiple allocation hub location problem:
Formulation and inequalities // Omega. 2018. 74. 122–134.

124

Dai J. G., Shi P. A Two-Time-Scale Approach to Time-Varying Queues
in Hospital Inpatient Flow Management // Operations Research. 2017.
65, 2. 514–536.

Dai JG, Gluzman Mark. Queueing network controls via deep reinforcement
learning // arXiv preprint arXiv:2008.01644. 2020.

Dai JG, Shi Pengyi. Inpatient overflow: An approximate dynamic program-
ming approach // Manufacturing & Service Operations Management.
2019. 21, 4. 894–911.

Duenyas Izak, Gupta Diwakar, Olsen Tava Lennon. Control of a single-
server tandem queueing system with setups // Operations Research.
1998. 46, 2. 218–230.

Farrar Timothy Martin. Optimal use of an extra server in a two station
tandem queueing network // IEEE Transactions on Automatic Control.
1993. 38, 8. 1296–1299.

Fershtman Daniel, Pavan Alessandro. Dynamic Matching: Experimenta-
tion and Cross-subsidization. 2015.

Ghosh Supriyo, Varakantham Pradeep, Adulyasak Yossiri, Jaillet Patrick.
Dynamic repositioning to reduce lost demand in bike sharing systems //
Journal of Artificial Intelligence Research. 2017. 58. 387–430.

Guo Mian, Guan Quansheng, Ke Wende. Optimal scheduling of VMs in
queueing cloud computing systems with a heterogeneous workload //
IEEE Access. 2018. 6. 15178–15191.

Gupta Diwakar, Wang Lei. Revenue management for a primary-care clinic
in the presence of patient choice // Operations Research. 2008. 56, 3.
576–592.

Harrison J Michael, López Marcel J. Heavy tra�c resource pooling in
parallel-server systems // Queueing systems. 1999. 33, 4. 339–368.

He Shuangchi, Sim Melvyn, Zhang Meilin. Data-driven patient schedul-
ing in emergency departments: A hybrid robust-stochastic approach //
Management Science. 2019. 65, 9. 4123–4140.

Hopp Wallace J, Oyen Mark P. Agile workforce evaluation: a framework
for cross-training and coordination // Iie Transactions. 2004. 36, 10.
919–940.

Hopp Wallace J, Spearman Mark L. Factory physics. 2011.

125

Hopp Wallace J, Tekin Eylem, Van Oyen Mark P. Benefits of skill chaining
in serial production lines with cross-trained workers // Management
Science. 2004. 50, 1. 83–98.

Iravani Seyed MR, Posner Morton J. M., Buzacott John A. A two-stage
tandem queue attended by a moving server with holding and switching
costs // Queueing systems. 1997. 26, 3. 203–228.

Işık Tuğçe, Andradóttir Sigrún, Ayhan Hayriye. Optimal control of queue-
ing systems with non-collaborating servers // Queueing Systems. 2016.
84, 1. 79–110.

Jaillet P., Loke G.G., Sim M. Strategic Manpower Planning under Uncer-
tainty // Extracted from SSRN 3168168. 2019.

Jaillet Patrick, Lu Xin. Online resource allocation problems // Rock &
Soil Mechanics. 2011. 86. 3701–3704.

Jaillet Patrick, Lu Xin. Online stochastic matching: New algorithms with
better bounds // Mathematics of Operations Research. 2014. 39, 3. 624–
646.

Johari Ramesh, Kamble Vijay, Kanoria Yash. Matching while learning //
Operations Research. 2021.

Karp Richard M, Vazirani Umesh V, Vazirani Vijay V. An optimal algo-
rithm for on-line bipartite matching // Proceedings of the twenty-second
annual ACM symposium on Theory of computing. 1990. 352–358.

Kaufman David L, Ahn Hyun-soo, Lewis Mark E. On the introduction of an
agile, temporary workforce into a tandem queueing system // Queueing
Systems. 2005. 51, 1. 135–171.

Kırkızlar Eser, Andradóttir Sigrún, Ayhan Hayriye. Robustness of e�cient
server assignment policies to service time distributions in finite-bu↵ered
lines // Naval Research Logistics (NRL). 2010. 57, 6. 563–582.

Kırkızlar Eser, Andradóttir Sigrún, Ayhan Hayriye. Flexible servers in
understa↵ed tandem lines // Production and Operations Management.
2012. 21, 4. 761–777.

Kırkızlar Eser, Andradóttir Sigrún, Ayhan Hayriye. Profit maximization
in flexible serial queueing networks // Queueing Systems. 2014. 77, 4.
427–464.

Lim Yun Fong. Cellular bucket brigades // Operations research. 2011. 59,
6. 1539–1545.

126

Lim Yun Fong. Order-picking by cellular bucket brigades: a case study //
Warehousing in the global supply chain. 2012. 71–85.

Lim Yun Fong. Performance of cellular bucket brigades with hand-o↵ times
// Production and Operations Management. 2017. 26, 10. 1915–1923.

Lim Yun Fong, Wu Yue. Cellular bucket brigades on U-lines with discrete
work stations // Production and Operations Management. 2014. 23, 7.
1113–1128.

Lim Yun Fong, Yang Kum Khiong. Maximizing throughput of bucket
brigades on discrete work stations // Production and Operations Man-
agement. 2009. 18, 1. 48–59.

Lyu Guodong, Cheung Wang Chi, Teo Chung-Piaw, Wang Hai. Multi-
objective online ride-matching // Available at SSRN 3356823. 2019.

Mathematical analysis: functions, limits, series, continued fractions. // .
1965.

Mandelbaum Avishai, Stolyar Alexander L. Scheduling flexible servers with
convex delay costs: Heavy-tra�c optimality of the generalized cµ-rule
// Operations Research. 2004. 52, 6. 836–855.

Martonosi Susan E. Dynamic server allocation at parallel queues // IIE
Transactions. 2011. 43, 12. 863–877.

Mazur James E, Hastie Reid. Learning as accumulation: A reexamination
of the learning curve. // Psychological Bulletin. 1978. 85, 6. 1256.

Özkan Erhun, Ward Amy R. Dynamic matching for real-time ride sharing
// Stochastic Systems. 2020. 10, 1. 29–70.

Puha Amber L, Ward Amy R. Scheduling an overloaded multiclass many-
server queue with impatient customers // Operations Research & Man-
agement Science in the Age of Analytics. 2019. 189–217.

Qi Wei, Li Lefei, Liu Sheng, Shen Zuo-Jun Max. Shared mobility for
last-mile delivery: Design, operational prescriptions, and environmental
impact // Manufacturing & Service Operations Management. 2018. 20,
4. 737–751.

Reeves Gary R, Sweigart James R. Multiperiod resource allocation with
variable technology // Management Science. 1982. 28, 12. 1441–1449.

Riedel Marco. Online matching for scheduling problems // Annual Sym-
posium on Theoretical Aspects of Computer Science. 1999. 571–580.

127

Rosberg Zvi, Varaiya P, Walrand J. Optimal control of service in tandem
queues // IEEE Transactions on Automatic Control. 1982. 27, 3. 600–
610.

Ross Sheldon. A first course in probability. 2014.

Ross Sheldon M, Kelly John J, Sullivan Roger J, Perry William James,
Mercer Donald, Davis Ruth M, Washburn Thomas Dell, Sager Earl V,
Boyce Joseph B, Bristow Vincent L. Stochastic processes. 2. 1996.

Rostami Borzou, Kämmerling Nicolas, Naoum-Sawaya Joe, Buchheim
Christoph, Clausen Uwe. Stochastic single-allocation hub location //
European Journal of Operational Research. 2021. 289, 3. 1087–1106.

Serna Ainhoa, Gerrikagoitia Jon Kepa, Bernabe Unai, Ruiz Tomás. A
method to assess sustainable mobility for sustainable tourism: The case
of the public bike systems // Information and Communication Technolo-
gies in Tourism 2017. 2017. 727–739.

Shu Jia, Chou Mabel C, Liu Qizhang, Teo Chung-Piaw, Wang I-Lin. Mod-
els for e↵ective deployment and redistribution of bicycles within public
bicycle-sharing systems // Operations Research. 2013. 61, 6. 1346–1359.

Spivey Michael Z, Powell Warren B. The dynamic assignment problem //
Transportation science. 2004. 38, 4. 399–419.

Tang Q., Zhang Y., Zhou M. Vehicle Repositioning under Uncertainty //
From SSRN 3612626. 2020.

Véricourt Francis de, Jennings Otis B. Nurse sta�ng in medical units: A
queueing perspective // Operations research. 2011. 59, 6. 1320–1331.

Villalobos JR, Estrada F, Munoz LF, Mar L. Bucket brigade: A new way
to boost production // Twin Plant News. 1999a. 14, 12. 57–61.

Villalobos JR, Munoz LF, Mar L. Assembly line designs that reduce the
impact of personnel turnover // Proceedings of IIE Solutions Conference,
Phoenix, AZ. 1999b.

Webster Scott, Ruben Robert A, Yang Kum-Khiong. Impact of storage
assignment decisions on a bucket brigade order picking line // Production
and Operations Management. 2012. 21, 2. 276–290.

Williams Ruth J. On dynamic scheduling of a parallel server system with
complete resource pooling // Fields Institute Communications. 2000. 28,
49-71. 5–1.

128

Yan Zhenzhen, Gao Sarah Yini, Teo Chung Piaw. On the design of sparse
but e�cient structures in operations // Management Science. 2018. 64,
7. 3421–3445.

Yom-Tov Galit B, Mandelbaum Avishai. Erlang-R: A time-varying queue
with reentrant customers, in support of healthcare sta�ng // Manufac-
turing & Service Operations Management. 2014. 16, 2. 283–299.

Youssef Marie Josepha, Veeravalli Venugopal V, Farah Joumana, Nour
Charbel Abdel, Douillard Catherine. Resource allocation in NOMA-based
self-organizing networks using stochastic multi-armed bandits // arXiv
preprint arXiv:2101.06340. 2021.

Zhou Minglong, Loke Gar Goei, Bandi Chaitanya, Liau Zi Qiang Glen,
Wang Wilson. Intraday Scheduling with Patient Re-Entries and Variabil-
ity in Behaviours // Manufacturing & Service Operations Management.
2021. Available online.

129

	Flexible resource allocation for service and production systems
	Citation

	Acknowledgements
	1 Introduction
	2 Stochastic Bucket Brigades with Preemptible Work Content
	2.1 Introduction
	2.2 Literature review
	2.2.1 Bucket brigade assembly lines
	2.2.2 Dynamic server assignment on stochastic systems

	2.3 Assumptions and notation
	2.4 Performance measures and asymptotic behavior
	2.5 Case I: The work speeds depend only on the workers
	2.5.1 The distribution of the hand-off station vector
	2.5.2 Comparing with the deterministic system
	2.5.3 Maximizing the throughput
	2.5.4 Minimizing the CV of the inter-completion time

	2.6 Case II: The work speeds depend only on the workers and the stations
	2.6.1 Average work speeds and asymptotic expected blocked times
	2.6.2 Throughput determining factors: capacity and efficiency ratio

	2.7 Case III: The work speeds depend on the workers, the stations, and the jobs
	2.7.1 A modified exponential model
	2.7.2 A bucket brigade with partially cross-trained workers
	2.7.3 Diversification and intensification of skills

	2.8 Robustness of the results
	2.9 Conclusion

	3 Stochastic Bucket Brigades with Non-preemptible Work Content
	3.1 Introduction
	3.2 Notation and assumptions
	3.3 Performance measures and asymptotic behavior
	3.3.1 State of the system
	3.3.2 Transition probability matrix of the reset vectors
	3.3.3 The throughput of the line

	3.4 Numerical results
	3.5 Conclusion

	4 Distributive Decision Rule in Resource Allocation Problems
	4.1 Introduction
	4.1.1 Key approaches in literature
	4.1.2 Approach and contributions

	4.2 An distributive model for allocation problems
	4.2.1 Model and formulation

	4.3 Numerical experiments
	4.3.1 Understanding the dynamics of our model
	4.3.2 Insights on partially connected networks
	4.3.3 Comparisons

	4.4 Conclusion

	5 Conclusion
	A Appendix for Chapter 2
	A.1 Proof of Theorem 1
	A.2 Proof of Theorem 2
	A.3 Proof of Lemma 2
	A.4 Proof of Lemma 3
	A.5 Proof of Lemma 4
	A.6 Proof of Lemma 5
	A.7 Proof of Theorem 4
	A.7.1 Procedure to determine vi,j(k)

	A.8 Derivation of the transition probability h,h'(k)

	B Appendix for Chapter 3
	B.1 Proof of Lemma 7
	B.2 Proof of Lemma 8
	B.3 Proof of Lemma 9
	B.4 Proof of Lemma 10
	B.5 Proof of Lemma 11
	B.6 Proof of Lemma 12
	B.7 Proof of Lemma 13

	C Appendix for Chapter 4
	C.1 More simulation results
	C.2 Additional discussion on network connectivity
	C.3 Comparison against static policy

	Bibliography

