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Abstract

Efficient management of scarce resources is critical to the improvement of economic,

social and/or environmental performances. In this dissertation, I focus on the man-

agement of two scarce resources: i) healthcare resources and ii) water, and investigate

two important problems: i) the estimation of patients’ health transition to support

healthcare resources control under the context of sequential medical treatments, and

ii) the urban water system control with a specific focus on the wastewater recycling

capacity investment in the presence of climate change and urban water scarcity.

The first chapter studies how to estimate patients’ health transition considering

the effects of treatment-effect-based policies. Treatment-effect-based decision policies

are increasingly used in healthcare problems, which leverage predictive information

on patient health transitions and treatment outcomes for specific medical treatment

decisions. However, treatment-effect-based policies will significantly censor patients’

observed health transitions and distort the estimation of transition probability ma-

trices (TPMs). I propose a structural model to recover the underlying true TPMs

from censored transition observations to address this issue. I show that the estimated

TPMs from the structural model are consistent, asymptotically normally distributed

and maximize the log-likelihood function on observed censored data. I compare the

proposed model with other estimation methods through numerical experiments and

demonstrate its advantages in various performance metrics, e.g., deviations from the

ground truth TPMs. I also implement the proposed model to estimate patient health

transitions using real censored data in ICUs extubation problems. Formulating the
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extubation problem as a classical optimal stopping Markov Decision Process model,

I show that the proposed model, with more accurate estimated TPMs considering

censored data, can reduce the length of stay of patients in ICU compared to other

benchmark transition estimation methods.

In the second chapter, considering multiple urban water resources (e.g., freshwater

from reservoirs, recycled water, and desalinated water/imported freshwater) and mul-

tiple streams of urban water demand (e.g., household and non-household demands), I

examine the economic and sustainable implications of wastewater recycling capacity

investment under rainfall and recycling cost uncertainties. To this end, I formulate

the problem as a two-stage stochastic minimization model and characterize the op-

timal wastewater recycling capacity. I find that the optimal recycling capacity first

decreases and then increases in the freshwater capacity, suggesting that they are sub-

stitutes when the freshwater capacity is relatively small and complements otherwise.

I also perform sensitivity analysis on how the uncertainties (rainfall and recycling

cost variabilities and their correlation) affect the optimal recycling capacity and the

optimal expected cost and find that the water utility always benefits from a higher

correlation coefficient but a lower rainfall variability. In this chapter, I also discuss

urban water sustainability using the measures such as urban water vulnerability and

characterize the specific conditions under which urban water may become more vul-

nerable.

The third chapter calibrates the economic model presented in the second chapter

based on the publicly available data from the urban water supply practice in Ade-

laide, the capital city of South Australia. To complement the analytical results, I

conduct comprehensive numerical analysis in this chapter to investigate the effects of

uncertainties on the optimal expected cost and optimal recycling capacity. Moreover,

I study the value of wastewater recycling and how rainfall and recycling cost vari-

abilities, correlation and demand expansion affect it. For example, the results show
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that the value of wastewater recycling increases in the correlation coefficient and de-

creases in the rainfall variability. Based on the calibrated baseline scenario, I find

that the expansion of both the household and non-household demands increase the

value of recycling; moreover, the expansion of non-household demand tends to have a

larger impact when the deviations from the baseline scenario become relatively large.

I further study the leakage reduction, water vulnerability and overflow risk. The in-

sights from the numerical analysis in this chapter complement the analytical results

presented in Chapter 2. I put forward important practical implications relevant to

both urban water utilities and water policymakers based on the findings.
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Chapter 1

Estimating Patients Health Transitions From Data

Censored By Treatment-Effect-Based Policies

1.1 Introduction

Discrete-time Markov Chain (DTMC) is widely used to characterize patient health

transitions, and Markov Decision Process (MDP) are broadly applied to describe se-

quential medical decision problems, e.g., liver transplant (Alagoz et al. 2004) and

cancer screening (Chhatwal et al. 2010). Transition probability matrices (TPMs) are

critical to understanding patients’ disease progression, and hence, to decision-making

problems under MDP framework (Mannor et al. 2012). Traditionally, TPMs are usu-

ally estimated under an assumption that data is fully observed, which may cause

mistakes since patients’ health transitions are censored oftentimes. Data censoring,

the situation in which some end-points of interest cannot be observed, arises in a

range of contexts and is common in medical studies in particular (Huang 2009). For

example, data censoring may occur when study termination, participant dropout and

treatment selection. As pointed out by Feiler et al. (2013), censoring can distort

observations; hence, it can result in the estimation bias of TPMs. In this chapter, I

propose a novel framework to estimate TPMs considering data censoring from treat-
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ment selection.

Different treatment selection/decision policies may yield different data censoring

results, and hence, may impose different distortions on TPMs estimation. In med-

ical practice, physicians usually make treatment decisions base on patients’ current

severity. For example, given a severity threshold, patients will receive or continue

treatment if and only if their health conditions are not better than the threshold.

This decision policy is termed as severity-based policy in this research. Physicians

may also make decisions base on the effect of treatment methods (i.e., treatment

effect) such that the treatment method with the largest treatment benefit can be

selected. This decision policy, which is based on the treatment effect, is termed as

treatment-effect-based policy. The treatment-effect-based policy is also referred to as

personalized medicine or uplift modeling (Zhao et al. 2017, Schork 2015), which has

been receiving considerable attention from practitioners and scholars; for example, it

has been used to ration ventilators during the coronavirus disease 2019 (COVID-19)

pandemic (?Truog et al. 2020) and broadly discussing in literature (e.g., Lee et al.

(2018), Bertsimas et al. (2019a), KC et al. (2020), Gupta et al. (2020) and Keskinocak

and Savva (2020)).

As I mentioned, treatment selections lead to data censoring and then may distort

TPMs estimation. I use a toy example in Figure 1.1 to illustrate the censoring mech-

anisms and their impacts on TPMs estimation under severity-based and treatment-

effect-based policies, repectively.

Patients are classified into two states: state 1 is better than state 2. For a patient

who is under treatment at state 2 at current stage, a physician needs to decide

whether to continue the treatment. Under the severity-based policy, if the current

state is better (not better) than the threshold, the decision/action is no treatment

(treatment), so the transitions under treatment (no treatment) are censored. I define

it as severity-based censoring, which is also discussed in Shechter (2006) that focuses
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A Patient

at State 2

Is Under

Treatment

Treatment 

Selection?

✓ Observed

 Censored Severity-

Based Policy

Treatment-Effect-

Based Policy

Threshold: State 1

Action: Treatment

Treatment

2→ 1     

2→ 1     ✓

2→ 2     

2→ 2     

No Treatment

2→ 1     ✓

2→ 2     

2→ 1     ✓

2→ 2     ✓

Trans.  Treatment   No Treatment

2→ 1            ✓ 

2→ 2            ✓ 

Action

No Treatment

Treatment

No Treatment

No Treatment

Figure 1.1: Transition Censoring Under Different Policies.
(1) 2→ 1 and 2→ 2 denote transitions;
(2) under the severity-based policy, assuming the threshold is state 1,
the action is “treatment” as the patient’ state is not better than the
threshold. Hence, transitions under action “no treatment” are censored;
(3) under the treatment-effect-based policy, assuming the treatment
effect threshold is zero, if the future state under “treatment” is not
better than that under “no treatment”, the action is “no treatment”
and then the transitions under action “treatment” are censored.

on the impact of censoring under no treatment. Given the threshold, Figure 1.1 shows

that the severity-based censoring only depends on current status and, given the health

state, we either observe all or cannot observe any transitions under each action.

The censoring under the treatment effect-based policy, which is termed as treatment-

effect-based censoring, depends on future health states. For example, in Figure 1.1,

the transition from state 2 to state 1 under treatment is censored (or observed) if the

patient transits to state 1 (or state 2) under no treatment. Recall that state 1 is better

than state 2, the treatment effect then is 0 (or -1, which indicates heath state improve-

ment under treatment). Hence, the treatment-effect-based policy censors transitions

with worse future outcomes. Moreover, it is more likely for us to observe transitions

with better outcomes under the treatment-effect-based policy when comparing with

the severity-based policy.

To be more concrete, I assume the gound truth TPMs under treatment and no

treatment are ( 0.6 0.4
0.5 0.5 ) and ( 0.4 0.6

0.2 0.8 ), respectively. I estimate TPMs using observed

transitions, of which the transition probabilities are represented by the proportions

of observed transitions. Under the severity-based policy, assuming state 1 is the

3



threshold, then all patients receive treatment, which implies that all transitions under

no treatment are censored. Hence, the TPM under treatment is estimated as ( 0.6 0.4
0.5 0.5 ),

which is the same as the ground truth TPM, while the TPM under no treatment is

not well defined since there is no observed data. Under the treatment-effect-based

policy, no transition to state 2 with treatment is observed, then the TPM of observed

transitions under treatment is ( 1 0
1 0 ). Similarly, the observed TPM under no treatment

is ( 0.625 0.375
0.333 0.667 )1. The results show that these two observed TPMs tend to overestimate

the effects of the actions (i.e., comparing with the ground truth TPMs, these two

observed TPMs specify that patients are more likely to transit to better states) and

are significantly different from the ground truth TPMs. To be more specific, I find that

the severity-based censoring only reduces frequencies of observed transitions, while

the treatment-effect-based censoring not only reduces observed frequencies but also

shifts the observed transition structures from the underlying transition structures,

and hence, distort the TPMs estimation. Under most circumstances, we only know

that both severity-based and treatment-effect-based decisions are included in datasets,

but we are unable to (exactly) disentangle severity-based decisions from treatment-

effect-based decisions. For such datasets, without properly addressing data censoring,

biased TPMs estimations may be derived, which greatly mislead follow-up medical

decisions, e.g., decisions using MDP models.

Despite the prominence of the treatment-effect-based policy in healthcare, ma-

chine learning, and marketing literature, its impacts on data censoring have received

little attention to date. In this chapter, given the popularity of MDP models and

then the importance of TPMs, I consider a TPMs estimation problem where pa-

tients’ health transitions are characterized by a DTMC and data are obtained under

1To derive this matrix, for example, transition 2→ 1 under no treatment can be observed with
probability 0.2 while transition 2→ 2 under no treatment is observed with probability 0.8×0.5 = 0.4
(i.e., conditioning on the transition is 2 → 1 under treatment); hence, the observed transition
probabilities for 2 → 1 and 2 → 2 under no treatment are 0.2

0.2+0.4 = 0.333 and 0.4
0.2+0.4 = 0.667,

respectively.
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both severity-based and treatment-effect-based policies. Focusing on the treatment-

effect-censoring problem, I propose a structural model to estimate the ground truth

TPMs. The proposed model is valuable because it provides a framework to under-

stand the behind mechanisms of observations and to recover the ground truth TPMs

in an interpretable way. Moreover, as pointed out by Kaynar and Siddiq (2019), an

interpretable structural model provides a more credible framework for the assessment

of counterfactual.

The main contributions of this research are summarized as follow:

� I propose a structural model that embeds treatment-effect-based censoring to

recover ground truth TPMs under the framework that patients’ health transi-

tions are characterized by DTMC. The proposed model captures the mechanism

of data censoring in the transitions and provides a systematic and interpretable

way to recover TPMs. To the best of my knowledge, this is the first research to

discuss the treatment-effect-based censoring problems in literature. Although

I use health transition estimation as examples, the model can also be applied

to other contexts in which treatment-effect-based policy is involved in decision

making.

� I analytically prove that the TPMs estimation solution of the structural model

is unique, and the estimators are consistent and asymptotically normally dis-

tributed under some conditions. Moreover, I prove that the proposed estimators

maximize the likelihood of observing the data with treatment-effect-based cen-

soring incorporated.

� In the numerical experiments, I compare the proposed model with other es-

timation methods (e.g., the method with using predictive models to predict

the censored observations and estimating TPMs by incorporating the recovered

censored data) and demonstrate its advantages in terms of various performance
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metrics. I also implement the proposed model in ICUs extubation problem to

estimate patient health transitions using real censored data. Formulating the

extubation problem as a classical optimal stopping Markov Decision Process

model, I show that the proposed model is able to reduce the length of stay of

patients in ICU comparing to other benchmark transition estimation methods

that do not properly address censored data.

In what follows, I review literature in Section 1.2; I develop the structural model

and show the asymptotic behaviors of the estimators in Section 1.3; I then present

numerical experiments in Section 1.4 and a case study in Section 1.5. I conclude the

chapter in Section 1.6.

1.2 Literature Review

As illustrated in Figure 1.2, the applications of MDP models in general and the

severity-based and treatment-effect-based policies in particular affect the observed

data and then affect the MDP application itself through the TPMs and/or treatment

effect estimations on data with censoring/selection bias. Hence, this work is mainly

related to the literature on TPMs estimation but also contributes to the literature

of estimating treatment effect on data with selection bias, the application of MDP

(including partially observable Markov decision process, POMDP) models in medical

areas (i.e., the application of severity-based policies) and personalized medicine and

uplift modelling (i.e., the application of treatment-effect-based policies).

Literature On Estimating Treatment 
Effect With Selection Bias

Literature On Estimating Transition 
Matrix and Disease Progression

MDP-Based 
Models

Data

Severity-Based Policy: Literature On 
MDP/POMDP/APOMDP/Robust POMDP Models

Treatment-Effect-Based Policy: Literature On 
Personalized Medicine and Uplift Modelling

Our Paper

Figure 1.2: Relationship Between My Work and The Literature
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There are extensive research on TPMs estimation. Some focus on the estima-

tion with complete observations. For example, Miller (1952) and Madansky (1959)

estimate transition probabilities using restricted least square (LS) method by min-

imizing the sum of squares of the differences between predicted probabilities and

observed probabilities. However, they do not consider that each row of transition

matrix sums to one and the probabilities are positive. Theil and Rey (1966) address

this problem using a quadratic programming approach under the LS framework. The

best known and most popular method to estimate TPMs is Maximum Likelihood

Estimation (MLE) as in (Wu and Noé 2010). MLE is proved to be consistent and

asymptotically normally distributed (Kendall and Alan 1961) and shown to be su-

perior to LS estimation in Lee et al. (1970). Besides, Martin (1967) and Lee et al.

(1968) suggest a Bayesian approach to estimate TPMs. Jilkov and Li (2004) esti-

mate TPMs with online minimum mean-square error (MMSE) estimation under a

Bayesian framework. Storm et al. (2015) develop a Bayesian framework to estimate

non-stationary transition probabilities. I refer the readers to Pasanisi et al. (2012) for

a more comprehensive review of the application of Bayesian methods to TPMs estima-

tion. Moreover, Kolmogorov equation is also applied to estimate disease progression

under continuous-time Markov Chains, e.g., Asena and Goshu (2017) and Meenaxi

and Singh (2018). These literature assume a dataset with complete observations, and

do not address the data incompleteness and censoring.

Some research study TPMs estimation with incomplete or partially observed data

samples. For example, observations from the dataset may have greater time intervals

than desired by the Markov models, which means the disease progression paths that

individuals have followed during certain intervals are unobservable. To address this

problem, Welton and Ades (2005) adopt a Bayesian framework and compute the TPM

using Kolmogorov equation with the estimated transition rate matrix as input. An

alternative solution is to apply matrix decomposition methods to observed TPMs,
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e.g., Craig and Sendi (2002), Chhatwal et al. (2010) and Chhatwal et al. (2016). This

approach requires that the eigenvalues of observed TPMs are non-negative; otherwise,

an invalid transition matrix is derived. Charitos et al. (2008) also address the problem

that the model interval is not equal to the observed interval in the data base on

matrix decomposition techniques. They do not require non-negative eigenvalues;

instead, they apply regularization techniques which aim to replace rows with negative

entries in the invalid TPM with rows with non-negative entries using a distance

criterion. Craig and Sendi (2002) consider the situation that observed time intervals

are unequal. They use the expectation-maximization (EM) algorithm to estimate

TPMs of interest. Applying the EM algorithm and MLE, Leaf (2017) propose a

unified framework to estimate TPMs with incomplete data. In addition, Alagoz et al.

(2004) estimate TPMs with the Natural History Model (NHM) proposed by Alagoz

et al. (2002). Pasanisi et al. (2012) apply Monte Carlo Markov Chain algorithms

to perform Bayesian inference and then evaluate the posterior distributions of the

transition probabilities considering partially observed state sequence.

My work is closest to the research on the estimation of TPMs with data censoring.

Aalen and Johansen (1978) investigate the transition probability estimation problem

for non-homogeneous Markov chains considering censored observations using a gen-

eral censoring random process. They show that the estimator can be expressed as

a product integral. Lagakos et al. (1978) consider a semi-Markov model with right-

censored data and estimate transition probabilities using nonparametric MLE. These

research focus on the estimation of transition probabilities under a continuous-time

Markov setting and consider randomly censored observations; however, I focus on the

discrete-time Markov setting with treatment-effect-based censoring. In a discrete-

time Markov setting, Dasbach et al. (1991) estimate one-year natural disease transi-

tion probabilities using MLE method considering data censoring caused by initiation

of treatment. In a similar context, Craig et al. (1999) develop a Markov model to
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characterize the progression of a chronic condition. Unlike Dasbach et al. (1991),

Craig et al. (1999) incorporate covariate information, and create a non-homogeneous

Markov chain. They use a Bayesian approach to estimate annual transition proba-

bilities under intervention considering the time of intervention is interval-censored.

Borrowing ideas in Dasbach et al. (1991), Shechter (2006) and Shechter et al. (2008)

derive empirical estimations of transition probabilities by hypothesizing how the cen-

sored observations distribute among states when therapy had not been initiated at

the time. My work differs from the literature in two main aspects. First, instead of

only considering the estimation of natural disease transitions with and without treat-

ment, I estimate TPMs under different actions simultaneously. Second, I focus on

treatment-effect-based censoring, which, to the best of my knowledge, has not been

discussed in TPMs estimation.

As treatment selection censoring may result in selection bias, my work is also

related to the researches on addressing selection bias. More specifically, because

my work attempts to address the selection bias problem by recovering the censored

observations (i.e., the assessment of counterfactual) in a structural way, within this

literature, it is closest to the papers on causal inference. Ho et al. (2017) discuss

the application of causal inference models in operations management when there

are different types of selection bias. Stukel et al. (2007) compare the effects of four

analytical methods on removing treatment selection bias when doing causal inference.

A more comprehensive review of this stream of literature is referred to Infante-Rivard

and Cusson (2018). My research differs from them by addressing the selection bias

problem during TPMs estimation.

DTMC models (MDP and POMDP) are widely applied to address healthcare

problems, such as organ transplant (Alagoz et al. 2004, Boloori et al. 2020), diag-

nostic screening (Chhatwal et al. 2010, Zhang et al. 2012, Ayer et al. 2012, Erenay

et al. 2014, Ayer et al. 2016), vascular access (Skandari et al. 2015) and ICU bed
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rationing (Chan et al. 2012, Ouyang et al. 2020). My work directly contributes to

this stream of researches as TPMs are critical input for them. Furthermore, from the

perspective of TPMs estimation under MDP frameworks, this work is broadly related

to the literature which addresses the ambiguity of TPMs estimation using data under

MDP framework, e.g., Nilim and Ghaoui (2005), Wiesemann et al. (2013), Zhang

et al. (2017), and Goh et al. (2018). There is an increasingly trend of implementing

treatment-effect-based policies in personalized/precision medicine, see e.g., Ibrahim

et al. (2016), Lee et al. (2018), Bertsimas et al. (2017), Hopp et al. (2018), Cheng et al.

(2019), Gupta et al. (2020) and references therein. As I described, treatment-effect-

based policies censors observations in a specific way (i.e., observations with worse

future outcomes are censored). Data censoring is one of the greatest challenges when

using observed data for causal inference (Imbens and Rubin 2015, Bertsimas et al.

2019b) in personalized medicine. My research can be seen as a contribution to this

literature by providing a framework to understand the censoring mechanisms under

personalized medicine, which can be useful to build predictive models for personalized

treatment effects.

My work is also related to research which considers data censoring in general op-

erations management. For example, Chu and Lai (2013) investigate a salesforce con-

tracting problem with censored demand. Rudi and Drake (2014),Jain et al. (2015),and

Zhang et al. (2018) analyze the demand censoring in inventory problems. Ban (2020)

develop an estimation procedure for the (S, s) inventory policy and show the con-

sistency and asymptotic efficiency of the estimator when there is demand censoring.

Similarly, in this chapter, I also conduct asymptotic analysis of the proposed model

and show the efficiency of the estimated TPMs.
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1.3 Model Development and Analysis

I consider a TPMs estimation problem using data from a medical decision framework,

where physicians make medical treatment decisions using severity-based or treatment-

effect-based policies. As described, treatment-effect-based censoring shifts transition

structures, and it is usually impossible to disentangle severity-based decisions from

treatment-effect-based decisions. In this section, I propose a structural model to

address the treatment-effect-based censoring in TPMs estimation.

To construct the model, I structurally link the ground truth TPMs with the

censored observations. Specifically, given ground truth TPMs, I derive the probability

that any particular transition can be observed under severity-based and treatment-

effect-based policies, respectively. Given the probabilities of using severity-based

and treatment-effect-based policies by decision makers (e.g., the physicians), I obtain

the probability that any transition can be observed in the dataset, which is the

observed transition probability. As the name suggests, the observed probabilities

can be estimated using observed data directly, which then can be used to derive the

ground truth TPMs inversely.

In the modeling framework, I only consider severity-based and treatment-effect-

based policies and I believe that almost all medical decisions are made under these

two policies in practice. Under these two policies, the key specification is the thresh-

old (i.e., severity and treatment-effect thresholds, respectively), which determines

physicians’ actions. In general, physicians may be inconsistent in the decision criteria

such that they may choose different values as the threshold when making decisions.

Moreover, the decision criteria may also vary with operational conditions (KC et al.,

2020), e.g., ICU occupancy level and workload, and other factors such as patients’

insurance types and financial conditions. In this regard, different thresholds may be

used under both policies in practice.

Another important issue I want to emphasize is, in medical practice, the treatment
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effects are often estimated based on physicians’ prognosis, which is challenging and

cannot be perfectly accurate. Physicians’ prognostic information is usually unavail-

able, which makes it difficult to capture the ground truth treatment-effect-censoring

in the estimation. Through the discussions with physicians, they mention that they

only make decisions base on the prognostic outcomes when they are very confident in

their prognosis. Therefore, in the following sections, I first develop a structural model

assuming physicians’ prognosis on future health states are error-free in Section 1.3.1,

and then analyze the properties of the proposed structural model in Section 1.3.2. In

Section 1.3.3, I extend my model to capture prognostic errors when the prognostic

information is given.

1.3.1 Structural Model

Consider a dataset from sequential medical treatment decisions made by physicians

periodically based on either health states or treatment effects of patients. Let s ∈

S = {1, 2, ..., N} denote the health state, and a larger s indicates a worse health

condition. Let a ∈ A = {0, 1} denote the action, where a = 1 represents “treatment”

and a = 0 represents “no treatment”. Under each action, the health transitions over

time periods are characterized by a DTMC. Let P a denote the ground truth TPM

under action a, with P a
ij ∈ [0, 1] for all i, j ∈ S. Although I consider two actions

in this chapter, the model can be easily extended to the decision frameworks with

multiple actions.

Consider a finite time horizon with period t ∈ T = {1, 2, ..., T}. I define the

personalized treatment effect for a patient whose state is s in period t is δt = (sa=1
t+1 −

st) − (sa=0
t+1 − st) = sa=1

t+1 − sa=0
t+1 , where st is the state in period t and sat+1 denotes

the state in period t + 1 if I take action a in period t (recall that I assume sat+1

is prognosticated by physicians without prognostic errors). Hence, a negative δt

indicates that the “treatment” can benefit the patient more than “no treatment”. I
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formally define the following two decision policies.

Definition 1.1 (Severity-based policy). Given a state threshold s̄ ∈ S, for any patient

in time period t ∈ T , s/he will receive treatment if and only if st ≥ s̄.

Definition 1.2 (Treatment-effect-based policy). Given a treatment-effect threshold

δ̄(i), for any patient of state i in time period t ∈ T , s/he will receive treatment if and

only if δt ≤ δ̄(i).

In medical practice, physicians may apply multiple thresholds under both severity-

based and treatment-effect-based frameworks. For simplicity and without loss of

generality, I consider a single treatment-effect threshold under treatment-effect-based

policy. The general model with multiple treatment-effect thresholds is presented in

Appendix A.2, and the results also hold.

probability 𝑝𝑖
𝑠𝑒

probability 𝑝𝑖
𝑡𝑒

Severity-

Based Policy

Treatment-Effect-

Based Policy

𝑠𝑡 = 𝑖
𝑠𝑡+1
𝑎=1 = 𝑗

𝑠𝑡+1
𝑎=0 = 𝑧

Treatment

Selection 

Policy?

A Patient 

in Period 𝑡

𝑖 ≥ ҧ𝑠: health state is not 

better than the threshold 

Action 𝑎 = 0 is taken;

Transitions under 𝑎 =
1 will be censored

Action 𝑎 = 1 is taken;

Transitions under 𝑎 =
0 will be censored

Apply threshold 
ҧ𝑠 ( ҧ𝑠 = 1,2, … , 𝑁)

with probability 𝑞 ҧ𝑠
𝑠𝑒

action

𝑖 < ҧ𝑠: health state is 

better than the threshold 

𝑗 − 𝑧 ≤ ҧ𝛿 𝑖 : treatment 

effect is not larger than ҧ𝛿 𝑖
Action 𝑎 = 1 is taken;

Transition  𝑖 → 𝑧 (𝑎 =
0) will be censored

Action 𝑎 = 0 is taken;

Transition  𝑖 → 𝑗 (𝑎 =
1) will be censored

action

𝑗 − 𝑧 > ҧ𝛿 𝑖 : treatment 

effect is larger than ҧ𝛿 𝑖

Apply threshold: ҧ𝛿 𝑖

Figure 1.3: Illustration of Model Framework and Transition Censoring

Figure 1.3 illustrates the modeling framework and censoring mechanisms. Con-

sidering a patient with state i (i ∈ S) in any period t < T . The patient will transit

to state j under action a = 1 (i.e., sa=1
t+1 = j) and state z under action a = 0 (i.e.,
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sa=0
t+1 = z), respectively. Then, the treatment effect of this patient in period t can

be computed as δt = sa=1
t+1 − sa=0

t+1 = j − z. Physicians make medical decisions base

on either current severity st (i.e., severity-based policy) or treatment effect δt (i.e.,

treatment-effect-based policy). I assume that the probability of using treatment-

effect-based policy for patients at state i is ptei ∈ (0, 1) and the probability of using

severity-based policy is psei = 1 − ptei . Under the severity-based policy, decisions are

made by comparing the patient’s current state st = i with the state threshold s̄. I

assume state k ∈ S will be selected as the threshold with probability qsek ∈ (0, 1).

Suppose s̄ = k, then if i ≥ k, the patient will receive treatment (i.e., a = 1 is taken),

which implies that transitions under a = 0 for this patient are censored and cannot be

observed; otherwise, transitions under a = 1 for the patient are censored. Under the

treatment-effect-based policy, decisions are made by comparing patient’s treatment

effect δt with the treatment-effect threshold δ̄(i). If j − z ≤ δ̄(i), the patient will

receive treatment, which implies that transitions from i to z under action a = 0 will

be censored and cannot be observed; otherwise, if j − z > δ̄(i), the patient will not

receive treatment and then transitions from i to j under action a = 1 will be censored.

If the transition is from state i to state j under action a = 1, the probability that

this transition will be observed is
∑N

k=1 q
se
k Ii≥k and

∑N
k=j−δ̄(i) P

a=0
ik under severity-

based and treatment-effect-based policy, respectively. If the transition is from state

i to state j under action a = 0, the probability that this transition will be observed

is
∑N

k=1 q
se
k (1− Ii≥k) and

∑N
k=max(j+δ̄(i)+1,1) P

a=1
ik under severity-based and treatment-

effect-based policy, respectively.

Therefore, the total probability that the transition from state i to state j with

action a = 1 and a = 0 can be observed is P a=1
ij (ptei

∑N
k=j−δ̄(i) P

a=0
ik +psei

∑N
k=1 q

se
k Ii≥k)

and P a=0
ij (psei

∑N
k=1 q

se
k (1 − Ii≥k) + ptei

∑N
k=max(j+δ̄(i)+1,1) P

a=1
ik ), respectively. For con-

venience, I let pte = (pte1 , p
te
2 , ..., p

te
N), pse = (pse1 , ..., p

se
N ), and qse = (qse1 , q

se
2 , ..., q

se
N ).

Without lose of generality, I assume the total number of patients in state i is M ,
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then I can derive the expected number of observed transitions from i to j under action

a = 1 and a = 0 as

Ȳij = MP a=1
ij

ptei N∑
k=j−δ̄(i)

P a=0
ik + psei

N∑
k=1

qsek Ii≥k


and

X̄ij = MP a=0
ij

psei N∑
k=1

qsek (1− Ii≥k) + ptei

N∑
k=max(j+δ̄(i)+1,1)

P a=1
ik


I define Π̂a as the observed TPM under action a, where Π̂a

ij is the ratio of the num-

ber of observed transitions from i to j over the total number of observed transitions

out of state i. Hence, I have

Π̂a=1
ij =

Ȳij∑
z∈S

Ȳiz
, Π̂a=0

ij =
X̄ij∑

z∈S
X̄iz

Combining the results above, for any i, j ∈ S, I obtain:

Π̂a=1
ij =

P a=1
ij

(
ptei

N∑
k=j−δ̄(i)

P a=0
ik + psei

N∑
k=1

qsek Ii≥k

)
N∑
z=1

P a=1
iz

(
ptei

N∑
k=z−δ̄(i)

P a=0
ik + psei

N∑
k=1

qsek Ii≥k

)

Π̂a=0
ij =

P a=0
ij

(
psei

N∑
k=1

qsek (1− Ii≥k) + ptei
N∑

k=max(j+δ̄(i)+1,1)

P a=1
ik

)
N∑
z=1

P a=0
iz

(
psei

N∑
k=1

qsek (1− Ii≥k) + ptei
N∑

k=max(z+δ̄(i)+1,1)

P a=1
ik

)
(1.1)

The bilinear system of equations is a structural model that (1.1) forms the in-

teractions of the ground truth transition probabilities P under a = 0 and a = 1 as

nonlinear terms. Solving the system of equations by using Π̂a, pse and qse as the

inputs, I can derive estimator P̂ a for the ground truth P a. Furthermore, as I de-

fined, the left-hand side of the equations (1.1) represent the observed TPMs and the

right-hand side show how the ground truth TPMs are censored under the decision

framework. The equations build the relationship between the observations and the

ground truth transitions considering treatment-effect-based censoring, which can help

us understand the censoring mechanism in a more systematic and interpretable way.
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For convenience, I summarize some key notation in Table 1.1.

a: action; a = 1 represents “treatment” and a = 0 represents “no
treatment”
s: state variable with st is the state in period t
δt: treatment effect in period t
ptei : probability of using the treatment-effect-based policy for pa-
tients at state i
psei : probability of using the severity-based policy for patients at
state i
qsek : probability that the severity threshold is state k
P a: ground truth TPM (under action a)

Π̂
a
: observed TPM (under action a)

P̂
a
: estimated TPM (under action a) using the structural model

(termed as one-stage estimator later)

Table 1.1: Notation

1.3.2 Model Analysis

In this section, I present and discuss some analytical properties of the structural

model and its performance.

First, I need to solve the system of equations to derive the estimators P̂ a. Since

the structural model has a nonlinear system of equations, intuitively, I may expect

there are multiple solutions, which is not desirable for the estimation of TPMs. In

following theorem, I show that P̂ a can be uniquely identified, given the existence of

solution(s) in system of equations (1.1).

Theorem 1.1. For any i, j ∈ S, given the existence of solution(s), the system of

equations (in the structural model) has an unique solution.

The proof of Theorem 1.1, given in Appendix A.1, relies on the construction

of contradiction. By contradiction, I assume that there are two different solutions

(P
a=1(1)
i ,P

a=0(1)
i ) and (P

a=1(2)
i ,P

a=0(2)
i ) to the nonlinear system of equations, and

then derive the results that
∑N

j=1 P
a=1(1)
ij < 1 and

∑N
j=1 P

a=0(1)
ij > 1, which contradict

to the fact that
∑N

j=1 P
a=1(1)
ij =

∑N
j=1 P

a=0(1)
ij = 1.
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Theorem 1.1 implies that the structural model has a very nice property on the

estimation of TPMs (for the discussions onward, I assume the existence of solutions),

which frees us from the dilemma of choosing among multiple solutions given the

nonlinearity of the system of equations. Moreover, the uniqueness property is crit-

ical to the analysis of asymptotic properties of the estimators, which are discussed

subsequently.

The existence of solutions to the structural model with N ≤ 2 is easy to show.

However, the existence of solutions of such a general bilinear system is difficult and

remains as an open question in the literature (Johnson et al. 2014). Intuitively, there

should exist solutions as long as I can obtain well defined Π̂
a

from data. Besides,

I conduct thousands of numerical experiments with randomly generated parameters

(i.e., Π̂
a
, pse and qse) and find that the structural model is always solvable. In the

analysis afterwards, I assume the existence of solutions.

I am also interested in the asymptotic properties of the estimators. The observed

TPM Π̂
a

can be estimated from data, which is affected by data sample size. I assume

the observed transitions are multinomially distributed. Hence, there exists a ground

truth Πa such that, for any state i ∈ S, I have

Yi1, ..., YiN ∼ multinomial(Ka=1
i ,Πa=1

i1 , ...,Πa=1
iN )

and

Xi1, ..., XiN ∼ multinomial(Ka=0
i ,Πa=0

i1 , ...,Πa=0
iN )

where Yij and Xij are random variables which represent the number of observed

transitions from i to j under actions a = 1 and a = 0, respectively. Ka
i is the total

number of observed transitions from i to other states. Moreover, I let fa=1
i and fa=0

i

be the probability mass functions for Yij and Xij, respectively.
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For i ∈ S and j = 1, 2, ..., N − 1, I further define

ga=1
ij (P a=0

i ,P a=1
i ) =

P a=1
ij

(
ptei

N∑
k=j−δ̄(i)

P a=0
ik + psei

N∑
k=1

qsek Ii≥k

)
N∑
z=1

P a=1
iz

(
ptei

N∑
k=z−δ̄(i)

P a=0
ik + psei

N∑
k=1

qsek Ii≥k

)

ga=0
ij (P a=0

i ,P a=1
i ) =

P a=0
ij

(
psei

N∑
k=1

qsek (1− Ii≥k) + ptei
N∑

k=max(j+δ̄(i)+1,1)

P a=1
ik

)
N∑
z=1

P a=0
iz

(
psei

N∑
k=1

qsek (1− Ii≥k) + ptei
N∑

k=max(z+δ̄(i)+1,1)

P a=1
ik

)

with P a
iN = 1−

N−1∑
j=1

P a
ij for a ∈ {0, 1}. I then define the mapping

Gi = (ga=1
i1 , ga=1

i2 , ..., ga=1
i,N−1, g

a=0
i1 , ga=0

i2 , ..., , ga=0
i,N−1)

I want to clarify that P a
iN is not included in the independent variable set as P a

iN =

1 −
∑N−1

j=1 P a
ij. However, for notation convenience, I still use arguments P a=0

i and

P a=1
i in the mapping Gi. Based on these settings, I characterize the asymptotic

behaviors of the estimators in Theorem 1.2.

Theorem 1.2. Given the existence of solution(s) of the structural model. Let Π̂a(n)

and P̂ a(n) denote the estimators of Πa and P a with sample size n. For any arbitrary

small ε > 0, when n→∞, I have

(1) P(||Π̂a(n)−Πa|| > ε)→ 0

(2) P(||P̂ a(n)− P a|| > ε)→ 0

(3) Assume the Jacobian matrix JGi
has the property that det(JGi

) 6= 0. Then I

have
√
n[P̂ a

i − P a
i ]∼N (0,∆iV

−1∆
′
i) asymptotically, where Pi = (P a=1

i ,P a=0
i ) and

P̂i = (P̂ a=1
i , P̂ a=0

i ), ∆i = ∇Πa
i
[G−1

i ] and V is

V =

V a=1 0

0 V a=0


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and

V a=1 =

{
− E

[
∂2Log (fa=1

i (Yi; Π
a=1
i ))

∂Πa=1
ik ∂Πa=1

ij

]}
V a=0 =

{
− E

[
∂2Log (fa=0

i (Xi; Π
a=0
i ))

∂Πa=0
ik ∂Πa=0

ij

]}
The proof of Theorem 1.2 is relegated to Appendix A.1. For a brief overview,

Theorem 1.2(2) is proved by using the uniqueness property presented in Theorem 1.1

and the continuous mapping theorem. Theorem 1.2(3) is derived following Lemma

3.9 from Wooldridge (2010).

Theorem 1.2 shows that Π̂
a

and P̂
a

are asymptotically consistent. The estima-

tors are normally distributed asymptotically given that the Jacobian matrix of the

mapping Gi is non-singular. This allows us to derive the confidence intervals for

the estimators. Besides, I want to claim that, in general, it is very difficult to show

det(JGi
) 6= 0 analytically for a very complicate mapping Gi. To support the assump-

tion that det(JGi
) 6= 0, I perform thousands of numerical experiments, and the results

show that JGi
is non-singular in general.

As the observed transitions are assumed to be multinomially distributed, and I

build the relationship between P a and Π̂
a

in the structural model, then the ground

truth TPMs can also be estimated by MLE. Specifically, for i ∈ S, I derive the

log-likelihood functions as

log(L(P a=0
i ,P a=1

i )) = log(L1(P a=0
i ,P a=1

i )) + log(L2(P a=0
i ,P a=1

i ))

where

log(L1(P a=0
i ,P a=1

i )) = log(
Ka=1
i !

Yi1!...YiN !
) +

N∑
j=1

(
Yij log(ga=1

ij (P a=0
i ,P a=1

i ))
)

and

log(L2(P a=0
i ,P a=1

i )) = log(
Ka=0
i !

Xi1!...XiN !
) +

N∑
j=1

(
Xij log(ga=0

ij (P a=0
i ,P a=1

i ))
)

I characterize the relationship between the estimator P̂
a

derived by solving struc-

tural model (1.1) and the maximum likelihood estimator in the following theorem.
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Theorem 1.3. Given (P̂
a=1

i , P̂ a=0
i ) is the solution to the system of equations. (P̂

a=1

i , P̂
a=0

i )

maximizes the log-likelihood function log(L(P a=0
i ,P a=1

i )).

Theorem 1.3 implies that the estimators from the proposed structural model are

maximum likelihood estimators. This property is important in the sense that it

bridges the gap between my novel structural model and the traditional ML estimation

method. The proof of Theorem 1.3 is presented in Appendix A.1.

As I mentioned, the proposed model builds the relationship between Π̂
a

and P a,

which provides a structural framework to investigate the deviation between Π̂
a

and

P a. Specifically, I define ∆̄
a

= Π̂
a − P a with

∆̄a=1
ij = Π̂a=1

ij − P a=1
ij

=

P a=1
ij

(
ptei

N∑
k=j−δ̄(i)

P a=0
ik + psei

N∑
k=1

qsek Ii≥k

)
N∑
z=1

P a=1
iz

(
ptei

N∑
k=z−δ̄(i)

P a=0
ik + psei

N∑
k=1

qsek Ii≥k

) − P a=1
ij

and

∆̄a=0
ij = Π̂a=0

ij − P a=0
ij

=

P a=0
ij

(
psei

N∑
k=1

qsek (1− Ii≥k) + ptei
N∑

k=max(j+δ̄(i)+1,1)

P a=1
ik

)
N∑
z=1

P a=0
iz

(
psei

N∑
k=1

qsek (1− Ii≥k) + ptei
N∑

k=max(z+δ̄(i)+1,1)

P a=1
ik

) − P a=0
ij

The proposition below shows the properties of the deviation between Π̂
a

and P a.

Proposition 1.1. For any i ∈ S and a ∈ {0, 1},

(1) There exists a threshold s̄ai such that ∆̄a
ij ≥ 0 if j ≤ ōai , and ∆̄a

ij < 0 otherwise;

(2)
∆̄a
ij

Paij
is decreasing in j if j ≤ ōai and increasing in j otherwise.

Proposition 1.1 shows that Π̂
a

tends to overestimate the effect of action a as

∆̄a
ij ≥ 0 if j ≤ ōai . This is because physicians keep selecting actions with better

future outcomes under the treatment-effect-based policy, then from censored data we
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observe that patients tend to transit to better states. As the transitions with better

outcomes are less likely to be censored, the relative deviation, ∆̄a
ij/P

a
ij, is decreasing

in j when ∆̄a
ij ≥ 0 and increasing in j when ∆̄a

ij < 0.

1.3.3 Structural Model with Prognostic Errors

In this section, I construct the structural model with physicians’ prognostic errors

incorporated. Let κasj = Pr(ŝat+1 = s|sat+1 = j) denote the probability that the

prognosticated state in next period is s condition on the true state in next period is

j under action a. Then, following the same process presented in Section 1.3.1, I have

Π̂a=1
ij =

P a=1
ij

(
ptei

N∑
s=1

κa=1
sj

N∑
τ=1

P a=0
iτ

N∑
k=s−δ̄(i)

κa=0
kτ + psei

N∑
k=1

qsek Ii≥k

)
N∑
z=1

P a=1
iz

(
ptei

N∑
s=1

κa=1
sz

N∑
τ=1

P a=0
iτ

N∑
k=s−δ̄(i)

κa=0
kτ + psei

N∑
k=1

qsek Ii≥k

)
and

Π̂a=0
ij =

P a=0
ij

(
psei

N∑
k=1

qsek (1− Ii≥k) + ptei
N∑
s=1

κa=0
sj

N∑
τ=1

P a=1
iτ

N∑
k=max(s+δ̄(i)+1,1)

κa=1
kτ

)
N∑
z=1

P a=0
iz

(
psei

N∑
k=1

qsek (1− Ii≥k) + ptei
N∑
s=1

κa=0
sz

N∑
τ=1

P a=1
iτ

N∑
k=max(s+δ̄(i)+1,1)

κa=1
kτ

)
I can show that the solution uniqueness, asymptotic properties, and the log-

likelihood maximization also hold under this case. The major concern on this case

is physicians’ prognostic information (i.e., κasj = Pr(ŝat+1 = s|sat+1 = j)) is usually

unavailable and barely possible to be recovered from observations. Therefore, I focus

on the error-free model in this chapter.

In the following section, I further compare the performance of the error-free model

with the performances of other estimation methods/models by using simulation ex-

periments.
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1.4 Simulation Experiments

Instead of only using real data to estimate TPMs with the structural model, I first

conduct a set of simulation experiments and investigate the performance of the error-

free structural model on simulated data with prognostic errors in the context of ICU

extubation. The simulation experiments are necessary and important as they provide

convincing frameworks to compare the structural model with other estimation meth-

ods by using the ground truth TPMs as benchmark. I first introduce the background

and medical practice of the extubation problem in Section 1.4.1. I then describe sim-

ulation settings in Section 1.4.2. In Section 1.4.3, I illustrate the performance of the

error-free structural model with comprehensive simulation results.

1.4.1 Extubation Problem: Background

Acute respiratory failure is associated with very high mortality rate of more than 40%

in critically ill patients (Vincent et al. 2002). In ICUs, invasive mechanical ventila-

tion (MV) is one of the most common interventions to provide support for respiratory

failure patients to breathe. For intubated patients (i.e., receiving invasive MV), physi-

cians regularly check and evaluate their respiratory conditions. For each evaluation,

a critical decision faced by physicians is when to extubate (i.e., stop invasive MV).

On the one hand, long time ventilation is associated with high prevalence rates of

complications, e.g., volutrauma and lung and airway injuries (Miller and Carlo 2008);

on the other hand, premature extubation may result in a high extubation failure

rate and, as a result, a higher mortality rate (Thille et al. 2013). In ICUs practice,

traditionally, a severity-based policy is used to make extubation decisions. For this

decision-making process, it is also straightforward to use the optimal stopping MDP

framework to optimize the extubation decisions, which implies that understanding

health transitions is critical. Nowadays, physicians in ICUs may prognosticate pa-
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tients’ future outcomes under ventilation and extubation and then extubate patients

according to the prognosticated treatment effect of the actions. Moreover, according

to the discussion with the physicians, they tend to make extubation decisions base on

the treatment effect when they are very confident in their prognosis. As treatment-

effect-based policy structurally censors health transitions data, the ICU extubation

context is perfect for applying the proposed model to estimate ground truth TPMs.

In the partner ICU, respiratory rate is used as a major reference clinical variable

when making extubation/intubation decisions. Moreover, the respiratory rate serves

as an effective and natural risk predictor for respiratory failure in the literature (Rivera

and Weissman 1997, Meade et al. 2001). Hence, I classify patients into four states

base on their respiratory rate values. Specifically, patients with Respiratory Rate

values in (0, 22], (22, 30], (30, 38], and (38,+∞) are classified into state 1, 2, 3, and

4 according to Rivera and Weissman (1997) and Meade et al. (2001), as well as the

suggestions from physicians in the partner ICU. In a relative sense, state 1 patients

have the best health condition and state 4 patients have the worst health condition.

1.4.2 Simulation: Settings

In this section, I simulate patients’ health transitions through the evolution of respira-

tory rate (RR). Based on the simulated ground truth transitions, I derive the ground

truth TPM P a. I implement both severity-based and treatment-effect-based poli-

cies on the simulated data to decide actions of ventilation or extubation and observe

patients’ health conditions. Moreover, physicians’ prognosis on future respiratory

conditions is simulated with error so that I can investigate the performance of the

error-free model on datasets with prognostic errors. I apply the method proposed in

Section 1.3.1 to derive the observed TPM Π̂
a

and the estimated ground truth TPM

P̂
a
. As a benchmark, another way to address the censoring problem is to recover

the censored results by predictions: I simulate predictive clinical variables of RR and
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construct predictive models to predict the censored RR values, and I then derive

the estimated TPM (P̃
a
) using the predictions. In the simulation, I also apply the

quadratic programming method discussed in Theil and Rey (1966) and Schneider and

Zenios (1990) to estimate the ground truth TPM (denoted by P̆ a, and the details of

quadratic method are presented in Appendix A.6).

RR of patients under ventilation is simulated across a time horizon with T =

28 by using the Gaussian process, which is widely used to fit time series clinical

data in medical research (Clifton et al. 2012, Colopy et al. 2017, Cheng et al. 2019).

Specifically, I let RR1
t and RR0

t denote the RR values in period t+1 under ventilation

and extubation, respectively. I simulate RR1
t+1 = RR1

t + ξt and RR0
t+1 = RR1

t + εt,

where ξt ∼ N (0, v1) and εt ∼ N (0, v0) are normal random variables. For any patient

under ventilation, the initial RR value is randomly generated from [22, 43] in period 1.

This is because RR values no less than 22 are classified into the abnormal status, and

the RR values of 99% patients in the first period of their ventilation are less than 43

in the dataset. In each period, the treatment-effect-based policy is adopted to make

decisions with probability ptej = p. I assume δ̄(i) = −1 for all i, since physicians in the

partner ICU tend to keep the patients under ventilation as long as the patients can

benefit more from intubation when using the treatment-effect-based policy. Patients’

next period states under a = 0 (extubation) and a = 1 (continue the ventilation) are

prognosticated by physicians with an accuracy level αa = Pr(ŝat+1 = j|sat+1 = j) (ŝat+1

denotes, under action a, the state in period t + 1 is prognosticated to be ŝat+1). For

simplicity and without loss of generality, I let αa=1 = αa=0 = α in the simulation.

Given the current state is i and the next state under action a is j, if the prognosis is

inaccurate, then the probability that the prognosticated state in next period is s is

assumed to be 1−α
N−1

with s 6= j.

For each patient, following the medical practice in ICU, I assume that s/he will

not be extubated in period 1. I use t0 to denote the first period that the action is
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a = 0 (i.e., extubation), then I select all simulated data from period 1 to period t0 and

use D to denote the selected dataset. I simulate the predictive variables pv0 and pv1

on dataset D. Specifically, I set pv0
t = µ0RR

0
t+1 +µ1 +ε0 and pv1

t = γ0RR
1
t+1 +γ1 +ε1,

where ε0 ∼ N (0, σ0) and ε1 ∼ N (0, σ1) are normal random variables. I train a linear

model to predict the censored RR values under action a, of which the model accuracy

is βa (details are presented in Appendix A.3). The predicted RR values are classified

into different states, and then, I know the predicted censored transitions. Using

the proportions of transitions on data with both observed and predicted censored

transitions in the simulation, I then derive P̃
a
.

Note that, in the simulation, I need to set the ground truth values of p and qse to

simulate the decision-making process. Hence, I know values of p and qse, which allow

us to solve the proposed structural model and then compare it with other estimation

methods. However, in practice, p and qse are unknown, and how to estimate p and qse

is challenging in the sense that it is usually unable to disentangle the severity-based

decisions from treatment-effect-based decisions in data. In this chapter, I propose

a two-stage estimation method. In the first stage, I build an ensembled tree model

considering the severity and treatment effect information to predict the decisions and

then select the p̂ and q̂se that maximize the log-likelihood of observing the decisions

as the estimators of p and qse (details are shown in Appendix A.3)2. In the second

stage, I use p̂, q̂se and Πa to solve the structural model and derive the estimated

TPM (P̂
a

E: termed as two-stage estimator).

The treatment effect values used in the ensembled model are derived based on the

predictions of censored observations. Hence, P̂
a

E is affected by the prediction accuracy

βa (affected by σ). For comparison, I also use the ground truth values of p and qse

to solve the structural model to estimate TPM under action a, which is denoted by

P̂
a

for a = 0, 1 (termed as one-stage estimator).

2It should be noted that, for the first stage estimation, I are unable to show the identifiability
analytically.
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In the simulation, I set p = 0.45 and qse = [0.2, 0.55, 0.2, 0.05], which are close to

the estimated values from the real data. v0 and v1 are randomly selected from [3, 10]

with 100 pairs. For each pair of v0 and v1, I simulate 30, 000 patients and consider α

from 0.6 to 1.0 with a step 0.02. Without lose of generality, I further let σ0 = σ1 = σ,

µ0 = γ0 = 2 and µ1 = γ1 = 1, where σ takes value from 0 to 10 with a step size

1. To account for the potential randomness, for each σ, I repeat the simulation of

the predictive variables 30 times. Then I generate β0 and β1, the estimators and the

performances of each estimation method.

1.4.3 Simulation: Results Analysis

In the simulation, I actually know physicians’ ground truth prognostic accuracy. The

structural model considering prognostic errors (see Section 1.3.3) can also be used

to estimate the TPMs under the two-stage estimation framework. I find that the

error-free model generally outperforms the prognostic-error embedded model unless

the actual prognostic accuracy is low (e.g., α < 0.65, more results are relegated in

Appendix A.4.4). As I mentioned, physicians tend to make treatment-effect-based

decisions when they are very confident in their prognosis. Moreover, the physicians’

prognostic information is usually unavailable in practice. Hence, in the analysis on-

wards, I focus on the comparisons between the error-free model and other estimation

methods.

To show the performance, I defineDist Struct = ||P a−P̂
a||norm, Dist Struct E =

||P a − P̂
a

E||norm, Dist Pred = ||P a − P̃
a||norm, Dist Obs = ||P a − Π̂

a||norm and

Dist Quad = ||P a − P̆
a||norm as the distances between the estimators and ground

truth TPMs, respectively. The smaller the distance is, the better the performance

is. I employ max-norm, 2-norm, and Frobenius-Norm as the matrix distance metrics

and use max-norm as a representation to illustrate the results (more results are rele-

gated to Appendix A.4.1). I summarize the key new notations in Table 1.2 for more
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convenient reference.

P̂
a

E: two-stage estimator

P̃
a
: estimated TPM (prediction incorporated)

P̆
a
: estimated TPM (quadratic programming)

Dist Obs: ||P a − Π̂
a||norm

Dist Struct: ||P a − P̂
a||norm

Dist Struct E: ||P a − P̂
a

E||norm
Dist Pred: ||P a − P̃

a||norm
Dist Quad: ||P a − P̆

a||norm
α: simulated prognostic accuracy
βa: accuracy of the predictive model
σ: the standard deviation for generating predictive variables (a lager
σ implies smaller βa)

Table 1.2: Additional Notation In Simulation Experiments

In Figure 1.4, I show the results of Dist Pred, Dist Struct, Dist Struct E,

Dist Obs and Dist Quad under different values of α and σ.

Comparisons Among P̂
a
, Π̂

a
and P̂

a

E

Observation 1.1. (1) The performance of the estimated TPM using the error-free

structural model, i.e., P̂
a
, and the observed TPM, i.e., Π̂

a
, are increasing and de-

creasing in α, respectively; (2) The two-stage estimator, i.e., P̂
a

E, outperforms P̂
a

if

α is relatively small and outperformed by P̂
a

otherwise; (3) The observed TPM is

outperformed by the two-stage estimator when α is relatively large.

For Observation 1.1(1), since the structural model I used is assumed to be error-

free, the performance of P̂
a

is negatively affected by physicians’ prognostic error (I

term this effect as NEerr). Obviously, NEerr is decreasing in α as a larger α results

in less prognostic error. Therefore, P̂
a

is closer (i.e., Dist Struct is smaller) to P a

as α increases. The performance of the observed TPM Π̂
a

is negatively affected

by ignoring treatment-effect-based censoring (I term this effect as NEte). If α is

small enough such that transitions are (nearly) uniformly randomly censored under
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Figure 1.4: Performances Comparison under Max Norm
σ = 0: β0 = β1 = 1; σ = 1: β0 ∈ (0.951, 0.957), β1 ∈ (0.960, 0.966); σ = 2: β0 ∈
(0.925, 0.930), β1 ∈ (0.915, 0.920); σ = 4: β0 ∈ (0.850, 0.855), β1 ∈ (0.830, 0.840);
σ = 7: β0 ∈ (0.726, 0.733), β1 ∈ (0.680, 0.687).

treatment-effect-based policy, then, Dist Obs tends to be 0. If physicians’ prognosis

become more accurate (i.e., α is larger), NEte becomes larger; hence, I observe that

Dist Obs is increasing (i.e., the performance is decreasing) in α for a = {0, 1}. I also

find that there exists a threshold αa ( e.g., α0 = 0.78) such that Dist Obs is smaller

than Dist Struct if α < αa and Dist Obs is larger than Dist Struct otherwise. These

observations suggest that it is better to use Π̂
a

to represent P a if physicians’ prognosis

is not very accurate; otherwise, it is better to use P̂
a

as a proxy of P a.

Given α, I can also find that the performance of P̂
a=1

is better than that of P̂
a=0

(i.e., Dist Struct is smaller under a = 1). I know that, under treatment-effect-based

policy, a = 1 is selected if δ ≤ −1, while a = 0 is selected if δ ≥ 0. Conditioning

on the treatment-effect-based policy is used and the transition is from state i to

state j under action a = 1 (a = 0), then the probability that this transition will be

observed in the data is
∑N

k=j+1 P
a=0
ik under a = 1 (

∑N
k=max(1,j) P

a=1
ik under a = 0) if

physicians’ prognosis is error-free; however, physicians’ prognosis is imperfect, which
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implies that the actual probability of observing the corresponding transition will be

different. Hence, the prognostic errors affect the performance of the error-free model

through terms
∑N

k=j+1 P
a=0
ik and

∑N
k=max(1,j) P

a=1
ik . Comparing with the summation:∑N

k=j+1 P
a=0
ik , there are more elements in the summation:

∑N
k=max(1,j) P

a=1
ik , then more

prognostic errors involved (i.e., NEerr is larger) in
∑N

k=max(1,j) P
a=1
ik , which may result

in worse performance for P̂
a=0

. I further test this by assuming a = 1 is selected if

δ ≤ 0 and a = 0 is selected otherwise, and the results show that P̂
a=0

tends to have

better performance.

Interestingly, from Observation 1.1(2), I find that P̂
a

(i.e., one-stage estimator) is

outperformed by P̂
a

E (i.e., two-stage estimator) under most situations even when σ is

large (e.g., Dist Struct E with σ = 7 is smaller than Dist Struct when α is not very

large, e.g., α ≤ 0.9). For the two-stage estimation, I find that the estimated p̂ tends

to be smaller than the ground truth p, which implies that, compared with the one-

stage estimator (the ground truth p is used), the two-stage estimator will receive less

negative impacts from prognosticated errors (i.e., reduced NEerr, which benefits the

two-stage estimator) but more negative effects from ignoring the treatment-effect-

based censoring (i.e., increased NEte, which deteriorates the two-stage estimator).

As I described above, when α becomes larger, NEerr and NEte become smaller and

larger, respectively

Bearing these results in mind, I discuss the relationship between the performances

of P̂
a

and P̂
a

E. When α is very large, e.g., α approaches 1, there is (nearly) no

prognostic error such that, comparing with the one-stage estimator, the performance

loss due to increased NEte dominates the performance gain from reduced NEerr for

the two-stage estimation; hence, Dist Struct E is greater than Dist Struct (i.e., P̂
a

E

is outperformed by P̂
a
). As α decreases, then NEerr increases and NEte decreases,

and the performance gain from reduced NEerr tends to dominate the performance

loss due to increased NEte. Therefore, as observed in the figure, Dist Struct E tends
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to be smaller than Dist Struct when α is relatively small. Similar arguments on the

interplay between NEte and NEerr can be applied to explain the relationship between

Dist Struct E and Dist Obs, which is presented by Observation 1.1(3).

The discussions above show that Dist Struct E depends on the marginal effects

of physicians’ prognostic errors and treatment-effect-based censoring. I find that

Dist Struct E tends to present a first decreasing and then increasing trend as α in-

creases, which suggests that, when α starts to increase from α0 (recall that under

α0 the treatment-effect-based censoring is (nearly) random), the marginal effect of

ignoring the treatment-effect-based censoring is dominated by the marginal effect of

reducing prediction error. As α further increases and passes a certain tipping point,

the positive marginal benefit from the increase of α becomes small. It then is dom-

inated by the marginal loss of ignoring treatment-effect-based censoring. I validate

these insights by choosing the probability of using a treatment-effect-based policy

from the interval (0, p) and then do the estimation (details are shown in Appendix

A.4.1).

Comparisons Among P̃
a
, P̂

a
and P̂

a

E

Observation 1.2. (1) The performance of estimated TPMs based on predictions,i.e.,

P̃
a
, decreases as the prediction accuracy decreases (i.e., σ increases); (2) P̃

a
is outper-

formed by P̂
a

even when the predictive accurate rate βa is greater than the prognostic

accuracy α; (3) The performance of the two-stage estimator P̂
a

E under σ = σ̈1 is better

than that of P̃
a

under σ = σ̈1 even when σ̈1 is much larger than σ̈2.

Observation 1.2(1) is intuitive. Moreover, the fluctuation of lines which represent

Dist Pred is because βa is not necessarily equal for any given σ under different

values of α. As for Observation 1.2(2), I have, for example, when β0 ∈ (0.850, 0.855),

Dist Struct is less than Dist Pred under action a = 0 as long as α > 0.75. These

insights also hold for other cases with different values of σ and the case that a = 1.
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For Dist Pred under action a, it is affected by βa in the sense that a larger βa

implies a smaller Dist Pred. However, there are several driven forces behind the

performance of the error-free structural model. As I discussed before, Dist Struct is

explicitly affected by α. Given the value of α and βa = α, intuitively, Dist Struct is

not necessarily smaller thanDist Pred. However, the decisions made under the wrong

prognosis may be the same as the decisions made without prognostic errors. From

this perspective, the structural model can hedge the risk from inaccurate prognosis

and then improve the overall decision making accurate rate, which is referred to as

the effective decision accurate rate and illustrated in Figure 1.5 under different α.

The red line denotes the overall effective decision accurate rate, and the blue line

denotes the effective decision accurate rate under the treatment-effect-based policy.

In line with the intuitions, the presented effective decision accurate rates are much

higher than α. I know that there is no prognosis involved under severity-based policy,

then the severity-based policy can also hedge prognostic errors. Combining the risk

hedging effects from both severity-based policy and the effective decision accurate

rate, I can observe that Dist Struct is smaller than Dist Pred even when α is less

than βa.
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Figure 1.5: Effective Decision Accurate Rate
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Following the analysis above, it is not surprising that Dist Struct E dominates

Dist Pred even when the σ forDist Struct E is much larger than the σ forDist Pred,

e.g., Dist Struct E with σ = 7 is not greater than Dist Pred with σ = 2 under most

values of α. Moreover, I also find that treatment-effect-based censoring has signifi-

cantly negative impact on βa in the sense that high ρ0 and ρ1 values result in very

low prediction accuracy, e.g., when ρ0 = ρ1 = 0.82, βa is smaller than 0.55 under

a = 0 and a = 1 (more details are presented in Appendix A.4.2). These findings

suggest that using a predictive model to recover the censored RR values may end up

with very low accuracy and, as a result, a very low performance of P̃
a
. However, the

performances of two-stage estimators are not very sensitive to the changes of σ.

For the performance of the quadratic programming method, I can see thatDist Quad

exceeds 0.6 under all cases, which suggests that P̆
a

deviate from P a significantly and

it is not a good estimator of the underlying TPM. From all these comparisons, I

can find that the error-free structural model outperforms other estimation methods

when physicians’ prognostic accuracy is reasonably high, and more specifically, the

two-stage error-free estimators, in general, dominate other estimators.

To further demonstrate the good performance of the proposed structural model,

in Appendix A.4.3, I derive the deviation matrices for the aforementioned estimators.

I show that, in the average sense, P̂
a

E is much closer to P a when compared with other

estimators and Π̂
a

tends to overestimate the effects of action a as the treatment-

effect-based policy keeps censoring transitions with worse future outcomes. In the

Appendix, I also investigate the percentage of entries in P̂
a

E that are closer to the

ground truth values when compared with P̃
a

and Π̂
a
. The results also suggest that

the structural model outperforms the other two methods in the sense that most entries

in P̂
a

E are closer to the corresponding entries in P a.
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MDP Performance

To illustrate the impacts of different estimators on the performance of MDP policy, in

the simulation, I formulate the extubation problem as an optimal stopping problem

under an MDP framework. I consider a finite horizon problem with 28 periods. To

mimic the medical practice, I further consider an initial period of t = 1, in which

patients under intubation will not be extubated. For the subsequent periods, the

physicians need to decide to continue the ventilation (a = 1) or to extubate the

patients (a = 0). Let c(s, a) denote the immediate state-dependent cost under action

a and state s. c(1, 0), c(2, 0), c(3, 0) and c(4, 0) are randomly sampled from sets

[10, 15], [18, 25], [38, 45], and [67, 75], respectively, and c(s, 1) = 8.

I let V Struct E(s), V pred(s) and V obs(s) denote the costs of patients whose initial

state is s by using the optimal policies obtained with P̂
a=1

E (under σ = 7 for the

illustration), P̃
a=1

and Π̂
a=1

, respectively. I further let V (s) denote the optimal cost

(i.e., derived under the ground truth TPMs) associated with patients whose initial

state is s. I repeat the sampling of c(s ∈ S, 0) 500 times, for each time, I solve the

MDP model, and then I present the average results of (V Struct E(s) − V (s))/V (s),

(V Pred(s) − V (s))/V (s) and (V Obs(s) − V (s))/V (s) when s = 3, 4 (the performance

gaps of s = 1 and s = 2 are very small) in Figure 1.6.

I find that P̂
a=1

E dominates Π̂
a=1

in the sense that (V Struct E(s) − V (s))/V (s)

is very small and always smaller than (V Obs(s) − V (s))/V (s) even when α is small

and σ is large. From this figure, in most cases, (V Obs(s) − V (s))/V (s) are greater

than 1% and even reach up to 4%, which are much worse than that from P̂
a=1

E .

In terms of the comparison between P̂
a=1

E and P̃
a=1

, given σ = 7, I can see that

(V Struct E(s)−V (s))/V (s) (i.e., nearly 0) is much smaller than (V Pred(s)−V (s))/V (s)

(i.e., larger than 2% and reach up to 3%). I also find that the performance of P̂
a=1

E

with σ = 7 is better than that of P̃
a=1

under σ = 3. I want to emphasize that

these results are only used as supplement shreds of evidence to further illustrate the
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Figure 1.6: MDP Performance Comparison
σ = 3: β1 ∈ (0.869, 0.874); σ = 5: β1 ∈ (0.781, 0.789); σ = 7: β1 ∈ (0.680, 0.687).

superiority and benefits of the structural model in TPMs estimation. When the cost

structure changes, the benefit of using P̂
a=1

E may also be changed.

Through the comparisons above, I can conclude that considering treatment-effect-

based censoring is critical during the estimation of patients’ health transitions, and

the proposed structural model is more informative and greatly outperforms other

potential estimation methods.

1.5 Case Study

In this section, I conduct a case study to estimate ground truth TPMs under the

intubation/extubation framework of an ICU. The analysis in this case study is quite

similar to that in the simulation except that the ground truth values of the proba-

bilities of using the two policies and correponding thresholds are unknown. In Sec-

tion 1.5.1, I present the clinical settings and discuss the sample selection procedure.

Parameters and TPMs estimations are described in Section 1.5.2. I use the MDP

framework to illustrate the necessity of considering treatment-effect-based censoring
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in Section 1.5.3.

1.5.1 Clinical Setting and Data Selection

I consider a dataset of patients who visit the cardiothoracic ICU of a tertiary hospital

in Singapore from March 2010 to October 2016. The dataset has 5,566 ICU admis-

sions during the study period, and each admitted patient contains detailed data that

include demographics, timestamps (admission time, discharge time, intubation time,

extubation time, chart time for clinical variables, etc.), and physiological data. The

dataset also provides comprehensive information on MV. Clinical results are recorded

every 15 minutes to 4 hours, except for laboratory tests, which usually are updated

daily. In the partner ICU, physicians will review the health conditions of patients un-

der invasive MV every 6 hours. For each visit, they will evaluate patients’ respiratory

conditions and then decide whether to extubate the patients.

In the dataset, I first exclude cases without MV performed during the ICU stays.

Besides, abnormal extubation (extubation at the end of life, extubation required by

patients, and unplanned extubation) cases are also not considered in this study. Due

to the high prevalence rate of complications associated with MV, the physicians in

the partner ICU seek to extubate patients under ventilation within one week except

for those who are in much more complicated health conditions. Hence, I remove

the patients with more than seven days of ventilation from the data sample. 30-day

ICU readmission cases and patients with too long LOS (i.e., longer than two months)

are also removed from the sample as such patients may have very different health

conditions (e.g., much severer than others). Moreover, patients who died within one

week after intubation, and intubated patients whose intubation time and extubation

time cannot be identified are also excluded from the sample. After the clean-up of

the dataset, I end up with 3122 patient entries.
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1.5.2 TPMs Estimation

Based on the clinical setting and medical practice in the ICU, I first set the decision

time interval equal to 6 hours. As patients’ states are well classified by RR values, now

I can estimate the observed TPMs Π̂
a=1

and Π̂
a=0

, which are potentially distorted,

from the data directly.

Π̂
a=1

=



0.805 0.128 0.052 0.015

0.570 0.284 0.121 0.025

0.210 0.259 0.395 0.136

0.173 0.156 0.233 0.448


Π̂
a=0

=



0.052 0.313 0.510 0.125

0.018 0.211 0.557 0.214

0.015 0.143 0.518 0.324

0.027 0.182 0.442 0.350


Physicians’ prognostic information is unavailable and cannot be recovered from

the data. Hence, I apply the error-free structural model in this case study. The

ground truth values of pte and qse are also unknown. Similar to the simulation, I use

the two-stage estimation method. Recall that, in the first stage estimation, the treat-

ment effect values are used in the ensembled model to predict the actions; however,

I do not have the treatment effect data directly. Hence, the predictions of treatment

effects are required. I train the predictive models with XGBoost(i.e.,Extreme Gradi-

ent Boosting) methods and 10-folds cross-validation to predict the censored outcomes

under a = 0 and a = 1. The details of predictive models are relegated to the appendix

A.5. In terms of the prediction performance, the out-of-sample accurate rate is up

to 0.685. I use the predictions to approximate physicians’ prognosis to derive the

predicted treatment effects.

Following the suggestions from the ICU physicians, I consider ptei = p and δ̄(i) =

−1 for all i ∈ S. By enumerating over the potential value of p and qse, I obtain

ptei = 0.437 (i = 1, 2, 3, 4) and qse = [0.173, 0.511, 0.231, 0.085]. Next I can estimate
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the TPM P̂
a

E using the proposed error-free structural model as follows:

P̂
a=1

E =



0.661 0.139 0.138 0.062

0.507 0.275 0.173 0.045

0.171 0.218 0.407 0.204

0.120 0.116 0.213 0.551


P̂
a=0

E =



0.033 0.292 0.529 0.146

0.008 0.145 0.553 0.294

0.007 0.079 0.375 0.539

0.019 0.143 0.400 0.438


I also estimate the TPMs with censored outcomes predicted by the predictive

models. Combining the predictions and observations, I estimate P̃
a

with MLE as

follow:

P̃
a=1

=



0.885 0.089 0.025 0.002

0.637 0.265 0.095 0.003

0.519 0.227 0.234 0.020

0.517 0.087 0.330 0.066


P̃
a=0

=



0.581 0.149 0.160 0.110

0.363 0.231 0.294 0.112

0.303 0.328 0.332 0.037

0.201 0.177 0.330 0.292


The results show that both Π̂

a
and P̃

a
are significantly different from P̂

a

E for

a = {0, 1}.

I also apply the quadratic programming method to estimate the TPM P̆
a

with

the identity matrix be the weighting matrix:

P̆
a=1

=



0.788 0.124 0.051 0.037

0.644 0.070 0.276 0.010

0.000 0.780 0.008 0.213

0.000 0.304 0.696 0.000


P̆
a=0

=



0.028 0.281 0.474 0.217

0.022 0.309 0.669 0.000

0.073 0.000 0.593 0.334

0.000 1.000 0.000 0.000


I find that there are many transitions with probability 0; however, from the ob-

served TPMs, I know that all transitions can be observed in the data, which indicates

that the quadratic programming method is not appropriate in this context.

As I described, physicians tend to make treatment-effect-based decisions only when

they are very confident in the prognosis; moreover, physicians’ prognostic accuracy

may be higher than the accuracy of predictive models described in this chapter as

the physicians possess additional experience which are not captured by the predictive

models. Hence, it is reasonable to assume that physicians’ prognostic accuracy is
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able to be higher than 0.7. From the simulation results in Figure 1.4, I find that P̂
a

E

greatly outperforms Π̂
a
, P̃

a
and P̆

a
when physicians’ prognostic accuracy is higher

than 0.7. Hence, in the case study, two-stage estimators are the best proxies of the

ground truth TPMs.

1.5.3 MDP Model and Performance Comparison

Similar to the simulation, I formulate the extubation problem as an optimal stopping

problem with a finite horizon MDP framework. Physicians in my partner ICU usually

consider extubating patients within seven days. Furthermore, physicians regularly

check ventilated patients every 6 hours. Then, I consider a decision period time is 6

hours, and consequently the total number of decision period is 28, i.e., t = 1, 2, ..., 28.

My objective is to minimize patient length of stay (LOS), which is one of the main met-

rics of patients and healthcare providers. I assume that patients’ LOS is geometrically

distributed (Chan et al. 2012), which essentially assumes that the LOS after intuba-

tion/extubation is independent of the ICU stay before the intubation/extubation.

From the data, I also do not find significant correlation between the LOS prior and

after intubation/extubation (correlation coefficient=0.01, p value=0.95). Hence, I

exclude the impact of prior intubation/extubation ICU stays on the estimation of

the cost associated with ventilation/extubation. Hereafter, LOS denotes ICU LOS

counted from intubation. Then I have c(s, a = 1) = 6 hours for all s ∈ S. While for

c(s, a = 0), it is state-dependent and estimated as the expected remaining LOS after

extubation (ELOS). For state s ∈ S, I define ELOS(s) =
∑Ns

i=1 RLOSi(s)/Ns, where

Ns is the number of patients extubated from state s and RLOSi(s) is the remaining

LOS after extubation of patient i with state s. ERLOS(j|s) =
∑Nj|s

i=1 RLOSi(j|s)/Nj|s

is the expected remaining LOS after extubation of patients transit from state s to

state j under extubation. Nj|s and RLOSi(j|s) denote the number of patients and

the remaining LOS after extubation of patient i transits from state s to state j with
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extubation.

It is important to note that the observational data has a potential selection bias on

extubation. Specifically, physicians may tend to extubate patients in relatively good

health conditions or with larger extubation associated treatment effects. Hence, the

potential costs of censored observations are not accounted for by ELOS. To justify this

problem, I apply a widely used method, propensity score weighting (PSW) adjustment

(Lee 2006), to correct the selection bias for cost estimation. The bias-corrected cost,

which is denoted by BLOS, is presented in Table 1.3.

Sample Size ELOS BLOS
State 1 1,792 90.74 94.03
State 2 548 94.53 106.85
State 3 249 98.47 120.75
State 4 115 115.77 140.13
ELOS: Biased cost; BLOS: Bias-corrected cost.

Table 1.3: Estimated Cost and Sample Size

I define the policies πo, πp and π∗ as the optimal policies derived with Π̂
a=1

,

P̃
a=1

and P̂
a=1

E , respectively (recall that in the optimal stopping MDP model, only

the TPMs under action a = 1 are used). By solving the MDP model, I present the

policies in Figure 1.7.

I find that πo, πp and π∗ are significantly different. πp shows that it is optimal to

extubate patients only when s = 1 and optimal to continue the ventilation otherwise.

πo implies that patients at state 2 should be extubated when the time is approaching

the end. While π∗ is even less conservative in the sense that all patients at state 2

should be extubated. Such differences are due to the fact that Π̂
a=1

and P̃
a=1

tend

to overestimate the effect of ventilation when compared with P̂
a=1

E .

As I mentioned, the two-stage estimators are the best proxies of the ground truth

TPMs, then I further show the difference between costs incurred by policy πo (πp)

and policy π∗ by using the two-stage estimators to represent the ground truth TPMs.

Let V (s|π) be the expected cost of applying policy π to state s patients in the initial
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Figure 1.7: Comparison of Optimal Markov Decision Process Policies:

(1) πo, πp and π∗ are the optimal MDP policies derived with Π̂
a=1

(i.e.,the observed

TPM), P̃
a=1

(i.e.,the estimated TPM based on predictions) and P̂
a=1

(i.e.,the two-
stage estimator), respectively.
(2) Black dots: extubation; white dots: ventilation. Areas below the black lines
represent extubation.

period. Then, I show the cost differences between πo(and πp) and π∗ in Table 1.4.

State s = 1 s = 2 s = 3 s = 4
V (s|πo)− V (s|π∗): hrs 0.89 1.43 1.99 1.87
V (s|πp)− V (s|π∗): hrs 0.91 1.45 2.01 1.91

Table 1.4: Cost Gap Between Different Policies

In Table 1.4, for example, applying policy πo results in a longer LOS by 1.99 hours

for State 3 patients in period 0 compared with applying policy π∗. This is equivalent

to say that about 8.3% patients with an initial state 3 may spend one extra day in

the ICU when applying policy πo (since 1.99 hours are 8.3% of one day). Given the

fact that about 5 million patients are admitted to ICUs annually in the US (Barrett

et al. 2014) and 40% of patients admitted to ICUs require mechanical ventilation

(Vincent et al. 2002), then prolonged LOS will lead to high monetary cost (at least

$3,968 per day for mechanically ventilated patients (Dasta et al. 2005)) and also bring

risk of infections. Moreover, longer LOS cause delayed admissions for other critical
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illness patients and, as a result, lead to higher mortality risks overall. Therefore, such

differences are significant in medical practice. All these results demonstrate that

estimating TPMs without (properly) addressing the treatment-effect-based censoring

can cause significantly higher costs.

1.6 Conclusion

Treatment-effect-based policies have become increasingly common in healthcare re-

search and practice due to the development of predictive techniques. Researchers and

practitioners also increasingly recognize the importance of accounting for censoring

during causal inference and/or empirical estimations. However, the researches on ad-

dressing the treatment-effect-based censoring in the estimation of health transitions

remain silent. This chapter fills this void by considering the impacts of treatment-

effect-based censoring on health transition during TPMs estimation. Specifically, I

propose a structural model to estimate TPMs. I analytically show the asymptotic

properties of the estimated TPMs derived by the structural model and illustrate the

structural model’s advantages by comparing it with other estimation methods with

comprehensive simulation experiments. I also implement the proposed model to esti-

mate patient health transitions using real censored data in ICUs extubation problem.

Formulating the extubation problem as a classical optimal stopping Markov Decision

Process model, I show that the proposed model, with more accurate estimated TPMs

considering censored data, can reduce the length of stay of patients in ICU compared

to other benchmark transition estimation methods. Therefore, my research demon-

strates that it is critical to consider treatment-effect-based censoring when estimating

health transitions in medical research and practice.

This work suggests several future research directions. First, as described, the proof

of the existence of solutions to a general bilinear system is still an open question in
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academic research. I partially address this issue by conducting extensive numerical

experiments, which show that the solution always exists in my context. Then, analyt-

ically prove the existence of solutions to the structural model will greatly contribute

to not only this type of research but also mathematical problems on bilinear systems

and its applications. Second, my main model assumes a prognostic error-free envi-

ronment. In this chapter, I also present the structural model with prognostic errors

incorporated and show that patients’ health transitions can be consistently recovered

as long as physicians’ prognostic information (e.g., accuracy and misclassification

matrix) is known. However, physicians’ prognostic information is usually unavailable

in a standard dataset utilized in the literature. The problem on how to estimate

physicians’ prognostic information could be very interesting and important. Third,

I only consider treatment-effect-based censoring in this study. Future studies may

combine this type of censoring with other data sample features or problems during

the estimation.
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Chapter 2

Wastewater Recycling Capacity Investment In

Urban Water Management

2.1 Introduction

Global urban water utilities have been facing unprecedented challenges to achieve

water sustainability. On one hand, the global water resources are shrinking (Boretti

and Rosa 2019). Richey et al. (2015) estimate that more than 30% of the world

largest groundwater systems are now in distress. Urban water demand, on the other

hand, is rising because of rapid urbanization, economic development and population

growth. Flörke et al. (2018) project that urban water demand is expected to rise by

80 percent by 2050. Such a hike means urban water demand will be more prominent

to exceed the current accessible supplies while these supplies are becoming increas-

ingly unreliable as climate change kicks in. Therefore, moving towards more holistic,

integrated approaches to urban water management is becoming more popular for

meeting increasing water needs. A number of cities, such as Los Angeles, Singapore

or Adelaide, have had substantial success tackling water sustainability by diversifying

water resources and supply strategies. In particular, wastewater plays a pivotal role

in water sustainability by closing the urban water cycle and serving as a consistent
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and reliable water source. Conventionally, wastewater is collected and then disposed

after a series of basic treatments (e.g., screening and grit removal, sedimentation,

filtration and disinfection) in wastewater treatment plants (WWTPs). Recent inno-

vations in water treatment technologies have paved the way for the wastewater to

be recycled (e.g., organics and dissolved solids removal by advanced membrane tech-

nologies) and used for several purposes, including industrial cooling and landscape

irrigation. Wastewater recycling requires an upfront capacity investment and this

investment decision is influenced by the availability of other water resources (e.g.,

freshwater and imported/desalinated water) as well as other idiosyncratic features

of urban water systems including different demand streams and uncertainties. This

work’s main objective is to study the water utility’s wastewater recycling capacity in-

vestment decision as a part of the integrated urban water management system while

considering the important idiosyncratic features of these systems.

In the operations management (OM) literature there is a vast amount of research

that studies the value of recycling/reusing items in the context of closed-loop supply

chains (see Atasu et al. 2008a, Guide Jr and Van Wassenhove 2009 and Souza 2013 for

overviews). The results derived by these papers are not directly applicable to urban

water systems because of their unique characteristics. In a typical urban water system

(see Figure 2.1), water demand is in multiple streams and each stream can be satisfied

with a different combination of alternative water resources. Specifically, conventional

freshwater can be treated to potable water, which is suitable for human consumption

and used to satisfy household demand. Wastewater, on the other hand, is usually

recycled to non-potable water and then used to meet non-household demand, e.g.,

for industrial purposes and landscape irrigation. Potable water can also be used

to meet non-household demand. In addition, desalinated seawater and/or imported

freshwater1 also serves as alternative urban water resources and can be treated to

1In Figure 2.1, for the ease of exposition, I use desalinated water to represent the last resort.
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Figure 2.1: Urban Water Supply Framework

potable water to satisfy both household and non-household demands.

Among these alternative water resources, freshwater is the cheapest, but it is

exposed to rainfall uncertainty. In addition, heavy rainfall events due to climate

change may result in the instantaneous maximum flows out of catchment areas, which

lead to storm overflows and urban floods that are costly to handle (Mun et al. 2021).

Recycled water is more expensive (from Figure 2.1, we know that the cost of recycled

water includes basic wastewater treatment cost and recycling cost) than freshwater

as wastewater treatment is more energy-intensive (Rygaard et al. 2011). Moreover,

as energy prices are uncertain due to climate change, the cost of recycled water is

subject to uncertainty. Desalinated seawater or imported freshwater, being the most

expensive water resource, serves as the last resort to satisfy any type of demand and

can provide an abundant supply. These unique features play significant roles in the

economic and sustainable implications of wastewater recycling investment in urban

water management.

Motivated by the need to move toward more integrated approaches in urban water

management, I analyze the wastewater recycling capacity investment and allocation
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decisions of a water utility by considering the unique characteristics of an urban

water system described above. The water utility operates an urban water system in

which all demands should be satisfied. For an exogenously given freshwater capacity,

the water utility chooses the wastewater recycling capacity to minimize the expected

cost in a single planning period. I model the decisions as a two-stage stochastic

problem in a stylized manner. In the first stage, the wastewater recycling capacity

is chosen under rainfall and recycling cost uncertainties2. In the second stage, after

these uncertainties are realized, given the capacity investment levels the water utility

allocates the freshwater, recycled water and desalinated/imported water to meet the

household and non-household demands in the most cost-effective way. Using this

framework, I answer the following main research questions:

i) What is the optimal wastewater recycling capacity to invest under rainfall

and recycling cost uncertainties?

ii) What are the impacts of rainfall and recycling cost uncertainties on the

optimal expected cost and the optimal recycling capacity?

iii) Are wastewater recycling capacity and freshwater capacity complements or

substitutes?

iv) Which water pipe system (freshwater or recycled water) should be prioritized

to reduce leakage to improve the urban water sustainability?

v) How does the investment on wastewater recycling affect urban water vulner-

ability and overflow risk?

My main results can be summarized as follows.

2As I described, the cost of recycled water consists two parts: basic treatment cost and recycling
cost, and is uncertain due to fluctuating energy prices. In the urban water system, all collected
wastewater must go through the basic treatment processes. Hence, the variability from basic treat-
ment processes will not play a role in the model. Hereafter, instead of using cost of recycled water
uncertainty, I focus on the recycling cost uncertainty.
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Solution to the Capacity Planning and Allocation Problems. I first solve for the

optimal water allocation scheme. The desalinated/imported water always serves as

the last resort to satisfy the unmet demand once the freshwater and recycled water

are completely used. Effectively, freshwater is the cheapest source; however, it is not

always the first resort to satisfy demand. As I described, all collected wastewater has

to go through a basic treatment regardless of whether it is disposed or recycled, the

optimal allocation is determined by the additional cost associated with the recycling

process (i.e., recycling cost), and this cost can be lower than the freshwater cost. I

find that the recycled water is dispatched in priority to meet non-household demand

if the recycling cost is sufficiently small or moderate and the amount of rainfall is not

too high to result in an overflow of freshwater from reservoirs.

For the optimal capacity decision, when it is profitable to invest, the firm invests

in the minimum investment level, which is the difference between the total demand

and freshwater capacity when the capacity cost is high. When the capacity cost is

low, the firm invests in the maximum investment level, which is the minimum of total

wastewater collected and non-household demand. In between, the optimal recycling

capacity is implicity characterized by a first-order condition.

Impacts of Freshwater Capacity and Uncertainties. I analyze the relationship be-

tween the optimal recycling capacity and the freshwater capacity. Common intuition

may suggest that these two types of capacities are substitutes. I prove that this in-

tuition is correct when there is no overflow cost. However, I find that this intuition

can be wrong and these two components can be complements when the freshwater

capacity is relatively large and the overflow cost is positive. This is because the risk

of overflow is lower with a larger freshwater capacity; hence recycled water can be

prioritized in a larger range of rainfall realizations. Thus, a higher recycling capacity

is preferred.

I then conduct sensitivity analysis, both analytically and numerically, to investi-
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gate the impacts of rainfall and recycling cost variabilities and their correlation on the

optimal expected cost and the optimal recycling capacity. To this end, I assume that

the recycling cost and rainfall follow a bivariate Normal distribution. I find that the

utility firm always benefits (i.e., the cost decreases) from a higher correlation but a

lower rainfall variability. Moreover, I find that the firm benefits from a lower recycling

cost variability when this variability is small, correlation is negative, and the mean

recycling cost is relatively large; otherwise, the firm benefits from a higher recycling

cost variability. The sensitivity results associated with the optimal recycling capacity

are structurally similar to those associated with the optimal expected cost.

Urban Water Leakage Reduction, Vulnerability and Overflow Risk. I also discuss

the sustainability of the integrated urban water system through water leakage reduc-

tion, urban water vulnerability and overflow risk. I find that the optimal expected cost

increases in urban water leakage ratios (freshwater or recycled water). Which water

pipeline system gets the priority in leakage reduction depends on the relationship be-

tween the freshwater and recycled water leakage ratios. An interesting observation is

that, given the recycled water and freshwater leakage ratios, if the freshwater leakage

ratio is small than a threshold, it is better to prioritize reducing freshwater leakage;

otherwise, the reduction of recycled water leakage should be prioritized. The vulnera-

bility reflects to what extent the urban water system fails to satisfy the demand when

the last water resort is excluded. I use the expected amount of desalinated /imported

water used to measure the vulnerability. The common intuition may suggest that the

urban water system is less vulnerable when the freshwater capacity is large. I provide

specific conditions under which this intuition is correct and extend it by showcasing

the conditions under which a larger freshwater capacity increases the system’s vulner-

ability. The impacts of the uncertainties on the vulnerability are similar to the effects

on the optimal expected cost characterized above. Water overflow or flood may also

greatly impact urban water sustainability by destroying water infrastructures and re-
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sulting in economic loss. This work investigates the urban water system overflow risk

and how the uncertainties and freshwater capacity affect the overflow risk. I find that

the overflow risk increases in the rainfall variability. As the cost variability increases,

the overflow risk increases if the correlation is positive and the mean recycling cost is

not very small.

I further complement my structural analysis with numerical studies based on prac-

tical instances in Chapter 3. Towards this end, I calibrate my model to represent the

urban water utility located in Adelaide, the capital city of South Australia. I use

publicly available data from the annual National Performance Reports and National

Water Account published by the Australia Bureau of Meteorology (ABM), comple-

mented by the data obtained from the extant literature and technical reports.

The remainder of this chapter is organized as follows. Section 2.2 reviews the re-

lated literature and discusses the contribution of this work. In Section 2.3, I introduce

the research problem in subsection 2.3.1 and present the mathematical model and op-

timal solutions in subsection 2.3.2. Subsection 2.3.3 studies the effects of uncertainties

on the optimal recycling capacity and the optimal expected cost. From subsection

2.3.4 to subsection 2.3.6, I investigate the measures on sustainability including water

leakage reduction, vulnerability and overflow risk and examine the effects of uncer-

tainties and correlation on these measures. I conclude this work and discuss the

limitations as well as the future research directions in Section 2.4.

2.2 Literature Review

This research is closely related to the OM literature that studies water-related man-

agement problems. The papers in this literature study a broad range of operational

issues related to water management, including water quality control (Sobel 1971,

Taylor 1973, Fiacco and Ghaemi 1982, Mulligan and Ahlfeld 2002), irrigation man-
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agement (Stoecker et al. 1985, Rabinowitz et al. 1988, Huh and Lall 2013), and flood

management (Eijgenraam et al. 2017). Similar to my work, a stream of papers in

this domain investigates water allocation problems. For example, Murali et al. (2015)

consider the municipal groundwater management problem in the presence of a water

trading market. Using a deterministic model, they maximize social welfare by opti-

mally deciding the quantities of groundwater to extract, export and import. Zhang

et al. (2016) analyze the water allocation problem in a developing region in Tucson.

They determine the optimal water allocation policy to minimize the expected distri-

bution and freshwater treatment costs while controlling the risk of water shortage.

I, in addition to the allocation problem, also consider the capacity planning prob-

lem in an urban water system with rainfall and recycling cost uncertainties. Capacity

planning problems in water systems have also been studied in the OM literature. Avi-

Itzhak and Ben-Tuvia (1963) analyze the optimal reservoir and pumping capacities to

minimize the cost per cubic meter of water pumped. Erlenkotter et al. (1989) develop

a model to determine the optimal timing for initiating a water capacity expansion

project when the future water demand exceeds the forecasted demand. Closest to my

work, Armstrong and Willis (1977) investigate the economic implications of capacity

planning and allocation decisions in a deterministic setting. Similar to my work, they

also consider multiple water resources, including imported water, desalinated water,

and freshwater, but do not incorporate recycled water in their model. Different from

Armstrong and Willis (1977), I focus on the wastewater recycling capacity and incor-

porate other important features (i.e., rainfall and recycling cost uncertainties) of an

urban water system in my model.

Capacity planning problems have also received considerable attention from the

water management literature. Srinivasan et al. (2010) propose a simulation frame-

work to evaluate the economic and supply risk performances of efficiency improve-

ment approaches such as reducing pipeline leakage and water supply augmentation
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via desalination and rainfall harvesting. Beh et al. (2015) develop a multi-objective

adaptive optimization approach under various uncertainties (e.g., rainfall, temper-

ature and demand) to investigate the optimal capacity investment path for water

resources, including seawater desalination and rainfall harvesting. Similarly, Fletcher

et al. (2017) develop a multi-stage simulation-based decision framework under supply

and demand uncertainties to evaluate the economic performance of urban water in-

vestment schemes with a special focus on the optimal desalination capacity decision.

Different from these papers, I focus on wastewater recycling capacity investment.

There are papers in this literature that consider wastewater recycling plants invest-

ment. For example, Woods et al. (2013) analyze the value of wastewater recycling and

compare the economic and environmental performances of centralized and decentral-

ized treatment schemes. Wu et al. (2017) study a multi-objective urban water supply

problem in the context that freshwater, recycled water and desalinated water are

used to meet urban demand. However, in terms of capacity decisions, they focus on

operating capacity adjustment. Similarly, assuming the design capacities are given,

Bhushan and Ng (2016) also integrate seawater desalination and wastewater recycling

into urban water systems under climate change and use a multi-objective optimization

embedded simulation method to optimize the operating capacities of desalination and

wastewater recycling. In this paper, they also consider multiple streams of demand

and wastewater is recycled for potable use. However, my work differs from Bhushan

and Ng (2016) in several aspects. First of all, I consider an uncertain recycling cost

that is subjected to climate change. Second, in my setting, recycled water can only

satisfy non-household use (or non-potable use), as commonly observed in practice.

Third, I specifically investigate the wastewater recycling capacity problem and try to

understand how the variabilities and correlation between the amount of rainfall and

recycling cost affect the value of wastewater recycling.

This research is also related to the growing OM literature on closed-loop sup-
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ply chain (CLSC) management. As reviewed by Atasu et al. (2008a), the papers in

this literature capture the unique features of CLSCs and study various challenging

operational, tactical and strategic problems. For operational and tactical problems,

a bunch of papers focuses on topics such as returned products acquisition and dis-

position (Ferguson et al. 2009, Galbreth and Blackburn 2010), reverse channel and

logistic management (Savaskan and Van Wassenhove 2006, Angelus and Özer 2020),

and inventory control (Van der Laan et al. 1999, Toktay et al. 2000, DeCroix and

Zipkin 2005, Calmon and Graves 2017). On the strategic side, research topics such as

the profitability of remanufacturing (Debo et al. 2005, Ferrer and Swaminathan 2006,

Atasu et al. 2008b), the impact of remanufacturing on new product design (Atasu

and Souza 2013), CLSC network design (Fleischmann et al. 2001, Üster and Hwang

2017), product take-back strategies or legislations (Agrawal et al. 2012, Oraiopoulos

et al. 2012, Atasu and Subramanian 2012) and collection strategies (Savaskan et al.

2004) have been studied. Like the papers in this literature, I study a closed-loop

urban water system in which water is reused through wastewater recycling. How-

ever, my research differs from the papers in this literature in several aspects. First

of all, most of the papers in this literature study product reuse considering the com-

petition between OEMs and remanufacturers and focus on cannibalization between

new and remanufactured products. In my research, competition is not an issue as

a central planner (the water utility) manages the whole urban water system to sat-

isfy demand in the least costly way. Cannibalization is also irrelevant as I assume

that the demand for potable and non-potable water is exogenously given. Moreover,

remanufacturing is a cheaper alternative to new product manufacturing, and the ca-

pacities are either infinite or limited with exogenously given values. In my work,

wastewater recycling is more expensive than freshwater treatment, and wastewater

recycling capacity is optimized to minimize the cost. In CLSC literature, some pa-

pers are studying the capacity investment decisions of remanufacturing and recycling
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facilities. Among these papers, Georgiadis et al. (2006), Vlachos et al. (2007) and

Georgiadis and Athanasiou (2010) study a dynamic capacity planning problem in

CLSCs using simulation methods under different contexts. These papers investigate

how the product life cycles and products return patterns affect the expansion of used

product collection and remanufacturing capacities. Debo et al. (2006) consider the

joint life-cycle dynamics of new and remanufactured products and determine their

optimal diffusion path. Using numerical optimization, they show how the capacity

requirements for new products manufacturing and used products remanufacturing

evolve over the product life cycle. Francas and Minner (2009) examines the capacity

decisions of two alternative manufacturing network configurations. Like in my work,

they formulate the problem as a two-stage stochastic optimization model. In the first

stage, the capacities of remanufacturing and new production plants are selected. In

the second stage, the quantity of new and remanufactured items is determined after

the demand and product return uncertainties are resolved. They numerically solve

the model and show the impacts of investment cost, network size and market struc-

ture on the decisions and performances. Unlike these papers, my research focuses on

optimizing wastewater recycling capacity under rainfall and recycling cost uncertain-

ties in a setting where freshwater and recycled water are partially substitutable to

serve urban demand or perfectly substitutable to serve non-household demand. My

work attempts to provide an analytical framework to understand the implications of

wastewater recycling capacity optimization on sustainable urban water management

and how the uncertainties affect these implications.
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2.3 Wastewater Recycling Capacity Planning: Prob-

lem, Model, and Analysis

In this section, I analyze the wastewater recycling capacity investment problem using

a mathematical optimization model. I describe the research setting and introduce

the notations in subsection 2.3.1. The optimization model and optimal solutions

are discussed in subsection 2.3.2. I then conduct extensive analysis on the effects of

uncertainties on the optimal recycling capacity and optimal expected cost (section

2.3.3), leakage reduction (section 2.3.4) the urban water vulnerability (section2.3.5)

and overflow risk (section 2.3.6).

2.3.1 Problem Description

The following mathematical representation is used throughout the text: a realization

of the random variable ỹ is denoted by y. The expectation operator and probability

are denoted by E and Pr, respectively. The monotonic relations are used in the weak

sense unless otherwise stated. Subscripts f , r, and d denote freshwater, recycled water

and desalinated water-related parameters and decision variables. All the proofs are

relegated to the appendix.

I consider an urban water utility that decides on the wastewater recycling capac-

ity and allocation of different water resources (freshwater, recycled water and desali-

nated/imported water) to satisfy household and non-households demand to minimize

the expected cost in a single planning period. I assume that all demand should be

satisfied and treat that the household demand and non-household demand as the

maximum potential demand in the planning period. I model the utility’s decisions

as a two-stage problem. In the first stage, the wastewater recycling capacity Kr is

chosen at a unit cost wr under rainfall and wastewater recycling cost uncertainties.

The amount of available freshwater, which is uncertain due to rainfall uncertainty,
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and the wastewater recycling cost are denoted by s̃ and c̃r, respectively. In the second

stage, after realizing these uncertainties, the quantities of fresh water, wastewater for

recycling and seawater/imported freshwater are decided to meet household and non-

household demands in the most cost-effective way. Specifically, qf units freshwater is

dispatched from the reservoirs and treated at a unit treatment cost cf . The quan-

tity qf is subjected to s̃ and the freshwater storage and treatment capacities. In the

analysis, for the ease of exposition, I assume that freshwater storage and treatment

capacities are the same and termed as freshwater capacity, which is denoted by Kf .

After the treatment, the freshwater is turned into βfqf units of potable water, where

βf ∈ (0, 1) is the freshwater recovery ratio (i.e., the amount of potable water recovered

from a unit of freshwater). The potable water is then supplied to meet household

demand Dh and/or non-household demand Dnh. If the remaining freshwater in the

reservoir after dispatching is too much and exceeds a certain level (i.e., s− qf > αKf ,

α ∈ (0, 1] measures the safety water storage level for reservoirs), as discussed and

modelled in Mun et al. (2021), there is overflow/flood. Like in Mun et al. (2021), I

also consider the economic loss resulting from overflow and use of to denote the unit

overflow cost. Without loss of generality, I set α = 1 throughout the text; hence, the

overflow cost is of (s− qf −Kf )
+.

The amount of wastewater water collected from households and non-households

is equal to qu = βhDh + βnhDnh where βh and βnh denote the wastewater collection

rates from household and non-household, respectively. The collected wastewater will

undergo a series of basic treatments in WWTPs by incurring a unit basic treatment

cost c̃b. The treated wastewater, instead of being discharged, may be further recycled

to non-potable water in water recycling plants (WRTs) to satisfy non-household de-

mand. Let c̃r denote the unit recycling cost; hence, the total cost of a unit of recycled

water is c̃t = c̃b + c̃r. I let qr be the quantity of collected wastewater that is recycled

and βr ∈ (0, 1) be the recovery ratio of recycled water (i.e., βr unit of recycled water
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is obtained from a unit of wastewater). Hence, βrqr units of recycled water is used

to satisfy non-household demand. Moreover, qr is constrained by qu and Kr. The

utility also use desalinated seawater/imported water to satisfy the demand streams

at a unit cost csd. For brevity, I focus on desalinated seawater hereafter unless oth-

erwise stated. In this text, I let qd be the amount of desalinated water (i.e., potable

water desalinated from seawater) required to meet the demand. The corresponding

water recovery ratio is denoted by βd; hence cd = csd/βd denotes the effective unit

desalination cost. I further assume that the desalination capacity is sufficiently large;

hence there is no constraint on the amount of desalinated water available.

I assume that (s̃, c̃r) follow a bivariate distribution with s̃ ∈ [s0,+∞) and c̃r ∈

[cr, c̄r] (s0 ≥ 0 represents the deterministic amount of freshwater available at the

beginning of the period, and cr > 0), bounded expectation (µs, µc) with covariance

matrix Σ, where Σ00 = σ2
s , Σ11 = σ2

c , Σ01 = Σ10 = ρσsσc, and ρ denotes the

correlation coefficient.

It should be noted that pipeline transportation may also be costly in some cases;

hence, the mentioned freshwater treatment cost cf , wastewater basic treatment and

recycling costs (c̃b and c̃r) and seawater desalination cost csd also incorporate the

associated water transportation and distribution costs. Without loss of generality, I

assume that the effective freshwater treatment cost is less than the potential smallest

effective total cost of recycled water (i.e., ct/βr > cf/βf ) and the effective desalination

cost is the largest of the three such that cd > c̄t/βr, where c̃t ∈ [ct, c̄t]. This assumption

is consistent with the fact that desalinated water is used as the last resort to satisfy

household and non-household demands in practice. For the ease of exposition, I

further assume Kf ≤ Dh+Dnh
βf

(the results presented also hold under the case that

Kf >
Dh+Dnh

βf
). I also highlight that the capacities Kf and Kr in this context can

be interpreted as the capability of treating Kf units of freshwater and recycling Kr

units of wastewater (after basic treatment) in a single period.
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2.3.2 Model and Optimal Solutions

This section presents the optimization model and the optimal solutions for the urban

water utility’s wastewater recycling capacity and water allocation decisions. I solve

the problem using backward induction.

In stage 1, the urban water utility chooses the recycling capacity Kr. In stage 2,

the utility observes the rainfall and recycling cost realizations (s, cr). In this stage,

constrained by the freshwater capacity Kf and the recycling capacity Kr, the utility

optimally decides on qf , qr and qd to satisfy the demand. The amount of desalinated

water dispatched (qd) can be expressed as a function of the amount of freshwater (qf )

and wastewater for recycling (qr) as seawater desalination serves as the last resort

to satisfy unmet demand (if any), i.e., qd = Dh + Dnh − βrqr − βfqf . I formulate

the urban water utility’s problem as a multi-variable cost minimization problem as

follows:

min
qf ,qr

Z(qf , qr)

s.t. qf ≤ min(Kf , s), (2.1)

qr ≤ min(βhDh + βnhDnh,
Dnh

βr
, Kr), (2.2)

βrqr + βfqf ≤ Dh +Dnh, (2.3)

qf ≥, 0 (2.4)

qr ≥ 0 (2.5)

with

Z(qf , qr)=̇cb(βhDh + βnhDnh − qr) + ctqr + of (s− qf −Kf )
+ +

cfqf + cd(Dh +Dnh − βrqr − βfqf )

In the objective function Z(qf , qr), the first term represents the basic treatment cost of

wastewater for disposal, the second term is the cost of recycled wastewater, the third

term denotes the overflow cost and the last two terms are the freshwater treatment

and desalination costs, respectively. Constraint (2.1) ensures that the quantity of
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freshwater dispatched is limited by the capacity Kf and the realized amount of rain-

fall, constraint (2.2) guarantees that the quantity of recycled wastewater is limited

by the amount of wastewater collected, the recycling capacity and the non-household

demand and constraint (2.3) makes sure that the total quantity of freshwater and recy-

cled water dispatched does not exceed the total demand. As all collected wastewater

undergoes the basic treatment procedures, the objective function is rewritten as

Z(qf , qr) = cb(βhDh + βnhDnh) + crqr + of (s− qf −Kf )
+ +

cfqf + cd(Dh +Dnh − βrqr − βfqf )

I define the following parameters for ease of exposition:

� Let Sfmax = βf min(Kf , s), which is the maximum amount of potable water that

can be treated from freshwater.

� Let Srmax = min(βr(βhDh+βnhDnh), Dnh, βrKr), which is the maximum amount

of recycled water that can be dispatched to satisfy non-household demand.

� Let τ1(Kr) = Dh+Dnh−Srmax
βf

, which is the minimum amount of freshwater required

to satisfy demand when the maximum amount of recycled water is dispatched

and desalinated water is not available

� Let τ2 = Dh+Dnh
βf

, which is the minimum amount of freshwater required to satisfy

demand when the recycled water and desalinated water are not available

� Let τ3(Kr) = τ1(Kr) + Kf , which is the maximum amount of freshwater that

the system can handle such that no overflow occurs when the maximum amount

of recycled water is dispatched and desalinated water is not available

� Let τ4 = τ2 +Kf , which is the maximum amount of freshwater that the system

can handle such that no overflow occurs when the recycled water and desalinated

water are not available
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To rule out uninteresting cases, I assume (cf − of )/βf > cr/βr and cf/βf < c̄r/βr.

Proposition 2.1 characterizes the optimal amount of freshwater, recycled water and

desalinated water dispatched that minimize Z(qf , qr).

Proposition 2.1. If Kf < τ1(Kr), then the optimal solution is:

(q∗f , q
∗
r , q
∗
d) =

(
Sfmax/βf , S

r
max/βr, Dh +Dnh − Srmax − Sfmax

)
Otherwise,

(q∗f , q
∗
r , q
∗
d) =



(s, Srmax/βr, Dh +Dnh − Srmax − βfs) (s,cr) ∈ Ω1

(
min(s,Kf ,

Dh+Dnh
βf

), (Dh +Dnh − βfq∗f )/βr, 0
)

(s, cr) ∈ Ω2

⋃
Ω6

(
Dh+Dnh−Srmax

βf
, Srmax/βr, 0

)
(s, cr) ∈ Ω3

⋃
Ω4

(s−Kf , (Dh +Dnh − βf (s−Kf ))/βr, 0) (s, cr) ∈ Ω5

with

� Ω1 = {(s, cr) : s ≤ τ1(Kr), cr ≥ cr}

� Ω2 = {(s, cr) : s > τ1(Kr), cr ≥ cf
βr
βf
}

� Ω3 = {(s, cr) : τ1(Kr) < s ≤ τ3(Kr), cr < cf
βr
βf
}

� Ω4 = {(s, cr) : τ3(Kr) < s, cr ≤ cr ≤ (cf − of ) βrβf }

� Ω5 = {(s, cr) : τ3(Kr) < s ≤ τ4, (cf − of ) βrβf ≤ cr ≤ cf
βr
βf
}

� Ω6 = {(s, cr) : s > τ4, (cf − of ) βrβf ≤ cr ≤ cf
βr
βf
}
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Figure 2.2: Second Stage Solutions

When Kf < τ1(Kr), freshwater capacity is sufficiently small such that the water

demand cannot be satisfied without desalinated water for all realizations of rainfall.

When Kf > τ1(Kr), there is enough freshwater capacity to satisfy demand together

with the recycled water; hence desalinated water is only necessary when the rainfall is

small (i.e., when s < τ1(Kr) as in region Ω1 in Figure 2.2). In both cases, it is optimal

to supply the maximum quantity of freshwater (i.e., min(s,Kf )) and recycled water

available to meet the demand as they are cheaper sources compared to desalinated

water. The rest of the demand (i.e., Dh+Dnh−Srmax−Sfmax) is satisfied by desalinated

water.

When both the freshwater capacity and the rainfall are sufficiently large (i.e.,

Kf ≥ τ1(Kr) and s ≥ τ1(Kr), respectively), the use of desalinated water is avoided.

In this case, when the recycling cost is high (i.e., cr > cf
βr
βf

as in region Ω2 in Figure

2.2), the priority to satisfy the non-household demand is given to freshwater. The
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rest of the demand (if there is any) is satisfied by recycled water. The amount of

freshwater dispatched to meet household and non-household demands is limited by

the amount of freshwater available (s) and the freshwater capacity (Kf ).

When the recycling cost is moderate (i.e., cr ≤ cf
βr
βf

), the priority to satisfy

the non-household demand is given to recycled water as long as there is no risk of

overflow in the reservoir (s ≤ τ3(Kr) as in region Ω3 in Figure 2.2). In this case,

recycled water is used as much as available (S
r
max

βr
) and the rest of the demand is

satisfied by freshwater (Dh+Dnh−Srmax
βf

). The same resource allocation is observed even

if the risk of overflow arises with the maximum usage of recycled water available as

long as the recycling cost is smaller than the marginal benefit of using freshwater to

meet non-household demand when there is an overflow (i.e., cr ≤ (cf − of ) βrβf as in

region Ω4 in Figure 2.2). However, if the recycling cost is larger than this marginal

benefit (i.e., (cf − of )
βr
βf

< cr ≤ cf
βr
βf

) and if the overflow can be prevented with

the usage of freshwater to satisfy non-household demand (i.e., τ3(Kr) < s ≤ τ4 as in

region Ω5 in Figure 2.2), then the priority to satisfy non-household demand is given

to freshwater to an extent to prevent overflow (i.e., q∗f = s−Kf ) and the rest of the

demand is satisfied by recycled water (i.e., Dh +Dnh − βfq∗f ). If the overflow cannot

be prevented even with the maximum usage of freshwater (i.e., s ≥ τ4 as in region Ω6

in Figure 2.2), then it is optimal to use freshwater as much as possible. The rest of

the demand (if there is any) is satisfied by recycled water.

In stage 1, the urban water utility chooses the optimal recycling capacity K∗r under

rainfall and recycling cost uncertainties so as to minimize the expected cost V (Kr),

where

V (Kr)=̇ Ẽ
cr,s̃

(Z∗(Kr, qf , qr; s̃, c̃r) + ωrKr)

and Z∗(Kr, qf , qr; s, cr) denotes the optimal stage 2 cost for a given recycling ca-

pacity Kr. The second stage results show that it is never optimal to set the re-

cycling capacity larger than min
(
βhDh + βnhDnh,

Dnh
βr

)
, thus I focus on the case
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where Kr ≤ min
(
βhDh + βnhDnh,

Dnh
βr

)
. To rule out uninteresting cases, I assume

that
Dh+Dnh−βfKf

βr
≤ min

(
βhDh + βnhDnh,

Dnh
βr

)
3, which implies that Kf ≥ Kf =

(Dh +Dnh −min (βr(βhDh + βnhDnh), Dnh))/βf .

Let

md=̇
c̃r
βr
− cd,

mno
f =̇

c̃r
βr
− cf
βf
,

mo
f =̇

c̃r
βr
− cf − of

βf

where md, m
no
f and mo

f denote the unit marginal benefit/cost (a negative value means

benefit) of recycling and the unit marginal benefit of recycling when the recycled unit

replaces desalinated water, freshwater in the case of no overflow and freshwater in the

case of overflow respectively.

Proposition 2.2 characterizes the optimal recycling capacity.

Proposition 2.2.

There exist three thresholds ω0
r , ω

1
r , ω

2
r with ω0

r ≤ ω1
r < ω2

r such that

(i) if ωr > ω2
r , then K∗r = 0;

(ii) if ω1
r < ωr ≤ ω2

r , then K∗r =
Dh+Dnh−βfKf

βr

(iii) if ω0
r < ωr ≤ ω1

r , then K∗r solves ∂V (Kr)
∂Kr

∣∣∣∣
K∗r

= M(Kr)|K∗r + ωr = 0;

(iv) if ωr ≤ ω0
r , then K∗r = min

(
βhDh + βnhDnh,

Dnh
βr

)
.

where

M(Kr) =E[(mdβr)|(s̃, c̃r) ∈ Ω1]Pr((s̃, c̃r) ∈ Ω1)

+ E[(mno
f βr)|(s̃, c̃r) ∈ Ω3]Pr((s̃, c̃r) ∈ Ω3)

+ E[(mo
fβr)|(s̃, c̃r) ∈ Ω4]Pr((s̃, c̃r) ∈ Ω4)

(2.6)

is the expected marginal benefit of installing an additional unit of recycling capacity

for Kr ∈
[
Dh+Dnh−βfKf

βr
,min

(
βhDh + βnhDnh,

Dnh
βr

)]
, and ω2

r = −Ec̃r,s̃[mdβr], ω
1
r =

3If
Dh+Dnh−βfKf

βr
> min

(
βhDh + βnhDnh,

Dnh

βr

)
, the optimal recycling capacity K∗r = 0 if

ωr ≥ ω0
r (ω0

r is defined in Proposition 2.2) and K∗r = min
(
βhDh + βnhDnh,

Dnh

βr

)
otherwise.
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−M
(
Dh+Dnh−βfKf

βr

)
, and ω0

r = −M
(

min
(
βhDh + βnhDnh,

Dnh
βr

))
.

The optimal recycling capacity K∗r is characterized by comparing the unit capacity

cost ωr with the expected marginal benefit of an additional unit of capacity. In

stage 2, the marginal benefit takes different forms as it depends on the rainfall and

recycling cost realizations. When Kr ∈
[
Dh+Dnh−βfKf

βr
,min

(
βhDh + βnhDnh,

Dnh
βr

)]
,

the unit marginal benefit depends on whether the additional unit of capacity replaces

desalinated water, freshwater in the case of no overflow and freshwater in the case of

overflow. For this case, we have Kf ≥ τ1(Kr), then, for (s, cr) ∈ Ω1, the additional

unit of recycling capacity, being a cheaper alternative, helps to replace βr units of

desalinated water, hence the marginal benefit is given by mdβr. For (s, cr) ∈ Ω3

and (s, cr) ∈ Ω4, the additional unit of recycling capacity helps to replace βr units

of freshwater as it has the priority, hence the marginal benefit is given by mno
f βr

and mo
fβr as there is no overflow in region Ω3 and there is overflow in region Ω4,

respectively. For the other regions (i.e., Ω2,Ω5 and Ω6), the freshwater has priority

over recycled water, hence the marginal benefit is zero.

When Kr ∈
[
0,

Dh+Dnh−βfKf
βr

)
, we have Kf < τ1(Kr). Then, as total demand

cannot be met without desalinated water, the additional unit of recycling capacity

replaces βr units of desalinated water for all realizations of s̃ and c̃r. Thus, the

marginal benefit is given by mdβr, which is the same for all Kr ∈
[
0,

Dh+Dnh−βfKf
βr

]
.

Hence, K∗r =
Dh+Dnh−βfKf

βr
if ω1

r < ωr ≤ ω2
r , and K∗r = 0 if ωr > ω2

r .

Remark 1. The intuition is very similar when Kf > τ2 = Dh+Dnh
βf

with one particular

exception. In this case, as Kf > τ2, we never have the situation where the total

demand cannot be met without desalinated water for all realizations of s and cr, thus

the discontinuity in the marginal benefit at Kr =
Dh+Dnh−βfKf

βr
is not observed, hence

K∗r smoothly decreases with ωr.

Figure 2.3 illustrates the optimal recycling capacity K∗r .
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Figure 2.3: Optimal Recycling Capacity

I make an interesting observation about the behavior of Kr with respect to Kf

for a given ωr ∈ (ω0
r , ω

2
r) in Corollary 2.1 and Figure 2.4.

Corollary 2.1. Considering ω0
r < ωr < ω2

r , K∗r linearly decreases in Kf if ω1
r ≤ ωr <

ω2
r and increases in Kf if ω0

r ≤ ωr < ω1
r .

Common wisdom may suggest that the optimal recycling capacity K∗r and freshwa-

ter capacity Kf are substitutes. I prove this intuition is correct when Kf is relatively

small (i.e., the optimal recycling capacity is set such that the total freshwater and

recycling capacity is just enough to meet total demand and hence K∗r decreases in

Kf ) by Corollary 2.1. Surprisingly, I also find that these two capacities can be com-

plements when Kf becomes large. This is because, when Kf increases and becomes

relatively large, the total freshwater and recycling capacity exceed the total demand.

In this regard, which water source should be prioritized to serve the demand affects

the capacity investment. Specifically, a larger freshwater capacity implies that the

reservoirs’ capability of holding the excess rainfall also increases; hence, the risk of

overflow decreases. Thus the recycled water can be dispatched as the priority resource

to meet the non-household demand in a larger range of rainfall realizations; hence it

becomes optimal to increase K∗r when Kf increases.
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6

Note: Kmax
r =

Dh+Dnh−βfKf

βr
and Kmin

r is the K∗r when Kf makes ωr = ω1
r ,

respectively.

Figure 2.4: Impact of Freshwater Capacity On the Optimal Recycling Capacity

2.3.3 The Impacts of the Uncertainties

In this section, I investigate how the rainfall and recycling cost variabilities (σs and

σc) and their correlation (ρ) affect the optimal expected cost V ∗ and the optimal

recycling capacity K∗r . Throughout this section, I assume (s̃, c̃r) follow a bivariate

Normal distribution. I also assume that the freshwater capacity is larger than the

expected amount of freshwater (i.e., Kf ≥ µs) and the expected amount of freshwater

is insufficient to satisfy all household demand on expectation, i.e., Dh ≥ βfµs. These

assumptions are reasonable and validated by the practical data presented in Chapter

3.

I first characterize how the thresholds ω0
r , ω

1
r and ω2

r change with the variabilities

and correlation in Lemma 2.1.

Lemma 2.1. (1) ω2
r is independent of σs, σc and ρ;

(2) ω0
r and ω1

r increase in ρ and decrease in σs;
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(3) ω0 and ω1 increase in σc if µc ≤ (cf − of ) βrβf or ρ ≥ 0; otherwise, there exists a

threshold σ̂c(Kf ) such that the thresholds decrease in σc on (0, σ̂c(Kf )) and increase

in σc on [σ̂c(Kf ),+∞).

Following the results in Lemma 2.1, I show the global effects of ρ, σs and σc on

the optimal expected cost in Proposition 2.3.

Proposition 2.3.A (Rainfall Variability). V ∗ increases in σs.

Proposition 2.3.B (Cost Variability).

(1) If ρ ≥ 0, V ∗ decreases in σc;

(2) Otherwise, (i) if µc ≤ (cf − of ) βrβf , V ∗ decreases in σc; (ii) if µc > (cf − of ) βrβf ,

there exists a threshold σ̄c(Kf ) such that V ∗ increases in σc for σc ∈ (0, σ̄c(Kf )) and

decreases in σc for σc ∈ [σ̄c(Kf ),+∞).

Proposition 2.3.C (Correlation). V ∗ decreases in ρ.

Proposition 2.3.C demonstrates that a higher correlation is always (weakly) ben-

eficial as it reduces the optimal expected cost. When the investment cost is high

(e.g., ωr ≥ ω1
r), the optimal recycling capacity is either

Dh+Dnh−βfKf
βr

or 0, which

implies that either the recycling capacity is fully utilized or recycling is not used at

all. In both cases, the optimal water allocation and the optimal expected cost are

independent of the correlation ρ. If the unit recycling capacity cost is moderate, e.g.,

ωr ∈ (ω0
r , ω

1
r), the optimal expected cost decreases in ρ. The intuition is as follow: a

higher ρ makes it more likely for the rainfall to be small (large) when the recycling

cost cr is low (high). Recycled water becomes more likely to be the priority resource

to be dispatched when the recycling cost is low, resulting in the negative impact of

the small rainfall to be mitigated. Similarly, freshwater becomes more likely to be

the priority resource to be dispatched when the recycling cost is high, resulting in the

negative impact of a high recycling cost to be mitigated as the amount of recycled
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water dispatched is low. This also helps to reduce the overflow cost as the amount of

freshwater dispatched will more likely be high when the rainfall is also large.

Proposition 2.3.A shows that a higher rainfall variability (σs) is undesirable as it

may increase the optimal expected cost. High and low rainfall realizations become

more likely with an increase in σs. A low rainfall realization is always detrimental (i.e.,

the expected cost is higher), while a high rainfall realization could be beneficial as long

as it does not result in overflow. Specifically, with an increase in σs, the expected

overflow cost and the expected cost of replacing recycled water with freshwater to

prevent overflow increases as it is more likely to have high rainfall realizations; In

addition, the expected amount of desalinated water used, hence, the expected cost

increases as well because it is also more likely to have low rainfall realizations.

Proposition 2.3.B demonstrates that the impacts of recycling cost variability (σc)

on the optimal expected cost depends on the average recycling cost (µc) and the

correlation (ρ). High and low recycling cost realizations become more likely with an

increase in σc. A lower recycling cost (cr) is always beneficial as it reduces the expected

cost and a higher cr is undesirable as it increases the expected cost. However, when

the correlation ρ is positive, a high cr realization is more likely to be associated with a

high rainfall realization, indicating that the likelihood of using recycled water as the

priority source decreases and hence weakens the negative effect on the expected cost.

Therefore, the optimal expected cost decreases. When the correlation is negative, a

high (low) cr is more likely to be associated with a low (high) rainfall realization.

In this case, when the rainfall realization is low, recycled water is more likely to be

prioritized to meet the demand. As cr is high, the expected cost increases. When

the rainfall realization is high, it is more likely to have a low cr, which is beneficial.

Moreover, if cr is sufficiently small to make the recycling water as the priority source

(i.e., the likelihood of being in region Ω4 is high enough), the benefit from a lower cr

is sufficiently large and tends to dominate the negative effect from a higher cr. In this
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regard, the optimal expected cost decreases in the recycling cost variability. Moreover,

I identify that the likelihood of being in region Ω4 is high enough if µc ≤ (cf − of ) βrβf
or if µc > (cf − of ) βrβf and σc is high enough, i.e., σc ∈ [σ̄c(Kf ),+∞). Otherwise, if

µc > (cf − of ) βrβf and σc is low, i.e., σc ∈ [0, σ̄c(Kf )), the likelihood of being in region

Ω4 is low, thus the optimal expected cost increases in the recycling cost variability.

I also characterize the impacts of variabilities and correlation on the optimal

recycling capacity in Proposition 2.4.

Proposition 2.4.A (Rainfall Variability). K∗r decreases in σs.

Proposition 2.4.B (Cost Variability).

(1) If ρ ≥ 0, K∗r increases in σc;

(2) Otherwise, (i) if µc ≤ (cf − of ) βrβf , K∗r increases in σc; (ii) if µc > (cf − of ) βrβf ,

there exists a threshold σ̂c(Kf ) such that K∗r decreases in σc for σc ∈ (0, σ̂c(Kf )) and

increases in σc for σc ∈ [σ̂c(Kf ),+∞).

Proposition 2.4.C (Correlation). K∗r increases in ρ.

Proposition 2.4.A shows that the optimal recycling capacity decreases in the rain-

fall variability (σs). The influence of σs on K∗r is determined by its effect on the

expected marginal cost M(Kr). Marginal cost of an additional unit of recycling ca-

pacity is nonzero only in regions Ω1, Ω3 and Ω4. Remember that I assume Dh ≥ βfµs

in this section, which implies that τ1(Kr) > µs. An increase in the rainfall variability

σs would make low and high rainfall realizations more likely. As τ1(Kr) > µs, it is less

likely to have rainfall realizations smaller than τ1(Kr) and more likely to have rainfall

realizations larger than τ1(Kr). This means that probability of having a rainfall re-

alization in region Ω1 decreases and probability of having a rainfall realization in all

the other regions increases. This increases the likelihood of using freshwater as the

priority source when the recycling cost is larger than (cf − of ) βrβf (cf
βr
βf

) when there is
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(no) risk of overflow. As a result, with a higher σs, the expected marginal cost M(Kr)

increases and thus, the optimal recycling capacity decreases in the rainfall variability.

Structurally similar to the results characterized in Proposition 2.3.B, Proposition

2.4.B shows that the impact of recycling cost variability (σc) on the optimal recycling

capacity (K∗r ) also depends on the correlation (ρ) and the average recycling cost (µc).

To provide the intuition, we know that a higher σc implies that it is more likely to

have high and low recycling cost realizations (cr). A low cr is beneficial as it decreases

the marginal cost. A high cr is undesirable as it increases the marginal cost but it

is less consequential because a high cr is more likely to be associated with a high

rainfall when the correlation ρ is positive, and thus the likelihood of using recycled

water as the priority source decreases. Hence, the marginal cost decreases and then

the recycling capacity increases as σc increases when the correlation is positive. When

the correlation coefficient ρ is negative, the impact of recycling cost variability (σc)

on the optimal recycling capacity can be explained following the intuitions that used

to explain Proposition 2.3.B.

Proposition 2.4.C shows that the optimal recycling capacity increases in the cor-

relation coefficient. As discussed earlier, a high ρ makes it more likely that when the

rainfall s is low (high), the recycling cost cr is low (high). When the rainfall s is

low, recycled water becomes more likely to be the priority resource to be dispatched

and as the recycling cost is also low, the expected marginal cost decreases. When

the amount of rainfall s is high, the likelihood of using recycled water as the priority

source decreases thus a high recycling cost is less consequential. As a result, the ex-

pected marginal cost M(Kr) decreases in the correlation; hence, the optimal recycling

capacity increases in the correlation.
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2.3.4 Water Leakage Reduction

In practice, in addition to treatment losses, a significant amount of water is lost

in urban water supply systems through leakage. There are above 32 billion cubic

meters of water leak from the urban water systems annually worldwide (Liemberger

et al. 2006). Water leakage has been a critical issue for sustainable urban water

management. The model in this work can incorporate leakage through the recovery

ratios; hence, throughout this text, I use 1 − βf , 1 − βr and 1 − βd to denote the

effective freshwater, recycled water and desalinated water leakage ratios, respectively.

In this section, my objective is to understand how leakage ratios affect the optimal

expected cost. This analysis can provide urban water utilities insightful knowledge on

which leakage ratio should be reduced in priority under limited maintenance resources.

Without loss of generality, I normalize the costs of reducing the recycled water leakage

ratio (i.e., (1− βr)) and the potable water leakage ratio (i.e., (1− βf )) to zero in this

section. To characterize the global effects of reducing leakage ratios on the optimal

expected cost, I first present the following results.

Lemma 2.2.

(1) ω2
r is independent of βf and increases in βr;

(2) ω1
r increases in βr and decreases in βf .

Based on the results in Lemma 2.2, I then characterize the global effects in Propo-

sition 2.5.

Proposition 2.5.

(1) V ∗ decreases in βf and βr;

(2) If ωr ≥ ω2
r , V ∗ is independent of βr and it is always more beneficial to increase

βf in priority;

(3) If ω1
r ≤ ωr < ω2

r , it is better to increase βf in priority if βf ≥ C(βr) and to

70



increase βr in priority otherwise, where

C(βr) =
Dh +Dnh

Kf

− (ωr − ω2
r)βr

µc + ωr
−

Ẽ
cr,s̃

[min(Kf , s̃)]cdβ
2
r

Kf (µc + ωr)

Proposition 2.5 shows that reducing the freshwater and recycled water leakage

ratios (i.e., increasing βf and βr) is always (weakly) beneficial to the urban water

utility as it reduces the expected cost. However, interestingly, Proposition 2.5 also

shows that reducing water leakage can be inconsequential. Specifically, when the

unit investment cost ωr is very high (i.e., ωr ≥ ω2
r), the optimal expected cost is

independent of βr and decreasing in βf . In this case, no recycled water is dispatched;

hence, the optimal expected cost is independent of βr. As βf increases, the effective

amount of freshwater dispatched (i.e., βfq
∗
r) increases and then the expected amount

of desalinated water decreases; hence, the optimal expected cost decreases. When ωr

decreases (i.e., ω1
r ≤ ωr < ω2

r), recall that under this case, the effective capacities βfKf

and βrKr are enough to meet the total demand. As βr and βf increase, the effective

amounts of both freshwater and recycled water increase; hence, less desalinated water

is supplied, which reduces the cost.

When ωr becomes even smaller (i.e., ωr < ω1
r), as βf increases, less freshwater and

less desalinated water are expected to be dispatched, which reduces the expected cost.

Although the expected overflow cost may increase, the total expected cost decreases

if the unit overflow cost is less than the unit freshwater treatment cost (of ≤ cf ).

If of > cf , then the region Ω4 in Figure 2.2 does not exist; thus, the freshwater

is always prioritized when there is overflow, suggesting that overflow cost does not

change; hence, the total expected cost decreases as less recycled water is expected

to be used when βf increases. Similarly, as βr increases, less desalinated water is

expected to be dispatched, which then reduces the total expected cost. On the other

hand, less recycled water is expected to be used when freshwater is prioritized (i.e.,

freshwater is more beneficial), which also reduces the total expected cost. If the

recycled water is prioritized (i.e., recycled water is more beneficial), less freshwater is

71



expected; moreover, the potential increase of overflow cost (if any) is offset by the cost

reduction, which follows from the discussions above. Therefore, the optimal expected

cost decreases as βr increases. From these discussions, I can explain why the optimal

expected cost V ∗ decreases in βf and βr in each piece. Although the cut-off points

ω2
r and ω1

r may be affected by βf and βr, I find that the insights also hold globally.

In Proposition 2.5, I also find that, if ωr ≥ ω2
r , it is always more beneficial to reduce

freshwater leakage ratio in priority. If ω1
r ≤ ωr < ω2

r , given βr, it is optimal to increase

βf in priority if βf is larger than a certain threshold C(βr); otherwise, it is optimal

to increase βr in priority. These results provide managers with insights to prioritize

water leakage reduction between potable water and recycled water. However, for the

case that ωr < ω1
r , as the comparison between the benefits of reducing freshwater

and recycled water leakage is too complex, I numerically characterize the priority on

reducing water leakage ratios in Chapter 3.

2.3.5 Urban Water Vulnerability

Water supply vulnerability is a critical performance measure for urban water sus-

tainability. The urban water vulnerability, in general, reflects the extent to which

the water sources (the last resort is excluded) are failed to meet the urban water

demand. Hence, it can be also seen as a measure of the service level of the urban

water system. In my context, as the desalinated water/imported water serves as the

last resort to satisfy the urban water demand, then the vulnerability can be mea-

sured by the expected amount of desalinated water used. The higher the expected

amount of desalinated water is used, the higher the system vulnerability. Hence, un-

derstanding how the expected amount of desalinated water dispatched changes with

the variabilities and other key factors is critical for urban water sustainability. I first

characterize the expected amount of desalinated water dispatched (denoted by DW)
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under different scenarios as follows.

DW(ωr) = E
c̃r,s̃

[Dh +Dnh − βfq∗f − βrq∗r ]

=



Dh +Dnh − βf Ẽ
s
[min(s̃, Kf )], if ωr ≥ ω2

r

βf Ẽ
s
[(Kf − s̃)+], if ω1

r ≤ ωr < ω2
r

E
(c̃r,s̃)∈Ω1

[Dh +Dnh − βf s̃− βrK∗r ] , if ω0
r ≤ ωr < ω1

r

E
(c̃r,s̃)∈Ω1

[
Dh +Dnh − βf s̃− βr min

(
βhDh + βnhDnh,

Dnh
βr

)]
, if ωr < ω0

r

(2.7)

When the unit capacity investment cost is very large (i.e., ωr ≥ ω2
r), the opti-

mal recycling capacity is K∗r = 0; hence, the expected amount of desalinated water

dispatched is the remaining demand unfulfilled by freshwater. When ω1
r ≤ ωr < ω2

r ,

the optimal recycling capacity is set in such a way that K∗r together with Kf is able

to meet all demand (i.e., K∗r =
Dh+Dnh−βfKf

βr
). Therefore, DW is characterized by

βf Ẽ
s
[(Kf − s̃)+]. For other cases, depending on the value of the optimal recycling

capacity, I derive DW accordingly.

Corollary 2.2. DW(ωr) increases in ωr.

Corollary 2.2 shows that the expected amount of desalinated water dispatched

increases in the unit recycling capacity investment cost ωr. This is because, as ωr

increases, the optimal recycling capacity decreases and the expected amount of re-

cycled water dispatched decreases; hence, the expected amount of desalinated water

dispatched increases.

In Proposition 2.6, I show how the freshwater capacity Kf affects DW globally.

Before that, I characterize how the cut-off points ω2
r , ω

1
r and ω0

r change with Kf in

Lemma 2.3.
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Lemma 2.3.

(1) ω2 is independent of Kf ;

(2) ω0 and ω1 increase in Kf .

Proposition 2.6. As Kf increases

(1) If ωr ≥ ω2
r , DW decreases;

(2) If ω1
r ≤ ωr < ω2

r , there exists a threshold ω̄r = ω1
r

∣∣∣∣
Kf=(Dh+Dnh)/βf

such that

(2.1) If ω̄r ≤ ωr < ω2
r , DW increases;

(2.2) Otherwise, there exists a threshold K̄f such that DW increases on (s0, K̄f )

and decreases on [K̄f , (Dh +Dnh)/βf ].

(3) Otherwise, DW decreases.

When the unit capacity investment cost is very large (i.e., ωr ≥ ω2
r), no recycled

water is dispatched to meet the demand. In this case, an increase in Kf implies

that more freshwater is expected to be dispatched to meet the demand; hence, less

desalinated water is required.

When the investment cost becomes relatively small (i.e., ω̄r ≤ ωr < ω2
r), in-

terestingly, I find that DW increases in Kf . This is because, as Kf increases, more

freshwater is expected to be dispatched; however, less recycled water is expected to be

supplied as K∗r =
Dh+Dnh−βfKf

βr
decreases. Specifically, since the realized rainfall may

be less than the freshwater capacity, the increase in potable water does not exceed

βf units from an additional unit of freshwater capacity; however, each unit increase

in freshwater capacity reduces βf units of recycled water. Hence, the reduction of re-

cycled water cannot be offset by the increased potable water, then more desalinated

water is required. Although ω1
r increases in Kf , by the definition of ω̄r, I know that

ωr < ω1
r is impossible as Kf increases. Hence, just as described in Proposition 2.6,

I characterize the global effect for this case. However, when ω1
r ≤ ωr < ω̄r, I find

that DW first increases, which follows from the discussions above directly, and then

decreases in Kf . The decreasing pattern is because, when Kf is sufficiently large, ω1
r
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becomes larger than ωr such that the optimal recycling capacity becomes an interior

solution. In this case, K∗r increases in Kf ; hence, less desalinated water is expected.

When the investment cost becomes further small (i.e., ω0
r ≤ ωr < ω1

r initially),

the optimal recycling capacity K∗r is an interior solution. For this case, K∗r increases

in Kf . Hence, as I discussed, more potable water and recycled water are used and

then DW decreases. As Kf increases, ω0
r increases, which may lead ωr to be smaller

than ω0
r . Then, K∗r = min

(
βhDh + βnhDnh,

Dnh
βr

)
is independent of Kf . Combining

these cases and following the arguments above, more freshwater and recycled water

are expected to be dispatched. Therefore, less desalinated water is needed.

In this section, I also investigate the impacts of variabilities and correlation on the

expected amount of desalinated water dispatched. The global effects are characterized

in Proposition 2.7.

Proposition 2.7.A (Correlation). DW decreases in ρ.

Proposition 2.7.B (Rainfall Variability). DW increases in σs.

Proposition 2.7.C (Cost Variability).

(1) if µc ≤ (cf − co) βrβf or ρ ≥ 0, DW decreases in σc;

(2) otherwise, there exists a threshold σ̂c such that DW increases in σc for σc ∈ (0, σ̂c)

and decreases in σc for σc ∈ [σ̂c,+∞).

When σs increases, it is more likely to have extremely high and low rainfall realiza-

tions, which implies that the probability of dispatching desalinated water increases.

Then, more desalinated water is expected to be dispatched to satisfy demand.

I find that DW decreases in the correlation. First, the expected amount of fresh-

water dispatched is independent of the correlation. When ωr ≥ ω1
r , K

∗
r = 0 or

Dh+Dnh−βfKf
βr

. In this regard, the amount of recycled water dispatched is also not af-

fected by the correlation. Then, DW is independent of the correlation. As ρ increases,

ω1
r and ω0

r become larger, leading ωr to be less than ω1
r and even less than ω0

r . If the
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increase of ρ makes ω0
r ≤ ωr < ω1

r , K
∗
r is then an interior solution and increases in

the correlation coefficient; hence, more recycled water is expected to be dispatched,

and less desalinated water is required. If ωr < ω0
r happens, K∗r is independent of

the correlation such that the expected amount of recycled water and DW are also

independent of the correlation. Then, I can conclude that DW decreases in ρ for this

case. For the case that ωr < ω1
r , the decrease of DW in ρ can be explained similarly.

Therefore, DW decreases in ρ globally.

Similarly, the impact of σc on DW is through the optimal recycling capacity.

When σc increases, if K∗r increases, more recycled water and less desalinated water

are dispatched; otherwise, less recycled water and more desalinated water are expected

to be dispatched. In Proposition 2.4.B, I characterize how the cost variability affects

the optimal recycling capacity. Therefore, I derive the impact of cost variability on

DW as characterized in Proposition 2.7.

2.3.6 Overflow Risk

Overflow risk is also an important criterion to measure the sustainability of urban

water systems as it reflects the ability for the urban water system to adapt to extreme

rainfall realizations. This section evaluates the overflow risk under the optimal frame-

work and discusses how the overflow risk is affected by the key factors. Depending

on the unit investment cost, the overflow risk PO is characterized as follows.

PO(ωr) =


Pr(cr ≤ c̃r ≤ c̄r, s̃ ≥ 2Kf ), if ωr ≥ ω1

r

Pr((cf − of ) βrβf ≤ c̃r ≤ c̄r, s̃ ≥ 2Kf )

+ Pr(cr ≤ c̃r < (cf − of ) βrβf , s̃ ≥ Kf + τ1(K∗r )), if ωr < ω1
r

This is because K∗r = 0 or
Dh+Dnh−βfKf

βr
if ωr ≥ ω1

r , K
∗
r is an interior solution if

ω0
r < ωr < ω1

r and K∗r = min
(
βhDh + βnhDnh,

Dnh
βr

)
otherwise. Moreover, τ1(K∗r ) =

Dh+Dnh−βrK∗r
βf

. It is easy to show that PO(ωr) decreases in ωr as a larger ωr leads to
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a smaller recycling capacity; hence, more freshwater is expected to be used, which

reduces the overflow risk. I show the global effect of the rainfall variability on the

overflow risk in Proposition 2.8

Proposition 2.8 (Rainfall Variability). PO increases in σs.

I find that, as the rainfall variability σs increases, the overflow risk increases as it

is more likely to have extreme high amount of rainfall realization.

For the ease of exposition, I characterize the local effects of cost variability and

freshwater capacity on the overflow risk in Proposition 2.9 (global effects are presented

in Appendix B).

Proposition 2.9.A (Cost Variability).

(1) If ωr < ω0
r , PO increases in σc if µc > (cf − co) βrβf and decreases in σc otherwise;

(2) If ωr ≥ ω1
r , PO is independent of σc;

(3) Otherwise

(3.1) if µc ≤ (cf − co)
βr
βf

, PO increases in σc if dK∗r
dσc
≥ B and decreases in σc

otherwise;

(3.2) if µc > (cf − co) βrβf
(3.2.1) if ρ ≥ 0, PO increases in σc;

(3.2.2) if ρ < 0, (i) if σc > σ̂c, PO increases in σc; (ii) if σc ≤ σ̂c, PO increases

in σc if dK∗r
dσc
≥ B and decreases in σc otherwise.

where

B =
βfσs(B2 −B1)((cf − of ) βrβf − µc)

σ2
cβrB3

B1 =

∫ +∞

2Kf−µs
σs

φ(
(cf − of ) βrβf − µc − ρσcz̃1

σc
√

1− ρ2
)φ(z̃1)dz̃1

B2 =

∫ +∞

Kf+τ1(K
∗
r )−µs

σs

φ(
(cf − of ) βrβf − µc − ρσcz̃1

σc
√

1− ρ2
)φ(z̃1)dz̃1

B3 =

∫ (cf−of )
βr
βf
−µc

σc

−∞
φ(
Kf + τ1(K∗r )− µs − ρσsz̃0

σ
√

1− ρ2
)φ(z̃0)dz̃0
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Proposition 2.9.B (Freshwater Capacity).

(1) If ωr ≥ ω1
r , PO decreases in Kf ;

(2) If ω0
r < ωr < ω1

r , PO decreases in Kf if

dK∗r
dKf

≤ βf
βr

+

2βf
∫ c̄r

(cf−of ) βr
βf

ψ(2Kf , c̃r)dc̃r

βr
∫ (cf−of ) βr

βf
cr

ψ(Kf + τ1(K∗r ), c̃r)dc̃r

and increases otherwise;

(3) If ωr < ω0
r , PO decreases in Kf .

I find that, when ωr is very large, PO is independent of σc. This is because, no

matter what the recycling cost is, either no recycled water is dispatched or the recy-

cling plant is operating under full capacity in this case; hence, the overflow risk is not

affected by the cost variability. When the unit investment cost becomes smaller (i.e.,

ω0
r < ωr < ω1

r), the optimal recycling capacity is an interior solution. Depending on

the realization of the recycling cost, the optimal amount of recycled water dispatched

may be different, which will affect the overflow cost. When µc ≤ (cf − co)
βr
βf

, one

the one hand, the optimal recycling capacity increases in σc; hence, less freshwater is

expected to be dispatched and then the overflow risk increases; on the other hand,

the probability that the recycling cost falls in the regions that recycled water is dis-

patched in priority decreases in σc, which implies that less recycled water and more

freshwater are expected to be dispatched. Therefore, if the optimal recycling capacity

increases fast enough, i.e., dK∗r
dσc
≥ B, PO increases in σc; otherwise, PO decreases in

σc. If µc > (cf − co) βrβf and ρ ≥ 0, the optimal recycling capacity increases in σc. In

addition, the probability that the recycling cost falls in the regions in which recycled

water is dispatched in priority increases in σc. As ρ is positive, a low recycling cost

is more likely to be associated with a low rainfall; hence, more recycled water and

less freshwater are expected to be dispatched. Then, the overflow risk increases as σc

increases. If µc > (cf − co) βrβf and ρ < 0, the results can be explained similarly. When

ωr is very small, i.e., ωr < ω0
r , the optimal recycling capacity is independent of σc.

78



The results can also be explained by using the intuitions explained above.

I also find that PO decreases in Kf if ωr ≥ ω1
r or ωr < ω0

r as a larger Kf implies

that more freshwater is expected to be dispatched in this case. However, when ω0
r <

ωr < ω1
r , the change of Kf also affects the optimal recycling capacity, which then

changes the expected amount of recycled water dispatched. Specifically, for this case,

the optimal recycling capacity increases in Kf . On the one hand, a larger Kf implies

that more freshwater is dispatched. Then, the overflow risk decreases; on the other

hand, the increase ofK∗r implies that more recycled water is expected to be dispatched,

then the overflow risk increases. Therefore, as Kf increases, if the optimal recycling

capacity does not increase too much, i.e., dK∗r
dKf

is less than the threshold characterized,

then PO decreases in Kf ; otherwise, PO increases in Kf .

I numerically show the impact of ρ on the overflow risk under different cases and

compare the overflow risk I obtained with the overflow risk under the benchmark case

(the case that water recycling is unavailable) in Chapter 3.3.6.

2.4 Conclusion

Urban water scarcity becomes increasingly severe globally, which makes sustainable

urban water management more imperative and critical. This chapter investigates the

economic and sustainable implications of wastewater recycling capacity investment in

an urban water system under rainfall and recycling cost uncertainties. Formulating

the problem as a two-stage stochastic model, I characterize the most cost-effective

water allocation scheme and the optimal recycling capacity. I show that the opti-

mal recycling capacity and the freshwater treatment capacity could be substitutes

or complements depending on the level of the freshwater treatment capacity. I also

discuss the impacts of rainfall and recycling cost variabilities and their correlation on

the optimal expected cost and recycling capacity in this chapter. My results show
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that a larger correlation benefits the system, while increased rainfall variability is

detrimental to the system. The impact of recycling cost variability depends on the

mean value of recycling cost and the correlation. Moreover, in this chapter, I further

investigate the sustainability of the integrated urban water system focusing on the

vulnerability and the overflow risk, reflecting the reliability of hedging climate change

risks. I discuss how the uncertainties and other key factors such as freshwater capac-

ity affect the water supply vulnerability and the overflow risk in this chapter. These

results are beneficial for an urban water utility that is interested in increasing water

sustainability under uncertainties.

Nevertheless, this work does have few limitations, which suggest several future

research directions. In this research, I consider a deterministic demand setting to

derive the urban water management insights under supply uncertainty from climate

change. In practice, the demand can also be affected by climate change and can be

uncertain. Hence, capturing the demand uncertainty in the model and investigating

how the demand uncertainty affects urban water operations can be an important and

interesting research problem. Second, in some cities, wastewater has been recycled

into potable water. It is interesting to investigate how incorporating this feature can

affect the recycling decisions and the insights generated in future studies. Third, in-

stead of optimizing the single wastewater recycling capacity, it would be interesting to

consider the multiple water source portfolio optimization in the urban water context.
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Chapter 3

Wastewater Recycling Capacity Investment In

Urban Water Management: A Case Study

In this chapter, I discuss an application of my model in the context of urban wa-

ter management. I calibrate the model parameters to represent the urban water

management practice in Adelaide, the capital city of South Australia and conduct

comprehensive numerical experiments to complement the analytical results presented

in Chapter 2 and show additional managerial insights on urban water management.

Specifically, in Section 3.1 and 3.2, I introduce the background and details of model

calibration. Section 3.3 presents the numerical results and Section 3.4 concludes this

chapter.

3.1 Practical Setting and Model Calibration

In this work, I apply the model to the urban water management in Adelaide to inves-

tigate the impacts of uncertainties on the optimal expected cost, optimal decisions

and sustainability measures. I use publicly available data from annual National Per-

formance Reports: Urban Water Utilities1 and National Water Account published

1For the National Performance Reports: Urban Water Utilities, it should be noted that the
data is reported for Adelaide only before the Year of 2013. After this year, the data is reported for
entire South Australia. Hence, to exclude the potential heterogeneous effects from other regions of
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by the Australia Bureau of Meteorology (ABM), complemented by the data obtained

from the extant literature and technical reports. Before the estimation of parameters,

I first introduce the urban water supply practice in Adelaide.

3.1.1 Adelaide Urban Water Supply Practice

In Adelaide, the urban water supply is managed by SA Water, which is a government-

owned water utility. Multiple water sources, including surface water from reservoirs,

recycled water and desalinated seawater, are supplied to meet the urban water de-

mand. Specifically, ten major reservoirs supply water to urban areas in Adelaide with

a total storage capacity of about 192.4 GL (billion litres). The total surface area of

these reservoirs is 18.93 km2 (square kilometer). Surface water from the reservoirs

undergoes a series of treatments at water treatment plants and is distributed to cus-

tomers. Six large conventional water treatment plants serve metropolitan Adelaide,

with the largest one of treatment capacity more than 300 GL water per year. Water

may also be imported from River Murray to the reservoirs under a certain contract

if necessary.

In Adelaide, seawater may be desalinated and mixed with the treated freshwater

to meet the urban demand. The desalination plant uses the reverse osmosis (RO)

technique, and the capacity is 100 GL per year. Due to the high operating and

energy costs, the plant works primarily as a backup supply during drought years with

low rainfall and/or high demand.

Wastewater is also recycled to a high-quality level for non-household use in Ade-

laide. Sewerage is transported to and treated at three major metropolitan coastal

wastewater treatment plants (WWTPs) at Bolivar, Glenelg and Christies Beach in

Adelaide. At WWTPs, wastewater is treated via a multi-stage treatment process

South Australia, without other specifications, I use the data before 2013 when the data has to been
extracted from the National Performance Reports, which is from Australia Bureau of Meteorology
(2014).
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before being discharged into the environment or further recycled. In Adelaide, this is

generally a two-stage process involving primary and secondary treatments. Primary

treatment removes most of the remaining particulate matter, involving comminu-

tion if necessary, followed by coagulation and/or flocculation before sedimentation.

Secondary treatment involves a range of aerobic biological processes aiming to me-

tabolize the dissolved or suspended organic matter microbially. Secondary treatment

processes usually consist of aerated activated sludge basins with return activated

sludge or fixed media filters with recycling flow, followed by solids separation via

settling or membrane filtration and disinfection. After secondary treatment, wastew-

ater can be discharged. The secondary effluent that is not discharged is diverted to

wastewater recycling plants for tertiary treatment (in the main text, it is termed as

recycling processes and I will use recycling and tertiary treatment interchangeably).

Tertiary treatment targets the further removal of nutrients and organic con-

stituents, reducing total dissolved solids or salinity, and providing additional treat-

ment barriers to pathogens. Approximately 30% of the wastewater treated at SA

Water’s WWTPs is used in recycled water applications. The current wastewater

recycling capacity is 74 GL/year. In general practice, depending on the wastewa-

ter recycling criteria, budget, environmental standards and other factors, different

technologies are applied in tertiary treatment, e.g., microfiltration (MF) and ultra-

filtration (UF) membrane processes, ozone, nanofiltration (NF), and reverse osmosis

(RO) technologies. In Adelaide, the Bolivar wastewater recycling plant introduces the

Dissolved Air Flotation Filtration (DAFF) technology, which utilizes micro-filtration

and floatation to produce Class A recycled water. In Glenelg and other recycling

plants, ultrafiltration membrane technology is adopted. The recycled water from

the Bolivar wastewater recycling plant is distributed through the Virginia Pipeline

Scheme to the Adelaide Plains for unrestricted irrigation of vegetable and salad crops.

In contrast, the recycled water from Glenelg is dispatched to irrigate parks, sports
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playing fields and other industrial uses.

3.1.2 Parameter Estimation

In this part, I discuss the details about how I estimate the parameters in my model

considering the wastewater recycling capacity investment is to be made at the begin-

ning of year 2020 and the length of the single planning period is one year. Throughout

this section, I use x́ to denote the calibrated value for parameter x, “NWI”to denote

the net water inflow to reservoirs, “GL”to denote a billion litres, “mm”to denote

millimeter, “km2”to denote square kilometer, and “MD”to denote million dollars. I

also note that the operating costs include treatment, transportation, labor and other

costs.

Calibration for Desalination Cost. The operating cost for desalination is

about 21.3 million dollars, and there was 4.23 GL desalinated water supplied in 2011

(Cardno 2013). Hence, the desalination operating cost in 2011 is 5.04 dollars/KL.

The average inflation rate (IR) between 2011 and 2020 is about 1.83% per year. I

estimate the IR adjusted unit desalination costs in 2020 as ćd = 5.93 MD/GL2.

Calibration for Basic Wastewater Treatment Cost. Recall that the basic

wastewater treatment cost measures the cost of treated wastewater for disposal. From

Australia Bureau of Meteorology (2014), I have the total sewage treatment cost in

Adelaide from 2006 to 2012. As the total wastewater collected for treatment at

WWTPs in Adelaide is also available, I estimate the basic wastewater treatment cost

in Table 3.1

Taking the average of the IR adjusted operating cost in 2020 as the estimate of

average basic wastewater treatment cost, I obtain ćb = 1.40 MD/GL.

2I note that the desalination plant in Adelaide is fully completed in 2012; however, I do not
have the direct operating cost data of other years. From ABCNEWS (2017), the energy cost of
desalination is about 13.5 MD, and the amount of desalinated water dispatched is 4.1 GL. From the
Australian Water Association, the energy cost can represent 50%-70% of total operating cost. Taking
the average percentage, I then estimate the unit desalination cost in 2016 dollars as 5.48MD/GL,
which is very close to 5.93 MD/GL and supports the estimation using data from year 2011.

84



Year 2006 2007 2008 2009 2010 2011 2012
Total Wastewater Treat-
ment Cost (MD)

85.50 87.49 107.74 101.27 96.59 91.19 111.12

Total Wastewater Col-
lected (GL)

88.96 83.50 83.38 85.12 89.69 88.57 88.49

Basic Wastewater Treat-
ment Cost (MD/GL)

0.96 1.05 1.29 1.19 1.07 1.02 1.26

IR-Adjusted Operating
Cost in 2020 (MD/GL)

1.31 1.40 1.64 1.49 1.30 1.20 1.46

Table 3.1: Basic Wastewater Treatment Cost

Calibration for the Amount of Available Freshwater and Recycling Cost

Bivariate Distribution Parameters. The amount of available freshwater (AAF)

(i.e., s̃) consists of two parts: the deterministic amount of freshwater from reser-

voirs (i.e., s0) and the net water inflow (NWI), which is uncertain due to climate

change. The variability of recycling cost is from fluctuating energy prices given that

wastewater recycling is energy-intensive.

From the National Water Account 20203, I set the amount of freshwater available

in reservoirs as 98.4 GL for 2020. The urban water management utility keeps the water

storage above a minimum level for future consumption in practice. For Adelaide, I

take the smallest amount of freshwater available in the past five years as the minimum

level, which is about 81.3 GL 4. In this regard, I estimate the deterministic amount

of water available at the beginning of the period as ś0 = 98.4− 81.3 = 17.1 GL.

NWI is determined by three components: the direct rainfall precipitation, the

rainfall run-off to the reservoirs and the evaporation. First, I estimate the reservoir

rainfall precipitation. The annual precipitation to the reservoirs can be calculated

by using the total size of reservoirs (denoted by SR km2) times the annual rainfall

amount (i.e., how many millimeters of annual rainfall, denoted by RP mm). I use the

3http://www.bom.gov.au/water/nwa/2020/adelaide/, accessed by 17/02/2021
4The data is retrieved from the website https://theconversation.com/

how-drought-is-affecting-water-supply-in-australias-capital-cities-127909, accessed
by 16/02/2021.
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annual rainfall data recorded by ABM from 1884 to 2019. It should be noted that

there are multiple weather observation stations in different areas in Adelaide, and the

rainfall amount may be different from station to station. Due to the data availability

issue, the data from North Adelaide station (represent North Adelaide), Second Val-

ley (Poolamacca) station (represent south Adelaide) and Adelaide (Pooraka) station

(represent central Adelaide) are obtained. The rainfall amount for Adelaide then is

represented by the average of all the rainfall amounts observed at all stations for each

year (see Figure 3.1).
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Figure 3.1: Adelaide Annual Rainfall Amount

I then use TRP to denote the annual total rainfall caught by the reservoirs with

GL as the metric. Hence

TRP(GL) = SR(km2)× RP× 10−6(km)× 103

In addition to the direct rainfall precipitation, reservoirs also receive surface rainfall

run-off from the nearby rainfall catchment areas. Surface rainfall run-off is the flow of

water occurring on the ground surface when excess rainwater can no longer sufficiently

rapidly infiltrate the soil. According to Alcorn (2006), the relationship between the

rainfall and the resultant run-off can be represented by the following formula:

Run-off Coefficient = Mean Annual Run-off (mm)/Mean Annual Rainfall (mm)

In Adelaide, the Run-off Coefficient is ranging from 0.1 to 0.25 (Alcorn 2006). I select
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the Run-off Coefficient as 0.175, which is the mean value of 0.1 and 0.25. Therefore,

I can derive the Mean Annual Run-off. As I described above, ten reservoirs supply

water to urban areas in Adelaide. The catchment area size for Myponga reservoir is

124 km2, for Mount Bold reservoir is 388 km2, for (Happy Valley) Clarendon Weir is

54 km2 (Paton et al. 2013), for Little Para reservoir is 82 km2 (Hobson et al. 2010),

for Kangaroo Creek and Hope Valley reservoir are 280 km2 and 343 km2, respectively

5. The catchment area has a total size of 230 km2 for Warren, Barossa and South

Para reservoirs6. Millbrook reservoir has a catchment area of 36.1 km2 (Nguyen et al.

2017). I then calculate the total size of all catchment areas as SC = 1537.1km2.

Therefore, the annual amount of run-off through catchment areas to the reservoirs

(denoted by ROW) is derived by using the Mean Annual Run-off times the size of

the water catchment areas, that is

ROW(GL) = SC(km2)×Mean Annual Run-off× 10−6(km)× 103

As for the evaporation, due to data availability and completeness issue, I select the

evaporation data from two weather observation stations: Adelaide Airport station

and Loxton station. Adelaide Airport station has 35 years of data (from 1982 to

2016, data after 2016 is incomplete), and Loxton station has 32 years of data (from

1985 to 2016). Other stations usually have less than 20 years of data recorded before

2010. I then take the average between values of these two stations of each year to

represent the annual evaporation amount (i.e., how many mm water evaporated, see

Figure 3.2).

The total evaporation from reservoirs (TEV) is calculated by using the annual

evaporation amount (AEA) times the size of the reservoirs (SR).

TEV (GL) = SR(km2)× AEA× 10−6(km)× 103

5Retrieved from http://www.bom.gov.au/water/about/waterResearch/document/torrens.

pdf, accessed by 14/02/2021
6Retrieved from https://www.goyder.sa.gov.au/__data/assets/pdf_file/0019/263332/

CLGR_Water_Supply_Project_Draft_Report_Part_1_of_2.pdf, accessed by 14/02/2021
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Figure 3.2: Adelaide Annual Evaporation

Combining the results above, I can derive the annual net water inflow to the reservoirs

as

NIW = TRP + ROW - TEV

To estimate the bivariate distribution parameters, I also need to estimate the recy-

cling cost. The wastewater recycling cost data is not directly available. As I de-

scribed, wastewater recycling is energy-intensive, and the recycling cost uncertainty

is linked to the energy price uncertainty. Let er denote the electricity consumption

of the tertiary treatment/recycling process, pe be the electricity price, and m be the

other associated operating cost in tertiary treatment. Hence, the operating cost cr in

tertiary treatment/recycling process is

cr = peer +m

Let p̄e be the average electricity price over the periods and γ = p̄eer
p̄eer+m

denote the

average percentage that the energy cost contributes to the total operating cost in

tertiary treatment. Hence, I have

m =
1− γ
γ

p̄eer

In Adelaide, Short et al. (2014) show that the specific energy consumption for wastew-

ater recycling (i.e., tertiary treatment) is estimated as 0.747 kWh/KL (Glenelg) and
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2.4 kWh/KL (Aldinga). Then, I take the average energy consumption between these

two plants as the tertiary treatment energy consumption in Adelaide and obtain

ér = 1.573 kWh/KL.

From the Australian Energy Market Operator (AEMO), I can get the annual av-

erage electricity wholesale price from 1999 to 2020. The average Australian electricity

bill is made up of four main components: wholesale price (34%), network (43%), re-

tailing (16%) and environmental policy (6%)7. Hence, I can derive the retail price

(see Figure 3.3).

2000 2005 2010 2015 2020

Year
0.0

0.3

0.6

El
ec

tr
ic

ity
 P

ric
e 

($
/k

W
h)

Wholsesale Price
Retail Price

Figure 3.3: Adelaide Annual Electricity Price

In general, the energy cost contributes to from 25% to 40% of the total operating

cost in wastewater treatment (Panepinto et al. 2016, Gu et al. 2017). From Pearce

(2008), I obtain that the energy cost contributes to 35% of the total operating cost

in tertiary treatment processes for UF/MF technologies. Council et al. (2012) also

show that the ratio (i.e., γ) can be as large as 35%. Based on these, we can obtain γ

as γ́ = 0.35. Hence, we can derive the recycling cost cr (MD/GL) for each year.

Recall that the rainfall data is from 1884 to 2019, the evaporation data is from 1984

to 2016, and the electricity price data is from 1999 to 2020. Therefore, to calibrate

7The information is obtained from https://www.climatecouncil.org.au/resources/

electricity-prices-sorting-fact-from-fiction/, accessed by 16/02/2021
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the distribution parameters, I focus on data from overlapping years in these datasets

and use data from 1999 to 2016. I test the bivariate Normality assumption of the data

by using the Henze-Zirkler multivariate normality test, which is a common statistical

method to test the normality of data. The p-value is about 0.1329, indicating no

statistically significant evidence to reject the null hypothesis that the data is sampled

from a bivariate Normal distribution. For a robustness check, I further use Royston’s

H test to test the Normality as it has better performance when the sample size is

small (e.g., the sample size is around 25) (Farrell et al. 2007). The result shows

that the p-value is 0.1353, which is consistent with the test result obtained under

the Henze-Zirkler multivariate Normality test. Hence, I consider a bivariate Normal

distribution and calibrate the parameters accordingly. Recall that ś0 = 17.1 GL, then

I estimate µ́s = 122.2(GL) and µ́c = 0.88(MD/GL)8. The correlation is ρ́ = 0.29, the

standard deviations are σ́s = 23.01 and σ́c = 0.101, respectively.

Calibration for Freshwater Operating Cost. From Australia Bureau of Me-

teorology (2014), I can get the total water supply cost in Adelaide from 2006 to 20109.

The total water supplied includes both surface water and recycled water. To obtain

the unit freshwater operating cost, I use the total water supply cost subtract the total

cost associated with recycled water and then divide the difference by the total surface

water dispatched to the urban areas. The results are shown in Table 3.2.

Taking the average of the inflation rate adjusted unit freshwater operating cost, I

estimate the unit freshwater operating cost in 2020 as ćf = 0.862 MD/GL.

Calibration for The Unit Recycling Capacity Investment Cost. As the

ultrafiltration (UF) membrane technology is adopted in Adelaide for water recycling,

I focus on the investment in recycling capacity based on UF technology. For the

8When testing for the bivariate Normality and calculating the recycling cost, the electricity
prices are adjusted by their corresponding inflation rates

9The ABM also provides the total water supply cost from 2013 to 2019; however, the data is
for entire South Australia. To exclude the effect from desalination, I do not consider the data from
2011 and 2012. Hence, I use the data for Adelaide from 2005 to 2010 to do the estimation.

90



Year 2006 2007 2008 2009 2010
Total Water Supply Cost (MD) 122.95 122.37 159.93 145.75 139.23
Total Water Sourced (GL) 181.18 165.09 164.29 164.15 148.80
Recycled Water Supplied (GL) 25.05 25.26 25.50 24.39 19.80
Unit Cost of Recycled Water
(MD/GL)

1.47 1.79 2.15 1.97 1.61

Freshwater Operating Cost (MD/GL) 0.55 0.54 0.76 0.69 0.83
IR-Adjusted Freshwater Operating
Cost in 2020 (MD/GL)

0.75 0.72 0.97 0.86 1.01

Table 3.2: Freshwater Operating Costs

wastewater recycling plants at Glenelg and Aldinga, the capacities are 3.8 GL and 1.6

GL, and the capital costs are 88.27 MD and 73.71 MD (in 2020 dollars), respectively

(Marchi et al. 2014). Assuming a 10-year lifetime (a 10-year lifetime is commonly

used in the literature) for the wastewater recycling plant or the recycling technology

used, I estimate the yearly-based capital costs for these two plants as 8.827 MD and

7.371 MD (i.e., considering the depreciation of the total capital cost over lifetime),

respectively. Hence, the average unit capital cost is estimated as 3.47 MD/GL.

Calibration for Demand. The specific household and non-household demand

data for Adelaide after 2013 are unavailable from the ABM. However, the residential

and non-residential demand data for Adelaide can be obtained from 2005 to 2012.

It should be noted that the recycled water is also supplied for residential uses such

as toilet flushing. From Australia Bureau of Meteorology (2014), I find that the

average percentage of the residential water demand that is satisfied by recycled water

is about 0.2%. I can then use the residential demand (recycled water consumption

excluded) to represent the household demand. I find that, on average, the household

demand contributes to 68% of the total demand. As the total urban demand in 2020

is not publicly available, using the historic demand data and a simple exponential

smoothing model, I project the total demand as 173.95 GL in 2020. Hence, I estimate

the household demand as D́h = 173.95 ∗ 0.68 = 118.29 GL and the non-household

demand as D́nh = 55.66 GL.
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Calibration for Leakage Ratios. From the National Water Account 2015-2019,

I estimate the average urban freshwater leakage ratio (treatment losses included) as

0.107; hence, β́f = 0.893. Similarly, from the National Water Account 2015-2019,

the average loss ratio during wastewater basic treatment and recycling processes is

estimated as 0.081; hence, β́r = 0.919.

For the total volume of collected wastewater, I estimate that 72.5% of the used

water (i.e., the total demand) is collected on average. Hence, the total wastewater

collected is estimated as q́u = 173.95× 0.725 = 126.11 GL.

3.2 Calibrated Parameters

Table 3.3 summarizes the calibrated parameter values representing the baseline sce-

nario used in my numerical experiments.

Notation Description Value
µ́s, µ́c Means of amount of available freshwater

and recycling cost
122.2 GL, 0.88 MD/GL

σ́s, σ́c Standard deviations of rainfall and recy-
cling cost

23.01, 0.101

ρ́ Correlation between amount of available
freshwater and recycling cost

0.29

ćf Unit freshwater treatment cost 0.862 MD/GL
ćd Effective unit desalination cost 5.93 MD/GL
ćb Average unit wastewater basic treatment

cost
1.40 MD/GL

ώr Unit recycling capacity investment cost 3.47 MD/GL

Ḱf Freshwater storage and treatment capacity 192.4 GL

D́h Household demand 118.28 GL

D́nh Non-household demand 55.66 GL
q́u Volume of collected wastewater 126.11 GL

β́f the collection rate of freshwater 0.893

β́r the collection rate of recycled water 0.919

Table 3.3: Description of the Baseline Scenario Used in My Numerical Experiments.
s̃ and c̃r are bivariate normally distributed.

For the overflow cost, due to the data availability issue, I failed to estimate the
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unit overflow cost using real data. In this section, I set óf = 0.5 MD/GL (I conduct

the sensitivity analysis by changing óf from 0 to 10 and find that the optimal recycling

capacity and optimal expected cost are barely affected). Based on these calibrated

values, I find that µ́s < Ḱf < (D́h + D́nh)/β́f . Moreover, I derive the cutoff points

ω2
r = 4.57, ω1

r = 4.56 and ω0
r = 3.09. Hence, I obtain that the estimated unit

capacity cost ώr ∈ (ω0
r , ω

1
r) and the optimal recycling capacity is an interior solution.

I characterize the optimal recycling capacity and optimal expected cost as 55.02 GL

per year and 620.27 MD, respectively.

3.3 Numerical Experiments

Based on the calibrated baseline scenario, I present the numerical results on sen-

sitivity analysis, and implications of recycling capacity investment on urban water

sustainability in this section.

3.3.1 Numerical Results: Sensitivity Analysis and The Value

of Wastewater Recycling

As the calibration satisfies the bivariate normal distribution assumption made in

Section 2.3.3, I first compare the numerical results with the characterized analytical

results characterized in Chapter 2. Figure 3.4 plots the effects of changing variabilities

(σs and σc) and correlation (ρ) on the optimal recycling capacity (panel a) and the

optimal expected cost (panel b).

The insights obtained from Figure 3.4 parallel the ones from Proposition 2.3 and

Proposition 2.4: i) the optimal recycling capacity increases in the correlation coeffi-

cient and the cost variability (as the estimated correlation is positive) and decreases

in the rainfall variability; ii) the optimal expected cost decreases in the correlation

coefficient and cost variability and increases in the rainfall variability. Hence, the
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Figure 3.4: Effects of rainfall and recycling cost variabilities and correlation on the
optimal recycling capacity (Panel a) and optimal expected cost (Panel b). In the
two panels, ρ(σc, σs) ∈ [−60%, 60%] of the baseline value ρ́ = 0.29 (σ́s = 23.01, σ́c =
0.101) with 2% increments.The dashed-dotted lines (represent the effects of rainfall
variability) refer to the y-axis on the right.

numerical results further validate and complement the analytical sensitivity results.

In addition, I also numerically show the impact of freshwater capacity on the

optimal wastewater recycling capacity in Figure 3.5. When the freshwater capacity

(Kf ) is relatively small, the optimal recycling capacity (K∗r ) is first independent of

and then decreasing in the freshwater capacity. These observations are in line with

the analytical characterizations. With the further increase of the freshwater capacity,

although it is not obvious from the figure, I do find an increasing pattern. The

reason for such an insignificant increasing effect is that the calibrated value for rainfall

variability is not sufficiently high such that changing the freshwater capacity from

the relatively high level does not significantly affect the marginal benefit of recycling

capacity investment. These results further validate the substitute versus complement

relationship between Kf and K∗r characterized in Corollary 2.1 in Chapter 2.

I also investigate the value of wastewater recycling capacity optimization in this

section. Recall that V (Kr) is the expected cost for any given recycling capacity
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Figure 3.5: Effect of freshwater capacity on the optimal recycling capacity. The
freshwater capacity changes with a stepsize equals to 1.

Kr and V ∗ is the optimal expected cost under the optimal recycling capacity K∗r .

I analyze how the difference between the expected cost for any given Kr and the

optimal expected cost, i.e., V (Kr)− V ∗, changes with Kr in Figure 3.6.

I next discuss the benefit of the investment on recycling by comparing my model

with the benchmark model in which wastewater recycling is unavailable. The bench-

mark problem can be formulated as

min
qf

ZB(qf )

s.t. 0 ≤ qf ≤ min(Kf , s, (Dh +Dnh)/βf )

with

ZB(qf ) = of (s− qf −Kf )
+ + cfqf + cd(Dh +Dnh − βfqf ) + cb(βhDh + βnhDnh)

Focusing on Kf ≤ Dh+Dnh
βf

, the expected cost under the benchmark case is derived as
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Figure 3.6: Value of wastewater recycling capacity optimization. The y-axis is the
difference between the expected cost under any given recycling capacity Kr and the
optimal expected cost. Kr is changing with a stepsize equals to 1.

follow.

V B =

∫ c̄r

cr

∫ Kf

s0

(cf s̃+ cd(Dh +Dnh − βf s̃))ψ(s̃, c̃r)ds̃dc̃r

+

∫ c̄r

cr

∫ +∞

Kf

(cfKf + cd(Dh +Dnh − βfKf ))ψf (s̃, c̃r)ds̃dc̃r

+

∫ c̄r

cr

∫ +∞

2Kf

of (s̃− 2Kf )ψf (s̃, c̃r)ds̃dc̃r

+ c̄b(βhDh + βnhDnh)

The effects of uncertainties on V B can be easily characterized in Corollary 3.1.

Corollary 3.1. V B is increasing in σs, and independent of σc and ρ.

The benefit of wastewater recycling capacity investment is defined as V B−V ∗. As

V B is independent of σc and ρ, their effects on the benefit of recycling can be inferred

from the effects on V ∗ (see Figure 3.4 Panel b). I focus on the rainfall variability here,

and the results are shown in Figure 3.7. I find that, as the rainfall variability increases,

the benefit of the investment decreases. This is because, as the rainfall variability

increases, the optimal recycling capacity decreases and, hence, less recycled water is

expected to be supplied. Therefore, the value of recycling decreases.
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cycling

I study the effect of changing demands (i.e., Dh and Dnh) on the benefit of wastew-

ater recycling (i.e., V B−V ∗). From Figure 3.8, I observe that the benefit of wastewater

recycling in household demand increases with decreasing marginal returns. However,

as recycled water is only for non-household demand, I observe that the benefit of

wastewater recycling in non-household demand increases almost linearly. Given that

urban water demand is continuously increasing, these observations underline the im-

portance of my work on wastewater recycling.

3.3.2 Numerical Results: Urban Water Vulnerability

I further numerically analyze the sustainability measures I discussed. For the overflow

risk, as the calibrated rainfall variability σ́s = 23.01 is not large enough in the sense

that µ́s+5σ́s is far less than 2Ḱf and Ḱf +τ1(K∗r ), indicating that the overflow risk is

very low in my calibration. Hence, I first focus on the vulnerability, which is denoted

by the expected amount of desalinated water used.

I derive the expected amount of desalinated water supplied under the optimal

framework and the benchmark case as DW = 16.94 GL and DWB = 64.82 GL,
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Figure 3.8: Effects of demands on the benefit of wastewater recycling. To study
the effect of the household Dh (non-household Dnh) demand, I fix the non-household
(household) demand at the calibrated baseline value, and then set Dh(Dnh) in [0, 80%]
of the baseline value D́h (D́nh) with a step size is 1% of the baseline value.

respectively, suggesting that the investment in wastewater recycling can greatly im-

prove urban water sustainability, more specifically, reduce urban water vulnerability

or increase the service level.

To further investigate the implications on sustainability, I examine how DW

changes with the uncertainties and correlation and their effects on the difference be-

tween DW and DWB (i.e., DWB −DW). Figure 3.9 panel a shows that the expected

amount of desalinated water used increases in the rainfall variability but decreases in

the recycling cost variability and the correlation. These observations are in line with

and further validate the analytical results characterized by Proposition 2.7. From

Panel b, I observe that the difference DWB −DW decreases in the rainfall variability

but increases in the recycling cost variability and the correlation, which implies that

the additional benefits of the wastewater recycling in terms of reducing vulnerability

decreases in the rainfall variability and increases in the recycling cost variability and

correlation.

The effect of changing freshwater capacity on the vulnerability (i.e., the expected
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Figure 3.9: Effects of rainfall and recycling cost variabilities and correlation on the
expected amount of desalinated water supplied, i.e., DW (Panel a) and the difference
DWB−DW (Panel b). In the two panels, the red lines (represent the effects of rainfall
variability) refer to the y-axis on the right.

amount of desalinated water) is also discussed in this section. I show the numerical

results in Figure 3.10. I observe that the expected amount of desalinated water

used (DW) is non-decreasing in the freshwater capacity Kf in the characterized value

region, which is the same as the results characterized by Proposition 2.6. On one hand,

as the freshwater capacity increases, more freshwater and less desalinated water are

expected to be dispatched. However, on the other hand, as I presented in Figure 3.5,

the optimal recycling capacity is non-increasing in freshwater capacity, which implies

that less recycled water and more desalinated water are expected to be used. The

reduction of recycled water outweighs the increase in freshwater; hence, as presented

by Figure 3.10, the expected amount of desalinated water is non-decreasing in Kf .

These observations have important practical implications for the urban water utility

in Adelaide to manage urban water shortage/vulnerability, that is, the expansion of

freshwater capacity may further worsen urban water scarcity.
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3.3.3 Numerical Results: Value of Imported Water

In Adelaide, the freshwater can also be imported from River Murray and stored in the

reservoirs for urban consumption. As importing freshwater is equivalent to increase

the deterministic part of available freshwater (s0), the value of an additional unit (GL)

imported water can be characterized by V ∗(s0+1)−V ∗(s0), which is the change of the

optimal expected cost. Specifically, for given n units of imported water, I represent

the value of an additional unit (GL) imported water by V ∗(ś0 + n)− V ∗(ś0 + n+ 1)

(a positive value means the reduction of cost) and characterize the changes of the

value in Figure 3.11. I find that, in general, importing an additional unit (GL) of

freshwater results in a reduction of 3.36 MD/GL in the optimal expected cost (I also

note that this benefit slightly decreases as the quantity of imported water increases),

which suggests that, as long as the unit cost of importing freshwater is less than 3.36

MD/GL, it is beneficial for the water utility to import water.

I also analyze how the variabilities (σs and σc) and correlation (ρ) affect the value

of importing an additional unit of water. As the imported freshwater can be a reliable

water source to meet urban demand, common intuition may suggest that it is more
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Figure 3.11: Value of an additional unit (GL) imported water: a positive value means
that increasing the amount of imported water decreases the cost. The units of im-
ported water changes with a step size of 1.

beneficial to import freshwater when the variabilities increase. However, Figure 3.12

shows that imported water becomes less beneficial when the variabilities and the

correlation coefficient increase. Moreover, the rainfall variability has a larger impact

on the benefit than recycling cost variability and the correlation.

In this section, for comparison, I further discuss the value of imported water under

the benchmark case where wastewater recycling is unavailable. Similar to the case

under the optimal framework with recycling, the value of imported water under the

benchmark case is defined as V B(ś0 + n) − V B(ś0 + n + 1) (recall that V B is the

expected cost of the benchmark case).

Comparing with the optimal framework that recycling is integrated, we can ob-

serve from Figure 3.13 that the water utility is willing to pay much higher (about

30% higher) for an additional unit of imported water. These results further highlight

the value of wastewater recycling capacity investment and optimization.
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Figure 3.13: Value of an additional unit (GL) imported water (benchmark case): a
positive value means increasing the amount of imported water decreases the cost.
The units of imported water changes with a step size of 1.
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3.3.4 Numerical Results: Unit Cost of Satisfying Demand

I also analyze the cost of satisfying a unit of household (non-household) demand

under the optimal framework with wastewater recycling capacity investment. From

the model, I first derive the analytical form of the unit household (non-household)

demand cost. From the first stage objective function, I can derive the expected

amount of recycled water used, which is denoted by EARW.

EARW =

∫ ∫
Ω1

⋃
Ω3

⋃
Ω4

Krψ(s̃, c̃r)ds̃dc̃r

+

∫ ∫
Ω2

⋃
Ω6

[
(Dh +Dnh − βf min(s̃, Kf ))/βr

]
ψ(s̃, c̃r)ds̃dc̃r

+

∫ ∫
Ω5

[
(Dh +Dnh − βf (s̃−Kf ))/βr

]
ψ(s̃, c̃r)ds̃dc̃r

Then, the expected amount of potable supplied for non-house demand is Dnh −
EARW. Hence, the total expected amount of potable water supplied is TPW =

Dh + Dnh − EARW. As the household demand can only be satisfied by the potable

water (i.e., treated freshwater and/or desalinated water), the unit household demand

cost is equal to the unit potable water cost. The total expected cost of producing

potable water is

ECPW =

∫ ∫
Ω1

[cd(Dh +Dnh − βrKr − βf s̃) + cf s̃]ψ(s̃, c̃r)ds̃dc̃r

+

∫ ∫
Ω2

⋃
Ω6

[
cf min(s̃, Kf )

]
ψ(s̃, c̃r)ds̃dc̃r

+

∫ ∫
Ω3

⋃
Ω4

[
cf
βf

(Dh +Dnh − βrKr)

]
ψ(s̃, c̃r)ds̃dc̃r

+

∫ ∫
Ω5

[
cf (s̃−Kf )

]
ψ(s̃, c̃r)ds̃dc̃r

and the total expected cost of recycling is

ECRW =

∫ ∫
Ω1

⋃
Ω3

⋃
Ω4

c̃rKrψ(s̃, c̃r)ds̃dc̃r

+

∫ ∫
Ω2

⋃
Ω6

[
c̃r(Dh +Dnh − βf min(s̃, Kf ))/βr

]
ψ(s̃, c̃r)ds̃dc̃r

+

∫ ∫
Ω5

[
c̃r(Dh +Dnh − βf (s̃−Kf ))/βr

]
ψ(s̃, c̃r)ds̃dc̃r
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In addition to the potable water production cost, the unit household and non-

household demand costs should also include the overflow cost and investment cost.

The total expected overflow cost is

OC =

∫ ∫
Ω2

⋃
Ω6

[
of (s̃−min(s̃, Kf )−Kf )+

]
ψ(s̃, c̃r)ds̃dc̃r

+

∫ ∫
Ω4

[
of (s̃−Kf − (Dh +Dnh − βrKr)/βf )

]
ψ(s̃, c̃r)ds̃dc̃r

and the total investment cost is IC = ωrK
∗
r . Hence, the unit household demand cost

is

UHC = ECPW/TPW + (OC + IC)/(Dh +Dnh)

and the unit non-household demand cost is

UNHC = (ECRW + (Dnh − EARW)× ECPW/TPW) /Dnh+(OC + IC)/(Dh+Dnh)

For the given calibrated baseline values, the unit costs can be derived as UHC =

2.46 MD and UNHC = 3.25 MD. For the benchmark case in which wastewater recy-

cling is unavailable, the unit cost of satisfying household (UHCB) and non-household

demand (UNHCB) is equal to 3.83 MD. As we can see, the unit cost of satisfying

household and non-household demands under the benchmark case is much higher

than those under the framework with recycling, respectively.

I further investigate how UHC−UHCB (UNHC−UNHCB), which is the difference

between the unit costs of satisfying the household (non-household) demand under

the optimal framework and the benchmark case, changes with the uncertainties and

correlation. I find that, from Figure 3.14, the differences between the unit costs

increase in the rainfall variability and decrease in the cost variability, which implies

that, comparing with the benchmark case, the additional benefits of recycling decrease

in the rainfall variability and increase in the cost variability in terms of the unit cost

of satisfying household and non-household demands. These observations are in line

with the insights from Figure 3.4b. However, as ρ increases, the additional benefits of
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Figure 3.14: Effects of rainfall and recycling cost variabilities and correlation on the
unit cost differences: UHC − UHCB (Panel a) and UNHC − UNHCB (Panel b). A
negative value implies that the unit cost under the optimal framework is smaller than
that under the benchmark case. The dashed-dotted lines (represent the effects of
rainfall variability) refer to the y-axis on the right.

satisfying a unit household demand (Panel a) increases, while the additional benefits

of satisfying a unit non-household demand (Panel b) decreases.

3.3.5 Numerical Results: Value of Leakage Ratio Reduction

In this section, I also study the economic effects of changing the leakage ratios, or

equivalently, recovery ratios (i.e., βf and βr) in Figure 3.15a. From Figure 3.15a, I

observe that, given βr (βf ), it is always beneficial to reduce the leakage ratio 1− βf

(1− βr), which is in line with the results characterized in Section 2.3.4. In addition,

I show in Figure 3.15b that, based on the calibrated baseline scenario, it is always

better to prioritize the reduction of freshwater leakage, which has important practical

implications for the urban water utility in Adelaide (i.e., SA Water) to manage the

urban water leakage10.

10I note that, in practice, there is leakage reduction associated cost. If the unit cost of freshwater
leakage reduction is much more than that of the recycled water, then the priority and even the
economic benefit should be adjusted accordingly.
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Figure 3.15: Panel a: Economic effects of changing recovery ratios. The effect of
βf (βr) is characterized under βr = β́r = 0.919 (βf = β́f = 0.893). βf , βr ∈ [0.75, 1]
with a step size of 0.002. Panel b: marginal benefits comparison between reducing
recycled water leakage and reducing freshwater leakage. The red dot indicates that
reducing freshwater leakage is more beneficial than reducing recycled water leakage.

I also investigate the effects of reducing leakage ratios on the optimal recycling

capacity in Figure 3.16. I find that reducing the freshwater leakage (i.e., increasing

βf ) decreases the investment in recycling capacity, implying that leakage reduction

could be a valuable hedge against the potential premature capacity expansion in light

of urban water shortage, which is also in line with the insights obtained by Sahely and

Kennedy (2007). However, I observe that the optimal recycling capacity increases as

the recycled water leakage decreases (i.e., βr increases). This is because a smaller

leakage ratio makes the marginal benefit of the investment in recycling larger, and

then the magnitude of the investment becomes larger.

To further complement the analysis above, I conduct numerical studies using a

hypothetical case. Comparing with the baseline scenario calibrated by the practical

data, I change the values of µs, σs, Kf , qu, Dh andDnh to characterize the hypothetical

baseline scenario. Specifically, I set µs = 100, σs = 50, Kf = 110, qu = 110, Dh = 95

and Dnh = 60. Such changes (e.g., the values of µs and σs are changed from 122.2 and
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Figure 3.16: Effects of reducing recycled water leakage and reducing freshwater leak-
age on the optimal recycling capacity. The effect of βf (βr) is characterized under

βr = β́r = 0.919 (βf = β́f = 0.893). βf , βr ∈ [0.75, 1] with a step size is 0.002.

23.02 (practical data-based) to 100 and 50 (hypothetical scenario), respectively) are

reasonable given the global freshwater resources in distress and the increasing large

impact of global climate change on freshwater availability.

Using this hypothetical case, I analyze the benefits of leakage reduction and which

water pipeline leakage reduction gets the priority. I show the results in Figure 3.17.

For the hypothetical baseline scenario (i.e., σs = 50, Panel 3.17b), I find that it

is better to reduce the recycled water leakage ratio (i.e., 1− βr) when βr and βf are

relatively small; otherwise, it is better to reduce the freshwater leakage ratio. I also

observe from other panels that which leakage ratio gets priority may change when σs

changes. For example, when the variability σs decreases (i.e., σs = 20), it becomes

unlikely to prioritize reducing recycled water leakage in the given value regions. On

the other hand, as σs increases, it is better to prioritize reducing the recycled water

leakage in broader ranges of βf and βr.
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Figure 3.17: Marginal benefits comparison between reducing recycled water leakage
and reducing freshwater leakage (hypothetical case) under different variabilities of
available freshwater. The red (black) dot (triangle) indicates that reducing freshwater
(recycled water) leakage is more beneficial.
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3.3.6 Numerical Results: Overflow Risk

To complement the analysis on the overflow risk, I use the hypothetical scenario

introduced in Section 3.3.5 to show the insights. Moreover, I set the baseline σc = 5

and ρ = 0.5 here to investigate the potential effects from recycling cost variability and

correlation. Figure 3.18 characterizes the effects of uncertainties and their correlation

on overflow risk.
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Figure 3.18: Effects of uncertainties and correlation on the overflow risk.

I find that the overflow risk increases in the rainfall and recycling cost variabilities,

which are also characterized by the analytical results in Proposition 2.9.A. For effect

of the correlation, Figure 3.18 shows that the overflow risk decreases as the correlation

increases. A higher ρ makes it more likely that when the recycling cost is low (high),

the amount of rainfall is low (high). Then, when the rainfall is heavy, it is more likely

to dispatch freshwater in priority as ρ increases. Thus, the overflow risk decreases. I

also note that compared with the impact from the rainfall variability, the impacts of

cost variability and correlation are much less significant.

In addition, I also analytically compare the overflow risk under the optimal frame-

work with that under the benchmark case. The overflow risk under the benchmark

case is denoted by POB = Pr(s̃ ≥ 2Kf ). Then the difference between POB and PO
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is characterized as follows

POB − PO =


0, if ωr ≥ ω1

r

Pr(cr ≥ c̃r ≤ (cf − of ) βrβf , s̃ ≥ 2Kf )

+ Pr(cr ≤ c̃r < (cf − of ) βrβf , s̃ ≥ Kf + τ1(K∗r )), if ωr < ω1
r

I show the sensitivity results in the following Corollary.

Corollary 3.2.

(1) POB is independent of σc and ρ, and increasing in σs;

(2) POB − PO is non-positive;

(3) POB − PO increases in σs;

(4) The impacts of σc can be directly obtained from Proposition 2.9.A.

3.4 Conclusion

In this chapter, using practical urban water system data from Adelaide, I conduct

comprehensive numerical experiments to validate and complement the analytical re-

sults presented in Chapter 2. Specifically, I discuss how the rainfall and recycling

cost variabilities and their correlation affect the optimal expected cost, optimal re-

cycling capacity and the value of recycling. I characterize how the value of recycling

changes with the increasing household and non-household demands and find the value

increases in the household demand with decreasing marginal returns and increases in

non-household demand almost linearly, respectively. In addition, I also study the ben-

efit of importing water and the sustainability of urban water systems (e.g., the leakage

reduction, the vulnerability, which is represented by the amount of desalinated water

used, and the overflow risk). I find that it is always beneficial to reduce water leakage

and, in the calibrated practical case, the freshwater leakage is prioritized to reduce;

while in the hypothetical case, I develop more insights that the priority of reducing

which leakage ratio depends on the leakage rations’ ranges and also significantly af-

110



fected by the rainfall variability (e.g., a large rainfall variability makes reducing the

recycled water leakage ratio more beneficial). From the numerical analysis, I fur-

ther find that comparing with the recycling cost variability and the correlation, the

rainfall variability has a much larger impact on the urban water system’s economic

and sustainable performances. These observations provide insightful implications for

urban water utilities to manage the urban water systems under the challenge of rapid

urbanization, population growth and climate change.
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Appendix A

Appendix of Chapter 1

A.1 Technical Proofs

Proof of Theorem 1.1. Define

Āi =
N∑
z=1

P a=1
iz

ptei N∑
k=z−δ̄(i)

P a=0
ik


Ãi =

N∑
z=1

P a=0
iz

ptei N∑
k=max(z+δ̄(i)+1,1)

P a=1
ik


B̄i = psei

N∑
k=1

qsek Ii≥k

B̃i = psei

N∑
k=1

qsek (1− Ii≥k)

I have
N∑
z=1

P a=1
iz

ptei N∑
k=z−δ̄(i)

P a=0
ik + psei

N∑
k=1

qsek Ii≥k

 = Āi + B̄i

N∑
z=1

P a=0
iz

psei N∑
k=1

qsek (1− Ii≥k) + ptei

N∑
k=max(z+δ̄(i)+1,1)

P a=1
ik

 = Ãi + B̃i

It is easy to show Āi+Ãi = ptei . Assume there are two different solutions (P
a=1(1)
i ,P

a=0(1)
i )

and (P
a=1(2)
i ,P

a=0(2)
i ), then (Ā

(1)
i , Ã

(1)
i ) and (Ā

(2)
i , Ã

(2)
i ) are the corresponding values

under the two solutions respectively. Without lose of generality, I assume Ā
(1)
i ≤ Ā

(2)
i ,
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then I have Ā
(1)
i + B̄i ≤ Ā

(2)
i + B̄i and Ã

(1)
i ≥ Ã

(2)
i , which implies Ã

(1)
i + B̃i ≥ Ã

(2)
i + B̃i.

Furthermore, because solution (1) and solution (2) are both solutions to the equation

system. Then I have

P
a=1(1)
ij

(
ptei

N∑
k=j−δ̄(i)

P
a=0(1)
ik + B̄i

)
Ā

(1)
i + B̄i

=

P
a=1(2)
ij

(
ptei

N∑
k=j−δ̄(i)

P
a=0(2)
ik + B̄i

)
Ā

(2)
i + B̄i

(A.1)

P
a=0(1)
ij

(
B̃i + ptei

N∑
k=max(j+δ̄(i)+1,1)

P
a=1(1)
ik

)
Ã

(1)
i + B̃i

=

P
a=0(2)
ij

(
B̃i + ptei

N∑
k=max(j+δ̄(i)+1,1)

P
a=1(2)
ik

)
Ã

(2)
i + B̃i

(A.2)

Moreover, from assumption qsi1 > 0 and psi > 0, I have B̄i > 0. Therefore, Ā
(1)
i ≤

Ā
(2)
i =⇒ P

a=1(1)

i,(N+δ̄(i)+1)
≤ P

a=1(2)

i,(N+δ̄(i)+1)
, ..., P

a=1(1)
iN ≤ P

a=1(2)
iN (Note that here I assume

δ̄(i) < 0, for the case with δ̄(i) ≥ 0, the analysis is similar by starting from equation

A.2), which can further generate
N∑

k=max(j+δ̄(i)+1,1)

P
a=1(1)
ik ≤

N∑
k=max(j+δ̄(i)+1,1)

P
a=1(2)
ik .

This is because, e.g., let j = N + δ̄(i) + 1, then I have

P
a=1(1)

i,(N+δ̄(i)+1)

(
B̄i
)

Ā
(1)
i + B̄i

=
P
a=1(2)

i(N+δ̄(i)+1)

(
B̄i
)

Ā
(2)
i + B̄i

since Ā
(1)
i ≤ Ā

(2)
i and B̄i > 0, I must have P

a=1(1)

i,(N+δ̄(i)+1)
≤ P

a=1(2)

i,(N+δ̄(i)+1)
, following the

same reasoning process, I can derive P
a=1(1)

i,(N+δ̄(i)+1)
≤ P

a=1(2)

i,(N+δ̄(i)+1)
, ..., P

a=1(1)
iN ≤ P

a=1(2)
iN .

Similarly, I have Ã
(1)
i + B̃i ≥ Ã

(2)
i + B̃i, then I can immediately have P

a=0(1)
iN ≥ P

a=0(2)
iN

based on Equation A.2. Moreover, from Equation A.1, I know

P
a=1(1)

i,(N+δ̄(i))

(
ptei

N∑
k=N

P
a=0(1)
ik + B̄i

)
Ā

(1)
i + B̄i

=

P
a=1(2)

i,(N+δ̄(i))

(
ptei

N∑
k=N

P
a=0(2)
ik + B̄i

)
Ā

(2)
i + B̄i

then, Ā
(1)
i ≤ Ā

(2)
i , B̄i > 0, and P

a=0(1)
iN ≥ P

a=0(2)
iN can derive P

a=1(1)

i,(N+δ̄(i))
≤ P

a=1(2)

i,(N+δ̄(i))
,

combining with
N∑

k=max(N+δ̄(i)+1,1)

P
a=1(1)
ik ≤

N∑
k=max(N+δ̄(i)+1,1)

P
a=1(2)
ik , I can derive

N∑
k=max(N+δ̄(i),1)

P
a=1(1)
ik ≤

N∑
k=max(N+δ̄(i),1)

P
a=1(2)
ik , from which I can show P

a=0(1)
i,(N−1) ≥ P

a=0(2)
i,(N−1) in equation A.2. By
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doing such reasoning process repeatedly, I can show P
a=1(1)
ij ≤ P

a=1(2)
ij and P

a=0(1)
ij ≥

P
a=0(2)
ij for all j ∈ S. As solution (1) and solution (2) are different, then there is at

least one P
a=1(1)
ij < P

a=1(2)
ij and one P

a=0(1)
ij > P

a=0(2)
ij , then, I have

1 =
N∑
j=1

P
a=1(1)
ij <

N∑
j=1

P
a=1(2)
ij = 1

1 =
N∑
j=1

P
a=0(1)
ij >

N∑
j=1

P
a=0(2)
ij = 1

which cannot be true. Then I can conclude that two different solution is impossible,

which means the solution is unique to the system.

Proof of Theorem 1.2. (1) The probabilistic convergence of Π̂a(n) is obvious because

I assume a multinomial distribution for the transitions.

(2)I know that Gi is a continuous one to one mapping on open set, then the inverse

mapping G−1
i exists and continuous. Since I have P(||Π̂a

i (n) −Πa
i || > ε) → 0, then

∃λ > 0 such that P(||Π̂a
i (n)−Πa

i || ≤ λ)→ 1, with the condition that G−1
i is continu-

ous, I can generate P(||G−1
i (Π̂a

i (n))−G−1
i (Πa

i )|| ≤ ε)→ 1, then P(||P̂ a
i (n)− P a

i || >

ε)→ 0. (Continuous Mapping Theorem)

(3) I know Gi is continuously differentiable, assume det(JGi
) 6= 0, where JGi

is

the Jacobian matrix. Then G−1
i is also continuously differentiable. Therefore, fol-

lowing Lemma 3.9 from Wooldridge (2010), I have
√
n[G−1

i (Π̂a
i ) − G−1

i (Πa
i )]

d∼

N (0,∆V −1∆
′
) as

√
n[Π̂a

i − Πa
i ]

d∼ N (0,V −1) following from Cox and Hinkley

(1979).

Proof of Theorem 1.3. In the system of equations, (Π̂a=1
ij , Π̂a=1

ij ) = (
Ŷij

K̂a=1
i

,
X̂ij

K̂a=0
i

), which

is the maximum likelihood estimator derived from the following log-likelihood func-

tion with constraints
N∑
j=1

Π̂a
ij = 1 for a = 0, 1.

log(L(Πa=0
ij ,Πa=1

ij )) = log(
Ka=1
i !

Yi1!...YiN !
)+log(

Ka=0
i !

Xi1!...XiN !
)+

N∑
j=1

(
Yij log(Πa=1

ij )
)
+

N∑
j=1

(
Yij log(Πa=0

ij )
)

As gaij(P
a=0
i ,P a=1

i ) = Πa
ij for any well defined i, j,and a, and the mapping is one-to-
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one, then by definition, I have
(
ga=1
ij ((P̂

a=1

i , P̂
a=0

i )), ga=0
ij ((P̂

a=1

i , P̂
a=0

i ))
)

= (
Ŷij

K̂a=1
i

,
X̂ij

K̂a=0
i

),

then (P̂
a=1

i , P̂
a=0

i ) maximizes

log(L(P a=0
i ,P a=1

i )) = log(
Ka=1
i !

Yi1!...YiN !
) + log(

Ka=0
i !

Xi1!...XiN !
)+

+
N∑
j=1

(
yij log(ga=1

ij (P a=0
i ,P a=1

i ))
)

+
N∑
j=1

(
xij log(ga=0

ij (P a=0
i ,P a=1

i ))
)

which by definition is a direct ML estimator.

A.2 Model with Multiple Treatment-Effect Thresh-

olds Setting

Let qteil be the probability that l is selected as the threshold under treatment-effect-

based policy for state i patients. As the state space S = {1, 2, ..., N}; hence, the

treatment-effect threshold candidate set is {2 − 2N, 1 − 2N, ..., 2N − 2}. Therefore,

the structural model with multiple treatment-effect threshold is as follow.

Π̂a=1
ij =

P a=1
ij

(
ptei

2N−2∑
l=2−2N

qteil
N∑

k=j−l
P a=0
ik + psei

N∑
k=1

qsek Ii≥k

)
N∑
z=1

P a=1
iz

(
ptei

2N−2∑
l=2−2N

qteil
N∑

k=z−l
P a=0
ik + psei

N∑
k=1

qsek Ii≥k
)

Π̂a=0
ij =

P a=0
ij

(
psei

N∑
k=1

qsek (1− Ii≥k) + ptei
2N−2∑
l=2−2N

qteil
N∑

k=max(j+l+1,1)

P a=1
ik

)
N∑
z=1

P a=0
iz

(
psei

N∑
k=1

qsek (1− Ii≥k) + ptei
2N−2∑
l=2−2N

qteil
N∑

k=max(z+l+1,1)

P a=1
ik

)
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A.3 Supplementary Simulation Settings

A.3.1 Predictive Models in Simulations

To build the predictive models in the simulation, I separate D into two subsets, D1

and D0, by action a = 1 and a = 0, respectively. For the dataset D0 (D1), I train

predictive model Mod0(Mod1) base on pv0 and RR0(pv1 and RR1), and then I apply

Mod0(Mod1) to dataset D1(D0) to predict the censored RR values with pv0(pv1) as

the input under a = 0(a = 1). The predicted RR values are classified into different

states, and then all data (predicted and observed) are combined to derive P̃
a

with

MLE by assuming a multinomial prior distribution. The prediction accuracy of Mod0

and Mod1 are denoted by β0 and β1, respectively.

A.3.2 Two-Stage Estimation

For the estimation of p and qse, as I mentioned, I employ an ensembling method with

maximizing the MLE to select the parameters. Specifically, let DCMk ( DCMte)

be the severity-based (treatment-effect-based) decision classification model such that,

for any patient at period t, s/he will be extubated (i.e., a = 0) if st < k (δt ≥ 0) and

continue the ventilation otherwise. Then, the probability that patients with state s

and treatment effect δ will continue the ventilation (i.e., a = 1) at time t can be

represented by

Prs,δ(a = 1|t) =
4∑

k=1

qsek (1− p)× (Is≥k|t,DCMK) + p× (Iδ<0|t,DCM te)

Then, for each data point j, I can derive the probability that a patient will continue

the ventilation p(aj = 1), where aj is the action of data point j. Let venj be the

indicator that aj = 1 if venj = 1 and aj = 0 otherwise. Subsequently, I can write the

likelihood function for data point j as

Lj(p, qse) = p(aj = 1)venj(1− p(aj = 1))1−venj
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The log-likelihood on the selected sample can then be obtained. I then select the p̂

and q̂se that maximize the sample log-likelihood as the estimated parameters. As the

ensembling model depends on the treatment effect, which is derived by the predictive

models, then the two-stage estimator depends on the prediction accuracy.

A.4 Simulation Results

A.4.1 Error-Free Structural Model: Additional Results

The performance comparison with matrices distance is measured by 2-norm is pre-

sented in Figure A.1. and the performance comparison with matrices distance is
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Figure A.1: Performances Comparison 2-Norm

measured by Frobenius norm (F-norm) is presented in Figure A.2.

In the simulation, I know that the ground truth value of the probability of using

treatment-effect-based policy is p = 0.45. In the two-stage estimation, the first stage

MLE estimation tends to underestimate p. Moreover, for the two-stage estimators,

the estimated values of p (i.e., p̂) may be different under different values of α. To

validate the insights I obtained by the curves of Dist Struct E in Section ??, I
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Figure A.2: Performances Comparison Frobenius-Norm

conduct sensitivity analysis and force p̂ = 0.4, 0.3, 0.2 and then use these values in

the error-free model to derive the estimators with keeping qse as the ground truth

value. The results under the max-norm (same insights can be observed under 2-norm

and F-norm) are shown in Figure A.3. From Figure A.3, I find that given p̂ ∈ (0, p),
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Figure A.3: Sensitivity Analysis to pte

and estimate the TPMs using p̂ and the error-free model, the performance (i.e., Max-

norm distance here) of the estimated TPM presents a U-shaped curve such that the
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distance first decreases and then increases in α. These observations further validate

the insights that I obtained from Dist Struct E in the main text. I may note that

there are fluctuations for Dist Struct E in Figure 1.4, but in Figure A.3, the curves

behave much more smooth. The reason is, as I mentioned, the first stage estimators

are not necessarily the same for different values of α in Figure 1.4; moreover, the

estimated q̂se are also different from the ground truth values. Hence, Dist Struct E

in Figure 1.4 is not necessarily behaves exactly the same with the corresponding

curves in A.3.

A.4.2 Correlation and Prediction Accuracy

The correlation coefficients between pv0 and RR0(pv1 and RR1) is denoted by ρ0(ρ1).

Figure A.4 uses the cases with α = 0.96, 0.9, 0.86, and 0.8 to illustrate the relationship

between ρ0(ρ1) and the prediction accuracy of Mod0(Mod1), respectively. I can see

that β0 and β1 are increasing in ρ0 and ρ1. Moreover, with the perfect linear corre-

lation (σ0 = σ1 = 0), β0 = β1 = 1. However, the accurate rates drop dramatically
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Figure A.4: Relationship Between Correlation and Prediction Accuracy

with the reduction of correlation. When ρ0 and ρ1 are approaching 0.8, β0 and β1
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are approaching 0.5. The reason for this is as follow: given ρ0 and ρ1 in dataset D,

after the split of D, I observe that ρ00 and ρ11 tend to be much larger than ρ01 and

ρ10, respectively, which suggests that Mod0 and Mod1 may have very high in-sample

accuracy on datasets D0 and D1 but low out-of-sample accuracy on datasets D1 and

D0. Therefore, I can observe the patterns in Figure A.4. These observations indi-

cate that data noise resulted from treatment-effect-based censoring has significantly

negative impacts on the performances of predictive models.

A.4.3 Simulation: Additional Supports

I derive the deviation matrices ∆̂
a

E = P̂
a

E − P a, ∆̂
a

= P̂
a − P a, ∆̃

a
= P̃

a − P a and

∆̄
a

= Π̂
a − P a and use the case that α = 0.78 and σ = 7 (these two representative

values are selected base on the results in the case study) as the representative to

illustrate the average results.

∆̂
a=1

E =



0.019 −0.011 −0.006 −0.001

0.008 0.002 −0.007 −0.003

0.002 0.005 0.001 −0.007

0.001 0.004 0.006 −0.010


∆̂

a=0

E =



0.001 0.000 −0.001 −0.000

0.007 0.000 −0.005 −0.003

0.004 0.010 −0.002 −0.012

0.000 −0.002 −0.018 0.020



∆̂
a=1

=



−0.006 0.006 0.001 0

−0.016 0.002 0.011 0.003

−0.007 −0.011 0 0.018

−0.002 −0.008 −0.018 0.028


∆̂

a=0
=



−0.044 0.03 0.01 0.004

−0.035 −0.01 0.025 0.02

−0.013 −0.037 −0.024 0.073

0.001 0 −0.009 0.008



∆̃
a=1

=



0.043 −0.035 −0.006 −0.001

0.007 −0.003 −0.003 −0.001

0.003 0.005 0.001 −0.009

0.001 0.003 0.025 −0.029


∆̃

a=0
=



0.039 −0.033 −0.005 −0.001

0.009 −0.006 −0.002 −0.001

0.003 0.012 −0.002 −0.012

0.001 0.002 0.053 −0.056


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∆̄
a=1

=



0.015 −0.01 −0.004 −0.001

0.039 −0.008 −0.022 −0.01

0.02 0.023 −0.012 −0.03

0.004 0.016 0.027 −0.047


∆̄

a=0
=



0.061 −0.044 −0.015 −0.003

0.091 −0.007 −0.057 −0.027

0.04 0.065 −0.013 −0.091

0.008 0.025 0.038 −0.072


From the deviation matrices, I can see that, on average sense, P̂

a

E is much closer to

P a when compared with P̃
a

and Π̂
a
. Hence, it also supports the conclusion that the

proposed structural model outperforms other estimation methods. Moreover, from

the deviation matrices, I can see that the observed TPMs tend to overestimate the

effects of both ventilation and extubation, which validate the results of Proposition

1.1. For the structural model, the estimated TPM P̂
a

tends to underestimate the

effects of actions. This is because the error-free model assumes that all predictions

are correct, which means the model potentially treats every observed transition as

the one with better outcome (the censored transition has worse outcome). However,

when I have prediction errors, the observed outcomes are not necessarily better; hence,

under wrong predictions, censored transitions with better outcomes are recovered as

transitions with worse outcomes. Therefore, P̂
a

tends to underestimate the effect of

action a.

As the supplement results, I compare the absolute value of each entry of the devia-

tion matrices. These comparisons can also reflect the performance of each estimation

method. Specifically, I investigate the percentages of negative entries in the matrices

|∆̂a

E| − |∆̄
a| (for illustration, ∆̂

a

E is selected under σ = 7) and |∆̂a

E| − |∆̃
a| under

different α and σ for a = 0, 1. The results are shown in Figure A.5. From Figure

A.5, I can see that more than 90% entries of P̂
a

E (again, under σ = 7) is closer to the

ground truth when compared with Π̂
a=1

under almost all α. When compared with

P̃
a
, I find that, when the predictive models are not very accurate (i.e., σ is not very

small), over 50% entries of |∆̂a

E| − |∆̃
a| is negative under most values of α, which
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(b) Action a = 1

σ = 3: β0 ∈ (0.881, 0.887), β1 ∈ (0.869, 0.874); σ = 5: β0 ∈ (0.800, 0.809), β1 ∈ (0.781, 0.789);
σ = 7: β0 ∈ (0.726, 0.733), β1 ∈ (0.680, 0.687);

Figure A.5: Performances Comparison: Percentage of Entries Closer to Ground Truth

also suggests that P̂
a

E, in overall, is closer to P a. Therefore, these findings further

support the use of the proposed structural model to recover the underlying TPMs.

A.4.4 Performance Comparison: Structural Models with and

without Prediction Errors

I compare the structural model with prognostic errors incorporated with the error-free

structural model in this section by investigating the distance between the estimation

and ground truth TPM. As I defined in the main text, Dist Struct E denotes the

norm distance between the estimated underlying TPM from the error-free model and

the corresponding ground truth TPM. Under the structural model with prognostic

error incorporated, I consider the two-stage estimation with the ground truth prog-

nostic information is used (as this information is available in the simulation). I then

term Dist Struct E(GT ) (i.e., the ground truth accuracy information is used) as the

norm distances from the corresponding estimators under these two cases to P a, re-

spectively. Using the max-norm as the representation, I show that the performance of
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the error-free structural model, in general, is better than that of the structural model

with prognostic errors incorporated in Figure A.6. When the prognostic accuracy is

low (e.g., α < 0.65), the performance of the prognostic-error embedded model tends

to outperform the error model. I claim that the insights also hold under 2-norm and

F-norm specifications. When the ground truth prognostic accuracy information is
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(b) Action a = 1

Figure A.6: Comparison Between Two Models:Max-Norm

used (i.e., Dist Struct E(GT )), under two-stage estimation, there is no error in the

second stage, but the error from the first stage estimation may distort the estimators.

On the contrary, for the error-free model, the first stage estimation error may mitigate

the second stage error such that the performance of the estimator can be even better.

In summary, these results support the conclusion that an error-free model is better

for the estimation.

A.5 Case Study: Predictive Models

I train the predictive models Mod0(Mod1) with XGBoost(Extreme Gradient Boost-

ing) methods to predict the censored outcomes under a = 0(a = 1) on the dataset

D1(D0). Recall that D1(D0) only contains the observations under action a = 1(a = 0).
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Specifically, we build the predictive models following the similar logic that I train the

predictive models adopted in the simulations. I use all relevant physiological data and

demographics to predict the RR values with multiple methods, including linear model,

classification and regression tree model, random forest model and XGBoost(Extreme

Gradient Boosting) model. I split the data into two sets with 75% data in the train-

ing set, and the remaining is in the test set. I train the predictive models with the

mentioned methods on the training set with 10-fold cross-validation and comprehen-

sive parameter tuning (random forest model and XGBoost model). Based on the

prediction accuracy of each model, I select the XGBoost model as the final predictive

model. The parameters of the model are presented in Table A.1.

Parameters Mod0 Mod1
learning rate 0.07 0.07
n estimator 1000 1000
max depth 6 2

min child weight 5 5
gamma 0.01 0.08

subsample 0.81 0.55
colsample bytree 0.5 0.58

reg alpha 0.011 0.011
objective multi:softmax multi:softmax
nthread 4 4

scale pos weight 1 1
num class 4 4

seed 123 271
out-of-sample accuracy 0.685 0.601

Table A.1: Parameters of Predictive Models

A.6 Quadratic Programming Method

I present the quadratic programming method discussed in Theil and Rey (1966) and

Schneider and Zenios (1990) in this section. Let xit denote the probability of state i

observed in period t and A be the transition matrix and aij is the transition prob-
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ability from i to j. Then they solve the following quadratic problem to derive the

estimator.

min
A

T∑
t=1

(xt+1 −A
′
xt)

′
D(xt+1 −A

′
xt)

s.t aij ≥ 0,
∑
j

aij = 1 ∀i

where D is a weighting matrix. I use D = I, which is adopted in the literature, as

the representatives.
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Appendix B

Appendix of Chapter 2

B.1 Sensitivity Analysis: Global Effects On The

Overflow Risk

Proposition B.1.A (Freshwater Capacity).

(1) If

dK∗r
dKf

≤ βf
βr

+

2βf
∫ c̄r

(cf−of ) βr
βf

ψ(2Kf , c̃r)dc̃r

βr
∫ (cf−of ) βr

βf
cr

ψ(Kf + τ1(K∗r ), c̃r)dc̃r

PO decreases in Kf ;

(2) Otherwise, I have two thresholds ω̄r = ω1
r ((Dh +Dnh)/βf ) and ω̂r = ω0

r ((Dh +Dnh)/βf )

such that

(2.1) If ωr < ω0
r , PO decreases in Kf ;

(2.2) If ω0
r < ωr < min(ω1

r , ω̂r), there exists a threshold K̂0
f such that PO increases

in Kf on (0, K̂0
f ) and decreases otherwise;

(2.3) If ω̂r < ωr < ω1
r , PO increases in Kf ;

(2.4) If ω1
r < ωr < ω̂r, there exist two thresholds K̂1

f and K̂2
f such that PO

decreases on (0, K̂1
f ), increases on [K̂1

f , K̂
2
f ) and decreases on [K̂2

f , (Dh +Dnh)/βf ];

(2.5) If max(ω1
r , ω̂r) < ωr < ω̄r, PO decreases on (0, K̂1

f ) and increases on
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[K̂1
f , (Dh +Dnh)/βf ];

(2.6) If ωr ≥ ω̄r, PO decreases in Kf .

In terms of the impact from the cost variability, for simplicity, I assume µc >

(cf − co) βrβf and ρ ≥ 0.

Proposition B.2 (Cost Variability). PO increases in σc.

B.2 Proofs

Proof of Proposition 2.1: The proof is omitted.

Proof of Proposition 2.2: Considering two cases: (1) Kf ≤ Dh+Dnh
βf

and (2) Kf >
Dh+Dnh

βf
.

Considering case (1), I have two subcases (1.1) Kr ∈ [0,
Dh+Dnh−βfKf

βr
] and (1.2)

Kr ∈ [
Dh+Dnh−βfKf

βr
,min(βUqu,

Dnh
βr

)]1.

Case 1.1: Kr ∈ [0,
Dh+Dnh−βfKf

βr
]

Under this case, I have

V (Kr) = E
c̃r,s̃

(
min
qf ,qr

z(Kr; s̃, c̃r) + ωrKr

)
=

∫ c̄r

cr

∫ Kf

s0

[
c̃rKr + cf s̃+ cd(Dh +Dnh − βrKr − βf s̃)

]
ψ(s̃, c̃r)ds̃dc̃r

+

∫ c̄r

cr

∫ +∞

Kf

[
c̃rKr + cfKf + cd(Dh +Dnh − βrKr − βfKf )

+ of (s̃− 2Kf )+

]
ψ(s̃, c̃r)ds̃dc̃r + c̄b(βhDh + βnhDnh) + ωrKr

= (µc − βrcd)Kr + c̄b(βhDh + βnhDnh) + cd(Dh +Dnh) + ωrKr

+

∫ c̄r

cr

∫ Kf

s0

(cf − βfcd)s̃ψ(s̃, c̃r)ds̃dc̃r +

∫ c̄r

cr

∫ +∞

Kf

(cf − βfcd)Kfψ(s̃, c̃r)ds̃dc̃r

+

∫ c̄r

cr

∫ +∞

2Kf

of (s̃− 2Kf )ψ(s̃, c̃r)ds̃dc̃r

Then I have

dV (Kr)

dKr

= E
c̃r,s̃

[mdβr] + ωr

1If
Dh+Dnh−βfKf

βr
> min(βUqu,

Dnh

βr
), I do not have case (1.2)
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Then I know, if ωr ≤ ω2
r = − E

c̃r,s̃
[mdβr], the optimal capacity to invest is K∗r =

Dh+Dnh−βfKf
βr

; Otherwise, K∗r = 0.

Case (1.2): Kr ∈ [
Dh+Dnh−βfKf

βr
,min(βUqu,

Dnh
βr

)]

The expected cost function is

V (Kr) = E
c̃r,s̃

(
min
qf ,h

z(Kr; s̃, c̃r) + ωrKr

)
= E
c̃r,s̃

(
c̃rq
∗
r + cb(βhDh + βnhDnh − q∗r ) + cfq

∗
f + of (s̃− q∗f −Kf )+ + cdq

∗
d

)
+ ωrKr

=

∫ ∫
Ω1

[(c̃r − βrcd)Kr + cd(Dh +Dnh) + (cf − βfcd)s̃]ψ(s̃, c̃r)ds̃dc̃r

+

∫ ∫
Ω2

⋃
Ω6

[
(
c̃r
βr

)(Dh +Dnh)− (
c̃rβf
βr
− cf ) min(s̃, Kf ,

Dh +Dnh

βf
)

+ of (s̃−min(s̃, Kf ,
Dh +Dnh

βf
)−Kf )+

]
ψ(s̃, c̃r)ds̃dc̃r

+

∫ ∫
Ω3

[
(c̃r −

βrcf
βf

)Kr +
cf
βf

(Dh +Dnh)

]
ψ(s̃, c̃r)ds̃dc̃r

+

∫ ∫
Ω4

[
(c̃r −

βr(cf − of )

βf
)Kr +

cf − of
βf

(Dh +Dnh) + of (s̃−Kf )

]
ψ(s̃, c̃r)ds̃dc̃r

+

∫ ∫
Ω5

[
c̃r
βr

(Dh +Dnh) + (cf −
(c̃r)βf
βr

)(s̃−Kf )

]
ψ(s̃, c̃r)ds̃dc̃r + cb(βhDh + βnhDnh) + ωrKr

The first order derivative is dV (Kr)
dKr

= M(Kr) + ωr, where

M(Kr) =

∫ ∫
Ω1

(mdβr)ψ(s̃, c̃r)ds̃dc̃r +

∫ ∫
Ω3

(mno
f βr)ψ(s̃, c̃r)ds̃dc̃r

+

∫ ∫
Ω4

(mo
fβr)ψ(s̃, c̃r)ds̃dc̃r

(B.1)

Let c1 = (cf − of ) βrβf and c2 = cf
βr
βf

. Then the second order derivative is

d2V (Kr)

dK2
r

=

∫ c̄r

cr

(−βr
βf

)mdβrψ(τ1(Kr), c̃r)dc̃r

+

∫ c2

cr

βr
βf
mno
f βrψ(τ1(Kr), c̃r)dc̃r

−
∫ c2

cr

βr
βf
mno
f βrψ(τ3(Kr), c̃r)dc̃r

+

∫ c1

cr

βr
βf
mo
fβrψ(τ3(Kr), c̃r)dc̃r ≥ 0
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Hence, V (Kr) is convex in Kr. Let

ω0
r = −M(min(βhDh + βnhDnh,

Dnh

βr
))

ω1
r = −M(

Dh +Dnh − βfKf

βr
)

Then, ω0
r ≤ ω1

r ≤ ω2
r . If ωr ∈ (ω1

r , ω
2
r),

dV (Kr)
dKr

> 0, the optimal recycling capacity to

invest is K∗r =
Dh+Dnh−βfKf

βr
; if ωr ∈ (ω0

r , ω
1
r ], K

∗
r satisfies M(K∗r ) +ωr = 0; otherwise,

dV (Kr)
dKr

< 0 and K∗r = min(βhDh + βnhDnh,
Dnh
βr

).

Case (2): Kf >
Dh+Dnh

βf

Similarly, I can show the second order derivative is positive. ω0
r remains as the same

definition, in addition, let ω3
r = −M(0), where M(Kr) is as defined in equation B.1

when Kr ∈ [0,min(βhDh+βnhDnh,
Dnh
βr

)]. Hence, I have Kr∗ = 0 if ωr > ω3
r , K

∗
r solves

M(K∗r ) + ωr = 0 if ωr ∈ (ω0
r , ω3] and K∗r = min(βhDh + βnhDnh,

Dnh
βr

) otherwise.

Proof of Lemma 2.1: I assume that (s̃, c̃r) is a bivariate normal random variable.

I let φ(·) and Φ(·) denote the pdf and cdf of standard normal distribution and define

the following standard normal random variables.

z̃0
d
=
c̃r − µc
σc

z̃1
d
=
s̃− µs
σs

z̃2
d
=
c̃r − µc − ρσcσs (s1 − µs)

σc
√

1− ρ2

∣∣∣s̃
z̃3

d
=
s̃− µs − ρσsσc (c

h
wr − µc)

σs
√

1− ρ2

∣∣∣c̃r
As ω2

r = − E
c̃r,s̃

[mdβr], obviously it is independent of σs, σc and ρ. I then show the

impacts of σs, σc and ρ on the thresholds ω0
r and ω1

r below. As I defined, I have

ω0
r = −M(min(βhDh + βnhDnh,

Dnh

βr
))

ω1
r = −M(

Dh +Dnh − βfKf

βr
)

Recall that function M(Kr) represents the first-order derivative function. Hence, to

show the effects of variabilities and correlation on ω0
r and ω1

r , it is sufficient to show
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the impacts on M(Kr) for any given Kr. First, I have

∂M(σs, σc, ρ;Kr)

∂σs
=

− τ1(Kr)− µs
σ2
s

√
1− ρ2

∫ +∞

−∞
(σcz̃0 + µc − βfcd)φ(

τ1(Kr)− µs − ρσsz̃0

σs
√

1− ρ2
)φ(z̃0)dz̃0 (B.2)

+
τ1(Kr)− µs
σ2
s

√
1− ρ2

∫ c2−µc
σc

−∞
(σcz̃0 + µc − βf

cf
βr

)φ(
τ1(Kr)− µs − ρσsz̃0

σs
√

1− ρ2
)φ(z̃0)dz̃0 (B.3)

− τ3(Kr)− µs
σ2
s

√
1− ρ2

∫ c2−µc
σc

−∞
(σcz̃0 + µc − βf

cf
βr

)φ(
τ3(Kr)− µs − ρσsz̃0

σs
√

1− ρ2
)φ(z̃0)dz̃0 (B.4)

+
τ3(Kr)− µs
σ2
s

√
1− ρ2

∫ c1−µc
σc

−∞
(σcz̃0 + µc − βf

cf − of
βr

)φ(
τ3(Kr)− µs − ρσsz̃0

σs
√

1− ρ2
)φ(z̃0)dz̃0

(B.5)

I have the summation of (B.4) and (B.5) is positive. If the summation of (B.2) and

(B.3) is also positive, then ∂M(σs,σc,ρ;Kr)
∂σs

is positive. If the summation of (B.2) and

(B.3) is negative, as ∂M(σs,σc,ρ;Kr)
∂Kr

> 0, then

∂M(σs, σc, ρ;Kr)

∂σs
≥ τ1(Kr)− µs

σ2
s

√
1− ρ2

βf
βr

∂M(σs, σc, ρ;Kr)

∂Kr

> 0

Then, I show that M(Kr) increases and hence ω0
r and ω1

r decrease in σs.

Similarly, I have

∂M(σs, σc, ρ;Kr)

∂σc
=

∫ +∞

−∞
z̃0Φ(

τ1(Kr)− µs − ρσsz̃0

σs
√

1− ρ2
)φ(z̃0)dz̃0

+

∫ c2−µc
σc

−∞
z̃0Φ(

τ3(Kr)− µs − ρσsz̃0

σs
√

1− ρ2
)φ(z̃0)dz̃0

−
∫ c2−µc

σc

−∞
z̃0Φ(

τ1(Kr)− µs − ρσsz̃0

σs
√

1− ρ2
)φ(z̃0)dz̃0

+

∫ c1−µc
σc

−∞
z̃0(1− Φ(

τ1(Kr)− µs − ρσsz̃0

σs
√

1− ρ2
))φ(z̃0)dz̃0
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Let L = ∂M(σs,σc,ρ;Kr)
∂σc

, then

dL

dσc
= −(c2 − µc)2

σ3
c

Φ(
τ3(Kr)− µs − ρσsz̃0

σs
√

1− ρ2
)φ(

c2 − µc
σc

)

+
(c2 − µc)2

σ3
c

Φ(
τ1(Kr)− µs − ρσsz̃0

σs
√

1− ρ2
)φ(

c2 − µc
σc

)

− (c1 − µc)2

σ3
c

(1− Φ(
τ1(Kr)− µs − ρσsz̃0

σs
√

1− ρ2
))φ(

c1 − µc
σc

) < 0

thus, ∂M(σs,σc,ρ;Kr)
∂σc

decreases in σc. Moreover, following the Stein’s lemma that E[h(z̃)z̃] =

E[h
′
(z̃)] for any differentiable function h(·) and normal random variable z̃, I can derive

∂M(σs, σc, ρ;Kr)

∂σc

∣∣∣
σc→0

=


0 If µc ≤ c1

> 0 If µc > c1 and ρ < 0

< 0 Otherwise

Therefore, if µc ≤ c1 or ρ ≥ 0, ∂M(σs,σc,ρ;Kr)
∂σc

< 0. Now for the case µc > c1 and ρ < 0,

L
∣∣∣
σc→+∞

=

∫ +∞

0

z̃0Φ(
τ1(Kr)− µs − ρσsz̃0

σs
√

1− ρ2
)φ(z̃0)dz̃0 −

∫ +∞

0

z̃0φ(z̃0)dz̃0 < 0

Hence, there exists a threshold σ̂c such that L ≥ 0 if σc ∈ (0, σ̂c] and L < 0 otherwise.

In summary, ω0
r and ω1

r increases in σc if ρ ≥ 0 or µc ≤ c1; otherwise, ω0
r and ω1

r

decreases in σc if σc ∈ (0, σ̂c] and increases otherwise.

In terms of the effect of the correlation, I also have

∂M(σs, σc, ρ;Kr)

∂ρ
= σc

(∫ τ1(Kr)−µs
σs

−∞

∫ +∞

−∞

[
− ρ√

1− ρ2
z̃2 + z̃1

]
φ(z̃2)dz̃2φ(z̃1)dz̃1

+

∫ τ3(Kr)−µs
σs

τ1(Kr)−µs
σs

∫ c2−µc−ρσcz̃1
σc
√

1−ρ2

−∞

[
− ρ√

1− ρ2
z̃2 + z̃1

]
φ(z̃2)dz̃2φ(z̃1)dz̃1

+

∫ +∞

τ3(Kr)−µs
σs

∫ c1−µc−ρσcz̃1
σc
√

1−ρ2

−∞

[
− ρ√

1− ρ2
z̃2 + z̃1

]
φ(z̃2)dz̃2φ(z̃1)dz̃1

)
Let W = ∂M(σs,σc,ρ;Kr)

∂ρ
/σc, then W

∣∣∣
σc→0

≤ 0 where the equality is achieved when

c1 > µc, and W
∣∣∣
σc→+∞

= −
∫ +∞
τ1(Kr)−µs

σs

∫ +∞
− ρz̃1√

1−ρ2

[
− ρ√

1−ρ2
z̃2 + z̃1

]
φ(z̃2)dz̃2φ(z̃1)dz̃1 < 0.

148



Moreover,

dW

dσc
= −

(∫ +∞

τ3(Kr)−µs
σs

c1 − µc
βrσ2

c

√
1− ρ2

[σcz̃1 − ρ(c1 − µc)
σc(1− ρ2)

]
φ(
c1 − µc − ρσcz̃1

σc
√

1− ρ2
)φ(z̃1)dz̃1

+

∫ τ3(Kr)−µs
σs

τ1(Kr)−µs
σs

c2 − µc
βrσ2

c

√
1− ρ2

[σcz̃1 − ρ(c2 − µc)
σc(1− ρ2)

]
φ(
c2 − µc − ρσcz̃1

σc
√

1− ρ2
)φ(z̃1)dz̃1

)
If c2 < µc and ρ > 0, I have dW

dσc
< 0; hence, ∂M(σs,σc,ρ;Kr)

∂ρ
< 0; if c2 < µc and

ρ < 0, considering two cases: (1) σc is relatively small, then dW
dσc

< 0; (2) σc becomes

relatively large, then it is possible that dW
dσc

is positive. Under case (2), if dW
dσc

< 0,

similarly, I have ∂M(σs,σc,ρ;Kr)
∂ρ

< 0; otherwise, I know that W first decreases and

then increases in σc; moreover, I have W
∣∣∣
σc→0

≤ 0 and W
∣∣∣
σc→+∞

< 0; hence, I

also have ∂M(σs,σc,ρ;Kr)
∂ρ

< 0. For the case that c2 > µc, similarly, I can derive that

∂M(σs,σc,ρ;Kr)
∂ρ

< 0. Therefore, ω0
r and ω1

r increases in ρ.

Proof of Proposition 2.3: I show the results for any given Kr. There are two cases:

(1) Kf ≤ Dh+Dnh
βf

and (2) Kf >
Dh+Dnh

βf
.

Case (1): Kf ≤ Dh+Dnh
βf

(i) If Kr ∈ [0,
Dh+Dnh−βfKf

βr
], the expected cost can be written as

V (σs, σc, ρ;Kr) = (µc − βrcd)Kr + c̄b(βhDh + βnhDnh) + cd(Dh +Dnh) (B.6)

+

∫ Kf−µs
σs

−∞

∫ +∞

−∞

[
(cf − βfcd)(σsz̃1 + µc)

]
φ(z̃2)dz̃2φ(z̃1)dz̃1

+

∫ +∞

Kf−µs
σs

∫ ∞
−∞

[
(cf − βfcd)Kf

]
φ(z̃2)dz̃2φ(z̃1)dz̃1 (B.7)

+

∫ +∞

2Kf−µs
σs

∫ ∞
−∞

[
of (σsz̃1 + µc − 2Kf )

]
φ(z̃2)dz̃2φ(z̃1)dz̃1 + ωrKr

From the expected cost expression (B.6), I can easily find that V (σs, σc, ρ;Kr) is

independent of σc and ρ. For the impact from rainfall variability, I have

∂V (σs, σc, ρ;Kr)

∂σs
=

∫ Kf−µs
σs

−∞

[
(cf − βfcd)z̃1

]
φ(z̃1)dz̃1 +

∫ +∞

2Kf−µs
σs

of z̃1φ(z̃1)dz̃1

∂2V (σs, σc, ρ;Kr)

∂σ2
s

= −(Kf − µs)2

σ2
s

(cf − βfcd) + of
(2Kf − µs)2

σ3
s
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As cf − βfcd < 0, I have ∂2V (σs,σc,ρ;Kr)
∂σ2
s

> 0. Moreover, ∂V (σs,σc,ρ;Kr)
∂σs

∣∣∣
σs→0

= 0; hence,

∂V (σs,σc,ρ;Kr)
∂σs

> 0, which means the expected cost increases in σs.

(ii) If Kr ∈ [
Dh+Dnh−βfKf

βr
,min(βUqu,

Dnh
βr

)], the expected cost function is

V (σs, σc, ρ;Kr) =

∫ τ1(Kr)−µs
σs

−∞

∫ +∞

−∞

[
(σc
√

1− ρ2z̃2 + µc + ρσcz̃1 − βrcd)Kr+

cd(Dh +Dnh) + (cf − βfcd)(σsz̃1 + µs)
]
φ(z̃2)dz̃2φ(z̃1)dz̃1

+

∫ Kf−µs
σs

τ1(Kr)−µs
σs

∫ +∞

c2−µc−ρσcz̃1
σc
√

1−ρ2

[
(
σc
√

1− ρ2z̃2 + µc + ρσcz̃1

βr
)(Dh +Dnh)−

(
σc
√

1− ρ2z̃2 + µc + ρσcz̃1

βr
− cf
βf

)βf (σsz̃1 + µs)
]
φ(z̃2)dz̃2φ(z̃1)dz̃1

+

∫ 2Kf−µs
σs

Kf−µs
σs

∫ +∞

c2−µc−ρσcz̃1
σc
√

1−ρ2

[
(
σc
√

1− ρ2z̃2 + µc + ρσcz̃1

βr
)(Dh +Dnh)−

(
σc
√

1− ρ2z̃2 + µc + ρσcz̃1

βr
− cf
βf

)βfKf

]
φ(z̃2)dz̃2φ(z̃1)dz̃1

+

∫ +∞

2Kf−µs
σs

∫ +∞

c1−µc−ρσcz̃1
σc
√

1−ρ2

[
(
σc
√

1− ρ2z̃2 + µc + ρσcz̃1

βr
)(Dh +Dnh)−

(
σc
√

1− ρ2z̃2 + µc + ρσcz̃1

βr
− cf
βf

)βfKf + of (σsz̃1 + µs − 2Kf )
]
φ(z̃2)dz̃2φ(z̃1)dz̃1

+

∫ τ3(Kr)−µs
σs

τ1(Kr)−µs
σs

∫ c2−µc−ρσcz̃1
σc
√

1−ρ2

−∞

[
(
σc
√

1− ρ2z̃2 + µc + ρσcz̃1

βr
− cf
βf

)βrKr+

cf
βf

(Dh +Dnh)
]
φ(z̃2)dz̃2φ(z̃1)dz̃1

+

∫ +∞

τ3(Kr)−µs
σs

∫ c1−µc−ρσcz̃1
σc
√

1−ρ2

−∞

[
(
σc
√

1− ρ2z̃2 + µc + ρσcz̃1

βr
− cf − of

βf
)βrKr+

cf − of
βf

(Dh +Dnh) + of (σsz̃1 + µs − 2Kf )
]
φ(z̃2)dz̃2φ(z̃1)dz̃1

+

∫ 2Kf−µs
σs

τ3(Kr)−µs
σs

∫ c2−µc−ρσcz̃1
σc
√

1−ρ2

c1−µc−ρσcz̃1
σc
√

1−ρ2

[
(
σc
√

1− ρ2z̃2 + µc + ρσcz̃1

βr
)(Dh +Dnh)−

(
σc
√

1− ρ2z̃2 + µc + ρσcz̃1

βr
− cf
βf

)βf (σsz̃1 + µs −Kf )
]
φ(z̃2)dz̃2φ(z̃1)dz̃1

+ cb(Dh +Dnh) + ωrKr
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The first order partial derivative with respect to σc is

∂V (σs, σc, ρ;Kr)

∂σc
=

∫ τ1(Kr)−µs
σs

−∞

∫ +∞

−∞

[√1− ρ2z̃2 + ρz̃1

βr
βrKr

]
φ(z̃2)dz̃2φ(z̃1)dz̃1

+

∫ Kf−µs
σs

τ1(Kr)−µs
σs

∫ +∞

c2−µc−ρσcz̃1
σc
√

1−ρ2

[√1− ρ2z̃2 + ρz̃1

βr
(Dh +Dnh − βf (σsz̃1 + µs))

]
φ(z̃2)dz̃2φ(z̃1)dz̃1

+

∫ 2Kf−µs
σs

Kf−µs
σs

∫ +∞

c2−µc−ρσcz̃1
σc
√

1−ρ2

[√1− ρ2z̃2 + ρz̃1

βr
(Dh +Dnh − βfKf )

]
φ(z̃2)dz̃2φ(z̃1)dz̃1

+

∫ +∞

2Kf−µs
σs

∫ +∞

c1−µc−ρσcz̃1
σc
√

1−ρ2

[√1− ρ2z̃2 + ρz̃1

βr
(Dh +Dnh − βfKf )

]
φ(z̃2)dz̃2φ(z̃1)dz̃1

+

∫ τ3(Kr)−µs
σs

τ1(Kr)−µs
σs

∫ c2−µc−ρσcz̃1
σc
√

1−ρ2

−∞

[√1− ρ2z̃2 + ρz̃1

βr
βrKr

]
φ(z̃2)dz̃2φ(z̃1)dz̃1

+

∫ +∞

τ3(Kr)−µs
σs

∫ c1−µc−ρσcz̃1
σc
√

1−ρ2

−∞

[√1− ρ2z̃2 + ρz̃1

βr
βrKr

]
φ(z̃2)dz̃2φ(z̃1)dz̃1

+

∫ 2Kf−µs
σs

τ3(Kr)−µs
σs

∫ c2−µc−ρσcz̃1
σc
√

1−ρ2

c1−µc−ρσcz̃1
σc
√

1−ρ2

[√1− ρ2z̃2 + ρz̃1

βr
(Dh +Dnh − βf (σsz̃1 + µs −Kf ))

]
φ(z̃2)dz̃2φ(z̃1)dz̃1

Then

∂2V (σs, σc, ρ;Kr)

∂σ2
c

=

(c2 − µc)2

βrσ3
c

√
1− ρ2

∫ Kf−µs
σs

τ1(Kr)−µs
σs

(Dh +Dnh − βf (σsz̃1 + µs))φ(
c2 − µc − ρσcz̃1

σc
√

1− ρ2
)φ(z̃1)dz̃1

+
(c2 − µc)2

βrσ3
c

√
1− ρ2

∫ 2Kf−µs
σs

Kf−µs
σs

(Dh +Dnh − βfKf )φ(
c2 − µc − ρσcz̃1

σc
√

1− ρ2
)φ(z̃1)dz̃1

+
(c1 − µc)2

βrσ3
c

√
1− ρ2

∫ +∞

2Kf−µs
σs

(Dh +Dnh − βfKf )φ(
c1 − µc − ρσcz̃1

σc
√

1− ρ2
)φ(z̃1)dz̃1

− (c2 − µc)2

σ3
c

√
1− ρ2

∫ τ3(Kr)−µs
σs

τ1(Kr)−µs
σs

Krφ(
c2 − µc − ρσcz̃1

σc
√

1− ρ2
)φ(z̃1)dz̃1

− (c1 − µc)2

σ3
c

√
1− ρ2

∫ +∞

τ3(Kr)−µs
σs

Krφ(
c1 − µc − ρσcz̃1

σc
√

1− ρ2
)φ(z̃1)dz̃1

− (c2 − µc)2

βrσ3
c

√
1− ρ2

∫ 2Kf−µs
σs

τ3(Kr)−µs
σs

(Dh +Dnh − βf (σsz̃1 + µs −Kf ))φ(
c2 − µc − ρσcz̃1

σc
√

1− ρ2
)φ(z̃1)dz̃1

+
(c1 − µc)2

βrσ3
c

√
1− ρ2

∫ 2Kf−µs
σs

τ3(Kr)−µs
σs

(Dh +Dnh − βf (σsz̃1 + µs −Kf ))φ(
c1 − µc − ρσcz̃1

σc
√

1− ρ2
)φ(z̃1)dz̃1 < 0
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I also have ∂V (σs,σc,ρ;Kr)
∂σc

∣∣∣
σc→0

= 0 if µc ≤ c1. If µc > c2, then

∂V (σs, σc, ρ;Kr)

∂σc

∣∣∣
σc→0

=

∫ τ1(Kr)−µs
σs

−∞
ρz̃1Krφ(z̃1)dz̃1+

∫ Kf−µs
σs

τ1(Kr)−µs
σs

ρz̃1

βr
(Dh +Dnh − βf (σsz̃1 + µs))φ(z̃1)dz̃1 +

∫ +∞

Kf−µs
σs

ρz̃1

βr
(Dh +Dnh − βfKf )φ(z̃1)dz̃1

Taking the derivative with respect to σs, I have

d

(
∂V (σs, σc, ρ;Kr)

∂σc

∣∣∣
σc→0

)
/dσs =

∫ Kf−µs
σs

τ1(Kr)−µs
σs

−ρβf (z̃1)2

βr
φ(z̃1)dz̃1

then, ∂V (σs,σc,ρ;Kr)
∂σc

∣∣∣
σc→0

is increasing, decreasing and independent of σs if ρ < 0,

ρ > 0 and ρ = 0, respectively. Hence, if ρ < 0, ∂V (σs,σc,ρ;Kr)
∂σc

∣∣∣
σc→0

> 0; other-

wise, ∂V (σs,σc,ρ;Kr)
∂σc

∣∣∣
σc→0

≤ 0. As ∂2V (σs,σc,ρ;Kr)
∂σ2
c

< 0; hence, if ρ ≥ 0, I know that

∂V (σs,σc,ρ;Kr)
∂σc

< 0, which implies that V (σs, σc, ρ;Kr) decreases in σc; otherwise, I

need to investigate ∂V (σs,σc,ρ;Kr)
∂σc

∣∣∣
σc→+∞

. I find that ∂V (σs,σc,ρ;Kr)
∂σc

∣∣∣
σc→+∞

decreases in

σs and ∂V (σs,σc,ρ;Kr)
∂σc

∣∣∣
σc→+∞,σs→0

= 0, thus ∂V (σs,σc,ρ;Kr)
∂σc

∣∣∣
σc→+∞

< 0. Then there exists

a threshold σ̄c such that the expected cost increases in σc if σc ∈ (0, σ̄c] and decreases

in σc otherwise. These results also hold under the case c1 < µc ≤ c2. Therefore, in

summary, I have

� If µc ≤ c1 or ρ ≥ 0, the expected cost V (σs, σc, ρ;Kr) decreases in σc;

� If µc > c1 and ρ < 0, the expected cost increases in σc if σc ∈ (0, σ̄c] and

decreases otherwise.
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Similarly, I can get the first-order partial derivative with respective to σs The first-

order partial derivative with respect to σs is

∂V (σs, σc, ρ;Kr)

∂σs
=

∫ +∞

−∞

∫ τ1(Kr)−µs−ρσsz̃0
σs
√

1−ρ2

−∞

[
(cf − βfcd)(

√
1− ρ2z̃3 + ρz̃0)

]
φ(z̃3)dz̃3φ(z̃0)dz̃0

+

∫ +∞

c2−µc
σc

∫ Kf−µs−ρσsz̃0
σs
√

1−ρ2

τ1(Kr)−µs−ρσsz̃0
σs
√

1−ρ2

[
− (

σcz̃0 + µc
βr

− cf
βf

)βf (
√

1− ρ2z̃3 + ρz̃0)
]
φ(z̃3)dz̃3φ(z̃0)dz̃0

+

∫ +∞

c1−µc
σc

∫ +∞

2Kf−µs−ρσsz̃0
σs
√

1−ρ2

[
of (
√

1− ρ2z̃3 + ρz̃0)
]
φ(z̃3)dz̃3φ(z̃0)dz̃0

+

∫ c1−µc
σc

−∞

∫ +∞

τ3(Kr)−µs−ρσsz̃0
σs
√

1−ρ2

[
of (
√

1− ρ2z̃3 + ρz̃0)
]
φ(z̃3)dz̃3φ(z̃0)dz̃0

+

∫ c2−µc
σc

c1−µc
σc

∫ 2Kf−µs−ρσsz̃0
σs
√

1−ρ2

τ3(Kr)−µs−ρσsz̃0
σs
√

1−ρ2

[
− (

σcz̃0 + µc
βr

− cf
βf

)βf (
√

1− ρ2z̃3 + ρz̃0)
]
φ(z̃3)dz̃3φ(z̃0)dz̃0

then I have

∂2V (σs, σc, ρ;Kr)

∂σ2
s

=
(τ1(Kr)− µs)2

σ3
s

√
1− ρ2

∫ +∞

−∞
(βfcd − cf )φ(

τ1(Kr)− µs − ρσsz̃0

σs
√

1− ρ2
)φ(z̃0)dz̃0

− (τ1(Kr)− µs)2

σ3
s

√
1− ρ2

∫ +∞

c2−µc
σc

(
σcz̃0 + µc

βr
− cf
βf

)βfφ(
τ1(Kr)− µs − ρσsz̃0

σs
√

1− ρ2
)φ(z̃0)dz̃0

+
(Kf − µs)2

σ3
s

√
1− ρ2

∫ +∞

c2−µc
σc

(
σcz̃0 + µc

βr
− cf
βf

)βfφ(
Kf − µs − ρσsz̃0

σs
√

1− ρ2
)φ(z̃0)dz̃0

+
(2Kf − µs)2

σ3
s

√
1− ρ2

∫ +∞

c1−µc
σc

ofφ(
2Kf − µs − ρσsz̃0

σs
√

1− ρ2
)φ(z̃0)dz̃0

+
(τ3(Kr)− µs)2

σ3
s

√
1− ρ2

∫ c1−µc
σc

−∞
ofφ(

τ3(Kr)− µs − ρσsz̃0

σs
√

1− ρ2
)φ(z̃0)dz̃0

+
(2Kf − µs)2

σ3
s

√
1− ρ2

∫ c2−µc
σc

c1−µc
σc

(
σcz̃0 + µc

βr
− cf
βf

)βfφ(
2Kf − µs − ρσsz̃0

σs
√

1− ρ2
)φ(z̃0)dz̃0

− (τ3(Kr)− µs)2

σ3
s

√
1− ρ2

∫ c2−µc
σc

c1−µc
σc

(
σcz̃0 + µc

βr
− cf
βf

)βfφ(
τ3(Kr)− µs − ρσsz̃0

σs
√

1− ρ2
)φ(z̃0)dz̃0 ≥ 0

Moreover, ∂V (σs,σc,ρ;Kr)
∂σs

∣∣∣
σs→0

= 0; hence, ∂V (σs,σc,ρ;Kr)
∂σs

> 0, which implies that V (σs, σc, ρ;Kr)

increases in σs. Following the same way, I can show that ∂V (σs,σc,ρ;Kr)
∂ρ

< 0 (details are

omitted), which implies that the expected cost decreases in ρ.

Although I prove these results for any given Kr, it is easy to show that they also hold

under the optimal K∗r . Therefore
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(i) if ωr ≥ ω1
r , the optimal expected cost V ∗ is independent of ρ and σc and increases

in σs;

(ii)if ωr < ω1
r , V

∗ decreases in ρ and increases in σs; moreover, if µc ≤ c1 or

ρ ≥ 0, V ∗ decreases in σc; otherwise, the optimal expected cost increases in σc on

σc ∈ (0, σ̄c(Kf )] and decreases on (σ̄c(Kf ),+∞).

Using correlation for illustration, I show the global effect on the optimal expected

cost. As the correlation coefficient ρ increases, the thresholds ω0
r and ω1

r increase.

Now I consider the case that ωr is initially larger than ω1
r . From the results above,

I know that the optimal expected cost V ∗ initially is independent of ρ. However, as

ω0
r and ω1

r also increase in ρ such that a sufficiently large ρ may make ω1
r or both

thresholds larger than ωr, in this regard, V ∗ is first independent of and then decreases

in ρ. If ωr is initially smaller than ω1
r , then I observe that V ∗ decreases in ρ globally.

In summary, I can conclude that V ∗ decreases in ρ globally for all cases. I can derive

the global effects of the variabilities on the optimal expected cost similarly. Hence I

complete the proofs of Proposition 2.3.

Proof of Proposition 2.4 If ωr ≥ ω1
r or ωr < ω0

r , K
∗
r is independent of σs, σc and ρ;

otherwise, by the implicit function theorem, I have dK∗r
dσc

= −∂2V (σs,σc,ρ;Kr)
∂Kr∂σc

/∂
2V (σs,σc,ρ;Kr)

∂K2
r

.

I know that ∂2V (σs,σc,ρ;Kr)
∂K2

r
> 0, then the sign of dK∗r

dσc
depends on ∂M(σs,σc,ρ;Kr)

∂σc
. Simi-

larly, the signs of dK∗r
dσs

and dK∗r
dρ

depend on ∂M(σs,σc,ρ;Kr)
∂σs

and ∂M(σs,σc,ρ;Kr)
∂ρ

, respectively.

I show these results in the proof of Lemma 1; hence, I can easily conclude that, if

ωr ∈ (ω0
r , ω

1
r), K

∗
r increases in ρ and decreases in σs. As σc increases, K∗r increases if

ρ ≥ 0 or µc ≤ c1; otherwise, K∗r decreases if σc ∈ (0, σ̂c] and increases otherwise.

For the global effect, I may note that the thresholds, except ω2
r , also change with the

variabilities and correlation. Considering the case that ωr is initially larger than ω1
r ,

as ρ increases, from Lemma 1, I know that ω0
r and ω1

r increases. If the increasing

of ω0
r and ω1

r does not make ω1
r > ωr, then, as I proved, K∗r is independent of ρ;

however, the global effects is K∗r remains constant and then increases in ρ if I have

ω0
r < ωr < ω1

r when ρ is sufficiently large. Nevertheless, I can conclude that K∗r

increases in ρ globally. This result also holds under another possible scenario that
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the final increased ω0
r is larger than ωr. Following similar arguments, I can also show

that the global effects of σc and σs on the optimal recycling capacity K∗r , which are

presented in Proposition 2.4.

Proof of Lemma 2.2: Following the closed form of ω2
r , it is easy for us to conclude

that ω2
r is independent of βf and increasing in βr. For the effects of βr and βf on ω1

r ,

I take the first order partial derivative of M(βr, βf ;Kf )
∣∣
Kr=

Dh+Dnh−βfKf
βr

with respect

to βr as

∂M(βr, βf ;Kf )

∂βr
=

∫ c̄r

cr

∫ Kf

s0

−cdψ(s̃, c̃r)ds̃dc̃r +

∫ c2

cr

∫ 2Kf

Kf

−
cf
βf
ψ(s̃, c̃r)ds̃dc̃r

+

∫ c1

cr

∫ +∞

2Kf

−
cf − of
βf

ψ(s̃, c̃r)ds̃dc̃r

As c1 ≥ cr, then I have
∂V (βr,βf ;Kf )

∂βr
< 0(this is also true if c1 < cr). Hence, ω1

r

increases in βr. Similarly, I can show ω1
r decreases in βf .

Proof of Proposition 2.5: If ωr ≥ ω2
r , I have

V ∗ =

∫ c̄r

cr

∫ Kf

s0

(cf s̃+ cd(Dh +Dnh − βf s̃))ψ(s̃, c̃r)ds̃dc̃r

+

∫ c̄r

cr

∫ +∞

Kf

(cfKf + cd(Dh +Dnh − βfKf ))ψf (s̃, c̃r)ds̃dc̃r

+

∫ c̄r

cr

∫ +∞

2Kf

of (s̃− 2Kf )ψf (s̃, c̃r)ds̃dc̃r + c̄b(βhDh + βnhDnh)

which, obviously, is independent of βr. Moreover, I take the first-order derivative

with respect to βf

dV ∗

dβf
=

∫ c̄r

cr

∫ Kf

s0

−s̃ψ(s̃, c̃r)ds̃dc̃r +

∫ c̄r

cr

∫ +∞

Kf

−Kfψ(s̃, c̃r)ds̃dc̃r

which is negative. Hence, V ∗ decreases in βf . Following from these results immedi-

ately, I find that reducing freshwater leakage ratio is more beneficial than reducing

recycled water leakage.

If ω1
r ≤ ωr < ω2

r , I have

∂V ∗

∂βr
= −Dh +Dnh − βfKf

β2
r

(µc + ωr) < 0
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Similarly, I have

∂V ∗

∂βf
= −(µc − βrcd + ωr)

Kf

βr
−
∫ c̄r

cr

∫ Kf

s0

cds̃ψ(s̃, c̃r)ds̃dc̃r

−
∫ c̄r

cr

∫ +∞

Kf

cdKfψ(s̃, c̃r)ds̃dc̃r

I then have

∂V ∗

∂βf
=


< 0, if ωr > ω2

r

≥ 0, otherwise

where ω2
r = ω2

r −
E
c̃r,s̃

[min(Kf ,s̃)]

Kf
βrcd. However, I can show that ω2

r < ω1
r ; hence, in this

case, ωr > ω2
r is always true. Therefore, V ∗ decreases in βf . Comparing the marginal

benefits of reducing βf and βr, I find that

∂V ∗

∂βr
− ∂V ∗

∂βf
= −Dh +Dnh − βfKf

β2
r

(µc + ωr) + (µc − βrcd + ωr)
Kf

βr

+ E
c̃r,s̃

[min(Kf , s̃)]cd

= βf
Kf (µc + ωr)

β2
r

− Dh +Dnh

β2
r

(µc + ωr) + (µc − βrcd + ωr)
Kf

βr

+ E
c̃r,s̃

[min(Kf , s̃)]cd

Let

C(βr) =
Dh +Dnh

Kf

− (ωr − ω2
r)βr

µc + ωr
−

E
c̃r,s̃

[min(Kf , s̃)]cdβ
2
r

Kf (µc + ωr)

then

∂V ∗

∂βr
− ∂V ∗

∂βf
=


≥ 0, if βf ≥ C(βr);

< 0, otherwise

Hence, in this case, it is optimal to reduce the freshwater leakage ratio in priority if

βf ≥ C(βr) and reduce recycled water leakage ratio otherwise.
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If ωr < ω1
r , for any given Kr, I have

∂V (βr, βf ;Kf )

∂βr
=

∫ c̄r

cr

∫ τ1

s0

−cdKrψ(s̃, c̃r)ds̃dc̃r +

∫ c̄r

c2

∫ Kf

τ1

− c̃r
βr

Dh +Dnh − βf s̃
βr

ψ(s̃, c̃r)ds̃dc̃r

+

∫ c̄r

c2

∫ Kf

τ1

− c̃r
βr

Dh +Dnh − βfKf

βr
ψ(s̃, c̃r)ds̃dc̃r

+

∫ c̄r

c1

∫ +∞

2Kf

− c̃r
βr

Dh +Dnh − βfKf

βr
ψ(s̃, c̃r)ds̃dc̃r

+

∫ c2

cr

∫ 2Kf

Kf

−
cf
βf
Krψ(s̃, c̃r)ds̃dc̃r +

∫ c1

cr

∫ +∞

2Kf

−
cf − of
βf

Krψ(s̃, c̃r)ds̃dc̃r

+

∫ c2

c1

∫ 2Kf

τ3

− c̃r
βr

Dh +Dnh − βf (s̃−Kf )

βr
ψ(s̃, c̃r)ds̃dc̃r

Hence,
∂V (βr,βf ;Kf )

∂βr
< 0, which implies that the optimal expected cost decreases in

βr. Similarly, I show V ∗ decreases in βf .

In summary, I have

� If ωr ≥ ω2
r , V

∗ is independent of βr and decreasing in βf

� If ω1
r ≤ ωr < ω2

r , V
∗ decreases in βr and βf

� If ωr < ω1
r , V

∗ decreases in βr and βf

From Lemma 2.2, I know how ω2
r and ω1

r change with βr and βf ; hence, it is easy to

show that V ∗ is globally decreasing in βr and βf .

Proof of Lemma 2.3: omitted.

Proof of Proposition 2.6: If ωr ≥ ω2
r , I know that

DW = Dh +Dnh − βf E
c̃r,s̃

[min(Kf , s̃)]

Obviously, it decreases in Kf .

If ω1
r ≤ ωr < ω2

r , then

DW = βf E
c̃r,s̃

[(Kf − s̃)+]

which increases in Kf .
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If ω0
r < ωr < ω1

r , then

DW = E
c̃r,s̃

[Dh +Dnh − βf s̃− βrK∗r ]

From Corollary 2.2, I know that K∗r increases in Kf in this region; hence, DW de-

creases in Kf .

If ωr ≤ ω0
r , I can see that DW is independent of Kf .

For the global effect, if ωr ≥ ω2
r , as ω2

r is independent of Kr; hence, the global effect

is the same as the characterized local effect.

If ω1
r ≤ ωr < ω2

r , I know that ω1
r increases in Kf . Define ω̄r = ω1

r

∣∣∣∣
Kf=(Dh+Dnh)/βf

, then

(i) if ω̄r < ωr < ω2
r , the increasing of Kf does not make ω1

r larger than ω̄r, then the

global effect is still DW increases in Kf ; (ii) otherwise, there exists a threshold K̄f

such that ω1
r < ωr when Kf increases from s0 to K̄f and ω1

r ≥ ωr when Kf further

increases; hence, DW increases on [s0, K̄f ) and decreases on [K̄f , (Dh +Dnh)/βf ].

If ωr < ω1
r , I can similarly show that DW globally decreases in Kf .

Proof of Proposition 2.7: Omitted.

Proof of Proposition 2.8: Omitted.

Proof of Proposition 2.9: Omitted.
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